
HAL Id: tel-01745313
https://theses.hal.science/tel-01745313v1

Submitted on 28 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamics of neuronal networks
Anirudh Kulkarni

To cite this version:
Anirudh Kulkarni. Dynamics of neuronal networks. Physics [physics]. Université Pierre et Marie
Curie - Paris VI, 2017. English. �NNT : 2017PA066377�. �tel-01745313�

https://theses.hal.science/tel-01745313v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT
DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité : Physique
École doctorale : “Physique en Île-de-France”

réalisée

à LPS, École Normale Supérieure

présentée par

Anirudh KULKARNI

pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Dynamics of Neuronal Networks

soutenance prévu le 28/09/2017

devant le jury composé de :

M. A. Arrenberg Rapporteur Universität Tübingen
M. A. Torcini Rapporteur Université Cergy-Pontoise
Mme D. Salort Examinatrice Université Pierre et Marie Curie
M. A. Destexhe Examinateur European Institute for Theoretical

Neuroscience
M. G. Debrégeas Examinateur Université Pierre et Marie Curie
M. G. Sumbre Membre invité École Normale Supérieure
M. V. Hakim Directeur de thèse École Normale Supérieure





Contents

Introduction 3

I Models of single neurons 5
I.1 Hodgkin Huxley Model of a single neuron . . . . . . . . . . . . . . . 6
I.2 Simplified single neuron models . . . . . . . . . . . . . . . . . . . . . 9

I.2.1 Spike generation dynamics . . . . . . . . . . . . . . . . . . . . . 13
I.2.2 Adaptation currents and spike rate adaptation . . . . . . . . . 13
I.2.3 Refractoriness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
I.2.4 Subthreshold voltage gated currents . . . . . . . . . . . . . . . 14
I.2.5 Spatial structure of the cell . . . . . . . . . . . . . . . . . . . . 14

I.3 Synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I.3.1 Time course of synaptic currents . . . . . . . . . . . . . . . . . 15
I.3.2 Synaptic plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 15

I.4 Dynamics of a single neuron instantaneous firing rate . . . . . . . . 16
I.4.1 Deriving the static transfer function and the dynamical transfer

function for the IF neuron . . . . . . . . . . . . . . . . . . . . . 16
I.5 Numerical implementation of the static transfer function and the

dynamical transfer function . . . . . . . . . . . . . . . . . . . . . . . 18
I.6 Analyzing network dynamics . . . . . . . . . . . . . . . . . . . . . . 23

I.6.1 Analyzing network dynamics using numerical simulations . . . 23
I.6.2 Analyzing network dynamics using analytical calculations . . . 25
I.6.3 Dynamics of Fully Connected Excitatory Networks . . . . . . 26

I.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II Rate models - an introduction 29
II.1 Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II.1.1 Single population models . . . . . . . . . . . . . . . . . . . . . 29
II.1.2 Models with adaptation . . . . . . . . . . . . . . . . . . . . . . 30
II.1.3 Linear Nonlinear (LN) models . . . . . . . . . . . . . . . . . . . 30

II.2 Bridging spiking neuron models and rate models . . . . . . . . . . . 32
II.3 Autocorrelation of the firing rate . . . . . . . . . . . . . . . . . . . . 34
II.4 Single population with oscillatory input . . . . . . . . . . . . . . . . 42
II.5 Introducing a new timescale to rate model . . . . . . . . . . . . . . . 48
II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IIIOscillations in EI networks 57
III.1 Oscillations in the brain . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



2 CONTENTS

III.2 Dynamics of a single EI network . . . . . . . . . . . . . . . . . . . . 60
III.2.1 Different dynamical regimes of the EI network . . . . . . . . . 62

III.3 Rate Model with coupling . . . . . . . . . . . . . . . . . . . . . . . . 65
III.4 Comparing the oscillatory phases of the rate model and the network

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
III.4.1 Computing the limit cycles of the EI dynamical system . . . . 73
III.4.2 Comparing the limit cycles of the two Adaptive rate models . . 77

III.5 Two coupled EI networks . . . . . . . . . . . . . . . . . . . . . . . . 79
III.5.1 Antiphase or finite phase different regime . . . . . . . . . . . . 82
III.5.2 Alternating phase regime . . . . . . . . . . . . . . . . . . . . . 83
III.5.3 Modulating phase regime . . . . . . . . . . . . . . . . . . . . . 83
III.5.4 Finite phase regime . . . . . . . . . . . . . . . . . . . . . . . . 86
III.5.5 Synchronous phase regime . . . . . . . . . . . . . . . . . . . . . 86
III.5.6 Phase diagram for the two coupled EI groups . . . . . . . . . . 86

III.6 Analytical derivation of the bifurcation plot . . . . . . . . . . . . . . 87
III.6.1 Transition from the synchronous regime to the phase difference

regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
III.6.2 Transition from finite phase difference regime to other regimes 90
III.6.3 Computing the phase difference regime at very low coupling

factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
III.7 Effects of finite size noise in Adaptive rate model1 . . . . . . . . . . 94
III.8 Comparing with the network simulations . . . . . . . . . . . . . . . 96
III.9 Comparing with the finite size networks . . . . . . . . . . . . . . . . 103
III.10 Finite size networks with finite connectivity . . . . . . . . . . . . . 103
III.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

IVSensory Adaptation 113
IV.1 Adaptation: Marr’s three levels of analysis . . . . . . . . . . . . . . 113

IV.1.1 Computational level . . . . . . . . . . . . . . . . . . . . . . . . 115
IV.1.2 Algorithmic level . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IV.1.3 Implementation level . . . . . . . . . . . . . . . . . . . . . . . . 117

IV.2 Motion After Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
IV.3 The zebrafish as a vertebrate model for systems neuroscience . . . . 121
IV.4 Optokinetic response and Motion After Effect . . . . . . . . . . . . . 125
IV.5 Two-photon calcium imaging . . . . . . . . . . . . . . . . . . . . . . 125
IV.6 Visual system of zebrafish . . . . . . . . . . . . . . . . . . . . . . . . 130
IV.7 MAE in the zebrafish larva . . . . . . . . . . . . . . . . . . . . . . . 132
IV.8 Laing Chow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
IV.9 MAE model in the zebrafish tectum . . . . . . . . . . . . . . . . . . 136

IV.9.1 Comparator cells . . . . . . . . . . . . . . . . . . . . . . . . . . 137
IV.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

V Sustained Rhythmic Brain Activity Underlies Visual Motion Per-
ception in Zebrafish 139

VIConclusion and Future perspectives 203



Introduction

Neuroscience is a rapidly growing field with collaborations and intersections among
many different disciplines. Despite the huge upsurge of obtained data and ever more
increasing data from different large scale initiatives such as the Obama Brain ini-
tiative or the European Human Brain Project, there is no complete framework yet
to understand the brain. Modern statistical physics has undertaken investigation in
the rich field of neuroscience and this has contributed to modeling in computational
neuroscience. Theoretical neuroscience is on the pursuit of understanding the brain
mechanisms by modeling neurons, the interaction between neurons and the emergence
of large scale dynamics of neuronal networks and ultimately, comparing the results to
those obtained in experimental data [nne, 2016] [neu, 2017].

Neurons are particular cells in the brain that are known to process information.
Neurons are special cells in the body which can communicate with each other via
electrical signals or chemical molecules called neurotransmitters. When the potential
of a neuron reaches a threshold, it emits electrical signals called spikes which activate
release of neurotransmitters. These neurotransmitters then diffuse across the synaptic
cleft, the space between two neurons, and either activate or suppress the other neuron,
thus communicating information.

In chapter 1 of this thesis, we describe a detailed biophysical model of a single
neuron, the Hodgkin Huxley model, and then move on to simplified models of single
neurons which capture the essential features of neuronal dynamics. After describing
synapses, the connections between neurons, we introduce the firing rate of a neuron
which is the number of action potentials or spikes emitted by the neuron per second.
We will then describe how the dynamics of the firing rate can be computed analytically
and numerically. We then connect these simplified neurons via synapses and study the
mean population firing rate of a group of neurons in a network. This mean population
firing rate can again be analyzed using numerical and analytical calculations.

However, even network models of simplified neurons are computationally very ex-
pensive. Therefore, we try to just retain the essential features of these network models
to allow us to establish parallel links with experimental observations. This results in
rate models, which we discuss in chapter 2. We establish a link between rate models
and the network models and describe how the autocorrelation of the population firing
rate in the network can be studied via rate models. To quantitatively describe better
the effect of sinusoidal input currents into rate models, we introduce a new rate model
inspired by Augustin, M., Ladenbauer, J. et al. [Augustin et al., 2016].

The brain is a complex system and eludes, as of yet, description by a single unified
model. However, several experimentally observed phenomena in different brain regions
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can be described by models (e.g. the olfactory bulb, [Li and Hopfield, 1989], the
cerebellum [Bouvier et al., 2016], the hippocampus [Andersen et al., 2006]). Along this
line, we use rate model descriptions to describe two phenomena that we observe in the
brain: oscillations and sensory adaptation. In chapter 3, we discuss brain oscillations
that have been widely reported in areas such as the motor cortex ([Baker et al., 1999]
[Rubino et al., 2006] [Murthy and Fetz, 1992]) or in neocortical slices ([Wu et al.,
1999] [Bai et al., 2006]). These oscillations in the beta range and the lower gamma
range (∼ 10 − 40 Hz) are known to be related to motor initiation and attention.
We describe Excitatory-Inhibitory (EI) network models and EI rate models in the
subsequent sections of this chapter. A single EI network can produce oscillations in
this frequency range and when we couple two of them, we observe different dynamical
regimes of these coupled oscillators. By coupling more of them, we can study how
oscillations synchronize or propagate among these various oscillators, which correspond
to different brain regions, as has been observed experimentally.

In chapters 4 and 5, we then focus on adaptation in sensory systems. We describe
the phenomenon of adaptation and use the zebrafish larva [Sumbre and de Polavieja,
2014] as an experimental model to study adaptation. More particularly, we focus on
the motion after effect illusion in the zebrafish. We record behavioural and neuronal
activity in the highest visual center of the larva, the optic tectum and then use rate
models to model this phenomenon. Chapter 4 presents the necessary introduction while
Chapter 5 describes our work in detail. We end the thesis with a conclusion chapter
summarizing our work and discussing the future perspectives that can be undertaken.
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Chapter I

Models of single neurons

The brain is one of the most complex objects in the universe. It continuously processes
the sensory stimuli in the environment of the organism and responds to these inputs
by making various motor movements. The sensory information is transmitted from
the sensory organ through nerves in the form of spike trains to the brainstem and then
to the thalamus and the cerebral cortex. The neuron is the fundamental information
processing unit of the brain. Information is encoded in the electrical pulses emitted
by a neuron (called action potentials), which are voltage spikes and is communicated
from neuron to neuron through synapses. Neurons in the cortex receive input not only
in a feedforward way but also in a recurrent fashion. It is known that recurrent inputs
amount for about 90−95% of the input received by the neurons in the cat visual cortex
[Douglas and Martin, 2007]. To understand how information is processed in the brain,
we therefore need not only to understand the working of an individual neuron but also
how neurons communicate with each other through synapses to form networks and
how these networks of neurons dynamically process the information they receive.

In this chapter, we will firstly list out a few of the single neuron models that
have been used in network studies. A detailed biophysical model was first devel-
oped by Hodgkin and Huxley to describe the dynamics of a neuron [Hodgkin and
Huxley, 1952]. To capture the essential dynamics of this model, various simplified neu-
ronal models have also been developed such as integrate-and-fire neuron, exponential
integrate-and-fire neuron, etc. These simplified models greatly reduce the computa-
tional cost of simulating networks of neurons. However, despite the reduction in terms
of the computations performed, these simplified neuronal models are not very helpful
to qualitatively understand the dynamics of large networks of neurons as they are not
easily tractable analytically. For this purpose, various rate models have been proposed.
These rate models provide a dynamical description of the average population activity
of the network of neurons.

In this chapter, we detail single neuron models and networks of excitatory neurons.
In the next chapter, we will bridge them to rate models. To begin with, we recapitulate
the Hodgkin Huxley model of a neuron and describe some of the simpler neuron models
[Dayan and Abbott, 2001] [Gerstner and Kistler, 2002] [Brunel, 2011].
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6 CHAPTER I. MODELS OF SINGLE NEURONS

I.1 Hodgkin Huxley Model of a single neuron
In 1939, Hodgkin and Huxley set out to understand the laws that govern the movement
of ions through nerve cells during an action potential. For this purpose, they used
the giant axon of a squid because it is large enough (typically around 0.5 mm in
diameter) to manipulate. The giant axon of the squid is involved in the water jet
propulsion system. To study the ion movement mechanisms, they used the voltage
clamp technique (see figure I.1). This technique consists in measuring the amount of
current that flows through the neuronal membrane of a given area of the axon of a
giant squid. To do this, they had to keep the voltage through the membrane constant
with the help of an operational amplifier (op-amp) and they measured the current
passing through the membrane by measuring the current passing through the output
of the op-amp.

Figure I.1: Voltage patch clamp technique. The difference voltage, Vm , between
the intracellular voltage Vi and the extracellular voltage Ve is maintained to be at Vc.
This results in the injection of a current I, which is measured by an ammeter. Taken
from http://nerve.bsd.uchicago.edu , Credits: F. Bezanilla.

They performed experiments to elucidate the function of the neuronal membrane
under normal conditions. To describe their findings, we need to firstly specify a few
points about neurons. The membrane of a neuronal cell separates the interior of the
neuron from the extracellular space and a neuron can be described by its intracellular
voltage, i.e. the membrane potential V . The extracellular fluid is considered to be at
a potential of 0 mV. When there is no external current into a given cell, the membrane
potential is steady and is called the rest potential (typically −65 mV). The concentra-
tions of the ions inside the cell is different from the concentration of the ions outside
the cell. Ion pumps are proteins on the cell membrane that maintain this concentration
difference between the ions inside and outside the cell. Ion channels, on the other hand,
are proteins embedded in the cell membrane that allow specific ions to pass through
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the membrane. Ion channels belong mainly to three classes: voltage-activated ion
channels, ion-activated ion channels (such as Na+ activated ion channels, Ca+2 acti-
vated ion channels etc.) and transmitter-activated ion channels i.e. their conductances
can change depending on the membrane potential or the intracellular concentration of
ions or the extracellular concentration of the transmitters respectively. Electric forces
and diffusion are the two mechanisms which drive ions through channels. The electric
force is produced by the difference in potential between the interior and the exterior
of the cell while diffusion is the result of concentration gradient across the membrane.
Due to the thermal fluctuations, the ions are able to move across the membrane. The
concentration gradient is maintained by the ion pumps and there is more sodium ions
and calcium ions in the extracellular space and more potassium and chloride ions inside
the cell. In the a cell with a single ion channel, the membrane potential at which the
current flow due to diffusion cancels the current flow due to electric forces is called the
equilibrium potential of the ion. This equilibrium potential E characterizes the ratio
of the concentration of the ion inside ([inside]) and outside ([outside]) the cell as given
by the Nernst equation.

E = VT
z

ln
( [outside]

[inside]

)
, (I.1.1)

where VT is the thermal energy at temperature T and z is the charge number of the ion.
The equilibrium potentials for Na+ ion, Ca+2 ion, K+ ion and Cl− ions are ∼ 50 mV,
∼ 150 mV, ∼ −70 mV and ∼ −60 mV respectively. In a cell with multiple ion channels,
a steady state is reached for the membrane potential and this “reversal potential” has
a value intermediate between the equilibrium potentials of the different ion channels
of the cell. This membrane potential is generally called the resting state potential of
the neuron.

Hodgkin and Huxley discovered that the ionic current passing through the neuronal
membrane can be resolved into three main sources: sodium current, potassium current
and leak current, which consists of all the remaining contributions to the membrane
current. However, it is now known that the neural membrane contains many more
ionic conductances and anatomically detailed neuron models have emerged [Mainen
et al., 1995] [Poirazi et al., 2003] [Hay et al., 2011]. They also studied how changes
in sodium concentration affected the action potential. By carefully manipulating the
sodium concentration, they deduced how the potassium concentration affected the
action potential. They studied how sudden potential changes affected the action po-
tential and the ionic conductance. Finally, they also studied how the inactivation of
sodium channel reduces sodium permeability. From their experiments, they were able
to create a mathematical model for the action potential generation mechanism of the
neuron in the squid.

The schematic diagram for the Hodgkin-Huxley (HH) model is given in figure I.2.
In the circuit model for a neuron, the ion channels through which the ions move can
be modelled as conductances. These conductances are active i.e. the value of the
conductance depends on the membrane potential. The membrane of the neuron that
separates the extracellular medium from the interior of the cell can be modelled as a
capacitor C. There is typically an excess negative charge -Q on the inner surface of the
cell membrane and the same amount of positive charge +Q on the outer surface. If the
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potential difference across the membrane is V, then the cell membrane is equivalent to
a capacitor C, given by C =Q /V.

Figure I.2: A schematic diagram of the Hodgkin-Huxley Model. On the left
is a description of the cell membrane, the ions inside and outside the cell and the
ion channels. On the right is a circuit description of the neuron. The capacitance C
represents the membrane. The active conductances represent the ion channels and the
voltage sources represent the reversal potentials. I is the external current injected into
the neuron. Taken from [Gerstner and Kistler, 2002].

We can then write the equations for the membrane dynamics of a neuron as follows:

I(t) = IC(t) + INa(t) + IK(t) + IL(t) + Iext(t), (I.1.2)

where

IC(t) = −CdV
dt
, (I.1.3)

INa(t) = gNam
3h(V − ENa), (I.1.4)

IK(t) = gKn
4(V − EK), (I.1.5)

IL(t) = gL(V − EL). (I.1.6)

The parameters ENa, EK , and EL are the sodium, potassium and leak reversal poten-
tials respectively and Iext is the external injected current. The reversal potentials and
conductances are determined empirically.

The three variables m, n, and h are called gating variables and they evolve according
to the following differential equations:

τmṁ = m∞(V )−m, (I.1.7)

τnṅ = n∞(V )− n, (I.1.8)
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τhḣ = h∞(V )− h. (I.1.9)

The various functions τm(V ), τn(V ), τh(V ), m∞(V ), n∞(V ) and h∞(V ) were em-
pirically determined by Hodgkin and Huxley to fit the data of the giant axon of the
squid and are shown in the figure I.3

Figure I.3: The different functions of the Hodgkin-Huxley model. On the left
are the functions m∞(V ), n∞(V ) and h∞(V ), the steady-state levels of activations
of Na+ conductance, K+ conductance and steady-state level of inactivation of Na+

conductance. On the right are shown the time constants of the different gating variables
as a function of the membrane potential V . Taken from [Dayan and Abbott, 2001].

The dynamics of the membrane potential of a HH neuron are described in figure
I.4. In this figure, a single action potential is shown along with the different variables
of the HH model. At t = 5 ms, a pulse current is injected using an electrode into the
cell. When the membrane potential of the cell V reaches about −50 mV, the sodium
channel is activated (m is increasing) and since, the sodium inactivation variable h is
nonzero, there is a large influx of sodium ions resulting in a sharp influx of inward
current as shown in the second subplot. There is a spike in the membrane potential as
a result of this and when V reaches about 0 mV (the cell is depolarized), the sodium
channel is inactivated i.e. h → 0 and the potassium channel is activated n → 1. The
rise in potassium current drives the membrane potential back to a negative value i.e.
the cell becomes hyperpolarized before going back to its steady state value.

I.2 Simplified single neuron models

The Hodgkin Huxley model can describe the electrophysiological recordings of the
squid neuron very accurately and has been successfully used in modeling different
types of neurons. However, recent studies have questioned the validity of the exten-
siveness of applicability of the HH model for all neurons. In particular, the dynamics of
the initiation of a spike in a cortical neuron i.e. the rapid initiation of the spike and the
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Figure I.4: The dynamics of the different variables of the Hodgkin-Huxley
model. The dynamics of the membrane potential V , the membrane current im, the
sodium activation variable m, the sodium inactivation variable h, the potassium acti-
vation variable n. A pulse current is injected at 5 ms. Taken from [Dayan and Abbott,
2001].
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variable onset potential, cannot be described by the single compartment HH model.
One hypothesis that was suggested was that these behaviours can be reproduced by
cooperative activation of sodium channels in the cell membrane as opposed to the in-
dependent channel opening in the HH model [Naundorf et al., 2006] [Volgushev et al.,
2008]. However, there is no experimental evidence to support this hypothesis. Another
hypothesis proposes a multi-compartmental HH model where the action potential back-
propagates to the soma after being initiated in the axon. During its backpropagation
to the soma, the action potential is sharpened by the active conductances in the axon,
thus resulting in the kink in the action potential observed in the soma [Yu et al., 2008].
However, there are evidences that indicate that it is not just the action potential in
the soma that is sharp but also the initiation of the action potential. To explain
this, Brette hypothesized that that the kink comes from the specific morphology of
the neuron [Brette, 2013]. In particular, he showed using biophysical modelling that
the kink can be reproduced by placing the sodium channels in the thin axon. If the
distance to the soma exceeds a critical value, then these channels open abruptly as a
function of the somatic voltage. Another criticism of the HH model comes from the
studies in hippocampal mossy fiber neurons. It was shown that the energy demand
per action potential was only 1.3 times the theoretical minimum as opposed to 4 times
[Hodgkin, 1975] the theoretical minimum as predicted by the HH model [Alle et al.,
2009]. The ionic conductance parameters of Na+ and K+ channels in non-myelinated
axons are such that the action potentials minimize the metabolic demands. Moreover,
the analysis of the underlying dynamics is complicated in the HH model. It is a quite
complex model and hence, is not well suited for analytical derivations. For this reason,
simple models were explored for modeling the neuron dynamics. These models try to
capture the essential features of the neuronal dynamics. For instance, in neocortical
slices of rats, when the membrane potential of a neuron reaches about -55 to -50 mV,
it typically fires an action potential as shown in Figure I.5. During the action poten-
tial, we notice that the voltage increases rapidly in a stereotypical trajectory and then
hyperpolarizes rapidly to a value below the baseline level before coming back to base-
line level (refractoriness). The mechanism behind the action potential is captured by
the dynamics of the Na+ and the K+ channels. To simplify the model and accelerate
numerical simulations, we can add an action potential artificially each time the neuron
reaches a threshold. This is the basis of integrate-and-fire models described next.

The integrate-and-fire models are highly popular for modeling network dynamics.
The first usage of such a model dates back to Lapicque [Lapicque, 1907], but the
term “integrate-and-fire” first appears in [Knight, 1972]. The simplest example of the
integrate-and-fire neuron consists of a capacitor C driven by a current I(t) through a
resistor R. Notice that here, we have included only the capacitance of the membrane
potential and the resistance offered to the external current. The details of the active
conductance of the ion channels are excluded from this description. If the membrane
potential of the neuron is denoted as V (t), the capacitive current is given by

RI(t) = C
dV

dt
. (I.2.1)

Here I(t) has the dimensions of voltage. By introducing the time constant, τm = C/R
(typically in the order of 10− 20 ms), we have
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Figure I.5: Spikes of a neuron in the neocortex. The membrane potential of a
neuron in neocortical slices of rats (shown above) stimulated with a fluctuating current
(shown below). Notice the evoked spikes. Taken from [Mainen and Sejnowski, 1995].

τm
dV

dt
= I(t). (I.2.2)

In other words, the neuron acts as an integrator of the input current I(t). When
the membrane potential of the neuron reaches a certain threshold Vth (typically 10−20
mV above the reset potential VR), the neuron emits a spike and its voltage is reset to
VR. The voltage is clamped to VR for a certain refractory time period τref after which
it resumes its evolution according to the above equation.

The simplest model attempting to model the subthreshold dynamics is the leaky
integrate-and-fire neuron. The passive or the linear integrate-and-fire is based on two
approximations: a) a simplified description of the action potential mechanism itself
and b) a linear membrane current. This model includes the leak current and is given
by

τm
dV

dt
= −(V − VL) + I(t). (I.2.3)

Here, the resting potential of the cell is given by VL. As in the case of the IF neuron,
when the membrane potential of the LIF neuron reaches Vth, the neuron emits a spike
and its voltage is reset to VR and the dynamics continues again. Despite the fact that
the LIF has been extensively used in network simulations and analytical studies, it
cannot account for the following features of real neurons:

a) spike generation dynamics
b) adaptation currents and spike rate adaptation
c) Refractory effects
d) subthreshold voltage gated currents
e) details of the spatial structure of the cell.
In this thesis, the first three features will be of interest to us. We will not consider

the last two features, however, we mention them here for the purpose of completeness.
The following extensions can, therefore, be added to the above model to overcome the
shortcomings.
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I.2.1 Spike generation dynamics

To describe the spike generation dynamics of an LIF neuron, a suitable nonlinearity
can be added to the voltage dynamics as follows:

τm
dV

dt
= −(V − VL) + Ψ(V ) + I(t), (I.2.4)

where Ψ(V ) is a nonlinear function of voltage [Fourcaud-Trocmé et al., 2003]. Choices
for Ψ(V ) include quadratic [Ermentrout and Kopell, 1986] [Ermentrout, 1996] [Gutkin
and Ermentrout, 1998] [Latham et al., 2000], quartic [Touboul, 2008], or exponen-
tial Ψ(V ) = ∆T exp((V − VT )/(∆T )) functions, where ∆T is the sharpness of the
action potential initiation and VT is the membrane potential threshold. It was found
[Fourcaud-Trocmé et al., 2003] that the exponential nonlinearity includes biophysically
meaningful parameters and best describes the dynamics of the fast sodium currents
in the Hodgkin Huxley model and the f-I (firing rate as a function of input current)
curves thus obtained fit very well the ones observed in pyramidal and fast spiking in-
terneurons in the cortex [Badel et al., 2008b]. For this reason, in this thesis, we will
use the exponential integrate and fire (EIF) neuron for all our simulations of networks
of neurons.

I.2.2 Adaptation currents and spike rate adaptation

Sensory adaptation will be discussed in more detailed in chapter IV. One means of
implementation of sensory adaptation is through spike rate adaptation. The firing
rate of a neuron, defined as the number of spikes emitted by the neuron in a given
time-bin, is known to exhibit adaptation with constant input current in real neurons
i.e. the Interspike interval increases over time. This phenomenon is called spike rate
adaptation. The LIF neuron fires regularly with constant current and does not exhibit
spike rate adaptation. To accommodate the phenomenon of spike rate adaptation
in the model, we can introduce an additional variable through which the firing rate
steadily decreases upon the injection of a constant current. This is done as follows:

τm
dV

dt
= −(V − VL) + γW + I(t), (I.2.5)

τw
dW

dt
= −W. (I.2.6)

The variableW jumps each time a spike is emitted, by a value, say b i.e. W →W+b.
As W increases, the firing rate of the neuron decreases. This model is therefore called
“Adaptive LIF” model. This variable W could be the fraction of open channels of an
ion-gated conductance ([Ca+2] ions, for instance).

I.2.3 Refractoriness

To account for the refractoriness of real neurons, when the IF neurons reach vth and
are reset to vR, the voltage can be clamped to vR for a certain refractory time period
τref after which it resumes its evolution according to the above equation.
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I.2.4 Subthreshold voltage gated currents

To accommodate richer subthreshold dynamics, a simple model can be developed from
the Hodgkin Huxley model [Richardson et al., 2003]. The equations derived are

τm
dV

dt
= −(V − VL) + γW + I(t), (I.2.7)

τw
dW

dt
= −W + V. (I.2.8)

Unlike the previous case with adaptation, here the W variable is related to the
activation or inactivation variable of a current that contributes to subthreshold dy-
namics. This model is called the “Generalized integrate-and-fire model” and when γ
is negative and large enough, it can display subthreshold resonance [Izhikevich, 2001].

I.2.5 Spatial structure of the cell

To accommodate for the spatial structure of the neuron, the simple model can be
extended to a multi-compartment model with a membrane potential defined for each
introduced compartment.

I.3 Synapses
Neurons communicate with each other through synapses. Synapses can either be elec-
trical or chemical. Electrical synapses are ion channels which connect two cells and
allow ions to directly pass between cells. They are bidirectional and conduct nerve im-
pulses much faster than chemical synapses, but the gain of the postsynaptic response
is smaller when compared to a chemical synapse. In the case of a chemical synapse,
when an action potential is initiated, it travels down the axon and when it reaches the
presynaptic terminal, it activates voltage gated Ca+2 channels triggering an increase
of calcium concentration in the cell. The increase in the Ca+2 concentration causes
neurotransmitter vesicles within the cell to fuse with the cell membrane and release
the neurotransmitters into the synaptic cleft between the presynaptic and the post
synaptic neuron. The neurotransmitters then bind to the receptors on the postsy-
naptic neuron thus opening the transmitter-activated ion channels, which modifies the
conductance of the post synaptic neuron. These synaptic currents can be described by

Isyn(t) = gsyn(t)(V − Esyn), (I.3.1)

where Esyn, the reversal potential and gsyn, the synaptic conductance characterize the
synapse. These synapses can be either excitatory or inhibitory depending on the effect
they have on the postsynaptic neuron. Excitatory synapses have Esyn greater than the
membrane potential of the neuron; for instance, glutamate synapses have an Esyn of
about 0 mV. Inhibitory synapses can either be shunting or hyperpolarizing depending
on the value of Esyn. A hyperpolarizing synapse has Esyn less than the membrane
potential of the neuron and tends to hyperpolarize the neuron whereas a shunting
synapse has Esyn close to the membrane potential of the neuron, so, its primary impact
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is to increase the membrane conductance of the neuron. AMPA receptors and NMDA
receptors are the most common types of excitatory receptor channels. AMPA receptors
lead to a fast EPSC whereas NMDA receptors lead to a slower EPSC. GABA receptors
are the most common inhibitory receptors.

In the above description of synapses, the synaptic current is voltage dependent.
This leads to conductance based models. We can simplify the description of the synap-
tic current by taking them to be voltage independent. This leads to current-based
synaptic models. In this section, we will describe the different models that provide
approximate description of synapses. These models must specify how a postsynaptic
current is generated in response to a presynaptic spike train. A synaptic current can
be modelled by specifying its a) time course and b) plasticity.

I.3.1 Time course of synaptic currents

The postsynaptic current elicited by a series of input spikes
∑
k δ(t−tkj ) can be written

as

I(t) ∝
∫ t

−∞
S(t− u)

∑
k

δ(u− tkj )du ∝
∑
k

S(t− tkj ). (I.3.2)

The function S(t) is the post synaptic current triggered by a single presynaptic
spike. Synaptic currents typically exhibit the three phases described by such a function
(latency, rise and decay times). The simplest choices for the function S(t) include:

1) A delta function, S(t) = δ(t). This results in an instantaneous increase in the
postsynaptic membrane potential on the arrival of a presynaptic spike. To account for
the delay between the presynaptic spike and the post synaptic jump, a delay D can be
included as S(t) = δ(t−D)

2) An instantaneous jump in the postsynaptic current accompanied by an expo-
nential delay: S(t) ∝ exp(−t/τs)Θ(t). Here τs is the synaptic decay time and Θ(t) is
the Heaviside function.

3) Difference of two exponentials S(t) ∝ [exp(−t/τs) − exp(−t/τr)]Θ(t) where τr
is the rise time of the postsynaptic current and τs is the decay time. In the limit of
τr = τs, we obtain the alpha function (∝ t exp(−t/τs)).

I.3.2 Synaptic plasticity

Synaptic plasticity can occur on short time scales (10 − 100 ms) to longer timescales
(seconds to minutes) [Sumbre et al., 2008]. Short-term plasticity has been described
by simple phenomenological models such as the model by [Tsodyks and Markram,
1997] where the conductivity g(t) is described by a dynamical equation, which drops
by some amount at each presynaptic spike, and then recovers exponentially. Short-
term facilitation has also been described by some models [Tsodyks et al., 1998]. Other
models include [Abbott et al., 1997]. Finally, there exists a large number of models
to describe the phenomenon of long-term plasticity [Bi and Poo, 2001] [Shouval et al.,
2002] [Mongillo et al., 2005].
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I.4 Dynamics of a single neuron instantaneous firing rate

The firing rate of a single neuron is defined as the number of spikes emitted by the
neuron in a given time-bin. In order to study the dynamics of networks of neurons, it
is helpful to understand the dynamics of the instantaneous firing rate of single neurons
in the presence of varying input currents. For this purpose, two quantities in the case
of single neuron models are defined: the static transfer function or the f-I curve and
the dynamical transfer function of the linear firing rate response. The static transfer
function is the average firing frequency in time of a single neuron as a function of
a constant input current. The dynamical transfer function or the linear firing rate
response is the modulation of the instantaneous firing rate of the neuron when a small
input of a particular frequency is injected into it.

To compute the static transfer function for the various neuron models, one needs
to inject a constant current, say I0 into a neuron and calculate the firing rate i.e. the
average number of spikes emitted per second. For the LIF model, the firing rate is zero
when I0 < VT − VL and then increases monotonically above the threshold VT − VL.
It eventually saturates to 1/τref because a neuron cannot fire during the refractory
period. The f-I curve can also be calculated when a noisy current is injected into the
neuron, in two limiting cases: a) white noise: Iext = I0 +ση(t) where η is a white noise
of unit variance and σ is the standard deviation of the noise [Tuckwell, 1988] [Amit
and Tsodyks, 1991] [Brunel and Hakim, 1999], and in the presence of b) shot noise:
with exponential amplitude distributions [Richardson and Swarbrick, 2010].

Because of the noise, the firing rate is non-zero around VT . Firing of the neuron
in this regime is due to the fluctuations around the mean inputs that occasionally
brings the neuron to the threshold resulting in the emission of a spike by the neuron.
This results in a firing process that is Poissonian in nature and the inter-spike interval
distribution in this case is an exponential. The firing rate of the nonlinear IF neurons
can also be computed analytically [Fourcaud-Trocmé et al., 2003].

In the presence of time varying inputs, computing the instantaneous firing rate is
difficult. However, one can compute the response to a sinusoidal perturbation of small
amplitude at a given frequency and this is called the linear firing rate response. If the
external input current is given by Iext = I0(1 + εcos(ωt)) + σ

√
τmη(t), then the firing

rate in response to this current is given by r0(I0, σ) + εRe[r1(I0, σ, ω) exp 2πωt] in the
limit ε→ 0.

Here r0 is the static transfer function, r1 is the dynamical transfer function, I0 is
the amplitude of the input current, ω is the frequency of the input current, τm is the
membrane time constant of the neuron, σ determines the standard deviation of the
input current and η(t) is a white Gaussian noise.

I.4.1 Deriving the static transfer function and the dynamical transfer func-
tion for the IF neuron

In this section, we will sketch the analytical calculation for the static transfer function
of a simplified neuron model in the presence of a fluctuating white noise input I(t) =
I0 + σ

√
τmη(t).

To recapitulate, the LIF model is given by:
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τm
dV

dt
= −(V − VL) + I(t). (I.4.1)

If we represent V to be difference between the membrane potential and the leak
reversal potential, we can rewrite the above equation as:

τm
dV

dt
= −V + I0 + σ

√
τmη(t). (I.4.2)

This system can instead be described by transforming it into the Fokker-Planck
equation to describe the probability distribution of the membrane potential P (V, t).
In general, a Langevin equation of the form:

dx

dt
= f(x) + η(t), (I.4.3)

where η(t) is a Gaussian white noise with correlations 〈η(t)η(t′)〉 = ∆δ(t − t′). The
above Langevin equation can be converted to a Fokker -Planck equation, which is the
dynamical equation for the probability distribution of the variable x [Van Kampen,
1992]

dP (x, t)
dt

= − ∂

∂x
(f(x)P (x, t)) + 1

2∆ ∂2

∂x2P (x, t). (I.4.4)

Equation I.4.1 can be rewritten as :

τm
∂P (V, t)

∂t
+ ∂J(V, t)

∂V
= 0, (I.4.5)

where J(V,t) is the probability current defined by:

J(V, t) = f(V )P (V, t)− ∆
2
∂P

∂V
. (I.4.6)

The two terms on the right correspond to the drift term and the diffusion term respec-
tively. The Fokker-Planck equation for P (V, t) is thus given by

τm
dP (V, t)

dt
= − ∂

∂V
[(V − I0)P (V, t)] + σ2(t)

2
∂2

∂V 2P (V, t). (I.4.7)

At V = Vth, the neuron emits a spike and beyond this value of the membrane potential,
the probability of finding the neuron is 0. Therefore, to satisfy continuity of the
probability distribution P (Vth) = 0, the emitted spike contributes to the firing rate of
the neuron and the probability current, J(V = Vth) is proportional to the firing rate
of the neuron. This gives the condition:

∂P

∂V
(Vth, t) = −2r(t)τ

σ2(t) . (I.4.8)

When the neuron spikes, it is reinitialized to the reset potential Vr and this imposes
the condition that the current at V +

r is greater than the current at V −r by the same
amount of current that is emitted at the threshold. This is written as
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∂P

∂V
(V +
r , t)−

∂P

∂V
(V −r , t) = −2r(t)τ

σ2(t) . (I.4.9)

Finally, the probability distribution should be normalized to 1.∫ θ

−∞
P (V, t)dV = 1. (I.4.10)

For the integrability condition to hold, the probability distribution must satisfy
two more conditions:

lim
V→−∞

P (V, t) = 0, (I.4.11)

lim
V→−∞

V P (V, t) = 0. (I.4.12)

The stationary solutions of the Fokker-Planck equation can be solved for and this
gives for the probability distribution:

P0(V ) = 2r0τm
σ

exp(−(V − I0)2

σ2 )
∫ Vth−I0

σ

V−I0
σ

Θ
(
u− Vr − I0

σ

)
eu

2
du. (I.4.13)

Integrating the above equation to 1 gives the value of the firing rate. In the regime
where Vth − I0 � σ, the firing rate is given by

r0 = (Vth − I0)
σ
√
πτm

exp
(
− (Vth − I0)2

σ2

)
. (I.4.14)

The dynamical response has also been calculated for the LIF model [Brunel and
Hakim, 1999]. The static response and the dynamic response for the LIF neuron are
shown in figure I.6.

However, for non-linear integrate-and-fire neuronal model and for models with a
conductance based synaptic drive, such closed form analytical forms are not available
for the static transfer function and the dynamical transfer function. One has to resort
to numerical implementation schemes in these cases. Such an implementation for the
EIF neuron model is outlined in the next section (See also [Richardson, 2007]).

I.5 Numerical implementation of the static transfer function
and the dynamical transfer function

As we have mentioned in the previous section, the static transfer function and the
dynamical transfer function are hard to extract analytically in the case of nonlinear
integrate-and-fire neurons. In this section, we outline the numerical implementation of
these functions for a general nonlinear IF neuron model and then show the results for
the EIF neuron model since we will be using it for modeling the neuronal dynamics
in this thesis [Richardson, 2007]. To begin with, the Fokker-Planck equation for the
probability distribution of the voltage P(V,t) is written as :
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Figure I.6: Static and dynamical transfer function for LIF neuron. (a) The
static transfer function or the f-I curve for the LIF model for four values of the noise
0mV, 1mV, 4mV and 8mV respectively. For 0mV of noise, we see a sharp increase in
the firing rate at a mean input current of 20mV whereas for higher values of noise,
the increase is gradual as a function of the mean input current. (b) The dynamical
transfer function for the LIF neuron for weak noise on top and strong noise on bottom.
The left panels show the amplitude and the right panels show the phase shift of the
modulated instantaneous firing rate when a small sinusoidal input current of frequency
ω is injected. A schematic spike train on the right shows the irregularity of spike
emission. Taken from [Brunel, 2011].
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∂P

∂t
= LP. (I.5.1)

The operator L contains derivatives up to second order in voltage. From the
continuity equation, which reads

∂P

∂t
+ ∂J

∂V
= 0, (I.5.2)

one can identify a current operator J defined by JP = J.
The spike and reset conditions of the model are taken into account by the boundary

conditions as before. In the numerical simulations, a further constraint is added by
taking a lower bound for the voltage Vlb. However, Vlb is chosen to be sufficiently
negative so that its precise value does not affect the firing rate and probability density.

For the steady-state distribution

L0P0 = 0 (I.5.3)

i.e.

− ∂

∂V
[(V − I0 −Ψ(V ))P0(V, t)] + σ2(t)

2
∂2

∂V 2P0(V, t) = 0, (I.5.4)

where Ψ(V ) is a nonlinear function of voltage and in the case of the EIF neuron
model, it is given by Ψ(V ) = ∆T exp((V − VT )/(∆T )), where ∆T is the sharpness
of the action potential initiation and VT is the membrane potential threshold. Upon
integrating equation I.5.4, we get

− (V − I0 −Ψ(V ))P0(V, t) + σ2(t)
2

∂

∂V
P0(V, t) = J0(V ). (I.5.5)

For the steady state current, one can write the following equation by absorbing the
boundary conditions:

− ∂J0
∂V

= r0
[
δ(V − Vth)− δ(V − Vre).

]
(I.5.6)

Note that the current J0 is proportional to r0 and hence, the stationary probability
distribution is also proportional to r0. Therefore, we can define j0 = J0/r0 and p0 =
P0/r0. Both the differential equations for the steady state are of the form

− ∂P

∂V
= GP +H. (I.5.7)

To find the static f-I curve and the dynamic rate response numerically, the voltage can
be discretized into n+1 bins of size ∆ over the range Vlb to Vth such that the kth bin is
given by V (k) = Vlb+k∆ and the last bin V (n) = Vth. A bin size ∆ is chosen such that
the kthre bin corresponds to the voltage Vre.To have good convergence properties, instead
of implementing a straightforward Euler scheme, Richardson proposed the following
method. The above equation is firstly integrated to get:

P (k−1) = P (k)e
∫ V (k)

V (k−1) G(V )dV +
∫ V (k)

V (k−1)
dV H(V )e

∫ V
V (k−1) G(U)dU . (I.5.8)
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G and H can be expanded around V k to zero order in ∆ which simplifies the above
equation to

P (k−1) = P (k)e∆G(k) + ∆H(k)
(e∆G(k) − 1

∆G(k)

)
, (I.5.9)

where G(k) and H(k) are the discretized versions of G and H. Upon defining the fol-
lowing dimensionless quantities,

A(k) = e∆G(k)
, (I.5.10)

B(k) = 1
σ2

0

e∆G(k) − 1
∆G(k) , (I.5.11)

we can solve for the steady state probability density and the probability current by in-
tegrating the equations backwards from V (n) = Vth to V (0) = Vlb with initial conditions
of j(n)

0 = 1 and p(n)
0 = 0. This leads to

p
(k−1)
0 = p

(k)
0 A(k) + ∆τmj(k)

0 B(k), (I.5.12)

j
(k−1)
0 = j

(k)
0 − δk,kre+1, (I.5.13)

where δa,b is the Kronecker delta function which is equal to 1 when a = b and it is zero
otherwise.

