
HAL Id: tel-01745488
https://theses.hal.science/tel-01745488

Submitted on 28 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient behavior and role of barriers in the North
Chile - South Peru seismic gap

Jorge Jara

To cite this version:
Jorge Jara. Transient behavior and role of barriers in the North Chile - South Peru seismic gap. Earth
Sciences. Université Grenoble Alpes, 2018. English. �NNT : 2018GREAU002�. �tel-01745488�

https://theses.hal.science/tel-01745488
https://hal.archives-ouvertes.fr


 

THÈSE 
Pour obtenir le grade de 

DOCTEUR DE LA  
COMMUNAUTE UNIVERSITÉ GRENOBLE ALPES 
Spécialité : Terre Solide (CETSOL) 
Arrêté ministériel : 25 mai 2016 

 
Présentée par 

Jorge JARA 
 

Thèse dirigée par Anne SOCQUET, Enseignant-Chercheur, UGA 
 
préparée au sein du Laboratoire Institut des Sciences de la Terre   
dans l’École Doctorale Terre, Univers, Environnement  

 
Comportement transitoire et role des 
barrières dans la lacune sismique Nord Chili 
– Sud Pérou 
 
Transient behavior and role of barriers in 
the North Chile – South Peru seismic gap 

 
 
 
Thèse soutenue publiquement le 1 Mars 2018, 
devant le jury composé de :  

 
Monsieur Raúl Madariaga 
Professeur Emérite, École Normale Supérieure de Paris, Rapporteur 
Monsieur Jean-Mathieu Nocquet 
Directeur de Recherche, IRD – Géoazur, Université de Nice – Sophia 
Antipolis, Rapporteur, Président du Jury 
Monsieur Antonio Avallone 
Chargé de Recherche, INGV – Istituto Nazionale di Geofisica e 
Vulcanologia, Examinateur 
Monsieur Stéphane Mazzoti 
Professeur des Universités, Géosciences Montpelier, Université 
Montpellier 2, Examinateur 
Madame Marianne Métois 
Maîtresse de Conferences, LGLTPE, Université de Lyon, Examinatrice 
Madame Anne Socquet 
Physicienne des Observatoires, CNAP – ISTerre – UGA, Directrice de 
Thése 



To my uncle Koke
and my dear Nona

i



Abstract

The aim of this Ph.D. thesis is to have a better comprehension of the interactions between cou-
pling, slow slip events (SSEs) and the seismic ruptures in subduction zones. This work focuses on
the North Chile - South Peru subduction zone that has been recognized as a mature seismic gap.
Thus, the region has been the target of an important international effort in geophysical instrumenta-
tion (GPS and seismological stations), since the mid-2000s. The region has been affected by several
well-registered earthquakes, that makes it good case to study the earthquake preparation phase and
the relationship between coupling, SSE and seismic rupture.

The 65 stations available in the region have been processed in double differences using the
GAMIT-GLOBK software in the period 2000 - 2014. The GPS displacement time series have been
analyzed and the associated displacements to the different stages of the seismic cycle as well as
seasonal signals have been modeled.

The analysis of the tendencies in the GPS time-series evidences a change in the velocity field
before and after the Tarapaca slab-pull earthquake occurrence (Mw 7.8) in June 2005, in the range
of latitude affected by Iquique earthquake (Mw 8.1) in 2014. This velocity change is associated
with a change in the shallow (z < 40 km) and deep (z > 80 km) seismicity rates. The analysis of
the declustered catalog shows that the velocity change observed affects the background seismicity
as well, that often seen as a proxy for the tectonic loading. Finally, we find interactions between
shallow and deep seismicity, that may play an important role in the interface earthquakes prepa-
ration phase. At a shorter time scale, the time series show another change in velocity 8 months
before Iquique earthquake. Models indicate that the velocity change corresponds to an SSEMw 6.5,
mainly aseismic, corresponding to the long preparation phase of the earthquake.

The short-term GPS velocity variations have also been analyzed on residual signal. It allows
identifying, thanks to a matched-filter, 41 small SSEs during the interseismic period. These events
are localized mostly in the deeper part of the seismogenic zone, in areas where the coupling is low
(38% of SSEs where φ < 0.25) or with intermediate values (27% of SSEs where 0.25 < φ < 0.75). It
suggests that the slip in these regions is produced in burst way. Some of those events are correlated
with peaks of seismic activity, especially at intermediate depths.

Finally, the kinematic rupture process of Iquique earthquake process and its biggest aftershock
are studied, employing a combination of high-rate GPS and strong motion data. The static dis-
placements are inverted to characterize the slip. This static solution is used as apriori information
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for a sequence of kinematic inversions in the frequency domain. The results show that both events
have a bimodal slip distribution, segmented along dip. The lateral extension of the mainshock is
centered on a forearc offshore basin associated with a gravity anomaly, and may be controlled by
tectonic structures of the upper crust. The aftershock is located in an area with strong Coulomb
Stress Changes induced by the mainshock, suggesting that it was triggered by the mainshock.

Thanks to the combination of geodetic and seismological data, this thesis provides a detailed vi-
sion of the processes involved during the Iquique earthquake and the previous decades. The research
prospects raised by this work are numerous, particularly on the possibilities of refined observations
of the phenomena associated with the seismic cycle and the preparation of large subduction earth-
quakes.
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Résumé

Ce travail de thèse vise à mieux comprendre les interactions entre couplage, glissement lent et
rupture sismique en contexte de subduction. L’objet d’étude retenu est la subduction Nord Chili
– Sud Pérou, qui a été reconnue comme une lacune sismique mature et qui, en conséquence, a
fait l’objet d’un important effort international d’instrumentation géophysique (stations GPS et sis-
mologiques) depuis le milieu des années 2000. Cette zone a récemment été affectée par plusieurs
tremblements de terre qui ont été bien enregistrés, ce qui en fait une cible bien adaptée pour étudier
les mécanismes de préparation des grands séismes de subduction, et le lien entre couplage, glisse-
ments lents et rupture sismique.

Les 65 stations GPS installées dans la zone ont été traitées en doubles différences avec le logi-
ciel GAMIT-GLOBK sur la période 2000-2014. Les séries temporelles de position obtenues ont été
analysées et les déplacements associés aux différentes phases du cycle sismique et aux mouvements
saisonniers ont été modélisés.

L’analyse des tendances dans les séries temporelles GPS ont permis de mettre en évidence un
changement de vitesse intersismique avant et après le séisme en slab-pull de Tarapacà (Mw 7.8) de
juin 2005, dans la région qui a été rompue la le séisme d’interface d’Iquique (Mw 8.1) en 2014. Ce
changement de vitesse décennal est associé à un changement de taux de sismicité superficielle (z < 40
km) et profonde (z > 80 km). Le déclustering du catalogue de sismicité indique que ce changement
de taux, affecte également la sismicité de fond, caractéristique du taux de chargement. Enfin, nous
avons pu mettre en évidence que des interactions existent entre sismicité profonde et superficielle,
et pourraient jouer un rôle important dans la préparation des grands séismes d’interface. A plus
courte échelle de temps, les séries temporelles ont montré un autre changement de vitesse 8 mois
avant le séisme d’Iquique. La modélisation indique que ce changement correspond à un glissement
lent de Mw 6.5, essentiellement asismique, correspondant à la phase de nucléation long-terme de ce
tremblement de terre.

Nous avons également analysé les variations court terme dans les signaux non-modélisés des séries
temporelles GPS, qui ont permis d’identifier, grâce à une méthode de ‘Template Matching’ 41 petits
événements de glissement lent pendant la période de chargement intersismique. Ces événements sont
basés pour leur grande majorité en dessous de la zone sismogénique dans des zones de couplage très
faible (38% de SSEs où φ < 0.25), ou de couplage intermédiaire (27% de SSEs où 0.25 < φ < 0.75),
indiquant que le glissement se fait par relâchements successifs. Souvent ces événements transitoires
sont corrélés à des pics d’activité sismique, notamment profonde.
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Enfin, la cinématique de la source du séisme d’Iquique (2014/04/01, Mw 8.1) et de sa plus grosse
réplique (2014/04/03, Mw 7.7) a été étudiée en combinant données GPS à haute fréquence et don-
nées accélérométriques. Les déplacements statiques ont été inversés pour caractériser la répartition
du moment géométrique. Cette source statique a ensuite été utilisée comme prior pour une séquence
d’inversions cinématiques en fréquence. Les résultats ont montré que ces deux séismes présentent
une distribution de glissement bimodale, segmentée selon la profondeur. L’extension latérale du choc
principal correspond à celle d’un bassin submergé d’avant arc associé à une anomalie de gravité, et
pourrait être contrôlée par les structures tectoniques de la croûte supérieure. La réplique principale
est située dans une zone de fort changement de contrainte de coulomb induit par le choc principal,
ce qui suggère qu’elle a été déclenchée par celui ci.

Grâce à une combinaison originale de données géodésiques et sismologiques, ce travail de thèse
offre donc une vue détaillée des processus en jeu au cours du séisme d’Iquique et des décades qui
l’ont précédé. Les perspectives de recherches soulevées par ce travail sont nombreuses au Chili et
au-delà, notamment sur les possibilités d’observations raffinées des phénomènes associés au cycle
sismique et à la préparation des grands tremblements de terre de subduction.
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Resumen

El objetivo de esta tesis de doctorado es tener una mejor comprensión de las interacciones entre
el acoplamiento, los deslizamiento lentos (SSEs) y las rupturas sísmicas, en un contexto de zonas
de subducción. Este trabajo se centra en la subducción del Norte de Chile y sur del Perú, que
por un largo tiempo ha sido reconocida como una laguna sísmica madura y que, en consecuencia,
ha sido objeto de un gran esfuerzo internacional de instrumentación geofísica (estaciones de GPS
y sismológicas) desde mediados de la década de los 2000. Esta región ha sido afectada por varios
terremotos que han sido bien registrado, lo que la transforma en un buen lugar para el estudio de
los mecanismos de preparación de grandes terremotos y la relación entre el acoplamiento, SSEs y
rupturas sísmicas.

