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Summaries

Summary - english
This study deals with the dynamic properties of open quantum systems far from equilibrium in
d dimensions. The focus is on a special, exactly solvable model, the spherical model (SM), which
is technically simple. The analysis is of interest, since the critical behaviour in and far from
equilibrium not of mean-field type. We begin with a résumé of the statistical mechanics of phase
transitions and treat especially the quantum version of the SM. The quantum dynamics (QD) of the
model cannot be described by phenomenological Langevin equation and must be formulated with
Lindblad equations.First we examine the dynamic phase diagram of a single spherical quantum
spin and interpret the solution as a mean-field approximation of the N-body problem. Hereby,
we find a quantum mechanical ‘freezing by heating’ effect. After that, we extend the formalism
to the N-body problem, determining first the form of the Lindblad equation from consistency
conditions. The SM then allows the reduction to a single integro-differential equation whose
asymptotic solution shows, that the effective QD in the semi-classical limit is fully classical. For
a deep quench in the ordered phase, we show that the QD strongly and non-trivially depends on
d and derive the dynamic scaling behaviour and its corrections. The mathematical tools for this
analysis are new results on the asymptotic behaviour of certain confluent hypergeometric functions
in two variables.

Zusammenfassung - deutsch
Diese Studie behandelt dynamische Eigenschaften offener Quantensysteme fern vom Gleichgewicht
(GG) in d Dimensionen. Der Fokus liegt auf einem speziellen exakt lösbaren Modell, dem sphärischen
Modell (SM), welches einfach zu behandeln ist. Die Analyse ist von Interesse, da das kritische Ver-
halten im und fern vom GG nicht vom Molekularfeldtypus ist. Wir beginnen mit einem Résumé zur
statistischen Mechanik von Phasenübergängen und behandeln speziell die Quantenversion des SM.
Die Quantendynamik (QD) des Modells kann nicht durch phänomenologische Langevingleichun-
gen beschrieben werden und muss mit Lindbladgleichungen (LG) formuliert werden. Zunächst
untersuchen wir das dynamische Phasendiagramm eines einzelnen sphärischen Quantenspins und
deuten die Lösung als Molekularfeldnäherung des N-Körperproblems. Dabei finden wir einen quan-
tenmechanischen „Einfrieren durch Aufheizen“-Effekt. Danach erweitern wir den Formalismus auf
das N-Körperproblem, wobei zuerst die Form der LG aus Konsistenzbedingungen hergeleitet wird.
Das SM erlaubt dann die Reduktion auf eine einzige Integrodifferentialgleichung, deren asymp-
totische Lösung zeigt, dass im halbklassischen Grenzfall die effektive QD klassisch ist. Für ein
tiefes Abschrecken in die geordnete Phase zeigen wir, dass die QD stark und nicht-trivial von d
abhängt und stellen das dynamische Skalenverhalten und zugehörige Korrekturen dar. Mathema-
tisches Hilfsmittel dabei sind neue Ergebnisse zur Asymptotik hypergeometrischer Funktionen in
zwei Variablen.

Résumé - français
Cette thèse traite la dynamique hors équilibre des systèmes quantiques ouverts couplés à un réser-
voir externe. Un modèle spécifique exactement soluble, le modèle sphérique, sert comme exemple
paradigmatique. Ce modèle se résout exactement en toute dimension spatiale et pour des in-
teractions très générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son
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comportement critique d’équilibre ni celui hors équilibre est du genre champ moyen. La présen-
tation débute avec une revue sur la mécanique statistique des transitions de phases classique et
quantique, et sur les propriétés du modèle sphérique. Sa dynamique quantique ne se décrit point
à l’aide d’une équation de Langevin phénoménologique. Une description plus complète à l’aide
de la théorie de l’équation de Lindblad est nécessaire. Les équations de Lindblad décrivent la
relaxation d’un système quantique vers son état d’équilibre. En tant que premier exemple, le dia-
gramme de phases dynamique d’un seul spin sphérique quantique est étudié. Réinterprétant cette
solution en tant qu’une approximation champ moyen d’un problème de N corps, le diagramme
de phases quantique est établi et un effet « congeler en réchauffant » quantique est démontré.
Ensuite, le formalisme de Lindblad est généralisé au modèle sphérique quantique de N partic-
ules: primo, la forme précise de l’équation de Lindblad est obtenue des conditions que (i) l’état
quantique d’équilibre exacte est une solution stationnaire de l’équation de Lindblad et (ii) dans le
limite classique, l’équation Langevin de mouvement est retrouvée. Secundo, le modèle sphérique
permet la réduction exacte du problème de N particules à une seule équation intégro-différentielle
pour le paramètre sphérique. Tertio, en résolvant pour le comportement asymptotique des temps
longs de cette équation, nous démontrons que dans la limite semi-classique, la dynamique quan-
tique effective redevient équivalente à une dynamique classique, à une renormalisation quantique
de la température T près. Quarto, pour une trempe quantique profonde dans la phase ordonnée,
nous démontrons que la dynamique quantique dépend d’une manière non triviale de la dimension
spatiale. L’émergence du comportement d’échelle dynamique et des corrections logarithmiques
est discutée en détail. Les outils mathématiques de cette analyse sont des nouveaux résultats
sur le comportement asymptotique de certaines fonctions hypergéométriques confluentes en deux
variables.



Chapter 1

Introduction

In physics, phases of matter are defined as uniform states in which important collective properties
of a many-body system coincide and one observes macroscopic laws which hold true throughout the
entire phase and usually change sharply when the system crosses over from one phase to another
one [Nis11, Yeo92, Dom96, Car96b, Voj03, Sac01]. Such transitions between different phases are
omnipresent in nature and well-known from our daily life experience. Probably the best-known
example is water which is liquid under standard conditions for pressure and temperature but
freezes at low temperatures turning into a solid (lakes in winter, polar ice caps) or vaporises at high
temperatures turning into vapour. Although the microscopic interactions between individual water
molecules do not change, the macroscopic behaviour (mechanic, optic, ...) changes drastically in
response to changes in thermodynamics parameters such as temperature or pressure. A qualitative
phase diagram of water1 shown in fig 1.1 reveals that there are three main phases: liquid, solid
and vapour [Bri37, Pre04, Pap07].

Another daily life example is the structural transition of graphite and diamond that allows
us to write with a pencil (graphite) while the same material in a different phase is amongst the
hardest materials on earth (diamond) [Bun55, Hol01].

One of the best-studied classes of phase transitions is the one between ferro- and paramagnetic
states. The high critical temperatures in many ferromagnets, including the classical examples
of iron and nickel, can only be understood from quantum mechanics, although the transition
mechanism itself is classical [Jäg96]. On the other hand, the ferromagnetic transition in dipolar-
coupled chains in a transverse magnetic field are model examples of quantum phase transitions
[Bit96, Kra12, Bab16].

Moreover, superconductors which allow to transport electrical currents without any dissipation
(Joule heat) at very low temperatures (a material that is superconducting around ∼ 100 [K]
is considered to be a high-T superconductor) have attracted attention for their vast range of
technical applications since their discovery by H.K. Onnes in 1911 [Onn11]. This discovery was
“the first time, quantum phenomena were showing up at low temperature” in history [vD10]
and while these materials still conduct electrical current at normal temperatures what their low
temperature behaviour differs drastically from their “usual” characteristics. This implies that
superconductivity is nothing but a phase of the conductor. Recently there has been a new high
temperature record achieved for sulphur hydride H2S which transforms under high pressure ∼
100 [GPa] to a superconductor. The critical temperature measured is 203 [K] [Dro15, Hei15]
which is significantly higher than the previous record of 164 [K] in cuprates [Gao94]. This sort of
hydrogen-based materials can even be expected to lead to room temperature superconductivity as
the hydrogen atoms provide the high frequency phonon modes and strong electron-phonon coupling
[Dro15].

Even our universe is believed to have undergone a series of different phase transitions which
lead to the building of defects by crossing the phase boundaries (planets) [Kib80].

All these transitions and many others (see tab 1.1) occur if certain external driving parameters

1Contrary to widely hold beliefs, the thermodynamics of liquid water, and not only of solid ice, is complex. For
instance, two distinct phases of liquid water have experimentally been seen to co-exist at a temperature of 125 [K]
and a pressure of 1 [bar] [Per17].
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2 CHAPTER 1. INTRODUCTION

solid

liquid

vapour

TP

CP

supercritical

Figure 1.1: Schematic phase diagram of water with 3 different phases: solid, liquid and vapour.
We mark the triple point where all these phases coexist with tp and the critical point where the
system undergoes a continuous phase transition with cp.

like the temperature, pressure, density etc. reach a critical value and the point where the transition
occurs is called a critical point. This specific point was first observed by Cagniard de la Tour as
early as 1822 [dlT22] and he is therefore rightfully considered as the discoverer of critical phenomena
[Ber09] although the name was attributed only much later by T. Andrews in 1869 [And69]. De
la Tour heated a sealed glass tube filled with liquid alcohol until the whole volume vaporised and
became transparent. He then cooled the tube down again and observed a thick cloud which is now
acknowledged as the observation of the critical opacity and thus the discovery of the critical point.
Despite the distinction between gas and liquid was already established by earlier experiments
performed by Jean-François Clouet (1751 – 1801) and Gaspard Monge (1746 – 1818) the critical
point had never been observed before.

We thus see that phase transitions influence not just our daily life but the concepts are rather
general and being applied to a lot of different fields of research. This makes the theory of critical
phenomena a flourishing and thriving discipline on the one hand while being a well-established
and classical discipline on the other hand.

We shall now review the modern description of critical phenomena and put special emphasis
on the quantum counterpart. As paradigmatic examples, we shall use the Ising and the spherical
models. We shall then analyse the statistical behaviour of a quantum system close to criticality
explicitly. In order to describe collective dynamical quantum properties we shall then introduce the
Lindblad equation as a formalism that describes a true quantum relaxation with the semi-group
property [Lin76, Bre07, Sch14].

1.1 A brief summary of phase transitions
This section recalls the main features of both classical and quantum phase transitions and critical
phenomena. We therefore start by introducing general concepts of phase transitions and then focus
later on quantum properties.

The literature on this topic is vast and any list of references is somewhat incomplete. Hence,
there exist many good older and more recent sources that we consulted for this brief summary and
to which we refer for further details [Yeo92, Car96b, DF97, Hen99, Ma00, Nis11, Pap07, Sac01].

We shall focus in this section on the classical formulation of statistical mechanics and the
description of critical points and refer the reader to the following reviews of selected more modern
topics in the field.
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Table 1.1: Examples of phase transitions, see [Yeo92, Ma00, Dro15], and references therein.
transition order parameter example

ferromagnetic magnetisation Fe

antiferromagnetic sublattice magnetisation MnO

ferrimagnetic sublattice magnetisation Fe3O4

structural atomic displacements SrTiO3

ferroelectric electric polarization BaTiO3

order-disorder sublattice atomic concentration CuZn

phase separation concentration difference CCl4+C7F16

superfluid condensate wave function liquid He

superconductivity ground state wave function Al, Nb3Sn

high-Tc superconductivity ground state wave function H2S

1. The statistical mechanics of complex networks has attracted a lot of interest in the last
decades since it reveals collective properties of very different systems as e.g. cells, the Inter-
net, chemical reactions or different aspects of society. Consequently, this field is not just of
pure scientific but as well of a high technological interest and thus highly dynamic. We refer
to [Alb02, Wac07] and references therein for a recent review.

2. The transitions with which we shall be dealing in the present work rely on the mechanism
of symmetry breaking. A class of different transitions is studied in the field of topological
insulators: the quantum Hall effect has led to a fundamentally new classification based on
topological order. For recent reviews on the field of topological insulators see [Has10, And13]
and references therein.

3. The theory of dynamical critical phenomena deals with the description of systems that are
out of and relax towards equilibrium. It is concerned with the change of material properties
over time and studies effects as e.g. ageing. For recent reviews we consult e.g. [Hen09,
Hen10, Hoh77] and mention that we shall be concerned in the later chapters with quantum
relaxation processes.

4. Experiments in ultracold atoms have turned out to provide an excellent testing ground to
study many-body physics due to the high tunability of the interactions in these systems. For
a review on recent progress in the field of statistical mechanics of ultracold atoms we refer
to [Blo08, Pet02, Pit03, Leg01, Leg03, Dal99] and references therein.

1.1.1 General properties of phase transitions

Any physical system made up of a large number of degrees of freedom is said to undergo a phase
transition if its macroscopic properties undergo an important qualitative change [Yeo92]. For
example, a liquid can vaporise or freeze, an isolator can become a conductor or a superconductor,
a metal can become a magnet etc. as we discussed in the preceding section.

Such a change can occur in different physical quantities like the electric conductivity, the mag-
netisation or the viscosity to name a few and is routinely driven by an external control parameter
(temperature, pressure, density, ...). In tab 1.1 we list some examples of phase transitions occur-
ring in nature and name their order parameter. This is a quantity that distinguishes the different
phases between which the transition occurs and thus quantifies the qualitative change of the phys-
ical properties of the system.
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Figure 1.2: Entropy S as a function of temperature for a first-order phase transition (left panel)
and for a continuous phase transition (right panel). In the first order transition the entropy has a
jump at the critical temperature Tc which results in a latent heat due to the difference ∆S. In the
continuous case there is no latent heat and the entropy has a continuous non-analyticity at Tc.

Generally, one distinguishes first-order and continuous phase transitions2 as follows [Hua01]

• at a first-order transition, the different phases co-exist at the critical point and the phases
are distinguishable, e.g. by a finite difference in entropy, see left panel of fig 1.2.

• at a continuous transition, the different phases become indistinguishable. First derivatives
of the thermodynamics potentials (free energy), e.g. the entropy, the latent heat of the
spontaneous magnetization, are continuous.

In this introduction we are mainly concerned with continuous transition and thus use from now
on the term phase transition referring to continuous transitions. A non-analyticity as pictured in
the right panel of fig 1.2 for continuous phase transitions, leads to diverging physical quantities
(thermodynamic derivatives) as e.g. the correlation length. This on the other hand implies that
all length scales become important at criticality and that long-range correlations are dynamically
created throughout the entire system [Hen99]. This process leads to the birth of large clusters
of macroscopic size and stretching across the entire system, typically washing out microscopic
details. Indeed, the transition is found to depend only on a few properties of the system such as its
(spatial) dimension, the range of interactions (short vs. long range interaction) or the symmetry
of the system [Nis11]. This fact is called universality and it is probably the most fundamental
principle in the theory of phase transitions since it allows us to model complicated macroscopic
systems into highly simplified microscopic models and still describe the same universal features.
The statement of universality emerges from elaborate arguments in the so-called Renormalisation
Group Theory [Wil75] where one can show the irrelevance of these microscopic properties explicitly
by applying scale transformations to the system3 [Nis11].

The textbook model studied to illustrate continuous phase transitions is the 2D isotropic Ising
model which consists of a 2D regular square lattice where every vertex is occupied by a binary spin
variable σ ∈ {±1} (a configuration is illustrated in fig 1.3 by arrow up and down). The Hamilton
function with short range nearest-neighbour interaction reads

HIsing = −J
∑
〈n,m〉

σnσm (1.1.1)

where J is the exchange energy which is in general of quantum mechanical origin4 [Jäg96]. This
model was proposed in the 1920’s by Wilhelm Lenz who was Ernst Ising’s supervisor and who

2Historically the term n-th order phase transition was introduced to distinguish different orders of divergences
but from a physical point of view the most relevant ingredient is the (dis-) continuity.

3We shall give a brief overview of concepts of the Renormalisation Group later in the text.
4We shall rescale the exchange energy in the following sections as J = 1.
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Figure 1.3: Schematic representation of a configuration of the 2D Ising model on a square lattice.

never really insisted to be recognised as the inventor of the model. In his thesis, Ising studied the
partition function of the Ising model in one dimension and showed that there exists no ordered
phase and thus the model did not seem suitable to explain ferromagnetism [Bru67]. As a simple
explanation Ising proposed to imagine an ordered state

∣∣ ↑ ↑ ↑ . . . ↑ ↑
〉
which under thermal

fluctuations can be spontaneously split into two regions
∣∣ ↑ . . . ↑ ↓ ↑ . . . ↑

〉
. Then there is no

mechanism in the system that would prevent either site from spontaneously collectively flip and
thus the ordered state is not stable. In his argument Ising missed the fact that it applies exclusively
in one spatial dimension and moreover, this exact result is in contrast with the so-called mean-field
approximation, which predicts a continuous phase transition at some critical temperature Tc > 0
in any dimension d.

In the early 1930s Ising, as a German-Jewish scientist, lost his position at a public schools as
Hitler came to power [Kob00]. He “survived the war in a small town in Luxembourg” but “was
there completely shut of from scientific and social life.” [Bru67]. After having left Germany in 1939
and having arrived to USA “Ising became aware of the first and the only contemporary citation of
his paper by Heisenberg” [Kob00] who developed the Heisenberg model [Hei28] as a generalisation
of the Ising model. By introducing a more sophisticated interaction between nearest-neighbour
spins, he tried to explain ferromagnetism which Ising was not able to do in his system. In this
manner it took Ising until 1949 to become aware of the fact that his model became widely known
[Kob00].

The existence of a phase transition in the Ising model, in d ≥ 2 dimensions, was proven
rigorously by Peierls in 1936 [Pei36] and the 2D Ising model was solved exactly in 1944 [Ons44]
showing indeed a phase transition between a disordered and an ordered phase at the transition
temperature

T (2D Ising)
c = 2J

log
(
1 +
√

2
) . (1.1.2)

Above this temperature the macroscopic order, triggered by nearest-neighbour interaction is de-
stroyed by thermal fluctuations. Such a transition is said to be classical because it is driven by
temperature. There exists another ensemble of transitions that are not thermally driven and take
place at zero temperature as a function of a non-thermal driving parameter and the macroscopic
order is destroyed by quantum fluctuations. Despite posing a mathematically well-defined problem
such transitions raise immediately the fundamental question:

Why should one study a transition phenomena that occurs at an experimentally non-accessible
temperature?

The study of these phenomena is vastly motivated by different aspects. On the one hand quantum
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criticality occurs in large portions of the phase diagram and the asymptotic critical behaviour
can be influenced by quantum fluctuations as we shall see later on. On the other hand quantum
properties can indeed influence measurable quantities in these regions (e.g. superconductivity)
and thus, quantum critical behaviour has solved many prominent puzzles of classical physics as
rare-earth magnetic insulators [Bit96], high-temperature superconductivity [Dag94, Map98] or two
dimensional electron gases [Son97, Kra95], which is probably the strongest argument in favour of
studies concerning quantum criticality. Today, such quantum phase transitions can be studied ex-
perimentally, for example in certain dipolar-coupled magnets in either 1D or 2D and in a transverse
field [Bit96, Kra12, Bab16], compare section 1.2.3 and e.g. [Sac11].

It is thus necessary to give a qualitative overview where quantum effects arise and when they
are relevant. Therefore, we have to introduce the basic notions of scaling theory at a continuous
phase transition and come back later to an explicit comparison between classical and quantum
properties.

1.1.2 Statistical mechanics of phase transitions
As we discussed briefly in the previous section, phase transitions are universal and therefore it is
possible to formulate the whole theory in the language of ferromagnetic phase transitions since the
Ising model is available as a simple toy model.

Our starting point is the canonical partition function5

Z =
∑
{σ}

e−H[{σ}]/T (1.1.3)

where the sum runs over all possible configurations {σ} of the system, H is the Hamilton function
and T the temperature of a reservoir which is in contact with the system6. From the partition
function the Gibbs free energy G and the free energy F are defined as

G = G(T, h) = −T logZ (1.1.4)

F = F(T,M) = −T logZ . (1.1.5)

The distinction between these potential amounts to the fact that in magnets, one uses either an
ensemble with fixed magnetic field and the Gibbs free energy as associated thermodynamic poten-
tial or else an ensemble with fixed magnetisation and the free energy. These two thermodynamic
potentials are related in the large-system limit N →∞ by a Legendre transformation as we remind
now briefly, following [Hen09].

Consider the Ising model on a lattice with N sites and write down the partition functions
Z = Z(T, h) = exp(−G(T, h)/T ) and Z̃ = Z̃(T,M) = exp(−F(T,M)/T ) for fixed field h and
fixed magnetisationM , respectively. The Ising model Hamilton function is H = −

∑
〈n,m〉 σnσm−

h
∑
n∈Λ σn, where the first sum is over pairs of nearest neighbours. For a fixed magnetisation

M =
∑
n∈Λ σn, the partition function is, with δn,0 = 1

2π
∫ π
−πdα eiαn

Z̃(T,M) =
∑
{σ}

e−H/T δM,
∑

n
σn

= 1
2π

∫ π

−π
dα e−iαM

∑
{σ}

exp
[
T−1

∑
(n,n′)

σnσn′ + iα
∑
n

σn

]
.

Writing M = Nm, F(T,M) = N f(T,m) and G(T, h) = N g(T, h), the relationship between f
and g is given by

exp
[
−N
T
f(T,m)

]
= 1

2π

∫ π

−π
dα exp

[
−N

(
1
T
g(T, iαT ) + iαm

)]
. (1.1.6)

5Throughout the whole text we shall use units in which the Boltzmann constant kb = 1.
6In the canonical ensemble the system and the reservoir exchange energy while not exchanging particles.
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Figure 1.4: Specific heat, as defined in eq (1.1.11), of the Ising model on a periodic chain. The full
lines give the case M = 0 for 30 sites (lower curve) and 60 sites (upper curve). The dashed lines
give the case h = 0 for 30 sites (upper curve) and 60 sites (lower curve). Reprinted from [Hen09]
with permission by Springer.

For N large, integrals of this kind can be estimated from the saddle-point method, which in this
simple case amounts to the identity∫

R
dx e−λf(x) ' e−λf(x0)

√
2π

λf ′′(x0)
(
1 + O

(
λ−2)) ; f ′(x0) = 0 (1.1.7)

Applied to eq (1.1.6), the extremal condition ∂α
(
T−1g + iαm

) != 0 leads to the standard ther-
modynamic relation m = −∂g/∂h, as it should be. The estimate of the integral in eq (1.1.6)
gives

exp
[
−N
T
f(T,m)

]
= exp

[
−N
T

(
g + hm

)
+ 1

2 ln
(

2π
NTχ

)] (
1 + O

(
N−2)) (1.1.8)

where χ = ∂m/∂h is the susceptibility. Hence

f(T,m) = g(T, h) + hm+ O
(

lnN
N

)
(1.1.9)

reproduces in the limit N → ∞ the standard equilibrium thermodynamics, where the two ther-
modynamic potentials f = f(T,m) and g = g(T, h) are related by a Legendre transformation. For
illustration, one may calculate the mean energy 〈E〉 = Z−1∂Z/∂(1/T ). Writing 〈E〉 = N ε, from
the above it is easily seen that ε|m = ε|h + O

(
N−1). For an explicit check in the 1D Ising model,

one may calculate the two partition functions on a periodic chain of N = 2N sites, for h = 0 and
M = 0, respectively. The result is [Hen09]

Z(T, 0) = (2 cosh 1/T )2N + (2 sinh 1/T )2N ; if h = 0

Z̃(T, 0) = (2 sinh 2/T )N
[
PN (coth 2/T )− PN−1(coth 2/T )

]
; if M = 0 (1.1.10)

where Pn is the nth Legendre polynomial [Abr64]. In 1.4 the specific heats, calculated from either
Z̃(T, 0) (fixed magnetisation – full curves) or Z(T, 0) (fixed field – dashed curves) are shown for
two periodic lattices of different size. We see that for fixed magnetisation, the specific heat is lower
than for a fixed magnetic field (as it should be for an equilibrium system) and that for N →∞, the
two sets of curves converge towards each other. This convergence is very rapid for sufficiently large
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Table 1.2: Critical exponents in the language of a continuous magnetic order-disorder transition:
h is the external magnetic field and r is the reduced driving parameter.

Physical Observable Exponent Definition

specific heat α ch=0(r→ 0) ∝ |r|−α

order parameter β mh=0(r→ 0−) ∝ (−r)β

susceptibility γ χh=0(r→ 0) ∝ |r|−γ

critical isotherm δ hr=0 ∝ |m|δsign (m)

correlation function η Gh=0,r=0(r) ∝ |r|−d+2−η

correlation length ν ξh=0(r→ 0) ∝ |r|−ν

relaxation time z τ ch=0(r→ 0) ∝ ξz

anisotropic correlation length θ ξ|| ∝ ξθ⊥

temperatures but becomes notably more slow for more small values of T and evolves in opposite
directions for M = 0 fixed and h = 0 fixed.

Having specified the associated thermodynamic potentials for the canonical ensemble, they
allow us to compute physical quantities as thermodynamic derivatives

specific heat c = −∂T |h∂TG , (1.1.11)

magnetisation m = −∂h|TG , (1.1.12)

susceptibility χ = −∂2
h|TG . (1.1.13)

These macroscopic quantities quantify the behaviour of the system as a unit. In order to
characterise the system on finite scales one has to introduce the spin-spin correlation function and
the correlation function for the energy density ε(x)

Gσ(x,y) := 〈σxσy〉 = 1
Z
∑
{σ}

σxσye−H[{σ}]/T (1.1.14)

Gε(x,y) := 〈εxεy〉 = 1
Z
∑
{σ}

εxεye−H[{σ}]/T (1.1.15)

where x and y define two positions in the lattice. Each of these correlators has its individual
correlation length ξσ/ε and corresponding amplitude Aσ/ε

Gσ(x,y) ∝ Aσe−
|x−y|
ξσ , Gε(x,y) ∝ Aεe−

|x−y|
ξε . (1.1.16)

However, ξσ and ξε are known to be asymptotically proportional [Car96b] and one thus writes a
single correlation length ξ as

G(x,y) ∝ e−
|x−y|
ξ (1.1.17)

It has already been argued in section 1.1.1 that a phase transition can be characterised as a
point of divergences in thermodynamic quantities. It is therefore desirable to characterise these
divergences by the so called critical exponents. These are defined in terms of the reduced temper-
ature

r = T − Tc
Tc

(1.1.18)

and are given in tab 1.2.
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Figure 1.5: Ginzburg-Landau free energy in zero field h = 0 (left panel) and in a magnetic field
h 6= 0 (right panel).

Ginzburg-Landau theory

The Ginzburg-Landau (gl) theory is a simple phenomenological approach to describe transition
phenomena built from the non-fluctuating average value of the order parameter (magnetisation m
in magnetic systems). Our presentation loosely follows [Yeo92] and recalls the basic concepts and
elementary results of the theory. For further details, see e.g. [Hoh15, Kad09, Bax71] for further
reading.

The basic assumption is that the free energy can be developed in a power series of the order
parameter m according to

F = F0 + ra2m
2 + a4m

4 + hm (1.1.19)
We show the form of the free energy in fig 1.5 and observe immediately

1. The coefficient of m2 is chosen to be proportional to r. In this manner, the global minimum
changes for the cases r > 0 and r < 0 and the theory is able to describe a transition
phenomena

2. Since the curves transform continuously in one another as a function of temperature, the gl
theory describes a continuous phase transition. For the external field h 6= 0 the transition is
of first order.

3. For r < 0 and h = 0 the ground state is two-fold degenerated due to a symmetry m 7→ −m
in the free energy. The phase transition is therefore said to be a spontaneous symmetry
breaking.

4. The magnetic field h cancels the degeneracy and selects the state orientated along its direction
as energetically favourable.

5. At the critical point r = 0 the Ginzburg Landau free energy becomes flat around m = 0 and
thus thermal fluctuations around the value m = 0 can spread throughout the entire system.

Apart from providing a clear physical insight into the physics behind transition phenomena, the gl
theory allows to calculate the critical exponents exactly and we list them in tab 1.3 [Yeo92, Bax71]
(along with the values of the spherical model). The exponents α, β, γ and δ are obtained by
straightforward calculations from eq (1.1.19). In order to obtain the mean-field values of ν and
η which describe the behaviour of the correlation function, the Ornstein-Zernike extension to gl
theory [Yeo92] is needed. This extension allows the magnetisation of the system to vary with
position and up to lowest order in m the free energy in zero field h = 0 reads

F = F0 + ra2

∫
dr m(r)2 + g

∫
dr (∇m(r))2 . (1.1.20)
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Table 1.3: Critical exponents of the Ginzburg-Landau theory and the spherical model in d < 4
spatial dimensions.

α β γ δ η ν z

gl theory 0 1
2 1 3 0 1

2 2

sm d < 4 d−4
d−2

1
2

2
d−2

d+2
d−2 0 1

d−2 2

In this approximation the Fourier modes k decouple and one can calculate the correlation function
in Fourier space [Yeo92]. To conclude this overview, we want to give some closing remarks.

1. The gl theory unifies a number of classical mean-field studies, of which the most prominent
one may be the molecular field theory. This theory derives an effective mean-field Hamilton
function by replacing the exact Hamiltonian H by a member H0(κ) of a family of Hamilto-
nians which depend on a variational parameter κ. The Bogoliubov inequality

F [H]−F [H0] ≤ 〈H −H0〉0 (1.1.21)

then allows to find the optimal H0(κ?) from a minimisation problem. This allows e.g. to
replace an interacting Hamiltonian by a free one∑

n,m

Jnmσnσm → κ?
∑
n

σn (1.1.22)

2. For most systems, especially in low dimensions, the prediction of the gl theory are wrong.
The reason can be easily seen from our remark 1: since every spin interacts in the trial
Hamiltonian solely with the average of all other spins, fluctuations are neglected. Thus, the
gl theory is valid iff fluctuations are unimportant.

3. Ginzburg criterion: The unimportance of fluctuations can be quantified as follows. Fluctua-
tions have a typical energy associated with the temperature T and they can affect the system
on the length scale of the correlation length, thus in a volume ξd. Their contribution to the
free energy should consequently be

Ffluc '
T

ξd
∼ |r|νd . (1.1.23)

This contribution must be negligible for the gl theory to be applicable. The free energy
itself behaves as

F ∼ |r|2−α . (1.1.24)

By comparing the exponents and substituting the mean-field values from tab 1.3, condition

d > 4 (1.1.25)

is deduced. d = 4 is therefore called the upper critical dimension above which gl theory is
applicable.

4. All models with the same gl expansion share the same critical exponents and therefore lay
in the same universality class.

5. Generally, a mean-field theory is a good starting point for a treatment of any complicated
problem. It usually gives a qualitative idea of the phase diagram and helps to greatly simplify
complicated problems. Moreover, despite numerical approaches get harder as the dimension-
ality increases, mean-field studies improve while not increasing technical difficulties.
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Exactly solvable models

In general, calculating the partition function is a difficult if not impossible challenge and numerical
methods often have their own flaws. Therefore, it is useful to study models that allow to determine
Z explicitly and hence test generic expectations analytically. In general this is possible in the
following scenarios
• 2D systems that are integrable (e.g. Onsager’s solution of the 2D classical Ising model
[Ons44], Baxter’s solution of the hard hexagon/eight-vertex model [Bax71] and similarly
solutions of the quantum Ising chain in a transverse magnetic field [Zam89] or Bethe’s cele-
brated solution of the quantum Heisenberg chain [Bet31])

• free fields that usually lead to mean-field descriptions,

• the spherical model [Ber52, Lew52] which in spite of an underlying free-field theory cannot
be reduced to a simple mean-field description.

We shall be mainly concerned here with the study of the spherical model which will be introduced
later properly since it is not a mean-field theory and allows generalisations to higher dimensions,
for very general interactions and external fields.

The value of lattice models and especially exactly solvable models has always been questioned,
since they seem to simplify nature drastically. It is certainly helpful and even advisable to always
critically question the validity of an abstract description but the integrability of a model alone
cannot serve as justification to dismiss this model as useless. We quote the preface to [Bax71]
where Baxter categorically dismissed all contentions that exactly solvable models were intrinsically
pathological: “There are ‘down-to-earth’ physicists and chemists who reject lattice models as being
unrealistic. In its most extreme form, their argument is that if a model can be solved exactly, then it
must be pathological. I think this is defeatist nonsense: [. . . ] There is probably also a feeling that the
models are ‘too hard’ mathematically. This does not bear close examination: Ruelle (1969) rightly
says in the preface to his book that if a problem is worth looking at at all, then no mathematical
technique is to be judged too sophisticated. Basically, I suppose the justification for studying these
lattice models is very simple: they are relevant and they can be solved, so why not do so and see
what they tell us?”

General scaling theory

While not all models are exactly solvable and mean-field theories usually only give qualitative
insight into the phase diagram one has to go beyond mean-field studies in order to describe scenarios
where fluctuation effects are not negligible. The scaling theory we want to outline in this section
is the renormalisation group theory (rg). The literature on this topic is vast but as well this field
of research is constantly growing what makes it hard, if not impossible for a single reference to
provide a more or less complete overview on this topic. Our presentation is mainly inspired by
[Nis11, Car96b, Ma00].

The basic idea is illustrated in fig 1.6 and consists of tracing out iteratively microscopic degrees
of freedom in a lattice model (here �). This procedure of rescaling a coarse grained system is
the essence of the basic renormalisation group operation and changes amongst other quantities
especially the number of lattice sites N 7→ N ′ and the temperature T 7→ T ′. Of course, explicit
real-space renormalisations will generate additional couplings (green links in fig 1.6), beyond simple
nearest-neighbour interactions (blue links in fig 1.6). The usual assumption is that these extra
couplings should not affect the critical behaviour, e.g. the values of the exponents, in an essential
way. Hence, a priori the Hamilton function of the system will transform indirectly under the rg
procedure as well H 7→ H ′. The general hypothesis is that such a transformation should not affect
the physics of the critical point due to universality. This manifests in the following postulate.

Postulate: After a renormalisation step7 Rb which maps all quantities O to Rb(O) =: O′ and
rescales the lengths in the system by a factor b > 1, the partition function does not change

Z 7→ Rb(Z) = Z ′ != Z (1.1.26)
7In general such a step is an involved non-linear transformation.
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renormalisation

Figure 1.6: Schematic representation of the real space renormalisation group.

By applying such a transformation the system effectively loses information about its microscopic
configuration since such a map Rb is non-invertible. The physical assumption underlying this
mathematical statement is the existence of a single diverging length scale near to criticality. This
turns out to be effectively correct in many systems. However, if several such length scales exist,
the simple picture presented here will not hold [Car96b, Nis11].

The repetition of such a transformation will thus reveal the macroscopical critical behaviour of
the system since such a series accounts for fluctuations on all length scales. We shall now briefly
sketch how to derive the general rg procedure by first introducing a quantity that is commonly
defined in the context of rg maps.

Definition: The scaling dimension yO of a physical quantity O is defined as

Rb(O) = byO (1.1.27)

and encodes how the quantity O scales under rg transformations.

We shall see later that the scaling dimension of a physical quantity contains information on
whether this quantity is able to affect the critical behaviour of a system or not.

At criticality the system with the Hamilton function Hc is expected to remain essentially
unchanged after many transformations Rb since fluctuations are present on all length scales. Thus,
the series of Hamiltonians (Rnb (Hc))n∈N has to converge towards a fixed point H? with

H? = Rb(H?) = lim
n→∞

Rnb (Hc) (1.1.28)

We now aim at giving a recipe for applying the rg to a general Hamiltonian

H =
∑
n

unOn = u ·O (1.1.29)

where On are coarse-grained microscopic degrees of freedom, in field theory usually referred to
as operators [Car96b], and un ∈ C are constants. In this language, the renormalisation group
equation reads

u′ = Rb(u) (1.1.30)
and its successive application

u 7→ Rb(u) 7→ R2
b(u) 7→ . . . 7→ Rnb (u) 7→ . . . (1.1.31)

defines the so-called discrete renormalisation group flow. Fixed points of the renormalisation
group, u∗ = Rb(u∗), play an essential role in what is going to follow. We now want to study the
effects of this flow close to criticality. May u? be a fixed point, then one writes

u = u? + δu, u′ = u? + δu′ . (1.1.32)

Linearising the recursion relation around the fixed point leads to

δu′ = Tb(u?)δu with [Tb(u?)]ij = ∂uju
′
i|u? (1.1.33)
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It is usually assumed that this matrix is diagonalisable and expand u and u′ in terms of eigenvectors
φi with Tbφi = byiφi and find

u = u? +
∑
i

giφi u′ = u? +
∑
i

g′iφi (1.1.34)

with g′i = byigi. The behaviour of the system under renormalisation is now reduced to the study
of the so-called scaling fields gi around the fixed point. Here, the first major physical insight
comes from the exponents yi: if yi > 0 the associated scaling field moves away from criticality and
is thus said to be relevant. Otherwise yi < 0 describes irrelevant scaling fields8.

In ferromagnetic systems, critical behaviour can solely be observed if the temperature r = 0
and the magnetic field h = 0. This leads us to the conclusion that these are the only relevant
scaling fields for the ferromagnetic phase transition. We write after a single renormalisation step

f(r, h) = b−df(rbyr , hbyh) (1.1.35)

Gσ(r; r, h) = b−2xσGσ(r/b; rbyr , hbyh) (1.1.36)

Gε(r; r, h) = b−2xεGε(r/b; rbyr , hbyh) (1.1.37)

Here, we refer to the connected versions of eqs (1.1.14, 1.1.15), viz.

Gσ(x,y) := 〈(σx − 〈σx〉) (σy − 〈σy〉)〉 = 〈σxσy〉 − 〈σx〉 〈σy〉 (1.1.38)
Gε(x,y) := 〈(εx − 〈εx〉) (εy − 〈εy〉)〉 = 〈εxεy〉 − 〈εx〉 〈εy〉 (1.1.39)

in order to only account for fluctuations around the mean value. The renormalisation group
exponents yh and yr are now related to the critical exponents according to

α = 2− d

yr
, β = d− yh

yr
, γ = 2yh − d

yr
, δ = yh

d− yh
, ν = 1

yr
, η = d− 2yh + 2 (1.1.40)

Thus, rg allows to systematically analyse critical phenomena and determine universality classes.

1.2 Quantum criticality
After having studied the classical theory of critical phenomena we want to turn our attention to
quantum properties in this section. The studies of quantum criticality trace back to the 1970s and
the main works of [Suz71, Fra78, Kog79] who established first correspondences between statistical
mechanics and quantum mechanics in the Ising model and studied in great detail the connection
between lattice gauge theories and the quantum Hamiltonian formalism.

First we shall recall the quantum-classical mapping that makes the theory of classical phase
transitions up to some changes applicable in the quantum case. Then we shall discuss where in the
phase diagram quantum effects are relevant and have to be taken into account. We then complete
this part by reviewing several experimental examples of quantum phase transitions.

1.2.1 Correspondences between quantum and statistical systems
We want to briefly review the link between quantum systems and statistical systems that is intro-
duced by Feynman’s path integration formalism [Fey65]. For this purpose we explicitly keep the
constant ~ in this section while it will be set to ~ = 1 almost everywhere later.

The quantum transition amplitude Z between two distinct space-time configurations (t1,x1)
and (t2,x2) of a quantum mechanical system with the (time-independent) Hamiltonian H can be
expressed by the path integral

Z =
∫ ∏

j

U(tj+1, tj)dxj =
∫
Dx e− i

~S (1.2.1)

8The case yi = 0 is not treated here: usually the associated scaling fields are referred to as marginal and give
rise to logarithmic corrections to the leading scaling behaviour.
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Table 1.4: Correspondences between classical statistical system and quantum systems established
by the notion of the transfer matrix [Hen99].

Statistical Systems Quantum Systems

temperature T ~ Planck’s constant

cl. Hamilton function H/T S/~ classical action

transfer matrix T = e−τH U = e− i
~ tH time-evol. operator

equilibrium state |0〉 ground state (gs)

ensemble average 〈O〉ens 〈0| O |0〉 gs exp. value

correlation functions G ∆(t, r) propagators

inv. correlation lengths ξ−1 E1 − E0 energy gaps

free energy density f E0/N gs energy density

classical cp d+ 1 d qcp

where the integral represents the sum over all possible paths that connect (t1,x1) and (t2,x2),
S(t1, t2) =

∫ t2
t1

dt L is the classical action and U is the quantum mechanical time evolution operator
U(tj+1, tj) = e− i

~H(tj+1−tj). This expression for the transition amplitude can be easily related to
the partition function: Consider a statistical system which is described on a hypercubic d + 1
dimensional lattice and single out one of the dimensions and name it “time”. The remaining d
dimensions are referred to as space and define the transfer matrix T as〈

{σ}(t1)
∣∣T ∣∣{σ}(t2)

〉
:= e−H̃(t1,t2)/T (1.2.2)

with H =
∑
t H̃(t, t+1). It is a well-known result that the partition function can then be expressed

as [Sch05, Hen99]
Z = tr T M (1.2.3)

where M is the number of sites in the time direction (with periodic boundary conditions). Using
the explicit expression and the Trotter product formula in the extremely anisotropic limit, in which
the time-direction becomes continuous, one can formally relate eq (1.2.1) and (1.2.3) by an analytic
continuation in time. This leads to the mapping described in tab 1.4.

The procedure we describe here distinguishes explicitly between ‘time’ and ‘space’ in order to
go over from statistical mechanics to quantum mechanics. This leads to a potential anisotropy
between space and time which may be characterised by the anisotropy exponent θ. It is most easily
defined by amounting to both directions an individual correlation length exponent ν|| (time) and
ν⊥ (space). The anisotropy exponent is then defined as9

θ =
ν||

ν⊥
(1.2.4)

and can be readily deduced from the low energy spectrum of the quantum Hamiltonian

Ek
k→0∼ kθ . (1.2.5)

Here, k = |k| is the absolute value of the wave vector k of a collective excitation of the many-body
Hamiltonian H which is assumed to be rotational and translational invariant.

There is an opinion that “there are deep reasons” for the analogies between quantum mechanics
and statistical mechanics which seem to be related to the properties of space time [Pol87], though
there is no real explanation as the author admits himself.

9Sometimes the anisotropy exponent is referred to as ‘dynamical exponent’ which is due to the name ‘time’
awarded to the anisotropic direction in the Hamiltonian limit. One must not confuse θ with z.
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1.2.2 Thermal and quantum fluctuations
Our goal was to understand how quantum properties enter in the transition and in which regions
of the phase diagram quantum effects are relevant. Therefore, the energy of typical quantum
fluctuations has to be compared to the one of thermal fluctuations. The typical thermal energy
scale is simply given by the temperature T while the quantum fluctuations have a typical energy
scale of

~ωchar ∝
~
τc
∝ |r|ν⊥θ . (1.2.6)

From here it is clear that every finite temperature transition is indeed classical, since the right
hand side vanishes at the critical point. True quantum transitions can just be observed at T = 0.
This can be readily understood since qpt occur due to a spontaneous symmetry breaking between
two indistinguishable ground states. As long as T 6= 0 the system is thermally excited and can
thus not show the pure gs transition. Nevertheless, the quantum critical region shown in fig 1.7
can give rise to unconventional physics like unconventional power law behaviour, non-Fermi liquid
behaviour etc. which is caused by absence of conventional quasiparticle-like excitations [Voj03].

quantum
 critical
 region

disorder 
 

thermal 
disorder

order

classical behaviour

quantum

Figure 1.7: Comparison of classical and quantum contributions to the critical behaviour of a system
that has a classical and a quantum phase transition.

1.2.3 Experimental examples
The field of experimentally observed or designed qpt is very active and vast. A full review would
thus go beyond the scope of our theoretical work. Nevertheless, we think that it is essential to
highlight at least a few important realisations and milestones in the field of experimental qpt
because after all “La théorie n’est que l’idée scientifique contrôlée par l’expérience.” [Ber65].

CoNb2O6 and LiHoF4: Model quantum Ising magnets

In both of these materials cobalt ions for CoNb2O6 and respectively holmium atoms for LiHoF4
can order along a particular crystalline axis which leads to the two states |↑〉 or |↓〉 that can
be canonically associated with the Ising spin states [Bit96, Col10]. The main difference between
CoNb2O6 and LiHoF4 is the type of interaction: while LiHoF4 is dominated by magnetic dipolar
interactions which are long-range, CoNb2O6 is dominated by nearest neighbour exchange inter-
actions and thus provides an extraordinary testing ground for exact 1D results in the transverse
field Ising model [Sac01]. In fig 1.8 the experimental results from [Bit96] for LiHoF4 are shown.
In this experiment the classical thermal transition can be converted into a qpt by a transverse



16 CHAPTER 1. INTRODUCTION

Figure 1.8: left panel: Mean-field critical behaviour of the magnetic susceptibility of LiHoF4 in the
T → 0 limit as functions of reduced temperature (open circles, Tc = 0.114[K], Ht = 49.0[kOe]) and
reduced transverse field (filled circles, Hc

t = 49.3[kOe], T = 0.100[K]). right panel: Experimental
phase boundary (filled circles) for the ferromagnetic transition in the transverse field-temperature
plane. Dashed line is a mean-field theory including only the electronic spin degrees of freedom;
solid line is a full mean- field theory incorporating the nuclear hyperfine interaction. Reprinted
from [Bit96] with permission by the American Physical Society.

magnetic field Ht. Using magnetic susceptibility measurement the phase boundary in 3D can be
determined and can be compared to mean-field predictions with qualitative agreement.

LiErF4 & LiYbF4: Model antiferromagnets for classical-to-quantum crossover

A system where a phase diagram of the shape shown in fig 1.7 can be measured is LiErF4. Its
magnetic structure is shown in fig 1.9 and one can test the physics of dipolar-coupled systems
explicitly in this system. The dipolar coupling is antiferromagnetic and implies a macroscopic
bi-layer antiferromagnetic order for non-zero temperature as shown in fig 1.10 (Néel point: TN =
0.373(5)[K], critical transverse field hc = 4.0(1)[kOe]). By applying a transverse magnetic field,
the antiferromagnetic order is suppressed and a quantum phase transition into a paramagnetic
state is induced. Thus, one can explicitly study e.g. quantum fluctuations around a classical
phase transition and determine different critical exponents [Kra12]. Although the experiment
was carried out in a 3D system, its critical behaviour was more reminiscent of a 2D material as
e.g. the critical exponents βT ≈ 0.15(2), βH ≈ 0.31(2) and α ≈ −0.28(4) reveal. The value for
the thermal transition βT and α thermal are completely different from the mean-field predictions
(tab 1.3) but rather agree with the ones of the classical 2D xy model with cubic anisotropy
[Jos77, Jos78, Cal02, Tar08].10 The value βH for the quantum transition is close to the 2 + 1D
value. This implies that the quantum transition is effectively 3D while the thermal transition is
2D, explicitly verifying the classical-to-quantum map introduced in section 1.2.1.

