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A Lagrangian study of inhomogeneous turbulence

Abtstract: Inhomogeneous turbulence is experimentally investigated in a Lagrangian
framework. Measurements of tracer and non-tracer particles in a turbulent channel were
made, and were used to extract Lagrangian statistics conditioned on their initial distance
to the channel wall. Highly resolved in time and space, these measurements provide
the three components of position, velocity, and acceleration along a particle trajectory
from very close to the channel wall (y+ ≈ 10) to the channel center. Lagrangian time
correlations allow the direct measurement of velocity and acceleration timescales in each
direction, and characterize the inhomogeneity and anisotropy of the turbulent channel
from the Lagrangian perspective. Small scale-anisotropy, characterized by the skewness
and the correlation of the components of the acceleration, was found to be significant
throughout the channel. Significant scale separation between the magnitude and com-
ponents of acceleration was found across the channel, even in the near-wall region. Two
classes of non-tracer particle trajectories were also measured, allowing direct comparison
of tracer and non-tracer statistics from the highly-sheared anisotropic zone near the chan-
nel wall to the more homogeneous outer layer. Non-tracer acceleration statistics in the
turbulent channel were found to be significantly different from similar results in homoge-
neous, isotropic turbulence. These statistics are necessary components of advanced La-
grangian stochastic models to predict dispersion and mixing in inhomogeneous turbulence.

Keywords: Turbulence, Lagrangian, Turbulent Channel, 3-D PTV

Résumé: Une turbulence inhomogène est étudiée expérimentalement dans un contexte
lagrangien. La mesure des trajectoires de traceurs lagrangiens et de particules inertielles a
été effectuée dans un canal plan turbulent et a été utilisée pour obtenir des statistiques
lagrangiennes conditionnées à leur distance initiale par rapport à la paroi. Ces mesures
à haute résolution en temps et en espace fournissent les trois composantes de la posi-
tion, la vitesse et l’accélération le long de la trajectoire d’une particule individuelle depuis
des distances très proches de la paroi ( 10 unités de paroi) jusqu’au centre du canal.
Les corrélations temporelles lagrangiennes ont permis la mesure directe des échelles
de temps de la vitesse et l’accélération dans chacune des trois directions. Ces échelles
caractérisent l’inhomogénéité et l’anisotropie du canal turbulent dans une perspective
lagrangienne. Une anisotropie à petite échelle, quantifiée par la "skewness", et les cor-
rélations entre composantes de l’accélération sont observées dans tout le canal. Une
séparation d’échelle significative entre les composantes de l’accélération et son amplitude
a été mesurée au travers du canal notamment dans la zone proche de la paroi. Deux
classes de particules inertielles ont été étudiées permettant ainsi la comparaison directe
entre statistiques des traceurs et des non-traceurs dans la zone de fort cisaillement et
de forte anisotropie proche de la paroi jusqu’à la région plus homogène du centre. Les
propriétés statistiques des particules inertielles dans le canal turbulent sont significa-
tivement différentes de celles observées en turbulence homogène isotrope. Ces statis-
tiques sont les ingrédients nécessaires à la construction de modèles stochastiques la-
grangiens pour la prédiction de la dispersion et du mélange en turbulence inhomogène.

Mots-clés: Turbulence, Lagrangien, Canal turbulent, 3-D PTV
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Motivation

Our eyes are instinctively drawn to motion. Watching snowflakes in a storm, dust caught
in a ray of sunlight, or leaves on the surface of a river can be almost hypnotic. This is
turbulence as understood by children—following a bubble as it dances in the air. This intu-
itive view of turbulence is formalized by Lagrangian kinematics, which follows a particle
trajectory in time.

The study of turbulence in a Lagrangian framework is not new: G. I. Taylor formulated
a theory of the dispersion of particles in turbulence using a Lagrangian framework in
1921, and more sophisticated Lagrangian models for dispersion have been developed
since. Nevertheless it is only in the last 20 years, with the development of new measur-
ing technologies and increased computing power, that we have able to directly observe
small particles in turbulence at high resolution. Measuring particle trajectories over time
allows us to observe how the position, velocity, and acceleration evolve along the particle
trajectory—how the particle experiences the turbulence. Statistics formed from these
measurements provide a Lagrangian statistical description of turbulence. For example,
statistics of the velocity along the trajectory at two times separated by a time-lag may be
measured, e. g.

v(t )− v(t +∆t ) (1)

The shape of the probability density function of this Lagrangian velocity increment is
approximately Gaussian for large∆t , but is increasingly non-Gaussian as∆t is decreased.
For very small values of∆t the velocity increment is closely related to the acceleration:

a ≡ lim
∆t→0

v(t +∆t )− v(t )

∆t
(2)

which is a strongly intermittent quantity: accelerations up to 50 times the root-mean-
square acceleration have been measured experimental. Statistics in the time-correlations
of velocity and acceleration, for example

a(t +∆t )a(t )

〈a2〉 (3)

also provide a useful Lagrangian description of turbulence. The velocity decorrelates
relatively slowly, and is directly related to the dispersion of fluid particles from a point-
source in turbulence. Acceleration decorrelates rapidly, although the correlation of the
magnitude of acceleration decays quite slowly in comparison.

Models of varying complexity have been proposed to explain and/or predict these
observations. For example, multifractal models formulated in a Lagrangian framework
have been used to predict the increasingly non-Gaussian distributions of the velocity
increment, and of acceleration. Stochastic dispersion models use time-correlations of
velocity and acceleration to recreate fluid particle trajectories. Multifractal random walk,
and acceleration-orientation random walk models predict the rapid decorrelation of accel-
eration and the slow decorrelation of the magnitude of acceleration.
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The vast majority of Lagrangian experiments, simulations, and models have focused
on homogeneous isotropic turbulence (HIT). The symmetries of high-Reynolds number,
homogeneous, isotropic turbulence create a simplified academic framework in which to
study turbulence. Models developed in this framework may then be adapted, with varying
degrees of success, to the more complicated, realistic cases of lower-Reynolds number,
inhomogeneous, anisotropic turbulence. In order to adapt models developed in HIT to
more realistic contexts, we must first understand how inhomogeneous turbulence differs
from HIT. Inhomogeneous turbulence has long been studied from a practical perspective,
as many engineering applications involve wall-bounded turbulence. Almost all of this
work has considered inhomogeneous turbulence in an Eulerian framework. From the
Lagrangian perspective we know very little about inhomogeneous turbulence. There
are many open questions, e. g. in a wall-bounded turbulent flow, how do Lagrangian
statistics change with distance to the wall? At what distance to the wall is statistical
isotropy reestablished? Are Lagrangian statistics more or less susceptible to the large scale
inhomogeneity than Eulerian statistics?

In addition to the behavior of the fluid turbulence, behavior of non-tracer particles
in turbulence is also of considerable interest. A wide range of practical applications are
concerned with how particles interact with turbulence. Non-tracer particles diverge from
fluid particle trajectories, but where and how this divergence occurs is not fully known.
Models and mechanisms have been proposed for some classes of particles, e. g. very small,
heavy particles, but again, almost all of our understanding relates to particle dynamics in
homogeneous isotropic turbulence.

This thesis attempts to respond to these gaps in our knowledge. We use the instruments
and techniques developed in the last 20 years of high-resolution Lagrangian measurements
and apply them to a turbulent channel flow. The turbulent channel flow in which these
measurements were taken is a stationary, moderate-Reynolds number turbulent flow
with a single direction of inhomogeneity. This relatively simple configuration allows the
measurement of Lagrangian statistics from the highly sheared, strongly anisotropic near-
wall region to the quasi-homogeneous center of the channel. Tracer particle measurements
allow the extraction of Lagrangian statistics of the fluid turbulence. Two classes of non-
tracer particles were also measured, allowing us to explore the effects of inhomogeneity on
non-tracer particle statistics.

This thesis is organized as follows. Chapter 1 introduces fundamental concepts in
turbulence, provides an overview of previous Lagrangian investigations in homogeneous
turbulence, briefly outlines turbulent channel flow, and gives a survey of Lagrangian
stochastic modeling. The experimental details are given in chapter 2, which also provides
a discussion of the design and constraints involved in such measurements. Eulerian
tracer particle results in the turbulent channel are presented in chapter 3, with a focus on
the one-time statistics of acceleration across the turbulent channel. Chapter 4 presents
Lagrangian results in position, velocity, and acceleration for tracer particles. Finally, non-
tracer particles are considered in chapter 5.
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Chapter 1

Introduction and Theory
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Moreover, I soon understood that there was little hope of
developing a pure, closed theory, and because of the
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1.1 Fluid turbulence from a Lagrangian point of view

1.1.1 What is turbulence?

The dynamics of incompressible Newtonian fluids are given by the deceptively simple
equations for the conservation of fluid mass

∂Ui

∂xi
= 0 (1.1)

and momentum
DUi

Dt
= −1

ρ

∂P

∂xi
+ν ∂2Ui

∂x j∂x j
(1.2)

where ρ and ν are the fluid material properties of density and kinematic viscosity, respec-
tively (taken here to be constant), and U and P are the dynamical quantities of fluid velocity
and pressure. Despite being compact and apparently simple, these equations model an
incredible array of phenomenon encountered in natural and man-made systems, from the
evolution of galaxies[6] down to the flow of fluid within a living cell.

Figure 1.1: A streak of dye in a glass pipe at
four Reynolds numbers, from laminar (top)
to turbulent (bottom) flow. This photograph
is of a recreation of Reynolds’ classic exper-
iment of 1883 using the original apparatus,
made by N. H. Johannesen and C. Lowe. Re-
produced from the collection of Van Dyke[5].

It has long been observed that fluid flows are
either calm and viscous or energetic and chaotic.
In a classic experiment [7] Reynolds found that
these two states of the flow—called laminar and
turbulent, respectively—could be seen in water
flowing through a glass pipe by changing what
became known as the Reynolds number. The
Reynolds number is the non-dimensional pa-
rameter that controls the transition between a
laminar flow and a turbulent flow, and is written
as

Re =
UL

ν
(1.3)

where U and L are characteristic velocity and
length scales of the flow. This parameter repre-
sents the balance between inertial forces and
viscous forces, which may be seen directly when
equation 1.2 is scaled with characteristic length
and velocity scales u∗ = U/U , x∗ = x/L , and
t∗ = t/(L /U ):

DU∗
i

Dt∗
= −1

ρ

∂p

∂x∗
i

1

U 2
+ 1

Re

∂2U∗
i

∂x∗
j ∂x∗

j

(1.4)

Reynolds found that for low-Reynolds-
number conditions dye injected in the flow did not mix with the flow, implying that there
were steady streamlines parallel to the direction of the flow. In fact, the momentum equa-
tion (also called the Navier-Stokes equations and abbreviated as N-S) admits an analytical
solution for this problem: a parabolic streamwise profile that does not vary in time or
streamwise direction. However, at a certain Reynolds number this system transitions to a
turbulent state, which is characterized by a time-dependent velocity profile and mixing of
the injected dye, shown in figure 1.1
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In the years since Reynolds first quantified the differences between these two states
in fluid flow many researchers have found common characteristics in a wide variety of
turbulent flows. Turbulence has resisted a formal definition[8], but characteristics common
to all turbulent flows include

1. Randomness: Instantaneous turbulent quantities are not predictable. The N-S equa-
tion is a deterministic equation that amplifies small perturbations at high Reynolds
numbers. This is a qualitative explanation for the two very different flow states
described above—at low Reynolds numbers small perturbations are damped by
viscosity, and at high Reynolds numbers these perturbations are amplified. De-
terministic systems with a high sensitivity to initial conditions are not predictable.
However, statistical properties of multiple realizations may be stable and predictable,
i. e. the instantaneous velocity ui (xi , t ) is not predictable, but the average velocity at
that point and time over many realizations—the ensemble average 〈ui (xi , t )〉 is stable
and may be predicted. This quality of turbulence motivates a statistical approach.

2. Large range of interacting scales: Turbulence is characterized by a wide range of
scales, from the large scales that arise from external considerations such flow bound-
aries to small scales at which dissipation occurs. Interaction between scales is
non-local and non-linear, a point which will be discussed further in the following
section.

3. Turbulence is dissipative and strongly diffusive: Turbulence dissipates kinetic en-
ergy into heat, and is thus a thermodynamically irreversible process. Not coin-
cidentally it is also very efficient at mixing. These two qualities are typically the
aspects of turbulence important from a practical engineering perspective, resulting
in costly turbulent friction in pipelines, but also highly effective mixing in industrial
applications.

1.1.2 Turbulence theory

Lagrangian-Eulerian kinematics

The derivation of the Navier-Stokes equation for incompressible flow from first principles
may be found in many textbooks[9, 10], and will not be reproduced here. Explicit in this
derivation is the concept of a fluid particle, i. e. an infinitesimal material element which is
accelerated by forces in accordance with Newton’s second law. The fluid particle traces
out a fluid-particle trajectory over time in response to external forces. If the individual
fluid particles in a system of n fluid particles are arbitrarily labeled ai for i = 1...n then the
material coordinate is defined as X(ai , t ). This fluid-particle path is also called a Lagrangian
trajectory, and the first and second time derivatives may be taken to find the velocity and
acceleration of the fluid particle

∂X(ai , t )

∂t
= V(ai , t )

∂2X(ai , t )

∂t 2
= A(ai , t ) (1.5)

the latter of which is simply the time history of the external forces acting on the fluid
particle ai . This is the Lagrangian perspective, and arises naturally from Newtonian
dynamics. Fluid particle trajectories are commonly labeled by their position x at some time
t0, convieniently written as x0. For example the Lagrangian position is written as X(x0, t |t0).
This labeling relates the Lagrangian and Eulerian positions as

x0 = X(x0, t0|t0) (1.6)
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While the fluid particle kinematics are naturally
considered from a Lagrangian perspective, the forces
acting on a fluid particle depend on the local spatial
gradients, which are best expressed from an inertial
reference frame, i. e. the Eulerian perspective. Flow
variables in this perspective are defined point-wise
in space and time, for example the Eulerian velocity
field U(x, t) . The Eulerian velocity is equal to the
Lagrangian velocity at x = x0 and t = t0

V(x0, t0|t0) = U(x, t )|x=x0, t=t0 (1.7)

a concept illustrated in the sketch shown here. This
implies the general relation between Lagrangian and
Eulerian expressions, written here in velocity

V(x0, t |t0) = U(X(x0, t |t0), t ) (1.8)

The Lagrangian acceleration A may be expressed
in terms of the Eulerian velocity field

A(x0, t |t0) =
∂V(x0, t |t0)

∂t
eqn1.8

=
∂U(X(x0, t |t0), t )

∂t
=

[
∂U(x, t )

∂x

∂X(x0, t |t0)

∂t
+ ∂U(x, t )

∂t

∂t

∂t

]
x=X(x0,t |t0)

(1.9)
considering the terms in the last expression

∂U(x, t )

∂x

∣∣∣∣
x=X(x0,t |t0)

= ∇U(x, t )|x=X(x0,t |t0) (1.10)

and
∂X(x0, t |t0)

∂t
= V(x0, t |t0) = U(x,t)|x=X(x0,t |t0) (1.11)

so equation 1.9 may be written as

A(x0, t |t0) =

[
∂U(x, t )

∂t
+ (U(x,t) ·∇)U(x,t)

]
x=X(x0,t |t0)

=
DU(x, t )

Dt

∣∣∣∣
x=X(x0,t |t0)

(1.12)

or equivalently in completely Eulerian terms

A(x, t ) =
∂U(x, t )

∂t
+ (U(x,t) ·∇)U(x,t) (1.13)

This development is shown here in order to stress that acceleration is a fundamentally
Lagrangian quantity, and that the non-linearity of the N-S equation, the term (U · ∇)U,
arises from the change in reference frame.

A statistical approach to turbulence

The random nature of turbulence motivates a statistical approach, in which the quantities
of interest are not the instantaneous variables but the statistics of an ensemble of realiza-
tions. A classic example of this approach is the decomposition of variables into mean and
fluctuating components, e. g. the Eulerian velocity Ui (xi , t ) and pressure P(xi , t )

Ui (xi , t ) = 〈Ui (xi , t )〉+ui (xi , t ) P(xi , t ) = 〈P(xi , t )〉+p(xi , t ) (1.14)
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This decomposition is known as the Reynolds decomposition, and may be substituted
into the N-S equations, here written without the explicit dependence on xi and t for
convenience

∂

∂t
(〈Ui 〉+ui )+ ∂

∂x j
(〈Ui 〉+ui ) (〈U j 〉+u j ) =

−1

ρ

∂

∂xi
(〈P〉+p)+ν ∂2

∂x j∂x j
(〈Ui 〉+ui ) (1.15)

or

∂〈Ui 〉
∂t

+ ∂ui

∂t
+ ∂

∂x j
〈Ui 〉〈U j 〉+ ∂

∂x j
ui 〈U j 〉+ ∂

∂x j
〈Ui 〉u j + ∂

∂x j
ui u j

=
−1

ρ

∂〈P〉
∂xi

+ −1

ρ

∂p

∂xi
+ν ∂

2〈Ui 〉
∂x j∂x j

+ν ∂2ui

∂x j∂x j
(1.16)

Writing the N-S equation with the Reynolds decomposition show clearly the terms
that depend only on the mean flow topology, those that depend only on the fluctuating
quantities, and those that depend on the interaction of the mean and fluctuating quantities.
The ensemble average of equation 1.16 may be taken, and all terms containing a single
fluctuating term go to zero by construction1, leaving

∂〈Ui 〉
∂t

+ ∂

∂x j
〈Ui 〉〈U j 〉+ ∂

∂x j
〈ui u j 〉 =

−1

ρ

∂〈P〉
∂xi

+ν ∂
2〈Ui 〉
∂x j∂x j

(1.17)

The above equation appears to be quite similar to the unaveraged N-S equation, with the
exception of the term containing the mean of the product of the fluctuating velocities,
〈ui u j 〉. This quantity, called the Reynolds tensor, it is a fundamental statistical quantity in
the Eulerian analysis of turbulence that has a direct effect on the mean velocity (through
equation 1.17), contains the turbulent kinetic energy ( 1

2 ui ui ), and contains information
regarding turbulent anisotropy (in the off-diagonal components).

In the frame of a fluid particle the evolution of the kinetic energy per unit mass2

E ≡ 1
2 Ui Ui of the fluid particle is simply the inner product of the fluid particle velocity and

acceleration
∂E(x0, t |t0)

∂t
= A(x0, t |t0) ·V(x0, t |t0) (1.18)

In an Eulerian framework this evolution of kinetic energy is found by multiplying the N-S
equation (equation 1.2) by the Eulerian velocity Ui (xi , t ) as follows.

Ui
DUi

Dt
= Ui

[
−1

ρ

∂p

∂xi
+ν ∂2Ui

∂x j∂x j

]
(1.19)

A Reynolds decomposition separates the energy associated with the mean flow E = 1
2〈Ui 〉2

and the turbulent kinetic energy k = 1
2〈ui ui 〉. Development equations for these two quanti-

ties may be formed3 from equation 1.19, resulting in

1also using the the fact that the ensemble average and differentiation operators commute.
2For the flow in which density is constant it is convenient to refer to the kinetic energy as one half the

square of the velocity, leaving the "per unit mass" implied.
3For a full derivation see chapter 5 of Turbulent Flows[10]

7



1

2

∂E

∂t
+〈U j 〉 E

∂x j︸ ︷︷ ︸
Change in E

+ ∂

∂x j

[
〈Ui 〉〈ui u j 〉+ 1

ρ
〈U j 〉〈P〉δi j −ν ∂E

∂x j

]
︸ ︷︷ ︸

Transport of E

= 〈ui u j 〉∂〈Ui 〉
∂x j︸ ︷︷ ︸

Production of k

− ν

[
∂〈Ui 〉
∂x j

∂〈Ui 〉
∂x j

]
︸ ︷︷ ︸

Dissipation due to mean flow

(1.20)

∂k

∂t
+〈U j 〉 ∂k

∂x j︸ ︷︷ ︸
Change in k

+ ∂

∂x j

[
〈u j ui ui 〉+ 1

ρ
〈ui p〉δi j −ν ∂k

∂x j

]
︸ ︷︷ ︸

Transport of k

= −〈ui u j 〉∂〈Ui 〉
∂x j︸ ︷︷ ︸

Production of k

− ν

〈
∂ui

∂x j

∂ui

∂x j

〉
︸ ︷︷ ︸

Turbulent dissipation ε

(1.21)

Equations 1.20 and 1.21 describe the evolution of kinetic energy in a turbulent flow, and are
examined more closely in section 1.2 in the context of turbulent channel flow. Qualitatively,
the interaction between the Reynolds stress and the mean-flow gradient transfer kinetic
energy from the mean flow to the turbulence, where the kinetic energy is dissipated as heat
by viscous friction. The dissipation of kinetic energy implies that a constant level of kinetic
energy in a control volume requires the injection of energy into the control volume. This
energy injection drives the mean flow and, by the the production term in equation 1.20,
injects energy into the turbulence. The structure of this energy from its injection into the
turbulence to its dissipation into heat is the subject of an important theory of statistical
turbulence published by Kolmogorov in 1941.

Kolmogorov’s 1941 theory of turbulence (K41)

In a series of papers4 Kolmogorov proposed that in fluid turbulence with large Reynolds
numbers the small scales of the turbulence becomes universal. This universality5 implies a
scaling based on dimensional analysis for the scales at which viscous dissipation occurs.
These scales are therefore independent of the large scales in the turbulence.

η =

(
ν3

ε

)1/4

Dissipation length scale (1.22)

τη =
(ν
ε

)1/2
Dissipation time scale (1.23)

uη = (νε)1/4 Dissipation velocity scale (1.24)

where ν is the kinematic viscosity of dimension [L]2[T]−1 and

ε is the mean dissipation rate of dimension [L]2[T]−3

Further, there are range of scales small enough to be universal but too large to be affected
by viscous dissipation. This inertial range is given as η¿ l ¿ l0, where l0 is the large length
scale of the turbulence. Turbulence statistics in the inertial range are self-similar, i. e. they

4The works of Kolmogorov are introduced and put in context quite clearly by Frisch in Turbulence[11]
5Which includes the assumption of local homogeneity and isotropy, more formally described as a restora-

tion of statistical symmetries of the N-S equation, see [11]
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depend only the scale l and of the mean rate of change of kinetic energy ε . The scale l is
examined precisely with the longitudinal Eulerian structure function, defined as

Sp (l ) ≡ 〈[(u(r+ l, t )−u(r, t )) · l/l ]p〉 (1.25)

Dimensional analysis requires

Sp (l ) = Cpε
p/3l p/3 for η¿ l ¿ l0 (1.26)

Where Cp is dimensionless. For the case of p = 3 the exact result C3 = −4/5 was derived
directly from the Navier-Stokes equation and the assumptions of global homogeneity
and isotropy. There is no similar theoretical result for the value of C2, but a large body of
experimental evidence has confirmed the validity of the scaling S2 ∝ ε2/3l 2/3. This relation
may be interpreted as the amount of turbulent kinetic energy at a given length scale l .

For p 6= 3, and especially for p > 3 this scaling is complicated by the intermittency
of turbulent dissipation. Refinements to K41 have been proposed, some of which are
reviewed in the following section.

Kolmogorov developed this theory in the Eulerian framework, but an analogous relation
was developed for the Lagrangian structure function by Obukhov and Landau[12] using
the approximation6 τ = r/δu(r). The Lagrangian structure function is defined as

SL
p (τ) ≡ 〈|V(x0, t0 +τ)−V(x0, t0)|p〉 (1.27)

K41 predicts the scaling

SL
p (τ) ∝ (ετ)p/2 for τη¿ τ¿ TL (1.28)

For p = 2 the Lagrangian structure function is commonly written as

SL
2(τ) = a0ε

3/2ν−1/2τ2 for τ¿ τη (1.29)

SL
2(τ) = C0ετ for τη¿ τ¿ TL (1.30)

where TL is the Lagrangian time scale, and a0, C0 are non-dimensional constants

This scaling in the Lagrangian structure function may be seen in the Lagrangian autocorre-
lation

ρL(τ) ≡ 〈V(x0, t0 +τ)V(x0, t0)〉 (1.31)

using the kinematic relationship in stationary HIT:

SL
2(τ) = 2〈u2〉[1−ρL(τ)] (1.32)

The Kolmogorov scaling in shown in equation 1.30 implies that

ρL(τ) = 1− a0ε
3/2ν−1/2τ2

2〈u2〉 for τ¿ τη (1.33)

ρL(τ) = 1− C0ετ

2〈u2〉 for τη¿ τ¿ TL (1.34)

Some results regarding the scaling of acceleration can be deduced using the kinematic
relationship (valid for stationary statistics):

〈a(x0, t0 +τ)a(x0, t0)〉 = −〈u2〉 d 2

dτ2
ρL(τ) (1.35)

using the scaling in equations 1.33-1.34 the autocorrelation of acceleration is

〈a(t0 +τ)a(t0)〉 = a0ε
3/2ν−1/2 for τ¿ τη (1.36)

〈a(t0 +τ)a(t0)〉 = 0 for τÀ τη (1.37)

6Falkovich et al[13] offers an interesting recent discussion of the validity of this assumption and its
implications for Lagrangian statistics.
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Figure 1.2: Schematic view of the Kol-
mogorov quadratic and linear scaling of the
velocity autocorrelation.

This lack of dependence of the autocorrelation
of acceleration7 on the time lag τ is reflected
in the constant curvature of the velocity auto-
correlation in figure 1.2, and zero -correlation
in the inertial range implies that acceleration
is a fundamentally small-scale quantity with a
time correlation approximately equal to the Kol-
mogorov time scale τη. The form of the auto-
correlation of acceleration is not predicted from
K41, although as the derivative of a stationary
process the integral scale is expected to be zero
in HIT[14].

The limits and extensions of K41

K41 predicts statistical similarity of velocity in-
crements in the inertial range for HIT. Since the
introduction of K41 many experimental results
have shown that these statistics are scale dependent. This dependence may be seen in the
results of Mordant et al[1] for the Lagrangian velocity increment, shown in figure 1.3. The
evolution of the PDF of the normalized velocity incrementv(t0 +τ)− v(t0) from τ≈ TL (ap-
proaching Gaussian) to τ≈ τη (highly non-Gaussian) shows that these Lagrangian statistics
are not self-similar in the inertial range. This lack of self-similarity is known as internal
intermittency, and is known be greater in the Lagrangian framework[15]. Explanations of
the behavior shown in figure 1.3 represent an active field of study in turbulence research.

–20 –10 0 10 20
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0

Figure 1.3: The probability density function
of the normalized velocity increment for sev-
eral values of τ. The dotted line represents
the distribution of acceleration. Reproduced
from Mordant et al[1].

The reason why K41 fails to capture the in-
termittency is that it implicitly assumes a con-
stant dissipation rate in the structure function
scaling shown in equation 1.26; an assumption
made clear by noting that 〈εp/3〉 6= 〈ε〉p/3 for p 6= 3
unless ε = 〈ε〉. Kolmogorov and Obukhov at-
tempted to address this shortcoming by con-
ditioning the scaling shown in equation 1.26
on the local instantaneous value of the dissipa-
tion rate volume averaged on the scale l , written
here as εl

〈[(u(r+ l, t )−u(r, t )) · l/l ]p |εl 〉 = Cp (εl l )p/3

(1.38)
and then modeling the distribution of ε as a
function of scale. This approach, known as K62,
is notable for two reasons. First, it directly links
the instantaneous viscous dissipation—a small-
scale scale quantity—with the scales in the iner-
tial range. Second, it requires knowledge of the

the distribution of εl , which general must be modeled and is related to the large scales of
the turbulence. Kolmogorov suggested that the dissipation has a log-normal distribution,
the specification of which allows the calculation of εp/3 from 〈ε〉. This approach has been

7The acceleration variance is simply equation 1.36 at τ = 0, and is also referred to as the Heisenberg-Yaglom
relation
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used to collapse Lagrangian velocity increments[16] similar to those shown in figure 1.3,
and used in the superstatistical approach[17, 18].

Another notable approach to intermittency is the multifractal model, which models
the scaling exponent ζp in the Eulerian structure function

Sp (l ) ∼ l ζp (1.39)

The exponent ζp (p) has been shown experimentally to have the following qualities: for
ζp = 1 at p = 3, confirming the exact result of Kolmogorov; approximately linear behavior at
p ≤ 3, reflecting the fact that K41 provides a close approximation for lower order statistics;
and ζp (p) is increasingly curved for p > 3 reflecting the scale dependence of higher order
statistics (e. g. the shape of the PDFs shown in figure 1.3 ). Note that for K41 ζp is linear in p:
ζp = p/3 (equation 1.28), and for K628predicts a curved function: ζp = p/3+µ/18(3p −p2),
where µ≈ 0.2 is thought to be universal.

The multifractal model attempts to predict this curved ζp in a universal manner without
specifying the distribution of ε. The underlying idea is that turbulence has a range of fractal
dimensions D that is scale dependent. The distribution of this dimension D(h), where h is
the scale, is thought to be universal. As a consequence the scaling of Sp (l ) is a superposition
of power laws over the range of scales:

Sp (l ) ∼ l ph1 l 3−D(h1) +ph2l 3−D(h2) + ...phnl 3−D(hn ) (1.40)

D(h) is not generally known a priori, and must be modeled and/or measured directly[20].
Multifractal formalism has been extended to the Lagrangian framework and provides a
unified description of turbulence in the inertial and dissipative ranges[21, 22].

1.1.3 Turbulence investigations in the Lagrangian framework

As suggested by the quotation of A. N. Kolmogorov that opens this chapter, the study
of turbulence has been largely driven by experimental investigation. Since the pioneer-
ing experiments of Reynolds the development of experimental methods have allowed
researchers to measure turbulent quantities with ever increasing spatial and temporal
resolution. Historically these instruments and techniques were focused on Eulerian mea-
surements; instruments and techniques enabling Lagrangian measurements in turbulence
are a relatively recent9 development.

Fluid particle trajectories may be measured experimentally by measuring the position
of a tracer particle over time, or extracted from a direct numerical simulation (DNS) of
turbulence. The experimental system used in this study, an optical particle tracking
velocimetry system than uses high-speed cameras to record tracer particle positions, is
fairly typical of modern experimental Lagrangian measurements. DNS solves the N-S
equations directly over a large grid of positions, such that all scales of the turbulence
are resolved. Fluid particle trajectories are then integrated from the calculated Eulerian
velocity field that is highly resolved in x, y , z, t (See e.g. Yeung[24] for details), allowing the
extraction of high resolution Lagrangian statistics. Such simulations are computationally
expensive for large Reynolds numbers, but increasingly available computational resources
have allowed DNS at Reynolds numbers(Reλ = 1000) similar to many experiments[25].

8 Following the assumption of the log-normality of ε, see e.g. Davidson[19] for this derivation
9With a few notable exceptions, among them a study of relative dispersion in the atmosphere by Richard-

son in 1922[23], in which balloons were released containing messages asking the finders to note where the
balloons landed and to send Richardson the location by postcard.
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Turbulence statistics may be divided, somewhat arbitrarily, into the following four
categories, each of which corresponds to different measurements methods, and each of
which is related to different areas of turbulence research:

• One-point statistics: A measurement at a single point, e.g. by a hot-wire
or pitot tube. The "frozen turbulence" hypothesis of Taylor is often used
with these measurement to deduce two-point statistics.

• Many- point statistics: Simultaneous measurements at two or more loca-
tions, which allow direct measurement of spatial structure. Modern optical
measurement methods, such as particle image velocimetry (PIV), allow
direct field measurements.

• Single-particle statistics: The trajectory of a single particle. Typically
measured optically (e. g. PTV) but at low particle-seeding levels.

• Many-particle statistics: Many simultaneous trajectory, such that the
measurement of particle separation distance over time, the coherence
of groups of particles over time (e. g. tetrads), etc., are possible. These
statistics are typically measured with techniques similar to those used to
measure single-particle statistics, but they require relatively high particle-
seeding levels.

Eulerian

Lagrangian

All four categories of statistics may be measured at a variety of temporal and spatial
resolutions, depending on the measurement method and instrumentation used. Access
to these statistics has allowed researchers to test theories and explore phenomena in
turbulence. For example K41 was based on and supported by high-resolution hot wire
measurements, which, using Taylor’s frozen turbulence hypothesis, furnished Eulerian
structure function statistics in the inertial range. Coherent structures and their role in
turbulence were elucidated using PIV measurements, which allowed spatially resolved
measurements of the velocity and vorticity fields.

Similarly, the more recently available high-resolution Lagrangian measurements allow
the exploration of questions regarding fluid particle velocity and acceleration. The follow-
ing discussion will focus on results related to single-particle statistics, which are also the
focus of the present study.

Lagrangian velocity statistics in HIT

K41 in the Lagrangian framework predicts

〈|V(x0, t0 +τ)−V(x0, t0)|p〉∝ (ετ)p/2 for τη¿ τ¿ TL (1.41)

in the limit of large Reynolds numbers, but leaves many open questions. At what range of
Reynolds is this scaling observed? What are the values of the proportionality constants,
especially C0?10 How is the Lagrangian timescale TL related to other turbulence quantities,
such as more easily measured Eulerian statistics? These questions have important implica-
tions for Lagrangian modeling(discussed in more depth in section 1.3), as C0, TL, and Reλ
are basic ingredients of these models. A variety of experimental and DNS measurements
have been reported, clearly summarized by Lien and D’Asaro[26]. A more recent DNS

10Where C0 is the proportionality constant when p = 2
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from Sawford and Yeung[27] consider the second-order K41 scaling over a wide range
Reynolds numbers (Reλ = 43−1000). C0 is found to increase with Reynolds number, even
at the relatively high Reynolds that have been tested. This result is consistent with the
observation that the Eulerian inertial range is greater than the Lagrangian inertial range
for a given Reynolds number.

The anomalous scaling of equation 1.1.3 was previously evidenced in the lack of self-
similarity in the PDFs of the velocity increments shown in figure 1.3. This anomolous
scaling is commonly written as

〈|V(x0, t0 +τ)−V(x0, t0)|p〉∝ (ετ)ξ
L
p (1.42)

Scaling exponents in the inertial range were measured directly by Mordant et al[1] and
Xu et al[15], and were found to deviate more strongly from K41 (non-intermittent) values
than the equivalent Eulerian exponents. While the power law scaling in equation 1.42
is expected in the inertial range τη ¿ τ¿ TL, it does not necessarily hold when τ ∼ τη.
Biferale et al[28] and Arneodo et al[22] report measurements from several dataset of the
quantity

ζp (τ) =
d log[SL

p (τ)]

d log[SL
2(τ)]

(1.43)

i. e the logarithmic derivative of the structure function of order p, normalized by the
logarithmic derivative of the structure function of order 2. ζp (τ) is a way of quantifying the
deviation from non-intermittent behavior at each scale τ. Both groups report strong inter-
mittence at τ/τη ≈ 2. Intermittency of Lagrangian structure functions at small time-lags is
closely related to the observed intermittency of fluid particle acceleration, as Lagrangian
velocity increments at small times are closely related to fluid particle acceleration by the
definition

a ≡ lim
τ→0

v(τ)−v(0)

τ
(1.44)

Acceleration in HIT

The acceleration of a fluid particle is proportional to the sum of the forces acting on the
particle, and arises directly from the N-S equation. As such a fundamental quantity, as well
as for its importance to Lagrangian stochastic modeling[29](discussed in below in section
1.3), the statistical properties of the fluid particle acceleration in turbulence have been
studied extensively. Experimental[30, 31] and numerical[16, 32] studies have measured
fluid particle accelerations, which were found to have "thick-tail", highly non-Gaussian
distributions. Specifically, accelerations up to 50 times greater than the root-mean-square
value have been measured[31]. The distribution of the acceleration may be inferred from
the multi-fractal model, and agrees closely with experimental[31] and DNS[33] results.

The variance of acceleration has a scaling derived from K41 (equation 1.37), suggesting
a universal constant a0 exists at high Reynolds numbers. Sawford et al[34] assembled a
several datasets to examine the dependence of a0 on Reynolds number, and did not find
evidence that a0 is independent of Reλ for Reλ < 1000.

The autocorrelations of acceleration components were found to have short decorre-
lation times with respect to the autocorrelation of the magnitude of acceleration[35, 16].
Evidence for a connection between intense acceleration events and vortex filaments[36]
suggests the difference between the correlation times of an acceleration component and
the acceleration magnitude may be explained vortex trapping: in which a fluid particle has
a relatively long-lived helical motion that follows a small vortical structure. As the particle
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moves around the axis of rotation of the vortex, the acceleration direction decorrelates
rapidly, but the acceleration magnitude stays relatively correlated. Further evidence of that
vortex filaments are related to the intermittency of acceleration was reported by Toschi et
al[37], who found that the component of the acceleration perpendicular to the velocity has
different statistical properties than the component of acceleration parallel to the velocity.
Specifically, intense acceleration events in the perpendicular component are correlated
over a greater time than intense events in the parallel component.

In the vision of Kolmogorov, high Reynolds number turbulence is characterized by
scale-separation; large scales are decoupled from small-scales. This suggests that veloc-
ity (associated with the large scales) and acceleration (associated with the small scales)
are independent of each other. This assumption is implicit in second-order Lagrangian
stochastic models[38, 39], which model acceleration and velocity as independent processes.
In fact, several studies have shown strong dependence of the acceleration variance on
velocity. Crawford et al[40] report experimental results showing that intense accelerations
are correlated with high velocities in high Reynolds number turbulence. The dependence
is shown to increase with Reynolds number, which is counterintuitive given the increased
scale-separation at higher Reynolds numbers.

1.2 Turbulent Channel Flow

Figure 1.4: Schematic of a turbulent
channel with coordinate system. A high
aspect ratio (h ¿ W) and sufficient de-
velopment length (h ¿ L) ensure statis-
tical homogeneity in the streamwise(x)
and spanwise (z) direction.

The previous section focused on the theory and pre-
vious work related to HIT, with a focus on investiga-
tions from a Lagrangian perspective. Similar inves-
tigations in inhomogeneous turbulence are much
less common due to the theoretical and experimen-
tal/numerical complications associated with the in-
homogeneity. However, inhomogeneous turbulence
is ubiquitous in nature and engineering, motivating
a deeper understanding of such turbulent systems.
Technological advances in high-speed cameras and
computing power increasingly allow experimental
and numerical Lagrangian investigations of such tur-
bulent flows. In order to limit the complexity intro-
duced by the inhomogeneity there is a preference
for "simple" inhomogeneous turbulence flows, such
as turbulent channel flow. This section introduces
turbulent channel flow, and describes selected char-
acteristics of this flow relevant to the work presented
in this thesis.

Turbulent channel flow is an internal, pressure-driven flow in a rectangular channel at
sufficiently high Reynolds number. If the channel is sufficiently long and sufficiently high-
aspect-ratio, the flow is homogeneous in the streamwise (x) and spanwise (z) directions;
the only direction of inhomogeneity is the wall-normal (y) direction11. As such it is a
convenient academic framework to study inhomogeneous turbulence.

By symmetry all statistics, e. g. the mean streamwise velocity, are symmetric about the

11This assumption is often implicit in the literature of turbulent channel flows, i. e. "turbulent channel
flow" refers to the subset of turbulent channel flow for which this assumption holds.
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mid-plane of the channel y = h

〈Ux(x, y∗, z)〉 = 〈Ux(x,2h − y∗, z)〉 0 < y∗ < 2h (1.45)

Statistical homogeneity in the streamwise and spanwise direction, and the conservation of
mass and momentum give the following results for the mean Eulerian velocity and pressure
fields:

〈Uy (x, y, z)〉 = 0 (1.46)

〈Uz(x, y, z)〉 = 0 (1.47)〈
dP(x, y, z)

d x

〉
= constant (1.48)

This constant streamwise mean pressure gradient drives the flow, and in stationary flow is
balanced by the wall shear stress τw . The wall shear stress provides a convenient quantity
by which to scale flow variables. Following the notation of Pope[10] this scaling is given as

uτ =

√
τw

ρ
Velocity wall-scale (1.49)

δν = ν
√

ρ

τw
Length wall-scale (1.50)

tτ =
νρ

τw
Time wall-scale (1.51)

These wall-scales are used to scale flow variables, which are then denoted with a "+"
superscript, e. g.

y+ =
y

δν
(1.52)

The Reynolds number typically chosen to characterize turbulent channel flows is formed
with this velocity wall-scale as

Reτ ≡ uτh

ν

Eqns.
1.49,1.50

=
h

δν
(1.53)

This definition of the Reynolds number is convenient in that is gives a direct measure of
length scale separation between the viscous wall length scale (δν) and the largest length
scale (h).

High Reynolds number channel flow varies qualitatively with respect to the distance
from the wall (y+). Attempts to describe and understand this variation from a purely
statistical point of view has occupied researchers since Prandtl, and have led to advances
such as the law of the wall and an understanding of the production-transport-dissipation
of turbulent kinetic energy in the system. Another approach12 focuses on the organization
of vortical flow structures in the channel , and their role in the turbulence. A small selection
of results from each approach are discussed here.

