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Abstract ( English ) 

Knowledge about the properties of hydrothermal fluids, i.e. aqueous solutions at high 
temperature (T) and high pressure (P), are essential in the fields of earth sciences, prebiotic 
chemistry, nuclear industry and environmental sciences. Near the critical point (Pc, Tc) and 
under the pseudocritic conditions (i.e. at the critical density at T-P above Tc-Pc), the fluid 
properties change radically. These changes take place at different scales: the macroscopic 
scale (density and compressibility changes), the mesoscopic scale (agglomeration process 
between different clusters) and finally, the molecular scale (local organization of atoms and 
molecules, for example hydrogen bonds). 

This study focuses on the solvation effects in different electrolytes as a function of 
temperature, pressure and concentration. The experimental study was carried out by X-ray 
absorption measurements, the technique suitable for probing both fluid density evolution and  
local atomic environment around the solutes. This study was carried out on pure water and 
salt solutions at different pressures (up to ~ 1.3Pc) and  temperatures (up to ~ 2Tc), to pass 
from the liquid to the supercritical domain. A high pressure-high temperature, cell was used 
permitting to completely decouple the effects of pressure and temperature.  

We have obtained experimental proofs about the displacement of the critical point and 
the isochore and their dependence on the salt concentration in the case of NaCl (0.3, 0.5 and 
1.0 moles NaCl per kilogram of water). We have also observed a density anomaly in the 
supercritical region (SC) and the appearance of liquid-vapor phase separation for some 
aqueous solutions. The relative density increase in the critical zone is more pronounced for 
Cs>Rb>K>Na>Li for bromides and chlorides. The structural change in this region was 
followed by high-resolution XANES spectroscopy at the K-threshold of bromine for various 
alkali bromide. The interpretation of the XANES spectra clearly indicates drastic changes in 
the fluid structure related to this anomaly, which can be interpreted by the appearance of ionic 
pairs. 

These new observations are related to water structure and solvation properties 
evaluation and consequently with hydrogen bonding changes under high T-P. 

 

Keywords : X-Ray Absorption Spectroscopy, XANES, EXAFS, Ion-pairing, FDMNES, 
Density fluctuation, Supercritical fluids.
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Abstract ( French ) 

Les connaissances des propriétés des fluides hydrothermaux, c'est-à-dire des solutions 
aqueuses à haute température (T) et haute pression (P), sont essentielles dans les domaines des 
sciences de la terre, de la chimie prébiotique, de l'industrie nucléaire ou encore des sciences 
environnementales. Près du point critique (Pc, Tc) et dans les conditions pseudocritiques (i.e. 
pour des densités au dessus de Tc-Pc), les propriétés des fluides changent de manière radicale. 
Ces modifications ont lieu à différentes échelles: à  l’échelle macroscopique (changements de 
densité et de compressibilité), à l’échelle mésoscopique (processus d’agglomération entre les 
différentes clusters) et enfin à l’échelle moléculaire (organisation local entre les atomes et les 
molécules, par exemple les liaisons hydrogène, H).  

Cette étude est centrée sur les effets de la solvatation aqueuse de différents électrolytes 
en fonction de la température, pression et concentration. L'étude expérimentale a été conduite 
par les mesures d’Absorption X, technique de choix pour mesurer d'une part l'évolution de la 
densité du fluide et d'autre part sonder l'environnement atomique local autour des solutés. 
Cette étude a été faite sur l'eau pure et sur différentes solutions salines à différentes pressions 
(jusqu'à ~1.3Pc) et à température variable (jusqu'à ~2Tc), pour passer du domaine liquide au 
domaine supercritique, dans une cellule permettant de découpler totalement l’effet de la 
pression et de la température.  

Nous avons obtenu des preuves expérimentales du déplacement du point critique et de 
l'isochore et de leur dépendance en fonction de la concentration en sel pour NaCl (0,3, 0,5 et 
1,0 moles NaCl par kilogramme d'eau). Nous avons également observé une anomalie de 
densité dans la région supercritique (SC) et l'apparition d'une séparation des phases liquide-
vapeur pour certaines solutions aqueuses. L'augmentation de la densité relative dans cette 
zone critique est plus prononcée pour Cs>Rb>K>Na>Li pour les bromures et les chlorures. 
Le changement structural dans cette région a été suivi par spectroscopie XANES haute 
résolution au seuil K du brome pour différents bromures d'alcalin. L'interprétation des 
spectres XANES indiquent clairement un changement drastique dans la structure locale du 
fluide au moment de l'apparition de cette anomalie pouvant être interprétée par l'apparition 
des paires ioniques. 

Ces nouvelles observations sont a relier au changement structurale du solvant et 
principalement à l'évolution de son pouvoir de solvatation lié à l'évolution des liaisons 
hydrogène à hautes T-P. 

 

Mots clés : Spectroscopie d'absorption des rayons X , XANES, EXAFS, paire d'ions, 
FDMNES, Fluctuation de densité, Les fluides supercritiques.
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1. Supercritical aqueous solutions 

At a temperature and pressure above the critical point, a new domain is define in the 
phase diagram. This domain called "supercritical region" presents special properties. 
Supercritical water (SCW) is unique in that it exhibits both gas-like and liquid-like 
properties.11 There are two important differences between liquid water at room temperature 
and water in the critical region. Firstly, the dielectric constant ε of water in the critical region 
is much lower than that of liquid water (Є = 78 at 27 C° and 5.3 at Tc ),11 as always happens 
at high temperatures and low densities. Secondly, liquid water is almost incompressible, but 
near to the critical point, water is a highly compressible fluid, which implies a large thermal-
expansion coefficient and a large isobaric heat capacity. So for these reasons, water at critical 
region is very different than liquid water at room temperature. However, there are still some 
features, which remain unclear both for supercritical water and aqueous solutions. 
Specifically, the large decrease of the water dielectric constant ε decreasing the density is an 
indication of changes in the hydrogen bond network and which may, as well, affect the ion 
solvation.12 

 

 

1.1 Introduction  
Supercritical fluids are currently the subject of an increasing interest in both 

fundamental and applied research. Among supercritical fluids, water and aqueous solutions 
play a crucial role in many biochemical and geological processes. 

Supercritical fluids are suitable as a substitute for organic solvents in a range of 
industrial and laboratory  processes. Carbon dioxide and water are the  most  commonly  used  
supercritical fluids, for decaffeination and power generation, respectively. CO2 is the kind of 
extraction solvents for botanicals, it extraction process creates phase changes in carbon 
dioxide utilizing temperature and pressure. It leaves no toxic residue behind. Its extraction 
properties can be widely and precisely manipulated with subtle changes in pressure and 
temperature.13–15 

Water is probably the most familiar chemical compound in the human experience, and 
also the most necessary. Water has a density ρ of about 1000 Kg.m-3 at room temperature. All 
known life depends on the biochemistry that takes place in aqueous solution. Diverse 
disciplines in science as biochemistry, meteorology, and geology require the knowledge of 
properties of water and aqueous solutions. In the high-temperature aqueous physical 
chemistry of interest in my study, water is always present in the background as a medium, and 
sometimes takes a more active role. In 1913, Lawrence Henderson was recognized in his book 
"The Fitness of the Environment: An Inquiry into the Biological Significance of the 
Properties of Matter "  which still very readable, since then more has been learned about the 
structure and properties of water at the molecular level, much of it through spectroscopic and 
thermodynamic experiments.16 
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The aim of my study is to obtain a qualitative or quantitative understanding of the 
thermophysical properties of water, particularly on how those properties behave at high 
temperatures and high pressures, and obtaining the most accurate values for the properties of 
pure water and aqueous solutions i.e. density, dielectric constant, etc. Therefore it is 
fundamental to understand and describe the intra- and intermolecular interactions involving 
the H2O molecule, and in particular the role of hydrogen bonding, which is responsible for a 
large number of water features. 

Water is a liquid at the temperatures and pressures that are most adequate for life. 
Specifically, water is a liquid in the range of 273.15 K (0 °C) and 373.15 K (100 °C) at 1 bar 
of pressure. In thermodynamics the triple point is defined by the temperature and the pressure 
at three phases ( solid, liquid and gas) of that substance coexist in thermodynamic 
equilibrium, the single combination of pressure and temperature can coexist in a stable 
equilibrium the three phases of water at exactly 273.16 K (0.01 °C).17–19 

The solubility of water as a solvent is very important for different compounds. Water is 
a polar solvent, so it is a good solvent for polar substances. In the other hand, nonpolar 
compounds are not easily incorporated into water molecules and the system become 
inhomogeneous. The increase of solubility of water as an effect of temperature is not easy to 
simplify. The dielectric constant and the degree of hydrogen bonding decrease at high 
temperatures therefore water behaves more like a nonpolar solvent (more able to dissolve 
nonpolar substances, less able to dissolve electrolytes) at those conditions.12 

Supercritical fluids have properties between those of a gas and a liquid. In Table 1, the 
critical properties are shown for some components, which are commonly used as supercritical 
fluids. 

In general, supercritical fluids have properties between those of a gas and a liquid and they 
can be summarized as: 

       (i) Supercritical fluids have highly compressed gases, which combine properties of gases 
and liquids in an intriguing manner. 

       (ii) Supercritical fluids can lead to reactions, which are difficult or even impossible to 
achieve in conventional solvents. 

       (iii)  Solubility increases at increasing density (i.e. increasing pressure). Rapid expansion 
of supercritical solutions leads to precipitation of a finely divided solid. 

       (iv) The fluids are commonly miscible with permanent gases (e.g. N2 or H2) and it leads 
to much higher concentrations of dissolved gases than can be achieved in conventional 
solvents.6,7,20 
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Table 1: Critical properties for some components commonly used as supercritical fluids6,7  

Solvent 
Molecular 

weight 
(g/mol) 

Critical 
Temperature 

(°C) 

Critical 
Pressure (Bar) 

Critical Density 
(g/cm3) 

Water-H2O 18.015 373.95 220.64 0.322 

Carbon dioxide  
(CO2) 

44.01 30.95 73.8 0.469 

Methane (CH4) 16.04 - 82.75 46 0.162 

Ethane ( C2H6) 30.07 32.15 48.7 0.203 

Ethylene ( C2H4)  28.05 9.5 50.4 0.215 

 

1.2 Properties of pure water: 
Water is an universal solvent in our planet and plays an important role in inorganic 

chemistry, it is important for life and humanity, one of the things that makes our planet 
special. The study of water properties is completely different than those at supercritical 
conditions. At this conditions a new phase of water make us curious to going deeply 
discovering its structure and features. Certainly, understanding of water behavior will lead us 
to understand the behavior of a solution when adding ions (salts) and about its 
physicochemical properties (density, viscosity, molecular shape, solubility, etc). 

 

1.2.1 Properties and structure of the water  
The water molecule is composed of one oxygen and two hydrogen atoms at normal 

conditions. The bonding angle of the two hydrogens is approximately 104.45°, and the 
distance from the center of the oxygen atom to the center of each hydrogen atom is 
approximately 0.096 nm as show in FIG 1.1. This geometry varies slightly, depending on the 
rotation and vibration state of the molecule and on its surroundings. The structure also will 
change if the surrounding conditions change, and also its physical and chemical 
characteristics. 

 

FIG. 1.1 - Structure of water molecule.12 
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Beyond the critical point ( > 220.064 bar, > 373.95 °C, 0.322 g/cm3), the interest 
studies of the structure and dynamics of water at high temperature and pressure has been 
increasing and in particular, at supercritical conditions, the thermochemical properties of sub 
and supercritical water are remarkable different from those of ambient water. At supercritical 
conditions, water characterized at the microscopic scale by density fluctuations: areas with 
gaslike density coexist with area with liquid-like density. SCW existing as small but liquid-
like hydrogen-bonded clusters dispersed within a gas-like phase, where physical properties, 
such as gas-like or liquid-like behavior, vary in response to changing temperature, pressure 
and density and the normal distinction between gas and liquid has disappeared. The most 
important aspect of the phase diagram for most purposes is the coexistence between vapor and 
liquid. The vapor pressure increases with temperature up to reaching a point where the liquid 
(expanded with increasing temperature) and the vapor (compressed by the higher pressure) 
become identical.21,22 

The properties of supercritical water are different from ambient liquid water. For 
example, supercritical water is a poor solvent for electrolytes, which tend to form ion pairs. 
However, it is such an excellent solvent for non-polar molecules, due to its low relative 
permittivity (dielectric constant) and poor hydrogen bonding, that many are completely 
miscible when increase the tempeature at SC region. Viscosity and dielectric constant both 
decrease substantially whereas self-dissociation increases substantially. The physical 
properties of water close to the critical point (near-critical) are particularly strongly affected 
by density and has high compressibility.13,22,23 

The decrease of the dielectric constant of SCW allows non polar substances to be 
dissolved. The solubility of ionic and polar substances decrease at this conditions; moreover, 
the molecular mobility is enhanced in SCW conditions due to the decrease in viscosity. 
Therefore, chemical reactions kinetics can be monitored by changing the density which can be 
tuned from gas-like to liquid-like densities. The behavior of SCW is thought to be related to 
the change of the hydrogen bond network. The experimental investigations of the 
intermolecular structure will provide an idea for understanding the properties of SCW. The 
structure of SCW has been investigated using X-ray and neutron experiments in various 
techniques. It has been found that the tetrahedral arrangement of water molecule observed in 
liquid water vanishes in supercritical state. Thus the number of hydrogen bonds per water 
molecule, which is about 3.5 in the liquid state, decreases to about 1.8 in dense SCW. 
Simulations softwares as Molecular Dynamics and Mote Carlo have been widely used to 
provide some insights in the underlying structure of SCW. Spectroscopic studies have been 
reported because the experimental challenge of high temperature and pressures. The 
temperature for the total breakdown of hydrogen bonding has been debated for many years, 
with most experimental studies, including Raman spectroscopy, X-ray scattering, and infrared 
spectroscopy, suggesting that tetrahedral bonding persists to at least 650 K and possibly up to 
770 K at 100 MPa.13,15,24,25 
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1.2.2 Phase diagram of water 
A phase diagram is a graphical representation of the properties of any substance and the 

points at which it changes phase.  It is used in thermodynamics to denote the necessary 
conditions for a transition of a substance between its three states: solid, liquid, and gas. The 
triple point is a unique condition where the three phases coexist at the same point. The triple 
point of water is reached at 273.16 K and 611.657 ± 0.01 Pa. FIG. 1.2 shows a typical 
pressure-temperature phase diagram 12,26,27. The phase diagram of water is complex, having a 
number of triple points and critical points. Many of the crystalline forms may remain 
metastable in much of the low-temperature phase space at lower pressures. Thermodynamic 
functions of the phase transitions have been described. The region we are interested to study 
is SC region, it begins from the critical point when increase the temperature and pressure. 

 

FIG. 1.2 - The liquid-vapor critical point in a pressure–temperature phase diagram is at the 
high-temperature extreme of the liquid–gas phase boundary. The dotted green line shows the 

anomalous behavior of water.27,28 

 

 A phase diagram typically shows temperature along the x-axis, and pressure along the 
y-axis. Liquids occupy the area of the phase diagram corresponding to relatively high 
temperatures and high pressures. Gases or vapors, on the other hand, can exist at very low 
temperatures, but only if the pressure is also low. Above the melting point of water, gases 
exist at higher pressures and higher temperatures. For simple substances, such as water, the 
solid form of the substance appears at a relatively low temperature and at pressures anywhere 
from zero upward. The single combination of pressure and temperature at which liquid water, 
solid ice, and water vapor can coexist in a stable equilibrium occurs at exactly 273.16 K. The 
equation given by Wagner describe the water with temperature below an equilibrim point. In 
thermodynamics, there is a representation from 190 to 273.16 K by a equation (1) given by 
Wagner in 1994:12,29 
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where θt = T/Tt, Tt = 273.16 K, Pt = 611.657 Pa, a1 = -13.92817, and a2 = 34.70782. 

The most important aspect of the phase diagram for most purposes is the coexistence 
between vapor and liquid (vapor-pressure curve). The vapor pressure increases with 
temperature, up to reaching a point where the liquid and the vapor become identical.12,16,22  

The vapor pressure of water at a given temperature is lower than that of other substances 
(such as H2S and NH3). The interactions between water molecules increase the thermal 
energy required to remove molecules from the liquid to the vapor and appearance strong 
hydrogen bonding in liquid water. FIG. 1.3 shows the phase diagram with a constant of 
density at different T-P. 

 

 

FIG. 1.3 - Liquid gas coexistence curve and critical isochore for pure water, showing the 
isolette at different densities.1 

 

 

(1) 
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1.2.3 Critical point and Supercritical region 
The critical point is the end point of a phase equilibrium curve this end point of the 

pressure-temperature curve that indicates the conditions at which a liquid and its vapor can 
coexist. The values of critical point for water other solutions have been shown in the Table 1. 
Above the critical point the substance exists a state of matter that is continuously connected 
with both the liquid and the gaseous state. It is called supercritical fluid, whereas this region 
locate at a temperature and pressure above its critical point. Carbon dioxide and water are the 
most commonly used supercritical fluids. 

At critical point, the isothermal compressibility KT  =  -1/V(∂V/∂p)T from the diverging 
fluid, also the isobaric compressibility Kp = 1/V(∂V/∂T) P, (∂p/∂V)T = 0 and (∂p 2/∂V2)T = 0. 
Which corresponds to infinitely fast local fluctuations of the density during an isothermal 
variation of the pressure.30 Moreover, these fluctuations in density give the supercritical fluids 
properties both of the gas type and of the liquid type. Thus, these fluids are known to have 
exceptional transport capacities and speeds, amplified by a low gas-like viscosity. More 
precisely, the dynamic viscosity of the supercritical fluids is of the order of 10-5 to 10-4 Pa.s, 
while that of the gases is of the order of 10-5 Pa.s and that of the liquids of 10-3 Pa.s. 
Moreover, the transport speed is given by the diffusion coefficient, for example for small 
molecules, which is of the order of 10-8 m2.s-1 (in the case of supercritical fluids), 10-9 m2.s-1  
(liquids) and 10-5 m2.s-1 (gases).12,30,31 

Regarding the divergence of the isothermal compressibility of the supercritical fluids, it 
is possible to control very precisely the density of the medium by finaly varying the 
temperature and the pressure and therefore its transport properties. This capacity that is used 
in many industrial processes ranging from extraction (coffee, essential oils ...) to oxidation 
and synthesis mechanisms. 

At the critical point there is about 30% free monomeric H2O molecules and only about 
17% hydrogen bonding; but this is far greater than in the gas phase. It is heterogeneous, and 
instantaneous properties vary over a wide range between the different structural forms, giving 
'average' properties that are, perhaps, not representative. Supercritical water, as with other 
supercritical fluids, has no surface tension with its gas or liquid phase or any other 
supercritical phase because such interfaces does not exist. Above 647.096 K, water vapor 
cannot be liquefied by increasing pressure.32–35 

In case of properties at critical point, phase boundaries of liquid water and vapor 
disappear.  In water, the critical point occurs at around 647 K (374 °C; 705 °F) and 22.064 
MPa (3200 PSIA or 218 atm). At the critical point there is no change of state when pressure 
or temperature are increased. Thus, the water and steam can not be distinguished. To 
understand what happens at the critical point, consider the effects of temperature and pressure 
on the densities of liquids and gases, respectively. As the temperature or pressure of a liquid 
increases, its density decreases. At the critical point, the liquid and gas phases have exactly 
the same density, and only a single phase exists. This single phase is called ' supercritical 
fluid' and exhibits many of the properties of a gas but has a more typical density of a liquid. 
For example, the density of water at its critical point (T = 374°C, P = 22.064 MPa) is 0.32 
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g/ml, about one-third than liquid water at room temperature but much greater than that of 
water vapor under most conditions. 

Briefly, we can say that the properties of supercritical water are very different from 
liquid ambiet water. For example, supercritical water is a poor solvent for electrolytes and 
tends to form ion pairs. However, it is such an excellent solvent for non-polar molecules, due 
to its low relative permittivity (dielectric constant) and poor hydrogen bonding, that many are 
completely miscible. Viscosity and dielectric constant both decrease substantially whereas 
auto-dissociation increases substantially. The physical properties of water close to the critical 
point (near-critical) are particularly strongly affected by density. Extreme density fluctuations 
around the critical point causes opalescent turbidity. Neutron diffraction has shown that 
tetrahedral liquid-like states are observed in supercritical water at above a threshold density, 
while below this threshold density gas-like water forms small, trigonal, sheet-like 
configurations.12,36 

 

1.2.4 Hydrogen bonds 
Molecule water in liquid phase 

Attractive forces, essentially of electrostatic origin, are present in the liquid water, 
leading to the formation of bonds, between the electronegative atoms of oxygen and the 
hydrogen atoms. The hydrogen of a molecule remains bouned covalently to the oxygen atom, 
but is attracted by the oxygen of a neighboring water molecule. The energy of this type of 
bond is about 19 kJ•mol-1, which is higher than the Van-Der Waals interactions (between 1 
and 4 kJ•mol-1), but much lower than the binding energies of covalence (between 200 and 800 
kJ•mol-1, 492 kJ•mol-1 for the intramolecular O-H bond).31,37–39 

These bonds are very special in nature, because they involve only hydrogen atoms, 
which very small size and tendency to positively polarize allow a fairly intense interaction 
with the neighboring electronegative atoms. The structure of liquid water is thus given by the 
existence of the bond hydrogen.40 Thus, a short-range order corresponds to the formation of 
aggregates of water molecules with a tetrahedral structure close to that of ice I ( The ice-like 
solid phase I has a hexagonal structure, where the typical hydrogen bond distance is around 
1.8 Å ).37 The structure is shown in FIG. 1.4, each water molecule can theoretically form four 
hydrogen bonds. 
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FIG. 1.4 - Schematic of tetrahedral coordination of water molecules by hydrogen bonds.37 

 

Definition of hydrogen bonding 

Two criteria are possible and important in hydrogen bonds, the geometry and energy. 
The first describes the distances and the angles corresponding to the considered connections. 
The energy definition consists in choosing a threshold value for the interaction energy of a 
ionic pair: below the threshold, there is no hydrogen bonding, while above, the energy 
corresponds to two linked molecules. On the other hand, the average number of hydrogen 
bonds per water molecule can be written by nH, and in ambient conditions of temperature and 
pressure, the definition is precisely bound of hydrogen bonds22. The average number of 
hydrogen bonds nH depends on the critera, the influence of the simulations is between 3.5 and 
3.73, which means that between 77% and 81% of the water molecules have structures with 3 
or 4 hydrogen bonds per molecule.31,41 

At ambient condition, the life time for hydrogen bond is 10-13 to 10-12 seconds for water 
at 80 °C and the super cooled water at -20 °C.37 The presence of these hydrogen bonds 
influences the dipole moment, If we no longer consider the isolated molecule but immersed in 
its aqueous environment, the dipole moments of each molecule are influence by those of the 
neighboring molecules. This interaction corresponds to the Van der Waals interaction 
between the dipoles, thus, the dipole moment in the gaseous phase is equal to 1.85 Debye for 
an isolated molecule, and approximately 2.8 Debye in liquid water.42 

Covalence of hydrogen bonding 

The chemical bonds that occur between atoms and molecules are very important type of 
bonds, they are hydrogen bonds and covalent bonds. A bond between two non-metals is 
usually covalent whereas a bond between a metal and a non-metal is ionic. By definition, a 
covalent bond is a form of a chemical bond that occurs due to the sharing of electron pairs 
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between the same or distinct atoms.42–45 Covalent bond, in turn, refers to the stable balance of 
force (both attractive and repulsive) between atoms when they share electrons.46 The sharing 
allows each atom involved to attain an outer shell that is equivalent to a full valence shell or 
outer shell. This accounts for a stable configuration of electrons. In contrast, a hydrogen bond 
is an electrostatic attraction between special types of molecules, known as polar molecules. 
The bond only occurs when a hydrogen atom already bonded to a highly electronegative atom 
(oxygen, nitrogen or fluorine) experiences another force of attraction from a nearby atom that 
is also highly electronegative.38,39,47,48 

This implies that the two atoms do not need be from the same element but they should 
have a comparable electronegativity allow stronger bonds. However, hydrogen bonds are 
intermolecular, i.e. occur between molecules or between different parts of one molecule. The 
hydrogen bonds are pretty strong; stronger than van der Waals forces but are weaker than 
covalent and ionic bonds. B. Guillot had worked on subjects of interest allowing to improve 
the different simulations about the liquid water, or supercritical. The covalent nature of the 
hydrogen bond can be effect on a partial localization of the electrons. Thus, the charge 
transfer effect will have consequences on the description of the hydrogen bond.38,39,43–46,49 

The evolution of hydrogen bonds 

The existence of the hydrogen bond in the supercritical domain is a fundamental 
question in supercritical water, the number of hydrogen bonds persist at this conditions. 
Despite the disappearance of the tetrahedral structure, the hydrogen bonds lead to the 
formation of water molecules, which can be explained a density even in relatively strong.50  

Structural studies of liquid water have been recently extended to the supercritical state, 
i.e. above the critical point of water (H2O and D2O: Tc ~ 371 °C, Pc ~ 217 bar, ρc ~ 0.36 
g.cm−3). The peculiar behaviour of supercritical water is thought to be related to the change of 
the intermolecular structure at elevated temperatures, especially to the change in the hydrogen 
bond network.25,40,51 

There are some reports using X-ray and neutron scattering to characterize the water. 
Structural studies indicate that when water is placed under high pressure, the number of 
hydrogen bonds per water molecule do not change by any appreciable amount relative to the 
ambient state. The effect of pressure is particularly noticeable in the gOO(r), where the second 
peak is a signature of local tetrahedral structure diminishes as pressure is increased. The liquid 
structure at high pressure is nearly independent of temperature variation.22,23 

Using the neutron scattering method of isotopic substitution, Postorino et al.50 reported 
partial correlation functions at one supercritical state point of T = 673 K and ρ = 0.66 g/mL. 
They showed the disappearance of the hydrogen-bonding peak in gOH(r). This was in contrast 
to partial correlation functions derived from simulation using popular two body and 
polarizable water force fields, which exhibit a persistence of hydrogen bonding higher 
temperatures.52,53 
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At ambient conditions, differences in the height and sharpness are more clearly than 
supercritical conditions of the first peak of gOO(r) result in changes in the coordination 
number which can be shows in the equation (2) bellow, Nc:22

  

,)(4 min

0

2∫=
r

OOc rdrgrN πρ
 

Where ρ is the density of water and rmin is the location of the first minimum in gOO(r). 
We found values of Nc of 5.1, 5.2, and 4.7, for Narten and Levy54, Soper, Bruni, and 
Ricci,55,56 and the Hura et al.57 work, respectively. 

 

 

FIG. 1.5 - Experimental scattering data and simulations for supercritical water at (a) T = 573 
K and ρ = 0.72 g/mL for gOO(r) (top), gOH(r) (middle), and gHH(r) (bottom); (b) T = 673 K and 
ρ = 0.66 g/mL for gOO(r) (top), gOH(r) (middle), and gHH(r) (bottom).22 

FIG. 1.5 shows a comparison of the partial radial distribution functions from X-ray 
scattering, neutron scattering, and simulations using the TIP4P water model at the subcritical 
state T = 573 K and ρ = 0.72 g/mL and supercritical state of T = 673 K and ρ = 0.66 g/mL. 
The number of hydrogen bonds is estimated by integration under the first peak of gOH(r), 
similar to that used in eq 2 for the water coordination number. At ambient conditions nHB = 

(2) 
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3.3, while at T = 573 K and ρ = 0.72 g/mL it is now nHB = 2.4. The agreement between 
simulation and experiment is very good for the subcritical thermodynamic point.  

Neutron diffraction by isotopic substitution applied to water makes it possible to 
determine the three correlation functions of partial pairs gOO, gOD and gDD. Compared to the 
pair correlation function, g(r), these functions distinguish between the different atoms and are 
obtained by Fourier integration of the corresponding partial or total experimental structural 
factors, S(q), SOO, SOH and finally SHH. The Fourier integration procedure and the truncation 
effects of the domain in q, which should theoretically be infinite, can lead to calculation 
errors.22,50  

In a simplified way, the disappearance of the tetrahedral structure is evidenced by the 
disappearance of the second peak in the gOO (r) pair correlation function while the decrease 
in the number of hydrogen bonds is distinguished by the reduction in the amplitude of the 
second peak of gOD (r), even if the latter assertion is always contentious. The same 
conclusions apply to X-ray diffraction by considering the total pairs correlation function. 

Yu. E. Gorbaty and A. G. Kalinichev, they have observed the hydrogen bonding in 
supercritical water. The upper maximum temperature for the existence of hydrogen bonding 
in supercritical water is discussed with respect to the recent statement by Postorino et al.50 at 
673 K. They demonstrate that hydrogen bonds in supercritical water can be observed 
experimentally at least up to 800 K using both spectroscopic and diffraction techniques, it 
may be predicted that hydrogen bonding persists even at higher temperatures. An attempt to 
estimate quantitatively the temperature dependence of the degree of hydrogen bonding47 has 
been made. 

The lower hydrogen bonding the lower dielectric constant of water. In a neutron 
diffraction study of water at 400 °C50,58, Postorino et al. observed complete disappearance of a 
peak located at ~1.9 Å, which is a direct evidence of hydrogen bonding, in the oxygen–
hydrogen pair radial distribution function gOH(r)47,59. Yutaka Ikushima et al. have been 
working on Raman spectroscopy study of subcritical and supercritical water. The peculiarity 
of hydrogen bonding near the critical point. The Raman spectra of water are measured up to 
510 °C and up to 40 MPa. The peak frequency increases with temperature, indicating the 
break of hydrogen bonding, and it changes only slightly at higher temperatures above the 
critical point. The peak frequency has a maximum near the critical pressure, and the extent of 
hydrogen bonding significantly changes with pressure in this near-critical region.60–62 

 

1.2.5 Fluids density fluctuations appearance 
X-ray and neutron diffraction methods allowed us to reveal the structures of hydrogen 

bonded liquids like water and electrolyte solutions under subcritical and supercritical 
conditions, the density of the supercritical fluids varies rapidly in a small range of temperature 
and pressure, which makes possible to vary their macroscopic properties. Thus, It is possible 
to distinguish supercritical water of high and low density. The critical isochore can be defined 
as the analytic continuation of the liquid-gas coexistence curve on which the density of the 
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fluid is equal to the critical density. The FIG. 1.6 illustrate the transition between these two 
regions became faster approaching the critical point CP. 

 

 

 

FIG. 1.6 - Theoretical density has taken from NIST1 of the pure water as a function of 
temperature for the pressures ( 220, 280, 300 and 400) bar. 

 

The distribution of the local density of water molecules (mesoscopic scale) seems to be 
inhomogeneous in time and space. Then we can define the concept of Local Density 
Inhomogeneities, which corresponds to the existence of zones whose density is greater than 
the global density of the medium.  

