
HAL Id: tel-01743726
https://theses.hal.science/tel-01743726

Submitted on 26 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design, Parallel Simulation and Implementation of
High-Performance Fault-Tolerant Network-on-Chip

Architectures
Mohamed El Amir Charif

To cite this version:
Mohamed El Amir Charif. Design, Parallel Simulation and Implementation of High-Performance
Fault-Tolerant Network-on-Chip Architectures. Micro and nanotechnologies/Microelectronics. Uni-
versité Grenoble Alpes, 2017. English. �NNT : 2017GREAT075�. �tel-01743726�

https://theses.hal.science/tel-01743726
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ 
GRENOBLE ALPES
Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES 
Arrêté ministériel : 25 mai 2016

Présentée par

 Mohamed El Amir CHARIF

Thèse dirigée par Michel NICOLAIDIS, Directeur de Recherche , , 
et  
codirigée par Nacer-Eddine ZEIRGAINOH  

préparée au sein du Laboratoire Techniques de l'Informatique 
et de la Microélectronique pour l'Architecture des systèmes 
intégrés
dans l'École Doctorale Electronique, Electrotechnique, 
Automatique, Traitement du Signal (EEATS)

Conception, Simulation Parallèle et 
Implémentation de réseaux sur puce hautes 
performances tolérants aux fautes

Design, Parallel Simulation and 
Implementation of High-Performance Fault-
Tolerant Network-on-Chip Architectures

Thèse soutenue publiquement le 17 novembre 2017,
devant le jury composé de :

Monsieur Nacer-Eddine ZERGAINOH
Maître de Conférences, Université Grenoble Alpes, CoDirecteur de these 
Monsieur Frédéric PETROT
Professeur, TIMA, Président
Monsieur Ian O'CONNOR
Professeur, Ecole Centrale de Lyon, Rapporteur
Monsieur Bruno ROUZEYRE 
Professeur, Université Montpellier 2, Rapporteur





Abstract

Networks-on-Chip (NoCs) have proven to be a fast and scalable replacement for buses in

current and emerging many-core systems. They are today an actively researched topic and

various solutions are being explored to meet the needs of emerging applications in terms of

performance, quality of service, power consumption, and fault-tolerance. This thesis presents

contributions in two important areas of Network-on-Chip research:

• The design of ultra-flexible high-performance deadlock-free routing algorithms for any

topology.

• The design and implementation of parallel cycle-accurate Network-on-Chip simulators

for a fast evaluation of new NoC architectures.

While aggressive technology scaling has its benefits in terms of delay, area and power, it

is also known to increase the vulnerability of circuits, suggesting the need for fault-tolerant

designs. Fault-tolerance in NoCs is directly tied to the degree of flexibility of the routing al-

gorithm. High routing flexibility is also required in some irregular topologies, as is the case

for TSV-based 3D Network-on-Chips, wherein only a subset of the routers are connected using

vertical connections. Unfortunately, routing freedom is often limited by the deadlock-avoidance

method, which statically restricts the set of virtual channels that can be acquired by each packet.

The first part of this thesis tackles this issue at the source and introduces a new topology-

agnostic methodology for designing ultra-flexible routing algorithms for Networks-on-Chips.

The theory relies on a novel low-restrictive sufficient condition of deadlock-freedom that is ex-

pressed using the local information available at each router during runtime, making it possible

to verify the condition dynamically in a distributed manner. A significant gain in both perfor-

mance and fault-tolerance when using our methodology compared to the existing static channel

partitioning methods is reported. Moreover, hardware synthesis results show that the newly

introduced mechanisms have a negligible impact on the overall router area.



In the second part, a novel routing algorithm for vertically-partially-connected 3D Networks-

on-Chips called First-Last is constructed using the previously presented methodology. Thanks

to a unique distribution of virtual channels, our algorithm is the only one capable of guarantee-

ing full connectivity in the presence of one TSV pillar in an arbitrary position, while requiring a

low number of extra buffers (1 extra VC in the East and North directions). This makes First-Last

a highly appealing cost-effective alternative to the state-of-the-art Elevator-First algorithm.

Finally, in an aim to speed up the evaluation of new Network-on-Chip designs, the third

and last part of this work presents the first detailed and modular parallel NoC simulator de-

sign to run fully on Graphics Processing Units (GPUs). First, a flexible task decomposition

approach, specifically geared towards high parallelization is proposed. Our approach makes

it easy to adapt the granularity of parallelism to match the capabilities of the host GPU. Sec-

ond, all the GPU-specific implementation issues are addressed and several optimizations are

proposed. Our design is evaluated through a reference implementation, which is tested on an

NVidia GTX980Ti graphics card and shown to speed up 4K-node NoC simulations by almost

280x.





Résumé

Introduction

Grâce à une réduction considérable dans les dimensions des transistors, les systèmes informa-

tiques sont aujourd’hui capables d’intégrer un très grand nombre de coeurs de calcul en une

seule puce (System-on-Chip, SoC). Faire communiquer les composants au sein d’une puce est

aujourd’hui assuré par un réseau de commutation de paquets intégré, communément appelé

Network-on-Chip (NoC). Cependant, le passage à des technologies de plus en plus réduites

rend les circuits plus vulnérables aux fautes et aux défauts de fabrication. Le réseau sur puce

peut donc se retrouver avec des routeurs ou des liens non-opérationnels, qui ne peuvent plus

être utilisés pour le routage de paquets. Par conséquent, le niveau de flexibilité offert par

l’algorithme de routage n’a jamais été aussi important.

La première partie de cette thèse consiste à proposer une méthodologie généralisée, per-

mettant de concevoir des algorithmes de routage hautement flexibles, combinant tolérance aux

fautes et hautes performances, et ce pour n’importe quelle topologie réseau. Cette méthodologie

est basée sur une nouvelle condition suffisante pour l’absence d’interblocages (deadlocks) qui,

contrairement aux méthodes existantes qui imposent des restrictions importantes sur l’utilisation

des buffers, s’évalue de manière dynamique en fonction de chaque paquet et ne requiert pas un

partitionnement stricte des canaux virtuels (virtual channels). Il est montré que ce degré élevé

de liberté dans l’utilisation des buffers a un impact positif à la fois sur les performances et sur

la robustesse du NoC, sans pour autant augmenter la complexité en termes d’implémentation

matérielle.

La seconde partie de la thèse s’intéresse à une problématique plus spécifique, qui est celle

du routage dans des topologies tri-dimensionnelles partiellement connectées, qui vont vrais-
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semblablement être en vigueur à cause du coût important des connexions verticales, réalisées

en utilisant la technologie TSV (Through-Silicon Via). Cette thèse introduit un nouvel algo-

rithme de routage pour ce type d’architectures nommé ”First-Last”. Grâce à un placement

original des canaux virtuels, cet algorithme est le seul capable de garantir la connectivité totale

du réseau en présence d’un seul pilier de TSVs de coordonnées arbitraires, tout en ne requérant

de canaux virtuels que sur deux des ports du routeur. Contrairement à d’autres algorithmes

qui utilisent le même nombre total de canaux virtuels, First-Last n’impose aucune règle sur la

position des piliers, ni sur les piliers à sélectionner durant l’exécution. De plus, l’algorithme

proposé ayant été construit en utilisant la méthode décrite dans la première partie de la thèse, il

offre une utilisation optimisée des canaux virtuels ajoutés.

L’implémentation d’un nouvel algorithme de routage implique souvent des changements

considérables au niveau de la microarchitecture des routeurs. L’évaluation de ces nouvelles so-

lutions requiert donc une plateforme capable de simuler précisément l’architecture matérielle du

réseau au cycle près. De plus, il est essentiel de tester les nouvelles architectures sur des tailles

de réseau significativement grandes, pour s’assurer de leur scalabilité et leur applicabilité aux

technologies émergentes (e.g. intégration 3D). Malheureusement, les simulateurs de réseaux sur

puce existants ne sont pas capables d’effectuer des simulations sur de grands réseaux (milliers

de coeurs) assez vite, et souvent, la précision des simulations doit être sacrifiée afin d’obtenir

des temps de simulation raisonnables. En réponse à ce problème, la troisième et dernière partie

de cette thèse est consacrée à la conception et au développement d’un modèle de simulation

générique, extensible et parallélisable, exploitant la puissance des processeurs graphiques mod-

ernes (GPU). L’outil développé modélise l’architecture d’un routeur de manière très précise et

peut simuler de très grands réseaux en des temps records.

Dans ce qui suit on décrit plus en détail chacune des solutions proposées.
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Contribution I: Une nouvelle théorie pour la prévention d’inter-

blocages dans les réseaux

Certaines parties de cette contribution ont fait l’objet de publications dans des conférences in-

ternationales Charif et al. [2016], Charif et al. [2017b].

Une approche très souvent adoptée pour augmenter le degré d’adaptabilité d’un algorithme

de routage sans provoquer d’interblocages (deadlocks) consiste à introduire plusieures files de

paquets par canal physique. Ces files d’entrée sont appelées canaux virtuels, ou Virtual Chan-

nels (VC). Une majeure partie des algorithmes adoptés dans les NoCs aujourd’hui Bahmani

et al. [2012], Salamat et al. [2016b] sont conçus suivant d’anciennes théories telles que celle

de Dally Dally and Seitz [1988], ou des méthodologies basées sur ces théories Ebrahimi and

Daneshtalab [2017]. Dans ces approches, les canaux virtuels servent à diviser le réseau en

plusieurs sous-réseaux (Sub-Networks), de manière à ce que les paquets présents dans chaque

sous-réseau utilisent un algorithme de routage sans dépendances cycliques (cycle-free).

On identifie plusieurs problèmes avec cette approche. Premièrement, puisque la méthode

même est basée sur la séparation stricte des différents sous-réseaux, les canaux qu’un paquet

peut occuper à une étape donnée sont définis de manière statique. Cela signifie qu’un paquet

ne peut utiliser un canal virtuel qui n’appartient pas à son sous-réseau actuel, même si ce canal

est disponible. Sans cette restriction, les canaux virtuels pourraient être utilisés pour réduire le

blocage des paquets et augmenter la bande passante du réseau. Deuxièmement, pour garantir

l’absence de dépendances cycliques, cette méthode impose un ordre strict sur la traversée des

différents sous-réseaux. Cela implique qu’un paquet ne peut jamais visiter le même sous-réseau

deux fois, ce qui réduit la flexibilité du routage, et donc la tolérance aux fautes.

Ces limitations sont principalement dues au fait que dans toutes ces théories, des ”sous-

fonctions” de routage sont associées à un ensemble précis de canaux virtuels. Un paquet ayant

besoin d’une sous fonction particulière pour atteindre sa destination est donc obligé d’occuper

le bon canal virtuel.

On propose une nouvelle vision du routage sans interblocages qui permet de résoudre toutes

ces limitations à la fois. Au lieu d’associer une fonction de routage aux canaux, on les associe à

des ”classes” ou ”groupes” de paquets. Chaque paquet du réseau transporte l’identifiant de son
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groupe et est routé en fonction de cet identifiant. Aucun partitionnement des canaux virtuels

n’est effectué, et les paquets peuvent occuper, à priori, n’importe quel canal virtuel sur le canal

physique sélectionné par leur fonction de routage.

On définit alors la condition suffisante à l’absence d’interblocages comme suit: Un paquet

doit sélectionner un canal physique qui comporte au moins un canal virtuel occupé par un

paquet d’une classe égale ou supérieure à sa classe. Intuitivement, cela peut être expliqué de la

manière suivante: si chaque paquet dans le réseau suit des paquets de son groupe, et sachant que

les paquets d’un même groupe sont routés suivant la même fonction de routage qui ne contient

pas de cycles, au moins un chemin de dépendances ne contenant aucun cycle existe pour chaque

paquet du réseau, ce qui suffit pour prévenir les interblocages.

On présente alors une méthodologie généralisée, comprenant étapes de construction et règles

de routage à différents niveaux de complexité, permettant la construction systématique d’algorithmes

qui satisfont la condition minimum d’absence d’interblocages, et ce pour n’importe quelle

topologie réseau. En effet, on s’appuyera sur cette méthodologie pour construire les algorithmes

présentés dans la seconde partie de la thèse pour les réseaux 3D.

En plus d’être très peu restrictive par rapport aux conditions d’absence d’interblocages

utilisées jusque là, notre condition permet de déduire des propriétés très puissantes. Par ex-

emple, étant donné que la classe de routage de chaque paquet est connue, il est possible de

savoir, au cas par cas, les paquets qui peuvent se suivre au sein d’un même canal virtuel. Des

canaux virtuels non-vides peuvent alors être réalloués du moment que la condition d’absence

d’interblocages n’est pas violée. Ceci n’est pas possible dans les autres théories qui permettent

les dépendances cycliques telles que Duato [1995], où il faut attendre qu’un canal virtuel soit

complètement vide avant de le réallouer à un nouveau paquet. Un gain significatif en perfor-

mances a été démontré par les simulations effectuées. De plus, contrairement aux approches

classiques qui ne permettent de traverser les sous-réseaux que dans l’ordre croissant, notre con-

dition, étant formulée suivant les données dynamiques sur les classes des paquets, prévoit les

changements de classe dans les deux sens, sans risque d’interblocages. Les résultats de simula-

tion montrent que cela se traduit par un niveau accru de fiabilité qui n’est pas atteignable suivant

les méthodes classiques qui ne permettent le changement de sous-réseau que dans un seul sens.

On montre que notre approche, en plus d’être utile pour la construction de nouveaux al-
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gorithmes, permet également d’expliquer et de prouver les algrorithmes existants de manière

plus intuitive. La reconstruction de ces algorithmes en utilisant notre méthodologie introduit

une amélioration systématique au niveau de l’utilisation des canaux virtuels, et donc des per-

formances.

Tous les mécanismes nécessaires à l’implémentation matérielle de notre méthode sont ex-

pliqués en détail, et on montre de plus que leur impact sur la surface totale du routeur est

négligeable.

Contribution II: Une nouvelle solution de routage économique

et robuste pour les NoCs tri-dimensionnels partiellement con-

nectés

Une version préliminaire de ce travail a été publiée dans Charif et al. [2017c].

Le TSV (Through-Silicon-Via) est une technologie prometteuse permettant de faire com-

muniquer des composants en passant par la troisième dimension. Pour ce qui est du NoC, cela

permet d’envisager des topologies tri-dimensionnelles à faible latence pouvant inclure un très

grand nombre de noeuds.

Cependant, le coût élevé des TSV ne permet pas d’assurer des connexions verticales pour

tous les noeuds, et les topologies 3D partielles, où seuls certains noeuds sont verticalement

connectés, ont été regardés de très près ces dernières années. En effet, ce type de topologies

irrégulières qui serait à priori inévitable en pratique, pose un certain nombre de challenges en

matière de routage sans interblocages.

On constate que parmi les solutions proposées jusqu’à présent, certaines requièrent l’ajout

d’un canal virtuel dans toutes les directions du plan Bahmani et al. [2012], ce qui implique

un surcout considérable, alors que d’autres nécessitent moins de canaux additionnels Salamat

et al. [2016b], voire même pas de canaux additionnels du tout Lee et al. [2015], mais posent des

restrictions importantes soit sur le placement des TSVs, c’est à dire que les TSVs doivent être

placés à des endroits spécifiques du réseau afin d’en garantir la connectivité, soit sur la sélection

des TSVs à utiliser durant le routage, ce qui peut forcer l’emprunt de chemins trop longs et avoir
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un impact négatif sur la performance.

En réponse à ces différents compromis, on introduit une nouvelle méthode de routage pour

ce type de topologies possédant les caractéristiques suivantes:

• La connectivité est garantie en présence d’un seul pilier de TSVs placé n’importe où dans

le réseau. Il n’y donc pas de restrictions sur le placement des piliers.

• N’importe quel pilier du réseau peut être sélectionné par l’algorithme de routage. Aucune

restriction sur l’emprunt des TSVs.

• Un canal virtuel est requis dans seulement deux directions du plan.

On utilise donc le même nombre de canaux virtuels que Salamat et al. [2016b] mais notre

méthode ne souffre pas des restrictions sur le placement des piliers et leur sélection.

De manière générale, l’approche proposée peut être décrite comme suit:

1. Diviser le plan (Est, Ouest, Sud, Nord) en deux ensembles de directions, de sorte à ce que

le second ensemble + les deux directions Haut et Bas (la dimension Z) ne permettent pas

la formation de cycles.

2. Lors du routage, si un mouvement vertical est nécessaire, utiliser les directions du premier

ensemble, puis celles du second ensemble pour atteindre n’importe quel TSV. Puisque

toutes les directions sont incluses, il est toujours possible d’atteindre n’importe quel TSV.

3. Utiliser les direcitons du second ensemble + haut et bas pour atteindre l’étage (le niveau)

où se trouve la destination.

4. A l’étage de destination, utiliser les directions du second ensemble puis ceux du premier

ensemble pour atteindre la destination. Là encore, toutes les directions sont incluses, et

par conséquent, la destination peut être atteinte quelle que soit sa position.

5. Les directions du premier ensemble étant utilisées au niveau source comme au niveau

destination, un canal virtuel est requis uniquement dans ces directions pour prévenir les

interblocages.

On montre que cette méthode, appelée ”First-Last” du fait que les premières directions

utilisées sont aussi les dernières, est réalisable en utilisant les directions positives (Est, Nord)
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comme premier ensemble et les directions négatives (Ouest, Sud) comme second ensemble.

Cela signifie que des canaux virtuels sont nécessaires uniquement dans les directions Est et

Nord.

Notre algorithme est le premier à permettre une telle distribution de canaux virtuels. En

effet, les propositions existantes ne considèrent que les configurations où le nombre de canaux

virtuels est le même le long d’une même dimension. Par exemple, l’algorithme East-then-

West Salamat et al. [2016b] rajoute un canal virtuel le long de la dimension Y (Nord et Sud),

conformément à ce qui a historiquement été fait dans le cas du routage 2D Schwiebert and

Jayasimha [1993]. On a démontré que cette règle n’était pas nécessaire et ne faisait que limiter

les solutions possibles.

Les résultats de simulations et de synthèse matérielle montrent que nous arrivons non seule-

ment à réduire considérablement le coût d’implémentation (d’environ 15%) par rapport à l’algorithme

de référence Elevator-First Bahmani et al. [2012], mais aussi à offrir des performances bien

supérieures grâce à une bonne exploitation des ressources disponibles.

Notre contribution au routage 3D ne se limite pas à l’algorithme First-Last. Afin de proposer

une solution de routage complète et scalable, nous explorons également plusieurs méthodes de

sélection de TSV. Chacune des méthodes proposées comporte un algorithme hors-ligne per-

mettant d’assigner à chaque routeur un TSV et de configurer des registres de taille fixe pour

pointer vers le TSV sélectionné, et un algorithme de routage capable d’exploiter ces données

pour trouver un TSV lors de l’exécution. La recherche de TSV étant effectuée de manière dis-

tribuée, il est nécessaire de garantir que chaque paquet finit forcément par atteindre un TSV.

Nous élaborons une preuve formelle qui stipule que si les TSVs sont assignés en fonction de

leur distance par rapport aux noeuds, et quel que soit le critère utilisé pour départager des TSVs

à équi-distance, chaque paquet finit toujours par atteindre un TSV, et ce en parcourant l’un des

chemins de distance minimale à partir de la source. Cette preuve est très importante car elle

implique que l’algorithme de routage (implémenté en hardware) n’a pas besoin d’être modifié

pour éviter qu’un paquet ne cherche un TSV indéfiniment, comme d’autres solutions proposent

de faire Niazmand et al. [2016].
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Contribution III: Simulation parallèle et précise de NoCs sur

GPU

Cette contribution a fait l’objet d’une publication à ASP’DAC 2017 Charif et al. [2017a].

Les simulateurs de NoCs précis au cycle près (cycle-accurate) sont très souvent utilisés

pour la validation de nouvelles architectures. Cependant, comme les puces émergentes sont

capables d’accueillir de plus en plus de routeurs, les nouvelles solutions doivent être validées

sur des réseaux de plus en plus grands (centaines voire milliers de routeurs). Les simulateurs

populaires comme Garnet Agarwal et al. [2009] ou Booksim Jiang et al. [2013] ne parviennent

pas à effectuer ce genre de simulations en des temps raisonnables.

Une solution évidente à ce problème consiste à paralléliser les simulations sur des machines

multicoeurs Eggenberger and Radetzki [2013], Eggenberger et al. [2016], Ren et al. [2012].

Cependant, à cause des temps de synchronisation non-négligeables dans le cas des CPUs, et

étant donné que la précision des simulations requiert une synchronisation globale après chaque

cycle simulé, des compromis doivent être faits et souvent, la précision des résultats doit être

sacrifiée pour obtenir des accélérations décentes Ren et al. [2012].

Les GPUs (Graphics Processing Units) sont par ailleurs devenus l’un des supports de calcul

parallèle les plus prisés. Bien qu’ils n’offrent pas une solution miracle au problème de synchro-

nisation, ils contiennent un grand nombre de ressources de calcul et permettent la création d’un

grand nombre de threads, pouvant compenser le temps passé dans les synchronisations. On

se propose donc de concevoir et d’implémenter un simulateur cycle-accurate de NoCs capable

d’exploiter au mieux les ressources du GPU sans pour autant demander à l’utilisateur des efforts

d’optimisation.

Le design proposé se base sur une décomposition des tâches qui n’est pas définie en terme de

routeurs Eggenberger and Radetzki [2013] ou de ports Zolghadr et al. [2011], mais de groupe-

ments personnalisés de modules. Un modèle de programmation où tous les modules définis

peuvent s’exécuter en parallèle est proposé. Les modules communiquent à travers des registres,

où chaque registre se compose de deux cases (odd, even). Selon la parité du cycle simulé, les

modules lisent et écrivent dans des cases différentes du registre. Cela assure que les modules ne

lisent pas les valeurs trop tôt et préserve la fidélité au matériel simulé.
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On peut définir autant de modules que l’on veut, pouvant effectuer des tâches complètement

distinctes et de complexités différentes (code divergent) et les organiser dans des groupes. La

composition des groupes se fait par l’utilisateur sans aucune contrainte sur le nombre de mod-

ules ou leur type. Ce sont alors les groupes de modules qui sont considérés comme des tâches

parallélisables. Cette indirection est très importante car on peut ajuster la granularité de la par-

allélisation comme on le souhaite. Le même design (mêmes modules, même code) peut être

simulé sur un GPU à faibles ressources en changeant simplement le groupage pour contenir

moins de groupes (et donc moins de threads). Sur un bon GPU, cela permet de simuler des

NoCs de tailles très grandes (plus de 4000 routeurs ont été simulés sur un GTX980Ti).

Au niveau de l’implémentation, on propose plusieurs optimisations sur l’utilisation de la

mémoire ainsi que la synchronisation globale. Le point le plus important est le mapping des

tâches, qui doit être réalisé de sorte à ce que la divergence de code soit minimale. Bien que les

groupes de modules contiennent des codes complètement hétérogènes, on observe que tous les

routeurs comportent les mêmes groupes. La stratégie de mapping doit donc exploiter ce par-

allélisme inhérent à l’architecture du NoC afin de minimiser, voire supprimer la divergence de

code. On arrive à accomplir cela en identifiant chaque thread par deux coordonnées g, r (Groupe

et Routeur). Sachant que tous les W threads (typiquement 32) doivent exécuter le même code

(modèle SIMT Single Instruction Multiple Theeads), on propose de définir l’identifiant de

thread comme suit ID = g ∗ R + r, où R est le nombre total de routeurs. Ainsi, au sein

de W threads (appelés Warp), on change de routeur, avant de changer le groupe de modules,

ce qui permet de garantir, en s’assurant que R est multiple de W , que les threads d’un warp

exécutent le même code (même groupe).

