
HAL Id: tel-01743786
https://theses.hal.science/tel-01743786v1

Submitted on 26 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Balancing energy, security and circuit area in
lightweight cryptographic hardware design

Rodrigo Portella

To cite this version:
Rodrigo Portella. Balancing energy, security and circuit area in lightweight cryptographic hardware
design. Cryptography and Security [cs.CR]. Université Paris sciences et lettres, 2016. English. �NNT :
2016PSLEE036�. �tel-01743786�

https://theses.hal.science/tel-01743786v1
https://hal.archives-ouvertes.fr

Soutenue par Rodrigo PORTELLA
le 27 Octobre 2016
h

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à l'Ecole normale supérieure de Paris

Dirigée par David NACCACHE

h

Balancing Energy, Security and Circuit Area in Lightweight
Cryptographic Hardware Design

COMPOSITION DU JURY :

M. GUILLEY Sylvain
TELECOM-ParisTech, Rapporteur 

M. CLAVIER Cristophe
Université de Limoges, Rapporteur

M. GOUBIN Louis
Université de Versailles-St-Quentin-en-
Yvelines, Membre du jury 

M. VUILLEMIN Jean
École normale supérieure, Membre du
jury

M. KOCHER Paul
Cryptography Research, Membre du jury

Mme. TRICHINA Elena
Cryptography Research, Membre du jury

Ecole doctorale n° 386

SCIENCES MATHEMATIQUES DE PARIS CENTRE

Spécialité INFORMATIQUE

Balancing Energy, Security and Circuit Area in
Lightweight Cryptographic Hardware Design

Thèse de Doctorat

en vue de l’obtention du grade de

Docteur de l’École normale supérieure
(spécialité informatique)

présentée et soutenue publiquement le 27 octobre 2016 par

RODRIGO PORTELLA DO CANTO

devant le jury composé de :

Directeur de thèse : David Naccache (École normale supérieure)
Rapporteurs : Christophe Clavier (University of Limoges)

Sylvain Guilley (Télécom ParisTech)
Examinateurs : Louis Goubin (University of Versailles-Saint-Quentin-en-Yvelines)

Paul Kocher (Rambus Cryptography Research)
Elena Trichina (Rambus Cryptography Research)
Jean Vuillemin (École normale supérieure)

École doctorale 386: Sciences mathématiques de Paris Centre
Unité de recherche: UMR 8548 - Département d’Informatique de l’École normale supérieure

Laboratoire de recherche affilié au CNRS et a INRIA

Balancing Energy, Security and Circuit Area in
Lightweight Cryptographic Hardware Design

Thèse de Doctorat

en vue de l’obtention du grade de

Docteur de l’École normale supérieure
(spécialité informatique)

présentée et soutenue publiquement le 27 octobre 2016 par

RODRIGO PORTELLA DO CANTO

devant le jury composé de :

Directeur de thèse : David Naccache (École normale supérieure)
Rapporteurs : Christophe Clavier (University of Limoges)

Sylvain Guilley (Télécom ParisTech)
Examinateurs : Louis Goubin (University of Versailles-Saint-Quentin-en-Yvelines)

Paul Kocher (Rambus Cryptography Research)
Elena Trichina (Rambus Cryptography Research)
Jean Vuillemin (École normale supérieure)

École doctorale 386: Sciences mathématiques de Paris Centre
Unité de recherche: UMR 8548 - Département d’Informatique de l’École normale supérieure

Laboratoire de recherche affilié au CNRS et a INRIA

ACKNOWLEDGEMENTS

First and foremost I want to express my sincere gratitude to Prof. David Naccache, for his support, dedi-
cation and patience. David has always been an incentive to me. He never let me lose focus and always
made sure I kept on top of my work, which taught me how to become a better researcher. Without the
encouragement of Prof. Naccache, this work would not have been completed.

I am mostly grateful to Louis Goubin, Paul Kocher, Elena Trichina, and Jean Vuillemin for agreeing to
serve in this thesis committee. I express my particular gratitude to my thesis referees Christophe Clavier
and Sylvain Guilley for their availability and dedication. I am very honored to have such a prestigious
committee.

I would like to thank my colleagues at Rambus and Cryptography Research for having always encour-
aged me to continue with my research. A special thanks to Elke De Mulder for creative time off discussing
innovative projects and supporting me to pursue this thesis. I would like to show my appreciation to
Roberto Rivoir and Pankaj Rohatgi whose understanding gave me the confidence to finish this work. A
very special thank you to Craig Hampel, who continuously believed in my work and was always eager
to help.

I would also like to show my appreciation to the co-authors of the publications I worked with. All
colleagues I had the pleasure to collaborate with were truly cooperative and my exchange with them
was very constructive. A special thanks to Diana Ştefania Maimuţ and Roman Korkikian who were al-
ways available to support and contribute to my research. More than colleagues, Diana and Roman have
become dear friends.

I would like to dedicate this work to some very special people who provided endless support and
understanding throughout the development of this work. To my mother Sônia Portella do Canto who
always believed in me and encouraged me to pursue my Ph.D. studies. Your endless dedication made
me the man I am today. You are the bravest person I have ever met. The least I could do to pay you back
a small fraction of the love, understanding and guidance you gave me was to make you proud. I hope
I succeeded in doing so. Thank you for all your dedication and love. To my second mother Natacha
Laniado, I cannot express how grateful I am of having you as a friend. Without you this thesis would
have not been possible to complete. All the support you gave me, and all the issues you dealt with were
outstanding. You are the most authentic and energetic person I have ever met and I love sharing good
times with you.

To my beautiful and cheerful wife Daiane Oakes, I am thankful to eternity and beyond for having you
in my life. You make me a better man every day. The grace in your eyes and the delight of your smile
makes me the happiest person alive. Thank you for all your love and support, I love you. To my sister-
in-law Rachel Oakes and to my mother-in-law Leonilda Ferreira, thank you for being a family to me and
loving me as one of yours.

Last but not the least, I express all my gratitude to Crégolas, for being a true companion and for always
sharing love and attention.

Rodrigo Portella do Canto

Nada é por acaso.

– Daiane Oakes

To Irma Arenhart and Alci Portella do Canto, in memoriam.

CONTENTS

1 Introduction 13
1.1 Terminology . 14
1.2 Hardware System Security . 17
1.3 Notations and Conventions . 18
1.4 Finite Fields Arithmetic . 19
1.5 Thesis Outline . 22
1.6 Publications . 23

2 From a Transistor to a Cryptosystem 26
2.1 Integrated Circuit and Logic Design . 27

2.1.1 Introduction . 27
2.1.2 VLSI Design . 27
2.1.3 The CMOS Transistor . 30
2.1.4 CMOS Logic . 31

2.1.4.1 The Inverter . 32
2.1.4.2 The NAND Gate . 33
2.1.4.3 Compound Gates . 34
2.1.4.4 Tri-state Buffers . 34

2.1.5 CMOS I-V Characteristics . 35
2.1.5.1 CMOS Electrical Properties . 35
2.1.5.2 Non-Ideal I-V Effects . 37

2.2 Hardware-Based Cryptosystems . 41
2.2.1 Introduction . 41
2.2.2 Definitions . 42
2.2.3 Hardware Design Architecture . 42

2.2.3.1 Throughput and Latency . 43
2.2.3.2 Area . 43

2.2.4 Cryptographic Hardware Design . 44
2.2.4.1 Iterative Looping . 45
2.2.4.2 Loop Unrolling . 45
2.2.4.3 Pipelining . 46
2.2.4.4 Sub-Pipelining . 48
2.2.4.5 Pseudo-Random Sequences in Hardware 49

2.3 Private-Key Cryptosystems . 50
2.3.1 The Data Encryption Standard . 50
2.3.2 The Advanced Encryption Standard . 50

2.3.2.1 AES Rounds . 51
2.3.2.2 AES in Hardware (FPGA and ASIC) . 53

2.4 Cryptographic Hash Functions . 57
2.4.1 Introduction . 57
2.4.2 Security Requirements of Hash Functions . 58

2.4.2.1 Preimage Resistance . 58
2.4.2.2 Second Preimage Resistance . 58
2.4.2.3 Collision Resistance . 59
2.4.2.4 Overview of Hash Algorithms . 60

2.4.3 The Secure Hash Algorithm 1 . 60

2.4.4 The Secure Hash Algorithm 2 . 60
2.4.5 Implementation Tradeoffs and Design Methodologies 62
2.4.6 Known SHA-2 Hardware Optimization Techniques 62
2.4.7 FPGA-Based Cryptography . 63
2.4.8 SHA-2 in Hardware (FPGA and ASIC) . 63

3 Cryptographic Hardware Acceleration and Power Minimization 66
3.1 BCH with Barrett Polynomial Reduction . 67

3.1.1 Introduction . 67
3.1.2 Barrett’s Reduction Algorithm . 67

3.1.2.1 Dynamic Constant Scaling . 68
3.1.3 Barrett’s Algorithm for Polynomials . 69

3.1.3.1 Orders . 69
3.1.3.2 Terminology . 69
3.1.3.3 Polynomial Barrett Complexity . 70
3.1.3.4 Barrett’s Algorithm for Multivariate Polynomials 71
3.1.3.5 Dynamic Constant Scaling in Q[x⃗] . 73

3.1.4 Application to BCH Codes . 75
3.1.4.1 General Remarks . 75
3.1.4.2 BCH Preliminaries . 75
3.1.4.3 BCH Decoding . 76
3.1.4.4 Syndrome . 77
3.1.4.5 Error Location . 77
3.1.4.6 Peterson’s Algorithm . 77
3.1.4.7 Chien’s Error Search . 77

3.1.5 Implementation and Results . 78
3.1.5.1 Standard Architecture . 78
3.1.5.2 LFSR and Improved LFSR Architectures 79
3.1.5.3 Barrett Architecture (regular and pipelined) 79
3.1.5.4 Performance . 80

3.2 Managing Energy on SoCs and Embedded Systems . 81
3.2.1 Introduction . 81
3.2.2 The Model . 81
3.2.3 Optimizing Power Consumption While Avoiding System Malfunction 82
3.2.4 The General Case . 84
3.2.5 Probabilistic Strategies . 84

4 Side-Channel Attacks and Hardware Countermeasures 86
4.1 An Economical Introduction to Side-Channel Attacks . 87
4.2 Differential Cryptanalysis . 88
4.3 Differential Power Analysis . 89
4.4 Power Scrambling and the Reconfigurable AES . 93

4.4.1 Introduction . 93
4.4.2 The Proposed AES Design . 93
4.4.3 Energy and Security . 94

4.4.3.1 Power Analysis . 94
4.4.3.2 Power Scrambling . 94
4.4.3.3 Transient Fault Detection . 97
4.4.3.4 Permanent Fault Detection . 97
4.4.3.5 Runtime Configurability . 98

4.4.4 Halving the Memory Required for AES Decryption 99
4.4.5 Implementation Results . 100

4.5 Cryptographically Secure On-Chip Firewalling . 102
4.5.1 Introduction . 102
4.5.2 Identifying Attack Surfaces on NoCs . 103

4.5.2.1 Request Path . 103
4.5.2.2 Firewall Reprogramming Path . 103
4.5.2.3 Firewall State at Rest . 104

4.5.3 Integration of Security Resources into an SoC . 104
4.5.3.1 Securing the Request Path . 105
4.5.3.2 Securing the Firewall . 105

4.5.4 Access Control Firewalling to On-Chip Resources 105
4.5.4.1 Endpoint versus NoC Firewalling . 105
4.5.4.2 Cryptographically Secure Access Control 106
4.5.4.3 CSAC Synthesis Results . 109
4.5.4.4 FPGA Implementation . 110

4.6 Practical Instantaneous Frequency Analysis Experiments 112
4.6.1 Introduction . 112
4.6.2 Preliminaries . 113

4.6.2.1 The Hilbert Huang Transform . 113
4.6.2.2 AES Hardware Implementation . 116

4.6.3 Hilbert Huang Transform and Frequency Leakage 117
4.6.3.1 Why Should Instantaneous Frequency Variations Leak Information? . . . 117
4.6.3.2 Power consumption of one AES round . 118
4.6.3.3 Hilbert Huang Transform of an AES Power Consumption Signal 119

4.6.4 Correlation Instantaneous Frequency Analysis . 121
4.6.4.1 Correlation Instantaneous Frequency Analysis on Unprotected Hardware 122
4.6.4.2 Correlation Instantaneous Frequency Analysis in the Presence of DVS . . 124

5 Zero-Knowledge Protocols and Authenticated Encryption 126
5.1 Public-Key Based Lightweight Swarm Authentication . 127

5.1.1 Introduction . 127
5.1.2 Preliminaries . 127

5.1.2.1 Fiat-Shamir Authentication Protocol . 127
5.1.2.2 Topology-Aware Distributed Spanning Trees 128

5.1.3 Distributed Fiat-Shamir Authentication . 129
5.1.3.1 The Approach . 129
5.1.3.2 Back-up Authentication . 130

5.1.4 Security . 130
5.1.4.1 Soundness . 130
5.1.4.2 Zero-knowledge . 130
5.1.4.3 Security Analysis . 131

5.2 The Offset Merkle-Damgård Authenticated Cipher . 133
5.2.1 Introduction . 133
5.2.2 Preliminaries . 135

5.2.2.1 Security Definitions and Goals . 137
5.2.2.2 Quantitative Security Level of OMD-SHA256 139
5.2.2.3 Quantitative Security Level of OMD-SHA512 139
5.2.2.4 Security Proofs . 140
5.2.2.5 Generalization of OMD Based on Tweakable Random Functions 140
5.2.2.6 Instantiating Tweakable RFs with PRFs . 143

5.2.3 Specification of OMD . 144
5.2.3.1 The OMD Mode of Operation . 145
5.2.3.2 OMD-SHA256: Primary Recommendation for Instantiating OMD 146
5.2.3.3 OMD-SHA512: Secondary Recommendation for Instantiating OMD . . . 148
5.2.3.4 Compression Functions of SHA-256 and SHA-512 149

6 Conclusion 154

A Code: Barrett’s Algorithm for Polynomials 177

B Compression Functions 179
B.1 Compression Functions of SHA-256 and SHA-512 . 179

B.1.1 The Compression Function of SHA-256 . 180
B.1.2 The Compression Function of SHA-512 . 180

LIST OF FIGURES

1.1 The hierarchical diagram of the different fields of cryptography. 14
1.2 The broad fields of cryptography [MvV97]. 15
1.3 The hierarchical diagram of the different fields of cryptanalysis [PP09]. 17

2.1 Gajski-Kuhn Y-chart [GK83]. 28
2.2 The different design styles of a digital VLSI circuit [GBC+96]. 29
2.3 The two types of CMOS devices. 31
2.4 CMOS transistor symbols and switch levels. 32
2.5 General logic gate using pull-up and pull-down networks. 32
2.6 CMOS inverter gate schematic and symbol. 33
2.7 CMOS NAND gate schematic and symbol. 33
2.8 CMOS AND-OR-INVERTER-22 schematic and symbol. 34
2.9 CMOS transmission gate. 34
2.10 CMOS tri-state buffer schematic and symbol. 35
2.11 I-V characteristics of ideal nMOS (upper graph) and pMOS (lower graph) transistors

[WH10]. 38
2.12 General Iterative Looping architecture. 45
2.13 General architecture of Loop Unrolling. 46
2.14 General architecture of Pipelining. 47
2.15 General architecture of Sub-Pipelining. 48
2.16 General architecture of a Feedback Shift Register (FSR). 49
2.17 General architecture of a Linear Feedback Shift Register (LFSR). 49
2.18 Secret-key cryptography (overview). 50
2.19 The AES state. 51
2.20 The AES encryption flowchart. 52
2.21 The AES decryption flowchart. 52
2.22 Application of SubBytes transformation to the state. 53
2.23 Application of ShiftRows transformation to the state. 53
2.24 Application of MixColumns transformation to the state. 53
2.25 Decomposition of key scheduling into KeyExpansion and RoundKeySelection for Nk = 6

(192-bit key) and Nb = 4 (128-bit data block). In the figure, ki is a word of 32 bits. 54
2.26 KeyExpansion formula for i mod Nk ̸= 0. 54
2.27 KeyExpansion formula for i mod Nk = 0. 54
2.28 Basic protocol for digital signatures with a hash function. 57
2.29 Substitution attack on a hash scheme without second preimage resistance. 59
2.30 Attack on a hash scheme without second collision resistance. 59
2.31 General block diagram of the hardware SHA-2 implementation. 61

3.1 Standard LFSR architecture block diagram. (Design BCH-LFSR). 79
3.2 Improved LFSR architecture block diagram. In denotes the module’s serial input. (De-

sign BCH-LFSR-improved). 79
3.3 Example of a request function x(t) with a threshold x0. When x(t) ≥ x0, it is more

advantageous to be in A-mode. Otherwise S should better go into B-mode. 83
3.4 Example of v(t) (purple) for an example function x(t) (blue). 85
3.5 Example of v(t) (purple) for x(t) = | sin(x) + sin(2x)| (blue). 85

4.1 Power trace of an RSA exponentiation. 89
4.2 AES encryption flowchart. 93

4.3 AES decryption flowchart. 94
4.4 Flow of computation in time. 95
4.5 Unprotected implementation: Pearson correlation value of a correct (red) and an incor-

rect (green) key byte guess. 500,000 power traces. 95
4.6 Power scrambling with a PRNG. 96
4.7 LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green)

key byte guess. 1,200,000 power traces. 96
4.8 Power scrambling with tri-state buffers. 97
4.9 Tri-state buffers implementation: Pearson correlation value of the correct key byte (green)

and a wrong key byte guess (red). 800,000 power traces. 97
4.10 Transient fault detection scheme for AES. 98
4.11 Permanent fault detection scheme for AES. 98
4.12 Memory halving for AES decryption when Nr = 10. 100
4.13 AES design’s inputs and outputs. 100
4.14 Firewalling in an SoC based on NoC interconnect. 102
4.15 Evolution of NoC integration services. 103
4.16 Different attack surfaces on a NoC firewall. 104
4.17 Simple firewall partitioning of an address space covering two targets. 105
4.18 Endpoint firewall controlling access from initiators to a targets. 106
4.19 Content of a complex CSAC region. 107
4.20 HMAC intermediate used for key integrity checks. 108
4.21 Timing diagram of reset-on-scan block. 109
4.22 Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black line,

upper and lower envelopes are dot-dashed with their mean mi,j in thick solid red line;
(c) shows the difference between u(t) and the envelope’s mean. 114

4.23 The increasing frequency function cos((a + bt)t). 116
4.24 Analysis of the function cos((a + bt)t): Marginal Hilbert spectrum of Fig. 4.23. 116
4.25 Analysis of the function cos((a + bt)t): Hilbert’s amplitude spectrum contour of Fig. 4.23. 116
4.26 Analysis of the function cos((a + bt)t): Hilbert’s amplitude spectrum contour of Fig. 4.23. 116
4.27 Inverters switch simulation. 117
4.28 Four AES last rounds. 119
4.29 AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-

flops: Full voltage range. 120
4.30 AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-

flops: Zoomed voltage range. 120
4.31 AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-

flops: Power spectra density for the signals shown on Fig. 4.29. 120
4.32 Power consumption of our experimental AES-128 implementation: initial signal u(t). . . 121
4.33 Power consumption of our experimental AES-128 implementation: The Empirical Mode

Decomposition of signal u(t). 121
4.34 Power consumption of our experimental AES-128 implementation: IF distribution over

time for the different IMFs of Fig. 4.33. 122
4.35 Fourier and Hilbert power spectrum density of Fig. 4.32. 122
4.36 Dependency between the Hamming distance of 9th and 10th AES round states and the

IF of the first IMF component at time 276 ns (corresponding to the beginning of the last
AES round). 123

4.37 Maximum correlation coefficients for a byte of the last round AES key in an unprotected
implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA. (a)
CPA (b) CSBA (c) CIFA. 123

4.38 Power traces of the FPGA AES implementation. The unprotected signal is shown in red.
The DVS-protected signal is shown in black. 124

4.39 Maximum correlation coefficient for a byte of the last round AES key with simulated
DVS. (a) CPA (b) CSBA (c) CIFA. 125

5.1 Fiat-Shamir authentication round. 128
5.2 The proposed algorithm running on a network. Each parent node aggregates the values

computed by its children before transmitting it upwards to the base station. 130

5.3 The OMD[R̃, τ] scheme using a tweakable random function R̃ : T × ({0, 1}n×{0, 1}m)→
{0, 1}n (i.e., R̃

R← FuncT (n+m, n)). The tweak space T consists of five mutually exclusive
sets of tweaks, namely T = N×N×{0} ∪ N×N×{1} ∪ N×N×{2} ∪ N×{0} ∪ N×{1},
where N = {0, 1}|N | is the set of nonces, N is the set of positive integers. 141

5.4 Building a tweakable PRF F̃
⟨T ⟩
K : {0, 1}n × {0, 1}m → {0, 1}n using a PRF FK : {0, 1}n ×

{0, 1}m → {0, 1}n. There are several efficient ways to define the masking function ∆(T)
[Rog04a, CS07, KR11]. We use the method of [KR11]. 144

5.5 The encryption process of OMD[F, τ] using a keyed compression function FK : ({0, 1}n×
{0, 1}m) → {0, 1}n with m ≤ n. (Top) The encryption process when the message length
is a multiple of the block length m and no padding is required. (Middle) The encryption
process when the message length is not a multiple of the block length and the final block
M∗ is padded to make a full block M∗||10m−|M∗|−1 . (Bottom, Left) Computing the in-
termediate value Ta when the bit length of the associated data is a multiple of the input
length n+m. (Bottom, Right) Computing Ta when the bit length of the associated data is
not a multiple of n+m and the final block is padded to make a full block A∗||10n+m−|A∗|−1

is needed. The output ciphertext is C||Tag. For operation ⊕ see our convention in Sec-
tion 5.2.2. Five types of key-dependent masking values (corresponding to five mutually
exclusive tweak sets) are used; these are denoted by ∆N,i,0, ∆N,i,1, ∆N,i,2, ∆̄i,0 and ∆̄j,1,
for i ≥ 1 and j ≥ 0, where N is the nonce. Note that the masks used in computing Ta do
not depend on the nonce. 147

5.6 Definition of OMD[F, τ]. The function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n is a keyed
compression function with K = {0, 1}k and m ≤ n. The tag length is τ ∈ {0, 1, · · · , n}.
Algorithms E andD can be called with arguments K ∈ K, N ∈ {0, 1}≤n−1, and A, M,C ∈
{0, 1}∗. ℓmax is the bound on the maximum number of blocks in any input to the encryp-
tion or decryption algorithms. 148

6.1 Tradeoffs in cryptography. 155

LIST OF TABLES

2.1 Trends in microelectronics in the past decades [WH10]. 27
2.2 Comparison of VLSI design methodologies [WH10]. 30
2.3 Comparison of different AES implementations. 55
2.4 Comparison of different pipelined AES implementations. 56
2.5 Comparison of different pipelined AES implementations. 65
2.6 Comparison of different SHA-2 implementations. 65

3.1 Synthesis results of the four BCH designs. 80
3.2 Increase ∆P of the power consumption function in a short time period ∆T 82
3.3 Increase ∆P of the power consumption function in a short time period ∆T . (rA + rB)/2

represents the average rate due to the alternation of modes A and B during the request. . 84

4.1 29 possible configurations. 99
4.2 Number of configurations. 99
4.3 Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK

open-cell library. 101
4.4 Spartan3E-500 utilization summary report. 101
4.5 Synthesis results of five CSAC designs (4 regions, 6 initiators, 4GB of address space) on a

45nm technology node. 109
4.6 Synthesis results of five CSAC designs (8 regions, 14 initiators, 64GB of address space) on

a 45nm technology node. 110
4.7 CSAC (4 regions, 6 initiators, 4GB of address space) synthesis on Zynq-7000 board. 110
4.8 CSAC (8 regions, 14 initiators, 64GB of address space) synthesis on Zynq-7000 board. . . 111

LIST OF ALGORITHMS

1 AES algorithm description. 55
2 Barrett’s algorithm. 68
3 Polynomial Barrett algorithm. 72
4 Peterson’s algorithm. 78
5 Standard modular division (BCH-standard). 78
6 Computation of an RSA signature (modular exponentiation). 89
7 Dynamic Voltage Scrambling (DVS) simulator. 124
8 Mooij-Goga-Wesselink algorithm, basic part. 129
9 Compression function of SHA-256 . 181
10 Compression function of SHA-512 . 181

CHAPTER 1

INTRODUCTION

Cryptography is an ancient art. The word comes from the Greek κρπτ óς , that means hidden, and
γράϕϵιν, that means writing. It is therefore the science of writing secrets, and has started thousands of
years ago. The advent of cryptography is sometimes linked with the origin of written language [Vau05].
An example of that are the hieroglyphs, a written language based on symbols, created by the Egyptians.
The scribes were usually the only ones who mastered it. They used to transmit their knowledge from
father to son 1 until the Egyptian society fell apart and collapsed. For this reason, hieroglyphs remained
a secret to humanity until Jean-François Champollion broke the code, in 1822 [Cha24].

Many historical personalities like Julius Caesar, Francis Bacon, Louis XIV, and Napoleon invented their
own ciphers and used them for their secret correspondence [MM03]. During the American War of In-
dependence, spies employed a code system where words were replaced with numbers extracted from
a codebook. Around 1900, the French military employed a ciphering machine called the Bazeries cylin-
der. In the World War II, the German military bought the Enigma machine, perhaps the most famous
cryptosystem.

Early cryptographic schemes focused on converting language into symbols, or mixing language charac-
ters, to carry the message from one place to another. Until late 19th century, cryptographic algorithms
lacked rigorous and formal security proofs, and were seen as an art rather than science. It was only in
the early 20th century that more sophisticated encryption means, using mechanical and electromechan-
ical machines, such as the Enigma machine, were created, and cryptography increased in complexity.
This development happened in parallel with cryptanalysis, the study of breaking such codes and ci-
phers. The Enigma, for example, was reversed engineered several times by Polish, French and British
military intelligence, changing the course of World War II [Vau05].

A broader concept, cryptology, is the science of secure communications or, in other words, the study
of cryptosystems. The word stems from Greek roots κρπτ óς and λoγία, meaning hidden and word,
respectively. Cryptology basically subdivides into two introduced disciplines, cryptography and crypt-
analysis, since these two topics are closely related. When implementing a cryptosystem, one needs to
prove its strength by actually attacking it (or proving the infeasibility of the attack). In other words,
cryptanalysis assures that a cryptosystem is secure.

Fig. 1.1 depicts the three main building blocks of cryptography [PP09]:

Symmetric Algorithms Two parties have an encryption and decryption method for which they share
a secret key. All cryptography from ancient times until 1976 was exclusively based on symmet-
ric methods. Symmetric ciphers are still in widespread use, especially for data encryption and
message integrity checks;

Asymmetric (or Public-Key) Algorithms In 1976 an entirely different type of cipher was introduced by
Whitfield Diffie, Martin Hellman and Ralph Merkle [DH76, Mer78]. In public-key cryptography,
a user possesses a secret key as in symmetric cryptography but also a public key. Asymmetric

1. Although some craftsmen were able to get their sons into the school for scribes, it was very rare.

14 Introduction 1.1

Cryptology

Cryptography Cryptanalysis

Asymmetric CiphersSymmetric Ciphers Protocols

Figure 1.1: The hierarchical diagram of the different fields of cryptography.

algorithms can be used for applications such as digital signatures and key establishment, and also
for classical data encryption;

Cryptographic Protocols Also called security protocols, they are abstract or concrete protocols that
perform security-related functions applying cryptographic methods or primitives. Cryptographic
protocols describe how the algorithms should be used, with details about data structures, key
establishment, authentication between parties, secret sharing methods, secure multi-party com-
putation, etc.

The early usage of cryptography was to enable governmental and military applications. Nowadays it
is used everywhere and is taken for granted by most people. We use underlying cryptography embed-
ded in cryptosystems to surf the internet, purchase online and communicate using the cellphone. It
is a powerful and important tool that enables fundamental operations in our modern society. Modern
cryptology appeared somewhere in the mid-1970s, when academic research started to mature this dis-
cipline. Although before, in 1949, Claude Shannon published a paper [Sha49] linking cryptography to
information theory, discussing the foundations of modern cryptography and providing a comprehen-
sive theory of secrecy systems. His work proved the unconditional security of the one-time pad cipher,
earlier published by Gilbert Vernam in 1926 [Ver].

Apart from the groundbreaking work of Claude Shannon, two other contributions mark the 1970s as
the beginning of a new era: First, in 1973, Horst Feistel published a work [Fei73, Fei74] of an iterative
symmetric block-cipher called Lucifer, based on the Feistel construction. This algorithm was submitted
to the National Bureau of Standards and was accepted in 1976 as the Data Encryption Standard (DES),
becoming the first standardized cryptographic algorithm. Secondly, in 1976, the concept proposed by
Whitfield Diffie and Martin Hellman [DH76] defined the basis of a new paradigm: public-key cryptog-
raphy. They showed that secret communication was possible without any transfer of secrets.

1.1 Terminology

Cryptography has developed an extensive vocabulary. This section lists some definitions that will
be encountered in the rest of this thesis.

The basic security requirements are defined as the following properties [Til99]:

Confidentiality is a service used to keep the content of information hidden from all but those autho-
rized to have it. Secrecy is a term synonymous to confidentiality and privacy. There are numerous
approaches to providing confidentiality, ranging from physical protection to mathematical algo-
rithms which render data unintelligible.

1.1 Terminology 15

Data integrity is a service which addresses the unauthorized alteration of data. To ensure data integrity,
one must have the ability to detect data manipulation by unaccredited parties. Data manipulation
includes such operations as insertion, deletion, and substitution.

Authentication is a service related to identification. This function applies both to entities and to in-
formation itself. Two parties entering into a communication should identify each other. Informa-
tion delivered over a channel should be authenticated as to origin, date of origin, data content,
time sent, etc. For these reasons this aspect of cryptography is usually subdivided into two major
classes: entity authentication and data origin authentication. Data origin authentication implicitly
provides data integrity (for if a message is modified, the source has changed).

Nonrepudiation is a service which prevents an entity from denying previous commitments or actions.
When disputes arise due to an entity denying that certain actions were taken, a means to resolve
the situation is necessary. For example, one entity may authorize the purchase of property by an-
other entity and later deny that such authorization was granted. A procedure involving a trusted
third party is needed to resolve the dispute.

Encryption is the first basic cryptographic operation to ensure secrecy or confidentiality of data trans-
mitted across an insecure communication channel. Basically, encryption takes an information element
(often called the message, message block, or plaintext) and translates it into a cryptogram (usually referred of
as the codeword or ciphertext) using a cryptographic secret key. Decryption is the reverse operation, where
the ciphertext is translated to a plaintext under a secret key. The step-by-step description of an encryption
(or decryption) scheme is called the encryption algorithm (or decryption algorithm). Denominations such
as ciphers, cryptoalgorithms or cryptosystems are often used without the need to differentiate encryption
from decryption.

Cryptography

Confidentiality

Public-Key
Encryption

Symmetric-
Key

Encryption

Stream
Ciphers

Authentication
Zero-

Knowledge
Proofs

IntegrityHash
Functions

Non-
repudiation

Keyed
Hash

Functions

Public-Key
Signatures

Symmetric-
Key

Signatures

Authenticated
Encryption

Figure 1.2: The broad fields of cryptography [MvV97].

A fundamental goal of cryptography is to adequately address these four areas in both theory and prac-
tice. Cryptography is about the prevention and detection of cheating and other malicious activities.
Many of these will be briefly introduced in this chapter, with the detailed discussion being left to later
chapters. These primitives should be evaluated with respect to various criteria such as:

Security Level. This is usually difficult to quantify. Often it is given in terms of the number of opera-
tions required (using the best methods currently known) to defeat the intended target. Typically
the security level is defined by an upper bound on the amount of work necessary to defeat the
objective. This is sometimes called the work factor.

16 Introduction 1.1

Functionality. Primitives will need to be combined to meet various information security objectives.
Which primitives are most effective for a given objective will be determined by the primitives’
basic properties.

Methods of operation. Primitives, when applied in various ways and with various inputs, will typi-
cally exhibit different characteristics; thus, one primitive could provide very different function-
alities depending on its mode of operation or usage. In other words, methods of operation means
how different characteristics the protocol exhibits when applied in various ways and with various
inputs.

Performance. Refers to the efficiency of a primitive in a particular mode of operation. (For example, an
encryption algorithm may be rated by the number of bits per second which it can encrypt.)

Ease of implementation. Refers to the difficulty of realizing the primitive in a practical instantiation.
This might include the complexity of implementing the primitive in either software or hardware.

Cryptanalysis Cryptanalysis is the art of breaking cryptosystems. Breaking a cipher does not necessar-
ily mean finding a practical way to recover the plaintext from the ciphertext. Instead, breaking a cipher
involves finding weaknesses in the cipher that can be exploited with complexity less than a brute-force
attack [Sch00], in which every possible key is tested in sequence until the correct one is found. A crypt-
analysis is also considered successful when it breaks a reduced-round variant of the cipher — 8-round
AES versus the full 10-round AES (for 128-bit key), for example. Academic publications usually start
out with a reduced-round variant cryptanalysis that eventually escalates to all the cipher rounds.

Modern cryptanalysis is fundamentally based on Kerckhoffs’s principle [Ker83], which states that a cryp-
tosystem should remain secure even if everything about the system, except the key, is public knowledge.
Kerckhoffs’s article, published in 1883 and entitled “The Military Cryptography”, states the following
design principles:

— The system must be practically, if not mathematically, indecipherable.
— The system must not be required to be secret, and it must be able to fall into the hands of the

enemy without inconvenience.
— The system’s key must be communicable and retainable without the help of written notes, and

changeable or modifiable at the will of the correspondents.
— The system must be applicable to telegraphic correspondence.
— Apparatus and documents must be portable, and its usage and function must not require the

concourse of several people.
— Finally, it is necessary, given the circumstances that command its application, that the system be

easy to use, requiring neither mental strain nor the knowledge of a long series of rules to observe.

We can depict the field of cryptanalysis as shown in Fig. 1.3. The first subfield of cryptanalysis, Classical
cryptanalysis, is the study of how to break the cryptosystem by means of recovering the secret key from
the ciphertext or, alternatively, recovering the plaintext from the ciphertext. It is divided in Mathemati-
cal Analysis and Brute-Force Attacks. The first exploits algorithmic weaknesses to break the cipher and
therefore discovers the secret key; the second treats the cipher as a black-box and tries all the possible
key combinations, until the correct one is found.

Implementation attacks are a subfield of cryptanalysis exploiting implementation weaknesses rather
than algorithmic mathematical properties. An unprotected implementation of a block cipher may leak
information through the power being consumed or the time necessary to perform internal operations,
and this side-channel information can be used by a cryptanalyst to break the cipher. Implementation
attacks are most common when the attacker has physical access to cryptosystem.

The third cryptanalysis subfield, social engineering, uses blackmailing, espionage, bribing or other il-
legal practices to retrieve information that can lead to the discovery of the secret key. The more cryp-
tosystem and secure protocols evolve, the more social engineering is used to trick people into disclosing
sensitive information.

Cryptanalysis attacks are alternatively divided into passive and active attacks. A passive attack oc-
curs when the communication is being eavesdropped and the information confidentiality is therefore

1.2 Hardware System Security 17

Cryptanalysis

Implementation
Attacks

Classical
Cryptanalysis

Social
Engineering

Mathematical
Analysis Brute-Force Attacks

Figure 1.3: The hierarchical diagram of the different fields of cryptanalysis [PP09].

threatened. An active attack, on the other hand, occurs when the attacker attempts to modify the com-
munication information, thus compromising the message’s confidentiality, integrity and authenticity.
In either way, the attack objective is to determine the key [Sti95].

The most common passive attacks include:

Ciphertext-Only The attacker has only access to the ciphertext.
Known-Plaintext The attacker has access to both the plaintext and the corresponding ciphertext.
Chosen-Plaintext The attacker has gained access to the encryption process of a cryptosystem and there-

fore, has the ability to input plaintext and observe the corresponding ciphertext.
Chosen-Ciphertext This is the reverse of a chosen plaintext attack. The attacker has access to the de-

cryption process and is able to input ciphertexts and observe the original plaintext.

Three well-known active attacks are:

Man-in-the-Middle (MITM) Here the attacker controls the communication channel between two par-
ties. The attacker can then retrieve information and send on altered messages without the other
party being aware of it. Passwords are easily compromised in a MITM attack. Typically, hash
functions are used to thwart such attacks.

Timing Attacks Cryptographic algorithms’ inputs and internal data vary in the time it takes to process.
By carefully measuring the amount of time required to perform certain operations, information
can be retrieved and indeed, secret keys can even be uncovered [Koc96].

Power Analysis This technique involves interpreting power consumption measurements of various
cryptographic operations to retrieve information [KJJ99]. Features such as DES permutation and
shift operations can be easily spotted, as their power consumption traces are visibly different.
Differential Power Analysis (DPA) is an even more powerful method of attack, in which statistical
analysis and error correction techniques are also used to deduce information.

The science of cryptology is continually driven forward by the constant battle between cryptographers
trying to secure information and cryptanalysts attempting to break cryptosystems.

1.2 Hardware System Security

Cryptographic engineering blends theory and practice of engineering a cryptosystem. A crypto-
graphic engineer is thus responsible for translating the mathematical and formal descriptions of cryp-
tographic algorithms to hardware or software systems. After designing and coding the encryption and

18 Introduction 1.3

decryption modules, authentication blocks, digital signature schemes or any other cryptographic meth-
ods, a cryptography engineer is, nowadays, interested in cryptanalyzing the system for the purpose
of checking its robustness and strength against attacks. In the past, cryptographic engineering relied
on the mathematical strength of a cryptographic algorithm as a blind proof that the cryptosystem was
therefore unbreakable. New cryptanalysis techniques have completely torn apart this belief.

Classical and theoretical cryptanalysis consider attack scenarios where adversaries access the cryptosys-
tem as a black box, i.e., its inputs and outputs. For example, in a chosen ciphertext attack, it is assumed
that the attacker can choose the ciphertext input into the decryption black-box and also that he can read
the plaintext at the black box output. In real life, though, attackers might be even more powerful. For
example, an adversary may monitor side-channel information that leaks out of the black-box, such as
execution time or power consumption. The basic idea behind side-channel analysis is to infer secret
information from this extra information.

Secure protocols, cryptographic algorithms and primitives do not specify how they should be imple-
mented in hardware or software. Instead, they focus on describing their mathematical operations and
transformations. The specification of a secure protocol disregards by which physical device it will be
executed. For example, the target application could be a software running on a general purpose pro-
cessor or a custom integrated circuit. Besides, each target platform leaks side-channel information in a
different way.

The first attack of this kind was published by Paul Kocher in 1996 [Koc96]. Kocher showed how differ-
ent RSA [Jr.96] operations could be tracked down by the actual time they take to compute. By doing
so, Kocher demonstrated that it was possible to differentiate the multiplication and the squaring steps,
therefore exposing the secret key. In 1999, Kocher et al. also presented a technique to infer the DES se-
cret key by recording the power consumption of the device [KJJ99], called Differential Power Analysis
(DPA). Power attacks proved to be so powerful that new academic publications rapidly demonstrated
how to apply DPA to break the newly symmetric cipher approved by NIST, the Advanced Encryption
Standard (AES). Although AES had been selected in the early 2000 to overcome security issues with
DES, presenting a bigger key space and a more complex mathematical structure, it was not less vulner-
able to DPA attacks than any other block-cipher.

Other side-channel attacks exploit electromagnetic emanations [AARR03,GMO01,QS01], optical [Kuh02]
and acoustic [LU02, BWY06] leakage. In fact, side-channel analysis proved to be so powerful that the
majority of techniques applied use only a portion of the side-channel information. Even if the acquired
power traces present a considerable amount of noise, the idea behind differential analysis is to run and
record several iterations of the device’s power profile such that information can be averaged over a
large number of samples.

1.3 Notations and Conventions

In this thesis we introduce the following notations and conventions:

If S is a finite set, x
$← S means that x is chosen from S uniformly at random. X ← Y is used for

denoting the assignment statement where the value of Y is assigned to X . The set of all binary strings
of length n bits (for some positive integer n) is denoted as {0, 1}n, the set of all binary strings whose
lengths are variable but upper-bounded by L is denoted by {0, 1}≤L and the set of all binary strings
of arbitrary but finite length is denoted by {0, 1}∗. For two strings X and Y we use X||Y and XY
equivalently to denote the string obtained by concatenating Y and X . For an m-bit binary string X =
Xm−1 · · ·X0 we denote the left-most bit by msb(X) = Xm−1 and the right-most bit by lsb(X) = X0; let
X[i · · · j] = Xi · · ·Xj denote a substring of X , for 0 ≤ j ≤ i ≤ (m − 1). Let 1n0m denote concatenation
of n ones by m zeros. For a non-negative integer i let ⟨i⟩m denote binary representation of i by an m-bit
string.

For a binary string X = Xm−1 · · ·X0, let X ≪ n denote the left-shift operation, where the n left-most
bits are discarded and the n vacated right bits are set to 0; that is, X ≪ n = Xm−n−1 · · ·X00n. We let
X ≫ n denote the (unsigned) right-shift operation where the n right-most bits are discarded and the n
vacated left bits are set to 0, i.e., X ≫ n = 0nXm−1 · · ·Xn. We let X ≫s n denote the signed right-shift

1.4 Finite Fields Arithmetic 19

operation where the n right-most bits are discarded and the n vacated left bits are filled with the left-
most bit (which is considered as the sign bit); for example, 1001100≫s 3 = 1111001. If the left-most bit
of X is 0 then we have X ≫s n = X ≫ n.

¬X means bitwise complement of X . For two binary strings X and Y , let X ∧ Y and X ∨ Y denote,
respectively, bitwise AND and bitwise OR of the strings.

The special symbol⊥means that the value of a variable is undefined; we also overload this symbol and
use it to signify an error. Let |Z| denote the number of elements of Z if Z is a set, and the length of Z
in bits if Z is a binary string. The empty string is denoted by ε and we let |ε| = 0. For X ∈ {0, 1}∗ let

X[1]||X[2] · · · ||X[m] b← X denote partitioning X into blocks X[i] such that |X[i]| = b for 1 ≤ i ≤ m− 1
and |X[m]| ≤ b; let m = |X|b denote length of X in b-bit blocks.

For two binary strings X = Xm−1 · · ·X0 and Y = Yn−1 · · ·Y0, the notation X ⊕ Y denotes bitwise
XOR of Xm−1 · · ·Xm−1−ℓ and Yn−1 · · ·Yn−1−ℓ where ℓ = min {m− 1, n− 1}. That is, X ⊕ Y is a binary
string whose length is equal to the length of the shorter operand and is obtained by XORing the shorter
operand with an equal length left-most substring of the longer operand consisting of its left-most bits.
Clearly, if X and Y have the same length then X ⊕ Y simply means their usual bitwise XOR. For any
string X , define X ⊕ ε = ε⊕X = ε.

1.4 Finite Fields Arithmetic

The theory of finite fields is a branch of modern algebra and can be applied to multiple applica-
tions, from coding theory to cryptology. Having an elegant algebraic structure, finite fields are used to
describe the underlying operations on a cryptosystem or on an error-correcting code, for example. It is
therefore important to define its basic operations and rationale.

The concept of a field is introduced as follows:

Definition 1.1 A field F is a non-empty set of elements with well defined addition and multiplication op-
erations, denoted by + and ∗, respectively. Moreover, for F to be a finite field, it must ensure the following
conditions:

Closure ∀ a, b ∈ F 2,
c = a + b d = a ∗ b, where c, d ∈ F .

Associative ∀ a, b, c ∈ F 3

a + (b + c) = (a + b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Identity There exists an identity element ′0′ for addition and ′1′ for multiplication that satisfies
0 + a = a + 0 = a and a ∗ 1 = 1 ∗ a = a for every a in F .

Inverse If a is in F , there exists elements b and c in F such that
a + b = 0 and a ∗ c = 1.

Commutative ∀ a, b ∈ F 2

a + b = b + a and a ∗ b = b ∗ a.

Distributive ∀ a, b ∈ F 2

(a + b) ∗ c = a ∗ c + b ∗ c.

The existence of a multiplicative inverse a−1 enables the existence of division. This is because for a, b, c ∈
F , c = b/a is defined as c = b ∗ a−1 . Similarly the existence of an additive inverse (−a) enables the
existence of subtraction. In this case for a, b, c ∈ F , c = b− a is defined as c = b + (−a).

It can be shown that the set of integers {0, 1, 2, ..., p − 1} where p is a prime, together with modulo p
addition and multiplication forms a field. Such a field is called the finite field of order p, or GF (p),
in honor of Evariste Galois. In this thesis only binary arithmetic is considered, where p is constrained
to equal 2. This is because, as shall be seen, by starting with GF (2), the representation of finite field
elements maps conveniently into the digital domain. Arithmetic in GF (2) is therefore defined modulo
2. It is from the base field GF (2) that the extension field GF (2n) is generated.

20 Introduction 1.4

A polynomial p(x) of degree n over GF (2) is a polynomial of the form p(x) = p0 + p1x + p2x2 + ... +
pnxn where the coefficients pi are elements of GF (2) = {0, 1}. Polynomials over GF (2) can be added,
subtracted, multiplied and divided in the usual way. A useful property of polynomials over GF (2) is
that p2(x) = (p0 + p1x + ... + pnxn)2 = p0 + p1x2 + ... + pnx2n = p(x2). A polynomial p(x) over GF (2) of
degree n is irreducible if p(x) is not divisible by any polynomial over GF (2) of degree less than n and
greater than zero.

To generate the extension field GF (2n), an irreducible, monic polynomial p(x) of degree n over GF (2)
is chosen. Then the set F of 2n polynomials of degree less than n over GF (2) is formed. It can then
be proven that when addition and multiplication of these polynomials is taken modulo p(x), the set
F forms a field of 2n elements, denoted GF (2n). Note that GF (2n) is extended from GF (2) in an
analogous way that the complex numbers C are formed from the real numbers R where in this case,
p(x) = x2 + 1.

THE FIELD WITH 2n POINTS. Let (GF (2n),⊕, ·) denote the Galois Field with 2n points. When consider-
ing a point α ∈ GF (2n), α can be represented in any of the following equivalent ways:

1. as an integer between 0 and 2n,

2. as a binary string αn−1 · · ·α0 ∈ {0, 1}n, or

3. as a polynomial α(X) = αn−1Xn−1 + · · ·+ α1X + α0 with binary coefficients.

Example 1.1 In GF (2256): the string 025410, the number 2 and the polynomial X are different representations
of the same field element; the string 025411, the number 3 and the polynomial X + 1 represent the same field
element, and so forth.

The addition ⊕ and multiplication · of two elements in GF (2n) are defined as follows:

Definition 1.2 The addition of two elements α, β ∈ GF (2n) simply means the element obtained by bitwise
XORing their representations as binary strings.

Example 1.2 2⊕ 1 = 0n−210⊕ 0n−201 = 0n−211 = 3, 2⊕ 3 = 1, 1⊕ 1 = 0, and so forth. (Note that addition
in GF (2n) is different from the addition of integers modulo 2n.)

To multiply two elements, first choose and fix an irreducible polynomial Pn(X) of degree n over GF (2).
For example, choose the lexicographically first polynomial among the irreducible polynomials of degree
n over GF (2) with a minimum number of nonzero coefficients.

Example 1.3 For n = 256 we use P256(X) = X256 + X10 + X5 + X2 + 1, for n = 512 we use P512(X) =
X512 + X8 + X5 + X2 + 1.

To multiply two elements α and β in GF (2n) denoted by α · β consider them as polynomials α(X) =
αn−1Xn−1 + · · · + α1X + α0 and β(X) = βn−1Xn−1 + · · · + β1X + β0, form their product in GF (2) to
get γ(X) and take the remainder of dividing γ(X) by the irreducible polynomial Pn(X).

It is easy to multiply an arbitrary field element α by the element 2 (i.e., X). We describe this for
GF (2256)and GF (2512). Let α(X) = αn−1Xn−1 + · · · + α1X + α0 then multiplying by X we get
αn−1Xn + αn−2Xn−1 · · ·+ α1X2 + α0X ; so if msb(α) = 0 then 2.α = X.α = α≪ 1. If msb(α) = 1 then
we need to reduce the result by module Pn(X), i.e., we have to add Xn to α ≪ 1. For n = 256 using
P256(X) = X256 +X10 +X5 +X2 +1, we have X256 = X10 +X5 +X2 +1 = 024510000100101, so adding
X256 means XORing with 024510000100101. For n = 512 using P512(X) = X512 + X8 + X5 + X2 + 1, we
have X512 = X8 + X5 + X2 + 1 = 0503100100101, so adding X512 means XORing with 0503100100101.

In summary, for GF (2256)

2.α =
{

α≪ 1 if msb(α) = 0
(α≪ 1)⊕ 024510000100101 if msb(α) = 1

= (α≪ 1)⊕ ((α≫s 255) ∧ 024510000100101)

1.4 Finite Fields Arithmetic 21

and for GF (2512)

2.α =
{

α≪ 1 if msb(α) = 0
(α≪ 1)⊕ 0503100100101 if msb(α) = 1

= (α≪ 1)⊕ ((α≫s 511) ∧ 0503100100101)

22 Introduction 1.5

1.5 Thesis Outline

As depicted in Fig. 1.2, cryptography is a broad field. This thesis focuses on presenting lightweight
hardware design and countermeasures to improve cryptographic computation. Because cryptography
(and cryptanalysis) are nowadays becoming more and more ubiquitous in our daily lives, it is crucial
that newly developed systems are robust enough to deal with the increasing amount of processing data
without compromising the overall security.

This work addresses several different topics related to lightweight cryptographic implementations. The
main contributions of this thesis are:

— a new cryptographic hardware acceleration scheme applied to BCH codes;
— hardware power minimization applied to SoCs and embedded devices;
— timing and DPA power scrambling hardware lightweight countermeasures applied to the AES;
— a cryptographically secure on-chip firewall;
— frequency analysis attack experiments;
— a new zero-knowledge protocol applied to wireless sensor networks;
— a new authenticated encryption scheme.

Organization. Chapter 2 introduces integrated circuit and logic design, from a transistor to a more for-
mal definition of a hardware-base cryptosystem. Two of the most important cryptographic algorithms
nowadays, the AES and the SHA-2 are presented in detail in Section 2.3.2 and 2.4.4, respectively. This
chapter also discusses efficient ways of implementing a cryptographic hardware design, in particular
focusing on AES and SHA-2.

Chapter 3 introduces a new way of computing BCH error-correcting codes by using the Barrett’s Poly-
nomial Reduction Algorithm. This algorithm is presented in detail and its application to BCH is further
discussed. Hardware implementation results are given for three different architectures and compared.
In addition in Chapter 3, a smart energy management system focusing on cryptographic computation
requests on SoCs is presented. This scheme allows saving energy when incoming request probability is
low enough to take such a risk, reducing unresponsiveness penalties whenever possible.

Chapter 4 is devoted to side-channel attacks and hardware countermeasures. In Section 4.4 a recon-
figurable AES implementation technique is presented, in which unused modules are used to either
scramble the power consumption, compute previous blocks to check for faults or are shut down to save
energy. The DPA analysis is then further discussed, and implementation details and performance are
shown in both ASIC and FPGA targets. Section 4.5 presents CSAC, a hardware protection tailored for
network-on-chips that make use of firewalls to protect the master-target privileges and permissions.
While remaining reprogrammable and flexible, CSAC authenticates the programming entity using an
HMAC based on the SHA-2 protocol. Besides, CSAC is able to detect changes on the internal look-up
table due to fault attacks on the privilege rules, applying a smart error detecting mechanism. ASIC and
FPGA are then further discussed. Closing Chapter 4, Section 4.6 discusses the use of instantaneous fre-
quency instead of power amplitude and power spectrum in side-channel analysis. By opposition to the
constant frequency used in Fourier Transform, instantaneous frequency reflects local phase differences
and allows to detect frequency variations. These variations depend on the processed binary data and
are hence cryptanalytically useful.

Chapter 5 presents two advancements in theoretical cryptography. Section 5.1 introduces an authentica-
tion protocol based on the zero-knowledge paradigm that establishes network integrity, and leverages
the distributed nature of computing nodes to alleviate individual computational effort. In that work we
describe a distributed Fiat-Shamir protocol that enables network authentication using very few com-
munication rounds, thereby alleviating the burden of resource-limited devices such as wireless sensors
and other IoT nodes. Instead of performing one-on-one authentication to check the network’s integrity,
our protocol gives a proof of integrity for the whole network at once. Section 5.2 details our proposal
of a new authenticated cipher for consideration in the CAESAR competition. Our scheme, called Offset
Merkle-Damgård (OMD), is a keyed compression function mode of operation for nonce-based AEAD.
We believe that an AE scheme whose security is proved by a modular and easy to verify security reduc-
tion, only relying on some widely-verified standard assumption(s) on its underlying primitive(s), can

1.6 Publications 23

get more confidence on its security compared to a scheme that demands strong and idealistic proper-
ties from its underlying primitive(s) or is not supported by a formal security proof. Provable security
helps cryptanalysis efforts to be focused on analyzing the simpler underlying primitives rather than
the whole scheme; hence, building confidence on the security of the scheme becomes easier if it uses
well-analyzed and verified primitives.

Chapter 6 concludes this thesis and sets future works and advancements.

1.6 Publications

This thesis is primarily based on the publications described in this section. Among the developed
work are published papers, e-prints, a book article, two patents, and the submission to the crypto-
graphic competition CAESAR.

Cryptographically Secure On-Chip Firewalling [CHdAdC15, HCPdCOdA15]

with Jean-Michel Cioranesco, Craig Hampel, and Guilherme Ozari de Almeida

Abstract. As SoCs become more complex, on-chip interconnect emerges as the point of integration for
a variety of system level functions, including security. Integrators are beginning to rely on distributed
access control hardware to protect resources that are shared between IP cores executing both trusted and
untrusted software. Existing solutions cover enforcement of on-chip access control policies but they
don’t secure the programming interface or the hardware against possible attacks. As the embedded
content increases in theft value, the on-chip access enforcement will need to consider both software-
and hardware-directed attacks. We introduce a secure on-chip access device that enables secure and
programmable allocation of resources in an SoC by offering cryptographically-signed programming,
fault detection and key integrity. Synthesis results are shown in both ASIC and FPGA implementations.

Note. Published in the 9th International Conference of Network and System Security. This work is
presented in detail in Chapter 4.5.

How to (Carefully) Breach a Service Contract? [To appear]

with Céline Chevalier, Damien Gaumont, and David Naccache

Abstract. Consider a firm S providing support to clients A and B. The contract S ↔ A stipulates
that S must continuously serve A and answer its calls immediately. While servicing A, S incurs two
costs: personnel fees (salaries) that A refunds on a per-call-time basis and technical fees that are not
refunded. The contract S ↔ B is a pay-per-call agreement where S gets paid an amount proportional
to B’s incoming calls duration. We consider that the flow of incoming B calls is unlimited and regular.
S wishes to use its workforce for both tasks, switching from A to B if necessary. As S ↔ B generates
new benefits and S ↔ A is the fulfilling of a contracted obligation, S would like to devote as little
resources as necessary to support A and divert as much workforce as possible to serve B. Hence, S’s
goal is to minimize its availability to serve A without incurring too high penalties. This paper models
A as a naïve player. This captures A’s needs but not A’s game-theoretic interests which thorough
investigation remains an open question.

Note. Although this paper has an economic background, we have reworked its underlying theory ap-
plied to mitigating power consumption on system-on-chips and embedded systems. Here the system S
can choose whether it goes idle to save energy (and be therefore unavailable to answer a request, caus-
ing a penalty) or it stays active and drains energy faster. This work is presented in detail in Chapter 3.2.

Applying Cryptographic Acceleration Techniques to Error Correction [GMN+15]

with Rémi Géraud, Diana-Ştefania Maimuţ, David Naccache, and Emil Simion

Abstract. Modular reduction is the basic building block of many public-key cryptosystems. BCH codes
require repeated polynomial reductions modulo the same constant polynomial. This is conceptually
very similar to the implementation of public-key cryptography where repeated modular reduction in

24 Introduction 1.6

Zn or Zp are required for some fixed n or p. It is hence natural to try and transfer the modular reduction
expertise developed by cryptographers during the past decades to obtain new BCH speed-up strategies.

Error correction codes (ECCs) are deployed in digital communication systems to enforce transmission
accuracy. BCH codes are a particularly popular ECC family. This paper generalizes Barrett’s modular
reduction to polynomials to speed-up BCH ECCs. A BCH(15, 7, 2) encoder was implemented in Verilog
and synthesized. Results show substantial improvements when compared to traditional polynomial
reduction implementations. We present two BCH code implementations (regular and pipelined) using
Barrett polynomial reduction. These implementations, are respectively 4.3 and 6.7 times faster than an
improved BCH LFSR design.

Note. Published in the proceedings of SECITC 2015. This paper is described in Chapter 3.1.

Public-Key Based Lightweight Swarm Authentication [To appear]

with Simon Cogliani, Rémi Géraud, Diana-Ştefania Maimuţ, and David Naccache

Abstract. This work describes an authentication protocol based on the zero-knowledge paradigm that
establishes network integrity, and leverages the distributed nature of computing nodes to alleviate
individual computational effort. This enables the base station to identify which nodes need replacement
or attention.

We describe a lightweight algorithm performing whole-network authentication in a distributed way.
This protocol is more efficient than one-to-one node authentication: it results in less communication,
less computation, and overall lower energy consumption. The proposed algorithm is provably secure,
and achieves zero-knowledge authentication of a network in a time logarithmic in the number of nodes.

Note. A detailed version of this paper is presented in Section 5.1.

Buying AES Design Resistance with Speed and Energy [PdCK14, PdCKN16]

with Roman Korkikian, and David Naccache

Abstract. Fault and power attacks are two common ways of extracting secrets from tamper-resistant
chips. Although several protections have been proposed to thwart these attacks, resistant designs usu-
ally claim significant area or speed overheads. Furthermore, circuit-level countermeasures are usually
not reconfigurable at runtime. This paper exploits the AES’ algorithmic features to propose low-cost
and low-latency protections. We provide Verilog and FPGA implementation details. Using our de-
sign, real-life applications can be configured during runtime to meet the user’s needs and the system’s
constraints.

Note. This article is presented in detail in Section 4.4. This work has served as basis of a patent publi-
cation [PdCK14] and a book chapter, volume 9100 of the Lecture Notes in Computer Science series [Pd-
CKN16].

Practical Instantaneous Frequency Analysis Experiments [KNdAdC13]

with Roman Korkikian, David Naccache, and Guilherme Ozari de Almeida

Abstract. This paper investigated the use of instantaneous frequency (IF) instead of power amplitude
and power spectrum in side-channel analysis. By opposition to the constant frequency used in Fourier
Transform, instantaneous frequency reflects local phase differences and allows detecting frequency vari-
ations. These variations reflect the processed binary data and are hence cryptanalytically useful. IF ex-
ploits the fact that after higher power drops more time is required to restore power back to its nominal
value. Whilst our experiments reveal IF does not bring specific benefits over usual power attacks when
applied to unprotected designs, IF allows to obtain much better results in the presence of amplitude
modification countermeasures.

Note. This novel type of attack is presented in Section 4.6.

Offset Merkle-Damgård (OMD) v.1: A CAESAR Proposal

1.6 Publications 25

OMD: A Compression Function Mode of Operation for Authenticated Encryption [CMN+14, CAE]

with Simon Cogliani, Diana-Ştefania Maimuţ, David Naccache, Reza Reyhanitabar, Serge Vaudenay, and
Damian Vizár

Abstract. This work describes a cipher for nonce-based authenticated encryption with associated data
(AEAD), submitted to the CAESAR competition. Our proposal, called Offset Merkle-Damgård (OMD),
is a mode of operation for a keyed compression function. If the compression function at hand does
not have a dedicated input for the key then it must first be keyed by some conventional method, for
example, by prepending the key to the message in the input of the compression function.