Whether the dimensional reduction is characteristic for LiErF4 due to rather close higher-lying
crystal-field levels or weak hyperfine interactions, cannot be argued from [Kra12].

In recent studies, these kind of dimensional reductions have been shown to be universal to quan-
tum dipolar antiferromagnets on a distorted diamond lattice [Bab16]. In this work susceptibility,
specific heat, and neutron scattering measurements are carried out on LiYbF4 in three spatial
dimensions. The result of the susceptibility measurement is shown in fig 1.11: especially the cusps
in fig 1.11(b) below the Néel temperature indicate a qpt according to the same mechanism as
described for LiErF4.

In this manner the dimensional reduction is verified in a system with a largely different crystal
field environment, Néel temperature and hyperfine interactions. This experimentally establishes

10In order to give a more complete overview, we would like to mention that also materials like monolayer
Fe/W(100) [Elm96] or layered ferromagnets like Rb2CrCl4 [AN93] and K2CoF4 [Hir82] belong to this universality
class.
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Figure 1.9: Different magnetic structures in LiErF4. Reprinted from [Kra12] with permission by
The American Association for the Advancement of Science.

Figure 1.10: Field-temperature phase diagrams of LiErF4 from the intensity of magnetic Bragg
peaks: (010) with Hc|| , (003) and (100) with Hb|| , respectively. Reprinted from [Kra12] with
permission by The American Association for the Advancement of Science.

that the mechanism of dimensional reduction is a universal feature of dipolar coupled quantum
antiferromagnets and are applicable to a vast range of different systems [Bab16].

Ultracold atoms in optical lattices

Another celebrated realisation of a qpt was achieved by confining ultracold atoms in optical lattices
[Gre02]. The experimental setup is shown in the left panel of fig 1.12: a cloud of bosonic 87Rb
atoms is cooled down until the atoms form a superfluid state. By applying a periodic potential,
generated by an optical lattice, the experimentalists succeed to design a qpt to an insulating state,
compare the right panel of fig 1.12.11

Another recent realisation of quantum phase transitions in 2D in ultracold atoms is given in
[Lan16b]. In this experiment, the standard Bose Hubbard model [Ger63] has an additional long
range interaction that favours an imbalance between different sublattices. Consequently, long and

11In fig 1.12 it is also visible that the quantum coherence is lost as the lattice depth is changed since for increasing
lattice depth the interference pattern washes out (compare e) - h).
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Figure 1.11: (a) Susceptibility for H = 0 as a function of temperature. (b) Susceptibility as a
function of H for different temperatures (c) Resulting magnetic phase diagram with the bilayer
magnetic structure of LiYbF4 as inset. Reprinted from [Bab16] with permission of the American
Physical Society.
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Figure 1.12: left panel: Schematic experimental setup. right panel: Absorption images of different
matter wave interference patterns which were measured after suddenly releasing the atoms from
the optical lattice potential with different potential depths V0 after a time of flight of 15 ms. Values
of V0 were a) 0 Er; b) 3 Er; c) 7 Er; d) 10 Er; e) 13 Er; f) 14 Er; g) 16 Er; and h) 20 Er and Er
is the recoil energy. Reprinted from [Gre02] with permission of the Nature Publishing Group.

short range interactions compete with each other and produce four distinct phases: supersolid,
superfluid, Mott insulator and charge density wave as shown in the right panel of fig 1.13.

1.3 The spherical model
In 1952, Berlin and Kac [Ber52] introduced the spherical model in order to ‘investigate models
which yield to exact analysis and show transition phenomena’. In their opinion ‘it is irrelevant that
the models may be far removed from physical reality if they can illuminate some of the complexities
of the transition phenomena.‘ After the striking success of the exact analysis of the two dimensional
Ising model, the spherical model was introduced to overcome the problem that the Ising model is
(still) not solved in more than two spatial dimensions. In its origin, the spherical model is often
considered as being exclusively theoretically motivated but the following properties will shed light
on it from a different angle.
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Figure 1.13: left panel: Schematic experimental setup. right panel: Phase diagram as function of
the 2D lattice depth and the detuning ∆c = ωz − ωc where ωz is the frequency of the z-lattice
beam and ωc is the cavity resonance frequency. Reprinted from [Lan16b] with permission of the
Nature Publishing Group.

1. The spherical model can also be obtained as the n → ∞ limit of the classical O(n) vector
model [Sta68, Pea77] or the quantum O(n) sigma model [Voj96] in the sense that the equi-
librium bulk critical behaviour of the spherical model is the same. The O(n) model is a more
realistic spin model and thus one could hope to observe properties of the spherical model
in setups that are described by sufficiently high-dimensional O(n) models. In this context
one also has to mention, that this map is limited as it does e.g. no longer hold true for the
surface critical behaviour [Bin83, Die83].

2. In three dimensions, the specific heat exponent α in the O(n) model is negative for n ≥ 2
and α = −1 in the spherical model (for T ≥ Tc). In this sense, the spherical model can be
considered as a much better approximation to O(n)-models with n ≥ 2 than to the Ising
model (n = 1), where in α ∼ 0.1 > 0 in 3D.

3. In diluted magnets such as the family of Eux Sr1–x S0.50Se0.50 [Wes86] or Eu0.65La0.35S critical
exponents close to those of the 3D spherical model have been reported: α ≈ −1, β = 0.5, γ ≈
2.1, δ ≈ 4.7 [Wes87], compare tab 1.3 for d = 3.

Therefore the spherical model is widely considered as an useful analytical tool beyond gl theory
that is well-justified in certain setups [Joy72, God02, Hen10].

1.3.1 The classical spherical model
The main idea of the spherical model is to enlarge the configuration space in a manner that helps
to reduce the sums involved in the analysis of the Ising model. This is achieved by introducing a
continuous description as shown in fig 1.14 for a system of two spins. Formally a spherical spin S
is described by a real number S ∈ R with the constraint that each allowed N -body configuration
has to lay on a hypersphere.

Definition: The (mean) spherical model (sm) is defined on a d dimensional hyper-cubic lattice L
with |L| = N vertices by the interacting Hamiltonian [Ber52, Lew52]

H = −
∑
〈i,j〉

SiSj + S
( N∑
i=1

S2
i −N

)
(1.3.1)

with the real-valued variables Si ∈ R. The second term in the Hamiltonian is the so-called (mean)
spherical constraint which is ensured by the Lagrange multiplier S via a thermodynamic derivative
of the free energy density f

N∑
i=1

〈
S2
i

〉
= N ⇔ ∂Sf = 1

2 . (1.3.2)
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Figure 1.14: Visualisation of the spherical configuration space (red) compared to the Ising one
(black) for two distinct spins.

Here, 〈·〉 indicates the grand-canonical ensemble average.
Originally, the sm was introduced without the ensemble average in the constraint (1.3.2), thus

not allowing for fluctuations [Ber52]. It turns out that this leads to an unnecessarily complicated
description of the collective properties in the thermodynamic limit which are not effected by the
exact nature of the constraint [Lew52]. This passage amounts merely to a change of thermody-
namic ensembles and it comes as no surprise that the thermodynamics is the same for sufficiently
short-range interactions [Lew52].12 Furthermore, the classical dynamics of both model in the ther-
modynamic limit is equivalent[Fus02] but the sm as presented here and is much better adapted to
studies of dynamical properties and to a quantum formulation than the original version.

1.3.2 The quantum spherical model
Motivation: classical sm in 3D

We shall briefly show that Nernst theorem is violated in the 3D classical spherical model, without
explicitly deriving all thermodynamic properties of the model. This will be done in section 1.3.3
for the quantum version and thus reveals as well the classical properties by means of the classical-
quantum map we discussed in section 1.2.1

The Hamiltonian (1.3.1) with periodic boundary conditions can be easily diagonalised by a
Fourier transform and reads in 3D

H =
∑
k∈B

(S − cos k1 − cos k2 − cos k3) |Qk|2 (1.3.3)

where Qk is the Fourier transformed spin, k = (k1, k2, k3) and B is the Brioullin zone. Thus, the
free energy density in the thermodynamic limit reads

f = −T log
√
πT + T

2

∫
B

dk
(2π)3 log (S − cos k1 − cos k2 − cos k3) . (1.3.4)

From this expression it is a straightforward to derive the spherical constraint in the form
1
T

=
∫ ∞

0
du e−uSI3

0 (u) (1.3.5)

where I0 is the modified Bessel function of zeroth order [Abr64].
12For long-range interactions it is well-known that ensembles tend to be no longer equivalent in the thermody-

namic limit [Dau02].
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Figure 1.15: Solution of eq (1.3.5) for different temperatures: the blue line shows the inverse of
the right-hand site of eq (1.3.5) and the horizontal lines indicate different temperatures. Above a
critical temperature T ≥ Tc there is a unique solution while for T < Tc, the solution does not exist
any more and the spherical parameter freezes at the critical value S = 3.

Remarks:

• The right-hand site of eq (1.3.5) has a singularity occurring at S = 3 below which the integral
does no longer exist.

• This singularity coincides with the transition temperature Tc ≈ 1.97839 [Oli06, Car03,
Wal15].

• Below Tc there is no solution to eq (1.3.5) anymore and the partition function has to be
evaluated with the best approximation, which is the critical value S = 3. Consequently,
the spherical parameter in the low temperature regime freezes and does not depend on the
temperature anymore.

• We illustrate the graphical solution of eq (1.3.5) in fig 1.15.

Consequently, the expression for the internal energy u of the system in the low-temperature
region, where S is no longer a function of the temperature, reads

u = −T 2∂T
f

T
= T

2 (1.3.6)

and find for the specific heat in this regime

c = ∂Tu = 1
2 . (1.3.7)

This result is in strong contradiction with the third law of thermodynamics which states that the
specific heat has to vanish at absolute zero T = 0 and therefore, an extension of the sm to correct
this deficiency is required. In fig 1.16 (blue line) we illustrate this fact and show already that the
quantum approach will correct this behaviour as we shall show explicitly in the following section.

Formulation of the quantum spherical model

In order to correct the thermodynamic behaviour of the sm in the low-temperature phase, one has
to take the quantum nature of the spins into account. The typical classical picture of a quantum
mechanical spin is shown in fig 1.17 and consists of an charge distribution that is rotating around
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classical  d=3

quantum d=2

Figure 1.16: Specific heat in the classical sm in d = 3 spatial dimensions as a function of T . The
specific heat freezes in the classical 3D system below the critical point while in the 2D quantum
system, the specific heat vanishes with temperature.

an axis and thus generating an angular momentum that can be associated with a spin. This
motivates the introduction of a kinetic part in the Hamiltonian that does not commute with the
spin variables [Obe72].

Definition: The quantum spherical model (qsm) is defined on a d dimensional hyper-cubic lattice
L with |L| = N vertices by the interacting Hamiltonian13

H = −
N∑
〈i,j〉

sisj + S2

N∑
i=1

s2
i + g

2

N∑
i=1

p2
i (1.3.8)

with the canonically conjugated variables si and pj obeying the canonical commutation relation

[sn, pm] = iδnm (1.3.9)

and the thermodynamic derivative with respect to the spherical parameter S obeys the mean
spherical constraint ∑

n∈L

〈
s2
n

〉
= N ⇔ ∂Sf = 1

2 . (1.3.10)

This model was first obtained from an extremely anisotropic limit of the classical sm [Sre79,
Hen84b], before it was re-discovered as a quantum spin model [Voj96, Oli06].

In order to show that the quantum properties indeed cure the defect of the classical model, the
Hamiltonian (1.3.8) has to be diagonalised. This procedure is shown in e.g. [Wal15, Bie13, Oli06]
and is merely a question of finding an adequate canonical transformation. The free energy density
in 2D reads14

f

T
= log 2 +

∫
B

dk
(2π)d log sinh

(√
g

4T 2

[
S − cos k1 − cos k2

])
(1.3.11)

13Whenever we refer to quantum operators we use s, p. Classical quantities are referred to in capital letters S.
14Since we calculated the specific heat in the classical 3D sm, we have to compare the results with the 2D qsm,

see section 1.2.1
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Figure 1.17: Classical view of a quantum mechanical spin: the magnetic momentum of the spin is
generated by a rotational dynamics of a charge distribution ρ.

We want to study the temperature dependence in the ordered phase close to absolute T = 0
where15 S = 2. This leads immediately to

c = g

2T 2

∫ dk
(2π)2

√
S − cos k1 − cos k2

sinh2
(√

g/(4T 2) [S − cos k1 − cos k2]
) (1.3.12)

Considering that the main contribution arises from the low-laying k ' 0 modes, one finds in d = 2
dimensions for T → 0+

c ' 3
2πg3T

2 (1.3.13)

in agreement with the third law of thermodynamics. This is illustrated in fig 1.16.

1.3.3 Spin anisotropic extension of the qsm
In order to review the statistical properties of the qsm fully, we chose to work with a slight
generalisation of the model that we suggested in [Wal15]. This new model lies (up to an isolated
special case) in the same universality class as standard qsm and shows thus the same collective
behaviour.

It is straightforward to recast the Hamiltonian (1.3.8) in terms of bosonic ladder operators an

and a†n, defined as [Obe72]

sn =
( g
S

) 1
4 an + a†n√

2
, pn = −i

(
S
g

) 1
4 an − a†n√

2
. (1.3.14)

These render the Hamiltonian (1.3.8) as follows

H =
∑

n

[√
gS

(
a†nan + 1

2

)
− 1

2

√
g

S

d∑
j=1

[
a†nan+ej + ana

†
n+ej + a†na

†
n+ej + anan+ej

] ]
(1.3.15)

We wish to point out an analogy with quantum Ising/xy chains (also called Ising/xy chains in a
transverse field), with an anisotropy in spin space, and given by the Hamiltonian [Kat62, McC71]

HXY = −1
2
∑
n

[
gσzn + 1 + λ

2 σxnσ
x
n+1 + 1− λ

2 σynσ
y
n+1

]
(1.3.16)

=
∑
n

[
g

(
c†ncn −

1
2

)
− 1

2

[
c†ncn+1 − cnc†n+1 + λ

(
c†nc
†
n+1 − cncn+1

)]]
(1.3.17)

15In the qsm the spherical parameter freezes in the ordered phase in the same fashion as in the classical sm
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Table 1.5: Critical exponents for the quantum spherical model (1.3.18) at zero temperature, along
the quantum critical isochore h = 0, in dependence on the dimension d and the coupling λ.

critical isochore α β γ ν η θ

d < 3 λ 6= 0 d−3
d−1

1
2

2
d−1

1
d−1 0 1

d > 3 λ 6= 0 0 1
2 1 1

2 0 1

d > 0 λ = 0 0 1
2 1 −− −− 2

where the σx,y,zn denote the Pauli matrices attached to the nth site of a periodic chain of N sites
and the cn are fermionic operators obtained from a Jordan-Wigner transformation. The transverse
field g measures the quantum fluctuations and λ is a spin-anisotropy coupling.

The ground-state of quantum Ising/xy chain (1.3.16) has a rich phase diagram with a disordered
phase for g > 1, a line of second-order transitions at g = 1 which is in the universality class of the
2D Ising model for λ 6= 0, an ordered ferromagnetic phase for

√
1− λ2 < g < 1 and an ordered

oscillating phase for g <
√

1− λ2 [McC71, Hen87b, Bur87, Hof96, Cha96, Hen99, Kar00, Dut15].
The universality of the quantum critical behaviour at T = 0, including the universal amplitude
combinations [Pri84, Pri93, Hen01, Cam14], with respect to 0 < λ ≤ 1 along the Ising critical
line has been explicitly confirmed: for the chain for both the spin-1

2 as well as the the spin-1
representations of the Lie algebra of the rotation group [Hen87b, Bur87, Hof96], as well as in 2D
for the spin- 1

2 representation [Hen84a, Hen87a].
Comparing the fermionic Hamiltonian (1.3.17) with the bosonic one (1.3.15),16 one observes

that in the former the two-particle annihilation/creation processes are controlled by the parameter
λ, whereas that parameter happens to be fixed to unity in the latter. Here, we shall inquire into
what happens if an analogous rate is introduced into the Hamiltonian (1.3.15), and write [Wal15]

H =
√
gS

∑
n

[
a†nan + 1

2 −
1
S

d∑
j=1

(
a†nan+ej + ana

†
n+ej + λ

(
a†na

†
n+ej + anan+ej

))]

=
∑

n

[
g

2p
2
n + S2 s

2
n −

d∑
j=1

(
1 + λ

2 snsn+ej + 1− λ
2S g pnpn+ej

)]
(1.3.18)

The re-formulation in terms of the original spins and momenta shows that the Hamiltonian (1.3.18)
introduces an interaction between the momenta, quite analogous to the spin anisotropies in the
quantum xy chain (1.3.16).

The computation of the eigenvalues is carried out in [Wal15] and is as in the isotropic case
a matter of finding the appropriate canonical transformation. After the diagonalisation process
this model allows for analytic analysis of all physical quantities and the reader may again consult
[Wal15] for an overview. Here, we first want to list the critical exponents in tab 1.5 and 1.6. These
exponents do not depend on the anisotropy parameter λ 6= 0 and are identical to the exponents of
the isotropic model which is an explicit manifestation of universality.

Quantum phase transition
In d > 2 dimensions, the spherical model undergoes a thermal phase transition at some critical
temperature Tc > 0 [Voj96, Ma97, Sac01, Bra00, SG04, Oli06]. In general, one expects that this
finite-temperature transition of the d-dimensional model should be in the same universality class
as the one of the classical model (without quantum terms) [Kog79, Sac01, Bra00]. Here, we rather

16Alternatively, one can consider the fermionic degrees of freedom in (1.3.17) as hard-core bosons. Relaxing the
‘hard-core/fermionic’ constraint on the single-site occupation numbers 〈ni〉 = 〈c†i ci〉

!= 0, 1, towards
∑

i
〈cic†ci〉

!=
ν̄N , where ν̄ = 1

2 is a filling factor, one has a third way to replace (1.3.17) by a quantum spherical model [Ma97].
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Table 1.6: Critical exponents for the quantum spherical model (1.3.18) at zero temperature, along
the quantum critical ‘isotherm’ rg = 0, in dependence on the dimension d and the coupling λ.

critical isotherm αc γc δ νc

d < 3 λ 6= 0 2d−3
d+3

4
d+3

d+3
d−1

2
d+3

d > 3 λ 6= 0 0 2
3 3 1

3

d > 0 λ = 0 0 − 1
3 3 –

focus on the quantum phase transition which occurs in the ground-state, that is, at temperature
T = 0.

Generically, quantum phase transitions arise mathematically from a degeneracy in the ground
state of the Hamiltonian. The diagonal Hamiltonian in zero field reads [Wal15]

H =
√

2g/S
∑
k∈B

Λk

(
b̂†kb̂k + 1

2

)
, with (1.3.19)

Λk :=

√√√√S − 1 + λ

2

d∑
j=1

cos kj

√√√√S − 1− λ
2

d∑
j=1

cos kj (1.3.20)

and we can thereof deduce the smallest energy gap ∆E

∆E ∝ lim
k→0

Λk =
√
S − 1 + λ

2 d

√
S − 1− λ

2 d (1.3.21)

This energy gap closes at the critical point

Sc := 1 + |λ|
2 d (1.3.22)

such that the spherical parameter must satisfy S ≥ (1 + |λ|)d/2. We can now evaluate the free
energy density in the continuum limit

f = T

∫
B

dk
(2π)d ln sinh

[
1
T

√
g

2S Λk

]
(1.3.23)

and deduce the ground-state thermodynamics from an analysis of the spherical constraint (1.3.10),
which in the limit T → 0 takes the form

1 =
√
gS
8

∫
B

dk
(2π)d Λ−1

k

(
1− 1− λ2

4S2

[ d∑
j=1

cos kj
]2
)

(1.3.24)

This defines the function S = S(g, λ, d, h), or alternatively its inverse g = g(S, λ, d, h). For a
vanishing external field h = 0, this equation is symmetric under λ 7→ −λ, hence it is then sufficient
to consider the case λ ≥ 0 only. We shall almost always restrict to this special case, and then write
g = g(S, λ, d) := g(S, λ, d, 0).

Physical observables near quantum criticality
The scaling of the thermodynamic observables follows from the free-energy density. Since we
restrict ourselves to an analysis of the zero-temperature properties of our model, the quantum
coupling g takes over the role of the temperature in classical spin systems, such that rg :=

√
8
gc

gc−g
gc

takes over the role of T −Tc in classical phase transitions. Therefore, one expects the singular part
f sin of the free energy density to obey the following scaling behaviour

f sin(rg, h) = A1|rg|2−αW±
(
A2h|rg|−β−γ

)
(1.3.25)
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where W± are universal scaling functions, associated with the sign of rg ≷ 0, and α, β, γ are the
standard critical exponents. All non-universal information on the specific model can be absorbed
into the two metric factors A1,2. For isotropic classical phase transitions, a long-standing result
of Privman and Fisher [Pri84] states that there exist only two independent non-universal metric
factors, such as A1,2. For quantum systems, anisotropies are possible between correlators along the
spatial lattice and correlations in the (euclidean) ‘time’ direction and generated via the transfer
matrix T = exp (−τH). One then must distinguish ‘parallel’ distances r‖ along the ‘time’ direc-
tion and ‘perpendicular’ distances r⊥ along the space direction. The correlation length ξ = ξ⊥
considered here is spatial, whereas the ‘temporal’ correlation length ξ‖ ∼ (∆E)−1 is related to the
energy gap of H. The anisotropy between ‘time’ and ‘space’ introduces a further metric factor
which in those cases where there is a classical analogue, and therefore the dynamical exponent
z = 1, amounts simply to a further independent amplitude D0 related to the freedom of normali-
sation of the quantum Hamiltonian H. For such anisotropic or quantum systems (at T = 0), one
expects a scaling form for a two-point correlator [Hen01, Cam14, Kir15]

C(R; rg, B) = D0D1R
2−d−z−ηX±

(
|R|/ξ;D0r‖/ξ

z;D2B |rg|−β−γ
)

(1.3.26)

where in the situation under study here, we have R = |R| = |r⊥| and r‖ = 0. As before, X± are
universal scaling functions with non-universal metric factors D0,1,2. For isotropic systems, one has
z = 1 such that the distinction between the scaling of r⊥ and r‖ is no longer necessary and D0 = 1
without restriction to the generality. Then, in that situation, only two of the four metric factors
A1,2, D1,2 are independent, according to the long-standing Privman-Fisher hypothesis [Pri84].
This follows by tracing the metric factors as they occur in the thermodynamic observables and
using the static fluctuation-dissipation theorem. For potentially anisotropic or quantum systems,
even if z = 1, this argument has to be generalised in order to admit a potentially non-universal
normalisation D0. This leads to the following universal amplitude combinations Q1,2,3 [Hen01]

Q1 = A1ξ
d+z
0 D−1

0 ; Q2 = D2A
−1
2 ; Q3 = D

γ
ν(d+z)
0 D1A

−1− γ
ν(d+z)

1 A−2
2 (1.3.27)

where the amplitude ξ0 is from ξ ' ξ0r
−ν
g . Here, we shall use the dependence on the parameter

λ > 0 to control explicitly the universality and hence to test the scaling forms (1.3.25, 1.3.26).
Returning to the quantum spherical model at T = 0, the analysis of the spherical constraint

(1.3.24), see appendix C in [Wal15], gives us the dependence of the shift rg on the shifted spherical
parameter σ = S − Sc. Including now the magnetic field h as well, we have to leading order in σ

rg −
h2
√

2gc
1
σ2 '


A< σ

d−1
2 ; if d < 3

A3 σ ln σ ; if d = 3

A> σ ; if d > 3

(1.3.28)

with explicitly known amplitudes A<, A3 and A>. For a non-vanishing magnetic field h 6= 0
the magnetic contribution will always dominate the behaviour of the spherical constraint near
criticality.

To begin with the investigation of the critical behaviour, we consider the spin-spin correlation
C(|r|) = 〈snsn+r〉 at zero temperature T = 0 in order to find the correlation length. As shown in
[Wal15], we can use spatial translation- and rotation-invariance, and have for λ > 0

C(R) = (2π)−
d+1

2

√
g

S
S − (1− λ)d√
λ(1 + λ)d

(
1
ξR

)(d−1)/2
K d−1

2

(
R

ξ

)
(1.3.29)

where we identify the correlation length, with S = (1 + λ)d+ 2σ, as follows

ξ =
√

1 + λ

4 σ−1/2 (1.3.30)

and Kν(x) is the other modified Bessel function [Abr64].
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1. First, we treat the case 0 < λ < 1 and 1 < d < 3. From the Gibbs free energy, eq (1.3.23),
we find for the magnetisation near criticality

m(rg, h) = −∂f(rg, h)
∂h

= h

2
1
σ

(1.3.31)

where the spherical constraint (1.3.28) must be used. The critical behaviour is extracted by moving
along the quantum critical ‘isochore’ h = 0 or else the quantum critical ‘isotherm’ rg = 0. We
obtain

m(rg, 0) '
[gc

8

] 1
4 √

rg , (1.3.32)

m(0, h) ' 2−
d+2
d+3A

2
d+3
< g

1
d+3
c h

d−1
d+3 (1.3.33)

where we used the non-universal amplitudes from (1.3.28) and the value of gc = gc(λ, d), which
are explicitly λ-dependent.

The analogue of the susceptibility is defined by χ(rg, h) = ∂m(rg, h)/∂h. Explicitly, we find

χ(rg, 0) = 1
2A

2
d−1
< r

− 2
d−1

g , (1.3.34)

χ(0, B) = 2−
d+2
d+3

d− 1
d+ 3A

2
d+3
< g

1
d+3
c h−

4
d+3 (1.3.35)

In general, the specific heat is given by the second derive of the free energy with respect to the
temperature (here replaced by rg). Here, we consider its analogue, where the role of T is taken
over by rg. Furthermore, in the spherical model, the spherical constraint requires a little more
careful consideration as we have already discussed while introducing the qsm, which amounts to

c(rg, B) = − ∂

∂rg

(
∂f sin(rg, h)

∂rg

∣∣∣∣
S

)
(1.3.36)

where the first derivative must be taken grand-canonically, with fixed spherical parameter, whereas
the second derivative is an usual thermodynamic derivative, in the canonical ensemble, see e.g.
[Ber52, Lew52, Bax82, Hen84b, Bra00, Bie13]. We find

c(rg, 0) = c0 + 1
d− 1

√
gc
2 A
− 2
d−1

< r
− d−3
d−1

g (1.3.37)

c(0, h) = c0 + 1
d− 1g

1
d+3
c 8

d−2
d+3A

− 2d
d+3

< h2 d−3
d+3 (1.3.38)

where c0 is an unimportant background constant.
The correlation length ξ, introduced in eq (1.3.30), reads near criticality

ξ(rg, 0) =
√

1 + λ

4 A
1
d−1
< · r1/(d−1)

g (1.3.39)

ξ(0, B) =
√

1 + λ

(√
gc
2 A<

) 1
d+3

2−
d+2
d+3 ·B−

2
d+3 (1.3.40)

Here, the correlation length ξ ∼ 1/∆E is related to the lowest energy gap in the Hamiltonian H,
such that the dynamical exponent z = 1.

Finally, for the correlation function, we have from (1.3.29) that at criticality, where σ = 0

C(R) = 〈s0sR〉 =
√
gc
2

√
λ

1 + λ

Γ
(
d−1

2
)

π
1+d

2
R1−d (1.3.41)

In contrast to the thermodynamics observables considered before, this result17 holds true for
arbitrary dimensions and is not restricted to d < 3.

17Observe that the exponents of R in C(R) ∼ R−(d−1) for ξ � R and C(R) ∼ R−d/2e−R/ξ for ξ � R are
different. For d = 2, one recovers the Ornstein-Zernicke form.
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For the interpretation of these results, we recall the conventional critical exponents and also
the associated amplitudes, in the notation of [Pri93], along the quantum critical ‘isochore’ h = 0

m ' Brβg ; χ ' Γr−γg ; c ' A

α
r−αg + c0 ; ξ ' ξ0r−νg ; G(R) ∼ R2−d−z−η ; ∆E ∼ ξ−z (1.3.42)

The values of the exponents can be read off and are collected in tab 1.5. As expected they agree
with those of the classical spherical model in d+ 1 dimensions.

Along the quantum critical isotherm, rg = 0, one can define

c ' c0 + (Ac/αc)|h|−αc ; χ ' Γc|h|−γc ; h ' Dcm|m|δ−1 ; ξ ' ξc|h|−νc (1.3.43)

and read off the exponents18, collected in tab 1.6. The universality of this quantum phase transition
is confirmed through the λ-independence of all these exponents.

In addition, the universality of full scaling scaling forms (1.3.25, 1.3.26) can be tested by working
out at least three universal amplitude combinations [Pri93]. Considering the singular free energy
and its derivatives, we considered three amplitude combinations which from (1.3.25) are expected
to be universal. Explicitly, we give the results which follow from our explicit calculations above

Rc = AΓ/B2 = 3− d
(d− 1)2 Rχ = ΓDcB

δ−1 = 1 δΓcD1/δ
c = 1 . (1.3.44)

The λ-independence of these three amplitude ratios is an additional confirmation of the scaling
form (1.3.25), with only two non-universal metric factors. In order to test the universality of the
scaling form (1.3.26) of the spin-spin correlator, consider

Q1 = 22−dΓ
( 1−d

2
)

Γ
(
d−1

2
)W ′′+(0)2

W ′+(0)2X+(0) (1.3.45)

Q3 = 2
2d
d+1

(
Γ
(
d−1

2
)

Γ
( 1−d

2
)
X+(0)

) 2
d+1

W ′+(0)
1−d
d+1

W ′′+(0)
4
d+1

(1.3.46)

whose universality is likewise confirmed explicitly through the λ-independence. Observe that for
1 < d < 3 all universal amplitude ratios in (1.3.44, 1.3.46) are finite, but that several of them they
either vanish or diverge when d → 1 or d → 3. This indicates that the scaling behaviour is going
to be different (or does not even exist) when d ≥ 3 or d ≤ 1.

For the spin-anisotropic quantum spherical model, we can conclude that the scaling forms
(1.3.25, 1.3.26), and their universality, have been fully confirmed at the quantum critical point at
T = 0, g = gc(λ, d), with 1 < d < 3 and 0 < λ ≤ 1.19 Since the scaling functions themselves
are universal, they were already calculated explicitly in the classical spherical model in d + 1
dimensions, see e.g. [Bra00], and do not need to be repeated here.

2. For 0 < λ < 1 and d = 3, we are working at the upper critical dimension. Therefore,
we have to introduce logarithmic corrections to the scaling behaviour, see eq (1.3.28). In order
to work with the logarithmic terms and the magnetic field, we introduce the dimensionless field
B̂ := 2B√

gc
. In this manner, the expression ln B̂ is well-defined viz. dimensionless. We find for the

magnetisation

m(rg, 0) '
[gc

8

] 1
4 · rg

1
2 (1.3.47)

m(0, B̂) '
√
gc
8

(
2
3A3

) 1
3

· |B̂| 13 | ln |B̂|| 13 (1.3.48)

and for the susceptibility

χ(rg, 0) ' A3

2 · |rg|
−1| ln |rg|| (1.3.49)

χ(0, B̂) ' 1
2

(
2A3

3

) 1
3

· |B̂|− 2
3 | ln |B̂|| 13 (1.3.50)

18These obey the standard scaling relations, such as αc = α/βδ, γc = 1− 1/δ, νc = ν/βδ.
19The condition 0 < λ < 1 comes from the techniques used to analyse the spherical constraint, see [Wal15] for

details.
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In the same manner as above, we calculate the specific heat and find

c(rg, 0) '

√
2gc
A2

3
· | ln |rg||−1 (1.3.51)

c(0, B̂) '3
√

gc
2A2

3
· | ln |B̂||−1 (1.3.52)

Finally, the correlation length reads

ξ(rg, 0) '
√

1 + λ

4A3
· |rg|−

1
2 · | ln |rg||

1
2 (1.3.53)

ξ(0, B̂) '
√

1 + λ

4

(
2A3

3

) 1
6

· |B̂|− 1
3 | ln |B̂|| 16 (1.3.54)

This logarithmic behaviour can be described in terms of logarithmic sub-scaling exponents [Ken06a,
Ken06b]

c ∼ |rg|−α| ln |rg||α̂ ; m(rg, 0) ∼ |rg|β | ln |rg||β̂ ; χ ∼ |rg|−γ | ln |rg||̂γ ;

ξ ∼ |rg|−ν | ln |rg||ν̂ ; m(0, B̂) ∼ B̂1/δ| ln |B̂||δ̂ ; C(R) ∼ R−(d−2+z+η)| lnR|η̂ (1.3.55)

and we simply read off their (universal, since λ-independent) values

α̂ = −1 ; β̂ = 0 ; γ̂ = 1 ; ν̂ = 1
2 ; δ̂ = 1

3 ; η̂ = 0 (1.3.56)

These values agree with those of the 4D O(n)-Heisenberg model in the limit n → ∞ [Ken06a,
Ken06b, Hen10].

3. In the case 0 < λ < 1 and 3 < d we expect mean-field critical behaviour. Near criticality
0 < rg � 1, we find the observables in the same manner as in the previous parts, but with the
’linear’ spherical constraint. We find the observables along the critical B = 0 line

m(rg, 0) =
[gc

8

] 1
4
rg

1
2 ; χ(rg, 0) = A>

2 r−1
g ; (1.3.57)

c(rg, 0) =
√
gc/2
A>

; ξ(rg, 0) =
√

1 + λ

4 A>r
− 1

2
g ; (1.3.58)

and along the quantum critical isotherm rg = 0 they read

m(0, B) =
[√

gc/8
2A>

] 1
3

B
1
3 ; χ(0, B) = 1

2

[
A>√
gc/2

]− 1
3

B−
2
3 ; (1.3.59)

c(0, B) =
√
gc√

2A>
; ξ(0, B) =

√
1 + λ

4

[√
2gc
A>

] 1
6

B−
1
3 ; (1.3.60)

Reading off the critical exponents (see tab 1.5 and 1.6) yields the expected mean-field behaviour.

4. A different universality class is found for λ = 0, for any dimension d. The free energy
density reads

f(rg, B) = −B
2

4
1
σ

+
√
g

2 S (1.3.61)

The magnetisation reads consequently

m(rg, 0) ' 1√
8
· rg1/2 (1.3.62)

m(0, B) ' (2d)−1/3 ·B1/3 (1.3.63)
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and the magnetic susceptibility becomes

χ(rg, 0) '1
2

√
8
d
· r−1
g (1.3.64)

χ(0, B) '
(
d

2

)1/3
·B1/3 (1.3.65)

The specific heat is found to be constant near criticality and along the quantum critical isotherm

c ' d
3
2

2 (1.3.66)

The critical exponents are listed in tab 1.5 and 1.6. They are distinct from those of the modified
quantum spherical models defined in [Nie95, SG04], where the particle number N is conserved as
well.
For the correlation function, we see a disconnected part from the zero temperature contribution.
As derived in appendix D of [Wal15], we have to take thermal contributions into account. We then
find

C(R) =
√

g

4S +
√
g

S
exp (−zS) I0(z)d−1IR(z) (1.3.67)

with z =
√
g/T 2S. At criticality, we can deduce to leading order in T (see appendix D in [Wal15]

for details)

C(R) =
√
gc
4dδR,0 +

√
gc
d

(
T 2d

4π2gc

)d/4
exp

(
−R

2T

2

√
d

gc

)

= 1
2Tξ

−2
T δR,0 + Tξ2−d

T exp
(
−1

2

(
R

ξT

)2
)

(1.3.68)

with the thermal reference length ξ−4
T := T 2d/gc and where the critical coupling constant gc =

gc(0, d;T ) has to be found from the spherical constraint in the non-vanishing zero-temperature
limit. To leading order in T , this gives the condition√

1
gc

=
√

1
4d + d−1/2

(2π)d/2

(
d

gc

)d/4
T d/2 (1.3.69)

hence gc ' 4d
(

1− 2/
√
d

(4π)d/2T
d/2 + . . .

)
, which illustrates how finite-temperature effects renormalise

the value of gc. The behaviour (1.3.68) of the correlation function does not fit into the standard
phenomenology, described by the conventional critical exponents [DF97, Hen99, Sac01, Bra00].

1.3.4 Phase diagram
We have studied the statistical properties of the spin anisotropic quantum spherical model and
describes the physical observables fully. Now, we want to understand how the phase diagram of
the qsm, which is somewhat similar fig 1.7, compare e.g. [Oli06], is modified at T = 0 as a function
of λ.

A surprising feature of the model studied at thermal equilibrium for zero temperature is the
presence of a re-entrant quantum phase transition for dimensions d . 2.065 and sufficiently small
values of λ, see the right panel of fig 1.18 . This shape of the quantum critical line could not
have been anticipated from previous studies of the classical spherical model. This makes it clear
that interactions between the momenta cannot always be absorbed into a change of variables.
Moreover, considering the leading finite-temperature corrections to the value of gc(λ, d), it can
be shown that for T sufficiently small, the value of gc is only slightly renormalised such that the
re-entrant transition also occurs for finite (and small) temperatures T > 0.

In the left panel of fig 1.18 we compare the shape of the critical line gc = gc(λ), normalised to
the value at gc(0) at λ = 0, of the bosonic quantum spherical model (1.3.18), with the fermionic
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Figure 1.18: Left panel: normalised critical quantum coupling gc(λ)/gc(0) in the quantum xy
model (1.3.16), as a function of the coupling λ. In 1D, one has gc(λ) = 1. In 2D, the numerically
known estimates of gc(λ) [Hen84a, Hen87a] are given by the dots and the dashed line is a guide to
the eye. Right panel: normalised critical coupling gc(λ, d)/gc(0, d) in the quantum spherical model
(1.3.18), as a function of λ and for dimensions d = [1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.5, 3.0]
from bottom to top in different colours.

quantum xy model. In 1D, the latter model reduces to free fermions. Comparing the shapes of
gc(λ, d), the re-entrant phase transition found in the bosonic case of the saqsm does not appear
in the analogous 1D fermionic model, where gc(λ) = 1 is simply constant [McC71, Suz71]. In
order to better appreciate the influence of dimensionality in the quantum xy chain on gc(λ),
and in the absence of an analytic solution, the best what we can do is to compare with the few
known numerical values of gc(λ) in extension of the spin Hamiltonian HXY from (1.3.16) to 2D
[Hen84a, Hen87a]. Although those few data shown in fig 1.18 seem to indicate that the approach
of gc(λ) towards the λ = 0 case should be monotonous and hence no re-entrant transition is
suggested, the available data are too few and too far apart for a final conclusion.

These results illustrate the non-trivial character of the quantum ground state of the saqsm.
Below, we shall impose the requirement that any quantum dynamics should relax towards it.
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1.4 Langevin dynamics in classical systems
As early as 1827 Robert Brown studied the pollen of Clarckia pulchella immersed in water and
he found “many of them very evidently in motion”[Bro28]. Finally he arrived to the conclusion
that these motions “arose neither from currents in the fluid, nor from its gradual evaporation, but
belonged to the particle itself ”. We thus assert that in the 1820s it was not at all evident to the
scientific world whether the pollens were alive or what else was the origin of their motion.

As we know today, the so called Brownian motion has its origin in the constantly ongoing
collisions with thermal particles in the liquid and thus it is not possible to describe the dynamics by
means of classical mechanics, since there are simply too many liquid molecules present. Moreover,
the dynamics of these molecules is irrelevant since on the one hand we are just interested in the
dynamics of the suspended particle and on the other hand, the collective properties of the liquid
remain unaffected by the suspension of the particles.

It took almost 80 years until the task, of describing the dynamics of a system (pollen) interacting
with a bath (water) while neglecting the bath dynamics, was first accomplished by A. Einstein
[Ein05]. In his work he derived the diffusion equation for the distribution function Υ of the dissolved
particles from thermodynamic considerations on the osmotic pressure to be

∂tΥ = D∂2
xΥ (1.4.1)

with the diffusion coefficient D. By giving the exact solution for n dissolved particles

Υ(x, t) = n√
4πD

e− x2
4Dt
√
t

(1.4.2)

he succeeded in deriving the mean displacement of a suspended particle ∆̄x: During a time in-
terval τ , the mean displacement ∆̄x of a spherical particle with radius a suspended in a bath of
temperature T with viscosity µ is

∆̄2
x = RT

NA

τ

3πaµ (1.4.3)

with the universal gas constant R and the Avogadro number NA. Thus, this equation provides
an excellent theoretical justification for experimental measures of NA. Einstein himself did not
claim the validity of molecular kinetic theory but rather pointed out that provided this formula,
an experimental test will be a strong argument in favour or against the theory [New06].

It was Jean Baptiste Perrin [Per09] who studied the mean square displacement of Brownian
motion for as many as 200 distinct granules and obtained NA = 7.15 × 1023, compared to the
codata value of NA ≈ 6.022 × 1023. In 1926 Perrin was awarded to Nobel prize in physics ‘for
his work on the discontinuous structure of matter, and especially for his discovery of sedimenta-
tion equilibrium’. Perrin hereby settled the ongoing dispute concerning the molecular theory and
together with Einstein’s theoretical description, even Wilhelm Ostwald known as ‘an old fighter
against atomistics ... has been converted by the complete explanation of Brownian motion’ [Som49].

In 1908 Langevin proposed a simplified approach which aims at implementing the bath imme-
diately into the equation of motion. By using the long time limit Stokes formula for the viscose
force and introducing a random force ζ [Lan08]

m
d2x

dt2 = −6πaµdx
dt + ζ (1.4.4)

He thus arrives in a very easy and straightforward fashion at the formula derived by Einstein. For
completeness, we show the way described in [Lan08]. Multiplying eq (1.4.4) by x and remembering
that

x
d2x

dt2 = 1
2

d2x2

dt2 −
(

dx
dt

)2
(1.4.5)

leads to
m

2
d2x2

dt2 −m
(

dx
dt

)2
= −3πµadx2

dt + ζx (1.4.6)
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Averaging this equation over a large number of particles makes disappear the term ζx. Moreover,
we use the equipartition theorem m (dx/dt)2 = RT/NA and one arrives immediately at

∆̄2
x = RT

NA

τ

3πaµ +Ke−6πrη/m (1.4.7)

which reduces to eq (1.4.3) in the limit of large times t→∞ (K is an integration constant).
We described this evolution to show on the one hand how the idea of a system interacting with

a comparably large reservoir emerged and with what mathematical complications it was connected.
But in the final formulation of Langevin’s dynamics, it is sufficient to simply damp the amplitude
of the dynamical process and implement the bath properties by a random force according to

mẍ = −∂xH − γẋ+ ζ(x, t) with 〈ζ(x, t)ζ(y, t′)〉 = Tδ(x− y)δ(t− t′) (1.4.8)

In the ‘over-damped limit‘ where γ is large enough, the inertial term mẍ can be dropped if one is
merely interested in the long-time evolution [Str07].

Eq (1.4.8) can be easily recast into a coupled system of first order differential equations with
the definition p = mẋ as follows

ẋ = p/m (1.4.9)

ṗ = −∂xH − γẋ+ ζ(x, t) (1.4.10)

This system will serve us as a defective starting point for a phenomenological description of quan-
tum dynamics.

1.5 Langevin dynamics in quantum systems?
In this section we want to describe a simple phenomenological approach to quantum dynamics,
following the example of e.g. [Car99]. This approach will turn out to be defective and we want to
discuss its flaws on the example of the quantum mechanical harmonic oscillator with mass m and
frequency ω. The Hamiltonian of this system reads

Hho = p2

2m + mω2

2 x2 (1.5.1)

where the position operator x and the momentum operator p obey the canonical bosonic com-
mutation relation [x, p] = i. By interpreting x and p as Heisenberg operators, one deduces the
equations of motion20

∂tx = −i [x,Hho] = m−1p (1.5.2)

∂tp = −i [p,Hho] = −mω2x (1.5.3)

By analogy to the Langevin description of classical stochastic motion, it might appear tempting
to add a phenomenological damping term −γp to the dynamics of the momentum operator21

∂tx = m−1p (1.5.4)
∂tp = −mω2x− γp (1.5.5)

This is not a satisfactory procedure, since equation of motion for the canonical commutator

∂t [x, p] = −γ [x, p] (1.5.6)

implies an exponential decay of the Heisenberg uncertainty and thus a classical target state.
As we shall show in section 2.A this statement stays true in the more involved many-body

quantum problem: a simple Langevin- or Kramers-like phenomenological equation of motion for
20In the proceeding text we will introduce thoroughly the notion of quantum dynamics. For now, the reader may

take them as granted.
21The Langevin equation more precisely describes the so-called over-damped limit in which ∂tp = 0.
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the observables, even if the system is initially in a quantum state, will turn over rapidly (on a
time-scale related to the dissipation constant) to an effectively classical dynamics and the quantum
coherence will be lost. Therefore a coherent quantum dynamics is required.

The reason for the phenomenological Langevin approach to fail lays in the fact that one should
consider the noise as an operator and the coupling between system and bath dictates the commu-
tation relations of the system operators with the noise operator [Gar04].22

It remains to say that dissipation effects do not play a significant role in many traditional
applications of quantum mechanics as the description of the hydrogen atom or the prediction of
atomic spectra. Nonetheless, with advanced physical setups, especially in the field of quantum
optics, the interaction of single atoms with lasers in leaky cavities is of fundamental relevance.
Moreover, we already mentioned in section 1.2.3 that ultracold atoms in optical lattices can provide
an excellent setting to study many-body properties and qpt. It thus seems natural that such a
setup may also be suitable for dynamic out-of-equilibrium studies in many-body systems and one
then has to use techniques that are able to account for true quantum effects. This is of particular
importance as we have discussed in the previous section, that quantum effects are dominant in
large portions of the phase diagram.