En s’appuyant sur ce design, on a développé un outil de simulation ultra-rapide appelé

GNoCS, qui a servi entre autres à la réalisation de toutes les simulations présentées le long de

cette thèse. Des détails sur son implémentation (API, modèle de programmation, etc.) sont

présentés dans l’Annexe B.
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Chapter 1

Introduction

1.1 Introduction

The ever-growing need for processing power in modern digital systems has led to a significant

increase in the number of Intellectual Properties (IPs) integrated in a single chip. This was

partly enabled by the aggressive scaling of transistor feature sizes, which, along with the many

benefits it brings in terms of area, delay and power consumption, is known to pose some serious

concerns about reliability. In this context, Networks-on-Chips (NoCs) Dally and Towles [2001]

have emerged as the new paradigm of choice for on-chip communication, and are today widely

used in many-core systems, as well as Graphics Processing Units (GPUs) Bakhoda et al. [2010],

Wentzlaff et al. [2007]. In addition to being a power-efficient and scalable replacement for

traditional buses, they contribute greatly to the chip’s fault-tolerance and performance thanks

to the path diversity that is inherent to the widely adopted NoC topologies. They are today an

actively researched topic and various solutions are being explored to meet the needs of emerging

applications in terms of performance, quality of service, energy, and fault-tolerance. This thesis

presents contributions in two important areas of Network-on-Chip research:

• The design of flexible deadlock-free fault-tolerant routing algorithms for different topolo-

gies.

• The design and implementation of parallel cycle-accurate Network-on-Chip simulators

for a fast evaluation of new NoC architectures.
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These contributions are summarized in the remainder of this section.

1.1.1 Contribution I: A New Methodology for the Design of Highly Flexi-

ble Deadlock-Free Routing Algorithms

While aggressive technology scaling has its benefits in terms of delay, area and power, it is also

known to increase the vulnerability of circuits, suggesting the need for fault-tolerant designs.

Fault-tolerance in NoCs is directly tied to the degree of flexibility of the routing algorithm. High

routing flexibility is also required in some irregular topologies, as is the case for TSV-based 3D

Network-on-Chips, wherein only a subset of the routers are connected using vertical connec-

tions. One challenging aspect in the design such flexible algorithms is the risk of deadlock

formation, which can occur if cyclic dependencies are formed between packets.

Many existing routing solutions make use of virtual channels (VCs), which consist in several

disjoint input queues, to avoid deadlocks while offering enough routing flexibility to avoid

faulty and congested areas in a NoC. However, most of the current solutions rely on an overly

restrictive, static partitioning of VCs, which results in an under-utilization of their throughput

enhancement capabilities Ebrahimi et al. [2013a], Chaix et al. [2011]. In effect, VCs can also be

used to reduce Head-of-Line (HOL) blocking and greatly reduce the transmission delays Dally

[1992].

To overcome the limitations of such approaches, Chapter 2 introduces a new sufficient con-

dition of deadlock-freedom that greatly relaxes the restrictions imposed by the classic VC-based

deadlock-avoidance methods. The strength of our condition lies in the fact that it is imposed

on packets at runtime and does not require any partitioning of virtual channels, which makes it

possible to fully exploit them to reduce packet blocking and boost performance. Based on this

condition, we present a generic, topology-agnostic routing algorithm design methodology that

can be used to construct highly flexible routing algorithms in only a few steps. Several examples

are presented to showcase the usefulness of our approach for the construction of fault-tolerant

routing algorithms, as well as the enhancement and the proof of existing routing algorithms.

The implementation of all the required mechanisms in hardware is also described in detail,

thereby demonstrating its feasibility in an on-chip environment.
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A significant gain in both performance and fault-tolerance when using our methodology

compared to the existing static channel partitioning methods is reported. Moreover, hardware

synthesis results show that the newly introduced mechanisms have a negligible impact on the

overall router area. This methodology is subsequently used in the rest of the thesis to construct

new routing algorithms for 3D NoCs.

We have published some parts of this work in Charif et al. [2016] and Charif et al. [2017b].

1.1.2 Contribution II: A Cost-Effective Routing Solution for TSV-Based

3D Networks-on-Chips

The emergence of 3D integration can greatly benefit future many-cores by enabling low-latency

three-dimensional network-on-chip (3D-NoC) topologies Feero and Pande [2009], Pavlidis and

Friedman [2007]. However, due to the high cost, low yield, and frequent failures of Through-

Silicon Via (TSV) Benini [2008], 3D-NoCs are most likely to include only a few vertical con-

nections Bartzas et al. [2007], resulting in partially connected topologies that pose new chal-

lenges in terms of deadlock-free routing and TSV assignment.

With a limited number of vertical connections, the routers of such networks require a way to

locate the nodes that have vertical connections, commonly known as elevators, and select one

of them in order to be able to reach other layers when necessary. Both the strategy used to select

which elevator to take, and the routing algorithm used to reach the destination, have a critical

impact on the cost and performance. However, most existing solutions either require too many

VCs, which significantly impacts the cost Dubois et al. [2013], or poses too many restrictions

on the placement and selection of TSVs Salamat et al. [2016b], Lee et al. [2015]. The goal of

our second contribution is to provide a full routing solution for partially connected 3D-NoCs

that not only reduces the number of required virtual channels, but offers increased flexibility

compared to the state-of-the-art algorithms. This contribution consists of two parts presented in

two different chapters:
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1.1.2.1 Scalable TSV assignment strategies

In Chapter 3, we explore, for the first time, various strategies for assigning TSVs to routers

both offline and during runtime. All the solutions that we propose use a fixed number of re-

configurable bits per router (scalability), and every assignment algorithm is formally proven to

guarantee reachability and deadlock-freedom.

Many of the proposed strategies are generic and do not depend on a specific routing algo-

rithm, resulting in a reusable framework for scalable TSV assignment in 3D-NoCs.

1.1.2.2 The First-Last routing algorithm

Chapter 4 presents a novel routing algorithm targeting 3D-NoCs. Thanks to a unique distribu-

tion of virtual channels, our algorithm is the only one capable of guaranteeing full connectivity

in the presence of one TSV pillar in an arbitrary position, while requiring a low number of extra

buffers (only 1 extra VC in the East and North directions). Moreover, because it is based on the

deadlock-avoidance approach presented in Chapter 2, it attains a high level of performance with

respects to the state-of-the-art Elevator-First algorithm, in spite of using less virtual channels.

We further exploit the efficient TSV assignment framework from Chapter 3 to implement a full,

highly cost-effective routing solution for partially-connected 3D-NoCs.

A preliminary version of the First-Last routing algorithm was published in Charif et al.

[2017c].

1.1.3 Contribution III: Ultra-fast GPU-Based Parallel Simulation of NoCs

In order to speed up the evaluation of new Network-on-Chip designs, the last chapter of this the-

sis (Chapter 5) presents the first detailed and modular parallel NoC simulator design to run fully

on Graphics Processing Units (GPUs). First, a flexible task decomposition approach, specifi-

cally geared towards high parallelization is proposed. Our approach makes it easy to adapt

the granularity of parallelism to match the capabilities of the host GPU. Second, all the GPU-

specific implementation issues are addressed and several optimizations are proposed. Our de-

sign is evaluated through a reference implementation, which is tested on an NVidia GTX980Ti

graphics card and shown to speed up 4K-node NoC simulations by almost 280x.
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Part of this work was previously published in Charif et al. [2017a].

1.2 Experimental setup

1.2.1 Hardware implementation

Although our contributions introduce novel approaches that are interesting from the theoretical

standpoint, it is important to make sure that the presented solutions are feasible in terms of

hardware.

For this reason, all the new algorithms and mechanisms introduced throughout this manuscript

are implemented and synthesized. We present both details about the implementation and syn-

thesis results for every proposal. SystemVerilog was used for all hardware implementations.

Full router implementations were based on the Netmaker on-chip router library Mullins [2009],

whereas other implementations were written from scratch.

The syntheses were performed using Synopsys Design Compiler and the nangate 45nm

library Nangate [2017].

1.2.2 Simulation

For performance and reliability assessment, we use an in-house cycle-accurate simulator based

on the design presented in Chapter 5. In addition to being very fast, it models the simulated

router very accurately and in compliance with the hardware implementation. Moreover, the

outputs of every single module are thoroughly checked throughout the simulations, giving us

great confidence in the correctness of the presented results. It is worth mentioning that the

simulation process is fully automated (see Appendix B) and that the figures were generated by

the simulator and presented with no alterations.
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Chapter 2

A Dynamic Sufficient Condition of

Deadlock-Freedom for Highly Flexible

Routing in Wormhole Networks

2.1 Introduction

A convenient and widely adopted method for avoiding routing deadlocks is to make use of vir-

tual channels Dally [1990], which consist in independent input queues added at each input port,

allowing many packets to be multiplexed on the same physical channel. VCs are partitioned

into several virtual networks (VNs), such that no cycles can form with-in each VN. Typically,

packets of one VN cannot acquire virtual channels from another virtual network, the idea being

the suppression of cyclic dependencies between virtual networks. Although this approach has

proven to be a simple and effective deadlock-avoidance solution for fault-tolerant systems as

well as emerging topologies Chaix et al. [2010], Dubois et al. [2013], its main drawback is that

it underutilizes the available virtual channels. In fact, virtual channels are an expensive resource,

and if we were able to use them for their performance boosting potential instead of reserving

them for the sole purpose of deadlock-avoidance, it would make the extra cost worthwhile.

From a theoretical point of view, while the strict partitioning of virtual channels is suf-

ficient to avoid deadlocks, it is not necessary. In effect, necessary and sufficient conditions
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of deadlock-freedom Duato [1995], Schwiebert and Jayasimha [1995], Fleury and Fraigniaud

[1998] suggest that the absence of cyclic dependencies between channels is not necessary for

deadlock avoidance. Moreover, by adding virtual channels the chances of deadlock formation

are significantly decreased as explained in Pinkston and Warnakulasuriya [1999]. The currently

adopted approaches are therefore overly restrictive, and the resulting resource waste can defi-

nitely be avoided.

In this first chapter, we propose a general solution to this issue by introducing a very low-

restrictive sufficient condition of deadlock-freedom that has the major advantage of being for-

mulated using the locally available runtime information in each router. This means that the

condition can be verified by the hardware online, and no static reservation of virtual channels

for deadlock-avoidance is necessary, allowing for ultra-flexible high-performance routing algo-

rithms to be designed.

Based on this condition, an intuitive, topology-agnostic routing algorithm design frame-

work comprising the minimum set of rules that routing algorithms should fulfill to satisfy our

deadlock-freedom condition is presented.

We provide details on the implementation of our approach in hardware, and highlight its

wide range of applicability through several case studies. In addition to fault-tolerant routing,

which we showcase in the first part of this chapter, we also demonstrate that the presented

condition of deadlock-freedom can be used to enhance the performance of existing routing

algorithms by relaxing the restrictions on their virtual channel usage. Finally, we show how our

condition can provide a more intuitive understanding of already existing routing algorithms, as

we easily reconstruct a maximally adaptive routing algorithm for the 2D topology, which was

previously proven deadlock-free using channel dependency graphs and classic necessary and

sufficient conditions of deadlock-freedom.
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2.2 State-of-the-art

2.2.1 VC-based deadlock avoidance

The vast majority of routing algorithms that require virtual channels for deadlock avoidance

have been adopting a conservative approach, which consists in a strict partitioning of virtual

channels at design time such that each virtual channel has its own routing rules that packets

must follow. Usually, blocked packets can only request one of the two virtual channels at a time.

When fault-tolerance is required, moving from one virtual channel to the other is permitted only

in one direction (e.g. in increasing order).

Example of recent fault-tolerant routing algorithms using this same approach include Ebrahimi

et al. [2012], Chaix et al. [2010]. This method has also been employed in the context of 3D-

NoCs Dubois et al. [2013], Salamat et al. [2016b], where there is always a strict separation

between Upward and Downward packets Dubois et al. [2013], Eastward and Westward packets

Salamat et al. [2016b], etc.

The issue with this approach is that the virtual channels are underutilized because packets

have to wait for one specific VC at all times, even when other VCs are idle. In context of fault-

tolerance, in order to provide all packets with enough flexibility to route around faults, some

algorithms require that all packets start routing in the first VC, so that they get a chance to move

to a higher VC when necessary Ebrahimi et al. [2012]. This means that the second VC remains

entirely idle in the absence of faults, which is a waste of resources.

However, because the classic method simply consists in splitting the network into two dis-

joint deadlock-free networks that use familiar routing algorithms Glass and Ni [1992], it makes

it easy to build new routing solutions by combining several previously known deadlock-free turn

models. In this thesis, we aim at improving VC utilization without jeopardizing this important

property.

2.2.2 Necessary and sufficient conditions of deadlock-freedom

It has long been known that the suppression of cyclic dependencies is not necessary for deadlock-

freeness Pinkston and Warnakulasuriya [1999]. Several necessary and sufficient conditions
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of deadlock-freedom have been proposed in the context of wormhole routing Verbeek and

Schmaltz [2011], Duato [1995], Duato [1997], Fleury and Fraigniaud [1998]. These are all

excellent for proving the deadlock-freedom of an existing algorithm and even for building for-

mal verification tools Taktak et al. [2008].

However, they can hardly be used to construct new algorithms. For instance, the authors

in Kumar et al. [2014] have recently proposed a routing algorithm for NoCs that aims at re-

ducing the restrictions on the VCs that can be used. The algorithm uses Duato’s necessary and

sufficient condition Duato [1995] to prove the network deadlock-free despite the presence of

cyclic dependencies. The resulting algorithm is highly flexible, but it can be difficult to have an

intuitive understanding of how it works without thinking in terms of dependency graphs. There

is therefore a clear need for a design methodology that makes it possible to systematically build

such algorithms.

Using our design methodology, we will reconstruct the routing algorithm in Kumar et al.

[2014] from scratch, and show how our approach can help explain it in a more intuitive way.

2.2.3 Routing algorithm design frameworks

Our methodology is based on a sufficient condition of deadlock-freedom that is expressed using

local information, which is made available through a virtual channel tagging mechanism during

runtime. This makes our condition verifiable by the hardware dynamically, allowing for a high

degree of flexibility.

The idea of using runtime information for deadlock avoidance is not new. Early works on

adaptive routing, such as Dally and Aoki’s algorithm Dally and Aoki [1993], also make use

of a similar labeling mechanism. More notably, in Boppana and Chalasani [1996], the authors

propose a framework for designing adaptive routing algorithms. The terminology as well as

many of the concepts they propose are quite similar to our proposal. However, there are fun-

damental differences between our methodology and these works. First, both Dally and Aoki

[1993] and Boppana and Chalasani [1996] avoid deadlocks by suppressing cyclic dependencies

from the packet wait-for graphs. Our condition is less restrictive and allows the presence of

cyclic dependencies both in the channel dependency graph and the packet wait-for graph. In
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this regard, our deadlock-freedom condition is closer to the necessary and sufficient condition

as formulated in Schwiebert and Jayasimha [1995]. Like Boppana and Chalasani [1996], our

methodology supports class upgrades to further increase routing flexibility and enhance virtual

channel utilization. However, our framework also supports class downgrades, pushing the level

routing freedom even further. More importantly, our formulation is specifically tailored for

on-chip networks, and can use the already available deadlock-free routing algorithms as build-

ing blocks. We also provide several details on the implementation of our deadlock-avoidance

mechanisms in hardware.

More recently, in Ebrahimi and Daneshtalab [2017], the authors have introduced a new the-

ory for designing deadlock-free routing algorithms. It is a formal generalization of the method

used to construct several routing algorithms such as Ebrahimi et al. [2013a]. Because it is based

on the partitioning of network channels as in Dally and Seitz [1988], it requires the absence

of cyclic dependencies between channels for deadlock-freedom, limiting the utilization of VCs

compared to the approach that we propose.

2.3 Routing algorithm design methodology

In this section, we introduce the proposed routing methodology by example. After defining the

network architecture, we design a new fault-tolerant routing algorithm for 2D Mesh NoCs and

highlight the differences with the traditional static approaches.

2.3.1 Switch model

We consider a typical input-buffered wormhole router such as the one shown in fig. 2.1. Several

Virtual Channels (VCs) may be available per input port. Routing a packet is performed in 5

steps. When the first (head) flit of a packet is read from an input port, it is buffered in the input

VC that was allocated to it by the upstream router and, in the same cycle, the Route Computation

Unit selects the next output port to which the packet should be forwarded. The input VC, which

was in “Idle” state, moves to “Waiting” state and waits until the VC Allocator grants it an Idle

VC in the downstream router. When a downstream VC is acquired, the input VC enters the

“Active” state. Each flit of the packet then waits for the Switch Allocator to grant it permission
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Figure 2.1: Router architecture.

to traverse the Crossbar and reach the output port, provided that there are enough free buffers

to store the flit in the downstream VC. When a flit acquires the switch, a credit signal is sent to

the upstream router, indicating that there is a newly available buffer in this VC. Finally, the flit

traverses the link to reach the next router. When the last (tail) flit of a packet leaves the router,

the input VC goes back to the “Idle” state and becomes ready to receive new packets.

The output unit (fig. 2.1) maintains a structure representing the status of each downstream

VC. The structure representing one downstream VC has the following fields:

• State: Idle or Active.

• Credits: Number of free buffers.

• Tag: A signed integer used by the algorithm. Its usage will be explained later.

It is important to note that the only strict assumption that we make on the router’s architec-

ture is that the output port is selected before VC allocation is performed. All the other aspects,

such as the allocator types, pipelining, speculative switch allocation, have no affect on the va-

lidity of our routing approach.
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2.3.2 Fault model

A faulty network is modeled by a set of permanently faulty unidirectional links. This model is

often used to evaluate fault-tolerant routing algorithms as it demonstrates their ability to route

packets in a maze-like irregular topology.

In practice, this can correspond to either a link actually failing, or input and output ports

being disabled due to faults in their control logic, e.g. stuck-at faults. We consider that in the

presence of faults in the central logic (allocators, crossbar, etc.) the router simply disables all

of its input and output ports, so the same model can be employed to model node failure as well.

2.3.3 Example design: Fault-tolerant routing in 2D mesh NoCs

We consider, as an example, that the routers are interconnected in a 2D Mesh topology. There-

fore, each router has four input/output ports connecting it to at most four neighboring routers

(North, South, East, West), and one input/output ports (Local) connecting it to a network inter-

face (NI).

The first step in designing a routing algorithm using our methodology is to identify a set of

routing classes, such that each routing class is associated with one cycle-free routing function.

The routing function supplies a set of physical channels (output ports) that the packet can oc-

cupy. It can achieve cycle-freedom in two different ways: Either the set of physical channels

supplied by the routing function cannot form a cycle (e.g. take only the physical channels of

one dimension) as in Ebrahimi and Daneshtalab [2017], or the physical channels can form a

cycle but they are supplied in a specific order (e.g. the turn models Glass and Ni [1992]).

In Section 2.7, we will present an algorithm that uses the former approach. In this example,

however, because we want to maximize the routing options within each class, we use the turn

model Glass and Ni [1992] as a routing function.

Here, we chose to use the non-minimal South-last and North-last turn models to be assigned

to routing classes 0 and 1 respectively. Fig. 2.2 shows the physical channels used within each

class, along wih the numbering that indicates the order in which the physical channels must

be traversed to suppress cycles, as per Glass and Ni [1992]. We can see that all four physical

channels are used by both classes.



2.3.3. Example design: Fault-tolerant routing in 2D mesh NoCs 18

Figure 2.2: Physical channels used by the two classes of the example algorithm.

From the set of physical channels, we can deduce the minimum number of virtual channels

that are required in each direction. The VC count in one physical channel, as shown in Fig. 2.2,

simply corresponds to the number of classes that use the same physical channel. Our algorithm

will require two VCs in all directions.

Thus far the setup is analogous to that uses by many related works, such as Chaix et al.

[2010]. We intentionally chose similar routing functions to make it easier to highlight the

differences. The first key difference is that unlike the classic approach, the routing functions are

not assigned to specific virtual channels. Instead, each packet carries its class number, and this

class number is used by the route computation unit to select the appropriate routing function,

regardless of which virtual channel the packet is currently occupying. This also means that the

virtual channels that packets can occupy are never known a priori, which is the main factor

in achieving a higher throughput than the classic approaches. The VC acquisition rules are

determined dynamically following the rules described in the rest of this section.

When a packet acquires a downstream VC, it must set the corresponding Tag field in the

output unit to its class number. The following rule, which corresponds to our sufficient condition

of deadlock-freedom, is enough to guarantee deadlock-free operation.

Rule 2.1. “A packet may not request an output port unless at least one of the virtual channels

associated with that port is either free, or tagged with a number higher than or equal to its class
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number”.

For our example case, this means that packets of class 1 cannot wait for an output port in

which all the channel tags are less than 1. Consider the class 1 packet coming from the west

port of router 3 in Fig. 2.3. It is able to request the east port because there is one VC tagged

with “1” in that port. Similarly, the packet coming from the south port of router 0 can legally

request the east port because it is occupied by packets of class 1, which is higher than class

0. The intuition behind this rule is simple. By ensuring that packets of class 1 always have a

dependency in class 1, and knowing that all the packets in class 1 are routed using an acyclic

turn model, we guarantee that packets of class 1 dynamically form an acyclic dependency chain.

Packets of class 0 either have all their dependencies in class 0, in which case they cannot form

cycles because the South-last turn model is cycle-free, or they may have class 1 dependencies,

leading forcibly to the dynamic escape path formed by class 1 packets.

Therefore, the first rule guarantees at least one escape for every packet in the network.

It is very important to understand that while only one of the virtual channels of the requested

port needs to have a higher or equal tag, nothing is done to force the packet to wait for that one

VC specifically. Going back to our example in Fig. 2.3, the class 1 packet coming from the

west port of router 3 may very well acquire the top-most VC, which is held by a class 0 packet

about to leave router 4, even though the port was selected because of the second VC from the

top, which is tagged with “1”. This means that the packet was not waiting for only one VC, but

for both VCs, including the one tagged with a lower class number. This is a crucial point in

achieving high performance.

While rule 2.1 ensures deadlock-freedom, there are a few issues that need to be addressed.

In fig. 2.3, there is a packet coming from the west port of router 4 and requesting the east port,

which has one free VC. If this free VC is granted to this packet, the port will be full of class 0

tags. Consequently, if a class 1 packet arrived at router 4 and wanted to go east, it would not be

able to request the east port, because otherwise it would violate rule 2.1. Rule 2.2 imposes one

restriction on the VC requests to alleviate this issue.

Rule 2.2. “In every output port, there must be at least one free virtual channel for every class

higher than the greatest tag in that port”.
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Figure 2.3: An example packet configuration.
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In other words, the VC allocator should not grant all the virtual channels of a port to class 0

packets. Therefore, the 2-flit class 0 packet in the west port of router 4 (fig. 2.3) cannot request

the free VC at the east port and has to wait for the class 0 packet to leave the router. However,

note that router 0 has allocated all the virtual channels of its east port to class 1 packets. This

does not violate the rule since there are 0 classes higher than 1, and therefore 0 VCs need to be

kept free. We will show how this rule can be implemented in the next section.

