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Université Paris-Saclay
Saclay, France
December 2017



©2017 – Jessalyn Alvina
all rights reserved.



Thesis advisor: Professor Wendy E. Mackay Jessalyn Alvina

Increasing The Expressive Power of
Gesture-based Interaction on Mobile Devices

Abstract

Current mobile interfaces let users directly manipulate the objects displayed on the screen
with simple stroke gestures, e.g. tap on soft buttons or menus, pan to scroll a document,
or pinch to zoom. These simple gestures on buttons, icons, or menus were a solid foun-
dation to support the transition from WIMP to touch-based interfaces. However, today’s
smartphones offer a wide variety of functionalities, from communication, games, informa-
tion consumption, office support, even art and creativity support [12]. To access a larger
command space, the users are often forced to go through long steps, making the interaction
cumbersome and inefficient. More complex gestures offer a powerful way to access informa-
tion quickly as well as to perform a command more efficiently [5]. However, they are more
difficult to learn and control. Gesture typing [78] is an interesting alternative to input text: it
lets users to draw a gesture on soft keyboards to enter text, from the first until the final letter
in a word. Since the gesture is drawn on top of a soft keyboard, each key acts as a “steering
target” of how to draw the gesture.

I am interested in rethinking the access to a variety of functions, by building mobile in-
teractions that are both easy to learn and control yet more powerful. I envision users just
interact as they usually do with the existing systems, yet they can easily access more power-
ful functionalities. I am specifically interested in text entry, since most of mobile interaction
involves command invocation and text entry.

I believe we can increase the expressive power of mobile interaction by leveraging the ges-
ture’s shape and dynamics and the screen space to produce rich output, to invoke commands,
and to facilitate appropriation in different contexts of use. I argue that humans are capable to
performvariousmovementswith different level of precision, especially after a certain amount
of practice. It is very difficult, if not impossible, to perform exactly the samemovement twice.
Each person also performs differently from one to another. Hence, if we can distinguish the
variations in the gesture, I believe we can exploit the variability to express different concepts.
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Once users gain more control over their variability, we can also introduce slightly more com-
plex interactions that enable way more powerful functionalities.

In this thesis, I show that users’ gesture performance vary substantially across users (due
to e.g. biomechanics or personality) and context (e.g. activity or environment). I present
three features that form a low-dimensional representation of gesture variation and users can
significantly vary under different conditions. I design a new interaction technique, Expres-
sive Keyboard, that transforms the gesture variations into rich output, and demonstrate
several applications in the context of text-based communication. Users can gesture type as
they usually do, but get more power to express different concepts. I then introduce a se-
ries of controlled experiments that investigate the learning and appropriability aspects of the
proposed technique. The result shows that users can deliberately control these additional
features of their gestures as they gesture type, in addition to their natural gesture variations.
Users quickly appropriated ExpressiveKeyboard as soon as they used it and took the gen-
erated rich output as a feedback of their gesture-typing performance, which then improved
their performance. I proposeCommandBoard, a gesture keyboard that lets users efficiently
select commands from a large command space while supporting the transition from novices
to experts. I demonstrate different applications of CommandBoard, each offers users a
choice, based on their cognitive and motor skills, as well as the size and organization of the
current command set. Altogether, these techniques giveusersmore expressive powerby lever-
aging human’s motor control and cognitive ability to learn, to control, and to appropriate.
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Increasing The Expressive Power of
Gesture-based Interaction on Mobile Devices

Abstract

Les interfaces mobiles actuelles permettent aux utilisateurs de manipuler directement les
objects affichés à l’écran avec de simples gestes, par exemple cliquer sur des boutons ou des
menus, naviguer dans des documents ou pincer pour zoomer. Ces gestes simples sur des
boutons, des icônes ou des menus étaient de solides bases pour passer des interfaces WIMP
au interfaces mobiles. Cependant, les smartphones offrent aujourd’hui des fonctionnalités
variées, depuis la communication, les jeux, la consommation d’information, la bureautique
ou bien même l’art et les outils supports de créativité [12]. Pour accéder à un espace de com-
mande plus large, les utilisateurs sont souvent forcés de passer par de nombreuses étapes, ren-
dant l’interaction inefficace et laborieuse. Des gestes plus complexes sont unmoyen puissant
d’accéder rapidement à l’information ainsi que d’exécuter des commandes plus efficacement
[5]. Ils sont en revanche plus difficiles à apprendre et à contrôler. Le “Gesture Typing” (saisie
de texte par geste) est une alternative intéressante au texte tapé: il permet aux utilisateurs de
dessiner un geste sur leur clavier virtuel pour entrer du texte, depuis la première jusqu’à la
dernière lettre d’un mot. Puisque le geste est dessiné sur un clavier virtuel, chaque touche
devient une “cible directionnelle” qui dirige le tracé du geste.

Je m’intéresse à repenser l’accessibilité à de nombreuses fonctionnalité en créant des inter-
actions mobiles qui soient à la fois facile à apprendre et contrôler tout en étant plus puis-
sante. J’envisage que les utilisateurs puissent continuer à interagir de la mêmemanière que ce
qu’il font aujourd’hui tout en leur permettant d’accéder à des fonctionnalités plus avancées.
Je m’intéresse en particulier à la saisie de texte car c’est, avec l’invocation de commande, le
moyen le plus répandu d’interagir avec un mobile.

Je pense qu’il est possible d’augmenter le pouvoir d’expression de l’interaction mobile en
tirant profit de la forme et la dynamique du geste et de l’espace de l’écran, pour invoquer
des commandes ainsi que pour faciliter l’appropriation dans différents contextes d’usage. Je
soutiens que les humains sont capables d’executer diversmouvements avec différents niveaux
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de précision, en particulier après un certain temps d’entraînement. Il est très difficile, sinon
impossible, d’exécuter deux fois le même mouvement. Chaque personne exécute le même
geste différemmentdes autres personnes. Ainsi, si l’onpeut distinguer les variations des gestes,
j’affirme que l’on peut exploiter la variabilité pour exprimer différents concepts. Lorsque les
utilisateurs acquièrent plus de contrôle sur leur variabilité, on peut également introduire des
interactions un peu plus complexes qui rendent possibles des fonctionnalités plus puissantes.

Dans cette thèse, je montre que l’exécution d’un geste par les utilisateurs varie grandement
entre les utilisateurs (selon la personnalité ou pour des raisons bioméchaniques par exem-
ple) et entre les contextes (selon l’activité ou l’environnement, par exemple). Je présente trois
caractéristiques qui quantifient la variabilité d’un geste. Je conçois une nouvelle technique
d’interaction, Expressive Keyboard, qui transforme la variation du geste en un résultat
riche et je démontre plusieurs applications dans le contexte de la communication textuelle.
Les utilisateurs peuvent écrire gestuellement (gesture type) comme ils en ont l’habitude,mais
ils ont maintenant le pouvoir d’exprimer différents concepts. J’introduis ensuite une série
d’expériences qui explorent l’apprentissage et l’appropriabilité de la technique proposée. Le
résultat montre que les utilisateurs peuvent délibérément contrôler ces paramètres supplé-
mentaires de leurs geste lorsqu’ils écrivent gestuellement, en plus de la variation naturelle de
leurs gestes. Les utilisateurs se sont rapidement approprié ExpressiveKeyboarddès qu’ils
s’y sont habitués et ont utilisé le résultat comme un retour sur leur performance d’écriture
gestuelle, ce qui leur a permis d’améliorer encore leur performance. Je propose Command-
Board, un clavier gestuel qui permet aux utilisateurs de sélectionner efficacement des com-
mandes parmi un vaste choix tout en supportant la transition entre les novices et les experts.
Je démontre plusieurs applications de CommandBoard, dont chacune offre aux utilisa-
teurs un choix basé sur leurs compétences cognitives et moteur, ainsi que différentes tailles
et organisations de l’ensemble des commandes. Ensemble, ces techniques donnent un plus
grand pouvoir expressif aux utilisateurs en tirant profit de leur contrôle moteur et de leur
capacité à apprendre, à contrôler et à s’approprier.
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1
Introduction

Themass adoption of smartphones has transformed the everyday experience of users, as well
as the design of mobile interactions. Thanks to the interactive high-resolution touchscreen,
today’s mobile interfaces are completely touch-based. The simplest form of touch-based in-
teraction is tapping onmenus or icons, that borrows the point-and-click metaphor in graph-
ical user interface (GUI). The users can also swipe, pinch, or other complex gestures that
involve several strokes or multi touch.

A gesture-based interaction is in fact a communication channel between the users and the
system. It startswith the user transmitting amessage by drawing a gesture on the touchscreen
device. Hence, the gesture encodes the information that theuserwants to communicate. The
device then decodes the gesture into the intendedmessage that can express different concepts,
such as commands or text. For example, a user is looking at a collection of photos in her
phone, and she wants to see the next photo. She performs a flick gesture that the gesture
recognizer recognizes as a ‘flick’ to the left. The system interprets it as a command to display
the next photo in the list.

One of the grand challenges of research in Human-Computer Interaction (HCI) is op-
timizing the bandwidth of the communication channel between users and the system. The
capacity of the communication channel in gesture-based interactions, i.e. its expressive power,
depends on the number of different gestures and how they can express varying concepts [4]. In
the field of knowledge representation, expressive power (expressive adequacy) is related to
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what a representation can say [77]: “Two components of expressive adequacy are the distinc-
tions a representation can make and the distinctions it can leave unspecified”. In other words,
expressive power can bemeasured through its power of distinction – by the situations it con-
siders distinguishable. In programming languages, expressive power refers to a measure of
the range of ideas expressible in a given programming language [23]. Increasing the capacity
of the channel means more recognizable gestures to express more functionalities.

Today’s smartphones offer awide variety of functions, from communication, games, infor-
mation consumption, office support, even art and creativity support [12]. As a consequence,
the command space becomes larger as well. To access a larger command space, the users are
often forced to go through multiple steps e.g. searching the item in a menu, making the in-
teraction cumbersome and inefficient. For example, users have to tap on a button to display
a menu, then scroll through the menu to find the command they would like to invoke. Al-
ternatively, users can perform a stroke gesture to invoke a command, i.e. gesture shortcuts.
The challenge in using gesture shortcuts is recognizability and learnability. A gesture should
be unique so that it is easy for the system to recognize the gesture. Nevertheless, themore ges-
tures in the gesture set, the harder it is for each gesture to be both unique and simple. More
complex gestures (e.g. different shapes, multi-touch, etc.) offer a powerful way to access in-
formation quickly as well as to invoke a command more efficiently [5]. However, they are
more difficult to learn and control.

I am interested in rethinking the access to a variety of functions, by building mobile inter-
actions that are both easy to learn and control yet more powerful. Given that gesture-based
interactions have been supported and widely adopted in mobile devices, we can assume that
there is a set of gestures that the users can already control. Hence, instead of adding more
gestures in the gesture set, can we interpret the same gesture differently, for example depend-
ing on where (a part of) the gesture is drawn or how it is drawn? If so, users will potentially
be able to interact as they usually do with existing systems, while obtaining easy access to
powerful functionalities.

I am specifically interested in mobile text-input techniques, since text entry comprises
about 40% of mobile activity [12]. Aside from communication, users also type search key-
words, take notes, and compose documents with their mobile phones. While typing, users
also often invoke commands, for example to change the text formatting. Switching from typ-
ing to command invocation back and forth is cumbersome and may interrupt the cognitive
process [67, 61, 43]. Thus, in this thesis, I focus on augmenting the access to functionalities
through soft keyboards.
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Figure 1.1: Gesture-typing [42, 82] is an efficient, easy-to-learn, and error tolerant technique for entering
text on software keyboards. All four gestures in this figure are correctly recognized as “great”.

On most mobile devices, users tap on buttons on “soft” keyboards displayed on high-
resolution 2D touchscreens to enter text. Gesture typing [42, 82] is amore interesting alterna-
tive, for it stands in between point-based and gesture-based paradigms: it lets users to draw a
gesture on soft keyboards to enter text, from the first until the final letter in a word. Since the
gesture is drawn on top of a soft keyboard, each key acts as a “steering target” users must go
through. The recognition engine compares each word gesture to a pre-designed “template”
representing the ideal word-gesture shape. Word-gestures are not unique for each word, but
can be robustly matched using a combination of kinematic models, multidimensional dis-
tance metrics, and language models to resolve ambiguities. Gestures that vary significantly
may thus still register as correct, as illustrated in Figure 1.1.

Aswith other soft keyboards, the goal of gesture-typing keyboards is to produce the single,
“correct” typedword intended by the user; it is either correct or incorrect, and input variation
is of interest only for the purpose of designing tolerant recognition systems. Gesture varia-
tion is treated essentially as a deformation of the correct shape and discarded as unwanted
noise. To be sure, a small part of the variation is motor-system or digitizer noise, and can-
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not be considered meaningful. However human experience with handwriting clearly shows
the potential for personal and stylistically-communicative variationof outputmedia through
performed human gestures. How can we take advantage of such systems that already allow
gesture variability while maintaining an extremely good recognition accuracy? Can users de-
liberately manipulate the shape and dynamics of their gestureas they write? Can we extend
the keyboard’s functionality to invoke commands seamlessly as they write?

1.1 Thesis Statement

I believe we can increase the expressive power of gesture-based interaction by leveraging the
screen space and gesture variation, to enrich communication, invoke commands, and facili-
tate appropriation in different context of use. Users naturally vary their gesture input due
to biomechanics, personality, current activity, and environments. The existing gesture varia-
tions potentially carry additional information about the writers, the context, and the mood.
Users can potentially control aspects of their gestures deliberately, for example to commu-
nicate intentions. Most advanced machine learning-based recognition algorithms often an-
ticipate the variations, but remove them, since the goal is to produce a single “correct” text
output. Capturing continuous features of the variation and mapping it to properties of the
rendered text could re-enable some of the benefits of handwriting, such as recognizable per-
sonal styles, implicit communication of mood, activity, or context; and explicit communi-
cation of emphasis, sarcasm, humor, and excitement. Chunking the gesture into segments
could enable a gesture be interpreted as commands and text at the same time.

1.2 Research Approach

After reviewing the related research literature, I decided to start with gesture typing as the
means-to-an-end. Gesture keyboards have been widely adopted by the general public, with
over 150 million copies installed. As shown in Figure 1.2, my work includes the following
general approach:

• I used the structured observation technique [27] to explore how smartphone users ges-
ture type, to gain insights about human variability that users make and the device can
capture. A structured observation combines elements of controlled experiments to
allow comparisons and a realistic task to enhance external validity. In contrast to a
controlled experiment, the goal is not to assess a clearly defined hypothesis with the
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data collection, but to create comparable conditions for observing common patterns
and processes. This helpedme to identify three gesture features that users significantly
vary as they gesture type in different condition.

• I designed novel interaction techniques with the main goal of increasing the expres-
sive power while assisting the learning process and facilitating appropriation. I used
co-adaptation [51] and substrate [26, 41, 56] as the generative design principals. I will
discuss both principals further inChapter 2. I analyzed the structure of a soft keyboard
and how the data is captured and interpreted based on the structure. My approach fo-
cused on two concepts: increasing the granularity of the data interpretation based on
the same structure, and linking different structures. The proposed interaction tech-
niques support discoverability, learnability, and appropriability.

• I conducted three controlled experiments to evaluate the efficacy of the proposed tech-
niques as well as to gain deeper understanding on how users learn to control and ap-
propriate the proposed techniques.

1.3 Contributions

Through structured observations, I increase our understanding of the variability in users’
gesture-typing input, that is significantly different across and within users. I demonstrate
how we can quantify and then transform the otherwise unused gesture variations into rich
output, to increase the expressive power of gesture-based interactions. I propose two inter-
action techniques:

1. Expressive Keyboard, a gesture keyboard that lets users generate rich, expressive
output by manipulating the variations in their gestures;

2. CommandBoard, that lets users invoke a complex command e.g. hierarchical com-
mands as they gesture type from soft keyboards.

I show that users can control their gesture and appropriate the system just by using it, while
retaining the typing accuracy. I also show that users can draw gesture segments as a whole to
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seamlessly switch between command invocation and gesture typing when using Command-
Board. Selecting commands with CommandBoard is almost twice as faster than mark-
down language, and preferable by all of our participants. Finally, I discuss the concepts in
terms of reciprocal co-adaptation and substrates to broaden the design space to other envi-
ronments.

1.3.1 Collaborators

I worked closely with my supervisor, Wendy Mackay, especially in all the design process (i.e.
interaction techniques and evaluations), data analysis, as well as writing and publishing the
papers. Additionally, I collaborated with Joseph Malloch, a post-doctoral fellow in ExSitu,
who was actively involved in designing the Expressive Keyboard’s concept and evalua-
tions, as well as writing the published paper [2]. He also contributed to the early brainstorm-
ing of CommandBoard’s concept.

I also collaborated with Carla Griggio, a Ph.D candidate under the supervision of Wendy
Mackay in ExSitu, and Xiao Jun Bi, an Assistant Professor in Stony Brook University, USA.
Carla Griggio was involved in the later design iteration process of CommandBoard and
reimplemented a dynamic guide technique, OctoPocus [8], that we used in Command-
Board. She was also actively involved in designing and running the CommandBoard’s
evaluation, as well as analyzing and reporting the qualitative data. Xiao Jun Bi provided us
with a gesture keyboard prototype that implements the gesture keyboard algorithm, and con-
tributed in writing the Related Work section of CommandBoard’s published paper [1].

1.4 Thesis Overview

The chapters are outlined as follows (see Figure 1.2).
Chapter 2 first summarizes related work on gesture-based interaction, emphasizing the

advantages and th challenges in mobile environment. I then discuss existing research that
focuses on increasing the expressive power of gesture-based interactions and the properties
of gestures that we can take advantage of.

Chapter 3 investigates gesture characteristics that users vary when they gesture-type. I
present a structured observation that focuses on intentional gesture variations, that a user
deliberately produces to reach a certain goal, such as being fast. Based on the results, I define
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Figure 1.2: Overview of the thesis and the used designmethods. It includes controlled experiments and in-
formal observations. The understanding and theory from the studies served as the fundamentals to design
and redesign new interaction techniques.

a set of gesture features to quantify the variations that the users manipulate differently across
users or context.

Chapter 4 introduces Expressive Keyboard, an approach that transforms the rich vari-
ation in gesture-typed input into expressive output. It enables users to express themselves
through personal style and through intentional control. I present several output types and
properties that users can manipulate with their gestures, such as text color, parametric font,
dynamic emoticons, and animated content.

Chapter 5 focuses on the learnability and appropriability aspect of ExpressiveKeyboard.
I present two controlled experiments. The first one evaluates how users deliberately control
their gesture variation to generate rich output with Expressive Keyboard during the ini-
tial learning phase i.e. novice behavior. I also did an informal observational study to explore
the effect of progressive feedback in user’s strategy to learn how to use Expressive Key-
board. The second one presents a controlled experiment that focuses more on the appro-
priation aspect of Expressive Keyboard in a more ecologically-valid setting. The results
show that when provided the tools, users quickly appropriate the system even when they are
still learning how to use the system.
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Chapter 6 introduces CommandBoard, which lets users issue commands as they type
through a gesture keyboard. CommandBoard transforms the area above the keyboard
into a command-gesture input space where users can draw gestures to select a command. I
present two technique variations, TYPE-AND-EXECUTE and INLINE GESTURE SHORTCUTS along
with demo applications.

Chapter 7 first presents an overall discussion focusing on how the work increases the ex-
pressive power of gesture-based interactions from different angles. I summarize the contri-
butions in terms of scientific understanding and design, and gives directions for future work.
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2
Related Work

This chapter begins with summarizing existing works for understanding the properties and
the benefits of different types of gesture-based interaction. I review past research that focuses
on increasing the expressive power of gesture-based interactions on mobile devices. This
chapter also identifies missing points in the literature and positions my work in it.

2.1 Gestures on Touchscreen Devices

On touchscreen devices, a gesture is a 2-dimensional movement trajectory of a user’s finger
or stylus contact points with a touch sensitive surface [78]. Each sample point contains the
information about the touch coordinate relative to the display dimension and a timestamp.
Furthermore, a gesture can have pressure, making it a 3D gesture.

The expressive power of gestures is related to the gestures’ design dimension – including
more design dimension potentially enables us to generate more distinct gestures. The most
common design dimensions are the gesture length and the number of contact points on the
screen. A gesture without a movement trace, i.e. a tap, is often called zero-order gesture.
Users can perform more than taps sequentially (e.g. double tap) or with multi fingers at the
same time (e.g. multi touch). A gesturewith single stroke, i.e. unistroke gesture, is called first-
order gesture. Users can also draw two ormore strokes sequentially or use different fingers at
the same time to perform higher-order gestures. Another design dimension is visual-spatial
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Figure 2.1: Different type of gestures based on the stroke length and the number of contact points.

dependency, in which the same gesture can be interpreted depending onwhere on the screen
the gesture is drawn.

In the next two sections, I will describe both advantages and disadvantages of zero-order
gestures and unistroke gestures, as well as previous research on how to increase the expressive
power in different context.

2.2 Zero-order Gestures

Like point-based interactions, a zero-order gesture (referred as a tap in the rest of the thesis)
often highly depends on the graphical representation. In fact, a single tap is only power-
ful because it can be interpreted differently depending on which graphical object it points.
Users point to different objects e.g. menus, toolbars, and icons to enter, retrieve, and select
commands or text. Since the graphical objects are presented on the screen, non-expert users
can quickly learn which commands are available. Small menus and toolbars allow users to
quickly access common items, but do not help with large command sets, which may require
extensive search and multiple physical operations to find the desired item [61]. Accessing a
multi-level hierarchical menu forces the user to move through a multi-step process of select-
ing the appropriate category, and before finding the desired leaf.

The expressive power of tap gestures is related to howmany objects can be included in the
screen and how easy it is to point to them. However, no matter how good the optimization
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strategy for screen real-estate use is, the display screen is limited [4]. The problem becomes
worse in mobile environments where the screen size is very limited.

Having said that, in touchscreen devices, a tap input is highly oversampled in both space
and time, fromwhich we can derive various properties, such as duration (i.e. long tap), pres-
sure, orientation, offset, etc. As such, we have the opportunity to explore more continuous
forms of control to express different concepts with a tap input.

2.2.1 Increasing Recognizability

In their study, Lee and Zhai [46] found that users can still tap on buttons even though their
size is smaller than the average finger width. Nevertheless, as in any pointing task, tapping
a small object requires more effort and precision. Bi et al. proposed FFitts’ Law [11], that
extends Fitts’ Law [24] for predicting a finger touch input. They argued that pointing on
touchscreen is less precise than in a desktop computer with a pointing device, and variability
in a tap input exists even though the participants were asked not to worry about the speed
[36]. Bi et al. took into account this variability in predicting the index of difficulty of finger
touch, which can be affected by the speed-and-accuracy trade off and “the absolute preci-
sion” of human motor control. The latter may vary due to “fat finger” problems or motor
impairment.

Most research in this topicmainly focuses on improving the touch accuracy, for exampleby
taking into account the offset between the target and the touch input [35]. Azenkot & Zhai
[7] investigated howusers type on soft keyboards and found that touch offsets vary according
to how they hold the device. Dynamic key-target resizing based onmodels of likely words or
letter sequences increases the apparent accuracy of soft keyboards and partially resolves the
fat-finger problem [34].

2.2.2 Augmenting Zero-order Gestures

Another interesting direction on using the touch variability is to increase the expressivity as-
pect, for example to support subtle expression in text-based communication. Researchers
also explored this topic in the context of physical keyboards. For example, Iwasaki et al.
[38] added sensors to a physical keyboard to capture typing pressure and speed. KeyStrokes
[59] uses shapes and colors to visualize typing style and text content. With soft keyboards,
Buschek et al. [14] combined touch offset, key-hold time, and device orientation to dynami-
cally personalize the font.
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In September 2015, Apple launched iPhone 6s that includes built-in pressure sensor that
enables capturing 3D touch *, i.e. from light to normal to deep press. The pressure can be
used to select different commands, e.g. a long normal-press on an app icon will allow users
to delete or move the app, a deep-press to see all quick access shortcuts of the app; or to
parameterize a command, e.g. vary line thickness [68].

Nevertheless, since the input is very simple, there is not much opportunity to increase its
expressive power, relative to unistroke gestures.