From a microscopic perspective, many of the unique features of SCW are due, in large 
part, to the changes that take place in the intermolecular structure and hydrogen bonding of 
water at elevated temperatures. In fact, a wide variety of experimental investigations as well 
as molecular-based computer simulations in the past decade have shown that at supercritical 
conditions, the infinite H-bond network of the molecules present in ambient water crosses a 
percolation transition, i.e. breaks down to form small clusters of bonded water molecules in 
various tetrahedral configurations surrounded by non bonded gas-phase-like molecules. SCW 
can be regarded that of an inhomogeneous medium with coexisting high and low-density 
regions. In this dynamic equilibrium ensemble, the hydrogen bonded  molecular clusters 
present on it are continuously broken and reformed, allowing large local density or 
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configurational fluctuations35,63–65. However, molecular dynamics simulations have shown 
that even at gaslike densities ( < 0.2 g/cm3 ), SCW still retains some non-negligible “liquid 
waterlike” structure on a microscopic level.48,66 

In the pioneering work performed by C. A. Eckert et al.67 the term "cluster" is used, 
denoting aggregates of water molecules, the density of which is locally of the same order of 
magnitude as the liquid, surrounded by zones whose density corresponds approximately to 
that of the gases. In the theory of liquids and critical phenomena68, the divergence in the size 
of clusters of water molecules are related to the divergence of isothermal compressibility KT. 
Hence, the closer you get to the critical point, more KT and the size of ξ have local 
inhomogeneities of density increase. ξ means the correlation length of density fluctuations. 
Thus, in the compressible regime, that's say for the area of the phase diagram, whereas T> TC, 
and the value of compressibility is high69. These sizes have a mesoscopic scale, whereas they 
tend towards macroscopic dimensions locally around the critical point, which corresponds to a 
mathematical divergence of KT. Since these dynamic inhomogeneities imply the existence, on 
average, of zones of density of liquid type and of other type of gas.67,69–74  

Therefore it appears a contrast of electronic and atomic density between these regions of 
the fluid. Small-angle scattering of X-rays and neutrons SAXS and SANS (Small Angle X-
ray/Neutron Scattering) are particularly sensitive tecniques to detect this contrast68. 
Experimentally, small angles X-ray scattering under supercritical conditions is becoming 
increasingly numerous at supercritical region on carbon dioxide (CO2) and trifluoromethane 
(CF3H),75–79 as well on supercritical water H2O,80 Similarly, SANS measurements on 
supercritical D2O heavy water have recently been done.81,82 

The aim of all this work consists in the experimental determination of the mean size ξ 
and of the amplitude of the density fluctuations of the molecules of the solvent. In the case of 
water, D.M. Sullivan et al.81 performed small angle neutron scattering experiments on D2O on 
the critical isochore. The corrected scattering data were used to extract values for the 
correlation length of the critical density fluctuations, ξ , and the thermodynamic limit of the 
structure factor, S(0). Results confirm that D2O belongs to the three-dimensional Ising 
universality class. This will give me a vision and potential to study the density fluctuations for 
a supercritical fluids using XAS in both mode " absorption and fluorescence "and the ion-
pairing near critical points of solutions. 
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FIG. 1.7 - Instant configuration of two-dimensional Lennard Jones fluid molecules ( Tr = 
T/TC = 1.17 and ρr = ρ/ρC = 0.86, respectively relative temperature and relative density to the 
values of the critical point of the fluid).83 

 

The dominant effect at this mesoscopic scale corresponds to the inhomogeneous and 
dynamic distribution of the local density of the water molecules (Local Density 
Inhomogeneities).64,71,72,84–87 It corresponds to the existence of zones whose density is greater 
than the overall density of the liquid. Therefore, these areas coexist with others whose density 
is less than the overall density. In the pioneering work of Eckert et al.67 The term "cluster" is 
used. The term LDI only relates to the density of the water molecules. 

 
FIG. 1.7 represents an instantaneous configuration, derived from molecular dynamics 

(DM) calculations, for molecules of a simple liquid in supercritical conditions. Even if the 
water, strongly associated by H bonds, ca not be correctly described by a Lennard-Jones type 
interaction because the H bonds are not taken into account, this image clearly represents the 
phenomena of fluctuations involved. Petsche and Debenedetti highlight the universal 
character of critical phenomena of divergence in the size of clusters, irrespective of the type 
of interaction between molecules (Lennard-Jones).74 In the theory of liquids and critical 
phenomena,68,88 these phenomena of divergence in the size of water molecules clusters are 
related to the divergence of the isothermal compressibility (χT). Thus, the closer you get to the 
critical point, More χT and the size o f ξ are increase in  LDI. Wh ereas ξ is the correlation 
length of density fluctuations.  
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1.3 Electrolytes solutions 
An electrolyte solution is a solution that generally contains ions, atoms or molecules 

that have lost or gained electrons, and is electrically conductive. For this reason they are often 
called ionic solutions. However there are some cases where the electrolytes are not ions.  A 
basic principle of electrostatics is that opposite charges attract and like charges repel. It also 
requiresa great deal of force to overcome this electrostatic attraction. A common example of 
an electrolyte is ordinary salt, sodium chloride. Solid NaCl and pure water are both non-
conductive, but a solution of salt in water is readily conductive.89,90 

Water is an ideal electrolyte solvent (as discussed in section 1.2). It is important to 
understand that electrolytic solutions would not exist without the active involvement of the 
solvent reducing the strong attractive forces that hold solid salts and molecules such as HCl 
together. Water is not the only liquid capable of forming electrolytic solutions, but it is by far 
the most important. It is therefore essential to understand those properties of water that 
influence the stability of ions in aqueous solution. 

 

1.3.1 The effect of salt on Hydrogen bonds of water 
Mixing salt with water results in the salt dissolving in the water to produce a saline 

solution. The salt splits up into positively and negatively charged ions that exist independently 
in the solution. Sodium chloride is an ionic solid made of positively charged sodium ions and 
negatively charged chloride ions, which form a strong crystalline structure due to the 
electrical charges between them. When salt is mixed with water, the charged ions instead 
form weak hydrogen bonds with water molecules. Adding salt to water leads to an attraction 
between water molecules and either the sodium or chlorine ions, depending on the particular 
molecule, and this attraction is stronger than the bond between sodium and chlorine. As a 
result, the water pulls the lattice apart dissolving the salt. 

In my case of study, the influence on H-bonding of water (H2O) coming by adding salts 
and increasing of a temperature and pressure. Adding salts increase the ions to the water, 
numerous experimental and theoretical studies have been carried out diluting supercritical 
solutions, where the solute differs significantly from the solvent in its size and interaction 
strength. The results of these studies indicate that the local environment around such solute 
can differ dramatically from the bulk, both in terms of its density and its composition64,91. In 
this case, we can specify the solute-solvent and solvent-solvent model potentials. We assume 
that the solvent particles interact with each other via the familiar LJ potential:71 
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Where εs is the potential well depth and σs is the effective diameter of the solvent 
particle. The solute-solvent pair potential is taken to be of the Yukawa form 

(3) 
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Where σ is the solute–solvent size parameter, while α and K are two-dimensionless 
parameters, which control the strength and the range of the solute–solvent interaction, 
respectively. 

There is extensive data supporting the idea that ions have significant impact on local 
water hydrogen bonding behavior92. In fact, one theoretical model, developed by Marcus,93,94 
has been able to account fairly well for several thermodynamic parameters for a variety of 
ions in solution purely through modeling ion effects on the first hydration layer93. Salt effects 
on water have been most commonly described in terms of the chaotropicity or kosmotropicity 
of the solutes. Perhaps the best description of the chaotrope/kosmotrope designation is that 
offered by Collins:95 binding of chaotropes to water molecules is weaker than binding of 
water molecules to each other; binding of kosmotropes to water is stronger than binding of 
water molecules to each other.91,96,97 Chaotropicity seems to correlate with a low charge 
density, thus large singly-charged ions tend to be chaotropic. Their low charge density means 
that they have smaller effects on the local hydrogen bonding. Kosmotropicity correlates with 
a high charge density, thus small or multiply-charged ions tend to be kosmotropic. Their high 
charge density means that they interfere strongly with local water hydrogen bonding. 

Adding a solute to the water leads multiple effects on the solvent and on some of the 
properties i.e. density, viscosity, dielectric constant, etc. Studies on how water interacts with 
dissolved solutes are essential to understand the physical, chemical and biological changes 
that exist in solution, as pointed out by Soper and Rossky.98 In General, supercritical fluids 
applicable to water, Debenedetti et al.99,100 classified solutes into three categories: repellent, 
weak attractant and attractive solutes. These categories correspond respectively to the 
following three cases: The interaction between the solute and the water molecules is 
repulsive, the interaction between the solute and the water molecules is attractive but weaker 
than that between two molecules of water, and the interaction between the solute and the 
water molecules is attractive but more than those between two water molecules. Then, the 
interaction between the solute and the water molecules is divided into two contributions,101 
The first corresponds to the direct interaction between a molecule (or an atom) of the solute 
and a molecule of water. Its spatial extension is on the order of the range of attractive (or 
repulsive) potential between the two elements. The second is an indirect interaction between 
the solute and other water molecules, outside the first hydration layer and the scope of direct 
interaction potential. This interaction originates the phenomena of correlation (i.e. density 
fluctuations) existing between molecules of a compressible fluid. 

The effects on the structure of the solvent are different for the three types of solute. In 
the case of a repulsive solute, a depletion effect of the neighboring water molecules is locally 
observed. Their density around the solute is locally lower than the overall mean value of the 
water density. Conversely, in the case of an attractive solute (weakly or not), the density of 
water molecules is locally higher than the overall mean density. It is sometimes called 
electrostriction when the interactions involved are electrostatic (the solute is an ion). The 

(4) 
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distinction between the two cases of attractive solute is finer. A simplified view is to say that 
for a system where the number of molecules of solvent and solute is constant, the addition of 
a molecule of solute causes the expansion of the volume in the case of a weakly attractive 
solute and its decrease in the case of an attractive solute.  

The quantities in relation to the effects of charge in the aqueous medium. There is a 
conductivity σ (S.cm-1) and the permittivity ε (static component of the dielectric constant, 
arbitrary units), σ describes the ability of the medium to move a charge. It depends strongly 
on the quantity of charged species present and their mobility, as a function of T and P. ε 
represents the reactivity of the medium to the application of an electric field. It is directly 
related to the polarizability of the medium and the value of the dipole moment of the water 
molecule (in debye D). The high value of this magnitude at ambient temperature (a value of ε 
around 80 is commonly accepted, experimentally and theoretically)11 makes this particular 
solvent and reflects its character of hydrogen-bonded liquid.  

When the solution is brought to supercritical subject conditions, the solvent-specific 
density fluctuations increase, and particularly the correlations between the water molecules of 
hydration spheres of the solute and those free of solute zones. Note that the divergence of the 
correlation length of the IGs containing one (or more) solute atom is only due to the 
divergence of the correlation length ξ of the water density fluctuations. Indeed, the range of 
direct interaction between solute and water molecules is always finite, even very close to the 
critical point.52 

 
In the specific case of ions in solution, the solute is attractive. we observe a local 

increase in the density of water molecules around the ions. However, and as we illustrated in 
these same ions interact with each other by Colombian interaction (discussed later on section 
1.3.3) between charged species, and the attractive forces are inversely proportional to the 
permittivity ε of the medium. In the case of sub- and supercritical aqueous solutions, the fall 
of the ε value with temperature (section 1.2) increases these interactions between ions. Under 
these conditions of temperature and pressure, a competition between the effects of ions by 
Coulomb interaction, and the local increase in the density of H2O molecules around these ions 
by direct and indirect interaction, which tends to screen them ( Coulomb force between them 
reduce). 

 
 
There are several methods and experiments  performed at this conditions, the neutron 

scattering NDIS, to determine the size and density of LDI around a solute. All these 
spectrosopic methods are used to measure the solute as a target. They consist in measuring the 
displacement of an absorption line specific to this target (often of vibrational origin), under 
the effect of the modification of the local structure of the hydration layers. 

 
 

1.3.2 Critical properties 
Water is a good solvent for electrolytes around room temperature as well as for many 

inorganic and organic substances with molecules containing polar functional groups, and a 
poor solvent for nonpolar substances like hydrocarbons. Near the critical point, water is a 
low-dielectric fluid and thus a poor solvent for electrolytes.12,59 
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In this supercritical domain, fluids are characterized at the microscopic scale by density 
fluctuations: areas with gaslike density coexist with liquid-like density.64 In this region, the 
solvent criticaly makes the solution thermodynamics peculiar. Traditional approaches 
developed for water below its boiling point experience great difficulty describing anomalous 
properties of dilute solutions near the critical point of the solvent. We shall argue that the 
properties of both nonelectrolyte and electrolyte aqueous solutions in a large range around the 
water critical point can be most easily grasped in analogy with those of other compressible 
fluid mixtures.12,102 

At near and supercritical temperatures, aqueous electrolyte solutions pose three kinds of 
problems: (1) incorporating the effects of phase separation, mixture criticality, and proximity 
of the solids in the thermodynamic characterization; (2) adapting the customary formulation 
of charge effects in liquid water to a medium that is compressible, has a low dielectric 
constant, and in which ions associate; and (3) generalizing the scaling laws for fluid mixtures 
in order to incorporate the charges.12 

The phase behavior and critical lines, when temperature is raised, water expands and 
becomes more compressible. The dielectric constant falls, and the ions will tend to associate. 
At the critical point of the solution, the vapor and liquid phases become identical, and the ions 
dissolve equally (but poorly) in both phases. Thus, ions will start to dissolve in the vapor 
phase as water is heated to near its critical temperature. In supercritical water conditions, the 
solubility of ions will be poor at low densities, but increase strongly as the pressure 
increasesand the density exceeds the critical density.89,90,103,104 

1.3.3 Ion-Pairing 
Ion pairing describes the (partial) association of opposite charged ions in electrolyte 

solutions to form distinct chemical species called ion pairs. Ion pair formation is invoked as 
the most plausible explanation either of certain types of direct experimental evidence (the 
appearance of a new band in the vibrational spectrum i.e. the common forms of spectroscopy 
electronic (UV), vibrational (IR and Raman), and nuclear magnetic resonance (NMR) or of 
deviations observed  at  moderate  concentrations  from  predictions  of electrolyte  theories  
that  accurately  describe  the  properties of very dilute electrolyte solutions. Various theories 
have been proposed for choosing the value of R " specified cutoff distance" and for describing 
the properties of the ion pairs and free ions that together produce the observed behavior of 
electrolyte solutions89,90,94,105. For ion pairs to be treated as distinct entities (chemical species) 
in electrolyte solutions, valid evidence for them must exist. For example, in different 
situations: “An ion pair must be long-lived enough to be a recognizable kinetic entity in the 
solution.89 

There is no a valid range of lifetimes of ion pairs, but rate constants for their 
dissociation approaching 109 s-1, corresponding to a lifetime of ~ 1 ns, Regardless of their 
lifetimes, ion pairs can be considered to be at the chemical equilibrium with the free ions, 
with the extent of formation quantified by the fraction α of the total number of ions remaining 
free and (1-α) as the fraction associated, with  an association constant KA. Consider the ion-
pairing equilibrium in an electrolyte solution of concentration c (usually as molarity, M):  
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                             Cc+ + Aα-  ↔  CA(c-α)+                                      (5) 

Where Cc+ is the cation, Aα-, is the anion, and CA(c-α)+ is the ion pair, with all species 
being solvated to an extent determined by the interaction of each species with the surrounding 
solvent. The net charge of the ion pair (c - α) may be zero (for a symmetrical electrolyte) but 
need not be so. The fraction α and (1 - α) is obtained experimentally by various methods. 
Using the usual relationship between activities and concentrations on the molarity 
concentration  scale (ai = ciyi ), the formation of the ion pair can be quantified in terms of the 
equilibrium concentration quotient, KA, or in terms of the standard (infinite dilution) 
association constant KA° and a ratio of activity coefficients: 

          KA = (1-α)c/(αc)2 = (1 - α)/α2c = KA°(y±'2/yIP)               (6) 

Where y±' is the mean ionic activity coefficient of the free ions and yIP is the activity 
coefficient of the ion pair.89,90,94 

The general form of Coulomb's law describes the force of attraction between charges, 
the force between two charged particles is directly proportional to the product of the two 
charges, and inversely proportional to the square of the distance between them:  

 

2
21

Dr
qqfα

 

Where f is the force (N), q1q2, are the charges in coulombs, D, is the dielectric constant 
of medium, and r, is the distance between point charges (m). The proportionality constant D is 
the dimensionless dielectric constant.89,90 Its value in empty space is unity, but in other media 
it will be larger. When an ion is introduced into a solvent, the attractive interactions between 
the solvent molecules must be disrupted to create space for the ion. This reqiures energy and 
would tend to inhibit dissolution by itself. However, if the solvent has a high permanent 
dipole moment, the energy cost is more than recouped by the ion-dipole attractions between 
the ion and the surrounding solvent molecules.106 

Ion-pairing studies have been performed mostly on single electrolytes in dilute 
solutions, although more concentrated solutions (where higher aggregates may occur) have 
also received attention. Polyelectrolytes are a special case of ion pair aggregates and they are 
briefly reviewed here, because their behavior merits a comprehensive separate review. The 
formation of ion pairs is strongly influenced by the solvation of the ions. Ion pairing has been 
the subject of chapters in the classic treatises on electrolyte solutions: The Physical Chemistry 
of Electrolytic Solutions by Harned and Owen90, and Electrolyte Solutions by Robinson and 
Stokes.89 The monographs Electrolytic Dissociation by Monk103, and Ion Association by 
Davies,104 described the “state of the art”, at that time (early 1960s)  including the methods 
used and the results obtained, along with their interpretation and consequences. 

(7) 
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A previous study about the formation of ion pairing  by XAS measurments is described 
by Ferlat et al.107 It based on the assumptions that the anion-oxygen and anion-cation PRDFs 
are independent of each other. A quantitative evaluation of the degree of association can be 
obtained by coupling EXAFS and Molecular Dynamic simulation. They have been derived 
the ion-pairs for 0.2 mola KBr, RbBr and CsBr aqueous electrolytes at P = 450 bar and T = 
450°C. Some defect of ion-ion contributions obtained in the simulations were observed, 
although further measurements would be necessary to correct the potential parameters. The 
phase contrast method based on a substitution of the ion which acts as an X-ray scatter in the 
ion absorber environment, offers new opportunities for the exploration of the ion-pairing n the 
other systems or thermodynamic conditions.  

The measurements performed by Cécile Da Silva et al.,108 concerne also the influence of 
monovalent ions on density fluctuations in hydrothermal aqueous solutions by small angle X-
ray scattering. The correlation length and the structure factor were extracted from the data 
following the Ornstein-Zernike formalism. They obtained experimental evidence of the shift 
of the critical point and isochore and their dependence on the ions concentration (0.33 mol/kg 
and 1.0 mol/kg). They also observed that the size of the density fluctuations and the structure 
factor increase with the presence of the ions and that this effect is positively correlated with 
the atomic number of the cation. 
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1.4 Summary (English) 
 

In this chapter, I have described the physical and chemical properties of water and 
aqueous solutions at supercritical region and in particular the evolution of the hydrogen 
bonds, a phase diagram with its critical point have been illustrated. The effect of salts on 
hydrogen bonds of water and critical properties have been shown, as well as, the ion-pairing 
of electrolytes solutions characteristics based on previous studies.  

 
Pure water and electrolytes solutions have been measured by several techniques from 

ambient to supercritical conditions i.e. X-ray absorption spectroscopy (XAS), X-ray 
scattering, Neutron scattering, Raman spectroscopy. In this supercritical domain, fluids are 
characterized at the microscopic scale by density fluctuations: areas with gas-like density 
coexist with area with liquid-like density.  
 
 
 

1.5 Summary (French) 
 

Dans ce chapitre, je décris les propriétés physiques et chimiques de l'eau et des solutions 
aqueuses dans la région supercritique, avec un point particulier sur l'évolution de la liaison 
hydrogène dans ce domaine. Un diagramme de phase général de l'eau incluant son point 
critique est présenté. L'effet des sels sur les liaisons hydrogène de l'eau, la formation des 
paires d'ions et l'évolution de ses propriétés critiques sont illustrées à l'aide de travaux 
antérieurs. 

 
Des solutions d'eau pure et d'électrolytes en conditions sub et supecritiques ont été 

mesurés par différentes techniques notamment par spectroscopie d'absorption des rayons X 
(XAS), par diffusion des rayons X, par diffusion de neutrons et par spectroscopie Raman. 
Dans ce domaine supercritique, les fluides sont caractérisés à l'échelle microscopique par des 
fluctuations de densité: des zones à densité gazeuse coexistent avec une zone à densité 
liquide. 
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2. Methods  
In this chapter, a description of the different experimental methods and their 

particularity for the study of hydrohermal solutions are presented. The first method is the X 
ray abosrption spectrocopy and in particular the used of the High resolution spectroscopy. The 
X-ray Absorption Spectroscopy (XAS) technique is another powerful spectroscopic method. 
The energy excitations correspond to an electronic transition to the unoccupied states (of the 
solute atom) whose geometric and electronic structure is highly dependent on the local 
environment. The sensitivity of the XAS is a few angstroms. It is therefore a technique of 
choice in the case of aqueous solutions to describe precisely (geometrically and 
electronically) the first layers of neighbors of the solute. A particular advantage of this 
technique, apart from its very local sensitivity, is its chemical selectivity: in the case of the 
presence of several elements in solution, only one of these elements is chosen by working in 
an energy range corresponding to the threshold of this atom. In our case, we did XAS 
experiments for fluids density measurements, as well experiments using CAS, both 
experiments give consistent results and tend us that at specific temperatures, the structure and 
bonds reformation and distribution in a heterogeneous system. 

 
 

2.1 X-ray Absorption spectroscopy (XAS) 

2.1.1 Theory 
 

X-ray absorption spectroscopy (XAS) is an element specific spectroscopy sensitive to 
the local chemical and structural order of the absorber element. XAS is nowadays 
increasingly used for the speciation analysis of chemical elements owing to the development 
of new synchrotron radiation facilities worldwide. XAS can be divided into X-ray absorption 
near edge structure (XANES), which provides information primarily about the geometry and 
oxidation state, and extended X-ray absorption fine structure (EXAFS), which provides 
information about metal site ligation. 

 
X-ray absorption spectroscopy (XAS) were often used in the literature to study 

supercritical fluids, such as supercritical water and solution when adding ions to water 
"aqueous solutions". supercritical water and aqueous solutions (a mixture of water) studied by 
XAS. The measurements and evolution of density can be correlated to the water behavior  
with pressure and temperature and so linked to its local structure in particular  hydrogen 
bonds evolution with temperature.12 

 
XAS has grown with the achievement of synchrotron radiation facilities which enabled 

to provide intense X-ray sources; reaching the appropriate energy to probe inner shell 
electronic structures of the elements, and with appropriate intensity to allow the detection of 
the photo-electron interactions. When the X-rays hit a sample, the oscillating electric field of 
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the electromagnetic radiation interacts with the electrons bound in an atom. Either the 
radiation will be scattered by these electrons, or absorbed and excite the electrons.109,110 

 

 
 
FIG. 2.1 - Schematic illustration of an experimental design for XAFS experiments for various 
techniques (left) and photoelectric absorption process from a 1s core electron ( right). 
 

A narrow parallel monochromatic X-ray beam of intensity I0 passing through a sample 
of thickness x will get a reduced intensity I according to the expression: 
 
                                                        ln (I/I0) = µ/ρ . ρ . x                                                        (8) 

 
where μ is the linear absorption coefficient, which depends on the types of atoms and 

the density ρ of the material. At certain energies the absorption increases drastically, and 
gives rise to an absorption edge. The edge occurs when the energy of the incident photons is 
just sufficient to cause excitation of a core electron of the absorbing atom to a continuum 
state, i.e. to produce a photoelectron.110–112 Thus, the energies of the absorbed radiation at 
these edges correspond to the binding energies of electrons in the K, L, M, etc, shells of the 
absorbing elements. In our experiment, this classical absorption measurement permits us to 
calculate precisely the evolution of the fluid density and/or the varation of the concentration 
of salt in the solution. 
 
What is XAFS?  

X-ray Absorption Fine Structure is the oscillatory variation of the X-ray absorption as a 
function of photon energy beyond an absorption edge. 
 
EXAFS and XANES 

XAFS is also referred to as X-ray Absorption Spectroscopy (XAS) and is devided into 2 
regions (FIG. 2.2): 
 
XANES :    X-ray Absorption Near-Edge Spectroscopy 
EXAFS  :    Extended X-ray Absorption Fine-Structure 
 

The different energy range between XANES and EXAFS can be also explained in a 
simple manner by the comparison between the photoelectron wavelength λ and the inter 
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atomic distance of the photo absorber-back-scatterer pair. The photoelectron kinetic energy is 
connected with the wavelength λ by the following relation: 
 
          Ekinetic = hν - Ebinding = ħ2k2 /(2m) = (2π)2 ħ2/(2mλ2)                                    ( 9) 

 
Equation (9) contains related but slightly different information about an element local 

coordination and chemical state. The XANES extends up to a few 10s of eVs above the edge 
(FIG. 2.2 blue area). The EXAFS may extend up to 1000eV or more above the edge (FIG. 2.2 
pink area).109,110 
 
 

 
FIG. 2.2 - The K-shell absorption edge of Arsenic. The fundamental phenomenon underlying 
EXAFS is the absorption of an x-ray photon by a core level of an atom in a solid and the 
consequent emission of a photoelectron. 
 

These oscillations appear because the proximity of neighboring atoms strongly 
modulates the absorption coefficient. The As K-edge absorption spectrum of a pseudo-binary 
semiconductor lnAsx P1-x is plotted in FIG. 2.2. 

 
In the XANES region, transitions are to unfilled bound states, nearly bound states, or to 

the continuum, where the photoelectron has a low kinetic energy (Ekin ~ few eVs). 
In the EXAFS region, the photoelectron is always excited to the continuum, and has a 

larger kinetic energy (Ekin ~ 50-1000 eV). High energy electrons do not travel much in matter, 
i.e. their mean free path is limited to a few Å, as shown in the plot below. The difference 
between the kinetic energy of the photoelectron essentially differentiates these two regimes. 
Thanks to the very low mean free path of the photoelectron, approximations can be used to 
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interpret EXAFS, that are not valid for XANES. For this reason, the fine structure that 
appears in the XANES and EXAFS region cannot be analized in the same way113,114. 

 
The features in the pre-edge region are usually due to the electron transitions from the 

core level to higher unfilled or half-filled orbitals (e.g, s → p, or p → d). In the XANES 
region, transitions of core electrons to non-bound levels with close energy occur. Because of 
the high probability of such transition, a sudden raise of absorption is observed. In NEXAFS, 
the ejected photoelectrons have low kinetic energy (E-E0 is small) and experience strong 
multiple scattering by the first and even higher coordinating shells. In the EXAFS region, the 
photoelectrons have high kinetic energy (E-E0 is large), and single scattering by the nearest 
neighbouring atoms normally dominates.113–115 
 
The EXAFS Equation 

The absorption process X involves the emission of a core electron from the atom, called 
a photoelectron. When the energy hν of the incident photon is higher than the binding energy 
E0 of an electron of the core, the latter is excited towards an empty state of the 
pseudocontinuum and becomes a photoelectron. Its kinetic energy is then a function of the 
energy of the incident photon : Ec = hν - E0 . As the excited atom has an electron gap on one 
of its layers, the relaxation takes the form of an emission of either an Auger electron or a 
fluorescence photon. 

A spherical wave wave vector k may be associated with the mass photoelectron emitted 
by the absorber atom. This wave describes the excited final state of the atom. K can be 

expressed using me and the kinetic energy of the Ec photoelectron as: 


ceEmk 2
=  

The normalized EXAFS oscillations are represented by the factor χ(k) which is expressed 
using the absorption coefficients μ (k) and μ0 (k) (for an isolated atom): 
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The relation  /2 ce Emk =  makes it possible to express k as a function of its kinetic 

energy Ec, Which can itself be written as a function of the incident energy of the photon hν 
and binding energy of the core electron E0: Ec = hν - E0 

The absorption coefficient is described by Fermi's golden rule: 

 

( )νδ hEEiHfµ fi +−∝∑
2

 

ǀ i > and ǀ f > are the wave functions describing the atom in its initial and final state, 
respectively. H is the Hamiltonian of radiation-matter interaction. The summation must be 
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carried out on all the final states which retain the total energy of the system. Different 
approximations allow to develop the EXAFS oscillations denoted χ.  

First, we place ourselves in the electric dipole approximation: 
The Hamiltonian of interaction is then equal to ε.r , where r  is the coordinate of the 
photoelectron and ε


the polarization vector of the electric field related to the wave of the 

incident photon. This approximation is valid because the wavelength of the radiation is 
greater than the spatial extension of the interaction region. Moreover, the angular dependence 
will not be taken into account in this study, and the expressions proposed will be valid only in 
the case of non-oriented samples, of the powder, liquid or polycrystalline type. In the first 
step, this formalism is developed in the case of simple backscattering. All the paths 
considered are back and forth between the absorber atom and a neighboring atom, that is to 
say a diffusion with an angle π. 

Finally, we assume that the incident wave is plane in the vicinity of the backscattering (and 
not spherical) atoms, which will affect the writing of the backscattering function f (k, p). The 
oscillations are then expressed in the form:  
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The term ( 2kr + Ψ (k)) corresponds to the total phase shift between the waves representing 
the ejected photoelectron and the photoelectron after backscattering. Corrective terms must 
then be added in order to take into account different phenomena: 

• The elastic scattering of the photoelectron can only take place on a short distance 
corresponding to the free electronic path λ, which is a function of the kinetic energy 
and therefore of the wave vector k. A damping term of phenomenological origin is 
then added, exp ( -2r/λ(k)). This mean free path takes into account the effects of 
inelastic diffusion undergone by the photoelectron around the absorber atom.  

• Thermal agitation and structural disorder subject the interatomic distances r to 
fluctuations. The factor σ called "Debye-Waller" is therefore introduced, and will have 
an influence on the oscillations through a Gaussian of width σ, that is a corrective term 
equal to exp ( -2k2σ2). This last hypothesis is referred in the literature as the harmonic 
approximation, and can be used only in the case of a limited disorder. If the disorder is 
more important, corrective terms must be used.  

Finally, the EXAFS oscillations are described as: 
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where Nj is the number of equivalent backscattering atoms j at a distance Rj from the 
absorbing atom, ƒ(k) and δ(k) are photoelectron scattering properties of the neighboring atom. 
This factor can be set on fitting, on the basis of fits to model compounds. Thus, the EXAFS 
contribution from each backscattering atom j is a damped sine wave in k-space, with an 
amplitude, and a phase, both dependent on k. Additionally, S2 is introduced as an amplitude 
reduction factor due to shake-up/shake-off processes at the central atom(s). The sum is over 
“shells” of similar neighboring atoms. If we know ƒ(k) and δ(k) we can determine:  
R   distance of neighboring atom. 
N   coordination number of neighboring atom. 
σ2  mean-square disorder of neighbor distance 
 

As mentioned, the scattering amplitude ƒ(k) and the phase-shift δ(k) depend on atomic 
number Z of the scattering atom, so the species of the neighboring atom can be also 
determined.113,114 
 

In the context of supercritical solutions, XAS as a local probe is very well adapted. But 
as demonstrated by ferlat et al, due to the high level of disorder in supercritical region, we 
have developped an experimental setup dedicated to increase the resolution of the XANES 
using HERFD-XAS. 
 