Las 65 estaciones de GPS disponibles en la región son procesadas en dobles diferencias con el
programa GAMIT-GLOBK en el periodo 2000 - 2014. Las series temporales de posición que se
obtienen han sido analizadas y los desplazamientos asociados a las diferentes fases del ciclo sísmico
y señales estacionales han sido modeladas.

El análisis de las tendencias en las series de GPS ha permitido mostrar la evidencia de un cambio
de velocidad intersísmica antes y después del sismo slab-pull de Tarapacá (Mw 7.8) en junio 2005,
en la misma región que ha sido afectada por el sismo de interfaz de Iquique (Mw 8.1) en 2014. Este
cambio en la velocidad decadal está asociado a un cambio en la tasa de sismicidad superficial (z <
40 km) y profunda (z > 80 km). El declustering del catalogo de sismicidad indica que este cambio en
la tasa, afecta de igual manera a la sismicidad de fondo, que es una característica de la tasa de carga
de la placa. Finalmente, hemos mostrado que existen interacciones entre la sismicidad profunda
y superficial, que podrían desempeñar un papel importante en la fase de preparación de grandes
terremotos de interfaz. En una escala de tiempo más corta, las series temporales mostraron otro
cambio de velocidad 8 meses antes del terremoto de Iquique. El modelo de estos datos, indica que
el cambio corresponde a un deslizamiento lento de Mw 6.5, esencialmente asísmico, que corresponde
a la fase de preparación a largo plazo de este terremoto.

Se han analizado también las variaciones de corto plazo en las señales no modeladas de las series
temporales de GPS. Esto ha permitido identificar, gracias a la aplicación de un matched-filter, 41
pequeños eventos de deslizamiento lento durante el periodo de carga intersísmica. Estos eventos se
encuentran localizados en su mayoría en la parte profunda de la zona sismogénica, en áreas donde el
acoplamiento es muy bajo (38% de SSEs donde φ < 0.25) o con valores intermedios (27% de SSEs
donde 0.25 < φ < 0.75), lo que indica que el deslizamiento de produce por relajamientos sucesivos.
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Algunos de estos eventos transitorios se encuentran correlacionados con peaks de actividad sísmica,
especialmente de sismicidad de profundidad intermedia.

Finalmente, se estudia la cinemática de la ruptura del sismo de Iquique (2014/04/01, Mw 8.1) y
su mayor réplica (2014/04/03, Mw 7.7) utilizando una combinación de datos GPS de alta frecuencia
y de aceleración. Los desplazamientos estáticos son invertidos para caracterizar la repartición de
slip. Esta solución estática es utilizada como un modelo apriori para una secuencia de inversiones
cinemáticas en el dominio de la frecuencia. Los resultados muestran que los dos sismos presentan una
distribución de slip bimodal, segmentada en profundidad. La extensión lateral del sismo principal
se encuentra centrada en una cuenca de antearco asociada a una anomalía de gravedad y que podría
ser controlada por las estructuras tectónicas de la corteza superior. La réplica está situada en una
zona de fuerte cambio de esfuerzos de Coulomb inducido por el evento principal, lo que sugiere que
fue gatillada por este.

Gracias a la combinación de datos geodésicos y sismológicos, este trabajo de tesis ofrece una
visión detallada de los procesos involucrados durante el terremoto de Iquique y en las décadas
que lo precedieron. Las perspectivas de investigación planteadas por este trabajo son numerosas,
particularmente en las posibilidades de observaciones refinadas de fenomenos asociados tanto con el
ciclo sísmico, como la preparación de grandes terremotos de subducción.
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Chapter 1

General Introduction

Subduction zones are the most tectonically active regions worldwide, being responsible of the
largest historical earthquakes of seismological history. Lay [2015] points out that, in the period
between 1900 until 2014, almost all of the great earthquakes (Mw ≥ 8.0) take place in subduction
zones, affecting millions of lives around the world. Only during the 50’s and 60’s, 13 large earth-
quakes had occurred in subduction zones, including the biggest instrumentally ever recorded events:
Kamchatka 1952 (Russia, Mw 9.2), Valdivia 1960 (Chile, Mw 9.5) and Alaska 1964 (USA, Mw 9.2).
Since then, and for approximately 40 years of relative calm characterized by low earthquake activity,
it is in the first decade of the 21st century that a significant seismic reactivation of the Earth was
observed, again with a sequence of large events generated in now sadly famous subduction zones:
Sumatra 2004 (Indonesia, Mw 9.2) [e.g., Ishii et al., 2005; Vigny et al., 2005; Ammon et al., 2005;
Kanamori , 2006; Chlieh et al., 2007; Lorito et al., 2010], Maule 2010 (Chile, Mw 8.8) [e.g., Moreno
et al., 2010; Delouis et al., 2010; Lorito et al., 2011; Vigny et al., 2011; Ruiz et al., 2012; Lin et al.,
2013] and Tohoku-Oki 2011 (Japan,Mw 9.1) [e.g., Simons et al., 2011; Suzuki et al., 2011; Yao et al.,
2011; Ozawa et al., 2011; Asano and Iwata, 2012]. On the single Central Andes subduction zone, 4
earthquakes occurred in the last 28 years: Arequipa 2001 (Peru, Mw 8.1) [e.g., Ruegg et al., 2001;
Melbourne and Webb, 2002; Tavera et al., 2002; Perfettini et al., 2005; Pritchard et al., 2007], Pisco
2007 (Peru, Mw 8.0) [e.g., Tavera and Bernal , 2008; Biggs et al., 2009; Perfettini et al., 2010; Sladen
et al., 2010], Iquique 2014 (Chile, Mw 8.1) [e.g., Ruiz et al., 2014; Schurr et al., 2014; Hayes et al.,
2014; Yagi et al., 2014; Duputel et al., 2015] and Illapel 2015 (Chile, Mw 8.3) [e.g., Ruiz et al., 2016;
Melgar et al., 2016; Tilmann et al., 2016; Klein et al., 2017]. However, it results interesting noting
that although the rate of major earthquakes has increased over the past 20 years, they have not
managed to liberate even half of the seismic moment released in the decades of the 50’s and the 60’s
[Ammon et al., 2010].

Following these observations, the understanding of the physical behavior of subduction zones is
critical for seismic hazard. The better comprehension of this physical phenomenon eventually allows
to the local authorities and the engineering community to propose adequate strategies to mitigate its
effects. For this reason, the scientific community has focused great efforts on studying these critical
zones, by installing extensive permanent networks in different subduction zones around the world.
And it is thanks to this great effort, that seismology and space geodesy have developed in a very
fast way during the last two decades, generating extensive databases, with better standardization
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processes and open to the public.

From the different networks installed around the world, in particular, the GPS networks provide
a measure of the spatial and temporal evolution of the deformation of the crust. This deformation
mapping allowed to derived the interseismic locking level in subduction zones in between large earth-
quake [e.g., Chlieh et al., 2011; Loveless and Meade, 2011; McCaffrey , 2014; Nocquet et al., 2014;
Métois et al., 2016; Nocquet et al., 2016; Villegas-Lanza et al., 2016a]. These interseismic locking
maps, also known as coupling maps, suggest that the interface of a subduction zone is not loading
homogeneously (by displaying several patches on the same area with different coupling levels) and
suggest a segmentation of the seismogenic zone. The highly locked areas have shown to be well
correlated with recent seismic ruptures and previously calculated coupling maps [e.g., Moreno et al.,
2010; Loveless and Meade, 2011; Nocquet et al., 2016; Métois et al., 2016; Klein et al., 2017], and
are often interpreted as asperities with a larger likelihood of breaking in the future. On the other
hand, the areas with low locking values are often interpreted as zones acting as a barrier to the
propagation of seismic ruptures, affected by slow creep, that seem to occur on a transient manner
and with a limited release of seismic energy [Avouac, 2015].

The coupling factor is a kinematic view of the state of locking of the subduction. Therefore,
coupling maps are not able to image all the complexity of the subduction interface, and that their
relationship with the mechanics of the interface remains an open question [e.g., Moreno et al., 2010;
Kaneko et al., 2010; Hetland and Simons, 2010; Kanda et al., 2013; Métois et al., 2016]. Despite of
these limitations, these maps have shown to be helpful to locate the locked or creeping sections, but
do not provide the details of the interface processes.

