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Résumé : La recherche indirecte des effets 

de la physique au-delà du Modèle Standard à 

travers les processus de la saveur est 

complémentaire aux efforts au LHC pour 

observer directement la nouvelle physique. 

Dans cette thèse nous discutons plusieurs 

scénarios au-delà du Modèle Standard (a) en 

utilisant une approche basée sur les théories 

de champs effective et (b) en considérant des 

extensions explicites du Modèle Standard, à 

savoir les modèles à deux doublets de Higgs 

et les scénarios postulant l'existence des 

bosons leptoquarks scalaires à basse énergie. 

En particulier, nous discutons le phénomène 

de la brisure de l'universalité des couplages 

leptoniques dans les désintégrations basées 

sur les transitions 𝑏 → 𝑠𝜇𝜇 and 𝑏 → 𝑐𝜏𝜈, et 

la possibilité de chercher les signatures de la 

violation de la saveur leptonique à travers les 

modes de désintégration similaires. Une 

proposition pour tester la présence d'un 

boson pseudoscalaire léger à travers les 

désintégrations des quarkonia est aussi 

présentée. 
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beyond the Standard Model through flavor 
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directly. In this thesis we discuss several 

scenarios of physics beyond the Standard 

Model by (a) reusing the effective field 

theory approach and (b) by considering 
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Introduction

The Standard Model (SM) of particle physics is a quantum gauge theory which describes
with elegance and precision the interactions of sub-atomic particles. The phenomenolog-
ical successes of the SM are numerous, including extensive tests at accelerator facilities
performed at low and high energies which agree very well with the SM predictions. The
discovery of its last missing piece at the Large Hadron Collider (LHC), the Higgs boson,
represents one of its greatest achievements and corroborates six decades of persistent phe-
nomenological success [1, 2].

However, it is well known that the SM cannot be the ultimate theory of nature. Firstly,
it does not incorporate the gravitational interaction, even though the quantum effects from
gravity become significant only at inaccessibly high energies near the Planck scale. Fur-
thermore, neutrinos are massless in the SM, in disagreement with the well established
experimental observations that neutrinos are massive and oscillate among different flavors.
There is also a growing number of astrophysical and cosmological evidences, based on the
standard model of cosmology and on general relativity, which suggest that a substantial
part of the matter in the universe is neither baryonic nor luminous. If one assumes the
validity of those theories at large scales, then particle physics should be able to propose a
new particle, which might interact by means not described by the SM of particle physics.

In addition to the experimental observations described above, which cannot be accounted
for by the SM, there are also several conceptual problems which cannot be fully understood
without introducing physics beyond the SM. While the gauge sector of the SM is surprisingly
simple and predictive, our current understanding of flavor is highly unsatisfactory. Fermions
appear in three similar copies which are only distinguished by the Yukawa interactions.
Contrary to the gauge sector, the Yukawa sector is poorly constrained by symmetry. As a
consequence, many parameters (fermion masses and mixing) must be fixed by confronting
theory and experiment. Measurements have revealed a strong hierarchy for fermion masses
and a strikingly hierarchical structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, suggesting the existence of unknown underlying symmetry still to be unveiled.
The lack of understanding of the SM flavor structure is known as the flavor problem.
Furthermore, quantum corrections to the Higgs boson mass are quadratically divergent,
thus “unnaturally” sensitive to the ultraviolet (UV) completion of the theory. This issue is
known as the hierarchy problem and it is the main motivation to searching the New Physics
(NP) effects at the TeV scale.

All of the above problems call for physics beyond the SM, and many proposals have
been made over the past several decades to address each of the above-mentioned issues.
Simplicity and beauty have been the main guidelines in the quest for NP. However, despite
the intense theoretical effort, there is no strong theoretical preference for a specific scenario
of physics beyond the SM. The community of theoretical physicists has found itself at a
crossroad, and it becomes necessary to use the modern day high energy experiments to
select among the various options for a NP scenario. The search of NP effects can proceed
via two complementary approaches: the direct searches of new particles at high energy
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facilities, and the indirect searches for NP effects in low energy observables, which will be
the main focus of this thesis.

The indirect searches, and most particularly flavor physics, have been extensively used in
the past to probe the high energy scales through low energy experiments. A notable example
was the first observation of B0−B0 mixing [3], which indicated that the top quark is much
heavier than any other SM fermion years before its discovery at Tevatron [4,5]. Furthermore,
the flavor physics observables provide very useful information about physics beyond the SM.
A remarkable example is the K0 − K0 mixing parameter εK which, after comparing the
SM prediction with its measured values, sets a lower bound of about 108 GeV for the
scale of NP under the assumptions of O(1) flavor-universal couplings [6]. In particular,
this means that NP models with particles in the TeV range, as suggested by the hierarchy
problem, must have a non-trivial flavor structure to comply with the stringent limits from
flavor changing processes. In what concerns the indirect searches of NP, one should rely
on generic approaches with the least number of assumptions as possible. Effective field
theories (EFT) are the most efficient approach in that respect, since they provide a general
description of low energy physics without having to postulate what happens at arbitrarily
high energy scales. Another complementary approach is to consider minimal and pragmatic
extensions of the SM, preferably generic, which allow us to use the information from flavor
observables to guide the direct searches for new resonances at high energies. Such an
example is of two-Higgs doublet model (2HDM), also embedded in various supersymmetric
(or not) extensions of the SM [7]. Another possibility that became popular in recent years
is to consider the various leptoquark (LQ) states, which can arise in grand unification
scenarios and composite Higgs models, among other NP scenarios [8].

In this thesis we will extract the information on NP from the flavor physics observ-
ables. Current experiments at NA62, BES-III and LHCb provide us with a rich set of data
for testing the various NP scenarios and to guide the theoretical effort towards a flavor
theory beyond the SM. The information extracted from this data will be further corrob-
orated/complemented by the future experiments at Belle-II, KOTO, TREK, (g − 2)µ and
Mu2E, producing a prolific scenario for flavor physics. To interpret these results, we will
formulate effective theories which will be matched onto minimal models of NP motivated
by the recent experimental findings. The first part of this thesis is devoted to the Higgs
boson, which was the last ingredient of the SM observed in experiments. While the Higgs
boson couplings measured at the LHC still allow for large deviations from the SM predic-
tions, the direct searches have not ruled out the possibility of other light scalar particles
in the spectrum. In this first part of the thesis, we will focus on the 2HDM, and explore
the lessons on their spectrum that can be learned by using the general theoretical and phe-
nomenological constraints. The scalar masses and couplings allowed by our analysis will
then be confronted with the flavor physics observables. To that purpose we will compute
the full set of Wilson coefficients contributing to the relevant tree-level and loop induced
meson decays and confront these results with recent data. Particular emphasis will be de-
voted to the exclusive b → s`+`− decay modes due to the increasing experimental effort
to measure the corresponding observables at LHCb. Among the scenarios we consider, the
intriguing possibility that a light CP-odd Higgs (mA . 125 GeV) is present in the spectrum
will be explored. Such a particle would be most welcome as a mediator between the SM and
the dark sector because the so-called pseudoscalar portal can evade the strong constraints
coming from the the null results in dark matter direct detection experiments [9,10]. We will
show that this scenario is perfectly plausible in light of current theoretical and experimental
constraints, and we will discuss the opportunities to look for this particle in Higgs exclusive
decays and in the decay modes of quarkonia.
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The second part of this thesis is devoted to the hints of lepton flavor universality (LFU)
violation in semileptonic B meson decays. More specifically, the LHCb measurement of
RK = B(B → Kµ+µ−)/B(B → Ke+e−) [11] and RK∗ = B(B → K∗µ+µ−)/B(B →
K∗e+e−) [12] in different bins of dilepton squared momentum q2 were shown to be signifi-
cantly lower than predicted [13]. These observables are almost free of theoretical uncertain-
ties since the hadronic uncertainties cancel out to a large extension in the ratio. While these
results still need to be confirmed by an independent experiment (Belle-II), they triggered
an intense theoretical activity to understand the source of these discrepancies. Within the
2HDM scenarios discussed above, the violation of LFU is found to be negligibly small, sug-
gesting that other bosonic contributions are needed to accommodate these discrepancies.
To this purpose, we consider the scenarios containing various LQ states. While these parti-
cles are often considered to be exotic in the direct searches at the LHC, they offer one of the
prominent candidates to explain the effects of LFU violation. In this thesis, we will scru-
tinize the proposed LQ explanations of Rexp

K(∗) < RSM
K(∗) and discuss the implications for the

current and future experiments. In particular, we will show that a popular scenario in the
literature is not viable, and we will propose a new LQ mechanism to explain Rexp

K(∗) < RSM
K(∗)

through loops. Among the predictions of these models, we will emphasize the importance
of lepton flavor violating (LFV) decays, since they offer a very clean alternative allowing
to test most of the proposed New Physics scenarios. Another intriguing evidence of LFU
violation was unveiled in the processes mediated by the charged current [14], where it was
found that RD(∗) = B(B → D(∗)τν)/B(B → D(∗)lν), with l = e, µ, are larger than predicted
in the SM [15–17]. The possibility that the b → s and b → c anomalies are generated by
the same mechanism, possibly related to flavor breaking effects beyond the SM, triggered
a lot of interest in the theory community. One should, however, be cautious because the
prediction of RD∗ requires the assessment of the B → D∗ form factors which are still not
available from first principle computations. In this thesis, after critically reviewing the
status of the SM predictions of RD(∗) , we will discuss the models that have been proposed
to simultaneously explain the ensemble of LFU violating observables. In particular, we will
discuss a minimal LQ model that we proposed to explain some of these deviations.

The outline of this thesis is as follows. In Chapter 1, we briefly introduce the SM to fix
our notation and we discuss some of the SM problems which suggest the existence of NP.
In Chapter 2, we present the flavor observables that will be discussed in the subsequent
chapters. In particular, we will overview the assessment of hadronic uncertainties entering
these quantities and give the general expressions for the relevant observables in terms of an
effective field theory. In Chapter 3, we present the general features of two-Higgs doublet
models and discuss the most relevant probes of the additional scalar particles at low energies.
In Chapter 4, we introduce the main generalities of leptoquark models and discuss how these
particle can arise from grand unification models. In Chapter 5, we discuss the tantalizing
hints of NP in lepton flavor universality ratios of B-meson decays. We attempt to overview
the viable NP explanations to these puzzles which have been proposed in the literature. In
particular, we will focus our discussion on the leptoquark models introduced in Chapter 4.
Finally, we summarize our results and conclude.
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics is one of the most successful physical theories
ever concieved. Its predictions have been experimentally tested in a wide range of energy
scales and they agree very well with the data. Furthemore, the Higgs boson found at the
LHC in 2012 is the last missing piece of the SM which corroborated more than five decades
of phenomenological success [1, 2]. Nonetheless, there are several phenomenological and
aesthetic reasons which indicate that the SM cannot be the ultimate fundamental theory.

The purpose of this Section is to fix our notation by introducing the SM Lagrangian and
to briefly discuss the limitations of the SM which motivate the quest for physics beyond the
SM.

1.1 The Standard Model Lagrangian
The SM is a quantum field theory that describes the fundamental electromagnetic, weak and
strong interactions based on the gauge principle. The building blocks of the SM are fermions
(leptons and quarks), which appear in three copies of chiral multiplets. The interactions in
the SM are introduced by the gauge group

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1)
where SU(3)c is the group associated to the Quantum Chromodynamics (QCD), SU(2)L to
the weak isospin, and U(1)Y the hypercharge. To give masses to the SM particles, a scalar
field belonging to a SU(2)L doublet (Φ) is also introduced. This doublet is responsible for
the spontaneous symmetry breaking GSM → SU(3)c×U(1)em via the so-called Higgs-Brout-
Englert mechanism [18–21].

The quantum numbers of the SM fields are summarized in Table 1.1. By imposing
the requirements of renormazability and gauge invariance, one can write the most general
Lagrangian for the SM in the following form

LSM = Lgauge + Lmatter + LHiggs + LYukawa . (1.2)
The expressions for each piece in LSM will be described below.

The gauge sector

The SM gauge sector contains eight gluons Ga
µ (a = 1, . . . , 8), three electroweak gauge

bosons W a
µ (a = 1, 2, 3) associated with SU(2)L, and the U(1)Y vector boson Bµ. These
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1.1. The Standard Model Lagrangian

SU(3) SU(2) U(1)Y

Li 1 2 1/2

Qi 3 2 1/6

`R 1 1 −1

uR 3 1 2/3

dR 3 1 −1/3

Φ 1 2 1/2

Table 1.1: Representations under which the SM fermion and scalar fields transform. For the
non-Abelian groups, the representation is denoted by its dimension.

fields transform under the adjoint representation of the corresponding gauge groups. The
gauge Lagrangian is then described by

Lgauge = −1
4G

a
µνG

µν,a − 1
4W

a
µνW

µν,a − 1
4BµνB

µν , (1.3)

where the summation over the SU(N) indices is implicit, a = 1, . . . (N2 − 1). The field
strength tensors are defined by

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gs f
abcGb

µG
c
ν , (1.4)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW b
µW

c
ν , (1.5)

Bµν = ∂µBν − ∂νBµ , (1.6)

where εabc and fabc are the structure constants of the SU(2)L and SU(3)c groups, respec-
tively. Moreover, g and gs are the couplings of SU(3)c and SU(2)L, respectively. For
completeness, we also define the coupling g′ of the Abelian group U(1)Y . The mass terms
in Lgauge are forbidden by the gauge symmetry. For the electroweak gauge bosons W±

and Z, this mass is generated by the Higgs-Brout-Englert mechanism, which will be briefly
described below.

The scalar sector

To generate the masses of the gauge bosons, the gauge symmetry must be broken. The main
idea of the Brout-Englert-Higgs mechanism is that the dynamics of the theory can be such
that a symmetry of the Lagrangian is not necessarily respected by its ground state [18–21].
In this case, the choice among one of the possible degenerate vacuum states spontaneously
breaks the symmetry.

In the SM, the most general Lagrangian in the scalar sector reads

LHiggs = (DµΦ)† (DµΦ) +m2Φ†Φ− λ
(
Φ†Φ

)2
, (1.7)

where m2 and λ are free parameters. The quartic coupling λ is positive, since the scalar
potential must be bounded from below. The covariant derivative of the Higgs doublet is

10



1.1. The Standard Model Lagrangian

defined by

DµΦ =
[
∂µ − ig

σa

2 W
a
µ − i

g′

2 Bµ

]
Φ , (1.8)

where σa (a = 1, 2, 3) are the Pauli matrices. In the case m2 < 0, the minimization of the
scalar potential leads to the ground state 〈Φ†Φ〉 = 0, which is a singlet of the SM gauge
symmetry. To implement the Brout-Englert-Higgs mechanism, one must assume m2 > 0,
in which case the minimization of the Higgs potential leads to a non-trivial vacuum,

〈Φ†Φ〉 = v2

2 , (1.9)

where v = m/
√
λ is the vacuum expectation value (vev), which induces the spontaneous

breaking of the SM symmetry SU(3)c × SU(2)× U(1)Y into SU(3)c × U(1)em. Among the
possible vacuum states, we can choose

〈Φ〉 = 1√
2

0
v

 . (1.10)

The scalar doublet Φ had four degrees of freedom, three of which are the Goldstone bosons
eaten up to give mass to the electroweak bosons. The remaining scalar particle is the so-
called Higgs boson h, which was discovered in 2012 at the LHC [1,2]. In the unitary gauge,
the scalar doublet Φ can be parameterized as

Φ = 1√
2

 0
v + h

 . (1.11)

By inserting Eq. (1.11) in Eq. (1.7), one can then recognize three massive gauge bosons W±

and Z0, defined by

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, (1.12)

and

Zµ = W 3
µ cos θW +Bµ sin θW ,

Aµ = −W 3
µ sin θW +Bµ cos θW ,

(1.13)

with masses

mW = gv

2 , and mZ = gv

2 cos θW
. (1.14)

In addition to the W± and Z0, there is one massless vector field Aµ which is related to the
photon. The fact that the photon is massless is a manifestation of the residual symmetry
U(1)em of the theory. The Weinberg angle θW is defined by

tan θW = g′

g
, (1.15)

which is related to the electric charge via the relation

e = g sin θW = g′ cos θW . (1.16)
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1.1. The Standard Model Lagrangian

On the phenomenological level, the electroweak vev can be determined from the muon
lifetime, which is related to the Fermi constant GF = 1.1663787(6) × 10−5 GeV−2 [22] via
the relation

v2 = 1√
2GF

. (1.17)

This fixes the vev to be v ≈ 246 GeV. The other parameters in the scalar sector are
fixed by the Higgs boson mass mh =

√
2m2 = 125.09(24) GeV [22]. This value for mh

is in good agreement with the indirect bounds1 from the LEP data [24] and implies that
λ = m2

h/(2v2) ≈ 0.13 for the quartic coupling, which is therefore perturbative. Furthermore,
the relations between the different couplings and masses of the electroweak bosons are
one of the main predictions of the SM, which have been thoroughly verified at different
experiments, including LEP, Tevatron and the LHC. The current experimental averages for
the W± and Z0 masses are given by [22]

mW = 80.385(15) GeV ,

mZ = 91.1876(21) GeV .
(1.18)

These values are found to be consistent with the global fit to the electroweak observables,
to which the radiative corrections must be included. The assessment of the validity of the
SM at electroweak scale via electroweak precision tests, including the parameters S, T and
U which permit to test it at the loop-level, is one of the most important achievements of
the SM [23].

Fermionic sector

The kinetic and gauge interactions of fermions are given by

Lmatter =
∑

i=e,µ,τ
iLi /DLi +

∑
i=e,µ,τ

i`Ri /D`Ri +
∑

quarks
iQi /DQi +

∑
quarks

iqRi /DqRi , (1.19)

where the summations extend over the different fermions appearing in Table 1.1 and over
family indices. Fermion masses are forbidden at this level, arising only in the Yukawa sector
via the Higgs mechanism, as it will be discussed in the following. The covariant derivatives
for the weak doublets are defined by

DµψL =
[
∂µ−

ig√
2
(
τ+W+

µ + τ−W−
µ

)
+ ieQAµ−

ig

2 cos θW

(
τ3 − 2Q sin2 θW

)
Zµ

]
ψL , (1.20)

where we have used Eqs. (1.12) and (1.13) to make explicit the physical gauge bosons. In
this expression, Y is the hypercharge of the fermion multiplet and the charge operator is
defined as Q = Y +T3. Moreover, we defined τ± = (τ1± iτ2)/2, as usual. For RH fermions,
which are SU(2)L singlets, the covariant derivative takes a simpler form, namely,

DµψR =
[
∂µ + ieQAµ + ig

cos θW
Q sin2 θWZµ

]
ψR . (1.21)

From the expressions given above, one can derive the form of charged and neutral current
interaction in the flavor basis.

1The SM fit to electroweak data predicts mh = 94+25
−22 GeV [23], which agrees within 1.3σ with the value

measured at the LHC.
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Yukawa sector

In the SM, the only source of flavor violation are the Yukawa couplings between fermions
and the Higgs field, defined by

LYukawa = −(Y`)ij Li Φ `Rj − (Yd)ij Qi Φ dRj − (Yu)ij Qi Φ̃uRj + h.c. , (1.22)

where Φ̃ = iσ2Φ∗ is the conjugate SU(2)L doublet and Yu,d,` are 3× 3 complex matrices in
flavor space. After spontaneous symmetry breaking, the Yukawa Lagrangian in the unitary
gauge becomes

LYukawa = −h+ v√
2

[
(Y`)ij `Li`Rj + (Yd)ij dRidRj + (Yu)ij uLiuRj

]
+ h.c. , (1.23)

from which one can read the interactions of the Higgs boson to fermions and the charged
fermion masses, namely,

Mf = Yfv√
2
, (1.24)

where f = u, d, `. These fermion mass matrices are non-diagonal and can then be diago-
nalized by biunitary transformations,

Mf = V f †
L Mdiag

f V f
R . (1.25)

The unitary matrices V f
L and V f

R can be absorbed by a redefinition of the LH and RH
fermion fields,

Ψf,L → V f †
L Ψf,L , Ψf,R → V f †

R Ψf,R . (1.26)

The neutral currents remain flavor diagonal under this transformation, while the charged
ones become flavor violating,

Lcc = − g√
2
∑
i,j

(VCKM)ij uiγµPLdjW+
µ + h.c. , (1.27)

where VCKM = V u
L V

d †
L is the Cabibbo–Kobayashi–Maskawa (CKM) matrix. The CKM

matrix is unitary and it can be fully parameterized by three angles and one complex phase,
which must be extracted from experiment, similarly to the fermion masses. To see that,
note that any n× n unitary matrix has n2 parameters, from which n(n− 1)/2 are real and
n(n+ 1)/2 are complex. Some of the complex parameters can be reabsorbed by rephasing
the quark fields. More specifically, by redefining the n down-type quarks and the n up-type
quarks, while imposing baryon number conservation, one can eliminate 2n− 1 phases (the
relative phases of the quark fields). Therefore, by taking n = 3 we obtain that the CKM
matrix has n(n − 1)/2 = 3 angles, and (n − 1)(n − 2)/2 = 1 phase. The observation that
a third generation is needed in order to have CP violation in the SM is known as the
Kobayashi–Maskawa mechanism [25].

One of the main peculiarities of the SM is that flavor changing neutral currents (FCNC)
are absent at tree-level. These processes are only generated at loop-level, as illustrated
in Fig. 1.1. Since these phenomena are loop-induced, they are rare in the SM, which is
why they provide very useful tests of the validity of the SM and a probe of physics beyond
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1.2. Why do we need to go beyond?

the SM, as we will discuss in Chapter 2. Furthermore, it should be stressed that FCNC
processes are directly related to fermion masses and mixing because the Yukawa couplings
are the only sources of flavor violation in the SM.

qi

W W

q̄j q̄iq̄k

qk qjVik

V ∗
jk Vik

V ∗
jk

γ

W

qi qk qk qj

V ∗
jkVik

Figure 1.1: Examples of loop diagrams contributing to ∆F = 2 (left) and ∆F = 1 (right) FCNC
processes in the SM. For simplicity, we wrote V ≡ V CKM.

As a final remark, note that neutrinos are massless in the SM. These particles do not
acquire a mass through the Higgs mechanism since this would require the presence of gauge
singlets νR, which are absent by construction. Furthermore, a Majorana mass term for νL
is forbidden at the renormalizable level by the gauge symmetry.

1.2 Why do we need to go beyond?
Despite its remarkable phenomenological success, the SM cannot be a final theory of fun-
damental interactions. Firstly, it does not incorporate gravitational interactions, which
should become important at energy scales near the Planck scale. The solution to this long
standing problem is one of the great open questions in theoretical physics and the lack
of experimental signals to guide us makes this task particularly difficult. In addition to
the lack of a quantum theory of gravity, the SM cannot accommodate some experimental
observations, such as neutrino masses and the observation of dark matter. While there is
no doubt that neutrinos are massive particles, the conclusion that dark matter must man-
ifest itself as new particles interacting weakly with the SM depends on the validity of the
Standard Model of cosmology. This inference must be corroborated by direct and indirect
searches for dark matter particles, which have been inconclusive until the present moment.
Moreover, in additional to neutrino masses, the SM also leaves many aesthetic questions
unanswered, such as the hierarchy and flavor problems.

In the following, we will briefly overview some of the above mentioned problems which
motivate physics beyond the SM.

1.2.1 Neutrino masses
One of the most compelling evidences of physics beyond the SM comes from the observation
that neutrinos are massive particles that oscillate among different flavors. The picture of
massive neutrinos has been corroborated by several experiments measuring atmospheric [26–
31] and solar neutrinos [32,33,33–41], as well as neutrinos produced in accelerators [42–44]
and nuclear reactors [45–48]. In 2012, the last missing angle in the lepton sector, θ13 ≈ 8◦,
was measured by reactor experiments [49], which helped establishing that neutrinos are
indeed massive and oscillate. In addition to the mixing angles, the oscillation experiments
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1.2. Why do we need to go beyond?

can also measure the squared mass differences ∆m2
ij = m2

νi
− m2

νj
(i, j = 1, 2, 3) of the

neutrinos mass eigenstates νi, which satisfy [50]

∆m2
21 ≈ 7.5× 10−5 eV2 , and

∣∣∣∆m2
3`

∣∣∣ ≈ 2.5× 10−3 eV2 . (1.28)
The ordering of neutrino masses is still unknown, which can be normal mν1 < mν2 < mν3 ,
or inverted mν3 < mν1 < mν2 . For that reason, we define in the above equation ∆m2

3` =
∆m2

31 > 0 for the normal ordering, and ∆m2
3` = ∆m2

32 < 0 for the inverted one.
The absolute mass scale of neutrinos remains unconstrained, since the oscillation proba-

bilities are only sensitive to the squared mass differences. Limits on mνi can be obtained by
studying the kinematics of tritium beta decay, which sets limits of the order mνi . 1 eV [51].
Stronger limits on the sum of neutrino masses can be obtained from cosmology, but these
require further assumptions about the cosmological model. For this reason, those bounds
are less compelling. Based on the discussion above, it becomes clear that neutrinos are not
only massive fermions, but also that they are several orders of magnitude lighter than the
other SM particles. This mass gap is often considered as an indication that neutrino masses
might be generated by a different mechanism than the one inducing the charged fermion
masses.

On theory side, the SM is constructed in such a way that neutrinos are massless, as
discussed Sec. 1.1. Therefore, a mechanism beyond the SM is needed to generate neutrino
masses. It is beyond the scope of this thesis to review the plethora of scenarios proposed to
generate neutrino masses and to explain their smallness. Nonetheless, it is fair to say that
the minimal scenarios predict the existence of particles well beyond the reach of current
and future experiments, see for example the original proposal of the type I seesaw mecha-
nism [52–55]. To lower these energy scales, it is usually necessary to introduce new degrees
of freedom, at the price of increasing the complexity of the models, as in the so-called
Inverse seesaw scenario [56–58]. Other possibility is to fine tune the couplings. Finally, in
terms of an effective theory, the lowest-dimension operator capable of generating neutrino
masses is the Weinberg operator [59],

O5 = fij
2Λ

(
LCi Φ̃∗

) (
Φ̃† Lj

)
+ h.c. , (1.29)

which is the only dimension-5 allowed by the SM gauge symmetry. In this equation, fij are
complex numbers satisfying fij = fji and Λ is an energy scale associated to the mechanism
behind neutrino masses. Moreover, the fermion conjugation of a generic fermion field Ψ is
defined by ΨC = γ0CΨ∗, where C = iγ2γ0. The Weinberg operator violates lepton number
L by two units and gives the following Majorana mass term

L ⊃ fijv
2

4Λ νCLi νLj + h.c. (1.30)

It should be stressed that any scenario of NP generating Majorana neutrino masses can
be matched onto an effective theory containing O5 once the heavy degrees of freedom have
been integrated out.

The mechanism just described can generate neutrino masses if the lepton number sym-
metry L is violated, i.e. if neutrinos are Majorana particles. Until now, the violation of L
has still not been observed in experiments, which have been mostly focused on the search
of the neutrinoless double beta decay nn → ppe−e− [60–62]. Therefore, despite the strong
theoretical preference for Majorana neutrinos, the hypothesis of Dirac neutrinos remains
equally plausible. If neutrinos are Dirac particles then the generation of their masses would
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proceed through the Yukawa interactions with the introduction of right-handed neutrinos,
in a similar to way to the mechanism for charged fermions.

1.2.2 The SM flavor problem
The origin of the flavor of quarks and leptons remains one of great open questions in
theoretical physics. The only source of flavor violation in the SM comes from the Yukawa
interactions, which break the global flavor symmetry of the SM

GG = U(3)L × U(3)`R × U(3)Q × U(3)uR × U(3)dR , (1.31)
where each U(3) transformation acts in flavor space for a fermion field in Table 1.1. The
description of flavor in terms of the Higgs mechanism is highly unsatisfactory since the
Yukawa interactions are not controlled by any symmetry principle, contrary to the SM gauge
sector, resulting in a large number of parameters that must be extracted from experiment.
In other words, the SM Higgs sector can only accommodate fermion masses and mixing, but
it does not constraint the size or pattern of Yukawa couplings.

The flavor problem arises when one inspects the very hierarchical pattern taken by the
flavor violating parameters, namely fermion masses and CKM entries. The observed pattern
does not look accidental and it is expected to be explained by a symmetry argument or
a flavor theory based on that symmetry. If for the moment we put aside θQCD, in the
SM there are 13 free parameters in the SM flavor sector, which comprise masses, mixing
angles and one complex phase. Charged fermion masses span six orders of magnitude,
going from the very light electron with mass me = 0.5110 MeV to the top quark mass
mpole
t = 173.3 ± 0.8 GeV [63], which is the heaviest particle of the SM. This hierarchy

becomes even more pronounced when one considers neutrino masses, which are known to
be mνi . O(1 eV), as depicted in Fig. 1.2. Up to now, there is no convincing explanation
of that hierarchy.

Figure 1.2: Fermion masses in the SM ammended with neutrino masses. We consider the MS
quark masses from Ref. [22] at the scale µ = 2 GeV for light quarks, and at µ = mq for q = c, b, t.

Another facet of the flavor problem comes from the mixing parameters. CKM and
PMNS matrices have very different structures: while CKM is hierarchical, PMNS is not.
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The CKM matrix can be generically parameterized by three angles θ12, θ13 and θ23, and
one phase δ13 [22],

VCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13

 , (1.32)

where sij ≡ sin θij and cij ≡ cos θij (i, j = 1, 2, 3). The off-diagonal elements of the CKM
matrix are found to satisfy a strong hierarchical pattern: |Vus| and |Vcd| are of order ≈ 0.22,
|Vcb| and |Vts| are of order ≈ 4 × 10−2, whereas the elements |Vub| and |Vtd| are of order
≈ 5 × 10−3 [64, 65]. This hierarchical pattern becomes even more explicit in the so-called
Wolfenstein parameterization, which makes manifest the fact that s12 � s23 � s13 [66].
This parameterization is obtained by expanding the CKM matrix is expanded in powers of
the small parameter λ ≡ |Vus|≈ 0.22� 1,

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (1.33)

where A, ρ and η areO(1) real numbers. 2 The present fits to the ensemble of flavor changing
processes result in the precise values ρ = 0.157(14), η = 0.352(11), A = 0.833(12) and
λ = 0.22497(69) [64]. On the other hand, the leptonic mixing matrix, also called Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix, shows a completely different pattern with very
large mixing angles. The most recent fits to neutrino data give, to 1σ accuracy [50],

θPMNS
23 = (41.6+1.5

−1.2)◦ , (1.34)

θPMNS
12 = (33.56+0.77

−0.75)◦ , (1.35)

θPMNS
13 = (8.46± 0.15)◦ , (1.36)

where we have used the same parameterization of Eq. (1.32) and taken the results for the
normal ordering for illustration. For comparison, the largest angle in the CKM matrix is
given by the Cabibbo angle, θCKM

12 = (13.00 ± 0.04)◦, which is of the same order as the
smallest mixing angle in the lepton sector, θPMNS

13 = (8.46 ± 0.15)◦. Why are the CKM
parameters so hierarchical? Why are the mixing parameters so large in the leptonic sector?
These questions call for physics beyond the SM.

The ensemble of striking observations described above is called the flavor problem, which
requires physics beyond the SM. The fact that there is no theoretical hint for the scale of
NP responsible for the flavor breaking mechanism beyond the SM makes the flavor problem
particularly difficult to solve. Therefore, experimental hints are more than needed to guide
the theoretical efforts towards a flavor theory that could give an explanation for the observed
patterns of flavor parameters by using symmetry principles.

2The inclusion of terms O(λ4) and O(λ5) is mandatory for phenomenological applications. The
expansion at higher orders can be obtained by adopting the convention λ ≡ s12, Aλ2 ≡ s23 and
Aλ3(ρ− iη) ≡ s13e

−iδ.
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1.2.3 The hierarchy problem
The Higgs sector is the least constrained piece of the SM Lagrangian by symmetries, being
for that reason the source of many of its puzzles. We have already discussed the SM flavor
problem, which is related to the lack of a flavor symmetry in the Yukawa sector (Higgs
couplings to fermions). The hierarchy problem is related to the fact that the SM contains
a fundamental scalar with a mass term unconstrained by symmetries, which receives then
large radiative corrections from the UV completion of the theory.

In the SM, the masses of fermions and vector bosons are forbidden by the SU(2)L×U(1)Y
gauge symmetry. In this case, it can be shown that any loop correction to these parameters
will be proportional to the tree-level masses, which means that they are multiplicatively
renormalized. This property holds for fermions even in the absence of the gauge symme-
try, because the chiral symmetry also protects fermion masses. For the Higgs boson, the
situation is different since the limit mh → 0 does not enhance the SM symmetries. In this
case, we say that the parameters m2

h is additively renormalized since it receives corrections
proportional to the masses of the particles running in the loops. As a consequence of that,
the SM Higgs sector becomes highly sensitive to quantum corrections and to the cutoff of
the theory.

To illustrate the above-mentioned issue, one can compute the one loop-corrections to
the Higgs mass in the SM, which are illustrated in Fig. 1.3. By regularizing the integral
with a hard cutoff Λ, one obtains

δm2
h = 3Λ2

8π2v2

[
4m2

t − 2m2
W −m2

Z −m2
h +O

(
log Λ

µ

)]
, (1.37)

where we recognize contribution from top quark which is proportional to m2
t/v

2, and that
gives the most significant radiative correction to the Higgs mass in the SM. From this
expression we see that the Higgs mass is quadratically sensitive to the cutoff of the theory.
Since the only available cutoff is the Planck scale, MPl ≈ 1.22 × 1019 GeV, which is much
larger than the Higgs mass mh = 125.09(24) GeV [22], we observe that the bare Higgs
mass and its counter term must be fine tuned to an enormous accuracy to reproduce a light
Higgs mass. This statement is precisely the hierarchy problem, which arises in theories
with fundamental scalars where a hierarchy of scales mh � Λ is present. In particular, the
hierarchy problem is an indication that the NP scale cannot be too large. More precisely,
for the Higgs mass observed at the LHC, the requirement of fine tuning in mh of less than
1 part in 10 implies that the scale of NP should be below a few TeV [67].

t

t

W, Z

W,Z

h

h

W,Z h

Figure 1.3: One loop corrections to the Higgs self-energy in the SM.

We have not yet enough information to unambiguously determine how the SM should be
extended to address the hierarchy problem. Most concrete proposals point at the existence
of new degrees of freedom in the TeV range, possibly accessible at the LHC. This observation
is in apparent contradiction with the information extracted from the flavor experiments,
which set stringent bounds on the NP scale ΛNP. More specifically, FCNC processes in
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the SM are suppressed by (i) the loop factors, (ii) by the GIM mechanism [68] and (iii)
by the hierarchy of the CKM matrix, |Vtd|� |Vts|� |Vtb|≈ 1. Hence, the precise study of
these processes and the comparison with the experimental results allows us to impose severe
constraints on ΛNP. For instance, the K0−K0 mixing parameter εK sets an lower bound of
about ΛNP & 108 GeV if O(1) NP couplings are assumed [6]. This apparent contradiction
between bounds on NP stemming from flavor experiments and the prejudice that NP should
emerge at the TeV scale is often called the NP flavor puzzle, and it implies that NP should
have a non-trivial flavor structure. The most popular solution to this problem goes under the
name of Minimal Flavor Violation (MFV) [69,70]. In this approach, the Yukawa interactions
are identified as the only source of flavor violation, reproducing the SM flavor structure also
beyond the SM. In this case, the bounds from flavor changing observables are lowered to the
TeV range at which we expect that the solution to the hierarchy will emerge. Nonetheless,
it is worth stressing that the MFV hypothesis is not a theory of flavor, since it does allow
us to determine the pattern of Yukawa couplings in terms of a small number of parameters
of a more fundamental theory. Therefore, the ultimate solution to the hierarchy and flavor
problems remains an open question. Experimental hints from indirect and/or direct searches
are in that respect most welcome guides of the theoretical effort to the solution of these
problems.
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Chapter 2

Flavor observables as a probe of New
Physics

The current situation of direct searches of New Physics is that no particle beyond the SM
has been found at the LHC at energies . 1 TeV, and that most theoretical speculations
about the possible scale/nature of New Physics seem to be unsound. In such a situation,
flavor physics can be very useful, since it can probe scales well above the ones attained
by the direct experimental searches. Furthermore, the constraints coming from indirect
searches can be complementary in guiding the direct searches, pointing to the observables
where New Physics could be effectively seen.

The main difficulty in the comparison between the SM predictions and the experimental
results lies in the fact that non-perturbative QCD remains not under full theoretical control.
While an analytic solution to non-perturbative QCD is still lacking, in some situations the
hadronic uncertainties can be controlled by means of numerical simulations of QCD on the
Lattice (LQCD). Over the past decades we witnessed a huge progress of LQCD simulations
which nowadays allows us to attain a precision at the percent level for certain hadronic
quantities. At the same time, the experimental precision for many observables will be
substantially improved by the new generations of flavor experiments. For these reasons,
indirect searches and in particular those involving flavor physics are a very promising route
to seek the effects of physics beyond the SM.

The goal of this chapter is to review the flavor physics results after the first run of LHC,
and the results from meson factories (CLEO-c, BES, BaBar and Belle, among others),
which experimentally established the unitarity of the CKM matrix with great precision. In
this Chapter, our approach will rely on Effective Field Theories (EFT), since they provide
the most general description of low-energy physics in the absence of new light degrees of
freedom. Particular emphasis of this Chapter will be given to the assessment of theoretical
uncertainties (mainly those of non-perturbative QCD) entering the SM predictions for the
flavor physics observables.

The chapter is organized as follows: In Sec. 2.1, we briefly introduce the concept of EFT.
In Sec. 2.2, we discuss tree-level electroweak decays of mesons and how those can be used
to search the search the effects of New Physics. In Sec. 2.3, we extend our discussion to the
FCNC processes, and most particularly to the transition b → s`+`−. Lastly, we conclude
the Chapter in Sec. 2.4 with a discussion of lepton flavor violation in decays of both leptons
and hadrons.
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2.1. Effective field theories

2.1 Effective field theories
Effective field theories (EFT) are nowadays widely used in all branches of theoretical physics.
The basic principle which warranties the validity of EFT method is that one can isolate
sets of phenomena with different energy/length scales and then find a suitable description
for each class of physical problems. This property is greatly responsible for the gradual
progress in physics, where one could for instance formulate the Newtonian mechanics well
before the discovery of special relativity, or understand quantum mechanics without having
to deal with the uneasy subtleties of QFT.

In the context of QFT, the relevant parameter is the distance scale. Short distance
contributions are replaced by local operators, which are obtained by integrating out the
irrelevant degrees of freedom, and by expanding in a suitable chosen expansion parameter.
The small finite size effects are then treated as perturbations. In particular, this approach
is useful for studying the effects of physics beyond the SM in a model independent manner.
More precisely, in the so-called bottom up approach, one can write the most general effective
Lagrangian consistent with the symmetries of the low energy theory which contains only
the light degrees of freedom, i.e.

Leff = Ld=4 +
∑
i

Ci(µ)
Λdi−4Oi(µ) , (2.1)

where Oi are operators of dimension di > 4, µ is the renormalization scale, and Ci(µ)
are the so-called Wilson coefficients. The Lagrangian Ld=4 describes the (renormalizable)
low energy theory, which is typically considered to be the SM. Even though Leff is non-
renormalizable, the predictiviy of the effective theory is guaranteed by the fact that the
contributions of higher dimensional operators to the amplitudes are suppressed by powers
of (p/Λ)di−4, where p is the typical momentum of the low energy process. Henceforth, by
working in the regime p� Λ and to a given experimental precision, one can renormalize the
effective theory with a finite number of counter-terms. The effects of the (unknown) short
distance physics are then encoded in the Wilson coefficients Ci(µ), which can be matched
onto a full theory by requiring that the amplitudes computed in the full and effective theories
coincide at large distances. The main advantage of this approach is that one can generically
describe the low-energy physics without having to postulate what happens at arbitrarily
high energy scales.

2.2 Tree-level electroweak decays of mesons
Tree-level electroweak decays of kaons, and D(s) and B mesons are induced by a tree-level
exchange of the W boson, as illustrated in the left panel of Fig. 2.1. These processes
provide a straightforward way of extracting the moduli of several CKM matrix elements,
such as |Vud|, |Vus|, |Vub|, |Vcd|, |Vcs| and |Vcb|, which can then be confronted with the CKM
matrix V ≡ VCKM unitarity, V † = V −1. To do so, the determination of the hadronic matrix
elements plays a crucial role. Nowadays, the level of maturity of Lattice QCD (LQCD)
simulations and the developments on the experimental side allow us to go beyond the
simple determination of CKM entries, and to use leptonic and semileptonic decays to probe
scenarios of physics beyond the SM. For instance, in scenarios with two Higgs doublets,
a charged Higgs H± can generate a tree-level contribution to these decays, as depicted
in Fig. 2.1. Therefore, the study of these decays offer a low-energy window to probe the
bosonic sector beyond the SM.
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2.2. Tree-level electroweak decays of mesons

Another motivation to search for NP effects in tree-level semi-leptonic decays comes from
the discrepancies observed by the B-physics experiments in the lepton flavor universality
ratios, namely

RD(∗) = B(B → D(∗)τν)
B(B → D(∗)lν) , (2.2)

where l = e, µ are averaged in the denominator. The experimental value of Rexp
D determined

by BaBar [71,72] and Belle [73] was found to be about 2σ larger than the SM prediction [14].
This observation was further corroborated by the measurement of Rexp

D∗ [71–76] which in-
dicates a ≈ 3.3σ excess with respect to the quoted SM prediction [17]. If these deviations
are indeed generated by NP, it is likely that similar effects are present in other leptonic and
semileptonic decays. The experimental and theoretical status of RD(∗) will be discussed in
Chapter 5, where we will also review some of the proposed NP explanations.

B
0

D+Vcb

d̄

b c

ℓ−

ν̄
W−

B
0

D+

d̄

b c

ℓ−

ν̄
H−

Figure 2.1: Contributions to the semi-leptonic decay B0 → D+`ν in the SM (left panel) and in
2HDM (right panel).

The dimension-6 effective Hamiltonian describing the transition u→ d`ν can be gener-
ically parameterized as 1

Heff =
√

2GFVud
[
(1 + gV )(uγµd)(`LγµνL)− (1 + gA)(uγµγ5d)(`LγµνL)

+ gS(µ)(ud)(`RνL) + gP (µ)(uγ5d)(`RνL) + gT (µ)(uσµν(1− γ5)d)(`RσµννL)
]

+ h.c.,
(2.3)

where and u and d stand for generic up-type and down-type quarks, and ` = e, µ, τ . The
NP couplings gV,A,S,P,T are defined relatively to the Fermi constant, namely,

GF√
2

= g2

8m2
W

. (2.4)

Note that the NP couplings can depend on the renormalization scale µ, and that the SM
corresponds to gV,A,S,P,T ≡ 0.

The relevant decay channels can be separated into two classes of processes with different
QCD content:

• Leptonic decays: K− → `ν, D−(s) → `ν and B → `ν;

• Semileptonic decays: KL → π±`ν, D → K`ν and B → D`ν, among others,
1We neglect the possibility of RH neutrinos in Eq. (2.3).
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2.2. Tree-level electroweak decays of mesons

where ` stands for a generic charged lepton. For leptonic decays, the non-perturbative
content needed to compute the branching ratios amounts to a single quantity, which is the
meson decay constant, computed in numerical simulations of QCD on the Lattice (LQCD).
The situation of semileptonic modes is more elaborated, as it involves several q2 dependent
form-factors where q2 stands for the dilepton mass squared.

In the following, we will discuss the peculiarities of each of these process, including
the non-perturbative inputs needed to do phenomenology, and we will give the general
expressions for the experimentally accessible observables in terms of the effective couplings
defined in Eq. (2.3).

2.2.1 Leptonic decays of mesons
In this Section, we discuss the decay modes of the type P− → `ν̄, where P = K,D(s), B(c)
is a pseudoscalar meson (JP = 0−). For simplicity, we will write the expressions for the
decays of B mesons, but all the other modes can be obtained mutatis mutandis.

From Lorentz and parity symmetries, we know that only axial and pseudo-scalar hadron
currents can contribute to a transition of the type P− → `ν. The most general parameter-
ization of the axial hadronic matrix element reads

〈0|b̄γµγ5u|B(p)〉 = ipµfB, (2.5)
where pµ is the 4-momentum of the B meson, and fB is the so-called decay constant. By
virtue of the axial Ward identity, the matrix element of the pseudoscalar density is given
by

〈0|b̄γ5u|B(p)〉 = −i m2
BfB

mu +mb

. (2.6)

The decay constant fB encapsulates the non-perturbative content of the transition and it
has to be computed by numerical simulations of QCD on the lattice. The current values of
the different decay constants obtained by LQCD simulations are summarized in Tab. 2.1,
which show a degree of precision below the percent level [77].

Quantity Value [MeV]

fK 155.6(4)
fD 212.2(15)
fDs 249.8(13)
fB 186(4)
fBs 224(5)
fBc 434(15)

Table 2.1: Decay constants of pseudoscalar mesons computed by numerical simulations of QCD
on the lattice. These values were extracted from Ref. [77] with the exception of fBc , which was
computed in Ref. [78].
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2.2. Tree-level electroweak decays of mesons

By using the Hamiltonian Eq. (2.3) and the hadronic matrix elements defined Eqs. (2.5)
and (2.6), one can compute the amplitude for B− → `ν̄:

M = −i
√

2Vub(ifB) ū(k1)
[
(1 + gA)γµPL pµ + gP (µ)PL

m2
B

mu +mb

]
v(k2) , (2.7)

where the convention for the momenta of the particles are B−(p) → `(k1)ν̄(k2) and the
couplings gA and gP parameterize the most general contributions from NP. Multiplying this
amplitude by its conjugate and after summing over the spins we get

∑
spins
|A|2= 2G2

F |Vub|2f 2
Bm

2
`(m2

B −m2
`)
∣∣∣∣∣1 + gA − gP (µ) m2

B

m`(mu +mb)

∣∣∣∣∣
2

, (2.8)

so that the final expression for the branching ratio reads

B(B− → `ν) = G2
FmBm

2
`

8π

(
1− m2

`

m2
B

)2

f 2
B|Vub|2τB+

∣∣∣∣∣1 + gA − gP (µ) m2
B

m`(mu +mb)

∣∣∣∣∣
2

. (2.9)

We recall that the couplings gV , gS and gT do not contribute to this decay, because the
corresponding hadronic matrix elements vanish due to parity and Lorentz invariance of
QCD. We reiterate that leptonic decays are considered to be extremely clean, since the
whole non-perturbative content of these processes are encoded in a single parameter, the
decay constant.

2.2.2 Semileptonic P → P ′ decays
In this Section, we discuss the decays of the type P → P ′`ν, where P, P ′ = K,D(s), B(s), Bc, ηc
are pseudoscalar mesons. We focus on the processes involving pseudoscalar mesons since
they require a minimal input from non-perturbative QCD. Electroweak processes with vec-
tor mesons or baryons depend on many more hadronic form factors which are more difficult
to study in LQCD. For that reason, we will disregard the semileptonic decays to vector
mesons and baryons.

In a similar way to the leptonic case, Lorentz invariance and parity guarantee that the
transition P → P ′ only depends on the coefficients gS,V,T . The hadronic matrix element
which appears in the SM amplitude is defined as

〈D+(k)|c̄γµb|B̄(p)〉 =
[
(p+ k)µ −

m2
B −m2

D

q2 qµ

]
f+(q2) + m2

B −m2
D

q2 qµf0(q2) , (2.10)

where q = p − k is the dilepton 4-momentum, and f+(q2) and f0(q2) are the so-called
vector and scalar form factors. Here we focus on the transition B̄ → D+`ν̄, but our results
can be easily translated to the other semileptonic modes. These form factors satisfy the
constraint f+(0) = f0(0), a condition which considerably simplifies the determination of
these form-factors from LQCD simulations, as well as in the phenomenological analyses
of these decays. To demonstrate this property, it is sufficient to parameterize the matrix
element in a simplest different way,

〈D+(k)|c̄γµb|B̄(p)〉 = (p+ k)µf+(q2) + (p− k)µf−(q2) , (2.11)
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2.2. Tree-level electroweak decays of mesons

where f−(q2) is related to f+,0(q2) by

q2f−(q2) = (m2
B −m2

D)
[
f0(q2)− f+(q2)

]
. (2.12)

Since f−(q2) is an analytic function in q2 = 0, we directly obtain the desired relation
f0(0) = f+(0). The scalar matrix element is derived from Eq. (2.10) by applying the vector
Ward identity, which amounts to 2

〈D+(k)|c̄b|B̄(p)〉 = f0(q2)m
2
B −m2

D

mb −mc

. (2.13)

In addition to the above-defined form factors, a third one is also needed when the tensor
current is considered, namely,

〈D+(k)|c̄σµνb|B̄(p)〉 = −i(pµkν − pνkµ)2fT (q2, µ)
mB +mD

, (2.14)

where fT (q2, µ) is the so-called tensor form factor. An example of NP scenario where the
tensor coupling gT can be generated is the scenario with scalar leptoquark, which will be
discussed in Chapter 4.

LQCD determination of P → P ′ form factors

Regarding the current status of the LQCD determinations of P → P ′ hadronic matrix
elements, most lattice computations focus only on the normalization of the form factors,
f+(0) = f0(0). That results is then combined with the q2 spectrum of the differential
decay rate, dΓ(P → P ′`ν)/dq2, with ` = e, µ, from which is extracted |Vquqd |f+(0) and
therefore Vquqd . That strategy assumes that NP does not contribute to these decays rates.
However, in the presence of NP, the q2 spectrum of the differential decay can be modified
and therefore in order to probe the NP scenarios from the semileptonic decays it is essential
to compute the q2 dependence of the form factors on the lattice in a way very similar to the
one used to compute f+(0). Currently, the most precisely determined P → P ′ form factors
are the ones for the transition K → π, which have been recently updated in Ref. [79] with a
precision better than the percent level for both the shape parameters and the normalization.
Similarly, the D → K form factors have computed in Ref. [80], which agree with the recent
computations reported in Ref. [81]. The B → π and Bs → K form factors have also
been determined in Ref. [82–84] and Ref. [84, 85], respectively. However, these results are
available only computed for very large values of q2, whereas the information experimental
information is most precise for the low values of q2. This fact already makes it difficult to
extract the value of Vub from the exclusive B → π`ν decay modes. For that reason, we
will not attempt to constraint the NP effects from the exclusive decays based on the b→ u
transition. Furthermore, the MILC and HPQCD collaborations have computed the B → D
form factors [15, 16], providing consistent results, which will be extremely relevant for the
phenomenological discussion of Sec. 5.3. Interestingly, a first result for the Bc → ηc form
factors has been recently computed in Ref. [86]. The results quoted above will be considered
in the phenomenological analysis in this thesis. See Ref. [77] for a complete overview of
other form factor determinations.

2We have explicitly written the charges of the mesons since they can change the sign of this expression.
More explicitly, one can show that 〈D−(k)|b̄c|B(p)〉 = −f0(q2)m

2
B−m

2
D

mb−mc
. This sign difference does not appear

in the final expression for the decay rates, since it is compensated by the lepton trace for conjugate mode,
so that B(B̄ → D`ν̄) = B(B → D−`ν̄) if gS,V,T ∈ R.
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2.2. Tree-level electroweak decays of mesons

Computation of P → P ′`ν

We emphasize once again that P → P ′`ν̄ will be specifically replaced by the example
B → D+`ν̄. In what follows, we assume the kinematics to be B(p) → D+(k)`(p`)ν̄(pν),
with q = p − k = p` + pν . Although the semi-leptonic decays are more complicated than
the leptonic ones from the point of view of QCD, they have a richer kinematic structure
which opens the possibility more observables than just the total branching ratio. The full
differential branching fractions for this decay is given by

d2B(B → D+`ν̄)
dq2 d cos θ`

= a`(q2) + b`(q2) cos θ` + c`(q2) cos2 θ`, (2.15)

where θ` is the angle between the lepton `− in the dilepton rest frame and the axis of flight
of the D meson in the B rest frame, as depicted in Fig. 2.2. The angular coefficients a`(q2),
b`(q2) and c`(q2) are functions of the effective coefficients gV,S,T , the form factors and the
kinematical variables.

BD+

ν̄

ℓ−

θℓ

Figure 2.2: Angular conventions for the decay B̄0 → D+`−ν̄.