1.2.1 Eulerian statistics in a turbulent channel

Law of the wall

Dimensional analysis using the assumptions made above lead to the expression for the
mean shear

d〈U+
x 〉

d y
=

1

y+ f

(
y

δν
,

y

h

)
(1.54)

12Tsinober[8] points out that it is impossible to draw a clear line between a "statistical" and a "structural"
approach to turbulence; this distinction is made here simply for the purpose of introduction.
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At high Reynolds number one may assume that there is a distance from the wall δν¿ y ¿ h
such that the mean shear is independent of both δν and h, in which case the function f
must be a constant, i. e.

d〈U+
x 〉

d y
=

1

κy+ for δν¿ y ¿ h

⇒〈U+
x 〉 =

1

κ
l n(y+)+B for δν¿ y ¿ h (1.55)

where κ is the von Kármán constant (≈ 0.41) and B ≈ 5.2 for smooth walls. The layer
in which this self-similar relation holds is called the log layer. Very close to the wall
the dynamics are dominated by viscous stress, and between these two layers there is a
transitional layer called the buffer layer. These three layers are defined13 as

Viscous layer: 0 < y+ < 5 (1.56)

Buffer layer: 5 < y+ < 30 (1.57)

Log layer: y+ > 30, y/h < 0.3 (1.58)

and are shown graphically with the mean velocity and velocity variance in figure 1.5.
Note that peak of the streamwise variance occurs in the buffer layer, as does the peaks of
turbulence production, dissipation, and turbulent kinetic energy (not shown in figure 1.5),
highlighting the dynamical importance of this layer, despite how little of the channel it fills
(less than 2% of the half-width of the channel at Reτ = 1440). The definition of the log-layer
layer illustrates how the width of this layer depends on the Reynolds number

Lower limit of log layer: y+ = 30 = 30
h

Reτ
Upper limit of log layer: 0.3h (1.59)

i. e. for a given channel width h the upper limit of the log layer is fixed, and increasing Reτ
acts to shrink the viscous length scale, thus pushing the lower limit of the log layer towards
the wall.

Dimensional analysis similar to the derivation of the log law (equation 1.55) gives

U0 −〈Ux〉
uτ

= −1

κ
l n

( y

h

)
+B1 for y ¿ h (1.60)

where U0 is the mean streamwise velocity at the centerline (U0 = 〈Ux(y)〉|y=h), and B1 is a
constant (≈ 0.2). Equations 1.55 and 1.60 can be combined yielding

U0

uτ
=

1

κ
ln

(
Re0

uτ
U0

)
+B+B1 (1.61)

which relates the ratio of velocity scales to the large-scale Reynolds number Re0 ≡ U0h/ν.
This relation allows the estimation of the velocity scale uτ directly from the centerline
velocity, which is more practical experimentally, as a direct measurement ofτw is often not
possible.

Reynolds stresses: production, transport, and dissipation

The equation governing the kinetic energy in a turbulent flow, U ·
[

DU
Dt = −1

ρ
dP
dx +ν∇2U

]
,

was previously developed using the Reynolds decomposition (equations 1.20 and 1.21).

13This definition is taken from Pope[10], but definitions vary in the literature, e.g. Hoyas[41] take the log
layer to be narrower: y+ > 100, y/h < 0.2
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Figure 1.5: Profiles of mean streamwise velocity (left) and component-wise velocity variance (right),
shown with the viscous layer, the buffer layer, and the log layer. Red symbols are experimental data,
green symbols and black line are DNS. Velocity variance profiles are offset by 5u2

τ for clarity. Figure
modified from Stelzenmuller et al[42].

Using the symmetries of turbulent channel flow, these equations are simplified to

∂

∂y

[
〈Ux〉〈uxuy〉−ν∂E

∂y

]
+ 1

ρ

∂〈P〉
∂x

〈Ux〉︸ ︷︷ ︸
Transport of E

= 〈uxuy〉∂〈Ux〉
∂y︸ ︷︷ ︸

Production of k

− ν

[
∂〈Ux〉
∂y

∂〈Ux〉
∂y

]
︸ ︷︷ ︸

Dissipation due to mean flow

(1.62)

∂〈uy uxux〉
∂y︸ ︷︷ ︸

Turbulent transport

+ 1

ρ

∂〈uy p〉
∂y︸ ︷︷ ︸

Pressure transport

− ν
∂2k

∂y2︸ ︷︷ ︸
Viscous transport

= −〈uxuy〉∂〈Ux〉
∂y︸ ︷︷ ︸

Production of k

− ν

〈
∂ui

∂x j

∂ui

∂x j

〉
︸ ︷︷ ︸

Turbulent dissipation ε
(1.63)

where E = 1
2〈Ux〉2 and k = 1

2 (u2
x +u2

y +u2
z ). Some of the terms in these energy equations are

easily measured experimentally, and will be presented in Chapter 3. Other terms, such as
the fluctuating spatial velocity gradients and the fluctuating pressure, are generally not
accessible in experiments. Results from DNS[43, 44], where all of the terms can be directly
measured, have been published for a range of Reynolds numbers. The profiles of these
terms across the channel show the following behavior in each layer.

• Viscous layer: In the viscous layer there is very little fluctuating velocity and thus very
little production. Dissipation is highest at the wall, balanced by viscous transport
term which brings energy towards the wall.

• Buffer layer: In the buffer layer all of the terms in equation 1.63 are important.
The production term is highest in this layer, and is greater than the dissipation,
which means the transport terms are working to bring energy toward the wall (by
the viscous transport term) and away from the wall (by the pressure and turbulent
transport term). The viscous and buffer layers have been shown to be dependent on
the Reynolds number.

• Log layer: In the log layer the production and dissipation of energy are in balance,
and the transport terms become negligible. The wall-scaled terms show little depen-
dence on Reynolds number.
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• Beyond the log layer: Between the log layer and the channel centerline the produc-
tion declines to zero, and the dissipation is balanced by the transport terms.

Anisotropy

Turbulent channel flow is characterized by a high degree of anisotropy. The mean velocity
is highly sheared, and the variance of fluctuating velocity components—〈u2

x〉,〈u2
y〉,〈u2

z〉—
differ significantly. These large-scale anisotropies are greatest near the wall, and relax to
isotropy at the channel centerline. It remains an open question as to the extent to which
the small scales of the flow are isotropic in the high Reynolds number limit, as predicted
by Kolmogorov. In a turbulent channel DNS of Reτ = 1000, Pumir et al[45] found small-
scale anisotropy up to the channel center, by some measures greater than that found in
equivalent homogeneous shear turbulent flow. In another channel flow DNS at a similar
Reynolds number Zamansky et al[3] found that the orientations of acceleration approach
isotropy at y+ ≈ 40, i. e. the beginning of the log layer.

1.2.2 Vortical structures in a turbulent channel

Figure 1.6: Sketch of a horseshoe vortex,
showing two parallel streamwise legs
close to the wall and spanwise elevated
head. Reproduced from Adrian[2].

Flow visualization techniques applied to wall-
bounded turbulence have revealed organized mo-
tions in the turbulence. These organized motions
have been studied extensively[2, 46, 47, 48], al-
though there is a general lack of agreement in the
literature about how to define these organized mo-
tions. For the purpose of this discussion an intuitive
definition of a vortex will suffice.

Herpin et al[49] analyzed data from a channel
flow DNS (Reτ ≈ 950) with respect to the num-
ber and radii of vortices across the channel width.
Streamwise vortices were found to be significantly
more common than spanwise vortices in the buffer
and log layers. This difference is minor beyond the
log layer, but a small difference persists almost to
the channel center. The overall number of vortices
peaks at y+ ≈ 100 for both streamwise and spanwise
vortices, and declines towards the center. Stream-
wise vortex radii were found to be smaller than those
of the spanwise vortices in the near-wall region, and
approximately equal elsewhere.

The qualitative picture given by these results is that turbulence near the center of
the channel—3-D, quasi-isotropic, quasi-homogeneous turbulence—becomes more and
more organized as one approaches the wall. This organization manifests as vortices
increasingly aligned in the streamwise direction, i. e. a system between fully 3-D HIT and
2-D turbulence14. From a Lagrangian point of view, one in which high accelerations events
and the long time correlations of acceleration magnitude are associated with fluid particles
"trapped" in vortices, the organization of vortices is expected to have a significant effect
on Lagrangian statistics.

14Clearly near wall turbulence is quite different from classical 2-D turbulence, but there are intriguing
similarities such as the structure of aligned vortices and the inverse energy cascade.
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1.3 Dispersion and Lagrangian stochastic models

One of the fundamental properties of turbulence is highly efficient mixing, an effect that is
directly observed in the experiments of Reynolds (figure 1.1). This mixing effectiveness has
important practical consequences for problems such as the dispersion of pollutants, heat
transfer in fluid systems, and the mixing of chemical species in natural and engineering
systems. Quantities such as temperature, non-reacting chemical species, etc., commonly
have large Péclet numbers15, and small particles often have low Stokes numbers16 such that
the dispersion of these quantities closely resembles the dispersion of fluid particles. The
dispersion of fluid particles is naturally treated in the Lagrangian framework, for example
the dispersion of pollution from a point source x0 at a time t0 is described by the PDF of an
ensemble of Lagrangian trajectories X(x0, t |t0).

One approach to this problem is to generate particle trajectories with a stochastic
process of the form

Xn+1 = f (Xn)+S where S is a stochastic forcing term (1.64)

Multiple realizations of equation 1.64 result in an ensemble of fluid particle trajectories,
from which the PDF of x0 at a time t0 may be extracted. This is the approach of Lagrangian
stochastic models, which have applications in dispersion problems, as well as statistical
descriptions of turbulence (PDF methods), subgrid modeling in LES, and the modeling of
inertial particles in turbulence.

1.3.1 Single particle dispersion

In a classic paper from 1921[50] G. I. Taylor showed that in stationary HIT the dispersion
of a fluid particle particle position was related to the time for which the Lagrangian ve-
locity is correlated. Following this reasoning, but allowing for stationary inhomogeneous
anisotropic turbulence, a fluid particle trajectory conditioned on an initial position x0 at
time t0 is written as

X(x0, t |t0) =
∫ t

t0

V(x0,τ|t0)dτ+x0 (1.65)

The covariance of an ensemble of such trajectories is given as

〈Xi (x0, t |t0)X j (x0, t |t0)〉 =
∫ t

t0

∫ t

t0

〈Vi (x0, t ′|t0)V j (x0, t ′′|t0)〉d t ′d t ′′ (1.66)

Defining the general form of the normalized correlation17

ρi j (τ) ≡ 〈Vi (x0, t0|t0)V j (x0, t0 +τ|t0)〉√
〈V2

i (x0, t0|t0)〉〈V2
j (x0, t0 +τ|t0)〉

where τ = t − t0 (1.67)

For convenience this normalization factor is written as

σi j (τ) ≡ 〈Vi (x0, t0|t0)〉〈V j (x0, t0 +τ|t0)〉 (1.68)

15The Péclet number defines the ratio of the advective rate of transport to the molecular diffusion rate of
transport.

16The Stokes number defines the ratio of characteristic times of the particle and the flow—in the limit of
small Stokes number particles tend to follow fluid particles faithfully.

17This choice of normalization factor is not unique, but is standard in the literature.
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The Lagrangian velocity integral time scale, or equivalently the Lagrangian integral scale, is
defined as

TL,i j ≡
∫ ∞

0
ρi j (τ)dτ (1.69)

The r.h.s. of equation 1.66 can be rewritten to reduce the double integral to single integral18

〈Xi (x0, t |t0)X j (x0, t |t0)〉 = 2(t − t0)
∫ t

t0

σi j (τ)ρi j (τ)dτ−2
∫ t

t0

τσi j (τ)ρi j (τ)dτ (1.70)

Equation 1.70 clarifies the asymptotic behavior of dispersion. For short time lags
τ¿ TL,i j the velocity is highly correlated so ρi j ≈ 1, also σi j (τ) ≈ σi j (0) . Using these
approximations in equation 1.70 gives

〈Xi (x0, t |t0)X j (x0, t |t0)〉 ≈ τ2σi j (0) for τ¿ TL,i j (1.71)

At long time lags τÀ TL,i j the velocity is uncorrelated and ρi j ≈ 0 indicating that the
dispersion at long times may be estimated by neglecting the second term in equation 1.70

〈Xi (x0, t |t0)X j (x0, t |t0)〉 ≈ 2τ
∫ t

t0

σi j (τ)ρi j (τ)dτ (1.72)

Note that the normalization factor σi j (τ) samples the inhomogeneity of the flow and may
not be brought out of the integral, illustrating the difficulty in calculating dispersion in
inhomogeneous turbulence. For the special case of HIT

σi j (τ) = u′2, ρi j (τ) = ρ(τ), TL,i j = TL (1.73)

And Taylor’s results for the asymptotic scaling of dispersion in HIT are found

〈X2(x0, t0 +τ|t0)〉 = τ2〈u′2〉 for τ¿ TL

〈X2(x0, t0 +τ|t0)〉 = 2τ〈u′2〉TL for τÀ TL (1.74)

Taylor constructed a stochastic model of Lagrangian trajectories in the spirit of equation
1.64 that replicated his findings for turbulent dispersion. This model is equivalent to the
Langevin equation, which models Lagrangian velocity.

1.3.2 The Langevin equation

The Langevin equation is a stochastic differential equation of the form

dV(t ) = γV(t )+L(t ) (1.75)

Where L(t) is a Gaussian stochastic process with zero mean (〈L(t)〉 = 0) and is delta-
correlated in time (〈L(t)L(t ′)〉 = Γδ(t − t ′)). This model was developed by Langevin to
describe Brownian motion,19 where the change in particle motion dV is equal to a de-
terministic term (proportional to the fluid velocity) and a stochastic term that models
molecular collisions with the particle. Equation 1.75 can be solved as an initial value
problem:

V(t ) = V0 exp(−γt )+exp(−γt )
∫ t

0
exp(γt )L(t ′)d t (1.76)

18See derivation in Turbulent flows[10] p. 502
19A review and English translation of this paper is available from Lemons and Gythiel[51].
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Using the properties of the stochastic process L(t ) the mean autocorrelation is found to be

〈V(t )V(t +τ)〉 ≡ ρ(τ) =
Γ

2γ
exp(−γτ) in the limit of t →∞ (1.77)

Substituting equation 1.77 into the HIT form of the Taylor relation for the variance of
dispersion (equation 1.66)

〈X2(τ)〉 =
∫ τ

0

∫ τ

0

Γ

2γ
exp(−γτ)dτ′dτ′′

〈X2(τ)〉 =
Γ

2γ2

[
τ− 1

γ

(
1−exp[−γτ]

)]
(1.78)

Using the following substitutions

TL =
1

2γ
, Γ =

2〈u′2〉
TL

→〈X2(τ)〉 = 〈u′2〉TL
[
τ−TL

(
1−exp[−τ/TL]

)]
(1.79)

recreates the Taylor scaling for single particle dispersion in HIT (equation 1.74), as shown
here:

〈X2(τ)〉 = 〈u′2〉TL

[
τ−TL

(
1−1+ τ

TL
− τ2

T2
L

+O

(
τ3

T3
L

))]
≈ 〈u′2〉τ2 for τ¿ TL (1.80)

〈X2(τ)〉 = 〈u′2〉TL
[
τ−TL

(
1−exp[−τ/TL]

)]≈ 〈u′2〉TLτ for τÀ TL (1.81)

Writing the Langevin equation with coefficient determined in this manner results in

dV(t ) = −V(t )

TL
d t +

√
2〈u′2〉

TL
dW(t ) (1.82)

where V(t ) is the Lagrangian velocity, TL is the Lagrangian velocity integral time scale, 〈u′2〉
is the Eulerian velocity variance, and ρ(τ) = exp(−|τ|/TL) is the velocity autocorrelation
function. The stochastic term is rewritten

L(t ) =

√
2〈u′2〉

TL
dW(t ) (1.83)

where W(t ) is a normalized Gaussian process (zero mean, unit variance) called a Weiner
process.

The scaling of K41 may be applied to this model by considering the second order
Lagrangian structure function SL

2 = 〈|V(x0, t0 +τ)−V(x0, t0)|2〉

SL
2(τ) = C0〈ε〉τ for τη¿ τ¿ TL ← K41 scaling

= 2〈u′2〉[1−ρL(τ)] ← Kinematic relationship in HIT

= 2〈u′2〉[1−exp(−τ/TL)] ← ρL from Langevin model

= 2〈u′2〉[1−1+τ/TL +O ((τ/TL)2)] ← Taylor series expansion around τ = 0

→ C0〈ε〉 =
2〈u′2〉

TL
for τη¿ τ¿ TL (1.84)
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Using the result in isotropic turbulence that 〈u′2〉 = 2
3 k (where k is the turbulent kinetic

energy ) the inverse of the time scale may be written as

1

TL
=

3C0ε

4k
(1.85)

The Langevin model may be written for high Reynolds number stationary HIT with zero
mean flow as

dV(t ) = −3C0ε

4k
V(t )d t + (C0ε)1/2dW(t ) (1.86)

For this highly idealized turbulent flow this model is compatible with K41 scaling and single
particle dispersion scaling by construction. Equation 1.86 is an example of an Ornstein-
Uhlenbeck process, and as such is a stationary Gaussian stochastic process with additive
noise.

This form of the Langevin equation has been the foundation of the Lagrangian stochas-
tic modeling of turbulence. This model has several important limitations, which have been
addressed with a wide variety of approaches. The nature of these approaches depends on
the model application and the specific statistical results sought, e.g. models used to predict
pollution in the atmospheric boundary layer have different requirements than the models
used to predict mixing of chemical species in an engineering application. The literature
regarding Lagrangian stochastic models in turbulence is vast, and a complete summary is
not attempted here. This section attempts rather to identify three important limitations of
equation 1.86—the assumptions of Reynolds number independence, homogeneity, and
Gaussianity—and present selected attempts to overcome these limitations. The emphasis
is naturally placed on models applicable to flow in a turbulent channel.

As a common point of reference for the following discussion equation 1.82 is rewritten
to be as general as possible

dX = A(X, t )d t +B(X, t )dW (1.87)

where X is a state vector containing the variables of state necessary to model the system, e.
g. velocity, acceleration, dissipation, etc. A and B are typically referred to in the literature
as the drift and diffusion tensors, respectively, and may depend on the state vector and
time.

1.3.3 Reynolds number dependence

Figure 1.7: The Kolmogorov "constant" C∗
0

as a function of Reynolds number in DNS of
isotropic turbulence (points), shown with an
empirical fit (line). Figure reproduced from
Sawford et al[52]

Only one turbulence time scale appears in the
Langevin equation of velocity, which implies
that the Reynolds number is approaching in-
finity. One way of seeing this directly is to
consider the Kolmogorov scaling Re ≈ (

TE/τη
)2,

where TE and τη are the Eulerian integral time-
scale and the Kolmogorov time-scale, respec-
tively. The Kolmogorov time-scale τη is repre-
sented in equation 1.86 as approaching zero, a
consequence of the delta-correlated stochastic
term, thus as τη → 0, Re → ∞. The K41 scal-
ing shown in equation 1.84 also is valid in the
limit of Re →∞. Turbulent flows are character-
ized principally by Reynolds number, and so the
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Reynolds number independence of the Langevin equation as formulated in equation 1.86
may be problematic, especially for low Reynolds number flows.

A simple way to introduce Reynolds number dependence to equation 1.86 is to let the
Kolmogorov "constant" C0 be a function of Reynolds number C∗

0 (Reλ), as shown in figure
1.7. This Reynolds number dependent scaling is clearly contrary to the spirit of K41, but
allows the simple adaptation of equation 1.86 to low Reynolds number flows. Pope[53]
showed that Langevin model results using this approach closely match DNS results in
isotropic turbulence for second order Lagrangian structure functions for τ> 20τη, although
at shorter times the model does not reproduce the DNS results.

Timescales and "noise" in the
Langevin equation:
The use of a delta-correlated
"noise" term is clearly justified in
systems where there is external
noise with a time scale that is
short relative to the slow system
variable. Brownian motion was the
original application and illustrates
clearly the separation between
the stochastic noise—in this case
molecular forces—and particle
velocity. This concept is much
less physically justified in the
case of turbulence due to the
fact that there is no "noise" from
external sources. The application
of the Langevin equation is loosely
justified if there is a large time scale
separation between the modeled
variable and its time derivative.
This is clear in the case of equation
1.86 in the limit of Re → ∞, but
much less clear for models of
acceleration. Good agreement
between the results of such models
and numerical and experimental
results seem to indicate that a
timescale separation indeed exists
between the acceleration and
its time derivative, but there is
no theoretical prediction for this
separation or how it scales with
other quantities.

Another approach to introduce Reynolds
number dependence into the Langevin equa-
tion is to model increments of acceleration in-
stead of increments of velocity. This approach
was first proposed by Sawford[38], who intro-
duced the following model for a component of
the acceleration in HIT:

du(t ) = a(t )d t

d a(t ) = −αa(t )d t −βu(t )d t + (
2〈a′2〉γ)1/2

dW(t )
(1.88)

Where α, β, and γ are constants related to the
two length scales of the turbulence. In this
framework the increments of acceleration are
directly modeled with deterministic terms lin-
ear in acceleration and velocity and a stochas-
tic term with similar properties to that shown
in equation 1.86. The velocity is simply the
time integral of the acceleration. A model of
this type has the advantage of allowing a time
scale associated with the acceleration, which
implies: a non-delta acceleration autocorre-
lation function, a realistic velocity autocorre-
lation function20, and a natural inclusion of
Reynold number dependence.

The Sawford model results are in close
agreement with low Reynolds number La-
grangian statistics obtained from DNS[54]. Un-
like models of velocity, the Sawford model is
able to accurately model Lagrangian statistics
at short time lags.

This model was formulated under the as-
sumptions of isotropic turbulence and is con-
strained with K41 theory and DNS results relat-
ing the ratio of time scales with the Reynolds

20The velocity autocorrelation function exp(−|τ|/TL) associated with equation 1.86 is non-differential
at τ = 0; a non-zero acceleration time scale acts to smooth this cusp, resulting in a differential velocity
autocorrelation function at τ = 0.
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number. The full 1-D model is as follows:

du(t ) = a(t )d t (1.89)

d a(t ) = −
(

1

τ
+ 1

T∞

)
a(t )d t −

(
1

τT∞

)
u(t )d t +

(
2〈a′2〉

(
1

τ
+ 1

T∞

))1/2

dW(t )

(1.90)

where T∞ is related to the Lagrangian integral scale TL as

T∞ =
TL

1+
(

16a2
0

C2
0

Re
)−1/2

(1.91)

and the small time scale associated with the acceleration is given as

τ =
〈u′2〉

〈a′2〉T∞
(1.92)

This approach naturally incorporates Reynolds number dependence but remains lim-
ited in several important ways. Notably, the Sawford model results in a Gaussian distribu-
tion of acceleration increments. The non-Gaussianity of velocity increments was seen in
figure 1.3 to increase as the velocity increments approach the limit of acceleration. The use
of a Gaussian noise term in the Sawford model is therefore less justified than its use in the
Langevin equation of velocity. The other limits are similar to those of the simple Langevin
model in velocity, namely, the model is valid only in HIT, only a single component of a or v
is modeled, and the lack of correlation between components is assumed.

Development of Lagrangian stochastic models in acceleration have continued, notably
by Pope[55] and Reynolds[39]. These models are discussed in the following sections.

1.3.4 Lagrangian stochastic models in inhomogeneous turbulence

The assumption of homogeneity is extremely helpful in the construction and constraint of
Lagrangian stochastic models. The general case, in which the drift and diffusion tensors (A
and B in equation 1.87) are functions of position and are anisotropic, present theoretical
and technical problems to development. Some of the more important of these problems
are

• Parameter constraint: The drift term in the simple Langevin model (equation 1.86)
was constrained with Taylor dispersion and Kolmogorov scaling results assuming
homogeneity and isotropy. Thomson[56] suggested using a "well-mixed condition", i.
e. once well mixed fluid particles should stay well-mixed, as a condition to constrain
the drift tensor, but also noted that it is not sufficient for a unique specification.

• Multiplicative noise: If the diffusion tensor is dependent on position then the noise
term becomes dependent on the signal itself: multiplicative noise. This multiplica-
tive noise presents a technical challenge to the use of Langevin-type models, see
references[57, 58] for details.

One of the more common forms of Lagrangian stochastic model for inhomogeneous
turbulence is the Generalized Langevin Model (GLM), which provides a framework models
for specific inhomogeneous flows, e. g turbulent free shear turbulent flow, boundary layer
turbulence, etc.

24



Generalized Langevin Model (GLM)

The GLM, introduced by Pope[59], is given as

dXi (t ) = Vi (t )d t

dVi (t ) =

[
−1

ρ

∂〈p〉
∂xi

+ν∂
2〈Ui 〉
∂x2

j

+Gi j (Xi )[V j (t )−〈V j 〉]
]

d t + (C0ε)1/2dWi (t ) (1.93)

where Gi j is a function of position, and is evaluated at the instantaneous position Xi (t).
The GLM bears a clear resemblance to the N-S equation, where the first and second terms
on the r.h.s are the contributions from the mean pressure and mean velocity, and the third
and fourth terms model the instantaneous contribution to the velocity increment. The
GLM retains the stochastic term of the simple Langevin model (equation 1.86) , which
ensures consistency with K41, and avoids problems associated with multiplicative noise.
Models for specific flows are found by specifying the drift tensor Gi j . This model was
shown to provide good agreement with experimental results in a variety of homogeneous
turbulent flows[60].

Extensions to the GLM

For homogeneous shear flow, Pope[61] made an explicit connection between the drift and
diffusion tensors A and B in the model

dui = −Ai j u j +Bi j dW j (1.94)

and two measurable quantities: the anisotropic Lagrangian correlation tensor Ri j (τ) =
ui (t0 +τ)u j (t0) and the normalized Reynolds stress tensor 〈ui u j 〉/k. Specifically,

Ti j =
∫ ∞

0

〈ui (t0 +τ)u j (t0)〉
〈ui 〉〈u j 〉

dτ

Ci j = 〈ui u j 〉/k

Ai j = (T−1
i j )T (1.95)

B2
i j = Ai k Ck j +Ci k AT

k j (1.96)

Although strictly valid only for homogeneous flow, this method may be extended to
inhomogeneous flows by assuming approximate local homogeneity. In this case Ti j and
Ci j become functions of position. This idea was extended to inhomogeneous pipe flow
by Veenman[62], and the Lagrangian statistics necessary to constrain A were measured
experimentally by Walpot et al[63].

Tanière et al[64] applied this reasoning to turbulent channel flow in the context of the
modeling of inertial particles. The Lagrangian correlation tensor Ri j (τ, y0) and Reynolds
stress tensor Ci j y0, written here showing the dependence on the wall-normal position y0

at t0, was extracted from DNS of channel flow at Reτ = 180, and used to calculate the drift
and diffusion tensors following the method of Pope.
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Acceleration models in inhomogeneous turbulence

Pope developed a general model for acceleration[55] very similar to the GLM:

dXi (t ) = V(t )d t (1.97)

dVi (t ) = −
[

1

ρ

∂〈P〉
∂xi

]
Xi (t )

−
[

1

ρ

∂Pr

∂xi

]
Xi (t )

+a0
i (t ) (1.98)

d Ai (t ) = −[Ci j A0
j (t )+Di j v j (t )]d t +Bi j dW j (1.99)

where the rapid pressure is modeled separately. In a manner analogous to the development
shown above, specifically equations 1.95-1.96, a direct link can be made between the
Lagrangian statistics and the parameters of this model in the case of homogeneous shear
flow. In this case the required statistics are the Lagrangian correlation tensors in velocity,
acceleration, and mixed velocity-acceleration. Presumably the same approach taken by
Tanière et al—make an assumption of local homogeneity and calculate C, D, and B as a
function of position—could be attempted, but this has not yet been attempted. This model,
like the Sawford model, results in Gaussian acceleration statistics.

Reynolds[65] proposed a model in acceleration constrained by Thomson’s well-mixed
condition, Kolmogorov scaling, and a model for the fluctuating dissipation rate (See the
section on superstatistical models below). Acceleration components are considered to
be independent, i. e. the crosscorrelations are zero. This model was applied to channel
flow DNS (Reτ = 400), and appears to agree fairly closely some DNS results for y+ > 100,
although there are not enough published details to make thorough assessment.

1.3.5 Intermittency

Incorporating the effects of intermittency in Lagrangian stochastic models is an active area
of research[66], and consequently there are a wide variety of approaches.

Superstatistical approach

The superstatistical approach allows model coefficients to themselves be modeled random
variables. Lagrangian results from DNS[16] suggest that non-Gaussian Lagrangian velocity
increments may be collapsed to a quasi-Gaussian distribution when conditioned on the
local, instantaneous rate of energy dissipation21. This finding, together with the K62 scaling
framework using the instantaneous local value of the dissipation rate, motivate a modeling
approach that jointly models the dissipation rate and the velocity. A model of this type
proposed by Pope and Chen[67], in which the log the dissipation rate χ(x, t ) = ln[ε(x, t )/〈ε〉]
is modeled with the Langevin-type equation:

dχ = −χ−〈χ〉
Tχ

d t +
(

2σ2
χ

Tχ

)1/2

dW (1.100)

Velocity is modeled jointly with the GLM, with the refinement that the diffusion term in
equation 1.93—(C0〈ε〉)1/2 —is replaced with the (C0ε(x, t))1/2, where ε(x, t) is the instan-
taneous, local, value of ε taken from the dissipation model (equation 1.100). Note that
the Gaussian distribution of l n(ε) implied in equation 1.100 is consistent with the K62
hypothesis of the log-normality of the dissipation rate.

21Technically the pseudo-dissipation was used for this normalization, see [16] for details.
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This superstatistical approach was extended to Lagrangian stochastic models of ac-
celeration by Reynolds[17, 18]. The dissipation model shown in equation 1.100 models
the dissipation rate jointly with the acceleration (using the Sawford model, equation 1.90).
Result from this model show good agreement with the experimentally measured high
Reynolds number acceleration statistics[68, 30]. Further work in this direction from Lam-
orgese et al[69] suggests that the acceleration conditioned on the pseudo-dissipation has
a cubic-Gaussian distribution, and the superstatistical approach of Reynolds should be
refined accordingly.

Independent modeling of the magnitude and direction of acceleration

Mordant et al[70] experimentally measured the Lagrangian velocity increment ∆v(τ) =
v(t0 + τ)− v(t0), fitted the scaling exponent ζp to ∆v(τ)p ∝ τζp , and found that ζp is
quadratic inp—consistent with the multifractal model of intermittency. Using the observa-
tion that the decorrelation time of |∆v(τ)| is much slower than that of ∆v(τ) itself, they
constructed a stochastic model in which the direction and magnitude of the stochastic
force were modeled as two independent processes. This model, which corresponds to a
multifractal random walk model[71], is able to recreate the PDF of acceleration and other
intermittency related statistics.

In a similar spirit, Sabel’nikov et al[72] proposed a stochastic model for use in LES in
which the decomposition of acceleration into magnitude and direction is made explicitly

ai = |a|êi (1.101)

and these to quanities are modeled as independent stochastic processes. Using the K62
relation

〈ai a j |ε〉 =
a0ε

3/2

ν1/2
δi j (1.102)

the magnitude of acceleration is modeled as a log-normal process following the approach
of Pope and Chen[67]. The direction of acceleration is modeled as a Gaussian random
walk on a unit sphere, with a time scale equal to the Kolmogorov time τη. This model
was used in a LES of turbulent channel flow by Zamansky et al[3] and found to provide
good agreement with the DNS in measures such as the PDFs of acceleration, in which
intermittency plays an important role.

1.4 Lagrangian statistics in inhomogeneous turbulence

Studies of inhomogeneous turbulence in a Lagrangian framework are rare, and at the time
of this writing only a handful of articles have been published on the subject. Researchers
have primarily focused on high-Reynolds-number HIT as a natural context in which to
study the Lagrangian statistics of acceleration and the universality of the theories of Kol-
mogorov and their extensions, such as the multi-fractal model of intermittency. Turbulence
that is inhomogeneous and anisotropic is inherently more complex than HIT, and presents
several additional challenges to the researcher. Turbulence statistics must be conditioned
on position, and their components (e.g. in x, y , z) are in general not identical. This condi-
tioning requires more data to converge statistics at each position. The interpretation of
such results is also more complicated, as both large-scale flow conditions (e.g. boundaries,
mean flow, mean shear, etc.) and small-scale turbulence properties (e.g. the Kolmogorov
scales) are a function of position.
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Both experimental measurement and DNS of inhomogeneous turbulence are also
subject to additional technical challenges. In experiments, a mean flow sweeps particles
through the measurement volume, and therefore limits the length of measured particle
trajectories. Some work using instruments that are displaced with the mean flow[73, 74]
has been successful, despite large technical difficulties. The various limitations and com-
promises associated with Lagrangian measurements in inhomogeneous turbulence are
discussed in chapter 2. DNS of inhomogeneous turbulence also faces technical challenges:
full resolution of the boundary layer, fewer periodic boundary conditions, and the need for
a large computational domain. These factors render DNS of inhomogeneous turbulence
more complex and more computationally expensive than equivalent22 DNS of HIT.

Previous work in this area has focused on turbulent channel flow[75, 64, 76, 77, 3,
76, 78], although turbulent pipe flow[79, 80], turbulent boundary layers[73, 81], and very
recently a turbulent jet[82] have also been studied. All of these turbulent flows (with the
exception of the turbulent jet) are statistically stationary and contain a single direction
of inhomogeneity: the wall-normal direction. Lagrangian quantities measured in these
flows are typically conditioned on the distance to the wall y0 at a given time t0. One
of the fundamental questions in this domain is simply: How do Lagrangian statistics—
quantities such as Lagrangian time scales, acceleration time scales, etc.—change as a
function of distance to the wall? Eulerian quantities such as dissipation, local Reynolds
number, Reynolds stresses, etc. are also dependent on distance to the wall, motivating the
question: To what extent does the change in Eulerian quantities with wall-distance explain
the change in Lagrangian quantities with wall-distance? Wall-bounded flows are known to
be highly anisotropic in the near-wall region, even at small scales, relaxing towards isotropy
as wall-distance increases. To what extent is this phenomenon observed in Lagrangian
statistics, and how does it differ from the what is seen in Eulerian statistics?

These questions have begun to be addressed. The isotropy and dependence on wall
distance of several Lagrangian statistics was investigated in the DNS of a turbulent channel
by Choi et al[75], including the Lagrangian time scale, the Kolmogorov constants a0, C0,
and the autocorrelations of acceleration. Simulations of Reτ = 200 and Reτ = 400 channel
flow (equivalent to a maximum Reλ ≈ 30 and 50 near the channel center, respectively)
show significant differences in all of the Lagrangian statistics as expected given the low
Reynolds numbers. Autocorrelations of acceleration were found to be highly anisotropic
near the wall, with the streamwise component correlated significantly longer than the
other components. Choi et al compared the values of C0, a0, and the timescale ratio TL/tη
against the expected values from HIT given the local Reynolds number. These quantities
are fairly well predicted by the local value of Reλ, except near the wall.

The Lagrangian time scales were also measured in a numerical study of turbulent
channel flow by Tanière et al[64], a similar study by Kuerten and Brouwers[77] at higher
Reynolds number, and a combined experimental-numerical study of turbulent pipe flow
by Walpot et al[79, 63], all three of which focused on Lagrangian velocity statistics in the
context of Lagrangian stochastic model development. Drift and diffusion coefficients were
found from DNS results (and experimental results in the case of Walpot) as discussed above
in section 1.3, then the model results were evaluated. Similar efforts have yet to be made
for Lagrangian stochastic models of acceleration.

Acceleration statistics in DNS of the turbulent channel have been examined by Yeo et
al[78], Lee et al[76], and Zamansky et al [3]. Lee et al found that acceleration statistics near
the wall are closely related to the coherent structures found near the wall. Specifically, the
effect of vortex filaments on acceleration (strong centripetal acceleration, long correlation

22Equivalent is used here loosely, to mean of roughly similar Reλ.
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of acceleration magnitude) found in HIT also exists near the wall, and the preferential
alignment of these vortex filaments parallel to the wall may be seen in the acceleration
statistics. Yeo et al considered the PDFs of the components of acceleration in a turbulent
channel, as well as the decomposition of acceleration in the pressure-gradient contribution
and the viscous contribution. In the buffer layer the PDF of acceleration was found to
be extremely intermittent and anisotropic. Near the wall, the viscous contribution to the
streamwise acceleration is important, but this contribution is negligible for the wall-normal
and transverse components of acceleration. Zamansky et al consider the magnitude
and direction of acceleration, in the context of the development of a subgrid stochastic
model for LES. The magnitude of acceleration was found to be log-normally distributed
throughout the channel, even very close to the wall (y+ = 5). The orientation of acceleration
was shown to be anisotropic near the wall, relaxing to isotropy at approximately y+ = 40.

The experimental studies in this area are quite limited. Gerashchenko et al[73] mea-
sured inertial particle in a turbulent boundary layer; these results are discussed in more
depth in chapter 5. The acceleration PDF was measured by Schroder et al[81], but data
was used from particle trajectories mixed over the entire logarithmic layer in a turbulent
boundary layer. Selected Lagrangian acceleration statistics were measured in a turbulent
pipe flow by Oliveira et al[80], but a complete analysis similar that of Choi et al[75] was not
reported, nor was the near-wall boundary layer well resolved. No experimental Lagrangian
measurements for turbulent channel flow have been reported. More broadly, there does
not appear to be published results for fully resolved, 3-D Lagrangian experimental mea-
surements that report the evolution of Lagrangian statistics of velocity and acceleration
with position.

If DNS is capable of simulating turbulence at increasingly high Reynolds numbers, it
is tempting to ask whether these kinds of experiments continue to be necessary. Almost
all of the results available experimentally are also available from the DNS, and the DNS
has access to other data (e. g. dissipation, other spatial gradient information) that is very
difficult to measure experimentally. There are at least two justifications for doing experi-
ments in this context. First, inhomogeneous DNS still requires experimental validation,
especially when extracting Lagrangian results. Issues relating to domain length in channel
flow DNS for example are still not settled. Second, DNS that resolves particles is much
more demanding than the integration of point-particles trajectories in the domain, and
moderate to high Reynolds number DNS with finite-size particles is still beyond current
computational resources.
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Chapter 2

Experimental methods
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Figure 2.1: Selected tracer particle trajectories in the near wall region (y+ = 0−75) of a turbulent
channel, representing the first fully resolved Lagrangian measurements ever made in such a flow.
Note the extreme accelerations, up to 100 times that of gravity.
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The experimental results reported in this thesis were calculated from Particle Tracking
Velocimetry (PTV ) measurements performed in a turbulent channel at the Laboratoire des
Ecoulements Geophysiques et Industriels (LEGI). PTV is an experimental technique that
measures the position of particles entrained in a flow over time, i.e. particle trajectories, and
is thus a natural and often-used technique for studying turbulence from a Lagrangian point
of view. This chapter begins with a detailed description of the turbulent channel in which
these measurements were made, including a discussion of the design of the experimental
setup and the relevant experimental parameters. The PTV method is described in section
2.2. As this thesis reports the first such measurements performed in a turbulent channel,
an emphasis is placed on the unique and challenging aspects of using PTV to study this
type of flow. Section 2.3 describes the data processing techniques that allow the extraction
of Lagrangian statistics in acceleration and velocity from raw particle trajectories.
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2.1 The turbulent channel

The turbulent channel used in these experiments consists of a high-aspect-ratio rectangular
test section in a closed-loop water tunnel. A schematic view of the test section is shown
in figure 2.2. The design goals of the experimental system are to approach as closely as
possible the idealized turbulent channel discussed in Section 1.2, and facilitate the PTV
measurements. The following subsections enumerate these design goals, the manner in
which the design goals were realized, and the tests performed to verify them.

(c) 3-D model of 
experimental 
test section

Flow direction

Measurement
volume

Horizontal
camera

Vertical 
camera

(a) End view

Thick 
laser
sheet

Flow direction

Vertical 
camera
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(b) Top view of test section (not to scale)
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16.9 h
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+

Figure 2.2: Sketch of the turbulent channel used in the experiment. Subfigure (a) is a sketch of the
end view of the channel showing the aspect ratio of the channel (the spanwise distance is 16.9h)
and the end view of the measurement volume, as well as the position of the two cameras. Subfigure
(b) shows a top view of the channel, with the field of view (FoV) of the vertical camera highlighted.
Subfigure (c) shows a 3-D rendering of the experimental setup, including the relative positions of
the two high speed cameras and the thick laser sheet used to illuminate the measurement volume.

2.1.1 Target Reynolds number

For these experiments the target friction Reynolds number was Reτ = 1440, corresponding
to a Reynolds number of Re0 = 6.2× 104, where Re0 ≡ 2hU0

ν , U0 is the mean centerline
velocity, h is the channel half-width, and ν is the kinematic viscosity. This moderate
Reynolds number represents a balance: it is a Reynolds number high enough such that
typical features of a moderate Reynolds number turbulent channel flow are observed, such
as the appearance of an overlap region and reasonable scale separation over most of the
channel (see the theoretical discussion of channel flow in section 1.2), while at the same
time not exceeding the limitations on the Reynolds number imposed by the experimental
setup. These limitations include the maximum volumetric flow rate of the previously
existing recirculating water tunnel, the maximum pressure drop across the water tunnel
(especially critical for the high aspect ratio test section), and the limitations imposed by the
PTV system. The PTV system limits the Reynolds number by the size of the measurement
volume. The measurement volume size limits the velocity scale (U0) because a high mean
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flow results in a low particle residence time in the measurement volume. The measurement
volume also limits the length scale (h), because the measurement volume should ideally
encompass the half-width of the channel.

The basic scaling of the experimental parameters for a similar experiment at double
the friction Reynolds number is presented here in order to highlight the compromises
described above.