Several authors have observed that the interseismic period is not just a quiescent period waiting
for a new earthquake to hit, but a period with smaller events, sometimes difficult to detect, such
as aseismic transients or slow slip events [e.g., Linde et al., 1996; Dragert et al., 2001; Lowry et al.,
2001; Frank , 2016; Melnick et al., 2017]. Both, aseismic transients and slow slip events can range
a wide spatio-temporal spectrum [Obara and Kato, 2016], with amplitudes that can sometimes go
below the observations noise level [Frank , 2016; Rousset et al., 2017] making them very difficult to
detect with standard techniques. To try overcoming this problem, seismologists have studied the
seismic noise signals through cross-correlation techniques, resulting in seismic tomography images
[e.g., Shapiro et al., 2005], detection of tectonic tremors [e.g., Obara, 2002; Dragert et al., 2004] or
low frequency earthquake [e.g., Shelly et al., 2006; Ide et al., 2007a] based on noise records. In some
regions around the world (e.g. Cascadia, Mexico, Japan) when tectonic tremors and low-frequency
earthquakes are detected, concurrent aseismic transients and/or slow slip events have also been re-
ported using geodetic data. This therefore suggests that creep most probably occurs in burst way,
and that small transient slip signals are likely hidden in the GPS data. This raises methodological
challenges to analyze GPS noise and extract transient signals [Frank , 2016; Rousset et al., 2017],
following the seismologists’ approach of the seismic noise analysis. A better characterization of the
variability of these transients is indeed necessary to better understand the mechanisms that control
them.
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The interactions between seismic and aseismic slip still remain an open question, and critically
the understanding of the preparation phase of earthquakes. Laboratory experiments show that
earthquakes feature a nucleation phase [e.g., Dieterich, 1992; Ohnaka, 2003] that has been associ-
ated with aseismic deformation [McLaskey and Lockner , 2014; Scuderi et al., 2016]. This resulted
in physical models capable to explain the seismic rupture initiation [Ellsworth et al., 1995; Dodge
et al., 1996]. For instance, one model assumes that the accelerated moment release observed before
large earthquakes [Bowman and King , 2001] is triggered by a slow slip event on the fault interface
[Dodge et al., 1996; Bouchon et al., 2013; Ruiz et al., 2014]. The alternative model proposes that
a slow cascade of failures may eventually trigger the mainshock [Dodge et al., 1996]. However, all
these models of the earthquake precursory phase have been studied mostly using seismological data
[Kanamori and Cipar , 1974; Cifuentes and Silver , 1989; Ellsworth et al., 1995; Dodge et al., 1996;
Bouchon et al., 2011, 2013], while the geodetic data are less employed, due to the lack of resolution.
The link between the foreshock activity and transient phenomena has never been directly established
for periods exceeding a few weeks, although it has been suggested that is last for a longer period
of time [Obara and Kato, 2016]. Similarly to small transient detection issues, pushing the limits of
detection of precursory signals in geodetic time series is probably a key issue to better document
and understand the preparation of a great earthquake and relate it to the foreshock activity.

A related question is what is the driving mechanism of these precursory slow slips before a
megathrust. Geodetic and seismological observations show that intermediate depth seismicity has a
big impact on the processes occurring on the seismogenic interface and the deformation of the upper
plate [Durand et al., 2014; Bouchon et al., 2016; Delbridge et al., 2017; Lay et al., 2017]. Notably
Bouchon et al. [2016] suggest that the slab seems to deform and plunge prior to great interface
earthquakes. This suggests that the slab has an important role in the preparation phase of earth-
quakes, implying that the impact of slab-pull earthquakes on the seismogenic interface and shallow
seismicity should be further investigated.

On the rupture process itself, static and kinematic models are commonly used to study the seis-
mic rupture [e.g., Hartzell and Heaton, 1983; Cotton and Campillo, 1995; Vigny et al., 2011; Simons
et al., 2011; Duputel et al., 2015]. The information provided by the kinematics models can be inter-
preted on the basis of the asperity and barrier models [Das and Aki , 1977; Aki , 1979; Kanamori ,
1986; King , 1986], providing useful insights on the segmentation of the seismogenic zone that can
be compared with structural complexities mapped independently [Aki , 1979; King , 1986; Song and
Simons, 2003; Wells et al., 2003; Audin et al., 2008; Perfettini et al., 2010; Carena, 2011; Contreras-
Reyes and Carrizo, 2011; Kopp, 2013]. A good understanding of the seismogenic zone segmentation
is of critical importance since it is a first-order element for seismic hazard studies [Carena, 2011;
Pagani et al., 2014; Drouet et al., 2016]. A detailed mapping of the seismogenic segmentation is a
prerequisite for a better understanding of the physical conditions that contribute to enhance or end
the seismic ruptures (slip deficit, state of stress, friction or structural complexities), and to evaluate
the complementarity and potential interactions with the pre-existing slip/locking pattern.
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This PhD research work is particularly motivated by a better characterization of the behavior of
the creeping zones on the subduction interface, and of their relationships with the seismic rupture.
An objective is to gain in time-space resolution of the seismic/aseismic deformation: the slow slip
that is likely occurring in the low coupling zones on one side (notably assess if it is released in a
steady state manner or through a series of bursts), and the seismic ruptures on the other side. To do
this, we use geodetic and seismological data in a complementary ways to characterize the occurrence
of slow slip and seismic rupture on the subduction interface. First, we look at the transient and
spatially consistent movements hidden in the GPS time-series in order to detect slow slips on the
subduction interface. Second, we use models describing the seismicity recurrence that separate the
seismicity into “triggered” events versus “background” events that do not result from the triggering
by a previous earthquake [e.g., Ogata, 1988; Marsan et al., 2017]. This background seismicity is
usually considered to be a good proxy of the tectonic loading in a specific area, so that any impor-
tant deviation from the average trend can be associated with slow slip events and fluid or magmatic
migrations [Marsan et al., 2013; Reverso et al., 2015, 2016; Marsan et al., 2017]. This makes it
possible to detect aseismic slip using geodetic or seismological data independently. Eventually the
relationship between both dataset is analyzed, in order to assess whether both datasets are able to
detect similar processes and to evaluate their complementary and potential interactions. Third, we
characterize the source of great subduction earthquakes, by inverting kinematically high-rate GPS
and strong motion data in the frequency domain.

South Peru - North Chile has been selected as the study case because it is an exceptional natural
laboratory to explore the different questions we want to address, and because good quality and
amount of seismological and geodetic data are publicly available for research purposes. This region
has been considered as a seismic gap for a long time [Kelleher , 1972; Nishenko, 1985; Comte and
Pardo, 1991], with strong evidence that the area is segmented from geodetic coupling maps [Li et al.,
2015; Métois et al., 2016]. Moreover, the occurrence of the slab-pull Tarapaca earthquake (Mw 7.8)
in 2005 in the same latitude range as the interplate Iquique earthquake (Mw 8.1, 2014) that hap-
pened 9 years later allows to study the relationship between deep and shallow processes. Also, the
Iquique (Mw 8.1, 2014) earthquake was preceded by an important foreshock activity [Ruiz et al.,
2014; Schurr et al., 2014; Bedford et al., 2015; Cesca et al., 2016; Kato et al., 2016] that have been
well monitored by cGPS and seismological stations. It therefore represents an excellent opportunity
to study the precursory phase, as well as the rupture process and its relationship with the foreshocks
sequence, the segmentation of the seismogenic zone and the coupling maps available in the region.

The different questions discussed along this section are further discussed in this manuscript, be-
ginning with a review of the subduction and seismic cycle state of the art in Chapter 2 and about the
Central Andes geodynamic settings in Chapter 3. The methodologies employed to process GPS data
and data quality assessment are explained in Chapter 4. Chapter 5 addresses the long-term shallow
and deep seismicity interactions, together with the potential relationship with aseismic deformation
in the form of a paper published in GRL, together with its supplementary material. Chapter 6 covers
the detection of transient deformations in South Peru - North Chile area, by analyzing and charac-
terizing its spatiotemporal behavior. Chapter 7 details the preparation phase of Iquique (Mw 8.1,
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2014) earthquake through a published paper in GRL and supplementary material. Chapter 8, to
be submitted to EPSL, describes the rupture process for Iquique (Mw 8.1, 2014) earthquake and its
largest aftershock, discussing the segmentation revealed by the event. Finally, general conclusions
together with the potential future work and perspectives are discussed in Chapter 9.
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Chapter 2

Subduction Zones and Seismic Cycle:
State of the Art

2.1 Phenomenological Description of the Seismic Cycle

After the big earthquake in San Francisco (California, USA) in 1906, Reid [1910] proposed a
model to explain how this event occurred. The deeper part of the San Andreas fault would have
accumulated a slip of several meters as an effect of the continuous movement of the North American
plate and Pacific plates. This phenomenon generated an elastic deformation at the surface. When
the shear stress produced reached a maximum threshold, the fault broke seismically. This theory
has been called Elastic Rebound, and constitutes the most basic view of the Seismic Cycle. This
concept describes how the tectonic forces are accumulated and relaxed over time.

When Reid [1910] proposed the Elastic Rebound Theory, the seismic cycle was seen as a simple
as two steps phenomenon: the interseismic and coseismic phases (Figure 2.1a). With the develop-
ment of the space geodesy during the 90’s and 2000’s, different phenomena were discovered such as
postseismic deformation [e.g., Heki et al., 1997; Peltzer et al., 1998; Klotz et al., 2001; Jonsson et al.,
2003; Hsu et al., 2006; Wang et al., 2007], slow slip events (SSEs) [e.g., Dragert et al., 2001; Lowry
et al., 2001; Rogers and Dragert , 2003; Dragert et al., 2004] and small transients of deformation (Fig-
ure 2.1b and c) [e.g., Mavrommatis et al., 2014; Frank , 2016; Rousset et al., 2017], complexifying
the vision of the earthquake cycle.

