
HAL Id: tel-01739884
https://theses.hal.science/tel-01739884v1

Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and simulation of distributed large scale
situated multi-agent systems

Omar Rihawi

To cite this version:
Omar Rihawi. Modelling and simulation of distributed large scale situated multi-agent systems.
Multiagent Systems [cs.MA]. Université Lille 1 - Sciences et Technologies, 2014. English. �NNT :
�. �tel-01739884�

https://theses.hal.science/tel-01739884v1
https://hal.archives-ouvertes.fr

Modelling and Simulation of
Distributed Large Scale

Situated Multi-Agent Systems

By

Omar RIHAWI

A thesis in the Department of Computer Science
Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

Université Lille 1
03 Dec 2014

Approved by the Examining Committee:

Mrs. Zahia Guessoum Associate Professor (HDR), (Referee)
Université de Reims Champagne-Ardenne

Mr. Laurent Vercouter Professor, (Referee)
INSA Rouen

Mr. Gregory Bonnet Associate Professor (MCF), (Examiner)
Université de Caen Basse-Normandie

Mrs. Sophie Tison Professor, (Examiner)
Université Lille 1 Sciences et Technologies

Mr. Yann Secq Associate Professor (MCF), (Supervisor)
Université Lille 1 Sciences et Technologies

Mr. Philippe Mathieu Professor, (Supervisor)
Université Lille 1 Sciences et Technologies

UNIVERSITE LILLE 1 - SCIENCES ET TECHNOLOGIES
Laboratoire d’Informatique Fondamentale de Lille — UMR 8022

U.F.R. d’I.E.E.A. – Bat. M3 – 59655 VILLENEUVE D’ASCQ CEDEX
Tel. : +33 (0)3 28 77 85 41 – Fax : +33 (0)3 28 77 85 37 – email : direction@lifl.fr

ii

Acknowledgements

First of all, I am grateful to Allah for establishing me to complete this work.
’No vision can grasp Him, but His grasp is over all visions. He is the Most
Subtle and the Most Knowledgeable.’ [AYAT al-Anaam 6:103, ALQURAN].

Then, I would like to thank Prophet Muhammad (peace be upon him), the
first and the greatest teacher for me. ’Philosopher, orator, apostle, legislator,
warrior, conqueror of ideas, restorer of rational dogmas, of a cult without
images; the founder of twenty terrestrial empires and of one spiritual empire,
that is Muhammad. As regards all standards by which human greatness may
be measured, we may well ask, is there any man greater than he?’ [Alphonse
de Lamartine (1790-1869) French poet and statesman].

I wish to express my sincere thanks to the panel of expert examiners
whom I defended for their questions and remarks that enriched this work. In
detail, I wish to thank Mrs. Zahia Guessoum, Associate Professor (HDR) at
Université de Reims Champagne-Ardenne, and Mr. Laurent Vercouter, Pro-
fessor at INSA Rouen, for their reports that highlighted the ideas and the
contributions of this work. Besides, I would like to thank Mr. Gregory Bon-
net, Associate Professor (MCF) at Université de Caen Basse-Normandie, and
Mrs. Sophie Tison, Professor at Université de Lille 1 Sciences et Technologies
for accepting to examine my work.

I would like to express my sincere gratitude to my supervisors. Mr. Phil-
ippe Mathieu, Professor at Université de Lille 1 Sciences et Technologies and
head of Research at SMAC team, for his help and for giving me the great
honour to work my doctoral thesis in SMAC team.

Besides, I am deeply indebted to my supervisor, Mr. Yann Secq, Associate
Professor (MCF) at Université de Lille 1 Sciences et Technologies, who has
helped me to shape my research, and who has always been supportive and
patient throughout the whole period of my study until the very last day before
defense. I thank my supervisors for many fruitful discussions, ideas and their
invaluable guidance and help during this research. I thank them also for their
friendship and unconditional support. It has been a great privilege for me to
work under their supervision.

iii

iv

I would like also to express my gratitude to all SMAC team members
for endless support and encouragement since the very first day of my study:
François, Yoann, Tony, Antoine, Sameh-Abdel-Naby, Iryna, Lisa, Fabien,
Bruno, Sébastien, Maxime, Jean-Christophe, Patricia and Jean-Paul, and
again my supervisors Yann and Philippe.

I would also like to thank all my colleagues at LIFL laboratory (now it is
CRIStAL) for creating such an enjoyable working environment.

I owe a debt of gratitude to the financial support by Computer science
department of Aleppo university.

Finally, I am particularly indebted to my family, without whom I would
never have done anything. I would like to thank my mother, my father, my
sisters and my brother who helped me to fulfill my dreams. Besides, I would
like to thank my friends for all great days that we spent together.

Villeneuve d’Ascq, December 03, 2014 Omar Rihawi

Abstract

This thesis aims to design and implement a distributed simulator for large-
scale situated-MAS applications of complex phenomena. Our goal is to sup-
port researchers by providing a software platform that can simulate very
large-scale situated-MAS applications, which can simulate several millions of
agents. When the number of agents and interactions reach such levels, it
becomes impossible to use a single computer to execute the simulation. It is
then necessary to distribute the simulation on a computer network; however,
this can raise some issues: agents allocation, interactions between different
agents from different machines, time management between machines, load-
balancing, etc. When we distribute MAS simulation on different machines,
agents must be separated between these machines because they have the most
computational costs in the simulation. With this separation, agents should
still be able to produce their normal behaviours. Our distributed simulator
is able to cover all agents’ perceptions during the simulation and allow all
agents to interact normally. Moreover, with large-scale simulations the main
observations are done on aggregated data, which are generally described as
emerging properties at the macroscopic level. These emerging properties are
induced by agents behaviours at the microscopic level.

In this thesis, we study two main aspects to distribute large-scale situated-
MAS simulations. The first aspect is the distribution process or the efficient
strategy that can be used to distribute MAS concepts (agents and envir-
onment) on a computer network. We propose two efficient distribution ap-
proaches: 1) agents distribution and 2) environment distribution.

The second aspect is the relaxation of synchronization constraints in order
to speed up the execution of large-scale simulations. Relaxing this constraint
can induce incoherent interactions, which do not exist in a synchronized
context. But, in some applications that can not affect the macroscopic level.

Our experiments on different categories of situated-MAS applications
show that some applications can be distributed efficiently in one distribu-
tion approach more than the other.

In addition, we have studied the impact of incoherent iterations on the

v

vi

emerging behaviour of different applications, and we have evidenced situ-
ations in which unsynchronized simulations still produced the expected mac-
roscopic behaviour. In other words, we have found that, for some applica-
tions, and for large-scale simulations with millions of agents, we can speed-up
the execution time and we can highly reduce the communication costs by re-
laxing the synchronization between machines and keeping the macroscopic
behaviour at the same time.

Résumé

Les systèmes multi-agents sont constitués d’entités autonomes qui inter-
agissent avec leur environnement pour résoudre un objectif collectif. Les do-
maines d’application de ces systèmes vont de la résolution distribuée de pro-
blèmes à la simulation de phénomènes complexes. Ce type de simulation offre
une granularité fine permettant d’exprimer les comportements à un niveau
microscopique, c’est-à-dire individuel, et d’observer des phénomènes émer-
gents au niveau macroscopique, c’est-à-dire de l’ensemble de la population.
Néanmoins, lorsque le nombre d’agents et d’interactions augmentent, les res-
sources nécessaires en terme de puissance de calcul ou de capacité de stockage
deviennent un facteur limitant.

Nous restreignons cette étude à la simulation d’agents situés dans un es-
pace euclidien et dont les interactions ou les échanges de message ne peuvent
se produire que lorsque deux agents sont suffisamment proches. Ce contexte
correspond à la très grande majorité des applications réalisées dans le cadre
de simulation d’agents situés comme la modélisation de traffic routier, d’éco-
systèmes humains ou biologiques ou encore de jeux vidéo.

Si l’on souhaite modéliser des systèmes contenant plusieurs centaine de
milliers ou de millions d’agents, une puissance de calcul et de stockage im-
portante devient nécessaire. Pour atteindre de telles simulations large échelle,
distribuer le simulateur sur un réseau de machines est nécessaire, mais in-
duit des problématiques de répartition de charge, de gestion du temps et de
synchronisation entre les machines et de tolérance aux pannes.

En plus des problèmes de coûts de communication classiques dans le
contexte d’applications distribuées, il faut prendre en compte des aspects
plus spécifiques liés au fait que les agents sont situés dans un environne-
ment. En effet, les dynamiques de déplacement des agents induites par leurs
comportement affecte la répartition de la charge de calcul sur le réseau. Ces
problématiques font l’objet de recherche actives, particulièrement sur la ques-
tion du placement des agents sur un réseau de machines, notamment lorsque
les agents sont mobiles. Dans ce contexte, la gestion du temps et de la syn-
chronisation sont également des problèmes importants.

vii

viii

Le premier aspect de notre travail se concentre sur deux types de réparti-
tion de la charge de calcul : la première basée sur une répartition des agents
en fonction de leur proximité, la seconde répartit les agents indépendam-
ment de leur positionnement dans un objectif d’équilibrage de charge. Nous
évaluons les performances de ces répartitions en les confrontant à des appli-
cations dont les dynamiques de déplacement sont très différentes, ce qui nous
permet d’identifier plusieurs critères devant être pris en compte pour garan-
tir des gains de performance lors de la distribution de simulations d’agents
situés.

Le second aspect de notre travail étudie la problématique de la synchroni-
sation des machines. En effet, à notre connaissance, tous les simulateurs exis-
tants fonctionnent sur la base d’une synchronisation forte entre les machines,
ce qui garantit la causalité temporelle et la cohérence des calculs. Dans cette
thèse, nous remettons en cause cette hypothèse en étudiant la relaxation de
la contrainte de synchronisation. Le fait d’autoriser la progression d’agents
dans différentes temporalités induit des interaction incohérentes, c’est-à-dire
se produisant entre des agents n’appartenant pas au même pas de temps. La
question qui se pose est alors de savoir si ces incohérences induisent une perte
du phénomène émergent de la simulation et si ce n’est pas le cas, d’évaluer
le gain en terme de performance du relâchement de cette contrainte. Il est
d’ailleurs envisageable que pour certaines applications, des erreurs ou échecs
d’interactions entre deux agents ne soient pas critiques pour le résultat global
de la simulation. Afin d’étudier cette problématique, nous proposons deux po-
litiques de synchronisation : la synchronisation forte classique et une forme
de synchronisation reposant sur une fenêtre de temps bornée entre la ma-
chine la plus lente et la machine la plus rapide. Des applications de natures
différentes sont exécutées avec ces différents mécanismes de synchronisation.
Nous étudions dans cette thèse leur coût en performance ainsi que leur im-
pact sur l’émergence des propriétés macroscopiques des simulations. Nous
nous intéressons particulièrement au seuil critique d’interactions temporelle-
ment invalides qui entrâınent un biais dans le résultat de la simulation.

Contents

Introduction xiii
I.1 Motivations . xiii
I.2 Objectives of the thesis . xv
I.3 Research contributions . xvi
I.4 Thesis organization . xvi

I State of the art 1

1 Situated agent-based simulations 3
1.1 Introduction . 3
1.2 Situated-MAS simulations . 4
1.3 Main concepts of MAS simulations 5

1.3.1 Agent . 6
1.3.2 Environment . 7
1.3.3 Interaction . 9

1.4 From micro to macroscopic behaviours 10
1.5 MAS platforms overview . 11
1.6 Notion of time and time step in MAS 12

1.6.1 Time step . 13
1.6.2 Round of talk between agents 13

1.7 Summary . 14

2 Large scale distributed-MAS 15
2.1 Introduction . 15
2.2 Distributed systems . 16

2.2.1 Network relationships and topologies 17
2.2.2 Load balancing . 18
2.2.3 Fault tolerance . 19

2.3 Time management . 20
2.3.1 Multiple time steps . 20

ix

x CONTENTS

2.3.2 Conservative synchronization 21
2.3.3 Optimistic synchronization 21

2.4 Distributed agent-based platforms 22
2.4.1 D-MASON . 23
2.4.2 AglobeX . 24
2.4.3 GOLEM . 24
2.4.4 Repast . 25
2.4.5 IBM Megaffic Simulator 27
2.4.6 FLAMEGPU . 29

2.5 Summary . 30

II Distributed MAS simulators 33

3 D-MAS: concepts and ideas 35
3.1 Introduction . 35
3.2 The need of different distribution types 36
3.3 MAS concepts between centralized and distributed approaches 36

3.3.1 Agents . 37
3.3.2 Environment . 38
3.3.3 Interactions . 38
3.3.4 Interactions organizer 39

3.4 Distribution types . 40
3.4.1 Agents distribution . 42
3.4.2 Environment distribution 43

3.5 Time management . 47
3.6 Synchronization policies . 48

3.6.1 Strong synchronization 49
3.6.2 Time window synchronization 49
3.6.3 No synchronization . 50
3.6.4 The influence of synchronization policies 50

3.7 Summary . 52

4 D-MAS: platform description 55
4.1 Introduction . 55
4.2 Machine units . 55

4.2.1 Environment distribution case 56
4.2.2 Agents distribution case 57

4.3 Platform layers . 59
4.3.1 Communication layer 59
4.3.2 Distributed simulator layer 59

CONTENTS xi

4.3.3 Application layer . 61
4.4 Platform configuration . 61
4.5 Simulation states . 64

4.5.1 Initializing state . 64
4.5.2 Running state . 65

4.6 Communication protocols . 66
4.7 Synchronization algorithms . 68
4.8 Example of a time step execution 70
4.9 Visualizations in large scale simulations 73
4.10 Summary . 74

III Experimentations 75

5 Effective distribution of situated multi-agent simulations 77
5.1 Introduction . 77
5.2 Distributing MAS simulations efficiently 78

5.2.1 Flocking behaviour model 79
5.2.2 Prey-predator model 81

5.3 Experimentations mechanism 85
5.4 Experimentations description 86
5.5 Scaling the platform to 50 machines 87
5.6 Efficient distribution of MAS applications 87
5.7 Communication costs evaluation 89
5.8 When should we use each type of distribution? 91
5.9 Environment distribution experiments 92

5.9.1 Execution time . 92
5.9.2 Communication delay 93
5.9.3 Ghost area experiments 94

5.10 Agents distribution experiments 94
5.11 Summary . 96

6 Relaxing synchronizations 99
6.1 Introduction . 99
6.2 Time in large scale simulations 100
6.3 Synchronization policies . 100

6.3.1 Strong synchronization policy 101
6.3.2 Time window synchronization policy 101
6.3.3 No synchronization policy 101

6.4 Experiments on two extrema models 102
6.4.1 Prey-predator model 102

xii CONTENTS

6.4.2 Capture the flag model 103
6.5 Experiments on synchronization policies 105

6.5.1 The gain from relaxing synchronization 106
6.5.2 Policies impact on interactions 107
6.5.3 Instability of capture the flag model 110

6.6 Summary . 114

IV Conclusion & Future works 115

7 Conclusion 117
7.1 Thesis summary . 117
7.2 Future works . 120

A French chapter 123
A.1 Introduction . 123
A.2 Etat de l’art . 125
A.3 Distribuer l’environnement ou les agents 125

A.3.1 Distribuer les agents 126
A.3.2 Distribuer l’environnement 126

A.4 Temps et synchronisation . 128
A.4.1 Synchronisation Forte 129
A.4.2 Synchronisation avec une Fenêtre Temporelle 129

A.5 Description de la plateforme 130
A.5.1 Processus de simulation 130
A.5.2 Dynamique d’un pas de simulation 132

A.6 Plateforme d’évaluation . 134
A.7 Évaluation de l’efficacité des deux types de répartition 136

A.7.1 Un modèle de flocking 136
A.7.2 Un modèle proies prédateurs 137

A.8 Résultats expérimentaux . 137
A.8.1 Performances globales de la simulation 137
A.8.2 Evaluations à la répartition de l’environnement 139

A.9 Évaluation des politiques de synchronisation 141
A.9.1 Coût de la synchronisation 142

A.10 Conclusion . 147

List of Figures 151

List of Tables 154

Introduction

I.1 Motivations

There is a growing need to provide scientists with large-scale agent-based
simulations to express, execute and analyse complex phenomena. When the
number of agents or interactions grows to millions or billions, the simulation
of such system requires important computational power and memory volume.
The best way to achieve large-scale simulations is to distribute them over a
computer network, that can speed up the simulation and improve the per-
formance.

This thesis study different approaches to simulate large-scale distributed
multi-agent simulations. This work is aimed to design a distributed multi-
agent simulator in a high efficient way. The work of this thesis combines
different aspects of multi-agent systems (MAS) and distributed systems to
achieve large-scale simulations. The challenge was to modify the existing
ideas of general distributed systems into new ideas which depend on the
main concepts of multi-agent system, which are agents and environment.
In our point of view, distributing multi-agent simulations should depend on
these two concepts.

Thus, to build a distributed system for MAS simulations and optimize it
for large-scale applications, we need to merge different aspects of two main
domains (figure I.1):

1. The MAS domain: agents, environment, interactions, etc. All MAS
concepts should be defined and implemented in a specific manner to
achieve an efficient execution in a distributed environment. The dis-
tributed simulator should be able not only to distribute the computa-
tion and exchange messages between different machines, but also should
respect agent technologies in execution and implementation: autonom-
ously, mobility, etc. Thus, the distributed simulation should be built
upon the main MAS concepts which are agents and environment.

2. The distributed system domain: computational load, communication,

xiii

xiv INTRODUCTION

Figure I.1: For large-scale MAS simulations: D-MAS = MAS + Distributed
System.

load balancing, synchronization, fault-tolerance, etc. The distributed-
MAS platform should be structured to execute MAS simulation in an ef-
ficient way. The load between distributed machines should be balanced
and should be based on agents and environment concepts. Communic-
ations and synchronization between machines should be implemented
in a specific way to support interactions between agents.

This work proposes a distributed platform to implement large-scale situated-
MAS simulations, and it is optimized to distribute agents and environment
which are the main MAS concepts. To do that, we need to implement both
domains in a specific way to respect each other. We need to implement MAS
concepts on a distributed manner and in the same time we need to execute
the distributed MAS simulation upon agent-based technology.

I.2. OBJECTIVES OF THE THESIS xv

I.2 Objectives of the thesis

The primary goal of this thesis is to assist scientists with the necessary plat-
form to implement, execute and analyze large-scale simulations of complex
phenomena. Our research has achieved this goal by answering these ques-
tions:

• How to simulate large-scale multi-agent simulations?
To simulate a large number of agents or interactions that grows to
millions or billions, the simulation needs high computational power and
large memory volume. To reach such large scalability, we decided to
choose the distributed system and to distribute the computation over
a computer network.

• How to distribute situated-MAS concepts: agents and envir-
onment?
We can distribute MAS simulation with many ways, but not all of
them can be in an efficient way. In this thesis, we suggested two effi-
cient ways to distribute MAS simulation which derived from its main
concepts: agent and environment.

• How to solve the agent placement problem in a distributed
environment?
When we distribute MAS simulation between different machines, agents
should be separated between these machines and they should still be
able to produce their normal behaviours. To do that, the distributed
simulator should cover all agents’ perceptions during the simulation.

• How to manage interactions between different agents run-
ning on different machines?
When agents are located on different machines and some agents need
to interact with others that exist on different machines, then we need
to implement an agreement protocol between these machines to allow
this kind of interactions.

• How to reduce communications costs in large-scale simula-
tions while keeping the macroscopic behaviour?
With large-scale simulations, the goal is not to observe millions of in-
dividual interactions or microscopic level, but to observe properties at
macroscopic level. If we consider that some agents fail or cannot in-
teract as fast as other agents, that should not be critical to the global
simulation outcome. In other words, if we have a large-scale MAS

xvi INTRODUCTION

simulation with millions or billions of agents, and some agents fail to
interact, that should not affect the global behaviour of the system or
macroscopic level. In that case, we can relax the synchronization and
reduce communication costs between machines to gain more speed in
execution time at least for some applications.

These research questions lead us to develop a distributed-MAS simulator
for large-scale applications.

I.3 Research contributions

With our simulator, the user can simulate his applications on a simple dis-
tributed peer-to-peer computing network in an efficient way. The user can
configure his simulation easily to achieve his goals:

1. The user can distribute his application with two different distribution
approaches. He can choose which one is the best for his application.

2. The user can optimize the simulator to reduce communication costs
and network load by relaxing synchronization constraints between ma-
chines. Moreover, he can choose between three different synchroniza-
tion policies to achieve his goal with a shorter execution time.

In this thesis, we are able to develop large-scale MAS simulations with
different distribution approaches and with several synchronization policies. A
comparison between different MAS applications shows that some applications
are more fitted on some distribution types than others.

I.4 Thesis organization

This thesis begins with this general introduction (this chapter), then the
body of the work (on three parts) and later the conclusion. The body of the
thesis is divided into three main parts: the first part is the state of the art
on two chapters, the second is our main work on two chapters and the third
part is our experimental results on two chapters too.

Chapter 1 investigates the first part of the state of the art, which deals
with multi-agent systems. We focus on situated-MAS simulations and its
main concepts which are: environments, agents and interactions. First, we
explore the beginning of these simulations types. We present different defini-
tions of the agent technology and different environment notions. We explore
three levels of behaviours: micro\meso\macroscopic behaviours. We present

I.4. THESIS ORGANIZATION xvii

some centralized-platforms in MAS domain. We summarize the notion of
time and the time step or the round of talk between interacting agents in
MAS simulation.

In chapter 2, we present the second part of the state of the art, which deals
with distributed systems. A background of distributed systems is presented.
We explore the essentials of distributed systems in: network relationships
and topologies, load-balancing and time management, etc. Different syn-
chronization mechanisms are then explored. We propose our main criteria to
build an efficient large-scale MAS simulation: which are emanated from the
basic concepts of MAS: agents and environment. Finally, we introduce and
compare some existing platforms in the domain.

Chapter 3 defines our view of MAS and its main concepts. We deeply dis-
cuss how the distributed MAS simulation should be designed in our view. We
first describe the importance of different distribution approaches. We present
our understanding of agents and environment, and we distinguish between
two categories of interactions. We compare different interaction mechanisms
between centralized and distributed cases. Then, we detail different distri-
bution approaches: agents distribution and environment distribution. Time
management problems and synchronization policies are deeply studied to dis-
tribute MAS simulations efficiently and gain more performance. The question
was whether synchronization constraints can be relaxed without impacting
the simulation outcome. Indeed, the balance between communication costs,
performances and reliability is dependent on the application that is imple-
mented. To study that, we propose three synchronization policies, two of
them are flexible synchronizations that allow machines to avoid communic-
ations delays. Thus, in this chapter two distribution approaches and three
synchronization policies have been presented.

In chapter 4, we describe our platform for large-scale distributed multi-
agent systems. We present the different components of the platform by de-
tailing the machines units that manage the main operations of the simulator
in two different distribution cases. The basic platform layers are discussed
deeply and different simulation states are introduced which are the initial
state and the running state. We describe by UML sequence diagram the
main steps that can be followed by different machines to distribute the sim-
ulation. After that, we study communication protocols and synchronization
algorithms for three main synchronization policies. We explain the time step
scenario between two machines to illustrate the differences between these
policies. Finally, we describe our view of visualization in large-scale simula-
tions.

The experimentations are divided into two chapters. In chapters 5 & 6,
the results of different distribution approaches with several synchronization

xviii INTRODUCTION

policies on different MAS applications are presented. Chapter 5 presents our
experiments on both distribution approaches to show that some applications
are fitted more on one distribution approach than the other. First, we explore
different categories of applications that can make our hypothesis clear. Then,
we detail the two classical situated agent-based models, that we use in our
experimentations. We measure the performance of the simulations with two
criteria: execution time and communication costs. Our experiments show
that one applications model is better with one distribution approach than
the other. Then we explore more in details the two distribution approaches
with different experiments.

In chapter 6, we study the performance costs of several synchroniza-
tion policies and their impact on the properties of MAS simulations. We
evaluate our simulator with two different situated MAS applications. We
have studied three synchronization policies for distributed MAS simulations:
strong synchronization, time window synchronization and no synchronization
policies. We present how interactions are changed when we switch between
these policies, and we study the instability of some application with different
configurations when we relax synchronization constraints.

In chapter 7 the conclusion of the current work and several suggested
ideas for the future works are presented.

In appendix A a summary of the work in French language is written.

Part I

State of the art

1

Chapter 1

Situated agent-based
simulations

1.1 Introduction

In the last decades, simulations have been used by scientists to build and
simulate many complex real-life phenomena. Some phenomena cannot be
experienced directly and have to be simulated in order to test different hypo-
thesis. Scientists usually use numerical approaches to study these phenom-
ena. Those approaches normally depend on macro analysis of the phenomena
which can be represented by some mathematical equations. This approach
can provide models that are close to the complex phenomena but generally
do not explain why the phenomena appears.

Since the last 80’s, the artificial intelligence field has developed the no-
tion of intelligent agents and multi-agent systems. In this context, agents
perceive their environment and pursue their own goals, by cooperating or be-
ing in competition with other agents. With this approach, the phenomena is
designed at the individual level. At this micro-level, interactions should pro-
duce emergent behaviours (or the macro-level), which reproduce the dynamic
of complex phenomena. Contrary to mathematical approaches, multi-agent
simulations provide clues on the main properties that lead to the emergence
of the complex phenomena.

In the 90’s, many scientists still used numerical approaches in their sim-
ulations, because artificial intelligence techniques and especially intelligent
agents technology needs high computational power. With the growth of pro-
cessor speed and memory volume, more scientists have begun to use agent
based approaches.

Nowadays, the availability of huge computing power allows researchers

3

4 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

Real-
phenomenon

Real-
phenomenon

Modeling
(Agents,

Environment...)

Modeling
(Agents,

Environment...)

SimulationSimulation

Experimental
results

Experimental
results

Compare
with Real

phenomenon

Compare
with Real

phenomenon

Figure 1.1: Simulation was first used in ecology to study a specific phe-
nomenon.

to focus on individual micro modelling, instead of mathematical equations.
Moreover, scientists needs have also grown, and simulations with millions of
agents and interactions are still a challenge that need to be tackled.

This chapter investigates many concepts of multi-agent systems. We focus
on situated-MAS simulations and their main concepts: environments, agents
and interactions. First we explore the beginning of these types of simulations.
Then, we present different definitions of agents and environment. We explore
different levels of behaviours. Finally, we present the notion of time and time
step in MAS simulations.

1.2 Situated-MAS simulations

Agent-based simulations have been used effectively in different domains, e.g,
in ecology, robotics, etc. These types of applications were often called In-
dividual Based Models (IBMs) [Grimm and Railsback, 2013] and were used
in situations where individual variability of the agent was important. An
example is population dynamics in ecology of prey-predator model where its
agents behave identically [Judson, 1994]. To build such simulations, we start
by modelling the structure, and then we run it to compare the result with
the real phenomenon (see figure 1.1).

Multi-agent systems are increasingly needed in many scientific domains
like: e-commerce, ambient intelligence [Vallee et al., 2005] or industrial do-

1.3. MAIN CONCEPTS OF MAS SIMULATIONS 5

mains. One of these domains represents a family of real-world applications,
where agents are explicitly placed in an environment (see figure 1.2). In these
types of real-world applications like manufacturing control or transportation
systems, situated agent-based simulations may be the most suitable solution.
It is more efficient and flexible than other systems. Indeed, agent-based sim-
ulation provides a field to test agent behaviours (algorithms) under ideal
conditions. Those algorithms that fail under ideal conditions can, in gen-
eral, be eliminated in realization. Better agent behaviour evolution becomes
possible, and many ideas can be tested before the real employment of the
system.

Situated agent-based simulations are made of an environment that is pop-
ulated with a set of localized agents which cooperate to solve a complex
problem. Situated agents are autonomous entities that encapsulate their
own behaviour and maintain their own state. They have local access to the
environment (local vision), e.g, each agent is placed in a local context which
it can perceive, act and interact with other agents.

The approach of situated multi-agent systems came from main ideas of
embodiment situatedness and emergence of intelligence [Brooks, 1991]. In
Brooks works, a situated agent does not use long-term planning to decide
what action sequence should be executed. Instead, it selects actions on the
basis of its position, the state of the world that it perceives and the limited
internal state. In other words, the situated agent acts in the present time by
its position and its state. The intelligence in a situated multi-agent system
is produced from the interactions between different agents rather than from
their individual capabilities.

Earlier works of MAS were done on robotics, Maes has introduced the ba-
sic mechanisms of a group of robots that coordinate through an environment
a context of MAS simulations [Maes, 1990]. Wooldridge refers to some points
of situated MAS simulation [Wooldridge, 2009]. That situated agents take
into account only local current information and thus it is short-term-view.
However in complex applications, it can be feasible or even useful for agents
to collect global information or to have a long-term-view on the situation, if
agents are more cognitive.

1.3 Main concepts of MAS simulations

In multi-agent systems: agents, environment and interactions are the main
concepts that are derived from the application type. These concepts determ-
ine if the simulation can be situated or not, and if it can be large scale or not.
First, we describe what is an agent and the importance of the environment,

6 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

P

PPP

P

P

R

P
D

R Robot / P Package / D destination

Figure 1.2: An example of situated MAS simulation: packages and destina-
tions model [Weiss, 1999], later known as Packet-World [Weyns et al., 2005].
Agents are robot, packages and destinations. Robot has to deliver the pack-
ages to the correct destinations and must handle only one at a time.

then we detail interaction types.

1.3.1 Agent

The intelligent agent [Russell et al., 1996] is an autonomous entity which
observes its environment and acts by following its own goals. However, there
are different historical definitions of agents:

• ”An agent is an entity whose state is viewed as consisting of men-
tal components such as beliefs, capabilities, choices and commitments”
[Shoham, 1993].

• ”An entity is a software agent if and only if it communicates correctly
in an agent communication language” [Genesereth and Ketchpel, 1994].

• ”Intelligent agents continuously perform three functions: perception of
dynamic conditions in the environment, action to affect conditions in
the environment and reasoning to interpret perceptions, solve problems,
draw inferences and determine actions” [Hayes Roth, 1995].

• ”A computer system that is situated in some environment and is capable
of autonomous action in its environment in order to meet its design
objectives” [Wooldridge, 2009].

1.3. MAIN CONCEPTS OF MAS SIMULATIONS 7

• ”An agent can be a physical or virtual entity that can act, perceive its
environment and communicate with others. It is autonomous and has
skills to achieve its goals and tendencies” [Ferber, 1999].

Intelligent agents can use old knowledge or learn new one to achieve their
own goals [Russell et al., 1996]. Agents can decompose their goals and tasks
and give sub-tasks to other agents to achieve collective results. Agents can
communicate with others by specific protocols or languages to improve the
state of their coordination and to act coherently. Agents are able to interpret
their environment and try to achieve their own goals.

They can be very simple or very complex as we can see in table 1.1.
Simplest agents can be passive entities like an apple. A more complex agent
can be a door which is a reactive agent without goals. More complex agent
can be cognitive agents which can learn and update their strategy. Agents
can range from purely reactive agents (simple strategy) to cognitive agents
(complex strategy) by involving abstract knowledge representation and plan-
ning systems. Depending on the application, we can have a large number of
agents like in a physical collision simulation (mainly made of reactive agents)
or only one cognitive agent (chess player agent). Everything can be agent
[Kubera et al., 2010].

Table 1.1: Agents can range from passive entities to complex proactive en-
tities.

Passive Reactive Reactive Cognitive Cognitive
(Object) without goals with goals specialized learner

Apple Door Bird IBM’s Chess player Human

1.3.2 Environment

The environment in a multi-agent system can be considered as an agent
container and an interaction mediator between agents. Different environment
types can be used for different application types.