Renew
τ = 2×Reτ ≈ 2900 (2.1)

Using the scaling given by Pope [10] to estimate the bulk Reynolds number:

Reτ ≈ 0.09Re0.88 Note that here Re ≡ Uh

ν
, U ≡ 1

h

∫ h

0
〈U〉d y (2.2)

Renew
τ

Reτ
= 2 ≈ 0.09Re0.88

new

0.09Re0.88
⇒ Renew ≈ 2.2Re (2.3)

If we assume that the minimum tracer particle diameter is fixed (set by the limitation of
the PTV system, for example), and use the particle diameter (Dp ) scaling:

Dp ≈ δν and Reτ =
h

δν
⇒ h ≈ ReτDp ⇒ hnew = 2h (2.4)

Substituting this value of h into the expression for the bulk Reynolds number

Renew =
Unew hnew

ν
≈ 2.2Re ⇒ Unew ≈ 1.1U (2.5)

We estimate the volumetric flow rate Q by

Q ≈ AU, where A ≡ 2hl , and the aspect ratio R ≡ l

h
⇒ Q ≈ 2h2RU (2.6)

Substituting in the new values of hnew and U gives

Qnew = 2h2
new RUnew ≈ 2(2h)2R(1.1)U ≈ 4.4Q (assuming a constant aspect ratio) (2.7)

Finally, the centerline velocity is found from the scaling (also taken from Pope [10])

U0

uτ
≈ 5log10Re (2.8)

Using unew
τ = uτ and Renew = 2.2Re

Unew
0 ≈

(
1+ l og (2.2)

log (Re)

)
U0 ≈ 1.07U0 (2.9)

To summarize, the doubling of the friction Reynolds number while keeping the viscous
length scale constant requires doubling the width and height of the canal and increasing
the volumetric flow rate by a factor of 4.4. To allow the channel flow to become fully
developed ( which occurs at L ≈ 140h) the length of the channel must also be doubled. The
doubling of the channel width would require a doubling of the measurement volume width
to continue to allow measurement from the wall to the channel centerline (although little
streamwise expansion of the measurement volume would be required due to the almost
unchanged centerline velocity). This, plus the fourfold increase in pump capacity, would
be quite large modifications to the experimental system in order to achieve a relatively
modest increase in friction Reynolds number.
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2.1.2 Working fluid

Water was chosen as a working fluid over air (the other typical choice for such experiments).
To see why, the scaling of an equivalent (i. e. equal friction Reynolds number) channel
flow is briefly considered here. From the scaling of the friction and bulk Reynolds numbers
shown in equation 2.2 and the scaling of the particle diameter shown in equation 2.4 we
can show that the channel width and velocity are functions of the friction Reynolds number,
fluid viscosity, and particle diameter as follows:

From equation 2.2 ⇒ Re ≈
(

Reτ
0.09

)1/0.88

⇒ U ≈ ν

h

(
Reτ
0.09

)1/0.88

(2.10)

using the scaling in equation 2.4 in place of h

U ≈ ν

ReτDp

(
Reτ
0.09

)1/0.88

⇒ U ≈ 15.4
ν

Dp
Re0.14

τ (2.11)

From equation 2.11 we see directly that for equal particle diameters the bulk velocity in
the channel scales simply with viscosity

Uai r

Uw ater

≈ νai r

νw ater
≈ 15.6 assuming P = 1bar, T = 20◦C (2.12)

If we assume an equal particle diameter and Reτ then it follows from equation 2.4 that
the channel widths are equal. The bulk velocity is a measure of the residence time of the
particles in the PTV measurement volume. Equation 2.12 shows that for channels with
similar friction Reynolds numbers, particle diameters, and measurement volume sizes the
particle residence time in water is approximately fifteen times longer than in air.

The foregoing discussion assumed that the same particle diameters could be used in
air and water. For tracer particles intended to measure acceleration, it has been shown [83]
that using particle of unequal density to that of the carrier fluid produced significant bias
in acceleration measurement, even when the Stokes numbers of the particles are within
the range typically considered to be tracer particles. Tracer particles practical for use in
PTV systems that are isodense with air are limited to helium soap bubbles, which have
effective minimum diameters of 1 mm [84].

For a turbulent channel in air with Reτ = 1440 and Dp = 1mm, from equation 2.4

h = ReτDp = 1.45m

and from equation 2.11

U ≈ 15.4
ν

Dp
Re0.14

τ ≈ 0.7ms−1

The minimum particles diameter possible with helium bubbles is quite limiting. Fol-
lowing the above calculations and using the same aspect ratio and development length
ratio as the water channel used in this experiment, the turbulent air channel would need to
have dimensions of 3 m×25 m×225 m, a size clearly impractical despite the modest bulk
velocity requirement. Note that equation 2.4 implies that these geometrical constraints are
independent of viscosity, so this estimation of channel size is valid even for pressurized air
facilities such as the the Princeton Superpipe facility[85].
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2.1.3 Statistically 1-D stationary flow in measurement volume

Turbulent channel flow was chosen for this experiment of its relative simplicity; the wall-
normal direction in the only direction of inhomogeneity. We attempt to approach this ideal
flow condition in our measurement volume by placing our measurement volume in the
spanwise center of the channel and at an adequate distance from the channel inlet. Note
that for the purposes of this experiment the flow can be considered stationary and 1-D if
conditioning the Eulerian and Lagrangian statistics only on y (the wall-normal coordinate)
does not bias the results, i. e. the flow in the measurement volume can be considered
stationary and 1-D if for an arbitrary Eulerian statistic F and an arbitrary Lagrangian
statistic χ if the following conditions are satisfied:

F(x, y, z, t ) = F(y) where (x, y, z) is the measurement position at time t (2.13)

χ(x0, y0, z0, t0,τ) = χ(y0,τ) where (x0, y0, z0) is the initial position at the initial time t0

(2.14)

Depending on the size and position of the measurement volume these conditions
are less stringent than more typical definitions of fully developed channel flow, which
are concerned with the channel flow on a macro scale. To eliminate the dependence on
the spanwise coordinate z the channel must have a high aspect ratio (L/h), to eliminate
the dependence on the streamwise coordinate x the channel must allow a long enough
development length (L), and to eliminate the dependence on time the water tunnel must
operate in a constant manner (minimal pressure fluctuations, etc.). These three conditions
are discussed in turn below.

Aspect ratio

Sufficiently large aspect ratio that the flow is homogeneous in the spanwise direction in
the measurement volume. The aspect ratio used in this study, AR = w/2h = 8.9, is greater
AR ≈ 7, which was found by Dean[86] to be the minimum aspect ratio necessary for two-
dimensional channel flow. A minimum aspect ratio of six was considered by Monty[87] to
be necessary to approach homogeneity in the spanwise direction at the spanwise center
of the channel. Eulerian LDV measurements were made in the measurement volume at
at various spanwise and wall-normal locations, and velocity statistics were found to be
homogeneous in the spanwise direction within the measurement volume.

Development length

A long test section allows the turbulent channel flow to become fully developed (i. e. ho-
mogeneous in the streamwise direction) upstream of the measurement volume. There are
relatively few experimental studies in the literature that have systematically tested devel-
opment length for high aspect ratio channel flow. Comte-Bellot reports measurements
made in a high aspect ratio (AR=13) wind tunnel[88] for three Reynolds numbers, and
tested systematically the dependence of velocity statistics on distance from the inlet of
wind tunnel. She found for Re = 1.2×105 (double that of the Reynolds number used for
measurements reported here) the velocity statistics in the spanwise center of the channel
become homogeneous in the streamwise direction by L/h = 118. A similar experimental
study 50 years later was performed by Monty[87], and found that full development does
not occur until L/h = 260. This discrepancy by noting that turbulent channel flow develops
from two boundary layers which grow towards the channel center at increasing distances
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from the inlet. Monty notes that at L/h = 140 the channel is fully developed excepted for
the very close to the channel center, where the two boundary layers are not fully merged.

The turbulent channel flow used in these experiments allows PTV measurements to be
taken at a maximum distance of L/h = 155 from the channel inlet. Boundary layer trips,
consisting of a single strand of copper wire flat against the channel wall, were placed at the
channel entrance to ensure the even development of the boundary layers on both sides of
the channel.

Stationary flow

Idealized turbulent channel flow is driven by a perfectly constant streamwise pressure
gradient. Fluctuations in the pressure gradient from the water tunnel/pump must therefore
be minimized. These pressure fluctuations are minimized by the design of the water
tunnel, which uses an elevated reservoir to create the pressure gradient in the channel and
decouple the flow in the channel from pump fluctuations.

2.1.4 Water tunnel requirements

The recirculating water tunnel must fulfill several additional tasks required by the exper-
iments described in this thesis, the most important of which are described below. The
current experimental setup was adapted from a previously existing setup at LEGI con-
structed by C. Lindquist and J.P. Thibault [89] shown in figure 2.3. The principle differences
are the test section and the corresponding inlet converging section and diverging outlet
section.

(a)

(b)

(c)
(d)

(e)

(f)

Figure 2.3: A CAD rendering of the water tunnel, reproduced from the thesis of C. Lindquist[89].
The various components of the water tunnel are labeled as (a) pump, (b) degassing chamber, (c)
tranquilization chamber, (d) converging inlet section, (e) test section, and (f) convergent outlet
section. Note that (d), (e), and (f) in this figure do not show the current configuration of the water
tunnel.

Flow conditioning

Proper conditioning of the flow ( with honeycomb grids, inlet contraction, etc. ) is neces-
sary to create uniform inlet conditions, and reduce large scale flow asymmetries.
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Figure 2.4: Detailed view of the tranquilization chamber, figure reproduced from the thesis of C.
Lindquist[89]

Water temperature

Stability of water temperature is important because a change in temperature changes
the kinematic viscosity of the water—a key parameter of the turbulence. Unregulated
temperatures can range from 15 ◦C up to 40 ◦C after many hours of tunnel operation, which
results in a range of kinematic viscosities between 1.14×10−6 m2/s and 0.658×10−6 m2/s.
This variation in kinematic viscosity represents a significant change to the properties
of the turbulence (see section 1.1.2). A cooling system was put in place to control the
temperature of the water to between 16 ◦C and 20 ◦C, corresponding to a kinematic viscosity
of 1.056×10−6 m2/s ±5%. Results from measurements taken in this temperature are mixed
together, and the 5% uncertainty in the value of the kinematic viscosity is taken into
account in the error calculations of results.

The cooling system was realized with a closed circuit cooling loop, connected on one
end to a large reservoir of cool water and on the other to a copper helix heat exchanger that
was placed in the degassing chamber (labeled (b) in figure 2.3).

Vibration

The vibration of the turbulent channel, and crucially the vibration of the PTV cameras
relative to the channel is an important potential source of PTV error that must be mini-
mized. A heavy frame of 80 mm×80 mm square aluminum tubing was used to stiffen the
test section and provide mounting points for the PTV system (cameras, laser, etc.) such
that the test section and the PTV system were fixed in relative position to each other as
shown in figure 2.2. The efficacy of the frame in minimizing relative vibration was tested by
an accelerometer affixed to the exterior of the test section, as well as direct imaging of the
channel wall by the PTV system. Both of these tests showed showed minimal vibrations;
the direct imaging test showed the wall moving relative to the camera ±30µm.
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Optical access

Optical access to the tunnel is provided by the two windows shown in figure 2.2. The
original design specified glass windows, but these proved too be to fragile to withstand
the pressure fluctuations associated with the startup and shutdown of the water tunnel,
and were replaced with thicker acrylic material. These thin windows allow the cameras
and laser optical access the measurement volume with minimal distortion. The windows
visible in figure 2.2 are longer than necessary for the PTV measurements because of the
need to characterize and verify the flow development with the LDV as described in section
2.1.3.

2.1.5 Tracer particles

The tracer particles were chosen to approach the behavior of fluid particles as closely
as experimental constraints allow. Lagrangian statistics, particularly of acceleration, re-
quire that a tracer particle be especially faithful to fluid particle trajectories [74]. This
requirement is illustrated by considering the vortex trapping phenomenon, in which a fluid
particle is entrained and trapped for a relatively long time in a vortex filament. If a tracer
particle has even a slight tendency to exit the vortex (e. g. due to a slight inertia) there
could be significant impact on the two-time Lagrangian statistics of acceleration, even if
the particle inertia was low enough to be considered a good tracer particle for Eulerian PIV
statistics in velocity.

Other than the requirement that the particle density be neutral [83, 74], and the Stokes
number must be "small" there is not a consensus in the literature as to what constitutes a
tracer particle suitable for Lagrangian acceleration measurement, especially in inhomoge-
neous turbulence. Recent work has suggested neutrally buoyant particles of Dp /η< 5[4]
and Dp /η < 2[90] act as flow tracers in terms of acceleration variance in Von Karmen
type flows, and that acceleration PDF shapes are preserved for particles even larger. The
dependence of two-time Lagrangian statistics remains an open question.

In light of this uncertainty in the following criteria were used to select the tracer particles
used in this study:

1. Neutrally buoyant: To avoid the spatial sampling bias [83, 91, 92, 93] which has been
shown to exist for heavy particles even at quite low (St = 0.1) Stokes number.

2. Dp/η< 2 : To ensure tracer behavior with respect to acceleration variance.

3. Dp/δν ≈ 1 : To allow the unbiased Lagrangian measurement into the buffer layer
(5 < y+ < 30). Using tracer particles that allow measurement this close to the wall
allows the unbiased measurement between the extremely inhomogeneous near wall
zone that includes the peak of turbulent energy production (y+ = 11.8)[94] and the
almost homogeneous and isotropic zone near the channel centerline.

Based on the above criteria a fluorescent polystyrene particle with 10.2µm diameter and
1.05 gL−1 density (Magsphere Inc, Pasadena California) was chosen as the tracer parti-
cle. Particle characteristics are examined in more depth in chapter 5, in the context of
comparing tracer and non-tracer particles. The Stokes numbers of the tracer particles is
seen to vary from 1.7×10−2 at y+ = 1 to 9.8×10−4 at the channel centerline. These values
of the Stokes number are similar to those from previous experimental PTV acceleration
measurements[95]. The particle diameter is less than half of the Kolmogorov length scale
η at the edge of the viscous sublayer (y+ = 5), and smaller than the viscous wall scale δν,
which is smaller than the smaller structures known to exist in this flow.
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Figure 2.5: Excitation and emission spectra of the Magsphere 10µm diameter fluorescent particles
used as tracer particles in this study. This data was provide by Magsphere Inc., with annotations
added by the author.

The use of fluorescent particles avoids two significant problems with measurements of
this type:

1. It is difficult to avoid the presence of microbubbles in the channel, which are dif-
ficult to distinguish from the tracer particles in the PTV images. This problem will
be further elaborated in the sections discussing the use of heavy particles (which
are not fluorescent). Using fluorescent particles in conjunction with optical filters
on the cameras ensures that only the fluorescent particles are seen in the images.
An illustration of the separation between the laser wavelength and the emission
wavelength is shown in figure 2.5. Microbubble contamination in PIV measurements
may be considered acceptable for Eulerian velocity measurements, as microbubbles
have fairly low Stokes numbers, but they pose a more serious problem to Lagrangian
acceleration measurements, as discussed above.

2. Optical measurement techniques such as PIV and PTV are known to have problems
near walls, where the reflection of the light source may obscure particle images[96].
Optical filters effectively suppress the wall reflections, allowing clear particle images
to be seen in the images arbitrarily close to the wall.
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2.2 Particle tracking velocimetry

Particle tracking velocimetry (PTV), sometimes also referred to as Lagrangian Particle
Tracking, is a used to measure the position and displacement of particles in a system. In
the context of fluid mechanics research PTV uses particles seeded in the flow and observed
by one or more cameras. Multiple cameras allow reconstruction of particle trajectories in
three dimensions, sometimes specified at 3-D PTV to distinguish it from single-camera
systems that can only measure two components of the particle trajectory. Synchronized
images from multiple cameras observing the same particle are used to reconstruct the
position of the particle in real space at a given time. PTV algorithms are then used to
trace the evolution of the particle position in real space over time, resulting in particle
trajectories, i. e. direct Lagrangian measurements. The PTV measurements in the turbulent
channel will be discussed as follows: The physical and optical aspects of the PTV system
are detailed in section 2.2.1. Section 2.2.2 explains the image processing techniques used
to find the centers of the particle images (including how overlapping particle images are
handled). The calibration method used to obtain the transform function between image
space and physical space is presented in section 2.2.3. The algorithms used to track the
particles, including the reconstruction of "broken" trajectories is outlined in section 2.2.4.
A discussion of the error and statistical bias associated with these PTV measurements is
found in section 2.4. Finally a brief sketch of the challenges associated with the size of the
raw datasets— over 80 terabytes in total—is found in section 2.3.1.

2.2.1 Physical and optical considerations

The PTV system used for these experiments was designed to resolve the smallest scales
of the turbulent flow, which implies that the particles must be smaller than the smallest
length scales we wish to measure, and the acquisition frequency must be fast enough to
resolve1 the smallest time scales we wish to measure. Given that these constraints are
satisfied, the PTV system should be capable of measuring the largest measurement volume
possible. A relatively large measurement volume is especially important in a turbulent flow
with a non-zero mean velocity, because the mean velocity will sweep particles through the
measurement volume and thus limit the residence time of the particles. Table 2.1 outlines
the relevant PTV system design parameters and their effects.

The tracer particles were chosen based on the flow characteristics as discussed above.
These particles are smaller than the particles typically used for PTV, and determine much
of the design of this PTV system. Using table 2.1 as a guide, and noting that a large mea-
surement volume and good small-scale resolution are conflicting design goals, the general
strategy was to maximize the measurement volume while maintaining a particle image size
and signal-to-noise ratio (SNR) at the lowest levels possible in order to adequately measure
acceleration. In order to ameliorate the effects of small particle image size and low SNR
the laser power and image acquisition frequency was pushed as high as was practically
possible.

The tracer particles were found to have particle image diameters of approximately
2-3 pixels when a 1:1 magnification macro objective was used with the cameras. This

1Where fast enough here means at least as fast as the Nyquist frequency, i. e. twice as fast as the smallest
timescale. In practice, higher sampling rates are necessary to well-resolve noisy signals, see section 2.4 for
details.)
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Table 2.1: Design parameters in PTV system

Design
parameters:

Effect on small scale
resolution:

Effect on large scale
resolution:

Magnification: Higher magnification ⇒ larger
particle images ⇒ better SNR
in centroid finding, up to ∼ 10
pixel diameter of particle
images

Lower magnification ⇒ larger
measurement volume ⇒ longer
particle residence time

Lens aperture: More open ⇒ brighter and
larger particle images ⇒ better
SNR in centroid finding

More closed ⇒ greater depth of
field ⇒ larger measurement
volume

Acquisition
frequency:

Faster acquisition ⇒ more
particle positions ⇒ better SNR
in filtered data, also less
ambiguity in particle tracking.
Slower acquisition ⇒ brighter
particle images ⇒ better SNR
in centroid

Higher acquisition frequency
⇒ shorter films ⇒ in principle
shorter trajectories, although in
practice the mean flow in the
channel means particle
residence times are much
shorter than the length of the
film

Laser power: More laser power ⇒ brighter
particle images ⇒ better SNR
in centroid finding

Larger measurement volume ⇒
lower light power density ⇒
lower SNR in centroid finding

particle image diameter is the minimum necessary to achieve sub-pixel accuracy, thus 1:1
magnification was taken to be the minimum magnification required for this PTV system.
The measurement volume is determined by the magnification and depths of field of the
two objectives. Let L, W, and D, be the streamwise, wall-normal, and spanwise dimensions
of the measurement volume, respectively. In the configuration of the two cameras shown
in figure 2.2, the vertical camera observes the plane L x W, and D is the depth of field. The
horizontal camera observes the plane L x D, and W is the depth of field. Thus L is directly
observed by both cameras and determined uniquely by the magnification, but W and D
are functions of the depths of field of the horizontal and vertical cameras, respectively.
Depth of field is a function of the magnification and aperture setting of the objective, as
well as level of "fuzziness" considered acceptable. In the camera configuration shown
in 2.2, with 1:1 macro objectives with apertures closed to their maximum setting, we
achieve a measurement volume of 34 mm×20 mm×12 mm. These dimensions represent
the maximum volume in which particle images can be resolved, and includes zones in
which the particle appear quite out-of-focus, and thus appear much larger and less bright
than particles in the focal planes. This is especially true for the images from the horizontal
camera, which is oriented such that the depth of field must be deep enough to encompass
the distance from the wall to the channel center. Sample images illustrating this effect are
shown and discussed in section 2.2.2.

PTV system hardware

The PTV system used in this experiment is comprised of the following hardware:
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Figure 2.6: Schematic view of the PTV system, including the cameras and their data and control
connections; the laser and associated optics.

• Two Phantom v2511 high speed digital cameras2 recording 800 pixel×1280 pixel
12bit grey scale images (16500 images per film). Maximum acquisition rate at full-
resolution is 25 000 frames per second.

• Sigma 150 mm macro objective, 1:1 magnification

• Tamron 180 mm macro objective, 1:1 magnification

• High-pass optical filters OD4 550 nm cutoff frequency (Edmunds Optics) with 3-D
printed objective adapter to block laser light from cameras

• 25 W continuous laser, 532 nm emission frequency

• Laser-line lenses and mirrors to shape and direct laser beam in to thick laser plane
that illuminates the measurement volume in the test section

• PC with a high 10 Gbit ethernet network card with two ports to connect to cameras,
and a network card with fiber optic connection to remote server

• Signal generator used to coordinate the two cameras

Data acquisition process

The data acquisition process is as follows:

1. The main water channel pump is brought up to operating speed, the cooling system
and all of the PTV instruments are turned on, and the system is allowed to reach
steady-state.

2A v2511 camera was kindly lent by P. Marmottant and by N. Plihon.
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2. A script sends a prompt to the signal generator to send the go signal to the two
cameras, starting the acquisition. The script then begins monitoring the saving of
the films on the remote server.

3. After receiving the go signal from the signal generator the cameras start the acquisi-
tion, and each frame of the films are synced by the master/slave connection between
the cameras.

4. When the acquisition of the films is finished (after 0.6 seconds) the cameras au-
tomatically begin saving the films in a custom binary format on the remote RAID
server, using the local PC as a network bridge. Each film consists of 16541 images,
and has a size on disk of 20 Gb.

5. After the films have finished saving ( 1.5 minutes) the cameras are reset to acquisition
mode. The laser remains on while the films are being saved .

6. The script notes that the films have finished saving, and after a brief delay prompts
the signal generator to send the go signal to the cameras, restarting the acquisition
cycle.

2.2.2 Particle finding in images

The first step of the data processing used to transform the raw films into a usable dataset
of Lagrangian trajectories is the extraction of the image coordinates of the particle centers.
This is an image processing problem with an extensive literature, and many approaches
have been proposed. The images taken with the PTV system described in section 2.2.1
have a few particularities that constrain the choice of an image process/particle finding
strategy.

1. Low SNR: Closing the objective apertures as much as possible, using fluorescent
particles, an acquisition rate of 25000 frames per second, and often out-of-focus
particle images results in very dim particle images, despite the high laser power and
the sensitive camera sensor. SNR is naturally defined for this PTV application as:

SNR =
S −Np
var (N)

(2.15)

Where S and N are the pixel values associated with the tracked particles and all of
the other pixels, respectively. This definition treats as noise all those pixels that
are not associated with particle trajectories, which includes random sensor noise
(typical length 1 pixel, uncorrelated in time), organized electronics noise (typical
length of several pixels, correlated in time), and real particles that are not part of
trajectories, such as particles on the boundaries of the measurement volume. SNR
ratios are typically between 6 and 12 in these measurements, which is quite low. The
implications of these levels of SNR on the measurement error is elaborated in section
2.4.

Low SNR implies reduced effective dynamic range in the images. For example, the
particle image in figure 2.7 shows a maximum pixel intesity value of 90 and a noise
floor of approximately 20. The dynamic range of the particle image is compressed, i.
e. the images are effectively 6-bit rather than the full 12-bit resolution of the camera.
This increased discretization decreases particle center finding precision.
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Figure 2.7: Four particle image examples: Unfiltered image on left, illustrating the pixels lost with
a change in threshold from 13 (magenta x markers) to 14 (black circle markers), and the filtered
image image on the right, illustrating the watershed line on overlapping particle images.

2. Small particle images: By design the particle images, especially those in or near the
focal planes, are on the order of two pixels.

3. Particle image distortion: Geometrical constraints, especially the narrow optical
access on the vertical camera, caused optical distortions of particle images that
changed as a function of wall distance.

After testing several methods, the strategy chosen for this application was a image filter
followed by thresholding and a simple weighted centroid algorithm. While this strategy is
less accurate than others for synthetic PTV of good quality [97], it was found to be more
robust for the low SNR data presented in this thesis, consistent with tests of particle finding
methods on low SNR images by Cheezum et al [98].

Weighted centroid finding

The particle center locations in image-space using a weighted centroid method, which is a
simple centroid calculation weighted by pixel intensities. This centroid (x, y) is calculated
as follows:

x =

n∑
i =1

Ii xi

n∑
i =1

Ii

y =

n∑
i =1

Ii yi

n∑
i =1

Ii

(2.16)

Where I is the pixel intensity, and n is the number of pixels in the particle images. For
isolated particles the particle image has a simple definition: all those pixels that have a gray
value above the threshold, that share an edge with at least one other pixel in the particle
image, and have an overall number of pixels greater than a minimum particle image size.
This definition is illustrated in figure 2.7, which also shows the more complicated definition
of a particle image in the case of overlapping particle images.

45



0 2 4 6 8 10
0

500

1000

1500

Particle 
threshold

level

Brightest
pixel 

threshold 

Pixel grayscale intensity

Pixel
count

Figure 2.8: Histogram of pixel intensities (typical) from vertical camera

Image filtering

In principal a linear image filter has no effect on the weighted centroid computed from
equation 2.16. However the low SNR of the images recording in these experiments requires
the use of pixel intensity threshold values relatively close to the pixel intensity values of the
particle images themselves. For small, dim particle images this is an unstable manner in
which to calculate the particle center, as illustrated in 2.7, where a small subset of the raw
image is shown on the left. Pixels above a threshold of 13 are marked with magenta x’s, and
pixels above a threshold of 14 are marked with black circles. This small change in threshold
results in a lost pixel from two of the particle images shown in this example, which can
change significantly the weighted centroid calculated from equation 2.16, especially for
small particle images. In order to ameliorate this problem a bandpass image filter[99] is
applied to the raw images (the filtered image is shown on the right in figure 2.7) which
suppresses the single pixel noise and enlarges and smooths the particle images. Small
changes in threshold will still result in the loss of pixels from particle images, but the
effect of this pixel loss (or gain) on the weighted centroid results is lessened. Other image
filters were considered and tested, such as the Wiener image filter [100], but no significant
improvement over the bandpass filter was found for this application.

Image thresholding

Image thresholding, or segmentation, is a common procedure in many image processing
applications, and is typically based on the histogram of pixel values. If there is a separation
between the pixels of interest and background pixels there are robust methods[101]of
choosing a threshold.
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Overlapping particle images

If particle images overlap, as illustrated in figure 2.7, then using equation 2.16 to calculate
the particle centers will give the centroid of the combined particle image instead of the two
(or more) particle center locations. Here we follow the algorithm outlined by Dracos[102],
which splits a particle image into as many parts as there are local maxima with a watershed
algorithm, then assigns border pixels (those pixels on the saddle line between local maxima,
marked with a black line in figure 2.7) to one side or the other based on the brightest
neighboring pixel.

Parameter optimization

The parameters in the particle center finding algorithm outlined in the foregoing sections,
the basic threshold, the threshold for the brightest pixel in a particle image, the image
filter parameters, and the minimum particle image size, are tuned in order to maximize
accuracy and the overall efficiency of the data processing, while minimizing bias. Accuracy
is maximized by avoiding particles with a low SNR (low maximum brightness, small size,
etc.). Efficiency is maximized by avoiding particles that will not become part of trajectories
(either because they are a result of noise or because the are moving in and out of the mea-
surement volume). Bias is minimized by not discriminating too much based on particle
image size and power, as these quantities change as a function of position in the measure-
ment volume (see section 2.2.1). This is a multi-objective optimization with conflicting
objectives, which is solved in this case by placing the preference on maximizing the lack of
bias, while maintaining sufficient accuracy to allow the calculation of acceleration, and
permitting quite inefficient processing. Practically speaking this means that thresholds
are set quite low and thus many more particle centers are calculated than are tracked. 3-D
correspondences must be calculated for all particle centers found, and so having many
untracked particles limits the particle seeding density (and thus ultimately the number of
trajectories per film), which is discussed in more detail in section 2.2.4.

2.2.3 Calibration and stereo matching

The calibration of a 3-D PTV system consists of calculating a transform function that
calculates real-space coordinates from a set of arbitrary image coordinates from multiple
cameras:

X,Y,Z = T
(
[x1, y1], [x2, y2]...[xn , yn]

)
(2.17)

Where X,Y,Z are real-space coordinates, x, y are image-space coordinates, and n is the total
number of cameras. The application of the resulting transform is called stereo matching.
The calibration/stereo matching is composed of three steps: the measurement of points
throughout the measurement volume for which real-space coordinates are known a priori,
the selection and calculation of the transformation function T, and the application of this
transformation function to particle positions in images coordinates obtained from the
particle center finding procedure described in section 2.2.2; these three steps are described
in detail here.

The measurement of known points for calibration.

In order to calculate the transform T a set of points of known position must be measured by
the cameras. These known points should be distributed in the measurement volume and
must be of known distance to the wall (which is equivalent to saying that the streamwise
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Figure 2.9: The calibration block shown in the test section in the position used during the calibration
(A), a sketch of the calibration grid and the distances from the grid points to the wall (B), a close-up
photograph showing the calibration grid mounted on the calibration block (C), and an end view of
the calibration block and traverse system in-situ (D).

and spanwise coordinate of the world origin point is relatively arbitrary, but the wall-
normal coordinate must be at a known distance to the wall). The realization of these
calibration points was achieved by the use of a calibration grid of known dot spacing
mounted of a block, as shown in figure 2.9. The calibration block was carefully made such
there are two precision-machined surfaces—one that touches the wall, and the other at 45◦

to the first and on which the calibration grid is mounted. The calibration grid (Max Levy
Autograph, Philadelphia, USA) is a regular array of 0.25 mm diameter dots etched on glass
at 0.5 mm spacing (overall array size is 25 mm×25 mm). The calibration grid was custom
modified by the manufacturer such that the edge of the calibration grid substrate is of
known distance to the first row of grid points. This edge is carefully aligned with the edge
of the calibration block, such that when the surface of the calibration block is touching the
wall distance between all grid points and the wall is known.

One of the difficulties inherent in this experimental setup in the lack of access to the
interior of the test section. For example, the calibration must occur when the test section is
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full of water (due to the difference in the optical properties of air and water), but in order to
fill the test section with water all of the access ports in the test section must be closed. The
calibration procedure must allow the precision movement of the calibration block while
the test section is full of water and the access ports closed. This was achieved by the following
procedure: An access hole slightly larger than the post used to displace the calibration
block was machined into the top access port. When the tunnel is running this hole is
plugged such that the inner surface is smooth and flush with the rest of the test section.
The post is attached to the calibration block, and a semi-rigid tube is threaded through
the access hole and attached to the post. The block-post assembly is then introduced into
the test section by the round access port noted in figure 2.9 (A), and the semi-rigid tube is
used to pull the calibration block-post assembly into place, and pull the post up though
the access hole where it can then be attached to the precision traverse. The traverse is
then carefully adjusted until the back surface of the calibration block is parallel to and in
contact with the wall of the test section. The round access port may then be closed, and the
test section filled with water up to the point where the top window is wetted, put water is
just beginning to overflow the access hole in the top window. The system is then ready for
calibration, and images from both cameras are taken of the calibration grid, the calibration
is shifted up or down by a fixed distance with the precision traverse, new images are taken
with the cameras, and the process is continued until the entire measurement volume is
traversed and several image pairs are recorded. The calibration block is then removed
in the reverse process by which it was installed. While complicated, this procedure has
the advantage of leaving the top window in place, and thus avoiding potential changes in
the optical path associated with a slight change in the seating of the top window after its
re-installation.

The calculation of the calibration transform

There are several strategies commonly used for 3-D PTV calibration; three common strate-
gies were tested by Joshi et al[103] with real and synthetic PTV and PIV images. Another
technique was recently published[104] that uses physical arguments (light rays do not
bend except at material interfaces) to simplify and improve the accuracy of traditional
calibration methods. One of the key findings of Joshi and coworkers was that a linear
transformation (i. e. the Hall method ) has comparable error and accuracy to non-linear
transformations (specifically the Tsai and Soloff methods ) for cases in which there is little
optical distortion. The experimental setup used in this thesis consisted of two cameras,
each perpendicular to the interface, and each using a long-focal-length macro lens with
a relatively shallow depth of field. This setup allows the use of a simple linear, projective
transformation with minimal error.

A linear transform function is of the form

xi = Pi X (2.18)

Where Pi is the camera matrix for camera i , and xi are the associated image coordinates in
the image of the i th camera. The camera matrix P may be interpreted as the product of
linear transforms, for example

P = RT... (2.19)

Where R is the rotation matrix, T is the translation matrix, etc. In the literature the camera
matrix is often considered to be the sum of a matrix composed of extrinsic parameters
(translation, rotation, etc.) and intrinsic camera parameters . As a practical matter this
decomposition is not necessary, and the camera matrices may be considered to an arbitrary
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projective transformation. Projective transformations preserve direction, so for each
camera

x = PX (2.20)

x×PX = 0 (2.21)

The above is a system of equations with the number of equations equal to the number
of grid points and 12 unknowns (the 12 elements of the camera matrix P). Due to the
presence of non-projective optical distortions, error in the placement of the calibration
grid, and error in the localization of the grid points in the calibration image equation 2.21
is properly written as

x×PX = ε (2.22)

The strategy is to minimize the calibration error by minimizing ε in the system of equa-
tions 2.22, which is achieved by a non-linear least squares solver. Further details of this
calculation may be found in reference [105].

Stereo-matching

Stereo-matching is the process of finding the same particle in two (or more) images. The
real position of a particle is at the intersection of the lines of sight for that particle in
all of the cameras. The error in both the particle center finding in each image and the
calculation of the calibration transform means that in general these lines of sight to not
intersect. The task of stereo-matching is for each particle in a given image, find the particle
in the other image (or images) that minimize the minimum distance between their lines
of sight, rejecting those matches that have a minimum distance above a given threshold.
Stereo-matching is typically quite computationally expensive, as the minimum distance
between two lines must be calculated pn times per time-step, where p is the number of
particles per image and n is the number of cameras.

The use of a simple projective calibration such as that described in section 2.2.3 allows
a very efficient matricial calculation for stereo-matching. Briefly, a purely projective
transformation admits a direct linear mapping from one image coordinate to the other

x1Fx2 = 0 (2.23)

where x1 and x2 are image coordinates from the first and second cameras, respectively, and
F is the mapping function (often referred to as the fundamental matrix in the context of
computer vision). The relationship shown in equation 2.23 may also be written in terms of
epipolar lines, i. e. if l is the epipolar line corresponding image coordinate x, then

l1 = Fx1 (2.24)

l2 = Fx2 (2.25)

These epipolar lines are the projection of the possible positions of the particle in image
space 2 given the particle position in image space 1 (or vice versa). This relationship is
illustrated in figure 2.10. Because of the error associated with the particle center finding
and the calculation of F the epipolar lines do not intersect the particle in image space, and
there is a distance d associated with the minimum distance between the particle image
and the epipolar line. Projective geometry allows the calculation of F from the two camera
matrices P1 and P2:

F = [P2C]×P2P+
1 where P1P+

1 = I and P1C = 0 (2.26)
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Figure 2.10: Schematic of a real particle which projects its light on the two camera planes, the
re-projection lines (which have some error from the particle center finding and the calibration), and
the corresponding epipolar lines l = Fx. The distances d1 and d2, the minimum distance between
the epipolar line and the particle position in image coordinates, are also shown.

The proof of equation 2.26 is found in reference [105]. Note that one could calculate F
directly from the calibration images in a way similar to the calculations for the camera
matrices, but the camera matrices P1,P2 are in any case necessary for the final triangulation
step described below, and so equation 2.26 may be used directly.

The relationship in equation 2.23 is used to determine particle correspondences. The
x1Fx2 is calculated at each time-step, yielding a matrix of size n1 ×n2, where n1,n2 are the
number of particles found by camera 1 and camera 2, respectively. All elements in this
correspondence matrix below a certain threshold represent a pair of particle images that
correspond to one real particle. If this threshold is set too low real correspondences may be
missed, and if it is set too high there will me many false matches. In practice this threshold
is adjusted to be high enough such that all of the real correspondences are captured, even
if many false correspondences are generated. The tracking algorithm attempts to track the
particles from these false correspondences and generally fails, as particles arising from
false correspondences are not part of trajectories that are coherent over time.

Once the stereo-matching has been completed it is a simple matter to use the camera
matrices P1,P2 to solve the combined equations

x1 = P1X (2.27)

x2 = P2X (2.28)

where x1 and x2 are corresponding image coordinates and X is the real-space coordinate.

2.2.4 Particle tracking

After the particle centers have been found in image space as described in section 2.2.2, and
these image space coordinates have been mapped into real space as described in section
2.2.3 we are left with a list of four dimensional points Xi (x, y, z, t ) for i = 1,2, ...n where n is
the total number of particles found. This set of particles is transformed into a set of particle
trajectories by the particle tracking algorithm shown in figure 2.11. This algorithm was
implemented in Matlab, using an code initially based on a 2D tracking code written by
Nicholas Ouellette, which was quite substantially modified from the original.
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Particle tracking algorithms have multiple parameters that need to be tuned depending
on the measurement system. The overall strategy and balance between the potentially
competing objectives of the algorithm is explained here, and the step-by-step details of the
algorithm implementation is detailed in figure 2.11. This task can be intuitively understood
by watching a PTV film following the same particle from one frame to the next. If the
frequency of the image acquisition is high the particle moves relatively little between
frames, and thus following a particle is easier. Conversely, if there are many particles close
together in the image it becomes more difficult to be certain that a given particle is the
same particle that was seen in the previous frame. Based on this intuitive notion of "ease of
following" there are few key parameters that determine the level of difficulty of the particle
tracking, which are shown in table 2.2.

Of the parameters listed in table 2.2 only particle density is easily adjusted for a given
experimental set-up. This project does not attempt to measure two-particle statistics
(e.g. pair dispersion or fluctuating spatial gradients), so particle density may be set rather
arbitrarily, only recalling that lower particle density means that fewer particle trajectories
are measured per film. The global strategy is then to balance the particle density (and thus
the "efficiency" of the data collection) against the complexity and computational cost of
the tracking algorithm.

Table 2.2: Key parameter affecting ease of particle tracking

PTV parameters Effect on tracking

Particle density Lower particle density =⇒ easier to track
Number of
cameras

More cameras =⇒ easier to track

Acquisition
frequency

Higher acquisition frequency =⇒ easier to track

Mean flow Greater mean
flow-to-turbulence ratio

=⇒ easier to track

The algorithm chosen was based on the 4 frame best estimate method of Ouellette et al[97].
Velocity and acceleration for each trajectory are estimated from past particle positions
in order to estimate future particle positions, then the particle closest to this estimate is
considered to be part of the trajectory. More complicated methods using more than three
points, and therefore less sensitive to particle position noise, could be considered, but
adequate performance was found using this algorithm at particle densities of up to 500
particles per image. The algorithm described in figure 2.11 was applied to the data using
a rather large value for the maximum search parameter, which often results in spurious
positions at the beginning and endings of the trajectory. These spurious extreme values,
along with the fact that trajectories are often artificially broken when the view of a particle is
temporarily obstructed in one or both of the cameras, required the use of a post-processing
step to repair and reconnect the trajectories.

Trajectory reconnection and repair

Trajectories may be broken or may contain spurious positions for many reasons: the view
of a particle is temporarily obstructed, the particle moves into and out of the volume of
measure, or the tracking algorithm may have included a particle position that is not part of
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Figure 2.12: Three tracer particle trajectories (shown in the 2-D x-y projection) that were recon-
nected. The two gaps in the trajectory are highlighted, with the interpolated points shown in
red.

the real particle trajectory. The repair and especially reconnection of these trajectories is
important because longer trajectories permit a greater convergence of Lagrangian statis-
tics at longer times. A two-camera PTV system has no redundancy, and so a temporary
occlusion of one particle image is sufficient to break the trajectory. An attempt was made
to reconnect and repair the trajectories within the limits of reasonable interpolation, based
on the physics of the particle dynamics.

Trajectories are repaired by removing points that are non-physical, usually at the
beginning or ending of the trajectory, but occasionally also in the middle, when the tracking
algorithm confuses two real particle trajectories and create a "jump" from one to the other.
In the case of spurious extreme values the ends of the trajectory are simple trimmed to
remove them. In the case of spurious values in the middle of a trajectory the trajectory is
split in two, and the extreme value removed. What constitutes a spurious extreme value
was determined empirically by regarding the histograms of xn+1

i −xn
i , where i = 1,2,3 and n

is the time-step. One could also use the fact that real high acceleration events are correlated
in time but spurious extreme values are generally delta correlated , but this was not found
to be necessary in this case.