2.3.4 Upgrades and Downgrades

To provide packets with even more routing freedom, our framework also supports class chang-

ing. Packets may prefer to change their class for various reasons. The most obvious use case is

when their current class can no longer provide the necessary output channels to make progress

towards the desitnation, either because of faults, or because they are not supplied by the routing

function.

This feature is therefore a great contributor to fault-tolerance, as packet can either upgrade or

downgrade to possibly get access to more physical channels and route around faults. A second

case where packets may decide to move to another class is when all the physical channels they

need to reach their destination are provided by a higher class. In this case, they may as well

upgrade, as they will gain access to more virtual channels, as per rule 2.2.

We observe that if a packet of class 0 upgrades to class 1, it does not violate any of the

previous rules. In effect, packets allowed to wait for class 0 are also allowed to wait for class 1,

and therefore, the escape guarantee is maintained.

On the other hand, if a class 1 packet downgrades to class 0, then packets depending on it

would lose their escape guarantee. This gives rise to the third and last rule.

Rule 2.3. “When a packet downgrades, it must tag all of its containing virtual channels with a

negative number”.

For instance, consider the packet arriving from the north port of router 5 in fig. 2.3. It is a

long packet with flits in the west port of router 2, north port of router 5 and south port of router

2. Note that due to faults in router 5, the packet, initially of class 1, was not able to go east

or south, therefore, it had to make a U-turn to go north then east, which is not allowed by the
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North-last algorithm. In router 5, the class of the packet had to be changed to 0. Since it is a

downgrade, according to rule 3, all the virtual channels the packet is occupying must be tagged

with a negative number.

To make this possible, the channel holding the head of the downgrading packet sends a

signal upstream to its corresponding output unit (as in the case of credits), which will tag the

corresponding VC with a negative number at the reception of the signal, to indicate that the

packet is violating the routing rules. In the cycle following the tag, if there is an active input VC

in the upstream router which is associated with the newly negatively tagged VC, then it must

in turn signal it to its upstream router, and so on until the VC holding the tail of the packet is

tagged.

A negative number is smaller than any existing packet class, and therefore, packets will

only wait for a negatively tagged VC if there is another VC in the same port with a higher or

equal tag than their class. In our example, there is a class 1 packet waiting for the east port at

router 1. At the time the port was selected for this packet, there was one VC tagged with “1”,

so the port was valid. However, after the downgrade, the port is no longer valid, and therefore

the packet waiting for it needs to be rerouted to a different port. The same port is however

still legal for class 0 packets. In summary, no packets can depend on downgrading packets so

deadlock-freedom is preserved.

The idea behind this method is the following: A packet only downgrades when it is about

to be dropped and has no other options but to route in the other class. Packets waiting for the

downgrading packet may, on the other hand, have other options available, and can adapt and

take an alternative deadlock-free path.

2.4 Implementation details

After introducing our routing approach, it is essential to demonstrate its feasibility in hardware.

In this section, we discuss possible implementations of the previously introduced concepts.

Because the exact implementation depends on the target application, we consider various design

possibilities having different levels of complexity and routing flexibility.
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2.4.1 Without downgrades

The ability to switch back and forth between packet classes is a powerful feature of our ap-

proach. However, in many cases, disabling class downgrades to reduce the design’s complexity

can be a sensible trade-off. As a first step, we present a very simple implementation under the

assumption that packets never need to downgrade.

In this case, instead of using channel tags and continuously checking the deadlock-freedom

condition, we can instead control the virtual channel requests in such a way that the condition is

always verified. For the sake of illustration, let us assume that 2 packet classes are in use, with

an arbitrary number of virtual channels. According to our condition, class 0 packets can request

any port in the absence of downgrades, as no negative tags exist. However, class 1 packets

cannot request a port in which all virtual channels are occupied by class 0 packets. Therefore,

in order to satisfy the deadlock-freedom condition for all packets in the network, it is sufficient

to make sure that class 0 packets never occupy all virtual channels simultaneously.

This can be achieved using a simple masking mechanism. During the virtual channel request

phase, class 0 packets need to mask their VC requests such that all but one VCs are requested

at all times. Class 1 packets always request all VCs and do not apply any masking. Here, we

propose two different ways to select which VC to mask:

• Constant mask: A first solution is to select one of the two VCs at design time and

forbid all class 0 packets from requesting it. The constant mask solution is cheap to

implement but somewhat defies the purpose of what we are trying to achieve in terms of

VC utilization. Consider the case shown in fig. 2.4 (a), where only one VC is acquired

by a packet of class 1 and packets of class 0 are unable to request the free VC because

it is masked, even though the request would be legal according to our deadlock-freedom

condition.

• Dynamic mask: The alternative that we propose is to maintain in each router one V-bit

(1 bit per VC) register per output port, except for the Local port. This register is used

as a mask, only by class 0 packets, during the virtual channel request phase. The mask

update policy is as follows: Whenever a packet of class 1 acquires a VC from a given

output port, update the mask on that output port to mask the newly acquired VC (see Fig.
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Figure 2.4: Static vs. Dynamic masking. (a) Static: class 0 packets always mask the same
channel during VC allocation. (b) Dynamic: The mask changes every time a class 1 packet
acquires a VC.

2.4 (b)). That is, as soon as we have a class 1 packet in one VC, make all the other VCs

available to class 0 packets. This is a cost-effective method for implementing a dynamic

VC acquisition policy.

Because some router architectures can allocate several VCs belonging to the same output

port in the same cycle, it can be difficult to test all the possible combinations of classes to

decide on the way the mask should be updated. More importantly, making such a decision

would require the classes of requesting packets, which are stored in the input FIFOs to be made

available at the output of VC allocation, which would imply the use of more complex VC

allocation logic. To alleviate this, we propose to take advantage of the fact that the first flit of

a packet leaves the router shortly following VC allocation, to perform the mask update as soon

as the first packet traverses the crossbar. This is convenient for several reasons. First, because

we intercept the flit at the output of the crossbar, there is no need to modify the VC allocator

to propagate the packet classes to the output. Instead, we can get this information directly from
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the packet header itself. Second, because only one single flit can leave from an output port at

a given cycle, the mask update logic becomes much simpler, as all we need to do is mask the

output VC of the packet and unmask the other ones. This may only incur a short delay between

updates, which has no incidence on correctness, and usually very little impact on performance,

as all it means is that some legal VCs may become available to class 0 packets a few cycles later

than they could have.

2.4.2 With downgrades

To enable downgrading, we can no longer rely simply on the VC allocation policy to satisfy

deadlock-freedom. This is because the condition depends on the behavior of the packets in the

downstream routers. In this case, in addition to the masking mechanism, which prevents class

0 packets from fully occupying the same port, each router needs V bits per output unit that we

note T0, T1, . . . Tv−1 to keep track of the tags (0 or 1) of all VCs. In addition, one extra bit per

VC is needed to indicate whether a packet is downgrading. We note these bits D0, D1, . . .Dv−1.

During the routing process, two signals are computed for each output port. The first signal E0,

indicates whether the port can be selected by class 0 packets. The second signal E1 indicates

the eligibility of class 1 packets to acquire this port. These eligibility signals can be computed

as follows, assuming the current value of the VC mask is M0,M1, . . .Mv−1:

E0 = D0 ∗M0 +D1 ∗M1 + ...+Dv−1 ∗Mv−1

E1 = T0 ∗D0 + T1 ∗D1 + ...+ Tv−1 ∗Dv−1

That is, a port is legal for class 0 if at least one VC is has not been negatively tagged and

can be requested according to the current value of the mask. Class 1 packets require that one

VC has a tag equal to 1. Free VCs must therefore be tagged with “1”.

All input VCs that are in “Waiting” state must continuously check these signals as they may

change while the packets are waiting to acquire an output VC. When a packet is waiting on an

output port that has become illegal for its class, route computation should be repeated and a

different port should be selected for that packet. Here again, different options are available.
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2.4.3 Repeating route computation

The most reliable to repeat route computation would be to replicate the route computation logic

at each input VC, whereas traditionally, only one route computation block is needed at each

input port. While this would not be a major issue for simple routing algorithms, because we

are in the context of fault-tolerance, non-minimal routing algorithms are typically used, which

usually means that the route computation logic is can be quite complex.

Other mechanisms can also be adopted. For instance, during the initial route computation,

instead of saving the final selected route, a bit vector containing the list of candidate routes can

be saved in a register, and a different candidate can be selected whenever necessary directly

from this register, without repeating route computation. This still means that the selection logic

needs to be replicated for each VC, however, the comparison of the current and destination

addresses, as well as the computation of candidate routes according to the routing class, are

only performed once. The only disadvantage of this approach is that it only saves the candidates

for one class, which means that it does not support switching to other classes to try more routes

upon rerouting.

2.4.4 Negative tag back-propagation

Finally, we consider the implementation of the propagation of negative tags to upstream routers.

As shown in Section 2.3, this mechanism is the key to avoiding deadlocks in the presence of

downgrades. To implement this feature, it is necessary to place additional signal wires between

routers, in addition to the already existing credit signals. One wire is required per VC. Each

VC computes the value of the negative tag signal every cycle as follows: if a route computation

took place in the current cycle, set a combinational signal R (for route computation) to indicate

whether a downgrade was performed by the routing unit. If the channel is in the Active state,

i.e. it has acquired an output VC v, then set a combination signal P (for propagation) to the

value of the Dv bit defined previously. The final value of the signal will simply be set to R+P .

That is, the signal is activated if the packet is either downgrading here, or in the downstream

routers. At the reception of this signal, the output unit sets the values of Di accordingly.
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2.5 Formal generalization

We have introduced, through an example, the principles of our routing method. In this section,

we formalize the proposed approach to provide the necessary proofs, as well as the general form

of the routing algorithm to be used by any network topology.

2.5.1 Preliminary definitions

Definition 2.1 (Channel). Let C be the set of all (virtual) channels and N the set of all nodes in

the network. The injection channel associated with a node n is noted localn. The node at the

end of some channel c is noted → (c). The state of a channel (Idle or Busy) will be denoted

state(c). Every channel can be tagged with a signed integer and the current tag associated with

the channel is denoted tag(c).

Definition 2.2 (Packet). . Every packet p carries a class identifier, denoted class(p), and a

destination node dst(p). The class identifier is an integer 0 ≤ t < T where T is the total

number of packet classes. The set of channels currently occupied by a packet is noted chan(p),

and the last channel visited by a packet, i.e. the one containing the head of the packet, is denoted

head(p).

Definition 2.3 (Routing function). . A routing function Rt : C ∗ N → P (P (C)) associated

with the packet class t, where P (C) is the power set of C, takes the last channel occupied by a

packet, its destination, and returns a set of output ports that the packet can traverse to move to

the next node. An output port is simply a set of channels. We assume the routing function only

supplies healthy ports, i.e. the supplied set does not include faulty ports. The returned set may

be empty, if no possible route exists. We say that a routing function is cycle-free if its channel

dependency graph, as defined in Duato [1995], is acyclic.

Definition 2.4 (Selection function). . A selection function S: P (P (C)) → P (C) takes a set of

ports returned by a routing function and selects one output port, based on congestion, minimal

distance, or other criteria. Given an empty set, the function returns an empty set.
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2.5.2 Generic routing algorithm

We are now able to formulate the first rule of the proposed algorithm (Section 2.3), as a condi-

tion I : N ∗ P (C) → Bool between the class of a packet t and its selected output port o, such

that:

I(t, o)⇔ ∃c ∈ o, state(c) = Idle ∨ tag(c) ≥ t (2.1)

Using the above definitions, we can now define the route computation function, which given

an incoming packet, returns an output port and a (possibly) new packet class. This function,

named rc(p) is presented in Algorithm 1. If routing the packet is not possible in its current

class, other classes are tried, starting with the higher classes. It is important to note that if

another class is used, routing is done as if the packet was just injected (using the injection

channel of the current node). This is to bypass any possible restrictions of the routing function.

After the next output port is computed for a packet, it waits until the VC allocator grants it

one of the VCs of that port. We denote the output VC granted to a packet p as next(p). While

the packet is waiting, assume that next(p) = Nil. The complete routing process, up until the

packet is granted an output VC, is presented in Algorithm 2. If routing the packet is not possible,

it is dropped immediately. Otherwise, if it can be routed in a lower class, the channels holding

the packet are tagged with a negative number. The packet then waits for the VC allocator to

grant it an output VC. While the packet is waiting, its selected port may no longer satisfy (1).

In that case, the whole routing process is repeated. If a packet is granted an output VC, the

class of the packet is updated and the granted VC is tagged with the packet’s class identifier.

It is worth mentioning that the class of the packet is not updated immediately following route

computation, so that in case it is rerouted, its original class is tried first.

2.5.3 Proof of deadlock-freedom

For deadlock analysis, we need a few more definitions. Our proof is quite similar to the one

used in Dally and Aoki [1993].

Definition 2.5 (Packet dependency). Let out(p) denote the selected output port for some packet
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Algorithm 1 Route computation
Input:

p : The packet to route
Output:

The selected output port and the new packet class
1: function RC(p)
2: Let r ← ∅
3: Let t← class(p)
4: Let i← head(p)
5: repeat
6: r ← {o ∈ Rt(i, dst(p))/I(t, o)}
7: t← (t+ 1) mod T
8: i← local→(head(p))

9: until r 6= ∅ or t = class(p)
10: return S(r),[(t− 1) mod T ]
11: end function

Algorithm 2 The routing algorithm
Input:

p : The packet to route
1: Let r,t← rc(p)
2: if r = ∅ then
3: drop p
4: else
5: if t < class(p) then
6: for all c ∈ chan(p) do
7: tag(c)← −1
8: end for
9: end if

10: wait until next(p) 6= Nil or I(t, r) = false
11: if next(p) = Nil then
12: route(p) (repeat procedure from top)
13: else
14: class(p)← t
15: tag(next(p))← t
16: end if
17: end if
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p. Packet p is said to be depending on packet q iff

out(p) ∩ chan(q) 6= ∅

We will note the set of all packets that a packet p depends on as dep(p).

Definition 2.6 (Packet wait-for graph). Given a set of packets P present in the network at a

given moment in time, the packet wait-for graph is a directed graph H(P, E), where E is the set

of arcs (pi, pj) such that pi depends on pj .

Theorem 2.1. If for every packet class 0 ≤ t < T , Rt is cycle-free, then the network is

deadlock-free.

Proof. If the network is deadlocked, then there is a packet p0, such that every possible path

(p1, p2. . . ) in the packet wait-for graph, where pn ∈ dep(pn−1), reaches p0. Given (1), at least

one of these paths verifies:

class(pn) ≥ class(pn−1) (2.2)

Let π be one of the paths verifying (2). Now let us consider a packet pk such that ∀p ∈

π, class(pk) ≥ class(p). That is, pk is a packet of the highest class along π.

If class(pk) = class(p0) then it means all the packets along π are routed using Rclass(p0).

However, since Rclass(p0) is cycle-free, p0 cannot reach itself from π. If class(pk) > class(p0),

then according to (2), every packet that follows pk in π must be of class class(pk), and therefore

the path never reaches p0, as it is of class class (p0).

Consequently, the supposed deadlock configuration can never occur. This proves the algo-

rithm deadlock-free.

2.5.4 Livelock-freedom and termination

The number of times a packet can be rerouted should be limited to ensure the termination of

Algorithm 2. This limit was not explicitly included in the algorithm for readability. For the

algorithm to be livelock-free, the number of times a packet can change its class must also be

finite.
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2.6 Flow control

An important part of every routing solution is the flow control mechanism. In particular, the way

virtual channels are reallocated to new packets must not violate the deadlock-freedom condition.

Usually, the algorithms that prohibit cycles allow non-empty VCs to be reallocated immediately

after the tail flit of the last packet has been transmitted. On the other hand, algorithms that allow

cycles but rely on escape channels for deadlock-freedom Duato [1997] require that packets

always be at the head of a VC, i.e. only empty VCs can be reallocated. Our methodology

offers the best of both worlds. From our condition, it follows naturally that a packet may safely

follow another packet of an equal or higher class within the same VC, provided downgrades

are not in effect. This means that algorithms based on our methodology are not only able to

use more virtual channels through an escape mechanism, but packets need not always be at the

head of their VC, allowing for faster flow control. This is one of the strongest features of our

methodology.

2.7 A fresh look at fully adaptive routing algorithms

Thus far, we have shown how the proposed design methodology can be used for constructing

new highly flexible routing algorithms, as well as enhancing existing ones.

Another interesting aspect of our condition is that it can also provide a more intuitive un-

derstanding of older routing algorithms as well. In this section, we showcase this property by

reconstructing a fully adaptive algorithm for 2D meshes. More specifically, we will construct,

step by step, the fault-tolerant FT-CAR turn model Kumar et al. [2014]. It is an improved vari-

ant of the older opt-y algorithm Schwiebert and Jayasimha [1993], which has been proven to

provide the highest level of VC utilization and highest level of adaptiveness for 2D meshes with

the minimum number of VCs. The FT-CAR algorithm was proven deadlock-free using Duato’s

theory Duato [1995], relying on channel dependency graphs and extended channel dependency

graphs. In our case, we will express the same routing algorithm in terms of simple routing

functions and class upgrades.

To enable full adaptiveness, we can define two routing functions corresponding to two rout-
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Figure 2.5: Physical channels used by the two classes of FT-CAR.

ing classes. Class 0 provides the North, South and West physical channels. Class 1 provides

the North, South and East physical channels, as shown in fig. 2.5. Notice that both functions

are cycle-free, as none of them spans both dimensions simultaneously. Routing in each class

does not have to be minimal, i.e. packets can be routed away from their destination. Because

the North and South physical channels are the only ones to be shared between both classes, we

know that 2 VCs are required only in the North and South directions. Assuming the constant

masking method introduced in Section 2.4, we also know that packets of class 1 can use both

VCs, whereas class 0 packets can take only one VC.

Following our condition, packets can start in class 0, then, if necessary, upgrade to class 1.

Packets needing to go east must always upgrade. Also, packets having reached the same column

as their destination should always upgrade to class 1, giving them access to both VCs.

Now, if we examine what happens in each virtual channel individually, we can notice that

VC0 can be occupied by both classes, and therefore, will include all the possible turns. When

we look at VC1, however, we can see that it can only be used by the highest class and cannot

include any turns leading to the west direction. Therefore, the resulting algorithm includes the

exact same permitted turns and VC acquisitions allowed by Kumar et al. [2014]. However,

because it is expressed in terms of very simple routing functions (Fig. 2.5) to which we simply

applied our routing rules, it is much easier to make sense of and to prove deadlock-free.
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In addition to being a more elegant way for designing fully adaptive routing algorithms, our

approach makes it possible to get much more performance out of the available virtual channels

thanks to the flexible flow control mechanism described in the previous section, as well as the

dynamic masking mechanism, resulting in higher throughput than the existing algorithms. This

will be demonstrated in the next section.

2.8 Experimental results

In this section, we evaluate the effectiveness of the proposed approach by simulating and im-

plementing the algorithm presented in sections 2.3.

2.8.1 Simulation setup

We implement the proposed algorithms in an in-house cycle-accurate network-on-chip simula-

tor that runs on GPU. The design of this simulator will be described in detail in Chapter 5. The

router architecture comprising the mechanisms described in section 2.4 was accurately mod-

eled. The microarchitecture uses separable input-first switch and VC allocators, as described in

Becker and Dally [2009], and credit-based flow control. In all simulations, each VC comprises

4 flit buffers and packets have a fixed size of 5 flits.

2.8.2 Simulation methodology

Regardless of the tested network, simulations are run for 100000 cycles at different injection

rates. At the end of the 100000 cycles, statistics are collected and the simulation proceeds

until are the packets in the network are drained. During this drain phase, no new packets are

injected. The network contains no packets at the end of the simulation, which helps us confirm

the absence of deadlocks. A hundred iterations are run for each simulation and the average

results are presented. To inject faults, the selected number of links is permanently disabled

at the beginning the simulation. At each iteration, the links to disable are selected randomly.

However, we always make sure that the network is connected, i.e. a path exists for each source-

destination pair. When several routes are available, selection is done based on congestion as
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described in Appendix A.

2.8.3 Evaluating the fault-tolerant algorithm

In section 2.3, we have built a fault-tolerant routing algorithm for mesh NoCs using the proposed

design methodology. Our goal now is to evaluate two aspects of the resulting design:

1) Network throughput, which is affected by our VC acquisition rules as well as the masking

methods described in section 2.4. We consider the normalized throughput, which we compute

as the proportion of the packet ejection rate over the injection rate.

2) Reliability, which is affected by the class switching policy (upgrades and downgrades).

This is measured as the proportion of packets that were successfully delivered to their destina-

tion (including the drain phase) over the total number of injected packets.

To conduct this evaluation, we compare our algorithm to two traditional approaches found

in the literature:

• Baseline-0: Packets in the first virtual channel (VC0) are routed using the South-last turn

model, whereas packets in the second virtual channel (VC1) are routed following the

North-last turn model. Packets can move from VC0 to VC1, but not from VC1 to VC0.

As in Ebrahimi et al. [2012], all packets are injected in the first VC to give all of them a

chance to upgrade once.

• Baseline-1: The rules are the same as Baseline-0. However, instead of injecting all pack-

ets in the first VC, packets are injected in the VC that offers the highest level of adaptive-

ness. Therefore, northward packets are injected in VC0, whereas southward packets are

injected in VC1 Chaix et al. [2010].

We compare these methods to the algorithm described in section 2.3, assuming the dynamic

masking technique from section 2.4. As in Baseline-1, packets are directly assigned to their

most adaptive class. Packets in class 0 are allowed to upgrade once. To demonstrate how

downgrades should be used in practice, we designate a subset of the packets (10%) and mark

them as critical packets. These critical packets are injected in class 0 and are allowed to upgrade,

downgrade, then upgrade once again. Therefore, they benefit from a higher routing freedom

than regular packets. Regular packets in class 1 are not allowed to downgrade.
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Figure 2.6: Throughput results.

We present the results for an 8x8 mesh network. The metrics are collected both for a fault-

free network as well as networks with different numbers of failed links. Throughput results are

presented in Fig. 2.6 and fault-tolerance results are presented in Fig. 2.7 and Fig. 2.8. Fig.

2.7 shows the overall proportion of successfully delivered packets, whereas Fig. 2.8 shows the

proportion of successfully delivered critical packets.

The first observation that can be made is that although baseline-0 does offer a slightly higher

level of fault-tolerance, it does so to the detriment of performance. Conversely, we can see

that baseline-1 yields a much higher throughput in a fault-free network, but is less likely to

successfully deliver packets in the presence of faults. The proposed algorithm consistently

delivers a higher throughput than both approaches even in the presence of a high number of

faults. In terms of reliability, we can see that the proposed approach offers a level of reliability
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Figure 2.7: Delivery success rate.

Figure 2.8: Critical packet delivery success rate.
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that is in between the two baselines. However, the advantages offered by our class switching

policy are clearly demonstrated by a higher delivery rate of critical messages. In summary, our

approach has the potential to offer very high levels of reliability with much higher throughput

than the existing methods.

2.8.4 The impact of flow control and dynamic masking

Although the fully adaptive routing algorithm described in section 2.7 can be reconstructed as

is using only a subset of our theory, it can further benefit from the extra features that we have

proposed. In particular, dynamic masking, which was introduced in section 2.4, and the fine-

grained flow control scheme introduced in Section 2.6, can greatly enhance the performance of

an existing routing algorithm. This is demonstrated in this section.