Russell lists different dimensions and properties of MAS environments
[Russell et al., 1996]:

• Spatial (discrete or continuous): the discrete or continuous environ-
ments come from the importance of a geographical space or the spatial
interactions of situated agents. For example in packet-world, robot can
move between blocks of a grid map or with floating position on the map
(figure 1.2).

8 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

• Observable (fully or partially): if an agent has access to the complete
state of the environment at each point in time, then the environment
is fully observable. Otherwise, it is partially. Generally, in situated
agent-based simulation each agent has only a partial vision of the en-
vironment.

• Changeable (static or dynamic): the environment is dynamic for an
agent if the environment can change while an agent is acting. Other-
wise, it is static.

However, some of these dimensions are related more on agents than the
environment itself. In our study, we distinguish between three main environ-
ment types:

• Virtual environments: where there is no spatial dimensions like: a stock
market simulation [Mathieu and Brandouy, 2010], reputation [Muller
and Vercouter, 2005] and trust management problem in web Services
[Bourdon et al., 2009].

• Discrete environments: where there are spatial dimensions on a grid.
For example, a prey-predator simulation with IODA [Kubera et al.,
2008].

• Continuous environments: where there are spatial dimensions with
floating positions for all agents, like birds flocking in a sky [Cosenza
et al., 2011].

The different environments types can be deduced from the type of inter-
actions that happens between agents. Depending on the application domain,
the environment can enforce spatial constraints (soccer or collision simula-
tions) or not (stock market simulations). When an environment has a spatial
dimension, agents are embodied and have positions on this environment.
However, there are other kinds of applications where we have a mixed envir-
onments between spatial and nonspatial cases [Bonnet and Tessier, 2009].

Within a spatial environment, a distinction can be made between discrete
and continuous environments. In a discrete context, the environment is made
of a grid and its agents can move in this grid by swapping between its cells.
In continuous environments, the space is represented by ranges and agents
have floating positions. Virtual environments have no spatial aspect, their
role is restricted to agent communication.

Everything in multi-agent systems, that is not inside an agent, can be
considered as an environment of that agent. The environment represents the

1.3. MAIN CONCEPTS OF MAS SIMULATIONS 9

space where all agents can move. For example, the environment represents
the euclidean-space in which robots or agents can move. For market simu-
lations, the mediator between sellers and buyers represent the environment
where they can exchange information about their products.

Obviously, any agent can have a certain representation of its environment,
even if it is virtual and it is not specialized. However in some types of
applications, the environment is ignored as it is not so important, but this is
not our case. We believe that any agent must be able to locate itself within
an environment, then this environment can manage and define the capacity
of interaction for each agent.

1.3.3 Interaction

An interaction is a change, a react or an interact on the state of one (or more)
agent(s) caused by one (or more) agent(s) within a t period of time. There is
a strong relation between interaction and time in any agent-based simulation.
Each interaction has a period of time to be executed and scheduled with other
interactions during the simulation.

However, some researchers investigate the notion of interactions and have
different categorizations for them. In [Ngobye et al., 2010], there are 3 dif-
ferent types and priorities of MAS interactions according to its relation to
other agents:

1. NI: No direct Interaction between agents.

2. SI: Simple Interactions between agents.

3. CI: Complex, or Conditional, or Collective Interactions between agents.

Other researchers divide interactions into basic behaviours and group be-
haviours [Mataric, 1994]:

1. There are basic behaviours: safe-wandering, following, surrounding,
etc.

2. Interaction can consist of N other hidden-basic-interactions: combining
basic behaviours like: flocking = safe− wandering + aggregation +
dispersion or herding = safe−wandering+ surrounding+ flocking

Some works try to design a general taxonomy of multi-agent interactions,
for example in [Dyke Parunak et al., 2004] there are two types of interactions:

1. direct: from agent to agent

10 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

2. or indirect: through environmental variables.

However, we distinguish between two classes of interactions according
to its execution complexity. First class is a simple interaction where agent
does not need to modify another agent. The second class is the complex
interaction where agent needs to modify a state of another agents. In the
first class, actions can happen in the same time with the ability to overlap.
For example two agents said ’do something! ’ to third agent or two agents sent
an answer of a question to third agent. Whereas in the second class, there
are no possibilities to allow any kind of conflicting actions. For example, two
wolf-agents can not eat the same sheep-agent at the same time.

1.4 From micro to macroscopic behaviours

To study a society in social science, people are divided into group [Yurdusev,
1993]: 1) Micro-level group which is the small and local community social
unit in which everyone within that group knows everyone, like a small village.
2) Meso-level group which is intermediate group, and it is large enough to let
some members of the group may never know about all other members, and
may have still access to the leaders, but it is not so large group. Examples
of meso-level are states. 3) Macro-level group is the larger population which
operate at a national or a global level, and it determines the interactions
outcomes of the sociality. Examples of macro-level are countries.

Agents in multi-agent system can be divided into different social units,
where all agents can interact appropriately and cooperate successfully to meet
their own goals. We can distinguish between different levels (see figure 1.3):

1. Micro-level (or low-level): agent and its interactions.

2. Meso-level (middle-level): collective or group of agents that can behave
common interactions.

3. Macro-level (or high-level): view of all agents that behave as one global
behaviour.

An example of such system is a traffic simulation [Sanderson et al., 2012],
where there are vehicles in micro level, group of vehicle in meso level and the
flow of traffic as macro level. Other examples are cosmological simulations,
where there are several levels of agents as in [Torrel et al., 2007] with 4
levels. However, we can use micro, meso or macroscopic behaviours to build
multi-agent systems with two main ways:

1.5. MAS PLATFORMS OVERVIEW 11

Micro-level Meso-level Macro-level

A

A
AA

A

A

A

A
A

Figure 1.3: Micro meso macro: different levels of details in urban simulations
[Navarro et al., 2013].

• Top-Down: from desired group behaviour to specific needed interac-
tions at the level of the individual agents.

• Bottom-Up: from micro-level (agent capabilities) to achieve overall
macro-level.

We can use both ways to build our simulations, first we define the desired
macro-level behaviours that we need it from the simulation. Then, we define
the needed low-level agents and their interactions. After that, we define
agents and their interactions, when we implement the simulation, to achieve
the global behaviour of the system.

1.5 MAS platforms overview

Many platforms and methodologies already exist in MAS domain: Swarm
[Minar et al., 1996], Netlogo [Wilensky, 1997], Gama [Taillandier et al., 2010],
Adelfe [Bernon et al., 2003], etc. However, we do not describe these platforms
as they are not in our circle of interest (not distributed platforms). For
more details, the survey of [Nikolai and Madey, 2009] analyses many MAS
platforms.

The SMAC team has developed a centralized MAS platform, which is
JEDI or Java Environment for the Design of Agent Interactions, that is based
on IODA methodology [Kubera et al., 2011] to design MAS simulations by
its interactions. This methodology has a different understanding of MAS
simulations than others.

12 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

Figure 1.4: IODA matrix [Kubera et al., 2011] of prey-predator model, each
interaction has a priority (P) to be organized and a distance (D) to be
triggered.

The Interaction Oriented Design of Agent simulations (IODA) [Kubera
et al., 2011] is a methodology to design MAS simulations by focussing on
interactions. Instead of defining only the agents of the simulation, IODA
focuses on the notion of interactions between agents.

IODA designs agents with their interactions through the interaction mat-
rix. This matrix can be automatically interpreted and executed by the sim-
ulator. For that, it is easy to compare interactions in the simulation and it
is easy to change its priorities to define which interactions can be before or
after.

In figure 1.4, an example of how IODA can define the matrix of prey-
predator model, where each interaction has a source and target agents and
has a priority to execute it. In addition to define each agent, IODA has to
define each interaction by:

1. The source and the target agents of the interaction.

2. The priority of the interaction, so the highest priority interaction has
to come before the lower priority interaction.

3. The distance to trigger the interaction.

4. The condition to trigger the interaction and the interaction itself.

The first three points are defined in the interaction matrix. Whereas, the
last point must be defined outside the matrix.

1.6 Notion of time and time step in MAS

The word Time in language dictionaries is a non spatial continuum in which
events occur in apparently irreversible succession from the past through the
present to the future. Many researchers define time by events, for example

1.6. NOTION OF TIME AND TIME STEP IN MAS 13

’virtual time’ [Jefferson, 1985] and time ordering events in [Lamport, 1978].
In physic, the time came from the concept of moving objects, as Earth moves
around itself to make duration, and so on... etc. Anyway, most of these defin-
itions define time by duration which is happened by events, so it defined time
by the time itself (duration). Moreover, some researcher reach to announce
that time is not real, e.g ’The Unreality of Time’ [McTaggart, 1908].

However, it is not important for us to find a clear definition rather than
to determine what we want from time and how we can simulate it. We, as
a part of MAS community, want to determine what is time that we can use
and how we can simulate it to make events.

1.6.1 Time step

In agent-based simulation, actions (or events) happen between agents in se-
quential order. At each time one agent should make one interaction only in
one environment, or more than one interaction if these interactions on differ-
ent environments. Thus, the time can be imagined as a series of sequential
steps: step 0, step 1, step 2, ... step n. Each step has a duration, even if
this duration is epsilon ε, but it is not zero. Because, different steps without
durations must be in the same point in the time dimension and that make
conflicting actions or implicit actions, which should not be happen in the
simulation.

For us, the Time Step (TS) is the smallest time which used by the system
to manage the fastest interaction from all agents’ interactions on the system.
In other words, a system with smaller time steps (< ε time) can reserve many
empty time steps and no agent can produce any kind of interactions during
these steps. Empty time steps are not useful and it is wasting time of the
simulation without interactions.

1.6.2 Round of talk between agents

Each agent in MAS simulations behave to achieve its own goals. MAS sim-
ulation should use a fairness updating scheme to update the environment
with agents behaviours and interactions, because different updating schemes
may lead to different evolutions of the system [Fatès and Chevrier, 2010].
Sometimes, a desired behaviour of one agent can be interrupted by another
behaviour of other agents. Thus, the simulation has to organize all interac-
tions between agents in the system and must be fair among all these agents.
Therefore, no agent has a chance to behave more than others or before others
all the time.

14 CHAPTER 1. SITUATED AGENT-BASED SIMULATIONS

That can be called round of talk between agents. Simulation gives all
agents the same chance to interact one time only and prevents conflicting
interactions between agents. This prevention can be made with sequential
round of talk between agents, so the first agent needs an action can have
it and other agents can not. For fairness, this sequential ordering can be
changed randomly between agents after each round of talk. Then, all agents
have their chance to be first in the ordering list. However, different methods
can be implemented here.

1.7 Summary

In situated MAS simulation: agents, environment and interactions are the
main concepts that are used to model an application. Different definitions
of agent, interaction and environment can make different understandings of
MAS simulations. That can lead to different methodologies and different
implementations.

In our view, the agent is one solid component of properties (or states)
and desires engine (or behaviours). Agent can explore part of the envir-
onment (other agents) and behave from its old state, and according to its
desires engine, to reach a new desired state. The environment is an an agent
container and an interaction mediator. The environment provides all inform-
ation about all agents that exist in the simulation. Thus, for each agent there
is its environment which is the other agents. We consider that any related
changes in one or more of agents’ states is an interaction.

In this chapter, We review the first part of our state of the art which is
multi-agent system and especially the situated-MAS simulation. We presents
the main principles of situated-MAS simulation. We review the most import-
ant definitions of MAS concepts: with a large variety of agents definitions,
different environment types and different interactions categories. We shows
the relation between micro\meso\macroscopic view and MAS modelling. We
presents some centralized-platforms in MAS domain. We summarize the im-
portant of time in the situated-MAS simulation and the round of talk between
interacting agents.

In the next chapter, we explore the second part of the state of the art
which focuses on distributed large scale MAS simulators.

Chapter 2

Large scale distributed
agent-based simulations

2.1 Introduction

In the last 80’s, the artificial intelligence led to the appearance of intelligent
agents technology in the computing domain. That technology needs high
computational powers especially for large scale simulations. In some cases,
the number of simulated entities in one simulation can be very large. The
resources of one computer can not always ensure the execution of large scale
simulations. A single machine computation can give us limitations when
applying this kind of simulation to some phenomena. If we have a huge
number of agents and even if these agents are very simple, one machine
can not deal with it effectively. To run large scale simulation, we should
distribute the simulator on a network of many computers to get the maximum
computation capability.

Most of the existing MAS simulations toolkits available are either single
machine simulations, that are not suited for large scale simulations, or they
are driving from existing general distributed systems that are not necessary
specialized for MAS concepts (agents or environment). For this reason, gen-
eral distributed systems for multi-agent applications are sometimes used for
deploying MAS simulation on general distributed resources. Thus, some plat-
forms do not scale well for large MAS simulations due to wrong initial-load
balancing of its agents or due to huge communication overheads.

Moreover, changing an existing MAS platform and transfer a single ma-
chine MAS simulation into a distributed environment is not an easy task. In
addition, reaching the desired high performance with lowest communication
costs by changing a general distributed system is not a good idea too. For

15

16 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

that, our work is focused on studying some problematics of current distrib-
uted MAS platforms, and find the missing aspects to distribute efficiently
large scale MAS simulations.

This chapter is the second part of the state of the art, which deals with
distributed systems. we define the distributed system and its main concepts
in: network relationships and topologies, load-balancing and time manage-
ment, etc. Different synchronization mechanisms are then explored. We
propose our main criteria to build an efficient large scale MAS simulation:
which are emanated from the basic concepts of MAS: agents and environ-
ment, which has different distribution approaches for different applications
that can automatically balance the computational load during the simulation,
which has different synchronization approaches to increase the performance
while keeping the macroscopic behaviour, which are not customized for spe-
cific applications. Finally, we introduce and compare some existing platforms
in the domain.

2.2 Distributed systems

There are several definitions and view points on what distributed systems are.
Various types of distributed systems and applications have been developed,
and many of them are being used extensively in the real world. A distributed
system can be:

• ”a system in which hardware or software components located at net-
worked computers communicate and coordinate their actions only by
message passing” [Coulouris et al., 2005].

• ”A collection of independent computers that appear to the users of the
system as a single computer” [Tanenbaum and van Steen, 2008].

• ”A distributed system is one on which I cannot get any work done be-
cause some machine I have never heard of has crashed” Leslie Lamport.

The diversity of all these definitions reflects the huge number of challenges
faced by designers to build a general distributed system.

Our study is focused on the way to distribute large scale multi-agent sim-
ulations and its problematics: network topologies, time management, agents
migration between machines and load balancing. All these problematics are
still under active researches, some works investigate the agent placing prob-
lem, n agents distributed on m machines [Miyata and Ishida, 2008] and
what can happen when agents try to move between machines [Motshegwa
and Schroeder, 2004]. However, our view of agent placing problem is not

2.2. DISTRIBUTED SYSTEMS 17

restricted to agents only, but can also be related to simulation framework
components (meta-agent in [Horling et al., 2004]), that could be distributed.

Time management is also an important problem that many researchers
investigate. Several models have been proposed: a single global logical time
step for the system or multiple time steps in each machine [Scerri et al.,
2010] [Siebert et al., 2010]. Earlier works have been done on Virtual Time
[Jefferson, 1985], which explain it for discrete event simulations.

2.2.1 Network relationships and topologies

Distributed systems are commonly used to support applications emerging
in the areas of science, which commonly involve geographically distributed
utilities in collaborative activities to solve large scale problems and require
sharing of various resources such as computers, data, applications and sci-
entific instruments.

Network relationships can be categorized into two main categories: con-
trol and physical relationships. The control relationship can be client\server
or peer-to-peer (P2P). In client\server networks, all clients, that need ac-
cesses to some resources, must connect through the server. Whereas, in peer-
to-peer networks all devices share their resources and are not controlled cent-
rally. Moreover, P2P systems are often presented as a promising approach
to build scalable distributed applications [Muller and Vercouter, 2005].

Network topology is a term used to described the physical relationship of
network connections, which can be: bus, ring, star, mesh or tree. P2P can
be either unstructured in physical relations or structured in one or more of
network topologies.

However, there are various types of distributed computing systems from
network view, or the connections between distributed computational units
[Nadiminti et al., 2006]:

• A cluster is a dedicated group of interconnected computers that ap-
pears as a single powerful computer, generally used in high performance
scientific engineering and business applications.

• A grid is a type of distributed system that enables coordinated sharing
and aggregation of distributed, autonomous, heterogeneous resources
based on users’ requirements.

• A Peer-to-Peer network (P2P) which is a decentralised distributed sys-
tem, that enables applications to be distributed over public networks.
An example is distributed tasks between sharing computational re-
sources [Jin et al., 2005].

18 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

In cluster or grid networks, the computational units should be in most
of cases fully connected with a switch in star topology. That means, all
computational units link to all others. Whereas, in P2P they can be in one
or more (hybrid) of the five topologies.

2.2.2 Load balancing

Load balancing has been studied extensively in general distributed systems
and different mechanisms has been proposed. In distributed systems, load-
balancing is a method to keep the computational and communication loads
balanced between all computational units. Load balancing is very import-
ant to build a useful distributed system, and especially to build a useful
distributed MAS simulation for large scale applications, which has some spe-
cifications. Few researchers’ works are done on the load-balancing aspect
to get the spirit of agent systems in such a distributed simulation [Cosenza
et al., 2011].

In general distributed systems, all computational units are often viewed
as common resources, where users can submit their tasks through connected
machines. Then, a load balancing mechanism can distribute the tasks among
different machines to balance the workload, and then tasks can run until they
are finished. New tasks may be added to some machines at any time by the
users, and can be scheduled by the load balancing mechanism.

This scenario does not respect agent technology and can not be applied
to large scale distributed multi-agent simulations. First, agent can be built
from different tasks but it cannot be split into different machines or cannot
be executed on different time steps during the simulation. Agents can still
exist in the system unless the whole system is shut down or they decide
to stop interacting with others. In addition, in most of MAS applications
agents are specified and created at system start-up and in sometime there is
a need to introduce more agents to the system. Moreover, agents can interact
between themselves through variable communication forms which depends
on interaction’s nature. Whereas, the communication between the tasks in
normal distributed systems are usually with static and fixed forms. Thus,
large scale distributed multi-agent simulations need some specifications.

However, it is true that agent in MAS is one solid unit and it is difficult
to split it into smaller parts. Agent could dramatically change its behaviours
and then it could change the load during the simulation. This highly depends
on the applications and agents types that are used. Anyway, changes in
simulations can be categorized into two main categories:

1. Agent computation: which can increase or decrease during the simula-

2.2. DISTRIBUTED SYSTEMS 19

tion. If we have a mixed list of agents between cognitive and passive
agents in one machine, the load of calculation can be fine in the system.
While, if we have all heavy cognitive agents in one machine and other
machines hold passive agents or simple agents, then the load could not
be the same between machines.

2. Agent communication: which can also increase or decrease during the
simulation. If we have agents that need to communicate with other
agents that exist in different machines, then communication costs can
be high and the load of communication between two machines is more
than others in the system. While, if the agents with heavy commu-
nications exist in the same machine, then the communication between
machines should be similar and the load should be good.

However, according to the nature of agent’s interactions the load balancing
scheme could be changed during the simulation.

2.2.3 Fault tolerance

Fault tolerance is an important feature in distributed systems that enables
these systems from operating normally in case of failure. Many techniques
can be used for fault tolerance, one of them is snapshot (checkpointing)
and backward recovery [Elnozahy et al., 2002]. Another technique is the
replication of data or agents in case of multi-agent systems. To prevent
failures during the simulations, some critical agents should be detected and
replicated [Guessoum et al., 2003].

Moreover, in large scale simulations the fault-tolerance should have some
specifications [Guessoum et al., 2005]. This is because, in these simulations
the number of agents can be large and a dynamic approach of replication can
be useful in that case [Guessoum et al., 2003]. DimaX [Faci et al., 2006] is an
example of these platforms with dynamic replication technique, which is the
result of the integration of DIMA multi-agent platform and DarX replication
framework.

However, in situated MAS simulations for natural phenomena there are
no critical or non-critical agents, because all agents are similar to each other.
Thus, snapshot and backward recovery could be more suitable for situated
MAS applications.

20 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

Table 2.1: OTS or MTS in agents level or in machines level.

Time Agents level Machines level
OTS All agents in the same TS All machines in the same TS
MTS Window with N TS between fast-

est and slowest agents (maximum
parallelism)

Window with N TS between fast-
est and slowest machines

2.3 Time management

The other main problem in distributed systems is time management between
machines [Scerri et al., 2010; Siebert et al., 2010]. Many distributed systems
try to define time by events, for example virtual time [Jefferson, 1985] and
time ordering events [Lamport, 1978].

Anyway, if we use events in general distributed systems or interactions
in distributed MAS simulations, we need to use a time step mechanism to
manage both of them. This mechanism can be changed according to the
application and user needs. In a distributed simulation, as we have different
computational loads on different machines, then we could have multiple time
steps.

2.3.1 Multiple time steps

In centralized multi-agent systems, we have one global time step which or-
ganizes all agents, and allows agents to interact in a given period of time -if
and only if- this period of time is bigger than the interaction itself. However,
for a distributed system two types of time step can be proposed:

1. One global Time Step (OTS): strong synchronization between machines
or agents

2. Multi Time Steps (MTS): flexible synchronization between machines
or agents

However, OTS or MTS can be used in any kind of MAS applications on
more than one level: agents level or machines level (see table 2.1).

1. In agents level: OTS is reliable for all applications, whereas MTS can
not be reliable for some application. An example of that is Boids sim-
ulation (from Bird-oid) [Reynolds, 1987], birds can keep the flocking

2.3. TIME MANAGEMENT 21

behaviour even if some birds are in different and incoherent time steps.
Whereas, in other applications MTS could not keep the macroscopic
behaviour.

2. In machines level: OTS means more communication costs between ma-
chines to keep all of them on the same time step. Whereas, MTS
means that some machines can progress in the simulation more than
others to avoid high communications. In agent-based simulation, MTS
in machines level should lead to MTS in agent level too.

In distributed systems, OTS or MTS can be represented by synchroniza-
tion approaches. There are mainly two synchronization approaches in general
distributed systems: conservative (or synchronous) and optimistic (or asyn-
chronous) synchronization.

2.3.2 Conservative synchronization

In conservative (or synchronous) mechanism [Logan and Theodoropoulos,
2001; Fujimoto, 2000], all machines are synchronized together in such a way
that all local clocks are running at the same pace and the system should be
on one global time step (OTS). Thus, the distributed simulator can guaranty
that all agents execute the same number of actions. Of course, more messages
should be exchanged between machines, and then communication costs are
increased. This kind of conservative approach strictly avoids causality errors
but can introduce high communication delays. In other words, all machines
guaranty the correct execution for all parts of the simulation by additional
messages that introduce more delays for each time step.

2.3.3 Optimistic synchronization

This second mechanism allows machines with MTS to progress at different
pace with optimistic (or asynchronous) synchronization [Logan and Theodoro-
poulos, 2001; Fujimoto, 2000]. The main issue is to handle causality errors by
detecting and recovering them through a rollback mechanism [Gupta et al.,
2007]. A rollback mechanism enforces temporal consistency by allowing a
simulator to roll back previous events to reconstruct a previous state of the
simulation. To enable this property, a simulator has to maintain a list of
anti-messages that can undo side effects that have been produced by events
evaluation.

With this approach, machines should take checkpoints independently
without any synchronization among the others. Unfortunately, because of

22 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

the absence of synchronization, there is no guarantee that local time steps
are the same in all machines, and for that reason some errors can be pro-
duced sometimes. In order to get rid of these disruptions, machines have to
roll back to older checkpoints.

The gain of optimistic approaches is based on the fact that simulators
should not roll back too often for small incoherence interactions. Moreover,
it can be ignored if we believe that the impact of time incoherency in some
interactions is negligible with respect to the volume of interactions in the
whole system. Thus in large scale simulations, this flexibility should not
affect macroscopic behaviours outcome and that is a strong hypothesis that
will be studied through different applications in next chapters.

However, the balance between the performance, communication costs, and
reliability depends on the application that the user needs to implement. For
example, if we have a large scale simulation of an animation movie with large
number of armies, it is not important if some agents fail to interact or interact
slower than the others. Whereas, in other kind of applications, we have
to get a maximum reliability to the system to get the reliable macroscopic
behaviour.

2.4 Distributed agent-based platforms

Even if many platforms are able to distribute MAS simulations [Cabri et al.,
2004; Jamali and Zhao, 2008], large scale situated-MAS simulations are still
under active research. Moreover, some platforms are not fitted for situated
applications. In our view, distributed MAS platforms must take into account
the main concepts of MAS, which are agents and environment, to be effi-
cient platforms. In other words, we consider that a distribution, that comes
from MAS concepts, can make a good load-balancing for the simulation and
that can increase the performance. Moreover, with different synchronization
approaches we can increase the performance for any distributed agent-based
simulation (Table 2.2).

However, modifying a good centralized agent-based simulation to be run
on a distributed environment is not an easy task. For example, the execution
mechanism of JEDI (IODA) is not fitted to be run in a distributed manner.
The agent can change immediately the environment or other agents. In
other words, the current mechanism in JEDI sequentially executes agents’
interactions. In a distributed system, several agents can be running at the
same time and can have conflicting actions. There is currently no method in

2.4. DISTRIBUTED AGENT-BASED PLATFORMS 23

Table 2.2: The main criteria to compare platforms of large scale MAS simu-
lations.

Criteria Efficient D-MAS platform

MAS concepts Emanated from the basic concepts of MAS: agents
and environment

Computational load Has different distribution approaches for different
applications which can automatically balance the
load during the simulation. Otherwise, different
applications can upset the balance

Time management Has different synchronization approaches to in-
crease the performance while keeping the macro-
scopic behaviour

Application domain not customized for specific applications
Scalability Should reach a high number of agents

JEDI to manage such conflicts and the organizer in JEDI simulation should
be changed completely to distribute MAS concepts.

There are also many platforms as Java Agent DEvelopment Framework,
or JADE [Bellifemine et al., 2005], which allows the development of FIPA-
compliant for multi-agent systems. JADE provides a set of interfaces to
design agents in Java. This framework also provides a set of pre-defined
behaviours like Simple Behaviour, Cyclical Behaviour or Non Determ-

inistic Behaviour. However, JADE is more fitted to coordination and
communication of non-situated agents systems. JADE does not provide sim-
ulation capabilities as time steps for interactions cycle between agents [Yoo
and Glardon, 2009; Jinkai and Weihong, 2010].

2.4.1 D-MASON

An interesting work in the domain is D-MASON [Cordasco et al., 2011]. D-
MASON is the distributed version of Multi-Agent Simulator Of Neighbour-
hoods Networks or MASON [Luke et al., 2005]. It is a Java-based library for
agent-based simulations and geared towards speed. D-MASON is based on a
master\workers machines (figure 2.1), the master assigns a part of the whole
computation or a set of agents to each worker. Then, for each simulation step,
each worker simulates the assigned agents and sends back the result of its
computation to each interested worker. Many platforms have been built with
this mechanism. However, most of these platforms use simple applications
to illustrate their scaling (D-MASON uses flocking model). Those simple
models cannot produce complex interactions. For example in flocking model,

24 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

birds will flock only by watching other birds. Thus, there are no interactions
between two birds that can explode the communication costs in the system.
However, in other classical models like prey-predator model, agents can pro-
duce complex or conflicting interactions. For example, two wolves want to
eat the same sheep from different machines. In this situation a protocol of
agreements must be provided to resolve these conflicting interactions.

Figure 2.1: D-MASON [Cordasco et al., 2011]: different master\workers ma-
chines run a flocking model application.

2.4.2 AglobeX

Another platform is AglobeX [Šǐslák et al., 2009]. This platform is very sim-
ilar to D-MASON in its distribution mechanism. As D-MASON, AglobeX
is based on a master\workers approach, the master assigns a portion of the
whole computation or a group of agents to each worker. Then, for each simu-
lation step, each worker simulates its local agents and sends back the result of
its computation to each interested worker (figure 2.2). For that, Aglobex has
been built with the same mechanism of D-MASON. However, both platforms
use simple models, AglobeX uses airplanes model and D-MASON use flocking
model. Those simple models cannot produce any conflicting interactions.

2.4.3 GOLEM

Another interesting platform is Generalized Onto-Logical Environments for
MAS (GOLEM) [Bromuri and Stathis, 2009]. GOLEM uses Ambient Event

2.4. DISTRIBUTED AGENT-BASED PLATFORMS 25

Figure 2.2: AglobeX [Šǐslák et al., 2009]: different machines run an airplanes
application.

Calculus language, which is a formalism to build cognitive agents. This plat-
form consists of Containers which can be distributed between machines.
Each Container can be composed of other Containers and this can com-
plicate the execution hierarchy (see figure 2.3). This platform is more suited
for cognitive agents than massively reactive agents and it does not guaran-
tee high performance in case of massively multi-agent simulation [Bromuri
and Stathis, 2008]. Also, it is not clear how they can distribute agents or
environment on different Containers.

2.4.4 Repast

The Recursive Porous Agent Simulation Toolkit, or Repast [North et al.,
2013], provides components for building multi-agent simulations. Its exe-
cution is based on events submitted by agents. Simulations relies on ticks,
minutes of simulated time where actions are carried out. By default, the
Repast Symphony platform does not have native tools for distributed simu-
lations. There is another implementation of Repast with a Relogo specific
language on parallel environment, which is Repast for High Performance
Computing (or Repast-HPC) [Collier and North, 2012].

26 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

Figure 2.3: Packet-World application distributed on 5 machines with
GOLEM [Bromuri and Stathis, 2009].

2.4. DISTRIBUTED AGENT-BASED PLATFORMS 27

It is possible to launch a simulation on a network platform using a mid-
dleware, which provides a shared memory between machines. On one side,
the main advantage in this solution lies in the fact that the platform is free
from all distribution considerations. But on another side, this means that
the distribution is made without any consideration of the platform: no op-
timization is made on the various components of the platform (including the
run-time). Similarly, it is not possible to parametrize agents distribution on
the computer network. Distribution through a middleware is ambiguous and
does not have a clear distribution of the main concepts of MAS simulation
(agents and environment).

Another version of Repast is Repast-HLA [Minson and Theodoropoulos,
2004] that is related to High Level Architecture (HLA) [Kuhl et al., 1999;
Xiaoxia and Qiuhai, 2003], which is a more standard middleware, that has
a strict hierarchical tree-oriented model. Communication between certain
simulators is enabled by predefined gateways (figure 2.4). Thus, HLA can
be considered as a centralized coordination approach to distributed simula-
tion resources [Timm and Pawlaszczyk, 2005]. HLA clearly focuses on the
coordination between different sequential simulation toolkits. Anyway, HLA
has some limitations in complex systems and is not mainly designed to gain
speed up [Davis and Moeller, 1999].

2.4.5 IBM Megaffic Simulator

Megaffic or IBM Mega Traffic Simulator is a large scale simulator for traffic
application. This platform is built upon XAXIS or X10-based Agent eXecut-
ive Infrastructure for Simulation [Suzumura and Kanezashi, 2012b,a], which
is designed to handle large number of agents on distributed and parallel com-
puting environments (HPC).

Its middleware is designed and implemented from X10 middleware [Eb-
cioglu et al., 2004], which is a parallel distributed programming language that
IBM-Research is developing. X10 comes from a language called Partitioned
Global Address Space (PGAS) and specific for large-scale traffic simulation,
which was designed to test and experiment Tokyo road network data.

However, The agent programming model of XAXIS is derived from ZASE
simulation platform (or Zillions of Agents-based Simulation Environment)
[Yamamoto et al., 2008]. The negative points of this platform are the de-
pendence on a specific language (PGAS) and the narrow application domain
which is traffic simulation (figure 2.5).