2.3 Unistroke Gestures

A unistroke gesture involves the spatial description of the trajectory (i.e. shape) and the time
evolution of the motion (i.e. dynamics) [75], that lets users express varying things and con-
cepts. A unistroke gesture can be drawn anywhere on the screen, thus it does not take the
valuable screen space [5]. From unistroke gestures alone, we can already have a sufficiently
large gesture set. In contrast to performing a sequence of discrete actions i.e. tapping on
different objects, drawing a gesture is a kind of perceptual-motor skill involving continuous
response, with little forgetting over long periods of time [76]. Users can also remember spa-
tial patterns better than sequential patterns [21]. Appert & Zhai [5] suggested that using
gestures to invoke command (gesture shortcuts) is more effective than using keyboard short-
cuts. They found that gesture shortcuts are easier to learn and recall thanks to their spatial
and iconic properties. Performing gesture-based interactions is related to human memory,
which is categorized into declarative memory and procedural memory [73]. Declarative (cog-
nitive) memory involves conscious, explicit thinking, such as perceiving and managing in-
formation and making sense. Procedural memory is related to behaviour or habits, thus it
is done unconsciously and implicit. An expert in gesture-based interactions can potentially
draw a gesture shortcut without much visual attention, in which case involves procedural
memory.

Researchers have explored leveraging continuous unistroke gestures to select commands.
A classic example is a Marking Menu [44], a contextual circular menu that supports execut-
ing commands via directional strokes. A Marking Menu can be extended in order to give
access to a larger command space, for example by making it hierarchical [83] or combining it
with drawn letters [66]. FlowMenu [33] extends a hierarchical marking menu to include pa-
rameter adjustment of an item. For example, a user can select a zoom command and specify

*https://developer.apple.com/ios/3d-touch/
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the zoom value in the sub-menu, or even type the value (when the desired number does not
exist) without lifting the pen. Li [48] studied aworld-deployment of a gesture-search system
for smartphones, and demonstrated that gestures successfully supported users accessing data
for their day-to-day mobile activities.

2.3.1 Challenges

Discoverability

With tap-based interaction, all the existing command items are usually included in themenu,
thus novice users can easily discover all commands in the command space. In contrast, it is
difficult to discover all available gesture shortcuts. Since the gesture shortcut can be drawn
anywhere on the screen, distinguishing a gesture shortcut from a directmanipulation gesture
is also challenging [48].

Learnability & Recognizability

Tapping on graphical objects e.g. menu only requires the system to recognize which object
users point. Users can invoke a command by tapping on amenu item or an icon after finding
where it is located in themenu. On the other hand, gesture-based interfaces require the users
to recall the shape of the gesture shortcut and the system to correctly recognize the gesture
and its corresponding command. Thus, the gesture should be unique so that it is easy for the
system to recognize the gesture. However, themore gestures in the gesture set, the harder it is
for each gesture to be both unique and simple. More complex gestures (e.g. different shapes,
multi-touch, etc.) offer a powerful way to access information quickly as well as to invoke a
commandmore efficiently [5]. The more gesture shortcuts are available, the more difficult it
is for the system to recognize the gesture input and for users to remember [79].

Speed-Accuracy Trade Off

Performing a gesture shortcut is relativelymore complexprocess that involves planning,mem-
ory, and motor control [79]. Users need to remember the shape and then execute the “pre-
cise” gesture, thus they need to practice in order to perform the gesture quickly and perhaps
eyes free.
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2.3.2 Designing Gesture-based Interactions

Ideally, gesture-based interactions should support discoverability, memorability, and learn-
ability in order to offer more efficient alternative. Many attempts have been conducted to
solve these problems from different perspective.

Supporting Transition from Novices to Experts

To support transition from novices to experts, a gesture-based interaction should be self-
revealing. With Marking Menu [44], novices who are not familiar with the menu yet can
pause, then the menu appears and they can discover all possible commands and just follow
the direction to invoke the command. Experts can just draw to a certain direction without
having to pause, in which case the menu is not displayed on the screen. OctoPocus [8] offers
better support for learning gesture shortcuts, acting as a dynamic guide to help users follow
the correct gesture template: If the user hesitates, OctoPocus appears, showing the remain-
ing possible ways to finish the gesture. This highlights the need for progressive feedforward
and feedback to support incremental learning, to help novices transition to expert users. An-
dersson andZhai found that providing visual feedback affects howusers perform the gesture:
they draw a gesture bigger and faster yet take more time in order to complete drawing [3].

Easy-to-remember Gestures

Gestures are easier to remember if they are analogous to the physical effect or to well-known
conventions. For example, a scrolling gesturemimics howwe scroll a physical paper, or draw-
ing a cross gesture to delete an item. However, analogous gestures can be complicated or
ambiguous since they depend on users’ prior experience. Alternatively, we can let users to
define their own gestures. In their study, Nacenta et al. found that self-defined gestures are
easier to remember [57].

To summerize, designing efficient and powerful gesture-based interaction onmobile devices
has several issues. First, mobile devices have a limited screen space. Second, the larger the
gesture set is, the more difficult it is to accurately recognise each gesture. If we make the
shape of the gesture complex enough so that they are more likely to be recognised, then it is
more difficult for users to learn and memorise the gesture. And last, there is also the issue of

14



Chapter 2 2.4. Gesture Keyboards

efficiency, i.e. how we support the transition from novices to experts, and how the gestures
can be used to express different concepts in different context and goals.

2.4 Gesture Keyboards

Gestures can also be used to enter text, for example by recognizing gestures as handwriting.
Using handwriting as a text input means on mobile device is easy to learn, however it is con-
siderably slow. Furthermore, handwriting recognition is not an easy task, because there are
toomany variability in the input. A lettermay also consists of several strokes, making itmore
challenging to recognize. A single-stroke gesture design such as Graffiti or Unistroke [31] can
simplify the recognition complexity, however they often require novice users to learn new
symbols.

Gesture keyboards [80, 42, 82] offer an efficient, easy-to-learn, and error-tolerant alter-
native for entering text. Instead of tapping keys, users draw the shape of each word, i.e. a
word gesture, beginning with the first letter and continuing through the remaining letters.
The word-gesture recognition requires a multi-channel recognition engine [42], where the
drawn shape is first compared to an “ideal” shape, i.e. frommiddle-point to middle-point of
each key. The ideal shape of a word gesture is called “gesture template”.

2.4.1 Gesture Recognition Process

Capturing the input The gesture keyboard captures all touch data from the first until the
last letter. Users can see a visualization of the trajectory of their gesture as a feedback. The
gesture trace feedback has a limited length, to avoid visual overload and occlusion. The touch
data i.e. user’s word gesture is then sent to the recognition engine progressively.

Recognizing the word The input is compared to all gesture templates in the list of word
candidates. At this point, we should assume that the user can write any word, and thus, all
words in the language corpus are candidates. The recognition engine uses a multi-channel
architecture to enable efficient, fast, and error-tolerant text input. The process of recognizing
user’s input goes as follows (also see Figure 2.2).

1. Template prunning
The biggest challenge in recognizing user’s word-gesture input is that the gesture tem-
plates are not unique, i.e. there can be two or more words that have identical gesture
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Chapter 2 2.4.1 Gesture Recognition Process

Figure 2.2: Themulti-channel recognition engine of gesture keyboards, taken from [42].

templates. For example, “all” and “weep” have identical gesture templates. Thus, the
gesture templates are first filtered based on the start (e.g. letter ‘a’) and the end (e.g.
letter ‘l’) position of the gestures. If the start-to-start and/or end-to-end distances be-
tween a gesture template and the input is bigger than the predefined threshold, then
the gesture template is removed from the list of word candidates.

2. Shape recognition channel
The input is then compared to the remaining gesture templates in the list one by one,
by measuring the spatial similarity of the two. User’s input is first being normalized
so that it has the same bounding box as the gesture template. The recognition engine
then samples n-number of points in both the input and the gesture template – each
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point in the input is proportional to a point on the gesture template. Next, the recogni-
tion enginemeasures the spatial similarity of the two, by calculating the point-to-point
distances in sequence. As of now, each gesture template has a score of how similar it is
to the user’s input, which is the average point-to-point distance.

3. Location recognition channel
The recognition engine also considers the position of the gesture input relative to the
keyboard layout (geometric center), in order to reduce the number ofword candidates
in the list. As of now, only completely identical gesture templates are left in the list, e.g.
“lose” and “loose”. A gesture template that starts and/or ends at almost the exact same
location with the input has a higher score to be the actual final word output. The
recognition engine also considers temporal features: If the user slows down at a letter,
the recognizer weights the word candidate higher.

4. Language component
The recognition engine uses the context, language model, and a learning corpus to re-
arrange the word candidates in the list. Finally, the recognition engine produces an
N-best list of word candidates, sort by relevancy to the contexts.

Displaying thefinalwordoutput The recognition process is conducted progressively as the
user moves her finger: at each touch, the gesture keyboard generates the N-best list of word
candidates. The first is treated as the final result, the next three are displayed in the suggestion
bar above the keyboard. The gesture keyboard may also auto-complete the current word-
gesture, even before the user reaches the last letter of the intended word.

If a word-gesture is drawn outside the keyboard space, the gesture keyboard captures the
touch event but stops recognizing the word.

2.4.2 Learnability Aspects

Since gesture keyboard is basically also a standard keyboard, users can alternate between typ-
ing and gesture typing without switching mode. Thus, it helps the new users to transition
from tapping to gesturing.

Gesture keyboards also support a gradual transition from novices to experts in terms of
drawing the word gesture. The transition takes advantage from the fact that the gesture of a
particular word is always consistent, similar idea withMarkingMenu [44], allowing users to
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Figure 2.3: The difference between a novice and an expert when using gesture keyboards.

build andmemorize their ownmental word shape representation. Expertise is reached when
users transform from using declarative memory and voluntary actions, i.e. tracing from one
key to another, to using procedural memory and perceptual motor integration, i.e. draw
a shape (see Figure 2.3). The fundamental difference lies on the degree of visual guidance
reliance. From the psychology perspective, the key to developing expertise, i.e. skilled, low
attention, automatic behavior, lies in consistent mapping from stimuli to response.

2.5 Augmenting Soft Keyboards

In response to the high level of text entry onmobile phones, phone manufacturers are devel-
oping keyboard extensions that offer new capabilities, from suggesting emoticons to general
search. The latest version of Google Keyboard (now called Gboard) † includes an in-context
search engine. Users tap a button on the top-left of the keyboard to access the search engine,
where they can directly type the search keyword, see the results, and share it.

†https://play.google.com/store/apps/details?id=com.google.android.
inputmethod.latin&hl=en
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2.5.1 Generating Expressive Output

Researchers who study movement for music or dance often take a completely different per-
spective in interpreting gestures. They often emphasize the continuous qualities of human
gestures over recognition: individual variation is valued rather than ignoredor rejected. These
researchers characterize gesture variation in terms of qualities of movement: spatial features
[14, 17]); temporal features; continuity; power; pressure; activation; and repetitions [19]. In
the artistic domain, the richness of gesture can be transformed into continuous output, e.g.,
[30], or to invoke a command [43] in a more integrated interaction.

Appert et al. designed several novel gesture vocabularies that rely on additional input chan-
nels such as tilt [71], pressure [70] and proximity [69]. These vocabularies of gestures remain
simple to perform while offering at least as much expressivity as the whole set of existing
graphical widgets, and without consuming any screen space. To increase the expressivity of
text-based communication, Buschek et al [14] proposed TapScript that leverages the varia-
tion in typing input (i.e. tap) to increase the expressive power of mobile communication.
Nevertheless, TapScript is based on typing discrete virtual buttons. Another alternative is to
recognize handwriting, a continuous activity that not only communicates content but also
provides additional information about the writer, e.g., rough letters from a writer in a hurry;
and the context, e.g., shaky letters fromwriting on a moving bus. However, handwriting on
a mobile touch screen device, particularly with a finger, is slow and tedious.

2.5.2 Invoking Commands from Keyboards

Switching between typing and issuing commands comes with interruption costs, as in any
multitasking environment [67]. As more and more mobile activities involve text entry, re-
searchers have explored augmenting a keyboard with gestural commands, to reduce switch-
ing costs between the text entry and selecting commands. For example, Fuccella et al. [25]
propose a technique in which using a two-finger touch gesture directly on top of a soft key-
board lets the user move the caret to select text. Command Strokes [43] employ additional
buttons, e.g. Command to enable keyboard shortcuts on gesture keyboards. Users can sim-
ulate using control keys on a physical keyboard, e.g. drawing a gesture that passes through
Command then C to perform Command+C. However, users need to remember the short-
cut in order to execute the command.
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2.6 Position of My Work

Users can also draw higher-order gestures, either sequentially or in parallel (multi-touch), to
gain more physical and cognitive advantage [78]. For example, TapBoard 2 [40] enables
pointing through a soft keyboard, adding support to bimanual interaction. Arpege [28]
provides multi-finger chord interaction, with dynamic guides to show novice users where
to place their fingers. In this thesis, I limit my investigation to unistroke gestures, since a
unistroke gesture is often a component of multi-stroke or multi-touch gestures. In the rest
of the thesis, the term “gesture” refers to a unistroke gesture.

In today’s mobile devices, gesture-based interaction is mainly used to invoke a command
(i.e. gesture shortcut) and to enter text (i.e. gesture typing). I see the gesture keyboard as
an interesting system to start my investigation with due to several reasons. First, gesture key-
boards offer a faster and easy-to-learn alternative to text-input technique. Gestures that vary
significantly may thus still register as correct, thanks to the algorithm’s kinematic models,
multidimensional distance metrics, and language models. Second, more 40% of mobile ac-
tivities involves typing, e.g. text messaging, text editor, browsing, etc [12]. Often the case,
users must go back and forth between typing and command selection. Third, millions of
people already use gesture keyboards in different mobile platforms. Augmenting gesture
keyboards will potentially minimize users’ learning effort and the cost to switch view from
keyboards tomenu,while preserving typing accuracy and speed. Thus, inmy thesis, I focus on
increasing the expressive power of gesture-based interactions in text-based communications
and command selections by augmenting gesture keyboards.

In this thesis, I propose different approaches to interpret gestures differently. The under-
lying idea of my approach is to interpret each gesture in the gesture set to express different
concepts, by leveraging gesture variations and leveraging the screen spaces in order to increase
the information transfer.

My first approach is based on the fact that peoplemakemovement variations. Due to their
extremely fine motor control, people can perform various movements with different level of
precision, especially after a certain amount of practice. For example, a professional violin-
ist can control her fingers more precisely when playing a violin, generating a richer sound,
than a beginner who is still learning. Nevertheless, it does not take a professional violinist
to produce a rich sound. It is very difficult, if not impossible, to perform exactly the same
movement twice. People also perform differently from one another. A violinist may play
the same piece in a very different way depending on what she wants to express, or to which

20



Chapter 2 2.7. Generative Design Principals

audience she plays for. Another violinist, even with a similar level of skill, will also perform
the same piece differently.

Movement variability also occurs in 2D environments, for example when writing on a
piece of paper. It is almost impossible to draw identical letter ‘a’s twice [14]. We also vary our
handwriting depending on the context, such as the intention, the condition, or the mood.
We can easily identify our own handwriting, and our close friends or relatives are usually
able to distinguish our handwriting from others’. In other words, the trajectory of a move-
ment, such handwriting, potentially carries rich information about the author, the context,
etc. Thus, we can leverage the additional information that naturally already exists to enrich
communication, aside from the content itself. For example, in the past, the style of hand-
writing was used to determine one’s place in society [29]. Handwriting identification is also
a universally engaged practice in a lot of different fields. Thus, for the first approach, I in-
vestigate whether movement variations also exist in gesture-typed input and whether we can
quantify them, to see if we can interpret “the same word gesture” differently.

My second approach is based on visual-spatial dependency properties of the drawn ges-
tures on the mobile screen space. In mobile interface, objects are represented virtually: an
object is a drawn shape place on a specific location in the a specific view. For example, the
“q” key is a labeled momentary box (i.e. a soft button) drawn on the top-left position in a
QWERTY keyboard view. The boundaries between objects and/or views are also virtual.
Hence, we can draw a gesture on top of the soft keyboard (i.e. gesture typing) and even to
the upper space of the keyboard view. My idea is to leverage the spatial location in order to
segment the gesture and to interpret each gesture segments differently. This is related to the
notion of gesture chunking: grouping task elements into a larger, inseparable whole [78]. A
gesture may involve several segments, that over time may be viewed as inseparable. In other
words, a gesture can potentially be chunked into several segments, and each segment can be
interpreted differently.

To systematically investigate both approach, I used two generative design principals that I
describe in the following section.

2.7 Generative Design Principals

Gesture keyboards are merely a means to an end towards the goal of building easy-to-learn
but powerful interaction techniques, nevertheless we can take advantage of its sophisticated
recognition algorithm and properties. In this thesis, I use two approaches, substrate and co-
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adaptation, as generative design principals to help me re-frame design problems to reveal in-
sights on how human beings interact with technology in the world.

2.7.1 Substrate

Substrates are software artefacts that handle specialized data, which are interpreted depend-
ing on the structure [26]. “Substrates embody content, computation and interaction, effectively
blurring the distinction between documents and applications” [41]. Substrates can evolve over
time and shift roles, depending on the perspective or the goal of defining the substrate. For
example, a dot means completely different if put on top of a blank paper or musical bar lines.
Here, the musical bar lines are the structure in the substrate that provides rules on how to
interpret the data. Specialized substrates can be linked together to support more complex
data operations and communicate each data and state to each other.

Klokmose et al. proposedWebstrate [41], that turns a webpage into interactive, shareable
substrate. Each webstrate is a collaborative object: it has the same persistent data yet it may
provide different representations for each user. For example, two users can edit the same doc-
ument, one uses a WYSIWIG editor while the other uses a LaTeX-like editor. Each user can
create their own tool, for example to insert a citation, and share it with other collaborators.

In this thesis, I analyze a soft keyboard from the perspective of substrates, to better under-
stand the structure, the data, and how to interpret it based on the structure. A soft keyboard’s
layout is the structure of the substrate. A tap on the same location can insert a different letter
depending on the layout, e.g. QWERTY, ATOMIK [81], or an emoji keyboard. A gesture
can be interpreted as a scroll if done on a web view, but it is interpreted as a word if done on
a gesture keyboard. To augment soft keyboards with expressive and powerful interactions,
my approach is to add more rules to the same structure in order to enrich the interpretation,
and to link together different substrates in order to support more complex functionality.

2.7.2 Co-Adaptation

As described in Section 2.3, an ideal gesture-based interaction should support discoverability
and learnability. Additionally, I want to also consider appropriability when designing inter-
action techniques. Wendy Mackay introduced the concept of co-adaptation [51], in which
users adapt to the system to learn to control the system, as they adapt the system i.e. cus-
tomize and appropriate it in ways unintended by the system designers, to meet their imme-
diate needs in the current context of use. Co-adaptation also serves as a generative (re)design
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tool, with which the designers can systematically analyze and react to the design in order to
produce more ideas and new design directions [51, 50]. Co-adaptive systems should support
both learning and appropriation.

Learnability

In their survey on learnability, Grossman et al. [32] organized the process of learning into two
categories: initial learning and extended learning. Initial learning is related to novice users’
experience, i.e. how a novice user learns how to use a system from the beginning until she
“reaches a reasonable level of usage proficiency” [60] or “a predefined level of proficiency”
[39]. Carroll and Rosson [20] highlighted two main paradoxes that may arise in the initial
learning phase: production bias and assimilation bias. Both are related to the user’s approach
when using and learning a new system. Production bias is related to hownovice users tend to
jump right in when introduced to a new system, in order to get things done. Production bias
reduces user’s motivation to invest time in learning, and learning-by-exploring can be costly.
To increase users’ motivation to learn, we can add intrinsic rewards in the system such as
achievement, satisfaction of curiosity, etc.; or reduce the learning cost, such as adding ‘undo’
function.

Assimilation bias is related to the tendency to interpret new systems based on what they
perceive and their past knowledge. While often useful, as with transfer learning, it may also
mislead and hinder users from actually learning about the system. System designers need
to be careful when designing the system, to reduce the potential misleading connections to
existing systems, and only make similar functionalities when they are truly similar.

Extended learning is related to a quality of use overtime [9], in which experienced users
are able to select a more efficient alternative, i.e. involves fewer steps [15]. Nielsen [60] ar-
gued that extended learning is related to expert users’ experience, in which they have become
efficient and their level of performance is already steady. To measure efficiency, we must de-
fine what it means to be an “expert”, for example howmuch time it takes for the expert users
to perform a predefined task. Nielsen also includes memorability in extended learning, in
which an expert is able to recall from their previous learning experience. Thus, a good sys-
tem should be easy to learn and remember, and supports transition from novices to experts.
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Appropriability

Appropriation is a phenomenon in which users reinterpret the systems based on what they
know they can do to get what they need [22]. Appropriation emerges through different en-
vironment, needs, and even ownership, to the point that a piece of technology becomes a
highly-personalized tool that others may not be able to use [22]. For instance, a user may
use a digital camera as a mirror aside from taking pictures. People use upper-cased letters to
express emphasis when texting. The use of spreadsheets has evolved from creating tables to
programming, interactive forms, even collaborative tools in business setting [58]. In extreme
cases of appropriation, users may reinterpret the artifact by changing its structure and func-
tionality, such as when people “hack” the purpose of IKEA products’ pieces to create new
items [65].

The attempt to appropriate can happen anytime along the use of the system, whether or
not users have gained full control of the system [51]. For example, novice users may appro-
priate the systemwhen they just begin learning, or something breaks, or even just when they
are bored or on a whim. The more users gain control over the system, the more likely they
are to appropriate the system. For example, they may notice their repeated usage pattern or
when they think the system is already “too slow” to accomodate what they want to do, and
thus are encouraged to customize it – if the system allows. Thus, anticipating appropriation
when designing a system can increase the possibility of more powerful use.

2.8 To Leverage Gesture’s Shape and Dynamics

Lesaffre et al. [47] argued that musical embodiment, i.e. controlling body movement to
produce rich sounds, is related to the coupling of action and perception. For example, when
producing a specific sound on a drum, a drummermay first hit the drumwith a stick (action)
to hear the sound it produces (perception). He perceives the produced sound, which then
may change how he hits the drum to produce a specific sound, such as hitting harder or to
make it louder or hitting on the side (snare) tomake it softer. On the other hand, music play-
ing can also benefit from experience, i.e. a professional drummermay be able to produce the
desired sound without relying too much on perception. Thus, when instructing someone
to produce a specific sound, we can provide the final sound we want him to produce, or tell
them how to hit the drum to produce the final sound.

In gesture-based interface, the gesture variation can be affected by movement cost [62],
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interaction metaphors, and system behaviour. Tu et al. [72] investigate how gestures vary
when drawn with a stylus versus a finger; and when sitting versus walking. They found that
drawing time and accuracy dropped when walking, as compared to sitting. Another impor-
tant design consideration is themapping fromgesture variations to rich output. For example,
if the goal is tomake the system ‘fun’ and challenging, the system should encourage curiosity
[59]. Hunt et al. [37] found that continuous, multi-parametric mappings encourage people
to interpret and explore gestures, although learning these mappings takes time.

I summarize and identify gesture properties that we can derive from a gesture’s shape and
dynamics and how the input is captured in mobile devices, based on existing research.

2.8.1 Spatial Features

Spatial features are related to a gesture’s shape, of how much space occupied [19].

Offset The offset measures the spatial similarity of two gestures, which reveals how accu-
rate the users in pointing (when typing) or steering (when gesture-typing). In typing [14], the
offset is how close the touch from the middle point of the key. In gesture-typing [42], the
users’ gesture is compared to a gesture template, which is a straight line frommiddle-point to
middle-point of the letter in a word. Both of the model and users’ gestures are divided into
a certain amount of sampling points. The offset is calculated for each sampling point.

Curviness While the gesture template consists of straight-lines and corners, the actual users’
gesturemay also consist of curves [17], for examplewhen they cut corners. This is also related
to the speed [43], users tend tomake curvier gestures (i.e. smooth curve instead of sharp turn-
ing) when they do it fast.

Power / Pressure We can measure how much pressure the users put when gesturing [19].
Unfortunately, only some of the latest mobile devices include a real pressure sensor in their
screens. We canmeasure the “fake pressure”, from the assumption that the touch area of the
finger on the screen is bigger when the users press harder.

Gesture length In gesture-typing, it is interesting to compare the gesture length of the
users’ gesture and the gesture template. A longer gesture may increase the accuracy of the
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gesture recognition [43]. The gesture length can also be affected by overshooting or cutting
corners [62].

2.8.2 Temporal Features

Temporal features are related to a gesture’s dynamics, that describes a gesture performance
over time [19].

Duration When typing, the time to enter an input i.e. a letter is the key hold time [14, 59]:
the time spent from when the finger touches down until it is lifted. When gesture-typing,
the input is a word-gesture and the duration is calculated from when users put their finger
on the screen until they lift it.

