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Atlantique Bretagne-Pays de la Loire - IMT Atlantique

sous le sceau de l’Université Bretagne Loire
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Rapporteurs :

M. Salvador ABREU, Professeur, Université d’Évora, Évora (Portugal)
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M. Philippe CODOGNET, Professeur, Université Pierre et Marie Curie, Paris-VI
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Constraint Modelling and Solving

of some Verification Problems

Short abstract: Constraint programming offers efficient languages and tools for

solving combinatorial and computationally hard problems such as the ones proposed in

program verification. In this thesis, we tackle two families of program verification prob-

lems using constraint programming. In both contexts, we first propose a formal eval-

uation of our contributions before realizing some experiments. The first contribution is

about a synchronous reactive language, represented by a block-diagram algebra. Such pro-

grams operate on infinite streams and model real-time processes. We propose a constraint

model together with a new global constraint. Our new filtering algorithm is inspired from

Abstract Interpretation. It computes over-approximations of the infinite stream values

computed by the block-diagrams. We evaluated our verification process on the FAUST

language (a language for processing real-time audio streams) and we tested it on exam-

ples from the FAUST standard library. The second contribution considers probabilistic

processes represented by Parametric Interval Markov Chains, a specification formalism

that extends Markov Chains. We propose constraint models for checking qualitative and

quantitative reachability properties. Our models for the qualitative case improve the state

of the art models, while for the quantitative case our models are the first ones. We imple-

mented and evaluated our verification constraint models as mixed integer linear programs

and satisfiability modulo theory programs. Experiments have been realized on a PRISM

based benchmark.

Keywords: Constraint Modelling - Constraint Solving - Program Verification - Ab-

stract Interpretation - Model Checking
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Modélisation et résolution par contraintes

de problèmes de vérification

Résumé court : La programmation par contraintes offre des langages et des outils

permettant de résoudre des problèmes à forte combinatoire et à la complexité élevée tels

que ceux qui existent en vérification de programmes. Dans cette thèse nous résolvons

deux familles de problèmes de la vérification de programmes. Dans chaque cas de figure

nous commençons par une étude formelle du problème avant de proposer des modèles en

contraintes puis de réaliser des expérimentations. La première contribution concerne un

langage réactif synchrone représentable par une algèbre de diagramme de blocs. Les pro-

grammes utilisent des flux infinis et modélisent des systèmes temps réel. Nous proposons

un modèle en contraintes muni d’une nouvelle contrainte globale ainsi que ses algorithmes

de filtrage inspirés de l’interprétation abstraite. Cette contrainte permet de calculer des

sur-approximations des valeurs des flux des diagrammes de blocs. Nous évaluons notre

processus de vérification sur le langage FAUST, qui est un langage dédié à la génération

de flux audio. La seconde contribution concerne les systèmes probabilistes représentés par

des châınes de Markov à intervalles paramétrés, un formalisme de spécification qui étend

les châınes de Markov. Nous proposons des modèles en contraintes pour vérifier des pro-

priétés qualitatives et quantitatives. Nos modèles dans le cas qualitatif améliorent l’état

de l’art tandis que ceux dans le cas quantitatif sont les premiers proposés à ce jour. Nous

avons implémenté nos modèles en contraintes en problèmes de programmation linéaire en

nombres entiers et en problèmes de satisfaction modulo des théories. Les expériences sont

réalisées à partir d’un jeu d’essais de la bibliothèque PRISM.

Mots clés : modélisation par contraintes - résolution par contraintes - vérification de

programmes - interprétation abstraite - vérification de modèles
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4 Chapter 1. Introduction

Computer scientists started to write programs in order to produce softwares realizing

dedicated tasks faster and more efficiently than a human could perform. However, in ad-

hoc developments the more complex is the problem to solve the longer it takes to write

its corresponding solving program. Moreover, few modifications in the description of the

problem to solve may impact many changes in the program. The artificial intelligence

research domain tries to develop more generic approaches such that a single artificially

intelligent program may solve a wide variety of heterogenous problems. Constraint pro-

gramming is a research axis in the artificial intelligence community where constraints are

sets of rules to be satisfied and the intelligent program must find a solution according to

these rules. Thus, the objective of the constraint programming community is to produce

languages and tools for solving constraint based problems. Such problems are expressed

in a declarative manner where programs consist in a set of rules (called constraints) to

be satisfied. Thus, a constraint programming user enumerates his/her rules and uses a

black-box tool (called solver) for solving his/her problem. These are two major research ac-

tivities in constraint programming: modelling and solving. The modelling activity works

on the expressiveness of the constraint language and manipulates constraint programs

in order to improve the resolution process. The solving activity consists in developing

algorithms, tools, and solvers for improving the efficiency of the resolution process.

For the last decades computers and information systems have been highly democra-

tized for private and company usages. In both contexts, more and more complex systems

are developed in order to realize a wide variety of applications (smart applications, embed-

ded systems for air planes, medical robot assistants, etc.). As for many other production

fields, writing systems must respect quality rules such as conformity, efficiency, and robust-

ness. In this thesis, we are concerned by the verification problem consisting in verifying if

an application, a program, a system matches its specifications (i.e., its expected behavior).

This concern gained an important interest after social or business impacts are identified,

or after past failures. One of the most remarkable examples is the crash of the Ariane 5

missile, 36 seconds after its launch on June 4, 1996. The accident was due to a conversion

of a 64-bit floating point number into a 16-bit integer value. Another example is the bug

in Intel’s Pentium II floating-point division unit in the 90’s, which forced to replace faulty

processors, severely damaged Intel’s reputation, and implied a loss of about 475 million

US dollars. These events happened in the 90’, and software are now more and more used

to automatically control critical systems such as nuclear power plants, chemical plants,

traffic control systems, and storm surge barriers. Furthermore, even programs with less

critical impact require attention, since the competition between products gives benefits

to the systems with less bugs, a better reactivity, etc. Thus, the verification objective is

to attest the validity of a system according to an expected behavior.

While such problems may be solved using add-hoc techniques or proper tools, it ap-

pears that by nature or by reformulation of the problem, constraint programming offers
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effective solutions. For instance, the system/program can be formulated as a set of rules

and the expected behavior as a set of constraints. Thus, verifying the validity of the

system/program behavior consists in determining if satisfying the rules implies to satisfy

the expected behavior. On the other hand, some verification considerations may produce

combinatorial problems. In this context constraint programming clearly appears as a

suitable solution. In this thesis we tackle program verification problems as applications to

be treated using constraint programming.

1.1 Scientific Context

As said before this thesis concerns constraint programming modelling and solving for

some program verification problems. In this section we briefly present all the scientific

context of the thesis by identifying separately the various scientific thematics tackled

in this manuscript. We start by presenting constraint modelling and solving. Then, we

continue with the two program verification approaches used in this thesis, and we conclude

by presenting the two programming paradigms to be verified in this thesis.

Constraint Modelling. A Constraint Satisfaction Program (CSP for short) is a set

of constraints over variables each one associated with a domain. Thus, constraint mod-

elling consists in formulating a given problem into a CSP. There exist various research

communities each one dedicated to model families of CSPs. Recall first that the general

problem of satisfying a CSP (i.e., finding a valuation of the variables satisfying all the

constraints in the CSP) is a hard problem. There exists CSP families being tractable in

exponential, polynomial, or ever linear time. In this thesis we consider constraint mod-

elling ranging from mathematical programming such as continuous and mixed integer

linear programing (respectively LP and MILP for short), finite and continuous domains

programs without linearity restrictions on the constraints (respectively named FD and CD

for short), and Satisfiability Modulo Theory (SMT for short) mixing Boolean and theories

such as arithmetics. See Section 2.2 for more details.

Constraint Solving. Various tools, named solvers, have been developed for solving

CSP instances. Each one is mainly specialized to solve specific CSP families (e.g., un-

bounded integer linear arithmetics, constraints over variables with finite domain, continu-

ous constraints). The combinatorics implied by the relations between the variables in the

constraints makes a CSP hard to solve. This requires to explore search spaces composed

of all the valuations possibly candidate for solving the problem. However, the size of such

search space is exponential in terms of the problem sizes (number of variables) in general.

Huge research efforts has been put into solvers in order to propose tools for (intelligently)

explore huge search spaces and solve CSP instances. See Section 2.3 for more details.
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Program Verification A program describes the behavior of a possibly infinite process

by defining possible transitions from states to states. Due either to the runtime envi-

ronment or to the non determinism of the state successions, one program may have a

finite or even an infinite number of possible runs. Also, according to the nature of a

program its runs may encounter either a finite or an infinite number of states in theory.

Thus, program verification consists in determining if the program traces (i.e., the state

sequences realized by the runs) respect a given property. These properties may be time

dependent (e.g., for each run the state A must be encountered after the state B, the state

A must not be encountered before a given time t) or time independent (e.g., for each run

all the variables are bounded by given constants). There are two main approaches for

verifying properties on program: dynamic analysis vs. static analysis. Dynamic analysis

requires to run the program to attest the validity of the property. On the contrary, static

analysis performs verification at compilation time without running the program/system

(roughly speaking dynamic analysis can be considered as an online process compared to

static analysis which is an offline process). See Section 3.1 for more details. In this thesis

we only consider complete static analyzes of programs with infinite runs (i.e., we do not

consider dynamic and bounded analyzes).

Abstract Interpretation. Abstract Interpretation is a program verification technique

for static program analysis. In this context, we consider programs with unbounded run-

ning times and infinite state systems. Recall that in such cases the general program

verification problem is undecidable since this class of problems contains the halting prob-

lem. Thus, Abstract Interpretation provides a verification process, which terminates,

using over-approximations of the semantics of the program to verify. Indeed, well chosen

abstractions produce semi-decidable problems. Thus, verification tools based on abstract

interpretation either prove the validity of the property or may not conclude. Hence, such

method cannot find counter-examples and falsify properties. See Section 3.2 for more

details.

Model Checking. Model Checking is a program verification technique for static pro-

gram analysis. As for Abstract Interpretation, programs/models to be verified may have

unbounded running times and infinite state space. Thus, model checking is a verification

method that explores all possible system states. In this way, it can be shown that a given

system model truly satisfies a certain property. Hence, such method proves the validity

or the non validity of the property. More specifically, it can return a counter-example in

non validity case. See Section 3.3 for more details.

Synchronous Reactive Language. Motivated by the nature of embedded controllers

requiring to be reactive to the environment at real-time, synchronous languages have been

designed for programming reactive control systems. These languages naturally deal with
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the complexity of parallel systems. Indeed, parallel computations are realized in a lock-

step such that all computations are synchronized reactions. Hence, this synchronization

ensures by construction a guarantee of determinism and deadlock freedom. Finally, these

languages abstract away all architectural and hardware issues of embedded, distributed

systems such that the programmer can only concentrate on the functionalities. Instances

of such languages are Faust, Lustre, and Esterel and have been successfully used in the

context of critical systems requiring strong verification (e.g., space applications, railway,

and avionics) using certified compiler (e.g., Scade [Sca] tool from Esterel Technologies

providing a DO-178B level A certified compiler). Chapter 4 concerns the verification of

synchronous reactive languages.

Probabilistic Programming Language. Various systems are subject to phenomena

of a stochastic nature, such as randomness, message loss, probabilistic behavior. Proba-

bilistic programming languages are used to describe such systems using probabilities to

define the sequence of states in the program. One of the most popular probabilistic mod-

els for representing stochastic behaviors are the discrete-time Markov Chains (MCs for

short). Instance of probabilistic programming languages for writing MCs are Problog and

Prism. Chapter 5 concerns the verification of models extending the Markov chain model

describing parametrized probabilistic systems.

1.2 Problems and Objectives

As presented in the previous sections, program verification is a computationally hard

problem with major issues. Recall first that a program describes the behavior of a pos-

sibly infinite process by defining possible transitions from states to states. However, the

verification is performed on an abstraction of the program named model1. In this thesis,

we consider finite models with infinite state spaces and infinite runs.

Even if a program admits a priori an infinite state space its executions may encounter

a (potentially infinite) subset of the declared state space. Thus, one would like to deter-

mine this smaller state space in order to verify the non reachability of undesired states.

This problem is reducible to the search of program over-approximations, i.e., bound-

ing all the program variables. This is an objective of Abstract Interpretation where the

program describing precisely the system evolution from a state to another, named the

concrete program, is abstracted. This abstracted construction is related to the concrete

program in such a manner that if an over-approximation holds for the abstraction then,

this approximation also holds for the concrete program. Furthermore, constraint pro-

grams allow to describe over-approximations such as convex polyhedrons using linear

1We already introduced the word model in the constraint programming context. The reader must be
careful that this word has an important role in both contexts.
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constraints, ellipsoids using quadratic constraints, etc. Thus, since constraint program-

ming is a generic declarative programing paradigm it may be seen as a verification process

for over-approximating variable in declarative programs. In the first contribution, we con-

sider a block-diagram language where executions are infinite streams and the objective is

to bound the stream values using constraint programming.

However, bounding the state space is not enough for some verification requirements.

In our second problem, the objective is to determine if a specific state is reachable at

execution time. Indeed, abstractions can only determine if a specific state is unreachable.

For this verification problem, we consider programs representable as finite graph structures

where the nodes form the state space and the edges give state to state transitions. Thus,

verifying the reachability of a state in such a structure is performed by activating or

deactivating transitions in order to reach the target state. However, these activations can

be restricted by guards, or other structural dependent rules. Clearly, this corresponds to

a combinatoric problem to solve. For this reason, since one of the objectives of constraint

programming is to solve highly combinatorial problems, the verification community is

interested in the CP tools.

Some links between constraint programming and program verification are presented

in Section 3.4. To conclude, constraint programming proposes languages to model and

solve problems by focusing on the problem formulation instead of the resolution process.

Program verification leads to problems which by definition or by nature are close to

constraint programs. Thus, the verification community uses constraint programming

tools for developing analyzers instead of producing ad-hoc algorithms. In this thesis,

we position ourself as constraint programmers and we consider verification problems as

applications. Thus, our objective is to present how the constraint programming advances

in modelling and solving helps to answer some verification problems.

1.3 Contributions

The contributions are split into two distinct chapters, and they are related to different

verification research axes, but both using constraint programming. The first contribution

applies constraint programming to verify some properties of a real-time language, while

the second one is about verification of extensions of Markov chains. Here are the abstracts

of these two contributions.

Verifying a Synchronous Reactive Language with constraints (Chapter 4).

Formal verification of real time programs in which variables can change values at every

time step, is difficult due to the analyses of loops with time lags. In our first contribution,

we propose a constraint programming model together with a global constraint and a

filtering algorithm for computing over-approximation of real-time streams. The global
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constraint handles the loop analysis by providing an interval over-approximation of the

loop invariant. We apply our method to the FAUST language which is a language for

processing real-time audio streams. We conclude with experiments that show that our

approach provides accurate results in short computing times. This contribution has been

published in a national conference [1], an international conference [2], and a journal [3].

Verifying a Parametric Probabilistic Language with constraints (Chapter 5).

Parametric Interval Markov Chains (pIMCs) are a specification formalism that extends

Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account impreci-

sion in the transition probability values: transitions in pIMCs are labeled with parametric

intervals of probabilities. In this work, we study the difference between pIMCs and other

Markov Chain abstractions models and investigate the three usual semantics for IMCs:

once-and-for-all, interval-Markov-decision-process, and at-every-step. In particular, we

prove that all these semantics agree on the maximal/minimal reachability probabilities of

a given IMC. We then investigate solutions to several parameter synthesis problems in the

context of pIMCs – consistency, qualitative reachability, and quantitative reachability –

that rely on constraint encodings. Finally, we conclude with experiments by implementing

our constraint encodings with promising results. This contribution has been published

in a national conference [4], an international workshop without proceedings [5], and an

international conference [6] (to appear).

1.4 Outline

The thesis in organized in four main chapters. Chapter 2 presents the constraint program-

ming paradigm. Chapter 3 introduces program verification/model checking problems.

We conclude this chapter by briefly introducing the two verification methods named Ab-

stract Interpretation and Model Checking in order to motivate the two following chapters

which respectively use these verification methods. Chapter 4 contains our first contri-

bution. This chapter proposes a constraint programming model together with a global

constraint and a filtering algorithm inspired from abstract interpretation for computing

over-approximation of real-time streams. This chapter is also illustrated and validated by

some experiments. Chapter 5 contains our second contribution. This chapter proposes

constraint programming models for verifying qualitative and quantitative properties of

parametric interval Markov chains with a model checking objective. This chapter also

concludes with experiments. Note that both contribution chapters are self-contained

including introduction, motivation, background, state of the art, contributions, and bib-

liography. Finally, Chapter 6 concludes this thesis document.
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2.1 Introduction

Computer scientists started to write programs in order to produce softwares realizing

dedicated tasks faster and more efficiently than a human could perform. However, in

ad-hoc developments the more complex is the problem to solve the longer it is to write its

corresponding solving program. Moreover, few changes in the description of the problem

to solve may impact many changes in the program. Thus, the artificial intelligence research

domain tries to develop more generic approaches such that a single artificially intelligent

program may solve a wide variety of heterogeneous problems. Among all possible artificial

intelligences, we focus in this thesis on those dealing with constraint based problems. In

such problems, one can enumerate a set of objects with possibly many different states for

each object and a set of accepted configurations over these objects w.r.t. the states (cf.

Definition 2.1.1).

Definition 2.1.1 (Constraint Based Problem). Let A be a set of objects, and S be a set

of object states. A Constraint Based Problem P over objects A with states S represents a

set of configurations (i.e., a set of associations between objects from A and states in S).

Formally P ⌘ L s.t. L ✓ SA.

In this chapter, we first present constraint modelling (i.e., variables, domains, con-

straints, and constraint programs definitions) and various research axes dedicated to con-

straint modelling (SAT, CP, LP, etc.). Then, we present these research axes dealing with

constraint programs by describing their common resolution processes and their specific

strategies developed in each one.

Restrictions. In this thesis we consider modelling with real, integer, and Boolean vari-

ables with finite or infinite domains without restrictions on the constraints (e.g., enu-

merations, linear and non-linear inequations, Boolean compositions, global constraints)

using the existential quantification of variables and being time-independent1. Finally, we

consider complete methods for solving such models.

2.2 Constraint Modelling

Constraint modelling is the action of formulating a given constraint based problem into

a constraint based program. Definition 2.1.1 recalled that a constraint based problem

is described by a set of objects, a set of object states, and gathered into a set of con-

figurations. Constraint programming uses a dedicated vocabulary. In the following we

take care to well separate the constraint based problems from constraint based programs.

Indeed constraint based problems are commonly expressed in a natural language while

1Note that Chapter 4 models a problem with time-dependency (verification of a reactive synchronous
programming language). However the constraint modelling is time-independent.
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(a) Empty 5⇥5 chessboard with
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(c) Queens positioning violating
twice the diagonal ”no threat”
rule.

Figure 2.1: 5-Queens problem illustrated with: (a) its 5⇥5 empty chessboard and its
5 queens; (b) a queen configuration satisfying the 5-Queens problem; and (c) a queen
configuration violating the 5-Queens problem.

constraint programs are expressed in a mathematical (or mathematical-like) language or

a programming language. A constraint program uses variables associated with domains

linked by constraints. Roughly speaking, the variables with their domains will model the

objects with their states in the constraint based program while the constraints will model

the configurations in the constraint based program. We now present a wide landscape of

variables, domains, and constraints encountered in constraint modelling while encoding a

constraint based problem into a constrained program.

Example 1 (n-Queens Problem). The n-Queens problem will be our backbone example

for illustrating constraint modelling and solving in this section. Let n be a natural number.

Thus we consider an n ⇥ n chessboard and n queens. The n-Queens Problem objective

is to place the n queens on the chessboard such that no two queens threaten each other

(i.e., no two queens share the same row, column, or diagonal). In this example, objects

are the n queens and states are the n ⇥ n cells of the chessboard. Thus, a configuration

is an arrangement of the n queens on the chessboard.

2.2.1 Variables and Domains

A constraint based problem is described by a set of variables, each variable being associ-

ated with a non-empty set called its domain. From now on in this section, X will refer to

a set of n variables x1, . . . , xn, Dx will be the domain associated to the variable x 2 X,

and D will contain all the domains associated to the variables in X. We identify four

variable types according to their domain. We say that a variable x with domain Dx is:

• a Boolean variable iff its domain is a binary set (i.e., Dx = {true, false})
• an integer variable iff its domain only contains integers (i.e., Dx ✓ Z)

• a rational variable iff its domain only contains rational numbers (i.e., Dx ✓ Q)
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• a real variable iff its domain only contains real numbers (i.e., Dx ✓ R)

A domain can be given in extension by enumerating all the elements composing it

or in intension using an expression representing all its elements. One common compact

representation is the interval representation together with the union of intervals. Formally,

let E ✓ R be a non-empty totally ordered set and a, b 2 R2 be two interval endpoints. We

write IE([a, b]) for the set containing all the (closed, semi-opened, opened) intervals subsets

of the interval [a, b] ✓ E. When modelling, we usually separate real variables with interval

domains from others. The first ones are called continuous variables while the remaining

are called discrete variables. Furthermore, we separate finite variables (i.e., variables

whose domains have a finite number of elements) from infinite variables. For instance

a finite variable can be introduced by domain enumeration (e.g., domain {1, 2, . . . , 50})
and infinite variables can be defined by interval domain (e.g., domain [−1, 1] subset of R).
Note that there exists other domains such that the symbolic domains where each domain

may contain an infinite number of possibly ordered symbols, or the set domains where

each domain element is a set of values. In this thesis we perform constraint modelling with

Boolean, integer, rational, and real-number domains. Finally, a valuation of the variables

in X 0 ✓ X is a mapping v associating to each variable in X 0 a value in its domain (i.e.,

v : X 0 ! D s.t. v(x) 2 Dx for all x 2 X 0).

Example 2. Here are some domain instances:

• {0, 1, . . . , 100} = [0, 100] ✓ N finite domain over integers

• {0, 1, 2, 3, 5, 7, 11} finite discontinuous domain enumeration

• [0, 100] ✓ R infinite continuous domain

• {0} [ [1, 100] ✓ R infinite semi-continuous domain

2.2.2 Constraints

A constraint is defined over a set of variables and represents a set of accepted valuations.

Formally a constraint c over the variables X with domains D is semantically equivalent

to a set of valuations from X to D: c ⌘ V such that V ✓ DX . Constraints can be

represented in extension by enumerating accepted valuations or in intension by a predicate

over the variables in the constraint. With Boolean variables, the atomic constraints

are the logical predicates such as the negation (¬), the conjunction (^), the disjunction

(_), the implication ()), the equivalence (,). For other domains, we consider atomic

constraints as equations or inequations where their left-hand side and right-hand side

are arithmetic expressions (i.e., any mathematical expressions such that polynomials,

trigonometric functions, logarithms, exponentials, etc.). In the context of finite variables,

the Constraint Programming community proposes a catalogue of constraints with a high

2R is the extended set of R and equals the union of R and its limits (i.e., R = R [ {−1,+1}).



2.2. Constraint Modelling 15

c3

c1
c2

x

y

0

1

1

Figure 2.2: Three constraints c1, c2 and c3 over two variables x and y.

level semantics called global constraints (cf. Section 2.2.5). According to the domains

considered in this thesis (i.e., B, Z, Q, and R) one important constraint characterization

is the linearity. We say that a constraint is linear iff its arithmetic expressions are linear

arithmetic expressions (i.e., not containing products of variables). Less importantly one

may also consider the convexity properties of the arithmetic expressions. Furthermore,

recall that there exist two quantifiers: the existential and the universal quantifiers. Thus,

in quantified constraints, variables are associated to quantifiers and the CSP is satisfiable

iff the quantifiers hold for the given domains (e.g., 9x 2 [−1, 1], 8y 2 [0, 1] : x + y  1 is

satisfiable). In this thesis we only consider constraints with the existential quantifier (i.e.,

the universal quantifier is not allowed). Finally, a constraint problem is the composition

of atomic constraints with logical operators.

Example 3. Figure 2.2 describes three constraints c1, c2, and c3 over two variables x and

y. Geometrically speaking, constraint c1 defines a disc, c2 is an upper half-space, and c3

is a rectangle. Thus, c1 can be expressed by a quadratic inequality, c2 by a non-linear

inequality, and c3 by a conjunction of four linear inequalities. The pink zone contains all

the solutions of the CSP C1 with constraints c1, c2, c3 over variables x, y with respective

domains [0, 8] ✓ R, and [0, 6] ✓ R. One may also consider the CSPs C2 and C3 which

respectively contain the constraints c1 ^ (c2 _ c3) and c1 , (¬c2 ^ c3) producing different

solution areas (i.e., solution spaces/feasible regions).

2.2.3 Satisfaction and Optimization Problems

A constraint satisfaction problem consists in determining if a constraint satisfaction pro-

gram (cf. Definition 2.2.1) is either satisfiable or unsatisfiable. Formally, a valuation v

satisfies a CSP P = (X,D,C) iff there exists a valuation v over variables X satisfying all

the constraints in C (i.e., the set of constraints in C is interpreted as a conjunction of

constraints). If such a valuation v exists we say that P is satisfiable (and v is named a

solution of P), otherwise we say that P is unsatisfiable.
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Real var. Integer var. Mixed var. Finite var.
Linear P NP-complete NP-complete NP-complete
Non-linear decidable undecidable undecidable NP-complete

Table 2.1: Complexity for the Constraint Satisfaction Problem Classes containing Linear
and Non-Linear Constraints Problems over Real, Integer, Mixed, and Finite variables.

Definition 2.2.1 (Constraint Satisfaction Program). A Constraint Satisfaction Program

(CSP for short) is a triplet P = (X,D,C) where X is a set of variables, D contains the

domains associated to the variables in X, and C is a finite set of contraints over variables

from X.

In the following, we call CSP family a set of CSPs sharing properties (e.g., only

using integer variables, only considering linear constraints). Thus, according to a CSP

family its theoretical complexity for the satisfaction problem may be polynomial or not,

and either be undecidable. Table 2.1 from [7] synthesizes theoretical complexities for

solving the satisfaction problem according to variables and constraints types. For instance

the satisfaction of: a conjunction of linear constraints over real variables can be solved

in polynomial time [8]; a conjunction of constraints over integer finite variables is an

NP-complete problem [9]; non-linear constraints over unbounded integer variables is an

undecidable problem [7].

2.2.4 Constraint Modelling

Given a problem to answer, the objective of constraint modelling is to encode the problem

to be solved into a constraint program such that a solution of the constraint program can

be translated into a solution of the original problem. Definition 2.2.2 recalls the concept

of CSP modelling. Constraint modelling is presented in Definition 2.2.3. In order to

construct a constrain program P 0 modelling a constraint based problem P one must

find a correspondence relation linking the valuations satisfying P 0 with the configurations

belonging to P . Thus, if one is able to satisfy the CSP the correspondence relation ensures

the existence of a configuration belonging to the constraint based problem. Furthermore,

if the correspondence relation is decidable (ideally in polynomial time), one can construct

at least one valid configuration from a solution given by the CSP.

Definition 2.2.2 (Model). Let A be a set of objects, S be a set of object states, and P
be a constraint based problem. We say that the CSP (X,D,C) models P iff there exists

a correspondence relation R ✓ DX ⇥ SA s.t.

1. for each (v, v0) 2 R, the valuation v satisfies C and the configuration v0 belongs to

P

2. for each valuation v satisfying C there exists a configuration v0 s.t. (v, v0) 2 R
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3. for each configuration v0 in P there exists a valuation v s.t. (v, v0) 2 R

Definition 2.2.3 (Modelling). Let L be a set of constraint based problems. We say that

M is a constraint modelling of L iff M is a mapping associating to each P in L a CSP P 0

s.t. P 0 models P.

Modelling a constraint based problem as a constraint satisfaction program can be

characterized in four steps. Definition 2.2.3 requires the existence of a correspondence

relation. Thus, the programmer mainly builds the CSP while taking into account the

correspondence between the original problem and the developed CSP. Firstly, the pro-

grammer identifies the decisions variables: i.e., the variables with a clear semantics in

the problem to be solved. Secondly, she/he determines the auxiliary variables (i.e., non

decision variables used for intermediates constraints/computations). Thirdly, she/he sets

the domain of each variable, also called the limits of each variable in the context of in-

terval based domains. Fourthly, she/he adds the constraints that must be satisfied by

the variables. These four steps are not necessarily straightforward and the programmer

usually refines each step until a fix point is reached: the constructed CSP models the

problem to solve. The following example proposes a modelling for the n-Queens problem.

Note that this is a first modelling and that we are going to improve it in the following

sections.

Example 4 (Example 1 continued). We propose a first CSP modelling M0 for solving the

n-Queens problem where the decision variables model the columns and the lines chosen

for the queens. Formally, let L be the set of all the n-Queens problems with n 2 N. M0 is

the mapping associating to each n-Queens problem in L the CSP (X,D,C) such that X

contains one variable ci and one variable `i per queen index i 2 {1, . . . , n}. These variables
respectively indicate the column and the line position of the ith queen on the chessboard.

Furthermore, the domain for all these variables is {1, . . . , n} and the constraints are the

followings ones for each pair (i, j) of two different queen indexes: 1. queens i and j are not

on the same line: `i 6= `j; 2. queens i and j are not on the same column: ci 6= cj; 3. queens

i and j are not on the same diagonal: |(`i − `j)/(ci − cj)| 6= 1. Note the abstraction

difference between the modelling M0 and the CSP produced by M0 which models the n-

Queens problem in L with n 2 N fixed. The CSPs produced by M0 have a quadratic

size in terms of n (cf. the 3⇥
(

n
2

)

constraints) and use non linear constraints over integer

variables.

As in other programing paradigms (functional programming, object oriented program-

ming, etc.) one problem can be written as many (syntactically) different constraint pro-

grams with equivalent semantics (i.e., they are all equivalently satisfiable or unsatisfiable

or they all find the same optimal solution). We discuss this problematic in Section 2.3.2.
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2.2.5 Modeller.

According to the type of variables (e.g., Boolean, integer, continuous variables) and the

type of the constraints (e.g., linear, convex, non-linear, global constraints) one may look

for the most appropriate research axes for modelling its problem. With an objective to

share a common modelling language the mathematical programming community proposed

A Mathematical Programming Language (AMPL for short) [10] as an algebraic modelling

language for describing CSPs. AMPL is supported by dozens of state-of-the-art tools for

constraint program solving (e.g., CPLEX [11], Couenne [12], Gecode [13], JaCoP [14]).

However, each research axe (each one specialized on dedicated families of CSPs) developed

its proper modelling languages and tools. We present a landscape of CSPs families with

their respective modelling languages and tools.

1. SAT (for Boolean Satisfiability Problem) contains CSPs with contraints over Boolean

variables. The Conjunctive Normal Form (CNF for short) which consists of con-

junctions of disjunctions of literals (e.g., (x1 _ ¬x2) ^ (x2 _ x3) where x1, x2, and

x3 are three Boolean variables) is the main practical modelling language used in

this community. The DIMACS [15] format is the standard text format for CNF

representation. See [16] for more details about CNF encodings.

2. LP, IP, MILP (respectively for Linear Programming, Integer Programming, and

Mixed-Integer Linear Programming) contain constraint programs with respectively:

linear constraints over continuous variables; linear constraints over integer variables;

and linear constraints over continuous and integer variables. These three families

are identified as mathematical programming languages. Formally the constraint

programs of these families are presented in the following form: Ax  b where x is

a column vector of variables with height n, and A 2 Rm,n and b 2 Rm,1 are two

matrices of coefficients. This encodes m inequalities over n variables. [17] recalls

various modelling technics and use for these CSPs families.

3. FD (for Finite Domain Programming) contains constraint programs with constraints

over variables with finite domains. There is no restriction on the constraints types.

They can be linear, convex, non convex, non-linear such as trigonometric functions,

exponential. There are also richer constraints expressed in the form of predicates,

known as global (or meta) constraints which have been identified for their expressive-

ness (e.g., all-different, element, global-cardinality) and help the solution

process (cf. Section 2.3.1). See the Global Constraint Catalogue for more details

[18]. Finally, there are two main formats for representing CSPs (XCSP3 [19] and

FlatZinc [20]) each one associated with a constraint modeller (resp. MCSP3 [21] and

MiniZinc [22]). While this CSP family allows any logical combination of constraints

(negation, disjunction, implications, etc.) FD solvers are called propagation based

solvers and are specialized for solving conjunction of constraints [23].
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4. SMT (for Satisfiability Modulo Theory) allows any logical combinations of constraints

over continuous and integer variables. The satisfiability stands for the logical com-

bination of constraints while the theory stands for the semantics of the combined

constraints. The logical combination of constraints can use any logical constraints

(i.e., conjunction, disjunction, negation, implication, equivalence). Theories range

from linear-constraints to non-linear constraints with integer, real-number, Boolean,

or any combination of these types (even bit vectors and floating-point numbers).

The SMT-LIB format [24] is the standard format for representing CSP from this

family. This norm also describes all the standard theories and their dependencies.

SMT is more general than SAT, IP, LP, MILP. See [25] for an introduction to and

applications of SMT.

Example 5 (n-Queens Problem Continued). We proposed in Example 4 the modelling M0

for solving the n-Queens problem. This modelling can be transformed into a linear integer

modelling M1 producing CSPs from the IP family by replacing the non-linear constraints

|(`i − `j)/(ci − cj)| 6= 1 by the constraints `i − `j 6= ci − cj and `i − `j 6= cj − ci. Further-

more, this modelling can be transformed into a FD modelling M2 by replacing the 2⇥
(

n
2

)

constraints ensuring the “no threat” requirement by lines and columns with the only two

following constraints: all-different(`1, . . . , `n) and all-different(c1, . . . , cn). Thus,

M2 models are smaller than those from M0 and M1 Consider the 5-Queens problem. M0, M1,

and M2 respectively produces 30, 40, and 22 constraints and have 10 variables. In addi-

tion to having less constraints, the models produced by M2 use the all-different global

constraint which ensures faster resolution than the use of a clique of binary inequality

constraints.

Example 5 illustrates how our n-Queens problem can be supported by the IP and

the FD families. Thus, a constraint based problem can be modelled as many constraint

programs such that each one can be targeted to possibly different constraint satisfaction

program families. In the next section we explain how the different CSPs families are

solved.

2.3 Constraint Solving

In this section we give an overview of CSP solving. While we presented in the previous

section various CSP families for modelling constraint based problem, we present in this

section how these families are solved in practice.

Remark We present in this section some general methods for solving the CSPs families

presented previously. However, before using the general solution one may also check

if its problem does not belong to a subfamilies with practical/theoretical advantages.
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For instance, SAT community uses the Post’s lattice for differentiating clones of Boolean

functions for whose the satisfaction problem is in P or in NP [26]. In FD these complexity

differentiation are dichotomy theorems, one famous is the Schaefer’s dichotomy theorem

[9]. Finally, in the non-linear programming context, the quadratic convex programming

is in lower complexity class than non-linear programming [27].