28 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

Figure 2.4: Repast with HLA architecture.

Figure 2.5: Megaffic simulator of traffic simulation: each road is represented
by one machine.

2.4. DISTRIBUTED AGENT-BASED PLATFORMS 29

2.4.6 FLAMEGPU

FLAMEGPU is an extension to the FLexible Agent-based Modelling Envir-
onment (or FLAME) framework for Graphics Processing Unit (GPU) [Rich-
mond et al., 2009] (figure 2.6). FLAMEGPU merges between the X-Machines
agent definition and GPU programming specifications. GPU are designed to
process simple and large computations in parallel structures. It is clear that
rendering a 3D environment with GPU is faster than using CPU, because
GPU are better at performing repetitive tasks on large blocks of data than
CPUs. For that, FLAMEGPU can visualize large amount of simple agents
in real time as agent data is already located on the GPU hardware. But with
complex computations, CPU is still better than GPU, especially if we have
a cognitive agent with complex computations.

However, as GPU were designed in parallel structures to allow large blocks
of data to be processed at one time. Then, the workload must be divided
into small blocks to allow the parallel smaller processor units in GPU to
process them successfully. That make the programming in GPU has some
limitations.

Figure 2.6: FLAME with distributed message-boards.

Even if a single GPU is able to simulate several thousands of agents, we
still have a limitation to simulate several millions or billions of agents with a
single GPU, even if these agents are very simple.

30 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

2.5 Summary

Even if many platforms are able to distribute some systems, large scale MAS
simulations need some specifications and features. In this thesis, we focus on
these features and put them under our research. Many platforms already exist
on the domain, but most of them are not efficient for large scale applications.
Table 2.3 shows a comparison between these platforms and their scalabilities
of: the agents number, the machines number and the most commonly used
applications to benchmark their works. Some of these platforms are scaled
well, but with simple applications. Megaffic was built for traffic simulation
only. All these platforms do not have different synchronization capabilities.
And they do not have different distribution approaches which can be chosen
by the user.

Distributed MAS simulators must take into account the main concepts
of MAS, which are agents and environment, to increase the efficiency and
the performance. We consider that the initial load-balancing and the time
management are the most important features to increase the efficiency for
any large scale distributed-MAS simulation.

This chapter introduced some concepts of distributed systems, which was
the second part of the state of the art. We define different aspects of the
distributed system like: network relationships and topologies, load-balancing
and time management, etc. We explore different synchronization approaches.
We proposed different criteria to build an efficient large scale MAS simula-
tion. We believe that large scale MAS simulation should be emanated from
the basic concepts of MAS: agents and environment. It should have differ-
ent distribution approaches for different applications that can automatically
balance the computational load during the simulation, otherwise it can upset
the balance. It should have different synchronization approaches to increase
the performance by avoiding some useless communications. Finally, it should
not be customized for specific applications.

In the next two chapters 3 & 4, we present the second part of this thesis.
Chapter 3 explores our understanding of large scale MAS simulators and the
main ideas that should be taken into accounts to design and simulate large
scale applications. Chapter 4 details our platform and its functionality.

2.5. SUMMARY 31

Table 2.3: A comparison of large scale MAS simulators.

Platform
Scalability

Agents Nb Machines Nb Model type

Repast 68 billions HPC-32000 cores Triangles (simple)
DMASON 10 millions 64 Boids (simple)
AglobeX 6500 6 (22 cores) Airplanes (simple)
GOLEM 5000 50 Packet-World (complex)
FLAMEGPU 11000 GPU Pedestrian Crowds
Megaffic 10 millions 16 (192 cores) Traffic simulation

32 CHAPTER 2. LARGE SCALE DISTRIBUTED-MAS

Part II

Distributed MAS simulators

33

Chapter 3

Distributed-MAS: concepts and
ideas

3.1 Introduction

Agent-based simulations are used by researchers to provide explanations
about real life phenomena like flocking of birds, or to simulate population
evolutions. These kinds of simulations are made of smaller entities called
agents, which interact to produce emerging global patterns.

When the number of agents or interactions grows in large scale simu-
lations, resources in computing costs and memory can exceed the capacity
of a single computer to execute such simulations. For that, a distribution of
MAS simulator over a computer network to divide the computations between
different machines is our circle of interests.

In this chapter, we first describe our view of MAS concepts and the im-
portance of different distribution approaches. We detail our understanding of
agents and environment, and we distinguish between two categories of inter-
actions. We compare different interactions mechanisms between centralized
and distributed cases. Then, we detail different distributions approaches for
MAS concepts, which depends on agents and environment. These distribu-
tions can adapt initially the loads between machines for some applications
without any load-balancing mechanism. Finally, time management problems
and synchronization policies are deeply studied to distribute MAS simula-
tions efficiently and gain more performance.

35

36 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

3.2 The need of different distribution types

To reach a high number of agents and interactions in large scale MAS sim-
ulations, we believe that it is necessary to distribute these simulations over
computer networks. To ensure performance gains when we distribute such
simulations, it is necessary to take into account specific concepts (as agents &
environment) more than the classical ones (as computation & data storage)
in normal distributed systems. Our work presents these concepts: agents
and environment, and their importance in large scale simulations.

We believe that the way, which we use to distribute MAS concepts, can
give us more performance in some applications than others. In some applic-
ations, the environment is more important than agents and can play a major
role in the distribution process, and an environment-based distribution can
give us better performance in such applications. Whereas in other applica-
tions, the agent can be the most important thing, and a distribution related
to agents instead of environment can give us better performance. However,
communication costs also can be affected by the chosen distribution way. To
study that, we propose different distribution approaches, which are related
to MAS concepts.

Our aim is to reach a way that can help user to choose the best distribution
approach for his application according to some general features.

3.3 MAS concepts between centralized and

distributed approaches

In centralized approaches, MAS simulation can be implemented in different
ways with similar performance. Whereas in distributed approaches, we need
some specific techniques to avoid high communication costs, and make ef-
ficient distribution especially when a large number of agents interact. An
efficient distribution means that we have to use all machines capabilities to
calculate interactions of all agents. In other words, the loads between ma-
chines must be similar.

For example in a centralized approach, if there is a list of agents that
want to interact, then, we can simply allow first agent to interact, then the
second one, etc. One after another respectively until the last one. Because
in one machine, the calculation have to be done sequentially. Whereas in a
distributed approach, this scenario is not efficient, because agents are distrib-
uted between different machines. That means, some machines have to wait
till other machines can finish their computations. To avoid such problems,
we have to define MAS concepts in a specific way.

3.3. MAS BETWEEN CENTRALIZED AND DISTRIBUTED 37

3.3.1 Agents

Old
state

1

New
desired

state
3

Desires
engine

2

Agent

External
Apply

4

vision

Environment

Simulation

List of Interactions

Apply
interactions

Organize
interactions

Ask for
interactions

Figure 3.1: Agent model in MAS simulations. Agent consists of an old state,
desires engine, vision and a new desired state. When MAS simulation asks
each agent to interact, each agent behaves from its old state, and according
to its desires engine with its vision, to a new desired state.

Far from the classical definition of agent as: an autonomous entity which
observes its environment and acts by following its own goals [Russell et al.,
1996], we describe here our view of an agent to implement it easily and
effectively in a distributed system.

Figure 3.1 shows our view of agent that consists of properties (states) and
behaviours (desires engine). In MAS simulation, agent behaves from its old
state, and according to its desires engine, to a new desired state. That can
be done if and only if the environment accepts this new state or other agents
acknowledge that change. Then, we can apply the interactions or we can
change the state of agent to its new desired state (see figure 3.1). To notice,
a new desired state is not necessary an interaction, it can be a proposed
interaction by the agent to be the new interaction. If we imagine that, all
agents have a list of proposed interactions, then we can apply the possible
ones only.

38 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

3.3.2 Environment

Agent’s environment in our view is everything outside the agent. Environ-
ment is not only positions (x,y) of agents. But, it is also other agents or the
information about the other agents. Environment of an agent should sup-
port this agent about the states of other agents. Environment should provide
information about the possible interactions which can be applied during the
simulation.

Environments can be classified in three main forms: virtual environments,
discrete environments or continuous environments. In our view, Continuous
Environment is more general than discrete or virtual ones. Because discrete
environment can be inherited from continuous one by a division of it into
zones on a grid. Virtual environment did not have any specification for the
space and it can be implemented as continuous one too. However, we are not
interested in virtual environment as our main focus on situated simulations.

Each application can have a continuous environment even if its agents can
not float on the environment. In that case, environment has only information
about other agents. However, information about agents must be transferred
in efficient way to avoid high communication costs in distributed system.

3.3.3 Interactions

In chapter 1, we have seen different interactions categories from different
researchers’ works on different levels. However, we distinguish between two
main categories of interactions according to its execution complexity:

1. Simple interaction: where agent does not need to modify another
agent. This interaction allows actions to happen in the same time with
ability to overlap, for example two agents said ’do something! ’ to third
agent and the both jobs can be done in the same time.

2. Complex interaction: where agent needs to modify a state of another
agent. This category of interaction can be in some kind of simulations
with physical representation. In this type, there are no possibilities to
allow any kind of conflicting actions. For example, two agents (wolves)
can not eat the same agent (sheep) in the same time. For that, this kind
of interaction needs an organizer between agents to avoid any conflict
situation.

3.3. MAS BETWEEN CENTRALIZED AND DISTRIBUTED 39

3.3.4 Interactions organizer

There are different mechanisms to organize interactions between agents in
centralized-MAS simulation. But not all of them are suitable in distributed-
MAS simulation.

1) First-Asked-First-Act mechanism

In this mechanism, the first agent, which is asked to interact in each time
step, should act its interaction or execute it. That means, agent can change
its states directly, then the next agent, ..., until the last one sequentially. In
the centralized approach, this is easy to implement and enough. But, this
mechanism is not efficient in distributed approach because some machines
have to wait the others. That means, high delays during the simulation and
high communication costs between machines.

2) Without-Asked-Group-Act mechanism

This mechanism means that all agents can interact directly or change their
states, then we should try to remove the conflicting actions, modify or abort
them. This approach can use all machines capabilities in distributed systems.
But it needs high communication cost between machines to abort conflicting
interactions.

3) Group-Asked-Group-Act mechanism

This mechanism means that all agents can ask for interactions, and then the
simulation can organize which agent must be first and which agent must be
last, or which one can be re-asked for another interaction. Then, the sim-
ulator has a list of possible interactions to apply. This approach is more
efficient in distributed systems because it benefits from all machines capab-
ilities with lowest communication costs. But, it adds a new aspect to the
simulation which is a judgement mechanism to manage conflicting interac-
tions.

To make an efficient distributed simulation, we have chosen the Group-
Asked-Group-Act mechanism. Because it benefits from all machines capab-
ilities with lowest communication costs (see table 3.1). Each machine can
ask its agents for interactions, then it prepares a list of possible interactions.
If in this possible list there are interactions with other agents from other
machines, then an agreement protocol should be started between machines

40 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

Table 3.1: Interactions organizer analysis between centralized and distributed
approaches.

Organizer Centralized approach Distributed approach
mechanism

1) Easy to implement More delays
Sequential execution High communication costs

2) Add abort mechanism Less delays
Parallel commutation

Still high communication costs
3) Adding judgement mechanism Less delays

Parallel commutation
Less communication costs

to eliminate the conflicting interactions. Finally, each machine can apply its
list of possible interactions.

3.4 Distribution types

To achieve large scale simulations, we need to distribute our simulator on a
computer network to reach the maximum computation capability. Different
distribution levels for MAS simulation can be tested: hardware level (devices
and connections) or software level (MAS concepts).

In hardware level, the distribution depends more on the hardware devices
(machines), or on the distribution way of: the data, the computation and
the communication between different hardware devices. If we have some
machines are faster in computations than others, and some others are better
in communications, then the server\clients approach can be more suitable for
the distribution. Server can distribute the work between different clients and
communicate with them to give and get the simulation progress. Normally,
the server needs more capabilities in memory and communication than others.

Alternative example can be more simple, if all machines have the same
capabilities, which is the case of most existing network types within academic
laboratories. Then, fully connected homogeneity machines can be used easily
without server\clients approach, and machines can communicate in a specific
way to reach the desired distribution. Definitely in this case, the load between
machines must be fair, otherwise we could lose the homogeneity.

However and as we are more in MAS community, we are more inter-
ested in the second approach, which is the software approach. In our case,
MAS concepts are agents and environment. The distribution can be changed

3.4. DISTRIBUTION TYPES 41

according to these concepts only. We can distinguish between different dis-
tribution types [Rihawi et al., 2014]: agents distribution and environment
distribution. Each way is more suitable for some kinds of applications.

In our case, hardware distribution can be M homogeneity machines with
a communication layer, that informs each machine about all changes in the
system. It means that each machine is able to build a partial view of the
system, and with all other machines we have the global view of the system.

M1 0
0

20

20

M2 0
0

20

20

M3 0
0

20

20

0
0

20

10

20

10

M1 M2

M3 M4

0
0

10

10

10
0

20

10

0
10

10

20

10
10

20

20

EnvironmentMachine Local agents (in each machine) Ghost agents (in other machines)

Environment distributionAgents distribution

0
0

20

20
Agents

(20,20)One Machine

Environment

Centralized MAS

Figure 3.2: Two distribution types: agents distribution (lift) and environment
distribution (right).

42 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

3.4.1 Agents distribution

An agent in multi-agent systems (MAS) is an atomic unit, which can not
be divided into smaller parts. Even if we can consider it as a collection of
different properties and states. Agents are the most important blocks on
MAS simulations. Agent and its behaviours can determine the application
type.

The distribution of agents can be simply by a division of the agents list
between different machines or N agents for each machine.

Each machine handles N agents to execute their interactions and commu-
nicates with other machines to achieve agents’ goals. The challenge with this
approach is to inform all machines about all changes and actions between
agents in the system. All that must be done with lowest communication
costs. This type of distribution should be more suitable for cognitive agents,
which require a high computation than simpler ones, which can have a lot of
communications instead.

Depending on the application itself, the division of the agents list between
different machines can be done by different ways:

1. Types division: all agents of the same type can be grouped together in
the same machine (figure 3.3). For example in prey-predator model, all
preys are in one machine and all predators on another machine.

2. Communications division: list of agents, which communicate more to-
gether, can be in the same machine (figure 3.3). For example in flocking
model, all birds which near from each other can be in the same ma-
chines, so the communication can be minimized between machines.

3. Computations division: Cognitive agents, which have heavy compu-
tations, can be divided between machines to distribute the important
computation.

4. Services division: list of agents which have the same services or the
same computational needs. For example, if there are agents have the
same and intensive mathematical computations in granular gas model,
then these agents can be in the same machine.

5. Random division: If all agents are in similar computation and commu-
nication needs then the division simply can be randomly N agents for
each machine.

Whatever the way that we distribute agents with, each machine has a list
of agents and these agents should be able to interact with other agents in

3.4. DISTRIBUTION TYPES 43

local machine and with other agents on other machines. We call this type of
interactions between agents from different machines as External Interactions

Definition 1 External Interaction: is a complex interaction between two
agents (or more) that exist on two different machines (or more) [Rihawi
et al., 2013c].

Then, we have to define a mechanism to handle these type of External
Interaction (EI) that can be done with two main steps:

1. Information about agents between different machines must be updated
at each time step, thus agents can see each other and interact together,
and that can be done in different ways:

(a) Send an information message about agents on other machines
each time an agent needs it, which increases communication costs
between machines.

(b) Send all information about agents at each time step through one
message, and then all agents, that exist on one machine, can have
a vision of agents from other machines.

2. An agreement protocol must be able to apply these EIs. If and only
if, these EIs are not conflicting with other interactions from other ma-
chines.

For the first step, each machine has its agents (local agents) and should
be able to have information about other agents from other machines which
can be called Ghost Agents (see figure 3.3).

Definition 2 Ghost Agent: it is a copy of an agent’s state (not a real
agent), that reflects a real agent on another machine. This copy must be
updated at each time step to allow all local agents to see and interact with
that agent.

3.4.2 Environment distribution

In some applications, the focus can be more on the environment itself in-
stead of agents. Particularly for simulations with physical constraints, whose
agents interact locally and probably are distributed over all environment. In
this case, the environment can be divided between different machines, each
machine holds a small part of the environment with agents that exist on this

44 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

Agents distribution

Local agents (in each machine) Ghost agents (in other machines)

Machine1

Machine3

Machine2

Neighboring
agents

together

Machine1

Machine3

Same type of
agents

together

Machine2

Centralized MAS

Agents

Figure 3.3: Agents distribution can be done with different ways: same type
together (left) or neighbouring agents together (right).

part. Thus, each machine computes agents perceptions and all interactions
that happens within its environment slice. In other words, each machine
manages a part of the environment (see figure 3.2).

In that case, the challenge is how can we manage the transferred agents
between machines or the agent placement problem [Miyata and Ishida, 2008]?
And how can we deal with the interactions between agents in the edge-zones
space or the overlapping problem?

Moreover, one of the most important issue is how we can inform other

3.4. DISTRIBUTION TYPES 45

0 100 200
Machine2

Machine4

 0

100

200

Machine1

Machine3

b.Non-Shared Area c.Ghost Area

Ghost
Area

0 50 150

50 150 200

a.Shared Area

Dublicated
Area

Machine1

Machine2

Machine1

Machine2

Figure 3.4: Three different ways to exchange information between machines:
a.shared area, b.non-shared area and c.ghost area.

machines about all changes in the system. Information exchange between
environments parts can be done in three different ways:

1. Shared area: is a common area between neighbours or between each
two parts of the environment. These areas exist in two machines (or
more), and must be synchronized at each time that some changes hap-
pen on one of the neighbours (as we can see in figure 3.4.a). This kind
of area is very costly in communications, because it must be synchron-
ized at each time step. In fact, this area is not useful when we want to
collect information about our agents or the state of all environment’s
parts for visualization, because we must be sure that these shared areas
have already been synchronized on all machines.

2. Non-shared area: in this case, the environment is separated into
parts without a common area or shared area. Each agent exists in
one part only, so that means in one machine only (one part on each
machine). However, each time we have an agent close to the edge zone
between neighbouring parts and whose vision span on others, we need to
inform this agent about any changes that happen on these parts. That
can be done by sending an information message to each agent close to
the edge zone, but it would imply a high communication penalty.

As an example, if we have an environment divided into two parts on
two different machines as we can see in figure 3.4.b. In each machine,
we have some agents that need information, because their visions cross
the edge-zone to the other machine. For example, an agent A1 exists in
machine1 and needs information about another agent A2, which exists
on machine2 (see figure 3.4.b). Agent A1 wants to ask the machine2
and receive an information message from it. Then and for the same

46 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

reason, other agent A3 from the same host machine1 wants the same
information about the same agent A2 from the machine2 too. Thus,
it asks machine2 about the same information and receives a second
message with the same information. In this case, the same information
should be sent two times for only two agents. It is clear that, the non-
shared area can explode the communication, especially if we have a
large number of agents in the edge-zone (figure 3.4.b).

3. Ghost-area: this area is like the non-shared area, which consists of
separated environment parts on different machines. But, a ghost area
is added to each part, which represents a part of neighbours states as
a ghost area (not a real area).

Definition 3 Ghost Area: it is a copy area (not a real area) that
reflects a real area in the system, which exists on another machine. In
other words, it is a copy of another environment part that exists on
another machine and needs to be updated at each time step to allow
local agents form seeing and interacting with other agents that belong
to that area.

This area should be updated and informed with all changes by one
message at each time step to allow local agents to interact. It is not
like non-shared area which sends the same information in separated
messages. Also, it is better than shared area, which duplicates the
agents between machines. As we can see in figure 3.4.c, each machine
has to receive Ghost-areas around it from other neighbours at the be-
ginning of each time step, and also has to send ghost-areas for others
too. Ghost-area approach is very near from ’ghost-data’ which used
with some researchers to visualize parallel simulation [Isenburg et al.,
2010].

Independently of the chosen mechanism to exchange information, environ-
ment distribution is more suitable for situated agents whose positions have
a normal distribution on the environment. In other words, each agent has
an equal probability to exist on all special areas on the environment. That
means, agents are diffused on the whole environment, and they do not ag-
gregate on one place or they are not moving with large groups from one
area to another. Because, if we have one large groups of agents in the same
area or in the same part of the environment, that means huge computations
should be done on one machine only, and then this distribution approach is
not efficient.

3.5. TIME MANAGEMENT 47

3.5 Time management

To achieve large scale multi-agent simulations, we choose to distribute com-
putations over a computer network. In distributed system, one of the most
important problem is time management and synchronization. In addition
to normal distributed system, in large scale multi-agent simulations the im-
portance is to gain more performance by relaxing the synchronization with
keeping the macroscopic behaviour.

This thesis is a first study of synchronization costs in performances and
the impact of synchronization policies on the preservation of emergent mac-
roscopic properties in large scale multi-agent simulations. To understand the
important of synchronization, we detail the notion of time in a centralized and
decentralized system and introduce the three main synchronization policies
that we have studied. In later chapters, we can see in details experimenta-
tions made on some applications to benchmark the impact of synchronization
policies about simulation outcomes.

As we mention before, the word time can be defined as a non-spatial
continuum in which events occur in apparently irreversible succession from
the past through the present to the future. This transition from past events
to events happening in the present is called the flow of time [Gold, 2003].

In a distributed simulation context, several notions of time are involved:
user time, which is the real time, and simulated time or a time step (TS),
which is a set of small durations used to produce evolutions within a simula-
tion.

This notion of simulated time is less linked to the flow of time and ir-
reversibility than the property of ordering events in a sequence to guaranty
causality between events. This notion of simulated time has been defined
by Lamport [Lamport, 1978] through a logical clock that induce a partial
ordering of events, and has been refined as Logical Virtual Time (LVT) by
Jefferson [Jefferson, 1985].

In multi-agent simulations, a common implementation to enable the sim-
ulation dynamic is to query all agents for their current action and to apply
this set of actions. This round of talk defines a simulation tick or time step
(TS). Because several actions are gathered within a TS, one can encounter
conflicts between two or more actions, thus the simulator has to define some
rules for such situations. An example, in the prey-predator model, if two
predators try to attack the same prey in the same TS, a rule has to be given
to define the outcome of such conflicting interaction.

In centralized multi-agent simulations, there is only one simulation time
step that organize agents evaluation and allows them to interact in a given
period of time. In a distributed simulation, there is one logical clock per

48 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

machine and the time needed to handle a TS is not the same between all
machines. This is because, they can have different loads that comes from the
differences of agents which they hold (see figure 3.5).

In order to guaranty causality on all machines, we have to synchronize
local time step within all machines. Most of researchers’ works are con-
cerned with two main approaches as we mention before: conservative (or
synchronous) and optimistic (or asynchronous) synchronization [Logan and
Theodoropoulos, 2001], [Fujimoto, 2000], [Gupta et al., 2007]. Farther in
this thesis, we define other types of synchronizations to handle time step
simulation.

The question that we are interested in this thesis is whether synchroniz-
ation constraints can be relaxed without impacting the simulation outcome.
Indeed, the balance between communication costs, performances and reliab-
ility is dependent on the application that is implemented.

For example, if a simulation is used to generate an animation with a
huge number of agents, it should not be so important if some agents fail to
interact, or if they do not interact as fast as other agents. However, in some
other applications, like urban traffic simulations, we need reproducibility and
reliability to ensure that all interactions between agents are fulfilled and also
that performances are able to catch up with faster than real-time resolution.

Distributed / N-ClockCentralized / 1-Clock

One machine

Machine 1

Machine 3 Machine 4

Agents
Machine 2

Figure 3.5: Multiple time steps in distributed approach.

3.6 Synchronization policies

As we mention before, time management between machines or synchroniza-
tion is one of the most important thing in distributed systems. We divide syn-
chronization policies into three main approaches for distributed multi-agent

3.6. SYNCHRONIZATION POLICIES 49

simulations [Rihawi et al., 2013c,b]: strong synchronization (SS) policy, time
window synchronization (TW) policy and no synchronization (NS) policy
(figure 3.6).

3.6.1 Strong synchronization

This policy is simple: all machines are synchronized together in such a way
that all local clocks are running at the same pace. Thus, the distributed
simulator should guaranty that all agents execute the same number of ac-
tions. To implement a strong synchronization, more messages have to be
exchanged between machines, so communications costs are increased. This
kind of conservative approach strictly avoid causality errors but can introduce
high communication delays.

3.6.2 Time window synchronization

The second policy allows machines to progress at different pace, thus it is
more flexible. It is similar as optimistic (or asynchronous) synchronization,
which allows machines to advance at different pace in simulated time. But,
it does not have a rollback mechanism [Gupta et al., 2007], which enforces
the simulator to roll back into previous events to reconstruct a previous state
of the simulation if there are errors in the system. Because, we don’t want to
loss the gain of flexibility by a probability of roll back too often during the
simulation.

For that reason, we propose time window synchronization. With this
approach, machines can progress at different pace but a global constraint
is enforced such that the slowest and fastest machines do not have a time
shift greater than the defined time window. Thus, a time window defines the
worst spread in time steps that can happen between the slowest and fastest
machine. With this window permission, machines can avoid some delays of
strong synchronization without affecting macroscopic behaviours outcome in
some cases.

Of course, with this approach, we can have situations where agents in
different time steps can interact or some agents fail to interact. But in large
scale simulations, that can be ignored. We believe that the impact of time
incoherency in some interactions is negligible in respect to the volume of
interactions in the whole system. This is a strong hypothesis that will be
studied through different applications in experimental chapters later.

50 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

3.6.3 No synchronization

The third and last policy is to simply drop synchronization between machines.
It can be seen as a variation of the time window policy with an infinite
window size. This approach exploits the available speed of all machines.
Our experiment in large scale multi-agent simulations shows that machines,
with homogeneous load computations in this policy, can have some and small
differences in time steps. But, it is not for a long time and it can be swapped
between machines. So, no machine has a greedy superiority all the time, and
some applications can run for a long time. However, we will see later in some
experiments that this policy is not suitable for all applications, but it can
keep some applications from its outcome.

M 1

Same TS
(All synced)

M1

M 1 M4

TS=N

M1

TS=N

M2

TS=N

M3

TS=N

M 1

Small
differences

in TS

M1

M 1 M4

TS=N-3

M1

TS=N-2

M2

TS=N

M3

TS=N+1

4<w is Window
size permission
w

M 1 M1

M 1 M4

TS=N-2

M1

TS=N-6

M2

TS=N

M3

TS=N+4

10<∞
Bigger

differences
in TS

∞ permission
to maximize

the speed

Strong Sync (SS) policy Time Window (TW) policy No Sync (NS) policy

Figure 3.6: A distributed MAS simulation on 4 machines with three different
synchronization policies: strong synchronization, time window synchroniza-
tion and no synchronization policies.

To conclude, three synchronization policies (see figure 3.6) have been chosen
to study large scale distributed multi-agent simulations. The problematic
studied in this thesis is: can we determine whether we are able to keep mac-
roscopic behaviours emergence when relaxing synchronization constraints or
not? This approach aim is to gain performance by reducing synchronization
costs and to determine which kind of applications are robust with respect to
these synchronization issues.

3.6.4 The influence of synchronization policies

In a centralized approach, there is no synchronization policies, as all agents
are in one machine only and can easily communicate with other agents dir-
ectly. Whereas in distributed system, agents from different machines want

3.6. SYNCHRONIZATION POLICIES 51

to interact with others to achieve their own goals. These interactions should
predetermine a mechanism to organize the time between different agents that
interact from different machines, as agents are distributed between machines.
Three policies can have different impact on the simulation (table 3.2).

Table 3.2: Analysis of synchronization policies.
SS policy TW policy NS policy

Execution time Slower Faster Fastest
Communication costs High Less Less
External interactions High Less Less

Microscopic behaviour Reliable Unreliable Unreliable
Macroscopic behaviour Reliable Unreliable Unreliable

Strong synchronization

In Strong synchronization (SS) policy all machines should progress together
in the simulation. This policy is similar to centralized approach in outcomes,
because all machines have to progress together, so all agents have the same
chance to interact. But, the disadvantage of this policy is that all machines
have to communicate a lot to progress one time step only, even if there are
some time steps without external interactions between agents from different
machines. This could be the reason for higher and useless communication
costs.

No synchronization

In no synchronization (NS) policy all machines are free from all constraints
to progress alone in the simulation. The advantage of this policy is that we
can gain the maximum speed of all machines, because there are no useless
communications between machines.

However, in this policy the disadvantage is that not all machines are
able to get the same outcomes as in centralized approaches, because not all
machines can progress together at the same time. Then, some agents have
not the same chance to interact as others. That can be the reason to destroy
the needed outcomes of some applications or the macroscopic behaviour of
the simulation and make it useless. Generally, in large scale simulations with
billions of agents we can ignore some incoherent or wrong interactions from
a small number of agents.

52 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

Time window synchronization

To balance between both previous policies, Time window synchronization
(TW) policy can be the solution. In this policy, machines can progress in
the simulation with small and limited number of time steps. That can avoid
some of useless communications between machines, and in the same time it
can keep the outcomes of the simulation. That means for some applications,
we can reduce the communications and increase the performance in the same
time.

3.7 Summary

To execute large scale MAS simulations, resources in memory and computing
costs can exceed the capacity of a single computer. Thus, distributing the
computations can be the best solution for large scale simulations, which allow
to divide computations between different machines. Moreover, in large scale
situations we need to distribute the computations in a specific way to gain
more performance. To do that, it is necessary to take into account specific
concepts, which are agents and environment, more than the classical ones
(computation and data storage) in normal distributed systems. Our work
presents several criteria that should be considered to ensure performance
gains when distributing such simulations over a computer network.

In this chapter, we first describe our view of MAS concepts and the im-
portance of different distribution approaches. We detail our understanding of
agents and environment, and we distinguish between two categories of inter-
actions. We compare different interactions mechanisms between centralized
and distributed cases. Then, we detail different distributions approaches for
MAS concepts, which depends on agents and environment. That can ad-
apt initially the loads between machines for some applications without any
load-balancing mechanism. We propose two distribution types: agents distri-
bution and environment distribution, which can give some applications better
performance with one approach than the other.

Time management problems and synchronizations are deeply studied to
distribute MAS simulations efficiently and gain more performance. Three
synchronization policies has been proposed: Strong synchronization (SS)
policy, time window synchronization (TW) policy and No synchronization
(NS) policy. TW and NS are the flexible synchronization policies which allow
machines from avoiding communications delays. The question was whether
synchronization constraints can be relaxed without impacting the simulation
outcome. Indeed, the balance between communication costs, performances

3.7. SUMMARY 53

and reliability is dependent on the application that is implemented. In the
next chapter, we detail our platform and the main operations in it for two
distribution approaches and three synchronization policies.

54 CHAPTER 3. D-MAS: CONCEPTS AND IDEAS

Chapter 4

Distributed-MAS: platform
description

4.1 Introduction

In the previous chapter, we have discussed different distribution types, which
are: agents distribution and environment distribution. In addition, three
synchronization policies have been proposed: Strong synchronization policy,
time window synchronization policy and No synchronization policy.

To study the impact of these distributions and synchronizations policies
on large scale MAS applications, we had to create our platform to make all
our experiments.

In this chapter, we describe our platform for large scale distributed MAS
simulations. We present the different components of the platform by detailing
the machines units that manage the main operations of the simulator in the
two cases: agents distribution and environment distribution. Then, the main
platform layers are discussed deeply and different simulation states are intro-
duced. After that, we study communication protocols and synchronization
algorithms for three main synchronization policies, which are: strong syn-
chronization, time window synchronization and no synchronization policies.
We explain the time step scenario between two machines to illustrate the dif-
ferences between these policies. Finally, we describe our view of visualization
in large scale simulations.