The firing rate of the steady state distribution is then found by inverting the sum
of un-normalized probability distribution i.e.

r0 = 1∑n
k=0 ∆p(k)

0
.

To compute the dynamical rate response, we vary one of the parameters of the operator
L (say α) weakly in a cosinusoidal manner at an angular frequency velocity ω. The
parameter could be the synaptic strength, firing rate of the population, etc. It is
written as,

α(t) = α0 + α1 cos(ωt). (I.5.14)

As a result, all the state variables can be written as :

P (V, t) = P0(V ) + Pα cos(ωt+ ψα(V )), (I.5.15)

J(V, t) = J0(V ) + Jα(V ) cos(ωt+ γα(V )), (I.5.16)

r(t) = r0 + rα cos(ωt+ ρα), (I.5.17)

where Pα, Jα, rα are the amplitudes and ψα, γα, ρα are the phases of the probability
distribution, probability current and firing rate respectively. The above equations can
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also be written in a complex form i.e., for example, rα cos(ωt+ρα)+ irα sin(ωt+ρα) =
r̂αe

iωt.
Following the above definitions, the continuity equation

∂P

∂t
+ ∂J

∂V
= 0, (I.5.18)

becomes

− iωP̂α = ∂Jα
∂V

. (I.5.19)

By absorbing the boundary conditions, we get

− ∂Jα
∂V

= iωP̂α + r̂α
[
δ(V − Vth)− δ(V − Vre)

]
. (I.5.20)

And the Fokker-Planck equation together with the continuity equation gives,

JP = J, (I.5.21)

(J0 + Ĵαeiωt)(P0 + P̂αe
iωt) = J0 + Jαe

iωt, (I.5.22)

with J0P0 = J0 and

ĴαP0 + J0P̂α = Ĵα. (I.5.23)

We have ignored the higher order terms because the variation in the parameter α is
weak. Representing Fα = −ĴαP0, we get

J0P̂α = Ĵα + Fα. (I.5.24)

The solutions Ĵα and P̂α are separated as:

Ĵα = r̂αĵr + α1ĵα, (I.5.25)

P̂α = r̂αp̂r + α1p̂α. (I.5.26)

This can be done because the modulations in Ĵα and P̂α are due to the modulations in
the parameter α and in the firing rate r̂α respectively. Even though the firing rate r̂α is
being modulated by α, it provides an additional contribution to the current modulation
Ĵα and hence, we can study the two terms separately.

Therefore, when we study the above two equations with α = 0 i.e. Fα = 0, we get
two equations for ĵr and p̂r with boundary conditions ĵr(Vth) = 1 and p̂r(Vth) = 0:

− ∂ĵr
∂V

= iωp̂r + δ(V − Vth)− δ(V − Vre), (I.5.27)

J0p̂r = ĵr. (I.5.28)

Similarly, after defining Fα = α1fα we get two equations for ĵα and p̂α with the
boundary conditions ĵα(Vth) = 0 and p̂α(Vth) = 0:
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− ∂ĵα
∂V

= iωp̂α, (I.5.29)

J0p̂α = ĵα + fα. (I.5.30)

Both these pairs of equations can be integrated backwards and the firing rate modu-
lation can be calculated as (from the condition J(Vlb, t) = 0) :

r̂α = −α1
ĵα(Vlb)
ĵr(Vlb)

. (I.5.31)

When the above algorithm is implemented for the EIF neuron, one obtains the results
shown in figure I.7.

I.6 Analyzing network dynamics
Equipped with tools to analyze the firing rate of a single neuron, one can proceed
to understand dynamics of networks of neurons. To analyze network dynamics, one
can either perform numerical simulations or analytical calculations (in several limiting
cases). To perform numerical simulations, we use the package BRIAN2, written in the
Python programming language [Goodman and Brette, 2008] [Goodman and Brette,
2009]. To specify a network model, one needs to define (1) the number of neuronal
populations in the network, number of neurons per population and the connectivity
matrix of the network, (2) the external inputs to the neurons in the network, (3) the
dynamics of the single neurons in the network and (4) the dynamics of the synaptic
connections.

I.6.1 Analyzing network dynamics using numerical simulations

BRIAN2 can be used to define neuron models by systems of differential equations,
which specify the voltage dynamics of populations of neurons. These voltage dynam-
ics are defined using objects called NeuronGroups. These differential equations could
correspond to any neuron model that we want to implement, for example LIF neu-
ron, EIF neuron etc. We can also specify the integration method for the differential
equations, the threshold of spiking, the reset potential, the refractory period. Brian
is a clock-driven simulator as opposed to an event-driven simulator. In a clock-driven
simulator, the simulation is performed on an equally spaced time grid, 0, dt, 2*dt,
3*dt, · · · and at each time step t, the differential equations are first integrated giving
the values for the variables (membrane potentials) at time t+dt. If a condition such as
V > Vth is satisfied, spikes are then generated and spikes can only occur on the time
grid. On the other hand, event-driven simulators are more accurate than clock-driven
simulators in that the spikes can occur at arbitrary times, but they are computation-
ally more expensive and they are usually more restrictive in terms of the differential
equations that can be specified for the neuron models. Clock driven simulators, though
faster and efficient for networks with a large size, are susceptible to erroneous results
if one does not use the correct time step [Rudolph and Destexhe, 2009]. Therefore,
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Figure I.7: Static and dynamic transfer functions of EIF neuron. A. Top panel:
The static transfer function for different noise strengths σ0. The lower panel shows
the steady-state probability densities for the two cases shown in the top panel. B. The
bold lines in the amplitude and phase panels shows the dynamical transfer function
and the dashed lines are the high-frequency asymptotics. Bi and Bii are for case i and
case ii respectively. Taken from [Richardson, 2007].
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in clock-driven simulators such as BRIAN2, one can reduce errors which overestimate
synchrony by choosing the appropriate time step dt (see [Brette et al., 2007]).

Using BRIAN2 packages such as StateMonitors and PopulationMonitors, one can
obtain the population firing rates and the population raster plots (spikes times of
neurons) respectively. The neurons in different neuron groups or across different groups
can be connected by synapses using the command Synapses. A connection probability
can be specified for finite connectivity instead of all-to-all connectivity. Synapses can
be specified by implementing the effect on the post synaptic neuron upon a presynaptic
spike. The simplest synapse would be a delta synapse, where the membrane potential
of the post synaptic neuron increases by a certain amount because of a presynaptic
spike. More complicated postsynaptic functions and synaptic plasticity rules can be
added to build more realistic models. Finally, the Network object handles the running
of the simulation and consists of a set of BRIAN2 objects such as NeuronGroups,
Synapses and the different monitors. The Network object is called using “run” method
to run the simulation.

BRIAN2’s user-visible part will therefore have objects such as NeuronGroup, Synapses,
Network, etc. all written in Python. BRIAN2 translates these objects into short blocks
of code. The order of execution of these code blocks in each time step is specified by the
order of the object in the function schedule in the Network object (Network.schedule),
which is [‘start’, ‘groups’, ‘thresholds’, ‘synapses’, ‘resets’, ‘end’] by default.

I.6.2 Analyzing network dynamics using analytical calculations

Analytical calculations can be performed in several limiting cases [Brunel and Hakim,
1999] [Brunel, 2000]. If the network is fully connected, and the synapses are weak
∼ O(1/N), then in the presence of a white noise, the dynamics of the probability
density of the voltage P (V, t), can be described by the Fokker-Planck equation. Note
that this is qualitatively similar to the computation in the case of a single neuron. The
firing rate of the population in this case is the number of spikes emitted per neuron per
time-bin. The difference as opposed to the case of the computation for a single neuron
arises from the fact that now, the input to the neuron (drift term in the Fokker-Planck
equation) is not only the external input but also the recurrent inputs from the network.
The diffusion term corresponds to the injected external noise as before. The firing rate
in this case is given by the first passage mean rate over the threshold [Abbott and van
Vreeswijk, 1993].

However, real networks are sparsely connected with a probability of connection
of about 0.1 [?]. To solve the dynamics of such sparsely connected networks, two
approximations have to be made [Amit and Brunel, 1997] [Brunel and Hakim, 1999]
[Brunel, 2000]. The first one is approximating the total synaptic inputs to a given
neuron by a Gaussian white noise. This is called the diffusion approximation and
follows from the central limit theorem. If each neuron is considered Poissonian in
its firing rate, then a sum of these inputs to each neuron can be approximated by a
Gaussian white noise. However, this is only valid when the temporal correlations in
the inputs can be neglected and when the synaptic inputs are weak compared to the
threshold. Moreover, the noise terms to each neuron are considered to be uncorrelated.
This is true only when the connection probability is small. Neglecting the temporal
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correlations in the input to each neuron and the correlations among different neurons,
the synaptic inputs to neuron i is given by:

Isyn,i(t) = µ(t) + σ(t)
√
τmηi(t) (I.6.1)

where the average synaptic input is given by µ(t) = CJr(t)τm and the variance in the
synaptic input is given by σ2(t) = CJ2r(t)τm and ηi(t) is a random normal variable.
Here C is the number of excitatory connections any neuron receives, J is the strength
of the excitatory synaptic connection, r(t) is the firing rate of the population and τm
is the membrane time constant of the neuron. The noise terms ηi(t) are assumed to be
uncorrelated and this is valid only when the connectivity is sparse, so that the fraction
of common inputs received by any two neurons can be neglected.

With these two approximations, the dynamics of the network can be described by
the Fokker-Planck equation. The difference with the fully connected network or the
unconnected network is that the fluctuations in the input comprise of the external
fluctuations as well as fluctuations from the network. For constant external inputs,
the steady state solutions or the “asynchronous state”, i.e. states with stationary
global activity and where individual neurons are not synchronized, can be computed
and the firing rates can be obtained numerically [Amit and Brunel, 1997] [Brunel and
Hakim, 1999] [Brunel, 2000]. Linear stability analysis can then be used to compute
the stability of the asynchronous state [Abbott and van Vreeswijk, 1993] [Brunel and
Hakim, 1999]. The phase space can be charted out and the bifurcations can be marked.
A typical bifurcation of the inhibitory neuronal networks is the Hopf bifurcation which
results in synchronized network oscillations, where the population firing rate oscillates
in time. Neurons are therefore correlated through this population oscillation and these
oscillatory states can also be characterized using weakly nonlinear analysis in some
cases. Using a diffusion approximation of the global network activity, the finite-size
effects can also be computed [Brunel and Hakim, 1999]. To compute the effects of
time-dependent external inputs on the network, one can use linear response theory to
compute the network dynamical transfer function [Ledoux and Brunel, 2011].

I.6.3 Dynamics of Fully Connected Excitatory Networks

We can fix the firing rate of a purely excitatory network to be 10Hz and vary the noise
level σ and the coupling strength J . This determines the external current that needs to
be injected into the neurons of the network. We can then determine the stability of this
asynchronous state. The stability diagram is shown in figure I.8. The asynchronous
stable state can become unstable in two ways: via a saddle-node bifurcation leading to
a rate instability or a Hopf bifurcation leading to synchronized oscillations where the
whole network exhibits periodic bursting activity. All the neurons spike synchronously
in each burst and hence, the state is also termed as “spike-to-spike” synchrony.

I.7 Conclusion

In this chapter, we showed simple models to single neural activity, starting with the
HH model. Later, we outlined the shortcomings of this model and looked at other
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Figure I.8: Dynamics of fully connected excitatory networks. The central panel
shows the phase diagram in the σ-J plane. The asynchronous stable state undergoes
a Hopf bifurcation for weak noise leading to synchronized oscillations and for larger
values of the noise, the asynchronous state destabilizes due to a rate instability. Taken
from [Brunel, 2011].

simple single neuron models which implement the essential features of neurons such
as spike generation and refractory effects that we are interested in this thesis. We
looked at the firing rate of a single neuron and introduced two quantities that help
us understand the dynamics of the firing rate: the static transfer function and the
dynamical transfer function. We looked at how these quantities can be computed
analytically and numerically. Finally, we looked at how these quantities help us analyze
the dynamics of a network of neurons.
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Chapter II
Rate models - an introduction

II.1 Rate Models
As we have seen in the previous chapter, one quantity that can be used to describe
the dynamics of networks of neurons is the firing rate of the network. To recapitulate,
the firing rate of the network is defined as the number of spikes per neuron in a given
time-bin. There is some evidence that it is the population firing rate of a network that
encodes properties about the stimulus [Shadlen and Newsome, 1998]. For this reason,
several phenomenological models have emerged to give a qualitative description of the
dynamics of the firing rate. The first approach in this direction was based on methods
from statistical mechanics and are known under various names, ‘neural field models’,
‘neural mass models’ and ‘rate models’ [Beurle, 1956] [Griffith, 1963] [Griffith, 1965]
[Wilson and Cowan, 1972] [Wilson and Cowan, 1973] [Amari, 1977]. In this section,
we will introduce these models and relate them to the networks of spiking neurons in
the next section.

II.1.1 Single population models
In the single population rate model, the time evolution of the firing rate r is given by
the following equation:

τ
dr

dt
= −r + Φ(Iext + Jr). (II.1.1)

where τ is the time constant of the firing rate dynamics, Iext is the input current to
the population and J is the self-coupling strength of the population. If J > 0, the
population is described as excitatory and if J < 0, it is inhibitory. The function Φ is
the static transfer function or the f-I (firing rate-current) curve that gives the steady
state firing rate of the population when subjected to a fixed external current. The
function Φ must be a non-negative number since the firing rate is only non-negative
and must saturate for high values of the input current.

Different choices for the static transfer function include the sigmoid function Φ(I) =

r0(1+tanh(I−I0))/2, the threshold linear transfer function Φ(I) =
{
I − T, if I ≥ T
0, otherwise

,

the f-I curve of single-neuron models.

29
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The rate model for a single population can also be written in terms of the dynamics
of the current as follows:

τ
dI

dt
= −I + Iext + Jr, (II.1.2)

where the firing rate, r = Φ(I). The above two models are equivalent and this is clear
when we make the substitution I = Iext + Jr in the first model. We obtain:

τ
dI

dt
= Jτ

dr

dt
= −Jr + JΦ(I), (II.1.3)

= −I + Iext + JΦ(I) = −I + Iext + Jr. (II.1.4)

In this manuscript, we will be mostly describing the dynamics of the neuronal
populations in terms of the dynamics of the currents. For a one-population network
and constant inputs, the firing rate equation has at least one fixed point that can
obtained by solving

r = Φ(Iext + Jr). (II.1.5)

For an inhibitory network, only a single fixed point exists whereas for an excitatory
network, either one stable state or two stable states are possible depending on the value
of J (see figure II.1). For the case with two stable points, the network can exhibit
bistability, between a low and a high activity state.

II.1.2 Models with adaptation

Models with adaptation will be discussed in more detail in chapter IV. Various types
of adaptation currents are present in neurons. Since these currents vary on much
slower timescales than synaptic currents, they can be added to firing rate models by
introducing variables which are proportional to the firing rate of the population. The
dynamics of these variables are slower than that of the rate variables [Tsodyks et al.,
1998] [Tsodyks et al., 2000] [Tabak et al., 2000] [Fuhrmann et al., 2002] [Laing and
Chow, 2002].

II.1.3 Linear Nonlinear (LN) models

The Linear Nonlinear cascade model is another kind of model that determines the
firing rate response of a neuron to a given stimulus [Chichilnisky, 2001] [Truccolo
et al., 2004] [Pillow et al., 2008]. The model consists of a linear filter followed by a
nonlinearity. In this model, the firing rate, r, of a network is determined by applying
a nonlinear function, F, to the result of the convolution of the input stimulus, I(t)
with a linear filter, D(t), see equation II.1.6. The linear filter consists of the neuron’s
space time receptive field and describe the feature selectivity of the neuron. The linear
filter is convolved with the stimulus at this stage. The nonlinearity then describes how
this filtered stimulus is converted to the instantaneous spike rate. The nonlinearity
function also accounts for effects such as thresholding, rectification and saturation
[Pillow, 2007].
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Figure II.1: The fixed points of firing rate equation for one population. The
left panel shows the fixed points in the case of excitatory coupling. The firing rate r is
plotted in blue and the function on the right Φ(Iext + Jr) is plotted in red and black
for two values of J . Note that depending on the value of J , the model can exhibit
either one fixed point (red curve) or three fixed points (black curve), of which two are
stable and one is unstable. The panel on the right shows the fixed point in the case of
inhibitory coupling. The firing rate r is plotted in blue and the function on the right
Φ(Iext + Jr) is plotted in red. Note that in the case of inhibitory coupling, we will
have only one fixed point.
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r(t) = F (D ∗ I(t)) (II.1.6)

The linear cascade model is not biophysically realistic but it provides a reasonable
estimate of the firing rate in many early sensory areas. The linear filter is estimated
using the spike triggered average or the reverse correlation [Bryant and Segundo, 1976]
and the nonlinear function is estimated using a simple histogram procedure [Bryant
and Segundo, 1976] [Chichilnisky, 2001].

Figure II.2: Schematic description of a linear nonlinear Poisson model. The
input stimulus is filtered through a linear filter and then passed through a nonlinearity
to give the firing rate. The firing rate is used to generate spikes with a Poisson
distribution. Taken from [Pillow, 2007].

II.2 Bridging spiking neuron models and rate models
Spiking neuron models offer insight into dynamics of local networks whereas neural rate
models provide an insight into the global activity of networks. Both types of models
exhibit qualitatively similar population dynamics such as multistability properties and
the emergence of global oscillations. The rate models cannot be derived by averaging
the slow variables in the network of spiking neurons [Ermentrout, 1994]. Recently,
Ostojic and Brunel (2011) have shown that the decay in 1/f of the linear firing rate
response of the EIF model makes it particularly suitable to perform an approximate
reduction to a rate model. This is because the linear filter then resembles the Fourier
transform of a decaying exponential function for high frequencies. To outline their
derivation, let us consider a network of neurons that is stimulated with an input
current I(t) = I0 + ση(t) + Isn(t). Here, n(t) is a Gaussian process with zero mean,
unit variance and correlation time τs, Is is the standard deviation of the temporally
correlated Gaussian noise, σ is the standard deviation of the temporally uncorrelated
Gaussian noise, I0 is the static input current into the neurons and η(t) is a white
(no temporal correlations) Gaussian process with zero mean and unit variance i.e.
〈η(t)η(t′)〉 = δ(t− t′).

The different realizations of the correlated Gaussian noise n(t) are generated through
the equation:

τs
dn(t)
dt

= −n(t) + ζ(t),
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where ζ(t) is a zero-mean, unit variance temporally uncorrelated Gaussian process,
with zero mean, unit variance i.e.

〈ζ(t)ζ(t′)〉 = δ(t− t′).

For simplicity, let us consider a network of unconnected neurons. In this case,
since all the neurons in the network are stimulated with the same input current, the
firing rate of the network is equivalent to the firing rate of a single neuron over different
trials of stimulation with the same input current. This firing rate can be derived in two
different ways. One way is to employ a generalized linear nonlinear model, wherein
the input current is firstly filtered through a linear filter and then passed through
a nonlinearity to determine the firing rate. The LN model, though enabling us to
perform the mapping between sensory inputs and output firing rate, lacks a direct
one to one correspondence with the underlying biophysics of single neurons. Spiking
neuron models, on the other hand, capture the details of the membrane potential
dynamics. However, simulations of networks of spiking neurons are computationally
more expensive and analytically less tractable. Ostojic and Brunel showed that these
spiking neuron models can be mapped onto a linear-nonlinear cascade [Ostojic and
Brunel, 2011] as follows:

r(t) = F (D ? Isn(t)), (II.2.1)

where s(t) is the signal input, D is the temporal linear filter and F is the static non-
linearity and D ? Isn(t) is the convolution between D and s(t) i.e.

D ? Isn(t) =
∫ ∞

0
dτD(τ)Isn(t− τ). (II.2.2)

They derived the corresponding LN models for the case of LIF neurons, EIF neu-
rons and conductance based Wang-Buzsaki models [Wang and Buzsaki, 1996]. The
approximation of the firing rate dynamics of the spiking neuron model by the LN
model becomes exact in two limiting cases:
(1) when the amplitude of the signal goes to zero i.e. Is → 0. This is because in this
case, we can perform Taylor expansion of r(t) around r0 and we get

r(t) = F (0) + F ′(0)IsD ? n(t). (II.2.3)

We can identify the dynamical rate response function of a neuron Rn(t) in the
above equation:

r(t) = r0 + IsRn(t) ? n(t) (II.2.4)

Thus, in this limit, the two models are exactly equal to each other as can be seen by
looking at equations II.2.3 and II.2.4. Rn(t) depends on I0 and σ,
(2) when the correlation time τs →∞. This means that the variation in input signal is
very long compared to the timescale of the linear filter and so, we can write D?n(t) =
D0n(t), with D0 =

∫∞
0 dτD(τ) and this gives

r(t) = F (D0Isn(t)). (II.2.5)
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The above equation resembles the equation for the f-I curve where the input current
is a white noise of mean I0 + Isn(t) and variance σ and the f-I curve Φ reads as
Φ(I0 +L/D0) = F (L). These values for F (L) and D(t) are then extended to the whole
parameter space.

In the case of the EIF model, the rate response function and hence, the linear filter
can be approximated by an exponential with a single effective timescale τeff as

Deff (t) = A exp (−t/τeff ). (II.2.6)

To derive the effective timescale τeff , Ostojic and Brunel [Ostojic and Brunel, 2011]
consider the amplitude of the higher frequencies of the Fourier transform of D(t). This
amplitude decays as r0/(∆T 2πτmf), whereas for low frequencies, the amplitude reaches
a finite value equal to the slope of the f-I curve evaluated at the I0. They match these
observations with the Fourier transform of Deff i.e. (τeffA)/(1+ i2πfτeff ), to obtain:

τeff = τm∆T
Φ′(I0)
r0

, (II.2.7)

A = Φ′(I0)
τeff

. (II.2.8)

With such a filter, the linear nonlinear cascade for this model can be rewritten in
the form of a dynamical system

r(t) = Φ(I), (II.2.9)

τeff
dI

dt
= −I + I0 + s(t). (II.2.10)

Ostojic and Brunel [Ostojic and Brunel, 2011] then introduce the adaptive timescale
rate model, where the timescale is a function of the instantaneous firing rate. They
found that this model provides a better estimate of the Peristimulus time histogram
(PSTH) of the neuron when compared to the LN model or the non-adaptive time scale
rate model for the exponential-integrate-and-fire neuron (see figure II.3). The Peri-
Stimulus Time Histogram or the PSTH i.e. is the time dependent firing rate of the
neuron and is obtained by averaging the spike rate over trials.

The timescale in this model is given as:

τeff (t) = τm∆T
Φ′(I(t))
r(t) . (II.2.11)

We will refer to this model as adaptive rate 0 (AR0) model in the following.

II.3 Autocorrelation of the firing rate
In this section, we will look at the autocorrelation function of the population firing
rate of a single excitatory population and analyze it using the adaptive timescale rate
model that was described in the previous section. The autocorrelation A(τ) of the
population firing rate r(t) is defined as follows:
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Figure II.3: The different estimates of the rate models for firing rate of
network of EIF neurons. The input current is shown in the top panel trace and
the raster plot of the neurons is shown in the second panel for 200 trials. The next
three panels compare the firing rate of the network of independent neurons (PSTH-
Peristimulus time histogram) with the LN estimate, the rate model and the adaptive
timescale rate model. ρ is the correlation coefficient between the two signals and d
is the root-mean-square-difference between the two signals. Taken from [Ostojic and
Brunel, 2011].
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τm 10ms vL -65mV
∆T 3.5mV vT -59.9mV
vR -68mV vth -30mV
σ 10mV Ne 1000
J 0.1 mV C 200

Table II.1: Parameters used in the network simulation for studying the autocorrelation
of the firing rate.

A(τ) = lim
T→∞

1
T

∫ t=T

t=0
dt(r(t)− ro)(r(t+ τ)− r0), (II.3.1)

where r0 is the mean of the population firing rate. For the discretized version, we have

Aj = 1
N − j

N−j∑
i=1

δriδri+j , (II.3.2)

where N is the number of samples and δri = ri − 1
N

∑N
k=1(rk).

For the network simulations, we use a network of Ne = 1000 EIF neurons connected
via delta synapses with an incoming connectivity of C = 200 per neuron. The neuronal
membrane potentials v obeys the following equations:

dv

dt
= −v + vL + Fv + Iext

τm
+ σ√

τ
ηi(t), (II.3.3)

Fv = ∆T exp(v − vT∆T
), (II.3.4)

where vL is the leak voltage, Iext is the external current that is injected into the
neuron, σ2 is the variance of the white noise inserted into the neuron, ηi is a random
normal variable associated with neuron i, τm is the membrane time constant, ∆T is the
sharpness of the action potential initiation vT is the membrane potential threshold, Ne

is the number of neurons in the network, C is the number of excitatory connections
to each neuron. Moreover, whenever there is a presynaptic spike, there is an increase
in the membrane voltage of the postsynaptic neuron by an amount J on the next
time step (delta synapse). When the membrane potential of any neuron crosses vT , it
diverges to infinity in finite time. Therefore, when the membrane potential reaches the
threshold potential vth, we insert a spike for the neuron and the membrane potential
of the neuron is reset to vR. For a duration of tref , the refractory time period, the
neuron is clamped to the voltage vR, before it resumes its dynamics again according
to the above equations. We run the simulation for a time duration of 1000 s and use
the following parameters for the neurons.

The network of neurons has an input current Iext apart from a white Gaussian noise
of zero mean and standard deviation 10 mV. We insert a mean current of Iext = I0=
-6.29 mV such that the network has a steady state time-averaged firing rate of 5 Hz.
The dynamics of this network corresponds to the asynchronous stable state shown in
figure I.8.



II.3. AUTOCORRELATION OF THE FIRING RATE 37

The autocorrelation for a single excitatory population is shown in figure II.4. The
value of the autocorrelation at t=0 corresponds to the variance of the firing rate. We
notice that the population has a variance much larger compared to the autocorrelation
at non zero time and that the autocorrelation for t>0 decays exponentially as can be
seen from the fit with an exponential.

Figure II.4: Autocorrelation of the population firing rate of a single excita-
tory population. The left panel shows the autocorrelation of the population firing
rate of a single excitatory population. Notice that the autocorrelation at time t=0 i.e.
the variance of the firing rate is much larger than the autocorrelation for non-zero time
t. The panel on the right zooms in on the autocorrelation function for time t>0. The
autocorrelation function can be fitted with a single exponential function.

We want to compare these results to the one we obtain in the case of an adaptive
timescale rate model. We will derive the autocorrelation of the population firing rate
for the rate model of a single excitatory population. To recapitulate, the dynamics of
an adaptive timescale rate model (equations II.2.9 - II.2.11) is listed below:

r(t) = Φ(I(t)), (II.3.5)

τeff (I(t))dI(t)
dt

= −I(t) + Iext(t), (II.3.6)

with τeff given by

τeff (I(t)) = τm∆T
Φ′(I(t))
Φ(I(t)) . (II.3.7)

The above equations do not account for the finite size of the network (Ne = 1000).
To include the finite size effects, we add a noise term to the rate equation which can
be estimated as follows. Consider a neuron which fires a spike with a probability of
ν∆t in a time-bin ∆t when a current I0 in inserted into it. When the network of Ne

neurons is inserted with this current, then the firing rate per neuron in this time-bin
is
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r =
∑
j sj

Ne∆t
, (II.3.8)

where sj = 1 if the jth neuron spikes and 0 otherwise. sj = 1 with a firing probability
of ν∆t. We can consider all the variables sj to be independent because all the neurons
receive uncorrelated inputs. Though there is connectivity between the neurons, when
the synaptic inputs to the neurons are low, the correlations between synaptic inputs
to different neurons can be neglected in favour of the external noise injected to each
neuron. However, for high excitatory synaptic strengths and high firing rates, the
above assumption may no longer hold. With this assumption, the mean firing rate is
given by

〈r〉 =
〈
∑
j sj〉

Ne∆t
= ν. (II.3.9)

And the variance in the firing rate per neuron in a time-bin ∆t is given by

〈r2〉 − 〈r〉2 =
〈(
∑
j sj)2〉

N2
e∆t2 − ν2 (II.3.10)

=
〈
∑
j s

2
j 〉+ 2

∑
i>j〈sisj〉

N2
e∆t2 − ν2 (II.3.11)

(making the independence assumption)

= Neν∆t−Ne(Ne − 1)ν2∆t2

N2
e∆t2 − ν2 (II.3.12)

= Neν∆t−Neν
2∆t2

N2
e∆t2 (II.3.13)

≈ ν

Ne∆t
(II.3.14)

= 〈r〉
Ne∆t

. (II.3.15)

We see that the variance goes as 1/Ne. The higher order cumulants can therefore be
neglected and we can approximate the firing rate process by a Gaussian process with
a mean Φ(I(t)) and a variance Φ(I(t))/Ne. We can include this variance in firing rate,
due to finite size of the population, in the adaptive time scale rate model as follows:

r(t) = Φ(I(t)) +
√

Φ(I(t))
Ne

η(t), (II.3.16)

τeff (I(t))dI(t)
dt

= −I(t) + Iext(t), (II.3.17)

where η(t) is a Gaussian white noise with mean 0 and variance 1 and τeff is given by

τeff (I(t)) = τm∆T
Φ′(I(t))
r(t) . (II.3.18)
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Consider the firing rate model including the excitatory synaptic input:

r(t) = Φ(I(t)) + x(t), (II.3.19)

τeff (I(t))dI(t)
dt

= −I(t) + Iext(t) + wr(t), (II.3.20)

where x(t) =
√

Φ(I(t))/Neη(t) is the noise term due to the finite size effects and w
is the strength of the excitatory synaptic connection. The synaptic currents in the
network are delta functions and hence the net synaptic input to a neuron at any given
instant tk is given by τm

∑
j Jj

∑
k δ(t−tkj ) where the sum over j is over all the incoming

neurons and tkj is the spike emission time of the j’th neuron [Brunel and Hakim, 1999].
For our network with uniform synaptic strengths i.e. Jj = J for all neurons and∑
j δ(t − tkj ) ≈ Cτmr(tk). This translates to a value of w = CJτm in the firing rate

model.
We want to linearize the above equation around the fixed point (r∗, I∗), r(t) =

r∗ + r̃(t), I(t) = I∗ + Ĩ(t) where r̃(t) = φ′Ĩ(t) + x(t) with

φ′ = ∂φ

∂I
|I=I∗ . (II.3.21)

Taking the Fourier transform of the linearized equation with the definitions,

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt, (II.3.22)

f(t) = 1
2π

∫ ∞
−∞

F (ω)eiωtdω, (II.3.23)

we get (where Ĩ and X are functions of ω):

iτeffωĨ(ω) = −Ĩ(ω) + wφ′Ĩ(ω) + wX(ω), (II.3.24)

Ĩ(ω) = wX(ω)
g + iωτeff

, (II.3.25)

where

g = 1− wφ′, (II.3.26)

r̃(ω) = φ′Ĩ(ω) +X(ω). (II.3.27)

The correlation function of the population firing rate is given by

A(τ, t) = 〈r̃(t+ τ)r̃(t)〉 (II.3.28)

= 1
(2π)2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2〈r̃(ω1)r̃(ω2)〉eiω1(t+τ)eiω2t (II.3.29)
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= 1
2π

∫ ∞
−∞

A(ω1; t)eiω1τdω1. (II.3.30)

∴ A(ω1, t) = 1
2π

∫ ∞
−∞
〈r̃(ω1)r̃(ω2)〉ei(ω1+ω2)tdω2, (II.3.31)

〈r̃(ω1)r̃(ω2)〉 = 〈(φ′Ĩ(ω1) +X(ω1))(φ′Ĩ(ω2) +X(ω2))〉. (II.3.32)

=⇒ 〈r̃(ω1)r̃(ω2)〉 = 〈φ′2Ĩ(ω1)Ĩ(ω2) + φ′Ĩ(ω1)X(ω2) + φ′Ĩ(ω2)X(ω1) +X(ω1)X(ω2)〉.
(II.3.33)

We can write the correlation of the noise due to finite size, x(t), as:

〈x(t1)x(t2)〉 = ρ2δ(t1 − t2). (II.3.34)

Then, we have for its Fourier transform

〈X(ω1)X(ω2)〉 =
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iω1t1e−iω2t2ρ2δ(t1 − t2) (II.3.35)

=
∫ ∞
−∞

dte−i(ω1+ω2)tρ2 (II.3.36)

= 2πδ(ω1 + ω2)ρ2. (II.3.37)

where we used the Fourier transform of delta function:

δ(ω) =
∫ ∞
−∞

e−iωtδ(t)dt = 1, (II.3.38)

δ(t) = 1
2π

∫ ∞
−∞

eiωtdω. (II.3.39)

This gives us, for the autocorrelation of the population firing rate:

〈r̃(ω1)r̃(ω2)〉 =
( φ′2w2

(g + iω1τeff )(g + iω2τeff )+ φ′w

g + iω1τeff
+ φ′w

g + iω2τeff
+1
)
〈X(ω1)X(ω2)〉

(II.3.40)

= 2πρ2
( φ′2w2

g2 + ω2τ2
eff

+ 2φ′wg
g2 + ω2τ2

eff

+ 1
)
δ(ω1 + ω2). (II.3.41)

∴ A(ω1, t) = ρ2
(
1 + 1− g2

g2 + ω2τ2
eff

)
. (II.3.42)

We observe that there is no dependence on t in the above equation. Taking the inverse
Fourier transform of the above expression, we can obtain the autocorrelation A(τ) as
a function of time,
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A(τ) = 1
2π

∫ ∞
−∞

dω1A(ω1, t)eiω1τ (II.3.43)

= ρ2

2π

∫ ∞
−∞

dω1
(
1 + 1− g2

g2 + ω2
1τ

2
eff

)
(II.3.44)

= ρ2δ(τ) + ρ2(1− g2)
2gτeff

exp(− τg

τeff
) (II.3.45)

= ρ2δ(τ) + ρa exp(− τ
τa

). (II.3.46)

The first term, at τ = 0, corresponds to the variance of the firing rate. For the
firing rate that’s discrete in time with a time-bin ∆t, we have the variance ρ2/∆t =
〈r〉/(Ne∆t). The maximum of the autocorrelation (for τ>0) is then given by ρa =
ρ2(1− g2)/(2gτeff ) and the autocorrelation decays exponentially with a time constant
of τa = τeff/g. If we assume τeff/g = 15 ms, then after a time of about 0.1 s, the
exponential factor is about 0.0013 sec−1. We can then compute the mean and the
standard deviation of the autocorrelation function from 0.1 s to 0.2 s. intuitively, we
expect the mean of the autocorrelation to be zero. We can show that this is the case
below. For a discrete firing rate rj , the autocorrelation at a timeshift of j is given by:

Aj = 1
N − j

N−j∑
i=1

δriδri+j . (II.3.47)

We want to compute the mean and the variance of the autocorrelation when j � 1
but j � N . We have

〈Aj〉 = 1
N − j

N−j∑
i=1
〈δriδri+j〉 = 0, (II.3.48)

〈A2
j 〉 = 1

(N − j)2

N−j∑
i=1

N−j∑
k=1
〈δriδri+jδrkδrk+j〉. (II.3.49)

The term in equation II.3.48 is zero because the firing rate is not correlated over long
timescales. For the term in equation II.3.49, one can consider three cases a) i = k =⇒
i+ j = k + j, b) i = k + j =⇒ i+ j = k + 2j and c) i+ j = k =⇒ i+ 2j = k + j.
Using symmetry arguments, we can simplify this term as follows:

〈A2
j 〉 = 1

(N − j)2

N−j∑
i=1
〈δriδriδri+jδri+j〉+ 2 1

(N − j)2

N−j∑
i=1
〈δriδriδri+jδri+2j〉 (II.3.50)

The second term above can be written as

2 1
(N − j)2

N−j∑
i=1
〈δriδri〉〈δri+j > 〈δri+2j〉 = 0 (II.3.51)

Thus, we have
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〈A2
j 〉 = 1

(N − j)2

N−j∑
i=1
〈δr2

i 〉〈δr2
i+j〉 (II.3.52)

= 1
N2N

( r0
Nedt

)2 (II.3.53)

= r2
0

NN2
e dt

2 (II.3.54)

We can compare the four different analytical quantities obtained above 1) maximum
of the autocorrelation function, ρa, 2) variance of the population firing rate, ρ2, 3) decay
timescale of the autocorrelation function, τa and 4) variance of the autocorrelation
function, 〈A2

j 〉, after it has decayed down with their corresponding values obtained in
the network simulations for a) different network sizes, b) different excitatory strengths
J , c) different connectivity C and d) different firing rates. This is shown in the figure
II.5. Each of the quantities obtained in the network is rescaled by dividing it with
the corresponding analytic quantity. We observe that all the quantities are close to
1. For higher values of J and r, the correlations in input synaptic currents might be
significant to account for the slight discrepancies away from unity.

Therefore, we notice that the adaptive rate 0 model is effective in capturing the
firing rate dynamics of a single population of EIF neurons in the presence of a noisy
input current I(t) = I0 + ση(t) + Isn(t). In the next section, we will explore the
limitations of the adaptive rate 0 model by stimulating the recurrent excitatory network
of EIF neurons with a mean input current that varies sinusoidally in time.

II.4 Single population with oscillatory input

We have seen in the previous section (see section II.3) that the adaptive rate 0 model
reproduces very well the firing rate dynamics of a single population of EIF neurons in
the presence of a noisy input current I(t) = I0 +ση(t) + Isn(t). It also reproduces well
the autocorrelation of the population firing rates for a recurrent excitatory network
(see figure II.5). Here, η(t) is a white (no temporal correlations) Gaussian process
with zero mean and unit variance, and n(t) is a Gaussian process with zero mean,
unit variance and correlation time τs. Note that the mean input current in both the
cases was constant in time. In this section, will explore the limitations of this model
by stimulating the recurrent excitatory network of EIF neurons with a mean input
current that varies sinusoidally in time. We will consider the case of a network with
zero coupling or finite excitatory coupling (as shown in figures II.6, II.7, II.8). We
observe that the adaptive timescale rate model falls short of explaining the network
activity in the presence of a varying sinusoidal current. We then define a new time
scale to capture this behaviour (corresponding to figures II.9, II.10, II.11, II.12).

As explained before, for the network simulations, we use a network of Ne EIF
neurons connected via delta synapses, whose membrane potential obeys the following
equations:
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τm 10ms vL -65mV
∆T 3.5mV vT -59.9mV
vR -68mV vth -30mV
σ 10mV Ne 5000
J 0.1mV C 0

Table II.2: Parameters used in the network simulation for studying the response to an
oscillatory input.

dv

dt
= −v + vL + Fv + Iext(t)

τ
+ σ√

τ
ηi(t), (II.4.1)

Fv = ∆T exp(v − vT∆T
), (II.4.2)

with the neurons parameters as defined below:
To begin with, we will consider a network of neurons that are not connected (this

is equivalent to repeated trials on a single neuron). Apart from the white noise of
standard deviation 10 mV, we insert a mean current of Iext(t) = I0 + A sin(ωt). I0 is
set equal to −6.29 mV such that the network gives a steady state firing rate of 5 Hz in
the absence of any other mean input currents. The time period of the sinusoidal input
current is taken as 60 ms and the amplitude of the current is varied from 0.5 mV to
19 mV. We will then compute the cycle-averaged population firing rate of the network
using two averaging procedures: Firstly, we will compute the mean firing rate of the
network across neurons. We will then take another mean over the different cycles of
the input sinusoidal current. This final quantity is the cycle-averaged population firing
rate.

We want to compare these results to the one obtained in the adaptive timescale
rate model with finite-size noise described in the previous section (see equation II.3.16,
which we list here again):

r(t) = Φ(I(t)) +
√

Φ(I(t))
Ne

η(t) (II.4.3)

τeff (r)dI(t)
dt

= −I(t) + Iext(t) + CJr(t)τm (II.4.4)

To study the network with different C, we scale the synaptic strength J such that
the product CJ remains constant.

In figures II.6 and II.7, we compare the cycle-averaged population firing rates for
the network model (in solid lines) and the adaptive timescale rate model (in dashed
lines) for zero and finite connectivity respectively. The different curves correspond to
the different amplitudes used. The population firing rate is averaged over all the cycles
of the input sinusoidal current. For both the network and the adaptive rate model,
we obtain the same curves for different finite connectivites C. For high amplitudes in
the case of finite connectivity, we notice that the population firing rate in the network
shows two peaks whereas the rate model shows only a single peak. For instance, for
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Figure II.6: Comparing firing rates for Network and Rate Models with zero
connectivity. The average of the population firing rates of the adaptive rate model
(R) and the EIF-network (Ne) across 1666 cycles (corresponds to 100 seconds) of the
output current for different amplitudes of input current (0.5 mV, 1 mV, 1.5 mV, 3 mV
and 6 mV in the left panel; 9 mV, 12 mV, 15 mV and 18 mV in the right panel). The
x-axis is the time period of one oscillation of the input current. The curves for the
adaptive rate model are shown in dashed lines whereas the curves for the network model
are shown in solid lines. The standard deviation at firing rate r goes as

√
r/(Ne∆t)

for all curves shown. To give an estimate, at a firing rate of 60 Hz, the standard error
of the mean is 0.85 Hz.
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Figure II.7: Comparing firing rates for Network and Rate Models with finite
connectivity The average of the population firing rates of the adaptive rate model
(R) and the EIF-network (N) across 1666 cycles (corresponds to 100 seconds) of the
output current for different amplitudes of input current (0.5 mV, 1 mV, 1.5 mV, 3 mV
and 6 mV in the left panel; 9 mV, 12 mV, 15 mV and 18 mV in the right panel). The
x-axis is the time period of one oscillation of the input current. The curves for the
adaptive rate model (R) are shown in dashed lines whereas the curves for the network
model (N) are shown in solid lines. The connectivity of the network C = 200 and
the connection strength J = 0.1 mV in this case though any C and J with the same
product CJ gives the same results.
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an excitatory population with connection strength J = 0.1 mV, connectivity C = 200
and when subjected to an input sinusoidal current of amplitude 20 mV, the neurons in
the network are in bursting mode as shown in the figure II.8. This nonlinear behaviour
cannot be accounted for by our rate model since our dynamical equations have a linear
input current.

Figure II.8: Population firing
rate and raster plot of 10
neurons for an excitatory net-
work of J = 0.1 mV, C = 200
when subjected to an input sinu-
soidal current of amplitude 20 mV.
The neurons enter a bursting mode
and this behaviour cannot be ac-
counted by the rate model which
is linear in its input current.

To compute how well the adaptive rate model describes the results of the network
simulations, we calculate the correlation coefficient between the two curves r and r̂ as
defined in [Ostojic and Brunel, 2011].

