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Introduction

In the twentieth century, the founding fathers of quantum mechanics explored the implications
of their theory by designing gedanken experiments. In recent years, continuous improvement of
the experimental manipulation of individual quantum systems has opened the way to exciting
research, both on blackboards and in laboratories, and even towards field experiments.

From the fundamental point of view, this progress allows to test the intrinsic quantum na-
ture of microscopic systems, and how this connects to other scientific fields, such as metrol-
ogy [GLM06]. Many of the gedanken experiments have now been performed experimentally.
This includes tests of wave-particle duality, wave-function collapse, quantum nonlocality, etc.
[Zei99, BLS+13, Gis14]

In a more applied direction, the manipulation of individual quantum systems is the basis for
quantum information processing: when an information content is associated with transforma-
tions and measurements of quantum systems, it offers a new paradigm, full of potentialities, to
information theory. This leads to quantum random number generation, quantum computing,
quantum communication, including quantum teleportation and quantum cryptography, etc.
[NC10]

One of the promises of quantum information is the realization of a quantum internet [Kim08]:
quantum communication links would allow to share quantum states between the nodes —
quantum computers— of the network [GT07]. Quantum cryptography and quantum telepor-
tation would open the way to absolutely secure transmission of secret messages and faithful
transfer of unknown quantum states. To exploit the potentialities of such a network, one needs
to be able to produce quantum entanglement [HHHH09], distribute it across the network, ma-
nipulate and detect it in an efficient way. In this case, several theoretical and experimental
developments strengthen the confidence of the scientific community in a future full-scale re-
alization; this includes quantum error correction [BDSW96], repeater architecture [BDCZ98],
purification techniques [PSBZ01], and the ability to transfer the quantum state from a system
to another [CZKM97, MK04, TTH+05].

This last possibility allows to exploit “the best of both worlds”: for example, matter systems for
quantum computation, and light particles for quantum communication. Indeed, photons are
the preferred flying quantum bit: because they interact weakly with the environment, and thus
suffer from little decoherence and loss, their quantum state can in principle be transmitted with
high fidelity and efficiency through kilometers of free space or optical fiber. These two media
constitute competing approaches for the realization of a long-range quantum network, respec-
tively via satellites or terrestrial nodes. Quantum optics [MW95] thus provides a powerful way
to implement long-distance quantum communication protocols. One key element to this end
is the ability to produce, transmit, manipulate and detect quantum states of light, in particular
photonic quantum entanglement.

Our work lies in the context of experimental quantum optics in optical fibers at telecommunica-
tion wavelengths, in view of quantum communication applications. Techniques for producing
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single photons and entangled photons become standard; sources of photon pairs are mainly
based on spontaneous parametric down-conversion in nonlinear waveguides [KR97]. Optical
fibers profit from the investments of the telecommunication industry [Agr97], offering losses
as low as 0.2 dB/km. Single-photon detectors still suffer from lower efficiency and higher
noise than their visible-wavelength counterparts, but avalanche photodiodes [RGZG98] and
superconducting single-photon detectors [GOC+01] both offer promising characteristics. In
this work, we focus mainly on the way quantum states can be manipulated. In principle, quan-
tum information can be encoded in various photonic degrees of freedom, such as polarization
[ADR82, KMW+95], position and momentum [RT90a], angular momentum [MVWZ01], and
energy-time [Fra89]. Since there are competing architectures and physical implementations of
quantum protocols, flexibility in the way quantum information is encoded is most welcome.

The photon polarization provides a natural two-dimensional system and is easily manipulated
with phase plates, polarizers and polarizing beam splitters. It has thus been extensively used
in quantum optics. However it is not very well suited for fiber-optic implementations: be-
cause of fiber polarization-dependent loss and birefringence implying polarization-mode dis-
persion, it requires complex compensation methods and limitations to avoid depolarization
and thus decoherence. Single-mode telecommunication optical fibers also impose the spatial
wave-function of the photon, ruling out the possibility to use momentum and angular mo-
mentum. On the other hand, the energy-time degree of freedom is particularly interesting for
long-distance quantum communication at telecommunication wavelengths. Easily produced
and detected, it is robust against decoherence, as it propagates essentially undisturbed through
optical fibers over large distances.

The traditional approach to manipulate energy-time entangled photons is based on the notion
of time bin: quantum information is encoded in the relative phase between distinct spatio-
temporal paths, which interfere via Mach–Zehnder interferometers. Time-bin encoding has
become a powerful platform to investigate quantum entanglement, yielding seminal works
such as long-distance violation of Bell inequalities [TBZG98, MDRT+04], entanglement-based
quantum key distribution [RBG+00], and quantum teleportation [DRMT+04], a fundamental
building block of quantum networks.

The aim of our work is to demonstrate an alternative approach to manipulate energy-time
entangled photons in optical fibers at telecommunication wavelengths. We investigate and
implement an original method for their manipulation by building on proven techniques for
their production, transmission and detection —namely nonlinear waveguides, optical fibers
and single-photon detectors, respectively. The photon pairs produced by a parametric down-
conversion source are sent through independent electro-optic phase modulators, which act as
high-dimensional frequency beam splitters, transforming the photonic states in the frequency
domain. We then use frequency filters to discriminate the photons’ frequencies. Such exper-
imental methods, whose classical origin can be traced back to coherent communication, have
been previously used with attenuated coherent states as approximations of single photons
[MMG+99b, MMGR99, MMG+99a, DMG+01, MSM+02, GMS+03, BMMP07, CPPM08].

In the present work, we aim to show that frequency-bin entanglement provides an interesting
alternative platform for quantum communication. Our main experimental results towards this
goal are the obtaining of high-visibility two-photon interference patterns allowing Bell inequal-
ity violations [OCN+10, OMW+12, OWPH+14]. Our method provides decisive advantages:
high dimensionality, use of standard optical and optoelectronic components, inherent stability
and robustness, no need for active stabilization in laboratory conditions, visibilities comparable
to the highest obtained using other degrees of freedom, etc. It has however a few drawbacks,
mainly high losses and the somewhat complexity of the radio-frequency system which is not
standard in quantum optics. Exploiting the high dimensionality is also challenging.
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Our work is the result of a collaboration between teams from Université libre de Bruxelles (OPÉRA-
Photonique and Laboratoire d’Information Quantique) and Université de Franche-Comté (Laboratoire
d’Optique of Institut FEMTO-ST).

This dissertation is organized as follows. The first chapter introduces the basics of quantum
entanglement and quantum communication, briefly describing the useful tools and concepts.
The second chapter develops the theory behind the notion of frequency-bin entanglement, and
details its experimental implementation. The third chapter lists uses of the method, including
Bell inequality violation, exploration of quantum plasmonics, quantum key distribution, and
other potential applications. Finally, we present research in experimental quantum optics at
telecommunication wavelengths not directly related to frequency-bin entanglement. Chapter 4
describes an integrated source of polarization-entangled photons, while chapter 5 describes an
experimental investigation on the nature of the quantum state.



Chapter 1

Quantum preliminaries

The birth of quantum information is based on the fact that “information is physical”, i.e. that
“it is always tied to a physical representation”: “this ties the handling of information to all
the possibilities and restrictions of our real physical world”, as highlighted by Rolf LANDAUER

[Lan96]. Since a physical system is necessary to carry information, the latter is indeed subjected
to the physical laws that govern the former. For microscopic systems, quantum rules apply.

1.1 Quantum rules

We start by enunciating the postulates of quantum mechanics, developed in the first part of the
twentieth century. Interpretation of these axioms, dominated by the Copenhagen interpretation
of quantum physics established in the years 1925–1927, is still an active research topic.

Postulate 1 At a given time t, the quantum state of a system is defined by a normalized state
|ψ(t)〉 belonging to the state space E .

Postulate 2 Every measurable physical quantity A is described by an operator A acting in E ;
this operator is an observable.

Postulate 3 The result of a measurement of physical quantity A is necessarily an eigenstate
of the corresponding observable.

Postulate 4 When the physical quantityA is measured on a system in state |ψ〉, the probability
P(an) to obtain as a result the non-degenerate eigenvalue an is given by P(an) =

∣∣〈un|ψ〉
∣∣2 =

〈ψ|Pn|ψ〉, where |un〉 is the corresponding eigenstate and Pn = |un〉〈un| is a projector. This can
be generalized to degenerate eigenvalues and to continuous spectra.

Postulate 5 Immediately after a measurement of the physical quantity A on a system in
state |ψ〉, the system is projected into the eigenstate corresponding to the measured eigenvalue
(wave-function collapse).

4
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Postulate 6 The time evolution of |ψ(t)〉 is governed by the Schrödinger equation ih̄ d
dt |ψ(t)〉 =

H(t)|ψ(t)〉, where H(t) is the observable associated with the total energy of the system, i.e. its
Hamiltonian.

Quantum information theory and applications are based on these postulates and their conse-
quences.

Because of the linearity of quantum mechanics, if |ψ0〉 and |ψ1〉 are state vectors, then the linear
combination |ψ〉 = c0|ψ0〉+ c1|ψ1〉, with c0, c1 ∈ C, |c0|2 + |c1|2 = 1, is also a state vector: this
is the superposition principle.

In quantum information, we usually work in discrete Hilbert spaces of finite dimension. For
example, in dimension 2, we choose a computational basis

{
|0〉, |1〉

}
, with 〈i|j〉 = δij, i, j ∈{

0, 1
}

. A state vector |ψ〉 = c0|0〉 + c1|1〉 is said to be a quantum bit, or qubit. Because an
absolute phase has no physical meaning, it can always be put in the form |ψ〉 = cos(θ/2)|0〉+
eiϕ sin(θ/2)|1〉, θ, ϕ ∈ R, corresponding to its representation on the Bloch sphere with spherical
coordinates 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. When a measurement is done in the computational
basis, the probability to obtain the result “0” —respectively “1”— is P0 = |c0|2 —respectively
P1 = |c1|2. We can associate to each result an information content, such as in quantum random
number generation, in this context the most straightforward application of quantum theoretical
concepts, in particular the probabilistic nature of quantum measurements.

Another consequence of the linearity of quantum mechanics is the no-cloning theorem [WZ82,
Die82]. This no-go theorem states the impossibility to create identical copies of an arbitrary
unknown quantum state: there exists no transformation U such that U

(
|∅〉 ⊗ |ψ〉

)
= |ψ〉 ⊗ |ψ〉,

for all |ψ〉, where |∅〉 is some initial state, and⊗ represents the tensor product —an explicit no-
tation we will omit in this document, see appendix A. Suppose indeed that such a transforma-
tion can clone states |0〉 and |1〉, i.e. that we have U

(
|∅〉|0〉

)
= |0〉|0〉 and U

(
|∅〉|1〉

)
= |1〉|1〉.

Then, by linearity, U
(
|∅〉
[
c0|0〉+ c1|1〉

])
= c0|0〉|0〉+ c1|1〉|1〉 6=

[
c0|0〉+ c1|1〉

][
c0|0〉+ c1|1〉

]
for arbitrary c0 and c1 with |c0|2 + |c1|2 = 1. Note that though we used pure states and unitary
evolution, the demonstration is general. Thus, due to the existence of non-orthogonal states,
there is a fundamental impossibility to clone arbitrary unknown quantum states. This has im-
portant consequences in quantum information; for example, this limitation is necessary in the
field of quantum cryptography.

Quantum information is also constraint by the Heisenberg uncertainty relation, which states
that ∆A ∆B ≥ 1

2

∣∣〈[A, B
]〉∣∣, where

[
A, B

]
= AB − BA is the commutator of observables A

and B (operators Ô are noted O, see appendix A), ∆O = (〈O2〉 − 〈O〉2)1/2, with mean value〈
O
〉
= Tr

(
ρO
)
, Tr the trace operation and ρ the density matrix of the state. We distinguish

between pure states, for which ρ = |ψ〉〈ψ|, and mixed states, for which ρ = ∑n pn|ψn〉〈ψn|, the
system being in state |ψn〉 with probability pn. No state can simultaneously be eigenstate of
two non-commutable observables; there exist non-compatible properties, which cannot have a
definite value simultaneously. Such a fundamental quantum indeterminacy —a term preferred to
the historic term quantum uncertainty— has important consequences in the fields of quantum
information and foundations of quantum physics.

1.2 Quantum entanglement

Quantum entanglement has been the subject of countless important theoretical and experimen-
tal studies, and this concept lies more than ever at the heart of ongoing research in quantum
information and foundations of quantum physics. It is perhaps the most fascinating aspect of
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quantum mechanics, and it is used both for fundamental tests of physical principles and for
applications such as quantum cryptography.

A multi-partite state is said to be entangled if it cannot be decomposed in a tensor product of
single-partite states, i.e. if it is non-separable. Here we consider the simplest, two-dimensional
and bi-partite, case, for which the arbitrary state

|ΨAB〉 = c00|0〉|0〉+ c01|0〉|1〉+ c10|1〉|0〉+ c11|1〉|1〉 , (1.1)

with |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1, cannot in general be written as

|ΨAB〉 = |ψA〉|φB〉 , (1.2)

where A and B refer to two spatially separated protagonists, commonly referred to as ALICE

and BOB. Bell states are the four maximally-entangled two-dimensional bi-partite states:

|Φ±〉 =
1√
2

(
|0〉|0〉 ± |1〉|1〉

)
, (1.3)

|Ψ±〉 =
1√
2

(
|0〉|1〉 ± |1〉|0〉

)
. (1.4)

In these cases each part of the global state is in a maximally mixed state, ρA = ρB = 1/2, where
ρA = TrB ρAB and ρB = TrA ρAB are the reduced density matrices (obtained by partial tracing)
of ρAB = |ΨAB〉〈ΨAB|. It is worth noting that such an entangled state can be decomposed in
arbitrary bases of the two-dimensional Hilbert space, e.g. |Ψ−〉 = 1√

2

(
|0〉|1〉− |1〉|0〉

)
no matter

which basis {|0〉, |1〉} is chosen.

In the following sections we analyze the profound implications of the existence of such states
in quantum mechanics, starting from the well-known EPR paradox, dating back to 1935.

1.2.1 The Einstein–Podolsky–Rosen paradox

In 1935, Albert EINSTEIN, Boris PODOLSKY and Nathan ROSEN (EPR) argued that quantum
mechanics is an incomplete theory [EPR35]. Their argument is based on two “reasonable”
concepts that, in their opinion, a physical theory must verify.
– First, the physical reality hypothesis. If, without perturbing in any way the state of a system

(localized in space-time), we can predict with certainty (with unit probability) the value of
a physical quantity of this system, then there exists an element of reality associated to this
physical quantity. Measurement results on the system are entirely determined by elements
of reality, the properties carried on by the system. A complete theory must include all these
values.

– Second, the local relativistic causality assumption. An action cannot instantaneously influence
distant systems, i.e. it cannot have consequences in systems separated by a spacelike interval
of spacetime.

Using these concepts —and the notion of entanglement— EPR enunciate a paradox, to which
we give a version due to David BOHM and Yakir AHARONOV [BA57].
– Particles A and B, localized in spatially separated regions, are in a Bell state, e.g. |ΨAB〉 =
|Ψ−〉, defined by (1.4).

– Alice measures particle A in basis
{
|0b0〉, |1b0〉

}
. If she gets result “0”, the system collapses

to the state |ΨAB〉 = |0b0〉|1b0〉 (and similarly if she gets result “1”).
– Alice can thus predict with certainty the result that Bob would obtain when measuring his

particle in basis
{
|0b0〉, |1b0〉

}
, without doing anything that could perturb it. Thus particle B

possesses the following element of reality: the property 1b0.
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– Due to the locality hypothesis, the action in A cannot have created the element of reality of
particle B. Thus particle B must have possessed this property before, and independently to,
measurement in A.

– However Alice could have chosen to measure her particle in another, non-orthogonal, basis,{
|0b1〉, |1b1〉

}
, and get a result, e.g. “0”. In that case, she could have concluded that the second

particle is in the state |1b1〉.
– It follows that, before Alice’s measurement, particle B should possess both property 1b0 and

property 1b1. Since these properties are incompatible, this conclusion is in contradiction with
quantum formalism.

EPR thus conclude that quantum theory is an incomplete theory, which should be supple-
mented or replaced by another theory. An alternative way to deal with the paradox is to deny
one —or both— of its hypotheses, i.e. deny —against intuition— the notion of reality and/or
the notion of locality. For almost three decades, it seemed to be a philosophical question with-
out a unique possible answer, and most scientists just proceeded with the new theory and its
fruitful applications. An important theoretical discovery changed that fact in 1964.

1.2.2 Bell inequalities

The powerful contribution of John Stewart BELL was to show that the predictions of any (hy-
pothetical) local realist model (in the sense of EPR) are inconsistent with those of quantum
mechanics [Bel64].

In order to demonstrate this, we consider measurements on entangled states |ΨAB〉. In such a
case, the joint probability P(a b|x y) of Alice obtaining result a and Bob obtaining result b given
respective measurement parameters x and y cannot be written as a product of individual prob-
abilities, i.e. P(a b|x y) 6= P(a|x) P(b|y). If Nature is intrinsically local realist, then correlations
P(a b|x y) must be an average of more fundamental expressions. We therefore introduce hid-
den variables λ (a set of parameters “hidden” to presently known physics and giving a more
complete description of the physical state of the system), such that

P(a b|x y) =
∫

dλ ρ(λ) P(a b|x y, λ) (1.5)

=
∫

dλ ρ(λ) P(a|x, λ) P(b|y, λ) , (1.6)

for a given probability distribution ρ(λ) corresponding to the state |ΨAB〉:
∫

dλ ρ(λ) = 1. The
second line is obtained if we consider local parameters, i.e. if we make the hypothesis

P(a b|x y, λ) = P(a|b x y, λ) P(b|x y, λ) (1.7)
= P(a|x, λ) P(b|y, λ) . (1.8)

The first equality corresponds to the definition of conditional probabilities, while the second
equality is obtained with the locality hypothesis: the choice and result of Bob’s measurement
(respectively Alice) cannot influence the result of Alice (respectively Bob).

Here we prove a version of the Bell theorem directly applicable to two-dimensional bi-partite
states, the CHSH inequality, due to John CLAUSER, Michael HORNE, Abner SHIMONY and
Richard HOLT (CHSH) in 1969 [CHSH69]. In the two-dimensional case, results a and b can
take two distinct values, + and −. We define the correlator

C(x y) = P(+ + |x y) + P(−− |x y)− P(+− |x y)− P(−+ |x y) , (1.9)
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with −1 ≤ C(x y) ≤ 1. Using local parameters λ, we get

C(x y) =
∫

dλ ρ(λ) [ P(+|x, λ) P(+|y, λ) + P(−|x, λ) P(−|y, λ)

−P(+|x, λ) P(−|y, λ)− P(−|x, λ) P(+|y, λ) ] (1.10)

=
∫

dλ ρ(λ)C(x, λ)C(y, λ) . (1.11)

The last expression uses the following definitions:

C(x, λ) = P(+|x, λ)− P(−|x, λ) , C(y, λ) = P(+|y, λ)− P(−|y, λ) , (1.12)

with −1 ≤ C(x, λ) ≤ 1 and −1 ≤ C(y, λ) ≤ 1.

We suppose that both Alice and Bob have the choice between two measurements, x0, x1 and
y0, y1. Under the assumption that these choices are not correlated with the parameters λ, we
can write: ∣∣C(x0 y)± C(x1 y)

∣∣ ≤ ∫
dλ ρ(λ)

∣∣C(x0, λ)± C(x1, λ)
∣∣× ∣∣C(y, λ)

∣∣
≤

∫
dλ ρ(λ)

∣∣C(x0, λ)± C(x1, λ)
∣∣ . (1.13)

Thus, ∣∣C(x0 y0) + C(x1 y0)
∣∣+ ∣∣C(x0 y1)− C(x1 y1)

∣∣
≤
∫

dλ ρ(λ)
∣∣C(x0, λ) + C(x1, λ)

∣∣+ ∫ dλ ρ(λ)
∣∣C(x0, λ)− C(x1, λ)

∣∣ . (1.14)

Because of definitions (1.12), the following inequality is verified:∣∣C(x0, λ) + C(x1, λ)
∣∣+ ∣∣C(x0, λ)− C(x1, λ)

∣∣ ≤ 2 . (1.15)

Combining (1.14) and (1.15), we obtain the CHSH inequality

|S| ≤ 2 , with S = C(x0 y0) + C(x0 y1) + C(x1 y0)− C(x1 y1) . (1.16)

It is worth emphasizing that the CHSH inequality should be verified by any local realist model,
even if it includes some local randomness. On the other hand, quantum mechanics does allow
the violation of the inequality. To show this, let us use a Bell state, e.g. |Ψ−〉. We consider local
measurements projecting onto the states

|θ〉 = cos θ |0〉+ sin θ |1〉 , (1.17)

such that
P(+ + |α β) =

∣∣〈α|〈β|Ψ−〉∣∣2 . (1.18)

We obtain

P(+ + |α β) = P(−− |α β) =
1
2

sin2(α− β
)

, (1.19)

P(+− |α β) = P(−+ |α β) =
1
2

cos2(α− β
)

. (1.20)

With (1.9), this implies that
C(α β) = − cos

[
2(α− β)

]
. (1.21)

Selecting α1 = 0, β0 = π/8, α0 = π/4, β1 = 3π/8, we get

|S| = 2
√

2 ≈ 2.8284 > 2 . (1.22)
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The value 2
√

2, obtained with any Bell state, is the maximum allowed by quantum mechanics
and is known as the Tsirelson’s bound [Cir80].

Another inequality, due to John CLAUSER and Michael HORNE in 1974 [CH74], quoted here as
the CH74 inequality, can be derived from the CHSH inequality. Using P(+|x) = P(+ + |x y) +
P(+ − |x y), P(+|y) = P(+ + |x y) + P(− + |x y), and P(+ + |x y) + P(− − |x y) + P(+ −
|x y) + P(−+ |x y) = 1, (1.9) can be rewritten

C(x y) = 4P(+ + |x y)− 2P(+|x)− 2P(+|y) + 1 , (1.23)

leading, with (1.16), to

P(+ + |x0 y0) + P(+ + |x0 y1) + P(+ + |x1 y0)− P(+ + |x1 y1) ≤ P(+|x0) + P(+|y0) . (1.24)

As will be seen in section 3.1, this inequality can be used in imperfect experimental tests of Bell
inequalities.

1.2.3 Bell tests

The Bell theorem opens the way to experimental tests of local realism, leading to results known
as violations of Bell inequalities. Figure 1.1 shows a typical configuration for a CHSH-type Bell
test.

Figure 1.1: Clauser–Horne–Shimony–Holt Bell test. A source S produces a bi-
partite entangled state, a part being directed to Alice (A) and the other to Bob
(B). A and B locally analyze their particle: they perform a measurement with
respective binary choice x0, x1 and y0, y1, registering a “click” in detector D+

or D−. A and B events are then compared to evaluate the quantities C(xi yj),
i, j ∈

{
0, 1
}

, and therefore the Bell parameter S.

The practical goal of a Bell test is to obtain an experimental estimate of the Bell parameter S
(1.16):

Sexpt = E(x0 y0) + E(x0 y1) + E(x1 y0)− E(x1 y1) , (1.25)

where estimates E(xi yj), with i, j ∈
{

0, 1
}

, of the correlators (1.9) are

E(xi yj) =
N++ + N−− − N+− − N−+
N++ + N−− + N+− + N−+

, (1.26)

omitting mentions of xi yj for clarity of notation. Quantities Nab, a, b ∈ {+,−}, are the number
of coincident events —detections common to both Alice in a and Bob in b— registered in a
given time. The running time of the experiment has to be large enough for the estimation of all
P(a b|x y) be statistically accurate, allowing the violation of Bell inequalities by a given number
of standard deviations.

Acquiring enough statistics is not the only concern in a Bell test: one must avoid loopholes, and
be careful in the analysis of the experiment.
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Because of inefficiencies, an experimenter does not collect all the possible outcomes: his mea-
surement apparatus does not produce a result for each particle fired from the source. If the de-
tection probability of each channel falls below a given threshold (equal to η = 2

√
2− 2 ≈ 82.8%

for the CHSH inequality [GM87]), then a fair sampling assumption —an assumption that some
local realist models could break— is needed for the violation of the Bell inequality to be pre-
served: this is the detection loophole.

In order to avoid another important loophole, the locality loophole, one must ensure that Alice
and Bob’s measurements are separated by a spacelike interval of spacetime, so that special
relativity forbids any information transfer between Alice and Bob during the measurement
process. If this is not the case, one could imagine a local realist explanation involving such an
information transfer.

In the derivation of the Bell inequality, although the parameters λ can include the whole past
of the whole universe, the choices x and y must be independent of λ. Choices of measurement
settings must thus be made —randomly— after the emission and separation of the particles,
“just before” the measurement. This opens the so-called —almost provocatively— free will
loophole. In a kind of desperate solution, one could abandon the notion of free will to preserve
local realism in a “super-deterministic” theory.

Bell tests have been gradually refined since the first one, performed by Stuart J. FREEDMAN

and John F. CLAUSER in 1972 [FC72]. The experiment of Alain ASPECT and his collaborators
is famous for closing the locality loophole while testing the CHSH inequality with pseudo-
random measurement parameters [ADR82]. Since then, several experiments have closed the
locality loophole, enhancing randomness and independence of Alice and Bob [WJS+98], or
even performing a “before–before” experiment, where the two protagonists, traveling fast in
opposite directions, make their own measurement before the other in their particular frame
[SZGS02, SZGS03]. Most of the experimental demonstrations make use of photons, which are
easily transferred. On the other hand, they are not easily detected, as single-photon detec-
tors’ efficiencies remain relatively poor; for photons, the detection loophole has been closed
only recently by using a particular Bell inequality involving non-maximally entangled states
[GMR+13]. Bell tests have also been performed with quantum states of material systems —see
e.g. [RKM+01, AWB+09]— easier to detect, but more difficult to transmit at high distances.

A decisive Bell test closing simultaneously all the main loopholes has yet to be conducted,
although repeated experimental violations of Bell inequalities in various circumstances make
it hard to believe that a natural “conspiracy” would be at work to make us believe that the
world is not local realist. These violations seem to compel us to abandon the notion of physical
reality or the idea of locality, or both. Because quantum correlations —“spooky actions at a
distance” in Einstein’s words— seem to appear outside space-time, without propagating from
one point to the next in space, violations of Bell inequalities are often quoted as evidence of
quantum nonlocality [Gis14].

