
HAL Id: tel-01742570
https://theses.hal.science/tel-01742570

Submitted on 25 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential Learning with Similarities
Tomáš Kocák

To cite this version:
Tomáš Kocák. Sequential Learning with Similarities. Machine Learning [cs.LG]. Inria Lille Nord
Europe - Laboratoire CRIStAL - Université de Lille, 2016. English. �NNT : �. �tel-01742570�

https://theses.hal.science/tel-01742570
https://hal.archives-ouvertes.fr

École Doctorale Sciences pour l’Ingénieur
Inria Lille - Nord Europe

Université Lille 1

Thèse de Doctorat

présentée pour obtenir le grade de
DOCTEUR EN SCIENCES DE L’UNIVERSITÉ LILLE 1

Spécialité : Informatique

présentée par
Tomáš KOCÁK

Apprentissage séquentiel avec similitudes

sous la direction de M. Michal VALKO
et la co-direction de M. Rémi MUNOS

Rapporteurs: M. Claudio GENTILE University of Insubria
M. András GYÖRGY Imperial College London

Soutenue publiquement le 28 novembre 2016 devant le jury composé de :

M. Olivier CAPPÉ CNRS, Télécom ParisTech Examinateur
M. Claudio GENTILE University of Insubria Rapporteur
M. András GYÖRGY Imperial College London Rapporteur
M. Rémi MUNOS Inria & Google DeepMind Co-Directeur
M. Michal VALKO Inria Lille - Nord Europe Directeur

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Michal Valko for
the continuous support of my Ph.D study and related research, for his motivation,
immense knowledge, great research insights and especially for his patience. His guid-
ance helped me significantly in research and while writing all the papers and this
thesis.

I would like to thank also my co-advisor Rémi Munos for his expert advice whenever
needed and for his interesting and helpful discussions.

Besides my advisors, I would like to thank the rest of my thesis committee: Olivier
Cappé, Claudio Gentile, and András György for accepting my invitation to the com-
mittee and especially my thanks go to Claudio Gentile and András György for ac-
cepting to review my thesis.

I also thank all the collaborators I worked with during my Ph.D study and all
members SequeL team which contributed to the great experiance I had at Inria.
Especially I thank Gergely Neu for countless hours discussing about our research.

Last but not the least, I would like to thank my family and friends for supporting
me in difficult time and encouraging me to do my best.

Abstract

This thesis studies several extensions of multi-armed bandit problem, where a learner
sequentially selects an action and obtains the reward of the action. Traditionally, the
only information the learner acquires is about the obtained reward while information
about other actions is hidden from the learner. This limited feedback can be re-
strictive in some applications like recommender systems, internet advertising, packet
routing, etc. Usually, these problems come with structure, similarities between users
or actions, additional observations, or any additional assumptions. Therefore, it is
natural to incorporate these assumptions to the algorithms to improve their perfor-
mance. This thesis focuses on multi-armed bandit problem with some underlying
structure usually represented by a graph with actions as vertices. First, we study
a problem where the graph captures similarities between actions; connected actions
tend to grand similar rewards. Second, we study a problem where the learner ob-
serves rewards of all the neighbors of the selected action. We study these problems
under several additional assumptions on rewards (stochastic, adversarial), side obser-
vations (adversarial, stochastic, noisy), actions (one node at the time, several nodes
forming a combinatorial structure in the graph). The main contribution of this thesis
is to design algorithms for previously mentioned problems together with theoretical
and empirical guarantees. We also introduce several novel quantities, to capture
the difficulty of some problems, like effective dimension and effective independence
number.

Keywords: Sequential learning, bandit games, machine learning, decision making

Résumé

Dans cette thèse nous étudions différentes généralisations du problème dit « du ban-
dit manchot ». Le problème du bandit manchot est un problème de décision séquen-
tiel au cours duquel un agent sélectionne successivement des actions et obtient une
récompense pour chacune d’elles. On fait généralement l’hypothèse que seule la ré-
compense associée à l’action choisie est observée par l’agent, ce dernier ne reçoit
aucune information sur les actions non choisies. Cette hypothèse s’avère parfois très
restrictive pour certaines applications telles que les systèmes de recommandations,
la publicité en ligne, le routage de paquets, etc. Ces types de problèmes sont en
effet souvent très structurés : les utilisateurs et/ou les actions disponibles peuvent
par exemple présenter certaines similitudes, ou l’agent peut parfois recevoir davantage
d’information de l’environnement, etc. Il paraît dès lors assez naturel de tenir compte
de la connaissance de la structure du problème pour améliorer les performances des
algorithmes d’apprentissage usuels. Dans cette thèse, nous nous focalisons sur les
problèmes de bandits présentant une structure pouvant être modélisée par un graphe
dont les nœuds représentent les actions. Dans un premier temps, nous étudierons le
cas où les arêtes du graphe modélisent les similitudes entre actions : deux actions
connectées auront tendance à fournir des récompenses similaires. Dans un second
temps, nous analyserons le cas où l’agent observe les récompenses de toutes les ac-
tions adjacentes à l’action choisie dans le graphe. Pour les deux cas précédents,
nous dissocierons plusieurs sous-cas : récompenses stochastiques ou adversariales,
informations additionnelles stochastiques adversariales ou bruitée, une ou plusieurs
actions sélectionnées simultanément. Notre contribution principale a été d’élaborer
de nouveaux algorithmes permettant de traiter efficacement les problèmes évoqués
précédemment, et de démontrer théoriquement et empiriquement le bon fonction-
nement de ces algorithmes. Nos travaux nous ont également amenés à introduire de
nouvelles grandeurs, telles que la dimension effective et le nombre d’indépendance
effectif, afin de caractériser la difficulté des différents problèmes.

Mots-clés: apprentissage séquentiel, jeux de bandits, apprentissage automatique,
prise de décision (statistique)

List of author’s related publications

T. Kocák, G. Neu, and M. Valko. Online learning with Erdős-Rényi side-observation
graphs. In Conference on Uncertainty in Artificial Intelligence, 2016b

T. Kocák, G. Neu, and M. Valko. Online learning with noisy side observations. In
International Conference on Artificial Intelligence and Statistics, 2016a

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit exploration
in bandit problems with side observations. In Neural Information Processing Systems,
2014a

T. Kocák, M. Valko, R. Munos, and S. Agrawal. Spectral Thompson sampling. In
AAAI Conference on Artificial Intelligence, 2014b

M. Valko, R. Munos, B. Kveton, and T. Kocák. Spectral bandits for smooth graph
functions. In International Conference on Machine Learning, 2014

T. Kocák, M. Valko, R. Munos, B. Kveton, and S. Agrawal. Spectral bandits for
smooth graph functions with applications in recommender systems. In AAAI Work-
shop on Sequential Decision-Making with Big Data, 2014c

Contents

Chapter 1 Introduction 1

1 Basic multi-armed bandits . 1
1.1 Motivation for multi-armed bandits 2
1.2 Stochastic bandits . 3
1.3 Adversarial bandits . 4

2 Extensions of multi-armed bandits . 5
2.1 Full-information problem . 5
2.2 Linear and contextual multi-armed bandits 6
2.3 Combinatorial multi-armed bandits 7

3 Bandits with additional information 7
3.1 Spectral bandits and smooth graph functions 8
3.2 Bandits with side observations 10

Chapter 2 Spectral bandits for smooth graph functions 13

1 Introduction . 14

2 Spectral bandit setting . 16
2.1 Related work . 17

3 Spectral bandits . 19
3.1 Smooth graph functions . 19
3.2 Effective dimension . 21
3.3 Lower bound . 26

4 Algorithms . 28
4.1 SpectralUCB algorithm and theoretical guarantees 28
4.2 SpectralTS algorithm and theoretical guarantees 30

viii Contents

4.3 SpectralEliminator algorithm and theoretical guarantees 31
4.4 Scalability and computational complexity 33

5 Analysis . 34
5.1 Preliminaries . 34
5.2 Confidence ellipsoid . 35
5.3 Effective dimension . 36
5.4 Regret bound of SpectralUCB 39
5.5 Regret bound of SpectralTS 40
5.6 Regret bound of SpectralEliminator 48

6 Experiments . 51
6.1 Artificial datasets . 52
6.2 Effect of smoothness on regret 54
6.3 Computational complexity improvements 55
6.4 MovieLens experiments . 57
6.5 Flixster experiments . 59
6.6 Experiment design modifications 59

Chapter 3 Bandits with side observations 63

1 Framework of bandits with side observations 64
1.1 Existing algorithms and results 67
1.2 Exploration in Exp3-based algorithms 68
1.3 Implicit exploration and Exp3 algorithm 70
1.4 Exp3-based algorithms . 71

2 Adversarial bandits with adversarial side observations 78
2.1 Side-observation setting with adversarial graphs 79
2.2 Efficient learning by implicit exploration 80
2.3 Exp3-IX algorithm and theoretical guarantees 81

3 Adversarial bandits with stochastic side observations 87
3.1 Side-observation setting with stochastic graphs 90
3.2 Exp3-Res algorithm and theoretical guarantees 91
3.3 Experiments . 95

4 Adversarial bandits with noisy side observations 97
4.1 Side-observation setting with weighted graphs 101
4.2 Exp3-IXt algorithm and theoretical guarantees 103
4.3 Effective independence number 106

Contents ix

4.4 Exp3-WIX algorithm and theoretical guarantees 109
4.5 Experiments . 112

5 Combinatorial semi-bandits with adversarial side observations 113
5.1 Introduction . 113
5.2 Combinatorial side-observation setting with adversarial graphs 115
5.3 Implicit exploration by geometric resampling and FPL-IX al-

gorithm . 116
5.4 Performance guarantees for FPL-IX 118

6 Analysis . 120
6.1 Regret bound of Exp3-IX . 120
6.2 Regret bound of Exp3-Res 122
6.3 Regret bound of Exp3-IXt 125
6.4 Regret bound of Exp3-WIX 127
6.5 Regret bound of FPL-IX . 129

Chapter 4 Summary and future work 133

Bibliography 139

Chapter 1

Introduction

In this chapter, we introduce a sequential game called multi-armed bandit problem
which plays the central role in this thesis. We first introduce the problem in both
stochastic and adversarial environment and show several real world problems where
multi-armed bandit problem can be applied. Later, we show some limitations of
the approach of bandits in some real world scenarios and introduce several practical
extensions of the problem studied in the past. The last part of this chapter intro-
duces new extensions to the multi-armed bandit problem which try to tackle some
limitations of traditional approaches. We focus mainly on the problems with some
additional, and usually richer, structure while we aim for the solutions capturing the
nature of the problems, and bringing theoretical and empirical improvements over
already existing approaches.

1 Basic multi-armed bandits

The multi-armed bandit problem was originally inspired by clinical trials [Thompson,
1933]. In this problem, the doctor is facing a task to sequentially prescribe drugs to
patients as they arrive. The aim of the doctor it to cure as many patients as possible.
However, the problem received his name after another application of this framework.
The terminology of multi-armed bandit problem is closely related to slot machines
which are sometimes called one-armed bandits since the lever of a machine is also
called arm. In this problem, the player faces several slot machines (several arms) and
the player can choose one of the slot machines (one of the arms) to play and possibly
receives a random reward. The goal of the player is to sequentially choose actions in
order to earn as much as possible.

However, the random nature of the problem brings one important question. Suppose
the learner already explored some of the actions and he finds one arm which tends to
be the best so far. However, this might be caused by the randomness of the rewards.

2 Introduction

Therefore, the learn faces a dilemma whether to play “the best” action or play some
other action in order to gain more information and consequently make “better”, more
informed, decision. This problem is usually called exploration-exploitation dilemma
and the main problem is to find a good balance between exploration and exploitation.

The multi-armed bandit problem can be applied in a wide variety of situations and
has been studied in detail in the past. Now we show historical motivation for the
problem as well as several applications of the problem in present days.

1.1 Motivation for multi-armed bandits

Clinical trials. The multi-armed bandit problem was initially motivated by clinical
trials [Thompson, 1933] where the patients infected with a disease are treated by a
set of drugs (one at the time). Effects of the drugs on infected patients are unknown
at the beginning and the goal of the experiment is to find the best drug for the disease
while curing as many people in the process as possible. An action or an arm, in this
case, is a drug and a reward is whether we treated the patient successfully or not.

Packet routing. Consider a network represented by a set of vertices connected by
edges and we want to send packets from the source to the destination in a given
network. Every edge in a network is associated with an unknown delay depending on
a traffic. In every trial a packet is sent along a chosen route from the source to the
destination and the total delay of the packet is observed. The goal in this problem
is to minimize the total delay of sending the packets. This problem was tackled by
many papers including [Takimoto and Warmuth, 2003, McMahan and Blum, 2004,
Awerbuch and Kleinberg, 2004, György et al., 2007] and several extensions of bandits
were proposed to capture the problem more precisely. We will discuss these extensions
later in this section.

Recommender systems. For many people recommender systems [Jannach et al.,
2010] are integral parts of their lives. Watching movies, listening to the music, looking
for a dinner recipe we, finding a good book or restaurant. All of these situations
can be formalized as a bandit problem where a recommender system suggests an
item to a user and receives a feedback (whether the user likes the item or not).
Using this interaction, the system can learn user preferences in order to improve
recommendations in the future.

Internet advertising. Consider a simple problem where an advertiser can show

Basic multi-armed bandits 3

you one ad from the set of possible ads [Pandey et al., 2007, Schwartz, 2013, Babaioff
et al., 2014]. Every time you see an ad you can decide whether you want to click on
it or not and the goal of the advertiser is to show you ads in order to maximize the
number of clicks.

Sometimes the reward of an action can be simple and not changing too much over
time (treatment for a disease) and sometimes rewards can change dramatically over
time (the user suddenly started to like some movie genre). Therefore, the multi-
armed bandit problem is studied under several feedback models. The most common
are bandits with stochastic rewards where the rewards for an action come from a fixed
distribution, and adversarial rewards where the rewards are chosen by an adversary
without any statistical assumptions. We introduce these feedback models together
with the setting and the goal of the learner in the following two sections.

1.2 Stochastic bandits

This problem was originally formulated by Robbins [1952]. The learner faces a set
of N actions A = [N]

def
= {1, . . . , N}. Each action i is associated with an unknown

probability distribution νi on [0, 1] with mean µi. At each time step t ∈ [T], where
T ∈ N, the learner selects one action at ∈ A and receives a reward rt ∼ νat associated
with the arm at. The goal of the learner is to maximize the expected reward he
accumulates during the game; the sum of all the expected rewards

∑T
t=1 E [rt] =∑T

t=1 µat . Knowing the reward distributions the learner could play always the action
a∗

def
= arg maxi∈[N] µi with the highest expected reward. In order to analyze the

performance of the learner, we compare his performance to the (optimal) strategy
playing the best action in every time step. This performance measure is usually
called cumulative (pseudo) regret denoted by RT and defined as

RT = T max
i∈[N]

µi − E

[
T∑
t=1

µat

]
,

where the expectation is taken with respect to the randomness of the adversary as
well as with respect to the (possibly randomized) choices of the learner. Note that
we measure the performance of the user in terms of cumulative regret instead of
cumulative reward even though maximizing both of them leads to the same goal.
Figure 1.1 summarizes the stochastic multi-armed bandit game.

4 Introduction

1: Input:
2: Known set of actions [N]

3: Possibly known time horizon T
4: Unknown probability distributions ν1, . . . , νN such that E [νi] = µi, ∀i ∈ [N]

5: for t = 1 to T do
6: The learner chooses an action at ∈ [N]

7: The learner receives a reward rt ∼ νat
8: end for
9: Goal of the learner: Minimize cumulative regret Rt = T maxi∈[N] µi −

E
[∑T

t=1 µat

]
Figure 1.1: Stochastic multi-armed bandit game

1.3 Adversarial bandits

Similarly to the stochastic case, the learner faces a set A = [N] of N actions and the
game is played for T ∈ N rounds. However, the rewards associated with arms are
not stochastic anymore. In each time step, an adversary privately assigns rewards
rt,i to all the actions and the learner selects one action at to play. Then the learner
receives a reward rt,at corresponding to the action.

Similarly to the stochastic setting, the goal of the learner is to maximize its cumula-
tive reward and thus, minimizing cumulative regret. Therefore, the performance of
the learner is measured in terms of cumulative regret defined as

RT = max
i∈[N]

T∑
t=1

rt,i −
T∑
t=1

rt,at ,

which can be bounded either with high probability or in expectation. In the second
case, cumulative pseudo-regret takes the form

RT = max
i∈[N]

E

[
T∑
t=1

(rt,i − rt,at)

]
,

where the expectation is taken with respect to the randomness of the learner.

Extensions of multi-armed bandits 5

1: Input:
2: Known set of actions [N]

3: Possibly known time horizon T
4: An adversary privately chooses rewards rt,i for all i ∈ [N] and t ∈ [T]

5: for t = 1 to T do
6: The learner chooses an action at ∈ [N]

7: The learner receives a reward rt,at corresponding to the action at
8: end for
9: Goal of the learner: Minimize cumulative regret RT

Figure 1.2: Adversarial multi-armed bandit game

2 Extensions of multi-armed bandits

The formalism of multi-armed bandits can be easily used in the problems we men-
tioned before and in many other problems. However, actions in the multi-armed
bandit problem are assumed to be independent and thus, provide no information
about each other. On the other hand, real-world problems often come with some
structure. Using this structure, one might be able to design an algorithm which can
learn faster. For example, in packet routing, we usually observe delays on individ-
ual segments of the route. Moreover, the learner has also some information about
the paths which share some sub-path with our chosen path. In recommender sys-
tems, the users usually like similar items similarly and in the internet advertising,
users might be interested in a specific type of products like electronics, clothes, etc.
Therefore, several extensions of multi-armed bandit problem have been studied in the
past. We present several extensions in the following sections while focusing mainly
on extensions related to the results presented in the thesis.

2.1 Full-information problem

Some problems come with much richer feedback than bandits. A good example is
trading on a stock market where all stock prices are fully observable after each trad-
ing period. This can be formalized as a full-information problem (sometimes also
called a problem of prediction with expert advice) [Vovk, 1990, Littlestone and War-
muth, 1994, Freund and Schapire, 1997, Cesa-Bianchi et al., 1997]. It is a sequential
decision-making problem where, similarly to bandits, the learner picks an action and
obtain the reward of the selected action. However, the main difference is that the

6 Introduction

learner observes the losses associated with all potential decision, regardless of his
choice. Even though the full-information problem has been studied independently
of multi-armed bandit problem, the problems share many similarities. The standard
algorithm for the problem is called Hedge with the optimal theoretical bound of
Õ(
√
T) where Õ is a variation of O notation ignoring log factors. Using all addi-

tional information removes
√
N factor from the optimal regret bound in the bandit

case which is of Õ(
√
NT).

2.2 Linear and contextual multi-armed bandits

In linear bandits [Auer, 2002, Li et al., 2010, Agrawal and Goyal, 2013], every arm is
associated with a D-dimensional vector (or a point in RD) and the reward function
is an unknown linear function in RD. The problem can be also seen as learning an
unknown D-dimensional vector α such that the reward corresponding to an action
is xTα, where x is a vector corresponding to the action.

Contextual bandits bring very similar assumption on the rewards. Every action is
associated with a possibly changing vector and the reward corresponding to an action
can be obtained applying a function (unknown to the learner) on the vector. Usually
the function is linear but not necessarily.

For these settings, Auer [2002] proposed SupLinRel algorithm and showed that
it obtains Õ(

√
DT) regret, which matches the lower bound by Dani et al. [2008].

However, the first practical and empirically successful algorithm was LinUCB [Li
et al., 2010]. Later, Chu et al. [2011] analyzed SupLinUCB, which is a LinUCB
equivalent of SupLinRel. They showed that SupLinUCB also obtains Õ(

√
DT)

regret. Abbasi-Yadkori et al. [2011] proposed OFUL for linear bandits which obtains
Õ(D

√
T) regret. Using their analysis, it is possible to show that LinUCB obtains

Õ(D
√
T) regret as well (Remark 6). Whether LinUCB matches the Ω(

√
DT) lower

bound for this setting is still an open problem.

Apart from the above approaches, an older approach to the problem is Thompson
Sampling [Thompson, 1933]. Even though the algorithms based on Thompson Sam-
pling are empirically very successful [Chapelle and Li, 2011], it took a long time to
provide strong theoretical guarantees. Thompson Sampling for linear bandits was
analyzed only recently, Agrawal and Goyal [2013] bring a new martingale technique
which enabled them to show Õ(D

√
T) regret bound of LinearTS. Abernethy et al.

[2008] and Bubeck et al. [2012] studied a more difficult adversarial setting of linear

Bandits with additional information 7

bandits where the reward function is time-dependent. However, it is also an open
problem if this approach has an upper bound on the regret that scales with

√
D,

instead of D.

2.3 Combinatorial multi-armed bandits

A constraint on the number of arms played by the learner in the multi-armed bandit
problem can present an issue in some applications, e.g. packet routing, where the
action consists of picking several connections in the network forming a path. Com-
binatorial multi-armed bandits [Koolen et al., 2010, Cesa-Bianchi and Lugosi, 2012,
Audibert et al., 2014] deal with this issue. It is a sequential problem where, in each
time step t the environment assigns a loss value to each out of N components and
the task of the learner is to choose one of the actions while trying to minimize the
loss he incurs. Unlike in basic multi-armed bandit problem, where the actions consist
of individual components, in combinatorial multi-armed bandit problem the actions
can consist of several components. Usually, the action set S can be expressed as a
subset of {0, 1}N and playing an action v ∈ S results in incurring loss of components
corresponding to 1’s in v

3 Bandits with additional information

Real-world problems are usually complex with a rich structure. Therefore, a simple
multi-armed bandit problem is usually not sufficient to capture the nature of the
problem. On the other hand, extensions to the multi-armed bandit problem proved
to be capable of capturing many different structures of the problems. However, there
are still problems not captured by these extensions or sometimes algorithms just fail
to capture the nature of the problem. For example, using a basic bandit algorithm
to build a movie recommendation system comes with a problem. The algorithm
needs to recommend every movie at least once which goes against the nature of the
problem. We address this, and several other issues in this thesis.

In the rest of this chapter, we provide a brief overview of the bandit extensions stud-
ied in this thesis. We are mainly focusing on the problems with structure, usually
represented by an underlying graph with actions as nodes. First, we look at the sit-
uation where the rewards of connected actions are correlated and thus, observing a
reward of an action may give us some approximation of other correlated rewards. In

8 Introduction

this extension, we aim for the algorithms which perform well only after a small num-
ber of steps; addressing the previously mentioned problem of recommender systems.
Second, we explore the problem where the learner observes some additional informa-
tion on top the reward of the action he plays. This additional information is in the
form of a graph where playing an action reveals the rewards (possibly perturbed by
noise) of the neighbors.

3.1 Spectral bandits and smooth graph functions

The first problem we study is called spectral bandits. It is a new problem which is
motivated by a range of practical applications involving graphs. One application is
targeted advertisement in social networks. Here, the graph is a social network and
our goal is to discover a part of the network that is interested in a given product.
Interests of people in a social network tend to change smoothly [McPherson et al.,
2001], because friends tend to have similar preferences. Therefore, we take advantage
of this structure and formulate this problem as learning a smooth preference function
on a graph.

Another motivation for this approach are recommender systems [Jannach et al., 2010].
In content-based recommendation [Chau et al., 2011], the user is recommended items
that are similar to the items that the user rated highly in the past. The assumption is
that users prefer similar items similarly. The similarity of the items can be measured
for instance by a nearest neighbor graph [Billsus et al., 2000], where each item is a
node and its neighbors are the most similar items.

Our goal is to design algorithms which can leverage the fact that the reward function
can be smooth in many applications and provide strong theoretical guarantees and
empirical performance. Especially, we are aiming for algorithms that can perform
well only after few time steps.

A smooth graph function is a function on a graph that returns similar values on
neighboring nodes. This concept arises frequently in manifold and semi-supervised
learning [Zhu, 2008], and reflects the fact that the outcomes on the neighboring nodes
tend to be similar. It is well-known [Belkin et al., 2006, 2004] that a smooth graph
function can be expressed as a linear combination of the eigenvectors of the graph
Laplacian with smallest eigenvalues. Therefore, the problem of learning such function
can be cast as a regression problem on these eigenvectors. We bring this concept to
bandits. In particular, in Chapter 2 we study a bandit problem where the arms are

Bandits with additional information 9

the nodes of a graph and the expected payoff of pulling an arm is a smooth function
on this graph. We call this problem spectral bandits.

In the spectral bandit setting, we consider the following. The graph is known in
advance and its edges represent the similarity of the nodes. At time t, we choose a
node and then observe its payoff. In targeted advertisement, this may correspond
to showing an ad and then observing whether the person clicked on the ad. In
content-based recommendation, this may correspond to recommending an item and
then observing the assigned rating. Based on the payoff, we update our model of the
world and then the game proceeds into time t + 1. In both applications described
above, the learner (advertiser) has rarely the budget (time T) to try all the options
even once. Furthermore, imagine that the learner is a movie recommender system
and would ask the user to rate all the movies before it starts producing relevant
recommendations. Such a recommender system would be of little value. Yet, many
bandit algorithms start with pulling each arm once. This is something that we cannot
afford here and therefore, contrary to standard bandits, we mostly consider the case
T � N , where the number of nodes N can be huge. While we are mostly interested
in the regime when T < N , our results are beneficial also for T ≥ N . This regime
is especially challenging since traditional multi-arm bandit algorithms need to try
every arm at least once.

If the smooth graph function can be expressed as a linear combination of k eigenvec-
tors of the graph Laplacian, and k is small and known, our learning problem can be
solved using ordinary linear bandits [Auer, 2002, Li et al., 2010, Agrawal and Goyal,
2013]. In practice, k is problem specific and unknown. Moreover, the number of
features k may approach the number of nodes N . Therefore, proper regularization
is necessary, so that the regret of the learning algorithm does not scale with N . We
are interested in the setting where the regret is independent of N and this makes the
problem we study non-trivial.

Later in Chapter 2 we make several major contributions. First, we formalize a bandit
problem, where the payoff of the arms is a smooth function on a graph. Second, we
introduce an effective dimension d which characterizes the hardness of the problem.
Later we propose three algorithms for solving this problem that achieve regret bounds
scaling with d

√
T or

√
dT . Note that the regret bounds scale with the effective

dimension d instead of ambient dimension D = N like in linear bandits. Therefore
we can expect improvement over linear bandits whenever d is smaller than D. This
is reflected in the last part of the Chapter 2 where we evaluated the algorithms on
both synthetic and real-world content-based recommendation problems.

10 Introduction

3.2 Bandits with side observations

As we mentioned earlier, bandit feedback (observing only the reward of a selected
action) can be too restrictive in some applications. The simplest problem with richer
feedback is the previously mentioned setting with full information. However, the
problems might be more complicated than observing one or all rewards. Therefore,
we consider sequential decision-making problems where the feedback interpolates
between full-information feedback [Koolen et al., 2010] and bandit feedback [Auer
et al., 2002a]. This enables us to study practical, usually more complex problems
where traditional approaches may lead to suboptimal results. Recently, Mannor and
Shamir [2011] proposed a partial feedback scheme that models situations that lie
between the two extremes: in their model, the learner observes losses associated with
some additional actions besides its own loss. More precisely, there is an underlying
graph structure with arms as nodes and playing an action also reveals the losses
of all the neighbors according to the graph. We call this scheme bandits with side
observations.

Later in Chapter 3 we study several settings derived from the setting of Mannor
and Shamir [2011]. For each of the setting, we present an algorithm together with
theoretical guarantees. Chapter 3 is divided into following parts.

Adversarial bandits with adversarial side observations. This is a basic setting
of Mannor and Shamir [2011] where an underlying graph is selected by an adversary
in every round. For this setting, we introduce an implicit exploration technique
and present Exp3-IX (which uses implicit exploration). The implicit exploration
technique enables us to prove the optimal regret bound for the algorithm even without
access to the graph before playing an action (Exp3-IX is the first algorithm for
directed graphs which does not need access to the graph before an action is played).

Adversarial bandits with stochastic side observations. In this setting, we
assume that an underlying graph is constructed as an Erdős-Rényi graph with some
parameter r. This parameter is selected by an adversary and is unknown to the
learner. For this setting, we present the Exp3-Res algorithm which uses geometric
resampling in order to utilize a limited number of side observations. This approach
enables us to prove an optimal regret bound for the algorithm even without observing
the underlying graph structure, not even after an action is played.

Adversarial bandits with noisy side observations. In this setting, we assume
that an underlying graph is weighted and selected by an adversary. The weights

Bandits with additional information 11

represent the amount of information contained in the feedback. A weight close to one
means that the side observation is close to the real reward while a weight close to zero
means that the side observation is almost pure noise. For this setting, we introduce
a new quantity called effective independence number and present two algorithms
together with theoretical guarantees. The first algorithm is called Exp3-IXt and it
needs to know the graph beforehand in order to achieve optimal regret rate. The
second algorithm is called Exp3-WIX and uses a novel type of loss estimates in order
to achieve optimal regret bound, even without knowing the graph before taking an
action.

Combinatorial semi-bandits with adversarial side observations In this set-
ting we assume that the action of the learner is more complex than simply playing one
node of the graph. Instead, the action consists of several nodes (e.g. path from one
node to another, circles in the graph, pairs of nodes etc.), usually some combinatorial
structure but it can be any subset of nodes. These actions are problem dependent.
Similarly to previous settings, an adversary constructs a graph and playing an action
(set of nodes) reveal also rewards of nodes connected to the action (connected to at
least one node in the selected action).

Chapter 2

Spectral bandits
for smooth graph functions

Smooth functions on graphs have wide applications in the manifold and semi-
supervised learning. In this chapter, we study a bandit problem where the payoffs of
arms are smooth on a graph. This framework is suitable for solving online learning
problems that involve graphs, such as content-based recommendation. In this prob-
lem, each item we can recommend is a node and its expected rating is similar to its
neighbors. The goal is to recommend items that have high expected ratings. We aim
for the algorithms where the cumulative regret with respect to the optimal policy
would not scale poorly with the number of nodes. In particular, we introduce the
notion of an effective dimension, which is small in real-world graphs, and propose
three algorithms for solving our problem that scales linearly and sublinearly in this
dimension. Our experiments on content recommendation problem show that a good
estimator of user preferences for thousands of items can be learned from just tens of
node evaluations.

Contents

1 Introduction . 14

2 Spectral bandit setting . 16

2.1 Related work . 17

3 Spectral bandits . 19

3.1 Smooth graph functions . 19

3.2 Effective dimension . 21

3.3 Lower bound . 26

4 Algorithms . 28

14 Spectral bandits for smooth graph functions

4.1 SpectralUCB algorithm and theoretical guarantees 28

4.2 SpectralTS algorithm and theoretical guarantees 30

4.3 SpectralEliminator algorithm and theoretical guarantees . 31

4.4 Scalability and computational complexity 33

5 Analysis . 34

5.1 Preliminaries . 34

5.2 Confidence ellipsoid . 35

5.3 Effective dimension . 36

5.4 Regret bound of SpectralUCB 39

5.5 Regret bound of SpectralTS 40

5.6 Regret bound of SpectralEliminator 48

6 Experiments . 51

6.1 Artificial datasets . 52

6.2 Effect of smoothness on regret 54

6.3 Computational complexity improvements 55

6.4 MovieLens experiments . 57

6.5 Flixster experiments . 59

6.6 Experiment design modifications 59

1 Introduction

A smooth graph function is a function on a graph that returns similar values on
neighboring nodes. This concept arises frequently in manifold and semi-supervised
learning [Zhu, 2008], and reflects the fact that the outcomes on the neighboring
nodes tend to be similar. It is well-known [Belkin et al., 2006, 2004] that a smooth
graph function can be expressed as a linear combination of the eigenvectors of the
graph Laplacian with smallest eigenvalues. Therefore, the problem of learning such
function can be cast as a regression problem on these eigenvectors. This work brings
this concept to bandits. In particular, we study a bandit problem where the arms are

Introduction 15

−1 0 1
−0.2

0

0.2
Eigenvector 1

−1 0 1
−0.2

0

0.2
Eigenvector 2

−1 0 1
−0.2

0

0.2
Eigenvector 3

−1 0 1
−0.2

0

0.2
Eigenvector 4

−1 0 1
−0.2

0

0.2
Eigenvector 5

−1 0 1
−0.2

0

0.2
Eigenvector 6

−1 0 1
−0.2

0

0.2
Eigenvector 7

−1 0 1
−0.2

0

0.2
Eigenvector 8

−1 0 1
−0.2

0

0.2
Eigenvector 9Figure 2.1: Eigenvectors from the Flixster data corresponding to the smallest few

eigenvalues projected onto the first principal component. Colors indicate the values.

the nodes of a graph and the expected payoff of pulling an arm is a smooth function
on this graph.

We are motivated by a range of practical problems that involve graphs. One applica-
tion is targeted advertisement in social networks. Here, the graph is a social network
and our goal is to discover a part of the network that is interested in a given product.
Interests of people in a social network tend to change smoothly [McPherson et al.,
2001] because friends tend to have similar preferences. Therefore, we take advantage
of this structure and formulate this problem as learning a smooth preference function
on a graph.