4.2 Machine units

Figures 4.1 and 4.2 show machine units for the two different distribution
types that we have chosen: the environment distribution with ghost-area

55

56 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

approach and the agents distribution. We build these two distribution types
in our framework to distribute MAS simulation, and we give the user the
capability to choose which type of distribution he wants.

In our work, we choose a simple communication layer between machines,
where each machine can connect directly to all other machines. Each machine
makes a part of calculation during each time-step and communicates with
others to build a complete global simulation view (figure 4.1).

Agents Edge-zone

20

 0

0 20

E

n
vi

ro
n

m
en

t
p

a
rt Ghost-Area

Machine1 Machine2

Communication
Unit

Agents

In
te

ra
ct

io
n

s

...

Visualization

1

2

3

5

8

7

6

Machine4Machine3

Local Simulation

4

Figure 4.1: Machine units in environment distribution approach: 1-2)send-
receive ghost area 3)get interactions 4-5)send-receive external interactions
6)apply interactions 7)transfer agents 8)visualization.

4.2.1 Environment distribution case

Environment distribution means that the environment is divided into differ-
ent parts on different machines. Each machine has a part of the environment
with its agents. Figure 4.1 shows all machine’s units: communication unit,
local simulation unit and visualization unit.

Communication unit manages all communications with other machines
and all messages should be passed through it. Visualization unit has the re-

4.2. MACHINE UNITS 57

sponsibility to read and visualize local environment part with its local agents.
Local simulation unit manages all local operations inside the machine.

At the beginning of the simulation, local simulation unit should send
information about ghost areas to other machines through the communication
unit, and it should receive ghost areas from others too.

After that, local simulation unit should ask each local agent about its
preferred interaction and create two lists of interactions: one for internal
interactions and the other for external interactions. The internal interaction
list is the list of interactions between local agents in this machine. Whereas,
external interactions list is the interactions between one of the local agent in
this machine with an agent from ghost areas which exist on other machines.

Then, the local simulation unit can send to and receive from other ma-
chines the external interactions through the communication unit. Once we
have a list of possible interactions, the local simulation unit can apply this
list.

Then, local simulation unit should transfer any agent that move out of the
local environment part to other parts or to other machines and also should
receive any agent that wants to enter this local part from other machines too.
Finally, visualization unit can visualize all local agents in local environment
part.

4.2.2 Agents distribution case

Agents distribution means that agents are divided into different parts on
different machines with the same environment. However, each machine has a
list of agents that can interact locally with other local agents or can interact
with other agents from other machines through ghost agents.

Figure 4.2 shows all machine’s units of agents distribution. It is similar
to environment distribution case: communication unit, local simulation unit
and visualization unit. But, it has small differences in data structures, where
we can replace ghost areas with ghost agents.

As in environment distribution case, the communication unit manages
all communications with other machines and all messages should be passed
through it. Visualization unit has the responsibility to read and visualize
local agents. Other works inside the local machine can be managed by the
local simulation unit.

At the beginning of the simulation, local simulation unit should send
information about local agents to the other machines through the commu-
nication unit, and it should also receive information about other agents from
the other machines as ghost agents.

58 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

Machine2(0,0)

In
te

ra
ct

io
n

s

...

1 4

5

(0,0)

(20,20)

(20,20)
Machine1

Agents

Machine1

Local-Agents

Visualization

2

7

Ghost-Agents

E

n
vi

ro
n

m
en

t

Local Simulation

3

Communication
Unit

6

Figure 4.2: Machine units in agents distribution approach: 1-2)send-receive
ghost agent 3)get interactions 4-5)send-receive external interactions 6)apply
interactions 7)visualization.

After that, the local simulation unit should ask each local agent about its
preferred interaction and then create two lists of interactions: one for internal
interactions and the other for external interactions. The internal interaction
list is the list of interactions between local agents in this machine. Whereas,
external interactions list is the interactions between one of the local agent in
this machine with ghost agents or with other agents from other machines.

Then, the local simulation unit can send to and receive from other ma-
chines the external interactions through the communication unit. Once we
have a list of possible interactions, the local simulation unit can apply them.
Finally, the visualization unit can visualize all local agents as in environment
distribution case.

To conclude, the only difference between agents distribution and environ-
ment distribution is the transferred agents. In the environment distribution
state, there are transferred agents, because agents can swap between envir-
onment parts or can move from one position on one environment part to
another position on another part. That means, agents can move between

4.3. PLATFORM LAYERS 59

machines and should be transferred between them.

Whereas in agents distribution state, all machines have the same envir-
onment with a list of agents, that can move in the same machine to all posi-
tions on the environment. For that, there are no transferred agents between
machines in case of agents distribution, except if there is a load balancing
mechanism that needs to transfer agents between machines to balance the
load at some time steps.

4.3 Platform layers

Our platform can be scaled to N machines. Each machine can communicate
with other machines directly. Every machine has an ID (IP address or name),
which is unique and different from others’ IDs. Thus, each message can be
sent to a destination ID or a destination machine.

Each machine holds a simulation part that consists of three main lay-
ers: communication layer, distributed simulator layer and application layer
(figure 4.3).

4.3.1 Communication layer

The first layer is the communication layer, which has the responsibility to
build and establish connections between machines. At the beginning of the
simulation, this layer should send a connection request to each machine
through its ID. Once all connections have been established, the simulation
can be started.

This layer should be able to send and receive messages between machines.
This communication is done in an asynchronous way and machines should
not wait to send or receive messages. All messages are registered in two main
lists: Inbox and Outbox lists (see figure 4.3). Inbox list for incoming messages
and Outbox list for messages that are ready to be sent. Each message has
the destination ID of the destination machine with a stamp of the current
simulation time step.

4.3.2 Distributed simulator layer

The second layer is distributed simulator layer, which distributes MAS simu-
lation and manages all distributed parts. It provides configuration to decent-
ralize the environment and it should associate agents to the environment or
a slice of it. It is located between two layers: the communication layer and

60 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

Distributed
simulator

layer Manage

Sync
Transferred

agents
Distributed

parts
Exchange

Information

Communication
layer

Establish
connections
with others

Inbox Outbox

Send and receive
messages

Connection
manager

Connections

Application
layer

MAS

InteractionsAgentsEnvironment

Figure 4.3: Three framework layers in our platform: application layer, dis-
tributed simulator layer and communication layer. Communication layer
deals with network connections and messages between machines. distributed
simulator layer deals with all distributed operations. Application layer deals
with MAS application from agents to environment.

the application layer. All messages of this layer should be passed through
the communication layer to be sent to their destinations on other machines.

At the beginning of the simulation, this layer is responsible of all distrib-
uted operations. It should create all distributed parts and it should create
maps for MAS concepts (agents and environment) of the neighbouring ma-
chines. For example: the map for positions ranges of other environment parts
on other machines, the map for agents locations on other machines, the map
for exchanging information with neighbouring machines... etc.

This layer should also transfer agents between machines if it is necessary
or if there are moving agents between different positions ranges on different
machines. This layer should update information about other environment
parts or other agents on other machines each time step.

4.4. PLATFORM CONFIGURATION 61

Moreover, this layer should manage external interactions with others ma-
chines, which are interactions between local agents in the local application
layer with other agents on other application layers or on other machines. In
addition to that, this layer sends synchronization messages to other machines
at the end of each time step to notify others that this machine is ready for
next time step.

4.3.3 Application layer

The third layer is the MAS level layer with agents, environment and applica-
tion domain definitions. In this layer, the user can define the notion of agent
in different levels, for example: physical level (agent’s body handling), social
level (agent communication), mental level (knowledge and action selection
mechanism).

These levels of interactions can be determined by user needs, figures 4.4
and 4.5 show examples of defining agents and environment in the applica-
tion layer. The user can define different types of agents according to his
application, and must inherit them from the agent abstract class. The user
must define all possible interactions in his applications and should define a
judgement mechanism to prevent agents from acting a conflicting interaction.
If there are any external interactions, this layer should pass these external
interactions to the distributed simulator layer to manage their acceptance.

4.4 Platform configuration

Before the simulator can be started, the user should configure his application
to get a better performance. That can be done through a configuration file,
which allows users to determine the properties of the simulation, if it runs
with environment distribution or with agents distribution.

In case of environment distribution (see figure 4.6), the user can divide
the environment into different slices on different machines through the con-
figuration file. The configuration file consists of different lines: the header
line as first line and environment parts lines. In the header line (first line),
the user define the type of his simulation and all properties like: ED or envir-
onment distribution case, with or without GUI, the synchronization policy,
with or without log-file, etc.

Each following line should define one environment part with its initial
agents and with its machine. That means, the configuration file has lines of
the machine ID, the machine name or IP, the environment slice ranges and
the initial agents which is contained within that slice (see figure 4.6). For

62 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

Figure 4.4: Agents UML class diagram for prey-predator model. Each agent
type has to define a list of abstract functions to allow simulation from lunch-
ing the interaction process. The user can create many types of agents ac-
cording to his application, and all these types must be inherited from the
agent abstract class.

example: ID number (0), machine’s name or IP (M1), positions range of this
part (x0 y0 x1 y1 = 0 0 10 10), then number with an agent type (50 wolf
2000 sheep 3000 grass, etc.).

In case of agents distribution (see figure 4.6), the user can divide the initial
agents into different lists on different machines through the configuration file.
Again, the configuration file consists of different lines: the header line and
machines lines. In first line or the header line, the user can define the type
of his simulation and all properties like: AD or agents distribution case, with
or without GUI, the synchronization policy, with or without log-file, etc.

Then, each following line of the configuration file can define one machine
with its initial agents and with the same environment positions range for each
machine. That means, the configuration file has lines of the machine ID, the
machine name or IP, the main environment positions range that agents can

4.4. PLATFORM CONFIGURATION 63

Figure 4.5: Environment UML class diagram. The user can choose the en-
vironment type that is more suitable for his application.

move through it and the initial agents which is contained within each machine
(see figure 4.6). For example: ID number (0), machine’s name or Ip (M1),
positions range of the environment at all (x0 y0 x1 y1 = 0 0 20 20), then
number with an agent type (50 wolf 2000 sheep 3000 grass, etc.). If the user
need to configure large scale simulation (more than 100 machines), a small
script can be used to generate 100 lines with all necessary information for
each machine (number of agents, agents types, etc.).

64 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

Environment distribution file:
line1:ED WITHGUI SYNC WITHLOGFILE ...

line2:ID=0 m1 0 0 10 10 #NbAgent1=50 #Type1=wolf #NbAgent2

#Type2 ...

line3:ID=1 m2 10 0 20 10 50 wolf 2000 sheep 3000 grass

line4:ID=2 m3 0 10 10 20 50 wolf 2000 sheep 3000 grass

line5:ID=3 m4 10 10 20 20 50 wolf 2000 sheep 3000 grass

Agent distribution file:
line1:AD WITHOUTGUI NOSYNC WITHOUTLOGFILE ...

line2:ID=0 m1 0 0 20 20 #NbAgent1=50 #Type1=wolf #NbAgent2

#Type2 ...

line3:ID=1 m2 0 0 20 20 150 wolf 2000 sheep

line4:ID=2 m3 0 0 20 20 6000 sheep

line5:ID=3 m4 0 0 20 20 4000 grass

Figure 4.6: Two examples of configuration files for two different distribution
types. User can configure in the first line all platform parameters, and in
next lines he should define ID number, a name (or IP), environment ranges
and agents that should be created on each machine (in each line).

4.5 Simulation states

Our simulation is divided into different parts, each part is handled by one
machine. Each simulation part manages one environment part with its agents
in case of environment distribution (figure 4.7) and manage a list of agents
in case of agents distribution.

Each simulation has to follow two main states: initial state and running
state. In the initial state, the simulation should use the configuration file to
prepare all platform layers from the communication layer, to the distributed
simulator layer until the application layer. The running state should run in
one of distribution types: environment distribution type or agents distribu-
tion type. It can run also with one of three available synchronization policies:
strong, time window and no synchronization.

4.5.1 Initializing state

The first step, which has to be done by the user, is to define the configuration
file of the simulation. If the user chooses environment distribution for his
application, the environment must be divided into different parts on different
machines. Whereas in case of agents distribution, the user can divide only

4.5. SIMULATION STATES 65

the list of agents between different machines (as in figure 4.6).
Each machine has a part of the simulation and must be able to communic-

ate with other machines: firstly to exchange information between machines,
secondly to transfer moving agents to other parts (or other machines) and
finally to synchronize with other machines.

Our framework depends on the configuration file to initialize the sim-
ulation. Each machine should get other machines’ IDs and names (or IP
addresses) from the configuration file to establish the communication layer.
Then, each machine can collect the needed information from the configura-
tion file about the local environment and local agents to prepare the suitable
data structures.

In case of environment distribution, each machine reads the positions
ranges on the environment which represent the part of environment that
each machine must manage and the initial agents that exist on that part. In
case of agents distribution, each machine can prepare only the initial agents
list, because the positions range on the environment must be the same on all
machines.

After each machine has initialized the communication layer and the data
structures for the simulation, it can send a zero synchronization message to
other machines to announce that it is ready for the the running state. With
that synchronization, all machines should be able to begin the running state
together.

4.5.2 Running state

After the initialization of all parts in all machines, each machine has to begin
the running loop or what can be called a time step of the simulation. At
the beginning of the time step, each machine can collect information about
neighbouring machines or information about other agents on neighbouring
machines, which are ghost-area information in case of environment distribu-
tion and ghost-agents information in case of agents distribution.

Then, after the simulator has sent and received the necessary information,
the simulator can start by asking each agent about its next interaction. Each
machine has to exchange external interactions with other machines to get a
list of possible interactions. Once we have a list of possible interactions, each
machine can apply this list to its local agents.

After applying the possible interactions and in case of environment dis-
tribution, each machine can transfer any agent that move out from the local
environment part to another part or to another machine. It means that, this
agent want to move from local machine to a neighbouring machine. In this
case, the machine should transfer this agent to its new position on the other

66 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

machine and also it should be able to receive any agent that wants to enter
the local part from other machines too. Whereas, in case of agents distribu-
tion, there are no transferring between machines, as all machines run on the
same positions range.

The final step in the time step is the synchronization. Each machine
has to send a synchronization message to other machines to announce that
it is ready for next time step. The synchronization can be done with three
different policies: strong, time window and no synchronization. After the
synchronization messages all machines should be able to begin the next time
step.

4.6 Communication protocols

Our platform has been developed with three synchronization policies: strong
synchronization, time window synchronization and no synchronization policies.
The simulator is distributed on a set of machines. Each machine should
deal with a part of the simulation. Each machine is connected to all other
machines, so the communication topology is a fully connected graph. The
distributed simulator can be run in one of the three available synchronization
policies.

Figure 4.7 shows 4 machines that execute a distributed agent-based simu-
lation with the environment distribution approach. Each machine consists of:
local simulation, communication unit and part of the environment with its
agents. Local simulation is a top-manager layer in each machine, which man-
ages all tasks: from interactions between agents, receiving information from
neighbouring machines and local visualization. Communication unit man-
ages the connections between machines to exchange messages and informs
local simulation about other machines’ time steps (TSs).

In case of strong synchronization, each machine follows 11 main stages in
each time step:

1. First, it should send the necessary information to all neighbouring ma-
chines about the environment state near them. In this example (envir-
onment distribution), it can send ghost areas to other machines.

2. Then, it waits for a new information from neighbours to inform local
agents about other parts of environments (or ghost area).

3. After each machine has received its necessary information, it can ask
local agents about their next desired interactions.

4.6. COMMUNICATION PROTOCOLS 67

Communication
Unit

E
n

vi
ro

n
m

en
t Agents

L
is

t
o

f
In

te
ra

c t
io

n
s Int1

...

Int2

Int3

...

Local Simulation

Visualization

Extern
Inter

1

2

3

6

4

5

9

Machine1

...
..
.

Machine2

...
..
.

Machine4

...
..
.

Machine3

7

811

10

1) & 2) Send & receive
information
3) Get list of interactions
4) & 5) Send & receive external
interactions
6) Apply list of interactions
7) &)8 Transfer & receive
moving agents
9) Draw local environment
10) & 11) Send & receive Sync
messages

Figure 4.7: Description of a distributed agent-based simulation on 4 machines
with environment distribution approach, each machine consists of: local sim-
ulation, communication unit and part of the environment with its agents. In
strong synchronization: all steps (from 1 to 11) should be followed, whereas
in flexible synchronization: receiving steps (2, 5, 8 and 11) could be skipped
to avoid communication delays.

4. Then, it can send the external interactions, which are interactions
between agents from different machines, to its destination machine for
getting the acceptance.

5. Also, each machine receives external interactions from other machines
and sends acceptances of possible ones.

68 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

6. After that, each machine can apply the list of possible interactions on
local agents.

7. Then and only in case of environment distribution, each machine should
search and then transfer the local agent that wants to go out of the local
environment part to another environment part or to another machine.
That, if this agent has a new position out of the local environment part.

8. Each machine can receive new transferred agents from other machines.

9. Then, each machine draws its local environment with its agents.

10. After that, each machine sends synchronization messages to all other
machines to inform that it is ready for the next time step.

11. Finally, each machine should wait to receive also the synchronization
messages from all other machines to be sure that all these machines are
ready for the next time step.

Whereas in cases of the other two policies, the 11 steps can be modified to
avoid any wait in the loop. To understand more the time step in one machine,
The figure 4.8 illustrates the process through UML sequence diagram.

4.7 Synchronization algorithms

To illustrate the main execution loop for each synchronization policy, we
have sketched their algorithms: algorithm 1 for strong synchronization and
algorithm 2 for two flexible synchronizations: time window synchronization
and no synchronization policies.

The three synchronization policies have similar communication protocols
with small differences. Algorithm 1 shows the states of one machine when
it is running in strong synchronization (SS) policy. Strong synchronization
algorithm has in each communication state a notification, which is a kind
of replying or acceptance from other machines. Especially for last state of
communication, all machines should be synchronized for next time step, and
they are suspended until other machines are ready for it. That mean, no
machine can swap to next time step until all other machines are ready to do
it.

Algorithm 2 shows the two other mechanisms: time window (TW) and
no synchronization (NS) policies. In this algorithm, there are no notification
for any communications states, except the last state which is for the next
time step. For TW policy, each machine sends a notification of its current

4.7. SYNCHRONIZATION ALGORITHMS 69

 1) Local-Interaction

 2) Local-Apply

 Distributed-Simulation

1) Local Interaction

2) Local Apply

Figure 4.8: UML sequence diagram of local machine operations for one time
step. First, each machine should send and receive ghost area information.
Then, each machine should get interactions from its agents and divide them
into two lists: external list and internal list. After that, each machine should
send and receive external lists through the communication unit to and from
other machines. Each machine can send and receive transferred agents, and
then it can apply the list of possible interactions. Finally, each machine draw
its local part and send synchronization messages to other machines.

time step, and it checks if it has permission for next time step. Which is in
our case, the difference between the local machine’s time step and slowest
machine’s time step, that is recorded, must be less than a W steps. W is a
number of steps which can be defined by the user. Whereas, in case of NS
policy, machines send only a notification for next time step and then begin
of it directly. Thus, it is similar to TW policy, but with an infinity window
W =∞ of steps.

70 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

1 sync for zero-TS;
2 while Running do
3 exchange information with others;

/* //Local interactions */

4 get interactions from local agents;
5 solve conflicted interactions;
6 get external interactions list;
7 while not all machines are satisfied do
8 send external interactions;
9 receiving from others external interactions;

10 send acceptance For others’ external interactions;
11 receiving from others acceptance;

12 end
/* //Transferring agents */

13 transfer agents with notifications;
14 receive agents from others;

/* //Applying TS’s interactions and drawing */

15 applying interactions;
16 drawing;

/* //Sync with others */

17 receiving messages;
18 sync with others for next TS;

19 end

Algorithm 1: Environment distribution with strong synchronization
policy.

4.8 Example of a time step execution

To explain the dynamic of a simulation time step, we illustrate it with an
example of two machines in case of environment distribution (figure 4.9):

If we consider that we have two environment parts in two different ma-
chines (machine1 and machine2). Each machine has its agents which exist
within its environment part. Each machine begins with the same time step
(TS = 0), which is represented by the first sync-line in figure 4.9.

Then, each machine sends to all other machines the ghost-areas inform-
ation. This information about agents and environment area that near the
edge zone between machines with positions depth of N for example. N is a
depth of ghost area which can be determined by the user or by the largest
vision depth of agents. After that, each machine has to receive the ghost area

4.8. EXAMPLE OF A TIME STEP EXECUTION 71

1 sync for zero-TS to begin together;
2 while Running do
3 send information To Others;
4 receive information if exist without wait;

/* //Local interactions */

5 get interactions from local agents;
6 solve conflicted interactions;
7 get external interactions list;

/* //Without any wait */

8 send external interactions;
9 receiving from others external interactions if exist without wait;

10 add possible interactions to local collection;
/* //Transferring agents */

11 transfer agents without notifications;
12 receive agents from others if exist without wait;

/* //Applying TS’s interactions and drawing */

13 applying interactions;
14 drawing;

/* // W Time-Window-Sync with others */

15 receiving messages;
16 send next TS notification;
17 sync with others on W TS if machine reaches it;

18 end

Algorithm 2: Environment distribution with flexible synchronization
policy

around it from other machine.

Later, each machine asks its agents about their interactions according to
the ghost area information. Then, it divides these interactions into two lists:
internal interactions and external interactions. The external list is related to
the ghost area or interactions with neighbours agents from other machines.
As it is external, we need to ask about agreement from others to this list,
that for avoiding any conflict interactions between machines. As an example,
two wolves want to eat the same sheep in prey predator model.

Then, each machine can send external interactions list and receive also
from other their external interactions list. Later, machines can send and
receive again acceptances for external lists. This loop can still re-run, until
all machines are satisfied for all interactions between their agents.

After that, each machine has a list of possible interactions and it can

72 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

Machine1

Local Interaction:
-ListOfInternal
-ListOfExternal

Local-Deal

Send
GhostArea

Receive
GhostArea

S-external

R-External

send Acceptance

R-Acceptance

Send
Transfered-Agents

Receive Agents
sync

sync

Machine2

Local Interaction:
-ListOfInternal
-ListOfExternal

Local-Deal

Send
GhostArea

Receive
GhostArea

S-external

R-External

send Acceptance

R-Acceptance

Send
Transfered-Agents

Receive Agents

Figure 4.9: A scenario of a time step between two machines in case of envir-
onment distribution.

directly deal with it. It can apply it to its local agents. Then, each machine
checks if there are any agent that wants to move from its part to another
environment part. If it is the case, agents are transferred to the new part or
the new machine. Finally, all machines are ready to sync for next time step.

In case of agents distribution, the scenario of a time step is similar to
environment distribution scenario but with replacing ghost area information
by information about other agents or ghost agents that exist on other ma-
chines. In addition to that, there is no transferring between machines as all
machines are on the same positions range or the same environment, except
if we need to activate a load-balancing mechanism.

4.9. VISUALIZATIONS IN LARGE SCALE SIMULATIONS 73

4.9 Visualizations in large scale simulations

The visualization of large scale simulations in some applications is very im-
portant. It can be done by two approaches: either real time visualization
during the simulation or offline rendering after the simulation.

Figure 4.10: Visualization of large scale simulation between global and local
visions.

The real time visualization approach can be built with two main ways:
1) a local visualization for each machine with the local agents and the local
environment part and 2) a global visualization of all agents and the whole
environment. The first way is the easiest way as each machine has all neces-
sary information that it needs to draw its local part of the simulation. The
second way can be done easily by collecting all necessary information to one
machine, and then draw the whole simulation, but this solution in large scale
simulations can have some limitations. We can optimize the global visualiza-
tion of a large scale simulation by collecting images from each machine with
a user needed resolution and then we can attach all images together in one
global view of the whole simulation.

The second approach, which is rendering a scene after finishing the simu-
lation, needs large amounts of memory to register all necessary information
about agents during all simulation time steps, and that in large scale situ-
ations with billions of agents and with millions of time steps is very difficult.

74 CHAPTER 4. D-MAS: PLATFORM DESCRIPTION

4.10 Summary

In large scale distributed MAS simulations with millions or billions of agents,
the distribution process can play a major role in the performance. Differ-
ent distributions approaches can give us differences in the performance of
some applications. For that, we have proposed two distribution types:agents
distribution and environment distribution. In additions, we have proposed
three synchronization policies to increase the performance in these kinds of
large scale MAS simulations. To study the impact of these distributions
and synchronizations policies on large scale applications, we have created
our platform from the base to make all necessary experiments later (in next
chapters).

In this chapter, we have described our platform for large scale distributed
MAS simulations. We have presented the different components of the plat-
form. We have detailed the machines units, which are: communication unit,
local simulation unit and visualization unit, in the two cases: agents distri-
bution and environment distribution. Then, the main platform layers have
been discussed deeply and different simulation states have been introduced.
After that, we have studied communication protocols and synchronization
algorithms for three main synchronization policies, which are: strong syn-
chronization, time window synchronization and no synchronization policies.
We have explained the time step scenario between two machines to illustrate
the differences between these policies. Finally, we have described our view of
visualization in large scale simulations.

In the next part, we present our experiments with our platform on dif-
ferent application categories, these experiments are divided between two
chapters (5 & 6). In chapter 5, we study the impact of two distributions
types on different applications. Then, we study the three policies with dif-
ferent application categories in chapter 6.

Part III

Experimentations

75

Chapter 5

Effective distribution of
situated multi-agent
simulations

5.1 Introduction

In previous chapters, we have explored different distributions approaches ac-
cording to the main concepts of MAS, which are agents distribution and
environment distribution. We believe that in large scale simulation some ap-
plications can be simulated efficiently in one approach better than the other.
To examine this hypothesis, this chapter focuses on experimentations with
different categories of applications for large scale simulations. Our developed
platform can handle both distributions approaches.

In following sections, we present our experiments on both distribution
types. First, we explore different categories of applications that can make
our hypothesis clear. Then, we explore two classical situated agent-based
models, that we use in our experimentations, which are flocking model and
prey-predator model. We measure the performance of the simulations with
two criteria: execution time and communication costs. Our experiments show
that one applications model is better with one distribution approach than the
other. Then we explore more in details the two distributions approaches with
different experiments.

Figure 5.1 shows our simulator on 50 machines that run boids or flocking
behaviour of birds [Reynolds, 1987]. Each machine holds 100000 agents at
the beginning of the simulation, so there are 5 million agents in total.

77

78 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

Figure 5.1: Five million agents on 50 machines for flocking behaviours.

5.2 Distributing MAS simulations efficiently

As we have seen before, we propose two interesting ways to distribute a
simulation, and we believe that each one has some specifications and better
performances on some kind of applications. Each application also may have
some basic properties that determine the best distribution type for it.

Table 5.1 shows a comparison between two applications categories. Dif-
ferent applications can have different features, which come from agents’ fea-
tures themselves. For example, agent’s life-cycle can be short (small number
of time steps) or long during the simulation. Agents can move on small area
or large area, and that can change the load of computations in the simula-
tion. Agents can exist on the whole environment or can be aggregated on a
part of it.

The user should be able to choose the distribution type that is more
suitable for his application according to agents’ features. For example, the
short life-cycle and reproducing could make the agent distribution approach
useless for some applications, because computation can be aggregated in one
machine only. Whereas, the aggregation and the long life-cycle could make
the environment distribution approach useless too for other applications, be-
cause computation can be aggregated in one machine too. For that, one
distribution type can be the best solution for some applications than the

5.2. DISTRIBUTING MAS SIMULATIONS EFFICIENTLY 79

other.

Table 5.1: Applications can be in different categories according to agents’
features.

Agent features Category-1 Category-2 ...
Life-cycle Short Long ...
Movement Small area Large area ...
Positioning Everywhere Aggregation ...

Reproducing Yes No ...

In the following sections, we describe the distribution of two classical
multi-agent applications: flocking behaviour of birds and prey-predator mod-
els. Then, we show with our experiments that one of them is better in one
distribution type, and the other model is better for the other type.

5.2.1 Flocking behaviour model

This application illustrates a steering behaviour that is commonly observed
with birds or fish [Reynolds, 1987], which evolves in groups. In this model,
there is only one kind of agent (e.g. bird), which can move forward with
a group of other nearby agents within its perception range. Normally after
some iterations in this simulation, groups of agents are emerging and after
some times, there is only one big group of birds that moves smoothly together.
On the environment’s view, there is heterogeneous distributions, or some
parts of the sky hold a lot of birds, while others are less filled (see figure 5.2).

In the environment distribution case, we can imagine that the load can be
switched from one machine to another when a group of birds moves from one
environment part to another. In this model, the best solution to distribute
this model should be the agent distribution, so each machine has the same
number of agents (birds) and thus the same computational cost.

Agents in flocking behaviour model

In this model there is only one kind of agent: bird. Each bird has its percep-
tion range which helps to find nearest set of other birds and then flies in the
same direction as this set. Normally, bird try to fly near other agents. But,
it can not fly too close or too far from the centre of that group which is the
nearest set of birds.

At the beginning of the simulation, all birds are initialized and distributed
randomly in the sky or on the whole environment with different directions.

80 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

Figure 5.2: Flocking behaviour model [Reynolds, 1987] (left) and a demo of
4 machines that runs this model (right).

After some iterations, groups of agents are emerging and after some times,
there is only one big group of birds which move smoothly together. Then,
there are no homogeneous distributions in the sky (environment), some parts
of the sky hold a lot of birds, while others are less filled.

Agents’ properties

All birds have similar individual properties like:

1. Vision: birds can see other nearby birds in their perception range.

2. Moving : birds can move or fly with a direction. This flying comes from
the balance of three main rules: cohesion, alignment and separation
(see figure 5.3):

(a) Cohesion: steer towards the average position of nearby birds in
its vision.

(b) Alignment : steer towards average heading of nearby birds in its
vision.

(c) Separation: steer to avoid crowding with nearby birds in its vision.

5.2. DISTRIBUTING MAS SIMULATIONS EFFICIENTLY 81

Cohesion AlignmentSeparation

Figure 5.3: In flocking behaviour model: three main rules create the steering
behaviour [Reynolds, 1987]: cohesion, alignment and separation.

Macroscopic phenomena

The macroscopic phenomena in flocking behaviour is very simple. Initially,
the simulation should create each bird with a random position and a random
direction on the sky. Then, all birds try to get close to other birds in their
perceptions, then and after some iterations some birds should be together in
larger groups. That means, after N time steps most of birds fly together in
one and big group.

5.2.2 Prey-predator model

The second model is more complex than FB model, which is prey-predator
(PP) model or Lotka-Volterra model. This model is a classical MAS model
that uses agents with goals. A predator is an organism that eats another or-
ganism which is the prey. For example of predator and prey, we can simulate
the co-evolution of wolves and sheep. Predators and preys evolve together,
the prey is a part of the predator’s environment, and the predator dies if it
does not get enough food (or preys). Additionally, the predator is a part
of the prey’s environment, and the prey dies if it is eaten by the predator.
The fastest predators in the environment are able to catch food and eat, then
they survive and reproduce to make up more predators. The fastest preys are
able to escape from predators, then they survive and reproduce more preys
to keep the population. The two populations should evolve together to keep
the ecosystem alive.

An example of such model is the wolf-sheep-grass simulation (figure 5.4)
that proposed by Wilensky [Wilensky, 1997], which has been implemented in
our framework for our experimentations. In this example, a wolf-agent tries
to find and eat a sheep-agent, a sheep-agent searches for grass-agents to eat
and grass-agents re-grows at a given rate. Wolves and sheep can have energy

82 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

Wolves
increase

Sheep
decrease

Sheep
increase

Wolves
decrease

Co-evolution

Figure 5.4: Wolf\sheep\grass model as prey-predator ecosystem in Netlogo
[Wilensky, 1997] (left). Wolves and sheep co-evolve together to keep the
ecosystem alive (right).

when they find something to eat, and then they can reproduce themselves.