On the same platform described previously, we implement the original fully adaptive routing

algorithm, as well as two variants that make use of our methods. The first variant introduces the

flow control scheme, and the second variant adds dynamic masking to the solution. Performance

results are presented in fig. 2.9. Here, performance is estimated as the average packet latency.

The advantage of both the VC reallocation policy, and the dynamic masking method, are clearly

demonstrated.

2.8.5 Hardware synthesis

Finally, we evaluate the overhead of the different mechanisms introduced in section 4. Starting

with a baseline router architecture not including any of the mechanisms that are specific to our

methodology, we incrementally implement the following features and observe their associated

overheads: channel tags, negative tags, dynamic masking. The designs were synthesized using

Synopsys Design Compiler and setup to work with an operating frequency of 1GHz, a power

supply of 1V, and a commercial ST FD-SOI 28nm Library. Results are presented in table

2.1. As expected, the mechanisms required by our routing methodology incur a negligible area

overhead. It is important to note that the negative tags and dynamic masking mechanisms are

correct regardless of the number of cycles they take, meaning that they can be implemented

without affecting the critical path of the router.
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Figure 2.9: Impact of flow control and dynamic masking on average latency.
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Table 2.1: Hardware synthesis results

Feature Area (µm2) Power (mW )

Baseline 33137 25.8442
Channel tags 33198 25.8788
Negative tags 33355 25.9598

Dynamic masking 33362 25.9612

2.9 Conclusions

We have presented a generic, topology-agnostic routing algorithm design methodology that can

be used to construct highly flexible routing algorithms in only a few steps: identify a set of

routing classes and their respective routing functions, assign a class to every packet in the net-

work, and perform routing following our three rules that guarantee deadlock-free operation.

The ability to switch freely between classes is an extremely powerful feature of our method, as

it provides packets with a very high degree of routing freedom. In particular, the downgrading

mechanism that we have proposed can greatly benefit fault-tolerant systems, as we have demon-

strated through our example routing algorithm for faulty 2D mesh NoCs. Our routing rules can

also be used to enhance any existing VC-based routing algorithm, as we have shown through

our improved version of a fully adaptive routing algorithm, where a simple application of one

of our routing rules combined with class upgrades was able to yield a dramatic performance im-

provement over the original algorithm. Virtual channels are very often used for high-coverage

fault-tolerant routing, and are even required for the correct operation of some NoC topologies.

Because they are a costly and valuable resource, being able to leverage their throughput en-

hancement capabilities is absolutely crucial and our contribution serves exactly this purpose.
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Chapter 3

A framework for scalable distributed TSV

assignment

3.1 Introduction

The recent emergence of 3D integration can further increase the viability of Networks-on-Chips

as a communication paradigm by enabling the stacking of several silicon layers and allowing

for inherently low-latency three-dimensional NoC topologies (3D-NoCs) to be considered Feero

and Pande [2009], Pavlidis and Friedman [2007].

Through-Silicon-Via (TSV) is one of the most promising technologies that enable vertical

communication between different NoC layers Davis et al. [2005]. However, due to the high

cost and low yield of TSVs Benini [2008], Vertically-Partially-Connected NoCs, in which only

a subset of the nodes are vertically connected, appear to be a reasonable compromise Bartzas

et al. [2007].

Because such topologies require adequate routing algorithms to ensure correct operation and

deadlock-freedom, several deadlock-free routing algorithms targeting partially connected NoCs

have already been proposed Dubois et al. [2013], Salamat et al. [2015], Ying et al. [2014]. Re-

gardless of which routing rules are applied, since only a subset of nodes are connected to TSVs,

routers need a reliable way to locate the nodes that are vertically connected, commonly referred

to as Elevators. Both the information regarding the elevators, which is set at configuration

time (offline), and the way this information is exploited by the routers during runtime, plays a
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decisive role in the chip’s performance.

Due to its critical importance to both performance and implementation cost, we dedicate

this chapter to the exploration of various algorithms for elevator assignment. Using Elevator-

First Dubois et al. [2013] as a baseline routing algorithm, we propose a set of scalable, easy to

implement elevator selection strategies, each featuring both the information to be stored in each

router, and the algorithms used offline and during runtime to find an elevator. We formally prove

all of our methods to be deadlock-free and reachable, meaning that each proposed combination

of offline and online selection algorithms is guaranteed to eventually lead to an elevator. We

test and compare all of the proposed solutions in terms of performance through cycle-accurate

simulation and demonstrate the scalability of our methods through hardware synthesis.

3.2 State-of-the-art

A variety of routing algorithms targeting vertically-partially-connected 3D-NoCs have been

proposed in the literature. Many of these algorithms need to follow specific rules that require

TSVs to be placed in a specific manner, and often have further constraints as to which TSVs can

be selected during runtime. In Ying et al. [2013], the authors propose two routing algorithms

named SBSM and DBSM. SBSM selects the vertical link that is the closest to the source node,

whereas DBSM selects the vertical link that is the closest to the destination. To make this pos-

sible, each router has to know the addresses of all the vertically connected nodes (elevators),

which implies a significant hardware overhead. In their more recent works, the authors have

introduced the Dynamic-Quadrant Partitioning algorithm Ying et al. [2014], which uses a con-

stant number of bits per router to select an elevator. This makes the solution more interesting in

terms of implementation cost. However, the algorithm can only take an elevator located in the

north-east quadrant.

The East-then-West (ETW) algorithm Salamat et al. [2015], Salamat et al. [2016b] is a

routing algorithm that requires that at least one TSV be placed in the east-most column in order

to guarantee reachability. Due to the routing rules, the set of elevators that can be selected is

constrained by the position of the destination. Each routers needs to know the location of 3

different elevators: 2 nearest elevators in the east and west directions, and 1 elevator in the
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east-most column, in order to select the correct elevator based on the destination’s position.

Consequently, each router stores 3 node addresses, which limits the scalability of the routing

logic.

By contrast with the aforementioned algorithms, Elevator-first Dubois et al. [2013], does not

impose any constraints on the placement or the selection of elevators. By using Elevator-First

as a baseline algorithm, we are therefore able to develop generic selection strategies that are not

limited by the TSV placement strategy or any algorithm-specific constraints.

We identify two approaches to elevator selection for Elevator-First in the literature.

The first approach was introduced as part of the original Elevator-First proposal in Bahmani

et al. [2012]. The authors propose to select an elevator for each router at configuration time

(offline), and to store its address in a register. When a packet reaches a new layer, the current

router prepends a new header to the packet, containing the address of its selected elevator.

This mechanism has the major advantage of being generic and compatible with many offline

selection algorithms. However, since complete node addresses need to be stored in the routers,

the size of configurable data grows with the network size. Also, because the elevator to take is

decided at the source router and never changed, there is no runtime adaptivity in the selection

of the elevators.

Similarly to our method, the second approach aims at addressing the scalability issues of

the original Elevator-First and is part of the LBDR3D framework Niazmand et al. [2016]. The

authors use a limited amount of configurable bits in each router, named Vertical Bits, to point to

the nearest elevator. The nearest elevator is selected offline based on the Manhattan Distance,

and when several elevators with an equal distance from a given router exist, ties are broken ran-

domly. Unfortunately, this specification suffers from a few issues that have not been addressed.

First, because different routers may point to different elevators, there can be cases where one

router forwards a packet in the direction of its own selected elevator, and where the next router

forwards it to another direction towards its own elevator, in such a way that the two directions

form an illegal turn, leading to potential deadlocks. In this work, when we consider the Man-

hattan Distance for elevator selection in section 3.4, we provide offline and online solutions to

this critical problem. Second, in Niazmand et al. [2016], no proof of reachability was provided,

and additional input signals were introduced to prevent packets from entering livelocks. In this
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chapter, we provide a universal formal proof of reachability for all Manhattan-Distance-Based

selection approaches, removing the need of any additional signals to ensure reachability.

Neither Elevator-first nor LBDR3D can take the packets’ destination into account when

selecting an elevator, as the elevators are selected offline in both approaches. This can heavily

limit the level of adaptability of the routing solution in some cases. In addition to the Manhattan-

Distance –Based algorithms, we also propose a method for selecting an elevator online based

on the destination, while still using the exact same amount of information as the distance-driven

approaches.

3.3 Target architecture

3.3.1 NoC architecture

We consider a network comprised of several 2D Mesh layers (or tiers) connected vertically using

TSV, as shown in Fig. 3.1. Each layer consists of a mixture of classic 2D routers including only

5 ports (East, West, South, North, Local), and 3D routers having either an Up port, a Down

port, or both. 3D routers will also be referred to as ”Elevators” Dubois et al. [2013]. An upward

(downward) elevator is one that connects to the upper (lower) tier.

While we do assume that the channels connecting routers of the same tier are bidirectional,

we make no such assumption on the vertical connections. In effect, with a limited number of

TSVs available, the system designer may prefer to place an upward and a downward TSV in

two different routers instead of placing them in the same router, so as to better balance the load.

For instance, in Fig. 3.1, router A and router B are connected using a bidirectional channel (2

TSVs), whereas routers C and D are connected using only an upward TSV.

The problem of finding the best placement strategy for TSVs is beyond the scope of this

thesis, and has already been addressed in previous works Foroutan et al. [2014]. The solution

provided in this chapter is compatible with any placement strategy.

Due to the limited number of vertically connected nodes, routers need to locate the elevators

of their tier in order to be able to communicate with other tiers. We also consider the TSVs to be

prone to defects, as well as permanent failure. The information stored in each router regarding
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the location of TSVs must be updated to reflect the new state of the network upon failure.

3.3.2 Routing

To provide a deadlock-free routing solution, we rely on the routing rules of Elevator-First

Dubois et al. [2013]. That is, the network is virtually portioned into two virtual networks using

separate input FIFOs (a.k.a. Virtual Channels). Packets heading to an upper layer are injected in

the first virtual channel, whereas packets heading down are routed in the second virtual channel.

As per Elevator-First, routing within each layer is performed using a deadlock-free 2D routing

algorithm. For the sake of illustration, the XY algorithm is assumed throughout this chapter.

Despite using the same deadlock avoidance technique, our routing methodology is different

from the one described in Dubois et al. [2013]. In Dubois et al. [2013], each router stores the

address of the nearest elevator and every time the packet reaches a new layer, a new header

containing the elevator’s address is prepended to the packet. Our goal is to find an elevator in

a distributed manner while keeping the routing logic as simple as possible. Threfore, our ap-

proach does not involve storing node addresses. Instead, each router includes a fixed number of

configurable bits named Elevator Location Bits, which contain information about the location

of elevators. These bits can be reconfigured at any time to reflect the new state of the network

upon the occurrence of TSV failures Eghbal et al. [2015]. The number of these bits is indepen-

dent of the size of the topology. In addition, these bits are never inserted in the packet’s header,

but are used directly by the route computation logic to guide packets towards an elevator. The

route computation logic can be generically described as in Algorithm 3. As is the case for all

conventional router architectures, route computation starts by comparing the router’s address to

that of the destination. The result is a vector of bits that we call Compare Bits. If the destina-

tion is in the same layer, the simple logic of XY is used to determine the next output port. If

the destination is in a different layer and the current router is an elevator, then route towards

the destination layer (Line 7). If the destination is in a different layer and the current router is

not an elevator, then use the Elevator Location Bits and the Compare Bits to route towards an

elevator (Line 9).

Our focus in the rest of the chapter is to answer the following questions: - What to put in
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Figure 3.1: Overview of the partially connected 3D-NoC Topology.
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Algorithm 3 Route computation logic (generic)
Input:

Elevator (Elevator location bits)
Output:

Direction (Output port)
Variable: Compare (Comparison bits)

1: Compare.East = current.X < dest.X
2: Compare.West = current.X > dest.X
3: Compare.North = current.Y < dest.Y
4: Compare.South = current.Y > dest.Y
5: if current.Z 6= dest.Z then . different layer
6: if current.isElevator then
7: Direction = (current.Z < dest.Z?Up : Down)
8: else
9: Use Elevator and Compare to find an elevator

10: end if
11: else . XY logic
12: if Compare.East then
13: Direction = East
14: else if Compare.West then
15: Direction = West
16: else if Compare.North then
17: Direction = North
18: else if Compare.South then
19: Direction = South
20: else
21: Direction = Local
22: end if
23: end if
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the Elevator Location Bits ? - How to use these bits online (Algorithm 3 – Line 9). Several

approaches offering different levels of complexity and performance are proposed.

3.4 Manhattan-distance-based elevator selection

One possible solution to our problem simply consists in choosing an elevator that is located

as close as possible to the current router. The idea behind this approach is to minimize the

time spent searching for an elevator and to quickly reach the destination layer. This is the

criterion of selection that many other works have been adopting. In this section, we present

three efficient algorithms that exploit the properties of Manhattan Distance to minimize the

information required for locating the nearest elevators, while still guaranteeing reachability.

3.4.1 Elevator location bits

To reach one of the nearest TSV pillars, we will demonstrate that only 8 bits of information per

router are sufficient. Let Elevator be a 4-bit vector stored within a router and (Elevator.North,

Elevator.East, Elevator.South, Elevator.West) its four configurable bits. This vector uses the

same encoding as the compare bits described previously. That is, each bit is set so as to indicate

whether the selected elevator is in the given direction. For instance, if the offline configuration

algorithm selects an elevator located North-East to the current router, Elevator will be set to

(1,1,0,0). Each router needs to store two such bit vectors, one for the Upward elevator, and one

for the Downward elevator. This encoding allows for the efficient routing algorithm implemen-

tation presented in Algorithm 4. Here, Elevator is set to either the upward or downward elevator

according to the destination.

3.4.2 Safe Selection Algorithm (md-safe)

Given this encoding, all that the configuration algorithm has to do is select one elevator for each

router. Here again, several approaches are possible. One thing to take into consideration is the

fact that due to the distributed nature of this routing algorithm, it is possible for different routers

to point to different nearest elevators, and consequently, one router that forwards a packet in
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Algorithm 4 Route computation with MD-based elevator selection
Input:

Elevator (Elevator location bits)
Output:

Direction (Output port)
Variable: Compare (Comparison bits)

1: Compare.East = current.X < dest.X
2: Compare.West = current.X > dest.X
3: Compare.North = current.Y < dest.Y
4: Compare.South = current.Y > dest.Y
5: if current.Z 6= dest.Z then . seek elevator
6: if current.isElevator then
7: Direction = (current.Z < dest.Z?Up : Down)
8: else
9: Direction = XY (Elevator)

10: end if
11: else
12: Direction = XY (Compare)
13: end if

the direction of its nearest elevator cannot guarantee that it will reach that same elevator after

traversing the next hops. The first approach that we propose is to set these bits in such a way

that all routers along one path point to the same elevator. This can be achieved using Algorithm

5 for each layer. Here, we iterate through each elevator in turn and check if it is the nearest

elevator to every node in the layer. Even if the distance from some node to the new elevator

is the same as its previously assigned nearest elevator, the new elevator is still preferred. This

ensures that starting from any initial node A, who is pointing to elevator node E, following the

routing function in the direction of E reaches a node B that points to the same nearest elevator

E. If B had a nearest elevator node F different from E, then according to Algorithm 5, F would

also be the nearest elevator to A. Therefore, our algorithm inherently guarantees that packets

always reach their intended elevator. This approach also has the advantage of being independent

of the planar routing algorithm, i.e. the offline algorithm is compatible with any online routing

function, including adaptive routing algorithms.

3.4.3 Randomized Selection Algorithm (md-random)

While the safe selection algorithm has the interesting property of achieving consensus among

several routers about where the nearest elevator is, it may not offer the best load balancing and
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Algorithm 5 Setting the Elevator bits (safe)
Output:

Elevator[LayerNodes] (Elevator location bits)
Variable: Dist[LayerNodes] (Distance to closest elevator)

1: for all node i do
2: Initialize Dist[i] to infinity
3: Initialize Elevator[i] to all zeros
4: end for
5: for all elevator (xE, yE) do
6: for all node i of coord (x, y) do
7: if |xE − x|+ |yE − y| ≤ Dist[i] then
8: Dist[i] = |xE − x|+ |yE − y|
9: Elevator[i].North = (yE > y)

10: Elevator[i].South = (yE < y)
11: Elevator[i].West = (xE < x)
12: Elevator[i].East = (xE > x)
13: end if
14: end for
15: end for

elevator utilization, as many nodes will attempt to reach the exact same elevator at once. This

can be problematic for performance-critical applications. Intuitively, better performance can

be achieved by selecting a random elevator among several nearest elevators, as the load would

be more uniformly distributed among TSVs. One challenging aspect of such a randomized

approach is that it may cause packets to violate the routing rules, resulting in deadlocks.

Consider the example shown in Fig. 3.2, where a packet originates at node A and needs to

take an elevator. In this example, two elevators, E1 and E2 are available. They are assigned

to nodes A and B respectively. At router A, the packet takes the North direction to reach E1.

However, at node B, it will take the West turn to reach E2 following the XY algorithm. By

taking the West turn after the North turn, the algorithm has already violated the rules of XY. We

propose two methods to alleviate this issue.

The first approach consists in rewriting Algorithm 4 in such a way that Y to X turns cannot

be made. The alternative routing algorithm is presented in Algorithm 6, where input direction

indicates the direction from which the packet has arrived. The idea behind this method is

straightforward: if a packet in search for an elevator is received at the north (or south) port,

then it forcibly has an elevator in the south (or north) direction, otherwise the previous router

would not have forwarded it following the Y dimension. This means that it is enough to make

sure that packets traveling along the Y axis keep going in the same direction until an elevator is
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Figure 3.2: Illustration of a potential deadlock scenario.
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eventually reached. While simple, the main drawback of this approach is that it heavily depends

on the XY algorithm and is very hard to adapt to other algorithms. In fact, in the case of an

adaptive routing algorithm, it is not possible for the current router to infer which elevator was

intended for the packet simply from the direction it has taken last, as it may have been only one

of the possible directions available at the previous router.

Algorithm 6 Route computation for online deadlock-freedom (random-online)
Input:

Elevator (Elevator location bits)
Output:

Direction (Output port)
Variables: Compare (Comparison bits)

1: Compare.East = current.X < dest.X
2: Compare.West = current.X > dest.X
3: Compare.North = current.Y < dest.Y
4: Compare.South = current.Y > dest.Y
5: if current.Z 6= dest.Z then
6: if current.isElevator then
7: Direction = (current.Z < dest.Z?Up : Down)
8: else if input direction == North then
9: Direction = South

10: else if input direction == South then
11: Direction = North
12: else
13: Direction = XY (Elevator)
14: end if
15: else
16: Direction = XY (Compare)
17: end if

A less rigid approach consists in maintaining the original online routing algorithm, and

preventing deadlock scenarios at the offline selection stage. We propose a method that is com-

patible with XY as well as the three deadlock-free adaptive turn models Glass and Ni [1992].

One property of all of these algorithms is that they impose an order on the traversal of physical

channels. For instance, in the west-first turn model, the east, north and south directions are

taken last. In the north-last turn model, the north direction is taken last. In the XY algorithm,

north and south are taken last. The idea is to exploit this property during the elevator selection

process, by giving precedence to the elevators that can be reached using only the last directions

of the given routing algorithm.

Since we are working with the XY algorithm, the selection algorithm can be written as in
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7. By prioritizing the nearest elevators that are on the same column, we ensure that a packet

only takes East or West when there are no closest elevators in the same column. Once the Y

dimension is taken, all subsequent routers will agree that there is a nearest elevator on the same

column as per Algorithm 7, and there will therefore not be a need to take the X directions again.

This effectively removes any risk of deadlocks.

A more general form of the algorithm, which is not tied to a specific routing algorithm, is

also presented in Algorithm 8. This generic algorithm takes the set of the last directions of the

planar algorithm LastDirSet as an input. The last direction set is defined as follows:

Definition 3.1 (Last direction set). Let D be the set of all planar directions in a mesh network,

such that D = {West, South,East,North}. A deadlock-free planar routing algorithm can

be defined as a list A of subsets of D. Let A = {D0, D1, ..., Dn}. The last direction set L of

algorithm A is simply the last element (Dn) of A.

For instance, the west-first routing algorithm can be written as

A = [{West}, {North, South, East}].

The last direction set of the west-first algorithm is therefore

L = {North, South, East}.

Another challenging aspect of randomized elevator assignment is to ensure that packets

eventually reach an elevator. In what follows, we provide an elaborate proof of reachability and

livelock-freedom by using the properties of Manhattan Distance.

3.5 Proof of reachability for Manhattan-Distance-Based ap-

proaches

Because packets needing to reach a different layer may traverse routers that point to different

elevators as per our selection algorithms, it is necessary to make sure that packets are always

able to reach an elevator, i.e. that they are never lead to a dead end, and are never able to

fluctuate between different nodes indefinitely.

While related works introduce extra signals to prevent packet looping at runtime Niazmand

et al. [2016], we provide a formal proof of reachability showing that packets are bound to reach
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Algorithm 7 Setting the Elevator Bits for offline deadlock-freedom (random-offline)
Output:

Elevator[LayerNodes] (Elevator location bits)
1: for all node i do
2: Initialize Elevator[i] to all zeros
3: end for
4: for all node i of coord (x, y) do
5: E = List of all elevators
6: Sort E By distance from i
7: Min = e ∈ E/distance(e, i) == distance(E[0], i)
8: SameCol = (x′, y′) ∈Min/x′ == x
9: if SameCol is empty then

10: (xE, yE) = random elevator from Min
11: else
12: (xE, yE) = random elevator from SameCol
13: end if
14: Elevator[i].North = (yE > y)
15: Elevator[i].South = (yE < y)
16: Elevator[i].West = (xE < x)
17: Elevator[i].East = (xE > x)
18: end for

an elevator regardless of the criteria used to select one elevator among the nearest ones. We

further show that routing from any node to the final elevator is always done following minimal

distance.

This proof allows for very efficient routing logic implementations, as it completely removes

the need to perform any runtime checks to make sure packets do not reach a dead-end while

seeking an elevator.

Theorem 3.1 (Elevator reachability). If each router forwards a packet one hop closer to one of

its nearest elevators, then the packet will eventually reach an elevator.

Proof. Let (Xc, Yc) be the coordinates of the current router C in a given routing scenario. Let

(Xec, Yec) be the coordinates of the elevator Ec selected by the offline algorithm for router

C. The Manhattan distance between node C and its elevator Ec is defined as: MD(C,Ec) =

|Xc −Xec|+ |Yc − Yec|.

We know, from Algorithm 11, that the current router will forward packets to a next node N

(Xn, Yn) so as to get closer to Ec.
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Algorithm 8 Generic Algorithm for Setting the Elevator Bits for offline deadlock-freedom
Input:

LastDirSet (The last directions set of the routing algorithm)
Output:

Elevator[LayerNodes] (Elevator location bits)
1: for all node i do
2: Initialize Elevator[i] to all zeros
3: end for
4: for all node i of coord (x, y) do
5: E = List of all elevators
6: Sort E By distance from i
7: Min = e ∈ E/distance(e, i) == distance(E[0], i)
8: Last = ∅
9: for all e(x′, y′) ∈Min do

10: Dir = ∅
11: if x′ > x then
12: add East to Dir
13: end if
14: if x′ < x then
15: add West to Dir
16: end if
17: if y′ > y then
18: add North to Dir
19: end if
20: if y′ < y then
21: add South to Dir
22: end if
23: if Dir ⊂ LastDirSet then
24: add e to Last
25: end if
26: end for
27: if Last is empty then
28: (xE, yE) = random elevator from Min
29: else
30: (xE, yE) = random elevator from Last
31: end if
32: Elevator[i].North = (yE > y)
33: Elevator[i].South = (yE < y)
34: Elevator[i].West = (xE < x)
35: Elevator[i].East = (xE > x)
36: end for
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By definition, we have:

MD(N,Ec) =MD(C,Ec)− 1 (3.1)

That is, router N is closer toEc than C. Now letEn denote the elevator selected by the offline

algorithm for N, and let (Xen, Yen) be its coordinates. Because Ec was selected by the offline

algorithm as the elevator of C, we know that En cannot be closer to C than Ec, as otherwise En

would have been selected as the nearest elevator instead. This means that:

MD(C,Ec) ≤MD(C,En) (3.2)

The same applies to the selection of En for N:

MD(N,En) ≤MD(N,Ec) (3.3)

By combining (1) and (3), we obtain:

MD(N,En) ≤MD(C,Ec)− 1 (3.4)

This is an important property, as it shows that the distance between a node and its own

selected elevator decreases at every hop. By recurrence, this implies that the distance will

eventually reach 0, thereby proving that packets always reach an elevator.