ρ(r, r̂) = 1− 〈(r − r̂)
2〉

2var(r) (II.4.5)

where 〈...〉 denotes the time averaged mean and var(r) is the variance of the signal
r. The correlation coefficient between the two models is shown by the red curves
with crosses in figures II.13 and II.14 for zero and finite connectivity respectively. We
observe that the correlation coefficient drops below 0.99 for amplitudes of about 11
mV and 4 mV for zero and finite connectivity respectively. The correlation coefficient
between the two models for sinusoidal input currents of other time periods (15 ms
shown with red circles; 30 ms shown with red double dashes and 120 ms shown with
red diamonds) are also shown in figures II.13 and II.14 for zero and finite connectivity
respectively. In the next section, we will try to improve the performance of the rate
model by using a new timescale. For the rest of the thesis, the first model will be
referred to as the “Adaptive rate” (AR0) model and the second model will be referred
to as the “Adaptive rate” (AR1) model.
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II.5 Introducing a new timescale to rate model
To try and improve the estimate of the rate model as compared to the network model
in the presence of a sinusoidal current of larger finite amplitudes, we introduce a new
time constant to the rate model. The time constant is derived based on Augustin et
al. [Augustin et al., 2016]. They derive the reduced LNexp model from the Fokker-
Planck equation that describes the population activity of a network of sparsely coupled
adaptive nonlinear integrate-and-fire neurons when exposed to a noisy synaptic input.
They used a different method from the one described in section II.2, where the LN
model used to approximate the Fokker-Planck equation has the linear filter which is
the dynamic response of the firing rate. This linear filter D(t) was approximated with
a single exponential of effective timescale τeff which was derived from the amplitude
decay at high frequencies of the Fourier transform of D(t). Instead, Augustin et al.
derived the timescale by approximating D(t) with a fitted exponential (minimum least
squared error between the fit and the original) for all frequencies. We compute the
response rate function for the EIF neuron for all frequencies from 1 Hz to 1000 Hz with
a linear spacing of 1Hz. This amounts to computing the Fourier transform of D(t). To
fit it with an exponential, we approximate the Fourier transform with τeffA

1+i2πfτeff for
each value of input current I0 and compute the parameters of the fit which give the
minimum squared error between the original data and the fit (see figure II.9). This
gives a time constant that is a function of the input current as shown in blue in the
figure II.10.

The time constant in figure II.10 can be fit with a function

τeff (I) = A
1− exp(B(I − I0))

1 + C exp(D(I − I0)) + E exp(F (I − I0)) (II.5.1)

Using minimum least squares, the parameters of the above fit obtained are A = 0.1748
s, B = −0.3218 mV−1, C = −0.114, D = −0.3211 mV−1, E = −0.9866, F = −0.0051
mV−1, I0 = −0.6854 mV. Note that at the value of I0 = −0.6854 mV, the numerator
and denominator of the above fit are both zero and hence the ratio is undefined.
However, in the limit of I → I0, the value of the fit converges to the expected value
in the data. With this new time constant, we can re-compute the cycle-averaged
population firing rates for the rate model of a single-excitatory population. We call
this model in the following as the “adaptive rate” or the AR1 model. In figures
II.11 and II.12, we compare the cycle-averaged population firing rates for the network
model and the adaptive rate 1 model for zero and finite connectivity respectively. The
different curves correspond to the different amplitudes used. The population firing rate
is averaged over all the cycles of the input sinusoidal current. For both the network and
the adaptive rate 1 model, we obtain the same curves for different finite connectivities
C used as before. The variance of the population firing rate across different cycles is
linear to the mean across different cycles in the case of zero connectivity in both the
rate model and the network as before (Poissonian spiking of neurons). We can compute
the correlation coefficient between the two models, the network and the adaptive rate
1 model and this is shown by the blue curves with the crosses in figures II.13 and
II.14 for zero and finite connectivity respectively. We observe that the correlation
coefficient is always greater than 0.99 for zero connectivity and drops below 0.99 for
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Figure II.9: Computing the new time constant by approximating D(t) with a
fitted exponential. The six panels correspond to six different value of input current
into the network of EIF neurons. The response rate function of the network (shown in
blue) is computed from 1 to 1000 Hz with a linear spacing of 1 Hz and the resulting
curve is fit with an exponential (shown in red) whose parameters give the minimum
least squared error between the fit and the data. The parameters for the simulations
correspond to the standard network parameters listed in Table II.2.
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Figure II.10: The time constant obtained by approximating D(t) and the
corresponding fit as a function of input current in mV. The new time constant
(blue) is computed by approximatingD(t) with a fitted exponential. The time constant
of the AR0 model is shown in red and the AR1 model in blue. The time constant can
be fit for the AR1 model (shown in black) with the function as defined in equation
II.5.1. The parameters used for the fit of this function are A = 0.1748 s, B = −0.3218
mV−1, C = −0.114, D = −0.3211 mV−1, E = −0.9866, F = −0.0051 mV−1, I0 =
−0.6854 mV. The parameters for the network simulations correspond to the standard
parameters listed in Table II.2.
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an amplitude 13 mV for finite connectivity. The correlation coefficient for the AR1
model with the network simulations for sinusoidal input currents of other time periods
(15 ms shown with blue circles; 30 ms shown with blue double dashes and 120 ms
shown with blue diamonds) are also shown in figures II.13 and II.14 for zero and
finite connectivity respectively. We observe that the correlation coefficient between
the network simulation and the AR1 model is always greater than the correlation
coefficient between the network simulation and the AR0 model. Thus, we see that the
adaptive rate 1 model is better than adaptive rate 0 model at predicting the firing rate
of the network for higher amplitudes of sinusoidal input currents.

Figure II.11: Comparing firing rates for Network and Rate Models with no
connectivity. The average of the population firing rates of the adaptive rate 1 model
(R) and the EIF-network (N) across 1666 cycles (corresponds to 100 seconds) of the
output current for different amplitudes of input current (0.5 mV, 1 mV, 1.5 mV, 3 mV
and 6 mV in the left panel; 9 mV, 12 mV, 15 mV and 18 mV in the right panel). The
x-axis is the time period of one oscillation. The curves for the adaptive rate 1 model
(R) are shown in dashed lines whereas the curves for the network model (N) are shown
in solid lines. The standard deviation at firing rate r goes as

√
r/(Ne∆t) for all curves

shown. To give an estimate, at a firing rate of 60 Hz, the standard error of the mean
is 0.85 Hz.

II.6 Conclusion

In this chapter, we began with phenomenological rate models that described dynamics
of the population firing rate of a network. We then showed how the EIF spiking neuron
model can be described by the adaptive rate 0 model for stationary firing rates. Later,
we compared the autocorrelation of the firing rate of a population of the rate model
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Figure II.12: Comparing firing rates for Network and Rate Models with finite
connectivity. The average of the population firing rates of the adaptive rate 1 model
(R) and the EIF-network (N) across 1666 cycles (corresponds to 100 seconds) of the
output current for different amplitudes of input current (0.5 mV, 1 mV, 1.5 mV, 3 mV
and 6 mV in the left panel; 9 mV, 12 mV, 15 mV and 18 mV in the right panel). The
x-axis is the time period of one oscillation. The curves for the adaptive rate 1 model
(R) are shown in dashed lines whereas the curves for the network model (N) are shown
in solid lines. The connectivity of the network C = 200 and the connection strength
J = 0.1 mV in this case though any C and J with the same product CJ gives the same
results.
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Figure II.13: Correlation coefficient between the cycle averaged population
rates of two rate models and the unconnected network with zero connec-
tivity. Correlation coefficient between the cycle averaged population rates of the EIF
unconnected network and adaptive rate 0 model (in red) and adaptive rate 1 model (in
blue) as a function of the amplitude of the input current (mV). The different curves
correspond to the different time periods of the input sinusoidal current used: the ‘x’
to 60 ms, the ‘o’ to 15 ms, the ‘–’ to 30 ms and the ‘�’ to 120 ms.
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Figure II.14: Correlation coefficient between the cycle averaged population
rates of two rate models and the network with finite connectivity. Correlation
coefficient between the cycle averaged population rates of the EIF network with finite
excitatory connectivity and adaptive rate 0 model (in red) and adaptive rate 1 model
(in blue) as a function of the amplitude of the input current (mV). The different curves
correspond to the different time periods of the input sinusoidal current used: the ‘x’
to 60 ms, the ‘o’ to 15 ms, the ‘–’ to 30 ms and the ‘�’ to 120 ms.
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and an excitatory network of EIF neurons. We then introduced the adaptive rate 1
model and we saw that it describes better the firing rate response of the network of EIF
neurons to a sinusoidally varying current as compared to the adaptive rate 0 model. In
the next chapter, we will discuss oscillations in the brain and use the adaptive rate 1
model to describe the oscillations generated in the Excitatory-Inhibitory (EI) network.
We will then study the different dynamical regimes when we couple EI oscillators
together.
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Chapter III
Oscillations in EI networks

III.1 Oscillations in the brain

Understanding cortical rhythms is one of the major topics of neuroscience [Buzsaki,
2006] [Buzsaki and Draguhn, 2004]. Cortical rhythms can be understood at different
levels: the biophysical mechanisms at the cellular level, neuronal interaction dynamics
at the network level, the interactions between different brain regions at the systems
level and correlation with behaviour and cognitive processes at the behavioural level
[Wang, 2010]. To measure the cortical rhythms one can perform either scalp elec-
troencephalogram (EEG) recordings or magnetoencephalogram (MEG) recordings or
subdural electrocorticogram (ECoG), where the electrodes are placed on the corti-
cal surface after removing the scalp or mesoscopic local field potential (LFP), where
the electrodes are inserted deep into the brain. The different brain rhythms can be
classified according to their frequency and are listed below,

a) Infraslow oscillations (0.02– 0.2 Hz) have been observed in the cortex and
their amplitude and frequency can be changed by external influences such as poisoning,
asphyxia, afferent stimulation of retina, anesthesia among others [Aladjalova, 1957].
The phase of these oscillations correlate with the slow dynamics observed in human
behavioural tasks [Monto et al., 2008] and they are also phase locked with interictal
events and K complexes during non-SWS sleep. The instantaneous ISO voltage is also
correlated with the amplitude envelope of the >1Hz band. They have been suggested
to modulate cortical excitability and contribute to increase in epileptic episodes during
sleep [Vanhatalo et al., 2004].

b) Slow oscillations (< 1 Hz) are observed during non-REM (slow-wave) sleep
[Steriade, 2006] [Achermann and Borbely, 1997]. During the slow wave, almost all the
cells in the cerebral cortex switch repetitively between an up state (where neurons are
at about −65 mV) and a down state (where neurons are at about -80 to -85 mV). This
slow wave might be responsible for memory consolidation [Huber et al., 2004].

c)Theta rhythm (4−8 Hz) is observed in the hippocampus and other limbic struc-
tures during exploratory movements [Bland, 1986], retrieval and formation of spatial
and episodic memory [Hasselmo, 2005]. The spatial information during movements
may be encoded by the spike timings of the cells with respect to the theta rhythm
[Geisler et al., 2007]. This kind of “phase coding” might have a role in communication

57
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between different brain areas [Buzsaki and Chrobak, 1995] [Fries et al., 2007] [Quiroga
and Panzeri, 2009] [Schneider et al., 2009] [Tiesinga et al., 2008] [Tognoli and Kelso,
2009].

d) Alpha rhythms (∼ 10 Hz) are large-amplitude EEG sinusoidal oscillations
when the subject is awake and relaxed [Andersen and Andersson, 1968]. They were
first observed by Hans Berger [Berger, 1929] around the 1920s and are also called
“Berger’s wave”. They are also observed in the neocortex and is enhanced during
working memory tasks [Canolty et al., 2006] [Meltzer et al., 2008].

e) Beta rhythm (15− 30 Hz) was also first observed by Hans Berger around the
1920s in the primary motor cortex [Berger, 1929]. It occurs during “readiness” of a
movement but ceases at its initiation. It also increases if a response is withheld [Jasper
and Penfield, 1949]. Beta rhythms are also known to be involved in sensorimotor
integration and top-down signaling.

f) Gamma rhythms (30 − 80 Hz) are seen in the olfactory bulb in the presence
of a sensory stimulus [Adrian, 1942]. In the hippocampus, gamma and theta rhythms
overlap [Bragin et al., 1995]. In the neocortex, gamma rhythms are associated with
states of attentiveness [Bouyer et al., 1981]. It was also observed in the primary visual
cortex in anesthetized as well as alert animals [Eckhorn et al., 1988]. Synchronization
of gamma waves between neural assemblies might play a role in sensory integration
[Gray, 1994].

g) Ultrafast oscillations (∼ 100 Hz) can be found in the cerebellum [Adrian,
1935] as well as the hippocampus during awake immobility, consummatory behaviors
and non-REM sleep, when theta rhythm is absent [Buzsaki et al., 1983] [Buzsaki et al.,
1992]. It can also be found transiently in the neocortex [Canolty et al., 2006].

In terms of the functionality, apart from being involved in phase coding, mem-
ory consolidation, working memory tasks, attentiveness [Deco and Thiele, 2009] and
sensory integration [Ghazanfar et al., 2008], neuronal temporal correlations resulting
from synchronous oscillations can also be useful for Spike-timing dependent plasticity
(STDP) [Harris et al., 2003]. They also play an important role in circuit pattern for-
mation of the developing brain [Blankenship and Feller, 2010]. They are believed to
increase the efficiency of information transfer in the brain [Baker et al., 1999].

In a network of neurons, three types of synchronization mechanisms by chemical
synapses are possible: 1) due to excitatory neurons only, 2) due to inhibitory neurons
only [Traub et al., 1996] [Wang and Buzsaki, 1996] [Whittington et al., 1995], and
3) due to the coupling of excitatory and inhibitory neuronal populations. Electrical
synapses by gap junctions have also been proposed to contribute to neural synchrony.
In this thesis, we focus on the oscillations generated by the excitatory-inhibitory inter-
actions because we are interested in modeling oscillations in the beta and low gamma
range as recorded, for example, in the motor cortex region during preparation of mo-
tor movements. In excitatory-inhibitory networks, the oscillations are generated by
slower feedback inhibition following fast recurrent excitations [Andersen and Eccles,
1962] [Freeman, 1975] [Frolov and Medvedev, 1986] [Wilson and Cowan, 1972] [Wilson
and Cowan, 1973]. Wilson and Cowan analyzed this phenomena by means of a firing
rate model for the excitatory-inhibitory populations [Destexhe and Sejnowski, 2009].
The oscillations generated by this mechanism can be used to model the gamma oscil-
lations in the olfactory bulb [Freeman, 1968], [Freeman, 1975] and in the hippocampus
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[Horowitz, 1972] [Leung, 1982]. To understand how the interaction between the exci-
tatory and the inhibitory population generates the oscillation, consider the beginning
of the oscillatory cycle. Here, the excitatory input increases and the firing rate of the
excitatory population increases due to a positive feedback, until the inhibition catches
up and brings the population activity down again. As the excitatory population activ-
ity and then the inhibitory population activity goes down, the network recovers from
inhibition and the excitatory firing rate increases again. This results in a rhythmic
behaviour [Hansel and Mato, 2003] [Paik et al., 2009] [Tsodyks et al., 1997] [Wang,
1999]. This is also called the pyramidal-interneuron gamma mechanism or the PING
mechanism [Borgers and Kopell, 2003]. The other mechanism of generation of oscil-
lations is the ING mechanism or the interneuron gamma mechanism which comprises
of a network solely made of inhibitory neurons where the timescale of oscillations is
on the order of the synaptic delay between neurons [Whittington et al., 2000]. How-
ever, since we are interested in oscillations which have a time period of about 50ms,
they cannot be explained by slow synapses as it is not biologically realistic to have a
synaptic delay of that timescale.

Finally, we wish to analyze waves of oscillatory activity among the different neu-
ral populations in the brain. We should distinguish propagatory waves of activity and
phase waves. The former simply corresponds to propagation of activity from one region
to another (for instance, like the outward flow of ripples on a surface of water when
something hits the surface). The latter, on the other hand, corresponds to oscillations
in different spatial regions with a fixed phase difference between them. As a result, the
maximum of one oscillation is reached a little time after the maximum of another os-
cillation and this creates the impression of a wave. Cognitive processes such as sensory
perception, motor actions and decision making engage selective neural populations.
The neural activities in these populations can either be spatially confined in time or
can propagate as waves among the different populations. For instance, gamma waves
have been observed in the frontal cortex [Llinas and Ribary, 1993] [Ribary et al., 1991],
slow sleep oscillations have been observed in the frontal cortex [Massimini et al., 2004]
[Massimini et al., 2007] [Murphy et al., 2009]. LFP beta oscillatory episodes have been
observed in the motor and premotor cortical areas of a monkey and they contain in-
formation about the visual target that the alert monkey needs to reach [Rubino et al.,
2006]. Stimulus-induced waves have been observed in vivo using EEG recordings or
voltage-sensitive dye in the olfactory bulb [Eeckman and Freeman, 1990] [Eeckman and
Freeman, 1978] [Orbach and Cohen, 1983], turtle visual cortex [Prechtl et al., 1997],
and rat somatosensory cortex [Petersen and Sakmann, 2001]. In vitro studies have
also demonstrated wave propagation of evoked responses in cortical slices [Contreras
and Llinas, 2001] [Tanifuji et al., 1994] [Wu et al., 2008] [Xu et al., 2007].

To model both kinds of waves, we can use the fact that in the cortex, the probability
of synaptic connection decreases with the physical distance for both excitatory pyra-
midal cells and inhibitory interneurons [Gilbert, 1993] [Sik et al., 1995] [Stepanyants
et al., 2007]. This enables the spiking activity to spread from one group of neurons
to the next in the form of a propagating wave or the different oscillating regions to
synchronize.
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III.2 Dynamics of a single EI network
In this section, we first describe the dynamics of a network of two populations of
neurons, excitatory (E) and inhibitory (I) neurons. We will look at the different
dynamical regimes of this system and in the next section, we will make a connection
to the two population rate model. We compare the dynamics of the EI network in
different regimes with the corresponding adaptive rate model for the two populations.
We will then focus on the regime where this network displays oscillations. After we
have identified this regime, we will spatially extend our EI network to two EI networks
and study the different dynamical regimes in this extended model.

In the single EI network, the two populations i.e. the excitatory and inhibitory
populations are connected to each other. In addition, the excitatory population is
recurrently connected to itself (see figure III.1).

Figure III.1: The Excitatory-Inhibitory network. The
excitatory and the inhibitory populations are synaptically
connected to each other and the excitatory population is
recurrently connected in itself. We do not include the I-I
synaptic connections because we wish to study the oscilla-
tions mediated by E-I coupling and not the fast oscillations
at the timescale of synaptic coupling that are elicited due to
recurrent inhibition.

For the single EI network of neurons, each neuron in the network model is modelled
by an exponential integrate and fire neuron. An excitatory neuron obeys the following
equation for its membrane potential ve :

dve
dt

= −ve + vL + Fv + Iext
τ

+ σ√
τ
ηi +

Ce∑
j=1

∑
k

JEEδ(t− tkj )−
Ci∑
j=1

∑
k

JIEδ(t− tkj ),

(III.2.1)
Fv = ∆T exp(ve − vT∆T

), (III.2.2)

whereas an inhibitory neuron obeys the following equation for its membrane potential
vi:

dvi
dt

= −vi + vL + Fv + Iext
τ

+ σ√
τ
ηi +

Ce∑
j=1

∑
k

JEIδ(t− tkj ), (III.2.3)

Fv = ∆T exp(vi − vT∆T
), (III.2.4)

where vL is the leak voltage, Iext is the external current that is injected into the neuron,
σ2 is the variance of the white noise inserted into the neuron, ηi is a random normal
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variable associated with neuron i, τ is the membrane time constant, ∆T is the sharpness
of the action potential initiation, vT is the membrane potential threshold, Ne is the
number of excitatory neurons, Ni is the number of inhibitory neurons, Ce is the number
of excitatory connections that each neuron (both excitatory and inhibitory) receives,
Ci is the number of inhibitory connections received by each excitatory neuron, tkj is
the time of the k-th spike of the j-th neuron. Whenever there is a presynaptic spike in
an excitatory neuron, there is an increase in the membrane voltage of the postsynaptic
neuron by an amount JEE if it is an excitatory neuron and JEI if it is an inhibitory
neuron on the next time step (delta synapse). Whenever there is a presynaptic spike in
an inhibitory neuron, there is a decrease in the membrane voltage of the postsynaptic
excitatory neuron by an amount JIE in the next time step (delta synapse). Note
that the convention we use for JEI and JIE is different from the convention regularly
used in literature. Usually, in literature, JEI refers to the decrease in postsynaptic
membrane potential of the excitatory neuron when there is an action potential in the
presynaptic inhibitory neuron and JIE refers to the increase in postsynaptic membrane
potential of the inhibitory neuron when there is an action potential in the presynaptic
excitatory neuron. However, in this manuscript, we use JEI to refer to the increase
in postsynaptic membrane potential of the inhibitory neuron when there is an action
potential in the presynaptic excitatory neuron and JIE to refer to the decrease in
postsynaptic membrane potential of the excitatory neuron when there is an action
potential in the presynaptic inhibitory neuron.

We do not include the I-I synaptic connections for simplicity and also because we
wish to study the oscillations mediated by E-I coupling and not the fast oscillations at
the timescale of synaptic coupling that are elicited due to recurrent inhibition. When
the membrane potential of any neuron crosses vT , it diverges to infinity in finite time.
Therefore, when the membrane potential reaches the threshold potential vth, we insert
a spike for the neuron and the membrane potential of the neuron is reset to vR. For
a duration of tref , the refractory time period, the neuron is clamped to the voltage
vR, before it resumes its dynamics again according to the above equations. All the
network simulations are performed in BRIAN2 [Goodman and Brette, 2009]. For the
network simulations, we use a time step of 0.01 ms. We fix the desired firing rates of the
excitatory population and the inhibitory population to be r0

E = 5 Hz and r0
I = 10 Hz

respectively. To obtain these firing rates in the two populations, we firstly compute the
necessary currents I0

E and I0
I that needs to be injected into each of the neurons. This

can be done by inverting the f-I curve of the EIF neuron at the values corresponding to
5 Hz and 10 Hz. However, these currents are the total currents that need to be injected
into the neurons and they include the contributions due to the synaptic connectivity
of the neurons. Hence, to find out the external current that needs to be injected into
the neurons, we should subtract the contribution to the mean input current due to
synaptic connectivity. The contribution to the mean input current due to synaptic
connectivity to the excitatory neurons is given by CeJEErEτm − CiJIErEτm and the
contribution to the mean input current due to synaptic connectivity to the inhibitory
neurons is given by CeJEIrEτm. Subtracting the values of the mean input current
due to synaptic connectivity from I0

E and I0
I gives the necessary external currents IextE

and IextI that need to be injected in neurons to give a firing rate of 5 Hz and 10 Hz.
Similarly, the standard deviation of the inserted noise σ is chosen to be 10 mV, which
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τ 10 ms vL -65 mV
∆T 3.5 mV vT -59.9 mV
vR -68 mV vThresh -30 mV
r0
E 5 Hz r0

I 10 Hz
I0
E -6.283 mV I0

I -3.621 mV
IextE -10.283 mV IextI -11.621 mV
σE 10 mV σI 10 mV
σextE 9.994 mV σextI 9.996 mV
NE 4000 NI 1000
CE 800 CI 200
JEE 0.2 mV JIE 0.2 mV
JEI 0.2 mV JII 0.0 mV

Table III.1: Parameters used in the E-I network simulation.

is high enough so as to reproduce a Coefficient of Variation (CV) of around 1.0 in
the neurons. In order to maintain the standard deviation of the total input noise to
the neurons to be equal to 10 mV in the presence of connectivity, we subtract the
corresponding contributions due to synaptic connectivity. The contribution to the
variance of the inserted noise due to synaptic connectivity to the excitatory neurons is
given by CeJ2

EErEτm+CiJ2
IErEτm while the contribution to the variance of the inserted

noise due to synaptic connectivity to the inhibitory neurons is given by CeJ2
EIrEτm.

Subtracting these values from the variance of a noise standard deviation 10 mV gives
us the variance of the external noises σextE and σextI that needs to be inserted into the
neurons. The following table shows the values used for one such simulation and the
corresponding result is shown in figure III.4.

III.2.1 Different dynamical regimes of the EI network

Using different values of the synaptic connectivity strengths, we can run the network
simulations. If the network indeed converges to the firing rates that we have specified,
then these firing rates are a stable point of the network for the corresponding connec-
tivity strengths. If, on the other hand, the network does not converge to the stationary
state of the specified firing rates: 5 Hz and 10 Hz for the excitatory population and
the inhibitory population, respectively, in our case, then the fixed point is not stable
for the corresponding parameters of the connectivity strengths. Indeed, in the network
simulations, we find a range of parameters where the fixed point is stable (see figure
III.2) and other points in the phase space of connectivity strengths where the network
population firing rates either oscillate in time (see figure III.4) or converge to another
fixed point (see figure III.3) or exhibit synchronous spikes of activity (see figure III.5).
Due to the Poissonian spiking of neurons, the population firing rate is not exactly 5
Hz but it fluctuates around it. To explain the different regimes on the phase diagram,
we can turn to the corresponding adaptive rate models.
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Figure III.2: Network firing rates converge to the stable fixed point for the
corresponding synaptic strengths. The left panels show the excitatory and in-
hibitory population firing rate as a function of time. The right panels show the his-
togram of the excitatory and inhibitory population firing rates.

Figure III.3: Network firing rates reach another fixed point for the corre-
sponding synaptic strengths. The left panels show the excitatory and inhibitory
population firing rate as a function of time. The right panels show the histogram of
the excitatory and inhibitory population firing rates.
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Figure III.4: Network firing rates oscillate in time for the corresponding
synaptic strengths. The left panels show the excitatory and inhibitory population
firing rate as a function of time. The right panels show the histogram of the excitatory
and inhibitory population firing rates.

Figure III.5: Network firing rates exhibit synchronous spikes of activity for
the corresponding synaptic strengths. The left panels show the excitatory and
inhibitory population firing rate as a function of time. The right panels show the
histogram of the excitatory and inhibitory population firing rates.
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III.3 Rate Model with coupling
In this section, we describe the dynamics of the adaptive rate 0 model for two pop-
ulation of neurons, excitatory and inhibitory neurons. The two populations i.e. the
excitatory and inhibitory populations are connected to each other. In addition, the
excitatory population is recurrently connected to itself. For the sake of simplicity, we
first consider a rate model without any finite size effects due to the limited size of
the network. Hence, we neglect the noise due to finite network size. The dynamics of
the corresponding adaptive rate model for two populations are given by the following
equations:

rE = ΦE(IE), (III.3.1)

rI = ΦI(II), (III.3.2)

τE
dIE
dt

= −IE + IextE + wEErE − wIErI , (III.3.3)

τI
dII
dt

= −II + IextI + wEIrE , (III.3.4)

where rE and rI represent the firing rates of the excitatory and inhibitory populations
respectively, IE and II represent the input currents to the two populations, ΦE(.)
and ΦI(.) are the f-I curves of the exponential-integrate and fire neuron, IextE and
IextI are the external currents injected into the excitatory and inhibitory populations
respectively, wEE and wEI are the coupling strengths from the excitatory population to
the excitatory and the inhibitory populations respectively, wIE is the coupling strength
from the inhibitory population to the excitatory population. The correspondence to
the EI network simulations with connectivity strengths JEE , JEI and JIE can therefore
be made by taking wEE = CeJEEτm, wEI = CeJEIτm and wIE = CiJIEτm. The time
constants of the two populations, τE and τI are functions of the currents IE and II as
prescribed by Ostojic and Brunel (see section II.5 for AR0 model) or as explained in
section II.5 (AR1 model).

We look for the regions in the w space where we have the steady state (r0
E , r0

I ) or
equivalently (I0

E ,I0
I ):

I0
E = IextE + wEEr

0
E − wIEr0

I , (III.3.5)

I0
I = IextI + wEIr

0
E . (III.3.6)

This can be done by assuming small perturbations (linearization) around this state
and looking at the eigenvalues to determine how the perturbations grow or diminish
in time.

IE = I0
E + iE , (III.3.7)

II = I0
I + iI , (III.3.8)

This gives us the following equations for the dynamics of the perturbations:

τE
diE
dt

= −IE + IextE + wEErE − wIErI , (III.3.9)

τI
diI
dt

= −II + IextI + wEIrE , (III.3.10)
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where
rE = Φ(I0

E + iE) = r0
E + Φ′(I0

E)iE , (III.3.11)

rI = Φ(I0
I + iI) = r0

I + Φ′(I0
I )iI , (III.3.12)

Substituting this in the above equations, we can rewrite the 2x2 dynamical system as
follows:

d

dt

(
iE
iI

)
=

−1+wEEΦ′(I0
E)

τE

−wIEΦ′(I0
I )

τE
wEIΦ′(I0

E)
τI

−1
τI

(iE
iI

)
(III.3.13)

To determine the stability of the above dynamical system, we compute its eigenval-
ues. The eigenvalues of the above matrix are the solutions of the polynomial equation:

1− wEEΦ′(I0
E) + wEIwIEΦ′(I0

E)Φ′(I0
I )

+λ(τE + τI − τIwEEΦ′(I0
E)) + λ2τEτI = 0,

(III.3.14)

where λ denotes the eigenvalues. Let us write Φ′(I0
E) as Φ′E and Φ′(I0

I ) as Φ′I for
simplicity. The solutions of the polynomial equation are:

λ1,2 = −
(τE + τI − τIwEEΦ′E

2τEτI
)
±

√
(τE − τI + τIwEEΦ′E)2 − 4τEτIwEIwIEΦ′EΦ′I

2τEτI
.

(III.3.15)
The sum and product of the eigenvalues are given as:

λ1 + λ2 = −τE + τI − τIwEEΦ′E
τEτI

, (III.3.16)

λ1λ2 = 1− wEEΦ′E + wEIwIEΦ′EΦ′I
τEτI

. (III.3.17)

The eigenvalues have an imaginary component when:

(τE + τI − τIwEEΦ′E)2 < 4τEτI(1− wEEΦ′E + wEIwIEΦ′EΦ′I), (III.3.18)

i.e.,
(τE − τI + τIwEEΦ′E)2 < 4τEτIwEIwIEΦ′EΦ′I . (III.3.19)

If τE + τI − τIwEEΦ′E > 0 i.e. wEE < τE+τI
τIΦ′E

, we have the condition to get oscillatory
eigenmodes to be,

wEE <
2
√
τEτIΦ′EΦ′IwEIwIE − τE + τI

Φ′EτI
. (III.3.20)

While if τE + τI − τIwEEΦ′E < 0 i.e. wEE > τE+τI
τIΦ′E

,we get the condition,

wEE >
−2
√
τEτIΦ′EΦ′IwEIwIE − τE + τI

Φ′EτI
. (III.3.21)
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We will look at the 2D phase space with the following parameters as variables: wEE
and √wIEwEI . There are four regimes that we can consider: stable fixed point regime,
stable oscillations regime, unstable fixed point regime and unstable oscillations regime.
1) Stable regime: In this regime, the fixed point is stable and any perturbations around
the fixed point will eventually vanish away. For this to be the case, the real part of
the two eigenvalues should be negative or equivalently the sum of eigenvalues must be
negative and the product must be positive. The fact that the timescale is adaptive or
not does not matter for these conditions and they only depend on the timescale at the
fixed point.

A stable fixed point regime is, therefore, given by the following conditions for the
sum and product of eigenvalues (from equations III.3.16 and III.3.17),

τE + τI − τIwEEΦ′E > 0, (III.3.22)

and
1− wEEΦ′E + wEIwIEΦ′EΦ′I > 0. (III.3.23)

⇒ wEE <
τE + τI
Φ′EτI

, (III.3.24)

and
⇒ wEE <

1 + wEIwIEΦ′EΦ′I
Φ′E

. (III.3.25)

The perturbations away from the fixed point can vanish in two ways: either, it can
decay exponentially to the fixed point or it can oscillate around the fixed point with
the amplitude of the oscillations decaying in time. This corresponds to whether or not
the eigenvalue has an imaginary component or not. For the eigenvalues to not have an
imaginary component, we need

wEE >
2
√
τEτIΦ′EΦ′IwEIwIE − τE + τI

Φ′EτI
. (III.3.26)

An example of the dynamics of the two populations of the model obtained when this
condition is satisfied is shown in figure III.6. Here, (r0

E , r0
I ) = (5, 10) Hz, wEE = 0.4

mV.s, wEI = 0.1 mV.s and wIE = 0.1 mV.s. For the corresponding network of EIF
neurons, these parameters correspond to JEE = 0.05 mV, JEI = 0.0125 mV and
JIE = 0.05 mV for network connectivity of Ce = 800, Ci = 200 and neuronal membrane
time constant of τm = 10 ms. For these parameters, any small perturbation around
the fixed point decays and the firing rates converge to the fixed point.

For the eigenvalues to have an imaginary component, we need

wEE <
2
√
τEτIΦ′EΦ′IwEIwIE − τE + τI

Φ′EτI
. (III.3.27)

Therefore, at wEE = 2
√
τEτIΦ′EΦ′IwEIwIE−τE+τI

Φ′EτI
, we have a transition from a “stable

fixed point regime”, where the perturbations decay exponentially to the fixed point,
to a “damped oscillations regime” where the perturbations oscillate towards the fixed
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Figure III.6: Firing rates of the AR0 model converge to the stable fixed
point. The excitatory firing rate (in blue) and the inhibitory firing rate (in red) of
the adaptive rate 0 model when the fixed point is stable and the dynamics does not
have an imaginary component in its eigenvalues. Any small perturbation in the firing
rates decays back to the stable fixed point.

point decaying in time. An example of such a dynamics of the two populations obtained
when this condition is satisfied is shown in figure III.7. Here, (r0

E , r0
I ) = (5, 10) Hz,

wEE = 1.4 mV.s, wEI = 1.6 mV.s and wIE = 0.4 mV.s. For the corresponding network
of EIF neurons, these parameters correspond to JEE = 0.175 mV, JEI = 0.2 mV and
JIE = 0.2 mV for network connectivity of Ce = 800, Ci = 200 and neuronal membrane
time constant of τm = 10 ms. For these parameters, any small perturbation around
the fixed point causes the firing rates to oscillate towards the stable fixed point before
converging to it.

2) Unstable regime: In this regime, the fixed point is not stable and any small
perturbations drives the system away to either a new fixed point or it causes the
system to oscillate forever, if there is an input energy source. For the fixed point to
be unstable, at least one eigenvalue must be positive. For this to happen, we need
the product as well as the sum of the eigenvalues to be negative. This leads to the
following condition,

wEE >
τE + τI
Φ′EτI

(III.3.28)

or
wEE >

1 + wEIwIEΦ′EΦ′I
Φ′E

(III.3.29)

An example of such a dynamics of the two populations obtained when the fixed
point is unstable is shown in figure III.8. Here, (r0

E , r0
I ) = (5, 10) Hz, wEE = 2.0 mV.s,
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Figure III.7: Firing rates of the AR0 model oscillate and converge to the
stable fixed point. The excitatory firing rate (in blue) and the inhibitory firing rate
(in red) of the adaptive rate 0 model when the fixed point is stable and the dynamics
has an imaginary component in its eigenvalues. Any small perturbation in the firing
rates oscillates around the fixed point before the firing rates converge to the stable
fixed point.
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wEI = 1.6 mV.s and wIE = 0.4 mV.s. For the corresponding network of EIF neurons,
these parameters correspond to JEE = 0.25 mV, JEI = 0.2 mV and JIE = 0.2 mV for
network connectivity of Ce = 800, Ci = 200 and neuronal membrane time constant of
τm = 10 ms. For these parameters, for any small perturbation around the fixed point
will drive the firing rates away to another fixed point.

Figure III.8: Firing rates of the AR0 model reach another fixed point because
the initial fixed point is unstable for the corresponding coupling strength
parameters. The excitatory firing rate (in blue) and the inhibitory firing rate (in
red) of the adaptive rate 0 model when the fixed point is unstable and the dynamics
does not have an imaginary component in its eigenvalues. Any small perturbation in
the firing rates around the original fixed point (rE , rI) = (5, 10) Hz takes the system
away to the other fixed point.

Here again, there is a transition from this regime i.e. “unstable fixed point” to a
regime where we find oscillations depending on whether the eigenvalue has an imagi-
nary component or not. This occurs when,

(τE − τI + τIwEEΦ′E)2 = 4τEτIwEIwIEΦ′EΦ′I (III.3.30)

⇒ wEE =
−2
√
τEτIΦ′EΦ′IwEIwIE − τE + τI

Φ′EτI
. (III.3.31)

The transition from stable to unstable oscillations is given by Re(λ)=0 i.e. (from
equation III.3.15)

τE + τI − τIwEEΦ′E = 0 (III.3.32)

⇒ wEE = τE + τI
τIΦ′E

(III.3.33)
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The frequency of the oscillation can be calculated by inverting the imaginary compo-
nent of the eigenvalue and is given by:

ω =

√
(τE − τI + τIwEEΦ′E)2 − 4τEτIΦ′EΦ′IwEIwIE

2τEτI
(III.3.34)

An example of such a dynamics of the two populations obtained when the fixed
point is unstable and the eigenvalues of the dynamics have an imaginary component
is shown in figure III.9. Here, (r0

E , r0
I ) = (5, 10) Hz, wEE = 1.6 mV.s, wEI = 1.6 mV.s

and wIE = 0.4 mV.s. For the corresponding network of EIF neurons, these parameters
correspond to JEE = 0.2 mV, JEI = 0.2 mV and JIE = 0.2 mV for network connectivity
of Ce = 800, Ci = 200 and neuronal membrane time constant of τm = 10 ms. For these
parameters, any small perturbation around the fixed point will cause the system to
become unstable and oscillate. The oscillations saturate because of the nonlinearity in
the system. The oscillations observed here, indeed correspond to a PING mechanism,
with the peaks of the inhibitory firing rate following the peaks of the firing rate of the
excitatory population.

To recapitulate all of the above information, we can plot the corresponding phase
diagram for the EI model as shown in figure III.10. To plot the phase diagram, we
consider the parameters wEE on one axis and √wIEwEI on the other axis. The phase
diagram demarcates the various dynamical regimes and the different lines of bifurca-
tions in the EI system.

Figure III.9: Firing rates of the AR0 model oscillate in time. The excitatory
firing rate (in blue) and the inhibitory firing rate (in red) of the adaptive rate 0 model
when the fixed point is unstable and the dynamics has an imaginary component in its
eigenvalues.

Since we want to model the oscillations of the EI network, we will confine ourselves
to the oscillatory regime in the phase diagram. However, from figure III.4, we observe
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Figure III.10: The phase diagram of the EI rate model displaying the bifur-
cation lines and the four regimes.
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that the oscillations in the spiking network are noisy. We also do not observe a sharp
transition to the oscillatory regime from the damped oscillations regime because of the
finite size noise. In the next section, we will compare the oscillations observed in the
network with the oscillations observed in the two adaptive rate models with finite size
noise. We will see that the AR1 model performs better than the AR0 model in the
oscillatory regime. We will then try to reproduce the oscillations in the network using
the AR1 model.

III.4 Comparing the oscillatory phases of the rate model and
the network model

We begin by comparing the two adaptive rate models for the case of the EI network of
EIF neurons. To do this, we simulate the network of 5000 neurons (4000 excitatory and
1000 inhibitory) and 20000 neurons (16000 excitatory and 4000 inhibitory) for a time
duration of 200 seconds each. We extract the average over neurons of the synaptic
input into each excitatory neuron and each inhibitory neuron from each excitatory
and each inhibitory neuron. We thus obtain three quantities as a function of time: the
mean synaptic excitatory input to an excitatory neuron, the mean synaptic inhibitory
input to an excitatory neuron and the mean synaptic excitatory input to an inhibitory
neuron. We inject these quantities into the rate models with no connectivity i.e. wEE =
wEI = wIE = wII = 0. We run the rate model simulations 1000 times accounting for
the finite size effects as presented in equationII.3.16 (for network sizes of 5000 and
20000 neurons respectively). We compute the mean firing rate over the different trials
in both cases for the Adaptive Rate 0 and the Adaptive Rate 1 models and compute
the correlation coefficient with the original firing rates of the network. The cross
correlation coefficients between the network of 5000 neurons and adaptive rate 0 model
are 0.9721 and 0.9780 for the excitatory and inhibitory firing rates respectively whereas
the cross correlation coefficients between the network of 5000 neurons and adaptive rate
1 model are 0.9802 and 0.9814 respectively. Similarly, the cross correlation coefficients
between the network of 20000 neurons and adaptive rate 0 model are 0.9864 and
0.9910 for the excitatory and inhibitory firing rates respectively whereas the cross
correlation coefficients between the network of 20000 neurons and adaptive rate 1
model are 0.9921 and 0.9922 respectively. Shown in figures III.11, III.12, III.13 and
III.14 are the comparisons between the firing rates of the network and the Adaptive
Rate 0 model and the Adaptive Rate 1 model respectively. Even though the correlation
coefficients do not change significantly, we observe that the adaptive rate 1 model better
fits the peaks of the network activity than the adaptive rate 0 model.

III.4.1 Computing the limit cycles of the EI dynamical system
We simulate the dynamics of the firing rates for the case of a fully connected EI network
of 5000 and 20000 EIF neurons (with 4:1 as ratio of number of excitatory neurons and
inhibitory neurons) and the two corresponding adaptive rate models for the case of
wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s for 100 seconds each. Firstly, to compare
the firing rates obtained, we can plot the 2D histograms of the firing rates. For purposes
of visualization, we plot instead the log of the histogram as shown in figures III.15 and
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Figure III.11: Comparing the firing rates of the AR0 model and Network of
5000 EI neurons. For this plot, the mean synaptic input received by the neurons
in the network of 5000 neurons is injected into the adaptive rate 0 model with no
connectivity and the firing rates of the two are then compared. The top panel shows
the excitatory firing rates of the network (in red) and the adaptive rate 0 model (in
blue) and the bottom panel shows the inhibitory firing rates of the network (in red)
and the adaptive rate 0 model (in blue).

Figure III.12: Comparing the firing rates of the AR1 model and Network of
5000 EI neurons. For this plot, the mean synaptic input received by the neurons
in the network of 5000 neurons is injected into the adaptive rate 1 model with no
connectivity and the firing rates of the two are then compared. The top panel shows
the excitatory firing rates of the network (in red) and the adaptive rate 1 model (in
blue) and the bottom panel shows the inhibitory firing rates of the network (in red)
and the adaptive rate 1 model (in blue).
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Figure III.13: Comparing the firing rates of the AR0 model and Network of
20000 EI neurons. For this plot, the mean synaptic input received by the neurons
in the network of 20000 neurons is injected into the adaptive rate 0 model with no
connectivity and the firing rates of the two are then compared. The top panel shows
the excitatory firing rates of the network (in red) and the adaptive rate 0 model (in
blue) and the bottom panel shows the inhibitory firing rates of the network (in red)
and the adaptive rate 0 model (in blue).