Agents in prey-predator model

In this model there are three types of agents: wolf, sheep and grass. Some
agents are preys (grass), others are predators (wolves) and the rest are preys
and predators together (sheep).

1. Wolf: has a vision range and an energy to keep it alive and movable
during the simulation. This energy is reduced at each time step, and if
it becomes zero, then this wolf should die or disappear from the system.
Wolf can get more energy by hunting more of its preys which are sheep.
Wolf can produce other wolves at a constant rate (every N TS).

2. Sheep: has also a vision range and an energy that keep agent alive and
movable. As the wolf, this energy is reduced over time and if it is zero,
then the agent dies or disappears. Sheep can get more energy by eating
more grass, and it dies if a wolf hunts it as well. Sheep can produce
other sheep at a constant rate (every M TS).

3. Grass: can grow over time. It should give sheep energy if it has been
eaten by a one of them. As well as others, grass can re-grow at a given

5.2. DISTRIBUTING MAS SIMULATIONS EFFICIENTLY 83

rate (every K TS).

Agents’ properties

Agents have similar and different individual properties like:

1. Move: wolf and sheep can move to reach the food (preys). Grass can
not move.

2. Vision: wolves can see sheep and seek to hunt one of them. Sheep can
see grass and seek to eat them, and it can see wolves and should go
away from them to escape.

3. Eat : wolf and sheep can eat to get more energy.

4. Power : wolf and sheep use energy to move and eat, so they lose energy
over time but they can increase it by hunting more preys.

5. Disappear : wolf dies if its energy is zero. Sheep dies if its energy is
zero too or it is eaten by a wolf. Grass can disappear if it is eaten by
a sheep.

6. Reproduce: wolves and sheep can re-produce themselves at a given rate.
Grass can re-grow after N TS.

Macroscopic phenomena

In normal situation, the number of wolves and the number of sheep can be
inversely proportional in some periods of the simulation and can be directly
proportional in others, or co-evolution of both populations. If the number of
wolves increases, then they can eat more of sheep, and the number of sheep
should decrease (see figure 5.4). Then, the wolves could not find more sheep
to eat, and that leads to decreasing in wolves energies and then decreasing in
the number of wolves. After that, the sheep can increase, because there are
no more wolves that try to eat them, and again the number of wolves should
increase as there are more and more preys to be eaten (see figures 5.4 and
5.5).

Figures 5.6 and 5.7 show the balance between the preys and predators to
keep the ecosystem alive. Sheep and wolves must exist in the model during
the simulation. If we lose all wolves or all sheep, then the model is destroyed.
This is because, if we lose all sheep, then wolves can not find any sheep to
eat, and all wolves should be died. Again, if we lose all wolves, then the
number of sheep could be increased to infinity as there are no predators to

84 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000
Wolves

Sheep

Grass

Time step

N
u

m
b

er
 o

f
ag

en
ts

Figure 5.5: In prey-predator model, the agents number changes over time
by being ups and downs. The numbers of preys and predators increase and
decrease during the simulation as a cosine function.

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000
Sheep Nb.
Grass Nb.

Predator

P
re

y

Figure 5.6: Numbers of preys to predators in the simulation. The number of
grass to sheep and sheep to wolves.

attack them. Thus, all types of agents have to co-evolve to keep the model
alive. For more details about the model, we add the table 5.2 with some
statistical details that we gathered from our experimentations.

These two applications have been chosen because they imply distinct pop-
ulation dynamics. Indeed, in a prey-predator model, preys and predators
can move during the simulation but they are homogeneously distributed over

5.3. EXPERIMENTATIONS MECHANISM 85

0 50 100 150 200

Wolves ages

1

2

3

4

5

6

7

8

9

10

050100150200250300

Sheep ages

Nb of agents

A
g

e
cl

as
s

(f
ro

m
 1

 t
o

10
)

Figure 5.7: Age pyramid in prey-predator model, ages are classified to 10
classes (from 1 to 10): class-1 is the number of new agents and class-10 is
the number of oldest agents.

Table 5.2: Prey-predator model statistics with initial 2500 agents.
Average Min/Max Min/Max Max-age Max-age

life-cycles sheep Nb. wolves Nb. of sheep of wolves
276.24 TS 615/4281 44/1134 221 TS 153 TS

whole the environment. While in the flocking model, even if the distribution
is homogeneous at the beginning of the simulation, flocks rapidly emerge to-
gether. Then and after some iterations, there should be only one main flock
that appears in the simulation. It means that these two applications illus-
trate the trade-off that has to be made while we distribute the load between
machines in a computer network, and the type of distribution can give really
different results.

5.3 Experimentations mechanism

In this section, we evaluate the performance of our distributed simulator
(D-MAS1) on two applications, which are flocking behaviour (FB) and prey-
predator (PP) models, with two distributions: environment distribution and
agents distribution. Most of experiments have been done with different para-
meters like: the environment size, the number of machines and the number

1D-MAS simulator is available at https://sites.google.com/site/omarrihawi/

resources/D-MAS-software

86 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

of agents.
We use two main criteria to measure the performance:

• The execution time: the classical criteria which is mostly used by most
of researchers to measure the performance of any platform. It is the
needed duration time to execute a time step of the simulation. The
performance should be better if this value is lower.

• The communications cost: we use this criteria to study the differences
between machines in communication level. It helps us to quantify the
quality of communications by measuring the numbers and volumes of
messages.

5.4 Experimentations description

Most of the following experiments have been done on homogeneous hard-
ware: 1) with laboratory machines2 and 2) with clusters of grid computing
(Grid5000 3). In these experiments, several initial configurations have been
used:

• We are able to simulate a large scale experiments on 50 machines with
5 million agents (see figure 5.1). But, some experiments are ranging
from 1 up to 16 machines to facilitate the measuring.

• At the beginning of the simulation, the number of agents that is usually
used for prey-predator (PP) model is 5000 agents per machine and for
flocking behaviour (FB) model is 10000 agents per machine. That
means, if we have one experience with 2, 4, 8 and 16 machines, we
use 5000 × 16 = 80000 agents for 16, 8, 4 and 2 machines to make a
reasonable comparison between machines in the same experiment.

• For the agent distribution, agents are divided equally between ma-
chines.

• For the environment distribution, environment is divided equally between
machines as a grid as possible.

• Perceptions of all agents are small with respect to the environment
slices that are used, and the size of ghost areas has been chosen as the
maximum agent perception to avoid any deprivation of any agent.

2Intel-R CoreTM2 Duo CPU E8400 3.00GHz, memory 4GB and 100Mb connection
3Intel Xeon E5620 2.4GHz, memory 16GB and 1Gb connection www.Grid5000.fr

5.5. SCALING THE PLATFORM TO 50 MACHINES 87

9 16 25 50
1

10

100

1000

10000

100000
Execution time

Sync time

Machines Nb

T
im

e
in

 m
ill

is
ec

on
d

s

Figure 5.8: Time step delay and communication delay in prey-predator model
with environment distribution approach.

5.5 Scaling the platform to 50 machines

We have tested a prey-predator (PP) model with initial 250000 agents dis-
tributed on 9, 16, 25 and 50 machines with the environment distribution
approach. Figure 5.8 shows that the execution time is significantly reduced
when more machines are used. In this figure, the first column represents
the whole execution time, while the second one is the synchronization delay.
The figure shows that with a small number of machines, the synchronization
delay is small and the execution time is large as the number of agents is large
too. Whereas, if the number of agents is small and the number of machines
is large (in case of 50 machines), the synchronization delay has to be large
too, but the execution time is small. It is clear that, it is not efficient to
distribute a small number of agents on a large number of machines or a large
number of agents on a small number of machines.

5.6 Efficient distribution of MAS applications

Next experimentations evaluate the performance of our distributed simulator
with two types of distribution: environment distribution and agents distri-
bution, and on two models: flocking and prey-predator.

Figures 5.9 & 5.10 show results for two types of distributions for each
application. Figure 5.9 shows that in flocking model and in case of agents
distribution the performance is better than in case of environment distribu-
tion. Because, in case of environment distribution there could be many large

88 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

0 100 200 300 400 500
0

200000

400000

600000

800000

1000000

1200000

1400000

Environment Distribution

Agents Distribution

Time step

E
xe

cu
tio

n
 t

im
e

m
s.

Figure 5.9: Total execution time of flocking model with two different distri-
bution types. Agent distribution shows better performance than environment
distribution.

0 1000 2000 3000 4000 5000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Agents Distribution

Environment Distribution

Time step

E
xe

cu
tio

n
 T

im
e

in
 m

s.

Figure 5.10: Execution time of prey-predator model with two different dis-
tribution types. Environment distribution shows better performance than
agent distribution. The execution time has a cosine form, because preys and
predators numbers have been changing during the simulation.

groups of birds that fly together and swap between machines. That should
increase the execution time as there is more load of birds on one machine
than others. Whereas, in case of agent distribution we have the same number
of agents on each machine and the execution time should be the same for all.

Figure 5.10 shows that the prey-predator model has a completely oppos-
ite situation than flocking model. The execution time is better in case of

5.7. COMMUNICATION COSTS EVALUATION 89

environment distribution type than agent one, because there are no large
groups of agents on the same environment part and swap between machines
as in flocking model. In prey-predator model, agents can reproduce and die
during the simulation at each time step, for that the execution time looks like
a cosine function as the number of agents is reduced and increased during
the simulation on the same machine.

To summarize, environment distribution type is better for prey-predator
model than agents distribution one, whereas agents distribution type is better
for flocking model than environment one.

5.7 Communication costs evaluation

0 50 100 150 200 250 300 350
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Prey-predator
Flocking behaviour

Time step

M
es

sa
g

es
 s

iz
e

(K
B

)

Figure 5.11: Communication costs of both models with environment distribu-
tion approach. The prey-predator model is more stable in messages volumes.
Whereas, the flocking model is not stable and has some peaks from time to
time.

In this experimentation, we evaluate the volume of exchanged messages
in both applications. We test the flocking and prey-predator models on two
machines with environment distribution approach. Figure 5.11 shows that
the flocking model has important variations in messages volume, while prey-
predator model did not have such peaks and is more stable. These differences
come from agents’ behaviours in both model. In flocking model, we may
have a large number of birds moving from one machine to another. That
means there are bigger messages between machines to transfer these large
group of agents and then more communication costs too. Whereas in prey-
predator model, it is not the case because agents do not have aggregation

90 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

behaviours like in the flocking model, so the model is more stable in the size
of exchanged messages between machines. The figure demonstrates that in
distributed situated-MAS simulations with spatial environments, speed up is
highly related to the dynamic of agents movements and agents models.

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12
Agents Distribution

Environment Distribution

Time step

M
es

sa
g

es
 S

iz
e

in
 M

B

Figure 5.12: Messages volume of flocking simulation with two distribution
approaches. Agent distribution shows more stability than environment dis-
tribution.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16
Agents Distribution
Environment Distribution

Time step

M
es

sa
g

es
 S

iz
e

in
 M

B

Figure 5.13: Messages volume of prey-predator simulation with two distribu-
tion approaches. Environment distribution shows more stability than agent
distribution.

To detail more the flocking behaviour, we test communication costs on
both distribution types, figure 5.12 shows that the communication costs are

5.8. WHEN SHOULD WE USE EACH TYPE OF DISTRIBUTION? 91

larger in agents distribution type than environment one but more stable. This
is because in flocking with agent distribution, the number of agents is fixed
in all machines. Then, the information, which have to be sent between ma-
chines, have the same size. Whereas in environment distribution, some birds
can be together in one big group on a part of the sky or on one machine, and
other machines may have less birds. That should make the communication
cost lower but less stable in environment distribution.

However, in prey-predator model the stability exists in environment dis-
tribution and not in agent distribution (see figure 5.13). This is because in
prey-predator model, there are agents that reproduce and die during the sim-
ulation in the same machine at each time step. Thus in agent distribution,
it can make more (or less) charge of agents in one machine than the others,
and the messages size can be changed during the simulation to look like a
cosine function and that should make it less stable in agent distribution type
than environment one.

5.8 When should we use each type of distri-

bution?

Table 5.3: A comparison between two models with two distribution types.
Agent distribution Environment distribution

PP execution time Not efficient Efficient
FB execution time Efficient Not efficient

PP communication cost Not stable Stable
FB communication cost Stable Not stable

Table 5.3 shows a comparison between the two models (PP & FB) with
two distribution types. Environment distribution type is better in execution
time for prey-predator model than flocking model, whereas agents distribu-
tion type is better for flocking model than prey-predator model.

However, for communication costs, environment distribution is more stable
for prey-predator model than agent distribution, whereas agents distribution
is more stable for flocking model than environment one. To summarize, some
distribution types are more suitable for some applications than others.

To analyse the results in details, we try to extract some general features
from both models, then the user can choose which distribution type is more
suitable for his application type (see table 5.4). In prey-predator model,

92 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

agent’ life-cycle is short (small number of TS) and all agents exist overall
the environment. Whereas in flocking model, it is completely the oppos-
ite situation, agent’ life-cycle is long and agents are aggregated during the
simulation in one place only.

To conclude, the short life-cycle and the reproduction could make the
agent distribution approach a bad solution for prey-predator model, because
computation can be aggregated in one machine only. Whereas, the aggrega-
tion and the long life-cycle could make the environment distribution approach
a bad solution for flocking model, because computation can be aggregated in
one machine only too. For that, the agents distribution is the best solution
for flocking model. Whereas for prey-predator model, it is the opposite.

Table 5.4: Analysis of agent’s features between two models: prey-predator
and flocking.

Agent features Prey-predator Flocking
Life-cycle Short Long
Movement Small area Large area
Positioning Everywhere Aggregation

Reproducing Yes No

5.9 Environment distribution experiments

We have studied in details the environment distribution (ED) with ghost area
approach on prey-predator model. Our experiments have run to measure: the
execution time, the communication cost and the depth of ghost area.

5.9.1 Execution time

Figure 5.14 shows that the execution time reduces significantly when more
machines are used. We have tested prey-predator model with 42000 agents
distributed on 1, 2, 4 ... machines. The figure shows that, with two machines
the performance is six times faster than using only one machine. This is
because, the complexity of interactions between agents in a complex model
like prey-predator model is not linear, even if we have a communication
between two machines. However, if the number of machines is increased, the
communications also between machines will be increased too and we should
not observe such speed-up in the execution time.

5.9. ENVIRONMENT DISTRIBUTION EXPERIMENTS 93

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70
Environment distribution

Nb. of processors

E
xe

cu
tio

n
 t

im
e

in
 S

ec
.

Figure 5.14: Time step calculation delay for prey-predator model with 42000
agents on 1, 2, 4, 8 or 16 machines. More machines can reduce the execution
time, but more extra machines can make it worse, because it can increase
the communication delays.

5.9.2 Communication delay

The figure 5.15 shows that, communications delay is increased when the num-
ber of machines is increased. The first column represents interaction delay,
while the second one is the whole execution time with the communications
delay, which are separated slowly.

1 2 4 8 16
0.1

1

10

100
Total time step
Interactions time

Nb. of Processors

E
xe

cu
tio

n
 t

im
e

in
 S

ec
.

Figure 5.15: A log view of the total time step delay and the interactions
delay.

94 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

5.9.3 Ghost area experiments

In this experiment, we launch 3x3 machines for flocking model with 9, 900,
9000, 90000 and 900000 birds. Birds are flocking between all 9 machines
and with different depths of ghost area: 10, 50 and 100 units, unit is the
size of the smallest agent in the simulation. However, we run the simulation
until 100 units only, because all agents’ visions are less than 100 units. It is
clear that it is not useful to launch the simulation with more than 100 units.
Otherwise, it should make high communication cost for nothing.

Figure 5.16 shows that the delay has increased by increasing the number of
agents. It also shows that ghost area with different depths has the same effect
on the simulation. That can be explained by the communication protocol,
which needs only one message to send all information about edge-zones to
other machines.

10 100 1000 10000 100000 1000000
0

20

40

60

80

100

120
10 Depth

50 Depth

100 Depth

Nb of agents

E
xe

cu
tio

n
T

im
e

in
 S

ec
.

Figure 5.16: Time step with different depths of ghost area. As all necessary
information about ghost area should be sent with one message only, the
simulation with different ghost area depths can have close results.

5.10 Agents distribution experiments

We have seen before that the prey-predator simulation is better in environ-
ment distribution approach than agents distribution one. To explore more
that, figure 5.17 shows an experiment on 4 machines (m1, m2, m3 & m4) for
prey-predator model in both approaches. The initial load for both approaches
has been exactly the same for all machines, then after N time step the load
is calculated in each machine. The figure 5.17 shows that the load between

5.10. AGENTS DISTRIBUTION EXPERIMENTS 95

machines can be changed in case of agents distribution more than environ-
ment distribution. That can affect the balance between machines, as in all
machines there are some agents die and re-produce during the simulation.

M1 M2 M3 M4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Initial case in both

ED-after-N-TS

AD-after-N-TS

Machines

N
b

.
of

 w
ol

ve
s+

sh
ee

p

Figure 5.17: Prey-predator model after N time step between agent distribu-
tion and environment distribution. At the initial state for both approaches,
all machines have the same computational load. After N time step, environ-
ment distribution can keep similar loads between machines. Whereas, agent
distribution can not and some machines have more loads than the others.

The best solution to re-balance the loads between machines is by adding
a load balancing mechanism, to re-load machines with the missing agents at
each N time step. But, even with this solution, the simulation should be
parametrized carefully to avoid high communications.

Figure 5.18 shows experiments on prey-predator model with a load balan-
cing mechanism. At each N time step, this mechanism transfers the mission
numbers of agents between machines to re-load the balance in the simulation.
If the simulation make more balance on the load, then more communications
delays can be produced and that can affect the performance.

Now, we experiment again the prey-predator model with both distribution
approaches on 9 machines, but with a load balancing-mechanisms for agent
distribution. Figure 5.19 shows that environment distribution approach is
better than agent distribution approach in prey-predator model even with
load balancing mechanism. Our explanation for that, the communication
cost of external interactions is higher in agent distribution approach than en-
vironment distribution one. Because in agent distribution, all machines can
have external interactions with all other machines, whereas in environment
distribution each machine can have external interactions with its neighbour-

96 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

0 2000 4000 6000 8000 10000 12000
0

5000

10000

15000

20000

25000
LB-100TS
LB-10TS
LB-2TS
LB-1TS

Time step

C
om

m
u

n
ic

at
io

n
 d

el
ay

s
in

 M
ili

S
ec

.

Figure 5.18: Communication delays in prey-predator model with different
simulations that apply load-balancing at each N time step (LB- N TS).

ing machines only.

0 100 200 300 400 500 600 700 800
100

1000

10000

100000

1000000
AD-1TS AD-2TS

AD-5TS AD-10TS

AD-100TS ED

Time step

E
xe

cu
tio

n
 T

im
e

in
 M

ili
S

ec
.

Figure 5.19: In prey-predator model and even with load balancing mechan-
ism for agent distribution, the environment distribution shows a high per-
formance.

5.11 Summary

In this work, we have proposed two distributions approaches for large scale
situated-MAS simulations: environment distribution and agents distribution.

5.11. SUMMARY 97

We have evaluated them with two different applications, which are the flock-
ing of birds and prey-predator models. In case of environment distribution,
the simulated environment is divided into different partitions on different
machines, and then each partition is allocated on one machine only. During
the simulation, each machine communicates with its neighbouring machines
to collect the needed information about the surrounding areas or ghost areas.
In case of agents distribution, the simulated environment is the same for all
machines and agents are divided into different lists between different ma-
chines. During the simulation, each machine communicates with others to
collect the needed information about other agents or ghost agents which exist
on other machines.

Experimental results show that the proposed distributions types have
better performances in some models than others (table 5.3). For example,
prey-predator model has better performance in the execution time than flock-
ing model when we distribute the environment. Whereas, agents distribution
type is better for flocking model.

To conclude, the user has to chose the distribution type that can be more
suitable for his application according to agents’ features (table 5.1). For
example, if the agent moves in a small area, it is allocated everywhere in
the environment and its life-cycle is short, then the environment distribution
is recommended. Whereas, if the agent life-cycle is long and agents are
aggregated in some parts of the environment, then the agent distribution is
recommended.

In the next chapter, we present the second part of our experimental results
on large scale simulations, which relates to synchronization issues.

98 CHAPTER 5. EFFECTIVE DISTRIBUTION OF MAS

Chapter 6

Relaxing synchronization
constraints in large scale
simulations

6.1 Introduction

To simulate millions or billions of agents and interactions, we have to dis-
tribute our MAS simulator in order to scale it on different machines. A safe
approach is to use a strong synchronization policy, but it implies a high
cost in communications and longer execution times.

However, when we are working with large scale simulation with situated-
MAS applications, the goal is not to observe millions of individual interac-
tions or microscopic level, but to observe properties at macroscopic level. In
some applications, we can even consider that if some agents fail or can not
interact as fast as other agents can, then that should not be critical to the
global simulation outcome. This work presents a first study of synchroniza-
tion costs in performances and the impact of different synchronization policies
on the preservation of emergent macroscopic properties.

This chapter studies the performance costs of several synchronization
policies and their impact on the properties of simulations. We evaluate our
simulator on two situated-MAS applications: prey-predator and capture the
flag. We have studied three synchronization policies for distributed MAS
simulations: strong synchronization, time window synchronization and no
synchronization policies (as detailed in chapters 3 & 4). We have studied
the changing that can be happen in interactions when we switch between
these policies, and we have studied the instability of some application with
different configurations when we relax synchronization constraints.

99

100 CHAPTER 6. RELAXING SYNCHRONIZATIONS

6.2 Time in large scale simulations

The time is the most important notion in our real-life. Time organizes all
events that occur from the past through the present to the future. Without
Time, all events would be merged together and there will not be a law for
the occurrence of the real-life stuffs.

As we mentioned before, there are several notions of time: the user time
(or real time) and the simulated time (or time step). Time step (TS) is a set
of small durations used to produce evolutions in a simulation.

In MAS simulations, a common implementation to enable the simulation
dynamic is to query all agents for their current action and to apply this set
of actions. This round of talk defines a time step (TS) in the simulation.
Normally, the simulation must prevent any conflict between two or more
actions in any TS. For example, in the prey-predator applications, if two
predators try to attack the same prey in the same TS, a rule has to be given
to define the outcome of such conflicting interaction.

In centralized MAS simulations, there is only one simulation time step
that organize agents evaluations and that allows them to interact in a given
period. In distributed simulations, there is one logical clock per machine
and the needed time to handle a TS is not the same on all machines. In
order to guaranty causality on all machines, we have to synchronize local
time step within all machines. However, several policies to handle time step
synchronizations have been proposed in chapter 3.

The question that we are interested in this work is whether synchroniz-
ation constraints can be relaxed without impacting the simulation outcome.
Indeed, the balance between communication costs, performances and reliab-
ility is dependent on the application that is implemented. For example, if a
simulation is used to generate an animation with a large number of agents, it
should not be so important if some agents fail to interact, or if they can not
interact as fast as other agents. However, in other applications, like urban
traffic simulations, we need reproducibility and reliability to ensure that all
interactions between agents are fulfilled.

6.3 Synchronization policies

The main issue in distributed systems is the time management between
machines [Scerri et al., 2010; Siebert et al., 2010]. There are mainly two
synchronization approaches in distributed systems: conservative (or syn-
chronous) and optimistic (or asynchronous) synchronizations [Logan and
Theodoropoulos, 2001; Gupta et al., 2007; Fujimoto, 2000].

6.3. SYNCHRONIZATION POLICIES 101

However, and as we mentioned in chapter 3, we have explored three syn-
chronization policies for distributed MAS simulations [Rihawi et al., 2013c]:
Strong synchronization (SS), time window synchronization (TW) and No
synchronization (NS) policies.

6.3.1 Strong synchronization policy

In SS policy, all machines are synchronized together in such a way that all
local clocks are running at the same pace. Thus, the distributed simulator
guaranty that all agents execute the same number of actions. This policy
is similar to centralized approach in outcomes, because all machines have to
progress together, and then all agents have the same chance to interact.

To implement SS policy, more messages have to be exchanged between
machines, and then communications costs are increased. This kind of con-
servative approach strictly avoid causality errors, but it can produce commu-
nication delays. Thus, the disadvantage of this policy is that all machines
have to communicate a lot to progress one time step only, even if there are
some time steps without external interactions between agents from different
machines. This could be the reason for higher and useless communication
costs.

6.3.2 Time window synchronization policy

In TW policy, machines can progress in the simulation with small and limited
number of time steps. Thus, a W time window defines the worst spread in
time steps that can happen between the slowest and fastest machines. With
this window permission, machines can avoid some delays of strong synchron-
ization, but we have to check that this flexibility do not affect macroscopic
behaviours outcome.

However, with this approach of course we can have situations where agents
in different time steps can interact. These situations can be ignored in large
scale simulations if the impact of time incoherency in some interactions is
negligible to the high volume of interactions in the whole system. This is a
strong hypothesis that is studied through the two applications in this chapter.

6.3.3 No synchronization policy

In NS policy, machines can simply drop the synchronization. It can be seen
as a variation of the time window policy with an infinite window size. This
approach uses the available speed of all machines, because all machines can
be free from all constraints to progress alone in the simulation independently.

102 CHAPTER 6. RELAXING SYNCHRONIZATIONS

The advantage of this policy is that we can gain the maximum speed in all
machines, because there are no useless communications between machines.

However, with this policy the disadvantage is that some machines are
unable to get the same outcomes as in the centralized approach, because
not all machines progress together at the same pace, and then some agents
have not the same chance to interact as others. That can be the reason to
lose the macroscopic behaviour in some applications, and that can make the
simulation useless. We will see later in experiments that this policy is not
fitted for all applications.

To conclude, we have presented the three synchronization policies that are
used in following experiments. With strong synchronization, all machines
guaranty the correct execution for all parts of the simulation but additional
messages have to be exchanged and induce more delays for each time step.
Whereas, with other approaches machines progress independently with a
relaxed synchronization.

The problematic studied is: whether we are able to keep macroscopic be-
haviours emergence when relaxing synchronization constraints. The question
is: can we gain performance by reducing synchronization costs in some kind
of applications?

6.4 Experiments on two extrema models

In our experiments, we choose two applications that have been implemented
and benchmarked to quantify the impact of the three proposed synchroniza-
tion policies. It seems obvious that time inconsistencies do not have the same
effect in all applications. For example, the simple boids application can run
without synchronization and still produce the emerging flocking behaviour.
Thus, we want to determine with the following experimentations the impact
of synchronization policies on the outcome of the simulation, more precisely
on the conservation of the expected macroscopic behaviour.

To study synchronization policies impacts, we have implemented two ap-
plications. One is extremely affected by changing the synchronization policy,
while the other is not.

6.4.1 Prey-predator model

Prey-predator (PP) model or Lotka-Volterra model is a classical multi-agent
application that involve two kind of agents, preys and predators. Both kinds
reproduce themselves at a given pace, and predators seek and eat preys. If

6.4. EXPERIMENTS ON TWO EXTREMA MODELS 103

a predator do not find preys quickly enough, it can die of starvation. This
application illustrates population co-evolution in a simplified ecosystem. An
example of such model is the wolf-sheep simulation proposed by Wilensky
[Wilensky, 1997], which we have implemented in our testbed. We have de-
tailed this model in the previous chapter.

6.4.2 Capture the flag model

This model has been build to illustrate the fact that if a simulation outcome
relies on timing issues, like population growth speed, then synchronization
policies can introduce a bias. To achieve this goal, we propose the use of a
simplified Capture The Flag (CTF) application with two competing popula-
tions or two teams. For each team, we have two kind of agents: flag agents
which produce new attackers at a given rate, and attacker agents which pro-
tect their flags or attack the other team (flags or attackers).

The attack action is simple: if an attacker agent from one team detects
another agent from different team (attacker or flag), then it tries to reach
that agent to destroy it and simply both agents die.

To enhance the stability of this model, we add defence behaviour in at-
tacker agents to protect their flags. This ability can be done by observing the
number of team attackers around a team flag. If this number is small (less
than N for example), then the attacker agents have to flock around that flag
to protect it from the other enemy team.

Agents in capture the flag model

In this model, there are two types of agents: flag and attacker which can
belong to different teams like: red and blue teams (see figure 6.1):

1. Attacker: this agent has a vision range and can move. It can defend
team flags or attack any enemy agent which is an attacker or a flag
from another team. If it finds an attacker from the enemy team, then
it should seek to its position and destroy it (both agents die). If this
agent find other team flags, then it can seek to its position and destroy
it too.

2. Flag: this agent can not move and can generate more attackers at a
given rate. This agent dies if an attacker from different team attacks
it.

104 CHAPTER 6. RELAXING SYNCHRONIZATIONS

Figure 6.1: Two teams in capture the flag model, agents can be: flags or
attackers. The first team, that loses all its flags, is the loser.

Agents’ properties

Agents have similar and different individual properties like:

1. Move: attacker can move to defend its flags or attack other agents from
other teams (flags or attackers). Flags can not move.

2. Vision: attacker can see other agents around it. Flags can not.

3. Attack : attacker can attack other agents. Flags can not.

4. Defence: attacker can use its vision to check if there are enough team’s
attackers around the team’s flag, if it is not the case then it flies around
it to protect it from enemies.

5. Disappear : attacker disappears if it attacks other agents from another
team, or if it is attacked by another attacker from another team. Flag
should disappear if it is attacked by an enemy attacker from other
teams.

6. Produce: Flag generates new attackers at a given rate.

6.5. EXPERIMENTS ON SYNCHRONIZATION POLICIES 105

Macroscopic phenomena

The macroscopic phenomena in this model is very simple. With the same
number of flags for each team, we should have a balance between all teams
during the simulation. All flags must be alive and they can produce more
attackers. If one team lose all its flags, then it should lose all its attackers
too, and then the game is over. The idea of this model is that: if all teams
have the same number of flags then the balance must exist between teams
and the model is stable. Otherwise, the simulation can not keep in progress
and it becomes unstable.

In both models, the macroscopic behaviour is considered as a stability
measure of the model. For Prey-Predator (PP) model, the stability is to
keep all populations in co-evolution during the simulation. That mean in all
time steps, we should have wolves and sheep in the simulation, because if we
lose one of these types of agents, the model is destroyed. For Capture The
Flag (CTF) model, the stability is to keep all flags of all teams alive so they
can generate more and more attackers. If one team loses its flags, then its
agents should disappear, and the other team should win.

6.5 Experiments on synchronization policies

We have executed our experimentations on similar machines (similar hard-
ware). Most experimentations have run until 2 million time steps and the
only parameter modified is the time window size to relax the synchronization.
We have started with a time window W = 0 (SS policy), then 10, 100, 1000,
10000, 100000 and ∞ or NS policy. All experiments run with environment
distribution approach, because prey-predator model is more fitted for this
approach than the other (as we have seen in the previous chapter).

Figure 6.2 shows that NS policy always gains the maximum speed in prey-
predator model. This is because, it is free from all communication delays.
But, in other application like CTF, it can be unstable in case of NS policy
because one of the population could disappear.

Table 6.1 shows results of stability of both models. The prey-predator
model stay stable for a long time (until 2 million TS) for all experimentations.
The co-evolution of preys and predators has been preserved until we reach
2 million time steps, even without any synchronization. However, in this
model the life-cycle of agents is 300 time step only as we have seen in the
previous chapter. Thus, for more than 300 time step (until 2 million TS)
the model should reproduce the same behaviour, and the wolves and sheep

106 CHAPTER 6. RELAXING SYNCHRONIZATIONS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7
SS policy

NS policy

TW policy

Time step

E
xe

cu
tio

n
 t

im
e

in
 H

ou
rs

Figure 6.2: In prey-predator model, the evaluation of execution time shows
that NS policy always gives the maximum speed and it can preserve the
macroscopic behaviour. SS policy has more delays in each time step, because
it has more communications in each time step.

should co-evaluate to ∞ TS. In other words, this application is stable for
all synchronization policies, stable means here that all populations still exist
and co-evaluate in the model. Whereas, CTF model in some cases is not
stable after N TS.