2.1.1 Interseismic Phase

The interseismic phase is the longest phase of the seismic cycle. It can last decades to centuries
and up to millennia, depending on the characteristics of the region considered, taking ∼90% of cycle’s
time [Ruegg , 1994; McCaffrey , 2007]. During the interseismic period, the fault zone is usually locked
(not slipping) up to a certain degree, generating a slip deficit at the plate boundaries. This generates
a tectonic loading stress accumulation on the seismogenic contact and produces deformation at the
surface that can be, at the first order, modeled through a slipping dislocation in an elastic medium.
In subduction zones, the deformation is characterized by a horizontal movement going away from
the trench and with velocities varying from mm/yr to cm/yr (Figure 2.2a). The vertical deformation
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component is characterized by a subsidence between the coast and the trench and by uplift onshore
(Figure 2.2a). The location of the maximum subsidence corresponds at the first order to the upper
limit of the locked region on the subduction interface, while the hinge line corresponds at the first
order to the lower limit of the locked portion on the interface.
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Figure 2.1: Schematic evolution of the seismic cycle. (a) Simplest seismic cycle proposed by Reid [1910] in San
Andreas fault after the occurrence of 1906 earthquake. (b) Image of the seismic cycle during the 90’s and early 2000,
when with the development of the GPS, postseismic phase and SSE were detected. (c) A current picture of the seismic
cycle, where the interseismic and preseismic (nucleation) phase seems to be more complex due to detection of aseismic
slip. The coseismic stage is represented by a step on the plots and its associated seismogram for each event. Figure
modified from Gardonio [2017].
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2.1.2 Coseismic Phase

The coseismic phase corresponds to the occurrence of a large earthquake. The seismic rupture
is associated with a stress drop that release part (or all) the elastic stress accumulated during the
interseismic. It lasts from seconds to minutes. The horizontal deformation pattern is inverted with
respect to the one observed during the interseismic phase, following a movement towards to the
trench (Figure 2.2b). The vertical pattern is also opposed: uplift in the offshore forearc and subsi-
dence in the onshore forearc (Figure 2.2b). For great earthquakes, the displacement recorded at the
surface ranges from cm to m.

Postseismic Deformation

Coseismic Deformation

Interseismic Deformation(a)

(b)

(c)

Figure 2.2: Scheme of deformation sense (horizontal and vertical patterns) in subduction zones for each step of
the seismic cycle (interseismic, coseismic and postseismic phases, modified from Wang [2007]).

2.1.3 Postseismic Phase

The postseismic period is the transition between the coseismic and interseismic phases. It is all
the period after the earthquake occurrences up to the interseismic loading is reached again, with a
duration ranging from days to decades. Three different mechanisms of stress relaxation have been
described to explain this phenomenon:

• Afterslip: It occurs through a slow slip on the fault plane in the areas surrounding the
seismic rupture, especially in those with a small amount of coseismic slip. It can liberate a
seismic moment similar to the mainshock, having a duration of days to years [Heki et al., 1997;
Bürgmann et al., 2001].

• Viscoelastic Relaxation: It is a long-term (year and decades) mechanism, where the upper
mantle responds in a viscoelastic manner to the stresses produced by the coseismic rupture.
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This phenomenon has, for example, been observed in the area struck by the Valdivia earthquake
(Mw 9.5, 1960), and has been lasting more than 50 yr [Klotz et al., 2001; Khazaradze et al.,
2002; Wang , 2007; Klein et al., 2016].

• Poroelastic Rebound: This phenomenon is caused by pore fluid reequilibration flows, in-
duced by the coseismic stress changes [Peltzer et al., 1998; Jonsson et al., 2003]. This phe-
nomenon is usually seen at low depths, and has essentially been described for strike-slip or
normal faults. If it happens in subduction zones, it should rather affect the shallow area close
to the trench that is submerged.

The surface deformation depends on the phenomena controlling the process. In the afterslip case,
the movement follows the same direction observed during the coseismic phase, but with a lower mag-
nitude and slowly regarding the propagation, very concentrated in the rupture boundaries. In the
case of viscoelastic relaxation, the stations far away from the trench exhibit a movement towards
the trench, while the stations closer to the trench show after some months/years a movement similar
to the interseismic phase[Klotz et al., 2001; Khazaradze et al., 2002; Wang , 2007; Klein et al., 2016],
that is likely associated with the relocking of the subduction interface [Remy et al., 2016].

2.2 Recent Observations on Faults, Complexities During the Seis-
mic Cycle

2.2.1 Aseismic Transients in the Earthquake Cycle

The development of continuously recording GPS networks during the 90’s allowed the discovery
of aseismic transients during the seismic cycle. Although the postseismic phase is considered as a
transient phenomenon of deformation, we focus below on describing the transients occurring in the
interseismic or preseismic periods.

Slow Slip Events (SSEs)

Also called silent earthquakes, they are slip events occurring during the interseismic period
without classical seismic radiation but producing surface deformation ranging from mm to cm, and
with a duration going from days to years [Schwartz and Rokosky , 2007; Ide et al., 2007b; Peng and
Gomberg , 2010; Beroza and Ide, 2011] (e.g., Figure 2.3a). These phenomena have been detected in
many subduction zones around the world such as Nankai [Hirose et al., 1999; Ozawa et al., 2001;
Miyazaki et al., 2003], New Zeland [Douglas et al., 2005; Wallace and Beavan, 2006; McCaffrey
et al., 2008; Wallace and Beavan, 2010], Cascadia [Dragert et al., 2001; Rogers and Dragert , 2003],
Mexico [Lowry et al., 2001; Larson et al., 2004; Vergnolle et al., 2010; Radiguet et al., 2011, 2012]
or Ecuador-Peru [Vallee et al., 2013; Villegas-Lanza et al., 2016b; Vaca et al., 2017]. Those SSEs
are often associated with the occurrence of non-tectonic tremors [Obara, 2002; Dragert et al., 2004;
Ide et al., 2007a; Schwartz and Rokosky , 2007; Bartlow et al., 2011] or low-frequency earthquakes
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(LFEs) [Shelly et al., 2006; Ide et al., 2007b; Beroza and Ide, 2011; Frank , 2016], suggesting that
SSEs are occurring on the deeper part of the seismogenic zone. Some shallower SSEs also has been
reported, mainly associated with superficial tremors or during a seismic swarm occurrence [Walter
et al., 2011; Vallee et al., 2013; Villegas-Lanza et al., 2016b].

(a) (b)

(c)
(d)

Figure 2.3: Examples of Transients Deformation observed with GPS. (a) An example of an SSE detected in the
deeper part of Cascadia subduction zone reported by Dragert et al. [2001]. (b) Decadal-scale deformation transient
observed at one GPS station prior to Tohoku-Oki earthquake Mw 9.0 [Mavrommatis et al., 2014]. (c) Short-term
transient deformation (∼10 days) prior to Mw 6.9 earthquake in Valparaiso, Chile (2017) [Ruiz et al., 2017a]. (d) 2
weeks of transient deformation previous to Iquique earthquake Mw 8.1 reported by Ruiz et al. [2014].

Earthquake Preparation Phase

Several efforts have been realized to understand the preseismic phase, by observing different phe-
nomena (aseismic slip or changes in the seismicity rate) or variations in physical properties (wave
propagation, hydrological or electrical parameters), although the question of the mechanism lead-
ing the great earthquakes remains open. A preparation phase of earthquakes has been observed in
laboratory experiments [Dieterich, 1979; Tse and Rice, 1986; Dieterich, 1992; Ohnaka, 2003], that
has been related to aseismic deformation [McLaskey and Lockner , 2014; Scuderi et al., 2016]. The
observations about this phase have been mainly made using seismological data. The first evidence
of this preseismic phase on a subduction zone was done using seismological data before the 1960
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Valdivia earthquake (Mw 9.5) [Kanamori and Cipar , 1974; Cifuentes and Silver , 1989] and for a
Mw 7.7 earthquake in the northern part of Japan [Linde et al., 1988]. Some evidence on strike-slip
faults have also been reported, like in Izmit 1999 earthquake (Turkey, Mw 7.6) [Bouchon et al.,
2011] or US [Ellsworth et al., 1995]. Other preseismic signals observed with seismology include:
acceleration in the background seismicity [Marsan et al., 2013, 2017; Schurr et al., 2014], seismicity
migration [Kato et al., 2012; Kato and Nakagawa, 2014; Kato et al., 2016; Cesca et al., 2016], changes
in the seismicity rate [Bouchon et al., 2013, 2016] and repeaters detection that are interpreted as
aseismic slip occurrences Igarashi et al. [2003]; Uchida et al. [2003]; Kato et al. [2012, 2016]; Meng
et al. [2015]; Yagi et al. [2014]. Two models of seismic rupture initiation are alternatively invoked
to explain these observations [Dodge et al., 1996]. First, a model assuming that the accelerated
moment release observed before the large earthquakes Bowman and King [2001] is triggered by a
slow slip event on the fault interface [Dodge et al., 1996; Bouchon et al., 2013; Ruiz et al., 2014].
Alternatively, a slow cascade of failures may trigger the mainshock [Dodge et al., 1996].

Geodetic observations are more rare. Pritchard and Simons [2006] have reported the occurrence
of a pulse of aseismic deformation using InSAR data that may be responsible for triggering aMw 7.1
earthquake on the north Chile subduction zone. In Guerrero (Mexico), Radiguet et al. [2016] have
shown that the Papanoa earthquake (Mw 7.3, 2014) has been triggered by a slow slip event. The
Iquique earthquake was preceded during ∼20 days by a strong transient signal [Schurr et al., 2014;
Ruiz et al., 2014; Lay et al., 2014; Bedford et al., 2015; Cesca et al., 2016; Kato et al., 2016]. But,
a debate remains on the mechanisms leading to this foreshock activity, notably on the existence
or not of aseismic slip preceding the earthquake. Finally, Mavrommatis et al. [2014] or by Yokota
and Koketsu [2015] have shown decadal-scale deformation transient before Tohoku-Oki earthquake,
where a clear acceleration in the GPS signal over time is observed, leaving open the understanding
the long-term mechanisms controlling the earthquake preparation phase.