Compression functions are among the most widely-used and well-analyzed cryptographic primitives.
We have a rich source of secure and efficient compression functions thanks to more than two decades of
public research and standardization activities on hash functions including the recently completed NIST
competition for SHA-3. This motivates one to build an AEAD scheme based on a compression function.
The recent announcement by Intel in July 2013 about introduction of new instructions, supporting per-
formance acceleration of the Secure Hash Algorithm (SHA) on Intel processors (in particular, for SHA-1
and SHA-256), further encourages the decision to design a compression function based scheme.

OMD takes advantage of the aforementioned facts about compression functions: OMD is provably
secure in the standard model based on a well-established security property of the underlying compres-
sion function, and it has promising performance using a compression function from the SHA family,
thanks to the new Intel SHA Extensions. As specific instantiations of OMD, we recommend two spe-
cific compression functions to be keyed and used in OMD, namely, the compression functions of SHA-
256 and SHA-512. OMD parameterized with these two compression functions is called OMD-SHA256
and OMD-SHA512, respectively. The former is intended for 32-bit implementations and is our main
recommended cipher for CAESAR, while the latter could be used specifically for 64-bit machines.

OMD achieves nearly optimal performance in terms of the number of compression function calls that
one can expect from any AEAD scheme solely using a compression function. OMD has several attractive
features: (i) unlike the permutation-based schemes whose security proof relies on idealistic assump-
tions about their underlying permutation, the security of OMD is proved in the standard model based
on merely the classical PRF assumption on the compression function, (ii) one can easily get a high quan-
titative level of security using OMD with the compression function of a standard hash function with a
large hash size (e.g. 256 bits or 512 bits) while in block-cipher based schemes using AES the block length
(affecting the security level) is limited to 128 bits, (iii) the only operations that OMD needs in addition
to its core compression function are the basic bitwise XOR and bitwise AND operations on two binary
strings and (left and right) shift operation on a binary string, (iv) selecting the core compression func-
tion to be that of SHA-256, our primary algorithm OMD-sha256 can take advantage of the new Intel
instructions for a highly efficient software implementation.

Note. The OMD authenticated cipher is described in detail in Chapter 5.2. The compression functions
of SHA-256 and SHA-512 are recalled in Appendix B.

CHAPTER 2

FROM A TRANSISTOR TO A
CRYPTOSYSTEM

Summary

The simplest and most important semiconductor element is the single-crystal silicon, Si. Silicon is the
14th element in the periodic table and has four outer bounding electrons. It forms a covalent structure
in a shape of a tetrahedron. Silicon is the basis of the transistor technology, and therefore, electronics.

This chapter draws a brief introduction to modern CMOS, from logic design and the physical charac-
teristics of transistors, to the formal definition of a hardware cryptosystem and techniques on how to
implement them efficiently. This chapters also studies the AES cryptosystem and SHA-2 hash func-
tion family in further detail, since these two cryptographic blocks will be an important part of the next
chapters.

Section 2.1 introduces the digital integrated circuit technology and explains the CMOS physical prop-
erties, focusing on the transistor power dissipation. Section 2.2 presents the formal definition of a
hardware-based cryptosystem, as well as hardware design architecture metrics and logic design styles.
Section 2.3 discusses the AES public-key block cipher in detail. Section 2.4 presents the SHA-2 crypto-
graphic hash function and its implementation tradeoffs.

2.1 Integrated Circuit and Logic Design 27

2.1 Integrated Circuit and Logic Design

2.1.1 Introduction

In 1948, the most significant step in modern electronics happened with the invention of the transis-
tor by Bell Laboratories. Together with the solid-state diode, the transistor opened the door to microelec-
tronics. The term microelectronics itself is defined as the area of technology applied to the realization of
electronic systems made of extremely small electronic parts or components, and it is often related to the
term integrated circuits (IC).

Gordon Moore, co-founder of Intel, published an article in 1965 [Moo00] stating that the number of
components per integrated circuit would double approximately every two years. This observation is
broadly known as Moore’s Law. This law proved valid since 1965 and, equally importantly, has guided
the microelectronics industry’s research and development.

Many other engineering fields involve tradeoffs between performance, power and price. Nevertheless,
as digital circuit technology nodes shrink, transistors become faster, consume less power and are typ-
ically cheaper to manufacture [WH10]. This unique characteristic of integrated circuits has not only
revolutionized electronics, but also shaped our lives. The fast-growing pattern of integrated circuits is
depicted in Table 2.1.

Table 2.1: Trends in microelectronics in the past decades [WH10].

Year 1985 1993 2004 2010

Transistor Counts 105 - 106 106 - 107 108 - 109 109 - 1010

Clock Frequencies 107 108 109 109

Worldwide Market $25B $60B $170B $250B

More than 80% of the microelectronics industry is composed by digital circuits [Raz06]. Commercially-
wise, the majority of the cryptographic systems are made of digital chips. This chapter draws the line
from the basic transistor and its power characteristics until the theory behind logic gates that constitute
a cryptosystem.

2.1.2 VLSI Design

Digital VLSI design is commonly divided into five abstraction levels [WH10]:

— architecture design, that describes how the system operates;
— microarchitecture design, that details how the system architecture is partitioned into registers and

functional units;
— logic design, that specifies how functional units and sub-modules are constructed
— circuit design, that describes how transistors are used to implement the logic; and
— physical design, that contains the final layout of the chip.

An alternative way of seeing the digital design partitioning is shown in Fig. 2.1. The radial lines on
the Y-chart represent three design domains: behavioral, structural and physical. These domains can
be used to describe the different phases of a digital design that create a level of design abstraction that
starts at a very high level and descend eventually to the individual components that form the top level
abstraction.

The Behavioral Domain describes the system’s functionality and contains static and dynamic compo-
nents. The static component describes the operations, while the dynamic portion describes their se-
quencing and timing. Thus, differences in algebraic functionality, pipelining, and timing are all changes
in behavior. For example, at the Functional Block Level, the Behavioral Domain describes the design in
terms of register transfers, although the behavioral description might also contain timing information.

The Structural Domain describes the design’s abstract implementation, usually represented by a struc-
tural interconnection of a set of abstract modules. For example, at the Functional Block Level, the

28 From a Transistor to a Cryptosystem 2.1

Behavioral Domain Structural Domain

Physical Domain

Systems

Algorithms

Register transfers

Logic

Transfer functions

Processors

ALU, RAM, etc.

Gates, flip-flops, etc.

Transistors

Physical partitions

Floorplans

Module layout

Cell layout

Transistor layout

Figure 2.1: Gajski-Kuhn Y-chart [GK83].

Structural Domain describes the design in terms of ALUs, MUXes, and registers. Nevertheless, this
domain also describes the digital system’s control logic portion.

The Physical Domain describes the design’s physical implementation, changing the abstract structural
components into physical components. The domain deals with constraints on the physical partitioning
and design’s layout, as well as physical component geometry. As an example, at the Functional Block
Level, the Physical Domain describes the floorplanning that the circuit must have in order to implement
the required logic from upper level descriptions. In this domain, speed, power and area constraints are
measured and better evaluated than in higher domains.

The growing adoption of higher level of abstraction and complexity of a digital design pushed academia
and industry to create Hardware Description Language (HDL) tools to describe both the behavior and
the structure of the design, including physical and geometrical information as well [WT85].

Another way of structuring the different types of integrated circuit design is by categorizing according
to the design methodology (also known as design styles) [GBC+96]. These styles are primarily based
on the viability of the IC design and its target application. The following parameters typically define
the choice of a particular design style [WH10]:

— performance – speed, power, system flexibility;
— size of die (hence, die cost);
— time to design (hence, engineering cost);
— ease of verification and test generation (hence, engineering cost).

Since the whole IC design process is complex and long, VLSI designers have to choose the most suitable
design style to match its requirements and specifications. The use of design constraints as listed above
helps the designer to opt for the best silicon approach. The design methodology of a digital VLSI is
commonly divided in two main categories: Standard Circuit and Application-Specific Integrated Circuit
(ASIC). The most important (and commonly used) design styles are listed as a tree in Fig. 2.2.

For several reasons, the best approach to solve a system design problem might be to use a standard
architecture, such as a microprocessor or digital signal processor (DSP). Market solutions with built-in
RAM or EPROM are broadly available in the market. Microprocessors provide a great level of flexibil-
ity, basically transforming the hardware into software design. This methodology is called hardwired and

2.1 Integrated Circuit and Logic Design 29

Digital VLSI circuit

Standard circuit

Hardwired

Mask programmable

Application-specific integrated circuit (ASIC)

Application-specific programmable

Programmable Logic Array

FPGA

Application-specific produced

Semi-custom

Gate-array

Standard cell

Full-custom

Figure 2.2: The different design styles of a digital VLSI circuit [GBC+96].

represents one type of standard circuit design style. The second standard circuit type is called mask pro-
grammable logic and represents the type of read-only memory whose contents are programmed by the
IC manufacturer rather than the VLSI designer. This design style typically uses rewritable non-volatile
memory (such as EPROM) for the project’s development phase, switching to the masked version of the
design when the code is finalized.

Often, the cost, performance or power consumption of a microprocessor do not achieve the system’s
requirement. The next VLSI circuit family that meets a more dense, faster circuit is the application-specific
programmable logic. In this family, the most important design style is represented by the Programmable
Logic Array (PLA). This type of chip implements two-level sum-of-product programmable logic arrays
with limited routing capability, consisting of an AND and an OR logic gate to compute any function
expressed as a sum of products. Any transistor of the AND and the OR gates are capable of being
programmed to be present or not. Besides that, a PLA cell contains a NOR structure programmable by
a floating-gate transistor, a fusible link, or a RAM-controlled transistor.

The second type of application-specific programmable logic family is the Field Programmable Gate Arrays
(FPGA). FPGAs are a completely reprogrammable IC even after the chip is shipped to final customer.
They consist of an array of logic cells, or blocks, surrounded by programmable routing resources. Al-
though first generation FPGAs used fuses or anti-fuses to program the internal blocks and personalize
their logic, second generation FPGAs use static RAM or flash memory to configure the routing and
logic functions. The first generation is one-time programmable, while the latest FPGA family allows
reprogrammability.

Second generation FPGAs are composed of configurable logic blocks (CLB). Among consecutive CLBs,
metal tracks are placed vertically and horizontally, forming the configurable routing paths between
blocks. CLBs use programmable lookup tables to compute any logic function of several inputs and
outputs. Configurable I/O cells surround the core array of CLBs. The main benefit of choosing an
FPGA is that it provides the latest technology node with millions of logic gates that easily operate at
rates of gigabits per second. They frequently embed extra components for system integration, such as
microprocessors, external memory, and hardware accelerators.

The logic styles presented so far do not require a fabrication run. Instead, the VLSI designer can focus
on design only, diminishing the non-recurring engineering (NRE) cost. Another way of doing so is to
make use of a semi-custom logic called gate-array (or sea-of-gates). This method consists of constructing
a chip with a common base array of nMOS and pMOS transistors and later personalizing it by altering

30 From a Transistor to a Cryptosystem 2.1

the metallization (metal and via masks) placed on top of the transistors. Differently than logic array
style, the gate-array logic is reprogrammable (like FPGAs). This allows the VLSI designer to correct
logic errors and avoid process variability that might cause late bugs and delay the project.

Standard cell logic style represents another semi-custom IC type. In this design, a technology IC digital
library provided by a foundry or library vendors is available as the basic building blocks of the chip.
Also called cell-based design, this design methodology achieves smaller, faster and low-power chips than
FPGAs, but incurs higher NRE costs to produce the custom mask set. Standard cell design is therefore
only suitable for high volume fabrication.

Finally, a full-custom design is another type of application-specific produced IC, where all circuit details
have to be designed, all transistors have to be dimensioned and the layout have to be carefully drawn
and verified by an analog simulator afterwards. In other words, a full-custom design and production are
fully controlled by the VLSI designer. Even though it allows optimal results, the design effort is highly
prohibitive for large ICs. A classical example of a full-custom design is the commercial microprocessor,
in which top-notch performance is a requirement.

Given all the IC families described above, a VLSI design choice must be based on the most cost-effective
approach taking into account speed, power and area figures. If off-the-shelf solutions (microprocessors,
microcontrollers, for example) meet the designer’s requirement targets, they should always be pre-
ferred. If not, FPGA is the next logic candidate, especially for low-volume (< 100, 000) applications.
When the production volume is high enough to justify the costs, or when low power is at stake, stan-
dard cell design is the preferable option. Mixed-signal, radio-frequency (RF), and high speed digital
designs are examples of IC that require a cell-based design approach. Table 2.2 summarizes the design
methodologies cost in terms of several different criteria, from low to very high.

Table 2.2: Comparison of VLSI design methodologies [WH10].

Design style NRE Unit cost Power
Design

complex-
ity

Time to
market

Perfor-
mance

Flexi-
bility

Hardwired &
mask programmable low medium high low low low high

PLA low medium medium low low medium low
FPGA low medium medium medium low high high

Gate-array medium low low high medium high high
Standard cell high low low high high high low
Full-custom high low low high high very high low

2.1.3 The CMOS Transistor

A transistor can be viewed as a device with 3 terminals, or a 2-input/1-output switch. One input,
the control, acts by enabling or disabling the current transfer from the other input to the output, depend-
ing on the voltage applied to the control terminal. Early integrated circuits first adopted the bipolar
junction transistor, developed by Bell Labs. The next generation came to production in 1960, replac-
ing the bipolar transistor: the Metal Oxide Semiconductor Field Effect Transistor (MOSFET). MOSFETs
have three major advantages:

— draining almost zero current while idle;
— their miniaturization could be more easily achieved; and
— consuming only nanowatts of power, six orders of magnitude less than their bipolar counter-

parts.

MOSFETs belong to two sub-types, differing by the silicon substrate type: n-type (called nMOS transis-
tors) and p-type (called pMOS transistors). That is the reason that they became to be named Comple-
mentary Metal Oxide Semiconductors, or CMOS.

2.1 Integrated Circuit and Logic Design 31

n+ n+

p

source draingate

(a) The nMOS transistor.

Polysilicon

SiO2

p+ p+

n

source draingate

(b) The pMOS transistor.

Figure 2.3: The two types of CMOS devices.

Each CMOS transistor consists of a conducting gate, an insulating layer of silicon dioxide (SiO2, also
called glass) and the silicon substrate, also known as body or bulk, that is usually grounded. An nMOS
transistor, depicted in Fig. 2.3a, is built on a p-type body and has regions of n-type semiconductor ad-
jacent to the gate called the source and drain. A pMOS transistor, as shown in Fig. 2.3b, is the opposite,
having p-type source and drain regions on a n-type body. In a CMOS technology where both transistor
types are present, the substrate is either n- or p-type. To build the other transistor type, a special well
with dopant atoms has to be added to form the opposite body type. The n+ and p+ regions indicate
heavily doped n- or p-type silicon.

A voltage applied to the gate of the CMOS device controls the current flowing between source and
drain. More specifically, the nMOS transistor creates a current flow from source to drain when a positive
voltage is applied to the gate. Otherwise it acts as an open switch, i.e., no current flows through the two
opposite terminals, and the nMOS transistor is OFF. The gate functions as a control input: it acts on the
electrical current flow between the source and drain. As the gate voltage raises, it creates an electric field
that attracts free electrons to the underside of the Si–SiO2 interface. If the voltage raises enough, the
electrons outnumber the holes and a thin region between the two terminal is created, transformed into
an n-type semiconductor. A conducting path of electrons flow from source to drain, and we say that the
transistor is ON.

In the pMOS, the behavior is the again opposite. By applying a positive voltage, the body is held
reverse-biased and no channel is created, therefore the transistor remains OFF. When the gate voltage
is lowered, positive charges are attracted to the underside of the Si–SiO2 interface. A sufficiently low
gate voltage inverts the pMOS channel and a conducting channel is formed from source to drain, and
the transistor is ON.

The voltage value at which a conducting channel is created between source and gate is called the thresh-
old voltage. The positive voltage is usually called VDD or POWER and its value varies depending on
the technology library. In popular logic families of the 1970s and 1980s, VDD was usually set to 5 volts,
whereas nowadays voltages around 1 volt predominate. The low voltage is called GROUND or VSS and
its value is usually 0 volts. Bringing it to the digital world, VDD is referred to a logic (or bit) 1, and VSS
represents the logic 0. Fig. 2.4 (where g, s, d stand for gate, source and drain, respectively) shows the
symbol of each CMOS transistor and their “switch” behavior depending on the voltage applied to the
gate.

2.1.4 CMOS Logic

Basic and complex CMOS logic gates are constructed with two networks: the upper part, called
pull-up network, connects to the power supply (VDD); the lower part, called pull-down network, connects
to ground (VSS). Both are connected together to the output of the logic gate. For the logic to work as
expected, the pull-up network is composed by pMOS transistors only, while the pull-down counterpart
contains only nMOS transistors. Fig. 2.5 depicts the general schematic of a general CMOS logic gate.

32 From a Transistor to a Cryptosystem 2.1

g

d

s

nMOS
OFF

d

s

g = 0

ON

d

s

g = 1

g

s

d

pMOS
ON

d

s

OFF

d

s

Figure 2.4: CMOS transistor symbols and switch levels.

The pull-up and pull-down networks in the inverter each consist of a single transistor. The NAND gate
uses a series pull-down network and a parallel pull-up network. More elaborate networks are used for
more complex gates. Two or more transistors in series are ON only if all of the series transistors are
ON. Two or more transistors in parallel are ON if any of the parallel transistors are ON. By using
combinations of these constructions, CMOS combinational gates can be constructed.

pMOS
pull-up

network

nMOS
pull-down
network

inputs output

Figure 2.5: General logic gate using pull-up and pull-down networks.

In general, when we join a pull-up network to a pull-down network to form a logic gate as shown in
Fig. 2.5, they both will attempt to exert a logic level at the output. From this table it can be seen that
the output of a CMOS logic gate can be in four states. The 1 and 0 levels have been encountered with
the inverter and NAND gates, where either the pull-up or pull-down is OFF and the other structure is
ON. When both pull-up and pull-down are OFF, the high-impedance or floating Z output state results.
This is of importance in multiplexers, memory elements, and tri-state bus drivers. The crowbarred (or
contention) X level exists when both pull-up and pull-down are simultaneously turned ON. Contention
between the two networks results in an indeterminate output level and dissipates static power. It is
usually an unwanted condition.

2.1.4.1 The Inverter

The simplest form of a CMOS logic circuit is an inverter, that represents the logic formula out = in
that consists of a pMOS pull-up transistor and an nMOS pull-down transistor, as depicted in Fig. 2.6.

2.1 Integrated Circuit and Logic Design 33

When the input voltage Vin = 0, the gate of the p-channel transistor is at VDD below the source potential
−VDD, i.e., the pMOS is ON. No current flows through the n-channel transistor, that is OFF. If we in-
crease Vin to the threshold voltage and then to VDD, the operation reverts: the n-channel transistor will
conduct while the p-channel is now OFF. It is easy to note that the output of the CMOS inverter will
always get the opposite voltage of Vin.

VDD

VSS

VoutVin in out

Figure 2.6: CMOS inverter gate schematic and symbol.

2.1.4.2 The NAND Gate

The CMOS NAND gate contains two series of nMOS transistors between the output and VSS and
two parallel pMOS transistors between the output and VDD. A NAND gate consists of two inputs, A and
B, following the formula out = in1.in2. Fig. 2.7 shows the schematic and symbol of a CMOS NAND
gate.

VSS

Vout

Vin1

Vin2

VDD

in1

in2
out

Figure 2.7: CMOS NAND gate schematic and symbol.

The NAND gate is an important metric when evaluating the actual complexity of a design. A common
digital integrated circuit design complexity factor is measured by number of logic gates, that eventually
reflect the size of the overall circuit. The problem arises from the fact that measuring an ASIC circuit
area makes it difficult to compare to another ASIC design targeted to a different technology node. Even
among FPGA implementations, the internal FPGA’s look-up tables and surrounding logic are shrunk
to a given process technology. The size of the NAND gate at a given technology gives a technology-
independent way of measuring the design complexity, and also a fair comparison between two circuit
designs. Instead of comparing logic instances, the total circuit area (technology-dependent) is divided
by the smallest 2-input NAND gate of the digital IC library. The result can be fairly compared to any
other circuit. Some engineers prefer to use the total circuit area (logic + routing), while some others do
not use routing information as it can vary from one CAD tool to another. Besides that, a fair comparison
is achieved by comparing ASIC designs and FPGA counterparts separately.

34 From a Transistor to a Cryptosystem 2.1

2.1.4.3 Compound Gates

The flexibility of CMOS logic is such that a compound gate can be created from different connec-
tions and arrangements between the pull-up and pull-down transistors. This allows more complex logic
gates to be tailored to the best possible circuit layout. If a certain logic pattern is highly likely to be used
for a digital design, the digital library may incorporate this logic into a basic digital cell. For example,
the derivation of the circuit for the function Y = (A.B) + (C.D) is shown in Fig. 2.8. This function is
called AND-OR-INVERT-22 (AOI22) and it is usually provided by commercial digital library foundries.
It performs the NOR of a pair of 2-input NANDs.

VDVC

VA VB

VC

VD

VA

VB

Vout

VDD

VSS

A

B
C

D

out

Figure 2.8: CMOS AND-OR-INVERTER-22 schematic and symbol.

2.1.4.4 Tri-state Buffers

In addition to the logic levels 0 and 1, it is possible to construct a CMOS logic gate that has a third
logic value, denoted Z. The enable input EN controls whether the primary input is passed to the output
or not. If EN = 1, the gate acts as a normal buffer. If EN = 0, the input is effectively disconnected from
the circuit, leaving the output of the gate “floating”. A tri-state buffer is usually connected to a bus that
allows multiple signals to travel along the same connection, as long as exactly one buffer is enabled at a
time. When disconnected, the tri-state buffer output holds neither logic 0 or 1, but instead gives a state
of very high impedance. As a result, no current is drawn from the power supply.

A logical first approach of a tri-state buffer is represented in Fig. 2.9 as a transmission gate. It is as simple
as two CMOS transistors, but it is imperfect: when EN = 1, the output receives the input, however the
signal is not restored. If the input is noisy or degraded, the output will receive the same noise, which
should be avoided. If several of these gates are along the same logic path, the overall path delay highly
increases.

VEN

Vout

VEN

Vin

Figure 2.9: CMOS transmission gate.

Fig. 2.10 shows the tri-state buffer circuit schematic and logic symbol. This tri-state is actually imple-
mented as a tri-state inverter that produces a restored output, although inverted. For a non-inverter

2.1 Integrated Circuit and Logic Design 35

tri-state buffer, we have to add an inverter in front of the actual circuit. When outputs are tri-stated, the
influence of that gate on the rest of the circuit is removed. This behavior could be exploited to create
lightweight countermeasures against power attacks, as presented in detail in Section 4.4.

Vout

Vin

VEN

VEN

VSS

VDD

in out

EN

EN

Figure 2.10: CMOS tri-state buffer schematic and symbol.

2.1.5 CMOS I-V Characteristics

A signal strength is defined as a measure of how closely the signal approximates an ideal voltage
source, i.e., the stronger the signal, the more it is able to drive higher current. In the CMOS technology,
the strongest signals are VDD (logic 1) and VSS (logic 0).

By analyzing the two basic CMOS components, the pMOS and the nMOS transistors, we can find the
best transmitter. In fact, they are both good and bad voltage sources. This comes form the fact that the
nMOS transistors are an almost perfect switch when transmitting a logic 0, but imperfect at passing a
logic 1. Therefore we say that the nMOS transistor passes a strong 0, but a weak 1. The situation is the
opposite for the pMOS transistor. The pMOS is capable to be an optimal source of a strong logic 1, but
passes a weak logic 0.

In all our examples so far, the CMOS logic gates are composed of nMOS transistors in the pull-down
network and pMOS transistors in the pull-up network. Therefore, nMOS components only have to pass
logic 0 to the output, and pMOS components only pass the logic 1, so the output is strongly driven. This
considerably simplifies the design layout compared to other forms of logic, where the pull-up and the
pull-down switch networks have to be ratioed. Instead, CMOS gates operate in the same manner, no
matter the technology node size. As a drawback, the design of a CMOS component must be inverting –
the nMOS pull-down network turns ON when inputs are at logic 1, delivering logic 0 to the output.

Nevertheless, the characteristics that made the static CMOS technology extremely successful is undoubt-
edly electrical – because there is never a path through ON transistors from VDD to VSS (in contrast to
technologies such as single-channel MOS, GaAs and bipolar), CMOS gates dissipate very low static
power.

2.1.5.1 CMOS Electrical Properties

The CMOS transistor is a majority-carrier component in which the gate controls the current flowing
through a conducting channel from the source to the drain. In an nMOS transistor, the majority carriers
are electrons; in a pMOS transistor, the majority carriers are holes. Between the gate pin and the tran-
sistor’s doped silicon body there is a thin layer of insulating film of SiO2 called the gate oxide. The most
important property of the gate oxide is that it is a very good insulator, so almost zero current flows from
the gate to the body.

36 From a Transistor to a Cryptosystem 2.1

While the nMOS source and drain have free electrons, its body contains free holes but no electrons.
Applying a gate-to-source voltage Vgs that is less than the threshold voltage Vt, the junctions between
body and source or drain are zero-biased or reverse-biased, therefore little or no current flows. This
transistor state is called cutoff. Analyzing only one single component, the small current flowing through
a cutoff transistor is insignificant, but can become significant if we sum up to several million transistors
on a chip. Moreover, the smaller the technology node is, the more predominant the leakage is.

When Vgs becomes bigger than Vt, an inversion region of electrons creates a conductive connection
between source and drain. Now a small difference between the drain voltage Vds and source voltage Vgd
makes the current Ids to flow through the channel. This state is called linear, resistive, triode, nonsaturated
or unsaturated. The current increases with both the gate voltage and the drain voltage. In this mode, the
transistor acts as a linear resistor in which the current flow is proportional to Vds.

If Vds becomes sufficiently large that Vgd < Vt, the nMOS conductive channel is no longer inverted and
becomes pinched-off. Electrons are still being injected towards the drain, however the channel connection
with the drain is cut, and the gate voltage is the only voltage that controls the current flowing from
source to drain. This state is called saturation.

In summary, the nMOS transistor has three operational modes:

— cutoff – no channel is formed, Vgs < Vt and Ids = 0;
— linear – channel is formed between source and drain, Vgs > Vt and Ids increases with Vds;
— saturation – channel is pinched-off, Vgs > Vt and Ids is independent of Vds.

The pMOS counterpart works analogously, but in an opposite fashion. In the pMOS, the n-type body is
tied to a high potential, therefore the p-type source and drain are naturally reversed-biased. When the
pMOS gate voltage is also at a high potential, no current flows between drain and source. When the
gate voltage Vgs < Vt, holes are attracted to form a p-type channel beneath the gate that allows current
flow. The threshold voltages of nMOS and pMOS are not necessarily equal.

The Shockley model. The first CMOS transistor model [Sho52] relating the current and voltage (I-V)
is known as Shockley model. The model assumes that the channel length is long enough that the lateral
electric field (the field between source and drain) is relatively low, which does not hold for nanometer
technologies. Besides, the Shockley model does not describe leakage consumption and other nanometer
anomalies.

To compute the current that flows through an ON nMOS transistor (Vgs > Vt), we have to first compute
the amount of charge in the transistor channel and also the rate at which the current moves. Given that
the capacitor charge is defined as Q = CV , the charge in the channel can be defined as

Qchannel = Cg(Vgc − Vt)

where Cg is the gate capacitance and Vgc − Vt is the potential to attract the charge. The nMOS gate can
be modeled as a parallel plate capacitor with capacitance proportional to area over thickness. Let the
nMOS gate length be L, the gate width be W and the oxide thickness be tox. Therefore the capacitance
Cg can be written as

Cg = κoxε0
WL

tox
= εox

WL

tox
= CoxWL

where ε0 is the permittivity of free space, κox is the permittivity of SiO2 and Cox is the capacitance per
unit area of the gate oxide.

We define the electric field E as the voltage difference between drain and source (Vds) divided by the
channel length

E = Vds

L

2.1 Integrated Circuit and Logic Design 37

and the average velocity υ at which each channel carrier is accelerated as

υ = µE

where µ is called the mobility. Therefore, the current between source and drain is the total amount of
charge in the channel divided by the time required to cross

Ids = Qchannel

L/υ

= µCox
W

L
(Vgs − Vt −

Vds

2
)Vds

= β(VGT −
Vds

2
)Vds

and therefore

β = µCox
W

L

with

VGT = Vgs − Vt

The factor β merges the geometry and technology-dependent parameters.

When the transistor is pinched-off, the channel is no longer inverted at the drain and therefore Vds > VGT.
At this point, increasing the drain voltage has no effect on the current. Replacing Vds by VGT, we find
the expression for the saturation current

Ids = β

2
VGT

2

To summarize, the I-V characteristics of an nMOS transistor are defined in terms of its three states:

Ids =

0 Vgs < Vt cutoff

β(VGT −
Vds

2
)Vds Vds < VGT linear

β

2
VGT

2 Vds > VGT saturation

Fig. 2.11 shows the transistor’s I-V characteristics. According to the first-order Shockley model, the
current is zero when gate voltage is below Vt. By increasing the gate potential, current increases linearly
with Vds for small Vds. As Vds reaches the saturation point (Vds = VGT), current becomes independent of
Vds.

The pMOS transistor presents a similar behavior, although the voltages present negative values and the
currents are reversed. The pMOS smaller current amplitudes compared to the nMOS are due to lower
mobility of holes compared to the mobility of electrons. Hence, a pMOS transistor of the same size of
an nMOS counterpart is inherently slower.

2.1.5.2 Non-Ideal I-V Effects

The Shockley model neglects several important effects that are important for devices with channel
lengths below 1 micron. This section summarizes the most important sub-micron effects on CMOS
transistors.

38 From a Transistor to a Cryptosystem 2.1

0 0.2 0.4 0.6 0.8 1
0

50

100

150
Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

I d
s

(µ
A

)

−1 −0.8 −0.6 −0.4 −0.2 0

−150

−100

−50

0
Vgs = −0.4
Vgs = −0.6

Vgs = −0.8

Vgs = −1.0

Vds

I d
s

(µ
A

)

Figure 2.11: I-V characteristics of ideal nMOS (upper graph) and pMOS (lower graph) transistors
[WH10].

Mobility Degradation and Velocity Saturation. It has been defined that current is proportional to the
lateral electrical field Elat = Vds/L between source and drain. The previous model assumed that the
carrier mobility µ is independent of the applied fields. While this model holds for low fields, it breaks
down when strong lateral or vertical fields are applied.

Mobility degradation is the effect that causes carriers to collide with the oxide interface when a high
voltage at the gate of the transistor attracts the carriers to the edge of the channel. The faster carriers go,
the faster they collide. Carriers approach a maximum velocity υsat when high fields are applied. The
limiting of carrier velocity at high field is defined as velocity saturation. According to [TKM88], the
velocity can be approximated by:

υ =

µeffE

1 + E
Ec

E < Ec

υsat E ≥ Ec

By continuity, the critical electric field is

Ec = 2υsat

µeff

And the critical voltage (the voltage in the drain-source at which the critical effective field is reached) is

2.1 Integrated Circuit and Logic Design 39

Vc = EcL

We can now derive the new Ids formulae of linear and saturation transistor states from Section 2.1.5.1
taking into account the velocity saturation:

Ids =

µeff

1 + Vds
Vc

Cox
W

L
(VGT − Vds/2)Vds Vds < VGT linear

CoxW (VGT − Vdsat)υsat Vds > VGT saturation

(2.1)

As the lateral field grows, the current saturates, and Vds = Vdsat. Equating the two parts of above
equation 2.1 we can find the saturation voltage

Vdsat = VGTVc

VGT + Vc
(2.2)

Equation 2.2 allows us to find the saturation current when Vds > Vsat

Idsat = WCoxυsat
VGT

2

VGT + Vc

Channel Length Modulation. As previously discussed, a transistor in saturation mode presents a
depletion region between the drain and the body, and the channel length is effectively shortened by
this effect.

Assuming that the body voltage Vdb ≈ Vds, increasing Vds decreases the effective channel length. Ids
increases with Vds in saturation, therefore shorter channel length results in higher current. As defined
by [GM90], we can model the channel length factor by multiplying the Shockley model current formula
by (1 + Vds/VA), where VA is called the early voltage. Therefore, in the saturation region, we can define

Ids = β

2
VGT

2(1 + Vds

VA
)

Threshold Voltage Effects. Until now, the threshold voltage Vt was treated as a constant. Neverthe-
less, Vt

— increases with the source voltage,
— decreases with the body voltage,
— decreases with the drain voltage, and
— increases with channel length [RMMM03].

To model the body effect on the threshold voltage, we have to consider that the body actually acts as a
fourth transistor terminal. A voltage Vsb is applied between the source and body increases the amount
of charge required to invert the channel, therefore it increases Vt. The threshold voltage can be modeled
as

Vt = Vt0 + γ(
√

ϕs + Vsb −
√

ϕs)

where Vt0 is the threshold voltage when the source is at the body potential, ϕs is the surface potential at
threshold, γ is the body effect coefficient.

40 From a Transistor to a Cryptosystem 2.1

Leakage. The ideal CMOS model considers that OFF transistors are open circuits, therefore no current
between source and drain. However, even when turned off, transistors leak small amounts of power,
called leakage power. Three components are present in leakage consumption: subthreshold conduction, due
to the fact that there is a thermal carrier emission over the potential barrier set by the threshold; gate
leakage, a quantum-mechanical effect caused by tunneling through the thin insulator between source
and body; and junction leakage, caused by small currents that flow from the source and drain wells to
the body via the p-n junction.

Processes above 180nm present insignificant leakage when compared to the dynamic power consump-
tion. Between 90 and 65nm processes, leakage can achieve 1 to 10nA per transistor, which becomes
significant when multiplied by the number of transistors on a chip. The trend we observe is that, as the
technology node gets smaller, the leakage component is reaching the same magnitude of the dynamic
power dissipation.

Temperature Dependence. The main impact from the temperature dependence is that the transistor
carrier mobility decreases as temperature raises. The threshold voltage decreases almost linearly with
temperature and may be approximated by

Vt(T) = Vt(Tr)− κvt(T − Tr)

where T is the absolute temperature, Tr is the room temperature, and κvt is the fitting parameter typi-
cally about 1-2mV/K.

2.2 Hardware-Based Cryptosystems 41

2.2 Hardware-Based Cryptosystems

2.2.1 Introduction

During and after World War II, the adoption of purely electronic cryptosystems was made possible
by the introduction of logical circuits [Til99]. Traditionally, Digital Signal Processing (DSP) algorithms
have been implemented in software, on specifically designed microprocessors, typically driven by their
low cost [MM03]. Often the performance of software-based DSPs failed to meet the requirements. The
market naturally adopted alternative solutions to cope with the higher standards: eventually, custom
hardware solutions, such as ASICs and FPGAs, had to emerge to bust inherent software lower perfor-
mance compared to hardware. Cryptosystems followed the same trend as DSPs. Hardware designs of
encryption algorithms are much faster than equivalent software architectures (typically several orders
of magnitude).

The majority of current cryptosystems runs on general-purpose microprocessors with a relatively low
level of security, alongside with smart-card assisted implementations that store a private key in and
perform basically private-key operations [Gut03]. Only a small number of cryptographic implemen-
tations run in dedicated hardware. The advantage of a software-only implementation is that they are
very inexpensive and easy to deploy (compared to a dedicated hardware approach). The disadvantage
is that they provide a very low-level protection for crypto-variables, allowing, for example, passive at-
tacks such as memory scanning in search of crypto-keys, that are stored in the unprotected processor
memory. If a symmetric key is compromised, the encrypted data is no longer secure and can be easily
read. If an asymmetric private key is accessed, it can be used to intercept and modify messages and to
forge digital signatures, which would be attributed to the key’s rightful owner. A more sophisticated
attack on software-base implementation consists in fooling the system into running malicious code in
the most privileged security level (usually reserved for the kernel), or loading malicious selectors that
provide access to all physical memory.

Although problems described above persist in software-based systems, these platforms are the major-
ity of the market in which consumers care the most [Gut03]. Since program correctness is difficult to
achieve, buggy and insecure systems are the usual state of affairs as we write these lines [CP98]. An-
other attribute that leads consumers is the software’s ease of use feature; users prefer easier and intuitive
systems rather than more secure ones. Real security is harder, slower and more expensive to design and
to implement. Since consumers are not able to differentiate good security from bad security, the market
is driven by better-looking features instead of relying in strong security [SM99, Ros96].

Consequently, instead of trying to unroot insecurity away from the cryptosystem, the correct approach
for a more secure system is therefore to push the crypto away from the insecurity. In other words,
despite the fact that the software layer of the system may be crowded of trojan horses, computer viruses
or other software security threats, none of these can actually come near the crypto environment.

The FIPS 140 standard [Nat06] specifies a number of guidelines for the development of cryptographic
secure modules. Originally, this standard only allowed implementations of cryptographic algorithms
[DES77]; however, the specification lowered its requirements in mid-1990s, allowing software imple-
mentations as well [AES01]. FIPS 140 defines four security levels from 1 (that focus on validating the
cryptographic implementation correctness) to 4 (the cryptosystem is validated as a tamper-resistance
module). Although FIPS 140 allows software certification, this means that the operating system would
have to be certified at the same level of the underlying hardware, which is very difficult (or even impos-
sible) to achieve [Gut03]. As already stated, secure software-only crypto running on a general purpose
PC has to protect data present in unprotected memory and can be read by virtually any process.

These reasons, among others, pushed security to hardware-based cryptosystems, where secrets such as
the cipher secret key or the hash authenticated tag are under much higher control within the module. This
section will explain in more details the challenges faced by hardware-based cryptosystems. Despite of
the fact that they are inherently more secure, other attack types, such as side-channel attacks, take place
in this context.

42 From a Transistor to a Cryptosystem 2.2

2.2.2 Definitions

A cryptosystem is defined as an encryption system together with a corresponding decryption sys-
tem. Let M be the encryption system with a nonempty finite set {χ0, χ1, χ2, ..., χθ−1} of injective rela-
tions χi : V (ni) 99K W (mi). Each χi is called an encryption step.

Definition 2.1 An encryption system X = [χi1, χi2, χi3, ...] is called finitely generated (by means of the en-
cryption system M) if X is induced by a sequence (χi1, χi2, χi3, ...) of encryption steps χi ∈ M under the
concatenation ⋆, i.e.,

x
X99K y holds for x ∈ V ∗, y ∈W ∗ if and only if there exist decompositions x = x1 ⋆ x2 ⋆ x3 ⋆ ... ⋆ xk and

y = y1 ⋆ y2 ⋆ y3 ⋆ ...yk with xj

χij99K yi for j = 1, 2, ..., k.

Definition 2.2 The cardinal number of the encryption system M is denoted by θ = |M |. ni and mi are de-
fined to be the maximal plaintext and ciphertext widths (bit lengths), respectively. The encryption step is called
endomorphic if V = W .

Definition 2.3 An encryption step χi : V (ni) 99K W (mi) is finite (provided that V and W are finite) and can
be specified in principle by enumeration (encryption table). An actual enumeration is often called, as already
mentioned, a cipher; the encryption step is then named encoding step or enciphering step.

Definition 2.4 An encryption X = [χi1, χi2, χi3, ...], finitely generated by M , is monoalphabetic if it com-
prises or uses a single encryption step; otherwise it is called polyalphabetic.

Definition 2.5 An encryption X = [χi1, χi2, χi3, ...], finitely generated by M , is said to be monographic if all
the ni = 1; otherwise it is called polygraphic. In a special case of particular interest for encryption by machines,
all encryption steps of M show equal maximal encryption width n and equal maximal decryption width m: then
M is necessarily finite.

2.2.3 Hardware Design Architecture

There are three primary definitions of speed depending on the context of the problem: throughput,
latency, and timing. In the context of processing data in an FPGA, throughput refers to the amount of
data processed per clock cycle. A common throughput metric is bits per second. Latency refers to the
time between data input and processed data output. The typical metric for latency will be time or clock
cycles. Timing refers to the logic delays between sequential elements. When we say a design does not
meet timing, we mean that the delay of the critical path, that is, the largest delay between flip-flops
(composed of combinatorial delay, clock-to-output delay, routing delay, setup timing, clock skew, and
so on) is greater than the target clock period. The standard metrics for timing are clock period and
frequency.

The following metrics are usually discussed when design hardware [Kil07]:

— High-throughput architectures for maximizing the number of bits per second that can be pro-
cessed by the design.

— Low-latency architectures for minimizing the delay from the input of a module to the output.
— Timing optimizations to reduce the combinatorial delay of the critical path.
— Adding register layers to divide combinatorial logic structures.
— Parallel structures for separating sequentially executed operations into parallel operations.
— Flattening logic structures specific to priority encoded signals.
— Register balancing to redistribute combinatorial logic around pipelined registers.
— Reordering paths to divert operations in a critical path to a noncritical path.

Different hardware design architecture styles can be considered when designing hardware-based cryp-
tosystems [MM03]. The main styles are described below:

Iterative Looping Only one round is designed, hence for an n-round algorithm, n iterations of that
round are carried out to encrypt;

2.2 Hardware-Based Cryptosystems 43

Loop Unrolling Involves the unrolling of multiple rounds;

Pipelining Achieved by replicating a round function and placing registers between each round to con-
trol the flow of data;

Sub-Pipelining The addition of further registers into a pipelined design when a round function of the
pipelined architecture is complex. It decreases the pipeline’s delay between stages but increases
the number of clock cycles required to encrypt.

A pipelined architecture provides the highest overall throughput. Thus, if a high-speed design is re-
quired, a fully pipelined architecture should be chosen. Further speed improvements can be achieved
by sub-pipelining the design. However, this incurs additional delays in the output data. If, on the other
hand, area is crucial, an iterative architecture will produce the most compact design. For specific speed
and area requirements, hybrid architectures can be employed.

2.2.3.1 Throughput and Latency

Perhaps the most important parameters in cryptographic hardware implementations, throughput
and latency are important measurements that describe how fast hardware-based cryptosystems can op-
erate.

Latency is defined as the total duration (based on the system’s clock cycles and recorded in time units)
required to compute the system’s output from the time that the inputs were available. The faster the
clock frequency can go, the faster the system operates, as the latency decreases. When it is impossible to
increase the clock frequency, due to system constraints or because the design has reached the clock limit
due to its combinatorial logic paths, some techniques like pipelining, as described in Section 2.2.3, can
be applied to break long combinatorial delays into shorter ones. Although inserting extra registers in
the middle of long combinatorial paths will surely increase clock frequency, the overall system latency
might not be decreased. For example, consider a system S that can deliver its output one clock cycle
after the inputs were provided, given that the maximum reachable clock frequency is 500MHz. Conse-
quently, in this scenario the latency is 2ns. Consider now that the designer was able to insert a register
barrier somewhere in the middle worst (longer) path, increasing the frequency to 800MHz. Now each
clock takes 1.25ns, but the output is available after two clock cycles. Therefore, the latency is now 2.5ns.

Throughput is defined in terms of latency, and it represents the amount of data per time that a system
can output. Consider a cryptosystem with output size of m bits that can process n blocks simultaneously
with latency L. The throughput Tp is generally defined as

Tp = m× n

L

Typical throughput units are Mbit/s (megabit per second) and Gbit/s (gigabit per second). In the
first previously mentioned scenario where system S operates at 500Mhz, consider that S outputs 128
bits every clock cycle, with no parallelism. In this case, the latency is 2ns and the throughput T =
(128 × 1)/(2 × 10−9) = 64 × 109 = 64Gbit/s. Now if the designer is able to insert a logic barrier
between the input and the output, pushing the clock to operate at 800MHz, the latency is 2.5ns and the
throughput T = (128× 1)/(2.5× 10−9) = 51.2× 109 = 51.2Gbit/s. As pointed out, pipelining does not
solve performance issues if it is not well balanced and designed.

2.2.3.2 Area

A common simple metric in industry is that circuit area is a primary factor that determines the final
chip cost. This assumption does not take into account the cost of packaging, which also increases with
the circuit area and the number of I/Os. Certain cryptosystem specifications restrict the area available
for use. For example, in a smart card, besides the area constraint, the design is also constrained by
the number of I/Os. Moreover, limits may be imposed on the power consumed by the chip, which is
directly proportional to its area.

44 From a Transistor to a Cryptosystem 2.2

In FPGA implementations, area is limited by the available reconfigurable logic blocks (CLB). When
synthesizing a design to a FPGA target, the CAD tool typically reports the number of basic configurable
logic blocks and the number of equivalent logic gates. Measuring different designs mapped to different
FPGA families is particularly challenging as the FPGA manufacturing technology may be different. As
a result, the transistor and LUT sizes differ. Commonly in academia and industry, the metric of basic
CLBs is used to express the total design size in FPGA, as it provides a more accurate figure of area
estimation.

In ASIC implementations, CAD tools usually report number of logic gate instances utilized, as well as
the area that these instances sum up to in µm2. These numbers are function of the standard cell library
used during logic synthesis. ASIC CAD tools can also estimate area of wiring the logic together, and
the clock power network, which majorly affect the final chip’s power consumption.

The Gate Equivalent Metric Comparing two ASIC designs that were mapped to different technology
libraries also present similar problems as comparing FPGA implementations. As the transistor size
changes, the raw area comparison is unfair. To solve this issue, academia and industry have adopted
the gate equivalent GE metric, defined as

GE = A

N

where A is the total design area (technology-dependent), not considering the interconnection area es-
timation, and N is the area of the smallest NAND gate available in the target technology node (also
technology-dependent). The result gives a technology-independent measure of how large the design is,
and allows comparisons among chips synthesized in different technology nodes.

2.2.4 Cryptographic Hardware Design

Cryptographic primitives and algorithms are intended to be implemented in both software or hard-
ware platforms. Software implementations are designed and coded in programming languages such as
C++, Java and assembly language, targeting general-purpose microprocessors and smart cards. On the
other hand, hardware implementations are designed and coded in Hardware Programming Languages
(HDLs) such as VHDL and Verilog. These languages map the circuit logic description to logic blocks.
Two main implementation approaches can be used: FPGAs or ASICs.

In 1997, the National Institute of Standards and Technology (NIST) initiated a development effort, to-
gether with academia, to put in place a new standard for private-key encryption [Koc08] called the Ad-
vanced Encryption Standard (AES). A new algorithm was selected based on three characteristics: security,
efficiency in software and hardware and flexibility. The rapid increase of hardware-based cryptosys-
tems led NIST to think of efficiency in hardware as a main concern.

The final five AES candidates [SKW+98, ABK98, RRSY98, DR99, BCD+99, BCD+99] did not present any
cryptanalytic flaws, and their software performance evaluations led to inconclusive results [Koc08],
thus hardware efficiency evaluations played a key role in the final AES choice. The candidate Rijndael
presented outstanding hardware performance and flexibility, and became the AES winner.

Symmetric block ciphers are used in several operating modes. Their hardware implementation can be
divided in two main categories depending on the round-loop-back characteristic:

— Non-feedback modes, such as the Electronic Codebook (ECB) and the Counter Mode (CTR);
— Feedback modes, such as Cipher Block Chaining (CBC), Cipher Feedback Mode (CFB), and Out-

put Feedback Mode (OFB).

Let Cs be a cryptosystem. If the encryption and decryption mode of each subsequent data block can
be performed independently of previously processed blocks, we define Cs as a non-feedback block (or
mode). The main characteristic of a non-feedback block is that all blocks can be processed in parallel.
In contrast, in feedback mode encryption data cannot be processed in parallel because a next message
block uses the previous computed output as input. Before introducing the AES winner in more details

2.2 Hardware-Based Cryptosystems 45

(Section 2.3), the next sections are intended to explain the most used techniques to implement private-
key hardware cryptosystem for both feedback and non-feedback modes.

2.2.4.1 Iterative Looping

This is the traditional approach for the design of a round-based block cipher. A full round of the
block cipher is implemented with combinatorial logic with a logic barrier. The logic barrier can be
present at the beginning, to register the inputs, or at the end of the logic path, to register the round
output. The output of this block is then fed back into itself, using a multiplexer to select either the
initial inputs or the loop signal, as presented in Fig. 2.12.

input

register

combinatorial
round logic

register

output

round key

Figure 2.12: General Iterative Looping architecture.

Although it presents low-overhead in terms of area, this design style presents two downsides: it is only
possible to encrypt/decrypt one block at a time, and the design gets busy during n clock cycles, where
n is the number of rounds of the block cipher. Consequently, the latency L is defined as

L = n× Tclk

where Tclk is the clock period. The throughput of the iterative looping therefore is given by

Tp = m

n× Tclk

where m is the cipher block size in bits.

2.2.4.2 Loop Unrolling

This technique replicates the combinatorial round logic to process the output in less clock cycles. In
the partial loop unrolling, the design implements K rounds in one combinatorial block, and this result is
fed back into the block input, similarly to what happens in the iterative looping (K must be a divisor of
n). In the full loop unrolling, all the n block cipher rounds are combined in one combinatorial block (thus
K = n), and both the feedback connection and the multiplexer selecting the input are removed. As a
result, the number of clock cycles necessary to compute the output is divided by a factor of K, although

46 From a Transistor to a Cryptosystem 2.2

input

register

combinatorial
round 1 logic

combinatorial
round 2 logic

...

combinatorial
round K logic

register

output

round key 1

round key 2

round key K

Figure 2.13: General architecture of Loop Unrolling.

the clock period is drastically increased. The general diagram of the loop unrolling scheme is depicted
in Fig. 2.13.

The loop unrolling latency is given by

L = n

K
× T ′

clk

and the throughput is

Tp = m×K

n× T ′
clk

where T ′
clk ̸= Tclk.

2.2.4.3 Pipelining

One of the most used techniques to improve throughput is called pipelining. Pipelining consists
in replicating the iterative looping as many times as the maximum available area constraint allows to
achieve the highest throughput possible. This technique differs from the loop unrolling because in
pipelining, every two consecutive combinatorial round logic blocks are divided by a register, forming
a logical barrier between the blocks. By doing so, we achieve clock frequencies comparable to the ones
achieved by the iterative looping technique, although substantially increasing the design throughput.

2.2 Hardware-Based Cryptosystems 47

input

register

combinatorial
round 1 logic

register

combinatorial
round 2 logic

...

register

combinatorial
round n logic

register

output

round key 1

round key 2

round key n

Figure 2.14: General architecture of Pipelining.

Fig. 2.14 shows the general scheme of the pipelining technique. Combinatorial logic blocks are enclosed
by register barriers that break down the clock cycle period. The registers at the input and at the output
(shown in dotted borders) are optional.

The overall latency of a pipeline scheme remains the same as the iterative looping latency, i.e.,

L = n× T ′′
clk

although Tclk might be different than T ′′
clk. In order to calculate the throughput, we have to take into

account that the circuit can be fed with new inputs at every new clock cycle. After L time units, the
output will be updated at every new clock cycle as well. Therefore this scheme can handle n cipher
operations at the same time. As a result, the final throughput is given by

Tp = n×m

n× T ′′
clk

= m

T ′′
clk

48 From a Transistor to a Cryptosystem 2.2

2.2.4.4 Sub-Pipelining

This technique is mainly used when full pipelining costs too much area. In the sub-pipelining ap-
proach, registers are added between combinatorial round logic blocks, just like in the pipeline scheme,
but not every round is duplicated. Instead, K rounds are replicated in series, and the output of the last
round loops back to the design input. Again K must be a divisor of n.

input

register

combinatorial
round 1 logic

register

combinatorial
round 2 logic

...

register

combinatorial
round K logic

register

output

round key 1

round key 2

round key K

Figure 2.15: General architecture of Sub-Pipelining.

Fig. 2.15 represents the sub-pipelining architecture, containing K combinatorial logic blocks with a
feedback path from the output to the input. A multiplexer selects whether the input or the feedback
loop is sent to the first combinatorial block. The loop has to be repeated n/K − 1 times for the cipher to
complete. The latency is defined as

L = n× T ′′′
clk

as in the pipelining design style. To compute the sub-pipelining throughput, we have to consider that
K inputs are fed into the core, followed by a delay of L − nTclk time units during which the design is
busy computing the output. As a result, the throughput is

2.2 Hardware-Based Cryptosystems 49

Tp = K ×m

n× T ′′′
clk

2.2.4.5 Pseudo-Random Sequences in Hardware

f(s0, s1, ..., sn−2, sn−1)

...s0 s1 sn−2 sn−1output

Figure 2.16: General architecture of a Feedback Shift Register (FSR).

A hardware cryptosystem, based on logical circuits, works with the alphabet (0, 1) because the
transistor can only drive VDD or VSS to its output. Based on that, a purely digital circuit cannot be truly
random, as its underlying finite state machine and combinatorial logic are deterministic.

Cryptographic primitives often make use of pseudo-random binary sequences. A fast hardware imple-
mentation of such scheme is the FSR. A Feedback Shift Register of length n contains n memory cells
that represent the state of the FSR. The function f , called the feedback function, is a Boolean function,
therefore represented by logical functions, mapping (0, 1)n in (0, 1). After the first time unit, the FSR
will output s0 and transit to state (s1, s2, ..., sn), where sn = f(s0, s1, ..., sn−1). At each execution, the
FSR goes on and output the next state based on the previous state, generating an infinite sequence. The
general scheme of a FSR is shown in Fig. 2.16.

In the case where f is a linear function, it can be written as

f(s0, s1, ..., sn−1) = c0s0 ⊕ c1s1 ⊕ ...⊕ cn−1sn−1

where ci are binary. Such scheme is named Linear Feedback Shift Register (LFSR), and the coefficients
ci are called the feedback coefficients. If ci = 0, the corresponding switch in Fig. 2.17 is opened, while if
ci = 1, the corresponding switch is closed.

...s0 s1 sn−2 sn−1

⊕ ... ⊕ ⊕

c0 c1 cn−2 cn−1

output

Figure 2.17: General architecture of a Linear Feedback Shift Register (LFSR).

There are at most 2n − 1 different states in a LFSR of length n. Therefore the period of si ≥ 0 will
never exceed 2n − 1. The length of the sequence before repetition occurs depends upon two factors, the
feedback taps (XORs) and the initial state. An LFSR of any given size n (number of registers) is capable
of producing every possible state during the period N = 2n − 1 shifts, but will do so only if proper
feedback taps have been chosen. A pseudo-noise sequence is defined as the output of a LFSR of length n
that has period exactly equal to 2n − 1.

50 From a Transistor to a Cryptosystem 2.3

2.3 Private-Key Cryptosystems

Symmetric-key cryptography, also known as private-key or secret-key cryptography, involves us-
ing the same key for both encryption and decryption processes (hence the term symmetric). For this type
of cipher to work, it is necessary to both parties to agree on the key prior to encryption or decryption. It
is also extremely important that the key remains secret, as the algorithm is public and therefore known.
In other words, the whole secrecy of such schemes relies on the key.

In order to work, private-key cryptography rely on three algorithms [Vau05]:

— a key generator that provides expanded keys in a pseudo-random fashion;
— an encryption algorithm that, given the plaintext input P, outputs the ciphertext C, using at each

round the key provided by the key generator;
— a decryption algorithm that transforms the ciphertext C back to the original plaintext P, using

the same secret key.

Plaintext (P) E{P,K}

Expanded Key (K)

Key generator

Ciphertext (C) D{C,K}

Expanded Key (K)

Key generator

Plaintext (P)

Figure 2.18: Secret-key cryptography (overview).

To encrypt, most secret-key schemes use two main techniques known as substitution and permutation.
Substitution is simply a mapping of one value to another whereas permutation is a reordering of the
bit positions for each of the inputs. These techniques are used a number of times in iterations called
rounds. Generally, the more rounds there are, the more secure is the algorithm. Substitution provides
non-linearity to the encryption scheme so that decryption will be computationally infeasible without
the secret key. This is achieved, for instance, with the use of S-Boxes which are basically non-linear
substitution tables where either the output is smaller than the input or vice versa.

The final goal of symmetric-key encryption is to enable confidential communication between two par-
ties considering that the communication channel is insecure and therefore prone to eavesdropping. The
next sections describe two of the most adopted and known private-key ciphers: the DES and the AES.

2.3.1 The Data Encryption Standard

The Data Encryption Standard (DES) was the predominant symmetric-key algorithm back in the
day. The extinct National Bureau of Standards (NBS) felt the need to standardize a secure method of
electronic data encryption and ended up approving an algorithm proposed by IBM’s employee Horst
Feistel in the early 1970s.

Although considered outdated by industry and academia, due to its small key space and successful
proposed attacks [HC99,BS91], the reality is that the DES is still being used in many legacy applications.
In fact, the standard is officially outdated as it was eventually not renewed by NIST in 2004.

2.3.2 The Advanced Encryption Standard

On January 2, 1997 the National Institute of Standards and Technology (NIST) held a contest for
a new encryption standard. The previous standard, DES, was no longer adequate in terms of security,

2.3 Private-Key Cryptosystems 51

although it had been the standard since November 23, 1976. Apart from the fact that the DES construc-
tion was fast in hardware implementations, computational power had increased a lot since then, and
several successful attacks proved that the algorithm was no longer considered safe. In 1998 DES was
cracked in less than three days by a specially made computer called the DES cracker [Fou98], created
by the Electronic Frontier Foundation for less than $250,000 and the winner of the RSA DES Challenge
II-2.

Current alternatives to a new encryption standard were Triple DES (3DES) and International Data En-
cryption Algorithm (IDEA). The problem was that IDEA and 3DES were too slow in hardware and
IDEA was not free to implement due to patent restrictions. NIST opted for a free and easy-to-implement
algorithm that could provide outstanding security. Additionally, among NIST requisites was that the
algorithm had to be efficient and flexible in both hardware and software.

After holding the contest for three years, NIST chose an algorithm created by two Belgian computer
scientists, Vincent Rijmen and Joan Daemen. They named their algorithm Rijndael after themselves.
Supposedly Rijndael can only be pronounced correctly by people who can speak Dutch and the closest
English approximation is “Rhine Dahl”.

On November 26, 2001 the Federal Information Processing Standards (FIPS) Publication 197 announced
a standardized form of Rijndael as the new encryption standard. This standard was called the Advanced
Encryption Standard (AES) and it is currently the standard for private-key encryption.

2.3.2.1 AES Rounds

The AES is based on a substitution-permutation network and works the input block bytes as ele-
ments defined over the Galois Field (introduced in Section 1.4). The AES is a symmetric block-cipher
that can process 128 bits of data, using keys of 128, 192 or 256 bits. The specification of Rijndael defines
longer keys, although they were not standardized.

AES defines iterative operations on a 4×4 matrix of bytes called the state. Each element of the state array
is denoted by sr,c, where r and c are respectively the row and column positions, with 0 ≤ r, c < 4. At
the start of the cipher, the input is copied to the state, which is then transformed by an XOR operation
with the round key from the Key Expansion block. After that, the state undergoes the round function,
that will be repeated Nr times, depending on the size of the key. Nr is defined to be 10, 12 or 14 for the
key size of 128, 192 and 256 bits, respectively.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Figure 2.19: The AES state.

The AES state, pictured in Fig. 2.19, undergoes four different transformations during each round pro-
cessing: SubBytes, ShiftRows, MixColumns and AddRoundKey, for the encryption process, and InvSub-
Bytes, InvShiftRows, InvMixColumns and AddRoundKey, for the decryption process. Note that, because
the AddRoundKey step consists of a XOR between the state and the RoundKey, the inverse operation is
idempotent. These AES transformations are detailed in the following sections.