Trajectories are reconnected by identifying the ends of trajectories that are "close"
in [x, y, z, t ]- space, deciding if they are two pieces of the same real trajectory, and inter-
polating between them. This task was accomplished for each trajectory by the following
steps:

1. Estimate the velocity vi at the end of the trajectory
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2. For a given trajectory that has a final position at time tn , find all trajectories that
have beginning points t such that tn < t < tn + tl i mi t , where tl i mi t is some time limit
beyond which trajectories are not reconnected.

3. For all candidate trajectories that meet the above condition, use the time difference
between the first point of the candidate trajectory and tN and the estimated velocity
to calculate an estimated position, shown schematically in figure 2.13 as colored
hollow points corresponding to the three candidate tracks.

4. The candidate trajectory corresponding with the smallest three-dimensional dis-
tance between the beginning point of the candidate trajectory and the estimated
position is chosen to be reconnected, as long as this minimum distance is below a
given threshold.

5. The missing positions are interpolated using a penalized least-squares method[106]
individually in all three dimensions, and example of which is shown in 2.12.

The parameters in this process, the limits in time (tl i mi t ) and distance in x, y, z beyond
which trajectory reconnection is not permitted, are chosen to minimize false connections.
Despite this conservative approach, this reconnection step significantly increased the
mean trajectory length and the convergence of Lagrangian statistics at longer times.

tN

tN+3

tN+5

tN+7

vi

tvi3
tvi7tvi5

Candidate
trajectories

d

d
d

Figure 2.13: Schematic of the reconnection algorithm.

2.3 Data processing

Three dimensional calibrated particle trajectories are the elemental form of data collected
in this study. However the primary results of this thesis are Lagrangian statistics in acceler-
ation and velocity which require significant post-processing, which is the subject of this
section.

2.3.1 "Big data" considerations

An important aspect of this project was the management of the large quantity of raw data
that was necessary to collect. Lagrangian statistics in the context of turbulent channel flow
must be conditioned on initial distance to the wall, which is a layer of conditioning not
typically found in similar experiments in HIT. Trajectories are binned by initial distance
to the wall, which effectively divides the dataset by the number of bins. This fact, plus
the relatively low particle density that was necessary because of the two-camera PTV
system, means that a large number of movies needed to be recorded to have reasonable
convergence of the statistics. A brief summary of the size of the tracer particle raw dataset
is shown in table 2.3.
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Table 2.3: Tracer particle raw dataset description

Film pairs Total films Images per
film

Total images Image size
on disk

Raw dataset
size on disk

2606 5212 16541 86.2×106 1.28 MB 110.5 TB

The size of this dataset required the use of a processing cluster with associated RAID
storage, high-speed optical fiber network connections, and a reasonably efficient storage
and data processing strategy, which is outlined in figure 2.14. The large volume of raw data
is made manageable with the direct 10 Gbit connect between the cameras and network
raid storage, the details of which are shown in figure 2.6. This connection, along with the
efficient 10-bit binary video format, allow a 10-fold increase the rate of data collection
and avoids having to transfer the data from local to network storage for further processing.
Once the films are on the network RAID the processing tasks are embarrassingly parallel
(to borrow a term of art from computer science), i. e. the processing tasks are independent
and easily divisible into parallel processes that may be performed concurrently. In practice,
this means that individual images can be processed independently, and the resulting lists
of particle centers from two synchronized films can also be processed independently. A
custom job manager was developed to assign computing resources to the processing tasks.
Unlike CFD, these experimental data processing tasks are typically limited by memory and
file I/O resources, and the job manager was designed to allocate resources on the basis of
required/available memory. The parallel tasks are then processed individually using matlab
scripts compiled into stand-alone programs. If all of the trajectories were of the same
length than a matrix would be the logical form in which to store the processed data, e. g.
columns being time steps and the rows being independent trajectories. The experimental
dataset contains trajectories of varying lengths which does not allow a matricial data
structure to be efficiently used. As a compromise a flattened data structure was developed
to stock the trajectories, as illustrated in figure 2.15.

2.3.2 Differentiation and filtering

The trajectories obtained from the methods described above are discrete (one position per
time step) and include a certain amount of noise. A common strategy for filtering such
data [107, 31] is the convolution of the signal ( here the taken to be a single component of
the 3-D trajectory) with a simple function, defined as

f ∗ g =
∫ ∞

−∞
f (τ)g (t −τ) where f is the signal and g is some smoothing kernel (2.29)

Equation 2.29 may be thought of as a weighted running average filter, for which g defines
the weighting scheme. The weighting function g used in this work the Gaussian function,
which has several properties of interest to this application. First, a Gaussian low-pass filter
has a reasonably good frequency response; figure 2.16 contrasts the strong suppression of
high frequencies by the Gaussian filter to the poorer performance of the moving average
filter. Second, by using the fact that derivatives are commutative in a convolution, i. e.
d f
d t ∗ g = d g

d t ∗ f the trajectories can be smoothed and the time derivatives calculated in the
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and false otherwise. Independent variables are outlined in red. Variables not shown are the position
variables y and z, and the 6 variables that are the components of velocity and acceleration.

same operation, simply by convolving the trajectories by the derivatives of the Gaussian
function, which are the analytical functions shown in equation 2.30.

g (τ) =
1p
πw 2

exp

(−τ2

w 2

)
(2.30)

d g

dτ
(τ) =

−2τp
πw 3

exp

(−τ2

w 2

)
d 2g

dτ2
(τ) =

2p
πw 3

(
2τ2

w 2
−1

)
exp

(−τ2

w 2

)

Finally, scale-space analysis has proven that, uniquely, the Gaussian kernel guarantees
that no new signal structure is created as the scale of the smoothing is increased[107].
The Gaussian kernels defined in equations 2.30 have infinite support, which in clearly
impractical for a convolution kernel, so they must be truncated and discretized in a manner
that preserves their properties as much as possible. If equations 2.30 are simply sampled
then the resulting kernel will not perform as expected, e.g. if G is the discrete Gaussian
kernel with values samples from g then G∗ s > s, where s is some arbitrary signal. The
truncated and discretized versions of equations 2.30 are

G(n) = A1 exp

(−n2

w 2

)
≈ g (τ) (2.31)

V(n) = A2n exp

(−n2

w 2

)
+B2 ≈ d g

dτ
(τ) (2.32)

A(n) = A3
(
n2 −1

)
exp

(−n2

w 2

)
+B3 ≈ d 2g

dτ2
(τ) (2.33)
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Figure 2.16: Two possible choices of weighting schemes for a moving average filter (top) and their
frequency responses (bottom)

and are calibrated such that the following conditions are met:

G(n)∗k = k where k is a constant (2.34)

V(n)∗k = 0 (2.35)

V(n)∗kn2 = 2kn (2.36)

A(n)∗k = 0 (2.37)

A(n)∗kn2 = 2k (2.38)

(2.39)

These truncated, discretized kernels and their continuous function equivalents are plotted
in figure 2.17. Figure 2.18 shows an example of a trajectory and the results of its convolution
with the Gaussian kernel, and the first and second derivative of the Gaussian kernel to
calculate velocity and acceleration, respectively.

The degree to which the signal should be smoothed, i. e. the length of the filters shown
in figure 2.17, is a key question in the data analysis. The question becomes especially
important when considering particle acceleration, as the second time derivative of the raw
position data amplifies the noise considerably. Ideally, the filter should eliminate the noise
without distorting the signal. The degree to which this ideal is approached depends on the
time scale separation of the signal and the noise and their relative strengths (the SNR). The
acceleration noise can be assumed to be delta-correlated, but the acceleration time scale
and variance is dependent on position in the channel, so in general the ideal filter length
will be position dependent.
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The effect of filter length on acceleration variance is explored as follows. The trajectories
are placed into bins determined by their distance to the wall at t = t0, the trajectories in
each wall-bin are filtered using a range of filter widths, and the acceleration variance
is calculated for each filter width. The results of these calculations for the wall-normal
component of acceleration in selected wall-bins is shown in 2.19(a). Also plotted is the
variance of the convolution of Gaussian white noise and acceleration kernels over a range
of kernel widths. For very short kernel widths very little difference is observed between the
pure noise and the real signals, indicating that the noise in the signals is not adequately
filtered at these filter widths. The acceleration variance of the real signals is seen to have
a second regime, in which the variance is less dependent on the filter length. These two
regimes have been previously observed [30, 108] as well as simulated from DNS data[30].
The optimal filter length is often taken to be the intersection of these two regimes. As
previously mentioned the level of noise and time scale is a function of distance to the wall,
there is also a difference between individual components due to small-scale anisotropy
as well as technical details of the PTV setup (e.g. the span-wise component has greater
position noise due to how the horizontal camera was positioned) . The optimal kernel
widths for each component of acceleration and velocity found by the method described
above are shown in figure 2.19 (b).

2.3.3 Wall scaling variables

The results presented in this thesis are often scaled by viscous quantities, otherwise known
as wall-scaling variables. These variables are derived from the physical properties of the
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Figure 2.18: The time history of the wall-normal position of a sample trajectory. From top to
bottom: the directly measured wall-normal position, the wall-normal position convolved with the
Gaussian kernel to smooth the trajectory, the wall-normal position convolved with the derivative of
the Gaussian kernel to yield the smoothed wall-normal velocity history, and wall-normal position
convolved with the second time derivative of the Gaussian kernel to yield the smoothed acceleration
history.

fluid, the density ρ and kinematic viscosity ν, and the shear stress at the wall τw :

uτ =

√
τw

ρ
(2.40)

δν =
ν

uτ
(2.41)

This scaling, instead of the so-called outer-variable scaling based on the channel width,
the bulk mean velocity, etc., was chosen in order allow direct comparison with DNS and
other channel flow and boundary layer results. However, the fundamental quantity on
which this wall scaling is based, the shear stress at the wall τw , is not a directly measured
quantity in these experiments, and must therefore be estimated. The scaling variable uτ
was estimated from the log law of the wall (discussed in detail in section 1.2) which may be
written as

U0

uτ
=

1

κ
l n

[
uτRe0

U0

]
+B+B1 (2.42)

where κ, B, and B1 are empirical constants. For the purposes of this calculation the values
of these constants were taken from Pope[10]: κ = 0.41, B = 5.2, and B1 = 0.2. Equation 2.42
is solved with these values and the measured value of the mean velocity at the center of
the channel (U0) to estimate the friction velocity uτ = 0.081ms−1 . The uncertainty of this
result will be discussed in the next section (2.4), and all of the scales derived from this
result are tabulated in table 2.4.
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Figure 2.19: Subfigure (a): The variance of acceleration as a function of the filter width (in times
steps) for trajectories from five wall-normal bins. Also shown is Gaussian white noise convoluted
with the acceleration kernels. Subfigure (b): The corresponding optimized filter widths used for
filtering each component of the velocity and acceleration.
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2.4 Error and bias

There are many sources of error and bias in the results reported in this study, and the
propagation of error and bias though the chain of measurement and processing is complex.
Statistical tools, such as the bootstrap method[109], may be used to quantify the uncer-
tainty associated with random error without an a priori knowledge of the sources of error.
However, these methods are not a replacement for an accounting of the precision of key
experimental parameters, nor are they capable of accounting for systematic uncertainty,
or bias. How best to quantify uncertainty in turbulence PTV measurements is still an
open question, nevertheless the following analysis illuminates the sources of error, and
quantifies them as much as possible. First, the uncertainties associated with the scaling
variables used in the data reduction is presented. Next, a treatment of the error associated
with the a single measured trajectory and the calculation if the velocity and acceleration.
Finally, the errors and biases related to the statistics that are formed from ensembles of
these trajectories are discussed.

2.4.1 Uncertainty in scaling variables

Physical properties of the fluid, Eulerian mean quantities, and estimates of wall-scale
variables are used in the data reduction of the results presented in this study, and all of
these quantities have associated uncertainty. These scaling variables are listed below, with
a discussion of how their uncertainties are estimated. These results are summarized in
table 2.4.

1. Physical properties of the fluid: The density ρ and viscosity ν of the fluid were
not measured directly, but taken to be that of fresh water at a given temperature.
The range of temperatures observed in the experiment was used to estimate the
range of these values. No attempt was made to use a time history of the changes in
temperature, instead a global range of temperature was used to estimate the global
uncertainty in ρ and ν for all the measurements performed.

2. Eulerian velocity profile: The Eulerian velocity profile was used to estimate the
centerline velocity U0 and the bulk velocity U. This profile was measured by LDV
and PTV; each measurement method has associated random and systematic errors.
U0 and U are calculated from multiple independent realizations with each measure-
ment system, then the results of these two measurement methods used together to
estimate the mean and uncertainty:

U0 =
U0,PTV +U0,LDV

2
εU0 =

εU0,PTV +εU0,LDV

2
(2.43)

3. Wall-scaling variables: The wall-scaling variables δν, and Reτ are based on the
shear stress at the wall, which was not directly measured. The wall scaling variables
were instead estimated using equation 2.42, which assumes a log profile in the
channel. The uncertainty resulting from this estimation is difficult to quantify, as
it is unclear how deviations from the assumed log profile affect the calculation of
uτ. Instead, the uncertainty of the skin friction coefficient τw /( 1

2ρU2
0) was estimated

from a compilation of previously published experimental data[110] that found skin
friction as a function of Reynolds number. This uncertainty is then propagated in
the calculation of the other wall-scaling variables (e.g. uτ =

√
τw /ρ) in the usual

way[111].

63



Table 2.4: Scaling variables mean and uncertainty

Variable Mean Uncertainty (%) Note

ρ (998.5±3.9) kgm−3 0.4% due to temp. range (18±2) ◦C

ν (1.054±0.529)×10−6 m2 s−1 5% due to temp. range (18±2) ◦C

h (0.01875±0.00100) m 5% Construction tolerance

U0 (1.75±0.05) ms−1 2.9% Centerline velocity

Re0 6.23×104 8% Re0 ≡ 2hU0
ν

uτ (0.076±0.006) ms−1 7.5% From eq. 2.42

δν (1.38±0.18)×10−5 m 13% δν ≡ ν/uτ

Reτ 1350±190 14% Reτ ≡ h/δν

2.4.2 Uncertainty in a single trajectory

The error associated with a single trajectory is illustrated in figure 2.20, which shows
schematically the measured position of the tracer particle, the error associated with this
measurement ( which in general form is not centered nor symmetric, and is time and
position dependent), and the true positions of the fluid particle that is the object of the
measurement. These error can be divided according to their sources

X̃i (t ) = Xi (t )+
N∑
j
ε

j
i (t ) for i = x, y, z N = Number of sources of error (2.44)

X

Z

Y

True trajectory

Channel Wall

Figure 2.20: An example of the first three measured positions X(t ) of a trajectory, with associated
errors εi (t ), and the true (unknown) positions X̃(t ).

1. Tracer particle fidelity: This is a time dependent error, as by definition Xi (t0) = X̃i (t0).
The tracer particles used in this flow are considered to be highly faithful to the
fluid particle trajectories, as discussed in section 2.1.5, but this source of error is
particularly delicate in inhomogeneous turbulent flow, as diverging particle paths
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explore flow regions with different statistical properties. In this study the error
associated with tracer particle fidelity is neglected.

2. Camera and tunnel vibration: Relative motion of the fields of view of the cameras
and the test section results in an error in the measurement of particle position. Care
was taken in the design of the experimental setup to minimize this vibration, but it is
impossible to totally eliminate. This relative motion due to vibration is considered
Gaussian and non-time dependent. The magnitude of this error was estimated to
be ±30µm using the position of the wall, which was visible to one of the cameras in
some of the experiments.

3. Center finding error : The particle image can be modeled as the discretization of
a Gaussian light source centered on the particle with the addition of image noise.
This model can be simulated by creating synthetic images in which the true particle
centers are known, which allows the quantification of the precision of particle center
finding methods as a function of noise and particle image size[97]. An example of
this analysis is shown in figure 2.21, which shows a Gaussian particle image that
has been added to a real PTV image. The real particle center is known, allowing
a quantification of the error associated with the image processing/center finding
procedure. A systematic investigation of this error was performed by varying the
size and brightness of the synthetic particles. Figure 2.22 shows the results of this
investigation of error for synthetic particles on noise-free backgrounds and inserted
into real PTV images3. Results of this analysis show particle center position error of
approximately 0.1 pixel (2.7µm) for synthetic particles of size σ' 1 pixel. System-
atic analysis of the Gaussianity of the real particle images was not performed, but
estimates indicate that 0.1 pixel is a reasonable estimate for particle position error
in these measurements. This error is similar to that found by Ouellette et al[97] in a
study of synthetic particles on a noisy background.

4. Calibration error: The error associated with calibration may be decomposed into
two contributions: the error associated with the absolute position of the calibration
grid, and the error associated with the calibration model. The error associated with
the absolute position of the calibration grid is quite difficult to estimate, as it relates
to the degree to which the block was in good contact with the channel wall, the
accuracy with which the calibration block was displaced in the transverse direction
by the positioning stage, etc. The error associated with the absolute position of the
grid points is taken to be very small relative the errors in the calibration model.

The calibration model is a linear transform that does not take into account optical
aberrations and other non-linearities. The error associated with this model is quanti-
fied by considering the difference between the known absolute position of the grid
points and the position of the grid points in real space as given by the calibration.
These errors were found to vary by component, from approximately ±10µm in the
wall-normal direction to approximately ±30µm (≈±1 pixel) in the transverse direc-
tion. It is important to note that this error is an error of absolute position. Because
the source of this error is optical aberrations we expect that this error is spatially
smooth, i. e. a straight line across the measurement volume would be seen as a
smoothly curved line that shows a maximum deviation from linearity of 30µm. The

3Adding synthetic particles to real PTV images allows a more realistic quantification of error than simple
adding Gaussian noise to the synthetic particle image, as the true image noise is not necessarily Gaussian.
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Figure 2.21: An example of how the particle finding error analysis is performed. (a) A fine-grained
2-D Gaussian synthetic particle is created, with a known center point relative to a coarse-grained
grid. (b) The synthetic particle is discretized by integrating the fine-grained image with respect to
the coarse pixel grid. (c) An image from the acquisition series , with the real levels of noise visible.
(d) The discretized synthetic image (b) is summed with the real image (c), i. e. (d) = (b)+(c). (e)
The real image with added discretized synthetic particles passed through the typical processing,
including image filtering and particle center finding, the result of which is marked with the red
circle, and compared to the known center location (marked with a black circle).
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Figure 2.22: Particle finding error in the finding of synthetic particles. Synthetic particles of different
sizes (a range of standard deviation from 0.5 to 2 pixels), and brightness (horizontal axis). The
particle center finding algorithm is applied to the discretized synthetic particles for no noise (dotted
lines) and the discretized synthetic particles placed in the real, noisy images (solid lines).

errors in velocity and acceleration statistics from this error may be thought of as the
slope and curvature of this line, which are very small.

5. Tracking error: Errors due to failures in the tracking procedure are possible, though
difficult to quantify. False matches, in which the tracking algorithm assigns a particle
position to the trajectory that is not truly part of the trajectory, tend to occur at the
beginning and end of the particle trajectories, where the clipping associated with the
convolution of Gaussian kernels discards the ends of the trajectory. False matches
in the middle of the trajectories are possible, resulting in a "jump" in the trajectory
over a single time step. Track repair and reconnection algorithms were designed to
find these "jumps", and break the trajectories at these points. Low particle seeding
density and careful tuning of these algorithms minimized these tracking errors.

The velocity and acceleration of the trajectory is calculated by convolving the position
time series (component-wise) with the first and second derivative of the finite Gaussian
kernel, as discussed in section 2.3.2. The effect of the measurement uncertainty and noise
can be explored by separating the signal and noise in these calculations.

ãi (t ) = a(t )+εdi f f
i ,a +εpos

i ,a (2.45)

ãi (t ) = A[n]∗ (xi (t )+εi ,x) (2.46)

ai (t )+εdi f f
i ,a = A[n]∗xi (t ) and ε

pos
i ,a = A[n]∗εi ,x (2.47)

The error in the acceleration due to the error in position εpos
i ,a is the consequence of the

convolution of the position error with the acceleration kernel A[n]. If the position error is
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Figure 2.23: The normalized autocorrelation of the acceleration of delta-correlated noise for various
filter widths of acceleration kernels, up to the longest acceleration kernel (σ = 29 time-steps) used.

taken to be time independent and normally distributed then

ε
pos
i ,a =

l∑
n=−l

pnεi ,x where pn are the coefficients of the acceleration kernel (2.48)

⇒ ε
pos
i ,a ∼ N(µpos

i ,a , σpos
i ,a ) where: (2.49)

µ
pos
i ,a =

l∑
n=−l

pnµ
pos
i ,x = 0 (2.50)

σ
pos
i ,a =

√√√√(
l∑

n=−l
pnσ

pos
i ,x

)2

(2.51)

It is important to note that the time-independent position noise becomes correlated
after the convolution, which may be seen by considering the autocorrelation:

ε
pos
i ,a (t )εpos

i ,a (t +τ) =
(
ε

pos
i ,x (t )∗A[n]

)
∗

(
ε

pos
i ,x (t +τ)∗A[n]

)
(2.52)

ε
pos
i ,a (t )εpos

i ,a (t +τ) =
(
ε

pos
i ,x (t )∗εpos

i ,x (t +τ)
)
∗ (A[n]∗A[n]) (2.53)

ε
pos
i ,a (t )εpos

i ,a (t +τ) = var
(
ε

pos
i ,x (t )

)
δ(t )∗ (A[n]∗A[n]) (2.54)

ε
pos
i ,a (t )εpos

i ,a (t +τ) = var
(
ε

pos
i ,x (t )

)
(A[n]∗A[n]) (2.55)

This correlation of delta-correlated noise after convolution is shown in figure 2.23.

2.4.3 Statistical bias

Statistical results have uncertainties as a result of the error associated with individual
trajectories, but also due to statistical bias in which particle trajectories are measured,
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Figure 2.24: Illustration of statistical bias due to the finite measurement volume.

and how they are measured. An example of a statistical bias is illustrated in figure 2.24,
which shows a schematic view of trajectories conditioned on a wall-normal location near
the outer edge of the measurement volume. As these particles disperse from their initial
location y0 at t0, some of them leave the measurement volume, and their trajectories cease
to be measured. Trajectories that move towards the wall are measured and contribute to
the statistics, but trajectories that leave the measurement volume do not, resulting in a
statistical bias.

Assuming that the tracer particles have an unbiased distribution in the flow4 statistical
biases arise from the particles arriving or leaving the measurement volume in a manner that
biases the statistics. Statistical bias has previously been observed in similar measurements
in HIT [30, 112] for which the mean flow in the measurement volume was zero. In this
case the finite-measurement-volume effect is increasingly seen in two-time Lagrangian
statistics for increasing time-lags.

The significant mean flow, relatively low turbulence intensity5, and the fact that the
measurement volume is bounded by the channel wall on one side, all act to reduce the
statistical bias of the measurements in the present study. Tracer particles have a limited res-
idence time in the measurement volume, as they are being swept through the measurement
volume by the mean flow. This imposes an effective maximum time-lag on the measured
statistics, and thus avoids the case of some trajectories staying in the measurement volume
for long times, as occurs in HIT. Weak velocity fluctuations relative to the mean flow results
in tracer particle trajectories that are swept into and out of the measurement volume in a
statistically unbiased manner.

In this system statistical biases occur because of the measurement volume boundary in
the wall-normal direction, as illustrated by figure 2.24. This effect is ameliorated ignoring
trajectories that start too close to the outer boundary of the measurement volume, i. e.
trajectories for which y0 > yl i mi t at t = t0 were ignored. This allows trajectories that are lo-
cated at yl i mi t at t = t0 to disperse towards the channel and still be within the measurement
volume. This yl i mi t was determined empirically, and found to be y+ ≈ 1200.

The procedure described above to reduce the statistical bias at the measurement
volume boundary near the channel centerline is particularly important because the wall-
normal direction in the only direction of inhomogeneity in this system. Measurement
volume boundaries also exist in the transverse direction. The turbulence is statistically
homogeneous in the transverse direction, but statistical bias can nonetheless results from
these measurement volume boundaries. For example, one can imagine a streamwise

4Which is a reasonable assumption, given their small size, density ratio very close to unity, and the intense
mixing throughout the water tunnel.

5 The turbulence intensity TI ≡
√

〈u′2〉/〈U〉 < 20% over most of the channel
(
y+ > 30

)
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helical vortex with its axis of rotation at this boundary. As the tracer particle is swept
around the helix it moves in and out of the measurement volume resulting in several short,
discrete trajectories. By contrast, a less energetic particle with a more ballistic motion
would stay in the measurement volume and result in a long, continuously-measured
trajectory. Ideally a similar procedure would be implemented in the transverse direction,
and any particles that are not at −zl i mi t < z < zl i mi t at t = t0 would be ignored. Some
investigations regarding trajectory lengths and acceleration statistics indicate that the
measurement volume boundaries in the transverse direction has a minimal statistical bias,
but a though analysis, perhaps with DNS results, is recommended for future work.

Error bars

The foregoing was a discussion of the sources and magnitudes of the uncertainty and
bias. A rigorous calculation of uncertainty, in which all of these errors are propagated
through the chain of measurement and calculation, was not performed. How such an error
propagation should be calculated for PTV results remains an active area of research[113, 96].
Error bars, where they are presented in this thesis, are calculated from the statistical
uncertainty directly (using the bootstrap method[109]), as well as the uncertainty of the
scaling variables(uτ, δν, etc.) shown in table 2.4.

2.5 Direct numerical simulation

The direct numerical simulation (DNS) of a turbulent channel at a Reynolds number
matched to that of the experiment was performed by J. I. Polanco and I. Vinkovic at the
Laboratoire de Méchanicques des Fluids et d’Acoustique (LMFA) in Lyon, France. Their
work is the numerical component of a larger collaborative project; the work described
in this thesis is the experimental component. These results are reported in this thesis
when their inclusion serves to deepen the understanding of experimental results, with the
gracious permission of J. I. Polanco and I. Vinkovic. A brief description of the details of
these simulations has been published[42]. A sketch of the numerical setup is provided
here for convenience. These simulations are performed between two parallel walls, using
periodic boundary conditions on the streamwise and spanwise boundaries. The details
of the pseudo-spectral method is described by Buffat[114]. The computational domain is
sketched to scale in figure 2.25, including the key dimensions. The grid spacing is uniform
except in the wall-normal direction, where the spacing varies from y+ = 0.04 near the wall
to y+ = 10.5 at the center of the channel. An initial population of 2×106 point particles are
initialized at random positions in the computational domain, and are advanced in time
using the Eulerian velocity at the particle position. Third-order Hermite polynomials were
used to interpolate the Eulerian velocity field at particle locations between grid points,
which is important as Lagrangian acceleration statistics are sensitive to interpolation
schemes.
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Figure 2.25: Sketch of the DNS domain, with key dimensions.

2.6 Conclusion

This chapter has presented the techniques used to make high-resolution measurements
of tracer particle trajectories in a turbulent channel. While high-resolution 3-D PTV with
high-speed cameras is an increasingly well-established technique, its application to a
turbulent channel flow presents unique challenges. A detailed look at the many competing
parameters (tracer particle diameter, measurement volume size, etc.) revealed a fairly
small parameter space in which such measurements are possible given current technology.
Specifically, Lagrangian measurements close to the wall require very small particles, which
require high magnification, which limit the size of the measurement volume. Unlike in HIT,
the measurement volume must be relatively large to allow reasonable particle residence
time and limit statistical bias. Cameras with 25K frames-per-second acquisition speeds
at full resolution and high sensitivities were used in conjunction with a 25 W continuous
laser. This technology allowed the use of high magnifications, relatively large measurement
volumes, and small particles that were necessary to make these measurements.

The data processing steps are explained, from the raw data consisting of synchronized
movies to the wall-scaled Eulerian and Lagrangian statistics. The large volume of raw data,
low-SNR images, and lack of redundancy in 3-D stereo reconstruction all require carefully
optimized PTV algorithms. Sources and magnitudes of measurement uncertainty and bias
are estimated and discussed.

This chapter focuses on the methods and materials relevant to the measurement of
tracer particles. Non-tracer particle were also measured, and although most the techniques
used were similar to those described here there were some changes necessary to realize
these non-tracer particle measurements. The details of these measurement techniques are
given in chapter 5.
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Chapter 3

Eulerian statistics in the turbulent
channel
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3.1 Introduction

This chapter concerns the Eulerian single-point statistics of turbulent channel flow. Eu-
lerian statistics of velocity in turbulent channels have been extensively studied, both
numerically and experimentally, but Eulerian statistics in acceleration are much less well
known. These statistics are necessary to the development of Lagrangian stochastic models,
as well as Eulerian stochastic models such as the one proposed by Zamansky et al[3].
All of the Eulerian statistics presented in this chapter have been extracted from the La-
grangian particle trajectories. This manner of measuring Eulerian quantities introduces
some statistical bias, which is discussed in the sections below.

This chapter is divided into three sections, which present Eulerian statistics in velocity,
in acceleration, and mixed velocity- acceleration statistics.

3.2 Velocity statistics

The Eulerian statistics of velocity in a turbulent channel flow have been extensively studied.
The velocity statistics are presented here to confirm that they are consistent with previously
published results. Mixed acceleration-velocity statistics, both Eulerian and Lagrangian
will be discussed in later sections, and so confidence in relatively simple velocity statistics
should first be established. Even in this well-understood area there are subtle questions
involving bias and the conditioning of statistics, questions which arise directly from the
simplest statistical result: the mean streamwise velocity profile across the channel.

3.2.1 Profiles of mean velocity and Reynolds stress tensor

The mean streamwise velocity profile across the half-width of the channel may be calcu-
lated from the measured Lagrangian trajectories in the following way: points on the tracer
particle trajectories are considered to be independent points, these points are sorted into
bins based of their wall-normal position, and the mean of all of the streamwise velocities
in each bin is calculated, i. e.

yk =
1

n

n∑
i

y |Yk<y<Yk+1 〈Ux(yk )〉 =
1

n

n∑
i

ux(y)|Yk<y<Yk+1 (3.1)

where Yk are the edges of the conditioning bins and n is the number of points that fall
into a given bin. The mean streamwise velocity profile calculated with all of the measured
points is plotted in figure 3.1(top), along with results from DNS at the same Reynolds
number[42] and experimental hot-wire measurements from Monty et al[115] in a channel
at Reτ = 1040. Figure 3.1 shows good agreement between these three data sets in the
log layer and outer layer (y+ > 50), but our experimental measurements are significantly
different from the DNS and the Eulerian experimental measurements of Monty et al in
the near wall region. This discrepancy was explored by plotting the histograms of the
streamwise velocity at three selected wall-normal positions (illustrated by red circles in
figure 3.1). These three histograms are plotted in the middle row of figure 3.1, and show
a bimodal distribution of streamwise velocity. This bimodal distribution is visible from
the wall up to y+ ≈ 25, with the high velocity lobe becoming greater as distance to the wall
increases, up to y+ = 24.7−28.4, where the low-speed lobe is shown to be vanishingly small.
This bimodal distribution of streamwise velocity is not seen in channel flow DNS[116, 94],
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Figure 3.1: Top: Wall scaled mean streamwise velocity as measured (uncorrected) in the experiment
(markers) and from the DNS at the same Reynolds number. Three wall normal locations are
highlighted in red: y+ = 0− 1.5, y+ = 4.6− 5.3, and y+ = 24.7− 28.4. Middle: PDF’s of the full
streamwise velocity at these locations, showing strong bimodal distributions up y+ ≈ 25. Bottom:
PDF’s of the wall-normal velocity for each "lobe" is shown, i.e. the PDF of the wall-normal velocity of
corresponding to the low-streamwise velocity "lobe" are shown in blue, and the those corresponding
to the high streamwise velocities are shown in red.

and appears to be a measurement artifact1 . The nature of this measurement artifact
is further explored by looking at the low-speed and high-speed lobes of the streamwise
velocity individually. The bottom row of figure 3.1 plots the histograms of the wall-normal

1Although a similar bimodal distribution has been reported at least once in PTV measurements of a
viscous sublayer from Popovich and Hummel[117] from 1967, although this measurement included relatively
few observations (by modern standards), and may very well represent a similar bias.
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velocity associated with each lobe of the streamwise velocity histogram (middle row). A
clear trend is observed, in which high streamwise velocities are associated with negative
wall-normal velocity (towards the wall), and low streamwise velocities are associated
with slightly positive wall-normal velocities. These distributions seem to suggest a non-
homogeneous distribution of the tracer particles and/or a preferential sampling of the flow
by the tracer particles in the near-wall region. Specifically, fast particles moving toward the
wall seem to be oversampled in these results. The small particle size (Dp /y+ ≈ 0.8) , density
ratio close to unity (ρp /ρ f =1.05) , and good agreement in acceleration statistics between
the experimental and DNS results all suggest the tracer particles follow the flow faithfully.
This seeming contradiction—particles that act as good flow tracers but give anomalous
mean velocity results—is known to the users of Laser Doppler Velocimetry (LDV), which
measures the velocity of tracer particles as they traverse a small measurement volume[118].
This bias is easily understood in the context of a small spherical measurement volume
in HIT—particles moving faster are statistically more likely to be sampled than particles
moving more slowly. A correction method used for LDV measurements may be written as

〈u〉 =

∑
i ui w i∑

i w i
(3.2)

where w i is the correction factor, with w i = 1 in the uncorrected case. The simplest
correction factor is simply the inverse of the magnitude of velocity, i. e.

〈Ux〉 =

∑
i Ui

x/|Ui|∑
i 1/|Ui| (3.3)

Figure 3.2: Mean streamwise velocity profile with ve-
locity magnitude correction, plotted with the DNS of
equal Reynolds number.

The mean streamwise velocity pro-
file using the correction shown in equa-
tion 3.3 is plotted in figure 3.2, and
shows a much better agreement with
the DNS than the uncorrected pro-
file in figure 3.1. This result supports
the conclusion that there is a mea-
surement volume bias associated with
these Eulerian statistics. Many such
corrections have been proposed for
LDV results[118], but it is unclear how
these corrections, typically developed
in the context of an ovoid measure-
ment volume, should be adapted to a
wall-bin type measurement volume, in
which the streamwise and transverse
dimensions are very large, and the wall-
normal dimension is small. The sys-

tematic investigation of velocity corrections has not been published, and is beyond the
scope of this project2. Due to the lack of certainty with regard to the bias correction factor
the Eulerian statistics presented in the following will not be corrected.

The experimentally measured Eulerian velocity variance is plotted in figure 3.3 by
component, along results from DNS. Large deviations from the DNS near the wall are

2DNS, having access to simultaneous Eulerian and Lagrangian measurements, is ideally suited to such a
study, and would eliminate any effect due to the use of a real "tracer" particle.
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Figure 3.3: Variance of the streamwise (top) wall-normal (middle) and transverse (bottom) com-
ponents of Eulerian velocity from experimental measurements (symbols) and matched-Reynolds-
number DNS (lines).

seen in the streamwise component, with much better agreement closer to the wall for the
wall-normal and transverse components. This large variance of the streamwise velocity
close to the wall is not surprising, given the wide, bimodal histograms seen in figure 3.1.
The bias observed in the mean and variance of the streamwise velocity is less visible in the
other components, which follow the DNS up to y+ ≈ 10, and capture the location of the
maximum of the variance. The variance in the wall-normal velocity appears to plateau
very near the wall, which is almost certainly an effect of the bias discussed above. Notice
the maximum variance in the streamwise velocity component is much greater than the
other two maxima, and thus dominates the turbulent kinetic energy.

The Eulerian velocity one-point correlation tensor, also called the Reynolds tensor, is
written in terms of fluctuating velocity components ui as follows

〈 uxux uxuy uxuz

uy ux uy uy uy uz

uzux uzuy uzuz

〉
(3.4)

The trace of this symmetric matrix is plotted in figure 3.3, and the off-diagonal components
containing the transverse velocity component uz are zero by symmetry (which was also
confirmed experimentally). The remaining component, the Reynolds stress 〈uxuy〉, is plot-
ted in figure 3.4 (a), with two series of DNS results for comparison. The same experimental
data is plotted on a linear scale (b) to see clearly the linear total stress across the channel
and the relative contribution of the Reynolds stress.

τtot al =
d〈u+

x 〉
d y+ −〈u+

x u+
y 〉 = 1− y

h
(3.5)
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The experimental Reynolds stress results between y+ = 0−20 are clearly anomalous, and are
certainly a result of the bimodal distribution error discussed above. Notice that although
experimental results increases close to the wall, this increase is less dramatic than the
variance of u+

x (shown in figure 3.3), further evidence for the conditional probability with
respect to the two lobes of the streamwise velocity histogram discussed above.
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Figure 3.4: a: Negative Reynolds stress −〈u+
x u+

y 〉 profile measured experimentally (symbols) and
from DNS at Reτ = 1000 (red line) and DNS at Reτ = 2003 (green line) as reported by Lee and
Moser[119]. b: The same experimental data shown on a linear scale (b) to emphasis the linear
relationship in equation 3.5. c-d: The normalized velocity correlations on log and linear horizontal
axes.

Figure 3.4 (c-d) also shows the normalized Reynolds stress. The velocity components
are weakly correlated near the wall, with increasing correlation throughout the log layer
and a persistent plateau throughout much of the channel. The velocity correlation is
expected to be zero at the channel centerline, by symmetry.

3.2.2 Velocity distribution

The distributions and higher order statistics of velocity across the width of the channel
are briefly presented. In HIT the components of velocity have been found to be approxi-
mately Gaussian[10]. Velocity distributions reflect the larger scale forcing and boundary
conditions of the turbulent flow, and so deviations from Gaussianity across the channel
are expected. Figure 3.5 shows the normalized PDF’s of the three components of fluc-
tuating velocity at four representative distances from the wall: in the viscous layer, the
buffer layer, the log layer, and in the outer layer. Notice that the distances are given by
a range, and that this range (or bin) is not constant—the bin near the wall is quite thin
(width of y+ < 1) compared to the bin in the outer layer (width of y+ = 131). The width of

78



the bin is approximately proportional to the number of observations in the bin, and the
statistical convergence is worse for the thin bins close to the wall. The bins were chosen as
a compromise between the spatial resolution, which is especially important near the wall
where the statistics change rapidly with wall distance, and having an adequate number of
observations.

The streamwise velocity PDF shows the bimodal distribution in the viscous layer previ-
ously seen for the full streamwise velocity in figure 3.1. By the location in the buffer layer
(y+ = 15−17) this bimodal distribution almost completely disappears, although a small
trace of a low speed lobe may still be seen. The pdf in the log layer is very close to being
Gaussian, in contrast to the PDF in the outer layer which has a prominent negative skew.

The PDFs of the wall-normal component of velocity are also quite varied in form with
respect to wall distance. The transverse component appears more Gaussian than the other
components, except in the viscous layer.

The profiles of the third and fourth order moments of the velocity components are
useful to quantify the departure from Gaussianity of the pdfs; these quantities are shown in
figure 3.6. The skewness reported here agree qualitatively with the results of Kim et al[94],
including the positive skewness of the wall-normal velocity very close to the wall, negative
skewness in the buffer layer, then positive skewness throughout the log and outer layers3.
Also notable is the large change in skewness of the streamwise component within the log
layer.

3For a discussion of this dynamic with respect to quadrant analysis see the paper of Kim et al[94]
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Figure 3.5: Probability density functions of the components of velocity at four representative
locations in the turbulent channel. Each PDF is normalized by the rms of velocity at that location.
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Skewness and flatness results
were compared to experimen-
tal measurements of Comte-Bellot[88],
performed for similar Reynolds
numbers. Overall good agreement
was found, with some exceptions
in the near-wall region (y+ < 20).

The foregoing statistics de-
scribe the components of velocity
individually. In order to see depen-
dence between velocity compo-
nents the conditional means were
calculated; the mean streamwise
velocity conditioned on the wall-
normal velocity is plotted in figure
3.7. The profile of the Reynolds
stress 〈uxuy〉 was found to be neg-
ative across the channel (fig. 3.4),
implying that opposite signed ve-
locity components are more prob-
able than equally signed compo-
nents. The conditional means in
figure 3.7 reflect this, except at the
location in the viscous layer. No-
tice that in the buffer layer large
wall-normal velocities away from
the wall are only weakly correlated
with streamwise velocity fluctua-
tions, but large wall-normal ve-
locities towards the wall (−vy )
are more correlated with faster
streamwise fluctuations. The in-
verse is true in the outer layer,
where positive vy and negative vx

fluctuations are more likely than
negative vy and positive vx fluctu-

ations. In the log layer these correlations are approximately symmetric.
The Eulerian velocity statistics shown here illustrate the complex inhomogeneity of

turbulent channel flow4. Turbulence statistics have large spatial gradients, especially near
the wall, and are only approximately self-similar in the log layer. The statistics of velocity
components were shown to be highly anisotropic and correlated to each other throughout
the channel. The phenomenology of Kolmogorov suggests that at large Reynolds numbers
this large scale inhomogeneity and anisotropy should be forgotten at smaller scales, and
the small scales should be homogeneous and isotropic, at least locally. The next section
examines Eulerian statistics in acceleration, a fundamentally small-scale quantity, and
explores where, and to what extent, this phenomenology holds in the turbulent channel.

4This was an extremely brief overview of Eulerian statistics in channel flow; the interested reader is refered
to the the pioneering measurements of Comte-Bellot[88], the more recent experimental work of Monty[87],
and the ever increasing DNS results from Kim[94] to Lee[119].
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Figure 3.7: The mean fluctuating streamwise velocity conditioned on the instantaneous value of the
wall-normal velocity at four distances from the wall. The widely spaced symbols reflect the large
velocity bin size, which was necessary due to the difficulty of converging statistics conditioned once
on position and once again on velocity.