As nonlocal correlations do exist, they could be used to communicate information. However,
the no-communication theorem states that a local measurement —on one subsystem of an en-
tangled state— cannot be used to directly communicate information to a separate observer.
Indeed, the correlations P(a b|x y) cannot be used to communicate because the marginal distri-
butions do not depend on the input from the other protagonist:

∑
b

P(a b|x y) = P(a|x) and ∑
a

P(a b|x y) = P(b|y) , (1.27)

obtained by partial tracing in the quantum formalism. Due to the intrinsic random nature of
quantum measurements, nonlocal correlations do not lead to instantaneous communication.
These no-signaling conditions impose strong constraints but, as we shall see, they do not rule
out entanglement as a powerful way to transmit quantum information.
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1.3 Quantum optics and quantum communication

1.3.1 Photons

Photons are the preferred flying qubit because they can travel long distances without interact-
ing with the environment, implying low loss and low decoherence. The field of quantum optics
[MW95] is thus closely related to quantum information and communication [NC10]. The abil-
ity to create, manipulate, and transmit the quantum state of photons has enabled applications
such as quantum cryptography as well as foundational experiments concerning, for instance,
quantum nonlocality and quantum teleportation. Hereafter, we briefly introduce the basic no-
tions of quantum optics needed to describe photonic implementations of interest for quantum
communication.

A photon is an excitation of the quantized electromagnetic field. A Fock state |n〉 contains ex-
actly n photons. We define creation and annihilation operators a† and a by the relations

a†|n〉 =
√

n + 1|n + 1〉 , a|n〉 =
√

n|n− 1〉 , a|0〉 = 0 , (1.28)

where |0〉 is the vacuum state, for which n = 0. N = a†a is the photon number observable.
A Fock state can in principle be obtained from the vacuum by adding photons one by one:
|n〉 = (a†)n/

√
n! |0〉. However, in practice, Fock states are very difficult to produce.

Fock states form a basis allowing to describe all the states of the electromagnetic field. The
eigenstates of the annihilation operator, called coherent states and denoted |α〉, can be written

|α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 . (1.29)

The mean number and the variance of photons are respectively 〈n〉 = |α|2 and (∆n)2 = 〈n〉.
The probability to find n photons in the field is

pn =
〈n〉n

n!
e−〈n〉 , (1.30)

a Poisson distribution. The light emitted by a long-coherence laser operating largely above
threshold is well approximated by a coherent state [GC08]. Lasers are often used as convenient
sources of “single photons”, with 〈n〉 < 1, typically n = 0.1 or 0.2. This however presents
important drawbacks, since pn>0 < 1 and pn>1 > 0, leading to inefficiencies and possible se-
curity loopholes in applications such as quantum cryptography. Several approaches towards
more efficient sources of single photons (Fock states with n = 1) are undertaken. This in-
cludes nitrogen-vacancy centers in diamond [KMZW00, BHK+10], semiconductor junctions
[YKS+02], quantum dots [MKB+00, BLC+11], etc. [EFMP11]

Photon-pair sources are mainly based on spontaneous parametric down-conversion in a second-
order (χ(2)) nonlinear crystal or waveguide [MW95]. In this process, photons of a (pulsed
or continuous-wave) long-coherence pump laser split into two daughter photons, tradition-
ally called signal (s) and idler (i) photons. Momentum and total energy are conserved; be-
cause of energy conservation, photons are entangled in energy-time. In type I conversion,
both photons have the same polarization; in type II, photons can be polarization-entangled
[KMW+95, MIH+10]. Photon pairs can also be produced using processes related to the third-
order (χ(3)) nonlinearity. Recent research focuses on integration of photon-pair sources, see
chapter 4. Note that these processes are probabilistic, so that the produced state contains vac-
uum and multiple pairs; one has to work in a regime where multi-pair emission is negligible.
Note finally that photon-pair sources can be used as heralded single-photon sources.
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1.3.2 Quantum interference

Quantum states of light can be manipulated with standard optical components. Actions of lin-
ear optical components obey the correspondence principle: photon probability amplitudes prop-
agate as complex optical fields in coherent optics. Let us consider a simple and very useful
linear optical component, the beam splitter (BS) schematized in figure 1.2.

Figure 1.2: Beam splitter with two inputs (1 and 2) and two outputs (3 and 4).

An incident light beam is partially transmitted and partially reflected. In a quantized descrip-
tion, it corresponds to the following unitary transformation UBS acting on the annihilation op-
erators: (

a3
a4

)
= UBS

(
a1
a2

)
, UBS =

(
c31 c32
c41 c42

)
, (1.31)

where ai is the annihilation operator of mode i. The complex coefficients cij obey amplitude
and phase relations for the transformation to be unitary —implying conservation of energy,
and thus of the number of photons in linear optics. Assuming spatial symmetry, we can note
c31 = c42 = r and c32 = c41 = t, with |r|2 + |t|2 = 1 and ϕr = ϕt + π/2.

A single photon incident on the beam splitter (e.g. in mode 1) ends up in a spatial superposition
of modes 3 and 4:

|1〉1|0〉2 = a†
1|0〉1|0〉2|0〉3|0〉4 =

(
ra†

3 + ta†
4
)
|0〉1|0〉2|0〉3|0〉4 = r|1〉3|0〉4 + t|0〉3|1〉4 , (1.32)

where |n〉i denotes the presence of n photons in mode i. If the beam splitter is “50/50”, i.e.
when |r|2 = |t|2 = 0.5, the photon is measured in output 3 or 4 with equal probability. Such a
setup can be used for quantum random number generation.

When a single photon is incident on each input, we readily obtain

|1〉1|1〉2 =
√

2rt|2〉3|0〉4 +
(
r2 + t2)|1〉3|1〉4 +√2rt|0〉3|2〉4 . (1.33)

In the case of a 50/50 beam splitter, r2 + t2 = 0, and the photons always quit the beam splitter
through the same output. This two-photon interference effect is known as a Hong–Ou–Mandel
dip [HOM87]: experimentally it is detected as a drop in coincident detections in modes 3 and 4
for a delay between modes 1 and 2 corresponding to a simultaneous arrival of the photons at
the beam splitter. The temporal width of the dip is linked to the photons’ coherence time. When
the photons arrive on the beam splitter at different times, they become distinguishable, and no
interference occurs. This is also valid if the photons are distinguishable in other characteristics,
such as wave profile, wavelength, or polarization. The visibility of the dip is related to the
degree of indistinguishability of the two photons.

Because a beam splitter creates spatial coherent quantum superpositions, it can be used to
produce single-photon interferences. The setup depicted in figure 1.3 is a Mach–Zehnder interfer-
ometer (MZI). It is made of two consecutive beam splitters, the paths being recombined on the
second beam splitter with mirrors; optical-fiber and waveguide-integrated versions of MZIs
also exist.

A photon can travel along paths A and B, acquiring phase ϕA or ϕB, respectively. Applying
(1.31) two times, one obtains that the probabilities of registering the photon at detectors D+
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Figure 1.3: Mach–Zehnder interferometer. A source S produces a single pho-
ton, which is directed by beamsplitters and mirrors through two distinct
paths A and B, with phase difference ϕ = ϕA− ϕB. The setup exhibits single-
photon interference: the probability of registering the photon at detector D+

or D− depends on ϕ.

and D− (given a photon is emitted by the source and considering no-loss components) are
respectively

P+ = 1− 4|r|2|t|2 cos2(ϕ/2) and P− = 4|r|2|t|2 cos2(ϕ/2) . (1.34)

These probabilities depend on ϕ = ϕA− ϕB: this is the experimental signature of single-photon
interference.

1.3.3 Time-bin encoding

The setup of figure 1.3 can be used to encode and transmit quantum information, if Alice con-
trols the source and one arm of the interferometer, and Bob controls the detectors and the other
arm of the interferometer. However, the large-scale implementation of the setup is impracti-
cable. A sub-wavelength stabilization of the interferometer is needed for the phases ϕA and
ϕB to be fixed with precision. This is impossible if Alice and Bob are separated by kilometers
of free space or optical fiber: small changes in constraints applied to one or the other channel
imply great variations of ϕA and ϕB, because wavelengths are of the order of the micrometer
and length variations will typically be several millimeters.

To get rid of this problem, researchers have proposed to use MZIs to produce time bins, see e.g.
[RGG+98]. A photon incident on a 50/50 MZI of time unbalance τ and phase difference ϕ ends
up in the temporal superposition:

|ψ〉 = 1√
2

(
|0〉+ eiϕ|1〉

)
, (1.35)

where the states |0〉 and |1〉 correspond to a photon localized at different positions in the output
channel, i.e. which should be detected at respective times t and t+ τ. We consider here only one
spatial output, leading to a 50% encoding efficiency with the basic setup of figure 1.3. Quantum
information can be encoded in the relative phase ϕ. A quantum communication setup based
on time bins is presented in figure 1.4.

In the present case, Alice controls the source and the first MZI, while Bob controls the detectors
and the second MZI. The MZIs can be stabilized and controlled with precision in Alice’s and
Bob’s labs. The two parts of the superposition (1.35) now travel along the same physical chan-
nel with a delay that can be made very small; they thus encounter approximately the same con-
ditions —which significantly vary typically in nanoseconds— implying very low decoherence.
We note that the spacing τ between the time bins is ultimately limited by the time resolution
of the single-photon detectors; the photons whose arrival time cannot be distinguished by the
detectors belong to the same time bin.
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Figure 1.4: Single-photon interference in the spatio-temporal domain. A
source S emits a single photon at time t0. It propagates through consecu-
tive MZIs, of same time unbalance τ and respective phase differences ϕA and
ϕB. The photon is detected in detector D+ or D− at time t, t + τ or t + 2τ,
with t = t0 + t∗, t∗ being the overall transmission time of the line for the
short paths. The intermediate case exhibits single-photon interference.

A photon emitted at time t0 by the source can reach detector D+ or D− by following the short
path of each interferometer, or the long path of each interferometer, or one short path and
one long path. In this last case, for same time unbalances τ, it is impossible to know if the
combination was short–long or long–short. This indistinguishability permits single-photon
interference. The probabilities of registering the photon in detectors D+ or D− at times t, t + τ
and t + 2τ, with t = t0 + t∗, where t∗ is the overall transmission time of the line for the short
paths, are then:

P±(t) = P±(t + 2τ) =
1
8

, P±(t + τ) =
1
4
[
1± cos

(
ϕA − ϕB

)]
. (1.36)

In half of the cases, i.e. for intermediate flight times, single-photon interference is observed.

Figure 1.5 represents a Franson interferometer, based on a 1989 proposal [Fra89]. Here we con-
sider a source S of time-entangled photons: the emission time of each photon is uncertain
but both photons are emitted simultaneously. In a time-bin (discretized) implementation, this
would correspond to emission times t0 and t0 + τ. This can be done by using a long-coherence
laser (coherence time τp) whose power is split by an unbalanced MZI before pumping a non-
linear waveguide. The photons are separated and sent to distinct MZIs of unbalance τ.

Figure 1.5: Two-photon interference in the spatio-temporal domain. In this
Franson interferometer, a source S produces time-entangled photons, which
are separated and sent through distinct unbalanced MZIs. When Alice’s and
Bob’s photons are detected in coincidence, they exhibit two-photon interfer-
ence: the joint probabilities Pab, with a, b ∈ {+,−}, depend on ϕA + ϕB.

The signal and idler photons produced by the source have a coherence time τ1, while the bi-
photon coherence time is τ2. If the condition τ1 � τ � τ2 is satisfied, no single-photon inter-
ference occurs, so that individual probabilities P± = 1/2 for both Alice and Bob, but analysis
of the correlations between Alice’s and Bob’s results reveals a phenomenon called two-photon
interference. Indeed, if Alice’s and Bob’s photons are detected simultaneously, one cannot know
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if they both took the short path of their interferometer, or if they both took the long path. Quan-
titatively, we obtain the joint probabilities Pab, with a, b ∈ {+,−}, of Alice registering result a
and Bob registering result b:

P++ = P−− =
1
4
[
1 + cos

(
ϕA + ϕB

)]
and P+− = P−+ =

1
4
[
1− cos

(
ϕA + ϕB

)]
(1.37)

for detection times τB − τA = tδ, for some delay tδ imposed by the channels’ length difference.
This requires time-resolved coincidence measurements. No interference occurs for satellite co-
incidence peaks at τB − τA = tδ ± τ.

1.3.4 Polarization encoding

Polarization has been a widely used degree of freedom in quantum optics. It indeed offers a
natural two-dimensional Hilbert space, and is easily accessed experimentally with standard
polarization-sensitive components. The correspondence principle applies in the polarization
domain: elements will act on photon probability amplitudes as for complex fields in coherent
optics. Typical optical components for manipulating the polarization state of photons are phase
plates and polarizers. Their effect can be expressed in the form of transfer matrices known as
Jones matrices J:

|ψ〉out = J|ψ〉in with J = J(n) . . . J(1) , (1.38)

with J(i) the Jones matrix of element i. All the matrices are defined in the same arbitrary ref-
erence axes perpendicular to the propagation direction, e.g. (x, y). If the eigen-axes (u, v) of a
component are rotated by an angle θ in regards of (x, y), we have:

Jxy = R(θ) Juv R(−θ) with Juv =

(
1 0
0 ηeiε

)
, (1.39)

where R(θ) is a rotation matrix of angle θ. For phase plates, η = 1, with ε = π for a half-wave
plate and ε = π/2 for a quarter-wave plate; their combination allows arbitrary manipulation
of a photon polarization state. For a polarizer, η = 0: it will act as a projector on a given axis.
Together with phase plates, it allows the projection on any axis: rotation of a polarization state
followed by a fixed projection is equivalent to a projection on a different axis. Polarizing beam
splitters (PBS) are very useful components that spatially separate two linear polarizations, i.e.
they are polarizers with two outputs.

Single-photon interference is obtained by first polarizing a photon at angle θA. Viewed from
any other axis, the photon is in a superposition of two different linear polarizations. Then, the
probability of the photon passing through a second polarizer with passing axis at angle θB is
equal to P+:

P+ = cos2(θA − θB
)

and P− = sin2(θA − θB
)

, (1.40)

with P− the probability of detecting the photon at the complementary output when a PBS is
used. This is the quantum analogue of Malus law. The experimental configuration is illustrated
in figure 1.6.

In figure 1.7, we consider a source S emitting two photons in a polarization-entangled state
|Ψ〉, for example the Bell state |Φ+〉 =

(
|HH〉 + |VV〉

)
/
√

2, where H, V denote horizontal

and vertical linear polarizations. Applying quantum formalism, i.e. P++ =
∣∣〈θA|〈θB|Ψ〉

∣∣2, we
readily get the joint probabilities Pab, a, b ∈ {+,−}. For the Bell state |Φ+〉,

P++ = P−− =
1
2

cos2(θA − θB
)

and P+− = P−+ =
1
2

sin2(θA − θB
)

(1.41)
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Figure 1.6: Single-photon interference in the polarization domain. A source S
produces a single photon whose polarization state is fixed by a first polariz-
ing beam splitter PBS at passing angle θA. The probability for the photon to
be detected in detector D+ or D− behind a second PBS at angle θB depends
on θA − θB. Half-wave plates (HWP) and quarter-wave plates (QWP) allow
to implement θA and θB for fixed PBS, and possibly for polarization manage-
ment, i.e. compensation of the polarization rotations imposed by the channel.

exhibit two-photon interference. For a Bell state, one can notice that individual probabilities
all sum up to 1/2, because each individual photon is in a maximally mixed state, therefore
producing no single-photon interference. For non-maximally entangled states, both one- and
two-photon interferences are observed.

Figure 1.7: Two-photon interference in the polarization domain. A source S
emits a polarization-entangled state. Each photon is manipulated by its own
analyzer, composed of a quarter-wave plate (QWP), a half-wave plate (HWP)
and a polarizing beam splitter (PBS) allowing to implement a projection at
any angle θA,B. Analysis of the correlations between Alice’s and Bob’s results
reveals two-photon interference.

There exist fiber-optic versions of all the polarization components. Active polarization man-
agement is needed to compensate for the polarization drifts caused by the quantum channel.
This has to be monitored against a fixed common reference.

Finally, we note that the association QWP–HWP–PBS constitutes a polarization analyzer which
can be used to perform polarization tomography. Tables 1.1 and 1.2 list the measurements needed
to characterize a single-photon state and a two-photon state, respectively. These measurements
have to be carried on identically prepared photons and repeated enough for an accurate evalu-
ation of individual or joint probabilities.

1.3.5 Quantum cryptography

We now illustrate how one- and two-photon interferences can be useful by considering the
following situation: Alice wishes to transmit a confidential message M to Bob. She only has
access to a public channel. If Alice wants to guarantee the secret of the transfer, she must
share a private key K with Bob, and it has to be as long as her message. By sending the bitwise
combination C = M⊕ K to Bob, only him can recover the original message M = C ⊕ K. The
security of this protocol, known as the Vernam cipher, is mathematically demonstrated. This
is the only known absolutely secure cryptographic scheme. The problem thus reduces to the
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Table 1.1: Single-photon polarization tomography. The table lists the mea-
surements allowing a complete characterization of a single-photon state. The
angular positions of the phase plates (QWP and HWP) preceding the polar-
izer are indicated.

measure mode hwp(°) qwp(°)
1 V 0 0
2 H 45 0
3 R 22.5 0
4 D 22.5 45

Table 1.2: Two-photon polarization tomography. The table lists the coinci-
dence measurements that Alice and Bob must make for a complete character-
ization of a two-photon state. The angular positions of the phase plates (QWP
and HWP) preceding the polarizers are indicated. Adapted from [JKMW01].

measure modeA modeB hwpA(°) qwpA(°) hwpB(°) qwpB(°)
1 H H 45 0 45 0
2 H V 45 0 0 0
3 V V 0 0 0 0
4 V H 0 0 45 0
5 R H 22.5 0 45 0
6 R V 22.5 0 0 0
7 D V 22.5 45 0 0
8 D H 22.5 45 45 0
9 D R 22.5 45 22.5 0

10 D D 22.5 45 22.5 45
11 R D 22.5 0 22.5 45
12 H D 45 0 22.5 45
13 V D 0 0 22.5 45
14 V L 0 0 22.5 90
15 H L 45 0 22.5 90
16 R L 22.5 0 22.5 90

need of sharing a private key on a public channel. The subject known as quantum cryptography
provides a solution in the form of quantum key distribution (QKD) [GRTZ02].

The idea behind quantum key distribution is to exploit no-go theorems implied by the quan-
tum formalism —the no-cloning theorem and the existence of incompatible properties— to
guarantee that a potential eavesdropper EVE does not have information on the exchanged key.
Here we present the most known quantum key distribution protocol, the BB84 protocol, named
after the proposal of Charles BENNETT and Gilles BRASSARD in 1984 [BB84]. In this protocol,
information is shared via non-orthogonal quantum states. It uses four states from maximally
conjugated bases b0 and b1, for example

|0b0〉 and |1b0〉 , (1.42)

|0b1〉 =
1√
2

(
|0b0〉+ |1b0〉

)
and |1b1〉 =

1√
2

(
|0b0〉 − |1b0〉

)
. (1.43)

The measurement of a state of a given basis in the other basis gives a perfectly random result:∣∣〈ib0|jb1
〉∣∣2 =

1
2

, (1.44)
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with i, j ∈
{

0, 1
}

. Such a measurement does not provide any information on the state. On the
other hand, information can be accurately shared when a state is measured in the correct basis.

The protocol, schematized in table 1.3, goes as follows. Alice randomly prepares her photons
in the four states |ibj〉, i, j ∈

{
0, 1
}

, with equal probability. She sends them on a quantum
channel, e.g. an optical fiber. At the reception, Bob randomly selects a measurement basis.
After the transmission of all photons is complete, Alice publicly announces her chosen bases
(without telling which state was coded). She and Bob discard all the bits corresponding to states
measured in the wrong basis, rejecting approximately half the bits of the raw key (containing
approximately 25% errors) to obtain a sifted key in principle free of errors.

Table 1.3: BB84 protocol sequence. Alice randomly prepares her photons in
the four states |ibj〉, i, j ∈

{
0, 1
}

, measured by Bob in one of two randomly
chosen bases. After reconciliation of the bases, they share a list of secret clas-
sical bits, the sifted key.

states prepared by Alice 0b0 0b0 1b1 0b1 0b0 0b1
Bob’s measurement bases b0 b1 b1 b1 b0 b0

Bob’s results 0 0 or 1 1 0 0 0 or 1
bits retained in the sifted key 0 – 1 0 0 –

Table 1.4 illustrates a possible strategy followed by an eavesdropper, known as the intercept–
resend attack. Eve intercepts each photon produced by Alice, measures them, and resends to
Bob photons in a state corresponding to the results of her measurements. The key point for the
security of the protocol is that there is no possibility for Eve to know which basis Alice has used,
so that the density matrix of the states corresponds to a maximally mixed state. Moreover, she
cannot keep a copy of the states because of the no-cloning theorem. She must therefore choose
at random —like Bob— her measurement. In half of the cases, her result will be random; in
half of these cases she will introduce errors in the sifted key. By comparing a subset of their
key, Alice and Bob can evaluate the quantum bit error rate (QBER) and detect her presence.

Table 1.4: BB84 protocol sequence with intercept–resend attack. Eve tries to
measure the qubits sent by Alice, before sending to Bob a state correspond-
ing to her measurement result. Her actions introduce errors in the sifted key
(highlighted in the last line), which can be detected by Alice and Bob by com-
paring a subset of their bit string.

states prepared by Alice 0b0 0b0 1b1 0b1 0b0 0b1
Eve’s measurements bases b1 b0 b1 b0 b0 b0

Eve’s results 0 or 1 0 1 0 or 1 0 0 or 1
states prepared by Eve 0b1 or 1b1 0b0 1b1 0b0 or 1b0 0b0 0b0 or 1b0

Bob’s measurement bases b0 b1 b1 b1 b0 b0
Bob’s results 0 or 1 0 or 1 1 0 or 1 0 0 or 1

bits retained in the sifted key 0 or 1 – 1 0 or 1 0 –

To demonstrate the security of the protocol, all the errors have to be inputed to the action of
an eavesdropper, who could have gain information through them. For a QBER below a given
threshold, procedures of error correction and privacy amplification guarantee Alice and Bob to
share a secret key. The BB84 protocol is secure against individual (photon per photon) attacks
if

QBER <
1− 1/

√
2

2
≈ 15% . (1.45)
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This is precisely the maximal value allowed to obtain a violation of the CHSH inequality. In-
deed, the value of the Bell parameter is S = 2

√
2 (1− 2 QBER), corresponding to a visibility

of interferences of 70.7%. It is interesting to note the links between fundamental and practical
experiments; the CHSH inequality is also the basis for some of the most important potential
applications of nonlocality, such as device-independent key distribution [ABG+07] and ran-
domness expansion [PAM+10].

Actually, there is a mathematical correspondence between correlation experiments on maxi-
mally entangled states and prepare-and-measure schemes, based on the identity

〈i|〈j|UA ⊗UB|Φ+〉 = 1√
d
〈i|UAUT

B |j〉 , (1.46)

where |Φ+〉 = ∑d
i=1|i〉|i〉/

√
d, and T is the transposition operation in basis

{
|i〉
}

. Indeed, the
first term in the equality can be interpreted as a measurement on the entangled state |Φ+〉
in which Alice projects onto 〈i|UA and Bob projects onto 〈j|UB, whereas the second term can
be interpreted as the preparation by Bob of the state UT

B |j〉 and the subsequent projection by
Alice onto the state 〈i|UA. This theoretical correspondence is well established in the context of
quantum key distribution, where it is used to demonstrate the equivalence between prepare-
and-measure schemes and entanglement-based schemes [SP00].

Entanglement-based schemes follow the 1991 proposal of Artur K. EKERT [Eke91], which con-
stituted a revolution in the field of quantum communication. Such an EPR protocol uses cor-
relation measurements on Bell states |Φ+〉. The security of the original protocol is guaranteed
by the violation of a Bell inequality, though this is not needed to guarantee the security of a
quantum cryptography protocol [BBM92].

Practical implementations thus make use of single- or two-photon interferences. Key distri-
bution protocols over distances greater than a few hundreds of kilometers [WZY02, SBG+05,
MFL07, TNZ+07, SUF+09, FUH+09, SST11] and security certification without a priori trust in
the devices employed [ABG+07] have been demonstrated. Entanglement-based setups follow
closely physical implementations of Bell tests, i.e. the preferred methods are polarization en-
coding [JSW+00, NPW+00] and time-bin encoding [ERTP92, TBZG00].

1.3.6 Quantum teleportation

Quantum teleportation is an important building block for most applications in quantum com-
puting and quantum communication. It allows to transmit an arbitrary unknown quantum
state |ψ〉 to a distant partner, given the two protagonists share an entangled state, e.g. |Φ+〉.

The protocol goes as follows [BBC+93]. Alice possesses a quantum system in the (supposedly
pure in our description) state |ψ〉 = α|0〉 + β|1〉, to be teleported, and one particle of the en-
tangled state |Φ+〉. Bob possesses the other part of |Φ+〉. The global state of the three-particle
system is thus

|ψ〉|Φ+〉 =
(
α|0〉+ β|1〉

) 1√
2

(
|00〉+ |11〉

)
=

1
2
[
|Φ+〉|ψ〉+ |Φ−〉σz|ψ〉+ |Ψ+〉σx|ψ〉+ |Ψ−〉σxσz|ψ〉

]
, (1.47)

where in the second line we used the fact that

|00〉 =
(
|Φ+〉+ |Φ−〉

)
/
√

2 , |01〉 =
(
|Ψ+〉+ |Ψ−〉

)
/
√

2 , (1.48)

|10〉 =
(
|Ψ+〉 − |Ψ−〉

)
/
√

2 , |11〉 =
(
|Φ+〉 − |Φ−〉

)
/
√

2 , (1.49)
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and the definitions

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σxσz = −iσy =

(
0 −1
1 0

)
. (1.50)

To teleport the state, Alice must perform a Bell state measurement —which can be (partially)
realized using a beam splitter or a PBS. This projects Bob’s qubit onto one of four possibilities.
To recover ψ, Bob has to know the random result of Alice’s measurement and rotate his qubit
accordingly. The teleportation protocol can be viewed as a sort of “ultimate cryptography”,
because it implies the transmission of only a random classical bit.

The first experimental implementation used polarization entanglement [BPM+97], but many
implementations have followed. An important subclass of teleportation is the entanglement
swapping protocol, i.e. the teleportation of entanglement [ZZHE93]. Two independent sources
of photon pairs are used. Upon a coincident detection of a photon from each source behind
a common beam splitter, the two remaining photons become entangled, though they never
interacted. Such an experiment has been performed in the time domain by using narrow-band
filters so that the coherence time of the photons exceeds the temporal resolution of the detectors
[HBG+07].



Chapter 2

Frequency-bin entangled photons

In the framework of quantum communication at telecommunication wavelengths —in the C-
band around 1550 nm— the energy-time degree of freedom is particularly interesting, as it is
transmitted essentially undisturbed through optical fibers. Energy-time entanglement can be
produced, manipulated and detected by using various implementations. Our aim is to experi-
mentally demonstrate a new method for the original manipulation of the frequency degree of
freedom of energy-time entangled photons. This is done using standard telecommunication
components.