We shall see that such a description requires a more precise analysis than the one outlined here
for classical systems. Particularly, we have to study in great detail the coupling of the “system”
to the “bath”.

1.6 Coherent quantum dynamics
Our main goal in this section is to derive the Lindblad equation [Lin76]

∂tρS = −i [HS , ρS ] +
∑
α

(
LαρL

†
α −

1
2
{
L†αLα, ρS

})
(1.6.1)

which describes the time evolution of the reduced system density matrix ρS of a quantum system
interacting with a large environment. We shall first introduce the concepts of closed quantum
dynamics and later study the extension to open quantum systems by taking the environment
explicitly into account. This review follows mainly [Bre07, Sch14], where the first source follows a
more physically motivated approach while the latter one follows a more mathematical path. We
shall try here to shed some light from both of these approaches and thus give a complete picture
of the Lindblad dynamics of open quantum systems.

Further aspects of the vast field of quantum dynamics are covered in [Car99, Eng02] and
references therein. For exact methods in 1D quantum dynamics in equilibrium, we refer to [Lan15b,
Lan17].

1.6.1 Evolution of closed quantum systems

The physical state of a quantum mechanical system S is described by a state vector |Ψ〉 which is an
element of a Hilbert space that defines all possible states of S. There is a hermitian Hamiltonian H
associated with the system, which defines the energy of S as well as the time evolution according
to the Schrödinger equation

∂t |Ψ〉 = −i H |Ψ〉 . (1.6.2)

Starting from this equation, we now introduce the so called interaction picture which is desirable
to use if one wants to study the effect of a certain part V (usually an interaction) of the full
Hamiltonian. One may write the full Hamiltonian in two parts H = H0 + V , where H0 is a
rather trivial Hamiltonian of (sub-)systems and V describes the interaction between the different
(sub-)systems.

22Since we shall not be further concerned with quantum Langevin equations, we omit the explicit formulae here
but rather state them briefly in the end of this section.
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Theorem (Interaction Picture): For the quantum system S as described above, the time
evolution can be equivalently expressed as

∂t
∣∣Ψ̃〉 = −i V (t)

∣∣Ψ̃〉 (1.6.3)

with the transformed interaction V (t) = eiH0tV e−iH0t and the transformed state vector
∣∣Ψ̃〉 =

eiH0t |Ψ〉. We call this representation the interaction picture.
Proof: A standard calculation proves this theorem [Sch14, Bre07]. �

We point out that the unitary time evolution of a closed quantum system always preserves the
information about the initial state. In an out of equilibrium situation, where the system relaxes
towards the unique equilibrium state such a type of dynamics is thus not applicable since all
initial states must relax towards the same equilibrium state for sufficiently long times, consequently
loosing information about the initial condition.

Another drawback of the closed dynamics is that one has to store the dynamical evolution of all
degrees of freedom. If a quantum system interacts with a single isolated heat bath, the composed
system is closed and one could try to tackle the problem with the unitary time evolution described
above. But such heat baths are usually of macroscopic size, thus composed out of typically O(1023)
degrees of freedom, for which (in the simplest case of 2-level systems as degrees of freedom) one
has to store O(21023) bits: a task which is impossible by means of calculation power. Moreover,
in most setups the changes in the baths are not only negligible but also not of interest for the
physical questions asked (e.g. in the repeated interaction process, the bath is replaced by a new,
identical copy after every interaction [Att06a, Kar09, Wen15]).

Thus, it is required and desirable to implement the bath properties in another way which allows
to focus on the system itself.

1.6.2 Density matrix formalism
Density matrices are a convenient tool for the description of quantum dynamics of a system whose
exact quantum state is not known but of which statistical information on an ensemble mixture
{|Ψi〉 |i ∈ N} of possible states is known. We begin by recalling some of their basic properties
which will be required in what follows [Sch14, Bre07].

Definition: The density matrix ρ of a quantum system described by the Hilbert space H with
the ensemble of possible states H ⊃ E = {|Ψi〉 |i ∈ N} and the corresponding discrete probability
distribution P : E → [0, 1], |Ψi〉 7→ pi is defined as

ρ =
∑
i∈N

pi |Ψi〉 〈Ψi| (1.6.4)

and canonically obeys the following properties

• ρ† = ρ (self adjointness),

• tr ρ = 1 (normalisation),

• ∀ |Ψ〉 ∈H : 〈Ψ| ρ |Ψ〉 ≥ 0 (positivity).

The (ensemble) mean value of a physical observable O is then defined as〈
O
〉

E
:= trOρ . (1.6.5)

With the Schrödinger equation (1.6.2) it is straightforward to deduce the so-called von-Neumann
equation

∂tρ = −i [H, ρ] (1.6.6)
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which governs the dynamics of the density matrix and yields the same dynamics as an ensemble
average of the Schrödinger equation.

In order to understand the time evolution of the density matrix, we are now interested in the
most general time evolution that maps one density matrix ρ0 to another density matrix ρt. Since
the von-Neumann equation is linear, any time evolution can be written as

ρt =
∑
α,β

γαβAαρ0A
†
β (1.6.7)

The constraint that ρt is a density matrix restricts the evolution as follows

1. self adjointness: ρ†t = ρt implies that the matrix γ has to be hermitian.

2. normalisation: The condition tr ρt = 1 requires that the evolution itself is a partition of
the unity ∑

α,β

γαβA
†
βAα = 1 . (1.6.8)

3. positivity: Since ∀ |Ψ〉 ∈H : 〈Ψ| ρt |Ψ〉 the matrix γ has to be positive definite.

Since γ is hermitian and positive definite, it can be diagonalised by a suitable unitary trans-
formation U and we name the corresponding positive eigenvalues γα′δα′β′ :=

∑
αβ Uα′αγαβU

∗
ββ′ .

Rewriting the operators Aα :=
∑
α′ Uαα′/

√
γα′ Kα′ leads to the time evolution

ρ? =
∑
α

KαρK
†
α (1.6.9)

Definition & Lemma [Sch14] : The Kraus map

ρ(t+ ∆t) =
∑
α

Kα(t,∆t)ρ(t)K†α(t,∆t) (1.6.10)

with the Kraus operators Kα(t,∆t) obeying the relation

1 =
∑
α

K†α(t,∆t)Kα(t,∆t) (1.6.11)

is the most general time evolution that preserves positivity, self adjointness and trace of the density
matrix.

In order to describe the time evolution of a system coupled to a thermal bath, we shall need
the notion of the partial trace. This tool allows to neglect a certain part of a composed system by
effectively tracing out the degrees of freedom of the subsystem. By doing so the information on
this part of the system is lost. It definition is as follows.

Definition: May H be a Hilbert space composed out of two sub-Hilbert spaces H1 and H2
respectively. Furthermore, let O : H →H be an operator according to

O = |ψ1〉 〈φ1| ⊗ |ψ2〉 〈φ2| (1.6.12)

with |φi〉 , |ψi〉 ∈Hi. The partial trace is then defined as

tr H1O := tr H1

[
|ψ1〉 〈φ1|

]
|ψ2〉 〈φ2| (1.6.13)

tr H2O := tr H2

[
|ψ2〉 〈φ2|

]
|ψ1〉 〈φ1| (1.6.14)

and are operators as on the reduced Hilbert spaces Hi

tr H1O : H2 →H2 , tr H2O : H1 →H1 . (1.6.15)
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Figure 1.19: Closed quantum system composed out of a thermal bath HB with density matrix ρB ,
a system HS with density matrix ρS and an interaction HI between the former and the latter.

1.6.3 Microscopic derivation of the Lindblad equation
In this section we finally pursue the derivation of the Lindblad master equation. We begin by
investigating a coarse-grained approach following the compendium of [Sch14] and describe after-
wards the more physically motivated approach following the introduction of [Bre07] in order to
calculate the Lindblad equation for the damped harmonic oscillator with frequency ω which will
be the final result of this part

∂tρS = −iω
[
a†a, ρS

]
+ γ(n̄+ 1)

(
aρSa

† − 1
2
{
a†a, ρS

})
+ γn̄

(
a†ρSa−

1
2
{
aa†, ρS

})
(1.6.16)

and is stated on page 41. Here, n̄ = (exp(−ω/T )−1)−1 is the Bose-Einstein distribution indicating
the occupation of the bath mode at the oscillator energy ω and a, a† are the bosonic ladder
operators.

Fig 1.19 visualises the situation we want to investigate: a closed quantum system is composed
out of two parts, a (thermal) bath and a system whose dynamics is of our interest. The Hilbert
space of such a system is the product space of the bath and system Hilbert space

H = HS ⊗HB . (1.6.17)

The Hamiltonian is thus composed out of three parts: the system, the bath and the interaction
between the two. It reads

H = HS +HB +HI (1.6.18)

with the Hamiltonians

HS : HS →HS HB : HB →HB HI : H →H (1.6.19)

obeying [HS ,HB ] = 0 since they act on different Hilbert spaces and [HS ,HI ] 6= 0, [HB ,HI ] 6= 0.

Coarse-grained master equation

Our starting point is the von-Neumann equation in the interaction picture

∂tρ = −i [HI(t), ρ] (1.6.20)

for which we can write out the formal solution in terms of the time evolution operator as

U(t) = T exp
(
−i
∫ t

0
dτ HI(τ)

)
. (1.6.21)
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One is interested in a type of dynamics that brings the system and bath at time t = 0 into contact
with each other. Thus, we assume that the initial condition for the density matrix factorises
according to ρ = ρ0

S ⊗ ρ0
B and write the closed solution as

ρ(t) = U(t)ρ0
S ⊗ ρ0

BU
†(t) . (1.6.22)

It is commonly assumed that the interaction between bath and system is sufficiently weak so
that it is reasonable to develop the time evolution operator into a power series of the interaction
Hamiltonian (weak-coupling limit)

U(t) = 1− i
∫ t

0
dτ HI(τ)−

∫∫ t

0
dτ1dτ2 HI(τ1)HI(τ2)Θ(τ1 − τ2) + O

(
H3
I

)
(1.6.23)

In this limit we shall assume, that the bath density matrix does not evolve in time in the interaction
picture. This does not mean that the bath is in a stationary state, since in the interaction picture,
the intrinsic dynamics of the bath is already absorbed. It rather means, that the bath is large
compared to the system, so that back couplings from the system into the bath do not matter.
This condition is satisfied if the bath correlation functions decay much faster then the system itself
relaxes.

The most general interaction Hamiltonian is assumed to have the form

HI =
∑
α

Aα ⊗Bα (1.6.24)

with the system operators Aα : HS →HS and the bath operators Bα : HB →HB .

Lemma [Sch14]: For the above described system composed out of a bath, a system and a
interaction, one can always find a transformation HS 7→ H

′

S , HB 7→ H
′

B and Bα 7→ B
′

α in such a
way that ∀ α :

〈
Bα
〉

= 0.
Proof: Define the transformed bath operators as

B
′

α := Bα −
〈
Bα
〉
1 . (1.6.25)

Obviously, they fulfil the required property ∀ α :
〈
Bα
〉

= 0. We then have to define

H
′

S = HS −
∑
α

〈
Bα
〉
Aα (1.6.26)

and we found the desired map. �

We now drop the prime assuming immediately ∀ α :
〈
Bα
〉

= 0 and insert the series expansion
(1.6.23) into the time evolution of the density matrix. Taking a partial trace (see page 36) over
the bath leads to

ρS(t) = ρ0
S + tr HB

∫∫ t

0
dτ1dτ2

[
HI(τ1)ρ0

S ⊗ ρ0
BHI(τ2)

−Θ(τ1 − τ2)HI(τ1)HI(τ2)ρ0
S ⊗ ρ0

B + Θ(τ2 − τ1)ρ0
S ⊗ ρ0

BHI(τ1)HI(τ2)
]

(1.6.27)

Inserting the explicit formula (1.6.24) and introducing the bath correlation function

Cαβ(τ1, τ2) = tr HB

{
Bα(τ1)Bβ(τ2)ρ0

B

}
(1.6.28)

renders the density matrix as23

ρS(t) = ρ0
S+
∑∫∫

dτ1dτ2 Cαβ(τ1, τ2)
[
Aβ(τ2)ρ0

SA(τ1)

−Θ(τ1 − τ2)Aα(τ1)Aβ(τ2)ρ0
S −Θ(τ2 − τ1)ρ0

SAα(τ1)Aβ(τ2)
]
. (1.6.29)

23We use the compact notation
∑∫∫

dτ1dτ2 =
∑

α,β

∫∫ t
0 dτ1dτ2
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By inserting a complete and time-independent basis {|n〉} of eigenstates the Hamiltonian and
defining the jump operators Lab := |a〉 〈b|, one can re-write the time evolution as

ρS(t)− ρ0
S = −i

[
Heff t, ρ

0
S

]
+ t

∑
abcd

γab,cd

(
Labρ

0
SL
†
cd −

1
2

{
L†cdLab, ρ

0
S

})
(1.6.30)

with the definitions

Heff =
∑
ab

σab(t)Lab (1.6.31)

σab(t) = 1
2it
∑∫∫

dτ1dτ2 Cαβ(τ1, τ2) sgn (τ1 − τ2) 〈a|Aα(τ1)Aβ(τ2) |b〉 (1.6.32)

γab,cd(t) = 1
t

∑∫∫
dτ1dτ2 Cαβ(τ1, τ2) 〈a|Aβ(τ2) |b〉 〈c|A†α(τ1) |d〉∗ (1.6.33)

From here on, one can go over to deduce the quantum Liouville operator that generates the
quantum dynamics. Therefore, one coarse-grains the desired equation as

ρS(t) = exp [L t] ρ0
S ≈ [1+ L t] ρ0

S . (1.6.34)

with the Markovian generator L. This ansatz corresponds to applying a Markov approximation to
the system which states that the evolution of the system solely depends on its initial state [Bre07].
By applying a secular approximation that states that rapidly oscillating contributions cancel out
and which has its justification in the coarse grained picture that does not resolve the typical
bath correlation times, one can cast the time evolution as a generator of a dynamical semigroup
[Bre07]. A secular approximation has to compare our coarse graining increment t with the typical
bath correlation time and will be carried out after the next theorem.

One now deduces the coarse grained Liouville operator as

LρS = i
~

[Heff(t), ρS ] +
∑
abcd

γab,cd(t)
(
LabρSL

†
cd −

1
2

{
L†cdLab, ρS

})
. (1.6.35)

One must now specify the formulas for the effective Hamiltonian Heff and the damping matrix γ.
Both of these quantities involve the two time correlation function which can be simplified as shown
in the following theorem.

Theorem [Bre07]: If the stationary bath density matrix ρstB satisfies [HB , ρstB ] = 0 then the
bath correlation function is translational invariant in time and satisfies

Cαβ(τ1, τ2) = Cαβ(τ1 − τ2, 0) (1.6.36)

Proof: One starts from the definition of the bath correlation function

Cαβ(τ1, τ2) = tr HB

{
Bα(τ1)Bβ(τ2)ρ0

B

}
= tr HB

{
eiHBτ1Bα(0)e−iHB(τ1−τ2)Bβ(0)e−iHBτ2ρstB

}
(1.6.37)

Since the matrix exponential commutes with the density function by assumption, we can exchange
them and use the cyclic property of the trace to obtain the assertion. �

As we have already mentioned, the correlation function decays on a very short time scale com-
pared to the time scale of the intrinsic evolution of the system. We take this into account by
formally sending the coarse graining increment t→∞. This limit involves the secular approxima-
tion mentioned before.

It is then a straightforward calculation to find [Sch14]

Heff = 1
2i

∑
α,β,a,b,c

σαβ(Ea − Ec)δab 〈c|Aβ |b〉 〈c|A†α |a〉
∗
Lab (1.6.38)

γab,cd =
∑
α,β

ΓαβδEb−Ea,Ed−Ec 〈a|Aβ |b〉 〈c|A†α |d〉
∗ (1.6.39)
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with the definitions

σαβ =
∫ ∞

0
dτCαβ(τ) sgn(τ)eiωτ (1.6.40)

Γαβ =
∫ ∞

0
dτCαβ(τ)eiωτ . (1.6.41)

We are now able to (i) show that the coarse grained Lindblad equation indeed can be written as
a Kraus map and (ii) calculate the exact expression for a damped quantum mechanical harmonic
oscillator, which will be the basis of our work later on.

Lemma [Bre07]: The O(t) coarse grained Lindblad equation (1.6.30) can be written as a Kraus
map.

Proof: The matrix γ is positive semi-definite [Sch14] and can thus be diagonalised by a suitable
unitary transformation U such that24

γA,B =
∑
C,D

U∗CAγCδCDUDB (1.6.42)

We can thus re-write eq (1.6.30) using as well the definition L̄C = √γC
∑
A U

∗
CALA as

ρS(t)− ρ0
S = −i

[
Heff t, ρ

0
S

]
+ t
∑
C

L̄Cρ
0
SL̄
†
C −

1
2

{
L̄†CL̄C , ρ

0
S

}
(1.6.43)

The Kraus operators are

K1 = 1+ t

(
− i +

∑
C

L̄†CL̄C

)
, K2 = L̄1, K3 = L̄2, . . . (1.6.44)

We have thus found the desired Kraus decomposition of the coarse-grained Lindblad evolution. �

This completes the quest for the dynamics of the reduced density matrix of the system. One
may summarise the result as follows:

Definition & Theorem [Sch14, Bre07, Eng02]: The dynamics of the reduced density matrix
ρS of a small subsystem coupled to a bath is governed by the Lindblad equation

∂tρS = LρS (1.6.45)

with the Liouville operator [compare eq (1.6.35) for the form in the interaction picture]

LρS = i [Heff +HS , ρS ] +
∑
A

γA

(
L̄AρSL̄

†
A −

1
2

{
L̄†AL̄A, ρS

})
(1.6.46)

It can be shown that the Lindblad equation for a thermal heat bath drives the system towards
the equilibrium Gibbs state

ρG = exp (−HS/T )
tr S exp (−HS/T ) (1.6.47)

for any initial state as long as the generated quantum dynamical semigroup is ergodic [Bre07].

24Here capital letters refer to the double indices introduced earlier as A = (a, b), etc.
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1.6.4 Lindblad equation of the harmonic oscillator
In this part, we derive the coherent quantum dynamics for a single harmonic oscillator coupled to
a thermal bath of bosonic modes. Thus, we have to work with the following systems

HS = Ω a†a , HB =
∑
j

ωjr
†
jrj , HI =

(
a⊗ η† + a† ⊗ η

)
(1.6.48)

with the bath coupling operators η =
∑
j

√
γj rj and the coupling constants γj . We can thus

identify the system operators Aα from the previous section as A1 = a and A2 = a† and the bath
operators Bα to be B1 = η† and B2 = η.

In order to evaluate the damping matrix γab,cd we start with the matrix Γ of Fourier transforms
of the bath correlation functions. Since the bath is in thermal equilibrium at a certain temperature
T , the modes are occupied according to the Bose-Einstein distribution n̄ = (eE/T − 1)−1. We find

Γ =
∑
j

γjδ(ω − ωj)

 0 n̄(Ej)

n̄(Ej) + 1 0

 (1.6.49)

In order to avoid ambiguity between the annihilation operator a and the index a in eq (1.6.39),
we will rename the index n. The damping matrix then reads

γnb,cd = Γ12
√
b+ 1

√
d+ 1δn,b+1δc,d+1 + Γ21

√
b
√
dδn,b−1δc,d−1 (1.6.50)

where we could drop the energy selection factor δEb−En,Ed−Ec since the delta functions above
always connect consecutive energy levels and the energy splitting is homogeneous for the harmonic
oscillator. Using the number state representation of the ladder operators

a =
∞∑
b=0

√
b |b〉 〈b+ 1| (1.6.51)

a† =
∞∑
b=0

√
b+ 1 |b+ 1〉 〈b| (1.6.52)

it is a straightforward task to find the Lindblad equation of the damped harmonic oscillator to be

∂tρS = −iΩ
[
a†a, ρS

]
+ γΩ

[
(n̄+ 1)

(
aρSa

† − 1
2
{
a†a, ρS

})
+ n̄

(
a†ρSa−

1
2
{
aa†, ρS

})]
(1.6.53)

This calculation will form the basis for our treatment of the quantum dynamics of the qsm.
We are interested in the slow relaxational dynamics, after a quantum quench to g ≤ gc at

T = 0, when formally the relaxation time towards the equilibrium state of the system diverge
[Cug95, Hen10]. The study of the spherical model promises to yield exact and non-trivial results,
which could be used as bench-marks in the study of more general models which can no longer be
solved exactly. In this respect, the quantum spherical model stands out since it is one of the very
few – if not the only one – non-trivial quantum model which can be studied in d>1 dimensions.

1.6.5 A glance besides Lindblad
Historically, the Lindblad equation was surely not standing alone but rather there were many
approaches to open quantum systems introduced over the last decades. Some of those are reviewed
in [Wei99].

Especially, we want to stress that the Lindblad type of equation is applicable only if the dynam-
ics is Markovian and the coupling is weak. Of course there exist similar descriptions e.g. for the
strong coupling limit [Sch14] or an equivalent formulation in terms of quantum Langevin equations
[Gar04]. Since we started the investigation of dynamical properties with the Langevin equation
and derived a failing phenomenological quantum extension, we want to state for completeness at
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this point once the correct Markovian quantum Langevin equation for a particle in a potential
V = m

2 ω
2q2

q̇(t) = p(t)/m (1.6.54)
ṗ(t) = −mω2q(t)− γq̇(t) + ζ(t) (1.6.55)

With the noise operator

ζ(t) = i
∑
n

κn

√
ωn
2

(
−an(t0)e−iωn(t−t0) + a†n(t0)eiωn(t−t0)

)
(1.6.56)

where an and a†n are bosonic ladder operators of the bath mode associated with the frequency ωn
and κn is a coupling constant. Another ansatz is proposed by Bedeaux & Mazur which involves
two distinct noise operators for position and momentum [Bed01].

Additionally, there exist entirely different approaches to the “system-bath” approach: One
suggestion to describe open quantum systems was the modification of quantisation procedure
proposed that tried to implement the open quantum system through a time dependent mass term.
Such attempts are though considered to “reproduce, at best, known results only for very limited
cases” [Wei99].

Another, more recent attempt is the stochastic Schrödinger equation and the postulate of
non-Hamiltonian dynamics as a modification of the standard Schrödinger equation as e.g. in the
quantum-state diffusion method [Gis84, Per94, Wei99].

For systems that are not described by a simple Hamiltonian, one can implement a phenomeno-
logically motivated approach, by e.g. dynamically describing the system in terms of occupation
probabilities of (measured) energy levels [Wei99].
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Overview
The focus of this thesis is on the quantum relaxation of quantum systems, through the analysis of
the exactly solvable spherical model. It is widely thought that ‘the field of open quantum systems
is still lacking non-trivial explicitly solvable models (...) Examples of explicitly solvable models
of master equations for open quantum systems are limited to quite restricted models of a single
particle, single spin or harmonic oscillators.’ [Pro08]. We here want to take on this challenge to
study in how far the spherical model is able to provide such a system.

The Lindblad equation will be used for the description of the quantum dynamics. From a
theoretical point of view, it has the attractive feature of the quantum semi-group property. On
the other hand, Lindblad equations have the deserved reputation of being difficult to solve exactly.
Therefore, we shall in chapter 2 present the Lindblad equation for a single spherical quantum spin.
This greatly reduces the technical complexity. However, even for this simple case, mathematical
methods distinct from the ones used in classical Langevin equations are required. The physical
content of this solution is made apparent by re-interpreting the single-particle solution in an
external field as a mean-field treatment of a many-body problem. This gives rise to a non-trivial
phase diagram and a quantum analogue of the ‘freezing-by-heating’ effect. The heart of this thesis
is in chapter 3. Here, we strive at the formulation and solution of the N-particle quantum spherical
model. Therefore, we consider in detail how to construct Lindblad dissipators explicitly. In order
to make this useful for future model-building, we shall present two different approaches. The first
one starts from an explicit modelling of the heat bath as a gas of non-interacting boson (phonons
or photons) and we prescribe the interaction with the system. Admitting the usual Markov and
Born approximations, the Lindblad dissipators can be derived. The second approach is more
phenomenological. It starts from the idea that physically reasonable equations of motion should
not only admit the equilibrium state as a stationary solution but that furthermore, the dynamics
should reduce in the classical limit to the one given by the classical Langevin equation. As we
shall show, these two approaches lead to the same end result for the Lindblad dissipators. Having
thus brought onto firm ground the specific form of the Lindblad dissipator used in this work, we
proceed to find the solution. As expected, the dynamics of the spherical model can be reduced
exactly to the solution of a single integro-differential equation for the spherical parameter, that is,
the Lagrange multiplier introduced by the spherical constraint. The Lindblad equation does live
up to its reputation in that this constraint equation is indeed a formidable one and its full solution
remains a very difficult problem. Therefore, we seek to make progress by concentrating on two
limit cases. Indeed, in the semi-classical limit, where only the leading quantum corrections are
taken into account, we show that the effective dynamics reduces to the one of the classical case,
up to a renormalisation of the effective temperature, which is shown to be in agreement with the
known quantum equilibrium phase diagram. Having thus confirmed the internal consistency of
the Lindblad equation of the quantum spherical model, we strive for new ground by considering a
deep quantum quench (at zero temperature) into the ordered phase. Although this considerably
simplifies the form of the spherical constraint, its asymptotic solution is still a hard problem, much
beyond what would be required in the analogous classical case, and whose solution did require the
development of new mathematical tools. We find that the behaviour of the solution of the spherical
constraint is considerably more rich than in the classical case. Depending on the spatial dimension,
several different types of dynamical long-time behaviour are found. Their consequences for the
emergent dynamical scaling of the two-point correlators will be analysed in detail, with a surprising
variety of quantum dynamical behaviour. In particular, it appears that simple dynamical scaling
can be derived in d = 2 dimensions, while subtle logarithmic corrections to scaling appear for
larger values of d. The core of the mathematical methods developed in this thesis can be cast
as new results on the asymptotics of certain confluent hypergeometric functions in two variables.
These will be presented in a comprehensive form in chapter 4. An outlook to perspectives of future
work is given in chapter 5.
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Chapter 2

Lindblad dynamics of a spherical
quantum spin

2.1 Introduction
In this chapter, we begin our study of the dynamics of the quantum spherical model. The content
of this chapter is taken from our publication [Wal16].

Since the system is coupled at least to an external thermal reservoir, a description convenient for
an open quantum system is required. Specifically, one is faced with the task of how to write down
a ‘quantum version’ of the Langevin equation of the spherical model ? While in the statistical
mechanics community, such attempts are often considered ‘. . . very much model-dependent and
difficult to generalise’ [Cug03, p. 394], these are routinely studied by the quantum optics or
mathematics communities, see e.g. [Car99, Bre07, Eng02, Sch14, Att06b, Att07, Elo17, vH15] and
references therein as well as chapter 1. In these studies we reviewed in section 1.6, the classical
master equation is replaced by the Lindblad equation, where the evolution of the time-dependent
reduced density matrix of the system is described by a quantum Liouville operator involving the
system’s quantum Hamiltonian and additional terms which describe the coupling to the bath.

Before we shall turn to this, let us briefly recall section 1.5 [Car99] and generalising to a large
number of degrees of freedom, why a straightforward-looking extension of a classical Langevin
equation is insufficient for the description of coherent quantum dynamics. Consider a pre-quantum
spherical model, where the dynamical variables are the spherical spin-operators Sn (at each site
n ∈ L of a hyper-cubic lattice L ⊂ Zd, with N = |L | sites) and the canonically conjugate
momenta Pn. By analogy with [Obe72], the Hamiltonian is

H =
∑

n∈L

(
g

2P
2
n + S2 S

2
n −

d∑
j=1

SnSn+ej

)
(2.1.1)

Herein, g is a coupling constant, S denotes a Lagrange multiplier, to be found self-consistently
from the spherical constraint

〈∑
n S

2
n

〉
= N , and ej is the jth Cartesian unit vector. Taking into

account the momenta, one may write down a Kramers equation [Tai06]

∂tSn = {Sn, H} , ∂tPn = {Pn, H} − γPn + ηn(t) (2.1.2)

with a damping parameter1 γ and the standard centred white-noise ηn(t), with correlator〈
ηn(t)ηm(t′)

〉
= 2γTδnmδ(t− t′) . (2.1.3)

Herein, the brackets {., .} denote the Poisson brackets. Eq (2.1.2) is a well-defined and interesting
dynamics with non-trivial properties, such as a hidden super-symmetry [Tai06]. It might also
appear as a natural starting point for going over to the dynamics of the quantum case. According
to the natural-looking procedure suggested in [Shu81], one replaces in (2.1.2)

1Throughout, units are such that the Boltzmann constant kB = 1 and the Planck constant ~ = 1.

45
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(i) the classical variables Sn 7→ sn(t) and Pn 7→ pn(t) by time-dependent operators sn(t) and
pn(t), which

(ii) at the initial time t = 0 obey the canonical equal-time commutation relations [sn(0), pm(0)] =
iδn,m,

(iii) replaces the Poisson brackets {., .} 7→ 1
i [., .] by a commutator and

(iv) introduces a noise operator ηn(t) = ηn(t)1.

Applied to the spherical model Hamiltonian (2.1.1), this procedure would lead to the quantum
operator equations of motion [Shu81]

∂tsn = gpn

∂tpn = −Ssn − γgpn + 1
S

d∑
j=1

(
sn−ej + sn+ej

)
+ ηn (2.1.4)

However, if one defines the commutator cn(t) := [sn(t), pn(t)], one promptly obtains the equation
of motion

∂tcn(t) = −gγ cn(t) (2.1.5)

Hence, cn(t) = i e−t/tdeco which means that the dynamics (2.1.4) dissipates the quantum structure
on a finite time-scale, of order tdeco = 1/(γg) [Car99].2 Indeed, one may define more general
quantum spherical models by adding interactions between the momenta into the Hamiltonian
(2.1.1), as we have seen in section 1.3.3. At equilibrium, this is known to lead to new quantum
effects, such as a re-entrant quantum phase transitions in sufficiently small dimensions d . 2.065,
see fig 1.18 [Wal15]. However, as we shall show in appendix 2.A, a corresponding generalisation
of the equations of motion (2.1.4) always leads, for times t � tdeco, back to the well-known
relaxational dynamics [Ron78, God00, Dur15] of the classical spherical model with g = 0. In
consequence, any quantum effects of the equilibrium state are washed out by this incoherent
dynamics, which does not even relax to the required equilibrium state.

If a dynamical description is sought which maintains the quantum coherence of an open quan-
tum system with γ > 0 and g > 0, and evolves towards the correct quantum equilibrium state, a
different approach is required. Here, we shall adopt the result of a profound analysis of the interac-
tions of the system with its environment, see e.g. [Car99, Bre07, Eng02, Att06b, Att07, Sch14] and
references therein, and shall take as our starting point the Lindblad equation for the time-dependent
density matrix ρ = ρ(t) of the system

dρ
dt = −i [H, ρ]−

∑
α

(
LαρL

†
α −

1
2L
†
αLαρ−

1
2ρL

†
αLα

)
(2.1.6)

where the Lindblad operators Lα describe the damping through the coupling of the system to the
reservoir. It is well-known that the Lindblad equation preserves the trace, the hermiticity and the
positivity of the density matrix [Car99, Bre07, Sch14]. In section 2.2, we shall specify the Lindblad
operators completely and shall also re-derive that the Lindblad equation dynamics preserves the
canonical commutator relations between spins and momenta, at least on average.3

In this chapter, we shall consider a thermal reservoir of bosonic particles and the Lα will be
chosen accordingly (see section 2.2). In the past, much work has been done on systems with
only two energy levels per site. Remarkably, for several quantum chains, exact results on the
non-equilibrium stationary states have been derived through techniques of quantum integrability
[Pro11a, Kar13, Pop13, Bra13, Bat15], see [Pro15, Bra16] for recent reviews. Here, we present first
results of an exploration of a quantum system where the space of states of a single site is larger.
Indeed, we hope to make use of the solvability of the quantum spherical model in order to construct
exact solutions of the corresponding Lindblad equation. The aim of such an approach should be

2Formally, one might introduce an ‘effective Planck constant’ ~eff(t) = e−t/tdeco decaying to zero.
3From the point of view of classical dynamics, one might say that the Lindblad equation (2.1.6) automatically

contains a large number of conserved quantities, corresponding to the canonical commutators.
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a comparative analysis of quantum vs classical phase transitions, see [Pod14] for an example in
the Ising model universality class. As a first step towards the realisation of this programme, we
consider here the quantum dynamics of a single spherical spin, which might also be viewed as
a simple mean-field solution of the dynamics of a N -body problem and to discuss the resulting
phase diagram in the stationary state. Surprisingly, the resulting phase diagram appears to be
re-entrant and thereby presents a quantum analogue of a mechanism, well-known from classical
systems [Kat84, Hel00, Zia02, Rad03, Ehr10, Bor14], where it is often referred to as ‘freezing-by-
heating’ or ‘getting more from pushing less’.

This chapter is organised as follows. In section 2.2, we precisely define the single-spin quantum
spherical model and derive from (2.1.6) the quantum equations of motion of several observables. We
also comment on its relationship with the Dicke model. In section 2.3, the equations of motion are
solved exactly at temperature T = 0 and for a vanishing external field. In section 2.4, an external
field is included and is used to derive a quantum mean-field theory of the non-equilibrium stationary
state. The rôle of the couplings g and γ on the phase diagram, as well as the corrections implied by
a sufficiently small temperature T > 0 will be discussed. Section 2.5 gives our summary. Several
appendices treat technical details of the calculations: appendix 2.A demonstrates the insufficiency
of a purely phenomenological Kramers-type equation for the description of the quantum dynamics
of the quantum spherical model; appendix 2.B gives the exact solution for B = T = 0 and
appendix 2.C contains the stability analysis in the field-dependent context.

2.2 The model
2.2.1 A single spherical quantum spin
The Hamiltonian of a single spherical quantum spin (sqs), in an external magnetic field B, reads
[Obe72]4

H = g

2p
2 + S2 s

2 −Bs (2.2.1)

with the canonical commutation relation [s, p ] = i. This is the quantum version of the classical
Hamiltonian (2.1.1), reduced to a single degree of freedom. Herein, g is the quantum coupling of
the system with the classical limit g → 0. The Lagrange multiplier S = S(t) is chosen5 to ensure
the (mean) spherical constraint [Lew52] 〈

s 2〉 = 1 . (2.2.2)

Consequently, the term
(
S/2 s2) is simply an effective energy shift of the Hamiltonian.

It is convenient to go over to creation and annihilation operators, in the usual way [Obe72]

s =
√

g

2ω
(
a† + a

)
, p = i

√
ω

2g
(
a† − a

)
, with ω = ω(t) :=

√
S(t)g (2.2.3)

which recasts the Hamiltonian into the form

H = ω(t)
(
a†a+ 1

2

)
−B

√
g

2ω
(
a† + a

)
. (2.2.4)

The spherical constraint (2.2.2) introduces a functional relationship between the (effectively time-
dependent) frequency and the two-particle-operator expectation values, via

ω = ω(t) = g

2

(〈
a†a†

〉
+ 〈aa〉+ 2

〈
a†a
〉

+ 1
)

(2.2.5)

This condition, along with the explicit Hamiltonian (2.2.4), defines the closed system completely.
4We use a slightly different normalisation of the spherical parameter S here than the one we introduces in

section 1.3.
5The time-dependence of S(t) is essential for a correct description of the relaxation properties [Ron78, Cug95,

God00], in contrast to the approach followed in [Shu81].
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If coupled to an external bath, a coherent quantum dynamics is formulated by adopting a
Schrödinger picture and writing down a Lindblad equation for the time-dependent density matrix
ρ = ρ(t) of this open quantum system. We assume a thermal coupling to the zero-field modes
[Car99, Bre07, Sch14] and consider the following Lindblad equation

ρ̇ = −i [H, ρ] + γ(nω + 1)
[
aρa† − 1

2
(
a†a ρ+ ρ a† a

)]
+ γnω

[
a†ρa− 1

2
(
aa† ρ+ ρ a a†

)]
(2.2.6)

where the bath, of given temperature T , is characterised by the Bose-Einstein statistics nω =(
eω/T − 1

)−1 and γ is a coupling constant. Because of the spherical constraint (2.2.5), the fre-
quency ω = ω(t) must be considered as a time-dependent function. In consequence, the occupation
number nω = nω(t) becomes effectively time-dependent as well.

The three equations (2.2.4, 2.2.5, 2.2.6) define completely our time-dependent, open quantum
model system of a single sqs. It depends on the physical parameters temperature T , magnetic
field B, dissipation coupling γ and quantum coupling g. We shall consider these equations as a
phenomenological ansatz and shall concentrate from now on how to extract their time-dependent
behaviour.

Consequently, we deduce the closed set of equations of motion for the following averages

∂t 〈aa 〉 = − [γ + 2iω] 〈aa 〉+ i
√

2g
ω
B 〈a 〉 (2.2.7)

∂t
〈
a†a
〉

= −γ
〈
a†a
〉

+ γnω + i
√

g

2ω B
(〈
a†
〉
− 〈a 〉

)
(2.2.8)

∂t 〈a 〉 = −
[γ

2 + iω
]
〈a 〉+ i

√
g

2ω B (2.2.9)

where ω = ω(t) is given by (2.2.5). Clearly,
〈
a†
〉

= 〈a 〉∗ and
〈
a†a†

〉
= 〈aa 〉∗.

In the chosen form (2.2.6) of the Lindblad equation, where the bosonic creation and annihilation
operators a† and a are guaranteed to be operators of physical observables are time-independent, we
can now briefly comment on the preservation of the quantum coherence. Specifically, the average
of their commutator becomes〈[

a, a†
]〉

(t) = tr
[
a, a†

]
ρ(t) = tr 1ρ(t) = 1 (2.2.10)

Inverting (2.2.3), it also follows that the canonical commutation relations between s and p are
kept, at least on average, viz. 〈[s, p]〉 = i for all times t.

Conceptually, the constraint (2.2.2) means that besides the coupling to an external thermal
bath with a fixed temperature T , as described by the dissipative terms in (2.2.6), effectively there
is a second external bath which acts on the system in a way that (2.2.2) holds true, where S is
canonically conjugate to s 2. In principle, we could have followed the standard derivation of Lind-
blad equations, see [Car99, Bre07, Att07, Sch14], in order to obtain explicitly the corresponding
Lindblad operators Lα, as in eq (2.1.6). We shall not carry this out here, since we expect that
for a large number of degrees of freedom, this explicit construction would merely correspond to
a change of the statistical ensemble. That should be analogous to a change between, say, canon-
ical and grand canonical ensembles. In the classical spherical model, this would correspond to
requiring the spherical constraint either exactly on each microscopic spin configuration, or merely
on average. It is well-known that this distinction becomes unimportant for the analysis of the
critical behaviour in the limit N →∞ of a large number of spins, both at and far from equilibrium
[Lew52, Fus02].6

Turning now to the analysis of the long-time behaviour following from the equations of motion
(2.2.7, 2.2.8, 2.2.9), we keep in mind that the combined action of two distinct external baths may
lead the system to evolve towards a non-equilibrium stationary state.

6Since we consider this study as preliminary work on the dynamics of the quantum spherical model with N →∞
spins, we do not go further into the distinction of ensembles. In this respect, the present results on a single spherical
spin should rather be viewed as some mean-field approximation of that full N -body problem.
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2.2.2 Relationship with the Dicke model
The single-mode Dicke model [Dic54] describes the cooperative interaction ofM atoms in a cavity
with a single mode of the radiation field. In the rotating-wave-approximation, the Dicke model
Hamiltonian reads [Gar11, Ton09]

HD = ω

(
Sz + M+ 1

2

)
+ γ√
M

(
r †S− + rS+

)
+ ωrr

†r (2.2.11)

Herein, each of the M atoms is represented by a two-level system, with ground states |gj〉 and
excited states |ej〉, j = 1, . . . ,M. The transitions in each atom are described in terms of spin-1

2
operators

S
(j)
+ = |ej〉 〈gj | , S

(j)
− = |gj〉 〈ej | , S(j)

z = 1
2 (|ej〉 〈ej | − |gj〉 〈gj |) (2.2.12)

and the collective atomic operators read S± =
∑M
j=1 S

(j)
± and Sz =

∑M
j=1 S

(j)
z . The state of

the cavity (reservoir) is described by the bosonic raising and lowering operators r † and r, with[
r, r †

]
= 1. The two energy scales ω and ωr, as well as the coupling γ, are taken to be constants.

The Dicke model is known to undergo a continuous phase transition, from a normal to a super-
radiant phase, with the order parameter limM→∞M−1 〈r †r〉. This transition either occurs at
a finite critical temperature Tc > 0 and then is thermally driven, or else is a quantum phase
transition at T = 0 and is driven by γ, see the reviews [Gar11, Ton09] and references therein.

Within this setup, the model can be re-written through a Holstein-Primakoff transformation
[Hol40, Gar11], which replaces the collective atomic operators by a bosonic degree of freedom via

S+ = a†M1/2 (1− a†a/M)1/2 , S− =M1/2 (1− a†a/M)1/2 a , Sz = a†a−M/2 (2.2.13)

where we recognise the system’s bosonic creation and annihilation operators a† and a.
Inserting (2.2.13) into (2.2.11) and expanding this up to leading order in a†a/M, gives in the

limitM→∞ the effective low-energy Hamiltonian

HD ≈ ω
(
a†a+ 1

2

)
+ γ

(
r †a+ ra†

)
+ ωrr

†r (2.2.14)

This Hamiltonian has the general form HD = Hsys +Hint +Hres and describes, as a ‘system’, a
single boson with Hamiltonian Hsys analogous to (2.2.4), interacting through the term Hint with
a ‘bosonic single-mode reservoir ’ described by Hres. This is the usual starting point for deriving a
Lindblad equation for the dynamics of the ‘system’ by tracing out the degrees of freedom of the
‘reservoir’. Indeed, if one adopts the usual procedure of fixing the properties of the ‘reservoir’, for
instance its temperature T , and also assumes the ‘reservoir’ large enough as to be not influenced
by the properties of the ‘system’, a lengthy but standard calculation shows that the quantum
dynamics of the reduced density matrix of the ‘system’ is given by the Lindblad equation (2.2.6)
with the Hamiltonian (2.2.4), with B = 0 [Bre07, Car99, Sch14].

In spite of this formal analogy, the sqs and the single-mode Dicke model are still different.
First, the phase transition in the Dicke model refers for the definition of the order parameter to
the properties of the ‘reservoir’, which is traced out in the sqs. This is probably not very important,
since in the low-energy Hamiltonian (2.2.14), ‘system’ and ‘reservoir’ can be exchanged according
to (a, a†)←→ (r, r †), along with ω ←→ ωr. In this respect, the sqs and the Dicke model are dual
to each other. Second, this averaging is normally done for a fixed temperature and the assumed
properties of the reservoir in general do not allow for a phase transition.7 Third, and probably most
important, the Dicke model considers the angular frequency ω as a fixed parameter, whereas in the
sqs, its time-dependent value ω(t) has to be found self-consistently from the spherical constraint
(2.2.5). In the next section, we shall see that this leads to an important qualitative difference in
the behaviour of the two models.8

7We hope to return elsewhere to an exploration of the consequences of an assumed phase transition in an external
reservoir.

8In the limit ωr → 0, the Dicke Hamiltonian (2.2.11) becomes the one of the integrable Tavis-Cummings model,
whose dynamics for an arbitrarily prescribed time-dependent ω = ω(t) can be studied through the Bethe ansatz
[Bar13].



50 CHAPTER 2. LINDBLAD DYNAMICS OF A SPHERICAL QUANTUM SPIN

2.3 Analytic solution in zero field and at zero temperature
We focus on the case where B = 0 and T = 0. This particular case is analytically solvable for all
times t.

Due to the vanishing field B = 0, the equations (2.2.7, 2.2.8) decouple from (2.2.9), such that
the single-particle operators can be treated separately. We must investigate the system

∂t 〈aa 〉 = − [γ + 2iω(t)] 〈aa 〉 (2.3.1)

∂t
〈
a†a

〉
= −γ

〈
a†a

〉
. (2.3.2)

Obviously, the particle-number-operator expectation value decays exponentially〈
a†a

〉
= Ne−γt , N ∈ R+ . (2.3.3)

By means of this solution and the spherical constraint (2.2.5), the expectation value of the pair-
annihilation operator obeys the equation

∂t 〈aa 〉 = −
[
γ + i

(
1 + 2Ne−γt

)]
〈aa 〉 − ig |〈aa 〉|2 − ig 〈aa 〉2 . (2.3.4)

Separating amplitude and complex phase, via 〈aa 〉 = R(t)eiΘ(t), leads to

Ṙ(t) = −γ R(t) (2.3.5)

Θ̇(t) = −g
[
2R(t) cos Θ(t) + 2N e−γt + 1

]
. (2.3.6)

These equations allow to separate the two basic physical mechanisms and show in particular
that the exponential decay is an intrinsic fact of the classical spherical model, whereas the time-
dependent phase Θ(t) is a quantum effect of the sqs (for g = 0, eq (2.3.6) simply states that
Θ̇ = 0).