Figure III.14: Comparing the firing rates of the AR1 model and Network of
20000 EI neurons. For this plot, the mean synaptic input received by the neurons
in the network of 20000 neurons is injected into the adaptive rate 0 model with no
connectivity and the firing rates of the two are then compared. The top panel shows
the excitatory firing rates of the network (in red) and the adaptive rate 1 model (in
blue) and the bottom panel shows the inhibitory firing rates of the network (in red)
and the adaptive rate 1 model (in blue).
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AR0 and network AR1 and network
5k FullC 0.0123 0.0013
20k FullC 0.0714 0.0021

Table III.2: Table comparing the KL diverengences of the fully connected EI network
of 5000 and 20000 EIF neurons and the corresponding AR0/AR1 model simulations
for.

III.16. We can normalize the histograms to obtain the probability distributions of firing
rates and compute the Kullback-Leibler (KL) divergence between the AR0 distribution
and the network distribution and AR1 distribution and the network distribution. The
KL divergence or the relative entropy is a measure of the divergence between two
probability distributions P (x) and Q(x), of variable x [Cover and Thomas, 2005] and
is given by:

DKL(P ||Q) =
∫ ∞
−∞

P (x) log P (x)
Q(x)dx. (III.4.1)

Two identical probability distributions have a KL divergence of zero. We obtain the
values shown in the following table. We notice that the KL divergence for the AR1
model and the network is ten times smaller than that for the AR0 model and the
network.

Figure III.15: Histogram of the firing rates for a 5k network. Values refer to
the log of the bin count. The excitatory (E) firing rate is shown on the X axis and
the inhibitory (I) firing rate is shown on the Y axis. The firing rates on both the axes
are divided into 20 bins. The left panel corresponds to the network, the middle panel
to the AR0 model and the right panel to the AR1 model.

We also want to compute the limit cycle of the dynamics from the firing rates
for the case of a fully connected EI network and the two corresponding adaptive rate
models. Since the dynamics of the network is not entirely periodic, we compute the
limit cycle as follows.

1) We smooth the raw data of the firing rates of the two populations with a rect-
angular averaging window of 20 ms. 2) We use the smoothed firing rates of one of
the populations, say the excitatory population, and extract the peaks of the signal,
as shown in figure III.17. 3) We then compute the mean time difference between the
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Figure III.16: Histogram of the firing rates for a 20k network. Values refer
to the log of the bin count. The firing rates on both the axes are divided into 20
bins. The left panel corresponds to the network, the middle panel to the AR0 model
and the right panel to the AR1 model.

peaks. 4) Next, we use the raw firing rates of the excitatory and inhibitory popula-
tions again and smooth it this time using a rectangular averaging window of 2 ms. The
peaks extracted for the 20ms smoothed data extend over to the 2ms smoothed data.
5) We consider the 2ms smoothed data signal between any two consecutive peaks and
stretch or contract this data, of both the excitatory and the inhibitory populations,
to this mean time difference between the peaks. 6) With this, we then have signals of
the same length for each cycle. 7) We then compute the average excitatory population
firing rate and the average inhibitory population firing rate over the different cycles.
8) This helps us determine the average limit cycle of the network activity.

The same method is applied for the adaptive rate models. The limit cycles for the
case of wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s for the case of fully connected
EI network of 5000 and 20000 EIF neurons (with 4:1 as ratio of number of excitatory
neurons and inhibitory neurons) is shown in figures III.18 and III.19 respectively.

III.4.2 Comparing the limit cycles of the two Adaptive rate models

We observe that the limit cycle of the adaptive rate 1 model corresponds more closely
to the network limit cycle. To compare the limit cycles in the three cases for wEI = 1.6
mV.s, wIE = 0.4 mV.s and different values of wEE , we can compare a few quantities
characterizing the limit cycles obtained in the case of the network simulations as well
as the adaptive rate 0 model and adaptive rate 1 model for a network size of 20000
neurons (16000 E and 4000 I neurons). In figures III.20 and III.21, we compare six
quantities in the three limit cycles as a function of wEE : 1) the area of the averaged
limit cycle, 2) the maximum excitatory amplitude in the averaged limit cycle, 3) the
minimum excitatory amplitude in the averaged limit cycle, 4) the average time period,
5) the maximum inhibitory amplitude in the averaged limit cycle and 6) the minimum
inhibitory amplitude in the averaged limit cycle. We observe that the quantities ob-
tained in the adaptive rate 1 model match more closely with the network than with
the adaptive rate 0 model.
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Figure III.17: Extracting the peaks of the firing rate signal. An example of
the excitatory population firing rate and its identified peaks, represented by the black
dots.

Figure III.18: Comparing the three limit cycles for a network size of 5000
neurons. The three limit cycles for a fully connected network of 5000 neurons for
wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s (in black) and the corresponding adaptive
rate 0 model (in red) and adaptive rate 1 model (in blue).
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Figure III.19: Comparing the three limit cycles for a network size of 20000
neurons.The three limit cycles for a fully connected network of 20000 neurons for
wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s (in black) and the corresponding AR0
model (in red) and AR1 model (in blue).

III.5 Two coupled EI networks
In order to study oscillations and synchrony among networks, we need to introduce
inter-excitatory coupling between different groups of EI neuronal populations. In this
section, we begin by coupling two EI networks via inter-excitatory coupling. From the
data in the cortex, we know that the probability of synaptic connection decreases with
the physical distance for the excitatory pyramidal cells. Hence, we can consider two EI
networks with inter-excitatory coupling that is a fraction of the net excitatory input
received by each excitatory population (see figure III.22).

We will use the adaptive rate 1 model for this purpose, because it fits the limit
cycles of the network better quantitatively. For simplicity, we begin with the case
where there are no finite size effects due to the network size. The dynamics of the two
coupled EI populations can be described by the following equations:

rE1 = ΦE(IE1), (III.5.1)

rI1 = ΦI(II1), (III.5.2)

rE2 = ΦE(IE2), (III.5.3)

rI2 = ΦI(II2), (III.5.4)

τE1
dIE1
dt

= −IE1 + IextE + wEE
1

1 + f
rE1 + wEE

f

1 + f
rE2 − wIErI1, (III.5.5)

τI1
dII1
dt

= −II1 + IextI + wEIrE1, (III.5.6)
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Figure III.20: Comparing the limit cycles-I. The top panel compares the area
under the limit cycles of the EI network (in blue), AR0 model (in red) and AR1
model (in black) for wEI = 1.6 mV.s, wIE = 0.4 mV.s and different values of wEE .
The middle panel and the bottom panel compares the maximum and minimum of the
excitatory amplitude of the limit cycles of the EI network, AR0 model and AR1 model
for different values of wEE . The E population has 16000 neurons and the I population
has 4000 neurons.
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Figure III.21: Comparing the limit cycles-II. The top panel compares the time
period of the limit cycles of the EI network (in blue), AR0 model (in red) and AR1
model (in black) for wEI = 1.6 mV.s, wIE =0.4 mV.s and different values of wEE .
The middle panel and the bottom panel compares the maximum and minimum of the
inhibitory amplitude of the limit cycles of the EI network, AR0 model and AR1 model
for different values of wEE . The E population has 16000 neurons and the I population
has 4000 neurons.
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Figure III.22: Two coupled EI net-
works. In each EI group, the excitatory
and the inhibitory populations are synapti-
cally connected to each other and the exci-
tatory population is recurrently connected
in itself. The two EI groups are coupled
to each other through inter-excitatory cou-
pling.

τE2
dIE2
dt

= −IE2 + IextE + wEE
f

1 + f
rE1 + wEE

1
1 + f

rE2 − wIErI2, (III.5.7)

τI2
dII2
dt

= −II2 + IextI + wEIrE2, (III.5.8)

where rE1, rE2, rI1 and rI2 represent the firing rates of the two excitatory and in-
hibitory populations respectively, IE1, IE2, II1 and II2 represent the input currents to
the two populations, ΦE(.) and ΦI(.) are the f-I curves of the exponential-integrate
and fire neuron, IextE and IextI are the external currents injected into the excitatory
and inhibitory populations respectively, wEE and wEI are the strengths of the synap-
tic connections from the excitatory population to the excitatory and the inhibitory
populations respectively, wIE is the synaptic strength from the inhibitory population
to the excitatory population and f is the measure of coupling between the two exci-
tatory populations. It is the ratio of the inter-population excitatory coupling to the
intra-population excitatory coupling. The time constants of the two populations τE1,
τI1, τE2, τI2 depend on the instantaneous firing rates of the two populations and are
based on the adaptive rate 1 model.

We begin by fixing wEE and the product wEIwIE to put ourselves on a point in
the oscillatory regime of the phase diagram of a single EI network shown in figure
III.10. If we select wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s and we insert currents
into each population corresponding to (r0

E , r0
I ) =(5,10)Hz, then we expect the two

EI groups to exhibit oscillations. By varying the coupling between the excitatory
populations of these groups, we can study the different dynamical regimes that we
find these oscillations in. Although the results we describe here are for excitatory
populations, the same results hold for the inhibitory populations of the two EI groups
because they are excited by the corresponding excitatory populations. In the following
subsections, we describe the different dynamical regimes of the two oscillators.

III.5.1 Antiphase or finite phase different regime
For very low coupling, we find that the firing rates of the two excitatory populations
are in antiphase to each other (see figure III.23 for coupling factor of f=0.011). We
call this the antiphase regime. For very low coupling, the two excitatory populations
could also have a finite phase difference (Finite Phase difference regime) rather than
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being in antiphase; we will discuss that in the next section. Figure III.24 shows the
inhibitory firing rate and the excitatory firing rate of the two modules. In accordance
with the PING mechanism, the peaks of inhibitory firing rates follow the peaks of the
excitatory populations in each module. Therefore, it can be deduced that the firing
rates of the two inhibitory populations are also in antiphase.

Figure III.23: The population firing rates of the two excitatory populations
in the antiphase regime. For this simulation, each EI network is a point in the
oscillatory regime of the phase diagram, shown in figure III.10, corresponding to the
parameters wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s and we insert currents into
each population corresponding to (r0

E , r0
I ) =(5,10)Hz. The coupling factor between

the two excitatory populations is f=0.011. For these parameters, the two excitatory
populations are in antiphase.

III.5.2 Alternating phase regime

As the coupling is increased, we notice a transition to an oscillating envelope on the
firing rates of the two excitatory populations. This is the alternating regime because
the two excitatory populations alternate in time. For a coupling factor of f=0.012
- 0.014, shown in figures III.25 and III.26, we observe the envelope on top of the
firing rates of the two excitatory populations and the two excitatory populations are
alternating with respect to time.

III.5.3 Modulating phase regime

As the coupling is further increased, we still have the oscillating envelope on the firing
rates of the two excitatory populations. However, the two excitatory populations no
longer alternate. Instead, the firing rate of one excitatory population is always lower
than the firing rate of the other excitatory population. (See figure III.27 for a coupling
factors of f=0.016). We call this the modulating phase.
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Figure III.24: The population firing rates of the excitatory and inhibitory
populations of the two modules in the antiphase regime. The population
firing rates of the excitatory and inhibitory populations for the same parameters as
mentioned in figure III.23). The left panel shows the firing rates of the first module and
the right panel shows the firing rates of the second module. The peaks of the inhibitory
populations follow those of the excitatory populations as in the PING mechanism.

Figure III.25: The population firing rates of the two excitatory populations in
the alternating phase regime. For a coupling factor of f=0.012 (other parameters
as mentioned in figure III.23), the two excitatory populations alternatively win over
the other population.
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Figure III.26: The population firing rates of the two excitatory populations in
the alternating phase regime. For a coupling factor of f=0.014 (other parameters
as mentioned in figure III.23), the two excitatory populations alternatively win over
the other population.

Figure III.27: The population firing rates of the two excitatory populations in
the modulating phase regime. For a coupling factor of f=0.016 (other parameters
as mentioned in figure III.23), the firing rates of one excitatory population is always
below the firing rates of the other excitatory population.
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III.5.4 Finite phase regime
Upon further increasing the coupling, the oscillating envelope vanishes and the two
excitatory populations exhibit a finite phase difference. (See figures III.28 for coupling
factor of f=0.017).

Figure III.28: The population firing rates of the two excitatory populations in
the finite phase difference regime. For a coupling factor of f=0.017 (other param-
eters as mentioned in figure III.23), the firing rates of the two excitatory populations
have a phase difference.

III.5.5 Synchronous phase regime
On increasing the coupling even more, the system synchronizes and oscillates in phase.
The two excitatory populations behave as one big excitatory population. (See figures
III.29 for coupling factor of f=0.018).

III.5.6 Phase diagram for the two coupled EI groups
We can generalize the above description to the entire range of JEI , the magnitude of the
strength of the coupling from the excitatory population to the inhibitory population,
and plot the corresponding phase diagram for the adaptive rate 1 simulations with no
finite size effects as seen in figure III.30. For this plot, we have used steps of 0.01 mV
on the X-axis for the different JEI and we have used steps of 0.0025 for the coupling
factor on the Y-axis. For this plot, we select JEE = 0.2 mV, Ce = 800, Ci = 200
and JIE = 0.04/JEI mV and we insert currents into each population corresponding
to (r0

E , r0
I ) =(5,10) Hz. We observe that for JEI less than 0.21, we have a finite

phase difference regime for low coupling rather than antiphase regime. Generally, as
we increase the coupling, the system goes from the finite phase difference or antiphase
regime to the alternating regime to the modulating regime and to a finite phase regime
before reaching synchrony.
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Figure III.29: The population firing rates of the two excitatory populations in
the synchronous phase regime. For a coupling factor of f=0.018 (other parameters
as mentioned in figure III.23), the firing rates of the two excitatory populations are
synchronized. The two curves lie on top of each other.

III.6 Analytical derivation of the bifurcation plot

In this section, we detail how we can analytically compute the three bifurcation lines:
synchronous regime to the finite phase difference regime (green curve in figure III.30),
the finite phase difference regime to the modulating phase regime (red curve in figure
III.30) and the alternating regime to the antiphase difference regime (blue curve in
figure III.30). In the next section, we also detail how we can compute the phase
difference between the two excitatory populations for very low coupling.

III.6.1 Transition from the synchronous regime to the phase difference
regime

At the transition from the synchronous regime to the finite phase difference regime, the
single limit cycle solution in the synchronous regime for the dynamical system must
become unstable. We can thus find out the coupling factor at which the single limit
cycle solution becomes unstable. For that, consider the dynamical equations for the
two EI groups again (see equations III.5.1-III.5.8). One solution of this system is the
limit cycle that one obtains for high coupling. If both the oscillators are in phase on
the limit cycle and there is no noise, then they will continue to be in phase. If the
system is in the synchronous regime, a slight perturbation in the dynamics of the two
oscillators will bring the system back to the stable limit cycle. If, however, the system
is not in synchronous regime, then a slight perturbation will take the system away from
the unstable initial limit cycle. Let the stable limit cycle be denoted by (I∗e (t), I∗i (t)).
By introducing a slight perturbation in the excitatory currents of the two limit cycles,
one can write IE1(t) = I∗e (t) + ie1(t), IE2(t) = I∗e (t) + ie2(t), II1(t) = I∗i (t) + ii1(t) and
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II2(t) = I∗i (t) + ii2(t). Defining

ie(t) = ie1(t)− ie2(t), (III.6.1)

ii(t) = ii1(t)− ii2(t), (III.6.2)

τ0
e (t) = τI∗e (t), (III.6.3)

τ0
i (t) = τI∗i (t), (III.6.4)

Φ′(I∗e (t)) = dΦE(I∗e (t))/dt, (III.6.5)

Φ′(I∗i (t)) = dΦI(I∗i (t))/dt, (III.6.6)

and keeping terms only up to order ie(t) and ii(t) after subtracting τE1dIE1/dt from
τE2dIE2/dt, we get

τ0
e (t)die

dt
= −ie + wEE

1− f
1 + f

Φ′(I∗e (t))ie − wIEΦ′(I∗i (t))ii, (III.6.7)

τ0
i (t)dii

dt
= −ii + wEIΦ′(I∗e (t))ie. (III.6.8)

We can rewrite the above equations as:

d

dt

(
ie
ii

)
= L

(
ie
ii

)
(III.6.9)

The matrix L(t) is periodic with the same periodicity as the limit cycle, say T. Ac-
cording to the Floquet theory, we can compute the eigen vectors and eigenvalues of
the above system. Consider the matrix solutions of:

d

dt
M(t) = LM(t), (III.6.10)

with the initial condition M(0) = Id, the identity matrix. The solution of the above
equation M(t) then describes the linear evolution of the perturbation around the limit
cycle. After one complete period T, M(T) represents the evolution of the perturbation
around the complete limit cycle. We can compute the eigenvalues of M(T). If the
synchronous limit cycle is a stable state of the system for a given coupling factor, then
one of the eigenvalues of M(T) must be zero and the other one must be negative. The
zero eigenvalue corresponds to the perturbation in the direction of the limit cycle and
the other eigenvalue corresponds to the perturbation away from the limit cycle. If, on
the other hand, the synchronous limit cycle is not a stable state of the system for a
given coupling factor, then either M(T) has no zero eigenvalues or M(T) has a positive
eigenvalue. By varying the coupling factor from very high values to lower values and
studying when the system develops a positive eigenvalue or two non-zero eigenvalues,
one can demarcate the transition from the synchronous regime to the finite phase
difference regime.
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III.6.2 Transition from finite phase difference regime to other regimes
In the finite phase difference regime, the synchronous limit cycle is no longer stable.
However, there exists a four-dimensional limit cycle that is a solution of the above four
dimension system. After a time period T, the system returns to the original point
in phase space. We can perturb the system around this four dimensional limit cycle
and look at the eigenvalues of the 4x4 matrix M(t) after one complete time period
i.e. M(T). If the four dimensional solution is stable, then one of the eigenvalues must
be zero and the other three eigenvalues must be negative. As we vary the coupling
factor below from the “synchronous to the finite phase difference transition” , we reach
a point where one of the eigenvalues becomes positive or there exists no longer a
zero eigenvalue. This marks the finite phase difference to the modulated phase regime
transition. Similarly, one can start from very low coupling, where the system is either in
the finite phase difference regime or the antiphase regime and compute the eigenvalues
of M(T) for each increasing value of coupling factor. The coupling factor where either
one of the eigenvalues becomes positive or all the eigenvalues are nonzero then marks
the transition from either the finite phase difference regime or the Antiphase regime
to the alternating phase regime.

Figure III.31: Comparing the analytical and numerical bifurcation curves.

We can also compute the time period of the modulation or the alternation of the
firing rates at the transition by looking at the imaginary component of the eigenvalues
at the point of the transition. More specifically, at the transition, we have

λ1 + iλ2 = eiωmodTLC

where λ1 is the real part of the eigenvalue, λ2 is the imaginary part of the eigenvalue,
ωmod = 2πTmod is the angular frequency of either the modulation or the alternation
(depending on the regime) at the point of transition and TLC is the timeperiod of one
oscillation of the limit cycle.
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Finite Phase to Modulating Phase Finite Phase to Alternating Phase
WEI (mV.s) Tanalytical (s) Tnumerical (s) Tanalytical (s) Tnumerical (s)

184 1.247 1.252 1.141 1.108
272 0.517 0.513 0.674 0.670
320 0.410 0.369 0.516 0.553

Table III.3: Table comparing the analytical values of the time period of the modulation
or alternation to the ones observed numerically.

This gives us

Tmod = 2πTLC
arctan(λ2/λ1) .

The above obtained analytical value of the time period of the modulation or alternation
does indeed correspond to the one observed numerically as shown in the table below.

III.6.3 Computing the phase difference regime at very low coupling factors
One can also compute the value of the phase difference for very low coupling factor of
the system. We outline the procedure in this section. In the absence of any coupling,
the dynamics of the two excitatory populations follow:

dIE1
dt

= 1
τ(IE1(t)){IE,ext− IE1(t) +wEEΦ(IE1(t))−wIEΦ(II1(t))} = F (IE1(t), II1(t)),

(III.6.11)
dIE2
dt

= 1
τ(IE2(t)){IE,ext− IE2(t) +wEEΦ(IE2(t))−wIEΦ(II2(t))} = F (IE2(t), II2(t)).

(III.6.12)
The limit cycle solution to the above equations can be denoted by (I0

E(t), I0
I (t)).

If the initial conditions of the two oscillators are the same, they will oscillate in phase.
In the presence of coupling, the dynamical equations for the two oscillators become:

dIE1
dt

= 1
τ(IE1(t)){IE,ext−IE1(t)+wEE(1−α)Φ(IE1(t))+αwEEΦ(IE2(t))−wIEΦ(II1(t))},

(III.6.13)
dIE2
dt

= 1
τ(IE2(t)){IE,ext−IE2(t)+wEE(1−α)Φ(IE2(t))+αwEEΦ(IE1(t))−wIEΦ(II2(t))},

(III.6.14)
where α is related to the coupling factor f by

α = f

1 + f
. (III.6.15)

Defining the phases of the two oscillators as φ1 and φ2, we can write IE1(t) =
I0
E(t + φ1) and IE2(t) = I0

E(t + φ2). In the presence of weak coupling, one can use
perturbation theory [Kuramoto, 1984] and the dynamical equations for the phases φ1
and φ2 are then given by:
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dφ1
dt

= dφ1
dIE1

dIE1
dt

= ω + dφ

dIE1

∣∣∣∣
φ=t+φ1

αwEE
τ(I0

E(t+ φ1))
[Φ(I0

E(t+ φ2))− Φ(I0
E(t+ φ1)],

(III.6.16)
dφ2
dt

= dφ2
dIE2

dIE2
dt

= ω + dφ

dIE2

∣∣∣∣
φ=t+φ2

αwEE
τ(I0

E(t+ φ2))
[Φ(I0

E(t+ φ1))− Φ(I0
E(t+ φ2)].

(III.6.17)
Writing φ2 = φ1 + ∆φ and subtracting the above two equations, we can write

d∆φ
dt

= dφ

dIE

∣∣∣∣
I0
E(t)

αwEE
τ(I0

E(t))
[Φ(I0

E(t−∆φ))− Φ(I0
E(t+ ∆φ)]. (III.6.18)

Because the coupling is weak, we can assume that the phase difference between the two
oscillators stays the same throughout the limit cycle and average the above equation
over one complete time period of the limit cycle. We get the following:

d∆φ
dt

=
∫
LC

dφ

dIE

∣∣∣∣
I0
E(t)

αwEE
τ(I0

E(t))
[Φ(I0

E(t−∆φ))− Φ(I0
E(t+ ∆φ)]dt. (III.6.19)

where
∫
LC denotes the integral over the limit cycle. We can simplify the above equation

as :
d∆φ
dt

= S(∆φ). (III.6.20)

To compute dφ/dIE
∣∣
I0
E(t), we need to compute the unit vector tangential to the limit

cycle. If the vector tangential to the limit cycle at each time step is denoted by

~g1(t) =
(
g1,E(t)
g1,I(t)

)
, then dφ/dIE is given by the product of magnitude of dφ/d~I with

g1,E(t), where ~I =
(
IE
II

)
. dφ/d~I is a constant along the limit cycle and integrates to

2π over the limit cycle. Therefore, we need to compute g1,E(t). To do this, consider
the dynamics of the unperturbed limit cycle for a single oscillator

dIE
dt

= 1
τ(IE(t)){IE,ext − IE(t) + wEEΦ(IE(t))− wIEΦ(II(t))} (III.6.21)

dII
dt

= 1
τ(II(t))

{II,ext − II(t) + wEIΦ(IE(t)) (III.6.22)

whose excitatory and inhibitory currents in the steady state of the limit cycle are
given by I0

E and I0
I respectively. By adding a small perturbation to the currents

IE(t) = I0
E + ie(t) and II(t) = I0

I + ii(t) , we can write the dynamics of ie(t) and ii(t)
in the form

d

dt

(
ie
ii

)
= L

(
ie
ii

)
(III.6.23)
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The matrix L(t) is periodic with the same periodicity as the limit cycle, say T. As
in the previous section, we can compute the eigenvectors and eigenvalues of the above
system. If we consider the matrix solutions of:

d

dt
M(t) = LM(t) (III.6.24)

with the initial condition M(0) = Id, the identity matrix, then the solution of the
above equation M(t) describes the linear evolution of the perturbation around the
limit cycle and M(T) represents the evolution of the perturbation around the complete
limit cycle. We can compute the eigenvalues of M(T). The vector tangent to the limit
cycle e1 = (I0′

E (0), I0′
I (0)) is an eigenvector of M(T) with an eigenvalue 1. Since the

limit cycle is stable, the other eigenvalue is less than 1 and the other eigenvector can be
represented by e2(t). To compute then g1(t), the unit vector parallel to the limit cycle,
we can use g1(t).e1(t) = 1 and g1(t).e2(t) = 0. Knowing g1(t) and hence g1,E(t), we can
write the dynamical equation for the phase difference of the two oscillators for very low
coupling and integrate it over the limit cycle. For different values of wEE with wEI =
1.6mV.s and wIE = 0.4 mV.s, the dynamics of the phase is shown in figure III.32. The
value of Φ where dΦ/dt has a zero value and the slope of the curve is negative is a stable
fixed point of the system. That value determines the phase difference observed between
the two excitatory populations for very low coupling. Comparing with simulations of
the adaptive rate 1 model, we find that it is indeed the case. Similarly, the dynamics
of the phase difference for different values of wEI with wEE = 1.6mV.s and wIE =
6.4/wEI mV.s are shown in figure III.33.

Figure III.32: Dynamics of the phase difference for weak coupling factor for
different values of wEE. The dynamics of phase difference d∆φ/dt = S(∆φ) for
different values of wEE with wEI = 1.6mV.s and wIE = 0.4 mV.s and weak coupling
factor.
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Figure III.33: Dynamics of the phase difference for weak coupling factor for
different values of wEI . The dynamics of phase difference d∆φ/dt = S(∆φ) for
different values of wEI with wEE = 1.6mV.s and wIE = 6.4/wEI mV.s and weak
coupling factor.

III.7 Effects of finite size noise in Adaptive rate model1

The previous sections explored the phase diagram of the regimes of two different EI
oscillators in the absence of any finite size effects due to the limited size of the network
or connectivity. In this section, we add the noise due to the finite network size for
the adaptive rate 1 model for two cases: Antiphase regime and synchronous regime
and we compare the effects due to the finite size noise. For the simulations, we use
the parameters of wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s. For a coupling
factor of f = 0.01 (point a in figure III.30), we expect an antiphase regime and for a
coupling of f = 0.1 (point b in figure III.30), we expect synchrony between the two
excitatory populations. For the antiphase regime, we observe that as the network size
is reduced, the peak of the cross correlation function of the firing rates of the two
excitatory populations shifts towards zero and has a lower magnitude than the peak of
the autocorrelation of the firing rate of either excitatory population (see figure III.34).
For a coupling factor of f = 0.1, we observe that for networks of smaller sizes, the
peak of the cross correlation function is still near zero with almost the same amplitude
as either of the autocorrelation functions (see figure III.35).

We can also plot the phase difference between the firing rates of the two excitatory
populations for each oscillatory cycle. To do this, we can find out the timings of the
peaks of the firing rates of the two excitatory populations in every oscillatory cycle. We
can then calculate the timing of the peak of the second excitatory population within
the cycle with respect to the first. The first excitatory population has a peak either at
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Figure III.34: Influence of noise due to finite size in adaptive rate 1 model in
the antiphase regime. For the simulations, we use a coupling factor of f = 0.01 and
keep the other parameters as in figure III.23. For a coupling factor of f = 0.01 (point
a in figure III.30), we expect an antiphase regime in the case of no noise. The left
and the middle panels show the autocorrelation functions of the firing rate of the first
excitatory population and the second excitatory populations respectively. The right
panel shows the cross correlation between the two. For networks of smaller sizes, the
peak of the cross correlation function is shifted towards zero but has a lower magnitude
compared to the peak of either autocorrelation function.

Figure III.35: Influence of noise due to finite size in adaptive rate 1 model in
the synchronous regime. For the simulations, we use a coupling factor of f = 0.1
and keep the other parameters as in figure III.23. For a coupling factor of f = 0.1
(point b in figure III.30), we expect a synchronous regime in the case of no noise.
The left and the middle panels show the autocorrelation functions of the firing rate
of the first excitatory population and the second excitatory populations respectively.
The right panel shows the cross correlation between the two. For networks of smaller
sizes, the peak of the cross correlation function is still near zero with almost the same
amplitude as either autocorrelation function.
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time t = 0 or at time t = T , the time period of that particular cycle, and the second
population has a peak within t = 0 to t = T . In figure III.36, we see that in the
presence of no noise or for a very large network size (∼ 10000k neurons), the peaks of
the second population show a definite phase shift with respect to the first population
(the two populations are antiphase to each other). As the network size is gradually
decreased, the noise due to finite size increases, and the peaks of the second population
is distributed throughout the time period 0− T .

For the case of the coupling factor f = 0.1, the firing rates of the two excitatory
populations are synchronized in the absence of noise and hence, the two peaks align in
every cycle as shown in figure III.37. As the network size is reduced, we still see the
alignment of the timing of the peaks and for very low network size ∼ 10k neurons, the
peaks of the second population are more distributed, however, they are vastly aligned
with peaks of the first population.

Figure III.36: Influence of noise due to finite size in adaptive rate 1 model
in the antiphase regime for different network sizes. We extract the timings of
the peaks of the firing rates of the two excitatory populations in each oscillatory cycle.
The first excitatory population has a peak either at time t = 0 or at time t = T , the
time period of that particular cycle, and the second population has a peak within t = 0
to t = T . We see that for a very large network size (∼ 10000k neurons), the peaks of
the second population are in Antiphase with respect to the first population but as the
network size is gradually decreased, the phase difference between the two populations
is distributed throughout the time period 0− T .

III.8 Comparing with the network simulations
In this section, we will compare the firing rates of the two excitatory populations for
the adaptive rate 1 model and the EIF-network simulations in the different regimes of
the phase diagram. To do this, we begin with a network of a very large size (∼ 1600k
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Figure III.37: Influence of noise due to finite size in adaptive rate 1 model
in the synchronous regime for different network sizes. For a coupling factor
of f = 0.1, the firing rates of the two excitatory populations are synchronized and the
timings of the peaks of two firing rates are mostly aligned even for small network sizes
such as 10k neurons.

neurons per EI population: 1280k neurons in each E population and 320k neurons in
each I population) with full connectivity so that we can observe the different regimes
clearly. Each of the neurons in this network is an EIF neuron. To do this, we will
have two EI populations as described in section III.2. The two EI populations are
coupled to each other via excitatory coupling: i.e. all the excitatory neurons of the
first population are connected to all the excitatory neurons of the second population
with a coupling strength of Je1e2 = Je2e1 = JEEf/(1+f) where f is the coupling factor.
The coupling in each excitatory population is given by Je1e1 = Je2e2 = JEE1/(1 + f).
For the simulations, we use JEE = 0.2 mV, JEI = 0.25 mV and JIE = 0.16 mV. We
use different coupling factors corresponding to different regimes in the phase diagram
of the two oscillators and compare the network simulations and the simulations of the
adaptive rate 1 model. Figures III.38 and III.39 show the two models for a coupling
factor of f = 0.01 (point c in figure III.30), where the two populations are in Antiphase
regime. Figures III.40 and III.41 show the two models for a coupling factor of f = 0.015
(point d in figure III.30), where the two populations are in alternating regime. Figures
III.42 and III.43 show the two models for a coupling factor of f = 0.02 (point e in figure
III.30), where the two populations are in the modulating regime. Figures III.44 and
III.45 show the two models for a coupling factor of f = 0.025 (point f in figure III.30),
where the two populations are in finite phase difference regime. Figures III.46 and
III.47 show the two models for a coupling factor of f = 0.05 (point g in figure III.30),
where the two populations are in synchronous regime. In all the cases, we observe that
the network simulations match closely to that of the adaptive rate 1 description of the
two populations.
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Figure III.38: The adaptive rate 1 firing rates of the two excitatory popu-
lations for a coupling factor of 0.01. The top panel shows the adaptive rate 1
firing rates of the two excitatory populations that are coupled to each other with a
coupling factor of 0.01 (point c in figure III.30) and a finite size noise corresponding to
Ne = 1280k and Ni = 320k. For these simulations, we use JEE = 0.2 mV, JEI = 0.25
mV and JIE = 0.16 mV and we insert currents into each population corresponding to
(r0
E , r0

I ) =(5,10) Hz. The bottom panel shows a zoomed in view of the above plot.
The two firing rates are in antiphase with each other.

Figure III.39: The network population firing rates of the two excitatory pop-
ulations for a coupling factor of 0.01. We use same parameters as used in figure
III.38 (point c in figure III.30). The top panel shows the network population firing
rates of the two excitatory populations. The bottom panel shows a zoomed in view of
the above plot. The two firing rates are in antiphase with each other.
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Figure III.40: The adaptive rate 1 firing rates of the two excitatory popu-
lations for a coupling factor of 0.015. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.015 (point d in figure
III.30). The top panel shows the adaptive rate 1 firing rates of the two excitatory
populations. The bottom panel shows a zoomed in view of the above plot. The two
firing rates are in the alternation phase.

Figure III.41: The network population firing rates of the two excitatory pop-
ulations for a coupling factor of 0.015. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.015 (point d in figure
III.30). The top panel shows the network population firing rates of the two excitatory
populations. The bottom panel shows a zoomed in view of the above plot. The two
firing rates are in the alternation phase.
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Figure III.42: The adaptive rate 1 firing rates of the two excitatory popula-
tions for a coupling factor of 0.02. We use same parameters as used in figure III.38
except for the coupling factor for which we take f= 0.02 (point e in figure III.30). The
top panel shows the adaptive rate 1 firing rates of the two excitatory populations and
the bottom panel shows a zoomed in view of the above plot. The two firing rates are
in the modulation phase. Because of the noise, the higher firing rate could switch from
population 1 to population 2.

Figure III.43: The network population firing rates of the two excitatory pop-
ulations for a coupling factor of 0.02. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.02 (point e in figure III.30).
The top panel shows the adaptive rate 1 firing rates of the two excitatory populations
and the bottom panel shows a zoomed in view of the above plot. The two firing rates
are in the modulation phase.
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Figure III.44: The adaptive rate 1 firing rates of the two excitatory popu-
lations for a coupling factor of 0.025. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.025 (point f in figure III.30).
The top panel shows the adaptive rate 1 firing rates of the two excitatory populations
and the bottom panel shows a zoomed in view of the above plot. The two firing rates
exhibit a finite phase difference.

Figure III.45: The network population firing rates of the two excitatory pop-
ulations for a coupling factor of 0.025. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.025 (point f in figure III.30).
The top panel shows the adaptive rate 1 firing rates of the two excitatory populations
and the bottom panel shows a zoomed in view of the above plot. The two firing rates
exhibit a finite phase difference.
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Figure III.46: The adaptive rate 1 firing rates of the two excitatory popula-
tions for a coupling factor of 0.05.We use same parameters as used in figure III.38
except for the coupling factor for which we take f= 0.05 (point g in figure III.30). The
top panel shows the adaptive rate 1 firing rates of the two excitatory populations and
the bottom panel shows a zoomed in view of the above plot. The two firing rates are
synchronized to each other.

Figure III.47: The network population firing rates of the two excitatory pop-
ulations for a coupling factor of 0.05. We use same parameters as used in figure
III.38 except for the coupling factor for which we take f= 0.05 (point g in figure III.30).
The top panel shows the adaptive rate 1 firing rates of the two excitatory populations
and the bottom panel shows a zoomed in view of the above plot. The two firing rates
are synchronized to each other.
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III.9 Comparing with the finite size networks
In this section, we reduce the size of each EI population in the network to 5k neurons
(4k excitatory neurons and 1k inhibitory neurons) and redo the simulations for the
same parameters and coupling factors in the previous section. We show the results
in figures III.48-III.52. In each figure, the two panels on the left show the network
population firing rates of the two excitatory populations. The two panels differ only
with respect to whether the population 1 or population 2 excitatory firing rate is
shown on top of the other. This was done for the sake of better visualization. The two
right panels show the autocorrelation and the cross correlation of the excitatory firing
rates of the two populations, marked as Re1, Re2 for the autocorrelations and Re1, 2
for the cross correlation. The bottom right panel shows the zoomed in view of the
top panel. We observe that it is difficult to distinguish between the different phases
due to noise. However, we see a steady increase in the cross correlation compared
to the autocorrelation as the coupling factor is increased. Since, we are interested in
ultimately distinguishing synchronous activity from non-synchronous activity, we can
use this quantity: the ratio of cross-correlation between the two populations to the
autocorrelation of either of the populations as an indicator of the amount of synchrony
in the two populations.

We can also compute the phase difference between the firing rates of the two exci-
tatory populations. To do this, we can find out the timings of the peaks of the firing
rates of the two excitatory populations in every oscillatory cycle. We can then calcu-
late the timing of the peak of the second excitatory population within the cycle with
respect to the first and divide this time difference by the mean timing between the
peaks of a single population i.e. the mean time period of oscillation. After multiplying
this value by 2π, we get the value of the phase difference of the two populations to
be between 0 and 2π. We can then plot the histogram of this phase difference for the
different coupling factors as shown in figure III.53. We observe from the figure that as
the coupling factor is increased, the phase difference tends to concentrate more around
0, indicating that the two populations have more synchrony for higher coupling factors.
For lower coupling factors, even though the peak of the histogram count for the phase
difference at 0, we cannot distinguish the different regimes from this curve yet. Further
analysis needs to be done to see if one can distinguish the various non-synchronous
regimes in two group EI-network in the presence of finite size noise.

III.10Finite size networks with finite connectivity
In the previous section, we looked at coupled EI networks of 5000 EIF neurons each.
All the excitatory neurons in each EI group were coupled to all the excitatory and
inhibitory neurons of the corresponding EI group and to all the excitatory neurons of
the other EI group; all the inhibitory neurons in each EI group were coupled to all
the excitatory neurons in the same EI group. In this section, we will consider two
cases: 1) finite connectivity with Ce1,e2 = 800 between the two excitatory populations
and full connectivity with Ce = 4000 and Ci = 1000 within each EI group and 2)
finite connectivity with Ce1,e2 = 800 between the two excitatory populations as well
as Ce = 800 and Ci = 200 within each EI group for the same parameters as in figure
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Figure III.48: The network population firing rates and correlations of the
two excitatory populations of 5k neurons each for a coupling factor of 0.01.
The two left panels show the network population firing rates of the two excitatory
populations that are coupled to each other with a coupling factor of 0.01 (point c in
figure III.30, corresponding to the antiphase regime) for a network size of Ne = 4k
and Ni = 1k. The two panels differ only with respect to whether the population 1
(red signal) or population 2 excitatory firing rate (black signal) is plotted on top of
the other. The two right panels show the autocorrelation and the cross correlation
of the excitatory firing rates of the two populations, marked as Re1, Re2 for the
autocorrelations and Re1, 2 for the cross correlation. The bottom right panel shows
the zoomed in view of the above plot. Other parameters are same as in figure III.38.
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Figure III.49: The network population firing rates and correlations of the
two excitatory populations of 5k neurons each for a coupling factor of 0.015.
The two left panels show the network population firing rates of the two excitatory
populations that are coupled to each other with a coupling factor of 0.015 (point d in
figure III.30, corresponding to the alternating regime) for a network size of Ne = 4k
and Ni = 1k. The two panels differ only with respect to whether the population 1
(red signal) or population 2 excitatory firing rate (black signal) is plotted on top of
the other. The two right panels show the autocorrelation and the cross correlation
of the excitatory firing rates of the two populations, marked as Re1, Re2 for the
autocorrelations and Re1, 2 for the cross correlation. The bottom right panel shows
the zoomed in view of the above plot. Other parameters are same as in figure III.38.
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Figure III.50: The network population firing rates and correlations of the
two excitatory populations of 5k neurons each for a coupling factor of 0.02.
The two left panels show the network population firing rates of the two excitatory
populations that are coupled to each other with a coupling factor of 0.02 (point e in
figure III.30, corresponding to the modulating regime) for a network size of Ne = 4k
and Ni = 1k. The two panels differ only with respect to whether the population 1
(red signal) or population 2 excitatory firing rate (black signal) is plotted on top of
the other. The two right panels show the autocorrelation and the cross correlation
of the excitatory firing rates of the two populations, marked as Re1, Re2 for the
autocorrelations and Re1, 2 for the cross correlation. The bottom right panel shows
the zoomed in view of the above plot. Other parameters are same as in figure III.38.
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Figure III.51: The network population firing rates and correlations of the
two excitatory populations of 5k neurons each for a coupling factor of 0.025.
The two left panels show the network population firing rates of the two excitatory
populations that are coupled to each other with a coupling factor of 0.025 (point f
in figure III.30, corresponding to finite phase regime) for a network size of Ne = 4k
and Ni = 1k. The two panels differ only with respect to whether the population 1
(red signal) or population 2 excitatory firing rate (black signal) is plotted on top of
the other. The two right panels show the autocorrelation and the cross correlation
of the excitatory firing rates of the two populations, marked as Re1, Re2 for the
autocorrelations and Re1, 2 for the cross correlation. The bottom right panel shows
the zoomed in view of the above plot. Other parameters are same as in figure III.38.
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Figure III.52: The network population firing rates and correlations of the
two excitatory populations of 5k neurons each for a coupling factor of 0.05.
The two left panels show the network population firing rates of the two excitatory
populations that are coupled to each other with a coupling factor of 0.05 (point g in
figure III.30, corresponding to the synchronous regime) for a network size of Ne = 4k
and Ni = 1k. The two panels differ only with respect to whether the population 1
(red signal) or population 2 excitatory firing rate (black signal) is plotted on top of
the other. The two right panels show the autocorrelation and the cross correlation
of the excitatory firing rates of the two populations, marked as Re1, Re2 for the
autocorrelations and Re1, 2 for the cross correlation. The bottom right panel shows
the zoomed in view of the above plot. Other parameters are same as in figure III.38.
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Figure III.53: The histogram
of the phase difference be-
tween the two excitatory pop-
ulations for different coupling
factors. The different curves
show the histogram of the phase
difference (betweeen 0 and 2π) for
different coupling factors. As the
coupling is increased, we notice
that the phase difference peaks
around 0 indicating synchrony.
The network has a size of Ne = 4k
and Ni = 1k while other parame-
ters are same as in figure III.38.

III.23 (i.e. wEE = wEI = 1.6 mV.s and wIE = 0.4 mV.s and we insert currents into
each population corresponding to (r0

E , r0
I ) =(5,10)Hz). We will plot the normalized

cross correlation which is the ratio of the cross correlation between the two excitatory
populations and the autocorrelation of either of the excitatory population as a function
of the coupling factor between the two excitatory populations. The results are shown
in figure III.54. We notice that as the coupling factor is increased, this normalized
cross correlation increases indicating more synchrony between the two populations.