Another application of our work are recommender systems [Jannach et al., 2010].
In the content-based recommendation [Chau et al., 2011], the user is recommended
items that are similar to the items that the user rated highly in the past. The
assumption is that users prefer similar items similarly. The similarity of the items
can be measured for instance by a nearest neighbor graph [Billsus et al., 2000], where
each item is a node and its neighbors are the most similar items.

In this chapter, we consider the following learning setting. The graph is known in
advance and its edges represent the similarity of the nodes. At time t, we choose a
node and then observe its payoff. In targeted advertisement, this may correspond
to showing an ad and then observing whether the person clicked on the ad. In
content-based recommendation, this may correspond to recommending an item and

16 Spectral bandits for smooth graph functions

then observing the assigned rating. Based on the payoff, we update our model of the
world and then the game proceeds into time t+ 1. Since the number of nodes N can
be huge, we are mostly interested in the regime when t < N even though our results
are beneficial also for t > N . This regime is especially challenging since traditional
multi-arm bandit algorithms need to explore every arm at least once.

If the smooth graph function can be expressed as a linear combination of k eigenvec-
tors of the graph Laplacian, and k is small and known, our learning problem can be
solved using ordinary linear bandits [Auer, 2002, Li et al., 2010, Agrawal and Goyal,
2013]. In practice, k is problem specific and unknown. Moreover, the number of
features k may approach the number of nodes N . Therefore, proper regularization
is necessary, so that the regret of the learning algorithm does not scale with N . We
are interested in the setting where the regret is independent of N and therefore this
problem is non-trivial.

2 Spectral bandit setting

In this section, we formally define the spectral bandit setting. Let G be the given
graph with the set of nodes V and denote |V| = N the number of nodes. Let
W be the N × N matrix of similarities wij (edge weights) and D is the N × N

diagonal matrix with entries dii =
∑

j wij (node degrees). The graph Laplacian of G
is defined as L = D −W . Let {λLk ,qk}Nk=1 be the eigenvalues and eigenvectors of L
ordered such that 0 = λL1 ≤ λL2 ≤ · · · ≤ λLN . Equivalently, let L = QΛLQ

T be the
eigendecomposition of L, where Q is an N ×N orthogonal matrix with eigenvectors
in columns.

Eigenvectors of the graph Laplacian form a basis (principal axis theorem), therefore
we can represent any reward function as a linear combination of the eigenvectors.
For any set of weights α let fα : V → R be the reward function defined on nodes,
linear in the basis of the eigenvectors of L:

fα(v) =
N∑
k=1

αk(qk)v = xT

vα,

where xv is the v-th row of Q, i.e., (xv)i = (qi)v. If the weight coefficients of the true
α are such that the large coefficients correspond to the eigenvectors with the small
eigenvalues and vice versa, then fα would be a smooth function on G [Belkin et al.,

Spectral bandit setting 17

2006]. For more details see Section 3.1. Figure 2.1 displays first few eigenvectors of
the Laplacian constructed from the data we use in our experiments. In the extreme
case, the true α may be of the form [α1, α2, . . . , αk, 0, 0, 0]TN for some k � N . Had
we known k in such case, the known linear bandits algorithm would work with the
performance scaling with k instead of D = N . Unfortunately, first, we do not know
k and second, we do not want to assume such an extreme case (i.e., αi = 0 for i > k).
Therefore, we opt for the more plausible assumption that the coefficients with the
high indexes are small. Consequently, we deliver algorithms with the performance
that scale with the smoothness with respect to the graph.

The learning setting is the following. In each time step t ≤ T , the recommender
chooses a node at and obtains a noisy reward such that:

rt = xT

atα+ εt,

where the noise εt is assumed to be R-sub-Gaussian (i.e. E [εt] = 0 and E [exp(sεt)] ≤
exp(R2s2/2), for all s ∈ R) for any t. In our setting, we have xv ∈ RD and ‖xv‖2 ≤ 1

for all xv. The goal of the recommender system is to minimize the cumulative regret
with respect to the strategy that always picks the best node w.r.t. α. Let at be
the node picked (referred to as pulling an arm) by an algorithm at time t. The
cumulative (pseudo) regret of the algorithm is defined as:

RT = T max
v
fα(v)−

T∑
t=1

fα(at)

We call this bandit setting spectral since it is built on the spectral properties of a
graph. Compared to the linear and multi-arm bandits, the number of armsK is equal
to the number of nodes N and to the dimension of the basis D (eigenvectors are of
dimension N). However, a regret that scales with N or D that can be obtained using
those settings is not acceptable because the number of nodes can be large. While we
are mostly interested in the setting with K = N , our algorithms and analyses can be
applied for any finite K.

2.1 Related work

We are mostly interested in smooth graph functions in spectral bandit setting which
can be expressed as a linear combination of eigenvectors of the graph Laplacian

18 Spectral bandits for smooth graph functions

(Chapter 2). Therefore, the most related settings to our work are that of the linear
and contextual linear bandits (Section 2.2 in Chapter 1).

Kleinberg et al. [2008], Slivkins [2009], and Bubeck et al. [2011] use similarity infor-
mation between the context of arms, assuming a Lipschitz or more general properties.
While such settings are indeed more general, the regret bounds scale worse with the
relevant dimensions. Srinivas et al. [2010] and Valko et al. [2013] also perform maxi-
mization over the smooth functions that are either sampled from a Gaussian process
prior or have a small RKHS norm. Their setting is also more general than ours since
it already generalizes linear bandits. However, their regret bound in the linear case
scales with D. Moreover, the regret of these algorithms also depends on a quantity
for which data-independent bounds exist only for some kernels, while our effective
dimension is always computable given the graph.

Another bandit graph setting called the gang of bandits was studied by Cesa-Bianchi
et al. [2013] where each node is a linear bandit with its own weight vector which is
assumed to be smooth on the graph. Gentile et al. [2014] take a different approach
to similarities in social networks by assuming that the actions are clustered into
several unknown clusters and the actions within one cluster have the same expected
reward. This approach can be applied also to the setting presented in our paper.
The biggest advantage of the CLUB algorithm presented in Gentile et al. [2014] is
that it constructs a graph iteratively, starting with the complete graph and removing
edges which are not likely to be present in the underlying clustering. Therefore, the
algorithm does not need to know the similarity graph unlike in our setting. However,
theoretical improvement of CLUB compared to the basic bandit algorithm comes
from the small number of clusters. Therefore, if the number of clusters is close to the
number of actions the algorithm does not bring any improvement while the algorithms
in our setting still can leverage the similarity structure. Li et al. [2015] later extended
the approach to double-clustering where both the users and the items are assumed
to appear in clusters (with the underlying clustering unknown to the learner) and
Korda et al. [2016] considers a distributed extension. Yet another assumption of a
special graph reward structure is exploited by unimodal bandits [Yu and Mannor,
2011, Combes and Proutière, 2014]. One of the settings considered by Yu and Mannor
[2011] is a graph bandit setting where every path in the graph has unimodal rewards
and therefore also imposes a specific kind of smoothness with respect to the graph
topology. In networked bandits [Fang and Tao, 2014], the learner picks a node, but
besides receiving the reward from that node, its reward is the sum of the rewards
of the picked node and its neighborhood. The algorithm of Fang and Tao [2014],
NetBandits, can also deal with changing topology, however, this has to be always

Spectral bandits 19

revealed to the learner before it makes its decision.

Spectral bandits with different objectives In the follow-up work on spectral
bandits, there have been algorithms optimizing other objective functions than the
cumulative regret. First, in some sensor networks, sensing a node (pulling and arm)
has an associated cost [Narang et al., 2013]. In a particular, cheap bandit setting
[Hanawal et al., 2015], it is cheaper to get an average of rewards of a set of nodes
than a specific reward of a single one. More precisely, the learner has a fixed budget
and pays the cost for the action which depends on the spectral properties of the
graph while relying on the property that getting the average reward of many nodes
is less costly than getting a reward of a single node. For this setting, Hanawal et al.
[2015] proposed CheapUCB that reduces the cost of sampling by 1/4 as compared
to SpectralUCB, while maintaining Õ(d

√
T) cumulative regret. Next, Gu and Han

[2014] study the online classification setting on graphs with bandit feedback, very
similar to spectral bandits; after predicting the class the oracle will return a single
bit indicating whether the prediction is correct or not. The analysis of their algorithm
delivers essentially the same bound on the regret, however, they need to know the
number of relevant eigenvectors d. Moreover, Ma et al. [2015] consider several variants
of Σ-optimality that favors specific exploration when selecting the nodes, for example,
the learner is not allowed to play one arm multiple times.

3 Spectral bandits

In this section, we show how to leverage the smoothness of the rewards on a given
graph. Thinking that the reward observed for an arm does not provide any infor-
mation for other arms would not be correct because of the assumption that under
another basis, the unknown parameter has a low norm. This provides an additional
information across the arms through the estimation of the parameter α.

3.1 Smooth graph functions

There are several possible ways to define the smoothness of the function f with
respect to the graph G. We are using the one which is standard in spectral clustering

20 Spectral bandits for smooth graph functions

[Luxburg, 2007] and semi-supervised learning [Belkin et al., 2006], defined as:

SG(f) =
1

2

N∑
i, j∈[N]

wi,j (f(i)− f(j))2 .

Therefore, whenever the function values of the nodes connected by an edge with large
weight are close, the smoothness of the function with respect to the graph is small,
and the function is smoother with respect to the graph. This definition has several
useful properties. We are mainly interested in the following:

SG(f) = fTLf = fTQΛQTf = αTΛα = ‖α‖2Λ =
N∑
i=1

λiα
2
i ,

where f = (f(1), . . . , f(N))T is the vector of the function values, QΛQT is the
eigendecomposition of the graph laplacian L, and α = QTf is the representation of
the vector f in the eigenbasis. The assumption on the smoothness of the reward
function with respect to the underlying graph is reflected by the small value of SG(f)

and therefore, the components of α corresponding to the large eigenvalues should be
small as well.

As a result, we can think of our setting as a linear bandit problem with dimension
N which is possibly larger than the time horizon T and the mean reward f(k) for
each arm k satisfies the property that under a change of coordinates, the vector f

of mean rewards has small components, i.e., there exists a known orthogonal matrix
U such that α = Uf has a low norm. As a consequence, we can estimate α using
penalization corresponding to the large eigenvalues and to recover f .

Given a vector of weights α, we define its Λ-norm as:

‖α‖Λ =

√√√√ N∑
i=1

λiα2
i =
√
αTΛα. (2.1)

In fact, this norm is defined as the square root to the smoothness of the function and
we utilize it later in our algorithms by regularization which enforces small Λ-norm
of α.

Spectral bandits 21

3.2 Effective dimension

In order to present and analyze our algorithms, we use a notion of effective dimen-
sion denoted by (lower case) d. This quantity was introduced in Valko et al. [2014]
however, we use a slightly modified version of the effective dimension. This new def-
inition of the effective dimension enables us to prove stronger theoretical guarantees
for our algorithms. In the rest of the paper, we refer to the old definition of the
effective dimension, introduced in Valko et al. [2014], as dold. We keep using capital
D to denote the ambient dimension (the number of features, the same as the num-
ber of actions in our setting). Intuitively, the effective dimension is a proxy for the
number of relevant dimensions. We first provide a formal definition and then discuss
its properties, including d < dold � D.

In general, we assume to have an eigendecomposition L = QΛLQ
T of the graph

Laplacian L and a diagonal matrix of regularized eigenvalues Λ = ΛL + λI with
the entries 0 < λ = λ1 ≤ λ2 ≤ · · · ≤ λN for some λ > 0. Note that the smallest
eigenvalue of the graph Laplacian is always zero. We use regularized eigenvalues in
order to prevent dividing by zero. This enables us to define the effective dimension
while still being able to control an error introduced by the regularization and therefore
not spoiling the bounds for the spectral setting.

Definition 1. Let the effective dimension d be defined as:

d =

max log

∏N
i=1

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
 ,

where the maximum is taken over all possible non-negative real numbers {t1, . . . , tN},
such that

∑N
i=1 ti = T and K is the number of zero eigenvalues (before regularization).

Remark 1. Note that if we first upper bound every 1/λi in the numerator by 1/λ

then the maximum is acquired for ti equal to T/N . Therefore, the right hand side
of the definition can be bounded from above by D = N . This means that d is upper
bounded by D. Later we show that in many practical situations, d is much smaller
then D.

For the comparison, we show also the previous definition of the effective dimension
[Valko et al., 2014] and from now we will call it old effective dimension denoted by
dold.

22 Spectral bandits for smooth graph functions

Definition 2 (Old effective dimension [Valko et al., 2014]). Let the old effective
dimension dold be the largest dold ∈ [N] such that:

(dold − 1)λdold ≤
T

log(1 + T/λ)

Remark 2. Note that from Lemma 5 and Lemma 6 by Valko et al. [2014], we see that
the relation between the old and new definition of the effective dimension is: d ≤ 2dold.
As we show later, the bounds using the effective dimension scale either with d or with
2dold. Moreover, we show that d is usually much smaller than 2dold and therefore
using the new definition of the effective dimension can bring an improvement to the
bound.

The effective dimension d is small when the coefficients λi grow rapidly above T .
This is the case when the dimension of the space D is much larger than T , such as in
graphs from social networks with a very large number of nodes N . In contrast, when
the coefficients λi are all small (if the graph is sparse, all eigenvalues of Laplacian are
small) then d may be of the order of T , which would make the regret bounds useless.

The actual form of Definition 1 comes from Lemma 11 and will become apparent
in Section 5. The dependence of the effective dimension on T comes from the fact,
that d is related to the number of “non-negligible” dimensions characterizing the
space where the solution to the penalized least-squares may lie, since this solution
is basically constrained to an ellipsoid defined by the inverse of the eigenvalues.
This ellipsoid is wide in the directions corresponding to the small eigenvalues and
narrow in the directions corresponding to the large ones. After playing an action,
the confidence ellipsoid shrinks in the directions of the action. Therefore, exploring
in a direction where the ellipsoid is wide can reduce the volume of the ellipsoid much
more than exploring in a direction where the ellipsoid is narrow. In fact, for a small
T , the axes of the ellipsoid corresponding to the large eigenvalues of L are negligible.
Consequently, d is related to the metric dimension of this ellipsoid. Therefore, when
T goes to infinity, all the directions matter, thus the solution can be anywhere in
a (bounded) space of dimension N . On the contrary, for a smaller T , the ellipsoid
possesses a smaller number of “non-negligible” dimensions.

Spectral bandits 23

3.2.1 The computation of the effective dimension

All of the algorithms that we propose need to know the value of the effective di-
mension in order to leverage the structure of the problem. Therefore, it is necessary
to compute it beforehand. Usually, we proceed in two steps when computing the
effective dimension:

1. Finding an N -tuple (t1, . . . , tN) which maximizes the expression from the def-
inition of the effective dimension.

2. Plugging the N -tuple to the definition of the effective dimension.

Now we focus on the first step. The following lemma gives us an efficient way to
determine the N -tuple

Lemma 1. Let ω ∈ [N] be the largest integer such that

∑ω
i=1 λi
ω

+
T

ω
− λω > 0,

then t1, . . . , tN that maximize the expression in the definition of the effective dimen-
sion are in the following form:

ti =

∑ω
i=1 λi
ω

+
T

ω
− λi for i = 1, . . . , ω,

ti = 0 for i = ω + 1, . . . , N.

Proof. First of all, we use the fact that logarithm is an increasing function and that
the N -tuple which maximizes the expression is invariant to a multiplication of the
expression by a constant:

arg max log
N∏
i=1

(
1 +

ti
λi

)
= arg max

N∏
i=1

(
1 +

ti
λi

)
= arg max

N∏
i=1

(λi + ti)

The last expression is easy to maximize since we know that for any ∆ ≥ δ ≥ 0 and

24 Spectral bandits for smooth graph functions

for any real number a we have

0 ≤ ∆2 − δ2

a2 −∆2 ≤ a2 − δ2

(a−∆)(a+ ∆) ≤ (a− δ)(a+ δ).

Therefore, if we take any two terms (λi + ti) and (λj + tj) from the expression which
we are maximizing, we can potentially increase their product simply by balancing
them:

tnew
i =

λi + λj + ti + tj
2

− λi

tnew
j =

λi + λj + ti + tj
2

− λj.

However, we still have to take into consideration that every ti has to be positive.
Therefore, if for example tnew

j is negative, we can simply set

tnew
i = ti + tj

tnew
j = 0.

We can apply this argument to the expression we are trying to maximize to obtain
the statement of the lemma.

The second part is straightforward. To avoid computational difficulties of multiplying
N numbers, we use properties of logarithm to get:

d =

max log

∏N
i=1

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
 =

max

∑N
i=1 log

(
1 + ti

λi

)
log
(
1 + T

Kλ

)
 ·

Knowing an N -tuple which maximizes the expression, we can simply plug it in and
obtain the value of the effective dimension.

Spectral bandits 25

3.2.2 The old vs. new definition of the effective dimension

As we mentioned in Remark 2, our new effective dimension is always upper bounded
by 2dold. In this section, we show that the gap between d and 2dold can be significant
what we demonstrate on the graphs constructed for several real-world datasets, and
also on several artificial graphs.

Flixster dataset, N=972

0 1000 2000 3000 4000 5000
Time

0

20

40

60

80

100

D
im

en
si

on

Time smaller than N
Old effective dimension
New effective dimension

Movielens dataset, N=618

0 500 1000 1500 2000 2500 3000
Time

0

50

100

150

200
D

im
en

si
on

Time smaller than N
Old effective dimension
New effective dimension

LastFM dataset, N=126

0 200 400 600 800 1000
Time

0

10

20

30

40

50

D
im

en
si

on

Time smaller than N
Old effective dimension
New effective dimension

Figure 2.2: Difference between d and 2dold for real world datasets. From left to
right: Flixster dataset with N = 972, Movielens dataset with N = 618, and LastFM
dataset with N = 804.

Erdos-Renyi graph with parameter 0.03, N=1000

0 500 1000 1500 2000
Time

0

5

10

15

20

25

D
im

en
si

on

Time smaller than N
Old effective dimension
New effective dimension

Barabási-Albert graph with parameter 1, N=1000

0 500 1000 1500 2000
Time

0

100

200

300

400

500

600

D
im

en
si

on

Time smaller than N
Old effective dimension
New effective dimension

Barabási-Albert graph with parameter 10, N=1000

0 500 1000 1500 2000
Time

0

50

100

150

200

D
im

en
si

on

Time smaller than N
Old effective dimension
New effective dimension

Figure 2.3: Difference between d and 2dold for artificial graphs on N = 1000 vertices.
From left to right: Erdős-Renyi graph with the probability 0.03 of an edge, Barabási-
Albert graph with one edge per added vertex, Barabási-Albert graph with ten edges
per added vertex.

Figures 2.2 and 2.3 show how d behaves compared to 2dold on the generated and
the real Flixster, Movielens, and LastFM network graphs.1 We use some of them
for the experiments in Section 6. The figures clearly demonstrate the gap between
d and 2dold while both of the quantities are much smaller then D. In fact, effective
dimension d is much smaller than D even for T > N (Figures 2.2 and 2.3). Therefore,

1We set Λ to ΛL + λI with λ = 0.1, where ΛL is the graph Laplacian of the respective graph.

26 Spectral bandits for smooth graph functions

spectral bandits can be use even for T > N while maintaining the advantage of better
regret bound compared to the linear bandit algorithms.

3.3 Lower bound

In this section, we show a lower bound for the spectral setting. More precisely,
for each possible value of effective dimension d and time horizon T , we show the
existence of a “hard” problem with a lower bound of Ω(

√
dT). We prove the theorem

by reducing a carefully selected problem to a multi-arm bandit problem with d arms
and using the following lower bound for it.

Theorem 1 (Auer et al., 2002b). For any number of actions K ≥ 2 and for any
time horizon T , there exists a distribution over the assignment of rewards such that
the expected regret of any algorithm (where the expectation is taken with respect to
both the randomization over rewards and the algorithms internal randomization) is
at least

1

20
min

{√
KT, T

}
.

We now state a lower bound for spectral bandits, featuring the effective dimension d.

Theorem 2. For any T and d, there exists a problem with effective dimension d and
time horizon T such that the expected regret of any algorithm is of Ω(

√
dT).

Proof. We define a problem with the set of actions consisting of K ≈ d blocks. Each
block is a complete graph KMT

on MT vertices. Moreover, all weights of the edges
inside a component are equal to one. We define MT as a T -dependent constant such
that the effective dimension of the problem d is exactly K. We specify the precise
value of MT later.

On top of the structure described above, we choose a reward function with smoothness
0, i.e., a constant on each of the components of the graph. In fact, even knowing
that the reward function is constant on individual components, this problem is as
difficult as the multi-arm bandit problem with K arms. Therefore, the lower bound
of Ω(

√
KT) of the K-arm bandit problem applies to our setting too. Consequently,

we have the lower bound of Ω(
√
dT), since d = K.

Spectral bandits 27

The last part of the proof is to show that d = K and therefore, we have to specify
value of MT . The graph consists of K blocks consisting MT vertices each. Therefore,
the graph Laplacian is the following matrix

L =

0

0
(MT − 1) −1 . . . −1

−1

.

.

.

.

.

. −1

−1 . . . −1 (MT − 1)

. . .

(MT − 1) −1 . . . −1

−1

.

.

.

.

.

. −1

−1 . . . −1 (MT − 1)

.

Now we can compute eigenvalues of L to obtain

L
eigenvalues−−−−−−→

K︷ ︸︸ ︷
0, . . . , 0,

(MT−1)K︷ ︸︸ ︷
MT , . . . , MT .

The next step is to plug these eigenvalues to the definition of the effective dimension
and to set the value of MT to obtain d = K.

d =

max log

∏K
i=1

(
1 + ti

λ

)∏KMT

i=K+1

(
1 + ti

λ+MT

)
log
(
1 + T

Kλ

)

Setting MT ≥ T/K we have that the maximum in the definition is obtained for
t1 = · · · = tK = T/K and tK+1 = · · · = tKMT

= 0. Therefore,

d =

⌈
log
∏K

i=1

(
1 + T

Kλ

)
log
(
1 + T

Kλ

) ⌉
=

⌈∑K
i=1 log

(
1 + T

Kλ

)
log
(
1 + T

Kλ

) ⌉
= K

This means that our problem is at least as difficult as the multi-arm bandit prob-
lem with K = d arms and therefore, the standard lower bound for K-arm bandits
(Theorem 1) applies to our problem.

28 Spectral bandits for smooth graph functions

4 Algorithms

In this section we introduce three algorithms for spectral setting; SpectralUCB,
SpectralTS, and SpectralEliminator. For each algorithm, we present a regret
bound and later in this section, we discuss computational advantages and compare
theoretical regret bounds of the algorithms with the lower bound provided in the
previous section. Complete proofs for the regret bounds are provided later in Section
5.

4.1 SpectralUCB algorithm and theoretical guarantees

The first algorithm we present is SpectralUCB (Algorithm 1) which is based on
LinUCB [Li et al., 2010] and uses the spectral penalty (2.1). Here we consider the
regularized least-squares estimate α̂t of the form:

α̂t = arg min
w∈RN

(
t∑

s=1

[
xT

asw − ras
]2

+ ‖w‖2Λ

)

A key part of the algorithm is to define the ct‖x‖V −1
t

confidence widths for the
prediction of the rewards. We take advantage of our analysis (Section 5.3) to define
ct based on the effective dimension d which is specifically tailored to our setting. By
doing this we also avoid the computation of the determinant (see Section 5). The
following theorem characterizes the performance of SpectralUCB and bounds the
regret as a function of effective dimension d.

Theorem 3. Let d be the effective dimension and λ be the minimum eigenvalue
of Λ. If ‖α‖Λ ≤ C and for all xa, xT

aα ∈ [−1, 1], then the cumulative regret of
SpectralUCB is with probability at least 1− δ bounded as

RT ≤
(

2R
√

2d log(1 + T/(Kλ)) + 8 log(1/δ) + 2C + 2
)√

2dT log(1 + T/(Kλ)).

Remark 3. The constant C needs to be such that ‖α‖Λ ≤ C. If we set C too small,
the true α will lie outside of the region and far from α̂t, causing the algorithm to
underperform. Alternatively, C can be time dependent, e.g., Ct = log T . In such
case, we do not need to know an upper bound on ‖α‖Λ in advance, but our regret
bound would only hold after some t, when Ct ≥ ‖α‖Λ.

Algorithms 29

Algorithm 1 SpectralUCB
1: Input:
2: N : the number of actions, T : the number of rounds
3: {ΛL,Q}: spectral basis of graph Laplacian L
4: λ, δ: regularization and confidence parameters
5: R, C: upper bounds on the noise and ‖α‖Λ
6: Initialization:
7: V1 = Λ = ΛL + λI

8: α̂1 = 0N
9: d = d(max log

∏N
i=1(1 + ti/λi))/ log(1 + T/(Kλ))e (Definition 1)

10: c = R
√

2d log(1 + T/(Kλ)) + 8 log(1/δ) + C

11: Run:
12: for t = 1 to T do
13: Choose the node at (at-th row of Q) such that:
14: at = arg maxa

(
xT
aα̂t + c‖xa‖V −1

t

)
15: Observe a noisy reward rt = xT

atα+ εt
16: Update the basis coefficients α̂:
17: Vt+1 = Vt + xatx

T
at

18: α̂t+1 = V −1t+1

∑t
s=1 xasrs

19: end for

We provide the proof of Theorem 3 in Section 5 and examine the performance of
SpectralUCB experimentally in Section 6. The d

√
T result of Theorem 3 is to

be compared with the classical linear bandits, where LinUCB is the algorithm often
used in practice [Li et al., 2010] achieving D

√
T cumulative regret. As mentioned

above and demonstrated in Figures 2.2 and 2.3, in the T < N regime we can expect
d� D = N and obtain an improved performance.

4.2 SpectralTS algorithm and theoretical guarantees

The second algorithm presented in this paper is SpectralTS which is based on Lin-
earTS [Agrawal and Goyal, 2013] and uses Thompson Sampling to decide which arm
to play. Specifically, we represent our current knowledge about α as a normal distri-
bution N (α̂t, v

2V −1t), where α̂t is our actual approximation of the unknown vector
α and v2V −1t reflects our uncertainty about it. As mentioned before, we assume that
the reward function is a linear combination of eigenvectors of graph Laplacian L with
large coefficients corresponding to the eigenvectors with small eigenvalues. We encode

30 Spectral bandits for smooth graph functions

Algorithm 2 SpectralTS
1: Input:
2: N : the number of actions, T : the number of rounds
3: {ΛL,Q}: spectral basis of graph Laplacian L
4: λ, δ: regularization and confidence parameters
5: R, C: upper bounds on the noise and ‖α‖Λ
6: Initialization:
7: V1 = Λ = ΛL + λIN
8: α̂1 = 0N
9: d = d(max log

∏N
i=1(1 + ti/λi))/ log(1 + T/(Kλ))e (Definition 1)

10: v = R
√

3d log(1/δ + T/(δλK)) + C

11: Run:
12: for t = 1 to T do
13: Sample α̃t ∼ N (α̂t, v

2V −1t)

14: Choose the node at (at-th row of Q):
15: at = arg maxa xT

aα̃

16: Observe a noisy reward rt = xT
atα+ εt

17: Update the basis coefficients α̂:
18: Vt+1 = Vt + xatx

T
at

19: α̂t+1 = V −1t+1

∑t
s=1 xasrs

20: end for

this assumption into our initial confidence ellipsoid by setting V1 = Λ = ΛL + λI,
where λ is a regularization parameter.

In every time step t we generate a sample α̃t from the distribution N (α̂t, v
2V −1t),

choose an arm at which maximizes xT
i α̃t, and receive a reward. Afterwards, we update

our estimate of α and the confidence of it, i.e., we compute α̂t+1 and Vt+1,

Vt+1 = Vt + xatx
T

at α̂t+1 = V −1t+1

(
t∑

s=1

xasrs

)
.

Remark 4. Since TS is a Bayesian approach, it requires a prior to run and we choose
it here to be a Gaussian. However, this does not pose any assumption whatsoever
about the actual data both for the algorithm and the analysis. The only assumptions
we make about the data are: (a) that the mean payoff is linear in the features, (b)
that the noise is R-sub-Gaussian, and (c) that we know a bound on the Laplacian

Algorithms 31

norm of the mean reward function. We provide a frequentist bound on the regret (and
not an average over the prior) which is a much stronger worst case result.

The following theorem upper bounds the cumulative regret of SpectralTS in terms
of effective dimension.

Theorem 4. Let d be the effective dimension and λ be the minimum eigenvalue
of Λ. If ‖α‖Λ ≤ C and for all xa, xT

aα ∈ [−1, 1], then the cumulative regret of
SpectralTS is with probability at least 1− δ bounded as

RT ≤
11g

p

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
+

1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

2

δ
,

where p = 1/(4e
√
π) and

g =
√

4 log(TN)

(
R

√
3d log

(
1

δ
+

T

δλK

)
+ C

)
+R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C.

Remark 5. Substituting g and p we see that the regret bound scales as d
√
T logN .

Note that N = D could be exponential in d and we need to consider factor
√

logN in
our bound. On the other hand, if N is indeed exponential in d, then our algorithm
scales with logD

√
T logD = log(D)3/2

√
T which is even better.

4.3 SpectralEliminator algorithm and theoretical guaran-
tees

It is known that the available upper bound for LinUCB, LinearTS or OFUL is
not optimal for the linear bandit setting with a finite number of arms in terms
of dimension D. On the other hand, the algorithms SupLinRel or SupLinUCB
achieve the optimal

√
DT regret. In the following, we likewise provide an algorithm

that also scales better with d and achieves
√
dT regret. The algorithm is called

SpectralEliminator (Algorithm 3) and works in phases, eliminating the arms
that are not promising. The phases are defined by the time indexes t1 = 1 ≤ t2 ≤
. . . and depend on some parameter β. The algorithm is in a spirit similar to the
Improved UCB by Auer and Ortner [2010]. In the following theorem we characterize
the performance of SpectralEliminator and show that the upper bound on regret
has
√
d improvement over SpectralUCB and SpectralTS.

32 Spectral bandits for smooth graph functions

Algorithm 3 SpectralEliminator
Input:
N : the number of nodes, T : the number of pulls
{ΛL,Q} spectral basis of L
λ : regularization parameter
β, {tj}Jj parameters of the elimination and phases
A1 = {x1, . . . ,xK}.

for j = 1 to J do
Vtj = γΛL + λI

for t = tj to min(tj+1 − 1, T) do
Play available arm at (xat ∈ Aj) with the largest width and observe rt:
at = arg maxa|xa∈Aj ‖xa‖V −1

t

Vt+1 = Vt + xatx
T
at

end for
Eliminate the arms that are not promising:
α̂j+1 = V −1t+1[xtj , . . . ,xt][rtj , . . . , rt]

T

p = maxx∈Aj

[
〈α̂j+1,x〉 − ‖x‖V −1

t+1
β
]

Aj+1 =
{

x ∈ Aj, 〈α̂j+1,x〉+ ‖x‖V −1
t+1
β ≥ p

}
end for

Theorem 5. Choose the phases starts as tj = 2j−1. Assume all rewards are
in [0, 1] and ‖α‖Λ ≤ C. For any δ > 0, with probability at least 1 − δ, the
cumulative regret of SpectralEliminator algorithm run with parameter β =

R
√

log(2K(1 + log2 T)/δ) + C is bounded as:

RT ≤ 2 + 8

(
R

√
2 log

2K(1 + log2 T)

δ
+ C +

1

2

)√
2dT log2(T) log (1 + T/(λK))

4.4 Scalability and computational complexity

There are three main computational issues to address in order to make proposed
algorithms scalable: the computation of N UCBs (apply to SpectralUCB), matrix
inversion, and obtaining the eigenbasis which serves as an input to the algorithm.
First, to speed up the computation of N UCBs (in general done in N3 time) in each
time step, we use lazy updates technique [Desautels et al., 2012] which maintains a

Algorithms 33

sorted queue of UCBs and using the fact that UCB for every arm can only decrease
after an update. Therefore, the algorithm does not need to update all UCBs in
each time step. This in practice leads to substantial speed gains. This issue does
not apply to SpectralTS since we only need to sample α̃ which can be done
in N2 time and find a maximum of xT

i α̃ which can be also done in N2 time. In
general, the computational complexity of sampling in SpectralTS is better than the
complexity of computing N UCBs in SpectralUCB. However, using lazy updates
can significantly speed up SpectralUCB up to the point that SpectralUCB can
be comparable to the SpectralTS.

Second, all of the proposed algorithms need to compute inverse if N ×N matrix in
each time step which can be costly. However, we can use Sherman-Morrison formula
to invert matrix iteratively and thus speed up matrix inversion since the matrix
changes only by adding a rank-1 matrix from one time step to the next one.