2.1.2 Experimental setup 
 

The measurements have been carried out on FAME beamline are in transmission and 
fluorescence ( HERFD-XAS) detecion modes. Fluorescence detection is classically achieved 
with a solid state detector (SSD) on X-ray absorption spectroscopy (XAS) beamlines. This 
kind of detection however presents some limitations related to the limited energy resolution 
and saturation. Crystal analyzer spectrometers (CAS) based on a Johann_type geometry have 
been developed to overcome these limitations. The CAS allows to collect X-ray photons from 
a large solid angle with five spherically bent crystals. It will cover a large energy range 
allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U 
(Z = 92). High-energy resolution fluorescence detected XANES and EXAFS have a better 
spectral resolution than conventional XANES and EXAFS. The performances of the CAS are 
illustrated by two experiments that are difficult or impossible to perform with SSD and the 
complementarity of the CAS vs SSD detectors is discussed.116 
 
 
 

2.1.3 Crystal Analyzer Spectrometer (CAS) 
 

The BM30B/CRG-FAME beamline at the European Synchrotron Radiation Facility 
(ESRF, Grenoble, France) is dedicated to X-ray absorption spectroscopy (XAS) applied to a 
wide variety of research fields: condensed matter physics, materials science, biophysics, 
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chemistry, and mainly geochemical topics, with special emphasis on highly diluted samples. 
The final assembly has different characteristics that will be detailed: The geometry of the 
experiment, the final configuration, which is intended to be able to comprise several crystals, 
the nature of the crystal, and finally the energy resolution of this system.  

2.1.3.1 Experimental Description  
 

Johann geometry. Different geometries can be envisaged: for example the so-called 
geometry of  "Johansson", a curved crystal with curved refractive planes of a double radius, 
allows a detection well resolved in energy. Indeed, this geometry does not impose any 
degradation of the resolution. Unfortunately, its elevated cost and the difficulty on making the 
crystals used made us prefer the so-called geometry of (Johann).  

In the Johann configuration as shown in FIG. 2.3, the crystal is tangent at its center (C) 
to a fictitious circle, called (Rowland circle), radius r twice less than the radius of curvature R 
of the crystal,117 the source of the radiation, i.e. the sample, and the detector is located on the 
Rowland circle and determine the angle α of incidence selected ( α = π/2 - θ, with Bragg angle 
θ). The detector is located on the focal point, opposite the source with respect to the reflection 
axis of the crystal.  

The incidence angle is exact only at the center of the crystal. On the remaining surface 
the angular error ( α - ά ) is a function of the distance h and creates a slight geometric defect 
in the resolution of the detector. The angle ά characterizes the angular acceptance of the 
crystal, and depends mainly on the height h. The differentiation of the Bragg law makes it 
possible to calculate the geometric error as a function of h.  
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FIG. 2.3 - Visualisation of the intersection between the incident beam and the detection cone 
and resolution effect – vertical spreading of the focal spot on the detector: The "source" ( i.e. 
the sample), the crystal, tangent to the Rowland circle at point C, and the detector, placed 
vertically on the sample. the angles, α and ά correspond to two different optical paths, and 
they are used when calculating the energy resolution due to the geometric error.116 

The values of α when increase, is important because that's means more selected energy, 
as well, more the energy resolution is degraded. My study was carried out using crystal 
reflection 880, distance dhkl is 5.4307 Å, the incident energy chosen corresponds to Kα1 of the 
bromide is 13 491.4 eV, the angle of α is 13.673°, and the theoretical resolution of the crystal 
is 0.89 eV, and from our experiments, the experimental resolution is 1.4 eV was measured, 
This total resolution gives account of several parameters which we will detail in the next 
paragraphs. 

Choice of the crystal. Different monocrystalline materials can be envisaged for this 
type of set-up, mainly germanium or silicon. The Germanium has a larger atomic number, i.e. 
a bigger structural factor. However, the technology associated with this material is less 
developed than that of silicon, so the manufacture of a crystal in Germanium is diffecult, 
expensive, and its crystallinity will be less good (i.e. more defects may be present), this 
material has therefore been eliminated in favor of silicon.117 

Since the inelastic scattering section is relatively small, the curved analyzer used 
increases the solid detection angle in Johann's geometry. A similar method consists using an 
analyzer made of a multitude of small crystals glued on a curved support (their number can 

C 
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thus vary between 104 and 1012, the interest is to use only perfect crystals (in our case, the 
crystal is curved in an artificial way, which does not induces defects in its structure), and thus 
improves the diffracting power.118 The chosen crystal is circular, with a radius ρ of 50 mm, 
for a thickness of 500 μm, curved spherically (with a radius of curvature R of 500 mm). The 
choice of the radius of curvature results from a compromise between the size of the system 
and the efficiency of the crystal. Indeed, if a larger a radius of curvature crystal is selected, the 
angular errors will be finer. However, a solid angle constant is prefered (to have the same 
counting rate), it will be necessary to have a larger diffractive surface, so the same angular 
errors as before will be find. Moreover, the distance to be traveled for the photons will be 
large, which implies, a certain amount of space and, a path in the air (or helium) that is too 
long, which further reduces the Counting. Thus, a relatively small radius of curvature has 
been chosen. 

Moreover, the choice of the size of the crystal (the radius ρ) has an influence on the 
resolution: over this size, the most important number of photons collected is unfortunately in 
spite of the resolution deteriorates when the distance from the center of the crystal. 

The 5 crystal analyser spectrometer was installed in the experimental hutch on the 
BM30B/CRG-FAME XAS beamline at the ESRF, This set-up however presents some 
limitations related to the limited energy resolution and saturation. Crystal analyzer 
spectrometers (CAS) based on a Johann_type geometry have been developed to overcome 
these limitations. I had tested this system dedicated to the structural investigation of high 
dilute systems in environmental, material and biological sciences. The spectrometer has been 
designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron 
beamlines or even with a laboratory x-ray source. The CAS allows to collect X-ray photons 
from a large solid angle with five spherically bent crystals. It will cover a large energy range 
allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U 
(Z = 92). It provides an energy resolution of 1–2 eV.116 XAS spectroscopy is the main 
application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can 
be also achieved with it.  
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FIG. 2.4 - View of the spectrometer: detail of crystal assemblage (left—top position), view of 
the spectrometer on the beamline with the Vortex EX-90 as detector (left—down position), 
and top-view of a spectrometer drawing (right).116 

The three main elements, (the sample or source, the center of the crystal and the 
detector) must be part of the Rowland circle. In a multi-crystal system, the source and detector 
must occupy the intersection points of the different Rowland circles of each crystal. We chose 
to place the detector above the source, the crystals will be positioned around the source all at 
the same height (FIG. 2.4). The Bragg angle is adjusted directly by the position of the crystal, 
which will be motorized along the vertical and horizontal axis. These two main movements of 
translation will be complemented by two finer angular movements. Moreover such a detector 
can be used to isolate the appropriate signal induced by the x-ray beam sample interaction, so 
as to discriminate the signals from the sample and from its container. Finally it also allows to 
focus the diffracted photons on different areas on this detector, to monitor each crystal 
separately116,119,120.  

Energy resolution. The energy resolution of the detection system using an analyzer 
crystal is first of all related to the geometrical configuration, in our case the Johann 
configuration. Other parameters must be taken into account117. Thus, a perfect crystal 
contributes intrinsically to the energy resolution by its Darwin factor:  
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Where h is Planck's constant, c the speed of light, θB the selected Bragg angle, λ the 
wavelength of the incident beam, re the electron beam, Fhkl the structural factor, exp(-M) the 
Debye-Waller factor, and V0 the volume of the unit cell of the crystal.  

It is necessary to take into account the finite size of the source, which corresponds to the 
width of the sample illuminated by the beam also having a finite size. As a vertical 
configuration has been chosen, only the vertical width of the beam, so the source Is taken into 
account. This width, related to the differentiation of Bragg's law, can be written by:  

L
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Where E is the energy of the incident beam, Δθ describes the angular width of the 
source viewed from a point of the crystal, The vertical width of the beam is described by the 
parameter Δh, and L is the distance between the source and the point of the crystal considered. 

It is necessary to take into account the energy resolution provided by the optics of the 
line of light, In particular the role of the monochromator. In the CRG-FAME-BM30B, the 
total resolution of the beam is in the order of the intrinsic resolution of the crystals of the 
monochromator, ΔE/E = 5.6*10-6 for diffractive silicon crystals121. 

Solid state detectors do not have any spatial detection resolution. Thus, any 
fluorescence, elastic, and inelastic scattering signal from a sample holder, or more generally 
from the experimental setup, cannot be filtered. One solution is to install fluorescence soller 
slits between the sample and the detector but this does not give significant improvement122.  

The work performed by Llorens et al.116 High energy resolution five-crystal 
spectrometer for high quality fluorescence and absorption measurements on a X-ray 
absorption spectroscopy beamline. Fluorescence detection is classically achieved with a solid 
state detector (SSD) on X-ray absorption spectroscopy (XAS) beamlines. This kind of 
detection however presents some limitations related to the limited energy resolution and 
saturation. Crystal analyzer spectrometers (CAS) based on a Johann_type geometry have been 
developed to overcome these limitations. They have tested and installed such a system on the 
BM30B/CRG-FAME XAS beamline at the ESRF. For more details about saturation, optics, 
detection, etc.116 

In the following sections 2.1.3.2 and 2.1.3.3, we present the gain of the HERFD-XAS in 
the XAS analysis under an article showing the the difference of both measurements by 
classical and HERFD-XAS. Describing the method of Crystal Analyzer Spectrometer (CAS) 
in details by the giving an energy resolution at each threshold used and type of crystal 
refelcetion. CAS helps to overcome the restrictions coming from the optical componenets on 
sample concentrations. CAS based on a Johann_type geometry have been developed to 
overcome these limitations,  it covers a large energy range allowing to probe fluorescence 

(14) 
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lines characteristic of all the elements. In this case, it is interesting to compare total 
fluorescence and HERFD-XAS, and thus quantify in which case using a CAS is more 
appropriate than a SSD. The interest of using the CAS is shown in FIG. 3 of Sec. 2.1.3.2 
which represents typical emission fluorescence spectra collected with the CAS and the SSD. 

 

2.1.3.2 Interest of High-Energy Resolution Fluorescence Detected X-Ray Absorption 
Spectroscopy  
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Core Ideas 
Study shows high-resolution spectroscopic data for an improved speciation determination. 
Speciation of trace elements down and below the µg.g-1 level is shown. 
Measurements are made in vivo or at natural concentration. 

 
Abstract 

The study of the speciation of highly diluted elements by X-ray absorption spectroscopy 
(XAS) is extremely challenging, especially in environmental biogeochemistry sciences. Here 
we present an innovative synchrotron spectroscopy technique: high-energy resolution 
fluorescence detected XAS (HERFD-XAS). With this approach, measurement of the XAS 
signal in fluorescence mode using a crystal analyzer spectrometer with a ~1-eV energy 
resolution helps to overcome restrictions on sample concentrations that can be typically 
measured with a solid-state detector. We briefly describe the method, from both an 
instrumental and spectroscopic point of view, and emphasize the effects of energy resolution 
on the XAS measurements. We then illustrate the positive impact of this technique in terms of 
detection limit with two examples dealing with Ce in ecologically relevant organisms and 
with Hg species in natural environments. The sharp and well-marked features of the HERFD–
X-ray absorption near-edge structure spectra obtained enable us to determine unambiguously 
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and with greater precision the speciation of the probed elements. This is a major technological 
advance, with strong benefits for the study of highly diluted elements using XAS. It also 
opens new possibilities to explore the speciation of a target chemical element at natural 
concentration levels, which is critical in the fields of environmental and biogeochemistry 
sciences. 

Environmental biogeochemistry is a very large and diverse area of research that 
includes the works of biologists, toxicologists, geochemists, chemists, physicists, and others 
who aim to understand the interaction between a pollutant and a biotope. Such studies can be 
performed at different scales, from the macroscopic, microscopic, or nanoscopic (imaging 
techniques applied to the whole organism, organ, plant, etc.) levels to the atomic level. In this 
context, synchrotron radiation techniques are very powerful, particularly to study the 
distribution (micro X-ray fluorescence imaging) and the chemical speciation (X-ray 
absorption spectroscopy, XAS) of trace metals or metalloids (Sarret et al., 2013; Kopittke et 
al., 2017). X-ray absorption spectroscopy probes the speciation of a target chemical element 
(i.e. its valence, composition, and structure of the coordination shells) and is widely used for 
this aim (Lombi et al., 2011). 

One characteristic of XAS measurements in the field of environmental and 
biogeochemical sciences is that the probed element (e.g., pollutant or metal of the 
metalloprotein) is often diluted in the medium, even in synthetic samples, to be representative 
of realistic concentrations. In studies of nanoparticles, XAS signals contain both bulk and 
surface contributions, the latter being much smaller than the former, even for very small 
particles. Due to the fact that interactions between the nano‐object and its environment occur 
mainly at its surface, the surface signal is usually the most meaningful (e.g., for toxicology 
studies). Thus, XAS spectra should be of very good quality from both a statistical and 
spectroscopic point of view to detect weak surface changes coming from a small fraction of 
the sample. 

The acquisition of high quality XAS spectra requires an optimized and stabilized photon 
flux on the sample combined with an efficient and highly sensitive detection system. Such 
detection has been performed in fluorescence mode for ~40 yr (Jaklevic et al., 1977). 
Fluorescence detection needs to be performed using an energy-resolved detector to minimize 
the contribution of the undesired photons, mainly elastic and inelastic scattering photons and 
photons produced by fluorescence of other chemical elements. On most of XAS beamlines, 
such detection is performed using a solid-state detector (SSD) or silicon-drift detector (SDD), 
with a typical energy resolution ~150 to 300 eV. Such detectors are very useful and efficient 
for three main reasons. First, the energy of the fluorescence photons of interest can be 
changed quickly and easily. Second, the energy resolution is often low enough to sort the 
different types of photons cited above. Third, the counting rate can be extended to ~106 counts 
s−1, with the appropriate electronic and synchrotron photon bunch frequency. However, with 
such detectors, the intrinsic detection limit comes mainly from the overlap of elastic and 
inelastic scattering events with the measured signal (Hazemann et al., 2009; Heald, 2015). 
The state-of-the-art detection limit with an SSD is ~10 to 100 µg.g-1 in weight or <1 mmol 
L−1. As an illustration, a compilation of concentration limits for XAS measurements in 
bioenvironmental science fields, as reported in the literature and performed on the BM30b 
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beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), is 
indicated in Supplemental Fig. S1. 

One way to overcome these limitations is to use a detection system with a better energy 
resolution, such as a crystal analyzer spectrometer (CAS). We will detail in this paper why 
and how XAS studies of diluted elements or nanoparticles can be particularly improved using 
such an efficient detector. 

Materials and Methods 

Solid-State Detector vs. Crystal Analyzer Spectrometer 

The schematic process of the fluorescence measurements by both systems is described 
in Fig. 1. With SSD (or SDD) technology, the photons are collected and later electronically 
separated by energy (e.g., Fig. 1d). Technically, the energy resolution is limited by (i) the 
Fano factor (the energy loss by the photons to create an electron-hole pair is not purely 
statistical), (ii) the incomplete collection of the charge produced in the depletion zone, and 
(iii) electronic considerations such as the parasitic noise and capacitance at the input of the 
charge-sensitive preamplifier, and the speed of the processing electronics (e.g., the shaping 
time). 

The typical energy bandwidth thus ranges between ∆E = 120 and 300 eV, depending on 
detector quality and shaping time (the faster the time, the higher the counting rate but the 
lower the resolution). The fluorescence photons of interest (highlighted in red in Fig. 1d) on 
the x-ray fluorescence spectrum are then integrated within an energy region of interest. The 
variation of this integrated intensity with the incident energy gives rise to the total 
fluorescence yield XAS spectrum (red curve in Fig. 1a). 

With a CAS, the photons are first optically selected in energy (Bragg scattering) and 
later collected by a detector that does not necessarily need to be energy resolved. Compare 
with SSD, the optical adjustment of CAS is generally more time consuming, and the 
measurements of XAS spectra takes more time. The energy resolution of a Johann’s type CAS 
(Supplemental Fig. S2) is limited by (Collart et al., 2005; Hazemann et al., 2009): 

1. The Johann’s geometry aberration. Indeed, only the center of the crystal is on the 
Rowland’s circle, leading to an angular dispersion in the vertical plane and, consequently, 
an energy dispersion (Supplemental Fig. S3). This aberration is all the more limited when 
the Bragg angle is close to 90° and/or the radius of curvature is large. In most cases, this is 
the true limiting factor for the total energy resolution. Consequently, the choice of crystals 
used for the analysis of a given fluorescence peak must take into account this 
characteristic (optimized choice of crystal analyzers corresponding to a large number of 
elements and their associated emission line are given on Supplemental Tables S2 and S3). 
The emission energy range that can be covered by one crystal is consequently rather 
limited; 

2. The intrinsic properties of the crystal reflection, the so-called Darwin width (G. W. 
Brindley,1933); 

3. The imperfections of the bent crystal due to the bending process (Rovezzi et al., 2017). 
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Thus, for a CAS equipped with spherically bent crystal analyzers with a radius of 
curvature of 1-m range, the energy bandwidth typically ranges from 0.2 to 2 eV. This value is 
then smaller than the core-hole lifetime of the measured fluorescence line (Supplemental 
Tables S2 and S3): X-ray emission spectroscopy (XES) measurements can be achieved. 
Moreover, by integrating only a narrow region of the fluorescence line of interest (as shown 
in Fig. 1f for a fraction of the Kβ1,3 line), the high-energy resolution fluorescence detected 
XAS (HERFD-XAS) can be measured (blue curve in Fig. 1a). 

The main advantages of measuring fluorescence-XAS with CAS instead of SSD (or 
SDD) are: 

1. XAS (including extended x-ray absorption fine structure [EXAFS] and X-ray 
absorption near edge structure [XANES]) measurements can be achieved on complex 
and/or diluted systems where the detection limit is determined by the fluorescence of the 
main constituents of the matrix and/or the scattering signals; 

2. Energy resolution of HERFD XANES spectra can be sharper than what could be 
achieved conventionally (Hämäläinen et al., 1991; de Groot et al., 2002; Bauer, 2014), 
which improves the accuracy of XANES quantitative analyses; 

3. Energy position of the fluorescence lines (and especially the Kβ ones for the K-edges) 
is sensitive to the spin state (Kβ1,3) and to the ligands (Kβ2,5 and its satellite lines) of the 
probed element. The XAS spectra obtained by measuring these lines are then spin or 
ligand sensitive (Bergmann et al., 1999; Rovezzi and Glatzel, 2014), 

4. Other spectroscopic techniques such as XES can be performed. For example, valence-
to-core XES allows discrimination between the different ligands in the first coordination 
sphere of the probed element (Safonov et al., 2006; Bauer, 2014; Gallo and Glatzel, 2014). 
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Fig. 1. Principle of X-ray absorption spectroscopy (XAS)-fluorescence measurement 

using solid-state detector (SSD) and crystal analyzer spectrometer (CAS). Spectra correspond 
to the analysis of a Co3O4 sample with a 30-element Ge SSD (total fluorescence yield, red 
spectra) and a CAS using five Ge(444) crystals optimized around the Co Kβ1,3 fluorescence 
line (high-energy resolution fluorescence detected [HERFD], blue spectra; Bordage et al., 
2015). (a) XAS spectra. (b) X-ray absorption near-edge structure (XANES) spectra; insert 
corresponds to a zoom on the pre-edge region. (c) extended X-ray absorption fine structure 
(EXAFS) spectra k2χ(k). (d) Fluorescence spectra measured with the SSD and CAS. (e) Kα1 
and Kα2 X-ray emission spectroscopy (XES) spectra measured with the CAS using five 
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Si(440) crystals. (f) Kβ1,3 fluorescence line and its Kβ′ satellite measured with the CAS using 
five Ge(444) crystals. 

 

 
X-ray Spectroscopic Techniques 

Detailed explanations of the XAS and XES theories fall outside the scope of this paper 
and can be found in numerous recent reviews, on core-level spectroscopy generality (de Groot 
and Kotani, 2008), XANES (Henderson et al., 2014; Joly and Grenier, 2016), EXAFS 
(Newville, 2014), XAS (Rehr and Albers, 2000; Ortega et al., 2012; Milne et al., 2014), XES 
(DeBeer and Bergmann, 2016), and HERFD (Bauer, 2014; Kowalska et al., 2016) applied to 
bioionorganic chemistry, and applications in environmental sciences (Gräfe et al., 2014). We 
will briefly recall the main principles of the core-level spectroscopy techniques with special 
attention to effects that can be better analyzed with CAS. 

An X-ray interacts with the core electrons of atoms and, depending on its energy, can be 
absorbed by them through the photo-electric effect. The electrons can be excited to an upper 
empty electronic level or, if the X-ray energy is higher than the binding energy of the 
considered electron, to a free state as a photo-electron. The direct consequence of this 
excitation process is the creation of a core hole on the electron’s initial level and a jump of the 
X-ray absorption when increasing the incident X-ray energy around the binding energy of an 
electron, the so-called absorption edge. 

The probability of this event is the absorption cross-section, which depends on the 
energy of the incident X-ray photon, the considered element, and the electronic level: µelement, 

edge (E). The subsequent relaxation process gives rise to the emission of either fluorescence 
photons or Auger electrons. When the probed element is diluted in its matrix, the total 
fluorescence yield is considered to be proportional to µelement, edge (E) (Jaklevic et al., 1977). 

The absorption cross-section presents a jump around the binding energy (Fig. 1a). The 
energy position of this absorption edge is characteristic of a given element and the considered 
electronic level. The probed element can then be precisely targeted. The absorption cross-
section evolution versus energy can be divided in two areas. The XANES area is defined 
around the edge (Fig. 1b); the EXAFS area is defined beyond the edge (Fig. 1c). 

The photo-electron emitted by the absorbing atom can be scattered by the electronic 
potentials of the neighboring atoms. The interference between the incident wave (linked to the 
outgoing photo-electron) and the scattered one induces modulations and oscillations of the 
absorption cross-section. The EXAFS signal is the oscillating part of the absorption signal 
above the edge, dominated by the single scattering events. It gives information on the local 
atomic order around the probed absorbing element (number, distance, and nature of the 
neighbors). The mean free path of the photo-electron being limited to few Å (roughly up to 10 
Å in the considered energy area), the EXAFS information will be limited to the local order 
around the central atom. 

In the XANES energy range, when the incident photon energy is slightly higher than the 
binding energy of the core level, modulation of the absorption cross-section will occur, as in 
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the EXAFS region, but the multiple scattering events will contribute strongly to the spectrum. 
X-ray absorption near-edge structure can then provide information on the site geometry of the 
probed element. In addition, the spectrum can present well-marked peaks characteristic of 
electronic transitions from the core hole excited state to empty states. X-ray absorption near-
edge structure can then also provide information on the electronic structure of the probed 
element. The intrinsic spectroscopic limitation of this technique comes from the core hole, 
which can have a large lifetime and can thus induce a broadening of the peak. A way to 
overcome this broadening is to perform the XANES measurement in the fluorescence mode 
and to measure the fluorescence line intensity with an energy resolution below the core-hole 
lifetime broadening of the absorption edge. This is typically the case when using a CAS, and 
the measurement is then called HERFD XANES (Hämäläinen et al., 1991). 

Another interesting energy region is the lower side of the XANES, the so-called pre-
edge region (inset of Fig. 1c). Resonant structures (pre-edge peaks) may appear in this region, 
which are strongly sensitive to the electronic structure of the absorbing site. The analysis of 
such features permits the extraction of information on the spin or oxidation state, geometry, 
and type of ligand. The pre-edge features for K-edge XANES of 3d transition metals have 
been studied in detail (Westre et al., 1997; Yamamoto, 2008; de Groot et al., 2009; Cabaret et 
al., 2010). 

In addition to HERFD-XAS, the use of a CAS permits performing XES measurements. 
Non resonant XES consists of scanning the emitted fluorescence with a CAS at a fixed 
incoming X-ray energy, above an absorption edge. X-ray emission spectroscopy also permits 
probing the local electronic structure of the absorbing element and has been used extensively 
(Bergmann and Glatzel, 2009; Glatzel and Juhin, 2013). With respect to XANES, XES probes 
occupied valence electrons (directly or indirectly) and are more sensitive to the local charge 
density. Depending on the selected transitions, XES is divided into two main regions: core-to-
core (e.g., Kα1,2 or Kβ1,3) and valence-to-core (e.g., Kβ2,5). In the example of K emission lines 
of 3d transition metals, core-to-core XES permits the evolution of the local spin or oxidation 
state to be followed and may be used in turn to collect oxidation state-selective EXAFS 
(Glatzel et al., 2002) or XANES (Bordage et al., 2015). In addition, valence-to-core XES is 
more sensitive to metal-ligand mixed valence states and has been employed in chemistry to 
distinguish between ligands of light elements (Eeckhout et al., 2009). Such sensitivity permits 
in turn to collect valence-selective XAS (Hall et al., 2014). 

 
High-Energy Resolution Fluorescence Detected XAS 

We previously mentioned that measuring the fluorescence line intensity with an energy 
resolution around the core-hole linewidths, that is 1 to 5 eV, allows HERFD-XANES to be 
obtained (i.e. spectra showing sharper features than conventional ones; Hämäläinen et al., 
1991). 

This sharpening effect has been demonstrated by de Groot et al. (2002) by analyzing the 
resonant X-ray emission spectrum of Pt-Lα1 (2p3/2–3d5/2) and applied (e.g., by Swarbrick et 
al., 2009, for analysis at the Pb LIII–edge). Below are individual comparisons of the different 
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widths of the energy levels involved in the absorption process, detailed here for the LIII–edge 
(with the Lα1 emission line). 

In conventional XAS, for a LIII absorption edge, the final state has a 2p3/2 core hole with 
a Γconv core-hole lifetime. 

In HERFD-XAS, the Lα1 fluorescence line corresponds to 3d (the final state) to 2p3/2 
transition (the intermediate state). The apparent core-hole lifetime broadening of the HERFD 
measurement, Γapp, is then given by: 

 

 

where Γint and Γfin are the intermediate (2p3/2 for Lα1) and final state (3d for Lα1) core-
hole lifetime broadening. Γapp was calculated on Supplemental Table S2 (resp. Supplemental 
Table S3) for several elements at their K-edge (resp. LIII). The improvement of the HERFD-
XANES spectral resolution compared with conventional spectra is a direct consequence of the 
difference between these final-state widths. The two examples presented below will deal with 
Ce and Hg LIII–edge analysis. Γapp are calculated to 0.72 and 2.28 eV, respectively, with core-
hole lifetime sof the probed level Γ2p3/2 equal to 3.19 and 5.71 eV. All the features 
characteristics of electronic transitions (pre-edge, edge, or after-edge peaks) measured in the 
XANES are directly affected by the core-hole lifetime broadening. In HERFD-XANES, such 
features are then detected with a better energy resolution: a two- to fourfold improvement can 
be reached experimentally. 

In the EXAFS region, the core-hole lifetime broadening also affects the amplitude of the 
oscillations through the mean free path (or lifetime) of the photo-electron, which includes 
both inelastic scattering of this electron and the lifetime of the core hole (Rehr and Albers, 
2000). This effect is especially important for high Z elements studied at their K-edge and can 
be corrected using spectral deconvolution (Fister et al., 2007). For the elements that can be 
probed with a CAS, the effects is very limited, even indistinguishable (Fig. 1c). A comparison 
of XAS measurements on Cu and Pd foils performed with monochromators with different 
energy resolution showed that the EXAFS amplitudes, as described by the amplitude 
reduction factor 2

0S , are comparable (Kelly et al., 2009). In a first approximation, the EXAFS 
measurements with CAS do not significantly change the signal compared with the 
conventional measurement. 

 
Instrumentation 

Among the different possible geometries, the most frequently encountered on 
synchrotron beamlines are the Johann (1931), Johansson (1933), and von Hámos (1932). The 
technical requirements to perform a high-energy resolution fluorescence measurement are the 
following: (i) at least one crystal analyzer in Bragg condition with respect to the energy of the 
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photons of interest and (ii) a detector that collects the diffracted photons. Both geometries are 
in reflection mode (Bragg type; i.e. suitable for low-energy X-ray studies). 

In the first case, the sample, the crystal, and the detector are positioned on a circle (the 
Rowland circle). The crystal is spherically bent, with its radius of curvature equal to the 
diameter of the Rowland circle. When the crystal is close to backscattering, the geometric 
errors are very small; the whole crystal surface meets Bragg diffraction conditions for a given 
energy and the diffracted photons are focused on the detector. The crystal can be considered 
as a monochromator. During an XES spectrum acquisition, the crystal and the detector need 
to be moved simultaneously, accordingly to the Rowland circle conditions. 

In the second case, the shape of the crystal is no longer spherical but flat, and the Bragg 
angle changes depending on the position of the considered X-ray on the crystal surface. The 
crystal can be considered then as a polychromator. The diffracted photons are no longer 
focused on a single point but dispersed on a surface. The use of a two-dimensional detector 
enables the whole energy spectrum of the emitted photons to be obtained (i.e. a XES spectrum 
in “one shot”). 

The HERFD measurements can also be achieved using transmission-type (Laue-type) 
curved crystal spectrometers linked to a large-area detector. This geometry is suitable for 
high-energy photons, above ~20 keV. Recently, using a Laue-type DuMond spectrometer 
(Szlachetko et al., 2013), energy resolutions of 2.8 eV for the Mo Kα1 X-ray line (17.479 
keV) and 17.1 eV for the Gd Kα1 X-ray line (42.996 keV) have been obtained. These values 
are smaller than the core-hole lifetime of the corresponding measured absorption edge (4.52 
eV for Mo, 22.3 eV for Gd). 

On the BM30b beamline (ESRF), we developed a CAS in the Johann geometry 
(Hazemann et al., 2009; Llorens et al., 2012), this geometry being more adapted to an XAS 
beamline than the von Hámos one (technical details on this CAS can be found in the 
Supplemental Material). Such a geometry is now often used on several synchrotron beamlines 
(Supplemental Table S1) from the pioneering spectrometers developed 20 yr ago (Stojanoff et 
al., 1992; Bergmann and Cramer, 1998). The growing number of papers in bioenvironmental 
and geochemistry sciences containing HERFD-XAS results follows this rise. A nonexhaustive 
review of references in bioenvironment and geochemistry sciences using XAS-CAS clearly 
exhibits a significant increase (Table 1): only five publications were found between 2002 and 
2009, but the number rose to 13 between 2012 and 2016, illustrating the interest in the method 
and its performance. 

Sample Preparation and Environment for Bioenvironment Studies using CAS 

X-ray absorption spectroscopy (conventional or HERFD) and XES techniques are 
sensitive to element speciation. Two obvious points need then to be addressed when preparing 
these kinds of measurements. 