III.11Conclusion

In this chapter, we have seen how EI networks generate oscillations in the beta and
low-gamma range and how two groups of EI networks can exhibit different regimes
depending on the amount of excitatory coupling between the populations. For a large
coupling factor between the two excitatory populations, we observe synchronization
between the two groups of populations whereas for smaller coupling factors, the system
can be in different regimes such as finite phase difference, antiphase regime, alternating
regime or modulating regime depending on the coupling factor. The alternating and
modulating regimes, reported here for the EI networks, have not been described before
in the literature to the best of our knowledge. We can extend this description to
more groups of EI networks. Indeed, the description of the different regimes for the
case of 2 populations is helpful to understand the regimes for a chain of spatially
extended EI networks that are coupled. Such an extension could help us understand
the propagation of beta waves that was observed in the motor cortex of the monkey
during motor preparation [Rubino et al., 2006]. These waves travelled at a wavelength
of around 1cm while the long range connections in the cortex are only around 2mm.
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Figure III.54: The ratio of the cross correlation to the autocorrelation for the
case of finite connectivity. The left panel shows the normalized cross correlation
(which is the ratio of the cross correlation between the two excitatory populations and
the autocorrelation of either of the excitatory population) as a function of the coupling
factor between the two excitatory populations for the case of finite connectivity Ce1,e2 =
800 within the two excitatory populations. The right panel shows the same for the
case of finite connectivity within the two populations Ce1,e2 = 800 as well as finite
connectivity Ce = 800 and Ci = 200 within each population. The network has a size
of Ne = 4k and Ni = 1k while other parameters are same as in figure III.23.
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These results are compatible with our results of the extended chain of EI networks.
For the low coupling factor in the case of the 2 coupled groups of EI networks, we
observe a finite phase difference or antiphase regime. This desynchronization among
the two groups manifests itself as a phase gradient for an extended chain of EI networks.
The spontaneous appearance of the phase gradient for low coupling factor could help
explain the beta waves observed in the motor cortex. Furthermore, it was recently
shown in mice visual cortex that somatostatin (SOM) interneurons are required for
long-distance coherence of gamma waves [Veit et al., 2017]. The influence of distance
excitatory interaction on interneurons can be studies in our model by introducing
long-distance E-I coupling in our model and studying the effects of these interactions.
A manuscript, describing these results, titled “Synchronization of oscillatory activity
in networks with spatially-structured connectivity" authored by “Anirudh Kulkarni,
Jonas Ranft and Vincent Hakim" is in preparation and will be submitted to PLOS
Computational Biology. The abstract of this manuscript is provided after this section.
In the next chapter, we look at rate models with sensory adaptation and model the
results of the motion after effect in the zebrafish larva using these models.
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Abstract

Oscillations in the beta/low gamma range (10-45Hz) are recorded in diverse neural
structures. They have successfully been modeled in several previous works as arising
from reciprocal interactions between randomly connected excitatory (E) pyramidal cells
and local interneurons (I). The synchronization properties of spatially distant E-I
modules have been less studied although this knowledge would help to properly
interpret recording data. Here, we analyze the dynamical regimes of two oscillatory E-I
modules connected by excitatory interactions as well as those of a chain of such
modules. When distant excitation only targets excitatory neurons, we find that it fully
synchronizes the oscillations of the two modules when the coupling excitation is
sufficiently strong but that it gives rise to a variety of dynamical regimes for two weakly
coupled E-I modules. This generally results in the spontaneous appearance of phase
gradients in a sufficiently long chain of oscillatory E-I modules, as well as in allied phase
waves travelling along the chain. When distant excitation equally targets excitatory and
inhibitory interneurons, it always tends to synchronize E-I modules irrespective of its
strength. However, stochastic variations in the spike emission of E-I modules comprising
finite number of neurons tend to disrupt synchronization. This also gives rise to the
appearance of phase gradients and phase waves in a spatially extended network. We
characterize these different phenomena and discuss their relations to experimental
observations, with particular attention to previously reported waves of beta oscillations
during movement preparation.

Author summary

Interactions between local groups of excitatory and inhibitory neurones can produce
oscillatory neural activity, as recorded in electro-encephalograms. Distant neuron
groups are sometimes observed to oscillate in unisson or with a time lag that depends
on the distance between the groups. Distant groups of neurons are also known to be
coupled by excitatory interaction rather than inhibitory ones. We study here this
excitatory coupling between distant groups of neurons govern their relative oscillatory
properties. In particular, we find that it seems to account quite naturally for the
occurrence of waves of activity that have been recorded in previous experiments.
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Chapter IV
Sensory Adaptation

In this chapter, we will look at another phenomenon seen in neural systems, that
of sensory adaptation. We will introduce adaptation and focus particularly on the
motion after effect (MAE) in the zebrafish larva. We will discuss how the neuronal
activity corresponding to this phenomenon can be recorded with the help of 2 photon
calcium imaging in the optic tectum, the highest visual center of the larva. We will
then introduce rate models of adaptation and model the neuronal activity underlying
the MAE phenomenon in the optic tectum. The next chapter includes the manuscript
of our work in detail, while this chapter serves as an introduction to the manuscript.

My contributions to the manuscript include the modeling of the experimental data
of the Motion after effect. I developed the model and extracted the different parameters
required for the model from the experimental data. Comparison with the experimental
results guided me to develop a model where the MAE index and the MAE duration
curves agreed with that observed in the experiment (Figure 7 and S5 in the manuscript
in the next chapter). On the experimental side, I have performed ablation experiments
which show that the optic tectum is indeed important for the generation of the MAE
(Figure3 and Figure S1C). I have performed cross correlation analysis on the neuronal
data and the behavioral data (Figure5 and Figure S3A) and also showed that OKR
habituation index is correlated with the length of MAE (Figure S1). Finally, I also
performed experiments on paralyzed larvae to show that the rhythmicity of MAE-
activity is generated through a neuro-muscular loop (Figure S4).

IV.1 Adaptation: Marr’s three levels of analysis

Sensory systems dynamically construct representations of the environment and sensory
adaptation is the phenomenon of recalibration of responses of sensory neurons in order
to adjust to either the changing environment (e.g. in temperature or lighting) or the
changing observer (either due to diseases or aging) (see Figure IV.1). For example,
when one steps into a bright room from a dim room, the eye-lids tend to close because
of the bright light. However, within minutes, one gradually feels comfortable with
the level of light in the room. Even though the level of light has not changed, the
person feels more comfortable after a while. This can only be partly explained by
the adjustment in the size of the pupil. More importantly, the photoreceptors of the
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retina have adjusted their sensitivity to accommodate themselves to the surroundings.
The responses of the neurons, therefore, do no depend only on the current value of
the stimulus parameter but also on the history of stimulation [Adrian and Zotterman,
1926a] [Webster, 2012] [Maravall, 2011].

Figure IV.1: An example of color adaptation. An example of a perceptual after-
effect because of adaptation. A photograph of a dancer is shown on the right and the
corresponding pseudo-negative image is shown on the left. Staring at the black dot in
the left image for 30 seconds or more and then switching your gaze to the dot in the
right image makes the grayscale image appear colored briefly. Moreover, the perceived
illusory colors are opposite to the adapting colors implying a “negative aftereffect”,
which is typical in adaptation. This can be explained by a reduction in sensitivity to
the local adapting color, thus, biasing perception towards the complementary color.
Picture reproduced from [Webster, 2012].

David Marr described three levels at which any information processing task of a
machine can be understood: a) computational level, b) algorithmic level and c) im-
plementation level (see Figure IV.2). The computational theory serves to explain the
problem and the goal of the computation. It describes why the problem is appropriate
and the logic of the strategy by which it can be carried out. The algorithmic level
describes how the computational theory can be implemented. It specifies the repre-
sentation for the input and the output and the algorithm for the transformation of
the input to the output. The implementation level tries to identify the biophysical
substrate that is used to perform the computation and the implementation. Each level
can be viewed as a realization of the level before it.

Marr’s three levels applies to an information processing task carried out by any
machine and we could try to extend it to understand adaptation.

Adaptation is found in all sensory systems including visual (color and motion)
[Kohn, 2007] [Clifford et al., 2007], auditory [King et al., 2011], whisker system [Pe-
tersen et al., 2009], proprioceptive (adapting to the texture of clothing on skin), olfac-
tory (to prolonged smells such as perfume) and gustatory. All sensory neurons except
for nociceptors (the neurons involved in the sensation of pain) exhibit the phenomenon
of sensory adaptation.

On a computational level, we would need to explain the function served by hav-
ing sensory adaptation instead of a constant neuronal response to a constant input.
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Figure IV.2: Marr’s three levels of analysis. Three levels at which any information
processing task can be understood. Picture reproduced from [Marr, 1982].

On a representational level, one would need to provide a phenomenological model of
adaptation. And finally, on the level of hardware implementation, one would need to
specify the exact biophysical processes which contribute to adaptation.

IV.1.1 Computational level

The goal served by adaptation is, as of yet, not very clear [Webster, 2012]. In the
visual system, its potential applications are still being discussed [Chopin and Ma-
massian, 2012]. Some of the suggested applications include enhancing discrimination
during post adaptation [Greenlee and Heitger, 1988], highlighting new stimuli (i.e.
acting as a novelty detector) [Ranganath and Rainer, 2003], maintaining perceptual
constancy (i.e. invariant percepts despite varying viewing contexts) [Foster, 2011].
Yet demonstrations that we can better distinguish among simple patterns, like grat-
ings [Barlow et al., 1976] or complex images like faces [Webster, 2012], after we adapt
to them are meager in comparison to the striking changes that adaptation induces in
their appearance. Since our sensory systems are exposed to stimuli over a dynamic
range of about 109 [Frazor and Geisler, 2006], adaptation could also serve to provide
neurons with most information in a limited dynamical range that it is exposed to at
a given moment (Efficient coding) [Attneave, 1954] [Laughlin, 1981] [Barlow, 1990]
[Wark et al., 2007]. Moreover, nearby stimuli are highly correlated, so the range of lo-
cal fluctuations of stimuli is much smaller than the global range. Thus, efficient coding
posits the maximization of information transmitted about the stimulus. Gain control
at each stage of transmission in a sensory system could optimize the efficiency of coding
in the system as a whole. Accordingly, there should be many sites of adaptation in the
sensory system [Petersen et al., 2009] [Lundstrom et al., 2010]. The idea of efficient
coding has found evidence across several sensory modalities in different species: lumi-
nance and contrast adaptation in the visual system [Chander and Chichilnisky, 2001]
[Mante et al., 2005] [Gollisch and Meister, 2010], fly visual system [Petersen et al.,
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1997] [Fairhall et al., 2001] [Brenner et al., 2000], midbrain of guinea pigs [Dean et al.,
2005], inferior colliculus of cats [Kvale and Schreiner, 2004], songbird auditory fore-
brain [Nagel and Doupe, 2006] [Dahmen et al., 2010], and rat barrel cortex [Maravall
et al., 2007]. Adaptation with dynamics that change over many timescales also allow
the neurons to track changes in statistics of stimuli over an appropriate amount of
time.

Theories of predictive coding suggest that maximizing information and metabolic
efficiency could be achieved through adaptation [Srinivasan et al., 1982] by using re-
sources only on the unexpected features of the stimulus. This is because the natural
stimuli in the immediate sensory environment have highly structured spatial and tem-
poral correlations and as result, there is a lot of redundancy in the stimulus. The
adaptive behaviour, in this case, could help to increase sensitivity to novel stimuli and
reduce responsiveness to predictable stimuli. This theory, though it powerfully predicts
responses in early sensory neurons [Hosoya et al., 2005], is unclear on whether same
constraints work for higher perceptual attributes where the range of environmental
variation may be much less, and where the goal of sensory coding itself might change
[Simoncelli and Olshausen, 2001].

Adaptation has also been proposed to aid in Bayesian inference by either affecting
the prior distribution or the Likelihood model [Stocker and Simoncelli, 2006] though it
is not yet clear how cortical circuits might implement Bayesian inference [Doya et al.,
2007].

Finally, adaptation can lead to ambiguity in the representation of the sensory
stimulus because the same stimulus can evoke different responses under different con-
texts. The ambiguity can either be resolved by including multiple information channels
across different neurons [Nagel and Doupe, 2006] or multiple information channels in
the same neuron [Lundstrom and Fairhall, 2006]. In some cases, the ambiguity need
not be resolved and could lead to harmless illusions, such as visual illusions of contrast
or brightness.

IV.1.2 Algorithmic level

Modeling of adaptation in photoreceptors was initially inspired by modeling the bio-
chemical phototransduction cascade, which converts light into neural activity [Fain
et al., 2001]. More recent models are phenomenological in nature, such as the ones
by Carpenter and Grossberg [Carpenter and Grossberg, 1981] or the Dynamical adap-
tation (DA) model [Clark et al., 2013]. These models use a series of a succession of
linear filters followed by a nonlinearity. The nonlinearity is feedback driven or purely
feedforward (with the parameters such as the integration time constant depending on
the input history) depending on the model. In the framework of the LNP model (see
section II.1.3), which describes the response of a neuron to a given stimulus, adaptation
can be modeled as changes in either the linear filter or the nonlinearity function. The
adaptive changes affecting the neuronal feature selectivity can be modeled by changes
in linear filter whereas the sensitivity to the filtered stimulus can be modeled by ad-
justing the nonlinearity [Chander and Chichilnisky, 2001] [Rieke, 2001]. Adaptation
to mean luminance, for instance, can be interpreted as a shift in the threshold of the
nonlinearity of the neuronal tuning curve [Rieke, 2001].
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Section I.2.2 discusses rate models of spike rate adaptation. In this chapter, we
will focus on the Motion After Effect in the zebrafish and implement adaptation in a
rate model description (see section IV.9).

IV.1.3 Implementation level

Adaptation is really a blanket term for a wide range of phenomena with similar func-
tional effects [Maravall, 2011]. Different schemes of implementation of adaptation have
been proposed and adaptation could be caused by multiple biophysical phenomena. In
the visual system, contrast adaptation is explained by the hyperpolarization of indi-
vidual neurons due to the activation of intrinsic channels [Baccus and Meister, 2002]
[Sanchez-Vives et al., 2000][Carandini and Ferster, 1997]. In the olfactory system,
activation of Ca+2 channels in second messenger pathways results in adaptation due
to feedback mechanisms such as Ca+2-calmodulin interactions and Ca+2-calmodulin-
kinase interactions [Dougherty et al., 2005]. In mechanosensory systems, calcium inflow
could be used to move proteins to close or open channels. Due to sustained stimula-
tion, the neuron’s firing rate is reduced due to spike-frequency adaptation. Another
potential mechanism, in the case of orientation adaptation in the early visual system
[Dragoi et al., 2000] and in the rat barrel cortex [Chung et al., 2002] [Katz et al., 2006]
is suggested to be short-term synaptic depression [Abbott et al., 1997] [Tsodyks and
Markram, 1997]. More generally, the ability of the synaptic strength to change either
due to modifications in presynaptic neurotransmitter release or postsynaptic sensitiv-
ity over timescales from milliseconds to tens of seconds [Fioravante and Regehr, 2011]
[Zucker and Regehr, 2002] create a wide variety of adaptive effects [Markram et al.,
1998] [Abbott and Regehr, 2004] [Buonomano and Maass, 2009]. Another mechanism
for contrast gain control in primary visual cortex, V1, is the divisive normalization,
in which the output of a given neuron is modulated by feedback from the responses
of neurons with similar receptive field. Adaptation can occur at different levels in the
brain and could be the effect of multiple processes acting at different sites. For in-
stance, intrinsic and synaptic mechanisms at several sites in the visual system produce
contrast adaptation [Kim and Rieke, 2001][Baccus and Meister, 2002]. In rat barrel
cortex, it was shown that a subthreshold component of adaptation is whisker-specific
[Katz et al., 2006], while responses in barrel cortex are multi-whisker, implying that
the adaptation occurs in intracortical or thalamocortical connections as opposed to via
intrinsic mechanisms in the barrel cortical neurons.

The intrinsic dynamics of single neurons evolved over multiple timescales [La Cam-
era et al., 2006] and the apparent time constant of adaptation, more particularly the
slow gain change, varies as a function of the period of the stimulus [Marom, 2010] [Wark
et al., 2009]. This could be a result of power-law dynamics [Drew and Abbott, 2006]
although few studies provide direct evidence for the biophysical mechanisms underly-
ing multiple timescale dynamics. Power-law and fractional differentiation behaviour
was shown in cortical slices [Lundstrom et al., 2008] as well as for thalamic and cortical
neurons in the whisker somatosensory pathway [Lundstrom et al., 2010]. However, as
power-law dynamics can be approximated by a cascade of many exponential processes
[Friedlander and Brenner, 2009] [Gray-Keller and Detwiler, 1994] [Cilluffo et al., 2004],
a leading hypothesis is that multiple timescale dynamics are the result of a cascade of
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exponential processes in a cell or network.

IV.2 Motion After Effect

The Motion After Effect (MAE) is a phenomenon in which continuous exposure to
a coherent moving stimulus in a large field of view in one direction results in the
perception of illusory motion in the opposite direction at the end of the stimulation.
First recorded by Aristotle (Aristotle, c350BC), it was rediscovered by Purkinje (1820),
see [Mather et al., 1988] and [Addams, 1834]. Subsequently, a wide range of test
stimuli and adapting stimuli were used to explore the effect [Wohlgemuth, 1911]. As
Addams noticed the effect when observing the waterfall of Foyers at Loch Ness, it is
also known as the waterfall illusion. This illusion has been observed in many vertebrate
and invertebrate organisms [Purkinje 1820,[Wohlgemuth, 1911] [Barlow and Hill, 1963]
[Petersen et al., 1985] [Niu et al., 2006] [Watamaniuk and Heinen, 2007] [Nordström
and O’Carroll, 2009]. An illustration of the illusion is shown in the figure IV.3

Figure IV.3: Motion After Effect. Cut out an enlarged version of either A or B and
rotate it on a turntable at a suitable speed for 30s while gazing at the center of the
disc. When the disc stops, we perceive the dots rotating backwards in the case of A
and a previously contracting spiral appearing expanding in the case of B. Taken from
[Anstis et al., 1998].

Adaptation of the motion sensitive neurons in the brain is believed to be the un-
derlying cause of the illusion. Reduced activity in directionally selective cells in the
rabbit retina during prolonged exposure to motion in their preferred direction was ob-
served by Barlow and Hill [Barlow and Hill, 1963]. To explain this, they proposed an
opponent system of two direction selective cell populations, where the difference in the
activity of the two populations encodes for the perceived direction of motion. Following
adaptation to a moving stimulus in one direction, the population activity of the cells
corresponding to that direction will have its activity lower than the baseline activity
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while the other population will remain at its baseline activity. There will, thus, be a
bias towards the population which codes for motion in the opposite direction. Similar
reductions in responses of the population selective to one direction, upon exposure to
a moving stimulus in the preferred direction, were observed in medial temporal visual
area in owl monkeys (MT, a brain region encoding for visual motion) [Petersen et al.,
1985], area 17 (V1) of anesthetized cats [Giaschi et al., 1993] , nucleus lentiformis
mesencephali (nLM) in the pigeons [Niu et al., 2006]

For the population coding for the opposite direction, in some cases an enhancement
in responses was observed such as in temporal visual area in owl monkeys (MT, a brain
region encoding for visual motion) , nucleus lentiformis mesencephali (nLM) in the
pigeons whereas in some cases, a reduced response was found, such as in the area 17
(V1) of anesthetized cats. However, this reduction was less than the reduction found
in the population coding for the stimulus direction. This result is consistent with the
original imbalance theory proposed by Barlow and Hill [Barlow and Hill, 1963].

In humans subjects, during and after exposure to expanding or contracting pat-
terns, enhanced fMRI responses were found in MT, and to a smaller extent in areas
V2 and V3a but not in V1 [Tootell et al., 1995]. This suggested that the MAE illusion
is generated in higher visual brain regions.

There are two potential advantages of the MAE in visual information processing:
error correction or/and coding optimization. To keep the perceiver’s internal repre-
sentation of motion fixed, the visual system could have developed an error correction
mechanism in the visual system. Upon prolonged viewing of motion in one direction,
the corresponding cells which respond to the motion stimulus, show more activity than
the baseline activity and this is corrected by a gain-reset mechanism during the view-
ing of the stimulus. As a result, upon the termination of the stimulus, an erroneous
reduction in their output compared to their baseline output would be produced. This
reduction would then generate motion perception in the opposite direction (MAE).

In the framework of coding optimization, upon the presentation of a continuous
moving stimulus, many neurons will be active simultaneously and will inhibit each
other’s activities. This inhibition will be sustained for a while following the end of the
conditioning stimulus and thus a reversed motion will be perceived.

A schematic diagram of the model explaining these results is outlined in Figure
IV.4. On the left, there is no motion stimulus and therefore, the baseline responses of
neurons coding for the different directions of motion are the same and as a result, no
motion is perceived. Following stimulation in one direction, the north-west direction,
the corresponding synapses between the motion detectors (leftward and the upward
detectors in this case) and MT habituate. As a result, following the end of the stimulus,
the baseline responses of these two populations are lower than the baseline responses of
the rightward and downward populations in the MT. As a result, a different direction
of motion (south-east) is then perceived.

Another theory by Horace Barlow [Barlow, 1990] proposes that MAE reflects a
neural mechanism that removes temporal correlations in incoming data in order to
create a sparse neuronal representation to focus on novel items and changes. Accord-
ingly, aftereffects may arise from the same decorrelating processes that are responsible
for the original emergence of long-term development feature selectivity [Ball, 2005]
[Bednar and Miikkulainen, 2000] [Ciroux, 2005].
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Figure IV.4: A schematic model explaining MAE proposed by Watamiuk et
al. Motion direction detectors are represented by circles with the corresponding mo-
tion direction arrows. These detectors synapse to the area MT whose output is then
summed and sent to the eyes. a) After conditioning in the upward direction, habitua-
tion is induced in the corresponding synapse between the motion detectors. However,
because the subjects’ eyes are closed MAE cannot be perceived. b) Following the end
of the stimulus for (a) but in the presence of a rightward moving visual input generates
MAE perception in the bottom-rightwards direction. Adapted from [Watamaniuk and
Heinen, 2007].
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Another mechanism was developed by Van de Grind et al. [Van de Grind et al.,
2003a] [Van de Grind et al., 2003b] that uses divisive feedforward inhibition as the gain
control mechanism. According to this theory, during adaptation, a leaky integrator in
the active cells charges up, and following adaptation, the charge dissipates causing an
imbalance in output between adapted and unadapted units. Psychophysical [Morgan
et al., 2006] and electrophysiological [Kohn and Movshon, 2003] results are consistent
with this kind of gain control mechanism.

Here, we will use the zebrafish larva to study the neuronal mechanisms underlying
MAE and we will model the results obtained. Since we can monitor the dynamics of
large neuronal networks with single-neuron resolution in an intact, non-anaesthetized
behaving vertebrate, we will be able to correlate the MAE behaviour with the neuronal
activities and shed light on the mechanisms of the brain by the means of a mathematical
rate model. We provide a brief introduction to the zebrafish model in the next section.

IV.3 The zebrafish as a vertebrate model for systems neuro-
science

As already stated, the human brain is highly complex with over a hundred billion neu-
rons and a thousand times more number of synapses. The ultimate aim of neuroscience
is to understand this complexity at various levels: from genes that encode membrane
proteins to single neuron dynamics to networks of neurons to behaviour. However, we
are still in the nascent stages of understanding the human brain with respect to our
current technology but nevertheless, we can make progress by restricting ourselves to
animal models. These models must be easy to maintain and breed in a laboratory set-
ting and must have particular experimental advantages. At the present day, a number
of animal models are in use in neuroscience research as illustrated in the figure IV.5.

Figure IV.5: Animal models used in neuroscience. The number of neurons is
indicated in the last row. For Rhesus macaque, only the cortical neurons are indicated.

The zebrafish larva is an excellent animal model to study neuroscience [Sumbre
and de Polavieja, 2014]. Zebrafish (Danio rerio) is a tropical omnivorous teleost fish
originating from the south of Asia (Figure IV.6A-C). They are commonly found in
shoals and belong to the family of stomachless fish with toothless jaws of the Cyprinidae
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family. They have a relatively fast reproduction cycle and are very easy to breed. This
ensures a ready supply of animals for research. When compared to rodents, which have
5-10 offspring per pairing, zebrafish offer about 200-300 eggs each time. The larvae
also grow and develop very quickly. Adults grow up to ∼ 2.5 to 4cm in length and
become sexually mature at ∼3 months. They can thrive in a wide range of habitat
including shallow waters with low currents, pristine waters, man-made canals, streams
and ponds (Figure IV.6D-F). Owing to this reason and the fact that they are small,
it is easier to keep zebrafish in what appear to be more natural conditions than it is
possible to simulate for mammals.

The zebrafish embryo is very popular in developmental and genetic studies because
of its transparency. The embryos are able to absorb chemicals that have been added
to their water and this makes it easy to introduce genetic modifications using chemical
mutagens. It is possible to induce more mutations in their genome as compared to the
rodents because they can withstand much higher levels of chemical mutagens than can
be tolerated by rodents. Having first been selected as a genetic model about 35 years
ago by George Streisinger and colleagues [Streisinger et al., 1981], it became very pop-
ular in developmental biology and resulted in a large library of transgenic and mutant
fish, enabling one to target specific cell types. The zebrafish genome has been entirely
sequenced and shares 70 per cent of its genes with the human genome [Howe et al.,
2013]. Because the cell biological and developmental processes are widely conserved
across all vertebrates, studies in fish can give insight into human diseases. In fact,
84 percent of the genes known to be associated with human disease have a zebrafish
counterpart. Mutations in about 14000 genes of the fish have been created and various
vertebrate models of neurodevelopmental, neurological and neurodegenerative diseases
have thus been possible [Deo and MacRae, 2011] and numerous models for human dis-
eases such as Melanoma [White et al., 2011], Alzheimer’s disease [Paquet et al., 2009]
and Rett syndrome [Pietri et al., 2013] have been proposed. MCT8-deficient zebrafish
exhibit anatomical impairment and behavioral phenotypes and same genetic defect is
also known to be responsible for a significant fraction of the undiagnosed neurological
disorders in humans [Zada et al., 2014]. Their muscles, blood, kidneys and eyes share
many features with human systems. With their unique ability to repair heart muscle,
they could help us to develop ways of repairing hearts of humans with heart failure.

In recent years, the zebrafish larva has become an excellent vertebrate model for
neuroscience research as well. It is an ideal model organism for studying early devel-
opment as the larvae grow in an extra-uterine environment. As old as 5 days post
fertilization (dpf), larvae need to avoid predators and capture prey in order to survive.
This strong evolutionary pressure is responsible for a rapid development of the sensory-
motor systems, vision in particular, and a large repertoire of motor behaviors such
as the Optokinetic response (OKR), Optomotor response (OMR) and prey-capture.
(Friedrich et al., 2010; Portugues and Engert, 2009).

Due to its small size (the brain is 500 µm thick and 3mm long) and transparency
even at the larval stage, the larval brain activity is ideally accessible to the state of
the art optical tools such as two-Photon Scanning Microscopy (Figure IV.7B), Selec-
tive Plane Illumination Microscopy, and Light-Field Microscopy. Using two-Photon
Scanning Microscopy, the activities of large brain regions of the fish can be monitored
simultaneously to a spatial resolution of a single neuron and a temporal resolution of
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Figure IV.6: Zebrafish and its habitat. (A-B) Zebrafish from northeastern India.
The upper two fish are males and the lower two fish are females. Males are usually
slender and torpedo-shaped with a yellow ventral cast whereas females tend to be fat-
ter due to the eggs they carry. Scale bar given in (A): 5 mm (C) A shoal of zebrafish
(a single fish is highlighted with the arrow) in a stream-side pool in Meghalaya, In-
dia, north of Bangladesh. (D-F) Zebrafish can be found in diverse habitat: pristine
pools, ephemeral pools (B, D) man made canals (F) and rice paddies (F). All pictures
reproduced from Parichy (2015).
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about 3.91 Hz (Figure IV.7). This is achieved using a genetically encoded calcium
indicator such as GCaMP which can be expressed in selected populations of neurons.
The idea behind the functioning of GCaMP is that GCaMP changes its fluorescence
properties in response to the binding of Ca2+. The firing of neurons causes an opening
of calcium channels and this results in an increase in the intracellular calcium concen-
tration. These calcium ions bind to the GCaMP indicators resulting in increase and
decrease in the fluorescence of GCaMP sensors, which can be measured using various
light microscopies.

Figure IV.7: Brain anatomy of the zebrafish larva at 6 dpf. (A). Bright-field
image of a zebrafish larva. (B) Overlay of a bright-field image of the larva head and
the images of its brain acquired using two-photon microscopy (left part of the brain)
and fluorescent imaging (right part of the brain). Note the spatial resolution on the
left part obtained with two-photon microscopy. Neurons are labeled with the green
fluorescent calcium indicator GCaMP5G. Image reproduced from Fetcho (2012). (C)
Schematic drawing of the larval zebrafish brain showed in (B) representing the main
parts of the brain (telencephalon, Optic Tectum, hindbrain and spinal cord) and the
eyes. Scale bar is common for B and C.

Additionally, the zebrafish larva also allows the usage of optogenetic actuators, light
activated ion channels, such as halorhodopsin or channelrhodopsin [Douglass et al.,
2008] [Schoonheim et al., 2010]. These channels when activated can induce or suppress
neuronal activity. Manipulation of the neuronal activity can be used to study changes
in behaviour and this can shed light on the role of the specific population of neurons
involved. All these manipulations are performed in a non-invasive, non-paralyzed and
non-anesthetized manner requiring only that the larva be restrained in agarose. The
ability to monitor the activity of the entire brain in a behaving, non-paralyzed and
non-anesthetized vertebrate make zebrafish an ideal model [Ahrens and Engert, 2015]
[Zhu et al., 2012].
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IV.4 Optokinetic response and Motion After Effect

At around 80 hours post fertilization (∼3.3 dpf), the zebrafish larva develops the
optokinetic response (OKR). The optokinetic response ((Figure IV.8A) is a series of
alternating slow-phase and fast-phase movement of an animal’s eyes in response to a
coherently moving external large field of view. In the presence of a water current,
when the larva is moved passively, a compensating movement is generated because
of OKR. Thus the OKR serves to stabilize the visual image on the retina and thus
a stable position with respect to their visual environment. Due to this evolutionary
advantage, all vertebrates display this basic behavior. In the zebrafish, it is the earliest
visual behavior requiring pattern vision and directionality [Easter and Nicola, 1996]
[Easter and Nicola, 1997]. To study the OKR in the laboratory, the orientation of the
eye is extracted by fitting the eyes with an ellipse in an image processing software like
MATLAB. The angle between the long axis of the ellipse and the external horizontal
axis is then taken as the orientation angle of the eye (see Figure IV.8B). Slightly after
the development of the OKR, the optomotor response (OMR) develops. Similar to the
OKR, the OMR (Figure IV.8C) serves to maintain the position of the fish stable in
a current by generating tail-flip movements in the direction of perceived motion. As
both these behaviors are very robust and develop at a very early stage, they are used
to screen mutations with defects in their neuronal visual circuits [Rick et al., 2000]
[Neuhauss et al., 1999].

In order to record and analyze OKR, larvae are usually immobilized in methyl-
cellulose or in low-melting agarose and the agarose is selectively removed around the
eyes. Then, following the presentation of a coherent-motion visual stimulus, such as a
rotating drum painted with black stripes, in a large portion of the field of view of the
larva, OKR can be observed [Neuhauss et al., 1999] [Qian et al., 2005].

Following a study in 2012 [Ahrens et al., 2012], it was shown that the inferior olive
and the cerebellum contained many neurons correlating with the motor adaptation
in the optomotor response. Furthermore, lesioning the inferior olive post-training
eliminated the motor adaptation [Ahrens et al., 2012].

IV.5 Two-photon calcium imaging

To record neural activities in the brain of the zebrafish larva, we use two-photon
imaging of calcium activity in the optic tectum. In this section, we will discuss calcium
imaging in neurons [Grienberger and Konnerth, 2012] and two-photon imaging very
briefly [Murphy and Davidson, 2013]. And, in the next section, we will discuss the
visual system of the larva.

Calcium ions are found in almost every cell type in biological organisms [Berridge
et al., 2000] and regulate a number of functions [Dulhunty, 2006] [Lu and Means, 1993]
[Orrenius et al., 2003]. In neurons, calcium acts on a wide range of timescales [Berridge
et al., 2003]. On the microsecond level, following an action potential, an influx of ex-
tracellular calcium ions into a cell through its voltage-gated calcium channels triggers
the release of neurotransmitter molecules [Neher and Sakaba, 2008]. On the sec-
ond to hour level, calcium ions are involved in synaptic plasticity in dendritic spines
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Figure IV.8: OKR and OMR responses in larva zebrafish. A. OKR: immo-
bilized fish respond with eye movements to a large coherent moving visual stimulus
(rotating drum with a sinusoidal painted pattern). B. Detection of eye orientation:
The orientation of the eye is calculated by fitting it with an ellipse and extracting the
angle between the long axis of the ellipse with respect to the external horizontal axis.
C. During the OMR, larvae swim to follow a moving stimulus displayed on the bottom
of their tank. The direction of motion is indicated by arrows. Images A. and C. taken
from [Roeser and Baier, 2003a].
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[Zucker, 1999] and in gene transcription inside the nucleus [Lyons and West, 2011].
Therefore, to study these various processes, calcium imaging has been a useful tool.
Calcium imaging involves the usage of a calcium sensor, and the appropriate imaging
instrumentation. Historically, various calcium sensors such as bioluminescent calcium-
binding photoproteins [Shimomura et al., 1962] and absorbance dyes that change their
absorption spectrum as a function of bound calcium [Brown et al., 1975] have been
used. Over the years, calcium indicators have been improved to accommodate a wide
range of excitation spectra with large signal-to-noise ratios [Paredes et al., 2008].

Protein-based Genetically Encoded Calcium Indicators (GECIs) [Looger and Gries-
beck, 2011] were first introduced by Miyawaki et al. [Miyawaki et al., 1997]. The
GCaMP family of GECI’s are popularly used for in-vivo calcium imaging today [Cha-
lasani et al., 2007] [Dombeck et al., 2010] [Fletcher et al., 2009] [Wang et al., 2003].
GCaMPs work by increase in emitted fluorescence of the enhanced green fluorescent
protein (EGFP) due to a conformational change caused by calmodulin-calcium interac-
tions in the presence of calcium (see figure IV.9) [Nakai et al., 2001] [Tian et al., 2009].
GCaMP3 and GCaMP5, developed by protein engineering, have a higher signal-to-
noise ratio, dynamic range, and response kinetics as compared to GCaMP. GCaMP5
measures neuronal activity more reliably than GCaMP3 [Akerboom et al., 2012].

Figure IV.9: A schematic of the operational mechanism of GCaMP. GCaMP,
a single-fluorophore GECI, emits increased fluorescence at 515 nm in the presence of
calcium. Taken from [Grienberger and Konnerth, 2012].

Different methods of imaging the brain have been used: intrinsic imaging (measure
of reflectance on brain) [Kalatsky and Stryker, 2003], voltage sensitive dye imaging
[Grinvald and Hildesheim, 2004], confocal imaging [Eilers et al., 1995], two-photon
imaging [Denk et al., 1990] and SPIM [Panier et al., 2013] [Ahrens et al., 2013]. Flu-
orescence microscopy is used to image molecules in cells and tissues with great speci-
ficity and sensitivity. The limitations of the fluorescence imaging techniques are the
absorption and scattering of the beam used to image the specimen, photobleaching of
a protein (the photochemical alteration of a molecule such that it is unable to fluo-
resce anymore) and phototoxicity of cells (cells get damaged due to both the low- and
high-wavelength light that is used to excite fluorophores). To avoid photobleaching
and phototoxicity, one can use lower intensity of the input beam. However, due to
scattering and absorption, the number of photons reaching the detector is reduced. In
biological tissues, the scattering length is much smaller when compared to the absorp-
tion length; hence scattering is the main source of photon loss. Cell bodies and the
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components of the cell are larger than the wavelength of visible light and this is the
reason for large scattering of light in biological media. This phenomena is called Mie
scattering and it increases exponentially with the thickness of the sample. For this
reason, confocal microscopy with visible light requires the sample to be of a thickness
10− 50µm. To solve these problems, we can use two-photon microscopy with near-IR
illumination and pulsed laser light (see figure IV.10). This can be used to image neural
tissues of a thickness of over 1 mm. Neural tissue is relatively transparent to near IR
light [Oheim et al., 2001] such that only half of the incident photons are scattered for
every 50− 100µm of tissue thickness [Helmchen and Denk, 2005].

Figure IV.10: 2-Photon microscopy.
Two-photon microscopy setup: a pulsed
near-IR laser is scanned over the tissue.
The fluorescence emitted by the tissue is
detected by a photomultiplier tube (PMT).
Taken from [Grienberger and Konnerth,
2012].

The theory of two-photon absorption by atoms is rooted in quantum mechanics
and was first described by Maria Goeppert-Mayer [Goeppert-Mayer, 1931]. In one-
photon microscopy, a molecule such as GCaMP is excited and the GCaMP then emits
a photon of a longer wavelength. The rate of excitation is, therefore, proportional to the
intensity of the input beam. In a two-photon excitation, the molecular excitation needs
two photons of twice the wavelength and half the frequency (hence, half the energy).
The rate of excitation is, therefore, proportional to the square of the intensity of the
input beam. The two-photon excitation is, therefore, a nonlinear process and doubling
the intensity of the input beam increases the rate of excitation by four. In nature,
the two-photon excitation happens at a rate of about 1 in ten million years while a
one-photon excitation happens about 1 per second. To obtain two-photon excitation
in the laboratory, we can use a pulsed laser as shown in figure IV.11. The pulsed
laser has a pulse width τ of 100 fs and a pulse rate of 100 MHz ie. a pulse interval
of T = 1/R = 10 ns. For a pulse power of Ip = 1W at 920 nm, the mean intensity is
given by

〈I〉 = τ

T
Ip = 10mW (IV.5.1)

Because of the high-pulse power, it is possible to make two-photon excitation even
though the average power is only 10 mW. For a linear system, this does not make a
difference but for a nonlinear system like I2, it gives us more absorption rate, and
hence, fluorescence F as can be seen with the equations below:

F1p(1pulse) ∝ Ip (IV.5.2)
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Figure IV.11: Pulsed IR laser
used for two-photon imaging.
A pulsed Titanium:sapphire laser
with a) a pulse interval of ∼ 10
ns and b) pulse width of ∼ 100 fs.
Taken from [Murphy and David-
son, 2013].

〈F1p〉 = τ

T
F1p(1pulse) = 〈I〉 (IV.5.3)

F2p(1pulse) ∝ I2
p (IV.5.4)

〈F2p〉 = τ

T
F2p(1pulse) ∝ Ip〈I〉 (IV.5.5)

Thus, the pulsed laser excites the molecules using both 1-photon and 2-photon ex-
citations. However, the mean fluorescence due to 2-photon is much higher than the one
we obtain due to 1-photon excitation. If we use a laser of wavelengths corresponding
exclusively to the two-photon excitation, we get only two-photon excitation. 700-1000
nm and femtosecond pulsed lasers are now being provided by Mai Tai, Spectra-Physics
for this purpose.

For femtosecond pulses, due to the fundamental Heisenberg’s uncertainty principle,
we have ∆ν∆t ≈ 0.3. Since ∆t is small, we have ∆ν ≈ 10− 15 nm. Thus the pulse is
polychromatic. Due to dispersion, longer wavelengths travel faster in materials (posi-
tive dispersion) and shorter wavelengths travel faster distances through air (negative
dispersion). Therefore, a pair of prisms are used to compensate for the dispersion.

The major advantage of using 2-photon microscopy is that the excitation is localized
to a tiny volume around the focal plane [Denk et al., 1990]. Due to this, it can be used
for deep tissue imaging. This can be seen as follows: The intensity at any height at a
distance z away from the focal plane is given by I(z) = P/A(z) where P is the power
of the incoming beam and A(z) is the area of the beam at height z.

For 1-photon microscopy, F1p(z) ∝ I(z)A(z) = P = constant with z, whereas for
2-photon microscopy, F2p(z) ∝ I(z)2A(z) = P 2/A(z) ∝ (P/z)2. Thus, as one moves
away from the focal plane, the fluorescence decreases as the square of the distance
z from the focal plane. This localizes the fluorescence to the focal plane (see figure
IV.12)
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Figure IV.12: Localization
of excitation in two-photon
imaging. a) In one-photon imag-
ing, the fluorescence occupies all
the planes whereas in two-photon
imaging (b), the fluorescence is
constricted to a small volume
around the focal plane. Taken
from [Murphy and Davidson,
2013].

Therefore, two-photon microscopy enables us to monitor cell activities from the
focal plane and also avoid phototoxicity and photobleaching. Though 3 photon could
be a better means, there are no commercial laser sources available at 3 photon wave-
lengths.

IV.6 Visual system of zebrafish

In this section, we will discuss, in brief, the neuroanatomy of the visual center of the
larva zebrafish and explain why we are interested in looking at the neuronal activity
in the optic tectum during MAE. The zebrafish, being a teleost, has a brain organi-
zation similar to that of vertebrates [Friedrich et al., 2010b]. However, owing to the
evolutionary pressure of extrauterine development, visual regions of the zebrafish larva
such as the Optic Tectum (OT) and the retina are relatively enlarged.

The zebrafish retina consists of three nuclear layers, separated by two plexiform
(synaptic) layers. Zebrafish are tetrachromats because the outer retina consists of
four types of cone cells, including UV- sensitive cones apart from rod cells. These
photoreceptors synapse onto the bipolar, horizontal, and amacrine interneurons of the
inner layer in the outerplexiform layer. These cells, in turn, are synaptically connected
to the ganglion cells in the outer plexiform layer. The axons of the RGCs, which form
the optic nerve, project to 10 arborization fields (AF) of the larva’s brain.

All but the first AF are contralateral. AF1, present in the hypothalamus, also
received ipsilateral projections [Burrill and SS Easter, 1994]. In terms of their function,
different AFs seem to be implied in generating behavioural responses to specialized
external stimuli. AF-6 and AF-8, for instance, respond robustly to looming stimuli
(an approaching predator or an obstacle) [Temizer et al., 2015]. AF-7 responds to the
optimal prey stimulus (3 angular degrees or 3◦) and ablation of AF-7 has been shown
to reduce prey-capture behaviour [Temizer et al., 2014].