The amplitude eq (2.3.5) simply gives R = R(t) = Ae−γt, with A ∈ R+.9 However, the phase
equation is more complicated. In appendix 2.B, we show that the solution of (2.3.6) is

cos Θ = Re
(
−N
A
− i
√

1− N2

A2 + g

γ

(√
1− N2

A2 − iN
A

)
iγgKM(T(1,1))− U(T(1,1))

KM(T )− U(T )

)
(2.3.7)

for A 6= N and

cos Θ = −Re

1 + i√
A

e
γ
2 t

KJi gγ

(
2i gγ
√
Ae−γt

)
− J−i gγ

(
2i gγ
√
Ae−γt

)
KJ1+i gγ

(
2i gγ
√
Ae−γt

)
+ J−1−i gγ

(
2i gγ
√
Ae−γt

)
 (2.3.8)

for A = N , respectively. Herein, the constant K is related to the initial condition, M = M(T ),
U = U(T ) are Kummer’s hypergeometric functions [Abr64], with the triple argument

T :=
(
− g

2γ

(
i + 1√

A2/N2 − 1

)
; −i g

γ
; 2 g

γ

√
A2 −N2 e−γt

)
(2.3.9)

and the further abbreviation T(x,y) := T +(x; y; 0). Furthermore, Jp(z) denotes the Bessel function
of the first kind and order10 p. We have checked that −1 ≤ cos Θ(t) ≤ 1 for all times and all ratios
A/N .

The functions (2.3.7) and (2.3.8) can be analysed in the long-time limit t → ∞, respectively
e−γt → 0+. A Taylor-series expansion in e−γt yields, to leading order

cos Θ ' Re
{
−N
A
− i
√

1− N2

A2 + ε1 cos gt+ ε2 sin gt
}

(2.3.10)

9At equilibrium, it follows from the Hamiltonian (2.2.1) that 〈aa 〉eq =
〈
a†a†

〉
eq

= 0. Hence the amplitude A
can be viewed as a measure of the initial distance from the equilibrium state.

10Confluent hypergeometric or Bessel functions with complex indices/orders are often met in the dynamics of
quantum systems, see e.g. [Gar11, Bat15, Bra16].
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Figure 2.1: Left panel: Time-dependence of the effective frequency ω(t) (main plot) and of the
magnetisation m(t) = 〈s 〉 (t) (inset), for the parameters A = N = 3 and g = 0.1 in the weak
quantum-coupling regime. A simple exponential decay for the frequency is seen, which leads
to a time-varying oscillation frequency in the magnetisation. Right panel: analogous plots with
parameters A = N = 4 and g = 10 in the strong quantum-coupling regime. Here, the exponential
decay of ω(t) is modulated by strong oscillations with sharp peaks. These lead to a rather complex
oscillatory behaviour in the magnetisation.

with appropriate (complex) constants ε1 and ε2. Thus, the long-time limit provides the expected
harmonic oscillator with frequency Ω = g. This asymptotic expansion reveals the oscillations
at least for large times in the effective frequency ω(t) (while for all other models like the Dicke
model or the Jaynes-Cummings model, the frequency ω is a constant). As the effective oscillation
frequency ω(t) tends to zero for g → 0, we observe here a quantum effect of the system.

Now, combining equations. (2.3.7, 2.3.8) with the definition of 〈aa〉 = R(t)eiΘ(t), the time-
dependent effective frequency ω = ω(t) can be reconstructed from eq (2.2.5), using also (2.3.3).
Afterwards, the magnetisation m(t) = 〈s(t)〉 =

√
g

2ω(t)
(〈
a†
〉

+ 〈a〉
)
, see (2.2.3), follows by inte-

grating eq (2.2.9). Fig 2.1 shows the resulting oscillation frequency ω(t) and the magnetisation
m(t), for the special case A = N . Already in this more simple case, we observe a distinction be-
tween (i) a weak-quantum-coupling regime g � 1, characterised by a simple monotonous decay of
ω(t) and a simple oscillatory relaxation of m(t) and (ii) a strong-quantum-coupling regime g � 1,
where on the decay of ω(t) is superposed strongly peaked non-harmonic oscillations, which leads
to a complex oscillatory behaviour of m(t).

The same two regimes also arise when A 6= N . In fig 2.2, the behaviour in the weak-quantum-
coupling regime is illustrated for choices such that either A� N , A ' N or A� N , respectively.
In this regime, we find qualitatively the same behaviour already shown in fig 2.1 for A = N :
the effective frequency ω(t) decays monotonously (almost exponentially) and the decay of the
magnetisation is a simple damped oscillation, of which the frequency decreases, towards ω(∞) =
g/2.

Fig 2.3 displays the behaviour in the strong-quantum-coupling regime, again for different choices
such that either A � N , A ' N or A � N , respectively. When A � N , quantum effects, after
a rapid initial drop, merely lead to a small modulation of an essentially still monotonic decay of
ω(t), which in turn is not very visible in the oscillating decay of the magnetisation, see the left
panel in fig 2.3. On the other hand, quantum effects do become much more pronounced whenever
A & N . After a clearly visible drop in ω(t) at short times, followed by a monotonous decay up
to times t ∼ O(1/γ), strong peaks overlay the background evolution. These are also visible in
the relaxation behaviour of the magnetisation, where a secondary periodic behaviour appears, see
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Figure 2.2: Time-dependence of the effective frequency ω(t) and of the magnetisation m(t) =
〈s 〉 (t), in the weak-quantum-coupling regime with g = 0.1, for different ratios A/N :
Left panel: A = 0.1, N = 10 Centre panel: A = 4, N = 5 Right panel: A = 10, N = 0.1. In all
cases, ω(t) decays monotonously, in analogy with the case A = N , see left panel in fig 2.1.
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Figure 2.3: Time-dependence of the effective frequency ω(t) and of the magnetisation m(t) =
〈s 〉 (t), in the strong-quantum-coupling regime for the following parameters:
Left panel: A = 0.1, N = 10 and g = 7, Centre panel: A = 4, N = 3, g = 10, Right panel: A = 1,
N = 0.1, g = 10.

centre and right panels in fig 2.3. This is qualitatively analogous to the right panel in fig 2.1.
In order to better appreciate the rôle of the spherical constraint, let us recall the well-known

behaviour of a quantum harmonic oscillator without it [Bre07, Car99, Sch14], as was also encoun-
tered in section 2.2 for the single-mode Dicke model. The Hamiltonian is again taken to be given
by (2.2.4), with the fixed frequency ω = ωh = cst. Upon coupling the system to a thermal bath, the
dynamics is again described by the Lindblad equation (2.2.6). From this, the equation of motion
for 〈a〉 is rapidly written down, being the analogue of (2.2.9), and solved [Bre07, Car99, Sch14]. It
follows that the average magnetisation has the form

〈s 〉 = e−
γ
2 t (a cosωht+ b sinωht) (2.3.11)

where a, b are constants. One has a regular damped oscillation, with fixed frequency ω = ωh. The
distinct regimes of weak and strong quantum couplings seen in fig 2.1 do not appear. Although the
long-time limit looks to be analogous to the one derived in eq (2.3.10) the finite-time behaviour
of the single-spin spherical model allows for considerable more complexity. For example, even in
the weak-coupling regime, the decrease of the oscillation frequency ω(t) is clearly visible in the
non-harmonic oscillations of the magnetisation in the inset of the left panel in figs 2.1, 2.2 and 2.3.

2.4 Steady-state solution in the mean-field description
In this section, we consider the single sqs at T = 0 as a mean-field approximation of an N -body
problem. In the most simple mean-field scheme of magnetic phase transitions, one replaces the
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spin-spin interactions by an effective external magnetic field B = Beff [Jäg96], which is then self-
consistently related to the magnetisation, by writing Beff = κ 〈s 〉 with some appropriately chosen
proportionality constant κ.

We formally keep the above Lindblad equation (2.2.6) for the description of the dynamics, even
if B 6= 0. Our main interest will be the determination of the structure of the phase diagram which
means that essentially, we are going to look at the stability of the disordered phase with a vanishing
magnetisation. In principle, the Lindblad operators Lα no longer couple directly to the eigenmodes
of the system, and one cannot expect a relaxation to an equilibrium state [Bre07]. Rather, the
relaxation should be towards some non-equilibrium steady-state (ness) whose properties we are
going to study. On the other hand, since we are mainly interested in the regime Beff ∼ 〈s 〉 � 1,
these differences should not be very large. Also, in the quantum spherical model one expects that
a mean-field approximation should correctly describe the quantum critical behaviour at T = 0
above the upper critical dimension, d > d∗ = 3 [Sac01, Täu14].

2.4.1 Zero-temperature phase diagram
In order to start with the zero-temperature case (T = 0), we introduce the definitions

x1 := Re 〈a 〉 , x2 := Im 〈a 〉 , x3 := Re 〈aa 〉 , x4 := Im 〈aa 〉 , x5 :=
〈
a†a

〉
(2.4.1)

and find from equations. (2.2.7), (2.2.8) and (2.2.9) the following set of real-valued equations of
motion of the sqs in an external magnetic field B

ẋ1 = −γ2x1 + ωx2 (2.4.2)

ẋ2 = −γ2x2 − ωx1 + 1
2

√
2g
ω
B (2.4.3)

ẋ3 = −γx3 + 2ωx4 −
√

2g
ω
Bx2 (2.4.4)

ẋ4 = −γx4 − 2ωx3 +
√

2g
ω
Bx1 (2.4.5)

ẋ5 = −γx5 +
√

2gx2 (2.4.6)

We now cast this system of equations as a self-consistent mean-field approximation by relating
the external field B to the magnetisation, viz. B = κ 〈s 〉. Then, recall (2.2.3) and also use the
spherical constraint (2.2.5) in order to eliminate the variable x5. We wish to analyse the stationary
state, for which we have the system of equations

0 = −γ2x1 + ωx2 (2.4.7)

0 = −γ2x2 − ωx1 + gκ
x1

ω
(2.4.8)

0 = −γx3 + 2ωx4 − 2gκx1x2

ω
(2.4.9)

0 = −γx4 − 2ωx3 + 2gκx
2
1
ω

(2.4.10)

0 = −γ ω
g

+ γx3 + γ

2 + 2gκx1x2

ω
(2.4.11)

with the five independent variables x1, x2, x3, x4 and ω = ω(∞).
This system has two distinct solutions for ω: one corresponds to a disordered state, labelled

d, with frequency ωd = g/2 and x1 = x2 = x3 = x4 = 0 and the other one corresponding to
a magnetically ordered state, labelled o, with frequency ω2

o = gκ − γ2/4 and the x1, . . . , x4 non-
vanishing. Compactly, the two physically distinct stationary states can be distinguished by their
frequencies

disordered: ωd = g

2 ; ordered: ωo =
√
gκ− γ2

4 . (2.4.12)

In the left panel of fig 2.4, we characterise the different stationary states by displaying the sta-
tionary frequencies ω as a function of the quantum coupling g, for several values of the dissipation
coupling γ. The red (dotted) straight line corresponds to the disordered solution ωd, while the
other lines correspond to the ordered solution ωo, for different values of the damping γ. Depending
on the value of γ, we either find

• two intersections, for 0 < γ < 2κ/, at

g1,2 = 2κ∓
√

4κ2 − γ2 (2.4.13)
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Figure 2.4: Left panel: stationary frequency ω as a function of the quantum coupling g for the two
distinct steady-state solutions, for several values of γ, and for temperature T = 0.The full lines
give ωo, the dotted line ωd. Right panel: average magnetisation m as a function of g, for γ = 1 and
T = 0. There are two quantum critical points for γ < 2κ and one multi-critical point for γ = 2κ.

• one intersection, for γ = 2κ/, at
gc = 2κ (2.4.14)

• no intersection, for 2κ < γ.

It turns out that the larger of these solutions ω is stable, in the sense of a linear stability analysis
of the system (2.4.2 - 2.4.6), as shown in appendix 2.C. In other words, whenever no intersections
between ωo and ωd occur, the disordered solution, with frequency ωd, is stable and the ordered
solution, with frequency ωo, is unstable. On the other hand, in the case of two intersections, the
disordered solution, with frequency ωd, is only stable if either g < g1 or g > g2, while the ordered
solution ωo is stable in the intermediate region g1 < g < g2. In this intermediate regime, there is
a non-vanishing spontaneous magnetisation

m2 = 〈s 〉2 = γ2

4κg

(
1− g

2ω

)(
1 + 4ω2

γ2

)
, (2.4.15)

whose dependence on g, for a fixed value γ = 1, is shown in the right panel of fig 2.4. This makes
apparent the physical origin of the labels ‘ordered’ and ‘disordered’. Two distinct quantum phase
transitions occur at g1 and g2, respectively. Near these quantum critical points, we can rewrite
the magnetisation as follows, with j = 1, 2

m2 ≈ γ

4κg2
j

(
1 +

g2
j

γ2

) √
4κ2 − γ2

2κ−
√

4κ2 − γ2
|g − gj | . (2.4.16)

Recalling the standard definition of the magnetisation critical exponent, m2 ∼ |g − gj |2β , we read
off the expected mean-field value β = 1/2.

The mean-field phase diagram is shown in the left panel of fig 2.5. The ordered and the
disordered phases are clearly separated. For sufficiently large values of the damping constant γ, any
ordered structure is simply dissipated away, for all values of the quantum coupling g. Analogously,
for sufficiently large values of g, quantum disorder destroys any magnetic order. Surprisingly, we
find a re-entrance of the disordered phase also when the quantum coupling becomes small enough !
This means that in order to have an ordered stationary state, a cooperative effect between the
quantum fluctuations, parametrised by g and the dissipation, parametrised by γ, is required. This
is a highly non-intuitive effect of the coherent quantum dynamics, without an analogue in the
classical spherical model.
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Figure 2.5: Left panel: mean-field phase diagram of the sqs at T = 0 with its two distinct phases.
The critical line is a parabola, given by eq (2.4.13). Right panel: relaxation of the magnetisation,
along the line γ = 1. In the disordered phase with g < g1, there is a monotonous exponential decay
(red curve), in the disordered phases with g > g2, there is an oscillatory decay (blue curve). In the
intermediate phase g1 < g < g2, there is a relaxation towards a magnetically ordered stationary
state (green curve).

The distinction between the two regions of the disordered phase is further illustrated through
the relaxation of the magnetisation, see the right panel of fig 2.5. Although the stationary mag-
netisation always vanishes in the disordered phase, the approach to this stationary value depends
on value of the quantum coupling g. If g > g2 is large enough, there are magnetisation oscillations
while for g < g1 small enough, the approach towards to stationary value is monotonous. Some
magnetic oscillations are also seen for relaxations within the ordered phase.

To what extent could one take these results, interpreted as coming from a mean-field ap-
proximation, as a useful guide for more complex systems with stronger fluctuation effects ? The
pronounced difference in the shape of the magnetisation curve m = m(g), near to g = g1 and
g = g2, respectively, might suggest that fluctuation effects might turn the continuous transition at
g = g1 into a first-order transition. Of course, it would be important to check if the presence of a
disordered state for quantum couplings 0 < g < g1 remains valid beyond the mean-field approx-
imation. However, since mean-field theory is considered as a reliable qualitative guide (and even
quantitatively for the critical behaviour of the spherical model in d > 3 dimensions), it appears
plausible that the qualitative features of the phase diagram in fig 2.5 and the different types of
relaxation behaviour could reflect more than an artefact of a simple approximation scheme. To
answer this questions requires a solution of the Lindblad equation of a full N -body version of the
quantum spherical model in dimensions d > 1. We shall return to this problem in the next chapter.

2.4.2 Finite-temperature corrections

For a sufficiently small temperature T > 0, we shall calculate the first-order correction to the
above zero-temperature solution by expanding the occupation number for T � mint≥0 ω(t)

nω =
(
eω/T − 1

)−1
' e−ω/T . (2.4.17)

Since the temperature T enters explicitly only into the the average
〈
a†a
〉
via the equation of

motion (2.2.8), it follows that the the ordered zero-temperature solution and its frequency ωo
remains unaffected by the temperature, to leading order, while the frequency of the disordered
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Figure 2.6: Effective frequencies ω of the different solutions of the steady-state, for a small tem-
perature T > 0 and γ = 1, as a function of g. The frequency ωo of the ordered phase is given by
the full red line. The frequencies ωd for the disordered phase is given by the dotted blue, magenta
and green lines for T/κ = [0, 0.5, 2], from bottom to top. characteristic energy κ.

solution is slightly shifted, according to

ωd(T, g) ≈ g

2 + T W
( g
T
e−g/2T

)
. (2.4.18)

where W denotes the Lambert-W function [Abr64]. In fig 2.6, we compare the the frequency ωo of
the ordered phase with the temperature-dependent frequencies ωd of the disordered state. As the
temperature T increases, the curves of ωd(g) bend downwards but provided T does not grow too
large, one can still find two intersections. This indicates that the topology of the phase diagram
(left panel of fig 2.5) should remain unchanged for a sufficiently small temperature T > 0 such
that the two quantum phase transitions obtained at T = 0 persist.

2.5 Summary
In this chapter, we have studied the coherent quantum dynamics, as described by a Lindblad
equation, of a simple toy model, consisting of a single quantum oscillator which was also assumed
to obey a constraint analogous to the quantum spherical model of ferromagnetism. While the low-
energy modes of that model look very similar to the ones of the Dicke model (in the rotating-phase
approximation), an essential difference arises from the effective time-dependence of the frequency
ω(t), as determined from the spherical constraint, while in the Dicke model, the frequency is
usually taken to be a constant. Our aim has been to understand better the phenomenological
consequences of describing a coherent quantum dynamics of an open quantum system, coupled to
a bosonic heat bath via the Lindblad equation. We have found:

1. the exact time-dependent solution, without an external field and at zero temperature, allows
to distinguish two distinct relaxational regimes, of weak and of strong quantum-coupling,
respectively. In the weak-quantum-coupling regime, the relaxation is dominated by the
dissipation, as described by the dissipation coupling γ, whereas in the strong-quantum-
coupling regime, intrinsic quantum oscillations lead to a more complex phenomenology of
the relaxation of physical observables, such as the magnetisation, see fig 2.3.

2. when considering our single-spin model, in the presence of an external magnetic field, as an
effective mean-field approximation of a quantum ferromagnet, the stationary state displays
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a surprising structure of its phase diagram. Remarkably, it turns out that a magnetically
ordered state can only arise if both quantum disorder, parametrised by the coupling g, as
well as dissipation, parametrised through γ, are present. For fixed values of γ (not too small
and not too large) we find two distinct quantum phase transitions at couplings g1,2, such
that an ordered magnetic state is stable for couplings g1 < g < g2 and is unstable otherwise,
see fig 2.5.
These zero-temperature quantum phase transitions are stable under a small thermal pertur-
bation.

For the interpretation of these quantum phase transitions, recall that the quantum coupling g
plays for quantum phase transitions at T = 0 in d dimensions a rôle analogous to the temperature
T > 0 in classical phase transitions in d + 1 dimensions [Sac01, Hen84b, Voj96, Oli06, Wal15].
Therefore, fixing a value of γ < 2κ and looking at the phase diagram in fig 2.5, when increasing
the value of g, starting from a small value g � g1, we see that increasing the quantum fluctuations
leads to a magnetic ordering of the system. Only if g > g2 becomes rather large, this order will
melt again. In classical systems, this phenomenon is well-known and was first observed in non-
equilibrium steady-states [Kat84, Hel00, Zia02, Bor14, Alt15] (and references therein), although it
was pointed out that it is not intrinsically a non-equilibrium effect [Rad03] and simple examples of
it are known even when detailed balance is maintained [Zia02]. In the wide sense of order induced
by larger fluctuations, names such as ‘freezing-by-heating’ [Hel00] or ‘getting more from pushing
less’ [Zia02] have been invented for this phenomenon, although such re-entrant behaviour has been
known long before in equilibrium systems [Rad03]. In non-equilibrium steady-states, this is related
to the occurrence of negative responses. Freezing-by-heating was also observed experimentally in
super-cooled water on negatively charged surfaces of the pyroelectric material LiTaO3 [Ehr10]. A
negative response of the system’s energy with respect to the bath temperature was also reported
in the Dicke model [Ros12].

Apparently we have observed a true quantum analogue of this well-known phenomenon, which
one might call ‘quantum order by quantum fluctuations’, since our control parameter is the quantum
coupling g and not the bath temperature T .11 A common feature of systems undergoing freezing-
by-heating or their quantum analogue is that their Hamiltonians conserve the total number of
quasi-particles [Kat84, Hel00, Zia02, Ros12, Bor14].12

In the next chapter, we shall continue and extend the study of this model along the following
lines:

1. derive the N-body form of the Lindblad dissipators

2. obtain the exact spherical constraint

3. solve this constraint exactly (at least in certain special cases)

This will give access to an analysis of the quantum dynamics of an exactly solvable many-body
quantum system.

11By analogy with [Ros12], this suggests that experimental observations of this effect could also use purely
quantum control parameters and are not restricted to purely thermodynamical variables. However, in the sqs the
average energy 〈H〉 of the stationary state increases monotonically with g. At the critical points g = g1,2 the
derivative ∂ 〈H〉 /∂g taken from the left is clearly smaller than its analogue taken from the right.

12Since there is no obvious breaking of a symmetry between a macroscopic number of ground states, there is
no immediate relationship to the well-known ‘order-by-disorder’ phenomenon, see [Vil80, Ber07] and [Ros14] for an
experimental observation in the pyrochlore magnet Er2Ti2O7.
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Appendix

2.A Phenomenological dynamics in the quantum spherical
model

The ‘spin-anisotropic quantum spherical model’ (saqsm) was introduced in section 1.3.3 and is
defined, on a d-dimensional hyper-cubic lattice, and for a vanishing magnetic field B = 0, by the
Hamiltonian [Wal15]

H =
∑

n

g
2p

2
n + S s 2

n −
d∑
j=1

(
1 + λ

2 snsn+ej + 1− λ
2

g

2S pnpn+ej

) (2.A.1)

with the commutation relations [sn, pm] = iδnm. The spherical parameter S is found self-
consistently from the (mean) spherical constraint

〈∑
n s

2
n

〉
= N , where N is the number of lattice

sites. The model’s parameters are g and λ.13 Because of the symmetry in λ [Wal15], we restrict
throughout to λ > 0. The usual quantum spherical model [Obe72] is the special case λ = 1. At
equilibrium, for all λ 6= 0 and d > 1, the model has a continuous quantum phase transition at
temperature T = 0. The associated exponents and universal amplitude ratios are λ-independent,
as expected from universality [Wal15]. Remarkably, for dimensions 1 < d . 2.065, that phase
transition is re-entrant in the sense that the critical coupling gc = gc(λ) is a non-monotonous
function of λ [Wal15]. The saqsm therefore allows to analyse non-trivial quantum effects on its
critical behaviour. Here, we shall show that if the dynamics is taken to be the analogue of the
phenomenological ‘quantum Kramers equation’ (2.1.4), the system’s behaviour becomes equivalent
to the classical case g = 0, λ = 1 for sufficiently large times.

Step 1: Generalising the procedure leading to (2.1.4) to generic values of λ, we find the ‘quantum
Kramers equations’ of motion (with J = 1) [Tai06, Dur15]

∂tsn = gpn −
1− λ

2
g

2S(t)

d∑
j=1

(
pn−ej + pn+ej

)
(2.A.2)

∂tpn = −2sn +
d∑
j=1

(
1 + λ

2
(
sn−ej + sn−ej

)
+ 1− λ

2
g

2S(t)
(
pn−ej + pn−ej

))
− γgpn + ηn

(2.A.3)

Step 2: Using the Fourier representation (on a hyper-cubic lattice with N = Nd sites)

qk =
∑

n

ei 2π
N k n sn , πk =

∑
n

ei 2π
N k n pn , η̃k =

∑
n

ei 2π
N k n ηn (2.A.4)

decouples the modes and brings the equations of motion to the form

∂tqk = g

S(t)Λ2
2(t,k)πk , ∂tπk = −2Λ2

1(t,k)qk −
gγ

S(t)Λ2
2(t,k)πk + η̃k(t) (2.A.5)

with the following eigenvalues of the Hamiltonian [Wal15]

Λ(t,k) = Λ1(t,k) Λ2(t,k) :=

√√√√S(t)− 1 + λ

2

d∑
j=1

cos kj

√√√√S(t)− 1− λ
2

d∑
j=1

cos kj (2.A.6)

If one defines Ω(t,k) := exp
(
−
∫ t

0 dτ gγ
S(τ) Λ2

2(τ,k)
)
and denotes the convolution by ∗ (with respect

to k), the formal solution of (2.A.5) for the momenta reads14

πk(t) = πk(0)Ω(t,k) + (−2Λ1(t,k)qk(t) + η̃k(t)) ∗ Ω(t,k) . (2.A.7)
13As in the whole work, we always re-scale the nearest-neighbour exchange energy J = 1.
14(with a slight abuse of notation concerning the convolution with respect to k)
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Inserting this solution into the other eq (2.A.5) for qk, we find in the long-time limit

∂tqk(t) ≈ − 1
γ

(
−Λ2

1(t,k)qk(t) + η̃k(t)
)
∗ ∂tΩ(t,k) , (2.A.8)

where we dropped the contribution of the initial values of the conjugate momenta. For sufficiently
large times, this is justified, since for λ > 0, the spherical parameter S(t) ≥ 1+λ

2 d [Wal15], hence
Λ2

2(t,k) − Λ2
1(t,k) ≥ λ

∑d
j=1 cos kj ≈ λd in the low-momentum limit which is relevant for the

slowest modes. Therefore, the conjugate momenta decay at least as fast as

π(t) ∼ exp
(
− 2λ

1 + λ
gγ t

)
= exp

(
− 2λ

1 + λ

t

tdeco

)
(2.A.9)

whereas the decay of the slowest spin modes in the system is according to

q(t) ∼ exp
(
−Λ2

1(t,k)/γ
)
∼ exp

(
− [S(t)− (1 + λ)d/2] /γ + O(k)2) . (2.A.10)

Step 3: We want to show how, in the long-time limit, the equation of motion (2.A.8) reduces to
the Langevin equation of the classical spherical model, with g = 0 and λ = 1.

In order to extract the leading long-term behaviour (2.A.8), one first maps this differential
equation to an algebraic one, by using the Laplace transform

q̄k(u) := L (qk(t)) (u) =
∫ ∞

0
dt e−ut qk(t) (2.A.11)

We find

u q̄k(u)− qk(0) = 1
γ

(
1− uΩ̄(u,k)

)
L
(
−2Λ2

1(t,k)qk(t) + η̃k(t)
)

(u) (2.A.12)

We shall need the large-time asymptotics of Ω(t,k), and its Laplace transform Ω̄(u,k). Indeed,
in the long-time limit, the integral in the exponential can be approximated by a time-independent
average, as follows

Ω̄(u,k) =
∫ ∞

0
dt e−ute−γ

∫ t
0

dτ g
S(τ) Λ2

2(τ,k) =
∫ ∞

0
dt e−

(
u+t−1

∫ t
0

dτ gγ
S(τ) Λ2

2(τ,k)
)
t

'
∫ ∞

0
dt e−(u+gγ〈 1

SΛ2
2(k)〉)t =

(
u+ gγ

〈
1
S

Λ2
2(k)

〉)−1
(2.A.13)

where we define the average
〈 1
SΛ2

2(k)
〉

:= t−1 ∫ t
0 dτ 1

S(τ)Λ2
2(τ,k). Inserting this result into eq

(2.A.12), we find

u q̄k(u)− qk(0) = 1
γ

〈
Λ2

2(k)/S
〉

1
γgu+ 〈Λ2

2(k)/S〉
L
(
−2Λ2

1(t,k)qk(t) + η̃k(t)
)

(u) . (2.A.14)

Standard Tauberian theorems [Fel71, ch. XIII.5] relate the asymptotic long-time behaviour of a
function f(t) as t→∞ to the behaviour of its Laplace transform L(f)(u) as u→ 0+. Therefore,
in order to find the leading long-time behaviour of the spin operators s̃k(t), we first analyse the
leading u→ 0+-behaviour of the expression (2.A.14), which gives

u q̄k(u)− qk(0) ' 1
γ
L
(
−2Λ2

1(t,k)qk(t) + η̃k(t)
)

(u) (2.A.15)

and then, via an inverse Laplace transform, we find the sought effective long-time form of the
equations of motion for the spin variables

∂tq(t,k) ' − 2
γ

Λ2
1(t,k)q(t,k) + 1

γ
η̃k(t)

= − 2
γ

S(t)− 1 + λ

2

d∑
j=1

cos kj

 q(t,k) + 1
γ
η̃k(t) , (2.A.16)
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which we now compare to the Langevin equation of the classical spherical model [Ron78, God00].
Indeed, if we take λ = 1, we see that (2.A.16) reproduces the classical Langevin equation if we

choose
γ = 2 . (2.A.17)

and renormalise the temperature T 7→ γT (unimportant for a quantum phase transition at T = 0).
Moreover, the result (2.A.16) shows that the parameter λ 6= 1 merely gives rise to a renormalisation
of the time t and of the spherical parameter. Therefore, the supposed ‘quantum dynamics’ (2.A.2,
2.A.3) does not relax to the equilibrium state of the saqsm-model (2.A.1), but rather dissipates
away the non-trivial quantum effects [Wal15] on the phase boundary gc = gc(λ).

2.B Solution of the phase equation
In the main text, the phase Θ = Θ(t) was shown to obey the equation (2.3.6), which reads

− Θ̇
g

= 2Ae−γt cos Θ + 2N e−γt + 1 . (2.B.1)

and where A, N , γ and g are real constants. We shall solve this equation explicitly by mapping it
to a well-known Riccati equation.

Let y(t) := eiΘ(t) and re-write eq (2.B.1) as

i
g
ẏeγt = yeγt + 2Ny +A

(
y2 + 1

)
(2.B.2)

A change of the time-scale, according to τ = e−γt, together with the definitions

Y (τ) := y(t), A := g

iγA, B := 2gN
iγ , C := g

iγ . (2.B.3)

reduces this to the following Riccati equation

τ Ẏ (τ) + (Bτ + C)Y (τ) +AτY 2(τ) +Aτ = 0 (2.B.4)

which depends on the three parameters A, B,C. A standard method for solving this kind of
equation consists in mapping it to a second-order linear differential equation, by changing variables
according to λY =: u̇/u [Pol02, sec. 1.2.2, eq (45)]. Hence

τ ü+ (Bτ + C)u̇+A2τu = 0 . (2.B.5)

Next, simplify (2.B.5) by separating off an exponential, according to u(τ) = e−δτw(τ), where δ
remains to be chosen. We arrive at the following equation, for the unknown function w(τ)

τẅ + [C − (2δ −B)τ ] ẇ +
[
τ(δ2 − δB +A2)− δC

]
w = 0 . (2.B.6)

We now choose the free parameter δ in order to render the pre-factor of w in eq (2.B.6) time-
independent. This will allow us to recognise (2.B.6) as a Kummer or Bessel differential equation.
In principle, one might take either of the two possibilities δ = B/2±

√
B2/4−A2. Without loss

of generality, we prefer the choice δ = B/2 +
√
B2/4−A2. Eq (2.B.6) turns into the form

τẅ +
(
C −

√
B2 − 4A2 τ

)
ẇ + C

2

(
B +

√
B2 − 4A2

)
w = 0 (2.B.7)

for which we have to distinguish two different cases.

1. Case B/2 6= A. This case may stated alternatively by requiring A 6= N . We can define a rescaled
time variable T = τ

√
B2 − 4A2, which reduces (2.B.7) to a Kummer equation

Tẅ + (C − T )ẇ − C

2

(
1 + B√

B2 − 4A2

)
w = 0 (2.B.8)
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A basis of solutions is given by Kummer’s functions M and U [Abr64]. The general solution of
(2.B.8) is consequently a linear combination of both

w(T ) = K1U(T ) +K2M(T ) , (2.B.9)

with the triplet of indices and the argument

T :=
[
− g

2γ

(
i + 1√

A2/N2 − 1

)
; −i g

γ
; 2 g

γ

√
A2 −N2e−γt

]
. (2.B.10)

Back-transformation to the required solution of the original first-order differential equation will
introduce a relation between the two integration constants K1 and K2 of the second-order equation
(2.B.8).

Finally, we transform this result back to our original variable Θ = Θ(t). For this purpose, we
introduce the shorthand T(x,y) = T + (x; y; 0). The phase Θ then reads

cos Θ(t) = Re
(
−N
A
− i
√

1− N2

A2 + g

γ

(√
1− N2

A2 − iN
A

)
iγgKM(T(1,1))− U(T(1,1))

KM(T )− U(T )

)
(2.B.11)

Herein, the constant K is related to the initial condition.
As a ‘sanity check’ of the whole procedure, we illustrate in fig 2.7 an example of the right-hand-

side of eq (2.B.11). It is satisfying to see that cos Θ(t) assumes as values the full range [−1, 1], but
does not exceed it, as it should be for a well-defined cosine function. This also holds true for all
other parameter values.

hs

0

0.5

1

-0.5

-1
0 5 10 15 20

Figure 2.7: Illustration of the right-hand-side of eq (2.3.6), over against the time t, for the param-
eters g/γ = 1, A = 1, N = 2.

2. Case B/2 = A. This case can also be specified by the condition A = N . Now, eq (2.B.7) turns
into a Bessel differential equation

τẅ + Cẇ + BC

2 w = 0 (2.B.12)

with the general solution [Boa83]

w(τ) = K1τ
(1−C)/2J1−C

(
i
√

2BCτ
)

+K2τ
(1−C)/2JC−1

(
i
√

2BCτ
)

(2.B.13)
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where Jp(x) denotes the Bessel function of the first kind of order p [Abr64] (C is not an integer,
see (2.B.3)). Transforming back to the original variables, we find

cos Θ(t) = −Re

1 + i√
A

e−
γ
2 t

KJi gγ

(
2i gγ
√
Ae−γt

)
− J−i gγ

(
2i gγ
√
Ae−γt

)
KJ1+i gγ

(
2i gγ
√
Ae−γt

)
+ J−1−i gγ

(
2i gγ
√
Ae−γt

)
 (2.B.14)

The constant K is related to the initial condition. We also checked that the function cos Θ(t) in
(2.B.14) has the full range [−1, 1], in analogy with fig 2.7, as it should be.

Eqs. (2.B.11,2.B.14) are the main result of this appendix and are quoted in the main text.

2.C Linear stability of the steady state
We analyse the stability of the stationary solutions found in section 2.4 with a linear stability
analysis. Consider the equations of motion (2.4.2,. . . ,2.4.6) and use the spherical constraint to
eliminate the variable x5. The Jacobian matrix J of the resulting system of five equations, in the
variables x1, . . . , x4, ω, is

J =



−γ/2 ω 0 0 gx2

κg/ω − ω −γ/2 0 0 −gx1
(
1 + gκ/ω2)

−2gκx2/ω −2κgx1/ω −γ 2ω 2g
(
x4 + κgx1x2/ω

2)
4κgx1/ω 0 −2ω −γ −2g

(
x3 + κgx2

1/ω
2)

0 0 0 2ω g (2x4 − γ/g)


(2.C.1)

Inserting the disordered solution ω = ωd gives the following list of eigenvalues ei of J :

e1 = −γ (2.C.2)

e2 = −γ − ig (2.C.3)

e3 = −γ + ig (2.C.4)

e4 = −γ/2−
√
κg − g2/4 (2.C.5)

e5 = −γ/2 +
√
κg − g2/4 (2.C.6)

In the range g ∈ (0, g1) ∪ (g2,∞), with g1,2 given by (2.4.13), all real parts of the eigenvalues
are negative and thus the disordered solution is stable under small perturbations. On the other
hand, for g ∈ (g1, g2), the disordered solution is unstable, since the real part of the eigenvalue e5
is positive and yields consequently an amplification of an infinitesimal perturbation.

For the ordered solution, there is no simple closed representation of the eigenvalues. However,
we have checked that the numerical computation of the eigenvalues of J at the ordered solution
ω = ωd does imply linear stability of the ordered solution in the region g ∈ (g1, g2) and instability
outside of this region.



Chapter 3

Lindblad dynamics of the
quantum spherical model

3.1 Introduction
In this chapter, we shall study the relaxational quantum dynamics of the quantum spherical model,
after a quantum quench, in the limit of N →∞ quantum spins. This is work done in [Wal17b].

The statistical mechanics of non-equilibrium open system continues to pose many challenges,
related to the absence of a unified framework for their formulation. Here, we shall be con-
cerned with non-equilibrium relaxations of open quantum systems. In the vicinity of equilibrium,
linear-response theories such as the Kubo formula or the Landauer-Büttiker formalism may be
used[Kub57a, Kub57b, Jeo95, Mah00]. But such approaches cannot describe the system’s be-
haviour after a quench from one physical phase into another. Studies on the physical ageing of
glassy and non-glassy systems after such quenches have led to a precise understanding of the
associated phenomena and in particular have made it clear that the competition between several
distinct, but equivalent, equilibrium states may prevent the system to relax to an equilibrium state
at all, even if the microscopic dynamics does satisfy detailed balance [Hen09, Mar05, Sch14].

Often-used phenomenological approaches to classical dissipative systems include master equa-
tions for the probability distributions or Langevin equations for the observables. A major distinc-
tion of quantum systems with respect to classical ones is the presence of a conjugate momentum
pn for each classical observable sn, both to be considered as operators, such that canonical com-
mutation relations [sn, pm] = i~δn,m should hold. From the point of view of a phenomenological
classical description, this raises the requirement to re-formulate the dynamics in such a way that
these prescribed conservation laws should be obeyed. Therefore, simplistic approaches such as
phenomenological Kramers equations, for the observables sn and the momenta pm, supplemented
by phenomenological damping terms, are inadequate, since they lead to the violation of the canon-
ical commutation relations, on time-scales of the order of the inverse damping rate, such that an
effectively classical dynamics remains [Car99]. The open system dynamics of a quantum system
is most ideally studied using the concept of dynamical semi-groups and completely positive trace
preserving (CPTP) dynamics. In the Heisenberg picture, this may be implemented using the tools
of quantum Langevin equations [Gar04]. Conversely, in the Schrödinger picture, that is most
readily accomplished using Lindblad master equations.

Formally, the Lindblad equation preserves the trace, the hermiticity and the positivity of the
reduced density matrix ρ. On the other hand, it is not considered straightforward to write down
explicit expressions for the Lindblad dissipators for generic many-body systems, although well-
established formalisms exist for few-body systems, see e.g. [Bre07, Att06b, Att07, Wei99, Sch14].
Finally, if such expressions have been obtained, actually solving a Lindblad equation is far from
obvious. Some results exist for one- or two-body problem, see [Bre07, Wei99, Sch14]. For fermionic
many-body chains, exact solutions have been found by establishing relationships with 1D quantum
integrability, see [Pro10, Pro11a, Kar13] and [Pro15] for a recent review. Indeed, integrable models
are relevant for the understanding of a large range of experiments, see [Bat16] for a recent review.
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But by their very mathematical nature, such techniques are limited to one-dimensional systems.
In order to provide insight beyond purely numerical studies, a versatile and non-trivial exactly

solvable model is sought. In equilibrium statistical mechanics, the so-called spherical model of a
ferromagnet (see section 3.2 for the precise definition) [Ber52, Lew52] has since a long time served
for such purposes. In the classical formulation with ferromagnetic nearest-neighbour interactions,
it undergoes a continuous phase transition at a critical temperature Tc > 0 for spatial dimensions
d > 2 (d can be treated as a continuous parameter) and for 2 < d < 4 dimensions, the critical
exponents are distinct from those of mean-field theory. The standard formulation in terms of
classical spins has the drawback that the third fundamental theorem of thermodynamics is not
obeyed, since the specific heat ch = 1 for a temperatures T < Tc [Ber52]. This can be cured
however, by adjoining to each spin variable sn a canonically conjugate momentum pn and adding
a kinetic energy term, with a quantum coupling g, to the Hamiltonian H, thus arriving at the
quantum spherical model [Obe72]. Then the specific heat ch vanishes indeed as T → 0, as it
should be [Voj96, Oli06]. The model’s properties near the critical temperature Tc(g) > 0 are the
same as in the classical spherical model. However, at temperature T = 0, there is for d > 1
dimensions a quantum critical point, at some g = gc > 0, which is in the same universality class
as the classical model in d + 1 dimensions [Hen84b, Voj96, Oli06, Wal15]. The formulation of
the spherical model contains the so-called ‘spherical constraint’. The exact solution of the model
reduces to establishing the constraint equation for the associated Lagrange multiplier which at
equilibrium must be found from the solution of a transcendent equation. Turning to the dynamics,
the kinetics of the classical spherical model can be described in terms of a Langevin equation, such
that the spherical constraint reduces to a Volterra integral equation for the now time-dependent
Lagrange multiplier [Ron78, God00]. Many aspects of the non-equilibrium dynamics of the model
have been analysed in great detail, including extensions to the spherical spin glass and to the
growth of interfaces [Ron78, Con94, Cug95, God00, Pic02, Dur17].

Here, we shall explore aspects of the non-equilibrium quantum dynamics of the quantum spher-
ical model. In order to construct the Lindblad dissipators, we shall require that these are chosen
such that (i) the correct quantum equilibrium state emerges as the stationary state of the dy-
namics and (ii) in the classical limit g → 0, the correct classical Langevin dynamics should be
recovered. As we shall see, this fixes the form of the Lindblad dissipators, up to the choice of
an overall time scale. To do so, we recall in section 3.2 the definition of the quantum spherical
model and the main properties of its equilibrium phase diagram. In section 3.3, the Lindblad
dissipators will be constructed in two different ways. First, we shall follow the traditional route of
system-plus-reservoir methods [Bre07, Sch14], and inspired by recent constructions of free bosonic
quantum systems [Ga16, San16], we shall give an explicit description for the phonons which make
up the reservoir. We also discuss how this construction must be amended to take the spherical
constraint into account. In section 3.4, we derive the associated equations of motion for the ob-
servables. Independently of any specific model for the reservoir, we shall show how a comparison
with the classical limit g → 0 (whenever available) determines the form of the Lindblad dissi-
pators. This also clarifies further the interpretation of the phonon reservoir model. The formal
closed-form solution for spin- and momentum-correlators will be derived. The most difficult part of
any spherical-model calculation is the solution of the spherical constraint, which becomes a highly
non-trivial integro-differential equation. Since a full solution of this equation is very difficult, we
shall focus on two special cases. First, in section 3.5, we analyse the semi-classical limit, which
can be used to describe the leading quantum correction to the order-disorder phase transition at
temperature T = Tc(g). By construction, the Lindblad equation does preserve quantum coher-
ence. Still, we find from the explicitly computed spin-spin correlator that to leading order in g,
the dynamical critical behaviour, for temperatures T > Tc(g), T = Tc(g) or T < Tc(g) is exactly
the one of the classical dynamics, where quantum effects only manifest themselves through the
appearance of a new effective temperature T 7→ Teff(g). For quenches to T ≤ Tc(g), dynamical
scaling hold with a dynamical exponent z = 2. Having thus confirmed the consistency of the Lind-
blad formalism applied to the quantum spherical model, we analyse in section 3.6 what happens
for a quantum quench deeply into the ordered phase, through an exact analysis of the leading
long-time and large-distance behaviour of the spin-spin and momentum-momentum correlators.
It turns out that the leading long-time behaviour is independent of the dissipation rate γ. The
dynamical exponent now is z = 1, but we do not find simple dynamical scaling. Rather, the exact
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Figure 3.1: Equilibrium quantum phase diagram of the saqsm at T = 0, for dimensions d =
[1.3, 1.5, 2, 2.5, 3], from bottom to top. We show for each dimension the critical line gc(λ) below
which the system is a quantum ferromagnet. Above these lines order is destroyed by quantum
fluctuations [Wal15].

scaling functions point towards the existence of several length scales, which differ by logarithmic
factors. The technical details of the calculations are covered in several appendices.

3.2 Quantum spherical model: equilibrium
The Spin-Anisotropic Quantum Spherical Model (saqsm) [Wal15] is defined by a set of ‘spin
operators’ sn = s†n, attached to the sites n of a d-dimensional hyper-cubic lattice L ⊂ Zd with
N = Nd sites. For each spin variable we define the corresponding conjugated momentum pn = p†n
[Obe72], which satisfies the canonical commutation relations

[sn, pm] = i δn,m (3.2.1)

Throughout, we shall use units such that ~ = 1. For nearest-neighbour interactions, and with
periodic boundary conditions, the Hamiltonian is

H =
∑
n∈L

g
2

(
p2

n −
1− λ

2S
∑
〈n,m〉

pnpm

)
+ S

(
s2

n −
1 + λ

2S
∑
〈n,m〉

snsm

) (3.2.2)

where 〈n,m〉 are pairs of nearest-neighbour sites m and n. The parameter λ describes the
spin-anisotropy in the interactions (this can be seen explicitly by going over to bosonic degrees of
freedom [Wal15]) and the usually studied quantum spherical model is the special case λ = 1. The
parameter g is the quantum coupling, such that for λ = 1 and g → 0, the spin operators become
real numbers sn ∈ R and one recovers the classical spherical model [Ber52]. Finally, the spherical
parameter S is a Lagrange multiplier, to be chosen self-consistently in order to satisfy the so-called
mean spherical constraint [Lew52] ∑

n∈L

〈
s2

n

〉
= N (3.2.3)

The quantum Hamiltonian is invariant under the duality transformation D given by

λ↔ −λ , sn ↔
√

g

2S pn (3.2.4)
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We shall strive to find a Lindblad dissipator which will preserve this symmetry. The equilibrium
phases at temperature T = 0, and the dimension-dependent transition lines gc(λ, d) are shown in
fig 3.1. A re-entrant phase transition is seen for 1 < d . 2.065 when λ is small enough, without a
known counterpart in the fermionic analogues of the saqsm [Wal15]. This illustrates the non-trivial
nature of the ground state of H.

The Hamiltonian (3.2.2) is readily diagonalized. First, one goes over to to Fourier space. Define
the (non-hermitian) operators qk = q†−k and πk = π†−k, along with the inverse transformations

qk := N−1/2
∑
n∈L

sn e−in·k , πk := N−1/2
∑
n∈L

pn ein·k (3.2.5a)

sn = N−1/2
∑
k∈B

qk ein·k , pn = N−1/2
∑
k∈B

πk e−in·k . (3.2.5b)

where the momentum k lies in the first Brillouin zone B := {k = (k1 . . . kd)|ki ∈ {− π
N . . . πN }.