2.3.1 Satisfaction

In the general case, the combinatorics implied by the relations between the variables in

the constraints makes a CSP hard to solve. In practice, complete solvers need to explore

the search space (i.e., the set containing all the valuations). This is performed by branch

and reduce algorithm where the search space is explored by developing a dynamic tree

construction. Each node in the tree corresponds to a state in the exploration process (i.e.,

a succession of choices/decisions leading to a partial valuation of the variables and/or a

reduction of the domains size and/or the adjunction of learned knowledges, etc.). Thus,

a path from the root to a leaf recursively cut the search space into smaller search spaces

until the satisfiability or the unsatisfiability is proven [28, 29]. The search starts from

the root node which consists of the original CSP to solve (i.e., all the valuations are

candidates possibly satisfying the CSP). Then, for each node in the tree exploration

process the algorithm starts by reducing the current search space. This mainly consists in

applying inferences rules such as resolution rules, computing consistency in order to reduce

the search space while preserving all the valuations satisfying the CSP. Thanks to these

reductions the next step checks if the reduced CSP is trivially satisfiable or unsatisfiable

(e.g., the CSP has been syntactically reduced to a tautology, a contradiction, an empty set

of constraints, etc.). If the CSP is trivially satisfiable, then a valid valuation can be found

(mainly by reading the domains which has been reduced thanks to the successive cuts).

containing the decisions history. If the CSP is trivially unsatisfiable, then this exploration

path is closed and the exploration process carries on in an other opened exploration path.

Otherwise, the current state space is split into possibly 2, 3, . . . , n smaller search spaces

and the exploration process will be evaluated for each smaller CSP instances.

Algorithm 1 recalls this generic search strategy. The two main generic functions are

reduce and splitSearchSpace which respectively reduces the search of the CSP while

preserving all the valuations satisfying it (i.e., this function may only remove unsatisfying

valuations), and split the current CSP in many k CSPs (with a possibly different k 2 N

at every loop iteration) such that the union of their search spaces cover the whole search

space of the split CSP (it is not required to perform a partitioning and sub-problems

may share valuations). Also, we considered here a queue as a CSP buffer but a more

sophisticated object may be used to select dynamically the next buffered CSP to the

treated. The algorithm stops when it finds a valuation satisfying one sub-problem. We

now discuss how this generic is implemented for treating CSPs from various famillies.
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1: function satisfaction(P = (X,D,C) : CSP) return Map<X,D>

2: queue : Queue<CSP>
3: P 0 : CSP
4:

5: queue.add(P)
6: while not(queue.empty()) do
7: P 0  queue.pop()
8: # Reduces the CSP while preserving all solutions
9: P 0  reduce(P 0)
10:

11: # Case the CSP is trivially satisfiable after reduction: returns a sat valuation
12: if isTriviallySat(P 0) then
13: return findValuation(P 0)
14:

15: # Case the CSP is trivially unsatisfiable after reduction: ignores it
16: else if isTriviallyUnsat(P 0) then
17: continue
18:

19: # Else split the current CSP in “smaller” CSPs and add them to the queue
20: else
21: queue.addAll(splitSearchSpace(P 0))
22:

23: end if
24: end while
25:

26: return ;
27: end function

Algorithm 1: Generic Algorithm for Solving Constraint Satisfaction Problems

• In the SAT community the DPLL algorithm [30] corresponds to the instantiation

of splitSearchSpace by the selection of a non-instantiated variable x (i.e., a

variable x with domain {true, false}) and to the construction of two CSPs such that

the first one contains the clause x and the second one contains the clause ¬x. Then,
the reduce function performs unit propagation and pure literal elimination. The

isTriviallySat function checks if constraints form a consistent set of literals and

isTriviallyUnsat function checks the emptiness of the set of constraints.

• In the FD community, the constraint propagation with backtracking method consists

in instantiating splitSearchSpace and reduce in the following way. In general,

splitSearchSpace starts by selecting a non-instantiated variable x. Then, it con-

structs one CSP per value k in the domain of x such that each constructed CSP is

derived from the current CSP by setting the domain of x to the singleton domain

{k}. We call search strategy a heuristic returning for a given CSP the next vari-

ables and domain values to use in order to realize the split search. On the other



22 Chapter 2. Constraint Programming

hand, the reduce function performs propagations by calling filtering algorithms

and computing consistencies (e.g., node consistency, arc consistency, path consis-

tency). Informally, a filtering algorithm removes values that do not appear in any

solution. Global constraints usually come with dedicated filtering algorithms em-

powering the propagation process. Finally, the isTriviallySat function checks

if the instantiated variables satisfy all the constraints and the isTriviallyUnsat

function checks if a constraint is violated or if a variable domain becomes empty.

See [23] for more details.

• The branch-and-reduce framework used for solving non-linear programs with con-

tinuous variables, for instance HC4 [31], corresponds to instantiate in Algorithm 1

the function splitSearchSpace by the branching function (e.g., select a variable

x with domains [a, b] ✓ R and a real number c 2 [a, b] in order to construct two

CSPs which respectively contain the constraints x  c and x ≥ c), the reduce

uses reducing consistencies in order to filter domain variables while preserving so-

lutions. Finally, the isTriviallySat function guesses a valuation satisfying all

the constraints for tight domains and the isTriviallyUnsat function checks if a

constraint is violated or if a variable domain became empty.

• The SMT community gathers solving techniques from various CSP families. Indeed,

a SMT instance is considered as the generalization of a Boolean SAT instance in which

various sets of variables are replaced by predicates (e.g., linear or non-linear expres-

sions for continuous variables, integer constraints). Thus, the splitSearchSpace

enumerates solutions of the SAT instance abstracting the CSP to solve (i.e., each

constraint which is not a Boolean function is replaced by a unique Boolean variable).

Then, each solution of the SAT instance is translated into a set of constraints which

leads to a conjunction of constraints, each one being a sub-problem to be solved.

According to the theory of this sub-problem (linear programming, integer program-

ming, etc.) proper methods from the corresponding CSP family are used. This

approach, which is referred to as the eager approach loses the high-level semantics

encoded in the predicates. Actual SMT solvers now use a lazy approach solving par-

tial SAT sub-problem and then answering their corresponding predicate parts while

constructing a global solution [32]. In SMT, we call strategy an implementation/con-

struction of the splitSearchSpace and reduce functions.

Furthermore each community (i.e., SAT, FD, etc.) provides many tools which imple-

ment the generic Algorithm 1. The performance of these tools is mainly due to their

implementation of the reduce and splitSearchSpace functions inherited from years

of research next to the practical resolution of real world problems. This includes the study

and the availability of wide variety of concrete heuristics [33] and search strategies [34]

eventually branched with an offline or online learning (e.g., no good, learned clauses). In
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this thesis we focus on constraint modelling of constraint based problems and on domain

reducing functions called propagators implemented in the reduce function.

We presented independently how various CSPs families tackle the solving problem.

However, some research has been realized in order to make them collaborate. For instance,

the finite domains CSP family met continuous domains CSP family while preserving global

constraints by linking CHOCO and IBEX solvers [35]. Also, the integration of both IP

and FD has been discussed helping to design a system such as SIMPL [36]. On the other

hand, we already mentioned the fact that the SMT community uses solving techniques for

clearly identified theories. In the same time, they started to include global constraints

from FD and [37] shows how the all-different constraint can be supported by SMT

solvers which offers promising results. Finally, in [38] the authors develop cooperative

constraint solver systems using a control-oriented coordination language. This work has

been used for solving non-linear problems [39] and interval problems [40] as well.

We presented here a generic complete algorithm answering the constraint satisfaction

problem. Such complete method always returns a valuation satisfying the given CSP if it

exists and returns none if such valuation does not exist. Thus, an incomplete algorithm

may not be able to indicate if the CSP is unsatisfiable but may find a valuation satisfying

the constraint program. We consider complete solvers in this thesis.

2.3.2 Improving Models

As said in the modelling section there is more than one CSP which encodes a given con-

straint based problem. Furthermore, the time required for solving these equivalent CSPs

may differ from one to another with possibly an exponential gap. We present here various

methods exploring how CSPs can be improved for reducing solving time: reformulation,

symmetry-breaking, redundant constraints, relaxation, and over-constraint. In all cases

these improvements can be performed by hand. However, solvers may implement them

for automatic uses.

Definition 2.3.1 (Reformulation). Le C be a CSP. A reformulation ⇢ transforms a CSP

C into a CSP C 0 s.t. all the solutions of C can be mapped to a solution in C 0 and all the

solutions of C 0 are translatable as a solution C. Thus, C 0 models the same problem than C.

There exists model transformations for transposing a CSP from a family to another

one. Definition 2.3.1 recalls the concepts of reformulation, i.e., how to produce a new CSP

from an existing CSP modelling the same contraint based problem. A low level constraint

language such that the Conjunctive Normal Form (i.e., a Boolean functions expressed

as conjunctions of disjunctions of literals) language used in the SAT community is now

tractable with SAT state-of-the-art solvers for millions of variables and constraints [41].

In some cases reformulating a satisfaction problem into a lower constraint language may

offer better resolution times. For instance in [42], the authors reformulate their modelling
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from CP to SAT which highly increases the sizes of the CSP. But the first modelling is not

solved by CP solvers while the second one is solved by SAT solvers.

Example 6 (n-Queens Refomulation). Consider the modelling M2 presented in Example 5.

Recall that the “no threat” rule for diagonals is managed by the constraints `i−`j 6= ci−cj
and `i− `j 6= cj− ci considered for each pair of two different queen indexes i and j. These

constraints are equivalent to `i − ci 6= `j − cj and `i + ci 6= `j + cj. Since they must

hold for each pair of two different queen indexes, all these constraints can be replaced by

the two all-different global constraints. Since the all-different constraint support

variables as inputs we create the auxiliary variables xi and yi for all i 2 {1, . . . , n} such
that xi = `i − ci and yi = `i + ci. Thus, the constraints expressing the “no threat”

rule for diagonals can be replaced by the two constraints all-different(x1, . . . , xn) and

all-different(y1, . . . , yn). We call M3 this modelling derived from M2. M3 is called a

reformulation of M2. M3 models contain n + 3 constraints whereas M2 models contain

a quadratic number of constraints in term of the number of queens n. Note that a

reformulation may also change the variables and their domains and is not restricted to

constraint modifications.

Definition 2.3.2 (Symmetry). Le P be a constraint based problems over a set of objects

A with states S. We say that P contains symmetries iff there exists a permutation σ of

the set of configurations s.t. P is stable by σ. (i.e., σ(c) 2 L, for all c 2 L ✓ SA s.t.

L ⌘ P.)

A symmetry in a constraint based problem is a permutation of the configurations in the

problem (cf. Definition 2.3.2). Thus, symmetry breaking consists in taking advantages

of symmetry detection in constraint based problem to only model a subset of all the

configurations in the problem, i.e., to only model the configurations which can not be

obtained by symmetries. Symmetry breaking reduces the size of the search space and

therefore, the time wasted in visiting valuations which are symmetric to the already visited

valuations. The solution time of a combinatorial problem can be reduced by adding new

constraints, referred as symmetry breaking constraints. We invite the reader to consider

[43] for more details.

Example 7 (n-Queens Symmetry Breaking). Consider the modelling M3 presented in

Example 6. Let n be a fixed number of queens and C be the CSP produced by M3 for

the n queens problem. Note that in C the n queens are unordered: i.e., all the queens

are totally identical. Thus, for any valuation solution of C one may interchange the val-

ues (`i, ci) representing the position of the ith queen with the values (`j, cj) representing

the position of the jth queen to obtain another valuation solution of C. We construct

a new modelling, named M4, ordering the queens and realizing some symmetry breaking.

M4 is such that for each n 2 N its corresponding CSP model (X,D,C) for solving the
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n-Queens problem contains the ci variables with domain {1, . . . , n} and no variable `i.

Similarly to the previous modellings the ci variables represent the column position of the

queens. However, in this modelling each ci with i 2 {1, . . . , n} is fixed with a line, the

ith line. Thus, ci contains the column position of the queen on the ith line and there

are no more `i variables in M4. The constraints xi = `i − ci and yi = `i + ci from M3

are respectively replaced by xi = i − ci and yi = i + ci in M4 for all i 2 {1, . . . , n}.
To sum up, the constraints in C are the following ones: all-different(c1, . . . , cn),

all-different(x1, . . . , xn), all-different(y1, . . . , yn), xi = i − ci and yi = i + ci for

all i 2 {1, . . . , n}. Note that this modelling still contains symmetries (e.g., chessboard

rotations, chessboard plane symmetries). For instance setting the domain of the variable

c1 to {1, . . . , dn/2e} removes some chessboard plane symmetries.

Definition 2.3.3 (Redundancy). Let C be a CSP and c be a constraint over a set of

variables X. We say that c is a redundant constraint for C iff adding the constraint c to

the CSP C does not change the solution space of C.

In a general context minimizing the number of constraints (and/or the number of

variables) in a CSP does not necessary implies lower solving time in practice. We call

redundant constraint a constraint which does not change the set of valuations satisfying

a given CSP when adding this constraint to the CSP (cf. Definition 2.3.3). In practice

adding well chosen redundant constraints may speed up the solving process, or obtain

a scale up (see [44] for instance). However, in the linear programming case detecting

redundant constraints in order to remove them may accelerate the resolution process (see

[45] for more details).

Definition 2.3.4 (Relax & Over-constrain). Let P be constraint based problem over a set

of objects A and a set of states S. Let C be a CSP. We say that C is:

• a relaxed modelling of problem P iff there exists a constraint based problem P 0

s.t. CSP C models problem P 0 and all the configurations in P belongs to P 0;

• an over-constrained modelling of problem P iff there exists a constraint problem P 0

s.t. CSP C models problem P 0 and all the configurations in P 0 belongs to P.

As last modelling strategies we present the relaxation and the over-constrain cases

(cf. Definition 2.3.4). A relaxation is an over-approximation of a difficult problem by a

nearby problem that is easier to solve. For instance a relaxation may transform integer

variables into real variables (indeed this produces a greater solution space), or may only

consider a convex hull of the problem by using only linear inequalities (e.g., [46]). An

over-constrain model is an under-approximation. This consists in modelling a constraint

based problem contained by the original problem to solve. Thus, by reducing the size of

the search space, one may hope a gain in term of resolution time (see [47] for instance).
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Figure 2.3: Box Paving for a Constraint Satisfaction Problem. Gray boxes only contain
solutions. Pink boxes contains at least one solution. The union of the gray and the pink
boxes covers all the solutions.

2.3.3 Real numbers vs. Floating-point numbers

As presented previously, one common variable domain for modelling is the real-numbers

domain, written R. When using this domain one expects that the solver takes into account

the classical arithmetic properties verified by R (e.g., associativity, commutativity, infinite

limits, etc.). In practice, computer scientists use floating-point numbers for simulating

real numbers. Floating-point numbers represent a finite numbers of real numbers with

finite (binary) representation. The IEEE 754 norm [48] is now considered as the norm

for representing floating-point numbers in programs. This norm encodes 232 finite real

numbers where the smallest non-zero positive number that can be represented is 1⇥10−101

and the largest is 9.999999⇥ 1096, the full range of numbers is −9.999999⇥ 1096 through

9.999999⇥ 1096; it contains two signed zeros +0 and −0, two infinities +1 and −1, and

two kinds of NaNs. In the following we write F for the set of real-numbers representable

in the IEEE 754 norm.3 The first notable fact is that floating-point arithmetic (i.e.,

arithmetic over F) is not equivalent to real number arithmetic (i.e., arithmetic over R).

Precision limitation with floating point numbers implies rounding: a real-number x 2 R

which is not in F is rounded to one of the neartest floating-point number. The IEEE 754

norm describes five rounding rules (two rules round to a nearest value while the others

are called directed roundings and round to a nearest value in a direction such as 0, +1,

−1). For instance: 0.110 (number 0.1 represented in base 10) does not have a finite

representation in base 2 and thus, it does not belong to F; there exists floating-point

numbers x 2 F s.t. x+ 1 = x in the floating-point arithmetic.

Implementing real number arithmetic in CSP solvers is challenging. Recall that we

presented CSP valuation solutions as a mapping from the variables to their respective do-

mains. Since some valuations to R may not be representable with floating-point numbers,

solvers like RealPaver [49] find reliable characterizations with boxes (Cartesian product of

3We chose the IEEE 754 norm but any set of floating-point numbers can be considered.
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intervals) of sets implicitly defined by constraints such that intervals with floating point

bounds contain real-number solutions. Thus, the real number valuation solutions are

bounded by the interval valuation solutions.
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Since softwares take more and more control over complex systems with possibly critical

impact on the society (e.g., car driving software, automatic action placements, ...) the

verification community develops methods for ensuring the validity of such programs. After

introducing in a first section the main objectives of program verification, we go deeper into

the two verification fields concerned by our contributions. Our first contribution relates

to Abstract Interpretation and the second one considers Model Checking for Markov

chains. Finally, we present a brief overview concerning how constraint programming

meets verification problems.

Warning. We choose the word “program” for system change descriptions while the

verification community also uses the word “model” with the same signification. Recall

that we already introduced the word “model” in the constraint programming background

(cf. Section 2.2). Thus we reserve it for the constraint context.

3.1 Introduction

t (time)

x

Figure 3.1: Instance of four possible traces of a variable x while executing the same
program.

We focus in this thesis on program verification problems, i.e., we do not consider

hardware verification problems. In this context, the word “program” refers to a com-

puter science program written in a dedicated programming language [50]. There is a wide

variety of programming languages which can be grouped by programming paradigms:

functional programming (e.g., Javascript, Python), object oriented programming (e.g.,

C++, Java), reactive programming (e.g., FAUST, LUSTRE), probabilistic programming

(e.g., ProbLog, RML), etc. Even if these languages may have different programming

approaches they all share the same verification expectations. Indeed, whatever the lan-

guage, a program is designed to be executed (in our concern we consider that programs

are executed on a machine with memory). We briefly recall some vocabulary proper to

program verification. We call run an execution of a program. During a run the machine

memory varies over the time. We call state a snapshot of the memory at a given time.

Finally, a trace is the succession of states corresponding to a run of the program. Thus,

program verification consists in analyzing traces in order to determine if a given property
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t (time)

x

t0

Figure 3.2: Instance of four possible traces of a variable x while executing the same
program.

is satisfied. We name concrete semantics the set of all the traces of a given program. The

variations for a single program between its traces may come from user inputs given at

running time, non determinism of the program, probabilistic transitions in the program,

etc.

Example 8. Figure 3.1 describes a simple program using one variable x as memory.

Here, the concrete semantics of this program contains exactly four traces. Each trace is

represented as a curve on the graphics such that each time step t corresponds to the value

of x at this time.

Verification consists in verifying properties on the concrete semantics of programs.

Recall first that these semantics are an “infinite” mathematical object (i.e., an infinite

set of potentially infinite sequences of states) which is not computable: it is not possible to

write a program able to represent and to compute all the possible traces of any program.

Otherwise, one may also solve the halting problem [51]. Thus, in the general case, ques-

tions about the concrete semantics of a program are undecidable. In practice the program

traces may be finite. However note that in this thesis both contributions only consider

infinite traces. Properties on such traces may be expressed using different formalisms.

First, they can be time independent. In such case the property must hold during each ex-

ecution time (e.g., the variable x must never be equal to zero, the variable x must always

take its values between −1 and 1): such properties are called invariants. Secondly, time

dependent properties express how the memory must vary over time for each trace (e.g.,

the variable x must not be equal to zero before a given line of the program, the variable

x must be bounded by −1 and 1 at the end of the execution, using temporal modalities

such as the linear temporal logic [52]). Finally, a verification process has the objective

to determine according to a given program and a property if this program satisfies this

property. Recall that the program verification problem is undecidable in the general case

(the halting problem can be turned into a verification problem). Thus, such verification

process may validate, invalidate, or be non conclusive concerning the satisfaction of the

property by the program.
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We now present two main approaches, named static analysis and dynamic analysis,

for tackling verification problems. Roughly speaking, the first one may be seen as offline

verification and the second one as online verification. We call static analysis a verification

process working without explicitly running the programs. On the other hand, a dynamic

analysis verification process requires to run the program in order to validate or invalidate

a property. Furthermore, both approaches also consider bounded verification vs. un-

bounded verification. Bounded verification only checks the validity of the properties for

sub traces (i.e., for a bounded time range of execution of the program) while unbounded

verification checks the validity of the properties for all traces regardless of their length.

Recall that the total set of traces of a given program is called the concrete semantics

of this program. Given a concrete semantics an abstraction is a mathematical model

(possibly a program) representing at least all the traces in the concrete semantics. Thus,

the verification process may be performed with an abstraction of the program instead

of the original program itself. We say that a verification process is sound w.r.t. to a

program abstraction iff it agrees with the verification of the concrete domain. Otherwise

this process is called unsound.

Example 9 (Example 8 continued). Figure 3.2 contains the same program traces as

presented in Example 8. The red areas represent “errors” and are also called unsafe

regions. Note that the top red region is time independent (for all the running time, the

variable x must not be greater or equal to a certain value). Conversely, the other red

region is time dependent. We want to verify that no program trace enters in an unsafe

region. This property is not valid if at least one trace in the concrete domain reaches an

unsafe region. Here, since one trace overlaps one red region, this program does not satisfy

this property. Thus, a sound static analysis will validate the property for this program.

Note that a dynamic analysis bounding the verification process with a limited horizon

could pass next to the trace violating the property and miss this counter example. As a

consequence, bounded verification processes might be unsound.

3.2 Abstract Interpretation

Abstract Interpretation [53, 54] (AI1 for short) does static program analysis by building

abstract representations of the program behaviors. The first contribution of this thesis

(Chapter 4) is inspired from AI. We present in this section the general ideas behind AI and

we conclude by citing related works linking AI and CP. Example 10 motivates the main

ideas behind Abstract Interpretation by the use of an example: bounding the variables

at every step in the program.

1Be careful that in this thesis we use AI for Abstract Interpretation and not Artificial Intelligence.
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1: int x, y

2: y  1

3: x  random(1, 5)

4: while y < 3 and x < 5

do

5: x  x + y

6: y  2 * y

7: end while

8: x  x + 1

(a) Running Program Example

Trace line 3 line 5 line 6 line 5 line 6 line 8
trace1: (1, 1) (2, 1) (2, 2) (4, 2) (4, 4) (5, 4)
trace2: (2, 1) (3, 1) (3, 2) (5, 2) (5, 4) (6, 4)
trace3: (3, 1) (4, 1) (4, 2) (6, 2) (6, 4) (7, 4)
trace4: (4, 1) (5, 1) (5, 2) (6, 2)
trace5: (5, 1) (6, 1)

(b) Program traces for the running program example
where each pair contains the values for x and y

Figure 3.3: Running program example with its five traces.

Example 10. Figure 3.3a contains a program described in pseudo code using two vari-

ables x and y. Variable y is initialized to 1 and variable x is initialized to an integer

randomly selected between 1 and 5. Then, the loop body is evaluated while the condition

y < 3 ^ x < 5 is true, and finally, the variable x is incremented by 1. Clearly, this sim-

ple program admits 5 traces presented in Figure 3.3b. These different traces come from

the random function on line 3 allowing 5 possible outputs. Note that traces may share

states/state sequences (e.g., state (4, 2) is in traces trace1 and trace3), traces may have

different lengths (e.g., |trace1| = |trace2| = |trace3| = 6 while |trace4| = 4). Also the

number of traces may be exponential or even infinite. Recall that computing this number

is an undecidable problem in the general case.

As said previously, a verification process is performed on an abstraction of the concrete

semantic. In order to bound all the variables at every program step, AI uses a connexion

between the concrete semantics and the so called abstract semantics. Regarding a pro-

gram concrete semantic and a variable in this program, we call concrete domain the values

taken by the variables at each program step. On the other hand, for the same program

and variable an abstract domain contains a super set of the the variable concrete domain

at each program step (i.e., an abstract domain is an over-approximation of a concrete

domain). While the concrete domain is unique there exist many possible abstract do-

mains. Thus, AI proposes a variety of (mathematical) abstractions such that each one

has advantage and disadvantage in term of precision, representativity, computability, etc.

The problem of determining tight abstract domains becomes harder when the program

contains loops. Indeed, this problem can be reduced to the search of inductive invariant

(ideally the smallest). AI uses widening and narrowing operators in order to approach

such solution. This is performed by considering an abstraction of the loop transfer func-

tion. Then, using this transfer function for testing over-approximation candidates and

following successive widening and narrowing iterations terminates and converges to an

inductive invariant. We invite the reader to consider [53, 54] for a formal and exhaustive

presentation of AI since no more background is required for our contributions. Example 11
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x

y

(a) Concrete Domain
{(1, 2); (1, 3); (2, 2); . . .}

x

y

(b) Interval Abstract Domain
X 2 [1; 7] and Y 2 [1; 5]

x

y

(c) Polyhedron Abstract
Domain

(x > 1) ^ (y > 1) ^ (x+ 3y ≥
7) ^ . . .

x

y

(d) Concrete Domain does not
intersect with the forbidden

zone (red area)

x

y

(e) Interval Abstract Domain
raising a false alarm

x

y

(f) Polyhedron Abstract
Proving the no forbidden zone

overlapping.

Figure 3.4: A concrete domain (a) over variables x and y abstracted by an interval
abstract domain (b) and a polyhedron abstract domain (c) respectively without (a,b,c)
and with (d,e,f) a forbidden zone s.t. interval abstraction produces a false alarm (e) while
polyhedron abstraction proves safety (f).

describes the link between concrete and abstract semantics and presents the interest of

tight abstract domains to possible false positive. This example presents the interval and

the polyhedron abstractions. There exists other abstract domains such as the sign and

the octogone abstract domains. Furthermore, a precision gain with an abstract domain

increases the theoretical complexity for maintaining it while progressing in the verifica-

tion process. However the use of abstractions may offer a guarantee of termination of the

verification process. Indeed, well chosen abstractions produce semi-decidable problems.

Thus verification tools based on abstract interpretation either proves the satisfaction of

the bounding property or cannot conclude.

Example 11. Assume that a program using two variables x and y admits at a program

step the concrete semantics presented in Figure 3.4a. Thus, each dot in the figure corre-

sponds to a state encountered by one or more program traces at the given program step.

One possible abstraction for this concrete domain is the use of intervals to create a box

(i.e., a cartesian product of intervals). Figure 3.4b presents the smallest interval domain

containing the concrete semantics. On the other hand, Figure 3.4c presents the smallest

polyhedron domain containing the concrete domain. According to this concrete domain

and these abstract domains consider the unsafe region as the red region presented in Fig-

ure 3.4d. Since none of the states in the concrete domain overlap the unsafe region, the
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program satisfies the property. However, note that the interval domain intersects with the

unsafe region in Figure 3.4e. Thus, this abstract domain is not able to prove the validity

of the property on the concrete semantics. Conversely, the polyhedron abstract domain

presented in Figure 3.4f successfully proves the validity of the property on the concrete

semantics.

3.3 Model Checking

Model checking provides formal verification of properties over models/programs with finite

structure that potentially abstract systems with infinite state spaces. In our contribution

relative to model checking (Chapter 5) we consider programs which are representable as

finite-state machines (more precisely Chapter 5 considers Discrete Time Markov chains).

Informally, a finite-state machine contains a finite set of states together with a set of initial

states and a set of final states. States are linked by a transition function determining

possible state successions. Thus, a run is a (possibly infinite) succession of states from an

initial state and its trace corresponds to this sequence of states.2 Example 12 presents an

example of Markov chain.

Example 12. Figure 3.5a contains an example of Markov chain containing the states A,

B, C, D, and E, A being the initial state. The edge labelling gives the probability to move

from a state to another. Note that all the outgoing transitions from a given state form

a probability distribution (i.e., they are all positive real-numbers and they sum to one).

Also, in our setting Markov chains do not have final states. Thus, we consider that the

accepted runs are all the infinite sequences of states with non zero transition probabilities.

Indeed, each run is associated with a probability corresponding to the product of all the

probabilities encountered on the transitions. Figure 3.5b present the prefixes with size 4

of five infinite runs with their corresponding probability. The probability for the runs not

starting from the initial state or including a missing transition is set to zero.

As presented in section 3.1 we consider system/program verification based on trace

properties. Model checking (also named property checking) consists in exhaustively and

automatically checking whether the model of a system meets a given specification/prop-

erty. In the context of finite-state machines, such properties are expressed in order to

discriminate infinite runs (e.g., all the runs meeting state B before state C, all the runs

reaching D before 5 transitions). Since the number of states is finite, and runs are infi-

nite, the number of different runs is infinite but countable. The Linear Temporal Logic

[52] (LTL for short) uses temporal operators (e.g., next, until) allowing to define such

sets of traces. Finally, qualitative verification and quantitative verification take into ac-

count a measure over the traces and consist in checking that the set of runs accepted by
2In the case of the presence of state labelling, the trace is the succession of labels associated to the

states encountered at running time (cf. Chapter 5).
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A

B

C

D

E

0.7

0.3

0.4

0.6

0.5

0.5

1

1

(a) Example of Markov chain

Trace #1 #2 #3 #4 Probability
prefix1: A B B D 0.168
prefix2: A C B D 0.09
prefix3: A C C B 0.075
prefix4: A C E E 0
prefix5: E E E E 0

(b) 5 trace prefixes with their respective probability
to occur.

Figure 3.5: A Markov chain next to 5 trace prefixes with size 4, associated with their
respective probability to occur.

a the state machine verifies the property quantified by the given measure. Example 13

illustrates qualitative and quantitative properties verification.

Example 13 (Example 12 continued). Consider the property asserting that the runs

must encounter state D. This property does not hold for the Markov chain presented

in Figure 3.5a. Indeed, there exist runs infinitely looping in state B or C which never

encounter state D (more precisely there exists an infinite number of such runs). On the

other hand, consider the property asserting that the probability of encountering state D

equals 1: this property holds. Indeed, the probability of looping infinitely in state B or C

equals to zero. Thus, all the runs with a non zero probability reach D and the probability

of reaching D equals to 1.

Recall, that runs are infinite and the set of state is finite. Thus, model checking

explores all possible system states in a brute-force manner. This way, it can be shown

that a given system model formally satisfies or falsifies a certain property. Hence, such

method proves the validity of the property or returns a counter-example otherwise.

3.4 Constraints meet Verification

Considerable improvements in the efficiency and expressive power of constraint program

solvers allowed to tackle problems more and more difficult to answer. In this section,

after motivating the use of constraint programming for answering the two mains program

verification problems considered in this thesis we present various verification processes

using constraint programming.

Even if a program admits a priori an infinite state space its executions may encounter

a (potentially infinite) subset of the declared state space. Thus, one would like to deter-

mine this smaller state space in order to verify the non reachability of undesired states.

This problem is reducible to the search of program over-approximations, i.e., bound-

ing all the program variables. This is an objective of Abstract Interpretation where the



3.4. Constraints meet Verification 37

program describing precisely the system evolution from a state to another, named the

concrete program, is abstracted. This abstracted construction is related to the concrete

program in such a manner that if an over-approximation holds for the abstraction then,

this approximation also holds for the concrete program. Furthermore, constraint pro-

grams allow to describe over-approximations such as convex polyhedrons using linear

constraints, ellipsoids using quadratic constraints, etc. Thus, since constraint program-

ming is a generic declarative programing paradigm it may be seen as a verification process

for over-approximating variable in declarative programs. In the first contribution, we con-

sider a block-diagram language where executions are infinite streams and the objective is

to bound the stream values using constraint programming.

However, bounding the state space is not enough for some verification requirements.

In our second problem, the objective is to determine if a specific state is reachable at

execution time. Indeed, abstractions can only determine if a specific state is unreachable.

For this verification problem, we consider programs representable as finite graph structures

where the nodes form the state space and the edges give state to state transitions. Thus,

verifying the reachability of a state in such a structure is performed by activating or

deactivating transitions in order to reach the target state. However, these activations can

be restricted by guards, or other structural dependent rules. Clearly, this corresponds to

a combinatoric problem to solve. For this reason, since one of the objectives of constraint

programming is to solve highly combinatorial problems, the verification community is

interested in the CP tools.

Dynamic Analysis. Software testing consists in checking the validity of a property on

a given program by running simulations. The classical book The Art of Software Testing

[55] defines software testing as “the process of executing a program with the intent of

finding errors” (i.e., finding runs which do not satisfy the specification). Thus, Constraint-

Based Testing is the process of generating program test cases by using the constraint

programming technology [56]. The test cases are not written by hand but constraint

programming solvers are used to produce them. A recent survey for this research field

can be found in [57].

Static Analysis. Static program analysis is the automatic determination of runtime

properties of programs. This consists in finding run-time errors at compilation time

without code instrumentation or user interaction. K. R. Apt formalized the link between

chaotic iterations such as used in abstract interpretation for moving between fixed points

or inductive invariants and the resolution process used in contraint programming [58,

59]. More recently, in [60], the authors integrate abstract domains into a constraint

programming solver by developing a tool named Absolute.
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Bounded Model Checking. Binary Decision Diagrams (BDDs) have been used for

formal verification of finite state systems with success since their introduction in the

beginning of the 90’s. However, in [61] the authors proposed CNF modellings instead

of BDD modellings for realizing Bounded Model Checking (BMC for short). This CNF

based verification process takes advantages of the efficiency of the SAT solvers which

are now considered as the state-of-the-art techniques for bounded model checking. This

formulation in the BMC context led to a scale up in the size of the verified programs and

also replaced the dedicated methods developed with BDDs.

CP solvers for testing applications More generally, constraint programming solvers

have been used to test applications thanks to the expressiveness and the efficiency of

constraint programming languages. For instance, [62] uses constraint propagation to

check a cryptanalysis problem: by providing a better solution, they proved that a solution

claimed to be optimal in two cryptanalysis papers was not optimal.

Constraints in formal verification More and more the verification community uses

SMTs tools instead of dedicated algorithms for performing verification process. Indeed,

the actual best state-of-the-art SMT solvers are able to handle linear, non-linear, and even

quantified constrained programs which may appear in program verification problems. For

instance, see [63] for symbolic software model checking or the Extended Static Checker

(ESC) tool using the Simplify SMT solver [64].

This concludes our overview of constraint programming and program verification. Af-

ter having put in perspective both research fields we now propose two chapters, each

one self contained, about solving some program verification problems using constraint

modelling and solving.
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This chapter treats the verification of synchronous languages modelled as block-

diagrams. The verification problem consists in bounding all the variables in the program.

This problem is called the stream over-approximation problem. We present a global con-

straint in the spirit of Constraint Programming designed to deal with this problem. We

propose filtering algorithms inspired from abstract interpretation and prove their validity.

These algorithms are inspired from both continuous constraint programming and abstract

interpretation. Finally, we propose an implementation of our modellings and discuss the

results. This chapter is self-contained including introduction, motivation, background,

state of the art, and contributions.