Investigation of energy-time entanglement has been mainly inspired by two-photon bunching
experiments [HOM87, OM88, RT90b, KKK03, FHA+09], and by Franson’s proposal for address-
ing the entanglement in the time domain [Fra89], see section 1.3. We briefly recall it here. First,
a source produces time-entangled photons: photons are created simultaneously, but their emis-
sion time is uncertain. Second, one uses measurements that resolve the arrival time of the pho-
tons; photons whose arrival time cannot be discriminated by the detector are said to lie in the
same time bin. Third, different time bins are made to interfere via unbalanced Mach–Zehnder
interferometers The time-bin approach has become the most common platform for manip-
ulating energy-time entangled photons at telecommunication wavelengths [BMM92, KSC93,
TRT93, TRO94, TBZG98, TBG+98, TBGZ99, BGTZ99, TBZG00, TTT+02, MDRT+02, MDRT+04].

Energy-time entanglement can also be viewed as frequency entanglement. Here we show how
to address energy-time entanglement directly in the frequency domain. There is an interesting
conceptual parallel with Franson’s approach. First, a monochromatic pump laser produces
frequency-entangled photon pairs: the frequency of each photon is uncertain, but the sum of
the frequencies is well defined. Second, our detectors are preceded by narrow-band frequency
filters that resolve the frequency of the photons. This leads to the concept of frequency bin: two
photons whose frequency is so close that they cannot be distinguished by the filters are said to
lie in the same frequency bin. Third, different frequency bins are made to interfere by using
electro-optic phase modulators (EOPMs) driven by radio-frequency (RF) signals.

Manipulation of energy-time entangled photons directly in the frequency domain remains a
relatively unexplored area. Other works on frequency entanglement comprise: analysis of
bunching experiments [FHA+09], conversion from polarization to frequency entanglement
[RRF+09], demonstration of discrete frequency entanglement [LYM+09], and study of hyper-
entangled photons —photons entangled simultaneously in both energy-time and other degrees
of freedom [SS94, BLPK05]. Phase modulation of quantum light has also been studied in, e.g.,
[Har08, SYH09, CFP10]. We note that the use of narrow-band filters together with a spectrally
bright PPLN source of entangled photons has been reported previously in the context of four-
photon experiments [HBT+08, HBG+07].

21
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Our work is inspired by, or related to, earlier proposals for manipulating qubits in the fre-
quency domain, e.g. [MMG+99b, MMGR99, MMG+99a, SZGS03, HR04, HMR+05, BMMP07].
Our experimental techniques follow closely those of quantum key distribution (QKD) systems
in which the quantum information is encoded in the frequency sidebands of an attenuated co-
herent state [MMG+99b, MMGR99, MMG+99a, BMMP07]. Such systems allow efficient trans-
mission of quantum information at telecommunication wavelengths. The main advantage of
this method for encoding and carrying out transformations on optical qubits is that one does
not need to stabilize paths in optical interferometers. Rather, one must only lock the local RF
oscillators used by Alice and Bob, which is much easier. Furthermore, information encoded
in sidebands in unaffected by birefringence in the optical fiber used for transmission. Recent
improvements to these experiments have included dispersion compensation and long-distance
synchronization of the sender and receiver [CPPM08].

The architecture reported in [MMG+99b, MMGR99, MMG+99a] was dedicated to QKD using
faint laser pulses, but it is inefficient when single photons are used because weak modulation
amplitudes are required. To overcome this limitation, an alternative method was proposed in
[BMMP07] in which information is encoded in both the amplitude and relative phase of three
frequency bands generated by EOPMs. This second approach is attractive because in princi-
ple the EOPMs need not attenuate the signal, because there is no need for a strong reference
pulse and because the EOPMs can address many frequency sidebands simultaneously. We will
describe QKD applications of the method in section 3.3.

In this chapter, we introduce our method to manipulate energy-time entangled photons. First,
we describe classical and single-photon schemes for manipulating the frequency degree of free-
dom with EOPMs, which create frequency sidebands. These experiments can be viewed as
high-dimensional frequency analogues of the spatio-temporal and polarization experiments
presented in section 1.3. Correspondence principles imply that classical interference translates
to single-photon interference, and single-photon interference translates to two-photon interfer-
ence. We show how we can transpose the setup to the entangled-photon case, leading to the no-
tion of frequency-bin entanglement. We also show how the high-dimensional interference pattern
created by EOPMs can be restricted to interference between effective two-dimensional states.
We describe in detail our experimental tools —mainly composed of off-the-shelf components—
to implement the method and acquire reliable data. Finally, we present our experimental re-
sults, i.e. high-visibility two-photon interference patterns in optical fibers at telecommunication
wavelengths, demonstrating that the method can be reliably implemented.

2.1 Phase modulation

Optical nonlinearities give rise to a number of phenomena which modify the frequencies of
the light fields involved in the process, such as the well-known second-harmonic generation,
or parametric down-conversion [Boy03, Agr07]. Light fields can also interact with the network
oscillations created by an acoustic wave: the acousto-optic effect corresponds to photon–phonon
interactions. Annihilation of a photon at frequency ω0 and a phonon at frequency Ω creates a
photon at frequency ω0 +Ω, and annihilation of a photon at frequency ω0 +Ω creates a phonon
at frequency Ω and a photon at frequency ω0. Such an effect can be used to create frequency
sidebands, but the frequencies of acoustic waves are typically limited to hundreds of MHz. As
we shall see, the electro-optic effect can lead to a high number of frequency sidebands separated
by a radio-frequency of several GHz. We consider a medium with χ(2) nonlinear susceptibility,
such as lithium niobate (LiNbO3). When an electric field is applied, the linear electro-optic effect
can be interpreted as a modulation of the refractive index of the medium by the field. It leads
to the modulation of the phase of the optical wave traveling across the medium.
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Figure 2.1 represents the experimental configuration considered in this section. We consider a
source of light

∫
dω f (ω−ω0) E(ω), with f (ω−ω0) dropping rapidly to zero for

∣∣ω−ω0
∣∣ >

ΩS. Such a quasi-monochromatic beam can be obtained by using a long-coherence laser or by
passing the light of a broadband source through a narrow-band frequency filter, as schematized
in figure 2.1. As will be seen in the quantum case, the exact frequency of a photon is not
relevant; if it is selected by a frequency filter of bandwidth ΩF aligned on the frequency ω0, we
say it belongs to the frequency bin centered on ω0. Here we will thus approximate the classical
wave of bandwidth ΩS < ΩF as a stationary wave A e−iω0t.

Figure 2.1: Experimental setup for phase modulation of classical light. A
light beam emitted by source S is spectrally filtered by frequency filter F.
The monochromatic light is sent through an electro-optic phase modulator
EOPM, generating new frequencies, resolved with an optical spectrum ana-
lyzer OSA.

We consider an RF signal
V(t) = v f (γ−Ωt) , (2.1)

where f is a periodic function of time: f (t + T) = f (t + 2π/Ω) = f (t). The quantities v, γ
and Ω are thus the amplitude, phase and (angular) frequency —see appendix A— of the RF
signal, respectively. For the GHz radio-frequencies we work with, sine modulation is by far
the easiest to implement experimentally. The sine modulating signal V(t) = v sin(γ − Ωt)
imposes an optical phase variation ϕ(t) = c sin(γ−Ωt). The normalized amplitude c is linked
to the voltage v applied to the modulator by the relation

c =
π v
Vπ

, (2.2)

by definition of the half-wave voltage Vπ characterizing the response of the modulator at the
radio-frequency considered, which depends on material and geometry. The coefficients

Un
(
c, γ
)
= Jn

(
c
)
einγ , (2.3)

where Jn is the nth-order Bessel function of the first kind, are the Fourier components of the
periodic function f (t) = eiϕ(t) = eic sin(γ−Ωt), so that

eiϕ(t) ≡ eic sin(γ−Ωt) =
+∞

∑
n=−∞

Jn(c) ein(γ−Ωt) . (2.4)

This expression is the Jacobi–Anger expansion [CPV+08]. After phase modulation, the wave
A e−iω0t is thus transformed according to

A e−iω0t eiϕ(t) = A
+∞

∑
n=−∞

Jn(c) einγ e−i(ω0+nΩ)t . (2.5)

Figure 2.2 shows the effects of such a modulation when used in the setup of figure 2.1. Frequency
sidebands appear at integer multiples of the radio-frequency Ω in the spectrum of a phase-
modulated optical wave. To resolve the sidebands, the bandwidth of the source has to be
narrow enough: ΩS < ΩF. The relative heights of the peaks are given by |Jn(c)|2. We note that
these developments constitute well-known facts in frequency modulation, where the coefficient
(2.2) is known as the modulation index, or modulation depth.
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Figure 2.2: Measurement results of phase modulation of classical light, ob-
tained with the setup of figure 2.1. Panel (a) shows the quasi-monochromatic
intensity spectrum of a broadband light source passed through a narrow-
band frequency filter, in this case a fiber Bragg grating preceded by a circu-
lator. Frequency “0” corresponds here to a wavelength of 1547.73 nm. Panel
(b) shows the spectrum affected by phase modulation with a sine modulating
signal of frequency Ω/2π = 12.5 GHz and normalized amplitude c ≈ 2.74,
the maximal value attained with the radio-frequency setup used for the mea-
surement. Eleven frequency bins are present.

The nth frequency sideband carries a relative phase nγ imposed by the RF phase γ. When two
EOPMs operated at the same frequency Ω are cascaded, an interference occurs. With ϕA(t) =
a sin(α−Ωt) and ϕB(t) = b sin(β−Ωt) the periodic phases imposed by each modulator, and
using (2.4), we obtain:

A e−iω0t eiϕA(t) eiϕB(t) = A ∑
p

Jp(a)eipα ∑
q

Jq(b)eiqβe−i(p+q)Ωte−iω0t (2.6)

= A ∑
d

∑
p

Jp(a)Jd−p(b) eipα ei(d−p)β e−idΩt e−iω0t (2.7)

≡ A ∑
d

cd(a, α; b, β) e−i(ω0+dΩ)t . (2.8)

As shown in [Woo10, OMW+12], one can derive a simpler analytic expression for the parameter

cd(a, α; b, β) = ∑
p

Up
(
a, α
)
Ud−p

(
b, β
)
= ∑

p
Jp(a)Jd−p(b) eipα ei(d−p)β . (2.9)

We start with the definition
Jn(c) =

1
2π

∫ π

−π
dθ eic sin θe−inθ (2.10)

to rewrite

cd(a, α; b, β) =
1

(2π)2

∫ π

−π
dθ′

∫ π

−π
dθ′′ eia sin θ′eib sin θ′′ ∑

p
eip(α−β+θ′′−θ′)e−id(θ′′−β) . (2.11)
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Using the fact that ∑p eipθ = 2π ∑n δ(θ − 2πn), thus

∑
p

eip(α−β+θ′′−θ′) = 2π ∑
n

δ(α− β + θ′′ − θ′ − 2πn) , (2.12)

we get

cd(a, α, ; b, β) =
1

2π

∫ π

−π
dθ eia sin(θ+α)eib sin(θ+β)e−idθ . (2.13)

Since adding two sine waves with the same period yields another sine wave, we can write

a sin(θ + α) + b sin(θ + β) = C sin(θ + Γ) , (2.14)

with, using basic trigonometric relations,

C2 = a2 + b2 + 2ab cos(α− β) and tan Γ =
a sin α + b sin β

a cos α + b cos β
. (2.15)

This thus implies that

cd(a, α; b, β) =
1

2π

∫ π

−π
dθ eiC sin(θ+Γ)e−idθ (2.16)

=
1

2π

∫ π

−π
dθ eiC sin θe−idθeidΓ (2.17)

= Jd(C) eidΓ (2.18)
= Ud(C, Γ) . (2.19)

This is equivalent to the Graf addition formula [AS72]. Intuitively, this express that two EOPMs
used in series, driven by sinusoidal RF signals of the same frequency, have the same action as
a single EOPM.

If N(class)
d=0

(
a = b = 0; n

)
is the optical power in frequency bin n when the modulation is off,

when modulation is on the optical power N(class)
d measured in bin n + d (shifted of d times the

radio-frequency Ω) is:

N(class)
d

(
a, α; b, β; n

)
= J2

d
(
[a2 + b2 + 2ab cos(α− β)]1/2)× N(class)

d=0

(
a = b = 0; n

)
. (2.20)

Note that the total power is conserved. Figure 2.3 schematically represents the consecutive
phase modulations of a classical light beam.

2.2 Single-photon interference

Figure 2.4 illustrates the equivalent situation with a single-photon source. Using the correspon-
dence principle, we expect the EOPMs to act on photon probability amplitudes the same way
they act on complex fields in coherent optics. Indeed, let consider a (quantum) optical wave at
frequency ω0 propagating in a modulator subject to a (classical) sine electric signal at frequency
Ω. Possible interactions are the annihilation of a radio-frequency photon at frequency Ω and
a photon at frequency ω0 + nΩ, which creates a photon at frequency ω0 + (n + 1)Ω, and the
annihilation of a photon at frequency ω0 +(n+ 1)Ω, which creates a radio-frequency photon at
frequency Ω and a photon at frequency ω0 + nΩ. Rigorous treatment of the quantum electro-
optic effect can be found in [YY84]. Complementary studies of the manipulation of photons in
the frequency domain using EOPMs can be found in [Blo06, CFP10, CFP11].
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Figure 2.3: Classical interference in the frequency domain. The light emitted
by a broadband source S is sent through a narrow-band frequency filter FA
of center frequency ω0. The emerging beam, centered on frequency ω0, is
subsequently directed through electro-optic phase modulators EOPMA and
EOPMB, controlled by Alice and Bob respectively, each of which generates
frequency shifts of integer multiples of the RF signal frequency ΩRF. Fre-
quency filter FB and photodetector D allow Bob to investigate the intensity of
the resulting light beam in different frequency bins.
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Figure 2.4: Single-photon interference in the frequency domain. Photons
with frequencies in the vicinity of ω0 are prepared by sending the photons
emitted by a single-photon source through a narrow-band frequency filter
FA of center frequency ω0. The emerging photons are subsequently directed
through EOPMA and EOPMB, controlled by Alice and Bob respectively, each
of which generates frequency shifts of integer multiples of the RF signal fre-
quency ΩRF. Frequency filter FB and photodiode D allow Bob to investigate
the arrival rate of photons in different frequency bins.
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As in the classical case, a real source generates non-stationary quantum states of the form
|ψ〉 =

∫
ω ξ(ω − ω0)a†

ω|0〉 and |φ〉 =
∫

ω ξ(ω − ω1)a†
ω|0〉, where a†

ω is the creation operator
in the pulsation mode ω and ξ(ω) represents the spectral profile [Blo06]. These two states are
in general not orthogonal, 〈ψ|φ〉 6= 0. Nevertheless, for sufficiently peaked spectrum profiles,
〈ψ|φ〉 ≈ 0. We make the assumption that we deal with perfectly monochromatic modes. We
introduce the notation |ω0〉, which represents a single photon at frequency ω0. This state is
perfectly orthogonal to states |ω 6= ω0〉.

Following (2.4), a photon at frequency ω0 passing through an EOPM driven by a sine RF signal
undergoes the unitary transformation

Û(c, γ) |ω0〉 =
+∞

∑
n=−∞

Un(c, γ)|ω0 + nΩ〉 with Un(c, γ) = Jn(c)einγ . (2.21)

We adopt the discretized notation |ω0 + nΩ〉 ≡ |n〉:

Û(c, γ)|0〉 =
+∞

∑
n=−∞

Un(c, γ)|n〉 with Un(c, γ) = Jn(c)einγ , (2.22)

which remains valid for a non-perfectly monochromatic source if its spectral profile is peaked
enough on ω0, as will be analyzed in the entangled-photon case. After phase modulation, the
probability to detect the photon in frequency bin n is |Jn(c)|2. If one does not make a mea-
surement of the photon frequency, the photon is in a quantum superposition in the frequency
domain.

If the photon is subject to consecutive phase modulations ϕA(t) = a sin(α−Ωt) and ϕB(t) =
b sin(β−Ωt), we readily find:

Û(b, β) Û(a, α) |0〉 = ∑
p

Jp(a)eipα ∑
q

Jq(b)eiqβ|p + q〉 (2.23)

= ∑
d

∑
p

Jp(a)Jd−p(b)eipαei(d−p)β|d〉 (2.24)

≡ ∑
d

cd(a, α; b, β)|d〉 . (2.25)

We recover the same coefficients as in the classical case:

cd(a, α; b, β) = ∑
p

Up(a, α)Ud−p(b, β) = Ud(C, Γ) = Jd(C)eidΓ . (2.26)

The photon therefore exhibits single-photon interferences in the frequency domain. This is
due to the fact that one cannot distinguish between the different “frequency paths” the photon
could have followed before being detected in frequency bin n + d. Since there are more than
two paths, we do not recover the traditional sine-squared interference pattern, but rather a
Bessel pattern originating from the sine modulating signal. The rate of photons detected in
frequency bin n + d will thus be:

N(1)
d

(
a, α; b, β; n

)
= J2

d
(
[a2 + b2 + 2ab cos(α− β)]1/2)× N(1)

d=0

(
a = b = 0; n

)
, (2.27)

where N(1)
d=0

(
a = b = 0; n

)
is the photon rate for frequency bin n when the modulation is off.

2.3 Two-photon interference

We now consider two-photon experiments which will exhibit nonlocal two-photon interfer-
ences in the frequency domain, see figure 2.5. These experiments are based on three compo-
nents. Our description follows references [OCN+10], [OMW+12] and [OWPH+14].
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Figure 2.5: Two-photon interference in the frequency domain. A narrow-
band laser of frequency 2ω0 pumps a parametric down-converter PDC and
generates entangled photon pairs. One photon in each entangled pair is sent
to Alice, who sends her photon through EOPMA which generates frequency
shifts. Frequency filter FA and photodiode DA allow Alice to detect photons
arriving in different frequency bins. Bob similarly manipulates and detects
the second photon using EOPMB, filter FB, and his own photodiode DB. The
joint two-photon statistics exhibit nonlocal interference.

First, a parametric down-conversion source S produces the frequency-entangled state

|Ψ〉 =
∫

dω f (ω)|ω0 + ω〉|ω0 −ω〉 '
∫

dω|ω0 + ω〉|ω0 −ω〉 . (2.28)

The energy of each photon is uncertain, while the total energy is fixed by 2ω0, the frequency of
the supposedly perfectly monochromatic laser pumping the χ(2) nonlinear waveguide. If one
measures the frequencies of Alice and Bob’s photons, one finds perfect correlations: if Alice
obtains ω0 + ω, Bob obtains ω0 −ω. Considering the finite linewidth of the pump laser would
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make the pump frequency 2ω0 slightly uncertain. The complex function f (ω) = r(ω)eiφ(ω)

characterizes the bandwidth of the signal and idler photons. Because f varies slowly with
frequency, for the theoretical analysis is is often useful to approximate it as constant, thus ne-
glecting the finite bandwidth of the photon pairs. Note that taking the Fourier transform of
(2.28) would yield a description of the state in terms of time entanglement: the arrival time
of each photon is uncertain, but the difference between the arrival time of Alice’s and Bob’s
photons is well defined.

Second, an EOPM driven by a radio-frequency signal v sin
(
γ−Ωt

)
with adjustable amplitude

v and phase γ realizes the unitary transformation (2.21)

|ω〉 7→ ∑
n∈Z

Jn(c)einγ|ω + nΩ〉 . (2.29)

Alice’s and Bob’s photons are independently modulated with adjustable parameters (a, α) and
(b, β), respectively.

Third, frequency filters in front of single-photon detectors realize projections

ΠF =
∫

dω g(ω)Πω0+nΩ+ω , (2.30)

with Πω = |ω〉〈ω| the projector onto the frequency state ω, and g(ω) is a function characteristic
of the frequency filter. In practice the frequency can only be measured with precision ΩF given
by the width of the frequency filter used. This leads to the notion of frequency bin: all photons
whose frequencies are contained in the interval

[
ωF − ΩF/2, ωF + ΩF/2

]
are grouped into a

single frequency bin centered on frequency ωF = ω0 + nΩ. To resolve the frequency bins
separated by the radio-frequency Ω, the function g(ω) describing the frequency filter must
thus tend to zero for |ω| ≥ Ω/2, i.e. ΩF must be less than Ω.

To analyze these experiments, we begin with the state (2.28). Because the EOPMs only shift
the frequency by integer multiples of Ω and the frequency filters are aligned on the frequencies
ω0 + nΩ, it is convenient to rewrite the state as

|Ψ〉 =
∫ +Ω/2

−Ω/2
dω

+∞

∑
n=−∞

f (nΩ + ω)|ω0 + nΩ + ω〉|ω0 − nΩ−ω〉 (2.31)

'
∫ +Ω/2

−Ω/2
dω

+∞

∑
n=−∞

fn|n, ω〉|−n,−ω〉 (2.32)

=
+∞

∑
n=−∞

fn|n〉|−n〉 ⊗
∫ +Ω/2

−Ω/2
dω|ω〉|−ω〉 (2.33)

= |ΨΠ〉 ⊗ |Ψoff〉 . (2.34)

In (2.32), f is assumed to vary slowly, so that its dependence on ω can be neglected: f (nΩ +
ω) ' fn. The identification |n〉 ⊗ |ω〉 = |n, ω〉 = |ω0 + nΩ + ω〉 defines a factorization HF =
HΠ ⊗ Hoff of the Hilbert space HF of frequency states into separate “discrete” and “offset”
spaces,HΠ andHoff, respectively, with respect to which the source state |Ψ〉 is (approximately)
separable. We adopt the normalization

〈m|n〉 = δmn , 〈ω′|ω〉 = δ(ω′ −ω) . (2.35)

In this representation, the action of an EOPM becomes

|n〉 ⊗ |ω〉 7→ ∑
p∈Z

Jp(c)eipγ|n + p〉 ⊗ |ω〉 =
(
U(c, γ)⊗ Ioff

)
|n〉 ⊗ |ω〉 , (2.36)
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with the unitary transformation U(c, γ) acting only on HΠ and 1off is the identity in the off-
set space. We see explicitly that the description of the relevant part of our setup is entirely
contained in the discrete space. Indeed, the offset frequency ω only affects the probability of
response of the filter —whose action can also be factorized— via the factor |g(ω)|2, and is oth-
erwise never measured or recorded in the course of the experiment. The EOPMs will cause
contributions from different values of the index n to interfere, while contributions from dif-
ferent values of the offset parameter ω will add probabilistically: with a sufficiently precise
measurement of the frequencies of the photons exiting the EOPMs, we could determine a spe-
cific value for ω. Consequently, we restrict the remainder of the theoretical analysis to the
discrete space and adopt the discretized version:

|Ψ〉 =
+∞

∑
n=−∞

fn|n〉|−n〉 . (2.37)

The factorization and isolation of the discrete space formalizes the concept of “frequency bin”:
|n〉 denotes a photon with frequency ω0 + nΩ + ω for some ω ∈

[
−Ω/2, Ω/2

]
. Recall that

we denote fn = rneiφn = f (nΩ + ω), ∀n. Validity of the hypothesis that fn varies slowly
with n is justified if Ω is very small compared to the frequency range over which f varies. In
our experiments the bandwidth of the photon-pair source (the scale over which f changes) is
approximately 5 THz, while Ω/2π is 12.5 or 25 GHz.

Photons A and B are separated and sent through EOPMs with respective parameters (a, α) and
(b, β). The state (2.37) is transformed according to:

Û(a, α)⊗ Û(b, β)|Ψ〉 = ∑
n,d

fn cd
(
a, α; b, β

)
|n〉|−n + d〉 , (2.38)

where we use the approximation fn ≈ fn+p. This is valid for small values of p. According to
Carlson’s rule [CCR02], the amplitude of the generated sidebands Jp(c) becomes progressively
negligible for |p| > c + 1. Given the amplitudes c experimentally accessible, we will address
frequency bins p ∈

{
−5, 5

}
, see figure 2.2, which justifies the approximation.

The joint probability of Alice detecting a photon in the frequency bin n on which frequency
filter FA is aligned and Bob detecting a photon in frequency bin −n + d on which frequency
filter FB is aligned is given by

Pd
(
a, α; b, β; n

)
=
∣∣〈n|〈−n + d|Ψ〉

∣∣2 = | fn|2
∣∣cd
(
a, α; b, β

)∣∣2 = | fn|2 J2
d(C) , (2.39)

with the parameter C given by (2.15). It implies the normalization ∑d Pd(a, α; b, β; n) = | fn|2
required by conservation of probability. With modulation turned off the photons do not change
frequency and the correlations are trivial: Pd=0(a = b = 0; n) = | fn|2 and Pd 6=0(a = b = 0; n) =
0, as expected. The coincidence rate for frequency bins n and −n + d will be given by

N(2)
d

(
a, α; b, β; n

)
= J2

d
(
[a2 + b2 + 2ab cos(α− β)]1/2)× N(2)

d=0

(
a = b = 0; n

)
, (2.40)

where N(2)
d=0

(
a = b = 0; n

)
is the coincidence rate for frequency bins n and −n when the modu-

lation is off. Manipulating frequency-entangled photons with EOPMs gives rise to Bessel-type
interference patterns, rather than the usual sine interference patterns in optics when only two
modes are present. Note that single-photon rates are unaffected by the modulation: fn being
supposedly constant in the frequency range where the EOPMs act, the in- and out-couplings to
and from each frequency bin are exactly compensating each other.

Rates N(class), N(1) and N(2), given by relations (2.20), (2.27) and (2.40) respectively, exhibit the
same functional dependence on (a, α; b, β). As indicated in section 1.3, there is a mathematical
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correspondence between correlation experiments on maximally entangled states and prepare-
and-measure schemes, based on the identity (1.46).

However, in general, these two schemes correspond to different experiments because imple-
menting UT

B is physically different from implementing UB. This is the case, for example, in
experiments involving time bins. In our setup however, where the transformations UA,B are
realized by EOPMs, UT

B = UB (in the frequency-bin basis), in the sense that: 〈−n|Û
(
a, α
)
|p〉 =

〈−p|Û
(
a, α
)
|n〉. The above mathematical identity thus translates to a physical correspondence

between transition amplitudes in two-photon and single-photon experiments, with all the RF
parameters (amplitudes and phases) kept unchanged.

In practice, this corresponds to the equivalence between the scheme depicted in figure 2.6, in
which photons belonging to a particular frequency bin are selected by a filter and subsequently
modulated with parameters (a, α) and (b, β), and figure 2.7, in which entangled photons are
manipulated by EOPMs. Specifically, the amplitude of detecting photons in frequency bins −n
and n + d in experiment 2.7 is proportional to the amplitude of detecting a photon in frequency
bin n + d given it was prepared in frequency bin n in experiment 2.6:

〈−n|〈n + d|Û(a, α)⊗ Û(b, β)|Ψ〉
= ∑

p
fp〈n + d|Û(b, β)| − p〉〈−n|Û(a, α)|p〉

' fn ∑
p
〈n + d|Û(b, β)| − p〉〈−p|Û(a, α)|n〉

= fn〈n + d|Û(b, β)Û(a, α)|n〉 , (2.41)

where in line 3 we have invoked the assumption that fn is approximately constant over the
experimentally accessible range of frequencies which interfere, and we used the completeness
relation ∑p |p〉〈p| = 1.

Identical RF settings thus give rise to identical interference patterns both in single-photon and
two-photon experiments. This identity is very useful as it makes it possible to test the quality
of the RF setup using a broadband light source.