Another interesting feature observed recently is related to the slab deformation a large scale be-
fore an earthquake. Durand et al. [2014] have shown in Greece that an increase of the intermediate-
depth seismicity produces a large spread deformation, triggering activity in the shallower part of the
subduction zone and in the upper plate itself. Also, Bouchon et al. [2016] show a precursory seismic-
ity at shallow and intermediate depths, occurring synchronously before recent earthquakes (Maule
Mw 8.8, Tohoku-Oki Mw 9.1, and Iquique Mw 8.1). The reduced magnitude of this precursory ac-
tivity makes direct triggering unlikely but instead suggests a broader slab deformation or plunge
leading to the megathrust rupture. These studies all focus on the pre-earthquake period (relatively
short time), but the long-term mechanisms of shallow-intermediate depths seismicity interactions
are still poorly understood.

Small Interseismic Transients of Deformation

As mentioned in the section about the interseismic stage, new observations have shown that this
period of the earthquake cycle is not constant over time. Recently, Frank [2016] has shown in the
inter-SSE period in Mexico, that some signal is hidden in the GPS noise, giving an idea about the
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complex process of tectonic loading/release. Also in Mexico, [Rousset et al., 2017] have developed
and applied a cross-correlation technique on the GPS time series, detecting 28 small deformation
transients masked in the noise for the period 2005 - 2014. These transients phenomena could be
present in all type of faults, including strike-slip faults. Employing InSAR data, Jolivet et al. [2013]
in Haiyuan fault (China) and Rousset et al. [2016] in the North Anatolian Fault (Turkey), have
found aseismic deformation, where the creep occurs in burst way.

2.2.2 Interseismic Coupling

The GPS networks around the world have caught the deformation process occurring in the
lithosphere since the 90’s, shedding light on the different steps of the seismic cycle. A major drawback
using those datasets is related to the inability to register a complete cycle, having an incomplete view
of the interseismic phase. A kinematic approach has been commonly used to study the interseismic
period to retrieve the interseismic locking (or coupling), that corresponds to the ratio of the slip
deficit in the interseismic period to long-term slip. Following the description given by Avouac [2015],
the interseismic coupling (χi) can be quantified as:

χi = χs + χa (2.1)

where χs is the interseismic coupling that corresponds to the ratio of cumulative seismic slip to
long-term slip. On the other hand, χa is the aseismic slip ratio that corresponds to the ratio of
cumulative aseismic transients (afterslip and SSEs). However, it is important to note that the
“interseismic coupling" here is related to tectonic geodesy and not to the coupling terms used by
seismologists to describe the seismic energy liberated in the interseismic phase [Scholz and Campos,
1995, 2012]. Interseismic coupling maps have been carried out in many places around the world, as:
Japan [e.g., Mazzotti et al., 2000; Loveless and Meade, 2011; McCaffrey , 2014; Johnson et al., 2016],
Chile [e.g., Bevis et al., 2001; Ruegg et al., 2009; Chlieh et al., 2011; Métois et al., 2012, 2013, 2016;
Li et al., 2015; Melnick et al., 2017], Peru - Ecuador [e.g., Chlieh et al., 2011; Nocquet et al., 2014,
2016; Villegas-Lanza et al., 2016a], Kamchatka [e.g., Bürgmann et al., 2005], Cascadia [e.g., Wang
et al., 2003a; Yoshioka et al., 2005] or Indonesia (Sumatra) [e.g., Prawirodirdjo et al., 1997; Simoes
et al., 2004; Vigny et al., 2005; Chlieh et al., 2008] . These maps provide an insight into the state
of the interseismic period, linking the surface deformation with processes occurring at depth. An
interesting result from those maps is the variability of the locking degree along the strike, revealing
that the seismogenic zone is highly segmented [Moreno et al., 2010; Chlieh et al., 2011; Loveless and
Meade, 2011; Rousset et al., 2015; Métois et al., 2016; Melnick et al., 2017]. Nevertheless, although
there is a good first-order correlation between coupling maps and seismic ruptures [e.g., Konca et al.,
2008; Perfettini et al., 2010; Moreno et al., 2010; Loveless and Meade, 2011; Métois et al., 2016; Ruiz
et al., 2016], the relationship between the kinematic coupling and the mechanical properties on the
subduction interface remains as an open question [Métois et al., 2016; Avouac, 2015]. The link
between the kinematic approach and the mechanical modeling is discussed in further detail in the
next section.
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2.3 Frictional Framework

2.3.1 Friction Laws, Earthquakes and Stability Regimenes

Earthquakes occur by the generation and propagation of a fracture, followed by sudden slip along
a pre-existing fault. It corresponds to an instability friction phenomenon, better known as stick-slip
[Brace and Byerlee, 1966]. This behavior leads to understanding the earthquakes as processes mainly
governed by frictional changes.

In the stick-slip mode, the slip starts when the ratio between the shear and normal stress achieves
the static friction (µs), which leads to a drop in frictional resistance until achieving the dynamic
friction (µd) (Figure 2.4a and b). The static friction depends on the surface slip history. If the
surfaces are in static contact under a load for a time t, then µs increases slowly as log(t) [Dieterich,
1972]. Because of the dynamic friction is under a static equilibrium regime (steady-state) depends
on the slip velocity (V ), that is usually related to the materials in contact. The critical distance to
slip Dc, is the distance needed to change the contact properties as the slip velocity.

μs

μd

a)
Friction 
Coe�cient

Slip0 Dc

σ1=μd σn

σ0=μs σn

b)
Stress

0 Dc

σf

c)
ΔV

σ

σc
Stable

Unstable

{
Conditionally

Stable
Slip

Figure 2.4: (a) Friction coefficient as a function of the slip, where the drop occurs at critical distance Dc. (b)
Frictional Stress for the model described in (a) as a function of the slip. (c) Stability Regime, where σ̄c denotes the
critical normal stress to separate the stable and unstable states. (Figures modified from Kanamori and Brodsky [2004]
and Scholz [1998]).

Based on laboratory experiments Dieterich [1979], Ruina [1983] and Rice [1983] determined one
approach commonly used today and known as the Rate-and-State Friction Law, which is described
by:

τ =
[
µ0 + a ln

( V
V0

)
+ b ln

(V0θ

Dc

)]
σ̄ (2.2)

Where:

• τ : Shear Stress.

• µ0: State of the friction in V = V0.
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• V : Slip velocity.

• V0: Reference Velocity.

• θ: State Variable. In the static case, it can be θ = t. Dieterich [1979] proposed that it can be
the mean age of the plates. θ can be obtained from:

θ̇ = 1 −
(V θ
Dc

)
(2.3)

• Dc: Slip critical distance.

• a and b: Properties defined from the material involved in the process.

The Equation 2.2 is also known as “slowness law" because, at the steady-state, the state variable
(θ) is proportional to the slowness (θss = Dc

V ) [Scholz , 1998]. The critical distance Dc is often
interpreted as the sliding distance required to renew the contact population. Also, it is important
to mention that even when µs and µd disappear from the equations, they are implicitly involved in
the process through the state variable (θ) and in the slip velocity (V ).

Analyzing the system stability based on the friction properties described above depends on two
parameters: the slip critical distance Dc and the combined parameter (a− b), defined as the velocity
dependence of the steady-state friction, given by:

a− b =
∂µss

∂[ln(V )]
(2.4)

This equation generates two cases:

• If (a − b) ≥ 0, the material presents a rate-strengthening behavior, which is intrinsically
stable. Earthquakes cannot be nucleated in areas exhibiting this behavior and the ruptures
will generate a negative stress drop stopping the rupture propagation.

• If (a − b) < 0, the material presents a rate-weakening behavior, which leads to a bifurcation
of the regimes, expressed in the critical value of the effective normal stress (σ̄c):

σ̄c =
Dck

−(a− b)
(2.5)

When σ̄ > σ̄c, the slip is unstable under a quasi-static loading. It is only in this regime that
the earthquakes can be nucleated. Conversely, if σ̄ < σ̄c, the system is conditionally stable,
that means stable under quasistatic loading but may become unstable under sufficiently strong
dynamic loading. The earthquakes may propagate into the conditionally stable field but cannot
be nucleated [Scholz , 1998] (Figure 2.4c).
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2.3.2 Seismic Cycle and Rate-and-State Friction Law

Today, it is widely accepted that friction on the faults is heterogeneous with interlacing rate-
weakening and rate-strengthening patches [Avouac, 2015]. Classifying the fault according to the
slip behavior leads to the following interpretation: seismic in areas where rate-weakening patches
are tightly packed, and aseismic where they are sparse. The rate-weakening patches form asperities
where stress builds up as the surrounding rate-strengthening areas creep. The manner how areas
will interact and generate earthquake or not depends on the stress field configuration. As the stress
builds up on the asperities during the interseismic period, they will be clustered forming just one
asperity with a locking value close to 1 (maximum lock, Figure 2.5). The stresses responsible for the
asperity clustering process are called “stress shadows" [Bürgmann et al., 2005; Hetland and Simons,
2010; Kanda et al., 2013; Avouac, 2015]. The areas surrounding this formed asperity are expected
to host the earthquakes initiatiation (coseismic stage, Figure 2.5), and the way they will propagate
depends on the state of stress on the fault plane. Besides, afterslip (early postseismic, Figure 2.5)
would result from the aseismic slip of the rate-strengthening areas [Hsu et al., 2006; Perfettini et al.,
2010]. One advantage of this model is that it allows generating SSEs [e.g., Liu and Rice, 2007] and
tsunami earthquakes [e.g., Bilek and Lay , 2002], due to small heterogeneities on the contact.