Finally, while the eigendecomposition of a general matrix is computationally difficult,
Laplacians are symmetric diagonally dominant (SDD). This enables us to use fast
SDD solvers as CMG by Koutis et al. [2011]. Furthermore, using CMG we can find
good approximations to the first L eigenvectors in O(Lm logm) time, where m is the
number of edges in the graph (e.g. m = 10N in the Flixter experiment). CMG can
easily work with N in millions. In general, we have L = N but from our experience,
a smooth reward function can be often approximated by dozens of eigenvectors. In
fact, L can be considered as an upper bound on the number of eigenvectors we
actually need. Furthermore, by choosing small L we not only reduce the complexity
of eigendecomposition but also the complexity of the least-square problem being
solved in each iteration.

Choosing a small L can significantly reduce the computation but it is important to
choose L large enough so that still less than L eigenvectors are enough. This way,
the problem that we solve is still relevant and our analysis applies. In short, the
problem cannot be solved trivially by choosing first k relevant eigenvectors because
k is unknown. Therefore, in practice, we choose the largest L such that our method
is able to run. In Section 6.3, we demonstrate that we can obtain good results with
relatively small L.

34 Spectral bandits for smooth graph functions

5 Analysis

Now we are ready to prove regret bounds for individual algorithms. First, we show
some general preliminary results in Section 5.1. Then we present several auxiliary
lemmas concerning confidence ellipsoid (Section 5.2) and effective dimension (Section
5.3). Using these results we upper-bound the regrets of SpectralUCB (Section 5.4),
SpectralTS (Section 5.5), and SpectralEliminator (Section 5.6).

5.1 Preliminaries

Lemma 2. For a Gaussian distributed random variable Z with mean m and variance
σ2, for any z ≥ 1,

1

2
√
πz
e−z

2/2 ≤ P(|Z −m| > σz) ≤ 1√
πz
e−z

2/2.

Multiple use of Sylvester’s determinant theorem gives:

Lemma 3. Let Vt = Λ +
∑t−1

s=1 xsx
T
s, then

log
|Vt|
|Λ|

=
t−1∑
s=1

log(1 + ‖xs‖2V −1
s

)

Lemma 4. For any symmetric, positive semi-definite matrix X and any vectors u
and y:

yT(X + uuT)−1y ≤ yTX−1y

Proof. Using Sherman–Morrison formula and the fact that inverse of a symmetric

Analysis 35

matrix is symmetric again, we have

−(uTX−1y)
T

(uTX−1y)

1 + uTX−1u
≤ 0

yT

(
X−1 − X

−1uuTX−1

1 + uTX−1u

)
y ≤ yTX−1y

yT (X + uuT)−1 y ≤ yTX−1y.

Corollary 1. Let Vt = Λ +
∑t−1

s=1 xsx
T
s. Then for any vector x

||x||V −1
t1
≥ ||x||V −1

t2

holds for any positive integers t1, t2 satisfying t1 ≤ t2.

5.2 Confidence ellipsoid

The first two lemmas are by Abbasi-Yadkori et al. [2011] and we restate them for
convenience.

Lemma 5. Let Vt = Λ +
∑t−1

s=1 xsx
T
s and define ξt =

∑t−1
s=1 εsxs. With probability at

least 1− δ, ∀t ≥ 1:

‖ξt‖2V −1
t
≤2R2 log

(
|Vt|1/2

δ|Λ|1/2

)

Lemma 6. For any t, let Vt = Λ +
∑t−1

s=1 xsx
T
s. Then:

t∑
s=1

min
(

1, ‖xs‖2V −1
s

)
≤ 2 log

|Vt+1|
|Λ|

The next lemma is a generalization of Theorem 2 by Abbasi-Yadkori et al. [2011] to
the regularization with Λ.

36 Spectral bandits for smooth graph functions

Lemma 7. Let Vt = Λ +
∑t−1

s=1 xsx
T
s and ‖α‖Λ ≤ C. With probability at least 1− δ,

for any vector x and for any positive integer t:

|xTα̂t − xTα| ≤ ‖x‖V −1
t

(
R

√
2 log

(
|Vt|1/2
δ|Λ|1/2

)
+ C

)

Proof. We have:

|xTα̂t − xTα| = |xT(−V −1t Λα+ V −1t ξt)|
≤ |xTV −1t Λα|+ |xTV −1t ξt|

≤ |xTV
− 1

2
t V

− 1
2

t Λα|+ |xTV
− 1

2
t V

− 1
2

t ξt|

≤ ‖x‖V −1
t

(
‖ξt‖V −1

t
+ ‖Λα‖V −1

t

)
,

where we used Cauchy-Schwarz inequality in the last step. Now we bound ‖ξt‖V −1
t

by Lemma 5 and using Corollary 1 we bound ||Λα||V −1
t

as

‖Λα‖V −1
t
≤ ‖Λα‖V −1

1
= ‖Λα‖Λ−1 = ‖α‖Λ ≤ C.

5.3 Effective dimension

In Section 5.2 we showed that several quantities scale with log(|Vt|/|Λ|), which can
be of order D. Therefore, in this part, we present the key ingredient of our analysis,
based on the geometrical properties of determinants (Lemmas 9 and 10), to upper-
bound log(|Vt|/|Λ|) by a term that scales with d (Lemma 11). Not only this will
allow us to show that the regret bound scales with d, but it also helps us to avoid
the computation of the determinants in Algorithm 1.

Lemma 8. For any real positive-definite matrix A with only simple eigenvalue multi-
plicities and any vector x such that ‖x‖2 ≤ 1 we have that the determinant |A+xxT|
is maximized by a vector x which is aligned with an eigenvector of A.

Proof. Using Sylvester’s determinant theorem, we have:

|A + xxT| = |A||I + A−1xxT| = |A|(1 + xTA−1x)

Analysis 37

From the spectral theorem, there exists an orthonormal matrix U, the columns of
which are the eigenvectors of A; such that A = UDUT with D being a diagonal
matrix with the positive eigenvalues of A on the diagonal. Thus:

max
‖x‖2≤1

xTA−1x = max
‖x‖2≤1

xTUD−1UTx = max
‖y‖2≤1

yTD−1y,

since U is a bijection from {x, ‖x‖2 ≤ 1} to itself.

Since there are no multiplicities, it is easy to see that the quadratic mapping y 7→
yTD−1y is maximized (under the constraint ‖y‖2 ≤ 1) by a canonical vector eI
corresponding to the lowest diagonal entry I of D. Thus the maximum of x 7→
xTA−1x is reached for UeI , which is the eigenvector of A corresponding to its lowest
eigenvalue.

Lemma 9. Let Λ = diag(λ1, . . . , λN) be any diagonal matrix with strictly positive
entries. For any vectors (xs)1≤s<t such that ‖xs‖2 ≤ 1 for all 1 ≤ s < t, we have that
the determinant |Vt| of Vt = Λ +

∑t−1
s=1 xsx

T
s is maximized when all xs are aligned

with the axes.

Proof. Let us write d(x1, . . . ,xt−1) = |Vt| the determinant of Vt. We want to char-
acterize:

max
x1,...,xt−1:‖xs‖2≤1,∀1≤s<t

d(x1, . . . ,xt−1)

For any 1 ≤ i < t, let us define:

V−i = Λ +
t−1∑
s=1
s 6=i

xsx
T

s

We have that Vt = V−i + xix
T
i . Consider the case where every eigenvalue is of

multiplicities one. In this case, Lemma 8 implies that xi 7→ d(x1, . . . ,xi, . . . ,xt−1) is
maximized when xi is aligned with an eigenvector of V−i. Thus all xs, for 1 ≤ s < t,
are aligned with an eigenvector of V−i and therefore also with an eigenvector of
Vt. Consequently, the eigenvectors of

∑t−1
s=1 xsx

T
s are also aligned with Vt. Since

Λ = Vt −
∑t−1

s=1 xsx
T
s and Λ is diagonal, we conclude that Vt is diagonal and all xs

are aligned with the canonical axes.

38 Spectral bandits for smooth graph functions

Now in the case of eigenvalue multiplicities, the maximum of |Vt| may be reached
by several sets of vectors {(xms)1≤s<t}m but for some m∗, the set (xm

∗
s)1≤s<t will be

aligned with the axes. In order to see that, consider a perturbed matrix V ε
−i by a

random perturbation of amplitude at most ε, i.e. such that V ε
−i → V−i when ε→ 0.

Since the perturbation is random, then the probability that Λε, as well as all other
V ε
−i possess an eigenvalue of multiplicity bigger than 1 is zero. Since the mapping

ε 7→ V ε
−i is continuous, we deduce that any adherent point x̄i of the sequence (xεi)ε

(there exists at least one since the sequence is bounded in `2-norm) is aligned with
the limit V−i and we can apply the previous reasoning.

Lemma 10. For any t, let Vt =
∑t−1

s=1 xsx
T
s + Λ. Then:

log
|Vt|
|Λ|
≤ max

N∑
i=1

log
(

1 +
ti
λi

)
,

where the maximum is taken over all possible positive real numbers {t1, . . . , tN}, such
that

∑N
i=1 ti = t− 1.

Proof. We want to bound the determinant |Vt| under the coordinate constraints
‖xs‖2 ≤ 1. Let:

M(x1, . . . ,xt−1) =
∣∣∣Λ +

t−1∑
s=1

xsx
T

s

∣∣∣
From Lemma 9 we deduce that the maximum ofM is reached when all xt are aligned
with the axes:

M = max
x1,...,xt−1;xs∈{e1,...,eN}

∣∣∣Λ +
t−1∑
s=1

xsx
T

s

∣∣∣
= max

t1,...,tN positive integers,∑N
i=1 ti=t−1

∣∣∣diag(λi + ti)
∣∣∣

≤ max
t1,...,tN positive reals,∑N

i=1 ti=t−1

N∏
i=1

(
λi + ti

)
,

from which we obtain the result.

Analysis 39

Lemma 11. Let d be the effective dimension and t ≤ T + 1. Then:

log
|Vt|
|Λ|
≤ d log

(
1 +

T

Kλ

)

Proof. Using Lemma 10 and Definition 1 we have:

log
|Vt|
|Λ|
≤ max

N∑
i=1

log
(

1 +
ti
λi

)

=
max

∑N
i=1 log

(
1 + ti

λi

)
log(1 + T/(Kλ))

log

(
1 +

T

Kλ

)

≤

max

∑N
i=1 log

(
1 + ti

λi

)
log(1 + T/(Kλ))

 log

(
1 +

T

Kλ

)

= d log

(
1 +

T

Kλ

)
.

5.4 Regret bound of SpectralUCB

The analysis of SpectralUCB has two, previously mentioned, main ingredients.
The first one is the derivation of the confidence ellipsoid for α̂, which is a straight-
forward update of the analysis of OFUL [Abbasi-Yadkori et al., 2011] using self-
normalized martingale inequality (Section 5.2). The second part is crucial to prove
that the final regret bound scales only with the effective dimension d and not with
the ambient dimension D. We achieve this by considering the geometrical properties
of the determinant which holds in our setting (Section 5.3).

Proof of Theorem 3. Let x∗ = arg maxxv xT
vα and let RT (t) denote the instantaneous

40 Spectral bandits for smooth graph functions

regret at time t. With probability at least 1− δ, for all t:

RT (t) = xT

∗α− xT

atα

≤ xT

atα̂t + c‖xat‖V −1
t
− xT

atα (2.2)

≤ xT

atα̂t + c‖xat‖V −1
t
− xT

atα̂t + c‖xat‖V −1
t

(2.3)

= 2c‖xat‖V −1
t
.

Inequality (2.2) is by the algorithm design and reflects the optimistic principle of
SpectralUCB. Specifically, xT

∗α̂t + c‖x∗‖V −1
t
≤ xT

atα̂t + c‖xat‖V −1
t
, from which:

xT

∗α ≤ xT

∗α̂t + c‖x∗‖V −1
t
≤ xT

atα̂t + c‖xat‖V −1
t

In (2.3) we applied Lemma 7: xT
atα̂t ≤ xT

atα + c‖xat‖V −1
t
. Finally, by Lemmas 6

and 11:

RT =
T∑
t=1

RT (t) ≤
T∑
t=1

min
(

2, 2c‖xat‖V −1
t

)
≤ (2 + 2c)

T∑
t=1

min
(

1, ‖xat‖V −1
t

)

≤ (2 + 2c)

√√√√T
T∑
t=1

min
(

1, ‖xat‖2V −1
t

)
≤ (2 + 2c)

√
2T log

|VT+1|
|Λ|

≤ (2 + 2c)

√
2dT log

(
1 +

T

Kλ

)

By plugging c, we get that with probability at least 1− δ, the theorem holds.

Remark 6. Notice that if we set Λ = I in Algorithm 1, we recover LinUCB. Since
log(|VT+1|/|Λ|) can be upperbounded by D log T [Abbasi-Yadkori et al., 2011], we
obtain Õ(D

√
T) upper bound of regret of LinUCB as a corollary of Theorem 3.

5.5 Regret bound of SpectralTS

Regret bound of SpectralTS algorithm is based on the proof technique of Agrawal
and Goyal [2013]. The summary of the technique follows. Each time an arm is
played, our algorithm improves the confidence about our actual estimate of α via

Analysis 41

the update of Vt and thus the update of confidence ellipsoid. However, when we play
a suboptimal arm, the regret we obtain can be much higher than the improvement
of our knowledge. To overcome this difficulty, the arms are divided into two groups
of saturated and unsaturated arms, based on whether the standard deviation for an
arm is smaller than the standard deviation of the optimal arm (Definition 4) or not.
Consequently, the optimal arm is in the group of unsaturated arms. The idea is
to bound the regret of playing an unsaturated arm in terms of standard deviation
and to show that the probability that the saturated arm is played is small enough.
This way we overcome the difficulty of high regret and small knowledge obtained by
playing an arm.

Definition 3. We define Eα̂(t) as the event that for all i,

|xT

i α̂t − xT

iα| ≤ l‖xi‖V −1
t

where

l = R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C,

and Eα̃(t) as the event that for all i,

|xT

i α̃t − xT

i α̂t| ≤ v‖xi‖V −1
t

√
4 log(TN)

where

v = R

√
3d log

(
1

δ
+

T

δλK

)
+ C.

Definition 4. Let ∆i = xT
a∗α− xT

iα. We say that an arm i is saturated at time t
if ∆i > g‖xi‖V −1

t
, and unsaturated otherwise (including the optimal arm a∗). Let

C(t) denote the set of saturated arms at time t.

Definition 5. We define filtration Ft−1 as the union of the history until time t − 1

and features, i.e.,

Ft−1 = {Ht−1} ∪ {xi, i = 1, . . . , N}

By definition, F1 ⊆ F2 ⊆ · · · ⊆ FT−1.

42 Spectral bandits for smooth graph functions

Lemma 12. For all t, 0 < δ < 1, P(Eα̂(t)) ≥ 1−δ/T 2 and for all possible filtrations
Ft−1,

P(Eα̃(t) | Ft−1) ≥ 1− 1/T 2.

Proof. Bounding the probability of event Eα̂(t): Using Lemma 7, where C is
such that ‖α‖Λ ≤ C, for all t and for all i with probability at least 1− δ′ we have

|xT

i (α̂t −α)| ≤ ‖xi‖V −1
t

(
R

√
2 log

(
|Vt|1/2
δ′|Λ|1/2

)
+ C

)

= ‖xi‖V −1
t

(
R

√
log
|Vt|
|Λ|

+ 2 log
1

δ′
+ C

)
.

Therefore, using Lemma 11 and substituting δ′ = δ/T 2, we get that with probability
at least 1− δ/T 2, for all i,

|xT

i (α̂t −α)| ≤ ‖xi‖V −1
t

(
R

√
d log

(
1 +

T

Kλ

)
+ d log

T 2

δ
+ C

)

= ‖xi‖V −1
t

(
R

√
d log

(
T 2

δ
+

T 3

δλK

)
+ C

)
= l‖xi‖V −1

t
.

Bounding the probability of event Eα̃(t): The probability of each individual
term |xT

i (α̃t − α̂t)| <
√

4 log(TN) can be bounded using Lemma 2 to get

P
(
|xT

i (α̃t − α̂t)| ≥ v‖xi‖V −1
t

√
4 log(TN)

)
≤ e−2 log (TN)√

π4 log(TN)
≤ 1

T 2N
.

We complete the proof by taking a union bound over all N vectors xi. Notice that
we took a different approach than Agrawal and Goyal [2013] to avoid the dependence
on the ambient dimension D.

Lemma 13. For any filtration Ft−1 such that Eα̂(t) is true,

P
(
xT

a∗α̃t > xT

a∗α | Ft−1
)
≥ 1

4e
√
π
.

Analysis 43

Proof. Given Ft−1, xT
a∗α̃t is a Gaussian random variable with the mean xT

a∗α̂t and
the standard deviation v‖xa∗‖V −1

t
, we can use the anti-concentration inequality in

Lemma 2,

P
(
xT

a∗α̃t ≥ xT

a∗α | Ft−1
)

= P

(
xT
a∗α̃t − xT

a∗α̂t

v‖xa∗‖V −1
t

≥
xT
a∗α− xT

a∗α̂t

v‖xa∗‖V −1
t

| Ft−1

)
≥ 1

4
√
πZt

e−Z
2
t ,

where

|Zt| =

∣∣∣∣∣xT
a∗α− xT

a∗α̂t

v‖xa∗‖V −1
t

∣∣∣∣∣ .
Since we consider a filtration Ft−1 such that Eα̂(t) is true, we can upper bound the
numerator to get

|Zt| ≤
l‖xa∗‖V −1

t

v‖xa∗‖V −1
t

=
l

v
≤ 1.

Finally,

P
(
xT

a∗α̃t > xT

a∗α | Ft−1
)
≥ 1

4e
√
π
.

Lemma 14. For any filtration Ft−1 such that Eα̂(t) is true,

P(at 6∈ C(t) | Ft−1) ≥
1

4e
√
π
− 1

T 2
.

Proof. The algorithm chooses the arm with the highest value of xT
i α̃t to be played at

time t. Therefore if xT
a∗α̃t is greater than xT

j α̃t for all saturated arms, i.e., xT
a∗α̃t >

xT
j α̃t, ∀j ∈ C(t), then one of the unsaturated arms (which include the optimal arm

and other suboptimal unsaturated arms) must be played. Therefore,

P(at 6∈ C(t) | Ft−1) ≥ P(xT

a∗α̃t > xT

j α̃t, ∀j ∈ C(t) | Ft−1).

44 Spectral bandits for smooth graph functions

By definition, for all saturated arms, i.e., for all j ∈ C(t), ∆j > g‖xj‖V −1
t

. Now if
both of the events Eα̂(t) and Eα̃(t) are true then, by definition of these events, for all
j ∈ C(t), xT

j α̃t ≤ xT
jαt + g‖xj‖V −1

t
. Therefore, given the filtration Ft−1, such that

Eα̂(t) is true, either Eα̃(t) is false, or else for all j ∈ C(t),

xT

j α̃t ≤ xT

jα+ g‖xj‖V −1
t
≤ xT

a∗α.

Hence, for any Ft−1 such that Eα̂(t) is true,

P(xT

a∗α̃t > xT

j α̃t, ∀j ∈ C(t) | Ft−1) ≥ P(xT

a∗α̃t > xT

a∗α | Ft−1)− P
(
Eα̂(t) | Ft−1

)
≥ 1

4e
√
π
− 1

T 2
.

In the last inequality we used Lemma 12 and Lemma 13.

Lemma 15. For any filtration Ft−1 such that Eα̂(t) is true,

E[∆at | Ft−1] ≤
11g

p
E[‖xat‖V −1

t
| Ft−1] +

1

T 2

Proof. Let at denote the unsaturated arm with the smallest norm ‖xi‖V −1
t

, i.e.,

at = arg min
i 6∈C(t)

‖xi‖V −1
t
.

Notice that given Ft−1, C(t) and ‖xi‖V −1
t

are deterministic for all i. Therefore, at is
deterministic as well. Now, using Lemma 14, for any Ft−1 such that Eα̂(t) is true,

E[‖xat‖V −1
t
| Ft−1] ≥ E[‖xat‖V −1

t
| Ft−1, at 6∈ C(t)]P(at 6∈ C(t) | Ft−1)

≥ ‖xat‖V −1
t

(
1

4e
√
π
− 1

T 2

)
.

Now, if the events Eα̂(t) and Eα̃(t) are true, then for all i, by definition, xT
i α̃t ≤

Analysis 45

xT
iα+ g‖xi‖V −1

t
. Using this observation along with xT

atα̃t ≥ xT
i α̃t for all i,

∆at = ∆at + (xT

atα− xT

atα)

≤∆at + (xT

atα̃t − xT

atα̃t)

+ g‖xat‖V −1
t

+ g‖xat‖V −1
t

≤∆at + g‖xat‖V −1
t

+ g‖xat‖V −1
t

≤ g‖xat‖V −1
t

+ g‖xat‖V −1
t

+ g‖xat‖V −1
t
.

Therefore, for any Ft−1 such that Eα̂(t) is true, either ∆at ≤ 2g‖xat‖V −1
t

+g‖xat‖V −1
t

,
or Eα̃(t) is false. We can deduce that

E[∆at | Ft−1] ≤ E
[
2g‖xat‖V −1

t
+ g‖xat‖V −1

t
| Ft−1

]
+ P

(
Eα̃(t)

)
≤ 2g

p− 1
T 2

E
[
‖xat‖V −1

t
| Ft−1

]
+ gE

[
‖xat‖V −1

t
| Ft−1

]
+

1

T 2

≤ 11g

p
E[‖xat‖V −1

t
| Ft−1] +

1

T 2
.

In the last inequality we used that 1/(p − 1/T 2) ≤ 5/p, which holds trivially for
T ≤ 4. For T ≥ 5, we get that T 2 ≥ 5e

√
π, which holds for T ≥ 5.

Definition 6. We define R′T (t) = RT (t) · I(Eα̂(t)).

Definition 7. A sequence of random variables (Yt; t ≥ 0) is called a super-
martingale corresponding to a filtration Ft, if for all t, Yt is Ft-measurable, and
for t ≥ 1,

E[Yt − Yt−1 | Ft−1] ≤ 0.

Next, following Agrawal and Goyal [2013], we establish a super-martingale process
that will form the basis of our proof of the high-probability regret bound.

Definition 8. Let

Xt = R′T (t)− 11g

p
‖xat‖V −1

t
− 1

T 2

Yt =
t∑

w=1

Xw.

46 Spectral bandits for smooth graph functions

Lemma 16. (Yt; t = 0, . . . , T) is a super-martingale process with respect to Ft.

Proof. We need to prove that for all t ∈ {1, . . . , T}, and any possible Ft−1, E[Yt −
Yt−1 | Ft−1] ≤ 0, i.e.

E[R′T (t) | Ft−1] ≤
11g

p
‖xat‖V −1

t
+

1

T 2
.

Note that whether Eα̂(t) is true or not, is completely determined by Ft−1. If Ft−1
is such that Eα̂(t) is not true, then R′T (t) = RT (t) · I(Eα̂(t)) = 0, and the above
inequality holds trivially. Moreover, for Ft−1 such that Eα̂(t) holds, the inequality
follows from Lemma 15.

Unlike [Agrawal and Goyal, 2013, Abbasi-Yadkori et al., 2011], we do not want to
require λ ≥ 1. Therefore, we provide the following lemma that shows the dependence
of ‖xat‖2V −1

t
on λ.

Lemma 17. For all t,

‖xat‖2V −1
t
≤
(

2 +
2

λ

)
log
(

1 + ‖xat‖2V −1
t

)
.

Proof. Note, that ‖xat‖V −1
t
≤ (1/

√
λ)‖xat‖ ≤ (1/

√
λ) and for all 0 ≤ x ≤ 1 we have

x ≤ 2 log(1 + x). (2.4)

Now we consider two cases depending on λ. If λ ≥ 1, we know that 0 ≤ ‖xat‖V −1
t
≤ 1

and therefore by (2.4),

‖xat‖2V −1
t
≤ 2 log

(
1 + ‖xat‖2V −1

t

)
.

Similarly, if λ < 1, then 0 ≤ λ‖xat‖2V −1
t
≤ 1 and we get

‖xat‖2V −1
t
≤ 2

λ
log
(

1 + λ‖xat‖2V −1
t

)
≤ 2

λ
log
(

1 + ‖xat‖2V −1
t

)
.

Analysis 47

Combining the two, we get that for all λ ≥ 0,

‖xat‖2V −1
t
≤ max

(
2,

2

λ

)
log
(

1 + ‖xat‖2V −1
t

)
≤
(

2 +
2

λ

)
log
(

1 + ‖xat‖2V −1
t

)
.

Proof of Theorem 4. First, notice that Xt is bounded as |Xt| ≤ 1 + 11g/(p
√
λ) +

1/T 2 ≤ (11/
√
λ+ 2)g/p. Thus, we can apply Azuma-Hoeffding inequality to obtain

that with probability at least 1− δ/2,

T∑
t=1

R′T (t) ≤
T∑
t=1

11g

p
‖xat‖V −1

t
+

T∑
t=1

1

T 2
+

√√√√2

(
T∑
t=1

g2

p2

(
11√
λ

+ 2

)2
)

log
2

δ
.

Since p and g are constants, then with probability 1− δ/2,

T∑
t=1

R′T (t) ≤ 11g

p

T∑
t=1

‖xat‖V −1
t

+
1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

2

δ
.

The last step is to upperbound
∑T

t=1 ‖xat‖V −1
t

. For this purpose, Agrawal and Goyal
[2013] rely on the analysis of Auer [2002] and the assumption that λ ≥ 1. We provide
an alternative approach using Cauchy-Schwartz inequality, Lemma 3, and Lemma 17
to get

T∑
t=1

‖xat)‖V −1
t
≤

√√√√T

T∑
t=1

‖xat‖2V −1
t

≤

√
T

(
2 +

2

λ

)
log
|VT |
|Λ|

≤

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
.

Finally, we know that Eα̂(t) holds for all t with probability at least 1 − δ
2
and

48 Spectral bandits for smooth graph functions

R′T (t) = RT (t) for all t with probability at least 1− δ
2
. Hence, with probability 1− δ,

RT ≤
11g

p

√
2 + 2λ

λ
dT log

(
1 +

T

Kλ

)
+

1

T
+
g

p

(
11√
λ

+ 2

)√
2T log

2

δ
.

5.6 Regret bound of SpectralEliminator

The probability space induced by the rewards r1, r2, . . . can be decomposed as a
product of independent probability spaces induces by rewards in each phase [tj, tj+1−
1]. Denote by Fj the σ-algebra generated by the rewards r1, . . . , rtj+1−1, i.e., received
before and during the phase j. We have the following two lemmas for any phase j.
Let V j = Λ +

∑tj−1
s=tj−1

xasx
T
as and α̂j for α̂tj .

Lemma 18. For any fixed x ∈ RN , any δ > 0, and β(δ) = R
√

2 log(2/δ) + ‖α‖Λ,
we have for all j:

P
(
|xT(α̂j −α)| ≤ ‖x‖

V
−1
j
β(δ)

)
≥ 1− δ

Proof. Defining ξj =
∑tj−1

s=tj−1
xasεs, we have:

|xT(α̂j −α)| = |xT(−V −1j Λα+ V
−1
j ξj)| ≤ |xTV

−1
j Λα|+ |xTV

−1
j ξj| (2.5)

The first term in the right hand side of (2.5) is bounded as:

|xTV
−1
j Λα| ≤ ‖xTV −1j Λ1/2‖‖Λ1/2α‖

= ‖α‖Λ
√

xTV
−1
j ΛV

−1
j x

≤ ‖α‖Λ
√

xTV
−1
j x = ‖α‖Λ‖x‖V −1

j

Now consider the second term in the r.h.s. of (2.5). We have:

∣∣∣xTV
−1
j ξj

∣∣∣ =

∣∣∣∣∣∣
tj−1∑
s=tj−1

(xTV
−1
j xas)εs

∣∣∣∣∣∣

Analysis 49

Let us notice that the context vectors (xas) selected by the algorithm during phase j−
1 only depend on their width ‖x‖V −1

s
which does not depend on the rewards received

during the phase j − 1. Thus, given Fj−2, the values xTV
−1
j xas are deterministic for

all tj−1 ≤ s < tj. Consequently, one may use a variant of Hoeffding bound for scaled
sub-Gaussians [Wainwright, 2015], in particular for xTV

−1
j ξj =

∑tj−1
s=tj−1

xTV
−1
j xasεs,

to get

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R

√√√√2 log

(
2

δ

) tj−1∑
s=tj−1

(
xTV

−1
j xas

)2 ≥ 1− δ

where εs is sub-Gaussian random variable and xTV
−1
j xas is deterministic given Fj−2.

Further we deduce:

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R

√√√√2 log

(
2

δ

) tj−1∑
s=tj−1

(
xTV

−1
j xasx

T
asV

−1
j x
) ≥ 1− δ

P

∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R

√√√√√2 log

(
2

δ

)
xTV

−1
j

 tj−1∑
s=tj−1

xasx
T
as

V −1j x

 ≥ 1− δ

P

(∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R

√
2 log

(
2

δ

)
xTV

−1
j x

)
≥ 1− δ

since V −1j is symmetric and
∑tj−1

s=tj−1
xsx

T
s ≺ V j. Thus:

P

(∣∣∣xTV
−1
j ξj

∣∣∣ ≤ R‖x‖
V

−1
j

√
2 log

(
2

δ

))
≥ 1− δ

Lemma 19. For all x ∈ Aj, j > 1, we have:

min
(

1, ‖x‖
V

−1
j

)
≤ 1

tj − tj−1

tj−1∑
s=tj−1

min
(
1, ‖xas‖V −1

s

)

50 Spectral bandits for smooth graph functions

Proof. Using Lemma 4, we have:

(tj − tj−1) min
(

1, ‖x‖
V

−1
j

)
≤ max

x∈Aj

tj−1∑
s=tj−1

min
(
1, ‖x‖V −1

s

)
≤ max

x∈Aj−1

tj−1∑
s=tj−1

min
(
1, ‖x‖V −1

s

)
≤

tj−1∑
s=tj−1

min

(
1, max

x∈Aj−1

‖x‖V −1
s

)

=

tj−1∑
s=tj−1

min
(
1, ‖xas‖V −1

s

)
,

since the algorithm selects (during phase j− 1) the arms with the largest width.

Now we are ready to upper bound the cumulative regret of SpectralEliminator.

Proof of Theorem 5. Let J = blog2 T c+ 1 and tj = 2j−1. We have:

RT =
T∑
t=1

xT

a∗α− xT

atα ≤ 2 +
J∑
j=2

tj+1−1∑
t=tj

min(2, xT

a∗α− xT

atα)

≤ 2 +
J∑
j=2

tj+1−1∑
t=tj

min
(

2, xT

a∗α̂j − xT

atα̂j +
(
‖x∗‖V −1

j
+ ‖xt‖V −1

j

)
β(δ′)

)
,

in an event Ω of probability 1 − δ, where we used Lemma 18 in the last inequality
for δ′ = δ/(KJ). By definition of the action subset Aj at phase j > 1, under Ω, we
have:

xT

a∗α̂j − xatα̂j ≤
(
‖xa∗‖V −1

j
+ ‖xat‖V −1

j

)
β(δ′),

Experiments 51

since xa∗ ∈ Aj for all j ≤ J . By previous two lemmas and Cauchy-Schwarz inequality:

RT ≤ 2 +
J∑
j=2

tj+1−1∑
t=tj

min
(

2, 4β(δ′)‖xat‖V −1
j

)

≤ 2 + (4β(δ′) + 2)
J∑
j=2

tj+1−1∑
t=tj

min
(

1, ‖xat‖V −1
t

)

≤ 2 + (4β(δ′) + 2)
J∑
j=2

tj+1 − tj
tj − tj−1

tj−1∑
t=tj−1

min
(

1, ‖xat‖V −1
t

)

≤ 2 + (8β(δ′) + 4)
J∑
j=2

tj−1∑
t=tj−1

min
(

1, ‖xat‖V −1
t

)

≤ 2 + (8β(δ′) + 4)

√√√√T
J∑
j=2

tj−1∑
t=tj−1

min
(

1, ‖xat‖2V −1
t

)

≤ 2 + (8β(δ′) + 4)

√√√√T
J∑
j=2

2 log
|V j|
|Λ|

≤ 2 + (8β(δ′) + 4)

√
2dT log2(T) log

(
1 +

T

Kλ

)

Finally, using J = 1 + blog2 T c, δ′ = δ/(KJ), and β(δ′) ≤ β(δ/(K(1 + log2 T))), we
obtain the result of Theorem 5.

Remark 7. If we set Λ = I in Algorithm 3 as in Remark 6, we get a new algo-
rithm, LinearEliminator, which is a competitor to SupLinRel Auer [2002] and as
a corollary to Theorem 5 also enjoys Õ(

√
DT) upper bound on the cumulative regret.

On the other hand, compared to SupLinRel, LinearEliminator and its analysis
are significantly much simpler and elegant.