First, the samples must be prepared without modifying the speciation of the target 
element. One of the most efficient ways to achieve this is to analyze the sample in its hydrated 
state. This preserves the chemical speciation of the probed element by keeping the water 
molecules inside the studied structure. Great care must be taken between the sampling and the 
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analysis. The sample can then be kept in a hydrated frozen state (Sarret et al., 2013). To 
prevent damaging the sample (especially for biological components), the cooling process can 
be done using isopentane cooled down by liquid nitrogen (Luster and Finlay, 2006). 
Furthermore, the homogeneity of the sample, with respect to beam size, is key to good-quality 
measurement, whatever the XAS acquisition mode. Nonhomogeneous samples will give 
noisier spectra than homogeneous ones. 

Second, the sample has to be preserved as much as possible from radiation damage 
during measurements. The effects of radiation damages of samples is the same for any 
XANES measurement mode (conventional or HERFD), but as the characteristic features of 
the XANES can be more marked in the HERFD mode, the consequences of radiation damages 
on the XANES shape may appear enhanced. As an example, we present on Supplemental Fig. 
S5 HERFD and conventional XANES spectra acquired simultaneously on the same sample 
position, a Pt/Al2O3 catalyst powder (Gorczyca et al., 2014). The increase of the intense peak 
after the edge (the so-called white line) seems characteristic of the oxidation of the Pt with the 
beam. The relative evolution of the white-line height is more marked for HERFD XANES 
than for the conventional XANES. 

Acquiring the data at low temperature strongly reduces the spurious effects induced by 
the X-ray beam. Furthermore, reducing the thermal motion improves the EXAFS data quality. 
A way to fulfill these conditions is to perform the acquisition on frozen samples placed in an 
appropriate cryostat (liquid nitrogen or, even better, liquid helium temperature). Another way 
to avoid radiation damage is to quantify the time necessary to observe a difference between 
spectra by doing short-time spectra centered on the edge-energy area (Sarret et al., 2013). This 
time is then the time limit before observing the effects of radiation damage. It is a function of 
the temperature, the photons’ brightness on the sample, and the nature of the sample. The 
spectrum’s duration should then be shorter than the time limit. If several acquisitions are 
necessary (e.g., to improve the data quality), the position of the beam on the sample will be 
moved between each scan to probe an untouched area of the sample. 

 

Results 

HERFD and Bioenvironment: A Tool to Study Diluted Elements 

The main parameter that limits the ability to perform XAS experiments on diluted 
elements in optimal conditions may arise from the matrix or the bearing phase. When the 
probed element is diluted in a soil (which can contain clays, silicates, and iron or manganese 
oxides), fluorescence signals delivered by the main constituents of this matrix can saturate a 
SSD, even with the use of appropriate filters. Moreover, in some cases, the fluorescence peaks 
of some matrix constituents can be too close in energy to the fluorescence peak of the targeted 
element to be discriminated by the SSD. When the probed element is diluted in a liquid, a 
plant, or more generally light matter, the limitation comes from the scattered beams. Llorens 
et al. (2012) studied bromide aqueous solutions at different concentrations to have an idea of 
the intrinsic XAS concentration limit of the SSD. Here, the limitation is given by a partial 
overlap of the measured signal (Br Kα fluorescence) with the low-energy tail of scattered 
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beams (elastic or inelastic scattering). Using the rule that the signal of interest should be three 
times the unwanted signal, an intrinsic limit of XAS measurement using SSD can been 
estimated to 23 µg.g-1 for Br in solution. 

With the emergence of CAS on XAS beamlines, a set of recent publications 
demonstrates the advantages of this new technique. The corresponding concentrations of the 
elements investigated are given in Table 1. In the field of biogeochemistry, Bissardon (2016) 
studied the contribution of selenium in cartilage at in vivo concentrations, which are below 
µg.g-1 or even a few hundreds of ng.g-1. Similarly, Manceau et al. (2016) analyzed the 
chemical form of Hg in human hair down to 0.5 µg.g-1, and Vogel et al. (2016) explored the 
chemical form of both Se and Hg in sewage sludge down to 0.6 and 0.8 µg.g-1, respectively. 
These studies would not have been possible with a conventional XAS measurement. 

HERFD and EXAFS Analysis 
In most cases (and in all literature found on the subject in bioenvironmental studies), the 

interest of CAS is focused on XANES studies and not on EXAFS. However, EXAFS analysis 
can also benefit from high-energy resolution fluorescence measurement. 

When the characteristic emission line of the probed element is very close to those of 
other elements located in the sample, it is difficult to perform EXAFS analysis with good 
measurement statistics using a SSD. In this case, the background of the EXAFS spectrum 
(due to the other elements) is very high compared with the edge jump, especially when the 
element of interest is diluted. Using a CAS, the different emission lines can be precisely 
separated, and the EXAFS measurement is possible with a background close to 0. This 
method was used by Sheng et al. (2014) to define the Eu interaction with β-MnO2. 

The problem is similar when the element of interest is diluted in a light matrix (water, 
biological matrix, etc.). The background signal when measuring the spectrum by an SSD is 
not dominated by any fluorescence but by the low-energy tail of the Compton peak (Llorens 
et al., 2012). Like the previous point, the use of a CAS provides a very low background for 
the EXAFS measurement on diluted or ultra-diluted elements. 

Energy position of emission lines can change for a given element, depending on its 
valence state. Measurement with EXAFS (as well as XANES) can exploit this change to 
obtain valence-sensitive spectra, which is useful in the case of mixed-valence compounds. 
Grush et al. (1995) demonstrated the interest of this selectivity for EXAFS measurements on 
Mn compounds (mixed Mn2+ and Mn3+ compounds). Fe2+ and Fe3+ species were probed in 
Prussian Blue (Glatzel et al., 2002). Lambertz et al. (2014) probed the two Fe sites in an Fe-
rich hydrogenase enzyme. Kühn et al. (2014) studied Co nanoparticles where the Co0 core is 
protected by a Co-based shell. 
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Table 1. Example of high-energy resolution fluorescence detected (HERFD)-X-ray 
absorption spectroscopy (XAS) publications in the field of environmental 
biogeochemistry sciences. The elemental concentrations are given in µg g−1 or mol; both 
the temperature (T) and beam size on the sample are indicated as well.  

 
Element Field Interest† Concentration T/beam size Reference 

Mn Biomineralization LS 0.01g L−1 δMnO2 
+ 100 µM MnCl2 

<70 K/0.3 × 1 mm2 Bargar et al. (2005) 

Mn Biomineralization HR <10 µg g−1  Soldati et al. (2016) 
Fe Biochemistry HR  RT/200 × 100 µm2 Mijovilovich et al. (2012) 
Fe Biomineralization HR <0.1 mol L−1 20 K/200 × 400 µm2 Baumgartner et al. (2013) 
Fe Biomineralization HR  10 K/200 × 400 µm2 Lohße et al. (2014) 
Fe Bioenergy HR   Casals et al. (2014) 
Fe Biogeochemical LS   Blazevic et al. (2016) 
As Bioremediation HD 1300–4800 µg g−1 290 K Masih et al. (2007) 
Se Biogeochemical HD 0.4–3.0 µg g−1 10 K/300 × 100 µm2 Bissardon (2016) 
Se Bioenvironmental HR and HD 0.8–9.2 µg g−1 40 K Vogel et al. (2016) 
Ce Bioenvironmental HR 60 and 85 µg g−1 10 K Tella et al. (2015) 

Eu 
Chemical 

environment 
condition. 

Matrix 
fluorescence 

 RT Sheng et al. (2014) 

Os Geochemistry Matrix 
fluorescence 

58.3 and 65.7 µg 
g−1 RT/200 × 800 µm2 Takahashi et al. (2006) 

Pt Medical HR  RT/100 × 100 µm2 Sá et al. (2016) 

Hg Bioenvironmental HR and HD 48, 81, and 191 µg 
g−1 10 K/500 × 80 µm2 Manceau et al. (2015) 

Hg Bioenvironmental HR and HD 0.74–30.2 µg g−1 10 K/700 × 80 µm2 Manceau et al. (2016) 
Hg Bioenvironmental HR and HD 0.6–4.4 µg g−1 40 K Vogel et al. (2016) 
Hg Biogeochemical HR  10 K Poulin et al. (2016) 

Pb 
Chemical 

environment 
condition. 

HD 1200–3000 µg g−1 RT/1 × 1 mm2 Izumi et al. (2002) 

Pb 
Chemical 

environment 
condition. 

HR 40 mM Pb RT/0.3 × 1 mm2 Swarbrick et al. (2009) 

† LS, ligands sensitivity; HD, high dilution; HR, high resolution (HERFD). 

 

HERFD and Bioenvironment: High-Resolution XANES Studies 
The use of CAS enables the obtainment of a HERFD-XANES signal with a spectral 

resolution much sharper than what could be conventionally achieved. This possibility is of 
great interest in environmental biogeochemistry because (i) the differences between spectra 
are often subtle and (ii) the improved resolution gives a more precise discrimination of the 
local structure around the absorbing atom. This possibility was, for example, fully exploited at 
the Fe K-edge probing the Fe Kβ1,3 fluorescence line to study biomineralization processes 
(Baumgartner et al., 2013), to study magnetite nanoparticle evolution during conversion of 
biomass (Casals et al., 2014), at the Ce LIII edge to characterize the behavior of cerium oxide 
nanoparticles in aquatic mesocosms (see below; Tella et al., 2015), or at the Hg LIII edge to 
determine which chemical forms of Hg are present in human hair (Manceau et al., 2016). To 
highlight in more detail this real step forward, XANES measurements in conventional 
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methods (transmission or total fluorescence yield measurement) and in HERFD are presented 
below to ascertain the valence state of Ce, in the case of biotransformation of CeO2 
nanoparticles, and the speciation of Hg bound to sulfur. The consequence of this improved 
energy resolution are also of great importance when the experimental spectra are compared 
with calculated ones (Swarbrick et al., 2009; Mijovilovich et al., 2012). We will quantify here 
the improvement in the speciation determination when analyzing the XANES spectra by 
principal component analysis (PCA) and linear combination fitting (LCF), as used, for 
example, to study Fe biomineralization (Baumgartner et al., 2013) or Hg speciation in sewage 
sludge (Vogel et al., 2016). 

Cerium Valence Determination 
In many studies, the determination of oxidation state between CeIV/CeIII or the ratio is of 

crucial importance in particular for its bioavailability and its toxicity. Indeed CeO2 is a strong 
oxidant due to a high CeIV to CeIII redox potential. Such high oxidation power directly or 
indirectly can create oxidative stress for living organisms and cells. Cerium oxide 
nanoparticles’ interactions with organisms and biological media have been particularly 
investigated, such as with human cells (Auffan et al., 2009), biomolecules (Rollin-Genetet et 
al., 2015), microorganisms (Zeyons et al., 2009; Ma et al., 2013; Collin et al., 2014), plants 
(López-Moreno et al., 2010; Zhang et al., 2012; Hong et al., 2014), mollusks (Tella et al., 
2014), and mussels (Garaud et al., 2016). In these studies, the reduction of Ce4+ to Ce3+ in 
CeO2 nanoparticles was probed by conventional XANES spectroscopy. Speciation 
quantification was in most cases based on linear combination of CeO2 and Ce3+ reference 
spectra (Fig. 2a). For example, for the study of CeO2 nanoparticles interacting with human 
dermal fibroblasts (Auffan et al., 2009), the shoulder which appears on the XANES spectra at 
5724 eV, was attributed to Ce3+, and the quantification led to a Ce3+ contribution of 8 ± 2%. 
However, with conventional XANES, the shoulder at 5724 eV can be attributed either to Ce3+ 
single absorption jump, corresponding to the 2p3/2 → (4f1) 5d electronic transition, or crystal 
field splitting into eg and t2g for Ce4+O2 particles. 

High-energy resolution fluorescence detected XANES was used in a recent study (Tella et 
al., 2015) addressing the environmental impact, (bio)distribution, and (bio)transformation of 
nano-CeO2 in realistic exposure conditions. This required the development of an adapted 
experimental strategy based on indoor aquatic mesocosms that virtually mimic aquatic 
ecosystems (Auffan et al., 2014; Tella et al., 2014). Over 4 wk, the transfer, redox 
transformation, and impacts of 1-mg L−1 CeO2 nanoparticles were determined respecting an 
ecologically relevant mollusc (Planorbarius corneus) living in a pond environment. Over 
time, CeO2 nanoparticles tend to homo- and heteroaggregate and to accumulate on surficial 
sediments, where they are available to interact with benthic grazers as P. corneus. A transitory 
oxidative stress was observed in P. corneus after 2 wk of exposure (lipid peroxidation and 
increase in the antioxidant defense capacity). By combining X-ray tomography and laser 
ablation inductively coupled plasma mass spectrometry (ICP-MS), Ce was localized in the 
digestive gland of benthic organisms, where a strong biotransformation of the CeO2 
nanoparticles occurred. Using LCF of the pre-edge area of the HERFD-XANES spectra, the 
authors quantified that 81 ± 8% of CeIV was reduced into CeIII in the digestive gland (and 22 ± 
2% remained CeIV). However, in the surficial sediment, no contribution of CeIII improved 
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the LCF residue. This led to the conclusion that the changes in the HERDF spectra 
observed were not associated with the reduction of CeIV but with changes in the 
crystallite size of CeO2. These samples were also analyzed by conventional XAS. Linear 
combination fitting analysis of the surficial sediments and the digestive gland was found to 
overestimate by 20 to 30% the reduction into CeIII. Consequently, without HERFD-XAS, it 
would have been impossible to unambiguously attribute the CeIII reduction to the digestive 
activity of the molluscs, and not to an interaction with the biofilm present on the surficial 
sediments. 

 

 

Fig. 2. (A) Conventional X-ray absorption spectroscopy (XAS) and (B) high-energy 
resolution fluorescence detected (HERFD) XAS analysis of the surficial sediments and the 
digestive gland of P. corneus exposed for 4 wk to CeO2 nanoparticles in aquatic mesocosms 
mimicking a pond ecosystem. (C) Zoom in on the pre-edge area of the HERFD XAS spectra. 
(D) Results of the linear combination fits performed on the conventional XAS (range −20 to 
30 eV) and HERFD XAS (range −8 to  −1 eV) spectra using two reference compounds, the 
initial CeO2 nanoparticles and the CeIII–cysteine. 
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Mercury Speciation 
Anaerobic microorganisms are responsible for producing the neurotoxin methylmercury 

(MeHg) in the environment, requiring inorganic HgII as a substrate (Parks et al., 2013). Many 
studies have employed XAS to study HgII speciation in environmental and biological samples 
to better understand which HgII species are bioavailable for MeHg production (Andrews, 
2006; Skyllberg et al., 2006; Nagy et al., 2011; Dunham-Cheatham et al., 2014, 2015; Thomas 
et al., 2014; Manceau et al., 2015). In the anoxic environments where MeHg is produced, HgII 
is primarily bound to thiol functional groups in organic matter or sulfide due to its high 
affinity for reduced sulfur. Additionally, environmental HgII concentrations are intrinsically 
low (<1 µg.g-1). Analyses of diluted samples benefit from solely scanning the XANES region 
to avoid the longer scan time required for the EXAFS. However, conventional Hg LIII edge 
XANES of Hg coordinated to sulfur atoms contain few distinguishing features (Fig. 3), 
making it difficult to correctly identify relevant HgII species in natural environments. In 
contrast, the increased spectral resolution of Hg LIII edge HERFD-XANES provides distinct 
spectral signatures for different forms of HgII bound to reduced sulfur. Both the conventional 
and HERFD-XANES spectra of α-HgS and β-HgS were measured at room temperature (Fig. 
3); thus, the observed increase in resolution is not a temperature effect. High-energy 
resolution fluorescence detected XANES will be an asset to future studies of HgII speciation, 
lowering the detection limit for HgII in natural samples. 
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Fig. 3. Mercury LIII edge conventional and high-resolution X-ray absorption near-edge 
structure (XANES) of species of HgII with reduced sulfur coordination. The HgII in α-HgS 
(cinnabar) and Hg(Cysteine)2 is linearly coordinated to two sulfur atoms, whereas the HgII in 
β-HgS (metacinnabar) and Hg(Cysteine)4 is tetrahedrally coordinated to four sulfur atoms. 
Preparation and X-ray absorption spectroscopy (XAS) measurement details are given in the 
Supplemental Material and described more extensively in Thomas & Gaillard (2017). The Hg 
LIII–edge high-resolution XANES spectra were measured on BM30B and BM16, and the 
conventional XANES spectra were measured on the DuPont–Northwestern–Dow 
Collaborative Access Team (DND-CAT) beamline at the Advanced Photon Source. 

 

Consequence on Principal Component Analysis and Linear Combination Fitting 
Speciation determination of metals (or metalloids, halogens, etc.) in environmental and 

biogeochemical samples can be challenging when the probed element is present in several 
forms. An often-used way to overcome this complexity is to reconstruct the spectrum 
obtained for the sample with a LCF of model compound spectra (Gräfe et al., 2014). The 
accuracy of this reconstruction depends on several parameters, among them (i) the quality of 
the spectra (both of the samples and the model compounds), (ii) the relevance of the model 
compound spectral database (Are all the possible configurations present? Is the local order of 
the probed element in a well-crystallized phase comparable with the one in an ill-ordered 
identical phase encountered in the sample? How many independent pure model compounds 
spectra are needed?), and (iii) the spectral differences between the model compounds spectra. 

The number of pure model compounds needed to reconstruct a dataset of spectra can be 
determined using a PCA statistical approach (Manceau et al., 2014). The number of 
eigenvalues needed to reconstruct the entire dataset is the most common indicator used to 
determine this number, although the results can be ambiguous and overestimation may bring 
better results (Manceau et al., 2014). 
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Fig. 4. Principal component analysis of a synthetic multicomponent set of 50 X-ray 
absorption near-edge structure (XANES) spectra obtained in conventional and high-energy 
resolution fluorescence detected (HERFD) mode of detection. Target transformations of the 
α-HgS reference spectra used to calculate the multicomponent spectra, in (a) conventional 
mode or (b) HERFD. Results of the least square fitting analysis of the Hg(Cys)4 ratio in the 
random synthetic multicomponent set of XANES, obtained in (c) conventional and (d) 
HERFD mode: comparison between the ratio obtained from the adjustment and from the 
spectrum calculation. 

 

High-energy resolution fluorescence detected XANES has a better spectral resolution 
than conventional XANES. This improvement can be useful for PCA and LCF approaches. 
We chose to illustrate this quantitatively. We created two datasets of 50 artificial Hg 
multicomponent spectra based on random linear combinations of the conventional or HERFD 
spectra of the four Hg model compounds described above. For each dataset, noise was added 
to each linear combination spectra, corresponding to 0.25% of the edge step. Details of the 
analysis are given in the Supplemental Material. Different steps of the PCA analysis are 
shown (Supplemental Fig. S6), as well as spectra used for the analysis (example of 
multicomponent spectrum, Supplemental Fig. S6a), the scree plot (number of eigenvalues, 
Supplemental Fig. S6b), and the target transformation of each set for conventional mode (Fig. 
4a) or HERFD (Fig. 4b). 

The main observation given by the scree plot (Supplemental Fig. S6b) is that the 
number of components needed to perform the LCF analysis is quite difficult to estimate for 
the conventional spectra (three or four are possible candidates), whereas the correct number of 
four components is more easily deduced for the HERFD spectra. This might come from the 
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fact that the shape of the pure component spectra is quite similar in conventional 
measurements. This is corroborated by the target transformation performed for each set of 
spectra. In conventional mode (Fig. 4a), only three components seem to be necessary to 
reproduce the α-HgS spectrum; a fourth component does not improve the residual of the 
target transformation. In HERFD mode (Fig. 4b), the α-HgS spectrum needs four components 
to be reproduced satisfactorily. The well-marked features obtained in HERFD mode, very 
different in shape and position from one reference spectrum to the other, allow clear 
differentiation of the components. 

We performed a LCF analysis of both set of spectra using the four components, 
determined a ratio of each component, and compared the “LCF ratio” to the “real ratio.” The 
results are given in Fig. 4c and 4d for the Hg(Cys)4 ratio (and in Supplemental Fig. S7 for the 
other compounds), and the standard deviations between the “LCF ratio” and “real ratio” for 
each compounds measured with both modes of detection are presented in Table 2. It is no 
surprise to see that the determined ratio is more precise with the HERFD XANES than with 
the conventional ones. The precision in the determined ratio is around 10% for the 
conventional mode and around 2% for HERFD. These results are only given as an illustration 
of the improvement brought by the HERFD measurements, in this particular case, and the 
absolute values of determined ratio cannot be directly used for all absorption edges, all 
elements, and all compounds. Nevertheless, the improvement is clear. 

 

 

 

Table 2. Determination of the ratio of Hg components in synthetic mixtures from 
conventional and high-energy resolution fluorescence detected (HERFD) measurements: 
standard deviation between the linear combination fitting result and the initial ratio for 
the four compounds used for the study. 
Measurement α-HgS β-HgS Hg(CYS)2 Hg(CYS)4 

 ——————————— % ——————————— 
Conventional XANES† 14 11 7 9 
HERFD XANES 3 2 3 1 

† XANES, X-ray absorption near-edge structure. 

 

Conclusions 
With the development of CAS on XAS beamlines worldwide, HERFD-XAS is 

becoming one of the most suitable techniques for speciation analysis of metals and metalloids 
in environmental biogeochemistry. The new opportunities brought by this high-resolution 
spectroscopy are (i) the possibility to study ultra-diluted elements by filtering with great 
efficiency the background photons and (ii) to improve the sensitivity of the measurement with 
the acquisition of better-resolved XANES spectra. It is now possible to probe elements such 
as Se at natural levels and pollutants such as Hg or Ce at realistic concentrations (µg.g-1 or 
below). 
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These measurements are already possible. In the near future, with the development or 
upgrade of the synchrotron sources, as well as the development of the crystal analyzer 
spectrometers (improved geometry, more crystals, better bent crystals, etc.), one can 
reasonably think of reducing the detection limits even more. 
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Fig. S1. Concentration for XAS experiments performed on CRG-FAME beamline at 
ESRF (red diamond) in the environmental and biogeochemistry science fields (53 
publications from 2002 to 2016) using a solid state detector. Green area: estimated 
intrinsic detection limit using solid state detector (from Hazemann et al., 2009). 
Concentration are expressed in ppm (parts-per-million) mass fraction. 
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2. Crystal analyzer spectrometer characteristics and spectroscopic data 

Crystal Analyzer Spectrometer on CRG-FAME and CRG-FAME/UHD at ESRF  
On the CRG-FAME beamline (BM30b, ESRF, Grenoble, France), we developed a CAS 

in the Johann geometry (Hazemann et al., 2009; Llorens et al., 2012). The spectrometer is 
equipped with 5 spherically bent crystals in a Rowland geometry (Fig. S2). A helium bag (not 
shown on Fig. S2) is used to limit the absorption of the fluorescence signal on the x-ray path 
from the sample to the crystals –and to the detector. Photons diffracted by the crystals can be 
focused on a SDD with a 50 mm2 active area. The narrow energy bandwidth of the CAS 
allows unwanted X-ray events (mainly scattering processes) to be excluded from the selected 
fluorescence signal diffracted by the crystals and thus to improve the signal-to-background 
ratio. Another possibility is to use a 2D hybrid photon counting pixel detector (in our case an 
XPAD-S70) with a 75x15 mm2 active area and a 130x130 µm2 pixel size. This kind of 
detector produces a high quality signal as the electronic noise can be avoided by adjusting the 
detection threshold above the noise individually for each pixel. The large detection area 
enables the measurement of the diffracted photons as the focus point can be quite large when 
Bragg angle becomes smaller than 90°. 

 

Fig. S2. View of the Crystal Analyzer Spectrometer on the FAME-UHD beamline. The 
sample, crystal & detector are located on the Rowland's circle. Due to the vertical 
geometry of the crystals all the Rowland's circles corresponding to each crystal are 
crossing on the same point on the detector. In operation a helium bag limits the air 
absorption on the sample-crystal-detector path (not present on the picture). 

The spectrometer was initially designed with a 0.5 m radius of curvature for the bent 
crystals. This short radius increases the solid angle of the detection and it is very well adapted 
for diluted systems (Hazemann et al., 2009; Rovezzi et al., 2017). However, manufacturing 
this kind of crystals is very delicate inducing a perfectible crystal quality (technological 
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difficulties in their elaboration process and a decrease of the energy resolution induced by 
microstrains inside the Si wafer) and the geometrical error in the Johann configuration 
seriously limits the practical range of their use (see below). Thus, we adapted the initial 
spectrometer (Llorens et al., 2012) to accept crystals with a 1 m radius of curvature decreasing 
simultaneously both restrictions. This 5-crystal spectrometer is now installed on the 
FAME/UHD (BM16) beamline at the ESRF. 

Crystal analyzer characteristics 

In order to limit the geometric aberrations of Johann's geometry, the crystal needs to be 
chosen to have a Bragg angle as close as possible to 90°. We calculate the Bragg angle on 
each point of the crystal by considering (Fig. S3.a) : 
The sample on  S      (1) 

A point M on the surface crystal M       (2) 

The unitary orientation vector on the surface crystal   

                                                                                     (3) 

The crystal surface is on a circle centred on O and radius R so   (4) 

                                                      (5) 

(1) to (5) gives 

 

 

Energy calculation due to the Johann's error has been performed on each point of the 
crystal for one kind of crystal, (Si555), two emission lines corresponding to two different 
Bragg angles, and two radii of curvature (Fig. S3.b to e). This calculation is based only on 
geometrical consideration and doesn't take into account the local strain of the crystal on each 
point (Rovezzi et al., 2017). The main result is that only the horizontal central part of the 
crystal allows to select the appropriate energy of photons, especially i) when the Bragg angle 
is far from 90° and ii) when the radius of curvature is small. We propose on Table S2 (K-
edge) and Table S3 (LIII-edge) optimized reflection for different fluorescence lines energy 
which satisfy this angular conditions, i.e. having the Bragg angle as close as possible to 90°. 
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Fig. S3. Calculation of the spatial distribution of the energy diffracted by a Si(555) crystal 
analyzer due to the Johann's error (diameter : 100 mm). Z-axis : diffracted energy (keV). (a) 
Schematic view of the crystal in the Johann's geometry, with the remarkable geometric 
points used for the calculation. (b-e) 3D views of the energy diffracted on each point of the 
crystal surface optimised for Hg Lα1 (b-c) and As Kα1 (d-e) lines. The red double arrow 
represent half of X-ray line widths, ΔE. X-ray line widths values were taken from Salem and 
Lee (1976) for Hg Lα1, from Krause and Oliver (1976) for As Kα1. 
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Crystal Analyzer Spectrometer on XAS beamlines worldwide 

Table S1 gathered examples of beamlines equipped with CAS dedicated to HERFD-XAS 
measurements. 
 

Table S1. Examples of XAS beamlines equipped with a CAS 

Facility Beamline Energy range Spectrometer Reference 

Alba, Barcelona, Spain CLÆSS 6.4 - 12.5 keV Johannson Simonelli et al. (2016) 

APS, Argonne, USA 7ID-D 6 - 24 keV Johann March et al. (2011) 

ESRF, Grenoble, France BM20 3.5–25 keV Johann Kvashnina et al. (2016) 

ESRF, Grenoble, France ID26 2.4 - 27 keV Johann 
Glatzel et al., (2009, 

2013) 

ESRF, Grenoble, France 
BM30b / 

BM16 
4.8 - 22 keV Johann 

Hazemann et al. (2009) 

Llorens et al. (2012) 

NSLS II, Brookhaven, USA 8-ID  Johann  

SLS, Villingen, Switzerland SuperXAS 5 - 15 keV Von Hamos Szlachetko et al. (2012) 

SLS, Villingen, Switzerland SuperXAS 4.5 - 35 keV Johann Kleymenov et al. (2011) 

SSRF, Shanghai, China BL14W1 4 - 50 keV Johann Gao et al. (2013) 

SSRL, Stanford, USA BL 6.2 4 - 18 keV Johann Sokaras et al. (2013) 

SOLEIL, Saint-Aubin, France MARS 3.5 - 36 keV Johann Llorens et al. (2014) 

SOLEIL, Saint-Aubin, France GALAXIE 2.3 - 12 Johann Céolin et al. (2013) 

SPring-8, Sayo, Japan BL11XU 4.8 - 12 Johann Ishii et al. (2013) 

 

High Energy Resolution Fluorescence Detected XANES 



 
 

86 
 

The sharpening effect of the XANES spectra measured with an energy resolution 
around the core hole has been demonstrated by de Groot et al. (de Groot et al., 2002). Let us 
considered a resonant inelastic x-ray scattering (RIXS), i.e. the acquisition of the emission 
intensity in a bi-dimensional energy space, where the X-axis is the energy of the excitation 
photons (the incident photon selected by the monochromator) and the Y-axis the energy of the 
emitted photons (detected by CAS). A schematic RIXS contour plot is shown on Fig. S4, 
RXES characteristic of a well-defined electronic transition (a pre-edge for example). The 
HERFD-XANES measurement is the integration, at a constant emission energy vs. the 
excitation energy, of this plot. If the energy resolution of the CAS is around (or smaller than) 
the energy bandwidth of the final state, the intensity increase due to the transition will occur 
on a reduce energy range, Γapp., the apparent energy bandwidth of the probed transition. Γapp., 
is given by  

 

where Γint. and Γfin. are the intermediate and final state core hole lifetime broadening. 

 

 

Fig. S4. Schematic RIXS contour plot close to an absorption edge, characteristic of a 
resonance like a pre-edge feature for a 3d transition metal 
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Table S2. Emission lines energy, crystal analyzer characteristics, monochromator 

bandwidth, natural widths of atomic levels involved in the K-edge absorption and 

emission processes, and apparent core hole lifetime bandwidth. The monochromator 

bandwidth is calculated considering Si220 crystals, with a ΔE/E=5.6x10-5. §: X-ray Data 

Booklet, 2009. ‡ : Campbell and Papp, 2001. 

Element Spectrometer Monochromator Core hole lifetime broadening (eV) 

Name 
Emission line 

(E, eV)§ 
Crystal 

analyzer 
θBragg 

(°) 
ΔEmono 

(eV) 

Γ1s 

(eV) ‡ 

Γ2p3/2 

(eV) ‡ 

Γ3p3/2 

(eV) ‡ 

Γapp. 

Kα1 

Γapp. 