3.3 Acceleration statistics

Acceleration is a fundamentally Lagrangian quantity, and as such has typically been studied
in a Lagrangian frame of reference. Eulerian statistics, such as the PDF of acceleration and
its moments, may be extracted from the Lagrangian data, and have been used to explore
the intermittency of fluid particle accelerations. The primary focus of research efforts has
been HIT, in which these statistics are not dependent on position. In a turbulent channel
these statistics are dependent on distance to the wall, and it is therefore important to
understand their Eulerian profiles as a prerequisite to the understanding of Lagrangian
statistics in a turbulent channel.

3.3.1 Profiles of acceleration mean and variance

Eulerian statistics in acceleration are presented in this section, beginning with the profiles
of the mean and the variance in figure 3.8. Mean acceleration in a turbulent channel
may be understood directly from the N-S equations, using the averaged N-S equation
introduced in chapter 1 (equation 1.17).

Averaged N-S: 〈Ai 〉 = −1

ρ

∂〈P〉
∂xi

+ν ∂
2〈Ui 〉
∂x j∂x j

(3.6)

Streamwise component: 〈Ax〉 = −1

ρ

∂〈P〉
∂x

+νd 2〈Ux〉
d y2

(3.7)

Wall-normal component: 〈Ay〉 = −1

ρ

∂〈P〉
∂y

(3.8)

Previous discussion in section 1.2 discussed why the streamwise pressure gradient is
constant across the channel, so the mean streamwise acceleration profile is the sum of a

82



constant and the curvature of the mean velocity profile. Careful examination of figure 3.8
shows that at the channel center the mean streamwise acceleration is slightly negative. At
the channel center d 2〈Ux〉/d y2 is very small (and negative), and thus most of the mean
streamwise acceleration is due to the mean streamwise pressure gradient. The contribution
of the curvature of the mean velocity profile to the mean streamwise acceleration is clearly
much greater (up to ≈ 95 times at y+ ≈ 8) than the contribution of the mean streamwise
pressure gradient.

Equation 3.8 shows the mean wall-normal acceleration is directly proportional to the
mean pressure gradient in the wall-normal direction. Figure 3.8 shows the profile of the
mean wall-normal acceleration, which is approximately equal in magnitude to the mean
streamwise acceleration profile. This implies that the mean wall-normal pressure gradient
near the wall is much larger (up to ≈ 95 times larger) than the mean streamwise pressure
gradient driving the flow.

The variances of the acceleration components are shown in figure 3.8 to be approxi-
mately equal in magnitude at their peak values, although the peak values occur at different
distances to the wall; y+ = 5, 28,20, for the streamwise, wall-normal, and spanwise compo-
nents, respectively. Note that unlike the components of velocity where the ratio between
root-mean-square (rms) and mean is quite low, the components of acceleration have a
large ratio of rms to mean over most of the channel width. Near the peaks of the mean

acceleration this ratio is at a minimum:
√
〈a2

x〉/〈Ax〉2 ≈ 2.25 for the streamwise component,

and
√
〈a2

y〉/〈Ay〉2 ≈ 3.13 for the wall-normal component. Good agreement is seen between

experimental results and DNS results for the mean and variance of acceleration, especially
for y+ ' 10. Note that the large error bars in figure 3.8 are mostly due to the uncertainty in
the scaling variables. The acceleration variance is normalized by u6

τ/ν2, which magnifies
the uncertainty from uτ.

3.3.2 Decomposition of acceleration

Higher order single point Eulerian statistics are presented below in the typical inertial
reference frame x,y ,z that has been used up to this point, as well as in a non-inertial
reference frame attached the the particle trajectory. In this reference frame, the acceleration
may be decomposed into the component parallel to the velocity, a∥, and a component
normal to the velocity, a⊥. Exact definitions are given in equation 3.9. This decomposition
is linked directly to the change in energy of the fluid particle (A ·V) and the geometry
of the particle trajectory, e. g. a helical particle trajectory has a constant magnitude a⊥
related to the curvature of the helix. This decomposition of the acceleration has been used
by Mordant et al[112], Toschi et al[37], and Biferale et al[120] to explore the connection
between acceleration, vorticity, and vortex filaments in HIT. These researchers showed that
fluid particles trapped in vortex filaments, characterized by a helical particle paths and large
centripetal accelerations that change sign quickly (as a particle moves in a helical path a⊥
points towards the axis of the helix and rotates with the particle). In homogeneous isotropic
turbulence, a flow in which the statistics of the three inertial-reference-frame components
are equal by definition, the parallel and perpendicular components of acceleration are
statistically distinct.
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Figure 3.8: Mean acceleration profiles (top) and acceleration variance profiles (bottom) from
experimental measurements at Reτ = 1440 (Symbols connected with dashed lines), DNS at Reτ =
1440 from Polanco and Vinkovic[42] (solid lines), and another DNS at Reτ = 600 (triangles) from Yeo
et al[78]. Figure adapted from Stelzenmuller et al[42].

t̂ ≡ V/|V|
a∥ ≡ (A ·V) t̂

a⊥ ≡ A× t̂ (3.9)

An explicit connection between velocity, ac-
celeration and the differential geometry of

the particle path given by the Frenet-Serret formulas was considered by Braun et al[121].
Choi et al[122], Scagliarini[123]and Xu et al[124] studied the the Lagrangian statistics
in velocity, helicity, and acceleration in terms of the curvature κ ≡ a⊥/u2 and torsion
τ ≡ u · (a× ȧ)/u6κ2 used in the Frenet apparatus. Bos et al[125] looked at the dynamics
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of the change in angle of a particle trajectory, which at short times relates directly to the
curvature and the normal acceleration.

This geometrical approach to particle trajectories in turbulence is based on the decom-
position of acceleration given in equation 3.9. Statistics in these acceleration components
are presented below along with the usual components (x, y , z). The turbulence is quasi-
isotropic and quasi-homogeneous at the channel center and increasingly organized and
populated with coherent structures near the wall. The decomposition of the acceleration
into parallel and perpendicular components has a direct connection to the geometry of
particle trajectories, and as such is an effective tool to describe the complex, wall-distance-
dependent topology of the turbulence. A more complete effort to present statistics in the
geometrical quantities such as curvature and torsion directly await a future work.

3.3.3 PDFs of acceleration

Probability density functions of the components and magnitude of acceleration at four
distances from the wall are plotted in figure 3.9. At all four locations and for all components
long-tailed, highly non-Gaussian distributions are observed, consistent with observations
in HIT. In the viscous and buffer layers significant differences between the acceleration
components are seen, is contrast to the log layer and outer layer location which show
approximate similarity between components. Note that acceleration statistics vary strongly
with distance from the wall in the viscous and buffer layers, and combining data from
the wall-bins as given in figure 3.9 results in an averaging effect that reduces resolution
of the PDFs, e.g. the pdf at y+ = 5±1 has a different form than the PDF at y+ = 30±1,
but these differences are mixed together in the results shown in figure 3.9 for the wall bin
y+ = 5−30. Thinner wall-bins are more sensitive to these difference, but are unable to
resolve the low-probability tails of the PDF due to limited data. In the viscous and buffer
layers the parallel component of the acceleration is highly congruent with the streamwise
component of acceleration, which is consistent with idea that near the wall the turbulence
is dominated by structures parallel to the wall, and the turbulence is quasi-bidimensional.
Throughout the channel the perpendicular component of acceleration has a sharp cusp
around zero that appears qualitatively different from the other components, indicating the
high probability of low-curvature, straight-line trajectories.

The joint PDFs of Cartesian components show that negative streamwise accelerations
are correlated with positive wall-normal accelerations in the viscous and buffer layers;
farther from the wall the joint PDFs appear approximately isotropic. Particles advected
towards the wall decelerate in the streamwise direction (ax < 0, i. e. opposing the mean
flow direction) due to the slower mean velocity, and accelerate towards the channel center
when approaching the wall. These joint PDFs show that particles advected towards the
wall in this manner have higher acceleration events than particles advected away from the
wall.

Joint PDFs of the parallel and perpendicular components of acceleration show a dis-
tinctive cross shape at all four locations in the channel, indicating that intense acceleration
events in one component are correlated with low acceleration in the other component.
Recall from the definition of these components (equation 3.9) that this result means rapid
changes in velocity magnitude (high values of a∥) are more likely when the velocity direc-
tion is not changing rapidly (small values of a⊥), and vice-versa. Rapid changes in the
direction of velocity may be associated with high-vorticity regions of the flow, and rapid
changes in velocity magnitude with high-strain regions of the flow[126].
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Figure 3.9: PDFs of the components of acceleration in the streamwise (ax ), wall-normal (ay ) , and
transverse (az ) directions. Also plotted are the components of acceleration parallel to the local
instantaneous velocity (a∥), perpendicular to the instantaneous velocity (a⊥), and the magnitude
of acceleration. These PDFs are taken from measurements in four wall-bins at four distances from
the wall, distances that correspond to four characteristic layers. The wall-bin closest to the wall, in
the viscous layer, is 5 wall-units wide (corresponding to the entire width of the viscous layer), the
other wall-bins are 25 wall-units wide, and are consequently have better statistical convergence.
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Figure 3.10: Joint PDFs of the components of acceleration at four distances from the wall.
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The asymmetry of the PDFs shown in figure 3.9—especially visible in the wall-normal
and perpendicular components of acceleration near the wall—is quantified by taking
the third moment of the acceleration components, with the appropriate normalization:
〈a3

i 〉/〈a2
i 〉3/2. This quantity, also called the skewness, is plotted in figure 3.11 (a). The

skewness across the channel for streamwise, wall-normal, parallel and perpendicular
components of acceleration is shown in figure 3.11 (a, top), and a zoomed in view in shown
directly below. The skewness of the transverse z component of acceleration is zero by
symmetry.

(a) (b)

Zoom of above Zoom of above

Figure 3.11: Skewness (a) and flatness (b) of acceleration components across the channel. DNS
results from equal Reynolds number channel simulations. Bottom row subfigures are simply
zoomed in views of the sub-figures above.

DNS results show extremely large skewness values5 for the wall-normal component
of acceleration, peaking at y+ ≈ 3 . Experimental results agree quite well to DNS results
except close the the wall (y+ < 15 ), a lack of agreement probably due to increasingly
poor statistical convergence in the experimental data in this region. The skewness of the
wall-normal and streamwise components of acceleration changes sign at y+ ≈ 25, and
non-zero skewness continues to be observed up the the channel center. This persistence
of non-zero skewness in acceleration, which is a measure of small scale anisotropy, has
been previously observed in channel flow DNS[78]. Also of note is the difference between
the skewness in ax , ay and the lesser skewness of both the parallel and the perpendicular
components of acceleration throughout the channel width.

5Positive skewness is interpreted as a higher probability of extreme positive events than extreme negative
events. In this case large accelerations away from the wall are more probable than large accelerations towards
the wall.

88



The normalized fourth moment of the acceleration PDF, 〈a4
i 〉/〈a2

i 〉2, is a symmetric
measure of the importance of the extreme events relative to the events close to the mean.
A Gaussian distribution has a flatness of 3, and larger flatness values indicate "fatter
tails"—i. e. a higher probability of extreme events—and/or a "thinner core"—i. e. a lower
probability of events close to the mean. The flatness for the streamwise, wall-normal,
transverse, parallel, and perpendicular components of acceleration is plotted in figure 3.11
(b) and the zoomed in view of the same results directly below. All components show higher
values of flatness than the Gaussian value of 3 (shown in the thick black line), as expected.
This results are in qualitative agreement with previously published DNS results[75, 78],
except in the near-wall region (y+ < 10) where flatness values in excess of 400 have been
reported. Although higher than the other components, the flatness values of the wall-
normal component of the acceleration in the experimental data does not show an very
large peak near the wall, again probably due to a lack of statistical convergence. The parallel
component has the smallest flatness value across the channel, and the parallel component
the largest, although from the pdf in figure 3.9 the large flatness values are a consequence
of a thinner core region of the PDF; the tails of the pdf’s are similar to the other components.
A similar trend was observed by Kim et al[82] for the parallel component of acceleration in
a turbulent jet, where the flatness of this component was found to be large compared to
the streamwise and radial components.

These results may be compared to findings for the parallel and perpendicular compo-
nents of acceleration in HIT (Reλ = 300) from Lévêque and Naso[126]. In HIT a Cartesian
component of acceleration has zero skewness and high flatness6. Lévêque and Naso found
that the parallel component of acceleration is negatively skewed, and the perpendicular
component is not skewed. This is similar to the result shown in figure 3.11 across most of
the channel (y+ > 20), even as the Cartesian components show non-zero skew. The trends
in acceleration flatness also follow those found in HIT: the flatness of the parallel com-
ponent is less than the flatness of the Cartesian component, whereas the perpendicular
component has a slightly higher flatness than the Cartesian component. The agreement
between HIT and the channel flow results regarding the flatness and skewness of paral-
lel and perpendicular acceleration components is notable, considering the significant
differences observed between these two systems vis-à-vis the Cartesian components of
acceleration.

3.3.4 Correlation of acceleration components

The mean correlation between the streamwise and the wall-normal components of accel-
eration across the channel is shown in figure 3.12. This quantity 〈ax ay〉 is analogous to the
Reynolds stress, and like the Reynolds stress is zero in homogeneous isotropic turbulence.
The top two sub-figures show this quantity with appropriate wall-scaling, plotted on a
log-linear scale (left), and a linear-linear scale (right). This correlation approaches zero
approximately midway between the wall and the channel center. If the data closer to the
wall than y+ ≈ 10 is neglected7 then a maximum correlation of 0.25 appears a y+ ≈ 40. This
peak appears in the same location for both the absolute correlation and the correlation nor-
malized by the product of the rms of the two components. At this location the normalized
velocity correlation is also approximately 0.25. The correlation is expected to be zero at
the channel center by symmetry, and the trend observed in the normalized sub-figures at

6The level of flatness depends on Reλ
7The uncertainty around this experimental data is quite high, and the experimental and DNS acceleration

results begin to diverge at approximately y+ ≈ 10
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Figure 3.12: The mean correlation of streamwise and wall-normal components of acceleration
across the channel, plotted in wall scaled variables in linear-log scale(a) and linear-linear scale
(b). The mean correlation of streamwise and wall-normal components of acceleration across
the channel, normalized by the product of the standard deviations in linear-log scale (c) and
linear-linear scale (d).

y+ & 800 is probably a result of the uncertainty with respect the ratio of two values, 〈ax ay〉
and

√
〈a2

x〉〈a2
y〉 that are simultaneously approaching zero.

3.3.5 Contributions of the parallel and perpendicular components of
acceleration

The magnitude of the acceleration is given as

|a| ≡
√

a2
x +a2

y +a2
z (3.10)

As discussed above in section 3.3.2, the acceleration may be decomposed into two orthog-
onal components: a∥ and a⊥, such that

|a| ≡
√

a2
∥ +a2

⊥ (3.11)

For isotropic turbulence the components on the r.h.s. of equation 3.10 are statistically
equal, and the acceleration magnitude may be written as

〈|a|〉 =
〈√

3a2
i

〉
i ∈ 1,2,3 (3.12)
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for any 3-D orthonormal coordinate system. The perpendicular component of acceleration
has two degrees of freedom, so in an isotropic system the acceleration magnitude may be
written as

〈|a|〉 =
〈√

3a2
∥
〉

=

〈√
3

2
a2
∥

〉
(3.13)

The mean square of the parallel and perpendicular components of acceleration are
plotted in figure 3.13 (top), along with the square of the total magnitude. The relative
contribution to the square of the total magnitude by the parallel and perpendicular com-
ponents is shown in the middle sub-figure. This ratio is corrected according to equation
3.13, and re-plotted in the bottom sub-figure.
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Figure 3.13: Top: The mean square of the parallel (red) and perpendicular (blue) components of
acceleration according to the definition given in equation 3.9. Also plotted in the mean square
acceleration magnitude (black). Middle: The mean square parallel and perpendicular components
of the acceleration normalized by the mean square magnitude of acceleration are plotted across
the channel. Note that the mean is taken after the normalization. Bottom: The same ratios plotted
in the middle sub-figure normalized such that 1 is the ratio corresponding to isotropy. This ratio is
also plotted with the x, y , z components of acceleration for comparison.

Figure 3.13 shows a broader peak in the mean square magnitude and perpendicular
component at y+ ≈ 10−20. The location and width of these peaks are consistent with
the results for the acceleration variance in x, y , and z seen in figure 3.8. The parallel
component of acceleration increase monotonically towards the wall. The ratios of the
square of both the perpendicular and parallel acceleration components with square of the
acceleration magnitude indicate a return to isotropy at y+ ≈ 20−30. Closer to the wall the
parallel acceleration component contributes more to the magnitude of acceleration than
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the perpendicular component, relative to the expected isotropic contribution. This is fur-
ther illustrated by the bottom sub-figure in figure 3.13, where the the correct normalization
factor8 allows the direct comparison of components. None of the x, y , or z components of
acceleration converge to the isotropic value of 1, in contrast to the parallel and perpendic-
ular components of acceleration, which converge to isotropy at approximately the same
distance from the wall.

The parallel-perpendicular decomposition of acceleration defined in equation 3.9 may
be written as follows

t̂ = v/|v| (3.14)

b̂ =
a×v

|a×v| (3.15)

where t̂ and b̂ are the unit vectors for the parallel and perpendicular components9 of
acceleration. These projection of these components on the x, y , z reference frame, written
as

a∥ = |a∥|t̂ = |a∥|tx +|a∥|ty +|a∥|tz (3.16)

a⊥ = |a⊥|b̂ = |a⊥|bx +|a⊥|by +|a⊥|bz (3.17)

where for example tx is the projection of the unit vector t̂ in the direction x̂. Plotting the
projections of the parallel component of acceleration (the last three terms in equation 3.16)
and the projections of the perpendicular component of acceleration ( the last three terms
in equation 3.17) shows the organization of these components of acceleration relative the
the geometry of the channel.

Figure 3.14 shows the relative importance of the contributions from the x, y , and z
components of acceleration to the parallel and perpendicular components of acceleration.
In isotropic turbulence these contributions would be statistically equal, i. e. the blue, red,
and black curves for each symbol would collapse onto one curve in figure 3.14. The parallel
component of acceleration (shown in figure 3.14 with the cross symbols) is dominated by
contributions from the streamwise component along the width of the channel, and the
wall-normal contribution is relatively low, consistent with the increasing alignment of the
acceleration with the wall in the near-wall region.

The perpendicular component of acceleration is dominated by the contribution from
the wall-normal component in the near-wall region, and continues to be the largest con-
tribution far from the wall. In other words, on average, the accelerations responsible for
bending the particle trajectory are strongest in the wall-normal direction, significantly
stronger than the these accelerations in the streamwise direction, which is in turn stronger
that these accelerations in the transverse direction. Recall that in the case of the highly
simplified vision of a quasi-streamwise vortex—a helical particle path in which the axis of
the helix is parallel to x, and located at y+ ≈ 20—the perpendicular component of accelera-
tion is constant, and is composed of equal contributions of the ay and az . The results in
figure 3.14 show that while quasi-streamwise vortices similar to this simplified model may
exist they are not dominant in the statistics.

8 The normalization factor is 3 for all components except a⊥, where the normalization factor is 3/2.
9This notation was chosen to be consistent with the Frenet apparatus, in which the direction a×v is called

binormal.
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Figure 3.14: The absolute values of the parallel (crosses) and perpendicular (circles) components of
acceleration are shown, decomposed into their projections on the x̂, ŷ , and ẑ unit vectors.

3.3.6 Acceleration angles

The decomposition of the total acceleration into the magnitude and direction, ai = |a|ei ,
has been considered may many researchers in the context of HIT, and forms the basis of
some Lagrangian stochastic models. In HIT the orientation of acceleration is definition
isotropically distributed, but DNS results from a turbulent channel simulation by Zamansky
et al[3] show significant, wall-distance dependent, deviations from isotropy. Two angles are

Mean flow

Figure 3.15: Definition of the longitudinal (φ) and wall-normal (θ) angles; figure adapted from
Zamansky et al [3].

necessary to determine 3-D orientation; these two angles are defined following Zamansky
et al, and are illustrated in figure 3.15.

The wall-normal angle θ is defined between π/2 (acceleration is oriented perpendicular
to, and pointing away from, the wall) to −π/2 (acceleration is oriented perpendicular to,
and pointing towards, the wall). The PDF of this angle at a variety of distances to wall is
plotted in figure 3.16, which shows strong anisotropy in the orientation of acceleration
near the wall. The experimental data does not show a return to isotropy until y+ = 1000,
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Figure 3.16: PDF of the wall-normal (θ) orientation of acceleration at various distances from the
wall. Colored lines represent experimental data, solid black line the Reτ = 1000 DNS results of
Zamansky et al[3], and dotted lines represent the isotropic distribution. Curves are shifted up by
one decade for clarity.

although the DNS data appears approximately isotropic at y+ = 300. Near the wall the
probability of a small wall-normal angle is significantly elevated relative to isotropy, i. e.
near the wall the acceleration is more often parallel to the wall (θ≈ 0) than perpendicular
(θ≈±π/2). The peak values of the mean acceleration profiles (shown in figure 3.8) are of
approximately equal magnitude, implying that the accelerations approximately parallel to
the wall that are observed more frequently have lower magnitudes (on average) than the
accelerations perpendicular to the wall.

The experimental data is also significantly more positively skewed than the DNS near
the wall. Positive skewness in the PDF of wall-normal angle is interpreted as a higher
probability of acceleration away from the wall, which is consistent with the idea that fast
particles moving towards the wall are being oversampled, as discussed in the previous
section in the context of a bimodal streamwise velocity histogram. These fast particles
having a decreasing wall-normal velocity as they approach the wall, and therefore a a
positive wall-normal component of acceleration.

The longitudinal angle φ measures the relative contributions of the streamwise and
transverse components of the acceleration orientation, and is defined from −π to π, where
φ = 0 ⇒ ex = 1 (acceleration in the direction of the flow). The channel is homogeneous in
the transverse (z) direction, so the statistics are expected to be symmetric about φ = 0. The
PDF of the longitudinal angle φ is plotted in figure 3.17 at various locations in the channel.
The longitudinal angle is observed to be more isotropic than the wall-normal angle, with
an approximate return to isotropy at y+ ≈ 300. There is good agreement between the DNS
and experiments, although the return to isotropy appear to be slightly more pronounced
in the experimental results than in the DNS (e. g. at y+ = 300,600), which is the inverse of
what was found for the wall-normal angle θ.

These trends are further examined by plotting the second moments of these PDF’s,
which (again following Zamansky et al) are plotted in figure 3.18 as the variance of the sine
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Figure 3.17: PDF of the longitudinal (φ) orientation of acceleration at various distances from the
wall. Colored lines represent experimental data, solid black line the Reτ = 1000 DNS results of
Zamansky et al[3], and dotted lines represent the isotropic distribution. Curves are shifted up by
one decade for clarity.

of the two angles θ and φ, normalized by the variance of the isotropic distribution. The
results in figure 3.18 are somewhat puzzling, as a return to isotropy is expected, especially
towards the center of the channel. Approximate isotropy is seen in the DNS results after
y+ ≈ 50, but there is a general drift away from isotropy towards the center of the channel.
Similarly, the experimental results for the longitudinal angle φ show approximate isotropy
after y+ ≈ 50, but in the outer layer a slight drift away from anisotropy. The wall-normal
angle θ remains anisotropic up to the channel center, although a plateau is observed at
approximately the same location as the plateau in φ. This lack of isotropy may be due to
a statistical bias related to binning the Lagrangian data , a bias to which the wall-normal
angle is especially sensitive.
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Figure 3.18: Variances of the sine of the longitudinal (φ) and wall-normal (θ) angles, normalized by
the variance in the isotropic case. DNS at Reτ = 1000 taken from Zamansky et al[3].

3.4 Mixed acceleration-velocity statistics

The time-resolved 3-D measurements of tracer particle trajectories give simultaneous
velocity and acceleration measurements; the mixed statistics in acceleration and velocity
are briefly presented in this section.

The inner product of the acceleration
and velocity A ·V is intuitively understood
as the work done on a fluid particle by the
system: a positive value (A ·V > 0) means
the turbulent system adds kinetic energy
to the fluid particle, and a negative value
(A ·V < 0) means that the fluid particle loses
kinetic energy to the system, either by in-

creasing the kinetic energy of other fluid particles or transforming the kinetic energy into
heat. The quantity A ·V is an intrinsically Lagrangian quantity, and care must be taken in
the extraction of Eulerian statistics and, perhaps especially, their interpretation.

The directly measured mean power 〈A ·V〉 across the channel is plotted in figure 3.19.
The total power (black points) is shown to be local equilibrium at y+ ' 50. This location is
consistent with the results of Kim et al[94] that showed the ratio of production to dissipation
is greater than unity near the wall, and achieves equilibrium at y+ ' 50. The positive and
negative contributions to this mean are also plotted individually on figure 3.19, and show a
peak of the mean positive power at this location, unlike the mean negative power which is
shown to approximately constant in the near wall region.

These single-particle statistics are not enough to fully elucidate the connection be-
tween this Lagrangian power and inherently Eulerian quantities based on spatial velocity
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Figure 3.19: The mean of A ·V across the channel. Also plotted are the mean of the positive values of
A ·V and the mean of the negative values of A ·V.

gradients, such as dissipation. Nevertheless, some insight into the connection between
the measurable single point velocity statistics and the Lagrangian power may be had by
considering the kinematic relation10:

A(x0, t |t0) ·V(x0, t |t0) =

[(
∂U(x, t )

∂x

∂X(x0, t |t0)

∂t
+ ∂U(x, t )

∂t

)
·U(x, t )

]
x=X(x0,t |t0)

(3.18)

=

[(
∂U(x, t )

∂x
U(x, t )

)
·U(x, t )+

(
1

2

∂U2(x, t )

∂t

)]
x=X(x0,t |t0)

(3.19)

=

[(U(x, t ) ·∇)U(x, t )] ·U(x, t )︸ ︷︷ ︸
Convective term

+
(

1

2

∂U2(x, t )

∂t

)
︸ ︷︷ ︸

Local term


x=X(x0,t |t0)

(3.20)

Taking the local term first, using the Reynolds decomposition

1

2

∂U2(x, t )

∂t
=

1

2

∂

∂t
(〈U〉+u)2 (x, t ) (3.21)

=
1

2

∂

∂t
(〈U〉+u)2 (x, t ) (3.22)

=
∂

∂t
〈U(x)〉u(x, t )+ 1

2

∂u2(x, t )

∂t
(3.23)

In the Eulerian frame, i. e. at a fixed point x this local term averages to zero in stationary
turbulence. It is important to note that in the Lagrangian frame this local term does not
necessarily average to zero if t 6= t0. The convective term is similarly developed with the

10Following the development shown in equation 1.9
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Reynolds decomposition, shown more clearly using index notation

Ui (x, t )U j (x, t )
∂Ui (x, t )

∂x j
= (〈Ui 〉+ui )(x, t )(〈U j 〉+u j )(x, t )

∂(〈Ui 〉+ui )(x, t )

∂x j
(3.24)

Expanding the r.h.s of equation 3.24 yields eight terms. After the mean is taken some terms
vanish, and the mean of equation 3.24 is expanded to〈

Ui (x, t )U j (x, t )
∂Ui (x, t )

∂x j

〉
=

〈
∂〈Ui 〉
∂x j

(〈Ui 〉〈U j 〉+ui u j
)〉

+
〈
∂ui

∂x j

(〈Ui 〉u j +ui 〈U j 〉+ui u j
)〉

(3.25)

Using the symmetries of the channel this general equation is further simplified to

〈
Ui (x, t )U j (x, t )

∂Ui (x, t )

∂x j

〉
=

〈
∂〈Ux〉
∂y

(〈Ux〉〈Ux〉+uxuy
)〉

+
〈
〈Ux〉∂ux

∂x j
u j +〈Ux〉∂ui

∂x
ui +ui u j

∂ui

∂x j

〉
(3.26)

The foregoing development leads to an expression for the mean Lagrangian quantity
A ·V at x = x0, t = t0 in terms of Eulerian quantities as

〈A(x0, t0) ·V(x0, t0)〉 =

Mean component︷ ︸︸ ︷
〈Ux〉2

〈
∂〈Ux〉
∂y

〉
+

Production︷ ︸︸ ︷
〈uxuy〉

〈
∂〈Ux〉
∂y

〉
+

〈
〈Ux〉∂ux

∂x j
u j +〈Ux〉∂ui

∂x
ui +ui u j

∂ui

∂x j

〉
︸ ︷︷ ︸

Turbulent shear component

(3.27)

Three of the six terms in equation 3.27 are measurable in the present study: the direct
measure of 〈A·V〉 and the mean shear component terms. The measurement of the turbulent
shear component terms, specifically the instantaneous spatial gradients, require different
measurement techniques. However, the turbulent shear component as a whole may be
inferred from equation 3.27 and knowledge of the other components. The contribution of
the mean and turbulent components as defined in equation 3.27 are plotted in figure 3.20,
which shows very large, opposite signed contributions of the mean component and the
(inferred) turbulent shear component. Comparatively, the production term is very close to
zero. The relative importance of the mean component and production term is unsurprising,
given the profiles of Reynolds stress (figure 3.4) and mean velocity (figure3.20) seen in
section 3.2. F
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Figure 3.20: Mean Lagrangian power across the channel, and the individual components of equation
3.27. Inset: Zoomed in view of same.

3.5 Conclusion

This chapter provides a statistical description of the turbulent channel in a Eulerian frame-
work. Eulerian statistics in velocity, acceleration, and combined velocity-acceleration were
extracted from the database of particle trajectories, and their evolution across the channel
width examined.

A discrepancy between the the mean streamwise velocity profile measured in this
study and other groups was discussed, and considered to be a statistical bias similar to
those seen in LDV measurements. A correction based on the magnitude of the velocity
was applied that provided agreement between the corrected mean velocity profile and
previous measurements. A systematic study to characterize the statistical bias of the
binning procedure should be done, which would allow more precise calculation of error
as well as explicitly justify correction schemes. Apart from this anomaly in the near wall
region, velocity statistics are in agreement with previous work. Of particular interest is
the significant correlation (∼ 0.35) between the streamwise and wall-normal components
of velocity over most of the channel width, and the non-Gaussianity of the higher order
velocity statistics over most of the channel width. Velocity statistics in the turbulent
channel are quite dissimilar from those of HIT, even far from the wall.

Acceleration statistics across the channel are described, both in the typical Cartesian
coordinates and the components parallel and perpendicular to the local instantaneous
velocity. Profiles of the first through fourth moments of acceleration across the channel
show significant anisotropy near the wall. The first and third moments for example, differ
significantly from zero (as expected in HIT) near wall, and even far from the wall continue
to be non-zero. The streamwise and wall-normal components of acceleration are found
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to be non-negligibly correlated across most of the channel (e. g. ∼ 0.1 in the outer layer).
This correlation was also observed in the joint PDFs of these two acceleration components.
A return to isotropy from the near wall region towards the channel center was found for
the Cartesian components of acceleration and the perpendicular/parallel components
of acceleration. The contribution to the acceleration magnitude of each component was
considered in figure 3.13, and was found to be isotropic much closer to the wall (y+ ≈ 30)
for the perpendicular/parallel components than the Cartesian components. The angles
formed by the acceleration vector, were found to be in fairly close agreement with the
results of Zamansky et al[3].

Finally, the inner product of acceleration and velocity, or the Lagrangian power is briefly
considered. This power was shown to be non-zero (i. e. out of local equilibrium) close
to the wall (y+ < 50); closer to the wall the average positive contributions to the power
decrease, while the negative contributions stay relatively constant. Further analysis of this
quantity is left to future work. Of particular interest to the author is the Lagrangian power
conditioned on velocity as suggested by Pumir et al[127], who found that fast particles are
accelerated preferentially. How this redistribution of energy between fluid particles occurs
in the near wall region is an interesting unanswered question. The connection between the
third moment of the Lagrangian power and time-irreversibility was suggested by Mordant
and Xu et al[128]. The degree to which the "more organized" turbulence in the near wall
region has more or less of this measure of time-irreversibility is also an intriguing question.
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Chapter 4

Lagrangian statistics in the turbulent
channel
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I counted till they danced so
Their slippers leaped the town –
And then I took a pencil
To note the rebels down –
And then they grew so jolly
I did resign the prig –
And ten of my once stately toes
Are marshalled for a jig!

Snowflakes, Emily Dickinson



4.1 Introduction

Lagrangian statistics of fluid particles in inhomogeneous turbulence are important to
many research areas, from the modeling dispersion from point sources to a fundamental
understanding of the turbulent boundary layers. This chapter presents the one and two-
time Lagrangian statistics of tracer particles measured in the turbulent channel. The
conditioning of Lagrangian statistics on initial position in inhomogeneous turbulence
produces unintuitive results, for example there is a mean tendency for fluid particle to drift
towards the center of the channel, which at first glance seems to violate mass conservation.
Details regarding how these Lagrangian statistics are calculated is given in section 4.2.
Lagrangian mean positions and velocities are discussed in section 4.3, along with some
predictions from kinematic arguments and Eulerian statistics. Single particle dispersion
in the framework of Taylor, and the limits of these predictions from HIT, is presented
in section 4.4. Finally, the Lagrangian acceleration statistics and Lagrangian timescales
were the subject of an article previously published in Physical Review Fluids, which is
reproduced in section 4.6.

4.2 Conditioning and convergence of Lagrangian statistics

The Lagrangian framework in turbulence contains subtleties that are easily hidden when
discussing stationary homogeneous isotropic turbulence. It is therefore important to
develop explicitly the definitions, assumptions, and methods used in the extraction of
Lagrangian statistics from the measurements of inhomogeneous turbulence. Following the
notation of Monin and Yaglom[12] with slight modifications, the fluid particle trajectory is
given by

X(x0, t |t0) (4.1)

where x0 is in principle an arbitrary label, but is most usefully taken to be the position of
the fluid particle at a given time t0. The expression 4.1 is the position of the fluid particle at
time t that was located at x0 at t0. This may be thought of as condition: X(x0, t |t0) is the
position of the particle at t conditioned by the initial position x0 at time t0. The Lagrangian
velocity is defined simply the time derivative of this position

V(x0, t |t0) ≡ ∂X(x0, t |t0)

∂t
(4.2)

which is equivalent to the Eulerian velocity at the same position and time, i. e.

∂X(x0, t |t0)

∂t
= U (X(x0, t |t0), t ) where U is the Eulerian velocity (4.3)

Statistical homogeneity in the context of turbulence may be defined as the indepen-
dence of the expected value of a variable on position, which is quite simple in the Eulerian
framework, e.g.

∂〈U(x, t )〉
∂x

= 0 (4.4)

and similarly for stationarity
∂〈U(x, t )〉

∂t
= 0 (4.5)

Eulerian and Lagrangian quantities coincide at t = t0, so Eulerian stationarity implies that
explicit dependence on t0 may be dropped, and the time in Lagrangian statistics may be
represented simply as the time lag τ = t − t0.
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These properties of homogeneity and stationarity may be translated directly to the
Lagrangian velocity using the relationship between the Lagrangian velocity and Eulerian
velocity shown in equation 4.3:

∂〈U(x, t )〉
∂x

= ∂

〈
∂X(x0, t |t0

∂t

〉
/∂x = 0 (4.6)

∂〈U(x, t )〉
∂t

= ∂

〈
∂X(x0, t |t0)

∂t

〉
/∂t = 0 (4.7)

i. e. in Lagrangian statistics in stationary homogeneous turbulence are independent of
initial position and initial time. This explanation glosses over the finer points of this proof,
which was carefully worked out by Lumley[129]. One of the practical consequences of
equations 4.6-4.7 is that if a turbulent flow is stationary and homogeneous in the Eulerian
sense, then all Lagrangian measurements may be used in the calculations of Lagrangian
statistics without reference to their initial position or their starting time.

In the context of idealized channel flow (which is achieved experimentally to good
approximation, as discussed in section 2.1.3) there is stationarity and a single dimension
of statistical inhomogeneity:

∂〈U(x, t )〉
∂t

=
∂〈U(x, t )〉

∂x
=
∂〈U(x, t )〉

∂z
= 0,

∂〈U(x, t )〉
∂y

6= 0 (4.8)

Equation 4.8 has two relevant consequences: 1) Lagrangian statistics must be conditioned
by y , the distance to the wall, and 2) Lagrangian statistics are not stationary, despite the
stationarity of the flow in the Eulerian sense. These two consequences are discussed below
in detail.

Spatial dependence of Lagrangian statistics

The symmetries of channel flow allow the reduction of the conditioning by initial position,
e. g.,

〈V(x0,τ)〉→ 〈V(y0,τ)〉 (4.9)

In practice this condition must be approximate, i. e., trajectories may be included in the
calculation of a given statistic if their initial wall-normal positions are approximately equal:

〈V(y0,τ)〉→ 〈V(y0 ±∆Y/2,τ)〉 (4.10)

The above results in a binning of trajectories based on their distance from the wall at
an arbitrary time t0, which is illustrated in figure 4.1. These wall-distance bins impose
spatial averaging over spatially inhomogeneous results, and only justified in the limit of
small spatial inhomogeneities on the scale of the∆Y. The width and distribution of these
wall-distance bins is a choice: large wall-distance bins include more trajectories and are
thus more statistically converged, but at the expense of increasingly unjustified spatial
"smoothing". For the results presented in this thesis the wall-distance bins were typically
taken to be∆Y = 25 wall-units near the wall (the area in which spatial gradient are high)
and ∆Y = 75 wall-units in the bulk flow. Some results, such as the PDFs of acceleration
shown in figure which changes significantly between 0−25 wall-units, were obtained using
thinner wall-distance bins—trading statistical convergence for spatial resolution.

Another practical consideration is the manner in which the trajectories are binned.
There are several possible strategies, all of which attempt to find a balance between statisti-
cal convergence and statistical bias. In one of the few experimental Lagrangian studies of
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Figure 4.1: Illustration of trajectory binning procedure and the calculation of Lagrangian statistics

inhomogeneous turbulence[79] Walpot and coworkers use a binning strategy similar to
that illustrated in figure 4.1, which is to start considering a trajectory to be in a given bin
at the first position within the bin, and allow counting of the trajectory more than once
if the trajectory leaves and then re-enters the bin. This method as described favors the
calculation of Lagrangian statistics in positive time (t = t0 +τ) , but may be easily reversed
in time to calculate Lagrangian statistics at negative times (t = t0 −τ). This method was
found to produce a bias in Lagrangian statistics at short times, especially in the bins near
the wall. This bias is illustrated in figure 4.2; briefly, a bias occurs because if we consider t0

to be the first point in which a particle trajectory enters a bin, and particles entering the
bin are statistically different from those that have been in the bin for a longer time, then
the statistics will be biased by the history of the trajectory before t0. For example, in the
bin closest to the wall particles arrive in the bin with a negative wall-normal velocity. We
set t0 at the time the particles cross the edge of the bin, these particles then continue to
move toward the wall. This is strategy is illustrated by the blue line in figure 4.2, and the
resulting negative dip at short positive times is an artifact of the binning strategy.

A more conservative approach from the perspective of minimizing bias is to bin the
trajectory based on a central position, use the same t0 for positive and negative time
calculation. This strategy is illustrated in figure 4.2 by the green line (positive time-lag)
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Figure 4.2: Lagrangian mean wall-normal position for two different binning strategies. Lines on the
plot at right are color-coded with the corresponding binning strategy illustrated to the left.

and the black line (negative time-lag). The bias at small positive times is not seen with this
strategy. There is little difference between the two strategies for negative times, reinforcing
the idea that the bias comes from high momentum particles coming into the measurement
volume.

While the more conservative approach minimizes bias, it also effectively cuts in half the
effective trajectory. Lagrangian statistics in the channel flow are already quite limited in
terms of maximum time-lag due to the limited residence time of the particle. The number
of trajectories up to a given time-lag τ for the two strategies, using a typical distribution
of wall bins, is shown in figure 4.3. The steep roll-off of the number of trajectories at a
given time-leg is an effect of the limited residence time, which is shorter in the areas of the
channel with high mean flow (y+ > 100). The optimal binning strategy depends on the
statistics being considered and the size and distribution of the bins (for example large bins
makes the crossing of a bin boundary less probable). Binning strategies will be discussed
further in the context of specific results.

Non-stationarity of Lagrangian statistics

Non-stationarity is concisely stated for an arbitrary Lagrangian statistic χ as

χ(y0,τ1) 6= χ(y0,τ2) unless τ1 = τ2 (4.11)

Lagrangian correlations in HIT are typically normalized by the variance, e. g. the autocor-
relation of acceleration is given as

〈a(0)a(τ)〉
〈a2〉 where a is a component of the acceleration vector a (4.12)
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Figure 4.3: Number of tracer particle trajectories of length τ+. Subfigure (a): Number of trajectories
using conservative binning strategy (t0 in the middle of the trajectory) . Subplot (b): Number of
trajectories using the less conservative strategy (t0 is the first position in the bin).

which implicitly assumes that that the acceleration variance does not change between
t = 0 and t = τ. If there is a mean displacement in the wall-normal direction, then this
is no longer a valid assumption: in general the mean particle position 〈y(0)〉 6= 〈y(τ)〉, so
the particle samples a different region of the flow where 〈a(0)〉 6= 〈a(τ)〉. Equation 4.12 is
properly adapted for the turbulent channel is

〈a(y0,0)a(y0,τ)〉√〈a(y0,0)2〉√〈a(y0,τ)2〉
(4.13)

A broader consequence is that Lagrangian single-time statistics do not equal Eulerian
statistics, for example in the channel

〈Uy (y0, t )〉 = 0 but in general 〈V(y0,τ)〉 6= 0 except in the case where τ = 0 (4.14)

These single-time Lagrangian statistics are discussed in depth in the following section.