6 Experiments

In this section, we compare empirical regret as well empirical computational com-
plexity of SpectralTS, SpectralUCB, LinearTS, and LinUCB algorithms on
artificial datasets with different types of underlying graph structures as well as on
MovieLens and Flixster datasets. We do not include SpectralEliminator in our

52 Spectral bandits for smooth graph functions

experiments due to its impracticality for small time horizons since the algorithm up-
dates confidence ellipsoid only at the end of the phase and therefore, the algorithm
usually does not perform well for small time horizons. Moreover, we show an effect of
reduced basis on both computational complexity and performance of the algorithms
and the effect of Sherman-Morrison (computation of matrix inversions) and lazy up-
dates (computation UCBs) on computational time. In all experiments we set both
confidence parameter δ and noise variance R to 0.05. We did not include different
values of δ and R since the results of the experiments are not sensitive to the values
of these parameters.

6.1 Artificial datasets

To demonstrate the benefit of spectral algorithms we perform exhaustive experiments
on artificial datasets with various underlying graphs structures. More precisely, we
focus on problems where underlying graph structure forms lattice or is sampled either
from the Barabási-Albert (BA) or Erdős-Rényi (ER) graph model. For all experi-
ments on artificial datasets we set the number of arms N to 500 and time horizon
T to 100. We created a random vector α such that reward function f = Qα is
smooth on the graph. We did it by settings only the first 20 elements of α to be
nonzero. In order to be as objective as possible, we set the regularization parameter
λ and confidence ellipsoid parameters v (TS) and c (UCB) respectively to the best
empirical value. We ran algorithms with several different values of parameters and
selected values which minimized average cumulative regret after several runs of al-
gorithms. Figure 2.4 shows the dependence of cumulative regret on parameters with
strong indications that SpectralTS and SpectralUCB can leverage smoothness
of the reward function and outperform linear variants of algorithms.

6.1.1 Erdős-Rényi graph

For this experiment, we constructed an underlying graph as an Erdős-Rényi graph
on 500 vertices with parameter 0.005 (probability of edge appearance). Values of the
parameters used for the experiment are listed in Table 2.1. We selected the values
for which the algorithms performed the best.

Figure 2.5a shows cumulative regrets of the algorithms with selected parameters.
The regret of the spectral algorithms tends to be sublinear while regret of linear
algorithms appears to be linear. Moreover, spectral algorithms reached much smaller

Experiments 53

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.1 v = 0.1 λ = 1 c = 1 λ = 1 v = 0.1 λ = 0.1 c = 0.1

Table 2.1: Best empirical parameters for BA graph model

regrets than their linear counterparts.

6.1.2 Lattice

For this experiment, we arranged 500 nodes to form a lattice and connected every
pair of nodes by an edge if they are neighbors in the lattice. As in the case of other
experiments, we selected empirically the best set of parameters (Table 2.2) and used
them to plot cumulative regret of algorithms (Figure 2.5b). Even in this case, spectral
algorithms performed well compared to the linear algorithms.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.01 v = 0.1 λ = 0.1 c = 1 λ = 1 v = 0.1 λ = 0.1 c = 0.1

Table 2.2: Best empirical parameters for BA graph model

6.1.3 Barabási-Albert graph

We constructed BA graph for the experiment in the following way. We started with
k vertices (k = 3 in our case) without any connections between them. Then, we
sequentially added one vertex at a time. Each new vertex was connected to m ≤ k

previously added vertices and we sampled the connections according to the degrees
of existing nodes; higher degree, bigger chance of the connection.

Table 2.3 summarizes the best empirical values of parameters for individual algo-
rithms and Figure 2.5c shows the performance of algorithms for the parameters in
Table 2.3. Here we can clearly see that spectral algorithms outperformed linear al-
gorithm after just a few time steps. Note that empirically optimal parameters can
sometimes be too aggressive and force an algorithm to exploit more than it should.
This is probably the case of SpectralUCB algorithm in Figure 2.5c since the curve

54 Spectral bandits for smooth graph functions

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.001 v = 0.1 λ = 0.001 c = 0.01 λ = 0.01 v = 0.01 λ = 0.1 c = 0.1

Table 2.3: Best empirical parameters for BA graph model

of cumulative regret of SpectralUCB appears to be linear for the time horizon
used in our experiment. Therefore we included Figure 2.5d where we plotted cumu-
lative regret of SpectralUCB for empirically suboptimal value of c = 1 (close to
the theoretical value of c) to demonstrate sublinear tendencies of the regret.

6.2 Effect of smoothness on regret

In this section, we show an effect of the smoothness of the reward function on the
performance of spectral algorithms. We used BA graph on 500 vertices for the exper-
iment with time horizon 100. The value of the effective dimension is roughly 8. We
controlled the smoothness by explicitly setting the number of eigenvectors used for
constructing reward function; by letting 5, 25, 100 or 500 elements of α to be nonzero.
Note that value of the effective dimension is the same for every reward function we
used, since the definition of effective dimension is independent of the reward func-
tion. Table 2.4 shows how smoothness changes with number of nonzero elements of α
and Figures 2.6a and 2.6b show that spectral algorithm are able to leverage spectral
properties of underlying graph better if the reward function is smoother. This is also
supported by the theory since in our experiment, smoothness of the reward function
decreases with the smaller number of eigenvectors and therefore, regret bounds of
the spectral algorithms are decreasing as well.

Number of nonzero components 5 25 100 500
Smoothness of reward function (αTΛα) 1.56 11.16 58.12 216.89

Regret of SpectralTS 7.99 32.80 94.10 123.79

Regret of SpectralUCB 3.05 22.84 108.19 130.54

Table 2.4: Effect of smoothness on regret

Experiments 55

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2
0

20

40

60

80

100

120

parameter λparameter v

C
um

ul
at

iv
e

re
gr

et

(a) SpectralTS algorithm

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2
0

20

40

60

80

100

120

parameter λparameter c

C
um

ul
at

iv
e

re
gr

et

(b) SpectralUCB algorithm

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2
0

20

40

60

80

100

120

parameter λparameter v

C
um

ul
at

iv
e

re
gr

et

(c) LinearTS algorithm

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2
0

20

40

60

80

100

120

parameter λparameter c

C
um

ul
at

iv
e

re
gr

et

(d) LinUCB algorithm

Figure 2.4: Dependence of cumulative regret on confidence and regularization pa-
rameters v and c

6.3 Computational complexity improvements

In general computation of N UCBs is computationally more expensive than sampling
in TS. In Section 4.4 we discussed several possibilities to speed up algorithms. The
impact of lazy updates for computing UCBs and effect of Sherman-Morrison formula
on matrix inversion is demonstrated in Figure 2.7. The plot clearly shows that lazy
updates can improve computational time of UCB to the point where the computa-
tional time of SpectralUCB is comparable, in some cases even better than the
computational time of SpectralTS.

Another possible computational time improvement, discussed in Section 4.4, is by
extracting only first L � N eigenvectors of the graph Laplacian. First, the com-
putational complexity of such operation is O(Lm logm), where m is the number of

56 Spectral bandits for smooth graph functions

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

10

20

30

40

50

60
SpectralTS
SpectralUCB
LinearTS
LinUCB

(a) Erdős-Rényi graph

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

10

20

30

40

50

60
SpectralTS
SpectralUCB
LinearTS
LinUCB

(b) Lattice

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

10

20

30

40

50

60

70
SpectralTS
SpectralUCB
LinearTS
LinUCB

(c) Barabási-Albert graph

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

10

20

30

40

50

60

70
SpectralTS
SpectralUCB
LinearTS
LinUCB

(d) Barabási-Albert graph with
suboptimal parameters for Spec-
tralUCB

Figure 2.5: Cumulative regret comparison of algorithms for different underlying
graphs

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

20

40

60

80

100

120

140
5 nonzero elements
25 nonzero elements
100 nonzero elements
500 nonzero elements

(a) SpectralTS algorithm

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

20

40

60

80

100

120

140
5 nonzero elements
25 nonzero elements
100 nonzero elements
500 nonzero elements

(b) SpectralUCB algorithm

Figure 2.6: Cumulative regret of SpectralTS and SpectralUCB for reward func-
tions with different smoothness

Experiments 57

Number of actions

C
om

pu
ta

tio
na

l t
im

e
in

 s
ec

on
ds

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50
UCB (without SM; without lazy updates)
UCB (with SM; without lazy updates)
UCB (without SM; with lazy updates)
UCB (with SM; with lazy updates)
TS (without SM)
TS (with SM)

Figure 2.7: Impact of lazy updates and Sherman-Morrison formula on computational
time

edges. Second, the least-squares problem that we have to do in each time step of the
algorithm is only L dimensional. In Figure 2.8 we plot the cumulative regret and
the total computational time in seconds (log scale) of SpectralUCB algorithm for
a single user from the MovieLens dataset. We varied L as 20, 200, and 2000 which
corresponds to about 1%, 10% and 100% of basis functions (N = 2019). The total
computational time also includes the computational savings from lazy updates and
iterative matrix inversion. We see that with 10% of the eigenvectors we can achieve
similar performance as for the full set for the fraction of the computational time.

6.4 MovieLens experiments

In this experiment, we took user preferences and the similarity graph over movies
from the MovieLens dataset [Lam and Herlocker, 2012], a dataset of 6k users who
rated one million movies. Firstly, we extracted a subset of 400 users and 618 movies
with at least 500 ratings. Then we divided the dataset into three parts. The first is
used to build our model of users, the rating that user i assigns to movie j. We factor
the user-item matrix using low-rank matrix factorization [Keshavan et al., 2009] as
M ≈ UV ′, a standard approach to collaborative filtering. The rating that user i
assigns to movie j is estimated as r̂i,j = 〈ui,vj〉, where ui is the i-th row of U and vj

58 Spectral bandits for smooth graph functions

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

time T

cu
m

ul
at

iv
e

re
gr

et

J = 20
J = 200
J = 2000

J = 20 J=200 J=2000
10

0

10
1

10
2

10
3

10
4

co
m

pu
ta

tio
na

l t
im

e
in

 s
ec

on
ds

Figure 2.8: Regret and computational time of SpectralUCB with reduced basis

is the j-th row of V . The rating r̂i,j is the payoff of pulling arm j when recommending
to user i.

The second part of the dataset is used for parameter estimation. Similarly to the
case of the first part, we completed ratings using low-rank factorization. We used a
different part of the dataset in order to avoid dependencies.

The last part of the dataset is used to build our similarity graph over movies. We
factor the dataset in the same way as the first two parts of the dataset. The graph
contains an edge between movies i and i′ if the movie i′ is among 5 nearest neighbors
of the movie i in the latent space of items V . The weight on all edges is one. Notice
that if two items are close in the item space, then their expected rating is expected
to be similar. However, the opposite is not true. If two items have a similar expected
rating, they do not have to be close in the item space. In other words, we take
advantage of ratings but do not hardwire the two similarly rated items to be similar.

Table 2.5 summarizes the best parameters learned on training part of the dataset.
We used the parameters to run algorithms on test part of the dataset. Figure 2.9a
shows 20 random users sampled from the testing part of the MovieLens dataset. We
evaluated the regret of all four algorithms for T = 500 and compared the computa-
tional time of the algorithms. The results show us several interesting observations.
First, spectral algorithms are consistently outperforming linear algorithms. Second,
as we mentioned in Section 4.4, we use lazy updates for UCB algorithms which
can improve computational time significantly. We can see that in our experiment,
computational time of UCB algorithms was better than computational time of TS

Experiments 59

algorithms even though in general, TS algorithms are computationally more efficient
than UCB algorithms without lazy updates.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.001 v = 0.1 λ = 0.1 c = 1 λ = 100 v = 1 λ = 0.001 c = 0.001

Table 2.5: Best empirical parameters for Movielens dataset

6.5 Flixster experiments

We also performed experiments on users preferences from the movie recommendation
website Flixster. The social network of the users was crawled by Jamali and Ester
[2010] and then clustered by Graclus [2013] to obtain a strongly connected subgraph.
Similarly like in the case of Movielens, we extracted a subset of users and movies,
where each movie has at least 500 ratings. This resulted in a dataset of 972 movies
and 1070 users. As with MovieLens dataset, we completed the missing ratings by a
low-rank matrix factorization and used it construct a 5-NN similarity graph.

Again in Figure 2.9b, we sampled 20 random users and evaluated the regret of all
four algorithms for T = 50.

Similarly like in the case of MovieLens dataset, we set parameter λ to 0.01 while
setting the parameter v of SpectralTS to be ten times smaller than the theoretical
value.

SpectralTS SpectralUCB LinearTS LinUCB

λ = 0.01 v = 0.1 λ = 0.01 c = 0.11 λ = 1 v = 0.1 λ = 1 c = 1

Table 2.6: Best empirical parameters for Flixster dataset

6.6 Experiment design modifications

While performing experiments we found several ways to adjust the experiment design
in order to improve the performance of the algorithms.

60 Spectral bandits for smooth graph functions

User (20 randomly selected users)

C
um

ul
at

iv
e

re
gr

et

0 5 10 15 20
0

50

100

150

200

250

300

350

400
SpectralTS
SpectralUCB
LinearTS
LinUCB

(a) Movielens dataset, cumulative regret
for 20 randomly selected users

User (20 randomly selected users)

C
um

ul
at

iv
e

re
gr

et

0 5 10 15 20
0

5

10

15

20

25

30

35

40
SpectralTS
SpectralUCB
LinearTS
LinUCB

(b) Flixster dataset, cumulative regret for
20 randomly selected users

Figure 2.9: Comparison of spectral and linear algorithms

• Adjusting the number of edges in the graph. Usually, real world datasets
do not come with a graph structure. Therefore, we usually construct the nearest
neighbor graph which connects only the most similar actions. By reducing the
number of neighbors we are increasing the effective dimension (worsening of
the regret bound) and decreasing smoothness of the function (improving the
regret bound). Finding good trade off and adjusting the number of the edges
can improve the performance of the algorithms significantly.

• Scaling confidence ellipsoid (parameter c in SpectralUCB and parame-
ter v in SpectralTS). Usually, the algorithms are too conservative and the
bounds are too loose in order to prove high probability bounds. Therefore,
reducing the size of the confidence ellipsoid can sometimes improve the perfor-
mance of the algorithm at the price that some bounds might not hold anymore.
In fact, in our experiments, we did not use theoretical values of confidence
parameters. Instead, we used the values for which the algorithms had good
empirical performance.

• Magnitude of regularization parameter λ. By setting λ to a large value,
all regularized eigenvalues become similar and therefore the algorithms take the
graphs structure less into account. On the other hand, if the regularization pa-
rameter λ is small, the algorithms follow the graph structure more. Therefore,
it in order to leverage the graphs structure the algorithms have to find a good
compromise while setting λ. In our experiments, we tried several values of λ
and picked the value with the best empirical performance.

Experiments 61

Time

C
um

ul
at

iv
e

re
gr

et

0 100 200 300 400 500
0

20

40

60

80

100

120
SpectralTS
SpectralUCB
LinearTS
LinUCB

(a) Movielens dataset, cumulative regret
for one random user

Time

C
um

ul
at

iv
e

re
gr

et

0 20 40 60 80 100
0

5

10

15

20

25
SpectralTS
SpectralUCB
LinearTS
LinUCB

(b) Flixster dataset, cumulative regret for
one random user

Figure 2.10: Comparison of spectral and linear algorithms

• Scaling of the graphs. By scaling all the weights of the graph by some
constant we scale the gap between the eigenvalues and therefore changing the
value of the effective dimension. Moreover, by scaling weights we are also
changing the smoothness of the reward function. Therefore, scaling the weights
change the emphasis of the algorithm on the graph.

Chapter 3

Bandits with side observations

In this chapter, we take a closer look at the multi-armed bandit problem with side
observations (Section 3.2 in Chapter 1). The structure of the problem is represented
as a graph on top of the action set. In this framework, we assume that on top
of the bandit feedback, the learner observes losses of the neighbors of the selected
action. Depending on an application, these side observations may be of different
quality. Inspired by several real-world applications, we introduce several extensions
to bandits and look at some of the solutions solving the problems.

This chapter is structured in the following way. First, we introduce the side-
observation framework. Second, we present our approach to the exploration-
exploitation dilemma, called implicit exploration, and we demonstrate the idea on
the basic Exp3 algorithm for the basic adversarial bandits. The main part of the
chapter explores several settings, following side-observations framework, driven by
real world applications. For each setting, we provide formal definition and algorithm
with theoretical, in some cases also empirical, guarantees. In the last part of the
chapter, we present the proofs of the main results for each setting.

Contents

1 Framework of bandits with side observations 64

1.1 Existing algorithms and results 67

1.2 Exploration in Exp3-based algorithms 68

1.3 Implicit exploration and Exp3 algorithm 70

1.4 Exp3-based algorithms . 71

2 Adversarial bandits with adversarial side observations 78

2.1 Side-observation setting with adversarial graphs 79

2.2 Efficient learning by implicit exploration 80

2.3 Exp3-IX algorithm and theoretical guarantees 81

64 Bandits with side observations

3 Adversarial bandits with stochastic side observations 87

3.1 Side-observation setting with stochastic graphs 90

3.2 Exp3-Res algorithm and theoretical guarantees 91

3.3 Experiments . 95

4 Adversarial bandits with noisy side observations 97

4.1 Side-observation setting with weighted graphs 101

4.2 Exp3-IXt algorithm and theoretical guarantees 103

4.3 Effective independence number 106

4.4 Exp3-WIX algorithm and theoretical guarantees 109

4.5 Experiments . 112

5 Combinatorial semi-bandits with adversarial side observations . . . 113

5.1 Introduction . 113

5.2 Combinatorial side-observation setting with adversarial graphs 115

5.3 Implicit exploration by geometric resampling and FPL-IX al-
gorithm . 116

5.4 Performance guarantees for FPL-IX 118

6 Analysis . 120

6.1 Regret bound of Exp3-IX . 120

6.2 Regret bound of Exp3-Res 122

6.3 Regret bound of Exp3-IXt 125

6.4 Regret bound of Exp3-WIX 127

6.5 Regret bound of FPL-IX . 129

1 Framework of bandits with side observations

A general framework of multi-armed bandit problem with side observations is moti-
vated by applications involving graphs [Mannor and Shamir, 2011, Alon et al., 2013,
Kocák et al., 2014a, Alon et al., 2015]. In this framework, the learner faces an online

Framework of bandits with side observations 65

1: Input:
2: Known set of actions [N]

3: Time horizon T (not necessarily known)
4: for t = 1 to T do
5: The environment (adversary) chooses a loss function over the arms, with `t,i

being the loss associated with arm i ∈ [N] at time t
6: The environment chooses an underlying observability graph Gt. Assumptions

on Gt may vary for different settings
7: The learner chooses an action It ∈ [N].
8: The learner suffers loss `t,It of the action It
9: The learner observes losses of neighbors of It according to Gt

10: The learner observes some part of Gt. “Part” depends on setting
11: end for
12: Goal: Minimize cumulative regret Rt = maxi∈[N] E

[∑T
t=1(`t,It − `t,i)

]
Figure 3.1: General framework of bandits with side observations

learning problem consisting of N actions. In every round, the learner chooses an ac-
tion and incurs (also observes) the loss corresponding to the chosen action. Moreover,
the losses of some additional actions are revealed to the learner as well. These side
observations are specified by a directed observability graph with actions as nodes;
playing action i reveals loss of action j if there is an edge from i to j. This framework
is described in Figure 3.1.

Later in this chapter, we study a variety of different settings following this framework.
These settings capture different problems with various assumptions on the graph
structure and the quality of the side observations. Namely, we study following four
settings.

In Section 2, we consider a well studied setting of Mannor and Shamir [2011]. This
setting contains as few assumptions as possible. The graph generated by the environ-
ment can be arbitrary with no assumptions, possibly even chosen by an adversary.
This particular setting is not new, therefore, there exist several algorithms for the
problem. However, the mot of the algorithms have one issue. In order to show strong,
non-trivial guarantees, the algorithms need access to the graph before the action is
taken. This might cause problems for some applications. We solve this problem with
a novel approach to the exploration, called implicit exploration and present an algo-
rithm with optimal theoretical guarantees while having access to the graph only the
actions is taken. Recent result by Cohen et al. [2016] shows that without an access

66 Bandits with side observations

to the observability graph, at least after playing the action, there is no hope to prove
any nontrivial guarantees for the algorithms. More precisely, the learner needs to
observe at least second neighborhood of the selected action. Without access to the
graph, the only solution is to neglect all the side observations and use an algorithm
for bandits with its guarantees.

In Section 3, we consider another simple setting with only a few assumptions. We
are inspired by small social groups where all the members are equal and the additional
information is obtained from every member with the same probability. We model
this problem using a graph sampled from Erdős-Rényi distribution with parameter
rt; every edge in the graph appears with probability rt independently of each other.
In fact, this assumption enables us to design an algorithm with strong theoretical
guarantees without accessing the graph, even if rt is controlled by an adversary.
Moreover, thanks to the constraint on the graph, the algorithm presented in the
section is the first algorithm using side observations, in a non-trivial way, without
access to the graph.

In Section 4, we consider a setting with noisy side observations. In some problems,
side observations are not perfect (e.g. sensor networks). We model this problem using
a weighted graph where the weights represent the amount of information obtained
from the neighbors. In other words, a weight can be seen as an information to noise
ratio of a side observation. Similarly like in Section 2, we need the assumption that
the learner observes substantial part of the graph, at least after the action is taken,
in order to obtain non-trivial theoretical guarantees.

In Section 5, we focus on the problem where an actions is more complex (e.g.
packet routing, action consist of a path) while obtaining some side observations
(e.g. information about a path with a shared sub-path). We model this problem
as a combinatorial semi-bandit problem with side observations. This setting directly
extends combinatorial bandits to the side observation scenario where the learner
plays a combinatorial structure (e.g. path, clique, circle, component) consisting of
possibly many nodes of the graph, receiving loss of all nodes contained in the structure
played, and observing losses of all the neighbors of the nodes contained in the played
structure. In this setting, graphs can be completely adversarial but we still need to
assume that at least second neighborhood of played nodes is revealed to the learner
in order to get nontrivial theoretical results.

Framework of bandits with side observations 67

1.1 Existing algorithms and results

Since the amount of feedback in bandits with side observations interpolates between
bandit feedback and full-information feedback, a regret bound of an algorithm solv-
ing the problem should interpolate between Õ(

√
T) (full-information) and Õ(

√
NT)

(bandits), depending on the observability graph. Mannor and Shamir [2011] showed
Ω(
√
αT) lower bound for fixed undirected graphs, where α is an independence num-

ber of the graph. Later, Alon et al. [2013] extended this lower bound to the case
of fixed directed graphs, where α is the independence number of the graph (size of
the largest independent set of nodes; nodes that are not connected by any edge).
This lower bound is very natural for the problem since restricting the action set of
the problem to an independence set of size α, the problem become equivalent to the
bandit problem on this set with a lower bound of Ω(

√
αT).

The first algorithm for the setting was presented in [Mannor and Shamir, 2011]. This
algorithm is called ELP, achieves regret bound of Õ(

√
αT) in the case of undirected

graph, and regret bound of Õ(
√
χ(G)T) in the case of directed graph, where χ(G)

is a clique number of graph G (the smallest number partitions of G such that every
partition is a clique). However, in order to achieve the bound, ELP algorithm needs to
compute linear program to precisely define exploration distribution for the algorithm.
This comes with two drawbacks. First, the linear program can be computationally
expensive. Second, in order to compute linear program, the learner needs to have an
access to the graph before his decision. Later, Alon et al. [2013] introduced two new
algorithms for the setting. The first algorithm is called Exp3-SET and is designed for
undirected graphs. This algorithm achieves optimal regret bound of order Ω(

√
αT)

but, unlike ELP algorithm, it does not need to know observability graph in advance
and does not need to compute any linear program. The only requirement is that
the graph is revealed to the algorithm after playing an action. The second algorithm
is called Exp3-DOM and is designed for directed graphs. This algorithm achieves
regret bound of order Ω(

√
αT) which matches lower bound and improves the bound of

ELP algorithm. However, in order to show the regret bound, the algorithm needs to
find the smallest dominating set (set of nodes such that: there is an edge from a node
in the set to every node outside of the set) which is an NP-hard problem. Therefore,
in practice, the algorithm uses only a greedy approximation of a dominating set which
makes the algorithm computationally efficient for the price of extra log factor in the
regret bound coming from the approximation.

In order to achieve optimal regret bound of Õ(
√
αT), previously mentioned algo-

rithms need to encourage exploration and guarantee that every arm is played some-

68 Bandits with side observations

times. This is mostly done by mixing the probability distribution of the learner with
some carefully selected exploration distribution. To define this exploration distribu-
tion, the algorithms usually need to compute a linear program or to find a dominating
set which could be very expensive. The first computationally efficient algorithm for
the directed case was Exp3-IX algorithm (Section 2), introduced in [Kocák et al.,
2014a]. This algorithm uses a novel approach to exploration which we call implicit ex-
ploration. The regret bound for this algorithm is of Õ(

√
αT) and the algorithm does

not need an access to the graph before playing an action thanks to a new approach
to exploration called implicit exploration. The details concerning this algorithm are
presented later in Chapter 3. Shortly after introducing Exp3-IX, Alon et al. [2015]
came with Exp3.G algorithm also achieving the same regret bound of Õ(

√
αT). This

algorithm is using a carefully tuned mixing with uniform distribution on all the ac-
tions, this makes the algorithm computationally efficient as well. Furthermore, Alon
et al. [2015] considered a strictly more difficult setting than ours, where the loss of
the chosen action may not be a part of the received feedback.

1.2 Exploration in Exp3-based algorithms

Before diving into the bandits with side observations, we start by several variations of
basic Exp3 algorithm. We use them to demonstrate basic approaches of Exp3-based
algorithms to exploration and loss/reward estimation.

Exp3 is the most popular approach to solve the adversarial multi-armed bandit
problem. This algorithm was introduced in Auer et al. [2002b] and is based on two
simple ideas. Since the learner plays an action It, at time, according to a probability
distribution pt = (pt,1, . . . , pt,N), it is possible to construct unbiased loss estimate
ˆ̀
t,i =

`t,i
pt,i
1{It = i} for every actions i ∈ [N], even if the action is not played. The sec-

ond idea is to use exponential weights [Littlestone and Warmuth, 1994], constructed
from cumulative loss estimates, to define the new probability distribution over the
arms.

The first analysis of Exp3 algorithm was provided by Auer et al. [2002b]. The
algorithm was designed with rewards instead of losses and, as it turned out, the
algorithm did not explore enough in order to show strong theoretical guarantees.
The intuition behind this problem is simple: playing an arm results in high reward
estimate of the arm while all the other estimates are zero. This means that the
probability of playing this arm will increase in the next round even more. This
results in decreasing the amount of exploration. In other words, the arms which were

Framework of bandits with side observations 69

played often in the past are more likely to be played in the future. The simplest
and most used way to fix this issue is to dedicate some of the rounds to exploration;
sampling an action from a uniform distribution. In practice, the algorithm encourages
the exploration by mixing the probability distribution with a uniform distribution
on the set of arms. More precisely, the learner plays according to the probability
distribution p′t = (p′t,1, . . . , p

′
t,N) such that

p′t,i = (1− γt)pt,i +
γt
N
,

where γt ∈ [0, 1] is a parameter controlling the amount of exploration.

Later it turned out that mixing is not necessary if the algorithm uses losses instead
of rewards. The reason is again simple; if an arm is played, the loss estimate of this
arm can be big compared to the zero loss estimates of the other arms. Therefore,
by playing an action, we decrease the probability of playing this action again in the
next round, and therefore encouraging the exploration indirectly. In fact, using losses
instead of rewards one can prove strong theoretical guarantees on expected regret,
even without explicit mixing. However, even using losses, there was a common belief
that extra exploration is necessary to obtain strong high-probability bounds on the
regret [Auer et al., 2002b, Audibert and Bubeck, 2010, Beygelzimer et al., 2011,
Bubeck and Cesa-Bianchi, 2012].

Another instance of the problem where extra exploration is necessary is a multi-
armed bandit problem with side observations [Mannor and Shamir, 2011, Alon et al.,
2013]. Moreover, it is necessary to have an extra exploration in this problem; even
for regret bounds in expectation. We look at this problem more closely later since it
forms a basis for the problems presented this chapter.

As we see, controlling exploration is a substantial part of the algorithms for adver-
sarial bandit problems. Even though the mixing proved to be an efficient way to deal
with this problem, it might be impractical to use mixing in some problems. Com-
binatorial bandits represent a good example since, in general, designing a mixing
probability distribution can be computationally very expensive. Therefore, we come
with a different approach to the exploration which we call Implicit eXploration, in
short IX [Kocák et al., 2014a]. Instead of explicitly mixing the probability distribu-
tion of the learner, implicit exploration introduces a bias to the loss estimates which
controls exploration indirectly.

70 Bandits with side observations

1.3 Implicit exploration and Exp3 algorithm

In this section, we present the idea of implicit exploration. Even though the basic
Exp3 algorithm with losses does not need any additional exploration, for the sim-
plicity, we use this algorithm to demonstrate the idea of implicit exploration. We
show later applications of this idea which enable us to construct efficient algorithms
for more complex problems.

In explicit exploration, the learner is mixing his probability distribution with an
exploration distribution. On the other hand, the main idea of implicit exploration is
biasing loss estimates to encourage exploration. Usual loss estimates used in Exp3
algorithm are unbiased and in the following form

ˆ̀
t,i =

`t,i
pt,i

1{It = i},

where It is an action chosen by the learner and pt,i is the probability of playing an
action i at time t; P [It = i] = pt,i. The idea of implicit exploration is to introduce a
small bias term γt ≥ 0 in the loss estimates:

ˆ̀
t,i =

`t,i
pt,i + γt

1{It = i}.

We call γt the implicit exploration term. The essential steps of basic Exp3 algorithm
with implicit exploration are following:

1. Construct exponential weights using loss estimates

wt,i =
1

N
exp

(
−ηt

∑t−1
s=1

ˆ̀
s,i

)
for all i ∈ [N]

2. Create a probability distribution pt = (pt,1, . . . , pt,N) such that

pt,i =
wt,i
Wt

where Wt =
∑N

i=1wt,i

3. Play an action It ∼ pt = (pt,1, . . . , pt,N) and incur the loss `t,It of the action

Framework of bandits with side observations 71

4. Construct loss estimates

ˆ̀
t,i =

`t,i
pt,i + γt

1{i = It} =

{
`t,i

pt,i+γt
, if i = It

0, otherwise

The only difference compared to the basic Exp3 algorithm is Step 4, where the loss
estimates are constructed with an extra γt term. Since this algorithm forms a basis
for most of the work in this chapter, we show the most important steps of its analysis
in the next section.

1.4 Exp3-based algorithms

Most of the algorithms in this chapter are based on Exp3 algorithm by Auer et al.
[2002b] for adversarial bandits. These algorithms follow an algorithms template
described in Algorithm 4.

Algorithm 4 can be used in various sequential learning problems where the learner
plays a single action. Usually, the performance of the algorithm depends on learning
rates ηt and loss estimates ˆ̀

t,i. In general, these quantities are problem and algorithm
dependent. Later in this chapter, we show several different settings and algorithms
following this template.

1.4.1 Analysis of Exp3-based algorithms

To acquire a deeper understanding of the problem, we present an analysis of algo-
rithms based on Exp3 and point out some standard results and challenges that come
from different settings. The first part of the analysis is the same for the most of the
Exp3-based algorithm and therefore, it will be useful to formulate it as the following
lemma.

Lemma 20. For all t ∈ [T], let ηt is a positive learning rate such that ηt+1 ≤ ηt
and `t,i is a non-negative loss of action i at time t. For algorithm following Exp3
template describes in Algorithm 4 we have

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]

72 Bandits with side observations

Algorithm 4 Algorithm template: Exp3 [Auer et al., 2002a]
1: Input:
2: Set of actions [N]
3: Not necessarily known time horizon T
4: Initialization:
5: Set initial cumulative loss estimates L̂0,i = 0 for all i ∈ [N]

6: for t = 1 to T do
7: Select learning rate ηt
8: Construct exponential weight

wt,i =
1

N
exp

(
−ηtL̂t−1,i

)
for all i ∈ [N]

9: Create a probability distribution pt = (pt,1, . . . , pt,N) such that

pt,i =
wt,i
Wt

where Wt =
∑N

i=1wt,i

10: Choose an action It ∼ pt = (pt,1, . . . , pt,N) to play
11: Observe loss of It and possibly some additional observations
12: Using observations construct loss estimates ˆ̀

t,i for all i ∈ [N]

13: Update cumulative loss estimates L̂t,i = L̂t−1,i + ˆ̀
t,i for all i ∈ [N]

14: end for

holds for any j ∈ [N] where the expectation is taken with respect to the randomness
of the learner as well as the randomness of the environment.

Note that if the bias of our loss estimates is close to zero, the left-hand side of the
bound is closely related to the regret. This is due to the fact that the first term
is close to the expected loss of the learner while the second term is close to the
cumulative loss of the best arm.

Proof. The proof of this lemma follows a standard analysis of Exp3 algorithm with
adaptive learning rate, e.g. Lemma 1 of Györfi and Ottucsák [2007]. We start by
introducing some notation. Let

L̂t−1,i =
t−1∑
s=1

ˆ̀
s,i, Wt =

1

N

N∑
i=1

e−ηtL̂t−1,i , W ′
t =

1

N

N∑
i=1

e−ηt−1L̂t−1,i .