To compute a`(q2), b`(q2) and c`(q2), it is convenient to use the helicity amplitude
formalism. The idea is to decompose the decay as B(p)→ D(k)V ∗(q), where V ∗ is a virtual
gauge boson with four-momentum q = p− k. This decomposition allows us to factorize the
hadronic and leptonic tensors, simplifying the computation and providing more compact
formulas for the decay rates. We define the helicity vectors of the virtual gauge boson V
as,

εµV (±) = 1√
2

(0,±1, i, 0) ,

εµV (0) = 1√
q2 (qz, 0, 0, q0) ,

εµV (t) = 1√
q2 (q0, 0, 0, qz) ,

(2.16)

where qµ = (q0, 0, 0, qz) and

q0 = m2
B −m2

D + q2

2mB

, qz = λ1/2(mB,mD,
√
q2)

2mB

. (2.17)

The helicity vectors are orthonormal and satisfy the completeness relation
∑
n,n′

ε∗µV (n)ενV (n′)gnn′ = gµν , (2.18)
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2.2. Tree-level electroweak decays of mesons

where n, n′ ∈ {0, t,±}, and gnn′ = diag(1,−1,−1,−1). To define the helicity amplitudes,
we decompose the Hamiltonian (2.3) as

Heff = GF√
2
Vcb

(
HµL

µ +HT
µνL

T µν
)

+ h.c. , (2.19)

where the leptonic tensors are defined by

Lµ = ¯̀γµ(1− γ5)ν , LT µν = ¯̀σµν(1− γ5)ν . (2.20)

The NP coefficients are incorporated in the hadronic tensors via the relations

Hµ = (1 + gV )[c̄γµb] + i
gS
m`

∂µ[c̄b] ,

HT
µν = gT [c̄σµν(1− γ5)b] ,

(2.21)

where we used the Dirac equation to recast the scalar contribution as a derivative, ¯̀PLν =
−i∂µ[¯̀γµPLν]/m`, which is transferred to the hadronic current after integrating by parts.
The helicity amplitudes are then defined by

hm(q2) = εµ ∗V (m)〈D|Hµ|B〉 ,

hmn(q2) = εµ ∗V (m)ενV (n)〈D|HT
µν |B〉 ,

(2.22)

where m,n ∈ {0, t,±}. By using Eq. (2.116), one can express the total amplitude in terms
of the helicity amplitudes, namely,

M(B → D`ν̄) = −iGF√
2
Vcb

[
〈D|Hµ|B〉Lµ + 〈D|HT

µν |B〉LT µν
]

(2.23)

= −iGF√
2
Vcb

[∑
m

hm(q2)gmmεµV (m)Lµ +
∑
m,n

hm,n(q2)gmmgnnεµV (m)εν ∗V (n)LTµν
]
,

from which it is straightforward to compute the differential decay rate by contracting the
leptonic traces with the polarization vectors in the dilepton rest frame (qz = 0). For
completeness, we also give the expression of the three-body phase space,

dB(B → D`ν̄)
dq2 d cos θ`

= λ
1/2
B λ

1/2
`

512π3m3
Bq

2

∑
σ

∣∣∣M(B → D`ν̄)
∣∣∣2 , (2.24)

where we sum over lepton spins. The kinematic functions are defined by λB = λ(mB,mD,
√
q2)

and λ` = λ(
√
q2,m`, 0), with λ(a, b, c) ≡ (a2 − (b− c)2)(a2 − (b+ c)2).

For the Hamiltonian we consider [Eq. (2.3)], the only non-vanishing helicity amplitudes
are given by

h0(q2) = (1 + gV )f+(q2)λ
1/2
B√
q2 ,

ht(q2) =
(

1 + gV + gS
q2

m`(mb −mc)

)
f0(q2)m

2
B −m2

D√
q2 ,

h0t(q2) = igTfT (q2)
√
λB

mB +mD

.

(2.25)
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By using the approach described above, we obtained for the angular coefficients 3

a`(q2) = 3
4B0λ

1/2
B q2

(
1− m2

`

q2

)2 [
|h0(q2)|2+m

2
`

q2 |ht(q
2)|2+4m2

`

q2 |h0t(q2)|2+4m`√
q2 Im

(
h0t(q2)h∗0(q2)

)]
,

b`(q2) = 3
2B0λ

1/2
B q2

(
1− m2

`

q2

)2 [
m2
`

q2 Re
(
h0(q2)ht(q2)∗

)
+ 2m`√

q2 Im
(
h0t(q2)h∗t (q2)

)]
, (2.26)

c`(q2) = 3
4B0λ

1/2
B q2

(
1− m2

`

q2

)3 [
4|h0t(q2)|2−|h0(q2)|2

]
,

where the constant B0 is defined by

B0 = τBG
2
F |Vcb|2

192π3m3
B

. (2.27)

In the following, we will present the observables that can be constructed from the angular
distributions given above.

P → P ′`ν observables

Since there are three independent angular coefficients in Eq. (2.15), one can construct at
most three independent angular observables. The most important observable is the total
branching ratio, which is given by

Btot ≡ B(B → D`ν) =
∫ (mB−mD)2

m2
`

dq2
∫ 1

−1
d cos θd2B(B → D`ν)

dq2 d cos θ

= 2
[
a(q2) + 1

3c(q
2)
]
.

(2.28)

This expression can be more compactly written in terms of the effective coefficients as

dB
dq2 (B → D`ν`) = B0|f+(q2)|2

{
|1 + gV |2c`+(q2) + |gT (µ)|2c`T (q2)

∣∣∣∣∣fT (q2)
f+(q2)

∣∣∣∣∣
2

+ c`TV (q2) Re [(1 + gV )g∗T (µ)] fT (q2, µ)
f+(q2)

+ c`0(q2)
∣∣∣∣∣1 + gV + gS(µ) q2

m`(mb −mc)

∣∣∣∣∣
2 ∣∣∣∣∣ f0(q2)
f+(q2)

∣∣∣∣∣
2 }
, (2.29)

where the phase-space functions c`i(q2) are given by

c`+(q2) = λ
3/2
B

1− 3
2
m2
`

q2 + 1
2

(
m2
`

q2

)3
 , (2.30)

c`0(q2) = m2
` λ

1/2
B

3
2
m4
B

q2

(
1− m2

`

q2

)2 (
1− m2

D

m2
B

)2

, (2.31)

3We have checked that our results agree with the ones given in Ref. [87, 88].
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c`T (q2) = λ3/2(mB,mD,
√
q2) 2q2

(mB +mD)2

1− 3
(
m2
`

q2

)2

+ 2
(
m2
`

q2

)3
 , (2.32)

c`TV (q2) = 6m`

mB +mD

λ3/2(mB,mD,
√
q2)

(
1− m2

`

q2

)2

. (2.33)

A second observable commonly encountered in the literature is the forward-backward asym-
metry, which is defined as

A`fb(q2) = 1
Btot

[∫ 1

0
d cos θd

2B(B → D`ν)
dq2 d cos θ −

∫ 0

−1
d cos θd2B(B → D`ν)

dq2 d cos θ

]
= b(q2)
Btot

. (2.34)

This expression can be recast in terms of the effective coefficients in Eq. (2.3) as

A`fb(q2) = 1
Btot
B0λB

(
1− m2

`

q2

){
3
2 |1 + gV |2

m2
`(m2

B −m2
D)

q2 f+(q2)f0(q2)

+ 3
2Re[(1 + gV )g∗S]m`(m2

B −m2
D)

mb −mc

+ 3Re[(1 + gV )g∗T ]m`(mB −mD)fT (q2)f0(q2)

+ 3Re[gS g∗T ]q2mB −mD

mb −mc

fT (q2)f0(q2)
}
. (2.35)

Notice that the only contribution which is not helicity suppressed is the one proportional
to Re[gS g∗T ]. This contribution can be generated in several leptoquark scenarios, which will
be discussed in Chapter 4. Finally, a third independent angular observable can be defined
by taking another independent combination of the angular coefficients.

In addition to the angular observables, one can also employ the polarization of the
charged lepton to construct a forth experimentally accessible quantity. If we decompose the
differential branching ratio as

dB(B → D`ν)
dq2 = dB+(B → D`ν)

dq2 + dB−(B → D`ν)
dq2 , (2.36)

where the subscripts ± denote the polarizations of the charged lepton, then the lepton
polarization asymmetry can be defined as

P`(q2) = 1
Btot

[
dB+(B → D`ν)

dq2 − dB−(B → D`ν)
dq2

]
. (2.37)

To compute these observables, we define the projectors P± = (1 ± γ5/p)/2, where the pro-
jection is made along the lepton polarization vector,

s =
(
|~p`|
m`

,
E`
m`

~p`
|~p`|

)
, (2.38)

which satisfies s ·s = −1 and s ·p` = 0. By using these definitions, one can perform a similar
computation as the one described above with a small difference in the leptonic traces due
to the projectors, namely,

u`(p)ū(p) = 1
2(/p+m)(1± γ5/p) . (2.39)

By using these definitions, we obtained
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dB+

dq2 = B0λ
1/2
B q2

(
1− m2

`

q2

)2 [
m2
`

2q2

(
|h0(q2)|2+3|ht(q2)|2

)
+ 2|h0t(q2)|2+2m`√

q2 Im
(
h0t(q2)h∗0(q2)

) ]
,

dB−
dq2 = B0λ

1/2
B q2

(
1− m2

`

q2

)2 [
|h0(q2)|2+4m2

`

q2 |h0t(q2)|2+4m`√
q2 Im

(
h0t(q2)h∗0(q2)

) ]
. (2.40)

These expressions reproduced dΓ/dq2 = dΓ+/dq2 + dΓ−/dq2, as expected, and give the
following result for the lepton polarization asymmetry,

P`(q2) = 1
Btot
B0λ

1/2
B q2

(
1− m2

`

q2

)2 [(
−1 + m2

`

2q2

)
|h0(q2)|2+3m2

`

2q2 |ht(q
2)|2

+ 2
(

1− 2m2
`

q2

)
|h0t(q2)|2−2m`√

q2 Im
(
h0t(q2)h∗0(q2)

) ]
.

(2.41)

Similarly to the observables discussed above, one can use Eq. (2.25) to rewrite this expression
directly in terms of the NP couplings,

P`(q2) = 1
Btot

1
2B0

{ ∣∣∣∣∣1 + gV + gS(µ) q2

m`(mb −mc)

∣∣∣∣∣
2 3m2

`

q4 (m2
B −m2

D)2|f0(q2)|2

+ |1 + gV |2
λB
q2

(
−2 + m2

`

q2

)
|f+(q2)|2+|gT |2

4λB
(mB +mD)2

(
1− 2m2

`

q2

)
|fT (q2)|2

− Re[(1 + gV )g∗T ] 4m`λB
q2(mB +mD)f+(q2)fT (q2)

}
. (2.42)

In Sec. 2.2.4, we will confront the expressions presented above with current data and
give predictions for the observables which are still to be studied experimentally.

2.2.3 Brief discussion of P → V semileptonic decays
In this section, we briefly comment on the decays P → V `ν, where P is a pseudoscalar
meson (JP = 0−) and V is a vector meson (JP = 1−), such as D∗ or J/ψ, for example.
Even though LQCD computations still have an insufficient control of the hadronic matrix
elements entering P → V transitions, we will comment on their parameriterization in terms
of factors, and most particularly for B → D∗`ν, due to the increasing theoretical activity on
this particular decay [87,89,90]. Part of this interest is motivated by the LFUV anomalies
in B → D(∗)`ν̄ (` = e, µ, τ), which will be discussed in Sec. 5.3. We stress once again that
our formulas are general and can be easily translated to other decays of the type P → V .

The vector/axial hadronic matrix elements for the B → D∗ transition can be generically
parameterized as

〈D̄∗(k, ε)|c̄γµb|B̄(p)〉 = εµνρσε
∗νpρkσ

2V (q2)
mB +mD∗

,

〈D̄∗(k, ε)|c̄γµγ5b|B̄(p)〉 = iε∗µ(mB +mD∗)A1(q2)− i(p+ k)µ(ε∗ · q) A2(q2)
mB +mD∗

− iqµ(ε∗ · q)2mD∗

q2 [A3(q2)− A0(q2)] ,

(2.43)
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where V (q2) and A0−3(q2) are the relevant form factors and εµ(0,±) denotes the polarization
of the D∗ meson. 4 The form factor A3(q2) is related to the others through the expression

A3(q2) = mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2) , (2.44)

with A3(0) = A0(0), which makes sure that the artificial pole at q2 does not appear. To pre-
dict the SM rate of B → D∗`ν, one must compute V (q2) and A0−2(q2) via non-perturbative
methods. It should also be noted that the contribution of the so-called pseudoscalar form
factor A0(q2) to B(B → D∗`ν)SM is proportional to the charged lepton mass squared, which
is why it i negligible for light leptons (` = e, µ). The matrix element of the scalar pseu-
doscalar densities can be obtained from Eq. (2.43) by applying the Ward identities, which
give

〈D̄∗(k, ε)|c̄b|B̄(p)〉 = 0 , (2.45)

〈D̄∗(k, ε)|c̄γ5b|B̄(p)〉 = −i(ε · q) 2mD∗

mb +mc

A0(q2) . (2.46)

For the scalar current, it is easy to see that the matrix element vanishes since q = p − k
and the tensor εµνρσ is fully anti-symmetric by definition.

For a scenario of NP contributing via tensor currents, another three form factors are
needed to fully describe the hadronic matrix elements. These form factors, named T1(q2),
T2(q2) and T3(q2), are defined by

〈D̄∗(k, ε)|c̄σµνqνb|B̄(p)〉 = 2iεµνρσε∗νpρkσT1(q2) ,

〈D̄∗(k, ε)|c̄σµνγ5q
νb|B̄(p)〉 = [ε∗µ(m2

B −m2
D∗)− (ε∗ · q)(2p− q)µ]T2(q2)

+ (ε∗ · q)
[
qµ −

q2

m2
B −m2

D∗
(p+ k)µ

]
T3(q2) .

(2.47)

satisfying the relations T1(0) = T2(0) due to the formula that σµν = (i/2)εµναβσαβ. From
the expressions given above, it becomes clear that the transitions P → V depend on many
more hadronic form factor than the semileptonic P → P ′ transitions. In the latter case,
only two form factors coinciding at q2 = 0 are needed to predict B(B → D`ν)SM and
these have been computed by numerical simulations of LQCD. For the transition B → D∗,
only a few results concerning the normalization of the form factors have been computed
on the lattice [91, 92]. The phenomenological studies of B → D∗`ν then require additional
information, which is extracted from experimental data by using Heavy Quark Effective
Theory (HQET) [93] or by means of QCD sum rules [94]. However, one should be careful in
using HQET in dealing with the charm quark, since the neglected power corrections might
be large. Moreover, the heavy quark symmetry fixes the form factors only at the zero-recoil
point (up to calculable short distance perturbative corrections). For this reason, the use of
B → D∗`ν as a laboratory to probe NP has often been controversial.

2.2.4 Phenomenological analysis
In this subsection, we derive constraints on gP , gS and gT defined in Eq. (2.3) by confronting
the expressions derived above with the most recent experimental results for leptonic and

4In our convention, ε0123 = 1.
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semileptonic meson decays, cf. Table 2.2. We will focus on the decay modes based on the
transitions s → uµν, c → dµν, c → sµν, c → sτν, b → uτν and b → c`ν (` = µ, τ) for
which we have a good control of hadronic uncertainties. In particular, we will not discuss
the B → π and Bs → K semileptonic decays, since the form factors for these transitions
are only available in the high q2 region.

New Physics scenarios

We consider two different effective scenarios:

• In the first scenario, we assume that NP enters in a single coefficient gS,P,T , which is
generically taken to be a complex number.

• In the second one, we consider specific combinations of effective coefficients which are
motivated by different NP scenarios. More precisely, we consider the cases where (i)
(gS, gP ) ∈ R2,and where (ii) gS = −gP ∈ R and gT ∈ R are kept non-zero.

We do not consider modifications of the vector/axial couplings gV,A since these are already
tightly constrained by studies of the unitarity of the CKM matrix [95]. The case where both
gS and gP are generated is motivated by models with an extended Higgs sector, which will be
discussed in Chapter 3. The second choice of operators is motivated by different leptoquark
scenarios, as we are going to discuss in Chapter 4, and can be understood by constructing
the operators consistent with SU(2)L × U(1)Y gauge invariance [96]. More precisely, the
exchange of a particle transforming under the representation (3,2)7/6 generates the gauge
invariant operator

O(7/6) = εαβ
(
`RQ

α
) (
ūRL

β
)

=
(
`PLu

)
(ūPL`)−

(
`PLd

)
(ūPLν) ,

(2.48)

where we omitted flavor indices for simplicity. Moreover, the SU(2) indices α, β = 1, 2
are explicitly written and εαβ denotes the total anti-symmetric tensor with convention
ε12 = −ε21 = +1. By using the Fierz relation for anti-commuting fields, cf. Appendix A.1,
we obtain for the second term

O(7/6) ⊃ 1
2

[
(uPLd)

(¯̀PLν
)

+ 1
4 (uσµνPLd)

(¯̀σµνPLν
) ]

, (2.49)

from which one can easily recognize the combination of Wilson coefficients gS = −gP = gT/4
at the scale where the heavy state was integrated-out. Similarly, the exchange of a color
triplet transforming as (3̄,1)1/3 generates the operator

O(1/3) = εαβ
(
`Ru

C
R

) (
QC
LαLβ

)
=
(
`PLu

C
) (
uCPL`

)
−
(
`PLu

C
) (
dCPLν

)
.

(2.50)

We will focus on the second term, which can be rearranged via the Fierz identity

O(1/3) ⊃ 1
2

[ (
dCPLu

C
) (¯̀PLν

)
+ 1

4
(
dCσµνPLu

C
) (¯̀σµνPLν

) ]

= 1
2

[
(uPLd)

(¯̀PLν
)
− 1

4 (uσµνPLd)
(¯̀σµνPLν

) ]
,

(2.51)
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where we can recognize the combination gS = −gP = gT/4. The sign difference with respect
to the previous scenario comes from the fermion conjugation, namely ψCPLφC = φPLψ and
ψCσµνPLφ

C = −φσµνPLψ, where ψ ≡ ψ(x) and φ ≡ φ(x) stand for generic fermion fields.

Experimental inputs

The experimental averages considered in our analysis are shown in Table 2.2, where we
considered the results from PDG [22], unless stated otherwise.Note that we have also con-
sidered the ratio RD, defined in Eq. 2.2, which appears to be ≈ 2σ lower than the SM
predictions. In particular, we will investigate some of the implications of this result which
can be deduced by using a model independent approach. 5 To avoid an inconsistency in
our approach due to the fact most of these decays are used to extract the moduli of CKM
elements which are also theoretical inputs in our analysis, we conservatively vary the CKM
parameters within the 3σ ranges determined in Ref. [65,95]. We have checked that increas-
ing this interval would not change significantly the constraints on the effective coefficients,
which are therefore very robust. Furthermore, we include the decay modes with electrons
in the fit, even though we disregard the NP couplings to electrons, so that these modes only
help fixing the CKM matrix elements.

Exp. average Refs.

B(K+ → µ+ν) 2.488(9)× 10−5 [22]
B(K+ → π0e+ν) 0.0494(5) [22]
B(KL → π−e+ν) 0.4047(28) [22]
B(K+ → π0µ+ν) 0.0324(4) [22]
B(KL → π−µ+ν) 0.2700(8) [22]
B(D → µ+ν) 3.74(17) [97]
B(Ds → µ+ν) 5.49(23)× 10−3 [98–101]
B(Ds → τ+ν) 5.51(25)× 10−2 [98–103]
B(D+ → K0e+ν) 8.72(17)× 10−2 [104,105]
B(D0 → K−e+ν) 3.50(3)× 10−2 [105–107]
B(D+ → K0µ+ν) 8.72(19)× 10−2 [108]
B(D0 → K−µ+ν) 3.45(23)× 10−2 [107]
B(B → τν) 1.43(33)× 10−4 [109,110]
B(B → Dµν) 2.20(15)× 10−2 [111,112]

RD 0.41(5) [71,73]

Table 2.2: Average of experimental results considered in our phenomenological analysis.

In the following, we will highlight some of the results from our fit. The results obtained
by the one-dimensional fit of each coefficient will be summarized in Table 2.3 and 2.4.

5A full discussion of this observable as long as other lepton flavor universality tests will be made in
Chapter 5.
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2.2. Tree-level electroweak decays of mesons

Fit results and predictions

We will now present our results for the NP fits to the different transitions. As mentioned
above, we will only highlight the main results from our analysis. The full list of constraints
for real and complex Wilson coefficients is given in Table 2.3 and 2.4. Furthermore, our
notation will be such that (g`S,P,T )quqd denote the Wilson coefficients associated to the tran-
sition qu → qd`ν.

The constraints obtained from the kaon physics observables, B(K → µν) and B(K →
πµν), are shown in Fig. 2.3 at the scale µ = 2 GeV. From this plot, we see that the
strongest constraint comes from the kaon leptonic decay, which sets limits on gP . This
can be understood by the helicity suppression which is lifted by this operator. The scalar
and tensor coefficients are only constrained by the semileptonic decay modes, which allow
for larger values of gS,T . Notice, also, that these observables are consistent with the SM
predictions to 1σ accuracy. A similar result is obtained for the coefficients (gµi )cs, with
i = S, P, T , as shown in Fig. 2.4 at the scale µ = 2 GeV. These coefficients are constrained
by the decay modes Ds → µν and D → Kµν, which also have decay rates consistent
with the SM predictions. Finally, we perform a fit to RD by assuming that NP only
contributes to the transition b → cτν, i.e. we assume that the operators with muons have
vanishing NP Wilson coefficients. In this case, the coefficient gP is unconstrained because
the corresponding leptonic decay mode, B(Bc → τν), has not been studied experimentally
yet. The results from our fit to the coefficients (gτS)cb and (gτT )cb is shown in Fig. 2.5 at
the scale µ = mb. Note that the SM point (gS, gT ) = (0, 0) is at the border of the 2σ
region due to the current disagreement between the SM prediction and Rexp

D . To study the
implications of this deviation, we also show in the same plot the curves corresponding to
the combination of Wilson coefficients

(gτS)cb = − (gτP )cb = ±(gτT )cb
4 , (2.52)

assumed to be valid at the scale µ = 1 TeV, which can appear in different scenarios with
leptoquark bosons, as discussed above. To draw these curves, we considered the QCD
running effect of the scalar and tensor density, which amount to gT (µ = 1 TeV) ≈ 1.3 ×
gT (µ = mb) and gS(µ = 1 TeV) ≈ 0.5× gS(µ = mb). The intersection between the red lines
and the allowed region in Fig. 2.5 can now be used to predict the implications of RD for
other observables based on the same transition. We consider the ratio

Rηc = B(Bc → ηcτν)
B(Bc → ηclν) (2.53)

where l = e, µ are averaged in the denominator. This observable is particularly interesting
since the relevant form factors have been recently computed in Ref. [86], offering a clean
observable to test the discrepancy in RD. This is shown in Fig. 2.6, where we see that the
excess in RD implies an enhancement of Rηc/R

SM
ηc which can be as large as 50% in both

scenarios, being possibly within reach at LHCb. This strategy can also be employed to
other decays based on the same transition, such as Bc → ηcτν or baryon decays. Finally,
we have also checked that a similar enhancement can be found in scenarios where only gS
or gT are assumed to be nonzero.
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2.2. Tree-level electroweak decays of mesons

Figure 2.3: Regions of allowed values shown in the planes (gµS)us vs (gµP )us (left panel), and
(gµS)us = −(gµP )us vs (gµT )us at the scale µ = 2 GeV, compatible with experimentally measured
kaon leptonic and semileptonic decays, cf. Table 2.2. The allowed regions are shown to 1, 2, 3σ
accuracy (from dark red to light red). The black dot corresponds to the SM.

Figure 2.4: Regions of allowed values shown in the planes (gµS)cs vs (gµP )cs (left panel), and
(gµS)cs = −(gµP )cs vs (gµT )cs at the scale µ = 2 GeV, compatible with experimentally measured D-
meson leptonic and semileptonic decays, cf. Table 2.2. The allowed regions are shown to 1, 2, 3σ
accuracy (from dark green to light green). The black dot corresponds to the SM.
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2.2. Tree-level electroweak decays of mesons

Figure 2.5: Regions of allowed values shown in the plane (gτS)cb vs (gτT )cb at the scale µ = mb,
compatible with experimentally measured RD, cf. Table 2.2. The allowed regions are shown to
1, 2, 3σ accuracy (from dark blue to light blue). The black dot corresponds to the SM. We show in
the same plot the curves corresponding to the NP scenarios in which gS(µ) = −gP (µ) = ±gT (µ)/4
at the scale µ = 1 TeV, see text for details.
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Figure 2.6: Predictions for Rηc/RSM
ηc , cf. Eq. (2.53), as a function of (gτS)cb computed at µ = mb.

We consider two scenarios in which we impose gS(µ) = −gP (µ) = gT (µ)/4 (left panel) and
gS(µ) = −gP (µ) = −gT (µ)/4 (right panel) at the scale µ = 1 TeV. The dark blue regions are
consistent with Rexp

D to 1σ accuracy, as shown in Fig. 2.5
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qu qd ` ν Re
[
(g`P )quqd

]
Re

[
(g`S)quqd

]
Re

[
(g`T )quqd

]
u s µ ν (−5.0, 5.0)× 10−4 ∪ (8.4, 8.5)× 10−2 (−1.3, 0.3)× 10−2 ∪ (−2.9,−2.7)× 10−1 (−2.6, 0.6)× 10−1

c d µ ν (−0.6, 3.6)× 10−3 ∪ (7.3, 7.8)× 10−2 —– —–
c s µ ν (−2.8, 1.3)× 10−3 ∪ (7.4, 7.7)× 10−2 (−1.1, 4.1)× 10−1 ∪ (−2.8,−2.7)× 10−1 (−1.5,−1.0) ∪ (−3.0, 2.5)× 10−1

c s τ ν (−5.5, 1.1)× 10−2 ∪ (1.24, 1.31) —– —–
u b τ ν (−2.2, 0.4)× 10−1 ∪ (5.0, 7.5)× 10−1 —– —–
c b µ ν —– (−5.6, 4.3)× 10−1 (−1.6, 1.1)
c b τ ν —– (0.4, 4.2)× 10−1 ∪ (−1.8, 1.5) (0.1, 1.1)× 10−1 ∪ (−3.8,−2.7)

Table 2.3: Constraints on the couplings (g`P,S,T )quqd derived from leptonic and semileptonic decays to 2σ accuracy, c.f Table 2.2. We assumed the
NP couplings to be real in this Table. Moreover, the limits on (gS) and (gT ) were derived at the scale where the form factors were computed, namely,
µ = 2 GeV for the transitions K → π and D → K, and µ = mb for B → D.

qu qd ` ν Im
[
(g`P )quqd

]
Im

[
(g`S)quqd

]
Im

[
(g`T )quqd

]
u s µ ν (−6.3, 6.3)× 10−3 (−3.0, 3.0)× 10−2 (−4.1, 4.1)× 10−1

c d µ ν (−8.3, 8.3)× 10−3 —– —–
c s µ ν (−1.5, 1.5)× 10−2 (−2.1, 2.1)× 10−1 (−6.1, 6.1)× 10−1

c s τ ν (−2.7, 2.7)× 10−1 —– —–
u b τ ν (−4.1, 4.1)× 10−1 —– —–
c b µ ν —– (−5.0, 5.0)× 10−1 (−1.3, 1.3)
c b τ ν —– (−8.8,−2.6)× 10−1 ∪ (2.6, 8.8)× 10−1 (−2.0,−0.6) ∪ (0.6, 2.0)

Table 2.4: Constraints on the couplings (g`P,S,T )quqd to 2σ by assuming them to be imaginary. See caption of Fig. 2.3 for details.
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2.3 FCNC processes
Physical processes driven by the flavor changing neutral currents (FCNC) are absent in
the SM at tree level. Since they only occur through loops, their measurements offer a low
energy window to the heavy particles (top quark or particles beyond the SM). In other
words, they do not only represent a fine test of validity of the SM, but they also offer an
opportunity to look for the effects of physics beyond the SM at low energies.

Historically, the study of FCNC processes has played a major role in the understanding
of both the SM and NP. A first example was the prediction of the charm quark to explain the
suppression of B(KL → µ+µ−) and of the K0−K0 amplitude via the GIM mechanism [68]
years before the discovery of J/Ψ at Brookhaven and SLAC [113,114]. Another remarkable
example was the first obsevation of B0−B0 mixing, which gave the first indication that the
top quark is much heavier than any other SM fermion [3]. In what concerns physics beyond
the SM, the FCNC processes provide very useful tools to constraint the contributions from
NP particles. An example coms from the K0 − K0 mixing parameter εK , which sets an
lower bound on the scale of NP to 108 GeV if one assumes O(1) NP couplings [6]. From
this limit, we learn the general message that if NP emerges at the TeV scale, as suggested
by the hierarchy problem, then its couplings should have a non-trivial flavor structure.
A well-known solution to this paradox goes under the name of Minimal Flavor Violation
(MFV) [69, 70], where the CKM matrix is identified as the only source of flavor violation,
which can then lower the bound from FCNC processes to the TeV range too, as discussed
in Sec. 1.2.

A considerable attention has been devoted in the past few years to the transition b →
s`+`−, which will be the focus of this Section. This interest comes mainly from the increasing
experimental effort at the B-physics experiments at LHCb and at the B-factories, which
allowed to measure several of these decays with a great precision. While the inclusive and
exclusive processes based on the penguin-induced b → sγ decay have been, and still are,
a very significant constraint to the NP model building, the processes based on b → s`+`−

allow us to access other types of contributions. For instance, the process B(Bs → µ+µ−) was
measured by the first time at the LHC and the result was found to be in agreement with the
theoretical predictions [115], providing very useful constraints on physics beyond the SM.
Moreover, several observables showed a consistent pattern of discrepancies with respect to
the SM predictions. For instance, the spectrum of B(B → Kµ+µ−) has been measured [116]
and in the range of large q2’s it appears to be smaller than predicted [117,118]. A full angular
analyses of B(B → K∗µ+µ−) [116, 119] and B(Bs → φµ+µ−) [120] revealed deviations in
several observables [121], although there are several controversies about the reliability of
some of the SM predictions [122]. Finally and most importantly, the measurement of RK =
B(B → Kµ+µ−)/B(B → Ke+e−) [11] and RK∗ = B(B → K∗µ+µ−)/B(B → K∗e+e−) [12]
in different bins of q2 were shown to be significantly lower than predicted [13]. Those new
experimental data helped discarding several NP models and triggered an intense theoretical
activity to understand the origin of these discrepancies, as we will discuss in Chapter 5.

The most general effective Hamiltonian describing the b → s`` transitions, made of
dimension six operators, is given by [123]

Heff = −4GF√
2
VtbV

∗
ts

∑
i

(
Ci(µ)Oi(µ) + C ′i(µ)O′i(µ)

)
+ h.c., (2.54)

where we have neglected the small contributions proportional to VubV
∗
us. The operators

which are relevant for our discussion are given by
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O7 = e

(4π)2mb(s̄σµνPRb)F µν , O8 = gs
(4π)2mb(s̄σµνPRb)Gµν , (2.55)

O9 = e2

(4π)2 (s̄γµPLb)(¯̀γµ`) , OS = e2

(4π)2 (s̄γµPLb)(¯̀γµγ5`) , (2.56)

O10 = e2

(4π)2 (s̄PRb)(¯̀̀ ) , OP = e2

(4π)2 (s̄PRb)(¯̀γ5`) , (2.57)

OT = e2

(4π)2 (s̄σµνb)(¯̀σµν`) , OT5 = e2

(4π)2 (s̄σµνb)(¯̀σµνγ5`) . (2.58)

O7 and O8 are the electromagnetic and chromomagnetic penguin operator. Moreover, the
operators with a flipped chirality O′ are obtained from O by replacing PL ↔ PR in the
quark current. In addition to those, there are also the charged current operators O1,2 and
the ones associated to QCD penguins O3,...,6. It is customary to absorb the effect of the
latter operators by redefining the Wilson coefficients as [124]

Ceff
7 (µb) = C7 −

1
3C3 −

4
9C4 −

20
3 C5 −

80
9 C6 , (2.59)

Ceff
9 (µb) = C9 + Y (q2) , (2.60)

Ceff
10 (µb) = C10 , (2.61)

while the other Wilson coefficients remain unchangend. The function Y (q2) at next-to-
leading logarithmic (NLL) accuracy can be found in Ref. [123], and the computation of
the next-to-next-to-leading logarithmic (NNLL) corrections to the mixing of O1 and O2
into O7 and O9 can be found in Ref. [125]. The values of the SM Wilson coefficients
at the scale µb = 4.8 GeV are then given by Ceff

7 (µb) = −0.304, Ceff
9 (µb) = 4.211 and

Ceff
10 (µb) = −4.103 [123–125]. In the presence of NP, the effective coefficients will receive

corrections of the form

Ceff
i → Ceff

i + δCi , (2.62)
where δCi denotes the additional contribution coming from NP. To simplify our notation,
we will drop the label “eff” in the Wilson coefficients by writing Ceff

i ≡ Ci. Furthermore,
when discussing the phenomenology of NP models, if confusion can be avoided, we will
write Ci instead of δCi.

In the following, we will present the generic expression for the braching ratio of the
exclusive b → s`` decays. To simplify our discussion, we will neglect the tensor operators
OT (5) since they will play no role in the phenomenological discussions of Chapter 3 and 4. 6

2.3.1 Bs → `+`−

The decay rate B(Bs → µ+µ−) is one of the most reliable quantities that can be studied
theoretically and experimentally at LHCb [115]. The only hadronic quantity entering the
Bs → µ+µ− decay amplitude is the decay constant, fBs , defined in Eq. (2.5). It has been

6Note that if the scale of NP Λ lies well above the electroweak scale, i.e. Λ � v, then the requirement
of SU(2)L × U(1)Y gauge invariance for dimension-six operators tells us that CT = CT5 = 0 [126].
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abundantly computed by means of numerical simulations of QCD on the lattice (LQCD)
and its value is nowadays one of the most accurately computed hadronic quantities involving
heavy-light mesons [77].

By using the Hamiltonian from Eq. (2.54), one can show that [127]

B(Bs → `+`−)th = τBs
α2G2

FmBsβ`
16π3 |VtbV ∗ts|

2 f 2
Bsm

2
`

[ ∣∣∣∣∣C10 − C ′10 + (CP − C ′P ) m2
Bs

2m`(mb +ms)

∣∣∣∣∣
2

+ |CS − C ′S|
2 m

2
Bs(m2

Bs − 4m2
`)

4m2
`(mb +ms)2

]
, (2.63)

where β` =
√

1− 4m2
`/m

2
Bs . To compare Eq. (2.63) with the available experimental value,

one needs to take into account the effects of Bs −Bs oscillations, which amounts to [128]

B(Bs → `+`−)exp = 1 +A``∆Γys
1− y2

s

B(Bs → `+`−)th , (2.64)

where ys = ∆ΓBs/(2ΓBs) = 0.061(9), experimentally established by the LHCb Collabora-
tion [129], and A``∆Γ is a time-dependent observable defined in Ref. [128]. Within the SM
A``∆Γ = 1, so that the time integrated branching ratio can be compactly written as

B(Bs → `+`−)exp ≈ 1
1− ys

B(Bs → `+`−)th . (2.65)

The SM prediction for this observable to which electroweak corrections have been in-
cluded is given by [115],

B(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9 . (2.66)
This value is found to be in very good agreement with the most recent LHCb determina-
tion [130],

B(Bs → µ+µ−)exp = (3.0± 0.6+0.3
−0.2)× 10−9 , (2.67)

which provides very useful constraints for model building. In particular, the scenarios
beyond the SM generating the (pseudo-)scalar operators OS,P are tightly constrained by
B(Bs → µ+µ−) due to the helicity suppression which is lifted by these operators in Eq. (2.63).

2.3.2 B → K`+`−

The decay mode B → K`+`− has also been the subject of many theoretical and experimen-
tal studies since it provides complementary information to the B(Bs → µ+µ−)exp. More
precisely, some operators such as O(′)

9 do not contribute to the latter quantity, but they can
induce potentially observable effects in B(B → K`+`−). This can be easily seen from the
general expression for the decay rate, which takes the form [127]

dB
dq2 (B̄ → K̄`+`−) = |NK(q2)|2×

[
1
3 |f+(q2)|2λBβ2

` |C10 + C ′10|2

+ 2|f0(q2)|2(m2
B −m2

K)2m
2
`

q2

∣∣∣∣∣C10 + C ′10 + (CP + C ′P )q2

2m`(mb −ms)

∣∣∣∣∣
2
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+ λB
2

(
1− β2

`

3

) ∣∣∣∣(C9 + C ′9)f+(q2) + (C7 + C ′7) 2mb

mB +mK

fT (q2)
∣∣∣∣2

+ |f0(q2)|2 q
2(m2

B −m2
K)2β2

`

2(mb −ms)2 |CS + C ′S|
2
]
, (2.68)

where the normalization factor reads

|NK(q2)|2= τBd
α2G2

F |VtbV ∗ts|2

512π5m3
B

β`λ
1/2
B . (2.69)

For shortness, in the above formulas, we again use λB = λ(mB,mK ,
√
q2) with λ(a, b, c) =

[a2 − (b− c)2][a2 − (b+ c)2].
The hadronic form factors entering the B → Kµ+µ− decay amplitude have been di-

rectly computed in LQCD only in the region of large q2’s [131,132]. For this reason, we opt
for using B(B → Kµ+µ−)q2∈[15,22] GeV2 to do phenomenology. Furthermore, since the bin
corresponding to q2 ∈ [15, 22] GeV2 is rather wide and away from the very narrow char-
monium resonances, the assumption of quark-hadron duality is likely to be valid [133]. By
using the recent LQCD results for the form factors provided by HPQCD [131] and MILC
Collaborations [132], the SM results are

B(B → Kµ+µ−)high q2 =
{

(10.0± 0.5)× 10−8
∣∣∣∣
HPQCD

, (10.7± 0.5)× 10−8
∣∣∣∣
MILC

}
, (2.70)

both being about 2σ larger than the experimental value measured at LHCb [116],

B(B → Kµ+µ−)exp
q2∈[15,22] GeV2 = (8.5± 0.3± 0.4)× 10−8 . (2.71)

This discrepancy is still not significant, but it is interesting to note that it is consistent
with the ones obtained in lepton flavor universality tests in B → K(∗)µ+µ−, as it will be
discussed in Chapter 5.

2.3.3 B → K∗`+`− and Bs → φ`+`−

Finally, the decay modes B → K∗`+`− and Bs → φ`+`− received a lot of attention in
the last years due to their rich kinematical structures, which allows us to construct several
independent observables that can be studied experimentally. We will focus on the mode
B → K̄∗`+`−, but the expressions for the analogous Bs → φ`+`− can be obtained mutatis
mutandis. The differential branching ratio of B → K̄∗`+`− is then given by 7

dB
dq2 (B → K̄∗(→ Kπ)`+`−) = 1

4
[
3Ic1(q2) + 6Is1(q2)− Ic2(q2)− 2Is2(q2)

]
, (2.72)

where the relevant angular coefficients Ii(q2) read

Is1(q2) =
[
|AL⊥|2+|A‖|2+(L→ R)

]2 + β2
`

4 + 4m2
`

q2 Re
(
AL‖A

R∗
‖ + AL⊥A

R∗
⊥

)
, (2.73)

7We postpone the expressions for the complete angular distribution of this decay for the following
Sec. 2.5, where the derivation of these formulas will be also discussed.
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Ic1(q2) =
[
|AL0 |2+|AR0 |2

]
+ 4m2

`

q2

[
|At|2+2Re(AL0AR∗0 )

]
+ β2

` |AS|2 , (2.74)

Is2(q2) = β2
`

4 [|AL⊥|2+|A‖|2+(L→ R)] , (2.75)

Ic2(q2) = −λq
q4 (|AL0 |2+|AR0 |2) , (2.76)

where here β` =
√

1− 4m2
`/q

2. The helicity amplitudes appearing in the coefficients given
above are defined by

A
L(R)
⊥ = NK∗

√
2λ1/2

B

[
[(C9 + C ′9)∓ (C10 + C ′10)] V (q2)

mB +mK∗
+ 2mb

q2 (C7 + C ′7)T1(q2)
]
,

A
L(R)
‖ = −NK∗

√
2(m2

B −m2
K∗)

[
[(C9 − C ′9)∓ (C10 − C ′10)] A1(q2)

mB −mK∗
+ 2mb

q2 (C7 − C ′7)T2(q2)
]
,

A
L(R)
0 = − NK∗

2mK∗
√
q2

{
2mb(C7 − C ′7)

[
(m2

B + 3m2
K∗ − q2)T2(q2)− λBT3(q2)

m2
B −m2

K∗

]

+ [(C9 − C ′9)∓ (C10 − C ′10)] ·
[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q2)− λBA2(q2)

mB +mK∗

]}
,

At = NK
∗

q2 λ
1/2
B

[
2(C10 − C ′10) + q2

m`(mb +ms)
(CP − C ′P )

]
A0(q2) ,

AS = −2NK∗λ1/2
B (CS − C ′S)A0(q2) , (2.77)

(2.78)

with

NK∗(q2) = VtbV
∗
ts

[
τBd

α2
emG

2
F

3× 210π5m3
B

λ
1/2
B λ1/2

q

]1/2

, (2.79)

where λq = λ(q2,m2
` ,m

2
`) = q4β2

` .
The amplitude of B → K∗µ+µ− depends on several hadronic quantities which have

not been fully determined by means of numerical simulations of LQCD. As of now, there
are very few LQCD results available, which were obtained only for very large values of q2,
and still with large errors [134, 135]. The usual strategy employed in phenomenological
studies is to perform a combined fit of these form factors with light-cone sum rules (LCSR)
determinations of the same form factors in the low q2 region [136]. It should be stressed
that assessment of uncertainties in the LCSR results for the B → K∗`+`− form factors
remains controversial. In other words, by using the form factors obtained in that way, one
runs the risk of misinterpreting hadronic uncertainties as NP effects. A safer strategy is
to focus the experimental effort on the the quantities which are only mildly dependent on
hadronic uncertainties. There are only a few of such quantities in the case of B → K∗`+`−,
which can be directly deduced from the full angular decay distribution [137].
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2.4 Lepton flavor violation in lepton decays
Lepton flavor violating (LFV) decays are the last class of observables presented in this
Chapter. Contrary from the electroweak decays discussed above, these processes are com-
pletely absent in the SM, as required by the accidental lepton flavor symmetry U(1)L ≡
U(1)e × U(1)µ × U(1)τ . Although this symmetry is known to be broken, since neutrinos
are massive and oscillate between different flavors, the smallness of neutrino masses en-
sures that all processes with LFV remain highly suppressed and basically not observable.
Therefore, these processes are very clean probes of physics beyond the SM.

In the following, we highlight the importance of experimental searches of LFV, the
observable of which would be a clear signal of physics beyond the SM. The usefulness of
LFV constraints as a probe of NP is illustrated by computing ` → `′γ, with `, `′ = e, µ, τ ,
in the SM extended by heavy neutrinos.

2.4.1 `→ `′γ and neutrino masses
To illustrate the generation of LFV by massive neutrinos and to prove its smallness in the
SM amended with neutrino masses, we consider the process `→ `′γ, with `, `′ = e, µ, τ . If
non-vaninshing neutrino masses are added to the SM, then LFV is generated at loop-level
by the diagrams shown in Fig. 2.7, where νi denotes a generic neutrino mass eigenstate. To
compute the contribution from these diagrams, we consider the charged current Lagrangian
modified by neutrino masses and mixing, namely,

L ⊃ − g√
2

nν∑
i=1

Uαi ¯̀αγµPLνiW−
µ + h.c. , (2.80)

with U being the leptonic mixing matrix (or PMNS matrix), α the flavor of the charged
leptons, and i = 1, . . . , nν denotes a physical neutrino state. The amplitude for `→ `′γ hen
becomes

M(`→ `′γ) = ε∗µ
eg2

32π2
m`

m2
W

[
ū`(p`)iσµνqνPRu`′(p`′)

] nν∑
i=1

U`iU`′iGγ(xi) , (2.81)

where εµ is the photon polarization and q = p`− p`′ , and we assumed m`′ � m` in deriving
this formula. The loop-factor Gγ(xi) is a finite function, since the ultraviolet divergences
cancel-out among the diagrams in Fig. 2.7, and it reads 8

Gγ(x) = −2x3 + 5x2 − x
4(1− x)3 − 3x3

2(1− x)4 log x . (2.82)

where, for shortness, we use xi = m2
νi
/m2

W .
By using these expressions, one can easily compute the relevant branching ratio, which is
given by [138]

B(`→ `′γ) =
√

2G3
F sin2 θWm

2
W

128π5Γ`
m5
`

∣∣∣∣∣
nν∑
i=1

U∗`iU`′iGγ(xi)
∣∣∣∣∣
2

. (2.83)

8The total ultraviolet divergences must vanish in this loop since there is no flavor violating counter-term
in the SM which could absorb it. Notice also that the loop computation is independent of the nature of
neutrinos, i.e. if they are Majorana or Dirac particles.
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Figure 2.7: Diagrams for `→ `′γ at one-loop level.

From this expression, we observe the manifestation of a (leptonic) GIM mechanism similar
to the one encoutered in ∆F = 1 processes. From the unitarity of the PMNS matri, we
know that the branching ratio will depend only on the mass splitting of the neutrinos,
which greatly suppresses the contribution of active neutrinos, since the corresponding mass
differences satisfy

∆m2
ij ≡ m2

νi
−m2

νj
≤ max(m2

νi
; i = 1, 2, 3) . 1 eV2, (2.84)

many orders of magnitude smaller than m2
W . As an illustration of the result given above,

we consider the most minimal neutrino mass model in which the SM is solely extended
by the addition of three gauge singlets assumed to be Dirac particles, i.e. the conservation
of lepton number is imposed. By Taylor expanding Gγ(xi) and using the unitarity of the
matrix U , one can show that

3∑
i=1

U∗`iU`′iGγ(xi) =
3∑
i=2

U∗`iU`′i [Gγ(xi)−Gγ(x1)] (2.85)

=
3∑
i=2
U∗`iU`′i

[
1
8

∆m2
i1

m2
W

]
+O

(
∆m4

i1
m4
W

)
. (2.86)

This expression can now be combined with the squared mass differences [50]

∆m2
21 = (7.50+0.19

−0.17)× 10−5 eV2 , (2.87)

∆m2
31 = (2.52± 0.04)× 10−3 eV2, (2.88)

and the mixing angles determined by the neutrino oscillation experiments to predict9

B(µ→ eγ)Dirac = 3.8(1.5)× 10−55, (2.89)
which is well beyond reach of any current or future experiment. To quote the current limits,
the most stringent upper bound is the one obtained by MEG (at 90% CL),

B(µ→ eγ)exp < 4.2× 10−13 . (2.90)
This limit will be improved in the future by the MEG-II upgrade which aims at a future
sensitivity of 6 × 10−14 [139]. Notice that this value is still very far from the prediction
given in Eq. (2.89).

9For simplicity we considered the results from the fit performed in Ref. [50] assuming the normal hi-
erarchy. Since the value of the Dirac CP violating phase is still unknown, we scanned over the full range
δ ∈ [0, 2π).
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The purpose of the exercise described above was to demonstrate that LFV processes
remain unobservable even if neutrino masses are included in the SM by hand, and therefore
their detection would represent a clean signal of NP. In the following, we review the status
of experimental searches for LFV and we discuss a scenario with heavy sterile neutrinos,
which predicts sizable effects in LFV observables.

2.4.2 Status of current LFV searches
In this Section, we review the status of the experimental searches for LFV. The discussion
given above can be extended to any type of LFV process, including leptonic three-body
decays such as µ→ 3e, hadronic LFV decays, or nuclear processes where µ→ e conversion
could take place, which are all predicted to be completely neglible in the SM ammended
with neutrino masses.

The current limits for purely leptonic LFV searches are listed in Table 2.5. One of
the most promising opportunities for the future are the so-called µ → e conversion rates
in nuclei, which will reach an impressive sensitivity in the years to come [140–143]. For
LFV decays with hadrons in the initial and/or final state, the most constraining results
are shown in Table 2.6. Even though the limits for those decays are orders of magnitude
below the purely leptonic searches, it is important to emphasize that those searches are
complementary to the latter, especially if the NP particles have sizable couplings to quarks.
For instance, we will present in Sec. 5.3.3 a leptoquark scenario for which B(Bs → ``′) is
orders of magnitude larger than B(` → `′γ). For hadronic decays, notice that we usually
combine the rates with different lepton charges in the final state, e.g. B(Bs → `±`′ ∓) =
B(Bs → `−`′+) + B(Bs → `+`′ −) for ` 6= `′.

Quantity Exp. Bound

B(µ→ eγ) < 4.2× 10−13

B(τ → eγ) < 3.3× 10−8

B(τ → µγ) < 4.4× 10−8

B(µ→ eee) < 1.0× 10−12

B(τ → eee) < 2.7× 10−8

B(τ → µµµ) < 2.1× 10−8

CR(µ− e, T i) < 4.3× 10−12

CR(µ− e, Au) < 7× 10−13

Table 2.5: Current experimental bounds on the most relevant LFV leptonic decays at 90% CL.
All limits are taken from Ref. [22], except for µ → eγ which was recently updated by the MEG
Collaboration Ref. [144].

Before entering the discussion of hadronic LFV decays, which open a completely new
window to the flavor structure beyond the SM, we will illustrate our discussion on a simple
model where LFV can be generated at loop-level through heavy sterile neutrinos running
in the loops.
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Quantity Exp. Bound

B(τ → eKS) < 2.6× 10−8

B(τ → µKS) < 2.3× 10−8

B(τ → µφ) < 8.4× 10−8

B(KL → eµ) < 4.7× 10−12

B(KL → π0eµ) < 7.6× 10−11

B(Bs → eµ) < 1.1× 10−8

B(B+ → K+eµ) < 9.1× 10−8

B(B+ → K+eτ) < 3.0× 10−5

B(B+ → K+µτ) < 4.8× 10−5

Table 2.6: Current experimental bounds on the most relevant LFV decays containing hadrons
at 90% CL [22].

2.4.3 Sterile neutrinos and LFV
One of the simplest extensions of the SM that can induce observable LFV rates are scenarios
with heavy sterile neutrinos. These particles appear in many models aiming to explain the
smallness of neutrino masses and they can enhance the loop function of µ→ eγ and similar
processes. If the scale of these particles is low enough, then the enhancement can be
large enough to be detectable, as one can find for example in low scale realization of the
seesaw mechanism, such as the inverse seesaw scenario [56, 57]. A similar enhancement
can also be found in some models with Dirac neutrinos. For example, in the the so-called
neutrinophilic two-Higgs doublet model, in which the charged Higgs contributions can play
a similar role [145,146].

Effective model setup

We consider an effective scenario where the only remnant at low energies of the neutrino
mass generating mechanism is a sterile neutrino νs which mixes with the active neutri-
nos through the leptonic mixing matrix U ∈ M3×4(C), generating three light neutrinos
(ν1, ν2, ν3) and one heavy neutrino (ν4) defined as νi = U∗αiνα . The leptonic mixing matrix
can then be parameterized as,

UT = R34(θ34, δ43) ·R24(θ24) ·R14(θ14, δ41) · Ũ · diag(φ21, φ31, φ41) , (2.91)
where Rij is the rotation matrix between i and j, which includes the mixing angle θij and
the Dirac CP-violating phase δij. The Majorana CP-violating phases are factorized in the
last term of Eq. (2.91), where φij = exp−i(φi−φj). Ũ is the 4 × 3 matrix which encodes the
mixing among the active leptons as

Ũ =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

0 0 0

 . (2.92)
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The upper 3×3 submatrix of Ũ is non-unitary due to the presence of a sterile neutrino and
includes the usual Dirac CP phase actively searched for in neutrino oscillation facilities. In
the case where the sterile neutrino decouples, this submatrix would correspond to the usual
unitary PMNS lepton mixing matrix, UPMNS. The active-sterile mixing is described by the
rotation matrices R34, R24, R14 which are defined as

R34 =


1 0 0 0
0 1 0 0
0 0 cos θ34 sin θ34 · e−iδ43

0 0 − sin θ34 · eiδ43 cos θ34

 ,

R24 =


1 0 0 0
0 cos θ24 0 sin θ24

0 0 1 0
0 − sin θ24 0 cos θ24

 ,

R14 =


cos θ14 0 0 sin θ14 · e−iδ41

0 1 0 0
0 0 1 0

− sin θ14 · eiδ41 0 0 cos θ14

 . (2.93)

The 3× 3 sub-matrix of U identified as the PMNS matrix is non-unitary and the deviation
from unitarity is a function of the mixing angles between the active and the sterile neutrinos.