4.3 Short-time models of Lagrangian statistics from Eule-
rian statistics

What is the consequence of Eulerian statistical inhomogeneity on the Lagrangian statistics?
As discussed by Tennekes[14], even in stationary turbulence the Lagrangian statistics of
a fluid particle wandering in inhomogeneous turbulence are not stationary. An intuitive
example of this phenomenon can be had by making the following thought experiment:
In a turbulent channel flow dye is injected very close to the wall. This dye plume grows
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as it is being swept down the channel, eventually filling the entire channel width. If the
dye is considered to approximately follow fluid particles1, the plume can be considered to
be an ensemble of fluid particle trajectories acted on by turbulent diffusion. If the mean
trajectory is calculated (e. g., by methods like that illustrated in figure 4.1) the result is a
mean path from the wall toward the channel center, implying a non-zero mean wall-normal
Lagrangian velocity and non-stationarity of Lagrangian statistics.

This intuitive result can expressed mathematically using the labeling theorem, which
gives

Vi (x, t )−Ui (x, t ) =
∫ t

t0

Ui (x, t ′)
∂

∂ai
Vi (x, t ′)d t ′ (4.15)

where x is the particle position at time t0 and ∂/∂ai is a spatial derivative of the starting
point x at t0. The derivation of equation 4.15 is presented by Bennett[130] and is not repro-
duced here. Equation 4.15 is true for individual trajectories and instantaneous Eulerian
velocities, and if the ensemble average is taken the r.h.s does not generally equal zero in
inhomogeneous turbulence.

For incompressible flow (∂uk /∂xk = 0) , equation 4.15 may be written as

Vi (x, t )−Ui (x, t ) =
∂

∂ak
Ki k (x, t ) (4.16)

Ki k (x, t ) =
∫ t

t0

Uk (x, t ′)Vi (x, t ′)d t ′ (4.17)

Using equation 4.3 Ki k may be written in terms of the Eulerian velocity along the particle
path

Ki k (x, t ) =
∫ t

t0

Uk (x, t ′)Ui [X(x, t ′), t ′]d t ′ (4.18)

Looking at the component i = y and using the Reynolds decomposition, recalling that
Uy = Uz = 0 over the whole channel:

〈Vy (x, t )〉 = Ux(x, t )

〈
∂

∂ax

∫ t

t0

uy [X(x, t ′), t ′]d t ′
〉
+

〈
∂

∂ax

∫ t

t0

ux(x, t )uy [X(x, t ′), t ′]d t ′
〉

+
〈

∂

∂ay

∫ t

t0

uy (x, t ′)uy [X(x, t ′), t ′]d t ′
〉

+
〈

∂

∂az

∫ t

t0

uz(x, t ′)uy [X(x, t ′), t ′]d t ′
〉

(4.19)

The spatial gradients in the starting point must be zero on average in the streamwise and
spanwise directions (see discussion above), so equation 4.19 is simplified to

〈Vy (x, t )〉 =

〈
d

d ay

∫ t

t0

uy (x, t ′)uy [X(x, t ′), t ′]d t ′
〉

(4.20)

Equation 4.20 is difficult to interpret, but we can observe that the integrand resembles an
Eulerian velocity correlation at a distance r(t) = X(x, t)−x. Inhomogeneous turbulence
implies inhomogeneous Eulerian velocity correlations, for example let r = y0 where y0 is
some arbitrary distance in the inertial range η< y0 < l in the wall-normal direction, then
in general

〈uy (y)uy (y + y0)〉 6= 〈uy (y)uy (y − y0)〉 (4.21)

1 In high Reynolds number flow where the where the fluid viscosity is large compared to the diffusivity of
the dye (Sc À 1) molecular transport is small compared to turbulent transport.
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Taking an approximation of equation 4.20 at some short time∆t = t − t0

〈Vy (x, t )〉 =

〈
d

d ay
[uy (x, t0 +∆t )uy (x+∆x, t0 +∆t )]∆t

〉
where∆x = X(x, t +∆t )−x

(4.22)
In the limit of∆t = 0 the mean Lagrangian velocity also goes to zero (as expected), but at

short times such that the Eulerian velocities at the two positions x and x+∆x remain highly
correlated one can approximate the Lagrangian velocity as the mean Eulerian gradient2 of
the variance of the wall-normal component of the Eulerian velocity

〈Vy (x, t )〉 ≈ d

d y
〈u2

y (x)〉∆t for 0 <∆t < tl i m (4.23)

where tl i m is a short time with respect to the correlation of uy (x, t0 +∆t ) and uy [X(x, t0 +
∆t ), t0 +∆t ].

Figure 4.4 applies the approximation shown in equation 4.23 for the Lagrangian mean
wall-normal velocity 〈Vy (τ)〉 to experimental results. Also shown is the Eulerian profile of
the variance of the wall-normal component of velocity that used to make the approxima-
tion. The short-time kinematic approximation works well for short negative times, slightly
less well for positive times, and diverges significantly at longer times, especially for those
mean velocities with initial positions close to the wall.

The same logic used in the derivation of equation 4.23 may be applied to the streamwise
component of equation 4.17, giving the approximation

〈Vx(x, t )〉−〈Ux(x)〉 ≈ d

d y
〈ux(x)uy (x)〉∆t for 0 <∆t < tl i m (4.24)

This estimate is compared to the measured Lagrangian mean streamwise velocity in figure
4.5. The estimate is found to be a poor match for the data close to the wall, although the
trend is approximately correct. This lack of agreement is not surprising given the large
change in the Eulerian mean streamwise velocity profile close to the wall, which has a
tendency to magnify small errors in 〈Vx −Ux〉. The difference between estimate and data
in the outer layer (green line) is seen to be asymmetric in time, for reasons unknown.

The foregoing development was purely kinematic, as the equation 4.15 derives from
Lagrangian kinematics. Dynamical insight into the difference between mean Lagrangian
and Eulerian velocities ( sometimes called generalized Stokes drift[130]) is found by taking
the mean of the incompressible Navier-Stokes equation 1.2, which may be written as〈

DUi

Dt

〉
=

〈−1

ρ

d p

d xi
+ν d 2Ui

d x j d x j

〉
(4.25)

The l.h.s of the above equation is the material derivative, which is identically the mean
Lagrangian acceleration dVi /d t at τ = 0.〈

dVi (x,τ)

d t

〉 ∣∣∣∣
τ=0

=
−1

ρ

d〈p(x)〉
d xi

+νd 2〈Ui (x)〉
d x j d x j

(4.26)

Considering the wall-normal component i = y where 〈Uy〉 = 0, equation 4.26 reduces to〈
dVi (x,τ)

d t

〉 ∣∣∣∣
τ=0

=
−1

ρ

d〈p(x)〉
d xi

(4.27)

2Assuming here that ∇〈 f 〉 = 〈∇ f 〉, see Pope[10] p. 72
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Figure 4.4: Subfigure (a): The Eulerian profile of the mean wall-normal velocity variance 〈u2
y (y)〉

across the width of the channel. The slope of this profile∆〈u2
y 〉/∆y ≈ d〈u2

y 〉/d y for three selected

wall-bin locations is also shown—two between the wall and the peak of 〈u2
y 〉 and the third on the

other side of the peak. Subfigure (b): Shows the Lagrangian mean wall-normal velocities 〈Vy (y0,τ)〉
from these three selected wall-bins as a function of the time lag τ. The estimates of d〈u2

y 〉/d y

taken from (a) are used to calculated the estimations 〈Vy (y0,τ)〉 ≈ τd〈u2
y 〉/d y for small τ. Small

but non-zero values of 〈Vy (y0,0)〉 (i.e. Eulerian velocity) is seen for bins close to the wall. These
velocities are likely due to binning biases, as the are greater near the wall. The estimates shown
here were adjusted such that they match the experimental results at τ = 0.
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Figure 4.5: Mean difference between Lagrangian and Eulerian streamwise velocity at three locations
in the channel. Estimates from equation 4.24 are also shown.

Equation 4.27 shows that in a channel flow the mean acceleration is inversely proportional
to the wall-normal pressure gradient. This pressure gradient may be related to other
Eulerian quantities by the Reynolds stress equation which, following the derivation and
notation of Pope[10](pp.83-86) may be written as

ρ
∂〈Ui 〉
∂t

+ρ〈U j 〉∂〈Ui 〉
∂x j

=
∂

∂x j

[
µ

(
∂〈U j 〉
∂xi

+ ∂〈Ui 〉
∂x j

)
−〈p〉δi j −ρ〈ui u j 〉

]
(4.28)

Regarding the wall-normal component, again in the context of channel flow where 〈Uy〉 = 0,
equation 4.28 reduces to mean force balance between the pressure-gradient force and the
Reynolds-stress-gradient force

−1

ρ

∂〈p〉
∂y

=
d〈uy uy〉

d y
(4.29)

The force balance(or more properly acceleration balance) in equation 4.29 is in average
equilibrium at all positions in the channel; the mean Eulerian wall-normal component of
velocity is zero

(〈Uy〉 = 0
)
. Equations 4.29 and 4.27 may be combined, where the dependen-

cies of these terms are reintroduced〈
dVy (x,τ)

d t

〉 ∣∣∣∣
τ=0

=
d〈uy uy〉

d y
(x) (4.30)

This Eulerian acceleration balance may be written as〈
Vy (y0,τ)

〉−〈
Vy (y0,0)

〉
= lim
τ→0

τ
d〈uy uy〉

d y
(x) (4.31)
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Equation 4.31 suggests an iterative approach that may be solved numerically for the mean
Lagrangian wall-normal velocity 〈V(y0, t−t0)〉 at a given time t = N∆t using a given Eulerian
wall-normal-velocity-variance profile as

〈
V[y0,N]

〉
=

yN+1 − yN

∆t
=

N∑
i =0
∆t

d〈uy uy〉
d y

(yi ) (4.32)

The above equation is more powerful than the estimation derived from purely kinematic
arguments, 〈Vy (x, t )〉 ≈ d

d y 〈u2
y (x)〉∆t (equation 4.23), which is only valid for small values of

∆t . Mean Lagrangian positions and velocities calculated with equations 4.32 are presented
in figure 4.6, along with measured results. Equation 4.32 is strictly justified only at the first
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Figure 4.6: Subfigure (a): Mean Lagrangian wall-normal positions
(〈y(t0,τ)〉)− y0 for four initial

positions. Subfigure (b): Mean Lagrangian wall-normal velocity
(〈Vy (y0,τ)〉) for four initial posi-

tions. Shown in dotted lines in both (a) and (b) are predictions calculated from equation 4.32 using
the measured Eulerian profile of wall-normal velocity variance.

time step. For the following time steps errors accumulate. The reason for these errors is
that the mean Eulerian acceleration field at the mean particle position yi is, in general, not
equal to the mean acceleration seen by the particles: 〈a(y0,τ)〉 = 〈dV(y0,τ)/d t〉. The mean
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Figure 4.7: Illustration of the limits of the model shown in equation 4.32.

Lagrangian position is the the double integral in time of the mean acceleration seen by the
particles

〈y(y0,τ)〉 =
∫ τ

0

∫ τ

0
〈a(y0,τ′)〉dτ′dτ′′+ y0 (4.33)

The model in Equation 4.32 is accurate as long as

〈a(y0,τ)〉 = 〈a(ymodel (τ))〉 (4.34)

the mean Lagrangian acceleration is the mean of the accelerations seen be the all of the
particles at time τ

〈a(y0, i )〉 =
1

N

N∑
j

a(y j
i ) (4.35)

If the distribution of the particles is such that the mean acceleration seen by the particles
at time τ is equal to the mean acceleration at the mean location at time τ than the model
is accurate. This condition holds for example when the acceleration field is constant over
the region in which the particles are distributed.

Equation 4.32 is in good agreement with the measurements of Lagrangian mean wall-
normal position and velocity. Limits in the resolution of the the spatial gradient of velocity
create errors which are compounded in time, which explains the error increasing for larger
time-lags. There is error related to the spatial smoothing as well: the spatial gradient of
velocity variance is large near the wall, and wall-bins encompass significantly different
values of this gradient.

4.4 Single-particle dispersion

Single-particle dispersion is defined as

∆Xi (y0,τ) ≡ 〈[Xi (y0,τ)−Xi (y0, t0)]2〉 (4.36)
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and is a measure of the dispersion of particles from a common release point y0 after a
time-lag τ. The residence time of the particles in the measurement volume is small, so
only the short-time dispersion is available from the present study. Only the wall-normal
dispersion statistics are presented here. Figure 4.8 shows wall-normal dispersion as a
function of time for six locations in the channel. Two locations are in the buffer layer
(y+ = 0−10, y+ = 10−20), two are in the log layer(y+ = 50−100, y+ = 150−200), and two
are in the outer layer, or central region (y+ = 500−550, y+ = 950−1000). The wall-normal

Figure 4.8: Mean square dispersion in the wall-normal direction from six locations in the channel.

dispersion is not monotonic with wall distance: the dispersion is greatest for the release
points y+ = 150−200 and y+ = 500−550 (which are very similar over all measured time-
lags). The wall normal dispersion plotted in log scale seems to show a quadratic scaling,
except perhaps for the release point closest to the wall. This quadratic scaling is expected
at short time-lags in HIT from Taylor’s prediction of single-particle dispersion, as discussed
in section 1.3. The main result is rewritten here for convenience:

〈Xi (x0, t |t0)X j (x0, t |t0)〉 = 2(t − t0)
∫ t

t0

σi j (τ)ρi j (τ)dτ−2
∫ t

t0

τσi j (τ)ρi j (τ)dτ (4.37)

where
σi j (τ) ≡ 〈Vi (x0, t0|t0)〉〈V j (x0, t0 +τ|t0)〉 (4.38)

For short time lags τ¿ TL,i j the velocity is highly correlated so ρi j ≈ 1, also σi j (τ) ≈σi j (0).
Using these approximations in equation 4.37 gives

〈Xi (x0, t |t0)X j (x0, t |t0)〉 ≈ τ2σi j (0) for τ¿ TL,i j (4.39)
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This Taylor scaling is examined in more detail in figure 4.9, which plots the the wall-
normal dispersion normalized by the variance of the wall-normal component of velocity
and the time-lag squared. In HIT σy y (τ) = 〈u2

y〉, which would result in a normalized
dispersion equal to one at short time-lags. A short plateau at ≈ 1.3 is seen in figure 4.9

(a) (b)

Figure 4.9: Subfigure (a): Mean square dispersion in the wall-normal direction from six locations
in the channel, normalized by the velocity variance and the time-lag squared. This quantity should
be unity at short time-lags (τ¿ TL) in HIT according to Taylor dispersion. Subfigure (a): The same
normalized dispersion shown in (b), but the horizontal axis is rescaled such that each curve is
plotted against the fraction of the Lagrangian velocity integral scale at the release location. TL was
not available for y+ = 950−1000, so the dispersion for that release point is not shown.

(a) at short times for the three release positions farthest from the wall, after which the
normalized dispersion decreases with time. Recall that this scaling holds (in HIT) in the
limit of τ¿ TL, but the Lagrangian velocity scale is not equal at all release positions. As
will be shown later in this chapter (section 4.10) TL increases monotonically with distance
to the wall. In order to have a fair comparison of the dispersion from various release points,
the normalized dispersion is plotted in τ/TL, shown in subplot (b) of figure 4.9. A plateau
is observed at short time-lags (τ/TL /0.25) for the three release points in the log and outer
layers. The dispersion from the release points in the buffer layer show no such plateau.
Such behavior may be explained by noting that for release points very close to the wall
there is significant mean displacement away from the wall, even at short time-lags (see
figure 4.6). The velocity variance also changes significantly between y+ = 0−50 (see figure
4.4). These observations suggest that σy y (0) (i. e. 〈u2

y〉) is not a good estimate for σy y (τ)
even at short times, and the full integrals in equation 4.37 must be considered.

The time derivative of the dispersion, also called the diffusivity, is directly modeled in
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Figure 4.10: Subfigure (a): Rate of dispersion in the wall-normal direction for six locations in the
channel. Subfigure (b): Rate of dispersion in the wall-normal direction for six locations in the
channel normalized by the velocity variance at the release location and the Lagrangian velocity
timescale.

Langevin-type models (see section 1.3). Taylor theory gives

d

d t
〈Xi (x0, t |t0)X j (x0, t |t0)〉 = 2

∫ t

t0

σi j (τ)ρi j (τ)dτ (4.40)

Again, the velocity variance may be taken out of this integral in HIT. Figure 4.10 (a) shows
this dispersion rate plotted against the time-lag. The wall-normal diffusivity increases
with time-lag for all locations. Also shown is the diffusivity normalized by the Lagrangian
velocity timescale and the velocity variance at the release point, and rescaled with TL in
the manner described above. Scaled in this manner the diffusivity is expected to approach
unity after τ> TL, as the integrand in equation 4.40 is the velocity autocorrelation. This
plateau behavior is seen for the release points in log layer (y+ = 50−100, y+ = 150−200),
but the residence time of the particles in the measurement volume is insufficient to see
this plateau for the release points in the outer layer.

4.4.1 Time-evolution of the PDF of particle position

The mean square particle displacement over time considered above is the variance of the
particle position PDF. The variance of this PDF was characterized above, in the framework
developed by Taylor. Unlike in HIT the dispersion of particles from a point source in
the channel flow results in highly non-Gaussian PDFs of particle position. This non-
Gaussianity is not captured by the variance, so it is instructive to consider the PDFs of
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Figure 4.11: PDFs of wall-normal tracer particle position at t = t0, and three subsequent times
(black lines). The particle "release point" is y+0−10. Left column: PDF of the wall-normal position
of tracer particles conditioned on having velocities in one of the four quadrants defined in the
legend. Right column: PDF of the wall-normal position of tracer particles conditioned on having
accelerations in one of the four quadrants defined in the legend.

particle position directly. The time evolution of the PDFs of wall-normal position are
presented below for two locations: one in the buffer layer and one in the log layer. Also
shown are the PDFs conditioned on the quadrants of velocity and acceleration, i. e.

PDF(y(y0,τ)|Qv ) and PDF(y(y0,τ)|Qa) (4.41)

where the quadrants Qv and Qa are defined in figures 4.11-4.12.
Figure 4.11 shows the PDF of wall-normal position at the "release time" t = t0 and

three subsequent times: 1, 5, and 10 times the local Kolmogorov timescale τη. Notice
that this is not dispersion from a point-source: the finite width of the initial release point
(y+ = 0−10) is seen in the PDF of wall position at t = t0. Homogeneous distribution of
the particle position at t = t0 is not observed; the particles are seen to be clustered close
to the y+ = 10 edge of the bin. This is in part a consequence of the bias found in the
discussion of Eulerian velocity statistics in section 3.2. After one Kolmogorov time the
particles have dispersed very little towards the center of the channel, but have dispersed
significantly towards the wall. This dispersion towards the wall seems to be related to
particles arriving in the bin with momentum towards the wall; most of the particles in
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the PDF at t/τη = 0 and t/τη = 1 are in the velocity quadrant 4, i. e. they have a velocity
towards the wall and in the streamwise direction. Most of these particle are in acceleration
quadrant 2 (i. e. they are slowing down in the streamwise direction and slowing down
as they approach the wall ) which is also supports the idea that these faster particles are
arriving with momentum in the bin and slowing as they approach the wall. At later times,
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Figure 4.12: PDFs of wall-normal tracer particle position at t = t0, and three subsequent times (black
lines). The particle "release point" is y+100−150. The Lagrangian velocity timescale at this location
is T+

L = 33. Left column: PDF of the wall-normal position of tracer particles conditioned on having
velocities in one of the four quadrants defined in the legend. Right column: PDF of the wall-normal
position of tracer particles conditioned on having accelerations in one of the four quadrants defined
in the legend.

τ/τη = 5−10 the distribution shape stabilizes, with a long tail growing towards the channel
center. The Kolmogorov velocity scale is small at this location in the channel, T+

L ≈ 7, so
these PDFs are at times in which the diffusivity is constant in HIT. The PDFs conditioned
on the quadrants of acceleration show that this initlal dominance of the PDF by those
particles with accelerations in Qa

2 is weakened over time, as it approaches equilibrium with
Qa

3 . The mean streamwise component of acceleration is negative in this location, so the
second and third quadrants of acceleration are expected to dominate in the PDF.

The time evolution of the PDF of wall-normal position from a release point in the
log layer (y+ = 100− 150) is shown in figure 4.12. At the release time the particles are
approximately homogeneously distributed, as expected. One Kolmogorov timescale after
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the release time, particles with negative wall-normal velocities are more probable on the
right edge of the bin, and particles with positive wall-normal velocities are more probable
on the left edge of the bin. This behavior is consistent with the bias illustrated in figure
4.2: setting the initial time t0 when the particle enters the bin creates a bias near the edges
of the bin. After five Kolmogorov timescales, which at this location is slightly more than
one Lagrangian velocity timescale, the PDF appears close to Gaussian, and the particles
have not yet reached the wall. The PDFs conditioned on velocity quadrants show that the
particles that have dispersed towards the wall have negative wall-normal velocities, and
the particles that have dispersed towards the center have positive wall-normal velocities,
which is expected. Less intuitive is why the opposite signed quadrants (Q2v and Q4v ) are
more represented in the PDF than same-signed quadrants (Q1v and Q3v ). This is an effect
of the Reynolds stress: figure 3.4 shows that the fluctuating streamwise and wall-normal
components of the velocity are negatively correlated to ≈ 0.3 in this location in the channel.

4.5 Conclusion

Lagrangian statistics in inhomogeneous turbulence must be conditioned on initial posi-
tion and is non-stationary. Consequences of two different binning strategies were seen
in mean Lagrangian trajectories and the the conditional PDFs of particle position. Sta-
tistical bias at short times must be balanced with statistical convergence at long times.
Inhomogeneity creates differences between mean Eulerian velocity and mean Lagrangian
velocity. Kinematic development allowed the estimation of mean Lagrangian velocity at
short times, and a simple dynamical argument allow a similar prediction. Measurement of
the wall-normal dispersion was reported for several locations in the channel. Taylor scaling
of τ2 and a HIT predictions for the diffusivity were found to hold approximately even
very close (y+ = 50−100, the beginning of the log layer) to the wall. PDFs of wall-normal
particle position at three time-lags after the "release time" were considered in the buffer
layer and in the log layer. In the log layer the PDF is approximately Gaussian after one
Lagrangian timescale and particles have not reached the wall. This suggests the dispersion
acts in a manner similar to that of HIT until the presence of the wall is felt. These PDFs
were conditioned on the quadrants of velocity and acceleration, which clearly show the
negatively correlated components of velocity.

4.6 Physical Review Fluids article

Some of the results described in this thesis regarding Lagrangian correlations of acceler-
ation and their associated time scales were previously published in the journal Physical
Review Fluids, in an article written in collaboration with Juan Ignacio Polanco, Ivana
Vinkovic, and Nicolas Mordant. Instead of rewriting this article it is reproduced here as it
appeared in the journal. The section, figure, and reference numbering have been adapted
to the format of this thesis, specifically the references in the paper are found in the main
reference section of this thesis. Complementary results, especially Lagrangian correlations
of acceleration and velocity that were not included in this paper may be found in appendix
A.2.
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4.7 Introduction

The Lagrangian study of fluid particle trajectories is a natural first step in predicting
the transport of components that are passively entrained by the flow such as chemi-
cal/radioactive pollution (passive scalars), aerosols (with small inertia) or the mixing of
components prior to combustion. Indeed, in many cases the Péclet number is very large
so that most of the statistical properties of scalar dispersion are directly related to that of
the dispersion of fluid particles (except of course at the smallest scales at which molecular
diffusion plays an ultimate role that depends on the Schmidt number). Despite advances
in computational power and resources, direct numerical simulations (DNS) are still out
of reach in practical situations. Thus, an efficient modeling is required to obtain reliable
predictions. Due to the random nature of turbulence, it is tempting to develop stochastic
models that could be used for simulations with an average or large-scale knowledge of the
flow. A growingly popular method is Large Eddy Simulation (LES) in which only the largest
scales of the turbulence are resolved whereas the small scales of the turbulent spectra are
modeled [131]. Various classes of models can be used for the unresolved part of the flow,
and Lagrangian stochastic subgrid models can be developed for such simulations as used
in combustion for instance [132, 3]. An efficient model would also be useful to forecast the
dispersion of pollution from localized sources (e.g. industrial accident) using coarse grid
meteorological predictions.

In the context of homogeneous and isotropic turbulence (HIT), 1D Lagrangian stochas-
tic models have been developed as variations of the Langevin equation, i.e. modeling the
velocity v of a fluid particle as a Markovian process [54]:

d v = − v

TL
d t +

(
2σ2

TL

)1/2

dW(t ) (4.42)

with TL the Lagrangian integral time scale, W(t) a Wiener process and σ2 the velocity
variance. Due to the absence of correlations between velocity components this equation is
1D. It is so strongly constrained by symmetries and the input from the Kolmogorov 1941

theory that it involves only one parameter TL = 2σ2

C0ε
(with ε the average turbulent energy

dissipation rate per unit mass and C0 a universal constant). This approach incorporates
naturally Taylor’s classic result [50] of long term turbulent diffusion of a single particle.
This equation includes neither the dependency on the Reynolds number nor intermittency.
Concerning the former point, this simple framework (equation 4.42) has been extended by
[38] to include finite Reynolds number effects. The model is now a second order stochastic
equation that models the acceleration and no longer the velocity:

d a = −α1ad t −α2

∫ t

0
a(s)d sd t +

√
2α1α2σ2dW(t ) . (4.43)

Parameters α1 and α2 are two inverse time scales related to the Kolmogorov time scale
τη =

p
ν/ε and the integral Lagrangian time scale TL. The Reynolds number thus appears

as the ratio of the two time scales. At very high Reynolds number, the Kolmogorov 1941
theory predicts that the ratio TL

τη
= 2Reλ

C0
p

15
(with Reλ the usual Taylor-scale Reynolds number).

Sawford [38] suggested an empirical formula estimated from DNS at moderate Reλ given
by:

TL

τη
=

2Reλ

C0
p

15
(1+7.5C2

0Re−1.64
λ ). (4.44)

This model remains Gaussian at all scales and thus does not include any intermittency ef-
fect. Moreover, it remains unidimensional with no interdependency between acceleration
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(or velocity) components. Real flows as encountered in nature (atmospheric boundary
layer) or in industrial applications (pipes, mixers, combustion chambers. . . ) can rarely be
considered as homogeneous and isotropic, notably due to non-zero average shear and
wall-confinement. [55] showed that a homogeneous, anisotropic Langevin-type stochastic
model should include the time scales associated with the auto- and cross-correlations of
the acceleration and velocity components.

The last twenty years have seen the development of experimental techniques and DNS
capabilities that have allowed the direct simultaneous observation of the acceleration, ve-
locity, and position of fluid particles, mostly focused on HIT. They showed that acceleration
statistics are strongly non-Gaussian (intermittent) [68]. Modelling such features requires
to further increase the dimensionality of the stochastic models in the framework of the
non extensive statistical mechanics [67, 133, 134] or to use a non-Markovian model [70]. In
both cases, inspired by the Kolmogorov-Obukhov 1962 theory, dissipation (that appears in
the magnitude of the noise in the stochastic equations) is assumed to be itself a stochastic
variable and fluctuates with a long time scale comparable to TL. Thus, the stochastic
equations involve multiplicative noise that make their developments much more involved.

Data concerning more realistic flows are scarce [75, 135, 63, 136, 73, 64, 77]. Complex
models of inhomogeneous and anisotropic turbulence are weakly constrained by sym-
metries or scaling considerations and thus require significant experimental or numerical
input. Del Castello & Clercx [136] studied anisotropic turbulence affected by rotation which
remains quite far from realistic flows. Walpot et al. reported some Lagrangian statistics
of velocity in the circular pipe flow and their incorporation in stochastic modeling but no
acceleration data [63]. Gerashenko et al. [73] studied the case of inertial (heavy) particles
in a boundary layer but not the case of the Lagrangian tracers. Chen et al. [135] provided
Eulerian information on the acceleration in a turbulent channel flow but did not discuss
the Lagrangian dynamics. Choi et al. [75] report a numerical analysis of the Lagrangian dy-
namics of acceleration in a turbulent channel flow but their Reynolds number is relatively
low and they discuss neither the coupling between acceleration components nor the time
scales. This article reports small scale-resolved Lagrangian experimental measurements in
a statistically stationary, high aspect ratio turbulent channel flow, as well as DNS results
with parameters matching those of the experiment. Such a flow represents a relatively sim-
ple academic framework that incorporates the basic ingredients of real flows: average shear
(anisotropy) and confinement (inhomogeneity). In the fully developed part of the flow,
the Eulerian statistics of the turbulence are stationary in time and translation-invariant in
the streamwise and transverse direction. Thanks to these symmetries, the statistics can be
conditioned on a single parameter, the wall distance y . This relative simplicity makes this
flow a privileged framework to develop and benchmark advanced Lagrangian stochastic
models applicable to realistic flows.

It is well known that near-wall turbulence is characterized by multiscale coherent
structures with preferential orientations [46]. These structures include intense vortices
elongated in the mean flow direction, that strongly affect the near-wall flow dynamics.
These streamwise vortices induce strong centripetal accelerations, being the main source
of acceleration intermittency near the walls [76], as illustrated on Fig. 4.13. On the other
hand, large-scale inhomogeneity implies that velocity and acceleration statistics depend
on wall distance. Thus, it is also of interest to investigate the far-wall behavior, where a
return to isotropy may be expected, and stochastic models based on isotropic turbulence
may be applied.

We first present the experimental and numerical setups that allow us to measure the
acceleration of particles along their trajectories. In part 4.9 we show the statistical analysis
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Figure 4.13: Sample high-acceleration particle tracks obtained from DNS. Particles are located in
the near-wall region (y+ . 200). Trajectories are shown over∆t+ = 120. The shadow is projected
on the wall. Colors represent the norm of particle acceleration. |a+| = 1 corresponds roughly to
430 m/s2 in the experiments.

of the temporal dynamics through the computation of time correlation functions of both
acceleration and velocity components. This analysis provides estimates of the relevant time
scales that are discussed in part 4.10. In part 4.11 we focus on the acceleration probability
distributions and compare them to the case of HIT.

4.8 Experimental and numerical setups

We study the turbulent flow in a channel between two parallel walls separated by a distance
2h using the same Reynolds number (Re = U0h/ν = 34000) in both experiments and DNS.
This corresponds to a friction Reynolds number Reτ = uτh/ν≈ 1440, where uτ =

√
τw /ρ

is the friction velocity associated to the shear stress τw at the wall and ν the kinematic
viscosity. In the following, the superscript + indicates quantities expressed in wall units,
nondimensionalized by uτ and ν.

The experiment consists of measurements made in a closed-loop water tunnel, shown
in Fig. 4.14, with a centerline velocity U0 = 1.75ms−1. We chose water as a working fluid
in order to have neutrally buoyant and small enough tracer particles, which is very diffi-
cult to achieve in air. The experimental test section is 3.2 m long with a cross-section of
37.5 mm×316 mm, with tripped boundary layers at the entrance. The development length
is 155h and the channel height is 16.9h, ensuring statistical homogeneity in the streamwise
and spanwise directions.

The wall unit is δ = ν/uτ = 13µm in our experimental conditions, thus we chose to
seed the flow with 10µm polystyrene spheres that are small enough to accurately trace
the flow down to the viscous layer. The Stokes number of these particles ranges from
St = 0.02 at y+ = 0.5 to St = 9×10−4 at the center of the channel. Fluorescent particles are
used in order to improve the contrast in the vicinity of the wall by eliminating reflections
of the illumination laser near the wall. This choice makes the measurement conditions
quite challenging due to the weak amount of light emitted by the particles. Three di-
mensional particle trajectories are measured by particle tracking velocimetry [97] in a
35 mm×20 mm×8 mm measurement volume illuminated by a 8 mm-thick 25W CW laser
sheet, using two highly sensitive very high speed Phantom v2511 cameras running at a
sampling rate of 25000 frames/s (with one 180 mm and one 150 mm macro lenses with
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Figure 4.14: Sketch of the turbulent channel used in the experiment. Subfigure (a) is a sketch of the
end view of the channel showing the aspect ratio of the channel (the spanwise distance is 16.9h)
and the end view of the measurement volume, as well as the position of the two cameras. Subfigure
(b) shows a top view of the channel, with the field of view (FoV) of the vertical camera highlighted.
Subfigure (c) shows a 3-D rendering of the experimental setup, including the relative positions of
the two high speed cameras and the thick laser sheet used to illuminate the measurement volume.

optical filters tuned to the emission frequency of the fluorescent particles). The measure-
ment volume covers half the width of the channel and is long enough in the downstream
direction for a sufficiently long time of particle tracking. This allows us to observe the full
decorrelation of the acceleration and (close to the wall) the velocity. Such a high sampling
rate is required in order to have enough time resolution to differentiate twice the trajec-
tories and compute the acceleration. Particle velocity and acceleration are obtained by
convolution of the trajectories with Gaussian differentiating kernels, which also serves
to filter out noise from the measurements [31]. The pixel size corresponds to 27µm in
physical space, but thanks to the diffraction of their emitted light, the fluorescent particles
cover about three pixels in the images, which has been shown to be a good condition for
subpixel position accuracy. Indeed, the estimated accuracy is 1/10th of a pixel (i.e. 3µm)
after filtering. Although this allows us to have a fairly precise estimation of the position
of the particles in the bulk of the flow, the apparent size of the particle and the existence
of images reflected in the wall prevents us from measuring the position of the particles
very near the wall. The closest distance at which accurate detection of the particle was
possible is y+ = 4, i.e. about 50µm. Thus, our range of measurement spans the interval
y+ ∈ [4,1400] i.e. more than two orders of magnitude in wall distance.

Direct numerical simulations are performed using a pseudo-spectral method for the
resolution of the velocity field between two parallel walls, coupled with Lagrangian tracking
of passive tracers advected by the resolved fluid velocity. The pseudo-spectral method,
described in detail by [137], assumes periodicity in the streamwise (x) and spanwise (z)
directions, where a Fourier decomposition of the velocity field is applied. In the wall-
normal (y) direction, a Chebyshev expansion is performed in order to enforce no-slip
boundary conditions at the walls. The size of the computational domain is Lx × Ly ×
Lz = 4πh ×2h ×πh (in wall units, L+

x ×L+
y ×L+

z = 18166×2891×4541) in the streamwise,
wall-normal and spanwise directions, respectively. The velocity field is decomposed into
2048×433×1024 spectral modes. In physical space, this corresponds to a uniform grid
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spacing∆x+ = 8.9 and∆z+ = 4.4 in the streamwise and spanwise directions, respectively. In
the wall-normal direction, the grid spacing∆y+ varies between 0.04 (wall region) and 10.5
(channel center). An explicit second-order Adams-Bashforth scheme is used to advance
the resolved equations in time, with a simulation time step∆t+ = 0.03. The total simulation
time in channel units is TU/h = 217, which corresponds to about 17 turnover times of the
centerline flow.

Once the instantaneous velocity field ~u is known, the acceleration field is computed in
the Eulerian frame according to ~a = ∂~u/∂t +∇(

~u2/2
)+ (∇×~u)×~u. Orzag’s 2/3 rule [138] is

applied in the x and z directions to the velocity and acceleration fields to filter out aliasing
noise resulting from evaluation of non-linear terms.

The simulation is started with a fully-developed, statistically stationary turbulent chan-
nel flow containing 2×106 randomly distributed fluid particles. Velocity and acceleration
of fluid particles are determined from interpolation of the respective Eulerian fields at
each particle location using third-order Hermite polynomials. The choice of the interpola-
tion scheme is critical, particularly for the evaluation of Lagrangian acceleration statistics.
Lower-order schemes such as trilinear or Lagrange interpolation lead to spurious oscilla-
tions which are clearly visible in the temporal spectrum of particle acceleration [75, 139].
Particle positions are advanced in time using a second-order Adams-Bashforth scheme, as
for the Eulerian velocity field. Sample trajectories obtained from this procedure are shown
in Figs. 4.13 and 4.17.

Figure 4.15: Mean and variance velocity profiles. Comparison between experiments (dashed lines),
DNS (solid lines) and [140] DNS at Reτ = 1440 (triangles). Velocity variance profiles are shifted
vertically for clarity. All quantities are normalized in wall units.

In Fig. 4.15, mean and variance velocity profiles from experiments and simulations
are compared with the channel flow DNS of [140] at roughly the same Reynolds number
Reτ = 1440. Experimental profiles are obtained by sampling the instantaneous velocity of
particles conditioned by their wall distance y+. In the three cases, the mean streamwise
velocity profile presents a clear logarithmic behavior over 40 . y+ . 1200. Results from
both simulations are consistent with each other, while slight departures in the mean profile
are observed for the experiments. These differences are more pronounced near the wall
(y+ < 30) and towards the channel center (y+ > 500). Similar remarks can be made for the
streamwise velocity variance, where an important difference is found at y+ < 50 relative to
the simulations. On the other hand, wall-normal and transverse velocity variances from
experiments are in agreement with the simulations at all measured wall distances.

Error bars shown on the experimental results in Fig. 4.15 and the following experimen-
tal results reported in this paper (with the exception of the probability density function
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Figure 4.16: Mean and variance acceleration profiles. Comparison between experiments (dashed
lines), DNS (solid lines) and [78] DNS at Reτ = 600 (triangles).

results discussed in Section 4.11) are calculated statistically for a 95% confidence inter-
val [141]. Error bars also take into account the experimental precision associated with the
parameters used to report normalized results, uτ, ν, etc., which is incorporated into the
error calculation in the standard way [142], and in some cases is responsible for a large

part of the error, as in the plot of a′2/(u3
τ/ν)2 shown in Fig. 4.16.

Figure 4.16 shows the mean and variance acceleration profiles obtained by our experi-
ments and DNS. The profiles are consistent with the DNS results of [78] (also presented in
the figure) even though their simulations were performed at a considerably lower Reynolds
number Reτ = 600. As shown by [78], the mean streamwise acceleration can be decomposed
into an irrotational and a solenoidal contribution, associated with the mean streamwise
pressure gradient and the viscous stress, respectively. In wall units, this is expressed as

a+
x = aI+

x +aS+
x = 1

Reτ
+ d 2u+

x
d y+2 . Near the wall, the solenoidal term aS

x dominates and is negative,

which shows that the negative peak of mean streamwise acceleration at y+ ≈ 7 is a conse-
quence of a viscous contribution. For the mean wall-normal acceleration, the solenoidal
term aS

y is zero. Therefore, its profile is entirely determined by the mean wall-normal
pressure gradient [78].

Profiles of acceleration variance (Fig. 4.16b) reveal qualitative agreement between both
sets of data, although large uncertainty is seen in the experimental results near the wall.
It is worth noting that, at their respective peaks, the standard deviation of acceleration is
larger than the magnitude of the mean acceleration, indicating that dynamics near the
wall are strongly influenced by acceleration fluctuations. As shown by [76], these dynamics
are dominated by the presence of near-wall streamwise vortices inducing high-magnitude,
oscillating centripetal accelerations mainly oriented in the spanwise and wall-normal
directions.

4.9 Lagrangian correlations

The Lagrangian description deals with particle trajectories that are parameterized by their
initial position ~r0 and by the time delay τ relative to the initial time t0. In stationary HIT,
Lagrangian statistics do not depend on ~r0 due to translational invariance, nor on t0 due
to statistical stationarity. Statistics are thus parametrized only by the time delay τ. Fur-
thermore, single-point single-time statistics such as moments of acceleration components
〈ap

i (τ)〉 are constant in τ. In inhomogeneous turbulence, things are more complex. Indeed
the initial position ~r0 must be retained. The symmetries of the channel flow are such that
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Figure 4.17: Illustration of the Lagrangian averaging procedure. Thin curves represent trajectories of
particles located at y+ = y+

0 ±0.5δy+ at a reference time t0 (here, y+
0 = 20 and δy+ = 5). Trajectories

are shifted in the streamwise direction so that x(t0) = 0. The thick curve represents the Lagrangian
average of particle position 〈~r (τ, y0)〉. The channel center is at y+ = 1440. Trajectories ~r (t0+τ, y0) are
shown for time lags τ+ ∈ [−338,338]. The zoomed-up inset represents time lags τ+ ∈ [−13.5,13.5].

the dependency of the statistics on ~r0 reduces to a dependency on the initial distance from
the wall, y0. Moreover, single-time Lagrangian statistics now vary with the time delay τ.
For instance, the Lagrangian average of the streamwise velocity component, 〈vx (t0+τ, y0)〉,
depends on τ because particles move away from their initial distance (toward the center
on average, see Fig. 4.17) and thus experience regions of higher average velocity.

In inhomogeneous flows, the Lagrangian and Eulerian averages coincide only for τ = 0.
Stationarity of Eulerian statistics implies that Lagrangian statistics depend only on τ and
y0 and not on t0. Inhomogeneity also implies that Lagrangian statistics for negative values
of τ are a priori different from those at positive τ. Practically, estimators of Lagrangian
statistics are the following. A small interval of width δy around a given initial value of y0 is
chosen. As soon as a trajectory has a value y(t ) that belongs to this interval, the initial time
t0 is set. Statistics are then accumulated as a function of τ. This procedure is illustrated in
Fig. 4.17 for the average particle position 〈~r (τ, y0)〉.