Speed We can measure the typing speed of a text input by dividing the number of words
written in a certain amount of time (duration). One of the most common way to measure
typing speed is word per minute, which tells us how many 5-letter input chunks users can
type in a minute. In gesture typing, aside from the typing speed, we can also measure the
drawing speed, by dividing the total length of traced distances (in pixels) by the duration (in
seconds). We can also measure its derivative, such as acceleration and jerk.

Gap time between outputs We can measure the time users spend to start writing a new
word, after finishing the previous one [43]. It is calculated from the moment they lift their
finger to write the previous word until they put their finger on the screen again to write the
new one. Novice usersmay spendmore time switching fromoneword to another, since they
are still highly visually-guided [43].

Wobble Users may make a wobble within their gestures, for example when they want to
emphasise on a key i.e. writing a double-letter word like ‘loose’. We can recognise a wobble
when there are a lot of movements within the same small area, sometimes with higher speed.
The issue is to differentiate it from the noise, due to how themobile device captures the touch
events.

Fluidity / Dwelling / Chunking When gesturing, users may pause or slow down (i.e. dwell)
in the middle of gesturing. Technically, dwelling happens when the momentary velocity is
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zero or relatively lower [43], which makes the movement jerky [19]. Users may do it acci-
dentally because they hesitate, interrupted, or looking for the next key [43]. Dynamically,
“dwelling” can also happen when changing the movement direction, i.e. on corners [62].
This suggests that users may separate the activity into separate smaller activities, as in chunk-
ing the gesture. We can analyse the features of each chunk separately, to understand the
process of gesturing further. The more fluidly a user gestures, the less chunking happens.

2.8.3 Technical Features

Aside from finger touch input, we can also take advantage of how the gesture is captured by
the devices, i.e. using sensors.

DeviceOrientation Usersmayhold thedevice differently, dependingon the context,which
changes the device orientation. For example, when the user is lying down on their side, the
orientation tilts. The device orientation is often measured using the accelerometer sensor in
mobile devices [14].

Device movement Users may be on the move when writing, causing the device to shake.
The device movement is often measured using the accelerometer sensor in mobile devices.

2.9 Summary

This chapter began with a review on gesture-based interactions on mobile devices, empha-
sizing different approaches to increase its accuracy and expressive power. I discussed about
gesture keyboards, an interesting gesture-based system that lets users enter text by drawing
gestures. I highlighted the opportunities of leveraging the gesture variation and spatial loca-
tion to increase the expressive power of gesture keyboards. The last section of this chapter
summarized gesture features that we can derive from a gesture’s shape and dynamics.

To successfully allow users manipulate their gesture variations to generate rich output, we
must first determine the extent to which user’s gestures vary when gesture-typing; whether
they vary significantly; and if we can reliably detect specific features within those variations.
The next chapter begins the investigation on real users’ gesture variability, i.e. what gesture
features users vary when they gesture type.
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Gesture Variability

Handwriting is a form of rich output generated by humans, i.e. the output may contain ad-
ditional information aside from the content (i.e. the words) itself, e.g. information about
the writer and the process of writing. I am interested in combining these benefits of hand-
writing with the benefits of digital writing: users can explicitly or implicitly communicate
more information in their text continuouslyas they write, while giving them full control of
how and when the additional information is presented in the final output. Current mobile
devices already include high-resolution sensors capable of measuring the variation, and com-
mercialized gesture typing keyboards are widely installed and are already designed to tolerate
deformations of the “ideal” gesture template. Rather than throwing away these existing ges-
ture variations, I am interested in “recycling” them. Capturing continuous features of the
gesture variations and mapping it to properties of the rendered text could re-enable some of
the benefits of handwriting, such as recognizable personal styles, implicit communication of
mood, activity, or context; and explicit communication of emphasis, sarcasm, humor, and
excitement. Before we can do so, we need to determine if the gesture variation can be quan-
tified as detectible features which can then be mapped to rich output variation.

This chapter describes a preliminary observation and an experiment investigating gesture
variability when gesture typing. It also describes several definitions of gesture features in-
spired from the observations that significantly varied depending on the condition and par-
ticipants.
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3.1 Preliminary Observation on Gesture Variatiability

The initial step towards leveraging the variation in gesture-typed input is to investigate how
gesture-typing performance varies substantiallywithin and across users (due to biomechanics
or personality), or context (activity or environment). I startedwith a preliminary observation
ofhowusers gesture-typewith gesture keyboards, to see if there are visually noticeable gesture
variations a user makes, and how it is different from one person to another. The goal is to
vary the conditions as systematically as we would in a formal experiment. I also want to
gather insights about factors that may affect gesture variations, before designing a formal
experiment.

We suspected that users would gesture type differently depending on the context. For
example, we expected novices to gesture typemore carefully while experts are already used to
the error-tolerance feature of gesture keyboards. We also suspected that placing users under
time constraints would encourage them to gesture type faster. These led us to choose three
different INSTRUCTION: accurate, quick, and creative. We asked the participants to gesture type
twelve words “as accurately as possible”; “as quickly as possible while still being accurate”; and
“as creatively as possible”.

The accurate condition should provide the minimum level of variability for novice
gesture-typists as they try to match the word shape as closely to the template as pos-
sible.

The quick condition might realistically be found in real-life gesture-typing under time
constraints, and presumably results in greater variability and divergence from the tem-
plate.

The creative condition was designed to provoke more extreme variation, in which we
ask the users to “imagine” different ways to enter the word with gestures. It is not
intended to match a real-world gesture-typing scenario.

We chose two participants who had each tried gesture keyboards once but have never used
it since, and one participant who used it daily. We provided two devices: a tablet (Samsung
Galaxy Tab Pro) running Android 4.4.2 and a mobile phone (Nexus 5) running Android 5.1.
P1 used the tablet; P2 and P3 (the frequent user) used the phone. We recorded the screen and
audio recorded the participant’s verbal comments.
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Table 3.1: Gesture-typing accuracy in the Preliminary Observation with three participants.

Participant ACCURACY
accurate quick creative TOTAL

P1 (non user) 68% 77% 45% 63%
P2 (non user) 83% 84% 35% 68%
P3 (daily user) 84% 88% 10% 61%

3.1.1 Procedure

Participants sit on a chair while holding the tablet or the phone comfortably with their left
hand. They first try to use the gesture keyboard to make sure they can do it. Next, the obser-
vation begins: a word is presented to the participants and they must gesture type it while fol-
lowing an INSTRUCTION, ten repetitions for each. They are encouraged to think aloud while
completing the task. The researcher observes and takes notes of the success of each attempt.
Upon finishing, the participants are interviewed.

3.1.2 Observations

Even with only three participants, we see three clearly different gesture styles. P1, a novice
user who used the tabletmade the sharpest, most angular gestures. P2 held themobile phone
with his right hand and gesture-typed with the thumb of one hand. His gestures tended to
be faster and more sloppy, but also performed an idiosyncratic “under-loop”. This is partic-
ularly interesting: while we hypothesized that non-users would be more likely to slow down
and carefully follow the gesture template, P2 quickly picked up the error-tolerant feature of
the gesture keyboards and started gesture typing quickly. P3, who used gesture keyboards
daily, held the phone with her left hand and gesture-typed with the right index finger, mak-
ing more “loopy” gestures when turning or reaching a key target.

We also see how the participants deliberately changed the way they gesture-type according
to the instruction. When participants wanted to gesture type more accurately, they slowed
down to draw the gesture from middle point to middle point of each key more precisely. In
the creative condition, they explored how to draw the gesture differently while still ensuring
the gesture correctly recognized. If they made a mistake because they included too many
variations in their gesture, they tried to bemore careful in the next trial. The non-user partic-
ipants who did not use gesture keyboards daily were also more careful when gesture-typing
in the creative condition (see Table 3.1), and their accuracy was not as low as the daily user (i.e.
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Chapter 3 3.2. Experiment 1: Deliberate Gesture Variation

P3).
This preliminary observation is not a controlled experiment with formal data collection

and statistical analysis, thuswe cannot draw significant conclusions out of the data. However,
it gave me two important insights: there is a high chance that gesture-typing performance
vary within and across users due to e.g. personal style and intention; and user gesture-typing
behaviour is affected by the recognition algorithm. Based on these insight, we designed an
experiment investigating deliberate variations users make when gesture-typing.

3.2 Experiment 1: Deliberate Gesture Variation

We designed an experiment which goal is to systematically observe the amount of gesture
variations that users employ when asked to gesture type in different manners, as well as how
the variations differ across users. If users can deliberately vary their gestures, then we can
quantify and map them into various output properties.

From the preliminary observation, we learned how feedbacks from the recognition engine
may affect gesture-typing behaviour, such as typing more quickly and sloppy because they
realized they didnot have to beprecise. Thismay induce unwantednoise, since ourmain goal
is to see towhat extent users can deliberately vary their gestures. Thus, in this experiment, we
decided to remove this potential source of error, by choosing participants who are non users
and asking them to gesture-type on a non-interactive Wizard-of-Oz (WOZ) keyboard. This
is to ensure they are not affected by the error-tolerant feature of the recognition algorithm.

I conducted a within-participants experiment with three types of INSTRUCTION as the pri-
mary factor: Participants gesture type specified words “as accurately as possible”; “as quickly as
possible while still being accurate”; and “as creatively as possible, have fun!” (as described in
Section 3.1).

The shape of gesture typing’s input vary depending on the letters forming word and their
positions in the soft keyboards. Most word gestures include several stroke segments, with
different angle between the segments, but some are straight lines, for example “pure” inQW-
ERTY keyboards. Two or more words may also have exactly the same word gesture at the
exact same location, for example “lose” and “loose”. In Chapter 2, we learn that these factors
affect the recognition accuracy – identical gesture templates are harder to recognize. Fur-
thermore, angle between segments may affect the motor control complexity [62]. Thus, we
systematically distributed these potential source of noise over the testing word set. We chose
three sets of 12 words (see Table 3.2) that vary systematically according to three dimensions:
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Table 3.2: Threeword sets used in the Experiment 1. Each word set contains of twelve words of different
length, letter repetition, and angle between stroke segments.

WORD-GESTURE
CHARACTERISTICS WORD SET

LENGTH LETTER REPETITION ANGLE WORD SET 1 WORD SET 2 WORD SET 3
short single zero your pure per
short single acute wax vein sigh
short single obtuse lose taxi back
short double zero all zoo peer
short double acute jazz feel fell
short double obtuse fill loose knee
long single zero queue power query
long single acute midnight joking exorcize
long single obtuse bracket headache jewel
long double zero pepper puree tweet
long double acute vaccine queen middle
long double obtuse loose syllable arrive

i word LENGTH: short (no more than 4 characters), long (more than 4 characters)

ii ANGLE between stroke segments: zero, acute, obtuse

iii LETTER REPETITION: single (e.g., lose), double (e.g., loose)

For example, the word puree is long, with a double letter ‘e’, and a zero drawing angle, i.e. a
straight line on the keyboard; taxi is short, with a single letter and at least one obtuse angle:
the chunk axi. Each letter appears at least once in each set.

3.2.1 Participants

We recruited seven men and five women, all right-handed, mean age 26. All use mobile
phones daily, but none had used gesture-typing prior to this experiment.

3.2.2 Apparatus

I developed a custom Android application running on an LG Nexus 5 (Android 5.1) smart-
phone. It displays a non-interactive Wizard-of-Oz (WOZ) keyboard that matches the po-
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sition and dimensions of a standard QWERTY English keyboard. The application takes a
screenshot after every word gesture drawn by the participants.

We use the remulation keyboard evaluation technique described in [10]. The WOZ key-
board collects gesture coordinates from the participants and generates log files. I wrote a
monkeyrunner jython script that opens a connection to an Android device and continu-
ally sends a stream of gesture coordinates. The script feeds the recorded gesture coordinates
to the Android MonkeyRunner event simulation tool on a desktop computer that commu-
nicates with the tethered mobile phone using the Android Debug Bridge. This process sim-
ulates the gesture typing activity on a working gesture keyboard, which then generates the
word output. We use two commercial gesture keyboards (referred to anonymously as KB-1
andKB-2) representing the state-of-the-art forAndroid, with over 150million copies installed
collectively. Both keyboards have identical dimensions but different recognition algorithms
*. The script also sends a randomword between each promptword and erase personalization
data after each participant. This ensures that the recognition results cannot be contaminated
by the adaptation and personalization features in the keyboards.

3.2.3 Procedure

An experiment session lasts approximately 50 minutes. Participants sit in a chair and hold
the phone comfortably in their left hands, so they can perform all gestures with their right
index finger. Participants are encouraged to talk aloud as they draw each word. During ini-
tial training, participants may practice until they feel comfortable using the gesture-typing
technique.

Each trial in the experiment begins with an instruction displayed at the top of the screen,
e.g., “Draw as accurately as possible”, with a word centered below, e.g., queue, and a soft
keyboard at the bottom of the screen (see Figure 3.1a). The trial ends when participants lift
their finger, after which they answer amultiple-choice question as to their level of confidence:
“Do you think youwrote vein?” (Yes,No, orNot sure). Each word is presented as a sub-block
with 10 replications.

The experiment consists of 360 trials (12 words x 3 instructions x 10 replications). Sessions
are organized into three blocks of 12 words, according to the instruction. All participants be-
gin with the accurately instruction; quickly and creatively are counterbalanced for order across

*We anonymize the keyboards here since the goal of our investigation probably differs from that
of the keyboard designers and the samples we collected may not match typical uses of the keyboards.
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Figure 3.1: Gesture variations: a) accurately is straight, b) quickly is smooth, and c) creatively is inflated and
highly varied.

participants. The 12words are chosen from the threeword sets; counter-balancedwithin and
across participants. I chose four words from each word set while ensuring that every word
appears four times at the end, each in a different session.

3.2.4 Data Collection

We record the touch coordinates in order to extract spatial and temporal characteristics of
each gesture. A gesture is a series of touch data in tuplets: (x, y, timestamp) where
x and y are the touch spatial location relative to the screen (i.e. x-axis and y-axis) in pixels,
and the timestamp is the time of the touch occurrence in miliseconds. We later simulate
the gesture data on gesture-typing recognizers, KB-1 and KB-2, to derive Accuracy, i.e. the
recognizer score for the intended word (True=1, False=0). We also record the participant’s
ConfidenceRate – an ordinal measure of the post-trial answers (Yes=1,Not Sure=0.5,No=0).
The post-questionnaire asks participants to describe how they varied their gestures according
to each instruction. We also take a screenshot of each gesture; record a kinematic log of each
gesture, using screen capture; and audio record the participant’s verbal comments.
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3.2.5 Results and Discussion

We are interested in investigating the extent to which the participant’s gestures vary as they
gesture-type. We first examined the subjectivemeasures obtained through thepost-questionnaire
and looked at the existing variability in gesture data to identify candidates for gesture features.
I briefly report the analysis regarding recognition rate and confidence rate before moving to
the objective measure of the feature candidates.

We collected 4320 unique gestures. We removed 22 outliers (0.5%), defined as when:

1. a participant said they made a mistake, e.g. accidentally lifting the finger before finish-
ing the gesture

2. they answered no to the post-trial question

3. gesture length was<100 pixels

Significance rates for confidence or recognition rate were not affected.

Gesture Variability

Like [82], we found that participants viewed the word-gesture as crossing through “targets”
i.e. each letter in a word. Participants changed the way they drew depending upon their
perception of the instructions. Seventy-five percent (9/12) of the participants said they “pass
through all the letters” and “stay in the [letter] box” in the accurately condition. This results
in straight-line gestures (Figure 3.1a) that closely resemble the gesture template. Not surpris-
ingly, participants drew faster when asked to draw quickly, which resulted in smoother, more
curvy gestures (Figure 3.1b), although two participants mentioned that they tried to draw
straight lines to make them shorter and take less time. Almost half (5/12) said they explicitly
ignored precision when they drew quickly. Participants interpreted the creatively instruction
as either to “draw shapes along the way from one key to another” (7/12), or to “be comfort-
able, likeable, or suitable” (5/12). The creatively instruction resulted in the highest variation
across gestures, as shown in Figure 3.2.

Some participants changed their behaviour in response to the order of the instructions.
For example, P3 took advantage of the creative instruction to discover a faster andmore com-
fortable technique, which changed his behaviour on the quickly instruction: “If I had an
‘accurate’ before ‘quick’, I would just repeat the same move. If I had a ‘creative’ trial before, I
would pick the stroke that I found the most comfortable to use.”
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Chapter 3 3.2.5 Results and Discussion

Figure 3.2: Recognized creative gestures included: a) loop and cusp for taxi, b) visualization of crown for
queen and c) scribbling on keys to create the stars or a constellation formidnight.

Table 3.3 summarizes the keywords used by the participants to describe how they varied
their gestures for different conditions. Analysis shows that the participants varied their ges-
tures by varying three main feature candidates: speed, inflation, and curviness. Since a word-
gesture has to cross certain targets, scaling the gesture is not applicable; hence the participants
inflated the shapes (as in Figures 3.1b and 3.1c) while still trying to cross the letters as a means
to create a larger gesture.

Accuracy

Although recognition is not our primary goal, we are interested in how the different rec-
ognizers reacted to the variation in the users’ gestures. We expect low accuracy since both
recognizers (KB-1 and KB-2) are known to use language context to resolve ambiguities be-
tween word shapes in normal use, and participants did not receive accuracy feedback during
the experimental trials. The instruction creatively was specifically intended to provoke wide
exploration andwas not expected to give recognizable results – in fact, high recognition rates
would indicate a failure to provoke adequate exploration.

Accuracy for KB-2 (73.6% of the gestures recognized correctly) was significantly higher
than for KB-1 (46.7%). One contributing factor is that KB-1 treats leaving the keyboard space
as a cancellation. However, even when these trials are removed, KB-2 achieved a significantly
higher recognition rate (75% vs. 53%).

INSTRUCTION also has a significant effect on Accuracy for both keyboards (F2,22=140.6 and
F2,22=106.3 for KB-1 and KB-2 respectively, all p<.0001). A post-hoc analysis with Tukey
HSD showed that accuracy for KB-2 is significantly lower for creatively (mean=62%), but no
significant differences between accurately (82%) and quickly (79%) obtained. Surprisingly, for
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Chapter 3 3.3. Quantifying Variation in Gesture-Typing

KB-1, a post-hoc analysis withTukeyHSD showed that the accuracy of each instruction is sig-
nificantly different from the others. The instruction creatively has the lowest accuracy (mean
KB-1=34%). However, the quickly instruction resulted in fewer errors (mean accuracy=57%)
than instructions executed accurately (mean accuracy=53%). This may be due to the different
algorithm each keyboard uses.

A post-hoc analysis with Student’s t-test shows that some participants can draw recogniz-
able gestures significantly better than the other participants (see Figure 3.3). For KB-1, P0, P7,
and P9 have significantly higher accuracy than other participants. For KB-2, P0 and P9 have
significantly higher accuracy than other participants. While the accuracy may change when
the participants receive the accuracy feedback, it may suggest that every participant has their
own perception of how to draw a “correct” gesture, which thus affects accuracy.

Confidence Rate

Participants expressed high overall confidence in their performance. Participants were most
confidentwhen they tried towrite accurately, and least confidentwhen theywrote quickly. For
creatively, participants are less sure whether or not they wrote the intended word: 12.4%Not
Sure and 5.5% No. Their comments indicate that they drew more carefully in the accurately

condition, which appears to have increased their confidence.

In summary, users vary their gestures in response to different instructions while maintaining
high confidence inperformance, despite lack of formal training. Eight participantswere eager
to pursue more expressive gestures when writing, especially in place of emoticons or when
communicating with friends and family. This suggests that generating rich output from soft
keyboards is possible under user control, as long as the recognizer can reliably identify key
features of the user’s gestures.

3.3 Quantifying Variation in Gesture-Typing

Arguably, there are several causes of the variations in gesture-typed input, and they can be
intentional and unintentional. In Experiment 1, the participants intentionally varied their
gestures depending on the instruction, e.g. gesture type faster when asked to be as quickly as
possible. To some extent, there are also unintentional variations, either explicit i.e. personal
style or implicit e.g. writing in a bumpy bus or when being angry. I would like to argue that
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Feature # Participant Example Quotes
Speed 10 “To be sure to stand on every letters and do it slowly.” (P0:A)

“[...] touch every letter that formed the word and
finish it faster.” (P10:Q)

Inflation 8 “I would start from inside the first letter and then
just aim for the next letter in the most direct way.” (P3:A)
“I did exaggerated gestures, while trying to
introduce variations.” (P7:C)

Curve 6 “to use ‘straight’ lines instead of curvy ones.” (P4:Q)
“I did circular swipes.” (P11:C)

Pressure 1 “[...] to put more pressure in the correct boxes.” (P5:A)

Table 3.3: Subjective features the participants in Experiment 1 used to vary the gestures extracted from the
questionnaire. A=accurately, Q=quickly, C=creatively.

these source of variations are not necessarily “noise” if the goal is to communicate a message
to other people – they can potentially enrich a text message written by a user to another per-
son. For example, writing in a bumpy bus may result in a very sloppy gesture. When the
information is expressed in the rendered text, it can be an interesting contextual information
e.g. if the user is writing to her closed ones. Our goal is to extract a few measurable features
from the “noise” that is currently discarded by gesture-typing systems, and to use these fea-
tures to determine whether our concept of “expressive” gesture-typing is viable. We are not
trying to create a complete taxonomy of gesture variations, nor to determine users’ emotion
based on the gesture variability – we simply aim to increase the information transfer in text-
based inter-personal communication by enabling users to generate rich output based on how
they gesture type. This suite of features can be improved and extended in the future.

To determine if the variation identified in Experiment 1 can be quantified as detectible fea-
tures, which can then be mapped to text output variation, we considered candidates from
the Experiment 1 (as summarized in Table 3.3) as well as the previously explored gesture char-
acteristics described in Section 2.8. We evaluated them with respect to their applicability to
gesture-typing. Word-gestures are restricted by keyboard layout properties, such as letter size
and position,making features such as orientation, direction, or scale difficult to controlwhile
gesture-typing. We performed an ANOVA† to determine the effect of INSTRUCTION (user in-
tention) on each feature.

†All analyses are performed with SAS JMP, using the REML procedure to account for repeated
measures.
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3.3.1 Speed

Speed is a common measure of gesture variation, e.g., for typing activity [59, 18] and mod-
eling the production time of a gesture [13, 17]. For gestures, speed is calculated by dividing
the total length of traced distance (in pixels) by the total time (in milliseconds). We found
that average drawing speed is significantly affected by INSTRUCTION (F2,22=216.8, p<.0001),
and they are significantly different from each other. Drawing quickly is the fastest (mean=1.8
px/ms), followed by creatively (mean=1.3) and accurately (mean=1.07). A post-hoc analysis
with Student’s t-test shows that some participants can draw gestures significantly faster than
other participants. The data suggests that participants vary the drawing speed depending on
the condition and drawing speed is different across participants.

Since our goal is to enable more fine-grained gesture control, we would like to increase
granularity by examining each gesture over chunks ofmovement instead of as awhole. Given
a sequence of points P = ⟨(x, y)⟩, we can divide P into n (equal) chunks, where Pi is the ith

sub-sequence. Thus, we calculate the average speed (vi) of each chunk as follows:

vi =
∑n

j=0
√
(xj − xj+1)2 + (yj − yj+1)2

Ti
(3.1)

where Ti is the total time for Pi. Parameterizing n increases the possibility of exploration
in the feature space, which may give similar information to acceleration but with less noise.
We started with n = 2 and compared the speed of the first and last half of each gesture to
measure speed consistency:

Ri,j =
vj
vi

(3.2)

We found that participants were more likely to start quickly and then slow down (mean
R=0.83; ratios less than 1 indicate drawing more slowly). This is in line with Fitts’ Law [24],
that users tend to slowdownwhen they are getting closer to the pointing target. AnANOVA
showed that INSTRUCTION significantly affects the speed ratio (F2,22=35.4, p<.0001). Drawing
creatively results in the most constant rhythm (0.91), followed by accurately (0.82) and then
quickly (0.77). Additionally, different patterns obtain when writing a long word as opposed
to a short one. Figure 3.4 shows that participants performed faster at the end of long words
with obtuse angles (1.1), such as jewel, performed at constant speed with acute angles (1.0),
such as joking, and slowed down when angle=zero (0.76), such as pure. This suggests that
participants may separate long words into separate chunks and then draw each chunk more
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consistently.

Figure 3.4: Speed ratio vs. angle by length. Participants slowed downwhen drawing short and zero-angle
(straight-line) words, but maintained constant speedwhen drawing long words.

In summary, using velocity profiles as a feature reveals richer information about the gesture
performance, i.e. although the overall drawing speed for quickly is faster, participants actually
start quickly and slow down the most at the end, and each participant may draw the gesture
at different speed.