Theorem 3.2 (Minimality). When seeking an elevator, the path a packet takes from any node

to the final elevator is a minimal path.

Proof. First, we show the distance between a node and its own elevator decreases by exactly 1

at every traversed hop.

Let us assume that there is a node C, with elevator Ec, that forwards a packet to a next hop

N, with elevator En, such that:

MD(N,En) < MD(C,Ec)− 1 (3.5)

We know that node C is able to reach elevator En in MD(N,En) hops, plus 1 hop from
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C to N. And from (5), we know that the distance from C to its own elevator Ec is greater than

MD(N,En) + 1. In other words, En is closer to C than Ec, which contradicts with (2).

Consequently, we obtain the following equation from (4):

MD(N,En) =MD(C,Ec)− 1 (3.6)

Let F (Xf , Yf ) be the finally reached elevator in a given routing scenario. Assuming non-

minimal routing, the list of visited nodes from the source to F must include two nodes P and Q,

such that P was visited before Q and routing from Q to F was done following minimal distance

and:

MD(P, F ) =MD(Q,F ) (3.7)

Assuming H hops were visited between P and Q, we have from (6) that:

MD(P,Ep) =MD(Q,Eq) +H (3.8)

Because routing from Q to F was done following minimal distance, the number of hops

from Q to F is MD(Q,F ), also, from (6) we know that this also corresponds to MD(Q,Eq).

That is:

MD(Q,F ) =MD(Q,Eq) (3.9)

From (7), (8) and (9), we can write:

MD(P,Ep) =MD(P, F ) +H (3.10)

This means that F is closer to P than Ep which again contradicts with our initial assumption

that Ep is the closest elevator of P. Therefore, routing from a source node to the final elevator is

always done following the minimum distance.
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Figure 3.3: Example of an inefficient route when using MD-based algorithms.

3.6 Optimistic elevator selection

The goal of the MD-based selection algorithms presented in the previous section was to mini-

mize the distance between a source node and the selected elevator. While this is a reasonable

option most of the time, it can perform poorly in various scenarios. The main reason being that

the position of the final destination of the packets is never taken into account while routing a

packet towards its elevator. As an example, let us consider the example shown in Fig. 3.3. Here,

the packet has originated at node S and is destined for node D located in a different layer. Using

the previously defined algorithms, the packet is routed to the nearest elevator E1, drifting away

from the destination, before reaching the destination layer. The total hop count from source to

destination could have been greatly reduced had the packet taken elevator E2.
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In this section, we introduce another type of selection called Optimistic Elevator Selection.

In this approach, routers attempt to reduce the distance to an elevator AND to the final destina-

tion simultaneously.

3.6.1 Elevator location bits

The exact same amount of configuration bits is required for the optimistic selection approach

as the MD-based approach, thereby maintaining scalability. Here again, each router stores two

4-bit vectors (North,East,South,West). However, the meaning of these bits differs from the

previous specification. Instead of pointing to a specific elevator location, these bits act as a

compass that vaguely indicates the presence of any elevators in the given directions. The North

and South bits are set if there is at least one elevator in the same column to the North or to the

South, respectively. The East and West, on the other hand, are used to indicate the existence of

any elevator in the east or west directions, not necessarily on the same row as the current router.

That is, East is set if at least one elevator exists in the east, north-east or south-east directions.

The algorithm used to set these bits is described in Algorithm 9.

Algorithm 9 Setting the Elevator bits (optimistic)
Output:

Elevator[LayerNodes] (Elevator location bits)
1: for all node i do
2: Initialize Elevator[i] to all zeros
3: end for
4: for all elevator (xE, yE) do
5: for all node i of coord (x, y) do
6: Elevator[i].North| = (yE > y&&xE == x)
7: Elevator[i].South| = (yE < y&&xE == x)
8: Elevator[i].West| = (xE < x)
9: Elevator[i].East| = (xE > x)

10: end for
11: end for

3.6.2 Routing algorithm (optimistic)

Because the selection of an elevator now accounts for the destination’s position, most of the

selection complexity must be transferred to the online route computation algorithm, i.e. the

hardware. Of course, Algorithm 4 can no longer be used. Instead we replace it by Algorithm
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10. It should be noted that input direction is assumed to be a generation variable, therefore,

the test on the input direction is not performed at runtime but is processed at generation time.

This means that in hardware, each input port will include a different combinational logic for

this algorithm. As can be seen, the logic is still quite simple.

The routing process can be described as follows. First route along the X dimension while

trying to get closer to the destination as long as possible. If the column of the destination

was reached, route along the Y dimension while trying to get closer to the destination. If the

destination was exceeded following the X dimension, keep going in the same direction until a

column having an elevator is reached. If the destination is exceeded in the Y dimension, then

keep going in the same direction until an elevator is reached.

Because routing is still performed following the XY rules, our algorithm has no impact on

deadlock-freedom. Moreover, because the routing algorithm never selects a direction unless the

configuration bits indicate the presence of an elevator, we also guarantee that the algorithm is

always capable of finding an elevator. Since the routing rules are enforced by the routing logic,

no proof of reachability is necessary.

3.7 Experimental results

After exploring various strategies for elevator selection, we are now going to evaluate and com-

pare them to have a clear idea of the scenarios under which each solution is the most appropri-

ate. Two aspects of our algorithms are evaluated: hardware implementation cost and network

performance.

3.7.1 Hardware synthesis results

To estimate the cost of the proposed solutions, we have implemented a 3D router’s Route Com-

putation Unit (RCU) in SystemVerilog. The RCU takes as an input the flits coming from all the

router’s input channels and outputs the route computation result, i.e. next output port, for each

input channel. It is worth reminding that a 3D router includes one local port (packets coming

from the tile), two vertical ports (Up and down) and 4 planar ports (east, west, south, north),

such that each planar port includes 2 virtual channels.
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Algorithm 10 Route computation (optimistic)
Input:

Elevator (Elevator location bits)
Output:

Direction (Output port)
Variables: Compare (Comparison bits)

1: Compare.East = current.X < dest.X
2: Compare.West = current.X > dest.X
3: Compare.North = current.Y < dest.Y
4: Compare.South = current.Y > dest.Y
5: if current.Z 6= dest.Z then
6: if current.isElevator then
7: Direction = (current.Z < dest.Z?Up : Down)
8: else
9: if input direction == East then

10: if Elevator.West&Compare.West then
11: Direction = West
12: else if Elevator.North&Compare.North then
13: Direction = North
14: else if Elevator.South&Compare.South then
15: Direction = South
16: else if Elevator.North then
17: Direction = North
18: else if Elevator.South then
19: Direction = South
20: else . the elevator is West
21: Direction = West
22: end if
23: else if input direction == West then
24: Same as East (replace West by East)
25: else if input direction == North then
26: Direction = South
27: else if input direction == South then
28: Direction = North
29: else . have not engaged in direction yet
30: if Elevator.West&Compare.West then
31: Direction = West
32: else if Elevator.East&Compare.East then
33: Direction = East
34: else if Elevator.North&Compare.North then
35: Direction = North
36: else if Elevator.South&Compare.South then
37: Direction = South
38: else if Elevator.North then
39: Direction = North
40: else if Elevator.South then
41: Direction = South
42: else if Direction.West then
43: Direction = West
44: else
45: Direction = East
46: end if
47: end if
48: end if
49: else
50: Direction = XY (Compare)
51: end if
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For new packets, i.e. when a head flit is read from an input channel at a given cycle, a new

route is computed and stored in a register. The body and tail flits of the same packets will simply

be routed to the same port.

We implement both the MD-based (Algorithm 6) and optimistic (Algorithm 10) routing

algorithms described in this chapter. As a reference, we also implement the RCU of the original

Elevator-First algorithm, as described in Bahmani et al. [2012]. It differs from our architecture

in that the local and vertical ports generate a temporary header that includes the address of

the selected elevator. The logic used to create and output this temporary header followed by

the original flits is implemented in the RCU, however, the logic used to remove this header is

performed on the output side, so the RCU simply computes a signal that indicates whether this

header should be written or not.

The RCU also stores the configurable information required for locating the elevator nodes,

i.e. the elevator bits for our algorithms and the full coordinates of the selected elevator for

Elevator-First.

The implemented RCU is synthesized using Synopsis Design Vision. We have set the opti-

mization parameters to achieve the minimum area overall, like area effort for high and set the

max area to zero. Furthermore, for the synthesis process, the NanGate Open Cell 45 nm Li-

brary Nangate [2017] is used, and the designs were setup to work with the operating frequency

of 1GHz, and a power supply of 1V.

The synthesis results are presented in Table 4.1 for different network sizes. First, it is inter-

esting to compare the three algorithms for a layer size of 4x4, because these dimensions require

4 bits to address each elevator, which means that the size of configurable data in both Elevator-

first and the proposed algorithms is identical. Here, it can be seen that the area of Elevator-First

is slightly larger than the MD-based proposed algorithm, mainly due to the temporary header

logic. However, note that the optimistic algorithm is more complex than Elevator-First. This is

because although Elevator-First requires extra logic in the local and vertical ports, the presence

of a temporary header actually simplifies the routing logic in the planar input channels. By

contrast, the optimistic algorithm uses a more complex routing logic at the East and West ports.

When the network size increases, all the algorithms grow in size, as the destination and cur-

rent addresses are getting larger. However, what is interesting to see is that the size of Elevator-
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Table 3.1: Hardware synthesis results
Size Elevator-First MD-based Optimistic

(x,y,z) Area Power Max. Freq Area Power Max. Freq Area Power Max. Freq
(um2) (uW ) (MHz) (um2) (uW ) (MHz) (um2) (uW ) (MHz)

4x4x4 975 299 3709 955 277 3709 1115 338 3684
8x8x4 1173 346 3709 1091 312 3709 1230 367 3684

16x16x4 1350 397 3708 1170 335 3701 1324 394 3684
24x24x4 1562 445 3668 1302 363 3701 1450 424 3684

First grows much faster than the proposed approaches, because in addition to the compare logic,

the amount of configurable data, which consists of full elevator addresses, also increases. We

can see that the size of Elevator-First increases by 60% when going from a 4x4 to a 24x24

layer size, whereas the area increase for the MD-based and optimistic algorithms is of 36.33%

and 30% respectively. This shows a better scalability of the proposed approaches to large layer

sizes.

3.7.2 Performance evaluation

We are now going to test the proposed algorithms by simulation to understand how they perform

with respects to each other. To this end, we use the cycle-accurate parallel network-on-chip sim-

ulator presented in Chapter 5. The router microarchitecture, including all the proposed routing

algorithms, are modeled in great detail and the network is consistently tested for incorrect be-

havior or potential deadlocks. The network parameters used for simulations are summarized in

Table 3.2. TSV density corresponds to the proportion of elevators in each layer. All layers are

supposed to have the same density, however, the placement of TSVs is different form one layer

to the other. TSVs are placed randomly at each iteration.

The performance metric we consider is the average packet latency, which is the average

time elapsed between the queuing of a packet in the network interface, and the reception of its

tail flit at the destination network interface. Simulations are performed on two network sizes: a

128-node network with two 8x8 layers, and a 256-node network with four 8x8 layers. The goal

is to evaluate the impact of the layer count on various algorithms. We present the results in Fig.

3.4 and Fig. 3.5.

We first examine the latency in a network with two layers (Fig. 3.4). The first observation
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Figure 3.4: Average packet latency for an 8x8x2 NoC.
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Figure 3.5: Average packet latency for an 8x8x4 NoC.
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Table 3.2: Simulation parameters
Parameters Value(s)

Buffers/VC 4
Flits/Packet 5
Traffic pattern Uniform, Complement, Shuffle
TSV density 75%, 50%, 25%, 12.5%
Sim. duration 100000 cycles
Iterations 50
2D Routing XY

that can be made is that the optimistic algorithm greatly outperforms the other approaches in

most scenarios. The only cases where it underperforms is when the number of available eleva-

tors is very small, which reduces the chances of finding an elevator on the way to the destination.

The effect of low TSV density on the optimistic algorithm is even more severe under comple-

ment traffic, in which all the nodes send the packets to the other layer. In shuffle traffic, where

many nodes communicate within the same layer, we see that the optimistic algorithm main-

tains a better performance than other approaches even if only 12.5% of the nodes are vertically

connected. If the system is designed in such a way that vertical communications are minimal,

the optimistic routing algorithm is clearly the best option to adopt. Among the MD-based ap-

proaches, we can see that md-random-online consistently delivers the best performance. This

was expected because selection between several nearest elevators offline is performed in a fully

randomized manner, whereas md-safe and md-random-offline both pose some deterministic

constraints on the selection.

We now consider the performance under a 4 layer network (Fig. 3.5). While the optimistic

algorithm still performs better under uniform and shuffle traffics, it now yields very poor per-

formance under complement traffic (heavy inter-layer communication), even under high TSV

densities. This is due to the fact that when packets fail to find an optimal elevator in the first

layer, they will also be penalized in subsequent layers as well. In other words, even if packets

are likely to find an elevator on their path to the destination in their original layer, they are less

likely to also find one in every layer along the path. This suggests that a hybrid solution, in

which optimistic routing is performed only one layer away from the destination layer, can be a

better compromise in scenarios where nodes often need to communicate with farther layers.
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3.8 Conclusions

Targeting 3D-NoCs with partial vertical connections, we have presented two families of solu-

tions for selecting among several available TSVs in the network.

The first type of selection is based on the Manhattan-Distance. Although already adopted

in the literature, we have solved many concerns to which no satisfactory and general solutions

were provided.

First, we have provided a universal proof that shows that selection algorithms based on the

Manhattan distance can never lead to dead-ends. This is an important proof, as it removes the

need to explicitly address livelocks and dead-ends at runtime, which would incur unnecessary

hardware overhead.

Second, we have shown that using partial information about the location of elevators, which

is necessary to guarantee scalability, is not inherently deadlock-free. We have subsequently

presented three selection strategies that alleviate this issue. MD-safe sets the elevator location

bits in such a way that routers along any given path have the same vision of the nearest eleva-

tor’s location. The algorithm is simple, but fails to achieve any sort of load balancing among

TSVs. MD-random-offline selects among the nearest elevators randomly so as to better bal-

ance the load. However, it gives priority to elevators in a given set of directions depending

on the routing algorithm in use, such that deadlock situations cannot be reached. MD-safe

and MD-random-offline solve deadlocks fully offline and require no specific modification to

the hardware, making them compatible with any planar routing algorithm. To provide an even

better load balancing, we have proposed MD-random-online. It selects an elevator offline in

a fully randomized manner, but the routing algorithm is modified to ensure deadlock-freedom

online. We have shown that this algorithm performs better than the two offline approaches, but

its implementation is heavily dependent on the routing algorithm.

The second type of selection that we have introduced improves upon the existing solutions

by taking the destination into account. Although it uses a slightly more complex routing logic

than the MD-based algorithms, it dramatically improves performance in various situations. All

the algorithms that we proposed require 8 bits per router, regardless of the network size, making

them highly scalable, as we have shown through the hardware synthesis results.



Chapter 4

The First-Last routing algorithm: A

cost-effective alternative to Elevator-first

4.1 Introduction

Perhaps the most challenging aspect in designing routing algorithms for partially connected

topologies is ensuring correct operation (Deadlock-freedom, livelock-freedom, connectivity)

at a reasonable cost, without heavily limiting the flexibility of the algorithm and the number

of fault scenarios (random topologies) it can support. More specifically, as mentioned in the

first chapter of this thesis, deadlock-avoidance often requires adding a certain number of Vir-

tual Channels (VCs) in each router, consisting of disjoint flit FIFOs used to separate different

flows. As these FIFOs occupy the largest part of a NoC router’s area Bahmani et al. [2012], an

algorithm that can operate using a small number of VCs is strongly desirable.

While several algorithms requiring no or few virtual channels have been recently proposed

Lee and Choi [2013], Salamat et al. [2015], they often follow specific routing rules that pose

restrictions on the location and the selection of vertical links, hindering both reliability and

performance. A routing algorithm capable of relaxing these restrictions while keeping the im-

plementation cost to a minimum is yet to be introduced.

In this thesis, we address this challenge by introducing a lightweight, adaptive and highly

resilient routing algorithm targeting partially vertically connected 3D-NoCs named “First-Last”.

Our algorithm requires a very low number of virtual channels to achieve deadlock-freedom (2
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VCs in the East and North directions and 1 VC in all other directions), and guarantees full

connectivity as long as one TSV pillar is available in the network, regardless of its position.

At the time of this writing, ”First-Last” is the only algorithm capable of offering this guar-

antee using such a low number of virtual channels. Moreover, because it is constructed based

on the methodology introduced in Chapter 2, our algorithm is capable of taking full advantage

of the available virtual channel buffers for throughput enhancement.

4.2 State-of-the-art in 3D Routing

In the context of 3D-NoCs, several routing algorithms have been proposed. From simple de-

terministic algorithms such as ZXY, to fully adaptive algorithms such as 3D-FAR Ebrahimi

et al. [2013b] and DyXYZ Bahmani et al. [2012], 3D-FT was introduced in Ebrahimi et al.

[2013b], which is capable of tolerating the absence of vertical or horizontal links. However,

like 3D-FAR, it requires a very large number of virtual channels (2, 2 and 4 along the Z, X and

Y dimensions, respectively). In Pasricha and Zou [2011], the authors extend the turn model for

2D meshes Glass and Ni [1992] to the third dimension and propose an algorithm that tolerates

faults by replicating each packet and sending it in two different virtual networks, one using the

3D negative-first algorithm and the other using the 3D positive-first algorithm. AFRA Akbari

et al. [2012] is another algorithm that can tolerate a certain number of faulty vertical links in

fully connected NoCs.

Only a few proposals have been made in the context of partially vertically connected 3D-

NoCs. In Dubois et al. [2013], the authors propose to use any deterministic deadlock-free 2D

mesh routing algorithm to deliver a packet to an elevator (vertical link), which will be used to

deliver the packet to its destination layer, then to continue routing using the planar routing algo-

rithm until the packet reaches its destination. It was proven to be deadlock-free using 2 virtual

channels along the X and Y dimensions. This approach, named “Elevator-First”, is appealing

because of its simplicity, its support for any layer topology, and because it does not impose

any constraints on the position of healthy vertical links. Routing a packet towards an elevator

requires the insertion of a temporary header containing the elevator’s address. Addresses of the

up and down elevators are stored inside each router Bahmani et al. [2012], requiring an amount
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of storage that increases with the network size. In order to reduce the requirements of Elevator-

First in terms of virtual channels, authors in Lee and Choi [2013] add certain constraints on

the usage of the elevators and show that routing is possible without the use of virtual chan-

nels. In Ying et al. [2014], another algorithm that does not require the use of virtual channels is

presented, but it requires the presence of one vertical link at the north-east corner.

The ETW (East-then-West) routing algorithm Salamat et al. [2015] aims at reducing the

required number of virtual channels of Elevator-First, while maintaining a certain routing flex-

ibility and offering partial adaptiveness to mitigate congestion. ETW uses 1, 2 and 1 virtual

channels along the X, Y and Z dimensions respectively. The authors have also proposed some

solutions to tolerate runtime failures using the dynamic elevator assignment in Salamat et al.

[2016b] or the propagation of TSV status in Salamat et al. [2016a]. Unfortunately, ETW poses

some limiting constraints on both the location, and the selection of the elevators. It requires

the existence of at least one pillar in the east-most column, and for packets heading south, an

elevator located east to the destination must be taken, leading to inefficient routes in some cases.

In addition, because the choice of the elevator depends on the destination, 3 elevator addresses

need to be stored in each router.

Our algorithm uses the same total number of VCs as ETW Salamat et al. [2016b] but does

not require the presence of TSV pillars, i.e. the position of TSVs may differ from one layer

to the other. Moreover, unlike ETW, our algorithm makes it possible for packets to reach their

destination node regardless of which TSV they decide to use, allowing for much shorter routes

than those imposed by ETW.

Finally, the 3D variant of the LBDR (Logic Based Distributed Routing) Flich and Duato

[2008] was recently presented in Niazmand et al. [2016]. As is the case of LBDR, LBDR3D

supports a variety of partially adaptive routing algorithms and is fully reconfigurable to tolerate

faulty horizontal and vertical links. It was proven deadlock- and livelock- free using the same

method as Elevator-First and requires the same minimum number of virtual channels to separate

between Upward and Downward flows. However, in LBDR3D, only a fixed number of bits are

stored within each router to locate healthy elevators.

Like LBDR3D, to keep track of healthy elevators without having to store router addresses,

in Section 4.5 we propose a scalable method that uses a fixed number of bits per router (12
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bits) to guide packets to the nearest elevator. However, we will show that the method adopted

in Niazmand et al. [2016] for assigning elevators to nodes is not inherently deadlock-free. We

propose an offline selection algorithm that effectively guarantees deadlock-freedom without

changing the hardware. Moreover, we provide an elaborate proof of reachability, that shows that

packets always reach an elevator, without needing any extra signals during runtime to prevent

packets from looping as in Niazmand et al. [2016].

4.3 The First-Last routing algorithm

4.3.1 General approach

Since the primary goal of this work is to reduce the VC requirements of Elevator-First Dubois

et al. [2013], it can be expected that the resulting solution offers a lower throughput than

elevator-first, due to the presence of less buffers.

However, we want to compensate for the missing buffers by making a better use of the avail-

able ones. In Chapter 2, we have introduced a design methodology that aims at optimizing the

utilization of VC buffers. We rely on this methodology to construct our new routing algorithm

for 3D NoCs.

4.3.1.1 Identifying cycle-free routing classes

As explained in Chapter 2, a routing class is a set of physical channels (output ports) that the

packet can use to make progress towards its destination. The class number is stored in the packet

header and is used by the route computation logic to determine the set of candidate directions

that can be taken at every hop.

Moving from one routing class to the next is simply performed by updating the class number

in the packet, as will be shown in Section 4.5.

The first-last routing algorithm defines 3 routing classes as shown in Fig. 4.1. The first

and third classes (C0, C2) only include the X+ and Y+ physical channels. The second class

(C1) includes all the remaining directions (X-, Y-, Z+, Z-). Note that it is not possible to form

a cycle within any of these classes, as none of them spans two full dimensions Ebrahimi and
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Daneshtalab [2017].

Because the X+ and Y+ physical channels are shared between two classes, two virtual chan-

nels are required in these directions. The two virtual channels in the X+ direction are noted

(X0+, X1+), whereas the virtual channels in the Y+ direction are noted (Y0+, Y1+). The other

directions, which are only used by C1, do not necessitate additional virtual channels.