SubBytes and InvSubBytes. Transforms individual bytes of the state following two steps:

— Multiplicative inversion in GF (28) with the reduction polynomial m(x), where

m(x) = x8 + x4 + x3 + x + 1

52 From a Transistor to a Cryptosystem 2.3

AddRoundKey

i← 1

SubBytes

ShiftRows

MixColumns

AddRoundKey

i < Nr − 1

SubBytes

ShiftRows

AddRoundKey

i← i + 1

RoundKey[0]

RoundKey[i]

RoundKey[Nr]

Figure 2.20: The AES encryption flowchart.

AddRoundKey

i← Nr − 1

InvSubBytes

InvShiftRows

AddRoundKey

InvMixColumns

i > 1

InvSubBytes

InvShiftRows

AddRoundKey

i← i− 1

RoundKey[Nr]

RoundKey[i]

RoundKey[0]

Figure 2.21: The AES decryption flowchart.

2.3 Private-Key Cryptosystems 53

— Affine transformation over GF (2), following

b′
i = bi + bi+4 + bi+5 + bi+6 + bi+7 + c

where byte c is a constant defined by 01100011 (or 0x63) and additions are considered modulo 8.

Typically in an AES hardware implementation, SubBytes is implemented as follows: each si,j of the AES
state is replaced with a SubByte SB(si,j) using an 8-bit substitution box, called the S-Box. This operation
provides the non-linearity of the AES cipher, and it is based on the good non-linearity properties of
the multiplicative inverse over GF (28). The S-Box was carefully chosen to avoid any fixed points, i.e.,
SB(si,j) ̸= si,j and also SB(si,j)⊕ si,j ̸= 0xFF.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

SubBytes

Figure 2.22: Application of SubBytes transformation to the state.

ShiftRows and InvShiftRows. These transformations simply cyclically shift three bottom rows of the
state by one, two and three byte positions, respectively, as shown in Fig. 2.23. The upper row is un-
changed.

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

d0,0 d0,1 d0,2 d0,3

d1,0 d1,1 d1,2 d1,3

d2,0 d2,1 d2,2 d2,3

d3,0 d3,1 d3,2 d3,3

ShiftRows

Figure 2.23: Application of ShiftRows transformation to the state.

MixColumns and InvMixColumns. This transformation step is defined over 4-byte words that repre-
sent a column of the state. They can be seen as polynomials of degree ≤ 3 with coefficients in GF (28),
defined in the ring of polynomials R = K[X]/(X4 + 1) modulo M(X) = X4 + 1.

e0,0 e0,1 e0,2 e0,3

e1,0 e1,1 e1,2 e1,3

e2,0 e2,1 e2,2 e2,3

e3,0 e3,1 e3,2 e3,3

f0,0 f0,1 f0,2 f0,3

f1,0 f1,1 f1,2 f1,3

f2,0 f2,1 f2,2 f2,3

f3,0 f3,1 f3,2 f3,3

MixColumns

Figure 2.24: Application of MixColumns transformation to the state.

AddRoundKey. The AES key scheduling is the process of generating Nr + 1 round keys based on the
original secret key provided to the system.

2.3.2.2 AES in Hardware (FPGA and ASIC)

The Rijndael algorithm was selected the Advanced Encryption Standard, among other reasons,
thanks to its performance. In [DPR00] it is shown that Rijndael achieves the lowest key-setup latency

54 From a Transistor to a Cryptosystem 2.3

k0 k1 k2 k3 k4 k5

Nr = 6

Key

KeyExpansion

RoundKeySelection

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 ...

roundKey 0 roundKey 1 roundKey 2 roundKey 3 roundKey 4 roundKey 5 ...

Nb = 4

Figure 2.25: Decomposition of key scheduling into KeyExpansion and RoundKeySelection for Nk = 6
(192-bit key) and Nb = 4 (128-bit data block). In the figure, ki is a word of 32 bits.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 ...

Nr = 6

⊕ ki = ki−Nk
⊕ ki−1

Figure 2.26: KeyExpansion formula for i mod Nk ̸= 0.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 ...

Nr = 6

RotWord

SubWord

⊕
⊕

Rcon[i/Nk]

RotWord(a, b, c, d) = (b, c, d, a)

Rcon[j] = (xj−1 mod m(x), {00}, {00}, {00})

m(x) = x8 + x4 + x3 + x + 1

ki = ki−Nk
⊕ ki−1

Figure 2.27: KeyExpansion formula for i mod Nk = 0.

time and also the highest encryption rate due to the ideal match of its algorithm characteristics with the
hardware characteristics of FPGAs. Moreover, the winner candidate also achieves the best hardware
utilization.

Although designs aiming at reducing the area usually focus on smaller datapaths, such as 32 or even
8 bits wide, the publications analyzed here always present a datapath of the size of AES internal state:
128 bits. Reported low area architectures [CG03] [RSQL04] have been based around a 32-bit datapath.
As the AES operations MixColumns and KeyExpansion are fundamentally 32-bit, it was previously be-
lieved that this was optimal. An ASIC design by [FDW04] used an 8-bit datapath connected to a 32-bit
MixColumns operator. However, even MixColumns may be rewritten in an 8-bit form accepting a higher
control overhead and reduced throughput.

2.3 Private-Key Cryptosystems 55

Algorithm 1 AES algorithm description.
Require: plaintext P [4× 4]
Require: key K[4× 4]
Ensure: ciphered C[4× 4]

1: state[4× 4]← P

2: AddRoundKey(state, K[0,3])

3: for round← 1, Nr − 1 do
4: SubBytes(state)
5: ShiftRows(state)
6: MixColumns(state)
7: AddRoundKey(state, K[round× 4, (round + 1)× 3])
8: end for

9: SubBytes(state)
10: ShiftRows(state)
11: MixColumns(state)
12: AddRoundKey(state, K[Nr × 4, (Nr + 1)× 3])

13: C ← state
14: return C

[DPR00] compares its proposed AES design on FPGA with [EYCP00] and [GC01]. All of these articles
achieve throughputs in the same order of magnitude for AES-128, despite the fact that [EYCP00] and
[GC01] do not implement the key schedule, while [DPR00] does. These results are then compared to
with the NSA ASIC-based implementations described in [WBRF00]. As we can see in the literature, the
best FPGA AES designs achieve approximately half of the throughput that NSA describes as optimum
for an ASIC implementation of AES.

[KV01] proposed an AES design where one full round is computed in one clock cycle. The design
separates into two modules: the main datapath and the key schedule, that generate subkeys on-the-
fly. Despite the high throughput achieved in this design, no pipeline or unrolling were implemented.
In [EYCP00], an even higher throughput is achieved by a partially unrolled FPGA design. Similar
throughput is achieved by an ASIC design presented in [IKM00]. A pipelined encryptor core is pre-
sented in [MM01] with a very high throughput for an FPGA implementation. The highest throughput
is presented by a fully-pipelined ASIC design described by NSA in [WBRF00] (until 2002).

Table 2.3: Comparison of different AES implementations.

AESAlgorithm [EYCP00]
(FPGA)

[GC01]
(FPGA)

[DPR00]
(FPGA)

[WBRF00]
(ASIC)
(0.5µm)

[KV01]
(ASIC)
(0.18µm)

[EYCP00]
(FPGA)

[IKM00]
(ASIC)
(0.35µm)

[MM01]
(FPGA)

[WBRF00]
(ASIC)
(µm)

Throughput (Mbit/s) 300.10 331.50 353 605.77 1820 1937.9 1950 3239 5163

In CHES 2005, an interesting work [GB05] presented a super fast implementation of AES and compared
with previously known best designs. The first design decision was to remove all the loops to form
a loop-unrolled design where several register barriers create a "production line" in which a new data
block can be input at each clock cycle. Each block progresses through the pipeline stages until it has
been processed and output. This allows the design to increase its throughput, but increases latency (the
time from the input of the first block of data until it is processed and output).

The second design approach was to express the SubBytes operation in computational form rather than
look-up operations, due to the fact that look-up operations have an inherent delay to pass through the
FPGA memory blocks. FIPS-197 [AES01] provides the specification of the mathematical derivation of
SubBytes in terms of Galois Field (28) arithmetic.

56 From a Transistor to a Cryptosystem 2.3

The third and last approach to find the best throughput design was to carefully analyze the datapath of
a whole round and perform the pipeline cuts with the best logic balancing. It was found that each round
should be cut into 7 different places, resulting in a round with a 7 clocks latency, and the full latency of
the AES design being 70 clock cycles. The optimized logic level (the number of combined LUTs between
two adjacent pipeline stages) was found to be 3. Moreover, the pipeline stages of the final round were
slightly modified for optimal logic balancing, resulting in an optimal throughput. Results are compared
in the following table:

Table 2.4: Comparison of different pipelined AES implementations.

Design FPGA Freq.
(MHz)

T’put
(Mbit/s)

Latency
(ns) Area (slices) Mbit/s

/ slice Datapath

[JTS03] Virtex-E
XCV1000E-8 129.2 16,500 - 11,719 1.408 Enc

[SMMS03] Virtex-E
XCV2000E-8 158 20,300 - 5,810 + 100B

RAM 1.091 Enc

[SRQL03] Virtex-E
XCV3200E-8 145 18,560 - 15,112 1.228 Enc

[HV04] Virtex-II Pro
XC2VP20 169.1 21,640 420 9,446 wo/

KE 2,290 Enc

[ZNC04] Virtex-II
XC2V4000 184.1 23,570 163 16,938 1.391 Enc

[ZP04] Virtex-E
XCV1000E-8 168.4 21,556 416 11,022 wo/

KE 1.956 Enc/Dec

[GB05] Virtex-E
XCV2000E-8 184.8 23,654 379 16,693 1.417 Enc/Dec

2.4 Cryptographic Hash Functions 57

2.4 Cryptographic Hash Functions

2.4.1 Introduction

There are many applications for which one needs a function that is easy to compute, but hard to re-
vert. Cryptographic hash functions are such constructions. They compute a fingerprint of this message,
called the message digest. Hash functions are an essential part of digital signature schemes and message
authentication codes. Hash functions are also widely used for other cryptographic applications, e.g.,
for the storing of password hashes or key derivation.

The signing of long messages is particularly challenging. The question arises when we want to hash
strings longer than the hash block size. We could use a naïve approach by applying a scheme similar to
the ECB mode of operation for block ciphers: divide the message x into blocks xi of size shorter than the
allowed input size of the signature algorithm, and sign each block separately. However, this approach
yields three serious problems [PP09]:

High Computational Load The longer the message, the more time and energy it will take to compute
its message digest, which may be unfeasible in certain environments with limited resources;

Message Overhead The transmission overhead is increased, as we have to send now the message and
its signature;

Security Limitations New attacks can happen in this scenario. For example, an attacker can remove
part of the message and its corresponding signatures, or she could reorder them, or even reassem-
ble new messages and signatures out of fragments of previous messages and signatures.

What we want instead is a hash function capable of computing a fingerprint of the message x having
always the same size, no matter the size of x. A basic protocol is depicted in Fig. 2.28, assuming that we
have such a construction:

Signer Verifier
kpub,k−−−−−→

z = h(x)
s = sigkpr,B (z)

x,s−−−−−→
z = h(x)
verkpub,B

= true/false

Figure 2.28: Basic protocol for digital signatures with a hash function.

The sender computes the hash of the message x with its private key kkpr,B . On the receiving side, the
verifier computes the hash value z of the received message x and also checks that the correctness of
signature s with the public key kpub,B .

Now that we have a better understanding of what a hash function should be and behave, let us define
it more formally:

Definition 2.6 (Hash Function) A hash function takes as input an arbitrary long message x and returns a
short bit string z. The primary properties that a hash function must have are:

— Computation of hash h of x should be fast and easy, e.g., linear time;

— Inversion of h result should be difficult, e.g., exponential time. More precisely, given a hash value z, it
should be difficult to find any message x such that h(x) = z′;

— The hash function should be collision resistant. This means that it should be hard to find x1 ̸= x2 such
that h(x1) = h(x2).

58 From a Transistor to a Cryptosystem 2.4

Besides being able of computing a message digest from a message x of arbitrary length, it is also desir-
able that the function h be computationally efficient. Another desired property is that the digest is of
fixed length independently of the input length. Practical hash functions have output lengths between
128 and 512 bits.

2.4.2 Security Requirements of Hash Functions

Although hash functions do not have keys, some properties must be respected for a hash to be
considered secure. Notably, hash functions need to possess three properties to be secure:

— preimage resistance (or one-wayness);
— second preimage resistance (or weak collision resistance);
— collision resistance (or strong collision resistance).

These properties imply that a adversary cannot replace or modify the input data without changing its
digest. Thus, if two strings have the same digest, one can be very confident that they are identical. The
sections that follow detail these properties.

2.4.2.1 Preimage Resistance

Given a digest z it must be computationally infeasible to find an input message m such that z =
h(m). This property is also called one-wayness. To highlight why preimage resistance is crucial, consider
that the sender encrypts the message but not the signature. In this case, the sender transmits the pair

(ek(m), sigkpr,B
(z)).

Here consider that ek() is a symmetric cipher (AES, for example). Assume also that the verifier uses an
RSA digital signature that is computed as (where kpr,B = d)

s = sigkpr,B
(z) = zd mod x

An attacker can use the verifier’s public key to compute

se ≡ z mod x

If the hash function in place does not replace the one-wayness property, the attacker can compute the
message m from h−1(z) = m. Thus, the symmetric encryption of m is circumvented by the signature,
which leaks the plaintext.

2.4.2.2 Second Preimage Resistance

Using a hash function to digitally sign messages implies that two messages do not hash to the very
same value. Therefore it should be computationally infeasible to create two different messages x1 ̸= x2
having equal digests z1 = h(m1) = h(m2) = z2. This is called second preimage resistance or weak
collision resistance.

Assume that the sender hashes and signs a message m1. If an attacker is capable of finding a second
message m2 such that h(m1) = h(m2), the substitution attack exemplified in Fig. 2.29 can take place.

Since the verification outputs true, the verifier is fooled into thinking that the message is authentic. This
happens because the actual hashing does not process the actual message, but its hashed version instead.
If the attacker is able to find a message m2 with the same digest of m1, signing and verifying give the
same result.

2.4 Cryptographic Hash Functions 59

Sender Attacker Verifier
kpub,k−−−−−→

z ← h(x)
s← sigkpr,B

(z)
x1,s−−−−−→ (substitute)

x2,s−−−−−→
z ← h(x2)
verkpub,B

(s, z) = true

Figure 2.29: Substitution attack on a hash scheme without second preimage resistance.

In principle, it is impossible to avoid that an attacker finds m2 such that h(m1) = h(m2). Given that
the number of possible hash input messages is infinite and the digest has a finite size n, the hash result
spans from 0 to 2n − 1. Therefore, multiple input messages will hash to the same digest. This is known
as the pigeonhole principle [Ajt88].

To avoid that, a hash function must be such that no analytical attack can happen. A strong hash con-
struction must be designed such that, given x1 and h(x1) it is impossible to construct x2 such that
h(x1) = h(x2). Similarly to an exhaustive key search for symmetric ciphers, the attacker still can choose
x2 at random, compute h(x2) and check whether it matches with h(x1). With today’s computational
power, it is enough to have an output length of 80 bits to make this attack unpractical.

2.4.2.3 Collision Resistance

A hash function is collision resistant or strong collision resistant if it is computationally infeasible to
find two different inputs x1 ̸= x2 with h(x1) = h(x2). This property differs from second preimage
resistance in the sense that here the attacker has two degrees of freedom: he can modify both x1 and x2
at will to match h(x1) and h(x2). This attack is depicted in Fig. 2.30.

Sender Attacker Verifier
kpub,k−−−−−→

x1←−−−−−
z ← h(x)
s← sigkpr,B

(z)
x1,s−−−−−→ (substitute)

x2,s−−−−−→
z ← h(x2)
verkpub,B

(s, z) = true

Figure 2.30: Attack on a hash scheme without second collision resistance.

This attack assumes that the adversary can fool the sender into hashing the message x1, which is not
always doable. As we know, collisions exist, therefore it is important to know how strong the hash is
against that. If the hash output is 80 bits long, we have to check about 240 messages to find second
preimages, due to the birthday attack [GCC88]. This attack is based on the birthday paradox, which is a
powerful tool often used by cryptanalysts.

The Birthday Paradox. How many persons are needed to have 50% chance of having at least two
people born on the same day? To answer that question, we start by computing the probability of no
collision. Let Pnc(2) be the probability of having no collision between two persons

Pnc(2) = (1− 1
365

)

If we have now a third person, her birthday can collide with both persons, therefore

60 From a Transistor to a Cryptosystem 2.4

Pnc(3) = (1− 1
365

) · (1− 2
365

)

Following the progression, the probability of t people having no birthday collision is given by

Pnc(t) = (1− 1
365

).(1− 2
365

) · · · (1− t− 1
365

) =
t−1∏
i=1

(1− i

365
)

Obviously, for t = 366 we have Pnc(t) = 1. We tend to believe that we need roughly half of that to
achieve a 50% probability, but in reality we need only 23 persons! Let Pc(t) be the probability of having
at least one collision for t people, given by:

Pc(t) = 1− Pnc(t)

Pc(23) = 1− (1− 1
365

) · · · (1− 23− 1
365

)

= 0.507 ≈ 50%

2.4.2.4 Overview of Hash Algorithms

For practical applications, it is fundamentally important that the hash function be fast since the
hash accepts an input of any size. Because of that, hash constructions usually apply ad hoc mixing
operations rather than complicated mathematical constructions such as factoring or discrete logarithms.
There are two general types of hash functions:

Dedicated hash functions These are algorithms dedicated to hash messages;

Block cipher-based hash functions Modified block cipher constructions to serve as hash function.

Hash constructions usually apply the Merkle-Damgård construction, where the input message is broken
down into pieces of the same size and fed into the hash block, that uses a compression function as its
main engine. Iteratively, the hash function gives the output based on all the given input messages. The
final hash value is defined as the output of the last iteration of the compression function.

The most widespread hash function is the SHA (Secure Hash Algorithm) family, standardized by NIST
[SHA93]. SHA versions differ on the level of security and the message digest size.

2.4.3 The Secure Hash Algorithm 1

The SHA-1 standard came to replace the no longer safe MD4 hash family. Although, it has been the
most widely used message digest function since 1995, in 2005 a team of Chinese researchers were the
first to propose a collision attack in the full SHA-1 in 269 hash operations, much less than time-memory
tradeoff attack (280) [WYY05].

Because of that, NIST adopted a new standard called the SHA-2, and since 2010 many organizations
have recommended the SHA-1 replacement by SHA-2. Companies like Microsoft, Google, and Mozilla
have all announced that their web browsers will stop accepting SHA-1 SSL certificates by 2017.

2.4.4 The Secure Hash Algorithm 2

In 2001, even before the publication of collision attack that made SHA-1 be considered unsafe,
NIST published a new cryptographic hash function standard called SHA-2. Although also based on
the Merkle-Damgård construction, SHA-2 includes significant changes from its predecessor, featuring
larger digest sizes: 224, 256, 384 and 512 bits.

2.4 Cryptographic Hash Functions 61

The performance of SHA-2 family depends on the length of the hashed message. The way the padding
operation is implemented also impacts the overall hardware performance . The algorithm is basically
divided into 3 steps: (i) message padding; (ii) expansion; and (iii) compression, according to Fig. 2.31.

Message Message
Padding

Message
Scheduler

Message
Compression

Control
Logic

Hash Value

Figure 2.31: General block diagram of the hardware SHA-2 implementation.

i The binary message is appended to a single 1 and then padded with zeros until its length ≡ 448 mod
512. The resulting string is divided into M blocks and each of these are input to the algorithm.
In hardware, this translates to processing each input message as 512-bit blocks until another in-
put signal flags the end of the message. The last block M i is then padded accordingly and then
processed, which means that the last block usually takes more time to process.

ii The SHA-256 functions operate on 32-bit words, therefore each M i block is viewed as 16 32-bit words
denoted M i

t , where 0 ≤ t ≤ 15. The message expander, also called the message scheduler, takes
each M i and expands it into 64 32-bit blocks Wt according to the following equations:

σ0(x) = ROT7(x)⊕ ROT18(x)⊕ SHF3(x) σ1(x) = ROT17(x)⊕ ROT19(x)⊕ SHF10(x)

Wt =
{

M i
t 0 ≤ t ≤ 15

σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 16 ≤ t ≤ 63

where the function ROTn(x) denotes a circular rotation of x by n positions to the right, while the
function SHFn(x) denotes the right shifting of x by n positions. All additions in the SHA-256
algorithm are modulo 232.

iii The final step, considered as the SHA’s core, utilizes 8 32-bit variables labeled from A to H and
initialized to constant values. The compression function performs 64 iterations, given by:

T1 = H +
∑

1(E) + Ch(E, F, G) + Kt + Wt

T2 =
∑

0(A) + Maj(A, B, C)
H = G; G = F ; F = E; E = D + T1; D = C; C = B; B = A; A = T1 + T2

where

Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ z)
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)∑
0(x) = ROT2(x)⊕ ROT13(x)⊕ ROT22(x)∑
1(x) = ROT6(x)⊕ ROT11(x)⊕ ROT25(x)

and the inputs denoted Kt are 64 32-bit constants, defined in [SHA95]. After 64 iterations of the
compression function, as intermediate hash value H(i) is calculated:

H
(i)
0 = A + H

(i−1)
0

H
(i)
1 = B + H

(i−1)
1

...
H

(i)
7 = H + H

(i−1)
7

The SHA-256 compression algorithm then repeats and begins processing another 512-bit block.
After all N data blocks have been processed, the final 256-bit output, H(N), is formed by concate-
nating the final hash values:

H(N) = H
(N)
0 |H(N)

1 |H(N)
2 |...|H(N)

7

62 From a Transistor to a Cryptosystem 2.4

2.4.5 Implementation Tradeoffs and Design Methodologies

Basically, two classes of implementation tradeoffs can be applied: architectural and algorithmic
optimizations. The first exploits algorithm-independent design techniques such as pipelining, sub-
pipelining, pseudo-pipelining, loop unrolling, logic balancing and many others. The second exploits
algorithm strengths translated into hardware improvements.

Implementation efficiency can be defined in two manners:

— in terms of performance, let the efficiency of a block-cipher to be the ratio Throughput (Mbit/s)
/ Area (slices);

— or in terms of resources, in which case efficiency is measured by computing Number of LUTs /
Number of registers, which should be close to one.

2.4.6 Known SHA-2 Hardware Optimization Techniques

The critical path of the SHA core is the calculation of variable A, which involves addition (modulo
232 for SHA-224/256, module 264 for SHA-384/512) of 7 operands. The following techniques have been
proposed to speed up the SHA function in hardware:

— Using Carry-Save Addition (CSA) [DMO04a] [DMO04b] [GLG+02] [LGG04] [MD05], that works
separating the sum and carry paths. This shrinks the critical path of the carry propagation. The
variable A can then be calculated with 3 CSAs since it accepts 3 input operands.

— Unrolling [CDKM04] [LGG04]. Multiple compression function rounds are implemented in com-
binational logic to reduce the number of clock cycles needed to perform this operation. This
technique is more suitable when the core has a defined clock frequency and the compression
function round operates at much faster frequencies.

— Quasi-pipelining [DMO04a] [DMO04b] [MD05]. This technique breaks the longer paths by adding
registers and therefore pipelining the core. Implementing pipeline in the SHA core is not trivial
due to inherent feedback loops. External control logic to enable/disable registers is required,
thus increasing the core’s area. This is the best technique to increase clock frequency and data
throughput.

— Delay balancing [DMO04b]. To complete the addition operation with CSAs, Carry-Lookahead
Addition (CLA) adders are used. By registering the sum and carry before using this cells, imple-
menters actually manage to move the CLAs out of the critical path, thus increasing the opera-
tional frequency. Area overhead due to extra control circuitry is the drawback of this technique,
which is quite effective.

— Logic balancing [TYLL02]. This technique consists in moving time-consuming operations, chang-
ing the order of operations without changing the actual result. In [TYLL02], the first addition in
the critical path (Kt + Wt) is moved to the message expansion stage, since both operands are
available before the others. This technique is rather similar to quasi-pipelining, while the later
achieves even shorter paths.

— Using RAM to store constants [MM02]. When the design is targeted to FPGA, usually the usage
of on-chip available memory is very suitable to reduce logic and speed up the design. By storing
constant and intermediate values in memory, area is decreased and routing becomes simpler,
increasing the operation frequency. Moreover, FPGA also allows the designer to code the logic
in terms of look-up operations using Look-Up Tables (LUTs) which drastically reduces logic and
therefore increases frequency.

— Using parallel counter [GLG+02]. 3-to-2 CSA adders can be replaced by 5-to-3 parallel counters
(PCs) as they reduce the number of bits at each position in the sum from 5 to 3. 2 5-to-3 PCs,
followed by a CSA and a carry-propagate adder (CPA) can reduce the calculation of variable A,
the critical path.

2.4 Cryptographic Hash Functions 63

2.4.7 FPGA-Based Cryptography

Private-key cryptographic algorithms are very suitable to be implemented in FPGA. Compared
with software-based implementations, symmetric crypto implementations can achieve much higher
data throughput. Besides, private-key operations such as bit-permutation, bit-substitution, substitution
tables using look-up operations, etc. implemented on FPGA present much better performance than on
a general-purpose computer.

Furthermore, crypto algorithms usually include parallel operations that can be more easily exploited
at a cryptographic-round level than at block-cipher level [DPR00]. For example, in the ECB mode of
operation, multiple blocks can be encrypted in parallel since they are independent from each other. Also,
the Key Expansion module can work in parallel with the datapath, calculating the subkeys concurrently
during encryption/decryption.

Yet another reason one would choose an FPGA as a target platform is security-related. A cryptographic
operation running on a general-purpose processor has no countermeasures against side-channel attacks
[Sch96]. Dedicated hardware module can contain several countermeasures to not reveal the secret key,
the data being manipulated or even the intermediate values used during operation. Nevertheless, NSA
authorizes encryption only in hardware [Sch96].

Finally, even if an ASIC equivalent is smaller, consumes less power and has better performance, it still
lacks flexibility and it is also very expensive in low-to-medium volumes. FPGA-based solutions can be
updated, reprogrammed and improved during the lifecycle of the target product. New standards can
be more easily adapted to an FPGA, or a new countermeasure can be implemented and updated on the
target system, with less impact and cost than an ASIC.

2.4.8 SHA-2 in Hardware (FPGA and ASIC)

In CHES 2006, a first SHA-2 hardware implementation was proposed [CKSV06]. It starts by briefly
enumerating the usual techniques proposed to improve the implementation of SHA-2 algorithm, such
as:

— the usage of parallel counters or well balanced Carry-Save Adders (CSA), in order to improve
the partial additions, as already discussed in this thesis;

— unrolling techniques that optimize data dependency;
— delay balancing and the usage of improved addition units, since it is the critical operation;
— the usage of embedded memories to store the constant values (Kt);
— use of pipeline techniques to achieve higher working operation frequencies. Pipelining also in-

creases the throughput, although latency is penalized.

In SHA-2, the operations are relatively simple, but the strong data dependency does not allow for
much parallelization, since each round of the algorithm can only be computed after the values A to
H of the previous round have been calculated. However, it should be noticed that, in each round,
the computation is only required to calculate the values of A and E, since the remaining values are
obtained directly from the values of the previous round. Based on that, [CKSV06] presents 3 design
improvements:

Operation rescheduling Similar to logic balancing, this technique consists in identifying operations
that can be computed beforehand, or afterward, to balance the critical path. The values that do
not depend on the previous rounds calculations can be calculated in advance. In the case of SHA-2,
variables A and E can be calculated earlier, according to the following formulae:

At+1 =
∑

0
(At) + Maj(Bt, Ct, Dt) +

∑
1

(Et) + Ch(Et, Ft, Gt) + Ht + Kt + Wt

Et+1 = Dt +
∑

(Et) + Ch(Et, Ft, Gt) + Ht + Kt + Wt

64 From a Transistor to a Cryptosystem 2.4

Taking into account that the value Ht+1 is given directly by Gt which in its turn is given by Ft−1,
the pre-calculation of H can thus be given by Ht+1 = Ft−1. Since the value of Kt and Wt can be
pre-calculated and are simply used in each round, the formulae can be rewritten as:

σt = Ht + Kt + Wt = Gt−1 + Kt + Wt

At+1 =
∑

0
(At) + Maj(Bt, Ct, Dt) +

∑
1

(Et) + Ch(Et, Ft, Gt) + σt

where the value σt is calculated in the previous round. The value σt+1 can be the result of a full
addition or the Carry and the Save vectors from a Carry-Save Addition. With this computational
separation the calculation of SHA-2 can be divided into two parts, allowing the calculation of
σ to be rescheduled to the previous clock cycle. While the critical path is greatly reduced, this
implementation turns into a pipeline and requires an extra clock cycle to compute, totaling 65
clock cycles (in the case of SHA-256).

Hash value addition and initialization As described in the SHA-2 specification, the variables A to H
have to be added to the intermediate result to generate the final message digest. This means that
8 adders would be required. However, some hardware reuse can be engineered once most of
the internal variables do not require any computation, since their values are assigned to previous
values. Following that:
Ht = Gt−1 = Ft−2 = Et−3

Dt = Ct−1 = Bt−2 = At−3

the computation of the Digest Message (DM) for the data block i can be calculated from the inter-
nal variables A and E, where:
DM7i = Et−3 + DM7i−1

DM6i = Et−2 + DM6i−1

DM5i = Et−1 + DM5i−1

DM3i = At−3 + DM3i−1

DM2i = At−2 + DM2i−1

DM1i = Et−1 + DM1i−1

Since the values At and Et require the final value, which is only calculated during the last clock
cycle, the calculation of DM0i and DM4i is performed separately. Instead of using a full adder,
after the calculation of the final value of A and E, the Digest Message (DM) is added during the
calculation of their final values by a Carry-Save Adder (CSA). Since the value of the previous
Digest Message is known, it can be added during the first pipeline stage, not being on the critical
path, located on the second stage of the pipeline, where the full adders are used. In the last round
the values of A and E are not calculated.

Variable Initialization A multiplexer in front of each variable from A to H selects the newly calculated
Digest Message. Again, variables A and E are the exception, because the final computed value of
these variables is already the Digest Message.
In the first round, variables A to H have to be initialized. In the standard SHA-2, they receive
constant values, but that’s not what happens during computation of fragmented messages, where
a different [v]IVInitialization Vector is used. Therefore, the initial values are not constant anymore.
The same multiplexers mentioned above are used to control the loading of IV into the core at each
new hash iteration. An optimization of this structure is that the calculation structure for the Digest
Message can be used to load the IV, instead of being directly load to all the registers. The initial
values of A and E are reset during the loading step, and the DM registers are connected as a
circular buffer, where the value is only loaded into one of the registers, and shifted to the others.

The novel design presented in [CKSV06] is then compared with 3 other related articles [SK] [MCMM06]
[HEL05]. It is shown that [CKSV06] achieves better performance when compared to each one of them,
as shown in the table below:

2.4 Cryptographic Hash Functions 65

Table 2.5: Comparison of different pipelined AES implementations.

Design FPGA Freq.
(MHz)

T’put
(Mbit/s)

Latency
(ns)

Area
(slices)

Mbit/s
/ slice Datapath

[JTS03] Virtex-E
XCV1000E-8 129.2 16,500 - 11,719 1.408 Enc

[SMMS03] Virtex-E
XCV2000E-8 158 20,300 -

5,810
+ 100B
RAM

1.091 Enc

[SRQL03] Virtex-E
XCV3200E-8 145 18,560 - 15,112 1.228 Enc

[HV04] Virtex-II Pro
XC2VP20 169.1 21,640 420 9,446

wo/ KE 2,290 Enc

[ZNC04] Virtex-II
XC2V4000 184.1 23,570 163 16,938 1.391 Enc

[ZP04] Virtex-E
XCV1000E-8 168.4 21,556 416 11,022

wo/ KE 1.956 Enc/Dec

[GB05] Virtex-E
XCV2000E-8 184.8 23,654 379 16,693 1.417 Enc/Dec

Table 2.6: Comparison of different SHA-2 implementations.

Architecture [SK] [CKSV06] [MCMM06] [CKSV06] [HEL05] [CKSV06]

Device XCV XCV XC2V XC2V XC2PV-7 XC2PV-7
Slices 1060 764 1373 797 815 755

Freq. (MHz) 83 82 133 150 126 174
Cycles n.a. 65 68 65 n.a. 65

T’put (Mbit/s) 326 646 1009 1184 977 1370
T’put / Slice 0.31 0.84 0.74 1.49 1.2 1.83

CHAPTER 3

CRYPTOGRAPHIC HARDWARE
ACCELERATION AND POWER
MINIMIZATION

Summary

The physical limits of CMOS technology down-scaling and the growth of on-chip features cause great
complexity to the design of such chips. Therefore, techniques to improve circuit speed and to save
power consumption are challengingly important to the success of ASIC product appliance, specially
in cryptographically secure chips. For example, a lot has been discussed lately about Bitcoin ASIC
power usage. Dedicated ASIC chips have been created to mine Bitcoins, but the tradeoff between how
fast these chips can process and how much they actually consume in terms of power will define how
efficient they actually are. This chapter presents two lightweight techniques to cope with this scenario
applied to secure digital design: Section 3.1 presents a novel way of computing BCH error-correcting
codes using the Barrett’s modular division. Section 3.2 addresses the energy consumption mitigation
problem on system-on-chip and embedded devices by proposing a smart energy management system
able to save energy while reducing unresponsiveness penalties at the same time.

The organization of this chapter is as follows: Section 3.1.2 recalls Barrett’s algorithm. Section 3.1.3
presents our main theoretical results, i.e., a polynomial variant of [Bar87]. Section 3.1.4 recalls the basics
of BCH error-correcting codes (ECC). Section 3.1.5 describes the integration of the Barrett polynomial
variant in a BCH circuit and provides benchmark results. Section 3.2.1 introduces the idea of managing
energy on SoCs and embedded devices. Section 3.2.2 defines an SoC scenario considering a typical
sequence of requests following a given distribution. In Section 3.2.3, we derive an optimal strategy to
comply with our previously defined model. While Section 3.2.4 generalizes our model, Section 3.2.5
analyzes an alternative strategy for when we want to keep the unresponsiveness penalty as low as
possible.

3.1 BCH with Barrett Polynomial Reduction 67

3.1 BCH with Barrett Polynomial Reduction

3.1.1 Introduction

BCH codes are cyclic codes that form a large class of multiple random error-correcting codes. The
original BCH codes were binary codes of length 2m − 1. BCH codes were subsequently extended to
non-binary settings. Binary BCH codes are a generalization of Hamming codes, discovered by Hoc-
quenghem, Bose and Chaudhuri [BR60,Chi06] featuring a better error correction capability. BCH codes
are widely used in digital systems, memory devices and computer networks. For example, the short-
ened BCH(48,36,5) was accepted by the U.S. Telecommunications Industry Association as a standard for
the cellular Time Division Multiple Access protocol (TDMA) [Ste94]. Another example is BCH(511, 493)
which was adopted by International Telecommunication Union as a standard for video conferencing
and video phone codecs (Rec. H.26) [CEGK98].

Gorestein and Zierler [Zie60,GPZ60] generalized BCH codes to pm symbols (where p is a prime). There
are two important BCH code sub-classes. The best known of this sub-classes are Hamming codes for bi-
nary BCH codes and Reed Solomon for non-binary BCH codes. BCH codes require repeated polynomial
reductions modulo the same constant polynomial. This is conceptually very similar to the implementa-
tion of public-key cryptography where repeated modular reduction in Zn or Zp are required for some
fixed n or p [Bar87].

It is hence natural to try and transfer the modular reduction expertise developed by cryptographers
during the past decades to obtain new BCH speed-up strategies. This work focuses on the "polyno-
mialization" of Barrett’s modular reduction algorithm [Bar87]. Barrett’s method creates the operation
a mod b from bit shifts, multiplications and additions in Z. This allows to build modular reduction at
very marginal code or silicon costs by leveraging existing hardware or software multipliers.

Reduction modulo fixed multivariate polynomials is also very useful in other fields such as robotics
and computer algebra (e.g. for computing Gröbner bases).

3.1.2 Barrett’s Reduction Algorithm

Notations. ∥x∥will denote the bit-length of x throughout this paper.

y ≫ z will denote binary shift-to-the-right of y by z bits:

y ≫ z =
⌊ y

2z

⌋
.

Barrett’s algorithm (Algorithm 2) approximates the result c = d mod n by a quasi-reduced integer c+ϵn,
where 0 ≤ ϵ ≤ 2. Let N = ∥n∥ , D = ∥d∥ and fix a maximal bit-length reduction capacity L such that
N ≤ D ≤ L. The algorithm will work if D ≤ L. In most implementations, D = L = 2N . The algorithm
uses the pre-computed constant κ = ⌊2L/n⌋ that depends only on n and L. The reader is referred
to [Bar87] for a proof and an analysis of Algorithm 2.

Example 3.1 Reduce 8619 mod 93 = 63.

n = 93 ⇒ N = 7

κ =
⌊

232

n

⌋
=10110000001011000000101100

d = 8619 =10000110101011
c1 =10000110101011 = 10000110
c2 =101110000110111000011011100001000
c3 =1011100 00110111000011011100001000 =1011100
nc3 =10000101101100
c4 = 63

68 Cryptographic Hardware Acceleration and Power Minimization 3.1

Algorithm 2 Barrett’s algorithm.

Require: n < 2N , d < 2D, κ =
⌊

2L

n

⌋
where N ≤ D ≤ L

Ensure: c = d mod n

1: c1 ← d≫ (N − 1)
2: c2 ← c1κ
3: c3 ← c2 ≫ (L−N + 1)
4: c4 ← d− nc3
5: while c4 ≥ n do
6: c4 ← c4 − n
7: end while
8: return c4

Work Factor: ∥c1∥ = D − N + 1 ≃ D − N and ∥κ∥ = L − N hence their product requires w =
(D−N)(L−N) elementary operations. ∥c3∥ = (D−N) + (L−N)− (L−N + 1) = D−N − 1 ≃ D−N .
The product nc3 will therefore claim w′ = (D − N)N elementary operations. All in all, work amounts
to w + w′ = (D −N)(L−N) + (D −N)N = (D −N)L.

3.1.2.1 Dynamic Constant Scaling

The constant κ can be adjusted on the fly thanks to Lemma 3.1.

Lemma 3.1 If U ≤ L, then κ̄ = κ≫ U =
⌊

2L−U

n

⌋
.

Proof: ∃ α < 2U and β < n (integers) verifying:

κ̄ = κ

2U
− α

2U
and κ = 2L

n
− β

n
.

Therefore,

min
α β

(
2L−U

n
− β + αn

2U n

)
≤ κ̄ = 2L−U

n
− β + αn

2U n
≤ max

α,β

(
2L−U

n
− β + αn

2U n

)
and finally,

2L−U

n
− 1 <

2L−U

n
− 1 + 1

2U n
≤ κ̄ ≤ 2L−U

n
.

2 2

Work factor: We know that κ̄ = κ≫ L−D. Let c5 = D−N + 1. Replacing step 4 of Algorithm 2 with

c6 ← d− n(κ̄c1 ≫ c5),

the multiplication of c1 by κ̄ (κ adjusted to D −N bits, shifting by L−D bits to the right), will be done
in O((D −N)2).

Hence, the new work factor decreases to (D −N)2 + N(D −N) = (D −N)D.

Example 3.2 Reconsidering example 3.1, i.e., computing 8619 mod 93 using the above technique, we obtain:

D = ⌈log2 8619⌉ = 14
κ̄ =10110000 001011000000101100
c1 =10000110 101011 =10000110
κ̄c1 =101110000100000
κ̄c1 ≫ c5 =1011100 00100000
n(κ̄c1 ≫ c5) =10000101101100
c6 = 63

3.1 BCH with Barrett Polynomial Reduction 69

3.1.3 Barrett’s Algorithm for Polynomials

3.1.3.1 Orders

Definition 3.1 (Monomial Order) Let P, Q and R be three monomials in ν variables. � is a monomial order
if the following conditions are fulfilled:

— P � 1
— P � Q⇒ ∀R, PR � QR

Example 3.3 The lexicographic order on exponent vectors defined by

ν∏
i=1

xai ≻
ν∏

i=1
xbi ⇔ ∃i, aj = bj for i < j and ai > bi

is a monomial order. We denote the lexicographic order by ≻.

3.1.3.2 Terminology

In the following, capital letters will next denote polynomials and ν ∈ N.

Let P =
α∑

i=0
pi

ν∏
j=1

x
yj,i

j ∈ Q[x⃗] = Q[x1, x2, ..., xν].

The leading term of P according to �, will be denoted by lt(P) = p0

ν∏
j=1

x
yj,0
j .

The leading coefficient of P according to � will be denoted by lc(P) = p0 ∈ Q.

The quotient lm(P) = lt(P)
lc(P)

=
ν∏

j=1
x

yj,0
j is the leading monomial of P according to �.

The above notations generalize the notion of degree to exponent vectors:

deg(P) = deg(lm(P)) = y⃗0 = ⟨y0,0, . . . , yν,0⟩.

Example 3.4 For ≻ and P (x, y) = 2x2
1x2

2 + 11x1 + 15, we have:

lt(P) = 2x2
1x2

2, lm(P) = x2
1x2

2, deg(P) = ⟨2, 2⟩ and lc(P) = 2.

Definition 3.2 (Reduction Step) Let P, Q ∈ Q[x⃗]. We denote by Q −→
P

Q1 the reduction step of Q (with

respect to P and according to �) defined as the result given by the following operations:

1. Find a term t of Q such that monomial(t)=lm(P)m

2. If such a t exists, return Q1 = Q− Pm

lc(P)
. Else return Q1 = Q.

Example 3.5 Let Q(x1, x2) = 3x2
1x2

2 and P (x1, x2) = 2x2
1x2 − 1.

The reduction step of Q (with respect to P) is Q −→
P

Q1 = 3x2

2
.

Lemma 3.2 Let P, Q ∈ Q[x⃗] and {Qi} such that Q −→
P

Q1 −→
P

Q2 −→
P

. . .

1. ∃i ∈ N such that j ≥ i⇒ Qj = Qi

2. Qi is unique

70 Cryptographic Hardware Acceleration and Power Minimization 3.1

We denote Q
∗−→
P

Qi = Q mod P and
⌊

Q

P

⌋
= Q−Q mod P

P
∈ Q[x⃗] and call Qi the "residue of Q (with respect

to P and according to �)".

Example 3.6 Euclidean division is a reduction in which i = 1.

3.1.3.3 Polynomial Barrett Complexity

We decompose the algorithm’s analysis into steps and determine at each step the cost and the size of
the result. Size is measured in the number of terms. In all the following we assume that polynomial
multiplication is performed using traditional cross product. Faster (e.g. ν-dimensional FFT [TAL97])
polynomial multiplication strategies may grandly improve the following complexities for asymptoti-
cally increasing L⃗ and ν.

Given our focus on on-line operations we do not count the effort required to compute K (that we assume
given). We also do not account for the partial multiplication trick for the sake of clarity and conciseness.

Let ω⃗ ∈ Zν , in this appendix we denote by ||ω⃗|| the quantity

||ω⃗|| =
ν∏

j=1
ωj ∈ Z.

1. Q≫ y⃗0.

(a) Cost: lm(Q) is at most ⟨L, ..., L⟩ hence Q has at most Lν monomials. Shifting discards all
monomials having exponent vectors ω⃗ for which ∃j such that ωj < yj,0. The number of such
discarded monomials is O(||y⃗0||), hence the overall complexity of this step is:

cost1 = O((Lν − ||y⃗0||)ν) = O((Lν −
ν∏

j=1
yj,0)ν).

(b) Size: The number of monomials remaining after the shift is

size1 = O(Lν − ||y⃗0||) = O(Lν −
ν∏

j=1
yj,0).

2. K(Q≫ y⃗0).

Because K is the result of the division of h(L) =
ν∏

j=1
xL

j by P , the leading term of K has an

exponent vector equal to L⃗− y⃗0. This means that K’s second biggest term can be x
L−y1,0
1

ν∏
j=2

xL
j .

Hence, the size of K is

sizeK = O((L− y1,0)Lν−1).

(a) Cost: The cost of computing K(Q≫ y⃗0) is

cost2 = O(ν × size1 × sizeK).

(b) Size: The size of K(Q≫ y⃗0) is determined by lm(K(Q≫ y⃗0)) = lm(K)×lm(Q≫ y⃗0) which
has the exponent vector u⃗ = (L⃗− y⃗0) + ⟨L− y1,0, L, ..., L⟩.

size2 = O(||u⃗||) = O(2(L− y1,0)
ν∏

j=2
(2L− yj,0))

= O((L− y1,0)
ν∏

j=2
(2L− yj,0)).

3.1 BCH with Barrett Polynomial Reduction 71

3. B = (K(Q≫ y⃗0))≫ (L⃗− y⃗0)

(a) Cost: The number of discarded monomials is O(||L⃗− y⃗0||), hence the cost of this step is

cost3 = O((2(L− y1,0)
ν∏

j=2
(2L− yj,0)−

ν∏
j=1

(L− yj,0))ν).

(b) Size: The leading monomial of B has the exponent vector u⃗ − L⃗ − y⃗0 which is equal to
⟨L− y1,0, L, ..., L⟩. We thus have sizeB = sizeK .

4. BP

The cost of this step is

cost4 = O(ν × sizeB × sizeP) = O(ν × sizeB × ||y⃗0||).

5. Final subtraction Q−BP

The cost of polynomial subtraction is negligible with respect to cost4.

6. Overall complexity
The algorithm’s overall complexity is hence

max(cost1, cost2, cost3, cost4) = cost2.

3.1.3.4 Barrett’s Algorithm for Multivariate Polynomials

We will now adapt Barrett’s algorithm to Q[x⃗].

Barrett’s algorithm and Lemma 3.1 can be generalized to Q[x⃗], by shifting polynomials instead of shift-
ing integers.

Definition 3.3 (Polynomial Right Shift) Let P =
∑α

i=0 pi

∏ν
j=1 x

yj,i

j ∈ Q[x⃗] and a⃗ = ⟨a1, a2, ..., aν⟩ ∈
Nν . We denote

P ≫ a⃗ =
∑
φ(a⃗)

pi

ν∏
j=1

x
yj,i−ai

j ∈ Q[x⃗], where φ(⃗a) = {i, ∀j, yi,j ≥ ai}.

Example 3.7

If P (x) = 17x7 + 26x6 + 37x4 + 48x3 + 11, then P ≫ ⟨5⟩ = 17x2 + 26x.

Theorem 3.3 (Barrett’s Algorithm for Polynomials) Let:

— P =
α∑

i=0
pi

ν∏
j=1

x
yj,0
j ∈ Q[x⃗] and Q =

β∑
i=0

qi

ν∏
j=1

x
wj,i

j ∈ Q[x⃗] s.t. lm(Q) � lm(P)

— L ≥ max (wi,j) ∈ N, h(L) =
ν∏

j=1
xL

j and K =
⌊

h(L)
P

⌋
— y⃗0 = ⟨y1,0, y2,0, ..., yν,0⟩ ∈ Nν

Given the above notations, (K(Q≫ y⃗0))≫ (⟨Lν⟩ − y⃗0) =
⌊

Q

P

⌋
.

Proof: Let G = h(L) mod P and B = (K(Q≫ y⃗0)) = h(L)−G

P

⌊
Q

lm(P)

⌋
.

⇓

B =

∑
φ(y⃗0)

qi

ν∏
j=1

x
L+wj,i−yj,0
j −G

∑
φ(y⃗0)

qi

ν∏
j=1

x
wj,i−yj,0
j

P

72 Cryptographic Hardware Acceleration and Power Minimization 3.1

Applying the definition of "≫", we obtain

B ≫ (⟨L⟩ν − y⃗0) = deg≥0⃗

Qφ(y⃗0) −G
∑

φ(y⃗0)

qi

ν∏
j=1

xwj,i−L

P
, where 0⃗ = ⟨0⟩ν .

Thus,

B ≫ (⟨Lν⟩ − y⃗0) =
⌊

Qφ(y⃗0)

P

⌋
− deg≥0⃗

G

P

∑
φ(y⃗0)

qi

ν∏
j=1

xwj,i−L =
⌊

Qφ(y⃗0)

P

⌋
.

We know that

P � G and L ≥ max (wi,j), therefore deg≥0⃗
G

P

∑
φ(y⃗0)

qi

ν∏
j=1

xwj,i−L = 0.

Let Q̄ be the irreducible polynomial with respect to P , obtained by removing from Q the terms that
exceed lm(P).

⌊
Qφ(y⃗)

P

⌋
=

Qφ(y⃗) − (Qφ(y⃗) mod P)
P

= (Q− Q̄)((Q− Q̄) mod P)
P

.

Hence,

B ≫ (⟨L⟩ν − y⃗0) = (Q− Q̄)((Q− Q̄) mod P)
P

⇓

B ≫ (⟨L⟩ν − y⃗0) =
⌊

Q

P

⌋
− Q̄− Q̄ mod P

P
=
⌊

Q

P

⌋
.

2 2

Algorithm 3 Polynomial Barrett algorithm.

Require:
P, Q ∈ Q[x⃗] s.t. P � Q

h(L) = x⃗L, y⃗0 = deg P and K = h(L) mod P, where deg Q ≤ ⟨L, . . . , L⟩

Ensure: R = Q mod P

1: B ← (K(Q≫ y⃗0))≫ (L− y⃗0)
2: R← Q−BP
3: return R

Remark. Let Q =
α∑

i=0
qi,j

ν∏
j=1

x
wj,i

j , K =
β∑

i=0
ki,j

ν∏
j=1

x
tj,i

j , y⃗ = ⟨y1, ..., yν⟩ and z⃗ = ⟨z1, ..., zν⟩.

Let us have a closer look at the expression B = (K(Q≫ y⃗))≫ z⃗.

Given the final shifting by z⃗, the multiplication of K by Q≫ y⃗ can be optimized by being only partially
accomplished. Indeed, during multiplication, we only have to form monomials whose exponent vectors
b⃗ = w⃗i + t⃗i′ − y⃗ − z⃗ = ⟨b1, ..., bν⟩ are such that bj ≥ 0 for 1 ≤ j ≤ ν.

We implicitly apply the above in the following example.

3.1 BCH with Barrett Polynomial Reduction 73

Example 3.8 Let

� = ≻

P = x2
1x2

2 + x2
1 + 2x1x2

2 + 2x1x2 + x1 + 1

Q = x3
1x3

2 − 2x3
1 + x2

2x2
2 + 3.

We let L = 6 and we observe that ν = 2. We pre-compute K:

K = x4
1x4

2 − x4
1x2

2 + x4
1 − 2x3

1x4
2 − 2x3

1x3
2 + 3x3

1x2
2 + 4x3

1x2 − 4x3
1+

4x2
1x4

2 + 8x2
1x3

2 − 5x2
1x2

2 − 20x2
1x2 + 3x2

1 − 8x1x4
2 − 24x1x3

2+

68x1x2 + 36x1 + 16x4
2 + 64x3

2 + 36x2
2 − 184x2 − 239.

We first shift Q by y⃗0 = ⟨2, 2⟩, which is the vector of exponents for lm(P).

Q≫ y⃗0 = (x3
1x3

2 − 2x3
1 + x2

2x2
2 + 3)≫ ⟨2, 2⟩ = (x1x2 + 1)

Then, we compute K(x1x2 + 1) = x5
1x5

2 − 2x4
1x5

2 − x4y4 + {terms ≺ x4
1x4

2}.

This result shifted by ⟨L⟩ν − y⃗0 = ⟨6, 6⟩ − ⟨2, 2⟩ = ⟨4, 4⟩ to the right gives:

A = x5
1x5

2 − 2x4
1x5

2 − x4y4 + {terms ≻ x4
1x4

2} ≫ ⟨4, 4⟩ = x1x2 − 2x2 − 1.

It is easy to verify that:
Q− PA =

= (x3
1x3

2 − 2x3
1 + x2

1x2
2 + 3)− (x2

1x2
2 + x2

1 + 2x1x2
2 + 2x1x2 + x1 + 1)(x1x2 − 2x2 − 1)

⇓

Q− PA = 4x1x3
2 + 6x1x2

2 − x3
1x2 + x2

1x2 + 3x1x2 + 2x2 − 2x3
1 + x2

1 + x1 + 4 ≺ P.

Work Factor: ∥c1∥ = D − N + 1 ≃ D − N and ∥κ∥ = L − N hence their product requires w =
(D−N)(L−N) elementary operations. ∥c3∥ = (D−N) + (L−N)− (L−N + 1) = D−N − 1 ≃ D−N .
The product nc3 will therefore claim w′ = (D − N)N elementary operations. All in all, work amounts
to w + w′ = (D −N)(L−N) + (D −N)N = (D −N)L.

Complexity: We refer the reader to Appendix A for a detailed computation of the complexity of Algo-
rithm 3.

Note that the complexity of the partial multiplication considered instead of the standard multiplication
is O((β − α)β).

3.1.3.5 Dynamic Constant Scaling in Q[x⃗]

Lemma 3.4 If 0 ≤ u ≤ L, then K̄ = K ≫ ⟨u⟩ν =
⌊

h(L−u)
P

⌋
.

74 Cryptographic Hardware Acceleration and Power Minimization 3.1

Proof: K =
⌊

h(L)
P

⌋
⇒ K = h(L)− h(L) mod P

P
.

Let G = h(L) mod P ⇒ K =

ν∏
j=1

xj
L −G

P
.

Since

⟨u⟩ν ∈ Nν ⇒ K ≫ ⟨u⟩ν = deg≥0⃗

ν∏
j=1

xj
L−u −Gφ(⟨u⟩ν)

P

⇓

K ≫ ⟨u⟩ν = deg≥0⃗

ν∏
j=1

xj
L−u

P
− deg≥0⃗

Gφ(⟨u⟩ν)

P
.

We know that P � G, thus P � Gφ(⟨u⟩ν), thus deg≥0⃗
Gφ(⟨u⟩ν)

P
= 0.

Finally,

K ≫ ⟨u⟩ν =

⌊∏ν
j=1 xj

L−u

P

⌋
=
⌊

h(L− u)
P

⌋
.

2 2

Example 3.9 Let

� = ≻

P = x2
1x2

2 + x2
1 + 2x1x2

2 + 2x1x2 + x1 + 1

Q = x3
1x3

2 − 2x3
1 + x2

2x2
2 + 3.

We let u = 4 and we observe that ν = 2. We pre-compute K̄:

K̄ = x2
1x2

2 − x2
1 − 2x1x2

2 − 2x1x2 + 3x1 + 4x2
2 + 8x2 − 5.

We first shift Q by y⃗0 = ⟨2, 2⟩, which is the vector of exponents for lm(P).

Q≫ y⃗0 = (x3
1x3

2 − 2x3
1 + x2

2x2
2 + 3)≫ ⟨2, 2⟩ = (x1x2 + 1)

Then, we compute K̄(x1x2 + 1) = x3
1x3

2 − 2x2
1x3

2 − x2
1x2

2 + {terms ≺ x2
1x2

2}.

This result shifted by ⟨u⟩ν − y⃗0 = ⟨4, 4⟩ − ⟨2, 2⟩ = ⟨2, 2⟩ to the right gives:

A = x3
1x3

2 − 2x2
1x3

2 − x2
1x2

2 + {terms ≻ x2
1x2

2} ≫ ⟨2, 2⟩ = x1x2 − 2x2 − 1.

It is easy to verify that:
Q− PA =

= (x3
1x3

2 − 2x3
1 + x2

1x2
2 + 3)− (x2

1x2
2 + x2

1 + 2x1x2
2 + 2x1x2 + x1 + 1)(x1x2 − 2x2 − 1)

⇓

Q− PA = 4x1x3
2 + 6x1x2

2 − x3
1x2 + x2

1x2 + 3x1x2 + 2x2 − 2x3
1 + x2

1 + x1 + 4 ≺ P.

3.1 BCH with Barrett Polynomial Reduction 75

3.1.4 Application to BCH Codes

3.1.4.1 General Remarks

BCH codes are cyclic codes that form a large class of multiple random error-correcting codes. Origi-
nally discovered as binary codes of length 2m−1, BCH codes were subsequently extended to non-binary
settings. Binary BCH codes are a generalization of Hamming codes, discovered by Hocquenghem,
Bose and Chaudhuri [BR60], [Chi06] featuring a better error correction capability. Gorestein and Zier-
ler [Zie60, GPZ60] generalized BCH codes to pm symbols, for p prime. Two important BCH code sub-
classes exist. Typical representatives of these sub-classes are Hamming codes (binary BCH) and Reed
Solomon codes (non-binary BCH).

Terminology: We further refer to the vectors of an error correction code as codewords. The code-
words’ size is called the length of the code. The distance between two codewords is the number of
coordinates at which they differ. The minimum distance of a code is the minimum distance between
two codewords.

Recall that a primitive element of a finite field is a generator of the multiplicative group of the field.

3.1.4.2 BCH Preliminaries

Definition 3.4 Let m ≥ 3. For a length n = 2m − 1, a distance d and a primitive element α ∈ F∗
2m , we define

the binary BCH code:

BCH(n, d) = {(c0, c1, ..., cn−1) ∈ Fn
2 | c(x) =

n−1∑
i=0

cix
i satisfies

c(α) = c(α2) = ... = c(αd−1)}

Let m ≥ 3 and 0 < t < 2m−1 be two integers. There exists a binary BCH code (called a t−error correcting
BCH code) with parameters n = 2m−1 (the block length), n−k ≤ mt (the number of parity-check digits)
and d ≥ 2t + 1 (the minimum distance).

Definition 3.5 Let α be a primitive element in F2m . The generator polynomial g(x) ∈ F2[x] of the t−error-
correcting BCH code of length 2m−1 is the lowest-degree polynomial in F2[x] having roots α, α2, ..., α2t.

Definition 3.6 Let ϕi(x) be the minimal polynomial of αi. Then,

g(x) = lcm{ϕ1(x), ϕ2(x), ..., ϕ2t(x)}.

The degree of g(x), which is the number of parity-check digits n− k, is at most mt.

Let i ∈ N and denote i = 2rj for odd j and r ≥ 1. Then αi = (αj)2r

is a conjugate of αj which implies
that αi and αj have the same minimal polynomial, and therefore ϕi(x) = ϕj(x). Consequently, the
generator polynomial g(x) of the t-error correcting BCH code can be written as follow:

g(x) = lcm{ϕ1(x), ϕ3(x), ϕ3(x), ..., ϕ2t−1(x)}.

Definition 3.7 (Codeword) An n−tuple c = (c0, c1, ..., cn−1) ∈ F2n is a codeword if the polynomial c(x) =∑
cix

i has α, α2, ..., α2t as its roots.

Definition 3.8 (Dual Code) Given a linear code C ⊂ Fn
q of length n, the dual code of C (denoted by C⊥) is

defined to be the set of those vectors in Fn
q which are orthogonal 1 to every codeword of C, i.e.:

C⊥ = {v ∈ Fn
q |v · c = 0, ∀c ∈ C}.

1. The scalar product of the two vectors is equal to 0.

76 Cryptographic Hardware Acceleration and Power Minimization 3.1

As αi is a root of c(x) for 1 ≤ i ≤ 2t, then c(αi) =
∑

ciα
ij . This equality can be written as a matrix

product and results in the next property:

Property: If c = (c0, c1, ..., cn−1) is a codeword, then the parity-check matrix H of this code satisfies
c ·HT = 0, where:

H =

1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
...

1 α2t (α2t)2 . . . (α2t)n−1

 .

If c ·HT = 0, then c(αi) = 0.

Remark A parity check matrix of a linear block code is a generator matrix of the dual code. Therefore,
c must be a codeword of the t−error correcting BCH code. If each entry of H is replaced by its corre-
sponding m−tuple over F2 arranged in column form, we obtain a binary parity-check matrix for the
code.