4.1 Introduction

Constraint programing (CP) [65] offers a set of efficient methods for modelling and solv-

ing combinatorial problems. One of its key ingredients is the propagation mechanism,

which reduces the search space by over-approximating the solution set. For continu-

ous constraints [66, 67], propagation is defined in a generic way on a given constraint

language, usually containing equalities, inequalities, and many operators (arithmetic op-

erations, mathematical functions, etc). In this chapter, we present a method using this

generic propagation scheme, combined with a new solving algorithm, for the resolution of

a verification problem.

Our problem consists in checking the range of the outputs of programs written as

block-diagrams, a common model for many real-time languages. More precisely, we are

interested in DSP (Digital Signal Process) programs, based on a block-diagram algebra,

which contains both typical real-time operations (split, merge, delay, ...) and mathe-

matical functions [68]. All the variables are infinite streams over the reals. A stream

represents the values taken by a variable at each time step. All the variables/streams are

synchronized and they all receive a value at each tick of the clock. All the loops are thus,

in theory, infinite by construction: the programs do never stop by themselves. Of course,

they may stop computing in practice when all the signals are constant, or alternatively

they can be killed by the user. The problem we tackle is the following: considering a

block-diagram, which comes from a real-time program on streams, can we compute or

approximate at a good precision the range of the stream output by this program?

This problem is, in a more general form, at the core of another research area, Abstract

Interpretation, as introduced in [54, 53]. Abstract Interpretation offers a great variety of

tools to over-approximate traces of programs to prove the absence of some runtime errors,

such as overflows. It relies on abstractions of the program traces, i.e. the possible values

the variables may take during an execution. The set of all the possible program traces

cannot be computed in the general case. In Abstract Interpretation, they are represented

by an abstract element, easier to compute, which must both include all the program
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traces and be reasonably easy to compute. One of the first examples of such abstraction

is the interval abstract domain [53], which is used in this work. An abstraction comes

with several operators to mimic the program execution. Abstract Interpretation has been

successfully applied to a wide range of applications the most famous one being the analysis

of the flight-control commands of the Airbus A380 aircraft.

In this work, we use tools from constraint programming to compute precise abstrac-

tions of all the stream variables of a real-time program. Our method is generic and can

be applied to any language based on a block-diagram algebra for bounding the values

taken by the input, output, or inner streams of the program. We present three appli-

cations of our method: compiler assistance, refactoring, and verification. We chose the

verification application for the experiment section that we applied on the FAUST (Func-

tional Audio Stream)1 language. This language has been designed for sound design and

analysis [69] of audio streams. FAUST is a functional language with a proper semantic

based on block-diagrams, which makes it a language quite similar to LUSTRE [70] or its

commercial version SCADE. In practice, the compiler automatically generates a block-

diagram for each program. The outputs of these block-diagrams are real-valued streams

which represent audio signals. These signals can for instance be sent to loudspeakers or

other applications.

By convention, digital audio signals must stay in the range [−1, 1]. In case the signal

takes values out of this range, it can either damage the loudspeakers, or, more currently,

be arbitrarily cut by the sound driver. In this case, the shape of the sound is modified and

this produces a very audible sound effect called saturation. For this purpose, we compute

bounds for the values taken by all the signals in the program and then we verify that the

output streams stay in [−1; 1]. Verifying FAUST programs is essential since this language

is intended for non computer scientists. An overflowing program not only produces a

corrupted sound, but in practice, it often has conception mistakes. Moreover, FAUST

programs are now used in concerts or commercial applications [71].

FAUST already embarks a static analyzer based on Abstract Interpretation, using the

interval abstract domain. The analyzer computes the outputs of each operator from its

inputs, with the bottom-up top-down (or HC4) algorithm. When the programs do not

have loops or delays, this works very well. However, as soon as the programs have loops,

the interval analysis cannot provide precise over-approximation (returning [−1,+1])

and the analysis fails.

In this chapter, we first propose a model of the verification of a block-diagram as

a constraint problem. Propagation based on the constraints allows us to compute an

over-approximation of the range of the computed streams. But as soon as the program

has loops, the approximations are too large. We present a specific solving method which

identifies the loops in the constraint graph, and propagates these constraints in a specific

1FAUST is open source and available at http://faust.grame.fr

http://faust.grame.fr
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way to find over-approximation with a better precision. We implemented this method

on FAUST block-diagrams, using IBEX [72, 67] a constraint programming solver over

continuous domains. We tested it on several programs from the FAUST library. Most

of the times, the over-approximation returned by our method is optimal, in the sense

that it is the best interval approximation. We have tested our method on the programs

given as examples in the standard FAUST library, with good results: we were able to

detect errors in two of these programs, and in general to fastly compute precise intervals

over-approximating the program outputs.

This chapter is organized as follows: Section 4.2 introduces the notion of block-

diagrams. Section 4.3 presents the conversion of block-diagrams into a first constraint

model. Section 4.4 defines the global constraint used for a more efficient model. Different

applications of our optimized model are presented in Section 4.5 and we consider one of

them in Section 4.6 with our application language and present the results of the experi-

mentation followed by related works. Finally, Section 4.7 discusses the contribution and

future works.

Related Works The research on Constraint Programming and Verification has always

been rich, and gained a great interest in the past decade. Constraint Programming has

been applied to verification for test generation (see [57] for an overview), constraint-

based model-checking [73], control-flow graph analysis [74] or even worst-execution time

estimations [75]. More recently, detailed approaches have been presented by [76] or [77]

to carefully analyze floating-points conditions with continuous constraint methods.

Other approaches mix CP and Abstract Interpretation. It has been known for a long

time that both domains shared a lot of ideas, since for instance [59] which expresses the

constraint consistency as chaotic iterations. A key remark is the following: Abstract Inter-

pretation is about over-approximating the traces of a program, and Constraint Program-

ming uses propagation to over-approximate a solution set. It is worth mentioning that

one of the over-approximation algorithms used in Abstract Interpretation, the bottom-up

top-down algorithm for the interval abstraction [54, 78], is the same as the HC4 constraint

propagator [66] (in the following, we will refer to this algorithm as HC4), which shows

how close CP and Abstract Interpretation can sometimes be. More recent works explored

these links in both ways, either to refine CP techniques [79, 60] or to improve the Abstract

Interpretation analysis [80, 81]. Finally GATeL [82] uses Constraint Logic Programming

for verifying real-time programs by test cases generation.

In some sense, our work can be seen as solving a constraint problem on streams.

There have been other works on stream constraints in the literature (e.g., [83, 84]).

However, this approach radically differs from ours because their stream constraints are

meant to build an automaton whose paths are solutions of the constraints. In particular,

we would not be able to analyze infinite streams in a non-regular language with these



4.2. Background 43

b1
op := x2

b2
op := −

b3
op := ⇥

Figure 4.1: A block-diagram in BD(R)

stream constraints. On the contrary, our constraints are expressed on infinite streams,

and generated in order to compute hulls of the streams.

4.2 Background

This section introduces the block-diagram algebra for representing real-time programs.

4.2.1 Syntax

A block is a function that applies an operator on some ordered inputs, and generates one

or more ordered outputs.

Definition 4.2.1 (Block). Let E be a nonempty set. A block over E is a triple b =

(op, n,m) such that: n 2 N is the number of inputs of the block, m 2 N is the number of

outputs, and op : En ! Em is the operator of the block. The n inputs and the m outputs

are ordered: [i]b refers to the ith input (1  i  n) and b[j] to the jth output (1  j  m).

For any block, we say that input i (respectively output j) exists iff i (resp. j) is an

integer between 1 and the number of inputs (resp. outputs) of the block. Throughout

this chapter, given a nonempty set E, Block(E) denotes the set of all the blocks over E.

Definition 4.2.2 (Connector). Let B be a set of blocks. A connector over B is a pair

(b[i], [j]b0) such that: b and b0 are blocks from B; output i exists for block b and input j

exists for block b0.

Definition 4.2.3 (Block-Diagram). Let E be a nonempty set. A block-diagram over E

is a pair d = (B,C) such that: B is a set of blocks over E and C is a set of connectors

over B. An input (respectively output) of a block in B that does not appear in a connector

of C is an input (respectively an output) of the block-diagram d.

Similarly to the blocks, if a block-diagram d has n inputs and m outputs, we can order

them and: [i]d refers to the ith input (1  i  n), and d[j] to the jth output (1  j  m).

Finally, we denote BD(E) the set of all the block-diagrams over E.

Example 14. Figure 4.1 depicts a block-diagram over real numbers in Block(R) con-

taining three blocks: block b1 has the square function as operator; block b2 has the
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subtraction, and block b3 has the multiplication. Connectors are represented by arrows:

connector (b1[1], [1]b2) from block b1 to block b2; (b1[1], [1]b3) from b1 to b3 and (b2[1], [2]b3)

from b2 to b3. This block-diagram has two inputs (i.e., [1]b1 and [2]b2) and one output

(i.e., b3[1]).

4.2.2 Semantics

After the syntax, it is natural to define the block-diagram semantics: block-diagram

interpretation, and block-diagram model.

Definition 4.2.4 (Interpretation). Let E be a nonempty set, b = (op, n,m) a block in

Block(E), and d = (B,C) a block-diagram in BD(E). An interpretation I of block b is a

mapping from each input i to an element in E (noted I([i]b)), and a mapping from each

output j to an element in E (noted I(b[j])). An interpretation I of the block-diagram d

is an interpretation of each block in B.

An interpretation is any valuation of all the inputs and all the outputs. We intro-

duce the notion of model to highlight the interpretations considering the operators (i.e.,

such that the outputs correspond to the image of the inputs by the operators) and the

connectors.

Definition 4.2.5 (Model). Let E be a nonempty set, b = (op, n,m) a block in Block(E),

and d = (B,C) a block-diagram in BD(E).

• An interpretation I of block b is a model of b iff

op(I([1]b), . . . , I([n]b)) = (I(b[1]), . . . I(b[m]))

• An interpretation I of block-diagram d is a model of d iff

8b 2 B : I is a model of b and 8(b[i], [j]b0) 2 C : I(b[i]) = I([j]b0)

Example 15 (Example 14 continued). A block-diagram interpretation is presented in

Figure 4.2. The interpretation is given by labeling all the inputs and all the outputs. For

instance, I([1]b2) equals 4 and I(b3[1]) equals 12. Moreover, this interpretation is a model

of the block-diagram expressing that the input 2, 1 produces the output 12.

Note that a block-diagram can have one or many models. The model presented in

Example 15 is one among an infinity of possible ones.

4.2.3 Stream

Up to here, we built block-diagrams over arbitrary sets. Now, we consider the set of

streams. A stream is an infinite discrete sequence of values possibly different at each time

step.
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Figure 4.2: A block-diagram in BD(R) labeled with an interpretation

Definition 4.2.6 (Stream). Let D be a nonempty set. A stream s over D (also called a

stream with domain D) is an infinite sequence of values from D. We name s(t) the value

at time t for the stream s (t 2 N). For any nonempty set D, we write S(D) the set of all

the streams with domain D.

We abbreviate streams using bracket notation. For instance the stream s starting

with the values 2, 4.5, and −3 (i.e., s(0) = 2, s(1) = 4.5, s(2) = −3) is abbreviated in

[2, 4.5,−3, . . .]. In the following, it is important to remind that all the streams are infinite.

Considering block-diagrams over streams reveals two categories of blocks: functional

blocks, and temporal blocks. Functional blocks can be computed independently at each

time step, whereas temporal blocks have time dependencies. Functional blocks are intro-

duced in Definition 4.2.7. Temporal blocks are blocks which are not functional blocks (i.e.,

a block is either functional or temporal). We exhibit one block among all the temporal

blocks: the fby block (cf. Definition 4.2.8). This block has two inputs and one output.

The output at time zero is the value given by its first input at time zero. For the following

times, the fby operator outputs its second input delayed by one time step.

Definition 4.2.7 (Functional Block). Let D be a nonempty set, and b = (op, n,m) in

Block(S(D)). b is a functional block iff 9f : Dn ! Dm such that 8s1, . . . , sn, s01, . . . , s0m 2
S(D): op(s1, . . . , sn) = (s01, . . . , s

0
m) implies the following:

8t 2 N, f(s1(t), . . . , sn(t)) = (s01(t), . . . , s
0
m(t))

Definition 4.2.8 (Followed-by Block). Let D be a nonempty set. The followed-by block

over D (written fby) is the block (op, 2, 1) in Block(S(D)) such that op is the function from

S(D)⇥ S(D) to S(D) where op(a, b) = c, c(0) = a(0), and c(t) = b(t− 1), for all t > 0.

Example 16. Figure 4.3 shows a block-diagram d over real-number streams: d 2
BD(S(R)). d has no input and no output. d contains 5 functional blocks: 0, 0.1, 0.9,

+, and ⇥. Blocks 0, 0.1 and 0.9 use constant operators (i.e., 8t 2 N : 0.9(t) = 0.9).

Blocks + (resp. ⇥) with real-number input streams a, b and real-number output stream

c is such that c(t) = a(t) + b(t) (resp. c(t) = a(t)⇥ b(t)). d contains one temporal block:

the fby block (note that temporal blocks are hatched).

Block-diagrams over streams are used for programming real-time applications. In this

context we name execution trace or simply trace a model of a block-diagram. A cycle in a
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0.1 +

0.9⇥
fby

0

[0.9; 0.9; 0.9; 0.9]

[0; 0; 0; 0]

[0.1; 0.19; 0.27; 0.34]

[0; 0.1; 0.19; 0.27][0; 0.09; 0.17; 0.24]

[0.1; 0.1; 0.1; 0.1]

Figure 4.3: A block-diagram over streams from BD(S(R)). In brackets, the first values of
the model for t = 0, 1, 2, 3.

block-diagram is equivalent to a loop in a classic programming language. In practice, in

order to be runnable (i.e., to compute a trace in real-time) a block-diagram over streams

needs to satisfy two properties [85]: no value must be depending on future values (called

the causality property); infinite computation in cycle must be avoided (any cycle must

contain temporal blocks to avoid infinite computation at each time step).

In our contribution we only allow to use the fby block as temporal block. Under

this condition, this implies that for any runnable block-diagram over streams each cycle

contains at least one fby block. From now on, we only consider block-diagram verifying

this statement. We will see in Section 4.6 that this restriction is not poor and that the

fby block allows to represent many other temporal blocks.

Example 17 (Example 18 continued). Block-diagram d over real-number streams in

Figure 4.3 contains one cycle which contains one fby block. This block-diagram admits

only one model/trace. Indeed, using the three constant blocks 0, 0.1 and 0.9 fixes all the

values in the cycle. Values for the 4 first time steps of the model are attached to each

connector (note the delay due to the fby block). Values for the 21 first time steps are

presented in Figure 4.4. Note the delay between the output of the block + and the output

of the fby block: the height of the circle corresponds to the height of the square at the

previous time step.

4.3 Stream Over-Approximation Problem

Block-diagrams over streams can express the semantics of real-time programs. In such

cases, the programmer could be interested in the verification of some properties of his/her

program. These properties can concern outputs or internal streams (i.e., outputs or

local variables). We propose here a logical constraint model for the following problem:

determine bounds of the streams of a block-diagram.
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4.3.1 Temporal and Interval Abstractions

We illustrate the problematic on our running example. Figure 4.4 presents the first 21

values for the output streams of blocks ⇥, +, and fby model of our running example from

Figure 4.3. For the first 21 time steps, one can see that the values are strictly increasing

(i.e., streams are strictly increasing) between 0 and 1. Furthermore the same observation

is still correct for the first 100, 1, 000, 1, 000, 000, and more, time steps (in our example,

model streams are “infinitely” strictly increasing). Clearly, the greedy algorithm running

the block-diagram time by time and gathering the accessible states (a state is a tuple

composed of the values of all the streams at one time step) until convergence (i.e., no

new state is reached) may not halt. Furthermore, a block-diagram can admit an infinite

uncountable set of models/traces. Thus, there is no hope to run all these traces for

gathering all the reachable states. In this context, Abstract Interpretation [54, 53] offers

a great variety of tools for over-approximating traces of programs. It relies on abstractions

of the program traces. The set of all the possible program traces is undecidable in the

general case. In Abstract Interpretation, they are represented by an abstract element,

easier to compute, which must both include all the program traces and be reasonably

easy to compute. One of the first examples of such abstraction is the interval abstract

domain [53]. While finding one over-approximation of the traces is easy (i.e., returning

[−1,+1]) the objective is to find over-approximations with good quality (i.e., as small

as possible intervals). Following paragraphs formally introduce the over-approximation

problem with the over-approximation quality comparator.

Problem Definition. Let D be a nonempty set and d be a block-diagram in BD(S(D)).

Associate to each block input/output s in d a subset S of D s.t. for each model/trace I

of d and for each time step t in N the value s(t) is in S. S is called an over-approximation

of s in d.

Over-Approximation Quality. Let D be a nonempty set, d be a block-diagram

in BD(S(D)), s be a block input/output in d, and S, S 0 subsets of D be two over-

approximations of s in d. If S ✓ S 0 then the over-approximation S is preferred to the

over-approximation S 0.

Example 18 (Example 17 continued). Interval [0, 1] contains all the values taken by the

streams model of the outputs for the blocks +, ⇥ and fby for the first 21 time steps in the

block-diagram in Figure 4.3. Interval [0.1, 0.9] is a better over-approximation than [0, 1]

for the output of the block + for the 21 first time steps.

We introduce the temporal abstraction of streams in Definition 4.3.1. The temporal

abstraction of a stream returns the set of all values taken by this stream. This set (and any

superset) is called an over-approximation of the stream. As said previously, the size of this
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Figure 4.4: Values of the streams model of the block-diagram in Figure 4.3 for the
outputs of blocks ⇥, +, and fby for the 21 first time steps.

set may be infinite, discontinuous and even uncountable (i.e., a representation in extension

is thus not possible). Thereby, given a stream we consider an interval superset of the

temporal abstraction for representing this stream (i.e., this corresponds to the use of the

interval abstract domain in Abstract Interpretation [53]). The best over-approximation

(in the intervals) of a stream, is the smallest interval containing its temporal abstraction.

Definition 4.3.1 (Temporal Abstraction). The temporal abstraction of a stream s, writ-

ten ṡ, is the set of all its values. Any superset of ṡ is called an over-approximation of s

and ṡ is the smallest over-approximation of s.

ṡ =
[

t2N

s(t)

For each interval I, we write dIe its upper bound and bIc its lower bound. In the

following, we assume that D is a totally ordered set and we write I(D) the set of all the

intervals over D. Furthermore, D is called the extended set of D and it is equal to the

union of D and its limits (e.g., R = R[{−1,+1} and I(R) is the set containing all the

intervals with finite and infinite bounds). Finally, given A ✓ D we write [A] the smallest

interval in I(D) containing A.

4.3.2 Model in Constraint Programming

Constraint programming (CP for short) is a declarative programming paradigm, in which a

program consists of a list of variables (each one declared with a domain) together with a list

of constraints over these variables. Firstly, we do constraint programming modelling with

variables domains over streams. Secondly, we focus on interval constraint programming

[86], i.e., constraint programming with variable domains over set of intervals.

Definition 4.3.2 (Constraint Satisfaction Problem). Let E be a nonempty set. A Con-

straint Satisfaction Problem (CSP for short) is a tuple P = (X,D,C) such that X is a

finite set of variables; each variable x in X is associated with a domain Dx subset of E; D
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Figure 4.5: A block-diagram over streams from BD(S(R)) with connectors labelled by
variables

a , b , c , d , e , f2 S(R)

a = fby( e , c )
b = ⇥( a , f )
c = +(b , d)
d = 0.1
e = 0
f = 0.9

Figure 4.6: Naive constraint model for
the block-diagram in Fig 4.5

a , b , c , d , e , f2 I(R)

a = [fby] ( e , c )
b = [⇥] ( a , f )
c = [+](b , d )
d = [0.1]
e = [0]
f = [0.9]

Figure 4.7: Medium constraint model
for the block-diagram in Fig 4.5

is the set of all the domains associated to the variables in X; C is a set of constraints over

variables from X. A constraint is defined over a set of variables x1, . . . , xk from X with

k 2 N and is a subset of Dx1
⇥ . . .⇥Dxk

. A valuation v of P is a map from X 0 ✓ X to

D s.t. v(x) 2 Dx for all x 2 X 0. A valuation v satisfies a constraint c ✓ Dx1
⇥ . . .⇥Dxk

iff (v(x1), . . . , v(xk)) 2 c. Finally, a valuation satisfies P iff it satisfies all the constraints

in P.

Definition 4.3.2 introduces Constraint Satisfaction Problems. We propose to model as

a CSP the stream over-approximation problem. Block-diagrams compute outputs from

inputs. To determine over-approximations of the streams in a block-diagram (B,C) in

BD(S(D)), we associate to each input and to each output from the blocks in B a variable

with domain S(D). Then, for each block in B we consider its operator as a constraint

linking the block outputs to the block inputs. Furthermore, for each connector in C,

we add a constraint to ensure the equality of its streams. We name naive model this

model using variables over streams. Example 19 presents the naive model on our running

example.

Example 19 (Example 18 continued). Figure 4.5 contains the same block-diagram as

in Example 18 with constraint variables associated to the inputs and the outputs. Note

that in our example, variables have been unified per connectors (e.g., [1]+ = ⇤[1] = b).
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About the constraint programming model, the block with the operator + computes c as

a function of b and d, yielding the constraint: c = b+ d. Figure 4.6 shows the constraint

model over streams for our example.

We recall that the over-approximation problem presented in the previous section asks

for over-approximations of all the traces of the block-diagram. Since one solution of

the naive model corresponds to one trace of the block-diagram, one must find all the

solutions of the naive model to solve the over-approximation problem. In the previous

section we motivated the use of over-approximations in the intervals for representing set

of traces. We now present a second model with variables over intervals for solving the

over-approximation problem.

This model, called medium model, is derived from the naive model. It consists in: 1)

the same variables where domains are over intervals instead of streams (i.e., over I(D)

instead of S(D)); 2) the same signatures of constraints where the operators over streams

are replaced by their corresponding constraint for interval propagation. Interval propaga-

tion combines various technics from interval arithmetic, interval constraint propagation,

domain filtering with partial consistency algorithms. Note that these extensions are not

trivial and continue to motivate researchers (see [86, 87, 88]). In the following, we will

particularly use interval arithmetic and interval (constraint) propagation.

Example 20 (Interval Arithmetic). Instances of interval computation:

[2, 6] + [−1, 3] = [1, 9]

[2, 6]− [−1, 3] = [−1, 7]
[2, 6]− [2, 6] = [−4, 4]

[2, 6]⇥ [−1, 3] = [−6, 18]
[−1, 3]⇥ [−1, 3] = [−3, 9]

[−1, 3]2 = [0, 9]
Note that some properties in real-number arithmetic are not true in interval arithmetic.

Examples above illustrate that in general A− A 6= [0, 0] and A2 6= A⇥ A.

Definition 4.3.3 (Interval Extension Function). Let D be a nonempty set and f be a

function from S(D)n to S(D)m with n,m 2 N. An interval extension function of f , is

a function [f ] from (I(D))n to (I(D))m such that [f ](X1, ..., Xn) = Y1, ..., Ym where Yi =

[{ẏi | 9xj 2 Xj, y1, ..., ym = f(x1, ..., xn)}].

Interval arithmetic received big interest since Moore [89] and the developments of in-

terval analysis. We focus on interval arithmetic with interval extension of real-valued

functions. Interval arithmetic concerns how classical functions from real-number arith-

metic operates on intervals (see Example 20). We propose Definition 4.3.3 for trans-

posing function over streams to interval functions which extends the definition from [89]

for extending real-number functions to interval functions. Table 4.1 presents standard

arithmetic functions over real-numbers next to their corresponding stream functions and

interval extension functions. When it is not ambiguous (i.e., in the context of intervals)

we omit the brackets over the function names in order to keep the expressions simpler.
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Real Function Stream Function Interval Extension Function

a, b 7! a+ b
a, b 7! c, s.t.

c(t) = a(t) + b(t), 8n 2 N
[a1, a2], [b1, b2] 7! [a1 + b1, a2 + b2]

a, b 7! a− b
a, b 7! c, s.t.

c(t) = a(t)− b(t), 8n 2 N
[a1, a2], [b1, b2] 7! [a1 − b2, a2 − b1]

a, b 7! a⇥ b
a, b 7! c, s.t.

c(t) = a(t)⇥ b(t), 8n 2 N

[a1, a2], [b1, b2] 7! [c1, c2] s.t.
c1 = min(a1⇥b1, a1⇥b2, a2⇥b1, a2⇥b2)
c2 = max(a1⇥b1, a1⇥b2, a2⇥b1, a2⇥b2)

a 7! a2
a 7! c, s.t.

c(t) = a(t)2, 8n 2 N

[a, b] 7! [c,max(a2, b2)] s.t.
c = 0, if a  0  b
c = min(a2, b2), otherwise

Table 4.1: Real-number functions, stream functions, and interval extension functions for
the addition, the subtraction, the multiplication and the square functions

The interval extension function of an operator is not unique but the functions with small-

est images will by preferred (i.e., the function always returning D is a universal interval

extension function).

Constraint propagation is one of the key ingredient for CSP resolution [86]. This

consists in explicitly removing values in some variables domains which cannot satisfy the

CSP, while preserving all the solutions. A function performing such operation over one

constraint is called a propagator (cf. Definition 4.3.4). For instance consider the constraint

a = b+c over intervals. The function f(A,B,C) = (A\(B+C), B\(A−C), C\(A−B)) is

a propagator for this constraint. If the domains for the variables a, b, and c are respectively

[−1, 4], [−1, 3], and [0,+1] then the propagator f reduces the domains for the variable

a, b, and c to respectively [−1, 4], [−1, 3] and [0, 5].

Definition 4.3.4 (Constraint Propagator). Let (X,D,C) be a CSP with X =

{x1, . . . , xn}, and let c be a constraint in C defined over the set of variables X 0 ✓
X. A propagator f for the constraint c is a function from P(D) to P(D) such that

f(D0
x1
, . . . , D0

xn
) = D00

x1
, . . . , D00

xn
with

• for all x 2 X \X 0 : D00
x = D0

x

• for all x 2 X 0 : D00
x ✓ D0

x

• for all valuations v of x1, . . . , xn in D0
x1
, . . . , D0

xn
: if v satisfies c, then v(xi) 2 D00

xi

for all xi 2 X 0.

Figure 4.7 shows the medium constraint model for the block-diagram in Figure 4.5

constructed from its naive constraint model over streams in Figure 4.6. Solving this

constraint model computes an interval over-approximation of each stream, provided that

the interval extensions of the functions are correct. Therefore, this translation of block-

diagrams into a constraint problem allows to compute hulls (over-approximations) of the

streams.



52 Chapter 4. Verifying a Real-Time Language with Constraints
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Figure 4.8: Dependency graph of the block-diagram in Figure 4.5
where strongly connected components are surrounded with dashed lines

4.4 The real-time-loop constraint

Since the stream domains can be infinite and the constraint network can contain cycles,

classic constraint solvers may poorly reduce the domains when using the medium model.

Consider our running example given in Figure 4.5 with its corresponding medium model

given in Figure 4.7. Starting with domains I(R) (i.e., with [−1,+1] in the domains) the

domains for the triple (a, b, c) of variables is glued to its whole domain I(R) and interval

propagators fail to reduce domains in order to compute smaller over-approximations.

Moreover, assume that the stream domains are bounded: D = [−d, d] with d 2 R. In such

cases interval propagation will contract the domains blocks after blocks (i.e., constraint

after constraint). However, the convergence may appear after a huge number of interval

propagations. In order to reach the gap to better over-approximation in less time we

introduce a new constraint: the real-time-loop constraint.

4.4.1 Definition

The real-time-loop constraint will model cycles2 in block-diagrams. A cycle in a block-

diagram corresponds to a directed cycle in the directed graph representing it. A cycle

is a sub block-diagram in a block-diagram. The real-time-loop constraint takes three

arguments: the cycle itself as a block-diagram/list of constraints, the cycle inputs as a

vector of variables and the cycle outputs as a vector of variables. Let d be a block-

diagram cycle, inputs be its inputs, and outputs be its outputs, we instantiate the

real-time-loop constraint as: real-time-loop(d,inputs,outputs) . An interpretation

satisfies a real-time-loop constraint if and only if it satisfies the list of constraints (i.e.,

all the constraints). According to this new constraint, we propose two propagators in

the following sections. The first one propagates from input domains to output domains

and the second one do the opposite way. Example 21 illustrates the real-time-loop

constraint on our running example.

2For reading facilities, we simply write cycle instead of directed cycle while working with directed
structures such as block-diagrams.
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a , b , c , d , e , f2 I(R)

d = 0.1
e = 0
f = 0.9
rea l−time−loop ( [ a=fby( e , c ) ; b=⇥( a , f ) ; c=+(b , d ) ] , [ d ; e ; f ] , [ ] )

Figure 4.9: Optimized model of the block-diagram in Figure 4.5

Example 21 (Example 19 continued). Running example in Figure 4.5 has one cycle

which contains three blocks (+, ⇥ and fby), three inputs (d, e, and f), and no outputs.

This cycle is modelled with the real-time-loop constraints as follows: real-time-loop

([a = fby(e, c); b = ⇥(a, f); c = +(b, d)], {d, e, f}, ;).

4.4.2 Optimized Model

This section describes how we exploit the structure of block-diagrams to improve the

precision of the over-approximations using our real-time-loop constraint in an optimized

model. Even if there is a thin syntactical difference between the medium model and this

optimized model, there is a big gap in terms of deduction power.

Definition 4.4.1 (Dependency Graph). Let E be a nonempty set, and d = (B,C) be a

block-diagram in BD(E). The dependency graph of d is the directed graph G = (V,A) in

which each node of V corresponds to a different block from B such that |V | = |B| and
each arc of A corresponds to a different connector from C such that |A| = |C|.

From a constraint programming point of view, these graphs are the constraints depen-

dency graphs (where nodes are the CSP constraints), except that the arcs are directed by

the dependencies implied by the blocks. Figure 4.8 draws the dependency graph of the

block-diagram in Figure 4.5. Again, temporal block nodes are hatched. The optimized

model is derived from the first one presented in section 4.3.2. Note that each strongly

connected component (i.e., set of nodes such that it exists a path between any two nodes

from this set) in the dependency graphs is related to a loop in the block-diagram. Thereby,

regarding the dependency graph of the block-diagram, we compute its strongly connected

components and we replace for each one all its corresponding constraints in the medium

model by one real-time-loop constraint taking the strongly connected component as

argument. Figure 4.9 models the block-diagram in Figure 4.5 using the real-time-loop

constraint. Note that in this model the real-time-loop constraint has three variables

as inputs and none as outputs.
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4.4.3 Inputs to outputs propagator

We now present how to propagate the real-time-loop constraints from inputs to outputs:

according to over-approximations of the inputs of the loop, we want to determine over-

approximations for the outputs of the loop. Remember that the block-diagram is evaluated

over infinite discrete time. Given a cycle/loop, we extract a transfer function for this loop

and then, we consider the interval extension function of this transfer function in order to

find over-approximations.

Definition 4.4.2 (Loop Transfer Function). Let d be a cycle block-diagram in BD(S(D))

and X = {x1, . . . , xk} be a set of blocks inputs or outputs from d called argument. F :

Dk 7! Dk is a loop transfer function of d for argument X, iff for all I model of d and for

all t in N: F (I(x1)(t), . . . , I(xk)(t)) = I(x1)(t+ 1), . . . , I(xk)(t+ 1)

Given a set of block inputs or outputs, a loop transfer function computes values at

the next time according to values at a given time. Real-time languages must ensure the

causality property [85] (i.e., it must not exist a stream computing its values according

to future values). Due to this property, it is clear that each cycle block-diagram admits

at least one loop transfer function and even admits at least one loop transfer function

with an argument of minimal size. This problem can be reduced to a “covering graph

problem”. Let d be a cycle block-diagram, G = (V,A) be the dependency graph of d, and

S ✓ V be a set of vertices. The set S 0 such that S 0 ◆ S, for all s 2 S 0 all its predecessors

are in S 0, and S 0 is minimal, is named the cover of G by S. Furthermore, we say that

S is a causal set of G if the cover of G by S equals to V . Thus, finding a loop transfer

function with an argument of minimal size can be reduced to finding a minimal causal

set and then performing a breadth-first search from this set for constructing the transfer

function. We propose a greedy algorithm, Algorithm 2, for computing a minimal causal

set of a dependency graph. It enumerates the subsets of V by starting from the subsets

with minimal size and stops when it has found a causal set. In our benchmark presented

in Table 4.4, we can see that this greedy algorithm does not run out-of-time (i.e., in

practice in our benchmark it does not enumerate all the subsets of V but only a small

amount). Finally, we use the Definition 4.3.3 to get a loop transfer function extended to

the intervals (in the following, we simply call it a loop transfer function too). Once we get

this function, we want to over-approximate associated streams. Proposition 1 allows to

do so by finding stable intervals such as defined in Definition 4.4.3. An example is given

below.

Definition 4.4.3 (Interval Stability). Let D be a non-empty set, F be an interval function

with arity n 2 N, and S1, . . . , Sn be n intervals from I(D). We say that S1, . . . , Sn is stable

by F iff F (S1, . . . , Sn) = S 0
1, . . . , S

0
n s.t. S 0

i ✓ Si for all 1  i  n.
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1: function minimalCausalSet(G : Graph) return Set<Vertex>

2: stack : Set<Vertex>
3: cover : Set<Vertex>
4: V  G.getV ertices() : Set<Vertex>
5:

6: # Look for the first subset of V which is a causal set
7: for each A ✓ V enumerated by increasing size do

8: stack  A

9: cover  A

10:

11: # Computing cover of G by A

12: while not(stack.isEmpty()) do
13: v  stack.pop()
14: for each v0 2 G.getSuccessors(v) do
15: if v0 62 cover and G.getPredecessors(v0) ✓ cover then

16: stack.push(v0)
17: cover.add(v0)
18: end if

19: end for each

20: end while

21:

22: # Check if it is a causal set
23: if cover = V then

24: return A

25: end if

26: end for each

27: end function

Algorithm 2: Compute Minimal Causal Set of a Dependency Graph

Example 22 (Example 21 continued). Let f and g be two functions from R to R such

that f(y) = fby(0, y ⇥ 0.9 + 0.1) and g(y) = 0.9 ⇥ fby(0, y) + 0.1 for all y 2 R. Remind

from Figure 4.5 that the symbol a stands for the fby block output and the ⇥ block first

input. We have that f with argument {a} and g with argument {c} are two loop transfer

functions for the cycle in our block-diagram running example. and that the symbol c

stands for the + block output and the fby block second input. Thus, for any model I of

the block-diagram and for all time step t in N, the value associated to a (resp. c) by I at

time t + 1 corresponds to the image by f (resp. g) of the value associated to a (resp. c)

by I at time t (i.e., it holds that I(a)(t+ 1) = f(I(a)(t)) and I(c)(t+ 1) = g(I(c)(t))).