Framework of bandits with side observations 73

Next, we track the evolution of logW ′
t+1/Wt to control the regret. We have

1

ηt
log

W ′
t+1

Wt

=
1

ηt
log

N∑
i=1

1
N
e−ηtL̂t,i

Wt

=
1

ηt
log

N∑
i=1

wt,ie
−ηt ˆ̀t,i

Wt

=
1

ηt
log

N∑
i=1

pt,ie
−ηt ˆ̀t,i ≤ 1

ηt
log

N∑
i=1

pt,i

(
1− ηt ˆ̀t,i +

1

2
(ηt ˆ̀t,i)

2

)

=
1

ηt
log

(
1− ηt

N∑
i=1

pt,i ˆ̀t,i +
η2t
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

)
,

where we used the inequality exp(−x) ≤ 1− x+ x2/2 that holds for x ≥ 0.

Using the inequality log(1− x) ≤ −x that holds for all x, we get

N∑
i=1

pt,i ˆ̀t,i ≤
[

logWt

ηt
−

logW ′
t+1

ηt

]
+

N∑
i=1

ηt
2
pt,i(ˆ̀

t,i)
2

=

[(
logWt

ηt
− logWt+1

ηt+1

)
+

(
logWt+1

ηt+1

−
logW ′

t+1

ηt

)]
+

N∑
i=1

ηt
2
pt,i(ˆ̀

t,i)
2.

The second term in brackets on the right-hand side can be bounded as

Wt+1 =
N∑
i=1

1

N
e−ηt+1L̂t,i =

N∑
i=1

1

N

(
e−ηtL̂t,i

) ηt+1
ηt ≤

(
N∑
i=1

1

N
e−ηtL̂t,i

) ηt+1
ηt

= (W ′
t+1)

ηt+1
ηt ,

where we applied Jensen’s inequality to the concave function xηt+1/ηt for x ∈ R. The
function is concave since ηt+1 ≤ ηt by definition. Taking logarithms in the above
inequality, we get

logWt+1

ηt+1

−
logW ′

t+1

ηt
≤ 0.

Using this inequality, we prove a standard inequality which arises in the most of the
proofs of algorithms based on Exp3 algorithm.

N∑
i=1

pt,i ˆ̀t,i ≤
ηt
2

N∑
i=1

pt,i

(
ˆ̀
t,i

)2
+

(
logWt

ηt
− logWt+1

ηt+1

)

74 Bandits with side observations

Summing up both sides over the time and taking expectations, we get

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≤ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i

(
ˆ̀
t,i

)2]
+ E

[
T∑
t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
.

The second term on the right-hand side telescopes into

E

[
T∑
t=1

(
logWt

ηt
− logWt+1

ηt+1

)]
= E

[
logW1

η1
− logWT+1

ηT+1

]

= E

[
− log

∑N
i=1wT+1,i

ηT+1

]

≤ E
[
− logwT+1,j

ηT+1

]
= E

[
−1

ηT+1

log

(
1

N
e−ηT+1L̂T,j

)]
= E

[
logN

ηT+1

]
+ E

[
L̂T,j

]
.

Applying this bound to the previous inequality concludes the proof

The bound in Lemma 20 holds for every algorithm based on Exp3 and gives us

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
︸ ︷︷ ︸

A

−E

[
T∑
t=1

ˆ̀
t,j

]
︸ ︷︷ ︸

B

≤ E

[
logN

ηT+1

]
︸ ︷︷ ︸

C

+E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
︸ ︷︷ ︸

D

. (3.1)

The next part of the analysis is to bound all terms (A, B, C, and D) in (3.1).
This part is highly problem and algorithm dependent since the terms contain loss
estimates and adaptive learning rate terms. In the next part, we bound these terms
for the previously described Exp3 algorithm with implicit exploration and comment
on some general approaches to bounding these terms.

Bounding term B of (3.1). Since we use the implicit exploration, our loss estimates
are negatively biased. This means that E[ˆ̀t,j] can be easily upper-bounded by `t,j.

Framework of bandits with side observations 75

This gives us the following lower bound

−E
[
L̂T,j

]
= −E

[∑T
t=1

ˆ̀
t,j

]
≥ −E

[∑T
t=1 `t,j

]
= −E

[
LT,j

]
.

Bounding term A of (3.1). As we mentioned in the previous paragraph, we usually
aim for negatively biased loss estimates. This means that we can not bound term A

as easily as term B since it is biased to the other direction. Therefore, we have to
use the definition of loss estimates to specify the amplitude of the bias more precisely
and show that it does not effect final regret bound. In the case of basic Exp3 with
implicit exploration we have

E

[
N∑
i=1

pt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

pt,i
`t,i

pt,i + γt
1{i = It}

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

pt,i
(pt,i + γt − γt)`t,i

pt,i + γt

∣∣∣∣∣Ft−1
]

≥ E

[
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i
pt,i + γt

∣∣∣∣∣Ft−1
]

where Ft−1 is a history up to the beginning of round t. We also used that
E [1{i = It}| Ft−1] = pt,i and the fact that `t,i ∈ [0, 1]. Summing over time and
taking an expectation we get

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≥ E

[
T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
T∑
t=1

γtQ
Exp3
t

]

where QExp3
t is defined as

QExp3
t =

N∑
i=1

pt,i
pt,i + γt

.

Note that the first term corresponds to the expected loss of the learner at the end of
the game and the second term corresponds to the bias of the learner.

76 Bandits with side observations

Bounding term D of (3.1). To bound this term we also use the fact that
E [1{i = It}| Ft−1] = pt,i together with `t,i ∈ [0, 1]. This gives us

E

[
N∑
i=1

pt,i(ˆ̀
t,i)

2

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

pt,i
`2t,i

(pt,i + γt)2
1{i = It}

∣∣∣∣∣Ft−1
]

≤ E

[
N∑
i=1

pt,i
pt,i

(pt,i + γt)2

∣∣∣∣∣Ft−1
]

≤ E

[
N∑
i=1

pt,i
pt,i + γt

∣∣∣∣∣Ft−1
]
.

Summing over time and taking expectation we get

E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
≤ E

[
T∑
t=1

ηt
2
QExp3
t

]
.

Bounding term C of (3.1). This term depends only on the definition of the learning
rate. In the next part, we choose the value of in order to optimize the regret bound
and the final bound can be obtained simply setting learning rate to this value.

Putting everything together we obtain the following bound

E

[
T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
T∑
t=1

`t,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

(
γt +

ηt
2

)
QExp3
t

]
.

Choosing the best arm j, the left-hand side of the bound is the same as the definition
of the regret and thus, we have

RT ≤ E
[

logN

ηT+1

]
+ E

[
T∑
t=1

(
γt +

ηt
2

)
QExp3
t

]
(3.2)

The next step of the analysis is to specify γt and ηt. In order to optimize the bound,
we need to specify the constants so that two terms on the right-hand side are of the
same order. To deal with the adaptive learning rate in the last term, we use the
following lemma

Framework of bandits with side observations 77

Lemma 21 (Lemma 3.5 of Auer et al., 2002c). Let b1, b2, . . . , bT be non-negative
real numbers. Then

T∑
t=1

bt√∑t
s=1 bs

≤ 2

√∑T
t=1 bt.

Proof. The proof is based on the inequality x/2 ≤ 1 −
√

1− x for x ≤ 1. Setting

x = bt/
∑t

s=1 bs and multiplying both sides of the inequality by
√∑t

s=1 bs we get

bt

2
√∑t

s=1 bt

≤
√∑t

s=1 bs −
√∑t−1

s=1 bs.

The proof is concluded by summing over t.

Remark 8. A usual approach to design algorithms with anytime guarantees is by
using doubling trick. However, this comes with the price of a log factor in regret
bounds. Therefore, we have a different approach. We use adaptive learning rates in
all algorithms presented in this chapter which enables us to obtain anytime guarantees.

Using γt = ηt/2 and setting

ηt =

√
logN

2N + 2
∑t−1

s=1Q
Exp3
t

we make both terms of the bound roughly the same. The first term gives us

E
[

logN

ηT+1

]
≤
√

2(logN)
(
N +

∑T
t=1Q

Exp3
t

)
.

Using the definition of γt and ηt together with the fact that QExp3
t ≤ N and Lemma 21

for bt = QExp3
t , the second term can be bounded as

E

[
T∑
t=1

(
γt +

ηt
2

)
QExp3
t

]
≤
√

2(logN)
(
N +

∑T
t=1Q

Exp3
t

)
.

78 Bandits with side observations

Using these bounds we get

RT ≤ 2

√
2(logN)

(
N +

∑T
t=1Q

Exp3
t

)
.

The last step is to bound QExp3
t . In fact, it is very simple since every term in the

definition of QExp3 is at most 1 which gives us simple bound QExp3
t ≤ N and the

following theorem.

Theorem 6. Using adaptive learning rate and implicit exploration, the regret of
Exp3 is bounded as

RT ≤ 2
√

2N(T + 1) logN = Õ(
√
NT).

Even though we could simplify the proof by using N instead of QExp3, we later show
that a quantity similar to QExp3 appears in several regret bounds. Moreover, we
are usually able to show tighter bounds on this quantity, using the structure of the
problem and the definition of loss estimates.

2 Adversarial bandits with adversarial side observa-
tions

In this section, we start by the most studied setting fitting into our framework.
Namely, the multi-armed bandit problem with adversarial side observations [Mannor
and Shamir, 2011, Alon et al., 2013, Kocák et al., 2014a, Alon et al., 2015] where the
observability graph is chosen by an adversary and the side observations are revealed
according to this graph.

As we mentioned in Chapter 1, the downside of the first algorithms for this setting
is the fact that they need an access to observability graph before playing an action
and use a mixing with non-trivial exploration distribution. This results in compu-
tationally inefficient algorithms. The first computationally efficient algorithm was
Exp3-IX [Kocák et al., 2014a] followed by Exp3.G [Alon et al., 2015]. These algo-
rithms approach exploration in a different way, Exp3-IX uses implicit exploration
described in the previous section while Exp3.G uses mixing.

Adversarial bandits with adversarial side observations 79

In what follows, we describe the setting in more details and present Exp3-IX algo-
rithm.

2.1 Side-observation setting with adversarial graphs

The problem we consider is defined as follows. In each round t ∈ [T], the environ-
ment assigns a loss vector `t ∈ [0, 1]N for N actions and also selects an observation
system described by the directed graph Gt. Then, based on its previous observations
(and likely some external source of randomness) the learner selects action It and
subsequently incurs and observes loss `t,It . Furthermore, the learner also observes
the losses `t,j for all j such that (It → j) ∈ Gt, denoted by the indicator Ot,i. Let
Ft−1 = σ(It−1, . . . , I1) capture the interaction history up to time t. As usual in on-
line settings Cesa-Bianchi and Lugosi [2006], the performance is measured in terms
of (total expected) regret, which is the difference between a total loss received and
the total loss of the best single action chosen in hindsight,

RT = max
i∈[N]

E

[
T∑
t=1

(`t,It − `t,i)

]
,

where the expectation integrates over the random choices made by the learning algo-
rithm. The usual approach to the problem is by using an algorithm based on Exp3
with mixing

P [It = i |Ft−1] = (1− γ)pt,i + γµt,i = (1− γ)
wt,i∑N
j=1wt,j

+ γµt,i,

where γ ∈ (0, 1) is parameter of the algorithm and µt is an exploration distribution.
The loss estimates incorporate all the side observation and are defined as

ˆ̀
t,i =

`t,i
ot,i

1 {(It → i) ∈ Gt} where ot,i = E [Ot,i |Ft−1] = P [(It → i) ∈ Gt |Ft−1] ,

for each i ∈ [N]. These loss estimates are then used to update the weights for all i
as

wt+1,i = wt,ie
−γ ˆ̀t,i .

80 Bandits with side observations

It is easy to see that these loss estimates ˆ̀
t,i are unbiased estimates of the true losses

whenever pt,i > 0 holds for all i. The tricky part is the definition of µt. We take a
different approach to the problem and use implicit exploration (Section 1.3) instead
of mixing.

2.2 Efficient learning by implicit exploration

In this section, we propose the simplest exploration scheme imaginable, which consists
of merely pretending to explore. Precisely, we simply sample our action It from the
distribution defined as

P [It = i |Ft−1] = pt,i =
wt,i∑N
j=1wt,j

, (3.3)

without explicitly mixing with any exploration distribution. Our key trick is to use
implicit exploration to define the loss estimates for all arms i as

ˆ̀
t,i =

`t,i
ot,i + γt

1 {(It → i) ∈ Gt} ,

where γt > 0 is a parameter of our algorithm. It is easy to check that ˆ̀
t,i is a biased

estimate of `t,i. The nature of this bias, however, is very special. First, observe that
ˆ̀
t,i is an optimistic estimate of `t,i in the sense that E

[
ˆ̀
t,i |Ft−1

]
≤ `t,i. That is, our

bias always ensures that, on expectation, we underestimate the loss of any fixed arm
i. Even more importantly, our loss estimates also satisfy

E

[
N∑
i=1

pt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i`t,i +
N∑
i=1

pt,i`t,i

(
ot,i

ot,i + γt
− 1

)

=
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i`t,i
ot,i + γt

,

(3.4)

that is, the bias of the estimated losses suffered by our algorithm is directly controlled
by γt. As we will see in the analysis, it is sufficient to control the bias of our own
estimated performance as long as we can guarantee that the loss estimates associated
with any fixed arm are optimistic—which is precisely what we have. Note that this
slight modification ensures that the denominator of ˆ̀

t,i is lower bounded by pt,i + γt,

Adversarial bandits with adversarial side observations 81

which is a very similar property as the one achieved by the exploration scheme used
by Exp3-DOM. In fact, explicit and implicit explorations can both be regarded as
two different approaches for bias-variance tradeoff: while explicit exploration biases
the sampling distribution of It to reduce the variance of the loss estimates, implicit
exploration achieves the same result by biasing the loss estimates themselves.

2.3 Exp3-IX algorithm and theoretical guarantees

We define our algorithm Exp3-IX as a variant of Exp3 using the IX loss estimates.
One of the twists is that Exp3-IX is actually based on the adaptive learning-rate
variant of Exp3 proposed by Auer et al. [2002c], which avoids the necessity of prior
knowledge of the observability graphs in order to set a proper learning rate. This
algorithm is defined by setting L̂t−1,i =

∑t−1
s=1

ˆ̀
s,i and for all i ∈ [N] computing the

weights as

wt,i =
1

N
e−ηtL̂t−1,i .

These weights are then used to construct the sampling distribution of It as defined
in (3.3). The resulting Exp3-IX algorithm is shown as Algorithm 5.

Algorithm 5 Exp3-IX

1: Input: Set of actions S = [N],
2: parameters γt ∈ (0, 1), ηt > 0 for t ∈ [T].
3: for t = 1 to T do
4: wt,i = (1/N) exp (−ηtL̂t−1,i) for i ∈ [N]

5: An adversary privately chooses losses `t,i for i ∈ [N] and generates a graph Gt

6: Wt =
∑N

i=1wt,i
7: pt,i = wt,i/Wt

8: Choose It ∼ pt = (pt,1, . . . , pt,N)

9: Observe graph Gt

10: Observe pairs {i, `t,i} for (It → i) ∈ Gt

11: ot,i =
∑

(j→i)∈Gt pt,j for i ∈ [N]

12: ˆ̀
t,i =

`t,i
ot,i+γt

1{(It→i)∈Gt} for i ∈ [N]

13: end for

Our analysis follows the footsteps of Auer et al. [2002b] and Györfi and Ottucsák
[2007], who provide an improved analysis of the adaptive learning-rate rule proposed

82 Bandits with side observations

by Auer et al. [2002c]. However, a technical subtlety will force us to proceed a little
differently than these standard proofs: for achieving the tightest possible bounds and
the most efficient algorithm, we need to tune our learning rates according to some
random quantities that depend on the performance of Exp3-IX. In fact, the key
quantities in our analysis are the terms

QIX
t = Q(1, 0, γt) =

N∑
i=1

pt,i
ot,i + γt

,

which depend on the interaction history Ft−1 for all t. Our theorem below gives the
performance guarantee for Exp3-IX using a parameter setting adaptive to the values
of QIX

t .

Theorem 7. Setting ηt =
√

(logN)/2
(
N +

∑t−1
s=1Q

IX
s

)
and = γt = ηt/2, the regret

of Exp3-IX satisfies

RT ≤ E

[√
8(logN)

(
N +

∑T
t=1Q

IX
t

)]
. (3.5)

Full proof of the theorem is provided later in section 6.1. The next step is to con-
nect this regret bound to the observability graph and bound QIX

t by a deterministic
quantity depending on the graph. However, similar quantities like QIX appear in our
other setting later in this chapter. Therefore, we generalize QIX and bound this more
general version. Later we reuse this result in other settings. Let us generalize QIX.

Definition 9. Let m be a positive integer, c be a positive constant, δ be a non-negative
constant, and G be an oriented graph with weight sj,i on the edge from j to i (sj,i = 0

if there is no edge from j to i). Then

Q(m, δ, c) =
N∑
i=1

pi
1
m
pi + 1

m

∑
j 6=i pjs

1+δ
j,i + c

.

Note that the definition of QIX
t is a special case the definition of Q(m, δ, c) for m = 1,

δ = 0, and c = γt. Before bounding Q(m, δ, c), we need one more definition.

Definition 10. The independence number α of graph G is the size of the largest inde-
pendence set; set of nodes without edges connecting any two of the nodes. Therefore,
the independence number of the graph is 6.

Adversarial bandits with adversarial side observations 83

The next figure shows a small example of the graphs with its largest independence
set of size 6.

Figure 3.2: Six green nodes form the largest independence set of the graph; there is
no edge between any two of the green nodes.

Now we are ready to bound Q(m, δ, c). The following bound is a generalization of
Lemma 13 of Alon et al. [2013].

Lemma 22. Let G be a directed weighted graph with vertex set V = {1, . . . , N}. Let
sj,i be a weight corresponding to the edge from j to i. Let α(ε) be the independence
number of G after removing all the edges with weights smaller than ε and p1, . . . , pN
are numbers from [0, 1] such that

∑N
i=1 pi ≤ m. Then for any ε ∈ [0, 1], positive

constant c, and non-negative constant δ we have

Q(m, δ, c) ≤ 2m
α(ε)

ε1+δ

[
1 + log

(
1 +

N2ε1+δ + 2Nc

cα(ε)

)]
Remark 9. We introduced extra constant δ in the previous lemma. The role of this
constant is to unify analyses of the algorithms in this chapter and it also enables us
to tune bounds more precisely.

This lemma gives us a way to construct a deterministic bound on Q(m, δ, c). More-
over, it generalizes Lemma 13 of Alon et al. [2013] in several ways. First, we no longer
require (pi)

N
i=1 to be a probability distribution. Instead we assume that

∑N
i=1 pi ≤ m.

This enables us to extend our framework to the combinatorial case. Second, we gen-
eralize this lemma to the case of weighted graphs. Last, we allow different powers of
edge weights sj,i. Later, we show that these generalizations are crucial for some of
the extensions proposed later in this chapter.

Proof. The proof relies on the following two statements borrowed from Alon et al.
[2013]. The first statement is an application of Turán’s theorem on the complemen-

84 Bandits with side observations

tary graph. This gives us a standard graph theoretical lemma connecting indegrees
of vertices to the independence number of a graph.

Lemma 23 (Lemma 10 of Alon et al. [2013]). Let G be a directed graph, with V =

{1, . . . , N}. Let d−i be the indegree of the node i and α = α(G) be the independence
number of G. Then

N∑
i=1

1

1 + d−i
≤ 2α log

(
1 +

N

α

)
.

For the second statement, we use simple algebraic identities and inequalities.

Lemma 24 (Lemma 12 of Alon et al. [2013]). If a, b ≥ 0 and a + b ≥ B > A > 0,
then

a

a+ b− A
≤ a

a+ b
+

A

B − A

Proof.

a

a+ b− A
− a

a+ b
=

aA

(a+ b)(a+ b− A)
≤ A

a+ b− A
≤ A

B − A

We are now ready to prove Lemma 22. Our proof is obtained as a generalization of
the proof of Lemma 13 by Alon et al. [2013]. Let us recall the definition of Q(m, δ, c).

Q(m, δ, c) =
N∑
i=1

pi
1
m
pi + 1

m

∑
j 6=i pjs

1+δ
j,i + c

We begin by constructing a discretization p̂i of the values pi, for every i ∈ [N]. The
discretization satisfies p̂i = k/M for some integer k such that p̂i − 1/M < pi ≤ p̂i
where M depends on Q(m, δ, c) and is defined as

M =

⌈
N2ε1+δ

mc

⌉
.

Adversarial bandits with adversarial side observations 85

pt,1 p̂t,1 pt,2 p̂t,2

0 1

1
M

This allows us to upper bound Q(m, δ, c) as

Q(m, δ, c) ≤ m
N∑
i=1

pi
ε1+δpi +

∑
j 6=i pjε

1+δ1{sj,i ≥ ε}+mc

≤ m

ε1+δ

N∑
i=1

p̂i

p̂i +
∑

j 6=i p̂j1{sj,i ≥ ε}+ mc
ε1+δ
− N

M

≤ m

ε1+δ

N∑
i=1

(
p̂i

p̂i +
∑

j 6=i p̂j1{sj,i ≥ ε}+ mc
ε1+δ

+
N
M

mc
ε1+δ
− N

M

)
.

In the last step, we used Lemma 24 with a = p̂i, b =
∑

j 6=i p̂j1{sj,i ≥ ε} + mc/ε1+δ,
A = N/M , and B = mc/ε1+δ. Using the definition of M , we can easily bound the
second fraction in the previous expression as

N
M

mc
ε1+δ
− N

M

=
Nε1+δ

Mmc− ε1+δN
≤ Nε1+δ

ε1+δN2 − ε1+δN
=

Nε1+δ

ε1+δN(N − 1)
≤ 2

N
.

Using this inequality, we can continue bounding Q(m, δ, c) as

Q(m, δ, c) ≤ m

ε1+δ

N∑
i=1

(
p̂i

p̂i +
∑

j 6=i p̂j1{sj,i ≥ ε}
+

2

N

)

=
m

ε1+δ

(
2 +

N∑
i=1

p̂i
p̂i +

∑
j 6=i p̂j1{sj,i ≥ ε}

)
.

It remains to find a suitable upper bound for the last sum.

The last part of the proof is to construct a graph G′ from our original graph G by
deleting all the edges with weights smaller than ε (thresholding), removing the edge
orientation, and replacing each node i of G by a clique Ci with Mp̂i nodes. In this
expanded graph, we connect all vertices in clique Ci with all vertices in Cj if and
only if there is an edge from i to j in thresholded G. Note that our new graph G′

has the same thresholded independence number α(ε) as the original graph G after

86 Bandits with side observations

thresholding. Also observe that the indegree d̂−k of a node k in clique Ci is equal to
Mp̂i − 1 +

∑
j 6=iMp̂j1{sj,i ≥ ε}. Therefore, the last sum can be rewritten as

N∑
i=1

p̂i
p̂i +

∑
j 6=i p̂j1{sj,i ≥ ε}

=
N∑
i=1

Mp̂i
Mp̂i +

∑
j 6=iMp̂j1{sj,i ≥ ε}

=
N∑
i=1

∑
k∈Ci

1

1 + d̂−k

which in turn can be bounded using Lemma 23 by

2α(ε) log

(
1 +

∑N
i=1Mp̂i
α(ε)

)
≤ 2α(ε) log

(
1 +

mM +N

α(ε)

)
.

Using this bound together with α(ε) ≥ 1 and the definition of M , we get

Q(m, δ, c) ≤ 2m
α(ε)

ε1+δ

[
1 + log

(
1 +

N2ε1+δ + 2Nc

cα(ε)

)]
as advertised.

Now, we use Lemma 22, with m = 1, δ = 0, and c = γt, to get the final result for the
Exp3-IX algorithm.

Corollary 2. The regret of Exp3-IX satisfies

RT ≤
√

8(logN)
(
N + 2

∑T
t=1Htαt

)
,

where αt is the independence number of the graph at time t and

Ht = 1 + log

(
1 +

2N +N2
√
NT/log(N)

αt

)
= O(log(TN)).

Note that the setting of the Exp3-IX algorithm is with the perfect side observations
i.e. all the weights are equal to 1. This means that αt does not depend on the
thresholding parameter ε since setting ε to any value in [0, 1] does not change the
value of αt(ε).

Adversarial bandits with stochastic side observations 87

Proof. Using Lemma 22, with m = 1, δ = 0, c = γt, and setting ε to 1, we can show
that Ht can be bounded as

Ht = 1 + log

(
1 +

N2/γt + 2N

αt

)
≤ 1 + log

(
1 +

2N +N2
√
NT/log(N)

αt

)
= O(log(TN)).

We used the fact that QIX
t can be trivially bounded by N to bound γt.

3 Adversarial multi-armed bandit problem
with stochastic side observations

The main drawback of the basic bandits with side observations [Mannor and Shamir,
2011], studied in Section 2, is that the learner requires the environment to reveal a
substantial part of a graph, at least after the action is taken [Cohen et al., 2016].
Specifically, the learner requires the knowledge of the second neighborhood (the set
of neighbors of the neighbors) of the chosen action in order to update their internal
loss estimates. On the other hand, the algorithms are able to deal with any graph
structures.

The main contribution of this section is a learning algorithm that, unlike previous
solutions, does not require the knowledge of the exact graph underlying the observa-
tions, beyond knowing from which nodes the side observations came from. Relaxing
this assumption, however, has to come with a price: As the very recent results of
Cohen, Hazan, and Koren [2016] show, achieving nontrivial advantages from side ob-
servations may be impossible without perfectly known side-observation graphs when
an adversary is allowed to pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms achieving strong improve-
ments over the standard regret guarantees under the assumption that the losses are
generated in an i.i.d. fashion and the graphs may be generated adversarially. Com-
plementing these results, we consider the case of adversarial losses and make the
assumption that the side-observation graph in round t is generated from an Erdős–
Rényi model with an unknown and time-dependent parameter rt (Figure 3.3). The
main challenge for the learner is then the necessity to exploit the side observations

88 Bandits with side observations

Action 1

Action 2

Action 3Action 4

Action 5

Action 6

: rt

rt

rt

`t,1

`t,2

`t,3?

`t,4

?

Figure 3.3: The learner picks an action (blue node) and observes losses of other
actions with probability rt

despite not knowing the sequence (rt). It is easy to see that this model can be equiv-
alently understood as each non-chosen arm revealing its loss with probability rt,
independently of all other observations. That said, we still find it useful to think of
the side observations as being generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particular, the case of learning with
Erdős–Rényi side-observation graphs was considered before by Alon et al. [2013]:
Given full access to the underlying graph structure, their algorithm Exp3-SET can
be shown to guarantee a regret bound of O

(√∑
t(1/rt)(1− (1− rt)N) logN

)
. While

the assumption of having full access to the graph be dropped relatively easily in this
particular case, exact knowledge of rt seems to be crucial for constructing reliable
loss estimates and use them to guide the choice of action in each round.

It turns out that the problem of estimating rt while striving to perform efficiently is,
in fact, a major difficulty in our setting. Indeed, as we allow rt to change arbitrarily
between each round, we cannot rely on any past observations to construct well-
concentrated estimates of these parameters. That is, the main challenge is estimating
rt from only a handful of samples. The core technical tool underlying our approach
is a direct estimation procedure for the losses that does not estimate rt explicitly.

Armed with this estimation procedure, we propose a learning algorithm called Exp3-
Res that guarantees a regret of O(

√∑
t(1/rt) logN), provided that the condition

rt ≥ log T/(2N − 2) holds for all rounds t. This assumption essentially corresponds
to requiring that, with high probability, at least 1 side observation is produced in
every round, or, in other words, the side-observation graphs encountered are all non-
empty. Notice that for the assumed range of rt’s, our regret bound improves upon
the standard regret bound of Exp3, which is of O(

√
NT logN). It is easy to see

that when rt becomes smaller than 1/N , side observations become unreliable and the
bound of Exp3 cannot be improved. That is, if our assumption cannot be verified

Adversarial bandits with stochastic side observations 89

a priori, then ignoring all side observations and using the Exp3 algorithm of Auer
et al. [2002b] instead can yield a better performance. On the other hand, given that
our assumption holds, our bounds cannot be significantly improved as suggested by
the lower bound of Ω(

√
T/r) proved for a static r by Alon et al. [2013].

Many other partial-information settings have been studied in previous work. One of
the simplest of these settings is the label-efficient prediction game considered by Cesa-
Bianchi et al. [2005], where the learner can observe either losses of all the actions or
none of them, not even the loss of the chosen action. This observation can be queried
by the learner at most an ε < 1 fraction of the total number of rounds, which means
no losses are observed in the remaining rounds. An even more restricted information
setting, label-efficient bandit feedback was considered by Allenberg et al. [2006],
where the learner can only query the loss of the chosen action, instead of all losses
(see also Audibert and Bubeck, 2010). Algorithms for these two settings have regret
of Õ(

√
T/ε) and Õ(

√
NT/ε), respectively. While these bounds may appear very

similar to ours, notice that our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be much more challenging to
exploit. In another related setting, Seldin et al. [2014] consider M side observations
that the learner can proactively choose in each round without limitations. Seldin
et al. deliver an algorithm with regret of Õ(

√
(N/M)T), also proving that choosing

M observations uniformly at random is minimax optimal; given this sampling scheme,
it is not even necessary to observe the loss of the chosen action. Their result is
comparable to ours and the result by Alon et al. [2013] for Erdős–Rényi observation
graphs with parameter r = M/N . However, Seldin et al. also assume that M is
known, which obviates the need for estimating r.

In this section, we assume that, just like the observation probabilities, the losses are
adversarial, that is, they can change at each time step without restrictions. Learning
with side observations and stochastic losses was studied by Caron et al. [2012] and
Buccapatnam et al. [2014]. While this is an easier setting that the adversarial one,
the authors assumed, in both cases, that the graphs have to be known in advance.
Recently, Carpentier and Valko [2016] studied another stochastic setting where the
graph is also not known in advance, however, their setting considers different feedback
and loss structure (influence maximization) which differs from the side-observation
setting.

90 Bandits with side observations

3.1 Side-observation setting with stochastic graphs

We now formalize our learning problem. We consider a sequential interaction scheme
between a learner and an environment, where the following steps are repeated in
every round t = 1, 2, . . . , T :

1. The environment chooses rt ∈ [0, 1] and a loss function over the arms, with `t,i
being the loss associated with arm i ∈ [N]

def
= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some randomness), the learner
draws an arm It ∈ [N].

3. The learner suffers loss `t,It .

4. For all i 6= It, Ot,i is independently drawn from a Bernoulli distribution with
mean rt. Furthermore, Ot,It is set as 1.

5. For all i ∈ [N] such that Ot,i = 1, the learner observes the loss `t,i.

The goal of the learner is to minimize its total expected loss, or, equivalently, to
minimize the total expected regret (or, in short, regret) defined as

RT = max
i∈[N]

E

[
T∑
t=1

(`t,It − `t,i)

]
.

We will denote the interaction history between the learner and the environment up
to the beginning of round t by Ft−1. We also define pt,i = P [It = i| Ft−1].

The main challenge in our setting is leveraging side observations without knowing rt.
Had we had access to the exact value of rt, we would be able to define the following
estimate of `t,i:

ˆ̀?
t,i =

Ot,i`t,i
pt,i + (1− pt,i)rt

(3.6)

It is easy to see that the loss estimates defined this way are unbiased in the sense
that E

[
ˆ̀
t,i

∣∣∣Ft−1] = `t,i for all t and i. It is also straightforward to show that an
appropriately tuned instance of the Exp3 algorithm of Auer et al. [2002b] fed with

Adversarial bandits with stochastic side observations 91

these loss estimates is guaranteed to achieve a regret of O(
√∑

t(1/rt) logN) (see
also Seldin et al. 2014).

Then, one might consider a simple algorithm that devotes a number of observations
to obtain an estimate r̂t of rt and plug this estimate into (3.6). However, notice that
since rt is allowed to change arbitrarily over time, we can only work with a severely
limited sample budget for estimating rt: only N−1 independent observations! Thus,
we can obtain only very loose confidence intervals around rt which translate to even
more useless confidence intervals around ˆ̀?

t,i.

Below, we describe a simple trick for obtaining loss estimates that have similar prop-
erties to the ones defined in (3.6) without requiring exact knowledge or even explicit
estimation of rt. Our procedure is based on the geometric resampling method of
Neu and Bartók [2013]. To get an intuition of the method, let us assume that we
have access to the independent geometrically distributed random variable G?

t,i with
parameter ot,i = pt,i + (1− pt,i)rt. Then, replacing 1/ot,i by G?

t,i in the definition of ˆ̀?
t

and ensuring that G?
t,i is independent of Ot,i, we can obtain an unbiased loss estimate

essentially equivalent to ˆ̀?
t .