The 10th arborization field (AF-10) receives about 95% of the projections from
RGC’s. This region is the most complex layered brain structure in the fish and is
called the Optic Tectum (OT) (see figure IV.13). The optic tectum is the homologous
structure of the superior colliculus in mammals, which plays a prominent role in the
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Figure IV.13: Projections of the RGCs to the 10 arborization fields in a 6-7
day post fertilization larva. A schematic diagram of the retinofugal Arborization
fields (AFs) in a 6-7 dpf larva. The Optic Tectum (AF10) receives about 95 % of the
projections. AF-7 and AF-9 correspond to the pretectum. Taken from [Burrill and
SS Easter, 1994].
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control of eye and head orienting movements. The zebrafish optic tectum is innervated
by multiple RGC types [Robles et al., 2013] and is innervated by all sensory organs,
either directly or indirectly. Each tectal hemisphere projects directly to the opposite
tectal hemisphere and indirectly through the nucleus isthmi [Meek, 1983], to the hind
brain motor centers [Sato et al., 2007], and indirectly to the spinal cord [Gahtan et al.,
2005]. The tectal neurons form a retinotopic map of the contralateral visual field
as evidenced by the RGC projections [Romano et al., 2015]. The dorso-ventral axis
maps the contralateral dorsal and ventral visual hemifields whereas the rostro-caudal
tectal axis maps the nasal and temporal hemifields. The neurons in the OT are mainly
gabaergic interneurons, apart from glutamatergic and cholinergic neurons [Nevin et al.,
2010].

Several functional roles have been attributed to the zebrafish OT. It is known
to filter visual inputs sizes to capture prey [Del Bene et al., 2010] [Preuss et al.,
2014] and is essential for visually guided prey capture [Gahtan et al., 2005]. It is
involved in generating escape responses to looming stimuli [Temizer et al., 2015]. It
is also involved in computing direction and orientation of inputs [Hunter et al., 2013].
Tectal cells show direction-selectivity as early as 12 hours post onset of visually evoked
responses (78 hours post fertilization) [Niell and Smith, 2005] [Ramdya and Engert,
2008]. Studies show that the mechanism behind direction selectivity arises from both
direction selective (DS) excitatory inputs and inhibitory inputs selective to the null
directions [Ramdya and Engert, 2012] [Gabriel et al., 2012] [Hunter et al., 2013].

IV.7 MAE in the zebrafish larva

In this section, we outline the MAE in the zebrafish larva very briefly. A detailed
version can be found in the next chapter, where we include the article about MAE and
its neuronal correlates in the zebrafish larva.

Taking advantage of the optokinetic response, we showed that the zebrafish larva
does perceive the MAE. In the absence of any moving stimuli, the zebrafish larva gen-
erates stereotypical saccade movements (duration 0.1 s) followed by either a fixation
period or centripetal drifts (duration 20±10 s) and a second saccade in the opposite di-
rection. We, then, showed to the larva large-field coherent moving stimuli (a black and
white grid, conditioning stimulus) at three different speeds (17, 26 and 59 degrees/s)
and for different durations of 50, 100, 200, 250, 400 and 500 seconds. In the presence
of the conditioning stimulus (CS), the larva exhibits the optokinetic response (OKR).
Following the end of the conditioning stimulus, they presented either of the three sta-
tionary patterns: 1) the same grating used for the adapting stimulus, 2) stationary
noise with the same average luminosity as for the conditioning stimulus, 3) a black
screen. In contrast to the stereotypic spontaneous eye movements observed in the ab-
sence of a moving stimulus, following the end of the conditioning stimulus, and in the
presence of either of the three stationary patterns, eye rotation movements correspond-
ing to pursuits in the opposite direction of the conditioning stimulus were observed
for ∼250 seconds. After ∼250 seconds, these pursuits decay and eye movements as
observed for periods of spontaneous motor behavior begin to appear.

Moreover, we demonstrated via ablation studies that the optic tectum, the highest
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visual center in the larva’s brain, is involved in MAE. Upon single cell neuronal record-
ing in the optic tectum of non-anesthetized and non-paralyzed larvae using 2Photon
microscopy, we can identify three populations: non-direction-selective neurons, direc-
tion selective neurons in the direction of the CS, and direction-selective neurons in the
opposite direction (MAE direction). During the CS period, we observe habituation in
the direction selective neurons in the direction of CS and during the MAE period, we
observe rhythmic synchronous activities mostly in the direction selective cells sensi-
tive to the MAE direction. Furthermore, by correlating the population activity of the
tectal direction-selective neurons with the eye-rotation kinematics, we find two classes
of neurons: (1) direction-selective neurons that did not show spontaneous activity as-
sociated with optokinetic MAE-like behavior and (2) direction-selective neurons that
showed correlated activity with optokinetic MAE-like behavior during the post-CS
period (eyemotion-selective neurons).

MAE could be the result of the competition between two directional selective neu-
ronal populations. During the presentation of the CS, the CS direction selective neu-
rons are more active than those in the opposite direction. Due to CS-induced ha-
bituation, during the post-CS control period, CS direction-selective neurons are less
spontaneously active than MAE direction-selective neurons. A comparison between
these two populations could qualitatively explain the MAE-like effect that we ob-
served. Therefore, the MAE-like behavior could emerge from a tectal sub-circuit that
compares the activities of both direction-selective neuronal groups and generates ade-
quate directional motor commands. These findings can be summarized with a model
shown in figure IV.14. The model is based on a comparator tectal sub-circuit con-
sisting of two cross-inhibiting neuronal populations: a CS comparator and a MAE
comparator, each of them receiving excitatory inputs from the corresponding group of
direction-selective neurons. These comparator populations represent the sub-groups of
MAE direction-selective neurons displaying synchronous rhythmic activity associated
with optokinetic MAE-like behavior. The comparator circuit computes the difference
between the activities of the two groups of direction-selective neurons: each rhythmic
stimulation produces a winner-takes-all dynamic in which one of the two comparator
populations dominates the other in an input-dependent manner. In the model, the
rhythmicity is implemented by a periodic input of similar magnitude on the two com-
parator populations. This periodic stimulus could originate from an intrinsic rhythmic
tectal activity, a rhythmic tectal afferent, or a proprioceptive input associated with the
eye saccades. We found that paralyzed larvae incapable of moving their eyes did not
show, following the cessation of the CS, spontaneous rhythmic activity among MAE
direction-selective neurons.

Using two-photon calcium imaging, it has been shown that the pretectum (AF-7
and AF-9) and the superficial layers of the optic tectum respond to large-field coherent
visual motion presented to the contralateral eye [Portugues et al., 2014]. Similarly,
unilateral stimulation of the pretectal area induced eye movements that resemble the
optokinetic response (OKR; [Kubo et al., 2014]). As previously shown by the ablation
of the RGC terminals in the optic tectum neuropil [Roeser and Baier, 2003a], ablation
of a large portion of the tectal neurons did not abolish OKR, suggesting that the
tectum does not play a major role in its generation. However, we show that the
tectum seems to be necessary for the initial strong behavioral response to novel stimuli
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Figure IV.14: An empirical
model of MAE. The model com-
prises four populations of neu-
rons: CS direction-selective (CS-
DS), MAE direction- selective
(MAE-DS), and two comparator
populations (CPs), one for each
direction (CS-CP and MAE-CP).
The DS populations receive reti-
nal inputs, whereas the CPs’ cells
receive rhythmic input. The CPs
receive excitatory input from the
corresponding DS population and
inhibitory input from the other DS
population, and they cross-inhibit
each other.

and for CS-induced behavioral habituation (decrease in the OKR gain). Similarly,
the strong novelty response and habituation effect were present in the CS-induced
neuronal responses in the optic tectum but absent in the retina. The lack of CS-induced
behavioral habituation could explain the observed reduction of MAE in ablated larvae.
We therefore suggest that MAE could emerge as a consequence of tectal adaptation to
the CS.

IV.8 Laing Chow model
To model the MAE in the zebrafish, we take inspiration from the Laing and Chow
model [Laing and Chow, 2002]. Laing and Chow developed a population rate model
from a network of two populations of Hodgkin-Huxley type neurons with recurrent
excitation, cross-inhibition, adaptation and synaptic depression to describe binocular
rivalry. Binocular rivalry is the phenomenon of alternation in perception when the two
eyes are presented with drastically different images. The subject, in this case, cannot
fixate on both the images simultaneously but alternates between the two stimuli. The
neurophysiological correlate of this alternation is the alternation between the activity
of two populations of neurons, each coding for one image. The switching between
the two populations is induced by a slow process such as spike frequency adaptation
or synaptic depression [Abbott et al., 1997]. A calcium-dependent potassium current
is used to model the spike frequency adaptation in the HH model [Huguenard and
McCormick, 1992] [McCormick and Huguenard, 1992]. We will briefly present the
population rate model and adapt it to our case of the phenomenon of motion after
effect that we observe in the optic tectum. The equations used in their model are as
follows:
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du1
dt

= −u1 + f(αu1g1 − βu2g2 − a1 + I1), (IV.8.1)

du2
dt

= −u2 + f(αu2g2 − βu1g1 − a2 + I2), (IV.8.2)

τa
da1
dt

= −u2 + φaf(αu1g1 − βu2g2 − a1 + I1), (IV.8.3)

τa
da2
dt

= −u1 + φaf(αu2g2 − βu1g1 − a2 + I2), (IV.8.4)

τd
dg1
dt

= 1− g1 − g1φdf(αu1g1 − βu2g2 − a1 + I1), (IV.8.5)

τd
dg2
dt

= 1− g2 − g2φdf(αu2g2 − βu1g1 − a2 + I2), (IV.8.6)

where ui represents the net excitatory activity of each population, ai and gi are the
population adaptation and synaptic depression variables, respectively. The gain func-
tion f is taken to be the Heaviside step function i.e., f(x) = 1 for x ≥ 0 and f(x) = 0
for x < 0. The time constants of adaptation and synaptic depression i.e. τa and τd are
both assumed to be much larger than 1.

To simplify the dynamics of the above equations, we can separate the time-scales
between the population activities that are the fast variables and the slow variables.
The system either oscillates or goes to a steady state depending on the parameters.
The different possible steady states of the system are

a) when either both activities are zero (both off) or
b) when either both activities are at 1 (both on), or
c) one at 1 and the other at zero (one on) and vice versa.

To find the stability of these steady states, we can perturb the system and look at the
resulting dynamics.

a) When only adaptation variables are active (i.e., g1 =g2 =1), the both-off steady
state i.e. (u1, u2, a1, a2)=(0, 0, 0, 0) is steady when the total current entering through
the gain function is below threshold, i.e., I1 < 0 and I2 < 0.

b) The both-on steady state i.e. (u1, u2, a1, a2)=(1, 1, φa, φa) is steady when the
input current is greater than threshold i.e. α−β−φa+ I1 > 0 and α−β−φa+ I2 > 0
i.e. strong inputs or strong excitation is required for the both-on state.

c) The one-on case, say, (u1, u2, a1, a2) =(1, 0, φa, 0) requires α−φa + I1 > 0 and
−β + I2 < 0 i.e. it needs strong excitation and inhibition compared to the inputs.

When none of the fixed-state conditions are satisfied, then the system oscillates as
shown in figure IV.15 for parameter values of α = 0.2, β = 0.4, φa = 0.4, τa = 20,
I1 = 0.43, I2 = 0.5. In this case, when the adaptation of one population variable has
sufficiently decreased compared to the other, it becomes active. This is the regime of
bistability that Laing and Chow had wished to model [Laing and Chow, 2002]. We will
consider ourselves in this regime and model the MAE in the zebrafish using this model.
We will, therefore, consider two cross-inhibiting populations with adaptation variables
to model the comparator populations. We set the synaptic depression variables to 1
so that they don’t play a role. These cross inhibiting populations receive a rhythmic
input and the winner of the two populations determines the next movement of the
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eye. We add two directional selective populations which receive input from the retina
and excite the corresponding comparator populations. The details of the model are
presented in the next section.

Figure IV.15: Alternation of the two populations in the Laing-Chow model.
Solution of the reduced model with only adaptation variables. u1 and a1 are shown in
the top plot and u2 and a2 are shown in the bottom plot for parameter values specified
in the text. Image taken from [Laing and Chow, 2002].

IV.9 MAE model in the zebrafish tectum
The model schematically described in Figure IV.14 is mathematically implemented
in this section using a rate model description for the different neuronal populations,
as described below. The rate model for the two populations (j = 1, 2) of direction
selective cells is defined by

τ
dvj
dt

= −vj + f [Ij − af,j − as,j ] (IV.9.1)

τf
daf,j
dt

= −af,j + φfvj , (IV.9.2)

τs
das,j
dt

= −as,j + φsvj , (IV.9.3)

where, for simplicity, the f-I curve f is taken to be a saturating threshold linear func-
tion with f(v) = 0, v < 0, f(v) = v, v ≥ 0 and f(v) = vm, v ≥ vm. The variables
vj represents the mean discharge rates of the population 1 and 2, population 1 being
assumed to be selective for the conditioning stimulus direction. The variables af,j and
as,j represents slow habituation currents intrinsic to the cell population j. Two habit-
uation time scales τf and τs are introduced to represent the double exponential decay
of the DS cells observed in the experiments and τ is the membrane time constant of



IV.10. CONCLUSION 137

the DS cell population. The variables φf and φs model the dynamics of the habita-
tion currents induced for a given firing rate of the DS cell population. The current Ij
models the retinal inputs with Ij = Isp, the input current during sponatenous activity
in absence of CS. During the CS, of duration Tcs, the current is increased to Ics on the
CS-selective population, i.e. I1 = Ics.

IV.9.1 Comparator cells
The two comparator cell populations are modelled in a similar manner. The variables
uj represent the mean firing rate of the jth comparator cell population. We assume
that each comparator cell population receives inputs from one of the two direction
selective cells population with a coupling strength Jd and that the two comparator
cell populations cross-inhibit each other with the inhibiting strength Jc. In addition,
we suppose that they are endowed with an adaptation current bj (j=1,2), similar to
the direction selective cell population, which for simplicity we describe with a single
exponential relaxation,

τ
du1
dt

= −u1 + f [I(r)
1 − b1 − Jcu2 + Jdv1], (IV.9.4)

τb
db1
dt

= −b1 + φb u1, (IV.9.5)

τ
du2
dt

= −u2 + f [I(r)
2 − b2 − Jcu1 + Jdv2)], (IV.9.6)

τb
db2
dt

= −b2 + φb u2, (IV.9.7)

The variable φb models the dynamics of the habitation currents induced for a given
comparator cell firing rate. We assume that the interaction, not modelled here, of
these comparator neurons with neuronal populations outside the tectum (e.g. propri-
oceptive inputs) leads to the generation of the rhythmic depolarizing current I(r)

j in
the comparator cells. In the performed simulation this rhythmic current was assumed
to be periodic with a period T r with during each period an ON-time with a value
I

(r)
on,j during a time T ron and a value I(r)

off,j during the complementary OFF-time T roff (i.e.
T r = T ron + T roff). In order to account for the imperfect alternation of the spontaneous
activity, the ON-current was taken to take on average the same value I(r)

on on each
comparator cell population but to fluctuate around this mean independently on the
two populations and from period to period,

I
(r)
on,j = I(r)

on + ξj,p. (IV.9.8)
These fluctuations are represented by ξj,p, a random gaussian current ξj,p of standard
deviation σ, 〈ξj,pξj′,p′〉 = σ2δj,j′δp,p′ , with j the population index and p the period
index (δa,b denotes the kronecker δ-function, δa,b = 1 if a is identical to b, δa,b = 0
otherwise).

IV.10Conclusion
In this chapter, we looked at the phenomenon of adaptation in sensory systems. We
described the phenomenon of adaptation and used the zebrafish larva as an experimen-
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tal model to study the illusion of motion after effect, which is a result of adaptation.
We recorded behavioural and neuronal activity in the highest visual center of the larva,
the optic tectum and used rate models to model this phenomenon. The next chapter
includes the manuscript which describes all the methods in detail.
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SUMMARY

Following moving visual stimuli (conditioning stimuli,
CS), many organisms perceive, in the absence of
physical stimuli, illusorymotion in the opposite direc-
tion. This phenomenon is known as the motion after-
effect (MAE). Here, we use MAE as a tool to study the
neuronal basis of visual motion perception in zebra-
fish larvae. Using zebrafish eye movements as an
indicator of visual motion perception, we find that
larvae perceiveMAE. Blocking eyemovements using
optogenetics during CS presentation did not affect
MAE, but tectal ablation significantly weakened it.
Using two-photon calcium imaging of behaving
GCaMP3 larvae, we find post-stimulation sustained
rhythmic activity among direction-selective tectal
neurons associated with the perception of MAE. In
addition, tectal neurons tuned to the CS direction
habituated, but neurons in the retina did not. Finally,
a model based on competition between direction-
selective neurons reproduced MAE, suggesting a
neuronal circuit capable of generating perception of
visual motion.

INTRODUCTION

Visual aftereffects are often considered the by-products of

neuronal adaptation processes for the optimization of sensory

perception. Typical examples are calibration between move-

ment perception and self-produced locomotion, decorrelation

to increase efficiency of sensory coding, and gain control of

sensory stimuli to extend the dynamic range of detection

(Thompson and Burr, 2009). Therefore, they are useful tools to

study the neuronal mechanisms underlying visual perception.

A particular example of visual aftereffects is the motion

aftereffect (MAE), in which exposure to continuous, coherent,

moving visual stimuli induces, following the cessation of the

moving stimulus, the illusory perception of motion in the oppo-

site direction. MAE was first described in �330 BC by Aristotle

in his book Parva Naturalia (trans. Biehl, 1898). Since then, many

studies have described different psychophysical aspects of

the phenomenon (Chaudhuri, 1990; Masland, 1969; Mather

et al., 1998; Wohlgemuth, 1911). In addition to perceptual

MAE, continuous, coherent, moving visual stimuli can induce

oculomotor MAE (Braun et al., 2006; Chen et al., 2014; Watama-

niuk and Heinen, 2007). Despite the vast literature on MAE, only

a handful of studies have examined the underlying neuronal

mechanisms. MAE was found to be associated with either a

decrease or an increase in the response of direction-selective

neurons. Direction-selective neurons are specialized for detect-

ing motion along specific axes of the visual field, and they

respond to visual stimulus moving in a given direction (the

preferred direction) but do not respond or respond less to

those moving in the opposite direction (the null direction). Using

single-neuron recordings, MAE-associated adaptations have

been described in different brain regions of different animal

species: the rabbit’s retina (Barlow and Hill, 1963), the owl

monkey’s medial temporal lobe (Petersen et al., 1985), the

cat’s primary visual cortex (Giaschi et al., 1993), the pigeon’s

nucleus lentiformis mesencephali (Niu et al., 2006), and the

fly’s lobula plate (Srinivasan, 1993).

Despite these advances, we lack a comprehensive explana-

tion of the underlying mechanisms and the neuronal correlates

of MAE at the circuit level. To that end, and to shed light on the

potential mechanisms underlying visual motion perception, we

used transgenic zebrafish larvae expressing the genetically en-

coded calcium indicator GCaMP3. We monitored the dynamics

of large neuronal circuits from different brain regions using two-

photon microscopy in an intact, non-anesthetized, behaving

vertebrate model.

1098 Cell Reports 17, 1098–1112, October 18, 2016 ª 2016 The Author(s).
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In zebrafish, the retinal ganglion cells (RGCs) project to at

least ten arborization fields, with the optic tectum (OT) being

the largest (Burrill and Easter, 1994; Nevin et al., 2010). The optic

tectum is the zebrafish’s most complex layered brain structure,

and it is essential for visually guided prey detection and capture

(Gahtan et al., 2005; Romano et al., 2015). Direction-selective

neurons are found in both the retina (Nikolaou et al., 2012) and

the optic tectum (Gabriel et al., 2012; Gebhardt et al., 2013;

Grama and Engert, 2012; Hunter et al., 2013; Romano et al.,

2015).

Using two-photon calcium imaging, it has been shown that the

pretectum and the superficial layers of the optic tectum respond

to large-field coherent visual motion presented to the contralat-

eral eye (Portugues et al., 2014). Similarly, unilateral stimulation

of the pretectal area induced eye movements resembling the

optokinetic response (OKR; Kubo et al., 2014).

Here, we show that following the presentation of a coherently

moving visual pattern (conditioning stimulus, CS) capable of

inducingOKR, zebrafish larvae generated, in the absence of sen-

sory stimuli, optokinetic movements in the direction opposite

that induced by the CS. Reminiscent of MAE, these results

suggest that following the CS, the larvae experienced perception

of visual motion in the opposite direction. Using optogenetics

to transiently block eye movements during the presentation of

the CS, we show that neither muscular fatigue nor eye proprio-

ception feedback plays a role in the generation of optokinetic

MAE-like behavior. Moreover, two-photon laser ablation of the

optic tectum significantly reduced MAE-like behavior. Using

two-photon calcium imaging of transgenic zebrafish larva

expressing GCaMP3, we monitored the neuronal activities of

the larva’s two main visual centers (retina and optic tectum).

We found that following stimulus cessation, direction-selective

neurons tuned to the direction of the CS displayed strong habit-

uation in the optic tectum but not in the retina. Furthermore, we

observed sustained rhythmic neuronal activity associated with

the optokinetic MAE-like behavior among a specific group of

direction-selective tectal neurons, thus arguing for a neuronal

correlate of the MAE-like behavior. Finally, an empirical mathe-

matical model based on the competition between direction-se-

lective tectal neurons related to their activity could reproduce

the OKR, the optokinetic MAE-like behavior, and the uncondi-

tioned spontaneous eye movements observed in the absence

of moving visual stimulation. Overall, our results propose a

functional neuronal circuit in the zebrafish optic tectum that is

capable of generating perception of visual motion.

RESULTS

The Zebrafish Larva Shows MAE-like Behavior
To test whether the zebrafish larva is capable of perceiving MAE,

we took advantage of the larva’s OKR. OKR is a serial combina-

tion of smooth pursuits and rapid saccade eye movements

generated upon the presentation of a moving visual stimulus.

During OKR, the smooth pursuits follow the stimulus direction

to stabilize themoving external world on the retina, while the sac-

cades reset the eye’s position (Huang and Neuhauss, 2008). This

pursuit-saccade eye-movement pattern repetitively persists

throughout the period of stimulation (Figure 1D). In the absence

of large-field coherent visual motion, the larva performs sponta-

neous eye rotations composed of a rapid saccade followed by

an eye fixation period and a second saccade in the opposite di-

rection (Easter and Nicola, 1997; Miri et al., 2011), Therefore, it is

possible to infer whether the larva is perceiving motion and in

which direction by looking at the eye-rotation kinematics (Orger

et al., 2000, 2008; Orger and Baier, 2005; Qian et al., 2005;

Rinner et al., 2005; Roeser and Baier, 2003). To test the hypoth-

esis that zebrafish larvae can experience MAE, we embedded

zebrafish larvae in low-melting agarose. When the agarose jelli-

fied, we transferred the larvae to an elevated stage within the

center of a circular chamber. The chamber was then filled with

fish embryo medium and the agarose around the eyes was

removed to allow movement. Under these conditions, we moni-

tored the eye movements of 7–9 days post-fertilization (DPF)

larvae (Figures 1A and 1B) while projecting on a screen around

the larva static, large-field, black-and-white, square-wave grat-

ings for a period of 500 s (pre-CS control period). Then, we

presented the CS (unidirectionally drifting square-wave grating)

at different speeds (17�/s, 26�/s, or 59�/s) and for different dura-

tions (50, 100, 200, 250, 400, or 500 s), and in both directions

(toward the left or right). Following the cessation of the CS, the

moving grating was stopped and kept stationary for a duration

of 500 s (post-CS control). For clarity, we defined the CS direc-

tion as the direction of the CS despite its direction (leftward or

rightward) and the MAE direction as the opposite one (the direc-

tion expected if MAE was generated).

During the pre-CS-control period, zebrafish larvae generated

spontaneous eye movements (average duration of saccades,

0.12 ± 0.04 s; average duration of fixations, 20 ± 10 s). In some

cases, the eye fixations slowly drifted in a centripetal direction

(Figure 1C). In contrast to this stereotypic spontaneous eye

behavior, the presentation of a coherent motion stimulus (the

CS) induced a robust OKR (Figure 1D). Following the cessation

of the CS (post-CS control period), we observed repetitive, uni-

directional eye-rotation pursuit-saccade-like movements in the

direction opposite that induced by the CS (MAE direction; violet

curve in Figure 1D; Movie S1). Similar eye-pursuit movements

have been observed in humans during MAE (Braun et al.,

2006). We thus interpret these pursuit-saccade movements as

an indication that the larva was experiencing visual movement

in the opposite direction of the CS, reminiscent of MAE, and

called these conditioned eye rotations optokinetic MAE-like

behavior. Like humans, who perceive MAE with lower velocity

and smaller displacement than the CS (Masland, 1969; Wohlge-

muth, 1911), the zebrafish larva optokinetic MAE-like behavior

was composed of eye pursuits of lower rotation speeds and

smaller amplitudes than those observed during the CS (Fig-

ure 1D; Supplemental Experimental Procedures). To quantify

the optokinetic MAE-like behavior, we defined the MAE index

(Figures 1E and 1F; Supplemental Experimental Procedures).

This index represents the ratio of the difference between the

average number of pursuits in the CS and MAE directions and

the total average number of eye movements. The MAE index

will be equal to 1 if only pursuits in the MAE direction are

observed. It will be equal to�1 if only pursuits in the CS direction

are registered and around 0 for spontaneous eye movements

(scanning eye movements or an equal number of pursuits in
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the CS and MAE directions). The MAE index was computed dur-

ing the post-CS control for consecutive periods of 50 s and for

a total of 500 s. For statistical purposes, we defined the control

index as the MAE index during the pre-CS control period.

By comparing the statistically significant difference between

the MAE index and the control index for experiments in which

we presented CS of different durations, we observed that the in-

duction and duration of optokineticMAE-like behavior depended

on the CS duration (Figure 1F). For CS durations of 50 and 100 s,

the MAE index was not significantly different from the control in-

dex (p > 0.05 for all intervals, Kruskal-Wallis). For CS lasting 200

and 250 s, we observed a significant difference for the first 100 s

of the post-CS control period. For CS lasting 300 and 400 s, we

observed a significant difference for the first 150 s (p < 0.05,

Kruskal-Wallis). For a CS of 500 s, the MAE index was signifi-

cantly higher than the control index for the first 300 s following

the end of the CS (p < 0.01, Kruskal-Wallis), and it was signifi-

cantly higher than those induced by the CS of 200–400 s (p <

0.01, Kruskal-Wallis). Therefore, to induce the optokinetic

MAE-like behavior, the larva needs to be stimulated with a CS

of at least 100 s. The duration of the MAE-like behavior de-

pended on the further increase in the CS duration (Figures 1F

and 1G). The optokinetic MAE-like behavior was observed

in 85% of the experiments in which we used a CS of 500 s

A

C

D

E

G

F

B Figure 1. Zebrafish Larvae Perceive the MAE

(A) Experimental setup. Stimuli were projected on a

screen around the larva immobilized in agarose. The

agarose was then removed around the eyes, and

their rotations were recorded from above using an

objective, a tube lens, and a video camera.

(B) Detection of eye orientation. The original image

was thresholded and converted to binary to detect

the eyes. Yellow, the eye outline and the long

and short axes of the fitted ellipse; gray dashed

line, external axis. The orientation of the eyes was

calculated with respect to the external horizontal

axis.

(C) Stereotypic spontaneous eye rotations in the

absence of visual stimuli. Saccades in one direction

are followed by a fixation period and a saccade in

the opposite direction.

(D) Eye rotations during CS and during the post-CS

control period. Note the pursuit movements induced

by the CS (magenta) and the pursuits in the opposite

direction during the post-CS control period (blue),

reminiscent of optokinetic MAE-like behavior. The

latter gradually decreased in frequency until the

stereotypical spontaneous eye movements were

restored around 250 s. Mean eye velocity during the

last 200 s of CS was 1.50�/s ± 0.03�/s, and eye

velocity during optokinetic MAE-like behavior was

0.8�/s ± 0.03�/s (p = 1.63 10�54, Wilcoxon rank sum

test). Eye amplitude during CS was 13.7� ± 0.2�,
and eye amplitude during optokinetic MAE-like

behavior was 7.0� ± 0.1� (p = 1.033 10�4, Wilcoxon

rank sum test; n = 40 trials from 11 larvae for CS

durations 500 s.

(E) Ratio of the different types of movements

during the first 50 s of the post-CS control period

as a function of the CS duration (n = 36, 36, 39,

34, 36, 34, and 40 trials from 10, 9, 10, 10, 10, 9,

and 11 larvae for CS durations of 50, 100, 200,

250, 300, 400, and 500 s, respectively). In all

cases, the CS velocity was 26�/s. Green, pursuits

in the MAE direction; red, pursuits in the CS di-

rection; blue, spontaneous eye movements; gray

shade, SE.

(F) Mean MAE index as a function of time during the

post-CS control period. The curves are color coded

according to the CS durations (top right legend).

The gray dash line represents the control index. The

asterisk indicates significantly different from control (p < 0.01, Kruskal-Wallis), color coded according to the corresponding colors. Error bars, SE.

(G) The average duration of optokinetic MAE-like behavior as a function of CS duration. The colors depict the duration of the CS as in (F). For (F) and (G), n = 120,

104, 117, 110, 114, 112, and 97 trials from 20, 19, 20, 19, 19, 19, and 17 larvae for CS durations of 50, 100, 200, 250, 300, 400, and 500 s, respectively. Control is

n = 14 trials from 14 larvae. Error bars, SE.
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Figure 2. MAE Is Generated in a Sensory Brain Region

(A) Experimental setup used to block eye movements during the presentation of MAE. Eye movements were recorded as in Figure 1A. To inhibit eye movements,

we used transgenic larvae pan-neuronally expressing NpHR and a 105 mm optic fiber coupled to a 565 nm LED mounted on a micromanipulator.

(B) Image of larva obtained using the setup in (A). In all experiments, the fiber was positioned orthogonally and unilaterally above rhombomere 5. The yellow circle

shows the illuminated zone.

(C) Example of optogenetic inhibition of OKR during the presentation of CS, with eye orientation as a function of time. The CS was presented during the entire

300 s period. The yellow patch represents the illumination period. Note the drastic and rapid inhibition of the eye movement upon halorhodopsin activation.

(D) Example showing that optogenetic inhibition of eyemovements during the presentation of CS did not perturb MAE; eye orientation as a function of time during

CS. Green curve, pre-CS; pink curve, CS; blue curve, post-CS; yellow patch, NpHR activation period.

(E) The average number of pursuits during the CS and the post-CS periods, summarizing all experiments as in (D). Pink background, CS period; violet back-

ground, post-CS control period; blue bars, control (LED off during CS); red bars, LED on during CS; positive values, pursuits in the direction of the CS; negative

values, pursuits in the MAE direction. Asterisks mark significant differences (p < 0.01, Kruskal-Wallis; n = 9 trials from 9 larvae). Error bars, SE.

(legend continued on next page)
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(the presence of optokinetic MAE-like behavior was defined as a

MAE index larger than 95% of the control index for at least the

first 50 s of the post-CS control period). Along the same lines,

we found that the length of MAE was positively correlated with

the level of habituation of the number of pursuits during the CS

(Figure S1D).

We then tested the effect of the CS velocity (17�/s, 26�/s,
and 59�/s) on the induction of optokinetic MAE-like behavior.

Although we observed a tendency for a larger MAE index at

CS velocities of 26�/s, we found few significant differences in

the MAE index during the 500 s of the post-CS control periods

for the three velocities tested (p > 0.05, Kruskal-Wallis); however,

they did not follow the same tendency. These results suggest

that CS velocity, within the range of 17�/s–59�/s, does not

play a major role in modulating optokinetic MAE-like behavior

(Figure S1A).

We also studied the effect of different patterns of static visual

stimuli during the post-CS control period. We tested three con-

ditions: (1) a static version of the grating presented during the

CS (white-black square grating); (2) a stationary noise pattern,

built by shuffling the pixel positions of the first condition; and

(3) a black screen (Supplemental Experimental Procedures).

Quantification of optokinetic MAE-like behavior, by means of

the MAE index, did not show any significant difference among

the three conditions (p > 0.05, Kruskal-Wallis; Figure S1B). We

thus suggest that visual feedback during the post-CS control

period is not necessary for the generation of optokinetic MAE-

like behavior. In contrast to results obtained using other animal

models, in which a static visual pattern is necessary to perceive

MAE (Anstis et al., 1998; Mather et al., 2008), zebrafish larvae are

capable of perceiving MAE in complete darkness. Because no

visual feedback is necessary to drive MAE in zebrafish, MAE

represents a case in which perception emerges in the absence

of visual stimuli; therefore, it is a useful tool to study the neuronal

dynamics underlying visual motion perception in zebrafish.

Blocking Eye Movements Using Optogenetics
To investigate the mechanism underlying MAE, we first asked

whether eye muscular fatigue or eye proprioception during

the CS is required for the generation of optokinetic MAE-like

behavior. For this purpose, we blocked eye movements exclu-

sively during the CS by means of optogenetics. Following the

cessation of the CS, we released this suppression to assess

the induction level of optokinetic MAE-like behavior.

Toblock eyemovements via optogenetics, weused transgenic

larvae expressing halorhodopsin in their entire nervous system

(HuC:Gal4;UAS:NpHR (halorhodopsin)-mCherry line; Supple-

mental Experimental Procedures; Arrenberg et al., 2009). Halor-

hodopsin was locally activated via a 565 nm light-emitting diode

(LED) coupled to a 100 mm optic fiber (Figure 2A; Supplemental

Experimental Procedures) that was positioned unilaterally

roughly above rhombomere 5, which was previously found to

affect directional saccade generation in zebrafish when optoge-

netically inhibited (Schoonheim et al., 2010). This location likely

corresponds to the nucleus abducens (Ma et al., 2014).

To assess the effect of halorhodopsin activation on eye

movements during CS, we presented to the larva a visual stim-

ulus consisting of a grating moving at 26�/s for 300 s. The

565 nm LED was turned on after the first 100 s for a period

of 100 s. Upon halorhodopsin activation, OKR was robustly

suppressed, and it almost immediately recoveredwhen the stim-

ulating LED was switched off. Because the optic fiber covered

rhombomere 5 unilaterally, the eye-movement-suppression ef-

fect was unidirectional. It fully blockedOKR toward the ipsilateral

direction from the optic fiber positioning, including both the

saccades and the pursuits (the OKR direction toward the side

on which the fiber was positioned; Figure 2C; Movie S2).

Once we were able to effectively prevent OKR using optoge-

netics, we tested the effect of CS-induced eye movements on

the generation of optokinetic MAE-like behavior. We monitored

spontaneous eye movements for 350 s (pre-CS control period).

Then, we visually stimulated the larva with the CS for 500 s while

simultaneously activating halorhodopsin. When the CS ceased,

halorhodopsin activation was stopped and eye movements

were monitored for an additional period of 500 s (post-CS con-

trol; Figure 2D). Using this paradigm, we were able to abolish

or significantly reduce OKR (p < 0.01, Kruskal-Wallis; Figures

2D and 2E). Despite the significant reduction in the number of

eye movements during the CS, we still observed optokinetic

MAE-like behavior. The number of optokinetic MAE-like pursuits

was not significantly different from the experiments in which

halorhodopsin was not activated (p > 0.05, Kruskal-Wallis; Fig-

ure 2E). These results suggest that neither eye muscular fatigue

nor eye proprioception during the CS plays an essential role in

the generation of optokinetic MAE-like behavior.

MAE Is Reflected at the Level of Tail Movements
To further study the involvement of sensory and motor systems

in the generation of the MAE-like behavior, we took advantage

of another robust behavior of the larva, the optomotor response

(OMR). During OMR, larvae swim by performing directional tail

deflections in the direction of a unidirectional coherent motion

visual stimulus (Portugues and Engert, 2009). Like OKR, OMR

stabilizes a moving external world on the retina. In contrast to

(F) Detection of eye and tail orientation. The image of the larva superimposed with the automatic detection of the tail and eyes. The orientations were calculated

with respect to the external horizontal axis (gray dashed lines).

(G) Optomotor MAE-like behavior. Top: eye and tail orientations during CS (pink background) and post-CS (magenta background). Bottom: expanded timescale

of the indicated regions above (red dashed rectangles). Note the inversion of the directionality of both eye and tail movements during the post-CS period with

respect to the CS period.

(H) Summary of all experiments as in (G). The average directionality of the eye pursuits (gray) and tail bouts (blue) during CS and post-CS periods (n = 6 trials from

6 larvae). To compute the directionality, we classified each pursuit and each tail bout as moving in the direction of the CS or in the opposite one. Movements

performed in the direction of the CSwere given the value 1, andmovements in the opposite direction were given the value�1. For each experiment, we calculated

the average across movements. Large gray dots represent the population average. Error bars, SE. For all experiments, average directionality of both eye pursuits

and tail bouts was inverted.
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OKR, OMR involves reorienting tail movements rather than eye

rotations. Although OKR and OMR share the same behavioral

goal, the motor centers controlling both behaviors are different.

Thus, observing MAE-like behavior at the level of OMR would

suggest that MAE is generated within an upstream brain region

common to both eye and tail motor centers, most likely the

larva’s sensory visual system.

To test this hypothesis, we presented to the larvae the

following experimental paradigm: CS (moving grating at 26�/s
for 500 s) followed by a post-CS control period (stationary

grating for 500 s). In this experiment, we removed the agarose

around the eyes and around the tail so that the larvae could

perform both OKR and OMR behaviors (Figures 2F and 2G).

During the CS, the larvae performed both OKR and tail move-

ments. However, tail movements were less frequent than eye

movements (only 39% ± 16% of eye movements were associ-

ated with a tail movement). During this period, 74% ± 13% of

the CS-induced tail deflections were performed in the direction

of the CS (Figures 2G and 2H). During post-CS control, we

observed the expected optokinetic MAE-like behavior, which

was associated with tail flips (68% ± 37% of pursuits had an

associated tail flip during post-CS control). The tail-flip direction

was accordingly reversed (73% ± 13% of tail deflections were

performed in the opposite direction of the CS; Figures 2G and

2H). These results suggest that a sensory brain region, rather

than the eye’s motor circuitry, is involved in the generation of

the zebrafish MAE-like behavior.

Ablation of the Optic Tectum Affects MAE
The optic tectum is the highest visual center in the larva’s brain.

Therefore, to test whether the optic tectum is involved in the

generation of MAE-like behavior, we studied the induction of

MAE in larvae whose tecta were ablated. To perform the abla-

tions, we scanned the entire periventricular layer of the optic

tectum of HuC:GCaMP5 larvae using a two-photon microscope

(Supplemental Experimental Procedures). The ablations induced

massive tectal apoptosis (Dunn et al., 2016). As a first sign of cell

damage, we observed a large relative increase in GCaMP5

fluorescence, especially in the nucleus (Movie S3). To test for

apoptosis of the tectal neurons, we labeled the larvae with acri-

dine orange, a marker of apoptosis (Paquet et al., 2009). The la-

beling was performed either immediately after the ablations or

24 hr after the ablations. In both cases, acridine orange labeled

almost the entire tectum, confirming tectal ablation (Figures 3A

and 3B; Movie S3; Supplemental Experimental Procedures).

After a 24 hr recovery period, we tested the capacity of

inducing the MAE-like behavior in tectum-ablated larvae (Fig-

ure 3; Supplemental Experimental Procedures). To quantify the

effect of the tectal ablation on the CS-induced eye move-

ments and the optokinetic MAE-like behavior, we calculated

the mean of the difference between the number of pursuits in

the CS direction and those in the MAE direction (Supplemental

Experimental Procedures).

Intact larvae showed OKR with a gradual reduction in the

number of performed pursuits along the CS. This number of pur-

suits decreased according to two time constants: 12 and 195 s

(Figure S5A). In contrast, fitting the number of pursuits in

tectum-ablated larvae with just one time constant or two time

constants gave similar results (the coefficient of the second

exponential was negligible with respect to the first; ratio = 0.2).

Moreover, the observed average number of pursuits in the direc-

tion of the moving stimulus was significantly lower in tectum-

ablated larvae than in intact ones during the first and the last

50 s of the CS (intact, 14.06; ablated, 8.62; p < 0.01, Kruskal-

Wallis; Figure 3C). During the first 100 s, following the cessation

of the CS (post-CS period), tectum-ablated larvae showed a sig-

nificant lower average number of optokinetic MAE-like pursuits

(intact, 5.11; ablated, 2.44; p < 0.01, Kruskal-Wallis; Figure 3C),

indicating a reduction in the optokinetic MAE-like behavior (n =

26 trials from 4 larvae). Tectal ablations damaged around 85%

of the tectal neurons. Thus, the decrease in rather than the full

blockage of MAE could be explained the inability to ablate the

optic tectum.

As a control experiment, we ablated the interpeduncular nu-

cleus (IPN), a non-sensory processing region that projects to

modulatory brain regions such as the ventral tegmental area

(VTA) and raphe nucleus. In zebrafish, the IPN controls social

aggressive behaviors (Chou et al., 2016; Okamoto et al., 2012).

IPN ablations did not affect the two habituation time constants

during OKR (16 and 218 s) and did not affect MAE. However,

we observed a general increase in the number of pursuits during

OKR (Figure S1C). A potential hypothesis is that ablation of

the IPN increased arousal or alertness and therefore elicited a

stronger OKR response.

As previously shown by the ablation of the RGC terminals in

the optic tectum neuropil (Roeser and Baier, 2003), ablation of

a large portion of the tectal neurons did not abolish OKR, sug-

gesting that the tectum does not play a major role in its genera-

tion. However, the tectum seems to be necessary for the initial

strong behavioral response to novel stimuli and for CS-induced

behavioral habituation (decrease in the OKR gain). Similarly,

the strong novelty response and habituation effect were pre-

sent in the CS-induced neuronal responses in the optic tectum

but absent in the retina (Figures S2E and S2F). The lack of CS-

induced behavioral habituation could explain the observed

reduction of MAE in ablated larvae. We therefore suggest that

MAE could emerge as a consequence of tectal adaptation to

the CS.

CS Induces Habituation of Direction-Selective Neurons
in the Optic Tectum
To test whether the CS induces adaptation of specific tectal

neurons, we monitored the activity of the larva’s two main visual

centers: the retina and the optic tectum. For this purpose, we

performed two-photon calcium imaging of zebrafish larvae ex-

pressing the genetically encoded Ca2+ indicator GCaMP3. We

first immobilized the larvae in low-melting agarose and paralyzed

them (0.3 mg/mL pancuronium bromide; Tocris Bioscience) to

avoid any possible rotation of the eyes. To test for potential ad-

aptations of the CS-induced responses of direction-selective

neurons in both the retina and the optic tectum (Figures S2E

and S2F), we used the following paradigm, consisting of three

steps: (1) sequential presentation to the larva of light-moving

bars in two directions (CS and MAE directions, presented every

10 s); (2) presentation of the CS, consisting of a continuous series

of moving bars in the same direction for 500 s; and (3) post-CS
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control, in which we presented light-moving bars in alternate

directions every 10 s for a period of 500 s (Supplemental Exper-

imental Procedures).