Let F and G be two functions from I(R) to I(R) such that F (Y ) = fby([0], Y ⇥
[0.9] + [0.1]) and G(Y ) = [0.9] ⇥ fby([0], Y ) + [0.1] (here in the context of intervals the

function “⇥”, “+”, and “fby” are not the real valued functions but their respective interval

extension functions). Function F extends f to the intervals and function G extends g to

the intervals. We have that F with argument {a} and G with argument {c} are two loop

transfer functions (extended to the intervals) for the cycle in our block-diagram running

example.
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Considering the loop transfer function F . Intervals [0; 1], [−1; 1] and [−4; 3] are stable
by F . (the images are respectively [0; 1], [−0.8; 1] and [−3.5; 2.8]). Thus, by Proposition

1 all these intervals are valid over-approximations for stream c (i.e., the argument of F ).

On the contrary intervals ; and [0, 0] are not stable (their images are respectively [0; 0]

and [0; 0.1]). We conclude that ; and [0, 0] are not valid over-approximations for stream

c.

One of our main contributions is Algorithm 3. We propose a method inspired by

abstract interpretation techniques viewed as a constraint program to determine stable sets

of intervals. Proposition 2 states the correctness of the algorithm. Note that this algorithm

may not systematically return the minimal over-approximation, but in practice it gives

acceptable ones (see experiments in Section 4.6). This algorithm starts by associating

each argument element of the function to a search space bounded by the intervals min[i]

and max[i] which are respectively initialized with the empty set and the extended set

of the considered domain. Then, at each iteration current[i] is selected such that it

contains min[i] and it is contained in max[i] (i.e., min[i] ✓ current[i] ✓ max[i] is an

invariant of the loop). Also, the variable state takes its values between “Increasing” and

“Decreasing” and is initialized to “Increasing”. It switches from increasing to decreasing

when the interval current[i] is stable by the transfer function and switches from decreasing

to increasing when the contrary occurs. Finally, functions selectIntervalBetween

and continueLooping are heuristics (resp. selection heuristic and looping heuristic).

Proposition 1. Let D be a nonempty set, d = (B,C) be a block-diagram in BD(S(D))

and F be a loop transfer function (extended to intervals) of d with argument X of size k.

If S in I(D)k is stable by F then, S is an over-approximation of the elements in X.

Proposition 2. [Algorithm 3 Correctness] Let (un)n2N, (vn)n2N, and (wn)n2N be the se-

quences of values taken respectively by the variables “min”, “current”, and “max” at

each evaluation of the loop condition (line 8) during an execution of Algorithm 3 over a

function F . The following statements hold:

1. (un) is increasing and (wn) is decreasing

2. for all n 2 N: un ✓ vn ✓ wn

3. for all n 2 N: wn is stable by F .

Proof. Let (un)n2N, (vn)n2N, and (wn)n2N be the sequences of values taken respectively by

the variables “min”, “current”, and “max” at each evaluation of the loop condition (line

8) during an execution of Algorithm 3 with a function F from I(D)k to I(D)k (k 2 N).

Note that values for un, vn, and wn are in I(D)k. Let n 2 N and i 2 {1, . . . , k} we write

un[i], vn[i], and wn[i] the ith interval in un, vn, and wn respectively. Then we have un[i],

vn[i], and wn[i] belonging to I(D).
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1: function overApproximation(f : I(D)k ! I(D)k) return List<I(D)>
2: state ”Increasing”
3: current, min, max, image : List<I(D)>
4: for each i from 1 to k do

5: current[i] ;, min[i] ;, max[i] D

6: end for each

7:

8: while continueLooping(current, min, max) do
9: image f(current)

10: switch false
11:

12: if (state = ”Increasing” and image ✓ current) then
13: state ”Decreasing”, switch true
14: else if state = ”Decreasing” and image 6✓ current then

15: state ”Increasing”, switch true
16: end if

17:

18: for each i from 1 to k do

19: if switch and state = ”Increasing” then

20: min[i] current[i]
21: else if state = ”Decreasing” then

22: max[i] current[i]
23: end if

24:

25: current[i] = current[i] [ image[i]
26:

27: if state = ”Increasing” then

28: random selectIntervalBetween(current[i], max[i])
29: else

30: random selectIntervalBetween(min[i], current[i])
31: end if

32:

33: current[i] random

34: end for each

35: end while

36:

37: return max
38: end function

Algorithm 3: Over-approximation random search function

Proof for Statements 2 and 3 are obtained by induction on the number of evaluations of

the loop condition. We first check the validity of both statements at the first evaluation

of the loop condition (line 8). We have that u0[i] = v0[i] = ;, and w0[i] = D for all

i 2 {1, . . . , k}. Clearly, u0[i] ✓ v0[i] ✓ w0[i] for all i 2 {1, . . . , k}. This implies that

u0 ✓ v0 ✓ w0 (Statement 2). Furthermore w0 equals to D
k
makes F (w0)[w0 = D

k
= w0

which means that w0 is stable by F (Statement 3). Assume now that Statements 2 and

3 holds for the nth evaluation of the loop condition. We prove that both statements are
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Iteration
Variable

1 2 3 4 5 6 . . . n

state Increasing Increasing Decreasing Decreasing Decreasing Increasing . . . Any
current ; [−10; 100] [−3; 6] [0; 2] [0; 0.6] [0; 1.2] . . . [0; 1]
image [0; 0] [−8.9; 90.1] [−2.6; 5.5] [0.1; 1.9] [0.1; 0.64] [0.1; 1.18] . . . [0; 1]
union [0; 0] [−10; 100] [−3; 6] [0; 2] [0; 0.64] [0; 1.18] . . . [0; 1]
switch No Yes No No Yes Yes . . . Yes
min ; ; ; ; [0; 0.6] [0; 0.6] . . . [0; 1]
max [−1; +1] [−10; 100] [−3; 6] [0; 2] [0; 2] [0; 1.2] . . . [0; 1]
random [−10; 100] [−3; 6] [0; 2] [0; 0.6] [0; 1.2] [0; 0.9] . . . [0; 1]

Table 4.2: A trace table of Algorithm 3 for the transfer function F .

still correct for the n+ 1th iteration. There are 4 cases depending on the variable states

and current (i.e., vn):

1. state = “Increasing” and F (vn) ✓ vn

2. state = “Increasing” and F (vn) 6✓ vn

3. state = “Decreasing” and F (vn) ✓ vn

4. state = “Decreasing” and F (vn) 6✓ vn

Consider the first case. Condition in line 12 is true. This sets the variable state to

“Decreasing” and the variable switch to “true”. Next, in the for statement only the

condition in line 21 is true. Thus, for all i 2 {1, . . . , k}: max[i] is updated to current[i]

(i.e., wn+1[i] = v(n)[i]); current[i] is updated to an interval betweenmin[i] and its current

value (i.e., un[i] ✓ vn+1[i] ✓ vn[i]) and such interval exists by the inductive hypothesis

vn ✓ un ✓ wn; and min[i] is unchanged (i.e., un+1[i] = un[i]). Finally we obtain by

aggregation that un+1[i] = un[i] ✓ vn+1[i] ✓ vn[i] = wn+1[i] (Statement 2). Moreover, the

value vn set to wn+1 (cf. max[i] current[i], for all i 2 {1, . . . , k}) verify F (vn)[vn = vn

in the considered case. Thus wn+1 is stable by F (statement 3). Proofs for cases 2, 3, and

4 are similar.

Proof for Statement 1. Let i be in {1, . . . , k}. Note that min[i] (i.e., un[i]) is only

updated at line 20 and thatmax[i] (i.e., wn[i]) is only updated at line 22. Both are updated

with the value of current[i] (i.e., vn[i]). Thus, we get that for all n 2 N: un+1[i] = vn[i]

or un+1[i] = un[i]; and wn+1[i] = vn[i] or wn+1[i] = wn[i]. We get by statement 2 that

un[i] ✓ un+1[i] and wn+1[i] ✓ wn[i] and this is correct for all i in {1, . . . , n}. We conclude

that un ✓ un+1 and that wn+1 ✓ wn, i.e., un is increasing and wn is decreasing.

Example 23 (Example 22 continued). Table 4.2 details a trace of Algorithm 3 for the

transfer function F in Example 22. Each column corresponds to one iteration of the

“while” loop. Each line gives the values of the variables at the end of each iteration,

except for current which contains the value when starting the iteration.
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4.4.4 Outputs to inputs propagator

For this section, outputs are given and we want to over-approximate with an interval (as

small as possible) the set containing all the inputs that could generate those outputs.

This is done by propagating all the constraints in the real-time-loop constraint until a

fixpoint is reached. Indeed, since the outputs are fixed, propagating the constraints either

reduce the input domains or do not change any domain. Since an input domain of a block

can be an output domain of another block, we continue propagating the domains until

no domain is modified. This procedure corresponds to the standard HC4 algorithm [66]

from interval constraint programming.

4.5 Applications

We present three generic applications using our model for real-time programs that can be

represented as Block-Diagrams.

Verification Program verification consists in checking properties of a given program

written in a specific language. Block-Diagram programs are designed to run on a definite

(possibly infinite) duration. Users may be interested in ensuring that no problem will

occur during execution (especially if the software failure can impact damages). From a

programmer point of view, one of the classic properties that can be checked is to ensure

that some strategic or critical variables will stay into a specific interval. This problem is

usually known as overflow checking. In our CP approach, fixing the input and then solving

our model makes it possible to compute over-approximation for each stream/variable.

Refactoring Usually, a single semantics meaning can be implemented by many different

syntactical writings. It is well known that the same result (even for a given algorithm)

can be obtained by different implementations. Refactoring consists in restructuring an

existing implementation without changing its external behavior. On Block-Diagrams,

refactoring consists in removing or adding blocks or connections without changing the

output values. For instance, an if-then-else condition which is always evaluated to “true”

can be replaced by its “then” statement. This is a particular case of refactoring: removing

dead code. In our CP approach, fixing inputs and outputs before solving enables removing

blocks leading to empty over-approximations.

Compilation Assistant Block-Diagram is a high-level programming language designed

to create Real-Time programs in an elegant and human readable way. As seen in the

previous sections, such languages can manipulate delays. Note that these delays can

be the result of a complex computation. This implies that the maximum delay may be

unknown at compilation time. Thus it must be given at run time and at each-time step
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FAUST
code

FAUST compiler:

1. Load as Block-Diagram
2. Normalize the BD
3. Static Analyzis the BD
4. Compile the BD to C++

C++
code

C++ compiler

EXE

Figure 4.10: FAUST Compilation Scheme

(i.e., the delay can change during execution). Hence, if the compiler is able to estimate

the maximal delay, no value will be missing at execution time. With our CP model we

can bound maximum delay for temporal blocks: such information can be given to the

compiler in order to allocate appropriate arrays for saving delays.

4.6 Application to FAUST and Experiments

For the application section, we chose the Real-Time language FAUST and we focused on

a verification problem. FAUST allows us to manipulate audio streams. To illustrate this

section, we selected the volume-controller program (a real-world program) from the

official set of examples as the running example. We first introduce the FAUST language,

then the constraint programming model for verification problem, and finally we conclude

with experiments over a set of real-world FAUST programs.

4.6.1 Model FAUST Programs

FAUST (Functional Audio Stream) has been designed for real-time signal processing and

synthesis. Figure 4.10 presents the compilation scheme for creating FAUST applications.

First, it needs a program, called the source program, written in the dedicated FAUST

language (this language is not significant for our contribution and is similar to other

languages designed for digital signal processing). See [68] for more details. Then, this

source program must be compiled by the FAUST compiler. This produces a C++ program

that can finally be compiled with a usual C++ compiler by targeting the desired device.

This hatched process, allows a single FAUST program to run on phones, web browsers,

concert devices, etc.

The goal of the FAUST compiler is to produce a C++ optimized code (i.e., a code with

good performances and well managed memory in order to run efficiently in real-time, even

on small devices). The actual FAUST compiler already contains various technics from the

compilation research field for tackling this objective. As shown on Figure 4.10, it operates

in four steps:
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Block Semantics Constraint Model

b = mem(a)

(

b(0) = 0

b(t) = a(t− 1), if t > 0
b = [a

S

0]

c = delay(a, b)

(

c(t) = 0, if t < b(t)

c(t) = a(t− b(t)), otherwise
c = [a

S

0]

c = prefix(a, b)

(

c(0) = a(0)

c(t) = b(t− 1), if t > 0
c = [a

S

b]

Table 4.3: FAUST temporal blocks

• it loads the source program in an internal representation, easy to manipulate (i.e.,

block-diagram)

• it rewrites this block-diagram to a normal form by syntactic analyzis (e.g., simpli-

fying redundant forms such as x− x by 0)

• it performs a static analysis in order to compute approximations of the semantics

of the program (e.g., estimate the maximal size for a delay)

• and finally it produces the C++ program thanks to all the gathered information

In our experiments, we use the model proposed in the previous sections to improve

the static analysis inside the FAUST compiler. To do so, we will consider the block-

diagram just before the C++ code generation. Note that the normalization and the

static analyzis made by the actual FAUST compiler helps working on expressions with

few occurrences of the same variable: this is important for the constraint programming

model since propagation over continuous variables performs poorly on variables occurring

in many constraints [89] (e.g., the stream “s0 = s− s” equals to zero for all time while its

constraint model over intervals “S 0 = S − S” is not equivalent to [0; 0]).

The FAUST language for writing source code has a formally well defined semantics

in the Block-Diagram language [68] and is expressive thanks to: three temporal blocks

(prefix, mem, and delay); common arithmetic functions (e.g., addition, subtraction, ...);

many C++ imported functions (e.g., sin, cos, exp, ...); relational and conditional oper-

ators.3 All these block operators admit an interval extension (as defined in Definition

4.3.3) with a natural translation to interval constraints. In particular, Table 4.3 presents

the semantics and the models of the temporal blocks.

Example 24. Figure 4.11 is our running example in FAUST (the FAUST Volume Con-

troller Program) while Figure 4.5 is its equivalent representation in block-diagram (note

that this block-diagram is not in normal form since the constant expression 1 − 0.999

has not been reduced to 0.001). When running this program with FAUST, the graphical

interface presents a slider (vslider in the FAUST source code stands for “vertical slider”)

3See http://faust.grame.fr/index.php/documentation/references for listing and description.

http://faust.grame.fr/index.php/documentation/references
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allowing to control the output volume (left sliding reduces the volume and right sliding

increases the volume).

CP problems are formatted in three parts. The first one contains the variable declara-

tion: it introduces the variables with their corresponding type (e.g., integer, real-number).

The second one precises a domain as an interval for each declared variable. The third one

contains the constraints. Figure 4.13 depicts these parts for our running example using

the Medium model presented in Section 4.3 and the optimized model presented in Section

4.4. We can read that: only Variables 10, 14, and 18 are over integers; Variables 8, 10, 12,

14, 16, 18 correspond to constants from the block-diagram; Variable 17 models the vslider

with range/domain [−70; 4]; and Variable 2 stands for the input audio stream4. Note

that the normalization performed by FAUST and used for our CP modelling replaced the

constant expression “1 − 0.999” by the constant 0.001 (cf. Variable 12 in Figure 4.13b);

replaced the expression “vslider / 20” by the expression “vslider ⇥ 0.05” (cf. in Figure

4.13b the constraint [15] =mul(16, 17)); and introduced identity operators (cf. identity

constraints over the Variables 4 and 5 in Figure 4.13b). Even if the identity operators in-

crease the size of the CP model, they will not affect the quality of the over-approximations

(i.e., identity propagation can be done without loss of precision). We discuss about this

point and possible improvements in Section 4.7. The block-diagram contains one loop,

and thus, it is not surprising to find out the corresponding real-time-loop constraint in

the CP model (see Figure 4.13d).

4.6.2 Verifying FAUST Programs

We described how to model FAUST programs in CP. We now discuss about the CP solver.

The solver has been implemented using IBEX. It is able to deal with two types of vari-

ables: real-numbers (i.e., in practice approximated by floating-point numbers intervals)

and integers (i.e., C++ int). Table 4.4 presents the results for our benchmark programs.

It is composed of some pathological DSP programs, and of real world programs from

the FAUST standard library. They have been selected for their interest since they are

basics for many bigger FAUST compositions. From left to right, columns of the table

represent: the name of the FAUST program; the number of constraints followed by the

number of variables in the medium model; the number of constraints followed by the

number of variables in the optimized model; the number of real-time-loop constraints

with the maximum number of constraints and the maximum number of arguments for

the transfer function; the average time for compiling a FAUST program into the medium

model; the average time for compiling the medium model into the optimized model; the

average time for solving the optimized model; the over-approximation returned by the

solver for the output stream associated with an indicator of reachability of the smallest

4In music, a numeric audio stream is a sequence of values between −1 and 1
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1 de c l a r e author ”Grame” ;
2 de c l a r e l i c e n s e ”BSD” ;
3 de c l a r e copyr ight ” ( c ) GRAME 2006” ;
4

5 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 // T i t l e : Volume con t r o l in dB
7 // Remark : ex t rac t ed from Faust examples
8 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 import ( ”music . l i b ” ) ;

10

11 smooth ( c ) = ∗(1−c ) : +˜∗( c ) ;
12 // v s l i d e r : − de f au l t va lue : 0
13 // − range between : −70 and +4
14 // − range with a step o f : 0 . 1
15 gain = v s l i d e r ( ” [ 1 ] ” , 0 , −70, +4, 0 . 1 )
16 : db2 l i n ea r : smooth ( 0 . 9 99 ) ;
17 proce s s = ∗( ga in ) ;

Figure 4.11: FAUST Volume Controller Source Program
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20

/

pow

decibel2linear
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0.999

− ⇥

+

0.999⇥
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⇥

vslider(“[1]”, 0, -70, 4, 0.1)

{0,1}
{2}

{3}{4,5,6}
{7}

{8}
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{11}

{12}

{13}

{14}

{15}

{160}

{17}

Figure 4.12: FAUST volume controller block-diagram before normalization. Edges are
labeled with their corresponding variables in the CSP in Fig. 4.13b
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0=Real
1=Real
2=Real
3=Real
4=Real
5=Real
6=Real
7=Real
8=Real
9=Real
10=In t eg e r
11=Real
12=Real
13=Real
14=In t eg e r
15=Real
16=Real
17=Real
18=In t eg e r

(a) Variables Declaration

[0 ]= output 0 (1 )
[1 ]=mul (2 , 3 )
[3 ]= delay (4 , 18 )
[4 ]= id (5 )
[5 ]= id (6 )
[6 ]= add (7 ,11 )
[7 ]=mul (8 , 9 )
[9 ]= delay (4 , 10 )
[11 ]=mul (12 ,13)
[13 ]=pow(14 ,15)
[15 ]=mul (16 ,17)

(b) Constraints for the medium model

0=[−oo;+oo ]
1=[−oo;+oo ]
2=[−1;1]
3=[−oo;+oo ]
4=[−oo;+oo ]
5=[−oo;+oo ]
6=[−oo;+oo ]
7=[−oo;+oo ]
8= [ 0 . 9 9 9 ; 0 . 9 9 9 ]
9=[−oo;+oo ]
10=[1 ; 1 ]
11=[−oo;+oo ]
1 2= [ 0 . 0 01 ; 0 . 0 01 ]
13=[−oo;+oo ]
14=[10 ;10 ]
15=[−oo;+oo ]
1 6= [ 0 . 0 5 ; 0 . 0 5 ]
17=[−70;4]
18=[0 ; 0 ]

(c) Variables Domain

[0 ]= output 0 (1 )
[1 ]=mul (2 , 3 )
[3 ]= delay (4 , 18 )
r ea l−time−loop (

[ [ 4 ]= id ( 5 ) ,
[5 ]= id ( 6 ) ,
[6 ]= add (7 , 11 ) ,
[7 ]=mul ( 8 , 9 ) ,
[9 ]= delay ( 4 , 1 0 ) ] ,

[ 1 0 , 8 , 1 1 ] ,
[ 4 ] )

[11 ]=mul (12 ,13)
[13 ]=pow(14 ,15)
[15 ]=mul (16 ,17)

(d) Constraints for the optimized model

Figure 4.13: CSP for the volume benchmark
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over-approximation. This indicator is computed by hand and “
p
” stands for verified

over-approximation by human while “?” stands for unverified over-approximation mainly

due to the program complexity in term of number of blocks/streams. In order to get

readable outputs, intervals are given in decimal format with a fixed precision of 10−2.

Among those programs, counter is an incremental infinite loop starting at 0; noise

generates a random noise (i.e., sequence of random numbers) ; oscillator generates

an oscillating sound wave, freeverb generates a reverb on the input stream, first-

order-filter is well named and corresponds to a first-order filter. Note that benchmarks

from counter to freeverb presented in Table 4.4 are fundamental block-diagrams for

building more complex programs by composition. As instances of aggregation, we propose

a family of 6 benchmarks for additive synthesis [90] concataning from 5 to 1, 000 of these

fundamental block-diagrams (cf. add-synth-X-oscs benchmarks in Table 4.4). The

whole benchmark description, with the detailed information (DSP, block-diagram, and

models) for each program, can be found at http://anicet.bart.free.fr/benchmarks/

FAUST.

Each call to the real-time-loop constraint propagator runs five times Algorithm 3

and returns the intersection of the computed over-approximations. Each call to Algo-

rithm 3 is limited to 500 loop iterations/transfer function evaluations. The selection

heuristic in Algorithm 3 does intelligent search by selecting a new bound for the mov-

ing/changing bound (e.g., if the application of the transfer function does not change the

lower bound of an interval, it will only select a new upper bound for the next evaluation).

The selected precision for interval is 10−5. The solver has been launched 10 times for each

benchmark and the averages of computation times and solutions on the 10 runs are pre-

sented in Table 4.4. Experimentation has been done on a 2.4 GHz Intel Core i5 processor

with a memory limit set to 16 Go.

4.6.3 Results and Discussion

Results in Table 4.4 can be partitioned into three sets.

• counter, paper-example, sinus, noise, allpass-filter, volume, comb-

filter, echo, stereo-echo, oscillator add-synth-X-oscs are bench-

mark programs for which the returned solution is the smallest over-

approximation of the output stream, i.e., the smallest interval containing all the

possible values at any runtime execution. It is well known in abstract interpreta-

tion that first order filters, cannot generally be over-approximated efficiently using

intervals. However, the first-order-filter benchmark is a special case (never-

theless a standard in FAUST) for which the floating-point interval abstraction is

contracting.

• pink-noise, capture, karplus-strong, band-filter are benchmark programs

http://anicet.bart.free.fr/benchmarks/FAUST
http://anicet.bart.free.fr/benchmarks/FAUST
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#cstrs real-time-loop Time (in ms) Verification

Program name #var

medium
model

optim.
model #

max.
cstrs

max.
args

comp.
medium

comp.
optim. solve

solver
output

counter 8 6 3 1 4 1 16 460 7 [0; MAX]
p

paper-example 11 7 3 1 5 1 17 458 7 [0; 1]
p

sinus 9 7 4 1 4 1 15 462 7 [-1; 1]
p

first-order-filter 15 10 6 1 5 1 35 473 9 [-1; 1]
p

noise 16 10 6 1 5 1 16 454 8 [-1; 1]
p

allpass-filter 16 11 6 1 6 1 18 470 9 [-3; 3]
p

volume 19 11 7 1 5 1 25 473 7 [-1.58; 1.58]
p

comb-filter 20 15 5 1 11 1 18 462 7 [-oo; +oo]
p

echo 29 19 15 1 5 1 27 482 8 [-oo; +oo]
p

stereo-echo 37 26 18 2 5 1 28 495 12 [-oo; +oo]
p

pink-noise 40 28 15 2 10 1 27 493 7 [-oo; +oo]
p

capture 45 34 21 3 6 1 27 488 14 [-oo; +oo]
p

karplus-strong 49 35 18 3 8 1 30 484 9 [-oo; +oo]
p

oscillator 49 35 23 3 6 1 30 497 11 [-1; 1]
p

band-filter 55 42 34 1 9 1 38 546 11 [-oo; +oo]
p

lowboost 59 46 38 1 9 1 33 508 10 [-oo; +oo] ?
pitch-shifter 60 50 46 1 5 1 32 510 8 [-59902;59902] ?
smooth-delay 100 85 25 3 43 4 40 789 17 [-oo; +oo] ?
mixer 356 310 234 19 5 1 65 824 49 [-20.01;20.01] ?
freeverb 371 335 103 24 13 1 69 994 41 [-oo; +oo] ?
harpe 407 348 197 24 8 1 76 935 52 [-oo; +oo] ?
add-synth-5-oscs 106 85 54 7 6 1 84 605 15 [-1; 1]

p
add-synth-10-oscs 181 150 94 12 6 1 110 689 17 [-1; 1]

p
add-synth-50-oscs 780 670 414 52 6 1 244 1,108 86 [-1; 1]

p
add-synth-100-oscs 1,530 1,320 814 102 6 1 609 1.6s 314 [-1; 1]

p
add-synth-250-oscs 3,780 3,270 2,014 252 6 1 2.5s 4.5s 1.6s [-1; 1]

p
add-synth-500-oscs 7,530 6,520 4,014 502 6 1 12.5s 17.3s 10.1s [-1; 1]

p
add-synth-750-oscs 11,280 9,770 6,014 752 6 1 39.8s 1’18s 48.8s [-1; 1]

p
add-synth-1000-oscs 15,030 13,020 8,014 1,002 6 1 1’25s 2’43s 2’34s [-1; 1]

p

Table 4.4: Experimental results on a benchmark of FAUST programs

for which the returned solution is the smallest over-approximation of the out-

put stream using interval analyses. Indeed, the analysis/propagation is made

block by block/constraint by constraint and some patterns cannot give small over-

approximation without knowing local semantics such as e.g., x − floor(x) corre-

sponds to the decimal part of x.

• for the other programs (see lines in Table 4.4 containing the “?” symbol), the

returned solution may not be the smallest over-approximation of the output stream

but we were not able to prove it by hand.

In order to be included into the FAUST compiler, the verification must be executed in

a very short time (more or less a second). For our experiments, the solver performs well on

that matter: even in rather complex programs (such as freeverb or harpe) it is able to

answer quickly. For most of the programs, the longest task is to compile the medium model

into the optimized model. This is due to the use of an external library to represent graph

data structures and compute strongly connected components. However it seems to have
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good scalability: Table 4.4 shows that even when the size of the benchmark program is

multiplied by more than 20, the execution time is only multiplied by 2. Finally, according

to the over-approximations computed with our method, a FAUST user expert confirmed

the existence of saturation in 3 programs: volume, pitch-shifter, and mixer. The

saturation came from the fundamental volume FAUST program, which contained an

incorrectly set constant (i.e., a vslider ranging from [−70; 4] instead of [−70; 2]). Due to

the execution time of our method and the quality of the returned solutions, the FAUST

developers shown a big interest for integrating our contribution in a future version of the

official FAUST compiler. Nevertheless, note that our add-synth-X-oscs benchmarks

ranging from 5 to 1,000 oscillators illustrates an exponentiel tendance in compiling and

solving time, compared to the block-diagram size.

4.6.4 Related works

The research on Constraint Programming and Verification has always been rich, and

gained a great interest in the past decade. Constraint Programming has been applied to

verification for test generation (see [57] for an overview), constraint-based model-checking

([73]), control-flow graph analysis [74], or even worst-execution time estimations ([75]).

More recently, detailed approaches have been presented by [76] or [77] to carefully analyze

floating-points conditions with continuous constraint methods.

Our contribution mixes CP and Abstract Interpretation. It has been known for a

long time that both domains shared a lot of ideas, since for instance [59] which ex-

presses the constraint consistency as chaotic iterations. A key remark is the following:

Abstract Interpretation is about over-approximating the traces of a program, and Con-

straint Programming uses propagation to over-approximate a solution set. It is worth

mentioning that one of the over-approximation algorithms used in Abstract Interpreta-

tion, the bottom-up top-down algorithm for the interval abstraction [54, 78], is the same

as the HC4 constraint propagator [66]. Recent works explored this links in both ways,

either to refine CP techniques [60], or to improve the Abstract Interpretation analysis

[81].

As a close work in the Constraint Programming community, GATeL [82] is a software

based on logical constraint programming verifying real-time programs. This tool first

translates a Lustre program (representable as a block-diagram) and the specification of

its environment in an equivalent Prolog representation, i.e., in a Constraint Logic Program

(CLP). Then, it adds the user defined test objective in the CLP and solves it, computing

a test input satisfying the objective for the given Lustre program. This work already

gathers the CP and the verification of real-time programs communities. However, while

Gatel performs test cases generation for real-time programs we are interesting in finding

precise over-approximations.
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As a close work in the Abstract Interpretation community, ReaVer5 is a state-of-the-

art software for safety verification of data-flow languages, like Lustre, Lucid Synchrone or

Zelus (all are close to FAUST), providing time-unbounded analysis based on abstract inter-

pretation techniques. It features partitioning techniques and several analysis methods [91]

(e.g., Kleene iteration based methods with increasing and descending iterations, abstract

acceleration, max-strategy iteration, and relational abstractions; logico-numerical product

and power domains with convex polyhedra, octagons, intervals, and template polyhedra).

Considering our problem of over-approximating stream in block-diagrams, while a solver

like ReaVer embarks many technics from Abstract Interpretation to answer this problem,

in our approach we focus on how a slightly modified Constraint Programming solver can

be turned into a verification tool with good performances (i.e., in computation time and in

over-approximations qualities). Experiments in the previous section show that our real-

time-loop constraint together with the proposed propagators achieve these objectives.

However, it is clear that this approach is not competitive when the interval abstract do-

main cannot tightly fit the concrete domain (i.e., in these cases, polyhedra, octagons, or

an other domains may provide better over-approximations). In some cases the interval

[−1,+1] is returned as over-approximation of the output streams, which is indeed the

smallest over-approximation of the output streams in the interval abstract domain while

[−1, 1] is a valid over-approximation of the concrete output stream.

4.7 Conclusion and Perspectives

Conclusion We proposed a constraint model using a global constraint for over-

approximation of real-time streams represented with block-diagrams. The experiments

show that our approach can reach very good, nearly always optimal, over-approximations

in a short running time. Our method has been taken in consideration for a future imple-

mentation into the FAUST compiler.

In addition, we showed that constraint programming can handle block-diagram anal-

yses in an elegant and natural way. The concept of digital signal processing is not proper

to FAUST nor to audio processing. Indeed, it also appears in a lot of applications receiv-

ing and processing digital signals: modems, multimedia devices, GPS, video processing;

which empower this model. Thus, this gives good perspectives for this work.

Perspectives The results of our experiments are fast and of good quality. However,

we would like to point out some possible improvements. A common way to improve

performances is to consider pre-processing. This consists in taking advantage of some

knowledge about the semantics of the problem in order to find faster a solution. According

to the application (e.g., verification, refactoring) it could be interesting to propagate

5https://www.cs.ox.ac.uk/people/peter.schrammel/reaver/
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variables with respect to a global order. For instance for verification, it will be faster

to propagate from inputs to outputs instead of a totally arbitrary order. Algorithm 3

for stable interval search applies many times the transfer function of the loop. Thus,

reducing the number of blocks per transfer function would have two impacts: decreasing

the time needed by the solver, and decreasing the number of variable multiple occurrences.

Factoring sets of blocks with specific semantics would lead to better models from which

faster and better over-approximation would be computed. For example, removing identity

constraints, factoring sub block-diagram with specific meaning such as filter would lead

to better models.
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This chapter treats model checking of qualitative and quantitative properties over

abstractions of Markov chains. In particular, we show in the qualitative context how

constraint modellings produce better models in terms of size and resolution time. We also

present a formal theorem allowing to produce a first practical approach for verifying some

quantitative properties on the considered Markov chain abstractions. Finally, we propose

an implementation of our modellings and discuss the results. This chapter is self-contained

including introduction, motivation, background, state of the art, and contributions.

5.1 Introduction

Discrete time Markov chains (MCs for short) are a standard probabilistic modelling1

formalism that has been extensively used in the litterature to reason about software [92]

and real-life systems [93]. However, when modelling real-life systems, the exact value of

transition probabilities may not be known precisely. Several formalisms abstracting MCs

have therefore been developed. Parametric Markov chains [94] (pMCs for short) extend

MCs by allowing parameters to appear in transition probabilities. In this formalism,

parameters are variables and transition probabilities may be expressed as polynomials

over these variables. A given pMC therefore represents a potentially infinite set of MCs,

obtained by replacing each parameter by a given value. pMCs are particularly useful

to represent systems where dependencies between transition probabilities are required.

Indeed, a given parameter may appear in several distinct transition probabilities, therefore

requiring that the same value is given to all its occurences. Interval Markov chains [95]

(IMCs for short) extend MCs by allowing precise transition probabilities to be replaced

by intervals, but cannot represent dependencies between distinct transitions. IMCs have

mainly been studied with three distinct semantics interpretations. Under the once-and-

for-all semantics, a given IMC represents a potentially infinite number of MCs where

transition probabilities are chosen inside the specified intervals while keeping the same

underlying graph structure. The interval-Markov-decision-process semantics (IMDP for

short), such as presented in [96, 97], does not require MCs to preserve the underlying

graph structure of the original IMC but instead allows an “unfolding” of the original

graph structure: new probability values inside the intervals can be chosen each time

a state is visited. Finally, the at-every-step semantics, which was the original semantics

given to IMCs in [95], does not preserve the underlying graph structure too while allowing

to “aggregate” and “split” states of the original IMC in the manner of probabilistic

simulation.

Model-checking algorithms and tools have been developed in the context of pMCs [98,

99, 100] and IMCs with the once-and-for-all and the IMDP semantics [101, 102]. State

of the art tools [98] for pMC verification compute a rational function on the parameters

1In this chapter we use modelling with the verification meaning and we call encoding a CSP modelling.
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that characterizes the probability of satisfying a given property, and then use external

tools such as SMT solving [98] for computing the satisfying parameter values. For these

methods to be viable in practice, the allowed number of parameters is quite limited. On

the other hand, the model-checking procedure for IMCs presented in [102] is adapted from

machine learning and builds successive refinements of the original IMCs that optimize the

probability of satisfying the given property. This algorithm converges, but not necessarilly

to a global optimum. It is worth noticing that existing model checking procedures for

pMCs and IMCs strongly rely on their underlying graph structure (i.e., respect the once-

and-for-all semantics). However, in [96] the authors perform model checking of !-PCTL

formulas on IMCs w.r.t. the IMDP semantics and they show that model checking of

LTL formulas can be solved for the IMDP semantics by reduction to the model checking

problem of !-PCTL on IMCs with the IMDP semantics. For all that, to the best of our

knowledge, no solutions for model-checking IMCs with the at-every-step semantics have

been proposed yet.