These operators obey the canonical commutation relations

[qk, πk′ ] = i δk,k′ (3.2.6)

and the transformation (3.2.5a) casts the Hamiltonian (3.2.2) into the form

H =
∑
k∈B

[ g
2SΛ2

−;k πkπ−k + Λ2
+;k qkq−k

]
(3.2.7)

where

Λ±;k :=
√
S + 1± λ

4 (ωk − 2d) with ωk := 2
d∑
j=1

(1− cos kj) (3.2.8)

In the same manner, the spherical constraint (3.2.3) is transformed as∑
k∈B

〈qkq−k〉 = N . (3.2.9)

The Hamiltonian (3.2.7) is now diagonalised by introducing the bosonic ladder operators

qk = αk

bk + b†−k√
2

, πk = i
αk

b†k − b−k√
2

, (3.2.10a)

bk = αk√
2

(
qk

α2
k

+ iπ−k

)
, b†k = αk√

2

(
q−k

α2
k

− iπk

)
(3.2.10b)

where

αk =
( g

2S

)1/4
√

Λ−;k

Λ+;k
(3.2.11)

The operators bk and b†k obey the usual Weyl-Heisenberg algebra
[
bk, b

†
k′

]
= δk,k′ . The Hamilto-

nian in eq (3.2.7) then becomes

H =
∑
k∈B

Ek

(
b†kbk + 1

2

)
, Ek =

√
2 g
S

Λ+;kΛ−;k . (3.2.12)

The isotropic case

For technical simplicity, we shall focus on the Lindblad equation in the isotropic case λ = 1. Then,
eq (3.2.8) reduces to Λ−;k =

√
S and

Λ+;k =: Λk =
√
S − d+ ωk/2 (3.2.13)

The energy Ek in eq (3.2.12) and the parameter αk in eq (3.2.11) simplify to

Ek =
√

2g · Λk = √g
√

2(S − d) + ωk , αk =
(g

2

)1/4 1√
Λk

(3.2.14)
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In the long-wavelength limit we may expand the cosines and write

Ek '
√

2g
[√
S − d + 1

2
k2

√
S − d

]
(3.2.15)

where k2 = k2
1 + . . .+ k2

d. The last term in (3.2.15) represents a non-relativistic massive dispersion
relation, whereas the first term represents a chemical potential term. Clearly, thermodynamic
stability is realised if S ≥ d. Furthermore, the zero-momentum energy gaps vanish for S = d. In
complete analogy with the classical spherical model [Ber52], this last condition defines the critical
point.

3.3 Construction of the Lindblad master equation
Now, we discuss how to describe the dynamics of the of the quantum spherical model in contact
with a heat bath. We shall explicitly admit the Markov property in the dynamics and the weak-
coupling limit of the coupling between the system and the bath. It is well-established that under
these hypotheses, the most general description of the quantum dynamics of a system interacting
with a reservoir is a non-unitary time-evolution of the reduced density matrix ρ, via the Lindblad
equation [Bre07, Sch14]

∂tρ = −i [H, ρ] +D(ρ) (3.3.1)

Herein, the dissipator D(ρ) describes the relaxation towards equilibrium. In the case of a single
harmonic oscillator, interacting with a thermal bath, made of a phonon or photon gas, at the fixed
temperature T [Lin76, Bre07, Sch14]

D(ρ) = γ(E)
(

(n̄+ 1)
[
bρb† − 1

2{b
†b, ρ}

]
+ n̄

[
b†ρb− 1

2{bb
†, ρ}

])
(3.3.2)

where E is the energy of the oscillator, b and b† are the bosonic ladder operators of the system,
{A,B} = AB + BA is the anti-commutator, γ(E) is the damping parameter which also depends
substantially on the bath and

n̄ =
(

eE/T − 1
)−1

(3.3.3)

is the Bose-Einstein occupation number at bath temperature T . This quantum master equation
(3.3.1,3.3.2) preserves essential properties of the density matrix ρ, namely trace, complete positivity
and hermiticity [Lin76]. In addition, the Schrödinger picture is used for the bosonic operators b, b†.
Hence the commutator

[
b, b†

]
= 1 is time-independent and its conservation is an intrinsic property

of the formalism [Car99].
For our many-body problem, further consistency requirements are necessary:

1. the quantum equilibrium state must be a stationary state of eqs (3.3.1,3.3.2),

2. this should imply that in the g → 0 limit, the classical equilibrium state must be a stationary
state,

3. the classical Langevin dynamics must follows in the limit g → 0, for all times.

It turns out that these requirements can all be met, in an essentially unique way. The final Lindblad
equation of the saqsm will come out to read

∂tρ = −i
[
H, ρ

]
+γ0

∑
k∈B

[(
1 + λ

2

)2
Λ2
−;k +

(
1− λ

2

)2
Λ2

+;k

]
Λ2

+;kΛ2
−;k

S2 ×

×
[

(n̄k + 1)
(
bkρb

†
k −

1
2{b
†
kbk, ρ}

)
+ n̄k

(
b†kρbk −

1
2{bkb

†
k, ρ}

)]
(3.3.4)
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Herein, the only free parameter is the constant γ0 which sets the time-scale. Clearly, the dissipator
does depend on the spherical parameter S. The derivation of (3.3.4) is made first for a free bosonic
system, without taking the spherical constraint into account. At the end, through the spherical
constraint which must hold at all times, S = S(t) becomes time-dependent. This will turn out to
make the solution of the spherical constraint considerably more complicated than at equilibrium
(and also with respect to the classical dynamics).
Two different ways of deriving (3.3.4) will be presented:

(i) One may consider explicitly the system-reservoir coupling and go through the standard route,
with the usual approximations [Bre07]. The bath properties are taken into account through
the explicit time-dependent phonon (or photon) correlators. This gives a formal derivation
of the Lindblad equation and will be carried out in the remainder of this section.

(ii) For the purpose of model-building, an alternative and more phenomenological approach
might be useful. As we shall show in section 3.5, one may start from a generic form of
the dissipator, essentially a sum of terms of the form (3.3.2) for each mode, and with yet
unspecified damping constants γk. We then derive quantum equations of motion for certain
observables. Comparison of these equations of motion with the known classical g → 0 limit
(if available) then fixes the γk.

At the end, both procedures lead to the same Lindblad equation (3.3.4).

3.3.1 General structure of the system-bath coupling
Now, largely following [Bre07], but with the few adaptations required for the quantum spherical
model, we introduce the open-system dynamics.

For clarity, we begin treating just a single spin, say sn, coupled to the bath. The coupling of
several spins is obtained at the end straightforwardly. As usual, the bath will be modelled by an
infinite number of bosonic ‘phonon’ degrees of freedom, with the bath Hamiltonian

HB =
∑
`

Ω`η†`η` (3.3.5)

with the bosonic operators η` and their corresponding frequencies Ω`. The system-bath interaction
Hamiltonian is assumed to take the form

HI =
∑
`

f` An ⊗ (η` + η†` ) (3.3.6)

where f` ∈ R is a coupling constants and An is a hermitian system operator. There is a certain
freedom in the choice of An. Here, rather than a simplistic coupling to only the spin operator
sn = s†n or only to the momentum operator pn = p†n, we prefer a coupling which preserves the
invariance under the duality transformation D , see eq (3.2.4). The most general linear operator
compatible with duality is

An = 1 + λ

2
sn√
g

+ 1− λ
2

pn√
2S

. (3.3.7)

In the weak-coupling limit, the action of the bath is described approximately by a Lindblad equa-
tion for the reduced density matrix ρ of the system

∂tρ = −i[H, ρ] +Dn(ρ) (3.3.8)

where the first term describes the unitary evolution and Dn(ρ) is the Lindblad dissipator corre-
sponding to the interaction (3.3.6). The expression for Dn(ρ) is most commonly derived using the
method of eigenoperators [Bre07].

To make this presentation self-contained, we rapidly recall the main steps before applying it to
the saqsm. Consider a Hamiltonian H with energy levels ε and let Pε denote the corresponding
projection operator onto the subspace of eigenvectors that have energy ε. Moreover, assume that
the system-bath coupling may be described by an interaction Hamiltonian of the form HI = AB,
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where A and B are hermitian system and bath operators, respectively. Define the eigenoperator
A(ω) corresponding to A via the relation

A(ω) =
∑
ε,ε′

PεAPε′ δε′−ε,ω (3.3.9)

where the sum is over all distinct energies ε, ε′ and δa,b is the Kronecker delta. It can be shown
that

[H,A(ω)] = −ωA(ω) , A†(ω) = A(−ω) . (3.3.10)
The quantities ω represent all allowed energy differences that may be produced by the action of
the operator A.

It follows that the Lindblad dissipator corresponding to the interaction HI = AB reads, in the
Born-Markov and rotating wave approximations [Bre07]

D(ρ) =
∑
ω

Γ(ω)
[
A(ω)ρA†(ω)− 1

2{A
†(ω)A(ω), ρ}

]
(3.3.11)

where
Γ(ω) =

∫ ∞
−∞

dt eiωt〈B(t)B(0)〉 (3.3.12)

is the Fourier transform of the bath correlation functions. This method therefore allows one to
readily write down the dissipator corresponding to a given system-bath interaction. However, to do
so we must compute the eigenoperator A(ω) from eq (3.3.9), which require the full eigenstructure
of the Hamiltonian. It is also worth noting that this method also produces a Lamb-shift correction
to the Hamiltonian. However, this correction is usually small and, for simplicity, will be neglected.

3.3.2 Evaluation of bath correlation functions
Returning now to our problem, the interaction Hamiltonian (3.3.6) hasA = An andB =

∑
` f`(η`+

η†` ). One must compute eq (3.3.12) for this choice of B. If the bath is in thermal equilibrium at a
fixed temperature T , one has

〈B(t)B(0)〉 =
∑
`

f2
`

(
e−iΩ`t[n̄(Ω`) + 1] + eiΩ`tn̄(Ω`)

)
(3.3.13)

with the Bose-Einstein distribution n̄ defined in eq (3.3.3). Inserting this into eq (3.3.12) leads to

Γ(ω) = 2π
∑
`

f2
`

(
δω,Ω` [n̄(Ω`) + 1] + δω,−Ω` n̄(Ω`)

)
(3.3.14)

If the bath frequencies Ω` vary continuously in the interval [0,∞), one may convert the sum to an
integral, leading to

Γ(ω) =
∫ ∞

0
dΩ γ(Ω)

(
δω,Ω[n̄(Ω) + 1] + δω,−Ωn̄(Ω)

)
=

γ(ω)[n̄(ω) + 1] , if ω > 0

γ(|ω|)n̄(|ω|) , if ω < 0
(3.3.15)

with the associated spectral density

γ(Ω) = 2π
∑
`

f2
` δ(Ω− Ω`) (3.3.16)

In order to have a definite prediction for the spectral density γ(ω), additional physical information
about the distribution of bath frequencies is needed. In general, one expects that

γ(Ω) ∼ Ωκ (3.3.17)

for some exponent κ. For definiteness, we shall consider the specific model where the bath bosons
are phonons (assuming acoustic phonons for simplicity). Then the index ` is replaced by the



70 CHAPTER 3. LINDBLAD DYNAMICS OF THE QUANTUM SPHERICAL MODEL

momentum k and the dispersion relation Ωk = c|k| where c is the sound velocity. Transforming
the sum in eq (3.3.16) into an integral gives

γ(Ω) ∼ f(Ω)2Ω2 (3.3.18)

The coupling constants fk are usually assumed to be proportional to the electric field (minimum
coupling) [Bre07], which in turn is proportional to

√
Ωk. In the continuum limit f ∼

√
Ω such

that finally
γ(Ω) = γ0Ω3 (3.3.19)

where the constant γ0 describes the strength of the system-bath coupling. As we shall see in
section 3.5, the choice κ = 3 indeed reproduces the correct classical dynamics in the g → 0 limit,
for all dimensions d > 0.

3.3.3 Calculation of the eigenoperators
To finish the construction of the dissipator (3.3.11) one must find the eigenoperators A(ω) corre-
sponding to A = An. First, use eqs (3.2.5b) and (3.2.10a) to write

An = (g−3/2S) 1
4

√
2N

∑
k∈B

ein·k
(
ckbk + c∗kb

†
−k

)
with ck = 1 + λ

2

√
Λ−;k

Λ+;k
+ i1− λ2

√
Λ+;k

Λ−;k

(3.3.20)
Next we note that, due to the diagonal structure ofH in eq (3.2.12), it follows that [H, bk] = −Ekbk.
Hence, comparison with eq (3.3.10) shows that bk is an eigenoperator of H with allowed transition
frequency ω = Ek. The same is true for ckbk as well. The full eigenoperator therefore reads

An(ω) = (g−3/2S) 1
4

√
2N

∑
k∈B

ein·k
(
ckbkδEk,ω + c∗kb

†
−kδEk,−ω

)
(3.3.21)

The dissipator (3.3.11) corresponding to An being coupled to the bath, will then be

Dn(ρ) =
∑
ω

Γ(ω)
[
An(ω)ρA†n(ω)− 1

2{A
†
n(ω)An(ω), ρ}

]
(3.3.22)

This expression may be simplified further. To do that, it suffices to look only at the first term:∑
ω

Γ(ω)An(ω)ρA†n(ω)

=
∑
ω,k,k′

ein·(k−k′)

2 N Γ(ω)
√
g−3

2S

(
ckbkδEk,ω + c∗kb

†
−kδEk,−ω

)
ρ

(
c∗k′b

†
k′δEk′ ,ω + ck′b

†
−k′δEk′ ,−ω

)

Since Ek > 0. see eq (3.2.12), the only terms which will survive the constraints imposed by the δ’s
are those with Ek = Ek′ . Since the energies may be degenerate, this does not necessarily imply
that k = k′. But if we carry out the sum over ω and use eq (3.3.15), we obtain∑

ω

Γ(ω)An(ω)ρA†n(ω)

=
√
g−3

8S
∑
k,k′

δEk,Ek′

ein·(k−k′)

N
γ(Ek)

[
ckc
∗
k′(n̄k + 1)bkρb

†
k′ + c∗kck′ n̄kb

†
kρbk′

]
.

The structure of the other terms in eq (3.3.22) will be similar. Finally, we define

γ
(n)
k,k′ =

√
g−3

8S γ(Ek) ein·(k−k′)

N
ckc
∗
k′ (3.3.23)
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The final single-site dissipator (3.3.22) reads

Dn(ρ) =
∑
k,k′

δEk,Ek′

(
(n̄k + 1)γ(n)

k,k′

[
bkρb

†
k′ −

1
2{b
†
k′bk, ρ}

]
+ γ

(n)
k′,k

n̄k

[
b†kρbk′ −

1
2{bk′b

†
k, ρ}

])
(3.3.24)

and describes the action of coupling a single degree of freedom to the heat bath. It couples to
all normal modes bk. Furthermore, it is well-known that dissipators of this form will let evolve
the system towards the correct thermal Gibbs state ρ ∼ e−H/T , although only a single spin was
coupled to the bath [Bre07].

The information which site n is coupled to the bath is contained in the factor γ(n)
k,k′ .

3.3.4 Effect of coupling the entire system to the bath
We now extend this to the case where all spins are coupled to the bath. In this case, for each
degree of freedom, at site n, we shall have a dissipator Dn(ρ) appearing in eq (3.3.8). But if we
look at eq (3.3.24) we see that n only appears in the quantities γ(n)

k,k′ . Thus if we sum all dissipators
Dn(ρ) we will get a result with a structure identical to eq (3.3.24), but with γ(n)

k,k′ replaced by

∑
n

γ
(n)
k,k′ =

√
g−3

8S γ(Ek)|ck|2δk,k′ =: δk,k′ γk (3.3.25)

where, using also eq (3.3.19), we find

γk = γ0

[(
1 + λ

2

)2
Λ2
−;k +

(
1− λ

2

)2
Λ2

+;k

]
Λ2

+;kΛ2
−;k

S2 (3.3.26)

Specific calculations will only be carried out for the isotropic case λ = 1. Then (3.3.26) simplifies
to

γk = γ0Λ2
k (3.3.27a)

see also eq (3.2.13). The final dissipator, after having summed over n, reads

D(ρ) =
∑
k∈B

γk

(
(n̄k + 1)

[
bkρb

†
k −

1
2{b
†
kbk, ρ}

]
+ n̄k

[
b†kρbk −

1
2{bkb

†
k, ρ}

])
(3.3.27b)

This is our final result (3.3.4) for the microscopic derivation of the Lindblad dissipator.
Recall that this dissipator satisfies detailed balance, as shown in [Bre07]. Therefore, modulo

an ergodicity assumption, the Lindblad equation (3.3.4) will thermalise the system, irrespective of
the initial condition, to the unique steady-state with reduced density matrix ρ ∼ e−H/T .

This entire discussion did not take into account the spherical constraint (3.2.9). If one uses it
in an ad hoc fashion, one would consider S = S(t) as time-dependent. Then either the couplings
to the bath or the bath properties themselves, described by γk, n̄k and the operators bk must be
considered time-dependent. Pragmatically, one considers an effectively time-dependent dissipator
Dt which will always have as its target state the instantaneous Hamiltonian H = H(t) of the
system, such that formally Dt(e−βH(t)) = 0. Physically, that means that the time-dependent
changes in H should be slow enough, which in turn should be the case if the changes in S(t)
should be more slow than the typical bath correlation times. Since the eventual applications we
are interested in concern the slow power-law relaxations after a quantum quench into the two-phase
coexistence regime with formally infinite relaxation times, we expect that these kinds of physical
requirements should be satisfied.

More systematically, one should not have imposed a spherical constraint, but rather have
considered a second bath in order to implement it, at least on average. Since we expect that for
sufficiently long times, the effective equations of motion should become the same as those we are
going to study in the next section, we have not carried out this explicitly. At the present time,
we consider it more urgent to arrive at some understanding of the qualitative consequences of the
equations of motion on the long-time behaviour of the non-equilibrium correlators.
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3.4 Dynamical equations for observables
In this section, we shall examine the dynamical equations governing the evolution of certain impor-
tant observables under the influence of the heat bath. For any observable O, the time-dependent
average 〈O〉 = 〈O〉 (t) is found from

d
dt 〈O〉 = trO ∂tρ+ tr ρ ∂tO (3.4.1)

In principle, all quantities αk, Ek, γk and n̄k should be considered as being time-dependent, if
the spherical constraint is taken into account. These explicit time-dependencies come from the
second term on the right-hand-side in (3.4.1). For the sake of simplicity of the presentation, we
shall discard it for the moment but shall re-introduce it later.

Therefore, for any observable O not depending explicitly on time, hence ∂tO = 0, inserting the
Lindblad equation (3.3.8) into (3.4.1) gives

d
dt 〈O〉 = −i〈[O, H]〉+ 〈D̄(O)〉 (3.4.2)

with the adjoint dissipator

D̄(O) =
∑
k∈B

γk

(
(n̄k + 1)

[
b†kObk −

1
2{b
†
kbk,O}

]
+ n̄k

[
bkOb†k −

1
2{bkb

†
k,O}

])
(3.4.3)

Although the form of the γk was discussed in the previous section, we shall keep them here in a
generic form. This will allow an alternative derivation of the Lindblad equation (3.3.4).

In order to understand how this adjoint dissipator arises, consider the second term as an
example, namely D2(ρ) = γn̄

(
b†ρb− 1

2
{
b†b, ρ

})
, for a single mode. Then

trOD2 = γn̄ tr
(
Ob†ρb− 1

2Ob
†bρ− 1

2Oρb
†b

)
= γn̄ tr ρ

(
bOb† − 1

2Ob
†b− 1

2b
†bO

)
= γn̄

〈
bOb† − 1

2Ob
†b− 1

2b
†bO

〉
which produces the second term in (3.4.3). The first term is obtained similarly.

For the single-particle observables O ∈ {bk, b
†
k, qk, πk}, we find from (3.4.1, 3.4.2, 3.4.3)

d
dt 〈bk〉 = −

(
γk

2 + iEk

)
〈bk〉+ 〈∂tbk〉 ,

d
dt 〈b

†
k〉 = −

(
γk

2 − iEk

)
〈b†k〉+ 〈∂tb†k〉 (3.4.4a)

d
dt 〈qk〉 = −γk

2 〈qk〉+ g

S
Λ2
−;k〈π−k〉 ,

d
dt 〈π−k〉 = −γk

2 〈π−k〉 − 2Λ2
+;k〈qk〉 (3.4.4b)

where we also used the fact that Ek, αk and γk are all even in k. In particular, the time-dependent
magnetization is expressed as

M =
∑
n∈L
〈sn〉 =

√
N 〈q0〉 (3.4.5)

where use was made of the orthogonality of the Fourier series.
Next we turn to two-body correlators. We find, again using eqs (3.4.1,3.4.2,3.4.3),

d
dt 〈b

†
kbk′〉 = 〈∂tb†kbk′〉+

[
i(Ek − Ek′)−

γk + γk′

2

]
〈b†kbk′〉+ γkn̄kδk,k′ (3.4.6a)

d
dt 〈bkbk′〉 = 〈∂tbkbk′〉+

[
− i(Ek + Ek′)−

γk + γk′

2

]
〈bkbk′〉 (3.4.6b)

From these equations we may also compute dynamical equations for the two-point correlators

Qk(t) = 〈qkq−k〉 , Πk(t) = 〈πkπ−k〉 , Ξk(t) = 1
2 〈qkπk + π−kq−k〉 (3.4.7)
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The spherical constraint (3.2.9) then becomes in the N →∞ limit∑
k∈B

Qk(t) = N ⇔
∫
B

dk
(2π)dQk(t) = 1 (3.4.8)

and we find the eqs of motion for the two-point correlators

dQk

dt = −γk

[
Qk(t)− 1

4

√
2g
S

Λ−;k

Λ+;k
(2n̄k + 1)

]
+ 2 g
S

Λ2
−;kΞk(t) (3.4.9a)

dΞk

dt = −γk · Ξk(t) + g

S
Λ2
−;k ·Πk(t)− 2Λ2

+;k ·Qk(t) (3.4.9b)

dΠk

dt = −γk

[
Πk(t)−

√
S
2g

Λ+;k

Λ−;k
(2n̄k + 1)

]
− 4Λ2

+;k · Ξk(t) (3.4.9c)

At this point we would like to stress again that the canonical commutation relation [qk, πk′ ] = iδk,k′
is preserved due to the fact that qk and πk′ are Schrödinger operators. In particular this is
connected to the trace preserving property of the dynamics as

∂t 〈[qk, πk′ ]〉 = tr
(

[qk, πk′ ] ρ̇
)

= iδk,k′∂ttr ρ = 0 . (3.4.10)

Along with this, the commutation relation between the bosonic ladder operators is preserved since
they present the same underlying algebra as[

bk, b
†
k′

]
= − i

2

(
αk′

αk
[qk, πk′ ]−

αk
αk′

[π−k′ , q−k]
)

= δk,k′ . (3.4.11)

Having completed these formal calculations, we must now take the spherical constraint (3.2.9,
3.4.8) into account. From (3.4.9a), this becomes an integro-differential equation for the time-
dependent spherical parameter S = S(t). It follows that the parameter αk = αk(t), defined in
(3.2.11), becomes time-dependent as well. It describes the transformation (3.2.10a) between the
bosonic operators bk, b

†
k and the spins qk and momenta πk. Therefore, one must decide whether

either the pair (bk, b
†
k) or else the pair (qk, πk) is taken to be time-independent, and hence is

described by the Schrödinger picture.
We choose (qk, πk) as time-independent operators. The Lindblad formalism then implies the

time-independent commutator (3.2.6). Furthermore, the equations of motion eqs (3.4.4b) and
(3.4.9) remain valid. They will form the basis for our analysis of the dynamics of the quantum
spherical model.

In consequence, in eqs (3.4.4a) and (3.4.6) the contributions coming from the second term in
(3.4.1) must be worked out. For example, the first equation of motion in (3.4.4a) now becomes,
where the dot indicates the time derivative

d
dt 〈bk〉 = −

(
γk

2 + iEk

)
〈bk〉 −

α̇k

αk
〈b†−k〉 (3.4.12)

The other equations can be generalised similarly, but we shall not require them in this work.
Before we analyse the dynamics produced by equations (3.4.9), we shall first consider their

steady-state properties.

3.4.1 Stationary solution and equilibrium properties
The correlators in eqs (3.4.9) will relax to their stationary values, namely Ξk(∞) = 0 and

Qk(∞) = 1
4

√
2g
S

Λ−;k

Λ+;k
(2n̄k + 1), Πk(∞) =

√
S
2g

Λ+;k

Λ−;k
(2n̄k + 1) (3.4.13)
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Figure 3.2: Spherical parameter z = z(d, T, g) as a function of d, the temperature T and the
coupling g. Left panel: classical limit g = 0. Right panel: quantum transition at T = 0.

These are precisely the equilibrium values expected from the saqsm [Wal15]. To see that more
clearly, we substitute these results into the spherical constraint (3.2.9) and find

1 =
√

g

8S
1
N
∑
k∈B

Λ−;k

Λ+;k
(2n̄k + 1) N↗∞−→

√
g

8S

∫
B

dk
(2π)d

Λ−;k

Λ+;k
coth(Ek/2T ) (3.4.14)

This is indeed the spin-anisotropic spherical constraint at equilibrium. The derivation, through a
canonical transformation is given in appendix 3.A. In view of the re-entrant phase diagram for a
non-isotropic interaction with λ 6= 1, this is a non-trivial check of the formalism.

We have therefore confirmed that the equilibrium state of the saqsm is a stationary solution
of the Lindblad equation. Details on the form of the γk are not required to verify this.

In the isotropic case λ = 1, it is useful to let z := 2(S−d). Then (3.4.14) reduces to the familiar
form [Oli06] √

g

2

∫
B

dk
(2π)d

1√
z + ωk

coth
(√

g

2T
√
z + ωk

)
= 1 . (3.4.15)

In the following sections, we shall mainly concentrate on either the semi-classical limit g → 0
or else on the the zero-temperature equilibrium limit T = 0. In these limit cases, the spherical
constraint reduces to

1− g
12T ' T

∫
B

dk
(2π)d

[
1

z+ωk
+ O

(
g2) ] , for g → 0

1 =
√

g
4
∫
B

dk
(2π)d

1√
z+ωk

, for T = 0
(3.4.16)

The upper case in (3.4.16) reduces to the familiar classical form of the equilibrium spherical
constraint [Ber52, Lew52], where the temperature T 7→ Teff(g) = T/(1 − g

12T ) is replaced by
an effective temperature. This also shows that in the g → 0 limit, one recovers the classical
equilibrium state. The lower case in (3.4.16) is the spherical constraint for the quantum phase
transition at T = 0 [Hen84b, Voj96, Oli06]. For illustration, in fig 3.2 we show the Lagrange
multiplier z = z(d, T, g). In the classical limit g = 0 (left panel), the critical value z = 0 is reached
for d ≤ 2 only for a vanishing temperature T = 0 and there is no phase transition. On the other
hand, for d > 2, the line z = 0 is already reached for a finite value T = Tc(d) > 0 which defines the
critical temperature. A qualitatively analogous behaviour is seen for the quantum phase transition
at T = 0 (right panel of fig 3.2). While for d = 1, the critical line z = 0 is only reached for g = 0,
for any dimension d > 1 one finds a finite critical value gc(d) > 0. A more detailed comparison
reveals that the classical transition in d + 1 dimensions, at g = 0 and Tc > 0 and the quantum
transition in d dimensions at T = 0 and gc(d) > 0, are in the same equilibrium universality class
[Hen84b, Voj96, Oli06, Wal15].
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3.4.2 Formal solution of the non-equilibrium problem
To complete the microscopic derivation of the Lindblad dissipator, we now give a phenomenological
discussion of how to chose the dissipator in a physically motivated fashion in order to include the
correct classical many-body dynamics. To do so, we begin by writing down the formal solution of
eqs (3.4.9a)-(3.4.9c). This system can be re-written in a matrix form

d
dt


Qk(t)

Ξk(t)

Πk(t)

 = −mλ
k(t)


Qk(t)

Ξk(t)

Πk(t)

+ uλk(t) (3.4.17)

with the matrices

mλ
k(t) =


γk(t) −2 gSΛ2

−;k 0

2Λ2
+;k γk(t) − g

SΛ2
−;k

0 4Λ2
+;k γk(t)

 , uλk = γk(t)(2n̄k + 1)


−
√

g
8S

Λ−;k
Λ+;k

0√
S
2g

Λ+;k
Λ−;k

 . (3.4.18)

Here we suppressed the explicit time-dependence of the spherical parameter S = S(t) of Λ±;k =
Λ±;k(t) for readability of the equation. Some more comments are in order:

• For a phenomenological discussion the damping rates γk were left unspecified. Since spin-
anisotropy is a quantum-mechanical effect, this discussion must be carried out in the isotropic
case λ = 1. Only at the end, we shall compare with the dissipator (3.3.27) derived form
microscopic consideration in section 3.3.

• The time-dependence of the spherical parameter S(t) is to be found self-consistently from
the formal solution and the spherical constraint

∑
k∈BQk(t) = N .

• Already the isotropic case λ = 1 turns out to be considerably more difficult than the classical
non-equilibrium dynamics, so that we leave the non-isotropic case λ 6= 1 for future work.

Concentrating from now on on the isotropic case λ = 1, we can simplify the matrices (3.4.18) by
using the relations (3.2.13, 3.3.27a) and find

mk(t) =


γk(t) −2g 0

2Λ2
k γk(t) −g

0 4Λ2
k γk(t)

 , uλk = γk(t)(2n̄k + 1)


1
4

√
2g

Λk

0

Λk√
2g

 . (3.4.19)

Choice of the damping parameters

For λ = 1, a well-defined classical limit g → 0 exists. Then, the equation of motion for the spin
correlator Qk decouples and leads to (recall z = 2(S − d))

d
dtQk(t) = −γk(t)Qk(t) + γk(t) T

z(t) + ωk
. (3.4.20a)

We stress that this equation of motion is qualitatively different from the classical Kramers equation
(see [Wal16] for more details) since thermal fluctuations occur not just in the equation of motion of
the momenta but already in the equation for the spins. The second term of the r.h.s. of eq (3.4.20a)
comes from the assumed Lindblad dissipator and generates a coherent quantum dynamics. For an
initial state at infinite temperature Qk(0) = 1. Then the formal solution of (3.4.20a) reads

Qk(t) = e−
∫ t

0
dτ γk(τ)

(
1 + T

∫ t

0
dt′ γk(t′)

z(t′) + ωk
e
∫ t′

0
dτ γk(τ)

)
(3.4.20b)
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We now compare this with the known dynamics of the classical model [God00, eq (2.18)]. The spin-
spin correlator obeys the following equation of motion, which can be derived from the Langevin
equation of the classical spherical model

d
dtQk(t) = −2

(
z(t) + ωk

)
Qk(t) + 2T (3.4.21a)

and has the solution

Qk(t) = e−2tωk−2
∫ t

0
dτ z(τ)

(
1 + 2T

∫ t

0
dt′ e−2t′ωk−2

∫ t′
0

dτ z(τ)
)

(3.4.21b)

Our requirement that the g → 0 limit should reduce to the classical Langevin equation means that
eqs (3.4.20) and (3.4.21) must be consistent. This is achieved if we choose

γk(t) = 2Λ2
k(t) = 2 (z(t) + ωk) (3.4.22)

and includes an implicit fixing of the time-scale in the classical dynamics [God00]. Remarkably,
the condition (3.4.22) is identical to the result eq (3.3.27a) obtained from the microscopic deriva-
tion of the Lindblad dissipator (3.3.27), up to a choice of the overall damping constant γ0. In
particular, this sheds a different light on the heuristic argument we used above in order to fix the
phenomenological exponent κ = 3.

Therefore, we have seen that the requirements of reproducing (i) the correct quantum equilibrium
state and (ii) the full classical dynamics in the limit g → 0 are enough to fix the precise form of
the Lindblad dissipator, up to an overall choice of the time scale.

Closed formal solution

With the final choice (3.4.22), we return to the dynamics for g 6= 0, but keep λ = 1. The formal
solution of eq (3.4.17) is

Qk(t)

Ξk(t)

Πk(t)

 = eMk(t)


Qk(0)

Ξk(0)

Πk(0)

+ γ

∫ t

0
dτ eMk(t)−Mk(τ)(2nk(τ) + 1)


√

g
2 Λk

0√
2
gΛ3

k

 (3.4.23)

where

Mk(t) =
∫ t

0
dτ mk(τ) = −

(
Z(t) + tωk

)

γ 0 0

1 γ 0

0 2 γ

+ gt


0 2 0

0 0 1

0 0 0

 (3.4.24)

and we defined the integrated spherical parameter

Z(t) :=
∫ t

0
dτ z(τ) (3.4.25)

At equilibrium, thermodynamic stability requires z = zeq ≥ 0, as we have seen in section 3.2.
Here, we are interested in the non-equilibrium dynamics after the systems undergoes a quench

from an initial disordered state to a state characterised by certain values of (T, g). Since then
the initial values 〈qk〉(0) = 〈πk〉(0) = 0, the noise-averaged global magnetisation remains zero
at all times, although fluctuations around this will be present. We therefore focus on two-body
correlators. By analogy with classical dynamics we expect that if that quench goes towards a state
in the disordered phase, with a single ground state of the Hamiltonian H, a rapid relaxation, with
a finite relaxation time, should occur towards that quantum equilibrium state. For sufficiently
large times, z(t) > 0 is expected. On the other hand, for quenches either onto a critical point or
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else into the ordered phase (with at least two distinct, but equivalent ground states), the formal
relaxation times become infinite. Then z(t) may evolve differently. For the classical spherical
model, quenched from a fully disordered high-temperature state to a temperature T , one finds for
long times the leading behaviour [Ron78, God00, Pic04]

Zcl(t) ∼ z
2 ln t , z =


− 1

2 (4− d) ; if T = Tc and d < 4
0 ; if T = Tc and d > 4
−d2 ; if T < Tc

(3.4.26)

In contrast to the equilibrium situation, this is non-positive and by itself gives a clear indication
that after a quench to T ≤ Tc, the system never reaches equilibrium. In the next two sections,
we shall work out what happens in the case of quantum dynamics. As we shall show, Z(t) < 0
for non-equilibrium quantum quenches, but the time-dependence can be quite different from the
classical result, in particular for quenches deep into the ordered phase.

In order to study what happens after a quench from the disordered phase, the system must
be prepared by choosing initial two-point correlators. For a quantum initial state, this requires
Ξk(0) = 0 and Qk(0) =: Ak and Πk(0) = Ck, where Ak = Ak(T0, g0) and Ck = Ck(T0, g0) are
chosen to specify the initial state further. The quench amounts to changing T0 7→ T and g0 7→ g
to their final values which are kept fixed during the system’s evolution. The two-point correlators
are found from the system (3.4.23) by evaluating the matrix exponential which finally gives

Qk(t) = e−
γ
g∆t

[
Ak cos2

√
t∆t + Ckg

2t
sin2√t∆t

∆t

]
+ γ

2

∫ t

0
dτ
√

∆′τ

([
cos
√
t∆t sin

√
τ∆τ√

∆τ/(τ∆′τ )
− sin

√
t∆t cos

√
τ∆τ√

∆t/(t∆′τ )

]2

+
[

cos
√
t∆t cos

√
τ∆τ −

sin
√
t∆t sin

√
τ∆τ√

(∆t/t)/(∆τ/τ)

]2
)

e
γ
g (∆τ−∆t) coth

√
∆′τ

2T (3.4.27a)

Πk(t) = e−
γ
g∆t

[
Akg

2t
sin2√t∆t

∆t
+ Ck cos2

√
t∆t

]
+ γ

2g2

∫ t

0
dτ
√

∆′τ

([
sin
√
t∆t sin

√
τ∆τ√

t/∆t

+ cos
√
t∆t cos

√
τ∆τ√

τ/∆τ

]2

+
[

sin
√
t∆t cos

√
τ∆τ√

t/∆t

− cos
√
t∆t sin

√
τ∆τ√

τ/∆τ

]2
)

e
γ
g (∆τ−∆t) coth

√
∆′τ

2T (3.4.27b)

Ξk(t) = e−
γ
g∆t

[
Ckg√

∆t

−Ak

√
∆t

]
sin 2

√
t∆t + γ

g

∫ t

0
dτ e

γ
g (∆τ−∆t) coth

√
∆′τ

2T

×
√

∆τ

√
t

τ

[
cos
√
t∆t cos

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
+ sin

√
t∆t sin

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

][
sin
√
t∆t cos

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))

+ cos
√
t∆t sin

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

]
+ τ∆′τ√

∆τ

√
t

τ

[
sin
√
t∆t cos

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
− cos

√
t∆t sin

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

]
×

×
[

cos
√
t∆t sin

√
τ∆τ

4
√

(∆τ/τ)/(∆t/t))
− sin

√
t∆t cos

√
τ∆τ

4
√

(∆t/t)/(∆τ/τ))

])
(3.4.27c)

with the definition (the k-dependence is suppressed for readability)

∆t := g(Z(t) + tωk) (3.4.28)
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and the notation ∆′t = d∆t

dt . We remind that the commutation relations are conserved quantities
in this formalism.

Eqs (3.4.27a, 3.4.27b, 3.4.27c) give the full solution of the quantum problem and must be
evaluated by using the the spherical constraint (3.4.8), viz.

∫
B

dk
(2π)dQk(t) = 1. This leads to a

formidable integro-differential equation for spherical parameter z(t).

Remark on the relaxation towards equilibrium

In order to arrive at the first understanding of the correlator (3.4.27a), let us assume that there
exists a finite relaxation time tr such that the system is stationary for times t ≥ tr. For such times,
we can write z = z∞ ' Z(t)/t. Furthermore, the integration in (3.4.27a) can be split according to
[0, t] = [0, tr] ∪ [tr, t]. In the limit t→∞ we would have

Qk(∞) = 1
2

√
g

√
z∞ + ωk

coth
[√

g

2T
√
z∞ + ωk

]
(3.4.29)

and this is consistent with the equilibrium correlator eq (3.4.13). We can then conclude:
If the system relaxes towards a stationary state with a positive spherical parameter z∞ > 0, this
stationary state has to be the unique thermodynamic equilibrium.

3.5 Semi-classical limit
Eqs. (3.4.27) contain two contributions of a different physical nature. The first one contains
the contributions from the fluctuations in the initial state, while the second one describes the
fluctuations generated by the coupling to the external bath. These contributions appear far too
formidable to yield to a direct approach. We therefore restrict to the study of two limiting cases.
In this section, we shall present a quasi-classical limit designed to reduce the complexity of the
interaction with the bath considerably, so that it can be treated. In the next section, we consider
a quench deep into the ordered phase, where the bath interactions are expected to produce only
sub-leading term in the long-time limit.

The spin-spin correlator, eq (3.4.27a), contains complicated terms depending on ∆t, which in
turn depends on the quantum coupling g. This suggests that a semi-classical description should
mean that the quantum fluctuations generated by such terms should be small and could be achieved
by letting ∆t → 0. Simplifying, eq (3.4.27a) would then reduce to

Qk(t) ' e−γtωk

G(t) + γ

√
g

4

∫ t

0
dτ G(τ)

G(t) e−γ(t−τ)ωk
√
z(τ) + ωk coth

[√
g

2T
√
z(τ) + ωk

]
(3.5.1)

with the definition
G(t) = eγZ(t) (3.5.2)

Inserted into the spherical constraint
∫
B

dk
(2π)dQk(t) = 1, this gives a still complicated integro-

differential equation for G(t). Manageable expressions can be found by expanding the thermal
occupation. We introduce as a small parameter

ε =
√
g

T
. (3.5.3)

which measures the relative importance of quantum and thermal fluctuations. For ε→ 0

coth
(
ε

√
z(τ) + ωk

4T

)
= 1
ε

√
4T

z(τ) + ωk
+ ε

3

√
z(τ) + ωk

4T + O(ε3) (3.5.4)

The first term in this expansion reproduces the classical model while the higher-order terms give
successive quantum corrections.



CHAPTER 3. LINDBLAD DYNAMICS OF THE QUANTUM SPHERICAL MODEL 79

3.5.1 Classical limit
Stopping at the first term in the expansion (3.5.4) and choosing Qk(0) = 1 for an infinite-
temperature initial state gives the classical spin-spin correlator

Qk(t) = 1
G(t)

(
e−γtωk + γT

∫ t

0
dτ G(τ)e−γ(t−τ)ωk

)
(3.5.5)

From the spherical constraint eq (3.4.8), in the N →∞ limit, one finds a Volterra integral equation
for G(t)

G(t) = F (t) + γT

t∫
0

dτ G(τ)F (t− τ) = F (t) + γT (F ? G)(t) (3.5.6)

where ? denotes a convolution and with the integral kernel

F (t) =
∫
B

dk
(2π)d e

−γtωk =
(
e−2γtI0(2γt)

)d (3.5.7)

and I0(x) is a modified Bessel function [Abr64]. Up to a rescaling 1
2γT 7→ T of temperature, this

reproduces the dynamical spherical constraint of the classical model, see [God00, eq (2.23)]. Of
course, this was to be expected from our derivation of the Lindblad dissipator (3.3.27).

For a deep quench to temperatures T � Tc(d) (or T = 0), the solution of (3.5.6) trivially
is G(t) ' F (t), up to corrections to scaling. As we shall see in section 3.6, the solution of the
analogous deep quantum quench is far from being trivial.

3.5.2 Leading quantum correction
New insight beyond the classical model is found if one includes the first quantum correction from
the expansion (3.5.4) in eq (3.5.1). We then get

Qk(t) ' e−γtωk

G(t) + γ

∫ t

0
dτ
[
T + g

12T (z(τ) + ωk)
]
G(τ)
G(t) e−γ(t−τ)ωk (3.5.8)

The spherical constraint (3.4.8) becomes again a Volterra-integral equation for G(t). This is seen
as follows. From the definitions (3.5.7) and (3.5.2) we have

dF (t)
dt = −γ

∫
B

dk
(2π)d ωk e

−γtωk ,
dG(t)

dt = γz(t)G(t)

Integrating (3.5.8) gives

G(t) = F (t) + γT (G ? F ) (t) + g

12T

∫ t

0
dτ
[

dG(τ)
dτ F (t− τ) +G(τ)dF (t− τ)

dτ

]
= F (t) + γT (G ? F ) (t) + g

12T

∫ t

0
dτ d

dτ (G(τ)F (t− τ))

and using the initial values G(0) = F (0) = 1, this can be recast as

G(t)
(

1− g

12T

)
= F (t)

(
1− g

12T

)
+ γT (G ? F ) (t)

The spherical constraint can now be written as

G(t) = F (t) + γT ?
∫ t

0
dτ G(τ)F (t− τ) (3.5.9)

which is identical to the classical constraint eq (3.5.6), if one introduces an effective temperature

T ? = T ?(g) = T

1− g
12T
' T

(
1 + g

12T

)
(3.5.10)
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ferromagnetic

Figure 3.3: Phase diagram of the isotropic quantum spherical model in d = 3 dimensions. The
black curve is the exact critical line [Oli06] which separates the paramagnetic and ferromagnetic
phases. The red curve shows the critical line T ?c (g) according to eq (3.5.10), to first order in g.

Remarkably, T ?(g) = Teff(g) is exactly the effective temperature found in section 3.4 for the
semi-classical equilibrium quantum spherical model, see eq (3.4.16). In fig 3.3 we show the phase
diagram of the 3D isotropic quantum spherical model (λ = 1) There is an ordered ferromagnetic
and a disordered paramagnetic phase. The quantum phase transition occurs on the horizontal axis
T = 0 and the purely thermal phase transition is on the vertical axis g = 0. Clearly, the effective
temperature T ?(g) reproduces the exact critical line to first order in g. As expected, quantum
fluctuations reduce the critical temperature Tc(g) ≤ Tc(0) with respect to the value of the classical
model.

The identity Teff(g) = T ?(g) of the effective temperatures from the equilibrium and dynamical
analysis corroborates the correctness of our proposed Lindblad formalism. On the other hand,
we see that the effective long-time dynamics of the semi-classical spherical model becomes purely
classical, although the underlying microscopic dynamics is described by a Lindblad equation and
explicitly preserves quantum coherence. Quantum effects on the dynamics will only appear in
second or higher order in g.

3.5.3 Equal-time spin-spin correlator
The analysis of the Volterra equation (3.5.9) is standard (see appendix 3.B for details).

We have already seen that the formal expression for the single-time spin-spin correlator is

Qk(t) = e−γtωk

G(t) + g

12T

[
1− e−γtωk

G(t)

]
+ γT

G(t)

∫ t

0
dτ G(τ)e−γ(t−τ)ωk (3.5.11)

Its long-time behaviour depends both on the dimension d and on the effective temperature T ? =
T ?(g).

1. T ? > T ?c . This corresponds to the paramagnetic phase at equilibrium and in particular to
d < 2. The system relaxes within a finite time-scale τeq towards its (quantum) equilibrium
state. For d > 2, the critical temperature T ?c > 0 and

γτeq
T?→T?c'

[
T ?2c

T ? − T ?c
|Γ(1− d

2 )|
(4π) d2

]2/(d−2)

. (3.5.12)
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The limiting correlation function becomes rapidly constant in time and takes essentially an
Ornstein-Zernicke form

Qk(t)→ Qk(∞) = g

12T + T

ωk + ξ−2
eq

(3.5.13)

with the equilibrium correlation length ξ2
eq = γτeq. We also note a hard-core term, absent in

the classical limit g → 0 and which in direct space would give a contribution ∼ g
12T δ(r).

2. T ? < T ?c . For d > 2 dimensions, the critical point T ?c > 0 and there is a ferromagnetic
phase. In the scaling limit where t → ∞ and k → 0 such that ωkt remains finite, we find
the dynamical scaling form

Qk(t) ' g

12T + e−γtk
2
(4πγt)d/2

(
1− g

12T

)
m2 (3.5.14)

Fourier-transforming to direct space gives the spin-spin correlator

C(t, r) ' g

12T δ(r) +
(

1− g

12T

)
m2 e−

r2
4γt (3.5.15)

and with the short-hand m2 = 1− T?