The challenge posed by this approach is that in our setting, we do not have exact
sample access to the geometric random variable G?

t,i. In the next section, we describe
our algorithm that is based on replacing G?

t,i in the above definition by an appropriate
surrogate.

3.2 Exp3-Res algorithm and theoretical guarantees

Our algorithm is called Exp3-Res and displayed as Algorithm 6. It is based on the
Exp3 algorithm of Auer et al. [2002b] and crucially relies on the construction of a
surrogate Gt,i of G?

t,i. Throughout this section, we will assume that rt ≥ log T
2N−2 , which

implies that the probability of having no side observations in round t is of order
1/
√
T .

The algorithm is initialized by setting w1,i = 1/N for all i ∈ [N], and then performing
the updates

wt+1,i =
1

N
exp

(
−ηt+1L̂t,i

)
(3.7)

after each round t, where ηt+1 > 0 is an adaptive learning rate parameter of the

92 Bandits with side observations

algorithm at round t and L̂t,i is cumulative sum of the loss estimates ˆ̀
s,i up to (and

including) time t. In round t, the learner draws its action It such that It = i holds
with probability pt,i ∝ wt,i. To simplify some of the notation below, we introduce the
shorthand notations Pt [·] = P [·| Ft−1] and Et [·] = E [·| Ft−1].

Algorithm 6 Exp3-Res
1: Input:
2: Set of actions [N].
3: Initialization:
4: L̂0,i = 0 for i ∈ [N].
5: Run:
6: for t = 1 to T do

7: ηt =

√
logN

/(
N2 +

∑t−1
s=1

∑N
i=1 ps,i(

ˆ̀
s,i)2

)
.

8: wt,i = (1/N) exp(−ηtL̂t−1,i) for i ∈ [N].
9: Wt =

∑N
i=1wt,i.

10: pt,i = wt,i/Wt.
11: Choose It ∼ pt = (pt,1, . . . , pt,N).
12: Receive the observation set Ot.
13: Receive the pairs {i, `t,i} for all i s.t. Ot,i = 1.
14: Compute Gt,i for all i ∈ [N] using (3.8).
15: ˆ̀

t,i = `t,iOt,iGt,i for all i ∈ [N].
16: L̂t,i = L̂t−1,i + ˆ̀

t,i for all i ∈ [N].
17: end for

For any fixed t, i, we now describe an efficiently computable surrogate Gt,i for the
geometrically distributed random variable G?

t,i with parameter ot,i that will be used
for constructing our loss estimates. In particular, our strategy will be to construct
several independent copies

{
O′t,i(k)

}
of Ot,i and choosing Gt,i as the index k of the

first copy with O′t,i(k) = 1. It is easy to see that with infinitely many copies, we could
exactly recover G?

t,i; our actual surrogate is going to be weaker thanks to the smaller
sample size. For clarity of notation, we will omit most explicit references to t and i,
with the understanding that all calculations need to be independently executed for
all pairs t, i.

Let us now describe our mechanism for constructing the copies {O′(k)}. Since we
need independence of Gt,i and Ot,i for our estimates, we use only side observations
from actions [N] \ {It, i}. First, let’s define σ as a uniform random permutation
of [N] \ {It, i}. For all k ∈ [N − 2], we define R(k) = Ot,σ(k). Note that due to
the construction, {R(k)}N−2k=1 is an independent set of Bernoulli random variables

Adversarial bandits with stochastic side observations 93

with parameter rt, independent of Ot,i. Furthermore, knowing pt,i we can define
P (1), . . . , P (N − 2) as pairwise independent Bernoulli random variables with pa-
rameter pt,i. Using P (k) and R(k) we define the random variable O′(k) as

O′(k) = P (k) + (1− P (k))R(k)

for all k ∈ [N − 2]. Using independence of all previously defined random variables,
it is easy to check that the variables {O′(k)}N−2k=1 are pairwise independent Bernoulli
random variables with expectation ot,i = pt,i+(1−pt,i)rt. Now we are ready to define
Gt,i as

Gt,i = min {k ∈ [N − 2] : O(k)′ = 1} ∪ {N − 1} . (3.8)

The following lemma states some properties of Gt,i.

Lemma 25. For any value of ot,i we have

E [Gt,i] =
1

ot,i
− 1

ot,i
(1− ot,i)N−1

E
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2

(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(ot,i − 1)

)

Proof. The proof follows directly from using the definition of Gt,i and simplifying the
sums

E [Gt,i] =
N−2∑
k=1

[
kot,i(1− ot,i)k−1

]
+ (N − 1) (1− ot,i)N−2,

E
[
G2
t,i

]
=

N−2∑
k=1

[
k2ot,i(1− ot,i)k−1

]
+ (N − 1)2 (1− ot,i)N−2.

Using Lemma 25, it is easy to see that Gt,i follows a truncated geometric law in the
sense that

P [Gt,i = m] = P
[
min

{
G?
t,i, N − 1

}
= m

]

94 Bandits with side observations

holds for all m ∈ [N − 1]. Using all this notation, we construct an estimate of `t,i as

ˆ̀
t,i = Gt,iOt,i`t,i. (3.9)

The rationale underlying this definition of Gt,i is rather delicate. First, note that
pt,i is deterministic given the history Ft−1 and therefore, does not depend on Ot,i.
Second, Ot,i is also independent of Ot,j for j 6∈ {i, It}. As a result, Gt,i is independent
of Ot,i, and we can use the identity Et [Gt,iOt,i] = Et [Gt,i]Et [Ot,i]. The next lemma
relates the loss estimates (3.9) to the true losses, relying on the observations above
and the assumption rt ≥ log T

2N−2 .

Lemma 26. Assume rt ≥ log T
2N−2 . Then, for all t and i,

0 ≤ `t,i − Et
[
ˆ̀
t,i

]
≤ 1√

T
.

Proof. Fix an arbitrary t and i. Using Lemma 25 along with Et [Ot,i] = ot,i and the
independence of Gt,i and Ot,i, we get

Et
[
ˆ̀
t,i

]
= Et [Gt,iOt,i`t,i] = `t,i − `t,i(1− ot,i)N−1,

which immediately implies the lower bound on `t,i − Et
[
ˆ̀
t,i

]
. For proving the upper

bound, observe that

`t,i(1− ot,i)N−1 ≤ (1− rt)N−1 ≤ e−rt(N−1) ≤ 1√
T

holds by our assumption on rt, where we used the elementary inequality 1− x ≤ ex

that holds for all x ∈ R.

The next theorem states our main result concerning Exp3-Res with an adaptive
learning rate ηt.

Theorem 8. Assume that rt ≥ log T
2N−2 holds for all t and set

ηt =

√
logN

N2 +
∑t−1

s=1

∑N
i=1 ps,i(

ˆ̀
s,i)2

.

Adversarial bandits with stochastic side observations 95

Then, the expected regret of Exp3-Res satisfies

RT ≤ 2

√√√√(N2 +
T∑
t=1

1

rt

)
logN +

√
T .

Detailed proof of the theorem can be found in Section 6.2

3.3 Experiments

0 100 200 300 400 500
0

20

40

60

80

100

120

140

Time

C
um

ul
at

iv
e

re
gr

et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(a) Static sequence (rt)
T
t where

rt = 0 for all t

0 100 200 300 400 500
0

20

40

60

80

100

120

Time

C
um

ul
at

iv
e

re
gr

et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(b) Static sequence (rt)
T
t where

rt = 0.06 ≈ log(T)/(2N − 2)

Figure 3.4: Comparison of the algorithms for different amount of side information
and fixed value of rt

In this section, we study the empirical performance of Exp3-Res compared to three
other algorithms:

• Exp3 – a basic adversarial multi-armed bandit algorithm which uses only loss
observations of chosen arms and discards all side observations.

• Oracle – full-information algorithm with access to losses of every action in
every time step, regardless of the value of rt. Our particular choice is Hedge
[Littlestone and Warmuth, 1994, Freund and Schapire, 1997].

• Exp3-R – a variant of the Exp3-Res algorithm with access to the sequence
(rt)

T
t , using (3.6) to construct unbiased loss estimate instead of using geometric

resampling.

96 Bandits with side observations

0 100 200 300 400 500
0

20

40

60

80

Time

C
um

ul
at

iv
e

re
gr

et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(a) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]

0 100 200 300 400 500
0

20

40

60

80

100

120

Time

C
um

ul
at

iv
e

re
gr

et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(b) Sequence (rt)
T
t generated as a ran-

dom walk on [0, 0.1]

0 100 200 300 400 500
0

20

40

60

80

100

120

Time

C
um

ul
at

iv
e

re
gr

et

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(c) Sequence (rt)
T
t generated as a ran-

dom walk on [0, 1]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Fixed value of r

T
ot

al
 r

eg
re

t

Exp3−Res
Oracle (Hedge)
Exp3
Exp3−R

(d) Total regret for different values of
static (rt)

T
t

Figure 3.5: Comparison of the algorithms for different side information sequences
(different sequences (rt)

T
t)

The most interesting parameter of our experiment is the sequence (rt), since it con-
trols the amount of side observation presented to the learner. In order to show that
Exp3-Res can effectively make use of the additional information provided by the
environment, we designed several sequences (rt) with different amounts of side ob-
servation provided to the learner. In the case of small rt-s, the problem is almost as
difficult as the multi-armed bandit problem. On the other hand, in the case of large
rt-s, the problem is almost as easy as the full-information problem. Therefore, we
expect that the performance of Exp3-Res will interpolate between the performance
of the Exp3-R and Oracle algorithms depending on the values of the rt-s. In the
next section, we validate this claim empirically.

Adversarial bandits with noisy side observations 97

To ensure sufficient challenge for the algorithms, we have generated a sequence of
losses as a random walk for each arm with independent increments uniformly dis-
tributed on [−0.1, 0.1] while enforcing the random walks to stay within [0, 1] by
setting the value of a random walk to 0 or 1, respectively, if the random walk gets
outside the boundaries. The loss sequence is fixed through all of the experiments to
demonstrate the impact of the sequence (rt)

T
t on the regret of algorithms. We have

observed qualitatively similar behavior for other loss sequences.

We fix the number of arms in all of the experiments as 50, and the time horizon as
500. Every curve represents an average of 100 runs.

We performed experiments on many different loss sequences and sequences of rt-s.
Since the results are essentially the same for all the different sequences, we included
just the results for one loss sequence with different sequences of rt-s. In the case of
rt ≥ log(T)/(2N − 2), the case of a high probability of having some side observation,
the performance of the algorithm Exp3-Res proposed in the present paper is com-
parable to the performance of the idealistic Exp3-R which knows the exact value of
rt in every time step. Moreover, if the average rt is close to 1, the performance of
the proposed algorithm is close to the performance of Oracle which observes all
the losses. If the average rt is close to zero, the performance of the algorithm is a
little bit worse that the performance of basic Exp3. This is also supported by the
theory since our algorithm is not able to construct reliable estimates in the case of
small rt-s.

4 Adversarial multi-armed bandit problem
with noisy side observations

In the previous sections, we studied settings which assumed that the side observa-
tions are perfect. This assumption might be unrealistic in some applications. To
address this issue, we propose a new partial-observability model for online learning
problems where the learner, besides its own loss, also observes some noisy feedback
about the other actions, depending on the underlying structure of the problem. This
problem might be seen as an instance of the framework in Figure 3.1. We represent
the structure of the problem by a weighted directed graph, where the edge weights are
related to the quality of the feedback shared by the connected nodes. For this prob-
lem, we propose two algorithms. In the first algorithm the learner simply specifies a
threshold for “unreliable” side observations, discards them, and uses the rest of the

98 Bandits with side observations

observations. However, selecting this threshold proves to be challenging. Therefore,
in the second algorithm, we use a different approach. Instead of telling the algorithm
which side observations are reliable and which are not, we use a novel approach to
loss estimation which can control the bias of estimates of unreliable side observations.

For both algorithms, we guarantee a regret of Õ(
√
α∗T) after T rounds, where α∗ is a

novel graph property that we call the effective independence number. To achieve this
bound, the first algorithm needs to know the optimal threshold while the second al-
gorithm is completely parameter-free and achieves this bound without any additional
requirements.

For the special case of binary edge weights, our setting reduces to the partial-
observability models of Mannor and Shamir [2011], studied in Section 2, and our
algorithm recovers the near-optimal regret bounds.

As an illustration to our setting, consider the problem of controlling solar panels so
as to maximize their power production. In this problem, the learner has to repeat-
edly decide about the orientation of the panels so as to find alignments with strong
sunshine. Besides the amount of the energy being actually produced in the current
alignment, the learner can also estimate the amount of energy in some other posi-
tions, based on measurements of sensors installed on the solar panel. However, the
observations generated by these sensors can be of variable quality depending on visi-
bility conditions, the quality of the sensors and the alignment of the panels. Overall,
this problem can be seen as a bandit problem with noisy side observations fitting into
our setting, where actions correspond to alignments and the noisy side observations
give information about similar alignments.

Intuitively, in the case when the noise level of side observations does not change with
time, a possible strategy one can think of is to use only the observations from the
“most reliable” sources and ignore the rest. Having made the distinction between
“reliable” and “unreliable”, the learner could model the observation structure in the
framework of Mannor and Shamir [2011], Alon et al. [2013], by treating every “reli-
able” observation as perfect. This approach raises two concerns. First, determining
the cutoff for unreliable observations that allows the “most efficient” use of infor-
mation is a highly nontrivial design choice. As we show later, knowing the perfect
cutoff would help us to improve performance over the pure bandit setting without
side observations. Second, one has to address the bias arising from handling every
reliable observation as perfect. While one can think of many obvious ways to handle
this bias by appropriate weighting observations, none of these solutions are directly
compatible with the model of Mannor and Shamir [2011], Alon et al. [2013]. Our

Adversarial bandits with noisy side observations 99

main contribution in this section is an algorithm that is able to deal with both issues
without the knowledge of the optimal cutoff.

The main tool we use for modeling uncertain observations is a weighted directed graph
encoding the quality of side observations. In this graph, the weight of the arc i→ j

measures the quality of the side observation obtained from action j when selecting
action i. All weights are assumed to lie in the interval [0, 1], with a weight of 1 corre-
sponding to a perfectly accurate side observation, and a weight of 0 corresponding to
a side observation of useless noise. Our model generalizes the previously considered
models of Mannor and Shamir [2011] and Alon et al. [2013]: their respective settings
are captured by considering undirected and directed graphs with binary weights in
our setting. In these special cases, the independence number α of the observation
graph plays a key role in characterizing the complexity of learning: the minimax
regret after T rounds is known to be Θ̃(

√
αT). In this section, we define a similar

quantity for weighted graphs: the effective independence number α∗ and propose a
learning algorithm that enjoys a regret bound of Õ(

√
α∗T) without any conditions

made on the loss sequence.

The effective independence number α∗ is closely related to the cutoff threshold for
noisy observations. Intuitively, it is linked to the independence number of a graph
that only considers reliable observations. In practical scenarios, neither the cutoff
nor α∗ is ever known to the learner, which is the main challenge we need to address.
In any case, the most interesting situations for our setting are the cases when we can
bound α∗ by a small quantity.

While we are mainly inspired by situations where the weights of the graph are fixed
and known in advance, we treat a more general setting where the observation struc-
ture can arbitrarily change over time and the weights are revealed to the learner only
after it has made its decision. Our algorithms are fully adaptive in the sense that
they do not require any prior knowledge of the sequence of observation graphs or the
time horizon. To achieve this result, we combine the implicit exploration strategy in-
troduced in Section 1.3 with thresholding (in the first algorithm) or a loss estimation
technique that effectively suppresses the observation noise (in the second algorithm).

For the special case of binary weights, the effective independence number and the
independence number coincide; otherwise α∗ is bounded by the number of actions
N . Thus, the regret bound of our algorithm is of near-optimal order for binary
graphs and is always within logarithmic factors of the minimax regret of order

√
NT

for the standard multi-armed bandit problem without side observations. As we will
show later in the thesis, there are several interesting cases for which the effective

100 Bandits with side observations

independence number can be bounded in a nontrivial way.

Independently of the work presented in this section, Wu, György, and Szepesvári
[2015] considered an essentially identical partial-observability model for online learn-
ing: there, side observations are modeled as zero-mean Gaussian random variables
with variance depending on the chosen action. It is easy to see that their model
and ours can capture exactly the same type of problems: a side observation with
zero variance in their model corresponds to a perfect observation with weight one in
our model while useless noise is equivalently represented by infinite-variance or zero-
weight observations. The results of Wu et al. [2015] are, however, of a completely
different flavor than the ones presented in this work; the primary difference being
that Wu et al. assume that the losses are i.i.d. Gaussian random variables while our
results hold without any assumptions made on the sequence of losses. The main con-
tributions of Wu et al. are (i) a general problem-dependent lower bound on the regret
and (ii) algorithms that work under the assumption that all the useful (i.e., finite-
variance) side observations have the same variance. This latter assumption does not
use the full strength of the framework where the variance of side observations can
vary for different actions. Notably, the regret bounds presented in this section match
(up to logarithmic factors) the lower bounds of Wu et al. [2015] for the special cases
that they consider. That said, their lower bounds and our upper bounds are not
directly comparable for more general observability graphs.

Besides the works mentioned above, several other partial-observability models have
been considered in the literature. The most general of these settings is the partial-
monitoring framework considered by Bartók et al. [2011, 2014]. Unlike our model,
this framework is most useful for identifying and handling feedback structures that
are more restrictive than bandit feedback. In contrast, our framework deals with
feedback structures that are strictly more expressive than plain bandit feedback.
Similarly to Bartók et al., the recent work of Alon et al. [2015] also considers a
generalization of the partial-observability models of Mannor and Shamir [2011] and
Alon et al. [2013] that may be more restrictive than bandit feedback. Another well-
studied setting in machine learning is where the observations are corrupted by noise
irrespective of the decisions of the learner (see, e.g., Cesa-Bianchi et al., 2010). Such
settings do not pose an exploration-exploitation dilemma to the learner and thus are
not relevant to our goals.1

1In fact, it can be shown by the techniques of Devroye et al. [2013] that in the setting of online
learning with finite actions and observations corrupted by the same level of i.i.d. noise, the simplest
possible strategy of following the leader gives near-optimal guarantees.

Adversarial bandits with noisy side observations 101

4.1 Side-observation setting with weighted graphs

Let us now give the formal definition of our learning problem. We consider a sequen-
tial decision-making problem, which falls into the framework described in Figure 3.1,
where a learner and an environment interact in the following way (see also Fig-
ure 3.7). In every round t ∈ [T] = {1, 2, . . . , T}, the environment selects a weighted
graph Gt with N nodes and a loss function `t : [N] → [0, 1] where `t,i is the loss
associated with arm i. The weight of each arc i → j in Gt is denoted as st,(i,j) and
assumed to lie in [0, 1]. Following the environment’s move, the learner selects an
action (or arm) It ∈ [N] and incurs the loss `t,It . Finally, the learner also observes
Gt and the feedback

ct,i = st,(It,i) · `t,i +
(
1− st,(It,i)

)
· ξt,i

for every arm i, where ξt,i is the observation noise (c.f. another illustration on
Figure 3.6). We assume that each ξt,i is zero-mean, satisfies |ξt,i| ≤ R for some
known constant R ≥ 0, and is generated independently of all other noise terms and
the history of the process2. The interaction history between the learner and the
environment up to the end of round t is captured by the sigma-algebra Ft. We
consider adaptive (or non-oblivious) environments that are allowed to choose `t and
Gt in full knowledge of the history Ft−1. We also assume that all graphs Gt are such
that st,(i,i) = 1 for all i, that is, the learner always observes its own loss `t,It without
corruption.

The goal of the learner is to choose its actions so as to ensure that its cumulative loss
grows as slowly as possible. As traditional in the online learning literature [Cesa-
Bianchi and Lugosi, 2006], we measure the performance of the learner in terms of
the (total expected) regret defined as the gap between the expected loss of the player
and the expected loss of the best fixed-arm policy:

RT = max
i∈[N]

E

[
T∑
t=1

`t,It −
T∑
t=1

`t,i

]
.

We are interested in constructing algorithms for the learner that guarantees a tight
upper bound on the regret. Before proposing our algorithms, a few comments are in
order. First, notice that our framework technically contains the settings of Mannor

2We are mainly interested in the setting where R = Θ(1), that is, we are neither in the easy case
where R is close to zero or the hard one where it may be as large as Ω(

√
T)

102 Bandits with side observations

:

0.9ℓ+0.1ξ

1ℓ+0ξ

0.7ℓ+0.3ξ

0.2ℓ+0.8ξ

0.1
0.9

0.2
1.0

0.7

0.5

0.9

0.8

0.2

0.1

0.2
0.3

0.1

0.9

0.8

0.
4

Figure 3.6: Noisy feedback on fishing example [Wu et al., 2015]: A fisherman picks a
fishing spot daily and gets the yield while imperfectly observing the yields of neigh-
bors.

and Shamir [2011] and Alon et al. [2013] as special cases where the edge weights are
chosen from {0, 1}: in this situation, our framework suggests that the learner either
gets perfect side-observations or just zero-mean noise, which can be safely ignored
by the learner. Also, notice that since we assume st,(i,i) = 1 for all i, our problem is
not harder for the learner than the standard multi-armed bandit problem. Indeed,
thanks to this property, the learner could simply ignore all side observations and
run a bandit algorithm such as Exp3 of Auer et al. [2002a] that guarantees a regret
bound of Õ(

√
NT).

In what follows, we present learning algorithms with strong theoretical performance
guarantees for the setting described in the previous section and a new quantity,
effective independence number, that characterizes the connectivity of a graph. As the
intuitions underlying our algorithm are rather intricate, we will proceed gradually: we

Adversarial bandits with noisy side observations 103

1: Parameters:
2: Known set of actions [N]

3: Not necessarily known time horizon T .
4: for t = 1 to T do
5: The environment chooses a loss function `t : [N]→ [0, 1]

6: The adversary chooses a directed weighted graph Gt with edge weights in [0, 1].

7: Based on its previous observations (and possibly some source of randomness),
the learner picks an action It ∈ [N].

8: The learner suffers loss `t,It .
9: The learner observes Gt and the feedback

ct,i = st,(It,i) · `t,i +
(
1− st,(It,i)

)
· ξt,i

for every arm i ∈ [N], where ξt,i ∈ [−R,R] is the zero-mean independent
observation noise.

10: end for

Figure 3.7: The protocol of online learning with noisy observations.

first identify the main challenges of constructing learning algorithms for our setting,
then offer a solution that overcomes these difficulties in an efficient manner.

4.2 Exp3-IXt algorithm and theoretical guarantees

We first consider an algorithm that bases its decisions on the following estimates of
each `t,i:

ˆ̀ (b)
t,i =

ct,i∑
j∈N−

i
pt,jst,(j,i) + γt

, (3.10)

where b stands for “basic”. Here, γt ≥ 0 is an implicit exploration parameter [Kocák
et al., 2014a], introduced in Section 1.3, for decreasing the variance of importance-
weighted estimates. Notice that setting γt = 0, makes estimates above unbiased
since

E [ct,i| Ft−1] =
(∑N

j=1 pt,jst,(j,i)

)
· `t,i,

104 Bandits with side observations

where we used our assumption that E [ξt,i] = 0. Using these estimates in our Exp3
algorithmic template (Algorithm 4), one would expect to get reasonable performance
guarantees. Unfortunately, we were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the poor performance of the above
algorithm is the large variance of the estimates (3.10) which is caused by including
observations from “unreliable sources” with small weights. One intuitive idea is to
explicitly draw the line between reliable and unreliable sources by cutting connections
with weights under a certain threshold. This effect is realized by the estimates

ˆ̀ (t)
t,i =

ct,i1
{
st,(It,i) ≥ εt

}∑
j∈N−

i
pt,jst,(j,i)1

{
st,(j,i) ≥ εt

}
+ γt

, (3.11)

where εt ∈ [0, 1] is a threshold value and t stands for “thresholded”. We call the al-
gorithm resulting from using the above estimates in Algorithm 4 Exp3-IXt, stand-
ing for “Exp3 with Implicit eXploration and Truncated side-observation weights”.
Thanks to the thresholding operation, the variance of the loss estimates can be nicely
controlled and it becomes possible to prove a strong performance guarantee for Exp3-
IXt. In particular, using techniques similar to the analysis in Section 1.4, we prove
the following result concerning the regret of Exp3-IXt algorithm:

Theorem 9. For all t ∈ [T], let εt be a threshold used by Exp3-IXt algorithm at
time t. Setting

ηt =

√√√√ logN

2(1 +R2)
(
N
εt

+
∑t−1

s=1
QIXt
s

εs

) and γt =
1 +R2

2εt
ηt

the cumulative regret of Exp3-IXt is bounded as

Rt ≤ E

[√
8(1 +R2)(logN)

(
N +

∑T
t=1

QIXt
t

εt

)]
,

where QIXt
t = Qt(1, 0, γt) for graph Gt thresholded by εt

The theorem is proved later in Section 6.3. To obtain a deterministic bound, we can

Adversarial bandits with noisy side observations 105

Algorithm 7 Exp3-IXt
1: Input and initialization:
2: Set of actions A = [N], time horizon T
3: Initialize cumulative loss estimates L̂0,i to 0 for all i ∈ [N]

4: for t = 1 to T do
5: The adversary privately chooses losses `t,i for i ∈ [N] and generates graph Gt

6: Set threshold εt ∈ [0, 1], possibly using Gt

7: Set implicit exploration term γt and adaptive learning rate ηt as

ηt =

√√√√ logN

2(1 +R2)
(
N
εt

+
∑t−1

s=1
QIXt
s

εs

) and γt =
1 +R2

2εt
ηt

8: Create exponential weights wt,i = 1
N

exp (−ηtL̂t−1,i) for all i ∈ [N]

9: Create probability distribution pt,i =
wt,i
Wt

where Wt =
∑N

i=1wt,i
10: Choose an action It such that It ∼ pt = (pt,1, . . . , pt,N)

11: Incur and observe the loss of the action It
12: Observe noisy side observations ct,i = sIt,i`t,i + (1− sIt,i)ξt,i for all i ∈ [N]

13: Construct loss estimates for every action i ∈ [N], such that

ˆ̀
t,i =

ct,i
ot,i + γt

1{(It→i)∈Gt} where ot,i =
∑
j∈[N]

pt,jsj,i

14: end for

use Lemma 22 to upper bound QIXt
t = Qt(1, 0, γt) as

QIXt
t ≤ 2

αt(εt)

εt

(
1 + log

(
1 +

N2 + 2Nγt
γtαt(εt)

))
. (3.12)

Using this bound we obtain the main result for Exp3-IXt algorithm in the form of
the following corollary

Corollary 3. The regret of Exp3-IXt satisfies

Rt ≤
√

8(1 +R2)(logN)
(
N +

∑T
t=1Ht

αt(εt)

ε2t

)

106 Bandits with side observations

where

Ht = 2 + 2 log

1 +

N2εt

√
8(1+R2)
logN

(∑t
s=1

N
εt

)
+ 2N

αt(εt)

Proof. The proof is obtained using bound (3.12) together with the definition of γt.
Moreover we bound every QIXt

t in the definition of γt by N .

Note that the regret bound of Exp3-IXt is of Õ
(√∑T

t=1
αt(εt)

ε2t

)
. In order to optimize

this bound we can choose εt = arg minε∈[0,1]
αt(ε)
ε2

. We denote this optimal value of εt
by ε∗t . Note however that finding ε∗t can be a very challenging task in practice since
computing independence number, in general, is known to be NP-hard. Even worse,
computing ε∗t for a weighted graph can require computing up to N2 independence
numbers. In the next section, we discuss about optimal threshold and define a
quantity which characterizes the complexity of the problem. Later in this chapter,
we show a computationally more efficient algorithm for the setting which does not
need to know the optimal threshold ε∗t .

4.3 Effective independence number

In the previous section, we showed that the regret bound for Exp3-IXt algorithm
is of order Õ

(√∑T
t=1

αt(εt)

ε2t

)
. Optimizing this bound and choosing εt = ε∗t =

arg minε∈[0,1]
αt(ε)
ε2

motivates us to define a new graph property that we call effec-
tive independence number, defined as follows:

Definition 11. Let G be a weighted directed graph with N nodes and edge weights
bounded in [0, 1]. For all ε ∈ [0, 1], let G(ε) be the (unweighted) directed graph where
arc i → j is present if and only if si,j ≥ ε in G. Letting α(ε) be the independence
number of G(ε), the effective independence number of G is defined as

α∗ = min
ε∈[0,1]

α(ε)

ε2
·

Adversarial bandits with noisy side observations 107

(a) U(0, 1) weights (b) U(12 , 1) weights (c) U(0, 12) weights

Figure 3.8: Dependence of α∗ on the size of the graph with random weights, 100
graphs for each size.

Roughly speaking, the effective independence number is a measure of connectivity of
weighted graphs. Using the notion of the effective independence number, we can show
that, using optimal thresholds εt = ε∗t in every round t ∈ [T], Exp3-IXt algorithm

enjoys the regret bound of Õ
(√∑T

t=1 α
∗
t

)
.

The previous section has established that the performance guarantees of our algo-
rithms can be expressed in terms of the effective independence number of the obser-
vation graphs. In this section, we provide some basic insights about the nature of
this quantity and describe some graph structures with small effective independence
numbers.

The first observation we make is that the effective independence number is always
well-defined, as the function α(ε)/ε2 can be easily shown to be piecewise decreasing
and lower semicontinuous with at most N discontinuities. Thanks to these properties,
this expression takes its minimum within the closed interval [0, 1]. Second, we note
that the effective independence number of any weighted graph is trivially bounded
by the number N of the nodes in the graph. This follows from the fact that α∗ ≤
α(1)/1 ≤ N . This essentially guarantees that incorporating side-observations can
never be harmful to the performance of the learner: the regret of Exp3-WIX is always
within logarithmic factors of the minimax regret of order

√
NT for the standard

multi-armed bandit problem without side observations.

It is also easy to see that the effective independence number exactly matches the
independence number if all edge weights are binary. This, in particular, implies that
for such graphs, the regret of Exp3-WIX grows at the minimax rate established by
Alon et al. [2013] up to logarithmic factors, matching the performance guarantees of
the algorithms of Alon et al. [2013] and Kocák et al. [2014a]. Another interesting

108 Bandits with side observations

case is when all weights are either zero or equal to a fixed constant ε, also assuming
si,i = ε. In this case, the effective independence number becomes α

ε2
, where α is the

independence number of the underlying unweighted graph. This case was studied in
the recent paper of Wu et al. [2015], who show (in their Corollary 4) that the minimax
regret in this case is of Θ(

√
αT/ε)—implying that our performance bounds for this

case are again near-optimal3. Also, observe that whenever all weights are bounded
by some constant c > 0 from below, the effective independence number becomes
upper-bounded by 1/c2, irrespective of the number of actions. That is, our algorithm
can achieve an exponential performance gain over bandit algorithms in terms of N
by leveraging such feedback structures.

Let us now describe a class of weighted graphs with bounded effective independence
numbers. Consider a geometric graph whose nodes represent vertices of a uniform
k × k grid on [0, 1]2. The weight of edge (i, j) is given as 1/(1 + d2i,j), where di,j is
the Euclidean distance of the respective vertices represented by i and j. This graph
can be used to model a sensor network where the measurement accuracy of measure-
ments degrades with the distance. Thus, reading the measurements from one sensor
will give information about the measurements of nearby sensors as well. Intuitively,
increasing the number of sensors (i.e., refining the grid) should only improve the
information-sharing between sensors up to a certain level. It is natural to expect a
reasonable graph property quantifying the information-sharing efficiency to capture
this intuition. We have numerically evaluated the effective independence number of
a number of graphs from the above family to test if it satisfies the above criterion.
We have found that the effective independence numbers remain bounded by a con-
stant (roughly 30) even when refining the grid infinitely, confirming that the effective
independence number captures the above phenomenon.

Finally, we conducted some numerical simulations to evaluate the average effective
independence numbers of certain types of weighted random graphs. In particular,
we considered random graphs with i.i.d. weights distributed uniformly on [0, 1], [1

2
, 1]

and [0, 1
2
]. The distributions of the effective independence numbers are illustrated

as scatter plots for different graph sizes on Figure 3.8. First, observe that the av-
erage α∗ of U(0, 1)-weighted graphs shows a logarithmic trend in terms of N . The
results concerning U(1

2
, 1)-weighted graphs are not surprising given that we have

already established that graphs with bounded weights have finite effective indepen-
dence numbers. For U(0, 1

2
)-weighted graphs, we see that α∗ grows linearly up until

a certain threshold when it starts to follow a logarithmic trend. The intuition behind

3While we prove our bounds for the case where si,i = 1 for all i, it is easy to extend our results
to the case where all such weights equal a constant in [0, 1].

Adversarial bandits with noisy side observations 109

this linear behavior for small graphs is the following. First, observe that the optimal
value of ε is greater than 1/

√
N . That is, until N is large enough so that a critical

mass of edges are above this quantity, the optimal value of α(ε)/ε2 remains N . Once
N is beyond this critical value, α∗ starts following a logarithmic trend.