Packets may traverse the classes only in increasing order (C0 → C1 → C2). The algorithm

is named First-Last, because the physical channels that are used first (Positive channels) are also

used last.

The routing algorithm can be simply described as follows: If a packet has reached the

destination tier, i.e. the tier where the destination node is located, then route it towards the

destination node using the negative directions first (C1 then C2). Otherwise, route the packet

towards an elevator using the positive directions first (C0 then C1) and use the channels of C1

to elevate the packet to the destination layer. Whenever a packet is headed East-North or West-

South, routing can be performed adaptively and the least congested route is selected. Selection

can be performed using one of the techniques introduced in Appendix A.

Details about a possible implementation are provided in Section 4.5.

4.3.1.2 Step 2: Assigning virtual channels

To keep the solution as simple as possible, we only make use of a subset of the mechanisms

presented in Chapter 2. Instead of using channel tags and dynamic masking (see Chapter 2), we

opt here for a fixed assignment of virtual channels to packet classes, i.e. static masking.

The (X-, Y-, Z+, Z-) channels are only used by packets of C1 and the corresponding single

virtual channel in each of these directions is fully dedicated to packets of C1.

Packets of C0 are only allowed to use virtual channels (X0+, Y0+), whereas packets of C2

are allowed to use all the virtual channels associated with the physical channels of C2 (X0+,

X1+, Y0+, Y1+). In other words, virtual channels (X1+, Y1+) are only used by C2 packets,

whereas virtual channels (X0+, Y0+) are shared between C0 and C2 packets. This is enough to

satisfy the sufficient condition of deadlock-freedom presented in Chapter 2.

Note that unlike the traditional approaches that prohibit cycles by dedicating each virtual

channel to a single class of packets, here we allow extra freedom on the acquisition of virtual
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Figure 4.1: The 3 routing classes of First-Last.

channels for packets of C2. This implies that packets that have reached their destination layers

are allowed to occupy any VC in the network to reach their destination node.

4.3.2 Enhanced-First-Last: Boosting network performance and resilience

with vertical VCs

With a reduced number of vertical channels, elevator nodes are very likely to turn into hotspots

as several flows may need to share a single TSV.

A simple way to mitigate this issue is to add a virtual channel along the Z dimension to

help reduce the pressure on vertically connected nodes. This VC can be used by all C1 packets

without any restrictions.

Because the VC is added in the vertical ports, only 3D routers need to be modified. This

means that although 3D routers now include as many VCs as Elevator-First Bahmani et al.

[2012], 2D routers still include fewer VCs, resulting in a lower overall cost than Elevator-First,

especially for designs with a low TSV density. Under heavy inter-layer communication, VCs

along the Z dimension will have a much higher impact on performance than VCs in the planar

ports, making them well worth the extra cost.

Furthermore, in addition to throughput enhancement, this extra VC, if wisely used, can also
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Figure 4.2: The routing classes of Enhanced-First-Last.

contribute to the resilience of the routing algorithm.

Consider the virtual network definition presented in Fig 4.2. Compared to the original First-

Last algorithm, C0 now also includes the vertical dimension. This means that packets of C0

can now reach other layers without having to transit to C1, provided that an elevator could be

reached using only the positive directions. In this case, after reaching the next layer, any elevator

can be taken as packets can still use C0 and C1.

Fig. 4.3 illustrates an example network in which layer 0 cannot reach layer 2 using the

original First-Last algorithm. However, Enhanced-First-Last is capable of partially connecting

layer 0 to layer 2.

Here again, we allow C1 packets to use both vertical VCs (Z0+, Z1+, Z0-, Z1-) while

ensuring they can always escape to (Z1+, Z1-), whereas packets of C0 may only ever use one of

the two VCs (Z0+, Z0-).

4.3.3 Flow control

In the absence of channel tags, we also present a simplified version of the flow control mecha-

nism described in Section 2.6.
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Figure 4.3: An example in which Enhanced-First-Last improves the connectivity of the network.

4.3.3.1 First-Last

Packets that can only request one VC at all times are allowed to acquire the VC of their selected

port even if the VC is not empty. This applies to packets of class 0 and class 1.

Packets of class 2 need to be able to escape to their dedicated channels (X1+, Y1+) at all

times when they are occupying channels (X0+, Y0+). Therefore, it is sufficient to ensure that

packets of class 2 only acquire channels (X0+, Y0+) when they are empty, so that packets of

class 2 never follow packets of class 0 within the same VC. However, packets of class 2 are

allowed to acquire VCs (X1+, Y1+) even when these are not empty.

4.3.3.2 Enhanced-First-Last

The same reasoning applies in the case of the Enhanced-First-Last algorithm. In addition to the

restriction on class 2 packets, packets of class 1 should not be allocated channels (Z0+, Z0-)

unless they are empty, so that they do not follow packets of class 0 that may be occupying these

channels.
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4.4 Deadlock-freedom, livelock-freedom, and connectivity

4.4.1 Deadlock-freedom

The First-Last routing algorithm is deadlock-free by construction, as it is based on the method-

ology presented in Chapter 2. In what follows, we show that every packet class in the network

satisfies our deadlock-freedom condition (see Chapter 2) at all times.

Class 0: Because it is the lowest class in the network, packets of C0 are always waiting for

other packets of C0 or higher classes, regardless of the virtual channel. Therefore, packets of

C0 always satisfy the deadlock-freedom condition.

Class 1: The virtual channels used by C1 (X-, Y-, Z+, Z-) are only used by packets of C1,

which means packets of C1 can only wait for other packets of C1. This satisfies the deadlock-

freedom condition.

Class 2: Packets of C2 can wait for virtual channels (X0+, X1+, Y0+, Y1+). Although

(X0+, Y0+) may be occupied by packets of C0, channels (X1+, Y1+) can only be occupied by

C2 packets as per the VC assignment described in section 4.3.1.2. Packets of C2 are therefore

always waiting for other packets of C2 occupying channels (X1+, Y1+), which conforms to the

deadlock-freedom condition.

4.4.2 Livelock-freedom

Since the individual packet classes do not allow packets to loop indefinitely, and because they

are traversed in an increasing order, the algorithm is also livelock-free. In the worst case, a

packet reaches the north-east corner in C0 at the source layer (top or bottom layer in the case

of Enhanced-First-Last), then the west-south corner of either the top or the bottom layer in C1

then end up in the north-east corner of the same layer in C2.

4.4.3 Condition of connectivity

The network is connected if the routing algorithm is able to provide a path for all source-

destination pairs. We will identify the condition that must be met by the TSV placement strategy

in order for the network to be connected using the First-Last algorithm. In other words, we will
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identify the set of topologies that are supported by the First-Last routing algorithm.

First, we know that routing from any source to any elevator in the same layer, which is done

using C0 and C1, is always possible. Similarly, routing from any elevator to any destination on

the same layer is possible using C1 and C2. This means that for the network to be connected, it

is enough to ensure that every layer in the network can reach every other layer.

Although Enhanced-First-Last makes it possible to traverse layers in C0 for some packets,

in the general case, packets may need to go to C1. So to guarantee connectivity, we consider

the worst case, wherein packets need to move to C1 to reach other layers.

Let us consider a network consisting of L layers, with Ul and Dl being the set of upward

elevators and the set of downward elevators of layer l, respectively. The condition can then be

expressed as follows:

The network is connected if and only if

∀l ∈]0, L− 1[,

∃u−(x−, y−) ∈ Ul−1, such that ∃u(x, y) ∈ Ul with x ≤ x−, y ≤ y−

and

∃d+(x+, y+) ∈ Dl+1, such that ∃d(x, y) ∈ Dl with x ≤ x+, y ≤ y+.

That is, each layer must be able to forward packets coming from a previous layer through

a certain elevator Ein, to the next layer through an elevator that is reachable using only the

negative channels (C1), i.e. that is located south-west to the incoming elevator Ein.

Fig. 4.4 illustrates a few examples of connected networks. In the first example (Fig. 4.4

(a)), two TSVs are used to connect each consecutive layers. The network is connected because

the bottom layer can reach the top layer through elevators 1 → 2 → 3, and the top layer can

reach the bottom layer through elevators A→ B → C.

The second example (Fig. 4.4 (b)) shows that it is possible to connect the network using

only one TSV ”pillar”. Note that the network is connected regardless of the position of the

pillar.

For the remainder of this chapter, we will consider topologies consisting only of TSV

pillars, i.e. an upward (downward) elevator can reach any upper (lower) layer without

changing the (X,Y) coordinates. This architectural simplification has been adopted by other

algorithms such as Salamat et al. [2016b] and Ying et al. [2014], although unlike these solutions,
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Figure 4.4: Examples of connected networks using First-Last.

the First-Last algorithm does not impose any restriction on the position of the pillars, which may

be placed arbitrarily.

4.5 Hardware implementation details

In Chapter 3, we have presented a generic framework for TSV assignment and selection that can

be applied to any routing solution targeting TSV-based 3D NoCs. Due to its high efficiency in

terms of area and scalability, we propose an implementation of the First-Last routing algorithm

based on this framework.

The implementation will consist of three parts:

• Encoding the elevator location: We will show that the encoding presented in Chapter 3

can be applied to First-Last with no modification.

• Specializing a generic TSV assignment algorithm to the First-Last algorithm: One of

the elevator assignment algorithms presented in Section 3.4.3 will be used in conjunction

with our routing algorithm.
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• Implementing the routing logic

4.5.1 Scalable TSV assignment

Due to the presence of TSVs as pillars, packets only need to search for an elevator in their source

layer. Because packets originate in routing class C0 and are able to move to C1, they can reach

an elevator located at any position. Therefore, all a router has to store is the location of the up-

ward and downward elevators as two 4-bit vectors named Elevator Up and Elevator Down,

respectively. The 4 bits {East, South,West,North} indicate whether the selected elevator is

located East, South, West or North, respectively. This encoding is identical to the one described

in Chapter 3.

One sensible criterion of selection is the distance of the elevator from the current router.

That is, each router forwards a packet towards an elevator located at minimum Manhattan dis-

tance (MD). The main idea behind this choice is to make sure packets spend as little time as

possible at intermediate layers, and are able to reach their destination layer as quickly as pos-

sible. Moreover, in Section 3.4.3, we have presented several options for MD-based elevator

assignment. We have established that the proposed MD-based approaches had the advantage

of not requiring any involvement from the route computation logic (the hardware) to ensure

correct deadlock-free operation.

In this section, we opt for the randomized elevator assignment approach, as it offers the best

trade-off between simplicity and performance. In Chapter 3 - Algorithm 8, we have presented

a generic randomized assignment algorithm that can be used for any planar routing algorithm.

As an input, the algorithm takes a description of the routing algorithm as its Last Direction Set

(see Definition 3.1) as its input and assigns an elevator to each node. That is, all we need to do

is define the Last Direction Set of the First-Last routing algorithm in order to be able to use this

TSV assignment algorithm.

When seeking an elevator, packets are routed following routing classes C0 then C1. That is,

the planar routing algorithm can be described as the following list of sets:

A = [{East,North}, {West, South}].

Which means that the Last Direction Set for the First-Last algorithm is
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L = {West, South}.

It is worth reminding that the correctness of the assignment algorithm, as well as the reach-

ability of the elevators assigned using this algorithm were formally proven in Section 3.5.

4.5.2 Route computation logic

The route computation logic is presented in Algorithm 11. As an input, the algorithm takes a bit

vector Dest describing the position of the destination (Up, Down, East, West, South, North),

and the current class number cin. The Dest vector is obtained by comparing the position of

the current router to that of the destination indicated in the packet header. The packet header

also stores the class number cin, as mentioned in section 4.3. The algorithm outputs the set of

possible output ports, and possibly a new class number, if moving to the next class is necessary.

Algorithm 11 Route computation logic
Input:

Dest: Destination position bits
c in: Current routing class

Output:
R : Set of possible output channels
c out : Output routing class

1: if Dest.Up or Dest.Down then
2: if Dest.Up then
3: Elevator ← Elevator Up
4: else
5: Elevator ← Elevator Down
6: end if
7: if Elevator = {0, 0, 0, 0} then . Self is elevator
8: c out← c in
9: if not using Enhanced-First-Last then

10: c out← 1 . Must move to C1 to go vertical
11: end if
12: if Dest.Up then
13: R← {Z+}
14: else
15: R← {Z−}
16: end if
17: else
18: (R, c out)← Positive F irst(Elevator, c in)
19: end if
20: else
21: (R, c out)← Positive Last(Dest, c in)
22: end if

If the destination is on the same layer as the current router (Algorithm 11 - Line 20), routing
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is performed following the Positive Last routing algorithm presented in Algorithm 12. Oth-

erwise, the algorithm first computes the position of the appropriate elevator according to the

destination layer (up or down) (Algorithm 11 - Lines 2 to 6).

Algorithm 12 The Positive Last routing function
Input:

Dest: Destination position bits
c in: Current routing class

Output:
R : Set of possible output channels
c out : Output routing class

1: c out← c in
2: if Dest.West and Dest.South then
3: R← {X−, Y−}
4: else if Dest.West then
5: R← {X−}
6: else if Dest.South then
7: R← {Y−}
8: else
9: c out← 2

10: if Dest.East and Dest.North then
11: R← {X+, Y+}
12: else if Dest.East then
13: R← {X+}
14: else if Dest.North then
15: R← {Y+}
16: else
17: R← {L} . Local port
18: end if
19: end if

If the current router is an elevator (Algorithm 11 - Line 7), then the packet is forwarded

appropriately either to the up or down port. With Enhanced-First-Last, moving up and down

is possible in both C0 and C1, so changing the class is not necessary. However, in the First-

Last algorithm (Algorithm 11 - Line 9), moving vertically can only be done in C1, so the class

number must be updated.

If the current router is not an elevator, the packet is routed towards the selected elevator

following the Positive F irst routing algorithm presented in Algorithm 13.
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Algorithm 13 The Positive First routing function
Input:

Dest : Destination position bits
c in : Current routing class

Output:
R : Set of possible output channels
c out : Output routing class

1: c out← c in
2: if Dest.East and Dest.North then
3: R← {X+, Y+}
4: else if Dest.East then
5: R← {X+}
6: else if Dest.North then
7: R← {Y+}
8: else
9: c out← 1

10: if Dest.West and Dest.South then
11: R← {X−, Y−}
12: else if Dest.West then
13: R← {X−}
14: else if Dest.South then
15: R← {Y−}
16: else
17: R← ∅
18: end if
19: end if
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4.6 Experimental results

4.6.1 Hardware synthesis

To analyze the hardware cost of the proposed solutions, we have extended the Netmaker li-

brary Mullins [2009] to support 3D router architectures. Netmaker is a library of parame-

terizable and synthesizable NoC routers written in SystemVerilog. This library was used to

implement the First-Last and Enhanced-Fist-Last routing algorithms described in this chapter,

as well as the Elevator-First algorithm described in Bahmani et al. [2012].

All routers include 4-flit deep virtual channel FIFOs and perform virtual channel allocation

followed by switch allocation (2 cycles). To evaluate the area overhead, we synthesize the

Elevator-First, First-Last, and Enhanced-First-Last routers using Synopsys Design Compiler.

The designs were setup to work with an operating frequency of 1GHz, a power supply of 1V, and

a NanGate Open Cell 45nm Library Nangate [2017]. The resulting area and power estimates

for each router are summarized in Table 4.1. Three types of routers were considered: 5 port 2D

routers, 6 port 3D routers with one vertical connection, and 7 port 3D routers with both vertical

connections.

First, we compare the area overhead for all 5 ports routers. The area for First-Last and

Enhanced-First-Last is the same because in a 2D router, both algorithms require the same num-

ber of virtual channels and use the same routing logic. On the other hand, although Elevator-

First uses a simple XY routing function for routing, it includes one extra virtual channel in the

South and West directions, which increases the area overhead by 15.2%.

A similar comparison can be done for the 6 ports routers. In this case, Elevator-First has

two more virtual channels than First-Last and one more virtual channel than Enhanced-First-

Last. Those additional virtual channels can explain the area overhead observed for Elevator-

First, which is of approximately 12% compared with First-Last, and 5.1% with respects to

Enhanced-First-Last. However, when comparing Elevator-First and Enhanced-First-Last in the

case of 7-port routers, where the total number of virtual channels is the same, we note a slightly

larger area (1%) when using Enhanced-First-Last, due to its more complex routing logic when

compared to the simple XY algorithm used by Elevator-First.

In sum, the Enhanced-First-Last algorithm can be considered an appealing alternative to
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Elevator-First, as it not only reduces the area and power, especially for designs that use more

5-port and 6-port routers than 7-port routers, but also is capable of attaining higher levels of

performance, as will be shown in the rest of this section.

Table 4.1: Hardware synthesis results

Type Elevator-First First-Last Enhanced-First-Last
# Ports Area Power Area Power Area Power

(µm2) (mW ) (µm2) (mW ) (µm2) (mW )

5 ports 36185 12.0 31407 10.3 31407 10.3
6 ports 44300 14.7 39526 12.9 42132 13.8
7 ports 54080 17.8 49197 15.9 54593 18.0

4.6.2 Performance evaluation

Finally, we use the NoC simulator described in Chapter 5 to compare the performance of our

algorithm to that of Elevator-First. The simulation parameters are summarized in table 4.2.

Here, TSVs were placed randomly as pillars, i.e., the upward and downward TSVs are placed

at the same X,Y coordinates across all layers.

Table 4.2: Simulation parameters
Parameters Value(s)

Buffers/VC 4
Flits/Packet 5
Traffic pattern Uniform, Complement, Shuffle
TSV density 75%, 50%, 25%, 12.5%
Sim. duration 100000 cycles
Iterations 50

We present the average packet latency obtained for an 8x8x4 mesh network in fig. 4.5.

The first observation that we can make about the results is that the Enhanced-First-Last routing

algorithm outperforms Elevator-First significantly in all the tested scenarios, even though the

total number of VCs in the network is lower. This is due to a combination of a higher availability

of VCs for packets in their destination layer (class 2), and an extra VC to use for packets that

are moving vertically to reach other layers. Under low TSV densities, this extra VC greatly

reduces the pressure on vertical ports.
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As can be expected, the First-Last algorithm has a higher latency than Elevator-First, as

the number of planar virtual channels is lower. However, it can be noticed that the difference

is less significant under shuffle traffic, in which many nodes communicate within the same

tier. In the presence of a sufficient number of TSVs (75%), the First-Last algorithm is even

able to outperform Elevator-First. This can be explained by the fact that packets that are in

their destination layer use the routing classes 1 then 2. Once a packet moves to class 2, it is

able to freely acquire both VCs in the East and North directions, allowing them to reach their

destination much faster than in Elevator-First, where each packet can only acquire one same VC

from source to destination. Note however that even with First-last, packets that are in a different

layer than that of their destination can only use one VC.

In sum, although the main goal of First-Last is to save cost, it can still outperform Elevator-

First if inter-layer communication is kept to a minimum.

4.7 Conclusion

We have presented a novel algorithm targeting partially vertically connected 3D-NoCs named

“First-Last” that guarantees packet delivery as long as one TSV pillar is available anywhere in

the network. Although our algorithm uses the same number of virtual channels as other low-

cost algorithms, it is in the way these virtual channels are distributed that lies all of its strength.

What we have demonstrated in this chapter is that by carefully placing these virtual channels

and appropriately defining the routing rules, it was possible to eliminate all the restrictions that

other solutions impose on both the supported fault patterns and the runtime elevator selection,

which can negatively impact the resilience and performance of the NoC. Moreover, we have

shown, through Enhanced-First-Last, that by adding one VC in the vertical dimension, it was

possible to dramatically boost the NoC’s performance in presence of a few vertical connections,

while still ensuring a lower implementation cost than state-of-the-art algorithms.
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Figure 4.5: Average packet latency.







Part IV
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NETWORKS-ON-CHIPS





Chapter 5

Highly Parallelizable Cycle-Accurate

Network-on-Chip Simulation

5.1 Introduction

Throughout this thesis, we have presented several new Network-on-Chip designs that need to

be tested and validated prior to hardware implementation.

At an early stage, novel NoC designs are usually evaluated and validated by means of cycle-

accurate simulation. While simulating NoCs at the RTL (Register Transfer Level) can produce

very accurate results, popular cycle-accurate simulators such as Booksim Jiang et al. [2013]

are often preferred due to their shorter simulation run times and easier programmability. How-

ever, with the tremendous increase in the number of processing nodes in modern and emerging

chips, new proposals will have to be validated against increasingly large NoCs, which can take

impractical simulation times, even when simulating at a high level of abstraction.

Parallelization is one obvious solution to the issue and unsurprisingly, several works have

attempted to take advantage of modern many-core processors to speed up NoC simulations.

However, due to the significant synchronization overhead in CPU-based multithreading, such

solutions often need to sacrifice cycle-accuracy to obtain decent simulation performance Ren

et al. [2014]. More importantly, achieving high speedups usually requires CPUs with a very

high core count, which can be rather costly.

By contrast, GPGPUs (General-Purpose Graphics Processing Units) have been widely adopted
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in the HPC (High-Performance Computing) field as a more cost-effective parallel processing

solution. GPUs have been gaining in popularity in various domains, including cycle-accurate

simulation Zolghadr et al. [2011], Pinto et al. [2011]. Unfortunately, prior attempts at simu-

lating NoCs on GPU Zolghadr et al. [2011] assume an overly simplified NoC architecture and

propose a static parallelization method that is very hard to extend and generalize. To the best

of our knowledge, no general and scalable method for performing realistic NoC simulations on

GPU has yet been proposed.

In this final chapter of this thesis, we introduce the first detailed and modular NoC simula-

tor design targeting GPU platforms. First, a flexible task decomposition approach, specifically

geared towards high parallelization is proposed. Our approach makes it easy to adapt the gran-

ularity of parallelism to match the capabilities of the host GPU. Second, all the GPU-specific

implementation issues are addressed and several optimizations are proposed. Our design is

evaluated through a reference implementation which is tested on an NVidia GeForce GTX980Ti

graphics card and shown to speed up simulations by over 250 times.

5.2 State-of-the-art

The vast majority of NoC simulators available today are single-threaded. General-purpose NoC

simulators such as Booksim Jiang et al. [2013], Noxim Catania et al. [2015], and Garnet Agar-

wal et al. [2009], are very widely used in NoC research. In spite of being very good tools,

all of these simulators are overly slow at performing long running simulations of large NoCs,

comprising over 256 routers.

Several attempts have been made to build scalable multi-threaded NoC simulators that lever-

age modern multicore machines. A popular example is Hornet Ren et al. [2014], which dis-

tributes simulation tasks evenly among CPU threads to speed up simulations. To avoid per

cycle thread synchronization, which is the major showstopper when it comes to CPU-based

parallelism, Hornet performs synchronization periodically, which results in a certain loss in

timing accuracy. Authors in Eggenberger and Radetzki [2013] propose a task distribution based

on thread pools, in which idle threads execute the next available task in order to better balance

the work load. However, because threads may access different locations in memory throughout
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the simulation, it exhibits less cache affinity than the approach used in Hornet. More recently,

in Eggenberger et al. [2016], the authors have proposed a new simulation method that com-

bines uniform task distribution, and a GALS (Globally Asynchronous Locally Synchronous)

approach to avoid frequent synchronization.

A few works have attempted to perform NoC simulations on GPU. Authors in Pinto et al.