T?c
' 1− T

Tc
, sufficiently close to the critical point. Indeed,

up to the hard-core term, and a small g-dependent modification of the scaling amplitude, this
has the same long-time behaviour as the classical spherical model [Ron78, God00] to which
one reverts when taking the limit g → 0. The Gaussian shape of the time-space correlator is
a known property of the spherical model.

3. T ? = T ?c . For quenches onto the critical line, we find the dynamical scaling form

Qk(t) =
{

g
12Tc + 2γTc

d−2 t 1F1
(
1, d2 ;−γωkt

)
; if 2 < d < 4

g
12Tc + Tc

ωk
(1− e−γωkt) ; if 4 < d

(3.5.16)

Apart from the hard-core term, this agrees with what is known in the classical model.

In particular, we recover for T ? ≤ T ?c the dynamics exponent z = 2, characteristic for diffusive
dynamics of the basic degrees of freedom.
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3.6 Disorder-driven dynamics after a deep quench
We now turn to a different quench where quantum effects should be dominant for the long-time
behaviour. The two-point correlators (3.4.9) contain contributions (i) from the fluctuations of the
initial state and (ii) fluctuations which come from the exchange with the bath. In classical systems,
the second term dominates for quenches onto the critical point, but only generates corrections to
scaling for quenches into the two-phase coexistence region, where the first contribution dominates.
Indeed, for classical systems the long-time scaling behaviour in the entire two-phase region is the
same as for the deep quenches to zero temperature T = 0. We anticipate that a similar result
should also hold true for quantum systems, quenched deeply into the ordered phase with g � gc(d).
At temperatures T = 0, this is possible for dimensions d > 1, where gc(d) > 0. Therefore, instead
of eqs (3.4.9) or their formal solutions (3.4.27), we shall rather consider the correlators

Qk(t) = e−
γ
g∆t

[
Ak cos2

√
t∆t + Ckg

2t
sin2√t∆t

∆t

]
(3.6.1a)

Πk(t) = e−
γ
g∆t

[
Akg

2t
sin2√t∆t

∆t
+ Ck cos2

√
t∆t

]
(3.6.1b)

Ξk(t) = e−
γ
g∆t

[
Ckg√

∆t

−Ak

√
∆t

]
sin 2

√
t∆t (3.6.1c)

along with ∆t := g(Z(t) + tωk). The terms neglected therein, with respect to (3.4.9), should for
weak bath coupling γ and for a quench deep into the ordered phase only account for corrections to
the leading scaling we seek. In our exploration of the coherent dynamics of the quantum spherical
model, we conjecture that this is so and we shall inquire in particular if dynamical behaviour
distinct from the one found in the quasi-classical case can be obtained.

As we shall see, and in contrast to the classical model, the solution of the dynamics is non-
trivial.

3.6.1 Spherical Constraint and Asymptotic Behaviour of the Spherical
Parameter

Accepting the reduced form (3.6.1) for the two-point correlators, we concentrate on their dissipative
dynamics, dominated by the initial disorder. The spherical constraint simplifies to

1 =
∫
B

dk
(2π)d e−γ(Z(t)+tωk)

(
Ak cos2

√
t∆t + Ckgt

sin2√t∆t

Z(t) + tωk

)
(3.6.2)

and the initial conditions are characterised by the constants Ck and Ak. This is still a difficult
integro-differential equation without an obvious solution.

Initial conditions

Consider a strongly disordered equilibrium initial state, situated far away from criticality. Then
the equilibrium correlators are known [Wal15]. Especially, Ξk(0) = 0 and the spherical parameter
z0 � 1. We call this an infinitely disordered state. Such states are characterised by an equal
occupation number of all modes k, such that the equilibrium correlators eq (3.4.13) simplify to

Qk(0) '
√

g0

4z0
coth

(√
z0g0

4T 2
0

)
!= 1 , Πk(0) '

√
z0

4g0
coth

(√
z0g0

4T 2
0

)
= z0
g0

=: C (3.6.3)

where the first relation follows from the spherical constraint. Hence the single constant C char-
acterises the infinitely disordered initial state. Since z(T0, g0) is defined self-consistently by the
spherical constraint, no explicit expression C(g0, T0) is available. Solving (3.6.3) numerically, the
parameter C = C(g0/T0) is traced in fig 3.4. Two limit cases can be identified, which are both
obtained for z0 � 1.
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Figure 3.4: The initial parameter C = C(g0/T0) and the two limits of scdl and sqdl.

1. the strong classical-disorder limit (scdl), defined by the condition g0 � T 2
0 , along with

z0 � 1. A first-order Taylor series of coth gives

C ' T0

g0
� 1 (3.6.4)

The scdl is obtained when C is becoming large and positive.

2. the strong quantum-disorder limit (sqdl), defined by the condition g0 � T 2
0 , along with

z0 � 1. An asymptotic expansion now gives

C ' 1
4 (3.6.5)

which is the smallest admissible value for C for an quantum equilibrium initial state.

Clearly, more general initial conditions interpolate between the limiting cases eqs (3.6.4,3.6.5). It
is conceptually significant that initial momentum correlators must be present.

At first sight, one might have appealed to an analogy with classical initial disordered states and
expected that C = 0 would be possible, but fig 3.4 shows that such a state does not correspond to a
quantum disordered equilibrium state. Choosing C = 0 means that one is considering an ‘artificial’
initial state, inconsistent with the laws of quantum mechanics.

We consequently parametrise our disordered initial state by

Qk(0) = 1, Πk(0) = C (3.6.6)

and then quench the system to temperature T = 0 and a small coupling g � gc(T ) far below the
quantum critical point.

3.6.2 The spin-spin correlator
Our first task is to solve the spherical constraint. This requires in turn to cast the spin-spin
correlator into a more manageable form. In the deep-quench scenario just defined, the spin-spin
correlator becomes

Qk(t) = e−γ(Z(t)+tωk)
[
cos2

(√
gt(Z(t) + tωk)

)
+ Cgt
Z(t) + ωk

sin2
(√

gt(Z(t) + tωk)
)]

(3.6.7)
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Recall from the classical dynamics that Zcl(t) ' −d2 ln t for t→∞ at T = 0. In order to prepare
for the possibility that Z(t) < 0 also in the quantum case, it will turn out to be advantageous to
rewrite the correlator in terms of a hypergeometric function1

Qk(t) = 1
2

[
1 + Cgt

Z + tωk
+
(

1− Cgt
Z + tωk

)
0F1

(
1
2 ;−gt(Z + tωk)

)]
e−γ(Z+tωk)

=
[

1 + 1
2

(
1− Cgt

Z + tωk

) ∞∑
n=1

(−gt)n( 1
2
)
n

(Z + tωk)n

Γ(n+ 1)

]
e−γ(Z+tωk) (3.6.8)

where (a)n = Γ(a+n)
Γ(a) denotes the Pochhammer symbol. The evaluation of the spherical constraint

becomes more simple if all dependence on k is brought into the exponential. This will allow to
derive factorised representations which in turn will permit to rewrite the expressions where the
dimension d becomes a parameter which then can be generalised and considered as real d ∈ R.
This is easily achieved as

Qk(t) =
[

1 + 1
2

∞∑
n=1

(
∂nγ + Cgt∂n−1

γ

) 1( 1
2
)
n

(gt)n

n!

]
e−γ(Z+tωk) (3.6.9)

3.6.3 The spherical constraint

We recall that the spherical constraint (3.4.8), written as 1 =
∫
B

dk
(2π)dQk, and define2

f(γ) :=
∫
B

dk
(2π)d e−γ(Z+tωk) = e−γZ

(
e−2γtI0(2γt)

)d t→∞' e−γZ(4πγt)− d2 (3.6.10)

Thus, we can rewrite the constraint using eq (3.6.9) as3

1 = f(γ) +
∞∑
n=1

(gt)n

2 Γ

 1
2

n+ 1
2 n+ 1

(∂nγ + Cgt∂n−1
γ

)
f(γ) (3.6.11)

It is shown in appendix 3.C that in the long-time limit, the derivative can be written as

∂nγ f(γ) ' (−1)nf(γ)
n∑
k=0

Γ

n+ 1 d
2 + k

d
2 n− k + 1 k + 1

 γ−kZn−k (3.6.12)

At this point, we have achieved a first goal: d merely enters as a parameter and from now, we can
treat it as continuous by means of an analytic continuation. Consequently, the spherical constraint
can be cast in the form

1 = f(γ)
2 (1 + s1 + s2) (3.6.13)

1We suppress the explicit time-dependence of Z = Z(t).
2In the short-hand f = f(γ), the dependence on Z and t is suppressed.

3We use throughout the notation Γ

[
a1 . . . an

b1 . . . bm

]
= Γ(a1)···Γ(an)

Γ(b1)···Γ(bm) .
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with the two double sums (see appendix 3.D for the derivation)

s1 :=
∞∑
n=0

n∑
k=0

Γ

 1
2

d
2 + k

n+ 1
2

d
2 n− k + 1 k + 1

(−gt
γ

)n
(γZ)n−k

= Φ3

(
d

2 ; 1
2 ;−gtZ,− g

γ
t

)
(3.6.14)

s2 := −γCgt
∞∑
n=1

n−1∑
k=0

Γ

 1
2

d
2 + k

n+ 1
2

d
2 n− k k + 1

 1
n

(
−gt
γ

)n
(γZ)n−1−k

= 2Cg2t2
∫ 1

0
dw Φ3

(
d

2 ; 3
2 ;−gt

γ
w,−gtZw

)
(3.6.15)

that can be expressed in terms of the Humbert function Φ3 [Hum20, Hum22]. In terms of this
function the spherical constraint reads

1 = f(γ)
2

[
1 + Φ3

(
d

2 ; 1
2 ;−gtZ,− g

γ
t

)
+ 2Cg2t2

∫ 1

0
dw Φ3

(
d

2 ; 3
2 ;−gt

γ
w,−gtZw

)]
(3.6.16)

and we shall study the mathematical properties of the Humbert function thoroughly in chapter 4.
The function Φ3 is a confluent of one of Appell’s generalizations F3 [App26], of Gauss’ hyper-

geometric function, to two independent variables [Sri85]. The analysis of the spherical constraint
requires the asymptotics of these functions when the absolute values of both arguments become
simultaneously large. Since no information on these appears to be known in the mathematical
literature, we shall derive it, as is outlined in appendix 3.D. Indeed, very similar methods can
be applied to different, but related confluents of the Appell function F3. These will be discussed
at length in chapter 4. For our purposes, we simply state the main result: both sums can be
expressed exactly as Laplace convolutions

s1 = Γ

 1
2

1
2 − ε ε

√t ∫ t

0
dv

1F1

(
d
2 ; 1

2 − ε;−
g
γ v
)

v
1
2−ε

0F1 (; ε;−gZ(t− v))
(t− v)1−ε (3.6.17)

s2 = Cg2t3/2Γ

 1
2

3
2 − ε ε

∫ 1

0
dw
∫ t

0
dv

1F1

(
d
2 ; 3

2 − ε;−
g
γwv

)
vε−

1
2

0F1 (; ε;−gZw(t− v))
(t− v)1−ε (3.6.18)

(where 0 < ε < 1
2 in s1 and 0 < ε < 3

2 in s2). In appendix 3.D, we first show how these integrals can
be de-convoluted and then how their asymptotic limit for t → ∞ can be found, using Tauberian
theorems [Fel71]. We then arrive at the following expression for the spherical constraint

1 ' f(γ)
2

{
1 +

[
1 + C gt

Z

(
eγZ − 1

)]( γ
gt

) d
2 0F1

( 1−d
2 ;−gtZ

)
Γ
( 1−d

2
)
/
√
π

+γCgt
[

1F1
(
1; 2− d

2 ; γZ
)

d
2 − 1

+
(
gt

γ

)1− d2 1F2
(
1− d

2 ; 2− d
2 ,

3−d
2 ;−gtZ

)
eγZ(

1− d
2
)

Γ
( 3−d

2
)
/
√
π

]}
(3.6.19)

and recall f(γ) from (3.6.10). This representation, which depends on the initial condition through
the parameter C and contains the dimension d as a continuous parameter, will be the basis of our
analysis of the physics contained in quantum spherical constraint.

We must solve this equation for Z = Z(t), in the asymptotic limit t → ∞, and for fixed
parameters γ, g and C and for a given dimension d > 1. The most simple case is given by the
initial condition C = 0 and serves as an illustration on how to solve the spherical constraint. We
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Figure 3.5: Time-dependence of the integrated Lagrange multiplier Z(t), in d = 2 dimensions and
for the parameters g = 0.2, γ = 0.1 and C = 0. The full curve is the asymptotic form eq (3.6.21)
and the dots come from solving numerically (3.6.19).

then have

2eγZ (4πγt)d/2 = 1 +
(
γ

gt

)d/2
0F1

( 1−d
2 ;−gtZ

)
Γ
( 1−d

2
)
/
√
π

= 1 + γd/2 (πgt)1/2
(
|Z|
gt

)(d+1)/4
I−(d+1)/2

(
2
√
gt|Z|

)
(3.6.20)

where we anticipated that the solution is negative Z = −|Z(t)| < 0 and Iν is a modified Bessel
function [Abr64]. To illustrate this point, we display in fig 3.5 a typical of the numerical solution
Z = Z(t) of (3.6.19) with C = 0. Indeed, the solution is negative and we also observe that Z(t)→
for t→∞. The asymptotic form of Iν then leads to the following simplified form

2 (4πg)d/2 =
(
γ2|Z|
gt

)d/4
e2
√
gt|Z|

which has the solution
|Z(t)| = d2

16gt W
2
(π
d

16
1+d
d gt2

)
' d2

16g
ln2 t

t
(3.6.21)

where W = W0 denotes the principal branch of the Lambert-W function [Cor96].4 The agreement
with the numerical solution is illustrated in fig 3.5. Clearly, this solution applies to all values of
d and is distinct from the classical result (3.4.26). The logarithmic factor indicates corrections to
a simple power-law scaling. We also notice that it is independent of the coupling γ between the
system and the bath.

Any equilibrium initial state must have C ≥ 1
4 . Clearly, eq (3.6.19) with C 6= 0 is still too

complicated for an explicit solution. However, it turns out that a case distinction between the
dimensions 1 < d < 2, d = 2 and d > 2 leads to more manageable forms. The details of the
calculations are given in appendices 3.E for d = 2 and 3.F for d 6= 2. Here, we quote the results.
A. For d > 2, Z = −|Z(t)| < 0 turns out to be negative, in such a way that t|Z| becomes large for
large t. We have the equation

2 eγZ(4πγt)d/2 ' 1 + 1
2γ

d/2
(

1 + C gt
|Z|

)(
|Z|
gt

) d
4

e2
√
gt|Z| ; for d > 2 (3.6.22a)

4Asymptotically, W (x) ' lnx− ln lnx+ o(1) for x→∞.
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B. For d = 2, we find again Z = −|Z(t)| < 0 for large times, but now such that t|Z| → ϕ tends to
a constant. This constant is given by the transcendent equation

4π
Cg2 = ϕ 2F3

(
1, 1; 3

2 , 2, 2; gϕ
)

; for d = 2 (3.6.22b)

C. Finally, for 1 < d < 2, the integrated Lagrange multiplier Z = Z(t) > 0 becomes positive for
large enough times and it increases with increasing t beyond any bound. Its value is determined
from

2 (4πγt)d/2 = Cgt
Z
e−γZ (3.6.22c)

+ dCγd/2

2

(
Z

gt

)d/4−1
[

3(d+ 2)(4− d)
64

cos
(
2
√
gtZ + πd

4
)

Z
−

sin
(
2
√
gtZ + πd

4
)

√
gtZ

]
; for 1 < d < 2

However, we also find an intermediate regime, with large but not enormous times, where Z(t) < 0
is still negative. In that regime the effective behaviour is analogous to the one found above for
d > 2.

Summarising, for large times, the leading asymptotics of the solutions of eqs (3.6.22) become

|Z(t)| '


(d−2)2

4g
ln2 t
t , d > 2

ϕ t−1 , d = 2(
1− d

2
)
γ−1 ln t , 4

3 < d < 2

(3.6.23)

where ϕ is given by (3.6.22b). Recall that Z(t) is negative for d ≥ 2 and positive for 1 < d < 2.
More precisely, for 4

3 < d < 2, the large-time behaviour is given by

Z(t) '
(

1− d

2

)
γ−1 ln γt+ B(d) cos

(
2
√
gtZ + πd

4

)
t1−3d/4

ln2−d/4 γt
(3.6.24)

and where B(d) is a known dimension-dependent amplitude. Hence the oscillatory term can no
longer be treated as a mere correction for d < 4

3 .
5

The intermediate regime seen for dimensions 1 < d < 2 for large, but not enormous times
where Z(t) < 0, is effectively described by |Z(t)| ≈ (d−2)2

4g
ln2 t
t .

In fig 3.6, we illustrate the solution for d > 2.
Several comments are in order:

1. Although the toy initial condition C = 0 does indeed reproduce one instance of the long-time
behaviour found from the physically more sensible equilibrium initial states with C ≥ 1

4 , it
does not capture the full complexity of possible behaviours.

2. For equilibrium initial states, in d = 2 dimensions there is a qualitative change in the long-
time behaviour of the solution Z(t).

3. For d < 2 where the saqsm undergoes a quantum phase transition at T = 0 but where
the thermal critical temperature Tc(d) = 0 vanishes, the behaviour of Z(t) is analogous to
the one of the classical solution (3.4.26), although with the opposite sign. The Lagrange
multiplier z(t) ∼ t−1 has a simple algebraic behaviour.
Very large times are required to see this regime. In addition, we find an intermediate regime
of large, but not enormous times, where the system behaves effectively as for dimensions
d > 2, up to an amplitude.

5The occurrence of such a second ‘critical dimension’ which a qualitative change in the systems’ behaviour is a
little reminiscent of the classical reaction-diffusion process reactions 2A → ∅ and A → 3A, which has the critical
dimensions dc = 2 and d′c ' 4

3 [Car96a, Car98].
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Figure 3.6: Left panel: Integrated Lagrange multiplier Z(t) as a function of time t obtained
by solving eq (3.6.19) numerically, for d = [2.1, 2.4, 2.7, 3, 3.3], from top to bottom, and for the
parameters γ = 1, g = 0.2, C = 1.
Right panel: Integrated Lagrange multiplier t|Z(t)|, normalised to unity at t = 1000, as a function
of time and for d = [2.1, 2.4, 2.7, 3, 3.3], from bottom to to top, and the same parameters.

4. For d > 2 where the system also has a finite critical temperature Tc(d) > 0, strong logarithmic
corrections modify the leading scaling behaviour, which is distinct from the classical one.

5. The case d = 2 is intermediate between the two, with a simple power-law scaling behaviour
|Z(t)| ∼ t−1.

6. Surprisingly, the influence of the coupling of the coupling γ with the bath is also dimension-
dependent. For d ≥ 2 dimensions, γ disappears from the leading long-time behaviour of Z(t),
while it is present for d < 2. Therefore, for d ≥ 2 dimensions, as well as in the intermediate
regime for d < 2, the limit γ → 0 can be formally taken.

The physical meaning of these properties will be understood by analysing the behaviour of the
two-point correlators.

3.6.4 Correlation Function and relevant Length scales
For the deep-quench dynamics the spin-spin correlation function in Fourier space reads

Qk(t) = 1
2

[
1 + Cgt

Z + tωk
+
(

1− Cgt
Z + tωk

)
0F1

(
1
2 ,−gt(Z + tωk)

)]
e−γ(Z+tωk) (3.6.25)

We are now interested in transforming this expression back to real space and studying the large-
distance behaviour of the correlation. This is routinely revealed by a small |k| expansion and in
fig 3.7 we see on the 2D example that such an expansion is more than reasonable in the asymptotic
limit t → ∞. We consequently write ωk ≈ |k|2 = k2 and observe that Qk solely depends on k.
This leads to the following simplified expression for the d dimensional inverse Fourier transform

f(R) ∝ R1− d2
∫ ∞

0
dk k d2 J d

2−1(kR)f̂(k) (3.6.26)

A. We start the investigation with the case d = 2. In fig 3.7 we show a typical structure factor Qk
in 2D for different times and observe that the distribution is peaked around the zero momentum
mode k = 0 and the peak sharpens for larger times. One can argue that the main contribution
is given by the interval [0, k∗] where k∗ is the mode where the argument of the hypergeometric
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Figure 3.7: Structure factor Qk in d = 2 dimensions shown in the first Brillouin zone for the
parameter values c = 1; g = 0.1; γ = 0.1; t = 500 (orange); 1000 (blue). We observe that the
function is sharply peaked around the centre of the Brillouin zone with the peak sharpening with
time increasing.

function changes signs and 0F1 reduces from an exponential contribution to a geometric function
at this point. We can thus write correlation function as

C(R) ∝
∫ k∗

0
dk 1

2

[
1 + Cgt

Z + tk2 +
(

1− Cgt
Z + tk2

)
0F1

(
1
2 ,−gt(Z + tk2)

)]
e−γ(Z+tk2) (3.6.27)

By introducing the scaling variable % := √ϕRt where ϕ is the solution to eq (3.6.22b), we find in
a straightforward fashion using the variable transform µ = |Z|−tk2

|Z| the scaling form

C(R) ∝ Cg
∫ 1

0
dµ 0F1

(
; 1

2 ; gϕµ
)
− 1

µ
J0

(
%
√

1− µ
)

=: CgW(%) (3.6.28)

This makes explicit the dynamical scaling behaviour of the spin-spin correlator. In fig 3.8 we
show the behaviour of the scaling function W for different ranges of %. For small % the scaling
function decays in a Gaussian fashion (left hand side) while it shows decaying oscillations for
larger values. It is instructive to compare with the dynamical scaling seen in the classical spherical
model, quenched to temperature T � Tc(d). For a purely relaxational dynamics without any
conservation law (model A), dynamical scaling is found [Ron78, God00], whereas in the case of a
conserved order-parameter (model B), the existence to two logarithmically distinct length scale was
established long ago [Con89]. This logarithmic breaking of scale-invariance for conserved dynamics
was later shown to be a peculiarity of the spherical model, see e.g. [Maz06]. The quantum dynamics
we are considering here actually has an infinite number of prescribed conservation laws, namely
all canonical commutators between the spherical spins sn and their conjugate moment pn. Our
finding that at least for d = 2 a standard dynamical scaling is found clearly suggests that the
quantum mechanical spherical model should not be considered to be as special as its classical
counterpart. Any breaking of dynamical scaling which we may find for different values cannot be
as readily dismissed as a specific model property but could rather be a typical feature for more
general models.

B. In the case d > 2 the treatment is similar to the case d = 2 since the argument of the
hypergeometric function presents once again a change of signs. However we have to respect that
ϕ is no longer a constant but diverges logarithmically as it is shown in eq (3.6.23). This leads to
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Figure 3.8: Illustration of the scaling function W in d = 2 dimensions for different ranges of the
scaling variable %.

a modified multi-scaling behaviour

C(R) ∝ CgR2−d
∫ 1

0
dµ

0F1

(
; 1

2 ; (d−2)2

4 µ ln2 t
)
− 1

µ

(
%
√

1− µ
) d

2−1
J d

2−1

(
%
√

1− µ
)

(3.6.29)

=: CgR2−dV(%, t)

since % '
d
2−1√
g R ln(t)/t which is illustrated in fig 3.9. The explicit logarithmic terms do break simple

scale-invariance and point towards the existence of several length scales, which are distinguished
by logarithmic factors. We observe a behaviour in terms of ρ which is is qualitatively not too
different from the case d = 2. However, the functional dependence on ρ changes strongly when the
time is increased which is a manifest of breaking of simple scaling behaviour.

Phenomenologically, this looks analogous to the well-known behaviour of the classical spherical
model with conserved order-parameter (model B) [Con89] but here we obtain this breaking of
dynamical scaling by a mere change of the dimension d. Such a feature has never been seen before,
to the best of our knowledge.

Figure 3.9: Functional dependence of the correlation function for d = 3 and g = 0.1. We do not
find a single scaling function but rather find a dependence on the variable % and the time t.
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C. In 4
3 < d < 2 spatial dimensions the situation is different since the spherical parameter is Z > 0

positive and there is no intrinsic cut-off for the integral. We investigate first the structure factor
Qk by pointing out that the contribution ∝ Cgt is leading for large times.

Qk '
1
2
Cgt

Z + tk2

[
1− 0F1

(
; 1

2 ;−gt(Z + tk2)
)]

e−γ(Z+tk2) (3.6.30)

This expression can be rewritten as

Qk ' Cg2t21F2

(
1; 3

2 , 2;−gt(Z + tk2)
)

e−γ(Z+tk2) (3.6.31)

and its Fourier transform is readily cast in the form6

C(R) ∝ Cg2

R
d
2−1

∫ ∞
0

dµ µ
d−2

4 J d
2 +1 (√µR/t) 1F2

(
1; 3

2 , 2;−g(tZ + µ)
)

e−γµ/t . (3.6.32)

We observe that the integral is exponentially cut off and thus only small µ values contribute. Thus,
we can omit the µ contribution in 1F2 since tZ →∞ and the integral can be evaluated explicitly
[Pru86, eq (2.12.9.3)]

C(R) ∝ Cg
(2γ)d/2

sin2 (√gtZ)
Z

e−
R2
4γt (3.6.33)

Having completed the analysis of the spin correlation function we mention that the momentum
correlation function can be obtained from the spin correlator by simply exchanging Ak and Ck in
eq (3.6.1). We thus expect a qualitatively analogous behaviour.

Now we studied the real space correlation function and want to investigate the relevant length
scale given by

L2(t) ∝ −∂
2
kQk
Qk

∣∣∣∣
k=0

(3.6.34)

This is readily evaluated to

L2 ∝ 2t
Z

(Cgt [1 + γZ − (1 + γZ)0F1
( 1

2 ,−gtZ
)
− 2gtZ0F1

( 3
2 ,−gtZ

)]
Cgt

[
1− 0F1

( 1
2 ,−gtZ

)]
+ Z

[
1 + 0F1

( 1
2 ,−gtZ

)]
+

γZ2
[
1 + 0F1

( 1
2 ;−gtZ

)
+ 2 gγ t0F1

( 3
2 ,−gtZ

)]
Cgt

[
1− 0F1

( 1
2 ,−gtZ

)]
+ Z

[
1 + 0F1

( 1
2 ,−gtZ

)]) (3.6.35)

For a vanishing quantum coupling the relevant length scale reduces to a purely diffusive behaviour
introduced by the heat bath

L2
γ ∝ 2γt . (3.6.36)

The length scale allows to read of the dynamical exponent z according to L2 ∝ t2/z and we deduce
from eq (3.6.35) z = 2 as expected for the classical dynamics [God00, Hen10].

In order to evaluate the intrinsic length scale taking into account the quantum effects, we have
to once more distinguish the cases

A. d = 2: Here Z is negative and we can rewrite the hypergeometric functions as hyperbolic
functions. Moreover the correlation function obeys a clean scaling behaviour and we find

L2 ' 2t
(
γ +

√
gt

|Z|

)
= 2γt+ 2

√
g

ϕ
t2 (3.6.37)

6One simply uses the change of variables µ = t2k2.
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Figure 3.10: left panel: effective characteristic length L2 for d = 1.5, γ = 1, g = 0.1 and C = 1.
right panel: (L/t)2 for the same parameters as in the left panel.

indicating a crossover from diffusive to ballistic transport. The dynamical critical exponent crosses
from z = 2 to z = 1 as we expect for a true quantum dynamics7 [Dut15, Cal06].

B. d > 2: This case can be treated analogously to the caseA since Z is still negative. Nevertheless,
we do not have a clean scaling behaviour and logarithmic corrections are present in the long-time
limit. The length scale reads

L2 ' 2t
(
γ +

√
gt

|Z|

)
= 2γt+ 2g(d− 2) t

2

ln t (3.6.38)

and up to logarithmic corrections, we observe the same diffusive to ballistic crossover as for d = 2
with z = 1.

C. 4
3 < d < 2: In this case, the spherical parameter is positive and the hypergeometric functions

reduce to trigonometric contributions. The length scale then reduces to

L2 ' 2γt− 2
√
gt

Z

Cgt2 sin 2
√
gtZ

Cgt sin2√gtZ + Z cos2√gtZ
(3.6.39)

and can be recast up to a removable singularity as

L2 ' 2γt− 4Cgt2
√
gt

Z

tan
√
gtZ

Cgt tan2√gtZ + Z
(3.6.40)

This length scale shows an oscillatory behaviour which is shown in the left panel of fig 3.10 to
which we shall come back later. For now we want to focus on the right panel where we show L2/t2

as a function of time. We see that the peaks are rather constant and |L/t| remains bound for all
times what indicates that the dynamical exponent should be z ≥ 1. The specific value of z will
depend strongly on the specific time window.

Furthermore, we observe a strong kinked oscillatory behaviour that even renders L2 negative.
This can be better understood by referring to simple correlation functions as

C1 = e−R/ξ cos(R/Λ), C2 = e−(R/ξ)2
cos(R/Λ) (3.6.41)

7An exception from the fast ballistic transport are many-body localized systems where information spreads
much slower[Pal10, Bas06]. Such slow transport has as well been observed in translation-invariant 1D quantum
lattice models [Mic17].
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Figure 3.11: Effective squared length scale L2
i (t), i = 1, 2 as a function of Λ/ξ for a modulated

exponential correlator (blue) and a modulated Gaussian correlator (red) introduced in eq (3.6.41).

For simplicity, we refer to d = 1 here, since dimensionality is not changing the key aspect and it
is straightforward to generalise the calculation. The characteristic length scale L2

i with i = 1, 2
associated with the correlation function Ci is readily obtained

L2
1 ' 2Λ2 (Λ/ξ)2 − 3

(1 + (Λ/ξ)2)2 , L2
2 '

Λ2

4
1

(Λ/ξ)2

(
2− 1

(Λ/ξ)2

)
. (3.6.42)

While the overall time-dependence of this effective length scale can still be used to extract the
dynamical exponent from the scaling relation L2

i (t) ∼ t2/z, the sign of the amplitude does depend
on the ratio Λ/ξ. This change of sign, according to eq (3.6.42), is illustrated in fig 3.11.

Such a change of signs can thus be attributed to an oscillating correlation length and the
competition between the two distinct length scales ξ and Λ. Since L itself becomes imaginary
it is thus not adequate any longer to interpret it as a length scale, but we can still deduce the
dynamical exponent as shown before. The oscillatory nature of eq (3.6.39) indicates consequently
a competition between different length scales in the system.

3.6.5 Dynamic Susceptibility
By means of eq (3.6.23) we can calculate the dynamic susceptibility which is essentially proportional
to Q0

χ ∝ Q0 = 1
2

[
1 + Cgt

Z
+
(

1− Cgt
Z

)
0F1

(
1
2 ,−gtZ

)]
e−γZ . (3.6.43)

We find for the leading contribution for large times

χ(t) ∝



Cg/ϕ sinh2(√gϕ) t2, d = 2

Cg2

(d−2)2 t
d/ ln2 t, d > 2

Cgγ
2−d

t2−
d
2

ln t sin2
(√

g/γ(1− d/2)t ln t
)
, 4

3 < d < 2

(3.6.44)

In general, for systems with simple scaling, one expects χ(t) ∼ L(t)d ∼ td/z, or said in words, the
susceptibility is proportional to the volume explored up to time t [God00]. In d = 2 dimensions,
this expectation, is fully confirmed by our exact solution, since

χ2D(t) ∝ t2 ∝ L2 (3.6.45)
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and in particular, we see once more that indeed z = 1, in contrast to classical dynamics. For
dimensions, d > 2, this scaling expectation for χ(t) is again confirmed, but only up to logarithmic
corrections. In addition, the effective length scale Leff(t) ∼ t (ln t)−2/d is different from the length
scale extracted above from the second moment.

Finally, for d < 2, not only does the exponent of the leading time-dependence deviate from the
expected value (to say nothing on the logarithmic correction) which sends χ(t)→ 0 for large times,
but furthermore, a strong time-dependent modulation of χ(t) is found. We can understand this
as a further justification of the strong competition between different length scales as we already
discussed in the previous section.

3.6.6 Crossed Correlations
We now want to study the crossed correlation term and which reads

Ξk(t) = e−
γ
g∆t

[
Cg√
∆t

−
√

∆t

]
sin 2

√
t∆t (3.6.46)

with ∆t = g(Z(t) + tωk).

A. For d = 2 we know that Z < 0 and thus ∆t changes signs from negative to positive for after a
time t∗ for fixed k 6= 0. Consequently, all Ξk → 0 for k 6= 0 due to the exponential damping. For
the zero mode we find

Ξ0 ' C
√
g

ϕ
sinh(2√gϕ)

√
t

t→∞→ ∞ (3.6.47)

and see a diverging crossed correlation. This is a strong indicator that the system will not relax
towards its thermal equilibrium but will rather stay in a non-equilibrium state for all times. This
looks analogous to what happens in systems undergoing physical ageing, but we have not yet
achieved all results needed to test the three defining properties of physical ageing (slow dynamics,
breaking of time-translation invariance, dynamical scaling) [Cug95, Hen10]. We hope to return to
an analysis of physical ageing in the quantum spherical model elsewhere.

B. For d > 2 the situation is up to logarithmic corrections similar to d = 2. We find immediately

Ξ0 '
Cg
d− 2

td−
3
2

ln t (3.6.48)

while all non-zero mode crossed correlations vanish in the asymptotic limit.

C. In 4
3 < d < 2 the behaviour is qualitative different. While it remains true, that all non-zero

mode crossed correlations vanish, we find for the zero mode

Ξ0 ∝ t
d
2−1 ln t (3.6.49)

which decays to zero and thus at least indicates that a relaxation into thermal equilibrium is
possible. Moreover we observe that in this scenario the solution Z(t) depends on the bath quantity
γ while for d ≥ 2 the bath scales entirely out. All these observations point towards the fact that
the actual bath coupling becomes less important in higher dimensional open quantum dynamics.

3.7 Conclusions
We studied the qsm as a simple exactly solvable model in order to explore exact quantum dynamics
and compare classical to quantum dynamical properties. We used certain consistency criteria,
namely (i) the quantum equilibrium is a stationary state of the chosen dynamics and (ii) the
classical Langevin dynamics is included in the limit g → 0 in order to construct the precise form
of the Lindblad master equation. The qsm has then proven to reduce just as in equilibrium the
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full N -body problem to a single integro-differential equation. The full solution of this equation is
still an open and exceptionally hard problem.

We have focussed in this chapter on two special cases. First, we considered weak quantum
dynamics and calculated the leading quantum corrections to the classical dynamics. It turns
out that the effective quantum dynamics is classical and quantum effects only renormalise the
temperature. This is a further justification of the formalism we set up to describe the open
quantum dynamics of the spherical model.

Second, we studied the true quantum dynamics driven by the initial disorder for a quantum
quench across the critical point and deep into the ordered phase. In order to carry out this analysis,
we explored new mathematical methods that are related to asymptotic expansions of confluent
hypergeometric functions in two variables. We shall present further details on this connection in
the next chapter. It turns out that the long-time behaviour of the integrated spherical parameter
Z(t) is extremely complex to deduce and that it depends on the spatial dimension in a non-trivial
fashion.

|Z(t)| '


(d−2)2

4g
ln2 t
t , d > 2

ϕ t−1 , d = 2(
1− d

2
)
γ−1 ln t , 4

3 < d < 2

(3.7.1)

This behaviour is qualitatively different from the classical case where simply |Z| ∝ ln t.
Due to this strong dependence on the dimensionality of the system, we observed prominent

differences in the scaling behaviour. In d = 2 dimensions we find a regular scaling with a unique
characteristic length scale. Thus, the qsm is able to reliably predict general qualitative proper-
ties. In d 6= 2 dimensions, we find strong logarithmic corrections which destroy a simple scaling
behaviour. One might be tempted to view these corrections as a peculiarity of the sm [Con89] but
since we find a clean scaling in d = 2 dimensions we are not convinced by simply dismissing the
logarithmic corrections as a feature specific to the sm. Below d = 2 we find additionally strong
time dependent modulations in terms of the distance R.

Furthermore, the analysis of the leading time dependence of the characteristic length scale L2

and of the time-dependent susceptibility χ(t) fully confirmed simple dynamic scaling in d = 2 and
else several different length scales.

All these results depend on the conjecture that the integral term in eq (3.4.27a) is irrelevant.
Testing this remains a difficult open problem.

We thus conclude that, to the extend as the qsm is a reliable guide for collective quantum
dynamical behaviour, we would expect 2D quantum systems to show simple dynamical scaling,
whereas in 3D quantum systems it should only be possible to find small time-dependent windows
with effective time-dependent exponents. To what extent such an expectation is born out in more
general quantum models remains an important challenge for the future.
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Appendix

3.A Equilibrium quantum spherical constraint
We present the exact derivation of the quantum spherical constraint in the equilibrium saqsm, by
diagonalising the Hamiltonian via canonical transformations. Consider the following Hamiltonian,
with bosonic operators an such that [an, a†m] = δn,m

H =
∑

n,m∈L

[
a†nAnmam −

1
2 (anBnmam + h.c.)

]
+
∑
n∈L

Cn
(
an + a†n

)
(3.A.1)

which for a specific choice of the matrices A,B reduces to the Hamiltonian (3.2.2) of the saqsm.
In addition, the vector C allows to consider the effects of an external field. We shall present an
exact derivation of the equilibrium spherical constraint, which should also arise from the stationary
state (t → ∞ limit) of the dynamics. Many aspects of the treatment are analogous to the one of
free fermion Hamiltonians, see e.g. [Lie61, Hen99]. For the sake of notational simplicity, we only
treat the 1D case explicitly, the generalisation to any d > 1 being obvious.

Define the harmonic oscillator ladder operators [Wal15]

sn =
( g

8S

)1/4 (
an + a†n

)
, pn = −i

(
S
2g

)1/4 (
an − a†n

)
(3.A.2)

and the spherical constraint is then

N

√
8S
g

=
∑
n∈L

(〈
anan

〉
+
〈
a†na

†
n

〉
+ 2
〈
a†nan

〉
+ 1
)

=
∣∣〈a〉∣∣2 +

∣∣〈a†〉∣∣2 + 2
〈
a† · a

〉
+N , (3.A.3)

where we have introduced the vector a = (a1, a2, . . . , aN−1, aN ) and its element-wise adjoint. We
now apply the canonical transformation, used for the diagonalisation in [Wal15]

a = r + vtb− wtb† (3.A.4)

to the spherical constraint and find

N

√
8S
g

= 4 |r|2 + 4r · (v − w)t
〈
b+ b†

〉
+
∑
lmn

(vmlvnl − 2vmlwnl + wmlwnl) 〈bmbn〉

+
∑
lmn

(wmlwnl − 2wmlvnl + vmlvnl)
〈
b†mb

†
n

〉
+
∑
lmn

(2vmlvnl − vmlwnl + wmlvnl)
〈
b†mbn

〉
+
∑
lmn

(2wmlwnl − vmlwnl + wmlvnl)
〈
bnb
†
m

〉
+N (3.A.5)

Following [Wal15], we define the matrix

Ψ := (v − w)t (3.A.6)

with the eigenvectors Ψn of (A−B)(A+B) as column entries, see (3.A.1). Analogously, we define

Φ := (A+B)Ψ (3.A.7)

(for a full analysis of the diagonalisation of H via canonical transformations, see [Wal15, app. A]).
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Since [bn, bm] =
[
b†n, b

†
m

]
= 0, we can exchange the indices m and n in line 2 and 3 of eq (3.A.5)

to find the same prefactor for 〈bmbn〉 and
〈
b†mb

†
n

〉
. In the fifth line we use the commutation relation

to achieve a normal order and estimate the prefactor of
〈
b†mbn

〉
from this and the fourth line. We

find

2N

√
S
g

= N + 4 |r|2 + 4r ·Ψ
〈
b+ b†

〉
+
∑
n

(
|Ψn|2 −Ψn ·Φn

)
+
∑
mn

Ψm ·Ψn

(〈
b̂mbn

〉
+
〈
b†mb

†
n

〉
+ 2

〈
b†mbn

〉)
Using the property Φn ·Ψn = 1 [Wal15], we can rewrite the spherical constraint as

N
2

√
S
g

= |r|2 + r ·Ψ
〈
b+ b†

〉
+
∑
mn

Ψm.Ψn

4
(
〈bmbn〉+

〈
b†mb

†
n

〉
+ 2

〈
b†mbn

〉
+ δnm

)
(3.A.8)

Finally, we use the orthogonality of the eigenvectors of Toeplitz matrices to find

N
2

√
S
g

= |r|2 + r ·Ψ
〈
b+ b†

〉
+
∑
n

|Ψn|2

4
(
〈bnbn〉+

〈
b†nb
†
n

〉
+ 2

〈
b†nbn

〉
+ 1
)

(3.A.9)

For systems without an external magnetic field r = 0 which we shall admit from now on. The
absolute value of the eigenvectors was found in [Wal15] to be

|Ψn|2 =
Λ−k
Λ+
k

=

√
S − 1−λ

2 cos k
S − 1+λ

2 cos k
(3.A.10)

With this result we can write the final result, in zero external field√
8
g

√
S =

∫
B

dk
2π

Λ−,k
Λ+,k

(
〈bkbk〉+

〈
b†kb
†
k

〉
+ 2

〈
b†kbk

〉
+ 1
)

(3.A.11)

which is easily generalised to d dimensions.
In equilibrium, the off-diagonal averages 〈bkbk〉 =

〈
b†kb
†
k

〉
→ 0 decay to zero and the number

operator
〈
b†kbk

〉
is given by the thermal occupation of the corresponding mode√

8
g
S1/2 =

∫
B

dk
(2π)d

Λ−,k
Λ+,k

(2nk + 1) (3.A.12)

which is equivalent to eq (3.4.14) in the main text.

3.B Analysis of the Volterra equation
Solving the linear Volterra equation (3.5.9), at an effective temperature T ?, is standard, e.g.
[Ron78, Cug95, God00]. Define the Laplace transform

f(p) =
∫ ∞

0
dt f(t)e−pt (3.B.1)

such that the Laplace-transformed equation (3.5.9) reads simply

G(p) = F (p)
1− γT ? F (p)

(3.B.2)

Tauberian theorems [Fel71] permit to extract the long-time behaviour of G(t) from the behaviour
of G(p) for p → 0. We require F (p) = F uni(p) + F reg(p), for p small, conveniently decomposed
into an universal and a regular part, which have been derived countless times before

F uni(p)
p→0
≈

Γ
(
1− d

2
)

γ(4π) d2

(
p

γ

) d
2−1

, F reg(p) = 1
γ

(
A1 −A2

p

γ
+A3

(
p

γ

)2
∓ . . .

)
(3.B.3)
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where the last expansion can only be carried to the point where the coefficients

An =
∫
B

dk
(2π)d

1
ωnk

. (3.B.4)

exist. For example, even A1 does not exist for d ≤ 2 and A2 only exists for d > 4. We conclude
that

F̄ (p)
p→0
≈ 1

γ


Γ
(
1− d

2
)

(4π)− d2 (p/γ)
d
2−1 , if 0 < d < 2

A1 −
∣∣Γ (1− d

2
)∣∣ (4π)− d2 (p/γ)

d
2−1 , if 2 < d < 4

A1 −A2 p/γ −
∣∣Γ (1− d

2
)∣∣ (4π)− d2 (p/γ)

d
2−1 , if 4 < d < 6

(3.B.5)

In the last, we included the regular term which dominates for d < 6. Inserting into (3.B.2) gives
G(p) which in turn must inserted into the generic expression (3.5.11) for the spin-spin correlator,
which we repeat here for convenience

Qk(t) = e−γtωk

G(t) + g

12T

[
1− e−γtωk

G(t)

]
+ γT

1
G(t)

∫ t

0
dτ G(τ)e−γ(t−τ)ωk (3.B.6)

We shall now study the three cases from (3.B.5) separately.

3.B.1 0 < d < 2
In this case, F (p) is a monotonous and surjective function on the interval (0,∞), hence the equation
1− γT ?F (p) = 0 always has a solution at p = p0. Hence G(p) has a simple pole at some p0 = t−1

eq ,
for all T ? > 0. The leading long-time behaviour of G(t) is exponential, with the explicit relaxation
time

G(t) ∼ et/teq , teq = γ−1
[
T ?Γ

(
1− d

2

)
(4π)−d/2

]− 2
d−2

(3.B.7)

Inserting this into (3.B.6) leads straightforwardly to (3.5.13).