4.4 Exp3-WIX algorithm and theoretical guarantees

One downside of the Exp3-IXt algorithm is the necessity of choosing a threshold
εt. In this section, we present our main algorithm for the setting with noisy side
observations that obtains strong regret bound, similar to the bound of Exp3-IXt,
without having to compute the best threshold ε∗t , nor effective independence numbers.
The key element of this algorithm is using specifically designed loss estimates of the
form

ˆ̀
t,i =

st,(It,i) · ct,i∑
j∈N−

i
pt,js2t,(j,i) + γt

, (3.13)

where γt ≥ 0 is the implicit exploration parameter already introduced in Section 1.3.
Notice that the difference from the estimates (3.10) is that the observation ct,i is
multiplied by the weight of useful information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when setting γt = 0 since

E
[
st,(It,i) · ct,i

∣∣Ft−1] =

(
N∑
j=1

pt,js
2
t,(j,i)

)
· `t,i.

The role of this scaling is pulling the noise term ξt,i toward zero for actions i with small
weights sIt,i, and thus achieving a similar variance-reducing effect as the truncations
employed by Exp3-IXt.

Armed with the loss estimates (3.13), we are ready to define our algorithm: Exp3
(presented as Algorithm 4) with Weighted observations and Implicit eXploration, or,
in short, Exp3-WIX. Overall, Exp3-WIX has two set of parameters to tune: the
sequence of learning rates (ηt)t and the sequence of IX parameters (γt)t. Our main
theorem below states the performance guarantees of Exp3-WIX with an adaptive
learning-rate sequence that does not need any prior knowledge about the number of
rounds or the nature of the side-observation graphs. The key quantity for computing

110 Bandits with side observations

Algorithm 8 Exp3-WIX
1: Input and initialization:
2: Set of actions A = [N], time horizon T
3: Initialize cumulative loss estimates L̂0,i to 0 for all i ∈ [N]

4: for t = 1 to T do
5: The adversary privately chooses losses `t,i for i ∈ [N] and generates graph Gt

6: Set implicit exploration term γt and adaptive learning rate ηt as

ηt =

√
logN

2(1 +R2)
(
N +

∑t−1
s=1Q

WIX
s

) and γt =
1 +R2

2
ηt

7: Create exponential weights wt,i = 1
N

exp (−ηtL̂t−1,i) for all i ∈ [N]

8: Create probability distribution pt,i =
wt,i
Wt

where Wt =
∑N

i=1wt,i
9: Choose an action It such that It ∼ pt = (pt,1, . . . , pt,N)

10: Incur and observe the loss of the action It
11: Observe noisy side observations ct,i = sIt,i`t,i + (1− sIt,i)ξt,i for all i ∈ [N]

12: Using Gt construct loss estimate for every action i ∈ [N], such that

ˆ̀
t,i =

sIt,ict,i
ot,i + γt

1{(It→i)∈Gt} where ot,i =
∑
j∈[N]

pt,js
2
j,i

13: end for

the parameters ηt and γt is

QWIX
t =

N∑
i=1

pt,i∑N
j=1 pt,js

2
t,(j,i) + γt

,

defined for all t. Notice that QWIX
t is defined as Q(1, 1, γt) for graph Gt. We can

use the definition of QWIX
t to characterize the performance guarantees of Exp3-WIX

algorithm in the following theorem.

Theorem 10. Setting

ηt =

√
logN

2(1 +R2)
(
N +

∑t−1
s=1Q

WIX
s

) and γt =
1 +R2

2
ηt

Adversarial bandits with noisy side observations 111

for all t ∈ [T], the cumulative regret RT of Exp3-WIX algorithm is bounded as

RT ≤ E

[√
8(1 +R2)(logN)

(
N +

∑T
t=1Q

WIX
t

)]
.

The proof of the theorem is located in the Section 6.4.

The next step is to find a deterministic upper bound on QWIX
t . For this purpose, we

use the fact that QWIX
t = Qt(1, 1, γt) and bound this quantity using Lemma 22 to

obtain

QWIX
t ≤ 2α∗t

[
1 + log

(
1 +

2N

(ε∗t)
2α∗t

+
N2

γtα∗t

)]
, (3.14)

where ε∗t is an optimal threshold. This gives us following corollary which characterizes
the regret of Exp3-WIX algorithm in the terms of effective independence number.

Corollary 4. The regret of Exp3-WIX satisfies

Rt ≤
√

8(1 +R2)(logN)
(
N + 2

∑T
t=1Htα

∗
t

)
where

Ht = α∗t

[
1 + log

(
1 +

2N

(ε∗t)
2α∗t

+
N2

α∗t

√
8Nt

(1 +R2) logN

)]
.

Proof. To proof this corollary, we use Theorem 10, bound (3.14) on QWIX
t , and the

definition of γt in which we bound every appearance of QWIX
t by N .

In plain words, Corollary 4 guarantees that the regret of Exp3-WIX grows as

Õ
(√∑T

t=1 α
∗
t

)
= Õ(

√
α∗avgT). Notice that in order to obtain this regret bound,

Exp3-WIX never needs to compute the effective independence number of any of the
observation graphs. This saves us from a significant computational overhead as com-
pared to the naïve algorithm Exp3-IXt that needed to set a thresholding parameter
to discard unreliable observations.

112 Bandits with side observations

Value of ε

C
um

ul
at

iv
e

re
gr

et

eta = 0.010000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Value of ε

Cu
m

ul
at

iv
e

re
gr

et

eta = 0.100000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Value of ε

C
um

ul
at

iv
e

re
gr

et

Adaptive learning rate

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Exp3-WIX
Exp3
Exp3-IXb
Exp3-IXt

Figure 3.9: Comparison of total regrets of the algorithms at time T for static and
adaptive learning rates.

4.5 Experiments

In this section, we empirically compare Exp3-WIX to some of its natural competi-
tors: Exp3-IXt, vanilla Exp3 that ignores all side observations and a straightforward
variation of the Exp3-IX algorithm. This latter algorithm, referred to as Exp3-IXb
(with “b” standing for “basic”), uses a threshold εt to decide which observations are
too noisy to use and which are the ones to be retained: All the edges with weights
smaller than a parameter ε are deleted and the rest of the weights are set to 1. The
algorithm then plays basic Exp3-IX for the resulting binary graph. That is, the
difference between Exp3-IXt and Exp3-IXb is that the latter does not adjust for
the bias arising from using unreliable side observations. Note that Exp3-IXb comes
without any formal performance guarantee.

For the purpose of the experiments, we assumed to have 25 actions forming 5×5 grid
embedded in a plane. The distance of neighbors in the grid was set to be 1. Using
this structure, we defined the weight connecting two nodes as min {3/d2, 1}, and d is
the Euclidean distance between actions in the grid.

For constructing the loss sequence, we interleaved 20 Gaussian random walks with
small increments for each action, with appropriate truncations to keep the losses
within the [0, 1] interval. Using this procedure, we generated a single loss sequence
of T = 5, 000 steps to test the algorithms. For a fair comparison, we ran each
algorithm for their respective theoretically motivated adaptive learning rates, and
also for a number of static learning rates. For static learning rates, we observed the
best performance of Exp3 for learning rates around 0.01, all the other algorithms
did well for learning rates around 0.1.

We ran Exp3-IXb and Exp3-IXt for several values of ε from 0 to 1. In all ex-

Combinatorial semi-bandits with adversarial side observations 113

periments, we set the implicit exploration parameters to zero. This is well-justified
in the case of undirected graphs, as shown by the analysis of Alon et al. [2013].
Figure 3.9 shows the performance of the algorithms as a function of the threshold
parameter ε. Each curve on this graph is the average of the total regrets measured in
10 independent runs with error bars proportional to the empirical standard deviation.

Our experiments confirm that guessing the right value for the threshold parameter
is indeed a very difficult problem: while Exp3-WIX performs consistently well for
all parameter settings, Exp3-IXt and Exp3-IXb only perform reasonably well for
moderate values of ε that are not supported by theory. (In fact, the graph is designed
so that the value of ε optimizing α(ε)/ε2 is 1, which suggests that only observations
from immediate neighbors in the grid are relevant.) Perhaps surprisingly, Exp3-IXb
performs well despite the obvious bias in its loss estimates. The performance of Exp3
is significantly worse than Exp3-WIX, confirming the benefit of side-observations,
however noisy they are.

5 Combinatorial semi-bandits with adversarial side
observations

In a multi-armed bandit problem, the learner plays one node at the time. This might
be too restrictive for some applications. Therefore, in this section, we generalize
the partial observability model introduced by Mannor and Shamir [2011] (Figure
3.1) to the combinatorial case where the learner can play several nodes at the same
time. Similarly to the previous sections, we use observability graphs to capture the
complexity of the feedback. From a different point of view, we can see this problem
as an interpolation between semi-bandit problem, where the learner observes only
losses of the selected nodes, and full-information setting where the learner observes
all the losses regardless of his action.

5.1 Introduction

Consider the problem of sequentially recommending content for a set of users. In
each period of this online decision problem, we have to assign content from a news
feed to each of our subscribers so as to maximize clickthrough. We assume that
this assignment needs to be done well in advance so that we only observe the actual

114 Bandits with side observations

content1 content2

e
1
,1

e1,2 e1,3 e2,
1

e
2,2

e 2
,3

user1 user2

news feed1 news feed2 news feed3

(a) Users and news feeds. The thick edges represent
one potential matching of users to feeds, grouped news
feeds show the same content.

user1

user2

content2

content2

e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

(b) Users and news feeds.
Connected feeds mutually
reveal each others click-
throughs.

Figure 3.10: Combinatorial bandits example

content after the assignment was made and the user had the opportunity to click.
While we can easily formalize the above problem in the classical multi-armed bandit
framework [Auer et al., 2002b], notice that we will be throwing out important infor-
mation if we do so! The additional information in this problem comes from the fact
that several news feeds can refer to the same content, giving us the opportunity to
infer clickthroughs for a number of assignments that we did not actually make. For
example, consider the situation shown on Figure 3.10a. In this simple example, we
want to suggest one out of three news feeds to each user, that is, we want to choose a
matching on the graph shown on Figure 3.10b which covers the users. Assume that
news feeds 2 and 3 refer to the same content, so whenever we assign news feed 2 or 3
to any of the users, we learn the value of both of these assignments. The relations
between these assignments can be described by a graph structure (shown on Fig-
ure 3.10b), where nodes represent user-news feed assignments, and edges mean that
the corresponding assignments reveal the clickthroughs of each other. For a more
compact representation, we can group the nodes by the users, and rephrase our task
as having to choose one node from each group. Besides its own reward, each selected
node reveals the rewards assigned to all their neighbors.

The problem described above fits into the framework of online combinatorial opti-
mization where in each round, a learner selects one of a very large number of available
actions so as to minimize the losses associated with its sequence of decisions. Various
instances of this problem have been widely studied in recent years under different
feedback assumptions Cesa-Bianchi and Lugosi [2012], Audibert et al. [2014], Chen

Combinatorial semi-bandits with adversarial side observations 115

et al. [2013], notably including the so-called full-information Koolen et al. [2010] and
semi-bandit Audibert et al. [2014], Neu and Bartók [2013] settings. Using the exam-
ple in Figure 1a, assuming full information means that clickthroughs are observable
for all assignments, whereas assuming semi-bandit feedback, clickthroughs are only
observable on the actually realized assignments. While it is unrealistic to assume full
feedback in this setting, assuming semi-bandit feedback is far too restrictive in our
example. Similar situations arise in other practical problems such as packet routing
in computer networks where we may have additional information on the delays in
the network besides the delays of our own packets.

5.2 Combinatorial side-observation setting with adversarial
graphs

We now turn our attention to the setting of online combinatorial optimization (see
Koolen et al. [2010], Cesa-Bianchi and Lugosi [2012], Audibert et al. [2014]). In
this variant of the online learning problem, the learner has access to a possibly huge
action set S ⊆ {0, 1}N where each action is represented by a binary vector v of
dimensionality N . In what follows, we assume that ‖v‖1 ≤ m holds for all v ∈ S
and some 1 ≤ m � N , with the case m = 1 corresponding to the multi-armed
bandit setting considered in the previous section. In each round t = 1, 2, . . . , T of
the decision process, the learner picks an action Vt ∈ S and incurs a loss of V T

t `t.
At the end of the round, the learner receives some feedback based on its decision Vt
and the loss vector `t. The regret of the learner is defined as

RT = max
v∈S

E

[
T∑
t=1

(Vt − v)T `t

]
.

Previous work has considered the following feedback schemes in the combinatorial
setting:

• The full-information scheme where the learner gets to observe `t regardless of
the chosen action. The minimax optimal regret of order m

√
T logN here is

achieved by the ComponentHedge algorithm of Koolen et al. [2010], while
the Follow-the-Perturbed-Leader (FPL) algorithm [Kalai and Vempala, 2005,

116 Bandits with side observations

Hannan, 1957] was shown to enjoy a regret of order m3/2
√
T logN by [Neu and

Bartók, 2013].

• The semi-bandit scheme where the learner gets to observe the components `t,i
of the loss vector where Vt,i = 1, that is, the losses along the components chosen
by the learner at time t. As shown by Audibert et al. [2014], Component-
Hedge achieves a near-optimal O(

√
mNT logN) regret guarantee, while Neu

and Bartók [2013] show that FPL enjoys a bound of O(m
√
NT logN).

• The bandit scheme where the learner only observes its own loss V T
t `t. There

are currently no known efficient algorithms that get close to the minimax regret
in this setting—the reader is referred to Audibert et al. [2014] for an overview
of recent results.

In this section, we define a new feedback scheme situated between the semi-bandit
and the full-information schemes. In particular, we assume that the learner gets
to observe the losses of some other components not included in its own decision
vector Vt. Similarly to the model of Alon et al. [2013], the relation between the
chosen action and the side observations are given by a directed observability Gt (see
example in Figure 1). We refer to this feedback scheme as semi-bandit with side
observations. While our theoretical results stated in Section 2.3 continue to hold in
this setting, combinatorial Exp3-IX could rarely be implemented efficiently—we refer
to Cesa-Bianchi and Lugosi [2012], Koolen et al. [2010] for some positive examples.
As one of the main concerns in this paper is computational efficiency, we take a
different approach: we propose a variant of FPL that efficiently implements the idea
of implicit exploration in combinatorial semi-bandit problems with side observations.

5.3 Implicit exploration by geometric resampling
and FPL-IX algorithm

In each round t, FPL bases its decision on some estimate L̂t−1 =
∑t−1

s=1
ˆ̀
s of the total

losses Lt−1 =
∑t−1

s=1 `s as follows:

Vt = arg min
v∈S

vT

(
ηtL̂t−1 −Zt

)
. (3.15)

Here, ηt > 0 is a parameter of the algorithm and Zt is a perturbation vector with
components drawn independently from an exponential distribution with unit expec-
tation. The power of FPL lies in that it only requires an oracle that solves the

Combinatorial semi-bandits with adversarial side observations 117

(offline) optimization problem minv∈S v
T` and thus can be used to turn any efficient

offline solver into an online optimization algorithm with strong guarantees. To de-
fine our algorithm precisely, we need some further notation. We redefine Ft−1 to be
σ(Vt−1, . . . ,V1), Ot,i to be the indicator of the observed component and let

qt,i = E [Vt,i |Ft−1] and ot,i = E [Ot,i |Ft−1] .

The most crucial point of our algorithm is the construction of our loss estimates. To
implement the idea of implicit exploration by optimistic biasing, we apply a modified
version of the geometric resampling method of Neu and Bartók [2013] constructed as
follows: Let O′t(1),O′t(2), . . . be independent copies4 of Ot and let Ut,i be geometri-
cally distributed random variables for all i = [N] with parameter γt. We let

Kt,i = min
({
k : O′t,i(k) = 1

}
∪ {Ut,i}

)
(3.16)

and define our loss-estimate vector ˆ̀
t ∈ RN with its i-th element as

ˆ̀
t,i = Kt,iOt,i`t,i. (3.17)

By definition, we have E [Kt,i |Ft−1] = 1/(ot,i + (1 − ot,i)γt), implying that our loss
estimates are optimistic in the sense that they lower bound the losses in expectation:

E
[

ˆ̀
t,i

∣∣∣Ft−1] =
ot,i

ot,i + (1− ot,i)γt
`t,i ≤ `t,i.

Here we used the fact that Ot,i is independent of Kt,i and has expectation ot,i given
Ft−1. We call this algorithm Follow-the-Perturbed-Leader with Implicit eXploration
(FPL-IX, Algorithm 9).

Note that the geometric resampling procedure can be terminated as soon as Kt,i

becomes well-defined for all i with Ot,i = 1. As noted by Neu and Bartók [2013], this
requires generating at most N copies of Ot on expectation. As each of these copies
requires one access to the linear optimization oracle over S, we conclude that the
expected running time of FPL-IX is at most N times that of the expected running
time of the oracle. A high-probability guarantee of the running time can be obtained

4Such independent copies can be simply generated by sampling independent copies of Vt using the
FPL rule (3.15) and then computing O′

t(k) using the observability Gt. Notice that this procedure
requires no interaction between the learner and the environment, although each sample requires an
oracle access.

118 Bandits with side observations

by observing that Ut,i ≤ log
(
1
δ

)
/γt holds with probability at least 1− δ and thus we

can stop sampling after at most N log
(
N
δ

)
/γt steps with probability at least 1− δ.

Algorithm 9 FPL-IX
1: Input: Set of actions S,
2: parameters γt ∈ (0, 1), ηt > 0 for t ∈ [T].
3: for t = 1 to T do
4: An adversary privately chooses losses `t,i for all i ∈ [N] and generates a graph

Gt

5: Draw Zt,i ∼ Exp(1) for all i ∈ [N]

6: Vt = arg minv∈S v
T

(
ηtL̂t−1 −Zt

)
7: Receive loss V T

t `t
8: Observe graph Gt

9: Observe pairs {i, `t,i} for all i, such that (j → i) ∈ Gt and v(It)j = 1

10: Compute Kt,i for all i ∈ [N] using Eq. (3.16)
11: ˆ̀

t,i = Kt,iOt,i`t,i
12: end for

5.4 Performance guarantees for FPL-IX

The following theorem states the performance guarantee for FPL-IX in terms of the
learning rates and random variables of the form

QFPL
t (c) =

N∑
i=1

qt,i
ot,i + c

.

Note that QFPL
t (c) = Q(m, 0, c) where qt,i takes the role of pt,i in the definition of

Q(m, δ, c).

Theorem 11. Assume γt ≤ 1/2 for all t and η1 ≥ η2 ≥ · · · ≥ ηT . The regret of
FPL-IX satisfies

RT ≤
m (logN + 1)

ηT
+ 4m

T∑
t=1

ηtE
[
QFPL
t

(
γt

1− γt

)]
+

T∑
t=1

γtE
[
QFPL
t (γt)

]
.

Combinatorial semi-bandits with adversarial side observations 119

The proof of the theorem differs from the proofs for algorithms based on Exp3.
Therefore, we present here the key points of the analysis while the complete proof
can be found in Section 6.5.

Proof sketch. As usual for analyzing FPL methods [Kalai and Vempala, 2005, Hutter
and Poland, 2004, Neu and Bartók, 2013], we first define a hypothetical learner that
uses a time-independent perturbation vector Z̃ ∼ Z1 and has access to ˆ̀

t on top
of L̂t−1

Ṽt = arg min
v∈S

vT

(
ηtL̂t − Z̃

)
.

Clearly, this learner is infeasible as it uses observations from the future. Also, observe
that this learner does not actually interact with the environment and depends on the
predictions made by the actual learner only through the loss estimates. By standard
arguments, we can prove

E

[
T∑
t=1

(
Ṽt − v

)T
ˆ̀
t

]
≤ m (logN + 1)

ηT
.

Using the techniques of Neu and Bartók [2013], we can relate the performance of Vt to
that of Ṽt, which we can further upper bounded after a long and tedious calculation
as

E
[

(Vt − Ṽt)T ˆ̀
t

∣∣∣Ft−1] ≤ ηt E
[(
Ṽ T

t−1
ˆ̀
t

)2∣∣∣∣Ft−1]
≤ 4mηtE

[
QFPL
t

(
γ

1− γ

)∣∣∣∣Ft−1] .
The result follows by observing that E

[
vT ˆ̀

t

∣∣∣Ft−1] ≤ vT`t for any fixed v ∈ S by the
optimistic property of the IX estimate and also from the fact that by the definition
of the estimates we infer that

E
[
Ṽ T

t−1
ˆ̀
t

∣∣∣Ft−1] ≥ E [V T

t `t| Ft−1]− γtE
[
QFPL
t (γt)

]
.

120 Bandits with side observations

The next step is using Lemma 22 to bound the last two expectations in the bound
of Theorem 11. Note that QFPL

t (c) is in the form of Qt(m, 0, c). This gives us

QFPL
t (c) =

N∑
i=1

qt,i
ot,i + c

≤ 2mαt log

(
1 +

N2 + 2Nc

cαt

)
+ 2m, (3.18)

for all t ∈ [T] and any c ∈ (0, 1).

We are now ready to state the main result of this section. It is obtained by combining
Theorem 11, the bound on QFPL

t (c) given by inequality (3.18), and following variant
of Lemma 21

T∑
t=1

αt√
N +

∑t−1
s=1 α̃s

≤
T∑
t=1

αt√∑t
s=1 αs/C

≤ 2

√
C
∑T

t=1 αt ≤ 2

√
N + C

∑T
t=1 αt.

Corollary 5. Assume that for all t ∈ [T], αt/C ≤ α̃t ≤ αt ≤ N is satisfied for some

C > 1, and assume mN > 4. Setting ηt = γt =
√

(logN + 1) /
(
m
(
N +

∑t−1
s=1 α̃s

))
,

the regret of FPL-IX satisfies

RT ≤ Hm3/2

√(
N + C

∑T
t=1 αt

)
(logN + 1), where H = O(log(mNT)).

6 Analysis

In this section we provide proofs for all the main theorems, concerning all presented
algorithms, in this chapter. The most of the proofs follow an analysis of basic Exp3
algorithm with implicit exploration presented in Section 1.4.

6.1 Regret bound of Exp3-IX

Proof (Theorem 7). The first step of the proof is using a general bound (Lemma 20)
which holds for every algorithm based on Exp3. Note that the only condition to be

Analysis 121

satisfied is that the sequence of learning rates is non-increasing (ηt+1 ≤ ηt). This
holds from the algorithm design. Therefore, we have

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
(3.19)

Now we bound every expectation in the previous expression individually. First, let’s
look at the first expectation on the left-hand side. Every term of the sum can be
controlled as

E

[
N∑
i=1

pt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i`t,i +
N∑
i=1

pt,i`t,i

(
ot,i

ot,i + γt
− 1

)

=
N∑
i=1

pt,i`t,i −
N∑
i=1

pt,i`t,i

(
γt

ot,i + γt

)

≥
N∑
i=1

pt,i`t,i − γtQIX
t .

Next step is bounding the last expectation on the right-hand side of equation 3.19.
Every single term in the sum can be bounded as

E

[
N∑
i=1

pt,i(ˆ̀
t,i)

2

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i
`2t,i

(ot,i + γt)2
ot,i

≤
N∑
i=1

pt,i
`2t,i

(ot,i + γt)ot,i
ot,i

≤
N∑
i=1

pt,i
1

(ot,i + γt)ot,i
ot,i

=
N∑
i=1

pt,i
ot,i + γt

= QIX
t .

Combining these bounds yields

E

[
T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

(ηt
2

+ γt

)
QIX
t

]
.

122 Bandits with side observations

To proceed, we substitute the parameter choice ηt =
√

(logN)/2(N +
∑t−1

s=1Q
IX
s)

and γt = ηt/2. First term on the right-hand side give us

E
[

logN

ηT+1

]
= E

[√
2(logN)

(
N +

∑T
t=1Q

IX
t

)]

For the second therm we use the fact that QIX
t ≤ N together with Lemma 21 to get

E

[
T∑
t=1

(ηt
2

+ γt

)
QIX
t

]
= E

√ logN

2

T∑
t=1

QIX
t√

N +
∑t−1

s=1Q
IX
s

≤ E

√ logN

2

T∑
t=1

QIX
t√∑t

s=1Q
IX
s

≤ E

[√
2 logN

(∑T
t=1Q

IX
t

)]

≤ E

[√
2 logN

(
N +

∑T
t=1Q

IX
t

)]

Using these two bounds we get following inequality:

E

[
T∑
t=1

N∑
i=1

pt,i`t,i

]
− E

[
L̂T,j

]
≤ E

[√
8(logN)

(
N +

∑T
t=1Q

IX
t

)]
,

which together with the fact that our estimates L̂T,j are optimistic for all T and j

(thanks to the implicit exploration) concludes the proof of the theorem.

6.2 Regret bound of Exp3-Res

Proof (Theorem 8). Similarly like Exp3-IX algorithm, Exp3-Res algorithm is based
on Exp3 and follows an algorithm template described in Algorithm 4. Moreover,
adaptive learning rates in Exp3-Res are non-increasing (ηt+1 ≤ ηt). This enables us

Analysis 123

to use Lemma 20 for the first part of the analysis and get following inequality

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

ηt

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
(3.20)

which holds for any j ∈ [N]. The goal of the second part of the analysis is to construct
bounds for each of the expectations in the previous inequality. For the first term on
the left-hand side, we use Lemma 26 to get the lower-bound

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
≥ E

[
T∑
t=1

N∑
i=1

pt,i`t,i

]
+
√
T .

Note that this is the only step in the analysis where the actual magnitude (and not
just the sign) of the bias of the loss estimates shows up. Anything bigger than

√
T

would degrade our final regret bound.

The second term on the left-hand side can be lower bounded simply as

−E
[
L̂T,j

]
≥ −E [LT,j]

since our estimates are optimistic. We are left with bounding the two terms on the
right-hand side. To simplify some notation below, let us define bt =

∑N
i=1 pt,i(

ˆ̀
t,i)

2.
For the first term, we use the definition of ηt to get

E
[

logN

ηT+1

]
= E

[√(
N2 +

∑T
t=1 bt

)
logN

]
≤
√(

N2 +
∑T

t=1 E [bt]
)

logN.

The last inequality follows from Jensen’s inequality. Now we bound the second term
on the right-hand side. By our definition of ηt and the help of Lemma 21, we can

124 Bandits with side observations

bound it as

E

[
T∑
t=1

ηtbt
2

]
= E

 T∑
t=1

bt
√

logN

2
√
N2 +

∑t−1
s=1 bs

≤ E

[√(
N2 +

∑T
t=1 bt

)
logN

]

≤
√(

N2 +
∑T

t=1 E [bt]
)

logN,

where we also used the fact that N2 ≥ bt and Jensen’s inequality in the last
line. Therefore, whole right hand side of equation 3.20 can be bounded by

2

√(
N2 +

∑T
t=1 E [bt]

)
logN . We continue by bounding E [bt]:

Et

[
N∑
i=1

pt,i(ˆ̀
t,i)

2

]
=

N∑
i=1

pt,i`
2
t,iEt

[
Ot,iG

2
t,i

]
≤

N∑
i=1

pt,iot,i
2− ot,i
o2t,i

≤ 2

rt
,

(3.21)

where we used ot,i ≥ rt together with the second part of Lemma 25 which gives us

Et
[
G2
t,i

]
=

2− ot,i
o2t,i

+
1

o2t,i
(1− ot,i)N−2

(
o2t,i + ot,i − 2 + 2ot,i(N − 2)(o− 1)

)
≤ 2− ot,i

o2t,i
,

since both o2t,i + ot,i − 2 and 2ot,i(N − 2)(o− 1) are non-positive. Thus, we obtain

E
[

logN

ηT+1

]
+ E

[
T∑
t=1

ηtbt
2

]
≤ 2

√√√√(T∑
t=1

1

rt
+N2

)
logN. (3.22)

Finally, combining everything together, we obtain the regret bound

RT = E

[
T∑
t=1

pt,i`t,i

]
− min

j∈[N]
E

[
T∑
t=1

`t,j

]
≤ 2

√√√√(N2 +
T∑
t=1

1

rt

)
logN +

√
T .

Analysis 125

6.3 Regret bound of Exp3-IXt

Proof (Theorem 9). Recall that we set sj,i to 0 if there is no edge (and therefore
weight) from j to i and that QIXt

t is defined as

QIXt
t =

N∑
i=1

pt,i
pt,i +

∑
j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

Note that QIXt
t is defined as Q(1, 0, γt) corresponding to the graph Gt after thresh-

olding by εt. Exp3-IXt is based on Exp3 template (Algorithm 4) and therefore, the
starting point of our analysis is inequality in Lemma 20 which applies to Exp3-IXt
as well.

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
(3.23)

For the first expectation on the left-hand side of the previous inequality we have

E

[
N∑
i=1

pt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

pt,i
ct,i1{sIt,i ≥ εt}∑

j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i

∑
j 6=i pt,jsj,i1 {sj,i ≥ εt} `t,i∑
j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

≥
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i∑
j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

=
N∑
i=1

pt,i`t,i − γtQIXt
t .

Furthermore, the last expectation on the right-hand side of equation 3.23 can be

126 Bandits with side observations

bounded as

E

[
N∑
i=1

pt,i(ˆ̀
t,i)

2

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i
E
[
s2It,i1 {sIt,i ≥ εt}

∣∣Ft−1] `2t,i + E
[
(1− sIt,i1 {sIt,i ≥ εt})2

∣∣Ft−1]E [ξ2t,i∣∣Ft−1](∑
j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

)2
≤

N∑
i=1

pt,i

∑
j∈N−

i
pt,js

2
j,i +R2(∑

j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt

)2
≤ 1

εt

N∑
i=1

pt,i
1 +R2∑

j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt
=

(1 +R2)

εt
QIXt
t ,

where the last inequality uses that
∑

j 6=i pt,jsj,i1 {sj,i ≥ εt}+ γt ≥ εt.

To finish the proof of the theorem, we use previous bounds, the fact that our loss
estimates are optimistic (E[L̂t,j] < Lt,j), and Lemma 21 with

ηt =

√√√√ logN

2(1 +R2)
(
N
εt

+
∑t−1

s=1
QIXt
s

εs

) , γt =
1 +R2

2εt
ηt.

This gives us

RT ≤ E

[
logN

ηT+1

+
T∑
t=1

(
γt +

(1 +R2)ηt
2εt

)
QIXt
t

]

= E

[
logN

ηT+1

+
T∑
t=1

QIXt
t

εt
(1 +R2)ηt

]

≤ E

√2(1 +R2)(logN)

√(N +
∑T

t=1
QIXt
t

εt

)
+

1

2

T∑
t=1

QIXt
t

εt√
N +

∑t−1
s=1

QIXt
s

εs

≤ E

√2(1 +R2)(logN)

√(N +
∑T

t=1
QIXt
t

εt

)
+

1

2

T∑
t=1

QIXt
t

εt√∑t
s=1

QIXt
s

εs

≤ E

[√
8(1 +R2)(logN)

(
N +

∑T
t=1

QIXt
t

εt

)]

Analysis 127

where we set εT+1 to 1 and use the fact that QIXt
t can be upper bounded by N .

6.4 Regret bound of Exp3-WIX

Proof (Theorem 10). In principle, our analysis combines Lemma 20, standard tools
for analyzing Exp3 with adaptive learning rates, and ideas from Alon et al. [2013]
and the analysis of Exp3-IX, while also heavily exploiting the structure of our loss
estimates (3.13). In particular, these estimates allow us to bound the expected regret
of Exp3-WIX in terms of the quantities (QWIX

t)t for graph Gt defined as

QWIX
t =

N∑
i=1

pt,i
pt,i +

∑
j 6=i pt,js

2
j,i + γt

.

Note that QWIX = Q(1, 1, γt).

Since Exp3-WIX is based on Exp3, i.e. follows Algorithm 4, and sequence (ηt)t is
non-increasing, we can use Lemma 20 for the first part of the analysis to get

E

[
T∑
t=1

N∑
i=1

pt,i ˆ̀t,i

]
− E

[
L̂T,j

]
≤ E

[
logN

ηT+1

]
+ E

[
T∑
t=1

ηt
2

N∑
i=1

pt,i(ˆ̀
t,i)

2

]
. (3.24)

For the following part of the analysis, we use a slightly more general form of our loss
estimates with general power δ of the weights. We use this definition to bring an
insight to the choice of our loss estimates (we use δ = 1 in our loss estimates).

ˆ̀
t,i =

N∑
i=1

pt,i
sδIt,ict,i

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

=
N∑
i=1

pt,i
s1+δIt,i

`t,i + sδIt,i(1− sIt,i)ξt,i
pt,i +

∑
j 6=i pt,js

1+δ
j,i + γt

.

Later we show that δ = 1 is optimal, which recovers the loss estimates (3.13). The
next step is to bound individual expectations in bound (3.24). For the first expecta-

128 Bandits with side observations

tion on the left-hand side we have

E

[
N∑
i=1

pt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

pt,i
sδIt,ict,i

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i

∑N
j=1 pt,js

1+δ
j,i `t,i

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

≥
N∑
i=1

pt,i`t,i − γt
N∑
i=1

pt,i

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

=
N∑
i=1

pt,i`t,i − γtQt(1, δ, γt).