Remark The minimum distance of the previously defined t−error correcting BCH code is at least 2t+1.

Definition 3.9 (Systematic Encoding) In systematic encoding, information and check bits are concatenated to
form the message transmitted over the noisy channel.

The speed-up described in this paper applies to systematic BCH coding only.

Consider an (n, k) BCH code. Let m(x) be the information polynomial to be coded and m′xn−k = m(x).

We can write m′(x) as m(x)g(x) + b(x).

The message m(x) is coded as c(x) = m′(x)− b(x) 2.

3.1.4.3 BCH Decoding

Syndrome decoding is a decoding process for linear codes using the parity-check matrix.

Definition 3.10 (Syndrome) Let c be the emitted word and r the received one. We call the quantity S(r) =
r ·HT the syndrome of r.

If r ·HT = 0 then no errors occurred, with overwhelming probability. If r ·HT ̸= 0, at least one error
occurred and r = c + e, where e is an error vector. Note that S(r) = S(e). The syndrome circuit
consists of 2t components in F2m . To correct t errors, the syndrome has to be a 2t-tuple of the form
S = (S1, S2, · · · , S2t).

Decoding consists of the following four steps:

1. Compute the syndrome S for the received codeword.

2. Determine the number of errors t and find the error-locator polynomial coefficients Λi(x) from S.

3. Compute the roots of the error-locator polynomial to infer the error locations.

4. Compute the error values Yi at the identified error locations and correct them.

2. where b(x) is the remainder of the division of c(x) by g(x)

3.1 BCH with Barrett Polynomial Reduction 77

3.1.4.4 Syndrome

In the polynomial setting, Si is obtained by evaluating r at the roots of g(x).

Indeed, letting r(x) = c(x) + e(x), we have

Si = r(αj) = c(αj) + e(αj) = e(αj) =
ν−1∑
k=0

ekαik, for i ≤ 1 ≤ 2t.

Suppose that r has ν errors denoted eji . Then

Si =
ν∑

j=1
eji(αi)jℓ =

ν∑
j=1

eji(αjℓ)i.

3.1.4.5 Error Location

Let Xℓ = αjℓ . Then, for binary BCH codes, we have Si =
∑ν

j=1 Xi
ℓ . The Xℓs are called error locators and

the error-locator polynomial is defined as:

Λ(x) =
ν∏

ℓ=1

(1−Xℓ) = 1 + Λ1x + ... + Λνxν .

Note that the roots of Λ(x) point out errors’ places and the number of errors ν is unknown.

There are several ways to compute Λ(x), e.g. Peterson’s algorithm [GP07] or Berlekamp-Massey algo-
rithm [Hoc59]. Chien’s search method [MS77] is applied to determine the roots of Λ(x).

3.1.4.6 Peterson’s Algorithm

Peterson’s Algorithm 4 solves a set of linear equations to find the value of the coefficients σ1, σ2, . . . σt.

Λ(x) =
ν∏

ℓ=1

(1 + αjl) = 1 + σ1x + σ2x2 + · · ·+ σtx
t

At the beginning of Algorithm 4, the number of errors is undefined. Hence the maximum number of
errors to resolve the linear equations generated by the matrix S is assumed. Let this number be i = ν = t.

3.1.4.7 Chien’s Error Search

Chien’s search finds the roots of Λ(x) by brute force [Chi06], [MS77]. The algorithm evaluates Λ(αi) for
i = 1, 2, . . . , 2m − 1. Whenever the result is zero, the algorithm assumes that an error occurred, thus the
position of that error is located. A way to reduce the complexity of Chien’s search circuits stems from
Equation 3.1 for Λ(αi+1).

Λ(αi) = 1 + σ1 αi + σ2 (αi)2 + · · ·+ σt (αi)t

= 1 + σ1 αi + σ2 α2i + · · ·+ σt αit

Λ(αi+1) = 1 + σ1 αi+1 + σ2 (αi+1)2 + · · ·+ σt (αi+1)t

= 1 + α (σ1 αi) + α2 (σ2 α2i) + · · ·+ αt (σt αit) (3.1)

78 Cryptographic Hardware Acceleration and Power Minimization 3.1

Algorithm 4 Peterson’s algorithm.
Initialization ν ← t
Compute the determinant of S

det (S)← det

S1 S2 · · · St

S2 S3 · · · St+1
...

...
. . .

...
St St+1 · · · S2t−1

Find the correct value of ν

det(S) ̸= 0 −→ go to step 4

det(S) = 0 −→

if ν = 0 then
The error-locator polynomial is empty
stop

else
ν ←− ν − 1, and then repeat step 2

end if

Invert S and compute Λ(x)

σν

σν−1
...

σ1

 = S−1 ×

−Sν+1
−Sν+2

...
−S2ν

3.1.5 Implementation and Results

To evaluate the efficiency of Barrett’s modular division in hardware, the BCH(15, 7, 2) was chosen
as a case study code. Five BCH encoder versions were designed and synthesized. Results are presented
in detail in the forthcoming sections.

3.1.5.1 Standard Architecture

The BCH-standard architecture consists of applying the modular division using shifts and XORs. Ini-
tially, to determine the degree of the input polynomials, each bit 3 of the dividend and of the divisor are
checked until the first bit one is found. Then, the two polynomials are left-aligned (i.e., the two most sig-
nificant ones are aligned) and XORed. The resulting polynomial is right shifted and again left-aligned
with the dividend and XORed. This process is repeated until the dividend and the resulting polynomial
are right-aligned. The final resulting polynomial represents the remainder of the division. Algorithm 5
provides the pseudocode for the BCH-standard architecture.

Algorithm 5 Standard modular division (BCH-standard).

Require: P, Q
Ensure: remainder = Q mod P

1: diff_degree← deg(Q)− deg(P)
2: shift_counter← diff_degree + 1
3: shift_divisor← P ≪ diff_degree
4: remainder← Q
5: while shift_counter ̸= 0 do
6: if remainder[p_degree + shift_counter− 1] = 1 then
7: shift_counter← shift_counter− 1
8: shift_divisor← shift_divisor≫ 1
9: end if

10: end while
11: return remainder

3. Considered in big endian order.

3.1 BCH with Barrett Polynomial Reduction 79

3.1.5.2 LFSR and Improved LFSR Architectures

The BCH-LFSR design is composed of a control unit and a Linear-Feedback Shift Register (LFSR) sub-
module. The LFSR sub-module receives the input data serially and shifts it to the internal registers,
controlled by the enable signal. The LFSR’s size (the number of parallel flip-flops) is defined by the
BCH parameters n and k, i.e., size(LFSR) = n − k, and the LFSR registers are called di, enumerated
from 0 to n − k − 1. The feedback value is defined by the XOR of the last LFSR register (dnk−1) and
the input data. The feedback connections are defined by the generator polynomial g(x). In the case of
BCH(15, 7, 2), g(x) = x8 + x7 + x6 + x4 + 1, therefore the input of registers d0, d4, d6 and d7 are XORed
with the feedback value. As shown in Fig. 3.1, the multiplexer that selects the bits to compose the
final codeword is controlled by the counter. The LFSR is shifted k times with the feedback connections
enabled. After that, the LFSR state contains the result of the modular division, therefore the bits can be
serially shifted out from the LFSR register.

d0 d1 d2 d3 d4 d5 d6 d7

10counter

codeword

serial input

feedback

counter ⩾ k

Figure 3.1: Standard LFSR architecture block diagram. (Design BCH-LFSR).

To calculate the correct codeword, the LFSR must shift the input data during k clock cycles. After that,
the output is serially composed by n − k extra shifts. This means that the LFSR implementation’s total
latency is n clock cycles. Nevertheless, it is possible to save n − k − 1 clock cycles by outputting the
LFSR in parallel from the sub-module to the control unit after k iterations, while during the k first cycles
the input data is shifted to the output register, as we perform systematic BCH encoding. This decreases
the total latency to k + 1 clock cycles. This method was applied to the BCH-LFSR-improved design
depicted in Fig. 3.2.

d0 d1 d2 d3 d4 d5 d6 d7

7-bit
shift
register

In

feedback

15-bit codeword

7

15

Figure 3.2: Improved LFSR architecture block diagram. In denotes the module’s serial input. (Design
BCH-LFSR-improved).

3.1.5.3 Barrett Architecture (regular and pipelined)

The LFSR sub-module can be replaced by the Barrett sub-module to evaluate its performance. Two
Barrett implementations were designed: the first computes all the Barrett steps in one clock cycle, while
the second approach, a pipelined block, works with the idea that Barrett operations can be broken down
into up to k+1 pipeline stages, to match the LFSR’s latency. The fact that Barrett operations can be easily

80 Cryptographic Hardware Acceleration and Power Minimization 3.1

pipelined drastically increases the final throughput, while both LFSR implementations do not allow for
pipelining.

In the Barrett sub-module, the constants y0, L, and K are pre-computed and are defined as parameters
of the block. Since the Barrett parameter P is defined as the generator polynomial, P does not need to
be defined as an input, which saves registers. As previously stated, Barrett operations were cut down
to k iterations (in our example, k = 7). The first register in the pipeline stores the result of Q≫ y0. The
multiplication by K is the most costly operation, taking 5 clock cycles to complete. Each cycle operates
on 3 bits, shifting and XORing at each one bit of K, according to the rules of multiplication. The last
operation simply computes the intermediate result from the multiplication left-shifted by L− y0.

3.1.5.4 Performance

The gate equivalent (GE) metric is the ratio between the total cell area of a design and the size of the
smallest NAND−2 cell of the digital library. This metric allows comparing circuit areas while abstract-
ing away technology node sizes. FreePDK45 (an open source 45nm Process Design Kit [BD15]) was
used as a digital library to map the design into logic cells. Synthesis results were generated by Cadence
Encounter RTL Compiler RC13.12 (v13.10-s021_1). BCH-Barrett presented an area comparable to the
smallest design (BCH-LFSR). Although BCH-Barrett does not reach the maximum clock frequency,
Table 3.1 shows that it actually reaches the best throughput among the non-pipelined designs, around
2.08Gbps. The BCH-Barrett-pipelined achieves the best throughput, but it represents the biggest
area and the more power consuming core. This is mainly due to the parallelizable nature of Barrett’s
operations, allowing the design to be easily pipelined and therefore further speed-up. The extra register
barriers introduced in BCH-Barrett-pipelined forces the design to present bigger area and a higher
switching activity, which increases power consumption.

Table 3.1: Synthesis results of the four BCH designs.

Design Gate In-
stances

Gate
Equiva-

lent

Max
Frequency

(MHz)

Throughput
(Mbps)

Power
(µW)

BCH-Standard 310 447 741 690 978
BCH-LFSR 155 223 1043 972 920

BCH-LFSR-improved 160 236 1043 2080 952
BCH-Barrett 194 260 655 9150 512

BCH-Barrett-pipelined 426 591 995 13900 2208

3.2 Managing Energy on SoCs and Embedded Systems 81

3.2 Managing Energy on SoCs and Embedded Systems

3.2.1 Introduction

Energy consumption is becoming a key concern in today’s systems-on-chip (SoCs) as embedded
devices [THM15] are required to process more and more data, at faster rates.

Consider a SoC S receiving cryptographic computation requests at unpredictable points in time. Each
request must be responded immediately, otherwise unavailability causes a penalty. Alternatively, S
may decide to go idle to save energy and extend its battery lifetime.

S may therefore be in one of two states: either manage requests (A) or go idle (B). While S is busy
attending a request, it does not accept other requests until calculations are complete and the response
is sent back to the requester:

The system status Ameans that S is available to answer requests.

The system status B means that S went idle to save energy.

Our goal is to endow S with a smart energy management system so S may go idle to save energy when
incoming request probability is low enough to take such a risk. Status A dissipates power, therefore
S would like to go idle as much as possible. Thus S should be in B mode as much as possible, to
save energy, but should also be reasonably available to answer requests to reduce unresponsiveness
penalties.

3.2.2 The Model

We use the following model:

— x(t) is the number of incoming requests per time unit. The function x(t) can be estimated by
performing statistics on previously processed requests.

— γ is S’s average power consumption per time unit. We assume that when S is in idle mode (B),
S does not consume energy.

— Answering an incoming request (state A) consumes one (normalized) unit of energy.
— Let t denote the time spent by S to service a request. The total power consumed during t is γt.
— α is the penalty incurred by an incoming request while S is in state B (idle). If S is inA-mode, no

penalty is incurred as the incoming request can be immediately processed by S. α is hence the
(virtual) amount of energy consumed to “wake up". A large α means that inter-request idleness
periods must be reduced to a minimum.

We consider a typical sequence of requests following a distribution given by x(t). We denote by E the
total power consumed by the system during its operation and by N the number of penalties incurred
over this distribution. We define the total power consumption function:

P = E + N · α (3.2)

The total power consumption P is thus the sum of the usefully consumed energy plus the total unre-
sponsiveness penalties, over the distribution x(t). Note that to properly add-up, α’s unit must be an
energy consumption value (same unit as E).

Note that if we take α = 0 (no unresponsiveness penalty), then only the E power component must be
minimized. In this case S immediately goes idle (B-mode) as soon as S (which is in A-mode) finishes
processing a request.

On the other hand, for a large α the cost E in equation (3.2) becomes negligible compared to the penalty
N · α. In that case only the number of penalties N may be minimized. Put differently, since S does not

82 Cryptographic Hardware Acceleration and Power Minimization 3.2

tolerate unresponsiveness, the best strategy is simply to make S always available to service requests,
which means that S never goes into a B-mode.

Define f(N) as the probability to cause a system malfunction before N penalties occur. f increases
monotonously with N . It is hence desirable to reduce N as much as possible but... not at the cost of a
too high power consumption.

For “medium” values of unresponsiveness sensitivity α, our goal is therefore to find a strategy that
minimizes the total power consumption function P as determined by equation (3.2). More precisely,
given as input x(t), γ, α, our goal is to determine when S should go idle and when S should better
switch back to A-mode to await incoming requests.

Let f(n − 1) ≤ ρ ≤ f(n) we set α ≜ ℓ/n. As a sanity-check we see that if S has an extremely strong
aversion to system unresponsiveness, its n will be equal to 1 resulting in α = ℓ. At the other extreme, if
S’s policy does not care about unanswered requests then n =∞ and α = 0.

3.2.3 Optimizing Power Consumption While Avoiding System Malfunction

We now derive an optimal strategy to comply with equation (3.2).

We consider an observed increase ∆P in the total power consumption function during a short time
period ∆T .

According to our model, ∆P comprises the cost of the usefully consumed power during ∆T , and pos-
sibly a penalty if an incoming request occurred when the system was in B-mode. We distinguish four
possible cases during the period ∆T :

1. S was in B-mode and no request occurred.

▶ In this case no power is consumed and no penalty is incurred, so ∆P = 0.

2. S was in A-mode and no request occurred.

▶ By definition the power consumed by S during ∆T is γ ·∆T ; therefore ∆P = γ ·∆T .

3. S was in B-mode and a request occurred.

▶ The power consumed by S for processing the request is 1 plus a penalty α because S was unable
to service the request immediately. Therefore ∆P = 1 + α.

4. S was in A-mode and a request occurred.

▶ No penalty is incurred and ∆P = 1, which is the normalized power consumed for treating the
incoming request.

Table 3.2: Increase ∆P of the power consumption function in a short time period ∆T .

S was in B-mode S was in A-mode

request 1 + α 1
no request 0 γ ·∆T

We now determine the average increase of P during the time period ∆T . During ∆T the probability p
to witness an incoming request is approximated 4 by:

p = x(t) ·∆T

4. Assume, for instance, that x(t) = 10 requests/hour and consider a one second time interval ∆T = 1/3600 hours. The
probability to witness a request during ∆T is indeed 10∆T = 1/360. During each one second time interval the probability to
witness a request is 1/360 and over 3600 seconds we indeed get an average of 10 requests. Hence, p is indeed the probability to
witness a request between time t and t + ∆T when ∆T is very small.

3.2 Managing Energy on SoCs and Embedded Systems 83

where x(t) is the number of incoming requests per time unit.

Therefore, when the system is idle (B-mode), with probability p there is an incoming request and the
power consumption is increased by 1 + α, whereas with probability 1 − p the power consumption
remains invariant. The variation ∆PB of the power consumption while being in B-mode is therefore:

∆PB = p · (1 + α) + (1− p) · 0 = (1 + α) · x(t) ·∆T (3.3)

Similarly, when the system is in A-mode we obtain the following average variation ∆PA of the power
consumption:

∆PA = p · 1 + (1− p) · γ ·∆T = x(t) ·∆T + (1− x(t) ·∆T) · γ ·∆T

Neglecting the terms in ∆T 2, we get:

∆PA ≃
(
x(t) + γ

)
·∆T (3.4)

From equations (3.3) and (3.4) we obtain:

∆PB ≤ ∆PA ⇔ (1 + α) · x(t) ≤ x(t) + γ

which gives our main result:

∆PB ≤ ∆PA ⇔ α · x(t) ≤ γ

We can therefore distinguish two cases:

1. If α · x(t) ≤ γ, then ∆PB ≤ ∆PA. Power consumption is minimized by having S go idle;

2. If α · x(t) > γ, then ∆PB > ∆PA. Here it is more advantageous to switch S into A-mode (even in
the absence of an incoming request).

t

(requests per hour)
x(t)

x0

0

mode: B A B A B A

Figure 3.3: Example of a request function x(t) with a threshold x0. When x(t) ≥ x0, it is more advanta-
geous to be in A-mode. Otherwise S should better go into B-mode.

Finally, we can define an incoming request frequency threshold x0 ≜ γ
α .

As illustrated in Fig. 3.3, when x(t) ≤ x0, it is more advantageous to enter B-mode, and when x(t) > x0,
it is more advantageous to stay in A-mode. We note that this strategy does not depend on the energy

84 Cryptographic Hardware Acceleration and Power Minimization 3.2

cost u necessary to process a request; here we assumed that u = 1, but the strategy would be the same
for any value of u; this is because energy is spent whenever a request occurs, no matter if S was in B or
in A-mode.

Finally, we note that this strategy is clearly optimal since at any time t we are minimizing the increase
in the power consumption function.

3.2.4 The General Case

Assume that the power consumed to process a request is u (instead of 1), and that the amounts of
energy dissipated while in A and B modes (respectively rA and rB) are potentially nonidentical and
differ from γ (Table 2).

Table 3.3: Increase ∆P of the power consumption function in a short time period ∆T . (rA + rB)/2
represents the average rate due to the alternation of modes A and B during the request.

S was in B-mode S was in A-mode

request u + α + (γ − (rA + rB)/2) ·∆T u + (γ − rA) ·∆T
no request (γ − rB) ·∆T γ ·∆T

An analysis, similar to that of the previous section yields:

∆PB ≤ ∆PA ⇔ −2rB + 2αx(t) + rAx(t)∆T + rBx(t)∆T < 0

That is (neglecting the terms with ∆T):

∆PB ≤ ∆PA ⇔ α · x(t) < rB

As expected u vanished and when rB = γ this yields x0.

3.2.5 Probabilistic Strategies

In this section we analyze an alternative strategy for S. Here, S generates a function 0 ≤ v(t) ≤ 1
and tosses a biased coin (probability v(t) for tail and 1 − v(t) for head) during each interval ∆T . If the
coin falls on a head S will switch into A-mode; otherwise, S will switch into B-mode.

For such a strategy we need:

v(t) · p · (1 + α) < (1− v(t)) · (p · 1 + (1− p) · γ ·∆T)

Substituting p by x(t)∆T :

v(t) · x(t)∆T · (1 + α) < (1− v(t)) · (x(t)∆T · 1 + (1− x(t)∆T) · γ ·∆T)

Expanding, neglecting the terms in ∆T 2 and dividing by ∆T we get:

v(t) · x(t) + α · v(t) · x(t) < γ − γ · v(t) + x(t)− v(t) · x(t)⇒ v(t) ∼=
γ + x(t)

γ + (2 + α)x(t)

3.2 Managing Energy on SoCs and Embedded Systems 85

In other words, we get a “mirror" coin-toss function v(t) that attempts to correct the variation of x(t) by
increasing or decreasing the coin-toss probability to keep the penalty as low as possible. This is well
illustrated in the following graphics where we plotted two x(t) functions (in blue) and their correspond-
ing v(t) (in purple). We see that a burst in x(t) is immediately compensated by a descent of v(t) and
vice versa.

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.4: Example of v(t) (purple) for an example function x(t) (blue).

1 2 3 4 5 6 7

0.5

1.0

1.5

Figure 3.5: Example of v(t) (purple) for x(t) = | sin(x) + sin(2x)| (blue).

CHAPTER 4

SIDE-CHANNEL ATTACKS AND
HARDWARE COUNTERMEASURES

Summary

This chapter presents in more detail the basis of side-channel attacks and proposes hardware counter-
measures against power and fault attacks.

Section 4.1 introduces side-channel attacks from an economical perspective. Sections 4.2 and 4.3 define
Differential Cryptanalysis and Differential Power Analysis, respectively. A lightweight countermeasure
is presented in Section 4.4, in which a reconfigurable AES implementation makes use of the algorithm’s
features to create protection mechanisms against fault and power attacks. Section 4.5 presents CSAC, a
cryptographically secure on-chip firewall. CSAC uses a standardized HMAC function to authenticate
the reprogramming agent, binding the ability of modify system-on-chip read and write permissions to
a trusted actor. Moreover, CSAC is able to detect fault attacks aiming at modifying the content of the
permission rules already set on the firewall. ASIC and FPGA implementations show the tradeoffs of
different protection levels. This chapter is closed by Section 4.6, in which a novel side-channel attack
based on practical Instantaneous Frequency Analysis experiments is introduced. We show that, in addi-
tion to the signals amplitude and spectrum, traditionally used for side-channel analysis, instantaneous
frequency variations may also leak secret data.

4.1 An Economical Introduction to Side-Channel Attacks 87

4.1 An Economical Introduction to Side-Channel Attacks

The existing information and communication systems require the implementation of components
that can withstand high encryption rates while resisting a multitude of identified attacks. The need
for integration in a very short cycle of new security platforms requires flexible components, capabilities
and expandable rich computational possibilities. Such components must be usable for the development
of products and also to be able to take advantage of a variety of applications and services.

Unfortunately, the opening of platforms in the “cloud” and the outsourcing of a lot of the data process-
ing to third party networks, and primarily the Internet, has exposed computers to attacks on hardware,
software and operating systems.

The increased level of trust in hardware developments such as the addition of firewalls or the introduc-
tion of tri-factor authentication methods, caused systems to slowdown, which in turn caused the user
discomfort. It is clear that the use of security software solutions has reached a tipping point in negative
investment.

These new problems create a strong need for trusted components intended to accelerate network com-
munications. The problem is complex because beyond the technical problem of accelerating calcula-
tions, it is essential that protected platforms conform to the imperatives of national sovereignty – espe-
cially (but not limited to) when such platforms are intended for defense applications.

The typical user wants a system that is easy to operate and configure, protected from malware and
resistant to physical attacks that could endanger equipment or sensitive data. Insofar as it is impossible
to fully predict the exact use of the security device, it is imperative that all trusted components at least
allow and ensure the safety of personal data, respecting the privacy and the integrity of the system in
which the component is integrated.

Nowadays, there is an increasing need for new hardware-software solutions that meet the key chal-
lenges of creating sensitive applications. These devices have to be engineered to allow the host system
to perform cryptographic operations at very high speed and benefit from a choice of resources, while
providing the host defenses against malicious attacks or application changes.

Side-channel attacks (SCA), a type of cryptanalysis described as an implementation attack, extract secret
information from physical signals emanating from operating circuits. Such signals may be the power
consumption, electromagnetic radiation or the time required to accomplish a certain calculation [Koc96].
Side-channel attacks are also categorized as passive attacks. Passive attacks do not change the state of
the target but allow to extract sensitive information by just being able to spy on it.

The side-channel attacks were introduced as a major threat by Kocher in 1996 [Koc96]. The principle
is to observe the physical properties of the component and then retrieve information about the secret
that is being used. An attack analyzing calculation time was the first proposed side-channel attack.
Kocher [Koc96] used the differences in time between particular RSA executions to find bits of secret
data. Sometimes variations may depend on the value of the processed data. Thus, in the case of the
Original Montgomery modular multiplication [Mon85], a subtraction of the modulus may be required.
The extra time can therefore reflect this subtraction, which can then be used by an attacker to retrieve
bits of the secret exponent used in an RSA signature for example. Time measurements, however, require
great precision to be exploitable.

The vast majority of secure components use the CMOS technology because it is cheap and effective. One
of the most interesting properties of this technology is that the static (or leakage) power consumption of
a CMOS circuit is low (presented in details in Section 2.1.5.2). This corresponds to the consumption of
the circuit when it is in an equilibrium state. A noticeable and significant power consumption change is
seen when CMOS transistors change state. This power component is called dynamic power consumption.
More generally, a CMOS circuit consumes a significant amount of energy only when there is a switching
activity in transistors and wires. There is a strong relationship between the component’s consumption
and the number of bits that change state at a given instant.

As explained in deeper details in Section 2.1.3, the inverter is a basic structure of a CMOS circuit. The
inverter consists of p-channel transistor arrays of Metal Oxide Semiconductor (PMOS) and n-channel

88 Side-Channel Attacks and Hardware Countermeasures 4.3

Metal Oxide Semiconductor (NMOS). When no operation is performed, the voltage is either Vdd or Vss
at the input and output. However, during a transition from Vdd to Vss (or vice versa) at the input, there
is a short time during which a short circuit current flows through the transistor. Also at this time, the
load capacitances, such as buses or logic gates, are charged or discharged.

The power consumption of a component can be observed by measuring the potential difference divided
by the resistance using a resistor connected in series between the component’s external power supply
and Vss. Then a digital oscilloscope is used to scan the stream and save it on a computer. The equipment
required for the acquisition of consumption curves is fairly common. A computer is used first to send
commands to the smart card to launch operations on it with given parameters. A first current sensor
measures the consumption while a second one is used to trigger the acquisition of consumption curves
by the oscilloscope. This second probe is thus linked to the input signal sent to the card. A stable power
supply allows to fix with consistency and precision the current intensity flowing through the circuit.
Attacks by current analysis, or power analysis, pose a very serious threat due to their effectiveness and
ease of implementation.

Attacks using the electromagnetic emission of a component are similar to attacks done by measuring
current, as described above. Electromagnetic measurement attacks are based on the fact that low power
loads that are in motion produce a magnetic field which itself generates an electric field. Current micro-
processors are made up of millions of transistors and interconnections that generate these electromag-
netic emissions. This property was used to perform side channel attacks on cryptographic components.

[GMO01] were the first to provide experimental results of smart card on attacks using electromagnetic
emissions. Agrawal et al. [AARR03] then proposed a more comprehensive study of this kind of side
channel attack. They show that this type of covert channel can be used when an attacker cannot gain
access to the target to measure of current consumption. In addition, they use electromagnetic radiation
to break the countermeasures that resist attacks by power analysis. Electromagnetic emissions are often
seen as giving very precise information on the data processed by the component. Nevertheless, it is
very difficult, in practice, to obtain optimal information. Numerous criteria such as where to place the
probe to record these emissions, or the size and type of probe to be used have yet to be characterized
precisely.

4.2 Differential Cryptanalysis

Before introducing DPA in mathematical detail, let us first introduce what is defined as Differential
Cryptanalysis [BS93]. The motivation for Differential Cryptanalysis comes from the fact that the private-
key cipher operations are linear, except for the S-Boxes, therefore mixing the key in all the rounds
prohibits the attacker from knowing which entries of the S-Boxes are actually used. Because of that, the
attacker cannot know their output. Differential Cryptanalysis studies differences between two different
plaintexts and the difference between the two corresponding ciphertexts to infer information about the
key.

Consider a chosen plaintext attack model, where the adversary can play with the cryptosystem as a
black-box (i.e., without any knowledge of internal operations or data) and submit plaintext messages
at its input, receiving the corresponding ciphertext message as the output. The aim of this attack is to
be able to recognize patterns and learn any information of the key, given the plaintext-ciphertext pair,
therefore revealing the secret key.

The basic idea of differential cryptanalysis is to submit pairs of plaintext blocks P and P ∗ of which the
difference is a fixed value P ′, i.e., P ′ = P ⊕P ∗. We then analyze the ciphertext pair T and T ∗ difference
until we find a fixed value T ′, with T ′ = T⊕T ∗. A first analysis phase consists of heuristically searching
for good P ′ and T ′ values. Formally, the differential probability is the quantity defined as

DPf (P ′, T ′) = Pr[f(δ + P ′) = f(δ) + T ′]

where f is the encryption function and δ is a uniformly distributed random variable. The attack is
considered to be efficient for high numbers of this probability.

4.3 Differential Power Analysis 89

4.3 Differential Power Analysis

DPA, first introduced by Kocher in [KJJ99], is a sophisticated technique that uses a set of power
measurements to perform statistical analysis on small power differences, aiming at recovering the secret
key. The remaining of this section details important nomenclature related to DPA.

Power Trace. The power consumed by a hardware cryptosystem depends on the data manipulated
by its internal circuits and can be measured by an oscilloscope or a digital data acquisition board by
inserting a resistor in series with the ground or power supply pin. The collected data is called a power
trace. The power trace might contain a single encryption operation, or several operations in sequence.

Simple Power Analysis (SPA). This technique involves a straightforward interpretation of a power
trace. Although the scope of this thesis does not cover the public-key cryptography in details, we define
the algorithm below in order to explain how SPA works.

Algorithm 6 Computation of an RSA signature (modular exponentiation).

Require: m, N, d = {dk−1, ..., d0} and µ : {0, 1}∗ −→ Z/NZ
Ensure: S = µ(m)d mod N

1: R0 ← 1
2: R1 ← µ(m)
3: for j ← k − 1, 0 do
4: R0 ← R0

2 mod N
5: if dj = 1 then
6: R0 ← R0 ×R1 mod N
7: end if
8: end for
9: return R0

idle

setup

1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0

Figure 4.1: Power trace of an RSA exponentiation.

Algorithm 6 details the necessary steps to calculate an RSA digital signature, that has the purpose
to guarantee the authenticity and the integrity of a given message. There are two keys involved in

90 Side-Channel Attacks and Hardware Countermeasures 4.3

the process: a private signing key and a public verification key. Typically, the production of a digital
signature of a message m using RSA consists on the "hash-and-sign" paradigm [Koc08]: m is first hashed
into µ(m) and the result is then raised to the d-th power modulo N , S = µ(md) mod N , where d denotes
the private RSA key. The public verification key is {e, N} where ed ≡ 1 mod ϕ(N) and ϕ is Euler’s
totient function. The validity of the signature S of message m is verified by checking whether Se ≡
µ(m) mod N .

Algorithm 6 details a common way of implementing a modular exponentiation using the square-and-
multiply algorithm. At iteration j of the algorithm’s main loop, a modular squaring is performed. If
bit dj of d is equal to 1, a modular multiplication is also performed. As we can see from that, there are
two distinct operations to be performed in RSA: modular squaring and modular multiplication. The
power consumed to evaluate the RSA signature is correlated to the square and multiply operations, and
therefore correlated to the bits of the secret key d.

Fig. 4.1 shows the RSA exponentiation of the first 16 bits. The trace starts by showing small activity due
to idleness, followed by a big energy peak, due to the algorithm’s setup. After that, we easily recognize
two patterns: a lower power consumption trace, corresponding to the squaring R0 ← R0

2 mod N , and
a higher power consumption trace, corresponding to multiplications defined as R0 ← R0 · R1 mod N .
We can therefore infer that a lower pattern followed by another lower trace represents a bit di = 0, while
a lower pattern followed by a higher trace represents the bit di = 1. In Fig. 4.1, 16 bits of the private
RSA key are revealed by only analyzing the power consumed by the algorithm’s execution.

Hamming-weight and Hamming-distance models. The most common and simplest model to charac-
terize the information leakage through the power consumption is called the Hamming weight, i.e., the
number of non-zero bits in a given bit string of the manipulated data of the executed instruction.

Another commonly used model is the Hamming distance, that considers the number of bits flipped bits
in the current state compared with the previous state. Let HW denotes the Hamming-weight function
and stt denotes the bit string state at clock cycle t. The Hamming distance is given by

HW(stt ⊕ stt−1)

where ⊕ denotes the XOR (exclusive OR) operator that isolates in a string the number of flipping bits.

Bit Tracing. It is not always straightforward to locate a cipher operation in a power trace. Imagine that
on a multi-purpose SoC the cipher operation occurs after a series of writes to the RAM, followed by a
DRM computation. The power consumed by the cipher operation might not be visible just by looking
at of the power trace shape.

Let σ denote a Boolean selection function which returns σ(y) = 0 or σ(y) = 1 depending on the value of
y; let ⟨·⟩ represent averaging and φP (t) denote the power consumption of process P at time period t.
After collecting several power traces of a same process P , a partition of two sets, ς0 and ς1, is created
depending on a known intermediate value y:

ς0 = {y | σ(y) = 0}

and
ς1 = {y | σ(y) = 1}

We define the DPA trace as

∆P (t) := ⟨φP (t)⟩ς1
− ⟨φP (t)⟩ς0

4.3 Differential Power Analysis 91

namely, the difference of the average power consumption curve corresponding to sets ς1 and ς0 for each
time period t.

The DPA trace magnifies the effect of the selection function σ. Suppose that a cryptographic process
is performed on an 8-bit microcontroller that respects the Hamming-weight model. Suppose also that
the 16-byte ciphertexts are known. Let us define σ as a selection function that returns the value of
a given bit of the first ciphertext byte. Therefore sets ς0 and ς1 will contain ciphertexts for which a
given bit is always 0 and always 1, respectively. As a result, the average Hamming-weight value for
the first byte of ciphertexts in set ς0 will be 3.5, and ς1 will present an average value of 4.5. As the
Hamming-weight model reflects the power consumption as a function of the Hamming weight of the
manipulated data, this difference between the average Hamming weights will translate into a difference
between the average power consumption for set ς0 and set ς1 when the first byte of the ciphertext is
being manipulated, causing a peak in the DPA trace. By trying different ciphertext bits and comparing
the peaks presented in the power trace, the attacker can correctly locate the point in time when the
cipher operation occurs.

DPA Attack on AES. Besides locating the cipher operation in time, DPA can also be used to recover se-
cret information. Although the attacker does not known the intermediate value of the key and therefore
it is not possible to make a partition on intermediate values during the cipher operation, the following
steps can be followed to discover the bits of the secret key [Koc08]:

— The attacker guesses a key value;
— The attacker applies the DPA methodology to some intermediate value depending on the key

(and depending also on the cryptographic operation in question);
— If the DPA trace does not present peaks then the guessed key value was wrong and the attacker

goes back to the first step. Otherwise, the key value is correct.

To illustrate this, let us consider a 128-bit AES. The plaintext m is first XORed with the key and then
gradually updated by applying round functions SubBytes, ShiftRows, MixColumns and AddRoundKey in a
series of 10 rounds. The plaintext m is defined as a 4×4 matrix of bytes mi = (su,v

(i)), where 0 ≤ u, v ≤ 3.
The SubBytes function substitutes each byte s

(i)
u,v by another byte through a non-linear permutation

SBox. Since the SubBytes transformation has an effect on the whole byte value, the selection function σ

can be defined as the value of a given output bit of SBox(s(i)
u,v).

The following steps are followed by an attacker willing to discover the secret key:

— The attacker makes a guess on the key byte ku,v , choosing one value among 256 possible combi-
nations;

— The attacker partitions the t random 128-bit messages

m1 = (s(1)
u,v, ..., mt = (su,v

(t)))

in two sets ς0 and ς1 given by

ς0 = {mi | bit1(SBox(s(i)
u,v)) = 0}

ς1 = {mi | bit1(Sbox(s(i)
u,v)) = 1}

where bit1(SBox(s(i)
u,v) denotes the first bit of byte SBox(s(i)

u,v).
— Next, the DPA trace is constructed by

∆P (t) := ⟨φP (t)⟩ς1
− ⟨φP (t)⟩ς0

and the attacker observes whether there are significant DPA peaks. If not, the attacker goes back
to the initial step with another guess for ku,v . Otherwise, the attacker iterates the same attack to
find the remaining key bytes.

This attack requires to use at most 256 DPA traces to recover one key byte and at most 256× 16 = 4096
DPA traces to recover the cipher key.

92 Side-Channel Attacks and Hardware Countermeasures 4.3

Countermeasures. Since the first publication of side-channel attacks against cryptosystems, various
countermeasures have been proposed to defend hardware and software against the correlation between
the power consumed by the device and the data being manipulated by it.

A first class of countermeasures consists in reducing the available side-channel signal, which implies
avoiding conditional branches where the secret information leads the algorithm to perform different
operations [Tyg96]. In other words, the algorithm is coded in a way that the sequence of operations are
regular and always performed in a given order.

Another class of countermeasures involves introducing noise to the power channel, making the power
trace less or impossible to read. This includes power smoothing, which purpose is to render power
traces smoother. The insertion of wait states in hardware or dummy cycles in software is another example,
where the traces become misaligned and therefore harder to analyze. Another example at the hardware
level is to make use of an external unstable source of clock, with unstable period and jitter. At software
level, but also commonly used in hardware, data masking is yet another example of a popular class of
countermeasures, usually giving excellent resilience against power attacks since the data manipulated
is masked by a random and unrelated mask value, making the secret data uncorrelated to the actual
unmasked value.

Efficiency is key when implementing a cryptosystem protected against side-channel attacks. Counter-
measures must be proved resilient against power correlation while maintaining an acceptable perfor-
mance level. It is common to apply several different classes of countermeasures to a single cryptosys-
tem to increase side-channel resistance. It is therefore important to find lightweight alternatives to
implement cryptographic primitives that use the best of hardware resources without compromising the
security level.

4.4 Power Scrambling and the Reconfigurable AES 93

4.4 Power Scrambling and the Reconfigurable AES

4.4.1 Introduction

The Advanced Encryption Standard (AES) algorithm, also known as Rijndael, is a widely used
block-cipher standardized by NIST in 2001 [AES01]. Compared with its predecessor DES [AG01], the
AES features longer keys, larger plaintexts and more involved basic binary transformations [BBK+03].

Despite the fact that AES is mathematically safer than the DES, straightforward AES implementations
are not necessarily secure and several authors [Koc96, KJJ99, MOP07] have exhibited ways of explor-
ing information that leaks from AES implementations. Such leakage is typically power consumption,
electromagnetic emanations or the time required to process data. Additional constraints such as fault re-
sistance, chip technology, performance, area, power consumption, and even patent compliance further
complicate the design of real-life AES coprocessors.

This chapter addresses resistance against two physical threats on AES: power and fault attacks. The pro-
posed AES architecture leverages the algorithm’s structure to create low-cost protections against these
attacks. This allows very flexible runtime configurability without significantly affecting performance.

The remaining of this chapter is organized as follows: Section 4.4.2 recalls the AES’ main features and
proposes an architecture for implementing it. Section 4.4.3 explains how to add power scrambling
and fault detection to the proposed implementation. The result is a chip design allowing 29 different
software-controlled runtime configurations. Section 4.4.4 introduces an idea of reducing the memory
required to store state keys in the decryption mode. Section 4.4.5 compares simulation and synthesis
results between an unprotected AES and our protected implementations.

4.4.2 The Proposed AES Design

The AES is a symmetric iterative block-cipher that processes 128-bit blocks and supports keys of
128, 192 or 256 bits [AES01]. Key length is denoted by Nk = 4, 6, or 8, and reflects the number of 32-bit
words in the key. At start, the 128-bit plaintext P is split into a 4 × 4 matrix S of 16 bytes called state.
The state goes through a number of rounds to become the ciphertext C.

The number of rounds Nr is a function of Nk. Possible {Nr, Nk} combinations are {10, 4}, {12, 6} and
{14, 8}. A particular round 1 ≤ r ≤ Nr takes as input a 128-bit state S[r] and a 128-bit round key K [r]

and outputs a 128-bit state S[r+1]. This is done by successively applying four transformations called
SubBytes, ShiftRows, MixColumns and AddRoundKey.

P AddRoundKey

K [r] C

SubBytes ShiftRows MixColumns

(Nr times)

Figure 4.2: AES encryption flowchart.

AES encryption starts with an initial AddRoundKey transformation followed by Nr rounds consisting
of four transformations, in the following order: SubBytes, ShiftRows, MixColumns and AddRoundKey.
MixColumns is skipped in the final round (r = Nr). If during the last round MixColumns is bypassed,
we can look upon the AES as the 4-block iterative structure shown in Fig. 4.2.

Decryption has a similar structure in which the order of transforms is reversed (Fig. 4.3) and where
inverse transformations are used (Note that AddRoundKey is idempotent). In both designs, a register
barrier at the end of each transformation block is used to save intermediate results. Therefore the

94 Side-Channel Attacks and Hardware Countermeasures 4.4

intermediate information that eventually yields S[r] is saved four times during each AES round. It
takes 4Nr + 1 clock cycles to encrypt (or decrypt) a data block using this design.

C AddRoundKey

K [r] P

InvMixColumns InvSubBytes InvShiftRows

(Nr times)

Figure 4.3: AES decryption flowchart.

Fig. 4.2 and Fig. 4.3 show that, during each clock cycle, only one block of the chain actually computes
the state, while the other three blocks are processing useless data. This is potentially risky, as the three
concerned blocks “chew” computationally useless data related to P (or C) and K [r] and thereby expose
the design to unnecessary side-channel attacks. This computation is shown in Fig. 4.4 where red arrows
represent the path of usefully active combinatorial logic.

4.4.3 Energy and Security

4.4.3.1 Power Analysis

To benchmark our design the AES was implemented on FPGA. Power was measured at 1GS/s
sampling rate with 250 MHz bandwidth using PicoScope 3407A oscilloscope. To guarantee the identical
conditions every new plaintext was given to the FPGA at the same clock after the reset.

We performed a Correlation Power Attack (CPA) on the first AES S-Box output since S-Box operation
is generally considered as the most power gluttonous. Our power model was based on the number of
flipped register’s bits in the S-Box module when the initial register’s barrier R0 is rewritten with the
S-Box output as follows:

HD(S −Box[P ⊕K0], R0) = HW(S −Box[P ⊕K0]⊕R0) (4.1)

where R0 is the previous register’s state; P is a given plaintext; K0 is the AES master key.

The value R0 was assumed to be constant since all the encryptions were performed at the same clock
after the reset. When R0 could not be computed then all possible 256 values were tried. Pearson corre-
lation coefficient was used to link the model and the genuine consumed power.

The following section presents a reference evaluation of the unprotected AES implementation showing
its vulnerability compared to two (LFSR and tri-state buffers) side-channel countermeasures introduced
later.

4.4.3.2 Power Scrambling

It is a natural idea to shut down unnecessarily active blocks. To do so, each block receives a new
1-bit input named ready activating the block when ready = 1. If ready = 0, the block’s pull-up resistors
are disconnected using a tri-state buffer connected to the power source. This saves power and also
prevents the circuit from leaking “unnecessary” side-channel information.

Logically the pipeline architecture that we have just described has to be less vulnerable against First
Order DPA attacks. Its four register barriers introduce additional noise, so we expect that the correlation
shall be at least smaller that for the AES design with one round per clock computation.

4.4 Power Scrambling and the Reconfigurable AES 95

Clock = t AddRoundKey SubBytes ShiftRows MixColumns

Clock = t + 1 AddRoundKey SubBytes ShiftRows MixColumns

Clock = t + 2 AddRoundKey SubBytes ShiftRows MixColumns

Clock = t + 3 AddRoundKey SubBytes ShiftRows MixColumns

Figure 4.4: Flow of computation in time.

To asses the security of each proposed design, we will compare an incorrect key byte correlation to
a correct key byte correlation. Fig. 4.5 shows these two coefficients. As expected, the correct key is
correlated to the power traces, however even for 500,000 traces Pearson correlation coefficient is smaller
than 0.015. Anyway, this implementation is vulnerable.

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e

a
rs

o
n

 C
o

rr
e

la
tio

n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o

lta
g

e
,

m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Figure 4.5: Unprotected implementation: Pearson correlation value of a correct (red) and an incorrect
(green) key byte guess. 500,000 power traces.

To exploit the unused blocks to hide the device’s power signature even better we propose two mod-
ifications. The first consists in injecting (pseudo) random data into the unused blocks, making them
process that random data. Subsequently, three of the four blocks will consume power in an unpre-
dictable manner. Note that because we use the exact same gates to compute and to generate noise, the
expected spectral and amplitude characteristics of the generated noise should mask leakage quite well.
Although any random generator may be used as a noise source, we performed our experiments using
a 128-bit LFSR. An LFSR is purely coded in digital HDL, making tests easier to implement.

Fig. 4.6 shows that a multiplexer controlled by the ready signal selects either the useful intermediate state
information or the pseudo-random LFSR output. For the AddRoundKey block, LFSR data replaces the
key. Therefore when AddRoundKey’s ready = 0, pseudo-random data (unrelated to the key) are XORed
with the state coming from the previous block (MixColumns if encrypting, InvShiftRows if decrypting).
For the other blocks, the pseudo-random data replaces the state when ready = 0.

Attacks performed on this implementation revealed that this countermeasure increases key lifetime.

96 Side-Channel Attacks and Hardware Countermeasures 4.4

128-bit

LFSR

P

K [r]

seed

1
0

0
1

AddRoundKey

C

0
1 SubBytes 0

1 ShiftRows 0
1 MixColumns

(Nr times)

Figure 4.6: Power scrambling with a PRNG.

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e

a
rs

o
n

 C
o

rr
e

la
tio

n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o

lta
g

e
,

m
V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Figure 4.7: LFSR implementation: Pearson correlation value of a correct (red) and an incorrect (green)
key byte guess. 1,200,000 power traces.

Fig. 4.7 is the equivalent of Fig. 4.5 for the protected implementation using an LFSR. The correct key
correlation can not be distinguished from the incorrect key correlation even with 1,200,000 traces. How-
ever, we assume that this implementation still might be vulnerable if more traces are acquired or if
Second Order DPA is applied.

Real-life implementations must use true random generators. Indeed, if a deterministic PRNG seed
is used the noise component in all encryptions becomes constant and cancels-out when computing
differential power curves.

A second design option interleaves tri-state buffers between blocks to hide power consumption. By
shutting down the three useless blocks, we create a scrambled power trace where one block computes
meaningful data while the other three “process” high impedance inputs, which means that these blocks
“compute” leakage current coming from their inputs.

As illustrated in Fig. 4.8, the input signal readyi determines which blocks are tri-stated and which block
is computing the AES state. In other words, the readyi signal “jumps” from one block to the next, so that
only one block is computing while the other three are scrambling the power consumption. Although
this solution has a smaller overhead in terms of area (as it does not require random number generation)
tri-state buffers tend to be slow. Furthermore, the target environment (FPGA or IC digital library) must
offer tri-state cells.

The experimental results we obtained on FPGA were surprising, we couldn’t attack the design with
800,000 power traces. The correlations shown in Fig. 4.9 do not allow to visually distinguish the correct
key from a wrong guess. As before we assume that this implementation can be still attackable if more

4.4 Power Scrambling and the Reconfigurable AES 97

P

ready1

AddRoundKey

K [r]

C

ready2

SubBytes

ready3

ShiftRows

ready4

MixColumns

(Nr times)

Figure 4.8: Power scrambling with tri-state buffers.

power traces are acquired or if Second Order DPA is applied.

A full study of this solution would require an ASIC implementation with real tri-state buffers, as an
FPGA emulates these buffers and may turn out to be resistant because of an undesired CLB mapping
side effects.

0 100 200 300 400 500 600 700 800 900 1000

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time, ns

P
e

a
rs

o
n

 C
o

rr
e

la
tio

n

0 100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

V
o

lta
g

e
,
m

V

Pearson correlation for the correct key byte
Pearson correlation for the wrong key byte
Power trace

Figure 4.9: Tri-state buffers implementation: Pearson correlation value of the correct key byte (green)
and a wrong key byte guess (red). 800,000 power traces.

4.4.3.3 Transient Fault Detection

We will now use idle blocks to check for transient faults. Each block in the chain can "stutter"
during two consecutive clock cycles to recompute and check its own calculation. For instance, as shown
in Fig. 4.10, at clock t, a given block Bi receives a readyi signal, computes the state and saves it in the
register barrier Ri. At clock t + 1, the result enters the next block Bi+1 mod 4 which is now working,
while Bi reverts to checking, i.e., Bi recomputes the same output as at clock t and compares it to the
saved Bi value. This process is repeated for the other blocks in the chain. If any transient fault happens
to cause a wrong result at the output of any block, the error will be detected within one clock cycle.

4.4.3.4 Permanent Fault Detection

The AES structure of Section 4.4.2 also allows us to use one block of the chain to compute a pre-
determined plaintext or ciphertext. The encryption (or decryption) of a chosen input (e.g. the all-zero
input Z) is pre-computed once for all and hardwired (let W = AES(Z) denote this value). While the
system processes the actual input through one block (out of four) during any given clock cycle, another
block is dedicated to recompute W . One clock after the actual C emerges, AES(Z) can be compared to
the hardwired reference value W . If W ̸= AES(Z), a transient or a permanent fault occurred.

98 Side-Channel Attacks and Hardware Countermeasures 4.4

Clock = t

Clock = t + 1

WORKING

Block Bi Ri

CHECKING

Block Bi

⊕
compare

Figure 4.10: Transient fault detection scheme for AES.

In this scenario, the system starts by computing AES(Z) in the first clock cycle, followed by the actual
computation of C. This allows the implementation to check up all the blocks during the execution and
make sure that no permanent fault occurred. In the last clock cycle, while C is being processed in the
last block, the correctness of AES(Z) is compared with the hardwired value before outputting C.

In Fig. 4.11, the red arrows represent data flow through the transformation blocks. After the initial
clock cycle, the first block starts computing C. The WORKING blocks represent the calculation of C.
The CHECKING blocks represent the calculation of AES(Z).

While AES(Z) will be calculated in 4Nr + 1 clock cycles, C will be calculated in 4Nr + 2 cycles. If the
fault needs to be caught earlier, the solution described in [BBK+03] can be adapted. Yet another option
consists in comparing intermediate Z encryption results (i.e., intermediate state values) to hardwired
ones. Note that our design differs from [BBK+03] where a the decryption block is used for checking the
encryption’s correctness [BBK+03].

Clock = t CHECKING IDLE IDLE IDLE

Clock = t + 1 WORKING CHECKING IDLE IDLE

Clock = t + 2 IDLE WORKING CHECKING IDLE

Clock = t + 3 IDLE IDLE WORKING CHECKING

Figure 4.11: Permanent fault detection scheme for AES.

4.4.3.5 Runtime Configurability

The proposed AES architecture is a 4-stage pipeline where each stage can be used independently
of the others. As already noted, blocks can perform five different tasks:

— Compute a meaningful state;
— Be in idle state to save energy;
— Scramble power consumption;
— Check for transient faults by recomputing previous calculation;
— Check for permanent faults by computing a known input.

To explore all possible combinations, we proceed as follows: first, we generate all 54 = 625 combina-
tions (5 operations for 4 transformation blocks). We can consider a subset of these combinations if we

4.4 Power Scrambling and the Reconfigurable AES 99

work with 4 operations only, and remember that each E entry represents two actual options (tri-state or
idle). This reduces the number of combinations to 44 = 256. We eliminate all configurations that are
circular permutations of others, i.e., already counted configurations shifted in time. We also eliminate
the meaningless configurations in which there isn’t at least one block computing. All configurations
having more than one permanent fault protection block at a time are removed as they don’t add any
extra protection. Finally, we eliminate the cases where a transient fault checking is not preceded by a
computing block or by a permanent fault verification.

Table 4.1: 29 possible configurations.

Block 1 Block 2 Block 3 Block 4

C C C C
C C C E
C C C T
C C C P
C C E E
C C E T
C C E P
C C T T
C C T P
C C P E
C C P T
C E C E
C E C T
C E C P
C E E E
C E E T
C E E P
C E T T

⋆ C E T P
C E P E

⋆ C E P T
C T C P
C T T T
C T T P

⋆ C T P E
C T P T
C P E E

⋆ C P E T
C P T T

Table 4.2: Number of configurations.

C E P T Configurations

4 1
3 1 1
1 3 1
3 1 1
3 1 1
1 3 1
2 2 1
1 1 2 1
1 2 1 1
2 2 2
1 1 2 2
2 1 1 3
1 2 1 3
1 1 2 3
2 1 1 3
1 1 1 1 4

Table 4.1 shows that the design can perform 29 different task combinations, where C stands for com-
puting, E stands for energy (power scrambling, idleness or any combination of these two if there are
more than two Es in the considered configuration), T stands for transient fault checking and P stands for
permanent fault checking. These options can be activated during runtime according to the system’s con-
straints such as power consumption or speed. If there are no specific requirements, we recommend any
of the four best configurations protecting against all attacks at once. These are singled-out in Table 4.1
by a ⋆.

Table 4.2 shows the number of configurations per protection goal. Note that for a given protection goal,
different configurations can be alternated between executions without any performance loss.

4.4.4 Halving the Memory Required for AES Decryption

As we have seen, it takes 4Nr + 1 clock cycles to encrypt or decrypt an input. The first block of the
chain, AddRoundKey XORs the state with the subkey. Therefore, the Key Expansion block is designed to
deliver a new 32-bit subkey chunk at each clock cycle.

When decrypting, the AES uses subkeys in the reverse order, so all subkeys need to be expanded and
stored in memory before decryption starts. For that, decryption requires a 128Nr-bit buffer. These
128Nr bits are stored in a register having Nr records of 128 bit each. Nevertheless, it is possible to halve
the number of records by using the following idea: let skNr be the subkey required at round Nr. All
subkeys are computed but only the last Nr/2 subkeys are stored in memory. After the first 4 clock cycles,
AddRoundKey block uses skNr (the first AddRoundKey uses the initial key sk0 which we assume to be
already recorded). After 4 more cycles, sk1 is saved in the record previously occupied by skNr . The
buffer continues to be used in such a way that each previously used (i.e., read) subkey is replaced by a
new subkey of rank smaller than Nr/2. By the time that AES decryption requires skNr/2, the subkeys sk1
to skNr/2−1 would have already been replaced subkeys skNr to skNr/2.

100 Side-Channel Attacks and Hardware Countermeasures 4.4

0

1

2

3

4

sk6

sk7

sk8

sk9

sk10

sk6

sk7

sk8

sk9

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk5

sk4

sk3

sk2

sk1

sk6

sk4

sk3

sk2

sk1

sk6

sk7

sk3

sk2

sk1

sk6

sk7

sk8

sk2

sk1

sk6

sk7

sk8

sk9

sk1

Figure 4.12: Memory halving for AES decryption when Nr = 10.

As shown in Fig. 4.12, only 5 records are required when Nr = 10. Analogously, {6, 7} records are
required for Nr = {12, 14}. The red positions are subkeys being used at each AddRoundKey operation,
from left to right. Note that we assume that the initial key sk0 is known and does not need to be stored.

The algorithm is formally defined as follows: Create a buffer of Nr/2 records denoted r[0], . . . , r[Nr/2−
1]. Place in each r[i] the subkey ski+1+Nr/2.

Define the function:

f(i) = |2i−Nr − 1| − 1
2

When ski is needed, fetch it from r[f(i)]. After this fetch operation update the record r[f(i)] by writing
into it skNr−i+1.

4.4.5 Implementation Results

A 128-bit datapath AES encryption core was coded and tested in Verilog and compiled using Ca-
dence irun tool. Cadence RTL Compiler was used to map the design into a 45nm FreePDK open cell
digital library. Fig. 4.13 represents the inputs and outputs of the AES core. The module contains a gen-
eral clock signal called CLOCK_IN, an asynchronous low-edge reset called RESET_IN and a READY_IN
signal that flags the beginning of a new encryption. Plaintext is fed into the device via the 128-bit bus
TEXT_IN, while the 128-bit key is fed to the system through the input called KEY_IN. The module out-
puts two signals: TEXT_OUT, which contains the resulting plaintext and READY_OUT, that represents
a valid output.

AESREADY_IN

RESET_IN

CLOCK_IN

TEXT_IN[127:0]
KEY_IN[127:0]

TEXT_OUT[127:0]
READY_OUT

Figure 4.13: AES design’s inputs and outputs.

Table 4.3 compares an unprotected AES core to the countermeasures described in this paper. The in-
crease in terms of area is ∼ 6% for the LFSR implementation and ∼ 4% for the tri-state design. The
LFSR implementation showed almost no increase in terms of power consumption. Since tri-state buffers
shut down three out of four blocks per clock, we expect a reduction in the power consumption. The
tri-state design saves roughly 20% of power compared to the unprotected AES. As tri-state buffers tend
to be slower, this design lost 20% in terms of clock frequency and throughput, while the LFSR version
showed no speed loss, as expected.

Table 4.4 shows the three designs benchmarks in FPGA. They were coded in Verilog and synthesized
to the Spartan3E-500 board using the Xilinx ISE 14.7 tool. LFSR and tri-state designs showed an area

4.4 Power Scrambling and the Reconfigurable AES 101

Table 4.3: Unprotected AES, LFSR and tri-state buffer designs synthesized to the 45nm FreePDK open-
cell library.

Unprotected LFSR Tri-state

Area (µm2µm2µm2) 61,581 65,194 64,243
Number of cells 10,643 11,035 11,162
sequential 783 911 787
inverters 1,483 1,614 1,493
logic 8,375 8,506 8,368
buffers 2 4 2
tri-state buffers 0 0 512
Total power (mW) 2.10 2.16 1.68
leakage power 1.20 1.28 1.26
dynamic power 0.89 0.87 0.41
Timing (ps) 645 645 806
Frequency (GHz) 1.55 1.55 1.24
Throughput (Gbit/s) 4.84 4.84 3.87

overhead of ∼ 15% compared to the unprotected AES implementation. In terms of performance, LFSR
design showed no loss, while the tri-state core lost ∼ 7%.

Table 4.4: Spartan3E-500 utilization summary report.

Unprotected LFSR Tri-state

Number of Occupied Slices 1,994 2,290 2,296
Number of Flip Flops 1,142 1,270 1,146
Number of LUTs 3,521 4,106 4,031
Timing (ns) 10.789 10.714 11.580
Frequency (MHz) 92.68 93.33 86.35
Throughput (Mbit/s) 289.3 291.3 269.6

102 Side-Channel Attacks and Hardware Countermeasures 4.5

4.5 Cryptographically Secure On-Chip Firewalling

4.5.1 Introduction

The emergence of on-chip-fabric solutions is a natural consequence of Moore’s Law. Increasing in-
tegration naturally produces greater complexity and hierarchy, and SoCs have been at the center of this
transformation. The evolution of a set of tools that manage the complexity at the point of integration for
these complex IP blocks has been centered around the on-chip fabric and are now generally referred to
as a NoC or Network-on-Chip. An example of a NoC and its application in a modern SoC is illustrated
in Fig. 4.14.

Multi-interface integration with different bus sizes and protocols, in addition to the challenge of floor
planning on a complex SoC, have favored the incoming data packet over an on-chip network. On the
other hand, bus-based interconnects are very attractive when the system has difficult timing constraints.
This type of SoC architecture is less flexible but doesn’t carry any extra latency due to packet conver-
sion. More recently, the services being provided by NoCs have begun to include functions only loosely
associated with the connectivity that was their genesis. For example, power management options for
IP cores are beginning to be expressed by the IP core to the NoC so that the NoC hardware can pro-
vide system-level power management options to upper-level software and manage the enabling and
disabling of cores.

Pa
ck

et
-S

w
it

ch
N

oC

CPU Secure CPU GPU

INI INI INI

FW FW FW

TNI TNI TNI

RAM ROM Peripherals

Initiator Network Interfaces

Packet Routing Nodes

Firewall on Routing Nodes

Target Network Interfaces

Figure 4.14: Firewalling in an SoC based on NoC interconnect.