3.B.2 2 < d < 4
Since for dimensions d > 2 the coefficient A1 is finite, its value can be used to define a critical
temperature

T ?c = 1
A1

(3.B.8)

Then three distinct situations can arise: (i) The case T ? > T ?c is treated analogously to the case
d < 2. Here, the relaxation time is modified, because the phase transition does occurs at finite
temperature, according to

teq = γ−1
[
T ? − T ?c
T ?T ?c

|Γ
(

1− d

2

)
|(4π)−d/2

]− 2
d−2

(3.B.9)

but the correlator retains the form (3.5.13). (ii) For T > Tc we have to analyse eq (3.B.2) carefully.
Define the short-hand

m2 = 1− T ?/T ?c (3.B.10)

and expand G(p) to lowest non-trivial order in p to find

Ḡ(p) = 1
γ

A1 − (4π)−d/2
∣∣Γ (1− d

2
)∣∣ (p/γ)d/2−1

m2 + T ?(4π)−d/2
∣∣Γ (1− d

2
)∣∣ (p/γ)d/2−1

p→0
' 1

γ

[
A1

m2 −
(4π)−d/2

m4

∣∣∣∣Γ(1− d

2

)∣∣∣∣ ( pγ
) d

2−1
]

+ . . . (3.B.11)
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The Tauberian theorem then gives the long-time behaviour of G(t) by a formal inverse Laplace
transform (δ(t) is the Dirac distribution)

G(t) ' 1
m2γT ?c

δ(t) + (4πγt)−d/2

m4 , for t→∞ and 2 < d < 4 (3.B.12)

The singular term therein, of course, does not appear in the long-time limit, but is required to
evaluate the correlator. Following [Hen15], we insert into (3.B.6) and obtain

Qk(t) = e−γωktm4(4πγt)d/2
(

1− g

12T

)
+ g

12T

+ e−γωktm4(4πγt)d/2 γT

m2γT ?c
+ γT td/2L −1

(
Γ(1− d/2)p1−d/2 1

p+ γωk

)
(t)

= e−γωktm4(4πγt)d/2
(

1− g

12T + 1
m2

T

T ?c

)
+ g

12T

+ γT t
1

1− d/2 1F1

(
1, 2− d

2 ;−γωkt

)
= e−γωktm2(4πγt)d/2

(
1− g

12T

)
+ g

12T (3.B.13)

+ γT

1− d/2 t e
−γωkt 1F1

(
1− d

2 , 2−
d

2 ; γωkt

)
Herein, in the first two lines the terms proportional to T come from the integral in (3.B.6). The
first of those in the contribution from the singular term in (3.B.12) and the other is cast into
an inverse Laplace transformation. In the next step, this inverse transformation is found using
[Pru92b, eq (2.1.2.1)] and the coefficient of the other term is simplified using the definitions of
m2 and of T ?. Finally, we used the identity [Abr64, eq (13.1.27)]. We are interested in the limit
k→ 0, t→∞ such that ωkt remains finite. Then the last term is sub-dominant and we arrive at
(3.5.14). (iii) For T ? = T ?c = 1/A1„, the leading terms in small-p expansion are

Ḡ(p) = 1
γ

(
1
T ?c

)2 (4π)d/2∣∣Γ(1− d
2 )
∣∣
(
p

γ

)1−d/2
− 1
γT ?c

(3.B.14)

hence
G(t) = Gdt

d/2−2 − 1
γT ?c

δ(t) (3.B.15)

where Gd is a known constant whose value will not be required. Inserting into (3.B.6) and taking
into account the contribution of the singular term in the integral gives

Qk(t) = e−γωktt2−d/2

Gd

(
1− g

12Tc
− Tc
T ?c

)
︸ ︷︷ ︸

=0

+ g

12Tc
+ γTct

2−d/2Γ(d/2− 1)L −1
(
p1−d/2 1

p+ γωk

)
(t)

= g

12Tc
+ γT

d/2− 1 t 1F1

(
1, d2 ;−γωkt

)
(3.B.16)

Herein, the firm term vanishes because of the definition of T ? and we re-used [Pru92b, eq (2.1.2.1)].
This gives the first eq (3.5.16).

3.B.3 d > 4
The discussion is analogous to the previous ones. At T ? = T ?c , expansion gives for small p gives
G(p) ' 1

T?c
2A2

1
p −

1
γT?c

, hence

G(t) ' − 1
γT ?c

δ(t) + 1
T ?c

2A2
(3.B.17)
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Inserting this into (3.B.6) leads to

Qk(t) = T ?c
2A2e

−γωkt

(
1− g

12Tc
+ Tc
T ?c

)
︸ ︷︷ ︸

=0

+ g

12Tc
+ Tc
ωk

(
1− e−γωkt

)
(3.B.18)

where we used again the definition of T ? and have thus found the second eq (3.5.16). Finally, below
criticality, we must expand up to the first universal term. We obtain for p small (as it stands, this
holds for d < 6, but extensions are obvious)

Ḡ(p) ' 1
γ

A1 −A2
p
γ − |F|1

(
p
γ

)d/2−1

m2 + T ?A2
p
γ + γT ?|F1

(
p
γ

)d/2−1 '
1
γ

(
A1

m2 −
A2

m4
p

γ

)
− |F|1

m4

(
p

γ

)d/2−1
(3.B.19)

which gives for large times

G(t) ' 1
m2γT ?c

δ(t)− A2

m4γ2 δ
′(t) + (4πγt)−d/2

m4 (3.B.20)

and from which one readily arrives again at eq (3.5.14).
We remark that the small-p expansions must be carried up to including (i) eventual constant

terms and (ii) the leading universal contribution. The first contribution is required for the correct
evaluation of the correlator (unless one prefers to derive sum rules instead, as carried out in
[God00]) and the second contribution gives the leading time-dependence.

We did not discuss the case d = 4 explicitly, although this can be done without much extra dif-
ficulty [Has06, Ebb08]. Below criticality, there is no dimension-dependent singularity and one may
simply set d = 4 in the final result (3.5.14) and at criticality, additional logarithmic singularities
will appear.
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3.C Proof of an identity
We prove the asymptotic identity eq (3.6.12).
Lemma: The function f(γ) = e−γZ(4πγt)−d/2 obeys for all d > 0 and all Z, t the identity

∂nγ f(γ) = (−1)nf(γ)
n∑
k=0

Γ

n+ 1 d
2 + k

d
2 n− k + 1 k + 1

 γ−kZn−k (3.C.1)

Proof : This proceeds via mathematical induction, with the habitual two steps.
• Basis n = 1: it suffices to calculate the first derivative and compare with (3.C.1). We find
straightforwardly, in both cases

∂γf(γ) = −f(γ)
[
Z + d

2γ

]
• Step n→ n+ 1: We write

∂n+1
γ f(γ) = ∂γ∂

n
γ f(γ)

and use the expression (3.C.1) to find

∂n+1
γ f(γ) = (−1)n+1f(γ)

n∑
k=0

Γ

n+ 1 d
2 + k

d
2 k + 1 n− k + 1

 γ−kZn−k {Z + d

2γ + k

γ

}

Shifting the index n to n+ 1 produces

∂n+1
γ f(γ) = (−1)n+1f(γ)

n+1∑
k=0

{
Γ

n+ 2 d
2 + k

d
2 k + 1 n− k + 2

 γ−kZn+1−k×

×
[
1− k

n+ 1

] [
1 + d

2Zγ + k

Zγ

]}
Herein, the first line is already the sought expression for the (n+ 1)st derivative. It only remains
to show that the residual terms

n+1∑
k=0

Γ

n+ 2 d
2 + k

d
2 k + 1 n− k + 2

 γ−kZn+1−k
{

d

2Zγ + k

Zγ
− k

n+ 1

[
1 + d

2Zγ + k

Zγ

]}
(3.C.2)

cancel. For simplicity we omit non-zero multiplicative factors and consider8

n+1∑
k=0

Γ

d2 + k

k + 1 n− k + 2

 (γZ)−k
[(

d

2 + k

)
(n+ 1− k) + kγZ

]

=
n∑
k=0

Γ

d2 + k + 1

k + 1 n− k + 1

 (γZ)−k −
n∑
k=1

Γ

d2 + k

k n− k + 2

 (γZ)−k−1 = 0

which completes the proof.

8In (3.C.2), bring the curly bracket to the common denominator, which does not depend on k and hence can be
dropped.
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3.D Asymptotic analysis of some double series
In the main text, we introduced two double series

s1 :=
∞∑
n=0

n∑
k=0

Γ

 1
2

d
2 + k

n+ 1
2

d
2 n− k + 1 k + 1

(−gt
γ

)n
(γZ)n−k (3.D.1)

s2 := −γCgt
∞∑
n=1

n−1∑
k=0

Γ

 1
2

d
2 + k

n+ 1
2

d
2 n− k k + 1

 1
n

(
−gt
γ

)n
(γZ)n−1−k (3.D.2)

and we require their asymptotic behaviour for t � 1 large, where Z is either being kept fixed or
varies slowly with t.
1. We start our analysis with the treatment of s1. Begin with (3.D.1) and exchange the order of
summation, followed by a shift in the second summation variable. This results in

s1 =
∞∑
k=0

∞∑
n=k

Γ

 1
2

d
2 + k

n+ 1
2

d
2 n− k + 1 k + 1

(−gt
γ

)n
(γZ)n−k

=
∞∑
k=0

∞∑
n=0

Γ

 1
2

d
2 + k

n+ k + 1
2

d
2 n+ 1 k + 1

(−gt
γ

)n+k
(γZ)n (3.D.3a)

=
Γ( 1

2 )
Γ(d2 )

∞∑
k=0

∞∑
n=0

Γ(k + d
2 )

Γ(k + n+ 1
2 )

(−gt/γ)k

k!
(−gtZ)n

n! (3.D.3b)

Recalling the definition of the Humbert function [Hum20, Hum22]

Φ3 (β; γ;x, y) =
∞∑
m=0

∞∑
n=0

(β)m
(γ)m+n

xm

m!
yn

n!

we can identify s1 = Φ3

(
d
2 ; 1

2 ;−gtZ,− gtγ
)
, as stated in (3.6.14) in the main text. Sums such as

(3.D.3) would be easy to evaluate if they would factorise, but in fact they are coupled by the factor
Γ
(
n+k+ 1

2
)
in the denominator. In order to achieve a factorisation, we use the following identity,

which involves Euler’s Beta function, with an arbitrary constant 0 < ε < 1
2

1
Γ
(
n+ k + 1

2
) =

B(n+ ε, 1
2 + k − ε)

Γ(ε+ n)Γ( 1
2 − ε+ k)

= t
1
2−n−k

Γ(ε+ n)Γ( 1
2 − ε+ k)

∫ t

0
dx xk−ε− 1

2 (t− x)n+ε−1

(3.D.4)
which is obtained from eqs (6.2.1) and (6.2.2) in [Abr64]. Now, insert this identity into (3.D.3a)
such that the sums over n and k decouple. We then find

s1 = Γ

 1
2

1
2 − ε, ε

√t (u1 ? v1) (t) (3.D.5)

with the functions

u1(x) = x−
1
2−ε1F1

(
d

2 ; 1
2 − ε;−

g

γ
x

)
, v1(x) = xε−1

0F1 (ε;−gZx) (3.D.6)

Inserting the functions from (3.D.6) then gives the exact representation of s1 as a Laplace convo-
lution, stated in (3.6.17) in the main text, where the Laplace transform is defined as

h(p) := L (h)(p) =
∫ ∞

0
dx h(x)e−px , (3.D.7)

The Laplace convolution theorem states (u1 ? v1)(t) = L −1 (u1(p)v1(p)) (t).
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In addition, combining the representation (3.6.17,3.D.5) with the Laplace convolution theorem
gives access to the large-t asymptotics of s1, via a Tauberian theorem [Fel71]: find the small-p
behaviour for u1(p) and v1(p) and then carry out the inverse Laplace transform. Therefore, we use
eq (3.38.1.1) from [Pru92a] and find

u1(p) = Γ
(

1
2 − ε

)
pε−

1
2

(
1 + g

γp

)−d/2
, v1(p) = Γ(ε)p−εe−

gZ
p (3.D.8)

The small-p expansion of the product u1(p)v1(p) yields9

s1
p↘0
'

√
πt

(
γ

g

) d
2

L −1
(
p
d−1

2 e−
gZ
p

)
(t) (3.D.9)

and the inverse Laplace transform can be extracted from eq (2.2.2.1) in [Pru92b]

s1 '
√
π

(
γ

gt

) d
2 0F1

( 1−d
2 ;−gtZ

)
Γ
( 1−d

2
) (3.D.10)

2. For s2 our approach is analogous. Starting from (3.D.2), we shift variables and exchange the
order of summation to arrive at

s2 = −γCgt
∞∑
n=1

n∑
k=1

Γ

 1
2

d
2 − 1 + k

n+ 1
2

d
2 n− k + 1 k

 1
n

(
−gt
γ

)n
(γZ)n−k

= −γCgt
∞∑
k=1

∞∑
n=k

Γ

 1
2

d
2 − 1 + k

n+ 1
2

d
2 n− k + 1 k

 1
n

(
−gt
γ

)n
(γZ)n−k

= −γCgt
∞∑
k=0

∞∑
n=0

Γ

 1
2

d
2 + k

n+ 1 d
2 n+ k + 3

2 k + 1

 1
n+ k + 1

(
−gt
γ

)n+k
(γZ)n

= γCg2t2
∫ ∞

0
dv e−v

∞∑
k=0

∞∑
n=0

Γ

 1
2

d
2 + k

d
2 n+ k + 3

2

 (−gte−v/γ)k

k!
(−gtZe−v)n

n! (3.D.11)

With the definition of the Humbert function Φ3 from above, we can also identify
s2 = 2Cg2t2

∫ 1
0 dw Φ3

(
d
2 ; 3

2 ;− gtγ w,−gtZw
)
, as stated in (3.6.15) in the main text.

The two sums can be decoupled via the identity, with 0 < ε < 3
2

1
Γ
(
n+ k + 3

2
) = t

1
2−n−k

Γ(ε+ n)Γ( 3
2 − ε+ k)

∫ t

0
dx xk−ε− 3

2 (t− x)n+ε−1 (3.D.12)

such that we finally recast the double sum into an integrated convolution

s2 = Cg2t
3
2 Γ

 1
2

3
2 − ε ε

∫ 1

0
dw (u2 ? v2)(t) (3.D.13)

with

u2(x) = x
1
2−ε1F1

(
d

2 ,
3
2 − ε,−

g

γ
wx

)
, v2(x) = xε−1

0F1 (ε,−gZwx) (3.D.14)

9Here we explicitly treat the quantum case g 6= 0. Admitting g = 0 leads to a different small-p expansion that
results in the well-known classical zero-temperature quench dynamics [God00]
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as stated in (3.6.18) in the main text. Finally, the asymptotics for t→∞ is found as before from
a Tauberian theorem. The Laplace transforms of the above functions read [Pru92a, (3.38.1.1)]

u2(p) = Γ
(

3
2 − ε

)
pε−

3
2

(
1 + gw

γp

)− d2
, v2(p) = Γ(ε)p−εe−gZ

w
p (3.D.15)

Inserting leads to the expression

s2 = Cg2
√
πt3L −1

(
p
d−3

2

∫ 1

0
dw

(
p+ g

γ
w

)− d2
e−gwZ/p

)
(t) (3.D.16)

The w-integration can be expressed exactly as an incomplete Gamma function [Abr64]

s2 = γCg
√
πt3(γZ) d2−1eγZL −1

[
Γ
(

1− d

2 , γZ
)

1
√
p
− 1
√
p

Γ
(

1− d

2 , Z
g

p
+ γZ

)]
(t) (3.D.17)

Since we now want to study this expression in the p→ 0 limit, it is adequate to use an asymptotic
expansion for the last term, which we extract from eq [Abr64, (6.5.30)]

Γ(a, x+ y) x→∞' Γ(a, x)− e−xxa−1 (1− e−y
)

(3.D.18)

In order to evaluate the inverse Laplace transform, we consult eqs (2.2.2.1), (3.10.2.2) and (2.1.1.3)
in [Pru92b] and find

s2 ' γCgt
{

1F1
(
1; 2− d

2 ; γZ
)

d
2 − 1

+
√
π

(
γ

gt

) d
2−1 [

1F2
(
1− d

2 ; 2− d
2 ,

3−d
2 ;−gtZ

)(
1− d

2
)

Γ
( 3−d

2
) eγZ

+ eγZ − 1
gtZ

0F1
( 1−d

2 ;−gtZ
)

Γ
(
1− d

2
) ]}

(3.D.19)

Finally, combining eqs (3.D.10,3.D.19) and inserting into the constraint (3.6.13), we arrive at the
asymptotic form (3.6.19) of the spherical constraint.

Similar methods can be applied to find the asymptotics of several confluents of Appell’s hy-
pergeometric function F3 [App26, Sri85], when both arguments become large as we show in the
following chapter.
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Figure 3.12: Solution Z(t) of the spherical constraint for d = 2, g = 0.1, γ = 1 and C = 1/4.
The full curve is from (3.E.5) and the dots are numerical data. The left and right panel display
different intervals for t.

3.E Spherical constraint in two spatial dimensions
The constraint (3.6.13) requires a special analysis in two spatial dimensions, due to apparent
divergences in eq (3.D.19) for d→ 2. We carry this out by writing d = 2(1 + ε) and studying the
limit ε → 0. We want to show that eq (3.D.19) is indeed well-defined in the d → 2 limit and to
find this limit.

The critical sum is s2, which is straightforwardly written as

s2 ' Cgtγ
[
eγZ

(
1
ε
− 1F2

(
−ε; 1, 1

2 ;−gtZ
)

ε

)
+ eγZ − 1

gtZ

√
π

0F1
(
− 1

2 ;−gtZ
)

Γ
(
− 1

2
) ]

(3.E.1)

The limit where ε goes to zero can be taken using the formula

lim
ε→0

(
1
ε
− 1F2

(
−ε; 1, 1

2 ;x
)

ε

)
= 2x 2F3

(
1, 1; 3

2 , 2, 2;x
)

(3.E.2)

and renders the sum s2 into the form

s2 ' Cgtγ
[
− eγZ2gtZ 2F3

(
1, 1; 3

2 , 2, 2;−gtZ
)
− 2eγZ − 1

gtZ
0F1

(
−1

2 ;−gtZ
)]

(3.E.3)

Recalling (3.D.10), we can now study the constraint (3.6.13) in 2D. Solving the spherical constraint
numerically, see fig 3.12, we remark that the observations Z = −|Z| < 0 and Z → 0 still hold true
in the long-time limit t → ∞. However, an asymptotic expansion for t|Z| → ∞ fails. Therefore,
we must consider t|Z| =: ϕ → cst. and proceed to determine this constant. Asymptotically, the
constraint (3.6.13) reads

8πγt ' 1−
√

1
4t
γ

g
0F1

(
−1

2 ; gϕ
)

+Cgγt
[
2gϕ 2F3

(
1, 1; 3

2 , 2, 2; gϕ
)
− 2γ
gt

0F1

(
−1

2 ; gϕ
)]

(3.E.4)

where we replaced eγZ 7→ 1. We also observe that the first and the last term on the right-hand
site are sub-dominant. For the constant ϕ we thus find the transcendental equation

4π
Cg2 = ϕ 2F3

(
1, 1; 3

2 , 2, 2; gϕ
)

(3.E.5)

which is eq (3.6.22b) in the main text. It always has an unique solution since the image of
the right-hand side is R+ and the function is monotonous. The spherical parameter then reads
Z ' −ϕ/t.

In the limit of an extreme scdl with C → ∞, see fig 3.4, we have simply ϕC = 4πg−2. The
opposite limit of an extreme sqdl with C = 1

4 gives an upper bound for the admissible values of
ϕ.
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Figure 3.13: Solving the constraint eq (3.6.19) as a function of Z: the lhs is shown in black and
the rhs is shown for different times t = [1000, 4000, 7000, 10000] corresponding to the blue, red,
green and orange lines, from left to right. The other parameters are C = 1, γ = 0.1 and g = 0.1.
Different frames correspond to different dimensions: left panel d = 2.1, middle panel d = 3.1, right
panel d = 4.1.

3.F Analysis of the spherical constraint for d 6= 2

We present the asymptotic analysis of the spherical constraint (3.6.19) in generic dimensions d 6= 2.

3.F.1 d > 2

In order to define the goals of an asymptotic analysis, we first consider the qualitative behaviour of
the numerical solution Z = Z(t), illustrated in fig 3.13. Therein, both the left-hand side (lhs) and
the right-hand-side (rhs) are displayed as a function of Z, for certain values of t, and for typical
values of C, g and γ. The solution Z = Z(t) is given by the intersections of the black and one of
the coloured lines, respectively. For large times and for dimensions d > 2, the numerical examples
suggest the following properties, which we shall need for our further analysis:

1. The solution to the spherical constraint is unique and negative, which is clear from fig 3.13.10

2. In the asymptotic limit where t → ∞, the solution tends to Z → 0−. This is apparent in
fig 3.13 and further shown in the left panel of fig 3.6 in the main text.

3. the decay of Z is slower than O(t−1), such that t|Z(t)| still increases with t, as further
illustrated in the right panel of fig 3.6.

In fig 3.6 in the main text, the time-dependence of Z(t) is further illustrated for the generic spatial
dimensions d 6= 2. The qualitative shape of these curves does not depend much on the specific
values of the other parameters. Therefore, these examples suggest that the sought long-time
behaviour can be obtained by studying the asymptotics for t|Z(t)| → ∞ in (3.6.19), at least when
d 6= 2. A more detailed study further suggests that this growth is more slow than any power-law.

Therefore, we need the following expansions of the various hypergeometric functions in (3.6.19)

10We have checked numerically that Z < 0 f or times up to t ≈ 1051.
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for t|Z(t)| � 1 and |Z(t)| � 1. This is achieved by the asymptotic identities [Wol17]

1F2

(
1− d

2 ; 2− d

2 ,
3− d

2 ; gt|Z|
)
' −

(
1− d

2

) Γ( 3
2 −

d
2 )

Γ(− 1
2 )

e2
√
gt|Z|

(gt|Z|)1−d/4 (3.F.1a)

0F1

(
1− d

2 ; gt|Z|
)
' −

Γ( 1
2 −

d
2 )

Γ(− 1
2 )

(gt|Z|)d/4 e2
√
gt|Z| (3.F.1b)

1F1

(
1; 2− d

2 ; γZ
)
'1 + γZ

2− d
2

(3.F.1c)

which simplify the constraint (3.6.19) to the following form

eγZ(4πγt)d/2 ' 1
2 +

(
1 + Cgtγ

[
1 + 1

γ|Z|

])(
γ2|Z|
gt

) d
4 e2
√
gt|Z|

4 + γCgt
d− 2

[
1 + 4

d− 4γ|Z|
]

(3.F.2)

Herein, the last term on the right-hand site is sub-dominant. We can therefore neglect it and arrive
at the following final form of the constraint

2 eγZ(4πγt)d/2 '
[

1 + γ
d
2

2

(
1 + C gt

|Z|

)(
|Z|
gt

) d
4

e2
√
gt|Z|

]
(3.F.3)

which is eq (3.6.22a) in the main text. As before in the toy case where C = 0 and analysed in the
main text, the constraint can be solved explicitly in terms ofW -functions, but some care is needed
to select the correct real-valued branch [Cor96], which is either W0 or W−1, such that positive
values for |Z(t)| are produced. We find

t|Z(t)| ' (d− 4)2

16g



W 2
−1

(
2g
d−4

[
(8π)d
C2

] 1
d−4

t2
d−2
d−4

)
, d < 4

(
2
d−4

)2
ln2
(

(8πt)2

C

)
, d = 4

W 2
0

(
2g
d−4

[
(8π)d
C2

] 1
d−4

t2
d−2
d−4

)
, d > 4

(3.F.4)

The leading behaviour is found from the known asymptotics of the W -function11 to be

|Z(t)| ' (d− 2)2

4g
ln2 t

t
(3.F.5)

for all dimensions d > 2. This asymptotic result does neither depend explicitly on the initial
condition C nor on the coupling γ to the bath.

3.F.2 1 < d < 2
Again, we try to identify the correct mathematical setting by looking at some numerical solutions
of the constraint (3.6.19). We illustrate in fig 3.14 some typical behaviour, for several values of d.
Clearly, the left panel shows that for d < 2 the qualitative behaviour is different from what was
seen for d > 2. We observe as generic features

1. For large enough times, the solution to the spherical constraint becomes positive.

2. In the asymptotic limit t→∞, the solution Z(t) grows beyond all bounds, but its growth is
very slow compared to t.

11One uses W−1(x) ' ln(−x)− ln(− ln(−x)) + o(1) for x→ 0− [Cor96].
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Figure 3.14: Solving the constraint eq (3.6.19) as a function of Z: the lhs is shown in black and
the rhs is shown for different times t = [10000, 40000, 70000, 100000] corresponding to the blue,
red, green and orange lines, from left to right, in the left and middle panels. In the right panel, the
rhs with t = [1, 4, 7, 10] · 1040 corresponds to the blue, red, green and orange dashed lines, from
left to right. The other parameters are C = 1, γ = 0.1 and g = 0.1. Different frames correspond
to different dimensions: left panel d = 1.5, middle and right panels d = 1.9.

3. Strong oscillations are superposed onto this growth, the frequency of whom apparently in-
crease with t, while the amplitude decreases.

4. There is a regime of large intermediate times, where the solution Z = −|Z(t)| < 0 is negative
and qualitatively behaves as seen above for dimensions d > 2. This is illustrated in the
middle panel of fig 3.14, which is very similar to fig 3.13. In the right panel, it is further
shown that for truly enormous times the final true asymptotic regime with Z > 0 is reached.

Therefore, for intermediate times, we can take over the analysis for d > 2 and recover eq (3.F.5)
as an effective description.12 One can estimate the order of the time-scale t× where this cross-
over happens by setting Z = 0 in the constraint (3.6.19). For d = 2 − ε dimensions, we find
t× ≈ γ

g e8π/Cg which for the chosen parameters can become very large indeed.
In order to find the true final asymptotics for really large values of t, we must re-analyse (3.6.19)

in the limit where t→∞ and Z � 1. We then require the following asymptotic expansions [Wol17]

1F1

(
1; 2− d

2 ; γZ
)

=
(

1− d

2

)
eγZ (γZ)d/2−1

[
Γ
(

1− d

2

)
− Γ

(
1− d

2 , γZ
)]

'
(

1− d

2

)
eγZ (γZ)d/2−1 Γ

(
1− d

2

)
−
(

1− d

2

)
(γZ)−1 (3.F.6a)

0F1
( 1−d

2 ;−gtZ
)

Γ(1− d/2) = (gtZ)(d+1)/4
J−(d+1)/4

(
2
√
gtZ

)
' (gtZ)(d+1)/4

π1/2

[
cos
(

2
√
gtZ + πd

4

)(
1− d(d+ 2)[(d+ 1)2 − 9]

512
1
gtZ

)
− sin

(
2
√
gtZ + πd

4

)
d(d+ 2)

16
1√
gtZ

]
(3.F.6b)

12Eq. (3.F.4) with d < 4 applies.
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1F2
(
1− d

2 ; 2− d
2 ,

3
2 −

d
2 ;−gtZ

)
Γ( 3

2 −
d
2 )(1− d

2 )π−1/2 ' Γ
(

1− d

2

)
(gtZ)d/2−1

+ cos
(

2
√
gtZ + πd

4

)
(gtZ)d/4−1

[
−1 + d(d+ 2)(d2 − 14d+ 56)

512
1
gtZ

]
+ sin

(
2
√
gtZ + πd

4

)
(gtZ)d/4−3/2 d(d− 6)

16 (3.F.6c)

and where Jν is a Bessel function and Γ(a, x) an incomplete Gamma function [Abr64]. Inserting
these expansions into (3.6.19), several leading terms cancel. The constraint takes the form

2 (4πγt)d/2 = Cgt
Z

e−γZ

+ dCγd/2

2

(
Z

gt

)d/4−1
[

3(d+ 2)(4− d)
64

cos
(
2
√
gtZ + πd

4
)

Z
−

sin
(
2
√
gtZ + πd

4
)

√
gtZ

]
(3.F.7)

which is eq (3.6.22) in the main text. In order to solve this equation, consider first only the first
term on the right-hand side. If one assumes that asymptotically eγZ ∼ tα, matching the left-hand
side with the right-hand side gives α = 1− d

2 . Then, the second term on the right-hand side is of
the order t1−d/4+α, up to logarithmic or oscillating factors. If α < d/4, this second term merely
generates a correction. This is so for d > 4

3 . Similarly, the third term is of the order t1/2−d/4+α,
hence it only generates a finite-time correction for d > 1.

Hence, for 4
3 < d < 2, it is enough to concentrate on the first term on the right-hand-side in

(3.F.7). Analogously to previous cases, the constraint is solved via the Lambert-W function

γZ = W

(
Cg

2d+1πd/2
(γt)1−d/2

)
'
(

1− d

2

)
ln γt+ O(ln ln t) (3.F.8)

For a better approximation, one can re-inject this solution into the second and third terms on the
right-hand-side of (3.F.7). Then one obtains an oscillatory correction, of the form quoted in the
main text.
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Chapter 4

On the asymptotics of
hypergeometric functions in two
variables

4.1 Introduction and definitions

This chapter presents a mathematical analysis of the asymptotics of certain confluents of the Appell
hypergeometric function F3 in two variables. This work is contained in [Wal17a].

Hypergeometric functions, usually denoted by pFq(z), and of which Gauss’ hypergeometric
function 2F1(z) is the most important special case, have been studied very thoroughly and have
found numerous applications in almost all fields of science, see e.g. [Bai32, Bat53, Mat73, Abr64,
Sla66, Buc69, Ask92, Olv10, Mat10] and references therein. A little more than a century old, hy-
pergeometric functions of two variables [App80a, App80b, App80c, App26, Hum20, Hum22] have
also received a lot of scientific interest and recently, many new applications in many different fields
of mathematics and physics are being discovered see for example [Fle03, Shp07, Kni12]. It is often
convenient to define these functions via double power series. Most of the mathematical studies
of these functions are either focussed on the analysis of domains of convergence, or on relating
special cases to other known functions or else to derive functional relationships between different
hypergeometric functions of two variables, see e.g. [App26, Bat53, Bat54, Sri85, Olv10, Cho11,
Liu14, Bry17a, Bry17b]. Relatively little seems yet to be known on the asymptotic behaviour of
such double series, in contrast to the classic study of Wright [Wri35, Wri40, Wri52] on the asymp-
totics of pFq(z) when |z| → ∞. Here, we shall present results on the leading asymptotics of some
hypergeometric functions when the absolute values of both variables become large simultaneously.
The main tool to derive these are Eulerian and (inverse) Laplacian integral representations, and a
Tauberian theorem [Wid46, Fel71]. The results are stated as theorems in section 4.3, see eqs (4.3.1,
4.3.2, 4.3.3, 4.3.6, 4.3.8).

We shall consider the third Appell series F3

F3(α, α′, β, β′; γ;x, y) =
∞∑
m=0

∞∑
n=0

(α)m(β)m(α′)n(β′)n
(γ)n+m

xm

m!
yn

n! (4.1.1)

where (α)m = Γ(α +m)/Γ(α) denotes the Pochhammer symbol for −α 6∈ N. We shall also study
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the confluent forms (Humbert functions)

Ξ1(α, α′, β; γ;x, y) =
∞∑
m=0

∞∑
n=0

(α)m(β)m(α′)n
(γ)m+n

xm

m!
yn

n! (4.1.2a)

Ξ2(α, α′; γ;x, y) =
∞∑
m=0

∞∑
n=0

(α)m(β)m
(γ)m+n

xm

m!
yn

n! (4.1.2b)

Φ2(β, β′; γ;x, y) =
∞∑
m=0

∞∑
n=0

(β)m(β′)n
(γ)m+n

xm

m!
yn

n! (4.1.2c)

Φ3(β; γ;x, y) =
∞∑
m=0

∞∑
n=0

(β)m
(γ)m+n

xm

m!
yn

n! . (4.1.2d)

Throughout, we shall implicitly assume that the parameters α, α′, β, β′, γ, . . . are such that any
singularity in the coefficients is avoided, without restating this explicitly. While the series F3
converges for max(|x|, |y|) < 1, the series Ξ1 and Ξ2 converge for |x| < 1 and |y| <∞ and Φ2 and
Φ3 converge for |x| <∞ and |y| <∞ [Sri85]. For reduction formulæ to hypergeometric functions
of a single variable, see [Bry17a, Bry17b]. We shall also be interested in the series

Φ(i)
2 (β, β′; γ, λ;x, y) :=

∞∑
m=0

∞∑
n=0

(β)m(β′)n
(γ)m+n

1
m+ n+ λ

xm

m!
yn

n! (4.1.3a)

Φ(i)
3 (β; γ, λ;x, y) :=

∞∑
m=0

∞∑
n=0

(β)m
(γ)m+n

1
m+ n+ λ

xm

m!
yn

n! (4.1.3b)

which for −λ 6∈ N converge for |x| <∞ and |y| <∞. Clearly, for λ = γ, one has

Φ(i)
2 (β, β′; γ, γ;x, y) = 1

γ
Φ2(β, β′; γ + 1;x, y) , Φ(i)

3 (β; γ, γ;x, y) = 1
γ

Φ3(β; γ + 1;x, y) (4.1.4)

and for λ = 1 these series may be rewritten as Kampé de Fériet series [Sri85]

Φ(i)
3 (β; γ, 1;x, y) =

1∫
0

dw Φ3(β; γ;xw, yw) = F 1;1;0
2;0;0

 (1); (β); −

(γ, 2); −; −

∣∣∣∣∣∣x, y
 (4.1.5a)

Φ(i)
2 (β, β′; γ, 1;x, y) =

1∫
0

dw Φ2(β, β′; γ;xw, yw) = F 1;1;1
2;0;0

 (1); (β); (β′)

(γ, 2); −; −

∣∣∣∣∣∣x, y
 (4.1.5b)

such that Φ(i)
2 , Φ(i)

3 might be called ‘integrated Humbert functions’. We are interested in situations
where both |x| and |y| become large. We shall therefore substitute x 7→ tx and y 7→ ty and study
the limit t→∞ where x, y ∈ R will be kept fixed and non-zero.

In section 4.2 the integral and inverse Laplace representations of the Humbert functions and
integrated Humbert functions are derived, which will be used in section 4.3 to derive the asymp-
totic forms. Section 4.4 briefly outlines an application to many-body quantum dynamics and the
connection to chapter 3.

4.2 Integral representations

The starting point for the derivation of the asymptotics of the series (4.1.1, 4.1.2) will the following
Eulerian integral representations. Throughout, the parameters α, β, γ . . . of the functions, as well
as x, y, are assumed constants and such that all series and integrals considered exist.
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Lemma 1. The functions defined in (4.1.1, 4.1.2) have the integral representations1

Φ3(β; γ; tx, ty) = Γ
[ γ

γ−ε ε

] ∞∫
0

du uε−1

(1 + u)γ 1F1

(
β; γ − ε; tx

1 + u

)
0F1

(
ε; tyu

1 + u

)
(4.2.1a)

Φ2(β, β′; γ; tx, ty) = Γ
[ γ

γ−ε ε

] ∞∫
0

du uε−1

(1 + u)γ 1F1

(
β; γ − ε; tx

1 + u

)
1F1

(
β′; ε; tyu

1 + u

)
(4.2.1b)

Ξ2(α, β; γ; tx, ty) = Γ
[ γ

γ−ε ε

] ∞∫
0

du uε−1

(1 + u)γ 2F1

(
α, β; γ − ε; tx

1 + u

)
0F1

(
ε; tyu

1 + u

)
(4.2.1c)

Ξ1(α, β, β′; γ; tx, ty) = Γ
[ γ

γ−ε ε

] ∞∫
0

du uε−1

(1 + u)γ 2F1

(
α, β; γ − ε; tx

1 + u

)
1F1

(
β′; ε; tyu

1 + u

)
(4.2.1d)

F3(α, α′, β, β′; γ; tx, ty) = Γ
[ γ

γ−ε ε

] ∞∫
0

du uε−1

(1 + u)γ 2F1

(
α, β; γ − ε; tx

1 + u

)
2F1

(
α′, β′; ε; tyu

1 + u

)
(4.2.1e)

and where ε is a fixed constant, which satisfies 0 < ε < γ.

Proof: We illustrate the technique for the example Φ2 = Φ2(β, β′; γ; tx, ty). The double series
(4.1.2c) is decoupled by using the decomposition m+n+γ = (m+γ−ε)+(n+ε) and the identity
[Abr64, (6.2.1)] involving the Euler Beta function

1
Γ(m+ n+ γ) = 1

Γ(n+ ε)Γ(m+ γ − ε)
Γ(n+ ε)Γ(m+ γ − ε)

Γ(m+ n+ γ)

= 1
Γ(n+ ε)Γ(m+ γ − ε)

∫ ∞
0

du un+ε−1

(1 + u)m+n+γ (4.2.2)

Inserting this into the definition (4.1.2c) gives, because the series are absolutely convergent

Φ2 =
∫ ∞

0
du

∞∑
m=0

∞∑
n=0

Γ(γ)(β)m
Γ(m+ γ − ε)

(β′)n
Γ(n+ ε)

1
m!n!

(
xt

1 + u

)m(
ytu

1 + u

)n
uε−1

(1 + u)γ

=Γ
[ γ

γ−ε ε

] ∫ ∞
0

du uε−1

(1 + u)γ
∞∑
m=0

(β)m
(γ − ε)mm!

(
xt

1 + u

)m ∞∑
n=0

(β′)n
(γ − ε)n n!

(
ytu

1 + u

)n
=Γ
[ γ

γ−ε ε

] ∫ ∞
0

du uε−1

(1 + u)γ 1F1

(
β; γ − ε; tx

1 + u

)
1F1

(
β′; ε; tyu

1 + u

)
as asserted in (4.2.1b). The other identities (4.2.1) are proven similarly. �

Comment 1. Eqs. (4.2.1) are not immediately useful for obtaining the t→∞ asymptotics, since
a naïve substitution of the asymptotic forms of the pFq would lead to divergent integrals.

1We use throughout the notation Γ
[
a1 ... an
b1 ... bm

]
= Γ(a1)···Γ(an)

Γ(b1)···Γ(bm) .
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Comment 2. Recall the following definitions of further double hypergeometric series [Sri85]

F2(a, b, b′; c, c′;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b)m(b′)n
(c)m(c′)n

xm

m!
yn

n! (4.2.3a)

Ψ1(a, b; c, c′;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n(b)m
(c)m(c′)n

xm

m!
yn

n! (4.2.3b)

Ψ2(a; c, c′;x, y) =
∞∑
m=0

∞∑
n=0

(a)m+n

(c)m(c′)n
xm

m!
yn

n! (4.2.3c)

By using Γ(z) =
∫∞

0 du uz−1e−u, one may derive in a way similar to Lemma 1 the identities

F2(a, b, b′; c, c′;x, y) = 1
Γ(a)

∫ ∞
0

du e−u ua−1
1F1(b; c;xu)1F1(b′; c′; yu) (4.2.4a)

Ψ1(a, b; c, c′;x, y) = 1
Γ(a)

∫ ∞
0

du e−u ua−1
1F1(b; c;xu)0F1(c′; yu) (4.2.4b)

Ψ2(a; c, c′;x, y) = 1
Γ(a)

∫ ∞
0

du e−u ua−1
0F1(c;xu)0F1(c′; yu) (4.2.4c)

see also [Sri85, (9.4.29)]. However, there is no known way to render these as convolutions, which
will become our main tool to analyse the t→∞ asymptotics of the functions in Lemma 1.
In the next lemma, we shall use the short-hand Φ3 := Φ3(β; γ;xt, yt) and similarly for the other
functions defined in (4.1.1, 4.1.2).

Lemma 2. The integral representations (4.2.1) for the functions in (4.1.1,4.1.2) take the form

Φ3 = Γ
[ γ

γ−ε ε

]
t1−γ

t∫
0

dv vγ−ε−1
1F1 (β; γ − ε;xv) 0F1 (ε; y(t− v)) (t− v)ε−1 (4.2.5a)

Φ2 = Γ
[ γ

γ−ε ε

]
t1−γ

t∫
0

dv vγ−ε−1
1F1 (β; γ − ε;xv) 1F1 (β′; ε; y(t− v)) (t− v)ε−1 (4.2.5b)

Ξ2 = Γ
[ γ

γ−ε ε

]
t1−γ

t∫
0

dv vγ−ε−1
2F1 (α, β; γ − ε;xv) 0F1 (ε; y(t− v)) (t− v)ε−1 (4.2.5c)

Ξ1 = Γ
[ γ

γ−ε ε

]
t1−γ

t∫
0

dv vγ−ε−1
2F1 (α, β; γ − ε;xv) 1F1 (β′; ε; y(t− v)) (t− v)ε−1 (4.2.5d)

F3 = Γ
[ γ

γ−ε ε

]
t1−γ

t∫
0

dv vγ−ε−1
2F1 (α, β; γ − ε;xv) 2F1 (α′, β′; ε; y(t− v)) (t− v)ε−1 (4.2.5e)

and where ε is a fixed constant, which satisfies 0 < ε < γ.2

Proof. To be specific, we present but the example of Φ2. Indeed, the change of variables v =
t/(1 + u) transforms (4.2.1b) into (4.2.5b). The other functions are treated similarly. �

In consequence, if we use F as a generic symbol for any of the functions in (4.2.5), one has

F = Γ
[ γ

γ−ε ε

]
t1−γ

∫ t

0
dv F1(v)F2(t− v) = Γ

[ γ

γ−ε ε

]
t1−γL −1

(
F1(p) F2(p)

)
(t) (4.2.6)

where f(p) = L (f(v)) (p) =
∫∞

0 dve−pvf(v) denotes the Laplace transform. The functions F1,2(v)
are readily read off from eqs (4.2.5) and are listed in tab 4.1.

2Eq (4.2.5e) was already given in [Sri85, (9.4.16)].
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Table 4.1: Functions F1 and F2 that are contained in the convolution integral of the Humbert
functions.

function F1(v) F2(v)

Φ3 vγ−ε−1
1F1 (β; γ − ε;xv) vε−1

0F1 (ε; yv)

Φ2 vγ−ε−1
1F1 (β; γ − ε;xv) vε−1

1F1 (β′; ε; yv)

Ξ2 vγ−ε−1
2F1 (α, β; γ − ε;xv) vε−1

0F1 (ε; yv)

Ξ1 vγ−ε−1
2F1 (α, β; γ − ε;xv) vε−1

1F1 (β′; ε; yv)

F3 vγ−ε−1
2F1 (α, β; γ − ε;xv) vε−1

2F1 (α′, β′; ε; yv)

Table 4.2: Laplace Transforms of the convolution integrals from Lemma 2. Note: the entries for
Φ2 and Φ3 are contained in [Bat54].

function F (t) Laplace transform F (t)(p)

tγ−1 Φ3(β; γ;−xt,−yt) Γ(γ) pβ−γ(p+ x)−βe−y/p

tγ−1 Φ2(β, β′; γ;−xt,−yt) Γ(γ) pβ+β′−γ(p+ x)−β(p+ y)−β′

tγ−1 Ξ2(α, β; γ;−xt,−yt) Γ(γ)x−αpα−γU(α; 1 + α− β; p/x)e−y/p

tγ−1 Ξ1(α, β, β′; γ;−xt,−yt) Γ(γ)x−αpα+β′−γ(p+ y)−β′U(α; 1 + α− β; p/x)

tγ−1 F3(α, α′, β, β′; γ;−xt,−yt) Γ(γ) p
α+α′−γ

xαyα′
U(α; 1 + α− β; px )U(α′; 1 + α′ − β′; py )

Next, we require the following list of Laplace transforms, taken from [Pru92a, eqs 3.38.1.1, 3.35.1.3,
3.38.1.1, 3.37.1.2] combined with [Abr64, eqs (13.1.10, 13.1.33)]

L
(
va−1

0F1 (a;−yv))
)

(p) = Γ(a)p−ae−y/p (4.2.7a)

L
(
vb−1

1F1 (a; b;−yv))
)

(p) = Γ(b)pa−b(p+ y)−a (4.2.7b)

L
(
vc−1

2F1 (a, b; c;−yv))
)

(p) = Γ(c)pa−cy−aU
(
a; 1 + a− b; p

y

)
(4.2.7c)

where U denotes the Tricomi function [Abr64]. Combining these with the integral forms (4.2.6)
gives

Lemma 3. The Laplace transforms of the functions in Lemma 2 are given by the tab 4.2, where
U denotes the Tricomi function.

Corollary 1. Applying eq (4.2.2), the Kampé de Fériet series

F 0;p;p′
1;q;q′

(
−; (αp); (α′p′)

γ; (βq); (β′q′)

∣∣∣∣∣− tx,−ty

)
=

∞∑
m,n=0

(α1)m · · · (αp)m
(β1)m · · · (βq)m

(α′1)n · · · (αp′)n
(β′1)n · · · (β′q′)n

(−t)m+n

(γ)m+n

xm

m!
yn

n!

= Γ
[

γ

γ−ε ε

] ∫ ∞
0

du uε−1

(1 + u)γ pFq+1

(
α1, . . . , αp

β1, . . . , βq, γ − ε
; −tx

1 + u

)
p′Fq′+1

(
α′1, . . . , α

′
p′

β′1, . . . , β
′
q′ , ε

; −tyu
1 + u

)

= Γ(γ)t1−γL−1
(
s−γ pFq

(
(αp); (βq); −x

s

)
p′Fq′

(
(α′p′); (β′q′); −y

s

))
(t) (4.2.8)
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contains all functions treated here explicitly as special cases. For the derivation of (4.2.8), we used
the identity [Pru92a, (3.38.1.1)]

L
(
vµ−1

pFq+1 ((ap); (bq), µ;−ωv)
)

(s) = Γ(µ)s−µ pFq
(

(ap); (bq);−
ω

s

)
(4.2.9)

For q = q′ = 0 and p = p′, eq (4.2.8) reduces to the Lauricella function F
(p)
B in two variables.

Furthermore, for p = p′ = q = q′ = 0, one has an addition theorem

0F1(γ;x+ y) =
∞∑

m,n=0

1
(γ)m+n

xm

m!
yn

n!

= Γ
[ γ

γ−ε ε

] ∫ ∞
0

du uε−1

(1 + u)γ 0F1

(
γ − ε; x

1 + u

)
0F1

(
ε; yu

1 + u

)
(4.2.10)

We now turn to the variants Φ(i)
3 and Φ(i)

2 defined in eq (4.1.3). Since Φ(i)
2 is symmetric under

the permutation (x, β)↔ (y, β′), we can set x > y without restriction of the generality.