Table 6.1: Summary table with results for two models with three synchron-
ization policies until 2 million TS. Prey-predator model can stay stable for
a long time with all policies. Whereas, the capture the flag model could not
be stable after N TS.

SS policy TW policy NS policy
PP model Stable Stable Stable
CTF model Stable Stable less N TS Unstable

6.5.1 The gain from relaxing synchronization

Figure 6.3 shows that with large number of agents (large scale) we can
gain more and more from relaxing the synchronization. With prey-predator
model, if we increase the number of agents, we get more gain from NS policy.

In the following sections, we examine the impact on the interactions between
agents on the stable model (PP model), and see how interactions can be

6.5. EXPERIMENTS ON SYNCHRONIZATION POLICIES 107

22500 45000 90000 180000
0

20000

40000

60000

80000

100000

120000
SS policy

NS policy

Gain from NS policy

Agents Nb.

E
xe

cu
tio

n
 t

im
e

in
 M

ili
S

ec
.

Figure 6.3: The gain from NS policy with different number of agents, with
high number of agents we gain more than 20 seconds in each time step as
average.

changed when we change the synchronization policies. Then, we study the
instability of CTF model in details through a bias configuration.

6.5.2 Policies impact on interactions

External interactions in PP model

This experimentation study the External Interactions (EI), which are inter-
actions between agents from different machines. It is clear that, when we use
different synchronization policies, the exchanged information between ma-
chines can be affected and then the probability of EI occurrence should be
affected too.

We test different time window sizes: from 0 (SS), 2, 100 and until NS
or ∞ and each test was until 100000 TS. Figure 6.4 shows the numbers of
EI, which are executed in the prey-predator model with different policies for
5000 agents of sheep, wolves and grasses between two machines. Results
show that for strong synchronization (SS) policy we have a lot of EI, this
is normal because the information about agents can be sent and received
between machines safely. But, for no synchronization (NS) or Time window
(TW) policies the external interactions are reduced significantly less than the
SS policy, even if we have small size of TW like W=2 or 1 time step only.

Our explanation of that, even if we choose one TS only as window per-
mission, then machines can advance in TS for one step only. Then, the
information about agents can be sent from machines to another, but it may

108 CHAPTER 6. RELAXING SYNCHRONIZATIONS

1 10 100 1000 10000 100000
1

10

100

1000

10000
SS=0TS

NS=∞

WT=2TS

WT=100TS

Time step

E
xt

er
n

al
 in

te
ra

tio
n

s

Figure 6.4: The external interactions with different synchronization polices
in prey-predator model. SS policy has the highest number of external interac-
tions because all machines progress together during the simulation. Whereas,
TW policy has a small number of interactions, even with a W window per-
mission of TW policy is only one time step.

not be received from others. Because machines can advance in the simulation
even in one TS, then the number of external interactions becomes small.

Invalid time step interactions in PP model

In this test, we study the interactions on prey-predator model, when machines
are not on strong synchronization. We define Invalid-TS Interactions (ITSI):
as an interaction between two agents with different time step (TS) from two
different machines or on the same machine. For example, two agents from
two different machines which are not on the same TS if one machine has been
faster than the other in simulation progress.

Figures 6.5, 6.6 and 6.7 show that the percentage of ITSI is increased
when the W window permission of TW policy is increased too. However,
the percentage of ITSI is less than 0.4 from the total number of interactions.
In cases of 4 (or 8) machines, we have a double percentage than 2 machines
only. In fact, in case of 2 machines we have two edge zones that allow agents
to swap between machines. Whereas, in cases of 4 (or 8) machines we have
4 edge zones that allow agents to swap between machines. In other words,
agents can swap between machines more in cases of 4 (or 8) machines than in
case of 2 machines only, for that ITSI is double in case of 4 (or 8) machines.

6.5. EXPERIMENTS ON SYNCHRONIZATION POLICIES 109

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
2M-TW policy

2M-NS policy

4M-NS policy

4M-TW policy

Time step

In
va

lid
In

te
ra

ct
io

n
s/

T
ot

al

Figure 6.5: Invalid-TS Interactions between 2 and 4 machines in prey-
predator model. The percentage of these interactions is higher in case of
NS policy. In cases of 4 machines, we have a double percentage than 2 ma-
chines only. This is because, agents have 2 edge-zones only to swap in case
of 2 machines and 4 edge-zones to swap in case of 4 machines.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
NS policy

TW-15TS policy

TW-3TS policy

TW-1TS policy

SS policy

Time step

In
va

lid
In

te
ra

ct
io

n
/T

ot
al

Figure 6.6: Invalid-TS Interactions between 4 machines in prey-predator
model. The percentage of these interactions is increased when the W window
permission of TW policy is increased.

110 CHAPTER 6. RELAXING SYNCHRONIZATIONS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SS policy

TW-1TS policy

TW-2TS policy

TW-15TS policy

NS policy

Time step

In
va

lid
In

te
ra

ct
io

n
s/

T
ot

al

Figure 6.7: Invalid-TS Interactions between 8 machines in prey-predator
model. In case of 8 or 4 machines (figure 6.6) we have the same percentage
of these interactions. This is because, in both situations agents have 4 edge-
zones to swap between machines.

Table 6.2: Capture the flag model: 20 flags per machine. Experiments show
that for a W window permission of TW policy more than N time step the
model could not be stable.

W window time 0 10 100..10000 100000 ∞
CTF model Stable Stable Stables Unstable Unstable

6.5.3 Instability of capture the flag model

As the previous experimentations, we have run capture the flag model with
the same machines context for 2 million time steps and with a time window
size evolving from 0 to infinity. The first initial configuration that has been
explored was defined with one flag per machine. This configuration, nearly
like the PP model, is stable in all synchronization policies. If we chose another
initial configuration, like 20 flags per machine, we can get different results.
Table 6.2 shows that, for different sizes of time window bigger than 100000 the
model could not be stable, stable means here that the flags of all populations
are still alive.

To study the instability of capture the flag model we have defined another
initial configuration. It evaluates the degradation that can be induced by
synchronization policies when computational loads are not the same on all
machines. This configuration allows simulation to be run on three machines:

6.5. EXPERIMENTS ON SYNCHRONIZATION POLICIES 111

Figure 6.8: A bias configuration of capture the flag model. Two blue flags in
one machine and two red flags in two different machines.

0 2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Two Machines vs One Machine

Flags Nb.

C
T

S

Figure 6.9: In the same bias configuration of capture the flag model, Critical
Time Step (CTS) decreases if the number of flags increases.

112 CHAPTER 6. RELAXING SYNCHRONIZATIONS

0 10000 20000 30000 40000 50000 60000
0

100000

200000

300000

400000

500000

600000
2 B vs 1+1 R Flags

10 B vs 5+5 R Flags

20 B vs 10+10 R Flags

Window time step

T
S

D

Figure 6.10: In the same bias configuration of capture the flag model,
TimeStep-to-Destroy (TSD) decreases if the W window size permission in-
creases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
2 B vs 1+1 R Flags
10 B vs 5+5 R Flags
20 B vs 10+10 R Flags

WTS/CTS

T
S

D
/C

T
S

Figure 6.11: Same results of figure 6.10 after adjusting each curve to its CTS.
That can help to measure different curves with a common scale.

6.5. EXPERIMENTS ON SYNCHRONIZATION POLICIES 113

the first one contains all flags from the first population (or team) and the
two other machines contain only half flags of the second population in each
(Figure 6.8). The aim is to have a more load on one machine than the others,
and then it produces an unstable model. The second population (or team)
should always win, because its attacker production should be higher as it
is allocated on two machines. With this configuration, we ensure that the
model is unstable. But, the convergence should be faster with more flexible
synchronization policies, and fastest in case of NS policy.

If we define the Critical Time Step (CTS) as the necessary time step (TS)
to completely destroy the model if NS policy has been used. In capture the
flag model, if all flags of one population have disappeared, then the model
is destroyed. Figure 6.9 shows the relation between the number of flags and
the CTS, more flags mean less CTS to completely destroy the model. This
CTS can depend on the initial configuration of the model, like the number
of flags F and communication delays between machines.

As in figure 6.9, the CTS decreases by increasing the number of flags
which have been used, CTS = α1

F
, α1 is a constant that depends on the

initial configuration and it depends also on the machines which have been
used during the simulation.

Now, if we run our simulation on the same configuration but with another
policy which is TW policy, and with time window sizes from 0 to infinity. We
can calculate the number of TS, that the simulation needs to stay in progress
until it is completely destroyed with that time window. Then, we define the
TimeStep-to-Destroy (TSD): the necessary TS to completely destroy the
model if W window permission of TW policy has been used.

Figure 6.10 shows TSD test. Each configuration has a curve with different
scale, but all are reduced by increasing the W window permission of TW
policy. However, it is difficult to measure different initial configurations with
different number of flags as each curve has not the same scale. For that, we
normalize each curve to its CTS because each configuration has its CTS.

Figure 6.11 visualizes results after adjusting each measured curve, which
are on different scales, to a common scale which is its CTS. This Figure 6.11
shows that the TimeStep-to-Destroy (TSD) decreases if the W time window
increases, and according to the figure 6.11: TSD/CTS = α2

W/CTS
, α2 is

constant. Then TSD = α2×CTS2

W
. Again, each curve has more flags, should be

destroyed with smaller TS, we can replace CTS = α1

F
. Then TSD =

α2×α1
F

2

W
.

Then TSD =
α2×α2

1

W×F 2 . Then TSD = α
W×F 2 , α = α2 × α2

1 is constant. That
means, TSD decreases if the number of flags is increased or W time window
is increased too.

Figure 6.11 shows also that for all configurations the model stay stable for

114 CHAPTER 6. RELAXING SYNCHRONIZATIONS

a long time with a small W time window size. According to figure 6.11 and
in all configurations, we can divide each curve into two mainly parts. First
with W time window from 0 to 30% of CTS, the model stay stable for a long
time. So we can give permissions of advancing in time step between different
machines until 30% of its critical time step, and in this part all curves have
a strong effect to the W time window. The second part with W bigger than
30% of CTS, in this part the TSD is decreased slowly according to the W
time window.

6.6 Summary

To simulate millions or billions of interacting agents, we have to distribute
our agent based simulator in order to scale it on network machines. A safe
approach can be by splitting the environment into smaller parts and using
a strong synchronization policy, but it implies a high cost in exchanging
messages and the execution time. This chapter has explored a relaxation of
this constraint to speed up the execution time and has identified applications
where this relaxation do not degrade simulations outcome.

In this chapter, we have experimented the three synchronization policies
in our distributed MAS platform: strong synchronization policy, time window
synchronization policy and no synchronization policy (as detailed in chapters
3 & 4). We study the performance of several synchronization policies and
their impact on the properties of situated applications. We evaluate sim-
ulations on two situated MAS applications: prey-predator and capture the
flag.

Experimentations show that some applications, like prey-predator model,
stay stable with any synchronization policy. Whereas in other models, like
capture the flags model, it can be strongly affected by changing these policies.
We have studied how interactions are changed when we switch the synchron-
ization policies on prey-predator model and we have explored in details the
instability of capture the flags model with relaxing synchronizations when a
bias initial configuration is used.

To conclude, in large scale situated MAS simulations we can run many
applications with high speed execution by relaxing the synchronizations and
keeping the macroscopic behaviour in the same time. Even with critical
applications as capture the flag model, the relaxing synchronization can be
possible with a small number of time window (less than 30% of CTS as figure
6.11).

Part IV

Conclusion & Future works

115

Chapter 7

Conclusion

7.1 Thesis summary

The main goal of this thesis is to study strategies that can be applied to
enable simulations of large scale situated multi-agents systems. This type
of simulations relies on the modelling of interactions that happens between
agents in order to reproduce the emergence of complex phenomena at the
population scale. This approach allows to understand better the modelled
phenomena, but has a cost in term of computation and memory. Thus, to
be able to execute large scale simulations that involve millions of agents and
interactions, it becomes necessary to distribute computations over a computer
network. This thesis has studied several hypothesis to reach such scale and
has led to the implementation of a distributed simulator to experiment these
hypothesis.

To ensure performance gains when we execute such simulations in a dis-
tributed system, it is necessary to take into account specific concepts of
multi-agent simulations, which are agents, environment and population dy-
namics. More specifically than classical ones in distributed systems, which
are computation, data storage and communication costs. Our work presents
several criteria that should be considered to ensure performance gains when
distributing such simulations over a computer network.

Our work relies on different aspects of two large domains: multi-agent
system (MAS) and distributed system. From the MAS point of view this
work has allowed us to provide a large scale multi-agent simulator:

• that is autonomously, because agents can interact and move between
different machines during the simulation.

• that is dynamic, because agents can be added dynamically during the
simulation.

117

118 CHAPTER 7. CONCLUSION

• and it is one block simulation, because each agent can see all other
agents in its perception as in one simulation.

From the distributed system point of view this work has allowed us to
build a distributed large scale simulation:

• that is initially load balanced, because there is an ability to configure
the simulation at the beginning for each application to balance initially
the load.

• that is high-scalable because there is an ability to scale it into high
number of distributed machines.

• and flexible, because there is an ability to relax the synchronization
and optimize the performance.

In this thesis, we describe our view of MAS concepts and the importance
of different distribution approaches. These different distributions can give us
better performance in some applications than others. We propose two main
distribution types: agents distribution and environment distribution. Agents
distribution depends on non spatial criteria to distribute agents between dif-
ferent machines. Whereas, environment distribution relies precisely on spatial
properties to divide the computation.

In some applications, the environment is more important than agents and
can play a major role in the simulation. Thus, environment distribution gives
us better performance in execution time than other approaches. Whereas in
other applications, agents can be the most important aspect, and a distribu-
tion related to agents (or agents distribution) can give us better performance
in execution time.

Distributing simulations over a computer network raises some problems in
time management between different machines, which can be handled through
a strong synchronization between machines. However, the goal of a large
scale MAS simulation is not to observe millions of individual interactions or
microscopic level, but to observe properties at macroscopic level. In other
words, if we have a large scale situated-MAS simulation, and some agents
fail to interact, that should not affect the global behaviour of the system.
Using a safe approach (as strong synchronization policy) in large scale MAS
simulations can be possible, but it implies a high cost in exchanged messages
and then in execution time too. This work has explored a relaxation of this
constraint to speed up execution time and has identified different applica-
tions where this flexibility do not degrade simulations outcome. In addition

7.1. THESIS SUMMARY 119

to different distribution types, our simulator has three main synchroniza-
tion policies: strong synchronization, time window synchronization and no
synchronization policies.

In this thesis, we have detailed machine units for different distribution
types. The main platform layers were discussed and different simulation
states were introduced. We have studied different communication protocols
for different three main synchronization policies. We have explained the time
step between two machines to clarify the work protocol of our simulator. We
have implemented the proposed protocol to allow machines to communic-
ate between each other for building a large scale distributed MAS simula-
tion. The main technical problem to be resolved was interactions between
two agents or more from different machines, which has been solved with an
agreement protocol.

In the experiments, we have evaluated the two types of distributions with
two different categories of applications, which are the flocking of birds and
prey-predator models. In case of environment distribution, the simulated
environment is divided into different partitions on different machines (one
partition on one machine). During the simulation, each machine communic-
ates with its neighbouring machines to collect the needed information about
the neighbouring areas or ghost areas. In case of agents distribution, the sim-
ulated environment is the same for all machines and agents should be divided
into different lists between different machines. During the simulation, each
machine should communicate with others to collect the needed information
about other agents or ghost agents which exist on other machines.

Experimental results show that the proposed distributions approaches
have better performances in some models than others. For example, prey-
predator model has better performance in execution time than flocking model
when we distribute it by environment distribution approach. Whereas, agents
distribution approach is better for flocking model.

Other experiments have been done on three synchronization policies for
distributed MAS simulations: strong synchronization, time window synchron-
ization and no synchronization policies. Experimentations show that some
applications, like prey-predator model, stay stable with any synchronization
policy. Whereas in other models, like capture the flags, it can be strongly
affected by changing these policies. We have studied how interactions can
be changed when we switch the synchronization policies on prey predator
model, and we have explored in details the instability of capture the flags
model when a biased initial configuration is used.

The main thesis contributions are:

• the exploration of the main properties of multi-agent systems and dis-

120 CHAPTER 7. CONCLUSION

tributed systems domains,

• the study of different distribution approaches for large scale MAS sim-
ulations,

• the exploration of different synchronization policies,

• and the experimentation of large scale situated applications with dif-
ferent configurations.

In our point of view, we have achieved our objectives because:

1. we successfully built an efficient distributed simulator that was specially
designed for large scale situated agent-based simulations,

2. our simulator can be configured and optimized to run in any peer-to-
peer computer network,

3. agent models that are written in JAVA can be integrated easily in our
simulator.

7.2 Future works

Even if our actual simulator implementation provides an interesting frame-
work, there are still open issues that should be addressed:

• we can investigate more the two different distribution approaches and
we can in the future merge or mix the two approaches in one hybrid
approach that can be a good solution for other categories of applica-
tions. Moreover, we can experiment other applications with different
synchronization policies to illustrate their impacts and see if the res-
ults presented in this work are suitable for them. We can explore more
the external interactions and the agreement protocol that can help non
acting agents to be re-asked for another valid interactions. We can also
increase the scalability of our framework. We currently reach near 5
million of agents and we plan to distribute 10 million of agents in less
than one minute for one time step.

• we can explore a real large scale application: as an emergency scenario
of tsunami-town simulation which can be calculated faster with no syn-
chronization policy than strong synchronization. Even, if some agents
fail to interact, but we can get the main macroscopic behaviour, and
we may be able to save more lives in such dangerous situation with no
synchronization policy than strong synchronization.

7.2. FUTURE WORKS 121

• we will try to find other platforms that have similar implementation
in distribution approaches or synchronization policies to make a logical
comparison between our framework with others by re-implementing
the same applications to other platforms and then make the logical
comparison.

• fault tolerance is one important feature in distributed systems that
enables these systems from operating normally in case of failure. Many
techniques can be used for fault tolerance, one of them is the replication
of data or agents in case of multi-agent systems. In large scale situations
this approach can have some limitations and need some specifications.
This can be one of our interesting domains.

• the visualization of large scale simulation can be built with two main
ways: 1) a local visualization for each machine with the local agents
and the local part of the environment and 2) a global visualization
of all agents and whole environment. The first way is the easy way
as each machine has the information that it needs to draw its local
part of the simulation. The second way can be done easily by collect
all necessary information to one machine and draw the whole MAS
simulation, but this solution in large scale simulation can have some
limitations. We can in the future optimize the global visualization of
large scale simulation by collecting images from each machine with a
user needed resolution and then we can attach all images together in
one global view of the whole simulation.

122 CHAPTER 7. CONCLUSION

Annexe A

French chapter

A.1 Introduction

Les systèmes multi-agents sont constitués d’entités autonomes qui inter-
agissent avec leur environnement pour résoudre un objectif collectif [Russell
et al., 1996]. Les domaines d’application de ces systèmes vont de la résolution
distribuée de problèmes à la simulation de phénomènes complexes. Ce type
de simulation offre une granularité fine permettant d’exprimer les compor-
tements à un niveau microscopique, c’est-à-dire individuel, et d’observer des
phénomènes émergents au niveau macroscopique, c’est-à-dire de l’ensemble
de la population. Néanmoins, lorsque le nombre d’agents et d’interactions
augmentent, les ressources nécessaires en terme de puissance de calcul ou de
capacité de stockage deviennent un facteur limitant.

Nous restreignons cette étude à la simulation d’agents situés dans un es-
pace euclidien et dont les interactions ou les échanges de message ne peuvent
se produire que lorsque deux agents sont suffisamment proches. Ce contexte
correspond à la très grande majorité des applications réalisées dans le cadre
de simulation d’agents situés comme la modélisation de traffic routier, d’éco-
systèmes humains ou biologiques ou encore de jeux vidéo.

Si l’on souhaite modéliser des systèmes contenant plusieurs centaine de
milliers ou de millions d’agents, une puissance de calcul et de stockage im-
portante devient nécessaire. Pour atteindre de telles simulations large échelle,
distribuer le simulateur sur un réseau de machines est nécessaire, mais in-
duit des problématiques de répartition de charge, de gestion du temps et de
synchronisation entre les machines et de tolérance aux pannes.

En plus des problèmes de coûts de communication classiques dans le
contexte d’applications distribuées, il faut prendre en compte des aspects
plus spécifiques liés au fait que les agents sont situés dans un environne-

123

124 ANNEXE A. FRENCH CHAPTER

ment. En effet, les dynamiques de déplacement des agents induites par leurs
comportement affecte la répartition de la charge de calcul sur le réseau. Ces
problématiques font l’objet de recherche actives, particulièrement sur la ques-
tion du placement des agents sur un réseau de machines [Miyata and Ishida,
2008], notamment lorsque les agents sont mobiles [Motshegwa and Schroe-
der, 2004]. Dans ce contexte, la gestion du temps et de la synchronisation
sont également des problèmes importants. Plusieurs modèles de synchronisa-
tion ont été proposé, avec une gestion du temps sur les différentes machines
[Scerri et al., 2010] [Siebert et al., 2010], notamment dans le contexte de simu-
lations à événements discrets [Jefferson, 1985]. Cependant, bien que certains
de ces travaux permettent d’assouplir les mécanismes de synchronisation, ils
n’explorent pas le compromis entre reproductibilité et gain de performance.

Le premier aspect de notre travail se concentre sur deux types de réparti-
tion de la charge de calcul : la première basée sur une répartition des agents
en fonction de leur proximité, la seconde répartit les agents indépendam-
ment de leur positionnement dans un objectif d’équilibrage de charge. Nous
évaluons les performances de ces répartitions en les confrontant à des appli-
cations dont les dynamiques de déplacement sont très différentes, ce qui nous
permet d’identifier plusieurs critères devant être pris en compte pour garan-
tir des gains de performance lors de la distribution de simulations d’agents
situés.

Le second aspect de notre travail étudie la problématique de la synchroni-
sation des machines. En effet, à notre connaissance, tous les simulateurs exis-
tants fonctionnent sur la base d’une synchronisation forte entre les machines,
ce qui garantit la causalité temporelle et la cohérence des calculs. Dans cette
thèse, nous remettons en cause cette hypothèse en étudiant la relaxation de
la contrainte de synchronisation. Le fait d’autoriser la progression d’agents
dans différentes temporalités induit des interaction incohérentes, c’est-à-dire
se produisant entre des agents n’appartenant pas au même pas de temps. La
question qui se pose est alors de savoir si ces incohérences induisent une perte
du phénomène émergent de la simulation et si ce n’est pas le cas, d’évaluer
le gain en terme de performance du relâchement de cette contrainte. Il est
d’ailleurs envisageable que pour certaines applications, des erreurs ou échecs
d’interactions entre deux agents ne soient pas critiques pour le résultat global
de la simulation. Afin d’étudier cette problématique, nous proposons deux po-
litiques de synchronisation : la synchronisation forte classique et une forme
de synchronisation reposant sur une fenêtre de temps bornée entre la ma-
chine la plus lente et la machine la plus rapide. Des applications de natures
différentes sont exécutées avec ces différents mécanismes de synchronisation.
Nous étudions dans cette thèse leur coût en performance ainsi que leur im-
pact sur l’émergence des propriétés macroscopiques des simulations. Nous

A.2. ETAT DE L’ART 125

Table A.1 – Principales plateformes de simulation distribuée.

Platforme
Scalabilité

Agents Nœuds Application

Repast 68 billions HPC-32000 cores Triangles (simple)
DMASON 10 millions 64 Boids (simple)
AglobeX 6500 6 (22 cores) Simulation de avions

(simple)
GOLEM 5000 50 Monde de colis (com-

plex)
FLAMEGPU 11000 GPU Foule de piétons
Megaffic 10 millions 16 (192 cores) Simulation de embou-

teillage

nous intéressons particulièrement au seuil critique d’interactions temporelle-
ment invalides qui entrâınent un biais dans le résultat de la simulation.

A.2 Etat de l’art

Il existe déjà plusieurs platformes dans le domaine des simulations réparties :
REPAST [North et al., 2013], FLAME [Kiran et al., 2010], FLAME-GPU [Karma-
kharm et al., 2010], AglobeX [Šǐslák et al., 2009] et D-MASON [Cordasco et al.,
2011] [Cosenza et al., 2011]. Néanmoins, toutes ces plateformes reposent sur
une mechanism de destribution seulment et une politique de synchronisation
(forte). Selon les implémentations, cette synchronisation est gérée au tra-
vers d’un intergiciel, d’un machine virtuelle dédiée ou au travers de mémoire
partagée entre machines virtuelles. Certaines utilisent plutôt une approche
orientée mâıtre/esclave avec synchronisation forte au niveau du mâıtre. Nous
ne pouvions donc pas aisément utiliser l’une d’entre elles pour définir et étu-
dier d’autres formes de synchronisation et distribution. La table A.1 donne
une synthèse des principales caractéristiques de ces plateformes, particuliè-
rement en ce qui concerne la montée en charge.

A.3 Distribuer l’environnement ou les agents

Pour simuler un grand nombre d’agents, nous proposons de distribuer le cal-
cul sur un réseau pour maximiser l’évaluation parallèle des agents. Cette ré-
partition peut s’effectuer de plusieurs manière, mais induit nécessairement des

126 ANNEXE A. FRENCH CHAPTER

0
0

20

10

20

Nœud1

Nœud2
Agents

(0,0)

(0,0)

(20,20)

(20,20)

Nœud1

Nœud2

Agents

(20,20)

zone de bord

Distribuer l'environnement Distribuer les agents

Figure A.1 – Deux types de distribution : l’environnement (gauche) ou les
agents (droit).

coûts de communication et des problématiques de synchronisation. Nous pro-
posons dans cette section trois types de répartition possible qui nous semblent
pertinents pour la simulation d’agents situés : la répartition de l’environne-
ment, la répartition des agents ou une solution hybride exploitant ces deux
types de répartition.

A.3.1 Distribuer les agents

Cette première approche consiste à répartir équitablement les agents sur les
différents nœuds comme l’illustre la figure A.1. Chaque nœuds a la responsa-
bilité d’un ensemble d’agents et les gère sur l’ensemble de l’environnement.
Comme des interactions peuvent se produire entre des agents répartis sur des
nœuds différents, un mécanisme de diffusion de l’état des différents nœuds
doit être instauré pour que le calcul des interactions puisse être réalisé au
sein de chaque nœuds. Ce coût élevé de transmission des états devra être
compensé par un volume de calcul suffisant au niveau de l’évaluation des
comportements des agents.

A.3.2 Distribuer l’environnement

Cette deuxième approche consiste à distribuer l’environnement, ce qui revient
à découper ce dernier en différentes sections, chacune d’entre elles étant affec-
tée à un nœuds. Chaque nœuds a alors la responsabilité d’évaluer les agents
se trouvant dans cette portion de l’environnement comme l’illustre la figure
A.1.

La difficulté avec cette approche concerne la gestion des interactions des

A.3. DISTRIBUER L’ENVIRONNEMENT OU LES AGENTS 127

agents se trouvant aux frontières des sections de l’environnement ainsi que la
mobilité des agents entre les nœuds. En effet, lorsqu’un agent sort de l’espace
géré par le nœuds l’hébergeant, il doit être transféré sur un autre nœuds.

0 100 200
 0

100

200

Nœud1 Nœud2

Nœud3 Nœud4

a.Zone non redondante

0 50 150

50 150 200

b.Zone redondante c.Zone fantôme

zone
dupliqué

zone
fantôme

Nœud1

Nœud2

Nœud1

Nœud2

Figure A.2 – Zone redondante, zone non redondante et zone fantôme.

Plusieurs approches sont envisageables pour effectuer les échanges d’infor-
mations entre les nœuds détenant des sections adjacentes de l’environnement
initial :

1. une zone redondante est une portion de l’environnement qui est gérée
simultanément par deux nœuds. Cette approche nécessite une synchro-
nisation forte des deux nœuds afin que chaque modification effectuée
par l’un des nœuds dans cette zone soit reproduit dans l’autre nœuds
(figure A.2). Il est délicat d’implémenter cette approche sans un coût
prohibitif au niveau des communications pour maintenir la cohérence
de l’ensemble des zones partagées.

2. une zone non redondante est une portion de l’environnement gé-
rée exclusivement par un nœuds. Chaque agent ne peut ainsi appar-
tenir qu’à l’un des nœuds, cependant son comportement peut être dé-
pendant de perceptions dépassant le nœuds courant et nécessiter l’ob-
tention d’informations de nœuds adjacents. Dans le cas d’interactions
conflictuelles, cela implique qu’un message soit envoyé pour la phase
de perception, puis un message pour la vérification de la possibilité de
réalisation de l’interaction.

3. une zone fantôme correspond à une copie d’une partie d’une zone
adjacente. Ce concept est similaire à la notion de donnée fantôme in-
troduite par Isenburg dans [Isenburg et al., 2010]. Au début d’un pas
de simulation, chaque nœuds envoie une copie des agents se trouvant
à proximité de la frontière de la portion d’environnement qu’il gère.

128 ANNEXE A. FRENCH CHAPTER

Après cette étape, chaque nœuds dispose ainsi d’une zone de percep-
tion étendue permettant aux agents proches des frontières de détecter
les agents situés sur d’autres nœuds et de les intégrer ainsi dans leur
prise de décision.

La répartition de l’environnement est sûrement plus pertinente pour les si-
mulations où la répartition des agents est homogène car dans ce cas, la charge
de calcul se trouve spontanément répartie sur les nœuds du réseau.

A.4 Temps et synchronisation

La notion de temps est souvent définie comme un continuum non spatial
dans lequel une succession d’événements se produisent de manière irréversible
[Gold, 2003]. Dans une simulation informatique, plusieurs notions de temps
se superposent : le temps de l’utilisateur (ie. le temps réel) et le temps de
la simulation, qui est modélisé par une succession d’instants de courte durée
permettant de réaliser le déroulement de l’évolution de la simulation (ie.
souvent appelé le déroulement pas de temps). Cette notion de temps a été
définie plus formellement par Lamport [Lamport, 1978], comme une horloge
logique définissant un ordre partiel sur les événements qui se produisent. Une
extension appelée Logic Virtual Time, LVT, a été introduite plus tard par
Jefferson [Jefferson, 1985] dans le cadre des recherches sur les simulateurs à
événements discrets distribués (time warp system).

Une implémentation classique de la notion de temps dans les simulations
multi-agents consiste à définir un tour de parole pour récupérer les actions
que les agents souhaitent effectuer et à les appliquer ensuite. Ce tour de parole
correspond à une étape atomique de progression temporelle dans l’évolution
de la simulation. Nous appellerons ce tour de parole, un pas de temps (PT)
dans la suite de ce chapitre. Dans une simulation centralisée, il n’y a qu’un
pas de temps qui organise les interactions entre l’ensemble des agents dans le
laps de temps fixé. Par contre, dans une simulation répartie, chaque machine
dispose de son propre pas de temps et il devient alors nécessaire de tous
les synchroniser[Scerri et al., 2010] [Siebert et al., 2010]. Pour garantir les
relations de causalité, une synchronisation forte de l’ensemble des pas de
temps est possible mais induit un coût important.