Kβ1,3 

Ti 
Kα1 (4510.84) Ge400 76.33 

0.28 0.89 0.25 1.2 0.24 0.71 
Kβ1,3 (4931.81) Ge331 75.58 

V 
Kα1 (4952.20) Ge331 74.69 

0.31 0.96 0.28 1.2 0.27 0.75 
Kβ1,3 (5427.29) Ge422 81.54 

Cr 
Kα1 (5414.72) Ge422 82.48 

0.34 1.02 0.32 1.2 0.31 0.78 
Kβ1,3 (5946.71) Si333 85.87 

Mn 
Kα1 (5898.75) Ge333 74.85 

0.37 1.11 0.36 1.2 0.34 0.81 
Kβ1,3 (6490.45) Si440 84.20 

Fe 
Kα1 (6403.84) Ge440 75.46 

0.40 1.19 0.41 1.23 0.39 0.86 
Kβ1,3 (7057.98) Ge620 79.09 

Co 
Kα1 (6930.32) Si620 74.88 

0.43 1.28 0.47 1.27 0.44 0.90 
Kβ1,3 (7649.43) Ge444 82.96 

Ni 
Kα1 (7478.15) Si620 74.88 

0.47 1.39 0.53 1.3 0.50 0.95 
Kβ1,3 (8264.66) Ge642 82.83 

Cu 
Kα1 (8047.78) Si444 79.32 

0.50 1.49 0.61 1.8 0.56 1.15 
Kβ1,3 (8905.29) Ge800 79.86 

Zn 
Kα1 (8638.86) Si642 81.42 

0.54 1.62 0.68 2.15 0.63 1.29 
Kβ1,3 (9572.0) Ge555 82.48 

Ga 
Kα1 (9251.74) Si800 80.77 

0.58 1.76 0.77 2.3 0.71 1.40 
Kβ1,3 (10264.2) Si555 74.39 

Ge 
Kα1 (9886.42) Si660 78.44 

0.62 1.92 0.86 2.3 0.78 1.47 
Kβ1,3 (10982.1) Ge844 77.87 

As 
Kα1 (10543.72) Si555 69.65 

0.66 2.09 0.94 2.25 0.86 1.53 
Kβ1,3 (11726.2) Ge844 66.30 

Se 
Kα1 (11222.4) Ge844 73.09 

0.71 2.28 1.02 2.2 0.93 1.58 
Kβ1,3 (12495.9) Ge880 82.822 

Br 

Kα1 (11924.2) Ge844 64.21 

0.75 2.49 1.11 2.15 1.01 1.63 
Kβ1,3 (13291.4) 

Si880 

Ge777 

76.32 

88.43 
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Kr 
Kα1 (12649) Ge880 78.57 

0.80 2.71 1.19 1.1 1.09 1.02 
Kβ1,3 (14112) Si777 78.73 

 

 

Table S3. Emission lines energy, crystal analyzer characteristics, monochromator 
bandwidth, natural widths of atomic levels involved in the LIII-edge absorption and 
emission processes, and apparent core hole lifetime bandwidth. The monochromator 
bandwidth is calculated considering Si220 crystals, with a ΔE/E=5.6x10-5. §: X-ray Data 
Booklet, 2009. ‡ : Campbell and Papp, 2001. 

Element Spectrometer 
Monochro

mator 
Core hole lifetime broadening (eV) 

Name 
Emission line 

(E, eV)§ 
Crystal 

analyzer θBragg (°) 
ΔEmono 

(eV) 

Γ2p3/2 

(eV) ‡ 

Γ3d 

(eV) ‡ 

Γapp. 

Lα1 

Ba Lα1 (4466.26) Ge400 78.96 0.29 3.02 0.67 0.65 

La Lα1 (4650.97) Si400 79.03 0.31 3.12 0.7 0.68 

Ce Lα1 (4840.2) Ge331 80.71 0.32 3.19 0.72 0.70 

Eu Lα1 (5845.7) Ge333 76.95 0.39 3.62 0.9 0.87 

Ir Lα1 (9175.0) Si800 84.46 0.63 5.24 1.99 1.86 

Pt Lα1 (9442.3) Ge660 79.99 0.65 5.39 2.08 1.94 

Au Lα1 (9713.3) Si660 85.71 0.67 5.54 2.18 2.03 

Hg Lα1 (9988.8) Si555 81.79 0.69 5.71 2.28 2.12 

Pb Lα1 (10551.5) Si555 69.54 0.73 6.07 2.48 2.30 

U Lα1 (13614.7) Ge777 77.40 0.96 8.2 3.5 3.22 

 

3. Radiation damages 

Effect of radiations damages was estimated on a Pt catalyst. The conventional and 
HERFD XANES spectra (Fig. S5) were recorded simultaneously on the CRG-FAME 
beamline at the ESRF (Proux et al., 2005). A two-crystal Si(220) monochromator is located 
between two Rh-coated mirrors. The beam size on the sample was around 300 x 200 µm² (H x 
V, FWHM) thanks to the sagittal focus by the 2nd crystal of the monochromator and the 
vertical one by the 2nd mirror. The 1st crystal of the monochromator is liquid nitrogen cooled 
in order to limit the thermal bump and so to increase the energy resolution, close to the 
intrinsic resolution or the Si crystals (Proux et al., 2006). The flux on the sample was around 
5x1011 photons/s. One spherically bent Ge (660) crystal (R=1000mm, from XRS Tech LLC., 
New Jersey, USA) was tuned to the Lα1 fluorescence line. The total energy resolution of the 
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CAS was measured at 1.3 eV from the measurement of the elastic scattering signal. 
Conventional measurement was performed in the transmission mode. 

The sample was a Pt/γ-Al2O3 powder with a 0.3%wt Pt loading. The powder was kept 
under inert atmosphere on a quartz capillary. The beam was kept at the same position for the 4 
spectra in order to estimate the radiation damages before the operando experiment. More 
details can be found in Gorczyca et al. (2014).  

 

Fig. S5. Conventional and HERFD XANES measurements at the Pt LIII-edge or a Pt/γ-
Al2O3 powder. Insert : relative evolution of the white-line height with respect to the first 
scan (t=0)
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4. Preparation and XAS measurement of the Hg standards 

α-HgS: Cinnabar was purchased from Sigma-Aldrich (CAS Number: 1344-48-5). Both the 
HR- and conventional XANES were measured at room temperature. 

β-HgS: Metacinnabar was synthesized in the laboratory using two 500 mL gas washing 
bottles equipped with coarse fritted glass tips connected in series and placed on magnetic 
stirrers. The first flask contained a solution of HCl, ~ 3M, and the second flask a solution of 
200 mL of ~ 0.1 M mercury(II) perchlorate hydrate – Hg(ClO4)2 (Sigma-Aldrich CAS 
Number: 304656-34-6). Stirring bars were placed in each bottle and a low flow of pure N2 gas 
was used to degas both flasks to remove all dissolved oxygen. After about 30 minutes of 
flushing, a large flake of sodium hydrosulfide hydrate (Sigma-Aldrich CAS Number 207683-
19-0) was added to the bottle containing the acid to evolve a stream of H2S/N2 gas in the 
second flask. The flow of gases was maintained for about 1 hour while a black precipitate 
formed in the second flask. The precipitate was then collected after transferring the 
suspension to another flask to perform successive washing/settlings steps to remove 
remaining salt using deionized water. The wet powder was dried overnight at 60 oC and 
characterized by XRD to confirm the creation of pure metacinnabar. Both HR and 
conventional XANES measured at room temperature. 

Hg(SR)2: Hg(Cysteine)2 standards representing Hg(SR)2, where Hg is linearly coordinated to 
2 sulfur atoms, were prepared according to the methods in Jalilehvand et al. (2006) and 
Manceau et al. (2016), for the conventional and HR-XANES, respectively. For the 
conventional XANES sample, a 1.1 M H2Cysteine solution was prepared in boiled Milli-Q 
water purged with N2 gas for ~1 hour. Under N2 atmosphere in a reaction vessel, 1.713 g of 
Hg(NO3)2•H2O was added to 50 mL of cysteine stock solution. Upon the addition of HgII to 
cysteine, a white precipitate of Hg2H2(Cysteine)2 formed. The precipitate was collected and 
used as the Hg(Cysteine)2 standard (scanned at RT). For the HR-XANES sample, H2Cysteine 
and Hg(ClO4)2 were mixed in 10 mL oxygen-free Milli-Q water to achieve 0.5 mM total Hg, 
1 mM total cysteine, and a pH of 3. The aqueous Hg(Cysteine)2 was scanned as a reference at 
~10 K. 

Hg(SR)4: The Hg(Cysteine)4(aq) standard representing Hg(SR)4, where Hg is tetrahedrally 
coordinated to 4 sulfur atoms, was prepared according to the methods in Jalilehvand et al. 
(2006). Using oxygen-free Milli-Q, Hg(NO3)2•H2O or Hg(ClO4)2 was added to a cysteine 
solution to achieve a total Hg concentration of 50 – 70 mM and a cysteine:Hg ratio of 10:1. 
The pH was adjusted to ~11 dropwise with 1 M NaOH. The conventional XANES were 
scanned at RT, while the HR-XANES were scanned at ~10 K. 

 

5. Principal Component Analysis and Least-Square Fitting XANES studies 

All this analysis was performed using the Demeter program (Ravel and Newville, 
2005), version 0.9.24. 

http://www.sigmaaldrich.com/catalog/search?term=304656-34-6&interface=CAS%20No.&lang=en&region=US&focus=product�
http://www.sigmaaldrich.com/catalog/search?term=207683-19-0&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=US&focus=product�
http://www.sigmaaldrich.com/catalog/search?term=207683-19-0&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=US&focus=product�
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Artificial multicomponent spectra were calculated from two sets of pure Hg component 
spectra obtained in conventional and HERFD mode. The ratio between each reference spectra 
were randomly obtained and the two sets of 50 multicomponent spectra were calculated using 
the same set of ratios. After combination, a noise was added to each spectrum, noise 
corresponding to 0.0025 of the edge step. The different steps of analysis are summarized on 
Fig. S6, from the this spectrum calculation to the scree plot. The results of the ratio 
adjustment are shown on Fig. S7. for the β-HgS, Hg(Cys)2 and Hg(Cys)4 sets of spectra 
(conventional and HERFD). 

            

Fig. S6. Example of multicomponent spectrum calculation (a, sample #1 calculated from 
HERFD reference spectra). Scree plot of the PCA analysis (b). 
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Fig. S7. Results of the Least Square Fitting analysis of the α-HgS, β-HgS, and Hg(Cys)2 
ratio in the random synthetic multicomponent set of XANES, obtained in conventional 
(left) and HERFD (right) mode. Comparison between the ratio obtained from the 
adjustment and from the spectrum calculation. 
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2.2 In situ HP-HT set-up 

2.2.1 Autoclave and cell 
A high pressure/high temperature cell dedicated to X-ray absorption spectroscopy, small 

angle X-ray scattering, and inelastic X-ray scattering techniques is presented. The P and T 
parameters are controlled independently and their range allow the study of aqueous solutions ( 
T≤ 500 °C and P≤ 2000 bar) and liquid metals and glasses ( T≤ 1700 °C and P≤ 2000 bar). 
The autoclave technology is inspired from previous high pressure/high temperature 
equipments but great improvements are achieved. Original high pressure windows have been 
developed to ensure both pressure resistance and low absorbance combined with large angular 
aperture. Different configurations are available for the internal cell that contains the sample 
whether it is aqueous or not. A picture and a first general diagram can be found in FIG. 2.5 
and FIG 2.6. 

 

FIG. 2.5 - Schematic view of the high pressure/high temperature vessel used for XAS 
measurements.2 The gas pressure inside the vessel is stabilized with a special pressure 

regulation device.123 

 

2.2.2 The pressure regulation  
This autoclave consists of an internal part, containing the heating elements as well as 

the sample holder, surrounded by helium under pressure in a double-walled cylinder head. 
The double wall system allows the circulation of chilled water. The circulation makes it 
possible to evacuate the heat produced by the furnace while maintaining the body of the 
autoclave and the windows at low temperature. Hence, the body of the autoclave and the 
windows are be preserved from thermal shocks or changes in the physical properties of the 
materials used. For example, the resistance properties of materials to pressure will change if 
they are subjected to an elevated temperature: the thermal expansion of the different 
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components of the autoclave would be different in particular for the windows and the steel of 
the body of the autoclave, which can cause the joints to exit their throat. The water circulation 
also helps to lower the temperature during the cooling down of the samples, saving time 
during the experiments. 

 

The helium pressure is supplied by an electric compressor (more particularly a 
membrane compressor from Nova Swiss, able to work up to 3000 bar). At the outlet of the 
compressor, the regulation of the pressure of helium applied in the autoclave is ensured by a 
system developed in our institute "Néel Institiute" by R. Bruyère et al.123 as part of the CNRS 
High Pressure Technology Network. 

 

 

FIG. 2.6 - Schematic showing the constituent elements of the autoclave (HP/HT) set-up. 

 

Pressure control ensures a constant pressure in our autoclave with a relative accuracy of 
± 0.2 bar. The advantage of this system is that it is possible to compensate fluctuations of 

1. He inlet through the HP vessel plug. 

2. HP vessel nut to hold tight the vessel 
plug. 

3. Pyrophyllite leadthroughs. 

4. HP vessel plug. 

5. Thermocouples and electrical leads 
connections to the internal part. 

6. Thermocouple (one visible out of two). 

7. Bellows of the internal cell. 

8. HP vessel. 

9. Vitton seal. 

10. Water cooling circulation. 

11. Windows (two out of three): the visible 
parts are the locknuts. The size of the HP 
vessel s8d is 242 mm3150 mm. 
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pressure, in particular at increasing the temperature (which tends to increase the applied 
pressure), or caused by leakage. These can be present either in the autoclave, If deposits are 
present on the surface of the seal (item (9) in FIG. 2.6) or in the high-pressure fittings. 

The body of the cell is made from X13 stainless steel, which does not oxidize and 
present interesting mechanical properties. The HP seal between the vessel and the plug is 
achieved with a vitton seal and an antiextrusion brass Δ-ring located in the area 9 in FIG. 2.6. 
The role of the plug is to introduce the He inlet, the thermocouples and electrical wires into 
the internal part. The technological solution chosen is conical pyrophyllite leadthroughs. 

 

2.2.3 The Temperature regulation 
The heating system consists of a resistive furnace ((4) in FIG. 2.7), composed for a 

molybdenum wire of 0.4 mm in diameter, with a high electrical current circulating, Wrapped 
around the sample area. The wire is slid into tubes of alumina in a "flûte de pan" type 
arrangement to isolate the mollybdene wire. The oven is wrapped around a cylindrical copper 
tube (3) which contains the internal cell (9) for better homogenization of the temperature. An 
insulating block made of boron nitride makes easier to assemble by constraining the final 
shape of the furnace. A thermally insulating ceramic made of alumina (7) surrounds the 
whole. The control of the temperature is made using an Eurotherm and a DC power supply 
from Midec (power supply type SK 60-30) by operating in voltage limitation. For our 
samples, the order of magnitude of the power dissipated by the furnace corresponds to an 
external supply of (12 A x 10 V), for a temperature of 200 °C.  

A K-type thermocouples are housed in holes drilled in the tube in order to measure the 
temperature as close to the sample as possible. The resulting temperature gradient between the 
thermocouples holes and the inner part of the internal cell has been determined precisely. As 
it is visible in FIG. 2.7, all these elements are confined in insulating ceramic elements both to 
avoid heat outflow and for highpressure safety reasons. Since the sample region probed by the 
photons beam is at the center of the heating zone, all the heating elements have three apertures 
corresponding to the three windows of the HP vessel. 
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FIG. 2.7 - 3D drawing of the internal part in the configuration for aqueous samples (Heating 
and sample). Note that the heating principle is identical in the case of nonaqueous samples. 

 

 

2.2.4 The windows of the Autoclave 
The window of autoclave play an important role to resist the pressure of helium inside 

the cell. Different types of windows ensure the passage of the beam. They must all satisfy two 
types of criteria, while adapting to the chosen experiment: firstly, they must resist the pressure 
of helium inside the autoclave, which will result in different geometric criteria depending on 
the material used. The beryllium windows used for the X-ray absorption measurements which 
have a dome shape allows good resistance to pressure for a relatively small thickness.  

Secondly, they must not alter the beam path through them: the use low absorption 
coefficients materials must be selected. (Thus, the low density and the small atomic number 
of the beryllium used in X ray absorption allows it to absorb as little as possible of the beam), 
moreover, the geometry of the windows do not have to alter the focus of the beam. In our 
case, I had used three Be windows ( 2 with the direction of the beam, and the other one at 90° 
for fluorescence measurements) with a thickness 0.8 mm, and density 1.85 g/cm3. The most 
polyvalent windows, for XAS and IXS techniques, are made in Be. Extruded Be SR200 is 
chosen for its compromise between good mechanical and low absorption properties2. 

 

1. Internal cell cap.  

2. Thermocouple housing in the 
copper tube.  

3. Copper tube.  

4. Resistive furnace.  

5+6. Beam windows in the copper 
tube.  

7+8. insulating ceramic elements.  

9. Alumina internal cell.  

10. Bellows for aqueous samples. 
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FIG. 2.8 - Drawing of the general windows geometry (two on the beam axis, and one at 90°). 
The setup is drawn with Be windows (0.8 mm Be window in our case). 

 

In order to minimize the elastic scattering radiation, we choose to place the fluorescence 
window at 90 ° of the incident beam, as shown in the sectional drawing 2.8. There is no 
elastic scattering parallel to the polarization of the beam but (on the CRG-FAME-BM30B at 
the ESRF) is perpendicular to the axis of the incident beam because the polarization at the exit 
of the electron storage ring is perpendicular to the tangent of the ring. By positioning at 90°, 
we thus suppress the elastic diffusion. FIG. 2.9 shows a Be window used in my experiments. 

 

 

FIG. 2.9 - Picture showing the 0.8 mm Be window, Which install 3 of them in the area 4 in 
FIG. 2.8 

 

1. HP vessel main part (spiece 8 in 
Fig. 2.6).  

2. Water cooling circulation 
(spiece 10 in Fig. 2.6).  

3. Alumina insulating pieces.  

4. Beryllium window.  

5+6. Furnace and internal cell. 
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2.2.5 The thermocouples 
We manufacture K-type thermocouples using two wires ( FIG. 2.10), one in chromel 

(alloy of nickel and chromium), and the other one in alumel (alloy of nickel, 5% aluminum 
and silicon). The principle of measuring thermocouples is based on the Seebeck effect. In 
theory, two different metals are connected by two welds at different temperatures, which 
generates a potential difference depending on the temperature difference between the two 
welds. In our case, a single weld between the alumel and the chromel is placed where the 
measurement of the temperature is required, and the electronics of the eurotherm plays the 
role of compensation of the "cold" weld. K-type thermocouples allow measurement over a 
wide temperature range (-270 ° C to 1372 ° C); the accuracy obtained with this system is 
0.1% in absolute value.  

 

FIG. 2.10 - Photograph of an oven (left) and a thermocouple (right) used in our experiments. 

 

To isolate the two wires of the thermocouple, the weld of which is placed near the 
sample zone, the latter are slid into alumina rods (FIG. 2.10). The two thermocouples as well 
as the heating system are placed as close as possible to the sample space, in order to have a 
reading and a control as accurate as possible of the temperature. The order of magnitude of 
the distance is in both cases of 5 mm. Despite these precautions, there is a temperature 
gradient between the one measured by the thermocouples and that actually applied to the 
sample. This gradient depends on the geometry of the autoclave used, in particular the 
windows, constitute a cold zone. Thermal exchanges are also favored by the applied helium 
pressure. It is possible to measure this gradient for each autoclave by indirect measurements 
of temperature, in particular measurements of the density of pure water, by its absorption of 
X-ray beam. In the next chapters, it will explained how this gradient probem for water and 
other fluids in the next chapters. Finally, since the thermocouples and oven used in our 
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experiments have a limited life time (between 3 and 10 weeks of experiments), it is 
particularly interesting to make them by myself. 

 

2.2.6 The inner carbon cell 
 

The internal cell is a tube with two pistons located on both sides (FIG. 2.11). The choice 
of the material for these elements will be discussed in section 2.3.6, Indeed, as for windows, 
the internal cell used for each type of experiment must modify as little as possible the beams 
which pass through it. For example, the minimum absorption will correspond to a minimum 
wall thickness, and a polished surface will allow the passage of a visible beam. It is also 
important to ensure that the internal cell is chemically inert (no interaction with the beam) 
during temperature and pressure experiments. 

O-rings (viton or silicone according to experience) can be inserted into grooves in the 
outer part of the pistons. O-ring insure that no leaks of the medium get out from the cell when 
it's under the pressure. It can also be obtained by small differences in diameter between the 
piston and the cell (of the order of 5 μm). The pistons allow the transfer of pressure between 
the sample space and the environment gas (during compression and heating of the sample, as 
well as when cooling down). 

 

 

FIG. 2.11 - Photograph of a vitreous carbon cell used for absorption measurements X ( 
absorption and fluorescence). The pistons are shown with length 38 mm and 28 mm. 
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There are two main experimental configurations of the internal setup, corresponding to 
two types of samples: either liquid metals or aqueous samples (FIG. 2.11). In the former case, 
the melting liquid expands upwards in the cell in an expansion canal, however remaining in 
the heated volume to avoid any partial solidification of the sample. The same canal is also 
used to trap the escaping metallic vapor that could otherwise deposit elsewhere in the vessel, 
on the beam pathway (HP windows, heater, etc)2. Such experimental configuration is used, for 
example, for EXAFS investigations of liquid metal. 

For the aqueous samples, the main cylindrical sapphire tube is the same, but a pair of 
bellows are placed at the bottom that transfer pressure to the sample. This element enables to 
isolate the aqueous sample from the He atmosphere. Furthermore, it acts as a reservoir, since 
its contact with the water cooled HP vessel cools it down and allows the liquid inside to 
remain at the ambient density. With such a set-up, pressure and temperature prospection of 
the phase diagram with strong variations of the sample density can be achieved in the (30 - 
600 °C) and (1 - 2000 bar) ranges2. 

 

 

FIG. 2.12 - Sketch of the two internal set-up. I0, I1, and I2 correspond to the incident, 
transmitted, and fluorescence (or scattered) beams for aqueous samples. (1) Cylindrical 
internal cell with two inner tubes (in gray) above and below the sample. (2) Canal for the 
expanding sample. (3) Liquid metal sample. (4) Furnace. 

 

 

2.3 Experimental set-up adaptation 
Different parameters determine the choice of material, whether for windows or internal 

cells: The lowest possible signal disturbance, maximum transmission of the beam (because, a 
low fluorescence in number of photons is measured in absorption X). In the case of the 
internal cells a minimal reactivity between the sample and its container, in particular at high 
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temperature. In this section, I make the general remarks concerning the choice of materials, 
and I briefly summarize these elements in each section adapted to the techniques used.  

 
Crystallinity of materials  It is important to describe the materials used in the case of 

X-ray absorption, It is essential to avoid the monocrystalline materials which produce Bragg 
diffraction peaks which are a function of the energy of the incident beam and which will 
particularly interferes with the measured signal. Measurements only require materials that are 
transparent to visible radiation.  

 
Beam transmission   The transmission of the beams naturally depends on the material 

traversed, but also on the incident energy. The materials conventionally used in the study of 
high temperature and high pressure fluids are diamond, quartz, or silica. Beryllium is more 
rarely used because of its machining difficulties. These materials satisfy the criteria 
mentioned above, mainly the absorption of the beam and the strength considering the 
pressure, I chose to represent the variation of the transmission of the beam as a function of the 
incident energy a beryllium and carbon. Thus, I will list the mass attenuation coefficient for 
carbon, beryllium, and other materials used in XAS measurements in chapter 3. 

 
Throughout the range of energy represented (including XAS measurements with 

incident energies up to 15.4 KeV), The material having the best transmitted fraction is 
beryllium. Monocrystalline beryllium is expensive, this material can be used in the case where 
a polycrystalline material is required, in the case of XAS. Beryllium ca not be used for 
internal cells, we have chosen to use beryllium for windows, and more precisely, 
polycrystalline beryllium manufactured by Brush Wellman by hot pressing.  

 
The second material with a low absorption in our case is the carbon, It is therefore 

interesting in our study can be used. For the amorphous materialsto study by XAS, vitreous 
carbon internal cells are adapted to the required conditions. Indeed, experimental tests have 
shown that the vitreous carbon is inert, in particular respect to phenomena of precipitation, 
dissolution, etc. In summary, the materials used in the case of X-ray absorption  spectroscopy 
are therefore beryllium and vitreous carbon.  

 
X-Ray Absorption Spectroscopy. X-ray absorption measurements require the passage 

of an incident beam transmitted with characteristic dimensions of (200 μm X 300 μm) on the 
CRG-FAME Beamline-BM30B at the ESRF. In the case of transmission measurements, the 
window size can be small. However, for fluorescence measurements, a compromise between a 
large collecting angle (to improve signal quality) and an angular opening allowing the system 
to resist the applied pressure must be considered. This led us to choose an aperture angle of 22 
° for fluorescence window. For the tranmission windows, we have chosen identical windows 
for experimental flexibility, In particular, have only one type of window to be manufactured, 
and be able to exchange them if necessary. Same Be windows have been used for 
Conventional XAS and also FDMNES-XAS measurements.  
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Choice of windows   The material with minimal absorption of the X-ray in the energy 
range  of synchrotron radiation is beryllium, which also has good mechanical properties. More 
precisely, extruded beryllium of the PF60 type is used in our case. A dome shape is used such 
configuration has a high resistance of pressure. The thickness is almost the same (2.5 to 0.8 
mm depending on the applied pressure) for the entire angular opening, and the solid angle of 
detection is 22°.  

 
Choice of the internal cell  In my case of measurement, we use a vitreous carbon cell 

(FIG. 2.11). On my study tests were carried out using carbon cells. In contrast to previous 
tests on alumina Al2O3, showed that alumina absorbed much more radiation.31 In this case, it 
had a tendency to be porous, and to let helium pass into the solution. Whereas, the vitreous 
carbon and the pistons are also porous, but in a smaller proportion. The inside diameter of the 
cell is 4 mm, and the outside diameter 6 mm. The cell length is 100 mm, the wall thickness is 
0.5 mm, but around 0.3 mm with the beam path (along beam axis). 

 
 
 
Finally, In this chapter, I focused on the concepts of XAFS and XAS methods on both 

techniques, Absorption and fluorescence. I described the autoclave we used in all our 
experiments. It was designed for XAS measurements and for other types of experiments i.e. 
X-ray diffraction, Raman scattering, SAXS, etc. Temperature and pressure regulation vary 
independently making possible to reach a high temperature and pression precision . Crystal 
analyzer spectrometers (CAS) based on a Johann-type geometry have been developed for 
multi purposes, the most important is to get more accurate data than in conventional 
fluorescence detectors. Moreover, technical details around materials (types, shapes, functions, 
etc.) used during the experiments. 
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2.4 Summary (English) 
 

In this chapter, I have illustrated the X-ray Absorption Spectroscopy (XAS) 
theoretically and the application in the field of my study with two main parts of XAS spectra 
which are XANES and EXAFS. HERFD-XAS coupled with Crystal Analyzer Spectrometer 
(CAS)  based on a Johann_type geometry used in this work is presented. I described the 
autoclave we used in all our experiments. This autoclave, originally designed for absorption 
measurements X, has been adapted over time and for other types of techniques, namely X-ray 
diffraction at small and large angles, optical Raman, etc. High precision in temperature and 
pressure regulation is possible by separating the heating and pressurizing system, which can 
thus vary independently. High precision in temperature and pressure regulation is possible by 
separating the heating and pressurizing system, these two parameters thus being able to vary 
independently. 
 
 
 
 
 
 
 

2.5 Summary (French) 
 

Dans ce chapitre, Je présente  la spectroscopie d'absorption des rayons X (XAS) d'un 
point de vue théorique ainsi que son application dans le domaine de l'étude sur les fluides 
supercritiques avec les deux parties principales des spectres XAS c'est à dire le XANES et 
l'EXAFS. Une attention particulière est donnée à la spectroscopie haute résolution HERFD-
XAS et au développement du Spectromètre associé utilisant la géométrie de type Johann. Je 
décris également l'autoclave que nous avons utilisé dans toutes nos expériences. Cet 
autoclave, conçu à l'origine pour des mesures d'absorption X, a été adapté au cours du temps 
pour  d'autres types de techniques, à savoir la diffusion X aux petits et grands angles, le 
Raman optique, ... etc. Une grande précision dans la régulation en température et en pression 
est possible grâce au découplage du système de chauffage et de mise sous pression. Ces deux 
paramètres pouvent ainsi varier de manière indépendante. 
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3. Results  

3.1 Density measurements 

3.1.1 Mass attenuation coefficient calculations (µ/ρ) 
The sample density can be estimated using transmission measurements. The sample 

absorbance A is calculated as the logarithm of the ratio between the incident and the 
transmitted intensity It/I0 = exp[ - (μ/ρ) x]. The Beer-Lambert law (or Beer's law) is the linear 
relationship between absorbance and concentration of absorbing species and it is usually 
written as: 

AXAbsorption material
E

+= .ρ
ρ
µ

 

μ/ρ is the mass attenuation coefficient at a given energy (cm2/g), ρmaterial is the density of 
the solution (g/cm3), X is the sample thickness (cm), and A is the baseline of experiment set-
up. Transmission experiments can be achieved by placing two detectors (usually ionization 
chambers) in the beam path; one before (I0) and one after the sample (It). The attenuation 
of the X-ray beam in the transmission mode is related to the sample thickness X, and the 
intensity of the incident beam, and (I0). The baseline (A) of the experiments depend on the 
type of material on te beam bath and incident energy.  
 

The absorption is a function of the density i.e. ∫ abs. = f(ρ). A part of beam is absorbed 
by materials on the beam bath i.e. Be windows, air, etc, it depends of the thicknesses of these 
materials which in turn implies plays the role of the flux ( number of photon). The mass 
attenuation coefficient, μ/ρ, and the mass energy-absorption coefficient, μen/ρ, are basic 
quantities used in calculations of the penetration and the energy deposition by photons (x-ray, 
γ-ray) in biological, shielding and other materials. 

 
The μ/ρ values are taken from the current photon interaction database at the National 

Institute of Standards and Technology, Table 2 shows the values of µ/ρ theoretically used at 
certain energies. I obtained two values using two method of calculations ( Hephaestus and 
Illinois institute of technology). At increasing the energy, the µ/ρ decrease because the 
intensity. Table 2 shows the µ/ρ values used in the experiments at different energies. 
 
 
 
 
 
 
 
 
 
 

(16) 
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Table 2: X-Ray Mass Attenuation Coefficients (µ/ρ) for the elements have used in the 
experiments at different energies given in two databases ( Hephaestus and Illinois ).8,9 
 

 15.044 KeV  15.0 KeV 
 

13.7 KeV 
 

13.5 KeV 
 

15.4 KeV 

Elements Hef.             ILL.  Hef.             ILL. 
 

Hef.             ILL. 
 

Hef.             ILL. 
 

Hef.             ILL. 

C 0.1139 0.1052  0.1147 0.106  0.1433 0.132  0.1486 0.137  0.1077 0.0997 

Be 0.0956 0.0884  0.096 0.0887  0.1097 0.1006  0.1123 0.1029  0.0926 0.0858 

H 0.3760 0.398  0.376 0.3979  23.197 0.397  0.379 0.3968  0.376 0.398 

O 1.8210 1.7211  1.836 1.7351  2.369 2.2394  2.470 2.3357  1.707 1.6137 

He 0.2090 0.2165  0.209 0.2166  0.215 0.2198  0.216 0.2204  0.208 0.2158 

Na 4.654 4.5624  4.694 4.6024  6.126 6.0377  6.397 6.3108  4.347 4.2556 

Cl 17.692 18.008  17.843 18.163  23.197 23.688  24.204 24.728  16.532 16.81 

Br 111.012 108.68  111.85 109.46  140.96 136.48  146.34 141.39  104.53 102.59 

Cs 60.580 60.353  61.06 60.833  77.617 77.729  80.70 80.879  56.880 56.652 

 
 
 

The calculations of µ/ρ which is depends on both an incident energy ( ev) and on the 
density of material (g/cm3), have been carried out by two methods in a unit cm2/g. The first 
one was performed using Hephaestus software Ifeffit set-up, we calculate an absorption 
coefficient µ (cm-1), then divide it by the density of material at ambient condition which have 
collected by O. Sohnel and P. Novotny124 and by Ivan D. Zaytsev and Georgiy G. Aseyev125. 
The second one was performed calculating µ/ρ of the elements at given energy by Illinois 
institute of technology9, number of sample moles, and atomic mass (amu) which has been 
performed by using equation (17):  

ii

ii

XM

MX
BAµ

×

×
=

∑

∑ )(
,...),( ρ

µ

ρ  

Whereas, Mi is the molar mass (g/mol), Xi is the number of moles, A, B, ..., are solution 
components.  