Figure 2.6: Single-photon interference in the frequency domain. A photon
prepared in the frequency bin n is subsequently modulated with parameters
(a, α) and (b, β), then detected in a specific frequency bin n + d in detector
D+.

Figure 2.7: Two-photon interference in the frequency domain. A source S
produces frequency-entangled photons which are separately modulated with
respective parameters (a, α) and (b, β), then detected in respective frequency
bins −n and n + d in detectors D+.
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2.4 A variation with interleavers

While the high dimensionality of the entangled state (2.28) can be beneficial, it is sometimes
desirable to work with well-known two-dimensional states for which most quantum com-
munication protocols, such as the BB84 key distribution scheme, are designed. For qubits it
is also easier to collect all the outcome results, which allows to test the CHSH Bell inequal-
ity, see section 3.1. This is thus of interest for applications such as quantum cryptography or
low-dimensional tests of quantum nonlocality. Here, following [OWPH+14], we show how to
define, manipulate, and measure effective two-dimensional states in the frequency domain.

The key idea is to use periodic frequency filters that discriminate between two sets of frequency
bins, those with even and odd frequencies. This implements a coarse-grained measurement that
projects onto two orthogonal subspaces. In our theoretical analysis, we show how this reduces
the high-dimensional photon state to an effective two-dimensional state. The experiment con-
sists of preparing the state (2.28), sending Alice’s and Bob’s photons through EOPMs driven
by RF signals with identical frequency Ω but different amplitudes and phases, (a, α) and (b, β),
and finally determining whether the frequency is even or odd by passing the photon through
interleavers and directing the outputs to single-photon detectors.

An interleaver is a standard component used in the telecommunication industry that separates
the frequencies centered on ω0 + 2nΩ from those centered on ω0 + (2n + 1)Ω, where ω0 is a
fixed offset, and n ∈ Z. We shall use interleavers as components that allow the measurement
of even and odd frequencies. If we follow the interleaver by single-photon detectors, then a
click of one of the detectors corresponds to the projection onto one of the two operators:

ΠE =
∫ +Ω

−Ω
dω g(ω)∑

n
Πω0+2nΩ+ω , ΠO =

∫ +Ω

−Ω
dω g(ω)∑

n
Πω0+(2n+1)Ω+ω , (2.42)

where Πω = |ω〉〈ω| is the projector onto the frequency state |ω〉 and g(ω) is a function char-
acteristic of the interleaver which is maximal in the vicinity of ω = 0 and very small when
|ω| > Ω/2. Following the reasoning of section 2.3, we can factorize the projections (2.42) be-
tween discrete and offset spaces.

The effective qubits manipulated in our setup are made explicit when we express the source
state |ΨΠ〉 (2.31) and actions of the EOPMs (2.29) and interleavers (2.42) in the basis of even and
odd frequency phase states. These states can be derived from our setup’s symmetries with respect
to translations of frequency bins. Formally, let us denote

Tk : |n〉 7→ |n + k〉 (2.43)

the (unitary, for n varying from−∞ to +∞) operation consisting of translation in the frequency
domain by k frequency bins. The EOPM and interleaver actions are symmetric with respect to
translations by k and 2k, respectively, in the sense that[

U(c, γ), Tk
]
= 0 , k ∈ Z and

[
ΠE, Tk

]
=
[
ΠO, Tk

]
= 0 , k ∈ 2Z . (2.44)

As the amplitude fn varies slowly, the source state has the approximate symmetry

Tk ⊗T−k|ΨΠ〉 ' |ΨΠ〉 . (2.45)

Consequently, the EOPMs and source will share eigenstates with the T1 operator, while the
interleaver action eigenstates will coincide with those of T2.

A full set of eigenstates of the T1 operator is given by the frequency phase states, which we
define by

|ϕ〉 = 1√
2π

∑
n

einϕ|n〉 , (2.46)
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such that Tk|ϕ〉 = e−ikϕ|ϕ〉. The inverse of this expression is given by

|n〉 = 1√
2π

∫ π

−π
dϕ e−inϕ|ϕ〉 . (2.47)

For the T2 operator, a complete basis of eigenstates that will prove convenient is given by the
even and odd frequency phase states

|ϕ〉E =
1√
π

∑
n∈2Z

einϕ|n〉 , |ϕ〉O =
1√
π

∑
n∈2Z+1

einϕ|n〉 , (2.48)

with T2|ϕ〉E = e−i2ϕ|ϕ〉E and T2|ϕ〉O = e−i2ϕ|ϕ〉O. Note that

|ϕ〉 = 1√
2

[
|ϕ〉E + |ϕ〉O

]
and |ϕ + π〉 = 1√

2

[
|ϕ〉E − |ϕ〉O

]
. (2.49)

In terms of these states, the even and odd projection operators (restricted to the discrete space)
take the form

ΠE =
∫ π

0
dϕ |ϕ〉E〈ϕ|E and ΠO =

∫ π

0
dϕ |ϕ〉O〈ϕ|O , (2.50)

and the entangled source state can be rewritten as

|ΨΠ〉 '
1√
N

∑
n
|n〉|−n〉 = 1√

N

∫ π

−π
dϕ |ϕ〉|ϕ〉 = 1√

N

∫ π

0
dϕ
(
|ϕ〉E|ϕ〉E + |ϕ〉O|ϕ〉O

)
, (2.51)

where we idealize |ΨΠ〉 as an infinite sum, and N is a normalization constant symbolically
representing the number of frequency bins over which fn is nonzero, and formally equal to
2πδ(0), see [OCN+10] for a discussion of normalization. We observe that the photons have
always the same parity. Note that, depending on the position of ω0 with respect to even and
odd frequency bins, one can also produce a state where the photons have always a different
parity.

The action of an EOPM on a frequency phase state is

U(c, γ)|ϕ〉 =
1√
2π

∑
m

eimϕ ∑
p

Jp(c)eipγ|m + p〉 (2.52)

= ∑ Jp(c)eip(γ−ϕ) 1√
2π

∑
n

einϕ|n〉 (2.53)

= eic sin(γ−ϕ)|ϕ〉 . (2.54)

Since |ϕ〉 =
[
|ϕ〉E + |ϕ〉O

]
/
√

2 and |ϕ + π〉 =
[
|ϕ〉E − |ϕ〉O

]
/
√

2, we find that

U(c, γ)|ϕ〉E = cos θ|ϕ〉E − i sin θ|ϕ〉O and U(c, γ)|ϕ〉O = −i sin θ|ϕ〉E + cos θ|ϕ〉O , (2.55)

where we have set θ = c sin(γ− ϕ). For a fixed phase ϕ, by varying the modulation parame-
ters c and γ, we can implement a σx rotation of any desired angle between the even and odd
frequency phase states.

The construction of [OWPH+14] thus shows how to define effective qubits
{
|ϕ〉E, |ϕ〉O

}
in the

frequency domain, and how EOPMs realize σx rotations on the effective qubits. However, the
angle of the rotation depends on the phase ϕ of the effective qubit. This phase is not exper-
imentally accessible. Since the entangled state (2.51) is given by an integral over ϕ, this will
imply a modified interference pattern with reduced visibility. Transforming the source state
with EOPMs of modulation parameters (a, α) and (b, β), we calculate the probability of jointly
detecting two photons in even or odd frequency bins [Woo10, OWPH+14]:

P(E, E) = P(O, O) =
1
4
[
1 + J0(2C)

]
and P(E, O) = P(O, E) =

1
4
[
1− J0(2C)

]
, (2.56)
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with C defined by (2.15). Note that P(E, E) and P(O, O) never vanish, whereas P(E, O) and
P(O, E) vanish whenever C = 0, which occurs whenever a = b and α− β = π, as in this case
J2
d=0(C) = 1. Because of the average over ϕ, the interference pattern differs from the traditional

sine-squared function.

2.5 Experimental implementation

Figure 2.8 depicts the implementation of the setup of figure 2.7, based on functional “blocks”.
First, a source S produces the frequency-entangled state (2.28), with ω0 in the telecommuni-
cation C-band. Second, EOPMs driven by RF signals with identical frequency Ω but different
amplitudes and phases, (a, α) and (b, β), realize interference in the frequency domain. Third,
filters select given (sets of) frequency bins. Fourth, the joint statistics of the single-photon de-
tectors is acquired with a data acquisition system.

Figure 2.8: Schematic representation of a generic experimental setup. A
source S produces frequency-entangled photons. The two photons are sent
into separate optical fibers (in red). Each goes through an electro-optic phase
modulator EOPM. Alice’s and Bob’s modulation parameters can be indepen-
dently set with a dedicated radio-frequency system RFS connected to the
EOPMs with electronic cables (in blue). The photons belonging to specific
(sets of) frequency bins are detected with single-photon detectors following
frequency filters F. The electronic signals of the detectors are sent to a data
acquisition system DAS which registers the relative detection times and out-
puts a histogram of these events.

In the following subsections, we describe our experimental methods for generating, manipulat-
ing, filtering and detecting frequency-bin entangled photons. Our experimental implementa-
tions all use commercially available fiber-pigtailed and electro-optic components, and operate
in the telecommunication C-band. In order to produce high-visibility interference patterns, our
architecture must fulfill some critical requirements that we describe through the evolution of
our experimental setups.

2.5.1 Generation

Our photon-pair source is schematized in figure 2.9. A fiber-coupled continuous-wave laser
(from SACHER LASERTECHNIK) pumps a periodically-poled lithium niobate (PPLN) waveg-
uide (from HC PHOTONICS). The wavelength of the laser can be tuned around 775 nm by
manually adjusting the external cavity of the diode, and more finely by controlling the temper-
ature, the driving current, or the voltage of a piezo-electric element acting on the cavity. The
linewidth of the laser is about 2 MHz, which is far less than the bandwidth of the filters and
the radio-frequency used —a few GHz.
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Figure 2.9: Detail of the photon-pair source. A continuous-wave PUMP laser
at frequency 2ω0 is injected in a periodically-poled lithium niobate waveg-
uide PPLN, generating by parametric down-conversion signal and idler pho-
tons at frequencies ω0 ± ω. The remaining pump power is eliminated and
the photons are separated with fiber components. A part of the pump power
is directed to a wavelength-meter and a power-meter to measure its wave-
length λ and power P. A retroaction controlling the piezo-electric element
acting on the external cavity of the laser locks the wavelength on a desired
value, 776.1617 nm in this case. No power stabilization is performed. Typical
time evolution of wavelength λ and power P of the pump laser are shown.

In order to achieve a high and stable SNR, fine control of the pump laser wavelength is com-
pulsory. Each down-converted photon must belong to a frequency bin whose width is set by
the band-pass filters, of the order of a few GHz. The pump wavelength must thus be accurately
set at the center of a frequency bin. To this end, we implemented an active stabilization, based
first on an analogic system, and then on a numeric system: 10% of the power of the pump laser
is sent to a wavelength meter (EXFO) that compares the measured wavelength and a reference.
A proportional-integral-derivative loop generates an error signal which feeds the piezoelectric
transducer of the external cavity of the laser, stabilizing the wavelength of the laser with an
absolute precision of ±0.2 pm, see figure 2.9. The degeneracy frequency ω0 of the photon pairs
is thus controlled with a precision of about ±0.04 GHz. Measurements of the wavelength and
power of the laser are stored and treated by a MATLAB routine.

In the χ(2) medium, the pump photons at frequency 2ω0 can split into signal and idler photons
at frequencies ωs,i = ω0 ± ω. We measured a photon-pair spectrum extending on the whole
C-band. The process is made efficient by engineering the quasi phase matching technique in the
periodically-poled waveguide, achieved by carefully controlling the waveguide’s temperature.
Its optimization can be based on measurements in the second-harmonic regime. To achieve a
fine conversion wavelength control and good efficiency, the PPLN crystal is placed in an oven
or on a Peltier cell for accurate temperature stability. It is then possible to efficiently generate
frequency-entangled photon pairs centered at a specific frequency ω0. A detailed treatment
of the photon-pair production in periodically-poled media can be found in [NME08], as it has
been previously studied in Université libre de Bruxelles [PHNB+07]. PPLN waveguides have
emerged as the preferred photon-pair source at telecommunication wavelengths because of
their very high spectral brightness [TDRZ+01, TTDR+02, HBT+08]. The characteristics of the
two waveguides we have used are presented in table 2.1.

At the output of the PPLN, the remaining pump beam is rejected by a fiber drop filter. It easily
offers high isolation, the pump being at a very different wavelength than the photon pairs.
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Table 2.1: Characteristics of the periodically-poled lithium niobate waveg-
uides.

team Brussels Besançon
manufacturer HC Photonics HC Photonics

stabilization method oven Peltier cell
stabilization time ∼min ∼ hours

length 4 cm 3 cm
chip normalized efficiency 80%/W/cm2 150%/W/cm2

input coupling efficiency ≈ 50% ≈ 65%
output coupling efficiency ≈ 50% ≈ 65%

output fiber SMF PMF

The photons of each pair are separated (with 50% probability) with a 3-dB fiber coupler, such
that each photon in every entangled pair is sent through an independent EOPM. Note that a
deterministic separation based on frequency can be achieved, as was done for the experiment
involving interleavers, see section 2.6.

2.5.2 Manipulation

The photons pass through EOPMs (from EOSPACE) whose typical characteristics are presented
in table 2.2. Their active axes must be aligned with the linear polarization of the photons.
Our PPLN being of type I, the photons are identically polarized. In our experiments, either
polarization-maintaining fiber components ensure that the photons’ polarizations are aligned
with the active axes of the modulators, or we carefully attach the non-polarization maintaining
fibers and use fiber polarization controllers to realize the needed polarization rotations.

Table 2.2: Characteristics of the electro-optic phase modulators.

RF bandwidth ' 25 GHz
Vπ ' 3 V

optical loss 2.5 – 3.5 dB

The EOPMs are driven by an RF signal at frequency Ω/2π = 12.5 or 25 GHz, with adjustable
amplitude and phase (a, α) and (b, β). These parameters must be set independently, precisely
and reproducibly. To this end, we used RF systems where the signal of an RF generator is split
and manipulated independently on Alice’s and Bob’s sides. We note that it is possible to use
two synchronized RF generators instead of one, and share the synchronization signal through
electronic cables or optical fibers. The limited RF power limits the accessible values of the pa-
rameter c defined by (2.2) and given by c = πV−1

π R1/2P1/2, where Vπ is the half-wave voltage
of the EOPM, internal resistance R = 50 Ω, and P is the RF power applied to the modulator.
For a radio-frequency 12.5 GHz we attained a maximal value of c ≈ 2.74. At this value, eleven
frequency bins are created, see figure 2.2. The bandwidth sampled by the EOPMs is thus ap-
proximately 125 GHz, which is much smaller than signal and idler bandwidths (approximately
5 THz).

Due to the equivalences demonstrated in section 2.3, the RF setup can be characterized entirely
with classical light. This allows us to perform precise calibration measurements. In [OCN+10],
manual phase shifters and attenuators were used. In [OMW+12], a dedicated RF architecture
based on frequency translation allowed high-resolution phase and amplitude control of the RF
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signals with better accuracy. The RF phase was automatically controlled by I&Q modulation,
while the RF amplitude still made use of mechanically adjustable attenuators. Details can be
found in [OMW+12]. Finally, we developed the fully-automated RF system of figure 2.10,
which was used in [OWPH+14] and subsequent experiments.

Figure 2.10: Detail of the radio-frequency system. The power of a 25-GHz
generator G is split by a power splitter and directed to Alice’s and Bob’s
EOPMs. RF isolators (not shown) guarantee the independence of each arm.
The phases α and β are fixed by variable phase shifters. After amplification,
amplitudes a and b are adjusted with variable attenuators. Ten per cent of the
power of each signal is sent to an RF power meter allowing precise measure-
ment of the RF power applied to the EOPM. The motorized phase shifters
and attenuators are remotely-controlled and interfaced to a computer.

Precise characterization of the setup of figure 2.10 shows a phase reproducibility better than
10−2 rad, while power resolution is 10−2 dB, with a precision better than 0.1 dB. A MATLAB

routine allows to switch on and off the RF generator and amplifiers and to select amplitudes
and phases (a, α) and (b, β). This is realized by controlling the voltage sources linked to the
motor-driven RF phase shifters and attenuators. We implemented a voltage switch to be able
to increase or decrease these parameters in a fully automated way.

2.5.3 Filtration

Figure 2.11 illustrates the action of frequency filters. They need to discriminate between fre-
quency bins separated by a radio-frequency of 12.5 or 25 GHz. In our setup, narrow-band
frequency filters were implemented with fiber Bragg gratings (FBGs) preceded by a circulator,
the reflected frequency being detected. The FBGs were characterized with a broadband light
source. The main characteristics of the FBGs we used are presented in table 2.3.

Figure 2.11: Detail of the frequency filtration. (a) Selection of one frequency
bin with a fiber Bragg grating preceded by a circulator C. (b) Separation be-
tween even and odd frequency bins with an interleaver IL.

The spectral characteristics of the home-made FBGs used in [OCN+10, OMW+12] are visible on
figure 2.2. Fixed filters select photons belonging to the frequency bin

[
ωF −ΩF/2, ωF + ΩF/2

]
centered on ωF = ω0 and restricted to a 3 dB width ΩF/2π ≈ 3 GHz, smaller than the radio-
frequency Ω/2π = 12.5 or 25 GHz. The filter transmission drops very steeply. Isolation better
than 30 dB at half the radio-frequency Ω ensures that frequency bins are well isolated from
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Table 2.3: Characteristics of the fiber Bragg gratings.

team Besançon Brussels
manufacturer home-made Acreo
wavelength 1547.7 nm or tunable tunable around 1552 nm

full width at half maximum ≈ 3 GHz ≈ 4 GHz
isolation at 6.25 and 12.5 GHz > 30 dB ≈ 30 dB

loss ≈ 0.2 dB ≈ 0.5 dB

each other. The filters are athermally packaged to reduce central wavelength deviation to 1
pm/K, which is very important to ensure the stability of the experimental measurements. A
misalignment would affect the coincidence rate, see the function g(ω) in (2.30). We recall that
the bandwidth of the pump laser (approximately 2 MHz) is much smaller than the bandwidth
of the FBGs, while the bandwidth of the signal and idler photons (approximately 5 THz) is
much larger. In [OCN+10], the temperature of Bob’s filter is controlled by a Peltier module,
which allows continuous tuning of the reflected frequency ωB over a 1-nm range around ω0.
In [OWPH+14], interleavers (OPTOPLEX) aligned on the ITU grid were used. The principle is
illustrated in figure 2.11. We refer to section 2.6 for more details.

2.5.4 Detection

The photons are detected with single-photon detectors (SPDs) of two types: avalanche photo-
diodes (APDs) and superconducting single-photon detectors (SSPDs). Table 2.4 presents their
main characteristics, as measured in our experimental implementations. Imperfections of SPDs
include that the probability of detection given a photon enters the device (the efficiency η) is
less than one, and that the device will click at a non-zero rate (the dark-count rate τdk) even
when no photon is present.

Table 2.4: Characteristics of the single-photon detectors.

type APD SSPD
manufacturer idQuantique Scontel

model id201 FCOPRS-001
wavelength C-band visible and IR

operation mode gated at 100 kHz continuous
with 100 ns time windows

efficiency 10 – 15% ' 5%
dark-count rate 2 · 10−5 – 6 · 10−5 /ns ' 10 Hz

(i.e. 200 – 600 kHz) (condition-dependent)
timing jitter ' 500 ps ' 50 ps
temperature −50°C (Peltier module) 1.7 K (helium vapor)

The signals generated by the SPDs are directed to a data acquisition system (DAS). A time-to-
digital converter (TDC, AGILENT Acqiris system, timing resolution of about 50 ps) measures
the time tB− tA elapsed between the arrival of an electric signal at a “start” electronic input and
the arrival of a signal at a “stop” input. The raw values are stored and treated by a MATLAB

routine to produce histograms of the events, i.e. the number of coincident detection events
as a function of tB − tA. Figure 2.12 illustrates a typical coincidence measurement. It exhibits
a narrow peak when the photons arrive in coincidence, superposed to a background due to
accidental coincidences. Automated RF control and measurement data acquisition (both for
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two-photon experiments and characterization procedures) has enabled full automatization of
our experiments: rates are measured during automatically adjustable times in automatically
adjustable RF configurations.

Figure 2.12: Detail of the data acquisition system. A detection event on Al-
ice’s detector triggers the data acquisition: the electric signal is sent to a time-
to-digital converter TDC. At the reception of an electric signal from Bob’s
detector, the TDC stores the time elapsed between the two events. The bot-
tom figure shows a typical histogram. When correlated photons are present,
a coincidence peak emerges from these time-resolved coincidence measure-
ments. An automated data analysis allows to extract the values of raw and
net coincidence counts (in red and orange, estimation of Nnet and Nnoise). One
can straightforwardly generalize the principle with more than two detectors.

Note that in [OCN+10], [OMW+12] and [POD+13] (see chapter 5), we used one “stop” sig-
nal, as shown in figure 2.12, but the TDC accepts several “stop” signals. In [OSC+13] (see
chapter 4), we used three detectors, one for Alice and two for Bob, implying a straightforward
two-“stop” generalization of the setup. In [OWPH+14], we used four detectors, two for each
protagonist, implying the necessary division of Alice’s detection signals to produce one “start”
signal common to both her detectors, and four “stop” signals.

To quantitatively analyze the results of coincidence measurements, we define the raw and net
numbers of coincident events

Nraw =
∫ t f

ti

N(t)dt , (2.57)

Nnet = Nraw − Nnoise = Nraw − (t f − ti)τacc , (2.58)
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where

τacc =
1

tmax − t f

∫ tmax

t f

N(t)dt (2.59)

is the rate of accidental coincidences, and N(t) is the number of coincidences at time t = tB− tA.
We thus define a signal time window whose jitter-dependent size t f − ti (typically ∼ ns) has to
be carefully —since all the quantities will depend on this definition— selected (manually or by
the MATLAB routine) so as to contain all the signal coincidence counts. Outside this window, up
to the maximum delay tmax, only noise is present. Estimation of Nnet with (2.58) and (2.59) relies
on the assumption that the noise is uniformly distributed through the histogram, so that Nnoise
is the estimation of the number of coincidences due to the accidental background. In general
this assumption is verified in the vicinity of a coincidence peak; if this is not the case, the
procedure can be easily generalized to other-shaped backgrounds of accidental coincidences.

The signal coincidence counts originate from the joint detection of each photon of a given pair.
Due to imperfect sources and detectors, the background noise has several origins: a joint de-
tection of two photons originating from two different pairs or from another optical generation
process, a detection of a photon and a dark count, or two dark counts. Such a background de-
pends greatly on the detectors’ parameters, and on the source characteristics. It is then natural
to consider the net coincidence counts to evaluate the quality of our setup for manipulating
entangled photons. In particular, we expect the theoretical prediction (2.40) to be better ver-
ified when considering the net coincidence counts. It is also important to note that in our
experiments the quantities N(a, α; b, β; n) and N(a = b = 0; n) intervening in (2.40) cannot be
measured simultaneously. In order to evaluate the normalized rate

Ñ(2)
d (a, α; b, β; n) =

N(2)
d (a, α; b, β; n)

N(2)
d=0(a = b = 0; n)

, (2.60)

we have to assume that the quantity N(2)
d=0(a = b = 0; n) is known, being evaluated with

sequential or parallel measurements. Such an assumption relies on the stability of the setup,
and creates for example loopholes in Bell tests, see section 3.1.

Our automated data treatment allows to extract important quantities such as the coincidence
rate, the coincidence-to-accidental ratio CAR (or signal-to-noise ratio SNR), the coincidence
peak bandwidth, and the raw and net visibilities, defined as follows:

Vraw =
Nmax − Nmin

Nmax + Nmin
, (2.61)

Vnet =
(Nmax − Nnoise)− (Nmin − Nnoise)

(Nmax − Nnoise) + (Nmin − Nnoise)
, (2.62)

where Nmax and Nmin correspond to the (raw) maximal and minimal coincidence counts when
varying the RF parameters. The visibility is a critical parameter for the quality of a setup. Its
evaluation can be done directly with the data or via an adjusted curve, e.g. based on a statistical
“fit”. We note that the duration of each measurement has to be long enough so as to allow a
good statistical precision —which scales as the square root of N— on the evaluation of all the
quantities involved in the data treatment.

We conclude by noting that the coincidence measurements can be efficiently simulated when
taking into account all the parameters of the experiment: source rate and emission spectrum,
optical losses, radio-frequency parameters, filters’ spectra, detection efficiency and jitter, etc.
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2.6 Experimental results

Our experimental results published in [OCN+10], [OMW+12] and [OWPH+14] are based on
the generic setup of figure 2.8 and rely on the components described in section 2.5.

In [OCN+10], the non-stabilized pump laser is set at λp ≈ 773.865 nm, corresponding to a de-
generacy wavelength λ0 = 2πc/ω0 ≈ 1547.73 nm. It injects 6 mW of power into the Besançon
PPLN. EOPMs are driven by Ω/2π = 12.5 GHz signals whose parameters are mechanically
adjusted. The reflected frequency of Alice’s FBG is kept fixed on ω0 while the value of d is
chosen by adjusting the reflected frequency of Bob’s filter to ω0 + dΩ. The photons belong-
ing to the frequency bin reflected by the filters are detected with APDs set on 15% efficiency.
Coincidences are measured at a rate of approximately 10 Hz, with a CAR value around 100
when modulation is turned off. The data are background-corrected. The normalized (net) co-
incidence rate Ñ(2)

d (a, α; b, β; n = 0) plotted in figure 2.14 as a function of the RF parameters
exhibits two-photon interference.

First, we scanned the modulation amplitudes a = b (taken to be equal) when δ ≡ α− β = 0.
The number of frequency bins that interfere together is approximately given by the number
of values of d for which Nd takes a significant value, and it increases when a, b increase. In
our experiment, we were able to scan the values a, b ∈

{
0, 2.74

}
. When a ≈ b ≈ 2.74, there are

contributions from d = 0 to d = 5. By the symmetry of (2.40), there should also be contributions
from d = −1 to d = −5. This shows that at least eleven frequency bins are coherently addressed
by the EOPMs.

Second, we scanned the phase δ when a ≈ b ≈ 2.74. Equation (2.40) predicts that when δ = π,
only d = 0 contributes, and that the quantity N(2)

d=0(a = b = 2.74, δ; n = 0) should vanish for
specific values δ∗. This allows us to estimate the visibility of interferences through the usual
formula (2.62), with the maximum for δ = π and the minimum for δ = δ∗. From the data
reported in figure 2.14, we estimate that the net visibility is equal to 98± 1%.

Note that the acquisition time per measured point was constant, corresponding to a number
of coincidences approximately equal to 103Ñ. Statistical uncertainties are the main source of
uncertainty. The remaining discrepancies between theoretical curves and experimental mea-
surements are due to other factors, such as lack of stability of the pump laser (visible in the
d = 1 curve versus α− β), limited precision on the RF parameters, and limited visibility. Note
also that when d = 5, the filter FBGB was at the limit of its tuning range, and it may have not
been perfectly centered on ω0 + 5Ω, in which case there would be a systematic underestimation
of Nd=5.