One can already see from Eq. (2.83) that the sterile neutrino can produce sizable effects
in B(µ → eγ) if it is sufficiently heavy to increase the loop factor Gγ(x), which is plotted
in Fig. 2.8. Note, however, that there is a competition between the mass enhancement of
the loop function and the condition of perturbativity, which we choose to be 10

Γν4

mν4

<
1
2 . (2.94)

This result gives the limit

GFm
4
ν4√

2π
∑

`=e,µ,τ
|U`4|2< 1 , (2.95)

which ensures that |U`4|2, with ` = e, µ, τ , are small for large values of mν4 . Therefore,
there is an intermediate region where B(µ→ eγ) and other LFV processes can attain their
maximal values. We will now perform a scan of parameters to quantify how large these
observables can be in this effective scenario.

10In a concrete scenario, the perturbativity condition would be encoded in the fact that large active-sterile
mass splittings imply small active-sterile mixing angles.
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Figure 2.8: Loop factor Gγ(xi) (with xi = m2
νi/m

2
W ) plotted against mνi .

Constraints and scan of parameters

To estimate the maximal value of B(µ→ eγ) in this model, we perform a scan of parameters
in the range,

mν4 ∈ [10−6, 108] GeV , θi4 ∈ [0, 2π) , δij ∈ [0, 2π) , (2.96)

while keeping the active neutrino mass and mixing consistent with the global fits of neu-
trino oscillation data [50]. Before we list the observables used to constraint the parameter
space, we need to emphasize that a price to pay for adding massive sterile neutrinos is
that the Fermi constant, extracted from the muon decay, should be redefined according
to GF = Gµ/

√∑
i,j|Uei|2|Uµj|2, where the sum runs over kinematically accessible neutri-

nos. We checked, however, that for the model we consider GF = Gµ remains an excellent
approximation and thus it will be used in the following.

The randomly generated points are then confronted with several constraints listed below,
which are imposed to 2σ accuracy, unless stated otherwise [147,148]:

• W → `ν: We combine the measured B(W → eν) = 0.1071(16) and B(W → µν) =
0.1063(15) [22], with the expression

B(W → `ν) =
√

2GFmW

24πΓW

4∑
i=1

λ1/2(m2
` ,m

2
νi
,m2

W )
[
2−

m2
` +m2

νi

m2
W

−
(m2

` −m2
νi

)2

m4
W

]
|U2

`i|,

(2.97)

where λ(a2, b2, c2) = [a2 − (b+ c)2] [a2 − (b− c)2]. Since we do not include the electroweak
radiative corrections to this formula we will use in our scan the experimental results with 3σ
uncertainties. Notice also that unlike B(W → eν) and B(W → µν), which have also been
recently measured at the LHC [149], the LEP result for B(W → τν) has not been mea-
sured at the LHC. For that reason, and despite the fact that the LEP result for B(W → τν)
differs from the SM value at the 2.3σ level, we prefer not to include B(W → τν) in our scan.

• Z → νν: In addition to the active neutrinos, the sterile ones can be used to saturate
the experimental Z invisible decay width, Γ(Z → invisible) = 0.503(16) GeV [22]. The

48



2.4. Lepton flavor violation in lepton decays

corresponding expression, which we compute by assuming that neutrinos are Majorana
fermions is given by 11

Γ(Z → νν) =
4∑

i,j=1
i≤j

(
1− δij

2

) √
2GF

24π mZλ
1/2(m2

Z ,m
2
νi
,m2

νi
)

×
[
|Cij|2

(
2−

m2
νi

+m2
νj

m2
Z

−
(m2

νi
−m2

νj
)2

m4
Z

)
− Re

(
C2
ij

) 6mνimνj

m2
Z

]
, (2.98)

where

Cij =
∑

α∈{e,µ,τ}
U∗αiUαj . (2.99)

• τ → `νν: The leptonic decays τ → `νν (` = e, µ) represent very useful constraints as
well. We derived the relevant expression for this process and found,

dB(τ → `νν)
dq2 =

4∑
i,j=1
i≤j

(
1− δij

2

)
G2
F ττ

192π3m3
τq

6λ
1/2(m2

τ ,m
2
µ, q

2)λ1/2(q2m2
νi
,m2

νj
)
{(
|UτiU∗`j|2+|UτjU∗`i|2

)

×
[
3
(
q4 − (m2

νi
−m2

νj
)2
)(

(m2
τ −m2

`)2 − q4
)
− λ(m2

τ ,m
2
µ, q

2)λ(q2m2
νi
,m2

νj
)
]

−24 Re (U∗τiU`jUτjU∗`i)mνimνjq
4(m2

τ +m2
` − q2)

}
. (2.100)

The above formula is then combined with the average of experimental results, summarized
in Ref. [22], namely B(τ → µνν) = 17.33(5)%, and B(τ → eνν) = 17.82(5)%.

• ∆rP = rexp
P /rSM

P − 1: The ratios rP = Γ(P → eν)/Γ(P → µν) (P = π+, K+) provide
an efficient constraint, as recently argued in Ref. [150]. To that end, we combine the SM
expression for the decay rate with the experimental values to obtain ∆rπ = −0.004(3) and
∆rK = 0.004(4), the result which is then compared with the formula,

∆rP = −1 +
m2
µ(m2

P −m2
µ)2

m2
e(m2

P −m2
e)2

4∑
i=1
|Uei|2

[
m2
P (m2

νi
+m2

e)− (m2
νi
−m2

e)2
]
λ1/2(m2

P ,m
2
νi
,m2

e)

4∑
i=1
|Uµi|2

[
m2
π(m2

νi
+m2

µ)− (m2
νi
−m2

µ)2
]
λ1/2(m2

π,m
2
νi
,m2

µ)
.

(2.101)

The constraints listed above are combined with the perturbativity condition Eq. (2.95)
and with the limits from the direct searches of heavy sterile neutrinos [151]. The allowed
regions of parameter space are shown in Fig. 2.9 in the planes m4 vs |U`4|2, ` = e, µ, τ . It is

11The expression for Dirac neutrinos can be found in Ref. [148], which coincides with Eq. (2.98) in the
limit mνi

→ 0 ∀ i.
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2.4. Lepton flavor violation in lepton decays

worth noticing that the bounds shown in Fig. 2.9 are in agreement with those provided in
Ref. [151], although slightly improved as some of the constraints discussed above have been
updated. Since our goal is to predict the LFV rates, we did not impose these observables
as constraints at this stage. Note, however, that the bounds shown in Fig. 2.9 in the plane
m4 vs |U`4|2 remain the same after imposing the LFV constraints, since these observables
are only sensitive to products of the type U`4U∗`′4, with ` 6= `′.

Figure 2.9: Result of the scan in the scenario of three active and one (effective) sterile neutrino,
displayed in the planes m4 vs |U`4|2. The green points agree will all constraints. Perturbative
unitarity cuts the parameter space for large m4.

We are now in position to use the allowed points in parameter space to predict the rates
for B(` → `′γ) and B(` → 3`′) and compare them with the experimental limits shown in
Table 2.5. To that end, we consider the expression (2.83) for B(`→ `′γ) and the expressions
given in Ref. [138] for the three-body LFV decays. We will focus mostly on the observable
B(µ→ eγ) < 4.2× 10−13, since this is the most stringent LFV limit available thus far.

Predictions for LFV

Our results are shown in Fig. 2.10, where B(µ→ eγ) is plotted as a function of mν4 for the
points allowed by our scan. The limits on B(µ → eγ) and B(µ → eee) are only applied a
posteriori and shown with a different color, since we want to illustrate the sensitive of those
observables to sterile neutrinos. From this plot, we learn that B(µ → eγ) can be as large
as 5 × 10−9 for sterile fermions in the TeV mass range. A similar conclusion holds for the
decay mode B(µ→ eee), which is equally sensitive to this type of NP. Notice that the dips
in the region mν4 ∈ (10−2, 102) in Fig. 2.10 come from the direct search limits on heavy
neutrinos, which constraint the elements |U`4|2 with ` = e, µ, τ for neutrinos with masses in
the range mν4 . 100 GeV [151]. Moreover, the decrease of the LFV rate for large masses is
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2.5. LFV in b→ s exclusive decays

associated to the perturbativity limit Eq. (2.95) which constraints the active-sterile mixing
for large sterile masses, as explained above.

Figure 2.10: Result of the scan in the scenario of three active and one (effective) sterile neutrino
in the plane (mν4 ,B(µ→ eγ)). The green points agree will all constraints, while the red ones are
excluded by the limits B(µ→ eγ) < 4.2× 10−13 [144] and B(µ→ eee) < 10−12 [152].

The conclusion of this exercise is that the current limits on LFV decays can set useful
limits on the parameters of sterile fermions, namely, their masses and/or couplings. These
results can be particularly useful if the masses of sterile neutrinos lie at at the TeV range,
as it can be seen in Fig. 2.10. In the next Section, we will discuss LFV decays of mesons,
which are complementary to the observables reported above, being mostly sensitive to other
types of NP scenarios.

2.5 LFV in b→ s exclusive decays
In this Section, we discuss the exclusive decays of the type b → s`1`2, with `1, `2 = e, µ, τ ,
using a general EFT approach. The LFV decays of hadrons are complementary to the
purely leptonic modes because they probe different LFV effective operators. Moreover,
they offer a different environment to test the result of the above-mentioned leptonic modes.
The interest on the transition b → s is partially motivated by the recent observation of
lepton flavor universality in the transition b → s``, with ` = e, µ, which will be discussed
in Sec. 5.2. Interestingly, most of the concrete models aiming to explain this anomaly can
induce LFV in B decays at experimentally accessible rates [153–155].

To describe the transition b→ s`1`2 in a model independent way, we extend the Hamil-
tonian (2.54) to account for operators with different leptons,

Heff = −4GF√
2
VtbV

∗
ts

{ 6∑
i=1

Ci(µ)Oi(µ) +
∑
i=7,8

[
Ci(µ)Oi(µ) + (Ci(µ))′ (Oi(µ))′

]

+
∑
`1,`2

∑
i=9,10,S,P

[
C`1`2
i (µ)O`1`2i (µ) +

(
C`1`2
i (µ)

)′ (
O`1`2i (µ)

)′ ]}
+ h.c. ,
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where

O`1`29 = e2

(4π)2 (s̄γµPLb)(¯̀1γ
µ`2) , O`1`2S = e2

(4π)2 (s̄PRb)(¯̀1`2) , (2.102)

O`1`210 = e2

(4π)2 (s̄γµPLb)(¯̀1γ
µγ5`2) , O`1`2P = e2

(4π)2 (s̄PRb)(¯̀1γ5`2) . (2.103)

Similarly to Sec. 2.3, we neglect the tensor operators OT (5) since they are not generated by
dimension-six operators consistent with SU(2)L×U(1)Y gauge invariance [126]. Of course,
the Wilson coefficient C`1`2

i are zero in the SM for `1 6= `2. Furthermore, note that

(i) in general, for `1 6= `2, C`1`2
i 6= C`2`1

i , which is particularly the case in the LQ models
in which LFV occurs through tree-level diagrams;

(ii) in some situations, even if C`1`2
i = (C`2`1

i )∗ ∀ i, one can still generate an asymmetry
between LFV modes with different lepton charges, e.g. B(Bs → µ−τ+) 6= B(Bs →
µ+τ−).

Before discussing the issue of lepton charge asymmetry one must first observe LFV, that
is why we will here combine the two charged modes, namely, B(Bs → `1`2) ≡ B(Bs →
`−1 `

+
2 ) + B(Bs → `+

1 `
−
2 ), and B(B → K(∗)`1`2) ≡ B(B → K(∗)`−1 `

+
2 ) + B(B → K(∗)`+

1 `
−
2 ).

In the following, we will use the Hamiltonian defined above to derive the general expres-
sions for the decay rates and angular distributions (when possible) of the exclusive b → s
decay modes. To simplify our notation, we will write Ci ≡ C`1`2

i (`1 6= `2) when confusion
can be avoided. These expressions will then be used in Sec. 2.5.4 to discuss some generalities
of LFV in the the transition b→ s`1`2.

2.5.1 Bs → `1`2

We first focus on the simplest exclusive b→ s`1`2 mode, Bs → `1`2, which is also instructive
as far as the operators contributing to the process are concerned. Of course, and after
the trivial replacements, the same expressions will be valid for Bd → `1`2. The general
expression for this decay is then given by

B(Bs → `−1 `
+
2 )th = τBs

64π3
α2G2

F

m3
Bs

f 2
Bs|VtbV

∗
ts|2λ1/2(mBs ,m1,m2)

×
{

[m2
Bs − (m1 +m2)2] ·

∣∣∣∣∣(C9 − C ′9)(m1 −m2) + (CS − C ′S) m2
Bs

mb +ms

∣∣∣∣∣
2

+ [m2
Bs − (m1 −m2)2] ·

∣∣∣∣∣(C10 − C ′10)(m1 +m2) + (CP − C ′P ) m2
Bs

mb +ms

∣∣∣∣∣
2 }

, (2.104)

wherem1 andm2 are the lepton masses. What immediately becomes evident from Eq. (2.104)
is that in the LFV channel the lepton vector current is not conserved,

i∂µ(¯̀1γ
µ`2) = (m2 −m1)¯̀1`2 6= 0 , (2.105)

and the contribution of C(′)
9 cannot be neglected. Quite obviously, in the limit m1 = m2 one

finds the usual expression for B(Bs → `+`−), cf. Eq. (2.63). Finally, when confronting theory
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2.5. LFV in b→ s exclusive decays

with the experimental measurements one needs to account for the effect of oscillations in
the Bs −Bs system because the time dependence of the Bs-decay rate has been integrated
in experiment, as derived in Eq. (2.65) to a good approximation.

2.5.2 B → K`1`2

The kinematics of the decay B → K`−1 `
+
2 is defined in such a way that the main decay axis

z is defined in the rest frame of B, so that K and the lepton pair travel in the opposite
directions. The angle between the negatively charged lepton and the decay axis (opposite
to the direction of flight of the kaon) is denoted by θ` and is defined in the lepton-pair rest
frame. We can then write the differential decay rate in the following form,

dB
dq2 (B̄ → K̄`−1 `

+
2 ) = |NK(q2)|2×

{
ϕ9(q2)|C9 + C ′9|2+ϕ10(q2)|C10 + C ′10|2+ϕS(q2)|CS + C ′S|2

+ ϕP (q2)|CP + C ′P |2+δ`1`2 ϕ7(q2)|C7 + C ′7|2+ϕ9S(q2)Re[(C9 + C ′9)(CS + C ′S)∗]

+ δ`1`2 ϕ79(q2)Re[(C7 + C ′7)(C9 + C ′9)∗] + ϕ10P (q2)Re[(C10 + C ′10)(CP + C ′P )∗]
}
,

(2.106)

where the Kronecker delta δ`1`2 accounts for the fact that the photon penguin only con-
tributes to lepton flavor conserving decays. The functions ϕi(q2) depend on kinematical
quantities and on the form factors, as explicitly given below: 12

ϕ7(q2) = 2m2
b |fT (q2)|2

(mB +mK)2λ(mB,mK ,
√
q2)

[
1− (m1 −m2)2

q2 − λ(
√
q2,m1,m2)

3q4

]
,

ϕ9(10)(q2) = 1
2 |f0(q2)|2(m1 ∓m2)2 (m2

B −m2
K)2

q2

[
1− (m1 ±m2)2

q2

]

+ 1
2 |f+(q2)|2λ(mB,mK ,

√
q2)

[
1− (m1 ∓m2)2

q2 − λ(
√
q2,m1,m2)

3q4

]
,

ϕ79(q2) = 2mbf+(q2)fT (q2)
mB +mK

λ(mB,mK ,
√
q2)

[
1− (m1 −m2)2

q2 − λ(
√
q2,m1,m2)

3q4

]
,

ϕS(P )(q2) = q2|f0(q2)|2
2(mb −ms)2 (m2

B −m2
K)2

[
1− (m1 ±m2)2

q2

]
,

ϕ10P (9S)(q2) = |f0(q2)|2
mb −ms

(m1 ±m2)(m2
B −m2

K)2
[
1− (m1 ∓m2)2

q2

]
. (2.107)

Finally, the normalization factor in eq. (2.68) reads

|NK(q2)|2= τBd
α2G2

F |VtbV ∗ts|2

512π5m3
B

λ1/2(
√
q2,m1,m2)
q2 λ1/2(

√
q2,mB,mK). (2.108)

Like in the previous subsection we see that due to the non-conservation of the leptonic
vector current, the new pieces emerge in the functions ϕi(q2). By taking the limit m1 = m2
in eq. (2.107) we retrieve the known expressions for the lepton flavor conserving case,
cf. Eq. (2.68). We should also emphasize that the interference term ϕ9S(q2) changes the

12In the notation used to write the formulas for ϕa(b)(q2) the upper signs correspond to ϕa(q2) and lower
to ϕb(q2).
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sign depending on the charge of the heavier lepton. In other words, if one assumes that
the Wilson coefficients (Ci)12 = (Ci)21, then the difference between B(B → K`−1 `

+
2 ) and

B(B → K`−2 `
+
1 ) will be a measure of the interference term proportional to Re[C9C

∗
S].

2.5.3 B → K∗`1`2 and Bs → φ`1`2

These processes proceed via B → K∗(→ Kπ)`−1 `+
2 and Bs → φ(→ KK̄)`−1 `+

2 . Since the
expression for the angular distribution of the latter decay can be obtained by the trivial
replacements in the ones for B̄ → K̄∗(→ K−π+)`−1 `+

2 , we will focus on the B → K∗

transition. In this Section, we will present the full computation in detail, since there were
several inconsistencies in the literature of B → K∗µ+µ− regarding the definition of the
helicity amplitudes and the choice of angular conventions, which have been only recently
clarified in Ref. [127, 156]. In these papers, we decided to adopt the same conventions
of LHCb [157]. 13 Furthermore, we will present in detail a non-ambiguous method to
incorporate the (pseudo-)scalar operators in the helicity amplitude method which can also
be applied to the lepton flavor conserving case.

Angular conventions and kinematics

We adopt the kinematics of Ref. [127,156], which are fixed in such a way that they coincide
with the conventions adopted in experiments at the LHC [157]. In particular, we denote
the four-vectors by B(pB)→ K∗(k)V ∗(q)→ K(pK)π(pπ)`−1 (p1)`+

2 (p2), where V is a virtual
gauge boson. Moreover, our angular conventions are summarized in Fig. 2.11.

Figure 2.11: Angular conventions for the decay B̄ → K̄∗`−1 `
+
2 .

In theB rest frame, the leptonic and hadronic four-vectors are defined by qµ = (q0, 0, 0, qz)
and kµ = (k0, 0, 0,−qz), where

q0 = m2
B + q2 −m2

K∗

2mB

, k0 = m2
B +m2

K∗ − q2

2mB

, and qz = λ1/2(mB,mK∗ ,
√
q2)

2mB

,

(2.109)
13We would like to thank Roman Zwicky for correspondence which helped to clarify the inconsistencies

in the literature.
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In the dilepton rest frame, the leptonic four-vectors read

pµ1 = (Eα, |p`|sin θ` cosφ,−|p`|sin θ` sinφ, |p`|cos θ`), (2.110)
pµ2 = (Eβ,−|p`|sin θ` cosφ, |p`|sin θ` sinφ,−|p`|cos θ`), (2.111)

where

E1 = q2 +m2
1 −m2

2
2
√
q2 , E2 = q2 −m2

1 +m2
2

2
√
q2 , and |p`|=

λ1/2(q2,m2
1,m

2
2)

2mB

. (2.112)

In the same way, one can write in the K∗ rest frame

pµK = (EK ,−|pK |sin θK , 0,−|pK |cos θK) , (2.113)
pµπ = (Eπ,+|pK |sin θK , 0,+|pK |cos θK) , (2.114)

where EK , Eπ and |pK | are given by the similar expressions.

Polarization vectors

In the B rest frame, we choose the polarization vectors to be:

εµV (±) = 1√
2

(0,±1, i, 0) , εµK∗(±) = 1√
2

(0,∓1, i, 0) ,

εµV (0) = 1√
q2 (qz, 0, 0, q0) , εµK∗(0) = −1√

k2
(kz, 0, 0, k0) ,

εµV (t) = 1√
q2 (q0, 0, 0, qz) ,

(2.115)

where V stands for for a virtual gauge boson, as we shall describe below. These four-vectors
are orthonormal and satisfy the completeness relations

∑
n,n′

ε∗µV (n)ενV (n′)gnn′ = gµν ,

∑
m,m′

ε∗µK∗(m)ενK∗(m′)δmm′ = −gµν + kµkν

m2
K∗
,

(2.116)

where m ∈ {0,±}, n, n′ ∈ {0, t,±}, and gnn′ = diag(1,−1,−1,−1).

Computation of the decay amplitude

After fixing our convention for the kinematics of this decay and making it coincide with
the one used at the LHCb experiment, we are in position to compute the B → K∗(→
K−π+)`−1 `+

2 decay amplitude by relying on the Hamiltonian (2.102). The first step is to
assume that the K∗ is decaying resonantly. Then, one can use the narrow-width approxi-
mation in the K∗ propagator, namely,

1
(k2 −m2

K∗)2 + (mK∗ΓK∗)2 →
π

mK∗ΓK∗
δ(k2 −m2

K∗) . (2.117)
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We write now the B → K∗ hadronic matrix element as

〈K̄∗(k)|Jµ|B̄(p)〉 = ε∗νK∗Aνµ , (2.118)
where Jµ is a generic current and Aνµ contains the B → K∗ form factors. Then, one can
show that the corresponding B → Kπ matrix can be expressed as [158],

〈K̄(pK)π(pπ)|Jµ|B̄(p)〉 = −DK∗(k2)W νAνµ , (2.119)
with

|DK∗(k2)|2= 48π2m4
K∗

λ
3/2
B

δ(k2 −m2
K∗) , (2.120)

W µ = (pK − pπ)µ − m2
K −m2

π

k2 kµ , (2.121)

where we write for shortness again λB = λ(mB,mK∗ ,
√
q2).

To write the B → K∗(→ K−π+)`−1 `+
2 decay amplitude in a compact form, it is con-

venient to use the formalism of helicity amplitudes. In the absence of the (pseudo-)scalar
operators, the total amplitude can be schematically written as

M
(
B → K∗`−1 `

+
2

)
= W σ

[
ML

σµ
¯̀1γ

µPL`2 +MR
σµ

¯̀1γ
µPR`2

]
, (2.122)

where ML(R)
σµ encapsulate the dependence on the effective coefficients and on the hadronic

parameters via Eq. (2.119). By describing the decay mode as B → K∗V ∗ → K∗`+
1 `
−
2 , where

V ∗ is a virtual vector boson, one can decompose the total decay amplitude in terms of the
helicity amplitudes,

HL(R)
mn ≡ −ML(R)

µν εν∗V (m)εµ∗V (n) , (2.123)

where εµV (m) (with m,n = 0, t,±) are the V ∗-boson polarization vectors, explicitly defined
in Eq. (2.115). We repeat that the above decomposition is valid as long as the scalar and
the pseudoscalar operators are not present. To incorporate those contributions one can
then apply the Dirac equation,

¯̀1γ5`2 = qµ

m`1 +m`2

¯̀1γµγ5`2, ¯̀1`2 = qµ

m`1 −m`2

¯̀1γµ`2, (2.124)

and absorb the (pseudo-)scalar terms in the time-like coefficients AL(R)
t . It should be stressed

that a similar decomposition for the scalar current cannot be made for the lepton flavor
conserving decay (`1 = `2). In that case, to unambiguously incorporate the C(′)

S contribu-
tion in the helicity amplitudes formalism, it is necessary to perform the computation with
different lepton masses and to take the limit m`1 = m`2 only in the final expression [127].
By using this approach, one can then obtain the desired helicity amplitudes and the total
decay amplitude for the lepton flavor conserving decay B → K∗`+`−.
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The total amplitude (2.122) can be expressed in terms of the helicity amplitudes (2.123)
by using the completeness relations (2.116), which allow us to factorize the amplitude into
leptonic and hadronic tensors,

M
(
B → K∗`−1 `

+
2

)
=
∑
mn

[
W · εK∗(m)

][
εµV (n)

(
HL
mn

¯̀1γµPL`2 +HR
mn

¯̀1γµPR`2
) ]
, (2.125)

where we have used W · k = 0 in writing this equation. The contraction with the K∗

polarization vector is most easily computed in the K∗-meson rest frame, while the leptonic
contractions can be computed in the dilepton rest frame after summing over the non-
observed polarizations and computing the traces. For completeness, we give the expression
for the 4-body phase space,

dΓ
(
B → K∗`−1 `

+
2

)
dq2 dk2 d cos θ` d cos θK dφ =

λ
1/2
B λ1/2

q λ
1/2
K∗

m3
Bq

2k2
1

8(4π)6

∑
|M

(
B → K∗`−1 `

+
2

)
|2 , (2.126)

from which the decay rates can be easily computed. As before and for shortness, we write
λB = λ(mB,mK∗ ,

√
q2), λK∗ = λ(mK∗ ,mK ,mπ) and λq = λ(

√
q2,m1,m2).

Full angular distribution

The full angular distribution of the above decay reads 14

d4B(B → K̄∗ → (Kπ)`−1 `+
2 )

dq2d cos θ`d cos θKdφ = 9
32πI(q2, θ`, θK , φ) , (2.127)

with

I(q2, θ`, θK , φ) =Is1(q2) sin2 θK + Ic1(q2) cos2 θK + [Is2(q2) sin2 θK + Ic2(q2) cos2 θK ] cos 2θ`
+ I3(q2) sin2 θK sin2 θ` cos 2φ+ I4(q2) sin 2θK sin 2θ` cosφ

+ I5(q2) sin 2θK sin θ` cosφ+ [Is6(q2) sin2 θK + Ic6(q2) cos2 θK ] cos θ`
+ I7(q2) sin 2θK sin θ` sinφ+ I8(q2) sin 2θK sin 2θ` sinφ

+ I9(q2) sin2 θK sin2 θ` sin 2φ, (2.128)

After integrating over angles the differential decay rate is simply

dB
dq2 = 1

4
[
3Ic1(q2) + 6Is1(q2)− Ic2(q2)− 2Is2(q2)

]
. (2.129)

By using Eq. (2.123), one can compute the helicity amplitudes in the B-meson rest
frame. The only ones which are non-zero read

A
L(R)
⊥ = H

L(R)
++ −HL(R)

−−√
2

, A
L(R)
0 = H

L(R)
00 ,

A
L(R)
‖ = H

L(R)
++ +H

L(R)
−−√

2
, A

L(R)
t = H

L(R)
0t ,

(2.130)

14Please notice that the convention used in eq. (2.43) is such that ε0123 = +1.
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which can be compactly written as

A
L(R)
⊥ = NK∗

√
2λ1/2

B

[
[(C9 + C ′9)∓ (C10 + C ′10)] V (q2)

mB +mK∗
+ δ`1`2

2mb

q2 (C7 + C ′7)T1(q2)
]
,

(2.131)

A
L(R)
‖ = −NK∗

√
2(m2

B −m2
K∗)

[
[(C9 − C ′9)∓ (C10 − C ′10)] A1(q2)

mB −mK∗
+ δ`1`2

2mb

q2 (C7 − C ′7)T2(q2)
]
,

A
L(R)
0 = − NK∗

2mK∗
√
q2

{
δ`1`2 2mb(C7 − C ′7)

[
(m2

B + 3m2
K∗ − q2)T2(q2)− λBT3(q2)

m2
B −m2

K∗

]
,

+ [(C9 − C ′9)∓ (C10 − C ′10)] ·
[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q2)− λBA2(q2)

mB +mK∗

]}
,

A
L(R)
t = −NK∗

λ
1/2
B√
q2

[
(C9 − C ′9)∓ (C10 − C ′10) + q2

mb +ms

(
CS − C ′S
m1 −m2

∓ CP − C ′P
m1 +m2

)]
A0(q2).

Notice that the first three expressions are the same than Eq. (2.77). In terms of the
transversity amplitudes given above, the angular coefficients I1−9(q2) are given by

Is1(q2) =
[
|AL⊥|2+|AL‖ |2+(L→ R)

]
λq + 2[q4 − (m2

1 −m2
2)2]

4q4 + 4m1m2

q2 Re
(
AL‖A

R∗
‖ + AL⊥A

R∗
⊥

)
,

(2.132)

Ic1(q2) = [|AL0 |2+|AR0 |2]q
4 − (m2

1 −m2
2)2

q4 + 8m1m2

q2 Re(AL0AR∗0 − ALt AR∗t ) (2.133)

− 2(m2
1 −m2

2)2 − q2(m2
1 +m2

2)
q4 (|ALt |2+|ARt |2),

Is2(q2) = λq
4q4 [|AL⊥|2+|AL‖ |2+(L→ R)], (2.134)

Ic2(q2) = −λq
q4 (|AL0 |2+|AR0 |2), (2.135)

I3(q2) = λq
2q4 [|AL⊥|2−|AL‖ |2+(L→ R)], (2.136)

I4(q2) = − λq√
2q4

Re(AL‖AL∗0 + (L→ R)], (2.137)

I5(q2) =
√

2λ1/2
q

q2

[
Re(AL0AL∗⊥ − (L→ R))− m2

1 −m2
2

q2 Re(ALt AL∗‖ + (L→ R))
]
, (2.138)

Is6(q2) = −
2λ1/2

q

q2 [Re(AL‖AL∗⊥ − (L→ R))], (2.139)

Ic6(q2) = −
4λ1/2

q

q2
m2

1 −m2
2

q2 Re(AL0AL∗t + (L→ R)), (2.140)

I7(q2) = −
√

2λ1/2
q

q2

[
Im(AL0AL∗‖ − (L→ R)) + m2

1 −m2
2

q2 Im(AL⊥AL∗t + (L→ R))
]
, (2.141)
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I8(q2) = λq√
2q4

Im(AL0AL∗⊥ + (L→ R)), (2.142)

I9(q2) = −λq
q4 Im(AL⊥AL∗‖ + AR⊥A

R∗
‖ ), (2.143)

Once again, by taking the limit m1 → m2, one retrieves the usual expressions for the
coefficients of the angular distribution of B̄ → K̄∗`+`−. Our expressions agree with those
recently presented in Ref. [156], and are related to those given in Ref. [123] via I4,6,7,9 →
−I4,6,7,9. 15 In order to compare with usual expressions for At and AS, as defined in Sec. 2.3,
one needs to identify

At = lim
m1→m2

(
ALt − ARt

)
, AS = lim

m1→m2

[
m1 −m2√

q2

(
ALt + ARt

)]
. (2.144)

2.5.4 Numerical significance
To illustrate numerically the significance of the factors multiplying the Wilson coefficients,
we use the form factors of Ref. [159] and distinguish the case of LFV arising from the vector
operators, i.e.

B(B̄ → K̄(∗)`1`2) = 10−9
(
a12
K(∗)

∣∣∣C9 + C ′9
∣∣∣2 + b12

K(∗)

∣∣∣C10 + C ′10

∣∣∣2
+ c12

K(∗)

∣∣∣C9 − C ′9
∣∣∣2 + d12

K(∗)

∣∣∣C10 − C ′10

∣∣∣2), (2.145)

from the case in which the LFV comes from the scalar operators,

B(B̄ → K̄(∗)`1`2) = 10−9
(
e12
K(∗)

∣∣∣CS + C ′S
∣∣∣2 + f 12

K(∗)

∣∣∣CP + C ′P
∣∣∣2

+ g12
K(∗)

∣∣∣CS − C ′S∣∣∣2 + h12
K(∗)

∣∣∣CP − C ′P ∣∣∣2), (2.146)

The values of the factors multiplying the Wilson coefficients are obtained after integrating
over all available q2’s and are listed in Table 2.7 and Table 2.8.

`1`2 a12
K∗ b12

K∗ c12
K∗ d12

K∗ a12
K b12

K c12
K d12

K

eµ 7.8(9) 7.8(9) 34(6) 34(6) 20(2) 20(2) 0 0

eτ 3.8(4) 3.9(4) 18(2) 18(2) 12.7(9) 12.7(9) 0 0

µτ 4.1(5) 3.6(4) 18(2) 17(2) 12.5(1.0) 12.9(9) 0 0

Table 2.7: Values for the multiplicative factors defined in eq. (2.145). The quoted uncertainties
are at the 1σ level.

Notice also that the functions which are being integrated to obtain those factors have a
peculiar feature: those which multiply |C9,10±C ′9,10|2 are more pronounced in the interme-
diate q2 region, whereas those multiplying |CS,P ±C ′S,P |2 are mostly receiving contributions
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2.5. LFV in b→ s exclusive decays

`1`2 e12
K∗ f 12

K∗ g12
K∗ h12

K∗ e12
K f 12

K g12
K h12

K

eµ 0 0 12(1) 12(1) 26.2(4) 26.2(4) 0 0

eτ 0 0 5.5(6) 5.5(6) 15.0(2) 15.0(2) 0 0

µτ 0 0 5.2(6) 5.8(7) 14.4(2) 15.5(2) 0 0

Table 2.8: Values for the multiplicative factors defined in eq. (2.146) to 1σ accuracy.
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Figure 2.12: Coefficient functions φ9,10(q2) = |NK(q2)|2ϕ9,10(q2) and φS,P (q2) =
|NK(q2)|2ϕS,P (q2) appearing in eq. (2.107), which after integration over q2 give the factors aµτK ,
bµτK , eµτK and fµτK in eqs. (2.145,2.146). Full curves correspond to φ9(q2) and φS(q2), while the
dashed ones to φ10(q2) and φP (q2).

from the large q2 region. To illustrate this feature, we show in Fig. 2.12 the coefficient func-
tions ϕ9,10(q2) [ϕS,P (q2)], which upon integration amount to aµτK and bµτK [eµτK and fµτK ]. 16

Furthermore in the case of LFV generated by the scalar operators the lifted helicity
suppression of the leptonic decay (2.104) leads to the following hierarchy among different
modes:

C
(′)
S,P 6= 0, C(′)

9,10 = 0 : B(Bs → `1`2) > B(B → K`1`2) > B(B → K∗`1`2). (2.147)

That hierarchy is inverted for the LFV processes generated by the vector operators, namely

C
(′)
S,P = 0, C(′)

9,10 6= 0 : B(Bs → `1`2) < B(B → K`1`2) < B(B → K∗`1`2). (2.148)

Of course the above discussion is valid as long as we do not consider the case of LFV
generated by both the scalar and vector operators, which we will not discuss in what follows
anyway.

Finally, the scenarios which satisfy C(′)
9 = −C(′)

10 will be extensively discussed in Chap-
ter 4, since they are motivated by the anomalies in the b → sµµ transitions. In this case,

15Notice that in Ref. [123] the convention for the helicity vectors is inconsistent with the expressions
givenfor the helicity amplitudes.

16The purpose of the plots shown in Fig. 2.12 is to illustrate the shapes of φi(q2) = |NK(q2)|2ϕi(q2) and
the uncertainties on hadronic form factors were omitted in the plots. Those uncertainties, instead, have
been properly accounted for when computing the factors listed in Tab. 2.8.
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2.5. LFV in b→ s exclusive decays

it is straightforward to verify from the expressions given above that the ratios between
different modes are constant and given by

B(Bs → µτ)
B(B → Kµτ) ≈ 0.9 and B(B → K∗µτ)

B(B → Kµτ) ≈ 1.8 , (2.149)

where we considered the central values for the hadronic parameters. Therefore, experimental
limits can be translated from one mode to another in these specific scenarios.
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Chapter 3

Scrutinizing Two-Higgs doublet
models

After decades of restless experimental effort, a scalar particle with SM-like properties was
found at the LHC in 2012 [1, 2]. Nonetheless, the nature of NP has not been unveiled in
the first runs of the LHC, leaving the hierarchy and flavor problems unsolved. One of the
minimal extensions of the SM consists in enlarging the Higgs sector and, instead of one
doublet of scalar fields, introducing an additional Higgs doublet, which comes under the
generic name of Two Higgs Doublet Model (2HDM) [7]. With a peculiar choice of Yukawa
couplings, 2HDM is embedded in the minimal supersymmetric extension of the Standard
Model (MSSM) which made it particularly popular in phenomenological applications of low
energy supersymmetry. The fact that the mass of observed Higgs boson was found to be
consistent with the SM expectations made MSSM less compelling but the 2HDM remains
a convenient framework to study the extensions of the Higgs sector in view of the current
experimental searches.

In this Chapter we will discuss the theory and phenomenology of 2HDM, focusing on
two main questions: (i) Which lessons on their spectrum can be learned by applying the
general theory and phenomenological constraints? (ii) Which are the most sensitive low
energy probes of the additional scalars in modern day experiments? To that purpose,
we will compute the complete set of Wilson coefficients to the relevant processes, which
include in particular the b→ s`+`− transition, and confront these results with the current
experimental results.

The Chapter is organized as follows: in Sec. 3.1 we discuss the general features of 2HDM,
and the general theory constraints on their scalar spectrum. In Sec. 3.2, we perform a scan
of parameters by assuming that the additional scalars lie above the EW scale, as motivated
by the lack of direct search signals at LHC. In Sec. 3.3, we derive the relevant constraints
on the charged Higgs contributions which can be derived from tree-level meson decays. In
Sec. 3.4, we derive the complete set of Wilson coefficients for the transition b→ s`+`− and
discuss the subtleties in the matching between full and effective theories when the external
momenta of fermions is kept nonzero. These results are then used in Sec. 3.5 to derive
constraints on the model parameters by relying on the exclusive b→ s`+`− decays. Finally,
the intriguing possibility of having a light CP-odd Higgs which escaped observation so far
is discussed on Sec. 3.6. Our proposals to indirectly probe a scenario with a light CP-odd
Higgs in modern day experiments are discussed in Sec. 3.7 and Sec. 3.8.
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3.1. General aspects of 2HDM

3.1 General aspects of 2HDM
In this Section we introduce our notation, remind the reader of the basic ingredients of
2HDM and list the main general constraints which will be used to perform a scan of the
allowed parameters of the model in the following Sections.

3.1.1 The extended scalar sector
We consider a general CP-conserving 2HDM with a softly broken Z2 symmetry. As we will
discuss in the following, the Z2 symmetry is imposed to prevent Higgs mediated FCNC from
appearing at tree-level. The most general scalar potential consistent with these conditions
is given by

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +m2
12(Φ†1Φ2 + Φ†2Φ1) + λ1

2 (Φ†1Φ1)2 + λ2

2 (Φ†2Φ2)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 + λ5

2
[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
, (3.1)

where Φa (a = 1, 2) are the two scalar doublets and λi ∈ R are quartic couplings. The
quadratic term m2

12 is responsible for the soft breaking of the Z2 symmetry, and it is needed
to produce a realistic spectrum of scalars and ensure the decoupling limit. 1 The weak
doublets can be parameterized as

Φa =
 φ+

a

1√
2(va + ρa + iηa)

 , a = 1, 2 , (3.2)

where v1,2 > 0 are the two vaccum expecation values (vev) satisfying vSM =
√
v2

1 + v2
2 ≈

246.22 GeV. 2 Three out of the eight degrees of freedom are eaten up by the gauge bosons,
while the remaining fields are to two CP-even scalars h and H, one CP-odd A, and one
charged Higgs H±. These fields can be expressed as

φ+
1

φ+
2

 =
cos β − sin β

sin β cos β

G+

H+

 ,
η1

η2

 =
cos β − sin β

sin β cos β

G0

A0

 , (3.3)

and ρ1

ρ2

 =
cosα − sinα

sinα cosα

H
h

 , (3.4)

where the rotation angles α and β satisfy
1 We remind the reader that the Z2 symmetry (Φ1 → ±Φ1, Φ2 → ∓Φ2) of the Lagrangian forbids

transitions Φ1 ↔ Φ2. Soft breaking of Z2 means that such transitions may occur only due to dimension-2
operators (terms proportional to m2

12 in Eq. (3.1)) so that Z2 remains preserved at very short distances, cf.
discussion in Ref. [160].

2The case where one of the vevs vanishes is called the inert 2HDM. Although this possibility is considered
in many studies of dark matter [161, 162], we will discard it in the following since it is evasive from flavor
physics constraints, i.e. the additional scalars have no couplings to fermions.
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tan β = v2

v1
, tan 2α = 2(−m2

12 + λ345v1v2)
m2

12(v2/v1 − v1/v2) + λ1v2
1 − λ2v2

2
. (3.5)

The tree-level expressions for the scalar masses are given by

m2
H = M2 sin2(α− β) +

(
λ1 cos2 α cos2 β + λ2 sin2 α sin2 β + λ345

2 sin 2α sin 2β
)
v2 (3.6)

m2
h = M2 cos2(α− β) +

(
λ1 sin2 α cos2 β + λ2 cos2 α sin2 β − λ345

2 sin 2α sin 2β
)
v2 (3.7)

m2
A = M2 − λ5v

2 , (3.8)

m2
H± = M2 − λ4 + λ5

2 v2, (3.9)

where the Z2 breaking is parameterized by M2 ≡ m2
12/(sin β cos β) and we write for short-

ness λ345 ≡ λ3 + λ4 + λ5.

Decoupling limit and alignment

Several messages can be already learned from the equations given above. Since the quar-
tic couplings are bounded by the perturbative requirement, |λi|<

√
4π, it is clear from

Eqs. (3.6)–(3.9) that the decoupling limit must be driven by the soft-breaking parameter
M2. To quantify this statement, let us evaluate cos2(β−α) in the large M2 limit. By using
the relations given above, one can write

sin(2α) = 2M2
12√

(M2
11 −M2

22)2 + 4M2
12

, cos(2α) = M2
11 −M2

22√
(M2

11 −M2
22)2 + 4M2

12

,

(3.10)
where Mij ≡ (M)ij are the elements of the CP-even mass matrix,

M =
 λ1v

2 cos2 β +M2 sin2 β (λ345v
2 −M2) sin β cos β

(λ345v
2 −M2) sin β cos β λ2v

2 sin2 β +M2 cos2 β

 . (3.11)

By combining Eq. (3.10) and Eq. (3.11), we obtain after Taylor expanding in 1/M2,

cos2(β − α) = 1 + cos(2β) cos(2α)− sin(2β) sin(2α)
2

= v4 sin2(2β)
16M4

[
λ1 − λ2 + cos(2β)(λ1 + λ2 − 2λ345)

]
+O

(
v6/M6

)
,

(3.12)

which can be rewritten by using the equations given above as

cos2(β − α) = (m2
H −m2

h)2

2M4 sin2(2(β − α)) +O
(
v6/M6

)
. (3.13)

Therefore, the alignment limit, cos(β − α)→ 0, is retrieved in the decoupling limit, M2 →
+∞. Furthermore, the replacement of this identity in Eqs. (3.6)–(3.9) gives precisely the
decoupling limit in the large M2 limit,
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m2
h = λ1v

2 +O
(
v4/M2

)
,

m2
H ,m

2
A,m

2
H± = M2 +O

(
v4/M2

)
,

(3.14)

where h is identified as the SM Higgs, while the other scalars are heavy and approximately
mass degenerate. Furthermore, one can show that the alignment condition, cos(β−α) ≈ 0,
ensures that h has SM-like couplings to V = W,Z, while the couplings of H with gauge
bosons vanish in the same limit. It is worth stressing that these conclusions are completely
independent on the values of tan β.

3.1.2 Including fermions
In the fermionic sector, the second scalar doublet can spoil the suppression of FCNC pro-
cesses, one of the main properties of the SM, which has been extensively tested at low-
energies. To illustrate this issue, we consider the Yukawa Lagrangian terms which give
mass to down-type quarks,

LdYuk = −Y (1)
ij QiΦ1dRj − Y (2)

ij QiΦ2dRj + h.c. , (3.15)

where i, j are fermion generation indices, and Y (1) and Y (2) are the Yukawa matrices. In
terms of the physical scalars, the neutral terms in the Yukawa Lagrangian can be written
as

LdYuk ⊃ −Md
ij dLidRj −

∑
ϕ0
k
=h,H,A

y
ϕ0
k

ij dLidRjϕ
0
k + h.c. , (3.16)

where the fermion mass matrix reads,

Md
ij = v√

2
(
Y

(1)
ij cos β + Y

(2)
ij sin β

)
, (3.17)

while the interactions of down-type quarks depend on a different combination of the Yukawa
matrices,

yAij = i√
2
(
−Y (1)

ij sin β + Y
(2)
ij cos β

)
,

yhij = i√
2
(
−Y (1)

ij sinα + Y
(2)
ij cosα

)
,

yHij = i√
2
(
Y

(1)
ij cosα + Y

(2)
ij sinα

)
.

(3.18)

Since the matrices Y (i) are not necessarily simultaneously diagonalizible, tree-level interac-
tions of the type d̄idj ϕ0

k (with i 6= j) can appear after the diagonalization of the fermion
massesMd

ij. Therefore, a mechanism is needed to supress these dangerous couplings, which
are otherwise constrained by experimental data of decays of Kaons, D and B(s) mesons, as
already discussed in Sec. 2.3.

The simplest possibility to suppress the tree-level FCNC in 2HDMs is to invoke a Z2
symmetry, which enforces that each quark doublet couples to a single scalar doublet [163,
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164]. Four models are then possible, which are called of type I, II, X (lepton specific) and
Z (flipped) [7]. In the type I 2HDM, all fermions couples only to the Higgs doublet Φ2.
In the type II 2HDM, uR couples to Φ2, while dR and `R couple to Φ1. The models type
X and Z are then obtained by changing the lepton interactions in the models type I and
type II, respectively, as shown in Table 3.1. As an illustration of the assignment of the Z2
symmetry charges, the type I model can be obtained simply by imposing Φ1 → −Φ1 along
with positive Z2 charges to the SM fermion. Similarly, the type II couplings are obtained
by imposing Φ1 → −Φ1, `Ri → −`Ri and dRi → −dRi, while the other fermions are assigned
to transform with a plus sign.

Model uR dR `R

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Type X (lepton specific) Φ2 Φ2 Φ1

Type Z (flipped) Φ2 Φ1 Φ2

Table 3.1: Couplings of fermions to Higgs doublets in the 2HDM based on discrete symmetries.
See text for details.

Another possibility to suppress FCNC rates is to enforce the two Yukawa matrices
in Eq. (3.15) to be collinear and hence simultaneously diagonalizable by construction, as
proposed in the so-called Aligned two-Higgs doublet model (A2HDM) [165]. Remarkably,
the models with a Z2 symmetry turn out to be an asymptotic limit of the aligned scenarios.
It is important to note that the alignment of Yukawa matrices are in general broken by
radiative corrections. The Z2-symmetry models represent the only scenarios in which the
alignment is preserved at all scales [166].

Finally, the most general model is conventionally called type III 2HDM. In this case,
no mechanism is used to protect from appearing at tree-level FCNC mediated by scalars.
The FCNC Higgs couplings, which are present at tree-level, are then suppressed by ad hoc
ansatz for the Yukawa matrices or by a tuning of the parameters. We will not consider
this possibility in this thesis given the large number of couplings which undermine the
predictivity of these scenarios. See Ref. [7] for an extensive discussion about this possibility.

In the following we will focus on the Z2 symmetric models due to their simplicity. For
these models, the Yukawa Lagrangian after the spontaneous symmetry breaking can be
compactly written as

LY =−
√

2
v
H+

{
ū [ζd V mdPR − ζumuV PL] d+ ζ` ν̄m`PR`

}
(3.19)

− 1
v

∑
ϕ0
i=h,H,A

ξ
ϕ0
i

f ϕ
0
i

[
f̄mfPRf

]
+ h.c.,

where u and d stand for the up- and down-type quark, ` is a lepton flavor, f stands for
a generic fermion, V for the CKM matrix. A specific choice of parameters ζf corresponds
to the above mentioned types of 2HDM, which we also summarize in Table 3.2. Notice
that the couplings ξϕ

0
i

f appearing in the neutral Lagrangian part can be mapped onto the
charged ones via
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ξhf = sin(β − α) + cos(β − α)ζf (3.20)

ξHf = cos(β − α)− sin(β − α)ζf , (3.21)

ξAd,` = iζd,`, ξAu = −iζu. (3.22)

Model ζu ζd ζ`

Type I cot β cot β cot β
Type II cot β − tan β − tan β

Type X (lepton specific) cot β cot β − tan β
Type Z (flipped) cot β − tan β cot β

Table 3.2: The expressions of the couplings ζf for the 2HDM based on discrete symmetries.

In the next subsection we will discuss the general constraints on the spectrum of the
general CP-conserving 2HDM models, and we will describe our methodology to scan their
parameter space.

3.1.3 Model spectrum and theory constraints
The parameter space of the models we consider is composed of two angle parameters (α
and β), and five mass parameters (m2

h, m2
H , m2

H+ , m2
A and M2). From these, one can fully

reconstruct the quartic couplings in the scalar potential (3.1) via the relations,

λ1 = 1
v2

(
− tan2 βM2 + sin2 α

cos2 β
m2
h + cos2 α

cos2 β
m2
H

)
, (3.23)

λ2 = 1
v2

(
− cot2 βM2 + cos2 α

sin2 β
m2
h + sin2 α

sin2 β
m2
H

)
, (3.24)

λ3 = 1
v2

(
−M2 + 2m2

H± + sin 2α
sin 2β

(
m2
H −m2

h

))
, (3.25)

λ4 = 1
v2

(
M2 +m2

A − 2m2
H±

)
, (3.26)

λ5 = 1
v2

(
M2 −m2

A

)
, (3.27)

which are then subject to several theoretical constraints. Notice that Eq. (3.23)–(3.27) are
equivalent to Eq. (3.5) and (3.6)–(3.9).

To scan over the allowed parameters of these models, we impose the following general
constraints:

• Stability:
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To ensure that the scalar potential is bounded from below, the quartic couplings
should satisfy [167]

λ1,2 > 0, λ3 > −(λ1λ2)1/2, and λ3 + λ4 − |λ5|> −(λ1λ2)1/2. (3.28)

Moreover, the tree-level stability of the vacuum amounts to

m2
11 + λ1v

2
1

2 + λ3v
2
2

2 = v2

v1

[
m2

12 − (λ4 + λ5)v1v2

2

]
, (3.29)

m2
22 + λ2v

2
2

2 + λ3v
2
1

2 = v1

v2

[
m2

12 − (λ4 + λ5)v1v2

2

]
, (3.30)

which determines the parameters m2
11 and m2

22 in terms of λ1−5 and M2. These
relations should be combined with the necessary and sufficient condition to have a
global minimum of (v1, v2), which reads [168]

m2
12

(
m2

11 −m2
22

√
λ1/λ2

)(
tan β − 4

√
λ1/λ2

)
> 0 . (3.31)

• Perturbative Unitarity:
Another important condition stems from the requirement of unitarity of the scalar
scattering amplitudes [169]. More precisely, the J-th partial wave for a 2 → 2 scat-
tering process, with center of mass energy

√
s, is defined by

aJ(s) = 1
32π

∫
d cos θ PJ(cos θ)M(s, θ) , (3.32)

where θ is the diffusion angle, PJ(cos θ) is the J-th Legendre polynomial andM(s, θ)
is the amplitude for this process. The unitarity requirement of the S-wave component
of the partial wave decomposition implies that |a0|< 1. By applying this bound to
the eigenvalues of the scalar scattering matrix, one can obtain the following limits on
the quartic couplings [170,171]

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1|< 8π, (3.33)

where the tree-level computation gives
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a± = 3
2(λ1 + λ2)±

√
9
4(λ1 − λ2)2 + (2λ3 + λ4)2,

b± = 1
2(λ1 + λ2)± 1

2
√

(λ1 − λ2)2 + 4λ2
4,

c± = 1
2(λ1 + λ2)± 1

2
√

(λ1 − λ2)2 + 4λ2
5,

e1 = λ3 + 2λ4 − 3λ5,

f+ = λ3 + 2λ4 + 3λ5,

e2 = λ3 − λ5,

f− = λ3 + λ5,

f1 = λ3 + λ4,

p1 = λ3 − λ4.

(3.34)

Notice that the inequalities in Eq. (3.33) give more restrictive constraints than the
naive perturbative conditions |λi|<

√
4π.