While this function does not directly relate to connectivity, it has been inherited by the NoC since it
has effectively become the high-level compiler or constraints manager for the SoC integrator. Fig. 4.15
illustrates the evolution of NoCs from simple on-chip buses to a suite of integration services for complex
IP cores on an SoC.

Today, the IP cores express their connectivity requirements in the form of flows which represent the
access requirements of a core or a thread. These flows are used to size and synthesize the network,
communicate quality-of-service (QoS) requirements and, in a limited way, express the data sharing or
non-sharing requirements between a core (or thread) and a resource. These very basic sharing rules are
used to configure firewalls that limit an initiator access to a network, a resource, or an address range.

With the introduction of flows that carry special “trusted” status, these firewalls are also being used to
create a very rudimentary security barrier between trusted and untrusted flows. This is the beginning
of significant services that could be offered — a heterogeneous multi-core data security integration
service.

4.5 Cryptographically Secure On-Chip Firewalling 103

Custom Bus Configurable Bus Fabric Network on Chip

Complexity

Se
rv

ic
es

Wires

Arbitration

Automatic bus sizing

QoS management

Verification
workbench
generation

Packetization

Dynamic QoS

System-C Fabric
Verilog import/export

Error management

Clock management

Clock domain
management

Fault tolerance

Access control
firewalling

Network hierarchy

DFT integration

Multi-domain
power management

Figure 4.15: Evolution of NoC integration services.

4.5.2 Identifying Attack Surfaces on NoCs

Most commons attacks on NoCs are related to QoS considerations and have been well described in
previous works [DEV+07,SPG+12], but some are targeted at data theft. NoC attacks can be classified in
three main classes:

— Hijacking: writing to restricted addresses in order to change the system’s configuration;
— Extraction of secret information: reading from secure addresses in order to retrieve sensitive data;

and
— Denial of Service: reducing the system’s throughput by replaying or forging request over the

NoC.

These attacks are well understood and can be addressed with QoS and firewalling solutions [SPG+12].
However, the firewall is only as secure as the hardware and software that implement, enforce and
maintain the region control. With SoC firewalling, we can identify three domains where an attack can
take place, as illustrated on Fig. 4.16.

4.5.2.1 Request Path

If an attacker can successfully glitch a packet header or impersonate an initiator (by changing the
initiator ID of a packet request to the firewall, for example), the attacker will be able to read from or write
to a protected memory area. Although potentially dangerous, this type of attack is a single-event exploit
and is rather limited. Typically, the request path and the response path are two physically different
buses in the interconnect, so the packet response will be routed to the initiator that was impersonated,
instead of being routed to the malicious initiator. Emerging solutions to maintain the reliability and
integrity of the request path will also make successful modification of an in-flight request harder.

4.5.2.2 Firewall Reprogramming Path

However, escalating privileges in the access control block or firewalls presents a much higher threat.
For instance, this access can be achieved by impersonating the reprogramming agent or glitching the
bus during reprogramming to load unintended rules. If an attacker can modify access policies for a
given resource, they can gain permanent access and therefore read or modify content at will, such as
digital rights managements (DRM) content, banking or personal information. Recent work demon-
strated how a malicious SoC hardware IP could compromise critical data [LG14], and how Internet of
Things (IoT) devices could not be trusted with secure applications if firewalling and partitioning is not
maintained properly.

104 Side-Channel Attacks and Hardware Countermeasures 4.5

Initiator

INI

FW INI

Reprogramming
Agent

TNI

Target

Initiator Protocol

Target Protocol

re
qu

es
tp

ac
ke

t

programming

sequence
Modifying

rules

Glitching
packets, im-
personating

initiators

Reprogramming
Access Rules

Pa
ck

et
-S

w
it

ch
N

oC

Figure 4.16: Different attack surfaces on a NoC firewall.

4.5.2.3 Firewall State at Rest

The firewall stores information in local registers that represent the access control rules for the cur-
rent applications and the security policy of the SoC. This data is typically stored in a set of registers
forming a look-up table that checks every access. Techniques to modify previously stored data at rest
are well known [BECN+04,SCG+03] and if undetected can easily invalidate a security rule. Once a rule
is invalid or mapped to another region through fault injection, the data that it is intended to protect can
be modified or read by any software in the system.

4.5.3 Integration of Security Resources into an SoC

Before integrating security resources, the hardware architecture and the purpose for securing it
must be analyzed to define which approach is appropriate to take. On [SCG+03], a secure processor
connected to an untrusted off-chip memory requires that memory content data has not been tampered
with or accessed by an unauthorized entity. This approach relies on data integrity verification and
encryption and focuses on interconnect communication where multiple IP cores, secure and insecure
ones, share the same resources.

Typically, information security has been studied in the context of communication systems [KLMR04].
In such a scenario, there are two entities willing to communicate over a public communication chan-
nel that is prone to attacks. Ideally, this channel should have three characteristics: data confidentiality
(protecting sensitive information from eavesdropping), data integrity (ensuring that information has not
been modified) and peer authentication (verifying that both parties are legitimate). By applying these
concepts to a NoC, data confidentiality can be seen as protecting memory areas that contain private
information with the use of a NoC firewall. In this domain, data integrity ensures the access rules are
not modified during programming or at rest, while peer authentication allows the firewall to receive
programming sequences from an authentic source.

4.5 Cryptographically Secure On-Chip Firewalling 105

4.5.3.1 Securing the Request Path

In an ideal world, a NoC should support a full point-to-point authenticated encryption between an
initiator and a target. In addition to bringing security through a ciphered communication, this solution
also offers data integrity and authenticity with the addition of an authentication tag. Unfortunately, this
is problematic to implement efficiently within a NoC or a crossbar network. In fact, IP integrators usu-
ally cannot afford the impact on latency and overhead that this solution imposes. Lightweight hardware
point-to-point encryption and address scrambling solutions exist [EKY11], but add too much latency to
be generalized to any application on an SoC. Regarding authenticated encryption, the standard defined
by NIST, the AES-CCB [Nat04], also brings too much latency overhead for NoC integration.

4.5.3.2 Securing the Firewall

Firewalling is the easiest solution for implementing on-chip access control. The simplest version of
a firewall is a hardcoded look-up table that matches initiator IDs and target addresses with access rights.
However, access rights require both security and flexibility, which can only be achieved with a large
degree of programmability of the access control rules. Commercial access control IPs exist on the market
[ARM13,Art14] and complex SoCs use firewalling to create on-chip access control [OMA14]. This offers
access control over a given address space with reprogrammability. Unfortunately, firewall-based SoCs
do not secure the programming sequence nor authenticate the entity responsible for reprogramming the
firewall rules. Moreover, firewall-based SoCs do not maintain the integrity of the access rules during
operation.

Digital signatures can secure the firewall programming by ensuring the authenticity of the program-
ming entity, the region and its integrity. This approach protects a reprogramming agent from hijacking
attack. By seeding the signature with a cryptographic nonce, replay attacks can also be prevented.

Integrity checking regions per access can also ensure the regions have not been tampered with, and can
detect a modification fast enough to block the access on time.

A previous work presented in [SPG+12] describes an architecture using multiple security levels on a
NoC, assuming that secure blocks are capable of defining dynamically a new set of rules to different
scenarios. Unfortunately, this approach relies on hardware features customized in the NoC, making
this solution less flexible.

4.5.4 Access Control Firewalling to On-Chip Resources

Access policies are usually implemented over an address space, so multiple targets can be covered
using contiguous global addresses. Fig. 4.17 represents an initiator view of a partitioned address space
of two targets: ROM and RAM. Each initiator has a different set of permissions for the address mapping
according to its privileges. Once loaded in registers, an access rule is enforced using combinatorial logic
checking of each transaction. The firewall’s primary goal is to only allow transactions from initiators
that have correct access rights to a given target.

2MB ROM 2GB RAM
Region 1
SECURE

Region 2
NON-SECURE

Region 3
SECURE

Region 4
NON-SECURE

Default Region
NO POLICY

Figure 4.17: Simple firewall partitioning of an address space covering two targets.

4.5.4.1 Endpoint versus NoC Firewalling

Firewalling at the NoC level presents one major advantage by having the lookup latency hidden
by the packet conversion timing. In fact, the validity of the access can be checked while the packet is
being converted to the target’s protocol, thus access can be granted where the request exits the NoC.

106 Side-Channel Attacks and Hardware Countermeasures 4.5

An endpoint firewall is a timing-critical block that lies at the end of the request datapath (see Fig. 4.18),
however, the techniques for securing the access rules are equally relevant and can be applied at the
endpoint as much as at the ingress of the network.

Moreover, placing the firewall at the ingress or egress of the NoC requires synchronization between
the master protocol and the slave protocol. This is usually achieved by registering inputs and outputs
[CCGD12]. Since mobile applications and IoT devices use NoC for integration, one can conclude that
embedding firewalls at the NoC node is the most efficient solution.

4.5.4.2 Cryptographically Secure Access Control

Cryptographically Secure Access Control (CSAC) is a security layer over the existing hardware man-
agement of virtualization of secure/non-secure environments.

Initiator
Protocol

Target
Protocol

AMBA
APB

Initiator 1 Initiator 2

Endpoint
Firewall

Programmer

Target 1 Target 2

Figure 4.18: Endpoint firewall controlling access from initiators to a targets.

CSAC implements two security features. First, it cryptographically authenticates the reprogramming
agent and ensures the integrity of its reprogramming sequences. Second, CSAC ensures the integrity of
the access policies over the SoC by checking and hashing rules per access. The CSAC engine is based on
a Keyed-Hash Message Authentication Code (HMAC) [Nat08], where the key is shared between the re-
programming agent and CSAC core. This key is programmed for each session and the programming is
part of the hardware root-of-trust of the SoC. CSAC supports both hardware and software key delivery,
which are performed at secure boot of the SoC.

CSAC Firewall Custom Regions. A region can be as complex as a system needs it to be. It contains
multiple fields, from encoded or decoded initiator access rights, the address space covered by the region
from base address to top address range or decoded sub-regions, and specific user bits that can carry data
as integrity checks value and other tags. With this flexibility and the scalability of each field width, the
end-user can tailor a CSAC firewall to a specific system use.

CSAC regions can scale up to 128 bits. Fig. 4.19 illustrates an example implementation of a region
register with the following fields:

— Disable: disable or enable flag. Encoded on two bits.
— NSR, NSW: decoded access rights per initiator for non-secure read and non-secure write permis-

sions. This field can scale up to 16 bits depending on the number of initiators connected to the
CSAC.

— SR, SW: grouped access right for all initiators with secure read and secure write for that region.
Encoded on two bits.

4.5 Cryptographically Secure On-Chip Firewalling 107

— BA, TA: base address and top address of the given region. These addresses are expressed in 4kB
pages. This field can scale up to 36 bits according to the address space covered by the CSAC.

— Parity: parity bits for the different fields. These bits are continuously checked.
— CRC: CRC12 digest of all regions. This value is checked periodically for directed fault detection.

Each field is scalable as RTL parameters up to the value given in Fig. 4.19. This enables the user to
change or scale region complexity according to the SoC needs.

CRC
12 bits

Parity
6 bits

TA
36 bits

BA
36 bits

SW
2 bits

SR
2 bits

NSW
16 bits

NSR
16 bits

Disable
2 bits

CSAC Region N

128 bits

Figure 4.19: Content of a complex CSAC region.

When a request arrives to the CSAC, a wrapper decodes the incoming protocol to present to the CSAC
all the fields required for a region lookup. Depending on the interconnect technology, if an illegal access
is detected, the transaction can be blocked at the synchronization node for bus-based interconnect, or at
the target socket in the case of a packet switch network. Independently of the illegal and blocked access,
an IRQ can be raised to the processor. Some level of reconfigurability regarding IRQ policy is given to
the user by programming dedicated registers.

CSAC Signing Engine. The CSAC signing engine is based on a Keyed-Hash Message Authentication
Code (HMAC) using a cryptographic hash function h. Let K be the session key and PRi the ith incoming
programming sequence. The HMAC tag of PRi is given by

HMAC(PRi) = h((K ⊕ opad) || h((K ⊕ ipad) || PRi))

A firewall region is transmitted together with its signature. Both the region and the signature are 128
bits in size, corresponding to 256 bits of total data that correspond to a reprogramming sequence, which
is composed of eight consecutive APB transactions written to the address of a region.

The reprogramming sequence is broken into 32-bit chunks each, to respect the size of the APB data bus.
First, the most significant bits of the region are transmitted, in order, until the last chunk contains the
least significant bits. After, the region signature follows the same order, from MSB to LSB. The APB
address provides the region number to the CSAC, which is also used in the signature computation.

Protection Against Replay Attacks. To ensure that the CSAC is resistant against replay attacks, the
region (access rule) signature is seeded with a cryptographic nonce. We call this nonce the state variable
(SV) as it is a tracker of the session’s history. At each new valid programming sequence PRi, the CSAC
updates the state variable SVi with part of the discarded HMAC output. We denote by f the function
taking part of the discarded bits of the truncated HMAC output, as we have SVi = f(PRi, SVi−1). This
tag becomes a function of all the preceding operations that the CSAC has performed and cannot be
computed without this knowledge.

SVi = f(PRi, f(PRi−1, SVi−2)) = f(PRi, f(...f(PR1, f(PR0, 0))...))

Since the IP does not contain non-volatile memory, the state variable is reset at boot and initialized with
the session key programming. It is important to note that the register destination address is included in
the hash computation to avoid any unintended modification on the address bus.

108 Side-Channel Attacks and Hardware Countermeasures 4.5

Key Management Policy. CSAC security relies on the use of a key for authentication. This key is a
secret shared with the authenticated master that reprograms the CSAC during operation. As this IP is
intended for integration in large SoCs, the use of non-volatile memory for storing a personalized key
should be avoided due to the added cost to the chip. Two options are possible for delivering the session
key:

— The session key can be loaded through software. This solution uses a master key hardcoded
in the design, the netlist key, and a session key programmed at secure boot within the root of
trust with signed code before non-secure OS and applications are loaded. In this case, there is no
personalization of the netlist key among devices as the security relies on a secure boot scheme
that will ensure only the trusted code load the session key. The key integrity value is computed
first for future key integrity checks, then the netlist key is checked for integrity, and then the
session key is authenticated and programmed to the key registers.

— The session key can be loaded through a hardware Key Management System (KMS) with the
security relying on this secure block. The hardware KMS will deliver the session key to the
programmer to be functional.

HASH

HASH

HASH

HASH

key ⊕ ipad key ⊕ opad

data input macTag

IV IV

•

This intermediate output only
depends on the key value

Figure 4.20: HMAC intermediate used for key integrity checks.

Before each signing operation, key integrity is checked using the embedded hash function with the first
intermediate hash computation, as represented in Fig. 4.20. This operation allows key integrity checks
to be performed continuously with very little overhead. By truncating the intermediate value (shown
in red in Fig. 4.20) to 16 bits, the dedicated register is stored during session key programming.

Security Considerations Regarding SoC Integration. With design for test (DFT), SoC integrators and
test engineers want a design that can be fully scanned and every exception heavily justified. On the
other hand, security designers are concerned with back-end integration of scan flops on their designs,
especially where secure registers containing a secret key are concerned. CSAC does not use one-time
programmable (OTP) memory for programming keys but rather registers, so they can be easily inte-
grated in any CMOS semiconductor process. Although CSAC allows full scanning ability over the key
registers, it enforces a reset-on-scan methodology.

The purpose of this block is to clear the key register when entering test mode, and restore the netlist key
into the key register when exiting test mode. It also ensures that the internal reset is not asserted during
test mode, allowing for the control of the content of sensitive registers when entering and exiting a scan.
Depending on the chosen design, the reset-on-scan block might contain few intentional latches.

CSAC Integrity and Overflow Check. The reference CSAC protects regions on a 4kB page basis, but
also ensures that burst accesses do not cross the 4kB page boundary to avoid unintended or malicious
access to regions with different access rights. The CSAC internal registers are protected against faults. In
addition to parity check every access, CSAC offers integrity checking of regions using a 12-bit CRC func-
tion. The integrity check of a region is performed in four clock cycles and the design can be pipelined.

4.5 Cryptographically Secure On-Chip Firewalling 109

Scan Enter

Scan Exit

External Clock (I)

Test Mode (I)

tm_delay_0 (I)

tm_delay_1 (I)
Erase Session-Key

from registers

Restore Netlist-Key
to registers

Figure 4.21: Timing diagram of reset-on-scan block.

4.5.4.3 CSAC Synthesis Results

In this scenario, CSAC was synthesized in five different versions using a digital library with tech-
nology node of 45nm. The synthesis results were obtained with Cadence Encounter RTL Compiler
v13.10. The results show the impact of including security features to the CSAC core. Each version was
split into two firewall settings: one composed of four regions that provides access rights to six initiators
and address a space of 4GB (Table 4.5); the other enabling the use of 14 initiators and covering a target
address space of 64GB, with a total of 8 protection regions (Table 4.6). These results focus on comparing
the cost of the enforcement logic and authentication engine.

The base design (a) represents a complete implementation of a firewall with no authentication engine
or integrity logic (i.e., parity bits or CRC integrity checking). Design (b) enforces the programming
correctness by sending parity bits embedded in the sequence, that will be constantly checked when-
ever a firewall access request is processed. Aside from parity bits, design (c) uses a CRC engine that
periodically checks the integrity of the protection regions. Design (d) does not implement any enforce-
ment logic in the region protection bits but authenticates each programming sequence using the HMAC
mode in conjunction with the SHA-256 cryptographic hash. The last design, (e), implements all features
in the same core.

Table 4.5: Synthesis results of five CSAC designs (4 regions, 6 initiators, 4GB of address space) on a
45nm technology node.

Design Cells Gate Worst timing Average Power
Instances Equivalent (GE) path (ps) (mW)

Basic firewall (a) 746 4461 5020 0.32
Firewall + parity (b) 827 4760 5443 0.33

Firewall + parity and CRC (c) 1729 5967 5467 0.46
Firewall + SHA-256 HMAC (d) 5933 23156 10000 2.7

Firewall + all features (e) 6452 24677 10000 2.82

Tables 4.5 and 4.6 show physical synthesis results at a frequency of 100MHz. The gate equivalent (GE)
metric was calculated by dividing the total cell area of each design by the area of the smallest 2-input
NAND gate of the target digital library. In addition to the inherent performance loss, the security
features impact area occupation and power consumption. Power consumption was estimated by the
synthesis tool and represents the total power dissipation (dynamic and leakage).

The CSAC core was designed for only one clock domain. This means that the programming interface
needs to work at the same speed as the firewall logic, which can be restrictive in some cases.

110 Side-Channel Attacks and Hardware Countermeasures 4.5

By using two clock domains — one for configuration, the other for firewalling — CSAC can speed
up the firewall logic and avoid NoC clock frequency loss due to security. For example, it can be seen
from Tables 4.5 and 4.6 that the HMAC SHA-256 engine decreases performance in designs (d) and (e)
by approximately 27%. Since the authentication engine is only used when a new protection region
is (re)programmed in CSAC, it does not impact the firewall enforcement logic in a two-clock domain
scheme. This technique showcases that the authentication engine has a significant cost to performance,
area and power consumption. In contrast, parity bits and CRC integrity checking relate to both domains
as they are enforced when a programming sequence is sent to the core as well as when a firewall access
request arrives to CSAC. As a result, these two countermeasures impact the overall performance.

Table 4.6: Synthesis results of five CSAC designs (8 regions, 14 initiators, 64GB of address space) on a
45nm technology node.

Design Cell Gate Worst timing Average Power
Instances Equivalent (GE) path (ps) (mW)

Basic firewall (a) 2203 9031 7249 0.62
Firewall + parity (b) 2471 10082 8035 0.63

Firewall + parity and CRC (c) 3026 10836 7734 0.73
Firewall + SHA-256 HMAC (d) 6900 27555 10000 2.79

Firewall + all features (e) 7929 30343 10000 3.17

4.5.4.4 FPGA Implementation

This solution was implemented on a Xilinx ZINQ-700 development board embedding an ARM Cor-
tex A9 MCU core and an FPGA. In this example, traffic scenarios were created on the programmable
logic using a simple packet-based NoC connecting two initiators, the ARM core, and a DMA to a DDR
memory. On the NoC node, the CSAC IP core was instantiated to securely partition the 1GB memory.
To split the accesses on secure and non-secure initiators, the PROT[1] signal present on AMBA AXI pro-
tocol was used. As well, CSAC region registers were programmed in a C++ program that we compiled
on an ARM instruction set.

Table 4.7: CSAC (4 regions, 6 initiators, 4GB of address space) synthesis on Zynq-7000 board.

Design Slice LUTs Slice Registers Muxes
(logic) (flip flop)

Basic firewall (a) 417 353 38
Firewall + parity (b) 441 437 47

Firewall + parity and CRC (c) 1103 772 47
Firewall + SHA-256 HMAC (d) 2429 1973 61

Firewall + all features (e) 3095 2350 77

A simple interrupt handler was created to prevent the ARM core from hanging and to alert CSAC
software in case of any CSAC hardware status modification. This approach prevents the use of software
polling. With this configuration, the illegal requests were blocked per access and the correctness of
signature checks was verified. Fault tolerance is achieved by design and verified with assertion during
verification of the IP and can also be evaluated in emulation with a laser fault injection bench.

4.5 Cryptographically Secure On-Chip Firewalling 111

Table 4.8: CSAC (8 regions, 14 initiators, 64GB of address space) synthesis on Zynq-7000 board.

Design Slice LUTs Slice Registers Muxes
(logic) (flip flop)

Basic firewall (a) 751 823 147
Firewall + parity (b) 810 851 86

Firewall + parity and CRC (c) 1689 1244 181
Firewall + SHA-256 HMAC (d) 2735 2435 201

Firewall + all features (e) 3688 2825 169

112 Side-Channel Attacks and Hardware Countermeasures 4.6

4.6 Practical Instantaneous Frequency Analysis Experiments

4.6.1 Introduction

The physical interpretation of data processing (a discipline named the physics of computational sys-
tems [MC80]) draws fundamental comparisons between computing technologies and provides physical
lower bounds on the area, time and energy required for computation [Ben73,Key75]. In this framework,
a corollary of the second law of thermodynamics states that in order to perform a transition between
states, energy must be lost irreversibly. A system that conserves energy cannot make a transition to a
definite state and thus cannot make a decision (compute) ([MC80],9.5).

At any given point in the evolution of a technology, the smallest logic devices must have a definite
physical extent, require a certain minimum time to perform their function and dissipate a minimal
switching energy when transiting from one state to another.

Because CMOS state transition energy is essentially proportional to the number of switched bits, tran-
sition energy leakage is the most popular side-channel attack vector. Because commuting also requires
time, transition time and processed data might be also related.

Historically, timing attacks were developed to extract secrets from software algorithms [Koc96] while
hardware algorithms were usually assumed to run in constant time and hence be immune to timing
attacks. The constant hardware execution time assumption is supported by the fact that usual block-
cipher hardware implementations require an identical number of clock cycles to process any data. This
article shows that this intuition is not always true, i.e., two different inputs may require distinct process-
ing time and can hence be distinguishable.

Energy consumed during each clock cycle creates a waveform in the power domain. A duty cycle,
i.e., the time during which the power wave is not equal to its nominal value, can be considered as the
execution time of a hardware implemented algorithm. As shown later the duty cycle may depend on the
processed data. Fourier transform can not determine local duty cycles since frequency is defined for the
sine or cosine function spanning the whole data length with constant period and amplitude. However,
recent techniques described in this paper that can detect local frequencies and hence determine wave
duty cycle.

In 2005 it was observed that not only signal amplitude, but also power spectrum, can leak secret infor-
mation [GHT05]. Following the introduction of Differential Frequency Analysis (DFA) [GTC05], power
analysis on frequency domain was investigated on a series of papers [Luo10,MG11,PGQK09,OSBHR10].
DFA applies Fourier transform to map a time-series into the frequency domain. Since each Fourier point
is a linear combination of all other sample points, a spectrum is a direct function of the initial signal am-
plitude and hence, power spectra can also be used in side-channel attacks.

[Luo10] rightly noted that the term Differential Spectral Based Analysis (DSBA) is semantically prefer-
able because DFA does not exploit variations in frequencies, but differences in spectra. As the matter
of fact all time-domain power models and distinguishers remain in principle fully applicable in the
frequency domain.

Dynamic Voltage Scrambling (DVS) is a particular side-channel countermeasure that triggers random
power supply changes aiming to decorrelate the signal’s amplitude from the processed data [BZ07,
KGS+11]. While DVS degrades DPA’s and DSBA’s performances, nothing prevents the existence of
more subtle side-channel attacks exploiting DVS-resistant die-hard information present in the signal.
This paper successfully exhibits and exploits such DVS-resistant information.

Organization. We show that, in addition to the signal’s amplitude and spectrum, traditionally used for
side-channel analysis, instantaneous frequency variations may also leak secret data. To the authors’ best
knowledge, "pure" frequency leakage has not been considered as a side-channel vector so far. Hence
a re-assessment of several countermeasures, especially, these based on amplitude alterations, seems
in order. As an example this paper examines DVS, which makes AES implementation impervious to
power and spectrum attacks while leaving it vulnerable to Correlation Instantaneous Frequency Anal-
ysis (CIFA), a new attack described in the following sections. Section 4.6.2 turns a signal processing
algorithm called Hilbert Huang Transform (HHT) into an attack process. Section 4.6.3 illustrates an

4.6 Practical Instantaneous Frequency Analysis Experiments 113

HHT performed on a real power signal and motivates the exploration of instantaneous frequency as
a side-channel carrier. Section 4.6.4 compares the cryptanalytic effectiveness of Correlation Instanta-
neous Frequency Analysis, Correlation Power Analysis and Correlation Spectrum Based Analysis on
an unprotected AES FPGA implementation and on AES FPGA power traces with a simulated DVS.

4.6.2 Preliminaries

The notion of instantaneous frequency, computable by the HHT, was introduced in [HSL+98]. Dur-
ing the last decade, HHT has found many practical applications including oceanographic exploration
and medical research [HS05]. This section recalls HHT’s main mathematical features and describes the
hardware setup used for evaluating the attacks introduced in this paper.

4.6.2.1 The Hilbert Huang Transform

The HHT represents the analyzed signal in the time-frequency domain by combining the Empirical
Mode Decomposition (EMD) with the Discrete Hilbert Transform (DHT).

DHT is a classical linear operator that transforms a signal u(1), . . . , u(N) into a time series
Hu(1), . . . , Hu(N) as follows:

Hu (t) = 2
π

∑
k ̸=t mod 2

u(k)
t− k

(4.2)

DHT can be used to derive an analytical representation ua(1), . . . , ua(N) of the real-valued signal u(t):

ua(t) = u(t) + iHu (t) for 1 ≤ t ≤ N (4.3)

Equation (4.3) can be rewritten in polar coordinates as

ua(t) = a(t)eiϕ(t) (4.4)

where

a(t) =
√

(u2(t) + H2
u(t)) and ϕ(t) = arctan

(
Hu(t)
u(t)

)
(4.5)

represent the instantaneous amplitude and the instantaneous phase of the analytical signal, respectively.

The phase change rate w (t) defined in equation (4.6) can be interpreted as an instantaneous frequency
(IF):

w(t) = ϕ′(t) = d

dt
ϕ(t) (4.6)

For a real-valued time-series the definition of w(t) becomes:

w(t) = ϕ(t)− ϕ(t− 1) (4.7)

The derivative must be well defined since physically there can be only one instantaneous frequency
value w(t) at any given time t. This is insured by the narrow band condition: the signal’s frequency
must be uniform [KM10]. Further, the physical meaningfulness of DHT’s output is closely related to the
input’s fitness into a narrow frequency band [Boa92]. However, we wish to work with non-stationary
signals having more than one frequency. This is achieved by de-composing these signals into several
components, called Intrinsic Mode Functions, such that each component has nearly the same frequency.

Definition 4.1 (Intrinsic Mode Function) An Intrinsic Mode Function (IMF) is a function satisfying the fol-
lowing conditions:

114 Side-Channel Attacks and Hardware Countermeasures 4.6

1. the number of extrema and the number of zero crossings in the considered data set must be either equal or
differ by at most one;

2. the mean value of the curve specified as a sum of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.

First step: Empirical Mode Decomposition (EMD). EMD, the HHT’s first step, is a systematic way
of extracting IMFs from a signal.

 3

3.2

3.4

3.6

3.8

P
o
w
e
r
,

m
V

(a)

 3

3.2

3.4

3.6

3.8 (b)

P
o
w
e
r
,

m
V

20 40 60 80 100 120 140 160
−0.5

 0

 0.5

Time, ns

P
o
w
e
r
,

m
V

(c)

Figure 4.22: Illustration of the EMD: (a) is the original signal u(t); (b) u(t) in thin solid black line, upper
and lower envelopes are dot-dashed with their mean mi,j in thick solid red line; (c) shows the difference
between u(t) and the envelope’s mean.

EMD involves approximation with splines. By Definition 4.1, EMD uses local maxima and minima sep-
arately. All the local signal’s maxima are connected by a cubic spline to define an upper envelope. The
same procedure is repeated for the local minima to yield a lower envelope. The first EMD component
h1,0(t) is obtained by subtraction from u(t) the envelopes’ mean m1,0(t) (see Fig. 4.22):

h1,0(t) = u(t)−m1,0(t) (4.8)

Ideally, h1,0(t) should be an IMF. In reality this is not always the case and EMD has to be applied to
h1,0(t) as well:

h1,1(t) = h1,0(t)−m1,1(t) (4.9)

EMD is iterated k times, until an IMF h1,k(t) is reached, that is

4.6 Practical Instantaneous Frequency Analysis Experiments 115

h1,k(t) = h1,k−1(t)−m1,k(t) (4.10)

Then, h1,k(t) is defined as the first IMF component c1(t).

c1(t) def= h1,k(t) (4.11)

Next, the IMF component c1(t) is removed from u(t)

r1(t) = u(t)− c1(t) (4.12)

and the procedure is iterated on all the subsequent residues, until the residue rn(t) becomes a monotonic
function from which no further IMFs can be extracted.

r2(t) = r1(t)− c2(t)
. . .

rn(t) = rn−1(t)− cn(t)
(4.13)

Finally, the initial signal u(t) is re-written as a sum:

u(t) =
n∑

j=1
cj(t) + rn(t), for 1 ≤ t ≤ N (4.14)

where, cj(t) are IMFs and rn(t) is a constant or a monotonic residue.

Second step: Representation. The second HHT step is the representation of the initial signal in the
time-frequency domain. All components cj(t), j∈[1, n] obtained during the first step are transformed
into analytical functions cj(t) + iHcj (t), allowing the computation of instantaneous frequencies by for-
mula (4.7). The final transform U(t, w) of u(t) is:

U(t, w) =
n∑

j=1
aj(t) exp

(
i

t∑
ℓ=1

wj(ℓ)

)
(4.15)

where j∈[1, n] is indexing components, t∈[1, N] represents time and:

aj(t) =
√

c2
j (t) + H2

cj
(t) is the instantaneous amplitude;

wj(t) = arctan
(

Hcj
(t+1)

cj(t+1)

)
− arctan

(
Hcj

(t)
cj(t)

)
is the instantaneous frequency;

Equation (4.15) represents the amplitude and the instantaneous frequency as a function of time in
a three-dimensional plot, in which amplitude can be contoured on the frequency-time plane. This
frequency-time amplitude distribution is called the Hilbert amplitude spectrum U(t, w), or simply the
Hilbert spectrum [HSL+98]. In addition to the Hilbert spectrum, we define the marginal spectrum or
HHT power spectral density h(w), as

h(wj) =
T∑

t=1
U(t, wj) (4.16)

116 Side-Channel Attacks and Hardware Countermeasures 4.6

0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time, s

c
o
s
(
(
a
+
b
t
)
t
)

Figure 4.23: The increasing frequency function cos((a + bt)t).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Frequency w
j
, Hz

M
a
r
g
i
n
a
l

s
p
e
c
t
r
u
m

h
(
w
j
)

Figure 4.24: Analysis of the function cos((a + bt)t): Marginal Hilbert spectrum of Fig. 4.23.

0 10 20 30 40 50
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time, s

F
r
e
q
u
e
n
c
y

w
j
,

H
z

Figure 4.25: Analysis of the function cos((a + bt)t): Hilbert’s amplitude spectrum contour of Fig. 4.23.

0
10

20
30

40
50

0.2

0.4

0.6
0

0.5

1

1.5

Time t, sFrequency w, Hz

H
i
l
b
e
r
t

a
m
p
l
i
t
u
d
e

s
p
e
c
t
r
u
m

U
(
t
,
w
)

Figure 4.26: Analysis of the function cos((a + bt)t): Hilbert’s amplitude spectrum contour of Fig. 4.23.

The marginal spectrum measures the total amplitude (or energy) contributed by each frequency value.

To illustrate HHT decomposition consider the function u(t) = cos (t (a + bt)). In Fig. 4.23 parameters a
and b were arbitrarily set to a = 1 and b = 0.02. Fig. 4.23 shows that the cosine’s frequency increases
progressively. Fig. 4.24 presents the Hilbert marginal spectrum of the signal u(t) = cos((1 + 0.02t)t).
Fig. 4.25 shows the contour of Hilbert’s amplitude spectrum, i.e., frequency evolution in time, and this
evolution is indeed nearly linear. The 3D Hilbert amplitude spectrum is illustrated in Fig. 4.26.

4.6.2.2 AES Hardware Implementation

The AES-128 implementation used for our experiments runs on an Altera Cyclone II FPGA devel-
opment board clocked by an external 50MHz oscillator. The AES architecture uses a 128-bit datapath.
Each AES round is completed in one clock cycle and key schedule is performed during encryption. The

4.6 Practical Instantaneous Frequency Analysis Experiments 117

substitution box is described as a VHDL table mapped into combinational logic after FPGA synthesis.
Encryption is triggered by a high start signal. After completing the rounds the device halts and drives
a done signal high.

The implementation has no side-channel countermeasures. To simulate DVS, 200,000 physically ac-
quired power consumption traces were processed by Algorithm 7. Algorithm 7 splits a time-series into
segments and adds a uniformly distributed random voltage offset to each segment.

The rationale for simulating a DVS by processing a real signal (rather than adding a simple DVS module
to the FPGA) is the desire to work with a rigorously modeled signal, free of the power consumption
artifacts created by the DVS module itself.

4.6.3 Hilbert Huang Transform and Frequency Leakage

4.6.3.1 Why Should Instantaneous Frequency Variations Leak Information?

Most of the power consumed by a digital circuit is dissipated during rising or falling clock edges
when registers are rewritten with new values. This activity is typically reflected in the power consump-
tion trace as spikes occurring exactly during clock rising edges. Spike frequency, computed by the
Fourier transform, is usually assumed to be constant because clock frequency is stable. In reality, this
assumption is incorrect since each spike has its own duty cycle and consequently its own assortment of
frequencies.

Differences in duty cycle come from the fact that the circuit’s power supply must be restored to its nom-
inal value after switching. Bigger amplitude spikes take more time to resorb than smaller amplitude
ones.

To illustrate these spike differences, consider the simple circuit in Fig. 4.27. Each parallel branch has
a resistor r, a switch Si and a capacitor C that simulate a single inverter when switched from low to
high. Resistor Rs and the current is represent the circuit’s static current and Ra is the resistor used for
acquisition. Initially all the switches S1 . . . Sk are open, so the current flowing through Ra is simply is.

+Vdd

r

i1

S1

C

Ra

io

r

i2

S2

C

r

ii

Si

C

r

iK

Sk

C

Rs

is

Figure 4.27: Inverters switch simulation.

Assume that at t0 = 0 all the switches S1 . . . Sk are suddenly closed. All capacitors start charging and
current flowing through Ra rises according to the following equation:

io(t) = is + k

(
Vdd

r
e− t

rC

)
(4.17)

Equation (4.17) shows that current amplitude depends on the number of closed switches. However,
there is one more parameter in the equation, namely the time t that characterizes the switching spike.

118 Side-Channel Attacks and Hardware Countermeasures 4.6

The current io needs some time to "practically" reach an asymptotic nominal value is and this time
depends on the number of closed switches k. Consider the time Tk required by io(t) to reach Γ% of its
asymptotic value, i.e., Γ

100 is:

io(Tk) = is − k

(
Vdd

r
e− Tk

rC

)
= Γ

100
is (4.18)

This is equivalent to:

Tk = rC ln
(

100
100− Γ

Vdd

isr

)
+ rC ln (k) = α + β ln(k) (4.19)

Equation (4.19) shows that convergence time has a constant part α and a variable part β ln(k) that
depends on the number of closed switches k. Equation (4.19) shows that both spike period and spike
frequency depend on the processed data and could hence in principle be used as side-channel carriers.
Nevertheless, power consumption is a non-stationary signal, which justifies the use of HHT.

Intuitively and dirtily, if we assimilate the curves in Fig. 4.24 to sines, we see that the instantaneous
frequency 1

Tk
reflects the number of closed switches k.

The dependency between the number of switches and spike period in equation (4.19) is non-linear and
hard to formalize as a simple formula for a real circuit. Section 4.6.3.2 shows that the standard Hamming
distance model can be used in conjunction with instantaneous frequency.

4.6.3.2 Power consumption of one AES round

The relationship between processed data and power amplitude is a well understood phenomenon
[AARR03, BCO04, GBTP08, KJJ99]. However, to the best of our knowledge the dependency of instanta-
neous frequency on processed data has not been explored so far. This may be partially explained by the
fact that Fourier Transform, previously used in some papers, is not inherently adapted to non-stationary
and non-linear signals. Fourier analysis cannot extract frequency variations from a signal because fre-
quency is defined as a constant parameter of the underlying sine function spanning the whole data-set
u(t). By opposition, HHT allows extracting instantaneous frequencies and exploiting them for subse-
quent cryptanalytic purposes.

To illustrate information leakage through frequency variation, the AES last rounds’ power consumption
was measured using a Picoscope 3207A with 250 MHz bandwidth at 10 G/s equivalent time sampling
rate. Every signal had 1,000 samples and 100,000 traces were acquired for various input plaintexts. A
power consumption example of the four last rounds is shown on the Fig. 4.28.

The AES last round was extracted from each power trace as shown on Fig. 4.29. The number of bits
switches in the AES last round was computed with the known key. Afterwards the traces with the same
number of bits switches were averaged.

In classic side-channel models [BCO04], flipping more bits would consume more energy. Fig. 4.29, 4.30
and 4.31 show that such is indeed the case for power consumption of 55, 65 and 75 bit flips where
v75 > v65 > v55. As per our assumption, the frequency signatures of these three operations are also
different.

To show that HHT can detect frequency differences consider the power spectral density (PSD) of signals
during 55, 65 and 75 bits switching (Fig. 4.31). The maximal spectral amplitude of the 55 bit change is
located at 51.18 MHz (point f55), that of the 65 bit change is at 51.12 MHz (point f65) and that of the 75
bit change is at 50.73 MHz (point f75) which is supportive of the hypothesis that HHT can distinguish
frequency variations even in non-stationary signals because f55 > f65 > f75.

This shows that not only amplitude but also frequency varies during register switch. Logically, power
consumption increases as more bits are flipped. However, HHT was previously applied only for one

4.6 Practical Instantaneous Frequency Analysis Experiments 119

0 20 40 60 80 100
−20

−15

−10

 −5

 0

 5

 10

 15

Time, ns

P
o

w
e

r,
 m

V

Figure 4.28: Four AES last rounds.

AES round and HHT’s applicability for the entire AES power traces must be verified. That is why the
next section carefully examines the effect of register alteration on IF when AES FPGA implementation
is sampled at a smaller rate.

4.6.3.3 Hilbert Huang Transform of an AES Power Consumption Signal

We start by performing a Hilbert Huang decomposition of a real signal. The analysis was per-
formed on the power trace of the previously described AES-128 implementation. The acquisition was
performed 1 G/s real time rate with 1 GHz differential probe. Signals were averaged 10 times and had
1,000 samples (Fig. 4.32).

EMD decomposed the power trace to five IMFs and a residue, shown in Fig. 4.33. After decomposition,
each IMF was Hilbert Transformed to derive the power signal’s time-frequency representation. Fig. 4.34
is an IF distribution of Fig. 4.32.

Amplitude combination over frequency gave the power spectral density plot shown in blue on Fig. 4.35.
An important observation in Fig. 4.35 is that HHT spectrum shows the distribution of a periodic vari-
able over the main peak frequencies. Notably, the peak near 50 MHz that corresponds to the board’s
oscillator is not represented by a single point, but by a set of points. This data scatter can be explained
by the fact that the IF of AES rounds varies, and HHT distinguishes this variation.

The main difference between HHT and FFT spectra (see plot shown in red on Fig. 4.35) is that HHT
defines frequency as the speed of phase change and can hence detect intra-time-series deviations from
the carrier’s oscillation, whereas FFT frequency stems from the sine function, which is independent of
the signals’ shape.

So far, it was shown that IF varies for different rounds even within a given trace. However, an attack is
only possible when IF depends on the data’s Hamming weight.

The dependency is apparent in Fig. 4.36 showing the relationship between Hamming distance of the
9th and 10th AES round states and IF, taken from the first IMF component at the beginning of the 10th
round. Fig. 4.36 was drawn using 200,000 HHT-processed power traces. The thin solid line in Fig. 4.36
represents the mean IF value, obtained from the first IMF component, as a function of Hamming dis-
tance.

The principal trend is the ascending line. Fig. 4.36 corresponds well to the simulation of a register’s
power consumption since frequency is decreasing due to the increase in Hamming distance. The rela-
tionship in Fig. 4.36 between Hamming distance and IF looks linear and therefore the Pearson correla-
tion coefficient can be used as an SCA distinguisher.

120 Side-Channel Attacks and Hardware Countermeasures 4.6

55 60 65 70 75
−4

−2

0

2

4

6

8

 v
55
 = 5.62 mV

 v
65
 = 5.65 mV

 v
75
 = 5.67 mV

Time, ns

P
o

w
e

r,
 m

V

Figure 4.29: AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-flops:
Full voltage range.

61 63 65 67 69 61
4.5

5

5.5

6

6.5

 v
55
=5.62 mV

 v
65
=5.65 mV

 v
75
=5.67 mV

Time, ns

P
o
w
e
r
,

m
V

Figure 4.30: AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-flops:
Zoomed voltage range.

40 45 50 55 60 65
0

0.2

0.4

0.6

0.8

1

 f
55
 = 51.18 MHz

 f
65
 = 51.12 MHz

 f
75
 = 50.73 MHz

P
S
D

Frequency, MHz

Figure 4.31: AES last round power consumption for 55 (red), 65 (blue) and 75 (black) register’s flip-flops:
Power spectra density for the signals shown on Fig. 4.29.

4.6 Practical Instantaneous Frequency Analysis Experiments 121

0 50 100 150 200 250 300 350 400
−4

−2

 0

 2

 4

 6

Time, ns

P
o
w
e
r
,

m
V

Figure 4.32: Power consumption of our experimental AES-128 implementation: initial signal u(t).

−2

0

2

IM
F

1
,
m

V

−2

0

2

IM
F

2
,
m

V

−1

0

1

IM
F

3
,
m

V

0 100 200 300 400
−5

0

5

IM
F

4
,
m

V

Time, ns

Figure 4.33: Power consumption of our experimental AES-128 implementation: The Empirical Mode
Decomposition of signal u(t).

IF adoption for side-channel attacks presents some particularities. The disadvantage of the method is
that data scatter is higher than in usual DPA and hence the attack requires more power traces. Another
issue is that each time-series will be decomposed into a set of IMFs, hence every sample will be wrapped-
up with a set of IFs virtually multiplying the amount of data to be processed. However, the advantage
is that because frequency based analysis is independent of local amplitude, CIFA can still be attempted
in the presence of certain countermeasures.

4.6.4 Correlation Instantaneous Frequency Analysis

This section introduces Correlation Instantaneous Frequency Analysis (CIFA) and compares its per-
formance with Correlation Power Analysis (CPA) and to Correlation Spectral Based Analysis (CSBA).

122 Side-Channel Attacks and Hardware Countermeasures 4.6

200

300

400

I
F
1
,

M
H
z

0

100

200

300

400

500
I
F
2
,

M
H
z

0

100

200

300

400

500

I
F
3
,

M
H
z

0 100 200 300 400
0

100

200

300

400

500

Time, ns

I
F
4
,

M
H
z

Figure 4.34: Power consumption of our experimental AES-128 implementation: IF distribution over
time for the different IMFs of Fig. 4.33.

0 50 100 150 200 250 300 350 400 450
0

200

400

600

F
o
u
r
i
e
r

P
S
D

Frequency, MHz
0 50 100 150 200 250 300 350 400 450

0

50

100

150

H
i
l
b
e
r
t

P
S
D

Figure 4.35: Fourier and Hilbert power spectrum density of Fig. 4.32.

4.6.4.1 Correlation Instantaneous Frequency Analysis on Unprotected Hardware

During the acquisition step 200,000 power traces were acquired at a sampling rate of 2.5 GS/s. Each
power signal was averaged 10 times to reduce noise. All traces were HHT-processed using the Matlab
HHT code of [BKMG07,BKMG12]. Most traces were decomposed into 6 components, but 5 and 7 IMFs
occurred as well. To reduce the amount of processed information only the first four IMFs were used.

Generally, each higher rank IMF carries information present in smaller instantaneous frequencies
(Fig. 4.34), this is why IMFs from different power traces were aligned index-wise, i.e., all first IMFs
from every encryption were analyzed first, then all second IMFs and so on.

We chose the Hamming distance model and Pearson’s correlation coefficient to investigate CIFA’s prop-

4.6 Practical Instantaneous Frequency Analysis Experiments 123

45 50 55 60 65 70 75 80 85
335

340

345

350

355

360

365

Hamming distance

I
F
,

M
H
z

Figure 4.36: Dependency between the Hamming distance of 9th and 10th AES round states and the IF
of the first IMF component at time 276 ns (corresponding to the beginning of the last AES round).

erties and compare CIFA with other attacks.

CPA. CPA applied to power traces produces Fig. 4.37(a). Clearly, CPA outperforms CIFA. CIFA’s poorer
performance can be partially attributed to the power model, because IF is not linearly dependent on the
Hamming distance.

CSBA.Fig. 4.37(b) presents CSBA applied against Fourier power trace spectra with the same power
model and distinguisher. The correct key byte can be distinguished from 2000 power traces and on.

CIFA.The application of the selected power model and of the distinguisher to IFs yields Fig. 4.37(c)
where the correct key byte emerges from 16,000 power traces and on.

The three experiments seem to suggest that CSBA is superior to CIFA but inferior to CPA. That is CIFA
< CSBA < CPA.

0

0.02

0.04
(a)

0

0.01

0.02
(b)

M
a
x
i
m
u
m

c
o
r
r
e
l
a
t
i
o
n

0.2 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01
(c)

Processed traces x10
4

Figure 4.37: Maximum correlation coefficients for a byte of the last round AES key in an unprotected
implementation. Although the three attacks eventually succeed CPA>CSBA>CIFA. (a) CPA (b) CSBA
(c) CIFA.

While it appears that CPA and CSBA outperform CIFA in the absence of countermeasures, we will now
see that CIFA survives countermeasures that derail CPA and CSBA.

124 Side-Channel Attacks and Hardware Countermeasures 4.6

4.6.4.2 Correlation Instantaneous Frequency Analysis in the Presence of DVS

As mentioned previously DVS alters power supply to reduce dependency between data and con-
sumed power. According to [BZ07,KGS+11] DVS is cheap in terms of area overhead since only a voltage
controller and a random number generator must be added to the protected design.

To simulate DVS all the traces of the unprotected AES were modified by Algorithm 7. Each power trace
was partitioned into γ segments of normally distributed lengths covering the whole dataset. 1. Each
segment was lifted by a uniformly distributed random offset ℓ that did not exceed a predetermined
value D set to D = 12 mV.

Algorithm 7 Dynamic Voltage Scrambling (DVS) simulator.
Require:

A power trace u(1), . . . , u(N);
γ : the number of segments;

m : mean value of segment length m
def= N/γ;

σ : standard deviation of segment length;
D : maximum offset for segment lifting;

Ensure:
a DVS-protected power trace u′(1), . . . , u′(N);
τ0 ← 1
τγ ← N
for i = 1 to γ − 1 do

τi ← τi−1 +N (m, σ)
end for
for s = 1 to γ do

ℓs∈R [0, D]
for t = τs−1 to τs do

u′(t)← u(t) + ℓs

end for
end for

0 50 100 150 200 250 300 350 400
−4

−2

0

2

4

6

8

10

12

14

16

Time, ns

P
o

w
e

r,
 m

V

Unprotected power trace
Equivalent DVS−protected power trace

Student Version of MATLAB

Figure 4.38: Power traces of the FPGA AES implementation. The unprotected signal is shown in red.
The DVS-protected signal is shown in black.

A trace modification example is presented in Fig. 4.38, in which the trace of Fig. 4.32 was processed by
Algorithm 7.

Logically, DVS decreases power analysis performance by reducing the attacker’s SNR. We disposed of

1. The mean m and the standard deviation σ were arbitrary set to m = 40 ns and σ = 5 ns in our experiment

4.6 Practical Instantaneous Frequency Analysis Experiments 125

200,000 DVS-modified power traces. All of which were used to mount power analysis attacks under
the same conditions as before, i.e., using Pearson’s correlation coefficient and the Hamming distance
model.

The same final round key byte used for attacks against the unprotected implementation was targeted.
CPA and CSBA failed to detect the correct key byte even with 150,000 traces (Fig. 4.39(a),4.39(b). This
confirms the intuition that DVS has a beneficial effect on the required number of power traces.

However CIFA was able to recover the byte from 60,000 traces and on (Fig. 4.39(c)). This illustrates that
whilst CIFA is usually outperformed by CPA and CSBA, CIFA is much more resilient to DVS, to which
CPA and CSBA are very sensitive.

0
2
4
6

x 10
−4

(a)

0
2
4
6

x 10
−4

(b)

M
a

xi
m

u
m

 c
o

rr
e

la
tio

n

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0
0
2
4
6

x 10
−4

(c)

Processed traces x10 5

Figure 4.39: Maximum correlation coefficient for a byte of the last round AES key with simulated DVS.
(a) CPA (b) CSBA (c) CIFA.

CHAPTER 5

ZERO-KNOWLEDGE PROTOCOLS AND
AUTHENTICATED ENCRYPTION

Summary

This chapter presents protocols and algorithms specifically designed to achieve identification and au-
thentication. Section 5.1 explores zero-knowledge protocols applied to the authentication of wireless
sensor networks. While previous works focus the efforts of zero-knowledge protocols to authenti-
cate single nodes in a sensor network, our work proposes collective authentication of the whole net-
work. Section 5.1.2 recalls the Fiat-Shamir authentication scheme and present a distributed algorithm
for topology-aware networks. A distributed Fiat-Shamir protocol for IoT authentication is detailed in
Section 5.1.3. Lastly, we analyze the security of the proposed protocol in Section 5.1.4.

Section 5.2 presents OMD, a novel authentication encryption scheme that delivers confidentiality and
integrity altogether. OMD is a keyed compression function mode of operation for nonce-based AEAD.
This algorithm was proposed for consideration to CAESAR 1, a cryptographic competition for authen-
ticated encryption focusing in security, applicability, and robustness. Section 5.2.1 introduces the novel
algorithm and describes its most important features. Section 5.2.2 defines OMD’s mathematical nota-
tions and syntax. The specification of the OMD cipher is explained in details in Section 5.2.3.

1. Until the publication of this thesis, the CAESAR competition has accepted our proposal through the first and second rounds.
The winner remains to be announced.

5.1 Public-Key Based Lightweight Swarm Authentication 127

5.1 Public-Key Based Lightweight Swarm Authentication

5.1.1 Introduction

A growing market focuses on lightweight devices, whose low cost and easy production allow for
creative and pervasive uses. The Internet of Things (IoT) consists in spatially distributed nodes that
form a network, able to control or monitor physical or environmental conditions (such as temperature,
pressure, image and sound), perform computations or store data. IoT nodes are typically low-cost
devices with limited computational resources and limited battery. They transmit the data they acquire
through the network to a gateway, also called the transceiver, which collects information and sends it
to a processing unit. Nodes are usually deployed in hostile environments, and therefore susceptible to
physical attacks, hard weather and communication interference.

Due to the open and distributed nature of the IoT, security is key to the entire network’s proper opera-
tion. However, the lightweight nature of sensor nodes heavily restricts the kind of cryptographic oper-
ations that they can perform, and the constrained power resources make any communication costly.

This paper describes an authentication protocol based on the zero-knowledge paradigm that establishes
network integrity, and leverages the distributed nature of computing nodes to alleviate individual com-
putational effort. This enables the base station to identify which nodes need replacement or attention.

A basic motivation for zero-knowledge protocols (ZKP) is that when a claimant A (called a prover in the
context of zero-knowledge protocols) gives the verifier B her password, B can therefore impersonate A.
Instead, ZKP addresses this concern by allowing a prover to demonstrate knowledge of a secret without
revealing no useful information to the verifier in conveying this demonstration of knowledge to other
parties. This is most useful in the context of wireless sensor networks and the Internet of Things, but
applies equally well to mesh network authentication and similar situations.

Related work. Zero Knowledge (ZK) protocols have been considered for authentication of wireless
sensor networks. For instance, Anshul and Roy [AR05] describe a modified version of the Guillou-
Quisquater identification scheme [GQ88], combined with the µTesla protocol [PST+02] for authentica-
tion broadcast in constrained environments. We stress that the purpose of the scheme of [AR05], and
similar ones, is to authenticate the base station.

Closer to our concerns, [UMS11] describes a ZK network authentication protocol, but it only authenti-
cates two nodes at a time, and the base station acts like a trusted third party. As such it takes a painfully
large number of interactions to try and authenticate the network as a whole. What we propose instead
is a collective perspective on authentication and not an isolated one.

5.1.2 Preliminaries

5.1.2.1 Fiat-Shamir Authentication Protocol

The Fiat-Shamir authentication protocol [FS87] enables a prover P to convince a verifier V that P
possesses a secret key without ever actually revealing it [GMR89, FFS88].

The algorithm first runs a one-time setup, whereby a trusted authority publishes an RSA-like modulus
n = pq but keeps the factors p and q private. The prover P selects a secret s < n such that gcd(n, s) = 1,
computes v = s2 mod n and registers v as its public key on a trusted public server.

When a verifier V wishes to query P , he uses the protocol of Fig. 5.1. V may run this protocol several
times until he is convinced that P indeed knows the square root s of v modulo n.

Fig. 5.1 describes the original Fiat-Shamir authentication round [FS87], which is honest verifier zero-
knowledge 2, and whose security is proven assuming the hardness of computing arbitrary square roots
modulo a composite n, which is equivalent to factoring n.

2. This can be fixed by requiring V to commit on the ai before P has sent anything, but this modification will not be necessary
for our purpose.

128 Zero-Knowledge Protocols and Authenticated Encryption 5.1

Prover Verifier
r ∈R [1, n− 1]
x← r2 mod n

x−−−−−→
e1, . . . , ek ∈R {0, 1}

e1,...,ek←−−−−−

y ← r
k∏

i=1
sei

i mod n

y−−−−−→

Check y2 = x
k∏

i=1
vei

i mod n

Figure 5.1: Fiat-Shamir authentication round.

As pointed out by [FS87], instead of sending x, P can hash it and send the first bits of H(x) to V , for
instance the first 128 bits. With that variant, the last step of the protocol is replaced by the computation
of H(y2∏k

i=1 vai
i mod n), truncated to the first 128 bits, and compared to the value sent by P . Using this

“short commitment” version reduces somewhat the number of communicated bits. However, it comes
at the expense of a reduced security level.

5.1.2.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communication system, the
overall network topology is subject to change. Since sensors send data through the network, a sudden
disruption of the usual route may result in the whole network shutting down.

Topology-aware networks. A topology-aware network detects changes in the connectivity of neighbors,
so that each node has an accurate description of its position within the network. This information is
used to determine a good route for sending sensor data to the base station. This could be implemented
in many ways, for instance by sending discovery messages (to detect additions) and detecting unac-
knowledged packets (for deletions). Note that the precise implementation strategy does not impact the
algorithm.

Given any graph G = (V, E) with a distinguished vertex B (the transceiver), the optimal route for any
vertex v is the shortest path from v to B on the minimum degree spanning tree S = (V, E′) of G. Unfortu-
nately, the problem of finding such a spanning tree is NP-hard [SL07], even though there exist optimal
approximation algorithms [SL07, LV08]. Any spanning tree would work for the proposed algorithm,
however the performance of the algorithm gets better as the spanning tree degree gets smaller.

Mooij-Goga-Wesselink algorithm. We now describe the Mooij-Goga-Wesselink distributed algo-
rithm for topology-aware networks [MGW]. We assume that nodes can locally detect whether a neigh-
bor has appeared or disappeared, i.e., graph edge deletion and additions.

Each node has three local variables {parent, root, dist} that are initially set to a null value ⊥. Nodes
construct distributively a spanning tree by exchanging “M -messages” containing a root information,
distance information and a type. The algorithm has two parts:

— Basic: maintains a spanning tree as long as no edge is removed (it is a variant of the union-find
algorithm). When a new neighbor w is detected, a discovery M -message(root, dist) is sent to it.
If no topology change is detected for w, and an M -message is received from it, it is processed by
Algorithm 8. Note that a node only becomes active upon an event like an arriving M -message
or a topology change.

5.1 Public-Key Based Lightweight Swarm Authentication 129

— Removal: intervenes after the deletion of an edge so that the basic algorithm can be run again and
give correct results.

Algorithm 8 Mooij-Goga-Wesselink algorithm, basic part.

Require: A M -message (r, d) coming from a neighbor w

1: if (r, d + 1) < (root, dist) then
2: parent← w
3: root← r
4: dist← d + 1
5: Send M -message (root, dist) to all neighbors except w
6: end if

The algorithm has converged once all topology change events have been processed. At that point we
have a spanning tree [MGW].

For our purposes, we may assume that the network was setup and that such an algorithm is running
on it, so that at all times the nodes of the network have access to their parent node. Note that this incurs
very little overhead as long as topology changes are rare.

5.1.3 Distributed Fiat-Shamir Authentication

5.1.3.1 The Approach

Given a network, we may consider its nodes as users and the base station as a trusted center T . Let
the number of nodes be k. In this context, each one will be given only one 3 si. To achieve collective
authentication, we propose the following Fiat-Shamir based algorithm:

— Step 0: Wait until the network topology has converged and a spanning tree T is constructed
with the algorithms presented in Section 5.1.2.2. When that happens, the base station sends an
authentication request message (AR-message) to all the nodes directly connected to it. The AR-
message may contain a commitment to e (cf. Step 2) to guarantee the protocol’s zero-knowledge
property even against dishonest verifiers.

— Step 1: Upon receiving an AR-message, each node ni generates a private ri and computes xi ←
r2

i mod n. The node ni then sends an A-message to all its children, if any. When they respond,
ni multiplies all the xj sent by its children together, and with its own xi, and sends it up to its
own parent. This recursive construction enables the network to compute the product of all the
xis and send the result xc to the top of the tree in d steps (where d = deg T). This is illustrated
for a simple network including 4 nodes and a base station in Fig. 5.2a.

— Step 2: The transceiver sends a random e as an authentication challenge message (AC-message)
to the nodes directly connected to it.

— Step 3: Upon receiving an AC-message e, each nodes ni computes yi ← ris
ei
i . The node ni then

sends the AC-message to all its children, if any. When they respond, ni multiplies the yj values
received from all its children together, and with its own yi, and sends the result to its own parent.
The network therefore computes collectively the product of all the yi’s and transmits the result
yc to the transceiver. This is illustrated in Fig. 5.2b.