[2011] managed to simulate a thousand core system, including a NoC on an NVidia GeForce

GTX 480 GPU. However, since the focus is not on the network level, this solution uses a simple

NoC model, which cannot be used for detailed network-only simulation.

The closest related work that we are aware of is Zolghadr et al. [2011]. In this solution, every

GPU thread executes the tasks of one bidirectional link in a router and speedups of up to 17x

were reported. In practice, however, we need to be able to simulate a detailed router architecture,

which consists of several modules, including potential extensions by the end user, all of which

can be quite complex. Including all of these modules in the actions of input/output links severely

limits the level of parallelism, which heavily impacts performance. At the same time, if we were

to simulate a very large network, the link count of which cannot be accommodated by the GPU,

then the simulation would simply be unfeasible and the core of the simulator would have to be

reprogrammed.

We provide a generic task definition that does not suffer from these limitations and an im-

plementation that yields much higher speedups than those reported in related works.

5.3 Generic Task Decomposition

The design of a parallel simulator requires an appropriate decomposition of the simulation into

elementary tasks. These tasks are then mapped onto threads for parallel execution. The defini-

tion of simulation tasks is crucial as it determines the granularity, and consequently the perfor-

mance of the parallel simulation. For instance, in Eggenberger and Radetzki [2013], a task is

defined as the set of actions performed by a single router. Due to the significant synchronization

overhead of CPU-based multithreading, this coarse-grained decomposition is appropriate.

By contrast, in GPU based parallelism it is usually preferable to run as many threads as

possible. In Zolghadr et al. [2011], a task corresponds to the actions performed by one output
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and one input port of a router. This finer-grained decomposition is more appropriate to the in-

herently parallel architecture of GPUs. However, in addition to the scalability issues mentioned

in section 5.2, this static approach poses many issues in terms of programmability. In effect,

in a real router architecture, not all the modules are distributed, and some tasks are centralized.

This is the case, for instance, of the VC and Switch arbiters, which are not tied to a specific

input/output direction, but need to operate in a centralized manner. Programming such mod-

ules can be quite difficult in the model proposed by Zolghadr et al. [2011], which makes the

simulator hard to extend. Extensibility is a crucial feature of the design that we propose.

We introduce in this work a new task definition that makes it easy to configure the granularity

of parallelism to match the capabilities of a given GPU and, more importantly, does not suffer

form the aforementioned programmability and extensibility issues. This section will consist of

three parts. First, we provide a definition of modules, which are the basic building blocks of our

simulator design. Then, we introduce a new abstraction called module group. Finally, we give

our definition of what a single simulation task is in terms of module groups.

5.3.1 Modules

In hardware, every NoC router comprises several modules, each responsible of accomplishing

a specific action every cycle. For the sake of illustration, we will assume, throughout the rest

of this chapter, a canonical VC (Virtual Channel) router architecture, as it is the one that most

simulators adopt as their baseline model Jiang et al. [2013], Agarwal et al. [2009]. However,

note that our proposals are general and are not architecture-specific. A VC router typically

includes the following modules:

• Input Unit (one per input port): This module reads a flit from the corresponding input port,

writes it to the appropriate virtual channel FIFO, and, if it is a head flit, performs route

computation to select the next output port to forward the packet to. It is also responsible

of updating the states of its associated virtual channels and sending a credit upstream

when a flit is read from one of its queues.

• VC Allocator: allocates one free output VC to each input VC that is waiting for VC

allocation.
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• Switch Allocator: decides which input VCs can transmit a flit through the crossbar in the

next cycle.

• Output Unit (one per output port): This module reads a flit from the input VC that won the

switch allocation in the previous cycle (corresponding to crossbar traversal), and writes

it to the corresponding output port. It also updates credit counters and output VC states

upon receiving credits from the downstream input unit.

• Injector: Although not part of a real router, this module is necessary for simulation. Its

main task is to generate new packets and schedule them for transmission.

• Ejector: This module receives flits at their destination and updates simulation statistics

such as packet latency, number of received packets, etc.

In this work, we refer to Input Unit, VC Allocator, Switch Allocator, etc. as module types

or module classes. We distringuich between module types and module instances.

Definition 5.1 (Module Type). A module type or module class is a routine f(c, σ) that describes

the behavior of one hardware module at a given cycle c. Every module type is uniquely identified

using a positive integer. For instance, module type 0 may refer to VC allocators, module type 1

to switch allocators, etc.

Definition 5.2 (Module Instance). Every module instance in the network is identified by its

router ID r, and its module type ID m. Both are unique positive integers. For instance, if

module type 0 is a VC Allocator, then ID (15, 0) would identify the VC allocator of router 15.

The execution of module instance (r,m) at cycle c is performed using a global function called

execModule((r,m), c).

In order to obtain a model that behaves exactly like hardware in terms of timing, every

value written by a module during one cycle cannot be visible to other modules until the next

cycle. We also need modules to be executable concurrently and in any order. Many simulators

solve this issue by adopting an Evaluate/Update mechanism, in which data is first evaluated in

a temporary data set before becoming visible to other modules.

We propose a method that is inspired by the odd/even scheme used in Eggenberger and

Radetzki [2013], as it requires less copying. This method consists of defining two data sets.
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During even cycles, all the modules read from the first data set and write to the second data set,

while in the odd cycles accesses are done on the opposite data sets. This is also similar to the

table swapping scheme employed in Pétrot et al. [1997].

In this work, every module is defined as a function, and a set of registers. We incorporate

the odd/even idea into our definition of registers.

Definition 5.3 (Register). A register is defined as a tuple (o, e) with two associated operations:

Read and Write. Given c the cycle at which the register is accessed, the two operations can be

defined as follows:

Read((o, e), c) = o if c ≡ 0[2],e otherwise

Write((o, e), x, c) = e← x if c ≡ 0[2], o← x otherwise

In C, this can be efficiently implemented by declaring every register internally as a double

entry array. For example:

t y p e d e f unsigned s h o r t r eg16 [ 2 ] ;

r eg16 v c s t a t e s ;

The read and write operations can be defined as follows:

# d e f i n e r e g r e a d ( reg , c y c l e ) ( r e g ) [ ( c y c l e ) & 1]

# d e f i n e r e g w r i t e ( reg , v , c y c l e ) ( r e g ) [ ˜ ( c y c l e ) & 1]= v

Note that this very simple mechanism solves all timing inconsistencies at absolutely no cost

in performance, as these are still simple memory accesses. A problem can still arise if two

modules try to write a register at the same time. However, this issue can easily be solved by

ensuring that every module is allowed to read any other module’s registers, but can only write to

its own registers. This restriction on the programming model removes the need to use expensive

atomic operations or other synchronization primitives. More importantly, it makes it very easy

to define modules that behave very similarly to the simulated hardware.

Concrete module implementation examples and code samples are presented in Appendix B.
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5.3.2 Module groups

While it is possible to execute all modules in parallel with proper mapping, such fine granularity

is not always desirable and feasible. Therefore, we provide a means to group modules to fine

tune the granularity as necessary.

Definition 5.4 (Module Group). A module group is a unique collection of module types. No

two module groups contain the same module type and every module type belongs to exactly one

module group. Given a module group identifier g, assume that the set of module types contained

in g can be accessed using a function called getGroupModules(g).

To help make the idea of module groups clearer, fig. 5.1 shows two possible groupings of

modules. In fig. 5.1 (a), 8 groups were defined. Each of the first 5 groups contains one input

unit and one output unit of the same direction (East, West, North, South, Local), assuming a

mesh-like topology. The sixth group includes the injector and ejector and the final two groups

contain the switch and VC allocators respectively. In fig. 5.1 (b), modules were reorganized to

fit in 4 groups.

Module groups are meant to be run in parallel. Therefore, the number of module groups

affects the number of threads used for simulation. The module grouping method allows us to

adjust the number of threads to match the capabilities of a given GPU. As we will see in Section

5.5, this indirection is necessary for simulating very large networks. In practice, module groups

can be represented as a 2-dimensional array, in which the row numbers correspond to group IDs

and the values in each row to module types. Rows may be terminated by a negative integer.

5.3.3 Tasks

Given the above definitions, we are now able to provide our own definition of a simulation task.

Definition 5.5 (Task). A task is the actions of one module group associated with one router.

Every task is identified by one router ID r and one module group ID g. The execution of task

(r, g) at cycle c is done via the function execTask((r, g), c), which is presented in Algorithm

14.
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Figure 5.1: Module groups.

5.4 GPU-based implementation

We now show how we can leverage the previously defined task decomposition to develop a very

fast parallel simulator on GPU using CUDA C NVIDIA [2017]. A GPU has an architecture

that is fundamentally different from that of a CPU, and without proper understanding of the

numerous challenges and performance pitfalls related to this architecture, it is very easy to

produce a naı̈ve implementation that yields suboptimal performance. In this section we start

off by explaining the general mode of operation of a GPU. We will then point out the key

implementation challenges and performance considerations and how they can be addressed.

Note that even though we will be using CUDA-specific terminology, the same concepts apply

to other GPU platforms as well.
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Algorithm 14 Task execution routine
Input:

taskID: Task ID (router, module group)
c: Cycle

1: let r, g ← taskID
2: for all m ∈ getGroupModules(g) do
3: execModule((r,m), c)
4: end for

5.4.1 Overview on the GPU architecture

At the software level, programming a GPU starts by defining a Kernel, which is simply a func-

tion to be executed by several GPU threads. These threads are organized in Blocks. When

launching a kernel, the programmer needs to specify the number of blocks, as well as the num-

ber of threads within each block.

Threads can access several memory spaces in the GPU, the most important of which are

Global Memory, which is a slow off-chip DRAM, and Shared Memory, which is a very fast on-

chip cache. Each block can use a limited portion of Shared Memory (typically 48KB), which

is visible only to threads within the same block. At the hardware level, GPU resources are

organized in units called Stream Multiprocessors (SMs). Each SM contains several processing

cores, a Shared Memory cache to be used by blocks, and registers to be used by threads. During

execution, threads are divided into fixed sized groups called Warps. All threads within a warp

execute the same instruction at once, following the SIMT (Single Instruction Multiple Threads)

paradigm. More architectural details will be revealed as needed in the remainder of this section.

5.4.2 Warp-friendly task mapping

Since all threads of a warp execute the same instruction, they cannot branch to different loca-

tions simultaneously. If threads of the same warp happen to execute different branches of code,

these executions are serialized. While this is not a major issue for simple conditional statements

within modules, having threads of the same warp execute different module groups can be highly

inefficient. Clearly, task mapping cannot be performed in an arbitrary manner.

Fortunately, the way thread IDs are assigned to warps is deterministic. For instance, assum-

ing an architecture with W threads per warp, the first W thread IDs are guaranteed to be in the
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same warp, the same applies to threads of IDs between W and 2W − 1, and so on.

We propose a mapping that minimizes the divergence between threads of the same warp.

Assuming that W is the number of threads per warp in a given architecture (typically 32), and

R the number of simulated routers, we identify the threads using two coordinates (x, y) such

that the absolute thread ID is equal to yR + x. Every task (r, g) is then mapped to thread (r, g)

as shown in fig. 5.2. Since the y coordinate is the slowest changing coordinate in the thread

ID, the module group only changes every R threads, which means that there is a lower chance

that different module groups, which correspond to different y coordinates, are contained within

the same warp. Moreover, if the number of simulated routers is a multiple of W , then all the

threads within one warp are guaranteed to be executing the same module group, i.e. the same

code. For network sizes that are not multiples of W , padding the network using dummy nodes

that do not receive or generate packets can offer better performance.

5.4.3 Compact flit queue implementation

The next issue that needs to be addressed is that of memory accesses. Accessing global memory

is very costly. While some level of optimization is possible by adjusting alignment and coalesc-

ing, reorganizing the simulation data to meet all of these constraints can be tedious. It would

be much more convenient if we could store all simulation data in the very fast, shared memory

cache and not have to worry about the way data is accessed. However, the amount of shared

memory that can be used by one block is usually very limited (typically 48KB), so fitting all the

simulation data in this memory space can be rather challenging. Some obvious optimizations

are possible nonetheless. For instance, the states of several virtual channels can all be stored

in one integer. This has the double benefit of both saving memory space and allowing for con-

stant time round-robin arbiter implementations using a series of bitwise operations. The most

important optimization, however, lies in our implementation of flit FIFOs.

Our representation is based on two observations. First, assuming atomic VC allocation, one

virtual channel can only be storing flits of the same packet. Second, apart from the head flit,

which stores useful information used for routing, the flits of a packet are of little interest to the

simulator, as we are usually only interested in knowing whether they are present or not. Thus,
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Figure 5.2: Mapping of tasks onto threads.

we propose the representation shown in fig. 5.3.

This structure, which can fit in one integer (32 or 64 bits depending on the simulation pa-

rameters), is used to represent a sequence of flits (from start to end) of the same packet of size
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Figure 5.3: Compact flit queue representation.

size + 1. It can also represent an entire packet when start = 0 and end = size, a single flit

when start = end, and an empty queue when start > end. The enqueue operation is imple-

mented by incrementing the end field, and dequeue by incrementing the start field. The type

of an individual flit can be deduced from the values of size, end and start. The “packet data”

field contains information such as the destination of the packet, its allocated VC at every hop,

and latency. Thanks to this representation, we were able to fit enough data to simulate a 64 node

network with 4 virtual channels in less than 40KB of shared memory.

5.4.4 Simulating large networks

Due to the limited amount of shared memory and number of threads per block, there is a max-

imum number of routers that can be simulated in one block using a given module grouping.

Simulating larger networks may therefore necessitate the creation of multiple blocks. Since

shared memory is only visible to threads within the same block, the structures used to transfer

flits and credits between routers must be stored in global memory.

To ensure cycle-accuracy, all threads of all blocks must be synchronized at the end of each

cycle. This is done using the lock-based synchronization method introduced in Xiao and Feng

[2010], but with a slight but important modification. Our synchronization function is presented

in Algorithm 15, where syncthreads() is a native barrier used to synchronize all threads

within a block.

Compared to the solution in Xiao and Feng [2010], we have one extra call to syncthreads()

before the inter-block synchronization. This is to prevent cases where thread (0, 0) gets to the

synchronization point and allows other blocks to proceed to the next cycle while threads of its
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Algorithm 15 Synchronization routine
Input:

threadID: Thread ID (x, y)
target: Target value to reach by all threads

1: let x, y ← threadID
2: syncthreads()
3: if x, y = (0, 0) then
4: atomically SyncV ar ← SyncV ar + 1
5: while SyncV ar 6= target do
6: end while
7: end if
8: syncthreads()

own block are still running in the current cycle.

This synchronization method only works if all blocks are executed concurrently. If block

execution is serialized, then a deadlock will inevitably occur. Generally, if the number of exe-

cuted blocks is at most equal to the number of SMs (Stream multiprocessors) of the GPU, then

each block is scheduled in a separate SM and the deadlock situation can never occur. However,

if the number of blocks exceeds the number of SMs, then several blocks have to be scheduled

on the same SM. In this case, blocks can still be executed in parallel provided that SM re-

sources (mainly the amount of shared memory and the number of thread registers) are sufficient

to accommodate all the blocks simultaneously.

Luckily, module grouping already solves the cases where the number of threads needs to be

reduced either due to an insufficient number of registers or to an excess in the number of threads

per SM. However, we should in addition make it possible to evict some of the simulation data

from shared memory. We have achieved this in our implementation by providing compile time

options to disable shared memory caching for certain modules. Of course, this only affects the

way some pointers are initialized and does not change the way modules are programmed. By

carefully setting module grouping and shared memory caching, it is possible to fit very large

networks into a low-end GPU with limited resources.

5.4.5 Simulation kernel and final notes

After addressing various design issues, we can now define the simulation kernel as in Algorithm

16. In our implementation, constant memory space was used to store the module grouping table.
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For pseudo random number generation, which is essential for the injection process, we have

used a CUDA library NVIDIA [2017] called cuRAND.

Algorithm 16 Simulation kernel
Input:

threadID: Thread ID (x, y)
1: let cycle← 0
2: let router, group← threadID
3: while cycle < SimulatedCycles do
4: execTask((router, group), cycle)
5: cycle← cycle+ 1
6: synchronize(threadID, cycle ∗NumBlocks)
7: end while

5.5 Experimental results

In this final section, we evaluate our simulator implementation in terms of performance and

accuracy.

5.5.1 Speedup

As a performance metric we consider the execution speedup, which is obtained by dividing the

execution time of a sequential simulation, in which all modules are executed iteratively, by that

of the GPU-based parallel simulation.

The sequential version was compiled with level 2 compiler optimizations enabled and run

on an AMD A8-6500 @3.5GHz under Ubuntu Linux. For the parallel version, we use an

NVidia GeForce GTX980Ti graphics card, which features 22 SMs (Stream Multiprocessors),

each including 96KB of shared memory. Each simulation was run 10 times and the execution

times were averaged. For all simulations, we have only counted the time spent in the actual

network simulation, not including initialization and memory allocation. Several mesh sizes

were tested (16x16, 24x24 and 32x32) with 2 or 4 VCs, using the network parameters presented

in table 5.1. In all tested configurations, we were able to fit an 8x8 mesh network in a single

block of threads. Therefore, a 16x16 mesh was simulated using 4 blocks of 8x8, a 24x24 mesh

using 9 blocks, and a 32x32 mesh using 16 blocks.
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Table 5.1: Simulation parameters
Parameters Value(s)

Buffers/VC 4
Flits/Packet 5
Traffic pattern Uniform Random
Routing Algorithm XY
Simulated cycles 100000
Injection rate 0.001 packets/node/cycle

We have used 8 module groups organized exactly as shown in fig. 5.1 (a). It should be noted

that we have not noticed any improvement in speedup when using more module groups, mainly

because some modules have very different complexities and running them in parallel forces

faster modules, such as output units, to spend more time waiting for more complex modules,

such as the VC allocator, to finish executing. The results are presented in table 5.2. First, notice

the very high speedups obtained in all simulations, especially for larger networks. Simulating a

32x32 network is 100 times faster on GPU. This reflects the high level of parallelism that is pos-

sible using our method. Assuming a perfectly scalable CPU-based parallel simulator, achieving

such high speedups would require a machine comprising at least 100 hardware threads.

Table 5.2: Speedup results (1)
16x16x2vc 16x16x4vc 24x24x2vc 24x24x4vc 32x32x2vc 32x32x4vc

26.53 28.60 55.07 59.65 95.53 102.59

Thus far, we have tested networks that required a number of blocks that is smaller than the

number of SMs, which is why we were able to run the simulations at the desired granularity

with no compromises. In order to push the GPU to its limits, we now try to simulate larger

networks (40x40 to 64x64).

Since the number of required blocks is higher than the number of SMs, several blocks need

to share SM resources. As indicated in the results presented in table 5.3, it was necessary to

reduce the number of module groups to 7 in order to be able to simulate 40x40 and 48x48

networks, and we could only use up to 4 module groups to simulate 56x56 and 64x64 networks.

Moreover, since thread blocks also need to share Shared Memory, global memory had to be used

to store some modules when simulating 56x56 and 64x64 networks with 4 VCs (see Section
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5.4.4). In this case, only the injectors were removed from shared memory. We can see that in

spite of these restrictions, the speedup continues to scale with the number of nodes, exceeding

250x when simulating a 4K node network. As a point of comparison, simulating a 64x64

network with 4 VCs using Booksim Jiang et al. [2013] took approximately 25 minutes and 20

seconds, whereas our GPU-based simulator produced identical simulation statistics in only 1.2

seconds, which is over a thousand times faster.

Table 5.3: Speedup results (2). (*) Injectors evicted from shared memory.
# groups 40x40x2vc 40x40x4vc 48x48x2vc 48x48x4vc

7 139,92 146,75 190,55 193,37

# groups 56x56x2vc 56x56x4vc 64x64x2vc 64x64x4vc

7 210,33 182,03* 277,27 252,90*

5.5.2 Hardware fidelity

Finally, we evaluate our simulator in terms of how precisely it can mimic hardware behavior,

by comparing the results produced by our reference implementation to those obtained using an

RTL model based on Netmaker Mullins [2009], which is a library of synthesizable NoC routers

written in SystemVerilog. We have simulated an 8x8 mesh network with 2 VCs for 100000

cycles. Single flits were injected at varying rates and the average network latency results are

presented in fig. 5.4. Note that only the network latency, i.e. the time flits spend in the network,

was measured. The queuing delays were not included in the results.

We can see that our simulator and the RTL model exhibit identical behaviors and the differ-

ence in latency was less than 5% for all the tested injection rates. These results indicate that our

simulator is not only ultra-fast, but also matches RTL accuracy.

5.6 Conclusions

In this final chapter, a novel GPU-based NoC simulation method was introduced. We have

presented a module specification that offers high hardware fidelity, thread safety, and easy ex-

tensibility. These properties are suitable for parallel NoC simulation in general, not only on
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Figure 5.4: Average Network Latency (RTL vs. GPU).

GPU. Our module group abstraction, which decouples the definition of modules from their

mapping on the platform, has proven extremely useful for simulating very large networks ( 4K

nodes) on GPU and excellent speedups were obtained ( 280x). We have addressed GPU-specific

implementation challenges such as thread divergence, memory usage and synchronization to

implement a simulator capable of producing very accurate statistics at ultra-high speeds, mak-

ing it an ideal tool for modeling and validating future NoC designs consisting of thousands of

nodes.
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Chapter 6

Conclusion and Future works

6.1 Conclusions

After establishing that the current methods used to construct deadlock-free routing algorithms

were too restrictive in the way they reserve virtual channels, we have proposed a new theory and

design methodology that offer more routing freedom and flexibility in terms of buffer utilization.

This increased flexibility translates into higher throughput as well as better resilience.

Beyond the observed performance gains, because this new theory classifies individual pack-

ets according to the way they are routed, not the channels that they are occupying, we believe

that it provides a more intuitive understanding of how routing algorithms operate. It also makes

it trivial to define fine-grained flow control schemes that support non-atomic VC reallocation

and deadlock escapes at the same time. To the best of our knowledge, existing theories do not

offer this possibility. We have shown through several examples how this approach can be used

to rethink the existing routing solutions as well as constructing new ones, regardless of the tar-

get topology. We hope that our proposal serves as a framework for the design of future routing

algorithms for various applications.

In this thesis, we have also addressed a more specific challenge, which is that of deadlock-

free routing in partially connected 3D topologies. Due to the emergence of TSV as a promising

vertical communication technology, it is necessary to provide efficient routing algorithms for

such topologies at a reasonable cost. After exploring the existing proposals, we have come to

the conclusion that there existed a trade-off between the number of virtual channels (the cost),
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and the freedom in terms of TSV placement and selection at runtime.

We have demonstrated that it was possible, through a clever attribution of VCs, to elimi-

nate, to some extent, this trade-off. The First-Last routing algorithm that we presented requires

the addition of only 1 VC in the East and North directions, resulting in a great cost reduction

compared to Elevator-First, which requires a VC in all the directions. It guarantees full connec-

tivity in the presence of at least one TSV pillar in the upward and downward directions. Like

Elevator-First, the pillars can be placed anywhere in the network, and during runtime, any pillar

can be selected.

This high level of freedom compared to algorithms that use the same number of virtual

channels is due to the unique way in which we chose to place the extra VCs. In fact, our

algorithm is the first one to allow different numbers of VCs along the same dimension (2 VCs

East, but only 1 VC West). Traditionally, authors tend to only consider symmetrical placement

of VCs (e.g. 1 VC along the Y dimension), even though this symmetry has no real advantage and

is limiting in terms of possible solutions, as we hope to have demonstrated in this contribution.