• Higgs Gauge Couplings:
The Higgs couplings to gauge bosons read

L2HDM ⊃ g mWλ
ϕ0
i
V V WµW

µϕ0
i + g mWλ

ϕ0
i
V V ZµZ

µϕ0
i , (3.35)

where ϕ0
i ∈ {h,H,A} and the couplings are given by

λ
ϕ0
i
V V =


sin(β − α) if ϕ0

i = h

cos(β − α) if ϕ0
i = H

0 if ϕ0
i = A

. (3.36)

To ensure that the couplings of h ' hSM to gauge bosons V = W,Z are consistent
with the experimental results, which point at SM-like values with an accuracy of
≈ O(10%) [172], we impose the alignment condition

|cos(α− β)|. 0.3 . (3.37)

• Electroweak Precision Data:
Lastly, the additional scalars contribute to the gauge boson vacuum polarization. As
a result, the electroweak precision data provide additional constraints to the mass
spectrum. Mostly important, the T parameter bounds the mass-splitting between H
and H± in the scenario in which h is identified as the SM-like Higgs, cf. Ref. [173],
for example. 3 The general expressions for the parameters S, T and U in 2HDM can

3Conversely, if H (with mH > mh) is assumed to be the SM-like Higgs, then the T parameter will
constraint the mass-splitting mH± −mA.
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3.2. Phenomenology of heavy scalars

be found in Ref. [174]. To derive the bounds on the scalar spectrum and mixing, we
consider the following values and the corresponding correlation matrix [175],

∆SSM = 0.05± 0.11,
∆T SM = 0.09± 0.13,
∆USM = 0.01± 0.11,

corr =


1 0.90 −0.59

0.90 1 −0.83
−0.59 −0.83 1

 . (3.38)

The χ2 function is then written as

χ2 =
∑
i,j

(Xi −XSM
i )(σ2)−1

ij (Xj −XSM
j ), (3.39)

where the vector of central values and uncertainties are denoted as X = (∆S,∆T,∆U)
and σ = (0.11, 0.13, 0.11), while the elements of the covariance matrix are obtained
via σ2

ij ≡ σicorrijσj.

In the following, the lightest CP-even state h will be identified with the scalar observed
at the LHC with mass mh = 125.09(24) GeV. The masses of the additional scalars, mA,
mH or mH± , are correlated via Eqs. (3.6)–(3.9). Therefore, if one mass is known, then the
others are fixed up to O(v) corrections. Based on this argument, we will distinguish two
different scenarios in Sec. 3.2 and Sec. 3.6 by fixing the pseudoscalar boson mass:

(i) A heavy CP-odd state, with mA > mh.

(ii) a light CP-odd Higgs, with mA ≤ mh.

The first scenario is motivated by the lack of NP signals in the direct searches for heavy
scalar resonances performed at the LHC, while the latter one corresponds to the intriguing
possibility that the pseudoscalar boson escaped observation thus far. We will show that both
possibilities remain viable and that they offer different opportunities for phenomenology.

3.2 Phenomenology of heavy scalars
The simplest explanation to the lack of signals in the direct search experiments is that the
new particles are heavier than the current sensitivity at LHC. In this Section, we explore
this possibility by making the assumption that mA > mh. The implications of these results
for low and high-energy observables will be discussed in the following sections.

To fully explore the viable parameter space of the model, we performed a random scan
with logarithmic priors in the following ranges 4

tan β ∈ (0.2, 50], α ∈
(
−π2 ,

π

2

)
,

∣∣∣M2
∣∣∣ ≤ (1.2 TeV)2,

mH± ∈ (mW , 1.2 TeV), mH ∈ (mh, 1.2 TeV), mA ∈ (mh, 1.2 TeV) ,
(3.40)

4Notice that the upper bound 1.2 TeV is arbitrary, since the additional particles decouple from the
low-energy thoery and have no phenomenological impact above a certain threshold.
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3.2. Phenomenology of heavy scalars

where mh = 125.09 GeV is fixed, as explained above. A scan of parameters consistent with
the constraints listed above favors the moderate and small values of tan β ∈ (0.2, 15]. To
see that the larger values of tan β cannot be discarded it is sufficient to examine Eq. (3.6)
in the alignment limit cos(β − α) = 0, which exactly gives

m2
H = M2 + v2(λ1 + λ2 − 2λ345)

2
tan β

1 + tan2 β
. (3.41)

For large values of tan β, the second term becomes small, giving mH ≈ |M |. For that reason,
and in addition to the free scan described above, we perform a second scan with mH ≈ |M |,
which helps us probing higher values of tan β. In the end, we combine the results of both
scans, which are shown in Fig. 3.1 in two planes: (tan β,mH±) and (mA,mH±). From the
right panel of Fig. 3.1 we observe that the additional scalars become mass degenerate in the
decoupling region (M2 � v2), as it can be easily deduced from Eqs. (3.6)–(3.9). Conversely,
the scalar masses are constrained to the region mA,mH ,mH± . 700 GeV for M2 � v2.
The correlations on the planes (cos(β − α), tan β) and (cos(β − α), mH±) are also shown
in Fig. 3.2, where we can see that the alignement limit, cos(β − α) = 0, is retrieved as the
heavy particles decouple, in agreement with Eq.(3.13). Lastly, we should also emphasize
that the results of our scans agree with what has been previously reported in the literature,
cf. e.g. [176–179].

Figure 3.1: Results of the scan as described in the text.

Figure 3.2: Results of the scan as described in the text.
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In the following, we will discuss the phenomenology of the relevant flavor physics ob-
servables. In Sec. 3.3, we will discuss the constraints stemming from tree-level leptonic and
semileptonic decays of mesons. The constraints from the loop induced processes relying
on the transition b → s`` will be discussed in Sec. 3.4 and 3.5, where we also present the
computation of the relevant Wilson coefficients. In both cases, the established experimental
results will provide useful limits on the charged Higgs mass and its couplings to fermions.

3.3 Leptonic and semileptonic decays of mesons
In this Section, we will present the impact of the leptonic and semileptonic decays, discussed
in Sec. 2.2.4, on the parameter space of the different 2HDM scenarios. The charged Higgs
can induce a tree-level contribution to these processes, as illustrated in Fig. 3.3 for the
transition b → c`ν. Since the charged Higgs interactions are proportional to the fermion
masses, we can anticipate that the stronger constraints will come from the processes with
heavy leptons and quarks.

After integrating-out H± in Eq. (3.19), the matching with the Hamiltonian (2.3) gives5

gS = m` ζ
∗
` (muζu −mdζd)

m2
H±

, and gP = m` ζ
∗
` (muζu +mdζd)

m2
H±

. (3.42)

where u(d) stands for generic up(down)-quarks and ` for a generic charged lepton. In the
Z2-symmetric scenarios, the effective coefficients read

gIS(P ) = cot2 β
m`(mu ∓md)

m2
H+

, gXS(P ) = −m`(mu ∓md)
m2
H+

, (3.43)

gIIS(P ) = −m`(mu ±md tan2 β)
m2
H+

, gZS(P ) = m`(mu cot2 β ±md)
m2
H+

, (3.44)

where we have replaced the values of ζf given in Tab. 3.2.

B
0

D+Vcb

d̄

b c

ℓ−

ν̄
W−

B
0

D+

d̄

b c

ℓ−

ν̄
H−

Figure 3.3: Contributions to the semi-leptonic decay B0 → D+`ν in the SM (left panel) and in
2HDMs (right panel).

By using the limits from Table 2.3, one can derive limits on the plane (mH+ , tan β) for
each of the 2HDM scenarios. The only modes which will provide useful constraints are
the ones with τ leptons, since the coefficients gS,P are proportional to the fermion masses,
cf. Eq. (3.42). The scenario which receives the most significant constraints is the type

5We checked that our results agree with the ones presented in Ref. [180].
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3.3. Leptonic and semileptonic decays of mesons

II model, since the couplings to the τ -lepton and b-quark are both enhanced by tan β,
assuming tan β > 1, as it can be seen from Tab. 3.2. The constraints coming from the
leptonic models Ds → τν and B → τν are shown in Fig. 3.4, where we see that large values
of tan β are excluded. It is interesting to note that these limits are complementary, as it
can be seen from the region with mH± < 200 GeV, which is allowed by B(B → τν), but
excluded by B(Ds → τν). Finally, we have checked that the limits derived for the other
types of 2HDM, namely are not significant except for extreme values of tan β and/or very
low values of mH+ .

Figure 3.4: Exclusions on the plane (mH± , tan β) for the type II 2HDM derived from B(Ds → τν)
(green) and B(B → τν) (red) to 2σ accuracy.

As a curiosity, we also confront the different 2HDM scenarios with the value of RD =
B(B → Dτν)/B(B → Dlν), which was found to be about 2σ larger than the SM value. 6

From the discussion above, we know that the only scenario which can contribute significantly
to this observable is the type II. The allowed region in the plane (tan β,mH±) is shown in
Fig. 3.5 to 1σ and 2σ accuracy, from which it becomes clear that an explanation of RD

would require a very light charged Higgs, already in disagreement with the constraints from
leptonic modes, cf. Fig. 3.4. 7 A similar conclusion holds true for RD∗ . The main reason
for this incompatibility between the 2HDM of type II and Rexp

D is that gS < 0 in the type
II scenario (cf. Eq. 3.43), while an explanation of RSM

D < Rexp
D would require gS > 0, except

for the tuned region where where the interference term is compensated by a large value
of |gS|= −gS, (cf. Table 2.3). Hence, the 2HDM with natural flavor conservation do not
provide a viable explanation to the RD(∗) puzzles. However, it is worth stressing that the

6The RD anomaly will be discussed in detail in Sec. 5.3, along with the viable NP explanations proposed
so far.

7Furthermore, the constraints from the FCNC processes B(B → Xsγ) that will be discussed in Sec. 3.5
also exclude masses of the charged Higgs below 439 GeV to 2σ accuracy [181].
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3.4. Wilson coefficients for the b→ s`` transition

Figure 3.5: The allowed regions in the plane (mH± , tan β) allowed by RD = B(B →
Dτν)/B(B → Dlν) in the type II 2HDM to 1σ (dark blue) and 2σ accuracy (light blue). This
region is, however, excluded by the constraints shown in Fig. 3.4

discrepancies in RD and RD∗ are still experimental hints that need to be corroborated by
more data, and by the study of similar processes. The 2σ exclusions discussed above are a
good indication, but not yet a clear signal that the 2HDM type II is ruled out.

3.4 Wilson coefficients for the b→ s`` transition
In this Section, we will present the general expressions for the b → s`` Wilson coefficients
in a general 2HDM. These results will be compared to the ones available in the literature
and we will propose a general framework for the appropriate matching between the full and
effective theories in the case where it is necessary to keep the external momenta different
from zero. The results derived in this Section will be used in Sec. 3.5 to investigate the
phenomenological impact of the present exclusive b → s data on the scan of parameters
described above.

Expressions for the Wilson coefficients

The leading 2HDM contributions to b → s`` can be separated in four groups of one-loop
diagrams which are illustrated in Figs. 3.6 to 3.9 and correspond to γ, Z and scalar penguins,
as well as box diagrams. Before presenting the results of our computation, let us briefly
discuss the issues of the matching between the 2HDM amplitudes and Eq. (2.54).

The dimension six operators introduced in Eq. (2.54) are sufficient to match the one-
loop 2HDM amplitude when the external fermion momenta are neglected. This, however,
is not true if the computation is made with external momenta different from zero which is,
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3.4. Wilson coefficients for the b→ s`` transition

in general, necessary when dealing with (pseudo-)scalar operators. For example, in order
to get a correct expression for the Wilson coefficient CP one needs to consider the external
momenta, which then can give rise to the contributions coming from the dimension-seven
operators. One class of such terms can be related to the operators of basis (2.54) by
equations of motion. For example,

α

4π
1
mW

(
s̄/qPLb

) (¯̀γ5`
)

= α

4π
mb

mW

(s̄PRb)
(¯̀γ5`

)
− α

4π
ms

mW

(s̄PLb)
(¯̀γ5`

)
= mb

mW

OP −
ms

mW

O′P '
mb

mW

OP .
(3.45)

A complication arises when encountering the operators with insertion of /pb + /ps in the
leptonic current, with the convention b(pb) → s(ps)`−(p−)`+(p+), where we also use q =
pb − ps = p+ + p−. A way to deal with that, adopted in Ref. [182], consists in setting
ps = 0, so that /pb + /ps = /q + 2/ps = /q = /p+ + /p−, and in this way one can again, like in
the previous example, use the equations of motion. That way to deal with the problem in
hands, however, leads to a wrong expression for CP , for example. If, instead, one keeps
all the momenta nonzero, we get a correct result. At this point we just emphasize that
the matching should be performed by keeping all the external momenta different from zero
and the contributions stemming from dimension-seven operators can be neglected at the
very end of computation. We further elucidate this problem in the end of this Section,
where we also propose a general framework for the appropriate matching between the full
and effective theories in a case in which the (pseudo-)scalar bosons are explicitly taken into
account.

We are now in a position to present the effective coefficients in a general 2HDM. The
contributions from the 2HDM scalars can be recast as,

C7 = CNP ,γ
7 , (3.46)

C9 = CNP ,γ
9 + CNP, Z

9 , (3.47)
C10 = CNP, Z

10 , (3.48)
CP = CNP, box

P + CNP, Z
P + CNP, A

P (3.49)
CS = CNP, box

S + CNP, h
S + CNP, H

S , (3.50)

where the superscripts denote the types of diagrams that contributes to a given Wilson
coefficient, namely, the box diagrams, the γ, Z-penguins and the (pseudo-)scalar penguins.
These coefficients should be added to the (effective) ones obtained in the SM: C7 = −0.304,
C9 = 4.211, C10 = −4.103, and CS,P ' 0 [183]. 8

Henceforth, we neglect the s-quark mass and give all our results in the unitary gauge.
To check the consistency of our formulas, we also performed the computation in the Feyn-
man gauge. Furthermore, to simplify our computation, we expand the propagators before
integration on the fermion external momenta [182],

1
(k + p)2 −M2 = 1

k2 −M2

[
1− p2 + 2k · p

k2 −M2 + 4(k · p)2

(k2 −M2)2

]
+O(p4/M4) , (3.51)

8Special attention should be paid to the scalar penguin generated by the SM-like Higgs h to avoid the
double counting, since it also appears in the 2HDM.
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3.4. Wilson coefficients for the b→ s`` transition

where k is the loop momentum, p is a generic external momenta and M is the mass of a par-
ticle running in the loop. 9 This expansion is justified, since the external momenta are much
smaller than the masses of the particles running in the loops, namely, the top quark, W±

and H±. In this way, we can directly use the analytical results for the Passarino-Veltman
functions [184,185] with zero external momenta, which are also given in Appendix A.2. In
the remainder of this Section we present our resulting expressions for each of the coefficients
appearing in Eqs. (3.46)–(3.50). We use the standard notation,

xq =
m2
q

m2
W

, xH± = m2
H±

m2
W

, xϕ0
i

=
m2
ϕ0
i

m2
W

, (3.52)

where q ∈ {b, t}, and ϕ0
i ∈ {h,H,A}.
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Figure 3.6: Photon penguin diagrams generated by the additional scalars.

• γ penguins in 2HDM:
The γ–penguin diagrams induced by the charged Higgs are shown in Fig. 3.6. The off-
shell and on-shell contributions can be matched onto the Wilson coefficients C7 and C9,
respectively, we obtained,

CNP,γ
7 =− |ζu|2

xt
72

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt)3 + 6xH±xt(3xt − 2xH±)
(xH± − xt)4 log

(
xH±

xt

) ]

− ζ∗uζd
xt
12

[
3xH± − 5xt
(xt − xH±)2 + 2xH±(3xt − 2xH±)

(xt − xH±)3 log
(
xt
xH±

) ]
,

(3.53)

and

CNP,γ
9 = |ζu|2

xt
108

[
38x2

H± − 79xH±xt + 47x2
t

(xH± − xt)3 − 6(4x3
H± − 6x2

H±xt + 3x3
t )

(xH± − xt)4 log
(
xH±

xt

) ]

+ ζ∗uζd
xtxb
108

[
−37x2

H± + 8xH±xt + 53x2
t

(xH± − xt)4 + 6(2x3
H± + 6x2

H±xt − 9xH±x2
t − 3x3

t )
(xH± − xt)5 log

(
xH±

xt

) ]
.

(3.54)

The dominant terms in both CNP,γ
7 and CNP,γ

9 come from the top quark contribution and
are proportional to |ζu|2. The terms proportional to ζ∗uζd are suppressed by m2

b , thus
indeed subdominant, but numerically not necessarily negligible.

9We stopped the expansion at order O(p4/M4) for illustration purposes. In our computation, we include
the higher order terms when needed to compute the sub-leading contributions.
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Figure 3.7: Z penguin diagrams generated by the additional scalars.

• Z penguins in 2HDM:
The Z-penguin diagrams contribute significantly to the Wilson coefficients CP , C9 and
C10 through the diagrams shown in Fig. 3.7. The leading order expressions for C9 and
C10 read,

CNP,Z
9 = CNP,Z

10 (−1 + 4 sin2 θW ), (3.55)

CNP,Z
10 = |ζu|2

x2
t

8 sin2 θW

[
1

xH± − xt
− xH±

(xH± − xt)2 log
(
xH±

xt

) ]

+ ζ∗uζd
xtxb

16 sin2 θW

[
xH± + xt

(xH± − xt)2 −
2xtxH±

(xH± − xt)3 log
(
xH±

xt

) ]
. (3.56)

Similarly, for CP we obtain

CNP,Z
P = ζ∗uζd

√
xbx` xt

16 sin2 θW

[
xt − 3xH±

(xH± − xt)2 + 2x2
H±

(xH± − xt)3 log
(
xH±

xt

) ]

+ |ζu|2
√
xbx` xt
216

{
38x2

H± + 54x2
H±xt − 79xH±xt − 108xH+x

2
t + 47x2

t + 54x3
t

(xH± − xt)3

− 6(4x3
H± + 9x3

H±xt − 6x2
H±xt − 18x2

H±x
2
t + 9xH±x3

t + 3x3
t )

(xH± − xt)4 log
(
xH±

xt

)

− 3
2 sin2 θW

[
2x2

H± + 36x2
H±xt − 7xH±xt − 72xH±x2

t + 11x2
t + 36x3

t

(xH± − xt)3

− 6xt(6x3
H± − 12x2

H±xt + 6xH±x2
t + x2

t

(xH± − xt)4 log
(
xH±

xt

) ]}
.

(3.57)

• Charged Higgs boxes in 2HDM:
The box diagrams, peculiar for 2HDM, are drawn in Fig. 3.8. At low-energy they con-
tribute to the Wilson coefficients CS and CP as,
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Figure 3.8: Box diagrams generated by the additional scalars.

CNP, box
S =

√
x`xb xt

8(xH± − xt) sin2 θW

{
ζ`ζ
∗
u

(
xt

xt − 1 log xt −
xH±

xH± − 1 log xH±
)

+ ζuζ
∗
`

[
1− xH± − x2

t

(xH± − xt)(xt − 1) log xt −
xH±(xt − 1)

(xH± − xt)(xH± − 1) log xH±
]

+ 2ζdζ∗` log
(
xt
xH±

)}
,

(3.58)

and

CNP,box
P =

√
x`xb xt

8(xH± − xt) sin2 θW

{
ζ`ζ
∗
u

(
xt

xt − 1 log xt −
xH±

xH± − 1 log xH±
)

− ζuζ∗`

[
1− xH± − x2

t

(xH± − xt)(xt − 1) log xt −
xH±(xt − 1)

(xH± − xt)(xH± − 1) log xH±
]

− 2ζdζ∗` log
(
xt
xH±

)}
.

(3.59)

In addition to CNP,box
S,P , the tensor and (axial-)vector operators receive contributions,

which are however suppressed by the charged lepton mass, i.e. by x` = m2
`/m

2
W . These

coefficients are negligible even for decays with τ ’s in the final state as it can be verified
by using the expressions provided in Ref. [186].

• Scalar penguins in 2HDM:
We now turn to the effective coefficients CNP, A

P , CNP, h
S and CNP, H

S , generated by the
scalar penguin diagrams shown in Fig. 3.9. We recall that the total ultraviolet divergence
coming from these diagrams is proportional to the factor (1+ζuζd)(ζu−ζd), which vanishes
due to the Z2 symmetry, cf. Table 3.2. 10

The penguins with the CP-odd Higgs give rise to,
10Notice that this is not true in general. For instance, in the A2HDM the divergences are canceled by

contributions coming from the radiatively induced misalignment of the Yukawa matrices. The alignment is
only preserved at all scales in the context of Z2-symmetric models [182].
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CNP, A
P = −

√
x`xb

sin2 θW

ζ`xt
2xA

{
ζ3
uxt
2

[
1

xH± − xt
− xH±

(xH± − xt)2 log
(
xH±

xt

) ]

+ ζu
4

[
− 3xH±xt − 6xH± − 2x2

t + 5xt
(xt − 1)(xH± − xt)

+ xH±(x2
H± − 7xH± + 6xt)

(xH± − xt)2(xH± − 1) log xH±

− x2
H±(x2

t − 2xt + 4) + 3x2
t (2xt − 2xH± − 1)

(xH± − xt)2(xt − 1)2 log xt
]}
,

(3.60)

where we have used again the properties ζf ∈ R and (1 + ζuζd)(ζu − ζd) = 0 to simplify
the expressions. Similarly, the penguins with the CP-even scalars lead to

CNP, h
S =

√
x`xb

sin2 θW

xt
2xh

[sin(β − α) + cos(β − α)ζ`]

×
[
g1 sin(β − α) + g2 cos(β − α)− g0

2v2

m2
W

λhH+H−

]
,

CNP, H
S =

√
x`xb

sin2 θW

xt
2xH

[cos(β − α)− sin(β − α)ζ`]

×
[
g1 cos(β − α)− g2 sin(β − α)− g0

2v2

m2
W

λHH+H−

]
,

(3.61)

where λϕ
0
i

H+H− are the trilinear couplings defined in Appendix B.1. The functions g0,1,2
are given in Appendix B.2.

Comparison with other computations

We shall now compare our Wilson coefficients with the results obtained in previous studies.
Before doing so we should emphasize the novelties of our computation:

(i) The result for C9 in a general 2HDM with a Z2 symmetry is new;

(ii) The subleading terms O(mb) to C9,10 have been neglected in the previous computa-
tions, and they are included here;

(iii) We provided an independent computation of the coefficients CS and CP , and eluci-
date inconsistencies present in Ref. [182], where we propose a general prescription
for matching procedure when the external momenta are not neglected, as it will be
discussed in the following.

CP = −CS ' tan2 β

√
x`xb

4 sin2 θW

xt
xH± − xt

log
(
xH±

xt

)
. (3.62)

Along the same lines, the leading order QCD corrections to the same coefficients were
included in Ref. [187]. Recently, the computation of CS and CP was extended to the
context of a general A2HDM, which comprises all four types of 2HDM with Z2 symmetry
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Figure 3.9: Higgs penguin diagrams generated by the additional scalars.
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discussed here but without the usual assumption of large tan β [182]. We agree with their
general results, except for the expression for CNP, Z

P which differs from the one reported in
this thesis. The disagreement comes from the fact that the authors of Ref. [182] worked
with the assumption ps = 0, which appears not to be fully appropriate. 11 By keeping
ps 6= 0 one realizes that the computation of Z-penguin leads to two independent terms, one
proportional to pH = pb + ps and the other to q = pb − ps. By using equations of motion,
CP,S correctly receive contributions from the terms proportional to q, but not from those
proportional to pH . With ps = 0 only one invariant appears, because pH ≡ q, and thus the
resulting CP,S also receive spurious contributions from pH .

Regarding the other Wilson coefficients, the first computations of C7 for a general 2HDM
have been performed in Ref. [188], then in Refs. [189,190] and [191] where the leading and
subleading QCD corrections were included too. Our results are consistent with those, as
well as with the expression for C10 presented in Ref. [192] and more recently in Ref. [182].
The only difference with respect to those results is that we include the subleading terms in
mb.

Matching procedure

In this section we discuss in more detail the matching of the one-loop amplitudes when
the nonzero external momenta are considered. We stress once again that keeping external
momenta nonzero is necessary to obtain the correct values for the Wilson coefficients CS,P .
As we mentioned above, the insertion of external momenta result in dimension-seven oper-
ators which can be simplified by using equations of motion, except in the cases when the
lepton momenta are to be contracted with the quark current and/or the quark momenta to
be contracted with the lepton current. The amplitudes which need a special treatment, to
leading order in external momenta, are:

A`ij = α

4π
1
mW

(s̄(/p− − /p+)Pib)(¯̀Pj`) , Aqij = α

4π
1
mW

(s̄Pib)(¯̀(/pb + /ps)Pj`) ,

AV `ij = α

4π
1
mW

(s̄(/p− − /p+)γµPib)(¯̀γµPj`) , AV qij = α

4π
1
mW

(s̄γµPib)(¯̀(/pb + /ps)γ
µPj`) ,

(3.63)

where i, j = L,R and s, b, ` are the fermion spinors. Note again that our convention is
b(pb) → s(ps)`−(p−)`+(p+), and q = pb − ps = p+ + p−. In order to keep our discussion
general, we first extend the Hamiltonian (2.54) and include the following operators

H′eff = −4GF√
2
VtbV

∗
ts

∑
i,j=L,R

(
CT `ij (µ)OT `ij (µ) + CT qij (µ)OT qij (µ)

)
+ h.c. , (3.64)

where

OT `ij = e2

(4π)2
1
mW

(s̄γµPib)∂ν(¯̀σµνPj`),

OT qij = − e2

(4π)2
1
mW

∂ν(s̄σµνPib)(¯̀γµPj`),
(3.65)

11We should emphasize that we were able to reproduce the expression for CNP, Z
P reported in Ref. [182]

by taking ps = 0, which however is not an appropriate assumption as we argue in the text.
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3.4. Wilson coefficients for the b→ s`` transition

with i, j = L,R. 12 We reiterate that even though these operators are suppressed by 1/mW ,
they are necessary to unambiguously match the loop induced amplitudes with the effective
field theory. The above choice of the basis of dimension-seven operators is convenient since
they do not contribute to B(Bs → µ+µ−), while for the other decays their hadronic matrix
elements are easy to calculate.

By using the Fierz rearrangement and by applying the field equations, the ampli-
tudes (3.63) are reduced to

A`LL ↔ −OT `LL +O9
m`

mW

, (3.66)

A`LR ↔ −OT `LR +O9
m`

mW

, (3.67)

AV `LL ↔ −O
T q
LL +

(
O′S −

OT −OT5

4

)
m`

mW

, (3.68)

AV `LR ↔ O
T q
LR +

(
O′S + OT −OT5

4

)
m`

mW

, (3.69)

AqLL ↔ O
T q
LL + O

′
9 −O′10

2
mb

mW

+ O9 −O10

2
ms

mW

, (3.70)

AqLR ↔ O
T q
LR + O

′
9 +O′10

2
mb

mW

+ O9 +O10

2
ms

mW

, (3.71)

AV qLL ↔ OT `LL + OS −OP2
mb

mW

+
(
O′S −O′P −

OT −OT5

2

)
ms

2mW

, (3.72)

AV qLR ↔ −OT `LR + O
′
S +O′P

2
ms

mW

+
(
OS +OP + OT +OT5

2

)
mb

2mW

. (3.73)

To remain completely general, in the above equations we also kept the lepton mass and the
mass of s-quark different from zero. As an example we show the validity of Eq. (3.68). To
do so, it is useful to note that

∫
d4x 〈`+(p+)`−(p−)s(ps)|ODqLL(x)|b(pb)〉 → −

α

4π
1
mW

ūs(ps)PLub(pb) ū`(p−)(/pb + /ps)PLv`(p+).

(3.74)

Using p− − p+ = 2p− − q, and by the multiple use of field equations, we can write:

AV `LL = α

4π
2
mW

(s̄/p−γµPLb)(¯̀γµPL`)−
α

4π
1
mW

(s̄/qγµPLb)(¯̀γµPL`)

= α

4π
1
mW

[
4(s̄PLb)(¯̀/p−PL`)− 2(s̄γµPR /p−b)(¯̀γµPL`)

+ms(s̄γµPLb)(¯̀γµPL`) +mb(s̄γµPRb)(¯̀γµPL`)− 2(s̄PLb)(¯̀/pbPL`)
]

Fierz= α

4π
1
mW

[
4m`(s̄PLb)(¯̀PL`)− 4(s̄PL`)(¯̀PR/p−b) +ms(s̄γµPLb)(¯̀γµPL`)

+mb(s̄γµPRb)(¯̀γµPL`)− (s̄PLb)(¯̀(/pb + /ps)PL`) +m`(s̄PLb)(¯̀γ5`)
]
. (3.75)

By applying the Fierz identity once again, we arrive at,
12Notice that we are not computing the QCD corrections to the Wilson coefficients and therefore, at this

order, we do not make distinction between the ordinary and the covariant SU(3)c derivative.
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AV `LL
Fierz→ m`

mW

(
O′S −

OT −OT5

4

)
−OT qLL. (3.76)

Clearly, for the appropriate matching of these amplitudes to the effective theory, the op-
erators appearing in Eq. (2.54) are not enough and the extended basis given in Eq. (3.64)
is necessary. Once the matching is performed, the operators from Eq. (3.64) could be ne-
glected since they are 1/mW suppressed with respect to the dominant (dimension six) ones.
This delicate point can then be verified explicitly by computing the Wilson coefficients
CT qRL and CT qRR which come from the Z-penguin diagrams and the coefficients CT `LL = (CT `LR)∗
generated by the box diagrams. Their explicit expression is given in Appendix B.2.1.

We can now easily understand the source of our disagreement with Ref. [182]. If one
sets ps = 0 in AqRR of Eq. (3.63), then just like in Ref. [182] one could write /pb+/ps = /pb = /q
which, by means of equations of motion, yields

AqRR = m`

mW

α

4π (s̄PRb)
(¯̀(PR − PL)`

)
= √x`OP , (3.77)

which then in the actual computation gives a contribution to CP . With our procedure, we
understand that this contribution does not come from CP but actually from √x`CT qRL. In
other words, and by using our definition of operators and of the effective Hamiltonian, we
find 13

CLi et al.
P =

[
CP +

√
x`

2 sin2 θW
CT qRR

](this work)

. (3.78)

Therefore the Wilson coefficient CP of Ref. [182] contains the Wilson coefficient of the op-
erator OT qRR, the matrix element of which is not equal to the matrix element of the operator
OP but is, instead, suppressed by mW as we explicitly check in the next section. For that
reason the Wilson coefficient of Ref. [182] is not correct, even though the phenomenolog-
ical impact of the difference between our CP and the results of Ref. [182] is numerically
negligible.

3.5 Lessons from b→ s exclusive observables
In this Section, we confront the scan of parameters performed in Sec. 3.2 with the experi-
mentally established exclusive b→ s data. To that purpose, we will use the expressions for
the effective coefficients derived in Sec. 3.5 for the various types of 2HDMs. We decided to
focus on [130]

B(Bs → µ+µ−)exp = (3.0± 0.6+0.3
−0.2)× 10−9, (3.79)

and [116]

B(B → Kµ+µ−)exp
q2∈[15,22] GeV2 = (8.5± 0.3± 0.4)× 10−8. (3.80)

The reason for opting for these decay modes is that the relevant hadronic uncertainties are
under good theoretical control, as discussed in Sec. 2.3.

13 Notice also that the notation of Ref. [182] is such that their Wilson coefficient CP , which we can call
C̃P , is related to ours via CP = √x`xbC̃P /sin2 θW .
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The hadronic quantity entering the Bs → µ+µ− decay amplitude is the decay constant,
fBs . It has been abundantly computed by means of numerical simulations of QCD on the
lattice (LQCD) and its value is nowadays one of the most accurately computed hadronic
quantities as far as B(s)-mesons are concerned [77]. The hadronic form factors entering the
B → Kµ+µ− decay amplitude have been directly computed in LQCD only in the region of
large q2’s [131,132], which explains why we use B(B → Kµ+µ−)exp

high q2 to do phenomenology.
Furthermore, since the bin corresponding to q2 ∈ [15, 22] GeV2 is rather wide and away from
the very narrow charmonium resonances, the assumption of quark-hadron duality is likely
to be valid [133]. By using the recent LQCD results for the form factors provided by
HPQCD [131] and MILC Collaborations [132], the SM results are

B(B → Kµ+µ−)high q2 =
{

(10.0± 0.5)× 10−8
∣∣∣∣
HPQCD

, (10.7± 0.5)× 10−8
∣∣∣∣
MILC

}
, (3.81)

both being about 2σ larger than the experimental value measured at LHCb. 14 Since the
current disagreement between theory and experiment needs to be corroborated by more
data, we decided to impose all the constraints to 3σ accuracy. We will then discuss the
impact of B(B → Kµ+µ−)exp

high q2 on 2HDM if the current discrepancy remains, i.e. by
requiring the 2HDM to compensate the disagreement between theory (SM) and experiment
at the level of 2σ and more. Notice also that the measured B(Bs → µ+µ−)exp is slightly
smaller than predicted, B(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9 [115].

We now use the results of our scan from Sec. 3.2, require the 3σ agreement between
experiment and theory, which means that we add the generic 2HDM Wilson coefficients
derived in the previous Section to the SM values. The result, in the plane (tan β,mH±), is
shown in Fig. 3.10 for each type of 2HDM we consider. We learn that both B(Bs → µ+µ−)
and B(B → Kµ+µ−)high q2 exclude the low tan β . 1 region regardless of the type of 2HDM
considered. The limit of exclusion of low tan β coming from B(B → Kµ+µ−)high q2 is slightly
larger than the one arising from B(Bs → µ+µ−). The limit on low tan β obtained in this
way for each of our four models is given in Tab. 3.3.

Besides excluding tan β . 1, it may appear as a surprise that the large tan β are not
excluded by these data. The reason for that is the fact that the (pseudo-)scalar Wilson
coefficient, with respect to the dominant (axial-)vector one, comes with a term proportional
to (mBs/mW )2 which suppresses the large tan β values. This feature can be easily verified
in the Type II model for which the coefficients CS,P , in the large tan β limit, are given in
Eq. (3.62). This is why only a small number of points have been eliminated from our scan
of Type II model at large tan β but relatively light mH± .

Model Type I Type II Type X Type Z

tan β > 1.0 > 0.9 > 1.0 > 1.3

Table 3.3: Allowed values of low tan β (at 99% CL) for the different 2HDMs. See text for details.

Since the SM value is in slight tension with B(B → Kµ+µ−)exp
high q2 at the 2.1σ level, we

can now check which of the models discussed in this paper can be made consistent with
14In the following we will average the results obtained by using the two sets of form factors obtained in

LQCD.
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Figure 3.10: Results of the scan given in Fig. 4.4 after imposing the constraints coming from
B(Bs → µ+µ−) and B(B → Kµ+µ−)high q2 to 3σ accuracy. Blue points are allowed by all ob-
servables, while gray points are excluded by B(Bs → µ+µ−), and the red ones are excluded by
B(B → Kµ+µ−)high q2 .
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the experimental data if any disagreement beyond 2σ between theory (SM) and experiment
is to be attributed to 2HDM. It turns out that two such models are Type II and Type Z
2HDM, which we illustrate in Fig. 3.11. For the other two scenarios (Type I and Type X)
the NP contributions are either too small or already in conflict with B(Bs → µ+µ−)exp.
From Figs. 3.11 and 3.12 we see that in order to explain the discrepancy one needs a
relatively light charged scalar: (i) mH± . 735 GeV and tan β > 2.3 in the Type II scenario,
and (ii) mH± . 380 GeV and tan β > 3.5 for the Type Z scenario. Since the masses of
the additional scalars are correlated, we see that mH and mA become bounded as well,
cf. Fig. 3.12. In the case of Type II and Type Z 2HDM an additional bound on the
charged Higgs has been recently derived from the inclusive mode B(B → Xsγ). After
comparing the experimental spectra with theoretical expressions in which the higher order
QCD corrections have been included, the lower bound mH± > 570 GeV (95% CL) was
obtained in Ref. [181] (c.f. also Ref. [193]). This bound is superposed on our results in
Figs. 3.11 and 3.12, which then also eliminates Type Z 2HDM. Furthermore, we can say
that the requirement of agreement between theory and experiment to 2σ, for the quantities
discussed in this Section, reduces the available space of parameters for Type II 2HDM to
mH± ∈ (570, 735) GeV, and tan β ∈ (16, 35), while the available range of values for the
mass of the CP-odd Higgs becomes mA ∈ (145, 865) GeV.

Figure 3.11: Results of the scan in Fig. 4.4 after imposing the b→ s constraints to 2σ accuracy.
The hatched area is excluded by B(B → Xsγ) at 95% [181]. See Fig. 3.10 for the color code.

Figure 3.12: Same as in Fig. 3.11 but in the (mA,mH±) plane.

In what follows we will assume that the 2σ disagreement of the measure B(B →
Kµ+µ−)exp

high q2 with respect to the SM prediction indeed remains as such in the future and
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discuss the consequences on the decays B(Bs → τ+τ−) and B(B → Kτ+τ−)high q2 if the
Type II 2HDM is used to explain the disagreement. From Eq. (2.63) we can see that

B(Bs → τ+τ−)
B(Bs → τ+τ−)SM = B(Bs → µ+µ−)

B(Bs → µ+µ−)SM −
|Cττ

S |2

|CSM
10 |2

m2
Bs

(mb +ms)2 , (3.82)

where the only remaining m` dependence comes from the last numerator in the factor
multiplying |CS − C ′S|2 in Eq. (2.63). In Fig. 3.13 we illustrate the validity of the above
equality. Notice that a tiny departure from equality comes from the large tan β values which
enhance the CS contribution. In other words, the current experimental result B(Bs →
µ+µ−)exp, which is slightly lower than the one predicted in the SM, is expected to lead to
B(Bs → τ+τ−)exp compatible or slightly lower than predicted in the SM. The cancellation
of the lepton mass in B(Bs → `+`−)2HDM, discussed above, does not occur in B(B →
K`+`−)2HDM

high−q2 . As a result we obtain,

B(B → Kτ+τ−)Type II

B(B → Kτ+τ−)SM .
B(B → Kµ+µ−)Type II

B(B → Kµ+µ−)SM , (3.83)

where we omitted the subscript “high-q2” to avoid too heavy a notation. Illustration is
provided in Fig. 3.13. We can rephrase this observation with an equivalent statement:

B(B → Kτ+τ−)Type II

B(B → Kµ+µ−)Type II <
B(B → Kτ+τ−)SM

B(B → Kµ+µ−)SM . (3.84)

To be fully explicit, we obtain

B(B → Kτ+τ−)
B(B → Kµ+µ−)

∣∣∣∣∣
high−q2

∈ (1.12, 1.14)SM, (1.0, 1.1)Type II. (3.85)

Figure 3.13: We show the branching fractions of the decay to τ -leptons with respect to their
SM predictions, as obtained in the Type II 2HDM, consistent with experimental results for the
decays to muons in the final state.
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3.6 The light CP-odd Higgs window
In this Section, we consider an alternative scenario to the usual belief that the additional
scalars should be heavier than mSM

h = 125 GeV. By keeping the assumption that h ' hSM is
the scalar discovered at the LHC, we explore the possibility that a CP-odd Higgs A lighter
than h was missed by the direct searches performed thus far.

The following questions will be addressed in this Section:

(i) Is this scenario consistent with current theoretical and phenomenological constraints?

(ii) Which are the most sensitive probes at low and high energies to a light CP-odd Higgs?

In the following, we will describe our scan of the parameter space and the main flavor
constraints in Sec. 3.6.1. In Sec. 3.7, we investigate the possibility of probing a light CP-
odd in exclusive decays of the Higgs to quarkonia. Finally, we propose in Sec. 3.8 some
quarkonia decay which are highly sensitive to the light CP-odd contributions and can be
studied at current (LHCb) and future (Belle-II) experiments.

3.6.1 General scan for a light CP-odd
To answer the above-asked questions, we perform a scan similar to the one presented in
Sec. 3.2 but with a different range for the scalar masses:

tan β ∈ (0.2, 50], α ∈
(
−π2 ,

π

2

)
,

∣∣∣M2
∣∣∣ ≤ (1.2 TeV)2,

mH± ∈ (mW , 1.2 TeV), mH ∈ (mh, 1.2 TeV), mA ∈ (20 GeV,mh) .
(3.86)

where the lower limit mA > 20 GeV is chosen to avoid resonant contributions of the type
B(Υ→ γA) and B(B → KA), which are constrained by limits reported by BaBar [194–196].

In addition to the general constraints presented in Sec. 3.1, the light CP-odd Higgs can
contribute significantly to the SM-like Higgs total width Γh, which is indirectly constrained
by LHC data. More precisely, although ATLAS and CMS do not have enough mass resolu-
tion to directly probe Γh, non-standard contributions to the tiny ΓSM

h = 4.10(4) MeV [197]
are constrained by the analysis of Higgs strength signals. 15 The most up-to-date analysis
of Higgs data suggests that [198]

|Γh − ΓhSM |
ΓhSM

. 0.3 , (3.87)

which will also be imposed as a constraint to our scan. For mA < mh/2, the most potentially
dangerous contribution to Γh comes from h→ AA, which is generated via the trilinear scalar
coupling16

λhAA = 1
2v2 sin 2β

[
m2
h (cos(α− 3β) + 3 cos(α + β))− 4m2

A sin 2β sin(α− β)

− 4M2 cos(α + β)
]
,

(3.88)

15The term invisible width is sometimes used to describe this quantity, but it is misleading since the
non-standard contributions to Γh can be potentially observable. The term non-standard decay width is
more suitable.

16We agree with the expression derived in Ref. [199].
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which enters the Lagrangian

L ⊃ λhAA
2! hAA . (3.89)

The total rate for this decay is given by

Γ(h→ AA) = |λhAA|
2

32π
v2

mh

√√√√1− 4m2
A

m2
h

. (3.90)

To be consistent with current Higgs data, the coupling λhAA has to be sufficiently small
in the region mA < mh/2. This constraint is particularly strong since bosonic interactions
can be orders of magnitude stronger than the Yukawa interactions, which dominate the SM
Higgs total width. Furthermore, the channel h→ ZA is also open for a very light CP-odd
scalar, i.e. with mA < mh −mZ . The expression for this decay rate is given by

Γ(h→ ZA) = 1
16π

cos2(β − α)
v2

λ3/2(mh,mZ ,mA)
m3
h

, (3.91)

which vanishes identically in the alignment limit cos(β − α) = 0.
The constraints described above are combined with the ones presented in Sec. 3.2 to

determine the allowed parameters. It is important to mention that a scan of parameters
consistent with the constraints listed above favors the moderate and small values of tan β ∈
(0.2, 15]. Larger values of tan β can be probed around the alignment limit as it can be seen
from Eq. (3.6). For that reason, in addition to the free scan, we also perform a fine-tuned
scan, i.e. with mH ≈ |M |. We combine both results and show them in Fig. 3.14 for Type I
and Type II models. Similar results are obtained for Type X and Type Z. The constraints
coming from b → sγ and exclusive b → s`` are also superimposed on the same plot to 3σ
accuracy, giving the allowed points in blue [181,186]. 17 From this plot we observe that the
charged Higgs cannot be infinitely heavy, since mH± is correlated with the light CP-odd
mass mA due to the theory constraints discussed above. The lower bound on the charged
Higgs, mH± ≥ 439 GeV [181], eliminates many points in Type II and Type Z models. As
it can be seen from Fig. 3.14, among the remaining points in the parameter space of the
Type II model, the free scan prefers low tan β ≈ 2 values, while the large tan β values
can only be accessed through the scan in the mH ≈ |M | direction. The same observation
applies to the Type Z model.

Notice also from Fig. (3.14) that one cannot simultaneously access mA < mh/2 and have
large tan β, except for the very tuned solutions. To see that we expand Eq. (3.88) around
the alignment limit, δ = cos(α− β) ≈ 0, and obtain

λhAA = m2
h + 2m2

A − 2M2

v2 + 2(m2
h −m2

H)
v2 tan 2β δ +O(δ2). (3.92)

To suppress Γ(h → AA) in the perfect alignment limit, one needs 2M2 = m2
h + 2m2

A,
which for the low mA gives M2 ≤ 3m2

h/4 � m2
H . Therefore, in order to get a small

width Γ(h→ AA) one needs M2 � m2
H , which cannot be simultaneously satisfied with the

condition M ≈ mH , which is needed to find large values of tan β.

17Notice that we consider bounds only to 3σ accuracy, since the 2HDM contributions cannot explain the
deficit in B(B → Kµµ)q2∈[15,22] GeV2 , which is still not significant. In this case, the constraint from b→ sγ
becomes mH+ > 439 GeV [181].
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Figure 3.14: Results of the scan of parameters (3.86) after imposing constraints discussed in the
text. Darker/lighter points correspond to the free/fine-tuned scan. Notice in particular that the
red points are forbidden by the flavor bounds [181,186]. The results for the models of Type X and
Z are similar to the ones of type I and II, as described in the text.

The conclusion of the study performed in this Section is that a light CP-odd Higgs is
perfectly consistent with current theory and phenomenology constraints in some regions of
the parameter space. In the following we discuss the most sensitive indirect probes of a
light CP-odd Higgs, which can help us to disentangle among the various 2HDM.

3.7 Seeking the CP-odd Higgs via h→ P``

In this Section, we propose to study decays of Higgs to the pseudoscalar heavy quarkonia
(P ), h→ P`+`−, (P ∈ {ηc, ηb}) processes in which the CP-odd Higgs can contribute at the
tree level and make a significant enhancement of various decay rates. The level of such an
enhancement is related to the structure of the Yukawa couplings and to the mass of the
A-state. As we shall see in the following, we find that B(h→ ηc,bτ

+τ−) can be enhanced by
an order of magnitude with respect to its SM value, which is why we find it worth studying
in experiments.

Studies of the Higgs boson to quarkonia attracted quite a bit of attention: Radiative
decay h → J/ψγ could be used to probe the Yukawa coupling hcc̄, a possibility which is
compromised in the case of b-quark quarkonia (Υ(nS)) due to cancellation of two contri-
butions to the decay amplitude [200]. A possibility to study h→ PZ and h→ V Z (where
V and P stand for the vector and pseudoscalar quarkonium states, respectively) was elab-
orated in Refs. [201, 202]. Finally, a possibility to search for the effects of lepton flavour
violation via h→ V `1`2 has been proposed in Ref. [203].
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In the following, we derive the general expressions for B(h → P`+`−) both in the SM
and in 2HDM with a light CP-odd Higgs state. The results of the scan of parameters
presented above is then used to test the sensitivity of B(h→ ηc,b`

+`−) on the presence of a
light CP-odd Higgs state. We will not discuss the decays B(h → PZ) in this thesis, since
the 2HDM contributions are expected to be much smaller in this case. We refer the reader
to Ref. [204] where an extensive discussion of these decays is made.

Expressions for B(h→ P`+`−)

In our notation, P denotes the pseudoscalar quarkonium carrying momentum k, while Z
flies with momentum pZ . The dilepton invariant mass squared in the P`+`− final state is
considered as q2 = (p` + p¯̀)2, with p`,¯̀ being the momentum of the outgoing leptons.

In the SM, the decay h → P`+`− occurs via the diagrams shown in Fig. 3.15. The
dominant contribution comes from h → Z∗Z∗ → P`` (Fig. 3.15c), which is much larger
than the direct ones, h→ Zq̄q → ZP (Fig. 3.15a and 3.15b), and the one generated at loop
level, h → Z∗γ∗ → P``, (Fig. 3.15d). 18 The contribution from the dominant diagram to
the SM amplitude reads

M(h→ P`+`−)2c =− 1
4

(
g

cos θW

)3
mZ

gqAfP
(q2 −m2

Z) (k2 −m2
Z)

(
−gαµ + qµqα

m2
Z

)

×
(
−gνα + kνkα

m2
Z

)
kν ū`γ

µ(g`V − g`Aγ5)v` . (3.93)

The full expression, which includes all contributions depicted in Fig. 3.15, is given in the
Appendix of Ref. [204]. We note, however, that the contribution of the diagram in Fig. 3.15d
vanishes in the decay rate. Notice also that Eq. (3.93) must be multiplied by sin(β − α) to
obtain the equivalent 2HDM amplitude.

γ

P

h

Z

l+

l−

h

Z

P

l+

l− l−

P

h

Z

l+ Z

P

h

Z

l+

l−

(a) (b) (c) (d)

Figure 3.15: Diagrams relevant to h→ P`+`− decay in the SM. The full dot in the diagram (d)
indicates that the vertex is loop-induced. Its contribution to the decay rate is nevertheless zero.

Diagrams arising in the 2HDM setup are shown in Fig. 3.16, of which the first two
are numerically much less significant than the remaining three. The contributions of those
latter (dominant) diagrams to the decay amplitude read:

M(h→ P`+`−)3c =−
(

g

2 cos θW

)2 mqξ
q
A

v

m2
PfP

2mq

cos(β − α)
(q2 −m2

Z) (k2 −m2
A)

18Notice that the photon cannot couple directly to P because the vector matrix elements vanishes due
to parity conservation.
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×
(
−gµν + qµqν

m2
Z

)
(k + p)µ ū`γν(g`V − g`Aγ5)v` , (3.94)

M(h→ P`+`−)3d =
(

g

2 cos θW

)2 m`ξ
`
A

v

gqAfP cos(β − α)
(q2 −m2

A) (k2 −m2
Z)

×
(
−gµν + kµkν

m2
Z

)
(q + p)µkν ū`γ5v` , (3.95)

M(h→ P`+`−)3e = −λhAAv
mqξ

q
A

v

m`ξ
`
A

v

m2
PfP

2mq

1
(q2 −m2

A) (k2 −m2
A) ū`γ5v` . (3.96)

In the limit in which ΓA/mA � 1, one can work in the narrow width approximation,
which amounts to replacing

1
(q2 −m2

X)2 +m2
XΓ2

X

→ δ(q2 −m2
X) π

mXΓX
. (3.97)

This approximation is adopted throughout this thesis both for X = Z and X = A. We
emphasize that, for clarity, we disregarded the direct contributions to the amplitude because
they are numerically much smaller and can be safely neglected. Therefore, to a very good
approximation the decay rate can be written as

Γ(h→ P`+`−) ' Γ(h→ PZ∗ → P`+`−) + Γ(h→ PA∗ → P`+`−) . (3.98)
We checked that the interference terms are indeed very small and the above formula is useful
for the phenomenology we are interested in. For the explicit expressions of the separate
rates in Eq. (3.98) we obtain,

Γ(h→ PZ∗ → P`+`−) = f 2
Pm

3
Z

384π2ΓZm3
hv

6 [cos2(2θW ) + 4 sin4 θW ](
gqA −

ξqAm
2
P cos(β − α)

2(m2
A −m2

P )

)2

λ3/2(mh,mP ,mZ) , (3.99)

Γ(h→ PA∗ → P`+`−) = f 2
PmA

512π2ΓAm3
hv

2

(
m`ξ

`
A

v

)2 [
λhAA

m2
P

m2
A −m2

P

ξqA
v
v2

+2 cos(β − α)g
q
A

v
(m2

h −m2
A)
]2
λ1/2(mh,mP ,mA) . (3.100)

In the above formulas gfV = T 3
f −2Qf sin2 θW , gfA = T 3

f , and we neglected the additive terms
∝ m2

`/m
2
Z . We emphasize once again that the above expression for Γ(h → P`+`−) should

be viewed as a very good approximation, whereas the full expressions are provided in the
Appendix of Ref. [204]. Essential hadronic quantities needed to evaluate the amplitudes
defined above are [205,206]:

fηc = 391± 4 MeV, fηb = 667± 7 MeV. (3.101)
To get the branching fraction in a 2HDM setup, one should also be particularly careful

with the width of the Higgs boson Γh which should not be much larger than its SM value,
e.g. Γh/ΓSM

h . 1.4, a condition that provides a particularly stringent bound on the coupling
of h to two light CP-odd Higgses in the situation in which mA ≤ mh/2. Finally, since the
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Figure 3.16: Contributions to the h→ P`+`− decay amplitude in a 2HDM scenario.

above formulas require the knowledge of the width of A, we give that expression too, in
which we include ΓA = Γ(A→ ff̄) + Γ(A→ γγ), which are given by

Γ(A→ ff̄) = θ(mA − 2mf )|ξfA|2
Ncm

2
f

8πv2 mA

√√√√1−
4m2

f

m2
A

,

Γ(A→ γγ) = α2
em

16π3v2m
3
A

∣∣∣∣∣∣
∑
f

ξfANcQ
2
f xf Fγγ(xf )

∣∣∣∣∣∣
2

, (3.102)

where Nc = 3 for quarks and Nc = 1 for leptons, the electric charge for leptons, up-
type and down-type quarks is Q` = −1, Qu = 2/3, Qd = −1/3, respectively, and f runs
over all available quark and lepton flavors. In the above expression we used the notation
xf = m2

f/m
2
A, and the loop function reads

Fγγ(x) =


1
2

(
iπ + log

[
1 +
√

1− 4x
1−
√

1− 4x

])2

, for x < 1/4

−2 arcsin2
(

1
2
√
x

)
, otherwise

. (3.103)

Notice that Γ(A → γγ) � Γ(A → ff̄) and our conclusion would remain the same even if
we neglected Γ(A → γγ). For the same reason we neglect the Γ(A → gg) contribution to
the full width of A.