— Step 4: Upon receiving yc, the transceiver checks that y2
c = xc

∏
vei

i , where v1, . . . , vk are the
public keys corresponding to s1, . . . , sk respectively.

Note that the protocol may be interrupted at any step. In that version of the algorithm, this results in a
failed authentication.

3. This is for clarity. It is straightforward to give each node several private keys, and adapt the algorithm accordingly.

130 Zero-Knowledge Protocols and Authenticated Encryption 5.1

Transceiver

xc = x4 mod n

n4 x4 = r2
4x1x2x3

n2

x2 = r2
2

n3

x3 = r2
3

n1

x1 = r2
1

(a) The construction of xc.

Transceiver

yc = y4 mod n

n4 y4 = r4se4
4 y1y2y3

n2

y2 = r2se2
2

n3

y3 = r3se3
3

n1

y1 = r1se1
1

(b) The construction of yc.

Figure 5.2: The proposed algorithm running on a network. Each parent node aggregates the values
computed by its children before transmitting it upwards to the base station.

5.1.3.2 Back-up Authentication

Network authentication may fail because of many reasons described and analyzed in detail in
Section 5.1.4.3. As a consequence of the distributed nature of the algorithm we just described, a single
defective node suffices for authentication to fail.

This is the intended behavior; however there are contexts in which such a brutal answer is not enough,
and more information is needed. For instance, one could wish to know which node is responsible for
the authentication failure.

A simple back-up strategy consists in performing usual Fiat-Shamir authentication with all the nodes
that still respond, to try and identify where the problem lies. Note that, as long as the network is healthy,
using our distributed algorithm instead is more efficient and consumes less bandwidth and less energy.

Since all nodes already embark the hardware and software required for Fiat-Shamir computations, and
can use the same keys, there is no real additional burden in implementing this solution.

5.1.4 Security

In this section we discuss the security properties that are relevant to our construction. The first
and foremost fact is that the algorithm we describe is correct: a legitimate network will always succeed
in proving its authenticity, provided that packets are correctly transmitted to the base station (possibly
hopping from node to node) and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such hypotheses are not verified.

5.1.4.1 Soundness

Lemma 5.1 (Soundness) If authentication succeeds then with overwhelming probability the network nodes are
genuine.

Proof: Assume that an adversary A has taken control of communications over the whole network,
but does not know the si, and cannot compute in polynomial time the square roots of the public keys
vi. Then, as for the original Fiat-Shamir protocol [FS87], the base station will accept A’s identification
with probability bounded by 2k where k is the number of nodes. 2

5.1.4.2 Zero-knowledge

Lemma 5.2 (Zero-knowledge) The distributed authentication protocol achieves statistical zero-knowledge.

5.1 Public-Key Based Lightweight Swarm Authentication 131

Proof: Let P be a prover and A be a (possibly cheating) verifier, who can use any adaptive strategy
and bias the choice of the challenges to try and obtain information about the secret keys.

Consider the following simulator S :

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2∏ vei
i and output (x, e, y).

The simulator S runs in polynomial time and outputs triples that are indistinguishable from real ones.

If we assume the protocol is run N times, and that A has learnt information which we denote η, then
A chooses adaptively a challenge using all information available to it e(x, η, ω) (where ω is a random
tape). The proof still holds if we modify S in the following way:

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′

Step 2. Compute x← y2∏ vei
i

Step 3. If e(x, η, ω) = e then go to Step 1 ; else output (x, e, y).

2

Note that the protocol is also “locally” ZK, in the sense that an adversary having ℓ out of k nodes under
its control still has to face the original Fiat-Shamir protocol.

5.1.4.3 Security Analysis

Choice of parameters. Let λ be a security parameter. In order to ensure this security level the follow-
ing constraints should be enforced on parameters:

— The identification protocol should be run t ≥ ⌈λ/k⌉ times (according to Lemma 5.1), which is
reasonably close to one as soon as the network is large enough;

— The modulus n should take more than 2λt operations to factor;
— Private and public keys are of size comparable to n.

The number of operations required to authenticate the network depends on the exact topology at play,
but can safely be bounded above:

— Number of modular squarings: 2kt

— Number of modular multiplications ≤ 3kt

In average, each individual node performs only a constant (a small) number of operations. Finally,
only O(d) messages are sent, where d is the degree of the minimum spanning tree of the network.
Pathological cases aside, d = O(log k), so that only a logarithmic number of messages are sent during
authentication.

All in all, for λ = 128, k = 1024 nodes and t = 1, we have n ≥ 2512, and up to 5 modular operations per
node.

Root causes for authentication failure. Authentication may fail for several reasons. This may be
caused by network disruption, so that no response is received from the network – at which point not
much can be done.

However, more interestingly, the transceiver may have received an invalid value of yc. The possible
causes are easy to spot:

1. A topology change occurred during the protocol:

132 Zero-Knowledge Protocols and Authenticated Encryption 5.1

— If all the nodes are still active and responding, the topology will eventually converge and the
algorithm will get back to Step 0.

— If however, the topology change is due to nodes being added or removed, the network’s in-
tegrity has been altered.

2. A message was not transmitted: this is equivalent to a change in topology.

3. A node sent a wrong result. This may happen in the low battery case, i.e., almost down, or when
errors appear within the algorithm the node has to perform (fault injection, malfunctioning, etc.).
In that case it is expected that authentication fails.

Effect of network noise. Individual nodes may occasionally receive incorrect (ill-formed, or well-
formed but containing wrong information) messages, be it during topology reconstruction (M -
messages) or distributed authentication (A-messages). Upon receiving incorrect A or M messages,
nodes may dismiss them or try and acknowledge them, which may result in a temporary failure to
authenticate. An important parameter which has to be taken into account in such an authentication
context is the number of children of a node. When a node with many children starts failing, all its chil-
dren are disconnected from the network and cannot be contacted or authenticated anymore. While a
dysfunction at the leaf level might be benign, the failure of a fertile node is catastrophic.

Man-in-the-middle. An adversary could install itself between nodes, or between nodes and the base
station, and try to intercept or modify communications. Lemma 5.2 proves that a passive adversary can-
not learn anything valuable, and Lemma 5.1 shows that an active adversary cannot fool authentication.

It is still possible that the adversary relays information, but any attempt to intercept or send messages
over the network would be detected.

5.2 The Offset Merkle-Damgård Authenticated Cipher 133

5.2 The Offset Merkle-Damgård Authenticated Cipher

5.2.1 Introduction

An authenticated encryption (AE) scheme delivers on two complementary data security goals:
confidentiality (privacy) and integrity (authenticity). Historically, these goals were achieved by com-
bining separate cryptographic primitives, one to ensure confidentiality and another to guarantee in-
tegrity [BN00]. This generic composition paradigm is neither most efficient (for instance, it requires
processing the input stream at least twice) nor most robust to implementation errors [Vau02, CHVV03].
To address these concerns, the notion of AE which simultaneously achieves confidentiality and integrity
was put forward [KY01,BN00,BR00] and further developed [RBBK01,Rog02,Rog04b,RS06,FFLW11] as
a desirable primitive to be exposed by libraries and APIs to the end developer. Providing direct access
to AE rather than requiring developers to make calls to several lower-level functions is seen as a step
towards improving quality of security-critical code.

This section describes our proposal of a new authenticated cipher for consideration in the CAESAR com-
petition. Our scheme, called Offset Merkle-Damgård (OMD), is a keyed compression function mode of
operation for nonce-based AEAD. The syntax and security notions for nonce-based AEAD schemes
were formalized by Rogaway in [Rog02, Rog04b]. To instantiate the OMD mode, we recommend two
specific compression functions to be keyed and used in OMD, namely, the compression functions of
the standard SHA-256 and SHA-512 hash functions. OMD parameterized with these two compression
functions is called OMD-SHA256 and OMD-SHA512, respectively. The former is intended for 32-bit im-
plementations and is our primary recommended algorithm, while the latter could be used specifically
for 64-bit machines and is our secondary algorithm.

We believe that an AE scheme whose security is proved by a modular and easy to verify security reduc-
tion, only relying on some widely-verified standard assumption(s) on its underlying primitive(s), can
get more confidence on its security compared to a scheme that demands strong and idealistic proper-
ties from its underlying primitive(s) or is not supported by a formal security proof. Provable security
helps cryptanalysis efforts to be focused on analyzing the simpler underlying primitives rather than
the whole scheme; hence, building confidence on the security of the scheme becomes easier if it uses
well-analyzed and verified primitives.

Setting provable security in the standard model as one of our main design aims, OMD is designed as
a scheme with its security goals achieved provably, based on the sole assumption that its underlying
keyed compression function is a PRF; an assumption which is among the most well-known and widely-
used assumption; for example, the security of the widely-employed standard HMAC algorithm is also
based on this assumption [Bel06]. From a theoretical point of view, this is an advantage for OMD
compared to the recently proposed permutation-based AE schemes in the literature whose security
proofs rely on the ideal permutation assumption.

Unlike the mainstream AE schemes which are block-cipher based or permutation-based schemes, OMD
is designed to be a compression function based scheme. The cryptographic community has spent more
than two decades on public research and standardization activities on hash functions resulting to de-
velopment of a rich source of secure and efficient compression functions. The recent announcement by
Intel in July 2013 [Int13] about Intel SHA Extensions, supporting performance acceleration of the SHA
family of functions (more precisely, SHA-1 and SHA-256), further encourages the decision to design
a compression function based scheme. The SHA family of algorithms is heavily used in many of the
most common cryptographic applications. For example, every secure web session initiation includes
SHA-1, and the latest protocols involve SHA-256 as well. We believe that having a diverse set of AE
schemes based on different primitives can be interesting from a practical viewpoint, providing the op-
portunity to choose among the AE algorithms based on what primitives have already been available
and implemented and to reuse them.

OMD is patent free and suitable for widespread adoption. Our primary recommended scheme,
OMD-SHA256, uses the compression function of SHA-256 [SHA95] and has features offering the fol-
lowing advantages over the AES-GCM scheme:

134 Zero-Knowledge Protocols and Authenticated Encryption 5.2

Higher quantitative security level. The proven security of OMD-SHA256 falls off, as usual for
birthday-type security bounds, in σ2

2256 where σ is the total number of calls to the compression func-
tion; while, for the same key size and tag size, the proven security of AES-GCM [IOM12] falls off in
about σ′2

2128 where σ′ is the total number of calls to AES. That is, with the same key length and tag length,
OMD-SHA256 offers higher security level than that of AES-GCM.

More flexible key size. AES-GCM only supports three different key lengths, namely 128, 192 and 256
bits. OMD-SHA256 can support any key length between 80 bits and 256 bits.

Simpler operations. OMD-SHA256 only needs the compression function of SHA-256 plus the simple
operations of bitwise XOR and bitwise AND of two binary strings and (left and right) shifting a binary
string. In comparison, AES-GCM in addition to calling AES requires multiplication of two arbitrary
elements in GF (2128). The field multiplication operation demand extra resources and is a complicated
operation in contrast with the basic operations used in OMD-SHA256. This is important, in particular,
if one does not have access to Intel CPUs supporting the PCLMULQDQ instruction for implementing
AES-GCM, e.g. on low-end devices.

Resistance against software-level timing attacks. Most AES software implementations risk leaking
their keys through cache timing [Ber05] unless they are implemented on machines with Intel® CPUs
supporting the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we note that the
only operations in OMD-SHA256 are: bitwise XOR, AND and OR of two binary strings (32-bit words in
the compression function of SHA-256 and 256-bit words in the OMD iteration), fixed-distance (left and
right) shift of a binary string (32-bit words in the compression function of SHA-256 and 256-bit words
in the OMD iteration), and 32-bit addition (of words in the compression function of SHA-256). These
operations have the virtue of taking constant time on typical CPUs in which case the implementations
can avoid timing attacks.

Using only a single well-known primitive. OMD is designed as a mode of operation for a keyed com-
pression function. Together with block ciphers and permutations, compression functions are among the
most well-known and widely used symmetric key primitives. We have a rich source of secure compres-
sion functions thanks to more than two decades of public research and standardization activities on
hash functions.

Provable security based on a single widely-accepted standard assumption. The security goals of
privacy and authenticity for OMD are achieved provably in the sense of reduction-based cryptography;
that is, any attack against these security goals will imply an attack against the classical PRF property of
the underlying compression function. We note that any keyed compression function (either a dedicated-
key one or keyed via some part of its input) must provide the classical PRF property when its key is
secret as otherwise it will be considered useless for any secret key application, e.g. for being used as a
MAC. That is, the base PRF assumption on the compression function upon which the security of OMD
relies is highly assured for compression functions of the practical, standard hash functions, thanks to
the vast amount of cryptanalytic work on these functions.

Requiring minimal basic operations in addition to the core primitive. The only operations that
OMD needs in addition to its core compression function are the basic operations of bitwise XORing
two binary strings and shifting a binary string.

Integrated (one-pass) AEAD scheme. In OMD the mechanisms for providing privacy and authentic-
ity of the message are coupled in a single pass of (a variant of) the Merkle-Damgård iteration of the
compression function. This is aimed to make OMD as much efficient as possible (up to the limits that
are inherent to any compression function based AEAD scheme).

5.2 The Offset Merkle-Damgård Authenticated Cipher 135

Online Encryption. OMD encryption is online; that is, it outputs a stream of ciphertext as a stream of
plaintext arrives with a constant latency and using constant memory. After receiving an indication that
the plaintext is over, the final part of ciphertext together with the tag is output.

Internally Online Decryption. OMD decryption is internally online: one can generate a stream of
plaintext bits as the stream of ciphertext bits comes in, but no part of the plaintext stream will be re-
vealed before the whole ciphertext stream is decrypted and the tag is verified to be correct. That is,
nothing about the decrypted plaintext should be made available to adversaries if the tag is incorrect
signifying that the queried ciphertext is invalid.

Flexible key size. OMD-SHA256 can support any key length between 80 bits and 256 bits. This will
be useful for applications requiring unconventional key lengths, e.g. 96-bit keys.

Efficient. If implemented with a member of the SHA family, OMD can take advantage of the newly
introduced Intel® instructions that support performance acceleration of the Secure Hash Algorithm
(SHA) on Intel® Architecture processors. In particular, our main recommended scheme for CAESAR,
called OMD-SHA256, is aimed to get the most out of these new performance accelerating instructions.

5.2.2 Preliminaries

NOTATIONS. If S is a finite set, x
$← S means that x is chosen from S uniformly at random. X ← Y

is used for denoting the assignment statement where the value of Y is assigned to X . The set of all
binary strings of length n bits (for some positive integer n) is denoted as {0, 1}n, the set of all binary
strings whose lengths are variable but upper-bounded by L is denoted by {0, 1}≤L and the set of all
binary strings of arbitrary but finite length is denoted by {0, 1}∗. For two strings X and Y we use X||Y
and XY analogously to denote the string obtained by concatenating Y to X . For an m-bit binary string
X = Xm−1 · · ·X0 we denote the left-most bit by msb(X) = Xm−1 and the right-most bit by lsb(X) = X0;
let X[i · · · j] = Xi · · ·Xj denote a substring of X, for 0 ≤ j ≤ i ≤ (m−1). Let 1n0m denote concatenation
of n ones by m zeros. For a non-negative integer i let ⟨i⟩m denote binary representation of i by an m-bit
string.

For a binary string X = Xm−1 · · ·X0, let X ≪ n denote the left-shift operation, where the n left-most
bits are discarded and the n vacated right bits are set to 0; that is, X ≪ n = Xm−n−1 · · ·X00n. We let
X ≫ n denote the (unsigned) right-shift operation where the n right-most bits are discarded and the n
vacated left bits are set to 0; i.e., X ≫ n = 0nXm−1 · · ·Xn. We let X ≫s n denote the signed right-shift
operation where the n right-most bits are discarded and the n vacated left bits are filled with the left-
most bit (which is considered as the sign bit); for example, 1001100≫s 3 = 1111001. If the left-most bit
of X is 0 then we have X ≫s n = X ≫ n.

¬X means bitwise complement of X . For two binary strings X and Y , let X ∧ Y and X ∨ Y denote,
respectively, bitwise AND and bitwise OR of the strings.

The special symbol⊥means that the value of a variable is undefined; we also overload this symbol and
use it to signify an error. Let |Z| denote the number of elements of Z if Z is a set, and the length of Z
in bits if Z is a binary string. The empty string is denoted by ε and we let |ε| = 0. For X ∈ {0, 1}∗ let

X[1]||X[2] · · · ||X[m] b← X denote partitioning X into blocks X[i] such that |X[i]| = b for 1 ≤ i ≤ m− 1
and |X[m]| ≤ b; let m = |X|b denote length of X in b-bit blocks.

For two binary strings X = Xm−1 · · ·X0 and Y = Yn−1 · · ·Y0, the notation X ⊕ Y denotes bitwise
XOR of Xm−1 · · ·Xm−1−ℓ and Yn−1 · · ·Yn−1−ℓ where ℓ = min {m− 1, n− 1}. That is, X ⊕ Y is a binary
string whose length is equal to the length of the shorter operand and is obtained by XORing the shorter
operand with an equal length left-most substring of the longer operand consisting of its left-most bits.
Clearly, if X and Y have the same length then X ⊕ Y simply means their usual bitwise XOR. For any
string X , define X ⊕ ε = ε⊕X = ε.

136 Zero-Knowledge Protocols and Authenticated Encryption 5.2

THE FIELD WITH 2n POINTS. Let (GF (2n),⊕, .) denote the Galois Field with 2n points. When con-
sidering a point α in GF (2n) it can be represented in any of the following equivalent ways: (1) as an
integer between 0 and 2n, (2) as a binary string αn−1 · · ·α0 ∈ {0, 1}n, or (3) as a formal polynomial
α(X) = αn−1Xn−1 + · · · + α1X + α0 with binary coefficients. For example, in GF (2256): the string
025410, the number 2 and the polynomial X are different representations of the same field element; the
string 025411, the number 3 and the polynomial X + 1 represent the same field element, and so forth.

The addition “⊕” and multiplication “.” of two elements in GF (2n) are defined as follows. The addition
of two elements α, β ∈ GF (2n) simply means the element obtained by bitwise XORing their represen-
tations as binary strings. For example, 2⊕ 1 = 0n−210⊕ 0n−201 = 0n−211 = 3, 2⊕ 3 = 1, 1⊕ 1 = 0, and
so forth. (Note that the addition operation in GF (2n) is different from the addition of integers module
2n.) To multiply two elements, first choose and fix an irreducible polynomial Pn(X) of degree n over
GF (2); for example, choose the lexicographically first polynomial among the irreducible polynomials
of degree n over GF (2) with a minimum number of nonzero coefficients. For example, for n = 256 we
use P256(X) = X256 + X10 + X5 + X2 + 1, for n = 512 we use P512(X) = X512 + X8 + X5 + X2 + 1.

To multiply two elements α and β in GF (2n) denoted by α · β consider them as polynomials α(X) =
αn−1Xn−1 + · · · + α1X + α0 and β(X) = βn−1Xn−1 + · · · + β1X + β0, form their product in GF (2) to
get γ(X) and take the remainder of dividing γ(X) by the irreducible polynomial Pn(X).

It is easy to multiply an arbitrary field element α by the element 2 (i.e., X). We describe this for
GF (2256)and GF (2512). Let α(X) = αn−1Xn−1 + · · · + α1X + α0 then multiplying by X we get
αnXn + αn−1Xn−1 · · · + α1X + α0X ; so if msb(α) = 0 then 2.α = X.α = α ≪ 1. If msb(α) = 1 then
we need to reduce the result by module Pn(X), i.e., we have to add Xn to α ≪ 1. For n = 256 using
P256(X) = X256 +X10 +X5 +X2 +1, we have X256 = X10 +X5 +X2 +1 = 024510000100101, so adding
X256 means XORing with 024510000100101. For n = 512 using P512(X) = X512 + X8 + X5 + X2 + 1, we
have X512 = X8 + X5 + X2 + 1 = 0503100100101, so adding X512 means XORing with 0503100100101.

In summary, for GF (2256)

2.α =
{

α≪ 1 if msb(α) = 0
(α≪ 1)⊕ 024510000100101 if msb(α) = 1 (5.1)

= (α≪ 1)⊕ ((α≫s 255) ∧ 024510000100101) (5.2)

and for GF (2512)

2.α =
{

α≪ 1 if msb(α) = 0
(α≪ 1)⊕ 0503100100101 if msb(α) = 1 (5.3)

= (α≪ 1)⊕ ((α≫s 511) ∧ 0503100100101) (5.4)

We note that the results computed in (5.1) and (5.2) are the same but an implementation using (5.2) will
not be susceptible to the timing attacks unlike one which uses (5.1). Similarly, an implementation using
(5.4) is aimed for timing attack resistance.

SYNTAX OF KEYED AND KEYLESS COMPRESSION FUNCTIONS. We denote a keyed compression func-
tion by F : K×({0, 1}n×{0, 1}m)→ {0, 1}n, where m and n are two positive integers, and the keyspace
K is a non-empty set of strings. We write FK(H, M) = F (K; H, M) for every K ∈ K, H ∈ {0, 1}n and
M ∈ {0, 1}m. We can alternatively think of FK as a single argument function whose domain is {0, 1}n+m

and write FK(H||M) = FK(H, M). If |K| = 1 we assume that K = {ε}, i.e., it only consists of the empty
string, and in this case we call F a keyless compression function. TimeF denotes the time complexity of
computing FK(X) for any K ∈ K and X ∈ {0, 1}n+m, plus the time complexity for sampling from K.

Given a keyless compression function F ′ : {0, 1}n × {0, 1}b → {0, 1}n (e.g. SHA-256 : {0, 1}256 ×
{0, 1}512 → {0, 1}256) we convert it to a keyed compression function F by borrowing k bits of its b-bit
input block; i.e., we define FK(H, M) = F ′(H, K||M).

5.2 The Offset Merkle-Damgård Authenticated Cipher 137

CONCRETE SECURITY CONVENTIONS. As usual in the concrete-security definitions, we use the re-
source parameterized function Advxxx

Π (r) to denote the maximal value of the adversarial advantage
(i.e., Advxxx

Π (r) = maxA {Advxxx
Π (A)}) over all adversaries A, against the xxx property of a primitive or

scheme Π, that use resources bounded by r. The resource parameter r, depending on the notion, may
include time complexity (t), length of queries and number of queries that an adversary makes to its or-
acles. If a resource parameter is irrelevant in the context then we omit it; e.g. for information-theoretic
security bounds the time complexity t is omitted.

Let A be an adversary that returns a binary value; by Af(.)(X) ⇒ 1 we refer to the event that A on
input X and access to an oracle function f(.) returns 1. By time complexity of an algorithm we mean
the running time, relative to some fixed model of computation plus the size of the description of the
algorithm using some fixed encoding method.

PSEUDORANDOM FUNCTIONS (PRFS) AND TWEAKABLE PRFS. Let Func(m, n) = {f : {0, 1}m →
{0, 1}n} be the set of all functions from m-bit strings to n-bit strings. A random function (RF) R with
m-bit input and n-bit output is a function selected uniformly at random from Func(m, n). We denote

this by R
$← Func(m, n).

Let FuncT (m, n) be the set of all functions
{

f̃ : T × {0, 1}m → {0, 1}n
}

, where T is a set of tweaks. A

tweakable RF with the tweak space T , m-bit input and n-bit output is a map R̃ : T × {0, 1}m → {0, 1}n

selected uniformly at random from FuncT (m, n); i.e., R̃
$← FuncT (m, n). Clearly, if T = {0, 1}t then

|FuncT (m, n)| = |Func(m + t, n)|, and hence, R̃ can be instantiated using a random function R with
(m + t)-bit input and n-bit output. We use R̃⟨T ⟩(.) and R̃(T, .) interchangeably, for every T ∈ T . Notice
that each tweak T names a random function R̃⟨T ⟩ : {0, 1}m → {0, 1}n and distinct tweaks name distinct
(independent).

Let F : K × {0, 1}m → {0, 1}n be a keyed function and let F̃ : K × T × {0, 1}m → {0, 1}n be a
keyed and tweakable function, where the key space K is some nonempty set. Let FK(.) = F (K, .)
and F̃

⟨T ⟩
K (.) = F̃ (K, T, .). Let A be an adversary.

Then:

Advprf
F (A) = Pr

[
K

$← K : AFK (.) ⇒ 1
]
− Pr

[
R

$← Func(m, n) : AR(.) ⇒ 1
]

Advp̃rf
F̃

(A) = Pr
[
K

$← K : AF̃
⟨.⟩
K

(.) ⇒ 1
]
− Pr

[
R̃

$← FuncT (m, n) : AR̃⟨.⟩(.) ⇒ 1
]

The resource parameterized advantage functions are defined accordingly, considering that the adversar-
ial resources of interest here are the time complexity (t) of the adversary and the total number of queries
(q) asked by the adversary (note that we just consider fixed-input-length functions, so the lengths of
queries are fixed and known). We say that F is (t, q; ϵ)-PRF if Advprf

F (t, q) ≤ ϵ. We say that F̃ is (t, q; ϵ)-

tweakable PRF if Advp̃rf
F̃

(t, q) ≤ ϵ.

5.2.2.1 Security Definitions and Goals

Conventions and Preliminary Definitions OMD is a nonce-based AEAD. Therefore, we aim to
achieve the security notions for AEAD schemes as formalized in [Rog02].

NONCE RESPECTING ADVERSARIES. Let A be an adversary. We say that A is nonce-respecting if it
never repeats a nonce in its encryption queries. That is, if A queries the encryption oracle EK(·, ·, ·) on
(N1, A1, M1) · · · (Nq, Aq, Mq) then N1, · · · , Nq must be distinct.

138 Zero-Knowledge Protocols and Authenticated Encryption 5.2

In the following, we define the conventional security properties of an AEAD; namely, the privacy notion
(“confidentiality for the plaintext”) and the authenticity notion (“integrity for the nonce, associated data,
and plaintext”).

PRIVACY OF AEAD SCHEMES. Let Π = (K, E ,D) be a nonce-based AEAD scheme. Let A be a nonce-
respecting adversary. A is provided with an oracle which can be either a real encryption oracle EK(·, ·, ·)
such that on input (N, A, M) returns C = EK(N, A, M), or a fake encryption oracle $(·, ·, ·) which on
any input (N, A, M) returns |C| fresh random bits. The advantage of A in mounting a chosen plaintext
attack (CPA) against the privacy property of Π is measured as follows:

Advpriv
Π (A) = Pr[K $←− K : AEK (·,·,·) ⇒ 1]− Pr[A$(·,·,·) ⇒ 1].

This privacy notion, also called indistinguishability of ciphertext from random bits under CPA (IND-
CPA), is defined originally in [RBBK01] and is a stronger variant of the classical IND-CPA notion
[BDJR97, BN00] for conventional symmetric-key encryption schemes.

RESOURCE PARAMETERS FOR THE CPA ADVERSARY. Let the CPA-adversary A make queries
(N1, A1, M1) · · · (Nqe , Aqe , Mqe). We define the resource parameters of A as (t, qe, σA, σM , Lmax) where t
is the time complexity, qe is the total number of encryption queries, σA =

∑q
i=1 |Ai| is the total length of

associated data in bits, σM =
∑q

i=1 |Mi| is the total length of messages in bits, and Lmax is the maximum
length of each query in bits.

We remind that absence of a resource parameter means that the parameter is irrelevant in the context
and hence omitted.

AUTHENTICITY OF AEAD SCHEMES. Let Π = (K, E ,D) be a nonce-based AEAD scheme. Let A be a
nonce-respecting adversary. We stress that nonce-respecting is only regarded for the encryption queries;
that is, A can repeat nonces during its decryption queries and it can also ask an encryption query
with a nonce that was already used in a decryption query. Let A be provided with the encryption
oracle EK(·, ·, ·) and the decryption oracle DK(·, ·, ·); that is, we consider adversaries that can mount
chosen ciphertext attacks (CCA). We say that A forges if it makes a decryption query (N, A,C) such
that DK(N, A,C) ̸= ⊥ and no previous encryption query EK(N, A, M) returned C.

Advauth
Π (A) = Pr[K $←− K : AEK (·,·,·), DK (·,·,·) forges].

This authenticity notion, also called integrity of ciphertext (INT-CTXT) under CCA attacks, is defined
originally in [BN00].

RESOURCE PARAMETERS FOR THE CCA ADVERSARY. Let the CCA-adversary A make encryption
queries (N1, A1, M1) · · · (Nqe

, Aqe
, Mqe

) and decryption queries (N ′
1, A′

1,C′
1) · · · (N ′

qv
, A′

qv
,C′

qv
). We de-

fine the resource parameters of A as (t, qe, qv, σA, σM , σA′ , σC′ , Lmax), where t is the time complexity,
qe and qv are respectively the total number of encryption queries and decryption queries, Lmax is
the maximum length of each query in bits, σA =

∑qe

i=1 |Ai|, σM =
∑qe

i=1 |Mi|, σA′ =
∑qv

i=1 |A′
i| and

σC′ =
∑qv

i=1(|C′
i| − τ).

We remind that absence of a resource parameter means that the parameter is irrelevant in the context
and hence omitted.

Remark The use of the aforementioned privacy (IND-CPA) and authenticity (INT-CTXT) goals to define se-
curity of AE schemes dates back to [BN00] where it was shown that if an AE scheme satisfies the combination
of IND-CPA and INT-CTXT properties then it will also fulfill indistinguishability under the strongest form of
chosen-ciphertext attack (IND-CCA) which, in turn, is equivalent to non-malleability under chosen-ciphertext
attack (NM-CCA).

Remark The nonce-respecting assumption on the adversary is justified as follows. The nonce would typically be
a counter (message number) maintained by the sender who encrypts the messages. In practice, an implementation
must make sure that no nonce gets repeated within a session (i.e., the lifetime of the current encryption key).
As the nonce N is needed both to encrypt and to decrypt; it would be typically communicated in clear between
the sender and the receiver. Note that nonce-respecting is only assumed with respect to the encryption queries,
reflecting the fact that the sender who encrypts a message is the party that is responsible for providing fresh nonces
and the receiver may be stateless.

5.2 The Offset Merkle-Damgård Authenticated Cipher 139

Remark OMD v1.0 requires the nonce-respecting condition: it does not provide security if the nonce is repeated.

5.2.2.2 Quantitative Security Level of OMD-SHA256

Using the concrete security bounds in Section 5.2.2.4 and letting n = 256 (the hash size for SHA-256)
one can calculate the quantitative security (privacy and authenticity) levels of OMD-SHA256 for any set
of fixed values for the adversarial resource parameters. For this purpose, we make the assumption that
the function FK(H, M) = SHA-256(H, K||0256−k||M) is a PRF providing a k-bit security; as (to the best
of our knowledge) there is no known attack with complexity less than 2k against it. We note that having
only a single (input, output) pair for FK one can mount an offline exhaustive search attack with time
complexity 2k.

For the privacy property of OMD-SHA256 (i.e., “confidentiality for the plaintext”) the security bound
falls off in 3σ2

e

2256 ; that is, if the adversary has online data complexity about σe = 2127, where σe denotes
the total number of blocks in all inputs for encryption and decryption as defined in Section 5.2.2.1.
We note that, giving a single measure for the bit security level of OMD-SHA256 is a bit tricky as the
terms determining the security bound and the resources are different in nature (e.g. we have both
offline complexity and online complexity); nevertheless, one can roughly consider min {k, 127} as the
bit security.

For the authenticity property of OMD-SHA256 (i.e., “integrity for the public message number, the asso-
ciated data and the plaintext”) the security bound falls off in 3σ2

2256 + qvℓmax
2256 + qv

2τ ; that is, if the adversary
has online data complexity about σe = 2127, or qvℓmax = 2256, or qv = 2τ (we refer to Section 5.2.2.1 for
definitions of the resource parameters). As a single measure for the bit security of OMD-SHA256 for
the authenticity goal, one can roughly consider min {k, 127, τ}.

Remark We note that a single measure for the “bit security level” should be interpreted carefully regarding the
different online/offline nature of the resources used for complexity measures. For example, just based on our bit
security levels for OMD-SHA256 one may think that a key length (k) larger than 127 bits or larger than the tag
length (τ) is not useful, but this is not true because, for example, while the role of τ is to prevent online attacks, a
large k can help prevent (mainly) offline key recovery attacks (that may only use one online query).

5.2.2.3 Quantitative Security Level of OMD-SHA512

Using the concrete security bounds in Section 5.2.2.4 and letting n = 512 (the hash size for SHA-512)
one can calculate the quantitative security (privacy and authenticity) levels of OMD-SHA512 for any set
of fixed values for the adversarial resource parameters. For this purpose, we make the assumption that
the function FK(H, M) = SHA-512(H, K||0512−k||M) is a PRF providing a k-bit security; as (to the best
of our knowledge) there is no known attack with complexity less than 2k against it. We note that having
only a single (input, output) pair for FK one can mount an offline exhaustive search attack with time
complexity 2k.

For the privacy property of OMD-SHA512 (i.e., “confidentiality for the plaintext”) the security bound
falls off in 3σ2

e

2512 ; that is, if the adversary has online data complexity about σe = 2255, where σe denotes
the total number of blocks in all inputs for encryption and decryption as defined in Section 5.2.2.1.
We note that, giving a single measure for the bit security level of OMD-SHA512 is a bit tricky as the
terms determining the security bound and the resources are different in nature (e.g. we have both
offline complexity and online complexity); nevertheless, one can roughly consider min {k, 255} as the
bit security.

For the authenticity property of OMD-SHA512 (i.e., “integrity for the public message number, the asso-
ciated data and the plaintext”) the security bound falls off in 3σ2

2512 + qvℓmax
2512 + qv

2τ ; that is, if the adversary
has online data complexity about σe = 2255, or qvℓmax = 2512, or qv = 2τ (we refer to Section 5.2.2.1 for
definitions of the resource parameters). As a single measure for the bit security of OMD-SHA512 for
the authenticity goal, one can roughly consider min {k, 255, τ}.

140 Zero-Knowledge Protocols and Authenticated Encryption 5.2

Remark We note that a single measure for the “bit security level” should be interpreted carefully regarding the
different online/offline nature of the resources used for complexity measures. For example, just based on our bit
security levels for OMD-SHA512 one may think that a key length (k) larger than 255 bits or larger than the tag
length (τ) is not necessary, but this is not true because, for example, while the role of τ is to prevent online attacks,
a large k can help prevent (mainly) offline key recovery attacks (that may only use one online query).

5.2.2.4 Security Proofs

Theorem 5.3 provides the security bounds of OMD.

Theorem 5.3 Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a PRF, where
the key space K = {0, 1}k for k ≥ 1 and 1 ≤ m ≤ n. Then

Advpriv
OMD[F,τ](t, qe, σe, ℓmax) ≤ Advprf

F (t′, 2σe) + 3σ2
e

2n

Advauth
OMD[F,τ](t, qe, qv, σ, ℓmax) ≤ Advprf

F (t′, 2σ) + 3σ2

2n
+ qvℓmax

2n
+ qv

2τ

where qe and qv are, respectively, the number of encryption and decryption queries, ℓmax denotes the maximum
number of m-bit blocks in an encryption or decryption query, t′ = t + cnσ for some constant c, and σe and σ
are the total number of calls to the underlying compression function F in all queries asked by the CPA and CCA
adversaries against the privacy and authenticity of the scheme, respectively.

The proof is obtained by combining Lemma 5.4 in subsection 5.2.2.5 with Lemma 5.5 and Lemma 5.6 in
subsection 5.2.2.6.

Note. Referring to subsection 5.2.2.1 for definitions of the resource parameters, it can be seen that:
σe = ⌈σM /m⌉ + ⌈σA/(n + m)⌉ + qe + 2; σ = ⌈(σM + σC′)/m⌉ + ⌈(σA + σA′)/(n + m)⌉ + q + 2; and
ℓmax = ⌈Lmax/m⌉.

5.2.2.5 Generalization of OMD Based on Tweakable Random Functions

Fig. 5.3 shows the OMD[R̃, τ] scheme which is a generalization of OMD[F, τ] using a tweakable
random function R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n. The tweak space T consists of five mutually
exclusive sets of tweaks, namely T = N ×N×{0} ∪ N ×N×{1} ∪ N ×N×{2} ∪ N×{0} ∪ N×{1},
where N = {0, 1}|N | is the set of nonces and N is the set of positive integers.

Lemma 5.4 Let OMD[R̃, τ] be the scheme shown in Fig. 5.3. Then

Advpriv
OMD[R̃,τ]

(qe, σe, ℓmax) = 0

Advauth
OMD[R̃,τ]

(qe, qv, σ, ℓmax) ≤ qvℓmax

2n
+ qv

2τ

where qe and qv are, respectively, the number of encryption and decryption queries, ℓmax denotes the maximum
number of m-bit blocks in an encryption or decryption query, and σe and σ are the total number of calls to the
underlying tweakable random function R̃ in all queries asked by the CPA and CCA adversaries against the privacy
and authenticity of the scheme, respectively.

The proof of the privacy bound is straightforward. Let A be a CPA adversary that asks (encryption)
queries (N1, A1, M1), · · · , (Nqe , Aqe , Mqe) where all Nx values (for 1 ≤ x ≤ qe) are distinct due to the
nonce-respecting assumption on the adversaryA. Referring to Fig. 5.3, this means that we are applying

5.2 The Offset Merkle-Damgård Authenticated Cipher 141

Computing Taga for an associate data whose length is
a multiple of the input length (i.e. |Aa| = n + m).

Computing Taga for an associate data whose length is
not a multiple of the input length. The final block is
padded to make it a full block.

Encrypting a message whose length is not a multiple of the block length. The final
message block is padded to make it a full block.

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

M1 M2 M`−1 M∗||10m−|M∗|−1〈τ〉m

M1 M2 M3 M∗

C∗C3C1

R̃〈N,1,0〉

C2

Tage
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,2〉

A∗||10n+m−|A∗|−1Aa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a−1,1〉

n + m

n m

n + m

n m

n + m

n m

AaAa−1

Taga

A1

n bits

R̃〈1,0〉 R̃〈a−1,0〉
R̃〈a,0〉

n + m

n m

n + m

n m

n + m

n m

M1 M2 M`−1 M`〈τ〉m

M1 M2 M3 M`

C`C3C1

R̃〈N,1,0〉

C2

TageH0 = 0n
n bits

R̃〈N,2,0〉 R̃〈N,3,0〉 R̃〈N,`,0〉 R̃〈N,`,1〉H1 H2 H3 H`

H1 H2 H3 H`
H0 = 0n

Tage

Taga

n bits

τ bits
Tag

Figure 5.3: The OMD[R̃, τ] scheme using a tweakable random function R̃ : T × ({0, 1}n × {0, 1}m) →
{0, 1}n (i.e., R̃

R← FuncT (n+m, n)). The tweak space T consists of five mutually exclusive sets of tweaks,
namely T = N ×N× {0} ∪ N ×N× {1} ∪ N ×N× {2} ∪ N× {0} ∪ N× {1}, whereN = {0, 1}|N |

is the set of nonces, N is the set of positive integers.

independent random functions R̃Nx,i,j each to a single point, hence the images that the adversary sees
(i.e., Cx for 1 ≤ x ≤ qe) are fresh uniformly random values.

The authenticity bound can be shown by a straightforward but lengthy case analysis. First we con-
sider the single verification case where the adversary only makes one decryption (verification) query
and then we will use the generic result of Bellare et al. [BGM04] to get a bound against adversaries
that make multiple (say qv) verification queries. Let A be a CCA adversary making encryption queries
(N1, A1, M1), · · · , (Nqe , Aqe , Mqe). Let M i = M i

1, · · · , M i
ℓi

or M i = M i
1, · · · , M i

ℓi−1M i
∗ be the message

queries and Ai = Ai
1, · · · , Ai

ai
or Ai = Ai

1, · · · , Ai
ai−1Ai

∗ be the associated data queries. Let Ci = Ci||Tagi

be the ciphertext received for query (N i, Ai, M i). That is, we use superscripts to indicate query numbers
and subscripts to denote the block indices in each query.

Let (N, A,C) be the forgery attempt by the adversary, where N ∈ {0, 1}|N | is the nonce, A = A1, · · · , Aa

or A = A1, · · · , Aa−1A∗ is the associate data, C = C||Tag is the ciphertext where C = C1, · · · , Cℓ (where
|Ci| = m for 1 ≤ i ≤ ℓ) or C = C1, · · · , Cℓ−1C∗ (where |Ci| = m for 1 ≤ i ≤ ℓ − 1 and |C∗| < m), and
Tag = (Tage⊕Taga)[n−1, · · · , n−τ] ∈ {0, 1}τ is the tag. Let M = M1, · · · , Mℓ or M = M1, · · · , Mℓ−1M∗
denote the corresponding decrypted messages, respectively. Note that no superscripts are used for the
strings in the alleged forgery by the adversary. We have the following disjoint cases:

1 N /∈
{

N1, · · · , Nqe
}

. Adversary has to find a correct Tag that is the first τ bits of the value

142 Zero-Knowledge Protocols and Authenticated Encryption 5.2

R̃⟨N,x,y⟩(final input) ⊕ Taga but has not seen any image under R̃⟨N,x,y⟩(.), hence the probabil-
ity that the adversary can succeed in doing this is 2−τ . By “final input” we mean Hℓ||Mℓ or
Hℓ||M∗||10m−|M∗|−1 when |C| ̸= 0 in which case the final tweak used to generate Tage will be
either ⟨N, ℓ, 1⟩ or ⟨N, ℓ, 2⟩ (depending on whether the final block is a full block or not); otherwise
(i.e., for empty message) the “final input” will be H0|| ⟨τ⟩m and hence the final tweak used to
generate Tage will be ⟨N, 1, 0⟩.

2 N = N i, |C| ≠ |Ci|, and one of |C| and |Ci| is a multiple of m but the other is not. We can ig-
nore all queries other than the ith query since the responses to such queries are random and un-
related (because of using different nonces) to the adversary’s task to make the alleged forgery
N, A,C with N = N i. That is, we can assume that adversary has only made a single encryption
query (N i, Ai, M i) and received Ci||Tagi. Then as in Case 1 the adversary has to find a correct
Tag, i.e., the first τ bits of the value R̃⟨N,x,y⟩(final input) ⊕ Taga, but has not seen any image un-
der R̃⟨N,x,y⟩(.). Note that we can even give Taga to the adversary. More precisely, consider the
case that |Ci| is a multiple of m but |C| is not; then adversary must guess the first τbits of the
value R̃⟨N,ℓ,2⟩(final input) ⊕ Taga, but has seen no image under R̃⟨N,ℓ,2⟩(.). Similarly, in the case
that |C| is a multiple of m but |Ci| is not, the adversary must guess the first τ bits of the value
R̃⟨N,x,y⟩(final input)⊕ Taga for (N, x, y) = (N, 1, 0) if |C| = 0 or (N, x, y) = (N, ℓ, 1) if |C| ̸= 0, but
the adversary has seen no image under R̃⟨N,x,y⟩(.) under either case. Therefore, the probability
that the adversary can succeed in guessing Tag is 2−τ .

3 N = N i, |C| ≠ |Ci|, and either both |C| and |Ci| are multiple of m or none of them is. We may
ignore all queries but the ith query as responses to such queries are unrelated to the adversary’s
task at hand. If both |C| and |Ci| are multiple of m then |C| ≠ |Ci| means that ℓ ̸= ℓi, so from
(the top of) Fig. 5.3 it can be easily seen that in this case even if the adversary knows Taga it must
still guess the first τ bits of the output of the random function R̃⟨N,ℓ,1⟩ while it has seen no image
of this function; the probability to succeed in guessing Tag is clearly 2−τ . Now, let’s consider the
case that neither |C| nor |Ci| is a multiple of m then |C| ̸= |Ci| means that we have two cases:
(1) ℓ ̸= ℓi, and (2) ℓ = ℓi but |C∗| ̸= |Ci

∗|. In the first case, it can be seen the adversary must
guess the first τ bits of the random function R̃⟨N,ℓ,2⟩ while has seen no image of this function; the
chance to do so is clearly 2−τ . In the second case, the adversary must guess the first τ bits of
R̃⟨N,ℓ,2⟩((M∗ ⊕ C∗)||(M∗||10m−|M∗|−1)) while it has seen (τ bits of) a single image of this function
for one different domain point, namely ((M i

∗ ⊕ Ci
∗)||(M i

∗||10m−|Mi
∗|−1); the probability to succeed

in this case is again 2−τ . (Note that |M∗| = |C∗|. Using 10∗ padding for processing messages
whose length is not a multiple of m is essential for this part.)

4 N = N i, |C| = |Ci|, and A ̸= Ai. We can ignore all queries except the ith query because the
responses to such queries are random and unrelated to the adversary’s task to make the alleged
forgery N, A,C with N = N i. That is, we can assume that adversary has only made a single
encryption query (N i, Ai, M i) and received Ci||Tagi. It aims to forge using the same nonce but a
different associated data A. The adversary must find a correct Tag = (Tage+Taga)[n−1, · · · , n−τ].
We consider two sub-cases: 4a |A| ̸= 0 and 4b |A| = 0.

4a In this case, let’s assume that we even provide the adversary with all the functions R̃⟨N,x,y⟩(.),
so that the adversary can compute the correct value of Tage. Then the adversary’s task will
reduce to guessing a correct value for the first τ bits of Taga. The only relevant information
that the adversary has is the first τ bits of Tagi

a. We show that even if the whole Tagi
a is given

to the adversary, the chance to correctly guess the first τ bits of Taga is still 2−τ . This is done
by a simple case analysis:

1. if only one of |A| and |Ai| is a multiple of n + m then it is easy to see from Fig. 5.3 that
the probability to guess the first τ bits of Taga is still 2−τ ;

2. if a ̸= ai then again from Fig. 5.3 we can see that the probability to guess the first τ bits
of Taga is 2−τ ;

3. otherwise, we have a = ai and either both |A| and |Ai| are multiple of n + m or neither
of them is a multiple of n + m. These two cases are similar. Let’s consider the first one.
As we have A ̸= Ai then it must be the case that for some j we have Aj ̸= Ai

j . So, the jth

value XORed to Taga, i.e., R̃⟨j,0⟩(Aj) is a fresh n-bit random value; hence the adversary’s
chance to guess the first τ bits of Taga is 2−τ .

5.2 The Offset Merkle-Damgård Authenticated Cipher 143

4b In this case the adversary has seen Ci||Tagi, where Tagi = (Tagi
e ⊕ Tagi

a)[n − 1, · · · , n − τ].
To get the forged tuple (N, ε, C||Tag) be accepted and decrypted, it must find the value of
Tag = Tage[n − 1, · · · , n − τ] (as Taga = 0n in this case). Now let’s give the adversary all
functions R̃⟨N,x,0⟩(.) for 1 ≤ x ≤ ℓ. Even in this case, the adversary has seen no image of
the function R̃⟨N,x,j⟩(.) for j ∈ {1, 2}, since the value Tagi = Tagi

e ⊕ Tagi
a that adversary has

seen does not reveal any information about Tagi
e noting that Tagi

a is random and unrevealed
to the adversary. So, the probability that the adversary can correctly guess the first τ bits of
Tage = R̃⟨N,ℓ,j⟩(final input) for j = {1, 2} is 2−τ . (Note that j = 1 when |C| is a multiple of
m and j = 2 when |C| is not a multiple of m).

5 N = N i, A = Ai, and |C| = |Ci| = ℓm is a multiple of m. We can again ignore all queries except
the ith query. Let’s assume that we make all functions R̃⟨x,y⟩ (for x ≥ 1 and y ∈ {0, 1}) used in
processing the associate data public to the adversary; i.e., assume that the adversary even knows
the values of Taga and Tagi

a. Now remember that the adversary must not repeat the known tuple
(N i, Ai, Ci||Tagi) as its decryption query, so it must be the case that C ̸= Ci as otherwise any
Tag ̸= Tagi will be incorrect and rejected. Therefore, we may assume that the alleged forgery will
be of the form (N, A, C||Tag) such that Cj ̸= Ci

j for some 1 ≤ j ≤ ℓ. Now referring to (the top
of) Fig. 5.3 it is easy to see that if Cℓ ̸= Ci

ℓ then the probability that the adversary can correctly
guess the value of Tag is 2−τ ; otherwise there are two cases: (1) if Hℓ ̸= Hi

ℓ the chance that Tag is
correct is 2−τ ; (2) if the event Hℓ = Hi

ℓ happens then adversary can simply use Tag = Tagi, but
this event only happens with probability at most ℓ2−n noting that |Hi| = n (note that we credit
the adversary for any possible collision in the iteration, there are ℓ blocks and the probability of
each collision under the random function is 2−n). So, the total success probability in this case is

bounded by
1
2τ

+ ℓ

2n
.

6 N = N i, A = Ai, and |C| = |Ci| is not a multiple of m. It is easy to see from Fig. 5.3 that the analysis
of this case is the same as that of Case 5 and the success probability of the adversary is bounded

by
1
2τ

+ ℓ

2n
.

Finally, using the results of Bellare et al. [BGM04] we get the bound against adversaries that make qv

decryption (verification) queries as
qv

2τ
+ qvℓ

2n
.

5.2.2.6 Instantiating Tweakable RFs with PRFs

We proceed to complete the proof of Theorem 5.3 in two steps.

1 Replace the tweakable RF R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n in OMD with a tweakable PRF
F̃ : K × T × ({0, 1}n × {0, 1}m)→ {0, 1}n, where K = {0, 1}k. The following lemma states the classical
bound on the security loss induced by this replacement step. The proof is a straightforward reduction
and omitted here.

Lemma 5.5 Let R̃ : T ×({0, 1}n×{0, 1}m)→ {0, 1}n be a tweakable RF and F̃ : K×T ×({0, 1}n×{0, 1}m)→
{0, 1}n be a tweakable PRF. Then

Advpriv
OMD[F̃ ,τ]

(t, qe, σe, ℓmax) ≤ Advpriv
OMD[R̃,τ]

(qe, σe, ℓmax) + Advp̃rf
F̃

(t′, σe)

Advauth
OMD[F̃ ,τ]

(t, qe, qv, σ, ℓmax) ≤ Advauth
OMD[R̃,τ]

(qe, qv, σ, ℓmax) + Advp̃rf
F̃

(t′′, σ)

where qe and qv are, respectively, the number of encryption and decryption queries, q = qe + qv, ℓmax denotes
the maximum number of m-bit blocks in an encryption or decryption query, t′ = t + cnσe and t′′ = t + c′nσ for
some constants c, c′, and σe and σ are the total number of calls to the underlying compression function F in all
queries asked by the CPA and CCA adversaries against the privacy and authenticity of the scheme, respectively.

144 Zero-Knowledge Protocols and Authenticated Encryption 5.2

2 We instantiate a tweakable PRF using a PRF by means of XORing (part of) the input by a mask
generated as a function of the key and tweak as shown in Fig. 5.4. This method to tweak a PRF is
(essentially) the XE method of [Rog04a]. In OMD the tweaks are of the form T = (α, i, j) where α ∈
N ∪ {ε}, 1 ≤ i ≤ 2n−8 and j ∈ {0, 1, 2}. We note that not all combinations are used; for example, if
α = ε (empty) which corresponds to processing of the associate data in Fig. 5.5 then j ̸= 2. The masking
function ∆K(T) = ∆K(α, i, j) outputs an n-bit mask such that the following two properties hold for
any fixed string H ∈ {0, 1}n:

1. Pr[∆K(α, i, j) = H] ≤ 2−n for any (α, i, j)
2. Pr[∆K(α, i, j)⊕∆K(α′, i′, j′) = H] ≤ 2−n for (α, i, j) ̸= (α′, i′, j′)

where the probabilities are taken over random selection of the secret key K.

It is easy to verify that these two properties are satisfied by the specific masking scheme of OMD as
described in Section 5.2.3.

FK

Y

F̃
〈T 〉
K

Y

X X

m m

n n nn n

∆K(T)

Figure 5.4: Building a tweakable PRF F̃
⟨T ⟩
K : {0, 1}n × {0, 1}m → {0, 1}n using a PRF FK : {0, 1}n ×

{0, 1}m → {0, 1}n. There are several efficient ways to define the masking function ∆(T) [Rog04a, CS07,
KR11]. We use the method of [KR11].

Lemma 5.6 Let F : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a function family with key space K. Let F̃ : K ×
T × ({0, 1}n×{0, 1}m)→ {0, 1}n be defined by F̃

⟨T ⟩
K (X||Y) = FK((X⊕∆(T))||Y) for every T ∈ T , K ∈ K,

X ∈ {0, 1}n
, Y ∈ {0, 1}m and ∆K(T) is the masking function of OMD as defined in Section 5.2.3. If F is PRF

then F̃ is tweakable PRF. More precisely

Advp̃rf
F̃

(t, q) ≤ Advprf
F (t′, 2q) + 3q2

2n

.

The proof is a simple adaptation of a similar result on the security of the XE construction (to tweak a
block-cipher) in [KR11]. As we use a PRF rather than PRP, our bound has two main terms. The first

term is a single birthday bound loss of
0.5q2

2n
to take care of the case that a collision might happen

when computing the initial mask ∆N,0,0 = FK(N ||10n−1−|N |, 0m) using a PRF (F) rather than a PRP

(as in [KR11]). The analysis of the remaining term (i.e.,
2.5q2

2n
) is essentially the same as the similar

part in [KR11], but we note that in the context of our construction as we are directly dealing with PRFs
unlike [KR11] in which PRPs are used, the bound obtained here does not have any loss terms caused

by the switching (PRF/PRP) lemma. Therefore, instead of the
6q2

2n
bound in [KR11] (from which

3.5q2

2n

is due to using the switching lemma) our bound has only
2.5q2

2n
.

5.2.3 Specification of OMD

OMD is a compression function mode of operation for nonce-based authenticated encryption with
associated data (AEAD). We use the syntax of AEAD schemes following [Rog02].

5.2 The Offset Merkle-Damgård Authenticated Cipher 145

SYNTAX OF AN AEAD SCHEME. A nonce-based authenticated encryption with associated data, AEAD
for short, is a symmetric key scheme Π = (K, E ,D). The key space K is some non-empty finite set. The
encryption algorithm E : K × N × A ×M → C ∪ {⊥} takes four arguments, a secret key K ∈ K, a
nonce N ∈ N , an associated data (a.k.a. header data) A ∈ A and a message M ∈ M, and returns
either a ciphertext C ∈ C or a special symbol ⊥ indicating an error. The decryption algorithm D :
K×N ×A×C →M∪{⊥} takes four arguments (K, N, A,C) and either outputs a message M ∈M or
an error indicator ⊥.

For correctness of the scheme, it is required that D(K, N, A,C) = M for any C such that C =
E(K, N, A, M). It is also assumed that if algorithms E and D receive parameter not belonging to their
specified domain of arguments they will output ⊥. We write EK(N, A, M) = E(K, N, A, M) and simi-
larly DK(N, A,C) = D(K, N, A,C).

We assume that the message and associated data can be any binary string of arbitrary but finite length;
i.e., M = {0, 1}∗ and A = {0, 1}∗, but the key and nonce are some fixed-length binary strings, i.e.,
N = {0, 1}|N | and K = {0, 1}k, where the positive integers |N | and k are respectively the nonce length
and the key length of the scheme in bits. We assume that |EK(N, A, M)| = |M | + τ for some positive
fixed constant τ ; that is, we will have C = C||Tag where |C| = |M | and |Tag| = τ . We call C the core
ciphertext and Tag the tag.

Remark According to the CAESAR call for proposals “An authenticated cipher is a function with five byte-
string inputs and one byte-string output. The five inputs are a variable-length plaintext, variable-length asso-
ciated data, a fixed-length secret message number, a fixed-length public message number, and a fixed-length key.
The output is a variable-length ciphertext.” OMD considers the “public message number” as the nonce and does
not support a secret message number.

5.2.3.1 The OMD Mode of Operation

To use OMD one must specify a keyed compression function F : K× ({0, 1}n × {0, 1}m)→ {0, 1}n

and a tag length τ ≤ n; where the key spaceK = {0, 1}k and m ≤ n where the case m = n is the optimal
choice from efficiency viewpoint. At first glance, requiring m ≤ n may look a bit odd as usually a
compression function has a larger input block length than its output (hash) length, so we first explain
this restriction based on the following two observations:

— It will be clear from the description of OMD in the sequel that at each call to the compression
function only n random bits (namely, the output bits of the compression function) are available
for encrypting an m-bit message block, hence we must have m ≤ n. The optimal case is when
m = n, so no random bits are wasted. We notice that this limitation applies to any compres-
sion function based AE, therefore a compression function based AE scheme (like OMD) will be
usually less efficient than a block-cipher based AE (like OCB) “unless” one uses a dedicated
compression function which is more efficient than the block-cipher.

— In practice, the compression function of standard hash functions (e.g. SHA-1 or the SHA-2 fam-
ily) are keyless, i.e., do not have a dedicated key input, therefore one will need to use k bits of
their b-bit message block to get a keyed function. So, there will be no efficiency waste in each call
to the compression function if m = n and b = n + k; for example, when the key length is 256 bits
and the compression function of SHA-256 is used.

We let OMD-F denote the OCB mode of operation using a keyed compression function FK : {0, 1}n ×
{0, 1}m → {0, 1}n with m ≤ n and an unspecified tag length. We let OMD[F, τ] denote the OMD
mode of operation using keyed compression function FK and tag length τ . The encryption algorithm
of OMD[F, τ] inputs four arguments (secret key K ∈ {0, 1}k, nonce N ∈ {0, 1}|N |, associated data
A ∈ {0, 1}∗, message M ∈ {0, 1}∗) and outputs C = C||Tag ∈ {0, 1}|M |+τ . The decryption algorithm
of OMD[F, τ] inputs four arguments (secret key K ∈ {0, 1}k, nonce N ∈ {0, 1}|N |, associated data
A ∈ {0, 1}∗, ciphertext C||Tag ∈ {0, 1}∗) and either outputs the whole M ∈ {0, 1}|C|−τ at once or an
error message (⊥). Note that we have either C = C1 · · ·Cℓ or C = C1 · · ·Cℓ−1C∗ depending on whether
the message length in bits is a multiple of the block length m or not, respectively.

146 Zero-Knowledge Protocols and Authenticated Encryption 5.2

Fig. 5.5 depicts the construction of the encryption algorithm of OMD[F, τ]. The construction of the
decryption algorithm is straightforward and almost the same as the encryption algorithm except a tag
comparison (verification) at the end of the decryption process. Fig. 5.6 describes the encryption and
decryption algorithms of OMD[F, τ]. We remind that for two binary strings X = Xm−1 · · ·X0 and
Y = Yn−1 · · ·Y0, the notation X ⊕ Y denotes bitwise XOR of Xm−1 · · ·Xm−1−ℓ and Yn−1 · · ·Yn−1−ℓ

where ℓ = min {m− 1, n− 1}.

COMPUTING THE MASKING VALUES. As seen from the description of OMD in Fig. 5.5, before each call
to the underlying keyed compression function we XOR a masking value denoted as ∆N,i,j (the top and
middle parts of Fig. 5.5) and ∆̄i,j (the bottom part of Fig. 5.5). In the following, we describe how these
masks are generated. We note that there are both security and efficient related criteria to be satisfied by
the method to compute the masking values. We only explain the efficiency criterion for computing the
masks here; the security related properties will be made clear in Section 5.2.2.4. By an efficient masking
scheme, we mean a scheme in which the mask value needed for processing a block can be efficiently
computed from the mask value used for processing the previous block.

There are different ways to compute the masking values to satisfy both the security and efficiency crite-
ria; for example, we refer to [Rog04a, CS07, KR11]. We use the method proposed in [KR11].

In the following, all multiplications are in GF (2n), ntz(i) denotes the number of trailing zeros (i.e., the
number of rightmost bits that are zero) in the binary representation of a positive integer i.