The First-Last algorithm is therefore an appealing routing solution in terms of cost, performance

as well as resilience, making it a great candidate to adopt in future 3D designs.

The final contribution of this thesis pertained to the parallelization of cycle-accurate simu-

lations of NoCs. This has long been a challenging problem mainly due to the high overhead

incurred by thread synchronization, which has to be performed on a per-cycle basis in order to

preserve timing accuracy. Although GPUs make it possible to create enough threads to com-

pensate for the large synchronization overhead, they are often overlooked in the field of system

simulation, mainly because they tend to require too much optimizations in terms of memory

and thread divergence which limits the flexibility of the coding style as well as the extensibility.

In response to these concerns, we have shown that in the case of NoCs, proper task decom-

position and mapping could remove the need to think about optimization when programming

the hardware modules. We have obtained excellent speedups even though the simulated system

consists of completely heterogeneous modules. An implementation of the proposed design has

served for the fast simulation and evaluation of all the architectures presented throughout this

manuscript.
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6.2 Future directions

In the field of parallel simulation, an interesting research direction would be the simulation of

a full system (cache hierarchy, processing cores) on GPU platforms. Although Network-only

simulation is useful and widely used for NoC research, being able to simulate a full system at

high speed would offer more insight into the way the different components interact. Moreover,

the mapping of the different controllers into a 3D topology would help better understand the

traffic patterns, and subsequently help drive the placement of TSVs as well as the choice of the

best routing configuration to adopt, opening up new research opportunities in the field of 3D-

NoCs as well. Most current works in this area have been using random topologies, combined

with either synthetic traffic, as we did in the context of this thesis, or traffic traces generated for

other types of topologies that were not meant to support a large number of nodes.

We think that such simulation platforms are achievable today thanks to the increasing amount

of resources included in modern GPUs, as well as faster multi-GPU communication.
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Appendix A

Congestion metrics for adaptive routing

A.1 Introduction

Adaptivity is a highly desirable feature in modern routing solutions, as it makes it possible

to route packets around hotspots and congested areas. This thesis has introduced several new

adaptive routing algorithms. However, in order to properly benefit from their flexibility for

congestion avoidance purposes, the routing unit needs a way to measure the level of congestion

at each output port, so as to make the best possible choice at every step.

Keeping track of the level of congestion at every output is a difficult task, mainly because the

routers have very limited knowledge about the global state of the network, but also because con-

gestion depends on the interactions of too many flows. Although global and regional congestion

awareness has been studied in previous works, the mechanisms required for the propagation and

the bookkeeping of congestion data can be quite complex. Moreover, the delay due to the prop-

agation of various events limits the precision of the congestion estimation, and consequently the

overall performance gains.

By contrast, local congestion metrics, such as the number of free buffers Kim et al. [2005]

(free buf) or the number of free VCs Dally and Aoki [1993] (free vc), which are computed

based on the events that occur within the router itself are widely adopted in practice.

In the literature, several promising local congestion metrics were proposed. In Gratz et al.

[2008], the authors estimate the congestion at one port as the number of crossbar requests made

to that port (x req). They also evaluate different combinations of the metrics (free buf, free vc,
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x req).

In Dimopoulos et al. [2014], a new metric called Flits Remain (fr) is introduced. The idea

is to estimate the congestion at one port as the total number of flits that still need to leave from

it. It was shown to offer considerable performance gains compared to the free vc metric.

In this appendix, we present two new contributions:

• We present a new notation for precisely describing a congestion metric. Instead of de-

scribing it as its value at a given moment in time, we propose a description of the way it

is updated over time in response to specific events.

• We introduce two new congestion metrics and compare their effectiveness to that of other

local metrics.

A.2 Generic congestion management unit description

Our goal is to associate a congestion value to each output port in a router. In practice, this means

that there is a fix-sized register associated with each output direction.

This register’s value is updated in response to a series of events that occur within the router,

so as to reflect the current congestion value. From a designer’s point of view, we believe that

the value of a congestion metric is better described using the way it is updated in response to

each event, than using a mathematical formula that gives the congestion value at each instant

in time Avresky et al. [2014]. This section presents a new notation for describing the dynamic

value of a congestion value associated with an output port. We start by identifying the various

events that can stimulate the congestion management unit to update its registers as well as the

associated data, followed by the different ways the register can be updated, then we present the

notation we use for describing a congestion metric.

A.2.1 Router events

We identify the following events, that can change the congestion state of one output port:

• route(p) This output port was selected by the routing unit for packet p. The structure of



A.2.2. Updating the congestion value 124

a packet is not defined here as it depends on the target design. For instance, if the size of

the packet is of interest then the field p.size may be referenced.

• vc alloc(p, vout) A virtual channel from this output port (vout) was allocated to packet p.

• flit(p, vout) A flit of packet p is leaving this port to enter VC vout in the next router.

• free(last, vout) A flit has left the downstream VC vout so a buffer is free. last is true if

vout is now empty, false otherwise.

For a typical router architecture, the above-mentioned events are sufficient to describe all

the local congestion metrics that we are interested in. The list may be updated for other router

architectures.

A.2.2 Updating the congestion value

A congestion value update is represented using one arithmetic operator and an integer value.

For instance, +1 means that the register must be incremented by one. ∗p.size means that the

current value should be multiplied by the packet’s size.

Conditional updates can be described using the C-like notation

(p.size > 5? + 0 : +1)

The above example means that the congestion value is only incremented if the packet’s size

is no higher than 5.

A.2.3 Congestion metric description

We now present the syntax for describing congestion metrics by providing the description of all

the previously cited local metrics.

A.2.3.1 The free buf metric

This is perhaps the simplest and most commonly adopted congestion metric. It simply consists

of counting the number of free buffers in the downstream router. The less buffers are available,

the more congested is the output port. Below is the description of the free buf metric:
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i n i t =0

on f l i t ( p , v o u t ) : +1

on f r e e ( l a s t , v o u t ) : −1

The syntax is straightforward. We start by providing the initial congestion value. In this

case, the congestion value is 0 for the output port. Then we provide the update to perform in

response to each event. The events that do not affect the value need not be specified.

For this simple metric, we increment the congestion level by 1 when a flit leaves the output

port (one less buffer available downstream). We decrement the congestion level when a buffer

becomes free again.

A.2.3.2 The free vc metric

This metric considers the output ports with the most available VCs as the least congested ones.

It can be described as follows:

i n i t =0

on v c a l l o c ( p , v o u t ) : +1

on f r e e ( l a s t , v o u t ) : ( l a s t ? −1: +0)

Here, we increment the congestion value as soon as an output VC is acquired (as it is no

longer free). We only decrement the congestion value if the last flit of the packet has left the

VC, i.e. the VC can be reallocated again.

A.2.3.3 The x bar metric

This metric counts the total requests for each output port. It can be described as follows:

i n i t =0

on r o u t e ( p ) : +1

on f r e e ( l a s t , v o u t ) : ( l a s t ? −1: +0)

Compared with free vc, this metric not only counts the active requests (allocated VCs), but

also the VCs waiting to be allocated later. From the description, it is easy to see why the x bar
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offers a better estimation of congestion than the other two metrics.

A.2.3.4 The fr metric

Finally, we present the description of the fr (Flits Remain) metric. The purpose of this metric is

to accurately measure the amount of multiplexing taking place at a give output port by counting

the number of flits that are going to leave from it. That is, every time a packet selects an output

port, the congestion value is incremented by the number of flits contained in the packet. Every

time a flit leaves from that output port, the congestion value is decremented. This can be written

as follows:

i n i t =0

on r o u t e ( p ) : +p . s i z e

on f l i t ( p , v o u t ) : −1

A.3 Introducing new congestion metrics

In this section, we present two new congestion metrics to overcome the limitations of the pre-

vious local metrics. The first metric is called FRN (Flits Remaining on Neighbor), which im-

proves upon the original fr metric by taking the multiplexing at the next hop into account. The

second metric (Not All Flits Are Equal) aims at offering an even finer measurement of the

amount of multiplexing in the current and downstream routers.

A.3.1 The FRN congestion metric

The idea behind this metric is quite similar to fr, but the difference is that we consider that a flit

keeps contributing to congestion in a given direction until it leaves not only the current router,

but also the next one. Below is the detailed representation of the FRN metric.

i n i t =0

on r o u t e ( p ) : +p . s i z e

on f r e e ( l a s t , v o u t ) : −1
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Note that to perform this improvement, all we had to do was change the event that reduces

the congestion value.

A.3.2 The NAFAE congestion metric

One shortcoming of the FRN metric is that it does not differentiate between the flits that are

occupying the current router, and consequently slowing down the progress of all the packets

heading in the same direction, and the flits occupying the downstream router, which should

leave sooner. The purpose of the NAFAE metric is to give more weight to the flits that are

waiting to leave the output port (weight=2) than to those flits that have already left (weight=1).

This can be concisely written as follows:

i n i t =0

on r o u t e ( p ) : +(2∗ p . s i z e )

on f l i t ( p , v o u t ) : −1

on f r e e ( l a s t , v o u t ) : −1

A.4 Experimental results and conclusions

We compare the effectiveness of the proposed congestion metrics to that of the existing local

metrics by simulating an 8x8 mesh network with 4 buffers per VC. The packet size is fixed to

5 flits and a fully adaptive routing algorithm is assumed. Whenever several possible routes are

possible (North and East, South and East, North and West, South and West), the least congested

port, i.e. the output port with the lower congestion value is selected by the routing unit. We

have used our cycle-accurate simulator described in Chapter 5 and each simulation was run for

a duration of 100000 cycles.

The obtained results are presented in fig. A.1. We can see that as expected, the simple

free buf metric offers, in general, a less precise measurement of congestion than the other met-

rics. However, under some traffic modes, we can see that it can perform better than the fr and

x req metrics (Shuffle traffic). By contrast, the two proposed metrics (frn and nafae) consis-

tently outperform the existing metrics in all the tested scenarios. Most notably, the frn metric
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Figure A.1: Average packet latency obtained with different congestion metrics.

performs surprisingly well in spite of not incurring any extra overhead compared to the initial

fr metric.

Generally speaking, the significant difference in latency that we observe in these experi-

ments highlights the important role that congestion estimation plays in the overall system per-

formance.





Appendix B

GNoCS: A highly-extensible GPU-based

parallel network-on-chip simulator

B.1 Introduction

This Appendix provides details about the implementation of GNoCS, which is the tool that

we have developed based on Chapter 5 and have used for all the experiments presented in this

thesis.

B.2 Basic data types and API

B.2.1 Integer API

As it is meant to be a lightweight simulator, GNoCS is implemented using only native C in-

tegers. Nevertheless, we redefine these types for convenience and provide the following type

names: byte, int16, int32 and int64, as well as their unsigned variants ubyte, uint16, uint32

and uint64.

Because all the bits and bit vectors contained within a router will be represented using these

types, we provide the following macros for manipulating their contents:
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/ / v e c t o r i s o f an i n t e g e r t y p e

/ / T r e a t v e c t o r as a s u c c e s s i o n o f ’ c o u n t ’ b i t v a l u e s

/ / and g e t t h e v a l u e a t o f f s e t ’ o f f s e t ’

r e a d b i t s ( v e c t o r , o f f s e t , c o u n t )

/ / T r e a t v e c t o r as a s u c c e s s i o n o f ’ c o u n t ’ b i t v a l u e s

/ / and s e t t h e v a l u e a t o f f s e t ’ o f f s e t ’ t o da ta

w r i t e b i t s ( v e c t o r , o f f s e t , count , d a t a )

As well as wrappers to access individual bits:

# d e f i n e s e t b i t ( v e c t o r , o f f s e t ) w r i t e b i t s ( v e c t o r , o f f s e t , 1 , 1 )

# d e f i n e c l e a r b i t ( v e c t o r , o f f s e t ) w r i t e b i t s ( v e c t o r , o f f s e t , 1 , 0 )

# d e f i n e g e t b i t ( v e c t o r , o f f s e t ) r e a d b i t s ( v e c t o r , o f f s e t , 1 )

B.2.2 Registers

As explained in Chapter 5, communication between modules is done via registers. We

provide register types reg8, reg16, reg32, reg64, ureg8, ureg16, ureg32, ureg64 to store the

corresponding integer types. The value stored in a register can be retrieved or modified using

the macros:

r e g w r i t e ( reg , da t a , p a r i t y )

r e g r e a d ( reg , p a r i t y )

Where parity is calculated by each thread once every cycle as

p a r i t y = c y c l e & 1 ;

The way these types and macros are used will be demonstrated in Section B.3.1.

B.2.3 Flit queue

The following structure is used to model a set of successive flits, as described in Chapter 5.
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t y p e d e f s t r u c t {

u i n t 6 4 s i z e : 4 b i t s ;

u i n t 6 4 d e s t x : 3 b i t s ;

u i n t 6 4 d e s t y : 3 b i t s ;

u i n t 6 4 d e s t z : 2 b i t s ;

u i n t 6 4 vc : 2 b i t s ;

u i n t 6 4 s t a r t : 3 b i t s ;

u i n t 6 4 end : 3 b i t s ;

u i n t 6 4 r e a d y : 1 b i t ;

u i n t 6 4 c l a s s : 2 b i t s ;

u i n t 6 4 d e l a y : r e s t f r o m ( 6 4 ) ;

} f l i t ;

The x bits and rest from macros help keep track of how many bits were used for the

previous fields and to know how many bits are left to use (out of the initial 64 bits) for the

remaining fields.

Because flits are stored in registers withing the router, we also provide a register type for

flits:

t y p e d e f f l i t f l i t r e g [ 2 ] ;

The reg read and reg write macros can be used to read and write flit registers as well.

Following is an example code that reads a flit from an input fifo and writes it to an output

register. This corresponds to crossbar traversal in hardware.

s t r u c t I n p u t U n i t {

f l i t r e g f i f o [NVC] ;

. . . } ;

s t r u c t O u t p u t U n i t {

f l i t r e g l i n k ;

. . . } ;
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{ . . .

/ / read f l i t a t head o f i n p u t p o r t i , v i r t u a l c h a n n e l j

f l i t f = r e g r e a d ( i n p u t u n i t [ i ]−> f i f o [ j ] , p a r i t y ) ;

f . r e a d y = 1 ; / / s i g n a l f l i t p r e s e n c e t o n e x t r o u t e r

/ / w r i t e f l i t t o s e l e c t e d o u t p u t p o r t k

r e g w r i t e ( o u t p u t u n i t [ k]−> l i n k , f , p a r i t y ) ;

}

And below is the code executed by the InputUnit module to dequeue the flit when it

traverses the switch.

{ . . .

/ / read f l i t a t head o f v i r t u a l c h a n n e l vc

f l i t f = r e g r e a d ( s e l f −> f i f o [ vc ] , p a r i t y ) ;

f . s t a r t ++; / / remove one f l i t f rom queue

i f ( f . s t a r t == f . s i z e ) {

/ / l a s t f l i t , up da t e c h a n n e l s t a t e s

}

/ / w r i t e back

r e g w r i t e ( s e l f −> f i f o [ vc ] , f , p a r i t y ) ;

}

B.3 Programming model

In this section, we describe the model used to program the different modules of the simulator.

This model should be followed by newly defined modules as well in order to preserve the
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correctness and accuracy of the results.

Every module in the router must perform the following three steps:

• Read all the registers it needs, from any module including itself.

• Use the read values to do computation.

• Write a value in each of its own registers.

B.3.1 Example module: Credit manager

To illustrate the above steps, we implement an example module called credit manager.

This module keeps count of the number of free buffers (aka credits) in the downstream router’s

virtual channels. The switch allocator uses these values to determine whether there is room in

the downstream router for a new flit.

This module operates as follows: Whenever the switch allocator authorizes a flit to leave

from an output port, the number of credits corresponding to the output VC is decremented. The

number of credits is incremented as soon as a credit signal is received from the downstream

router, indicating that there is a newly available buffer in the corresponding VC.

It should be noted that the actions performed by this example module are too simple to be

defined as a standalone module. In GNoCS, credit management is performed by the output unit.

However, we define it in a separate module here for the sake of illustration.

First, we define the structure holding the registers, and other temporary data owned by the

module:

t y p e d e f s t r u c t {

r eg8 c r e d i t c o u n t [NVC] ;

} Cred i tManage r ;

The credit manager module only requires one register per VC to store the number of free

buffers. The module requires the results of two other modules: the switch allocator (to check if

a flit is leaving through this output port in the current cycle), and a credit signal link, to check if

a credit was received by the downstream router.
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s t r u c t S w i t c h A l l o c a t o r {

. . .

/ / b i t n i s a c t i v e i f o u t p u t VC n i s r e c e i v i n g a f l i t

ureg8 a l l o c o u t p u t [NPORTS ] ;

} ;

s t r u c t C r e d i t L i n k {

/ / b i t n i s a c t i v e i f c r e d i t r e c e i v e d from VC n

r eg8 v a l i d ;

} ;

The module itself can now be implemented as follows:

d e v i c e void doCred i tManage r (

Cred i tManage r ∗ s e l f ,

S w i t c h A l l o c a t o r ∗ sa ,

C r e d i t L i n k ∗ c l ,

boo l p a r i t y ) {

b y t e c r e d i t v a l i d = r e g r e a d ( c l−>v a l i d , p a r i t y ) ;

b y t e a l l o c a t e d v c s = r e g r e a d ( sa−>a l l o c o u t p u t [ p ] , p a r i t y ) ;

f o r ( i n t vc = 0 ; vc < NVC; vc ++) {

/ / read

b y t e c r e d i t s = r e g r e a d ( s e l f −>c r e d i t c o u n t [ vc ] , p a r i t y ) ;

/ / mo d i f y

i f ( g e t b i t ( c r e d i t v a l i d , vc ) ) c r e d i t s ++;

i f ( g e t b i t ( a l l o c a t e d v c s , vc ) ) c r e d i t s −−;

/ / w r i t e

r e g w r i t e ( s e l f −>c r e d i t c o u n t [ vc ] , c r e d i t s , p a r i t y ) ;

}}
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B.4 Simulation automation

Many simulators take a configuration file as an input to perform a single NoC simulation. For

GNOCS, we have developed a very powerful Python program designed to run multiple simula-

tions, process the results (average etc.), save the simulation output as well as generate the plots,

all from a single configuration file. This section describes the features of this automation tool

called run.py.

B.4.1 Structure of a simulation description file

The configuration file used by the run.py program follows a JSON-like syntax. Internally, it

is read as a Python dict (dictionary) object. It consists of key-value pairs, where the keys are

strings and the values can be of any type.

The keys starting with an underscore character ( ) are considered as directives to the au-

tomation tool. For instance, compilation options, path to the simulator, the results to plot, size

and other options for the generated figures, etc. The other keys are arguments to the simulator

itself. As an example, we present a simplified version of the configuration file used to generate

figure 3.4 from Chapter 3.

{

” n e t s i z e ” : ( 8 , 8 , 2 ) ,

” f o r c e r e c o m p i l e ” : True ,

” s k i p e x i s t i n g ” : F a l s e ,

” c y c l e s ” : [ 1 0 0 0 0 0 ] ,

” r o u t i n g a l g o r i t h m ” : [ ’ e l e v a t o r− f i r s t ’ , ] ,

” t r a f f i c ” : [ ’Random ’ , ’ BitComplement ’ , ’ S h u f f l e ’ ] ,

” e l e v a t o r s ” : [ 4 8 , 32 , 16 , 8 ] ,

” e l e v a t o r s e l e c t i o n ” : [ ’ s a f e ’ , ’ r o f f ’ , ’ o p t ’ , ’ ron ’ ] ,

” r e s u l t s ” : [ ” a v e r a g e l a t e n c y ” ] ,
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” random seed ” : randoms ( 5 0 ) , # 50 i t e r a t i o n s

” a v e r a g e ” : [ ” random seed ” ] ,

# p a c k e t i n j e c t i o n r a t e

” p i r ” : make range ( 0 . 0 0 0 5 , 0 . 0 1 6 5 , 0 . 0 0 0 5 ) ,

” p l o t ” : [ {

” x ” : ” p i r ” ,

” y ” : ”∗ a v e r a g e l a t e n c y ” ,

”cmp” : ” e l e v a t o r s e l e c t i o n ” ,

” r a n g e s ” : { ” y ” : ( 0 , 4 0 0 ) } ,

” s u b p l o t ” : [ 3 , 4 ] ,

” t i t l e ” : [ ’ t r a f f i c ’ , ’ e l e v a t o r s ’ ] , } , ] ,

” d i s p l a y n a m e s ” : {

” e l e v a t o r s ” : {

4 8 : ”75% d e n s i t y ” ,

3 2 : ”50% d e n s i t y ” ,

1 6 : ”25% d e n s i t y ” ,

8 : ” 12.5% d e n s i t y ” , } ,

” e l e v a t o r s e l e c t i o n ” : {

’ s a f e ’ : ”md−s a f e ” ,

’ r o f f ’ : ”md−random−o f f l i n e ” ,

’ o p t ’ : ” o p t i m i s t i c ” ,

’ ron ’ : ”md−random−o n l i n e ” ,} ,

”∗” : {

” p i r ” : ” I n j e c t i o n r a t e ( p a c k e t / node / c y c l e ) ” ,

”∗ a v e r a g e l a t e n c y ” : ”Avg . l a t e n c y ( c y c l e s ) ” ,}}}

The directive names are for the most part self-explanatory. The force recompile direc-
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tive is useful if the simulator code was modified and we want it to be recompiled before the

simulations are performed. The skip existing option makes it possible to avoid repeating

simulations for which we have already stored the results.

Each simulation parameter (keys with no underscore), a list of values must be supplied

(not a single value). The run.py program simulates all the combinations of parameters, un-

less otherwise specified through the except directive described below. As can be seen in the

configuration file, we also provide some utility functions to generate lists of values, such as

randoms(n)to generate a list of n random seeds, and make range(start, end, step) to gener-

ate a range of real values.

The plot directive, combined with display names is very versatile, as it makes it possible

to control the way the results are displayed (what to use as the x and y axes, what are we

comparing, how many subplots in the figure, etc.) using only a few key-value pairs.

B.4.2 The except directive

Simulating all the possible combinations of parameters can be inconvenient in a number of

ways. For instance, some ranges of injection rates may only make sense for some types of

traffic. Note that in Chapter 3 - figure 3.4, we do not use the same range of injection rates in all

the configurations.

The except directive makes it possible to exclude some combinations of parameters that

are considered ”incompatible” from the set of simulations to run. For instance, if, for some

reason, we do not want to use ’opt’ elevator selection method with bit complement and shuffle

traffics, it is enough to add the following to the configuration file:

” e x c e p t ” : [ {” e l e v a t o r s e l e c t i o n ” : [ ” o p t ” ] ,

” t r a f f i c ” : [ ” S h u f f l e ” , ” BitComplement ” ] ,} ] ,

Note that the value to the except key is a list, so several exceptions may be defined.

B.4.3 SSH Support: The nodes directive

The automation tool also implements the distribution of simulations over several computers. To

use this feature, all the user has to do is specify the list of nodes (ip addresses or hostnames)
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to run the simulations on in the configuration file with the nodes directive. After running the

run.py program, the user will be asked for their login information to establish a connection

with each computer.

The total set of simulations to run is distributed evenly among the provided list of nodes.

It is worth mentioning that if a problem occurs in one of the nodes all the nodes abort their

simulations, as it may be caused by a fatal error in the simulator.
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