Phenomenology

In this Section we combine the results of the scan discussed in Sec. 3.6.1 with the expressions
give above to evaluate

Rττ
ηcb

= B(h→ ηcbτ
+τ−)2HDM

B(h→ ηcbτ+τ−)SM and Rµµ
ηcb

= B(h→ ηcbµ
+µ−)2HDM

B(h→ ηcbµ+µ−)SM , (3.104)
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where ηcb means either ηc or ηb. The range of values for each of the ratios (3.104), that we
obtain by using the results of the scan for each of the 2HDM realizations are summarized
in Tab. 3.4.

Ratio RZ
ηc RZ

ηb
Rµµ
ηc Rµµ

ηb
Rττ
ηc Rττ

ηb

Type I (0.7, 1.0) (0.7, 1.0) (0.7, 1.0) (0.7, 1.0) (0.7, 3.3) (0.7, 3.6)

Type II (0.7, 1.0) (0.3, 1.7) (0.7, 1.0) (0.7, 1.7) (0.8, 2.3) (0.9, 130)

Type X (0.7, 1.0) (0.7, 1.0) (0.7, 1.1) (0.7, 1.1) (0.7, 21) (0.7, 23)

Type Z (0.7, 1.0) (0.3, 1.7) (0.7, 1.0) (0.7, 1.7) (0.7, 1.2) (0.7, 1.7)

Table 3.4: Resulting intervals for the ratios obtained from the scans in various types of 2HDM.

In order to exacerbate the sensitivity to the CP-odd Higgs, one should consider τ -
leptons in the final state. This is because the second part in Eq. (3.98) becomes important,
Γ(h → PA∗ → P`+`−) ∝ m2

` , which can also be seen by using an approximate relation,
Γ(h → ηcbττ) ≈ Γ(h → ηcbA) B(A → ττ). Indeed, on the basis of the results presented
in Tab. 3.4 we see that the ratios Rττ

ηc and Rττ
ηb

depend much more on the light CP-odd
Higgs than the ones with the light leptons in the final state. This is particularly true
for the Type I, II and X models, the results highlighted in Tab. 3.4, and illustrated in
Fig. 3.17 for Type II and X. We already stressed that the Type II model is far more
constrained than Type X because of the constraint coming from B → Xsγ. Yet the results
for Rττ

ηb
exhibit the similar enhancement in both models, which can be traced back to

Γ(h → PA∗ → P`+`−) ∝ m2
` tan2 β, a common feature of both models. Notice, however,

that for larger values of mA, the value of B(h→ ηcbτ
+τ−) rapidly approaches its SM result,

which is why we focus on these decay modes as possible probes of the light CP-odd Higgs
(mA . mh).

Finally, it is worth mentioning a correlation between Rττ
ηc and Rττ

ηb
in Type I and Type X

models, which is shown in Fig. 3.18. It is easy to understand its origin once one realizes
that Γ(h→ PA∗ → P`+`−) dominates the full decay rate (3.98), and since the couplings to
charm and to bottom quarks are equal in both models, |ξcA|= |ξbA|= 1/tan β, the correlation
becomes quite obvious. Similar reasoning, but this time with respect to ξτA, can be used
to explain why the enhancement in Type X model (|ξτA|= tan β) is much more pronounced
than the one in Type I model (|ξτA|= 1/tan β).

In conclusion, the decay rates B(h→ P`+`−) can be enhanced by as a factor of ≈ 3 and
even a factor of ≈ 50 with respect to the SM predictions if a light CP-odd Higgs is present,
as highlighted in Table 3.4. The origin of that enhancement is due to mA . mh and it is
related to the Yukawa couplings to the CP-odd Higgs, which explains why the effect is so
pronounced in the case of τ -leptons in the final state (in contrast to the case of muons or
electrons). Therefore, these observables offer new experimental opportunities to investigate
the presence of a ligh CP-odd Higgs A and help to disentangle among various 2HDM
scenarios. Finally, we should also add that in this study we focused on the lowest lying
pseudoscalar quarkonia, but that our discussion could be trivially extended to the excited
pseudoscalar quarkonia. Strategies for their detections have been discussed in Ref. [207]
and references therein.

‘
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Figure 3.17: Results of the scan of parameters (3.86) after imposing constraints discussed in the
text. Darker/lighter points correspond to the free/fine-tuned scan.
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Figure 3.18: Correlation of the ratios Rττηc and Rττηb in Type I and Type X models arises from the
fact that the Yukawa couplings of the charm and bottom quarks to the CP-odd Higgs are equal
in these two models.

96



3.8. Probing a light CP-odd Higgs through quarkonia decays

3.8 Probing a light CP-odd Higgs through quarkonia
decays

In this Section we discuss the processes P → `+`−, where P stands for a pseudoscalar
quarkonia, namely, ηc or ηb. In the SM, these processes proceed through the exchange of
a Z boson or via electroweak boxes. The tree-level and the leading loop contributions are
shown in Fig. 3.19. The box diagrams with the W± and Z0 bosons running in the loop are
negligible in comparison

ηq
Z0

ℓ+

ℓ−

q̄

q

ηq

ℓ+

ℓ−γ

γ

ℓ−q

q

q̄

Figure 3.19: Dominant diagrams for the decays ηq → `+`− in the SM.

The contribution from the photon is obviously absent at tree-level due to parity conser-
vation, i.e. the matrix element 〈0|b̄γµb|ηb(p)〉 = 0 vanishes identically. Therefore, the SM
predictions for B(P → `+`−) are very small and open the possibility for using these decays
to look for NP. In particular, a CP-odd Higgs would give a tree-level contribution to this
decay, as shown in Fig. 3.20, which can be orders of magnitude larger than the SM one for
light values of mA.

ηq
A0

ℓ+

ℓ−q

q̄

Figure 3.20: CP-odd contribution to the decay ηq → `+`− in the SM.

In the following, we derive the general expressions for B(P → `+`−) in the SM extended
with a second Higgs doublet. We use the results of the scan of parameters discussed in
Sec. 3.6.1 and check on the sensitivity of these decays to the light CP-odd Higgs.

Expressions for B(P → ``)

The total amplitude for the decay ηb → `+`− can be decomposed as

Mtot(ηq → `+`−) =MZ +Mem +MNP , (3.105)
where q = c, b and each of these terms is associated to one type of contribution in Fig. 3.19
and Fig. 3.20. The Z-exchange amplitude can be trivially computed in terms of the decay
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constant fηb ,

MZ = g2

2 cos θ2
W

fηqm`

m2
Z

gqAg
`
A [ū(p1)γ5v(p2)] , (3.106)

where gfA = T 3
f is the third component of weak isospin. The electromagnetic boxes have

been estimated in Ref. [208,209], giving

Mem = 8Q2
qα

2
emf

(
m2
`

m2
q

)
fηqm`

m2
ηq

[ū(p1)γ5v(p2)] , (3.107)

where the loop function f(r) reads

f(r) = 1
β

[
1
4 log2

(
1 + β

1− β

)
− log

(
1 + β

1− β

)
+ π2

12 + Li2
(
−1− β

1 + β

)
− iπ

2 log
(

1 + β

1− β

)]
,

(3.108)
with β` =

√
1−m2

`/m
2
b . By using the values of the decay constants given in Eq. (3.101),

we obtained the SM predictions

B(ηc → µ+µ−) = (4.2± 0.2)× 10−11 ,

B(ηb → µ+µ−) = (5.6± 2.4)× 10−11 ,

B(ηb → τ+τ−) = (4.0± 1.7)× 10−9 .

(3.109)

The only experimental limits available so far for these decays are B(ηb → µ+µ−) < 9 ×
10−3 [210] and B(ηb → τ+τ−) < 8×10−2 [211], which are still orders of magnitude from the
SM values given above. Even though the electromagnetic contribution appears only at loop
level, the box diagrams give comparable contributions to the ones generates at tree-level by
a Z exchange. The suppression of the latter diagram comes from the Z propagator which
gives a multiplicative factor m2

ηq/m
2
Z to the amplitude.

The NP contributions to these decays can be generically written as

MNP = −mqξ
q
A

v

m`ξ
`
A

v

m2
ηqfηq

2mq

1
m2
ηq −m2

A

[ū(p1)γ5v(p2)] , (3.110)

where the couplings ξfA were defined in Eq. (3.19). By combining the expressions given
above, we obtain for the decay rate

Γ(ηq → `+`−) =

√
m2
ηq − 4m2

`

8π

(
fηqm`

m2
ηq

)2 ∣∣∣∣∣8Q2
qα

2
emf

(
m2
`

m2
q

)
+

2m2
ηq

v2 gqAg
`
A −

m4
ηq

2v2
ξqAξ

`
A

m2
ηq −m2

A

∣∣∣∣∣
2

.

(3.111)
Notice that we neglect tthe mixing of ηc,b with A on the above expression since the range
of mA is chosen to be mA ∈ (20 GeV,mh), see discussion following Eq. (3.86).

Phenomenology

We are now in position to combine the results of our scan described in Sec. 3.6.1 with the
branching ratio formula (3.111) to investigate the impact of the different 2HDMs on the
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decay channel ηq → ``. To that purpose, we define the ratios of the decay rates with respect
to the SM ones,

Rηq→`` = B(ηq → `+`−)
B(ηq → `+`−)SM . (3.112)

Our results for the different 2HDM realizations are summarized in Table 3.5, where we
can see that B(ηb → µ+µ−) and B(ηb → τ+τ−) can be exacerbated by five orders of
magnitude in comparison to the SM values given in Eq. (3.109). This happens only in the
type II scenario due to the tan β enhancement of the CP-odd Higgs couplings ξd,`A both
to down-type quarks and leptons. For the other scenarios, the CP-odd contribution turns
out to be indistinguishable from the SM. Furthermore, we have also checked that the NP
contributions to ηc → `+`− are negligibly small in all the scenarios we consider here. This
can be understood from the fact that the up-type quark couplings, given by ξuA = 1/tan β,
cannot be large due to the stringent constraints on low tan β values coming from Bs → µ+µ−

and B → Kµ+µ−, as discussed in Sec. 3.5.

Ratio Rηc→µµ Rηb→µµ Rηb→ττ

Type I ≈ 1 (1, 1.1) (1, 1.2)

Type II ≈ 1 (1, 5.1× 104) (1, 3.4× 105)

Type X ≈ 1 (0.75, 1) (0.5, 1)

Type Z ≈ 1 (0.75, 1) (0.5, 1)

Table 3.5: Resulting intervals for the ratios Rηq→`` = B(ηq → `+`−)/B(ηq → `+`−)SM obtained
from the scans in various types of 2HDM.

In Fig. 3.21, we plot the dependence of the ratios Rηq→`` on the CP-odd Higgs mass
mA and tan β. We found that a large enhancement is present even for the parameters
without fine-tuning. For the fine-tuned scenarios, the enhancement is more pronounced for
mA > mh/2, since the light A is not constrained by the Higgs total width in this case, as
shown before in Fig. 3.14. Interestingly, the large enhancement is not present only in the
mode with τ -leptons in the final state, but also in the channel ηb → µ+µ−. The latter decay
mode is more accessible experimentally, since it avoids the complicated reconstruction of the
τ ’s. This feature can be more easily seen in Fig. 3.22, where we plot Rηb→ττ as a function of
Rηb→µµ. The strong correlation between these channels can be understood from Eq. (3.111),
since the lepton mass appears as an overall factor in the decay rates, i.e. Γ(ηq → `+`−) ∝ m2

` .
There is a residual dependence on m` in the loop factor f(m2

`/m
2
q), but this effect is very

mild in comparison to the overall factor m2
` .
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Figure 3.21: Results of the scan of parameters (3.86) for Rηq→`` = B(ηq → `+`−)/B(ηq →
`+`−)SM after imposing constraints discussed in the text. Darker/lighter points correspond to the
free/fine-tuned scan.

Figure 3.22: Correlation of the ratios Rηb→µµ and Rηb→ττ for the type II model, cf. Eq. (3.112).
See Fig. 3.17 for the color code.
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In conclusion, the processes ηb → µ+µ− and ηb → τ+τ−, which have been scarcely
studied in experiments thus far, can provide additional information about the scalar sector
beyond the SM. The SM rates for these processes are negligibly small, since the pseudoscalar
quarkonia at tree-level decay to two leptons only weakly. For that reason, the observables
B(ηb → µ+µ−) and B(ηc → µ+µ−) are sensitive to the light CP-odd Higgs contributions,
which contributes at tree-level to the amplitude of this decay. Clearly, the contribution
from the light CP-odd is more pronounced for light values of mA. We have showed that
these processes can be enhanced by almost five orders of magnitudes, being possibly within
reach of current (LHCb) and future experiments (Belle-II), and providing complementary
information to the de cays h→ ηbτ

+τ−, which were discussed in Sec. 3.7.

Comments on V → γ`+`−

Before closing this Section, we will briefly comment on other proposals to probe a light CP-
odd Higgs by using the decays of quarkonia. An attempt has been made in Ref. [212–215] to
consider the processes Υ→ γ`+`−, with ` = µ, τ , where it is claimed that these processes are
highly sensitive to the contribution of a light pseudoscalar. We will argue that this statement
in implausible, since the authors of Ref. [212–215] neglected an important contribution for
the SM.

For these decays, the only NP contributions stems from QCD structure dependent dia-
gram shown in Fig. 3.23.

Υ
A0

ℓ+

ℓ−

γ

Figure 3.23: CP-odd contribution to the decay Υ→ γ`+`−.

A similar diagram where the photon is emitted by a lepton is obviously forbidden by parity
symmetry. The light-CP odd diagram should be added to the dominant SM contributions
shown in Fig. 3.24.

γ
Υ

γ, Z

ℓ+

ℓ−

Υ
Z

ℓ+

ℓ−γ

Υ
γ, Z

ℓ+

ℓ−
γ

Figure 3.24: Leading contributions to the decay Υ→ γ`+`− in the SM.

By comparing the diagrams 3.23 and 3.24, it becomes clear that the observable B(Υ →
γ`+`−) is insensitive to the CP-odd Higgs contribution. This conclusion comes from the
fact that the first diagram in Fig. 3.24 is a tree-level electromagnetic contribution, thus
orders of magnitude bigger than the one generated by NP. In Ref. [212–215], the SM decay
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rate was estimated by making the approximation,

Γ(Υ→ γ`+`−) !≈ Γ(Υ→ γηb)× B(ηb → `+`−) . (3.113)
The study of Υ → γ`+`− proceeds through the dominant electromagnetic tree-level con-
tribution, which is huge compared to the CP-odd contribution. Disentangling the NP
contributions from the large SM contribution becomes therefore complicated. In particular,
even if ones manages to subtract a part of bremsstrahlung, the validity of Eq. (3.113) is
very questionable.
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Chapter 4

Leptoquarks at low and high energies

Leptoquarks (LQ) are hypothetical bosons with simultaneous couplings to leptons and
quarks. They emerge in most scenarios aiming to unify the SM fermions in the same
representation of a gauge group larger than GSM. Examples of such scenarios are provided
by Grand Unified Theories (GUT), where LQs appear as gauge bosons of the unified group,
or as additional (colored) states in the scalar multiplets. The interest in scenarios with light
LQs was recently renewed by the indications of lepton flavor universality violation (LFUV)
in B meson decays, which can be accommodated by LQs lying around the TeV scale. In
the viable LQ scenarios, LFUV can imply significant LFV signatures as it will be described
in Chapter 5.

This Chapter is organized as follows: in Sec. 4.1 we discuss the general aspects of models
with LQs. In Sec. 4.2, we present a concrete example of a SU(5) unification scenario with
light LQs. In Sec. 4.3, we derive the effective Lagrangian for the LQ that will be considered
in the next Chapter. Finally, the status of the direct searches for LQs at the LHC is briefly
reviewed in Sec. 4.4.

4.1 Introduction
LQs are fields which admit simultaneous interactions with quarks and leptons via renor-
malizable operators [8, 216]. These states can be scalar or vector particles and they were
firstly considered in the context of unifed models based on the gauge group SU(5) [217] and
the Pati-Salam group [218]. 1 In addition to unification scenarios, LQs naturally arise in
composite Higgs models [219–221] and models aiming at explaining the origin of neutrino
masses [222] and other phenomena.

LQs with baryon number violating couplings must be very heavy in order to avoid
proton decay constraints, as it was originally thought in the first grand unification papers.
However, in scenarios with baryon number conservation, LQ masses and couplings have to
satisfy much weaker constraints, which allow them to be considerably lighter, as explored in
recent publications [223–225]. The phenomenology of TeV-scale LQ states is very rich and
it includes sizable effects in rare meson decays and processes with LFV, as well as potential
signatures in direct searches performed at the LHC [8].

There exist 12 LQ states which can be classified by their spin and by their transformation
under the SM group. Since quarks are color triplets, the SU(3)c gauge invariance imposes
that a simultaneous interaction to leptons are possible if and only if LQs belong to the

1The Pati-Salam gauge group is SU(4)× SU(2)L × SU(2)R which can be embedded in SO(10).
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representations 3 or 3 of SU(3)c. A similar reasoning can be used to determine all the
SU(2)L × U(1)Y representations allowing gauge invariant and renormalizable interactions
to leptons and quarks, as listed in Table 4.1. We adopt the notation of Ref. [226] and
specify the LQ states by their quantum numbers with respect to the SM gauge group,
(SU(3)c, SU(2)L)Y , where the electric charge, Q = Y + T3, is the sum of hypercharge (Y )
and the component of the third weak isospin (T3). Moreover, these states can be classified
in terms of the fermion number F = 3B + L, where B is the baryon number and L is the
lepton number defined in such a way that B = 1/3 for quarks and L = 1 for leptons.

(SU(3)c, SU(2)L)U(1)Y Spin Symbol BNC F

(3̄, 3)1/3 0 S3 7 −2
(3̄, 1)4/3 0 S̃1 7 −2
(3̄, 1)1/3 0 S1 7 −2

(3̄, 1)−2/3 0 S̄1 7 −2
(3, 2)7/6 0 R2 X 0
(3, 2)1/6 0 R̃2 X∗ 0

(3̄, 2)5/6 1 V2 7 −2
(3̄, 2)−1/6 1 Ṽ2 7 −2
(3, 3)2/3 1 U3 X 0
(3, 1)5/3 1 Ũ1 X 0
(3, 1)2/3 1 U1 X 0

(3, 1)−1/3 1 Ū1 X 0

Table 4.1: Classification of scalar and vector LQs. The column BNC refer to baryon number
conservation. See text for details [8].

Throughout this Chapter the flavor indices of LQ couplings will refer to the mass eigen-
states of down-type quarks and charged leptons, unless stated otherwise. In other words,
the left-handed doublets are defined as Qi = [(V †uL)i dLi]T and Li = [(UνL)i `Li]T , where V
and U are the Cabibbo-Kobayashi-Maskawa (CKM) and the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrices, respectively. The fields uL, dL, `L are the fermion mass eigen-
states, whereas νL stand for the massless neutrino flavor eigenstates. Since the tiny neutrino
masses play no role for the purpose of this thesis, we may choose the PMNS matrix to be
the unity matrix in the phenomenological discussion, U = 1. Right-handed field indices
will always refer to the mass eigenbasis.

4.1.1 SU(5) unification and light leptoquarks
The equality of electron and proton charges |Qp|= |Qe| is one of the great mysteries of the
SM. Gauge theories do not constraint the quantum charges of an Abelian group, which can
be any real number. The fact that the U(1)Y charges of the SM fermions are such that |Qp|=
|Qe| appears to be a very unpleasant coincidence. A well-known solution to this problem
is to embed the SM gauge group GSM in a larger non-Abelian semi-simple group G, where
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leptons and quarks are included in the same representation of G. The non-Abelian nature
of G implies then that the U(1)Y charges of fermions are rational fractions, as observed in
nature. This idea also agrees with the reductionist trend of theoretical physics of unifying
the forces in simpler interactions, as it happened with Maxwell electromagnetism and the
electroweak theory of Glashow and Salam. Notice, however, that the naive extrapolation
of this historical feature might be a theoretical prejudice which is not necessarily satisfied
in nature.

The first model unifying leptons and quarks was proposed by Pati and Salam in 1974
[218]. The minimal simple group containing GSM is SU(5), as it was shown by Georgi and
Glashow in the same year [217]. Unification models based on the gauge group SO(10) are
also possible [227, 228], but these have a huge number of degrees of freedom, which reduce
considerably the predictivity of these scenarios. In all these models, vector LQ states appear
as gauge bosons of the unified group and scalar LQs appear as degrees of freedom in the
scalar multiplets. The purpose of this Section is not to cover the vast literature on GUT,
but to discuss whether LQs coming from unification scenarios can be light enough to be
observed in low and high energy experiments. We will consider SU(5) as our gauge group
due to its simplicity and we will illustrate the viability of this type of GUT scenario in
Sec. 4.2 with the concrete model introduced in Ref. [229].

We follow the notation of [230] and denote the SU(5) representations by their dimen-
sions. The SM fermions are embedded in three ten-dimensional representations (10)i and
three five-dimensional representations (5)i of SU(5), where i, j denote family indices. More
precisely, for each fermion generation

10 ≡ (1,1)1 ⊕ (3,1)−2/3 ⊕ (3,2)1/6 = (`CR, uCR, Q) ,

5 ≡ (1,2)−1/2 ⊕ (3,1)1/3 = (L, `CR) ,
(4.1)

where one can recognize the left-handed SM fermion multiplets. The representations with
lowest dimension containing LQ states are listed in Tab. 4.2. By analyzing all the possible
SU(5) contractions with the fermion representations, one can show that only the 5-, 10-
, 15-, 45-, and 50-dimensional scalar representations can couple to SM fermions at the
renormalizable level. On the other hand, the only representations that can get a vev without
breaking color and electric charge are 5-, 15-, 24- and 45-dimensional representations.
Among the representations mentioned above, only the 24-plet does not contain scalar LQs
(see Table 4.2), but this representation does not couple to SM fermions. Therefore, we can
state that at least one scalar representation containing LQs is needed to generate electroweak
symmetry breaking and to give mass to fermions. Moreover, the vector LQ V2 = (3̄,2)5/6
appears in the adjoint representation 24 for every SU(5) scenario. 2 By combining these
facts, one can say the that there is in general at least one scalar and one vector LQ in any
SU(5) unification model [8].

In the original SU(5) model of Georgi and Glashow, the scalar sector consists of an
additional 5, which contains the SM Higgs, and a 24 representation used to spontaneously
break SU(5) down to GSM,

24H ≡ (8,1)0 ⊕ (1,3)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6 ⊕ (1,1)0 ,

5H ≡ (1,2)−1/2 ⊕ (3,1)1/3 .
(4.2)

2It is customary in the SU(5) literature to call X and Y the states in the V2 multiplet with electric
charge 4/3 and 1/3, respectively.
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The particles in the 24 representation acquire masses at the unification scale ΛGUT � v,
having no phenomenological impact at low-energies. The scalar LQ (3,1)1/3 coming from
5H is assumed to be much heavier than the SM Higgs to not disturb the proton stability, as
it will be discussed in Sec. 4.1.2. To achieve this large mass splitting in the 5H multiplet,
a fine-tuning of the parameters in the scalar potential is needed, which is known as the
doublet-triplet splitting problem.

Despite its elegance and simplicity, it is well-known that the minimal SU(5) model de-
scribed above [217] is no longer viable. It suffers from several issues including: (i) doublet-
triplet splitting; (ii) Yukawa relations in disagreement with experiment; (iii) massless neu-
trinos; and perhaps most strikingly, (iv) fails to achieve unification. However, with the
exception of the first problem, there are straightforward, non-supersymmetric extensions
of the original model which can solve each of these issues. The fermion mass relations
can be addressed using higher-dimension operators [231] or a Higgs in the 45 representa-
tion [232], while the addition of singlet right-handed neutrinos allows for neutrino masses
via the Type-I seesaw [52–55]. Furthermore, there exist several models which introduce
additional split multiplets in order to achieve gauge coupling unification consistent with
the current experimental measurements [233–237].

Before presenting a viable SU(5) unification scenario with light LQs in Sec. 4.2, we will
briefly discuss the generalities of proton decay in GUT models.

(SU(3)c, SU(2)L)U(1)Y Symbol SU(5)

(3̄, 3)1/3 S3 45, 70
(3̄, 1)4/3 S̃1 45
(3̄, 1)1/3 S1 5, 45, 50, 70

(3̄, 1)−2/3 S̄1 10, 40
(3, 2)7/6 R2 45, 50
(3, 2)1/6 R̃2 10, 15, 40

(3̄, 2)5/6 V2 24, 75
(3̄, 2)−1/6 Ṽ2 10, 40
(3, 3)2/3 U3 35, 40
(3, 1)5/3 Ũ1 75
(3, 1)2/3 U1 10, 40

(3, 1)−1/3 Ū1 5, 45, 50, 70

Table 4.2: List of LQ states and the corresponding lowest dimension SU(5) representations. [8].

4.1.2 Proton stability
One of the most important constraint on unification scenarios comes from the proton stabil-
ity. The proton decay can be induced both by scalar and vector LQs if these states violate
baryon number, as listed in Table 4.1.

The issue of matter stability is directly related to the presence of the diquark couplings,
which violate both baryon and lepton number. To illustrate the impact of experimental
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bounds on the proton lifetime τp, we consider the decay mode p→ π0e+ which is illustrated
in Fig. 4.1 for both vector and scalar LQs. For vector LQs, the rate for this process is
estimated by naive dimensional analysis to be

Γ(p→ π0e+) ≈ |g1g2|2

m4
LQ

m5
p , (4.3)

where mp is the proton mass and g1,2 are the gauge couplings shown in Fig. 4.1. By taking
g1 = g2 = 1/2 and the limit τ exp

p→π0e+ > 8.2×1033 years (90% CL) [238] , we obtain the naive
bound mLQ & 1016 GeV. For the scalar mediated proton decay, we can write

Γ(p→ π0e+) ≈ |yz|
2

m4
LQ
m5
p , (4.4)

where y and z denote the Yukawa couplings appearing in Fig. 4.1 for the quark-lepton and
quark-quark pairs, respectively. For couplings of the same order than the up-quark Yukawa
(|y|= |z|= 10−5), we obtain the bound mLQ & 2 × 1011 GeV, which is about five orders
of magnitude weaker than the limit obtained above for vector LQs. These lower bounds
on the LQ masses are rough estimates, but they give an idea of the spectrum of particles
and unification scales needed in order to be consistent with current experimental limits
on the proton lifetime. These estimations can certainly be refined for concrete unification
scenarios, like the one we will present in Sec. 4.2.

π0

e+

d̄

u

u

d

p
V

g1 g2

π0

e+

d̄

u

u

d

p

∆

z y

Figure 4.1: Illustration of proton decay mediated by vector V (left panel) and scalar ∆ (right
panel) LQs.

Besides the usual types of proton decay which proceed via dimension-6 operators gen-
erated by diquark couplings, as discussed above, the proton decay can also be induced via
higher dimensional operators. To be more precise, in the R̃2 = (3,2)1/6 scenario, the gauge
symmetry allows for the following interaction term

L ⊃ λ εijk
(
H†∆i

) (
∆̃†j∆k

)
, (4.5)

where H denotes the SM Higgs, ∆ the doublet LQ and λ is a generic coupling. We remind
the reader that ∆̃ = iσ2∆∗ is the conjugate SU(2) doublet. Note also that, we explicitly
wrote the color indices (i, j, k). After integrating out the LQ particles, this coupling gener-
ates dimension-9 operators which induce the decay p→ π+π+eνν, as illustrated in Fig. 4.2.
The naive estimate of this decay rate gives

Γ(p→ π+π+e−νν) = v2|λ y3|2

m12
LQ

m11
p , (4.6)

where y is a generic Yukawa coupling to down-type quarks and leptons. In this case, there
is no dedicated search for this specific decay mode. The best limit that can be used is
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τ exp
p > 8.2 × 1033 [239], which was obtained independently of proton the decay channel.

Note that this limit is considerably lower than the one quoted above for p → π0e+. By
taking λ = 1 and once again y = 10−5, we obtain the bound mLQ & 960 GeV, which is
orders of magnitude lower than the ones obtained above. Interestingly, this lower limit on
the LQ mass falls precisely in the mass region which is being studied at the LHC. Therefore,
from a phenomenologically point of view, this type of proton decay is not as problematic
as the decays induced by dimension-6 operators, which were discussed above, but it offers
different opportunities for future proton decay experiments.

p

π+

π+

ν

ℓ−

ν

u

u

d
∆

∆

∆
H d

d

Figure 4.2: Proton decay p → π+π+`−νν induced by the coupling (4.5) for the scalar LQ
R̃2 = (3, 2)1/6.

4.2 A concrete SU(5) realization with light leptoquarks
As an illustration of a viable GUT scenario with light LQs, we consider the model proposed
in Ref. [229], which is an extension of the minimal SU(5) model of Georgi and Glashow.
The main interest of this model comes from the lightness of the leptoquark masses, which
are not only a possibility, but the key assumption which leads to unification. Therefore, this
unfication scenario might be within reach of the current low and high energy experiments,
such as the LHC and the meson factories, a possibility which is rarely encountered in the
standard GUT literature.

The idea behind this model was originally introduced in Ref. [233], as an attempt to
achieve SU(5) gauge unification without relying on supersymmetry. In this paper it was
shown that the introduction of two (3,2)1/6 scalar LQs and a second Higgs doublet at the
electroweak scale can be used to achieve gauge coupling unification. The original proposal
faces several difficulties, including a low unification scale (≈ 5 × 1014 GeV) potentially
in tension with the bounds from Super Kamiokande, as well as additional contributions
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to proton decay mediated by the light LQs. In this Section, we show that the model of
Ref. [233] in fact still remains viable when confronted with the latest experimental con-
straints. Firstly, we point out that extending the model to introduce splitting in the 24
Higgs can preserve unification, while also allowing one to significantly raise the scale of uni-
fication. Furthermore, we discuss how dangerous contributions to proton decay, mediated
by the light leptoquarks, can be forbidden by a U(1)PQ symmetry.

4.2.1 Model setup
As anticipated above, the setup of the original model is a minimal extension of the Georgi-
Glashow model [217]. The scalar sector of this model is extended to include an additional 5
Higgs H5, as well as two new scalars, Φ(1)

10 and Φ(2)
10 , transforming in the 10 representation.

Experimental bounds on the proton lifetime provide a lower limit (mT & 1011 GeV) on the
masses of the colour-triplet Higgs in the 5 and 5, leading to the well-known doublet-triplet
splitting problem. These triplet scalars are therefore assumed to acquire GUT scale masses.
This motivates the assumption that such splitting could in fact be a generic feature of the
scalar sector, which then opens new avenues to achieve unification.

The decouplets, Φ10, can be decomposed under the SM gauge group as

10 = (3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1 . (4.7)

Splitting of the 10 is assumed such that the LQ states ∆ ≡ (3,2)1/6 can remain light, while
the rest of the multiplet acquires GUT scale masses. A similar splitting is also considered
for the 5 multiplet by assuming that the additional Higgs doublet remains light. These are
the key assumptions that lead to unification in this model.

Departing from the original model, we will also consider the case where there is a
splitting of the Σ24 Higgs by lowering the mass of the (8,1)0 and (1,3)0,

24H ≡ (8,1)0 ⊕ (1,3)0 ⊕ (3,2)−5/6 ⊕ (3,2)5/6 ⊕ (1,1)0 . (4.8)
Naively, one would expect this additional splitting to disrupt unification. However, if the
octet and triplet are approximately degenerate in mass, then their combined effect on the
RGEs is such that unification can be preserved. As we shall demonstrate in the following
section, splitting of the 24-plet then provides a straightforward way to raise the unifica-
tion scale. Such behaviour was first pointed out in the context of supersymmetric, string-
motivated models in Ref. [240]. However, in the case where Σ24 is the field which obtains
an SU(5) breaking vev, it should be noted that the octet and triplet cannot be arbitrarily
light. If their masses lie significantly below 〈Σ24〉, one finds that Γ(Σ3 → hh)/mΣ3 � 1.
In the remainder of this paper we take the triplet/octet mass, m38, to be a free parameter.
It should be understood that in the case m38/〈Σ24〉 � 1, these states are assumed to arise
from an additional 24 multiplet, not associated with the breaking of SU(5). 3

The Yukawa Lagrangian of the model is given by

LY = yd Ψc
10H5 Ψ5 + yu Ψc

10H5 Ψ10 +
2∑

a=1
Y(a) Ψc

5 Φ(a)
10 Ψ5 + h.c. , (4.9)

where (Ψ5 + Ψ10) corresponds to a single generation of SM fermions and there is an im-
plicit sum over generations. Other Yukawa terms in this Lagrangian are forbidden by the

3In this case, for example, a potential of the form m2Φ2
24 + λ′Tr

(
[Σ24,Φ24]2

)
, with 〈Σ24〉 =

V diag(2, 2, 2,−3,−3), can give GUT scale masses to the rest of the Φ24 while the octet/triplet are tuned
to be light with m38 = m.
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U(1)PQ symmetry, which will be discussed in Sec. 4.2.4. When considering the low energy
phenomenology, we will be particularly interested in the couplings of the light LQ states
∆a (with a = 1, 2),

LY ⊃
2∑

a=1
Y

(a)
ij εαβ d̄Ri∆β

aL
α
j + h.c.

=
2∑

a=1
Y

(a)
ij d̄Ri

[
∆(−1/3)
a νLj −∆(2/3)

a `Lj
]

+ h.c. ,
(4.10)

where α, β are SU(2) indices, Y(a) are two generic 3×3 complex matrices, and ∆a are mass
eigenstates satisfying m∆1 ≤ m∆2 . In the second line we decompose the weak doublets
in terms of the fields ∆(−1/3)

a and ∆(2/3)
a , where the superscripts denote the corresponding

electric charge. Notice that the matrices Y(a) should be anti-symmetric in flavour indices if
dRj and LLj belong to the same SU(5) multiplet 5. However, this is not always the case as
suggested by the violation of the GUT relations md = me and ms = mµ [241]. Finally, one
can also read the Yukawa interactions of the two Higgs doublets from the first two terms
in Eq. (4.9), which coincide with the couplings of a type-II 2HDM.

4.2.2 RGE equations
The two-loop renormalisation group equations (RGEs) for the gauge couplings take the
form [242]

µ
dgi
dµ

= bi g
3
i

16π2 + g3
i

(16π2)2

 3∑
j=1

Bij g
2
j

 , (4.11)

where the relevant coefficients bi, Bij, are given above each mass threshold by

bi =


41
10

−19
6

−7

+ Θ(µ−mH)


1
10
1
6

0

+ 2Θ(µ−m∆)


1
30
1
2
1
3

+ Θ(µ−m38)


0
2
3

1

 , (4.12)

and

Bij =


199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26

+ Θ(µ−mH)


9
50

9
10 0

3
10

13
6 0

0 0 0

+ 2 Θ(µ−m∆)


1

150
3
10

8
15

1
10

13
2 8

1
15 3 22

3



+Θ(µ−m38)


0 0 0
0 56

3 0
0 0 42

 ,

(4.13)

where mH is the mass of the second Higgs doublet, m∆ is the mass of the two light LQs and
m38 is the mass of the states (8,1)0 and (1,3)0, as defined previously. We have assumed two
mass degenerate LQs in Eqs. (4.12) and (4.13). The extension of these expressions to the
non-degenerate case is straightforward. There are also two-loop contributions proportional
to g3

i Tr(y†y). However, even in the case of the top quark Yukawa, these do not have a
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significant impact due to their smaller numerical coefficients. We therefore neglect them in
order to avoid introducing dependence on tan β. We use the following values for the SM
parameters, defined at µ = mZ in the MS scheme [22]:

α3(mZ) = 0.1181± 0.0011 ,

α−1
em(mZ) = 127.950± 0.017 ,

sin2 θW (mZ) = 0.23129± 0.00005 .

(4.14)

Taking the mass of the second Higgs doublet to be mH = 3 TeV, along with the light LQ
masses m∆1 = m∆2 = 3 TeV, and the triplet-octet mass m38 = 10 TeV then leads to
unification at a scale ΛGUT = 1.2× 1016 GeV, as shown in Fig. 4.3.

Figure 4.3: Running coupling constants with mH = m∆1 = m∆2 = 3 TeV and m38 = 10 TeV.
See text for details.

4.2.3 Scan of parameters
To fully explore the viable parameter space of the model, we performed a random scan over
the masses in the ranges

m∆1 , m∆2 ∈
[
400, 107

]
GeV, mH ∈

[
480, 107

]
GeV, m38 ∈

[
103, 1016

]
GeV, (4.15)

using logarithmic priors. The lower bound on the mass of the second Higgs doublet is
motivated by constraints on the charged Higgs mass from B → Xsγ [193], while the LQs
are constrained by direct searches, to be discussed in Sec. 4.4. The model parameters for
which unification is achieved (within 2σ uncertainties on the gauge couplings) are shown in
Fig. 4.4. From the left panel, it is evident that unification leads to an upper limit on the
mass of the lightest LQ, ∆1. This is attained for degenerate LQ masses, m∆1 = m∆2 , and
when mH takes its minimum value. This case is shown by the red shaded band in Ref. 4.4.
We therefore find that unification requires at least one LQ to have a mass below . 16 TeV.
Furthermore, it is clear from the right panel of Fig. 4.4 that the second LQ, ∆2, cannot be
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arbitrarily heavy. The upper limit on m∆2 is determined by the minimal allowed values for
m∆1 and mH , which are constrained by experiment. Finally, note that the scale of gauge
coupling unification ΛGUT, denoted by the colour of the points, is strongly correlated with
m38 and only mildly sensitive to the other mass thresholds.

Figure 4.4: Regions of parameter space in which unification is obtained. The (green, blue)
points correspond to a unification scale ΛGUT > (5× 1015, 1016) GeV, respectively, while the grey
points satisfy ΛGUT < 5×1015 GeV. The dark (light) red shaded band shows the region where the
couplings unify at 1σ (2σ) in the case of degenerate LQ masses, m∆1 = m∆2 , and mH = 480 GeV.

Let us now comment on the minimal case, where the 24-plet is instead described by
a real scalar containing a single triplet and single octet degree of freedom. Repeating the
above analysis, we find results qualitatively similar to those shown in Fig. 4.4. However,
in this case the upper bound on the lightest leptoquark mass becomes stronger, giving
m∆1 . 5 TeV. Perhaps more interestingly, the unification scale is now restricted to lie below
4× 1015 GeV. While still consistent with existing bounds on the proton lifetime, this lower
unification scale could potentially lead to observable proton decay at future experiments,
such as Hyper Kamiokande [243].

4.2.4 Unification scale and proton decay
Even in cases where the unification scale is beyond 1016 GeV, this model has a potentially
disastrous problem due to rapid proton decay. This is because in addition to the usual
dimension-6 operators obtained by integrating out the X and Y SU(5) gauge bosons, the
light LQs (3,2)1/6 can also mediate the proton decay, as discussed in the previous Section.
This occurs via the following terms in the scalar potential

L ⊃ λ′H5 Φ10Φ10Φ10 + λ′′H∗5 Φ10Φ10Φ10 + h.c. , (4.16)
⊃ λ εijk ∆a∆b∆cH + h.c. ,

where i, j, k are colour indices and we omitted SU(2) indices. Proton decay then proceeds
via the 5-body decay p→ π+π+e−νν [244]. Although this decay corresponds to a dimension-
9 operator, it might still be problematic as the suppression scale is only m∆ ∼TeV.
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This proton decay channel was not originally identified, but was subsequently believed
to be a strong reason to disfavour this model [8]. However, we wish to point out that the
terms in Eq. (4.16) can be forbidden by imposing a U(1)PQ symmetry. Such a symmetry
has additional motivation in the context of the strong CP problem and was originally
considered as motivation for introducing the additional 5 Higgs. By choosing the U(1)PQ
charge assignments

Q(H5) = Q(H5) = Q(Φ(a)
10 ) = −2 , (4.17)

we clearly forbid the dangerous terms. The assignment Q = 1 for the left-handed quarks
and leptons (Ψ5 + Ψ10)L, then ensures the Yukawa terms in Eq. (4.9) are allowed by the
symmetry. After PQ symmetry breaking, the terms in Eq. (4.16) will be generated by
higher dimension operators, suppressed by Λ2

PQ/M
2
Pl ∼ 10−18 − 10−12. Substituting this

value for λ into Eq. (4.6), it is clear that the proton remains sufficiently long-lived to satisfy
the existing bounds. It would however be interesting to perform a dedicated search sensitive
to decays p→ π+π+e−νν, as this could be expected to improve the current limit by several
orders of magnitude.

Of course, proton decay can still proceed via the usual dimension-6 operators and ex-
perimental bounds on the proton lifetime can then be used to place a lower bound on the
unification scale. Focusing on the decay channel p→ π0e+, the partial width is given by

Γ
(
p→ π0e+

)
= mp

8π A
2
(

gGUT√
2mX,Y

)4 ( ∣∣∣c(ec, d) 〈π0|(ud)LuR|p〉
∣∣∣2 +

∣∣∣c(e, dc) 〈π0|(ud)RuL|p〉
∣∣∣2 ) ,

(4.18)
where gGUT is the unified coupling evaluated at the mass of the X and Y gauge bosons,
mX,Y . The coefficients c(ec, d) and c(e, dc) depend on the fermion mixing matrices and
are defined in Ref. [245]. Finally, the factor A accounts for running of the four-fermion
operators from mX,Y down to ≈ GeV and is given by

A = AQCD

(
α3(mZ)
α3(m∆)

) 2
7
(
α3(m∆)
α3(m38)

) 6
19
(
α3(m38)
α3(mX,Y )

) 6
16

, (4.19)

where AQCD ≈ 1.2 includes the effect of running from mZ to Q ≈ 2.3 GeV, and the light
LQs are assumed to be degenerate in mass. For the hadronic matrix elements we use the
lattice determined values from Ref. [246], which gives 〈π0|(ud)RuL|p〉 = 〈π0|(ud)LuR|p〉 =
0.103(41).

In Fig. (4.5) we again plot the results of the parameter scan, showing the scale of uni-
fication ΛGUT, for different octet/triplet masses. Notice once again that the unification
scale is only mildly dependent of the masses of the LQs and second Higgs doublet. Fur-
thermore, for octet masses close to the LHC lower bound of 1.5 TeV [247], the unification
scale can be pushed all the way up to ∼ 2 × 1016 GeV. The dashed line shows the lower
bound on the unification scale derived from the Super Kamiokande limit on the proton
lifetime, τ(p → π0e+) > 1.29 × 1034 years [248]. For simplicity, we have neglected pos-
sible threshold corrections from fermions and scalars with masses near mX,Y , such that
ΛGUT = e−1/21mX,Y ' 0.95mX,Y .

Fig. 4.5 suggests that triplet/octet masses below ≈ 1010 GeV are required in order
to satisfy the bounds from Super Kamiokande. However, it should be noted that the
precise bound on mX,Y also depends upon the details of the model at the GUT scale.
This dependence is contained in the coefficients c(ec, d) and c(e, dc), which take the values
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4.2. A concrete SU(5) realization with light leptoquarks

Figure 4.5: Unification scale as a function of the octet/triplet mass. The grey (blue) points
correspond to a real (complex) octet and triplet. The dashed line shows the bound from Super
Kamiokande (τp > 1.29× 1034 years at 90% CL.) [238], assuming c(ec, d) = 2 and c(e, dc) = 1. In
evaluating (4.18) we have used the same masses as 4.3, however both the value of gGUT and the
factor A defined in (4.19) are approximately constant across the parameter space.

c(ec, d) = 2 and c(e, dc) = 1 in the Georgi-Glashow model. These particular values also yield
the maximum partial width in Eq. (4.18) that is consistent with unitarity of the fermion
mixing matrices. However, at the very least we know that the relation YD = Y T

E for the
Yukawa matrices must be broken, which leads to some freedom in the mixing matrices.
This issue was investigated in detail in [249], where it was shown that it is possible to
forbid the decay p → π0e+, along with all decays into a meson and anti-neutrinos. The
leading decay mode is then into second generation fermions, p→ K0µ+, and is suppressed
by the CKM angle sin2 θ13. The bound on this decay channel from Super Kamiokande is
1.6 × 1033 years, which leads to the most conservative bound on the mass of heavy gauge
bosons mX,Y & 7.4× 1013 GeV.

Finally, we comment on the low and high energy signatures of the light LQ states.
The LHC constraints on LQ masses are very model dependent, since they depend on the
couplings to fermions, which are free parameters in the Yukawa Lagrangian (4.9). By
reinterpreting the bounds from the direct searches, one can show that LQs as light as
≈ 400 GeV are still allowed by current data [229]. We will overview the current status of
the LHC searches for LQs in Sec. 4.4. Furthermore, the couplings to fermions in (4.10)
can induce signatures in several low-energy observables provided these are non-negligible.
Among the interesting signatures, the light LQs can induce sizable contributions to ∆F = 1
processes, such as B → K(∗)`` (` = e, µ, τ) and B → K(∗)νν, and to several LFV processes,
such as τ → µφ and B → Kµτ , which are being studied experimentally [155].

The model presented above served as a illustration of a viable unification scenario with
light LQs. The novelty of this model is that unification implies that the lightest LQ must
have a mass in the range ≈ 0.4− 16 TeV. This unification scenario is therefore of particular
interest as the LQs may be within reach of current and/or future experiments. In the
following Sections, we will leave aside the unification scenarios and consider the LQ states
in a model independent approach. Our focus will be their phenomenology at low-energies.
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4.3 Specific leptoquark states
In this Section, we describe in details the models containing the LQ states that will be used
in the following Sections, and we derive the corresponding effective Lagrangians which will
be relevant for the low-energy phenomenology.

◦ R2 = (3,2)7/6:
We start our discussion in the scenario with a LQ state transforming under the SM gauge
group as (3,2)7/6. The relevant Lagrangian for this model reads,

L∆(7/6) = (yR)ijQ̄i∆(7/6)`Rj + (yL)ijūRi∆̃
(7/6) †

Lj + h.c.

= (V yR)ijūLi`Rj ∆(5/3) + (yR)ij d̄Li`Rj ∆(2/3)

+ (yLU)ijūRiνLj∆(2/3) − (yL)ijūRi`Lj∆(5/3) + h.c. ,

(4.20)

where yL(R) denote the Yukawa coupling matrices and ∆̃ = iσ2∆∗ is the conjugate
SU(2)L doublet. Color indices are omitted for simplicity. In the second line we decom-
pose the weak doublet in terms of the fields ∆(5/3) and ∆(2/3), where the superscripts refer
to the electric charge of the two mass degenerate LQ states, m∆ ≡ m∆(5/3) = m∆(2/3) . 4

To determine the effective Lagrangian, we write the full Lagrangian of our model 5

L = LSM + L∆(7/6) +
(
Dµ∆(7/6)

)† (
Dµ∆(7/6)

)
−m2

∆∆(7/6) †∆(7/6) . (4.21)

By integrating out the heavy LQ fields, we obtain

∂L
∂∆ = −m2

∆∆† + ∂L∆(7/6)

∂∆ = 0 , (4.22)

where for shortness we use ∆ ≡ ∆(7/6). The derivative appearing in the above equation
reads

∂L∆(7/6)

∂∆α

= (yR)ijQ̄i,α`Rj + (yL)ijūRiLj,β εβα , (4.23)

where we have explicitly written the SU(2) indexes α, β = 1, 2. Moreover, εij denotes
the total anti-symmetric tensor with convention ε12 = −ε21 = +1. The replacement of
Eq. (4.23) in Eq. (4.22) after neglecting the kinetic terms allow us to obtain the effective
Lagrangian in a gauge invariant form 6

L(7/6)
eff =

(yR)ij(yR)∗i′j′
m2

∆

(
Q̄i,α`Rj

) (¯̀
Rj′Qi′,α

)
+

(yL)ij(yL)∗i′j′
m2

∆

(
L̄j′αuRi′

)
(ūRiLj,α)

4Note that the electroweak oblique corrections do not allow for large splittings between the two states
of the doublet [8, 250,251].

5In principle, the quartic couplings to the Higgs doublet such as (∆†∆)(H†H) should also be included
in the Lagrangian. We will neglect these terms since they play no role in the phenomenology that we are
considering.

6This result for the effective Lagrangian can be more rigorously obtained by integrating-out the LQs in
the path integral approach.
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+
[

(yR)ij(yL)∗i′j′
m2

∆
εαβ

(
Q̄i,α`Rj

) (
L̄j′,αuRi′

)
+ h.c.

]
. (4.24)

One can then use the Fierz rearrangement for anti-commuting fields to write the effective
Lagrangian as

L(7/6)
eff = L(7/6)

d→d′``′ + L
(7/6)
u→u′``′ + L

(7/6)
d→u``′ + L

(7/6)
u→u′νν′ , (4.25)

where the terms contributing to neutral currents read

L(7/6)
d→d′``′ = −

(yR)ij(yR)∗i′j′
2m2

∆

(
d̄iγ

µPLdi′
) (¯̀

j′γµPR`j
)
, (4.26)

L(7/6)
u→u′νν′ = −

(yLU)i′j′(yLU)∗ij
2m2

∆
(ūiγµPRui′) (ν̄j′γµPLνj) , (4.27)

L(7/6)
u→u′``′ =

{
(yR)ij(yL)∗i′j′

2m2
∆

[
(ūiPRui′)

(¯̀
j′PR`j

)
+ 1

4 (ūiσµνPRui′)
(¯̀
j′σ

µνPR`j
) ]

+ h.c.
}

−
(yR)ij(yR)∗i′j′

2m2
∆

(ūiγµPLui′)
(¯̀
j′γµPR`j

)
−

(yL)ij(yL)∗i′j′
2m2

∆
(ūiγµPRui′)

(¯̀
j′γµPL`j

)
.

(4.28)

Similarly, the contribution to charged currents reads

L(7/6)
d→u``′ =

(yR)ij(yLU)∗i′j′
2m2

∆

[ (
d̄iPRui′

)
(ν̄j′PR`j) + 1

4
(
d̄iσµνPRui′

)
(ν̄j′σµνPR`j)

]
+ h.c. .

(4.29)

From Eq. (4.26), one can see that the only non-zero Wilson coefficients, relevant to
b→ s`−1 `

+
2 , are

C`1`2
9 = C`1`2

10 = − πv2

2VtbV ∗tsαem

(yR)s`1(yR)∗b`2
m2

∆
, (4.30)

which correspond to the chirality non-flipped operators in Eq. (2.54). The operators
appearing in Eq. 4.29 can contribute significantly to the transition b → cτν, which
will be discussed in Sec. 5.3. The other contributions turn out to be less relevant for
phenomenology because there are few experimental results for the transitions u→ u′``′

and u→ u′νν ′, the only exception being the strong experimental limits B(D0 → µµ) <
6.2× 10−9 and B(D+ → π+µµ) < 7.3× 10−8 [252,253].

◦ R̃2 = (3,2)1/6:
The model containing the state (3,2)1/6 was originally proposed as a viable explanation
of Rexp

K < RSM
K in Ref. [118]. The Yukawa Lagrangian reads,
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L∆(1/6) = (yL)ij d̄Ri∆̃
(1/6)†

Lj + h.c.
= (yLU)ij d̄iPLνj ∆(−1/3) − (yL)ij d̄iPL`j ∆(2/3) + h.c. ,

(4.31)

where yL is a generic matrix of couplings. 7 In the second line we explicitly write the
terms with ∆(−1/3) and ∆(2/3) where the superscripts refer to the electric charge of the
Y = 1/6 LQ states. As before, the masses of the two physical states are assumed to
be equal for simplicity, m∆(2/3) = m∆(−1/3) ≡ m∆. Notice also that we have neglected
the possibility of having RH neutrinos when writing Eq. (4.31). The latter case will be
discussed in Sec. 5.3 along with the models proposed to simultaneously explain RK(∗)

and RD(∗) .
The effective Lagrangian for this model can be deduced in the same way as in the
discussion above. We obtained

L(1/6)
eff =

(yL)ij(yL)∗i′j′
m2

∆

(
d̄RiLj,α

) (
L̄j′,αdRi′

)
, (4.32)

which can be rewritten as

L(1/6)
eff =−

(yL)ij(yL)∗i′j′
2m2

∆

(
d̄iγ

µPRdi′
) (¯̀

j′γµPL`j
)

+
(yLU)ij(yLU)∗i′j′

2m2
∆

(
d̄iγ

µPRdi′
)

(ν̄j′γµPLνj) .
(4.33)

From this equation, one can identify the chirality flipped operators from the b→ s`−1 `
+
2

effective Hamiltonian (2.54), with the corresponding Wilson coefficients given by

(
C`1`2

9

)′
= −

(
C`1`2

10

)′
= − πv2

2VtbV ∗tsαem

(yL)s`1(yL)∗b`2
m2

∆
. (4.34)

The phenomenology of this scenario will be discussed as a particular case of the model
introduced in Sec. 5.3.