In [OMW+12], the analogically-stabilized pump laser is set at 773.8715 nm, corresponding to
a degeneracy wavelength of 1547.743 nm. It injects 3 mW of power into the Besançon PPLN.
EOPMs are driven by 25 GHz signals generated by the frequency translation setup, with au-
tomated control of phases (and accuracy much improved) and manual control of amplitudes.
Both home-made FBGs are kept fixed on the degeneracy wavelength. The photons are detected
with SSPDs. Coincidences are measured at a 20-Hz rate, with a CAR value approximately equal
to 2× 103 when modulation is turned off. High stability of the source, stability and precision
of the RF signals driving the EOPMs, and use of low-noise SSPDs, allow us to detect the two-
photon interference pattern with high precision.

We tested the equivalence of the experiments represented in figures 2.3, 2.4 and 2.5: as pre-
dicted by equations (2.20), (2.27) and (2.40), rates N(class), N(1) and N(2) should have the same
functional dependence on the RF parameters. In the case of classical optics and one-photon
experiments, we presented in total three versions of the experiment, differing mainly in the op-
tical source S employed, which can be a coherent polarized narrow-band laser, a non-coherent
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non-polarized broadband light source or a broadband incoherent source attenuated to reach
the single-photon regime. In the first case, neither filtration nor polarization management is
required, since all the photons emitted already belong to a given frequency bin, with their po-
larization aligned with the active axes of the modulators. In the second version, the light beam
must first pass through a filter and a polarizer before being sent through the setup; this cor-
responds more strictly to the entangled-photon case, where signal and idler photons have a
broad spectrum. For the single-photon experiment, the broadband source is attenuated until
it contains, on average, much fewer than one photon in each frequency bin within each 2.5-ns
detection time window of the APD used in gated mode with 100-kHz repetition rate.

We chose d = 0 and varied the parameter C, defined by (2.15), by scanning one of the phases
α or β with a = b fixed. As mentioned, this procedure permits evaluation of the interference
visibility, the value of which is critical for the performance of the system. We extract the visi-
bilities using (2.61) and (2.62). The maximal rate Nmax is obtained in principle for C∗ = 0, such
that J2

0(C
∗) = 1. For a = b this is achieved with a phase difference α− β = π. The minimal rate

Nmin is obtained for any of the positive roots
{

C∗i
}

of J0, for which J2
0(C

∗
i ) = 0, ∀i. The visibility

therefore attains a theoretical maximum value of 1. If a = b, the first root C∗i is attainable at suf-
ficiently high RF powers (a = b & 1.2) with the phase difference α− β = arccos(C∗21 /2a2 − 1).

Our results are summarized in figure 2.15 and table 2.5. Figure 2.15 is a plot of Jd
(
[a2 + b2 +

2ab cos(α − β)]1/2)2 as a function of α − β for d = 0 and a = b ≈ 2.25. The experimentally
derived rates N(class), N(1) and N(2) —normalized by N(class), N(1) and N(2) with modulation
turned off— are superposed to the theoretical curve. The close agreement of the experimental
data taken with the different experimental schemes validates the predictions of (2.20), (2.27)
and (2.40), and thereby demonstrates the equivalence of the classical optics, single-photon and
two-photon experiments. Note that an uncontrolled phase shift arises due to propagation times
in the optical fibers between the source and each EOPM, see discussion in section 3.4. The ex-
perimental results are therefore horizontally shifted in order to obtain the best possible agree-
ment with the theoretical curve. This is the only parameter that is adjusted to fit the data.

Table 2.5: Experimentally measured visibilities. Data from [OMW+12].

Classical expt Classical expt
(laser source) (broadband source) One-photon expt Two-photon expt

Vraw
(
99.79± 0.01

)
%

(
99.41± 0.12

)
%

(
87.25± 0.38

)
%

(
99.17± 0.11

)
%

Vnet
(
99.79± 0.01

)
%

(
99.41± 0.12

)
%

(
99.27± 0.43

)
%

(
99.76± 0.11

)
%

Table 2.5 gives the values of the visibilities Vraw and Vnet extracted from curves such as those
reported in figure 2.15. In the classical case a very low noise detector was used to measure
maximal and minimal rates, which is why Vraw ≈ Vnet. Both the laser source and the broadband
source were used. In the single-photon case an APD with a relatively high dark-count rate was
used, which explains the low value of the raw visibility. In the entangled-photon case, the
high value of Vraw is due to the quality of the SSPDs used, which are much less noisy than
APDs. Maximal and minimal rates were measured for several minutes in order to obtain a
good statistical precision on the visibilities.

The values of Vraw depend strongly on the noise inherent in the detectors and thus vary greatly
across the different cases. By contrast, the values of Vnet are all almost equal and notably high.
This agreement once again confirms the equivalence between the different experiments. It
also allows us to separate the contributions to visibility degradation due to the experimental
setup from those inherent to the detectors (detector noise and dark counts) and sources (in
particular noise due to multi-photon events) used. The main contributions from the setup
itself are imperfect frequency-bin isolation, imperfect polarization management and imperfect
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control of the RF parameters. The visibilities we obtained are comparable to the best results
reported for two-photon interference at telecommunication wavelengths; see, e.g., [MIH+10].

In [OWPH+14], we reported two-photon interference obtained with the periodic frequency
filters called interleavers, see section 2.4 and figure 2.16. The numerically-stabilized pump
laser is set at λp = 776.1617 nm, corresponding to a degeneracy wavelength λ0 = 1552.3234
nm. It injects 0.7 mW of power into the Brussels PPLN. EOPMs are driven by 25 GHz signals
created by the fully-automated setup of figure 2.10. The photons are detected with four APDs
(the id201’s of table 2.4 and noisier id200’s) operated at 10% efficiency. When modulation is off,
coincidences are measured at a rate ≈ 1.5 Hz and with a CAR of ≈ 2. These low values are due
to the gated operation and high dark-count rates of the APDs, and to the high losses from pair
creation to detection (≈ 18 dB for each channel, see below). The setup corresponding to this
configuration is represented in figure 2.13.

Figure 2.13: Experimental setup with interleavers. Photons from the PPLN
pass through a 12.5–25 interleaver creating a nice frequency comb, and a few
frequency bins are selected and separated by a WaveShaper filter. After po-
larization management (not shown) and phase modulation, odd (O) and even
(E) frequency bins are detected behind a 25–50 interleaver on each side.

The degeneracy frequency is ω0/2π = c/2λp = 193.125 THz. In what follows, we relate fre-
quencies to the International Telecommunication Union DWDM grid in the C-band: multiples
of 50 GHz are said to be on the 50-grid, multiples of 25 GHz are on the 25-grid, and other fre-
quencies are off the grid. In order to create a nice frequency comb, the photons pass through
a 12.5–25 frequency interleaver. The photons whose frequencies belong to a-few-GHz-wide
intervals centered on the 25-grid are collected at the output, while those centered on intervals
with a 12.5 GHz offset are thrown away with more than 25 dB extinction. The reason for using
this first filter can be understood with figure 2.17, where the transmission spectra of all filters
used in the experiment are shown. Indeed, whereas the outputs of the 25-50 interleavers (dis-
criminating even and odd frequencies before detection, see below) have ≈ 25 dB extinction at
the center of each pass band, they only have ≈ 3 dB extinction at the edges of the band. Hence
photons at the edges of the pass bands have quite high and equal probabilities to exit the even
and odd ports, which would result in an important decrease of visibility of interference if the
25–50 interleavers were used alone. The spectra in panel (d) of figure 2.17 show that upon us-
ing the initial 12.5–25 interleaver that removes the photons at the edges of the pass bands, the
even and odd outputs are now separated by 25 dB over the whole frequency band.

The state at the output of this periodic filter can be written as in (2.33):

|Ψ〉 = ∑
n∈Z

fn|n〉|−n〉 ⊗
∫ Ω/2

−Ω/2
dω h(ω) |ω〉|−ω〉 , (2.63)

where Ω = 25 GHz and h(ω) is a function that represents the effect of the 12.5–25 frequency
interleaver (it is maximal around ω = 0 and tends rapidly to zero). The pump is rejected with
more than 100 dB extinction when taking into account all filters preceding detection.
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Photons then pass through a programmable filter (WaveShaper from FINISAR) which is con-
figured to direct photons from bins n = +(resp. −)1, 2, 3, 4, 5, 6 to Alice (resp. Bob). Thus we
obtain the state

|Ψ〉 = 1√
6

6

∑
n=1
|n〉|−n〉 ⊗

∫ Ω/2

−Ω/2
dω h(ω) |ω〉|−ω〉 , (2.64)

where we omit the factors fn on such a reduced bandwidth. The restriction to only 6 frequency
bins is realized so that dispersion can be neglected. Otherwise, photons in different frequency
bins accumulate different phase shifts during propagation through the optical fibers that dete-
riorate the two-photon interference pattern. The number of frequency bins could be increased
if dispersion compensation were implemented. Note that limiting the number of frequency
bins will decrease the visibility of the interference pattern.

On each arm, a polarization controller followed by a polarizer ensures that the polarization of
the photons is aligned with the axis of the EOPM. Finally, the photons are directed to a 25–50
frequency interleaver. One output collects photons belonging to the 50-grid, i.e. frequency
bins with n odd (result O), while the other collects photons remaining from the 25-grid, i.e.
frequency bins with n even (result E). The four APDs allow the simultaneous acquisition of
EE, EO, OE and OO coincidences by the TDC. Histograms show that when no modulation
is applied, only EE and OO coincidences are present, as expected by (2.64). We note that it
is possible to change the correlations by changing the wavelength of the pump: e.g., when
λp = 776.1115 nm, we measure inverted correlations.

The experimental measurements, some of which are shown and commented in figure 2.16, are
in good agreement with the theoretical predictions (2.56). When a = b, the probabilities P(E, O)
and P(O, E) should vanish when the phase difference α− β is scanned, which enables one to
evaluate the (net) visibility (2.62) of the interference fringes. For the value a = b = 0.6955 used
in the figure, we measured V = 90% and V = 80% depending on which combination, EO or
OE, is considered. This limited visibility is attributed to non-ideal state preparation: limited
bandwidth and dispersion.

The experiment reported in [OWPH+14] could be further improved. The coincidence rate,
CAR, and interference visibility could be enhanced by the use of SSPDs. Using a designated
filtering line and/or a source based on a resonator which would directly produce a frequency
comb of the form (2.63) would limit losses and enhance purity of the quantum state. The full
bandwidth of the two-photon state could be exploited provided dispersion management is
realized. These improvements would bring the method closer to practical applications.

Hence, using frequency-bin entangled photons, one has the choice to exploit high-dimensional
entanglement [OCN+10, OMW+12], or to manipulate more conventional two-dimensional en-
tanglement, on which most quantum information protocols are based [OWPH+14]. Advan-
tages of frequency-bin entanglement include: the use of optical, electro-optic and RF compo-
nents that are commercially available and allow easy interconnection and remote control; the
use of optical components that allow good polarization management, frequency-bin isolation
and stability; the use of an RF system that allows stability, independence, easy calibration and
precise adjustment of parameters; overall reproducibility and robustness allowing day-long
experiments with no measurable drift or decrease in performance; no interferometric stabiliza-
tion required over laboratory distance scales (meters of optical fibers). Manipulating frequency
entangled photons with EOPMs and frequency filters, raw visibilities in excess of 99% can read-
ily be obtained (comparable to the highest visibilities obtained using other photonic degrees
of freedom) and high-dimensional quantum states can be manipulated (dimension as high as
eleven easily obtained). Our method is potentially a competitive platform for the realization of
quantum communication protocols at telecommunication wavelengths.
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Figure 2.14: High-dimensional two-photon interference patterns versus
radio-frequency parameters. Theoretical predictions (curves) and experi-
mental measurements (symbols with error bars) of the normalized coinci-
dence rate Nd. Left: Nd(c, c, α− β = 0) when α− β ≈ 0 and the amplitude
a ≈ b ≡ c is scanned, for d = 0, 1, 2, 3, 4, 5. The experimental measurements
are plotted entirely in terms of measured quantities, and do not depend on
any adjustable parameters. Values of c are deduced from measures of the
radio-frequency power. Horizontal error bars are due to the limited reso-
lution of the power meter used (we assumed a relative uncertainty on c of
10−2). Vertical error bars are statistical. Right: Nd(a = 2.74, b = 2.74, α− β)
when a ≈ b ≈ 2.74 and the phase α − β is scanned, for d = 0, 1, 2, 3, 4, 5.
To plot the experimental measurements we used the value indicated by the
mechanical phase shifter, x, and converted it to a phase value using the re-
lation α− β = µx + ν. Parameters µ (which can be determined by classical
measurements) and ν were adjusted to get a good fit with the theoretical pre-
dictions. Horizontal error bars are due to the limited resolution of the phase
shifter used (we assumed an absolute uncertainty on α− β of 5× 10−2 rad).
Vertical error bars are statistical. Figure adapted from [OCN+10].
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Figure 2.15: High-visibility interference patterns in the frequency domain.
The Bessel-type interference described by (2.20), (2.27) and (2.40) is plotted
for d = 0 and a = b ≈ 2.25 as a function of the phase difference α − β.
The raw (with detector noise) and net (detector noise subtracted) data are
shown respectively on the top and bottom panels. On both plots, the theo-
retical curve is included in black, the green data points are the normalized
light intensity N(class) (obtained using the tunable laser source), the blue data
points correspond to the normalized photon rate N(1), i.e. the single-photon
interference pattern (obtained using the broadband source, attenuated to the
single-photon regime), and the red data points correspond to the normalized
coincidence rate N(2), i.e. the two-photon interference pattern (obtained us-
ing the PPLN source). The error bars are statistical. Note that the classical
measurements N(class) are made with a relatively noisy photodiode, and the
raw visibility for the green data points in the top panel is therefore less than
reported in table 2.5, where a low-noise photodiode was used. Note also that
when detector noise is subtracted (bottom panel) the different experimental
data points superpose exactly, demonstrating the equivalence of the interfer-
ence schemes, but deviate slightly from the theoretical curve. We attribute
this to small errors in the calibration of I&Q parameters, so that the actual
RF phases α and β deviate slightly from their theoretical value. Figure from
[OMW+12].
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Figure 2.16: Two-dimensional two-photon interference patterns using inter-
leavers. Parameters are: a = b = 0.6955, and α is changed with β kept con-
stant. Curves are theoretical predictions (2.56) for coincidence probabilities
P(E, E), P(E, O), P(O, E) and P(O, O). Symbols are experimental results:
they correspond to the number of coincidences N(E, E), N(E, O), N(O, E)
and N(O, O) simultaneously registered for each combination of outputs. A
normalization based on the coincidence rates registered when modulation is
off is realized; error bars are statistical; background noise of the histograms
has been subtracted. The net interference visibility (calculated on curves that
should cancel) is evaluated to be (85± 5)%, depending on the combination
considered. Figure from [OWPH+14].
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Figure 2.17: Spectra of the periodic frequency filters called interleavers. Since
λp = 776.1617 nm, 1552.3234 nm corresponds to the degeneracy frequency
ω0. From top to bottom: a) Output of the 12.5–25 interleaver. b) Even (red
curve labeled E) and odd (blue curve labeled O) outputs of a 25–50 inter-
leaver. c) Programmable WaveShaper filter; photons belonging to the red,
labeled A, (resp. blue, labeled B) output are sent to Alice (resp. Bob). d) Spec-
trum obtained when cascading 12.5–25 interleaver, WaveShaper and 25–50
interleaver; red curve labeled AE: Alice, even; black curve labeled AO: Alice,
odd; magenta curve labeled BE: Bob, even; blue curve labeled BO: Bob, odd.
Figure from [OWPH+14].



Chapter 3

Uses of frequency-bin entangled
photons

We have described in chapter 2 how frequency-entangled photons manipulated by electro-optic
phase modulators (EOPMs) exhibit interference patterns in the frequency domain. Entangle-
ment is a necessary resource for several quantum optics experiments and quantum information
protocols. A standard experimental proof of manipulation of entanglement is to demonstrate
a violation of a Bell inequality. In the first section of this chapter, we show that the two-photon
interference patterns exhibited by frequency-bin entangled photons allow the violation of Bell
inequalities. In the second section, we show how frequency-bin entanglement survives after
interaction within plasmonic nanostructures, opening the way to investigations in quantum
plasmonics, a promising new field for subwavelength quantum optics. In the third section, we
recall previous results demonstrating that EOPMs can be used to code information in the fre-
quency domain in view of quantum key distribution (QKD) applications [BMMP07], and we
present a potential alternative implementation. Finally, we briefly discuss other potentialities
of our method.

3.1 Violation of Bell inequalities

Here we show how frequency-bin entangled photons addressed locally by EOPMs can in prin-
ciple be used to perform quantum nonlocality experiments. That is, we show that the correla-
tions between Alice’s and Bob’s detectors should not be explainable by a local hidden variable
(LHV) model, as discussed in section 1.2.

Frequency-bin entangled photons produce high-dimensional two-photon interference patterns.
Detecting simultaneously all the results with narrow-band frequency filters would require a lot
of detectors —one for each frequency bin. Here we consider a setup with only two detectors,
one on Alice’s side and one on Bob’s side. We will make assumptions to reduce the require-
ments of the Bell test. The procedure we follow is exposed in [OCN+10].

Our starting point is the CH74 inequality (1.24), which we recall here:

P(+ + |x0 y0) + P(+ + |x0 y1) + P(+ + |x1 y0)− P(+ + |x1 y1) ≤ P(+|x0) + P(+|y0) , (3.1)

with P
(
+|x

)
= ∑b P

(
+b|x y

)
, P
(
+|y

)
= ∑a P

(
a + |x y

)
, and where x0, x1 are two possible set-

tings of Alice’s measurement apparatus and y0, y1 are two possible settings of Bob’s measure-
ment apparatus. In our case, the measurement settings correspond to a choice of amplitude
and phase applied to the EOPMs: x0 =

(
a0, α0

)
, x1 =

(
a1, α1

)
, y0 =

(
b0, β0

)
, y1 =

(
b1, β1

)
.
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Each measurement has two possible outcomes. The symbol + denotes one of them. The other
outcome, −, does not intervene explicitly in the inequality. We take the outcome + in (3.1) to
correspond to the photon being registered in the frequency bin “0”, centered on the degeneracy
frequency ω0, on which is aligned a narrow-band frequency filter. All other frequency bins are
associated with the result −, which is not detected in our setup.

The joint probabilities in (3.1) can be estimated directly, since they are proportional to the rate of
coincidences N(2)

d=0 in Alice’s and Bob’s frequency bins 0. The quantities P(+|x0) and P(+|y0)
cannot be measured directly with our setup. However, we can estimate these quantities by
making the following assumption, identical in spirit to the one made by Clauser–Horne in
[CH74]:

P(+|x0) = P(+|y0) = P(+|a = 0) = P(+|b = 0) = P(+ + |a = b = 0) . (3.2)

The quantum theory of our experiment implies —assuming the variations of the function f (ω)
describing the signal and idler photons bandwidths are negligible, see chapter 2— that (3.2) is
true. We assume it is also obeyed by LHV models. That is, we assume, both in quantum theory
and in LHV models, that the number of photons detected by Alice (Bob) in the frequency bin
0 is the same when Alice’s (Bob’s) detector has setting x0 (y0) and when Alice’s (Bob’s) phase
modulator is turned off, that is, when a = 0 (b = 0).

Inserting (3.2) in (3.1) and dividing by P(+ + |a = b = 0) leads to the inequality S ≤ 2, with
experimental estimate

S = [ N(2)
d=0(a0, α0; b0, β0; n) + N(2)

d=0(a0, α0; b1, β1; n) + N(2)
d=0(a1, α1; b0, β0; n)

−N(2)
d=0(a1, α1; b1, β1; n) ]/N(2)

d=0(a = b = 0; n) (3.3)

= Ñ(2)
d=0(a0, α0; b0, β0; n) + Ñ(2)

d=0(a0, α0; b1, β1; n) + Ñ(2)
d=0(a1, α1; b0, β0; n)

−Ñ(2)
d=0(a1, α1; b1, β1; n) , (3.4)

where the normalized coincidence rates Ñ are defined by (2.60). In order to investigate whether
(3.3) can be violated experimentally, we first substitute (2.40) to rewrite (3.3) as

S = J2
0(C00) + J2

0(C01) + J2
0(C10)− J2

0(C11) , (3.5)

where
Cij =

[
a2

i + b2
j + 2aibj cos(αi − β j)

]1/2 , (3.6)

and i, j ∈
{

0, 1
}

. An analytic optimization of (3.5) was realized in [Woo10, OMW+12]. The
optimization relies on the fact that the parameters Cij obey constraints imposed by the form
of (3.6). In particular, they can be identified to the lengths of the sides of a quadrilateral, so
that each of the four Cij is bounded by the sum of the other three, e.g. C11 ≤ C00 + C01 + C10.
The eight-parameter optimization of (3.3) is thus reduced to a four-parameter optimization
with constraints. In [Woo10, OMW+12], it is demonstrated that the optimum of (3.5) lies along
the boundary C00 = C01 = C10 = C11/3. The optimum C00 ≈ 0.550, for which S ≈ 2.389,
corresponds to the RF parameters

(a0, α0) = (b0, β0) = (0.275, θ) , (a1, α1) = (b1, β1) = (0.825, θ + π) . (3.7)

Reaching the optimal value requires the use of variable —but small— modulation amplitudes
and precise phase adjustment.

In [OMW+12], we evaluated the experimental violation of the CH74 inequality. Scans of both
phases α and β at the amplitudes (a0, b0), (a0, b1), (a1, b0), (a1, b1) given in (3.7) enabled precise
selections of the phases α0, α1, β0, β1 for which the violation is largest. Measurements were
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then performed for phases and amplitudes optimizing the violation. The experimental results,
listed in table 3.1, agree with the theoretical predictions up to the statistical errors and imply
that the CH74 inequality is violated by more than 18 standard deviations. This again shows
how frequency-bin entangled photons can be manipulated with high precision.

Table 3.1: CH74 Bell inequality violation results. xi yj, i, j ∈
{

0, 1
}

, is the nota-
tional shorthand for (ai, αi; bj, β j). The column “Theory” gives the values that
should be obtained at the point (3.7) for which the CH74 violation is maxi-
mal. Note that the experimental values agree with theoretical predictions up
to statistical errors. Data from [OMW+12].

Theory Expt N(2)
raw Expt N(2)

net
(with noise) (noise subtracted)

x0 y0 0.857 0.862± 0.006 0.861± 0.006
x0 y1 0.857 0.863± 0.006 0.862± 0.006
x1 y0 0.857 0.854± 0.006 0.853± 0.006
x1 y1 0.182 0.190± 0.003 0.186± 0.003

S 2.389 2.389± 0.021 2.391± 0.021

For comparison we note that the maximum value of (3.3) attainable by quantum theory for
systems of dimension 2 is 2.414, which is quite close to the maximum value of 2.389 attainable
using EOPMs on frequency-bin entangled photons. However, as the frequency-bin entangled
photons belong to a Hilbert space of dimension greater than 2, it may be that the maximum
value attainable by some local measurements on the state exceeds this value. The algebraic
maximum for this expression is 3, which cannot be exceeded by any measurement.

In [OCN+10], a similar Bell test was carried on, but by imposing a fixed amplitude c = a0 =
a1 = b0 = b1, so that the coefficients (3.6) take the form Cij =

√
2c[1 + cos(αi − β j)]

1/2, i, j ∈{
0, 1
}

. For a fixed c and taking without loss of generality α0 = 0, one must find the phases
α1, β0 and β1 optimizing (3.5). The results of the optimization are shown in table 3.2. The
observed correlations do not reach the theoretical optima for large values of c. For large values
the curve N(2) is more strongly peaked around α− β = π. For the optimal values, α− β lies
on the slopes of this peak. Relatively poor resolution of the components used in [OCN+10],
leading to slight errors on a, b, α and β, provides a possible explanation for the discrepancy
between the theoretical optima and the observed violation of (3.3). The theoretical value of S
tends to the global optimal value of 2.389, but requires arbitrarily large RF amplitudes. When
the amplitudes are large, the two-photon interference pattern is much more sensitive to small
errors in the RF amplitudes and phases. In [OMW+12], the optimal value is attained for rather
small values of the RF amplitudes. Together with more accurate components, this makes the
experiment much more robust.

The CH74 inequality is based on a simplifying assumption on the marginal statistics that was
not tested directly. The normalization quantity N(2)

d=0(a = b = 0; n) in (3.3) must be measured
separately. Even assuming that (3.2) is true, an accurate evaluation relies on the stability of the
experiment. Interleavers provide a way to get around this problem. When the states are two
dimensional, it is easier to access all measurement outcomes simultaneously since only four
detectors are needed, which is better suited for tests of the CHSH Bell inequality, see figure
1.1. Here we denote the two results + and − by E and O, i.e. the photon is detected in an
even or odd frequency bin, with xi = (ai, αi) and yj = (bj, β j), i, j ∈ {0, 1}, denoting choices of
modulation amplitudes and phases. Inserting (2.56) into (1.16), with the definitions (1.9), the
CHSH expression reads

S = J0(2C00) + J0(2C01) + J0(2C10)− J0(2C11) , (3.8)
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Table 3.2: CH74 Bell inequality violation results with equal radio-frequency
amplitudes. RF phases α0, α1, β0 and β1 optimize the violation of the CH74
inequality for RF amplitude c = a0 = a1 = b0 = b1. The experimental val-
ues, with statistical uncertainties, are compared to the theoretical predictions.
Data from [OCN+10].

c α0 α1 β0 β1 Stheor Sexpt

0.51 0 1.42 3.85 2.43 2.15 2.14± 0.06
1.01 0 1.02 3.65 2.63 2.31 2.29± 0.06
1.50 0 0.72 3.50 2.78 2.35 2.27± 0.05
1.95 0 0.56 3.42 2.86 2.37 2.25± 0.05

with the parameters Cij given by (3.6). Following reasoning similar to the optimization of
the CH74 inequality, it is found in [Woo10] that (3.8) attains a maximal theoretical value of
S ≈ 2.566 at the point

(a0, α0) = (b0, β0) = (0.2318, θ) , (a1, α1) = (b1, β1) = (0.6955, θ + π) . (3.9)

Even though the interference is not perfect, see section 2.6, a significant violation of the CHSH
inequality is theoretically possible —but not equal to the value 2

√
2 attainable with maximally

entangled qubits, see section 1.2. Experimentally, we evaluated the expression (1.25), with the
definitions (1.26), from the number of coincidences N(E, E), N(E, O), N(O, E) and N(O, O)
simultaneously registered for each combination of outputs, and with parameters xi and yj de-
terministically and sequentially selected —after loss equalization and scans at optimal ampli-
tudes. Our results are shown in table 3.3. The CHSH inequality is violated by more than 40
standard deviations. Although noise is subtracted, the theoretical optimum is not attained due
to other experimental imperfections, mainly limited visibility, see section 2.6.