For the second expectation on the right-hand side of (3.24) we have

E

[
N∑
i=1

pt,i(ˆ̀
t,i)

2

∣∣∣∣∣Ft−1
]

=
N∑
i=1

pt,i
E
[
s2+2δ
It,i

∣∣Ft−1] `2t,i + E
[
s2δIt,i(1− sIt,i)

2
∣∣Ft−1]E [ξ2t,i∣∣Ft−1](

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

)2
≤

N∑
i=1

pt,i

∑N
j=1 pt,js

2+2δ
j,i +

∑N
j=1 pt,js

2δ
j,iR

2(
pt,i +

∑
j 6=i pt,js

1+δ
j,i + γt

)2
≤

N∑
i=1

pt,i
1 +R2

pt,i +
∑

j 6=i pt,js
1+δ
j,i + γt

= (1 +R2)Qt(1, δ, γt).

Where the last inequality holds for δ ≥ 1. Note that Q(1, δ, γt) is a non-decreasing
function in δ and therefore, we set δ = 1 to optimize the bound.

Remark 10. Since Exp3-IXt algorithm uses δ = 0, we can not use the previous
bound in the analysis of Exp3-IXt algorithm. This is also the reason for using
thresholding in order to work around this problem.

For the second expectation on the left-hand side of (3.24) we use the fact that our
loss estimates are negatively biased and therefore −L̂t,i can be lower-bounded simply

Analysis 129

by −Lt,i. Applying these bounds to (3.24) we obtain

RT ≤ E

[
logN

ηT+1

+
T∑
t=1

(
γt +

(1 +R2)ηt
2

)
QWIX
t

]
.

Using Lemma 21 together with the definition of γt and ηt we get

RT ≤ E

[
logN

ηT+1

+
T∑
t=1

(
1 +R2

)
ηtQ

WIX
t

]

≤ E

√2(1 +R2)(logN)

√(N +
∑T

t=1Q
WIX
t

)
+

1

2

T∑
t=1

QWIX
t√

N +
∑t−1

s=1Q
WIX
s

≤ E

√2(1 +R2)(logN)

√(N +
∑T

t=1Q
WIX
t

)
+

1

2

T∑
t=1

QWIX
t√∑t

s=1Q
WIX
s

≤ E

[√
8(1 +R2)(logN)

(
N +

∑T
t=1Q

WIX
t

)]
.

This concludes the proof of the theorem.

6.5 Regret bound of FPL-IX

The analysis of FPL-IX algorithm combines some techniques used by Kalai and
Vempala [2005], Hutter and Poland [2004], and Neu and Bartók [2013] for analyzing
FPL-style learners. Our proofs also heavily rely on some specific properties of the
IX loss estimate defined in Equation 3.17. The most important difference from the
analysis presented in Section 6.1 is that now we are not able to use random learning
rates as we cannot compute the values corresponding to Qt efficiently. In fact, these
values are observable in the information-theoretic sense, so we could prove bounds
similar to Theorem 7 had we had access to infinite computational resources. As our
focus is on computationally efficient algorithms, we choose to pursue a different path.
In particular, our learning rates will be tuned according to efficiently computable

130 Bandits with side observations

approximations α̃t of the respective independence numbers αt that satisfy αt/C ≤
α̃t ≤ αt ≤ N for some C ≥ 1. For the sake of simplicity, we analyze the algorithm in
the oblivious adversary model.

We begin with a statement that concerns the performance of the imaginary learner
that predicts Ṽt in round t.

Lemma 27. Assume η1 ≥ η2 ≥ · · · ≥ ηT . For any sequence of loss estimates, the
expected regret of the hypothetical learner against any fixed action v ∈ S satisfies

E

[
T∑
t=1

(
Ṽt − v

)T
ˆ̀
t

]
≤ m (logN + 1)

ηT
.

Proof. For simplicity, define βt = 1/ηt for t ≥ 1 and β0 = 0. We start by applying the
classical follow-the-leader/be-the-leader lemma (see, e.g., [Cesa-Bianchi and Lugosi,
2006, Lemma 3.1]) to the loss sequence defined as (ˆ̀

1−Z̃β1, ˆ̀
2−Z̃(β2−β1), . . . , ˆ̀

T −
Z̃(βT − βT−1)) to obtain

T∑
t=1

Ṽ T

t

(
ˆ̀
t − Z̃ (βt − βt−1)

)
≤ Ṽ T

T

(
L̂T − Z̃βT

)
≤ vT

(
L̂T − Z̃βT

)
.

After reordering and observing that −vTZ̃ ≤ 0, we get

T∑
t=1

(
Ṽt − v

)T
ˆ̀
t ≤

T∑
t=1

(βt − βt−1)Ṽ T

t Z̃

≤
∥∥Ṽt∥∥1∥∥Z̃∥∥∞ T∑

t=1

(βt − βt−1) =
∥∥Ṽt∥∥1∥∥Z̃∥∥∞βT .

The result follows from using our uniform upper bound on ‖v‖1 for all v and the
well-known bound E

[∥∥Z̃∥∥∞] ≤ log d+ 1.

The following result can be extracted from the proof of Theorem 1 of Neu and Bartók
[2013].

Lemma 28. For any sequence of nonnegative loss estimates,

E
[

(Ṽt−1 − Ṽt)T ˆ̀
t

∣∣∣Ft] ≤ ηt E
[(
Ṽ T

t−1
ˆ̀
t

)2∣∣∣∣Ft] .

Analysis 131

Using these two lemmas, we can prove the following lemma that upper bounds the
total expected regret of FPL-IX in terms of the sum of the variables

QFPL
t (c) =

N∑
i=1

qt,i
ot,i + c

.

Lemma 29. Assume that γt ≤ 1/2 for all t. Then,

T∑
t=1

E [V T

t `t| Ft−1] ≤
T∑
t=1

E
[
Ṽ T

t
ˆ̀
t

∣∣∣Ft−1]+

+ 4m
T∑
t=1

ηtE
[
QFPL
t

(
γt

1− γt

)]
+

T∑
t=1

γtE
[
QFPL
t (γt)

]
.

Proof. First, note that Lemma 28 implies

E
[

(Ṽt−1 − Ṽt)T ˆ̀
t

∣∣∣Ft−1] ≤ ηt E
[(
Ṽ T

t−1
ˆ̀
t

)2∣∣∣∣Ft−1]

by the tower rule of expectation. We start by observing that

E
[
Ṽ T

t−1
ˆ̀
t

∣∣∣Ft−1] = E

[
N∑
i=1

qt,i ˆ̀t,i

∣∣∣∣∣Ft−1
]

= E

[
N∑
i=1

qt,i
`t,i

ot,i + (1− ot,i)γt
Ot,i

∣∣∣∣∣Ft−1
]

≥ E

[
N∑
i=1

qt,i
`t,i (Ot,i + (1− ot,i)γt)
ot,i + (1− ot,i)γt

− γt
N∑
i=1

qt,i
1− ot,i

ot,i + (1− ot,i)γt

∣∣∣∣∣Ft−1
]

≥
N∑
i=1

qt,i`t,i − γtE

[
N∑
i=1

qt,i(1− ot,i)
ot,i + (1− ot,i)γt

∣∣∣∣∣Ft−1
]

≥
N∑
i=1

qt,i`t,i − γtE

[
N∑
i=1

qt,i
ot,i + γt

∣∣∣∣∣Ft−1
]

= E [V T

t `t| Ft−1]− γtQFPL
t (γt).

132 Bandits with side observations

To simplify some notation, let us fix a time t and define V = Ṽt−1. We deduce that

E
[(
Ṽ T

t−1
ˆ̀
t

)2∣∣∣∣Ft−1]
= E

[
d∑
j=1

d∑
k=1

(
Vj ˆ̀t,j

)(
Vk ˆ̀

t,k

)∣∣∣∣∣Ft−1
]

= E

[
d∑
j=1

d∑
k=1

(VjKt,jOt,j`t,j) (VkKt,kOt,k`t,k)

∣∣∣∣∣Ft−1
]

(def. of ˆ̀
t)

≤ E

[
d∑
j=1

d∑
k=1

K2
t,j +K2

t,k

2
(VjOt,j`t,j) (VkOt,k`t,k)

∣∣∣∣∣Ft−1
]

(2Kt,jKt,k ≤ K2
t,j +K2

t,k)

≤ E

[
d∑
j=1

d∑
k=1

K2
t,j (VjOt,j`t,j) (VkOt,k`t,k)

∣∣∣∣∣Ft−1
]

(symmetry of j and k)

≤ 2E

[
d∑
j=1

1

(ot,j + (1− ot,j)γt)2
(VjOt,j`t,j)

d∑
k=1

Vk`t,k

∣∣∣∣∣Ft−1
]
(def. of Kt,j and Ot,k ≤ 1)

≤ 2mE

[
d∑
j=1

Vj`t,j
ot,j + (1− ot,j)γt

∣∣∣∣∣Ft−1
]

≤ 2m
d∑
j=1

qt,j
ot,j + (1− ot,j)γt

=
2m

1− γt

d∑
j=1

qt,j
ot,j + γt/(1− γt)

=
2m

1− γt
QFPL
t

(
γt

1− γt

)
≤ 4mQFPL

t

(
γt

1− γt

)
,

where we used our assumption on γt in the last line. The first statement follows from
combining the above terms with Lemma 28 and using E

[
vT ˆ̀

t

∣∣∣Ft−1] ≤ vT`t by the

optimistic property of the loss estimates ˆ̀
t.

Chapter 4

Summary and future work

Multi-armed bandit framework is widely used to solve real-word problems where an
agent obtains only the feedback of his actions (recommender systems, advertising
etc.). However, bandit feedback is sometimes very limited and the problems come
with an additional structure. We addressed this issue in this thesis and proposed
several extensions of stochastic and adversarial multi-armed bandit problems. These
extensions are based on real-word problems and insufficient theoretical and empirical
guarantees of existing algorithms.

Spectral bandits for smooth graph functions

The first extension of multi-armed bandit problem we studied is called spectral ban-
dits (Chapter 2). The spectral bandit problem extends the basic stochastic multi-
armed bandit setting and is inspired mostly by the applications in recommender
systems and targeted advertisement in social networks. In this setting, we are asked
to repeatedly maximize an unknown graph function, assumed to be smooth on a
given similarity graph. Traditional linear bandits can be applied but their regret
scales with the ambient dimension D, either linearly or as a square root, which can
be very large.

The main contribution of Chapter 2 is the introduction of a novel quantity called ef-
fective dimension, denoted by lower case d, and the introduction of three algorithms,
SpectralUCB, SpectralTS, and SpectralEliminator. The effective dimen-
sion characterizes the difficulty of the problem: we showed a regret lower bound
for the setting which scales with this quantity and regret bounds of the previously
mentioned algorithms scale with effective dimension d as well. The benefit of the
effective dimension lies in the fact that the effective dimension d is typically much
smaller than D for real-world graphs. We also performed experiments and showed

134 Summary and future work

that spectral algorithms are able to leverage the structure of the problem when the
reward function is smooth on the graph much better than their linear counterparts.

Future work

In this section, we discuss several open questions concerning spectral bandits.

One of the limitations of the spectral bandit setting is the assumption that the graph
is fixed over time. This presents a problem in applications like recommender systems
since preferences of users can change over time: some of the movies can become
less or more popular and therefore, the links in the underlying graph can change as
well. Another similar problem is an introduction of new actions (new movies, new
ads etc.). Both of these problems would require to do the eigendecomposition of the
graph Laplacian again and recompute reward estimates and confidence bounds again
from scratch. This could present a practically intractable problem. Therefore, the
open question is whether there is an approach which can deal with changing structure
of the problem.

The regret bounds of SpectralTS and SpectralUCB scale linearly with d while
SpectralEliminator is the only presented algorithm with upper bound scaling
with the root of d and thus matching lower bound. However, the downside of
SpectralEliminator is that its empirical performance is poor compared to the
other algorithms. Therefore, the open question is whether SpectralTS and Spec-
tralUCB have upper bound scaling with square root of d or whether there is an
empirically successful algorithm with an bound scaling with root of d.

Adversarial bandits with side observations

Spectral bandits gain additional information about other actions implicitly by as-
suming that the reward function is smooth and thus, connected rewards tend to be
similar. On the other hand, bandits with side observations take a different, more
explicit, approach to obtain additional information. In bandits with side observa-
tions, the underlying graph gives us access to other losses simply by revealing the
losses (possibly noisy) of all the neighbors of the selected action. One of the main
contributions of Chapter 3 is a novel approach to encourage additional exploration of
an algorithm. We call it “implicit exploration” and it proved to be computationally

135

less expensive than the algorithms using mixing. Another contribution of the chapter
is formalizing several variants of bandits with side observations, suited for different
real-world problems, and providing solutions in the form of algorithms with strong
theoretical guarantees. In the next part, we discuss specific contributions in these
variants of bandits with side observations.

Adversarial bandits with adversarial side observations

This setting is the same as the partial observability model of Mannor and Shamir
[2011], Alon et al. [2013]. The main contribution is the first algorithm, called Exp3-
IX, solving the problem without knowing the graph structure beforehand. This
algorithm is also the first algorithm using implicit exploration, presented in this

thesis. The regret bound of Exp3-IX is of O
(√

logN
∑T

t=1 αt

)
(Corollary 2) which

is near-optimal bound for the setting.

Adversarial bandits with stochastic side observations

In this setting, we considered multi-armed bandit problems with stochastic side ob-
servations modeled by Erdős–Rényi graphs. Our contribution is a computationally
efficient algorithm that operates under the assumption rt ≥ log T/(2N − 2), which
essentially guarantees that at least one piece of side observation is generated in every
round, with high probability. In this case, our algorithm guarantees a regret bound
of O

(√
logN

∑T
t=1

1
rt

)
(Theorem 8).

The most obvious question is whether it is possible to remove our assumptions on
the values of rt in this setting. We can only give a definite answer in the simple
case when all rt’s are identical: In this case, one can think of simply computing the
empirical frequency r̂t of all previous side observations in round t to estimate the
constant r, plug the result into (3.6), and then use the resulting loss estimates in
an exponential-weighting scheme. It is relatively straightforward to show that the
resulting algorithm satisfies a regret bound of Õ

(√
T/r

)
for all possible values of

r, thanks to the fact that r̂t quickly concentrates around the true value of r. Notice
however that this approach clearly breaks down if the rt’s change over time.

In the case of changing rt’s, the number of observations we can use to estimate

136 Summary and future work

rt is severely limited, so much that we cannot expect any direct estimate of rt to
concentrate around the true value. Our algorithm proposed in Section 3 gets around
this problem by directly estimating the importance weights 1/ot,i instead of rt, which
enables us to construct reliable loss estimates, although only at the price of our
assumption on the range of rt. While we acknowledge that this assumption can be
difficult to confirm a priori in practice, we remark that we find it quite surprising
that any algorithm whatsoever can take advantage of such limited observations, even
under such a restriction. We also point out that for values of rt that are consistently
below our bound, it is not possible to substantially improve the regret bounds of
Exp3 which are of Õ

(√
TN

)
, as shown by the lower bounds of Alon et al. [2013].

We expect that in several practical applications, one can verify whether the rt’s satisfy
our assumption or not, and decide to use Exp3-Res or Exp3 accordingly. In fact,
our experiments suggest that our algorithm performs well even if neither of these two
assumptions is verified: we have seen that the empirical performance of Exp3-Res
is only slightly worse than that of Exp3 even when the values of rt are very small
(Section 3.3). Still, finding out whether our restriction on rt can be relaxed in general
is a very important and interesting question left for future study.

An important corollary of our results is that, under some assumptions, it is possible
to leverage side observations in a non-trivial way without having access to the sec-
ond neighborhoods in the side-observation graphs as defined by Mannor and Shamir
[2011]. This complements the recent results of Cohen et al. [2016], who show that
non-stochastic side-observations may provide a non-trivial advantage over bandit
feedback when the losses are stochastic even when the side-observation graphs are
unobserved, but learning with unobserved feedback graphs can be as hard as learn-
ing with bandit feedback when both the losses and the graphs are generated by an
adversary. A natural question that our work leads to is whether it is possible to
efficiently leverage side-observations under significantly weaker assumptions on the
observation model.

Adversarial bandits with noisy side observations

The main contribution for this setting is introducing a new partial-observability
model for adversarial online learning and proposing two algorithms, Exp3-IXt
and Exp3-WIX, with rigorous performance guarantees for this setting. Our re-
gret bounds depend on a newly introduced graph property that we call the ef-
fective independence number α∗ and the regret bounds for both algorithms are of

137

O
(√∑T

t=1 α
∗
t

)
(Corollaries 3 and 4). Moreover, Exp3-WIX achieves this bound

without any additional assumption while Exp3-IXt needs to know graph beforehand
to choose optimal thresholding parameter.

While the recent results of Wu et al. [2015] suggest that the bounds of Exp3-IXt
and Exp3-WIX for the setting with noisy side observations are minimax optimal
in some special cases of our framework, it is not yet known whether the effective
independence number is the exact quantity that characterizes the minimax regret in
general—this exciting question remains open for future investigation.

Combinatorial semi-bandit problem with adversarial
side observations

In this setting, we presented a computationally efficient algorithm, called FPL-IX,

which achieves regret of O
(
m3/2

√
(log(N))

∑T
t=1 αt

)
.

However, it is known that the minimax optimal regret of combinatorial semi-bandits
scales with

√
m. This can be achieved using Online Stochastic Mirror Descent

(OSMD) [Audibert et al., 2014] algorithm for the cost of not being efficiently imple-
mentable in general. Therefore, we used an FPL-based algorithm which is efficient
for the price of the extra square root of m in the regret bound. It is still an open
question whether FPL-IX scales linearly with m or whether there is an algorithm
with minimax optimal regret while still implementable efficiently.

Another important open problem is, whether there is an efficient algorithm for full
bandit feedback where instead of the individual losses of the played arms, the learner
observes only their sum.

Bibliography

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochas-
tic bandits. In Neural Information Processing Systems, 2011. (→ pages 6, 35, 39,
40, and 46.)

J. D. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: an efficient
algorithm for bandit linear optimization. In Conference on Learning Theory, 2008.
(→ page 6.)

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning, 2013. (→ pages 6, 9,
16, 30, 40, 42, 45, 46, and 47.)

C. Allenberg, P. Auer, L. Györfi, and G. Ottucsák. Hannan consistency in on-line
learning in case of unbounded losses under partial monitoring. In Algorithmic
Learning Theory, 2006. (→ page 89.)

N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to experts: A
tale of domination and independence. In Neural Information Processing Systems,
2013. (→ pages 64, 67, 69, 78, 83, 84, 88, 89, 98, 99, 100, 102, 107, 113, 116, 127,
135, and 136.)

N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren. Online learning with feedback
graphs: Beyond bandits. In Conference on Learning Theory, 2015. (→ pages 64,
68, 78, and 100.)

J.-Y. Audibert and S. Bubeck. Regret bounds and minimax policies under partial
monitoring. Journal of Machine Learning Research, 2010. (→ pages 69 and 89.)

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial opti-
mization. Mathematics of Operations Research, 2014. (→ pages 7, 114, 115, 116,
and 137.)

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 2002. (→ pages 6, 9, 16, 47, and 51.)

P. Auer and R. Ortner. UCB revisited: Improved regret bounds for the stochas-
tic multi-armed bandit problem. Periodica Mathematica Hungarica, 2010.
(→ page 32.)

140 Bibliography

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 2002a. (→ pages 10, 72, and 102.)

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing, 2002b. (→ pages 26, 68, 69,
71, 81, 89, 90, 91, and 114.)

P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning
algorithms. Journal of Computer and System Sciences, 2002c. (→ pages 77, 81,
and 82.)

B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In Symposium on Theory Of Com-
puting, 2004. (→ page 2.)

M. Babaioff, Y. Sharma, and A. Slivkins. Characterizing truthful multi-armed bandit
mechanisms. SIAM Journal on Computing, 2014. (→ page 3.)

G. Bartók, D. Pál, and C. Szepesvári. Minimax regret of finite partial-monitoring
games in stochastic environments. In Conference on Learning Theory, 2011.
(→ page 100.)

G. Bartók, D. P. Foster, D. Pál, A. Rakhlin, and C. Szepesvári. Partial monitoring-
classification, regret bounds, and algorithms. Mathematics of Operations Research,
2014. (→ page 100.)

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learn-
ing on large graphs. In Conference on Computational Learning Theory, 2004.
(→ pages 8 and 14.)

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of Machine Learn-
ing Research, 2006. (→ pages 8, 14, 16, and 20.)

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit
algorithms with supervised learning guarantees. In International Conference on
Artificial Intelligence and Statistics, 2011. (→ page 69.)

D. Billsus, M. J. Pazzani, and J. Chen. A learning agent for wireless news access. In
International Conference on Intelligent User Interfaces, 2000. (→ pages 8 and 15.)

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 2012.
(→ page 69.)

Bibliography 141

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits. Journal of
Machine Learning Research, 2011. (→ page 18.)

S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, 2012.
(→ page 6.)

S. Buccapatnam, A. Eryilmaz, and N. B. Shroff. Stochastic bandits with side obser-
vations on networks. In International Conference on Measurement and Modeling
of Computer Systems, 2014. (→ page 89.)

S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations in
stochastic bandits. In Conference on Uncertainty in Artificial Intelligence, 2012.
(→ page 89.)

A. Carpentier and M. Valko. Revealing graph bandits for maximizing local influ-
ence. In International Conference on Artificial Intelligence and Statistics, 2016.
(→ page 89.)

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge Uni-
versity Press, 2006. (→ pages 79, 101, and 130.)

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and
System Sciences, 2012. (→ pages 7, 114, 115, and 116.)

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K.
Warmuth. How to use expert advice. Journal of the ACM, 1997. (→ page 5.)

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 2005. (→ page 89.)

N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Online learning of noisy data
with kernels. Conference on Learning Theory, 2010. (→ page 100.)

N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang of bandits. In Neural Infor-
mation Processing Systems, 2013. (→ page 18.)

O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In Neural
Information Processing Systems, 2011. (→ page 6.)

D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos. Apolo: Making sense of
large network data by combining rich user interaction and machine learning. In
Conference on Human Factors in Computing Systems, 2011. (→ pages 8 and 15.)

142 Bibliography

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General
framework and applications. In International Conference on Machine Learning,
2013. (→ page 114.)

W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandits with linear payoff
functions. In International Conference on Artificial Intelligence and Statistics,
2011. (→ page 6.)

A. Cohen, T. Hazan, and T. Koren. Online learning with feedback graphs without
the graphs. In International Conference on Machine Learning, 2016. (→ pages 65,
87, and 136.)

R. Combes and A. Proutière. Unimodal bandits: Regret lower bounds and optimal
algorithms. In International Conference on Machine Learning, 2014. (→ page 18.)

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit
feedback. In Conference on Learning Theory, 2008. (→ page 6.)

T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation trade-
offs in gaussian process bandit optimization. In International Conference on Ma-
chine Learning, 2012. (→ page 33.)

L. Devroye, G. Lugosi, and G. Neu. Prediction by random-walk perturbation. In
Conference on Learning Theory, 2013. (→ page 100.)

M. Fang and D. Tao. Networked bandits with disjoint linear payoffs. In Internattional
Conference on Knowledge Discovery and Data Mining, 2014. (→ page 18.)

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 1997.
(→ pages 5 and 95.)

C. Gentile, S. Li, and G. Zappella. Online clustering of bandits. In International
Conference on Machine Learning, 2014. (→ page 18.)

Graclus. Graclus, 2013. URL www.cs.utexas.edu/users/dml/Software/graclus.
html. (→ page 59.)

Q. Gu and J. Han. Online spectral learning on a graph with bandit feedback. In
International Conference on Data Mining, 2014. (→ page 19.)

L. Györfi and G. Ottucsák. Sequential prediction of unbounded stationary time
series. IEEE Transactions on Information Theory, 2007. (→ pages 72 and 81.)

www.cs.utexas.edu/users/dml/Software/graclus.html
www.cs.utexas.edu/users/dml/Software/graclus.html

Bibliography 143

A. György, T. Linder, G. Lugosi, and G. Ottucsák. The on-line shortest path problem
under partial monitoring. Journal of Machine Learning Research, 2007. (→ page 2.)

M. K. Hanawal, V. Saligrama, M. Valko, and R. Munos. Cheap bandits. In Interna-
tional Conference on Machine Learning, 2015. (→ page 19.)

J. Hannan. Approximation to Bayes risk in repeated play. Contributions to the theory
of games, 1957. (→ page 116.)

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1990.

M. Hutter and J. Poland. Prediction with expert advice by following the perturbed
leader for general weights. In Algorithmic Learning Theory, 2004. (→ pages 119
and 129.)

M. Jamali and M. Ester. A matrix factorization technique with trust propagation for
recommendation in social networks. In ACM conference on Recommender systems,
2010. (→ page 59.)

D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender systems: An
introduction. Cambridge University Press, 2010. (→ pages 2, 8, and 15.)

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 2005. (→ pages 115, 119, and 129.)

R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. In
IEEE International Symposium on Information Theory, 2009. (→ page 57.)

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In
Symposium on Theory Of Computing, 2008. (→ page 18.)

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit explo-
ration in bandit problems with side observations. In Neural Information Processing
Systems, 2014a. (→ pages 64, 68, 69, 78, 103, and 107.)

T. Kocák, M. Valko, R. Munos, and S. Agrawal. Spectral Thompson sampling. In
AAAI Conference on Artificial Intelligence, 2014b.

T. Kocák, M. Valko, R. Munos, B. Kveton, and S. Agrawal. Spectral bandits for
smooth graph functions with applications in recommender systems. In AAAI
Workshop on Sequential Decision-Making with Big Data, 2014c.

T. Kocák, G. Neu, and M. Valko. Online learning with noisy side observations. In
International Conference on Artificial Intelligence and Statistics, 2016a.

144 Bibliography

T. Kocák, G. Neu, and M. Valko. Online learning with Erdős-Rényi side-observation
graphs. In Conference on Uncertainty in Artificial Intelligence, 2016b.

W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging structured concepts. In
Conference on Learning Theory, 2010. (→ pages 7, 10, 115, and 116.)

N. Korda, B. Szörényi, and S. Li. Distributed clustering of linear andits in peer to peer
networks. In International Conference on Machine Learning, 2016. (→ page 18.)

I. Koutis, G. L. Miller, and D. Tolliver. Combinatorial preconditioners and multilevel
solvers for problems in computer vision and image processing. Computer Vision
and Image Understanding, 2011. (→ page 33.)

S. Lam and J. Herlocker. MovieLens 1M dataset, 2012. URL http://www.
grouplens.org/node/12. (→ page 57.)

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In International World Wide Web
Conference, 2010. (→ pages 6, 9, 16, 28, and 29.)

S. Li, C. Gentile, A. Karatzoglou, and G. Zappella. Online context-dependent clus-
tering in recommendations based on exploration-exploitation algorithms. arXiv
preprint, 2015. (→ page 18.)

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 1994. (→ pages 5, 68, and 95.)

U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 2007.
(→ page 20.)

Y. Ma, T.-K. Huang, and J. Schneider. Active search and bandits on graphs using
sigma-optimality. In Conference on Uncertainty in Artificial Intelligence, 2015.
(→ page 19.)

S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations.
In Neural Information Processing Systems, 2011. (→ pages 10, 64, 65, 67, 69, 78,
87, 98, 99, 100, 101, 113, 135, and 136.)

H. B. McMahan and A. Blum. Online geometric optimization in the bandit set-
ting against an adaptive adversary. In Conference on Learning Theory, 2004.
(→ page 2.)

M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 2001. (→ pages 8 and 15.)

http://www.grouplens.org/node/12
http://www.grouplens.org/node/12

Bibliography 145

S. K. Narang, A. Gadde, and A. Ortega. Signal processing techniques for interpolation
in graph structured data. In International Conference on Acoustics, Speech and
Signal Processing, 2013. (→ page 19.)

G. Neu and G. Bartók. An efficient algorithm for learning with semi-bandit feedback.
In Algorithmic Learning Theory, 2013. (→ pages 91, 115, 116, 117, 119, 129,
and 130.)

S. Pandey, D. Chakrabarti, and D. Agarwal. Multi-armed bandit problems with
dependent arms. In International Conference on Machine Learning, 2007.
(→ page 3.)

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 1952. (→ page 3.)

E. M. Schwartz. Optimizing adaptive marketing experiments with the multi-armed
bandit. PhD thesis, 2013. (→ page 3.)

Y. Seldin, P. Bartlett, K. Crammer, and Y. Abbasi-Yadkori. Prediction with limited
advice and multiarmed bandits with paid observations. In International Conference
on Machine Learning, 2014. (→ pages 89 and 91.)

A. Slivkins. Contextual bandits with similarity information. In Conference on Learn-
ing Theory, 2009. (→ page 18.)

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning, 2010. (→ page 18.)

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal
of Machine Learning Research, 2003. (→ page 2.)

W. R. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 1933. (→ pages 1, 2, and 6.)

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis
of kernelised contextual bandits. In Uncertainty in Artificial Intelligence, 2013.
(→ page 18.)

M. Valko, R. Munos, B. Kveton, and T. Kocák. Spectral bandits for smooth graph
functions. In International Conference on Machine Learning, 2014. (→ pages 21
and 22.)

146 Bibliography

V. Vovk. Aggregating strategies. In Proceedings of the third annual workshop on
Computational learning theory, 1990. (→ page 5.)

M. Wainwright. STAT 210B advanced mathematical statistics. Lecture notes, Uni-
versity of California at Berkeley, 2015. (→ page 49.)

Y. Wu, A. György, and C. Szepesvári. Online learning with Gaussian payoffs and
side observations. In Neural Information Processing Systems, 2015. (→ pages 100,
102, 108, and 137.)

J. Y. Yu and S. Mannor. Unimodal bandits. In International Conference on Machine
Learning, 2011. (→ page 18.)

X. Zhu. Semi-supervised learning literature survey. Technical report, University of
Wisconsin-Madison, 2008. (→ pages 8 and 14.)

	Chapter 1 Introduction
	1 Basic multi-armed bandits
	1.1 Motivation for multi-armed bandits
	1.2 Stochastic bandits
	1.3 Adversarial bandits

	2 Extensions of multi-armed bandits
	2.1 Full-information problem
	2.2 Linear and contextual multi-armed bandits
	2.3 Combinatorial multi-armed bandits

	3 Bandits with additional information
	3.1 Spectral bandits and smooth graph functions
	3.2 Bandits with side observations

	Chapter 2 Spectral bandits for smooth graph functions
	1 Introduction
	2 Spectral bandit setting
	2.1 Related work

	3 Spectral bandits
	3.1 Smooth graph functions
	3.2 Effective dimension
	3.3 Lower bound

	4 Algorithms
	4.1 SpectralUCB algorithm and theoretical guarantees
	4.2 SpectralTS algorithm and theoretical guarantees
	4.3 SpectralEliminator algorithm and theoretical guarantees
	4.4 Scalability and computational complexity

	5 Analysis
	5.1 Preliminaries
	5.2 Confidence ellipsoid
	5.3 Effective dimension
	5.4 Regret bound of SpectralUCB
	5.5 Regret bound of SpectralTS
	5.6 Regret bound of SpectralEliminator

	6 Experiments
	6.1 Artificial datasets
	6.2 Effect of smoothness on regret
	6.3 Computational complexity improvements
	6.4 MovieLens experiments
	6.5 Flixster experiments
	6.6 Experiment design modifications

	Chapter 3 Bandits with side observations
	1 Framework of bandits with side observations
	1.1 Existing algorithms and results
	1.2 Exploration in Exp3-based algorithms
	1.3 Implicit exploration and Exp3 algorithm
	1.4 Exp3-based algorithms

	2 Adversarial bandits with adversarial side observations
	2.1 Side-observation setting with adversarial graphs
	2.2 Efficient learning by implicit exploration
	2.3 Exp3-IX algorithm and theoretical guarantees

	3 Adversarial bandits with stochastic side observations
	3.1 Side-observation setting with stochastic graphs
	3.2 Exp3-Res algorithm and theoretical guarantees
	3.3 Experiments

	4 Adversarial bandits with noisy side observations
	4.1 Side-observation setting with weighted graphs
	4.2 Exp3-IXt algorithm and theoretical guarantees
	4.3 Effective independence number
	4.4 Exp3-WIX algorithm and theoretical guarantees
	4.5 Experiments

	5 Combinatorial semi-bandits with adversarial side observations
	5.1 Introduction
	5.2 Combinatorial side-observation setting with adversarial graphs
	5.3 Implicit exploration by geometric resampling and FPL-IX algorithm
	5.4 Performance guarantees for FPL-IX

	6 Analysis
	6.1 Regret bound of Exp3-IX
	6.2 Regret bound of Exp3-Res
	6.3 Regret bound of Exp3-IXt
	6.4 Regret bound of Exp3-WIX
	6.5 Regret bound of FPL-IX

	Chapter 4 Summary and future work
	Bibliography