Deux approches ont été proposées dans le contexte des systèmes distri-
bués pour gérer cette synchronisation : les approches conservatives ou syn-
chrones, impliquant une progression simultanée de tous les pas de temps, et
les approches optimistes ou asynchrones[Logan and Theodoropoulos, 2001]
[Fujimoto, 2000], qui permettent à certains pas de temps de progresser plus

A.4. TEMPS ET SYNCHRONISATION 129

rapidement que d’autres, mais en instituant un mécanisme de retour en ar-
rière (rollback) en cas d’incohérence temporelle [Gupta et al., 2007]). Les
approches synchrones constituent la principale approche utilisée dans les
plateformes actuelles de simulation multi-agents distribuées. Les approches
asynchrones permettent de maximiser les performances en augmentant le pa-
rallélisme, mais leur apport s’écroule lorsque de trop nombreux roolbacks se
produisent.

Dans notre travail [Rihawi et al., 2013a], nous étudions deux types de
synchronisation : une politique conservative, appelée synchronisation forte,
et une politique autorisant l’apparition d’incohérences temporelles, appelée
synchronisation flexible. Nous n’avons pas évalué d’approche optimiste car
dans un système multi-agent contenant un très grand nombre d’agents la
gestion de la journalisation de leur état est difficilement réalisable.

A.4.1 Synchronisation Forte

Dans la politique de synchronisation forte (SF), l’ensemble des pas de temps
des différentes machines sont synchronisés à l’issue de chaque tour de parole.
Cela garantit que tous les agents du système exécutent le même nombre d’ac-
tions et qu’ils évoluent dans le même pas de temps. Il n’y a donc pas d’inco-
hérence temporelle possible, c’est-à-dire d’interaction se produisant entre des
agents n’appartenant pas au même pas de temps. L’intérêt de cette approche
est la garantir la causalité, mais cela implique des coûts de communication
important et les performances du système sont limitées par la machine la
plus lente du réseau.

A.4.2 Synchronisation avec une Fenêtre Temporelle

Avec la politique de synchronisation reposant sur une fenêtre temporelle
(SFT), un écart fixe entre le pas de temps de la machine la plus chargée
et celui de la machine la moins chargée est autorisé. Ceci implique que du-
rant la simulation, différentes machines peuvent être dans des pas de temps
différents.

Ainsi, il est possible que des interactions entre des agents n’appartenant
pas au même pas de temps se produisent, ce qui introduit des incohérences
temporelles. C’est l’hypothèse forte que nous faisons dans ce travail et que
nous évaluons par les différentes expérimentations de la section A.9.

Il est important de remarquer que la notion de machine la plus rapide ou
la plus lente n’est pas absolue et qu’elle évolue au cours du temps en fonction
de la charge provoquée par les dynamiques de déplacement ou de génération
et destruction d’agents. Il est ainsi possible pour une fenêtre suffisamment

130 ANNEXE A. FRENCH CHAPTER

large de ne pas atteindre l’écart maximal autorisé par la fenêtre temporelle,
c’est dans ce type de situation que l’apport d’une fenêtre de temps est le plus
sensible.

Finalement, on peut remarquer que si l’on fixe une taille de fenêtre infinie,
on se ramène à un système dans lequel il n’y a plus aucune synchronisation
entre les machines. Cette situation limite au maximum les coûts de commu-
nication et maximise les performances mais n’est évidemment pas exploitable
pour toutes les applications car le nombre d’interactions invalides explosent.

Dans la suite de ce chapitre, la question à laquelle nous donnons des
réponses est la suivante : dans quelle mesure les contraintes de synchronisa-
tion peuvent elles être affaiblies sans impacter significativement les propriétés
observées au niveau global de la simulation.

A.5 Description de la plateforme

Pour évaluer les deux types de répartition décrits dans la section précédente,
nous avons développé un simulateur pouvant s’exécuter selon ces deux modes.
Le protocole de communication choisi est un graphe totalement connecté
permettant à chaque nœuds de communiquer directement avec les autres
nœuds présents sur le réseau. Lors de chaque pas de temps, chaque nœuds
effectue une résolution locale et les informations sont ensuite transmises à un
client particulier pour la visualisation globale (figures A.3 et A.4).

A.5.1 Processus de simulation

Notre simulateur repose sur l’interaction de nœuds de calcul, chaque nœuds
étant affecté à une machine du réseau. En fonction du mode de répartition,
chaque nœuds gère soit une portion de l’environnement avec les agents qu’elle
contient (figure A.3), soit un sous-ensemble des agents situés en n’importe
quel point de l’environnement (figure A.4). Le simulateur est structuré en
trois niveaux : une couche de communication qui établit les connections entre
les nœuds et effectue les envois/réceptions de messages, une couche de simu-
lation qui gère le tour de parole au niveau des agents et effectue les transferts
d’information en amont et aval d’un pas de simulation et d’une couche ap-
plicative qui définit les comportements des agents et les interactions qu’ils
peuvent réaliser.

Initialisation de la simulation

Si l’utilisateur choisit la répartition de l’environnement, la première étape
consiste à diviser l’environnement en plusieurs portions et à les répartir sur

A.5. DESCRIPTION DE LA PLATEFORME 131

Couche de
Communication

Environnement

Agents

Int1

...

Int2

Int3

...

Simulation Locale

Visualization

Extern
Inter

1

2

3

6

4

5

8

Nœud1

...
..
.

Nœud2

...
..
.

Nœud4

...
..
.

Nœud3

zone fantôme

7

In
te
ra
ct
io
n
s

1.Envoyer zone fantôme
2.Réception zone fantôme
3.Tour de parole des agents
4.Envoyer Interactions Externes
5.Réception Interactions Externes
6.Interactions sont exécutées
7.Transférer des agents
8.Recevoir des agents
10.Visualisation

Figure A.3 – Protocole suivi par le simulateur en mode environnement
distribué.

les différents nœuds. Ainsi, chaque nœuds possède une portion de l’envi-
ronnement et peut communiquer avec les autres nœuds pour échanger les
zones fantômes et effectuer les migrations d’agents. Un fichier de configura-
tion définit de manière statique la partition de l’environnement et l’affecta-
tion des différentes portions sur les différents nœuds, ainsi que les agents à
instancier au démarrage de la simulation. Ensuite, chaque nœuds initialise
la couche de communication et établit les connections avec l’ensemble des
autres nœuds. Dans le cas de la répartition des agents, l’utilisateur ne doit
définir dans le fichier de configuration que la répartition des agents sur les
différents nœuds, l’environnement global étant partagé par l’ensemble des
nœuds comme l’illustre la figure A.1.

Exécution de la simulation

Après la phase d’initialisation, chaque nœuds récupère les informations des
autres nœuds, ce qui correspond à l’échange des zones fantômes adjacentes
pour la répartition de l’environnement, et aux agents des autres nœuds pour

132 ANNEXE A. FRENCH CHAPTER

...
..
.

Couche de
Communication

Environnement

Agents Locale

Int1

...

Int2

Int3

...

Simulation Locale

Visualisation

Extern
Inter

1

2

3

6

4

5

7

Nœud1

Nœud2
Agents fantômes

...
..
. ...

..
.

Nœud4 Nœud3

In
te

ra
ct

io
n

s

1.Envoyer ses agents-locale
2.Réception des agents fantômes
3.Tour de parole des agents
4.Envoyer Interactions Externes
5.Réception Interactions Externes
6.Interactions sont exécutées
7.Visualisation ses agents

Figure A.4 – Protocole suivi par le simulateur en mode agents distribués.

la répartition des agents. Puis, le simulateur effectue le tour de parole des
agents qu’il gère. Cependant, dans le cas de la répartition de l’environnement,
si des agents effectuent un déplacement les positionnant en dehors de la
portion d’environnement géré par leur nœuds, alors ils sont transférés aux
nœuds concernés. Par contre, pour la répartition des agents, une telle mobilité
n’est pas possible et les agents ne peuvent quitter le nœuds sur lequel ils ont
été créé, puisque tous les nœuds gèrent le même environnement.

A.5.2 Dynamique d’un pas de simulation

Pour expliquer la dynamique d’un pas de simulation, le schéma A.5 détaille le
protocole d’interaction se produisant entre deux nœuds. Supposons que nous
ayons deux nœuds sur lesquels est réparti l’environnement en deux sections
égales. Au début du pas de simulation, chaque machine transmet les zones
fantômes aux nœuds adjacents et réciproquement réceptionne les zones fan-
tômes de ses voisins. Ensuite, chaque nœuds enclenche le tour de parole au
niveau des agents en distinguant les interactions internes au nœuds (ie. n’im-
pliquant que des agents présent sur ce nœuds) des interactions externes (ie.

A.5. DESCRIPTION DE LA PLATEFORME 133

Noeud1

Interaction:
-Interne
-Externe

Exécuter des
interactions

Envoyer
zone fantôme

Recevoir
zone fantôme

Envoyer
externe

Recevoir
External

Envoyer
acceptation

Recevoir
acceptation

Transférer
des agents

Recevoir
des agents

sync

sync

Noeud2

Interaction:
-Interne
-Externe

Exécuter des
interactions

Envoyer
zone fantôme

Recevoir
zone fantôme

Envoyer
externe

Recevoir
External

Envoyer
acceptation

Recevoir
acceptation

Transférer
des agents

Recevoir
des agents

Figure A.5 – Pas de simulation avec 2 machines dans le cas de la distribution
de l’environnement.

interactions impliquant un ou plusieurs agents situés sur un ou des nœuds
adjacents). Les interactions externes sont transmises aux nœuds concernés
et le nœuds courant attend aussi les interactions externes des autres nœuds.
L’étape suivante consiste à accepter ou refuser (ce qui peut impliquer plu-
sieurs échanges de messages avant de converger) les interactions externes des
autres nœuds, avant d’appliquer l’ensemble des interactions. Les interactions
étant évaluées, le simulateur détermine les agents se trouvant en dehors de la
portion d’environnement qu’il gère et transmet ces agents aux autres nœuds.
Finalement, les nœuds se synchronisent tous avant de pouvoir passer au pas
de temps suivant. Pour la répartition des agents, les étapes sont quasiment

134 ANNEXE A. FRENCH CHAPTER

identiques, si ce n’est que la zone fantôme correspond dans ce cas à l’ensemble
de l’environnement et qu’il n’y a aucun transfert d’agent entre les nœuds.

A.6 Plateforme d’évaluation

Il existe déjà plusieurs platformes dans le domaine des simulations réparties
(table A.1). Néanmoins, toutes ces plateformes reposent sur une synchronisa-
tion forte. Selon les implémentations, cette synchronisation est gérée au tra-
vers d’un intergiciel, d’un machine virtuelle dédiée ou au travers de mémoire
partagée entre machines virtuelles. Certaines utilisent plutôt une approche
orientée mâıtre/esclave avec synchronisation forte au niveau du mâıtre. Nous
ne pouvions donc pas aisément utiliser l’une d’entre elles pour définir et étu-
dier d’autres formes de synchronisation.

Pour évaluer les politiques de synchronisation forte et flexible, nous avons
développé un simulateur distribué qui repose sur la répartition de parcelles
d’environnement ou des agents sur les machines d’un réseau. Ainsi, chaque
nœuds est constitué d’une machine gérant un sous-ensemble de l’environne-
ment avec les agents s’y trouvant. L’ensemble des nœuds sont totalement
connectés. Le simulateur peut s’exécuter selon trois modes : en synchro-
nisation forte, avec une fenêtre de temps finie ou avec une fenêtre infinie
(c’est-à-dire sans aucune synchronisation entre les différents nœuds).

Les figures A.3 & A.4 illustre une simulation répartie sur 4 nœuds et sché-
matise l’architecture de la plateforme. Chaque nœuds de calcul est constitué
d’une couche de communication, d’une simulation locale et d’un environne-
ment partiel avec ses agents. La simulation locale est l’élément principal du
nœuds et a pour charge de gérer l’ensemble de la dynamique de simulation :
les interactions entre les agents, l’envoi des informations concernant les zones
situées à la frontière de différents nœuds ainsi que la gestion de la visualisa-
tion. La couche de communication gère les connections réseaux avec les autres
nœuds, permet les échanges de messages et transmet aussi les informations
liées au pas de temps courant du nœuds.

Lors de chaque pas de temps, les étapes suivantes sont effectuées :

• le nœuds envoie les informations concernant ses agents se trouvant à
proximité des frontières de son environnement aux nœuds correspon-
dants,

• le nœuds attend la réception des informations transmises par les autres
nœuds concernant leurs agents proches des frontières,

• le nœuds effectue le tour de parole au niveau des agents qu’il gère,

A.6. PLATEFORME D’ÉVALUATION 135

Table A.2 – Temps d’exécution de proies prédateurs sur 4 nœuds.

Pas de temps 2000 4000 6000 8000 10000

Synchronisation forte 1h 2h30 3h30 4h45 6h
Sans synchronisation 50mn 1h20 2h 2h45 3h20

• les interactions faisant intervenir des agents se trouvant sur d’autres
nœuds sont transmises aux nœuds concernés,

• le nœuds gère les interactions externes des autres nœuds,

• les interactions sont exécutées et les migrations d’agents sont effectuées,

• finalement, chaque nœuds met à jour son affichage et se synchronise
avec les autres machines avant de pouvoir passer au prochain pas de
temps.

Les différentes politiques de synchronisation partagent la majorité des
étapes décrites ci-dessus avec de légères différences. En synchronisation forte,
tous les envois de messages entre nœuds reposent sur des accusés de réception.
Particulièrement lors de l’étape 7 qui garantit la synchronisation de tous
les nœuds avant d’autoriser la transition au pas de temps suivant. Pour la
politique exploitant les fenêtres de temps, tant que le nœuds n’est pas trop
en avance par rapport au nœuds le plus lent, il peut passer directement au
pas de temps suivant. Si ce n’est pas le cas, le nœuds se met en attente
de la progression de la machine la plus lente. Par contre, les interactions
entre agents situés sur deux machines différentes n’ont plus qu’une probabilité
très faible de se produire (point détaillé dans les expérimentations). Avec
la politique utilisant une fenêtre infinie, c’est-à-dire lorsqu’il n’y a plus de
synchronisation, les nœuds progressent indépendamment et quasiment toutes
les interactions sont temporellement incohérentes (ie. se produisent entre des
agents appartenant à des pas de temps différents).

Pour tester la montée en charge de notre environnement d’évaluation,
nous avons développé une application illustrant un comportement de flocking
similaire à celui de Reynolds [Reynolds, 1987] et l’avons réparti sur 50 nœuds,
chacun prenant en charge 100000 agents au début de la simulation (figure
A.6).

136 ANNEXE A. FRENCH CHAPTER

Figure A.6 – Simulation du phénomène de flocking avec 5 millions d’agents
sur 50 nœuds.

A.7 Évaluation de l’efficacité des deux types

de répartition

L’efficacité des différents types de répartition proposés précédemment est né-
cessairement dépendante de la nature des simulations effectuées. En effet, le
fait de se placer dans le cadre des simulations d’agents situés induit des in-
terrogations par rapport à l’évolution des volumes de population, mais aussi
et surtout de leurs dynamique de déplacement. Dans cette section, nous étu-
dions les deux types de répartition sur deux cas classiques de simulations
d’agents situés : un modèle de flocking et un modèle proies prédateurs.

A.7.1 Un modèle de flocking

Le modèle de comportement de flocking proposé par [Reynolds, 1987] est
constitué d’un ensemble d’oiseaux qui volent en groupe. Chaque oiseau dé-
termine sa direction en fonction des oiseaux dans son champs de perception.
Du point de vue de l’environnement, la répartition des agents, même si elle est
homogène initialement, devient rapidement hétérogène avec la constitution
de différents groupements d’agents se déplaçant en nuée. Cette dynamique

A.8. RÉSULTATS EXPÉRIMENTAUX 137

de déplacement provoque une forte variation de charge entre les nœuds dans
le cas de la répartition de l’environnement, alors que le nombre d’agents par
nœuds est identique dans l’autre type de répartition.

A.7.2 Un modèle proies prédateurs

Ce modèle est une application classique de simulation de co-évolution de
population de proies et de prédateurs [Wilensky, 1997]. Les proies se repro-
duisent selon un certain rythme et se déplacent aléatoirement dans l’environ-
nement alors que les prédateurs chassent les proies. Les prédateurs peuvent
mourir de famine tandis que les proies survivent jusqu’à ce qu’elles soient
attaquées par un prédateur. Cette simulation illustre la co-évolution des po-
pulations avec des cycles alternés de croissance/décroissance des deux popu-
lations.

A.8 Résultats expérimentaux

Dans cette section, nous évaluons les performances des deux types de répar-
tition, de l’environnement ou des agents, par rapport au deux types d’appli-
cations, le flocking et le proies prédateurs. Les expérimentations diffèrent par
l’évolution de la taille de l’environnement, le nombre de nœuds utilisés lors
de la simulation ainsi que le nombre d’agents. Nous utilisons deux critères
principaux pour mesurer les performances du simulateur :

• le temps moyen d’un pas de temps.

• le volume de messages entre les nœuds.

L’ensemble des expérimentations ont été réalisées dans des salles de TP
constituées de PC sous Linux (Intel-R CoreTM2 Duo CPU E8400 3.00GHz,
4GB de mémoire et Ethernet 100Mb), en faisant varier le nombre de nœuds
de calcul de 1 à 16 machines pour des durées de simulation d’au moins 300
pas de temps, et sur la grille de calcul Grid50001.

A.8.1 Performances globales de la simulation

La figure A.7 correspondent à la simulation de flocking pour les deux types de
répartition. La figure démontre que les performances sont meilleures avec la
répartition des agents car la dynamique de l’application induit une concentra-
tion d’agents sur certaines zones de l’environnement ce qui pénalise fortement
les performances de la répartition de l’environnement.

1http://www.grid5000.org

138 ANNEXE A. FRENCH CHAPTER

0 100 200 300 400 500
0

200000

400000

600000

800000

1000000

1200000

1400000

Distribuer l'enironnememt

Distribuer les agents

Pas de Temps

T
em

p
s

d
'e

xé
cu

tio
n

 m
s.

Figure A.7 – Temps d’exécution pour le flocking.

On constate donc que pour la répartition des agents, la distribution ho-
mogène de la charge de calcul compense les coûts de communication pourtant
élevés (figure A.8).

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12
Distribuer les agents
Distribuer l'environnement

Pas de temps

T
ai

lle
 d

e
m

es
sa

g
es

 M
O

.

Figure A.8 – Comparaison des coûts de communication pour les deux types
de répartition.

Par contre, dans le cas du modèle proies prédateurs, la performance est
meilleure dans le cas de la répartition de l’environnement car la distribution
des agents étant homogène, la charge se trouve mieux répartie (A.9).

Pour résumer, lorsque la dynamique des populations d’agents entrâıne
une répartition plutôt homogène dans l’environnement, la répartition de ce
dernier obtient de meilleures performances, alors que dans une situation de

A.8. RÉSULTATS EXPÉRIMENTAUX 139

0 1000 2000 3000 4000 5000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Distribuer les agents

Distribuer l'environnement

Pas de temps

T
em

p
s

d
'e

xé
cu

tio
n

 m
s.

Figure A.9 – Temps d’exécution pour le modèle proies prédateurs.

fluctuation importante d’agents sur une zone restreinte, la répartition des
agents est plus efficiente.

A.8.2 Evaluations à la répartition de l’environnement

Nous avons cherché dans cette section à mieux caractériser les avantages et
limites de la répartition de l’environnement, particulièrement au niveau de la
gestion des zones fantômes. La première expérience consiste à faire varier le
nombre de nœuds de calcul et à observer l’évolution du temps moyen de calcul
d’un pas de temps. L’application évaluée est le modèle proies prédateurs avec
une configuration initiale de 42000 agents répartis respectivement sur 1, 2 et
4 nœuds. La figure A.10 montre les gains obtenu lors de l’ajout de nœuds.
On constate que pour cette application, la durée nécessaire pour le calcul
d’un pas de temps sur l’ensemble des nœuds décrôıt fortement avec l’ajout
de nœuds supplémentaires, ce qui valide la parallélisation implicite induite
par l’homogénéité de répartition des agents au cours de la simulation.

Pour caractériser la répartition du temps de calcul lors d’un pas de simu-
lation entre les aspects liés à la synchronisation et ceux liés à l’évaluation des
agents, nous avons instrumenté le simulateur. La figure A.11 confirme que la
majorité du temps est exploité pour le calcul du comportement des agents et
l’exécution de leur interaction, ce qui explique les gains de performances lors
de l’ajout de nœuds. Ainsi, même si les coûts de synchronisation augmentent
avec le nombre de machines, ils sont compensés par les gains sur le temps
global d’exécution de la simulation.

140 ANNEXE A. FRENCH CHAPTER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70
Distribuer l'environnement

Nombre de nœuds

P
as

 d
e

te
m

p
s

en
 S

ec
.

Figure A.10 – Temps de calcul moyen d’un pas de temps.

Expérimentations sur la zone fantôme

Cette expérience consiste à explorer le coût de la gestion des zones fantômes.
En effet, ces dernières doivent être échangées entre les nœuds adjacents au
début de chaque pas de simulation. Nous exécutons donc le modèle de flocking
sur un réseau de 3x3 nœuds en faisant varier le nombre d’agents de 9 à 900000
et en utilisant dans un premier temps une taille de 10 unités pour la largeur
de la la zone fantôme, puis de 100 unités (ce qui correspond à la taille de la
zone de perception des oiseaux).

La figure A.12 démontre que le temps nécessaire pour le calcul d’un pas
de temps s’accrôıt en fonction du nombre d’agents, mais le plus important
est que la taille de la zone n’a pas d’impact. Ceci s’explique par le protocole
utilisé qui ne nécessite qu’un seul échange de message pour transmettre l’en-
semble des agents en début de pas de temps. Il faut cependant noter que si
l’on utilisait une largeur de zone fantôme plus grande que la largeur gérée
par un nœuds, les performances s’effondreraient. Ceci indique qu’un proto-
cole spécifique devrait être instauré dans le cas d’applications impliquant
des agents ayant une perception plus importante que la surface gérée par un
nœuds.

Coût de communication

Pour cette dernière expérience, nous évaluons le volume des messages échan-
gés dans les deux applications pour une simulation réalisée sur 2 nœuds de
calcul. La figure A.13 illustre parfaitement les fluctuations importantes se
produisant dans le modèle du flocking qui correspondent au moment où la

A.9. ÉVALUATION DES POLITIQUES DE SYNCHRONISATION 141

1 2 4 8 16
0.1

1

10

100
Coût total
Coût d'interactions

Nombre de nœuds

T
em

p
s

d
'e

xé
cu

tio
n

 S
ec

.

Figure A.11 – Temps de calcul d’un pas de temps et coût de l’évaluation
des interactions.

volée transite d’un nœuds de calcul à l’autre, alors que dans le proies pré-
dateurs, l’homogénéité de la répartition des agents se traduit directement en
un volume quasi constant du volume des messages échangés. Cette figure vi-
sualise clairement l’impact de la dynamique de déplacement des agents sur
le mode de répartition de calcul choisit.

A.9 Évaluation des politiques de synchroni-

sation

Dans cette section, nous étudions deux applications qui ont été réalisées pour
évaluer l’impact des politiques de synchronisation proposées dans les sections
précédentes. Il semble évident que les incohérences temporelles introduites
par la synchronisation flexible n’auront pas les mêmes effets selon les ap-
plications. Ainsi, pour l’exemple sur les boids, même lorsqu’il n’y a pas de
synchronisation, les phénomènes macroscopiques de regroupement d’agents
apparaissent rapidement. Ce que nous souhaitons déterminer, ce sont les pro-
priétés des modèles d’application nous permettant d’anticiper l’impact des
incohérences temporelles sur l’issue de la simulation. Pour cela, nous avons
choisi deux applications dont l’une n’est pas trop affectée par les incohé-
rences tandis que l’autre y est très sensible : Proies-prédateurs et Capture du
drapeau.

142 ANNEXE A. FRENCH CHAPTER

10 100 1000 10000 100000 1000000
0

20

40

60

80

100

120
10 Profondeur de zone-fantôme
50 Profondeur de zone-fantôme
100 Profondeur de zone-fantôme

Nombre d'agents

P
as

 d
e

te
m

p
s

en
 s

ec
.

Figure A.12 – Variation du pas de temps en fonction de la largeur de la
zone fantôme.

Capture du drapeau

[Rihawi et al., 2013c] Nous avons créé ce modèle pour illustrer les biais po-
tentiellement introduits par les incohérences temporelles lorsque le modèle
de l’application est fortement lié au déroulement temporel. Dans cette ap-
plication, deux armées cherchent à capturer les drapeaux de leur adversaire.
Chaque armée est constituée de deux types d’agents, des agents soldats qui
défendent un drapeau ou partent à l’assaut de celui de l’adversaire et des
agents drapeaux qui produisent de nouveaux soldats à chaque pas de temps.
Lorsque deux soldats d’armées opposées se rencontrent, ils se neutralisent en
mourant tous les deux.

Comme précisé lors de l’introduction, le choix de ces deux applications
s’est effectué pour respecter la contrainte de localité des interactions : seuls
des agents suffisamment proches peuvent interagir. Il n’y a pas donc pas
d’échange de message entre des agents distants. Cependant, deux agents
proches mais sur deux machines différentes peuvent interagir.

A.9.1 Coût de la synchronisation

L’ensemble des expérimentations ont été réalisées sur un réseau local consti-
tué de machines homogènes (salles de TP). La plupart des expériences ont
duré plus de deux millions de pas de temps. Le seul paramètre qui a été mo-
difié est la taille W de la fenêtre de temps : W = 0 pour la synchronisation
forte, W = n avec n = 10, 100, 1000, 10000, 100000 pour la synchronisation
flexible et W = ∞ pour l’absence totale de synchronisation. La table A.2

A.9. ÉVALUATION DES POLITIQUES DE SYNCHRONISATION 143

0 50 100 150 200 250 300 350
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Proie-prédateur
Flocage

Pas de temps

T
ai

lle
 d

e
m

es
sa

g
es

 K
O

Figure A.13 – Variation des coûts de communication en function de la
dynamique de déplacement des agents.

synthétise les résultats et démontre que sans synchronisation on obtient logi-
quement le temps d’exécution le plus court, cependant pour certaines appli-
cations comme la capture du drapeau, cette relaxation de la synchronisation
déstabilise complètement le modèle dans certains cas.

La comparaison de la stabilité des résultats des deux applications montre
que pour le proies prédateurs, la co-évolution des deux populations est conser-
vée, le modèle est donc stable sur une longue durée (2 millions de pas de
temps). Ainsi, cette application est fortement tolérante aux incohérences tem-
porelles et peut tirer partie d’une synchronisation flexible. Par contre, pour
la capture du drapeau, lorsque W devient plus grand qu’un certain nombre N
de pas de temps (N étant dépendant de la configuration initiale : nombre de
drapeaux et répartition sur les différents nœuds), le modèle devient instable.
Cela signifie que l’une des deux armées arrive à prendre le dessus sur l’autre,
ce qui mène rapidement à la capture de l’ensemble des drapeaux d’un camp.

Dans les sections qui suivent, nous cherchons à affiner ces résultats trop
généraux. Pour cela, nous étudions d’abord les effets des interactions inva-
lides temporellement sur la stabilité du modèle proies prédateurs, ainsi que
l’évolution du volume des interactions incohérentes en fonction des politiques
de synchronisation. Ensuite, nous nous intéressons plus particulièrement aux
conditions de stabilité du modèle de capture du drapeau en nous concen-
trant sur la sensibilité à la configuration initiale lors de sa répartition sur les
nœuds.

144 ANNEXE A. FRENCH CHAPTER

1 10 100 1000 10000 100000
1

10

100

1000

10000
SF-W=0PT

SFT-W=2PT

SFT-W=100PT

SFT-W=∞PT

Pas de temps

In
te

ra
ct

io
n

s
E

xt
er

n
es

Figure A.14 – Volume d’interactions externes en fonction des politiques de
synchronisation.

Interactions dans proies prédateurs

Les interactions externes (IE) sont des interactions se produisant entre des
agents ne se trouvant pas sur le même nœuds. La figure A.14 illustre l’évo-
lution du nombre d’interactions externes en fonction de la variation de la
taille de la fenêtre pour une simulation contenant 5000 agents et s’exécutant
durant 100000 pas de temps. On constate qu’en synchronisation forte, il y
a beaucoup d’interactions externes alors que leur nombre chute drastique-
ment même avec une très petite fenêtre de temps (W = 2). Ceci s’explique
car lorsque la plateforme n’est pas en synchronisation forte, il n’y a plus
d’attente d’information de la part des autres nœuds par rapport aux agents
proches des frontières.

Ainsi dans la plupart des cas, le nœuds courant considère que les inter-
actions externes échouent et poursuit son cycle d’évaluation. Ceci implique
qu’il y a un biais important introduit au niveau des frontières entre les par-
celles d’environnement puisque la quasi-totalité des interactions échouent.
Dans l’hypothèse improbable où la surface d’une parcelle d’environnement
devient trop petite par rapport à zone de frontière avec les autres nœuds,
nous serions amenés à une situation dans laquelle plus aucune interaction ne
pourrait se produire. Cependant, cette situation est un cas limite théorique
puisque l’intérêt de la répartition de l’environnement consiste justement à dé-
dier une parcelle d’environnement fournissant une charge suffisante à chaque
machine.

Les interactions invalides (II), c’est-à-dire induisant une incohérence tem-
porelle, sont des interactions se produisant entre des agents n’appartenant

A.9. ÉVALUATION DES POLITIQUES DE SYNCHRONISATION 145

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
2N-Sans-Sync

2N-SFT-W=1PT

4N-Sans-Sync

4N-SFT-W=1PT

Pas de temps

In
te

ra
ct

io
n

sI
n

va
lid

es
/T

ot
al

Figure A.15 – Proportion d’interactions invalides en fonction du nombre de
nœuds.

pas au même pas de temps. En effet, lors du transfert d’agents d’un nœuds
à un autre, lorsque la synchronisation n’est pas forte, il est possible d’avoir
des agents de pas de temps différents qui entrent malgré tout en interaction.
En effet, lorsqu’un agent a un pas de temps n est transféré sur une machine
ayant un pas de temps n + k, l’agent transféré conserve sa propre référence
temporelle (n dans ce cas). Ainsi, même deux agents se trouvant sur le même
nœuds peuvent produire une interaction invalide.

Nous cherchons donc ici à quantifier la proportion que représentent ces
interactions incohérentes d’un point de vue temporel par rapport à l’ensemble
des interactions valides. La figure A.15 montre que le nombre de ces interac-
tions invalides crôıt en fonction de la taille de la fenêtre de temps ainsi qu’en
fonction du nombre de nœuds. Ainsi, que l’on soit avec une petite fenêtre de
temps ou sans synchronisation, il y a une proportion non négligeable d’inter-
actions invalides oscillant entre 20 à 30% pour 2 machines et 30 à 40% pour
4 machines.

Malgré ces mesures qui démontrent l’importance des biais introduits dans
la simulation avec une forte diminution des interactions externes et l’intro-
duction d’un volume non négligeable d’interactions temporellement incohé-
rentes, le modèle proies prédateurs reste insensible au choix de la politique
de synchronisation.

Instabilité du modèle capture du drapeau

Comme pour les expériences précédentes, ces simulations ont été exécutées
sur 2 nœuds durant 2 millions de pas de temps avec des fenêtres de temps va-

146 ANNEXE A. FRENCH CHAPTER

Figure A.16 – Configuration d’une simulation sur 3 nœuds : 2 pour l’équipe
rouge et 1 pour l’équipe bleue.

riant entre 0 et l’infini. La première configuration est constituée d’un drapeau
par nœuds et dans ce cas, comme pour proies prédateurs, le modèle est stable
(aucun drapeau n’est capturé) quel que soit le mécanisme de synchronisation
utilisé. Par contre, lorsque la configuration initiale repose sur un plus grand
nombre de drapeaux (>20), nous obtenons des résultats différents. En effet,
pour une fenêtre de taille supérieur à 10000 pas de temps, le modèle n’est
plus stable et l’une des équipes l’emporte toujours sur l’autre.