The first step determined the direction selectivity of neurons

(CS or MAE directions) and served as a control for the amplitude

of their Ca2+ responses before the presentation of the CS. The

amplitudes were then compared to those induced by the moving

bars presented during the post-CS control period. This compar-

ison enabled us to test for a potential adaptation of direction-

selective neurons following the CS.

We initially focused on the larva’s retina. To that end, we used

the ath5:Gal4;UAS:GCaMP3 transgenic line expressingGCaMP3

almost exclusively in the retina (Supplemental Experimental Pro-

cedures). This lineenabledmonitoringof theRGCterminal activity

A

C

B Figure 3. Ablation of the Optic Tectum

Impairs the Generation of MAE

(A) An optical plane of the HuC:GCaMP5 zebra-

fish tectum after two-photon laser ablation. For

visualization purposes, ablation of a single tectal

hemisphere is shown. For the experiments, both

hemispheres were ablated. Note the large increase

in fluorescence of the ablated neurons with

respect to the intact hemisphere.

(B) As in (A), but after labeling with acridine

orange to label apoptotic neurons. The labeling

was performed immediately after the behavioral

experiments (1 day after the ablation).

(C) Top: summary of the behavioral experi-

ments after tectal ablations. The chart shows the

average number of pursuits during the CS and the

post-CS periods. Pink background, CS period;

violet background, post-CS control period; blue

bars, control (intact optic tectum); red bars, ab-

lated optic tectum; positive values, pursuits in the

direction of the CS; negative values, pursuits in

the MAE direction. Asterisks mark significant dif-

ferences (*p < 0.05, **p < 0.01, Kruskal-Wallis; n =

26 trials from 4 larvae). Error bars, SE. Bottom:

expanded timescale of the indicated regions

above (green dashed lines). Note the weak

initial behavioral response to the CS in ablated

larvae and the much weaker optokinetic MAE-

like behavior in ablated larvae compared to intact

larvae.

at the tectal neuropil. Because cellular

resolution is not possible under these con-

ditions, we segmented the tectal neuropil

using a grid of square regions of interest

(SROIs; Nikolaou et al., 2012; Supple-

mental Experimental Procedures).

To quantify a possible modulation of

the SROI directional responses following

the presentation of CS, we defined an

adaptation index (Supplemental Experi-

mental Procedures). To calculate this in-

dex, we first calculated the ratio between

the population responses of direction-

selective SROIs to the moving bars in

the CS direction before and after the pre-

sentation of CS. This value was then divided by a similar ratio

computed for responses to moving bars in the MAE direction.

This index ranges from �1 to 1. Negative values indicate habitu-

ation for the CS direction-selective SROIs. Positive values indi-

cate habituation for the MAE direction-selective SROIs. Zero

indicates equal directional responses before and after CS pre-

sentation. Using the adaptation index, we observed that CS

direction-selective RGCs were slightly habituated with respect

to zero (p < 0.01, Wilcoxon signed rank; Figures 4A and 4B; Fig-

ure S2E) for only 20 s following theCS. However, the dynamics of

the habituation did not match the temporal scale of the optoki-

netic MAE-like behavior (150–200 s; Figure 4B; Figure S2D).

To test whether direction-selective neuronal responses in

the optic tectum were modulated by CS, we used a similar
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experimental design in zebrafish larvae expressing GCaMP3 un-

der a pan-neuronal promoter (HuC; Supplemental Experimental

Procedures). This transgenic line of zebrafish enabledmonitoring,

with single-neuron resolution, of a large and significant part of the

periventricular layer of the optic tectum (839 ± 38 neurons per op-

tical plane). Direction-selective neurons represented around 14%

of the monitored neurons (59 ± 8 and 55 ± 7 neurons per optical

plane for theCS and theMAEdirections, respectively). In contrast

to the RGCs, direction-selective tectal neurons showed an adap-

tation index of significantly larger negative values (p < 0.01, Wil-

coxon signed rank; Figures 4A and 4B; Figure S2F) for a period

that better matched the timescale of the optokinetic MAE-like

behavior (�150–200 s; Figure 4B; Figure S2D).

Moreover, this habituation observed among direction-selec-

tive neurons in the optic tectum was significantly larger than

the habituation observed in the direction-selective RGCs (p <

0.01, Wilcoxon rank sum; Figure 4B). Therefore, we suggest

that the zebrafish larva optokinetic MAE-like behavior mainly

reflects habituation of direction-selective tectal neurons in the

direction of the CS.

A

B

Figure 4. Habituation of Direction-Selective Neurons in the Optic Tectum
(A) Sum of the activity of direction-selective (DS) neuronal groups (CS-DS, top, and MAE-DS, bottom). (Ai) RGC projections (Aii) Tectal neurons. Blue bars, RGC

responses during pre-CS and post-CS control periods; red bars, tectal responses during pre-CS and post-CS control periods; pink arrow, CS presentation; gray

patches, time of presentation of themoving-bar stimulus in the CS direction; yellow patches,moving-bar stimulus in theMAE direction. Note the habituation of the

response in the optic tectum during the first 100 s of the post-CS period.

(B) Adaptation index (AI) as a function of time during the post-CS period. Each dot represents the AI calculated in bins of 20 s. Blue, RGC terminals; red, tectal

neurons. Blue and red asterisks denote significant differences of the AI values from zero (no habituation; p < 0.01, Wilcoxon signed rank test). Black asterisks

denote significant differences between AIs (RGC and optic tectum; p < 0.01, Wilcoxon rank sum test). For RGC, 741 SROIs from n = 18 trials from 4 larvae. For

optic tectum, 688 neurons from n = 24 trials from 6 larvae. Error bars, SE.

Cell Reports 17, 1098–1112, October 18, 2016 1105



A

B

C

ED

(legend on next page)

1106 Cell Reports 17, 1098–1112, October 18, 2016



Neuronal Correlate of MAE in the Optic Tectum
Because the ablation of the optic tectum affected the genera-

tion of MAE-like behavior, and MAE-like-related neuronal habit-

uation was observed in the larva’s optic tectum rather than in

the retina, we then investigated the tectal neuronal dynamics

associated with optokinetic MAE-like behavior. To that end,

we imaged tectal activity while simultaneously monitoring eye

rotations in non-anesthetized and non-paralyzed larvae using

the following experimental procedure. First, we determined di-

rection-selective neurons by sequentially presenting to the larva

light-moving bars in two directions. From the responses to

these stimuli, we classified the imaged neuronal population

into three groups: non-direction-selective neurons, direction-

selective neurons in the direction of the CS, and direction-selec-

tive neurons in the opposite direction (MAE direction). Second,

during a pre-CS control period, we allowed 500 s of sponta-

neous eye movements and tectal neuronal activity in the

absence of visual feedback (black screen). Third, during the CS

period, a continuous moving bar (in either the CS or the MAE di-

rection) was presented for a duration of 500 s. Lastly, during a

post-CS control, larvae were placed under the same conditions

as for the pre-CS control period (Supplemental Experimental

Procedures).

During the post-CS control period, we observed robust

optokinetic MAE-like behavior (Figure S2D). During the same

period, tectal dynamics showed rhythmic synchronous neuronal

population activities. These synchronous activities were mainly

observed among direction-selective neurons sensitive to the

MAE direction (Figure 5A). To test whether the synchronous

activities of the MAE direction-selective neurons were associ-

ated with the optokinetic MAE-like behavior, we cross-corre-

lated this activity with the kinematics of the eye rotations during

the post-CS period (Figure 5B). To compare the correlations

across different experiments, we normalized the eye rotations

according to the 95 percentile value, and then we calculated

the mean of the total neuronal activity of the MAE direction-

selective cells (Supplemental Experimental Procedures). Next,

to test for the significance of the correlations, we generated a

null model for the neuronal activity. We observed that the MAE

direction-selective neurons were significantly more correlated

with the eye pursuits in the MAE direction than those of the null

model (p < 0.01, Kruskal-Wallis; Figure 5B). A similar phenome-

non was observed for the CS direction-selective neurons (p <

0.01, Kruskal-Wallis; Figure 5C). Although not significantly

different, the correlations of MAE direction-selective neurons

tended to be higher than those of CS direction-selective neurons

(p = 0.06, Kruskal-Wallis; Figure 5D). To quantify the difference in

the correlation levels, we subtracted the peak of the correlations

from 2 SD above the mean of correlations of the null models

(Figure 5D).

Finally, the distribution of the ratios between the activity of

MAE and that of CS neurons at the time of each eye movement

in the MAE direction, during the post-CS period, was largely

skewed to positive values (for the ratio values above 0.06 and

below �0.06, 72% were positive and 28% were negative and

the average ratios were 30.1 and 6.4, respectively). Thus, we

suggest that an imbalance between the activity of the MAE

and that of the CS direction-selective neuronal population drives

the direction of the eye movements. During MAE, this imbalance

is biased toward MAE direction-selective neurons (positive

values; Figure 5E).

We took advantage of the rhythmic nature of optokinetic

MAE-like behavior and the population neuronal events during

the post-CS period to perform spectral analysis. The normal-

ized power spectrum of optokinetic MAE-like movements

showed significant peaks at a fundamental frequency (0.048 ±

0.008 Hz) and its harmonics (n = 9 trials from 8 larvae; Figure 6A;

Supplemental Experimental Procedures). We then performed

the same type of spectral analysis on the population activity

of the three neuronal groups: non-direction-selective, CS di-

rection-selective, and MAE direction-selective neurons. During

the post-CS control period, the MAE direction-selective group

exhibited a normalized power-spectrum profile that closely

matched that of the optokinetic MAE-like behavior, with sig-

nificant large power values around the optokinetic MAE-like

fundamental frequency and its harmonics. In contrast, the CS di-

rection-selective and non-direction-selective neuronal groups

showed a more uniformed normalized power spectrum without

preference for any particular frequency (Figure 6A).

To quantify the level of association between the synchronous

activities of the MAE direction-selective, CS direction-selective,

and non-direction-selective neuronal groups with that of the

optokinetic MAE-like behavior, we measured for each neuronal

group the normalized power spectrum of their activities during

the post-CS control period (Figure 6A). We then calculated

the normalized power for the frequency bands significantly asso-

ciated with the MAE-like OKR for each of the three neuronal

groups (Figure 6B; Supplemental Experimental Procedures).

To compare across different experiments, the power of the fre-

quencies was normalized by the mean power of all neurons

across the significant frequencies. This method enabled us to

compare the relative power of the three direction-selective

Figure 5. Neuronal Correlate of MAE in the Optic Tectum
(A) Top: eye direction along the course of the experiment. Bottom: the sum of the activity of the different groups of tectal neurons in the following descending

order: CS direction-selective (CS-DS), MAE direction-selective (MAE-DS), and non-direction-selective (non-DS). Plots are color coded according to the period of

stimulation. Gray, period corresponding to the presentation of moving bars for the determination of the direction selectivity of the neurons; green, pre-CS control

period; pink, presentation of CS; violet, post-CS control period.

(B) Left: correlation (blue) between the eye pursuits in theMAEdirection and the neuronal activity of DS neurons in theMAE direction during the first 300 s following

the post-CS period for the experiment in (A). Null model (red). Error bars, SE. Right: as in the left graph but representing the average across all experiments.

(C) As for (B), but for correlations between the eye pursuits in the MAE direction and the neuronal activity of DS neurons in the CS direction.

(D) Graph showing the peaks (gray) of the correlations of each trial (as in B and C) subtracted by 2 SD of the respective null models, for the MAE-DS and CS-DS

neurons. Black bars, mean and SE.

(E) Histogram of the MAE-CS imbalance index for eye pursuits in the MAE direction during the first 300 s following the post-CS period.

For the population analysis, n = 12 trials from 9 larvae.
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neuronal groups specifically within the frame of optokinetic

MAE-like behavior. We observed that in all experiments, MAE

direction-selective neurons showed significantly higher power

than that of CS direction-selective and non-direction-selective

neurons. As a control, we performed the same analysis, but for

frequency bands not significantly associated with optokinetic

MAE-like behavior (Figure 6B; Supplemental Experimental Pro-

cedures). We observed that none of the neuronal groups showed

significantly different power levels.

During theMAE-like period, the rate of Ca2+ events for all three

neuronal groups was similar (CS direction-selective neurons,

0.08 ± 0.03; MAE direction-selective neurons, 0.08 ± 0.04;

non-direction-selective neurons, 0.07 ± 0.03). Therefore, the

difference in power among the different neuronal groups during

the optokinetic MAE-like behavior was specific to frequencies

associated with MAE-like behavior, rather than being a direct

consequence of an overall increase in the activity of MAE direc-

tion-selective neurons.

By correlating the population activity of the tectal direction-se-

lective neurons with the eye-rotation kinematics (Supplemental

Experimental Procedures), we found two classes of neurons:

(1) direction-selective neurons that did not show spontaneous

activity associated with optokinetic MAE-like behavior and (2) di-

rection-selective neurons that showed correlated activity with

optokinetic MAE-like behavior during the post-CS period (eye-

motion-selective neurons). These direction-selective and eye-

motion-selective neurons represented 26% ± 0.06% of the total

population of direction-selective neurons (Figure S3B).

Finally, we observed that the synchronous Ca2+ events

associated with the MAE-like behavior emerged mainly from

the activity of single neurons among the eye-motion-selective

neuronal population. Their rhythmic activity was highly corre-

lated and phase locked to the synchronous population events

(Figures 6C and 6D). These rhythmic neurons were sparsely

dispersed within the tectal network, without showing clear

topography (Figure 6E).

Overall, these results represent the first example of sustained

rhythmic activity as a neuronal correlate of MAE.

An Empirical Cross-Inhibiting Mathematical Model
Reproduces the Main Features of MAE-like Behavior
The competition between two directional-selective neuronal

populations has long been thought to underlie MAE, but

this has never been experimentally demonstrated. Our results

A

C

E

D

B Figure 6. Frequency Analysis and Topog-

raphy of MAE-Associated Neurons

(A) Top: normalized power spectrum of eye

movements during MAE-like behavior. Bottom:

normalized power spectrum of neuronal data

during MAE-like behavior. Violet, MAE direction-

selective neurons; pink, CS direction-selective

neurons; green, non-direction-selective neurons;

yellow patches, significant behavioral frequencies

(normalized power spectrum exceeds a threshold

set at zero, dashed gray line).

(B) Top: normalized averaged frequency power

of behaviorally relevant significant frequencies,

during post-CS control period. Gray lines, the

individual experiments for the CS, MAE, and non-

direction-selective neurons; black line, the mean

power value. CS direction-selective modulation =

�0.71 ± 0.13 dB, MAE direction-selective modu-

lation = 0.15 ± 0.16 dB, and non-direction-selec-

tive modulation = �0.11 ± 0.14 dB (p = 4.1 3 10�5

for CS and MAE direction-selective neurons, p =

2.9 3 10�4 for non-direction-selective and MAE

direction-selective neurons, p = 0.04 for CS and

non-direction-selective neurons, Wilcoxon rank

sum test). Bottom: as for top, but for non-signifi-

cant non-behaviorally relevant frequencies. CS

direction-selective modulation = �2.3 ± 0.7 dB,

MAE direction-selective modulation = �1.96 ±

0.72 dB, and non-direction-selective modulation =

�2.19 ± 0.75 dB (p = 0.34 for CS and MAE direc-

tion-selective neurons, p = 0.49 for non-direction-

selective andMAE direction-selective neurons, p =

0.6 for CS and non-direction-selective neurons,

Wilcoxon rank sum test). In both cases, error bars,

SE. n = 9 trials from 8 larvae.

(C) Pairwise correlation matrix of MAE direction-selective neuronal activity during the post-CS period. The matrix was ordered according to k-means clustering.

The color-scale bar shows the level of correlation.

(D) Top: raster plot of MAE direction-selective neurons during the post-CS control period ordered according to (A). Middle: sum of calcium activity. Bottom: eye

orientation. About 30% of the neurons show synchronous Ca2+ transients associated with all eye pursuits in the MAE direction.

(E) Topography of the MAE direction-selective neurons. Green, neurons correlated with the pursuits in the direction of MAE; red, non-correlated neurons.
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show that during the presentation of the CS, the CS direction-

selective neurons are more active than those in the opposite

direction. Due to CS-induced habituation, during the post-CS

control period, CS direction-selective neurons are less sponta-

neously active than MAE direction-selective neurons (Fig-

ure 5A; Figure S3A). A comparison between these two popu-

lations could qualitatively explain the MAE-like effect that

we observed. Therefore, the MAE-like behavior could emerge

from a tectal sub-circuit that compares the activities of both

direction-selective neuronal groups and generates adequate

directional motor commands. This hypothesis is supported by

the identification of direction-selective and eye-motion-selec-

tive neuronal groups.

To consider whether our findings could be explained within

the framework of this hypothesis, we developed an empirical

mathematical model. This model was based on a comparator

tectal sub-circuit consisting of two cross-inhibiting neuronal

populations: a CS comparator and a MAE comparator, each of

them receiving excitatory inputs from the corresponding group

of direction-selective neurons (Figure 7A; Supplemental Experi-

mental Procedures). These comparator populations represent

the sub-groups of MAE direction-selective neurons display-

ing synchronous rhythmic activity associated with optokinetic

MAE-like behavior (Figures 5A and 6A). The comparator cir-

cuit computes the difference between the activities of the two

A

C

B Figure 7. Empirical Mathematical Model of

the MAE

(A) The model comprises four populations of

neurons: CS direction-selective (CS-DS), MAE di-

rection-selective (MAE-DS), and two comparator

populations (CPs), one for each direction (CS-CP

and MAE-CP). The DS populations receive retinal

inputs, whereas the CPs’ cells receive rhythmic

input. The CPs receive excitatory input from the

corresponding DS population and inhibitory input

from the other DS population, and they cross-

inhibit each other.

(B) The input currents and firing rates of the

four populations in one representative computer

simulation. A CS-retinal input is received by the

CS-DS cell during the time interval 300–800 s. The

firing rate of the CS-DS population increases and

displays strong adaptation during the duration of

the CS. At the end of the CS, however, the firing

rate of the CS-DS population is smaller than it

is during the spontaneous activity. As a result,

despite the comparable rhythmic input received by

the two CPs, the CS-CP fires predominantly during

the CS, whereas the MAE-CP fires more during the

MAE.

(C) The MAE duration model as a function of the

duration of the CS. The MAE duration is defined as

the period in which the MAE index is significantly

greater than the control index (Figure S5F). For

comparison, the yellow curve shows the values

obtained for the behavioral data (Figure 1F).

groups of direction-selective neurons:

each rhythmic stimulation produces a

winner-takes-all dynamic in which one of

the two comparator populations dominates the other in an

input-dependent manner.

In the model, the rhythmicity was implemented by a periodic

input of similar magnitude on the two comparator populations.

This periodic stimulus could originate from an intrinsic rhythmic

tectal activity, a rhythmic tectal afferent, or a proprioceptive input

associated with the eye saccades. We found that paralyzed

larvae incapable of moving their eyes did not show, following

the cessation of the CS, spontaneous rhythmic activity among

MAE direction-selective neurons (Figure S4). Thus, we suggest

that the neuronal rhythmicity is generated by the closed loop be-

tween the neuronal command to move the eyes and the eyes’

proprioception induced by the physical movement of the eye.

Simulations of the model resembled the experimental results

(Figures 7B and 7C; Figures S5C–S5F). Before the CS, the two

comparator populations received similar inputs; thus, each pop-

ulation won in an alternative manner (Laing and Chow, 2002).

Fluctuations in the modeled rhythmic inputs made this alterna-

tion imperfect. During the CS, inputs from the CS direction-

selective neurons biased the competition in favor of the CS

comparator neurons. Following the cessation of the CS, sponta-

neous inputs from the non-habituated MAE direction-selective

neurons were slightly larger than those from the habituated CS

direction-selective ones. Thus, they generated a bias in favor

of the MAE comparator. The habituation slowly decreased until
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it reached control values, bringing the model back to the

pre-CS regime. Using parameters obtained from experimental

data (behavioral and neuronal adaptation time constants and

the mean and peaks of spontaneous activity frequency of CS di-

rection-selective neurons; Supplemental Experimental Proced-

ures), the model was capable of reproducing the temporal

dynamics of the neuronal and MAE-like behavior and the spon-

taneous scanning-like eye movements. The dependence of the

MAE duration on the duration of the CS was also reproduced

relatively well (Figure 7C; Figures S5C–S5F). These results

suggest that our experimental findings are sufficient for the

generation of several features associated with larva’s MAE-

like behavior. We thus believe that the tectal circuit underlying

the comparison between the activity of the CS direction-selec-

tive neurons and that of the MAE direction-selective neurons

constitutes a plausible explanation for the observed MAE-like

behavior.

DISCUSSION

Previous studies have found MAE or MAE-like behaviors in a

variety of organisms (Barlow and Hill, 1963; Giaschi et al.,

1993; Mather et al., 1998; Niu et al., 2006; Petersen et al.,

1985; Srinivasan, 1993; Wohlgemuth, 1911). Here, we report

for the first time that zebrafish perceive MAE during early larval

development. Thus, the ability to induce MAE in developing

neuronal circuits supports the hypothesis that MAE is generated

as an unavoidable consequence of the brain’s basic computa-

tional principles for visual motion detection.

In contrast to humans, zebrafish larvae are capable of

perceiving MAE in the absence of any visual feedback (in dark-

ness), suggesting that MAE reflects exclusively visual motion

perception without the involvement of visual detection and that

visual motion perception can emerge solely from the neuronal

circuits’ spontaneous dynamics. This difference could emerge

from MAE-associated additional adaptations in cortical areas

(e.g., V1 and middle temporal area [MT]; Kohn and Movshon,

2003; Watamaniuk and Heinen, 2007). These cortical circuits

could have evolved to reduce undesirable motion perception

or afternystagmus following sustained visual motion.

Similar to previous studies (Kubo et al., 2014; Roeser and

Baier, 2003), we observed that the optic tectum was not neces-

sary for the generation of OKR. However, tectal ablations pre-

vented the behavioral habituation to the CS (as demonstrated

by the habituation of OKR) and influenced the generation of

the MAE-like behavior. Also, given that eye movements were

not necessary for the generation of MAE and that optokinetic

MAE-like behavior was observed within the frame of OMR, we

hypothesized that the generation of MAE was probably linked

to sensory brain regions rather than motor centers.

Using two-photon calcium imaging of GCaMP3 larvae, we

observed that MAE-like behavior was associated with the habit-

uation of tectal neurons sensitive to the direction of the CS, a

habituation that was not relayed from the retina. Thus, we sug-

gest that the optic tectum is not necessary for the generation

of the OKR but is indispensable for the initial strong novelty

response and its subsequent habituation. Tectal modulation of

OKR could be achieved via recurrent projections between the

optic tectum and the pretectum (Vanegas et al., 1984). The latter

has been shown to be necessary and sufficient for the genera-

tion of OKR (Kubo et al., 2014). Furthermore, by simultaneously

monitoring eye movements and the optic tectum neuronal dy-

namics in awake intact larvae, we observed a specific sub-

group of MAE direction-selective neurons whose synchronous

rhythmic activities were associated with optokinetic MAE-like

behavior.

We created an empirical mathematical model in which habit-

uation of the tectal direction-selective neurons generates an

imbalance between the spontaneous activity of the MAE direc-

tion-selective and that of the CS direction-selective neuronal

circuits. This imbalance is then computed by a tectal circuit

comparator, which generates the directional eye and tail motor

commands. The model was capable of reproducing both behav-

ioral and neuronal-circuit-dynamic aspects of MAE, as well as

spontaneous eye-movement kinematics.

This model proposes a simple functional neuronal circuit

capable of generating perception of visual motion in zebrafish.

More specifically, we suggest that motion perception, at least

within the context of MAE, emerges from the ability of the direc-

tion-selective tectal neurons to drive a tectal comparator circuit.

Finally, neuronal sustained activity has been traditionally asso-

ciated with working memory processes lasting for tens of sec-

onds (Quintana and Fuster, 1999; Romo et al., 1999; Sumbre

et al., 2008). Here, we observed that visually induced sustained

rhythmic activities could also underlie perceptual neuronal pro-

cesses, such as visual motion perception lasting for an unprec-

edented extent (hundreds of seconds). Our empirical model

sheds light on a potential circuit mechanism for the generation

of these sustained activities underlying the perception of MAE.

EXPERIMENTAL PROCEDURES

Zebrafish Preparation and Transgenic Lines

Zebrafish embryoswere collected and raised at 28.5�C in 0.53 E3 embryome-

dium (E3 in mM: 5 NaCl, 0.17 KCl, 0.33 CaCl2, 0.33 MgCl2 pH 7.2; Westerfield,

1995). Larvae were kept under 14/10 hours on/off light cycles and fed starting

at 6 dpf. All experiments were approved by Le Comité d’Éthique pour l’Expér-

imentation Animale Charles Darwin (03839.03).

Visual Stimuli

The visual stimulus consisted of a square-wave moving grating (conditioning

stimulus [CS]) covering the entire stimulation field (�90� 3 90�, azimuth 3

height, of the larva’s field of view). In order to minimize projection distortions

due to the curvature of the screen, we calibrated the projection pattern

according to the chamber’s radius. Visual stimulation was generated with

Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997) for Matlab

(The MathWorks).

Two-Photon Calcium Imaging

We used a custom-made two-photon microscope. The setup was based on a

MOM system (Sutter) with a 253 NA 1.05 Olympus objective and a Mai-Tai

DeepSee Ti:sapphire laser tuned at 920 nm. The output power at the focal

plane was less than 3 mW. The filters consisted of an FF705 dichroic filter

(objective dichroic), an AFF01-680 short-path filter (IR Blocker), and an FF01

520/70 band-pass filter, all from Semrock. The photomultiplier (PMT) was an

H1070 (gallium arsenide phosphide [GaAsP]) from Hamamatsu. The emission

signal was pre-amplified with an SR-570 (Stanford Research Systems) and ac-

quired using ScanImage (Pologruto et al., 2003) at 3.91 Hz, with 256 3 256

pixels resolution.
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Detection of Significant Ca2+ Events

In order to infer the Ca2+-related fluorescence events associated with neuronal

activity, we calculated the statistical significance of single-neuron calcium

dynamics in an adaptive and unsupervised manner. We considered that any

event in the fluorescence time series data belonged to either a neuronal activity

process, A, or an underlying noisy baseline, B. In order to discriminate, with a

desired degree of confidence, between these two sources, we built a data-

driven model of B. Moreover, we took into account the biophysical constraints

of the fluorescent calcium indicator (GCaMP3 fluorescence decay time con-

stant). Then, we applied a Bayesian odds ratio estimation framework. Non-sig-

nificant portions of the DF/F traces were then set equal to 0 in all subsequent

analysis (for more details, see Romano et al., 2015).
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Supplemental Experimental Procedures

Zebrafish preparation and transgenic lines

For all experiments we used wild type or nacre (Lister et al., 1999) (mitfa -/-) zebrafish between 7 and 

9 days post-fertilization (dpf). In addition, several transgenic lines were also generated.

To monitor the optic tectum activity we created a Huc:GcaMP3 Nacre transgenic zebrafish line (Panier 

et al., 2013). The tol2 HuC:GCaMP3 vector was built by successive ligations of a 3.2 kb fragment of 

the  zebrafish  HuC (elav3)  promoter  (Park  et  al.,  2000) (gift  from HC Park,  Kyungpook National 

University, Korea.),  then GCaMP3 calcium probe  (Tian et al.,  2009) (gift from L. Looger, Howard 

Hughes Medical Institute, Ashburn, Virginia, USA) into pT2KXIG in (from K. Kawakami, National 

Institute of Genetics, Shizuoka, Japan). The HuC promoter drives the expression of a RNA-binding 

protein and has been involved in neuronal differentiation.  In zebrafish, the 3.2 kb proximal region 

encompassing  the  translation  start  site  from 2771  base  pairs  of  the  5'-  upstream sequence  up  to 

+383/+385,  has  been shown to  be sufficient  to  target  specifically  and efficiently  all  differentiated 

neurons  (Park et al., 2000). One-cell stage Nacre zebrafish embryos were injected with 20 ng of the 

DNA plasmid  and  25  ng  of  transposase  RNA (generated  from  pCS-TP plasmid,  K.  Kawakami). 

Injected  embryos  were  raised  to  adulthood and crossed  individually  with  Nacre  fish  to  obtain  F1 

embryos.  These  embryos  were  then  screened  and  selected  according  to  their  level  of  transgene 

expression. The embryos with the strongest expression were raised to adulthood and incrossed to obtain 

the homozygous HuC:GCaMP3GS5 line (ens100Tg at ZFIN).

To record the activity of retinal ganglion neurons we used transgenic zebrafish expressing GCaMP3 

under the ath5 promoter through the UAS/Gal4 genetic system (Halpern et al., 2008). The ath5 (atoh7) 

gene is expressed almost exclusively in the retina and predominantly in RGCs. We thus created the 
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Tg(UAS:GCaMP3)GS10 Nacre zebrafish line, where the calcium probe was placed under the control of 6 

repetitions of the UAS (Upstream Activating Sequence). 

The lines Tg(atoh7:Gal4)s1992t;Tg(UAS:Kaede)1999t (E. Baier) and Et(-1.5hsp70l:Gal4-VP16)s1113t 

;Tg(UAS:GCaMP3)GS10 were then intercrossed them and the progeny was selected accordingly to the 

expected pattern of expression of the Tg(atoh7:Gal4)s1992t transgene, and then raised to adulthood. To 

eliminate the Tg(UAS:Kaede)1999t transgene, DNA extracted from fin-clips was submitted to PCR to 

specifically amplify a fragment of the Kaede gene.  This double selection allowed us to generate a 

Tg(atoh7:Gal4)s1992t;Tg(UAS:GCaMP3)GS10 line (referred as ath5:Gal4;UAS:GCaMP3).

To inhibit eye movements during OKR using optogenetics and spatially selected illumination via an 

optic  fiber  (Arrenberg  et  al.,  2009;  Schoonheim  et  al.,  2010) we  used  the 

Tg(HuC:Gal4);Tg(UAS:eNpHR-mCherry)s1988t  (E.  Baier)  zebrafish  line,  referred  as  to  the 

HuC:Gal4;UAS:eNpHR-mCherry line.

To generate the HuC:GCaMP5G line, a tol2 HuC:GCaMP5G vector was built by insertion of a 3.2 kb 

fragment of the zebrafish HuC (elav3) pan-neuronal promoter (Park et al., 2000), then the genetically 

encoded Ca2+  indicator  GCaMP5G  (Akerboom et  al.,  2012) was  inserted  into  pT2KXIG (from K. 

Kawakami). One-cell-stage nacre zebrafish embryos were injected with 10 ng of the plasmid DNA and 

25 ng of transposase RNA (generated from pCS-TP plasmid, K. Kawakami). Injected embryos were 

raised to adulthood and crossed individually with nacre fish to obtain F1 embryos. These embryos were 

then screened and selected according to their  level of transgene expression.  The embryos with the 

highest  expression  were  raised  to  adulthood  and  incrossed  to  obtain  the  homozygous 

HuC:GCaMP5GGS16 line.

In all cases, embryos were collected and raised at 28.5 °C in 0.5x E3 embryo medium (E3 in mM: 5 

NaCl, 0.17 KCl, 0.33 CaCl2, 0.33 MgCl2 pH 7.2, (Westerfield, 1995). Larvae were kept under 14/10 

2



hours  on/off  light  cycles  and fed starting at  6  dpf.  All  experiments  were approved by Le Comité 

d'Éthique pour l'Expérimentation Animale Charles Darwin (03839.03).

Visual stimuli 

The visual stimulus consisted of a square-wave moving grating (conditioning stimulus, CS) covering 

the entire stimulation field (~90°x90°, azimuth x height, of the larva's field of view). The stimulus was 

presented at three different velocities, 17, 26 and 59 °/s, with angular sizes of 13.75º or 27.5º. CS 

durations were: 50,  100, 200, 250, 300, 400 and 500 s.  The CS was presented in both directions, 

rightward and leftward. In order to minimize projection distortions due to the curvature of the screen, 

we calibrated the projection pattern according to the chamber's radius.  

Visual  stimulation  were  generated  with  Psychophysics  Toolbox  extensions  (Brainard,  1997;  Pelli, 

1997) for Matlab (The MathWorks, Inc)). 

Zebrafish larva motor behavior

Behavioral experiments were performed at 7 to 9 dpf, either using wild-type or nacre larvae. Larvae 

were immobilized in low-melting agarose (Invitrogen, concentration varying between 1.8% and 2%) 

and placed on an elevated stage within a cylindrical chamber filled with 0.5x E3 embryo medium. The 

agarose around the eyes or the tail was removed with an insect pin so that the eyes or the tail could  

freely move. Visual stimuli were projected on a screen (#216 White Diffusion, Rosco Cinegel) placed 

around the surface of the cylinder chamber using a pico-projector (refresh rate: 60 Hz., ADPP-305, 

Adapt mobile, Figure 1A). Eye rotations or tail movements were recorded from the larva's dorsal side 

using an objective, a tube lens, and a video camera (DMK 22BUC03, The Imaging Source). Videos  

were acquired using IC capture (The Imaging Source) at 60 Hz for eye rotations and 76 Hz for tail  

movements.  Larvae  were  illuminated  with  an  infra-red  LED  (920nm).  To synchronize  the  video 
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recordings with the stimuli we used an I/O TTL board (ActiveWire, inc) controlled by Matlab (The 

MathWorks, Inc). Eye and tail movements were then analyzed offline using custom-written programs 

in Matlab (The MathWorks, Inc).

Calculation of the eye's orientation

To compute the eye rotations we thresholded the images for each single frame. Then morphological 

dilatation and erosion algorithms were applied to obtain only two objects representing each of the eyes. 

Once the eyes were detected, their orientation was calculated as the angle between the longest axis of 

an  ellipse  fitted  to  the  objects  representing  the  eyes  (the  elliptic  eye  perimeter),  and the  external 

(camera) X axis (Figure 1B). Since the angle value is arbitrary and it depends on the orientation in 

which we placed the larva with respect to the camera, for visualization purposes, the mean rotation for 

each eye was subtracted to obtain a zero baseline. All calculations were performed in Matlab (The 

MathWorks, Inc).

Eye angular velocity was calculated as V=
Δh
Δ t

where Δh is the amplitude of the eye movement (the 

eye's total displacement) and Δt the duration.

Classification of eye movements

Once eye orientations were calculated, a semi-automatic custom-made program was used to detect each 

type of eye movements (left or right saccade, left or right smooth pursuit and stereotypical spontaneous 

eye movements). We first calculated the eye rotation velocity. Thresholding this data enabled us to 

identify fast movements corresponding to saccades (fast eye movements). Slow movements between 

two saccades were defined as smooth pursuits if the direction of the subsequent saccade was opposite  

to that of the slow movement. We defined the unit 'pursuit-saccade movement' when the direction of 
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the fast movement was inverted with respect to the smooth pursuit movement. We defined eye fixations 

or drift movements as slow movements between two saccades in opposites directions. Accordingly, the 

spontaneous eye movement unit  was defined as a slow movement followed by a  saccade.  Finally, 

potential detection mistakes were manually curated for all analyzed data.

Calculation of the tail's orientation

To calculate the tail's orientation, we thresholded the tail image for each video frame by applying a 

filter and binarization. Once the tail's morphology was recognized, we calculated its orientation as the 

angle between the longest axis of the elliptic perimeter of the body and the external X axis (camera, 

Figure 2F). As for the eye's detection where the angle value is arbitrary and it depends on the position 

that the zebrafish larva with respect to the camera,  the mean of the tail's  angle was subtracted for  

normalization purposes. All calculations were performed by custom-made functions written in Matlab 

(The MathWorks, Inc).

Behavior and optogenetics

For local spatial stimulation of eNpHR expressed pan-neuronally (HuC:Gal4;UAS:eNpHR-mCherry), 

we used a 105 μm optic fiber (AFS105/125Y 0.22 NA, Thorlabs), coupled to a 565 nm light emitting 

diode (LED, M565F1, Thorlabs). To enable precise positioning of the fiber above different brain areas, 

we mounted it via a bended glass pipette, on a micromanipulator (Model FX-117, Electron Microscopy 

Sciences,  Figures 2A and 2B).  For all the experiments the fiber was positioned above a unilateral 

region of the hindbrain, most likely including rhombomere 5, in an orthogonal orientation with respect 

to the dorsal surface of the larva. The output intensity was measured with a power meter to be in the 

order of 1.8 mW/mm2. 
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Behavior under the two-photon microscope

In order to simultaneously monitor neuronal network Ca2+ dynamics and motor behavior we added to 

the two-photon imaging system a mini-microscope (DZ 1/L.75-5, The Imaging Source) connected to a 

video camera (DMK 21BF04, The Imaging Source). The larva's behavior was recorded from below 

(larva's ventral side, Figures S2C and S2F). To avoid image saturation by the infrared laser we used a 

FF01-842 Semrock short-pass filter. An infra-red LED (820nm) was used for illumination purposes. To 

synchronize the video recordings with the visual stimuli and the two-photon imaging acquisition, we 

used an I/O TTL board (ActiveWire, inc).

Visual stimulation under the two-photon microscope

As for  the behavioral  experiments,  visual  stimuli  were presented on a  curved screen (#216 White 

Diffusion, Rosco Cinegel) around the perimeter of the cylinder chamber using a pico-projector (refresh 

rate: 60 Hz, ADPP-305, Adapt mobile). Stimulation protocols were written using the Psychophysics 

Toolbox  extensions  (Brainard,  1997;  Pelli,  1997) for  MATLAB (The  MathWorks,  Inc.).  To avoid 

interference with the GCaMP3 emission signal (peaking at 547 nm and filtered using a 520/70 band-

pass filter), only the projector's red (620 nm) LED was used, and a BLP01-561 Semrock long-pass 

filter was placed in the front of the projector. In addition, we also reduced the size of the conditioning 

stimulus by using repetitive single-light-moving bars instead of a whole-field moving grating (Figures 

S2E and 2F). Bars were 4° wide moved at 45 °/s. The repetitive moving-bars stimulus was as efficient 

as the whole-field moving grid in inducing MAE (Figure S2D). 

Quantification of the optokinetic MAE-like behavior

To quantify the MAE-like behavior in zebrafish larvae, we calculated the difference between the mean 

number of pursuits in the direction of the CS and the mean number of pursuits in the MAE direction,  
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with respect to the total number of the three different types of eye movements (pursuits in the MAE and 

CS  directions,  and  the  spontaneous  eye  movements).  This  ratio  was  defined  as  the  MAE  Index. 

Mathematically, we defined the MAE index as:

 

MAE index=
 pursuit MAE dir− pursuitCS dir

 pursuit MAE dir+ pursuit CS dir + spontaneous
(1)

For  statistical  purposes,  we  defined  the  control  index  as  the  MAE index during  spontaneous  eye 

movements before the presentation of a CS (stationary grating for 500 s). We thus claimed that the 

zebrafish  larvae  generate  an  optokinetic  MAE-like  behavior  when  we  observed  a  significance 

difference between the MAE index and the control index.

The duration of MAE was computed as the first time bin (bins of 50 s) in which the MAE index was 

significantly larger than the control index.

Two-photon ablations

For the ablations we used a two-photon laser (920 nm and ~10 mW after the objective) to scan each 

optical plane for 1-3 min (the duration gradually increased as we scanned more ventral layers). For the 

tectal ablations, the optical planes were separated by 10-12 µm. For the interpeduncular nucleus, the 

optical planes were separated by 6 µm.

To quantify the effect of the ablations on the CS-induced eye movements (OKR), and the optokinetic 

MAE-like behavior, we calculated for each experiment, the difference in the number of pursuits in the 

CS direction and in the MAE direction for time bins of 50 s. We then computed the mean of this 

difference for all experiments (n=26, 4 fishes).  We estimate that the tectal ablations induced apoptosis 

7



in around 85% of the tectal neurons, what could explain why tectal ablations significantly reduced but 

did not completely prevent MAE.

Unfortunately, due to technical reasons (tectal specificity of tested transgenic lines and high-power 

illumination), optogenetic or genetic silencing of the optic tectum was not possible.

Labeling apoptotic neurons with Acridine

To test whether the tectal laser ablations induced neuronal death, we use the apoptosis marker Acridine. 

For this purpose, we submerged the larvae in a 3 % Acridine in embryo medium, for 30 min in the  

dark.  Then,  the larvae were rinsed twice with fresh embryo medium. After  5 min the larvae were 

immobilized in low-melting agarose within the recording chamber, and imaged using a two-photon 

microscope tunned to 970 nm, or a confocal microscope and a 488 nm CW laser.

Two-photon calcium imaging

We used a custom-made two-photon microscope. The set-up was based on a MOM system (Sutter) 

with a 25x NA 1.05 Olympus objective and a Mai-Tai DeepSee Ti:sapphire laser tuned at 920 nm. The 

output  power  at  the  focal  plane  was  less  than  3  mW. The  filters  consisted  of  a  FF705  dichroic 

(objective dichroic), a AFF01-680 short path (IR Blocker) and a FF01 520/70 band-pass filter, all from 

Semrock. The PMT was a H1070 (GaAsP) from Hamamatsu. The emission signal was pre-amplified 

with a SR-570 (Stanford Research Systems) and acquired using ScanImage (Pologruto et al., 2003) at 

3.91 Hz, with 256×256 pixels resolution.

To restrain the larvae under the two-photon microscope, we embedded them within a drop of 2 % low-

melting  agarose  (Invitrogen)  in  0.5x E3 embryo medium,  on an elevated  stage  in  the  center  of  a 

cylindrical chamber filled with 0.5x E3 embryo medium. This chamber permitted the larva to have an 
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unobstructed vision of the visual stimuli on the projection screen. Larvae were left to rest and adapt to 

the dark for at least 30 min before the beginning of the experiments. 

To study neuronal  network  dynamics  in  the  optic  tectum,  we used  the  HuC:GCaMP3GS5.  For  the 

experiments, we sequentially imaged different tectal planes. We started at a plane 30 μm below the 

skin's surface of the larva's dorsal side, and ended at 100 μm below.

To image the dynamics of the RGCs (retina output), we used the ath5:Gal4; UAS:GCaMP3 line, which 

enabled monitoring the activity of the RGC terminals at the tectal neuropil.

The experiments in which we measured the habituation of direction-selective tectal and retinal neurons 

were performed under the action of a paralyzer to prevent eye movements during the visual stimulation. 