3.3.2 Inflation

Some properties of a gesture, e.g., direction and residualmomentum,may also result in unin-
tentional inflation or overshooting that goes beyond the limits of the keyboard itself. More
interesting are deliberate gestures drawn outside the keyboard, as in Figure 3.1c. Since the ges-
tures are constrained to pass approximately through each letter key in a word, we refer to this
variation as inflation rather than size, but it can nevertheless be quantified using the ratio be-
tween the minimum bounding boxes of the performed and template gestures. A bounding
box (in pixels2) is a two-dimensional rectangle that defines the extent of the gesture; the area
is a multiplication of its length and width. We calculated the ratio between the participants’
gestures and the gesture template’s bounding box (Rb):

Rbword =
Bgesture
Btemplate

(3.3)

We found a significant effect of INSTRUCTION on inflation (F2,22=185.9, p<.0001). A post-hoc
analysis with TukeyHSD showed that words drawn creatively are significantly more likely to
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be inflated; with no significant difference between accurately and quickly, which corresponds
to qualitative observations. Some participants intentionally drew outside the keyboard as
theymoved from one key to another, or drew very large gestures, beyond the normal bound-
ing box.

A post-hoc analysis with Student’s t-test shows that some participants draw gestures sig-
nificantly more inflated than the other participants. Three participants who in general drew
more inflated gestures: P5, P8, and P10. This is mainly because they tended to make more
extreme jumps and inflated gestures when the gesture template is a straight line, e.g. ‘pure’.

Although Long et al. found that visually the size of the bounding box is not a strong
differentiating factor in gesture similarity [49], our data show that word-gesture inflation
varied according to condition, with a corresponding effect on the minimum bounding box
ratio.

3.3.3 Curviness

While a word-gesture template consists of lines and corners, in practice a gesture may also
include curves [17]. Inour data, calculationof a normalized curvinessmetricwas complicated
by the need to compare word templates with varying numbers of corners. We consider the
absolute instantaneous angle among three points using tangents. Given a sequence of points
P = ⟨pi⟩i...N, whereN = sizeP, θ is the angle between vector u⃗ = −−−→pipi+1 and vector v⃗ = −−−−→pi+1pi+2

where pi, pi+1, pi+2 ∈ P, calculated as follows:

θ = |atan2(|⃗u× v⃗| , u⃗ · v⃗)| (3.4)

where atan2 is a function of arctangent in Android that returns a value in the range (−π,π).
In our analysis, θ is in degrees (0 − 180◦).

To emphasize the relative variations over the gesture, wemeasure the curviness (in degrees)
by the standard deviation of all angles, calculated as follows:

curviness =

√√√√ 1
N− 2

N−2∑
1

(
θ−

(∑N−2
1 θi

N− 2

))2

(3.5)

The standarddeviation is close to zero for straight lines buthigher for curvy lines. For gestures
consisting of several segments, e.g., taxi, even if the lines are drawn straight, the standard
deviation is still affected by the corners. While different words may have different numbers
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of corners with different angles, we can still reliably distinguish a curvy gesture by setting a
threshold value. If all lines are drawn relatively straight, the standard deviation is around 12;
cusps (acute corners), scribbles, andmixed straight-line/curves are>12; while arcs (i.e. curves)
and loops (obtuse corners) are< 12.

An ANOVA showed that participants increase curviness when writing quickly, which is
significantly different (F2,22=60.5, p<.0001) from accurately or creatively. These results corre-
spond to the qualitative observations.

Figure 3.5: Recognized gestures from different participants, which highlights personal difference in terms
of the curviness in the drawn gestures. a) P6 drew a cusp and awobble. b) P11 drew a jumping gesture to
avoid passing through other letters whenwriting ‘puree’. c) P2 used a combination of straight lines and loops
to write ‘feel’. d) P0 drew curvy gestures with obtuse turning between stroke segments.

A post-hoc analysis with Student’s t-test shows that some participants can draw gestures
significantly more curvy than other participants (see Figure 3.5). The test presented five sig-
nificantly different categories, e.g. P6 and P11made significantlymore cusps, wobbles, curves,
and jumps in their gestures than other participants (mean curviness 17.9 and 17.1 respectively)
while P3, P8, P7, and P1 made the most straight gestures (mean curviness 12.5, 12.1, 11.9, 11.8
respectively).

In summary, participants tend todrawmore curvy gestureswhenwriting quickly and straighter
gestures when writing accurately. This is not surprising when speed is the goal, given that the
human motor system maximizes smoothness to reduce movement cost [62]. The partici-
pants may also have different styles when it comes to curviness when they gesture-type.
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3.4 Summary

The Experiment 1 in this chapter confirms that gesture-typing performance varies across par-
ticipants and experimental conditions, i.e. the intention of writing to be accurate, quick, or
creative. We can reliably extract three key gesture characteristics – curviness, inflation, and
speed – that varied significantly according to the instruction given to the participants. We
observed large individual differences across participants with respect to the three features.
Perhaps not surprisingly, this suggests that each individual is likely to generate distinctive,
personal gesture styles, just as they do with their handwriting.

The next step is to create a technique for mapping user-generated characteristics to continu-
ously variable output, enabling user- and context-dependent variation to appear in the out-
put, and to test whether users can intentionally transform the variation of their gestures into
rich output.
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4
Transforming Gesture Variation

into Rich Output

4.1 Expressive Keyboard

I introduceExpressiveKeyboard, a gesture keyboard that leverages the variations in gesture-
typed input to produce rich output. The rich output includes additional information about
the gesture variability aside from the content (i.e. the words), which may reflect the process
of writing. However, we are not interested in ‘identifying’ expression or emotion based on
gestures, since we believe richer interpretations will result from a system in which users can
develop their own communication contexts and related meanings. More importantly, Ex-
pressive Keyboard opens up the possibility for increasing information transfer in textual
communication with an instrument that enables users to express themselves through per-
sonal style and through intentional control.

Expressive Keyboard takes advantage of gesture keyboards, which recognition algo-
rithm tolerates gesture variability. Expressive Keyboard adds a layer of gesture analysis,
separate from the recognition process, that quantifies the differences between the gesture
template and the gesture actually drawnon the keyboard. These features can thenbemapped
to output properties and rendered as rich output. I describe the process step by step, as fol-
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lows.

Figure 4.1: The process of transforming gesture input into rich output with Expressive Keyboard. 1) The ges-
ture keyboard recognizes the gesture into a word just as before, as if it is a “blackbox”. Expressive Keyboard
adds additional steps (in grey): 2) quantifies the variations in the captured gesture input and 3) maps them
to output properties. Finally, Expressive Keyboard renders the recognized word along with the output proper-
ties as a rich output.

WORDRECOGNITION The process starts when the gesture keyboard captures users’ ges-
ture input. Agesture input is a series of touchdata inquadruplets: (action, x, y, times-
tamp) where action is either TOUCH_DOWN, TOUCH_MOVE, or TOUCH_UP; x and y are the
touch spatial location relative to the keyboard view (i.e. x-axis and y-axis) in pixels; and the
timestamp is the time of the touch occurrence in miliseconds. A gesture always starts with
TOUCH_DOWN i.e. when the user puts her finger on top of the keyboard, followed by a series
of TOUCH_MOVE as she drags her finger, and ends with TOUCH_UP after she lifts her finger
from the keyboard.

As soon as the user starts drawing a line connecting the letters in a word, the recognition
engine recognizes the word-gesture input to come up with most-likely word output. This
process of capturing and recognizing the gesture is done progressively. As it is, the traditional
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gesture keyboard throws away the additional information i.e. how the gesture is performed
– the only output is the recognized word. This process is shown in Figure 4.1 on Step 1.

GESTURE FEATURE ANALYSIS Expressive Keyboard adds a layer of gesture feature
analysis that quantifies the gesture variability in users’ input (see Figure 4.1 Step 2). The ges-
ture keyboard provides the gesture data, the final recognized word, and the coordinate of
each key in the keyboard – fromwhich the gesture features are calculated. This process does
not interfere with the word recognition process, thus we can use any word-gesture recogni-
tion algorithm. We can use any gesture feature, as described in Section 2.8. To start, I used
curviness, inflation ratio, and speed consistency ratio, as described in Section 3.3.

MAPPINGANDRENDERING ExpressiveKeyboardmaps the gesture features e.g. curvi-
ness, inflation ratio, and speed consistency ratio to output properties. The gesture features
can be mapped to different output properties aside from text properties, such as emoticons
or animation (see more details in Section 4.2). The final result is the recognized word, dis-
played according to the variation inherent in the user’s gesture input. Users can thus vary
their gestures and see the corresponding change in the final output.

4.2 Applications

Expressive Keyboard concept can be implemented on any device in different environ-
ment, such as mobile phones, tablets, smartwatches, and even mid-air operation e.g. Vul-
ture [55]. In this thesis, I focus on the interaction onmobile phones. Below I provide several
applications of Expressive Keyboard that focus on inter-personal communication sys-
tems.

4.2.1 Colorful Text

Expressive Keyboard can transform gesture variations into the full range of RGB colors.
I mapped inflation ratio to red, curviness to green, and speed consistency ratio to a gradient
of blue. Gestures that use a constant speed when following the gesture template – a straight
line from middle point to middle point of each letter in the word – map to the color black.
As the user slows down, the text output turns from blue at the beginning of the phrase to
another color at the end of the phrase. Thismappingmakes it technically feasible for users to
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Table 4.1: Summary of mappings to generate colors and dynamic font with Expressive Keyboard.

Gesture Variability Properties of Color Properties of Dynamic Font
Inflation Ratio

User’s gesture has bounding box
of the same size
with the gesture template
[inflation ratio = 1.0]

RED = 0 font thickness = 10

User’s gesture has bounding box
bigger [inflation ratio⩾ 1.5]
smaller [inflation ratio⩽ 0.5]
than the gesture template

RED = 255 font thickness = 20
(i.e. bold)

Curviness
User’s gesture consists of
straight stroke segments GREEN = 0 offset to control points = 0

(i.e. all ‘a’s are identical)

User’s gesture consists of
curves, cusps, wobbles, or loops GREEN = 255

offset to control points = x
where 0 ⩽ x ⩽ 50
(i.e. all ‘a’s are unique)

Speed Consistency Rate
Consistent speed over the gesture
[speed ratio = 1] BLUE = 0 the baseline font

Speed up [speed ratio⩾ 1.5] or
slow down [speed ratio⩽ 0.5]

BLUE = 255
(speed up: any color to blue;
slow down: blue to any color)

the font variation

generate all possible RGB color combinations. Table 4.1 summarizes the mapping of gesture
features to the RGB components.

I chose a quadratic mapping between the gesture features (e.g. speed consistency rate) and
the output properties (e.g. blue in RGB) so the rate is change (i.e. the change in the value of
output property by the elapsed speed consistency rate) is small when the gesture is more or
less not inflated (speed consistency rate ≈ 1.0) but bigger when the gesture is inflated. This
makes the “black” color easier to produce although the uses do not gesture type precisely
like the gesture template (straight line segments from middle point to middle point) with
perfect consistent speed. Likewise, to produce text with other color, they need to distinctly
manipulate their gesture variation.

Figure 4.1 shows an example of how one can use Expressive Keyboard to generate col-
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orful text. The user naturally makes curvy gestures, thus her “default” output is green text.
When she wants to emphasize something, e.g. “Mom” or “tonight”, she changes the way
she usually gesture-type to produce different color. For example, she wants to express her
excitement that she is coming home that night, so she makes curvy, inflated gesture while
speeding up when writing “tonight” (as shown in the figure), thus generating a text which
color gradually changes from orange to pink.

4.2.2 Dynamic Font

I implemented an Expressive Keyboard that maps gesture features to a user-defineable
dynamic font. The dynamic font is created through a simple font engine that lets users define
static typefaces by connecting control points to form each letter (Figure 4.2). Users can cre-
ate several typefaces and dynamically interpolate between them to generate new intermediate
fonts continuously. The interpolation between n typefaces changes the position of compo-
nent control points based on a weighting function:

typefaceinterpolated =
∑n

j=1 typefacejweightj∑n
j=1 weightj

(4.1)

where each typeface is a vector of control points for each letter.
Every font is tagged by an ID number. In the beginning, the users can choose an ID num-

ber and start defining the font from ‘a’ to ‘z’ (or continue to define from where it’s left off,
for example if previously they quit after defining ‘g’ then they can continue defining ‘h’, etc).
This font serves as the baseline font.

Once the baseline font has been defined, the users can enter the same ID to:

Create a font variation by editing the baseline font to enable interpolation. Here users
can edit the position of the control points to create the variation. The number of the control
points must match its baseline.

Edit the baseline font Users can edit the position or add/delete control points.
The speed consistency ratio ismapped to theweight ratio for font interpolation. The infla-

tion ratio ismapped to stroke thickness (bold). The curviness ismapped to themagnitude of
random offsets applied to each control point. Table 4.1 summarizes the mapping of gesture
features to the properties of the dynamic font.
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Figure 4.2: The font engine lets users to draw their own typeface by adding control points that are con-
nected to a cardinal spline. Users can include several strokes by detaching the splines. On the right are
two examples of static typefaces defined using the font engine: the baseline (top-right) and the variation
(bottom-right).

4.2.3 Parametric Emoticon

We can use Expressive Keyboard to control subtle change of expression in emoticon, to
increase the granularity of expression that can be conveyed through emoticon. I developed a
parametric emoticon engine where users can choose a keyword to insert a parametric emoti-
con which expression changes depending on how the keyword is gesture-typed. As a demon-
stration, I chose a keyword ‘emoji’ to insert a parametric smiley face. I mapped curviness to
the size of the smile, and the inflation ratio to the typeof smile. More curvinesswill cause abig
smile (Figure 4.3b), while less curviness will only generate a little smile (Figure 4.3a). When
combined with high inflation ratio (> 1.2), the big smile will turn into a laugh (Figure 4.3c).

4.2.4 Animated Emoticon

I worked with a Master student, Chengcheng Qu, to develop an application of Expres-
sive Keyboard that transforms users’ drawn gesture when gesture-typing into dynamic
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Figure 4.3:Manipulating the curviness and inflation in gestures with Expressive Keyboard will generate
emoticons with subtle different of expression. a) A gesture with straight stroke segments generates a lit-
tle smile; b) a curvy gesture generates a big smile; and c) a curvy, inflated gesture with wobbles at the end
generates a laughing face.

animated emoticons. As a demonstration, Chengcheng Qu implemented three animation
emoticons: “smile”, “cry”, and “sad”. Users manipulate the curviness of their gesture input
to control the final value of the animation properties. For example, for the emoticon “cry”,
the property is the shape of the tears. When the users gesture type “cry”, themore curvy their
gesture is, the more overflowing the tears will end up.

After the users finish gesture-typing and lift their fingers, the emoticon is rendered on the
screen and the animation starts. When animated, a very curvy gesture generates an emoticon
with the tears gradually changing fromwellingup tooverflowing (the tear-flow expands from
short to long). A straight gesture generates an emoticon with welling up tears, with almost
not noticeable animation, as if it is a static emoticon. In the case of “smile” emoticon, more
curviness will cause a grin, while less curviness will only generate a slight smile, likewise with
the “sad” face. To avoid visual saturation, i.e. endlessly moving animation can be disturbing,
the animation stops after repeated 5 times. If the users want to invoke the animation again,
they could double tap the emoticon, and the animation will restart.

We also implemented some functions for users to modify their generated emoticon: If
users wants to modify it after the gesture-typing, they can first put their finger on this emoti-
con, and then drag up or drag down. In the case of “cry” emoticon, the tears can be shorten
by tapping on the emoticon and drag up. The same operation can be applied to the “smile”
and “sad” emoticons.
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4.3 Technical Implementation

4.3.1 Initial Implementation

The first implementation of Expressive Keyboard used a commercial gesture keyboard,
which did not give us access to the recognition results. We treated the gesture keyboard as a
“black box” that recognizes the word output, and captured the gesture data using Android
Debug Bridge (ADB), while the gesture keyboard we used was running live as users gesture
type with Expressive Keyboard.

The touch events are capturedbyAndroidDebugBridgeusing theadb shell getevent
command, running on a desktop computer connected to the device via a USB cable. ADB
captures all the touch events and display all the information on the terminal. I wrote a simple
shell script that forwards the ADB’s output to a python program (process.py). The
python program extracts the gesture data, which is a series of touch event in tuplets: (x, y,
timestamp) where x and y are the touch spatial location relative to the screen (i.e. x-axis
and y-axis) in pixels, and the timestamp is the time of the touch occurrence in miliseconds.
When a gesture is complete, i.e. from when the user starts gesture-typing until she lifts her
finger from the keyboard, the python program generates a text file (gesture.txt) contain-
ing the gesture data. The gesture data is then sent back to the device and post-processed by a
foreground Android application.

The foreground application observes user’s typing activities through a text field. As soon
as the user finishes gesture-typing a word, it reads the file gesture.txt in the device and
stores the gesture data within the application. The foreground application then calculates
the gesture features, maps them to output properties, and renders the output on the screen
canvas.

This implementation has three issues. First, as the foreground application has to rely on
the ADB terminal to capture the gesture data, there is a delay from after the user finishes
gesture-typing until the gesture data is pushed into the device. From the pilot study, the fore-
ground applicationhas towait at least 0.5 second to ensure the gesture data has been complete
and correctly pushed into the device. While this was not a big problem for our experiments,
this situation is not ideal for real use. Second, since the process requires the ADB to push
a text file (gesture.txt) into the device, the Android device must be rooted. These two
issues make it impossible for us to evaluate Expressive Keyboard in the wild. Last, the
whole process of capturing-and-pushing the gesture data cannot be done progressively, since
it would be a too-heavy process for the device. The users can only see the final output of
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Expressive Keyboard after they release their finger. The last issue appears to be quite a
problem, as we found out later in Section 5.1.

4.3.2 Revisited Implementation

Later, I collaborated with Xiao Jun Bi, an Assistant Professor in Stony Brook University,
New York, USA. He provided us with a gesture keyboard prototype that implements an im-
proved version of the original gesture keyboard algorithm, SHARK2 [42]. The recognition
algorithm is similar to an early versionofKB-1weused in the experimentondeliberate gesture
variation (Section 3.2). The keyboard prototype uses Google Protocol Buffer * to communi-
cate data related to the gesture keyboard: the gesture data, the list of word candidates from
the recognition engine, and the position of each key in the keyboard. A foregroundAndroid
application is needed to receive and process the data.

The new keyboard prototype allows us to run Expressive Keyboard live, without hav-
ing to rely on ADB. This enables us to do the gesture feature calculation and the word recog-
nition at the same time. The users can also use it anytime, anywhere. They only need
to install both the keyboard prototype and the foreground application to use Expressive
Keyboard. This solves all three issues with the early implementation of Expressive Key-
board.

Furthermore, the new Expressive Keyboard prototype also includes progressive feed-
back. As soon as a user puts her finger on the gesture keyboard and start drawing, the recogni-
tion engine suggests a most likely word as the output. Thus, the recognition is done progres-
sively, and generates a set of intermediate word output. For example, when writing ‘hello’,
the intermediate word output includes ‘he’, ‘hell’, and finally ‘hello’. The gesture feature ex-
traction is also done progressively, and the user also sees the intermediate output properties
(e.g. color) rendered on the intermediate word output. With the progressive feedback, the
users can see the generated output properties on-the-go, thus it may ease the gesture varia-
tionmanipulation. For example, a user wants to write a yellow ‘hello’ i.e. she must make the
gesture inflated (red) and curvy (green). During the intermediate result, she only gets e.g. a
green ‘he’. Thus, she understands that she must inflate the gesture more to have an orange
‘hello’ at the end.

*https://developers.google.com/protocol-buffers/
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4.4 Summary

Expressive Keyboard transforms the rich variation that already exists in users’ gesture-
typing input into rich output, including dynamic font, emoticon with subtle expression
change, and animation. Users can gesture type just exactly as they do with a standard gesture
keyboard, yet with Expressive Keyboard more information are included in the output.
Simply mapping unintentional variation to small differences in the rendered output would
generate a degree of expression that could be recognizable as personal styles or contextual in-
formation. A user may not specifically control their gesture when writing on a bumpy bus,
yet the output can reflect thewriting process – something that handwriting can capture easily.
Conscious control of this variation would not be required to implicitly communicate style,
personality, context, or mood. Expressive Keyboard demonstrates how we can increase
the expressive power of mobile communication system by leveraging the otherwise-unused
gesture variability when gesture typing.

In real usage, users should be able to vary the sensitivity of the output variation or turn it
off completely [6], especially in cases where the user prefers to generate more formal output.
Users should also be able to (re)design their own feature detectors, text-rendering proper-
ties, and mappings linking the two. Users may also want to store a particular style that they
generate earlier for future use.

I believe that deliberate variation is more interesting, as users can use and appropriate it
to intentionally convey more information when communicating with other people. Just as
they do with pen and paper, people can intentionally change the color or the size of their
handwriting to attach different meaning when taking notes, e.g. black is for normal content
while red is for comments. In the next chapter, I will investigate the intentional-control as-
pect of Expressive Keyboard, i.e. how users learn to intentionally vary aspects of their
gesture in order to generate a specific output, and in what context such case may be useful.
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Learnability and Appropriability

Ideally, gesture-based interaction should be easy to learn and control, in order to offer an
efficient alternative input channel [4]. Expressive Keyboard leverages the existing ges-
ture variations in gesture-typing input to generate rich output. Users can gesture type just
like they usually do, but they generate rich output that potentially carries additional infor-
mations about e.g. personal style or the current context. That said, ExpressiveKeyboard
can be more powerful when users can intentionally control the granularity of their gesture
variability, to deliberately express intent. In this chapter, I describe an experiment that in-
vestigates whether novice users could selectively control aspects of their gestures to generate
desired output with Expressive Keyboard during the initial learning phase. The data
analysis deepens our understanding of how novice users learn to control their gesture char-
acteristics, which led us to design an informal observational study to see what factors may
affect the learning strategies. Afterwards, I introduce Experiment 3, that investigates the ap-
propriability aspects of Expressive Keyboard in an ecologically-valid context.

5.1 Experiment 2: Learning to Control Gesture Variations

The goal of ExpressiveKeyboard is to build an expressive channel between users and the
system, to increase the information transfer with an instrument that enables users to express
themselves through unintentional variations (e.g. situation, personal style) and through in-
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tentional control. In Chapter 3, I show that users can vary their gestures deliberately under
different condition. I want to understand to what extend users can control the variability
when they use Expressive Keyboard for the first time, and how deliberately modifying
the gesture’s shape and dynamics affects accuracy. Additionally, I am also interested to inves-
tigate what factors may affect the process of learning to control the variations.

5.1.1 Description

Wedesigned an experiment to explore the “initial learning” phase of controlling gesture varia-
tions. The goal of the experiment is to investigate whether novice users can explicitly control
both their movement (gesture input) and the final result (gesture output), while maintain-
ing the recognition accuracy. When a novice user immediately gesture typewith Expressive
Keyboard, what is the more suitable instruction, to tell her what to do (i.e. the action) or
what output properties to generate (i.e. the perceived goal)? How proficiently can users con-
trol the aspect of their gestures? Can users produce desired output properties and produce
the same (or different) output properties if they are asked to repeat the task?

For this experiment, we chose RGB color as the output parameter space, since it is contin-
uous, easy to quantify, and has relatively unambiguous semantics –most people agree on the
meaning of the descriptor “red” as opposed to e.g. “messy”.

The experiment consists of two blocks. Block 1 is a [2x3] within-participants design with
two primary factors:

F1 FOCUS

I input

O output

F2 LEVELOF RELIABILITY

C consistent

D different

V varied

The factor FOCUS represents the type of instruction given to the participants, whether we ask
them to focus on how they should control their input or on the resulting output properties.
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The factor LEVEL OF RELIABILITY represents the level of performance reliability when we ask
them to replicate the same instruction.

Participants are asked to gesture type phrases either by controlling a particular character-
istic of their input, e.g. “Go outside of the keyboard”; or by controlling a characteristic of
their output, e.g. “Try to make each phrase the same color of green”. For each type of FOCUS,
participants are asked to draw phrases that are consistent, different, or varied, as shown in Table
5.1. As such, each trial condition has two goals: a specific color and different levels of reliability.
For example, the two goals of varied–output condition “Make each phase include at least two
colors; use as many colors as you can” are 1) to make the blue component high, which can be
accomplished by speeding up or slowing down; and 2) to vary other color component (green
and/or red) to create varied colors within each successive phrase. We set two goals for each
condition, one focuses on controllability and the other on reliability so that we can get two
different categories of “proficiency”. Regarding reliability, we hypothesize that repeatedly
producing the same color consistently is arguably more difficult than differently, and varied
will be relatively the easiest.