Subducting plate

Subducting plate

Subducting plate

Subducting plate

Slip (m)

0 1 2 3 4 5 6 7

Interseismic coupling, χi
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Interseismic

Rate-strengthening
Rate-weakening

Coseismic

Postseismic

Figure 2.5: Rate-and-State behavior during the different steps of the seismic cycle (modified from Avouac [2015]).

2.4 Main Characteristics of Seismogenic Zones

2.4.1 Along Dip Segmentation

Scholz [1998] describes a general model of the subduction zones derived from the stability regimes
mentioned above. Figure 2.6 shows that unstable regime mainly governs the seismogenic zone
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[Scholz , 1998]. This unstable region is limited to the top and bottom by transition zones in condi-
tionally stable regimes that flow into areas with a stable regime. Those areas mark a limit in the
seismic behavior [Scholz , 1998].

The updip region is located offshore and close to the trench in convergent margins. It is char-
acterized by an aseismic slip behavior, and in many cases by an absence of seismicity [House and
Jacob, 1983; Byrne et al., 1988; Byrne and Fisher , 1990; Pacheco et al., 1993; Moscoso et al., 2011;
Maksymowicz et al., 2017]. This area might be limited by the contact between the subduction in-
terface and the accretionary wedge, where the transition between stable and unstable regime should
occur. In this region, the transition from smectite to illite might occur at temperatures in the range
100◦- 150◦C [Vrolijk , 1990; Hyndman and Wang , 1993, 1995], and depths between 2 - 10 km [Hyn-
dman et al., 1997; Oleskevich et al., 1999]. Where the temperature producing smectite dehydration
is not reached, the contact of the subduction interface and the crystalline rocks is proposed as the
updip limit. Also, Moore and Saffer [2001] have observed a good correlation between the updip limit
and areas where the diagenesis process is seen, that corresponds to the sedimentary rock formation
through the sediment compaction. The frictional behavior in this region is difficult to describe,
because of the lack of data (stations are far away from the trench region), impacting the resolution
of the kinematic models that try to explain the coupling on these areas [Wang and Dixon, 2004; Lay
and Schwartz , 2004].
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Figure 2.6: Scheme of the seismogenic zone at depth and in its vicinity, depending on the frictional regime
characterized by (a-b). Question marks symbolize areas where the behavior is suspected, but it is not well understood
yet. Figure modified from Scholz [1998].

Thermal models locate the downdip limit in the 350◦C isotherm [Savage and Plafker , 1991;
Tichelaar and Ruff , 1993; Hyndman and Wang , 1993; Oleskevich et al., 1999]. This isotherm value
corresponds to the ductility of quartz, obtained from laboratory experiments [Tse and Rice, 1986;
Blanpied et al., 1991, 1995], correlating as well with the maximum depth of subduction interface
earthquakes around the world [Brace and Byerlee, 1970;Molnar and Chen, 1983; Tse and Rice, 1986;
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Wong and Chapman, 1990; Ito, 1990; Hyndman and Wang , 1993]. An abrupt change of regime from
an unstable to a stable can be considered unrealistic, thus a transition zone has been proposed
between 350◦- 450◦C isotherms. This area relates to the ductile-fragile transition and some authors
propose this region under a conditionally stable regime, due to the change from rate-weakening to
rate-strengthening [Scholz , 1998; Chlieh et al., 2004; Avouac, 2015]. The elements controlling the
thermal behavior might be the thickness of subducted sediments, the age of the subducted slab, heat
flows, convergence rates and slab dip [Hyndman and Wang , 1993; Wang et al., 1995]. Some conver-
gent margins exhibit a downdip limit where the 350◦C isotherm is not reached. These observations
have been made in areas where the oceanic plate subducts beneath a thin oceanic crust in island
arcs and/or where the subducted slab is extremely old and/or where a thin sediment layer is present
[Tichelaar and Ruff , 1991, 1993; Hyndman et al., 1997; Oleskevich et al., 1999]. In these cases, the
Moho might mark the limit with a stable regime characterized by aseismic slip associated with the
contact with serpentinized mantle [Reinen et al., 1992; Hyndman et al., 1997; Peacock and Hyndman,
1999; Oleskevich et al., 1999]. Although these thermal values seem to be a robust indicator of the
downdip limits, some exceptions have been seen. McCaffrey et al. [2008] have reported in Hikurangi
(New Zeland) subduction zone, some evidence that downdip limit might be located at the 250◦C
isotherm, considerably lower than the one seen in other areas worldwide, most probably because of
fluid interactions and/or mineralogical changes and/or unknown factors. Also, after Sumatra earth-
quake (Mw 9.1, 2004) the seismic rupture extended deeper than the known downdip limit [Simoes
et al., 2004], crossing the depth of continental Moho reported using wide-angle seismic data [Dessa
et al., 2009]. This behavior can be produced by the crust dehydration before the contact between
the Moho and the subduction interface, or because the fluids do not infiltrate into the mantle, but
drain on the subduction interface [Seno, 2005].

Using teleseismic data and analyzing the frequency content of great megathrust earthquakes
through back-projection technique, Lay et al. [2012] have shown the dependency with the radiated
energy at depth. This model has allowed relating the earthquake’s size to the seismogenic zone
segmentation, defining different domains on the subduction interface (Figure 2.7).

To the top of the seismogenic zone is defined the Domain A, near to the trench and where the
tsunami earthquakes take place [Kanamori and Kikuchi , 1993; Ammon et al., 2006; Lay et al., 2011].
This area is characterized by an anelastic deformation and a stable sliding, at depths between 2 - 15
km (Figure 2.7a and b). The transition zone (deeper part) may be governed by conditionally stable
regime surrounded by small asperities.

The Domain B is located between 15 - 35 km depths (Figure 2.7a and b). This region is where
the megathrust earthquakes are nucleated, generating large slip and a high amount of low-frequency
radiation. It may be governed mainly by unstable regime with some aseismic slip surrounding the
asperities.

In the domain C, located between 35 - 60 km depths (Figure 2.7a and b), a large amount of
high-frequency radiations are emitted. It is characterized by patches with a small amount of slip
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(asperities much smaller than in region B) and governed by a regime mixed between stable, unstable
and conditionally stable areas.

(a)

(b)

Figure 2.7: (a) Schematic cross-section of a subduction zone, indicating the four domains of megathrust rupture
characteristics regarding frequency content and earthquake type generation. (b) Cut-away schematic characterization
of the megathrust frictional environment, related to Domains A, B, C and D defined in (a). Figure from Lay [2015].

Finally, the Domain D is placed deeper than 60 km (Figure 2.7a and b). This region repre-
sents a transition at the deep edge of the seismogenic zone, only present in some regions, with
diverse observations of SSEs, low-frequency earthquakes, and/or seismic tremor. This area is mainly
governed by stable regime, with some small embedded areas of conditionally stable and stable regime.

2.4.2 Along Strike Segmentation

The observations and models have shown that the subduction zones are not only segmented along
dip, but also along strike, being able to define two main features. The segments that break during an
earthquake with high mean stress regimes are defined as asperities [Scholz and Engelder , 1976; Lay
and Kanamori , 1981]. They are usually characterized by a high coseismic slip [e.g., Béjar-Pizarro
et al., 2010; Peyrat et al., 2010; Vigny et al., 2011; Moreno et al., 2012; Duputel et al., 2015; Klein
et al., 2017], while those areas where the seismic rupture is stopped are called barriers [e.g., Das
and Aki , 1977] and they can be classified either as geometrical barriers or as inhomogeneous barrier
[Aki , 1979].
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Concerning the along strike segmentation in subduction zones, there are varied interpretations
about the barriers and asperities. In some regions, the segmentation can be related with morphologic
structures on the incoming plate such as seamounts [Kelleher and McCann, 1976, 1977; Cummins
et al., 2002; Bilek et al., 2003; Kodaira et al., 2002], oceanic ridges [Kelleher and McCann, 1976;
Perfettini et al., 2010] or fracture zones Aki [1979]; Contreras-Reyes and Carrizo [2011]. Seamounts
have been proposed to increase the seismic coupling, influencing the size of the maximum slip or
asperity of megathrust earthquakes [Bilek et al., 2003]. This characteristic allows for those structures
to act as barriers Kodaira et al. [2002] or as asperities [Abercrombie et al., 2001; Bilek et al., 2003],
because the seamount frictional behavior depends on the seafloor heterogeneity, the properties of the
subducting material, the temperature, the pressure and the step of the seismic cycle in the region
[Bilek et al., 2003]. Also, structures of the overriding plate seem to affect the segmentation of the
seismogenic zone such as peninsulas [Armijo and Thiele, 1990; Béjar-Pizarro et al., 2010; Perfettini
et al., 2010; Carena, 2011; Schurr et al., 2012; Villegas-Lanza et al., 2016a] and fault systems [Collot
et al., 2004; Audin et al., 2008], as they correlate with structures at depth, that are uncoupled and
act as a seismic barrier [Ruegg et al., 1996; Delouis et al., 1996; Kodaira et al., 2006; Delouis et al.,
2009; Melnick et al., 2009; Béjar-Pizarro et al., 2010]. The geometrical barriers are not a feature
observed just along strike, but they have also been proposed as along dip barrier that might stop the
seismic rupture. Such is the case of abrupt changes in the dip of the subducting plate that might
stopped the seismic rupture or diminished the amount of slip [Aki , 1979; King , 1986; Armijo and
Thiele, 1990; Cummins et al., 2002; Ito et al., 2005; Wesnousky , 2006; Contreras-Reyes et al., 2012].