For this purpose, the low-melting agarose solution used to immobilized the larva contained 0.3 mg/ml 

of  Pancuronium  bromide  (TOCRIS,  bioscience),  a  curare-derivative  competitive  acetylcholine 

antagonist  of  neuromuscular  junctions,  thus  blocking  neuromuscular  transmission.  In  addition,  the 

agarose around the eyes was not removed.

Two-photon calcium imaging data processing 

Registration

The series of images during a given experiment were saved as TIFF stacks. To compensate for possible 

slow drifts in the XY plane, we registered the stacks using the Image J plugin Template Matching 

(Tseng et al., 2012),  in combination with a custom-made algorithm (Matlab, The MathWorks, Inc) to 

further smooth the registration. We discarded videos with drifts in the ventro-dorsal direction (out-of-

plane displacements). 
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Movement artifacts

Movement  artifacts  were  detected  according  to  large  deviations  in  the  cross-correlation  between 

successive  frames.  All  frames  with  large  deviations  (z-score  smaller  than  -3)  were  then  manually 

inspected. Due to the agarose elasticity, the imaging plane almost invariantly returned to its original  

position, after observing movement artifacts. If this was not the case, the complete experiment was 

discarded. Artifact episodes rarely exceeded 5 consecutive frames in non-paralyzed larvae and 1 in 

paralyzed  larvae.  For  the  subsequent  data  analysis,  we  did  not  include  frames  showing  moving 

artifacts. In average,  we detected 100 frames with moving artifacts out of 12000 in non-paralyzed 

larvae and 10 in paralyzed larvae.

Segmentation of the optic tectum

Regions of interest (ROIs) corresponding to the imaged neurons were semi-automatically detected on a 

morphological  basis  by  the  analysis  of  time-averaged  pictures  of  the  imaged  tectal  region.  We 

implemented a series of digital imaging processing techniques  (Gonzalez et al., 2004) in a custom-

made program, that produced putative ROIs layouts that were afterwards manually curated. GCaMP3 is 

mainly localized in the cytosol with minimal penetration to the cellular nuclei.  The algorithm first  

identified neuronal  ROIs  that  corresponded to individual  nuclei.  The latter  were detected by local 

fluorescence intensity wells. In order to flatten non-relevant intensity fluctuations in these minima, the 

eroded version of the imaged region was morphologically reconstructed under the mask given by same 

image.  Local  minima were  detected  by  applying  a  user-defined threshold  to  the  extended-minima 

transform of the resulting image. Finally, to obtain the ROIs perimeters we took advantage of the high 

density  of  the  tectal  stratum periventriculare  (SPV) neurons.  We calculated  the  euclidean distance 

transform of the local-minima image and performed a watershed segmentation to obtain the boundaries 

between  neurons.  The  obtained  ROIs  were  manually  inspected  and corrected  when  needed.  ROIs 
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typically included the neuronal nuclei and the thin cytosolic surrounding ring, conservatively excluding 

the  outermost  cytosolic  perimeter  that  could  potentially  be  subject  of  cross-neuron  fluorescence 

contamination due to the high neuronal density (Figure S2A). This procedure gave similar results to 

fully-manual  ROI selection,  accelerated  the  process  by  ~5-fold  and minimized human subjectivity 

(Romano et al., 2015).

We then  computed  the  changes  in  calcium  associated  to  the  activity  of  each  imaged  neuron  by 

averaging the fluorescence of all pixels within the ROIs, across time. 

In few cases, we observed high-frequency non-Gaussian noise, most probably originated at the PMT 

(GaAsP, H1070 from Hamamatsu). This non-Gaussian noise was very rare and was observed, even 

when the laser was turned off. This noise implicated only single frames and single pixels. To filter out 

this  noise,  we  first  calculated,  for  all  the  imaging  frames,  the  inter-frame  fluorescence  change 

coefficient of variation (CV) among the ROI pixels. For frames with CV > 1, we calculated the average 

fluorescence across pixels by leaving out the outlier pixel (i.e., pixels whose fluorescence change, z-

scored across ROI pixels, was bigger than 1.5, (Romano et al., 2015)). 

Segmentation of RGCs in the tectal neuropil

Since we recorded the RGCs calcium transients at their terminals situated in the tectal neuropil, we had 

no clear anatomical structure to compute ROIs corresponding to single terminals. In consequence, we 

implemented an algorithm where square regions of interest (SROIs) were calculated using a manual 

mask corresponding to the tectal neuropil perimeter. From this mask, we generated a grid based on 

SROIs of 4x4 pixels (1.12 pixels per µm). The 16 pixels corresponding to each SROI were averaged 

across time. SROIs with mean intensities below a threshold (threshold=0.0007 fluorescence intensity 

arbitrary units) were discarded. As a control, we also tested the adaptation results using smaller (2x2) 

and larger (6x6) SROIs. We observed no significant differences between the adaptation indexes of the 
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two controls and the SROIs of 4x4 pixels, for the 500 s after the cessation of CS (p > 0.19, Wilcoxon 

signed rank test).

Detection of significant Ca2+ events

In order to infer the Ca2+ related fluorescence events associated with neuronal activity, we calculated the 

statistical significance of single-neuron calcium dynamics in an adaptive and unsupervised manner. We 

considered that any event in the fluorescence time series data belongs to either a neuronal activity  

process, A, or to an underlying noisy baseline, B. In order to discriminate, with a desired degree of  

confidence, between these two sources, we built a data-driven model of B. Moreover, we took into 

account the biophysical constraints of the fluorescent calcium indicator (GCaMP3 fluorescence decay 

time constant). Then, we applied a Bayesian odds ratio estimation framework. Non-significant portions 

of the DF/F traces were then set equal to 0 in all subsequent analysis (for more details see (Romano et 

al., 2015)). 

Detection of RGC terminals calcium activities

To detect calcium events associated with neuronal activity, we estimated the ΔF/F time series of each 

SROI as described for tectal neurons. 

Calcium transients were considered as activity events when they surpassed a simple linear threshold 

equivalent to 2 standard deviations above the baseline (Figure S2B). 

Calculation of direction selectivity

To compute the direction selectivity of each imaged neuron or each neuropil's SROI, we presented to 

the larvae moving light bars towards the left or towards the right, across the entire stimulation field. 

The direction selectivity was calculated from the average response to 5 moving light bars presented in 
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the same direction. Calcium events were considered as neuronal responses to the moving light bars if 

they occurred within a 2 s time window after the stimulus onset. Since the amplitude response of each 

neuron is different and we had to compare between all the neurons, we z-scored these responses across 

neurons (subtraction of the mean and divided by the s.d.).  We considered a neuron as consistently 

responsive to a stimulus if it had an average response z-score bigger than -1 and responded to at least 3  

out of 5 bars towards one given direction.

For each responding neuron, we calculated their left-right selectivity as the difference of their average 

neuronal responses to light bars moving in opposite directions (left or right), divided by their sum. 

When this value was bigger/smaller than 0.3/-0.3, the neuron was considered as left/right directionally 

selective, respectively.

Calculation of neuronal response adaptation

We quantified the responses to moving bars during the post-CS period as the sum of all the directional 

responses for each of the presented bars (CS direction-selective ROIs to moving bars in CS direction 

and MAE direction-selective ROIs to moving bars in the MAE direction). We called this value SDSR 

(Sum of Direction Selective Responses). Based on the  SDSR value, we then defined the  Adaptation 

Index (AI) as follows:

AI i=
SDSRCS

i /SDSRCS
control−SDSRMAE

i /SDSRMAE
control

SDSRCS
i /SDSRCS

control+ SDSRMAE
i /SDSRMAE

control (2)

where i is the i-th bar and SDSRcontrol is the mean Sum of Direction Selective Responses during the pre-

CS control period in the corresponding direction (CS/MAE).
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The numerator in equation  (2) allowed us to compare responses in both directions during post-CS 

control period. Both responses were normalized with respect to their control period. The denominator 

forces the Adaptation index, to have values ranging from -1 to 1. Since the index is a relative value, it is 

both, independent of the stimulus direction and the variability across experiments.

In the extreme cases, the index will have a value of -1 if responses of CS direction-selective neurons to 

moving bars in the CS direction are negligible compared to the responses in the control period. Such a 

value will indicate a very strong habituation of groups of neurons responding to the CS direction. An 

index of 0 will mean that both direction selective groups respond as during the control period. A value 

of 1 will indicate that group responding to the direction of MAE were habituated with respect to the 

responses in the CS direction. Since the Adaptation index is a relative ratio between the responses to 

the two directions, before and after the presentation of the CS, positive or negative values could also 

represent  an  increase  in  the  response  to  the  null  direction  (non-preferred  direction)  rather  than  a 

habituation of the preferred direction. However, more detailed analysis showed that the latter was never 

the case.

Cross-correlation between neuronal activity and eye kinematics

In order to compare the cross correlation between the activity of MAE direction-selective neurons and 

the eye pursuits in the MAE direction across different experiments, we processed the two signals in 

each experiment as follows. We first compensated for the small drifts in the eye rotations signal by 

substructing the baseline.  The latter  was calculated using a  running average (time window of 800 

frames). We then rectified the eye rotations signal and normalized it. Finally, we divided it by the 95 

percentile value of the signal. For the neurons selective to the MAE direction, we calculated the mean 

neuronal  activity  of  the  MAE  direction-selective  neurons.  To test  whether  the  correlations  were 

significant, we generated a null model for the neuronal activity. To that end, we shuffled the spike times 
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of each neuron during the first 300 s of the MAE duration while preserving the inter-spike interval 

distributions. The shuffling procedured was repeated 1000 times and the mean correlation of the null 

model datasets was obtained. 

The MAE / CS imbalance index was calculated as the ratio of the difference of the maximum of the 

mean activity of the MAE direction-selective neurons and the maximum of the mean activity of the CS 

direction-selective neurons to their sum for each eye pursuit in the MAE direction. The imbalance 

index was taken into account only when either of these two values (the maximum of the mean activity 

of the MAE direction-selective neurons and the maximum of the mean activity of the CS direction-

selective neurons), was larger than one s.d. above the mean activity of the respective neurons, during 

the first 300 s of MAE.

 

Classification of tectal neurons as direction selective or comparators

To discriminate between direction-selective neurons which show rhythmic activity associated with the 

eye pursuits in the CS direction, the eye pursuits in the MAE direction, or none, we computed the cross 

correlation between the eye rotations and the neuronal activity of individual MAE direction-selective 

neurons, throughout the entire experiment. The eye rotations were separated into two signals: the eye 

rotations in the CS direction and eye rotations in the MAE direction. These signals were normalized 

according to the 95 percentile to preserve the information of the relative amplitudes. To compare the 

resulting cross correlations across the different experiments, and to classify the different neurons as CS 

eye motion selective, MAE eye motion selective neurons, or none, we used a threshold representing 90 

% of the sum of the mean correlations of all the neurons in both directions. The same threshold was  

used to compare the cross correlations of the neurons with the eye rotations in both directions. When 

the cross correlation of a neuron was greater than this threshold in either the direction of eye pursuits in 

the  CS/MAE direction,  we considered  it  as  a  CS/MAE eye-motion  selective  neuron,  respectively. 
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Within the framework of the model, we refer to these neurons as the “comparator” neurons. All the 

other direction-selective neurons which had their cross correlation either greater than the threshold in 

both the directions or less than the threshold in the two directions were classified as direction-selective 

neurons.

Frequency analysis

The rhythmic conditioning stimulus induced both rhythmic eye movements and rhythmic neuronal 

tectal responses. Therefore, we performed frequency-domain analysis to infer the level of association 

between the optokinetic MAE-like behavior and the post-CS tectal  activities. For this purpose,  we 

considered  eye  movements  and  neuronal  activities  as  point  processes  (binary  events, 

(“http://www.chronux.org/,” 2013; Mitra and Bokil, 2008)).

The estimation of the frequency spectrum in noisy data segments of finite duration suffers from bias 

and variance problems that distort the underlying features in the signal. The bias consists in different 

frequency components being mixed together and “blurred”. However, even if the data length had been 

infinite, the spectral estimate obtained through the Fourier transformation is sensitive to data noise, 

producing inconsistent results (i.e. the variance problem). We therefore used an approach based on the 

multi-taper spectral estimation method (Thomson, 1982). Here, the data, V(t), is multiplied by the k-th 

Slepian taper, wk(t), and Fourier-transformed in order to obtain the tapered spectral estimate Sk(f)

S k ( f )=∑
t=1

T

e−i2π ft wk (t )V (t) (3)

Using multi-taper spectral estimation, we could produce several spectral estimates by using several 

orthogonal tapers and averaging across estimates. Using data tapers we reduced the influence of distant 
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frequencies at the expense of blurring the spectrum over nearby frequencies. The result is an increase in 

narrow-band bias and a reduction in broad-band bias. This practice is justified under the assumption 

that the true spectrum is locally constant and approximately the same for nearby frequencies. In this 

way we effectively  reduced the  bias  of  the  estimates.  Variance  is  usually  addressed  by averaging 

overlapping segments of the time series and by averaging across several tapered spectral estimates.

Here, we chose as tapers the discrete prolate spheroidal sequences (Slepians functions)  (Slepian and 

Pollak, 1961), that had optimal spectral concentration properties for these taper functions. The Slepians 

formed an orthogonal basis set for sequences of length, T, and could be characterized by the half-

bandwidth parameter, W. The usual strategy was to set T as the time length of the data and to select W 

to be a small multiple of the Raleigh's frequency 1/T, and then to take the 2WT - 1 leading Slepian  

functions as data  tapers  in the multi-taper analysis.  The remaining functions showed progressively 

worsening spectral concentration properties. By setting W, we defined local frequency windows over 

which  we  calculated  running  averages  that  smoothed  the  spectral  estimate,  reducing  its  variance 

(Pesaran, 2008; Prechtl et al., 1997; Thomson, 1982).

Thus, for a given time series, denoted V(t), the power spectrum was obtained by a direct multi-taper 

estimate given by:

s( f )= 1
K
∑
k =1

K

∣S k ( f )2∣ (4)

where Sk(f) is the discrete Fourier transform of (3).

The bandwidth W was chosen to smooth the data while preserving its relevant spectral structure. 
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Calculation of power spectrum modulation

Normalized power spectrum (NPS) was defined as :

 

NPS=10∗log10 (spectrum/ R) (5)

Where R was the saccade rate in the case of behavioral data and firing rate in the case of neuronal data. 

To compare  the  power  of  the  different  neuronal  populations  across  the  different  experiments,  we 

divided the spectrum by the mean power of all the neurons at the significant frequencies. 

We defined significant frequencies in the behavioral normalized power spectrum as frequencies above a 

threshold (zero,  Figure 6A, top panel) and below a frequency threshold of 0.15 Hz. Non-significant 

frequencies were defined as frequencies with behavioral normalized power spectrum lower than -1 and 

frequencies higher than 0.06Hz.

Finally, we averaged the modulation of significant and non-significant frequencies, for the different 

periods of the experiment. 

Mathematical model 

The model schematically described in Figure 7A was mathematically implemented using a rate model 

description for the different neuronal populations, as described below.

Direction-selective neurons definition

The rate model for the two populations  of direction selective neurons is defined by:

(6)
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(7)

(8)

where,  for  simplicity,  the  f-I  curve  f  is  taken  to  be  a  saturating  threshold  linear  function  with 

,   and  . The variable   represents the mean 

discharge rates  of  the population 1 and 2,  population 1 being assumed to be selective for the CS 

direction. The variables  and  represent slow habituation currents intrinsic to the cell population 

,  being 1 or 2. Two habituation time scales are introduced to represent the double exponential decay 

of the direction-selective neurons observed experimentally.

The current  models the retinal inputs with  in the absence of CS. During the CS, of 

duration , the current is increased to  on the CS-direction-selective population, i.e. .

Comparator neurons definition

The two comparator neuronal populations are modelled similarly. We assume that each comparator cell 

population receives inputs from one of the two direction-selective neuronal populations and that the 

two comparator neuronal populations cross-inhibit each other. In addition, we suppose that they are 

endowed with an adaptation current, similarly to the direction-selective neuronal population, which for 

simplicity we describe with a single exponential relaxation:

(9)

(10)

(11)

(12)
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We assume  that  the  interaction,  not  modelled  here,  of  these  comparator  neurons  with  neuronal 

populations outside the tectum (e.g. eye proprioceptive inputs) leads to the generation of the rhythmic 

depolarizing current  in the comparator neurons. In the performed simulation, this rhythmic current 

was assumed to be periodic with a period  with during each period an ON-time with a value  

during a time  and a value  during the complementary OFF-time  (i.e. . In 

order to account for the imperfect alternation of the spontaneous activity, the ON-current was taken to 

take on average the same value , on each comparator neuronal population but to fluctuate around 

this mean independently in the two populations and from period to period,

(13)

These  fluctuations  are  represented  by  ,  a  random  Gaussian  current   of  amplitude 

,  with   the  population  index  and   the  period  index  (  denotes  the 

Kronecker   if  is identical to ,  otherwise). The rhythmic currents on the 

two neuronal populations in a typical simulation are plotted in Figure 7B.

The values of the parameters used in the simulations are given in Table 1. They were obtained by the 

fitting procedure described below in section “Determination of the model parameters”.

Definitions and computation of the model MAE index and MAE duration

The model MAE index and MAE duration in the model were computed as follows. First, the successive 

periods  between  two  rhythmic  inputs  were  defined  as  'spontaneous  movements'  and  'pursuits'  by 

comparing  the  successive  burst  of  activities  induced  by  the  rhythmic  input  in  the  CS  and  MAE 

comparator neuronal populations. When activities of the two populations alternated, the time period 

was  classified  as  'spontaneous  activity'.  If,  instead,  the  CS-comparator  neurons  were  active 

consecutively, the  time  period  was  classified  as  CS-pursuit  and  likewise.  If  the  MAE-comparator 

neurons were active consecutively, it was classified as a MAE pursuit. The MAE  index (defined as 

equation 1) was computed over three consecutive periods (time bins of 60 s), after the cessation of the 

CS. The first  eye movement after the cessation of the CS was always in the MAE direction. This  

movement was not taken into account in the calculation of the MAE index in the experimental data. 
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Therefore, for the model simulations, we also exclude the first value of the MAE index during MAE. 

For each CS duration (Figure 7C), the results were obtained by averaging over 400 simulations of the 

model. The duration of MAE was computed as the mean of the post-CS duration for which MAE index 

was greater than the control index of the 400 simulations of the model (Figure S5F).

Mathematical analysis

The model is sufficiently simple to lend itself to a full mathematical analysis. This allows determining 

the role and importance of the different parameters and their extraction from the experimental data. We 

first describe our analysis of the direction-selective neuron populations (Direction-selective neurons 

section below) during  their  three different  dynamical  phases  in  the  three  subsections  Spontaneous 

activity,  CS phase  and MAE phase.  We then present a similar analysis for the comparator neuronal 

populations  (Comparator  neurons  section),  and  analyzed  the  dynamics  of  the  two  types  of  tectal 

populations in turn. We finally describe how these mathematical results were used to determined the 

model parameters (Determination of model parameters section).

Direction-selective neurons

Spontaneous activity

During ongoing spontaneous activity, the activity , as well as the adaptation variables  and ,  

take their steady-state values  and ,

(14)

CS phase

When the CS is turned on, the CS-selective population dynamics can be decomposed according to the 

different scales of the reaction times of the activity ( ) and of the adaptation variables (  and ). Three 

different phases of the dynamics follow in succession.

On the very short time scale , the activity  adapts to the value prescribed by the CS and the current 

value of the adaptation variables:
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(15)

After the onset of the CS, the activity   attains its peak value on this short time scale, before any 

significant adaptation has the time to evolve:

(16)

Then, the fast adaptation variable relaxes according to equation (7) with the slow variable  still at its 

spontaneous value . Thus, the dynamics of  obeys:

 (17)

In this phase, driven by the increase of ,  decreases with the characteristic time of ,

(18)

(19)

where the origin of time is taken to be the CS onset. At the end of this phase of fast decrease,  is equal 

to the intermediate value  with:

(20)

Finally, a phase with slowly decreasing activity sets in, driven by the increase of . In this final 

part of the CS-phase, the evolution of both  and  are driven by the evolution of ,

(21)
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(22)

With the conditions (21, 22), the dynamics of   (equation (8)) obeys,

 (23)

 

In this last phase,  slowly increases, on the time scale  as:

(24)

Correlatively,  decreases as (using Equation (22)),

(25)

where the asymptotic value  is given by:

(26)

MAE phase

The direction-selective neuronal activity can be analyzed along similar lines after the CS cessation at 

, with a very short first phase on the time scale , then a second short phase of duration of order 

 and finally a slow phase. This phase is described in more details since it is important for 

the dynamics of the comparator neurons during the MAE period.

As  in  our  previous  description  (Equations  (21,22)),  after  the  two  short  phases,  the  dynamics  of

both  and  are determined by the slow adaptation variable 

23



(27)

(28)

The dynamics of   obey, similarly to Equation (29):

 (29)

In this last phase,  slowly returns, on the time scale , to its value during 

spontaneous activity as:

(30)

Correlatively,  increases as (using Equation (28)),

(31)

where the origin of time is taken as the beginning of the CS.
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Figure: Activity of the direction-selective neurons: The CS is turned on at . As explained in the 

text, the constants of the model for the direction-selective neurons can be determined by measuring the 

neuronal activity   and  

Comparator neurons

Rhythmically driven dynamics

The comparator neurons receive an inhibitory current  except during repeated intervals of duration 

 when they are relieved from inhibition. During these intervals they receive the current  which 

produce a burst of activity in the CS-direction-selective neurons.

Just before the burst start, the adaptation variables have the value   and . As for the direction-

selective neurons, the dynamics of the comparator neurons can be decomposed on different time scales. 

On the shortest time scale determined by , the adaptation variables do not change significantly and the 

CS-direction-selective activity obeys:

(32)
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 (33)

where ,  are evaluated at the onset of the rhythmic 

current  and are  assumed to  be  constant.  The dynamics  is  the  superposition  of  a  symmetric  mode 

 and an antisymmetric mode  with

(34)

(35)

At  the  rhythmic  input  onset,  which  we  take  as  the  time  origin  ( ),  the  two  modes  grow  as 

 and . Since  and  are of similar magnitude, 

the symmetric mode dominates at first and both  and  grow (i.e. the two comparator populations 

become  active).  However,  when  ,  the  antisymmetric  mode  grows  exponentially  and  the 

comparator  neuronal  population with the largest  input  soon dominates.  That  is,  for   the CS 

network  with  cross-inhibition  indeed  functions  as  a  comparator  which  leads  us  to  focus  on  this 

parameter  regime.  For  definiteness,  we  consider  that  .  In  this  case,  the  growth  of  the 

antisymmetric mode leads  to vanish and  to reach  in a period of the order of . Then  follows 

adiabatically :

(36)

(37)
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where  and where, for simplicity, we have supposed that   is much shorter than the 

time   which governs the evolution of   and  . When the rhythmic input disappears   quickly 

returns to zero on the fast time scale , while   decays on the slower time scale  1. Therefore, at the 

onset of the next rhythmic input, the habituation current magnitude is:

(38)

Spontaneous activity

As explained above, the comparator dynamics (32,33) are designed to compare the inputs  and  

and to select the population with the largest input to be the active population in a “winner-takes-all” 

manner. During spontaneous activity, there are no specific inputs on directional neurons, and the 

difference of inputs reduces to:

(39)

where we have used the expression (13) for the rhythmic current. The comparator neuronal population 

1  wins  and  is  the  active  one  when  ,  population  2  is  selected  when  the  reverse 

inequality holds. Without noise ( ), this leads to a strict alternation in the dominance of neuronal 

population 1 and 2 in the spontaneous steady-state activity, since the population that fired last has a 

stronger adaptation current  at the start of the next rhythmic current pulse.  The situation is less simple 

in the presence of noise since noise sometime induces the same comparator population to be active at 

successive times.

Population 1 dominates when . Since  is a Gaussian variable of 

variance , this gives the probability that population one is selected:

1 This is strictly true only when  does not become large enough during the “on” period so that  
becomes smaller  than  ;  otherwise   would be  released  from inhibition  and the  -
population would fire before the end of the “on” period (Laing and Chow, 2002).
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(40)

where erf (x) is the error function

(41)

It is worth noting that  with about a 10 percent precision  for .

We consider the regime where the adaptation variable   is mostly determined by the last time the 

population   fired. We first determine the probability of dominance of each population after the two 

comparator populations have been active in alternation. For definiteness, we suppose that population 1 

was the last active and obtain from :

(42)

(43)

These formulas together with (40) determine the probability   that population 1 is again dominant 

after having fire last.

Finally, we consider  the pair  of consecutive firings and determine the fraction   where the firing 

populations are different (i.e alternating pairs) and the complementary fraction  where the population 

are identical. These are used to identify the “alternating stereotypical eye movements” and the “pursuit-

saccade-like movements” in the model. Denoting the probability by   (resp.  ) that the pair 

 is alternating (resp. non-alternating), we have the recurrence relation (since  depends  only 

on the previous two firings):

(44)

(45)
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where we have supposed that the same population never fires 3 times in succession (which is quite 

accurate  in  the  case  considered  here  when noise  is  not  too  strong).  In  the  steady state,  when the 

probability is the same for all consecutive pairs, both equations are reduced to . This gives 

for the respective fractions:

(46)

MAE phase

The neuronal population selective to the direction of the CS is chosen to be population 1. We consider  

the dynamics of the comparator neurons in the case when there are no fluctuations in the rhythmic 

current ( ). We assume that the magnitude of the habituation currents as well as the input from the 

CS-direction-selective  neurons  are  small  as  compared  to  the  rhythmic  current.  In  a  first-order 

approximation, we can thus estimate  by approximating  by  in Equation (38). Thus,   

relaxes exponentially with the burst number to :

(47)

Which of the two comparator populations fires during a rhythmic stimulation depends on which one 

has the greater stimulating current at the rhythmic onset. MAE lasts as long as population 2 fires (after 

a CS activating the direction-selective population 1), as long as:

   (48)

Approximating  and  by their asymptotic values ( ) give for the MAE duration 

 with the help of Equation (31):
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(49)

where we have denoted by  the single quantity that characterizes the dynamics of 

the comparator neurons. From Equation (49), one sees that for long CS, the MAE duration is bounded 

and approaches the maximal duration ,

(50)

This comes about because for long CS the activity of the activated direction-selective neurons relaxes 

to a definite value ( ). Similarly, since  should be positive in Equation (49), there is a minimum 

duration of the CS, , necessary to induce MAE:

(51)

(52)

where the second equation (52) holds when the argument of the logarithm in equation (51) is close to 1  

(a necessary condition to have   as observed in the experiments). One can note that 

Equations (49-52) are quite constraining since once the parameters of the direction-selective neurons 

are  determined,  the  single  remaining  parameter  is  .  In  particular,  the  time 

 is  directly  the  long  habituation  time  constant  of  the  direction-selective 

neurons’ activity and it governs both the scale of  and  and the scale of the CS duration on 

which the MAE duration varies (e.g. the time scale of the exponential in Equation (49)).
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Determination of the model parameters

Determination of the direction-selective neuron’s parameters

The different constants governing the dynamics of direction-selective neurons can all, in principle, be 

obtained from the experimental data  . The actual scale of activity is arbitrary and can be fixed by the 

choice of . Therefore, it is necessary to determine , the time scales ,  and , and the coupling 

constants  and . This can be done from the measure of the spontaneous activity  as well as from 

the neural activity during the CS, and specially from measuring the values   and  (see the 

Figure above).

The previous equations give:

(53)

(54)

(55)

Equation (53) directly gives  while Equations (54) and (55) determine  and  as

(56)

(57)

In practice, the above procedure was performed by fitting the average activity   during the CS as 

measured from the calcium signal as:

(58)
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While  was well determined by this fitting procedure, the slow time  turned out to be rather very 

weakly constrained. We therefore chose to obtain it from a fit of the analytical curve (49) to the MAE 

duration vs. CS duration experimental data (omitting the experimental point for the longest 500 s which 

seems  to  involve  supplementary  phenomena).  This  provides  the  value  of 

.  Using this  value  of  ,  the  other  constants   could  be 

reliably determined by fitting the neural activity.  The average activity during spontaneous activity  

was also fitted. From these, the direction-selective neuronal parameters were determined with the help 

of  the  above  equations.  The  fit  of  the  CS  activity  decrease  provides  the  values, 

 (e.g  ) and the time  . The values of   

and  can be determined from these ratios with the help of the above equations. After  and  have 

been  determined,  the  adaptation  times   and   can  be  recovered  from  ,  and  the  previously 

determined . The short time  could in principle also be measured from the rise of the neural activity 

when the CS is turned on, but it is too short to be reliably extracted from calcium signals. However, the 

exact value of   does not play a role in the analysis, as long as it is small, as compared to the other 

times.

Determination of the comparator model and the rhythmic current parameters

Some constants  of  the  comparator  neurons  can  also  be  obtained  from recordings  of  the  neuronal 

activity.  The  rhythmic  current   was  fitted  from the  peaks  of  the  neuronal  activity  during  the 

spontaneous phase. This activity phase served also to choose the period and duration of the rhythmic 

current. They were also chosen so as to reproduce the neuronal activity, which lasts about  = 4 s 

and occurs about once in every  = 20 s.  The current  was chosen to be of negative value so that 

the two comparator populations were silent in the absence of the rhythmic current .

The comparator neurons parameters were chosen to reproduce the MAE duration curve as well as the 

MAE index curves taking into account other constraints, namely that only one comparator population 

fired during each rhythmic episode (this imposes in particular  as explained above) and that the 

MAE comparator population was never active during the CS. The noise  was adjusted to reproduce 

the  fraction   (see  above)  of  alternations  between  the  comparator  population  during  the 

spontaneous activity.
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Figure S1. The effect of CS duration, CS velocity and stationary stimulus on MAE (related to 

Figure 1 and 3). 

(A) MAE index as a function of time. Each panel represents a different duration of the CS. Each 

curve represents a different velocity of the CS. Magenta for 17 °/s, yellow for 26 °/s and cyan for 59 

°/s. Error bars represent s.e. a: marks the intervals where 59 °/s was significantly different from 17 

°/s and 26 °/s. b: marks the intervals where 59 °/s was significantly different from 26 °/s. c: depicts 

the intervals where 59 °/s was significantly different from 17 °/s. For CS velocity of 17 °/s, n= 48,  

34, 40, 36, 38, 40, and 34 (trials), from 12, 11, 11, 10,11, 10 and 12 larvae for CS durations of 50, 

100, 200, 250, 300, 400, 500 s, respectively. For CS velocity of 26 °/s n= 36, 36, 39, 34, 36, 34, and 

40 (trials), from 10, 9, 10, 10, 10, 9, and 11 larvae for CS durations of 50, 100, 200, 250, 300, 400, 

500 s, respectively. For CS velocity of 59 °/s n= 36, 34, 38, 40, 40, 38, and 22 (trials), from 11, 11, 

10, 10, 10, 10, and 9 larvae for CS durations of 50, 100, 200, 250, 300, 400, 500 s, respectively. 

(B) MAE index as a function of time after CS of 500 s when using as a stationary stimulus: 1) a 

black screen (blue), 2) stationary grating (green), 3) stationary noise (red). Gray line depicts the 

control  index.  For  all  cases,  n=8,  from  4  larvae.  Error  bars  represent  s.e.,  non-significants 

differences were found between the different stationary stimuli.

(C)  Summary of the behavioral experiments after IPN ablations. The average  number of pursuits 

during the CS and MAE periods. Pink background: CS period. Violet background: post-CS control 

period.  Blue  bars:  intact  IPN (control).  Red bars:  ablated  IPN.  Positive  values:  pursuits  in  the 

direction of the CS. Negatives values: pursuits in the MAE direction.  Asterisk marks significant 

differences (*: p<0.05, **:p<0.01, Kruskall-Wallis, n=14, 4 larvae). Error bars: s.e.

(D) The correlation between the OKR habituation index (the number of pursuits during the first 50 s 

divided by the number of pursuits during the last 50 s of the CS) and the length of MAE. Each black 

dot represents the mean of the habituation index for bins of 100 s except for the last bin (200 s 

including MAE durations of 400, 450 and 500 s). Error bars: s.e. Note the increase in MAE duration 

with the increase in the habituation index.
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Figure S2. Calcium-imaging-data-processing methods and experimental protocols (related to 

Figure 4). 

 (A)  i.   An  optical  section  of  the  zebrafish  larva’s optic  tectum superimposed  with  the  ROIs 

corresponding to each single neurons (yellow patches). ii. Examples of typical single-neuron DF/F 

traces (black) with significant fluorescence transients highlighted in red. Breaks in the traces depict 

discarded frames due to movement artifacts. 

(B) i.  An optical section of the optic tectum of an ath5:GCaMP3 zebrafish larva, where the tectal 

neuropil can be clearly observed. The SROIs are superimposed to the image (yellow patches).  ii. 

Examples  of  typical  single-SROIs  DF/F traces  (black)  with  significant  fluorescence  transients 

highlighted in red. Breaks in the traces depict discarded frames due to movement artifacts. 

(C) Experimental  setup:  Scheme of  the  two-photon  system for  simultaneously  monitoring  eye 

movements and presenting visual stimuli.

(D) MAE index as a function of time after CS under the two photon microscope. Blue curve: MAE 

index as a function of time under a two-photon microscope. CS consisted in repetitive moving bars 

for 500 s. Red curve: MAE index as a function of time as showed in Fig. 1F. CS consisted in whole 

field grating for 500 s. Gray line represents the control index for the two-photon experiments. Non-

significant  differences  where  found  between  the  two conditions.  Error  bars:  s.e.  For  repetitive 

moving bars, n=20 (trials), from 10 larvae. For whole field grating, n=15 (trials), from 15 larvae. 

(E) i. Experimental paradigm for monitoring adaptation of RGC projections in paralyzed larvae. ii. 

The sum of the relative change in fluorescence intensity (DF/F) of direction selective SROIs as a 

function of time. Top panel, CS direction selective SROIs. Bottom panel, MAE direction selective 

SROIs. The color bars represent the different stimulation blocks of the experimental paradigm: gray 

for  pre-CS  control,  magenta  for  CS  and  blue  post-CS  control  period.  Top  bars:  depict  the 

presentation period of each moving bar (gray: CS direction, yellow: MAE direction). 

(F) As in E, but for tectal neuron recordings.
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Figure S3. Determination comparator and direction selective neurons and estimation of their 

number (related to Figure 5).

(A) Top two panels: the sum of the activity of comparator tectal neurons (top, Comparator CS; 

bottom, Comparator MAE). Third and fourth panels: CS and MAE direction selective tectal neurons 

respectively as function of time. Bottom: eye direction as a function of time. Plots are color coded 

according to the period of stimulation, gray for pre-CS control, green for spontaneous activity, 

magenta for CS, and blue for post-CS control period.

(B) Mean fraction of unique comparator neurons and direction-selective neurons. Error bars, s.e. 

(n=12 (trials), from 9 larvae).
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Figure S4. The rhythmicity of the MAE-associated tectal activity is generated through a 

neuro-muscular loop (related to Figure 7).

(A) Top:  the  sum  of  the  Ca2+ transients  of  CS-direction-selective  tectal  neurons  during  the 

experimental paradigm for a representative non-paralyzed larva. Bottom: the sum of the activity of 

MAE-direction-selective tectal neurons. The panels are color coded according the different parts of 

the experimental paradigm. Magenta for CS, and blue for post-CS control period.

(B) Spatial coherence for the CS-direction-selective and MAE-direction-selective cells as a function 

of frequency for example in A. Orange dashed lines depict the frequency band associated with CS-

induced eyes  rotations.  Green dashed lines  represent  the frequency band associated  with  tectal 

responses to the CS. Error bars: s.e.

(C and D) As for A and B, respectively, but for a representative paralyzed larva. 

(E) Fraction of significant peaks in the sensory frequency band for non-paralyzed with respect to 

paralyzed larvae during the CS period. 

(F) Fraction of significant peaks in the sensory frequency band for non-paralyzed with respect to 

paralyzed larvae during the MAE period. 

(G) Fraction of significant peaks in the motor frequency band for non-paralyzed with respect to 

paralyzed larvae during the CS period. 

(H) Fraction of  significant  peaks  in  the  motor  frequency band for  non-paralyzed vs.  paralyzed 

larvae during the MAE period. For (E-G) n=12 (trials), from 6 larvae. 
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Figure S5. The empirical  mathematical  model  reproduces  the correlation between the CS 

duration and the extent of MAE (related to Figure 7). 

(A) The pursuit velocity of the eyes induced by the CS (black) is best fitted by two exponentials 

(green, t=12 s. and 195 s). The CS velocity was 26 °/s. 

(B) The averaged neuronal activity of the direction-selective population induced by the CS (black) 

can be fitted by two exponentials (green, t=7 s. and 650 s). The average neuronal activity of the 

direction-selective population was smoothed using a Gaussian kernel. These timescales were then 

used as the adaptation variables in the numerical model. 

(C) Firing rates of  the CS  comparator  populations and MAE  comparator  populations for  a CS 

duration of 100 s, starting at 500 s.

(D and E) As for C, for CS durations of 300 and 400 s.

(F) The model MAE duration as a function of the duration of the CS. The MAE duration is defined 

as the time period where the MAE index is significantly greater than the control index, Fig. 7C). For 

comparison, the yellow curve shows the values obtained for the behavioral data (Fig. 1F). 

Supplemental Video Legends

Video S1 (related to Figure 1) The video shows the CS, the larva's eyes outlined in yellow, and the 

eye position during the last 30 s of the CS and during the first 30 s of the optokinetic MAE-like 

behavior. Note the change in the pursuits' direction following the end of the conditioning stimulus 

(magenta vertical line).

Video S2 (related to Figure 2)  The video shows the larva's eyes outlined in yellow during the 

presentation of the conditioning stimulus for 300 s, and the position of the eyes. During 100-200 s, 

Halorhodopsin was activated via a fiber optic (565 nm) to block eye movement (yellow patch). 

Note how the CS-induced pursuits are instantly blocked and rapidly recover at the onset and offset 

of the optogenetic stimulation. 

Video S3 (related to Figure 3)  The video shows different optical planes across the larva’s optic 

tectum, in which the right hemisphere was ablated using a two-photon laser. The larva expressed 

GCaMP5 pan-neuronally. Note the large difference in basal fluorescence between both tecta, and 

the presence of GCaMP5 in the nucleus of neurons within the ablated hemisphere.
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Chapter VI
Conclusion and Future perspectives

Rate models, even though they do not describe entirely the biophysical details of a
network of neurons, help us to capture the various phenomena observed in the brain.
In the first three chapters of this thesis, we have described a simple model of two
groups of excitatory-inhibitory neurons and we have seen how they can help us study
dynamical regimes of interaction of oscillations in the beta and low-gamma range. We
found several regions in the phase diagram of this simple model: the phase oscillations
of the neuron groups either synchronize or not depending on the coupling between the
two groups. The alternating and modulating regimes are reported here for EI networks
for the first time. This description of the two groups of EI networks can be extended to
a chain of coupled and spatially extended EI networks. Such a description could help
us understand the propagation of beta waves that was observed in the motor cortex
of the monkey during motor preparation[Rubino et al., 2006]. Future work would
be to compare the data obtained in the adaptive rate and the network simulations
of the spatially extended chain to the exact experimental data and to assess how
much of the experimental data can be reproduced by our models. These models also
suggest experiments to observe if the system goes from synchrony to desynchrony upon
the reduction of excitatory coupling between two areas, perhaps in a mutant species
which lacks these long range connections. Moreover, recent studies in mice show that
somatostatin (SOM) interneurons are required for long-distance coherence of gamma
waves in the visual cortex [Veit et al., 2017]. These hypothesis could be tested in our
model to see if the system goes from a desynchronized regime to a synchronized regime
upon the addition of long-range E-I coupling. It also suggests to study refined models
with different types of interneurons instead of clamping them into a single cell group
as we have done here for simplicity.

In the second half of the thesis i.e. chapter 4 and chapter 5, we have used rate
models to study the phenomenon of sensory adaptation, particularly that of the motion
after effect in the zebrafish larva. With our simple model whose parameters were
extracted from the experimental data, we were able to capture a lot of the features
of the MAE phenomenon. The model, however, assumes the presence of a rhythmic
input that generates the periodic eye movement. Future perspectives include finding
the region in the zebrafish larva where this input is generated and integrating it in the
framework of this model to build a more integrated description of the eye movements
in the zebrafish larva. The study of other visual illusions such as bistable perception
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seems also very promising and it is a line of work that we hope to pursue.
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Sujet : Dynamique des réseaux neuronaux.

Résumé : Dans cette thèse, nous étudions le vaste domaine des neurosciences à travers
des outils théoriques, numériques et expérimentaux. Nous étudions comment les modèles
à taux de décharge peuvent être utilisés pour capturer différents phénomènes observés
dans le cerveau. Nous étudions les régimes dynamiques des réseaux couplés de neurones
excitateurs (E) et inhibiteurs (I): Nous utilisons une description fournie par un modèle à
taux de décharge et la comparons avec les simulations numériques des réseaux de neurones
à potentiel d’action décrits par le modèle EIF. Nous nous concentrons sur le régime où le
réseau EI présente des oscillations, puis nous couplons deux de ces réseaux oscillants pour
étudier la dynamique résultante. La description des différents régimes pour le cas de deux
populations est utile pour comprendre la synchronisation d’une chaine de modules E-I et
la propagation d’ondes observées dans le cerveau. Nous examinons également les modèles
à taux de décharge pour décrire l’adaptation sensorielle: Nous proposons un modèle de ce
type pour décrire l’illusion du mouvement consécutif («motion after effect», (MAE)) dans
la larve du poisson zèbre. Nous comparons le modèle à taux de décharge avec des données
neuronales et comportementales nouvelles.

Mots clés : Réseaux de neurones, modèles de taux, oscillations, poisson zèbre, adaptation,
neurosciences computationnelles, physique statistique

Subject : Dynamics of Neuronal Networks

Abstract : In this thesis, we investigate the vast field of neuroscience through theoretical,
numerical and experimental tools. We study how rate models can be used to capture
various phenomena observed in the brain. We study the dynamical regimes of coupled
networks of excitatory (E) and inhibitory neurons (I) using a rate model description and
compare with numerical simulations of networks of neurons described by the EIF model.
We focus on the regime where the EI network exhibits oscillations and then couple two of
these oscillating networks to study the resulting dynamics. The description of the different
regimes for the case of two populations is helpful to understand the synchronization of a
chain of E-I modules and propagation of waves observed in the brain. We also look at
rate models of sensory adaptation. We propose one such model to describe the illusion of
motion after effect in the zebrafish larva. We compare this rate model with newly obtained
behavioural and neuronal data in the zebrafish larva.

Keywords : networks of neurons, rate models, oscillations, zebrafish, adaptation, compu-
tational neuroscience, statistical physics