In this thesis chapter, we focus on Parametric interval Markov chains [103] (pIMCs

for short), that generalize both IMCs and pMCs by allowing parameters to appear in the

endpoints of the intervals specifying transition probabilities, and we provide four main

contributions.

First, we formally compare abstraction formalisms for MCs in terms of succinctness:

we show in particular that pIMCs are strictly more succinct than both pMCs and IMCs

when equipped with the right semantics. In other words, everything that can be expressed

using pMCs or IMCs can also be expressed using pIMCs while the reverse does not hold.

Second, we prove that the once-and-for-all, the IMDP, and the at-every-step semantics

are equivalent w.r.t. reachability properties, both in the IMC and in the pIMC settings.

Notably, this result gives theoretical backing to the generalization of existing works on

the verification of IMCs to the at-every-step semantics.

Third, we study the parametric verification of fundamental properties at the pIMC

level: consistency, qualitative reachability, and quantitative reachability. Given the ex-

pressivity of the pIMC formalism, the risk of producing a pIMC specification that is

incoherent and therefore does not model any concrete MC is high. We therefore propose

constraint encodings for deciding whether a given pIMC is consistent and, if so, synthesiz-

ing parameter values ensuring consistency. We then extend these encodings to qualitative

reachability, i.e., ensuring that given state labels are reachable in all (resp. none) of

the MCs modelled by a given pIMC. Finally, we focus on the quantitative reachability

problem, i.e., synthesizing parameter values such that the probability of reaching given

state labels satisfies fixed bounds in at least one (resp. all) MCs modelled by a given

pIMC. While consistency and qualitative reachability for pIMCs have already been stud-

ied in [103], the constraint encodings we propose are significantly smaller (linear instead

of exponential). To the best of our knowledge, our results provide the first solution to the
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quantitative reachability problem for pIMCs. Our last contribution is the implementation

of all our verification algorithms in a prototype tool that generates the required constraint

encodings and can be plugged to any SMT solver for their resolution.

5.2 Background

In this section we introduce notions and notations that will be used throughout this

chapter. Given a finite set of variables X = {x1, . . . , xk}, we write Dx for the domain of

the variable x 2 X and DX for the set of domains associated to the variables in X. A

valuation v over X is a set v = {(x, d)|x 2 X, d 2 Dx} of elementary valuations (x, d)

where for each x 2 X there exists a unique pair of the form (x, d) in v. When clear from

the context, we write v(x) = d for the value given to variable x according to valuation v.

A rational function f over X is a division of two (multivariate) polynomials g1 and g2 over

X with rational coefficients, i.e., f = g1/g2. We write Q for the set of rational numbers

and QX for the set of rational functions over X. The evaluation v(g) of a polynomial g

under the valuation v replaces each variable x 2 X by its value v(x).

An atomic constraint over X is a Boolean expression of the form f(X) ./ g(X), with

./ 2 {,≥, <,>,=} and f and g two functions over variables in X. An atomic constraint

is linear if the functions f and g are linear. A constraint over X is a Boolean combination

of atomic constraints over X.

Given a finite set of states S, we write Dist(S) for the set of probability distributions

over S, i.e., the set of functions µ : S ! [0, 1] such that
P

s2S µ(s) = 1. We write I for the

set containing all the interval subsets of [0, 1]. In the following, we consider a universal set

of symbols A that we use for labelling the states of our structures. We call these symbols

atomic propositions. We will use Latin alphabet in state context and Greek alphabet in

atomic proposition context.

Constraints. Constraints are first order logic predicates used for modelling and solving

combinatorial problems [104]. A problem is described with a list of variables, each in a

given domain of possible values, together with a list of constraints over these variables.

Such problems are then sent to solvers which decide whether the problem is satisfiable,

i.e., if there exists a valuation of the variables satisfying all the constraints, and in this case

compute a solution. Recall that checking satisfiability of constraint problems is difficult

in general (cf. Chapter 2).

Formally, a Constraint Satisfaction Problem (CSP) is a tuple Ω = (X,D,C) where X

is a finite set of variables, D = DX is the set of all the domains associated to the variables

from X, and C is a set of constraints over X. We say that a valuation over X satisfies Ω

if and only if it satisfies all the constraints in C. We write v(C) for the satisfaction result

of the valuation of the constraints C according to v (i.e., true or false). In the following

we call CSP encoding a scheme for formulating a given problem into a CSP. The size of
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a CSP corresponds to the number of variables and atomic constraints appearing in the

problem. Note that, in constraint programming, having less variables or less constraints

during the encoding does not necessarily imply faster solving time of the problems.

Discrete Time Markov Chains. A Discrete Time Markov Chain (DTMC or MC for

short) is a tuple M = (S, s0, p, V ), where S is a finite set of states containing the

initial state s0, V : S ! 2A is a labelling function, and p : S ! Dist(S) is a probabilistic

transition function. We write MC for the set containing all the discrete time Markov chains.

A Markov Chain can be represented as a directed graph where the nodes correspond

to the states of the MC and the edges are labelled with the probabilities given by the

transition function of the MC. In this representation, a missing transition between two

states represents a transition probability of zero. As usual, given an MC M, we call a

path ofM a sequence of states obtained from executingM, i.e., a sequence ! = s1, s2, . . .

such that the probability of taking the transition from si to si+1 is strictly positive,

p(si)(si +1) > 0, for all i. A path ! is finite iff it belongs to S⇤, i.e., it represents a finite

sequence of transitions fromM.

Example 25. Figure 5.1 illustrates the Markov chain M1 = (S, s0, p, V ) 2 MC where

the set of states S is given by {s0, s1, s2, s3, s4}, the atomic proposition are restricted

to {↵, β}, the initial state is s0, and the labelling function V corresponds to {(s0, ;),
(s1, {↵}), (s2, {β}), (s3, {↵, β}), (s4, ↵)}. The sequences of states (s0, s1, s2), (s0, s2), and

(s0, s2, s2, s2), are three (finite) paths from the initial state s0 to the state s2.

Reachability. A Markov chain M defines a unique probability measure PM over

the paths from M. According to this measure, the probability of a finite path ! =

s0, s1, . . . , sn in M is the product of the probabilities of the transitions executed along

this path, i.e., PM(!) = p(s0)(s1) · p(s1)(s2) · . . . · p(sn−1)(sn). This measure naturally

extends to infinite paths (see [105]) and to sequences of states over S that are not paths

ofM by giving them a zero probability.

Given an MC M, the overall probability of reaching a given state s from the initial

state s0 is called the reachability probability and written PM
s0
(3s) or PM(3s) when clear

from the context. This probability is computed as the sum of the probabilities of all finite

paths starting in the initial state and reaching this state for the first time. Formally, let

reachs0(s) = {! 2 S⇤ | ! = s0, . . . sn with sn = s and si 6= s 80  i < n} be the set

of such paths. We then define PM(3s) =
P

ω2reachs0 (s)
PM(!) if s 6= s0 and 1 otherwise.

This notation naturally extends to the reachability probability of a state s from a state t

that is not s0, written PM
t (3s) and to the probability of reaching a label ↵ ✓ A written

PM
s0
(3↵). In the following, we say that a state s (resp. a label ↵ ✓ A) is reachable inM

iff the reachability probability of this state (resp. label) from the initial state is strictly

positive.
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Figure 5.1: MCM1

Example 26 (Example 25 continued). In Figure 5.1 the probability of the path (s0, s2,

s1, s1, s3) is 0.3·0.5·0.5·0.5 = 0.0375 and the probability of reaching the state s1 from s0 is

PM1

s0
(3s1) = p(s0)(s1)+Σ+1

i=0 p(s0)(s2)·p(s2)(s2)i·p(s2)(s1) = p(s0)(s1)+p(s0)(s2)·p(s2)(s1)·
(1/(1 − p(s2)(s2))) = 1. Furthermore, the probability of reaching β corresponds to the

probability of reaching the state s2, which is 0.3 here.

5.3 Markov Chain Abstractions

Modelling an application as a Markov Chain requires knowing the exact probability for

each possible transition of the system. However, this can be difficult to compute or to

measure in the case of a real-life application (e.g., because of precision errors or limited

knowledge). In this section, we start with a generic definition of Markov chain abstraction

models. Then we recall three abstraction models from the literature, respectively pMC,

IMC, and pIMC, and finally we present a comparison of these existing models in terms

of succinctness.

Definition 5.3.1 (Markov chain Abstraction Model). A Markov chain abstraction model

(an abstraction model for short) is a pair (L, |=) where L is a nonempty set and |= is a

relation between MC and L. Let P be in L and M be in MC we say that M implements P
iff (M,P) belongs to |= (i.e., M |= P). When the context is clear, we do not mention

the satisfaction relation |= and only use L to refer to the abstraction model (L, |=).

A Markov chain Abstraction Model is a specification theory for MCs. It consists in

a set of abstract objects, called specifications, each of which representing a (potentially

infinite) set of MCs – implementations – together with a satisfaction relation defining the

link between implementations and specifications. As an example, consider the powerset

of MC (i.e., the set containing all the possible sets of Markov chains). Clearly, (2MC,2)
is a Markov chain abstraction model, which we call the canonical abstraction model.

This abstraction model has the advantage of representing all the possible sets of Markov

chains but it also has the disadvantage that some Markov chain abstractions are only

representable by an infinite extension representation. Indeed, recall that there exists
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subsets of [0, 1] ✓ R which cannot be represented in a finite space (e.g., the Cantor set

[106]). We now present existing MC abstraction models from the literature.

5.3.1 Existing MC Abstraction Models

Parametric Markov Chain is an MC abstraction model from [94] where a transition can

be annotated by a rational function over parameters. We write pMC for the set containing

all the parametric Markov chains.

Definition 5.3.2 (Parametric Markov Chain). A Parametric Markov Chain (pMC for

short) is a tuple I = (S, s0, P, V, Y ) where S, s0, and V are defined as for MCs, Y is a set

of variables (parameters), and P : S ⇥ S ! QY associates with each potential transition

a parameterized probability.

LetM = (S, s0, p, V ) be an MC and I = (S 0, s00, P, V
0, Y ) be a pMC. The satisfaction

relation |=p between MC and pMC is defined byM |=p I iff S = S 0, s0 = s00, V = V 0, and

there exists a valuation v of Y such that p(s)(s0) equals v(P (s, s0)) for all s, s0 in S.

Example 27. Figure 5.2 shows a pMC I 0 = (S, s0, P, V, Y ) where S, s0, and V are

identical to those of the MCM from Figure 5.1, the set Y contains only one variable p,

and the parametric transitions in P are given by the edge labelling (e.g., P (s0, s1) = 0.7,

P (s1, s3) = p, and P (s2, s2) = 1− p). Note that the pMC I 0 is a specification containing

the MCM from Figure 5.1.

Interval Markov Chains extend MCs by allowing to label transitions with intervals of

possible probabilities instead of precise probabilities. We write IMC for the set containing

all the interval Markov chains.

Definition 5.3.3 (Interval Markov Chain [95]). An Interval Markov Chain ( IMC for

short) is a tuple I = (S, s0, P, V ), where S, s0, and V are defined as for MCs, and

P : S ⇥ S ! I associates with each potential transition an interval of probabilities.

Example 28. Figure 5.3 illustrates IMC I = (S, s0, P, V ) where S, s0, and V are similar

to the MC given in Figure 5.1. By observing the edge labelling we see that P (s0, s1) =



78 Chapter 5. Verifying Parametric Interval Markov Chains with Constraints

[0, 1], P (s1, s1) = [0.5, 1], and P (s3, s3) = [1, 1]. On the other hand, the intervals of

probability for missing transitions are reduced to [0, 0], e.g., P (s0, s0) = [0, 0], P (s0, s3) =

[0, 0], P (s1, s4) = [0, 0].

In the litterature, IMCs have been mainly used with three distinct semantics: at-

every-step, interval-Markov-decision-process and once-and-for-all. All these semantics are

associated with distinct satisfaction relations which we now introduce.

The once-and-for-all IMC semantics [98, 107, 108] is alike to the semantics for pMC,

as introduced above. The associated satisfaction relation |=o
I is defined as follows: An MC

M = (T, t0, p, V
M) satisfies an IMC I = (S, s0, P, V

I) iff (T, t0, V
M) = (S, s0, V

I) and for

all reachable state s and all state s0 2 S, p(s)(s0) 2 P (s, s0). In this sense, we say that MC

implementations using the once-and-for-all semantics need to have the same structure as

the IMC specification.

Next, the interval-Markov-decision-process IMC semantics (IMDP for short) [96, 97]

operates as an “unfolding” of the original IMC by picking each time a state is visited a

possibly new probability distribution which respects the intervals of probabilities. Thus,

this semantics allows to produce MCs satisfying IMCs with a different structure. Formally,

the associated satisfaction relation |=d
I is defined as follows: An MCM = (T, t0, p, V

M)

satisfies an IMC I = (S, s0, P, V
I) iff there exists a mapping ⇡ from T to S s.t. ⇡(t0) = s0,

V I(⇡(t)) = V M(t) for all state t 2 T , p(t)(t0) 2 P (⇡(t), ⇡(t0)) for all pair of states t, t0 in

T , and for all state t 2 T and all state s 2 S there exists at most one state t0 2 Succ(t)

such that ⇡(t0) = s. Thus, we have that |=d
I is more general than |=o

I (i.e., whenever

M |=o
I I we also have M |=d

I I). Note that in [96, 97] the authors allows the Markov

chains satisfying the IMCs w.r.t. |=d
I to have an infinite state space. In this work we

consider Markov chains with a finite state space.

Finally, the at-every-step IMC semantics, first introduced in [95], operates as a simu-

lation relation based on the transition probabilities and state labels, and therefore allows

MC implementations to have a different structure than the IMC specification. Compared

to the previous semantics, in addition to the unfoldings this one allows to “aggregate”

and “split” states from the original IMC. Formally, the associated satisfaction relation

|=a
I is defined as follows: An MCM = (T, t0, p, V

M) satisfies an IMC I = (S, s0, P, V
I)

iff there exists a relation R ✓ T ⇥ S such that (t0, s) 2 R and whenever (t, s) 2 R, we
have 1. the labels of s and t correspond: V M(t) = V I(s), 2. there exists a correspondence

function δ : T ! (S ! [0, 1]) s.t. a) 8t0 2 T if p(t)(t0) > 0 then δ(t0) is a distribution on

S b) 8s0 2 S : (Σt02Tp(t)(t
0) · δ(t0)(s0)) 2 P (s, s0), and c) 8(t0, s0) 2 T ⇥ S, if δ(t0)(s0) > 0,

then (t0, s0) 2 R.
Example 29 illustrates the three IMC semantics and Proposition 3 compares them.

We say that an IMC semantics |=1 is more general than another IMC semantics |=2 iff for

all IMC I and for all MCM ifM |=2 I thenM |=1 I. Also, |=1 is strictly more general

than |=2 iff |=1 is more general than |=2 and |=2 is not more general than |=1.
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Example 29 (Example 28 continued). Consider the IMC I from Figure 5.3, the MCM1

from Figure 5.1, the MCM2 from Figure 5.4 and the MCM3 from Figure 5.5. We have

that M1 satisfies I w.r.t. |=o
I and we say that M1 has the same structure than I. By

Proposition 3 we have by implication thatM1 satisfies I w.r.t. |=d
I and |=a

I. Regarding

M2, we have thatM2 satisfies I w.r.t. |=d
I. Note that two probability distributions have

been chosen for the state s1 from I. This produces two states t1 and t01 inM2 and changes

the structure of the graph. Thus,M2 6|=o
I I andM2 |=a

I I. Finally, in the MCM3 with

state space T the state s3 from I has been “split” into two states t3 and t30 and the state

t1 “aggregates” the states s1 and s4 from I. The relation R ✓ T ⇥S containing the pairs

(t0, s0), (t1, s1), (t1, s4), (t2, s2), (t3, s3), and (t30 , s3) is a satisfaction relation betweenM2

and I such as defined by |=a
I. Thus, M3 |=a

I I. On the other hand, M3 6|=d
I I since

there exist probabilities on transitions that cannot belong to their respective interval of

probabilities on the IMC (e.g., p(t2, t1) = 0.8 62 [0, 0.6] = P (s2, s1)).

Proposition 3. The at-every-step satisfaction relation is (strictly) more general than

the interval-markov-decision-process satisfaction relation which is (strictly) more general

than the once-and-for-all satisfaction relation.

Proof. Let I = (S, s0, P, V ) be an IMC andM = (T, t0, p, V
0) be an MC. We show that

(1)M |=o
I I )M |=d

I I; (2)M |=d
I I )M |=a

I I; (3) in generalM |=d
I I 6) M |=o

I I;
(4) in general M |=a

I I 6) M |=d
I I. This will prove that |=a

I is strictly more general

than |=d
I and that |=d

I is strictly more general than |=o
I. At the same time, note that the

following examples also illustrates that even if a Markov chain satisfies an IMC with the

same graph representation w.r.t. the |=a
I relation it may not verify the |=o

I relation.

(1) IfM |=o
I I then by definition of |=o

I we have that T = S, t0 = s0, V (s) = V 0(s) for

all s 2 S, and p(s)(s0) 2 P (s, s0) for all s, s0 2 S. The mapping ⇡ from T = S to S

being the identity function is such as required by definition of |=d
I: ⇡(t0) = t0 = s0,

V 0(s) = V (s) = V (⇡(s)) for all state s 2 S, and p(s)(s0) 2 P (⇡(s), ⇡(s0)) since

P (⇡(s), ⇡(s0)) = P (s, s0) and p(s)(s0) 2 P (s, s0) for all s, s0 2 S. Thus,M |=d
I I.
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1,M0

2, andM0
3 s.t. M0

1 |=a
I I,M0

1 |=d
I I andM0

1 |=o
I I;

M0
2 |=d

I I andM0
2 6|=o

I I;M0
3 |=a

I I andM0
3 6|=d

I I; the graph representation of I,M0
1,

andM0
3 are isomorphic;

(2) If M |=d
I I then there exists a mapping ⇡ from T to S s.t. ⇡(t0) = s0, V

0(t) =

V (⇡(t)) for all state t 2 T , and p(t)(t0) 2 P (⇡(t), ⇡(t0)) for all pair of states t, t0

in T . The relation R = {(t, ⇡(t)) | t 2 T} is such as required by definition of |=a
I

(consider for each state in T the correspondence function δ : T ! (S ! [0, 1]) s.t.

δ(t)(s) = 1 if ⇡(t) = s and δ(t)(s) = 0 otherwise). ThusM |=a
I I.

(3) Consider IMC I and MC M0
2 from Figure 5.6. By definition of |=d

I we have that

M0
2 |=d

I I. Indeed, consider the mapping ⇡ s.t. ⇡(t0) = s0, ⇡(t1) = s1, ⇡(t2) = s2,

and ⇡(t20) = s2. Let p be the transition function of M0
2 and P be the interval

probability transition function of I. Clearly, we have that p(t)(t0) 2 P (⇡(t), ⇡(t0)).

On the other hand, it is clear thatM0
2 6|=o

I I sinceM0
2 and I do not share the same

state space.

(4) Consider IMC I and MC M0
3 from Figure 5.6. By definition of |=a

I we have that

M0
3 |=a

I I. Indeed, the relation R containing (t0, s0), (t1, s1), (t1, s2), (t2, s1) and

(t2, s2) is a satisfaction relation between I and M0
3. Consider the correspondence

function δ from T to (S ! [0, 1]) such that δ(t1)(s1) = 4/5, δ(t1)(s2) = 1/5,

δ(t2)(s2) = 1, δ(t0)(s0) = 1, and δ(t)(s) = 0 otherwise. On the other hand, since the

outgoing probabilities from state t0 inM0
3 do not belong to their respective interval

on probabilities in I, we have thatM0
3 6|=d

I I.

Parametric Interval Markov Chains, as introduced in [103], abstract IMCs by al-

lowing (combinations of) parameters to be used as interval endpoints in IMCs. Under a
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given parameter valuation the pIMC yields an IMC as introduced above. pIMCs therefore

allow the representation, in a compact way and with a finite structure, of a potentially

infinite number of IMCs. Note that one parameter can appear in several transitions at

once, requiring the associated transition probabilities to depend on one another. Let Y

be a finite set of parameters and v be a valuation over Y . By combining notations used

for IMCs and pMCs the set I(QY ) contains all parametrized intervals over [0, 1], and for

all I = [f1, f2] 2 I(QY ), v(I) denotes the interval [v(f1), v(f2)] if 0  v(f1)  v(f2)  1

and the empty set otherwise2. We write pIMC for the set containing all the parametric

interval Markov chains.

Definition 5.3.4 (Parametric Interval Markov Chain [103]). A Parametric Interval

Markov Chain (pIMC for short) is a tuple P = (S, s0, P, V, Y ), where S, s0, V and Y are

defined as for pMCs, and P : S ⇥ S ! I(QY ) associates with each potential transition a

(parametric) interval.

In [103] the authors introduced pIMCs where parametric interval endpoints are limited

to linear combination of parameters. In our contribution we extend the pIMC model by

allowing rational functions over parameters as endpoints of parametric intervals. Given

a pIMC P = (S, s0, P, V, Y ) and a valuation v, we write v(P) for the IMC (S, s0, Pv, V )

obtained by replacing the transition function P from P with the function Pv : S ⇥ S ! I

defined by Pv(s, s
0) = v(P (s, s0)) for all s, s0 2 S. The IMC v(P) is called an instance

of pIMC P . Finally, depending on the semantics chosen for IMCs, three satisfaction

relations can be defined between MCs and pIMCs. They are written |=a
pI, |=d

pI, and |=o
pI

and defined as follows: M |=a
pI P (resp. |=d

pI, |=o
pI) iff there exists an IMC I instance of

P such thatM |=a
I I (resp. |=d

I, |=o
I).

Example 30. Consider the pIMC P = (S, s0, P, V, Y ) given in Figure 5.7. The set of

states S and the labelling function are the same as in the MC and the IMC presented

in Figures 5.1 and 5.3 respectively. The set of parameters Y has two elements p and q.

2Indeed, when 0  v(f1)  v(f2)  1 is not respected, the interval is inconsistent and therefore
empty.
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Finally, the parametric intervals from the transition function P are given by the edge

labelling (e.g., P (s1, s3) = [0.3, q], P (s2, s4) = [0, 0.5], and P (s3, s3) = [1, 1]). Note that

the IMC I from Figure 5.3 is an instance of P (by assigning the value 0.6 to the parameter

p and 0.5 to q). Furthermore, as said in Example 29, the Markov Chains M1 and M2

(from Figures 5.1 and 5.5 respectively) satisfy I w.r.t. |=a
I, thereforeM1 andM2 satisfy

P w.r.t. |=a
pI.

In the following, we consider that the size of a pMC, IMC, or pIMC corresponds to its

number of states plus its number of transitions not reduced to 0, [0, 0] or ;. We will also

often need to consider the predecessors (Pred), and the successors (Succ) of some given

states. Given a pIMC with a set of states S, a state s in S, and a subset S 0 of S, we write:

• Pred(s) = {s0 2 S | P (s0, s) /2 {;, [0, 0]}}

• Succ(s) = {s0 2 S | P (s, s0) /2 {;, [0, 0]}}

• Pred(S 0) =
S

s02S0 Pred(s0)

• Succ(S 0) =
S

s02S0 Succ(s0)

5.3.2 Abstraction Model Comparisons

IMC, pMC, and pIMC are three Markov chain Abstraction Models. In order to compare

their expressiveness and compactness, we introduce the comparison operators v and ⌘.
Let (L1, |=1) and (L2, |=2) be two Markov chain abstraction models containing respectively

L1 and L2. We say that L1 is entailed by L2, written L1 v L2, iff all the MCs satisfying

L1 satisfy L2 modulo bisimilarity. (i.e., 8M |=1 L1, 9M0 |=2 L2 s.t. M is bisimilar to

M0). Definition 5.3.5 recalls the bisimilarity property from [105]. We say that L1 is (se-

mantically) equivalent to L2, written L1 ⌘ L2, iff L1 v L2 and L2 v L1. Definition 5.3.6

introduces succinctness based on the sizes of the abstractions.

Definition 5.3.5 (Bisimulation [105]). Let M = (S, S0, p, V ) be an MC possibly con-

taining more than one initial state (i.e., S0 ✓ S). A probabilistic bisimulation on M
is an equivalence relation R on S such that for all states (s1, s2) 2 R: V (s1) = V (s2)

and σt2Tp(s1, t) = σt2Tp(s2, t) for all T 2 S/R. We say that two MCs M1 and M2 are

bisimilar iff there exists a probabilistic bisimulation over their union containing the pair

(s0, s
0
0) where s0 and s00) are respectively the initial state ofM1 andM2.

Definition 5.3.6 (Succinctness). Let (L1, |=1) and (L2, |=2) be two Markov chain abstrac-

tion models. L1 is at least as succinct as L2, written L1  L2, iff there exists a polynomial

p such that for every L2 2 L2, there exists L1 2 L1 s.t. L1 ⌘ L2 and |L1|  p(|L2|).3
Thus, L1 is strictly more succinct than L2, written L1 < L2, iff L1  L2 and L2 6 L1.

We start with a comparison of the succinctness of the pMC and IMC abstractions.

Since pMCs allow the expression of dependencies between the probabilities assigned to

distinct transitions while IMCs allow all transitions to be independant, it is clear that

3|L1| and |L2| are the sizes of L1 and L2, respectively.
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Figure 5.8: IMC I with three pMCs P1, P2, and Pn entailed by I w.r.t. |=a
I.

there are pMCs without any equivalent IMCs (regardless of the IMC semantics used),

therefore (IMC, |=o
I) 6 pMC, (IMC, |=d

I) 6 pMC, and (IMC, |=a
I) 6 pMC. On the other hand,

IMCs imply that transition probabilities need to satisfy linear inequalities in order to

fit given intervals. However, these types of constraints are not allowed in pMCs. It is

therefore easy to exhibit IMCs that, regardless of the semantics considered, do not have

any equivalent pMC specification. As a consequence, pMC 6 (IMC, |=o
I), pMC 6 (IMC, |=d

I),

and pMC 6 (IMC, |=a
I).

We now compare pMCs and IMCs to pIMCs. Recall that the pIMC model is a Markov

chain abstraction model allowing to declare parametric interval transitions, while the

pMC model allows only parametric transitions (without intervals), and the IMC model

allows interval transitions without parameters. Clearly, any pMC and any IMC can be

translated into a pIMC with the right semantics (once-and-for-all for pMCs and the chosen

IMC semantics for IMCs). This means that (pIMC, |=o
pI) is more succinct than pMC and

pIMC is more succinct than IMC for the three semantics. Furthermore, since pMC and IMC

are not comparable due to the above results, we have that the pIMC abstraction model

is strictly more succinct than the pMC abstraction model and than the IMC abstraction

model with the right semantics. Our comparison results are presented in Proposition 4.

Firstly, Lemma 1 states that IMC and pMC are not comparable w.r.t. satisfaction relations

|=o
I, |=d

I, and |=a
I.

Lemma 1. pMC and IMC abstraction models are not comparable in terms of succinctness:

(1) pMC 6 (IMC, |=a
I), (2) pMC 6 (IMC, |=d

I), (3) pMC 6 (IMC, |=o
I), (4) (IMC, |=a

I) 6 pMC,

(5) (IMC, |=d
I) 6 pMC, and (6) (IMC, |=o

I) 6 pMC.

Proof. We give a sketch of proof for each statement. Let (L1, |=1) and (L2, |=2) be two

Markov chain abstraction models. Recall that according to the succinctness definition (cf.

Definition 5.3.6) L1 6 L2 if there exists L2 2 L2 s.t. L1 6⌘ L2 for all L1 2 L1.

(1) Consider IMC I and pMCs P1, P2, and Pn (with n 2 N) from Figure 5.8. IMC I
verifies the case (1). Indeed, the pMCs P1, P2, and Pn (with n 2 N) are all entailed

by I w.r.t. |=a
I but none of them is equivalent to I. Indeed one needs an infinite
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Figure 5.9: pMC P , IMC I, MCM1, and MCM2 s.t.
M1 |=p P andM1 |=a

I I butM2 6|=p P andM2 |=a
I I while P is entailed by I w.r.t.

|=a
I.

countable number of states for creating a pMC equivalent to I w.r.t. |=a
I. However

state spaces must be finite.

(2) Same example than from case (1) using Figure 5.8 can be used since all the pMCs

P1, P2, and Pn (with n 2 N) are entailed by the IMC I w.r.t. |=d
I

(3) Consider IMC I 0 similar to I from Figure 5.8 excepted that the transition from s1

to s0 is replaced by the interval [0.5, 1]. Since the pMC definition does not allow to

bound values for parameters there is no equivalent I 0 w.r.t. |=a
I.

(4) Note that parameters in pMCs enforce transitions in the concrete MCs to receive the

same value. Since parameters may range over continuous intervals there is no hope

of modelling such set of Markov chains using a single IMC. Figure 5.9 illustrates

this statement.

(5) Same remark than item (4)

(6) Same remark than item (4)

Proposition 4. The Markov chain abstraction models can be ordered as follows w.r.t.

succinctness: (pIMC, |=o
pI) < (pMC, |=p), (pIMC, |=o

pI) < (IMC, |=o
I), (pIMC, |=d

pI) < (IMC, |=d
I

), and (pIMC, |=a
pI) < (IMC, |=a

I).

Proof. Recall that the pIMCmodel is a Markov chain abstraction model allowing to declare

parametric interval transitions, while the pMC model allows only parametric transitions

(without intervals), and the IMC model allows interval transitions without parameters.

Clearly, any pMC and any IMC can be translated into a pIMC with the right semantics

(once-and-for-all for pMCs and the chosen IMC semantics for IMCs). This means that

(pIMC, |=o
pI) is more succinct than pMC and that pIMC is more succinct than IMC for the

three semantics. Furthermore since pMC and IMC are not comparable (cf Lemma 1), we

have that the pIMC abstraction model is strictly more succinct than the pMC abstraction

model and than the IMC abstraction model with the right semantics.
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Note that (pMC, |=p)  (IMC, |=o
I) could be achieved by considering a domain for each

parameter of a pMC, which is not allowed here. However, this would not have any impact

on our other results.

5.4 Qualitative Properties

As seen above, pIMCs are a succinct abstraction formalism for MCs. The aim of this

section is to investigate qualitative properties for pIMCs, i.e., properties that can be

evaluated at the specification (pIMC) level, but that entail properties on its MC im-

plementations. pIMC specifications are very expressive as they allow the abstraction of

transition probabilities using both intervals and parameters. Unfortunately, as it is the

case for IMCs, this allows the expression of incorrect specifications. In the IMC setting,

this is the case either when some intervals are ill-formed or when there is no probability

distribution matching the interval constraints of the outgoing transitions of some reach-

able state. In this case, no MC implementation exists that satisfies the IMC specification.

Deciding whether an implementation that satisfies a given specification exists is called

the consistency problem. In the pIMC setting, the consistency problem is made more

complex because of the parameters which can also induce inconsistencies in some cases.

One could also be interested in verifying whether there exists an implementation that

reaches some target states/labels, and if so, propose a parameter valuation ensuring this

property. This problem is called the consistent reachability problem. Both the consis-

tency and the consistent reachability problems have already been investigated in the IMC

and pIMC setting [109, 103]. In this section, we briefly recall these problems and propose

new solutions based on CSP encodings. Our encodings are linear in the size of the original

pIMCs whereas the algorithms from [109, 103] are exponential.

5.4.1 Existential Consistency

A pIMC P is existential consistent iff there exists an MC M satisfying P (i.e., there

exists an MCM satisfying an IMC I instance of P). As seen in Section 5.2, pIMCs are

equipped with three semantics: once-and-for-all (|=o
pI), IMDP (|=d

pI) and at-every-step

(|=a
pI). Recall that |=o

pI imposes that the underlying graph structure of implementations

needs to be isomorphic to the graph structure of the corresponding specification. In

contrast, |=d
pI and |=a

pI allows implementations to have a different graph structure. It

therefore seems that some pIMCs could be inconsistent w.r.t |=o
pI while being consistent

w.r.t |=a
pI. On the other hand, checking the consistency w.r.t |=o

pI seems easier because of

the fixed graph structure.

In [109], the author firstly proved that |=a
pI and |=o

pI semantics are equivalent w.r.t.

existential consistency, and proposed a CSP encoding for verifying this property which

is exponential in the size of the pIMC. Now, by Proposition 3 we also get that the three
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semantics |=d
pI, |=a

pI, and |=o
pI are equivalent w.r.t. existential consistency. Based on this

result of semantics equivalence we propose a new CSP encoding, written C9c, for verifying

the existential consistency property for pIMCs.

Let P = (S,s0,P,V,Y ) be a pIMC, we write C9c(P) for the CSP produced by C9c

according to P . Any solution of C9c(P) will correspond to an MC satisfying P . In

C9c(P), we use one variable ⇡p with domain [0, 1] per parameter p in Y ; one variable

✓s
0

s with domain [0, 1] per transition (s, s0) in {{s} ⇥ Succ(s) | s 2 S}; and one Boolean

variable ⇢s per state s in S. These Boolean variables will indicate for each state whether

it appears in the MC solution of the CSP (i.e., in the MC satisfying the pIMC P). For

each state s 2 S, Constraints are as follows:

(1) ⇢s, if s = s0

(2) ¬⇢s , Σs02Pred(s)\{s}✓
s
s0 = 0, if s 6= s0

(3) ¬⇢s , Σs02Succ(s)✓
s0

s = 0

(4) ⇢s , Σs02Succ(s)✓
s0

s = 1

(5) ⇢s ) ✓s
0

s 2 P (s, s0), for all s0 2 Succ(s)

Recall that given a pIMC P the objective of the CSP C9c(P) is to construct an MCM
satisfying P . Constraint (1) states that the initial state s0 appears inM. Constraint (2)

ensures that for each non-initial state s, variable ⇢s is set to false iff s is not reachable

from its predecessors. Constraint (4) ensures that if a state s appears in M, then its

outgoing transitions form a probability distribution. On the contrary, Constraint (3)

propagates non-appearing states (i.e., if a state s does not appear in M then all its

outgoing transitions are set to zero). Finally, Constraint (5) states that, for all appearing

states, the outgoing transition probabilities must be selected inside the specified intervals.

Example 31. Consider the pIMC P given in Figure 5.7. Figure 5.10 describes the

variables in C9c(P): one variable per transition (e.g., ✓10, ✓
2
0, ✓

1
1), one Boolean variable per

state (e.g., ⇢0, ⇢1), and one variable per parameter (⇡p and ⇡q). The following constraints

correspond to the Constraints (2), (3), (4), and (5) generated by our encoding C9c for

the state 2 of P :
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¬⇢2 , ✓20 = 0

¬⇢2 , ✓12 + ✓22 + ✓42 = 0

⇢2 , ✓12 + ✓22 + ✓42 = 1

⇢2 ) 0  ✓12  ⇡p

⇢2 ) 0.2  ✓22  ⇡p

⇢2 ) 0  ✓42  0.5

Finally, Figure 5.11 describes a solution for the CSP C9c(P). Note that given a

solution of a pIMC encoded by C9c, one can construct an MC satisfying the given pIMC

w.r.t. |=o
I by keeping all the states s such that ⇢s is equal to true and considering the

transition function given by the probabilities in the ✓s
0

s variables. We now show that our

encoding works as expected.