Gravimetric and seismic data also help to better understand the along strike segmentation of the
seismogenic zone, providing a complementary view. Wells et al. [2003] evidence a spatial correlation
between forearc basins and the peak of slip of several great earthquakes, suggesting that the basin is
an indicator of a long-term seismic moment release. Song and Simons [2003] have proposed another
way to analyze the gravity data through the definition of the Trench Parallel Gravity Anomaly
(TPGA), where areas negatives values correlate with the coseismic slip in subduction zones. For
example, Maksymowicz et al. [2016] have shown in North Chile that strong changes in the density
(obtained through gravimetric data modeling) seems to be along strike barrier indicators, with a
debated temporal persistence.

Coupling maps offer another independent view of the segmentation along strike. They provide a
wide vision about lock/unlocked areas on the seismogenic zone, observing a good correlation between
recent seismic ruptures and high lock patches [e.g., Ruiz et al., 2014; Métois et al., 2016; Nocquet
et al., 2016; Villegas-Lanza et al., 2016a]. Besides, poorly coupled areas seem to be well correlated
with regions where the seismic rupture are stopped, many times related to morphological structures
(peninsulas, ridges, fractures zone or fault systems) [e.g., Béjar-Pizarro et al., 2010; Perfettini et al.,
2010; Béjar-Pizarro et al., 2013; Nocquet et al., 2016; Métois et al., 2016; Ruiz et al., 2016].
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Chapter 3

The Subduction Zone of Central Andes

3.1 Plate Kinematics between Nazca (NA) and South American
(SOAM) Plates

3.1.1 Convergence between NA and SOAM

The Andes are a long mountain belt of ∼8000 km long (Figure 3.1) that results from the con-
vergence between Nazca (NA) and South American (SOAM) plates. Geological dating and global
tectonic models have been used to rebuild the history of the convergence rate and azimuth. Global
plate tectonic models use the paleomagnetic anomalies registered in the oceanic seafloor, directions of
transform faults and/or hot-spot track to reconstruct past motions of tectonic plates, averaged over
a few million years [Gordon and Jurdy , 1986; Pardo-Casas and Molnar , 1987; Gripp and Gordon,
2002]. Some of those models are: [Minster et al., 1974], NUVEL-1 [DeMets et al., 1990], NUVEL-
1A [DeMets et al., 1994; Bird , 2003] or HS3-NUVEL-1A [Gripp and Gordon, 2002]. In the Andean
region (10◦- 20◦S), using this kind of models the convergence rate and the azimuth reported are 75
- 80 mm/yr and N72◦E - N75◦E [e.g., DeMets et al., 1994; Gripp and Gordon, 2002; Bird , 2003].

During the 90’s, the spatial geodesy provided constraints on current tectonic motion around
the world [Larson et al., 1997; Norabuena et al., 1998; Altamimi et al., 2002, 2011, 2016; Bird and
Kreemer , 2015]. Using present-day kinematic models, the angle of convergence between NA and
SOAM plates has been estimated to N76◦E - N77◦E [Angermann et al., 1999; Klotz et al., 2001;
Vigny et al., 2009], with convergence velocities ranging between 60 - 80 mm/yr depending on the
model and the analyzed region [Norabuena et al., 1998; Angermann et al., 1999; Klotz et al., 2001;
Bevis et al., 2001; Kendrick et al., 2001, 2003, 2006; Vigny et al., 2009; Villegas-Lanza et al., 2016a].
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Figure 3.1: Location and Tectonic context of the study area (red square). The plates boundaries are from Bird
[2003]. Pacific plate (PA), Rivera Plate (RI), Panama Plate (PM), Sandwich Plate (SW) and Juan-Fernandez Ridge
(JFR). Velocities are from Angermann et al. [1999]; Trenkamp et al. [2002]; Bird [2003].

3.1.2 Main Blocks and Movements in the Central Andes

The increase in the deformation field resolution worldwide, associated with the rise in the number
of GPS stations, allows detecting others processes, such as internal deformation of the continents
and slip partitioning. Forearc-sliver translation accommodating the margin-parallel component of
oblique convergence is a common process at subduction zones that has first been described to ex-
plain the existence of Great Sumatran strike-slip fault in parallel to the Sumatra subduction zone
[Fitch, 1972]. Those models are now validated by the strain-rates provided by the GPS, showing that
much of the along strike shear is accommodated by permanent deformation of the upper plate along
fault zones [McCaffrey , 1992; Prawirodirdjo et al., 1997; McCaffrey and Nabelek , 1998; Wang et al.,
2007]. This kind of behavior has been reported along the Andean region, notably at the latitude of
Ecuador, Peru, and South Chile. Nocquet et al. [2014] have characterized the North Andean Sliver
in Ecuador (Figure 3.2) that moves as a rigid block at 7.5 - 9.5 mm/yr towards the northeast . In
Peru, the Inca sliver is wedged between the NA and SOAM plates [Nocquet et al., 2014; Villegas-
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Lanza et al., 2016a]. The western part of the Inca sliver presents a rigid block motion ranging from
north (border with Ecuador, ∼5◦S) to south (Arica bend, ∼20◦S) with values of 4.4 - 5.3 mm/yr
(Figure 3.2). Slip partitioning between the western Peruvian sliver and the eastern Peruvian - Suban-
dean range exists, with velocities between 1.2 - 2.5 mm/yr [Villegas-Lanza et al., 2016a] (Figure 3.2).
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Figure 3.2: Scheme of the main continental slivers contributing to the deformation partitioning in the North and
Central Andes. The arrows indicate the convergence velocities. Question marks symbolize the open question about
where the slivers end in Chile. Figure modified from Villegas-Lanza et al. [2016a] and Métois et al. [2016].

In the southern part of Chile (∼40◦S), the Liquiñe-Ofqui fault moves in strike-slip 6.5 mm/yr to
accommodate the lateral sliver motion and the obliquity of the convergence [Wang et al., 2007]. In
Chile, between 18◦S and 37◦S, there is no clear evidence of sliver block motion that would accommo-
date the obliquity of the convergence. However, a tectonic sliver, located between the subduction and
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the Subandean ranges has an individual movement that differs from stable South America [Chlieh
et al., 2011; Métois et al., 2013, 2016] (Figure 3.2). Kley [1996] has shown using geological data
the existence of shortening at the east flank of the Andes, especially at the latitude of the Central
Andes, revealed by a fold-and-thrust belt. At the end of the 90’s, GPS started to measure shorten-
ing in the area, confirming the geological evidence with rates ranging from 5 to 15 mm/yr, in the
Bolivian Subandean ranges [e.g Norabuena et al., 1998; Bevis et al., 2001; Chlieh et al., 2011; Brooks
et al., 2011] (Figure 3.2). To the north, Nocquet et al. [2014] and Villegas-Lanza et al. [2016a] have
measured 2.3 - 3.2 mm/yr of shortening across the Ecuadorian and Peruvian Subandean ranges.
These results describe a complex deformation process in the Central Andes region, where internal
deformation combining shortening and strike slip are superimposed to the deformation associated
with the seismic cycle on the subduction zone [Chlieh et al., 2011; Métois et al., 2013; Nocquet et al.,
2014; Villegas-Lanza et al., 2016a; Métois et al., 2016].

3.1.3 Main Tectonic Features

Structures of the Overriding Plate

The Andes were built as a response to the subduction of NA plate beneath the SOAM plate,
where a crustal thickening is observed, associated with a lithosphere thinning below the Altiplano
Plateau proposed by some authors [Isacks, 1988; Allmendinger et al., 1997; Garzione et al., 2006].
Armijo et al. [2010, 2015] divided the area in two major structures: the marginal block and the
Andes (Figure 3.3b), that can be subdivided as explained below.

The Marginal Block and the Coastal Structures The marginal block is composed by the
Continental Margin, the Central Depression and the Precordillera.

The Continental Margin (CM Figure 3.3) is extending from the trench until the coast (almost
completely under water) including the Continental Slope Scarp [James, 1971; Huene and Scholl ,
1991; Patzwahl et al., 1999; Contreras-Reyes et al., 2012]. Two kinds of basal erosion has been re-
ported: seamounts subduction [Ranero and Von Huene, 2000] and the existence of horst-grabens,
which are a contribution to the uplift and extension of the continent [von Huene and Pecher , 1999].

A Coastal Scarp marks the limit between the Continental Margin and the Coastal Cordillera
(Figure 3.3b). Two main theories have been proposed to explain the creation and existence of this
feature. The first one suggests that this coastal scarp is a characteristic generated by marine erosion
[Mortimer , 2010]. The second one suggests that it is a big normal fault, related to the subduction,
with ∼1000 km length [Armijo and Thiele, 1990]. This last hypothesis is also supported by the
change in the dip angle of the slab shown using seismic data by Contreras-Reyes et al. [2012]. The
Coastal Scarp would be the surface expression of a crustal fault caused by anomalous stresses on
the overriding plate, generated by a strong gradient on the coupling around the kink area [Armijo
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and Thiele, 1990; Contreras-Reyes et al., 2012].

One of the characteristics that can be observed along the coast is the presence of peninsulas,
such as the Mejillones Peninsula in Chile (∼23◦S), or the Ilo peninsula in Peru. The Mejillones
peninsula represents an anomaly in the Coastal Scarp with a length of ∼50 km and a width of ∼30
km and is characterized by a series of smaller normal faults parallel to the coast [Armijo and Thiele,
1990; Delouis et al., 1997; Allmendinger and González , 2010]. One hypothesis about its formation is
that this structure is an uplifted block [Armijo and Thiele, 1990; Victor et al., 2011], at estimated
rates of ∼0.25 mm/yr in the last 500 Kyr [Ortlieb et al., 1996]. In southern Peru, the Ilo Peninsula
is a 100 km long feature associated with an extensional regime characterized by faults in the EW
direction [Audin et al., 2008; Ortlieb et al., 1996]. Both peninsulas are important tectonic structures
that act as permanent barriers for subduction earthquakes [Audin et al., 2008; Béjar-Pizarro et al.,
2013; Métois et al., 2016].