◦ S1 = (3̄,1)1/3:
Being an electroweak singlet, this scalar LQ model is the simplest one. Its Lagrangian
is given by,

L∆(1/3) ⊃ (yL)ijQC
i iτ2Lj∆(1/3) + (yR)ijuCRi`Rj∆(1/3) + h.c.

= ∆(1/3)
[
(V ∗yL)ijuCi PL`j − (yL)ijdCi PLνj + (yR)ijuCi PR`j

]
+ h.c. ,

(4.35)

where the superscript C stands for the charge conjugation, which is defined as ΨC ≡
γ0CΨ∗ with C = iγ2γ0. 8 In addition to terms shown in (4.35) one can also write terms
involving diquarks, namely,
7The matrix yL should not be confused with the one appearing in Eq. (4.20).
8It should be clear that yL,R in Eq. (4.35) are entirely different couplings from those appearing in

Eq. (4.31) or in Eq. (4.20).
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L∆(1/3) ⊃ (zL)ijQC
L i,αQLjβ∆(1/3) ∗εαβ + (zR)ijuCRidRj∆(1/3) ∗εαβ + h.c. , (4.36)

which are manifestly gauge invariant. These terms violate baryon and lepton number
if they coexist with the ones present in (4.35). To avoid a conflict with the stringent
proton decay bounds those couplings must be negligibly small. If we neglect the diquark
couplings, the effective Lagrangian of this model becomes

L(1/3)
eff = L(1/3)

d→u``′ + L
(1/3)
d→d′νν′ + L

(1/3)
u→u′``′ , (4.37)

where the different terms are given by

L(1/3)
d→u``′ = −

(yL)ij(yL)∗i′j′
2m2

∆
(ui′γµPLdi)

(
`j′γ

µPLνj
)

(4.38)

+
(yL)ij(yR)∗i′j′

2m2
∆

[
(ui′PLdi)

(
`j′PLνj

)
− 1

4 (ui′σµνPLdi)
(
`j′σ

µνPLνj
) ]

+ h.c. ,

L(1/3)
d→d′νν′ =

(yL)ij(yL)∗i′j′
2m2

∆

(
di′γ

µPLdi
)

(νj′γµPLνj) , (4.39)

and

L(1/3)
u→u′``′ =

(V ∗yL)ij(V ∗yL)∗i′j′
2m2

∆
(ui′γµPLui)

(
`j′γ

µPL`j
)

+
(yR)ij(yR)∗i′j′

2m2
∆

(ui′γµPRui)
(
`j′γ

µPR`j
)

(4.40)

−
{

(yR)ij(V ∗yL)∗i′j′
2m2

∆

[
(ui′PRui)

(
`j′PR`j

)
− 1

4 (ui′σµνPRui)
(
`j′σ

µνPR`j
) ]

+ h.c.
}
.

In deriving these equations we have used the Fierz identity and the following fermion
conjugation properties

ψCPLφ
C = φPLψ ,

ψCγµPLφ
C = −φγµPRψ ,

ψCσµνPLφ
C = −φσµνPLψ ,

(4.41)

where ψ ≡ ψ(x) and φ ≡ φ(x) stand for generic (anti-commuting) fermionic fields.
Finally, notice that this LQ does not contribute to the transition b→ s`−1 `

+
2 at tree-level.

The b→ s`` Wilson coefficients appear only at one-loop level via box diagrams with LQs
running in the loop [254, 255]. The phenomenology of this scenario will be discussed in
Sec. 5.2.4.
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Remarks on sign “ambiguity” in deriving Leff

Before moving to the next Section, let us comment on a subtle point regarding the derivation
of Leff in models with leptoquark states. As we are going to show, one should be careful
when computing the effective Lagrangian by using Feynman rules to account for an extra
minus sign coming from the anti-commutation of the operators.

To illustrate this issue, let us consider the model (3,2)7/6 and derive the effective La-
grangian for b→ s`1`2 by using Feynman rules instead of the approach describe above. The
Feynman rule needed to this computation is given by

∆(2/3)

di

ℓ+j

i(yR)ijPR .

The amplitude for the process b(pb)→ s(ps)`−1 (p1)`+
2 (p2) is then given by 9

M(b→ s`−1 `
+
2 ) = i(yR)∗s`2 [ūs(ps)PRv`2(p2)] i

q2 −m2
∆
i(yR)b`1 [ū`1(p1)PLub(pb)]

≈ i
(yR)b`1(yR)∗s`2

m2
∆

[ūs(ps)PRv`2(p2)] [ū`1(p1)PLub(pb)]

= i
(yR)b`1(yR)∗s`2

2m2
∆

[ūs(ps)γµPLub(pb)] [ū`1(p1)γµPRv`2(p2)] ,

(4.42)

where the Fierz identity for spinors was used in the last line, cf. Appendix A.1. By com-
paring this equation with the Lagrangian (4.26), we realize that Eq. (4.26) would generate
an amplitude with a different sign. We will show in the following that the missing minus
sign in the computation we just described comes from the anti-commutation of the fermion
fields and from the choice of asymptotic states, which must be specified in this type of
computation.

To elucidate this apparent paradox, let us compute the S-matrix for the following effec-
tive operator

O = (s̄γµPLb)( ¯̀1γµPR`2) . (4.43)
We define the fermionic fields in terms of creation (annihilation) operators as

ψ(x) =
∫ d3~p√

(2π)32Ep

∑
σ

[
a(p, σ)u(p, σ)e−ip·x + b(p, σ)†v(p, σ)eip·x

]
, (4.44)

where σ denotes the spin of the field. In the following, we will omit the σ dependence on
the spinors and operators to simplify our notation. To compute the S-matrix, we will adopt

9For simplicity we will write spinors for the quark fields. It should be clear that this computation
is just an illustration and that one should appropriately treat the hadronic matrix element in a realistic
computation.
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the following convention for the asymptotic states

|b〉 ≡
√

2Epba
†
b(pb)|0〉 , (4.45)

and

〈`+
2 (p2)`−1 (p1)s(ps)|≡ 〈0|b`2(p2)a`1(p1)as(ps)

√
2Eps2Ep12Ep2 , (4.46)

where the subscript in the operators denote the type of fermion we are considering. Note
that a different ordering of the fermionic operators could lead to a different (global) sign of
the amplitudes. By using these conventions, the S-matrix at leading order reads

Sfi = 〈`+
2 (p2)`−1 (p1)s(ps)|

∫
d4x i : (s̄γµPLb)( ¯̀1γµPR`2) : |b(pb)〉 , (4.47)

where : O : denotes the normal ordering of the operator. By replacing the fermion fields,
one can show that

Sfi = i
∫

d4x
4∏
i=1

∫ d3~ki√
(2π)32Eki

∑
σi

√
2Epb2Eps2Ep12Ep2

× 〈0|b`2(p2)a`1(p1)as(ps) :
[
a†s(k1)ūs(k1)eik1·x

]
γµPL

[
ab(k2)ub(k2)e−ik2·x

]
[
a†`1(k3)ū`1(k3)eik3·x

]
γµPR

[
b†`2(k4)v`2(k4)eik4·x

]
: a†b(pb)|0〉 ,

(4.48)

which gives, after integration and contracting the fermionic operators,

Sfi = i(2π)4δ(pb − ps − p`1 − p`2) [ūs(ps)γµPLub(pb)][ū`1(p1)γµPRv`2(p2)] . (4.49)

This is the result we expected. Note that our choice of initial states was such that no addi-
tional sign due to the anti-commutation of the creation (annihilation) operators appeared.

Let us perform now the same computation but after applying the Fierz transformation
to the operator O. In this case, we can write

O = (s̄γµPLb)( ¯̀1γµPR`2) = −2(s̄PR`2)( ¯̀1PLb) . (4.50)
The corresponding S-matrix is then given by

Sfi = −2〈`+
2 (p2)`−1 (p1)s(ps)|

∫
d4x i : (s̄PR`2)( ¯̀1PLb) : |b(pb)〉

= −2i
∫

d4x
4∏
i=1

∫ d3~ki√
(2π)32Eki

∑
σi

√
2Epb2Eps2Ep12Ep2

× 〈0|b`2(p2)a`1(p1)as(ps) :
[
a†s(k1)ūs(k1)eik1·x

]
PR

[
b†`2(k4)v`2(k4)eik4·x

]
[
a†`1(k3)ū`1(k3)eik3·x

]
PL

[
ab(k2)ub(k2)e−ik2·x

]
: a†b(pb)|0〉 .

(4.51)

To simplify this equation it is necessary necessary to permute the anti-commuting fields,
which generates an extra minus sign in the final result:
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〈0|b`2(p2)a`1(p1)as(ps) :
[
a†s(k1)b†`2(k4)a†`1(k3)ab(k2)

]
: a†b(pb)|0〉

= −(2π)6δ(3)(ps − k1)δ(3)(pb − k2)δ(3)(p1 − k3)δ(3)(p2 − k4) .
(4.52)

Therefore, the final result is

Sfi = i(2π)4δ(pb − ps − p`1 − p`2) 2[ūs(ps)PRv`2(p2)][ū`1(p1)PLub(pb)] . (4.53)

where an extra minus sign appears due to the definition of the asymptotic states. This result
coincides with Eq. (4.49) after performing the Fierz transformation for spinors, cf. Appendix
A.1.

The conclusion of this exercise is that one should be careful when matching operators
with amplitudes where the fermion ordering is different, since an extra sign due to the anti-
commutation of the fields appears. To be more explicit, in order to match operators of the
type (ψ1Γψ2)(ψ3Γψ4) onto amplitudes of the type (ūψ1Γuψ4)(ūψ3Γuψ2), one should add an
extra sign coming from the choice of the final states. An unambiguous way of avoiding this
issue is to perform the Fierz at the operator level and then match the amplitudes, which
have now the same ordering of the fermion fields.

4.4 Direct searches at the LHC
In this Section, we summarize the status of direct searches for LQs performed by CMS
and ATLAS by using data collected at

√
s = 13 TeV. For LQs with perturbative Yukawa

couplings, the dominant production mechanism at the LHC is pair production via gluon-
gluon fusion processes, gg → ∆∆, which are fully determined by the strong interactions
and by the LQ mass m∆. In particular, the pair production rates are independent of the
Yukawa couplings of the LQ states. The branching ratio of a LQ decay into a lepton and
a quark is the only model dependent quantity that needs to be estimated. In practice, the
experimental searches can set limit limits on the products

σ(gg → ∆∆)× B(∆(Q) → quark + lepton)2 , (4.54)
where Q ∈ {−1/3, 2/3, 5/3} denotes the LQ charge, which fixes the possible quarks (up-
type or down-type quarks) and leptons (ν or ` = e, µ, τ) in the final state. 10 Therefore, for
a given LQ branching ratio, which depends on the Yukawa structure of the model, one can
directly determine a lower bound on the LQ mass from the experimental limit.

We will focus on a pair of LQs decaying mostly to second and third generation fermions,
since the LQ couplings to the first generation are already highly constrained by several low
energy observables, such as atomic parity violation [8] and the kaon physics observables,
which include B(K → µν) and limits on B(K+ → π+νν̄) [22]. As a curiosity, we quote
the lower bounds on first and second generation LQs obtained by ATLAS [256] and CMS
[257, 258], which give m∆ & 1130(1165) GeV, assuming a 100% branching ratio ∆(2/3) →
eq(µq), where q = d, s. These bounds are considerably smaller if the LQ states decay
into heavier fermions, since the corresponding searches have a much smaller sensitivity. In
the case of third generation LQs, the CMS collaboration released improved bounds on LQs

10In principle, one can search for a pair of LQs decaying into a distinct quark-lepton pair. However, most
of the experimental limits derived so far focus on a pair of LQs decaying into the same final state.
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decaying into bτ , obtaining a lower bound on the LQ mass of 900 GeV, with the assumption
B(∆(2/3) → bτ) = 1 [259, 260]. Searches with third-generation quarks and neutrinos in the
final state have much weaker bounds. By assuming again 100% branching ratios for the
decay channels ∆(−1/3) → bν and ∆(2/3) → tν, the ATLAS collaboration obtained the limits
m∆ < 625 GeV and m∆ < 640 GeV, respectively [261]. Similarly, CMS excludes LQs
decaying into tτ with masses m∆ > 685 GeV if B(∆(−1/3) → tτ) = 1 [262]. Note that, with
the exception of Ref. [260], these searches currently only make use of the 2015 dataset and
we can therefore expect these bounds to improve in the near future, using the significantly
greater integrated luminosity collected in 2016.

In most realistic scenarios, the limits quoted above must be reinterpreted to account
for LQ branching ratios smaller than one. The exclusions on m∆ for different branching
ratios are shown in Fig. 4.6 for the decays ∆(2/3) → τb, ∆(2/3) → τν, ∆(−1/3) → bν and
∆(−1/3) → tτ , where we see that the upper bounds on m∆ drop considerably for branching
ratios smaller than ≈ 50%. One should have in mind that branching ratios of O(50%) can
appear even in the scenarios with only one non-vanishing Yukawa coupling. For instance, in
the scenario where a doublet LQ couples to a doublet of leptons, the couplings contributing
to B(∆(2/3) → τb) and B(∆(−1/3) → bν) are related by gauge invariance, giving comparable
contributions. In Sec. 5.3.3, we will give a concrete example in Sec. 5.3.3 where the bound
m∆ & 900 GeV coming from ∆(2/3) → bτ searches can be considerably lowered for the
complete model to m∆ & 600 GeV, while being consistent with other searches and indirect
constraints. The lesson from this exercise being that one should carefully reinterpret the
limits quoted by ATLAS and CMS for concrete scenarios, by using the rescaled limits similar
to the ones shown in Fig. 4.6.

Before closing this section, we should also mention that another possibility to probe LQ
contributions is to study the indirect LQ effects in the tails of the kinematic distributions
of pp→ ``, with ` = µ, τ . This strategy has been used to constraint four-fermion effective
operators of the form ``bb in Ref. [263, 264], which can then be translated on constraints
on LQ couplings. The constraints on LQs derived as of now are still very limited, but the
situation will change with more data accumulated at the LHC.
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Figure 4.6: Exclusions on m∆ as a function of the branching ratio of LQs decaying into ∆(2/3) →
τb, ∆(2/3) → tν, ∆(−1/3) → bν [260,261], and ∆(−1/3) → tτ [262].
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Chapter 5

Lepton flavor (universality) violation

Even though the direct searches at LHC did not unveil the NP particles, the B-physics
experiments at LHCb and at the B-factories point at very intriguing effects of lepton fla-
vor universality violation (LFUV). These discrepancies appeared in both the neutral and
the charged B meson semileptonic decays, and they cannot be accounted for by minimal
extensions of the SM. The observed pattern of deviations triggered a considerable interest
in the theory community since it could be a first manifestation of flavor breaking effects
emerging beyond the SM. The purpose of this Chapter is to critically review the theoretical
and experimental status of these anomalies and to describe the viable NP explanations
proposed thus far.

This Chapter is organized as follows: In Sec. 5.1, we define the relevant observables and
review the current status of these puzzles. In Sec. 5.2, we discuss the interpretation of the
LFUV puzzles in neutral currents by using an EFT approach, which is then matched onto
several concrete scenarios. Finally, we extend our discussion to the anomalies in tree-level
decays in Sec. 5.3, where we also comment on the attempts to simultaneously explain all
the LFUV hints.

5.1 Introduction
Lepton flavor universality (LFU) is an accidental symmetry of the SM gauge sector which
is broken in the Higgs sector by the Yukawa couplings. Experimental studies of LFU offer
then a fine test of validity of the SM, since most models of NP introduce additional LFU
breaking effects. Furthermore, the LFU ratios have the advantage that some of the hadronic
uncertainties and the dependence on the CKM matrix cancel out in these ratios, providing
theoretically clean observables.

The first LFU experimental tests of the SM started many years ago with pion, kaon and
τ leptonic decays. For instance, the following ratios of decays to different charged leptons
were mesured [22]

Rτ = B(τ → µνν̄)
B(τ → eνν̄) = 0.9762±0.0028 , and r`K = B(K → eν̄)

B(K → µν̄) = (2.488±0.009)×10−5 ,

(5.1)
which were found to be in quite a good agreement with the precise theoretical predictions
RSM
τ = (0.972559± 0.000005) [265] and r`, SM

K = (2.477± 0.001)× 10−5 [266,267], which will
be improved by NA62 and Belle-II in the near future.
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Despite the success of the SM in describing the observables based on the first two
generations of quarks, the couplings to the third generation were poorly constrained before
the advent of the B-factories and LHCb. These new experiments allowed us to measure
with great precision many transitions related to the b quark, where the LFU discrepancies
appeared in both the tree-level and loop-induced B meson semi-leptonic decays. More
specifically, the LHCb Collaboration measured the partial branching ratios of B+ → K+``
in the bin q2 ∈ [1, 6] GeV2 and found

RK = B(B+ → K+µµ)
B(B+ → K+ee)

∣∣∣∣∣
q2∈(1,6) GeV2

= 0.745±0.090
0.074 ±0.036, (5.2)

which lies 2.6σ below the the clean SM prediction RSM
K = 1.00(1) [13, 268]. The choice

of low values of q2 is wisely made to avoid the narrow charmonium resonances which are
notoriously non-perturbative and cannot be described by first principle computations. This
observation of LFUV was recently corroborated by the most recent LHCb results [12],

Rlow
K∗ =

B(B → K∗µµ)q2∈[0.045,1.1] GeV2

B(B → K∗ee)q2∈ [0.045,1.1]GeV2
= 0.660±0.110

0.070 ±0.024 ,

Rcentral
K∗ =

B(B → K∗µµ)q2∈[1.1,6] GeV2

B(B → K∗ee)q2∈[1.1,6] GeV2
= 0.685±0.113

0.069 ±0.047 , (5.3)

thus again ≈ (2.2 − 2.4)σ below the Standard Model (SM) prediction, as illustrated in
Fig. 5.1. When combined in the same fit, these results amount to a discrepancy with
respect to the SM at the 4σ level [269]. Since the hadronic uncertainties largely cancel out
in RK(∗) , if confirmed, these would be an unambiguous manifestation of NP. Nonetheless, it
should be stressed that the electron-channel measurement has a lower statistics and larger
bremsstrahlung effects in comparison to the muon channel. Therefore, the confirmation
from an independent experiment, which will be Belle-II, is mandatory before claiming that
these deviations are indeed NP effects.
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Figure 5.1: Experimental results of RK and RK∗ in the low and central q2 bin.

Another intriguing observation of LFUV comes from the tree-level decays based on
the transition b → cτν. The average of the experimental results from the B-factories
reads [71,73],
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5.1. Introduction

RD = B(B → Dτν)
B(B → Dlν)

∣∣∣∣∣
l=e,µ

= 0.41± 0.05 , (5.4)

where the average in the denominator is taken over the possible light lepton in the final
state. The theoretical situation of RD is different from RK(∗) , since the τ -lepton mass is
not negligible in comparison to the energy scale of this problem, mB. For this reason,
the hadronic uncertainties associated to the shape of the form factors do not fully cancel
out in the ratio (5.4) and it becomes necessary to reliably assess those by nonperturbative
methods. By solely relying on the lattice QCD data for both the vector and the scalar form
factors, recently presented in Ref. [16], we obtain RSM

D = 0.286± 0.012 which turns out to
be ≈ 2.5σ lower than the experimental measurement (5.4), as shown in the left panel of
Fig. 5.2. This result is corroborated by the experimentally established [14]

RD∗ = B(B → D∗τν)
B(B → D∗lν)

∣∣∣∣∣
l=e,µ

= 0.310± 0.015± 0.008 , (5.5)

which appears to be 3.3σ larger than the SM prediction, RSM
D∗ = 0.252 ± 0.003 [17], as

illustrated in the right panel of Fig. 5.2. Note, however, that the theoretical estimate of
RSM
D∗ relies strongly on experimental information extracted from the differential distribution

of dΓ(B → D∗`ν)/dq2 (with ` = e, µ) and on the validity of leading order Heavy Quark
Effective Theory (HQET) in evaluating the pseudoscalar form factors. The LQCD result
for the full set of B → D∗ form factors is still not available, and those are mandatory to
reliably predict RD∗ , as it will be discussed in Sec. 5.3. From the experimental point of
view, the combined fit of the anomalies indicates a ≈ 4σ deviation with respect to the SM.
However, the experimental situation is still not clear since Belle results for RD(∗) and the
most recent LHCb result for RD∗ agree with the quoted SM predictions. Since τ -leptons
are complicated objects to deal with in particle detectors, the final verdict on the b→ c`ν
anomalies will depend on the effort to reduce the experimental uncertainties and to have a
better understanding of the theoretical uncertainties. In particular, a very promising route
would be to focus on decays for which the hadronic uncertainties can be more easily tamed
by LQCD simulations, such as B(s) → D(s)`ν and Bc → ηc`ν. As discussed in Sec. 2.2.2,
the SM predictions for these decays depend only on two form factors which satisfy the
condition f+(0) = f0(0) at large-recoil, which is especially useful in constraining the slope
of f0(q2)/f+(q2).

Despite the intense theoretical effort to understand the b → c and b → s anomalies,
very few concrete and fully viable solutions have emerged so far. The main challenge
is to formulate a model which can explain these results while being consistent with the
plethora of flavor constraints and with the limits from the direct searches performed at
the LHC. Therefore, the theory community is at crossroads: (i) either one chooses to
introduce different sets of new particles to address the current anomalies, producing rather
complicated and sometimes even unappealing models, or (ii) one decides to focus on a subset
of deviations by renouncing to explain the others. We will prefer to adopt the minimalist
approach by following the latter route, since the experimental situation of theses anomalies
still needs further clarification.
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Figure 5.2: Experimental results for RD and RD∗ obtained by LHCb [74, 270], Babar [72] and
Belle [73,75,76] compared to the SM predictions [14,17].

5.2 Lepton flavor (universality) violation in b→ s`1`2

In this Section, we will focus onRK(∗) and discuss the implications if these hints of NP persist
in the future. We start our discussion with an effective description of the experimental
results in Sec. 5.2.1. In Sec. 5.2.2, we briefly overview the concrete models proposed in the
literature to explain the observed deviations. We focus then our discussion on leptoquark
models by exploring the possible tree-level solutions in Sec. 5.2.3 and the ones proposed at
loop-level in Sec. 5.2.4 and Sec. 5.2.5.

5.2.1 Effective description of the deviations
In this Section, we use a model independent approach to explore the consistency of the
observed deviations in RK(∗) with the established experimental data for the exclusive b →
sµµ processes. To that end we consider the effective Hamiltonian (2.54) and assume that
NP contributes only to the transition b → sµµ. In other words, we assume that the
NP contribution to the b → see effective coefficients are negligible. This assumption is
motivated by the observation that the measurement of B(B → Kµµ) in the high q2 bin was
found to be about 2σ lower than predicted, as discussed in Sec. 2.3. This small deviation is
consistent with the discrepancy found in RK if the deficit is coming from the muonic rate.

In the following, to simplify our notation we will denote the NP contribution to the
Wilson coefficients by simply Ci instead of δCi, as defined in Eq. (2.62). In other words,
the SM case corresponds to Ci = 0 ∀ i in our notation. We consider then two effective
NP scenarios: (i) in Scenario I we assume that C9 and C10 are the only non-zero Wilson
coefficients, while (ii) in Scenario II we consider the flipped coefficients (C9)′ and (C10)′
instead. The fit to the experimental data leads to stringent bounds on the Wilson coefficients
we are interested in, and ultimately provides RK,K∗ < 1 for some combinations of the Wilson
coefficients, as we shall see below.

Low-energy fits

In the first fit to the b → sµµ data, we use the two most reliable decay modes, as far as
hadronic uncertainties are concerned, namely Bs → µµ and B → Kµµ. More specifically,
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to compare the measured [130]

B(Bs → µ+µ−)exp = (3.0± 0.6+0.3
−0.2)× 10−9 , (5.6)

with theory, the only needed quantity is the decay constant fBs which has been computed by
many lattice QCD collaborations. The most recent average value is fBs = 224(5) MeV [77],
cf. Table 2.1. Similarly, the lattice QCD results for the B → K form factors have been
computed at large values of q2 by two collaborations [131,132]. Their results agree and can
be used to compare with the measured [116]

B(B → Kµ+µ−)exp
q2∈[15,22] GeV2 = (8.5± 0.3± 0.4)× 10−8 . (5.7)

We refer the reader to Sec. 2.3, where we provide a more extensive discussion about the
theoretical robustness of these observables. The result of this procedure will be called “Fit
A”. It is important to stress the difference between our approach and the usual global fits
considered in the literature, where observables for which the hadronic uncertainties are not
fully under control are also included in the fit [271, 272]. For instance, the form factors
needed to compute the amplitudes of B → K∗`+`− and Bs → φ∗`+`− in the low q2 bin
are not available from LQCD. The situation is even worse for some angular observables of
B → K∗µ+µ− which strongly depend on the unknown cc̄ contribution, as we will comment
on in the end of this Section. We prefer to choose a more conservative set of observables in
order to avoid a misinterpretation of hadronic errors as a signal of NP.

The results of our first fit are shown in Fig. 5.3 for both NP scenarios. The specific
realizations C(′)

9 = C
(′)
10 are disfavored by current data, while the scenarios with an opposite

sign, C(′)
9 = −C(′)

10 , can give a substantial improvement with respect to the SM. We obtained
from the one-dimensional fit to 2σ accuracy

C9 = −C10 ∈ (−0.70,−0.04)
∣∣∣∣∣
Fit A

, (5.8)

and

(C9)′ = −(C10)′ ∈ (−0.60, 0.03)
∣∣∣∣∣
Fit A

, (5.9)

where the predictions for B(B → K∗µµ)q2∈[15,22] GeV2 obtained with the form factors com-
puted in Ref. [131] and Ref. [132] were combined in average.

Another possibility is to, in addition to the above two quantities, also consider a few
“clean” quantities extracted from the study of the B → K∗µµ decay mode. In particular,
the measured [119]

B(B → K∗µ+µ−)exp
q2∈[15,19] GeV2 = (1.95± 0.16)× 10−7 (5.10)

can be combined with form factors computed on the lattice at large values of q2 [134].
Furthermore, the three observables obtained from the decay’s angular distribution, all three
depending only on the so-called transverse amplitudes, A‖,⊥(q2), with respect to the spin of
the on-shell K∗. These quantities, which also appear to be very mildly sensitive to hadronic
uncertainties [137], are known as A(2)

T , A(re)
T and A(im)

T , are translated into P1,2,3 in Ref. [273],
the notation also respected by the experimentalists. 1 More specifically,

1 Note that, P1 ≡ A(2)
T , P2 ≡ A(re)

T /2, P3 ≡ −A(im)
T /2, where we take into account the correct signs [156]

to correctly compare with experimental results.
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Figure 5.3: Regions in the plane (Cµµ9 , Cµµ10 ) (left panel) and ((Cµµ9 )′, (Cµµ10 ))′ (right panel) in
agreement with the experimental of B(Bs → µµ) and B(B+ → K+µµ)large q2 to 1σ (dark green)
and 2σ (light green) accuracy. The dashed lines correspond to the scenarios C9 = ±C10 and
(C9)′ = ±(C10)′.

P1 =

〈
|AL,R⊥ |2−|A

L,R
‖ |2

〉
〈
|AL,R⊥ |2+|AL,R‖ |2

〉 , P exp
1 = {0.08(25)low q2 ,−0.50(10)high q2},

P2 = −

〈
Re

[
AL⊥A

L ∗
‖ − AR⊥AR ∗‖

]〉
〈
|AL,R⊥ |2+|AL,R‖ |2

〉 , P exp
2 = {−0.16(7)low q2 , 0.36(3)high q2},

P3 =

〈
Im

[
AL⊥A

L ∗
‖ − AR⊥AR ∗‖

]〉
〈
|AL,R⊥ |2+|AL,R‖ |2

〉 , P exp
3 = {0.21(14)low q2 , 0.08(6)high q2}, (5.11)

where the full expressions for A‖,⊥ ≡ A‖,⊥(q2), in terms of form factors and Wilson co-
efficients, can be found eg. in Ref. [127]. In the above notation, 〈. . . 〉 means that the
numerator and denominator have been partially integrated over a specific window of q2.
The experimental values for P1,2,3 in two (wide) bins, corresponding to q2 ∈ [1.1, 6] GeV2

and q2 ∈ [15, 19] GeV2, which are referred to as “low q2” and “high q2”, are extracted from
Ref. [119]. Thus, from the fit in which we use

B(Bs → µµ), B(B → Kµµ)q2∈[15,22] GeV2 ,

B(B → K∗µµ)q2∈[15,19] GeV2 , (P1, P2, P3)low q2 , (P1, P2, P3)high q2 , (5.12)

to 2σ accuracy, which will be referred to as “Fit B”.
By using the second procedure, we obtained the following interval to 2σ accuracy for

the scenario C9 = −C10,

C9 = −C10 ∈ (−0.70,−0.16)
∣∣∣∣∣
Fit B

, (5.13)

which is in very good agreement with the result from Fit A, cf. Eq. (5.8). The two-
dimensional fit on the plane (C9, C10) is shown in Fig. 5.4, where we see again the preference
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for the combination C9 = −C10 over the combination with a plus sign. For the scenarios with
primed operators, we found that the NP cannot substantially improve the SM description
of data when the B → K∗ “clean” observables are also included in the fit. The reason
for that is that there is a ≈ 2σ discrepancy in (P2)low q2 which can only be explained by a
contribution to C9. Therefore, the Fit B seems to favor the scenarios with C9 and C10 over
the scenarios with primed operators. Notice, however, that any conclusion drawn from the
B → K∗ angular coefficients depends on the theoretical input for the cc̄ contributions to
C9, which is still not under full theoretical control. For instance, if the contributions of the
tails of the charmonia resonances to the bin q2 ∈ [1, 6] GeV2 are underestimated, then the
conclusions from Fit B would change. For this reason, the conclusions drawn from Fit A
are more robust than the ones obtained from Fit B. Nonetheless, as we are going to see,
the scenarios with primed operator cannot accommodate the LFUV ratios RK(∗) , for which
the unknown non-perturbative cc̄ contribution cancel out to a large extent.

Figure 5.4: Regions in the plane (Cµµ9 , Cµµ10 ) in agreement with the experimental of B(Bs → µµ),
B(B+ → K+µµ)large q2 and the B → K∗ angular observables discussed in the text to 1σ (dark
green) and 2σ (light green) accuracy. The dashed lines correspond to the scenarios C9 = ±C10.

Predictions for LFU ratios

We can then use the results for C9 = −C10 and (C9)′ = −(C10)′ obtained by the two fits
described above, and compute

RK(∗) =
B(B → K(∗)µµ)q2∈[q2

1 ,q
2
2 ]

B(B → K(∗)ee)q2∈[q2
1 ,q

2
2 ]
, (5.14)

by relying on the expressions given in our Refs. [127, 155], and for three separate intervals
in q2. To make the comparison with experiment easier we consider three intervals: q2 ∈
[0.045, 1.1] GeV2, [1.1, 6] GeV2 and [15, 19] GeV2 and call them low, central and large q2-bin,
respectively. 2 In Fig. (5.5), we plot RK and RK∗ in the central bin for the choices of Wilson

2The LHCb Collaboration considers q2 ∈ [1, 6] GeV2 instead of q2 ∈ [1.1, 6] GeV2 as the central bin for
RK , a choice that we also adopt. Notice, however, that the difference between the two is immaterial.
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coefficients favored by the clean observables B(Bs → µµ) and B(B → Kµµ)q2∈[15,22] GeV2 ,
i.e. C9 = −C10 and (C9)′ = −(C10)′. From this plot, it is clear that C9 = −C10 is the only
scenario which provides a reasonable explanation to both RK and RK∗ . This is corroborated
our second fit to which the somewhat clean B → K∗ angular observables are include, as
discussed above. For this reason, we will focus on this scenario in the following.
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Figure 5.5: Predictions for RK(∗) in the central q2 bin as a function of C9 = −C10 (left panel)
and (C9)′ = −(C10)′ (right panel). The thicker line correspond to the results from the fit A,
cf. Eqs. (5.8) and (5.9). See text for details.

In Fig. 5.6 we plot the resulting RK and RK∗ in the three q2 bins by relying only on
the effective theory and on the value of Cµµ

9 = −Cµµ
10 obtained from the fit with the data as

discussed above. We see that in the central bin our results are in very good agreement with
experiment, at the 1σ level, regardless of the Cµµ

9 value we use, Eq. (5.8) or (5.13). The
situation is not as favorable in the low q2-bin, in which the agreement between ours and the
measured values of RK∗ is not better than 1.5σ. This, however, is a very good agreement
too. Notice also that the low q2 bin is more sensitive to form factor uncertainties, since
dΓ/dq2 varies quickly near the muon threshold in a flavor non-universal way [13]. The
values shown in Fig. 5.6 are also listed in Tab. 5.1. The high q2 bin has not been explored
experimentally yet for RK and RK∗ , but it will serve as an additional test to the observed
anomalies. Another interesting measurement that would be very useful to corroborate this
picture is the measurement of RK in the low q2 bin, since a deviation larger than RK∗ is
expected in this case, as well as other ratios based on the b → s`` transitions, such as
Rφ = B(Bs → φµ+µ−)/B(Bs → φe+e−).

In conclusion, the scenario with effective coefficients C9 = −C10 is strongly favored
by current b → sµµ exclusive data. By making this minimal assumption for the effective
coefficients, one can use the most reliable data for the transition b→ s to determine these
coefficients and predict RK(∗) , which are in good agreement with the most recent LHCb
findings. We have also checked that this conclusion is corroborated by studies with more
observables which are not as safe as B(Bs → µµ) and B(B → Kµ+µ−)exp

q2∈[15,22] GeV2 from
the point of view of hadronic uncertainties. The other combinations of Wilson coefficients
are disfavored by the b → sµµ fits and/or cannot accommodate the deviations observed
by LHCb. In Section 5.2.2, we will discuss the specification realizations that have been
proposed to generate the allowed combination of Wilson coefficients to explain RK(∗) .
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Quantity Fit A Fit B

RK (low q2) [0.64, 0.96] [0.66, 0.91]

RK∗ (low q2) [0.83, 0.92] [0.84, 0.91]

RK (central q2) [0.66, 0.98] [0.69, 0.93]

RK∗ (central q2) [0.67, 0.98] [0.69, 0.93]

RK (high q2) [0.65, 0.98] [0.68, 0.93]

RK∗ (high q2) [0.64, 0.98] [0.67, 0.92]

Table 5.1: Intervals of RK and RK∗ obtained solely from the values for the Wilson coefficient
Cµµ9 = −Cµµ10 obtained from the Fit A [Eq. (5.8)] and Fit B [Eq. (5.13)], as discussed in the text.

Anomalies in B → K∗µ+µ− angular distributions?

Before closing this Section, we need to comment on the other discrepancies related to the
transition b → sµµ that have been reported in the past years. The most significant one
is the so-called P ′5(q2) observable proposed in Ref. [274] and constructed from the angular
distribution of the decay B → K∗µ+µ−,

P ′5(q2) = I5(q2)√
−4Ic2(q2)Is2(q2)

, (5.15)

where the angular coefficients Ii(q2) are defined in Eq. (2.127). The measurement of this
quantity in the interval q2 ∈ [4.3, 8.68] GeV2 by LHCb [157, 275] turned out to be about
4σ away from the SM prediction 〈P ′5〉SM

[4.3−8.68] = −0.90(5) [121, 276], a result that was also
confirmed by the Belle experiment [277]. Even though the experimental situation seems
to be under control, the theoretical prediction of P ′5 in these bins is the source of many
controversies which are mostly related to various sources of hadronic uncertainties. Most
importantly, the estimate of the cc̄ contribution to the b→ s transition is crucial in order to
reliably determine the SM predictions. Currently, there is no first principles computation
of these contributions, which are so far evaluated by QCD sum rules [278]. Interestingly,
the authors of Ref. [122] showed that the current discrepancies in P ′5 can be explained by
the unknown charm correction to the effective coefficient CSM

9 . Therefore, the question that
must be answered is if the needed contribution to C9 originates from underestimated charm
corrections or from NP. While the interpretation of these discrepancies remains subject of
controversies, it is nevertheless intriguing that these deviations can be accommodated by
the same NP scenarios needed to explain Rexp

K(∗) < RSM
K(∗) , which are largely independent on

hadronic uncertainties. 3

3We focused our discussion of RK(∗) on the choice of effective coefficients C9 = −C10 < 0, since these
appear naturally in several NP scenarios. Nonetheless, one can see from Figs. 5.3 and 5.4 that an explanation
relying only on C9 < 0 is equally possible, a choice which also predicts Rexp

K(∗) < RSM
K(∗) [269].
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Figure 5.6: Results for RK and RK∗ obtained solely from the values for the Wilson coefficient
Cµµ9 = −Cµµ10 obtained from the Fit A [Eq. (5.8)] and Fit B [Eq. (5.13)] as discussed in the text.
The shaded area correspond to the measured values to 1σ and 2σ, cf. Eqs. (5.2,5.3). The thick
dot corresponds to the SM result.

5.2.2 Proposed explanations of RK and RK∗

Several concrete models have been proposed to explain RK and RK∗ . The strategy usually
adopted is to introduce new heavy particles that generate the effective coefficients Cµµ

9 =
−Cµµ

10 or Cµµ
9 at low energies, after being integrated out. The great majority of these models

can be separated into two general classes: (i) models containing heavy neutral vector bosons
Z ′ or (ii) scenarios with light scalar or vector LQs.

In the first class of models, the Z ′ particle is considered to be the gauge boson associated
to a new gauge symmetry. Several suitable non-anomalous Abelian gauge symmetries have
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been proposed in the literature, such as Lµ−Lτ [279–282], B−L [283], B3−3Lµ [284], and
the so-called Branco-Lavoura-Grimus (BGL) group [285]. Proposals based on an additional
Abelian symmetry related to a dark sector have also been made in Ref. [286,287]. Moreover,
some groups based on non-Abelian symmetries have been proposed, cf. Refs. [288–292].
An interesting possibility is that the needed Z ′ particles are associated to the mechanism
of generation of fermion masses. This route was considered in Ref. [293], where it was
shown that a scenario with Yukawa generated dynamically can acommodate Rexp

K(∗) < RSM
K(∗) ,

while explaining the quark and lepton Yukawa patterns. Note that, in all of the above-
mentioned scenarios, the flavor violating couplings to b and s are generated at tree-level
either via mixing with vector-like quarks [279], or by the rotation from the flavor to the
mass basis [153]. A different possibility is to couple the Z ′ boson to a heavy particle which
generates the current Jµq = s̄γµPLb via loops, as recently considered in Ref. [294]. The
advantage of this scenario is that the masses of the heavy mediator Z ′ is considerably
lower, and thus accessible at the LHC. Finally, it should be clear that to distinguish among
the plethora of viable Z ′ scenarios, it will be essential to have additional experimental
information from other types of indirect searches, and also from the searches of heavy
reasonances at the LHC. Among the indirect signatures, searches of LFV B meson decays
can be particularly helpful [127,153,154]. Furthermore, the study of high-pT dilepton tails
can provide complementary information to the searches performed at low energies [264].

Models based on LQ states have also been extensively proposed in the literature. For
instance, vector LQs have been considered in Ref. [295,296]. It should be stressed that one-
particle extensions of the SM with (massive) vector LQs are non-renormalizable. Therefore,
the loop processes cannot be computed in these effective scenarios, a fact that reduces con-
siderably their predictivity unless a UV completion is explicitly specified, see discussion in
Ref. [297]. Note that a partial UV completion to one of these scenarios has been recently
considered in Ref. [298] by extending the minimal composite Higgs model. On the other
hand, models postulating the existence of scalar LQs are simpler since they are renormal-
izable. As we shall discuss in detail in Sec. 5.2.3, the only LQ state that can explain both
RK and RK∗ via a tree-level exchange is the SU(2)L triplet (3̄,3)1/3 [299, 300]. However,
in order to ensure the proton stability one needs to devise an extra symmetry to forbid the
diquark couplings. 4 The scenario with the weak doublet (3,2)1/6 has been also proposed to
explain RK , but it has been disfavored by the recent measurement of RK∗ , as we shall dis-
cuss below. Another viable possibility is to consider scenarios where the LQ contribution to
b→ s`` appears only at loop-level. There are two proposals which postulate the existence
of a scalar singlet (3̄,1)1/3 [254] or a scalar doublet (3,2)7/6 [155]. The phenomenology of
these scenarios will be discussed in detail in Sec. 5.2.4 and Sec. 5.2.5, respectively. The
models that contribute to RK(∗) through loops require relatively light masses for the LQs,
due to the loop suppression factor, being for this reason phenomenologically more appealing
and possibly within reach at the LHC. Furthermore, there are more non-minimal models
that postulate the existence of both new fermions and scalars [302, 303]. In this case, the
contribution to b → s`` arises via box diagrams, which can reduce the tensions with the
experimental findings if the new particles are light enough.

Departing from the usual assumption that the boson responsible for the LFUV is much
heavier than the electroweak scale, the authors of Ref. [304] have considered the intriguing
possibility that the Z ′ boson has a mass of a few GeV, giving a resonant contribution to
B → K(∗)`+`−. In this case, they predicted a strong q2-dependence for RK(∗) that will be
tested in the near future by the measurement of RK∗ in the high q2 bin, where they predict

4See Ref. [222,301] for an example of such a mechanism within a SU(5) model.
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no observable effect. Finally, there have been also proposals to accommodate the LFUV
hints in other classes of models, such as scenarios with a warped extra-dimension [305,306]
and composite Higgs model [307,308].

In the following, we will focus our discussion on the various LQ scenarios proposed to
explain RK(∗) , since there are fewer possibilities for LQs than in the Z ′ case. In Sec. 5.2.3,
we will discuss the scalar LQ models that can explain RK(∗) at tree-level. The models which
contribute to b→ s`` at tree-level will be discussed in Sec. 5.2.4 and Sec. 5.2.5.

5.2.3 Tree-level leptoquark models for RK(∗)

In this Section, we discuss whether the Wilson coefficients needed to describe Rexp
K(∗) < RSM

K(∗)

can arise from the exchange of light LQs. We will focus on the scalar LQ scenarios and
assume that the SM is extended by only one LQ state. Vector LQs will be disregarded,
since these models are not renormalizable and become problematic when computing the
loop induced processes. Observables such as B(τ → µγ) and the Bs−Bs mixing amplitude
arise only at loop-level in LQ scenarios, but these are known to impose severe constraints
on any attempt to address the LFUV puzzles. Therefore, the predictivity of these models
is compromised unless a renormalizable and gauge invariant UV completion is explicitly
specified which is quite a nontrivial task as discussed in Ref. [297].

We will consider modifications only of b → sµµ, as suggested by current data, and use
the absence of diquark couplings as a criteria to choose the viable models from Table 4.1.
The models that can contribute to the transition b → s`1`2 at tree-level are listed in
Table 5.2 along with the Wilson coefficient combination generated at the effective level and
the implications for RK and RK∗ . From this table, we see that only the scenario with a
scalar triplet (3̄,3)1/3 can accommodate Rexp

K < RSM
K and Rexp

K∗ < RSM
K∗ through the effective

coefficients C9 = −C10. Nonetheless, this model violated baryon number via the diquark
couplings [8],

L∆(1/3) ⊃ (yL)ijQC
i iτ2τ ·∆Lj + (zL)ijQC

i iτ2(τ ·∆)†Qj + h.c. (5.16)

where we omitted color indices. This Lagrangian can be expanded in terms of the charge
eigenstates, giving [8]

L∆(1/3) ⊃ −(yLU)ijdCLiνLj ∆(1/3) −
√

2(yL)ijdCLi`Lj ∆(4/3)

+
√

2(V TyLU)ijuCLiνLj ∆(−2/3) − (V TyL)ijuCLi`Lj∆(1/3)

− (zLV †)ijdCLiuLj ∆(1/3)∗ +
√

2 (V T zLV
†)ijuCLiuLj ∆(4/3)∗

−
√

2(zL)ijdCLidLj ∆(−2/3)∗ − (V T zL)ijuCLidLj ∆(1/3) ∗ + h.c. , (5.17)

From this equation, we can see that the decay p → Kν is induced at tree-level via the
coupling zLV

† and yL, as illustrated in Fig. 5.7. The decay p → π0e+ is protected at
tree-level by the anti-symmetric nature of zL in flavor space, which implies that (zL)11 =
(V TZLV

†)11 = 0. However, this decay is induced at one-loop level by box diagrams. In
conclusion, the introduction of an additional ad hoc symmetry is mandatory to forbid the
diquark couplings.
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K+

ν

s̄
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p
∆(1/3)

(zLV
†) (gL)

Figure 5.7: Contribution at tree-level for the proton decay in the (3̄,3)1/3 scenario.

(SU(3)c, SU(2)L)U(1)Y BNC Interaction Eff. Coefficients RK/R
SM
K RK∗/R

SM
K∗

(3̄, 3)1/3 7 QCiτ2τ ·∆L C9 = −C10 < 1 < 1
(3̄, 1)4/3 7 dCR∆`R (C9)′ = (C10)′ ≈ 1 ≈ 1
(3, 2)7/6 X Q∆`R C9 = C10 > 1 > 1
(3, 2)1/6 X dR∆̃

†
L (C9)′ = −(C10)′ < 1 > 1

Table 5.2: List of LQ states which can modify the transition b→ sµµ at tree-level. The conser-
vation of baryon number (BNC), the interaction term and the corresponding Wilson coefficients
are also listed along with the prediction for RK . Couplings to electrons are set to zero.

Regarding the other scenarios, the weak doublet (3,2)1/6 can accommodate Rexp
K <

RSM
K and it has the advantage of not disturbing the proton decay by diquark couplings.

This model will be described in detail in Sec. 5.3 along with the proposed explanations
of RD(∗) . Nonetheless, it predicts RK∗ to be slightly larger than the SM prediction [118,
229], in contradiction with current experimental results. The states (3, 2)7/6 and (3̄,1)4/3
induce tree-level contributions which are either too small or incompatible with observations,
cf. Fig. 5.3. Finally, another possibility is to consider LQ scenarios for which the leading
contribution to b → s`` appears only at loop-level, as it will be discussed in Sec. 5.2.4
and 5.2.5

5.2.4 Loop induced leptoquark models: A first attempt
The first attempt to explain the b→ sµµ anomalies via LQ loops was proposed in Ref. [254].
The authors of this paper claimed that the singlet LQ state (3̄,1)1/3 with m∆ = 1 TeV and
O(1) left-handed couplings could simultaneously accommodate the observed LFU violation
hints in RK and RD(∗) . The main idea in this paper was to explain the puzzles in tree-level
decays, RD(∗) , via tree-level LQ contributions and the ones appearing in loop processes,
RK(∗) , via loop-level contributions. This claim was soon realized to be incorrect in Ref. [155],
where a complete flavor analysis showed that this scenario cannot make RK significantly
smaller than one, without running into serious difficulties with other measured quantities,
namely, the ratio R

µ/e
D = B(B → Dµν)/B(B → Deν). After the measurement of RK∗

by LHCb, this model was revived in Ref. [309] where it was shown that one can avoid
the constraints introduced in Ref. [155] by significantly increasing the LQ mass and by
choosing a different pattern of Yukawa couplings. However, this proposal cannot make
RK(∗) compatible with the 1σ intervals of Rexp

K(∗) reported by LHCb, as we will show in this
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Section.
The Lagrangian for the model (3̄,1)1/3 was already given in Eq. (4.35) and we rewrite

it here for the reader’s convenience,

L∆(1/3) ⊃ (yL)ijQC
i iτ2Lj∆(1/3) + (yR)ijuCRi`Rj∆(1/3) + h.c.,

= ∆(1/3)
[
(V ∗yL)ijuCi PL`j − (yL)ijdCi PLνj + (yR)ijuCi PR`j

]
+ h.c. ,

(5.18)

where yL(R) are generic Yukawa matrices with flavor indices i, j. In addition to these
terms, one should included diquark couplings which mediate the proton decay and must be
forbidden by hand to make the model viable. To discuss the phenomenology of this model,
we consider the following pattern of left-handed Yukawas,

yL =


0 0 0
0 (yL)sµ (yL)sτ
0 (yL)bµ (yL)bτ

 , V yL =


0 Vus(gL)sµ + Vub(yL)bµ Vus(yL)sτ + Vub(yL)bτ
0 Vcs(gL)sµ + Vcb(yL)bµ Vcs(yL)sτ + Vcb(yL)bτ
0 Vts(gL)sµ + Vtb(yL)bµ Vts(yL)sτ + Vtb(yL)bτ

 ,
(5.19)

where the first matrix connects down-type quarks to neutrinos, and the second up-type
quarks to charged leptons. 5 Notice that the couplings to the first generation of leptons
are assumed to be zero for simplicity. They are tightly constrained by the limits on µ − e
conversion and the atomic parity violation (APV) experiments [8]. In our approach, the
couplings to the d quark are also set to zero, since their nonzero values can induce significant
contributions to processes such as K → πνν and the K0 −K0 mixing. Even though we fix
(yL)dµ = (yL)dτ = 0, from Eq. (5.19), we see that the couplings to the u quark are generated
via the CKM matrix. Therefore, constraints from the kaon and the D-meson sectors should
be taken into account too. For the right-handed couplings, which were assumed to be small
in the original proposal, we adopt the ansatz introduced in Ref. [309], namely,

yR =


0 0 0
0 0 (yL)cτ
0 (yR)tµ 0

 . (5.20)

With this choice of flavor couplings, one aims at explaining RD(∗) via large couplings (yL)cτ ,
while the coupling (yR)tµ must remain small to satisfy the bounds on B(τ → µγ) and to be
consistent the b→ sµµ exclusive modes.