Additionally, we are also interested if users can deliberately change the way they gesture
type when they write for different recipients or to express different emotional states. Block 2
is a one factor within-participants design with two levels: message recipient and sender emo-
tion. The task is open-ended: participants can choose how to interpret these instructions and
make their ownmappings between the instruction and the resulting variation in the output.
Participants gesture-type three phrases, to three different recipients or to express three differ-
ent emotions, as illustrated in Table 5.2. For example: “Draw the phrase for your partner” or
“Express how you feel: happy”.

5.1.2 Participants

We recruited five right-handed men and seven women (mean age 27). All use mobile phones
daily. Four use gesture-typing daily, the others are non-users. No participants had partici-
pated in Experiment 1.

5.1.3 Apparatus

Weused the sameLGNexus 5 (Android 5.1) smartphone as in Experiment 1, running Expres-
sive Keyboard that maps the gesture features to RGB colors (as described in Section 4.2.1).
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Experiment 2: Block 1

FOCUS
LEVELOF RELIABILITY

consistent different varied

output Make each phrase the
same black color.

Make each phrase
a different shade of
green.

Make each phrase in-
clude at least two col-
ors.

goals: 1) red < 70 and
green<70;

1) green > 60 and
green>red;

1) blue> 100;

2) difference of all com-
ponents< 20

2) difference(green) >
20

2) difference of any
component> 20

input Scribble on each let-
ter.

Draw at different
speeds.

Draw outside the key-
board.

goals: 1) green > 100 and
blue>100;

1) blue> 150; 1) red>100;

2) differ-
ence(green)<20 and
difference(blue)<20

2) difference(blue) >
20

2) difference of any
component> 20

Table 5.1: Experiment 2, Block 1: All instructions that vary according to FOCUS (output or input) and LEVEL
OF RELIABILITY (consistent, different, or varied). Each condition has two goals, representing two categpries
of proficiency. The goal is measured through the value of the RGB component.

Experiment 2: Block 2

Recipient

Draw the phrase for your partner
Draw the phrase for your boss
Draw the phrase for a stranger
Draw the phrase for your niece
Draw the phrase for your best friend
Draw the phrase for your parents

Emotion

Express how you feel: happy
Express how you feel: angry
Express how you feel: frustrated
Express how you feel: sad
Express how you feel: busy
Express how you feel: bored

Table 5.2: Experiment 2, Block 2: All instructions based onmessage recipient or sender emotion, replicated
three times.
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We choseKB-2 for the gesture-typing recognizer since it allows drawing outside the keyboard
area.

5.1.4 Procedure

Sessions last from 30-60 minutes. Participants sit in a chair and hold the phone comfortably
in their left hand, so they can perform all gestures with their right index finger. Participants
are encouraged to talk aloud as they draw each word. They are asked to practice until they
feel comfortable with the recognizer and can reliably produce different colors.

Each trial displays an instruction at the top of the screen, e.g. “Try to make each phrase
a different shade of green”; with a three- or four-word phase centered below. Participants
gesture-type three phrases in succession, on three separate lines, according to the condition
(see Figure 5.3). For example, the varied–output condition “Make each phase include at least
two colors; use as many colors as you can” is accomplished by speeding up or slowing down
to create varied colors within each successive phrase.

Phraseswere chosen randomly fromMacKenzie andSoukoreff’s three- or four-wordphrase
sets [53]. In both blocks, participants may write the phrases as often as they like, before press-
ing ‘next’ to submit the current result and move to the next trial. After each condition, par-
ticipants used a five-point Likert-style scale to rate how their output compared to their ex-
pectations.

The complete experiment consists of 30 trials: Block 1 includes 18 trials (2 FOCUS x 3 LEVEL
OFRELIABILITY x 3 replications); andBlock 2 includes 12 trials (2 INSTRUCTIONs x 6 replications).
Trials are counter-balanced within each block and across participants using a Latin Square.

At the end of the experiment, participants are asked to explain how the system generated
colors in block 1; how they generated variations when asked to write to a particular recipient;
and how they expressed specific emotions in Block 2. We intentionally did not inform par-
ticipants how the mappings work to see if users are able to implicitly control their gesture
variations in order to generate desirable output just by using the system.

5.1.5 Data Collection

In addition to touch events, we record values for CorrectRate, WordAccuracy and Fea-

tureAccuracy. WordAccuracy is when the gesture produced the correct word; and Fea-

tureAccuracy is when the gesture produced both the correct word and correct output prop-
erties. We also measure inflation, curviness, and speed consistency ratio. To reduce noise
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caused by dependencies in word characteristics, and to increase variation in general, we aver-
age each measure progressively throughout each phrase.
CorrectRate (0–2) measures the participant’s success of fulfilling both goals in each con-

dition. We defined a threshold value for each condition based on a pilot test and results from
Experiment 1. For example, in the varied–output condition, a successful trial has 1) a high
blue value (> 100/255); and 2) at least one other RGB color component in RGB that differs
from the other phrases (difference≥ 20/255). Fulfilling both goals results in CorrectRate=2,
whereas fulfilling only one results in CorrectRate=1.

We count number of errors based on how many times the participant erased a word be-
fore submitting a results. We record the screen and audio throughout to capture verbal com-
ments.

5.1.6 Results

Participants were able to control the variation in their gestures (overallCorrectRate is 1.3 out
of 2.0): 75% of the trials met at least one goal of each condition. Of those successful trials,
about two third of them (51%) met both goals of each condition. Of the 24% trials that only
met one goal, there is no significant difference between succeeding controlling the color and
reliability (48% v.s. 52% respectively).

AnANOVA showed that both FOCUS and LEVELOFRELIABILITY significantly affectCorrec-
tRate (F1,11=18.5 and F2,22=28.7 respectively, all p<.0001). Participants achieve significantly
higher success rates when they focused on the output (1.4) than when focusing on the in-

Figure 5.1: Participants are significantly more likely to control gestures based on output than on input.
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put (1.1) (Figure 5.1). A post-hoc test with Tukey HSD also showed a significant interaction
between FOCUS and LEVEL OF RELIABILITY (F1,11=37.5, p< .0001). Participants were most suc-
cessful in the varied–input and different–output conditions (1.9 and 1.86 respectively) which are
both significantly different from the others. The least successful conditions were the consis-

tent–input and different–input (0.6 and 0.7 respectively).

Variation in Gesture Features

A post-hoc analysis with Tukey HSD revealed a significant interaction between FOCUS and
LEVELOFRELIABILITY for all three gesture features: curviness, inflation ratio, and speed consis-
tency. Participants were clearly able to control the inflation ratio (the size of the bounding
box), as in the varied–input and varied–output conditions, but otherwise chose not to. Partic-
ipants drew curvier gestures when in the consistent–input and different–output conditions and
significantly more straight gestures in consistent–output. However, their natural inclination
is to draw curvy gestures with non-constant speed. Explicitly controlling speed consistency
appears to be more difficult.

The post-questionnaire on expectation-match level reveals that overall, 70% of the tasks
matched their expectations (41% strongly satisfied, 18% neutral, and 12% dissatisfied). Based
on the measurement criteria, 76.4% of the tasks successfully fulfilled at least one condition
(50% fulfilled both).

Accuracy

The overallWordAccuracy is 81.8%, which suggests that the participants are able to control
both their input and output while retaining reasonable accuracy as compared to baselines
from Experiment 1. Overall FeatureAccuracy is lower at 46.3% (56.6% of correct words),
which suggests that the participants sometimes re-wrote correctly recognized words to mod-
ify their output properties. They erased an average 4.4 words before completing a trial: an
average 1.5 words due to incorrect words (i.e. typing mistakes) and 2.9 due to incorrect fea-
tures. However, we found that the participants erased more incorrect words during the first
trial replication (mean 2.3 vs. 1 word for the last trial replication). They also erased more
correct words to modify the output properties in the first trial replication (mean 4 vs. 2).
If we assume that the first and second replications are “practice”, since the users never used
Expressive Keyboard prior to the experiment, theWordAccuracy increases to 85.4% and
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the FeatureAccuracy to 54.8%. Clearly, the learning curve (from first to third replication)
had not reached a stabilized performance.

Both FOCUS and LEVEL OF RELIABILITY significantly affect the number of errors. Partici-
pants in conditions that focused on outputmade significantlymore errors than in conditions
focused on input (7.2 > 2.0, F1,11=27, p<.0001). Participants also erased significantly more
often when trying to be consistent than when trying to be different (6.5 > 2.9, F2,22=4.3,
p<.0001).

Conveying Emotion & Writing for Different Recipients

Participants varied their gestures when expressing certain emotions or when writing to dif-
ferent recipients. Participants used different strategies: six deliberately varied their gesture
input; five varied their gesture output; and only one participant varied both.

Figure 5.2: Participants can intentionally control gesture size when asked (inflation ratio), but do not vary it
otherwise.
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Figure 5.3: Successful control of color through gesture: a) [instruction: Different-Output] bright-green in-
dicates curviness, dark green indicates straight lines; b) [instruction: Varied-Input] inflating the gesture in-
creased red values; c) [instruction: recipients] P8 changed the color deliberately for different recipients; d)
[instruction: express emotion] P4made curvier gestures withmore detours for ‘happy’, and slow and less
curvy gestures for ‘sad’.

When the hypothetical recipient was their boss or their parent, five participants reported
they wanted to make the text color darker, and thus wrote more slowly and accurately. In
contrast, when writing to a close friend or child relative, seven participants said they drew
more slowly, with curvier gestures and detours, resulting in brighter colors (Figure 5.3).

Three participants chose pink or red to write to their partners; P9 drew a heart shape that
left the keyboard area. Participants expressed negative emotions using slower, straighter ges-
tures, resulting in darker colors. Four participants associated ‘angry’ with greater speed and
most expressed being busy by drawing faster, curvier gestures. Only one participant stated
that they did not change their style of gesture-typing according to her emotion or the recipi-
ent of her message.

5.1.7 Discussion

Controlling Aspects of Gestures In this experiment, we introduced two levels of profi-
ciency (i.e. goals) to see how far users could control their gesture variation just by using it.
75% of the trials met at least one goal of each condition, and of those successful trials, about
two third of them (51%) met both goals of each condition. Given that all users tried Expres-
sive Keyboard for the first time andwe did not inform them in advance how themapping
worked, we were surprised at howwell they were able to control the aspects of their gestures.
Perhaps, focusing on one goal (instead of two such as in this experiment) would be easier for
them during the initial-learning phase.

Focusing on Gesture Characteristics v.s. Output Properties Participants performed bet-
ter when instructed to focus on the output of their gestures i.e. to explicitly control the color
of a phrase, than to focus on the characteristics of their input, i.e. to control the curviness,
size and speed of their gestures. Some participants took advantage of the variations in the
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color feedback to reflect upon andmodify their performance, which was not possible for the
input conditions. We observed that participants faced a trade-off during the first time using
Expressive Keyboard: they expended more effort rewriting the phrase until they got the
desirable colors, but in the end were more successful in fulfilling the instructions. This sug-
gests that perhaps it is more suitable to tell people the goal (of what they must produce) and
let them explore during the initial learning phase.

Ongoing LearningProcess Participants were able to deliberatelymodify their gesture char-
acteristics whilemaintaining accuracy. However, they sometimes erase correct words tomod-
ify the output properties. Clearly, the participants need more time to practice, since most
participants were using gesture-typing for the first time. While both types of accuracy must
be improved, we believe this is a promising start: novice users are unlikely to have a clear un-
derstanding of how gesture recognition algorithms work, but this should not prevent them
from generating the desired output properties by varying their gestures.

We also suspect that the recognizer affected participants’ behavior when gesture-typing.
For example, although participants had no trouble understanding the CI (consistent-input)
‘scribble’ instruction, it had the lowest correct rate and half of the participants stated that it
was not easy to perform. In the course of the experiment, we observed that scribbling some-
times caused a recognition error that forced participants to repeat or change their gesture
input strategy. However, considering that we were using a gesture recognizer designed for a
different purpose, with no special modifications, the error rates were surprisingly low.

Manipulating spatial features is easier than temporal features Participants demonstrated
that they are capable of drawing certain types of gestures, e.g. extremely curvy or large ges-
tures, even if they do not choose to do so when typing without rich output. By contrast,
participants have difficulty maintaining a constant gesture-typing speed. Gestures typically
start quickly and then slow down, which with our mapping produces a color gradient in the
varied–output condition. This should be a particularly simple gesture to control, but interest-
ingly, only three found it easy and none could articulate how it works.

To summarize, despite being able to control the gesture features to generate desirable output
properties, the participants had to try several times to achieve the goals.
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5.2 Learning Strategies

In Experiment 2, the participants could only see the resulting color after they finished gesture-
typing. I observed two strategies that users used to produce the desired output:

1. Trial-and-error with brute force
Users just draw a gesture without a pre-planning and see what the colour it produces.
If they do not like it, they erase the (correctly-recognized) output and re-draw. This is
perhaps more likely to happen when they do not know the mapping in advance, but
it may also happen even when they do.

2. Pre-planning and post-planning
If they already know the mapping, they normally do a pre-planning: they first plan
how to generate the desired output properties and then how to perform the gesture
before actually drawing the gesture.

Adding a progressive feedback to Expressive Keyboard may help users to build their
mentalmodel of how themappingworks, and thuswill improve their performance. Iworked
together with ChengchengQu, aMaster student working withWendyMackay, to run an in-
formal observational study focusing on how to see how advance knowledge of the mapping
and different feedbackmechanism affect the learning strategies. I implemented a progressive
feedback on Expressive Keyboard, as described in Section 4.3.2. With the new Expres-
sive Keyboard prototype, the users can see the intermediate word output along with the
intermediate output properties such as colors.

We recruited two right-handed men. All use mobile phones daily. None of them use
gesture typing daily, but they are familiar with gesture keyboards. We informed participant
P2 about how the mapping worked, but not P1. We used the same LG Nexus 5 (Android
5.1) smartphone as in Experiment 1, running Expressive Keyboard prototypes with and
without progressive feedback that map the gesture features to RGB colors (as described in
Section 4.2.1).

Procedure

The study lasts approximately 45 minutes. Participants sit in a chair and hold the phone
in their left hands, so they can gesture type with their right index finger. We encourage the
participants to talk aloud as they gesture type with Expressive Keyboard, emphasizing
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the strategies they use to generate the desirable colors. Before the observation starts, we let
them practice with Expressive Keyboard (with or without progressive feedback) until
they are comfortable.

We ask the participants to compose two text messages for each feedback type:

T1 [User-Generated] Write a sentence to your crush asking him/her out for a dinner.

T2 [User-Generated] Write a sentence to your supervisor asking to schedule a meeting.

Participants always start with task T1 with first Expressive Keyboard with feedback at
the end and then Expressive Keyboard with progressive feedback, before moving on to
the next task. In total, each participant finishes six trials (2 task x 2 feedback mechanism).

We count how many times they delete a word output and rewrite it, despite of whether it
is a recognition error (i.e. incorrect word) or feature error (i.e. incorrect color). We use the
screen capture to record all of the typing activities and audio record the participant’s verbal
comments.

Phenomenon 1: Pre-planning and Post-planning Strategy

In general, weobserved that bothparticipants used the pre- and post-planning strategy for any
feedback mechanism. Participant P1, who did not know how the mapping worked, started
with the trial-and-error strategy in the practice session. After trying several times, he started
to build an ad hoc interpretation of how themapping worked, and took it as a consideration
when writing the next word. In the end, P1 switched to the pre- and post-planning strategy.
Meanwhile, participant P2, who knew in advance how the mapping worked, went directly
to the pre- and post-planning strategy.

Both participants claimed that they did not change their strategies when switching from
ExpressiveKeyboardwith feedback at the end to theonewithprogressive feedback. How-
ever, the experimentor observed that they actually changed their strategies during the gesture
execution. If, in the middle of execution, they already see that the color is not going to turn
intowhat theywant in the end, they halt the gesture execution by releasing their fingers, erase
the wrong output, and then re-execute planmore carefully. For example, a participant wants
yellow-colored “hello”, it means the red and green components should be high. A high red
component maps to an inflated gesture, and a high green component maps to a very curvy
gesture. He now has established a plan: gesture type “hello” with consistent speed, while
making the gesture inflated and curvy. As the Expressive Keyboard (with progressive
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feedback) is showing the intermediate output, he sees a green “hell”. He realizes that it is too
late to inflate the gesture at that point, so he just lifts his finger. He erases the green “hell”,
and starts over. If the final result is an orange “hello”, he realizes that he did not make the
gesture curvy enough. Finally, he starts over, carefully keeping the speed consistent while
inflating a very-curvy gesture.

Phenomenon2: AdvanceKnowledgeandProgressiveFeedbackImprove
Confidence

We observed that P2 who knew the mapping in advance was more encouraged to form ex-
pectations on what color he wanted to generate. In contrast, P1 did not set any specific color
expectation when using Expressive Keyboard with feedback at the end – he only men-
tioned that he wanted to make all words the same color when we asked him to compose a
sentence to his supervisor. This is perhaps because P2 felt like he had controls over the out-
put more than P1, which then encouraged him to be more creative.

However, when P1 switched to using Expressive Keyboard with progressive feedback,
he started to set a color that he wanted to generate. P1 erased more times when using Ex-
pressive Keyboard with the progressive feedback: 12 v.s. 23 out of 14 words for without
and with progressive feedback respectively. When asked, he mentioned it was because he
understood better how to generate the color he liked and thus more motivated to try. Both
participants reported that they were more confident in controlling the color with the pro-
gressive feedback. This phenomenon may suggest that the more participants feel they “un-
derstand” how to control the output generation, the more they are encouraged to put more
effort into learning the system. Although the participants in Experiment 2 could still generate
the desired output properties, informing them about the mapping may affect their learning
process.

In summary, our observation discovers two interesting phenomena. First, advance knowl-
edge of themappingmay not affect user strategy when using Expressive Keyboard, since
the participants tried to follow a mental model of how the mapping worked. Second, know-
ing themapping in advancemay cause users to feelmore confident to build expectation. This
may also inspire the users to use the colors to express different concepts more.
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5.3 Experiment 3: Ecological Validity

Writing is a complex form of interaction that involves motor abilities, context, and other
cognitive aspects of human behaviour. Writing performance or experience may change de-
pending on the context of use [64, 74]. The degree of expressionmay also change depending
on the text the users are composing, thus composition task in amore realistic setting can cap-
turemore insights than standard transcription task [74]. Likewise, ExpressiveKeyboard
is designed to encourage in-context appropriation, i.e. userswill invent newways of usingEx-
pressive Keyboard as they use it in real-life context. Hence, I am interested to investigate
how users choose to use Expressive Keyboard to fit their preference when they are com-
posing a text message while still learning how to use the system in amore realistic context, i.e.
when a user is chatting with his/her friend. I also want to compare how using Expressive
Keyboard affects gesture typing behaviour.

5.3.1 Description

We designed a third experiment to explore how Expressive Keyboard is used in a more
ecologically-valid setting, e.g. chatting with friends. The experiment is divided into three
sessions:

Chat We set up a live conversation between a pair of participants. We specifically chose par-
ticipants who knew each other, and asked each pair to text message each other using a
chat application, so that the participants understand better about the content as well
as the context. We want to observe if it encourages them to produce rich output and
systematically compare it with when they write a prescribed text (later in the simula-
tion session).

Simulation We asked each participant (individually) to re-type five of their sentences using Ex-
pressive Keyboard, to simulate the use of Expressive Keyboard when the ges-
ture variations are mapped to more complex features than color. The goals are to see
1) how first-time users appropriate the system as they learn to control it; and 2) if users
are more likely to put more effort in learning to control their gesture variations if they
write their own text. We also compare Expressive Keyboard to a standard gesture
keyboard, to see if participants change theway they gesture type if they get rich output.

Quiz We asked the participants to produce text with specific goals e.g. “bold text” using
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Expressive Keyboard, to see how much users learn to deliberately control their
gesture variations to generate the desired output properties.

For the simulation session, we use a [2x2] repeated measures design with two factors:

F1 KEYBOARDTYPE: {standard keyboard v.s. Expressive Keyboard}

F2 TEXT TYPE: {user-generate v.s. prescribed}

The standard keyboard is a standard gesture-typing keyboard. The Expressive Keyboard
generates a dynamic font whose shape and colors changes depending on the gesture features.
Considering the previous informal observation, in this experiment we inform the partici-
pants about the mapping and provide a cheatsheet that they can take a look anytime during
the experiment.

5.3.2 Participants

We recruited six pairs of friends, seven men and five women (age range 19-40, mean 25.4); all
use mobile phones daily. Half of them use gesture-typing daily, the others are non-users. No
participants had participated in the two previous experiments.

5.3.3 Hardware and Software

For the chat session, we customized an Android chat application* to capture the gesture data
as well as the typed words. For the simulation and quiz sessions, we developed a custom
Android application that presents either the standard keyboard or an Expressive Keyboard
that renders the dynamic font as described in Section 4.2.2. We predefined a font with n=2;
one typeface is more skewed (italic) than the other. Along with the dynamic font, we also
used the color mapping as described in Section 4.2.1. For recognition, we used KB-2 on the
same LG Nexus 5 (Android 5.1) smartphone as in the previous experiments.

5.3.4 Procedure

Participants sit comfortably in a chair while gesture-typing. The experiment begins with the
chat session, in which each pair of participants chat for 15 minutes without any restriction on

*AndroidHive: http://www.androidhive.info/
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how to gesture-type. Afterwards, we select five sentences from the chat as the user-generate

text.
The simulation session consists of three blocks of five trials each. This is an individual task

where the participant has to write five user-generate and five prescribed sentences (from news,
blogs, etc). Participants are instructed to gesture-type as if writing to their peer and to as-
sume the previous peer will see the same output. The session always starts with the prescribed
text with standard keyboard, followed by an introduction to the Expressive Keyboard and
the mapping used. Participants are encouraged to practice to understand how the system
works; no participant practiced longer than five minutes. For the next two blocks partici-
pants are asked to write both the prescribed and user-generate texts (counter-balanced across
participants). We do not specifically tell them how to use Expressive Keyboard and let
them use it as they like. Throughout the session, we ask the participants to describe aloud
what they want to do and what they are thinking.

The third session is a quiz (three blocks of three trials). We ask them to gesture-type “hello”
three times with specific output goals: 1) bold and red, 2) italic and containing blue, 3) green.
This is to confirm their success rate in controlling aspects of their gestures after using Ex-
pressive Keyboard in a more realistic context. Finally, we interview them regarding their
preference and how they might define their own features and mapping if they could. An
experiment session last for 40 minutes.

5.3.5 Data Collection

We calculate the three gesture features (curviness, inflation ratio, and speed consistency ratio)
as well as WordAccuracy and FeatureAccuracy as in Experiment 2. We log the timestamp
and 2D coordinate of each touch event, and record the screen and audio to capture verbal
comments.

5.3.6 Results and Discussion

Out of 2312 performed gestures from the simulation session, we removed 183 that were not
gesture-typed, most of which were single-letter words. Three of them were picked from the
suggestion bar, five were words that could not be successfully recognized e.g. “folate” while
the rest were single-letter words (e.g. “I”). For the quiz session, we collected 108 gestures and
removed 2 outliers where the participants had lifted their finger at the start of the gesture.
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KEYBOARDTYPE
TEXT TYPE

user-generate prescribed
WordAccuracy

standard keyboard 95% 75.4%
Expressive Keyboard 68.5% 79.5%

FeatureAccuracy
Expressive Keyboard 55.9% 61.7%

Table 5.3: Accuracy in Experiment 3. Participants changed the way they gesture-type with different key-
boards, and aremore likely to explore with Expressive Keyboard. Although using Expressive Keyboard does
not necessarily decrease word-accuracy, participants erased correct words tomodify the output properties
leading to low values for feature-accuracy.

Standard Gesture-Keyboard vs. Expressive Keyboard

Accuracy We ran an ANOVA test to compare performance of KEYBOARD TYPE and TEXT

TYPE. WordAccuracy is significantly affected by KEYBOARD TYPE (F1,11=30.7, p<0.0001) (see
Table 5.3). There is a significant interaction between KEYBOARD TYPE and TEXT TYPE (F1,11=15,
p=.0001). However, further analysis with Tukey HSD showed that the only significant dif-
ference is found when the participants wrote user-generate text using standard keyboard com-
pared to Expressive Keyboard. There was no significant difference between standard

keyboard and Expressive Keyboard when writing a prescribed text, although Expressive
Keyboard’s WordAccuracy is a bit higher (Table 5.3). This suggests that the use of the
Expressive Keyboard does not necessarily decrease WordAccuracy; instead the context
when chatting may help the participants better match the design parameters of the recog-
nizer.