Initialization. ∆N,0,0 = FK(N ||10n−1−|N |, 0m); ∆̄0,0 = 0n; L∗ = FK(0n, 0m); L[0] = 4.L∗, and
L[i] = 2.L[i − 1] for i ≥ 1. We note that the values L[i] can be preprocessed and stored (for a fast
implementation) in a table for 0 ≤ i ≤ ⌈log2(ℓmax)⌉, where ℓmax is the bound on the maximum
number of blocks in any input that can be encrypted or decrypted. Alternatively, (if there is a
memory restriction) they can be computed on-the-fly for i ≥ 1. It is also possible to precompute
and store some values and then compute the others as needed on-the-fly.

Masking sequence for processing the message. For i ≥ 1: ∆N,i,0 = ∆N,i−1,0 ⊕ L[ntz(i)];
∆N,i,1 = ∆N,i,0 ⊕ 2.L∗; and ∆N,i,2 = ∆N,i,0 ⊕ 3.L∗.

Masking sequence for processing the associate data. ∆̄i,0 = ∆̄i−1,0 ⊕ L[ntz(i)] for i ≥ 1; and ∆̄i,1 =
∆̄i,0 ⊕ L∗ for i ≥ 0.

5.2.3.2 OMD-SHA256: Primary Recommendation for Instantiating OMD

Our primary recommendation to instantiate OMD is called OMD-SHA256 and uses the under-
lying compression function of SHA-256 [SHA95]. This is intended to be the appropriate choice for
implementations on 32-bit machines. The compression function of SHA-256 is a map SHA-256 :
{0, 1}256 × {0, 1}512 → {0, 1}256. On input a 256-bit chaining block X and a 512-bit message block
Y , it outputs a 256-bit digest Z, i.e., let Z = SHA-256(X, Y). The description of SHA-256 is provided in
subsection B.1.

To use OMD with SHA-256, we use the first 256-bit argument X for chaining values as usual. In our
notation (see Fig. 5.5) this means that n = 256. We use the 512-bit argument Y (the message block in
SHA-256) to input both a 256-bit message block and the key K which can be of any length k ≤ 256
bits. If k < 256 then let the key be K||0256−k. That is, we define the keyed compression function
FK : {0, 1}256 × {0, 1}256 → {0, 1}256 needed in OMD as FK(H, M) = SHA-256(H, K||0256−k||M).

The parameters of OMD-SHA256 are as follows:

— The message block length in bits is m = 256, i.e., |Mi| = 256. If needed, we pad the final block of
the message with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make its
length exactly 256 bits.

— The key length in bits can be 80 ≤ k ≤ 256; but k < 128 is not recommended. If needed, we pad
the key K with 0256−k to make its length exactly 256 bits.

5.2 The Offset Merkle-Damgård Authenticated Cipher 147

Computing Taga for an associate data whose length is
a multiple of the input lenght (i.e. |Aa| = n + m).

FK FK

Aa
n + m

n m

FK

Aa−1
n + m

n m

Taga

A1
n + m

n m

n bits

M1 M2 M`−1 M∗||10m−|M∗|−1〈τ〉m

0n

M1 M2 M3 M∗

C∗C3C1

FK FK FK FK

∆N,2,0 ∆N,3,0 ∆N,`,0 ∆N,`,2

FK

Encrypting a message whose length is not a multiple of the block length. The final
message block is padded to make it a full block.

C2

Tage

n bits

M1 M2 M`−1 M`〈τ〉m

M1 M2 M3 M`

C`C3C1

FK FK FK FK

∆N,2,0 ∆N,3,0 ∆N,`,0 ∆N,`,1

FK

Encrypting a message whose length is a multiple of the block length. No padding is
needed.

C2

Tage0n

n bits

∆N,1,0

∆N,1,0

∆̄1,0 ∆̄a−1,0 ∆̄a,0

Computing Taga for an associate data whose length is
not a multiple of the input length. The final block is
padded to make it a full block.

FK

A∗||10n+m−|A∗|−1

n + m

n m

Taga

FK

A1
n + m

n m

FK

Aa−1
n + m

n m

n bits

∆̄1,0 ∆̄a−1,0 ∆̄a−1,1

Tage

n bits

τ bits

Taga

Tag

Figure 5.5: The encryption process of OMD[F, τ] using a keyed compression function FK : ({0, 1}n ×
{0, 1}m) → {0, 1}n with m ≤ n. (Top) The encryption process when the message length is a multiple
of the block length m and no padding is required. (Middle) The encryption process when the mes-
sage length is not a multiple of the block length and the final block M∗ is padded to make a full block
M∗||10m−|M∗|−1 . (Bottom, Left) Computing the intermediate value Ta when the bit length of the asso-
ciated data is a multiple of the input length n + m. (Bottom, Right) Computing Ta when the bit length
of the associated data is not a multiple of n + m and the final block is padded to make a full block
A∗||10n+m−|A∗|−1 is needed. The output ciphertext is C||Tag. For operation ⊕ see our convention in
Section 5.2.2. Five types of key-dependent masking values (corresponding to five mutually exclusive
tweak sets) are used; these are denoted by ∆N,i,0, ∆N,i,1, ∆N,i,2, ∆̄i,0 and ∆̄j,1, for i ≥ 1 and j ≥ 0,
where N is the nonce. Note that the masks used in computing Ta do not depend on the nonce.

— The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 255. We always pad the
nonce with 10255−|N | to make its length exactly 256 bits.

— The secret message number length in bits is 0; that is, our scheme does not support secret message
numbers.

— The associated data block length in bits is 2n = 512, i.e., |Ai| = 512. If needed, we pad the final
block of the associated data with 10∗ (i.e., a single 1 followed by the minimal number of 0’s
needed) to make its length exactly 512 bits.

— The tag length in bits can be 32 ≤ τ ≤ 256; but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 5.2.2.4 for the security bounds.

148 Zero-Knowledge Protocols and Authenticated Encryption 5.2

1: Algorithm INITIALIZE(K)
2: L∗ ← FK(0n, 0m)
3: L[0]← 4.L∗ ▷ 2.(2.L∗), doubling in GF (2n)
4: for i← 1 to⌈log2(ℓmax)⌉ do
5: L[i] = 2.L[i− 1] ▷ doubling in GF (2n)
6: end for
7: return
8: end Algorithm

1: Algorithm HASHK (A)
2: b← n + m

3: A1||A2 · · ·Aℓ−1||Aℓ
b← A, where |Ai| = b for

1 ≤ i ≤ ℓ− 1 and |Aℓ| ≤ b
4: Taga ← 0n

5: ∆← 0n

6: for i← 1 toℓ− 1 do
7: ∆← ∆⊕ L[ntz(i)]
8: Left← Ai[b− 1 · · ·m]; Right← Ai[m− 1 · · · 0]
9: Taga ← Taga ⊕ FK(Left⊕∆, Right)

10: end for
11: if |Aℓ| = b then
12: ∆← ∆⊕ L[ntz(ℓ)]
13: Left← Aℓ[b− 1 · · ·m]; Right← Aℓ[m− 1 · · · 0]
14: Taga ← Taga ⊕ FK(Left⊕∆, Right)
15: else
16: ∆← ∆⊕ L∗
17: Left← Aℓ||10b−|Aℓ|−1[b− 1 · · ·m]
18: Right← Aℓ||10b−|Aℓ|−1[m− 1 · · · 0]
19: Taga ← Taga ⊕ FK(Left⊕∆, Right)
20: end if
21: return Taga
22: end Algorithm

1: Algorithm EK (N, A, M)
2: if |N | > n− 1 then
3: return ⊥
4: end if
5: M1||M2 · · ·Mℓ−1||Mℓ

m← M , where |Mi| = m for
1 ≤ i ≤ ℓ− 1 and |Mℓ| ≤ m

6: ∆← FK(N ||10n−1−|N|, 0m) ▷ initialize ∆N,0,0
7: H ← 0n

8: ∆← ∆⊕ L[0] ▷ compute ∆N,1,0
9: H ← FK(H ⊕∆, ⟨τ⟩m)

10: for i← 1 toℓ− 1 do
11: Ci ← H ⊕Mi

12: ∆← ∆⊕ L[ntz(i + 1)]
13: H ← FK(H ⊕∆, Mi)
14: end for

15: Cℓ ← H ⊕Mℓ

16: if |Mℓ| = m then
17: ∆← ∆⊕ 2.L∗
18: Tage ← FK(H ⊕∆, Mℓ)
19: else if |Mℓ| ̸= 0 then
20: ∆← ∆⊕ 3.L∗
21: Tage ← FK(H ⊕∆, Mℓ||10m−|Mℓ|−1)
22: else
23: Tage ← H
24: end if
25: Taga ← HASHK(A)
26: Tag← (Tage ⊕ Taga)[n− 1 · · ·n− τ]
27: C← C1||C2|| · · · ||Cℓ||Tag
28: return C
29: end Algorithm

1: Algorithm DK (N, A,C)
2: if |N | > n− 1 or |C| < τ then
3: return ⊥
4: end if
5: C1||C2 · · ·Cℓ−1||Cℓ||Tag m← C, where |Ci| = m for

1 ≤ i ≤ ℓ− 1, |Cℓ| ≤ m and |Tag| = τ
6: ∆← FK(N ||10n−1−|N|, 0m) ▷ initialize ∆N,0,0
7: H ← 0n

8: ∆← ∆⊕ L[0] ▷ compute ∆N,1,0
9: H ← FK(H ⊕∆, ⟨τ⟩m)

10: for i← 1 toℓ− 1 do
11: Mi ← H ⊕ Ci

12: ∆← ∆⊕ L[ntz(i + 1)]
13: H ← FK(H ⊕∆, Mi)
14: end for
15: Mℓ ← H ⊕ Cℓ

16: if |Cℓ| = m then
17: ∆← ∆⊕ 2.L∗
18: Tage ← FK(H ⊕∆, Mℓ)
19: else if |Cℓ| ≠ 0 then
20: ∆← ∆⊕ 3.L∗
21: Tage ← FK(H ⊕∆, Mℓ||10m−|Mℓ|−1)
22: else
23: Tage ← H
24: end if
25: Taga ← HASHK(A)
26: Tag′ ← (Tage ⊕ Taga)[n− 1 · · ·n− τ]
27: if Tag′ = Tag then
28: return M ←M1||M2|| · · · ||Mℓ

29: else
30: return ⊥
31: end if
32: end Algorithm

Figure 5.6: Definition of OMD[F, τ]. The function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n is a keyed
compression function with K = {0, 1}k and m ≤ n. The tag length is τ ∈ {0, 1, · · · , n}. Algorithms E
and D can be called with arguments K ∈ K, N ∈ {0, 1}≤n−1, and A, M,C ∈ {0, 1}∗. ℓmax is the bound
on the maximum number of blocks in any input to the encryption or decryption algorithms.

5.2.3.3 OMD-SHA512: Secondary Recommendation for Instantiating OMD

Our secondary recommendation to instantiate OMD is called OMD-SHA512 and uses the un-
derlying compression function of SHA-512 [SHA95]. This is intended to be the appropriate choice
for implementations on 64-bit machines. The compression function of SHA-512 is a map SHA-512 :
{0, 1}512 × {0, 1}1024 → {0, 1}512. On input a 512-bit chaining block X and a 1024-bit message block Y ,
it outputs a 512-bit digest Z, i.e., let Z = SHA-512(X, Y). The description of SHA-512 is provided in
subsection B.1.

5.2 The Offset Merkle-Damgård Authenticated Cipher 149

To use OMD with SHA-512, we use the first 512-bit argument X for chaining values as usual. In our
notation (see Fig. 5.5) this means that n = 512. We use the 1024-bit argument Y (the message block
in SHA-512) to input both a 512-bit message block and the key K which can be of any length k ≤ 512
bits. If k < 512 then let the key be K||0512−k. That is, we define the keyed compression function
FK : {0, 1}512 × {0, 1}512 → {0, 1}512 needed in OMD as FK(H, M) = SHA-512(H, K||0512−k||M).

The parameters of OMD-SHA512 are set as follows:

— The message block length in bits is m = 512, i.e., |Mi| = 512. If needed, we pad the final block of
the message with 10∗ (i.e., a single 1 followed by the minimal number of 0’s needed) to make its
length exactly 512 bits.

— The key length in bits can be 80 ≤ k ≤ 512; but k < 128 is not recommended. If needed, we pad
the key K with 0512−k to make its length exactly 512 bits.

— The nonce (public message number) length in bits can be 96 ≤ |N | ≤ 511. We always pad the
nonce with 10511−|N | to make its length exactly 512 bits.

— The secret message number length in bits is 0; that is, our scheme does not support secret message
numbers.

— The associated data block length in bits is 2n = 1024, i.e., |Ai| = 1024. If needed, we pad the
final block of the associated data with 10∗ (i.e., a single 1 followed by the minimal number of 0’s
needed) to make its length exactly 1024 bits.

— The tag length in bits can be 32 ≤ τ ≤ 512; but it must be noted that the selection of the tag length
directly affects the achievable security level. We refer to Section 5.2.2.4 for the security bounds.

5.2.3.4 Compression Functions of SHA-256 and SHA-512

The CAESAR call for submissions has mentioned that “The cipher definition is required to be self-
contained, including all information necessary to implement the cipher from scratch, except that the
following functions are free to be used without being defined: AES-128 with 128-bit key, 128-bit input,
and 128-bit output; AES-192 with 192-bit key, 128-bit input, and 128-bit output; AES-256 with 256-bit
key, 128-bit input, and 128-bit output.”

Therefore, in this section we include a description of the compression functions of the standard SHA-256
and SHA-512 hash functions from NIST FIPS PUB 180-4 [SHA95]. We refer to the underlying compres-
sion functions of these standard hash functions as SHA-256 and SHA-512, respectively.

Preliminaries. In the following, by “word” we mean a group of either 32 bits (4 bytes) or 64 bits (8
bytes), depending on the compression function algorithm. Namely, in SHA-256 each word is a 32-bit
string and in SHA-512 each word is a 64-bit string.

ROTRn(x): The rotate right (circular right shift) operation, where x is a w-bit word and n an integer
with 0 ≤ n < w, is defined by ROTRn(x) = (x≫ n) ∨ (x≪ w − n)

SHRn(x): The right shift operation, where x is a w-bit word and n an integer with 0 ≤ n < w, is
defined by SHRn(x) = (x≫ n).

The addition x+y of two w-bit words x and y is defined as follows. The words x and y represent integers
X and Y , where 0 ≤ X < 2w and 0 ≤ Y < 2w. Compute Z = (X + Y) mod 2w. Then 0 ≤ Z < 2w.
Convert the integer Z to a word z and define z = x + y.

The SHA-256 Compression Function. SHA-256 uses six logical functions, where each function oper-
ates on 32-bit words, which are represented as x, y, and z and outputs a 32-bit word as a result. These
functions are defined as follows:

150 Zero-Knowledge Protocols and Authenticated Encryption 5.2

Ch : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32, Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32, Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ{256}
0 : {0, 1}32 → {0, 1}32, Σ{256}

0 (x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x)

Σ{256}
1 : {0, 1}32 → {0, 1}32, Σ{256}

1 (x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x)

σ
{256}
0 : {0, 1}32 → {0, 1}32, σ

{256}
0 (x) = ROTR7(x)⊕ ROTR18(x)⊕ SHR3(x)

σ
{256}
1 : {0, 1}32 → {0, 1}32, σ

{256}
1 (x) = ROTR17(x)⊕ ROTR19(x)⊕ SHR10(x)

During the process of compression, a sequence of 64 constant 32-bit words, K
{256}
0 , ..., K

{256}
63 are used.

These 32-bit words represent the first 32 bits of the fractional parts of the cube roots of the first 64 prime
numbers. In hex, these constant words are (from left to right):

428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174
e49b69c1 efbe4786 0fc19dc6 240ca1cc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 a831c66d b00327c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2e1b2138 4d2c6dfc 53380d13 650a7354 766a0abb 81c2c92e 92722c85
a2bfe8a1 a81a664b c24b8b70 c76c51a3 d192e819 d6990624 f40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391c0cb3 4ed8aa4a 5b9cca4f 682e6ff3
748f82ee 78a5636f 84c87814 8cc70208 90befffa a4506ceb bef9a3f7 c67178f2

The Compression Process. The SHA-256 compression function is defined as follows:

SHA-256 : {0, 1}256 × {0, 1}512 −→ {0, 1}256, SHA-256(H, M) = C

Let H be the 256-bit hash input (chaining input) and M be the 512-bit message input. These two inputs
are represented respectively by an array of 8 32-bit words H0 · · ·H7 and an array of 16 32-bit words
M0 · · ·M15. The 256-bit output value C is also represented as an array of 8 32-bit words C0 · · ·C7.

The compression function processes as below:

1. Prepare the message schedule, {Wt}:

Wt =
{

Mt 0 ≤ t ≤ 15
σ

{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16 16 ≤ t ≤ 63

2. Initialize the eight working variables, a, b, c, d, e, f, g and h with the hash input value H :
a = H0
b = H1
c = H2
d = H3
e = H4
f = H5
g = H6
h = H7

3. For t = 0 to 63, do:
{

5.2 The Offset Merkle-Damgård Authenticated Cipher 151

T1 = h + Σ{256}
1 (e) + Ch(e, f, g) + K

{256}
t + Wt

T2 = Σ{256}
0 (a) + Maj(a, b, c)

h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1 + T2

}

4. Compute the 256-bit output (hash) value C = C0 · · ·C7 as:

C0 = a + H0
C1 = b + H1
C2 = c + H2
C3 = d + H3
C4 = e + H4
C5 = f + H5
C6 = g + H6
C7 = h + H7

The SHA-512 Compression Function. SHA-512 uses six logical functions, where each function oper-
ates on 64-bit words, which are represented as x, y, and z and outputs a 64-bit word as a result. These
functions are defined as follows:

Ch : {0, 1}64 × {0, 1}64 × {0, 1}64 → {0, 1}64, Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj : {0, 1}64 × {0, 1}64 × {0, 1}64 → {0, 1}64, Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ{512}
0 : {0, 1}64 → {0, 1}64, Σ{256}

0 (x) = ROTR28(x)⊕ ROTR34(x)⊕ ROTR39(x)

Σ{512}
1 : {0, 1}64 → {0, 1}64, Σ{256}

1 (x) = ROTR14(x)⊕ ROTR18(x)⊕ ROTR41(x)

σ
{512}
0 : {0, 1}64 → {0, 1}64, σ

{256}
0 (x) = ROTR1(x)⊕ ROTR8(x)⊕ SHR7(x)

σ
{512}
1 : {0, 1}64 → {0, 1}64, σ

{256}
1 (x) = ROTR19(x)⊕ ROTR61(x)⊕ SHR6(x)

During the process of compression, a sequence of 80 constant 64-bit words K
{512}
0 , ..., K

{512}
79 is used.

These 64-bit words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime
numbers. In hex, these constant words are (from left to right):

152 Zero-Knowledge Protocols and Authenticated Encryption 5.2

428a2f98d728ae22 7137449123ef65cd b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019 923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe 243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1 9bdc06a725c71235 c19bf174cf692694
e49b69c19ef14ad2 efbe4786384f25e3 0fc19dc68b8cd5b5 240ca1cc77ac9c65
2de92c6f592b0275 4a7484aa6ea6e483 5cb0a9dcbd41fbd4 76f988da831153b5
983e5152ee66dfab a831c66d2db43210 b00327c898fb213f bf597fc7beef0ee4
c6e00bf33da88fc2 d5a79147930aa725 06ca6351e003826f 142929670a0e6e70
27b70a8546d22ffc 2e1b21385c26c926 4d2c6dfc5ac42aed 53380d139d95b3df
650a73548baf63de 766a0abb3c77b2a8 81c2c92e47edaee6 92722c851482353b
a2bfe8a14cf10364 a81a664bbc423001 c24b8b70d0f89791 c76c51a30654be30
d192e819d6ef5218 d69906245565a910 f40e35855771202a 106aa07032bbd1b8
19a4c116b8d2d0c8 1e376c085141ab53 2748774cdf8eeb99 34b0bcb5e19b48a8
391c0cb3c5c95a63 4ed8aa4ae3418acb 5b9cca4f7763e373 682e6ff3d6b2b8a3
748f82ee5defb2fc 78a5636f43172f60 84c87814a1f0ab72 8cc702081a6439ec
90befffa23631e28 a4506cebde82bde9 bef9a3f7b2c67915 c67178f2e372532b
ca273eceea26619c d186b8c721c0c207 eada7dd6cde0eb1e f57d4f7fee6ed178
06f067aa72176fba 0a637dc5a2c898a6 113f9804bef90dae 1b710b35131c471b
28db77f523047d84 32caab7b40c72493 3c9ebe0a15c9bebc 431d67c49c100d4c
4cc5d4becb3e42b6 597f299cfc657e2a 5fcb6fab3ad6faec 6c44198c4a475817

The Compression Process. The SHA-512 compression function is defined as follows:

SHA-512 : {0, 1}512 × {0, 1}1024 −→ {0, 1}512, SHA-512(H, M) = C

Let H be the 512-bit hash input (chaining input) and M be the 1024-bit message input. These two inputs
are represented respectively by an array of 8 64-bit words H0 · · ·H7 and an array of 16 64-bit words
M0 · · ·M15. The 512-bit output value C is also represented as an array of 8 64-bit words C0 · · ·C7.

The compression function processes as described below:

1. Preparing the message schedule, {Wt}:

Wt =
{

Mt 0 ≤ t ≤ 15
σ

{512}
1 (Wt−2) + Wt−7 + σ

{512}
0 (Wt−15) + Wt−16 16 ≤ t ≤ 79

2. Initialize the eight working variables, a, b, c, d, e, f, g and h with the hash input value H :

a = H0
b = H1
c = H2
d = H3
e = H4
f = H5
g = H6
h = H7

3. For t = 0 to 79, do:

{

5.2 The Offset Merkle-Damgård Authenticated Cipher 153

T1 = h + Σ{512}
1 (e) + Ch(e, f, g) + K

{512}
t + Wt

T2 = Σ{512}
0 (a) + Maj(a, b, c)

h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1 + T2

}

4. Computing the 512-bit output (hash) value C = C0 · · ·C7 as:
C0 = a + H0
C1 = b + H1
C2 = c + H2
C3 = d + H3
C4 = e + H4
C5 = f + H5
C6 = g + H6
C7 = h + H7

CHAPTER 6

CONCLUSION

In the quite recent past, we have experienced a new era of connectivity: devices have become smaller
and cheaper, and pretty much every single chip has the capacity of connecting to another device or to
the Internet. Sensitive data and its computation, which were first centralized to a protected environment
inside the chip, now are routed and transmitted over several different protocols, via wired or wireless
links, to remote databases. This has started a revolution in security implementations and protocols:
how to protect privacy, integrity and authentication over this fuzz of connected smart devices.

The concept called the “Internet of Things” (IoT) is becoming a hot topic in media and within tech
companies. A broad definition of IoT is the interconnected network of physical devices such as cars,
objects, buildings and other smart systems by means of electronics, sensors, software and network
protocols that enable these components to collect and exchange information. IoT brings connectivity
and data to smart objects, which pervasively monitor the environment and act accordingly. Ultimately,
IoT integrates the physical world into computer-based systems, improving efficiency, accuracy, and
bringing economic benefits to the processes involved.

In this context, new application areas emerge, pushing the limits of hardware and software systems to
generate, index, store and process larger amounts of data from diverse locations, with the consequently
demand of higher performance of transmission protocols. In conjunction with cloud computing, IoT
continually demands hardware systems to be smaller, faster and smarter. Cryptographic designs face
several tradeoffs, as depicted in Fig. 6.1.

An IoT computing environment is also generically referred to as a smart object. Smart objects interact
with the environment and with humans, sense the environment, take actions based on stimuli and com-
municate with other smart objects to fulfill their application. However these devices are constrained
and have limited hardware resources, making them vulnerable. Each IoT node is a smart object that
can potentially compromise the whole network. Should one of these nodes fails and dies, the network
as whole must continue to work properly. If one of these nodes is attacked, the security of the whole net-
work might be compromised. Typically, smart objects do not have enough resources to handle complex
cryptographic primitives; they must implement lightweight versions instead. Lightweight cryptography
(LWC) is a cryptographic algorithm or protocol tailored for implementation in constrained environ-
ments including RFID tags, sensors, contactless smart cards, health-care devices and many more. These
are ultimately nodes of the IoT network, the smart objects.

Two main characteristics of lightweight cryptography that make it suitable for IoT are:

Efficiency of end-to-end communication. To achieve end-to-end security, end nodes have an imple-
mentation of a symmetric key algorithm. For the low resource-devices, e.g. battery-powered
devices, the cryptographic operation with a limited amount of energy consumption is important.
Application of the lightweight symmetric key algorithm allows reducing the energy consumption
for end devices.

6.0 155

Security

Low cost Performance

H
W

se
cu

rit
y

fu
nc

tio
ns

SW
security

functions

Type of architecture

Physical

Algorithmic

Throughput

Energy

Area

Power

+ +

- -

µC µP

Figure 6.1: Tradeoffs in cryptography.

Applicability to lower resource devices. The footprint of the lightweight cryptographic primitives is
smaller than the conventional cryptographic ones. The lightweight cryptographic primitives
would open possibilities of more network connections with lower resource devices.

An important discernment in modern cryptography is to divide the algorithm’s security analysis in
two parts. Initially, cryptanalysts analyze the cryptographic algorithm, protocol or construction with
ideal primitives. This initial steps has the goal of finding security flaws inherent to the algorithm’s
mathematical construction. After this first validation by means of mathematical proofs, a second anal-
ysis is conducted. This one has the objective of finding security flaws on actual implementations of
cryptographic algorithms. At this second step, side-channel analysis is a very powerful tool used by
cryptanalysts to find weaknesses.

To evaluate the efficiency of hardware-based cryptosystem implementations, we must rely on efficiency
metrics. These metrics can be, for example, the number of cipher rounds, the number of modular expo-
nentiations, the size of the substitution table, or the complexity of the mathematical operations required
to perform one computation round. Care must be taken when choosing these metrics, as they are not
always straightforward to interpret. Certain designs must be more efficient for long messages, although
systems using LWC usually have shorter message lengths. Some cryptographic constructions rely on
nonces (numbers used only once) for security reasons, which could be prohibitive on low-end systems.
A cryptosystem relying on a nonce must instantiate a non-volatile memory to store a counter or a hard-
ware source of randomness. Metrics such as number of primitive calls per block and the possibility to
apply parallelism are likely important in constrained cryptosystems that apply LWC. Ultimately, the
power consumption metric is a very important metric to evaluate how lightweight a cryptosystem is.

Perhaps most importantly, we should point out that lightweight cryptography is intended for applica-
tions with very stringent requirements that conventional algorithms fail to satisfy. As such, we focus
specifically at applications where cryptography is the bottleneck. Conventional algorithms were of
course never designed to be inefficient, but typically aim to have good performance on a very wide
range of platforms. For lightweight cryptography, it seems that the goal is then to focus on algorithms
that are tailored to more specific use cases, at the cost of having a more narrow range of applicability.

Two important and well studied block ciphers designed to be lightweight are CLEFIA [SSA+07] and
PRESENT [BKL+07]. Both algorithms are considered suitable for lightweight cryptography under
ISO/IEC 29192 certification. In the hash function world, QUARK [AHMN13] is one example of a cryp-
tographic hash function designed to be lightweight. Recent cryptographic competitions such as the

156 Conclusion 6.0

SHA-3 [Nat12] and CAESAR competitions [CAE] aim at designing trusted cryptography for standard-
ization that is fast, efficient, and resists the latest advances in cryptanalysis.

Lightweight implementations. BCH codes features a large class of error-correcting codes and are
widely adopted in the industry. For example, the shortened BCH(48,36,5) was accepted by the U.S.
Telecommunications Industry Association as a standard for the cellular Time Division Multiple Access
protocol (TDMA); the BCH(511, 493) was adopted by the International Telecommunication Union as a
standard for video conferencing and video phone codecs (Rec. H.26). Section 3.1 presented a faster BCH
implementation that makes use of a public-key cryptography technique. Because BCH codes require
repeated polynomial reductions modulo a constant polynomial, it is possible to apply the Barrett’s
modular reduction algorithm to achieve better performance.

Five BCH(15, 7, 2) implementations were used in order to evaluate the performance of different ap-
proaches:

— BCH-standard
— BCH-LFSR
— BCH-LFSR-improved
— BCH-Barrett
— BCH-Barrett-pipelined

This study showed that the BCH-Barrett implementation presented comparable area size when com-
pared to the LFSR options, typically used in BCH implementations for its very small area overhead.
Apart from that, the BCH-Barrett architecture is also more suitable for lightweight hardware designs
because results showed much lower power consumption (around 45% reduction) when compared to
LFSR-based architectures (BCH-LFSR and BCH-LFSR-improved). Moreover, BCH-Barrett was ap-
proximately 9 and 4 times faster than BCH-LFSR and BCH-LFSR-improved, respectively.

Consequently, this thesis presented BCH design techniques that highlight the importance of finding
new ways of transposing known techniques from an application field to another. Commercial BCH
hardware cores are mostly implemented using LFSR-based approaches. Well known to security hard-
ware engineers and cryptographers, BCH codes leverages the performance of Barrett’s modular reduc-
tion. Lightweight hardware implementations are ultimately about applying new ideas to push their
own limits.

When security designers implement standard cryptographic algorithms, especially in hardware, they
have to keep in mind the hardware constraints and environment limitations in which the cryptosystems
will be integrated to. Therefore, whenever possible, designers push the limits of EDA tools in search of
the best implementation. New techniques and novel ways of bringing lightweight implementations to
real life problems are constantly needed.

Spatially distributed nodes form the networks that enable the introduction of the Internet of things.
Consequently, wireless networks must be studied in terms of security and reliability. As already stated,
IoT nodes are typically low-cost devices with limited computational resources and limited battery. They
transmit the data they acquire through the network to a gateway, also called the transceiver, which col-
lects information and sends it to a processing unit. Nodes are usually deployed in hostile environments,
and are therefore susceptible to physical attacks, harsh weather and communication interference.

Section 5.1 introduces an authentication protocol based on the zero-knowledge paradigm that estab-
lishes network integrity, and leverages the distributed nature of computing nodes to alleviate individual
computational effort. This enables the base station to identify nodes needing replacement or attention.
In this work we described a distributed Fiat-Shamir authentication protocol that enables network au-
thentication using very few communication rounds, thereby alleviating the burden of resource-limited
devices such as wireless sensors and other IoT nodes. Instead of performing one-on-one authentication
to check the network’s integrity, our protocol gives a proof of integrity for the whole network at once.

Power minimization. Smart objects connected to an IoT infrastructure are typically limited in hard-
ware resources. Mobile devices and smart sensors are also constrained in power. A right balance be-
tween data processing, computational power and energy resources is therefore crucial for these devices.

6.0 157

Section 3.2 presented a smart energy management system capable of turning on and off an SoC or an
embedded system according to a proposed model. This model assumes that the system has two pos-
sible states, A and B, in which the system is available to respond to new requests or is in idle mode,
respectively.

The importance of having such smart energy manager is to endow that the system can go idle when the
incoming request probability is low enough to take such risk. While reducing unresponsiveness penal-
ties, our model ensures a better power usage, which translates to a better battery lifetime. Interestingly
our proposed strategy does not depend on the energy cost necessary to process an incoming request,
which makes it clearly optimal since we show that at any time the model tends to minimize the increase
in the power consumption function.

While energy harvesting technologies and remote power generation are still not a reality for sensors and
embedded systems, smart energy policies ensure the success of deploying the IoT everyday devices.

Hardware countermeasures. Before being standardized, cryptographic algorithms are extensively
studied by the academic community, where cryptanalysts test theoretical attacks against cryptographic
constructions. In addition to the mathematical analysis of cryptographic algorithms, cryptanalysts also
study and apply side-channel attacks that exploit weaknesses in physical implementations.

Section 4.4 presented a lightweight side-channel protection for a proposed AES implementation. Two
physical threats were analyzed: power and fault attacks. The proposed architecture leveraged the AES
algorithms structure to create low-cost protections against these attacks. This allowed very flexible
runtime configurability without significantly affecting performance.

First, the unprotected AES implementation was sliced into four clock cycles per round. Making use
of this approach, we built on top of the unprotected core two power scrambling ideas to thwart side-
channel attacks, such as CPA. We also demonstrated how the design can also prevent fault injection by
recomputing its internal state values or by sacrificing one out of four blocks at each clock to compute
the encryption of a known plaintext. We then exhibited simulation results and compared the unpro-
tected core with the protected core. The results confirm that the overhead in terms of area, power and
performance is small, making this countermeasure attractive.

Moreover, the proposed AES architecture provides different options to tune the design into the user’s
need. Among 29 different configurations, examples include: turn the proposed AES into a 4-stage
pipeline (i.e., compute four different plaintexts per execution), use three blocks to generate noise against
power attacks, or to use one inactive block in the chain to recompute encryption and ascertain its cor-
rectness. In addition to the proposed AES implementation, we presented a simple scheme halving the
number of memory cells required for storing subkeys during AES decryption.

Applying cryptography knowledge to real case scenarios where security threats are also a concern is
another topic addressed in this thesis. Section 4.5 presented a hardware protection scheme specifically
applied to system-on-chips. In this context, attacks are divided into three main categories:

– Hijacking writing to restricted addresses to change the system’s configuration;

– Extraction of secret information reading from secure addresses to retrieve sensitive data;

– Denial of Service reducing the system’s throughput by replaying or forging request over the NoC.

If an attacker can successfully glitch a packet header or impersonate an initiator (by changing the initia-
tor ID of a packet request to the firewall, for example), the attacker will be able to read from or write to
a protected memory area. Although potentially dangerous, this type of attack is a single-event exploit
and is rather limited. Typically, the request path and the response path are two physically different
buses in the interconnect, so the packet response will be routed to the initiator that was impersonated,
instead of being routed to the malicious initiator. Emerging solutions to maintain the reliability and the
integrity of the request path will also make successful modification of an in-flight request harder.

However, escalating privileges in the access control block or firewalls presents a much higher threat.
For instance, this access can be achieved by impersonating the reprogramming agent or by glitching the

158 Conclusion 6.0

bus during reprogramming to load unintended rules. If attackers can modify access policies for a given
resource, they can gain permanent access and therefore read or modify content at will, such as digital
rights managements (DRM) content, banking or personal information. Recent work demonstrated how
a malicious SoC hardware IP could compromise critical data [LG14], and how Internet of Things (IoT)
devices could not be trusted with secure applications if firewalling and partitioning is not maintained
properly.

Our work introduced the Cryptographically Secure Access Control (CSAC) as a security layer over the
existing network-on-chip hardware management of virtualization of secure/non-secure environments.
CSAC implements two security features. First, it cryptographically authenticates the reprogramming
agent and ensures the integrity of its reprogramming sequences. Second, CSAC ensures the integrity of
the access policies over the SoC by checking and hashing rules per access. The CSAC engine is based on
a Keyed-Hash Message Authentication Code (HMAC) [Nat08], where the key is shared between the re-
programming agent and CSAC core. This key is programmed for each session and the programming is
part of the hardware root-of-trust of the SoC. CSAC supports both hardware and software key delivery,
which are performed at secure boot of the SoC.

CSAC was synthesized in five different versions using a digital library with technology node of 45nm.
The synthesis results were obtained with Cadence Encounter RTL Compiler v13.10. The results show
the impact of including security features in the CSAC core. Each version was split into two firewall
settings: one composed of four regions providing access rights to six initiators and address a space of
4GB; the other enabling the use of 14 initiators and covering a target address space of 64GB, with a
total of 8 protection regions. These results focused on comparing the cost of the enforcement logic and
authentication engine.

Results showed a high overhead, specially in power consumption, which can be restrictive for IoT
deployment. By using two clock domains one for configuration, the other for firewalling CSAC could
speed up the firewall logic and avoid NoC clock frequency loss due to security. Since the authentication
engine is only used when a new protection region is (re)programmed in CSAC, it does not impact the
firewall enforcement logic in a two-clock domain scheme. As a future work in this direction, a full
implementation of this two-clock architecture remains to be evaluated.

Yet another contribution of this thesis regarding hardware protection against side-channel attacks is the
introduction of Correlation Instantaneous Frequency Analysis (CIFA), presented in Section 4.6. This
works investigated the use of instantaneous frequency instead of power amplitude and power spec-
trum in side-channel analysis. By opposition to the constant frequency used in Fourier Transform, in-
stantaneous frequency reflects local phase differences and allows the detecting of frequency variations.
These variations depend on the processed binary data and are hence cryptanalytically useful. The rela-
tionship stems from the fact that after higher power drops more time is required to restore power back
to its nominal value.

Energy consumed during each clock cycle creates a waveform in the power domain. A duty cycle,
i.e., the time during which the power wave is unequal to its nominal value, can be considered as the
execution time of a hardware implemented algorithm. The duty cycle may depend on the processed
data. Fourier transform can not determine local duty cycles since frequency is defined for the sine
or cosine function spanning the whole data length with constant period and amplitude. However,
recent techniques can detect local frequencies and hence determine the wave’s duty cycle. We showed
that, in addition to the signal’s amplitude and spectrum, traditionally used for side-channel analysis,
instantaneous frequency variations may also leak secret data. To the authors’ best knowledge, "pure"
frequency leakage has not been considered as a side-channel vector so far. Hence a re-assessment of
several countermeasures, especially, these based on amplitude alterations, seems in order. Our work
also examined DVS, which makes AES implementation impervious to power and spectrum attacks
while leaving it still vulnerable to CIFA.

IF analysis does not bring specific benefits when applied to unprotected designs on which CPA and
CSBA yield better results. However, CIFA allows to discard the effect of amplitude modification coun-
termeasures, e.g. DVS, because CIFA extracts from signal features are not exploited so far.

6.0 159

Authenticated encryption. Section 5.2 described our proposal of a new authenticated cipher for con-
sideration in the CAESAR competition. Our scheme, called Offset Merkle-Damgård (OMD), is a keyed
compression function mode of operation for nonce-based AEAD. The syntax and security notions for
nonce-based AEAD schemes were formalized by Rogaway in [Rog02,Rog04b]. To instantiate the OMD
mode, we recommend two specific compression functions to be keyed and used in OMD, namely, the
compression functions of the standard SHA-256 and SHA-512 hash functions. OMD parameterized
with these two compression functions is called OMD-SHA256 and OMD-SHA512, respectively. The
former is intended for 32-bit implementations and is our primary recommended algorithm, while the
latter could be used specifically for 64-bit machines and is our secondary algorithm.

We believe that an AE scheme whose security is proved by a modular and easy to verify security reduc-
tion, only relying on some widely-verified standard assumption(s) on its underlying primitive(s), can
get more confidence on its security compared to a scheme that demands strong and idealistic proper-
ties from its underlying primitive(s) or is not supported by a formal security proof. Provable security
helps cryptanalysis efforts to be focused on analyzing the simpler underlying primitives rather than the
whole scheme; hence, building confidence in the security of the scheme becomes easier if the cryptosys-
tem uses well-analyzed and verified primitives.

The main features that make OMD a very strong candidate for the CAESAR competition are:

– Using only a single well-known primitive. OMD is designed as a mode of operation for a keyed
compression function. Together with block ciphers and permutations, compression functions are
among the most well-known and widely used symmetric key primitives. We have a rich source of
secure compression functions thanks to more than two decades of public research and standard-
ization activities of hash functions.

– Provable security based on a single widely-accepted standard assumption. The security goals of
privacy and authenticity for OMD are achieved provably in the sense of reduction-based cryp-
tography; that is, any attack against these security goals will imply an attack against the classical
PRF property of the underlying compression function. We note that any keyed compression func-
tion (either a dedicated-key one or keyed via some part of its input) must provide the classical
PRF property when its key is secret as otherwise it will be considered useless for any secret key
application, e.g. for being used as a MAC. That is, the base PRF assumption on the compression
function upon which the security of OMD relies is highly assured for compression functions of
the practical, standard hash functions, thanks to the vast amount of cryptanalytic work on these
functions.

– Requiring minimal basic operations in addition to the core primitive. The only operations that
OMD needs in addition to its core compression function are the basic operations of bitwise XORing
two binary strings and shifting a binary string.

– Integrated (one-pass) AEAD scheme. In OMD the mechanisms for providing privacy and authentic-
ity of the message are coupled in a single pass of (a variant of) the Merkle-Damgård iteration of
the compression function. This is aimed to make OMD as much efficient as possible (up to the
limits that are inherent to any compression function based AEAD scheme).

– Online Encryption. OMD encryption is online; that is, it outputs a ciphertext stream as a plaintext
stream arrives with a constant latency and using constant memory. After receiving an indication
that the plaintext is over, the final part of ciphertext together with the tag is output.

– Internally Online Decryption. OMD decryption is internally online: one can generate a stream of
plaintext bits as the stream of ciphertext bits comes in, but no part of the plaintext stream will
be revealed before the whole ciphertext stream is decrypted and the tag is verified to be correct.
That is, nothing about the decrypted plaintext should be made available to adversaries if the tag
is incorrect signifying that the queried ciphertext is invalid.

– Flexible key size. OMD-SHA256 can support any key length between 80 bits and 256 bits. This will
be useful for applications requiring unconventional key lengths, e.g. 96-bit keys.

– Efficient. If implemented with a SHA family member, OMD can take advantage of the newly intro-
duced Intel® instructions that support performance acceleration of the Secure Hash Algorithm

160 Conclusion 6.0

(SHA) on Intel® Architecture processors. In particular, our main recommended scheme for CAE-
SAR, called OMD-SHA256, is aimed to get the most out of these new performance accelerating
instructions.

– Resistance against software-level timing attacks. Most AES software implementations risk leaking
their keys through cache timing [Ber05] unless they are implemented on machines with Intel®

CPUs supporting the constant-time AES-NI and PCLMULQDQ instructions. In comparison, we
note that the only operations in OMD-SHA256 are: bitwise XOR, AND and OR of two binary
strings (32-bit words in the compression function of SHA-256 and 256-bit words in the OMD
iteration), fixed-distance (left and right) shift of a binary string (32-bit words in the compression
function of SHA-256 and 256-bit words in the OMD iteration), and 32-bit addition (of words in
the compression function of SHA-256). These operations have the virtue of taking constant time
on typical CPUs in which case the implementations can avoid software-level timing based side-
channel leaks.

The main design rationales behind OMD are the following:

– Provable security. We aimed to have a scheme with a sound security guarantee in the style of
reduction-based provable security relying only on a single well-established standard assumption
on the underlying primitive, namely the PRF assumption on the keyed compression function.
The security goals of privacy and authenticity for OMD are achieved provably; that is, any at-
tack against these security goals will imply an attack against the classical PRF property of the
underlying compression function. We note that any good keyed compression function (either a
dedicated-key one or keyed via some part of its input) must provide the classical PRF property
when its key is secret as otherwise it will be considered useless for almost any secret key applica-
tion, e.g. for being used as the compression function of a hash function in the standard HMAC
algorithm. That is, the base PRF assumption on the compression function upon which the secu-
rity of OMD relies is highly assured for compression functions of the practical, standard hash
functions, thanks to the vast amount of cryptanalytic work on these functions.

– Simple structure. Simplicity is important in any cryptographic algorithm: the easier an algorithm is
to understand, the easier it is to analyze and to get confidence on its security, and also less prone it
is to implementation errors. Therefore, simplicity was one of our core design goals. OMD’s high
level structure is quite simple and resembles the well-known structures for hash functions and
MACs, namely, the part that is processing the message resembles the Merkle-Damgård iteration
where at each iteration random bits are derived from the chaining values to be used for encryption
and a key-dependent offset value is XORed to the chaining values. The part for processing the
associated data is inspired by the XMACC scheme (counter-based XOR MAC scheme) [BGR95]
and is a simple adaptation of the similar hashing process in the OCB3 algorithm [KR11]. We note
that when the message is empty then OMD acts almost the same as XMACC on the associated
data.

– No trapdoor. The designers have not hidden any weaknesses in this cipher. Any attack against secu-
rity of OMD means an attack against the specific compression function that is used for instantiat-
ing OMD. For example, attacking OMD-SHA256 will imply attacking the compression function
of SHA-256 in the PRF sense.

Final thoughts. There exists a huge gap between the scientific state of the art in cryptography and
commercial cryptosystems. Outdated cryptographic protocols and primitives are still used nowadays
despite all the proven attacks against these implementations. Companies are usually reluctant to change
their cryptosystems for several reasons, of which cost is certainly the most important. Deployed cryp-
tosystems that are no longer considered secure and pose a serious threat to users are continually main-
tained, and the responsible actors claim that legacy application is a good enough reason for that.

As a result, only a small fraction of recent research in cryptography is really used in practice; and the
deployed cryptosystems lack implementation care and performance measures (and often lack of proper
parameter selection).

6.0 161

Efforts in cryptology must be taken to ensure that future cryptography developments are well under-
stood and implemented correctly and in a reasonable time frame. Advancements in lightweight cryp-
tosystems will allow the deploying of more and more pervasive networks, ultimately allowing the
broad concept of the Internet of things.

Therefore, novel ideas to improve cryptosystem performances like the ones presented in this thesis are
always welcome, as they enable the evolution of electronic security and privacy.

INDEX

3D, 116
3DES, 51

time-memory tradeoff attack, 60

access control, 103–106, 158
AddRoundKey, 51, 53, 55, 93–97, 99, 100
adversary, 18, 130–132, 137–143
AE, 133, 138, 145, 159
AEAD, 22, 25, 133, 137, 138, 144, 145, 159
AES, 18, 25, 50–56, 65, 93, 94, 96–101, 112, 113, 116,

118–120, 123–125, 134
AES-128, 55, 116, 119, 121, 122, 149
AES-192, 149
AES-256, 149
AES-CCB, 105
AES-GCM, 133, 134
AES-NI, 134
API, 133
application-specific produced, 29, 30
application-specific programmable, 29
ASIC, 28, 29, 33, 41, 53–55, 63, 97
asymmetric, 13, 41
authenticated cipher, 22, 25, 133, 145, 159
authenticated encryption, 22, 105, 126, 133, 144,

145, 183
authenticated tag, 41, 105
authentication, 18, 22, 24, 104–109, 126–132, 158
authentication engine, 109, 110, 158
authenticity, 105, 130, 133, 138–141, 143

Barrett’s algorithm, 66–69, 71–73, 176
Bazeries cylinder, 13
BCH, 23, 24, 66, 67, 75–80
BCH-Barrett, 80
BCH-Barrett-pipelined, 80
BCH-LFSR, 79, 80
BCH-LFSR-improved, 79, 80
BCH-standard, 78, 80
behavioral domain, 27
Berlekamp-Massey algorithm, 77
bipolar, 35
birthday attack, 59
birthday paradox, 59
bitcoin, 66
block-cipher, 14, 18, 25, 51, 62, 63, 133, 144, 145
brute-force attack, 16, 77

CAESAR, 22–25, 133, 145, 149, 159

carry-lookahead, 62
carry-propagate, 62
carry-save, 62–64
CCA, 138, 140, 141, 143
Chien’s search, 77
CIFA, 112, 121–123, 125
ciphertext, 15, 18, 42, 50, 93, 97, 138, 141, 145, 147
circuit layout, 34
CLB, 97
clock domain, 109, 110
clock frequency, 27, 62, 80, 100, 101, 110, 117
closure, 19
CMOS, 30–37, 40, 66, 108, 112
codeword, 15, 75, 76, 79
collision resistance, 57
commutative, 19
compound gate, 34
compression, 25, 61, 62, 133, 134, 140, 143–146, 148–

152, 159
confidentiality, 15, 104, 133, 138, 139
CPA, 62, 94, 121, 123, 125, 138, 140, 143
cryptanalysis, 13, 16–18, 133, 159
cryptoalgorithm, 15
cryptogram, 15
cryptographic engineering, 17, 18
cryptography, 13, 14, 18, 23, 50
cryptology, 13, 14, 19
cryptosystem, 13–19, 23, 26, 27, 41–43, 50, 106
CSAC, 106–111, 158
CSBA, 121, 123, 125

data integrity, 104
decomposition, 113, 114, 116, 119, 121, 122
delay balancing, 62, 63
denial-of-service, 103, 157
DES, 14, 18, 50, 51, 93
digest message, 64, 107, 146, 148
digital library, 30, 31, 80, 96, 100, 101, 109, 158
distinguisher, 112, 119, 123
distributive, 19, 128
DPA, 18, 94, 96, 97, 112, 121
DSBA, 112
DVS, 112, 113, 117, 124, 125

electromagnetic emanations, 18, 93
EMD, 113, 114, 119
encryption table, 42
endomorphic, 42
Enigma machine, 13

error-locator polynomial, 76–78
expansion, 61

fault attack, 24, 93, 108
fault detection, 93, 97, 98, 107
fault injection, 104, 110, 132
fault resistance, 93, 110
Feistel, 14, 50
Fiat-Shamir, 126–131
finite field, 19, 75
firewall, 102–106, 109–111, 158
Fourier analysis, 118
Fourier transform, 24, 112, 117, 118
FPGA, 24, 29, 30, 33, 41, 53–56, 62, 63, 65, 94, 96, 97,

100, 110, 113, 116, 117, 119, 124
FreePDK, 80, 100, 101
frequency analysis, 24, 112, 113, 122, 124
full-custom, 29, 30

GaAs, 35
Gajski-Kuhn Y-chart, 28
Galois Field, 20, 51, 55, 136
gate equivalent, 80, 109, 110
gate leakage, 40
gate-array, 29, 30
generator polynomial, 75, 79, 80
glitching, 103, 158

Hamming code, 67, 75
Hamming distance, 94, 118, 119, 122, 123, 125
Hamming weight, 119
hardcoded key, 108
hardware accelerator, 29, 66
hardware countermeasure, 86
hardware design, 17, 18, 28, 41, 42, 54, 61–63, 78,

104, 105, 112, 116
hardware multiplier, 67
hardware utilization, 54
hardwired, 28–30, 97, 98
HHT, 112–119, 122
hijacking, 103, 105, 157
HMAC, 106–111, 133, 158

index frequency, 115
indistinguishability, 131, 138
instantaneous amplitude, 113, 115
instantaneous frequency, 24, 112, 113, 115, 117, 118,

121, 122, 124
instantaneous phase, 113
integrated circuit, 18, 27, 30, 96
integrity, 13, 22, 24, 103–106, 108, 109, 127, 132, 133,

138, 139, 158
integrity check, 105, 106, 108–110
interconnect, 102–104, 107
inverse, 19, 53, 93
irreducible polynomial, 20, 136

junction leakage, 40

kernel, 41

key compression, 22, 25, 133, 136, 145–149, 159
key delivery, 106, 158
key expansion, 51, 54, 63, 99
key integrity, 108
key management system, 108
key register, 108
key schedule, 55, 116
key-setup latency, 53
keyless compression, 136

last round, 64, 93, 118–120, 123, 125
latency, 55, 56, 63, 65, 79, 102, 105
leakage, 18, 36, 40, 93–96, 101, 109, 112, 117, 118,

134
LFSR, 24, 79, 80, 95, 96, 100, 101
lightweight, 22, 24, 35, 66, 105, 127, 183
logic balancing, 55, 56, 62, 63

man-in-the-middle, 132
mask programmable, 29
masking, 144, 146, 147
masking function, 144
message compression, 61
message schedule, 61, 150, 152
microelectronics, 27
minimal polynomial, 75
MixColumns, 51, 53–55, 93–97
modular division, 78, 79
modular multiplication, 131
modular reduction, 23, 24, 67, 133, 159
modular squaring, 131
modulo, 19, 20, 23, 61, 62, 67, 127
Mooij-Goga-Wesselink algorithm, 128, 129
Moore’s Law, 27
MOSFET, 30
multivariate polynomial, 67, 71

netlist key, 108
network topology, 126, 128, 129, 131, 132
network-on-chip, 102–106, 110, 157
nMOS, 29–33, 35–38
NoC attacks, 103, 104
nonce, 22, 25, 105, 107, 133, 137–142, 144, 145, 147,

149, 159

OMD, 22, 24, 25, 133, 134, 137, 139, 140, 144–149,
159

on-chip fabric, 102
one-time pad, 14
one-wayness, 58
operating system, 41
oscilloscope, 89
overflow check, 108

padding, 61, 142, 146, 147, 149
parity check, 75, 76, 107–110
PCLMULQDQ, 134
permanent fault, 97–99
permutation, 25, 50, 51, 63, 99, 133

Peterson’s algorithm, 77, 78
physical domain, 27, 28
pigeonhole principle, 59
pipeline, 24, 55, 56, 62–65, 79, 80, 94, 98, 108
plaintext, 15, 18, 42, 50, 55, 93, 94, 97, 100, 118, 138,

139, 145
pMOS, 29–33, 35–38
polynomial reduction, 23, 24, 67
polynomial time, 130, 131
power analysis, 18, 94, 112, 113, 121, 124, 125
power attack, 18, 24, 35, 93, 94, 112, 125
power consumption, 18, 23, 24, 27, 29, 30, 32, 34,

40, 63, 80–84, 93–96, 98–101, 109, 110, 112,
116–122, 124, 127, 130

power management, 102
power minimization, 66
power model, 94, 112, 123
power scrambling, 93, 94, 96–99
power trace, 18, 95–97, 113, 117–119, 121–125
private-key, 41, 50, 51, 62, 63, 129, 131
programmable logic array, 29
programming sequence, 104–107, 109, 110, 158
pseudo-random, 50, 95, 137
pseudocode, 78
public-key, 13, 14, 23, 24, 67, 127, 129–131
pull-down, 31, 32, 34, 35
pull-up, 31, 32, 34, 35

QoS, 102, 103
quasi-pipelining, 62

replay attack, 103, 105, 107, 157
reprogramming agent, 103, 105, 106, 158
request path, 103, 105
reverse engineer, 13
Rijndael, 51, 53, 93
RSA, 18, 51, 87, 89, 90, 127
RSA signature, 89
runtime configuration, 24, 93, 98, 99

S-Box, 50, 53, 94, 117
secrecy, 14, 15, 50
secret key, 13, 15, 18, 41, 50, 63, 108, 127, 131, 144,

145
semi-custom, 29, 30
session key, 107, 108
SHA, 25, 61, 62, 133
SHA-1, 25, 133, 145
SHA-2, 61–65, 145
SHA-256, 25, 61, 62, 64, 109–111, 133, 134, 139, 145,

146, 149, 150, 159
SHA-3, 25
SHA-512, 25, 62, 133, 139, 140, 148, 149, 151, 152,

159
ShiftRows, 51, 53, 55, 93–97
Shockley model, 36
side-channel, 18, 24, 41, 86, 87, 94, 112, 113, 117–

119, 121
single-channel MOS, 35

smart-card, 41
SoC, 102–108, 158
software algorithm, 112
software certification, 41
software design, 17, 18, 25, 28, 41, 62, 134
software multiplier, 67
software polling, 110
software security, 41
soundness, 130
standard cell, 29, 30
standard circuit, 28, 29
structural domain, 27, 28
SubBytes, 51, 55, 93–97
substitution, 50, 51, 63
subthreshold conduction, 40
switching activity, 80, 112, 117
switching lemma, 144
symmetric, 13, 14, 41, 50, 62, 67
syndrome, 76, 77
syndrome circuit, 76
syndrome decoding, 76

tag, 134, 139–143, 145–149
technology node, 27, 29, 33, 35, 36, 40
throughput, 54–56, 62, 63, 80, 100, 101, 103, 157
timing attack, 112, 134, 136
topology-aware, 126, 128
transient fault, 97–99
transmission gate, 34
tri-state, 32, 34, 35, 94, 96, 97, 99–101
trusted code, 108
trusted flow, 102
trusted party, 127
trusted software, 23

unrolling, 55, 62, 63
untrusted flow, 102
untrusted software, 23

Verilog, 24, 44, 100
VHDL, 44, 117

working variable, 150, 152

zero-knowledge, 22, 24, 126, 127, 129, 130, 183

LIST OF MAIN ABBREVIATIONS

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
DES Data Encryption Standard
DPA Differential Power Analysis
EPROM Erasable Programmable Read-Only Memory
GF Galois Field
I/O Input/Output
MITM Man-in-the-Middle
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MUX Multiplexer Logic Gate
NIST National Institute of Standards and Technology
NOR Negative OR Logic Gate
NRE Non-Recurring Engineering
PLA Programmable Logic Array
RF Radio-Frequency
RSA Rivest, Shamir and Adleman
VLSI Very-Large-Scale Integration

BIBLIOGRAPHY

[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The EM
side-channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 29–45, Redwood Shores, California, USA, August 13–
15, 2003. Springer, Heidelberg, Germany. 18, 88, 118

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A New Block Cipher Proposal.
NIST AES Proposal, 1998. 44

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technol-
ogy (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001. 41, 55,
93

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of DES and AES,
secure against some attacks. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162
of Lecture Notes in Computer Science, pages 309–318, Paris, France, May 14–16, 2001.
Springer, Heidelberg, Germany. 93

[AHMN13] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia.
Quark: A lightweight hash. Journal of Cryptology, 26(2):313–339, April 2013. 155

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In 29th Annual Symposium on
Foundations of Computer Science, pages 346–355, White Plains, New York, October 24–
26, 1988. IEEE Computer Society Press. 59

[AR05] Dev Anshul and Suman Roy. A ZKP-based identification scheme for base nodes in
wireless sensor networks. In Bart Preneel and Stafford Tavares, editors, SAC 2005: 12th
Annual International Workshop on Selected Areas in Cryptography, volume 3897 of Lecture
Notes in Computer Science, Kingston, Ontario, Canada, August 11–12, 2005. Springer,
Heidelberg, Germany. 127

[ARM13] TZC-400 TrustZone Address Space Controller® Technical Reference Manual, 2013. 105

[Art14] FlexNoC® Interconnect IP, 2014. 105

[Bar87] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Andrew M. Odlyzko, editor, Ad-
vances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science,
pages 311–323, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.
66, 67

[BBK+03] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo Piuri. Er-
ror Analysis and Detection Procedures for a Hardware Implementation of the Ad-
vanced Encryption Standard. IEEE Trans. Computers, pages 492–505, 2003. 93, 98

[BCD+99] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr, Luke O’Connor, Mohammad Peyra-
vian, Jr. Luke, O’connor Mohammad Peyravian, David Stafford, and Nevenko Zunic.
Mars - a candidate cipher for aes. NIST AES Proposal, 1999. 44

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 16–29, Cambridge, Massachusetts, USA, August 11–13, 2004. Springer,
Heidelberg, Germany. 118

[BD15] Kirti Bhanushali and William Rhett Davis. FreePDK15: An Open-Source Predictive
Process Design Kit for 15nm FinFET Technology. In Proceedings of the 2015 Symposium
on International Symposium on Physical Design, ISPD ’15, pages 165–170, Monterey, CA,
USA, 2015. 80

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of Com-
puter Science, pages 394–403, Miami Beach, Florida, October 19–22, 1997. IEEE Com-
puter Society Press. 138

[BECN+04] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
The sorcerer’s apprentice guide to fault attacks. Cryptology ePrint Archive, Report
2004/100, 2004. http://eprint.iacr.org/2004/100. 104

[Bel06] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. Cryptology ePrint Archive, Report 2006/043, 2006. http://eprint.
iacr.org/2006/043. 133

[Ben73] Charles Bennett. Logical Reversibility of Computation. IBM Journal of Research and
Development, pages 525–532, 1973. 112

[Ber05] Daniel Bernstein. Cache-Timing Attacks on AES, 2005. 134, 160

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification
queries in message authentication and authenticated encryption. Cryptology ePrint
Archive, Report 2004/309, 2004. http://eprint.iacr.org/2004/309. 141, 143

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions. In Advances in Cryptology
- CRYPTO ’95, 15th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 27-31, 1995, Proceedings, pages 15–28, 1995. 160

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-
lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes
in Computer Science, pages 450–466, Vienna, Austria, September 10–13, 2007. Springer,
Heidelberg, Germany. 155