Pour mieux mesurer l’évolution de la dégradation de la stabilité provo-
quée par les politiques de synchronisation, nous avons réalisé une dernière
expérimentation. Cette simulation s’effectue sur 3 nœuds (figure A.16) : le
premier contient tous les drapeaux de la première armée, alors que ceux de
la deuxième armée sont répartis équitablement sur les deux nœuds restants.
L’objectif est d’avoir une charge plus importante sur la première machine ce
qui induit une instabilité du modèle dès que l’on n’utilise plus une synchro-
nisation forte. Ce que nous étudions dans cette configuration particulière est
la vitesse de déstabilisation du modèle en fonction de la taille de la fenêtre
de temps, ou en fonction du nombre de drapeaux initiaux.

Si nous définissons le pas de temps critique (PTC), comme le nombre
de pas de temps nécessaires pour aboutir à la destruction de l’ensemble des
drapeaux d’un des deux camps lorsqu’il n’y a pas de synchronisation, la figure
A.17 illustre le fait que le PTC diminue avec l’augmentation du nombre de
drapeaux initiaux, ainsi PTC = α1

D
, α1 est une constante dépendante de

la configuration initiale (ie. le nombre de drapeau et leur disposition sur les
différents nœuds).

A.10. CONCLUSION 147

0 2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
2-Nœuds vs 1-Nœud

Nombre de drapeaux

P
T

C

Figure A.17 – Évolution du pas de temps critique en fonction du nombre
de drapeaux.

Si nous paramétrons le pas de temps critique par la fenêtre de temps W
utilisée (PTC(W)), alors PTC = PTC(W) lorsque W =∞. La figure A.18
illustre la rapidité de convergence vers le pas de temps critique en fonction de
la fenêtre de temps choisie. Cette figure montre PTC(W) décrôıt si la tailleW
de la fenêtre augmente, ainsi, selon la figure, PTC(W)/PTC = α2

W/PTC
, α2

est constant. Ainsi, PTC(W) = α2×PTC2

W
, donc PTC(W) = α

W×D2 , α =
α2 × α2

1 est constant. Cela signifie donc que le pas de temps critique décrôıt
si le nombre de drapeaux ou la taille de la fenêtre augmentent.

La figure A.18 montre aussi que pour toutes les configurations, le modèle
reste stable pour de petites fenêtres de temps. Néanmoins, il est possible
d’analyser chaque courbe en deux parties principales : la première de 0 à 30%
du pas de temps critique où le modèle est stable sur un nombre conséquent de
pas de temps. Cela implique qu’il est possible d’autoriser une fenêtre de temps
jusqu’à 30% du PTC pour accélérer la convergence. La deuxième partie de la
courbe, pour des fenêtres de temps excédant les 30% du PTC, le PTC(W)
décrôıt plus lentement en fonction de la fenêtre de temps.

A.10 Conclusion

Lorsque l’on modélise des systèmes complexes impliquant différentes familles
d’agents et de nombreuses interactions, la simulation à l’aide de systèmes
multi-agents devient rapidement coûteuse. Dans ce travail, nous avons exploré
différentes pistes afin de réaliser des simulations à large échelle de systèmes

148 ANNEXE A. FRENCH CHAPTER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10
2-Flags

10-Flags

20-Flags

W/PTC

P
T
C
(W
)/
P
T
C

Figure A.18 – Vitesse de convergence vers le PTC en fonction de la confi-
guration initiale.

à base d’agents situés dans un espace euclidien. Dans ce contexte, les agents
interagissent classiquement au niveau individuel, mais les observations sont
réalisées au niveau des populations d’agents, soit sur des propriétés agrégés
des différentes familles d’agents, soit sur des phénomènes émergents, souvent
liés aux dynamiques de déplacement. Afin de traiter des systèmes composés
de centaines de milliers, voire de millions d’agents, nous avons choisi de ré-
partir le simulateur sur un réseau de machines. Le passage d’un système ne
tournant que sur une seule machine à un système distribué induit de nouvelles
problématiques portant sur la gestion du temps et de la synchronisation, ainsi
que sur la répartition de la charge de calcul.

La première partie de la thèse étudie deux types de répartition : l’une repo-
sant sur un critère de proximité spatiale des agents et l’autre sur des critères
non spatiaux. La première approche consiste à discrétiser l’environnement
et à répartir ces sous-ensembles sur un réseau de machines. Ainsi, chaque
nœud de calcul détient une partie de l’environnement et gère le tour de pa-
role des agents qu’il contient. Chaque machine gère donc une même surface
de l’environnement, mais le nombre d’agents contenus dans ce sous-ensemble
peut fortement varier au cours de la simulation, induisant des différences de
charge de calcul entre les machines. En effet, en fonction des dynamiques
de déplacement des agents, la répartition des agents au sein de l’environ-
nement peut devenir fortement hétérogène. La seconde approche consiste à
répartir uniquement les agents selon des critères arbitraires comme le type
de l’agent ou encore selon les coûts de calculs estimés. Avec cette approche,
une vue globale de l’environnement est reconstituée lors de chaque pas de

A.10. CONCLUSION 149

temps sur l’ensemble des machines, même si chacune des machines ne gère
qu’un sous-ensemble des agents. Dans un système constitué d’agents homo-
gènes et ne nécessitant pas de création et destruction d’agents au cours de la
simulation, la charge est correctement répartie. Par contre, si la simulation
induit une évolution de la population d’agents, un mécanisme de répartition
de charge devient nécessaire afin de rééquilibrer les volumes d’agents gérés
par les différentes machines.

La seconde partie de la thèse repose sur la remise en cause d’une hypo-
thèse exploitée par l’ensemble des simulateurs existants : la garantie du dé-
terminisme et de la reproductibilité des simulations. En effet, les simulateurs
existants répartissent le calcul sur un réseau de machines et s’assurent que
l’ensemble des agents évolue dans la même temporalité. Cependant, lorsque
l’on simule des millions d’agents, les observations portent principalement sur
des données agrégées. On peut donc supposer que des incohérences au niveau
de l’état de centaines, voire de milliers d’agents, n’aura pas nécessairement
un impact significatif sur les mesures effectuées par agrégation des propriétés
de l’ensemble de la population. Afin d’étudier cette question, nous avons pro-
posé de relâcher la contrainte de synchronisation en bornant l’écart temporel
existant entre la machine la plus lente et la machine la plus rapide au cours
de la simulation. En exploitant une fenêtre de temps suffisamment grande,
on obtient un système dans lequel les machines sont totalement désynchroni-
sées. Pour certaines applications, malgré l’absence totale de synchronisation
les propriétés émergentes sont conservées et le gain en temps de calcul est
important.

Afin d’étudier la pertinence des différents types de répartition, ainsi que
l’impact du relâchement de la contrainte de synchronisation, nous avons déve-
loppé un simulateur et implémenté différentes applications. Ces applications
ont été choisies pour leurs différences de propriétés en terme d’homogénéité
de répartition spatiale ainsi qu’en terme de dynamique d’évolution de popu-
lation. Ces expérimentations illustrent l’adéquation de certains types de ré-
partition pour certaines propriétés des applications. Ainsi, la distribution de
l’environnement est particulièrement adaptée aux systèmes constitués d’une
population qui évolue en nombre et dont la dynamique de déplacement n’in-
duit pas la constitution d’un trop faible nombre de clusters d’agents. A l’in-
verse, si la dynamique de déplacement induit la création de zones hétérogènes,
certaines très denses en terme d’agents et d’autres totalement dépeuplée, la
répartition selon des critères non spatiaux est plus appropriée. De même,
lors du relâchement de la contrainte de synchronisation, la question de la
dynamique d’évolution de la population d’agents, ainsi que la durée de vie
moyenne des agents sont des critères importants pour définir la taille de la
fenêtre de temps permettant à la fois un gain de temps d’exécution tout en

150 ANNEXE A. FRENCH CHAPTER

préservant le phénomène émergent.
Ces travaux ont permis la mise à disposition d’un environnement dis-

tribué pour la simulation à large échelle d’agents situés, jusqu’à 1 million
d’agents avec un pas de temps inférieur à 2mn sur une infrastructure de type
grille (Grid5000). La plateforme fournit une grande liberté à l’utilisateur en
terme de stratégie de répartition ainsi que de mécanismes de synchronisa-
tion. Il reste de nombreuses pistes à explorer mais ces travaux fournissent
une première base de travail et un environnement propices à de nouvelles
expérimentations.

List of Figures

I.1 D-MAS = MAS + Distributed System xiv

1.1 Modelling and simulation of ecological phenomena 4

1.2 Packages and destinations model 6

1.3 Micro\meso\macro-scopic levels 11

1.4 IODA matrix example . 12

2.1 D-MASON . 24

2.2 AglobeX . 25

2.3 GOLEM . 26

2.4 Repast . 28

2.5 Megaffic . 28

2.6 FLAME . 29

3.1 Agent model . 37

3.2 Environment distribution and agents distribution 41

3.3 Grouping agents in agent distribution 44

3.4 Exchange information in environment distribution 45

3.5 Multi-TS in distribution approach 48

3.6 Synchronization policies on 4 machines 50

4.1 Machine units in environment distribution 56

4.2 Machine units in agent distribution 58

4.3 Framework layers . 60

4.4 Agent UML class diagram examples 62

4.5 Environment UML class diagram 63

4.6 Configuration files examples 64

4.7 Environment distribution on 4 machines 67

4.8 UML sequence diagram in one machine 69

4.9 TS scenario between two machines 72

4.10 Global and local visualization 73

151

152 LIST OF FIGURES

5.1 A demo of five million agents 78

5.2 Flocking behaviour model . 80

5.3 Three rules create flocking behaviour 81

5.4 Wolf-sheep-grass example of PP model 82

5.5 Agents number in PP model 84

5.6 Preys V S predators numbers in PP model 84

5.7 Age pyramid in PP model . 85

5.8 TS delay & communication delay in PP model 87

5.9 Execution time in FB model 88

5.10 Execution time in PP model 88

5.11 Communications with ED approach 89

5.12 Messages in FB model . 90

5.13 Messages in PP model . 90

5.14 TS calculation delay . 93

5.15 TS delay vs interaction delay 93

5.16 Different depths of ghost area 94

5.17 PP model between AD & ED 95

5.18 Communication delays with load-balancing 96

5.19 PP model on ED vs AD with load-balancing 96

6.1 Capture the flag (CTF) model 104

6.2 Policies experimentation in PP model 106

6.3 The gain from NS policy . 107

6.4 External interactions experiments in PP model 108

6.5 ITSI between 2 vs 4 machines in PP model 109

6.6 ITSI between 4 machines in PP model 109

6.7 ITSI between 8 machines . 110

6.8 A bias configuration of CTF model 111

6.9 CTS with different configurations in CTF model 111

6.10 TSD with different configuration 112

6.11 TSD/CTS with different configuration 112

A.1 Deux types de distribution: l’environnement (gauche) ou les
agents (droit). 126

A.2 Zone redondante, zone non redondante et zone fantôme. 127

A.3 Protocole suivi par le simulateur en mode environnement dis-
tribué. 131

A.4 Protocole suivi par le simulateur en mode agents distribués. . 132

A.5 Pas de simulation avec 2 machines dans le cas de la distribution
de l’environnement. 133

LIST OF FIGURES 153

A.6 Simulation du phénomène de flocking avec 5 millions d’agents
sur 50 nœuds. 136

A.7 Temps d’exécution pour le flocking. 138
A.8 Comparaison des coûts de communication pour les deux types

de répartition. 138
A.9 Temps d’exécution pour le modèle proies prédateurs. 139
A.10 Temps de calcul moyen d’un pas de temps. 140
A.11 Temps de calcul d’un pas de temps et coût de l’évaluation des

interactions. 141
A.12 Variation du pas de temps en fonction de la largeur de la zone

fantôme. 142
A.13 Variation des coûts de communication en function de la dy-

namique de déplacement des agents. 143
A.14 Volume d’interactions externes en fonction des politiques de

synchronisation. 144
A.15 Proportion d’interactions invalides en fonction du nombre de

nœuds. 145
A.16 Configuration d’une simulation sur 3 nœuds: 2 pour l’équipe

rouge et 1 pour l’équipe bleue. 146
A.17 Évolution du pas de temps critique en fonction du nombre de

drapeaux. 147
A.18 Vitesse de convergence vers le PTC en fonction de la config-

uration initiale. 148

154 LIST OF FIGURES

List of Tables

1.1 Agents from passive to cognitive entities 7

2.1 OTS or MTS in agents level or in machines level. 20
2.2 The main criteria to compare platforms of large scale MAS

simulations. 23
2.3 A comparison of large scale MAS simulators. 31

3.1 Interactions organizer analysis 40
3.2 Analysis of synchronization policies 51

5.1 Different applications categories 79
5.2 PP model statistical details 85
5.3 Two models vs two distribution types 91
5.4 Agents’ features analysis in both models 92

6.1 PP vs CTF models with different policies 106
6.2 CTF model with different policies 110

A.1 Principales plateformes de simulation distribuée. 125
A.2 Temps d’exécution de proies prédateurs sur 4 nœuds. 135

155

156 LIST OF TABLES

Bibliography

Bellifemine, F., Bergenti, F., Caire, G., and Poggi, A. (2005).
Jade — a java agent development framework.
In Multi-Agent Programming, volume 15 of Multiagent Systems, Artificial
Societies, and Simulated Organizations, pages 125–147. Springer US.

Bernon, C., Camps, V., Gleizes, M. P., and Picard, G. (2003).
Designing agents’ behaviors and interactions within the framework of adelfe
methodology.
In ESAW’ 03, pages 311–327.

Bonnet, G. and Tessier, C. (2009).
An incremental adaptive organization for a satellite constellation.
In Organized Adaption in Multi-Agent Systems, volume 5368 of Lecture
Notes in Computer Science, pages 108–125. Springer Berlin Heidelberg.

Bourdon, J., Vercouter, L., and Ishida, T. (2009).
A multiagent model for provider-centered trust in composite web services.
In Principles of Practice in Multi-Agent Systems, 12th International Con-
ference, PRIMA 2009, Nagoya, Japan, December 14-16, 2009. Proceedings,
pages 216–228.

Bromuri, S. and Stathis, K. (2008).
Situating cognitive agents in golem.
In Engineering Environment-Mediated Multi-Agent Systems, volume 5049
of Lecture Notes in Computer Science, pages 115–134. Springer Berlin
Heidelberg.

Bromuri, S. and Stathis, K. (2009).
Distributed agent environments in the ambient event calculus.
In Proc.of DEBS, pages 12:1–12:12, New York, USA. ACM.

Brooks, R. A. (1991).
Intelligence without reason.

157

158 BIBLIOGRAPHY

In Proceedings of the 12th International Joint Conference on Artificial In-
telligence - Volume 1, IJCAI’91, pages 569–595, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Cabri, G., Ferrari, L., and Zambonelli, F. (2004).
Role-based approaches for engineering interactions in large-scale multi-
agent systems.
In Software Engineering for Multi-Agent Systems II, volume 2940 of Lecture
Notes in Computer Science, pages 360–361. Springer Berlin / Heidelberg.

Collier, N. and North, M. (2012).
Parallel agent-based simulation with repast for high performance comput-
ing.
In In SIMULATION:Transactions of the Society for Modeling and Simu-
lation International, pages 01–21.

Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., and
Spagnuolo, C. (2011).
A framework for distributing agent-based simulations.
In In Proc. of The International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Platforms. HeteroPar 2011,
Bordeaux, France.

Cosenza, B., Cordasco, G., De Chiara, R., and Scarano, V. (2011).
Distributed load balancing for parallel agent-based simulations.
In Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on.

Coulouris, G., Dollimore, J., and Kindberg, T. (2005).
Distributed Systems: Concepts and Design (International Computer Sci-
ence).
Addison-Wesley Longman, Amsterdam.

Davis, W. and Moeller, G. (1999).
The high level architecture: Is there a better way?
In Simulation Conference Proceedings, 1999 Winter, volume 2, pages 1595–
1601 vol.2.

Dyke Parunak, H., Brueckner, S., Fleischer, M., and Odell, J. (2004).
A design taxonomy of multi-agent interactions.
In Agent-Oriented Software Engineering IV, volume 2935 of Lecture Notes
in Computer Science, pages 123–137. Springer Berlin Heidelberg.

BIBLIOGRAPHY 159

Ebcioglu, K., Saraswat, V., and Sarkar, V. (2004).
X10: Programming for hierarchical parallelism and non-uniform data ac-
cess.
In Proceedings of the International Workshop on Language Runtimes,
OOPSLA.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002).
A survey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408.

Faci, N., Guessoum, Z., and Marin, O. (2006).
Dimax: A fault-tolerant multi-agent platform.
In Proceedings of the 2006 International Workshop on Software Engineer-
ing for Large-scale Multi-agent Systems, SELMAS ’06, pages 13–20, New
York, NY, USA. ACM.

Fatès, N. and Chevrier, V. (2010).
How important are updating schemes in multi-agent systems? an illustra-
tion on a multi-turmite model.
In Proceedings of the 9th International Conference on Autonomous Agents
and Multi-agent Systems: volume 1 - Volume 1, AAMAS ’10, pages 533–
540, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

Ferber, J. (1999).
Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Fujimoto, R. (2000).
Parallel and distributed simulation systems.
Wiley series on parallel and distributed computing. Wiley.

Genesereth, M. R. and Ketchpel, S. P. (1994).
Software agents.
Commun. ACM, 37(7):48–53.

Gold, T. (2003).
Why time flows: The physics of past & future.
Daedalus, 132(2):pp. 37–40.

Grimm, V. and Railsback, S. F. (2013).
Individual-based Modeling and Ecology.

160 BIBLIOGRAPHY

Princeton Series in Theoretical and Computational Biology. Princeton Uni-
versity Press, stu - student edition edition.

Guessoum, Z., Briot, J.-P., Marin, O., Hamel, A., and Sens, P. (2003).
Dynamic and adaptive replication for large-scale reliable multi-agent sys-
tems.
In Software Engineering for Large-Scale Multi-Agent Systems, volume 2603
of Lecture Notes in Computer Science, pages 182–198. Springer Berlin
Heidelberg.

Guessoum, Z., Faci, N., and Briot, J.-P. (2005).
Adaptive replication of large-scale multi-agent systems: Towards a fault-
tolerant multi-agent platform.
In Proceedings of the Fourth International Workshop on Software Engin-
eering for Large-scale Multi-agent Systems, SELMAS ’05, pages 1–6, New
York, NY, USA. ACM.

Gupta, B., Rahimi, S., and Yang, Y. (2007).
A novel roll-back mechanism for performance enhancement of asynchron-
ous checkpointing and recovery.
Informatica (Slovenia), 31(1):1–13.

Hayes Roth, B. (1995).
An architecture for adaptive intelligent systems.
Artificial Intelligence, 72(1–2):329–365.

Horling, B., Mailler, R., and Lesser, V. (2004).
Farm: A scalable environment for multi-agent development and evaluation.
In Software Engineering for Multi-Agent Systems II, volume 2940 of Lecture
Notes in Computer Science, pages 364–367. Springer Berlin / Heidelberg.

Šǐslák, D., Volf, P., Jakob, M., and Pechoucek, M. (2009).
Distributed platform for large-scale agent-based simulations.
In Agents for Games and Simulations, volume 5920 of Lecture Notes in
Computer Science, pages 16–32. Springer Berlin Heidelberg.

Isenburg, M., Lindstrom, P., and Childs, H. (2010).
Parallel and streaming generation of ghost data for structured grids.
CGA, IEEE, 30(3):32 –44.

Jamali, N. and Zhao, X. (2008).
Distributed coordination of massively multi-agent systems.
In Massively Multi-Agent Technology, volume 5043 of Lecture Notes in
Computer Science, pages 13–27. Springer Berlin / Heidelberg.

BIBLIOGRAPHY 161

Jefferson, D. R. (1985).
Virtual time.
ACM Trans. Program. Lang. Syst., 7:404–425.

Jin, X., Liu, J., and Yang, Z. (2005).
The dynamics of peer-to-peer tasks: An agent-based perspective.
In Agents and Peer-to-Peer Computing, volume 3601 of Lecture Notes in
Computer Science, pages 173–184. Springer Berlin / Heidelberg.

Jinkai, X. and Weihong, Y. (2010).
Study on comparison between jafmas and jade.
In Circuits,Communications and System (PACCS), 2010 Second Pacific-
Asia Conference on, volume 1, pages 105 –108.

Judson, O. P. (1994).
The rise of the individual-based model in ecology.
Trends in Ecology & Evolution, 9(1):9 – 14.

Karmakharm, T., Richmond, P., and Romano, D. (2010).
Agent-based large scale simulation of pedestrians with adaptive realistic
navigation vector fields.
In Theory and Practice of Computer Graphics (TPCG) 2010, pages 67–74.

Kiran, M., Richmond, P., Holcombe, M., Chin, L. S., Worth, D., and
Greenough, C. (2010).
Flame: simulating large populations of agents on parallel hardware archi-
tectures.
In AAMAS ’10: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, pages 1633–1636, Richland,
SC. International Foundation for Autonomous Agents and Multiagent Sys-
tems.
no details in this paper.

Kubera, Y., Mathieu, P., and Picault, S. (2008).
Interaction-oriented agent simulations : From theory to implementation.
In Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI’08), pages 383–387. IOS Press.

Kubera, Y., Mathieu, P., and Picault, S. (2010).
Everything can be agent!
In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 1547–
1548, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

162 BIBLIOGRAPHY

Kubera, Y., Mathieu, P., and Picault, S. (2011).
Ioda: An interaction-oriented approach for multi-agent based simulations.
Journal of Autonomous Agents and Multi-Agent Systems, 23(3):303–343.

Kuhl, F., Weatherly, R., and Dahmann, J. (1999).
Creating computer simulation systems: an introduction to the high level
architecture.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Lamport, L. (1978).
Ti clocks, and the ordering of events in a distributed system.
Commun. ACM, 21:558–565.

Logan, B. and Theodoropoulos, G. (2001).
The distributed simulation of multiagent systems.
Proceedings of the IEEE, 89(2):174 –185.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005).
Mason: A multiagent simulation environment.
Simulation, 81(7):517–527.

Maes, P. (1990).
Situated agents can have goals.
Robot. Auton. Syst., 6(1-2):49–70.

Mataric, M. J. (1994).
Interaction and intelligent behavior.
Technical report, MIT.

Mathieu, P. and Brandouy, O. (2010).
A generic architecture for realistic simulations of complex financial dynam-
ics.
In Advances in Practical Applications of Agents and Multiagent Systems,
8th International conference on Practical Applications of Agents and Multi-
Agents Systems (PAAMS’2010), pages 185–197. Springer.

McTaggart, J. E. (1908).
The unreality of time.
Mind, 17(68):pp. 457–474.

Minar, N., Burkhart, R., and Langton, C. (1996).
The swarm simulation system: A toolkit for building multi-agent simula-
tions.
Technical report, Santa Fe Institute.

BIBLIOGRAPHY 163

Minson, R. and Theodoropoulos, G. K. (2004).
Distributing repast agent-based simulations with hla.
In In European Simulation Interoperability Workshop 2004, pages 04–046.

Miyata, N. and Ishida, T. (2008).
Community-based load balancing for massively multi-agent systems.
In Massively Multi-Agent Technology, volume 5043 of Lecture Notes in
Computer Science, pages 28–42. Springer Berlin / Heidelberg.

Motshegwa, T. and Schroeder, M. (2004).
Interaction monitoring and termination detection for agent societies: Pre-
liminary results.
In Engineering Societies in the Agents World, volume 3071 of Lecture Notes
in Computer Science, pages 519–519. Springer Berlin / Heidelberg.

Muller, G. and Vercouter, L. (2005).
Decentralized monitoring of agent communications with a reputation
model.
In Trusting Agents for Trusting Electronic Societies, volume 3577 of Lec-
ture Notes in Computer Science, pages 144–161. Springer Berlin Heidel-
berg.

Nadiminti, K., Assunção, M. D., and Buyya, R. (2006).
Distributed systems and recent innovations: Challenges and benefits.
InfoNet Magazine, 16(3):1–5.

Navarro, L., Corruble, V., Flacher, F., and Zucker, J.-D. (2013).
A flexible approach to multi-level agent-based simulation with the meso-
scopic representation.
In Proceedings of the 2013 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS ’13, pages 159–166. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

Ngobye, M., de Groot, W. T., and van der Weide, T. P. (2010).
Types and priorities of multi-agent system interactions.
Interdisciplinary Description of Complex Systems - scientific journal,
8(1):49–58.

Nikolai, C. and Madey, G. (2009).
Tools of the trade: A survey of various agent based modeling platforms.
Journal of Artificial Societies and Social Simulation, 12(2):2.

North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M., and
Sydelko, P. (2013).

164 BIBLIOGRAPHY

Complex adaptive systems modeling with repast simphony.
Complex Adaptive Systems Modeling, 1(1):1–26.

Reynolds, C. W. (1987).
Flocks, herds, and schools: a distributed behavioral model.
Computer Graphics.

Richmond, P., Coakley, S., and Romano, D. M. (2009).
A high performance agent based modelling framework on graphics card
hardware with cuda.
In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’09, pages 1125–1126, Rich-
land, SC. International Foundation for Autonomous Agents and Multia-
gent Systems.

Rihawi, O., Secq, Y., and Mathieu, P. (2013a).
Impact des politiques de synchronisation dans les simulations réparties
d’agents situés.
In 21èmes Journées Francophones sur les Systèmes Multi-Agents (JF-
SMA2013), pages 115–124. Cépaduès.

Rihawi, O., Secq, Y., and Mathieu, P. (2013b).
Relaxing synchronization constraints in distributed agent-based simula-
tions.
In Jurnal Teknologi (Sciences and Engineering), volume 63:3 (E), pages
65–76. Penerbit UTM Press (Extended version from the selected paper in
DCAI 2013).

Rihawi, O., Secq, Y., and Mathieu, P. (2013c).
Synchronization policies impact in distributed agent-based simulation.
In Distributed Computing and Artificial Intelligence (DCAI 2013), volume
217 of Advances in Intelligent Systems and Computing, pages 19–26.
Springer International Publishing (Extended version selected for public-
ation in Jurnal Teknologi).

Rihawi, O., Secq, Y., and Mathieu, P. (2014).
Effective distribution of large scale situated agent-based simulations.
In ICAART 2014 6th International Conference on Agents and Artificial
Intelligence, volume 1, pages 312–319. SCITEPRESS Digital Library.

Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M., and Edwards, D. D.
(1996).
Artificial intelligence: a modern approach.

BIBLIOGRAPHY 165

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Sanderson, D., Busquets, D., and Pitt, J. (2012).
A micro-meso-macro approach to intelligent transportation systems.
In Proceedings of the 2012 IEEE Sixth International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASOW ’12, pages 77–
82, Washington, DC, USA. IEEE Computer Society.

Scerri, D., Drogoul, A., Hickmott, S., and Padgham, L. (2010).
An architecture for modular distributed simulation with agent-based mod-
els.
In AAMAS ’10: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, pages 541–548, Richland, SC.
International Foundation for Autonomous Agents and Multiagent Systems.

Shoham, Y. (1993).
Agent-oriented programming.
Artif. Intell., 60(1):51–92.

Siebert, J., Ciarletta, L., and Chevrier, V. (2010).
Agents and artefacts for multiple models co-evolution: building complex
system simulation as a set of interacting models.
In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 509–
516, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

Suzumura, T. and Kanezashi, H. (2012a).
Highly scalable x10-based agent simulation platform and its application to
large-scale traffic simulation.
In Distributed Simulation and Real Time Applications (DS-RT), 2012
IEEE/ACM 16th International Symposium on, pages 243–250.

Suzumura, T. and Kanezashi, H. (2012b).
Towards performance optimization of x10-based agent simulation platform
with adaptive synchronization method.
In Proceedings of the Winter Simulation Conference, WSC ’12, pages
352:1–352:2. Winter Simulation Conference.

Taillandier, P., Vo, D.-A., Amouroux, E., and Drogoul, A. (2010).
Gama: A simulation platform that integrates geographical information
data, agent-based modeling and multi-scale control.

166 BIBLIOGRAPHY

In PRIMA, volume 7057 of Lecture Notes in Computer Science, pages 242–
258. Springer.

Tanenbaum, A. S. and van Steen, M. (2008).
Distributed Systems: Principles and Paradigms.
Prentice Hall International.

Timm, I. and Pawlaszczyk, D. (2005).
Large scale multiagent simulation on the grid.
Cluster Computing and the Grid, IEEE International Symposium on,
1:334–341.

Torrel, J.-c., Lattaud, C., and Heudin, J.-c. (2007).
Studying complex stellar dynamics using a hierarchical multi-agent model.
In Modelling and Simulation in Science, pages 307–312.

Vallee, M., Ramparany, F., and Vercouter, L. (2005).
A multi-agent system for dynamic service composition in ambient intelli-
gence environments.
In The 3rd International Conference on Pervasive Computing (PERVAS-
IVE 2005), pages 175–182.

Weiss, G. (1999).
Multiagent systems: a modern approach to distributed artificial intelli-
gence.
MIT Press, Cambridge, MA, USA.

Weyns, D., Helleboogh, A., and Holvoet, T. (2005).
The packet-world: A test bed for investigating situated multi-agent sys-
tems.
In Software Agent-Based Applications, Platforms and Development Kits,
Whitestein Series in Software Agent Technologies, pages 383–408.
Birkhäuser Basel.

Wilensky, U. (1997).
Netlogo wolf sheep predation model.

Wooldridge, M. (2009).
An Introduction to Multi-Agent Systems.
Wiley Publishing, 2nd edition.

Xiaoxia, S. and Qiuhai, Z. (2003).
The introduction on high level architecture (hla) and run-time infrastruc-
ture (rti).

BIBLIOGRAPHY 167

In SICE 2003 Annual Conference, volume 1, pages 1136 –1139 Vol.1.

Yamamoto, G., Tai, H., and Mizuta, H. (2008).
A platform for massive agent-based simulation and its evaluation.
In Massively Multi-Agent Technology, volume 5043 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg.

Yoo, M.-J. and Glardon, R. (2009).
Combining jade and repast for the complex simulation of enterprise value-
adding networks.
In Agent-Oriented Software Engineering IX, volume 5386 of Lecture Notes
in Computer Science, pages 243–256. Springer Berlin Heidelberg.

Yurdusev, A. N. (1993).
’level of analysis’ and ’unit of analysis’: A case for distinction.
Millennium - Journal of International Studies, 22(1):77–88.

168 BIBLIOGRAPHY

	Titre
	Abstract
	Résumé
	Contents
	Introduction
	Part I : State of the art
	Chapter 1 Situated agent-based simulations
	Chapter 2 Large scale distributed agent-based simulations

	Part II : Distributed MAS simulators
	Chapter 3 Distributed-MAS : concepts and ideas
	Chapter 4 : Distributed-MAS : platform description

	Part III : Experimentations
	Chapter 5 Effective distribution of situated multi-agent simulations
	Chapter 6 Relaxing synchronization constraints in large scale simulations

	Part IV : Conclusion & Future works
	Chapter 7 Conclusion

	Annexe A : French chapter
	List of Figures
	List of Tables
	Bibliography

	source: Thèse de Omar Rihawi, Lille 1, 2014
	d: © 2014 Tous droits réservés.
	lien: doc.univ-lille1.fr