Table 3.3: CHSH Bell inequality violation results. The first column corre-
sponds to the optimal settings, xi = (ai, αi), yj = (bj, β j), i, j ∈ {0, 1}. Second
and third columns are theoretical predictions and experimental results (with
statistical uncertainties), respectively. Data from [OWPH+14].

Theory Experiment
x0 y0 0.796 0.764± 0.002
x0 y1 0.796 0.698± 0.002
x1 y0 0.796 0.714± 0.002
x1 y1 −0.178 −0.158± 0.002

S 2.566 2.334± 0.008

The violation of the CHSH inequality is realized by simultaneously measuring all coincidence
probabilities, so that no further assumption is needed for the Bell test, contrary to the CH74 in-
equality case. We should however mention that the above results do not provide a decisive test
of local causality as we have not closed either the detection or locality loopholes. Nevertheless,
our results show that our approach allows the study of quantum correlations of frequency-
entangled photons, and could in principle, i.e. if experimental imperfections (mainly losses
and detector inefficiencies) were small, be adapted to permit a decisive test of local causality.
From an applied perspective, even imperfect Bell tests have become a standard way to evaluate
experimental methods. In our case, estimation of the Bell parameter requires a fine tuning of
the RF parameters and high stability of the photon-pair source. Violations of Bell inequalities
are further evidence of the efficiency of frequency-bin entanglement.
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3.2 Plasmon-assisted transmission

Plasmonics forms a major part of nanophotonics, which explores how electromagnetic fields
can be confined over dimensions on the order of or smaller than the wavelength. Light-matter
interaction probed at the nanoscale attracts much attention nowadays, both for its fundamen-
tal interest and potential applications, including all-integrated optics [BDE03]. Localized sur-
face plasmon polaritons (LSPPs) and surface plasmon polaritons (SPPs) are electromagnetic
excitations coupled to electron charge density waves, localized on metallic nanostructures and
metal-dielectric interfaces, respectively. The presence of LSPPs or SPPs allows confinement of
light on scales far below that of conventional optics. Quantum plasmonics is a growing field
studying interactions between quantum light fields and plasmonic excitations. This research
could lead to new classes of quantum devices, such as single-photon sources, transistors and
ultra-compact circuitry at the nanoscale [JS11, Jac12, TMÖ+13]. Fundamental studies explore a
“mesoscopic” physics, a unique quantum state being coherently carried by billions of electrons.

Transmission through metallic nanostructures cannot be accounted for by classical diffrac-
tion theory. Such structures allow conversion of photons into surface plasmons which tun-
nel through the structure before reradiating as photons [ELG+98, MMGVL+01]. This light-
matter interaction preserves quantum coherence: an important finding was the discovery that
entanglement survives during interaction of entangled photons with metallic nanostructures.
This has been investigated with polarization [AVEW02, MGVE+04], time-bin [FRM+05] and or-
bital angular-momentum [RGH+06] entanglement. Recent works include single-particle and
double-particle interference experiments —such as demonstration of the Hong–Ou–Mandel
effect— with plasmons, demonstrating the quantum bosonic nature of plasmonic excitations
[SKD+05, FHGZ06, AMY+07, KGB+09, HSL+09, GTMCM+11, DMSKC+12, HKZ13, DGA14,
FLKA14, Ste14, DMST+14, CLR+14].

We studied the interactions of frequency-bin entangled photons with different nanostructures:
gold nano-pillars fabricated by nanocoating lithography [FTK06, KF09, KF10], and hybrid struc-
tures [UKC+13]. By combining a continuous metal film and a dielectric photonic crystal, these
“plasmonic waveguides” support both LSPPs and SPPs, allowing to control the interplay be-
tween them. Plasmo-photonic two-dimensional crystals exhibit a complex resonance pattern,
which can be characterized using both numerical simulations and measurements of the electric
near-field patterns. Photon-plasmon coupling is strongly increased if overlapping (plasmonic-
photonic) resonances exist. This allows investigation of the effect of resonances on photon-
matter interaction. Specifically, we address two pivotal questions. First, in which cases and
to what extent frequency-bin entanglement survives when a photon is subject to a plasmonic
conversion? Second, could plasmonic structure and nature of its resonance pattern affect the
efficiency of the conversion process?

Our experimental setup is depicted in figure 3.1. Frequency-entangled photons are separately
modulated by EOPMs, and detected in a given frequency bin after selection by a narrow-band
frequency filter. We used components described in section 2.5. In the present experiment,
the laser at 776.04 nm pumps the Brussels PPLN, and Acreo FBGs are aligned on the degen-
eracy wavelength 1552.08 nm. The EOPMs are driven by 25-GHz signals generated by the
fully-automated RF setup. Amplitudes were chosen close to the value a = b ≈ 1.2, so that
scans of phase α − β should lead to a cancellation of the two-photon coincidence rate (2.40).
This allows to evaluate the (net) visibility (2.62), which is our benchmark for the quality of the
entanglement. In the present setup, before being phase modulated, one of the photons is cou-
pled out its fiber and sent through a plasmonic nanostructure before being coupled again into
a fiber. Evaluation of the visibility of the interference pattern in the presence of a plasmonic
conversion allows to quantitatively estimate the preservation or degradation of frequency-bin
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entanglement in the process.

Figure 3.1: Experimental setup for plasmon-assisted transmission of entan-
gled photons. As described in chapter 2, a source S, consisting of a laser
pumping a nonlinear waveguide, generates frequency-entangled photons in
the telecommunication C-band. The photons, directed through distinct op-
tical fibers, are separately manipulated by EOPMs. Narrow-band frequency
filters F select photons belonging to a specific frequency bin, which are de-
tected by single-photon detectors. The joint statistics exhibits a two-photon
interference pattern in the frequency domain, obtained by varying the pa-
rameters (a, α) and (b, β) of the radio-frequency signals driving the EOPMs.
The originality of the present setup is that, before being phase modulated,
one of the photons is coupled out its fiber and sent through a plasmonic
nanostructure P–P before being coupled again into a fiber. The inset depicts a
gold nano-pillar structure used in the experiment (rotated so as to be placed
transversally to the light beam). The pillar width and height are 200 nm and
the pitch between each nano-pillar is 460 nm.

Plasmonics suffers from intrinsic losses. Compared to the case where no sample is present
—allowing calibration of the experiment— insertion of a sample tends to diminish the coin-
cidence rate and coincidence-to-accidental ratio (CAR). However observed coincidence rates
(typically ∼ Hz) are consistent with the samples’ transmission values measured with classical
light. Moreover, figure 3.2, presenting coincidence peaks obtained after transfer of a photon
through a gold sample, shows the role of the plasmonic conversion process. With a nanos-
tructure, the coincidence rate and CAR dramatically increase compared to the case where no
nanostructure is present. This is due to the transmission-enhancement originating from the
photon-plasmon-photon conversion process.

Coincidence rates and CARs are loss-dependent. To investigate whether frequency-bin en-
tanglement is preserved when a photon is transferred through a plasmonic nanostructure,
we evaluated the visibility of two-photon interference patterns —in good agreement with the
theoretical prediction (2.40)— extracted from coincidence measurements. Our results, which
will be detailed in a future publication, provide strong evidence that frequency-bin entangled
photons can propagate through these plasmo-photonic nanostructures. Taking into account
the loss-dependent background noise, no degradation of the (net) visibility is observed for all
tested samples. Our measurements clearly show the robustness of frequency-bin entanglement,
which survives after interactions with the plasmo-photonic structures, offering possibilities for
a variety of applications in which quantum states can be encoded into the collective motion of
a many-body electronic system without demolishing their quantum nature.

3.3 Quantum key distribution

As we have seen in section 1.3, ultra-secure communication can be achieved with quantum key
distribution (QKD). Due to the equivalence between prepare-and-measure and entanglement-
based schemes, QKD can be implemented with serial manipulation of single photons or paral-
lel manipulation of entangled photons. The most used platforms are polarization and time-bin
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Figure 3.2: Coincidence peaks obtained after transfer of a photon through
a gold sample. Acquisition time is 5 minutes for each panel. The samples
corresponding to the left and right measurements had the same thickness and
were used in the same experimental conditions described by figure 3.1. While
the right sample was constituted of pure gold, a nanostructure was present on
the left sample. The enhanced coincidence rate and coincidence-to-accidental
ratio for the left sample are signatures of the huge transmission enhancement
due to plasmonic processes, the vast majority of analyzed photons having
indeed been subject to such a plasmonic conversion.

encoding. The conceptual parallel between time bins and frequency bins suggests that, instead
of coding information in the relative phase of time bins, one could code information in the rel-
ative phase of frequency bins. Here we present potential implementations of the BB84 protocol
based on electro-optic phase modulation of single photons. We consider prepare-and-measure
schemes, in which Alice encodes information in the state of a single photon, and Bob decodes
the information at the reception of the photon. We start by describing the implementation
proposed by Matthieu BLOCH, Steven W. MCLAUGHLIN, Jean-Marc MEROLLA and Frédéric
PATOIS in [BMMP07].

3.3.1 The Bloch–McLaughlin–Merolla–Patois implementation

We follow the description made in [BMMP07]. A monochromatic single-photon source emits
photons in the frequency state |0〉, adopting the discretized notation of (2.22). After sine phase
modulation with parameters (a, α), so as to obtain the state ∑n Jn(a)einα|n〉, a narrow-band
frequency filter selects only frequency bins −1, 0 and 1, yielding the state

|ψ〉 = J0(a)|0〉+ J1(a)eiα|1〉+ J−1(a)e−iα|−1〉√
J2
0(a) + 2J2

1(a)
, (3.10)

produced with efficiency η(a) = J2
0(a) + 2J2

1(a), all the components being supposed ideal. In
this three-dimensional Hilbert space, one can identify the states

|0b0〉 = |0〉 and |1b0〉 =
1√
2

(
|1〉 − |−1〉

)
, (3.11)

|0b1〉 =
1√
2

[
|0〉+ 1√

2

(
|1〉 − |−1〉

)]
and |1b1〉 =

1√
2

[
|0〉 − 1√

2

(
|1〉 − |−1〉

)]
, (3.12)

to the BB84 states (1.42) and (1.43). The maximally conjugated bases b0 and b1 of the same two-
dimensional subspace are suitable for the implementation of the BB84 protocol. To produce
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these states, Alice uses the following RF parameters: amplitudes a(0b0) = 0, a(1b0) ≡ a0 ≈
2.405, a(0b1) = a(1b1) ≡ a1 ≈ 1.161, such that J0(a0) = 0 and J0(a1) =

√
2J1(a1), with phases

α(1b0) = α(0b1) = 0 and α(1b1) = π. The states are thus produced with efficiency

η(0b0) = 1 , η(1b0) = J2
0(a0) + 2J2

1(a0) ≈ 0.539 , (3.13)
η(0b1) = η(1b1) = J2

0(a1) + 2J2
1(a1) ≈ 0.953 . (3.14)

To generate the four states with equal probability, Alice must proceed to a biased random se-
lection, producing states |0b0〉, |1b0〉, |0b1〉 and |1b1〉 with respective probabilities 0.202, 0.374,
0.212 and 0.212, so that the total encoding efficiency is 0.808.

At the reception, Bob modulates (with a sine signal at the same radio-frequency) the phase of
the photon with parameters (b, β), and uses a narrow-band filter distinguishing between the
frequency bin “0” and the others. Both outputs are followed by single-photon detectors, which
we denote by D+ (associated to the frequency bin “0”) and D−. The choice b = 0 allows per-
fect discrimination of states |0b0〉 and |1b0〉, while states |0b1〉 and |1b1〉 lead to random results.
To implement the measurement in basis b1, Bob selects the parameters (b, β) = (a1, 0). The
state |0b1〉 will always give rise to detection events in detector D− and never in detector D+,
i.e. P(D−|0b1) = 1− P(D+|0b1) = 1, but the state |1b1〉 will not be discriminated perfectly:
P(D+|1b1) = 1− P(D−|1b1) = 0.953 < 1. Erroneous detections increase the quantum bit-error
rate (QBER) by approximately 1.2%. As stated in [BMMP07], if we reasonably assume that Eve
does not control Bob’s receiver, Bob’s nonperfect measurements do not create a security loop-
hole. Still, the increase in QBER has to be accounted for when distilling the secret key, which
slightly reduces the key rate and transmission distance. An experimental proof-of-principle
of the feasibility of the setup, using attenuated coherent states and FBGs, was exhibited in
[BMMP07].

3.3.2 An alternative implementation

We again consider that Alice prepares four states for the BB84 protocol, noted for clarity of no-
tations in this section |a0, α0〉, |a1, α1〉 (first basis) and |b0, β0〉, |b1, β1〉 (second basis). However,
now, Alice does not apply any filtration: she sends directly to Bob the four states, obtained with
a sine-modulating signal of parameters (c, γ) equal to (a0, α0), (a1, α1), (b0, β0) or (b1, β1):

|c, γ〉 ≡∑
n

Jn(c)einγ|n〉 . (3.15)

Such states lie in a high-dimensional Hilbert space and cannot be identified with the traditional
BB84 states. To evaluate if they are suitable for the protocol, a “basis overlap” angle θ is defined:√

1 + | sin θ| = 1
2

∣∣〈a0, α0|b0, β0〉+ 〈a0, α0|b1, β1〉+ 〈a1, α1|b0, β0〉 − 〈a1, α1|b1, β1〉
∣∣ . (3.16)

The parameter θ evaluates the “non-orthonality” of the states used. Security proofs of the BB84
protocol against classes of collective attacks depend on the value of θ and the bit error rate δ,
see details in [Woo13]. For maximally conjugated bases, θ = π/2, and the asymptotic key rate
r → 1 when δ→ 0, while r → 0 when δ→ 11%. The parameter

S = 〈a0, α0|b0, β0〉+ 〈a0, α0|b1, β1〉+ 〈a1, α1|b0, β0〉 − 〈a1, α1|b1, β1〉 (3.17)

has to be greater than 2 to guarantee a rate r > 0, with r → 1 for S = 2
√

2. Our goal is thus to
maximize the expression (3.17) by using states of the form (3.15). Since

〈a, α|b, β〉 = 〈p|∑
p

∑
q

Jp(a)e−ipα Jq(b)eiqβ|q〉 = ∑
p

Jp(a)Jq(b)eip(β−α) = J0(C) , (3.18)
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with
C2 = a2 + b2 − 2ab cos(α− β) , (3.19)

the expression (3.17) takes the form:

S = J0(C00) + J0(C01) + J0(C10)− J0(C11) . (3.20)

We must maximize the parameter S under constraints

C2
ij = a2

i + b2
j − 2aibj cos(αi − β j) and J0(Ca) = J0(Cb) = 0 , (3.21)

where C2
a = a2

0 + a2
1 − 2a0a1 cos(α0 − α1) and C2

b = b2
0 + b2

1 − 2b0b1 cos(β0 − β1), so that we
have: 〈a0, α0|a1, α1〉 = 〈b0, β0|b1, β1〉 = 0. We denoted the quantity (3.17) S to highlight the
similarity with Bell optimizations described in section 3.1. Again, the parameters Cij can be
identified to the lengths of the sides of a quadrilateral, as represented in figure 3.3. As shown in
[Jot14], an analytical optimization taking into account the additional constraints for parameters
Ca and Cb leads to a value S ≈ 2.470 for C00 = 1.5322, C01 = C10 = 0.8726 and C11 = 3.2775.
A corresponding set of RF parameters is given by: a0 = b0 = 0.7661, a1 = b1 = 1.6387,
α0 = β1 = 0, and α1 = β0 = π.

Figure 3.3: Graphical representation of the optimization under constraints.
The red segments represent the parameters Ca and Cb whose value must en-
sure that 〈a0, α0|a1, α1〉 = 〈b0, β0|b1, β1〉 = 0. Figure adapted from [Jot14].

Bob implements his two measurement bases with his own EOPM, driven with parameters
equal to, e.g., (a0, α0) and (b0, β0). When he chooses the correct basis, a narrow-band filter
discriminating between the frequency bin 0 and the other frequencies allows a perfect discrim-
ination of the states. Due to the non-perfect “basis overlap” (θ = 31.7°), measurements of states
in the wrong basis do not give perfectly random results, which will decrease the secret-key rate.
In the ideal case where no errors are present, the bound is calculated to be r → 0.2093, while
r → 0 for error values δ ≈ 1% only. We should mention however that the bound on r is not
guaranteed to be optimal, as can be seen with the low value of r even when no error is present.

A proof-of-principle experiment has been conducted in the context of a master thesis [Jot14].
The setup is illustrated in 3.4. The results showed that the states were produced and manipu-
lated with precision, but the measurements were too noisy to extract a secret key, in view of the
very bad noise tolerance of the implementation.

3.4 Discussion

Our experimental methods are relatively straightforwardly adaptable to field experiments,
such as long-distance Bell inequality violation, QKD and other quantum communication pro-
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Figure 3.4: Experimental setup for quantum key distribution with frequency
bins. A source S generates frequency-entangled photons. The detection of a
photon at frequency ω0 heralds the production of a photon at frequency ω0.
Alice modulates the photon with randomly chosen parameters and sends it
to Bob, which implements a measurement in two different bases with his own
EOPM.

tocols. However, if one wants to realize long-distance experiments, one must consider the
effect of dispersion. If a photon of frequency ω propagates a distance L, its state is transformed
according to

|ω〉 7→ eik(ω)L|ω〉 ' ei(β0+β1(ω−ω0)+β2/2(ω−ω0)
2+β3/6(ω−ω0)

3··· )L|ω〉 , (3.22)

where we have developed the wave number k in series in ω−ω0. When considering frequency
coding of information, the zeroth order term eiβ0L is an overall phase, and has no physical
influence. The first order term eiβ1(ω−ω0)L can be absorbed into the phase γ of the RF field
applied to the EOPM. In all calculations as well as the analysis of the experiments we absorb
the phases eiβ1(ω−ω0)L into the phases of the RF fields.

The fact that phases accumulated during propagation can be absorbed into the phases of the RF
fields underlies the inherent high stability of experiments using frequency bins. Indeed stability
of our experimental setup requires that β1ΩRFL � 1 (since the only frequencies that interfere
are those separated by small multiples of ΩRF). This should be contrasted with interference ex-
periments in the spatial domain, where one is sensitive to the phase β0L. Approximate equality
of the phase and group velocities implies that β0 ' β1ω0. Since ΩRF/ω0 ' 10−4, our experi-
ments are less sensitive to changes in fiber lengths by a factor of roughly 10−4. This implies that
in laboratory experiments, no stabilization is required. In field experiments, however, where
propagation distances are tens of kilometers, the local RF oscillators must be synchronized.

It should be noted that the equivalence of figures 2.4 and 2.5, described by equations (2.27) and
(2.40), holds only when neglecting the effect of dispersion. The phases accumulated in the two
experiments are not the same, which causes an horizontal shift of the interference patterns,
since the accumulated phase has to be absorbed into the phases of the RF fields. A problem
is that the higher order terms in (3.22) due to frequency dispersion cannot be absorbed in the
phase γ of the RF field. This modification of the coefficients cd(a, α; b, β) cannot be neglected
for long-distance and/or broad-spectrum applications.

In particular, the interleaver approach allows one in principle to manipulate and measure
frequency-entangled photons produced by a broadband source with low spectral brightness,
as the interleavers that separate the even and odd frequencies act over a very broad band-
width. This, however, requires dispersion compensation, as otherwise photons with different
detunings exhibit different interference patterns that average to zero over the bandwidth of the
photons —even in laboratory conditions.

We note that if dispersion may degrade the quality of interferences in certain cases, it could
also be beneficial for discriminating the frequency bins in an analysis setup without frequency
filters.
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An important route would be to generalize the accessible unitary transformations. The class
of unitary transformations explored in this work, defined by (2.21), is somewhat limited. For
example, the use of non-sinusoidal voltages would give rise to much more general families
of unitary transformations |0〉 7→ ∑n fn(c)einγ|n〉, where fn are the Fourier coefficients of the
considered voltage. For instance, sawtooth signals allow a deterministic frequency translation.

A lot of experiments could benefit from a more general transformation. In particular, it would
allow a better exploitation of the high dimensionality. High-dimensional entanglement has
been studied in a number of experiments, see e.g. [SS94, BLPK05, VWZ02, TAZG04, DRMS+04,
OMV+05, vELDW07, DLB+11]. High-dimensional QKD [BPT00, AKBH07] allows to establish
a key at a potentially higher rate than that afforded by standard, two-dimensional QKD proto-
cols: more than one bit of information can be generated when a single photon is detected. QKD
protocols better suited than BB84 to frequency-bin entanglement and Bell inequalities adapted
to high dimensions, such as the CGLMP inequality [CGL+02], should be explored. The fact
that an EOPM acts as a high-dimensional frequency beam splitter suggests high-dimensional
frequency experiments analogue to two-dimensional spatial experiments, such as a Hong–Ou–
Mandel experiment. Let mention also that the conjugate use of two photon-pair sources with
EOPMs and narrow-band frequency filters would allow an entanglement swapping experi-
ment with frequency-bin entangled photons.



Chapter 4

Silicon-on-insulator integrated source
of polarization-entangled photons

Throughout this chapter, we follow very closely reference [OSC+13]. We report the experi-
mental generation of polarization-entangled photons at telecommunication wavelengths using
spontaneous four-wave mixing in silicon-on-insulator (SOI) wire waveguides. The key com-
ponent is a two-dimensional coupler that transforms path entanglement into polarization en-
tanglement at the output of the device. Using quantum state tomography we find that the
produced state has fidelity 88% with a pure nonmaximally entangled state, and violates the
CHSH Bell inequality by S = 2.37± 0.19.

4.1 Silicon-on-insulator platform

Polarization constitutes one of the degrees of freedom most often used in quantum information.
It is not the most adapted degree of freedom for long-distance fiber-optic implementations,
but demonstration of polarization entanglement at telecommunication wavelengths remains
attractive. High-quality polarization-entangled photon-pair sources have been reported based
on both χ(2) [KMW+95, FNM+07, MIH+10] and χ(3) nonlinear processes [TI04, LVSK05]. In a
χ(3) medium, four-wave mixing involves two photons of a pump field at frequency ω0, which
annihilate and create signal and idler photons at frequencies ωs,i = ω0 ± ω (therefore also
producing frequency-entangled states of the form (2.28)).

To minimize cost and footprint, recent work focuses on the integration of such sources. Vari-
ous platforms are investigated. The SOI platform, based on reliable and low-cost complemen-
tary metal–oxyde–semiconductor (CMOS) technology, is a promising avenue for integrated
photon-pair sources based on spontaneous four-wave mixing, both in straight wire waveg-
uides [SLF+06] and in ring resonators [CPHB+09]. Advantages of the SOI platform are: me-
chanical stability, great optical confinement, compatibility with fabrication procedures used in
micro-electronics (CMOS), and relatively high nonlinearity [CME10]. An extensive description
of light propagation in silicon waveguides and a discussion of quantum optics uses of SOI
can be found in [CME10]. Here we build on the work done by Stéphane CLEMMEN, using his
experimental methods and a chip conceived by him [CME10].

Earlier studies [Tak12] reported time-bin entanglement [TTF+07, HTF+08] and polarization
entanglement based either on a nonintegrated polarizing beam splitter [TFT+08] or on a polar-
ization rotator sandwiched between two nonlinear silicon wire waveguides [MLJF+12]. Here
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we present an SOI integrated source of polarization-entangled photons in which two nanopho-
tonic waveguides produce path entanglement that is subsequently converted at the output of
the chip into polarization entanglement using a two-dimensional grating coupler. This is anal-
ogous to previous bulk or fiber optics experiments, such as [FAO+07]. We characterize the
source using two-photon interferences, quantum state tomography, and Bell inequality viola-
tion.

4.2 Experimental setup

Our experiment, based on the setup of figure 1.7, is depicted in figure 4.1. Our goal is to pro-
duce a quantum superposition of the type

(
|HH〉+ |VV〉

)
/
√

2, corresponding to a Bell state
in polarization, see chapter 1. The source and the analysis and detection parts are made of
non-integrated fiber components. Polarization entanglement is produced at the interface be-
tween the SOI chip and an optical fiber. On the chip, the pump beam is split into different
waveguides, coherently producing photon pairs in each waveguide, therefore generating path
entanglement. Combination of the fluxes on a two-dimensional grating coupler which sends
photons in the same fiber but with orthogonal polarizations [TCB+03] converts it to polariza-
tion entanglement —which could also be converted in another type of entanglement.
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Figure 4.1: Experiment for producing and analyzing polarization-entangled
photons. (a) Schematic of the SOI chip producing polarization-entangled
photon pairs. The pump power is split into two waveguides which are re-
combined at the output of the chip with a two-dimensional grating coupler.
Inset: SEM image of the two-dimensional grating coupler. (b) Experimental
setup for generating and measuring polarization-entangled photons. See text
for a detailed description. Insets show typical results for constructive and de-
structive interference. Each time bin in the histograms is 250 ps long. Figure
from [OSC+13].

Our SOI source was fabricated by the ePIXfab at IMEC with 193 nm deep UV lithography. A
pump beam is coupled into the structure using a one-dimensional grating coupler followed
by a taper [CME10]. A 50/50 multimode coupler [BSD+10] then splits the light into two sil-
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icon wire waveguides. The waveguides have transverse dimension 500 nm × 220 nm and
length 15 mm. At the operating wavelength (telecommunication C-band) the waveguides are
monomode and guide only TE (horizontal) polarization.

Four-wave mixing in the waveguides leads to photon-pair production, and hence to the state
a′|Hs1〉|Hi1〉+ b′|Hs2〉|Hi2〉, where s, i refer to signal and idler frequencies, 1, 2 refer to the first
and second waveguides, and we have indicated that the polarization is horizontal. The coeffi-
cients a′ and b′ take into account possible deviations from a perfect 50/50 coupler, or different
losses in the two waveguides. The light propagating in the waveguides is coupled into an op-
tical fiber using inverted tapers [CME10] and a 2D grating coupler [TCB+03], see figure 4.1(a).
Two-dimensional grating couplers enable polarization-insensitive SOI structures, as they cou-
ple the two orthogonal polarizations propagating in an optical fiber to the two TE modes prop-
agating in two distinct silicon waveguides. They can provide an extinction ratio between both
polarizations higher than 18 dB [TCB+03]. In our case the 2D grating coupler converts path
entanglement into polarization entanglement. The state in the optical fiber is thus

|Ψ(a, b)〉 = a|Hs〉|Hi〉+ b|Vs〉|Vi〉 , (4.1)

where the new coefficients a, b take into account possible polarization-dependent losses of the
2D grating coupler.