[BKMG07] Bradley Battista, Camelia Knapp, Tom McGee, and Vaughn Goebel. Application of the
Empirical Mode Decomposition and Hilbert-Huang Transform to Seismic Reflection
Data. In Geophysics, pages H29–H37. SEG, 2007. 122

[BKMG12] Bradley Battista, Camelia Knapp, Tom McGee, and Vaughn Goebel. Matlab Program
Demonstrating Performing the Empirical Mode Decomposition and Hilbert-Huang
Transform on Seismic Reflection Data, 2012. 122

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Cryptology ePrint
Archive, Report 2000/025, 2000. http://eprint.iacr.org/2000/025. 133, 138

[Boa92] Boualem Boashash. Estimating and Interpreting the Instantaneous Frequency of a
Signal. I. Fundamentals. In Proceedings of the IEEE, pages 520 –538, 1992. 113

[BR60] Raj Chandra Bose and Dwijendra Ray-Chaudhuri. On A Class of Error Correcting
Binary Group Codes. Information and Control, pages 68–79, 1960. 67, 75

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto,
editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Com-
puter Science, pages 317–330, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg,
Germany. 133

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology, 4(1):3–72, 1991. 50

[BS93] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture
Notes in Computer Science, pages 487–496, Santa Barbara, CA, USA, August 16–20, 1993.
Springer, Heidelberg, Germany. 88

http://eprint.iacr.org/2004/100
http://eprint.iacr.org/2006/043
http://eprint.iacr.org/2006/043
http://eprint.iacr.org/2004/309
http://eprint.iacr.org/2000/025

[BWY06] Yigael Berger, Avishai Wool, and Arie Yeredor. Dictionary attacks using keyboard
acoustic emanations. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 06: 13th Conference on Computer and Communications Se-
curity, pages 245–254, Alexandria, Virginia, USA, October 30 – November 3, 2006.
ACM Press. 18

[BZ07] Karthik Baddam and Mark Zwolinski. Evaluation of Dynamic Voltage and Frequency
Scaling as a Differential Power Analysis Countermeasure. In Proceedings of the 20th
International Conference on VLSI Design held jointly with the 6th International Conference:
Embedded Systems, VLSID ’07, pages 854–862, Bangalore, India, 2007. IEEE Computer
Society. 112, 124

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Ro-
bustness. http://competitions.cr.yp.to/caesar.html. 25, 156

[CCGD12] Pascal Cotret, Jeremie Crenne, Guy Gogniat, and Jean-Philippe Diguet. Bus-based MP-
SoC Security Through Communication Protection: A Latency-efficient Alternative. In
Proceedings of the 2012 IEEE 20th International Symposium on Field-Programmable Custom
Computing Machines, FCCM ’12, pages 200–207, Washington, DC, USA, 2012. IEEE
Computer Society. 106

[CDKM04] Francis Crowe, Alan Daly, Tim Kerins, and William P. Marnane. Single-chip FPGA Im-
plementation of a Cryptographic Co-Processor. In Proceedings of the 2004 IEEE Interna-
tional Conference on Field-Programmable Technology, pages 279–285, Brisbane, Australia,
2004. 62

[CEGK98] Guy Côté, Berna Erol, Michael Gallant, and Faouzi Kossentini. H.263+: Video Coding
at Low Bit Rates. IEEE Transactions on. Circuits and Systems for Video Technology, pages
849–866, 1998. 67

[CG03] Pawel Chodowiec and Kris Gaj. Very compact FPGA implementation of the AES
algorithm. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2003, volume 2779 of Lecture Notes in
Computer Science, pages 319–333, Cologne, Germany, September 8–10, 2003. Springer,
Heidelberg, Germany. 54

[Cha24] Jean-François Champollion. Précis du Système Hiéroglyphique des Anciens Égyptiens. Im-
primerie royale, 1824. 13

[CHdAdC15] Jean-Michel Cioranesco, Craig Hampel, Guilherme Ozari de Almeida, and Ro-
drigo Portella do Canto. Cryptographically Secure On-Chip Firewalling. In Network
and System Security - 9th International Conference, NSS’15, pages 428–438, New York,
NY, USA, 2015. 23

[Chi06] Robert Chien. Cyclic Decoding Procedures for Bose- Chaudhuri-Hocquenghem
Codes. IEEE Transactions on Information Theory, pages 357–363, 2006. 67, 75, 77

[CHVV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password
interception in a SSL/TLS channel. In Dan Boneh, editor, Advances in Cryptology –
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–599, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany. 133

[CKSV06] Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and Stamatis Vassiliadis. Improv-
ing SHA-2 hardware implementations. In Louis Goubin and Mitsuru Matsui, edi-
tors, Cryptographic Hardware and Embedded Systems – CHES 2006, volume 4249 of Lec-
ture Notes in Computer Science, pages 298–310, Yokohama, Japan, October 10–13, 2006.
Springer, Heidelberg, Germany. 63, 64, 65

[CMN+14] Simon Cogliani, Diana-Stefania Maimuţ, David Naccache, Rodrigo Portella do Canto,
Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár. OMD: A compression func-
tion mode of operation for authenticated encryption. In Antoine Joux and Amr M.
Youssef, editors, SAC 2014: 21st Annual International Workshop on Selected Areas in Cryp-
tography, volume 8781 of Lecture Notes in Computer Science, pages 112–128, Montreal,
QC, Canada, August 14–15, 2014. Springer, Heidelberg, Germany. 25

[CP98] Crispin Cowan and Calton Pu. Death, Taxes, and Imperfect Software: Surviving the
Inevitable. In Proceedings of the 1998 Workshop on New Security Paradigms, NSPW ’98,
pages 54–70, New York, NY, USA, 1998. 41

http://competitions.cr.yp.to/caesar.html

[CS07] Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ci-
phers and different modes of operations. Cryptology ePrint Archive, Report 2007/029,
2007. http://eprint.iacr.org/2007/029. 10, 144, 146

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB 46, U.S. De-
partment of Commerce, January 1977. 41

[DEV+07] Jean-Philippe Diguet, Samuel Evain, Romain Vaslin, Guy Gogniat, and Emmanuel
Juin. NOC-centric Security of Reconfigurable SoC. In Proceedings of the First Inter-
national Symposium on Networks-on-Chip, NOCS ’07, pages 223–232, Washington, DC,
USA, 2007. IEEE Computer Society. 103

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976. 13, 14

[DMO04a] Luigi Dadda, Marco Macchetti, and Jeff Owen. An ASIC Design for a High Speed
Implementation of the Hash Function SHA-256 (384, 512). In Proceedings of the 14th
ACM Great Lakes Symposium on VLSI, pages 421–425, Boston, MA, USA, 2004. 62

[DMO04b] Luigi Dadda, Marco Macchetti, and Jeff Owen. The Design of a High Speed ASIC
Unit for the Hash Function SHA-256 (384, 512). In Design, Automation and Test in
Europe Conference and Exposition, DATE ’04, pages 70–75, Paris, France, 2004. 62

[DPR00] Andreas Dandalis, Viktor K. Prasanna, and José D. P. Rolim. A comparative study of
performance of AES final candidates using FPGAs. In Çetin Kaya Koç and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2000, volume 1965
of Lecture Notes in Computer Science, pages 125–140, Worcester, Massachusetts, USA,
August 17–18, 2000. Springer, Heidelberg, Germany. 53, 55, 63

[DR99] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. NIST AES Proposal, 1999.
44

[EKY11] Barics Ege, Elif Bilge Kavun, and Tolga Yalcin. Memory Encryption for Smart Cards.
In Proceedings of the 10th International Conference on Smart Card Research and Advanced
Applications, CARDIS’11, pages 199–216, Berlin, Heidelberg, 2011. Springer-Verlag.
105

[EYCP00] Adam Elbirt, Wai Yip, Brendon Chetwynd, and Christof Paar. An FPGA Implemen-
tation and Performance Evaluation of the AES Block-Cipher Candidate Algorithm
Finalists. In AES Candidate Conference, pages 13–27, 2000. 55

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authenti-
cation for RFID systems using the AES algorithm. In Marc Joye and Jean-Jacques
Quisquater, editors, Cryptographic Hardware and Embedded Systems – CHES 2004, vol-
ume 3156 of Lecture Notes in Computer Science, pages 357–370, Cambridge, Mas-
sachusetts, USA, August 11–13, 2004. Springer, Heidelberg, Germany. 54

[Fei73] Horst Feistel. Cryptography and Computer Privacy. Scientific American, 1973. 14
[Fei74] Horst Feistel. Block Cipher Cryptographic System, 1974. US Patent 3,798,359. 14
[FFLW11] Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob Wenzel. McOE: A fam-

ily of almost foolproof on-line authenticated encryption schemes. Cryptology ePrint
Archive, Report 2011/644, 2011. http://eprint.iacr.org/2011/644. 133

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988. 127

[Fou98] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap
Politics and Chip Design. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998. 51

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany. 127, 128, 130

[GB05] Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to the smallest.
In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 427–440,
Edinburgh, UK, August 29 – September 1, 2005. Springer, Heidelberg, Germany. 55,
56, 65

http://eprint.iacr.org/2007/029
http://eprint.iacr.org/2011/644

[GBC+96] Ulrich Golze, Peter Blinzer, Elmar Cochlovius, Michael Schafers, and Klaus-Peter
Wachsmann. VLSI Chip Design with the Hardware Description Language VERILOG: An
Introduction Based on a Large RISC Processor Design. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1996. 8, 28, 29

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware
and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer Science,
pages 426–442, Washington, D.C., USA, August 10–13, 2008. Springer, Heidelberg,
Germany. 118

[GC01] Kris Gaj and Pawel Chodowiec. Fast implementation and fair comparison of the final
candidates for advanced encryption standard using field programmable gate arrays.
In David Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture
Notes in Computer Science, pages 84–99, San Francisco, CA, USA, April 8–12, 2001.
Springer, Heidelberg, Germany. 55

[GCC88] Marc Girault, Robert Cohen, and Mireille Campana. A generalized birthday attack.
In C. G. Günther, editor, Advances in Cryptology – EUROCRYPT’88, volume 330 of
Lecture Notes in Computer Science, pages 129–156, Davos, Switzerland, May 25–27, 1988.
Springer, Heidelberg, Germany. 59

[GHT05] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM analysis of Rijndael and ECC on
a wireless Java-based PDA. In Josyula R. Rao and Berk Sunar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer
Science, pages 250–264, Edinburgh, UK, August 29 – September 1, 2005. Springer, Hei-
delberg, Germany. 112

[GK83] Daniel Gajski and Robert Kuhn. New VLSI Tools. Computer, pages 11–14, 1983. 8, 28

[GLG+02] Tim Grembowski, Roar Lien, Kris Gaj, Nghi Nguyen, Peter Bellows, Jaroslav Flidr,
Tom Lehman, and Brian Schott. Comparative analysis of the hardware implementa-
tions of hash functions SHA-1 and SHA-512. In Agnes Hui Chan and Virgil D. Gligor,
editors, ISC 2002: 5th International Conference on Information Security, volume 2433 of
Lecture Notes in Computer Science, pages 75–89, Sao Paulo, Brazil, September 30 – Octo-
ber 2, 2002. Springer, Heidelberg, Germany. 62

[GM90] Paul Gray and Robert Meyer. Analysis and Design of Analog Integrated Circuits. John
Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 1990. 39

[GMN+15] Rémi Géraud, Diana-Stefania Maimuţ, David Naccache, Rodrigo Portella do Canto,
and Emil Simion. Applying cryptographic acceleration techniques to error correction.
Cryptology ePrint Archive, Report 2015/886, 2015. http://eprint.iacr.org/
2015/886. 23

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis:
Concrete results. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 251–261, Paris, France, May 14–16, 2001. Springer,
Heidelberg, Germany. 18, 88

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. 127

[GP07] Gert-Martin Greuel and Gerhard Pfister. A Singular Introduction to Commutative Alge-
bra. Springer, 2nd edition, 2007. 77

[GPZ60] Daniel Gorenstein, William Wesley Peterson, and Neal Zierler. Two-Error Correcting
Bose-Chaudhuri Codes are Quasi-Perfect. Information and Control, pages 291–294, 1960.
67, 75

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and memory. In C. G.
Günther, editor, Advances in Cryptology – EUROCRYPT’88, volume 330 of Lecture Notes
in Computer Science, pages 123–128, Davos, Switzerland, May 25–27, 1988. Springer,
Heidelberg, Germany. 127

http://eprint.iacr.org/2015/886
http://eprint.iacr.org/2015/886

[GTC05] Catherine Gebotys, Agnes Tiu, and Xiaojing Chen. A Countermeasure for EM Attack
of a Wireless PDA. In International Symposium on Information Technology: Coding and
Computing, ITCC ’05, pages 544–549, Las Vegas, NV, USA, 2005. 112

[Gut03] Peter Gutmann. Cryptographic Security Architecture Design and Verification. SpringerVer-
lag, 2003. 41

[HC99] Ivan Hamer and Paul Chow. DES cracking on the transmogrifier 2a. In Çetin
Kaya Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems
– CHES’99, volume 1717 of Lecture Notes in Computer Science, pages 13–24, Worcester,
Massachusetts, USA, August 12–13, 1999. Springer, Heidelberg, Germany. 50

[HCPdCOdA15] Craig Hampel, Jean-Michel Cioranesco, Rodrigo Portella do Canto, and Guilherme
Ozari de Almeida. Implementing Access Control by System-on-Chip, July 30 2015.
WO Patent App. PCT/US2015/013,095. 23

[HEL05] HELION. HELION: Fast SHA-2 (256) Hash Core for Xilinx FPGA.
http://www.heliontech.com/hash.htm, 2005. 64, 65

[Hoc59] Alexis Hocquenghem. Codes Correcteurs d’Erreurs. Chiffres, pages 147–158, 1959. 77
[HS05] Norden Huang and Samuel Shen. The Hilbert-Huang Transform and its Applications.

World Scientific Publishing Company, 2005. 113
[HSL+98] Norden Huang, Zheng Shen, Steven Long, Manli Wu, Hsing Shih, Quanan Zheng,

Nai-Chyuan Yen, Chi Chao Tung, and Henry Liu. The Empirical Mode Decomposi-
tion and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences, pages 903–995, 1998. 113, 115

[HV04] Alireza Hodjat and Ingrid Verbauwhede. A 21.54 Gbits/s Fully Pipelined AES Pro-
cessor on FPGA. In 12th IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM ’04, pages 308–309, Napa, CA, USA, 2004. 56, 65

[IKM00] Tetsuya Ichikawa, Tomomi Kasuya, and Mitsuru Matsui. Hardware Evaluation of the
AES Finalists. In AES Candidate Conference, pages 279–285, 2000. 55

[Int13] Intel® SHA Extensions, 2013. 133
[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing GCM

security proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany. 134

[Jr.96] Burton Kaliski Jr. IEEE P1363: A Standard for RSA, Diffie-Hellman, and Elliptic-Curve
Cryptography. In Security Protocols, International Workshop, pages 117–118, Cambridge,
UK, 1996. 18

[JTS03] Kimmo Järvinen, Matti Tommiska, and Jorma Skyttä. A Fully Pipelined Memoryless
17.8 Gbps AES-128 Encryptor. In Proceedings of the 2003 ACM/SIGDA - 11th Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA ’03, pages 207–215, Mon-
terey, CA, USA, 2003. 56, 65

[Ker83] Auguste Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Militaires, pages
5–83, 1883. 16

[Key75] Robert Keyes. Physical Limits in Digital Electronics. In IEEE Proceedings, pages 740–
767, 1975. 112

[KGS+11] Armin Krieg, Johannes Grinschgl, Christian Steger, Reinhold Weiss, and Josef Haid.
A Side Channel Attack Countermeasure Using System-on-chip Power Profile Scram-
bling. In Proceedings of the 2011 IEEE 17th International On-Line Testing Symposium,
IOLTS ’11, pages 222–227, Washington, DC, USA, 2011. IEEE Computer Society. 112,
124

[Kil07] Steve Kilts. Advanced FPGA Design: Architecture, Implementation, and Optimization.
Wiley-IEEE Press, 2007. 42

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lec-
ture Notes in Computer Science, pages 388–397, Santa Barbara, CA, USA, August 15–19,
1999. Springer, Heidelberg, Germany. 17, 18, 89, 93, 118

[KLMR04] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan. Security As a New
Dimension in Embedded System Design. In Proceedings of the 41st Annual Design Au-
tomation Conference, DAC ’04, pages 753–760, New York, NY, USA, 2004. ACM. 104

[KM10] Daniel Kaslovsky and François Meyer. Noise Corruption of Empirical Mode Decom-
position and its Effect on Instantaneous Frequency. Advances in Adaptive Data Analysis,
pages 373–396, 2010. 113

[KNdAdC13] Roman Korkikian, David Naccache, Guilherme Ozari de Almeida, and Ro-
drigo Portella do Canto. Practical Instantaneous Frequency Analysis Experiments.
In E-Business and Telecommunications - International Joint Conference, ICETE ’13, pages
17–34, Reykjavik, Iceland, 2013. 24

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume
1109 of Lecture Notes in Computer Science, pages 104–113, Santa Barbara, CA, USA,
August 18–22, 1996. Springer, Heidelberg, Germany. 17, 18, 87, 93, 112

[Koc08] Cetin Kaya Koc. Cryptographic Engineering. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008. 44, 90, 91

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, Fast Software Encryption – FSE 2011,
volume 6733 of Lecture Notes in Computer Science, pages 306–327, Lyngby, Denmark,
February 13–16, 2011. Springer, Heidelberg, Germany. 10, 144, 146, 160

[Kuh02] Markus G. Kuhn. Optical time-domain eavesdropping risks of CRT displays. In
2002 IEEE Symposium on Security and Privacy, pages 3–18, Berkeley, California, USA,
May 12–15, 2002. IEEE Computer Society Press. 18

[KV01] Henry Kuo and Ingrid Verbauwhede. Architectural optimization for a 1.82Gbits/sec
VLSI implementation of the AES Rijndael algorithm. In Çetin Kaya Koç, David
Naccache, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems
– CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 51–64, Paris,
France, May 14–16, 2001. Springer, Heidelberg, Germany. 55

[KY01] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure
modes of operation. In Bruce Schneier, editor, Fast Software Encryption – FSE 2000,
volume 1978 of Lecture Notes in Computer Science, pages 284–299, New York, NY, USA,
April 10–12, 2001. Springer, Heidelberg, Germany. 133

[LG14] Michael LeMay and Carl A. Gunter. Network-on-Chip Firewall: Countering De-
fective and Malicious System-on-Chip Hardware. Computing Research Repository,
abs/1404.3465, 2014. 103, 158

[LGG04] Roar Lien, Tim Grembowski, and Kris Gaj. A 1 Gbit/s partially unrolled architecture
of hash functions SHA-1 and SHA-512. In Tatsuaki Okamoto, editor, Topics in Cryptol-
ogy – CT-RSA 2004, volume 2964 of Lecture Notes in Computer Science, pages 324–338,
San Francisco, CA, USA, February 23–27, 2004. Springer, Heidelberg, Germany. 62

[LU02] Joe Loughry and David Umphress. Information Leakage From Optical Emanations.
ACM Transactions on Information and System Security, pages 262–289, 2002. 18

[Luo10] Qiasi Luo. Enhance Multi-bit Spectral Analysis on Hiding in Temporal Dimension.
In Smart Card Research and Advanced Application, Lecture Notes in Computer Science,
pages 13–23. Springer, 2010. 112

[LV08] Christian Lavault and Mario Valencia-Pabon. A Distributed Approximation Algo-
rithm for the Minimum Degree Minimum Weight Spanning Trees. Journal of Parallel
and Distributed Computing, pages 200–208, 2008. 128

[MC80] Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley, 1980.
112

[MCMM06] Robert McEvoy, Francis Crowe, Colin Murphy, and William Marnane. Optimization
of the SHA-2 Family of Hash Functions on FPGAs. In IEEE Computer Society Annual
Symposium on VLSI, ISVLSI ’06, pages 317–322, Karlsruhe, Germany, 2006. 64, 65

[MD05] Marco Macchetti and Luigi Dadda. Quasi-Pipelined Hash Circuits. In 17th IEEE Sym-
posium on Computer Arithmetic, ARITH-17 ’05, pages 222–229, Cape Cod, MA, USA,
2005. 62

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Commun. ACM,
21(4):294–299, April 1978. 13

[MG11] Edgar Mateos and Catherine Gebotys. Side Channel Analysis using Giant Magneto-
Resistive (GMR) Sensors. In 2nd International Workshop on Constructive Side-Channel
Analysis and Secure Design, COSADE ’11, pages 42–49, Darmstadt, Germany, 2011. 112

[MGW] Arjan Mooij, Nicolae Goga, and Wieger Wesselink. A Distributed Spanning Tree Al-
gorithm for Topology-Aware Networks. DASD ’04. 128, 129

[MM01] Máire McLoone and John V. McCanny. High performance single-chip FPGA Rijn-
dael algorithm implementations. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume
2162 of Lecture Notes in Computer Science, pages 65–76, Paris, France, May 14–16, 2001.
Springer, Heidelberg, Germany. 55

[MM02] Máire McLoone and John McCanny. Efficient Single-Chip Implementation of SHA-
384 and SHA-512. In Proceedings of the 2002 IEEE International Conference on Field-
Programmable Technology, FPT ’02, pages 311–314, Hong Kong, China, 2002. 62

[MM03] Maire McLoone and John McCanny. System-On-Chip Architectures and Implementations
for Private-Key Data Encryption. Plenum Publishing Co., 2003. 13, 41, 42

[Mon85] Peter Montgomery. Modular Multiplication without Trial Division. Mathematics of
Computation, pages 519–521, 1985. 87

[Moo00] Gordon Moore. Readings in computer architecture. chapter Cramming More Compo-
nents Onto Integrated Circuits, pages 56–59. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2000. 27

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks - Reveal-
ing the Secrets of Smart Cards. Springer, 2007. 93

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North
Holland, 1977. 77

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. The CRC Press series on discrete mathematics and its applications. CRC
Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997. 8, 15

[Nat04] National Institute of Standards and Technology (NIST). Recommendation for Block Ci-
pher Modes of Operation: The CCM Mode for Authentication and Confidentiality, 2004. 105

[Nat06] National Institute of Standards and Technology (NIST). Security Requirements for Cryp-
tographic Modules, 2006. 41

[Nat08] National Institute of Standards and Technology (NIST). The Keyed-Hash Message Au-
thentication Code, 2008. 106, 158

[Nat12] National Institute of Standards and Technology (NIST). SHA-3 Competition, 2012.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html. 156

[OMA14] OMAP543x® Technical Reference Manual, 2014. 105

[OSBHR10] Paul Duplys Oliver Schimmel, Eberhard Böhl, Jan Hayek, and Wolfgang Rosenstiel.
Correlation Power Analysis in Frequency Domain. In First International Workshop on
Constructive Side-Channel Analysis and Secure Design, COSADE ’10, pages 1–3, Darm-
stadt, Germany, 2010. 112

[PdCK14] Rodrigo Portella do Canto and Roman Korkikian. Hardware Encryption and Decryp-
tion Apparatus Using a N Round AES Algorithm, April 16 2014. EP Patent App.
EP20,120,306,245. 24

[PdCKN16] Rodrigo Portella do Canto, Roman Korkikian, and David Naccache. The New Code-
breakers: Essays Dedicated to David Kahn on the Occasion of His 85th Birthday, chapter
Buying AES Design Resistance with Speed and Energy, pages 134–147. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016. 24

[PGQK09] Zhang Peng, Deng Gaoming, Zhao Qiang, and Chen Kaiyan. EM Frequency Domain
Correlation Analysis on Cipher Chips. In Information Science and Engineering, ICISE
’09, pages 1729–1732, Nanjing, China, 2009. 112

http://csrc.nist.gov/groups/ST/hash/sha- 3/index.html

[PP09] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students and
Practitioners. Springer, 1st edition, 2009. 8, 13, 17, 57

[PST+02] Adrian Perrig, Robert Szewczyk, Doug Tygar, Victor Wen, and David Culler. SPINS:
Security Protocols for Sensor Networks. Wireless Networks, pages 521–534, 2002. 127

[QS01] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Mea-
sures and Counter-Measures for Smart Cards. In Smart Card Programming and Secu-
rity, International Conference on Research in Smart Cards, E-SMART ’01, pages 200–210,
Cannes, France, 2001. 18

[Raz06] Behzad Razavi. Fundamentals of Microelectronics. Wiley, 2006. 27

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher
mode of operation for efficient authenticated encryption. In ACM CCS 01: 8th Confer-
ence on Computer and Communications Security, pages 196–205, Philadelphia, PA, USA,
November 5–8, 2001. ACM Press. 133, 138

[RMMM03] Kaushik. Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage Cur-
rent Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS
Circuits. Proceedings of the IEEE, pages 305–327, 2003. 39

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications Security,
pages 98–107, Washington D.C., USA, November 18–22, 2002. ACM Press. 133, 137,
144, 159

[Rog04a] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in Cryptology – ASI-
ACRYPT 2004, volume 3329 of Lecture Notes in Computer Science, pages 16–31, Jeju
Island, Korea, December 5–9, 2004. Springer, Heidelberg, Germany. 10, 144, 146

[Rog04b] Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi
Meier, editors, Fast Software Encryption – FSE 2004, volume 3017 of Lecture Notes in
Computer Science, pages 348–359, New Delhi, India, February 5–7, 2004. Springer, Hei-
delberg, Germany. 133, 159

[Ros96] David Rosenblum. Formal Methods and Testing: Why the State-of-the Art is Not the
State-of-the Practice. SIGSOFT Software, pages 64–66, 1996. 41

[RRSY98] Ron Rivest, Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin. The RC6 Block Cipher.
NIST AES Proposal, 1998. 44

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 373–390, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Heidelberg, Germany. 133

[RSQL04] Gaël Rouvroy, François-Xavier Standaert, Jean-Jacques Quisquater, and Jean-Didier
Legat. Compact and Efficient Encryption/Decryption Module for FPGA Implementa-
tion of the AES Rijndael Very Well Suited for Small Embedded Applications. In Inter-
national Conference on Information Technology: Coding and Computing, ITCC ’04, pages
583–587, Las Vegas, NV, USA, 2004. 54

[SCG+03] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-
vadas. Efficient Memory Integrity Verification and Encryption for Secure Proces-
sors. In Proceedings of the 36th Annual International Symposium on Microarchitecture,
MICRO’03, pages 339–350, Washington, DC, USA, 2003. IEEE Computer Society. 104

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, New York, second edition,
1996. 63

[Sch00] Bruce Schneier. A Self-study Course in Block-cipher Cryptanalysis. Cryptologia, pages
18–33, 2000. 16

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical
Journal, 28(4):656–715, 1949. 14

[SHA93] Secure hash standard. National Institute of Standards and Technology, NIST FIPS
PUB 180, U.S. Department of Commerce, May 1993. 60

[SHA95] Secure hash standard. National Institute of Standards and Technology, NIST FIPS
PUB 180-1, U.S. Department of Commerce, April 1995. 61, 133, 146, 148, 149, 179, 180,
182

[Sho52] William Shockley. A Unipolar “Field-Effect” Transistor. Proceedings of The Institute of
Radio Engineers, 40:1365–1376, 1952. 36

[SK] Nicolas Sklavos and Odysseas Koufopavlou. On the Hardware Implementations of
the SHA-2 (256, 384, 512) Hash Functions. In Proceedings Of The IEEE International
Symposium On Circuits And Systems. 64, 65

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Fer-
guson. The Twofish Encryption Algorithm: A 128-bit Block Cipher. NIST AES Proposal,
1998. 44

[SL07] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning
trees to within one of optimal. In David S. Johnson and Uriel Feige, editors, 39th
Annual ACM Symposium on Theory of Computing, pages 661–670, San Diego, California,
USA, June 11–13, 2007. ACM Press. 128

[SM99] Timothy Shimeall and John McDermott. Software Security in an Internet World: An
Executive Summary. IEEE Software, pages 58–61, 1999. 41

[SMMS03] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Antonio Strollo. An
FPGA-Based Performance Analysis of the Unrolling, Tiling, and Pipelining of the AES
Algorithm. In Field Programmable Logic and Application - 13th International Conference,
FPL ’03, pages 292–302, Lisbon, Portugal, 2003. 56, 65

[SPG+12] Johanna Sepulveda, Ricardo Pires, Guy Gogniat, Wang Jiang Chau, and Marius Strum.
QoSS Hierarchical NoC-based Architecture for MPSoC Dynamic Protection. Interna-
tional Journal of Reconfigurable Computing, pages 3:3–3:3, 2012. 103, 105

[SRQL03] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-Didier
Legat. Efficient implementation of Rijndael encryption in reconfigurable hardware:
Improvements and design tradeoffs. In Colin D. Walter, Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2003, volume 2779
of Lecture Notes in Computer Science, pages 334–350, Cologne, Germany, September 8–
10, 2003. Springer, Heidelberg, Germany. 56, 65

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-
bit blockcipher CLEFIA (extended abstract). In Alex Biryukov, editor, Fast Software
Encryption – FSE 2007, volume 4593 of Lecture Notes in Computer Science, pages 181–
195, Luxembourg, Luxembourg, March 26–28, 2007. Springer, Heidelberg, Germany.
155

[Ste94] Raymond Steele. Mobile Radio Communications. IEEE Press, 1994. 67

[Sti95] Douglas Stinson. Cryptography - Theory and Practice. Discrete Mathematics and its
Applications Series. CRC Press, 1995. 17

[TAL97] Richard Tolimieri, Myoung An, and Chao Lu. Mathematics of Multidimensional Fourier
Transform Algorithms. Signal Processing and Digital Filtering. Springer, New York,
Berlin, Heidelberg, 1997. 70

[THM15] Wade Trappe, Richard Howard, and Robert Moore. Low-Energy Security: Limits and
Opportunities in the Internet of Things. IEEE Security & Privacy, pages 14–21, 2015.
81

[Til99] Henk Van Tilborg. Fundamentals of Cryptology: A Professional Reference and Interactive
Tutorial. Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1999. 14, 41

[TKM88] Kai-Yap Toh, Ping-Keung Ko, and Robert Meyer. An Engineering Model for Short-
Channel MOS Devices. IEEE Journal of Solid-State Circuits, pages 950–958, 1988. 38

[Tyg96] J. D. Tygar. Atomicity in electronic commerce. In James E. Burns and Yoram Moses,
editors, 15th ACM Symposium Annual on Principles of Distributed Computing, pages 8–
26, Philadelphia, PA, USA, August 23–26, 1996. Association for Computing Machinery.
92

[TYLL02] Kurt Ting, Steve Yuen, Kin-Hong Lee, and Philip Heng Wai Leong. An FPGA-Based
SHA-256 Processor. In Field-Programmable Logic and Applications, Reconfigurable Com-
puting Is Going Mainstream - 12th International Conference, FPL ’02, pages 577–585,
Montpellier, France, 2002. 62

[UMS11] Siba Udgata, Alefiah Mubeen, and Samrat Sabat. Wireless Sensor Network Security
Model Using Zero Knowledge Protocol. In Proceedings of IEEE International Conference
on Communications, ICC ’11, pages 1–5, Kyoto, Japan, 2011. 127

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC,
WTLS... In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, vol-
ume 2332 of Lecture Notes in Computer Science, pages 534–546, Amsterdam, The Nether-
lands, April 28 – May 2, 2002. Springer, Heidelberg, Germany. 133

[Vau05] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for Communica-
tions Security. Springer-Verlag New York, Inc., 2005. 13, 50

[Ver] Gilbert Vernam. Cipher Printing Telegraph Systems For Secret Wire and Radio Tele-
graphic Communications,. American Institute of Electrical Engineers. 14

[WBRF00] Bryan Weeks, Mark Bean, Tom Rozylowicz, and Chris Ficke. Hardware Performance
Simulations of Round 2 Advanced Encryption Standard Algorithms. In AES Candidate
Conference, pages 286–304, 2000. 55

[WH10] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th edition, 2010. 8, 11, 27, 28, 30, 38

[WT85] Robert Walker and Donald Thomas. A Model of Design Representation and Synthesis.
In Proceedings of the 22nd ACM/IEEE Design Automation Conference, DAC ’85, pages
453–459, Piscataway, NJ, USA, 1985. 28

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 17–36, Santa Barbara, CA, USA, August 14–18, 2005.
Springer, Heidelberg, Germany. 60

[Zie60] Neal Zierler. On Decoding Linear Error-Correcting Codes. IRE Transactions on Infor-
mation Theory, pages 450–459, 1960. 67, 75

[ZNC04] Joseph Zambreno, David Nguyen, and Alok Choudhary. Exploring Area/Delay
Tradeoffs in an AES FPGA Implementation. In Field Programmable Logic and Appli-
cation - 14th International Conference, FPL ’04, pages 575–585, Leuven, Belgium, 2004.
56, 65

[ZP04] Xinmiao Zhang and Keshab Parhi. High-Speed VLSI Architectures for the AES Algo-
rithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages 957–967,
2004. 56, 65

APPENDIX A

CODE: BARRETT’S ALGORITHM FOR
POLYNOMIALS

p1(x) =
∑7

i=0(10 + i)xi and p2(x) = x3 + x2 + 110

(define p1 ’((7 17) (6 16) (5 15) (4 14) (3 13) (2 12) (1 11) (0 10)))

(define p2 ’((3 1) (2 1) (0 110)))

;shifting a polynomial to the right

(define shift (lambda (l q)

(if (or (null? l) (< (caar l) q)) ’() (cons (cons (- (caar l) q) (cdar l))

(shift (cdr l) q)))))

;adding polynomials

(define add (lambda (p q)

(degre (if (>= (caar p) (caar q)) (cons p (list q)) (add q p)))))

;multiplying a term by a polynomial, without monomials ≺ xlim

(define txp (lambda (terme p lim)

(if (or (null? p) (> lim (+ (car terme) (caar p)))) ’() (cons (cons (+ (car terme)

(caar p)) (list (* (cadr terme) (cadar p)))) (txp terme (cdr p) lim)))))

;multiplying a polynomial by a polynomial, without monomials ≺ xlim

(define mul (lambda (p1 p2 lim)

(if p1 (cons (txp (car p1) p2 lim) (mul (cdr p1) p2 lim)) ’())))

;management of the exponents

(define sort (lambda (p n)

(if p (+ ((lambda(x) (if x (cadr x) 0)) (assoc n (car p))) (sort (cdr p) n)) 0)))

178 Code: Barrett’s Algorithm for Polynomials A.0

(define order (lambda (p n)

(if(> 0 n) ’() (let ((factor (sort p n))) (if (not (zero? factor))

(cons (cons n (list factor)) (order p (-n 1))) (order p (-n 1)))))))

(define degre (lambda(p) (order p ((lambda(x)(if x x -1)) (caaar p)))))

;Euclidean division

(define divide (lambda (q p r)

(if (and p (<= (caar p) (caar q))) (let ((tampon (cons (- (caar q)(caar p))

(list (/ (cadar q) (cadar p)))))) (divide (add (map (lambda(x) (cons (car x)

(list (-cadr x)))))(txp tampon p -1)) q) p (cons tampon r))) (reverse r)))

(define division (lambda (q p) (divide q p ’())))

;Barrett(k, L, last_P and Y representing K, L, P and y⃗)

(define k)

(define y)

(define L 8)

(define last_P)

(define barrett (lambda (q p)

(if (eq ? last_P p) (letrec ((g (caar q)) (h (- (+ g 1) y))) (shift (degre (mul
(shift k (-L g 1)) (shift q y) h)) h)) (begin (set! k (division (list (cons L ’(1)
)) p)) (set! y (caar (set! last_P p))) (barrett q p))))

APPENDIX B

COMPRESSION FUNCTIONS

B.1 Compression Functions of SHA-256 and SHA-512

We recall the compression functions of the standard SHA-256 and SHA-512 hash functions following NIST FIPS
PUB 180-4 [SHA95]. We denote the underlying compression functions of these standard hash functions by sha-256
and sha-512, respectively.

Note. In the following, by word we mean a group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on
the compression function algorithm. Namely, in sha-256 each word is a 32-bit string and in sha-512 each word is a
64-bit string.

ROTRn(x): The rotate right (circular right shift) operation, where x is a w-bit word and n an integer with
0 ≤ n < w, is defined by ROTRn(x) = (x ≫ n) ∨ (x ≪ w − n)

SHRn(x): The right shift operation, where x is a w-bit word and n an integer with 0 ≤ n < w, is defined by
SHRn(x) = (x ≫ n).

Choice Function. Let m be 32 in the case of sha-256 and 64 in the case of sha-512. The choice function takes as
input two m-bit words y and z, and one m-bit word x selector input, and returns an m-bit word. Every value of
a single bit of x is used to select one of the bit of the m pairs (from (y0, y1) to (zm−2, zm−1)). It is similar to an
m-to-m/2 multiplexer (i.e., m 2-to-1 multiplexers). One can use indifferently whether inclusive OR (∨) or exclusive
OR (⊕). The function is defined as follows:

Ch :
∣∣∣∣ {0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y) ⊕ (¬x ∧ z)

Majority Function. Let m be 32 in the case of sha-256 and 64 in the case of sha-512. In Boolean logic, the majority
function (also called the median operator) is a function from n inputs to one output. The value of the operation is
false when n/2 or more arguments are false, true otherwise. In sha-256/sha-512 design, majority function takes
as input three m-bit words x, y, z, and returns an m-bit word. Such as choice function, one can use indifferently
whether inclusive OR (∨) or exclusive OR (⊕). The function is defined as follows:

Maj :
∣∣∣∣ {0, 1}m × {0, 1}m × {0, 1}m −→ {0, 1}m

x, y, z 7−→ (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

180 Compression Functions B.1

B.1.1 The Compression Function of SHA-256

Sigma Functions. The Σ{256}
0 and Σ{256}

1 functions are respectively represented by a multiplication by the
X2 + X13 + X22 and X6 + X11 + X25 polynomials of F2[X]/X32 + 1, if one represents any 32-bit word W =
(W [0]W [1]...W [31]) as a F2[X]/X32 + 1 polynomial W [0] + W [1].X + W [2].X2 + ... + W [31].X31. The functions
as are follows:

Σ{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

Σ{256}
1

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

The σ
{256}
0 and σ

{256}
1 functions are respectively represented by a multiplication by the X7 + X18 and X17 + X19

polynomials of F2[X]/X32 + 1, if one represents any 32-bit word W = (W [0]W [1]...W [31]) as a F2[X]/X32 + 1
polynomial W [0] + W [1].X + W [2].X2 + ... + W [31].X31. These multiplications are applied on the quotient of the
Euclidean division of the polynomial representation of a 32-bit word W , and the polynomial P = X . The functions
as are follows:

σ
{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)

σ
{256}
0

∣∣∣∣ {0, 1}32 −→ {0, 1}32

x 7−→ ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

The Process. The sha-256 function process is defined as below:

sha − 256
∣∣∣∣ {0, 1}256 × {0, 1}512 −→ {0, 1}256

H, M 7−→ C

Let H be the 256-bit hash input (chaining input) and M be the 512-bit message input. These two inputs are represented
respectively by an array of eight 32-bit words H0, · · · , H7 and an array of sixteen 32-bit words M0, · · · , M15. The
256-bit output value C is also represented as an array of eight 32-bit words C0, · · · , C7.

During the process of compression, a sequence of 64 constant 32-bit words, K
{256}
0 , ..., K

{256}
63 are used. These 32-

bit words represent the first 32 bits of the fractional parts of the cube roots of the first 64 prime numbers. We refer
the reader to [SHA95] for a table containing these constants.

Furthermore, addition (+) is performed modulo 232.

The compression function processes is detailed in Algorithm 9.

B.1.2 The Compression Function of SHA-512

Sigma Functions. The Σ{512}
0 and Σ{512}

1 functions are respectively represented by a multiplication by the
X28 + X34 + X39 and X14 + X18 + X41 polynomials of F2[X]/X64 + 1, if one represents any 64-bit word W =
(W [0]W [1]...W [63]) as a F2[X]/X64 + 1 polynomial W [0] + W [1] · X + W [2] · X2 + ... + W [63] · X63. The functions
are as follows:

Σ{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)

Σ{512}
1

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

The σ
{512}
0 and σ

{512}
1 functions are respectively represented by a multiplication by the X1 + X8 and X19 + X61

polynomials of F2[X]/X64 + 1, if one represents any 64-bit word W = (W [0]W [1]...W [63]) as a F2[X]/X64 + 1
polynomial W [0] + W [1] · X + W [2] · X2 + ... + W [63] · X63. These multiplications are applied on the quotient

B.1 Compression Functions of SHA-256 and SHA-512 181

Algorithm 9 Compression function of SHA-256

1: for t← 0, 15 do
2: Wt ←Mt

3: end for

4: for t← 16, 63 do
5: Wt ← σ

{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16

6: end for

7: (a, b, c, d, e, f, g, h)← (H0, H1, H2, H3, H4, H5, H6, H7)

8: for t← 0, 63 do
9: T1 ← h + Σ{256}

1 (e) + Ch(e, f, g) + K
{256}
t + Wt

10: T2 ← Σ{256}
0 (a) + Maj(a, b, c)

11: (h, g, f, e, d, c, b, a)← (g, f, e, d + T1, c, b, a, T1 + T2)
12: end for

13: (C0, C1, C2, C3, C4, C5, C6, C7)← (a + H0, b + H1, c + H2, d + H3, e + H4, f + H5, g + H6, h + H7)

of the Euclidean division of the polynomial representation of a 64-bit word W , and the polynomial P = X . The
functions as are follows:

σ
{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ
{512}
0

∣∣∣∣ {0, 1}64 −→ {0, 1}64

x 7−→ SHR19(x) ⊕ SHR61(x) ⊕ SHR6(x)

The Process. The sha-512 compression function is defined as below:

sha − 512
∣∣∣∣ {0, 1}512 × {0, 1}1024 −→ {0, 1}512

H, M 7−→ C

Algorithm 10 Compression function of SHA-512

1: for t← 0, 15 do
2: Wt ←Mt

3: end for

4: for t← 16, 79 do
5: Wt ← σ

{512}
1 (Wt−2) + Wt−7 + σ

{512}
0 (Wt−15) + Wt−16

6: end for

7: (a, b, c, d, e, f, g, h)← (H0, H1, H2, H3, H4, H5, H6, H7)

8: (C0, C1, C2, C3, C4, C5, C6, C7)← (a + H0, b + H1, c + H2, d + H3, e + H4, f + H5, g + H6, h + H7)

Let M be the 1024-bit message input and H the 512-bit hash input (chaining input). These two inputs are represented
respectively by an array of sixteen 64-bit words M0, · · · , M15, and an array of eight 64-bit words H0, · · · , H7. The
512-bit output value C is also represented as an array of eight 64-bit words C0, · · · , C7.

Let H be the 512-bit hash input (chaining input) and M be the 1024-bit message input. These two inputs are repre-
sented respectively by an array of 8 64-bit words H0, · · · , H7 and an array of 16 64-bit words M0, · · · , M15. The
512-bit output value C is also represented as an array of 8 64-bit words C0, · · · , C7.

During the process of compression, a sequence of 80 constant 64-bit words K
{512}
0 , ..., K

{512}
79 is used. These 64-bit

words represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime numbers. We refer the

182 Compression Functions B.1

reader to [SHA95] for a table containing these constants.

Addition (+) is performed modulo 264.

The compression function is described in Algorithm 10.

Résumé

Cette thèse aborde la conception et les contre-mesures permettant d’améliorer le calcul cryptographique matériel léger. Parce que
la cryptographie (et la cryptanalyse) sont de nos jours de plus en plus omniprésentes dans notre vie quotidienne, il est crucial que
les nouveaux systèmes développés soient suffisamment robustes pour faire face à la quantité croissante de données de traitement
sans compromettre la sécurité globale. Ce travail aborde de nombreux sujets liés aux implémentations cryptographiques légères.
Les principales contributions de cette thèse sont :

Un nouveau système d’accélération matérielle cryptographique appliqué aux codes BCH. Les codes
BCH sont largement utilisés dans les systèmes numériques, les dispositifs de mémoire et les réseaux informatiques. Parce que
les codes BCH requièrent le calcul répété de réductions polynomiales modulo un polynôme constant, il est possible d’appliquer
l’algorithme de réduction modulaire de Barrett pour obtenir une meilleure performance. Ce travail se concentre sur la ≪ polyno-
mialization ≫ de l’algorithme de réduction modulaire de Barrett.

Réduction de la consommation des systèmes embarqués et SoCs. Nous proposons un système de gestion
d’énergie intelligent capable d’activer et de désactiver des modules SoC ou des systèmes embarqués selon un modèle proposé. Ce
modèle suppose que le système a deux états possibles, A et B, dans lequel le système est disponible pour répondre aux nouvelles
demandes ou est en mode veille, respectivement. L’importance d’avoir un tel gestionnaire intelligent d’énergie est qu’il permet
au système de s’activer ou de se désactiver lorsque la probabilité de recevoir une demande est suffisamment faible pour prendre
un tel risque. Tout en réduisant les sanctions pour les absences de réponse, notre modèle assure un meilleur contrôle de la
dissipation de puissance, ce qui se traduit par une meilleure consommation d’énergie.

Contre-mesures légères des attaques par canal auxiliaire applicables à l’algorithme de chiffrement
reconfigurable AES. Nous proposons une protection légère contre les attaques par canal auxiliaire pour une architec-
ture AES. Deux menaces physiques ont été analysés : attaques en consommation et attaque par fautes. L’architecture proposée
tire profit de la structure des algorithmes AES pour obtenir une protection à faible coût contre ces attaques. Cela autorise une
reconfiguration à chaud sans impacter durement la performance.

CSAC : Un pare-feu sécurisé sur la puce cryptographique. Les attaques telles que l’hijacking, l’extraction de
données secrètes et le déni de service sont bien comprises et sont habituellement traitées dans les systèmes sur puces (SoC). Les
SoCs comptent sur les pare-feux pour protéger le flux de données et maintenir les règles d’accès de la mémoire. Ce travail propose
de protéger le chemin de reprogrammation du pare-feu et de ses règles d’accès mémoire, évitant un attaquant pouvant élever les
privilèges ou modifier les autorisations d’accès à la mémoire.

Attaques par analyse fréquentielle. Nous introduisons l’Analyse de Corrélation de Fréquence Instantanée (CIFA). Ce
travail repose sur l’utilisation de la fréquence instantanée au lieu de l’amplitude de puissance et du spectre de puissance dans
l’analyse par canal auxiliaire. Par opposition à la fréquence constante utilisée dans la transformation de Fourier, la fréquence
instantanée reflète des différences de phase locales et permet de détecter des variations de fréquence. Ces variations dépendent
des données binaires traitées et sont donc utiles pour l’analyse cryptographique. La relation provient du fait que, après une baisse
de puissance élevée, un temps plus long est nécessaire pour rétablir le courant à sa valeur nominale.

Un nouveau protocole à divulgation nulle de connaissance appliquée aux réseaux de capteurs sans
fil. Nous introduisons un protocole d’authentification basée sur le paradigme de divulgation nulle de connaissance qui établit
l’intégrité du réseau, et tire parti de la nature distribuée des nœuds de calcul pour soulager l’effort de calcul individuel. Cela
permet à la station de base d’identifier les nœuds qui doivent être remplacés. Dans ce travail, nous avons décrit un protocole
d’authentification Fiat-Shamir distribuée qui permet l’authentification du réseau en utilisant très peu de tours de communication,
allégeant ainsi la charge des dispositifs à ressources limitées telles que des capteurs sans fil et d’autres nœuds. Au lieu d’effectuer
l’authentification individuelle pour vérifier l’intégrité du réseau, notre protocole donne une preuve d’intégrité pour l’ensemble
du réseau.

OMD : Un nouveau schéma de chiffrement authentifié. Nous proposons un nouveau chiffrement authentifié,
soumis à examen dans la compétition CAESAR. Notre système, appelé Offset Merkle-Damgård (OMD), est un mode d’opération
en compression à clé avec nonce cryptographique. Pour instancier le mode OMD, nous recommandons deux fonctions spécifiques
de compression pour être saisies et utilisées dans l’OMD : les fonctions de compression des fonctions de hachage standard SHA-
256 et SHA-512. Nous croyons qu’un régime AE dont la sécurité est prouvée par une réduction modulaire et facile à vérifier, ne
s’appuyant que sur des hypothèses standard et largement vérifiées concernant ses primitives sous-jacentes, fournit de meilleures
garanties sur sa sécurité par rapport à un schéma qui exige des propriétés fortes e idéalisées, ou ne possède pas de preuve de
sécurité formelle.

Mots-clés: cryptographie symétrique, cryptographie légère, authentification, chiffrement, contre-mesure matérielle, cryp-
tosystème matériel, attaque par canal auxiliaire, attaque par fautes.

Abstract

This thesis addresses lightweight hardware design and countermeasures to improve cryptographic computation. Because cryptog-
raphy (and cryptanalysis) is nowadays becoming more and more ubiquitous in our daily lives, it is crucial that newly developed
systems are robust enough to deal with the increasing amount of processing data without compromising the overall security.
This work addresses many different topics related to lightweight cryptographic implementations. The main contributions of this
thesis are:

A new cryptographic hardware acceleration scheme applied to BCH codes. BCH codes are widely used in
digital systems, memory devices and computer networks. Because BCH codes required repeated polynomial reductions modulo
a constant polynomial, it is possible to apply the Barrett’s modular reduction algorithm to achieve better performance. This work
focuses on the "polynomialization" of Barretts modular reduction algorithm.

Hardware power minimization applied to SoCs and embedded devices. A smart energy management
system capable of turning on and off an SoC or embedded system according to a proposed model is discussed. This model
assumes that the system has two possible states, A and B, in which the system is available to respond to new requests or is in
idle mode, respectively. The importance of having such smart energy manager is to endow that the system can go idle when the
incoming request probability is low enough to take such risk. While reducing unresponsiveness penalties, our model ensures a
better power dissipation usage, which translates to a better battery lifetime.

Timing and DPA lightweight countermeasures applied to the reconfigurable AES block cipher. A
lightweight side-channel protection for a proposed AES implementation is presented. Two physical threats were analyzed: power
and fault attacks. The proposed architecture leveraged the AES algorithms structure to create low-cost protections against these
attacks. This allowed very flexible runtime configurability without significantly affecting performance.

CSAC: A cryptographically secure on-chip firewall. Attacks such as hijacking, secret data extraction and denial
of service are well understood and are usually addressed in system-on-chips. SoCs rely on firewalls to protect the data flow
and maintain the memory region access rules. This work proposes to protect the firewall’s reprogramming path and its memory
region access rules, avoiding an attacker being able to escalate privileges or changing the memory access permissions.

Frequency analysis attack experiments. We investigate Correlation Instantaneous Frequency Analysis (CIFA), a tech-
nique that makes use of instantaneous frequency instead of power amplitude and power spectrum in side-channel analysis. By
opposition to the constant frequency used in Fourier Transform, instantaneous frequency reflects local phase differences and al-
lows to detect frequency variations. These variations depend on the processed binary data and are hence cryptanalytically useful.
The relationship stems from the fact that after higher power drops more time is required to restore power back to its nominal
value.

A new zero-knowledge protocol applied to wireless sensor networks. We introduce an authentication proto-
col based on the zero-knowledge paradigm that establishes network integrity, and leverages the distributed nature of computing
nodes to alleviate individual computational effort. This enables the base station to identify which nodes need replacement or
attention. In this work we described a distributed Fiat-Shamir authentication protocol that enables network authentication us-
ing very few communication rounds, thereby alleviating the burden of resource-limited devices such as wireless sensors and
other IoT nodes. Instead of performing one-on-one authentication to check the network’s integrity, our protocol gives a proof of
integrity for the whole network at once.

OMD: A new authenticated encryption scheme. We propose a new authenticated cipher for consideration in the
CAESAR competition. Our scheme, called Offset Merkle-Damgaård (OMD), is a keyed compression function mode of operation
for nonce-based AEAD. To instantiate the OMD mode, we recommend two specific compression functions to be keyed and used in
OMD, namely, the compression functions of the standard SHA-256 and SHA-512 hash functions. We believe that an AE scheme
whose security is proved by a modular and easy to verify security reduction, only relying on some widely-verified standard
assumption(s) on its underlying primitive(s), can get more confidence on its security compared to a scheme that demands strong
and idealistic properties from its underlying primitive(s) or is not supported by a formal security proof.

Keywords: symmetric-key cryptography, lightweight cryptography, authentication, encryption, hardware design, hardware
cryptosystem, hardware countermeasure, DPA, fault attacks.

Résumé

Cette thèse aborde la conception et les contre-
mesures permettant d'améliorer le calcul
cryptographique matériel léger. Parce que la
cryptographie (et la cryptanalyse) sont de nos
jours de plus en plus omniprésentes dans notre
vie quotidienne, il est crucial que les nouveaux
systèmes développés soient suffisamment
robustes pour faire face à la quantité croissante
de données de traitement sans compromettre
la sécurité globale. Ce travail aborde de
nombreux sujets liés aux implémentations
cryptographiques légères. Les principales
contributions de cette thèse sont :

- Un nouveau système d'accélération matérielle
cryptographique appliqué aux codes BCH ;

- Réduction de la consommation des systèmes
embarqués et SoCs ;

- Contre-mesures légères des attaques par
canal auxiliaire applicables à l'algorithme de
chiffrement reconfigurable AES ;

- CSAC : Un pare-feu sécurisé sur la puce
cryptographique ;

- Attaques par analyse fréquentielle ;

- Un nouveau protocole à divulgation nulle de
connaissance appliquée aux réseaux de
capteurs sans fil ;

- OMD : Un nouveau schéma de chiffrement
authentifié.

Mots-clés: cryptographie symétrique,

cryptographie légère, authentification,
chiffrement, contre-mesure matérielle,
cryptosystème matériel, attaque par canal
auxiliaire, attaque par fautes.

Abstract

This thesis addresses lightweight hardware
design and countermeasures to improve
cryptographic computation. Because
cryptography (and cryptanalysis) is nowadays
becoming more and more ubiquitous in our
daily lives, it is crucial that newly developed
systems are robust enough to deal with the
increasing amount of processing data without
compromising the overall security. This work
addresses many different topics related to
lightweight cryptographic implementations.
The main contributions of this thesis are:

- A new cryptographic hardware acceleration
scheme applied to BCH codes;

- Hardware power minimization applied to
SoCs and embedded devices;

- Timing and DPA lightweight
countermeasures applied to the
reconfigurable AES block cipher;

- CSAC: A cryptographically secure on-chip
firewall;

- Frequency analysis attack experiments;

- A new zero-knowledge zero-knowledge
protocol applied to wireless sensor networks;

- OMD: A new authenticated encryption
scheme.

Keywords: symmetric-key cryptography,

lightweight cryptography, authentication,
encryption, hardware design, hardware
cryptosystem, hardware countermeasure,
DPA, fault attacks.

	Slide 1
	Introduction
	Terminology
	Hardware System Security
	Notations and Conventions
	Finite Fields Arithmetic
	Thesis Outline
	Publications

	From a Transistor to a Cryptosystem
	Integrated Circuit and Logic Design
	Introduction
	VLSI Design
	The CMOS Transistor
	CMOS Logic
	The Inverter
	The NAND Gate
	Compound Gates
	Tri-state Buffers

	CMOS I-V Characteristics
	CMOS Electrical Properties
	Non-Ideal I-V Effects

	Hardware-Based Cryptosystems
	Introduction
	Definitions
	Hardware Design Architecture
	Throughput and Latency
	Area

	Cryptographic Hardware Design
	Iterative Looping
	Loop Unrolling
	Pipelining
	Sub-Pipelining
	Pseudo-Random Sequences in Hardware

	Private-Key Cryptosystems
	The Data Encryption Standard
	The Advanced Encryption Standard
	AES Rounds
	AES in Hardware (FPGA and ASIC)

	Cryptographic Hash Functions
	Introduction
	Security Requirements of Hash Functions
	Preimage Resistance
	Second Preimage Resistance
	Collision Resistance
	Overview of Hash Algorithms

	The Secure Hash Algorithm 1
	The Secure Hash Algorithm 2
	Implementation Tradeoffs and Design Methodologies
	Known SHA-2 Hardware Optimization Techniques
	FPGA-Based Cryptography
	SHA-2 in Hardware (FPGA and ASIC)

	Cryptographic Hardware Acceleration and Power Minimization
	BCH with Barrett Polynomial Reduction
	Introduction
	Barrett's Reduction Algorithm
	Dynamic Constant Scaling

	Barrett's Algorithm for Polynomials
	Orders
	Terminology
	Polynomial Barrett Complexity
	Barrett's Algorithm for Multivariate Polynomials
	Dynamic Constant Scaling in Q[]

	Application to BCH Codes
	General Remarks
	BCH Preliminaries
	BCH Decoding
	Syndrome
	Error Location
	Peterson's Algorithm
	Chien's Error Search

	Implementation and Results
	Standard Architecture
	LFSR and Improved LFSR Architectures
	Barrett Architecture (regular and pipelined)
	Performance

	Managing Energy on SoCs and Embedded Systems
	Introduction
	The Model
	Optimizing Power Consumption While Avoiding System Malfunction
	The General Case
	Probabilistic Strategies

	Side-Channel Attacks and Hardware Countermeasures
	An Economical Introduction to Side-Channel Attacks
	Differential Cryptanalysis
	Differential Power Analysis
	Power Scrambling and the Reconfigurable AES
	Introduction
	The Proposed AES Design
	Energy and Security
	Power Analysis
	Power Scrambling
	Transient Fault Detection
	Permanent Fault Detection
	Runtime Configurability

	Halving the Memory Required for AES Decryption
	Implementation Results

	Cryptographically Secure On-Chip Firewalling
	Introduction
	Identifying Attack Surfaces on NoCs
	Request Path
	Firewall Reprogramming Path
	Firewall State at Rest

	Integration of Security Resources into an SoC
	Securing the Request Path
	Securing the Firewall

	Access Control Firewalling to On-Chip Resources
	Endpoint versus NoC Firewalling
	Cryptographically Secure Access Control
	CSAC Synthesis Results
	FPGA Implementation

	Practical Instantaneous Frequency Analysis Experiments
	Introduction
	Preliminaries
	The Hilbert Huang Transform
	AES Hardware Implementation

	Hilbert Huang Transform and Frequency Leakage
	Why Should Instantaneous Frequency Variations Leak Information?
	Power consumption of one AES round
	Hilbert Huang Transform of an AES Power Consumption Signal

	Correlation Instantaneous Frequency Analysis
	Correlation Instantaneous Frequency Analysis on Unprotected Hardware
	Correlation Instantaneous Frequency Analysis in the Presence of DVS

	Zero-Knowledge Protocols and Authenticated Encryption
	Public-Key Based Lightweight Swarm Authentication
	Introduction
	Preliminaries
	Fiat-Shamir Authentication Protocol
	Topology-Aware Distributed Spanning Trees

	Distributed Fiat-Shamir Authentication
	The Approach
	Back-up Authentication

	Security
	Soundness
	Zero-knowledge
	Security Analysis

	The Offset Merkle-Damgård Authenticated Cipher
	Introduction
	Preliminaries
	Security Definitions and Goals
	Quantitative Security Level of OMD-SHA256
	Quantitative Security Level of OMD-SHA512
	Security Proofs
	Generalization of OMD Based on Tweakable Random Functions
	Instantiating Tweakable RFs with PRFs

	Specification of OMD
	The OMD Mode of Operation
	OMD-SHA256: Primary Recommendation for Instantiating OMD
	OMD-SHA512: Secondary Recommendation for Instantiating OMD
	Compression Functions of SHA-256 and SHA-512

	Conclusion
	Code: Barrett's Algorithm for Polynomials
	Compression Functions
	Compression Functions of SHA-256 and SHA-512
	The Compression Function of SHA-256
	The Compression Function of SHA-512