 

(17) 
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3.1.2 Absorption measurements by classical XAS 
X-ray absorption spectroscopy (XAS) were often used in the literature to study 

supercritical fluids, such as supercritical water and "aqueous solutions". supercritical water 
(Pc = 220.6 bar, Tc = 273.95 °C, and critical density ρc = 0.322 g/ml) and aqueous solutions 
studied by XAS. The measurements of density is a good study molecular dynamics in 
hydrogen bonded liquids such as water, because the water behavior is changing with high 
pressure and high temperature when exposed to an x-ray coming from the synchrotron with an 
energy.80,126 

The HP/HT cell used for these experiments has been described in details by Testemale 
et al.2 A schematic view of the set-up is shown in FIG. 1. The general principle consists of a 
helium pressurized autoclave, and an internal sample container embedded in the heater. The 
main feature of the cell is then that the temperature and the pressure can be adjusted 
independently and are both stabilized by two independent pressure and temperature regulation 
devices.123 For this particular study, the internal cell was in glassy carbon with a wall 
thickness machined down to 100 μm at the X-ray beam position, in order to limit the 
absorbance of the set-up as much as possible. The cell consists of an external water-cooled 
high-pressure vessel equipped with three 0.8 mm thick beryllium windows enabling collection 
of fluorescence and transmission signals at a maximum pressure of ~600 bar. The sample was 
contained inside a glassy carbon (1.42 g/cm3) tube with an internal diameter of 4 mm. The 
pressure is applied to the sample by two glassy carbon pistons, using helium as a pressure 
medium. The glassy carbon tube is placed inside a small cylindrical resistive heater; the heater 
and tube are then installed inside the high-pressure vessel. 

All eperiments have been performed at European Synchrotron Radiation Facility 
(ESRF) storage ring in Grenoble is a 6.03 GeV ring and was operated in 7/8 multi-bunch 
mode with a maximum current of 200 mA. X-ray absorption spectroscopy experiments were 
performed on the CRG-FAME beamline (BM30B). FAME is a bending magnet beam line 
with a double crystal Si(220) monochromator, and an energy resolution of 0.46 eV, i.e. 
(ΔE/E) of 0.691 at the Br K-edge. The setup at the FAME beam line has been described by 
Proux et al.121,127. Spectra were recorded in transmission mode (~2 hours/scan data collection 
time) at different incident energies, using a double-crystal Si(220) monochromator127. The 
size, around 300×200 μm2 (H×V, full width half maximum values), and the position of the X-
ray spot on the sample were kept constant during the data acquisition. The incident and 
transmitted beam intensities, I0 and I1, were measured with Si diodes. The full beam delivered 
by the bending magnet source was focused in the horizontal plane by the 2nd crystal of the 
monochromator and by the 2nd Rh-coated mirror in the vertical plane. Finally, a feedback 
system was used to maximize the output of the two-crystal X-ray monochromator.121 
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FIG. 3.1 - Setup of classical XAS measurements in the experimental hutch of FAME 
beamline "BM30b" at ESRF synchrotron. 

 

The following Table (3) illustrates the measured absorption of each material on the 
beam path of an experimental set-up at given energy. It depends on the response of the two 
detectors I0 and I1. They are arranged as follows: the beamline empty to calculate the 
absorption of beryllium windows of the beamline between 10 and I1, the HP (0.8 mm) and 
thermal screens (25 µm) beryllium windows of the autoclave, then we put the glassy carbon 
cell, and then 300 bar of Helium, after that we put H2O. 
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Table 3: Absorption at each points at the setup of the experiment (from incident to 
transmitted beam) as well as the aqueous solution in autoclave under 1 bar and/or 300 bars  
pressure at 13.7 KeV. 

# of 
Scan 

Abs. @ 
13.7 KeV 

Be(20µm) 

(Double) 

Air 

Line 

Air 

Auto 

Be(auto.) 

0.8 mm 
(Double) 

Be(screen) 

25 µm 
(Double) 

He 

1b 

He 

300b 
 

C. 
Cell 

(Double) 

Sample 

1 -1.116 √ √        

2 -0.987 √ √ √ √      

3 -0.975 √ √ √ √ √     

4 -0.986 √ √  √ √ √    

5 -0.943 √ √  √ √  √   

6 -0.939 √ √  √ √ √  √  

7 -0.04 √ √  √ √  √ √ √H2O 

 

With an absorption measured values for some materials in the beamline at given energy, 
the Table 4 illustrates the comparison between the experimental and theoretical calculation for 
some materials and solutions. 

 

Table 4: The experimental and theoretical absorptions for the materials and solutions at 
13.7KeV. 

                                      Absorption 

Material 

Experimentally Theoretically 

4 mm of H2O 0.8545 0.8583 

0.3 mm of Carbon x 2 0.0477 0.043 

0.825 mm of Beryllium x 2     Autoclave 
0.3 mm of Carbon x 2  

0.177 0.185 

0.825 mm of Beryllium x 2 of Autoclave 0.141 0.107 

Be (screen) 25µm x 2  0.012 0.016 
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The calculation of densities by classical XAS have been perfored using several methods 
under isobaric processes at given incident energies. The final method described bellow has 
been adapted for water and aqueous solutions, the methods were used as shown in bellow: 

1) We get the absorption measured values of fluids as a function of temperature, then 
we normalize the date using equation (18): 

)]30;300_(2[)]30;300_.(exp2[

)]30;300_(2[)]300_.(exp)(2[

CbHeemptycellabsCbLiquidabs

CbHeemptycellabsbLiquidTabs
ionNormalizat

°−°

°−
=

 

Then, we multiply the normalized data by the density of water at ambient condition. This 
method have errors at high temperature, the value of densities obtainedis lower than real 
densities, and it is not possible to apply the same method to other solutions because the 
density is higher than water at ambient condition.  

2) We get the absorption measured values of fluids as a function of temperature, then 
we apply the measured base line (A) with the sample thickness (X) fixed at 4mm. This 
method have errors in the value of A, because  this value (taken at 25°C and isobar value) and 
the value of densities at high temperature are lower than real densities, as well as, the pressure 
regulation has an error at high pressure. 

3) We get the absorption measured values of H2O as a function of temperature, using an 
equation (16), we calculate X and A with comparison the first ansd an end point of 
temperature, then, we apply these values on the data measured. This method have errors in the 
value of A and X, because these values are faraway than measured i.e. X = 4.4 mm. The end 
value of expected density is higher than real temperature, this is not logic. 

4) We get the absorption measured values of H2O as a function of temperature, using 
the PyMca software. Then we can get the shift of temperature by derivative carve. we have 
taken this shift and add it to the end point of temperature. Then, we calculate the X and A by 
an equation (16) between the first and end point of temperature. This method have errors in 
the value of A and X, because these values are faraway than measured i.e. X = 4.4 mm. The 
end point of expected density is higher than real. As well as, when doing the shift must be 
subtracted not add, according to the thermocouple in autoclave is far a bit than center of cell. 

5) We get the absorption measured values of H2O as a function of temperature, getting 
the shift in temperature using PyMca software. Then we subtracted the shift of endpoint 
measured. Then, we calculate the X and A using en equation (16) between the first point and 
end of temperature. This method have errors in the value of A and X, because these values are 
faraway than measured. But this method has less error than those above mentioned. 

6) We get the absorption measured values of H2O as a function of temperature, getting 
the shift in temperature with the minimum value of the derivative curve calculated by the 
PyMca software. Then, we subtracted the shift of endpoint measured. Then, we manipulate 
the values of X and A, we tried to have X value fixed as much as possible and A calculated at 

(18) 
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ambient condition by equation (16). In the case of the first and end points, they have not same 
with theoretical values, we manipulate them to be adjusted. The end point of this method is 
lower than the measured one as shift value calculated with the logic value of thermocouple. 
This method has been adopted to apply it for all aqueous solutions in all our experiments. 

 

3.1.3 Results on pure water (H2O) 
X-ray absorption measurements in Milli-Q water were performed as a function of 

temperature from 30 to 500°C at pressures 28.0, 30.0, 34.5, and 40.0 MPa in order to calibrate 
the experimental setup. The density of water at this conditions changes from liquid-like to 
gas-like crossing the critical isochore curve (0.322 g/cm3) above the critical T-P point as 
shown in FIG. 3.2. According to the equation (16), at constant energy (13.5, 13.7, 15.0, 15.4 
keV), the total absorption measured in transmission mode is a function of the experimental 
set-up absorption (A= baseline, which takes in account te absorption from beryllium 
windows, sample container, air and helium beam path), sample thickness and sample density. 
During heating, only sample density is changing and thus the absorption is appropriate for the 
measurements of density evolution. The comparison between theoretical and experimental 
density of pure water was then used for temperature calibration. To recalculate the “real” 
temperature ( T real) at the working part of the cell (i.e. at the level of the “cold” optical 
windows) was recalculated from the experimental pure water density. Temperature gradients 
correction by linear fit between Treal and Tcell ( i.e. the regulation temperature value) measured 
in our study are close to those observed previously128 (FIG. 3.3) . However, in this study 
detailed analysis of these gradients has been performed (FIG. 3.3 ).  

During heating experiment, the absorption was measured by 7 points from 30°C to 
350°C (heating step of ~46°C), and by 151 points from 350°C to 500°C (heating step of 1°C). 
Each absorption measurement was performed after the stabilization of temperature at ±0.04°C 
and pressure at ± 0.15 bar at least during 10 seconds.  

Temperature gradients are illustrated in FIG. 3.3. This gradients can be explained by 1) 
heat transfer and dissipation by materials used in our experimental set-up (beryllium 
windows, glassy carbon tube, pressurized helium, ceramics of furnace, etc), 2) the design of 
the furnace containing three optical non heated windows,  3) water properties. Heat loss from 
the set-up ( 1 and 2 listed above) is expected to increase linearly with  temperature. Nonlinear 
dependence of Tcell - Treal value on density is observed for all pressures. These data reflect 
thermo physical properties of water. Despite the fact that heat transfer critical enhancement 
and possible heat transfer deterioration are difficult to be quantified from our measurements, 
some analogies can be drawn. Thus for example, the Tcell -Treal minimum roughly overlap with 
the maximum of specific heat capacity of H2O (FIG. 3.4) when approaching the pseudocritical 
isochore (ρc = 0.322 g/cm3) and thus this minimum seems to correlate with critical heat 
transfer enhancements. These new data allow to validate our experimental setup and to 
estimate the temperature gradients for other aqueous solutions. For these simple linear 
approximation was applied (see FIG..3). The maximum temperature errors associated related 
to nonlinear temperature gradients are estimated to be 10 °C. The linear equation used for 
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temperature correction and comparison between corrected and real temperatures are given in 
FIG. 3.3. These equations were applied for temperature correction in other aqueous solutions. 

The base line A and internal diameter X of carbon cells are expected for water as a 
reference by several methods as mentioned in the previous section ( section 3.2). One of them 
has been adopted method to expect the diameter X and base line A. The values must be not 
faraway than measured and logically must be the last point of T. real less than T. measured. 
Form equation (16), we calculate an experimental density taking in acoount the A and X 
expected values. These values of density are compared with same theoretical density values 
by NIST database1, then we can estimate the real temperatures. 

Three apertures are present in the heater and vessel for the incident, transmitted and 
fluorescence beams. These apertures induce a small temperature difference between the value 
given by the thermocouple close to the furnace and the real sample temperature. Although the 
thermocouple sits near the sample, it is placed outside the glassy carbon tube and not exactly 
at the beam position. In order to obtain the temperature of the fluid at the beam location, the 
temperature was calibrated by measuring the density of pure water by its X-ray absorption129–

131, and then retrieving the temperature of the solution at the beam position using the well-
known equation of state of pure water (NIST database)1. After estimation the real 
temperature, we get the parameters of a linear equation by the fit of measured and real 
temperature. The FIG. 3.3 shows the fit curve between measured and real temperature. 

The experimental critical points shown in FIG. 3.2  matched the critical isochore curve 
exactly with the real temperature calculated. We calculated the density of water and expecting  
for solutions based on the reference ( water ) at same pressure and energy for same 
experiment. In FIG. 3.2, for pure water at 280 bar, the point on critical isochore curve at 59.4 
bar and 22.05 °C from the theoretical critical point of H2O, while at 300 bar, the point on 
critical isochore curve at 79.4 bar and 28.05 °C from the theoretical critical point of H2O, also 
at 345 bar, the point on critical isochore curve at 124.4 bar and 44.05 °C from the theoretical 
critical point of H2O, and at 400 bar, the point on critical isochore curve at 179.4 bar and 
64.05 °C from the theoretical critical point of H2O. From the calibration of water temperature 
( section 2.1) to get the real temperature, we can estimate for the solutions as well by extract 
the linear fit parameters between a measured temperature and real. The difference between the 
measured and real temperatures is showed in FIG. 3.3. It is clear that the temperature 
difference at first point of T. measured is 0 °C and the last measured is 33 °C. 
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FIG. 3.2 - Liquid gas coexistence curve and critical isochore for pure water, calculated 
according to Ref.1 (left). The solid lines mark the boundaries of the supercritical domain, the 
horizontal dashed lines the experimental isobars and the vertical ones the corresponding 
values of the temperature. Experimental absorption and density for pure water as a function of 
temperature " T without gradient temperature for isobaric process (right). Solid colour points 
are experimental T-P values at ρc extracted from absorption at given energy 13.7 KeV. 

 

FIG. 3.3 - The fit of real and experimental temperature in pure water at different pressures ( 
280, 300, 345, 400 bars) . Temperature different between cell (T cell) and real (T real)  values as 
a function of experimental density. Measurements are offset for clarity. 
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The temperature is extracted from the experiment is measured temperature i.e. gradient 
temperature, technically, the foil which is responsible to heat the solutions i.e. thermocouples, 
is surrounding at top and bottom parts of a carbon cell inside the autoclave, so for this reason 
the temperature at the centre of solution must be less than thermocouples measurements. The 
temperature different increases up to around 350 °C then decreases up to 403 °C for 300 bars 
and 345 bars, and decreases up to 414 °C for 400 bars in real temperature values. It should be 
noted here that the conductivity decreases up to 350 °C then increases up to the critical 
density for their pressures, then start to decrese as a function of temperature. 

 

 

FIG. 3.4 - Temperature difference between Tcell and Treal values measured in pure water (up) 
in comparison with it's specific heat capacity (down) in isobaric conditions as a function of 
density. Straight line corresponds to critical density. 

 

The temperature extracted from the experiment is measured temperature i.e. gradient 
temperature, technically, the foil is responsible to heat the solutions i.e. thermocouples, is 
surrounding at top and bottom parts of a carbon cell inside the autoclave, so for this reason the 
temperature at the centre of solution must be less than thermocouples measurements. The 
temperature increases value around 350 °C then decreases up to 403 °C for 300 bars and 345 
bars, and decreases up to 414 °C for 400 bars in real temperature values. It should be noted 
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here that the conductivity decreases up to around value 350°C then increases up to the critical 
density for their pressures, then start to decrese as a function of temperature. 

 

 

FIG. 3.5 - A) Theoretical density has taken from NIST1  and B) Calculated density of pure 
water as a function of temperature extracted from X-ray absorption experiments at ( 280, 300 
and 400 bar) done at 15 KeV. 
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FIG. 3.6 - Experimental and theoretical fit comparison X-ray absorption of water  at 280 bras, 
300 bars and 400 bars at 15 KeV. The best base line (A) expected is 0.2563 of 280 bars, 
0.2666 of 300 bars, and 0.27127 of 400 bars. The best sample thickness is 0.398 mm for all 
pressures used. ( Theoretical extracted values from NIST database 1). 

 

A reference mili-Q water have been performed at several pressures as shown in FIG. 
3.6, on isochore curve, the critical points are fixed at same value of critical density of water 
0.322 g/cm3. The points measured have been done with 7 points from 30°C to 350°C, and 150 
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points from 350°C to 500°C. The theoretical critical density value of water at 280 bars is 
0.322 g/cm3 which has been recorded at temperature 395 °C, the experimental density value 
has been observed at temperature 406 °C, so ∆T =  - 11 °C; Likewise at 300 bars, the 
theoretical critical density value of water bars is 0.322 g/cm3 at temperature 402 °C, the 
experimental density value has been observed at temperature 411 °C, whereas ∆T = - 9 °C; as 
well as,  at 400 bars, the theoretical critical density value of water bars is 0.322 g/ cm3 at 
temperature 438 °C, the experimental density value has been observed at temperature 446 °C, 
whereas ∆T = - 8 °C. 

 

Table 4: Measured and expected values of X and A at certain energies and pressures for XAS 
experiments - the expected values from H2O measured. 

Experiment Energy 
(KeV) 

Press. 
bar 

A   
Measured 

A 
Expected 

X (cm) 
Expected 

Comments 

Feb. 2016 15.044 300 1.547 1.5108 0.398 
Measured at 300 bar and 
30°C; ∆ abs. He (between 
1b and 300b) = 0.042  

June 2016 15 280 0.304 0.2563 0.398 
Measured at 300 bar and 
30°C; ∆ abs. He (between 
1b and 300b) = 0.029  

300 0.2666 0.398 

400 0.27127 0.398 

Sep. 2016 13.7 300 - 0.8935 - 0.93334 0.398 
Measured at 300 bar and 
30°C; ∆ abs. He (between 
1b and 300b) = bar 

 345 - 0.9301 0.398 

400 - 0.92626 0.398 

Dec. 2016 13.5 300 1.2877 1.2853 0.395 
Measured at 300 bar and 
30°C; ∆ abs. He (between 
1b and 300b) = 0.0378 
bar 

 
15.4 300 1.3648 0.393 

 

FIG. 3.7 shows the temperature as a unction of density of water for theoritical and 
experimental values, we observed that there is a fit in both values after corected the 
tempereture values. In the liquid phase the density decreases rapidly with the temperature at 
any given pressure as shown in FIG. 3.7. 
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FIG. 3.7 - T–ρ diagram for H2O. The solid curves represent an experimental and theoretical 
p–ρ isotherms at selected temperatures. The dashed curve represents the coexistence curve 
bounding the region of vapor–liquid equilibrium. The critical point is located at the top of the 
coexistence curve. 

 

3.1.4 Results on NaCl electrolytes 
NaCl is the principle solute in the water at the hydrosphere, and the PVTx properties of 

the binary system NaCl-H2O are use to modeling and understanding of the majority of these 
waters. The properties of the two-phase surface of this important system are of particular 
importance to the understanding of hydrothermal processes associated with magmatic activity, 
because they represent the extreme boundaries of P and T for which hydrothermal circulation 
can occur. Density controls buoyancy and relative vertical stability of fluid masses. This study 
presents an explanation of ion-pairing at supercritical conditions and a compilation of the 
density coexisting liquids and vapors on the two phases surface of the systemNaCl-H2O for 
the temperature range 30 °C to 500 °C under isobaric process 280, 300, 345 and 400 bar. The 
present work uses an conventional XAS with temperature from ambient to supercritical 
conditions at different concentrations. This study will give me a strong feedback of NaCl 
behavior at supercritical condition because there are several studies published such as (James 
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L. BISCHOFF and Kenneth S. PITZER). Properties of the system NaCl-H2O system over the 
range of interest  also have general implications for theoretical studies of ionic salts. Over the 
P-T range of interest the two phases surface of NaCl-H2O undergoes a rather complex 
geometric change from below the critical point of pure water to above it's critical point. 
Accurate theoretical modeling of this system is a particular challenge73,74,86,96,132. 

In this study, we have calculated the real temperature by the pure water with the best 
estimation of the base line (A) and sample thickness (X) (section 3.2) and we calculated the 
experimental density. Then, we compared the measured temperature to abtain parameters of 
linear equation to apply them on a solution measured temperature to calculate the corrected 
temperature, then we used the same equation on the solutions at same experiment and 
pressure. In the case of NaCl-H2O we use equation, theory model of densities have been 
obtained from of Driesner database3,4, then using an equation (16) to calculate the absorption 
for a comparison with an experimental. 

The experiments were performed using XAS measurements on NaCl aqueous solution 
at different concentrations (0.3, 0.5, and 1.0 mol/kg) using an incident energy of 13.7 KeV 
under isobaric conditions (300 and 400 bar) as a function of temperature. The samples were 
stored in a desiccator under nitrogen at 0.1 bar. Then the samples were put in to an oven  to 
kick out  humidity. Absorption increases with pressure and deceases with temperature. The 
experimental curves compared with theoretical curves have been obtained from Driesner 
software - 0.2 version after expected  the best value of thickness of sample "X" and base line 
"A" to estimate the real temperature. In order to compere the results obtained for mili-Q water 
reference, theoretical curve was obtained from NIST database1.  

FIG.3.8 shows XAS measurements as a function of temperature for NaCl  aqueous 
solutions, we observe that the NaCl-1.0M has more absorption than others, whereas the 
absorption at ambient conditions are in order 0.0467, 0.06, 0.133 and 0.31 for ( 0.3M300bar, 
0.3M400bar, 0.5M and 1.0M respectively). For NaCl-0.3M300bar,  the absorption start go down 
from 30 °C to 363 °C progressively, then, increase to 367 °C significantly, thereafter, slip 
down drastically; ∆  abs. = 0.3672 ( 30 °C to 363 °C ) and 0.4 ( 367 °C to 411 °C ) with a 
decrease to water at 420°C. The peak appears at 367 °C with peak size is 0.012 ( 4%). The 
phase separation accurs theroretically at 408°C. 
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FIG. 3.8 - Experimental X-ray absorption measurements in transmission mode for NaCl 
aqueous solutions at 13.7KeV as a function of temperature in comparison with pure water and 
theoretical prediction. The expected base line is - 0.9262 and sample thickness 0.398 cm, 
theoretical fit values of NaCl have been obtained from Thomas Driesner software 
"sawatflinc_ptx, version 0.2".3,4 

 

For NaCl-0.3M400bar, the absorption starts to decrease from 30 °C to 375 °C 
progressively. Then, absorption increases at 395 °C significantly, after this point it decreases 
drastically, ∆ abs. = 0.334 ( 30 °C to 375 °C ) and 0.4 ( 375 °C to 450 °C ) with decrease to 
water at 440°C. The peak appears at 395 °C with a peak size of 0.02 ( 6%).  The phase 
separation accurs theroretically at 452°C. 

For NaCl-0.5M, the absorption starts to decrease from 30 °C to 382 °C progressively,  
then, it increase at 391 °C significantly. Thereafter, absorption decreases drastically. ∆abs. = 
0.383 ( 30 °C to 382 °C ) and 0.45 ( 391 °C to 460 °C ) with a decrease to water at 452°C. In 
this case, The peak appears at 391 °C with a peak size of  0.025 ( 9%). The phase separation 
accurs theroretically at 448°C. 
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For NaCl-1.0M,  the absorption starts to decrease from 30 °C to 370 °C progressively, 
then, it increases at 385 °C significantly. Thereafter, it decreases drastically. ∆abs. = 0.37 ( 30 
°C to 370 °C ) and 0.602 ( 385 °C to 440 °C ) with a decrease to water at 438°C. In this case, 
The peak appears at 385 °C with a peak size of 0.052 ( 51%). The phase separation accurs 
theroretically at 452°C. 

When we increase the ions in NaCl aqueous solution, we observe that after the peaks, 
the curve takes away than theoretical curve ( ΔT increase), due to the phase separation at that 
region of temperature occurs before than les concentration of same solution.  

When doing experiments of NaCl-H2O under isobaric process, we observe the two-
phase region start from certain temperature i.e. 444 °C of 1.0 mol/kg at 400bar. An accurate 
portrayal of the pressure-temperature-composition ( P-T-x) relations of the two-phase surface. 
The two-phase region of NaCl-H2O undergoes a rather complex geometric change from 
below the critical point of pure water to above, and the properties of the system change 
dramatically. The critical pints in the FIG. 5 have been performed by the Driesner program 
under isobaric process at several concentrations and pressures. we can estimate the vapor-
liquid isotherms by knowing the compositions ( x: mol of fraction) of certain temperature, 
then the weight percent of NaCl-H2O. 

 

FIG. 3.9 - Compilation of theoretical data for vapor-liquid isotherms of NaCl-H2O from 
399°C to 451°C have been extracted from Thomas Driesner program "sawatflinc_ptx, version 
0.2"3,4. 
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The shift of the critical point and isochore with the addition of ions causes a change of 
the phase separation at a given T and P. starting from isobar value, increasing the temperature 
step by step by measuring an absorption, starting decrease the absorption with temperature up 
to certain value, then increase to few steps of temperature, and then observing he gas phase 
starting to separate of liquid phase with increase the separation with temperature. The addition 
of ions shifts the critical point to higher T and P; but in the case of isobaric process, the 
critical point shifts at low temperature when add ions. 

Based on a comparison of the NaCl solutions, the phase separation observes with the 
addition of the ions can be compared with the increases from a shift of the critical point. But it 
is worth questioning whether this shift of the critical point is sufficient to explain the ion-
pairing whereas the measuring was in macroscopic scale. The distance to the critical point at 
the crossing of the critical isochore can be evaluated from the experimental results as follows: 

•  For pure water at 280 bar, the isochore is crossed at 59.4 bar and 21.55 °C from the Pc 
and Tc, while at 300 bar it is crossed at 79.4 bar and 28.55 °C  from the critical 
point. The difference in T at the crossing of the isochore is 7 °C  for a difference of 
P of 20 bar. 

•  For NaCl aqueous solution (0.3 mol/kg), the isochore is crossed at about 48.63 bar 
and 21.69 °C from the Pc and Tc of water. For NaCl aqueous solution (0.5 mol/kg), 
the isochore is crossed at about 75.48 bar and 32.36 °C from the Pc and Tc of water. 
For NaCl aqueous solution (1.0 mol/kg), the isochore is crossed at about 136.52 bar 
and 54.86 °C from the critical point of water. 

• All critical points of NaCl solutions are crossed the isochore curve with shift in 
temperature of 0.3 mol/kg is 3.33 °C, and of 0.5 mol/kg is 3.56 °C and of 1.0 
mol/kg is 2.45 °C. 
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FIG. 3.10 - Liquid gas coexistence curve and critical isochore for pure water, calculated 
according to Ref.1, and critical points of NaCl aqueous solutions ( 0.3 mol/kg, 0.5 mol/kg and 
1.0 mol/kg). The solid lines mark the boundaries of the supercritical domain, the horizontal 
dashed lines the experimental isobars and the vertical ones the corresponding values of the 
temperature. 

 

X-Ray Mass Attenuation Coefficients (µ/ρ) for the solutions measured by the number of 
moles for each elements of a solution using the equation (19) at a certain energy, µ/ρ was 
obtained from Illinois database.9 The weight percent was calculated using equation (19):  
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Where, M is the molar weight (g/mol), C is the concentration ( mol/L) and N is the number of  
moles of H2O per liter. 
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Table 5: The physical quantities of aqueous solutions at various concentrations with an 
absorption coefficient at 15KeV. 

         Phys. quantity 

Sample 

Salt Weight 

(gm) 

Molar Mass 

(amu) 

µ/ρ 

(cm²/gm) 

Weight 
percent 

H2O 25 18.015 1.585 100% 

NaCl_1.0M 1.465 58.439 2.207 5.61% 

NaCl_0.5M 0.737 58.439 1.907 2.86% 

NaCl_0.3M 0.441 58.439 1.78 1.73% 

LiCl_1.0M 1.062 42.39 2.14 4.13% 

LiCl_0.5M 0.534 42.39 1.87 2.1% 

LiCl_0.3M 0.322 42.39 1.758 1.26% 

 

It is interesting to study the influence of varying the NaCl concentration on the critical 
point under isobaric onditions as a function of the temperature. FIG. 3.10 shows the evolution 
of the density difference between experimental and theoretical. A small density difference is 
observed the beginning then it increases at approaching the critical poin region at supercritical 
region and specially when increase the ions. FIG 3.9 shows that of these critical points are 
crossed the critical isochore. These critical points represent the phase separation of NaCl-H2O 
with the compilation of the density coexisting liquids and vapors on the two phases. The 
values of the phase separation were obtained from Driesner database pogram. 
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FIG. 3.11 - Different density of experimental and theoretical absorption in transmission mode 
measured in NaCl aqueous solutions at 13.7KeV as a function of temperature in comparison 
with pure water and theoretical prediction at 400 bars (left). Experimental X-ray absorption in 
transmission mode measured in NaCl aqueous solutions at 13.7KeV as a function of 
temperature in comparison with pure water and theoretical prediction at 400 bars (right). The 
expected base line is - 0.9301 and sample thickness 0.398 cm, theoretical fit values of NaCl 
were obtained from Thomas Driesner software "sawatflinc_ptx, version 0.2".3,4 

 

The different behavior due to the concentration of the ions can result from the proximity 
of these ions in the high density areas: at low concentrations, only the interactions between 
the water molecules control the density fluctuation, whereas for high concentrations the 
properties of the fluid depend on the interaction between the ions and the network of the water 
molecules and the interaction between the ions themself. To observe the phase separation in 
sodium chloride aqoueos solutions were measured at different concentrations and isobaric 
values conditions. To perform this experiments we fixed the upper piston 64 mm, and a piston 
15 moved 2 mm from the sample. 
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Table 6: Phase separation temperature for NaCl at 300 bar, 13 KeV, and different 
concentrations with upper piston 64 mm fixed. 

Samples Temperature (°C) Notes 

NaCl_0.3M 420 
The abs. decrease with temperature; starting from 470 
°C at gas phase, the abs. increase then decrease. 

NaCl_1.0M 395 
The abs. decrease with temperature, at 380°C 
increases then decrease at 395 °C. 

NaCl_2.0M 365 
The abs. decrease with temperature; to observe 
starting increase before phase separation must be 
before 355 °C. 

 

Povodyrev et al.5 they presented a critical locus of sodium chloride aqueous solutions, 
their data indicate a strong dependence of the critical temperature of NaCl aqueous solutions 
on salt concentration, especially in the limit of pure water as shown in FIG. 3.12. Critical 
pressures and densities also showed strong dependence on salt concentration. They proposed a 
new set of equations for the critical locus and compare the results with evaluations reported 
previously by a number of investigators. The equations do not have a singular behavior at 
infinite dilution and yield a consistent description of the existing experimental data. The 
equation for the critical temperature incorporates a crossover function to account for an 
apparent dip in the critical line observed experimentally in the range of 0.003 to 0.005 mass 
fraction of NaCl. 