Lemma 4. The following integral representations of the functions (4.1.3) hold, with x > y for
Φ(i)

2 and x = y for the symmetric function Φ(i,s)
2

Φ(i)
3 = Φ(i)

3 (β; γ, 1;−tx,−ty) =
∫ 1

0
dw Φ3(β; γ;−txw,−tyw)

= Γ
[ γ

γ−ε ε

] ∫ 1

0
dw
∫ ∞

0
du uε−1

(1 + u)γ 1F1

(
β; γ − ε;− txw

1 + u

)
0F1

(
ε;− tywu1 + u

)

= Γ(γ)t1−y e
y/x

x

(y
x

)β−1
L −1

(
p1−γ

[
Γ
(

1− β, y
x

)
− Γ

(
1− β, y

x
+ y

p

)])
(t) (4.2.11a)

Φ(i)
2 = Φ(i)

2 (β, β′; γ, 1;−tx,−ty) =
∫ 1

0
dw Φ2(β, β′; γ;−txw,−tyw)

= Γ
[ γ

γ−ε ε

] ∫ 1

0
dw
∫ ∞

0
du uε−1

(1 + u)γ 1F1

(
β; γ − ε;− txw

1 + u

)
1F1

(
β′; ε;− tywu1 + u

)

= Γ(γ)t1−γxβ′−1

(1− β)(x− y)−β′ L −1
(
pβ+γ(p+ x)1−β

2F1

(
1− β, β′; 2− β;− (p+ x)y

p(x− y)

)

−p1−γ
2F1

(
1− β, β′; 2− β;− y

(x− y)

))
(t) (4.2.11b)

Φ(i,s)
2 = Φ(i)

2 (β, β′; γ, 1;−tx,−tx) =
∫ 1

0
dw Φ2(β, β′; γ;−txw,−txw)

= Γ(γ)t1−γ

(1− β − β′)x L −1
(
pβ+β′−γ(p+ x)1−β−β′ − p1−γ

)
(t) (4.2.11c)

where Γ(a, x) is the incomplete Gamma-function.

Proof. Starting from (4.1.3b), the extra denominator is turned into an auxiliary integral

Φ(i)
3 =

∫ ∞
0

dv
∞∑

m,n=0
e−v(m+n+1) (β)m

(γ)m+n

(−tx)m

m!
(−ty)n

n!

and the decoupling of the two series proceeds via (4.2.2) as in the proof of Lemma 1. A change of
variables w = e−v and Lemma 1 give the second line in (4.2.11a). The same change of variables
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as in Lemma 2 then gives, using also (4.2.7)

Φ(i)
3 = Γ(γ)t1−γL −1

(
pβ−γ

∫ 1

0
dw (p+ xw)−βe−yw/p︸ ︷︷ ︸

=:M

)
(t)

The integralM is found as follows, reducing it to incomplete Gamma functions [Abr64]

M = 1
x

∫ x+p

p

da a−β exp
[
−y
x

a− p
p

]
= ey/x

x

(
px

y

)1−β ∫ y/x+y/p

y/x

db b−βe−b

= ey/x

x

(
px

y

)1−β [
Γ
(

1− β, y
x

)
− Γ

(
1− β, y

x
+ y

p

)]
and inserting into Φ(i)

3 gives the last assertion (4.2.11a).
Turning to Φ(i)

2 , the procedure to go from (4.1.3a) to the second line of (4.2.11b) is analogous.
Changing variables as before and re-using (4.2.7), we arrive at

Φ(i)
2 = Γ(γ)t1−γL −1

(
pβ+β′−γ

∫ 1

0
dw (p+ xw)−β(p+ yw)−β

′

︸ ︷︷ ︸
=: N

)
(t)

which is still symmetric under the simultaneous exchanges (x, β) ↔ (y, β′), as it should be. To
evaluate this, recall the following identity on the incomplete Beta function [Abr64, (6.6.8),(15.3.4)]

I(a, b, ξ) :=
∫ ξ

0
du ua−1

(1 + u)b = ξa

a
2F1(a, b; 1 + a;−ξ)

Then we can evaluate the integral N , now using x > y

N = x−βy−β
′
∫ 1

0
dw

(
w + p

x

)−β (
w + p

y

)−β′
= x−βy−β

′
(
p(x− y)
xy

)1−β−β′ ∫ (p+x)y/(p(x−y))

y/(x−y)
db b−β(1 + b)−β

′

= x−βy−β
′
(
p(x− y)
xy

)1−β−β′ [
I

(
1− β, β′, (p+ x)y

p(x− y)

)
− I

(
1− β, β′,− y

(x− y)

)]
= x−βy−β

′
(
p(x− y)
xy

)1−β−β′ 1
1− β

[(
(p+ x)y
p(x− y)

)1−β

2F1

(
1− β, β′; 2− β;− (p+ x)y

p(x− y)

)

−
(

y

x− y

)1−β

2F1

(
1− β, β′; 2− β;− y

x− y

)]

and inserting this into the above expression for Φ(i)
2 gives the last assertion (4.2.11b). Finally, in

the symmetric case x = y we have

Φ(i,s)
2 = Γ(γ)t1−γL −1

(
pβ+β′−γ

∫ 1

0
dw (p+ xw)−β−β

′
)

(t)

and straightforward integration gives the assertion (4.2.11c). �

Corollary 2. For x > 0, one has the identity∫ 1

0
dwwλ−1(1−w)µ−1Φ2(β, β′; γ;−xtw,−xtw) = Γ(λ)Γ(µ)

Γ(λ+ µ) 2F2 (β + β′, λ;µ+ λ, γ;−xt) (4.2.12)
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Proof. The lines of calculation are by now well-established∫ 1

0
dw wλ−1(1− w)µ−1Φ2(β, β′; γ;−xtw,−xtw)

= Γ(γ)t1−γL −1
(
pβ+β′−γ

∫ 1

0
dw wλ−1(1− w)µ−1(p+ xw)−β−β

′
)

(t)

= Γ
[
γ λ µ

λ+µ

]
t1−γL −1

(
p−γ 2F1

(
β + β′, λ;µ+ λ;−x

p

))
(t)

= Γ
[
λ µ

λ+µ

]
2F2 (β + β′, λ;µ+ λ, γ;−xt)

where in the third line, the integral representation [Abr64, (15.3.1)] of 2F1 was used and in the
forth line, [Pru92b, (3.35.1.10)], or else (4.2.9), was applied. �

4.3 Asymptotic expansions
We shall use a Tauberian theorem for the asymptotic evaluations: the behaviour of a function
f(t) for t → ∞ is related to the one of its Laplace transform f(p) for p → 0 [Wid46], [Fel71, ch.
XIII]. Therefore, it is sufficient to analyse the behaviour of the representations as inverse Laplace
transformations from Lemmas 3 and 4 in section 2 for p→ 0, before inverting.

Theorem 1. The Humbert function Φ2 = Φ2(β, β′; γ;−tx,−ty) has the following leading asymp-
totic behaviour for t→∞, with x, y 6= 0 being kept fixed

Φ2 '



Γ(γ)
Γ(γ−β−β′) (tx)−β (ty)−β

′
; for x > 0, y > 0

Γ(γ)
Γ(β′) e

−yt (t(|y|+ x))−β (t|y|)β+β′−γ ; for x > 0, y < 0

Γ(γ)
Γ(β) e

−xt (t(y + |x|))−β
′
(t|x|)β+β′−γ ; for x < 0, y > 0

Γ(γ)
Γ(β) e

−|x|t (t|x|)β+β′−γ (t|x− y|)−β
′

; for x < y < 0

Γ(γ)
Γ(β′) e

−|y|t (t|y|)β+β′−γ (t|y − x|)−β
′

; for y < x < 0

Γ(γ)
Γ(β+β′) e

−|x|t (t|x|)β+β′−γ ; for y = x < 0

(4.3.1)

and neither γ, β, β′, β + β′ nor γ − β − β′ are non-positive integers.
Only the signs of β, β′ and of β + β′ − γ will influence the qualitative behaviour of the leading

asymptotic terms, for t→∞.

Proof. The starting point is the representation of Φ2 as an inverse Laplace transformation in
Lemma 3. For x > 0 and y > 0, the leading term for p→ 0 is

Φ2 ' Γ(γ)t1−γL −1
(
pβ+β′−γx−βy−β

)
(t)

and direct evaluation [Pru92b, (2.1.1.1)] gives the assertion. Next, for x > 0 and y < 0, one first
makes the shift q = p− y and second takes the leading term for q → 0. Then

Φ2 = Γ(γ)t1−γe−|y|tL −1
(

(q + |y|)β+β′−γ(q + |y|+ x)−βq−β
′
)

(t)

q→0
' Γ(γ)t1−γe−|y|tL −1

(
|y|β+β′−γ(|y|+ x)−βq−β

′
)

(t)

and direct evaluation gives the assertion. For x < 0 and y > 0 one merely has to permute
(x, β)↔ (y, β′). Finally, for x < 0 and y < 0

Φ2 = Γ(γ)t1−γL −1
(
pβ+β′−γ(p− |x|)−β(p− |y|)−β

′
)

(t)
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If x < y < 0, or |x| > |y|, one makes the shift q = p − |x| and the stated result follows as before.
If y < x < 0, one merely permutes (x, β) ↔ (y, β′). For x = y < 0, the shift q = p − |x| and
expansion in q to lowest order gives the stated result. �

Theorem 2. The Humbert function Φ3 = Φ3(β; γ;−tx,−ty) has the following asymptotic be-
haviour for t→∞, with x, y 6= 0 being kept fixed

Φ3 '


Γ(γ)(tx)−β(ty)(1+β−γ)/2Jγ−β−1(2

√
yt ) ; for x > 0, y > 0

Γ(γ)(tx)−β(t|y|)(1+β−γ)/2Iγ−β−1(2
√
|y|t ) ; for x > 0, y < 0

Γ(γ)
Γ(β) (t|x|)β−γ e−y/|x|−|x|t ; for x < 0

(4.3.2)

where Jν is a Bessel function and Iν the corresponding modified Bessel function and neither γ nor
β are non-positive integers.

The qualitative behaviour of the leading asymptotic term is only influenced by the signs of β
and β − γ.

Proof. Use the representation of Φ3 as an inverse Laplace transformation in Lemma 3. For x > 0,
simply retain the lowest order in p→ 0 and use (4.2.7a). Expressing the hypergeometric function
0F1 as a Bessel or a modified Bessel function, respectively, gives the assertion for y > 0 and y < 0.
For x < 0, make the shift q = p− |x| such that

Φ3 = Γ(γ)t1−γ e−|x|tL −1
(

(q + |x|)β−γq−βe−y/(q+|x|)
)

(t)

q→0
' Γ(γ)t1−γ e−|x|tL −1

(
|x|β−γq−βe−y/|x|

)
(t)

and re-use Γ(β)L −1 (q−β) (t) = tβ−1 [Pru92b, (2.1.1.1)]. �

Theorem 3. The Humbert function Ξ2 = Ξ2(α, β; γ;−tx,−ty) has the following asymptotic
behaviour for t→∞, with x, y 6= 0 being kept fixed

Ξ2 '



Γ(α)Γ(α−β)
Γ(α) (tx)−β (ty)−(γ−β−1)/2

Jγ−β−1(2
√
yt ) ; for x > 0, y > 0 and α > β

Γ(α)Γ(α−β)
Γ(α) (tx)−β (t|y|)−(γ−β−1)/2

Iγ−β−1(2
√
|y|t ) ; for x > 0, y < 0 and α > β

Γ(γ)
Γ(α) (tx)−α (ty)−(γ−α−1)/2 [π

2Yγ−α−1(2
√
yt )

+Jγ−α−1(2
√
|y|t )

[ 1
2 ln(tx) + ln(x/y)− ψ(α)− 2CE

]]
; for x > 0, y > 0 and α = β

Γ(γ)
Γ(α) (tx)−α (t|y|)−(γ−α−1)/2

Iγ−α−1(2
√
|y|t )

×
[ 1

2 ln(tx) + ln(x/|y|)− ψ(α)− 2CE
]

; for x > 0, y < 0 and α = β

Γ(α)Γ(β−α)
Γ(β) (tx)−α (ty)−(γ−α−1)/2

Jγ−α−1(2
√
yt ) ; for x > 0, y > 0 and α < β

Γ(α)Γ(β−α)
Γ(β) (tx)−α (t|y|)−(γ−α−1)/2

Iγ−α−1(2
√
|y|t ) ; for x > 0, y < 0 and α < β

(4.3.3)

where Jν and Yν are the Bessel and Neuman functions, respectively, Iν is a modified Bessel func-
tion, ψ(x) is the digamma function and CE ' 0.5772 . . . is Euler’s constant [Abr64]. For x < 0,
the function Ξ2 has a cut.
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Proof. In order to apply the inverse Laplace representation of Lemma 3, the small-p expansion

U
(
α; 1 + α− β; p

x

)
'


Γ(α−β)

Γ(α)
(
p
x

)β−α ; for α > β

− 1
Γ(α)

[
ln p

x + ψ(α) + 2CE
]

; for α = β

Γ(β−α)
Γ(β) ; for α < β

according to eqs (13.5.6)-(13.5.12) in [Abr64] is required, for α − β 6∈ (−1) · N. For x > 0 and
α > β, to lowest order in p → 0, this gives Ξ2 ' (Γ(γ)Γ(α−β)

Γ(α) t1−γx−βL −1 (p−(γ−β)ey/p
)

(t) and
using (4.2.7a) gives the assertion. For x > 0 and α < β the result follows from the symmetry in α
and β. For α = β and y > 0, expansion to lowest order in p→ 0 gives

Ξ2 ' −
Γ(γ)
Γ(α) t

1−γx−α
[
L −1

(
(ψ(α) + 2CE − ln x) p−(γ−α)e−y/p

)
(t)

+ L −1
(
p−(γ−α) ln p e−y/p

)
(t)
]

= −Γ(γ)
Γ(α) t

1−γx−α

[(
ψ(α) + 2CE − ln x− 1

2 ln t

y

)(
t

y

) 1
2 (γ−α−1)

Jγ−α−1(2
√
yt )

−
(
t

y

) 1
2 (γ−α−1)

∂Jν−1(2
√
yt )

∂ν

∣∣∣∣
ν=γ−α

]
(4.3.4)

re-using (4.2.7a) and [Pru92b, (2.5.7.3)]. For z → ∞, one has asymptotically ∂Jν(z)
∂ν ' π

2Yν(z)
[Abr64, (9.25,9.26)]. Collecting terms leads to the stated result. For y < 0 and α = β one has
analogously

Ξ2 ' −
Γ(γ)
Γ(α) t

1−γx−α
[
L −1

(
(ψ(α) + 2CE − ln x) p−(γ−α)e|y|/p

)
(t)

+ L −1
(
p−(γ−α) ln p e|y|/p

)
(t)
]

= −Γ(γ)
Γ(α) t

1−γx−α

[(
ψ(α) + 2CE − ln x− 1

2 ln t

y

)(
t

y

) 1
2 (γ−α−1)

Iγ−α−1(2
√
yt )

−
(
t

y

) 1
2 (γ−α−1)

∂Iν−1(2
√
yt )

∂ν

∣∣∣∣
ν=γ−α

]
(4.3.5)

and from the asymptotic form [Abr64, (9.7.1)] for Iν(z) for z →∞, we see that ∂Iν(z)
∂ν ' −νz Iν(z)

merely gives a sub-leading correction. Collecting terms we complete the list of assertions if x > 0.
For x < 0, the inverse Laplace representation in Lemma 3 has a cut. �

Theorem 4. The integrated Humbert function Φ(i)
3 = Φ(i)

3 (β; γ, 1;−tx,−ty) has the following
leading asymptotic behaviour for t→∞, with x, y 6= 0 being kept fixed

Φ(i)
3 '



γ−1
xt

[
Γ(1− β) (y/x))β−1 − 1

1−β 1F1(1; 2− β; y/x)
]

; for x, y > 0 and β + γ > 3
2

Γ(γ)√
π

(yt)−
1
2 (β+γ+ 1

2 ) ( y
x

)β cos
(
2
√
yt + π

2
(
β − γ − 1

2
))

; for x, y > 0 and β + γ < 3
2

Γ(γ)
2
√
π

(|y|t)−
1
2 (β−γ− 1

2 ) (xt)−β exp
(

2
√
|y|t

)
; for x > 0, y < 0

(4.3.6)
where neither γ nor 1− β are non-positive integers.

Proof. We begin with the integral representation (4.2.11a) of Lemma 4. The leading term for
p→ 0 is found from the asymptotic identity [Abr64, (6.5.30)] for x→∞

Γ(a, x+ y)− Γ(a, x) ' −e−xxa−1 (1− e−y)
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In order to invert L , we also need the identities (4.2.7a) and [Pru92b, (3.10.2.2)]

L −1
(
p−µΓ

(
ν,
a

p

))
(t) = Γ(ν)

Γ(µ) t
µ−1 − aνtµ+ν−1

νΓ(µ+ ν) 1F2 (ν; ν + 1, µ+ ν;−at)

Then, for p→ 0 (here, x > 0 is assumed)

Φ(i)
3 '

Γ(γ)
tγ−1

ey/x

x

(y
x

)β−1
L −1

(Γ
(
1− β, yx

)
pγ−1 −

Γ
(

1− β, yp
)

pγ−1 + e−y/p

pγ−1

(
p

y

)β (
1− e−y/x

))
(t)

= Γ(γ)
tγ−1

ey/x

x

(y
x

)β−1
[

Γ(1− β, y/x)− Γ(1− β)
Γ(γ − 1) + 1− e−y/x

Γ(γ − β − 1)(yt)β 0F1(γ − β − 2;−yt)

+ (yt)β−1

(1− β)Γ(γ − β) 1F2(1− β; 2− β, γ − β;−yt)
]

Further evaluation is simplified by the identity, taken from [Abr64, (6.5.3,6.5.12)](y
x

)−(1−β) [
Γ(1− β)− Γ

(
1− β, y

x

)]
= 1

1− β 1F1

(
1− β; 2− β;−y

x

)
and this gives

Φ(i)
3 ' Γ(γ)e

y/x

xt

[
1F1(1− β; 2− β;−y/x)

(β − 1)Γ(γ − 1)

+ 1F2(1− β; 2− β, γ − β;−yt)
(1− β)Γ(γ − β)(xt)β−1 + 1

(xt)β
x

y

1− e−y/x

Γ(γ − β − 1) 0F1(γ − β − 2;−yt)
]

(4.3.7)

We can now distinguish the two cases y > 0 and y < 0. For y > 0, recall the asymptotic identity
[Wol17, (07.22.06.0011.01)]

1F2(a1; b1, b2;−y)
y→∞
' Γ

[
b1 b2

1
2 a1

]
y

1
2 (a1−b1−b2+ 1

2 ) cos
(
π

2 (a1 − b1 − b2 + 1
2) + 2√y

)(
1 + O(y− 1

2 )
)

+ Γ
[

b1 b2

b1−a1 b2−a1

]
y−a1

(
1 + O(y−1)

)
Also, the function 0F1 can be expressed in terms of Bessel functions Jν [Abr64]. Inserting into
(4.3.7) the above expansion and using the asymptotics of Jν [Abr64] leads to

Φ(i)
3 '

γ − 1
xt

[
Γ(1− β)

(y
x

)β−1
− 1

1− β 1F1

(
1; 2− β; y

x

)]
+ Γ(γ)√

π

(y
x

)β
(yt)−

1
2 (β+γ+ 1

2 ) cos
(

2
√
yt + π

2

(
β − γ − 1

2

))
Herein, the first line dominates for β + γ > 3

2 and the second line for β + γ < 3
2 . This is the first

part of the assertion. For y = −|y| < 0, recall the asymptotic form [Wol17, (07.22.06.0005.01)]

1F2(a1; b1, b2; y)
y→∞
' Γ(b1)Γ(b2)

2
√
π Γ(a1)

y
1
2 (a1−b1−b2+ 1

2 ) e2√y

and now express 0F1 in terms of a modified Bessel function Iν [Abr64]. Insertion into (4.3.7) and
using the known asymptotic behaviour leads to

Φ(i)
3 '

Γ(γ)
2π1/2

(|y|t)− 1
2 (β−γ− 1

2 )

(xt)β e2
√
|y|t + γ − 1

β − 1
1
xt

1F1

(
1; 2− β;−|y|

x

)
Clearly, the second term is always sub-dominant. This completes the proof. �
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Theorem 5. The integrated Humbert function Φ(i)
2 = Φ(i)

2 (β, β′; γ, 1;−tx,−ty) has the following
leading asymptotic behaviour for t→∞, with x > y > 0 being kept fixed

Φ(i)
2 '

Γ(γ)
(1− β)Γ(γ − β)

(xt)β′−β

((x− y)t)β
2F2

(
1− β, β′; 2− β, γ − β;− xy

x− y
t

)

+ γ − 1
β − 1

1
xt

(
x

x− y

)β′
2F1

(
1− β, β′; 2− β;− y

x− y

)
(4.3.8)

Herein, none of γ, γ − β or 1 − β is a non-positive integer. For y > x > 0, one permutes (x, β)
and (y, β′).

Proof. We begin with the integral representation (4.2.11b) of Lemma 4. For p→ 0, this simplifies
into

Φ2(i)
p→0
' Γ(γ)

1− β
t1−γ

(x− y)β′x1−β′ L −1
(
x1−β

pγ−β
2F1

(
1− β, β′; 2− β;− xy

x− y
1
p

)
−pγ−1

2F1

(
1− β, β′; 2− β;− y

x− y

))
(t)

We need the identity [Pru92b, (3.35.1.10)]

L −1
(
pν 2F1

(
a, b; c;−ω

p

))
(t) = tν−1

Γ(ν) 2F2(a, b; c, ν;−ωt)

Then straightforward algebra leads to the assertion. For y > x > 0, it is enough to exchange
β ↔ β′ and x↔ y. �

More explicit asymptotics of 2F2 can be found in [Wri40, Wri52].
The expressions derived in this section can be checked numerically. However, the convergence

towards the given asymptotics is in general quite slow.
Finally, it is now straightforward to obtain the asymptotics of the special Kampé de Fériet series

(4.2.8), by using the known asymptotics of the hypergeometric functions pFq(z) [Wri40, Wri52].

4.4 An example from physics
The quantum spherical model [Hen84b, Voj96, Oli06] is a simple exactly solvable model of quantum
phase transitions, in d spatial dimensions, with a non-trivial quantum critical behaviour at zero
temperature (that is, the model cannot be described by a simple mean-field approximation, at
least for 1 < d < 3), see e.g. [Sac01, Dut15]. Its main formal characteristic is the ‘spherical
constraint’. As shown in chapter 3 and [Wal17b], if coherent and dissipative quantum dynamics
of the model is formulated in terms of a Lindblad equation, it can be shown that the canonical
quantum commutation relations are maintained, in spite of the dissipation, at least on average.
As we have seen in the previous chapter, if the system is deep in the ordered phase, the spherical
constraint takes the form I1 + I2 = 1, where

I1 =
∫
B

dk
(2π)d e

−γ(Z+tωk) =
(
e−2γtI0(2γt)

)d t→∞' e−γZ (4πγt)−d/2 (4.4.1)

I2 = 1
2

∫
B

dk
(2π)d

(
1− Cgt

Z + tωk

)
(1− cos 2ϑk) e−γ(Z+tωk) (4.4.2)

where Z = Z(t) is the integrated spherical Lagrange multiplier whose long-time behaviour as
t→∞ is sought. Furthermore, ωk = 2(d−cos k1−. . .−cos kd) is the lattice dispersion relation on a
d-dimensional hypercubic lattice with nearest-neighbour interactions, B = [−π, π]d is the Brillouin
zone, ϑk =

√
gt (Z + tωk), and the constants g, γ and C are the quantum coupling and the

dissipative coupling with the external bath, respectively, or characterise the quantum equilibrium
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initial condition. The sum I2 can be evaluated by expanding the cosine and integrating termwise.
Then the spherical constraint can be rewritten in the form (see eqs (3.6.13, 3.6.14, 3.6.15))

eγZ(4πγt)d/2 = 1
2Φ3

(
d

2 ; 3
2 ;−gZt,− g

γ
t

)
+ Cg2t2

∫ 1

0
dw Φ3

(
d

2 ; 3
2 ;− g

γ
tw,−gZtw

)
(4.4.3)

For the physically interesting long-time behaviour of Z = Z(t) for t→∞, the asymptotics of the
Humbert function Φ3 and of the integrated Humbert function Φ(i)

3 are required. In contrast to
the original formulation in eqs (4.4.1,4.4.2), the reformulation in eq (4.4.3) contains the spatial
dimension dmerely as a parameter. This allows to discuss also the model’s behaviour at non-integer
dimensions d ∈ R, which often provides useful physical insight.

We refer back to chapter 3 for the properties of the solutions of this equation.
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Chapter 5

Outlook and perspectives

5.1 Perspectives for the spherical model
Our present studies into the quantum dynamics of the qsm only represent first explorations into
a potentially very rich topic. We now mention several possible extensions of the present work.

5.1.1 Quantum ageing
The quantum regression theorem [Lax63, Gar04] allows an extension of the equations of motion
for single operator correlation functions to two-point correlation functions. It will allow us to
deduce from eq (3.4.4b) a closed system of equations for the two-time correlators 〈qk(t+ τ)q−k(t)〉,
〈πk(t+ τ)π−k(t)〉 and 〈{qk(t+ τ)πk(t)}〉 that we should be able to treat similarly to the one in
eq (3.4.23). Since we already know the solution of the spherical constraint in the deep quench
scenario, presented in section 3.6 we can aim at studying critical dynamical effects as ageing. The
extensive studies of effect like ageing in the classical spherical model [God00, Hen10] should serve
us as a guide on how to organise the studies of true quantum ageing in the spherical model.

5.1.2 Heat transport in spherical quantum chains and layers
Non-equilibrium steady state (ness) density operators are important to describe the dynamics
of boundary driven quantum chains and quantum transport phenomena. Generally, quantum
transport can lead to surprising features such as the violation of the Wiedemann-Franz law [Fil16]
and thus a careful investigation of dynamical properties is needed. Exactly solvable models provide
a tool how to systematically analyse these systems. Here, mainly the Heisenberg spin-1/2 chain
[Pro11a, Pro11b, Pro12], the Fermi-Hubbard chain [Pop15, Pro14] and the Lai-Sutherland spin-
1 chain [Ili14] are studied. Since we succeeded to describe the dynamics of the qsm, we have
all the tools to generalise these studies to our model. Once more the main focus here is going
to be the analytical character of the solution which will give important physical insights to the
underlying mechanisms. Moreover, the SM should again allow to overcome the constraint of 1D
chains and extend the formalism to 2D layers, higher dimensional (d > 2) quantum systems or
even fractal dimensional setups (for results in transport problems in 1D quantum chains see e.g.
[Lan15a, Lan16a, Pro11a]).

5.1.3 Connection to the Bose-Hubbard model
The Bose-Hubbard model represents the bosonic analogue of the famous Fermi-Hubbard model,
which is believed to be the basic toy model explaining several exotic materials in condensed matter
such as, e.g., the high-Tc cuprate superconductors. The Bose-Hubbard model describes e.g. Cooper
pairs of electrons undergoing Josephson tunnelling between superconducting islands, helium atoms
moving on a substrate, or ultracold atoms in an optical lattice [Sac01] and is thus a fundamental
system to describe various experimental setups. Moreover, extended version such as the competing
long and short range Bose Hubbard model [Lan16b] or the multi-mode Bose-Hubbard model for

125



126 CHAPTER 5. OUTLOOK AND PERSPECTIVES

quantum dipolar gases [Car17] show that one can extend the model in order to describe more
general setups. Since already the mean-field phase diagram reveals interesting properties of the
transition between a Mott insulator and a superfluid [Fis89] this system became a standard model
to describe this kind of phase transitions. As we mention in section 5.2, we are already studying
quench dynamics in this model but apart from that, there are many interesting open questions:

• The Hamiltonian of the Bose Hubbard model and the one of the sm are formally similar and
there are many aspects that seem to immediately relate. The main differences are the on-
site repulsion in the Bose-Hubbard model and the spherical constraint in the sm. One could
raise the question how far this analogy can be pushed and whether there exists a spherical
approximation to the Bose-Hubbard model that might allow for analytic investigation and a
straightforward extension to higher dimension.

• It is possible to connect the studies on this model to the heat transport questions raised in
the previous section (compare in 1D [RI07]).

5.1.4 Dicke Model
The Dicke Model, as we already discussed in chapter 2 on page 49 has striking similarities to the
sqs. Usually it is studied in a Holstein Primakoff approximation, that bosonises the many-body
fermionic degrees of freedom in a single bosonic one. Moreover, the Dicke model is one of the
prototypical models to study light-matter interaction in a many-body quantum system. It thus
seems natural to explore the (superradiant) phase transition in this model or even apply a non-
equilibrium dynamics to it analogue to the mean-field sqs and compare it to our former work. As
clear as the similarities might seem, the Dicke model effectively differs from our sqs and thus it
is not clear what results such dynamics can produce. Here it is most important to stress that the
Dicke phase transition refers usually to a bath property. In this respect a Lindblad description in
which the bath is assumed to be constant is not adequate and there have to be new tools developed
in order to compare the dynamical processes accurately.

5.2 Bose Hubbard project
During this thesis, we also worked [Wal17c] on the experiment [Lan16b] which we already presented
briefly in section 1.2.3.

Our aim is to better understand the Mott insulator (mi) to charge density wave (cdw) transition
which corresponds to the shaded region in the right panel of fig 1.13. Without introducing in great
detail into the theory of ultracold atoms and optical lattices1, we simply refer to the result stated
in [Lan16b] that the 2D system observed in the experiment can be described by the bosonic
Hamiltonian on a 2D square lattice

H =
K∑
i=1

Us
2 ni(ni − 1)− U`

K
Θ2 − λ

∑
〈i,j〉

(b†i bj + b†jbi) . (5.2.1)

Here bi is the annihilation operator at site i ∈ {1, . . . ,K} and ni = b†i bi is the bosonic number
operator. Us is the short-ranged repulsive interaction, λ is the hopping parameter describing
nearest-neighbour interaction. U` is the long-range interaction which depends on the imbalance
operator Θ =

∑
i∈e ni −

∑
i∈o ni. Here the square lattice is divided into even (e) and odd (o)

square sub-lattices. The long range term is induced by the cavity and favours a chequerboard
pattern in the lattice.

In the experiment independent control over the parameters U` and Us was achieved and the
phase diagram could therefore be measured as shown in fig 1.13.

The mi and cdw phases appear when λ/Us � 1 and are thus essentially determined by the
competition between Us and U`. In the particular limit of λ→ 0 the Hamiltonian becomes diagonal

1For reviews we refer to [Blo05, Lew07] and references therein.
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Figure 5.1: The Landau free energy from eq (5.2.3) for filling ρ = N/K = 1 and different values
of U`/Us: black U`/Us = 0.5, orange U`/Us = 0.4, blue U`/Us = 0.6. The system undergoes a first
order quantum phase transition at U`/Us = 1/2, from a mi phase corresponding to a minimum at
θ = 0 to a cdw phase whose minimum is at θ = ±1.

in the Fock basis and the partition function may be computed exactly at zero temperature in the
canonical ensemble with N bosons in the lattice.

As a result, we obtain the exact Landau free energy in the canonical ensemble

f(θ) = Us
2

[
ϕ(ρ+ θ) + ϕ(ρ− θ)

]
− U`θ2 (5.2.2)

where θ = 〈Θ〉/K is the order parameter, ρ = N/K and ϕ(ρ) = bρc [ρ − (bρc + 1)/2], with bxc
being the floor function. When ρ = 1 this acquires the particularly simple form

f(θ) = Us|θ|
2 − U`θ2 (5.2.3)

This result is shown in fig 5.1 for different values of U`/Us.
Apart from the gl theory we investigate quantum dynamical properties of the transition by

using a variational ansatz similar to a Gutzwiller mean-field theory [Gut63, Gut65, Kot86, Vol84].
In the standard Gutzwiller approximation one uses basis wave functions that are localised on the
lattice vertices and constructs a superposition out of them. This was done numerically for the
present system in [Flo17]. Our variational Ansatz is in contrast based on the eigenstates of the
imbalance operator Θ which are not local and naturally reflect the symmetry of both phases.

Publication list
1) S. Wald and M. Henkel, Quantum phase transition in the spin-anisotropic quantum spherical
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Résumé détaillé sur la thèse « thermalisation et
relaxation des systèmes quantiques »

Sascha Sebastian Wald

12 octobre 2017

Résumé
Cette thèse traite la dynamique hors équilibre des systèmes quantiques

ouverts couplés à un réservoir externe. Un modèle spécifique exactement so-
luble, le modèle sphérique, sert comme exemple paradigmatique. Ce modèle
se résout exactement en toute dimension spatiale et pour des interactions très
générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son
comportement critique d’équilibre ni celui hors équilibre est du genre champ
moyen. La présentation débute avec une revue sur la mécanique statistique
des transitions de phases classique et quantique, et sur les propriétés du
modèle sphérique. Sa dynamique quantique ne se décrit point à l’aide d’une
équation de Langevin phénoménologique. Une description plus complète à
l’aide de la théorie de l’équation de Lindblad est nécessaire. Les équations
de Lindblad décrivent la relaxation d’un système quantique vers son état
d’équilibre. En tant que premier exemple, le diagramme de phases dyna-
mique d’un seul spin sphérique quantique est étudié. Réinterprétant cette
solution en tant qu’une approximation champ moyen d’un problème de N
corps, le diagramme de phases quantique est établi et un effet « congeler en
réchauffant » quantique est démontré. Ensuite, le formalisme de Lindblad est
généralisé au modèle sphérique quantique de N particules : primo, la forme
précise de l’équation de Lindblad est obtenue des conditions que (i) l’état
quantique d’équilibre exacte est une solution stationnaire de l’équation de
Lindblad et (ii) dans le limite classique, l’équation Langevin de mouvement
est retrouvée. Secundo, le modèle sphérique permet la réduction exacte du
problème de N particules à une seule équation intégro-différentielle pour le
paramètre sphérique. Tertio, en résolvant pour le comportement asympto-
tique des temps longs de cette équation, nous démontrons que dans la limite
semi-classique, la dynamique quantique effective redevient équivalente à une
dynamique classique, à une renormalisation quantique de la température T
près. Quarto, pour une trempe quantique profonde dans la phase ordonnée,
nous démontrons que la dynamique quantique dépend d’une manière non
triviale de la dimension spatiale. L’émergence du comportement d’échelle
dynamique et des corrections logarithmiques est discutée en détail. Les outils
mathématiques de cette analyse sont des nouveaux résultats sur le compor-
tement asymptotique de certaines fonctions hypergéométriques confluentes
en deux variables.
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1 Introduction
La théorie des phénomènes critiques décrit la transition d’un système phy-
sique d’une phase dans une autre. Cela veut dire qu’il y a des propriétés ma-
croscopiques qui changent qualitativement dans ce processus [Nis11, Yeo92,
Dom96, Car96, Voj03, Sac01]. Ce genre des transition est omniprésent dans
la vie quotidienne et probablement l’exemple le plus connu est la congéla-
tion d’eau. Dans la figure 1 le diagramme de phase de l’eau est reproduit
et on observe qu’une transition peut être stimulée par soit la température
soit la pression. Nous citons quelques transitions de phase différentes dans
le tableau 1 pour illustrer qu’il y en a une grande variété.

solid

liquid

vapour

TP

CP

supercritical

Figure 1 – Diagramme de phases schématique de l’eau avec 3 phases diffé-
rentes : solide, liquide and vapeur. Nous indiquons le point triple ou toutes
ces phases coexistent tp et le point critique ou le système présent une tran-
sition de phases continue avec cp.

Il y a une autre type des transition qui sont stimulées par des fluctuations
quantiques, soit les transitions de phases quantiques. Dans ce genre des
transition des fluctuations quantiques sont responsables du comportement
du système et donc déterminent si le système est ordonné ou désordonné.
Au sens strict ces transitions ne se passent que à température T = 0 comme
c’est illustré dans la figure 2. Tout en sachant que cette température n’est
pas accessible expérimentalement, il y a des expériences qui peuvent en fait
vraiment observer des transition de phase quantiques soit dans les réseaux
optiques en utilisant des atomes ultra-froids [Gre02, Lan16] soit dans des
systèmes magnétiques plus complexes [Kra12, Bab16].

Notre but est d’étudier des propriétés dynamiques des transitions de
phases analytiquement dans un modèle paradigmatique, le modèle sphérique
dont la dynamique est décrite par une équation de Lindblad. Cette équa-
tion décrit une dynamique dissipative, tout en maintenant les commutateurs
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Tableau 1 – Exemples des transitions de phases [Yeo92, Ma00, Dro15]. sr =
sous-réseau, éf = état fondamental
transition paramètre d’ordre exemple
ferromagnétique aimantation Fe
antiferromagnétique aimantation du MnO
ferrimagnétique aimantation du sr Fe3O4

structurelle déplacement atomique SrTiO3

ferroelectrique polarisation electrique BaTiO3

ordonée-désordonnée concentration atomique du sr CuZn
séparation de phases différence de concentration CCl4+C7F16

superfluide fonction d’onde du condensat liquide He
supraconductivité fonction d’onde de l’éf Al, Nb3Sn
-“- à haute température fonction d’onde de l’éf H2S

quantiques canoniques. Pour un portrait du modèle sphérique nous référen-
çons à [Ber52, God00, Hen09, Hen10, Wal15, Voj96] et pour une introduction
aux équations de Lindblad à [Bre07, Eng02, Sch14].

2 Dynamique Lindblad d’une seule spin sphérique
quantique

Nous étudions la dynamique quantique d’une seule variable de spin boso-
nique, soumise à une contrainte dérivée du modèle sphérique quantique et
couplée à un bain thermique externe. À l’aide de la décomposition S ∝ a+a†
du spin S en opérateurs bosoniques a et a†, l’équation de Lindblad pour la
matrice densité devient

ρ̇ = − i
~

[H, ρ] + γ(nω + 1)
[
aρa† − 1

2
(
a†a ρ+ ρ a† a

)]
+γnω

[
a†ρa− 1

2
(
aa† ρ+ ρ a a†

)]
(1)

où H = ω
(
a†a+ 1/2

)
est l’hamiltonien d’un oscillateur harmonique avec

fréquence ω, nω est la distribution Bose-Einstein et γ est un paramètre
d’amortissement. La contrainte sphérique〈

s2
〉

= 1 (2)

implique que la fréquence ω doit (i) être une fonction de temps et (ii) être
déduite d’une façon auto-consistante [Wal16]. Ce modèle a quelques aspects
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quantum
 critical
 region

disorder 
 

thermal 
disorder

order

classical behaviour

quantum

Figure 2 – Comparaison des contributions classiques et quantiques au com-
portement critique.

en commun avec le modèle celèbre de Dicke qui décrit un système d’atomes
à deux niveaux interagissant avec une mode du champ élctro-magnétique
dans une cavité.

Nous avons montré les points communs et les différences de ces deux
modèles dont la plus importante est que le modèle de Dicke ne possède pas
le mécanisme auto-consistant qui rend la fréquence effectivement dépendante
du temps.

Nous déduisons des équation du mouvement

∂t
〈
aa
〉

= − [γ + 2iω]
〈
aa
〉

+ i

√
2g
~ω

B
〈
a
〉

(3)

∂t
〈
a†a

〉
= −γ

〈
a†a

〉
+Nω −

√
~g
2ω

B

i~

(〈
a†
〉
−
〈
a
〉)

(4)

∂t
〈
a
〉

= −
[
γ

2 + iω

] 〈
a
〉
−

√
~g
2ω

B

i~
(5)

Nous les résolvons exactement sans champs magnétique B = 0 et trou-
vons deux régimes différents pour le comportement de la relaxation comme
montré dan la figure 3. Ces deux régimes sont appelés «régime avec couplage
quantique fort (faible)».

En étudiant ce modèle dans un champ magnétique externe décrit par une
approximation de type champ moyen nous pouvons l’interpréter comme une
approximation d’un ferromagnet sphérique. L’interaction entre les fluctua-
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Figure 3 – Relaxation de la fréquence ω en fonction du temps
t. Panneau de gauche : régime avec couplage quantique faible.
Panneau de droit : régime avec couplage quantique fort.

tions quantiques, décrites par le paramètre g, et les fluctuations thermiques,
décrites par γ, montre une diagramme de phase re-entrante, figure 5, avec
l’analogue quantique du mécanisme classique de l’ordre induit par des fluc-
tuations [Hel00, Zia02].

3 Dynamique Lindblad du modèle sphérique quan-
tique

La dynamique de la relaxation hors equilibre du modèle sphérique avec N
dégrés de liberté avec l’hamiltonien en espace de Fourrier

H =
∑
k∈B

[
g

2 πkπ−k +
(
S −

d∑
i=1

cos ki

)
qkq−k

]
(6)

est étudiée. Ici qk est la transformation de Fourrier du spin, πk la transforma-
tion de l’impulsion, S est le paramètre sphérique et g décrit les fluctuations
quantiques (g = 0 correspond au modèle classique).

En départant d’une équation de Langevin et suivant les concepts utilisés
dans la dynamique classique, nous trouvons que ces concepts ne sont pas
capables de décrire la vraie dynamique quantique comme le commutateur
entre spins et impulsions décroît. Il nous faut donc une description quantique
de la dynamique et pour ça nous utilisons encore une fois une dynamique
de Lindblad. Pour trouver le dissipateur correct nous suivons deux chemins
différents :
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Figure 4 – Le diagramme de phase (gauche) qui montre le comportement
re-entrant en fonction des fluctuations quantiques (g) et les comportements
de relaxation différentes.

1. En décrivant le système avec un bain thermique au niveau microsco-
pique nous pouvons déduire avec des méthodes standards un dissipa-
teur qui nous garanti de relaxer le système dans l’équilibre.

2. En prenant la limite classique de la dynamique quantique et deman-
dant que cette limite corresponde à la dynamique de Langevin clas-
sique nous pouvons déduire le même dissipateur comme avant.

Par les deux méthodes nous trouvons l’équation de Lindblad [Wal16]

∂tρ = −i
[
H, ρ

]
+ γ0

∑
k∈B

[(1 + λ

2

)2
Λ2
−;k +

(1− λ
2

)2
Λ2

+;k

]
Λ2

+;kΛ2
−;k

S2 ×

×
[

(n̄k + 1)
(
bkρb

†
k −

1
2{b
†
kbk, ρ}

)
+ n̄k

(
b†kρbk −

1
2{bkb

†
k, ρ}

)]

(7)

Nous démontrons qu’en plus de reproduire la dynamique classique, l’équi-
libre quantique est toujours une solution stationnaire de l’équation de Lind-
blad.

Dans la limite semi-classique le comportement du modèle est effective-
ment classique avec l’exposant dynamique z = 2 et une température critique
effectivement renormalisée par des effets quantiques comme montré dans le
diagramme de phase figure 5.

Un comportement bien différent est trouvé pour une trempe quantique
profonde dans la région ordonnée g � gc(d) pour des dimensions d > 1.
Seulement pour d = 2 nous récupérons un comportement d’échelle simple
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ferromagnetic

Figure 5 – Diagramme de phases pour le modèle sphérique en d = 3 dimen-
sions spatiales. La courbe noire est la ligne critique exacte [Oli06] qui sé-
pare la phase paramagnétique et la phase ferromagnétique. La courbe rouge
montre la température critique T ?c (g) renormalisée par des effets quantiques.

avec z = 1. Nous montrons la fonction d’échelle dans la figure 6 qui décrit
le comportement du correlateur spin-spin

〈S0SR〉 (t) ∝ W(ρ) (8)

en fonction de la variable d’échelle ρ ∝ R/t. Pour d 6= 2 il y a des corrections
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Figure 6 – Illustration de la fonction d’échelleW en d = 2 dimensions pour
différentes régions de la variable d’échelle %.

logarithmiques au comportement d’échelle qui nous étudions en analysant
les corrélations des spins, la longueur caractéristique et la susceptibilité dy-
namique et toutes ces quantités montrent des corrections logarithmiques
avec des nombreuses longueurs caractéristiques différentes.

VII



4 Comportement asymptotique de quelques fonc-
tions hypergéométriques en deux variables

L’outil mathématique essentiel porte sur le comportement asymptotique
principal de la fonction d’Humbert de deux variables et si les valeurs des
deux variables indépendantes deviennent grandes simultanément. Nous en
déduisons des représentations intégrales nouvelles. et des théorèmes Taube-
rian. Nous y arrivons à l’aide des transformation de Laplace.

À titre d’exemple nous citons les résultats pour Φ3 pour l’analyse phy-
sique. Pour les démonstrations détaillées et les résultats des autres fonction
d’Humbert, nous référençons à notre article [Wal17].

Définition. La fonction d’Humbert Φ3 est définite par

Φ3(β; γ;x, y) :=
∞∑
m=0

∞∑
n=0

(β)m
(γ)m+n

xm

m!
yn

n! (9)

et la fonction d’Humbert intégrée Φ(i)
3 est définite par

Φ(i)
3 (β; γ, λ;x, y) :=

∞∑
m=0

∞∑
n=0

(β)m
(γ)m+n

1
m+ n+ λ

xm

m!
yn

n! (10)

Théorème. La fonction d’Humbert Φ3 = Φ3(β; γ;−tx,−ty) a le comporte-
ment asymptotique principal suivant pour t→∞, avec x, y 6= 0 fixés

Φ3 '


Γ(γ)(tx)−β(ty)(1+β−γ)/2Jγ−β−1(2

√
yt ) ; ∀ x > 0, y > 0

Γ(γ)(tx)−β(t|y|)(1+β−γ)/2Iγ−β−1(2
√
|y|t ) ; ∀ x > 0, y < 0

Γ(γ)
Γ(β) (t|x|)β−γ e−y/|x|−|x|t ; ∀ x < 0

(11)
Jν est la fonction de Bessel et Iν la fonction de Bessel modifiée correspon-
dante et ni γ ni β sont des nombres entiers non-positifs.
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Théorème. La fonction d’Humbert intégrée Φ(i)
3 = Φ(i)

3 (β; γ, 1;−tx,−ty) a
le comportement asymptotique principal suivant pour t → ∞, avec x, y 6= 0
fixés

Φ(i)
3 '



γ−1
xt

[
Γ(1− β) (y/x))β−1 − 1

1−β 1F1(1; 2− β; y/x)
]

; ∀ x > 0, y > 0, β + γ > 3
2

Γ(γ)√
π

(yt)−
1
2 (β+γ+ 1

2 ) ( y
x

)β cos
(
2
√
yt + π

2

(
β − γ − 1

2

))
; ∀ x > 0, y > 0, β + γ < 3

2

Γ(γ)
2
√
π

(|y|t)−
1
2 (β−γ− 1

2 ) (xt)−β exp
(
2
√
|y|t

)
; ∀ x > 0, y < 0

(12)
où ni γ ni 1− β sont des nombres entiers non-positifs.
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