Proposition 5. A pIMC P is existential consistent iff C9c(P) is satisfiable.

Proof. Let P = (S, s0, P, V, Y ) be a pIMC.

[)] The CSP C9c(P) = (X,D,C) is satisfiable implies that there exists a valuation v

of the variables inX satisfying all the constraints in C. Consider the MCM = (S, s0, p, V )

such that p(s, s0) = v(✓s
0

s ), for all ✓
s0

s 2 Θ and p(s, s0) = 0 otherwise.

Firstly, we show by induction that for any state s in S: “if s is reachable inM then

v(⇢s) equals to true”. This is correct for the initial state s0 thanks to the Constraint (1).

Let s be a state in S and assume that the property is correct for all its predecessors.

By the Constraints (2), v(⇢s) equals true if there exists at least one predecessor s00 6= s

reaching s with a non-zero probability (i.e., v(✓ss00) 6= 0). This is only possible by the

Constraint (4) if v(⇢s00) equals true. Thus v(⇢s) equals true if there exists one reachable

state s00 s.t. v(✓ss00) 6= 0.

Secondly, we show that M satisfies the pIMC P w.r.t. |=o
I. We use Theorem 4

from [103] stating that |=a
pI and |=o

pI are equivalent w.r.t. qualitative reachability. We

proved above that for all reachable states s inM, we have v(⇢s) equals to true. By the

Constraints (5) it implies that for all reachable states s inM: p(s)(s0) 2 P (s, s0) for all

s and s0.4

[(] The pIMC P is consistent implies by the Theorem 4 from [103] stating that |=a
pI

and |=o
pI are equivalent w.r.t. qualitative reachability, that there exists an implementation

of the formM = (S, s0, p, V ) where, for all reachable states s inM, it holds that p(s)(s0) 2
P (s, s0) for all s0 in S. ConsiderM0 = (S, s0, p

0, V ) s.t. for each non reachable state s in S:

p0(s)(s0) = 0, for all s0 2 S. The valuation v is s.t. v(⇢s) equals true iff s is reachable inM,

v(✓s
0

s ) = p0(s)(s0), and for each parameter y 2 Y a valid value can be selected according to

p and P when considering reachable states. Finally, by construction, v satisfies the CSP

C9c(P).

Our existential consistency encoding is linear in the size of the pIMC instead of ex-

ponential for the encoding from [103] which enumerates the powerset of the states in the

pIMC resulting in deep nesting of conjunctions and disjunctions.

4As illustrated in Example 31, M is not a well formed MC since some unreachable states do not
respect the probability distribution property. However, one can correct it by simply setting one of its
outgoing transition to 1 for each unreachable state.
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5.4.2 Qualitative Reachability

Let P = (S, s0, P, V, Y ) be a pIMC and ↵ ✓ A be a state label. We say that ↵ is

existential reachable in P iff there exists an implementationM of P where ↵ is reachable

(i.e., PM(3↵) > 0). In a dual way, we say that ↵ is universal reachable in P iff ↵

is reachable in any implementation M of P . As for existential consistency, we use a

result from [109] that states that the |=a
I and the |=o

I pIMC semantics are equivalent

w.r.t. existential (and universal) reachability. As for the consistency problem, we get

by Proposition 3 that the three IMC semantics are equivalent w.r.t. existential (and

universal) reachability. Note first that in our C9r encoding each ⇢s variable indicates if

the state s appears in the constructed Markov chain. However, the ⇢s variable does not

indicate if the state s is reachable from the initial state, but only if it is reachable from at

least one other state (i.e., possibly different from s0). Indeed, if the graph representation

of the constructed Markov chain has strongly connected components (SCCs for short),

then all the ⇢s variables in one SCC may be set to true while this SCC may be unreachable

from the initial state. This is not an issue in the case of the consistency problem. Indeed,

if a Markov chain containing an unreachable SCC is proved consistent, then it is also

consistent without this unreachable SCC. However, in the case of the reachability problem,

these SCCs are an issue. The following encoding therefore takes into account these isolated

SCCs such that ⇢s variables are set to true if and only if they are all reachable from

the initial state. This encoding will solve the qualitative reachability problems (i.e.,

checking qualitative reachability from the initial state). We propose a new CSP encoding,

written C9r, that extends C9c, for verifying these properties. Formally, CSP C9r(P) =
(X[X 0, D[D0, C[C 0) is such that (X,D,C) = C9c(P), X 0 contains one integer variable

!s with domain [0, |S|] per state s in S, D0 contains the domains of these variables, and

C 0 is composed of the following constraints for each state s 2 S:

(6) !s = 1, if s = s0

(7) !s 6= 1, if s 6= s0

(8) ⇢s , (!s 6= 0)

(9) !s > 1) W

s02Pred(s)\{s}(!s = !s0 + 1) ^ (✓s
0

s > 0), if s 6= s0

(10) !s = 0, V

s02Pred(s)\{s}(!s0 = 0) _ (✓s
0

s = 0), if s 6= s0

Recall first that CSP C9c(P ) constructs a Markov chain M satisfying P w.r.t. |=o
I.

Informally, for each state s in M the Constraints (6), (7), (9) and (10) in C9r ensure

that !s = k iff there exists inM a path from the initial state to s of length k − 1 with

non zero probability; and state s is not reachable in M from the initial state s0 iff !s

equals to 0. Finally, Constraint (8) enforces the Boolean reachability indicator variable

⇢s to bet set to true iff there exists a path with non zero probability inM from the initial

state s0 to s (i.e., !s 6= 0).
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Let Sα be the set of states from P labeled with ↵. C9r(P) therefore produces a Markov

chain satisfying P where reachable states s are such that ⇢s = true. As a consequence,

↵ is existential reachable in P iff C9r(P) admits a solution such that
W

s2Sα
⇢s; and ↵

is universal reachable in P iff C9r(P) admits no solution such that
V

s2Sα
¬⇢s. This is

formalised in the following proposition.

Proposition 6. Let P = (S, s0, P, V, Y ) be a pIMC, ↵ ✓ A be a state label, Sα =

{s | V (s) = ↵}, and (X,D,C) be the CSP C9r(P).
• CSP (X,D,C [W

s2Sα
⇢s) is satisfiable iff ↵ is existential reachable in P

• CSP (X,D,C [V

s2Sα
¬⇢s) is unsatisfiable iff ↵ is universal reachable in P

Proof. Let P = (S, s0, P, V, Y ) be a pIMC, ↵ ✓ A be a state label, Sα = {s | V (s) = ↵},
and (X,D,C) be the CSP C9r(P). Recall first, that by Proposition 5 the constraints (1)

to (5) in C9r(P) are satisfied iff there exists an MCM satisfying P w.r.t. |=a
I.

• [)] If CSP (X,D,C [W

s2Sα
⇢s) is satisfiable then there exists a valuation v solu-

tion of this CSP and a corresponding MC M satisfying P w.r.t. |=a
I such as

presented in the proof of Proposition 5. Furthermore, the constraints (6) to

(10) ensure by induction that for all state s 2 S: v(!s) = k with k ≥ 1 if

there exists a path from the initial state s0 to the state s of size k − 1 with

non zero probability in M, and v(!s) = 0 otherwise. By constraint (8) we

have that v(⇢s) = true iff state s is reachable in M from the initial state s0.

Finally, constraint
W

s2Sα
⇢s ensures that at least one state labeled with ↵ must

be reachable inM. Thus, ↵ is existential reachable in P .
[(] If ↵ is existential reachable in P , then by [103] there exists an MCM satisfying

P w.r.t. |=o
I s.t. ↵ is reachable in M. By construction of our encoding, one

can easily construct from M a valuation v satisfying all the constraints in

C [W

s2Sα
⇢s s.t. v(!s) contains the size (plus one) of an existing path inM

from the initial state to the state s with a non zero probability, and v(!s) = 0

if s is not reachable inM.

• Note that ↵ is universal reachable in P iff there is no MCM satisfying P w.r.t. |=a
I

s.t. none of the states labelled with ↵ is reachable inM. “CSP (X,D,C[Vs2Sα
¬⇢s)

is unsatisfiable” encodes this statement.

As for the existential consistency problem, we have an exponential gain in terms of

size of the encoding compared to [103]: the number of constraints and variables in C9r is

linear in terms of the size of the encoded pIMC.

Remark. In C9r Constraints (2) inherited from C9c are entailed by Constraints (8) and

(10) added to C9r. Thus, in a practical approach one may ignore Constraints (2) from

C9c if they do not improve the solver performances.
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5.5 Quantitative Properties

We now move to the verification of quantitative reachability properties in pIMCs.

Quantitative reachability has already been investigated in the context of pMCs and IMCs

with the once-and-for-all semantics. In this section, we propose our main theoretical

contribution: a theorem showing that the three IMC semantics are equivalent with respect

to quantitative reachability, which allows the extension of all results from [107, 102] to

the at-every-step semantics. Based on this result, we also extend the CSP encodings

introduced in Section 5.4 in order to solve quantitative reachability properties on pIMCs

regardless of their semantics.

5.5.1 Equivalence of |=o
I, |=d

I and |=a
I w.r.t quantitative

reachability

Given an IMC I = (S, s0, P, V ) and a state label ↵ ✓ A, a quantitative reachability

property on I is a property of the type PI(3↵)⇠p, where 0 < p < 1 and ⇠ 2 {, <,>

,≥}. Such a property is verified iff there exists an MCM satisfying I (with the chosen

semantics) such that PM(3↵)⇠p.
As explained above, existing techniques and tools for verifying quantitative reacha-

bility properties on IMCs only focus on the once-and-for-all and the IMDP semantics.

However, to the best of our knowledge, there are no works addressing the same problem

with the at-every-step semantics or showing that addressing the problem in the once-

and-for-all and IMDP setting is sufficiently general. The following theorem fills this

theoretical gap by proving that the three IMC semantics are equivalent w.r.t quantitative

reachability. In other words, for all MC M such that M |=a
I I or M |=d

I I and for

all state label ↵, there exist MCs M and M≥ such that M |=o
I I, M≥ |=o

I I and

PM(3↵)  PM(3↵)  PM≥(3↵). This is formalised in the following theorem.

Theorem 1. Let I = (S, s0, P, V ) be an IMC, ↵ ✓ A be a state label, ⇠ 2 {, <,>

,≥} and 0 < p < 1. I satisfies PI(3↵)⇠p with the once-and-for-all semantics iff I
satisfies PI(3↵)⇠p with the IMDP semantics iff I satisfies PI(3↵)⇠p with the at-every-

step semantics.

The proof presented in the following is constructive: we use the structure of the relation

R from the definition of |=a
I in order to build the MCsM andM≥.

In the following, when it is not specified the IMC satisfaction relation considered is

the at-every-step semantics (i.e., the |=a
I satisfaction relation). As said previously, we use

the structure of the relation R from the definition of |=a
I in order to build the MCsM

andM≥ presented in Theorem 1. Thus, we introduce some notations relative to R. Let
I = (S, s0, P, V

I) be an IMC andM = (T, t0, p, V
M) be an MC such thatM |=a

I I. Let
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R ✓ T ⇥ S be a satisfaction relation betweenM and I. For all t 2 T we write R(t) for
the set {s 2 S | t R s}, and for all s 2 S we write R−1(t) for the set {t 2 T | s R t}.
Furthermore we say thatM satisfies I with degree n (writtenM n|=a

I I) ifM satisfies I
with a satisfaction relation R such that each state t 2 T is associated by R to at most

n states from S (i.e., |R(t)|  n); M satisfies I with the same structure than I if M
satisfies I with a satisfaction relation R such that each state t 2 T is associated to at

most one state from S and each state s 2 S is associated to at most one state from T

(i.e., |R(t)|  1 for all t 2 T and |R−1(s)|  1 for all s 2 S).

Proposition 7. Let I be an IMC. If an MCM satisfies I with degree n 2 N then there

exists an MCM0 satisfying I with degree 1 such thatM andM0 are bisimilar.

The main idea for proving Proposition 7 is that if an MC M with states space T

satisfies an IMC I with a states space S according to a satisfaction relation R then,

each state t related by R to many states s1, . . . , sn (with n > 1) can be split in n states

t1, . . . , tn. The derived MC will satisfy I with a satisfaction relation R0 where each ti is

only associated by R0 to the state si (i  n). This M0 will be bisimilar to M and it

will satisfy I with degree 1. Note that by construction the size of the resulting MC is in

O(|M| ⇥ |I|).
Furthermore, we will use the until temporal modality (abbreviated U ) as presented in

[105]. LetM be an MC and ↵, β be two state labelings. The probability of the property

↵ U β is given by the sum of the probabilities of all the finite paths starting in the initial

state containing only states labeled with ↵ excepted for the last state which is labeled

with β. Formally, let untils0(s) = {! 2 S⇤ | ! = s0, . . . sn with V (sn) = β and V (si) =

↵ 80  i < n} be the set of such paths. Thus, PM(↵ U β) =
P

ω2reachs0 (s)
PM(!). As for

the reachability property, this notation naturally extends to states instead of labels, as

well as conjunctions and disjunctions of states/labels.

Proof for Proposition 7. Let I = (S, s0, P, V
I) be an IMC and M = (T, t0, p, V ) be an

MC. IfM satisfies I (with degree n) then there exists a satisfaction relation R verifying

the |=a
I satisfaction relation. For each association (t, s) 2 R, we write δst the correspon-

dence function chosen for this pair of states. M satisfies I with degree n means that each

state inM is associated by R to at most n states in I. To construct an MCM0 satisfying

I with degree 1 we create one state inM0 per association (t, s) in R. Formally, letM0 be

equal to (U, u0, p
0, V 0) such that U = {us

t | (t, s) 2 R}, u0 = us0
t0 , V

0 = {(us
t , v) | v = V (t)},

and p0(us
t)(u

s0

t0 ) = p(t)(t0)⇥ δst (t
0)(s0). The following computation shows that the outgoing

probabilities given by p0 form a probability distribution for each state in M0 and thus

thatM0 is an MC.
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X

t0Rs0

p0(us
t)(u

s0

t0 ) =
X

t0Rs0

p(t)(t0)⇥ δst (t
0)(s0)

=
X

t02T

p(t)(t0)⇥
X

s02S

δst (t
0)(s0) =

X

t02T

p(t)(t0)⇥ 1 = 1

Finally, by construction ofM0 based onM which satisfies I, we get thatR0 = {(us
t , s) |

t 2 T, s 2 S} is a satisfaction relation betweenM0 and I. Furthermore |{s | (u, s) 2 R0}|
equals at most one. Thus, we get thatM0 satisfies I with degree 1.

Consider the relation B0 = {(us
t , t) ✓ U ⇥ T | (t, s) 2 R}. We note B the closure of B0

by transitivity, reflexivity, and symmetry (i.e., B is the minimal equivalence relation based

on B0). We prove that B is a bisimulation relation betweenM andM0. By construction

each equivalence class from B contains exactly one state t from T and all the states us
t

such that (t, s) 2 R. Let (us
t , t) be in B, t0 be a state in T , and B be the equivalence

class from B containing t0 (i.e., B is the set {t0} [ {us0

t0 2 U | s0 2 S and (t0, s0) 2 R}).
Firstly note that by construction the labels agree on us

t and t: V 0(us
t) = V (t). Secondly

the following computation shows that p0(us
t)(B \ U) equals to p(t)(B \ T ) and thus that

us
t and t are bisimilar:

p0(us
t)(B \ U) =

X

us0

t0
2B\U

p0(us
t)(u

s0

t0 ) =
X

us0

t0
2B\U

p(t)(t0)⇥ δst (t
0)(s0)

=
X

{s02S|s0Rt0}

p(t)(t0)⇥ δst (t
0)(s0) = p(t)(t0)⇥

X

{s02S|s0Rt0}

δst (t
0)(s0)

= p(t)(t0)⇥ 1 = p(t)({t0}) = p(t)(B \ T )

Corollary 1. Let I be an IMC,M be an MC satisfying I, and γ be a PCTL⇤ formulae.

There exists an MCM0 satisfying I with degree 1 such that the probability PM0

(γ) equals

the probability PM(γ).

Corollary 1 is derived from Proposition 7 joined with the probability preservation

of the PCTL* formulae on bisimilar Markov chains (see [105], Theorem 10.67, p.813).

Corollary 1 allows to reduce to one the number of states in the pIMC I satisfied by each

state in the MCM while preserving probabilities. Thus, one can construct from an MC

M satisfying an IMC I another MCM0 satisfying the same IMC I where the states in

M0 are related to at most one state in I. However, some states in I may still be related

to many states in M0. The objective of Lemma 2 is to reduce these relations to an “at

most one” in both directions (I toM0 andM0 to I).

Lemma 2. Let I = (S, s0, P, V ) be an IMC, M = (T, t0, p, V ) be an MC satisfying I
with degree 1, and α ✓ A be a proposition. If M does not have the same structure than
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Figure 5.12: An IMC I and three MCs M1, M2, and M3 satisfying I w.r.t. |=a
I s.t.

PM1(3↵)  PM2(3↵)  PM3(3↵) andM3 has the same structure as I.

I then there exists an MCM1 (resp. M2) satisfying I with a set of states S1 (resp. S2)

s.t. S1 ⇢ S and PM1(3↵)  PM(3↵) (resp. S2 ⇢ S and PM2(3↵) ≥ PM(3↵)).

Lemma 2 reduces the number of states inM while preserving the maximal or minimal

reachability probability. This lemma has a constructive proof. The main idea of the proof

is that we select one state s from the IMC I which is satisfied by many states t1, . . . , tn

inM. Thus, the MCM0 keeping the state tk maximizing the probability of reaching ↵

inM and removing all the other states ti (i.e., remove the states ti such that i 6= k and

move the transitions to a state ti such that i 6= k to arrive to the state tk) will have less

states than M and will verify PM1(3↵) ≥ PM(3↵). Figure 5.12 contains an IMC I
and three MCsM1, M2, andM3. This illustrates how Lemma 2 operates for reducing

the state space. We describe how to obtainM2 fromM1. Consider the state s2 from I.
This state is related to the states t2 and t02 inM1. Since P

M1

t2 (3↵) = 0 and PM1

t0
2

(3↵) = 1

we remove t2 and we keep t02 which has an higher probability to reach ↵. Then, all the

transitions going to t2 are changed in order to go to t02. This createsM2. Next, the same

mechanism can be iterated to produceM3: consider s1 from I and remove t01 and keep t1

fromM2 to produceM3. This allows to reduce the number of states in the constructed

Markov chain while preserving the maximal/minimal reachability probability. Before

proving Lemma 2, we introduce Lemma 3 which will be used for proving Lemma 2.

Lemma 3. Let M = (S, s0, p, V ) be an MC, ↵ ✓ A be a proposition, and s be a state

from S. Then

PM
s (3↵) =

PM
s (¬s U ↵)

1− PM
s (¬↵ U s)

Proof. Let S 0 be the subset of S containing all the states labeled with ↵ inM. We write

Ωn with n 2 N⇤ the set containing all the paths ! starting from s s.t. state s appears

exactly n times in ! and no state in ! is labeled with ↵. Formally Ωn contains all the

! = s1, . . . , sk 2 Sk s.t. k 2 N, s1 is equal to s, |{i 2 [1, k] | si = s}| = n, and ↵ 6✓ V (si)

for all i 2 [1, k]. Given two sets of paths Ω and Ω0, we write Ω⇥Ω0 their Cartesian product

which is the set of paths {!!0 | ! 2 Ω and !0 2 Ω0}. We get by (a) that (PM
s (Ωn⇥S 0))n≥1

is a geometric series. For (⇤) recall that given an MCM and two non-empty paths ! and



94 Chapter 5. Verifying Parametric Interval Markov Chains with Constraints

!0 on M s.t. s and s0 are respectively the first state in ! and !0 we have by definition

that PM
s (!!0) = PM

s (!s0) ·PM
s0 (!

0). In (b) we partition the paths reaching ↵ according to

the Ωn sets and we use the geometric series of the probabilities to retrieve the required

result.

(a) PM
s (Ωn ⇥ S 0) = PM

s (Ω1 ⇥ Ωn−1 ⇥ S 0)

(⇤)
= PM

s (Ω1 ⇥ {s}) · PM
s (Ωn−1 ⇥ S 0)

= PM
s (¬↵ U s) · PM

s (Ωn−1 ⇥ S 0)

(b) PM
s (3↵) = Σ+1

n=1P
M
s (Ωn ⇥ S 0)

=
PM
s (Ω1 ⇥ S 0)

1− PM
s (¬↵ U s)

=
PM
s (¬s U ↵)

1− PM
s (¬↵ U s)

Proof for Lemma 2. Let I = (S, s0, P, V
I) be an IMC and M = (T, t0, p, V ) be an MC

satisfying I with degree 1. We write R the satisfaction relation betweenM and I with

degree 1. The following proves in 3 steps the PM1(3↵)  PM(3↵) case.

1. We would like to construct an MCM0 satisfying I with less states thanM0 such that

PM0

(3↵)  PM(3↵). Since the degree ofR equals to 1 each state t in T is associated

to at most one state s in S. Furthermore, sinceM does not have the same structure

than I then there exists at most one state from S which is associated by R to many

states from T . Let s̄ be a state from S such that |R−1(s)| ≥ 2, T̄ = {t1, . . . , tn}
be the set R−1(s) where the ti are ordered by decreasing probability of reaching ↵

(i.e., PM
ti
(3↵) ≥ PM

ti+1
(3↵) for all 1  i < n). In the following we refer t̄ as tn. We

produce M0 from M by replacing all the transitions going to a state t1, . . . , tn−1

by a transition going to tn, and by removing the corresponding states. Formally

M0 = (T 0, t0, p
0, V 0) s.t. T 0 = (T \ T̄ ) [ {t̄}, V 0 is the restriction of V on T 0, and for

all t, t0 2 T 0: p0(t)(t0) = p(t)(t0) if t0 6= t̄ and p0(t)(t0) =
P

t02T̄

p(t)(t0) otherwise.
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X

t02T 0

p0(t)(t0) =
X

t02T 0\{t̄}

p0(t)(t0) + p0(t)(t̄)

(1)
=

X

t02T 0\{t̄}

p(t)(t0) +
X

t02T̄

p(t)(t0)

=
X

t02T 0\{t̄}[T̄

p(t)(t0)
(2)
=

X

t02T

p(t)(t0) = 1

The previous computation holds for each state t inM0. It shows that the outgoing

probabilities given by p0 form a probability distribution for each state in M0 and

thus that M0 is an MC. Note that step (1) comes from the definition of p0 with

respect to p and that step (2) comes from the definition of T 0 according to T̄ and t̄.

2. We now prove that M0 satisfies I. M satisfies I implies that there a exists a

satisfaction relation R between M and I. Let R0 ✓ T ⇥ S be s.t. t R0 s if

t R s and t̄ R0 s̄ if there exists a state t0 2 T̄ s.t. t0 R s̄. We prove that R0

is a satisfaction relation between M0 and I. For each pair (t, s) 2 R we note

δ(s,t) the correspondence function given by the satisfaction relation R. Let (t, s)

be in R0 and δ0 : T 0 ! (S ! [0, 1]) be s.t. δ0(t0)(s0) = δ(t,s)(t
0)(s0) if t0 6= t̄ and

δ0(t0)(s0) = maxt02T̄ (δ(t,s)(t
0)(s0)) otherwise. δ0 is a correspondence function for the

pair (t, s) in R0 such as required by the |=a
I satisfaction relation:

a) Let t0 be in T . If t0 6= t̄ then δ0(t0) is equivalent to δ(t,s)(t
0)(s0) which is by

definition a distribution on S. Otherwise t0 = t̄ and the following computation

proves that δ0(t̄) is a distribution on S. For the step (1) remind that R is a

satisfaction relation with degree 1 and that t̄ R s̄. This implies that δ(t,s)(t̄)(s
0)

equals to zero for all s0 6= s̄. For the step (2), R is a satisfaction relation with

degree 1 implies that δ(t,s)(t
0)(s0) equals to 0 or 1 for all t0 2 T and s0 2 S.

Finally the recursive definition of the satisfaction relation R implies that there

exists at least one state t00 2 T̄ s.t. δ(t,s)(t
00)(s̄) does not equal to zero (i.e.,

equals to one).

X

s02S

δ0(t̄)(s0) =
X

s02S\{s̄}

δ0(t̄)(s0) + δ0(t̄)(s̄)

=
X

s02S\{s̄}

δ(t,s)(t̄)(s
0) + maxt002T̄ (δ(t,s)(t

00)(s̄))

(1)
= maxt002T̄ (δ(t,s)(t

00)(s0))

(2)
= 1

b) Let s0 be in S. Step (1) uses the definition of p0 according to p. Step (2) uses

the definition of δ0 according to δ(t,s). Step (3) comes from the fact that for
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all t, t0 2 T ⇥ T̄ , we have by the definition of the satisfaction relation R with

degree 1 and by construction of T̄ that if p(t, t0) 6= 0 then δ(t)(s)(t
0, s̄) = 1 and

δ(t,s)(t
0)(s0) = 0 for all s0 6= s̄. Finally, step (4) comes from the definition of the

correspondence function δ(t,s) for the pair (t, s) in R.
X

t02T 0

p0(t)(t0)⇥ δ0(t0)(s0)

=
X

t02T 0\{t̄}

p0(t)(t0)⇥ δ0(t0)(s0) + p0(t, t̄)⇥ δ0(t̄)(s0)

(1)
=

X

t02T 0\{t̄}

p(t)(t0)⇥ δ0(t0)(s0) +
X

t02T̄

p(t)(t0)⇥ δ0(t̄)(s0)

(2)
=

X

t02T 0\{t̄}

p(t)(t0)⇥ δ(t,s)(t
0)(s0) +

X

t02T̄

p(t)(t0)⇥maxt002T̄ (δ(t,s)(t
00)(s0))

(3)
=

X

t02T 0\{t̄}

p(t)(t0)⇥ δ(t,s)(t
0)(s0) +

X

t02T̄

p(t)(t0)⇥ δ(t,s)(t
0)(s0)

=
X

t02T 0\{t̄}[T̄

p(t)(t0)⇥ δ(t,s)(t
0)(s0) =

X

t02T

p(t)(t0)⇥ δ(t,s)(t
0)(s0)

(4)
2 P (s, s0)

c) Let t0 be in T 0 and s0 be in S. We have by construction of R0 from R that if

δ0(t0)(s0) > 0 then (t0, s0) 2 R.

3. Ne now prove that the probability of reaching ↵ from t̄ is lower in M0 than in

M. We consider the MC M00 from M where the states containing the label ↵

are replaced by absorbing states. Formally M00 = (T, t0, p
00, V ) such that for all

t, t0 2 T : p00(t, t0) = p(t, t0) if ↵ 6✓ V (t) else p00(t, t0) = 1 if t = t0 and p00(t, t0) = 0

otherwise. By definition of the reachability property we get that PM00

t (3↵) equals

to PM
t (3↵) for all state t in T 0. Following computation concludes the proof. Step

(1) comes from Lemma 3. Step (2) comes by construction ofM0 fromM. Step (3)

comes by construction of M00 from M where states labeled with ↵ are absorbing

states. Step (4) comes from the fact that PM00

tn (3↵) is equal to PM00

tn (¬(t1 _ . . . _
tn) U ↵)+Σ1inP

M00

tn (¬(t1 _ . . ._ tn) U ti)⇥PM00

ti
(3↵). Step (5) uses the fact that

PM
ti
(3↵) ≥ PM

tn (3↵) for all 1  i  n and by construction this is also correct in

M00. Last steps are straightforward.

PM0

t̄ (3↵)

(1)
=

PM0

t̄ (¬t̄ U ↵)

1− PM0

t̄ (¬↵ U t̄)

(2)
=

PM
tn (¬(t1 _ . . . _ tn) U ↵)

1− PM
tn (¬↵ U (t1 _ . . . _ tn))
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(3)
=
PM00

tn (¬(t1 _ . . . _ tn) U ↵)

1− PM00

tn (3(t1 _ . . . _ tn))

(4)
=

PM00

tn (3↵)−P

1in

PM00

tn (¬(t1 _ . . . _ tn) U ti)⇥ PM00

ti
(3↵)

1− PM00

tn (3(t1 _ . . . _ tn))

(5)


PM00

tn (3↵)−P

1in

PM00

tn (¬(t1 _ . . . _ tn) U ti)⇥ PM00

tn (3↵)

1− PM00

tn (3(t1 _ . . . _ tn))

(6)
=

PM00

tn (3↵)⇥ (1−P

1in

PM00

tn (¬(t1 _ . . . _ tn) U ti))

1− PM00

tn (3(t1 _ . . . _ tn))

(7)
=
PM00

tn (3↵)⇥ (1− PM00

tn (3(t1 _ . . . _ tn)))

1− PM00

tn (3(t1 _ . . . _ tn))

= PM00

tn (3↵)

= PM
t̄ (3↵)

The same method can be used for proving that PM2(3↵) ≥ PM(3↵) by defining

T̄ = {t1, . . . , tn} to be the setR−1(s) s.t. the states ti are ordered by increasing probability

of reaching ↵. Thereby the symbol  at step (5) for the computation of PM0

t̄ (3↵) is

replaced by the symbol ≥.

Next, Lemma 4 is a consequence of Corollary 1 and Lemma 2 and states that the

maximal and the minimal probability of reaching a given proposition is realized by Markov

chains with the same structure than the IMC.

Lemma 4. Let I = (S, s0, P, V ) be an IMC, M be an MC satisfying I w.r.t. |=a
I, and

↵ ✓ A be a proposition. There exist MCs M1 and M2 satisfying I w.r.t. |=o
I such that

PM1(3↵)  PM(3↵)  PM2(3↵).

Proof. Let I be an IMC andM be an MC satisfying I w.r.t. |=a
I. Consider the sequence

of MCs (Mn)n2N s.t. M0 is the MC satisfying I with degree 1 obtained by Corollary 1 and

for all n 2 N,Mn+1 is the MC satisfying I with strictly less states thanMn and verifying

PMn+1(3↵)  PMn(3↵) given by Lemma 2 ifMn does not have the same structure than

I and equal toMn otherwise. By construction (Mn)n2N is finite and its last element is

a Markov chain M0 with the same structure than I s.t. PM0

(3↵)  PM(3↵). Thus,

M0 satisfies I w.r.t. |=o
I s.t. PM0

(3↵)  PM(3↵). The same method can be used for

proving the other side of the inequality (i.e., there exists an MCM0 s.t. M0 |=o
I I and

PM(3↵)  PM0

(3↵)).

Finally, the following proves our Theorem 1 using Lemma 4 and Proposition 3.

Proof for Theorem 1. Let I = (S, s0, P, V ) be an IMC, ↵ ✓ A be a state label, ⇠ 2 {, <
,>,≥} and 0 < p < 1. Recall that according to an IMC satisfaction relation the property
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PI(3↵)⇠p holds iff there exists an MCM satisfying I (with the chosen semantics) such

that PM(3↵)⇠p.
1. We first prove the equivalence w.r.t. |=o

I and |=a
I. Recall also that |=a

I is more general

than |=o
I: for all MCM ifM |=o

I I thenM |=o
I I (Proposition 3).

[)] Direct from the fact that |=a
I is more general than |=o

I (Proposition 3)

[(] PI(3↵)⇠p with the at-every-step semantics implies that there exists an MC

M s.t. M |=a
I I andM⇠p. Thus by Lemma 4 we get that there exists an MC

M0 s.t. M0 |=o
I I andM0⇠p.

2. We now prove the equivalence w.r.t. |=o
I and |=d

I

[)] Direct from the fact that |=a
I is more general than |=o

I. (Proposition 3)

[(] PI(3↵)⇠p with the IMDP semantics implies that there exists an MCM s.t.

M |=d
I I andM⇠p. Since |=a

I is more general than |=d
I we have thatM |=a

I I.
Thus by Lemma 4 we get that there exists an MC M0 s.t. M0 |=o

I I and

M0⇠p.

5.5.2 Constraint Encodings

Note that the result from Theorem 1 naturally extends to pIMCs. We therefore exploit

this result to construct a CSP encoding for verifying quantitative reachability properties

in pIMCs. As in Section 5.4, we extend the CSP C9c, that produces a correct MC im-

plementation for the given pIMC, by imposing that this MC implementation satisfies the

given quantitative reachability property. In order to compute the probability of reaching

state label ↵ at the MC level, we use standard techniques from [105] that require the

partitioning of the state space into three sets S>, S?, and S? that correspond to states

reaching ↵ with probability 1, states from which ↵ cannot be reached, and the remaining

states, respectively. Once this partition is chosen, the reachability probabilities of all

states in S? are computed as the unique solution of a linear equation system (see [105],

Theorem 10.19, p.766). We now explain how we identify states from S?, S> and S? and

how we encode the linear equation system, which leads to the resolution of quantitative

reachability.

Let P = (S, s0, P, V, Y ) be a pIMC and ↵ ✓ A be a state label. We start by setting

S> = {s | V (s) = ↵}. We then extend C9r(P) in order to identify the set S?. Let

C0
9r(P , ↵) = (X [ X 0, D [ D0, C [ C 0) be such that (X,D,C) = C9r(P), X 0 contains

one Boolean variable λs and one integer variable ↵s with domain [0, |S|] per state s in S,

D0 contains the domains of these variables, and C 0 is composed of the following constraints

for each state s 2 S:
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s0

s1
α

s2

β

s3

α, β

s4
α

πp = 0.5

πq = 0.5

0.7
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0.5

0

0.5

0.5

1

0

1

state ρs ωsαs λs

s0 true 1 3 true

s1 true 2 2 true

s2 true 2 0 false

s3 true 3 1 true

s4 true 3 0 false

Figure 5.13: A solution to the CSP C0
9r(P , {↵, β}) for the pIMC P from Fig. 5.7

(11) ↵s = 1, if ↵ = V (s)

(12) ↵s 6= 1, if ↵ 6= V (s)

(13) λs , (⇢s ^ (↵s 6= 0))

(14) ↵s > 1) W

s02Succ(s)\{s}(↵s = ↵s0 + 1) ^ (✓s
0

s > 0), if ↵ 6= V (s)

(15) ↵s = 0, V

s02Succ(s)\{s}(↵s0 = 0) _ (✓s
0

s = 0), if ↵ 6= V (s)

Note that variables ↵s play a symmetric role to variables !s from C9r: instead of

indicating the existence of a path from s0 to s, they characterize the existence of a path

from s to a state labeled with ↵. In addition, due to Constraint (13), variables λs are set

to true iff there exists a path with non zero probability from the initial state s0 to a state

labeled with ↵ passing by s. Thus, ↵ cannot be reached from states such that λs = false.