      

FIG. 3.12 - Vapor-liquid critical locus of sodium chloride aqueous solution. given at certain 
concentration showing the parameters used in the equations.5 
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The values of the critical pressure, critical temperature, and critical density of sodium 
chloride aqueous solution are mentioned in Table 7 have shown in the FIG. 3.13. 

 

Table 7: The physical characteristics of water and aqueous solution of sodium chloride at 
various concentrations as well the weight of salts10. 

                          Materials 
Characteristics 

H2O  
Mili-Q 

NaCl_0.3M NaCl_0.5M NaCl_1.0M 

Critical pressure (bar) 220.640 269.4 296 359.2 

Critical Temperature (°C) 373.946 395.71 406.27 429.57 

Critical Density (g/ml) 0.322 0.40298 0.43730 0.49696 

Weight percent% of NaCl 0 1.73 2.86 5.61 

 

We have carried out other isobar XAS measurement on NaCl 1.0 mol/kg at 345 bars and 
13.7 KeVusing two piston configurations. Upper Fixed at 64 mm with the beam path near to 
the upper part of the sample, and Lower Fixed 34 mm with a beam path near to the lower part 
of  the sample. corresponding to two different pistons configurations to observe the phase 
separation shift in supercritical conditions and the size of peak. The sample height is 2 mm. 
The pressure usedis bellow the critical pressure for NaCl 1.0 mol/kg (Table 7), in order to 
observe the aqueous solution behavior below a critical pressure. 

 

FIG. 3.13 - Experimental X-ray absorption measured in transmission mode of NaCl aqueous 
solutions 1.0 mol/kg at 13.7 KeV as a function of temperature under isobaric conditions at 
345 bars in comparison with pure water and the theoretical prediction. The expected base line 
is - 0.9301 and sample thickness 0.398 cm. LF: Lower Fixed and UF: Upper Fixed. 
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FIG. 3.13 shows XAS measurements as a function of temperature for NaCl  aqueous 
solutions, both absorption at 30°C must be the same, but the pressure regulation was not same 
for both, ΔP = +/- 0.5 bar. For NaCl-1.0MUF, the absorption starts to decrease from 30 °C to 
375 °C progressively, then, increase at 380 °C significantly, thereafter, it decreases 
drastically; ∆ abs. = 0.44 ( 30 °C to 375 °C ) and 0.644 ( 380 °C to 438 °C ) with a decrease to 
water at 438°C. The peak appears at 380 °C with a peak size of 0.03 ( 20%). 

For NaCl-1.0MLF, the absorption starts decrease from 30 °C to 375 °C progressively, 
then, it increases at 380 °C significantly, thereafter, it decrease drastically. ∆abs. = 0.37 (30 
°C to 375 °C) and 0.658 (380 °C to 438 °C) with a decrease to water at 438°C. The peak 
appears at 380 °C with a peak size of 0.032 ( 29%). 

The peak area of NaCl-1.0MLF is higher than NaCl-1.0MUF with a temperature, the shift 
in temperature between them is ΔT = 18.7 °C. At 399.5 °C, NaCl-1.0MUF has intersected the 
curve of water in anomalous behavior then precipitate with water in due the temperature, 
because in upper fixed method and beam path in the upper part of a sample, the pressure 
bellow of the critical point. The absorption go down drastically from -0.2 to -0.7 in ΔT = 6.5 
°C with transforming to a gas phase ( in upper part of sample) in a quick process than water 
and in small ΔT. Whereas, the absorption go down drastically of NaCl-1.0MLF from -0.2 to -
0.7 in ΔT = 27 °C. In the other hands, NaCl-1.0MLF has a normal behavior but with an 
extension with a temperature because in the case of lower fixed takes a time to arrive two 
phases than other method, whereas, the phase separation start observed from upper to lower 
part of a sample. Therefore, the phase separation observed for NaCl-1.0MUF before NaCl-
1.0MLF. 

 

 

FIG. 3.14 - Experimental X-ray absorption in transmission mode measured in NaCl_1.0M 
aqueous solutions at 13.7KeV as a function of temperature in comparison with pure water and 
theoretical prediction at 400 bar. A) A carbon cell adapting for HPHT, B) scan of the carbon 
cell in vertical axis, C) classical XAS measurement. The expected base line is - 0.9301 and 
sample thickness 0.398 cm, theoretical fit values of NaCl have been extracted by Thomas 
Driesner program "sawatflinc_ptx, version 0.2"3,4. The beam path at the center of cell. 

A) 
B) 
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The comparison of NaCl 1 mol/kg aqueous solution at 400 bars, the peak in the FIG. 
3.14-C illustrates that start at 370 °C up to the maximum at 385 °C. We observe this peak by 
doing scan of the vertical position of a carbon cell (FIG. 3.14 A and B) then, start the phase 
separation. The liquid-gas phases as shown in the FIG. 3.19 B begins from upper part to lower 
during of temperature, this is due for two reasons, the first is that a thermocouple is near an 
upper part of the cell, and the second, is physical thermal properties of gas exist at upper part 
of cell. By calculate the ration of phase separation appearance theoretically by Driesner 
database program, it was 26% at 444 °C. The compare of this ration to an experimental result 
of same solution, it has a fit at 415 °C as expected temperature but the real temperature must 
be higher because the thermocouple does not exist at center of solution. XAS measurements 
have been confirmed observing the ion pairing and the phase separation with liquid-gas 
phases.  

 

 

Table 8: The vertical position of both regions gas and liquid which correlate to real 
temperatures of NaCl at 1.0 mol/kg and 400 bars using upper fixed piston method.  

Cell T 
(°C) 

Corr. T 
(°C) 

Vertical 
Pos.(mm) 

Exp. Absorption Density 
(g/cm3) 

Real Temp. 
(°C) 

355 340 - 1.65 1.394 0.8272409 293 

1. 15 1.424 0.85445277 273 

390 375 - 1.65 1.3319 0.77091232 332 

1. 15 1.388 0.82179852 298 

400 385 - 1.65 1.338 0.7764454 329 

1. 15 1.41 0.8417539 283 

415 400 - 1.65 1.222 0.670113343 382 

1. 15 1.38 0.813191598 304 

420 405 - 1.65 1.1333 0.589790298 412 

1. 15 1.35 0.786024841 322 

435 420 - 1.65 0.7377 0.231551327 468 

1. 15 1.29 0.731691326 353 
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3.1.5 Other electrolytes ( Cl, Br, NO3, and SO4) 
We present XAS measurements using a several group of solutions with different ions 

(XCl, XBr, XNO3 and XSO4) at different concentrations and isobaric conditions and 
different incident energies, X represent the alkaline group ( cation). Moreoveras, XAS 
measurements were performed using different solutions to compare the groups each other 
with changing the cation like ZnSO4, ZnBr2 and ZnCl2, to observe the evolutions of these 
groups at supercritical region, evolution of ion-pairing and phase separation. 

Water is a primary fluid studied. The solvent power of a given fluid depends on its 
density. The density has a great influence on the solute−solvent interactions and can be 
adjusted controlling pressure and/or temperature. Increasing the pressure leads to liquid-like 
density of the supercritical fluid, thus increasing the probability of interactions between the 
solute and the solvent, including dispersion, polar, and hydrogen-bonding18,35,39,93,108,133. 
Consequently, the solubility increases with pressure. Increasing temperature leads to a density 
reduction (and, therefore, to a decrease in both solvent power and solute solubility), which are 
more pronounced at pressure levels close to the critical point. However, the temperature not 
only affects the density of the solvent, but it also leads to an increase in the vapor pressure of 
the solute with increasing temperature. We chose sulfate and nitrate solutions to see the 
evolution of ions with alkaline group and zinc charges at supercritical fluids through isobaric 
processes.  

In this study, we calculated the real temperature for pure water with the best estimation 
of the base line (A) and sample thickness (X) (section 3.2), then we calculate the experimental 
density. For pure water, we compare the temperature measured and real to obtain the 
parameters of linear equation to apply it on a solution measured temperature to calculate the 
corrected temperature, where we can benefit to use same equation applying on the solutions at 
same experiment and pressure. In the case of (Cl-, Br-, NO3

-, and SO4
-), we use same an 

equation of 16, we multiplied the density of water1 with the ratio of mass to transform them 
become per Kg of solution, i.e. if the mass of H2O is 25g, we multiply by 40 to become 1000 
g, and in the case of solutions, we add the mass of salt to mass of H2O and multiply by 40. 
Then using an equation (16) to calculate the absorption for a comparison with an 
experimental. 

XAS measurements were performed on LiCl solutions at different concentrations (0.3 
mol/kg, 0.5 mol/kg, and 1.0 mol/kg) using X-ray incident energy of 15 KeV at isobar 
conditions (300 and 400 bar) as a function of the temperature. The samples were stored in a 
glassy box (dessicator) under nitrogen 0.1 bar. Then samples was located  into an oven to dry 
it. The experimental curves compared with theoretical curves have been calculated with a new 
method " transform the total of mass to Kg of solution " after expected the best value of 
thickness of sample "X" and base line "A" to estimate the real temperature. Comparison with 
the reference mili-Q water, the theoretical curve compared is extracted from NIST database1. 

The experimental results are presented in the FIG. 3.15 of density measurements 
according to an equation (16), regarding to the concentrations in mol/kg, a tendency in 
solubility can be determined ( LiCl0.3M > LiCl0.5M > LiCl1.0M)134, all LiCl experimental data 
can be described with a good agreement with the approach mentioned above. 



 
 

141 
 

 

FIG. 3.15 - Experimental X-ray absorption in transmission mode measured in LiCl aqueous 
solutions at 15 KeV as a function of temperature in comparison with pure water and 
theoretical prediction. The expected base line is 0.27127 and sample thickness 0.398 cm. 

 

FIG. 3.15 shows XAS measurements as a function of temperature for LiCl  aqueous 
solutions. It can be observed that the LiCl-1.0M has a higher absorption than others. The 
absorption at ambient conditions are 1.0059, 1.01, 1.06 and 1.018 for (0.3M300bar, 0.3M400bar, 
0.5M and 1.0M respectively). The weight of salt increases 1.26%, 2.09% and 4.135% ( 
LiCl_0.3M, LiCl_0.5M and LiCl_1.0M respectively). For LiCl-0.3M300bar, the absorption 
starts decreasing from 30 °C to 370 °C progressively, and then, it decrease drastically. ∆abs. = 
0.27 ( 30 °C to 370 °C ) and 0.347 ( 370 °C to 450 °C ) with a decrease to water at 407°C. 
There is no observing a peak at supercritical region in this case. 

For LiCl-0.3M400bar,  the absorption start desreasing from 30 °C to 370 °C progressively, 
then, it decreases drastically; ∆ abs. = 0.271 ( 30 °C to 370 °C ) and 0.31 ( 370 °C to 450 °C ) 
with a decrease to water at 455°C. There is no observing a peak at supercritical region in this 
case. 

For LiCl-0.5M,  the absorption start decreasing from 30 °C to 376 °C progressively,  
then, increase to 385 °C in a peak slightly, thereafter, it decreases drastically; ∆ abs. = 0.279 ( 
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30 °C to 374 °C ) and 0.328 ( 385 °C to 460 °C ) without appear a decrease to water. In this 
case, a peak appears at 385 °C with a peak size of 0.009 ( 0.9%). 

For LiCl-1.0M,  the absorption start decsreasing from 30 °C to 370 °C progressively, 
then, increase to 385 °C significantly, thereafter, it decreases drastically; ∆ abs. = 0.31 ( 30 °C 
to 374 °C ) and 0.42 ( 385 °C to 460 °C ) without appear a decrease to water. In this case, a 
peak appears at 385 °C with a peak size of 0.011 (1.6%). 

When we increase the ions in LiCl aqueous solution, we observed that after the peaks, 
the curve takes away than theoretical curve ΔT increase, when the concentration of the 
solution increase.  

 

Bromide, Chloride, Sulfate, and Nitrate aqueous solutions: 

XAS measurements for (bromide, bhloride, sulfate, and nitrate) aqueous solutions 0.3 
mol/kg were performed with incident energy 15 KeV at isobar condition 300 bar as a function 
of temperature. The experimental curves compared with the reference mili-Q water, the 
theoretical curve compared is extracted from NIST database1 after expected the best value of 
thickness of sample "X" and base line "A" to estimate the real temperature. The expected base 
line is removed in this case to be able compare samples with each others, according their 
values are not same (Table 4).  

The aqueous solutions in FIG. 3.14 are interesting to study the phase separation 
phenomena, with expecting for exist ion-pairing correlations. bromide aqueous solutions are 
good candidate to study the influence of cations distribution, however, the cation charges are 
different and may affect the density fluctuation. By estimation of the number of ions in the 
density fluctuation. For a concentration of 0.3 mol/kg, there is 1 mole of XBr for on average 
185 moles of water (i.e. 93 per cation). The spatial distribution of ions was homogeneous up 
to supercritical domain, their addition would change the density contrast. However, we 
observed that the change of the absorption is proportional to the density contrast, this shows 
that the ions are distributed inhomogeneously. In other words, the distribution of ions is 
different in the low density areas and in the high-density areas. 

FIG.3.16 shows the XAS measurements as a function of temperature of 0.3 mol/kg 
aqueous solutions at incident energy 15KeV, in case of Bromide aqueous solutions, we 
observe that the ZnBr2 has more absorption than others, whereas the absorption at ambient 
conditions are in order 1.557, 1.895, 2.475 and 3.5 for ( LiBr, KBr, CsBr and ZnBr2 
respectively). For LiBr,  the absorption start go down from 30 °C to 360 °C progressively, 
then, increase to 369 °C significantly, thereafter, slip down drastically; ∆ abs. = 0.557 ( 30 °C 
to 360 °C ) and 0.854 ( 369 °C to 405 °C ) with a decrease to water at 420°C. The peak 
appears at 369 °C with peak size is 0.067 ( 6.9%). 
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FIG. 3.16 - Experimental X-ray absorption measured in transmission mode for bromide, 
chloride, sulfate, and nitrate aqueous solutions (0.3 mol/kg) at 15KeV as a function of 
temperature in comparison with pure water at 300 bar. Sample thickness is 0.398 cm, without 
base line. 

 

For KBr,  the absorption start decreasing from 30 °C to 355 °C progressively. Then, 
increase to 369 °C significantly, thereafter, it decreases drastically. ∆abs. = 0.625 ( 30 °C to 
355 °C ) and 1.178 ( 369 °C to 410 °C ) with a decrease to water at 420°C. The peak appears 
at 369 °C with a peak size of 0.116 ( 9.5%). 

For CsBr,  the absorption start decreasing from 30 °C to 360 °C progressively. Then, 
increase to 369 °C significantly, thereafter, it decreases drastically. ∆abs. = 0.815 ( 30 °C to 
360 °C ) and 1.563 ( 369 °C to 410 °C ) with a decrease to water at 420°C. In this case, the 
peak appears at 369 °C with a peak size of 0.16 ( 10.5%). 

For ZnBr2,  the absorption start decreasing from 30 °C to 355 °C progressively. Then, 
increase to 393 °C significantly, thereafter, it decreases drastically. ∆abs. = 1.154 ( 30 °C to 
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355 °C ) and 2.46 ( 393 °C to 425 °C ) without a decrease to water at any given temperature. 
In this case, the peak appears at 393 °C with a peak size of 0.728 ( 34%). 

In the case of chloride aqueous solutions, we observed that ZnCl2 exhibits a significant 
anomalous density while KCl has a small effect in supercritical region. The other solutions do 
not exhibit anomalous changes in density with a decrease to water at 408 °C. The absorption 
increased significantly at 387°C for ZnCl2 with a peak size of 0.14 ( 16.3%) without a 
decrease to water. The absorption increase as well with weak effect at 361°C for KCl with a 
peak size of 0.01 ( 1.8%). 

In the case of sulfate aqueous solutions, we have observed that some of sulfates have 
homogeneous behavior up to specific temperature, the drop down suddenly being to 
precipitation value. ZnSO4 drop down at 254°C with a decrease to water at 404°C. Na2SO4 
drop down at 337°C with a decrease to water at 404°C. Li2SO4 drop down at 357°C without a 
decrease to water. K2SO4 has no anomalous behavior, but there is unstable pressure in the 
mean value in the region after critical point. The reason for some sulfates have dropped down 
suddenly is due to the bonds between the molecules are beak down with temperature 
depending of atomic mass of cations and the concentration of these solutions. 

In the case of nitrate aqueous solutions, we have observed that CsNO3 has a bit effect 
anomalous density. The other solutions have no anomalous changes in density. The 
absorption increase in weak effect at 365°C for CsNO3 with peak size is 0.015 ( 6.5%) with a 
decrease to water at 430°C. The decrease to water for KNO3 at 407°C with a bit slip down 
below of gaze phase of H2O, while as LiNO3 has no decrease to water at concentration 
0.3mol/kg.  

 

Sulfates and Nitrates aqueous solutions with a concentration 1.0M at 400 bars, 
incident energy is 12.5 KeV as a function of temperature. The experimental curves compared 
with the reference mili-Q water at given pressure, after expected the best value of thickness of 
sample "X" which was 0.398 mm, and base line "A" which was 0.482 to estimate the real 
temperature. we used the temperature from 30°C to 350°C with 15 points and from 350°C to 
500°C with 50 points; the pressures are 300 bars, and 400 bars with stability +/- 0.3 bar and 
+/- 0.08 °C. The experimental derivative shift value is 1 °C of a theoretical critical density of 
water, in other words, the value of thermocouple was accurate and near than a theoretical 
critical density. 

The FIG. 3.17 shows the XAS measurements as a function of temperature for sulfate 
aqueous  solutions, we observe that the Na2SO4 has more absorption than Li2SO4, whereas the 
absorption at ambient conditions are in order 2.11, and 1.86 for (Na2SO4, and Li2SO4 
respectively). For Na2SO4,  the absorption start decreasing from 30 °C to 345 °C 
progressively, then, it decreases drastically; ∆  abs. = 0.47 ( 30 °C to 345 °C ) and 0.89 ( 345 
°C to 455 °C ) with a decrease to water of 475°C. 

 



 
 

145 
 

 

FIG. 3.17 - Experimental X-ray absorption measured in transmission mode for sulfate 
aqueous solutions 1.0 mol/kg at 12.5 KeV as a function of temperature in comparison with 
pure water at 400 bar. Sample thickness is 0.398 cm, and base line is 0.482. 

 

For Li2SO4, the absorption start go down from 30 °C to 350 °C progressively, then, slip 
down drastically; ∆  abs. = 0.4 ( 30 °C to 350 °C ) and 0.736 ( 350 °C to 460 °C ) with a 
decrease to water at 475°C. 

In the cases of sulfate, we observe that the density ( absorption) decrease progressively 
then, slip down drastically in anomalous behavior at 445 °C for Na2SO4, and 450 for Li2SO4. 
In these cases, the reason goes back to the bonds between the sulfate and atoms is break up to 
certain value of a temperature, the bonds net are collapse whereas, the atoms precipitate at the 
bottom of sample holder. 

FIG. 3.18 shows the XAS measurements as a function of temperature for Nitrate 
aqueous  solutions, we observe that the CsNO3 has more absorption than others, whereas the 
absorption at ambient conditions are in order 6.793, 2.63 and 1.61 for ( CsNO3, RbNO3 and 
LiNO3 respectively). For CsNO3, the absorption start go down from 30 °C to 387 °C 
progressively with a little phase, then, increase to 399 °C significantly, thereafter, slip down 
drastically; ∆ abs. = 2.468 ( 30 °C to 387 °C ) and 3.86 ( 399 °C to 445 °C ) with a decrease to 
water at 480°C. The peak appears at 399 °C with peak size is 0.639 g/ml ( 15.4%). 
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FIG. 3.18 - Experimental X-ray absorption measured in transmission mode nitrate aqueous 
solutions at 12.5 KeV for 1.0 mol/kg as a function of temperature in comparison with pure 
water at 400 bar. Sample thickness is 0.398 cm, and base line is 0.482. 

 

For RbNO3,  the absorption start decreasing from 30 °C to 387 °C progressively, then, 
increase to 399 °C significantly, thereafter, it decreases drastically; ∆  abs. = 0.742 ( 30 °C to 
387 °C ) and 1.18 ( 399 °C to 445 °C ) with a decrease to water at 480°C. The peak appears at 
399 °C with a peak size of 0.16 g/ml ( 8.7%) . 

For LiNO3,  the absorption decreasing down from 30 °C to 387 °C progressively, then, 
it decreases drastically; ∆ abs. = 0.487 ( 30 °C to 400 °C ) and 0.26 ( 400 °C to 423 °C ) with 
a decrease to water at 460°C. In this case, there is no increase in the absorption, the curve has 
a normal behavior without anomalous a peak.  

 

The liquid-gas phase separation was observed of supercritical aqueous solutions by 
XAS measurements as a function of temperature. Isobaric conditions (300 and 400 bar) ware 
used at different incident X-ray energies 12.5, 13 and 13.5 KeV as shown in the Tables 8, 9, 
and 10 . To observe the phase separation, two pistons configuration were used. The first one 
consists in locate the lower piston at 34mm and the upper piston at 38mm, with space capacity 
2mm. For this configurations the lower piston was fixed. For the second configuration the 
lower piston was located at 15mm and the upper piston at 64mm allowing a space capacity 
2mm. For this configuration the upper piston was fixed. 
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Table 9: The temperature at which it appears the phase separation for solutions at 400 bar, 
12.5 KeV, and  at concentration 1.0M with upper piston 64 mm is fixed. 

Samples Temperature (°C) Notes 

CsNO3_1.0M 410 
The abs. decrease with temperature, at 395°C increases 
then decrease at 405 °C. 

LiNO3_1.0M 405 
The abs. decrease with temperature, without observe 
increasing for the abs. 

Na2SO4_1.0M 365 
The abs. decrease with temperature, at 375 °C and 410 
°C in gas phase, the abs. increase then decrease. 

Li2SO4_1.0M 410 
The abs. decrease with temperature; at 365 °C to 400 
°C in gas phase, the abs. increase then decrease (Peak). 

 

XAS measurements at 300 bars and lower piston fixed, the energies used as illustrated 
in the Table 10, but for NaBr, we used an energy before and after Br-edge, the beam path was 
in the center of sample. The phase separation appears for NaCl_5.0MUF before NaCl_5.0MLF. 

 

Table 10: The temperature at which it appears the phase separation for solutions at 300 bar, 
and at different concentrations and energies with down piston 34 mm is fixed. 

Samples Energy (KeV) Temperature (°C) Notes 

NaCl_5.0M 12.5 435 
The abs. decrease with temperature, at 395°C 
increases then decrease at 425 °C. 

NaBr_1.0M 13.0 410 
No observe increasing for the abs. before phase 
separation  

NaBr_1.0M 13.5 400 
The abs. decrease with temperature, to observe 
starting increase before phase separation must be 
before 400 °C. 

 

XAS measurements at 300 bars and the upper piston fixed, the energies used as 
illustrated in the Table 11. For NaBr and HBr, an energy before and after Br-edge was used, 
the beam path was in the center of sample. There is not a decrease to water of HCl and HBr 
because the origin of these samples are aqueous solutions, and we mixed them with salts to 
observe the shift of a phase separation. There is a shift when HBr and HCl are used, even at 
diluted HBr and NaBr solution (0.5M). The solutions containing ( NaBr and HBr) were 
diluted to 0.5M to avoid complete absorption of the beam from the solution. 



 
 

148 
 

Table 11: The temperature at which it appears the phase separation for aqueous solutions at 
300 bar, and at different concentrations and energies with upper piston 64 mm is fixed. 

Samples Energy (KeV) Temperature (°C) Notes 

NaCl_1.0M 

HCl_1.0M 

12.5 370 
The abs. decrease with temperature, to observe 
starting increase before phase separation must be 
before 350 °C. 

NaBr_0.5M 

HBr_0.5M 

13.0 405 
The abs. decrease with temperature, at 380°C 
increases then decrease at 395 °C. 

NaBr_0.5M 

HBr_0.5M 

13.5 350 
The abs. decrease with temperature, to observe 
starting increase before phase separation must be 
before 350 °C.  

 

 

In this aqueous solutions, isobar XAS measurements were performed for LiBr 1.0 
mol/kg at 345 bars and an incident X-ray energy of 13.7 KeV, using both piston 
configurations. This pressure is bellow the critical pressure of LiBr 1.0 mol/kg (FIG. 3.19)   to 
observe the aqueous solution behavior below a critical pressure LiBr has a higher molar mass 
than NaCl. 

FIG. 3.19 shows XAS measurements as a function of temperature for LiBr  aqueous 
solutions, the pressure regulation was not same exactly for both at30 °C, where ΔP = +/- 0.5 
bar. For LiBr-1.0MUF, the absorption start decreasing from 30 °C to 376 °C progressively, 
then, increase to 381 °C significantly, thereafter, it decreases drastically; ∆ abs. = 1.518 ( 30 
°C to 376 °C ) and 3.0 ( 381 °C to 406 °C ) with decrease to water at 406°C. The peak appears 
at 381 °C with a peak size of 0.328 ( 16%). 
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FIG. 3.19 - Experimental X-ray absorption measured in transmission mode for LiBr aqueous 
solutions (1.0 mol/kg ) at 13.7KeV as a function of temperature under isobaric conditions of 
345 bars in comparison with pure water and theoretical prediction. The expected base line is - 
0.9301 and sample thickness 0.398 cm. LF: Lower Fixed and UF: Upper Fixed. 

 

For LiBr -1.0MLF, the absorption start decreasing from 30 °C to 372 °C progressively. 
Then, increase to 389 °C significantly, thereafter, it decreases drastically.  ∆abs. = 1.3 ( 30 °C 
to 372 °C ) and 3.24 ( 389 °C to 440 °C ) without a decrease to water was observed in this 
case, if we take a long temperature rage, it will happens. The peak appears at 389 °C with a 
peak size of 0.407 ( 18.5%). 

The peak area of LiBr-1.0MLF has more extension with a temperature than NaCl-
1.0MUF, the difference in temperature between them is ΔT = 17 °C. At 415 °C, LiBr-1.0MUF 

has a non regulation pressure. In this case, absorption did not intersect with water curve 
because LiBr has higher molar mass than NaCl. The absorption of NaCl-1.0MUF decrease 
drastically from 1.7 to 0.0 in ΔT = 7 °C changing in a gas phase ( in upper part of sample) in a 
quick process. Whereas, the absorption decrease drastically of LiBr-1.0MLF from 1.7 to 0.0 in 
ΔT = 11 °C. In the other hands, the phase separation observed for LiBr-1.0MUF before LiBr-
1.0MLF. 
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FIG. 3.20 - Experimental X-ray absorption measured in transmission mode of zinc aqueous 
solutions (0.3 mol/kg ) at 15 KeV as a function of temperature under isobaric process of 300 
bars in comparison with pure water and theoretical prediction. The expected base line is 
0.2666 and sample thickness 0.398 cm. 

 

XAS measurement were performed on different of zinc   solutionsat 300 bar and a 
concentration of 0.3 mol/kg. All details have been found in FIG. 3.16 . Different zinc 
solutions with different anions is observedn. The absorption  depending of the mass 
attenuation coefficient ( µ/ρ), where, µ/ρ is 3.29 cm2/g, 4.49 cm2/g, and 8.06 cm2/g for ( 
ZnSO4, ZnCl2 and ZnBr2 respectively), as well as, it depends on the incident energy which 
have been carried out on 15 KeV. 
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FIG. 3.21 - Scan of the carbon cell in vertical position of an experimental X-ray absorption in 
transmission mode measured in NaBr_1.0M aqueous solutions at 13 KeV (A) and 13.5 KeV 
(B) as a function of temperature at 400 bars. The expected base line is 0.482 and sample 
thickness 0.398 cm, The beam path fixed at lower part of cell. 

 
 

3.2 HERFD-XAS measurements for Br and Rb 
 

X-ray absorption spectroscopy (XAS) has made major contributions on geophysical 
research. XAS) is the measurement of transitions from core electronic states of the metal to 
the excited electronic states and the continuum; the former is known as X-ray absorption near-
edge structure (XANES), and the latter as extended X-ray absorption fine structure (EXAFS). 
These two methods give complementary structural information, the XANES spectra reporting 
electronic structure and symmetry of the metal site, and the EXAFS reporting numbers, types, 
and distances to ligands and neighboring atoms from the absorbing element. 

XAS allows us to study the local structure of the element of interest without interference 
from absorption by the water or air. X-ray spectroscopy of bromide aqueous solutions have 
been a challenge due to the low relative concentration of the element of interest in the sample 
. We have performed XANES and XAFS measurements on FAME beamline at ESRF for 
aqueous solutions from ambient to supercritical region. We have been propped  Br K 1s 
threshold ( 13.474 KeV) and Rb K 1s threshold (15.2 KeV) measurements with a transmission 
and HERFD-XAS.   

X-ray absorption spectroscopy experiments were performed on the CRG-FAME 
beamline (BM30B), located at the European Synchrotron Radiation Facility storage ring in 
Grenoble, operating in filling mode at 6 GeV. The experimental details and the set-up were 
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discussed in section 3.2. We used the autoclave with a crystal analyzer set-up  of Si (880) and 
an angle α 13.673° (FIG. 3.22 and FIG. 3.24 ). Alkaline bromide aqueous solutions were 
prepared by dissolving weighted amounts of salts (XBr, 99.999%, Sigma-Aldrich) where, X is 
Li, Na, K, Rb, and Cs with concentrations 0.3 and 1.0 mol/kg. Spectra were recorded both in 
fluorescence and transmission modes (~40 min/scan data collection time), at the Br K-edges, 
using a double-crystal Si(220) monochromator129. The size, 300×200 μm 2 (H×V, full width 
half maximum values), and the position of the X-ray spot on the sample were kept constant 
during the data acquisition. The full beam delivered by the bending magnet source was 
focused in the horizontal plane by the 2nd crystal of the monochromator and by the 2nd Rh-
coated mirror in the vertical plane. Finally, a feedback system was used to maximize the 
output of the two-crystal X-ray monochromator121. Acquisitions of the XAS spectra μ(E) were 
recorded simultaneously in the transmission ( µt(E).d = ln(I0/It) and in the fluorescence mode ( 
µf (E) ∝If/I0)  where d is the thickness of the sample, I0, It, If are the intensities of the 
incident, transmitted and fluorescence beams, respectively (FIG. 2.5). Fluorescence detection 
was achieved using a vortex SDD fluorescence detector. 

Measurements were performed under isobaric conditions, 280, 300 and 600 bars from 
ambient to supercritical conditions. 3 spectra for each temperature is given before critical 
temperature of water and 6 spectra after this value of temperature. The ecperimental set-up 
used was in Rowland circle geometry, the detector is located above the sample, along the zdet 
axis (see FIG. 3.22). The total path length from the sample to the diffracting bent crystal and 
then to the detector equals 1 m. therefore operation under helium atmosphere is compulsory in 
order to minimize the absorption, using a helium balloon in the area of Rowland circle 
between the autoclave, detector and CAS.  
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FIG. 3.22 - Set-up in the experimental hutch located in BM30B /CRG FAME beamline at 
ESRF, Grenoble - France. 