The effective coefficients C`1`2
9 ±C`1`2

10 are loop induced and the results are given by [254,
255]:

C`1`2
9 − C`1`2

10 = m2
t

8παemm2
∆

(V ∗yL)∗t`1(V ∗yL)t`2 −
1

64παem

v2

m2
∆

(yL · y†L)bs
VtbV ∗ts

(y†L · yL)`1`2 ,

C`1`2
9 + C`1`2

10 = m2
t

16παemm2
∆

(yR)∗t`1(yR)t`2
[

log m
2
∆

m2
t

− f(xt)
]

(5.21)

− 1
64παem

v2

m2
∆

(yL · y†L)bs
VtbV ∗ts

(y†R · yR)`1`2 ,

5We reiterate that the PMNS matrix U is set to unity since the neutrino masses are neglected in this
study.
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where xt = m2
t/m

2
W and

f(xt) = 1 + 3
xt − 1

(
log xt
xt − 1 − 1

)
. (5.22)

As discussed in Sec. 5.2.1, the combination Cµµ
9 +Cµµ

10 is disfavored by the current b→ sµµ
exclusive data, so that the coefficient (yR)tµ must be small. Furthermore, notice that the
term in C`1`2

9 −C`1`2
10 proportional to m2

t comes with a positive sign, which is also disfavored
by the the b→ sµµ fit and by the experimental results of RK(∗) , cf. discussion in Sec. 5.2.1.
Therefore, the contribution proportional to |(yL)tµ|2 should be compensated by the second
term in Eq. (5.21), which must come with a minus sign. This was the main reason that
led to the conclusion that this model is not phenomenologically viable for m∆ ≈ 1 TeV. In
this case, a large coupling (yL)cµ is needed to produce Cµµ

9 + Cµµ
10 < 0, which would be in

disagreement with the constraint Rµ/e
D = B(B → Dµν)/B(B → Deν) that will be described

below [155].
We will now describe the constraints on this model considered in our analysis. One of

the most important constraints comes from the Bs − B̄s mixing amplitude. We obtain

∆mth
Bs

∆mSM
Bs

= 1 + η1(yL · y†L)2
bs

32G2
Fm

2
W |VtbV ∗ts|2ηBS0(xt)m2

∆
, (5.23)

where η1 = 0.82(1) accounts for the QCD running from µ = m∆ ' 1 TeV down to µ = mb,
S0(xt) is the Inami-Lim function, and ηB encodes the short distance QCD corrections.
We combine the experimental value ∆mexp

Bs = 17.7(2) ps−1 [310], with the SM prediction
∆mSM

Bs = 17.3(17) ps−1, to get ∆mexp
Bs /∆mSM

Bs = 1.02(10) [127]. Another very important
constraint at loop-level comes from the partial decay widths of the Z boson, which have
been precisely measured at LEP [22],

B(Z → µµ)exp = 3.366(7) %, B(Z → ττ)exp = 3.370(8) % . (5.24)
We computed the full amplitude for the decays Z → `1`2 and matched it onto the effective
Lagrangian,

Leff = g

2 cos θW
C`1`2
V L

¯̀1γ
µPL`2Z

µ + (L→ R) , (5.25)

obtaining the following expressions for ` = `1 = `2,

C``
V L = − 3

16π2

{
|(yL)t`|2

m2
t

m2
∆

(
1 + log m2

t

m2
∆

)

− |(yL)c`|2
3

m2
Z

m2
∆

[(
1− 4s2

W

3

)(
log m

2
∆

m2
Z

+ iπ + 1
3

)
− s2

W

9

]
,

(5.26)

C``
V R = + 3

16π2

{
|(yR)t`|2

m2
t

m2
∆

(
1 + log m2

t

m2
∆

)

− |(yR)c`|2
3

m2
Z

m2
∆

[(
−4s2

W

3

)(
log m

2
∆

m2
Z

+ iπ + 1
3

)
− s2

W

9

] (5.27)

which agree with the expressions given in Ref. [254].
In addition to the loop constraints described above, there are several observable to which

the LQ state contribute at tree-level. A very important constraint stems from the ratio
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Rνν = B(B → Kνν)th/B(B → Kνν)SM, which should satisfy Rexp
νν < 4.3, as established

by BaBar [311, 312]. By using the effective Lagrangian (4.39), one can show that, in this
model, this observable is modified as follows,

Rνν = 1− 1
6CSM

L

Re
[

(yL · y†L)sb
Nm2

∆

]
+ 1

48(CSM
L )2

(yL · y†L)ss(yL · y†L)bb
|N |2m4

∆
, (5.28)

where N = GFVtbV
∗
tsαem/(

√
2π), and CSM

L = −6.38(6) as defined in Ref. [313]. Furthermore,
a peculiarity of this model is the modification of (semi-)leptonic meson decays. By matching
the Lagrangian (4.38) to the effective Hamiltonian (2.3), we obtain the Wilson coefficients

gV = −gA
∣∣∣
d→u`ν`′

= 1
4
√

2GFVud

(yL)∗u`(yL)dν`′
m2

∆
, (5.29)

gS(µ = m∆) = −gP (µ = m∆)
∣∣∣
d→u`ν`′

= − 1
4
√

2GFVud

(yR)∗u`(yL)dν`′
m2

∆
, (5.30)

gT (µ = m∆)
∣∣∣
d→u`ν`′

= −1
4gS(µ = m∆)

∣∣∣
d→u`ν`′

, (5.31)

where u and d stand for a generic up- and down-type quark flavors. These expressions
can be inserted into the expressions for decay rates, explicitly given in Chapter 2, cf.
Eqs. (2.9) and (2.29). We should stress that LQs can induce new contributions in which the
neutrino has a different flavor from the charged lepton. One should therefore sum over the
unobserved neutrino flavors in order to compare with the experimentally measured rates,
e.g. B(B → D`ν) = ∑

`′ B(B → D`ν`′), with `′ ∈ {µ, τ}. Considering the ansatz given in
Eq. (5.19) for the Yukawa matrix, the relevant leptonic modes for our study are K → µν,
Ds → (µ, τ)ν, and B → τν. We consider the experimental values given in Ref. [310] and
we use the values for the decay constants computed in lattice QCD, which are summarized
in Sec. 2.2.1. In addition to the leptonic constraints, it is crucial to also consider the
semileptonic ratio

R
µ/e
D = B(B → Dµν)

B(B → Deν) , (5.32)

which is constrained by the Belle measurement Rµ/e
D = 0.995(22)(39) [314]. 6 It is well

known that large values of this quantity would be implausible, since the B(B → Deν) and
B(B → Dµν) data have been successfully combined in B-factory experiments to extract
G(1)|Vcb|. In Ref. [316] it was argued that such a deviation from lepton flavor universality
cannot be larger than 2%, which is considered as a constraint in our analysis. It should
be stressed that this limit is the main constraint for masses m∆ ≈ 1 TeV, as argued in
Ref. [155], where it was shown that an explanation of RK as originally proposed in Ref. [254]
would imply unacceptably large values for Rµ/e

D . Finally, useful constraints stem from the
experimental limits B(τ → µγ) < 4.4× 10−8 [317] and B(D0 → µ+µ−) < 7.6× 10−9 [253].
We computed the LQ contributions to these decays and obtained

B(τ → µγ) = ττ
αem(m2

τ −m2
µ)3

4m3
τ

(
|σL|2+|σR|2

)
, (5.33)

6A similar ratio has been also measured with a D∗ meson in the final state, yielding Re/µD∗ = 1.04(5)(1)
in good agreement with µ/e universality [315].
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with

σL(R) = −i NCmτ

192π2m2
∆

{
(yR(L))tτ (yR(L))∗tµ −

mt

mτ

(yL(R))tτ (yR(L))∗tµ
[
14 + 8 log

(
m2
t

m2
∆

)]}
,

(5.34)

and

B(D0 → µ+µ−) = f 2
Dm

3
D

512πm4
∆ΓD

(
mD

mc

)2
βµ

[
β2
µ

∣∣∣(yL)cµ(yR)∗uµ − (yR)cµ(yL)∗uµ
∣∣∣2 (5.35)

+
∣∣∣∣∣(yL)cµ(yR)∗uµ + (yR)cµ(yL)∗uµ −

2mµmc

m2
D

[
(yL)cµ(yL)∗uµ + (yR)cµ(yR)∗uµ

]∣∣∣∣∣
2 ]
,

where mc = mc(m∆) is the running charm quark mass.
To assess the viability of this model, we combine the above-mentioned constraints to

2σ accuracy with the perturbativity condition, |(yL)ij|<
√

4π, and look for the parameters
which would simultaneously satisfy the observed Rexp

K and Rexp
D . We vary the LQ mass in

the region m∆ ∈ [1, 5] TeV and impose the flavor ansatz of Eq. (5.19) and Eq. (5.20) for the
Yukawa matrices yL and yR. The results from our scan are shown in Fig. 5.8, where RK in
the central bin is plotted against RD. As it can be seen from this plot, we were not able to
find parameters that would result in values for RK consistent with the 1σ region reported
by LHCb. This model can only somewhat reduce the tension with respect to the SM for
this specific observable. On the other hand, the deviation in RD can be easily acommodated
by this LQ state, a fact that was already demonstrated years ago in Ref. [318]. From the
same plot, we also learn that a simultaneous improvement of both observables is difficult,
since an improvement of RK compromises the explanation of RD. This fact can be better
understood in Fig. 5.9, where RK is plotted against the LQ mass m∆. To substantially
reduce the value of RK , the LQ masses must be larger than ≈ 4 TeV, in order to avoid the
constraint from R

µ/e
D described above. This observation is the source of disagreement with

RD(∗) , since an explanation of the latter requires relatively light NP (m∆ ≈ 1 TeV) with
sizable couplings. Finally, we plot the correlation between (yL)bµ and m∆ in Fig. (5.10).
In the same plot, we highlight the parameters which would be consistent with RK and
RK∗ in the central bin at the 1.5σ level. As it can be seen from this plot, to produce this
improvement in the description of RK(∗) , one should have m∆ & 4 TeV and |(yL)bµ|≈

√
4π,

saturating the perturbativity limit.

5.2.5 A viable leptoquark explanation of RK(∗) < 1 through loops
In this Section we discuss another scalar LQ model proposed to accommodate Rexp

K(∗) < RSM
K(∗)

via loop-level contributions [319]. This model invokes the doublet R2 = (3, 2)7/6 LQ state
and it was inspired by the singlet scenario described above. Differently from the singlet
scenario, where there was no tree-level contribution to b → s``, this state contributes to
this transition at tree-level, but it cannot accommodate Rexp

K(∗) < RSM
K(∗) , as discussed in

Sec. 5.2.3. The new idea introduced in Ref. [319] is to impose a flavor ansatz that will
forbid the tree-level contribution to b→ s``. As we will show in this Section, the loop-level
contribution to b→ s`` will generate the combination C9 = −C10, which can then explain
the experimental findings. Notice, however, that this model cannot simultaneously explain
RD(∗) , the fact that was already (implicitly) shown in Ref. [224].
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Figure 5.8: RD is plotted against RK in the central bin. The allowed points are compared with
the experimental values (green and grey bands) at 1σ.

Figure 5.9: RK in the central bin is plotted against the LQ mass m∆. The allowed points are
compared with the experimental value for RK (green band) at 1σ.

Before introducing our model and its phenomenology, we would like to emphasize the ad-
vantages of this scenario in comparison to the singlet model presented in Sec. 5.2.4. Firstly,
this scenario conserves baryon number by construction, as shown in Table 4.1. Therefore,
no additional ad-hoc symmetry is needed to preserve the proton stability. Furthermore, in
our model, the top quark contribution naturally induces Cµµ

9 = −Cµµ
10 < 0, as needed. In

the singlet scenario, the dominant top-quark contribution generates Cµµ
9 > 0, so that it

was mandatory to compensate that effect with a very large charm-muon Yukawa, which
induces problems in other observables, or by increasing the LQ mass, which lies far beyond
the current sensitivity of LHC. These limitations are not present in the scenario we will
describe below.
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Figure 5.10: Projection of the allowed points from Fig. 5.9 in the plane (yL)bµ vs. m∆. We
highlight in red the points which can be consistent with RK and RK∗ in the central bin to 1.5σ
accuracy.

Description of the model

The general Yukawa Lagrangian for this model was already given in Eq. (4.20) and reads

L∆(7/6) = (yR)ijQ̄i∆(7/6)`Rj + (yL)ijūRi∆̃
(7/6)†

Lj + h.c.,

= (V yR)ijūiPR`j ∆(5/3) + (yR)ij d̄iPR`j ∆(2/3)

+ (UyL)ijūiPLνj ∆(2/3) − (yL)ijūiPL`j ∆(5/3) + h.c.,

(5.36)

where yL,R are the matrices of Yukawa couplings, that we assume to be

yL =


0 0 0
0 ycµL ycτL

0 ytµL ytτL

 , yR =


0 0 0
0 0 0
0 0 ybτR

 , V yR =


0 0 Vub y

bτ
R

0 0 Vcb y
bτ
R

0 0 Vtb y
bτ
R

 , (5.37)

which is the main peculiarity of our model. The superscript in ∆(5/3) and ∆(2/3) refer to the
electric charge of the two mass degenerate leptoquark states, as before. The above choice of
Yukawa couplings, and in particular ys`R = 0, means that the contributions of the leptoquark
∆(7/6) to the transitions b → s`` can only be a loop effect and not generated at tree level.
The only diagram contributing (in the unitary gauge) is the one shown in Fig. 5.11.

We computed the corresponding amplitude, matched it onto the effective theory (2.54),
and found

C`1`2
9 = −C`1`2

10 =
∑

u,u′∈{u,c,t}

VubV
∗
u′s

VtbV ∗ts
yu
′`1
L

(
yu`2L

)∗
F(xu, xu′) , (5.38)

where xi = m2
i /m

2
W , and the loop function reads,
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Figure 5.11: The only diagram contributing b → s`1`2 decay in the LQ scenario considered
here. In a non-unitary gauge there is an extra diagram similar to the one depicted above, with W
replaced by a Goldstone boson.

F(xu, xu′) =
√
xuxu′

32παem

[
xu′(xu′ − 4) log xu′

(xu′ − 1)(xu − xu′)(xu′ − x∆) + xu(xu − 4) log xu
(xu − 1)(xu′ − xu)(xu − x∆)

− x∆(x∆ − 4) log x∆

(x∆ − 1)(x∆ − xu)(x∆ − xu′)

]
. (5.39)

We checked that the above result is finite and gauge invariant by doing the computation
in both the Feynman and the unitary gauge. The loop function vanishes when sending
the quark mass to zero, and therefore the dominant contributions are those coming from
u = u′ = t, and the one in which u = t, u′ = c, latter being CKM enhanced. This closes
our discussion of the R2 model with our particular setup specified by the structure of the
yL,R matrices, as given in Eq. (5.37).

Phenomenology: Low-energy constraints

The model described above can induce important contributions to some observables which
have already been accurately measured. In other words, we check which quantity can be
particularly sensitive to our model and then use its measured value to constrain the non-zero
entries in the matrices yL,R (5.37).

First of all, by switching on the couplings to the leptoquark of the top quark and to µ
and to τ leptons, one necessarily generates an extra term to the τ → µγ decay amplitude. In
order to comply with the experimentally established upper bound, B(τ → µγ) < 4.4×10−8

[317], we checked the expression derived in Ref. [8, 320] with which we agree, and write:

B(τ → µγ) = ττ
αem(m2

τ −m2
µ)3

4m3
τ

(
|σL|2+|σR|2

)
, (5.40)

with

σL = 0 ,

σR = 3imτ

64π2m2
∆

∑
q∈{c,t}

yqµ∗L

[
yqτL + 2

3
mq

mτ

Vqby
bτ
R

(
1 + 4 log m2

t

m2
∆

)]
.

(5.41)
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Figure 5.12: Contributions to the Z → `1`2 decay amplitude generated in our R2 model, where
∆ ≡ ∆(5/3). Another set of diagrams, similar to those shown above is obtained by replacing t→ c.

Since we need a significant value for ytµL and ycµL to describe the exclusive b → sµµ decay
rates, the above condition proves to be a severe bound on ybτR , due to the mt/mτ enhance-
ment.

Another important constraint comes from the contributions to the muon’s g−2. Current
deviation between the measured and the SM values is ∆aexp

µ = aexp
µ −aSM

µ = (2.8±0.9)×10−9,
where aµ = (gµ − 2)/2, as usual. Since the SM estimate of this quantity is not yet fully
assessed [321], we require the leptoquark contribution to be smaller than 2σ error on ∆aexp

µ .
To do so we use the expression [8]:

∆aµ = −
3m2

µ

8π2m2
∆

∑
q∈{c,t}

|yqµL |2
[5
3fS(m2

q/m
2
∆)− fF (m2

q/m
2
∆)
]
,

fS(x) = x+ 1
4(1− x)2 + x log x

2(1− x)3 , fF (x) = x2 − 5x− 2
12(x− 1)3 + x log x

2(1− x)4 . (5.42)

A very efficient constraint on y t`L and y c`L comes from the branching fractions B(Z → ``),
which have been very accurately measured at LEP [22], cf. Eq. (5.24). In our model the
diagrams contributing to Z → `` (or, more generally, to Z → `1`2) are shown in Fig. 5.12.
We computed the full amplitude, matched it with the effective Lagrangian,

Leff = g

2 cos θW
C`1`2
V L

¯̀1γ
µPL`2Z

µ , (5.43)

and obtained, for `1 = `2 ≡ `,

C`1`2
V L = − 3

16π2

{
yt`1L yt`2∗L

m2
t

m2
∆

(
1 + log m2

t

m2
∆

)

+4
9y

c`1
L yc`2∗L

m2
Z

m2
∆

[
sin2 θW

(
log m2

c

m2
∆
− iπ − 1

12

)
+ 1

8

]}
. (5.44)

The top contribution in the above formula agrees with the result of Ref. [322] while the
contribution arising from charm is new. Using the Lagrangian (5.43), we then obtain

B(Z → ``) = m3
Z

24πv2ΓZ

[∣∣∣C``
V L

∣∣∣2 − 2 Re(1 + C``
V L) cos(2θW ) + 2 + cos(4θW )

]
. (5.45)

In practice, we find it more convenient to consider

R``
Z = B(Z → ``)

B(Z → ``)SM , (5.46)
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Figure 5.13: Allowed values for the couplings y tµ
L and y cµ

L consistent with all the constraints
discussed in the previous section. Plots are provided for m∆ = 650 GeV and m∆ = 1 TeV.
Highlighted regions correspond to the values of the couplings that ensure the 1.5σ agreement of
RK and RK∗ with experiment in the central q2-bin.

and to use the values (5.24) to 2σ accuracy.
Finally, the major constraint on the model comes from the exclusive b → sµµ decays,

for which we will consider the constraint (5.8), as obtained in Sec. 5.2.1. Before closing this
section we believe it is worth emphasizing that the model we consider here does not give
any contribution to the Bs −Bs mixing amplitude (at the one-loop level).

Phenomenology: RK and RK∗

We next focus on our model and beside Cµµ
9 = −Cµµ

10 obtained in Eqs. (5.8) and (5.13) we
also use the constraints discussed in the previous section. These constraints appear to be
quite severe. Consistency with Cµµ

9 requires rather large values of the muonic couplings to
the leptoquark. For that reason, the experimental bound on B(τ → µγ) will necessarily
restrain ybτR to very small values. The values of ytµL [ytτL ] and ycµL [ycτL ] are then saturated by
∆aµ and by the required consistency with the measured B(Z → µµ) [B(Z → ττ)].

We performed several scans of the model parameters. We first fixed the mass of lep-
toquark to either m∆ = 650 GeV or to m∆ = 1 TeV, and varied all the couplings within
|yq`L,R|≤

√
4π. As we anticipated above, the allowed values of ybτR are indeed negligibly small,

and for our phenomenological purposes this coupling can be safely neglected. In the follow-
ing we set it to zero. On the other hand, constraints on the couplings to muon result in the
regions shown in Fig. 5.13. Clearly, for larger m∆ the couplings grow and for reasonable
values of m∆ (less than a few TeV) the only coupling that hits the perturbativity bound is
y cµL while the other ones remain well bellow

√
4π.

Notice also that in Fig. 5.13 we highlight the regions of couplings that are needed to
provide a 1.5σ compatibility of RK and RK∗ with experimental results in the central q2-bin.
In other words, to get close to the measured values of Rexp

K and Rexp
K∗ the values of couplings

y cµL and y tµL indeed need to be large (larger than 1). The values for RK and RK∗ obtained
with our model are given in Tab. 5.3. We see that the situation regarding the agreement
with experimental values (5.2) and (5.3) remains similar to the discussion based only on
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Cµµ
9 , i.e. our values for RK and RK∗ are compatible with experiment in the central q2-bin

to 1.1σ, while in the low-q2-bin the agreement of our RK∗ with the value in (5.3) is at the
1.8σ level.

Quantity m∆ = 650 GeV m∆ = 1 TeV

RK (low q2) [0.80, 0.96] [0.82, 0.96]

RK∗ (low q2) [0.88, 0.92] [0.88, 0.92]

RK (central q2) [0.82, 0.98] [0.85, 0.98]

RK∗ (central q2) [0.82, 0.98] [0.85, 0.98]

RK (high q2) [0.81, 0.98] [0.84, 0.98]

RK∗ (high q2) [0.81, 0.98] [0.83, 0.98]

Table 5.3: Intervals of RK and RK∗ obtained in our model by using all the constraints discussed
in the text, and Cµµ9 = −Cµµ10 in Eq. (5.8) in particular.

As a curiosity we can now proceed the other way around and perform a scan of param-
eters by leaving m∆ as a free parameter, and then check how large one can take m∆ and
still remain e.g. 1.5σ-compatible with RK and RK∗ reported by LHCb in the central q2-bin.
The result of this exercise is shown in Fig. 5.14, from which we see that m∆ < 1.2 TeV.

Figure 5.14: Results of our scan of parameters consistent with all constraints discussed in the
previous section in which the leptoquark mass m∆ is varied too. We see that the 1.5σ consistency
requirement with the values of LHCb for RK and RK∗ in the central q2-bin (shaded area) results
in m∆ < 1.2 TeV.

We now enumerate the predictions of this model:

1. Like we mentioned before, this model does not induce the tree-level or the one-loop
contribution to the Bs −Bs mixing amplitude.
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2. Using Eq. (5.38) and by taking into account the constraints on the couplings gqτL,R, we
were able to compute Cττ

9 = −Cττ
10 from which we computed the branching fractions

B(Bs → ττ) and B(B → K(∗)ττ)large q2 . We obtain, −0.46 ≤ Cττ
9 ≤ 0.06 for m∆ =

650 GeV, which then gives:

0.78 ≤ B(Bs → ττ)
B(Bs → ττ)SM ≤ 1.03 ,

0.79 ≤
B(B → Kττ)q2∈[15,19] GeV2

B(B → Kττ)SM
q2∈[15,19] GeV2

≤ 1.03 ,

0.77 ≤
B(B → K∗ττ)q2∈[15,19] GeV2

B(B → K∗ττ)SM
q2∈[15,19] GeV2

≤ 1.03 . (5.47)

For m∆ = 1 TeV, we obtain, −0.17 ≤ Cττ
9 ≤ 0.03, which leads to:

0.92 ≤ B(Bs → ττ)
B(Bs → ττ)SM ≤ 1.01 ,

0.92 ≤
B(B → Kττ)q2∈[15,19] GeV2

B(B → Kττ)SM
q2∈[15,19] GeV2

≤ 1.01 ,

0.91 ≤
B(B → K∗ττ)q2∈[15,19] GeV2

B(B → K∗ττ)SM
q2∈[15,19] GeV2

≤ 1.01 . (5.48)

3. Our model allows for lepton flavor violation, as in most scenarios aiming to explain
the LFUV effects [153]. Again, after inserting the values (intervals) of the couplings
y qµL and y qτL into Eq. (5.38), we obtain

B(B → Kµτ) .
{

(4.6× 10−9)m∆=650 GeV , (1.5× 10−9)m∆=1 TeV
}
, (5.49)

whereas the branching fractions for similar decay modes can be obtained from the
ratios (2.149) which are independent on the Wilson coefficients [127]:

B(B → K∗µτ)
B(B → Kµτ) ≈ 1.8 and B(Bs → µτ)

B(B → Kµτ) ≈ 0.9. (5.50)

Since the LFV and lepton flavor conserving modes are related by the same model
parameters, there is obviously a correlation between various rates. A typical one is
shown in Fig. 5.15, where we see that the LFV mode can be significant even for
B(Bs → ττ) perfectly consistent with its Standard Model value.

4. Another interesting LFV mode is Z → µτ . The expression given in Eq. (5.44) is
trivially extended to the LFV case by simply replacing yq`L y

q`∗
L → yq`1L yq`2∗L . We obtain

that the maximal allowed values can be quite large, namely,

B(Z → µτ) .
{

(4× 10−7)m∆=650 GeV , (2.1× 10−7)m∆=1 TeV
}
, (5.51)

and could be an opportunity for future experiments.
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Figure 5.15: Correlation between B(Bs → ττ) and B(B → Kµτ) as obtained in our model.

5. We have checked that our model provides a very small contribution to B(t → bτν),
which is well within the experimental error [323].

6. We also computed the Wilson coefficient relevant to B(B → Kνν) and found that our
model can bring only a small reduction with respect to the Standard Model value, i.e.

0.94 ≤ B(B → Kνν)
B(B → Kνν)SM ≤ 1 , (5.52)

the reduction being more pronounced for smaller leptoquark masses, namely m∆ =
650 GeV.

Comments on Direct Searches

So far we have assumed the value of the leptoquark mass to be either m∆ = 650 GeV or
m∆ = 1 TeV, both being consistent with direct searches, cf. Sec. 4.4. We find that the
experimental bound, m∆ & 650 GeV, is very conservative and the reason for this can be
understood from the assumptions made in the LHC searches. So far the attempts for direct
detection of the leptoquark states, present in our model, only included the decays [261,262]

∆(2/3) → tν, and ∆(5/3) → tτ, (5.53)
for which they assumed B(∆(2/3) → tν) = 1, and B(∆(5/3) → tτ) = 1. The resulting bound,
m∆ & 650 GeV, would be considerably lower if one also considered

∆(2/3) → cν, and ∆(5/3) → tµ, cτ, cµ, (5.54)
and then used the fact that the branching fractions of the above-mentioned modes are less
then one. With our couplings we can compute the relevant decay rates. We derived the
necessary expression for the decay of ∆(2/3,5/3), namely,

Γ(∆(2/3) → u νi) = Γ(∆(5/3) → u `i) = |y uiL |2
(m2

∆ −m2
u)2

16πm3
∆

, (5.55)
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Figure 5.16: Branching fractions of the dominant decay modes of ∆(5/3) as obtained from the
constraints on the relevant couplings discussed in the body of this paper.

where u ∈ {c, t} and i ∈ {µ, τ}. Notice that we neglect the contribution proportional to
gbτR due to its smallness. Furthermore, the decay rate Γ(∆(2/3) → bτ) is indeed completely
negligible. From the above formulas it is then easy to reconstruct the relevant branching
fractions for the modes searched experimentally. The net result is that the bound on
m∆ becomes lower. In other words, the values we use, m∆ ≥ 650 GeV, are in fact very
conservative. Note also that the modes with the charm quark are experimentally very
challenging at the LHC.

In Fig. 5.16 we show the possible values for B(∆(5/3) → tτ) and B(∆(5/3) → tµ), con-
sistent with all the constraints discussed above. This information can be used in the forth-
coming attempts at LHC to detect the leptoquark through ∆(5/3) → tµ channel.

5.3 Lepton flavor universality violation in b→ c`ν

In this Section, we discuss the current status of the discrepancies RD(∗) and we will elaborate
on the possible connections with the observed deviations in RK(∗) , which were discussed in
the previous Section. These observables are defined as,

RD(∗) = B(B → D(∗)τν)
B(B → D(∗)lν)

∣∣∣∣∣
l=e,µ

, (5.56)

where light leptons have been averaged in the denominator. There are several phenomeno-
logical differences between RK(∗) and RD(∗) . Firstly, the SM predictions of RD(∗) depends
on hadronic parameters and most particularly on the shape of the form factors, which was
not the case for RK(∗) . This comes from the fact that the τ -lepton mass is non-negligible
in comparison to mB, introducing a large LFU breaking already in the SM. Therefore, we
stress once again that the determination of shape of the form factors becomes a crucial point
to reliably estimate RSM

D(∗) , as implicitly stated in Sec. 2.2.2 and Sec. 2.2.3. Furthermore,
in terms of the viable NP explanations, B → D(∗)`ν are tree-level decays with relatively
large predictions in the SM. To satisfactorily explain the large deviations which were ob-
served, NP must be relatively light and/or have large couplings. This is not necessarily
the case for RK(∗) , where the tree-level explanations remain perturbative all the way up to
ΛNP ≈ 30 TeV. In other words, the hints RK(∗) and RD(∗) point at different scales for the
NP or at very different ballparks for the NP couplings. 7

7An interesting possibility is that this hierarchy of couplings comes from a flavor symmetry which
enforces the new bosons to couple mostly to third generation fermions [316].
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The remainder of this Section is organized as follows: In Sec. 5.3.1, we describe the
SM predictions for RD and RD∗ focusing on the potential sources of hadronic uncertainties.
In Sec. 5.3.2, we discuss the attempts proposed so far in the literature to simultaneously
explain RK(∗) and RD(∗) . We conclude in Sec. 5.3.3, where we propose a minimal model
that can explain RK and RD(∗) but which cannot account for RK∗ . This last Section will
serve as an illustration of the difficulty to conceive simultaneous explanations to all LFUV
hints which remains consistent with the plethora of constraints from flavor observables.

5.3.1 Standard Model predictions for RD and RD∗

Regarding the SM prediction for these observables, the B → D decays seem to be under
good theoretical control as the scalar and vector form factors have been computed on the
Lattice by two collaborations and their results are found to be consistent [15,16]. The SM
prediction is then obtained by combining the LQCD results with the B → Dlν (l = e, µ)
experimental distributions, giving [77]

RSM
D = 0.300± 0.008 , (5.57)

which is about 2σ lower than the experimental results, cf. Eq. (5.4). The value obtained
by MILC, by solely relying on LQCD estimates, would be RD = 0.286 ± 0.012 [15]. This
value is slightly lower than (5.57), but still perfectly consistent with it. Therefore, the
determination of RSM

D is quite robust and it is independent of the information extracted
from experimental data.

In contrast, the determination of the B → D∗ matrix elements are not as solid as
the one for B → D. As already mentioned in Sec. 2.2.3, there are no available LQCD
results at non-zero recoil for the relevant form factors. Only normalization [hA1(1)] has
been computed on the lattice while the shapes of the helicity amplitudes were extracted
from the angular distribution of B → D∗(→ Dπ)lν. Those values are then combined with
the leading order HQET formulas to fix the value of the scalar form factor and then predict
B(B → D∗τντ ). Extraction of the form factors from the full angular distribution received
quite a bit of interest recently. In Refs. [324, 325] the paramatrization used to extract the
values and shapes of form factors was questioned, and the value of the scalar form factor
which was used in the theory paper in which the SM prediction was provided [93] has been
recently questioned in Ref. [332] . For all of these reasons, it is fair to say that the value of
RSM
D∗ is not nearly as robust as that of RSM

D , at least not to the claimed accuracy.
We remind the reader that the decomposition of the matrix elements relevant to the

semileptonic B → D∗ transition, in terms of form factors, reads

〈D̄∗(k, ε)|c̄γµb|B̄(p)〉 = εµνρσε∗νpρkσ
2V (q2)

mB +mD∗
,

〈D̄∗(k, ε)|c̄γµγ5b|B̄(p)〉 = iε∗µ(mB +mD∗)A1(q2)− i(p+ k)µ(ε∗ · q) A2(q2)
mB +mD∗

− iqµ(ε∗ · q)2mD∗

q2 [A3(q2)− A0(q2)] ,

(5.58)

where εµ(0,±) stands for the polarization of the D∗ meson. Similar decomposition in HQET
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looks as,

〈D̄∗(v′, ε)|c̄γµb|B̄(v)〉 = hV (w)εµνρσε∗νvρk′σ ,

〈D̄∗(v′, ε)|c̄γµγ5b|B̄(v)〉 = ihA1(w)ε∗µ(w + 1)− i (ε · v) [hA2(w)vµ + hA3(w)v′µ] ,
(5.59)

where at leading order in the heavy quark expansion hV (w) = hA1(w) = hA3(w) = ξ(w)
where the universal Isgur–Wise function depends on the relative velocity w = v · v′ =
(m2

B +m2
D∗ − q2)/(2mBmD∗), and it is normalized to unity at the zero recoil, ξ(1) = 1, by

virtue of the heavy quark spin/flavor symmetry.
By expanding around the zero recoil, it appears that the form factor hA1(w) is the best

suited form factor, i.e. closest to the Isgur-Wise function even when the heavy quark power
corrections are included. 8 Furthermore it appears to be a very good approximation to
retain only the two non-trivial terms in the expansion:

ξ(w) = 1−ρ2(w−1)+c(w−1)2 −→ hA1(w) = hA1(1)
[
1− ρ2

A1(w − 1) + cA1(w − 1)2
]
.

(5.60)
Notice that we keep hA1(1) since its value is in principle different from unity due to the small
power corrections. Using the analyticity and unitarity of QCD one can use the dispersion
relation for the form factors in order to relate the slope ρ2

A1 and the curvature cA1 . In
Refs. [326,327,331] the authors derived such constraints on the shape of the form factor

A1(w) = w + 1
2 RD∗hA1(w) , (5.61)

in the z-space, i.e. on the disk of radius unity which corresponds to the whole q2 (or w)
after applying the conformal mapping

z(w) =
√
w + 1−

√
2√

w + 1 +
√

2
. (5.62)

Unitarity and analyticity then tightly constrain cA1 which can be expressed in terms of ρ2
A1

so that in the end one has

A1(w)
A1(1) = 1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3 . (5.63)

As for the other form factors that enter the expression for the differential decay rate, by
factoring out |A1(w)|2, one deals with the following ratios

R1(w) = w + 1
2 RD∗

V (w)
A1(w) , R2(w) = w + 1

2 RD∗
A2(w)
A1(w) , (5.64)

R0(w) = w + 1
2 RD∗

A0(w)
A1(w) ,

where, again, q2 = m2
B +m2

D∗−2mBmD∗w. The shapes of the functions Ri(w), i ∈ (0, 1, 2),
cannot be fully inferred on the basis of HQET and additional phenomenological information

8It is also protected by the so-called Luke theorem which states that the leading order power corrections
are absent and only the second order corrections in heavy quark expansion can modify the form factor
hA1(w). This is in fact the equivalent to the Ademollo–Gatto theorem in the kaon physics.
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is often used. In particular, in Ref. [327] the authors heavy relied on HQET and after
expanding around w = 1 they suggested an expansion

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 ,

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2 ,

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 ,

(5.65)

thus only two extra parameters are needed to be extracted from the fit with the angular
distribution of the B → D∗lν [l ∈ (e, µ)] data, namely R1(1) and R2(1). Even though the
authors argued there are also uncertainties in slopes of R1(w) and R2(w), the experimen-
talists used only the central values in the fit. In such a way, for example Belle collaboration
reported in Ref. [328]:

hA1(1)|Vcb| = (34.6± 1.0)× 10−3 , ρ2 = 1.214± 0.035 ,

R1(1) = 1.401± 0.038 , R2(1) = 0.864± 0.025 . (5.66)

The fact that the slopes of R1(w) and R2(w) were fixed to the values (partly) dictated by
relying on HQET was strongly criticized in Refs. [324,325], mostly because the HQET pre-
dicts R2(1) = 0.80, which is about 2σ smaller than the value determined by Belle. In other
words fixing the slopes by using HQET can be misleading as the tests elsewhere suggest
significant deviations at the level of the aimed precision. After the recent publication of the
unfolded data by Belle [315], theorists were able to perform the fit to experimental data
by leaving these parameters free in the so-called Boyd Grinstein Lebed (BGL) parameteri-
zation [331]. The authors of Ref. [324, 325] found then that the values for R2(w2) become
systematically larger than the ones obtained in the CLN parameterization. Moreover, the
CLN and BGL parameterizations lead to quite different results for |Vcb|excl.. While the for-
mer predicts the value |Vcb|CLN= (38.71± 0.75)× 10−3 [14], which disagrees with the value
determined from the inclusive decays, |Vcb|incl.= (41.98± 0.45)× 10−3 [14], the fit with the
BGL parameterization leads to values which are perfectly consistent with |Vcb|incl. [324,325].
Since the fits to the experimental data are equally good, we cannot say that one specific
parameterization is better than the other. However, this disagreement is a clear indication
that the hadronic inputs entering the RD∗ prediction need to be better understood.

As for R0(w), which enters the prediction for Γ(B → D∗τν), its value has been obtained
in Ref. [93] in a manner similar to what has been advocated by the authors of Ref. [327],
but also by fixing the value of R0(1) following Ref. [329,330]

R3(1) ≡ R2(1)(1− r) + r [R0(1)(1 + r)− 2]
(1− r)2 = 0.97 , (5.67)

valid to leading order in the power expansion 1/mb,c, where we also for shortness wrote
r = mD∗/mB. In that way the result reported in Ref. [93]

R0(1) = 1.14± 0.11 , (5.68)

where the 10% error is a simple guesstimate. Note that this value is consistent with the
HQET result R0(1) = 1.22. Very recently that result has been revisited by the authors
of Ref. [332] who employed the QCD sum rule technique applied to the HQET correlation
functions, and found

R0(1) = 1.17± 0.02 . (5.69)
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This value too should be tested by making the explicit computation of the ratio of the form
factors on the lattice.

In the following, we will assume that the observed discrepancies in RD(∗) are due to
NP. We will focus our discussion on the possible connections between the anomalies in
b→ cτν and b→ s``. As already anticipated in the introduction of Sec. 5.2, the proposed
solutions have a compromise between the simplicity of the model and the capability to
explain all deviations. We prefer to opt for the latter possibility, since the LFUV deviations
in neutral currents still need to be confirmed by another experiment, which will be Belle-II,
and because the experimental situation of RD(∗) still needs to be clarified.

5.3.2 Simultaneous explanations of RK(∗) and RD(∗)

So far several models have been proposed to simultaneously describe RK(∗) and RD(∗) , see
Ref. [333] for a recent review. While many authors considered effective scenarios, very few
concrete solutions to the puzzle of B-physics anomalies have been proposed [334–336]. By
using a set of gauge invariant operators the authors usually assume that only the coupling
to one generation in the interaction basis is non-zero so that the LFUV comes from the
misalignment between the interaction and mass bases [153, 334]. The set of SU(3)c ×
SU(2)L × U(1)Y gauge invariant operators usually considered is given by

Oijkl1 = (Qiγ
µQj)(LkγµLl) ,

Oijkl3 = (Qiγ
µσaQj)(LkγµσaLl) ,

(5.70)

where i, j, k, l are family indices and σa (a = 1, 2, 3) are Pauli matrices. Interestingly,
the operator O3 generates both charged and neutral currents, which could explain the
ensemble of LFUV observations for an appropriate choice of couplings, as first pointed
out in in Ref. [334]. 9 One should, however, be cautious because the renormalization
group running from the NP scale to the relevant low energy scale can generate sizable
contributions to others operators, such as the ones contributing to the Z-pole observables
and to leptonic τ decays. The authors of Ref. [337] argued that an EFT explanation of
RD(∗) by means of the operators described in Eq. (5.70) would induce large contributions
to B(τ → µνν)/B(τ → eνν) that would be in conflict with current experimental results,
disfavoring a simultaneous EFT explanation based on this set of operators.

The main challenge to build a concrete model to accommodate the b → s and b → c
anomalies is that we observe in both cases O(10%) deviations compared to the corre-
sponding SM amplitudes, which are induced at tree-level for the transition b → c`ν and
at loop-level for b → s`+`−. As a consequence, an explanation of RD(∗) would require
tree-level bosonic mediators in the TeV range, while a tree-level explanation of RK(∗) with
similar couplings would point at much larger scales, in the ballpark of ≈ 30 TeV [338].
Therefore, a mechanism is needed to explain this hierarchy between the needed contribu-
tions. A very appealing solution would be to reproduce the same pattern found in the
SM, i.e. to explain RD(∗) via tree-level contributions and RK(∗) through loops. Nonetheless,
no fully viable model has been proposed along these lines thus far. 10 Another interesting
possibility, which is certainly easier to implement, is to introduce a hierarchial pattern for

9This can be easily seen from the identity σaijσbkl = 2δilδjk − δijδkl.
10A first attempt in this direction was made in Ref. [254] by using the LQ state (3̄,1)1/3, but we showed

in Ref. [155] that this model is not viable, as discussed in Sec. 5.2.4.
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the NP couplings to fermions. In this case, the new bosons would couple mostly to the
third generation fermions, also providing an explanation for the good experimental agree-
ment found in LFU ratios with kaon and pion decays. This strategy has been followed in
Ref. [296,298,316,339] by introducing a minimally broken flavor symmetry GF which, after
an appropriate assignment of quantum charges, enforces that only operators with third gen-
eration fermions are allowed. The operators containing first and second are then generated
by a suitable breaking of this symmetry, which would explain why the effects observed in
b→ cτν are larger than the ones found in b→ sµµ.

One of the first concrete proposals to explain the observed excess RD(∗) were the 2HDM
of different types, including the aligned 2HDM [180] and the (fine-tuned) model of type
III [340]. These models face now severe constraints stemming from the Bc meson life-
time [341–343] and from the studies of high-pT τ -leptons tails at the LHC [263]. 11 Nonethe-
less, as it was implicitly stated in Sec. 3.4, the only LFUV contributions in 2HDM to
b→ s`+`− come from the scalar and pseudoscalar operators, which are not enough to explain
the observed deviations in RK(∗) . Therefore, these models cannot simultaneously explain
RK(∗) and RD(∗) . Among the models containing color-singlet particles, another proposal is
the one of vector-boson weak triplets with hierarchial couplings to fermions [290, 316]. In
these scenarios, the Z ′ and W ′ bosons contribute at tree-level to the transitions b→ s`+`−

and b → cτν, respectively. A very comprehensive analysis of this model was performed in
Ref. [316], where it was shown that its minimal realization is ruled out by the LHC searches
of heavy resonances decaying into τ pairs.

Several scenarios with hypothetical light LQ states have also been proposed. While
the scenarios with vector LQs are the easiest ones [295, 296, 298] they become problematic
when computing the loop corrections unless the vector LQs are promoted into the “light”
gauge bosons O(1 TeV), in which case one runs into contradiction as such gauge bosons are
supposed to be associated with a gauge group relevant to the scales of grand unification.
Otherwise the loop corrections in a theory with a light vector LQ are UV-cutoff depen-
dent unless the UV completion is explicitly specified. This fact considerably reduces the
predictivity of these scenarios, since loop observables which pose severe constraints on LQ
scenarios, such as the Bs − Bs mixing amplitude and B(τ → µγ), cannot be computed.
Concerning the light scalar LQ scenarios, instead, they do not exhibit such a problem but
in their minimal form they are suitable to either describe RK(∗) [300] or RD(∗) [224], but not
both. The only possibility left is to consider non-minimal models where the existence of
more than one scalar LQ is postulated. This route was taken in Ref. [344] by considering
the pair of scalar LQs (3̄,1)1/3 and (3̄,3)1/3 in the context of a minimally broken flavor
symmetry. Similarly, the authors of Ref. [301] postulated the existence of two light scalar
LQs transforming as (3,2)1/6 and (3̄,3)1/3 in a concrete GUT realization. Interestingly, the
problematic diquark couplings of the LQ triplet are forbidden in this latter scenario by a
suitable choice of the SU(5) quantum charges.

Finally, we attempted to simultaneously address the b → c and b → s anomalies by
minimally extending the model with the scalar LQ (3,2)1/6. By postulating the existence
of light right-handed neutrinos we showed in Ref. [345] that this model can satisfactorily
explain Rexp

K < RSM
K and Rexp

D(∗) > RSM
D(∗) . However, the recent measurement of RK∗ by LHCb

disfavored this scenario, since it predicts RK∗ to be slightly larger than the SM prediction.
In the following Section, we will describe this model to illustrate the situation in model
building in flavor physics: it is a very challenging task to propose a minimal model capable

11See Ref. [343] for a recent and comprehensive analysis of effective scenarios aiming to explain RD(∗) via
scalar operators.
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of explaining both RK(∗) and RD(∗) while being consistent with the plethora of constraints
coming from the flavor physics observables.

5.3.3 (3, 2)1/6 and light right-handed neutrinos
The model containing the state (3, 2)1/6 was originally proposed as a viable explanation
of Rexp

K < RSM
K in Ref. [118]. In this Section, we will show that the minimal inclusion of

light RH neutrinos to this scenario induces new contributions to charged current processes,
which can acommodate Rexp

D(∗) > RSM
D(∗) [345].

In the presence of three gauge singlets νRj (j = 1, 2, 3), the Lagrangian (4.31) becomes

L∆(1/6) = (yL)ijdRi∆̃
(1/6)†

Lj + (yR)ijQi∆
(1/6)νR,j + h.c. , (5.71)

where yL,R are generic 3× 3 Yukawa matrices. This expression can be further developed in
terms of the fermionic mass eigenstates

L∆(1/6) = (yLU)ij dRiνLj ∆(−1/3) − (yL)ijdRi`Lj ∆(2/3)

+ (V yR)ijuLiνRj∆(2/3) + (yR)ijdLiνRj∆(−1/3) + h.c. ,
(5.72)

where U denotes the leptonic mixing matrix, and ∆(Q) denote the LQ mass eigenstates with
electric charge Q, as before. From this expression, we observe that a coupling between up-
type quarks and neutrinos is induced by the RH couplings which could potentially contribute
to the b → cτν decays and to RD(∗) in particular. To study the charged currents with RH
neutrinos, we find it convenient to define the effective Lagrangian

Leff = −2
√

2GFVud
[
(uLγµdL)(`LγµνL) + gRS (µ)(uLdR)(`LνR)

+ gRT (µ)(uLσµνdR)(`LσµννR)
]

+ h.c. ,
(5.73)

where u/d stands for a generic up-/down-type quark, while gRS,T ≡ gRS,T
∣∣∣
d→u`ν̄

are the effective
couplings induced by New Physics. This equation should be compared to Eq. (2.3), where
the possibility of having RH neutrinos was not considered.

In the following, we assume that the neutrino masses are negligible in comparison with
the hadronic mass scales, so that it is legitimate to take U = 1 for the PMNS matrix. We
consider neutrinos to be Dirac particles, even though this issue is immaterial in the limit of
mν → 0. 12 We describe below the effective Lagrangian of the (3,2)1/6 scenario extended
with RH neutrinos, and we discuss the phenomenological implications.

Effective Lagrangian

The low energy effective theory obtained by integrating out the heavy ∆ has the following
Lagrangian

Leff = Ld→d′``′eff + Ld→d′ννeff + Ld→u`νeff + Lu→u′νν′eff , (5.74)

where the piece affecting the b→ sµµ transition described in Eq. (4.32) remains unchanged:
12Notice that the effective Lagrangian for b→ cτν would be the same for Dirac and Majorana neutrinos.
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Ld→d′``′eff = −(yL)ij(yL)∗kl
2m2

∆

(
d̄iγ

µPRdk
) (¯̀

lγµPL`j
)
. (5.75)

The novelty of our model is the presence of the following terms

Ld→u`νeff = (V yR)ij(yL)∗kl
2m2

∆

[
(ūiPRdk)

(¯̀
lPRνj

)
+ 1

4 (ūiσµνPRdk)
(¯̀
lσ
µνPRνj

) ]
+ h.c., (5.76)

which are induced by the right-handed couplings. This Lagrangian can modify the transition
b → c`ν, with ` = e, µ, τ , as mentioned before. Notice that the flavor of the neutrino is
generic in this expression and one should compare the experimental results with

B(B → D`ν) ≡
∑

`′=e,µ,τ
B(B → D`ν`′), (5.77)

where a similar expression should also be used for leptonic decays. Finally, the last two
pieces in Eq. 5.74 are given by

Ld→d′ννeff = −
∑

α=L,R

(yα)ij(yα)∗kl
2m2

∆

(
d̄iγ

µ(1− Pα)dk
)

(ν̄lγµPανj)

− (yL)ij(yR)∗kl
2m2

∆

[ (
d̄iPLdk

) (¯̀
lPLνj

)
+ 1

4
(
d̄iσµνPLdk

) (¯̀
lσ
µνPLνj

) ]
,

(5.78)

where two new terms induced by the couplings (yR)k` appeared, and by

Lu→u′νν′eff = −(V yR)ij(V yR)∗kl
2m2

∆
(ūiγµPRuk) (ν̄lγµPLνj) , (5.79)

which is not phenomenologically interesting, since there are no compelling experimental
results regarding this transition. 13 These expressions will be used in the phenomenological
discussion below.

Flavor physics constraints

Similarly to the discussion of Sec. 5.2.5, we take the couplings to the first generation to be
zero in order to avoid the potential problems with the atomic parity violating experiments,
as well as the experimental limits on B(K → πνν) and B(Bs → µe). We will assume the
following structure of the matrices of Yukawa couplings:

yL,R =


0 0 0
0 (yL,R)sµ (yL,R)sτ
0 (yL,R)bµ (yL,R)bτ

 , (5.80)

13To our knowledge, the only available experimental limit is B(J/Ψ → νν) < 3.9 × 10−3 [311], which is
still significantly away from the SM prediction.
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which implies that

V yR =


0 Vus(yR)sµ + Vub(yR)bµ Vus(yR)sτ + Vub(yR)bτ
0 Vcs(yR)sµ + Vcb(yR)bµ Vcs(yR)sτ + Vcb(yR)bτ
0 Vts(yR)sµ + Vtb(yR)bµ Vts(yR)sτ + Vtb(yR)bτ

 . (5.81)

Although the couplings to first generation fermions are set to zero in Eq. (5.71), it is clear
from Eq. (5.81) that contributions to the leptonic and semileptonic decays of kaons (s→ u)
or B-mesons (b → u) are not absent. Therefore, constraints involving the up quark, such
as B(B+ → τ+ν) and B(K+ → µ+ν) must be taken into account.

The values of the couplings (yL,R)ij, which we take to be real, are varied within the
perturbative limits, |(yL,R)ij|<

√
4π, and are subject to many constraints of which the

following ones are found to be particularly relevant:

• b→ sµµ:
As described in Sec. 5.2.1, we consider the cfrom the experimentally established
B(Bs → µµ) and B(B+ → K+µµ) in the large q2 bin, which imply the constraints
(Cµµ

9 )′ = −(Cµµ
10 )′ ∈ (−0.44,−0.12) to 1σ accuracy. This results can be translated as

a constraint on the combination (yL)bµ(yL)∗sµ/m2
∆ by using Eq. (4.34). The allowed

values lead to the prediction RK = 0.88(8), consistent with the experimental value
found by LHCb, cf. (5.2). This model also predicts Rcentral

K∗ = 1.11(9) which is slightly
larger than the SM prediction. Therefore, this model would be ruled out if RK∗ < 1
is confirmed, cf. Eq. (5.3).

• ∆mBs :
Another important constraint stems from the Bs − B̄s amplitude. We computed
RBs = ∆mBs/∆mSM

Bs in our model, which reads

RBs = 1 + η1

16G2
Fm

2
W (VtbV ∗ts)2ηBS0(xt)m2

∆
×
[
(yL · y†L)2

bs + 1
2(yR · y†R)2

bs

− η41
3
2(yL · y†L)bs(yR · y†R)bs

(
mBs

mb(mb) +ms(mb)

)2
B4(mb)
B1(mb)

]
, (5.82)

where we use the standard notation for ∆mSM
Bs , η1 = 0.82(1) and η41 = 4.4(1) account

for the QCD evolution from µ ' 1 TeV down to µ = mb. After combining the lattice
QCD values for bag parameters B1,4 [77,346], with the experimental Rexp

Bs = 1.02(10),
we obtain a rather stringent constraint on the couplings shown in the brackets of
Eq. (5.82).

• τ → µφ:
The experimental upper limit B(τ → µφ) < 8.4×10−8 [310] can be used to constraint
(yL)sµ/m∆ and (yL)sτ/m∆ via the expression

B(τ → µφ) =
f 2
φm

3
τ

512πΓτ

∣∣∣∣∣(yL)sτ (yL)∗sµ
m2

∆

∣∣∣∣∣
2

(1− x)(1 + x− 2x2), (5.83)

where x = m2
φ/m

2
τ and fφ = 241(18) MeV [347]. The terms proportional to m2

µ/m
2
τ

were omitted in this equation.
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• B → Kνν:
The experimental upper limit on B(B → Kνν̄) [310] turns out to be a very important
constraint too. The relevant expression for this process computed in the SM extended
by the effective Lagrangian is

B(B → Kνiνj) = |N |2λ1/2
B

384π3m3
BΓB

{
|f+(q2)|2λB

[
|Cij

LL + Cij
LR|2+|Cij

LR|2
]

+ |f0(q2)|2 3q2

2(mb −ms)2 (m2
B −m2

K)2|Cij
S,LL|2

+ |fT (q2)|2λB
2q2

(mB +mK)2 |C
ij
T,LL|2

}
,

(5.84)

where N = αemGFVtbV
∗
ts/(
√

2π). After summing over the neutrinos states, the auxil-
iary coefficients in the given above read

∑
ij

|Cij
LL + Cij

LR|2 = 3|CSM
L |2+ CSM

LL

2Nm2
∆

Re(yL · y†L)sb + 1
16|N |2m4

∆
(yL · y†L)ss(yL · y†L)bb,

∑
ij

|Cij
S,LL|2 = 16

∑
ij

|Cij
T,LL|2= 1

16|N |2m4
∆

(yL · y†L)ss(yR · y†R)bb, (5.85)

∑
ij

|Cij
RR|2 = 1

16|N |2m4
∆

(yR · y†R)ss(yR · y†R)bb ,

where CSM
L = −6.83(6) denotes the SM contribution, as before [348].

• Leptonic decays:
Also useful are the constraints coming from the (semi-)leptonic meson decays. Using
the Lagrangian (5.73), one can easily compute the decay rates for various leptonic
processes. For example, we obtained

Γ(Ds → `ν̄) = G2
F

8πm3
Ds

|Vcs|2f 2
Ds(m

2
Ds −m

2
`)2m2

`

[
1 + |gRS |2

m4
Ds

m2
`(mc +ms)2

]
, (5.86)

where the matching of Eq. (5.73) and (5.76) gives

(
gRS
)
c→s`iνj

= (V yR)cj ysi∗L
4
√

2GFVcsm2
∆
, (5.87)

at the scale µ = m∆ ≈ 1 TeV, which is via the QCD running related to the scales
where the LQCD simulations are performed, namely, gS(µ = 1 TeV) ≈ 0.5× gS(µ =
mb) ≈ 0.37 × gS(µ = 2 GeV). Note that if we replace gS → gRS , then Eq. (5.86)
coincides with Eq. (2.9) except for the interference term which does not exist for
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RH neutrinos. Since neutrinos are unobserved, one should sum over all possible final
states. The absence of interference term allow us to define

∣∣∣∣(gRS )c→sµν
∣∣∣∣2 ≡ ∣∣∣∣(gRS )c→sµνµ

∣∣∣∣2 +
∣∣∣∣(gRS )c→sµντ

∣∣∣∣2 , (5.88)

which can be directly used in Eq. (5.86) to obtain B(Ds → `ν) = B(Ds → `νµ) +
B(Ds → `ντ ). The same expression can be applied mutatis mutandis for the other
leptonic decays, namely, B(K → µν), B(τ → Kν) and B(B → τν), for which the
relevant decay constants are summarized in Tab. 2.1. Experimental results are taken
from Ref. [310]. We do not include constraints from semi-leptonic decays in our
analysis, since these are superseded by the analogous leptonic modes. This can be
understood from the helicity suppression which is lifted by the scalar Wilson coefficient
gRS in Eq. (5.86).