Therefore, S? = {s | λs = false}, which is formalised in Proposition 8.

Proposition 8. Let P = (S, s0, P, V, Y ) be a pIMC and ↵ ✓ A be a state label. There

exists an MC M |=a
pI P iff there exists a valuation v solution of the CSP C0

9r(P , ↵) s.t.
for each state s 2 S: v(λs) is equal to true iff PM

s (3↵) 6= 0.

Example 32. Figure 5.13 presents a solution to the CSP C0
9r(P , {↵, β}) for the pIMC

P from Figure 5.7. First, note that s3 is the only state labelled by {↵, β} in P . By

considering the MCM built from the valuation of the transition variables in Figure 5.13

we have that: ↵0 = 3, which implies that there exists a path in M with size 2 reaching

↵ from s1; ↵1 = 2, which implies that there exists a path in M with size 1 reaching ↵

from s1; and ↵2 = 0, which implies that there is no path in M reaching ↵ from s1, etc.

Finally, by Constraint (13) we have that: λ0, λ1, and λ3 are true which implies that the

states s0, s1, and s3 are reachable inM and they can reach ↵; λ2 and λ4 are false which

implies that the states s2 and s4 cannot reach ↵ inM.

Finally, we encode the equation system from [105] in a last CSP encoding that extends

C0
9r. Let C9r̄(P , ↵) = (X [ X 0, D [ D0, C [ C 0) be such that (X,D,C) = C0

9r(P , ↵),
X 0 contains one variable ⇡s per state s in S with domain [0, 1], D0 contains the domains

of these variables, and C 0 is composed of the following constraints for each state s 2 S:
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(16) ¬λs ) ⇡s = 0

(17) λs ) ⇡s = 1, if ↵ = V (s)

(18) λs ) ⇡s = Σs02Succ(s)⇡s0✓
s
s0 , if ↵ 6= V (s)

As a consequence, variables ⇡s encode the probability with which state s eventually

reaches ↵ when s is reachable from the initial state and 0 otherwise.

Proposition 9. Let P = (S, s0, P, V, Y ) be a pIMC and ↵ ✓ A be a proposition. There

exists an MC M |=a
pI P iff there exists a valuation v solution of the CSP C9r̄(P , ↵) s.t.

v(⇡s) is equal to PM
s (3↵) if s is reachable from the initial state s0 in M and is equal to

0 otherwise.

Proof. Let P = (S, s0, P, V, Y ) be a pIMC and ↵ ✓ A be a state label. C9r̄ extends

the CSP C0
9r that produces a MCM satisfying P (cf. Proposition 8) by computing the

probability of reaching ↵ in M. In order to compute this probability, we use standard

techniques from [105] that require the partitioning of the state space into three sets S>,

S?, and S? that correspond to states reaching ↵ with probability 1, states from which ↵

cannot be reached, and the remaining states, respectively. Once this partition is chosen,

the reachability probabilities of all states in S? are computed as the unique solution of

an equation system (see [105], Theorem 10.19, p.766). Recall that for each state s 2 S

variable ↵s is equal to true iff s is reachable in M and s can reach ↵ with a non zero

probability. Thus we consider S? = {s | ↵s = false}, S> = {s | V (s) = ↵}, and

S? = S \ (S? [ S>). Finally constraints in C9r̄ encodes the equation system from [105]

according to chosen S?, S>, and S?. Thus, ⇡s0 equals the probability in M to reach

↵.

Example 33 (Example 32 continued). Consider the valuation given in Figure 5.13 as a

partial solution to the CSP C9r̄(P , {↵, β}). Let M be the MC built from this partial

valuation. Since s2 and s4 cannot reach {↵, β} inM we have that S? contains s2 and s4.

Furthermore, s3 is the only state labelled by {↵, β} inM. Thus, S> contains s3 and the

remaining states s0 and s1 are in S?. Finally, Constraints (16), (17), and (18) encode

the following system to compute for each state the quantitative reachability of {↵, β} in
M:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇡0 = 0.7⇡1 + 0.3⇡2

⇡1 = 0.5⇡1 + 0.5⇡3

⇡2 = 0

⇡3 = 1

⇡4 = 0

,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇡0 = 0.7⇡1 + 0

⇡1 = 0.5⇡1 + 0.5

⇡2 = 0

⇡3 = 1

⇡4 = 0

,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇡0 = 0.7

⇡1 = 1

⇡2 = 0

⇡3 = 1

⇡4 = 0

Let p 2 [0, 1] ✓ R be a probability bound. Adding the constraint ⇡s0  p (resp.

⇡s0 ≥ p) to the previous C9r̄ encoding allows to determine if there exists a MCM |=a
pI P
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#intervals #paramInBounds
Set of benchmarks #pIMCs #nodes#edges min avg max min avg max #parameters

hermanN=3 27 8 28 0 7 18 0 3 11 {2, 5, 10}
hermanN=5 27 32 244 19 50 87 0 12 38 {2, 5, 10}
hermanN=7 27 128 2,188 37 131 236 3 31 74 {5, 15, 30}
egl L=2; N=2 27 238 253 16 67 134 0 15 57 {2, 5, 10}
egl L=2; N=4 27 6,910 7,165 696 1,897 3,619 55 444 1,405 {2, 5, 10}
egl L=4; N=2 27 494 509 47 136 276 3 32 115 {2, 5, 10}
egl L=4; N=4 27 15,102 15,357 1448 4,068 7,772 156 951 3,048 {2, 5, 10}
brp M=3; N=16 27 886 1,155 16 64 135 1 15 45 {2, 5, 10}
brp M=3; N=32 27 1,766 2,307 40 128 275 3 32 129 {2, 5, 10}
brp M=4; N=16 27 1,095 1,443 22 80 171 0 20 62 {2, 5, 10}
brp M=4; N=32 27 2,183 2,883 49 164 323 3 39 139 {2, 5, 10}
crowds CS=10; TR=3 27 6,563 15,143 1,466 3,036 4,598 57 235 535 {5, 15, 30}
crowds CS=5; TR=3 27 1,198 2,038 190 410 652 8 31 76 {5, 15, 30}
nand K=1; N=10 27 7,392 11,207 497 980 1,416 109 466 1,126 {50, 100, 250}
nand K=1; N=5 27 930 1371 60 121 183 9 58 159 {50, 100, 250}
nand K=2; N=10 27 14,322 21,567 992 1,863 2,652 197 866 2,061 {50, 100, 250}
nand K=2; N=5 27 1,728 2,505 114 217 329 23 101 263 {50, 100, 250}

Table 5.1: Benchmarks composed of 459 pIMCs over 5 families used for verifying quali-
tative properties

such that PM(3↵)  p (resp ≥ p). Formally, let ⇠ 2 {, <,≥, >} be a comparison

operator, we write 6⇠ for its negation (e.g., 6 is >). This leads to the following theorem.

Theorem 2. Let P = (S, s0, P, V, Y ) be a pIMC, ↵ ✓ A be a label, p 2 [0, 1], ⇠ 2 {, <
,≥, >} be a comparison operator, and (X,D,C) be C9r̄(P , ↵):

• CSP (X,D,C [ (⇡s0 ⇠ p)) is satisfiable iff 9M |=a
pI P s.t. PM(3↵) ⇠ p

• CSP (X,D,C [ (⇡s0 6⇠ p)) is unsatisfiable iff 8M |=a
pI P: PM(3↵) ⇠ p

Proof. Let P = (S, s0, P, V, Y ) be a pIMC, ↵ ✓ A be a state label, p 2 [0, 1], and

⇠ 2 {, <,≥, >} be a comparison operator. Recall that C9r̄(P , ↵) is a CSP s.t. each

solution corresponds to an MCM satisfying P where ⇡s0 is equal to P
M(3↵). Thus adding

the constraint ⇡s0 ⇠ p allows to find an MC M satisfying P such that PM(3↵) ⇠ p.

This concludes the first item presented in the theorem. For the second item, we use

Theorem 1 with Proposition 9 which ensure that if the CSP C9r̄(P , ↵) to which is added

the constraint ⇡s0 6⇠ p is not satisfiable then there is no MC satisfying P w.r.t. |=a
pI such

that PM(3↵) 6⇠ p; thus PM(3↵) ⇠ p for all MC satisfying P w.r.t. |=a
pI.

5.6 Prototype Implementation and Experiments

Our results have been implemented in a prototype tool5 which generates the above CSP

encodings, and CSP encodings from [103] as well. In this section, we first present our

5All resources, benchmarks, and source code are available online as a Python library at https:

//github.com/anicet-bart/pimc_pylib

https://github.com/anicet-bart/pimc_pylib
https://github.com/anicet-bart/pimc_pylib
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1 // nand mul t ip l ex system
2 // gxn/dxp 20/03/03
3 // U ( c o r r e c t l y ) per forms a random permutation o f the outputs o f the prev ious s tage
4 dtmc
5
6 const int N = 3 ; // number o f inputs in each bundle
7 const int K = 1 ; // number o f r e s t o r a t i v e s t ag e s
8
9 const int M = 2∗K+1; // t o t a l number o f mu l t ip l ex ing un i t s

10
11 // parameters o r i g i n a l l y taken from the f o l l ow i n g paper and ed i t ed by Bart et Al .
12 // A system a r c h i t e c t u r e s o l u t i o n f o r u n r e l i a b l e n ano e l e c t r i c d ev i c e s
13 // J . Han & P. Jonker (IEEEE trans . on nanotechnology vo l 1(4) 2002)
14 const double p1 ; // p r obab i l i t y 1 s t nand works c o r r e c t l y
15 const double p2 ; // p r obab i l i t y 2nd nand works c o r r e c t l y
16 const double p3 ; // p r obab i l i t y 3nd nand works c o r r e c t l y
17 const double prob1 ; // p r obab i l i t y i n i t i a l inputs are s t imulated
18
19 // model whole system as a s i n g l e module by r e su ing v a r i a b l e s to dec r ea s e the s t a t e space
20 module mul t ip l ex
21 u : [ 1 . .M] ; // number o f s t ag e s
22 c : [ 0 . .N ] ; // counter ( number o f c op i e s o f the nand done )
23
24 s : [ 0 . . 4 ] ; // l o c a l s t a t e
25 // 0 − i n i t i a l s t a t e ; 1 − s e t x inputs ; 2 − s e t y inputs
26 // 3 − s e t outputs ; 4 − done
27
28 z : [ 0 . .N ] ; // number o f new outputs equal to 1
29 zx : [ 0 . .N ] ; // number o f o ld outputs equal to 1
30 zy : [ 0 . .N ] ; // need second copy f o r y
31
32 x : [ 0 . . 1 ] ; // value o f f i r s t input
33 y : [ 0 . . 1 ] ; // value o f second input
34
35 [ ] s=0 & ( c<N) −> ( s ’ =1) ; // do next nand i f have not done N yet
36 [ ] s=0 & ( c=N) & (u<M) −> ( s ’ =1)&(zx ’=z )&(zy ’=z )&(z ’ =0)&(u ’=u+1)&(c ’ =0) ; // next gate
37 [ ] s=0 & ( c=N) & (u=M) −> ( s ’ =4)&(zx ’ =0)&(zy ’ =0)&(x ’ =0)&(y ’ =0) ; // f i n i s h e d
38
39 // choose x permute s e l e c t i o n ( have zx s t imulated inputs )
40 // note only need y to be random
41 [ ] s=1 & u=1 −> prob1 : ( x ’ =1)&(s ’ =2) + (1−prob1 ) : ( x ’ =0)&(s ’ =2) ; // i n i t i a l l y random
42 [ ] s=1 & u>1 & zx>0 −> ( x ’ =1) & ( s ’ =2) & ( zx ’=zx−1) ;
43 [ ] s=1 & u>1 & zx=0 −> ( x ’ =0) & ( s ’ =2) ;
44
45 // choose x randomly from s e l e c t i o n ( have zy s t imulated inputs )
46 [ ] s=2 & u=1 −> prob1 : ( y ’ =1)&(s ’ =3) + (1−prob1 ) : ( y ’ =0)&(s ’ =3) ; // i n i t i a l l y random
47 [ ] s=2 & u>1 & zy<(N−c ) & zy>0 −>
48 zy /(N−c ) : ( y ’ =1)&(s ’ =3)&(zy ’=zy−1) + 1−(zy /(N−c ) ) : ( y ’ =0)&(s ’ =3) ;
49 [ ] s=2 & u>1 & zy=(N−c ) & c<N −> 1 : ( y ’ =1) & ( s ’ =3) & ( zy ’=zy−1) ;
50 [ ] s=2 & u>1 & zy=0 −> 1 : ( y ’ =0) & ( s ’ =3) ;
51
52 // use 1 s t nand gate with p1 as e r r o r p r obab i l i t y
53 [ ] s=3 & z<N & c=0 −>
54 (1−p1 ) : ( z ’=z+(1−x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) // not f a u l t y
55 + p1 : ( z ’=z+(x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) ; // von neumann f a u l t
56 // use 2nd nand gate with p2 as e r r o r p r obab i l i t y
57 [ ] s=3 & z<N & c=1 −>
58 (1−p2 ) : ( z ’=z+(1−x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) // not f a u l t y
59 + p2 : ( z ’=z+(x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) ; // von neumann f a u l t
60 // use 3 rd nand gate with p3 as e r r o r p r obab i l i t y
61 [ ] s=3 & z<N & c=2 −>
62 (1−p3 ) : ( z ’=z+(1−x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) // not f a u l t y
63 + p3 : ( z ’=z+(x∗y ) ) & ( s ’ =0) & ( c ’=c+1) & (x ’ =0) & (y ’ =0) ; // von neumann f a u l t
64
65 [ ] s=4 −> t rue ;
66 endmodule
67
68 // rewards : f i n a l va lue o f gate
69 rewards
70 [ ] s=0 & ( c=N) & (u=M) : z/N;
71 endrewards

Figure 5.14: nand K=1; N=3 benchmark formulated in the PRISM adapted from [110].
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benchmark, then we evaluate our tool for the qualitative properties, and we conclude

with the quantitative properties.

5.6.1 Benchmark

MCs have been used for many decades to model real-life applications. PRISM[110] is a

reference for the verification of probabilistic systems. In particular, it is able to verify

properties for MCs. As said in Section 5.2, pIMCs correspond to abstractions of MCs.

PRISM references several benchmarks based on MCs6. Note first that we only consider

pIMCs with linear parametric expressions. In this context all the CSPs encodings for

verifying the qualitative properties only use linear constraints while the CSPs encodings

for verifying the quantitative properties produce quadratic constraints (i.e., non-linear

constraints). This produces an order of magnitude between the time complexity for solving

the qualitative properties vs the quantitative properties w.r.t. our encodings. Thus, we

consider two different benchmarks presented in Table 5.1 and 5.2. In both cases, pIMCs

are automatically generated from the PRISM model in a text format inspired from [107].

For the first benchmark used for verifying qualitative properties, we constructed the

pIMCs from existing MCs by randomly replacing some exact probabilities on transitions

by (parametric) intervals of probabilities. Our pIMC generator takes 4 arguments: the

MC transition function; the number of parameters for the generated pIMC; the ratio of

the number of intervals over the number of transitions in the generated pIMC; the ratio

of the number of parameters over the number of interval endpoints for the generated

pIMC. The benchmarks used are presented in Table 5.1. We selected 5 applications from

PRISM [110]: herman - the self-stabilisation protocol of Herman from [111]; egl - the

contract signing protocol of Even, Goldreich & Lempel from [112]; brp - the bounded

retransmission protocol from [113]; crowds - the crowds protocol from [114]; and nand

- the nand multiplexing from [115]. Each one is instantiated by setting global constants

(e.g., N for the application herman, L and N for the application egl) leading to more

or less complex MCs. We used our pIMC generator to generate an heterogeneous set of

benchmarks: 459 pIMCs with 8 to 15, 102 states and 28 to 21, 567 transitions not reduced

to [0, 0]. The pIMCs contain from 2 to 250 parameters over 0 to 7772 intervals.

For the second benchmark used for verifying quantitative properties we extended the

nand model from [115]. The original MC nand model has already been extended as a

pMC in [98], where the authors consider a single parameter p for the probability that

each of the N nand gates fails during the multiplexing. We extend this model to pIMC

by considering one parameter for the probability that the initial inputs are stimulated

and we have one parameter per nand gate to represent the probability that it fails. We

consider 4 pIMCs with 104 to 7, 392 states and 147 to 11, 207 transitions not reduced to

[0, 0]. The pIMCs contain from 4 to 12 parameters appearing over 82 to 5, 698 transitions.

6see the category discrete-time Markov chains on the PRISM website
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Benchmarks #nodes#edges#paramInBounds#parameters

nandK=1; N=2 104 147 82 4
nandK=1; N=3 252 364 200 5
nandK=1; N=5 930 1,371 726 7
nandK=1; N=10 7,392 11,207 5698 12

Table 5.2: Benchmarks composed of 4 pIMCs used for verifying quantitative properties

Size of the Boolean Integer Real-number Boolean Linear Quadratic
Encoding produced CSPs var. var. var. constr. constr. constr.

SotA exponential no no yes yes yes no
C∃c linear yes no yes yes yes no
C∃r linear yes yes yes yes yes no
C∃r̄ linear yes yes yes yes yes yes

Table 5.3: Characteristics of the four CSP encodings SotA, C9c, C9r, and C9r̄.

5.6.2 Constraint Modelling

Given a pIMC in a text format our tool produces the desired CSP according to the selected

encoding (i.e., one from [103], C9c, C9r, or C9r̄). Recall that our benchmark only consider

linear parametric expressions on transitions. The choice of the contraint programming

language for implementing a CSP encoding depends on its nature (e.g., the type of the

variables: integer vs. continuous, the kind of the contraints: linear vs. non-linear).

Table 5.3 summarizes the natures the encodings where SotA stands the encoding from

[103] answering the existential consistency problem. Thus, SotA, C9c, and C9r can be

implemented as Mixed Integer Linear Programs (MILP) [116] and as Satisfiability Modulo

Theory (SMT) programs [117] with QF LRA logic (Quantifier Free linear Real-number

Arithmetic). This logic deals with Boolean combinations of inequations between linear

polynomials over real variables. Note that, QF NRA does not deal with integer variables.

Indeed logics mixing integers and reals are harder than those over reals only. However,

all the integer variables in our encodings can be replaced by real-number variables.7 Each

integer variable x can be declared as a real variable whose real domain bounds are its

original integer domain bounds; we also add the constraint x < 1 ) x = 0. Since we

only perform incrementation of x this preserves the same set of solutions (i.e., ensures

integer integrity constraints). Finally, due to the non-linear constraints in C9r̄, these

encodings are implemented as SMT programs [117] with the QF NRA logic (Quantifier

Free Non linear Real-number Arithmetic). We use the same technique than for C9c and

C9r for replacing integer variables by real-number variables. We chose the programming

language Python for implementing our CSP modeller. We do not evaluate any arithmetic

expression while generating CSPs, and numbers in the interval endpoints of the pIMCs

are read as strings and no trivial simplification is performed while modelling. We do so

7Note that this is not always free to obtain integer integrity constraints over real-numbers.
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#variables #constraints avg(model. time) avg(solv. time)
Set of benchmarks (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

herman N=3 71 42 42 1258 272 238 0.10 0.07 0.07 0.01 0.01 0.01
herman N=5 1,031 282 282 51,064 2,000 1,750 1.52 0.08 0.08 0.24 0.03 0.01
herman N=7 16,402 2,333 2,333 1,293,907 16,483 14,278 50.47 0.13 0.13 5.92 0.28 0.04
egl L=2; N=2 462 497 497 4,609 3,917 3,658 0.21 0.08 0.08 0.02 0.04 0.01
egl L=2; N=4 13,786 14,081 14,081 138,596 112,349 105,178 5.66 0.44 0.44 0.54 2.15 0.36
egl L=4; N=2 958 1,009 1,009 9,560 8,013 7,498 0.36 0.10 0.10 0.04 0.08 0.02
egl L=4; N=4 30,138 30,465 30,465 301,866 243,421 228,058 13.03 0.87 0.87 1.26 11.31 0.97
brp MAX=3; N=16 68,995 2,047 2,047 738,580 16,063 14,902 32.29 0.12 0.12 3.54 0.21 0.06
brp MAX=3; N=32 OM 4,079 4,079 OM 32,047 29,734 OM 0.18 0.18 OM 0.47 0.13
brp MAX=4; N=16 103,105 2,544 2,544 1,114,774 19,960 18,511 46.54 0.13 0.13 5.42 0.27 0.08
brp MAX=4; N=32 OM 5,072 5,072 OM 39,832 36,943 OM 0.21 0.21 OM 0.63 0.17
crowds CS=10; TR=3 OM 21,723 21,723 OM 165,083 149,923 OM 0.67 0.66 OM 11.48 0.79
crowds CS=5; TR=3 OM 3,253 3,253 OM 25,063 23,008 OM 0.16 0.15 OM 0.39 0.09
nand K=1; N=10 87,506 18,732 18,732 888,733 145,108 133,768 152.06 0.56 0.56 3.72 6.21 0.79
nand K=1; N=5 6,277 2,434 2,434 62,987 18,098 16,594 10.26 0.12 0.12 0.24 0.25 0.07
nand K=2; N=10 169,786 36,022 36,022 1,722,970 279,998 258,298 298.93 1.04 1.04 7.75 31.81 2.06
nand K=2; N=5 11,623 4,366 4,366 117,814 33,218 30,580 19.24 0.17 0.17 0.44 0.48 0.13

Table 5.4: Comparison of sizes, modelling, and solving times for three approaches: (1)
SotA encoding implemented in SMT, (2) C9c encoding implemented in SMT, and (3)
C9c encoding implemented in MILP (times are given in seconds).

to avoid any rounding of the interval endpoints when using floating point numbers.

Experiments have been realized on a 2.4 GHz Intel Core i5 processor. Time out has

been set to 10 minutes. Memory out has been set to 2Gb. Table 5.4 presents the size of

the instances (i.e., the number of variables and the number of constraints) for solving the

existential consistency problem on our benchmark using (1) SMT SotA encoding, (2) SMT

C9c encoding, and (3) MILP C9c encoding. First, note that all the pIMCs are successfully

compiled when using our C9c encoding while the SotA encoding produces out of memory

errors for 4 sets of benchmarks: more than 20% of the instances (see OM cells in Table

5.4). We recall that the SotA encoding is defined inductively and that it iterates over the

power set of the states. In practice, this implies deep recursions joined with enumeration

over the power set of the states. The exponential gain exposed in Section 5.4 is visible in

terms of number of variables and constraints in Table 5.4, and in terms of encoding time

in Figure 5.15. Each dot in Figure 5.15 corresponds to one instance of our benchmark.

While the encoding time ranges between 0 and 1s when using the C9c encoding, it varies

between 0 and 500s when using the SotA encoding (if it does not run out of memory).

MILP formulation of logical constraints (e.g., conjunction, disjunction, implication,

equivalence) implies the introduction of binary variables called indicator variables [118].

Each indicator variable is associated to one or more constraints. The valuation of the

indicator variable activates or deactivates its associated constraints. We tried to formulate

the SotA encoding into MILP. Unfortunately, the nested conjunctions and disjunctions

imply the introduction of a huge number of indicator variables, leading to giant instances

giving bad encoding and solving time. However, since the Boolean variables inC9c exactly

correspond to indicator variables, the MILP formulation of the C9c encoding does not
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Figure 5.15: Comparing encoding time for the existential consistency problem

introduce additional variables or constraints. The difference between C9c in SMT and C9c

in MILP comes from the encoding of the domains of the continuous variables: in SMT, it

requires the use of inequality constraints, e.g., 0  x  1. The encoding time is the same

for SMT and MILP C9c encoding.

5.6.3 Solving

We chose Z3 [119] in its last version (v. 4.4.2) as SMT solver. We chose CPLEX [11] in

its last version (v. 12.6.3.0) as MILP solver. Both solvers have not been tuned and we

use their default strategies. Experiments have been realized on a 2.4 GHz Intel Core i5

processor. Time out has been set to 10 minutes.

Table 5.4 presents the resolution time for the existential consistency problem on our

first benchmark using (1) SMT SotA encoding, (2) SMT C9c encoding, and (3) MILP C9c

encoding. While the SotA CSPs are larger than the C9c CSPs, the solving time for the

SotA CSPs appears to be competitive compared to the solving time for the C9c CSPs.

The scatter plot in Figure 5.16 (logarithmic scale) compares solving times for the SMT

SotA encoding and SMT C9c encoding. However when considering the resolution time

of the problem (i.e., the encoding time plus the solving time) the C9c encoding clearly

answers faster than the SotA encoding. Finally, the comparison between the solving

time using SMT C9c encoding and MILP C9c encoding is illustrated in Figure 5.17. It

shows that the loss of safety by passing from real numbers with Z3 SMT resolution to

floating point numbers with CPLEX MILP resolution leads to a non negligible gain in

terms of resolution time (near to an exponential gain in our benchmark). Indeed the SMT

C9c encoding requires 50 seconds to complete the solving process while the MILP C9c

encoding needs less than 5 seconds for the same instances.

Table 5.5 summarizes the results w.r.t. our second benchmark: the pIMC sizes (in

terms of states, transitions, and parameters), the CSP sizes (in terms of number of vari-

ables and constraints), and the resolution time using the Z3 solver. Note first that we

perform pre-processing when verifying reachability properties: i.e., we eliminate all the
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pIMC C∃c C∃r C∃r̄

Benchmark #states#trans.#par. #var. #cstr. time #var.#cstr. time #var. #cstr. time

nandK=1; N=2 104 147 4 255 1,526 0.17s 170 1,497 0.19s 296 2,457 69.57s
nandK=1; N=3 252 364 5 621 3,727 0.24s 406 3,557 0.30s 703 5,828 31.69s
nandK=1; N=5 930 1,371 7 2,308 13,859 0.57s 1,378 12,305 0.51s 2,404 20,165 T.O.
nandK=1; N=10 7,392 11,207 12 18,611111,3669.46s 9,978 89,70513.44s 17,454147,015 T.O.

Table 5.5: Comparison of solving times between qualitative and quantitative encodings.

states that cannot reach the goal states. This explains why C9r has less variables and

constraints than C9c. Finally, note the order of magnitude between the resolution time

required for solving the qualitative properties vs the quantitative properties w.r.t. our

encodings. Indeed, we did not succeed in solving pIMCs with more than 300 states and

400 transitions for quantitative properties while we verified pIMCs with more than 10,000

states and 20,000 transitions in the qualitative context.

5.7 Conclusion and Perspectives

In this chapter, we have compared several Markov Chain abstractions in terms of suc-

cinctness and we have shown that Parametric Interval Markov Chain is a strictly more

succinct abstraction formalism than other existing formalisms such as Parametric Markov

Chains and Interval Markov Chains. In addition, we have proposed constraint encodings

for checking several properties over pIMC. In the context of qualitative properties such as

existential consistency or consistent reachability, the size of our encodings is significantly

smaller than other existing solutions. In the quantitative setting, we have compared

the three semantics for IMCs and pIMCs and showed that the semantics are equivalent

with respect to quantitative reachability properties. As a side effect, this result ensures

that all existing tools and algorithms solving reachability problems in IMCs under the

once-and-for-all semantics can safely be extended to the at-every-step semantics with no

Figure 5.16: Comparing solving time for
the existential consistency problem

Figure 5.17: Comparing solving time be-
tween SMT and MILP formulations
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changes. Based on this result, we have then proposed CSP encodings addressing quanti-

tative reachability in the context of pIMCs regardless of the chosen semantics. Finally,

we have developed a prototype tool that automatically generates our CSP encodings and

that can be plugged to any constraint solver accepting the SMT-LIB format as input.

Our tool for pIMC verification could be extended in order to manage other, more

complex, properties (e.g., supporting the LTL-language in the spirit of what Tulip [107]

does). Also one could investigate a practical way of computing and representing the set

of all solutions to the parameter synthesis problem.
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Chapter 6

Conclusion and Perspectives

In this thesis we tackled two families of program verification problems. In both cases we

first investigated the nature of the verification problem in order to propose an accurate

constraint resolution. Since we had no a priori restrictions on the constraint language,

we proposed constraint models using non-linear constraints with unbounded continuous

variables, mixed integer/continuous domain variables over linear constraints, and also

quadratic constraints over mixed variables. We first present in this chapter the conclusions

and perspectives of both contributions. We close this thesis with a general conclusion on

the benefits of considering constraint programming for program verification.

Block-Diagram Verification Block-diagrams are used to model real-time systems

such as digital signal processes. Such systems appear in many applications receiving and

processing digital signals: modems, multimedia devices, GPS, audio and video process-

ing. We proposed a constraint model using our global constraint called real-time-loop

for computing over-approximations of real-time streams, based on their block-diagrams

representations. We introduced a global constraint and presented a dedicated filtering

algorithm inspired by Abstract Interpretation. The experiments show that our approach

can reach very good over-approximations in a short running time. Thus, our proposal

has been taken in consideration for a future implementation into the FAUST compiler.

More generally, our method shows that constraint programming can handle block-diagram

analyses in an elegant and natural way.

However we point out some perspectives. Firstly, the propagation loop may be im-

proved according to the tackled verification problem (for instance, when verifying output

streams one should favor input to output propagations instead of an arbitrary scheme).

Secondly, some constraint patterns offer poor over-approximations when considering in-

terval extensions (e.g., the interval extension of the pattern |x − int(x)| which should

compute the decimal part of x returns the interval abstraction [0; 20] with [−10; 10] as in-
put domain whereas the concrete output domain of this pattern is [0; 1]). Thus, managing

such patterns would improve the quality of the computed over-approximations. Thirdly,
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one should test our approach on a language which is not dedicated to audio processing in

order to test the practical robustness of our approach with respect to the nature of the

programs. Finally, over-approximations intervals ensure that there are no stream values

outside the intervals but cannot conclude if they contain at least one stream value. Thus,

one may investigate inner-approximations in order to certify the presence of stream val-

ues. This could be used to partition the space in three: the intervals that contain only

stream values, the intervals that may contain stream values, and the intervals that do not

contain any stream value.

Markov Chain Abstraction Verification Markov chains model softwares and real-

life systems for which probabilities play a fundamental role. We considered the Parametric

Interval Markov Chain (pIMC for short) specification formalism for abstracting Markov

chains. We first presented a formal theorem proving the equivalence of the three main

pIMC semantics with respect to the reachability property. Then, we exploited this result

for proposing constraint modellings answering consistency, qualitative, and quantitative

reachability properties. For consistency and qualitative reachability, the state-of-the-art

constraint models had an exponential size in terms of the verified pIMCs. We proposed

constraints models with a linear size in terms of the pIMC size for solving the same

problems using the same type of constraints and variables. For quantitative reachability,

there was no existing verification process. We thus proposed the first verification process

as constraint models in order to answer this problem. Furthermore, we took benefits of

the constraint programming paradigm to propose modular constraints models: i.e., the

quantitative models extend the qualitative models which extend the consistency models.

We implemented our constraint models and we evaluated our prototype over a pIMC

benchmark generated from PRISM programs. Constraint models have been generated as

mixed linear integer programs and satisfiability modulo theory programs and we obtained

promising results. In practice, these results lead to pIMCs closer to the effective resolution

of real-word problems.

We now present some perspectives. Firstly, parameters in pIMCs may correspond to

possibly controllable inputs in the probabilistic systems or may model a cost to minimize

or maximize. Thus, by adding an optimization function to our constraint encodings one

may investigate such problems. Secondly, parameters may correspond to decisions to be

taken for implementing the pIMC as an IMC in the real-world. The visualization of the

parameters state space according to the satisfiability with respect to the property to ver-

ify helps to select accurate parameter valuations. However, while some research has been

realized with 2 or 3 parameters, one should also investigate cases with more parameters.

Finally, the pIMC specification formalism allows to abstract sets of Markov chains. It ap-

pears that our constraint encoding may offer another specification formalism. Indeed, one

should take benefit of our constraint modellings for expressing guards, relations between
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parameters, constraints over some probabilities on transitions, etc. Thus, all the expre-

sivness of the constraint tools could be used for modelling and solving the verification of

“constrained Markov chains”.

To conclude, program verification is such a rich domain that it can potentially use

many constraint tools. The theoretical complexity of program verification such as con-

straint satisfaction may belong to high complexity levels. Nevertheless, constraint pro-

gramming solvers may offer a practical resolution to some hard problems However, several

constraint programming communities chose different directions and they develop solvers

dedicated to separate constraint languages. In this thesis, we considered verification prob-

lems through the prism of constraint programming. We proposed constraint programming

approaches using various constraint languages for solving the considered verification prob-

lems. Our contributions help both fields of constraint programming and program verifi-

cation to move closer together.





113

French summary

Introduction

La programmation par contraintes est un champ de recherche rattaché à l’intelligence ar-

tificielle. Un des objectifs de l’intelligence artificielle est de proposer des méthodes et des

outils permettant de réaliser des tâches considérées comme complexes tant à un niveau

logique, qu’à un niveau algorithmique. Ainsi le Graal de l’intelligence artificielle est de

trouver une solution, un outil capable de résoudre une variété la plus grande possible

de problèmes hétérogènes. C’est avec cet objectif que la programmation par contraintes

se propose de résoudre tout un ensemble de problèmes qui peuvent être formulés à par-

tir de contraintes. Une contrainte est une relation posée sur un ensemble de variables

restreignant les affectations possibles entre les variables et leurs valeurs. En effet, une

variable est un objet mathématique associé à un ensemble de valeurs pouvant lui être

affectées. Ainsi, nous appelons valuation le choix de valeurs pour les variables, et sat-

isfaire une contrainte revient à trouver une valuation qui satisfasse toutes les relations

variables/valeurs établies par les contraintes. La modélisation en contraintes regroupe les

différentes techniques utilisées pour passer d’un problème présenté en langage naturel vers

un problème formellement décrit mathématiquement ou sous la forme d’un programme en

contraintes (LP format, DIMACS format, XCSP format) appelé modèle. Une fois l’étape

de modélisation terminée, le modèle est envoyé dans le système intelligent, appelé solver,

pour être résolu. La première étape est appelée modélisation (en : modelling) et la sec-

onde résolution (en : solving). Dans cette thèse, nous nous intéressons à la modélisation

et à la résolution d’applications ciblées : la vérification de programmes.

Lors de ces dernières décennies, l’informatique s’est démocratisée tant dans les usages

privés que professionnels. Ainsi, ordinateurs et systèmes d’informations réalisent des ap-

plications les plus variées : application intelligentes, systèmes embarqués d’avions, robots

médicaux, etc. Comme c’est le cas dans le cadre des châınes de production, l’écriture de

ces systèmes/applications doit respecter un certain nombre de règles de qualité telles que

la conformité, l’efficacité, la robustesse. La vérification de programmes a pour objectif
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de s’assurer qu’une application, un programme, un système réponde aux spécifications

données, c’est-à-dire que son comportement soit correct, qu’il ne contienne pas de “bug”.