 

The milli-Q water have been tested a carbon cell on XAS measurements in absorption 
mode, a performance of crystal analyzer spectrometer at Br Kβ1,3 and 280 bars from ambient 
to supercritical conditions. We have tested the water in the first experiment on FAME 
beamline to measure the absorption with energy range. As shown in the FIG. 3.23 that the 
absorption decreases with temperature. The absorption at 400°C is decreasing significantly 
because we are exceed the critical point. The base line (A) is 0.83 eV and sample thickness 
(X) is 0.398 cm. 
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FIG. 3.23 - Experimental X-ray absorption measured in transmission mode for milli-Q water 
at isobaric condition (280 bars) as a function of temperature. 

 

3.2.1 XANES analysis  
XANES spectra recorded on both transmission mode (T-mode) and HERFD-XAS 

detection for representative compositions  at different pressure and temperature conditions are 
reported in FIG. 3.24. A qualitative description of the XANES data is presented. All spectra 
display a constant absorption edge at E0 = 13474 eV with a relativelyintense white line with 
peak at a constant energy of 13478 eV. The XANES spectrum of the 5 wt%  (solid salts) 
alkaline bromide aqueous solution at room conditions. 95% of Boron nitride of sample mass 
have been used to insure that there is no interaction with a target sample, because of its 
characteristics of excellent thermal and chemical stability. The fluorescence spectra at lower 
molar mass have the same shape with transmission spectra but the difference increases when 
concntration is higher. This difference is obtained, thanks to the resolution of crystal analyzer 
spectrometer (CAS). The pre-edge feature in Br K-edge spectra has been attributed to 
electronic transitions between the 1s core level to an unoccupied p state (BURATTINI et al., 
1991).135 The white lines of RbBr and KBr are different than others which are due to 
combination of electrons to an unoccupied levels by the multiple scattering of an absorbing 
atom and neighbors.  
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FIG. 3.24 - Normalized XANES spectra at Br-K edge of 5 wt% alkaline Bromide salts at 
ambient conditions in transmission mode and HERFD-XAS collected from. Spectra are offset 
for clarity. The black arrow shows the pre-edge and peak features of high resolution of crystal 
analyzer spectrometer (CAS). 

 

To calibrate the crystal analyzer spectrometer (CAS) and the detector height, as well as 
the positions of CAS, autoclave, analyzer angle, bragg angle and crystal reflection type, as 
shown in the FIG. 3.25. The vertical size of the beam is 100µm. All these elements positions 
have been installed based on Rowland circle with a diameter 1m. The reflection used for the 
CAS is Si(880) given an angle of 76 °. Woith this setup, the total theoretical energy 
resolutions i.e. Johann geometry, reflection Si(880), Si 220 of monochromator is 0.89 eV 
while the value experimentally measured is 1.4 eV. 
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FIG. 3.25 - Crystal tests of different energy ranges with two kind of crystal reflections Si and 
Ge. Analyzer energy, analyzer angle (α), bragg angle and elements positions are shown. The 
theoretical resolution (ΔE) of Br Kβ1,3 is 0.89 eV whereas, experimentally is 1.4 eV. 

 

Br-K edge XANES spectra in transmission mode and HERFD-XAS have been carried 
out for alkaline bromide aqueous solutions in energy range of 400 eV at different pressures 
and concentrations from ambient to supercritical regions. FIG. 3.26 shows T-mode XAS 
spectra of solutions. The spectra measured are nearly logical, thereby demonstrating the 
applicability of T-mode XAS, as performed in the present work, as a quantitative technique 
for Br K-edge XAS in solutions. Further evidence for the reliability of T-mode XAS is 
presented in FIG. 3.26 at different pressures, which compares the difference spectra for some 
alkali bromide solutions measured by T-mode XAS as a function of temperature. The 
concentration is 0.3 mol/kg and 280 bars, increase the temperature means the number of water 
molecules decrease, so the white line of the spectra must be decrease. We observe by 
transmission mode that white line of RbBr and LiBr begins increase at 389 °C. All solutions 
have peaks areas expander than salts (references), and pre-edges shifted to the lower energy 
when increase the temperature. The crystals RbBr and KBr have two combinations of 
absorption at white line located at 13480 eV and 13483 eV.  
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FIG. 3.26 - Normalized Br-K edge XANES spectra collected in transmission mode on 
alkaline bromide aqueous solutions (0.3 mol/kg) at 280 bars from ambient to supercritical 
conditions. 
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FIG. 3.27 shows Br-K edge XANES spectra in fluorescence mode at 0.3 mol.kg and 
280 bars for alkaline solutions and corresponding salt reference. Clearly, the spectrum of salts 
( references) have white lines more structured than aqueous solutions.  

We observe that pre-edges of CsBr are shifted towards low energies when temperature 
increased. The white lines decreased with temperature up to 395 °C, then, at 395 °C increase 
in anomalous behavior with two combinations of absorption occur clearly, as well as, the peak 
seems with two combinations at 30°C . For RbBr, pre-edge shifted to lower energy when 
increase the temperature. All whit lines have two combinations of absorption, the white lines 
decreases with temperature until 389 °C, then increase in anomalous behavior with two 
combinations. For KBr, the theoritecal spectrum has shown that there are two combination of 
absorption, pre-edge shifted to lower energy when the temperature increased. All whit lines 
have two combinations of absorption, the white lines decreased with temperature up to 389 
°C, then increase in anomalous behavior with two combinations. For NaBr, the pre-edge 
shifted to lower energy when increase the temperature. First two temperate have two 
combinations of absorption, the white lines decreases with temperature until 389 °C, then 
increase in anomalous behavior with two combinations too. For LiBr, the pre-edge shifted to 
lower energy when increase the temperature. All whit lines have two combinations of 
absorption, the white lines decreases with temperature until 389 °C, then increase in 
anomalous behavior with two combinations. 

From ambient to supercritical region of all alkaline bromide aqueous solutions, it was 
observed the white lines increase with two combinations of absorption in function of 
temperature. At ambient temperature, the higher combination located in the left part of the 
peak, and the other part located in the right, in the contrary, at supercritical region, we 
observed that the combinations still have two values with shift the higher to the right side and 
lower to the left. In other words, the higher combination has shifted to a higher energy with a 
temperature and lower combination has shifted to a lower energy with a temperature. Table 12 
shows the white lines of fluorescents spectra of alkaline bromide aqueous solutions at 280 bar. 

In other words for all solution, the heigh of the white line (hydration) decreases with the 
temperature until 375 °C and then increases (Table 12). Clearly there is a structural change 
above 375 °C. 
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FIG. 3.27 - Normalized Br-K edge XANES spectra collected in HERFD-XAS  for alkaline 
bromide aqueous solutions (0.3 mol/kg) at 280 bar from ambient to supercritical conditions. 
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Table 12: White line values of alkaline bromide aqueous solutions collected in HERFD-XAS 
(0.3 mol/kg) at 280 bar as a function of temperature. 

Temperature (°C) CsBr RbBr KBr NaBr LiBr 

30 1.3172 1.2846 1.2855 1.276 1.2792 

100 1.2874 1.2677 1.2666 1.253 1.265 

200 1.2545 1.2404 1.2363 1.2244 1.2324 

300 1.2254 1.216 1.2109 1.214 1.2092 

375 1.2178 1.2028 1.1997 1.1849 1.1909 

389 - 1.2427 1.2099 1.1929 1.2053 

395 1.3774 2.8056 - - 1.2856 

 

FIG. 3.28 shows spectra recorded in transmission detection mode at two pressures 300 
and 600 bar for 0.3 mol/kg CsBr and compared to the salt spectrum. The white lines at 300 
bars decrease harmoniously without anomalous behavior. The white lines at 600 bars decrease 
until 400 °C then increase  at 450°C with anomalous behavior at pre-edge. The spectra shifted 
to the lower energy when increase the temperature at pre-edges. 

  

FIG. 3.28 - Normalized Br-K edge XANES spectra collected in transmission detection mode 
of cesium bromide aqueous solutions (0.3 mol/kg) at 300 and 600 bar from ambient to 
supercritical conditions. 

 

 



 
 

161 
 

 
 

  

FIG. 3.29 - Normalized Br-K edge XANES spectra collected in HERFD-XAS of cesium 
bromide aqueous solutions (0.3 mol/kg and 1.0 mol/kg) at 300 and 600 bar from ambient to 
supercritical conditions. 

 

To see the influence of ions at supercritical region, XAS measurements were performed 
on cesium bromide aqueous solutions (0.3 mol/kg and 1.0 mol/kg) and under two isobaric 
conditions at 300 and 600 bar FIG. 3.29.  

• For CsBr 0.3 mol/kg at 300 bars, pre-edges shifted to lower energy when increase the 
temperature. The combinations of absorption are clear at peak of ambient located at 
left part ( lower energy) of the peak but there is a noise at supercritical region, the 
white lines decreases with temperature until 375 °C, then increase in anomalous 
behavior with large ratio of noise at 390°C, as well as, we observed  around the edge ~ 
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13477 ev of cesium bromide spectrum a feature corresponding to the 1s to 4p 
transition135.  

• For CsBr 0.3 mol/kg at 600 bars, pre-edges shifted to lower energy when increase the 
temperature except the spectrum at 390°C shifted to high energy. The combinations of 
absorption are clear at peak of ambient located at left part ( lower energy) of the peak 
but start shifted to the right of peak ( higher energy) with temperature, the white lines 
decreases with temperature until 385 °C, then increase in anomalous behavior. 

• For CsBr 1.0 mol/kg at 300 bars, pre-edges shifted to lower energy when increase the 
temperature. The combinations of absorption are clear at peak of ambient located at 
left part ( lower energy) of the peak but start shifted to the right of peak ( higher 
energy) with temperature, the white lines decreases with temperature until 400 °C, 
then increase in anomalous behavior. 

• For CsBr 1.0 mol/kg at 600 bars, pre-edges shifted to lower energy when increase the 
temperature. The combinations of absorption are not clear at peaks but there are an 
evidence at the peaks which implies most probably of ion-pairs exist. the white lines 
decreases with temperature without observe an increase of a white line at SC 
temperature. 

The spectra at SC region exhibit noise due to the sensitivity of Br K-edge with HERFD-
XAS. The theoretical spectra have been recorded at ambient conditions, the solutions indicate 
that anions and cations are interconnected by an extended network of hydrogen bonds. 
Hydrogen-anion contacts dominate the interactions and each bromide ion is in close contact 
with six hydrogen atoms, with different bonds length.136 

 

Table 13: White line values of Cesium bromide aqueous solutions at different concentrations 
and pressures as a function of temperature. 

Temperature 
(°C) 

CsBr 0.3M 
300bars 

CsBr 1.0M 
300bars 

CsBr 0.3M 
600bars 

CsBr 1.0M 
600bars 

30 1.4281 1.4137 1.4217 - 

100 1.3832 1.3819 1.3788 - 

200 1.3412 1.3418 1.3289 1.3289 

300 1.2666 1.288 1.2689 1.2789 

375 1.2496 - 1.2451 1.2611 

385 1.2616 - 1.2394 - 

390 1.3421 - 1.2667 - 
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400 - 1.2338 - 1.2335 

450 - 1.2418 - 1.2277 

 

 

  

FIG. 3.30 - Normalized Br-K edge  and Rb-K edge XANES spectra collected in HERFD-
XAS on cesium and rubidium bromide aqueous solutions (0.3 mol/kg) at 300 bar at 
supercritical region. Black spectrum in left figure is 5 wt%  CsBr and black spectrum in right 
figure is saturated RbBr 6.0 mol/kg. 

 

FIG. 3.30 shows spectra have been carried out of CsBr and RbBr at 0.3 mol/kg and 
isobaric process of 300 bars at SC region. The analysis of the spectra is illustrated as 
following: 

• For CsBr, we observed that pre-edges shifted to higher energy when increase the 
temperature of SC spectra started from 382°C. The combinations of absorption are not 
clear occur but there are an evidence of ion-pairs on peaks of white lines, the white 
lines increase with temperature from 382 °C to 410°C, the spectrum at 410°C has an 
anomalous behavior with significant shift of the peak to higher energy which is 
implies an exist of ion-pairing clearly (Table 13). The theoretical spectrum is 
anhydrous CsBr 5 wt%. 

• For RbBr, we observe that pre-edges shifted to higher energy when increase the 
temperature of SC spectra started from 385°C. The white lines increase with 
temperature from 385 °C to 410°C. The reference spectrum is a saturated solution 6.0 
mol/kg recorded at ambient conditions.  
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Table 14: White line values of cesium and rubidium bromide aqueous solutions (0.3 mol/kg) 
at 300 bar as a function of temperature at supercritical region. 

Temperature (°C) CsBr  RbBr  

370°C 1.2232 1.2199 

382°C 1.2247 1.1811 

400°C 1.2366 1.2389 

410°C 1.4308 1.2408 

 

 

  

FIG. 3.31 - Normalized Br-K edge and Rb-K edge XANES spectra collected in HERFD-XAS 
(0.3 mol/kg) at 300 bar and of Hydrogen bromide and Rubidium hydroxide aqueous solutions 
from ambient to supercritical conditions. Black spectra are saturated RbBr 6.0 mol/kg. 

 

FIG. 3.31 shows spectra have been carried out of CsBr and RbBr at 0.3 mol/kg and 
isobaric process of 300 bars from ambient to SC region. The analysis of the spectra is 
illustrated as following: 

• For HBr, we observe that pre-edges shifted to lower energy when increase the 
temperature. The white lines decrease with temperature, the spectrum at 406°C has an 
anomalous behavior by increase the white line obviously. The reference spectrum 
corresponds to a saturated solution 6.0 mol/kg at ambient conditions at both Br K-edge 
and Rb K-edge. 

• For RbOH, we observe that pre-edges haven't shifted when increase the temperature. 
The white lines decrease with temperature, the spectrum at 406°C has an anomalous 
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behavior by increase the white line obviously. The reference spectrum is corresponds 
to a saturated solution 6.0 mol/kg has performed at ambient conditions at both Br K-
edge and Rb K-edge. 

 

The Br K-edge XANES fluorescence white lines at different Pressures and 
concentrations of alkaline bromide aqueous solutions as a function of temperature from 
ambient to supercritical conditions are shown in the FIG. 3.32. From ambient temperature, the 
white lines decrease by dehydration process up to certain value of temperature, it's shown 
clearly that at 280 bars, the white line decreases up to 375°C, at 300 bars, the white line 
decreases up to 390°C, and up to 400°C at 600 bars. Then they start increase in an anomalous 
behavior. The evidence of anomalous effect is clear at 280 bars and 300 bars with 0.3 mol/kg 
comparing with others at 600 bars and 0.3 mol/kg. This observation of XANES fluorescence 
white lines is important which is indicate of a new local structure which can be linked to the 
formation of ion-pairing. 
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FIG. 3.32 - Br K-edge XANES white lines collected in HERFD-XAS of alkaline bromide 
aqueous solutions (0.3 mol/k and 1.0 mol/kg) at 280, 300, and 600 bar as a function of 
temperature.  The black arrow shows the dehydration process before increase the white lines. 
The vertical dashed line is guide the temperature value by increase the white line in 
anomalous effect. 
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3.2.2 EXAFS analysis 
X-ray Absorption Spectroscopy has been widely used to characterize the speciation of 

ions in aqueous solutions from ambient to supercritical (or hydrothermal) conditions (for a 
recent review on the subject see for example Brugger et al.137). In this context several 
extended x-ray absorption fine structure studies concerning Br speciation are noticeable : 

• on trivalent salts such as GaBr3
138, YBr3.139  

• on divalent salts such as ZnBr2
140,141, MnBr2.142  

• on monovalent such as RbBr143, KBr and CsBr.107 

The number of studies focused on the Br, the anion, is smaller than the number of 

studies focused on the cations. Two main reasons for this, linked to two difficulties. 

 

One of the difficulty for this kind of studies is intrinsic to the electronic properties of Br 
: multi-electronic excitation (MEE) occurs, which modified slightly the shape of the X-ray 
absorption signal after-edge. For Br, two main MEE decay channels have to be considered, 
corresponding to 1s to 3d and 1s to 3p transitions.144 Height, position in energy and width of 
these transitions depend on the considered system (Table 15). This effect, if it is not taken into 
account, modify the shape of the EXAFS oscillations. EXAFS software can correct easily it, 
but this is still a correction, with the errors associate with it : which MEE parameters do we 
have to consider ? Do my corrections induce an artefact of not ? 

 

Table 15 : Br multi-electronic excitation characteristics 

Double-excitation 1s → 3d 1s → 3p 

Ref. Compound 
Ed-e - Es 

(eV) 
H ΔE (eV) 

Ed-e - Es 

(eV) 
H ΔE (eV) 

144 

HBr 90±5 0.05±0.01 20±10 200±10 0.016±0.004 50±10 

Br2 105±10 0.4±0.2 60±20 190±10 0.019±0.005 50±10 

145 

NBr 

solution 
91 0.05  205 0.018  

EuBr3 eth. 

sol. 
80   203   

146 KBr aq. sol. 77 0.02  203 0.0025  
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The other difficulty of EXAFS measurement performed on Br in aqueous solution is 
that even the structure in ambient conditions is badly known, because there is a large Br-H2O 
distribution of distances and coordination numbers (see for example the recent work of 
Antalek et al.)147. The initial parameters needed to perform relevant EXAFS simulations are 
then difficult to define. To determine by EXAFS in our case if there is Br-X (where X is an 
alkaline element) bound in supercritical conditions among the Br-H2O bounds (which persists 
in these conditions)143, remains then challenging. 

XAS measurements were collected at the Br K-edge from ambient to supercritical 
conditions at 300 bars, on FAME beamline. The HP-HT setup is the one previously described 
and developed by Testemale et al.2 Measurements have been done both in fluorescence and 
transmission modes, using a Ge 30-element solid state detector for the fluorescence detection. 

Five Br-alkaline salts were probed in aqueous solutions : LiBr (0.3 mol/l), NaBr (0.3 
mol/l), KBr (0.3 mol/l), RbBr (0.05 and 0.3 mol/l) and CsBr (0.3 mol/l). 

EXAFS extraction was performed using Athena software. We apply the MEE Br 
correction parameters given by D’Angelo et al. for HBr.144 We did not perform any 
simulations, but we calculated the backscattering amplitude functions for each Br-alkaline 
pair. This calculation was done with Artemis (FEFF6.0). 

In order to better show the small differences we expect between the signals, we plot the 
difference EXAFS spectra, taking as a reference the EXAFS spectrum in ambient conditions 
of each set of spectra. This technique is named DiffEXAFS and “it may be used to examine 
any situation where the modulation of a sample property results in some small degree of 
atomic perturbation on a local scale.148 

The EXAFS signals derived from the normalized of alkaline bromide aqueous solutions 
spectra reported in the FIG. 3.33 (k2-weighted EXAFS spectra) and FIG. 3.34 (difference k2-
weighted EXAFS spectra).  

The first observation is that the EXAFS signals are completely dominated by the low k-
region signal, characteristic of the Br–O backscattering. By looking at the difference spectra 
(FIG.  3.34) we can see clearly that the amplitude of oscillations decreased with the 
temperature : 

• progressive dehydration occurs with temperature, 
• Br is still bound to water molecules at high temperature, in the SC conditions, as found 

by Ferlat et al.107,143  

The second observation is that at high temperature, the difference EXAFS signals seems 
to increase in the high k-region (arrow on FIG. 3.34). This increase might be due to Br-
alkaline ion pairing : 

• for LiBr and NaBr no effect is visible, but in these cases the acquisition was performed 
only up to 350°C (precipitation occurs after). Moreover, if ion-pairing would occur, 



 
 

169 
 

the effect will be superimposed to the Br-O signal, backscattering amplitudes being 
maximum in the same k region. 

• for KBr, RbBr and CsBr, this increase occurs at 375°C or 400°C. The increase can be 
seen as an inversion of the local maxima of the oscillations 

Br is hydrated in ambient conditions, and this hydration remains up to the SC 
conditions. Modifications in the evolution of the EXAFS spectra with temperature seem to 
indicate that ion-pairing occurs for KBr, RbBR and CsBr in SC conditions. 

 

FIG. 3.33 - Br k-edge k2-weighted EXAFS oscillation of alkaline aqueous solutions at 300 
bar as a function of temperature. Spectra are corrected from the MEE effects. 
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FIG. 3.34 - Br k-edge k2-weighted DiffEXAFS oscillation of alkaline aqueous solutions at 
300 bar as a function of temperature. Spectra are corrected from the MEE effects. Br-O and 
Br-alkaline backscattering amplitude functions were superimposed to determine visually if 
ion pairing occurs. 
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3.3 Summary (English) 
In this chapter, I have clarified the phase separation (liquid-gas) and ion-pairing 

correlation using conventional XAS measurement and Crystal Analyzer Spectrometer (CAS) 
of aqueous solutions from ambient to supercritical region. 

The experimental measurements of water and aqueous solutions ( Alkaline bromide, 
chloride, nitrate, and sulfate) have been performed at different concentrations and pressures as 
a function of temperature. Phase separations of some solutions have been observed and ion-
pairing correlation in SC region. I have performed XANES analysis. The experimental 
densities have been calculated by several methods. XANES results have proved the effect of 
ion-pairing in the white lines. EXAFS spectra have proved that there is an ion-pairing in 
supercritical condition by increase of the signature of cation-anion amplitude with 
temperature. Crystal analyzer Spectrometer (CAS) has been used at Br K-edge of alkaline 
group. 

The white lines decrease by dehydration process up to certain value of temperature, and 
then they start increase in an anomalous behavior. The evidence of anomalous effect is clear 
at 280 bars and 300 bars with 0.3 mol/kg. This observation of XANES fluorescence white 
lines can be correlated to the existance of ion-pairing. 

 

3.4 Summary (French) 
Dans ce chapitre, J'ai mis en évidence la séparation de phases (liquide-gaz) et sa 

corrélation avec la formation de paires d'ion par des mesures conventionnelles d'absorption 
XAS et par des mesures haute résolution par cristaux analyseurs sur des solutions aqueuses 
des conditions ambiantes aux conditions supercritiques. 

Les mesures expérimentales sur l'eau et les solutions aqueuses (Bromo alcalin, chlorure, 
nitrate et sulfate) ont été effectués à différentes concentrations et pressions en fonction de la 
température. La séparation de phases a été observée pour certaines solutions et celle ci a pu 
être corrélée à l'appariement d'ions dans la région SC. J'ai effectué des analyses XANES. Les 
densités expérimentales ont été calculées par plusieurs méthodes. Les résultats XANES ont 
montré également l'appariement d'ions à partir de l'évolution de la raie blanche. Les spectres 
EXAFS ont prouvé également l"existance de cet appariement d'ion avec l'augmentation du 
signal d'amplitude correspondant à la présence de paires d'ion. La haute résolution par 
l'utilisation d'un spectromètre à cristaux  analyseurs (CAS) a été utilisés au seuil du Br pour 
différents cations.  

Les raies blanches diminuent selon le processus de déshydratation jusqu'à une certaine 
valeur de température, puis elles commencent à augmenter dans un comportement anormal. 
L'effet anormal est particulièrement claire à 280 bars et 300 bars pour une concentration en 
sel de 0,3 mole / kg. Cette observation des raies blanches permet également de valider 
l'apparition de paires d'ion. 
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4. Discussion and conclusion 
 

4.1 History of ion-pairs 
Several studies and a lot of experiments measurements have been carried out on phase 

separation of aqueous solutions and ion-pairing on Br-Kedge from ambient to supercritical 
conditions at different concentrations. 

The Liquid-Vapor relation for the system NaCl-H2O has been studied by Bischoff et al 
3,4,108,132. He has performed an experimental data on the vapor-liquid equilibrium relations 
were compiled and compared in order to provide an important estimate of the P-T-x surface 
between 300°C to 500°C. He has been presented the results in theoretical modeling to the 
understanding of two-phase behavior in saline geothermal systems. Also, he has carried out an 
experimental data for the densities of liquids and vapors on the two-phase surface of system 
NaCl at same region of temperature, a range for which the system changes from subcritical 
behavior. Data for the NaCl critical line and for the three-phase assemblage halite+ liquid + 
vapor were first evaluated over a much wider T-P range. 

 
Hydration of the bromine ion in a supercritical 1:1 aqueous electrolyte has been carried 

out by G. Ferlat et al 107,143. Extended x-ray absorption fine structure (EXAFS) measurements 
have been carried out on 0.2 molal RbBr aqueous solutions at the Br-K edge from ambient to 
supercritical (SC) conditions, i.e. from density ρ = 1.02 to ρ = 0.42 g cm-3 and temperatures 
from 35 to 450 °C. The model used leads to an excellent agreement of the EXAFS spectra 
computed from the generated configurations with the experimental ones. Both show, in 
particular, a strong persistence of the Br- ion first shell coordination at supercritical 
conditions. A strong reduction of the EXAFS amplitude is observed with decreasing value of 
the sample density. This is in good agreement with previous experiments of Wallen et al149. 
They interpreted this as a reduction of the hydration number of Br-. In contrast, our 
simulations show a persistence of a high amount of water molecules around the Br- ion in the 
SC state. 

 
XAS measurements have been performed by Cécile da silva et al108,138. on both at the 

Ga and Br K-edges on aqueous GaBr3 solutions. The isobaric experiments have been recorded 
at 30 MPa from ambient temperature to 670 K for two GaBr3 concentrations (0.017 and 0.17 
mol/dm3). At room temperature, Ga3+ and Br− ions are fully solvated, surrounded by water O 
atoms at 1.97 Å (Ga–O) and 3.37 Å (Br–O). When the temperature is elevated, Ga3+ cations 
precipitate as gallium oxy-hydroxide colloids while Br− anions remain solvated. When the 
temperature increases, Ga3+ cations precipitate as GaO(OH)(s) in the temperature range over 
370–600 K, while Br− ions remain completely solvated. For higher temperatures, Ga3+ cations 
are remarkably re-dissolved (25% and 50% for 0.017 and 0.17 mol/dm3 respectively), ion-
pairing occurs and pure or mixture tetrahedral specie complexes are formed (RGa–Br=RBr–Ga= 
≈2.31 Å). 
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Table 16: Ion-pairing in aqueous solutions at supercritical conditions, M = mol / l 
Ions Reference Ion-pairing in supercritical conditions 

Zn2+ , Br- 150,151 Ion-pairing for ZnBr4
2−, ZnBr3

− , ZnBr2, and ZnBr+ ( [1.0M] ) 

Na+, Br-, Cl-, 
and I- 

152 Ion-pairing for NaBr, NaCl, and NaI compounds 

Rb+, Br- 149  RbBr compound ( [RbBr = 0.02 to 1.5M]) and [2M] 

Ga3+, Br- 138 GaBr3 ([ 0.017 and 0.17 mol/dm3 ]). 

Cs+, Cl- 153 CsCl compound with ([0.30 to 7.15M]) 

Na+, Cl- 154, This study NaCl compound ( [0.3 to 1.1 M]) 

K+, Rb+, Cs+, 
and Br- 

This study KBr, RbBr and CsBr compounds with ([0.3M]) 

H+, Br- This study HBr compound with ([0.3M]) 

Rb+, OH- This study RbOH compound with ([0.3M]) 

 
 
 

Compares different systems probed by XAS where monovalent, divalent or trivalent 
cations are in aqueous solutionwith a halide anion (Br− or Cl−).We limit the comparison to the 
studies in which the initial concentration of salts in solution is low enough to avoid significant 
ion-pairing at ambient conditions. Ion-pairing has not been observed for monovalent systems, 
even if molecular dynamic simulations predict a significant amount of such pairing in 
supercritical conditions. Ion-pairing occurs for all these divalent or trivalent systems. 
 

4.2 Solvent density measurements 
A methodology based on simple X-Ray absorption is proposed to detect and observe the 

evolution of density of hydrothermal solution from ambiant to supercritical conditions. Phase-
separation can also be detected and followed by this method. The water measurements has 
been carried out and compared with theoretical value. This comparison allows us to 
demonstrate the existence of a thermal gradient in our experimental setup. This gradients can 
be explained by 1) heat transfer and dissipation by materials used in our experimental set-up ( 
Beryllium in windows, glassy carbon in sample container, pressurized helium, ceramics of 
furnace, ...), 2) design of the furnace containing three optical non heated windows,  3) water 
properties. Heat loss from the set-up is expected to increase linearly with temperature. 
Nonlinear dependence of Tcell - Treal value on density is observed for all pressures. These data 
reflect thermo physical properties of water. Despite the fact that heat transfer critical 
enhancement and possible heat transfer deterioration are difficult to be quantified from our 
measurements, some analogies can be drawn. Thus for example, the minimum gradient 
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roughly overlap with the maximum of specific heat capacity of H2O when approaching the 
pseudocritical isochore (ρc = 0.322 g/cm3) and thus this minimum seems to correlate with 
critical heat transfer enhancements. These new data allow to validate our experimental setup 
and to estimate the temperature gradients for other aqueous solutions. 

 

4.3 Density anomaly and ion pairing 
Conventional X-ray absorption spectroscopy ( XAS) measurements on water and 

supercritical aqueous solutions (aqueous bromide, aqueous chloride, aqueous nitrate and 
aqueous sulfate) were carried out from ambient to supercritical conditions. The temperature 
was increased from 30 °C to 500 °C along several isobars between 280 and 400 bars. The 
incident energies were between 12.5 to 15.4 KeV. We obtained experimental evidence of the 
shift of the critical point and isochore and their dependence on the ions concentration of NaCl 
(0.3 mol/kg, 0.5 mol/kg and 1.0 mol/kg). We also observed the anomalous densities in 
supercritical region (SC) with a phase-separation with a compilation data for vapor-liquid for 
some aqueous solutions at given energy. The relative density increase in this critical zone is 
more pronounced in order Li < Na < K < Rb < Cs for both bromides and chlorides. Structural 
changing in SC region ( anomalous density) leads to the existence of Ion-pairing. 

 The effects of temperature, density, and solution concentration have been explored in 
detail. The primary factor affecting the decrease in hydration under supercritical conditions is 
the high temperature of the system. The fluid density and the salt concentration have only a 
minor effect on the hydration structure. The interpretation of the XANES spectra clearly 
indicates a drastic change in the local structure of the fluid at the time of the appearance of 
this anomaly, which can be interpreted by the appearance of ion pairing. These new 
observations are related to the structural change of the solvent and mainly to the evolution of 
local structure of the solvent and the local order around ions. 

Schematically, when increasing the temperature at a given pressure, a progressive 
dehydratation of ions is observed. Then correlated with critical heat transfer enhancements of 
water, we observe the formation of ion pairing leading to an suddenly jump in density. 
However, a first shell of solvatation is always presents, indicating certainly that we are in 
presence of outsphere complex. This anomaly is following by a demixion in two phases. 

 

4.4 Perspectives 
This work is based only on one method (XAS). Our observations need to be confirmed 

by complementary studies. It will be important to caracterized the structural change of the 
solvent by Raman. Indeed, Raman spectroscopy provides spectra of the water molecules 
vibrations and thus information about their geometrical organisation, related to the number 
and the arrangement of the hydrogen bonds. In complement, these measurements under 
supercritical conditions were also completed by “Ab initio” molecular dynamics calculation.  
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To confirm the density anomaly followed by the phase separation, we propose also to 
perform similar experiment below the critical point and to reproduce and caracterize the phase 
separation liquid vapor for pure water and sodium choride solution. 
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