The experimental setup is depicted in figure 4.1(b). A 1-mW continuous-wave laser at 1539.6
nm (Agilent) is amplified to 7 mW with an erbium-doped fiber amplifier (EDFA) and then
spectrally filtered by a bandpass filter (BPF). Injection and extraction losses are both approxi-
mately equal to 6 dB, and losses in each arm of the structure are close to 3 dB. The 1.75 mW
power on chip is divided in both device arms. The output containing the transmitted pump and
entangled photons is collected by a cleaved nonpolarization-maintaining standard telecommu-
nication fiber (SMF) and passes through a band-block filter (BBF) —with an isolation of more
than 110 dB, see [CME10]— to reject the pump, and a wavelength division multiplexer (WDM)
to separate signal (s) and idler (i) photons into two different fiber channels, which are sent to
Alice’s (A) and Bob’s (B) stations. The signal and idler ports are centered at 1530 and 1550
nm, respectively, with a bandwidth of 20 nm. The characteristics of the filtration system are
described in [CME10].

Alice and Bob locally and independently analyze their photons using a free-space analyzer
consisting of a quarter-wave plate (QWP λ/4), a half-wave plate (HWP λ/2), and a polarizing
beam splitter (PBS). Only one output of Alice’s PBS —corresponding to the vertical polarization
component— is available, while both outputs of Bob’s PBS are available. The photons emerging
from the three outputs are directed to superconducting single-photon detectors (SSPDs, from
Scontel, efficiency≈ 5%, dark-count rate≈ 10 Hz including straight light, time resolution≈ 50
ps, see section 2.5). There is roughly 20 m of standard non-polarization maintaining single-
mode telecommunication optical fiber (SMF) from the chip to the analyzers. Total losses from
after ejection to the detectors are estimated at 3.6 dB for Alice, and 5.5 and 6.8 dB for Bob’s two
channels.

Electronic signals from the SSPDs are directed to a data acquisition system (DAS) consisting of
a time-to-digital converter (Agilent Acqiris, time resolution ≈ 50 ps, see section 2.5) connected
to a computer. The DAS records the relative times tBV − tAV and tBH − tAV between Alice’s and
Bob’s detections and generates a histogram of these events.

When correlated photons are present, a coincidence peak emerges from these time-resolved
measurements. The illustrative histograms (inset of figure 4.1) provide examples of construc-
tive and destructive interference. Data acquisition and treatment are entirely automated (see
section 2.5). However, in this experiment, a manual adjustment of the analyzers’ settings is
required.
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4.3 Experimental results

To quantitatively analyze the results, we use the raw and net numbers of coincident events
defined by (2.57), (2.58) and (2.59), with t = tBV − tAV or t = tBH − tAV . The time window for
the signal has size t f − ti = 0.8 ns.

From these quantities we deduce that in the case of constructive interference, coincidences are
measured at a rate ≈ 0.4 Hz and the coincidence-to-accidental ratio is approximately equal
to 8. This rather low value (which could be increased by using resonators or filters) is due
to the continuous-wave operation —which increases the effect of the intrinsic noise of SOI
waveguides [CPS+12]— and to the high losses from chip to detector. Dark counts are almost
negligible due to the use of superconducting detectors. We carefully attached the fibers to
guarantee stable injection and ejection and avoid polarization drift, so that no active power nor
polarization stabilization is required, and measurements are repeatable for several hours. This
has been finely characterized with automated calibration measurements.

Results of two-photon interference measurements are presented in figure 4.2. Coincidence rates
are plotted as a function of the angle of Alice’s half-wave plate. Note that because no polariza-
tion management is performed before the analyzers, all phase plate angles must be adjusted to
get a good contrast.

Figure 4.2: Interference of polarization-entangled photons from an SOI chip.
Horizontal axis is the angle θ of Alice’s half-wave plate, on which a precision
of ±3° is assumed. Left vertical axis is the number of coincidences between
Alice’s and Bob’s detectors registered during 20 minutes. Symbols are ex-
perimental results with statistical error bars, while curves are sinusoidal fits
assuming a perfect net visibility. Shaded regions correspond to measured
accidental coincidence rates. The blue and red curves (bottom curves) corre-
spond to AVBV and AVBH coincidences, respectively. The black curve (top
curve) is the single-photon rate of Alice’s detector as a function of θ. The
right vertical axis is the total number of counts registered by Alice’s detector
in 10 s. Figure from [OSC+13].

Because of noise, raw visibilities are limited to approximately 80% (vertical component) and
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60% (horizontal component), while net visibilities reach 99% and 90%, respectively. We also
measured the single-photon rate detected by Alice. The fact that this curve is not perfectly
flat is evidence that the produced state is not maximally entangled. This is presumably due
to imperfect on-chip optical components. However, the limited visibility (≈12%) shows that
the produced state is not far from a maximally entangled state. We note that nonmaximally
entangled states have specific applications that are not accessible to maximally entangled states,
see e.g. [Har93] and [GMR+13].

In order to accurately characterize the produced state we performed a standard quantum state
tomography analysis. We followed the maximum likelihood method described in [JKMW01]
(being careful of errors therein) to evaluate the “most probable” density matrix given the statis-
tics of coincident events measured in the sixteen different configurations of the analyzers given
in table 1.2.

The reconstructed density matrix ρ
(out)
AB is then re-expressed as

ρ
(out)
AB =

(
JA ⊗ JB

)
ρ
(in)
AB

(
J†
A ⊗ J†

B
)

. (4.2)

We numerically optimized the parameters of the Jones matrices JA and JB as well as the real
numbers a, b (with a2 + b2 = 1) in order to maximize the fidelity

F
(

ρ
(in)
AB · ρ

(target)
AB

)
=

(
Tr
[(√

ρ
(in)
AB ρ

(target)
AB

√
ρ
(in)
AB

)1/2
])2

, (4.3)

where ρ
(target)
AB = |Ψ(a, b)〉〈Ψ(a, b)| is the density matrix of the pure nonmaximally entangled

state (4.1). Thus, ρ
(in)
AB is our reconstruction of the state at the output of the SOI chip, and JA,

JB our reconstruction of the polarization rotation undergone by A and B photons between the
chip and the analyzers.

The results of this analysis are presented in figure 4.3. The reconstructed density matrix ρ
(in)
AB

has a fidelity of 88% (which drops to 71% when noise is not subtracted) with the target state,
with a2 ≈ 0.6 and b2 ≈ 0.4, consistently with our single-photon interference measurements.
The fidelity to a maximally entangled state is 87%.

Finally, we measured the CHSH Bell inequality S ≤ 2, with S given by (1.25). Estimation of
the correlators (1.26) requires the evaluation of Nab, the number of coincidences registered at
Alice’s output a = +,− and Bob’s output b = +,−, with +,− = H, V. The three available
outputs give directly the values of N−+ and N−−. To estimate N++ and N+−, we proceed
similarly to [CH74], using the expression

E =
(NB

+ − 2N−+)− (NB
− − 2N−−)

NB
+ + NB

−
, (4.4)

where NB
a = N+a + N−a, with a = +,−, are estimated from two-photon interference measure-

ments, see figure 4.2. After carefully selecting the analyzer parameters for which the value of S
will be maximal, we measure (after subtraction of noise)

Sexpt = 2.37± 0.19 , (4.5)

thereby violating the CHSH inequality by almost two standard deviations.

In summary, we have presented an SOI integrated source of polarization-entangled photons
based on a 2D grating coupler. Our work confirms the relevance of SOI for integrated quantum
optics. In future work the degree of entanglement of the source could be tuned on chip by
modifying the ratio of the integrated coupler.
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Figure 4.3: Tomography of polarization-entangled photons from an SOI chip.
Estimated density matrix ρ

(in)
AB of the state produced at the output of the sil-

icon chip is shown in the upper panels. This state has 88% fidelity with
the nonmaximally entangled state

√
0.6|H〉A|H〉B +

√
0.4|V〉A|V〉B, whose

density matrix is represented in the lower panels. For each density matrix,
Re(ρ) and Im(ρ) are plotted on the left and right, respectively. Figure from
[OSC+13].

Finally, we mention that frequency-bin entanglement is an interesting approach for SOI inte-
grated sources. Low brightness sources could benefit from the high collection of interleavers
if dispersion compensation is implemented. SOI chips dedicated to frequency-bin entangle-
ment could also be of interest: using ring resonators, one could directly produce a discrete
frequency-comb entangled state which could be manipulated and detected efficiently with the
experimental methods described in chapter 2.



Chapter 5

Experimental refutation of a class of
ψ-epistemic models

Throughout this chapter, we follow very closely reference [POD+13]. We report an experimen-
tal test on physical reality.

There is still no definite answer to the question: what is the fundamental nature of the quantum
state? This has been the subject of discussions since the origin of the theory. As was done in
section 1.1, quantum textbooks define the quantum state ψ as a mathematical object —a ray
in Hilbert space— used to determine the outcome probabilities of measurements on physical
systems. But does the quantum state correspond to a real property of the physical system or
does it merely represent our knowledge about the system? In other words: is it ontic (from
Greek “ontos”, real) or epistemic (from Greek “episteme”, knowledge)?

There are indeed major reasons to doubt of the reality of the quantum state. For instance, the
quantum state cannot be observed directly: it can only be reconstructed indirectly by carrying
out measurements on ensembles of identically prepared systems [PR04, AV93]. In an epistemic
interpretation, the quantum state would represent only an observer’s knowledge of the phys-
ical system, rather than a physical reality. Such an interpretation could provide an intuitive
explanation for many quantum phenomena, such as the measurement postulate and wave-
function collapse, which would be nothing more than Bayesian updating [CFS02, BZ03, Spe07].

A consistent formulation of ψ-epistemic models would constitute a conceptual revolution of
quantum mechanics. However, recent theoretical breakthroughs in the foundations of quan-
tum theory, in the form of no-go theorems [PBR12, PPM13], show that ψ-epistemic models that
obey natural conditions cannot reproduce the predictions of quantum theory.

Hereafter, we first describe the ontic and epistemic alternatives with precision. Then we outline
the demonstration of the no-go theorem [PPM13] on which our experimental test is based. Fi-
nally, we present and analyze in detail our quantum optics experiment, which confirms the
predictions of quantum theory and therefore rules out large classes of ψ-epistemic models
[POD+13]. We discuss in detail the interpretation of the experiment.

5.1 ψ-ontic and ψ-epistemic models

Following the formulation of Nicholas HARRIGAN and Robert W. SPEKKENS [HS10], the start-
ing point is the assumption that every quantum system possesses a real physical state, gener-
ally called the ontic state, denoted λ. Somewhat similarly than in the Bell theorem (see sec-
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tion 1.2), we suppose that our present description of Nature could be incomplete, and that the
real state λ of a physical system is not known to the present physics. There are two alternatives:
either the quantum state ψ is a property of the real state, which only “complements” ψ (such a
ψ-complemented theory is not very different from a ψ-complete theory); or it is not. Note that
we do not consider here the possibility that there would be no (underlying) “reality”.

The ontic state determines the probabilities of measurement outcomes. When an ensemble of
systems is prepared, different members of the ensemble may be in different ontic states λ. A
preparation procedure Q is therefore associated with a probability distribution P(λ|Q) over the
ontic states. When a measurement is carried out on a system in ontic state λ, the probability to
obtain outcome r is P(r|M, λ). Therefore if preparation Q is followed by measurement M the
probability of outcome r is

P(r|M, Q) = ∑
λ

P(r|M, λ)P(λ|Q) . (5.1)

These models reproduce the predictions of quantum theory if P(r|M, Q) = 〈ψQ|Mr|ψQ〉, where
Mr is the quantum operator corresponding to the outcome r and ψQ is the quantum state as-
signed by quantum theory to the preparation Q. Following [HS10], one can distinguish two
classes of models.

In ψ-ontic models, there is a one-to-one correspondence between quantum states |ψ〉 and real
states λ. Different quantum states |ψ0〉 6= |ψ1〉 correspond to different real states λ0 6= λ1. That
is, the preparation of distinct pure quantum states always gives rise to distinct real states. An
ontological model is ψ-ontic if for any pair of preparation procedures Q and Q′ associated with
distinct quantum states |ψQ〉 and |ψQ′〉, we have P(λ|Q)P(λ|Q′) = 0 for every λ. Every real
state λ is thus compatible with a unique pure quantum state. The quantum state is “encoded”
in λ and can be considered as representing a real property of the system.

In ψ-epistemic models, the quantum state is not a real property of the system and reflects
only the incomplete knowledge of an observer, similarly to statistical distributions in classical
physics. Distinct quantum states may correspond to the same underlying reality. That is, there
exist preparations Q and Q′ corresponding to nonidentical quantum states |ψQ〉 6= |ψQ′〉 such
that P(λ|Q)P(λ|Q′) > 0 for some λ. In this case, the quantum state is not uniquely determined
by the underlying real state.

In [PBR12], Matthew F. PUSEY, Jonathan BARRETT, and Terry RUDOLPH (PBR) claimed that
“the quantum state cannot be interpreted statistically”, in the sense described above. They
showed that ψ-epistemic models cannot reproduce the predictions of quantum theory if they
satisfy the property, termed preparation independence, that independently prepared pure quan-
tum states correspond to product distributions over ontic states. This no-go theorem has gener-
ated an important activity in the scientific community. Additional theoretical results presenting
no-go theorems for classes of ψ-epistemic models have been reported (see publications citing
PBR). It is important to note that all these theorems imply assumptions. As shown in [LJBR12],
“the quantum state can be interpreted statistically” with a ψ-epistemic model satisfying all
those constraints. But with “non-reasonable” properties, the epistemic view of the quantum
state appears as a less elegant way to describe reality.

All these theorems suggest the possibility of novel experiments in the foundations of quantum
mechanics. Here we report an experimental test based on the result obtained by Manas Kumar
PATRA, Stefano PIRONIO and Serge MASSAR (PPM) in [PPM13]. They have shown that epis-
temic models cannot reproduce all the predictions of quantum theory if they satisfy a natural
property of continuity. The advantage of this no-go theorem is that it allows an experimental
test already at the level of a single system, contrary to the PBR argument. We have carried out
such an experimental test, reported in [POD+13], by using modulated weak coherent states of
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light. We note that an experimental test of ψ-epistemic models based on the PBR theorem using
two ions in the same trap was reported in [NMS+12]. Another experimental test of ψ-epistemic
models has been recently exhibited in [RDB+14].

5.2 The Patra–Pironio–Massar theorem

As our experiment is based on [PPM13], we recall the relevant results. We start with the defini-
tion of what we call δ-continuous ψ-epistemic models. Let δ > 0 and let Bδ

ψ be the ball of radius
δ centered on |ψ〉, i.e., Bδ

ψ is the set of states |φ〉 such that∣∣〈φ|ψ〉∣∣ ≥ 1− δ . (5.2)

We say that a model is δ continuous if for any preparation Q, there exists an ontic state λ
(which can depend on Q) such that for all preparations Q′ corresponding to quantum states
|φQ′〉 in the ball Bδ

ψQ
centered on the state |ψQ〉, we have P

(
λ|Q′

)
> 0. We refer to figure 5.1 for

a depiction of the difference between ψ-ontic and δ-continuous ψ-epistemic models, and the
relevant geometry of the Hilbert space.

Figure 5.1: Illustration of ψ-ontic and δ-continuous ψ-epistemic models. De-
picted (left and center) is the space Λ of ontic states, as well as the support
of the probability distribution P(λ|Qk) for preparation Qk associated to dis-
tinct pure states ψk, k = 1, . . . , 5. In ψ-ontic models (left) distinct quantum
states give rise to probability distribution P(λ|Qk) with no overlap. In δ-
continuous ψ-epistemic models (center), states that are close to each other
(such as {ψ1, ψ2, ψ3} and {ψ3, ψ4, ψ5}) all share common ontic states. How-
ever states that are further from each other (such as ψ1 and {ψ4, ψ5}) do not
necessarily have common ontic states λ. On the right we represent the rela-
tionship between the states in Hilbert space. We have depicted by dots the
positions of the states on the Bloch sphere, and in grey around each state the
sphere of radius δ. For instance the sphere of radius δ around state ψ1 in-
cludes states ψ2 and ψ3, but not states ψ4 and ψ5. In δ-continuous epistemic
models all states in the ball of radius δ share at least one ontic state. Figure
from [POD+13].

Why is this assumption “natural”? In order to motivate this definition, recall that according to
the definition of ψ-ontic and ψ-epistemic models, we assign an ontic status to ψ if a variation
of ψ necessarily implies a variation of the underlying reality λ, and we assign it an epistemic
status if a variation of ψ does not necessarily imply a variation of the reality λ. It is then natural
to assume a form of continuity for ψ-epistemic models: a slight change of ψ induces a slight
change in the corresponding ensemble of λ’s, in such a way that at least some λ’s from the
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initial ensemble will also belong to the perturbed ensemble. The above is a slightly stronger
form of continuity which asserts that there are real states λ in the initial ensemble that will
remain part of the perturbed ensemble, no matter how we perturb the initial state, provided
the perturbation is small enough.

The PPM theorem states that if an epistemic model were to reproduce the predictions of quan-
tum theory, then there is a fundamental constraint on its δ continuity. This constraint holds even
at the level of a single quantum system. The no-go theorem is as follows [PPM13]: δ-continuous
ψ-epistemic models with δ ≥ 1−

√
(d− 1)/d cannot reproduce all the measurement statistics of quan-

tum states in a Hilbert space of dimension d. We give an overview of the proof, as the construction
used is the basis for the experimental test reported below.

We consider d preparations Qk, k = 1, . . . , d, corresponding to distinct quantum states |ψk〉 all
contained in a ball of radius δ. By definition of a δ-continuous model, there is at least one λ for
which mink P(λ|Qk) > 0, and thus

ε ≡∑
λ

min
k

P(λ|Qk) > 0 . (5.3)

This quantity can be viewed as a measure of the extent to which distributions over real states
overlap in the neighborhood of a given quantum state. We now consider a measurement M that
yields one of d possible outcomes r = 1, . . . , d. If preparation Qk is followed by measurement
M, we denote by P

(
r|M, Qk

)
the probability of outcome r. By definition of a δ-continuous

model, it makes the prediction

∑
k

P
(
k|M, Qk

)
= ∑

k
∑
λ

P
(
k|M, λ

)
P
(
λ|Qk

)
≥∑

λ

min
k

P
(
λ|Qk

)
≡ ε > 0 . (5.4)

However, this is in contradiction with quantum theory. Indeed, let
{
|j〉 : j = 1, . . . , d

}
be a

basis of the Hilbert space. The d distinct states |ψk〉 = 1√
d−1 ∑j 6=k|j〉 are all at mutual distance

δ = 1−
∣∣〈ψk|ψ〉

∣∣ = 1−
√
(d− 1)/d from the state |ψ〉 = 1√

d ∑j|j〉. If M is the measurement

in the basis
{
|j〉
}

, then P
(
k|M, Qk

)
= 0 for all k = 1, . . . , d, and thus ∑k P(k|M, Qk) = 0, in

contradiction with (5.4).

The above theorem leads us to define a class of ψ-epistemic models whose existence can be
tested experimentally. They are labeled by the two parameters δ and ε that come up in the key
equations (5.2) and (5.3). That is, a δε-ψ-epistemic model is such that for any set of preparations
Qk corresponding to distinct quantum states |ψk〉 all contained in a ball of radius δ,

∑
λ

min
k

P(λ|Qk) ≥ ε . (5.5)

5.3 Experimental setup

Our experiment is depicted in figure 5.2. We realize good approximations of the states |ψk〉
using coherent states of light traveling in an optical fiber. The basis states |j〉 correspond to a
photon localized at equally spaced positions in the optical fiber. These time bins are labeled
by the time tj = jτ at which they are detected, where τ is the spacing (in time) between the
time bins, taken to be much larger than the time resolution of the single-photon detectors (see
section 1.3). We use up to 80 time bins, leading to a very sensitive experiment, since the bound
on the continuity parameter δ decreases when the dimensionality d increases (although this
conclusion must be somewhat tempered, see section 5.5). We then measure the time of arrival
of the photon, which tells us in which bin k the photon is present, and thus provides us with an
experimental value for the quantity ∑k P(k|M, Qk) which appears on the left-hand side of (5.4).



5.3. EXPERIMENTAL SETUP 71

Figure 5.2: Experimental setup for testing δ-continuous ψ-epistemic models.
Red links are optical fibers and blue links are radio-frequency cables. A con-
tinuous laser source (S) in the telecommunication C band emits a coherent
state whose intensity is modulated by an acousto-optic modulator (AOM)
driven by a pattern generator (PG), yielding a train of d pulses with one miss-
ing. The train of pulses is then attenuated to the single-photon regime by
passing through an optical attenuator (A). The complete pulse train is stored
in a 5 km fiber spool (FS), and then sent to a superconducting single-photon
detector (SSPD). A fibre polarization controller (FPC) is used to ensure max-
imum sensitivity of the SSPD (which is polarization sensitive). When a pho-
ton is detected, an electric signal is sent to a data acquisition system (DAQ)
which stores the time at which the detection event has taken place relative
to the time at which the state preparation began. Bottom panel: Example of
experimental results for d = 10, and states |α1〉, |α5〉, |α10〉. Horizontal axis:
time at which a detection is registered. Vertical axis: number of detections
in each 10 ns time window. Continuous ψ-epistemic models would predict a
non-zero count rate in the bins which should be empty. The small number of
counts which do occur due to detector dark counts and finite extinction ratio
of the AOM are not visible on this scale. Figure from [POD+13].

The laser source (KOHERAS ADJUSTIK) continuously emits 1 mW of power at 1549.4 nm into
an optical fiber. Its narrow spectral linewidth (∆ν ∼ 1 kHz when measured during 120 µs, as
specified by the manufacturer) corresponds to a coherence time τcoh = (2π∆ν)−1 ∼ 160 µs,
significantly longer than all other time scales in the experiment. An upper bound on the laser
linewidth was obtained in [LCK+10] which used the same laser: success of that experiment
required that the linewidth of the laser be at most ∆ν ≤ 20 kHz. Very small power fluctuations
and very high rejection of side lobes guarantee that within the time interval used to produce
the train of pulses the source emits a coherent state (1.29) of well-defined photon mean number.

We then create a pulse train from the continuous-wave laser output using an acousto-optic
modulator (AOM). Trains of d = 3, 10, 30, 50, 80 pulses with one missing are created. The
AOM (GOOCH AND HOUSEGO) has 25 ns rise and fall times. In the pulsed regime used in the
experiment the extinction ratio is estimated to be Rext = 40± 1.5 dB.

A pattern generator (HEWLETT-PACKARD) drives the AOM. The AOM is turned on for 100
ns and then off for 200 ns. Optical attenuators with an absolute precision of 0.1 dB and a
repeatability of 0.01 dB allow to reach a mean number of photons in the pulse train of 〈n〉 =
α2 = 0.2 for all dimensions d investigated.
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To complete the state preparation phase, the light is sent through a fiber spool long enough
to store the complete pulse train. The photons are detected with a superconducting single-
photon detector (SSPD, from SCONTEL, see section 2.5) cooled to 1.7± 0.1 K with overall effi-
ciency (including losses in optical components after the state preparation and data acquisition
inefficiency) η =

(
4 ± 0.2

)
% and dark-count rate Cdk = 3 ± 1 Hz. The dark-count rate can

be measured with high precision, but it is sensitive to environmental conditions (temperature
of the detectors, ambient light) that fluctuate during the experiment, which is the reason the
quoted error is large.

The data acquisition is performed by a time-to-digital converter (Agilent Acqiris, see section
2.5). The overall time resolution of the detector and data acquisition is approximately 150 ps.
In order to minimize the effects of the finite rise and fall times of the AOM, we keep only the
clicks that occur during an interval of width Tp = 80 ns centered on the middle of each time
bin. For the different values of dimension d = 3, 10, 30, 50, 80 studied, the total number of times
each state was produced was (12, 10, 4, 3, 2)× 128× 104, respectively. The data were acquired
over the duration of one week. An example of recorded data is depicted in figure 5.2.

5.4 Interpretation of the experiment

Our experiment suffers from nonideal state preparation (of coherent states with imperfectly
known phase because of uncontrolled phase drifts of the laser) and nonideal measurements
(arising from losses and inefficient detection). We now discuss the consequences of these
“loopholes” for the interpretation of the experiment. The observed data could be explained
by continuous epistemic models that exploit these loopholes. Hence, this experiment tests only
epistemic models that satisfy “reasonable” additional constraints. In the case of the detection
loophole, we have to make an assumption similar to the fair-sampling assumption often made
in nonlocality experiments, see section 1.2. In the case of uncertainty in the preparation pro-
cedure, we must make the hypothesis that the ontic state does not depend on whether or not
control measurements are included in the preparation procedure.

5.4.1 Detection loophole

The laser is cut into d pulses with one missing, and then attenuated, yielding the coherent state

|αk〉 ' |0〉+ α

(
1√

d− 1 ∑
j 6=k
|j〉
)
+ O

(
α2) , (5.6)

where |0〉 denotes the vacuum state and where, for simplicity of notation, we omit the contri-
butions from two and more photons. The mean number of photons is 〈n〉 = α2 = 0.2 for all
dimensions d investigated.

Because the states prepared in our experiment have a significant vacuum component and be-
cause of losses and finite detector efficiency, the preparation of a quantum state |αk〉 can give
rise either to a detection in one of the time bins, or to a no-click event if no photon is registered.
Use of coherent states with 〈n〉 = 0.2 and overall detection efficiency of approximately 4%
yields an overall probability of registering a click of approximately P(clk) = 8 · 10−3, where
“clk” is the event that the detector clicks in one of the time bins.

These no-click events affect the interpretation of the experiment. To understand why, remember
that the key point of the PPM theorem was showing that if there is an ontic state that occurs
with positive probability for all states |ψk〉, then one finds a contradiction with quantum theory.
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But in the presence of no-click events this contradiction no longer holds. Indeed there exists
a trivial ψ-epistemic model that explains our experimental results in which the ontic states
common to all preparations |αk〉 only give rise to no-click events. Furthermore, the vacuum
component of the states |αk〉 affects the interpretation of their mutual scalar product (since
states that are almost orthogonal become arbitrarily close to each other when superposed with
a sufficiently large vacuum component that does not contribute to the click events).

The basis for generalizing the analysis is to distinguish between two classes of ontic states: the
set of ontic states denoted Λ0 which only give rise to no-click events; and the complementary
set Λclk = Λ \ Λ0, see figure 5.3. All ontic states belonging to the set Λclk give rise to a click
with positive probability. If for each preparation |αk〉, ontic states belonging to Λclk occur with
positive probability, then we can apply an analog of the PPM theorem.

Figure 5.3: Detection loophole in the test of ψ-epistemic models. Schematic
depiction of the structure of the space Λ of ontic states in the case of inef-
ficient detectors. We have represented the supports Supψk of the probability
distributions p(λ|ψk) for three states |ψ1〉, |ψ2〉, |ψ3〉. The subset of ontic states
which never give rise to a click is denoted by Λ0. The experiment described in
the main text cannot rule out the existence of a non-empty intersection of the
supports Supψk and of Λ0, since all ontic states in this intersection always give
rise to no-click events. The reported experiment can rule out the existence of
a non-empty intersection of the supports Supψk and the complementary space
Λclk = Λ \Λ0. Figure from [POD+13].