An adequate tool to obtain time scales and coupling between components is the
Lagrangian correlation coefficient of fluid particle acceleration, defined as

ρi j (τ, y0) =
〈a′

i (t0, y0) a′
j (t0 +τ, y0)〉

〈a′2
i (t0, y0)〉1/2 〈a′2

j (t0 +τ, y0)〉1/2
, (4.45)

where a′
i (t0 +τ, y0) = ai (t0 +τ, y0)−〈ai (t0 +τ, y0)〉 is the fluid particle acceleration fluctua-

tion relative to the Lagrangian average, with i = x, y or z. The estimators thus correlate the
initial acceleration with that at a time lag τ along the trajectory of fluid particles initially at
y0.

Figures 4.18 and 4.19 show various components of the acceleration correlation tensor
ρi j calculated at different initial wall distances y+

0 . Time lags equal to the local Kolmogorov
time scale τη(y) =

√
ν/ε(y) are also represented in the figures, with the local mean turbulent

energy dissipation rate estimated from DNS as ε = ν(∂ j u′
i )(∂ j u′

i ).
The inhomogeneity of the flow is visible in the fact that the typical decorrelation time

varies significantly over the width of the channel. The anisotropy is visible in the fact
that the streamwise and wall-normal components display some non zero correlation
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Figure 4.18: From left to right, Lagrangian auto-correlations of streamwise (ρxx ), wall-normal (ρy y )
and spanwise (ρzz ) particle acceleration. Experiments - crosses. DNS - lines. Circles indicate time
lags τ = ±τη. Curves are shifted vertically by increments of 0.5 for clarity. From bottom to top,
the curves correspond to particles located initially at y+

0 = 20, 60, 200, 600 and 1000. Horizontal
black lines show the zero-correlation level for each y+

0 . In the experiment, τ+ = 1 corresponds to
0.175 milliseconds.

Figure 4.19: From left to right, Lagrangian auto-correlation of acceleration magnitude (ρ|~a|) and
acceleration cross-correlations ρx y and ρy z . From bottom to top, the curves correspond to particles
located initially at y+

0 = 20, 60, 200, 600 and 1000. (For details, see Fig. 4.18.)

(in contrast with HIT), as shown on Fig 4.19(b). Cross-correlations with the transverse
component remain zero due to the statistical symmetry z ↔−z, as shown on Fig. 4.19(c).

In the vicinity of the wall the decorrelation time is close to one in wall units, showing
that this is the adequate characteristic time for rescaling of small-scale quantities such as
the acceleration in this region. This will be discussed further in the analysis of the charac-
teristic Lagrangian time scales. A very good agreement is observed between experimental
and DNS results, with the exception of the long time behavior of ρy y at y+ = 1000, and
the short time behavior of ρzz at y+ = 1000. While the former remains unexplained, the
latter is due to the higher level of noise in the measurement of the z-component, which is
a technical consequence of the way the PTV is performed. Namely, near the center of the
channel, the signal-to-noise ratio for the z-component of acceleration comes close to the
limits of the data processing methods described in Section 4.8 and in previous work [31],
and the correlation of noise is seen in the short time behavior of ρzz at y+ = 1000.

Previous studies in HIT [112, 37] have associated fluid particle acceleration and vortex
dynamics by observing that high acceleration events often correspond to centripetal
accelerations in vortex filaments, and the auto-correlation of the centripetal component of
these accelerations become negative to a much greater degree than the auto-correlation of
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Figure 4.20: Lagrangian correlation between streamwise and wall-normal acceleration components.
Time delay τ is normalized with the local Kolmogorov time scale τη. From bottom to top, the curves
correspond to particles located initially at y+

0 = 20, 60, 200, 600 and 1000. (For details, see Fig. 4.18.)

the component of the acceleration parallel to the vortex filament. Contrary to HIT where
there are no preferential directions, in the near-wall region of a wall-bounded turbulent
flow the preferential orientation of vortices in the streamwise direction is expected. As
shown on Fig. 4.18, near the wall the auto-correlations of ay and az become negative at
approximately τ = 2τη (similarly to the case of HIT), while the correlation of ax remains
positive with a significantly longer initial decorrelation time. The negative ρy y and ρzz

correlations can be associated with the effect of near-wall streamwise vortices. A fluid
particle trapped in one such vortex experiences strong centripetal accelerations towards
the vortex rotation axis [76]. This strong form of anisotropy of the acceleration is only
observed near the walls (y+ < 50) and becomes negligible towards the channel center, as
confirmed below by the acceleration time scales associated to these correlations.

The auto-correlations ρxx and ρy y are almost symmetric in time, e.g. ρxx(−τ, y0) ≈
ρxx(τ, y0). This symmetry can be explained by the nearly time-symmetric average trajecto-
ries in the near-wall region as illustrated in Fig. 4.17, i.e. 〈~r (τ, y0)〉 ≈ 〈~r (−τ, y0)〉. In contrast,
the cross-correlation ρx y is strongly time-asymmetric close to the wall. This asymmetry,
along with the non-zero time lag at which the peak is observed, suggests the idea of causal-
ity between acceleration components. That is, a streamwise acceleration fluctuation is
followed on average by an opposite-sign wall-normal acceleration fluctuation. Towards
the channel center, this effect persists and the correlation becomes antisymmetric with
time, ρx y (−τ) ≈−ρx y (τ), due to the decreasing influence of wall confinement.

The correlation between ax and ay (Fig. 4.19(b)) is most important near the walls. In
that region, the zero-time cross-correlation (equivalent to an Eulerian single-point single-
time correlation) is negative due to increased viscous effects combined with confinement
by the wall (see the joint PDFs in Section 4.11 for more details). Moreover, the cross-
correlation peak is always found at a non-zero time lag. Far from the wall, the correlation
is close to zero at τ+ = 0, while it increases in absolute value for non-zero time lags. The
influence of the boundary layer remains visible even in the bulk of the channel where the
correlation is still non-zero, indicating that small-scale anisotropy is still present in that
region. In Fig. 4.20, the ρx y cross-correlation is displayed as function of the normalized
time lag τ/τη. The time lag of the negative correlation peak is shown to scale with τη, with
a value τ/τη fluctuating between 0.5 and 0.7 with the wall distance y+

0 .

The ρx y (τ, y0) correlation describes the changes of orientation of the acceleration
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fluctuation vector ~a′(t0 +τ, y0) projected on the x-y plane. Its behavior implies that there
is a preferential direction of rotation of ~a′ along a particle trajectory. Moreover, such
changes of orientation happen over times of the order of the Kolmogorov time scale. Thus,
this anisotropy is associated with the smallest scales of turbulence, and is observed for
all wall distances. The preferential direction of rotation implied by the cross-correlation
is consistent with the direction of mean shear, represented by an average vorticity ωz =
−dū/d y which is negative in the lower half of the channel, where the presented statistics
are obtained. This result is consistent with evidence of small-scale anisotropy found
in other turbulent flows governed by large-scale anisotropy. For instance, from DNS of
homogeneous shear flow, Pumir and Shraiman [143] found signs of small-scale anisotropy
which did not decrease at increasing Reynolds number, in contradiction with Kolmogorov’s
local isotropy hypothesis [144]. In their work, small-scale anisotropy was quantified by
the skewness of the spanwise vorticity ωz , which was shown to be of the same sign as the
large-scale average vorticity. More recently, and using a similar approach, Pumir et al[45]
showed the presence of small-scale anisotropy from DNS of turbulent channel flow at
Reτ ≈ 1000 all along the log-layer. Our results show that such small-scale anisotropy is also
observed by the Lagrangian acceleration statistics. Therefore, a stochastic model for the
Lagrangian acceleration which includes elements derived from the ρx y correlation would
be able to reproduce the presence of small-scale anisotropy in shear flows.

In Fig. 4.19(a) we plot the auto-correlation of the acceleration magnitude |~a|, showing
that this quantity stays correlated for far longer than each acceleration component. This
behavior is observed at all wall distances and is consistent with results in HIT [16, 35]. It is
explained by the fact that changes in the orientation of the acceleration vector are much
more sudden than changes in its magnitude. In near-wall turbulence, this observation is
again explained by centripetal acceleration induced by streamwise vortices, which preserve
the acceleration magnitude for a longer time than the acceleration orientation [76].
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Figure 4.21: An example of how Lagrangian velocity time scales are calculated. The auto-correlation
of the wall-normal component of velocity from y+ = 925 is shown (top plot) in red, where the part of
the measured auto-correlation used to fit the exponential extrapolation is also shown. The bottom
plot shows the Lagrangian wall-normal velocity time scale across the channel, where the portion
of the time scale that is directly measured is shown in blue and the portion of the time scale that
comes from the extrapolation is shown in red.

Figure 4.22: Lagrangian velocity and acceleration time scales in wall units. Experiments - crosses.
DNS - solid lines. The acceleration magnitude time scale T|~a| is represented by dashed lines.
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Figure 4.23: Lagrangian acceleration time scales normalized by the local Kolmogorov time scale
(DNS results only). Inset: local Kolmogorov time scale in wall units.

Figure 4.24: Lagrangian time scale ratios. Experiments - crosses. DNS - solid lines. (a) Ratio
between the Lagrangian velocity and acceleration time scales, by component. Also shown is the
HIT model [38] for the ratio of Lagrangian velocity and acceleration time scales. (b) Ratio between
the time scales of acceleration magnitude and the components of acceleration.
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4.10 Lagrangian time scales

The characteristic time scale associated to each acceleration component is estimated
according to

Ta,i (y0) =
∫ τc

0
ρi i (τ, y0)dτ, (4.46)

where τc is the time lag at which the auto-correlation first crosses 0.05. This definition is
chosen because the classical definition with the integration going to infinite time cannot
be applied to all acceleration components since some correlations become negative. This
is also the case for HIT for which the integral of the acceleration correlations is actually
zero because of the stationarity of the velocity. The usual zero-crossing time as in [16] can
neither be used here because some correlations (near the center of the channel) do not
cross zero during the observation time. Our definition is a convenient mix between these
two usual definitions of the typical time scale.

Lagrangian velocity (integral) time scales Tv,i , as well as the acceleration norm time
scale T|~a|, are defined equivalently. Due to the limited measurement volume in the ex-
periment, the full decorrelation of the auto-correlations of velocity and the norm of the
acceleration is not achieved at all wall distances in the channel. These auto-correlations
have been extrapolated as illustrated by Fig. 4.21, and the uncertainty of these results
increases with increased extrapolation. This extrapolation is not necessary for the accel-
eration auto-correlations shown in Fig. 4.18 (which decay much faster) and thus for the
computation of the time scales Ta,i .

The evolution of all time scales with wall distance is shown in Fig. 4.22. As can be de-
duced from the auto-correlation curves, the acceleration time scales Ta,i and T|~a| generally
increase with wall distance. The same is observed for the Lagrangian velocity time scales.
The acceleration norm time scale T|~a| is about one order of magnitude larger than the time
scale of the acceleration components. It is of the order of the integral time scales Tv,i .

In Fig. 4.23, the Lagrangian acceleration time scales are normalized with the local
Kolmogorov time scale. Both ε and τη vary with wall distance. The acceleration time scales
are of the order of τη all along the channel. The normalized time scales only weakly change
for y+ > 80, reaching a value between 0.8 and 0.9 in the bulk of the channel. However, in
that region, small differences persist between Ta,y and the time scales obtained for the
other two components, suggesting once more that anisotropy is still present far from the
wall. Close to the wall (y+ . 40), the longer correlation time of the streamwise acceleration
is reflected in a larger time scale Ta,x compared to the other components.

Fig. 4.24(a) shows the ratio of Lagrangian time scales of velocity and acceleration for
each component. Also shown in Fig. 4.24(a) is eq. (4.44), the empirical fit to the DNS data
of Yeung and Pope [16] proposed1 by Sawford [38], using the profile of Reλ calculated
from the DNS and C0 = 7 as suggested by Sawford. The HIT model follows the trend of the
data. However there is significant anisotropy in these ratio of time scales that extends far
away from the wall. First-order Lagrangian stochastic models in velocity such as given
by eq. (4.42) are based implicitly on the scale separation between the velocity and the
acceleration time scales. Here, a small separation is seen between these two time scales
near the wall. Significantly, the time scale ratio for the wall-normal component (y) is
approximately half of that predicted by the local Reynolds number (the HIT model plotted
in the figure) near the wall. Even farther from the wall, this time scale ratio is significantly
over-predicted by the HIT model.

The long time scales of the acceleration norm previously reported have inspired the
development of a Lagrangian subgrid stochastic model that models the acceleration norm
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and acceleration direction as two independent stochastic processes [72, 3]. Fig. 4.24(b)
shows that the ratio of Lagrangian time scales of acceleration norm to acceleration compo-
nents are only weakly varying for y+ > 50 and comparable in magnitude to the ratios of
Lagrangian velocity and acceleration time scales. 1

4.11 Distributions

Fig. 4.25 shows the probability distribution function (PDF) of the three acceleration compo-
nents obtained at different wall distances. All curves present very long tails corresponding
to extremely high acceleration events associated to intermittency [68]. Once again, good
agreement is achieved between the experiments and the DNS. The acceleration PDFs are
also compared with the functional shape proposed by [35] for HIT, which assumes that
the acceleration magnitude follows a log-normal probability distribution and that the ac-
celeration vector is isotropic. According to those assumptions, the PDF of an acceleration
component is given by

P(ai ) =
e s2/2

4m

[
1−erf

(
ln |ai |

m + s2

p
2s

)]
, (4.47)

where m determines the variance of ai (m =
√

3/e2s2 for variance 1), while s determines
the shape of the PDF. A value s = 1 is used in the comparisons. Towards the channel center,
the PDFs of the three acceleration components match this prediction, suggesting that the
instantaneous behavior of acceleration becomes close to isotropic. More strikingly, the
spanwise acceleration seems to match the prediction very close to the wall, suggesting that
this component is not affected by anisotropy as in the other two directions. The general
agreement with the shape of the HIT PDF suggests that intermittency is extremely strong
in the boundary layer although the Reynolds number is moderate: Reλ ∼ 60 to 100 in our
flow whereas it was close to 1000 in [35]. It implies also that this shape of the PDF presents
some universality.

The PDFs of the streamwise and wall-normal acceleration components become quite
asymmetric near the wall. This asymmetry is quantified by their skewness Si = 〈a′3

i 〉/〈a′2
i 〉3/2

shown in Fig. 4.26. Due to flow symmetry, the skewness of az is zero. Very close to the wall,
Sx and Sy are strongly negative and positive, respectively, indicating that their PDFs are
very asymmetric due to wall-induced anisotropy. The signs of Sx and Sy are both inverted
after y+ ≈ 20. Their respective values remain different from zero and change little for
y+ > 80. This reinforces the idea that turbulence anisotropy is still present in the channel
center.

The dependency between the acceleration components is analyzed by the joint PDF,
P(ax , ay ). Fig. 4.27 shows the results obtained at two wall distances, y+ = 15 and 59. Close
to the wall (Fig. 4.27a), the joint PDF has a stretched shape, showing a preference for
events given by ax < 0 and ay > 0. These events can be associated to fluid particles
advected towards the wall. These particles move towards regions of decreasing mean
streamwise velocity, leading on average to a streamwise deceleration of their motion (ax <
0). Simultaneously, their negative wall-normal velocity goes to zero due to confinement
by the wall, resulting in a positive wall-normal acceleration (ay > 0). This dependency
between both acceleration components is confirmed by the conditional means 〈ax |ay〉
and 〈ay |ax〉, which are superposed to the joint PDF contours. Particles advected away from
the wall are less affected by wall confinement, and thus the impact on their wall-normal
acceleration is less visible in the joint PDF. Nonetheless, on average, those particles also
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Figure 4.25: PDF of streamwise, wall-normal and spanwise particle acceleration. Experiments -
symbols with error bars. DNS - lines. The dashed lines represent the theoretical prediction for
the acceleration PDF in HIT [35]. The PDFs are normalized by the root-mean-square value of
acceleration. From bottom to top, the curves correspond to particles located at y+ = 10, 20, 200 and
1200. The statistical convergence of the experimental data is shown by error bars equal to 1/

p
ni

where ni is the number of events in bin i .

Figure 4.26: Skewness of streamwise and wall-normal acceleration components. Experiments -
crosses. DNS - lines. Circles indicate skewness of ay at y+ = 10, 20, 200 and 1200. Inset: skewness
profiles with y+ in logarithmic scale.

experience the effect of the mean velocity gradient, which results in this case in a positive
streamwise acceleration.
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Figure 4.27: Joint PDF of streamwise and wall-normal acceleration at y+ = 15 and 59. Conditional
means 〈ax |ay 〉/〈a′2

x 〉1/2 and 〈ay |ax〉/〈a′2
y 〉1/2 are superposed to the contours using black and blue

markers, respectively. Experiments - circles. DNS - dashed lines.

4.12 Concluding remarks

By performing both DNS and experiments, the highly anisotropic turbulent flow in the
vicinity of channel walls is described in terms of Lagrangian statistics. Near-wall vortical
structures are clearly identified by their influence on the acceleration auto-correlations.
Viscous effects and wall-confinement have also a strong impact on acceleration statistics
as evidenced by the joint PDFs. Less expectedly, signs of small-scale anisotropy are present
across the channel. The observed behavior of the Lagrangian time scales can be a basis for
the formulation of Lagrangian stochastic models of acceleration applied to wall-bounded
turbulent flows. These models must also take into account the dependency among ac-
celeration components, which is apparent in the presented cross-correlations and joint
PDFs of acceleration. Acceleration models based on the presented results should be able to
capture the effects of (i) the near-wall dynamics associated with confinement and coherent
structures and (ii) the small-scale anisotropy present in the whole channel.
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One goes in straightforward ways,
One in a circle roams:
Waits for a girl of his gone days,
Or for returning home.

But I do go – and woe is there –
By a way nor straight, nor broad,
But into never and nowhere,
Like trains – off the railroad.

My way, Anna Akhmatova



CHAPTER 5. LAGRANGIAN STATISTICS OF NON-TRACER PARTICLES IN THE
TURBULENT CHANNEL

5.1 Introduction

The dynamics of particles in turbulent flow is of considerable interest in a range of ap-
plications, from rain formation in clouds to deposition of sediment on the walls of pipes.
Previous chapters considered the case in which particles were small enough, and of similar
density to the fluid, such that they could be considered proxies for fluid particles, i. e.
tracer particles. This chapter is concerned with non-tracer particles: particles that have
sufficiently different density from the fluid and/or are sufficiently larger than the smallest
scales of fluid motion such that their dynamics no longer closely follow the dynamics of
the fluid.

Multi-phase systems of fluid turbulence and non-tracer particles are typically charac-
terized by four parameters, in addition to those used to characterize the fluid turbulence
(e. g. Re):

1. Stokes number: The ratio between the particle response time tp and the Kolmogorov
time scale tη, St ≡ tp /tη

2. Length scale ratio: The ratio between the particle diameter Dp and the Kolmogorov
length scale η

3. Characterization of the role of gravity, e. g. Froude number:1 aη/g

4. Particle diameter distribution: The distribution F of Dp .

5. Particle volume fractionφ: The ratio between the volume the fluid and the volume
occupied by the particles

The first four parameters concern the dynamics of individual particles, while the fifth
indicates to what extent collective effects, particle collisions, and the effects of the particles
on the turbulence are important. The results presented in this chapter come from the
regime in which the particles are all of the same diameter, and the particle volume fraction
is sufficiently small such that the dynamics of a multi-particle system is equivalent to the
dynamics of a single particle.

Non-tracer particles by definition do not faithfully follow the flow, i. e. non-tracer
fluid particle trajectories located at x0 at time t0 will diverge from fluid particle trajectories
located located at x0 at time t0. An equation for this divergence for small particles2 was
rigorously derived by Maxey and Riley[145], and contemporaneously by Gatignol[146].
While exact, this equation is complex, and it is common to simplify it to the leading order
term: drag force proportional to the Stokes number (see e. g. Balkovsky et al[147]). This
simplification, commonly used in DNS of particles in turbulence, is valid for in the limit of
point-particles (Dp → 0); for larger particles the sub-dominant terms of the Maxey-Riley-
Gatignol equation are increasingly important. For even larger particles the assumptions of
this equation are no longer met[148], and the particle diameter is of similar extent to the
smallest spatial gradients in the turbulence.

Non-tracer particle divergence from the fluid particle trajectory affects the particle
statistics in a complex manner. Three mechanisms are commonly encountered in the
literature, and are summarized here.

1Properly speaking this a characteristic of the fluid phase, and not related to the particle phase. In order
to characterize the role of gravity in particle dynamics this Froude number should be combined with the
density ratio of the particle, or St/Fr as in Mathai et al[83].

2Small is more precisely defined as the limit of Rep ¿ 1, where Rep is the particle Reynolds number.
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1. Biased sampling: Biased sampling occurs when the non-tracer particle trajectories
sample the flow field in a manner systematically different from that of the tracer
particles. A simple example of biased sampling was described by Maxey[149] as the
centrifugal expulsion of small, heavy particles from vortices. As these heavy particles
are preferentially found in low-vorticity regions of the turbulence, statistics such as
the variance of particle acceleration are biased. Indeed, Bec et al studied inertial
particles in DNS and found that even for particles with quite low Stokes numbers, i. e.
particles with very little divergence from fluid particle trajectories, the acceleration
variance was significantly lower that the fluid acceleration variance due to the bias
sampling effect. Many experimental results (see e.g. Aliseda et al[150]) have observed
heavy particle clustering in HIT, which is a result of this preferential concentration.

2. Temporal filtering: Temporal filtering is conceptually simple: the particle response
time acts as a low-pass filter which attenuates the high frequency perturbations of
particle motion. This filtering was considered by Ayyalasomayajula et al[92] in the
context of a simple sinusoidal forcing example, in which case the filtering is only
dependent on the forcing frequency. Salazar and Collins[93] performed DNS with
small inertial particles to determined the relative effects of biased sampling and
temporal filtering, and found the impact of the temporal filtering on acceleration
statistics increasingly important for larger Stokes numbers. For both acceleration
pdf’s and autocorrelations of acceleration, bias sampling is responsible for most of
the difference between inertial particles and tracer particles for Stokes numbers up
to 0.5.

3. Spatial filtering: Sufficiently large particles are subject to forcing that varies over
the surface of the particle. In this way the particle may be thought of as a spatial
filter that integrates small scale forcing over its surface. This filtering is discussed
in the context of the Faxén correction to the point-particle equation by Calzavarini
et al[151], and in the context of the development of an exact equation for larger
particles in turbulence by Loth and Dorgan[148]. A simpler treatment was first given
by Voth et al[30], in which the acceleration variance of a neutrally-buoyant particle
was affected only by flow structures larger than the particle, i. e. the particle diameter
acted as a spatial filter cut-off length. Kolmogorov scaling then predicts 〈a2

p〉 ∼ D−2/3
p

where ap is the particle acceleration and Dp is the particle diameter.

Although there has been a large amount of work published regarding the dynamics
of particles in turbulence, it is only relatively recently that technological advances have
allowed experimental measurements that fully resolve particle acceleration. Similarly,
while some truncated version of the Maxey-Riley-Gatignol may be used to model small
particles in DNS, fully resolved "real" particles in DNS has proved to be quite expensive,
an only feasible with recently available computing resources. What follows is a very brief
review of these recent studies, particularly focused on the measurement of acceleration
and other Lagrangian statistics for particles similar to those used in the present study:
heavy particles and large, neutrally-buoyant particles.

5.1.1 Heavy particles

Particularly relevant to this study are results reported by Gerashchenko et al[73] regarding
Lagrangian acceleration statistics in a turbulent boundary layer. Poly-dispersed water
droplets were measured using a two-component particle tracking system in a wind tunnel.
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Some of these droplets were of similar Stokes numbers and diameters to those in the
present study, but although the use of air as the carrier fluid results in density ratios much
larger and length scale ratios that are much smaller. These particles were sufficiently
small to be considered "point-like", with negligible finite-size effects. The wall-normal
component of the mean acceleration was found to be of much lesser magnitude than that
of the streamwise component, which was explained by the gravitational effects acting
with the high density ratio. Similarly, the acceleration rms was observed to be much
greater in the streamwise direction than in the wall-normal direction, the reason for which
remains unclear. Further, the acceleration rms was shown to be higher for particles with
larger Stokes number, contrary to the results from HIT. Following this work Lavezzo et
al[152] performed channel flow DNS with goal of elucidating the results presented by
Gerashchenko et al. The DNS was able to reproduce the results of the experiment, and
when the effect of gravity is removed from the DNS the streamwise rms of acceleration
was found to decrease significantly. Gerashchenko et al[73] use an alternative definition
of the Froude number: Fr = g St/ar ms (greater values indicate a larger role of gravity in
the dynamics), and reports particle Froude numbers of Fr ≈ 0.75− 1. Using a similar
definition, the particle Froude numbers of the heavy particles tested in the presents study
are Fr ≈ 0.2−0.27

Volk et al[153] experimentally measured acceleration statistics of moderately heavy
particles (ρp /ρ f = 1.4, St = 0.58 ) in HIT, and made comparisons with DNS results for point-
particles. The authors found that even though the numerical simulations were qualitatively
able to reproduce the experimental results there were quantitative differences, which were
attributed to the the finite size of the particles in the experiment ( 1.2η). Specifically, the
experiments showed higher thicker tails on the pdf of acceleration than the numerics,
and the experimentally measured autocorrelation of acceleration showed a more rapid
decorrelation than in the numerics. Even the normalized acceleration variance a0 was 67%
of the tracer value in the experiment, but 92% of the tracer value in the numerics.

Xu and Bodenschatz[154] similarly measured heavy particle (ρp /ρ f = 1.4) acceleration
in HIT for particles slightly larger than the Kolmogorov length (Dp /η≈ 3 ). The normalized
PDFs of acceleration and the normalized autocorrelation of acceleration show very little
difference between the heavy particles and the tracer particles.

A large particle parameter space was explored by Qureshi et al[155] by using soap
bubbles as particles in HIT in a wind tunnel . By tuning the bubble-making apparatus a
large range of particles could be tested, from neutral-buoyant particles to particles 40 times
heavier than air, and diameters from Dp /η = 12−25. The normalized PDF of acceleration
changed very little through out this parameter space, although the acceleration variance
had a complex response to changing particle parameters.

Fully resolved heavy particles (ρp /ρ f ≈ 2.2) were simulated in turbulent channel flow
DNS by Ulhmann and coworkers[156, 157]. Particles had diameters of 11 wall-units, which
is twice that of the present study (Dp = 5.5 wall-units). 3 Another important difference is
the DNS domain was oriented vertically, such that gravity was parallel to the streamwise
direction (in the present study gravity is parallel to the wall-normal direction). Particle
acceleration mean and rms profiles are shown to quantitatively similar to those found
by Gerashchenko et al[73], despite the differences in experimental parameters between
the two studies. Acceleration rms profiles in the DNS are shown to be approximately 50%
greater in the streamwise component than in the wall-normal component. Autocorrela-

3Although in the DNS the Reynolds number was much lower (Reτ = 221) than in the present study
(Reτ = 1440), and so the particle in the DNS are much larger relative to the channel width than is the case in
the present study.
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tions of the particle accelerations also show a difference in components: the autocorrela-
tion of the streamwise component of acceleration has a zero-crossing time approximately
twice that of the wall-normal and spanwise components.

5.1.2 Large neutrally-buoyant particles

Particles larger than the Kolmogorov length scale of the turbulence and of similar density to
the fluid present difficulties to understanding both theoretical: the Maxey-Riley-Gatignol
equation is no longer applicable, and conceptual: the behavior of neutrally buoyant
particles in vortices is much less intuitively clear than the simple model of heavy particles
being ejected from vortices by the centrifugal force.

Voth et al[30]measured large neutrally buoyant particles in HIT, in the context of deter-
mining at what size neutrally buoyant particle may be considered tracer particles. Volk et
al[153], and Xu et al[154] measured large neutrally-buoyant Lagrangian statistics in HIT
for a single particle diameter, and compared the results to the results for heavy particles.
These authors present different findings for the autocorrelation acceleration, with Xu et
al reporting that the large neutrally buoyant particles (Dp /η≈ 5, St = 1.5) and the tracer
particles have very similar acceleration autocorrelation curves, while Volk et al report a non-
negligible difference in the autocorrelation of acceleration between the large neutrally buoy-
ant particles ( Dp /η≈ 15, St = 10.7) 4 and the tracer particles. Qureshi et al[84] and Brown et
al[4] measured acceleration variance in HIT for several diameters of large neutrally buoyant
particles. Figure 5.1 (reproduced from Brown et al[4]) assembles the normalized accelera-
tion variance measurements from three sets of experimental measurements. Acceleration
variance is constant for Dp < 5; for larger particle diameters the acceleration variance
decreases in a manner consistant with the scaling proposed by Voth: a0 ∼ (Dp /η)−2/3.
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Figure 5.1: Normalized variance of acceleration of large
neutrally-buoyant particles in HIT plotted against par-
ticle diameter normalized by the Kolmogorov length
scale from three datasets: that of Voth et al[30]
(crosses), that of Qureshi et al[84] (squares), and that
of Brown et al[4]( Triangles and diamonds). Figure
reproduced from Brown et al[4].

A more recent study by Volk et
al[90] explored a large range of particle
diameters (Dp /η = 1−45) in HIT. Previ-
ous acceleration variance results were
largely confirmed. Acceleration auto-
correlations were measured, and used
to calculate particle acceleration time
scales. Particles of diameter Dp /η≈ 7
are reported to have acceleration time
scales of approximately 1.3 times that
of the tracer particles; larger particles
have time scales that increase linearly
with their diameter ratio Dp /η.

Until the present study there has
been no reported acceleration mea-
surements of large neutrally-buoyant
particles in inhomogeneous turbu-
lence.

4Volk et al reported a Stokes number of 16, but used and different definition of the Stokes number. St = 10.7
corresponds to the definition used by Xu et al so a direct comparison may be made.
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Figure 5.2: Schematic of the experimental setup used for the measurements of the heavy and large
neutrally-buoyant particles reported in this chapter. (a): Schematic of the side view of the channel,
from the viewpoint of the horizontal camera, including the field of view (FoV). (b): 3-D solid model
of the channel, with the two high-speed cameras and thick laser sheet shown. (c): Schematic
of the cut view (or end view) of the channel, with the measurement volume shown in red. The
principal difference between this experimental configuration and the configuration used for the
tracer particle measurements (figure 2.2) is the orientation of the channel (where gravity is now
parallel to the wall-normal direction) and the orientation of the laser sheet (now oriented such that
there is forward scattered light available to the vertical camera).

5.2 Experimental methods

The experimental methods described in chapter 2 were developed for Lagrangian mea-
surements of tracer particles. The measurement of non-tracer particles, especially heavy
particles, required some modifications to the experimental setup and data processing
methods. This section explains the modifications to the experimental methods that were
used in the measurement of the non-tracer particles; the experimental methods used for
these measurements were the same as those described in chapter 2 unless explicitly noted
here.
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5.2.1 Changes in the experimental setup

Test section orientation

The principal change to the experimental setup is the rotation by 90 degrees of the channel
test section, such that gravity is parallel to the wall-normal vector, and the transverse
coordinate(z) is now horizontal. This arrangement is shown schematically in figure 5.2.
The motivation for the change in orientation of the test section was practical: the settling
velocity of the heavy particles was such that it was unclear if, had the test section remained
in its previous orientation ( gravity aligned with the transverse direction, see figure 2.2) the
particles would have remained suspended in the test section. It is important to note that
gravity has a complex role in the dynamics of heavy particles in the boundary layer5, and
that the choice made here to have the wall-normal direction aligned with gravity results
in a system in which dynamics due to inertia and dynamics due to gravity are difficult
to separate. A different choice, for example a channel in which the streamwise direction
is aligned with gravity, would have also avoided the problem of particle settling.6 Apart
from the settling of particles in the test section, a large amount of settling was observed in
other locations in the closed loop water tunnel , especially in the tranquilization chamber
(shown in figure 2.3). After restarting the water tunnel from rest, the number of suspended
particles climbed slowly, eventually reaching a quasi-steady state after approximately 30
minutes. This rate of resuspension is clearly highly dependent on the specific geometry of
the water tunnel components, but it appears that the heavy particles used in this study
were near the upper limit of size/density ratio for this water tunnel configuration. Tests
with larger/heavier particles would have required either changing the the water tunnel
geometry to encourage the resuspension of particles or a system for seeding the flow
continuously during the measurements.

Laser sheet orientation

The other principle modification of the experimental setup is the orientation of the thick
laser sheet. In the configuration used for the tracer particles illustrated in figure 2.2 the
laser sheet is pointed away from the x − z (horizontal) camera; in this configuration the
laser sheet is pointed towards the x − z (vertical in this new configuration) camera. This
change was found to be necessary in order to have sufficiently illuminated images for the
heavy particle measurements. The heavy particles are not fluorescent, and so scatter the
laser light directly, and the optical filters used in the fluorescent particle measurements
could not be used. Somewhat surprisingly, the non-filtered, non-fluorescent particles
produced fainter images, and so the laser direction was changed in order to have the much
more efficient forward scattered light available to the x − z vertical camera.

De-gasification

The primary motivation to use fluorescent particles in conjunction with optical filters on
the camera lenses is to be sure that only the fluorescent particles appear in the acquired
images. Specifically, other particles that may be in the water, such as dust particles or
micro-bubbles, are filtered from the image. This concern is not typically important in PIV
applications, which often consider micro-bubbles and dust particles to be adequate flow

5See the work of Lavezzo et al[152] for a discussion of the role of gravity in this context.
6A vertical channel was not practically feasible for the present study, although it would certainly be helpful

in elucidating the behavior of inertial particles in the boundary layer.
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tracers. However, the dynamics of micro-bubbles especially are known to have significantly
different dynamics that inertial particles[153], and it is therefore important to ensure that
there is minimal contamination of the flow by micro-bubbles when acquiring PTV images
without fluorescent particles and optical filters. This goal is quite challenging to achieve,
and ideally requires a system designed for de-gasification. Lacking such a system, the
following strategy was followed to minimize contamination of the measurements by micro-
bubbles.

• De-gasification: The water in the tunnel ( 600L) was drained into a reservoir and
heated to approximately 60 ◦C7 and maintained at that temperature for several hours
while being stirred. The water was then allowed to cool to a temperature cool enough
to refill the water tunnel without deforming the acrylic test section (approximately
30 ◦C ). The tunnel was refilled with a minimal agitation of the water.

• Over-filling: The water tunnel was designed to operate with a partially-full chamber
between the downstream of the pump and upstream of the test-section (component
(b) in figure 2.3) which then absorbs any variations in pressure in the system, for
example when starting and stopping the pump.8 This chamber was deliberately
over-filled such that the system as a whole operating at a higher pressure. This
eliminated any air infiltrations during water tunnel operation, as well as eliminating
an air/water interface in the reservoir, therefore slowing the reabsorption of air by
the water.

• Repetition: Despite the measures described above the system is not perfectly sealed
from the external atmosphere, and the water slowly reabsorbs air over time. Further-
more, the low-pressure zones in the pump tend to transform any dissolved gases in
the water into micro-bubbles. The de-gasification needed to be repeated regularly in
order ensure a minimal number of micro-bubbles in the system.

Finally, the measurement volume was placed on the bottom wall (illustrated in figure
5.2 (c) ) to increase the number of heavy particles—which tend to sink into the measure-
ment volume—but also to decrease the number of bubbles, which tend to rise out of the
measurement volume. This geometry effectively eliminates larger bubbles in the mea-
surement volume and presumably decreases the concentration of micro-bubbles in the
measurement volume, especially near the wall. This strategy was tested by collecting
PTV videos before the addition of particles to system, and was found to be effective in
eliminating micro-bubbles that could be mistaken for heavy particles.

5.2.2 Particles

The results presented in this thesis are from three classes of particles: tracer particles,
large neutrally-buoyant particles, and moderately sized heavy particles. These particles
are characterized by their distributions of density and diameter, which determine how the
particles interact with a turbulent flow. The concentration of the particles is neglected as
a significant factor of their behavior as particle concentrations are very low. The volume
fraction of particles in this study never exceded Φ≈ 10−6, which is considered to be within

7This temperature was chosen simply because of the thermal resistance of the available reservoir; ideally
the water would reach 100 ◦C

8This overfilling was only possible thanks to a variable pump controller which allowed the gradual
operation of the pump, which would have otherwise broken the test section due the pressure surge.
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Figure 5.3: Stokes numbers and length scale ratios (based on particle diameter and Kolmogorov
length scales) across the channel for the three classes of particle. Terms are defined in table 5.1.

the one-way coupling regime (i.e. the particles have a negligible effect on the turbulence)
[158].

The behavior of particles in turbulence was classically thought to depend on the Stokes
number[159], which may be thought of as a measure of inertia, or the ability of the particle
to move with the flow. Recent work has shown that even particles with quite low Stokes
numbers can produce significantly different acceleration results, and the density of the
particle must be taken in to account even in the limit of St ¿ 1 [83]. Mathai et al explain
this dependence on density by noting that a particle drifting through the flow due to gravity
will sample spatial gradients in a way that a fluid particle does not. Very little work has been
published regarding the acceleration statistics in inhomogeneous flow, but by analogy we
expect that the forces on the particle that result in drift (e.g. shear-induced lift [160]) to
result in a similar effect. These mean-gradient effect depends only on length, so we must
consider the length scale ratios independent of the Stokes number.

The key characteristics of the three classes of particles used in this study are given in
table 5.1. These characteristics include the non-dimensional numbers that can be formed
with the diameter and density of the particle and the properties of the flow ( density,
viscosity, turbulent scales, etc.). To avoid using results obtained from the experimental PTV
using tracer particles in order to characterize the tracer particles themselves, the turbulent
scales of the flow used to calculate the particle characteristics shown in table 5.1 and figure
5.3 were taken from the DNS results, the details of which are given in section 2.5.
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Table 5.1: Characteristics of the three classes of particles used in the present
study

Definition Tracer Large neutrally-buoyant Large heavy

ρp Particle
density

1.05 gcm−3 (0.995±0.010) gcm−3 (2.5±0.1) gcm−3

Γ Density ratio:
ρp /ρ f

1.05 0.995 2.5

β Added mass
ratio:

3ρ f

ρ f +2ρp

0.97 1.003 0.5

Dp Particle
diameter

(10.2±0.8)µm a (165±15)µm b (72±8)µm

Dp /η Length scale
ratio based on

Kolmogorov
length η

Varies across channel, see figure 5.3

Dp /δν Length scale
ratio based on

wall unit δν

0.783 12.7 5.49

τp Particle
response

time:c

D2
pΓ

18ν

6.0×10−6 s 1.5×10−3 s 7.1×10−4 s

St Stokes
number:
τp /τη

Varies across channel, see figure 5.3

Frp Particle
Froude

numberd:
g St/ar ms

0.2 - 0.27

aThis uncertainty represents ±3σ
bAccording to the manufacturer >90% of particles fall into this size range
cNumerous definitions of particle response times exist in the literature, with many

using β to account for added mass effects, and some adding correction terms for larger
particles with finite Rep . This definition given here is both classic and common, and
used here in the interest of straight-forward comparison of results.

dFollowing the definition used by Gerashchenko et al[73]
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Figure 5.4: Top: Mean streamwise velocity difference on the scale of the large, neutrally-buoyant
particle diameter. Bottom: Mean streamwise velocity difference on the scale of the large, neutrally-
buoyant particle diameter, normalized by the rms of the streamwise velocity.

Large neutrally-buoyant particles

The class of big, neutrally-buoyant (or iso-dense) particles are fluorescent red polyethylene
micro-spheres, distributed by Cospheric (Cospheric LLC, Santa Barbara, USA). Details
provided by the manufacturer are listed in table 5.1; density and diameter distributions
within the given ranges were not provided, and no independent measurements were
performed. In the following results these particles are treated as mono-dispersed in
diameter and density. The absorption and emission characteristics of the fluorescent
material in these particles is similar to those of the tracer particles as described in section
2.1.5; no change in the laser or optical filters were necessary. The particle diameter was
chosen such that the length scale ratio Dp /η would vary from close to 10 very near the
channel wall to 2 at the channel center, as shown in figure 5.3. This choice represents a
compromise between the range of parameters for which the acceleration variance (see
figure 5.1) is expected to differ significantly from that of the fluid particle, and the diameter
being too large, such that acceleration of these particles becomes too low and is lost in
the measurement noise. Large neutrally-buoyant particles may also be affected by the
mean shear in the flow; figure 5.4 plots the profile of the mean velocity difference on the
length scale of the particle. For the diameter of particle tested this velocity difference is
non-negligible, and near the wall is on the order of the rms of the fluid velocity.

Heavy particles

The class of heavy particles are spherical glass beads distributed by the Wheelabrator
Group (Altrincham, UK) with a density specification of 2.4 gcm−3 to 2.6 gcm−3 (53µm to
106µm). Analytic sieves (VWR, Radnor, Pennsylvania) were used to reduce this range to

147



CHAPTER 5. LAGRANGIAN STATISTICS OF NON-TRACER PARTICLES IN THE
TURBULENT CHANNEL

63µm to 80µm. The diameter and density distributions were not directly measured; the
results presented treat these particles as mono-dispersed in diameter and density. These
particles have Stokes numbers of 0.2-2 in the near-wall region, a range in which, at least for
inertial particles in HIT, particles diverge significantly from fluid particle paths, preferential
concentration becomes important, and particle acceleration statistics differ significantly
from those of the fluid. These particles were judged to be the largest and heaviest that
was practically possible to measure, given the twin constraints of particles settling and
resisting re-entrainment (as discussed above), and the low signal-to-noise ratio that limits
the measurement of particles with a low acceleration variance.