However, with ExpressiveKeyboard, there were cases inwhich the participants erased
a correctly-recognized word to modify the output properties: 18.9% for user-generate and
23.3% for prescribed. The overall FeatureAccuracy, which represents accuracy of Expres-
sive Keyboard is shown in Table 5.3. The time spent to draw a gesture also significantly
increased when using Expressive Keyboard (F1,11=64.9, p<.0001), mean 2 seconds per
word, while they spent the least time when chatting (0.7spw).

Gesture Variability There is a significant effect of KEYBOARD TYPE on inflation and curvi-
ness (F1,11=30.6, p<.0001 and F1,11=5.6, p<.0177 respectively). The participants significantly
inflated their gestures when using Expressive Keyboard (mean 1.6) as compared to stan-
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Figure 5.4: Using Expressive Keyboard in Experiment 3: a) P2 naturally made curvy gesture (green) but
made straight gestures (dark green) to emphasize somewords, b) P6 deliberately made twowords (“burger
shop”) the same shape and color, c) P3 emphasized the first word, but then deliberately made his gesture
more precise (dark color) instead of curvy.

dard keyboard (mean 1.2). There is no significant difference with regards of the speed consis-
tency.

Generating Rich Output From the post-questionnaire, we learned that the participants
took advantage of the fact that they could change the output properties. All participants
stated that they changed the way they gesture-typed with Expressive Keyboard. Most
used it to highlight a specific word or phrase in the sentence, rather than trying to control the
appearance of every word. Two of them mentioned they changed the properties to match
their intonation when reading the sentence. Three of them stated that they expressed their
feelings or mood when writing, e.g. “when it’s something happy I tried to write faster [so]
that text becomes green and blue” (P6).

An interesting use of Expressive Keyboard is to reflect on their own gesture-typing
habits. P1, P10, and P11 realized that they tend to make curvy gestures, and they deliberately
let the output change according to their natural input style. On the contrary, P3 andP8made
a special effort tomake the output text as similar as possible (e.g. all black). This suggests that
continuous changes tooutputproperties canprovide important feedback for theparticipants
and may change their behaviour when gesture-typing – not only to customize the output,
but also to try to gesture-type more precisely.
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Figure 5.5: Participants successfully varied or kept constant the inflation and speed consistency when in-
structed. They naturally made curvy gestures, but couldmake themmore curvy when instructed.

Control of Gesture Features

In the quiz section, the average WordAccuracy was 86%. Participants were most accurate
when controlling speed consistency (33 out of 36 trials, or 92%) and curviness (32/36 or 89%),
but less accurate when controlling inflation (26/34 or 76%). Further analysis revealed that
the recognition error was caused by 1) too much deformation (6 out of 15 errors), 2) faulty
start or end position (6/15), and 3) removing the finger too early (3/15). This suggests that
while many factors affect recognition rate, certain types of intentional variationmay increase
error to a small extent.

The instruction had a significant effect on all the gesture features (all p<.0001). A post-
hoc testwithTukeyHSD showed a significant difference between the instruction “italic” and
the others. In Figure 5.5, we can see that in general the participants speed-up (mean rate=1.5)
with higher variability when asked tomake the output italic; however both the value and the
variability dropped for instructions which required them to keep the speed constant (0.86
and 0.84 for “bold” and “green” respectively).

73



Chapter 5 5.4. Implication For Designs

Similar significant differences also appear for inflation rate. Pairwise t-tests with Tukey
HSD showed that there is a significant difference between the instruction “bold” and the
others. However, for “green”, the inflation rate is a bit higher (mean=1.6). Based on our
observation, this is because the participants overshot when trying to make a curvy gesture.

Meanwhile, the gestures are quite curvy for all instructions: with means 10.9, 9.9, and 13.8
for “bold”, “green”, and “italic”, respectively (a value of 12 indicates minimum curviness).
Gestures are most curvy when instructed implicitly, however, it is not significantly different
from “bold”. This suggests that inflating the gesture also increased curviness. Overall, partic-
ipants naturally made curvy gestures, but were able to increase curviness when necessary.

In summary, when using Expressive Keyboard to write their own text, the participants
were more likely to put effort in controlling how the output should look like. This signifi-
cantly affects the word recognition accuracy, since the participants exploredmore to produce
the output they liked. When they wrote prescribed texts, the word recognition accuracy was
not affected. The context when chatting may help the participants type more fluidly and
thus better match the design parameters of the recognizer. However, as we found in Exper-
iment 2, participants also erased correct words to modify the output properties more with
Expressive Keyboard. They also spent more time to finish a trial when using Expres-
sive Keyboard. Since all participants were necessarily novice users, a more longitudinal
study of Expressive Keyboard is needed to determine whether accuracy improves with
experience. Additional factors may also affect user performance when using Expressive
Keyboard, for example, in Experiment 3 six participants mentioned that they sometimes
changed their hand position to increase the precision of their finger in gesturing, e.g. from
using thumb to index finger.

5.4 Implication For Designs

RevealingPastWritingProcess Wecanuse ExpressiveKeyboard to reveal the past pro-
cess of their ownwriting, either to enrich interpersonal communication or to improve typing
accuracy. Just like in verbal communication, one may struggle in choosing the right diction
to express what they really mean, for example by pausing or correcting herself when she is
not sure. In text-based communication applications, this may be inferred by looking at the
feedback of whether the sender is typing or not, e.g. a text feedback “Alice is typing” or a
blinking (...) ellipsis. However, it is rather ambiguous since there can be many reasons why
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the sender takes a while to type in the whole sentence. For example, we can change the color
basedonwhether awordhas been changed a lot or the sender hesitates during thewritingpro-
cess. From the receiver’s point of view, it may communicate a subtle information. From the
sender’s point of view, it may also act as a “pre-send mechanism” that lets her check whether
the final output is desirable or not. To push the idea even further, we can let users to save
and appropriate their pattern for future use, such as suggesting a better diction alternatives
or opting not to show a particular typing habit to the senders.

Inserting andGenerating Emoticon Emoticons are often used to substitute or accompany-
ing text as a way to convey emotion expression [45]. In today’s commercial chat applications,
users usually choose one (or more) from a list of predefined emoticons. Alternatively users
can also type a particular keyword, e.g., ‘sad’ to produce :(, draw a gesture [63], or search
through an emoticon recommendation system [72]. Expressive Keyboard can improve
an emoticon recommendation system, for example, by sorting the suggestions based on the
gesture characteristics. Additionally, the participants mentioned that they would like to gen-
erate a parametric emoticon. For example, they would like to control the color, the size, or
the number of the emoticon by manipulating the gesture characteristics. We can also use
Expressive Keyboard in the context of text-to-speech generator, in which the spoken in-
tonations change depending on how the words are gesture typed.

Invoking Commands We can use Expressive Keyboard to select simple, discreet com-
mands, such asmode switchingduring text editing. For example, normal gestures towrite En-
glish words while inflated ones to write German words; slow gestures generate thick strokes
while fast ones generate thin strokes; or inflating the gesture as a way to “tell” the keyboard
not to auto-correct the word. We can broaden the idea to other context such as web search-
ing, for example, normal gestures invoke aweb searchwhile inflated ones an image search. We
can also interpret the gesture variations into urgency levels. For example, when writing an
item in a to-do list, a fast gesture will automatically set the priority high. We can potentially
include the urgency level into the notification sent to the receiver.

5.5 Summary

Experiment 2 explored initial learning aspect of Expressive Keyboard, in which the par-
ticipants just used it without proper training. All of the participants were not daily users
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of gesture keyboard – not to mention Expressive Keyboard – yet, they were able to keep
the gesture-typing accuracy (81.8%) at a reasonable levelwhile using ExpressiveKeyboard.
However, the participants sometimes erased correctly-recognizedwords (overall 56.6%of cor-
rectwords) to change its output properties. Webelieve that this is a promising start, since this
experiment focuses on “immediate use” in which the participants tried using Expressive
Keyboard in about an hour and we did not inform users about how the mapping worked.

Besides, Iwould like to emphasize thatwe should not see ExpressiveKeyboardas a key-
board that as a “color picker”. Obviously, compared to a standard color picker, users will be
able to pick the colormore accurately and efficiently than bymanipulating their gesture char-
acteristics. Expressive Keyboard emphasizes the value of human variability that exists in
gesture-typing input, instead of treating it as a deformation to a “correct” gesture input. The
participants were able control aspects of their gestures to generate the desired color (success
rate 75%), however the observed learning curve had not achieved a stabilized performance. A
longitudinal study will be needed to see how users learn to control the aspects of their ges-
tures over time (i.e. expert performance) and in which state the learning curve will reach a
stabilized performance.

Experiment 2 highlights the importance of feedback, in this case, the color output, both
to better reveal how the mapping between gesture characteristics and color components to
the users, and to apprise users of their performance. The color may also act as an intrinsic
reward thatmotivates users to better learn controlling their gestures. Hence, focusing on the
color (i.e. output) led to bemore successful in fulfilling the instructions. We also learned that
knowing the mapping in advance may help the participants to gain more confidence when
using Expressive Keyboard for the first time, which then encouraged them to explore
and do more things.

Experiment 3 explores the use of Expressive Keyboard that emerged as the users ges-
ture type in a more realistic context. We found that the users found it enjoyable to be able
to generate rich output when they were communicating with their friends. They were will-
ing to put more effort in learning to carefully control aspects of their gestures as they wrote.
Experiment 3 also confirms that participants were able to selectively control curviness, speed
consistency, and inflation when they want to, although they naturally draw curvy gestures
and slow down at the end of their gesture.

Expressive Keyboard successfully demonstrates how taking advantage of both ma-
chine learning and the richness of human’s motor control can increase the expressive power
of gesture-based interfaces such as gesture keyboards. Users can gesture type naturally, yet
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the output contains richer information. Users do not need to deliberately control their ges-
tures to be able to implicitly communicate different things in their output. Nevertheless,
users can also control their gesture deliberately, and reach a reasonable proficiency level af-
ter using Expressive Keyboard, e.g. for less than an hour during the experiments. Once
they used Expressive Keyboard, they quickly thought of other possibilities of how they
wanted to use it in their daily lives. This demonstatres how Expressive Keyboard not
only encourages but also inspires users to newways of using the system to fit their needs, and
possibly designers to “recycle” existing data in a “presumably” closed system such as gesture
keyboards.
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6
Invoking Complex Commands

from Gesture Keyboards

In Chapter 4, I demonstrate howwe can increase the expressive power of a gesture keyboard
by mapping the gesture variation into rich output. Users can gesture type as they usually do,
but the output contains additional information that can be used to express context,mood, or
personal style. They also can deliberately manipulate their gestures to communicate intent,
e.g. sarcasm, or subtle emotion change. On the other hand, users often issue a command in
between typing activities on their mobile devices. To issue a command, mobile devices rely
on buttons, menus and dialog boxes, which restricts the available command set to what fits
on a tiny screen. When the command set is big, the system often needs to hide the keyboard
and reuses the space to display the menu. This causes inefficiency when switching back and
forth from typing to issuing a command (see Table 6.1).

I am interested in designing a simple, yet powerful method of issuing commands from
a mobile device, that enables a variety of alternatives depending upon the task, the user’s
cognitive andmotor skills, and the size and structure of the current command space. Appert
and Zhai argued that a soft keyboard takes the valuable screen space, and thus, a free form
gesture-based command selectionsmay be preferable [5]. However, most ofmobile activities
include typing: texting, searching, naming contacts or calendar items, taking notes, etc. Why
not let users access a large command space from the keyboards?

78



Chapter 6 6.1. Revisiting Mobile Device’s Screen Real Estate

This chapter describes mywork that focuses on broadening the access to a large command
space from a gesture keyboard. I start with analyzing the structure of the device screen space,
to maximize the screen real-estate use. Then, I describe a novel interaction technique called
CommandBoard, which turns the space above the keyboard into a general-purpose com-
mand gesture space, to enable more sophisticated command generation. I then show how
CommandBoard leverages these to provide users with a variety of simple, yet powerful
command invocation techniques.

6.1 Revisiting Mobile Device’s Screen Real Estate

In traditional interactive displays, a soft keyboard usually appears at the bottomof the screen,
taking almost half of the valuable screen space. The soft keyboard’s output is linked to an-
other display area on the screen– the output space. The two are linked, such that user actions
on the soft keyboard produce output on the related display space. For example in a chat ap-
plication, the soft keyboard appears at the bottom of the screen and the text output that is
typed (or drawn) by the user appears within the display area above, to create a conversation
(Figure 6.1). Mobile applications often include menus, e.g. tapping the top-right icon in the
Message application shown in Figure 6.1 opens up the “Setting”menu. Themenu view often
appears on top of the current view, occluding the content and hiding the keyboard. Once
they finish selecting the command, the users often have to explicitly tap on the text field to re-
display the keyboard before continuing typing. Switching back and forth from typing view
to menu view is cumbersome and may interrupt the cognitive process [67, 61, 43].

My goal is to provide a more powerful alternative command invocation technique that
avoids this back-and-forth view switch. One possible solution is to let users invoke com-
mands from the keyboard, like invoking keyboard shortcuts from a physical keyboard. Each
screen space described in Figure 6.1 is a substrate that has a structure and a set of rules on how
to interpret the data. The text input space, i.e. the keyboard view, uses theQWERTY layout
as its structure, and interprets the gesture drawn on top of it as a word gesture. The sugges-
tion bar is another substrate that displays word candidates produced by the keyboards and
receives touch input such as a tap. The upper space displaying the content is also another sub-
strate. A slide gesture done in the text input space is interpreted as a word gesture, while in
output space it is interpreted as a scroll. We can redefine the screen space’s substrates, so that
all areas of the screen can be used to invoke commands without having to switch the view
from keyboard to menu. I propose CommandBoard, which adds contextual substrates
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Figure 6.1: The screen real estate in the current mobile interfaces. Users type on the bottom (text input)
space, choose word suggestions from the suggestion bar, and see the content in the upper (output) space.
Each space is a substrate that has a specific structure and different way of interpreting touch input.

that interpret a wide variety of gestures drawn above the keyboard.

6.2 CommandBoard

CommandBoard extends the functionality of a soft keyboard to an efficient command-
entry tool that provide access to a large command space. We build on a key insight from the
gesture keyboard, i.e. that the system can recognize users’ gestures as they cross over the keys,
and interpret them as text. CommandBoard generalizes this idea by creating an additional
interaction layer, above the keyboard, for interpreting free-form gestures. We can think of
this as extending a transparent interactive a substrate above the keyboard, where users can
still see the usual display, but also issue gesture commands. This creates a general-purpose
gesture command input space that supports a variety of command entry techniques.

CommandBoard takes full advantage of the limited screen real estate on a smartphone.
Figure 6.2 shows four discrete interactive substrates, extending the traditional interaction
spaces described in Figure 6.1. As with gesture keyboard, the lower space is dedicated to gen-
erating text input or emoticons via tapping, crossing or dwelling on keys. Users can also
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Table 6.1: Step comparison for CommandBoard and pulldown on touch screen devices fromwhen the users
switch from typing to command selection until switching back to typing.

Pulldown Menu CommandBoard’s CommandBoard’s
INLINEGESTURE SHORTCUTS TYPE-AND-EXECUTE

1. tap themenu bar to dis-
play it

1. gesture-type a word 1. gesture-type the com-
mand keyword

2. decide whichmenu has
the command item

2. go up to the upper
space

2. cross the command
item in the command bar
while going up to the up-
per space

3. look for the menu
name

3. perform the gesture to
select the command item

3. perform the execute
gesture

4. tap on the menu name
to display the command
items

— command is executed — command is executed

5. look for the command
item

— continue typing — continue typing

6. tap the command item
— command is executed
7. tap the textfield to hide
the menu bar and redis-
play the keyboard
— continue typing

swap keyboards, e.g. numeric or emoticon. CommandBoard includes additional features
(marked in green), which let users specify command names for later execution via a gesture.

The gesture keyboard provides an optional suggestion bar in the middle where users tap
to choose among suggested words. CommandBoard offers a similar command bar that
users cross to choose among suggested commands. Finally, CommandBoard transforms
the upper display area at the top of the screen into a command-gesture input space where
users can draw an execute gesture to issue the current command name, or draw a unique
command gesture. Since this overlay is transparent, users can see the underlying display, such
as the current chat conversation.

CommandBoardexists inharmonywith existing command-generation techniques, such
as menus and buttons, but also offer novices the opportunity to transition into power users,
able to execute commands fluidly, at the tip of their fingers. I introduce twomost basic tech-

81



Chapter 6 6.2.1 Type-and-Execute Commands

Figure 6.2: CommandBoard specifiesmultiple command entry spaces. Newmethods (in green) include
typing a command name followed by an execute gesture; crossing a suggested command in the command
bar; or executing a unique gesture in the upper command gesture input space. An in-context dynamic guide
shows gesture-commandmappings.

niques: TYPE-AND-EXECUTE and INLINEGESTURE SHORTCUTS.

6.2.1 Type-and-Execute Commands

Although novices may need to search through menus to discover the available commands,
frequent users are usually familiar with both the commands and their names. Navigating
through menus can be time-consuming, especially if the user forgets where the desired com-
mand is classified within a hierarchical menu. Some graphical user interfaces offer a search
bar where typing the keyword or command name displays its location in a pull-downmenu,
if the command exists. Clicking on the search result issues the command, as if it had been
selected from the menu. CommandBoard offers a similar function by letting the user type
any command name from the keyboard, and then execute it directly by drawing the execute
gesture in the display area above the keyboard.

KEYWORD SEARCH Since CommandBoard co-exists with traditional menus, we have
prior knowledge about the current set of command names or command-gesture input space.
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Figure 6.3: A diagram describing TYPE-AND-EXECUTE technique of CommandBoard. The text in green
represents the newmethods.

When a user gesture-types a word, CommandBoard ’s TYPE-AND-EXECUTE technique ex-
amines the first four words suggested by the keyboard recognition engine to see if any is a
keyword in the command space. The TYPE-AND-EXECUTE technique treats each element of a
compound command name as a search keyword. For example, both “line” and “spacing” can
be used to find Line Spacing. Users need only type the first unique letters of a long com-
mand name and the system will suggest the full command. For example, typing ’brightn’
produces the Brightness command in the command bar, which can then be invoked by
performing the execute (/\) gesture (Figure 6.4b).

COMMAND PREVIEW If the keyword search is successful, the TYPE-AND-EXECUTE tech-
nique displays a preview: the full command name appears at the top of the screen. The
keyboard continues to recognize the word-gesture as the user types. Thus, when the preview
appears, the TYPE-AND-EXECUTE technique stores the keyword so that even if the recognized
word changes as the user slides her finger upward, the command keyword remains the same.
If the user continues gesture-typing, the preview disappears. If the user releases her finger
within the keyboard space, the word appears as normal text.
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COMMAND EXECUTION If, after typing a recognized command name, the user contin-
ues to slide her finger upward, she enables the command-gesture input space. If she now
performs a /\ gesture, the TYPE-AND-EXECUTE technique will execute the corresponding com-
mand. This allows the user to perform any command directly from the keyboard, as long as
she already knows the command name. She need not learn any special commands beyond
the execute gesture.

We designed the execute gesture specifically so that it would not interfere with the Google
Keyboard’s technique for cancelling gestures. The user cancels the current word by slid-
ing her finger into the space above the keyboard and releasing it. By contrast, Command-
Board’s execute gesture is designed to move up and then down, explicitly change direction,
to reduce the risk of issuing unintended commands.

Figure 6.4: CommandBoard creates a new command gesture input space above a soft keyboard. Users can: a)
type ‘happy’ and use a dynamic guide to style it as bold; b) type ‘brightn’, draw an execute gesture and adjust
the brightness slider; c) type ‘sans’, choose ‘sansmono’ and draw an execute gesture to change the font; d)
type ‘color’, select yellow in themarkingmenu to change the brush color.

I provide some applications of CommandBoard’s TYPE-AND-EXECUTE technique, to better
illustrate how the users can use them in different context.

Text Editor Application

Most text editor applications for mobile devices, such as Google Docs, offer only a lim-
ited number of commands. The process is also cumbersome: Selecting a menu command
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requires hiding the keyboard, navigating to and executing the command, then closing the
menu and bringing back the keyboard, all before continuing to type.

The TYPE-AND-EXECUTE technique simplifies command selection for text editors. The user
can type the name of any menu item, as if it were a search word, and then execute it directly.
For example, Figure 6.4c shows the user typing the word ‘sans’, then sliding her finger above
the keyboard to perform the execute gesture, at which point TYPE-AND-EXECUTE applies the
Sans Mono font to the selected text.

CommandBoard’s TYPE-AND-EXECUTE technique also lets users type sub-menu names,
and display their items in the command bar located above the suggestion bar. This is par-
ticularly useful when the menu item cannot be typed, for example the numbers shown in
Figure 6.5. The user types ‘line’ and a preview for the Line Spacing sub-menu appears (Fig-
ure 6.5a). The menu items then appear on the command bar. She sets the Line Spacing
value to 1.2 by crossing through it in the command bar and then performing the execute
gesture (Figure 6.5c).

Figure 6.5: After typing an existing command name, a) a preview appears. Since “Line Spacing” is a sub-
menu, its menu items appear in the command bar. After sliding across the command bar, b) performing a |
gesture will cancel writing, whereas c) performing a /\ gesture will execute the command.

85



Chapter 6 6.2.2 Inline Gesture Shortcut

Doodle Application

CommandBoard’s TYPE-AND-EXECUTE technique lets users display and invoke commands
froma contextualmenu such asmarkingmenu [44]. Theuser types the commandname, and
the corresponding menu appears as she slides up to the upper space. For example, manymo-
bile applications, such as iMessage and SnapChat, let users ‘doodle’ on their messages. With
CommandBoard’s TYPE-AND-EXECUTE, users can specify brush properties, such as chang-
ing the color or brush type, with a marking menu. In Figure 6.4d, the user types ‘color’. She
slides her finger upward to reveal the Colormarking menu, which brings up various brush
color, and then moves down-left to select Yellow.

Note that a challenge in combining CommandBoard with a marking menu is deciding
when a gesture should be interpreted as a ‘mark’. One solution is to require users to begin
from the middle of the screen, which, given the phone’s limited screen real estate, would
ensure sufficient space to move in all directions.

Accessing OS-level Commands

CommandBoardcan also access OS-level commands such as changing the brightness level
or volume. For example, in Figure 6.4c, the user begins gesture-typing the ‘brightness’ com-
mand. Because the keyword search is already successful by the time she writes ‘brightn’, she
can immediately slide to the command gesture input space. Upon performing the /\ gesture,
a slider appears, with the handle under her finger. Moving along the x-axis (left and right)
adjusts the screen’s brightness, whereas moving along the y-axis (up and down) moves the
slider’s position on the screen.

6.2.2 Inline Gesture Shortcut

CommandBoard’s INLINE GESTURE SHORTCUTS let users invoke gesture shortcuts from the
keyboard as they type. Instead of typing the command name, the user types the object of
the command, for example, the text to be styled. The user then slides her finger above the
keyboard, pausing to bring up the dynamic guide that shows the current set of possible com-
mands (see Figure 6.4a). Users can benefit from motor memory to recall these gestures. As
they become experts, they can perform the command gesture directly, without pausing for
the guide.
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I provide some applications of CommandBoard’s INLINEGESTURESHORTCUTS technique to
illustrate how the users can use them in different context.

Chat Applications

Although soft keyboards are not specifically designed to support command input, some chat
applications e.g. WhatsApp or Slack lets user use markdown languages to issue text styling
commands. For example, typing an asterisk before and after a word (_help!_) produces
(help! ). Markdown commands are effective keyboard shortcuts when using physical key-
boards, because users avoid lifting their hands to move the mouse. Unfortunately, on soft
keyboards, markdown languages force users to switch from the alphabetic to the symbolic
keyboard, disrupting their writing flow. Issuing styling commands as text can be cumber-
some, especially if done often or multiple times in a row.

CommandBoard’s INLINE GESTURE SHORTCUTS offer a more efficient alternative, by ex-
ecuting a specialized gesture directly from the keyboard. In Figure 6.4a, the user wants to
style the word ‘happy’. After writing it, she moves into the upper area, pauses to see several
styling alternatives, and then follows the pigtail to execute the bold command. As before,
the dynamic guide offers a path to help users develop their motor memory, becoming expert
over time.

CommandBoard’s markdown language is designed to be similar to those in existing ap-
plications, where the user writes a symbol before and after the word. Thus, writing ‘news’
followed by a pigtail gesture generates ‘_news_’ on the text field buffer, which then will be
rendered as news. This enables users to style more than one word, by moving the caret in
between the markdown symbols and insert more words.