To proceed quantitatively, we first redefine the notion of distance between states to take into
account that the vacuum component never gives rise to a click. The new notion of distance
δ0 should have the following properties: (1) it measures the distance between states on the
space orthogonal to the vacuum state; and (2) it equals the old distance δ0 = δ on the single-
photon space. The exact way δ0 acts on the two and more photon space is not essential for the
argument (since the overlap of the states we consider with the two and more photon space is
small). The reason for property (1) is that the vacuum component of the state will not give rise
to a click, and hence does not give rise to any measurable quantity. The reason for property (2)
is that in the case of single-photon states and perfect detectors we wish to recover the notion of
δ-continuity defined above.

This leads to the following definition: A model with no-click events is δ0-continuous if, for all
preparations Q corresponding to pure state |ψQ〉with P(clk|ψQ) > 0, there exists an ontic state
λ (which can depend on |ψQ〉) such that, for all preparations Q′ corresponding to state |φQ′〉
with

|〈φ̃Q′ |ψ̃Q〉| ≥ 1− δ0 , (5.7)

we have P
(
λ|φQ′ , clk

)
> 0, where |ψ̃Q〉 =

(I−|0〉〈0|)|ψQ〉
|(I−|0〉〈0|)|ψQ〉| is the projection of |ψQ〉 onto the space
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orthogonal to the vacuum, and |φ̃Q′〉 is similarly defined.

As illustration of this new notion of distance, consider the coherent states

|αk〉 = exp
[
−α2/2

]
exp

[
α√

d− 1 ∑
j 6=k

a†
j

]
|0〉 , (5.8)

and the reference state

|α0〉 = exp
[
−α2/2

]
exp

[
α√
d

∑
j

a†
j

]
|0〉 . (5.9)

As |〈α̃k|α̃0〉| = eα2√(d−1)/d−1
eα2−1

, the distance δ0 is given by

δ0(d, α2) = 1− eα2
√

(d−1)/d − 1
eα2 − 1

= 1−
√

d− 1
d

+ O
(
α2) . (5.10)

For the experimentally relevant case α2 = 〈n〉 = 0.2, we find δ0(d, α2 = 0.2) ' 0.55/d.

We must also introduce the notion of inefficient detectors. An inefficient detector provides a re-
sponse that depends only on the photon number. If there is no photon, it does not click. If there are
one or more photons, the probability of clicking is strictly positive. We now consider the analog
of the PPM theorem in the case of inefficient detectors. δ0-continuous ψ-epistemic models with
δ0 > 1−

√
(d− 1)/d cannot reproduce all the measurement statistics on coherent states of d modes,

even in the presence of inefficient detectors. The proof is given in [POD+13] for coherent states. We
consider the experimentally accessible quantity

εexpt = ∑
k

P(k|Qk, clk) = ∑
k

N(k, Qk)

∑j N(j, Qk)
, (5.11)

where N(j, Qk) is the number of clicks registered in outcome j when one prepares the coherent
state |αk〉 with preparation Qk (k = 1, . . . , d), and clk is the event that the detector clicks. All
the states |αk〉 are at distance 1− |〈α̃k|α̃0〉| > δ0 from some reference coherent state |α0〉. A δ0-
continuous ψ-epistemic model makes the prediction that εexpt > 0, while quantum mechanics
predicts εexpt = 0.

The above definitions and theorem lead us to define δ0ε-ψ-epistemic models, whose existence
can be tested experimentally, even in the presence of losses and inefficient detectors. Consider
an arbitrary number of preparations Qk corresponding to distinct quantum states |ψk〉 all con-
tained in a ball of radius δ0, where δ0 is given by (5.7). A δ0ε-ψ-epistemic model is such that,
for all choices of Qk,

∑
λ

min
k

P(λ|Qk) ≥ ε . (5.12)

It is this class of models that are experimentally tested in our experiment.

5.4.2 Preparation of mixed states

The expression (5.6) supposes an ideal output from the laser source. However, lasers fluctu-
ate. For a laser operating well above threshold, the major source of fluctuation is phase drift,
responsible for the finite linewidth of the laser. Even though the coherence time of the laser
τcoh ∼ 160 µs is much longer than the longest pulse train (of length 80× 300 ns = 24 µs), this
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phase drift cannot be neglected. A more precise description of the preparation procedure is
therefore that it yields the state

|αk,ϕ〉 = exp
[
−α2/2

]
∏
j 6=k

exp

[
αeiϕj a†

j√
d− 1

]
|0〉 (5.13)

' |0〉+ α

(
1√

d− 1 ∑
j 6=k

eiϕj |j〉
)
+ O(α2) . (5.14)

Since the phase fluctuations of a laser are generally modeled as a random walk of the phase
[GC08], yj = ϕj − ϕj−1 should be modeled as independent identically distributed random
variables with normal distribution

P(yj) =
1√

4πDt0
e−

y2
j

4Dt0 , (5.15)

where D = 1/τcoh is the diffusion constant [Scu97] and t0 is the time between centers of two
time bins.

We take this model as basis for the analysis. Extensions, taking into account for instance phase
drift within each time bin, or intensity fluctuations of the laser, are briefly discussed below. In
order to understand the implications of fluctuations on the prepared state, we first discuss the
interpretation of the experiment if the phases ϕj were known. We then consider the experimen-
tally relevant case where the phases ϕj are unknown.

If the phases ϕj were known, then for each state |αk,ϕ〉 we could compute the δ0-distance to
the reference state |α0〉. We would then keep only the data corresponding to the case where
δ0(αk,ϕ, α0) is less than some threshold ∆0. For the states |αk,ϕ〉, we have (for an ideal exper-
iment) that P(k|αk,ϕ) = 0. For the subset of states with δ0(αk,ϕ, α0) < ∆0, we can estimate
the value of εexpt (which will be non-zero because of experimental imperfections) from the
measurement data. The data then exclude δ0-continuous epistemic models with δ0 > ∆0 and
ε > εexpt.

If we do not know the phases ϕj, then we must make additional assumptions. Note that if
one averages over the unknown phases ϕj, the state prepared by the device is a mixed state.
This is problematic as the notions of ψ-epistemic and ψ-ontic models are defined for pure states.
Therefore the no-go theorems do not apply directly. We reason around this difficulty as follows.
There is in principle a simple modification of the experimental procedure that could be used
to determine the phase of the laser: namely part of the laser light could be diverted and then
measured. This additional measurement has not been carried out. But it is natural to assume
that the probability distribution of ontic states P(λ|Qk) does not depend on whether or not
these additional measurements are carried out. (We note that in our preparation procedure, a
large part of the light is in fact diverted, and then absorbed, by the attenuators).

Making this assumption, we can consider that the state preparation yields pure states of the
form (5.13) with small, random, phases affecting each time bin. We do not know what are the
values of the phases, but we can determine the probability distribution of δ0(αk,ϕ, α0). From this
probability distribution we can estimate the probability q that δ0 is less than a specific value ∆0:
P[δ0(αk,ϕ, α0) ≤ ∆0] = q(∆0). Equivalently we know what proportion q of prepared states had
δ0(αk,ϕ, α0) ≤ ∆0(q). We also know the experimentally determined value of εexpt. However this
value is an average over all prepared states. For a conservative estimate we make the worst case
assumption that all the contribution to εexpt comes from the states with δ0(αk,ϕ, α0) ≤ ∆0. This
implies that we must make the substitution εexpt → εexpt(q) = εexpt/q. This is the price to pay
for not having experimentally measured the phases ϕj. The data then exclude δ0-continuous
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epistemic models with δ0 > ∆0 and ε > εexpt(q). Note that we can vary the parameters q and
∆0 to exclude a region as large as possible in the δ0, ε plane.

In practice we proceed as follows. We fix the dimension d = 3, 10, 30, 50, 80. We fix k ∈
{1, . . . , d}. We choose at random variables yj, j = 1, . . . , d, drawn from the distribution (5.15).
To these variables we associate the state |αk,ϕ〉 defined in (5.13). We then compute the distance
δ0(αk,ϕ, α0) = 1− |〈α̃k,ϕ|α̃0〉|, where |α0〉 is given by (5.9). We repeat the procedure 106/d times
for each value of k. For simplicity we then average the resulting histograms over k, yielding a
probability distribution for δ0: P(δ0) = 1

d ∑d
k=1 P[δ0(αk,ϕ, α0)]. From this numerically (Monte-

Carlo simulation) determined distribution we can compute with high precision the function
∆0(q) given by P((δ0 ≤ ∆0) = q.

Finally we note that the states prepared by the laser may differ from the ideal state (5.6) in more
ways than are modeled in (5.13). Such effects could include intensity fluctuations of the laser,
or phase drift within each time bin. We could take them into account by using a better model
of the laser output. However since the linewidth of a laser well above threshold is generally
modeled as being entirely due to phase drift, and since the coherence time is much longer than
the duration of one time bin, we expect that the above takes into account most of the effects
due to uncertainty in the state preparation. We note that our procedure of ascribing all the
contribution to εexpt from the states with δ0(αk,ϕ, α0) ≤ ∆0 is very conservative, and implies
that the true value of εexpt is probably significantly smaller than the one we use.

5.5 Experimental results

Our experimental results provide constraints on ψ-epistemic models that satisfy the additional
constraints described above. More precisely, we parametrize ψ-epistemic models by two pa-
rameters, δ0 that describes how continuous the model is, and ε that describes how epistemic it
is. Our experimental results rule out a large class of models labeled by these two parameters.

Our raw experimental results are reported in table 5.1 and figure 5.4. Specifically we give the
number d of time bins, the measured fraction of clicks in the bin that should contain no photon,
i.e. εexpt(d) = ∑k

N(k,Qk)
∑j N(j,Qk)

, and its statistical error.

Table 5.1: Experimental bounds on ψ-epistemic models. Parameters d are the
investigated dimensions of the quantum state space, with the corresponding
values of δ = 1−

√
(d− 1)/d. Measured values εexpt are given with their sta-

tistical uncertainty ∆εexpt. Values εpredict correspond to quantum theory pre-
dictions when taking into account experimental imperfections, with ∆εpredict
arising from uncertainty on instrument parameters. Data from [POD+13].

d 3 10 30 50 80
δ 0.184 0.051 0.017 0.010 0.006

εexpt × 103 0.26 0.45 1.27 1.62 1.66
∆εexpt × 103 ±0.05 ±0.07 ±0.18 ±0.23 ±0.28
εpredict × 103 0.24 0.41 0.99 1.58 2.46

∆εpredict × 103 ±0.09 ±0.15 ±0.37 ±0.58 ±0.88

The fact that εexpt(d) is not strictly zero, at first glance in conflict with quantum theory pre-
diction ε = 0, is expected, since the optical components are imperfect. We have estimated the
expected values of εexpt(d) from the following measured experimental parameters: extinction
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Figure 5.4: Experimental bounds on ψ-epistemic models as a function of di-
mension d of the quantum state space. The vertical axis gives the measured

value of εexpt = ∑k
N(k,Qαk )

∑j N(j,Qαk )
, where N(j, Qαk) is the number of clicks reg-

istered in bin j when one prepares state αk (error bars are statistical). These
values are also given in table 5.1. The curve gives the dependency of εexpt
on d as predicted by quantum theory, taking into account the values of mea-
sured experimental parameters. The grey area gives the range in which this
theoretical prediction could vary, given the uncertainty on dark-count rate,
extinction ratio, and overall detection probability η〈n〉. The main uncertainty
comes from the dark-count rate which depends on the exact temperature of
the detectors and the amount of ambient light, both of which can vary dur-
ing the experiment. Positive deviation from the curve would signal a break-
down of quantum theory. The absence of such deviation rules out a large
class of δ-continuous models. Figure from [POD+13].

ratio of the AOM, mean number of photons in each pulse, optical attenuation and detector effi-
ciency, and detector dark counts. The probability of detecting a photon in bin k when state αk is
prepared is approximately Dk Tp + Ext 〈n〉η/(d− 1), and the probability of detecting a photon
when state αk is prepared is approximately 〈n〉η, where d is the dimension of the state, Dk Tp is
the probability of a dark count during a pulse, Ext is the extinction ratio of the AOM, 〈n〉 is the
mean number of photons in the pulse train, and η is the overall detection efficiency. Note that
these approximations of an exact expression are valid for our experimental parameters. The ra-
tio of these two quantities multiplied by d yields the following estimate for the experimentally
measured quantity εexpt:

Expected value of εexpt =
Dk Tp

〈n〉η d + Ext
d

d− 1
. (5.16)

This expected value, including its uncertainty, is plotted in grey in figure 5.4. Deviations from
this expected behavior could signal that quantum theory should be replaced by an epistemic
model. The measured values of εexpt, which are of the order 10−3, do not exhibit large devia-
tions from the expected behavior of εexpt(d).

These experimental results can be used to rule out a class of δ0ε-ψ-epistemic models. Specif-
ically we proceed as follows. Using the procedure outlined at the end of section 5.4, we can
determine for each dimension d the function ∆0(q). Specifically we choose a series of values of
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0 < q < 1, and compute the corresponding value of ∆0(q). Then, for each d and for each of
these values of q, the models with δ0 ≥ ∆0(q) and ε ≥ εexpt(d)/q are ruled out. Thus for each
dimension d, we rule out a region in the δ0, ε plane. These results are given in figure 5.5.

In figure 5.5 (a) we plot all the couples (∆0(d, q), εexpt(d)/q) obtained by this procedure. For
comparison we also plot the couples (δ0, εexpt) that would be obtained if we did not take into
account the phase fluctuations of the laser. For small d, taking into account the phase fluctua-
tions has a very small effect on the results because over the duration of 3 or 10 time bins, the
phase fluctuations have only increased very little the value of δ0. However when the number of
time bins increases, the effect of the phase fluctuations becomes much more important, and this
significantly affects the results. In figure 5.5 (b) we plot only those couples (∆0(d, q), εexpt(d)/q)
which are most constraining, and give their statistical error.

5.6 Discussion

Whether the quantum wave-function is a real physical wave or a summary of our knowledge
about a physical system is a question that has divided physicists since the inception of quantum
theory. A precise formulation of these two alternatives, opening the way to clear-cut answers,
was provided in [HS10]: if the wave-function corresponds to a real, ontic, property of physical
systems, the preparation of a system in different pure quantum states should always result in
different physical states. If, on the other hand, the wave-function has an epistemic status, such
preparations should sometimes result in the same underlying physical state.

Following the breakthrough of PBR [PBR12], a flurry of no-go theorems for ψ-epistemic mod-
els obeying natural constraints have been proposed (see publications citing PBR). These no-go
theorems inspire novel experimental tests. We reported a test of ψ-epistemic models based on
the argument introduced in [PPM13]. There are two main motivations to perform such exper-
iments. First, given that there are good reasons to support an epistemic view of the quantum
state [Spe07], the no-go theorems provide new directions in which to look for potential devi-
ations from the expected quantum predictions. Our experimental results do not exhibit any
such deviations, therefore strengthening our belief in the validity of quantum theory. A sec-
ond, related, motivation for performing an implementation of the no-go theorems is to rule out
experimentally (certain classes of) ψ-epistemic models, in the same way that the violations of
Bell inequalities rule out locally-causal models.

While such experiments have some common features with a Bell test, they also differ from it
in several ways. To simplify the discussion, let us first consider the case of an ideal experiment
free of experimental errors and noise. The proof of the PPM theorem tells us that if we prepare
a system according to d possible procedures Qk and subject it to a measurement M, then the
observed value εexpt = ∑k P(k|M, Qk) provides a constraint on the extent ε to which the distri-
butions over real states associated to each preparation overlap. In particular, if εexpt = 0 then
no common real state λ can be associated to all the preparations Qk. This conclusion is obtained
independently of what specific states (pure or mixed) are used, or what specific measurements
are performed. It only depends on the observed measurement statistics, as does the violation
of a Bell inequality.

However, contrary to Bell inequalities, the observation of a value εexpt = 0 does not per se
imply that some “intrinsically quantum” or “non-classical” behavior has been produced in
the experiment. Indeed, the quantity εexpt has not been introduced to distinguish between a
“classical” and a “quantum” worldview (as in Bell inequalities), but between ψ-ontic and ψ-
epistemic models. Thus for instance the ψ-epistemic model presented in [LJBR12] perfectly
reproduces all the predictions of quantum mechanics.
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Furthermore, the statistics of an experimental test of ψ-ontic versus ψ-epistemic models could
very easily be reproduced using purely classical states. For instance the use of d classical states
of the form ρk = ∑j 6=k |j〉〈j|/(d− 1) instead of the states |ψk〉 in the PPM theorem would also
yield a value of εexpt = 0. However, because these states are not pure, this experiment would
not exclude ψ-epistemic models.

This shows that when carrying out an experimental test of ψ-ontic versus ψ-epistemic models,
the kind of preparation procedures used in the experiment matters to its interpretation. In-
deed, a ψ-epistemic model does not need to predict different results than quantum theory for
all preparation procedures (for instance not for those associated to the purely-classical distri-
butions ρk over orthogonal states mentioned above), but only for those corresponding to pure
quantum states that are sufficiently close (within distance δ in the case of δ-continuous models).
A meaningful test of δ-continuous ψ-epistemic models must therefore be based on two compo-
nents: the measurement of εexpt and a reasonable confidence that preparations corresponding
to pure quantum states within distance δ have been used. This should be contrasted with Bell
experiments that are “device independent”: their interpretation is independent of the details
of the state preparation and measurement procedures.

In this later respect, our experiment has some specific weaknesses related to the experimental
system used (photonic time bins obtained by chopping and attenuating a continuous-wave
laser). First, the use of coherent states that have a non-zero vacuum component and inefficient
detectors resulting in no-click events require, to reach meaningful conclusions, the use of a
fair-sampling assumption, a redefinition of the continuity parameter δ0, and a redefinition of
the quantity εexpt. Second, we need an additional hypothesis on the epistemic model to ensure
that the preparation used in the experiment yields (approximatively) pure coherent quantum
states with a known overlap. This is due to the fact that we did not explicitly check the actual
performance of the preparation procedure by, e.g., performing a direct measurement of δ0. Such
a verification would have required the use of a complex interferometer, and could have been
performed only for very small dimension. Our approach was to use the very well understood
physics of lasers operating well above threshold as a basis for modeling the quantum states
produced by our preparation procedure. This allowed us to probe states in a much higher
dimensional Hilbert space, and therefore small values of the continuity parameter δ0, than
would have been possible otherwise.

We note that the complementary approach can be followed by using frequency bins. Using a
setup similar to the one presented in figure 3.4, one would be able to produce a quantum state
of the form |ψk〉 in the frequency domain with an EOPM, though for relatively low dimensions
compared to d = 80. However, the possibility to manipulate the state with a second EOPM
would in principle allow a direct measurement of the parameter δ0.

Taking into account all the above constraints, our experiment nevertheless excludes, with a
high degree of confidence, a large class of ψ-epistemic models. These ψ-epistemic models are
labeled by two parameters, δ0 that describes how continuous the model is, and ε that describes
how epistemic it is. Our experimental results exclude a region in the δ0, ε plane, see figure 5.5.

The experimental test of ψ-epistemic models based on the original PBR no-go theorem reported
in [NMS+12] also excluded classes of ψ-epistemic models and also required additional hy-
potheses to ensure that the prepared states are pure quantum states with desired properties.
Such additional hypotheses will probably be needed in any experimental test of ψ-epistemic
models. The results nevertheless tend to show that ψ-epistemic models that reproduce the pre-
dictions of quantum theory must both be strongly discontinuous and assign a collective ontic
state to independently prepared systems.
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Figure 5.5: Experimentally excluded region in the δ0, ε plane. (a) For each
choice of the parameter q we compute the values ∆0(d, q) and εexpt(d)/q
which are then plotted in the figure, and connected by a line. For curves from
top to bottom, q = 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19,
0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90. The
couples (δ0, εexpt(d)) that would be obtained if one did not take into account
the phase fluctuations of the laser are plotted in light grey (lowest curve).
For d = 3, 10, taking into account the phase fluctuations of the laser does
not modify significantly the results, while for d = 30, 50, 80 the effect is im-
portant. In fact the excluded region for d = 80 is practically the same as for
d = 50 when the phase fluctuations are taken into account. (b) Here we take
only the points that are most constraining. We plot them with their error bars.
The grey zone is the area in the δ0, ε plane that is excluded by our experiment.
Figure from [POD+13].



Conclusion and perspectives

In this thesis, we have demonstrated an original method for manipulating energy-time entan-
gled photons at telecommunication wavelengths. We summarize our approach and results and
discuss the perspectives opened by this work.

In order to implement quantum communication protocols, one needs to be able to efficiently
produce, transmit, manipulate and detect photonic entangled quantum states. Optical fibers
from the telecommunication industry offer a well-suited —low-loss and low-decoherence—
transmission channel for photons, particularly when quantum information is encoded in their
energy-time degree of freedom. In this context, the most common platform is time-bin en-
coding, which employs unbalanced Mach–Zehnder interferometers to encode information in
the relative phase between distinct spatio-temporal paths. This phase has to be set precisely,
imposing sub-wavelength stabilization of optical interferometers. To produce time-bin entan-
glement, one needs a nonlinear waveguide pumped by a long-coherence laser. To detect it,
time-resolving single-photon detectors at telecommunication wavelengths are necessary. Both
these production and detection tools are becoming commercially available, with continuously
improving characteristics.

Using these off-the-shelf components does not limit one to a unique way to manipulate energy-
time entangled photons. Instead of creating time bins, encoding information in their relative
phase, and detecting the arrival time of the photons, one can create frequency bins, encode
information in their relative phase, and detect the arrival frequency of the photons. Building
on previous single-photon experiments, we have shown that electro-optic phase modulators
driven by a radio-frequency system allow the implementation of such a frequency interfer-
ometer for entangled photons, while narrow-band frequency filters allow to discriminate the
photons’ frequencies, producing two-photon interference patterns in the frequency domain.
Our setup comprises standard fiber-optic and electro-optic components, parametric down-
conversion sources and single-photon detectors.

Manipulating energy-time entangled photons directly in the frequency domain with electro-
optic phase modulators presents several advantages. From a technical point of view, this pro-
vides inherent precision, stability and robustness, removing the need for active stabilization of
interferometers. This is highlighted by our experimental high-visibility (> 99%) two-photon
interference patterns, allowing the violation of Bell inequalities in an optimal way. From a con-
ceptual point of view, while it is relatively difficult to build spatio-temporal interferometers
with more than two paths, our method naturally gives rise to interference patterns correspond-
ing to the coherent manipulation of states with dimension as high as eleven. High-dimensional
states are interesting because they can provide with higher encoded information per photon.

Our approach presents however a few drawbacks. From a technical point of view, phase mod-
ulators and frequency filters imply high losses. This could be partially overcome with technical
advances or by using dispersion-based techniques for resolving the photons’ frequencies with-
out frequency filters. From a conceptual point of view, the high dimensionality is not easily
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exploited. Indeed, simultaneous detection of all results is resource-consuming; in practice we
do not collect all the photons, leading for example to loopholes in Bell experiments. More
fundamentally, the use of a sine modulating signal corresponds to Bessel-type interference pat-
terns, whose dimensionality is limited by the power of the radio-frequency signal driving the
phase modulators, and which fix all the phase relations between frequency bins once one of
them is set. An important route would be to generalize accessible transformations, in order to
better control the dimensionality, shape and phase relations of the frequency states.

The ability to manipulate in a specific way photonic quantum states dictates the design and
implementation of quantum communication protocols. In this work, building on previous
approaches, we presented the possibility to use frequency bins for quantum key distribution
using the BB84 protocol. It can be expected that frequency bins created by sine or other shaped
modulating signals would be suited for protocols allowing to exploit their high dimensionality.
In supplement of quantum key distribution, many experiments require, can benefit from, or
could be adapted to, high dimensionality, such as Hong–Ou–Mandel experiments, quantum
coin-tossing, high-dimensional quantum walks, or tomography characterization techniques in
frequency. It would be very interesting to demonstrate these experiments using frequency-
bin entangled photons. In complement to one- and two-photon experiments, achievement of
a four-photon experiment like entanglement swapping would be a huge progress towards a
quantum network use of frequency-bin entanglement.

We have shown that periodic frequency filters artificially restrict the frequency states to effec-
tive quantum bits. This procedure, together with dispersion management, permits collection of
a very high bandwidth and could be used to test low-brightness photon-pair sources. Sources
such as ring resonators integrated on silicon-on-insulator chips could provide frequency combs
specifically suited to our method. The versatility of frequency-bin entanglement thus provides
general and specific applications —towards practical or fundamental research— which could
be theoretically and experimentally explored in the near future.

In this thesis, we have also reported results from other quantum optics experiments at telecom-
munication wavelengths. One focuses on the generation of polarization-entangled photons in
a silicon-on-insulator chip. This platform constitutes an important perspective for practical in-
tegrated quantum information and communication applications. We have also conducted an
experimental investigation on the nature of the quantum state, using time bins. Our results
agree with quantum mechanical predictions, consolidating the reality of the quantum state
and potentially inspiring further research. We note that the frequency-bin approach could be
of interest for these experiments.



Appendix A

Notations

Table A.1: List of notational shortcuts and scientific notations.

O operator Ô
ω pulsation abusively termed frequency ν = ω/2π
|ψ φ〉 tensor product |ψ, φ〉 = |ψ〉|φ〉 = |ψ〉 ⊗ |φ〉

(potentially with A and B indices in a bi-partite description)
χ(2) second-order nonlinearity
χ(3) third-order nonlinearity
H, V horizontal and vertical (polarizations)
s, i signal and idler (photons)
τacc accidental coincidence rate
τdk dark-count rate
τnet net coincidence rate
τraw raw coincidence rate
V visibility
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Table A.2: List of acronyms.

A, B, E Alice, Bob, Eve
APD avalanche photodiode
BB84 Bennett–Brassard 1984
BBF band-block filter
BS beam splitter
CAR coincidence-to-accidental ratio
CGLMP Collins–Gisin–Linden–Massar–Popescu
CH74 Clauser–Horne 1974
CHSH Clauser–Horne–Shimony–Holt
CMOS complementary metal–oxyde–semiconductor
CW continuous-wave
DAS data acquisition system
DOF degree of freedom
EDFA erbium-doped fiber amplifier
EOPM electro-optic phase modulator
EPR Einstein–Podolsky–Rosen
FBG fiber Bragg grating
FPC fiber polarization controller
FWHM full width at half maximum
HOM Hong–Ou–Mandel
HWP half-wave plate
LHV local hidden variable
LSPP localized surface plasmon polariton
MZI Mach–Zehnder interferometer
PBR Pusey–Barrett–Rudolph
PBS polarizing beam splitter
PMF polarization-maintaining optical fiber
PPLN periodically-poled lithium niobate
PPM Patra–Pironio–Massar
QBER quantum bit error rate
QKD quantum key distribution
QWP quarter-wave plate
RF radio-frequency
SMF standard single-mode optical fiber
SNR signal-to-noise ratio
SOI silicon-on-insulator
SPD single-photon detector
SPDC spontaneous parametric down-conversion
SPP surface plasmon polariton
SSPD superconducting single-photon detector
TDC time-to-digital converter
WDM wavelength division multiplexer
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