5.2.3 Changes in the data processing methods

No fundamental differences to the image processing and particle tracking algorithms
described in chapter 2 were necessary for the treatment of the non-tracer particle data, al-
though some adjustment was made to the image filtering and tracking parameters. The pri-
mary difference between the non-tracer particle datasets and the tracer particle dataset is
the reduced signal-to-noise ratio and the reduced statistical convergence of the non-tracer
particle datasets. The signal-to-ratio is illustrated by comparing the acceleration variance
as a function of acceleration filter width, as was discussed in the context of the tracer parti-
cles in section 2.3, figure 2.19. When this analysis was performed on non-tracer trajectories
the plateau of acceleration variance was found to be lower than the plateau found for the
tracer particles, as illustrated in figure 5.5. Furthermore, the transition between the steep,
insufficiently-filtered regime and the regime in which the acceleration variance is relatively
flat, i. e. the "elbow" of the curves seen in figure 5.5 is less abrupt for the non-tracer parti-
cles. The more gradual transition between these two regimes for the non-tracer particles
indicate that the signal-to-noise ratio is worse for these datasets than for the tracer particles.

Gaussian, 
delta-correlated

noise

Heavy
Big iso-dense

Tracer

Figure 5.5: The variance of the wall-normal compo-
nent of acceleration in the near-wall region for the
three classes of particle as a function of filter width.
Also plotted for reference is uncorrelated normally-
distributed noise filter with the same acceleration fil-
ters, with the magnitude adjusted to match the tracer
particle results at the smallest filter width.

The ambiguity regarding where the
under-filtered regime ends and the
plateau regime begins does not allow
a precise determination of the optimal
filter width for these data. This uncer-
tainty directly translates into large un-
certainty regarding the true value of
the acceleration variance.

The optimal filter width may be fur-
ther refined by considering the auto-
correlation of acceleration calculated
with a range of filter widths. The time-
scale separation between the noise
and the acceleration results in a char-
acteristic dip in the autocorrelation of
acceleration calculated with a filter in-
sufficiently wide. This characteristic
dip is seen at a time corresponding to
the width of the filter9, which is shorter
than the acceleration time scale. The
strategy used to choose the optimal
filter width was to increase the filter

9Here it is implicitly assumed that the noise is delta-correlated in time.
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width until this characteristic dip disappears. If a larger filter with is used the acceleration
variance continues to slowly decrease, but the autocorrelation of acceleration at longer
time lags is relatively robust.

This strategy is illustrated by figure 5.6, which an example of an acceleration autocorre-
lation curve calculated with the optimal filter width( as chosen by the strategy described
above), as well as the acceleration autocorrelation calculated with filter widths that both
under-filter and over-filter. A slight characteristic dip may be seen on the under-filtered
autocorrelation of acceleration. This choice of an optimal filter width is somewhat subjec-
tive, and a rigorous characterization of the errors resulting from this choice is therefore not
possible. Instead, error bars as defined by using filter widths that are 10 time-steps wider
than the optimal filter width, and 10 time-steps narrower. While the choice of 10 time steps
is somewhat arbitrary, in nearly all cases it was clear that these filter widths over-filtered
and under-filtered the data, respectively, and therefore act as confidence intervals. This
method results in larger error bars for one-time statistics, such as acceleration variance,
than two-time statistics, like Lagrangian correlations.

The fluid acceleration variance decreases as one moves from the wall to the channel
center, and the non-tracer particle acceleration variance decreases along with it. Tracer
particle acceleration measurements were possible near the center of the channel, but the
signal-to-noise ratio of the non-tracer particle acceleration variance was found to be too
low to accurately measure non-tracer particle acceleration near the channel center. Results
in this chapter are therefore limited to the area of the channel from the wall to y+ = 638,
which is approximately halfway between the wall and the centerline of the channel.

In addition to the signal-to-noise concerns described above, the non-tracer datasets are
smaller than the tracer particle dataset. In particular, the wider filters that were necessary
to treat the non-tracer trajectories have the effect of shortening the mean trajectory length.
Fewer trajectories results in less statistical convergence, especially for two-time Lagrangian
statistics. For this reason the pdf’s of acceleration are not presented, and the Lagrangian
correlations are truncated at shorter times than for the tracer particles.
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Figure 5.6: The autocorrelation of the wall-normal component of acceleration for large neutrally-
buoyant particles at y+ = 75−150. The thick black line is this autocorrelation using the optimal filter
width, the blue line is this autocorrelation using a filter width 10 time-steps shorter than optimal
(less filtering), and the red line is this autocorrelation using a filter width 10 time-steps longer
than optimal (more filtering). The inset plot shows the variance of the wall-normal component of
acceleration for these data plotted against the filter width. The position of the optimal filter width
chosen is shown (black circle), as well as the filter widths corresponding to the "optimal - 10" (blue
x) and "optimal + 10" (red cross) filter widths.

5.3 Acceleration variance

The variance of particle acceleration as a function of distance from the wall for the three
classes of particles is shown in figure 5.7. Error bars are calculated using the method
described in the preceding section: an optimal filter is chosen based on the appearance
of the acceleration autocorrelation for each wall-bin, then the acceleration variance is
calculated using a filter 10 time steps greater than optimal—which defines the lower
extreme of the error bar—and a filter 10 time steps smaller than optimal—defining the
upper extreme of the error bar. Similar trends are observed between the three components
of acceleration variance: a monotonic decay of variance moving away from the wall, a
much weaker acceleration variance in the heavy particles than the tracer particles, and the
acceleration variance of large-neutrally buoyant between the two.

These tendencies are more easily compared in the normalized profiles of acceleration
variance plotted in figure 5.8. The upper row of subplots shows the acceleration variance
for the three classes of particles normalized by the variance of the transverse component
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Figure 5.7: Acceleration variance for the three classes of particle (tracer: x’s, big iso-dense: squares,
and heavy: circles) from the wall to y+ = 638, or approximately mid-way between the wall and the
channel centerline. Error bars are calculated on the basis of the filter widths, as described in the
text.

of acceleration of the tracer particles at y+ = 638. While this choice is somewhat arbitrary10,
the variance of the transverse component of acceleration at this location is relatively far
from the wall and acts as a reference value. Indeed the variance of the streamwise and
wall-normal components of acceleration for the tracer particles are observed to be very
similar to this value at y+ = 638, i.e. the acceleration variance for the tracer particles is
close to isotropic at this distance from the wall.

The acceleration variance normalized in this fashion for the tracer particles shows a
large ratio ( 6-7) between the near wall value and the far wall value. By contrast this ratio for
the heavy and large neutrally-buoyant particles are flatter, and the acceleration variance
appears to be suppressed near the wall.

The lower row of subplots plot the accleration variance profiles of the heavy and
large neutrally-buoyant particles normalized by the tracer particle acceleration variance
profile, e. g 〈a2

heav y〉(y)/〈a2
tr acer 〉(y). As a general trend, the acceleration variance is most

heavily suppressed relative to the tracer acceleration variance near the wall, and is less
supressed farther away from the wall. A local maximum (which is interpreted at a minimum
suppression relative to the fluid particle acceleration variance) is oberved at approximately
y+ = 300, although given the uncertainties of the data this may be simply the beginning of
a plateau that is observed from approximately y+ = 300−600.

The Heisenberg-Yaglom relation predicts the following scaling for the variance of

10Ideally this normalization would use the acceleration variance at the channel center, but this measure-
ment was unreliable, as discussed in section 5.2.3
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Figure 5.8: The rms of acceleration for the three classes of particles. Subplots (a)-(c): The ac-
celeration rms of each component of the three classes of particle are normalized by the rms of
the transverse component of the tracer particle acceleration at y+ = 638, i. e. 〈a2

z,tr acer 〉1/2|y+=638

Subplots (d)-(f ): The profiles of the ratio between the acceleration rms of the non- tracer particles
and the tracer particles is plotted for each component.

acceleration in HIT in the limit of high Reynolds number

〈a2
i 〉 = a0ν

−1/2〈ε〉3/2 (5.1)

where a0 is thought be a universal constant. Normalizing the acceleration variance with
this scaling permits comparison to previous acceleration measurements taken over a range
of Reynolds numbers. Sawford et al[34] examined several measurements, from DNS and
experiments, of a0, and fitted the following relation

a0 =
5

1+110/Reλ
(5.2)

which was found to a good fit to the DNS measurements of a0 in the range of Reλ found
in the turbulent channel used in this study. Figure 5.9 plots the normalized accelera-
tion variance for the tracer and large neutrally-buoyant particles, using mean dissipation
profiles calculated from the channel DNS[42]. The simple model from Sawford et al[34],
equation 5.2, is also plotted using the local value of the Reynolds number (Reλ(y+)) also
calculated from the same DNS. Fairly good agreement is found with the curve-fit model
from HIT, at especially for y+ > 100. The normalized acceleration variance for the large
neutrally-buoyant particles is plotted in figure 5.9 with respect to their local length scale
ratio: Dp /η(y+), where the Kolmogorov length scale η is again taken from the channel DNS.
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(d) (e) (f)
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Figure 5.9: The Heisenberg-Yaglom "constant" a0 as defined in equation 5.1 is calculated using
the local value of the mean dissipation 〈ε〉(y+) obtained from the DNS. Subplots (a)-(c): Plot a0

as a function of distance from the wall for the tracer particles (x) and the large-neutrally buoyant
particles for the streamwise (a), wall-normal (b), and transverse (c) components of acceleration.
Also plotted is the curve-fit prediction a0 = 5/(1+110/Reλ) from Sawford et al[34], calculated from
the local Reynolds number Reλ(y) from the DNS. Subplots (d)-(f ): are these same data plotted
against the ratio of particle diameter and Kolmogorov length scale. Note that the horizontal axes
of these subplots are flipped to be consistent with the subplots above, as Dp /η is greatest near the
wall.

These plots show that even at Dp /η < 5 the acceleration variance of the large neutrally-
buoyant particle remains significantly lower than the acceleration variance of the tracer
particles.

A similar transformation of variables was performed for the heavy particles: figure
5.10 plots the normalized acceleration variance of the heavy particles against their local
Stokes number, St (y+) = τp /τη(y+), where the local τη(y+) is taken from the channel DNS.
The large Stokes numbers correspond to near wall locations; the small Stokes numbers
correspond to locations farther from the wall. Also plotted are results from Bec et al[91]
from DNS of HIT with inertial point-particles11 for three Reynolds numbers. The relevant
local Reλ in the channel varies from Reλ ≈ 100 for the smallest Stokes numbers shown here,
to Reλ ≈ 40 for the largest Stokes numbers. Large differences between the experimental
results and the point-particle DNS results are observed at large Stokes numbers (close to
the wall); these differences decrease at smaller Stokes number (farther from the wall).

The profiles of acceleration covariance, 〈ax ay〉, are shown in figure 5.11 for the three

11The simple Stokes drag truncation of the Maxey-Riley-Gatignol equation was used to integrate inertial
particle paths.
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Figure 5.10: Normalized acceleration variance of the heavy particles in the channel (colored circles),
plotted against the local Stokes number (τp /τη, where τη is the Kolmogorov time at y(t0) taken
from the channel DNS). Large Stokes number results correspond to the near-wall region; Stokes
numbers decrease monotonically with increasing distance to the wall (see figure 5.3). Also shown is
the normalized acceleration variance from inertial point-particles in HIT over a range of Stokes
number and for three Reynolds numbers, recreated from Bec et al[91], figure 1.

classes of particle. The fluid acceleration covariance is zero in HIT[35]; in a high-aspect-
ratio channel the components of the acceleration covariance matrix that contain the
transverse (z) component of acceleration are zero by symmetry12, but the mean product of
the streamwise and transverse components of acceleration is non-zero. As discussed in
chapter 2, the strong negative covariance near the wall means that particle accelerations
near the wall tend to be of opposite sign: either slowing in the streamwise direction
and speeding up in the direction of the channel center or vice-versa. The acceleration
covariance is smaller for the non-tracer particles than for the tracer particles. Comparing
figure 5.11 (b) and figure 5.8 (d-e) the ratio of non-tracer to tracer covariance is slightly less
than the ratio of the non-tracer to tracer variance, especially for the heavy particles.

5.3.1 Discussion

Large neutrally -buoyant particles

As mentioned in the introduction, previous work regarding large neutrally-buoyant parti-
cles in HIT have shown: 1) they do not cluster[161], and 2) their acceleration variance is
approximately equal to that of tracer particles for Dp /η< 5[30, 4, 90]. Because these parti-
cles do not show any preferential concentration in HIT the "biased sampling" mechanism
is not a factor, and therefore the reduced acceleration variance reported in the literature
for neutrally-buoyant particles larger Dp /η≈ 5 is attributed to the temporal and spatial
filtering mechanisms.

The acceleration variance for the large neutrally-buoyant particles reported here are
typically 0.5-0.75 that of the fluid acceleration variance, even in those regions of the flow

12Also confirmed experimentally.
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(a)

(b)

(c)

Figure 5.11: Covariance of acceleration for the three classes of particles. Subplot (a): The profiles
of acceleration covariance 〈ax ay 〉 for the three classes of particles. Subplot (b): The profiles of the
ratios between the the covariance of acceleration of the non-tracer particles and the covariance
of acceleration of the tracer particles. Subplot (c): The covariance of acceleration for the three
classes of particles, normalized by the variance of their streamwise and wall- normal components
of acceleration.

where Dp /η< 5 (see figure 5.9). How to explain the discrepancy between these results and
well-established result in HIT that the acceleration variance of the particle is very close
to that of the fluid up to Dp /η? One difference is that the experiments in HIT reported in
the literature had higher Reynolds numbers l(Reλ ≈ 160−900) than in the near wall of the
channel(Reλ < 80), although this result seems quite insensitive to Reynolds number[4].
The more probable factor is that the difference between these results and the published
results is that all of the published results were measured in HIT.

The discrepancy in acceleration variance results is explicable by the inhomogeneity
and/or anisotropy of the turbulent channel only if one or more of the mechanisms that
act to reduce particle acceleration variance behaves differently in the turbulent channel
than in HIT. It is unclear how temporal and spatial filtering would behave differently
in the inhomogeneous/anisotropic turbulence, especially in relation to the variance of
acceleration. The sampling bias mechanism was thought to be irrelevant to the dynamics
of the large neutrally-buoyant particles simply because no clustering was observed in
HIT[161] for particles over a range of diameters Dp /η = 4.5−17 (St = 0.38-1.23), not from
any theoretical concern. In fact, that are a few reasons to suspect that clustering could in
fact occur in this context.

1) Large neutrally-buoyant particles are subject to drag and lift forces resulting from
fluid shear and particle rotation[148]13 that act to separate the particle trajectory from
the fluid trajectory. In HIT these forces do not induce clustering[161], but in a turbulent
boundary layer containing features such as mean shear, preferential alignment of vortices,

13See Loth and Dorgan[148] for a thorough review of these forces in their effort to extend the Maxey-Riley-
Gatignol equation to large particles.
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and coherent structures (see the discussion in section 1.2) the effect of these forces on
clustering may be substantially different.

2) Just as small, heavy particles accumulate in zones of low vorticity because of particle
inertia[149], the forces described above imply that the particles accumulate in zones that
minimize these forces. HIT therefore does not contain zones than minimize these forces,
but the turbulent boundary layer may.

3) Recent efforts to better understand the clustering mechanism of inertial particles
in HIT have resulted in the "sweep-stick" hypothesis[162, 163]. Briefly, clustering in the
inertial range is explained by particles being swept through regions of zero fluid accelera-
tion, then being stuck in these regions because the fluid acceleration is not large enough
to cause the fluid and particle paths to diverge14. While this "sweep-stick" mechanism
is not directly applicable to large neutrally-buoyant particles in HIT (or else clustering
would have been observed in the results of [161]), it does make explicit the relationship
between the topology of acceleration in the flow and the heavy particle clusters. There may
be an analogous "stick" mechanism (something similar to that of small heavy particles:
vp ≈ u−τp a) that relies on the finite-particle-size forces, and their topology in the channel.

Heavy particles

Heavy particle acceleration variance is found to be less than tracer particle acceleration
variance across the channel. This reduction is especially notable near the wall, where figure
5.8 shows heavy particle acceleration variance is 30-45% (depending on the component)
of the fluid acceleration variance. These results are consistent with the trend observed
by Bec et al[91] in HIT: a monotonic decrease in heavy particle acceleration variance
with increasing Stokes number. The heavy particle acceleration variance results of the
present study are significantly lower than those found by Bec et al (see figure 5.10) even
at approximately equivalent Reynolds numbers (Reλ = 80−100 for St < 0.5). The trend
visible in figure 5.10 shows a steeper decline of acceleration variance with increasing Stokes
number for the channel results than for the HIT results of Bec et al.

There are two likely explanations for the discrepancy between the results from the
channel and the result from HIT seen in figure 5.10. The first concerns the finite-size effects:
the heavy particles have a length scale ratio of Dp /η = 3.2 (near the wall) to Dp /η = 1.3 (in
the outer layer). Volk et al[153] reported a significant discrepancy between experimental
measurements of the acceleration variance of a heavy particle (Dp /η = 1.2, St = 0.58) and
the result from an inertial point-particle in DNS. The growing length scale ratio for particle
closer to the wall is consistent with the steeper decline in the acceleration variance in the
channel seen in figure 5.10.

The second explanation is that the bias sampling mechanism, which was shown to
play an important role in the reduction of the acceleration of heavy particles in HIT[93],
is almost certainly changing with wall distance. Heavy particles have been shown to
concentrate in the near wall region due to turbophoresis, and particle clustering that is
anisotropic and wall-distance dependent has been observed by Sardinia et al[164] in a
turbulent channel DNS.

Gerashchenko et al[73] performed one of the rare experimental studies of inertial
particle accelerations in a turbulent boundary layer15. Water droplets in air result in a high

14In 3-D turbulence this mechanism is more complex, see [162, 163] and references therein for a complete
description.

15As of this writing this study remains the only such measurements in a turbulent system with a mean flow
and mean shear that have been published.
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density ratio, thus gravity plays an important role in particle dynamics. Particles were sub-
Kolmogorov size, with Stokes numbers from 1.1 (close to the wall) to 0.5 (farther from the
wall). Despite the similarity of Stokes numbers the results reported by Gerashchenko et al
differ significantly from those reported here. In the near wall region they found the variance
of the streamwise component of particle acceleration to be twice that of the variance of
the wall-normal particle acceleration component. This is the inverse of what is seen in the
present study, where the variance of streamwise component of heavy particle acceleration
is shown in figure 5.7 to be less than the variance of the wall-normal component near
the wall. Lavezzo et al[152] performed channel flow DNS using parameters as close as
possible to the experimental parameters of Gerashchenko et al to elucidate the role of
gravity in these results, and found that this increase of the variance of the streamwise
particle acceleration near the wall is due to gravity. That conclusion is consistent with the
results presented here, as the role of gravity is much less important in the present study.
Gerashchenko et al found that the acceleration variance increased with decreased Stokes
number, contrary to the results shown in figure 5.10 and the results for HIT from several
sources, e. g. Bec et al[91]. This increasing acceleration variance with decreasing Stokes
number was also found to be an effect of gravity by Lavezzo et al[152].

More puzzling is the substantial difference in normalized acceleration: Gerashchenko
et al report a profile of a0 across the boundary layer from a0 ≈ 3 near the wall to a0 ≈ 4 far
from the wall. This is a substantial difference from the results reported here, seen in figure
5.10 as a0 ≈ 0.2 close to the wall to a0 ≈ 0.8 far from the wall (streamwise component ). The
increase in acceleration variance with decreased Stokes number, explained by the effects of
gravity, suggests a complex interaction between gravity, bias sampling, and the turbulent
boundary layer. This interaction is poorly understood, and requires further work.

5.4 Lagrangian acceleration statistics

The Lagrangian autocorrelations of the three components and magnitude of acceleration
for each of the three classes of particle are plotted in figures 5.12 and 5.13. These figures
include dimensional autocorrelations (top row) and normalized autocorrelations (bottom
row). Figure 5.12 shows autocorrelations calculated from those trajectories close to the
wall (0 < y+(t0) < 37.5), while figure 5.13 shows autocorrelations for the outer layer (525 <
y+(t0) < 600). These two locations were chosen as representative; a full collection of figures
for all available wall-bins is found in the appendix A.3. Note that the bin close to the wall
(figure 5.12) is half the width of the bin in the outer layer (figure 5.13). This near-wall bin size
is a compromise: it must be small enough such that important wall-distance-dependent
dynamics are not lost, and large enough that the autocorrelations have adequate statistical
convergence. The non-tracer particle results lose statistical convergence after τ+ ≈ 25 in the
near-wall bin (figure 5.12); in the outer layer bin (figure 5.13) these results show statistical
convergence up to τ+ ≈ 40. Despite this lack of statistical convergence at longer time lags
several observations are possible regarding the autocorrelations of acceleration shown in
these two figures. In the near wall region the normalized autocorrelation of the streamwise
component of acceleration is quite similar for the three classes of particles, and none of
them show strong negative correlations. The wall-normal and transverse components for
the tracer particle show significant dips below zero, which was taken as evidence for vortex
trapping in streamwise vortices near the wall. The non-tracer particles seem to decay to
zero without significant dips below zero, with the exception of the transverse component of
the large neutrally-buoyant particles. The autocorrelation of the magnitude of acceleration,
both near the wall and in the outer layer, decays much more quickly for the non-tracer
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Streamwise Wall-normal Transverse Magnitude

Tracer Large neutrally-buoyant Heavy

Figure 5.12: Top: Non-normalized autocorrelations of the three components of acceleration

(〈ai (0)ai (τ)〉), and acceleration magnitude
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z (0)

√
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y (τ)+a2

z (τ)
〉)

, for

the three classes of particle. Bottom: The same autocorrelations as above, normalized by their
variance. The autocorrelations are calculated from trajectories that are in the bin y+ = 0−37.5 at
t = 0.

particles than for the tracer particles.

The Lagrangian cross-correlation between the streamwise and wall-normal compo-
nents of acceleration were similarly calculated at the same locations in the channel, and
are presented in figure 5.14. Non-negligible cross-correlation for the non-tracer particles
is observed close to the wall; the cross-correlation decays to zero for all three classes of
particles at approximately the same time lag (τ+ ≈ 10). In the outer layer location this
cross-correlation is effectively zero for the non-tracer particles, despite the clear (although
much reduced in magnitude) cross-correlation of tracer particle acceleration.

The integration in τ of the normalized autocorrelations of acceleration form an ac-
celeration timescale. The limits of this integral are typically taken to be zero and the
zero-crossing time[151], or slightly before the zero-crossing time16.

Due to the problems of statistical convergence observed in the normalized autocorre-
lations of acceleration in figures 5.12 and 5.13, the limits of integration were changed to
between zero and the time at which the correlation decays below 0.2, i. e. (no sum over

16As was done for the acceleration timescales from the tracer particles calculated in chapter 3, which used
the time at which the correlation decayed below 0.05
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Tracer Large neutrally-buoyant Heavy

Streamwise Wall-normal Transverse Magnitude

Figure 5.13: Top: Non-normalized autocorrelations of the three components of acceleration
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the three classes of particle. Bottom: The same autocorrelations as above, normalized by their
variance. The autocorrelations are calculated from trajectories that are in the bin y+ = 525−600 at
t = 0.

indices),

Ti ,acc ≡
∫ τc

0
〈ai (0)ai (τ)〉/〈a2

i (0)〉dτ where 〈ai (0)ai (τc )〉/〈a2
i (0)〉 = 0.2 (5.3)

The limit of 0.2 was chosen to ensure that the calculation of the acceleration timescales is
robust given the lack of statistical convergence. The tracer particle acceleration timescales
were also recalculated according to this definition to allow direct comparison. Acceleration
timescales calculated according to definition 5.3 are shown in figure 5.15 for the three
classes of particles. The ratio between the non-tracer and tracer acceleration time scales is
shown in figure 5.16. The non-tracer particles are observed to have a longer acceleration
timescale than the tracer particles, up to almost 2.5 times that of the tracer particles in the
near wall region for the wall-normal and transverse components. The results for the heavy
and large neutrally-buoyant particles show quite similar trends, especially near the wall.
The ratio between timescales for the streamwise component is closer to unity than for the
other components.

The ratio between large neutrally-buoyant particle and tracer particle timescales shown
in figure 5.16 may be compared to the results from Volk et al[90] (figure 4). The three
measurements closest to the wall correspond to length scale ratios for the large neutrally-
buoyant particles of Dp /η ≈ 5− 7.5 . In this length-scale-ratio range Volk et al report
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Tracer Large neutrally-buoyant Heavy

Figure 5.14: The Lagrangian cross-correlation of the streamwise and wall-normal components
of acceleration for the three classes of particles. Top: The cross-correlation 〈ax (0)ay (τ)〉 near the
channel wall, y+ = 0−37.5 at t = 0. Bottom: The cross-correlation 〈ax (0)ay (τ)〉 near the channel
wall, y+ = 525−600 at t = 0.

measuring timescale ratios of approximately 1.5, which is consistent with the timescale
ratio for the three closest points to the wall shown in figure 5.16.

5.4.1 Discussion

Salazar and Collins[93] studied the Lagrangian autocorrelations of acceleration of inertial
particles in HIT (Reλ = 120, St = 0.025−2) with a DNS point-particle approach. They were
able to quantify the effect of temporal filtering and bias sampling on the autocorrelations
of acceleration, and found that in the range of Stokes numbers relevant to the present study
(St = 2 at the wall, St = 0.2 in the outer layer) the relative impact of these two mechanisms
on the autocorrelation change notably. At St = 2, which occurs in the near wall region
in the present study, the difference between the fluid and particle autocorrelations of
acceleration are dominated by the temporal filtering mechanism. By contrast, at St = 0.2
(which occurs at the outer layer location in the present study), the difference in fluid
and particle autocorrelations is dominated by the bias sampling mechanism. There are
important differences between this DNS with inertial point-particles in HIT and the present
study, including the finite-size of the heavy particles measured, the effect of gravity, and
the structure of the turbulent boundary layer; these factors have unknown effects on
the relative importance of the temporal filtering mechanism and the biased sampling
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Streamwise Wall-normal Transverse

Figure 5.15: Acceleration timescales for the three classes of particle across the channel. Lines
represent the timescales calculated with "best-fit" filter lengths; also shown are representative
error bars (at y+ = 19 for the large neutrally-buoyant particles and y+ = 188 for the heavy particles)
calculated with filter lengths ±10 relative to the "best-fit" length.

mechanism to the autocorrelation of particle acceleration.

For the large neutrally-buoyant particle there is no available analysis similar to that
of Salazar and Collins for small inertial particles. Presumably the mechanisms affecting
the autocorrelation of acceleration are related to those responsible for the acceleration
variance, the nature of this relation is not clear. Volk et al[90] suggested that the scaling
of the time scale ratio τp /τ f ∼ D2/3

p , i. e. the particle response time is similar to the eddy
turnover time of eddies at the scale of the particle diameter. This is similar to the argument
for the scaling of acceleration variance by Voth et al[30] discussed in section 5.3, which
was found to over-predict acceleration variance for the large neutrally-buoyant particles
compared to the measurements reported here. The possibility of biased sampling of large
neutrally-buoyant particles was discussed in section 5.3 as an explanation for this discrep-
ancy; if bias sampling is in fact occurring in the channel flow for large neutrally-buoyant
particles than it would presumably have an effect on the Lagrangian autocorrelations of
acceleration.

Despite these differences in phenomenology between the heavy and large neutrally-
buoyant particles their Lagrangian acceleration statistics are remarkably similar across
the channel. Their normalized autocorrelations in figures 5.12 and 5.13 are quite similar,
especially the rapid decorrelation of acceleration magnitude relative to the tracer particle.
The long time correlation of acceleration magnitude has been attributed to the persistence
of strong vortical structures in the turbulence[35, 37]; the shorter time correlation of
this quantity indicates that non-tracer particles are ejected from these structures. This
is expected in the case of heavy particles[149], but it is significant that large neutrally-
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Figure 5.16: The ratio between acceleration timescales for the heavy particles and the big iso-dense
particle (see figure 5.15) and the acceleration timescales across the channel.

buoyant particles show very similar behavior. This is consistent with the idea that there is
some mechanism acting on the large neutrally-buoyant particles that causes preferential
concentration. The similarities between the two particles is particularly notable in the ratio
of particle and fluid acceleration timescales shown in figure 5.16. Despite the differences
between the possible explanations for why the particle acceleration timescales differ from
the fluid acceleration timescale (turnover timescale of the eddy at the particle diameter,
biased sampling of zones of low vorticity, etc.) these ratios are quite similar.

5.5 Conclusion

A high-aspect ratio, moderate Reynolds number turbulent channel was adapted to allow
the high-resolution, 3-D measurement of non-tracer particle trajectories. These particle
trajectories allow Lagrangian statistics of position, velocity, and acceleration to calculated,
conditioned on the distance to the channel wall. Two types of mono-dispersed non-
tracer particles were measured, a large neutrally buoyant particle and a smaller, heavier
particle. The large neutrally-buoyant particles allows the exploration of the effects of size
on the particle statistics in the channel independent of inertial effects. The smaller heavy
particles have a more complex phenomenology: effects of gravity, inertia, and finite-size
are combined. For both particles the changing nature of the fluid turbulence as a function
of wall distance results in a range of key parameters such as Stokes number and length
scale ratio.
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For both types of non-tracer particle the variance of the particle acceleration was
significantly lower than the fluid acceleration across the channel, and particularly in
the near-wall region. Large neutrally-buoyant particles smaller than Dp /η ≈ 5 in HIT
have particle acceleration variance equal to fluid acceleration variance, but the results
presented here to not agree with that finding. This lack of agreement suggests a bias
sampling effect that occurs in this turbulent system but not in HIT. Further work, including
a characterization of the clustering of these particles in the channel, will be necessary to
further explore this question.

The acceleration variance of the smaller, heavy particles was found to be lower than
expected for similar Stokes numbers in HIT. Finite-size effects appear to play a role in this
finding as well, even at relatively modest (Dp /η≈ 3) particle sizes. These results suggest a
finite-size effect on the biased sampling in the turbulent channel.

Lagrangian correlations of the three components of acceleration, as well as the autocor-
relation of the magnitude of acceleration, were presented for the near-wall and outer layer
regions of the flow. The non-tracer particle results were quite similar, and both showed a
rapid decorrelation of acceleration magnitude, comparable to the autocorrelation of one
of the acceleration components. This suggests that the "vortex trapping", in which a fluid
particle is trapped in a strong vortical structure of a relatively long period, occurs much
more rarely for the non-tracer particles.

Lagrangian timescales of acceleration were extracted, and found to be greater than
or approximately equal to the fluid particle timescales; near the wall the non-tracer ac-
celeration timescales were up to 2.5 times the fluid acceleration timescale. These results,
particularly the acceleration variances and timescales across the channel, are key ingredi-
ents in the development of Lagrangian stochastic models.
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Chapter 6

Conclusions and perspectives

The symmetries of high-Reynolds number homogeneous isotropic turbulence have allowed
fruitful exploration of this phenomenon from a Lagrangian point of view. Models that
predict anomalous scaling of velocity increments, the long-correlations of acceleration
magnitude, and dispersion in finite-Reynolds number turbulence, have been formulated in
a Lagrangian framework. Over the last two decades there has been increasing experimental
and numerical data to test these models.

There are many questions regarding how these results apply to inhomogeneous tur-
bulence. Lack of stationarity, lack of small-scale isotropy, lack of independence between
components even at the small-scales, break the typical assumptions made in the devel-
opment of these models. This thesis has presented Lagrangian statistics in a turbulent
channel obtained from high-resolution experimental measurements. These measurements
have allowed the investigation of single-particle, three-component Lagrangian statistics in
position, velocity, and acceleration. These statistics must be conditioned on position in
inhomogeneous turbulence, and results are reported from the buffer layer near the wall
to near the centerline of the channel. The measurements from this large domain, from
the highly sheared, anisotropic near-wall region to the near-homogeneous central region,
have allowed us to quantify where and how the Lagrangian statistics in the channel deviate
from their expected values in homogeneous isotropic turbulence.

3-D particle tracking velocimetry in turbulence in inhomogeneous turbulence requires
a delicate balance of parameters. One may take the approach of Gerashchenko et al[73]
and translate the high-speed cameras and light source, an operation that is extremely
technically challenging. The other approach is that discussed in chapter 2: a compromise
between spatial resolution and measurement volume size. Future studies may use the
results of this thesis to refine these compromises, and optimize experimental parameters.
For example, a PTV system optimized for the measurement of acceleration near the wall
could limit the size of the measurement volume based on the acceleration correlation
times and the extent of particle dispersions that are reported here.

A complex chain of error and several statistical biases were described, some of which
are unique to Lagrangian statistics in inhomogeneous flow. A rigorous treatment of the
error in Lagrangian statistics in PTV measurements would be a significant contribution to
the field. Statistical biases related to the finite measurement volume, extraction of Eulerian
statistics, and conditioning should be tested in a systematic manner. This effort is perhaps
best approached with DNS measurements, as these measurements often have the large
numbers of particles necessary to converge results from narrow wall-bins. The anomalous
velocity measurements reported in chapter 3 suggest that some correction scheme is
necessary for these wall-bounded PTV measurements of velocity. Again, systematic test of
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various strategies with experimental and DNS data would be a useful contribution.

Chapters 3 and 4 discuss Eulerian and Lagrangian statistics in the turbulent channel.
The acceleration PDFs are shown to be highly skewed near the wall, which is not surprising
given the degree of inhomogeneity near the wall. More surprising is that this skewness is
non-zero very far from the wall, and indeed stays almost constant throughout the channel.
This is only one aspect of the small-scale anisotropy that was found in the acceleration
statistics: significant cross-correlation of components and anisotropy of the orientation
of acceleration angles was also observed. We do not have a clear understanding of why
and how such anisotropy persists, even far from the wall. An intriguing clue is found in the
Lagrangian correlation of the streamwise and wall-normal components of acceleration
(figure 4.20). This Lagrangian correlation suggests a preferential rotation direction in the
x−y plane along a particle trajectory, and may indicate that the mean shear is "organizing"
the small-scale vorticity. The peak of this correlation at time-lags of approximately one
Kolmogorov timescale indicates that, from a Lagrangian point of view, the acceleration
components are more correlated than suggested by the simple one-time correlation of
acceleration components (figure 3.12).

Further analysis of acceleration and velocity from a geometrical perspective, for ex-
ample using the Frenet apparatus (a∥, a⊥, etc.), could help us to better understand the
structure of Lagrangian turbulence. This perspective has been useful in exploring accelera-
tion in vortex filaments[120] in HIT, and may be equally useful in describing organization
in the turbulent boundary layer from a Lagrangian perspective. The inner product the
acceleration and velocity vectors, the Lagrangian power, has been of recent interest as it
relates to the time-irreversibility of the turbulence. A thorough analysis of this Lagrangian
power, and how it relates to the transport of energy in a turbulent channel, would help us
to understand the flow of energy in this system from a Lagrangian point of view.

A logical extension of this thesis is the development of a second-order Lagrangian
stochastic model constrained by the results reported here. Terms in this model should be
constrained the variances of velocity and acceleration and their Lagrangian timescales. A
similar effort was published by Tanière et al [64] that used velocity statistics. A method
for extracting model coefficients from primary statistics for a second-order model was
proposed by Pope[55] for homogeneous shear flows. An adaptation of this method à la
Tanière appears to be a reasonable first step in the use of these results to construct a
second-order Lagrangian stochastic model. Lagrangian stochastic models have also been
developed for non-tracer particles in inhomogeneous flow[165, 166]; direct comparisons
are possible between the Lagrangian particle timescales and variances predicted by these
models and the measurements reported in this thesis.

The Lagrangian statistics extracted from the DNS of a turbulent channel flow at similar
Reynolds number (by J. I. Polanco and I. Vinkovic) have shown very good agreement with
the experimental results reported in this thesis. Large increases in the Reynolds number
for future Lagrangian experiments will be difficult to achieve, principally due to the mean
flow. It seems likely that the role of future experiments will be focused on measurements of
non-tracer particles, especially large particles which are difficult to simulate in DNS. The
Lagrangian statistics of non-tracer particles reported in this thesis are just the beginning
of the large effort necessary to understand how this particles interact with the turbulence
from a Lagrangian point of view. The dynamics of large, neutrally-buoyant particles in
turbulence is poorly understood, as are the mechanisms by which they filter and sample the
underlying turbulent flow. A systematic study of the effect of particle size on acceleration
dynamics in a turbulent channel would be useful in determining the upper limit of tracer
particle diameter in wall-bounded flows. A study of particle clustering in this context would
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also be useful. Large, neutrally buoyant particles have been shown to have no preferential
concentration in HIT[161], but acceleration of these particles was shown in this thesis
to be different than tracer particles. A systematic investigation of the various size effects
may be possible using DNS in conjunction with experiments. Adding terms to the particle
evolution equation, similar to the Faxen corrections discussed by Calzavarini[151] could
help to untangle the influence of the various terms (Faxen terms, the history force, effects
of mean shear, etc.) that drive the particle dynamics.

More broadly, exploration of the parameter space for non-tracer particles in inhomo-
geneous turbulence has barely begun. Understanding the difference in the Lagrangian
statistics of non-tracer particles, and the mechanisms that govern their behavior, between
homogeneous and inhomogeneous turbulence is important to the development of models
that apply to real applications.

Ideally, non-tracer particle trajectories would be measured with simultaneous mea-
surements of the surrounding fluid. Intriguing efforts in this direction have recently been
reported by Elhimer et al [167]. Two- component PTV measurements of large particles
along with simultaneous 2D-2C PIV measurement of the fluid allow direct instantaneous
measurement of the relative velocity between the particle and the nearby fluid. Similar
experiments using 3-D PTV are possible in the channel, and could allow us to measure
local velocity gradients and particle accelerations simultaneously.
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Appendix A

Appendices

A.1 Lagrangian time scale definition

We have defined our Lagrangian timescales for velocity, Tv,i , and acceleration Ta,i from
Lagrangian autocorrelation ρi i as follows:

Ta,i (y0) =
∫ τc

0
ρi i (τ, y0)dτ, (A.1)

where τc is the time lag at which the autocorrelation first crosses 0.05
The classic definition for this kind of time scale implicitly assumes that ρi i has an

exponential decay, as for the autocorrelation of velocity in HIT, as so τc → ∞. This is
an unsuitable definition for the time scale of acceleration, which as the derivative of a
stationary process has an integral scale equal to zero. Yeung and Pope [16] used the zero-
crossing time of the autocorrelation of acceleration as an acceleration time scale definition,
and found it to be 2.2 times that of the Kolmogorov timescale.

In the turbulent channel we observe various forms of the autocorrelation of acceleration
depending on the component of the acceleration and the initial distance to the wall.
Specifically, the autocorrelation of the streamwise component of acceleration has a weak
to non-existent tendency to be negatively correlated, meaning the zero-crossing time of
these curves do not robustly characterize the time scales of the process.

As a compromise, we propose the definition shown in equation A.1, where τc is the time
lag at which the autocorrelation first crosses 0.05, for both the acceleration and velocity
timescales. This definition has the following advantages:

1. Small ( ≈ %5) error between this definition and the classical definition for the time
scale of velocity, which is A.1 with τc →∞, as if we assume ρv ≈ exp(−At ), then

Tv =
∫ τc

0
exp(−Aτ)(τ, y0)dτ

Tv = A(1−τc )

2. Less sensitive to measurement noise and/or lack of statistical convergence than the
zero-crossing time.

3. Permits a consistent definition of time scales for acceleration and velocity.

A.2 Lagrangian correlations (complete)
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Figure A.1: Lagrangian autocorrelations of acceleration for the streamwise (x), wall-normal (y), and
spanwise (z) components of acceleration.
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Figure A.2: Lagrangian autocorrelations of velocity for the streamwise (x), wall-normal (y), and
spanwise (z) components of velocity.
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Figure A.3: Lagrangian correlations of the streamwise and wall-normal components of acceleration.
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Figure A.4: Lagrangian correlations of the streamwise and wall-normal components of velocity.
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Figure A.5: Lagrangian cross-correlations of acceleration and velocity (same component)
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Figure A.6: Lagrangian cross-correlations of acceleration and velocity (different component)
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A.3 Autocorrelations of acceleration for tracer and non-tracer
particles
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Figure A.7: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 0−37.5 at
t = 0.
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Figure A.8: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 37.5−75 at
t = 0.
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Figure A.9: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 75−150 at
t = 0.
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Figure A.10: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 150−225 at
t = 0.

XII



APPENDIX A. APPENDICES

Figure A.11: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 225−300 at
t = 0.
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Figure A.12: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 300−375 at
t = 0.
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Figure A.13: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 375−450 at
t = 0.
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Figure A.14: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 450−525 at
t = 0.
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Figure A.15: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 525−600 at
t = 0.
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Figure A.16: Non-normalized autocorrelations of acceleration (〈ai (0)ai (τ)〉) for the three classes of
particle. The autocorrelations are calculated from trajectories that are in the bin y+ = 600−675 at
t = 0.
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