• R
µ/e
D :

An important constraint for NP scenarios with couplings to µ’s is the ratio

R
µ/e
D = B(B → Dµν)

B(B → Deν) , (5.89)

which was first considered in Ref. [316] and then also used in Ref. [155] to challenge
a putative simultaneous explanation of RK and RD, cf. Sec. 5.2.4. The relevant ex-
pression for the differential branching ratio, obtained by using the Lagrangian (5.73),
is given by

dB
dq2 (B → D`ν) = B0|Vcb|2|f+(q2)|2

c`+(q2) + |gRT |2c`T (q2)
∣∣∣∣∣fT (q2)
f+(q2)

∣∣∣∣∣
2

+
(

1 + |gRS |2
q4

m2
`(mb −mc)2

)
c`0(q2)

∣∣∣∣∣ f0(q2)
f+(q2)

∣∣∣∣∣
2
 ,

(5.90)

where B′ = G2
F τB/(192π3m3

B), as before, and the coefficient functions are given again
by Eq. (2.30). Using the form factors from Ref. [16] and requiring Rµ/e

D < 1.02 [314,
316], we obtain a powerful constraint our the couplings,

gRS (µ = m∆)
∣∣∣
b→c`iν̄j

= 4 gRT (µ = m∆)
∣∣∣
b→c`iν̄j

= (V yR)cj ybi∗L
4
√

2GFVcbm2
∆
, (5.91)

where the QCD running accounts for gRT (µ = 1 TeV) ≈ 1.3 × gRT (µ = mb) ≈ 1.4 ×
gRT (µ = 2 GeV), and the tensor form factor is taken from Ref. [349]. We stress once
again that modes with different neutrino flavors should be added to obtain the rates

B(B → Dµν) =
∑
`′=µ,τ

B(B → Dµν`′) , (5.92)

which can be effectively done by redefining the effective coefficients gRS,T similarly to
Eq. (5.88).
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Other observables, such as leptonic decays of φ(nS) and Υ(nS), could in principle
provide useful bounds on the LQ couplings, but the derived limits turn out to be less
significant at this point. Flavor conserving leptonic decays, such as Υ(nS) → ττ , are
dominated by the very large tree-level electromagnetic contribution which undermines their
sensitivity to NP. LFV modes, such as Υ → µτ , are in principle sensitive to the LQ
contribution but the current experimental limit B(Υ(1S)→ µτ)exp < 6× 10−6 [350] is still
too weak to be useful. Moreover, an additional suppression to the decay rates comes from the
larger width of the vector quarkonia. For instance, the width of Υ, ΓΥ = 54.02± 1.25 keV,
is many orders of magnitude larger than the width of B(s) mesons [22],

ΓΥ(1S)

ΓBd(s)
≈ 108 . (5.93)

This can be easily understood from the fact that B(s)-meson decays proceed through elec-
troweak interactions, while Υ(nS) can decay directly through strong and eletromagnetic
interactions. Therefore, potential NP contributions to electroweak decays of quarkonia are
always diluted in the branching ratios by the large total width. Therefore, we can say on
general grounds that any search for NP effects in quarkonia decay modes would require a
much better accuracy than the one needed for instance in the B(s) system.

Finally, we have also checked that the experimental limit on B(τ → µγ) < 4.4 × 10−8

[317] does not provide any additional constraint to this model because of an accidental
cancellation of terms ∝ 1/m2

∆ in the loop function [155]:

σ
(1/6)
L = 0, σ

(1/6)
R = −i(yL)bµ(yL)∗bτ

NCm
2
bmτ

96π2m4
∆

[
5
2 + log

(
m2
b

m2
∆

)]
, (5.94)

where we use the same notation as in Eq. (5.40). 14 This expression should be compared to
Eq. (5.41), where the leading contribution is proportional to 1/m2

∆, instead of 1/m4
∆, and

where the top quark mass can enhance the loop-function.

We are now in a position to combine the ingredients given above in order to constraint the
Yukawa couplings (yL,R)ij, which are then used to compute the effective coefficients (5.91).
After inserting those couplings into Eq. (5.90) we can compute RD = B(B → Dτν)/B(B →
Dlν). The result is shown in Fig. (5.17) where we see that with all of the constraints
discussed above, our model not only gives RK = 0.88(8) compatible with the experimental
finding, but we are also able to find parameters which are compatible with Rexp

D at the
≈ 1.1σ level. In this scan, we kept the leptoquark mass fixed at m∆ = 650 GeV and also
required consistency with the direct search limits [259,261], which will be discussed at the
end of this Section. We plot the correlation between the allowed couplings (yL)bτ , (yR)bτ
in Fig. 5.18, where we see that one needs |(yL)bτ |& 1.4 to reduce the tension in RD. The
RH coupling (yR)bτ can help reducing the tension in RD, and it has an anti-correlation
with (yL)bτ , i.e. large (yR)bτ implies small (yL)bτ . In the same plot, we highlight the points
consistent with Rexp

D to 1.5σ accuracy (in black), which seem to be uniformly distributed.
The correlation between (yL)bµ, (yL)bτ is also shown in Fig. 5.17, where we see that they can
take any value, but small values are preferred for a better description of Rexp

D , as expected.
Finally, we use the expressions encountered in the literature for the B → D∗ form factors
to estimate RD∗/R

SM
D∗ in Fig. 5.19, c.f. discussion in Sec. 5.3.1. Nonetheless, if one believes

14Notice that for the same reason (g−2)µ remains highly suppressed and experimentally indistinguishable
from its SM prediction.

160



5.3. Lepton flavor universality violation in b→ c`ν

Figure 5.17: The ensemble of points (all colors combined) correspond to our model in the case
m∆ = 650 GeV after applying all the constraints on Yukawa couplings discussed in this Section
except for the R

µ/e
D constraint. They are shown in the plane gRS |b→cτ ν̄ Vs. gRS |b→cµν̄ , against

the green regions which represent RD at 1-, 2- and 3-σ. Red and blue points are selected after
imposing consistency with R

µ/e
D . Finally the red points alone indicate the compatibility with RD

to 2σ.

in these expression for the form factors, then this model can produce an enhancement of
about 5% in addition to the quoted SM error. This statement needs to be confirmed by
computing the B → D∗ form factors on the lattice.

We also performed a second scan of parameters by leaving m∆ as a free parameter, and
then checked how the prediction of RD changes as a function of the leptoquark mass. We
considered the range m∆ ∈ (500, 3000) GeV and applied the direct searches constraints
for third-generation LQs that will be described at the end of this Section. The result of
this exercise is shown in Fig. 5.20, from which we learn that the 2σ compatibility with
Rexp
D implies m∆ ∈ (590, 1200) GeV. Larger LQ masses are excluded by the perturbative

conditions, which is taken to be |(yL,R)|<
√

4π, while smaller masses are in conflict with
the bounds obtained from the direct searches [259,261].

Predictions

With the Yukawa couplings constrained in a way discussed in the previous Section, we
could show that we are able to accommodate Rexp

K < RSM
K and Rexp

D(∗) > RSM
D(∗) . In this

Section, we discuss several predictions that could be used to test this scenario in modern
day experiments. In the scenario m∆ = 650 GeV, we obtained that:

◦ The value of B(Bs → ττ) can be both larger and smaller than the SM one since the
sign of the Wilson coefficient (Cττ

10 )′ is not fixed by the flavor constraints. We found

161



5.3. Lepton flavor universality violation in b→ c`ν

Figure 5.18: Correlations of allowed couplings in the planes ((yR)bτ , (yL)bτ ) (left panel) and
((yL)bµ, (yL)bτ ) (right plane). The red points are consistent with Rexp

D to 2σ accuracy, as in
Fig. 5.18. We highlight in black the points with a consistency with Rexp

D at the 1.5σ level.

that

0 ≤ B(Bs → ττ)
B(Bs → ττ)SM < 15, (5.95)

which is still far from the current limit B(Bs → ττ) < 6.8× 10−3 (95% CL) obtained
by the LHCb collaboration [352]. 15

◦ Using the expressions presented in Section 2.3, we also computed the lepton flavor
violating decay rate B(B → Kµτ) and found that

8× 10−10 ≤ B(B → Kµτ) ≤ 5× 10−6, (5.96)

which is shown in Fig. 5.21. Notice that the similar LFV modes are easily inferred
from the bounds given above, by using Eq. (2.149).

◦ Similarly to RD > RSM
D , we find that the ratio Rηc = B(Bc → ηcτν)/B(Bc → ηclν)

can be larger than its SM value. Using the recent Bc → ηc decay form factor val-
ues computed on the lattice . [86] and the results for gRS

∣∣∣
b→c`iν̄j

discussed above, we
obtained

1.06 ≤ Rηc

RSM
ηc

≤ 1.22, (5.97)

which is also plotted in Fig. 5.21.
15Notatice that one could have B(Bs → ττ) ≈ 0, since the NP contribution to C10can interfere destruc-

tively with the SM one.
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Figure 5.19: Correlation of RD/RSM
D and RD∗/R

SM
D∗ for the allowed points. For simplicity, we

only show the central values for both observables. See Fig. 5.17 for the color code.

Figure 5.20: Results of our scan of parameters consistent with all constraints discussed in the
previous section in which the leptoquark mass m∆ is varied too. We see that the combination of di-
rect search limits with the 2σ consistency requirement with Rexp

D results in m∆ ∈ (590, 1200) GeV.
See Fig. 5.18 for the color code (gray points are not shown in this plot).
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◦ A very interesting feature of this model is not only that the different leptonic decays
of Bc are modified differently, but the fact that B(Bc → τν) we obtain is strictly
larger than the SM value:

2.2 ≤ B(Bc → τν)
B(Bc → τν)SM ≤ 5.0, (5.98)

which offers another possibility to experimentally test the validity of our model. On
the other hand, the value of B(Bc → µν) that we obtain can be either equal to its
SM value or enhanced by up to a few orders of magnitude.

As extensively discussed in Section 5.2, scenarios with primed Wilson coefficients cannot
accommodate the hints of Rexp

K∗ < RSM
K∗ . If confirmed, this result would exclude the model

discussed above as an explanation of the muons anomalies, since it predicts RK∗ to be
slightly larger than the SM prediction. Nevertheless, it remains a viable model to describe
RD(∗) . This also illustrates the current situation in model building in the flavor physics
community. Many new experimental data help either corroborating an hypothesis or to
select among various models. Therefore, we indeed use data to do physics.

Implications for Direct Searches

Finally, we comment on the attempts to detect the LQ states of this specific model at the
LHC. Since the explanation of RD(∗) requires large couplings to the third generation, (yL)bτ
and/or (yR)bτ , the main decay modes of our model are

∆(−1/3) → bν, and ∆(2/3) → bτ, tν . (5.99)
Other possible final states are

∆(−1/3) → sν, bν, and ∆(2/3) → sµ, bµ, sτ, cν , (5.100)
depending on the structure of the Yukawa matrices yL,R. 16 The expression for the relevant
decay rates of ∆(2/3) are

Γ(∆(2/3) → di`j) = m∆

16π |(yL)ij|2, (5.101)

Γ(∆(2/3) → uiν) = m∆

16π

(
1−

m2
ui

m2
∆

)2 ∑
k=µ,τ
|(V yR)ik|2, (5.102)

and similarly to the state ∆(−1/3),

Γ(∆(−1/3) → diν) = m∆

16π
∑
j=µ,τ

[
|(yL)ik|2+|(yR)ik|2

]
, (5.103)

where i, j are flavor indices. We only kept the up-type mass in the above equations, since
mt is the only fermion mass which is not negligible with respect to m∆.

16The decay ∆(2/3) → uν is also possible, but it is Cabibbo suppressed in our model.
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So far, the most stringent limit on third generation leptoquark is m∆ > 900 GeV,
which was obtained by the CMS collaboration with the assumption B(∆ → τb) = 1 [260].
Similarly to the discussion at the end of Sec. 5.2.5, this bound becomes considerably weaker
in a more realistic scenario where other decay modes are also allowed. For instance, we
rescaled the limits from Ref. [259] in the case where B(∆(2/3) → τb) is smaller than one,
cf. discussion in Sec. 5.3.3. The result was shown in Fig. 4.6, where we can see that the
bound drops considerably to m∆ & 500 GeV if B(∆(2/3) → τb) = 0.5, for example. We
showed in the same figure a similar recast of the searches performed in Ref. [261] for a pair
of LQs decaying into ∆(2/3) → τν and ∆(−1/3) → bν. We stress once again that all these
limits were considered in the scans of parameter space presented above, from which we
extracted the interval m∆ ∈ (590, 1200) GeV, which is consistent with direct and indirect
limits on LQs.

Finally, we should mention that the LQ model presented here is still perfectly consistent
with the limits derived on Ref. [263] by studying the tails of high-pT τ -leptons at the
LHC. By considering the t-channel LQ contribution to bb̄ → τ+τ−, they derived the limit
|(yL)bτ |. 3 for m∆ ≈ 650 GeV, which is still perfectly consistent with the results shown in
Fig. 5.18. Note that the situation might change in the future with more data accumulated
at the LHC. These searches have the potential to confirm or refute this scenario as an
explanation of RD(∗) since the couplings |(yL)bτ | are bounded from below, as discussed
above.

165



5.3. Lepton flavor universality violation in b→ c`ν

Figure 5.21: Colors of the points are the same as in Fig. 5.19: the blue points are obtained by
subjecting the Yukawa couplings of our model to the constraints discussed in the text, and the red
ones are selected from the blue ones after requiring the compatibility with Rexp

D to 2σ. We plot
our predictions for three selected quantities: limits on the LFV decay mode, i.e. its B(B → Kµτ),
the ratio between Rηc = B(Bc → ηcτ ν̄)/B(Bc → ηclν̄) predicted by our model and its SM value,
and a similar ratio of B(Bc → τ ν̄) which appears to be strictly larger than its SM estimate.
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Conclusion

In this thesis we aspired to extract information about physics beyond the SM by using the
flavor physics observables. Our ultimate goal was to formulate a theory of flavor based on
the experimental results which could explain the Yukawa structure in terms of fewer and
more fundamental parameters. To that purpose, we used the experimental findings as the
main guideline to choose the preferred NP scenarios. A first part of this thesis is dedicated to
2HDM. The Higgs sector was the last piece of the SM fixed by experiment, and the current
level of precision still allows for observable signals both in indirect and direct searches related
to the scalar sector. We discussed the general lessons that can be learned on the spectrum
of 2HDM by using the theoretical and phenomenological constraints, and we explored the
repercussion of the new degrees of freedom in different low energy observables, including
tree-level and loop-level meson decays. In particular, we discussed the scenario with a CP-
odd Higgs lighter than the scalar boson observed at the LHC which escaped observation
thus far, and we propose strategies to probe this particle in modern day experiments. Such
a boson would be most welcome as a new mediator between the SM and the dark sector.
A second part of this thesis was devoted to the phenomenon of lepton flavor universality
violation observed in the exclusive decays based on the transitions b→ s`+`− and b→ cτν.
If confirmed, these signal would be a legitimate manifestation of NP which could be related
to the flavor breaking mechanism beyond the SM. Within the 2HDM scenarios these effects
are found to be small. To accommodate the observed LFUV we introduced the various
scalar LQ scenarios, which provide one of the best candidates thus far. We scrutinized
the proposed solutions, showing that one of the popular scenarios in the literature is not
viable, and we proposed minimal models which can accommodate some of the observed
discrepancies by relying on new mechanisms. Furthermore, we explored the possibilities of
searching for signs of LFV through similar decay modes, which offer a clean alternative to
test most of the NP explanations. The main results discussed in this thesis are summarized
below:

• We discussed the general limits that can be derived on the spectrum of 2HDM by
applying the general theory and phenomenology constraints. The allowed parameters
were then confronted with the constraints from leptonic and semileptonic meson de-
cays, which constrains the tree-level contribution from a charged Higgs. Furthermore,
we showed that 2HDM scenarios with a light CP-odd Higgs (mA < mh) are perfectly
plausible with current theory and phenomenology constraints.

• We computed the complete set of Wilson coefficients for the transition b→ s`+`− in
the context of 2HDM devised with a Z2 symmetry [186]. Regarding the scalar and
pseudoscalar operators, we elucidated the issue of appropriate matching between the
full and the effective theory when keeping the external momenta different from zero
is necessary. To that purpose, we introduced an extended basis of operators which
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include the ones suppressed by 1/mW that must be used for the unambiguous match-
ing. Finally, we confronted our results for the Wilson coefficients with the measured
B(Bs → µ+µ−) and B(B → Kµ+µ−)high−q2 , and derived the repercussion for the
various 2HDM.

• We proposed new strategies to investigate the presence of a light CP-odd Higgs in
indirect searches: (i) We showed that the exclusive Higgs decays B(h→ ηc,bτ

+τ−) can
be an order of magnitude larger than the SM prediction for the models of type II and
X [204]; (ii) We proposed the observables B(ηb → µ+µ−) and B(ηb → τ+τ−) as a new
probe of light pseudoscalar particles, since they can be enhanced by several orders of
magnitude in the type II 2HDM. The experimental study of these observables, which
have been scarcely explored so far, can help disentangling among the various 2HDM
scenarios.

• We revisited a SU(5) scenario where the unification of gauge couplings is achieved via
the simple addition of light scalar LQ (3,2)1/6 from two 10 multiplets [229]. We found
that the lightest LQ state is required to have a mass in the range m∆ ∈ (0.4, 16) TeV,
being possibly accessible at the LHC. Furthermore, we addressed two shortcoming
of the original proposal: (i) We demonstrated that a mass splitting in the 24-plet
preserves unification and provides a straightforward way to raise the unification scale,
which can then avoid the current limits on the proton lifetime; (ii) We showed that
a U(1)PQ symmetry can be used to forbid a term in Lagrangian which would induce
the proton decay via dimension-9 operators.

• We derived the expressions for the full decay rates of the decay modes Bs → `±1 `
∓
2

and B → K(∗)`±1 `
∓
2 with `1, `2 = e, µ, τ by reyling on a general EFT. We used these

expressions to explore the connection between LFUV and LFV in explicit scenarios,
including Z ′ models [127] and the scenarios with the various LQ states [155]. As a
by-product of our work, we also clarified some inconsistencies in the expressions for
the B → K∗µ+µ− angular observables found in the literature [127].

• We explored to what extent the observed LFUV in RK(∗) and RD(∗) can be explained
by LQ scenarios. By performing a complete flavor analysis, we argued that the singlet
LQ state (3̄, 1)1/3 cannot provide a simultaneous explanation to the LFU puzzles in
tree-level and loop-induced decays [155]. We proposed a new scalar LQ model which
can explain the deviations in RK(∗) through loop contributions [319]. This model is
based on the state (3,2)7/6, to which a specific flavor ansatz on the Yukawa matrices
is imposed to forbid the tree-level contributions to b → s`+`−, which only appear at
loop-level. We reinterpreted the limits from the direct searches performed at the LHC
and showed that this scenario is consistent with those, as well as with the ensemble
of indirect constraints. Furthermore, we predict that the mass of this LQ satisfies
m∆ . 2 TeV, a fact that can be directly tested at the LHC.

• We proposed a scalar LQ model which includes the light right-handed neutrinos that
can explain the deviations in RK and RD(∗) [345]. This model has been disfavored
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since the measurement of RK∗ by LHCb, but it remains a viable model to explain
RD(∗) . Among the predictions of this scenario, we showed that strong signatures can
be observed in LFV B meson decays, Bs → µ±τ∓ and B → K(∗)µ±τ∓. Furthermore,
we predict an enhancement of B(Bc → τν) and Rηc = B(Bc → ηcτν)/B(Bc → ηclν)
(l = e, µ) which can be tested at the LHC and at Belle-II in the near future.

It should be clear that the solutions to the problems addressed in this thesis remain
a work in progress. Firstly, the question of whether the Higgs boson is the one predicted
by the SM remains unanswered, the answer of which will require a combined effort of
indirect and direct experimental searches. Furthermore, while the updated LHCb results
on RK(∗) and RD(∗) and the Belle-II determination of the same observables are waited,
the issue of LFUV remains an open question. One should also keep in mind that the
anomalous magnetic momentum (g− 2)µ presents a ≈ 3.6σ discrepancy with respect to the
SM [353]. This discrepancy will be soon confirmed or refuted by the joint effort between the
experimental groups at Fermilab and the LQCD community, which are working on reducing
the experimental and theoretical uncertainties. To propose a minimal scenario which can
simultaneously explain the observed deviations while complying with the plethora of direct
and indirect constraints is a very challenging task to which no convincing solution has
emerged yet. Furthermore, it remains not clear if the observed pattern of deviations is a
manifestation of flavor breaking beyond the SM, or other mechanism of NP possibly related
to the one of the SM problems.

Hopefully, the answer to these above-mentioned questions will soon be provided by
the collective effort of the flavor physics experiments at NA62, BES-III and LHCb with
the future ones at Belle-II, KOTO, TREK, (g − 2)µ and Mu2E, which will provide us
with an unprecedented amount of data. The combination of these results with the direct
searches performed at the LHC will serve as a guide to the theoretical effort towards a
better understanding of the flavor breaking mechanism beyond the SM and will possibly
help solving some of the long standing problems in theoretical physics.

169



Publication List
1. “Seeking the CP-odd Higgs via h→ ηc,b`

+`−”
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Appendix A

Useful identities

A.1 Fierz identities
The Fierz identities used in this thesis are listed below:

(PL)ij(PL)kl = 1
2(PL)il(PL)kj + 1

8(σµνPL)il(σµνPL)kj , (A.1)

(PL)ij(PR)kl = 1
2(γµPR)il(γµPL)kj , (A.2)

(γµPL)ij(γµPL)kl = −(γµPL)il(γµPL)kj , (A.3)

(γµPL)ij(γµPR)kl = 2(PL)il(PR)kj . (A.4)

The sign changes due to fermion field ordering are not included. The identities with a
flipped chirality can be obtained by the trivial replacement PL,R → PR,L.

A.2 Passarino-Veltman Functions
In this appendix we list the analytic expression for some of the Passarino-Veltman (PV)
functions. The scalar PV functions are defined in d = 4 − ε dimensions by the expres-
sions [185]

A0(m2
0) = (2πµ)ε

iπ2

∫
ddk 1

k2 −m2
0
, (A.5)

B0
(
r2

10,m
2
0,m

2
1

)
= (2πµ)ε

iπ2

∫
ddk

1∏
i=0

1
[(k + ri)2 −m2

i ]
, (A.6)

C0
(
r2

10, r
2
12, r

2
20,m

2
0,m

2
1,m

2
2

)
= (2πµ)ε

iπ2

∫
ddk

2∏
i=0

1
[(k + ri)2 −m2

i ]
, (A.7)

D0
(
r2

10, r
2
12, r

2
23, r

2
30, r

2
20, r

2
13,m

2
0, . . . ,m

2
3

)
= (2πµ)ε

iπ2

∫
ddk

3∏
i=0

1
[(k + ri)2 −m2

i ]
, (A.8)

where rij = (ri − rj)2 ∀ i, j ∈ {0, 1, . . . , n − 1}. By convention r0 = 0, so that r2
i0 = r2

i .
These integrals can be computed by using dimension regularization in d = 4−ε dimensions,
and by using the Feynman trick. The general results for the first two functions are given
by
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A0
(
m2
)

= m2
(

∆ε + 1− log m
2

µ2

)
, (A.9)

B0
(
p2,m2

0,m
2
1

)
= ∆ε −

∫ 1

0
dx log

[
−x(1− x)p2 + xm2

1 + (1− x)m2
0

µ2

]
, (A.10)

where µ is the renormalization scale and ∆ε = 2/ε−γE+log(4π) contains the UV divergent
piece in d = 4. The three and four point PV functions are finite and given in general by

C0
(
r2

10, r
2
12, r

2
20,m

2
0,m

2
1,m

2
2

)
= −

∫ 1

0
dx
∫ 1−y

0
dx 1

∆C(x, y) , (A.11)
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2
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2
3

)
=
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0
dx
∫ 1−x

0
dy
∫ 1−x−y

0
dz 1

∆D(x, y, z)2 , (A.12)

where the functions in the denominators read

∆C(x, y) = m2
0(1− x− y) + xm2

1 + ym2
2 − x(1− x)r2

10 − y(1− y)r2
20 (A.13)

+ xy(r2
10 + r2

20 − r2
21) ,

and

∆D(x, y, z) = m2
0(1− x− y − z) + xm2

1 + ym2
2 + zm2

3 − x(1− x)r2
10 (A.14)

− y(1− y)r2
20 − z(1− z)r2

30 + xy(r2
20 + r2

10 − r2
21)

+ xz(r2
30 + r2

10 − r2
31) + yz(r2

30 + r2
20 − r2

32) .

The analytical computation of the finite integrals given above can be particularly difficult
for non-zero external momenta ri. We give below the results when r2

ij = 0 ∀ i, j:

B0
(
0,m2

0,m
2
1

)
= ∆ε + 1− m2

0 logm2
0 −m2

1 logm2
1

m2
0 −m2

1
, (A.15)

C0
(
0, 0, 0,m2

0,m
2
1,m

2
2

)
= − 1

m2
0

1
t1 − t2

[
t1 log t1
t1 − 1 −

t2 log t2
t2 − 1

]
, (A.16)

D0
(
0, . . . 0,m2

0, . . . ,m
2
3

)
= 1

2m2
0

[
t21 log t1

(t1 − 1)(t1 − t2)(t1 − t3)

− t22 log t2
(t2 − 1)(t1 − t2)(t2 − t3) + t23 log t3

(t3 − 1)(t1 − t3)(t2 − t3)

]
, (A.17)

where ti = m2
i /m

2
0 for i = 1, 2, 3.
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Appendix B

2HDM

B.1 Feynman rules for 2HDM
In this Appendix we collect the Feynman rules used in our computation. For the couplings
between the gauge bosons and the scalars we have

W+

ϕ0
i

W−

igmWλ
ϕ0
i

W+W− g
µν , (B.1)

where λhW+W− = sin(β −α), λHW+W− = cos(β −α) and λAW+W− = 0. Similarly, we also have

H−

γ

H+

p−

p+

ie(p− − p+)µ , (B.2)

H±
ϕ0
i

W∓

pH±

pϕ0
i

±ig2 λ
ϕ0
i

H±W∓(pH± + pϕ0
i
)µ , (B.3)

where λhH±W∓ = cos(β − α), λHH±W∓ = − sin(β − α), and λAH±W∓ = ∓i, depending on the
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B.2. Auxiliary functions

charges of the initial particles. For the trilinear scalar interactions, we have

H+

ϕ0
i

H−

ivλ
ϕ0
i

H+H− (B.4)

where the trilinear couplings read

λhH+H− = −m
2
h[3 cos(α + β) + cos(α− 3β)] + 4 sin(2β) sin(β − α)m2

H± − 4M2 cos(α + β)
2v2 sin(2β) ,

λHH+H− = −m
2
H [3 sin(α + β) + sin(α− 3β)] + 4 sin(2β) cos(β − α)m2

H± − 4M2 sin(α + β)
2v2 sin(2β) ,

λAH+H− = 0 . (B.5)

These results agree with the ones given in Refs. [182, 199] after the appropriate change of
basis and/or conventions. 1

B.2 Auxiliary functions
In this Appendix we give the expressions for the functions (fi and gi) used in this thesis.
The auxiliary functions g0,1,2 used in Eq. (3.61) are defined by [186]

g0 = 1
4(xH± − xt)

{
ζdζ
∗
u

[
xt

xH± − xt
log

(
xH±

xt

)
− 1

]
(B.6)

+ |ζu|2
[

x2
t

2(xH± − xt)2 log
(
xH±

xt

)
+ xH± − 3xt

4(xH± − xt)

]}
,

g1 = −3
4 + ζdζ

∗
u

xt
xH± − xt

[
1− xH±

xH± − xt
log

(
xH±

xt

) ]
(B.7)

+ |ζu|2
xt

2(xH± − xt)2

[
xH± + xt

2 − xH±xt
xH± − xt

log
(
xH±

xt

) ]
,

g2 = ζd(ζdζ∗u + 1)f1(xt, xH±) + ζd (ζ∗u)2 f2(xt, xH±) + ζd |ζu|2 f3(xt, xH±)
+ ζu |ζu|2 f4(xt, xH±)− ζ∗u |ζu|

2 f5(xt, xH±) + ζuf6(xt, xH±)− ζ∗uf7(xt, xH±) , (B.8)

with

f1(xt, xH±) = 1
2(xH± − xt)

[−xH± + xt + xH± log xH± − xt log xt] , (B.9)

f2(xt, xH±) = 1
2(xH± − xt)

[
xt −

xH±xt
xH± − xt

log
(
xH±

xt

) ]
, (B.10)

1Notice that our λ is −λ of Ref. [182].
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f3(xt, xH±) = 1
2(xH± − xt)

[
xH± −

x2
H± log xH±
xH± − xt

+ xt(2xH± − xt) log xt
xH± − xt

]
, (B.11)

f4(xt, xH±) = 1
4(xH± − xt)2

[
xt(3xH± − xt)

2 − x2
H±xt

xH± − xt
log

(
xH±

xt

) ]
, (B.12)

f5(xt, xH±) = 1
4(xH± − xt)2

[
xt(xH± − 3xt)

2 − xH±xt(xH± − 2xt)
xH+ − xt

log
(
xH±

xt

) ]
, (B.13)

f6(xt, xH±) = 1
2(xH± − xt)

[
xt(x2

t − 3xH±xt + 9xH± − 5xt − 2)
4(xt − 1)2 (B.14)

+ xH±(xH±xt − 3xH± + 2xt) log xH±
2(xH± − 1)(xH± − xt)

+ x2
H±(−2x3

t + 6x2
t − 9xt + 2) + 3xH±x2

t (x2
t − 2xt + 3)− x2

t (2x3
t − 3x2

t + 3xt + 1)
2(xt − 1)3(xH± − xt)

log xt
]
,

f7(xt, xH±) = 1
2(xH± − xt)

[
(x2

t + xt − 8)(xH± − xt)
4(xt − 1)2 − xH±(xH± + 2)

2(xH± − 1) log xH± (B.15)

+ xH±(x3
t − 3x2

t + 3xt + 2) + 3(xt − 2)x2
t

2(xt − 1)3 log xt
]
.

Notice that in the above expressions we assumed the couplings ζf ∈ C in order to keep
our formulas as general as possible, although in the body of the paper we consistently used
ζf ∈ R.

B.2.1 Wilson Coefficients for the Derivative Operators
In this subsection we present the explicit expressions for the Wilson coefficients relevant to
the derivative operators given in Eq. (3.65). From the Z-penguins we obtain,

CT qRR = |ζu|2
√
xbxt
72

{
3(x2

H± − 5xH±xt − 2x2
t )

(xH± − xt)3 + 18xH±x2
t

(xH± − xt)4 log
(
xH±

xt

)

− 2 sin2 θW

[
7x2

H± − 5xH±xt − 8x2
t

(xH± − xt)3 − 6xH±xt(2xH± − 3xt)
(xH± − xt)4 log

(
xH±

xt

) ]}

+ ζ∗uζd

√
xbxt
24

{
3(xH± − 3xt)
(xH± − xt)2 −

6xH±(xH± − 2xt)
xH± − xt

log
(
xH±

xt

)

+ 4 sin2 θW

[
5xt − 3xH±
(xH± − xt)2 + 2xH±(2xH± − 3xt)

(xH± − xt)3 log
(
xH±

xt

)]}
,

(B.16)

and CT qRL = CTRR

(
1− 1

2 sin2 θW

)
. Similarly, from the box diagrams we get

CT `LL =− ζuζ∗`
√
x`xt

4(xH± − xt) sin2 θW

[
− 1

(xH± − 1) + xH±(1− xH±) log xt
(xH± − xt)(xt − 1)(xH± − 1)

− xH±(xt + 1− 2xH±) log xH±
(xH± − xt)(xH± − 1)2

]
,

(B.17)

and CT `LL = (CT `LR)∗.
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B.2.2 Wilson Coefficients Suppressed by m`

In addition to the Wilson coefficients given in Section 3.4, in the computation of the box
diagrams one gets contributions suppressed by the lepton mass. For completeness, we give
these contributions here. We obtain:

CNP, box
T (5) = ζ∗uζ`

√
xbx`xt

32(xH± − xt) sin2 θW

×
[

xt log xt
(xt − 1)(xH± − xt)

− xH± log xH±
(xH± − 1)(xH± − xt)

+ xt − log xt − 1
(xt − 1)2

]
,

(B.18)

and

CNP, box
9 = x`xt

16 sin2 θW

{
|ζu|2|ζ`|2

[
− 1
xH± − xt

+ xt
(xH± − xt)2 log

(
xH±

xt

) ]
(B.19)

+ 2Re[ζuζ∗` ]
[

(xt + 2) log xt
(xH± − xt)(xt − 1) −

(xH± + 2) log xH±
(xH± − xt)(xH± − 1)

]}
+ 2√x` Re

(
CT `LL

)
,

CNP, box
10 = x`xt

16 sin2 θW

{
|ζu|2|ζ`|2

[
− 1
xH± − xt

+ xt
(xH± − xt)2 log

(
xH±

xt

) ]
(B.20)

+ 2Re[ζuζ∗` ]
[

(xt − 2) log xt
(xH± − xt)(xt − 1) −

(xH± − 2) log xH±
(xH± − xt)(xH± − 1)

]}
.
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[319] D. Bečirević and O. Sumensari, JHEP 1708 (2017) 104 doi:10.1007/JHEP08(2017)104
[arXiv:1704.05835 [hep-ph]].

[320] L. Lavoura, Eur. Phys. J. C 29, 191 (2003) doi:10.1140/epjc/s2003-01212-7 [hep-
ph/0302221].

[321] A. Nyffeler, Nuovo Cim. C 037, no. 02, 173 (2014) [Int. J. Mod. Phys. Conf.
Ser. 35, 1460456 (2014)] doi:10.1393/ncc/i2014-11752-0, 10.1142/S2010194514604566
[arXiv:1312.4804 [hep-ph]].

[322] E. Coluccio Leskow, G. D’Ambrosio, A. Crivellin and D. Müller, Phys. Rev. D 95,
no. 5, 055018 (2017) doi:10.1103/PhysRevD.95.055018 [arXiv:1612.06858 [hep-ph]].

[323] T. A. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 89, no. 9, 091101 (2014)
doi:10.1103/PhysRevD.89.091101 [arXiv:1402.6728 [hep-ex]].

[324] B. Grinstein and A. Kobach, Phys. Lett. B 771, 359 (2017)
doi:10.1016/j.physletb.2017.05.078 [arXiv:1703.08170 [hep-ph]].

[325] D. Bigi, P. Gambino and S. Schacht, Phys. Lett. B 769, 441 (2017)
doi:10.1016/j.physletb.2017.04.022 [arXiv:1703.06124 [hep-ph]].

[326] I. Caprini and M. Neubert, Phys. Lett. B 380, 376 (1996) doi:10.1016/0370-
2693(96)00509-6 [hep-ph/9603414].

[327] I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B 530, 153 (1998)
doi:10.1016/S0550-3213(98)00350-2 [hep-ph/9712417].

[328] W. Dungel et al. [Belle Collaboration], Phys. Rev. D 82, 112007 (2010)
doi:10.1103/PhysRevD.82.112007 [arXiv:1010.5620 [hep-ex]].

[329] A. F. Falk and M. Neubert, Phys. Rev. D 47, 2965 (1993)
doi:10.1103/PhysRevD.47.2965 [hep-ph/9209268].

[330] M. Neubert, Phys. Rev. D 46, 2212 (1992). doi:10.1103/PhysRevD.46.2212

[331] C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. D 56, 6895 (1997)
doi:10.1103/PhysRevD.56.6895 [hep-ph/9705252].

[332] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Phys. Rev. D 95, no.
11, 115008 (2017) doi:10.1103/PhysRevD.95.115008 [arXiv:1703.05330 [hep-ph]].

[333] D. Guadagnoli, Mod. Phys. Lett. A 32, no. 7, 1730006 (2017)
doi:10.1142/S0217732317300063 [arXiv:1703.02804 [hep-ph]].

[334] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Phys. Lett. B 742, 370
(2015) doi:10.1016/j.physletb.2015.02.011 [arXiv:1412.7164 [hep-ph]].

[335] R. Alonso, B. Grinstein and J. Martin Camalich, JHEP 1510, 184 (2015)
doi:10.1007/JHEP10(2015)184 [arXiv:1505.05164 [hep-ph]].

[336] L. Calibbi, A. Crivellin and T. Ota, Phys. Rev. Lett. 115, 181801 (2015)
doi:10.1103/PhysRevLett.115.181801 [arXiv:1506.02661 [hep-ph]].

195



BIBLIOGRAPHY

[337] F. Feruglio, P. Paradisi and A. Pattori, Phys. Rev. Lett. 118, no. 1, 011801 (2017)
doi:10.1103/PhysRevLett.118.011801 [arXiv:1606.00524 [hep-ph]].

[338] L. Di Luzio and M. Nardecchia, arXiv:1706.01868 [hep-ph].

[339] M. Bordone, G. Isidori and S. Trifinopoulos, arXiv:1702.07238 [hep-ph].

[340] A. Crivellin, C. Greub and A. Kokulu, Phys. Rev. D 86, 054014 (2012)
doi:10.1103/PhysRevD.86.054014 [arXiv:1206.2634 [hep-ph]].

[341] X. Q. Li, Y. D. Yang and X. Zhang, JHEP 1608, 054 (2016)
doi:10.1007/JHEP08(2016)054 [arXiv:1605.09308 [hep-ph]].

[342] R. Alonso, B. Grinstein and J. Martin Camalich, Phys. Rev. Lett. 118, no. 8, 081802
(2017) doi:10.1103/PhysRevLett.118.081802 [arXiv:1611.06676 [hep-ph]].

[343] A. Celis, M. Jung, X. Q. Li and A. Pich, Phys. Lett. B 771, 168 (2017)
doi:10.1016/j.physletb.2017.05.037 [arXiv:1612.07757 [hep-ph]].

[344] D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, arXiv:1706.07808 [hep-ph].
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Résumé en Français

Le modèle Standard (MS) de la physique des particules est une théorie de jauge quan-
tique qui décrit avec élégance et précision les interactions des particules subatomiques. Ses
prédictions théoriques ont été testées dans les accélérateurs de particules à basses et hautes
énergies, en montrant un excellent accord avec les données expérimentales. En partic-
ulier, la découverte au LHC de la dernière particule manquante dans son spectre, le boson
de Higgs, représente une de ses plus importantes prouesses et corrobore six décennies de
succès phénoménologiques persistent [1, 2].

Néanmoins, le MS ne peut pas être la théorie ultime de la nature. Premièrement, le
MS n’incorpore pas les interactions gravitationnelles, bien que les effets quantiques de la
gravité deviennent importants seulement à des échelles d’énergie pratiquement inaccessibles,
près de l’échelle de Planck. En outre, les neutrinos sont des particules sans masses dans
le MS, ce qui contredit les observations expérimentales selon lesquelles les neutrinos sont
massifs et oscillent entre différentes saveurs. Il existe aussi un nombre croissant d’évidences
d’origine astrophysique et cosmologique, basées sur le modèle standard cosmologique et sur
la relativité générale, qui suggèrent qu’une partie substantielle de la matière dans l’univers
n’est pas barionique, ni chargée par les interactions électromagnétiques. Si on suppose la
validité de ces théories aux larges échelles, on en déduit que la physique des particules doit
proposer des nouvelles particules qui interagissent par des moyens non décrits par le MS de
la physique des particules pour expliquer ces phénomènes.

En plus des observations expérimentales évoquées ci-dessus qui ne peuvent pas être
décrites par le MS, il existe aussi plusieurs problèmes conceptuels qui ne peuvent être
entièrement compris sans postuler l’existence de la physique au-delà du MS. Alors que le
secteur de jauge du MS est étonnamment simple et prédictif, notre compréhension actuelle
de la saveur est très insatisfaisante. Les fermions sont organisés en trois copies identiques
qui se distinguent uniquement par leurs interactions de Yukawa. Contrairement au secteur
de jauge, le secteur de Yukawa est peu contraint par des symétries. Par conséquent, de nom-
breux paramètres (masses des fermions et paramètres de mélange) doivent être déterminés
en confrontant les prédictions théoriques avec les mesures expérimentales. En particulier, les
mesures des masses fermioniques ont montré une frappante hiérarchie de valeurs, comme
montre la Fig. B.1. De même, une structure très hiérarchique a été observée pour les
éléments de la matrice de Cabibbo-Kobayashi-Maskawa (CKM) qui devient manifeste dans
la paramétrisation de Wolfestein, à savoir, [66]

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (B.21)

où A, ρ et η sont des nombres réels d’ordre O(1). 2 Ces motifs hiérarchiques suggèrent
2Les études actuels des observables de la physique de la saveur nous ont permis de déterminer ρ =
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l’existence des symétries sous-jacentes au MS qui restent à être dévoilées. Le manque
de compréhension de la structure de saveur du MS est connu comme le problème de la
saveur. De plus, les corrections quantiques à la masse du boson de Higgs ont des divergences
quadratiques, elles sont ainsi paradoxalement sensibles aux détails de la théorie ultraviolette
qui complète le MS. Ce problème est connu sous le nom de problème de hiérarchie et
constitue la principale motivation pour rechercher les effets de la nouvelle physique (NP) à
l’échelle du TeV.

Figure B.1: Masses des fermions déterminés par la comparaison entre la théorie et l’expérience.
Nous prenons les masses de quarks dans le schémas MS à l’échelle µ = 2 GeV pour les quarks
légers et à µ = mq pour q = c, b, t [22].

Tous les problèmes décrits ci-dessus requièrent l’existence de la physique au-delà du
SM, et de nombreuses propositions ont été faites au cours des dernières décennies pour
résoudre chacun de ces problèmes. En particulier, la simplicité et la beauté ont été les
principaux guides dans la quête de la NP. Cependant, malgré l’intense effort théorique, à
l’heure actuelle il n’existe pas de préférence théorique pour un scénario spécifique de la
physique au-delà du SM. Il devient donc nécessaire d’utiliser les expériences modernes pour
choisir parmi les différentes options de scénarios de la NP. La recherche des effets de la
NP peut se faire par deux approches complémentaires : la recherche directe de nouvelles
particules dans des accélérateurs à très hautes énergies, et la recherche indirecte des effets
de la NP dans les observables à basses énergies. La dernière approche a constitué l’objet
principal d’étude de cette thèse.

Les résultats des recherches indirectes, et plus particulièrement ceux de la physique de
la saveur, ont été largement utilisés dans le passé pour sonder les hautes échelles d’énergie
à travers des expériences à basse énergie. Un exemple notable est la première observation
du mélange des mésons B0 − B0 [3], qui a indiqué que le quark top devrait être beaucoup
plus lourd que les autres fermions du MS avant sa découverte au Tevatron [4,5]. En outre,
les observables de la physique des saveurs fournissent des informations très utiles sur la
physique au-delà du SM. Un exemple remarquable est le paramètre de mélange εK pour
les mésons K0 − K0 qui, après la comparaison des prédictions théoriques du MS avec
les mesures expérimentales, nous permet d’établir une limite inférieure d’environ 108 GeV
pour l’échelle de la NP – sous l’hypothèse de couplages d’ordre O(1) universels [6]. En

0.157(14), η = 0.352(11), A = 0.833(12) e λ = 0.22497(69) [64].
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particulier, cela signifie que les modèles de la NP avec des particules aux alentours de
l’échelle du TeV, comme le problème de la hiérarchie suggère, doivent avoir une structure
non-triviale de la saveur. En ce qui concerne les recherches de la NP, on s’appuie sur des
approches génériques avec le moins d’hypothèses possibles. Les théories des champs effectifs
(EFT) sont l’approche la plus efficace à cet égard, car elles fournissent une description
générale de la physique des basses énergies sans avoir à postuler ce qui se passe à des
échelles d’énergie arbitrairement élevées. Une autre approche complémentaire consiste à
considérer des extensions minimales et pragmatiques du SM, de préférence génériques, qui
nous permettent d’utiliser les informations issues des observables de la saveur pour guider
les recherches directes de nouvelles résonances à hautes énergies. Un tel exemple est celui
des modèles aux deux doublets de Higgs (2HDM), aussi intégrés dans diverses extensions
super-symétriques (ou non) du MS [7]. Une autre possibilité qui a gagné en popularité
ces dernières années est de considérer les différents bosons leptoquark (LQ), qui peuvent
apparâıtre dans les scénarios de grande unification et dans les modèles composites de Higgs,
parmi d’autres scénarios de la NP [8].

Dans cette thèse, nous avons extrait l’information de la nouvelle physique à travers les
observables de la physique de la physique de la saveur. Les expériences en cours à NA62,
BES-III et LHCb nous ont fourni un riche ensemble de données pour tester les différents
scénarios de la NP et pour guider l’effort théorique vers une théorie de la saveur au-delà
du MS. Les informations extraites de ces données seront corroborées/complétées par les
expériences futures, à savoir, Belle-II, KOTO, TREK, (g − 2)µ et Mu2E, en produisant
un scénario très prolifique pour la physique de la saveur. Pour interpréter ces résultats,
nous avons formulé des théories efficaces des champs qui ont été mises en correspondance
avec les modèles minimaux de la NP motivés par les récentes découvertes expérimentales.
La première partie de cette thèse est consacrée au boson de Higgs, la dernière particule
prédite par le MS à être observée expérimentalement. Alors que les couplages du boson de
Higgs mesurés au LHC permettent toujours des larges déviations des prédictions du MS,
les recherches directes n’ont pas encore exclu la possibilité de l’existence d’autres partic-
ules légères dans le spectre. Dans la première partie de cette thèse, nous nous sommes
concentrés sur les 2HDM, et nous avons exploré les leçons qui peuvent être tirées des con-
traintes théoriques et phénoménologiques sur ces modèles. Les masses et couplages des
particules scalaires permises par notre analyse basée sur les contraintes génériques ont été
confrontées avec les observables de la physique de la saveur. A cette fin, nous avons calculé
l’ensemble complet de coefficients de Wilson contribuant aux désintégrations des mésons
pertinentes au niveau de l’arbre et au niveau des boucles. Ces résultats ont été confrontés
avec les résultats expérimentaux pour dériver des contraintes sur le spectre des 2HDM. Une
attention particulière a été accordée aux modes exclusifs de la désintégration b→ s`+`− en
raison du grand effort expérimental consacré à l’étude de ces observables au LHCb. Parmi
les scénarios que nous considérons, la possibilité intrigante qu’un Higgs CP-impair léger
(mA . 125 GeV) soit présent dans le spectre a été explorée. Une telle particule serait la
bienvenue en tant que médiateur entre le MS et le secteur sombre. Cela provient du fait
que le portail pseudoscalaire peut échapper aux sévères contraintes provenant de l’absence
de signal dans les expériences de détections directe de la matière noire [9, 10]. Nous avons
montré que ce scénario est parfaitement plausible à la lumière des contraintes théoriques
et expérimentales actuelles, et nous avons discuté des stratégies pour rechercher cette par-
ticule dans les désintégrations exclusives de Higgs et dans les modes de désintégration de
quarkonia.

La seconde partie de cette thèse a été consacrée aux signes de violation de l’universalité
de la saveur leptonique (LFU) dans les désintégrations semileptoniques des mésons B. Plus
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précisément, la mesure par LHCb de [11]

RK = B(B → Kµ+µ−)
B(B → Ke+e−)

∣∣∣∣∣
q2∈[1,6] GeV2

, (B.22)

et plus récemment de [12]

RK∗ = B(B → K∗µ+µ−)
B(B → K∗e+e−)

∣∣∣∣∣
q2∈[q2

min,q
2
max]

, (B.23)

dans différentes régions de moment leptonique carré q2 étaient significativement plus basses
que prévu par le MS [13]. Ces observables sont presque exempts d’incertitudes théoriques
puisque les incertitudes hadroniques s’annulent dans le rapport. Tandis que ces résultats
doivent encore être confirmés par une expérience indépendante (à savoir, Belle-II), ils ont
déclenché une activité théorique intense pour comprendre les possibles origines de ces
écarts. Dans les scénarios 2HDM discutés ci-dessus, la violation de LFU est négligeable,
qui suggère que d’autres contributions bosoniques soient nécessaires pour expliquer ces ef-
fets. Pour ce faire, nous considérons les scénarios postulant l’existence de divers états LQ
à basses énergies. Alors que ces particules sont souvent considérées comme exotiques dans
les recherches directes au LHC, elles offrent l’un des candidats les plus proéminents pour
expliquer les effets de la violation de la LFU. Dans cette thèse, nous avons examiné les
explications de Rexp

K(∗) < RSM
K(∗) à travers les états LQ et nous avons exploré les implications

de ces scénarios pour les expériences actuelles et futures. En particulier, nous avons montré
qu’un scénario très populaire dans la littérature n’est pas viable, et nous avons proposé
un nouveau mécanisme LQ pour expliquer Rexp

K(∗) < RSM
K(∗) à travers les boucles. Parmi les

prédictions de ces modèles, nous soulignerons l’importance des désintégrations avec la vio-
lation de la saveur leptonique (LFV), car elles offrent une alternative très propre qui permet
de tester la plupart des scénarios de nouvelle physique proposés.
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Figure B.2: Résultats expérimentaux pour RK et RK∗ obtenus par LHCb [11,12].

Une autre évidence intrigante de violation de la LFU a été observée dans les processus
médiés par le courant chargé [14], où il a été constaté que

RD(∗) = B(B → D(∗)τν)
B(B → D(∗)lν) , (B.24)

avec l = e, µ, sont plus élevés que prévu dans le MS [15–17]. La possibilité que les anomalies
b→ s et b→ c soient générées par le même mécanisme, peut-être liée aux effets de la brisure
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de la saveur au-delà du MS, a suscité beaucoup d’intérêt dans la communauté théorique.
Il faut cependant être prudent, car la prédiction de RD∗ nécessite encore de l’évaluation de
l’ensemble des facteurs de forme B → D∗ qui ne sont toujours pas disponibles par les calculs
basés sur les premiers principe. Dans cette thèse, après un examen critique du statut des
prédictions MS de RD(∗) , nous avons discuté des modèles qui ont été proposés pour expliquer
simultanément l’ensemble des observables qui brisent la LFU. En particulier, nous avons
proposé un modèle LQ minimal qui nous permet d’expliquer certains de ces écarts.

Figure B.3: Résultats expérimentaux pour RD and RD∗ obtenus par LHCb [74,270], BaBar [72]
et Belle [73,75,76], ainsi que les prédictions du MS pour ces observables [14,17].

Il est clair que les solutions aux problèmes abordés dans cette thèse restent un travail en
cours. Tout d’abord, nous ne savons pas encore si le boson scalaire observé au LHC est celui
prédit par le SM. La réponse à cette question nécessitera un effort combiné de recherches
expérimentales directes et indirectes. En outre, tandis ce que les nouveaux résultats de
LHCb sur RK(∗) et RD(∗) et la détermination de Belle-II des mêmes observables sont encore
attendus, le problème de la LFUV reste une question ouverte. Il faut aussi garder à l’esprit
que le moment magnétique anormal (g − 2)µ présente un écart d’environ 3.6σ par rapport
au MS [353]. Cet écart sera bientôt confirmé ou réfuté par l’effort conjoint des groupes
expérimentaux au Fermilab et de la communauté de QCD sur réseau, qui travaillent pour
réduire les incertitudes expérimentales et théoriques pour cet observable. Proposer un
scénario minimal nous permettant d’expliquer simultanément les écarts observés tout en
respectant la pléthore de contraintes directes et indirectes est une tâche très difficile pour
laquelle aucune solution convaincante n’a pas encore émergé. De plus, il n’est pas clair si
le motif observé pour ces écarts serait une manifestation de la brisure de la saveur au-delà
du MS, ou d’un autre mécanisme de NP possiblement lié à l’un des problèmes du MS.

Nous espérons que les réponses aux questions mentionnées ci-dessus seront bientôt
fournies par l’effort collectif des expériences de physique des saveurs à NA62, BES-III et
LHCb avec les futures à Belle-II, KOTO, TREK, (g − 2)µ et Mu2E qui nous fourniront
une quantité de données sans précédent. La combinaison de ces résultats avec ceux des
recherches directes effectuées au LHC servira de guide pour l’effort théorique vers une
meilleure compréhension du mécanisme de violation de la saveur au-delà du MS et aidera
peut-être à résoudre certains des problèmes de longue date en physique théorique.
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