En effet, l’histoire a démontré la nécessité de la mise en oeuvre de telles vérifications. Qu’il

s’agisse de la fusée Ariane 5 qui a explosé 36 secondes après son décalage ou du défaut de

l’unité de calcul du Pentium II d’Intel qui a causé une perte de 475 millions de dollars et

qui a nui gravement à l’image de la marque, ces deux évènements auraient pu être évités

s’ils avaient été certifiés, vérifiés formellement d’un point de vue logiciel/programme in-

formatique. Pour autant, la vérification de programme est une tâche difficile car c’est un

problème indécidable : en général, il n’est pas possible de construire un système capable

de déterminer en temps fini si un programme est correct ou non. Pour autant, indécidable

ne veut pas dire infaisable en pratique. Dans cette thèse, nous modélisons et résolvons

via la programmation par contraintes des problèmes de vérification de programmes. Nous

présentons dans les deux sections suivantes un résumé des deux chapitres contributions

de la thèse. Chacun porte sur un problème de vérification de programmes et propose une

résolution en contraintes.

Vérification en contraintes d’un langage temps réel

La programmation par contraintes s’attaque en général à des problèmes statiques, sans

notion de temps. Cependant, les méthodes de réduction de domaines pourraient par ex-

emple être utiles dans des problèmes portant sur des flux. C’est le cas de la vérification de

programmes temps réel où les variables peuvent changer de valeur à chaque pas de temps.

Pour cette contribution, nous nous intéressons à la vérification de domaines de variables

(flux) dans le cadre d’un langage de diagrammes de blocs. La première contribution de

cette thèse (Chapitre 4) propose une méthode de réduction de domaines de ces flux, pour

encadrer finement les valeurs prises au cours du temps. En particulier, nous proposons

une nouvelle contrainte globale real-time-loop, nous présentons une application au lan-

gage FAUST (un langage fonctionnel temps réel pour le traitement audio) et nous testons

notre approche sur différents programmes FAUST.

Contexte et problématique

Comme précisé en introduction de cette section, nous souhaitons vérifier un langage

temps réel. Plus précisément, ce langage se positionne dans la famille des diagrammes

de blocs que nous présentons ci-dessous. Nous terminons cette section par présenter la

problématique de vérification traitée dans cette contribution.

Un bloc est une fonction appliquant un opérateur à un ensemble d’entrées ordonnées

et produisant une ou plusieurs sorties ordonnées. A partir de là, un connecteur relie une

sortie d’un bloc à une entrée d’un bloc. Nous appelons un diagramme de blocs un ensemble

de blocs reliés par des connecteurs. Formellement, notons E un ensemble non vide. Un
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0.1 +

0.9⇥
fby

0

[0.9; 0.9; 0.9; 0.9]

[0; 0; 0; 0]

[0.1; 0.19; 0.27; 0.34]

[0; 0.1; 0.19; 0.27][0; 0.09; 0.17; 0.24]

[0.1; 0.1; 0.1; 0.1]

Figure 1: A block-diagram over streams from BD(S(R)). In brackets, the first values of
the model for t = 0, 1, 2, 3.

bloc est un triplet (op, n,m) dont n 2 N est appelé le nombre d’entrées du bloc, m 2 N

est appelé le nombre de sorties du bloc et op : En ! Em est appelé l’opérateur du bloc.

De plus, les n entrées (resp. les m sorties) sont ordonnées et [i]b (resp. b[i]) correspond

à la ième entrée (resp. ième sortie) avec 1  i  n (resp. 1  i  m). Un connecteur

(défini sur un ensemble de blocs B) est un couple (b[i], [j]b0) appariant les blocs b et b0

de B dont la sortie i du bloc b et l’entrée j du bloc b0 existent. Ainsi, un diagramme de

blocs (défini sur E) est un couple d = (B,C) où B est un ensemble de blocs sur E et C

est un ensemble de connecteurs sur B. Dans la suite, nous notons BD(E) l’ensemble des

diagrammes de blocs sur E.

Nous avons annoncé que les diagrammes de blocs permettaient de représenter des

programmes temps réel. Précisons d’abord que nous considérons des programmes temps

réel ayant un temps discrétisé et infini. De tels programmes considèrent des flux d’entrées

qui vont varier au cours du temps et produisent des flux de sorties. Formellement, un

flux x (défini sur D) est une suite infinie de valeurs dans D, et x(t) donne la valeur au

temps t du flux x (t 2 N). Nous notons S(D) l’ensemble des flux sur D. De fait, à partir

de maintenant, nous considérons des diagrammes de blocs définis sur des flux, c’est-à-dire

des diagrammes dont les opérateurs des blocs prennent des flux en entrée et retournent

des flux. Ainsi nous définissons deux types de blocs : les blocs fonctionnels et les blocs

temporels. Un bloc est dit fonctionnel ssi il existe une fonction qui, pour tous les pas

de temps t, donne la valeur au temps t des flux de sortie, en fonction uniquement des

valeurs au temps t des flux en entrée. C’est à dire que l’opérateur d’un bloc fonctionnel

ne dépend que du temps présent et pas des temps passés. Au contraire, un bloc est dit

temporel ssi il utilise des valeurs des flux à des temps passés pour calculer les sorties au

temps présent. Nous appelons exécution d’un diagramme de blocs une affectation de flux

aux entrées et aux sorties des blocs qui satisfait les opérateurs. L’exemple 1 présente un

diagramme de blocs sur des flux.

Exemple 1. La figure 1 présente un diagramme de blocs d sur des flux. d contient 5

blocs fonctionnels : 0, 0.1, 0.9, + et ⇥. Les blocs 0, 0.1 et 0.9 sont constants (c’est-à-dire

8t 2 N : 0.9(t) = 0.9). Le bloc + (resp. ⇥) est tel que pour deux flux à nombres réels

a, b il produit le flux de sortie c vérifiant c(t) = a(t) + b(t) (resp. c(t) = a(t) ⇥ b(t))
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pour tout t 2 N. d contient également un bloc temporel : le bloc followed by abrégé par

fby Par convention, nous hachurons les blocs temporels. La présence du bloc temporel

permet de casser la dépendance cyclique. Ainsi, ce diagramme de blocs admet une seule

exécution. Les valeurs pour les quatre premiers temps sont inscrites entre crochets à côté

des connecteurs (remarquez le délai dû au bloc fby).

Après avoir décrit les diagrammes de blocs et leurs exécutions, nous présentons la

problématique de vérification sous-jacente. La présence de circuits dans la représentation

graphique des diagrammes de blocs ainsi que les branchements de flux d’entrées faiblement

bornés peuvent générer des exécutions plus ou moins variées. Un des souhaits récurrents

de la vérification est de borner les valeurs prises par les variables d’un programme. Traduit

dans le contexte des diagrammes de blocs, cela revient à chercher quelles valeurs peuvent

passer par les entrées et les sorties des blocs qui composent un diagramme de blocs. Ainsi,

le problème de vérification que nous considérons est celui de trouver pour chaque entrée

et sortie de bloc un intervalle, appelé sur-approximation, qui contienne l’ensemble des

valeurs prises sur cette entrée ou sortie pour toutes les exécutions possibles du diagramme

de blocs. Nous appelons ce problème, le problème de sur-approximation de flux.

Modélisation et résolution en contraintes

Nous proposons une modélisation et une résolution en contraintes du problème de sur-

approximation de flux dans les diagrammes de blocs. La première remarque est que

nous restreignons l’usage des blocs temporels au bloc fby uniquement. Ainsi, sous cette

condition, tout cycle dans un diagramme de blocs admet au moins un bloc fby.1

Nous rappelons que modéliser en contraintes revient à transformer un problème à

résoudre en un problème de satisfaction/d’optimisation de contraintes. Pour le problème

qui nous intéresse, nous souhaitons trouver pour chaque entrée et sortie de bloc un

intervalle qui sur-approxime l’ensemble des valeurs des flux pouvant passer par cette

entrée/sortie. L’approche que nous avons choisie est de trouver une sur-approximation la

plus petite possible sans imposer le critère de minimalité. Nous verrons par la suite que

les résultats que nous obtenons sont très satisfaisants, proches du minimum. Pour rappel,

un CSP est défini comme un ensemble de variables X chacune associée à un domaine Dx

(x 2 X) et un ensemble de contraintes C. Les contraintes définissent les valuations des

variables acceptées par le CSP (ex : la contrainte x = 2+ y porte sur deux variables x et

y et impose l’égalité entre la valeur de x et la valeur de y plus 2).

Dans cette thèse, nous procédons en trois étapes de raffinement de nos modèles en

contraintes pour atteindre notre modélisation finale. Le premier modèle, appelé modèle

näıf, transforme le diagramme de blocs en un réseau de contraintes où les variables du

1Nous expliquons dans la thèse que cette restriction n’est pas trop forte et que les blocs temporels
usuels (delay, memory, n-delay) peuvent être réécrits avec le bloc fby.
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a , b , c , d , e , f2 S(R)

a = fby( e , c )
b = ⇥( a , f )
c = +(b , d)
d = 0.1
e = 0
f = 0.9

Figure 2: CSP C1 produit par notre
modèle en contraintes näıf pour le
diagramme de blocs de la figure 1

a , b , c , d , e , f2 I(R)

a = [fby] ( e , c )
b = [⇥] ( a , f )
c = [+](b , d )
d = [0.1]
e = [0]
f = [0.9]

Figure 3: CSP C2 produit par notre modèle
en contraintes intermédiaire pour le

diagramme de la figure 1

a , b , c , d , e , f2 I(R)

d = 0.1 rea l−time−loop ( [ a=[fby] ( e , c ) ; b=[⇥] ( a , f ) ; c=[+](b , d ) ] ,
e = 0 [ d ; e ; f ] ,
f = 0.9 [ ] )

Figure 4: CSP C3 produit par notre modèle en contraintes final pour le diagramme de
blocs de la figure 1

CSP correspondent aux entrées et aux sorties des blocs du diagramme de blocs, et les

contraintes sont exactement les opérateurs des blocs. Ainsi, toute solution de ce CSP

correspond à une exécution du diagramme de blocs (c’est-à-dire les domaines des vari-

ables sont l’ensemble des flux à valeurs dans D). Les flux solutions pouvant être infinis

et le nombre de solutions pouvant également être infini, il y a peu d’espoir de parvenir à

synthétiser par ce modèle en contraintes l’ensemble des flux solutions pour chaque variable

via une sur-approximation dans les intervalles. De fait, en s’inspirant de l’interprétation

abstraite, nous considérons une abstraction du problème (qui peut être vue comme une

relaxation pour la communauté contrainte) pour construire un deuxième modèle en con-

traintes. Ce second modèle, appelé modèle intermédiaire, considère comme domaine des

variables l’ensemble des intervalles fermés à bornes dans D.2 Les opérateurs des blocs

sur les flux sont remplacés par une de leurs extensions aux intervalles. Ce modèle est tel

que toute solution répond au problème de la sur-approximation de flux. Cependant, ce

modèle intermédiaire retourne des solutions de faible qualité et il reste facilement bloqué

aux infinis lors de la propagation de contraintes. Dès lors, nous proposons un dernier

modèle, appelé modèle final, prenant en compte ce défaut de filtrage. Pour ce faire,

nous introduisons une nouvelle contrainte globale : la contrainte real-time-loop . Nos

recherches ont montré que la difficulté se posait au niveau des circuits. Chaque con-

trainte real-time-loop contient l’ensemble de la sémantique d’un circuit. C’est grâce

à la connaissance de la sémantique haut niveau de cette contrainte que nous avons pro-

posé un algorithme de filtrage dédié offrant des sur-approximations de meilleure qualité.

2D appelé ensemble étendu deD correspond à l’union deD et de ses limites (e.g., R = R[{−1,+1})
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L’algorithme de filtrage proposé est inspiré de l’interprétation abstraite et plus partic-

ulièrement de la technique de recherche d’invariant inductif par la méthode des montées

et descentes dans le treillis des sur-approximations (widening and narrowing technique).

L’algorithme proposé n’assure pas de retourner une sur-approximation minimale. Cepen-

dant il possède des heuristiques permettant d’augmenter les possibilités de recherche et

donc d’augmenter les chances de s’approcher de la solution minimale. L’exemple 2 illustre

les différences entre le modèle näıf, intermédiaire et final.

Exemple 2. La figure 2 contient le CSP C1 résultant de notre modélisation en contrainte

näıve pour le diagramme de blocs d présenté dans la figure 1. Notez en premier, que chaque

connecteur a été associé à une variable. Par exemple, les sorties des blocs constants 0.1, 0

et 0.9 correspondent aux variables d, e et f dans le CSP. De plus, chaque bloc produit une

contrainte dans le CSP (nous utilisons une notation préfixée pour l’écriture des opérateurs

en contraintes). Par exemple le bloc fby du diagramme de blocs d produit la contrainte

a =fby(e, c) dans C1. Ainsi, nous avons que toute solution de C1 correspond à une exécution

de d. Ensuite, la figure 3 contient le CSP C2 produit par notre modélisation en contrainte

intermédiaire pour le diagramme de blocs d. Étant donné un opérateur sur des flux, la

notation [f ] correspond à l’extension aux intervalles en tant que contrainte de la fonction

f . Par exemple, a = [0, 1], b = [2, 3] et c = [2, 4] satisfait la contrainte a[+]b = c. De

fait, le passage de C1 à C2 a remplacé les domaines de flux à des domaines à intervalles,

et les opérateurs dans les contraintes sont remplacés par leurs extensions aux intervalles.

Ainsi, pour toute variable x de C1, pour toute solution de C2 l’intervalle choisi pour x

contient toutes les valeurs des flux solutions de C1 pour la variable x (c’est-à-dire pour

toute valuation v2 solution de C2 et pour toute valuation v1 solution de C1 nous avons

v1(x)(t) 2 v2(x) pour tout t 2 N). Enfin, la figure 4 contient le CSP C3 utilisant notre

contrainte globale real-time-loop . Cette contrainte prend trois arguments qui sont,

dans l’ordre : les contraintes formant le circuit, les variables d’entrées du circuit, les

variables de sorties du circuit. Ainsi dans C1 la contrainte real-time-loop contient les

blocs fby, ⇥ et +, les entrées d, e et f et n’a pas de sorties.

Pour évaluer notre modélisation en contraintes, nous avons choisi le langage FAUST

permettant de faire la synthèse et le traitement temps réel de flux audio. Ce lan-

gage possède une sémantique bien définie de telle sorte que le compilateur FAUST peut

générer pour chaque programme le diagramme de blocs qui en est la sémantique. Ainsi,

nous avons considéré un ensemble de programmes de la bibliothèque FAUST et nous

les avons modélisés en contraintes en utilisant notre encodage final. Nous avons ensuite

utilisé le solveur de contraintes continues IBEX pour y implanter notre contrainte globale

real-time-loop . L’objectif était de vérifier que les flux de sorties des programmes ne

provoquaient pas de saturation (c’est-à-dire qu’ils étaient sur-approximés par l’intervalle

[−1; 1]). Nos résultats montrent que nous parvenons dans la majeure partie des cas à

trouver la plus petite sur-approximation dans les intervalles et dans des temps très courts
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(de l’ordre de la seconde). Ainsi notre approche a été prise en considération par les

développeurs de FAUST pour une éventuelle intégration dans une version future du logi-

ciel. Pour autant, il est important de noter que la plus petite sur-approximation dans

les intervalles par le calcul intervalle est parfois très éloignée du plus petit intervalle con-

tenant les valeurs prises par les flux. En effet, les calculs à partir de sur-approximations

produisent des marges de sur-approximations qui se répètent et s’amplifient. Il existe

également des opérateurs de blocs produisant de grandes imprécisions lorsqu’ils sont

étendus aux intervalles (ex : X[−]X 6= {0}).
Pour conclure, nous avons proposé plusieurs modélisations en contraintes pour le

problème de la sur-approximation de flux dans les diagrammes de blocs. Nous avons

proposé la contrainte globale real-time-loop pour répondre au problème donné. Puis

nous avons évalué avec succès notre approche en considérant le problème de recherche de

saturation dans des programmes FAUST. Ces travaux ont montré l’intérêt de l’utilisation

de techniques de programmation par contraintes dans des cadres exotiques (la vérification

de programmes utilisant des variables de flux). Ces travaux ont fait l’objet de trois com-

munications/publications [1, 2, 3].

Vérification en contraintes de systèmes probabilistes

Les châınes de Markov (MCs) sont largement utilisées pour modéliser une très grande

variété de systèmes basés sur des transitions probabilistes (ex : protocoles aléatoires,

systèmes biologiques, environnements financiers). D’un autre côté, les châınes de Markov

à intervalles paramétrés (pIMCs) sont un formalisme de spécification permettant de

représenter de façon compacte des ensembles infinis de châınes de Markov. En effet, les

PIMCs prennent en compte l’imprécision ou le manque de connaissances quant à la prob-

abilité exacte de chaque évènement/transition du système en considérant des intervalles

paramétrés de probabilités. Dans la seconde contribution de cette thèse (Chapitre 5),

nous proposons d’abord une comparaison formelle de trois sémantiques existantes pour

les PIMCs. Ensuite, nous proposons des encodages en contraintes pour vérifier des pro-

priétés d’accessibilité qualitative et quantitative sur les pIMCs. En particulier, l’étude

formelle des différentes sémantiques des pIMCs a permis de proposer des encodages en

contraintes succincts et performants. Enfin, nous concluons avec des expériences mon-

trant l’amélioration de nos encodages en contraintes par rapport à ceux de l’état de l’art

résolvant les mêmes problèmes sur les pIMCs.

Contexte et problématique

Un processus aléatoire est un système dans lequel le passage d’un état à un autre état est

probabiliste : chaque état successeur a une certaine probabilité d’être choisi. Une châıne

de Markov à temps discret est un processus aléatoire dont le passage d’un état à un autre
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Figure 5: Exemple de MC
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Figure 6: Exemple d’IMC
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Figure 7: Exemple d’IMC

se fait par pas de temps. Ce changement d’états est décrit par une fonction de transition

qui à chaque état associe une distribution de probabilités sur ses états successeurs. Une

châıne de Markov peut être vue comme un graphe dirigé dont les noeuds correspondent

aux états de la MC et dont les arêtes sont étiquetées par les probabilités de la fonction

de transition. Avec cette représentation, une transition manquante entre deux états vaut

pour une probabilité de 0. Dans cette thèse nous considérons des châınes de Markov ayant

un ensemble d’états fini.

Modéliser une application comme une châıne de Markov suppose de connâıtre ex-

actement les probabilités pour chaque transition du système. Cependant, ces quantités

peuvent être difficiles à calculer ou à mesurer pour des applications réelles (ex : erreurs de

mesure, connaissance partielle). Les châınes de Markov à intervalles (IMCs) étendent les

châınes de Markov en autorisant les probabilités de transition à varier dans des intervalles

donnés. Ainsi, à chaque transition d’état à état est associé un intervalle au lieu d’une

probabilité exacte.

Enfin, les châınes de Markov à intervalles paramétrés (pIMCs) autorisent l’utilisation

d’intervalles dont les bornes sont variables. Ces bornes variables sont alors représentées

par des paramètres (ou des combinaisons de paramètres), ce qui permet notamment

l’expression de dépendances entre plusieurs transitions du système. Ainsi, les pIMCs

représentent, d’une manière compacte et avec une structure finie, un ensemble potentielle-

ment infini d’IMCs. Par transitivité, les pIMCs permettent de représenter potentiellement

une infinité d’ensembles de châınes de Markov.

La propriété que nous allons vérifier est celle de l’accessibilité (en : reachability) dans

les MCs. Formellement, la probabilité d’atteindre un état dans une MCs est donnée par la

somme de la probabilité de tous les chemins atteignant l’état désiré (c’est-à-dire tous les

chemins finis partant de l’état initial, terminant par l’état désiré et ne rencontrant pas cet

état avant). De plus, la probabilité d’un chemin correspond aux produits des probabilités

rencontrées sur les transitions état à état. Nous notons PM(3s) la probabilité d’atteindre

un état s dans une MCM.

Exemple 3. La figure 5 représente une MCM avec 5 états s0, s1, s2, s3 et s4 où s0 est

l’état initial et où nous pouvons lire par exemple que la probabilité de passer de l’état s0
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à l’état s1 vaut 0.7 et que celle de passer de l’état s0 à s2 vaut 0.3. Ainsi les séquences

d’états (s0, s1, s3), (s0, s3) et (s0, s2, s1, s3) sont trois chemins (finis) partant de l’état

initial s0 et terminant dans l’état s3 ayant pour probabilités respectives 0.7 · 0.5 = 0.35,

0.7·0 = 0 et 0.3·0.5·0.5 = 0.075 . Enfin, la probabilité d’atteindre l’état s1 vaut p(s0)(s1)+

Σ+1
i=0 p(s0)(s2)·p(s2)(s2)i·p(s2)(s1) = p(s0)(s1)+p(s0)(s2)·p(s2)(s1)· (1/(1−p(s2)(s2))) = 1.

A côté, la figure 6 représente une IMC I. PuisqueM a la même structure que I et que

les probabilités des transitions deM appartiennent aux intervalles correspondants dans

I nous disons queM satisfait I. Pour terminer, la figure 7 représente une pIMC utilisant

deux paramètres p et q. Notons que choisir les valeurs 0.6 pour p et 0.5 pour q produit

l’IMC I. Nous disons que I implémente P . De fait, puisque M satisfait I et que I
implémente P nous disons queM satisfait P .

Les pIMCs et les IMCs sont appelées des modèles d’abstractions de châınes de Markov.

En effet, comme dit précédemment, tout pIMC ou IMC représente/abstrait un ensemble de

châınes de Markov. Ainsi, nous disons qu’une châıne de Markov satisfait une abstraction

de châınes de Markov ssi la châıne de Markov appartient à l’ensemble des MCs représentées

par l’abstraction. De plus, les IMCs sont formellement définies avec trois sémantiques

d’abstractions : 1) once-and-for-all, 2) IMDP et 3) at-every-step. La première sémantique

définit que l’ensemble des MCs qui satisfont une IMC sont celles qui ont la même structure

que l’IMC et dont la probabilité p de passer d’un état s accessible à un état s0 appartient

à l’intervalle de probabilités sur la transition de s vers s0 dans l’IMC. Nous disons que

pour chaque intervalle de l’IMC une et une seule probabilité est sélectionnée. La seconde

sémantique définit que l’ensemble des MCs qui satisfont une IMC sont celles qui autorisent

de choisir plusieurs probabilités pour un même intervalle d’une IMC. Nous disons que

l’IMC originale est “dépliée”. Ainsi, un état d’une IMC peut se retrouver “copié” plusieurs

fois dans la MC qui satisfait l’IMC. Enfin, la troisième sémantique autorise sous certaines

conditions que certains états de l’IMC peuvent être fusionnés ou scindés en plusieurs états

tout en autorisant le dépliage de l’IMC. Cette sémantique correspond à la sémantique

originelle donnée aux IMCs. Nous montrons dans cette thèse que la sémantique at-every-

step est plus générale que la IMDP, qui est plus générale que la once-and-for-all. Toutes

ces sémantiques s’étendent aux pIMCs.

Ainsi, la partie contribution aborde trois problèmes majeurs de vérification sur

les pIMCs : la consistance (existentielle), l’accessibilité qualitative (existentielle) et

l’accessibilité quantitative (existentielle). Le problème de la consistance d’une pIMC

détermine si une pIMC admet au moins une MC qui la satisfait. Le problème de

l’accessibilité qualitative détermine si pour un ensemble d’états à atteindre il existe une

MC qui satisfait la pIMC où un des états but peut être atteint (c’est-à-dire qu’il existe

un chemin avec une probabilité non nulle qui part de l’état initial de cette MC et atteint

l’état but). Le problème de l’accessibilité quantitative détermine si, pour un ensemble

d’états à atteindre et un seuil d’accessibilité, il existe une MC qui satisfait la pIMC où la
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probabilité d’atteindre les états buts est supérieure ou inférieure au seuil.

Modélisation et résolution en contraintes

Dans un premier temps, nous avons prouvé que les valeurs de probabilités maximales et

minimales d’accessibilité d’états sont atteintes par les MCs de même structure que les

IMCs/pIMCs. C’est grâce à ce théorème fort que nous avons pu proposer des modèles en

contraintes succincts pour vérifier les problèmes présentés dans la précédente section. En

effet, il n’est plus nécessaire de considérer toutes les MCs avec “dépliages” pour vérifier la

consistance et les propriétés d’accessibilité qualitatives et quantitatives, mais uniquement

les MCs de même structure que la pIMC. Nous présentons maintenant les modèles en

contraintes proposés. Nos modélisations en contraintes sont modulaires. C’est-à-dire

qu’un premier lot de contraintes résout le problème de la consistance, puis l’ajout d’un

second lot de contraintes vient répondre au problème de l’accessibilité qualitative et l’ajout

d’un dernier lot permet de répondre au problème de l’accessibilité quantitative. L’objectif

de nos modèles en contraintes est de construire une châıne de Markov qui satisfasse

l’IMC vérifiant la propriété désirée (consistance, accessibilité qualitative ou accessibilité

quantitative). Ainsi, nos modèles en contraintes encodent de telles MCs. Formellement,

étant donnée une pIMC à vérifier et T un ensemble d’états à atteindre, nos modèles en

contraintes définissent les variables ⇢s, !s, ↵s, λs, ⇡s pour chaque état s de la pIMC, une

variable φp par paramètre p de la pIMC et une variable θs
0

s par intervalle paramétré dans

la pIMC. Rappelons que ces variables ont pour objectif de construire une MC. Chaque

variable θs
0

s détermine la probabilité de la transition allant de l’état s vers l’état s0 dans

la MC. Pour tout état s, la variable ρs est une variable booléenne indiquant si l’état s est

accessible depuis l’état initial ; la variable ωs est une variable entière qui vaut k s’il existe

un chemin de taille k − 1 depuis l’état initial vers s, et qui vaut 0 sinon ; la variable αs

est une variable entière qui vaut k s’il existe un chemin de taille k − 1 depuis s vers un

état but s0 dans T , et qui vaut 0 sinon ; la variable λs est une variable booléenne qui vaut

true ssi il existe un chemin depuis l’état initial vers un état but de T passant par s ; et la

variable πs vaut la probabilité d’atteindre l’état s depuis l’état initial si s est accessible

et qui vaut 0 sinon. Voici les contraintes à considérer pour chaque état s de la pIMC :

(1) ρs, si s = s0

(2) ¬ρs , Σs02Pred(s)\{s}θ
s
s0 = 0, si s 6= s0

(3) ¬ρs , Σs02Succ(s)θ
s0

s = 0

(4) ρs , Σs02Succ(s)θ
s0

s = 1

(5) ρs ) θs
0

s 2 P (s, s0), pour tout s0 2 Succ(s)

(6) ωs = 1, si s = s0
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(7) !s 6= 1, si s 6= s0

(8) ⇢s , (!s 6= 0)

(9) !s > 1) W

s02Pred(s)\{s}(!s = !s0 + 1) ^ (✓s
0

s > 0), si s 6= s0

(10) !s = 0, V

s02Pred(s)\{s}(!s0 = 0) _ (✓s
0

s = 0), si s 6= s0

(11) ↵s = 1, si s 2 T

(12) ↵s 6= 1, si s 62 T

(13) λs , (⇢s ^ (↵s 6= 0))

(14) ↵s > 1) W

s02Succ(s)\{s}(↵s = ↵s0 + 1) ^ (✓s
0

s > 0), si s 62 T

(15) ↵s = 0, V

s02Succ(s)\{s}(↵s0 = 0) _ (✓s
0

s = 0), si s 62 T

(16) ¬λs ) ⇡s = 0

(17) λs ) ⇡s = 1, si s 2 T

(18) λs ) ⇡s = Σs02Succ(s)⇡s0✓
s
s0 , si s 62 T

Nous montrons dans cette thèse que ces lots de contraintes permettent de répondre

aux problèmes de la consistance existentielle (contraintes (1) à (5)), l’accessibilité qual-

itative existentielle (contraintes (1) à (10)) et l’accessibilité quantitative existentielle

(contraintes (1) à (18)). De plus, nos modèles sont linéaires en taille par rapport à la

taille de la pIMC là où les modèles de l’état de l’art sont exponentiels en taille. Nous

terminons la contribution par une évaluation pratique de nos modèles en contraintes.

Les contraintes sont linéaires (sauf la contrainte (18) qui est quadratique) et utilisent

des expressions logiques comme l’équivalence et l’implication. Quant aux variables, nous

sommes dans le cas mixte avec la présence de variables booléennes, entières et réelles.

Ainsi, la communauté Satisfiability Modulo Theory se propose de résoudre ce genre de

problèmes. Dans le cas linéaire il y a également la communauté Mixed Integer Linear

Programming qui accepte nos CSPs. Nous sommes allés chercher un jeu de tests dans la

communauté des MCs. Nous avons étendu ces MCs à des pIMCs et avons vérifié dessus

les propriété de consistance, d’accessibilités qualitative et quantitative. Notre outil est

disponible en ligne.3 Nos résultats montrent que nos modèles en contraintes sont plus

performants que ceux de l’état de l’art. En effet, nos modèles en contraintes gagnent un

ordre de complexité en terme de taille ce qui permet de s’attaquer à des pIMCs beaucoup

plus grandes (c’est-à-dire avec des dizaines de milliers d’états). Enfin, nous proposons un

3https://github.com/anicet-bart/pimc_pylib

https://github.com/anicet-bart/pimc_pylib
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premier outil pour réaliser la vérification d’accessibilité quantitative sur des pIMCs. Pour

cette propriété, nous parvenons à traiter des pIMCs ayant une centaine d’états.

Pour conclure, dans cette partie de la thèse, nous avons réalisé une analyse formelle

de propriétés sur les abstractions de châınes de Markov. Dans cette analyse, nous avons

montré que les différentes sémantiques données aux IMCs sont équivalentes par rapport

à l’accessibilité quantitative de probabilité maximale et minimale (ce qui s’étend aux

pIMCs). Grâce à ce résultat, nous avons présenté des modèles en contraintes qui forment

la première solution pratique au problème de l’accessibilité quantitative dans les pIMCs.

Dans le même temps, nous avons amélioré les encodages en contraintes existants pour

résoudre la consistance existentielle et l’accessibilité qualitative. Enfin, nous avons proposé

un outil implémentant nos divers encodages en contraintes. Ces travaux ont fait l’objet

de trois communications/publications [4, 5, 6].

Conclusion

Dans cette thèse, nous avons abordé deux familles de problèmes traitant de la vérification

de programmes. Pour chaque cas, nous avons d’abord étudié formellement la nature

des problèmes de vérification concernés avant de proposer une résolution par les con-

traintes. Puisque nous ne nous imposions aucune restriction concernant le langage de

contraintes, nous avons proposé des modélisations par contraintes utilisant des contraintes

non-linéaires sur des variables non bornées, des variables mixtes entières/linéaires sur des

contraintes linéaires, mais aussi des contraintes quadratiques sur des variables mixtes.

Ainsi, la vérification de programmes est un champ de recherche riche pouvant faire ap-

pel à divers outils de la programmation par contraintes. La complexité théorique du

problème de la vérification de programmes, comme celle du problème de la satisfaction

de contraintes, peut s’avérer élevée. Cependant, les solveurs de la programmation par

contraintes peuvent résoudre en partie ces problèmes difficiles. Pour autant, les commu-

nautés de la programmation par contraintes avancent sur des axes de recherches séparés

en développant des solveurs dédiés à des langages de contraintes spécifiques. Finalement,

dans cette thèse nous avons abordé la vérification de programmes sous l’angle de la pro-

grammation par contraintes. Cela nous a permis d’apporter de nouvelles idées dans les

processus de vérification de programmes et de rapprocher ces deux domaines de recherche.
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Modélisation et résolution par contraintes de problèmes de vérification

Constraint Modelling and Solving of some Verification Problems

Résumé

La programmation par contraintes offre des langages
et des outils permettant de résoudre des problèmes
à forte combinatoire et à la complexité élevée tels
que ceux qui existent en vérification de programmes.
Dans cette thèse nous résolvons deux familles de pro-
blèmes de la vérification de programmes. Dans chaque
cas de figure nous commençons par une étude for-
melle du problème avant de proposer des modèles
en contraintes puis de réaliser des expérimentations.
La première contribution concerne un langage réac-
tif synchrone représentable par une algèbre de dia-
gramme de blocs. Les programmes utilisent des flux in-
finis et modélisent des systèmes temps réel. Nous pro-
posons un modèle en contraintes muni d’une nouvelle
contrainte globale ainsi que ses algorithmes de filtrage
inspirés de l’interprétation abstraite. Cette contrainte
permet de calculer des sur-approximations des valeurs
des flux des diagrammes de blocs. Nous évaluons
notre processus de vérification sur le langage FAUST,
qui est un langage dédié à la génération de flux au-
dio. La seconde contribution concerne les systèmes
probabilistes représentés par des chaînes de Markov
à intervalles paramétrés, un formalisme de spécifica-
tion qui étend les chaînes de Markov. Nous proposons
des modèles en contraintes pour vérifier des propriétés
qualitatives et quantitatives. Nos modèles dans le cas
qualitatif améliorent l’état de l’art tandis que ceux dans
le cas quantitatif sont les premiers proposés à ce jour.
Nous avons implémenté nos modèles en contraintes
en problèmes de programmation linéaire en nombres
entiers et en problèmes de satisfaction modulo des
théories. Les expériences sont réalisées à partir d’un
jeu d’essais de la bibliothèque PRISM.

Abstract

Constraint programming offers efficient languages and
tools for solving combinatorial and computationally
hard problems such as the ones proposed in program
verification. In this thesis, we tackle two families of pro-
gram verification problems using constraint program-
ming. In both contexts, we first propose a formal evalu-
ation of our contributions before realizing some exper-
iments. The first contribution is about a synchronous
reactive language, represented by a block-diagram al-
gebra. Such programs operate on infinite streams and
model real-time processes. We propose a constraint
model together with a new global constraint. Our new
filtering algorithm is inspired from Abstract Interpre-
tation. It computes over-approximations of the infi-
nite stream values computed by the block-diagrams.
We evaluated our verification process on the FAUST
language (a language for processing real-time audio
streams) and we tested it on examples from the FAUST
standard library. The second contribution considers
probabilistic processes represented by Parametric In-
terval Markov Chains, a specification formalism that
extends Markov Chains. We propose constraint mod-
els for checking qualitative and quantitative reachabil-
ity properties. Our models for the qualitative case im-
prove the state of the art models, while for the quan-
titative case our models are the first ones. We imple-
mented and evaluated our verification constraint mod-
els as mixed integer linear programs and satisfiability
modulo theory programs. Experiments have been real-
ized on a PRISM based benchmark.
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modélisation par contraintes, résolution par
contraintes, vérification de programmes, interpré-
tation abstraite, vérification de modèles.
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Constraint Modelling, Constraint Solving, Program Ver-
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