Contact Applications

CommandBoard’s INLINE GESTURE SHORTCUTS lets users issue commands from within the
search bar, as soon as the desired result appears. For example, most phones have a contacts
application that lets users tap on a contact to view the person’s details and then call, send an
SMS, or use another communication app to communicate with that person. Users can also
access a person’s details by typing her name in the search bar.

CommandBoard’s INLINEGESTURESHORTCUTS let users issue commands fromwithin the
search bar, as soon as the desired result appears. For example, if ‘Mom’ exists in the contacts
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list, the user can gesture-type ‘Mom’, then slide up to the upper space and draw a pigtail
gesture to call her. If the search produces multiple contacts the command bar displays the al-
ternatives. For example, Figure 6.2 shows two contacts: Alice Brooke andAlice Waltz. Here,
the user crosses through theAlice Brooke contact and then draws a pigtail gesture to call her.

6.3 Gesture Chunking with CommandBoard

Buxton [16] introduced the notion of “chunking”, i.e. grouping task elements into a larger
inseparable whole. Novice users, during the initial learning process, often divide a task into
smaller chunks that they perform sequentially. In the case of gesture typing, this happens as
novices perform each gesture segment as a separate act, i.e. a line from “h” to “e”, and then
another line to “y” whenwriting the word “hey”. On the other hand, in expert performance,
the size of the chunk is larger. Gesture chunking improves motor efficiency, however it also
increases the cognitive and learning burden on the users.

By interpreting each segment of a gesture to invoke a command, CommandBoard en-
ables gesture chunking, i.e. the commandobject and the command verb to be chunked in one
single continuous stroke. The INLINE GESTURE SHORTCUTS technique involves two levels of
chunking: the first segment on the keyboard area is interpreted as a word (command object)
and the segment above the keyboard area as a command verb. We demonstrate three levels
of chunking with the TYPE-AND-EXECUTE technique, where the command verb space is ex-
tended to multi layers submenu. For example, as illustrate in Figure 6.5, the first segment on
the keyboard area is interpreted as the menu, the second on the command bar as the option,
and the last above the keyboard area to execute the command.

6.4 Learnability Aspects

Both TYPE-AND-EXECUTE and INLINEGESTURE SHORTCUTS are designed for efficiency, and rely
on an experienced user’s ability to either recall the command name, or the associated gesture.
By and large, experts want to enter commands as efficiently as possible, intermittent users
need to be reminded of commands, and novices need incremental help when learning the
commands. Expert users must not only know that a command exists, but must also be able
to recall either the command name, or the associated gesture shortcut.

Each technique provides scaffolding to help novice users discover the functionality and
learn how to perform the gesture chunking. The TYPE-AND-EXECUTE technique has a com-
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mand preview function, that displays a preview on the upper space if users gesture type a
command name. Users may discover the contextual command-gesture input space acciden-
tally while they gesture type. In the beginning, the preview has a high transparency. If the
user move her finger towards the upper space, the preview becomes more apparent, i.e. the
transparency is getting lower. This may help users to discover that they need to slide up to
invoke the command.

We also provide several types of dynamic guides to help novices learn, and to help inter-
mittent users when they forget. For TYPE-AND-EXECUTE technique, these may appear as com-
mand options in the command bar. Users can access a hierarchical command by typing the
categoryname fromany level, either the branch (e.g. “Style”) or the leaf (e.g. “Title”), and the
command items reveal all of the command items. For INLINEGESTURE SHORTCUTS technique,
a markingmenu [44] orOctoPocus free-form gestures [8] appear if users pause their gesture
in the command-gesture input space. MarkingMenu orOctoPocus then display all available
commands and users are guided to finish the gesture invocation. Experts users who already
know how to invoke the desired command can just perform the gesture without pausing.

6.5 Cognitive and Motor Efficiency

One of the key benefits of graphical user interfaces such as menu or toolbar is their accessi-
bility to novices. Invoking commands via buttons, menus and dialog boxes requires users
to simply recognize the corresponding commands. In contrast, interfaces designed for more
expert users, such as the Linux command-line interface or markup languages such as LaTeX,
require the user to recall the command name, as well as its syntax. Many experts prefer the ef-
ficiency of command-line interfaces, even though they require learning and subsequent recall
of command names and syntax. Some mobile chat applications such as WhatsApp or Slack
already include command-line interface, e.g. markdown language that lets users write bold
or italic text by adding symbols before and after the text. For example, writing _hello_ will
produce italized hello. This approach is efficient on a physical keyboard, since it avoids leav-
ing the keyboard to move the mouse, but requires two keyboard swaps on a soft keyboard.
Worse, users have no easy way to learn the symbol mappings.

One of the goals of CommandBoard is to bridge the gap between these two approaches,
by supporting both recognition- and recall-based interaction, with a smooth transition be-
tween novice and expert use. With CommandBoard’s INLINE GESTURE SHORTCUTS tech-
nique, users can apply text formatting to the currentwrittenwordby drawing a gesture short-
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cut on the upper space at the end of the word gesture input. Novices can pause to trigger the
dynamic guide and just follow the guide to finish the gesture. Once they remember how to
do it, they can just draw the gesture shortcut without pausing. CommandBoard benefits
themost when users are able to remember the command shortcut. Nevertheless, I argue that
it also offers a cognitive advantage, that they do not have to switch the keyboard view to the
symbol view nor open a pop-up menu, which may disturb the flow of typing.

To investigate further howmuch cognitive andmotor efficiencyCommandBoardoffers,
I conduct an experiment to compareCommandBoard to a command invocation technique
on mobile devices.

6.5.1 Experiment Description

For users to invest their time in learning an interaction technique, we need to show that it
offers more power and both cognitive and motor efficiency than other alternatives. We be-
gin by examining “expert” behavior, with a focus on the cognitive and motor efficiency of
the technique. We use a common experimental strategy for simulating expert performance:
we show the participant the correct action so that we measure only performance, not con-
founded by unmeasured memory issues.

We sought an ecologically valid domain for testing CommandBoard’s ability to support
both recognition and recall. We chose the markdown commands available in chat appli-
cations such as WhatsApp and Slack, since users can style their text by typing markdown
symbols before and after the text (recall), with a “cheatsheet” in the menu if they forget the
symbols (recognition). For evaluating expert behaviour, MARKDOWN SYMBOLS offer a fairer,
more realistic comparison than standard pull-downmenus, which would be even slower. In
the INLINEGESTURE SHORTCUTS condition, users write a word and then draw a command ges-
ture directly from the keyboard to style it, whereas in the MARKDOWN SYMBOLS condition,
users type markdown symbols before and after the word to be styled. Although not a pri-
mary goal, we are also interested in whether or not users begin to learn gesture-command
mappings, simply by using the technique. Our research questions include:

1. Are CommandBoard’s INLINE GESTURE SHORTCUTS faster and more accurate than
text-basedMARKDOWNSYMBOLS?

2. Do users prefer CommandBoard’s INLINEGESTURE SHORTCUTS?
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6.5.2 Method

We conducted a two-part study, using a within-participants design, to compare Command-
Board’s INLINEGESTURESHORTCUTS technique toMARKDOWNSYMBOLS (see Figure 6.7). Part
A is a one-factor experiment that compares speed and accuracy of expert users using these two
techniques. Part B is a qualitative study designed to assess participants’ preferences as well
as incidental learning with respect to each technique. Part B follows Part A, with the same
participants, hardware and software.

6.5.3 Participants

We recruited 12 right handed participants (4 women, 8 men), aged 23-41. All use mobile
phones daily. Two gesture-type daily; the others are non-users. Three sometimes use mark-
down symbols in existing chat applications; the rest do not.

6.5.4 Hardware and Software

Weused two LGNexus 5X (5.2” display) smartphones, running Android 7.1. I implemented
CommandBoard as an Android application that lets users issue text-styling commands
with INLINE GESTURE SHORTCUTS, using the native Android gesture recognizer. The INLINE

GESTURE SHORTCUTS technique requires the user to draw through the letters of the indicated
word on the keyboard. CommandBoard recognizes the word, and renders it on the screen.
If the user continues the stroke above the keyboard, a semi-transparent overlay appears and
the stroke is interpreted as a command gesture. The overlay displays an OctoPocus-like [8]
dynamic guide indicating the gestures associated with possible styling commands. Lifting
the finger applies the recognized gesture-command to the word output and the overlay dis-
appears. Note: We removedOctoPocus’ dwell delay in the experiment to avoid confounding
time measures. I also implemented the MARKDOWNSYMBOLS technique, which requires the
user to type a specified symbol before and after the word to be styled.

Command-SetDesign I created a command set consisting of six text-styling commands:
underline,monospace, big, small, outline, and gradient color and mapped them to INLINEGES-

TURE SHORTCUTS and MARKDOWN SYMBOLS. The INLINE GESTURE SHORTCUTS set consists of
six gestures chosen from [5] (see Figure 6.6). I ensured that these gestures do not overlap
when displayed together in an OctoPocus-style dynamic guide using [54]. The MARKDOWN
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SYMBOLS set consists of six characters chosen from the second row of the symbol keyboard:
@, #, $, %,&, and+. I ensured that none overlapwith existing chat symbols from, e.g.,What-
sApp and Slack. Mappings between gestures and markdown symbols are counter-balanced
across participants using a Latin square.

Figure 6.6: Gesture set: Grey circles indicate where to begin drawing.

Phrase Set Design We constructed two sets of 24 three-word phrases drawn from the
OxfordDictionary*. Themiddle words are each four-five letters long, and end in 24 different
letters of the alphabet (we exclude ‘j’ and ‘q’), to ensure gesture starting points are distributed
evenly across the keyboard. I also balanced angles between stroke segments across the sets, to
avoid unwanted performance effects [62, 2]. Eight words include acute angles, e.g.“men”;
eight include at least one obtuse angle, e.g. the ‘agi’ in “magic”; and eight include only 0◦ or
180◦ angles, e.g. “power”.

We used the 24 middle words to create two sets of 24 three-word phrases. We created
twophrases around eachmiddleword, using three-to-six letter surroundingwords thatmake
sense when read together as a phrase. For example, the first set includes ‘play video games’,
and the second set includes ‘some video clips’. We distributed the first set of 24 phrases across
the practice and experimental conditions of the experiment, and distributed the second set
across the pre- and post-test conditions of the study. We counter-balanced for order within
and across participants using a Latin square.

6.5.5 Procedure

Figure 6.7 shows the study design. Part A consists of four conditions, each comprised of
two blocks of six trials, grouped by technique. Part B consists of a single recomposition task
where users can freely choose the desired technique.

*https://en.oxforddictionaries.com/
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Figure 6.7: Part A (Experiment): Each condition (Practice, Experiment, Pre-test, and Post-test) includes two
blocks of six trials, one per technique, with three replications in the experimental condition. Part B (Study):
Participants recompose 12 of their ownmessages, with free choice of technique.

Figure 6.8: Each trial presents instructions above the line, and the result below the line. Practice and Ex-
perimental conditions present a) INLINEGESTURE SHORTCUTS to draw, or b)MARKDOWNSYMBOLS
to type, to issue the specified styling command. Pre- and Post-Test conditions present c) the styled text to
reproduce with the specified technique, with no feedback.

Part A: Trial Description

Each trial begins by displaying a three-word phrase, with a styledmiddleword, e.g. play video
games. Theparticipant presses start, then retypes the phrase, using the indicated technique
to style the middle word. This simulates the process of issuing styling commands during the
flow of writing. To simulate “expert” behavior, each trial includes explicit instructions as
to how to execute the command, removing the need for recall memory. Participants may
preview styling results.

Practice and experimental trials display the correct styling command, either the gesture to
draw (Figure 6.8a, INLINEGESTURESHORTCUTS condition) or the symbols to type (Figure 6.8b,
MARKDOWN SYMBOLS condition). This simulates expert performance by eliminating errors
due to forgetting a gesture shape or markdown symbol. Conditions are separated by short
breaks.

Practice Condition Participants are exposed to two practice blocks, one per TECH-

NIQUE(INLINE GESTURE SHORTCUTS and MARKDOWN SYMBOLS). Each block involves typing
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six three-word phrases, and styling the middle word. Each trial shows which INLINEGESTURE

SHORTCUTS orMARKDOWNSYMBOLS to use. In the INLINEGESTURESHORTCUTS condition, the
gesture template appears as soon as the participant’s finger leaves the keyboard. Participants
can retype phrases as often as they like, until they are comfortable performing the task quickly
and reliably. An error message appears if they forget to apply the style or make a typing or
styling error. Pressing clean restarts the trial; done moves to the next trial.

ExperimentalCondition Participants are exposed to two six-trial blocks, oneper TECH-
NIQUE(INLINE GESTURE SHORTCUTS and MARKDOWN SYMBOLS), for a total of 12 trials. Exper-
imental trials are identical to practice trials, except that participants retype and style each
three-word phrase three times (three replications), to provide a stable performance measure.

Pre- and Post-test Conditions Participants begin with two blocks of six trials, one
for each TECHNIQUE(INLINEGESTURESHORTCUTS andMARKDOWNSYMBOLS), counter-balanced
for order within and across participants. Each trial displays the phrase to be typed including
the styled the middle word (see Figure 6.8c). Participants reproduce the styled phrase with
each technique, with no feedback. This serves as a baseline measure of styling command
recall.

The pre- and post-test conditions are identical, but use phrases from the alternate phrase
set. The pre-test offers an initial assessment of learning, how much they remember imme-
diately after their first exposure to each technique. The post-test offers a second assessment,
based on more extensive practice during the recomposition task.

Part B: Recomposition Task

After completing the Pre-Test condition in Part A, participants are asked to perform a more
open-ended set of tasks, in order to assess their overall preferences for each technique. For
greater ecological validity, we asked participants to check their smart phones and choose 12
recent messages to retype, avoiding ones they felt were too personal. Participants were free
to change the text as they liked. We then asked them to recompose these 12 messages, using
either technique to style at least one word. We provided a ‘cheat sheet’ with the relevant
markdown symbols for theMARKDOWNSYMBOLS technique, and displayed a dynamic guide
with the relevant gestures for the INLINEGESTURE SHORTCUTS technique.
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6.5.6 Measures

Input Time We measure input time in seconds for the phrase and each word-output, ref-
ered to as: WO1,WO2, andWO3. Note thatWO2 includes inserting the two markdown sym-
bols. Thismeasure allows us to assess the gesture-typing time for both INLINEGESTURESHORT-

CUTS andMARKDOWNSYMBOLS.

Gesture-TypingandCommandSelectionTime Theparticipantmust gesture-type
the middle word and style it using INLINE GESTURE SHORTCUTS or MARKDOWN SYMBOLS (i.e.
WO2). We capture the times spent in each sub-activity. We measure Command Selection
Time (command time) and Gesture-Typing Time (typing time).

INLINEGESTURESHORTCUTS: Wemeasure the time spent leaving the keyboard and drawing
the gesture (command time). If a participant crosses the top border of the keyboard, below
the suggestion bar, at eventk, then command time and typing time are as follows:

command time = t(eventN)− t(eventk) (6.1)

typing time = t(eventk)− t(event0) (6.2)

MARKDOWN SYMBOLS: We measure the time spent writing the symbols before and after
the word (command time) for WO2. Given an input I is a sequence of touch events, where
I = ⟨event(x, y, t,action)0...N⟩, if a participant starts gesture-typing theword at eventi (tagged
as TOUCH_DOWN) and lifts her finger at eventj (tagged as TOUCH_UP) in WO2, then command

time and typing time are as follows:

command time = t(eventi)− t(event0) + t(eventN)− t(eventj) (6.3)

typing time = t(eventj)− t(eventi) (6.4)

Gap Time We assess how long participants spend switching from writing a regular word
(WO1) to a styled word (WO2) and back again (WO3). Given that an input I is a sequence of
touch events, I = ⟨event(x, y, t,action)0...N⟩ where t is the timestamp, we measure gap time
between each word-output as follows:

gap(WOi,WOi+1) = t(WOi+1.event0)− t(WOi.eventN) (6.5)
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Errors We count three types of error: typographical errors (typingerrors), incorrect sym-
bols or gestures (stylingerrors), or forgetting to style themiddleword (missingerrors). Note
that typing errors and styling errors can occur in the same trial. A trial is considered correct
when it has no errors.

6.5.7 Data Collection

I log all touch events and the recognized word output for each trial. I tag each touch event
with one of five actions: SHIFT, TAP, TOUCH_DOWN, TOUCH_MOVE, and TOUCH_UP. TAP
involves pressing a key andSHIFT involves holding down the keyboard shift key. The remain-
ing actions identify the start (TOUCH_DOWN), drawing phase (TOUCH_MOVE) and completion
(TOUCH_UP) of a gesture. These measures allow us to compute speed, movement time and
errors for each technique.

Participants answer a five-point Likert-style questionnaire to assess their perceived accu-
racy, speed, ease-of-use, confidence, comfort, and enjoyment of each technique. We also take
observational notes and debrief participants, with a particular focus onwhat the participants
liked and disliked about the techniques and their strategies for styling their text.

6.5.8 Result: Experiment

We collected a total of 432 experimental trials (12 participants × 2 TECHNIQUE× 6 trials × 3
replications). We removed one trial (P4) who gave up after repeated typing errors on the
third word of one phrase. After determining we had no unwanted significant effects from
the word sets, we ran a one-way repeated-measures analysis of variance for factor TECHNIQUE,
followed by Tukey HSD tests for post-hoc comparisons.

Input Time

Theoverall input time (trial completion time) is significantly affectedby TECHNIQUE (F1,11=86.9,
p<0.0001). This is due primarily to styling the middle word (WO2), as shown in Figure 6.9.

Gesture-Typing and Command Selection Time

On average, participants spent significantly more time styling words with MARKDOWN SYM-

BOLS (mean6.3s) thanwith INLINEGESTURESHORTCUTS (3.3 seconds), withF1,11=71.1, p<0.0001.
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Figure 6.9: Average time spent entering eachword.WO2 is the styled word. Using INLINEGESTURE
SHORTCUTS is significantly faster: almost double.

When we break apart input time forWO2 into time to select the command (command time)
and time to gesture-type it (typing time), we find that participants spend significantly longer
writing symbols (mean commandtime=5.8s) thandrawing gestures (mean commandtime=1.5s)
[F1,11=177.6, p<0.0001] (Figure 6.10). This highlights the motor efficiency of Command-
Board – users can invoke the command almost twice faster thanMARKDOWNSYMBOLS.

However, they spend more time gesture-typing the styled word when using INLINE GES-

TURESHORTCUTS (mean typingtime=1.8s) thanMARKDOWNSYMBOLS (mean typingtime=0.6s)
[F1,11=68.3, p<0.0001]. This may be an artifact of the experimental design, since participants
slowed down to check that they had gesture-typed the correct word, before drawing the
styling gesture. In the long run, thismay actually benefit the INLINEGESTURESHORTCUTS tech-
nique, because slowing down improves the recognition process with gesture keyboards [42].
Recognized words are less likely to change when users slide into the command gesture input
space.

97



Chapter 6 6.5.8 Result: Experiment

Figure 6.10: Average time spent gesture-typing (typing time) and issuing the command (command
time). Participants drew quickly with INLINEGESTURE SHORTCUTS, but took significantly longer insert-
ingMARKDOWNSYMBOLS.

Gap Time

When the participants switch from writing the first word to applying a styling command to
the second word, the gap duration (gap(WO1,WO2)) is significantly longer for MARKDOWN

SYMBOLS (mean=1.9s) than for INLINEGESTURESHORTCUTS (mean=1.2s) [F1,11=49.7, p<0.0001].
This suggests that participants neededmore time to consider which key to press when select-
ing markdown symbols, i.e. searching and pre-planning. CommandBoard brings a cogni-
tive benefit, since users can just continue gesture typing right after they are done invoking
the command.

However, when participants finish applying the styling command to the middle word,
they spend significantly less time writing the third word when using MARKDOWN SYMBOLS

(meangap(WO2,WO3) 0.9s) thanwhenusing INLINEGESTURESHORTCUTS (meangap(WO2,WO3)
1.5s) [F1,11=128.4, p<0.0001]. In the MARKDOWN SYMBOLS condition, they can already see if
they have applied the correct command as they press the space bar, whereas with INLINEGES-

TURE SHORTCUTS, they must check again after releasing their finger. This would be improved
by displaying a progressive preview at the end of the dynamic guide, but was not made avail-
able during the experiment.
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Errors

Participants made significantly fewer styling errors with INLINE GESTURE SHORTCUTS (mean
stylingerrors=0.09) thanwithMARKDOWNSYMBOLS (mean stylingerrors=0.36), [F1,11=13.7,
p=0.0035]. However participants using INLINE GESTURE SHORTCUTS were somewhat more
likely to forget to actually style theword– INLINEGESTURESHORTCUTS (meanmissingerrors=
0.3) versusMARKDOWNSYMBOLS (meanmissing errors = 0.04), [F1,11=26.7, p=0.0003]. This
is probably an artifact of the experimental setting, since in actual use, users would not ‘forget’
to style a word if they wanted to. We did not find a significant effect of TECHNIQUE on accu-
racy [F1,11=49.7, p=0.47], which suggests that using gestures to style text does not interfere
with typing accuracy.

6.5.9 Result: Preferences Study

Pre- and Post-test Results

We ran a one-way repeated measures analysis of variance for factor TECHNIQUE to compare
styling errors during the Pre- and Post-test conditions. We found a significant interaction
effect [F1,11=4.4, p=0.0375] for styling errors. In the Pre-test, the average styling errors for
INLINE GESTURE SHORTCUTS and MARKDOWN SYMBOLS are 0.52 and 0.32, respectively. In the
Post-test, the average stylingerrors for INLINEGESTURESHORTCUTS andMARKDOWNSYMBOLS

are 0.35 and 0.38, respectively.
Prior to the pre-test condition, participants had practiced both techniques, but always

with a direct indication of how to perform the gesture or what symbols to type. The pre-
test was the first time that participants had ever tried executing the commands without help.
Participants remembered half the gestures and two thirds of the symbols from the previous
practice and experiment condition. The post-test was given after participants had experi-
mentedwith their choice of technique to recompose their own text, and participants remem-
bered almost two thirds of the gestures. This suggests that we should study longer term use
of CommandBoard’s INLINE GESTURE SHORTCUTS technique, to see how well it supports
incremental learning over time.

Recomposition Task Results

Although given a choice between usingMARKDOWNSYMBOLS or INLINEGESTURE SHORTCUTS,
all participants chose gestures. They ignored the cheat-sheet showing all markdown sym-
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bols and their resulting styles. P11 was the exception, but he only looked at the cheat-sheet
to get inspiration from the style examples. We observed three strategies when styling words
with gestures: thinking of a style first, and then using OctoPocus to follow the correspond-
ing gesture; activating OctoPocus first, and then deciding on a style from the options; and
performing a learned gesture to apply a style with no hesitation.

A few participants explained the rationale behind their styling. P2 recomposed a text mes-
sage to his wife with a shopping list, and he used all available styles to highlight the ingredi-
ents they had to buy for a salad. P8 associated word categories to styles: big meant positive
or a lot, small meant negative or uncertain, underline was important or certain, outline and
gradient were for special words. P12 also assigned meanings to different styles: gradient for
opinions, outline for time-related words, underline for important words, and big for empha-
sisis in general: “Big is the most useful.” P11 on the other hand cared less about the different
styling options, and mostly focused on emphasizing important words: “I think I didn’t re-
ally want to choose a specific [style], I just wanted to add an effect on it so it looks different
from other words.”

Self-reported Quantitative Measures

Participants were asked to rate six statements on a 5-point Likert scale, from strongly disagree
(1) to strongly agree (5). The statements asked whether the current technique helped them
to style text: a) accurately, b) quickly, c) easily, d) confidently, e) comfortably, and f) enjoy-
ably. Table 6.2 lists the medians of each question for both techniques. An analysis using a
Friedman test showed that participants reported significantly stronger agreement for INLINE
GESTURE SHORTCUTS compared to MARKDOWN SYMBOLS on five statements: accurately
(p=0.34, χ2(1) = 4.5), quickly (p=0.007, χ2(1) = 7.36), easily (p=0.11, χ2(1) = 6.4), com-
fortably (p=0.002, χ2(1) = 10) and enjoyably (p=0.001, χ2(1) = 11).

User Preferences and Debriefing

The final questionnaire asked participants to rate their preference between the two tech-
niques on a 5-point scale (from strong preference for MARKDOWN SYMBOLS to strong prefer-
ence for INLINE GESTURE SHORTCUTS). All participants preferred INLINE GESTURE SHORTCUTS:
10 indicated a strong preference, 2 indicated some preference.

Six participants expressed their preference in terms of typing flow, explaining that INLINE
GESTURESHORTCUTS best supported styling without interrupting their text composition pro-
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Statement MARKDOWNSYMBOLS INLINEGESTURE SHORTCUTS

Accurately* 2.5 4.0
Quickly* 2.0 4.0
Easily* 2.0 4.0
Confidently 2.5 4.0
Comfortably* 2.0 4.0
Enjoyably* 2.0 4.5

Table 6.2: Participant ratings of how each technique helped them to style text (median values; * indicates a
significant difference). Participants significantly preferred gestures in all categories except ‘confidently’.

cess. P2 commented “I didn’t use the symbols at all in the chat. It’s troublesome to have to
switch the keyboard, doing it in the beginning and at the end. It really breaks the flow of the
writing. While with the gesture, it’s always there, I can pick what I want on the go.” P9wrote
“It’s enjoyable to use and in coherent with using gestures to type words.”

Participants differedwith respect to recognition and recall. Four participants found INLINE

GESTURE SHORTCUTS easier to recall thanMARKDOWNSYMBOLS: “I used big, small, underline
in the recomposition task, so I remember them” (P1). However, fourparticipants haddifficulty
recalling the INLINEGESTURE SHORTCUTSmappings: P9 said “the paths of gestures are difficult
to link with their meanings”, and P6 said “If the gestures are well designed or designed by
the user himself, it could be quite natural.” Two participants felt more comfortable creating
mnemonics for MARKDOWN SYMBOLS rather than INLINE GESTURE SHORTCUTS, despite their
overall preference for INLINE GESTURE SHORTCUTS: “It’s easier to remember the symbols for
each type (+ for big; $ for the underlined because of the line in the S).” Three participants also
appreciated the convenience of recognizing gestures withOctoPocus rather always having to
recall them: “this is nice, I don’t have to remember and just follow [the OctoPocus guideline].”

Finally, we asked participants to suggest other applications for INLINEGESTURESHORTCUTS.
Four participants suggested using gestures to add emojis: “I have 5-10 smileys that I always
use, so I think it’d be nice if I can use the gesture to get it. Because it’s bothersome having to
change to another keyboard view (emoticon), so if I can do it with the gesture it’d be cool.” (P3).
Two thought of command shortcuts: “If you like a webpage, you could do a special gesture to
bookmark it. To refresh the page, you could use a circular gesture, etc.” (P2). Other suggested
applications were changing lines, replacing the enter key, taking notes and changing fonts.
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6.6 Discussion

Although we expected that CommandBoard’s INLINEGESTURE SHORTCUTSwould perform
better than currentmarkdown commands, wewere surprised by the size of the effect (approx-
imately twice as fast) and by howmuch the participants preferred it over standardmarkdown
commands. We believe this is because users can fluidly style their text without interrupting
the flow of their typing, that reduces the cognitive and motor load. Users not only avoid
switching modes, but also avoid selecting text, the most time-consuming aspect of text edit-
ing [25].

The pre- and post-test results from the experiment indicate that users can easily learn ges-
ture commands simply through the process of using them. We expected relatively low post-
test scores, since users had only limited experience with the gestures during the practice and
experimental conditions. Even so, users clearly made fewer errors in the post-test, which sug-
gests that even limited experience can improve gesture recall. We should be able to further
reduce learning time and enhance the transition from novice to expert performance by let-
ting users define their own memorable, yet recognizable gestures [57], e.g. with [54]. In
future work, we plan to conduct a longitudinal field study of CommandBoard, in order
to more thoroughly investigate this transition from novice to expert.

The experiment restricted CommandBoard’s INLINEGESTURE SHORTCUTS to styling one
word at a time. For example, the ‘happy’+pigtail gesture generates happy. However, some-
times users want to apply a style to multiple words. One option would be to combine Com-
mandBoard with other advanced text selection techniques, such as selecting a phrase with
a two-finger gesture on top of the keyboard [25]. Gesture grammars can also combine com-
mand gestures with selection-scope gestures. For example, in TYPE-AND-EXECUTE, after slid-
ing her finger to the input space above the keyboard, the user could specify the scope of the
selection with a marking menu that includes last word, last sentence, last paragraph, and se-
lect all.

6.7 Summary

Since many mobile activities involve typing, I believe letting users invoke a command from
thekeyboard is verybeneficial. WithCommandBoard’s TYPE-AND-EXECUTE technique, users
can type the command name and execute it right away from the keyboard. They do not have
to search through a long menu with many intermediate steps that may disturb the flow of
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typing. The command-gesture input space only appears if the user slides up to the upper
space and/or have gesture typed a command name before. Thus, CommandBoard offers
a seamless, efficient way to invoke gestures while the users are typing. It also tackles the com-
mon issue of designing a gesture-based command invocation technique, that is discriminat-
ing a command gesture from a direct-manipulation gesture [48]. Since CommandBoard
takes advantage of the recognition engine of the gesture keyboard, the command name is
recognized as soon as users gesture type, and we can provide a progressive feedback. Users
must learn how to gesture type and then slide up to perform the command gesture, making
the interaction more complex than just gesture-typing, however they get access to far more
powerful functionality.

CommandBoard ismostlybeneficial for expert users, who can recall the commandname
or the associated command gesture. In Experiment 4, I show that users can a invoke com-
mand almost twice as faster than markdown shortcuts. Nevertheless, the design of Com-
mandBoard supports the transition from novice to expert users. If a novice users forgets
the commandnameorwants to discover the full command space, she can open themenu and
invoke the command from there, since CommandBoard co-exists with traditional menu
or toolbars. With CommandBoard’s INLINEGESTURE SHORTCUTS, a dynamic guide appears
whenever she hesitates and pauses on the command-gesture input space. CommandBoard
is a useful technique that can be used in conjunctionwith existing command invocation tech-
niques.

All gesture-based menu systems, including Marking Menus and OctoPocus, run into vi-
sual overload problems when forced to display more than about 16 menu items at a time.
This is commonly addressed by creating hierarchical menus or by restricting the command
set to amore limited context. CommandBoard faces these same limitations, but they canbe
partially mitigated when CommandBoard is used in conjunction with other recognition-
based techniques. On the other hand, using CommandBoard to type commands on the
keyboard and then select a parameter in the gesture-input space can help users access the full
range of available commands. The INLINEGESTURE SHORTCUTS technique is also most useful
when the current context significantly limits the command space, for example a set of user’s
“favorite” commands.

Note that we do not seek to define a single ‘best’ method of issuing commands, since dif-
ferent commands perform better in different contexts [52], but rather to create a keyboard
that offers users a choice, based on their cognitive and motor skills, as well as the size and
organization of the current command set. CommandBoard exists in harmony with exist-
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ing command-generation techniques, such as menus and buttons, but also offers novices the
opportunity to transition into power users, to execute commands fluidly at their fingertips.

104



7
Conclusion

7.1 TransformingMobileDevices intoPowerful, PersonalizedTools

Mobile devices have a very limited screen space. Appert and Zhai argued that a soft keyboard
takes the valuable screen space, and thus, a free form gesture-based command selections may
be preferable [5]. However, soft keyboards can be displayed in anymobile applications: com-
munication app, web service, contacts, calendar, games, text editor, etc. Users already have a
lot of experience with typing, and invest a lot of time interacting with their mobile phones.
Thus, why don’t we empower the keyboard, by leveraging users’ experience, motor control,
and cognitive ability? How about we let users generate different kind of rich output from
the keyboards to enrich communications? How about we let them access a large command
space from the keyboards? How about we let them appropriate the system to fit their needs
and preference?

In this thesis, I describemy attempt in rethinking access to powerful functionality through
gesture keyboards. My focus is on increasing expressivity and efficiency, while supporting
learnability and appropriability. By building upon the gesture keyboard, I leverage its pow-
erful machine-learning algorithms, and offer an easy way to incorporate successful gesture-
based interaction techniques from the research literature.

Through an experiment, I show that users naturally vary their gesture input due to biome-
chanics, personality, activities, environments, etc. Expressive Keyboard “recycles” users’
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otherwise-unused gesture variation to create rich output under the users? control, without
sacrificing accuracy. Thanks to their extremely fine motor control, users can also control as-
pects of their gesture deliberately, in order to generate desirable rich output. I found that
users are more successful when they focus on output characteristics (such as red) rather than
input characteristics (such as curviness). This highlights the importance of feedback, in this
case, the color output, both to better reveal how themapping between gesture characteristics
and color components to the users, and to apprise users of their performance.

However, I also observed a trade off between effort and feature accuracy (i.e. how ac-
curate users can generate specific output properties). Since all participants were necessarily
novice users, a more longitudinal study of Expressive Keyboard is needed to determine
whether accuracy improves with experience. Additional factors may also affect user perfor-
mance when using Expressive Keyboard, for example, finger v.s. stylus, which fingers
the users gesture type with, etc. Furthermore, in real usage, users should be able to vary the
sensitivity of the output variation or turn it off completely [6], especially in cases where the
user prefers to generate more formal output. Users should also be able to (re)design their
own feature detectors, text-rendering properties, and mappings linking the two. Neverthe-
less, the fact that the users were still in the “initial learning” phase did not prevent the users
to appropriate Expressive Keyboard in various different contexts.

To enable command selection from soft keyboards, Kristensson and Zhai [43] proposed
Command Strokes where a control button is added to the keyboards, so that users can
perform control+c as they can do in a physical keyboard. I propose CommandBoard
that pushes the idea further: users can invoke hierarchical commands from the keyboard in
different ways. Analogically, it is like typing a command name on a search bar of a desk-
top application. The application progressively searches and displays command candidate(s)
based on the typed keyword, and executing the command from the search bar gives exactly
the same effect as if it is done through the menu.

By transforming the area above the keyboard into an alternate gesture-input space, users
can benefit from a variety of new command entry techniques, using text, gestures or both.
This is a useful technique that can be used in conjunctionwith existing command invocation
techniques. We canmake it discoverable by offering in-context dynamic guides when the user
pauses [8, 44], depending upon the task, the user’s cognitive and motor skills, and the size
and structure of the current command space.

With TYPE-AND-EXECUTE, if the user knows the command name, but not the associated
gesture, she can always type the command name, followed by the execute gesture. If the
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user types a command category, we can display the most likely alternatives in the suggestion
bar. For example, if the user types style+/ bold, italic, and an underline will appear in the
suggestion bar. It can also handle parametric commands, such as typing ‘volume’+/ to bring
up a volume slider, with continuous control of the sound level.

CommandBoard can also support commands that relate to the current typing activity,
such aswriting aword, and then applying a styling gesture to thatword. With INLINEGESTURE

SHORTCUTS, if she does not remember or only knows the first part of a free-form gesture
shortcut, she can pause to see the remaining available commands arrayed around her finger,
and move in the indicated direction.

Both of the proposed techniques, CommandBoard and Expressive Keyboard, can
co-exist and support each other, for example to support better customization. When com-
bined together, users can parameterize the command by manipulating the gesture variation
when gesture-typing the command name, and then execute it by performing the execute ges-
ture on the upper space. Users can toggle the rich output, or change the output properties
they want to use in the current context through the keyboard.

Ideally, both Expressive Keyboard and CommandBoard should exist on themobile
operating system (OS) level, andmobile application developers should be able to use them as
a service. TheOSprovides a librarywhere designers canuse predefined gesture characteristics,
gesture shortcuts, and/or command sets, and they can add more.

7.2 Contributions

This thesis describes my attempts on increasing the expressive power of gesture-based inter-
actions on mobile devices, by leveraging the variations in human gesture to produce rich
output, to improve user control, and to facilitate appropriation in different contexts of use.
It contributes to the HCI literature in several ways.

First, this work contributes to fundamental research by exploring the use of gesture vari-
ability to express different concepts, opening up a wide range of research directions. I con-
ducted a series of controlled experiments, that show that users do vary their gesture input.
The gesture variations are significantly different across and within users, and the recognition
engine already anticipates these variations. Users can also deliberately control the variations
of their gesture input as they gesture type, while retaining the recognition accuracy. I show
that we can “recycle” these otherwise-unused variations, quantify and then transform them
into various kind of rich output that users can easily appropriate in different contexts. For
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this purpose, I designed, implemented, and evaluated Expressive Keyboard to support
an expressive channel between users and the systems. I have explored how to appropriate
this expressive channel to enrich inter-personal communications in different forms, for ex-
ample to generate dynamic fonts or parametric emoticons. With Expressive Keyboard,
users can gesture type just as they usually do, but the generated rich output can express dif-
ferent concepts such as personal styles, implicit communication of mood, activity, context,
etc. Once they better learn to control aspects of their gestures, they can deliberately gener-
ate rich output to explicitly communicate emphasis, sarcasm, humor, excitement, etc. This
approach had not been explored in research on continuous text-input techniques.

Secondly, I have explored command invocation from soft keyboards that offers cogni-
tive and motor efficiency. I designed CommandBoard, which lets users gesture-type com-
mands directly from a gesture keyboard. The novelty relies on the idea that we transform the
space above the keyboard into an alternate, gesture-based input space. I proposed two tech-
niques that address different trade-offs. Users can gesture-type a known command name
followed by an execute gesture; or move from the gesture-type keyboard directly to the
command-gesture input space above, to execute a unique command gesture. Command-
Board benefits from extended learning where users are able to recall the command names.
Thus, the design includes supports to discoverability and learnability, by offering two types
of dynamic guides. The command bar offers suggested command names that users can select
by crossing through, and the dynamic guide offers progressive feedforward, to suggest alter-
native command-gesturemappings. I implemented several applications of each technique to
illustrate the variety of ways that it can be incorporated into different context.

Altogether, I demonstrate how we can extend the interaction space of a widely-adopted
system like gesture keyboards to empower its functionality while preserving its accuracy, sim-
plicity, and accessibility. Nevertheless, the gesture keyboard is a means to an end to build
simple but powerful mobile interactions, and the proposed techniques are not limited to
employing gesture keyboards. I view my work as a strategy for transforming mobile devices
into powerful, personalized tools, withwhich users can benefit from a variety of new gesture-
based interaction techniques, based on what they can do and their personal needs.

7.3 Perspective

Finally, I reflect on my work, and use generative design tools to demonstrate the directions
we can take in the future: reciprocal co-adaptive instrument and the notion of substrate.
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Figure 7.1: Reciprocal co-adaptation focuses on the human-computer partnership in which both the user
and the system learn from and adapt each other in order to givemore power to the users.

7.3.1 Building Human-Computer Partnership

Reciprocal co-adaptation extends the principal of co-adaptation [51], emphasizing the notion
of human-computer partnership. We can see the partnership from user’s point of view and
the computer’s point of view (see Figure 7.1).

With users as the subject, they adapt to the systems, by understanding how the system
works. This process is related to learnability, and elevated through progressive feedback i.e.
discoverability. In Expressive Keyboard, users can discover how the additional output
properties e.g. color change as soon as they gesture type, along with the intermediate word
output. This mechanism helps users to understand and learn better how the mapping be-
tween the gesture characteristics and the output properties works. With CommandBoard,
that especially benefits from extended learning, users can “accidentally” discover the existing
commands just by gesture typing, and the progressive dynamic guides help them to learn
how to perform the gestures. CommandBoard is also discoverable, by offering in-context
dynamic guides when the user pauses, such as OctoPocus or Marking Menu.

Users also adapt the systems, by appropriating the system to fit their needs. We see how
users start to come up with different uses of Expressive Keyboard the first time they use
it. In Experiment 3 (Section 5.3), the participants started appropriating Expressive Key-
board within the current context i.e. text-based communication. Nevertheless, it did not
take long for them to come up with ideas on how to use it in different context, such as text-
to-speech and command selection. CommandBoard can also be appropriated in different
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context of use, for example by offering dynamic guides for generating recognizable, butmem-
orable gestures [54]. We can make it expressive by allowing gestures to dynamically modify
command parameters, for example combining it with Expressive Keyboard.

In the future, I am interested in expanding the different forms of output that can be
mapped to user gesture, including parametric animated emoji, handwriting, and nuanced
speech synthesis. I am particularly interested in studying the use of the combined techniques
(Expressive Keyboard and CommandBoard) in ecological settings to see how it is ap-
propriated for providing more powerful functionality such as customization.

With the system as the subject, it adapts to the users, for example via machine learning
algorithm. The system learns user behaviour, such as personal dictionaries, gesture-typing
styles, gesture features, etc. The more users use the system, the better the machine learning
algorithm in “guessing” users’ intention. Users then can do more powerful interaction with
relatively less effort. This is advantageous especially for novices, when they are still learning to
get used to the system. However, it may also disturb the input flow once the users become ex-
perts, since at this point themachine learning algorithm cannot anticipate the user behaviour
anymore. There is also the danger of trapping the users in arbitrary behaviour, overlooking
that humans are creative beings with rich cognitive andmotor skills. For future work, we can
improve the machine learning algorithm to anticipate deliberate gesture variations.

More interesting is how the system then adapts user behaviour, for example to increase
accuracy. In Experiment 3, while using Expressive Keyboard, some participants became
aware of their gesture typing performance, and put efforts in changing the way they per-
formed. In this case, perhaps they just wanted their output to be black – however, the word
gesture generating a “black” text is actuallywhat the gesture keyboard’s algorithm expect. For
future work, we can control this factor to “seamlessly train” the users to gesture type more
accurately. We hypothesize that if we always let users to type “sloppily”, then at some point
theymay surpass the recognition algorithm’s tolerance and thus fail to gesture type accurately.
Cockburn et al [21] also suggested that explicitly increasing the mental effort of interaction
may actually support better learning of an interaction technique. Testing this hypothesis
requires support from the machine learning algorithm, in which the “sloppiness tolerance”
changes depending on user performance, and should be done in a longitudinal study. This
also includes training users to be able to control aspects of their gesturesmore independently
and reliably.
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7.3.2 Screen Spaces as Different Substrates

The screen space’s divisions in CommandBoard can be explained with the notion of sub-
strate. Each screen space described in Figure 6.2 is a substrate. Thus, the gesture input is
chunked as it enters a different substrate, and each chunk is interpreted differently. The text
input space, i.e. the keyboard, uses the QWERTY layout as its structure, and interprets the
gesture drawn on top of it as a word gesture. The suggestion bar is another substrate that
displays word candidates produced by the keyboards.

Expressive Keyboard uses the structure of the keyboard substrate, yet it increases the
granularity of the interpretation, i.e. a curvy “hello” word gesture. The generated rich out-
put e.g. a text view does not have a structure, however it is a first-class object that contains
rich information e.g. the gesture features, the accuracy score, etc. Users can potentially in-
spect, manipulate, or reuse these data by directly manipulating the output view. For exam-
ple, when a user dwells on the output view, a Marking Menu appears, and she can choose to
perform an action (i.e. invoking a command) such as copy, paste, or store the properties for
future (re)use. A possible scenario for reusing the output properties is for example to save
a generated dynamic font that the user likes so that she can reuse it in the future. She can
also apply the same properties to other type of output, for example to parametric emoticons.
However, as with spatially-dependent gestures/menus, the challenge is how to support the
discoverability [78].

The upper space, in normal uses, is yet another substrate that displays the output from the
keyboard, informations, etc. WithCommandBoard,we add two additional substrates: the
command bar and the command-gesture input space. These two substrates are contextual,
meaning they only appear when users gesture type a command name and/or drawn above
the keyboard area. Application designers can decide what kind of structure they would like
to apply to a command-gesture input space, and the gesture chunk will be interpreted based
on it. This concept explains how CommandBoard turns the upper space into a general-
purpose command-gesture space. Future work should improve the customization aspects,
for example to let users define their own gesture shortcut to elevate the memorability of ges-
ture shortcuts.
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8
Appendix A: Accessing Hierarchical
Commands from CommandBoard

DisplayandParameterizeCommandfromWidgets CommandBoard’s TYPE-AND-EXECUTE
technique can also be combined with widgets e.g. sliders, color picker, etc to parameterize
commands. Figure 8.1a shows an example of choosing a color from a color picker. The user
gesture-types ‘color’, slides up and draws the execute gesture on the upper space, and Com-
mandBoard displays a color picker. The user can drag their finger to choose the desired
color. In Figure 8.1b, the user inserts a table with specified number of row and column: the
user gesture-type ‘table’, slides up and draws the execute gesture on the upper space, and
CommandBoard displays a widget that lets her insert a table as well as define how many
rows and columns in the table.

Specify Target Scope Users can specify the scope of object to which the command will be
applied, e.g. text selection scope. If the user wants to activate a command, she performs
the execute gesture after gesture-typing the command name. For example, ‘bold’+execute
will activate Bold function to the upcoming text she is going to write. She can also apply
the Bold function to the previous already-written text. For example, ‘bold’+pigtail gesture
makes the previous word bold, ‘bold’+zigzag makes the all of the written text bold.
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Figure 8.1: CommandBoard enables users to display and parameterize command fromwidgets: a) type
‘color’ draw an execute gesture and pick a color from the color palette; b) type ‘table’, draw an execute ges-
ture and specify howmany rows and columns in the inserted table.
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Titre : Augmenter le Pouvoir d’Expression de l’Interaction Gestuelle  sur les Appareils Mobiles 

Mots clés : interaction mobile, communication expressive, interaction gestuelles,  

 sélection de commande, co-adaptation 

Résumé : Les interfaces mobiles actuelles permettent aux utilisateurs de manipuler directement les 

objects affichés à l’écran avec de simples gestes, par exemple cliquer sur des boutons ou des 

menus ou pincer pour zoomer. Pour accéder à un espace de commande plus large, les utilisateurs 

sont souvent forcés de passer par de nombreuses étapes, rendant l’interaction inefficace et 

laborieuse. Des gestes plus complexes sont un moyen puissant d’accéder rapidement à 

l’information ainsi que d’exécuter des commandes plus efficacement [5]. Ils sont en revanche plus 

difficiles à apprendre et à contrôler. Le “Gesture Typing” (saisie de texte par geste) est une 

alternative intéressante au texte tapé: il permet aux utilisateurs de dessiner un geste sur leur clavier 

virtuel pour entrer du texte, depuis la première jusqu’à la dernière lettre d’un mot. 

Dans cette thèse, j’augmente le pouvoir d’expression de l’interaction mobile en tirant profit de la 

forme et la dynamique du geste et de l’espace d'écran, pour invoquer des commandes ainsi que 

pour faciliter l’appropriation dans différents contextes d’usage. Je conçois Expressive Keyboard, 

qui transforme la variation du geste en un résultat riche et je démontre plusieurs applications dans 

le contexte de la communication textuelle. Et plus, je propose CommandBoard, un clavier gestuel 

qui permet aux utilisateurs de sélectionner efficacement des com- mandes parmi un vaste choix 

tout en supportant la transition entre les novices et les experts. Je démontre plusieurs applications 

de CommandBoard, dont chacune offre aux utilisa- teurs un choix basé sur leurs compétences 

cognitives et moteur, ainsi que différentes tailles et organisations de l’ensemble des commandes.  

  Ensemble, ces techniques donnent un plus grand pouvoir expressif aux utilisateurs en tirant profit 

de leur contrôle moteur et de leur capacité à apprendre, à contrôler et à s’approprier.  

 
 

 

Title : Increasing The Expressive Power of Gesture-based Interaction on Mobile Devices 

Keywords : mobile interaction, expressive communication, gesture-based interaction,  

command selection, co-adaptation 

Abstract : Current mobile interfaces let users directly manipulate the objects displayed on the 

screen with simple stroke gestures, e.g. tap on soft buttons or menus or pinch to zoom. To access 

a larger command space, the users are often forced to go through long steps, making the 

interaction cumbersome and inefficient. More complex gestures offer a powerful way to access 

information quickly and to perform a command more efficiently [5]. However, they are more 

difficult to learn and control. Gesture typing [78] is an interesting alternative to input text: it lets 

users draw a gesture on soft keyboards to enter text, from the first until the final letter in a word.  

In this thesis, I increase the expressive power of mobile interaction by leveraging the gesture’s 

shape and dynamics and the screen space to produce rich output, to invoke commands, and to 

facilitate appropriation in different contexts of use. I design Expressive Keyboard, that transforms 

the gesture variations into rich output, and demonstrate several applications in the context of text-

based communication. As well, I propose CommandBoard, a gesture keyboard that lets users 

efficiently select commands from a large command space while supporting the transition from 

novices to experts. I demonstrate different applications of CommandBoard, each offers users a 

choice, based on their cognitive and motor skills, as well as the size and organization of the 

current command set. Altogether, these techniques give users more expressive power by 

leveraging human’s motor control and cognitive ability to learn, to control, and to appropriate.  
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