Finally, the Coastal Cordillera (CC in Figure 3.3b) is a structure that begins at the Coastal
Scarp and ends in the Central Depression. Its altitude is less than 2000 m, disappearing southern
Ilo Peninsula in Peru and reappearing at ∼20◦S. This region marks the transition between the Con-
tinental Margin and the Andes [Isacks, 1988; Armijo and Thiele, 1990; Scheuber and Reutter , 1992;
Charrier et al., 2005; Armijo et al., 2015].

The Andes The Andes can be divided into four big entities: the Western Cordillera, the Altiplano
Plateau, the Eastern Cordillera and the Subandean ranges (Figure 3.3a and b).

The Western Cordillera (Figure 3.3) has mean heights of 3800 - 4500 m and it is the place where
the volcanic arc is located, bounded to the west by the Precordillera and to the east by the Altiplano
Plateau. The Altiplano Plateau is a depression area between the Western and Eastern Cordillera,
where the mean heights are 4000 m (Figure 3.3), ranking it as the second highest plateau around
the world after the Tibet [Allmendinger et al., 1997]. This area is cut by several reverse faults of
high angle [Allmendinger et al., 1983] and is composed of sedimentary and volcanic rocks. One
characteristic of this region is that it has its own drainage system within the depression.

The Eastern Cordillera (Figure 3.3) is an area where the height is going over 6500 m, which is
formed by a flexure belt where is possible find reverse fault of high complexity. In this region, a cor-
tical shortening is observed due to the subduction with a complex pattern of deformation depending
on the latitude [Chlieh et al., 2011; Métois et al., 2013; Nocquet et al., 2014; Villegas-Lanza et al.,
2016a; Métois et al., 2016].

Finally, to the east, the Subandean ranges is composed by an active fold and thrust belts (Figure
3.3). Here is accommodated most of the crustal shortening in the Central Andes [Kley and Monaldi ,
1998]. Geological shortening velocities vary between 5 - 25 mm/yr [Baby et al., 1997; Kley and
Monaldi , 1998], while the geodetic shortening vary between 3 - 15 mm/yr [Norabuena et al., 1998;
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Klotz et al., 1999; Bevis et al., 2001; Khazaradze and Klotz , 2003; Chlieh et al., 2004, 2011; Brooks
et al., 2011; Métois et al., 2016].
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Figure 3.3: (a) Topography and first order geology of the Central Andes. A-A’ denotes the location of the
profiles observed below. FZ denotes Fracture Zone. (b) A profile that shows the morphotectonics division proposed
by Armijo et al. [2010]. MC is the continental margin, CC is the coastal cordillera, PDT is the Central Depression
and the Precordillera. Figure modified from Armijo et al. [2010, 2015]; Villegas-Lanza et al. [2016a].

Structural Features on the NA Oceanic Plate

The Nazca oceanic plate is cut by tectonic features (ridges and fractures zones) that have been
proposed to affect the lateral segmentation of the subduction zone [Aki , 1979; Hoffmann-Rothe et al.,
2006; Béjar-Pizarro et al., 2010; Contreras-Reyes and Carrizo, 2011; Carena, 2011]. The ridges are
oceanic hotspot tracks that can be detected employing bathymetric data. For example, the Nazca
Ridge (Figure 3.3a) was formed at the Easter Island hotspot on the Pacific-Farallon/Nazca spreading
center [Pilger , 1984]. Other ridges are in the zone such as Iquique, Copiapo, and Tal - Tal ridges
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(Figures 3.3a).

The oceanic Nazca plate is further segmented by several oceanic fracture zones (Figure 3.3a)
formed at the Pacific-Nazca and Antarctic-Nazca spreading centers (Tebbens et al., 1997), such as
Nazca, Mendaña, Viru, Sarmiento, Alvarado and Grijalva Fractures Zones. Also, these features
seem to be related with the subduction segmentation, limiting seismic ruptures and/or patches of
high coseismic slip [Contreras-Reyes and Carrizo, 2011].
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Figure 3.4: Distribution of seismicity along the Central Andes in the period 1990 - 2014 and color-coded by
depths. The seismicity is taken from International Seismological Centre [2017] with magnitudes ranging from M 4.0
- 8.0.
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3.2 Seismological Features

3.2.1 Seismicity Distribution

The Figure 3.4 shows the seismicity distribution in the Central Andes, exhibiting an heteroge-
neous pattern both along strike and dip. Along the entire Continental Margin seismicity occurs on
the subduction interface and its vicinity, ranging depth between 0 - 50 km (red dots in Figure 3.4).
Most of the seismicity is associated with the occurrence of events during the period 1990 - 2014 such
as Arequipa, Nazca, Pisco, Iquique, Tocopilla, or Antofagasta earthquakes.

A specific feature observed in the central part of the Andes (15◦- 25◦S) is related to the high
activity of intermediate-depth seismicity (orange-yellow dots Figure 3.4), characterized by depths
between 80 - 150 km. Three hypotheses have been proposed to explain the occurrence of such seis-
micity: transformational faulting, ductile shear instability and dehydration embrittlement [Hacker
et al., 2003]. Astiz and Kanamori [1986] proposed that tensional (slab-pull) events may occur before
large thrust events in the coupled plate interface, while compressional (slab-push) events occur after
the main thrust event. This last idea is intriguing because almost all the focal mechanisms reported
for this period, in the ISC catalog [International Seismological Centre, 2017], are slab pull [Bouchon
et al., 2016; Jara et al., 2017]. Also, this region presents a high activity of deep seismicity (green dots
Figure 3.4), ranging depths of 150 - 300 km, with mechanisms poorly understood and complicated
seismic ruptures patterns [Frohlich, 2006].

In the Subandean ranges, the shallow seismic activity is observed at depths of 0 - 15 km (red
dots on the east of the region, Figure 3.4), mostly associated with the shortening processes men-
tioned above and with the capacity of generating great earthquakes [Brooks et al., 2011]. Some very
deep activity is seen close to ∼10◦S and ∼25◦S (purple dots in Figure 3.4). Those deep events are
associated with the change in the style of the subduction. In those two regions, the subduction is
in flat slab manner [Gutscher et al., 2000; Gutscher , 2001; Pardo et al., 2002].

3.2.2 Great Historical and Instrumental Earthquakes

Based on the historical seismicity and the morphological features of the subducting NA plate, it is
possible to divide the study area into four major segments (Figure 3.5) [Silgado Ferro, 1978; Kausel ,
1986; Dorbath et al., 1990; Comte and Pardo, 1991; Nishenko, 1991; Madariaga, 1998; Tavera and
Buforn, 1998; Bilek , 2010; Carena, 2011]:

• The northern Peru segment between of 3◦- 10◦S, limited by the Guayaquil Gulf to the north
and by the Mendaña fracture zone to the south.

• The central Peru segment, bounded by the Mendaña fracture zone (10◦S) to the north and
the Nazca Ridge (∼15◦S) to the south.

• The southern Peru segment, extending from the Nazca Ridge to the Arica bend (∼18◦S).
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• The northern Chile segment between the Arica bend down to the Mejillones Peninsula in the
south (∼23◦S)

The northern Peru segment is characterized by the absence of great earthquakes (Mw ≥ 8.5) and
the sparse occurrence of moderate- to large-earthquakes (Mw ≥ 7.5) that can trigger local tsunamis.
The largest earthquakes reported in this region are the 1619 earthquake (Mw 7.7), 1953 (Mw 7.8),
1959 (Mw 7.5), 1960 (Mw 7.6) and 1996 (Mw 7.5) (Figure 3.5).

Figure 3.5: South American tectonic setting from Villegas-Lanza et al. [2016a]. The red ellipses indicate the
approximate rupture areas of large subduction earthquake (M ≥ 7.5) between 1868 and 2015 [Silgado Ferro, 1978;
Beck and Ruff , 1989; Dorbath et al., 1990; Beck , 1998]. Main bathymetric features are indicated with the names in
white boxes.

The central Peru segment presents great- and large-earthquakes occurrences. The region was
struck by two great historical earthquakes in 1687 (Mw 8.4) and by the Lima earthquake in 1746
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(Mw 8.6), both very destructive events and with large tsunamis reported. Also, large earthquakes
(historical and recent) occurred in this region, such as 1586 earthquake (Mw 8.1), 1664 (Mw 7.5),
1678 (Mw 8.0), 1725 (Mw 7.5), 1806 (Mw 7.5), 1828 (Mw 7.5), Lima-Callao earthquake in 1940
(Mw 8.0), Lima-Callao earthquake in 1966 (Mw 8.0), Lima earthquake in 1974 (Mw 7.9) and Pisco
earthquake in 2007 (Mw 8.0) (Figure 3.5).

The south Peru region has been hit by several great earthquakes that generated huge destruc-
tive tsunamis, such as 1604 earthquake (Mw 8.7), 1784 (Mw 8.4), 1868 (Mw 8.8) and the Arequipa
earthquake (Mw 8.4). Also, large historical and recent earthquakes have been reported in the region,
as the 1512 earthquake (Mw 7.7), 1582 (Mw 7.5), 1687 (Mw 8.0), 1715 (Mw 7.5), 1821 (Mw 7.8),
1833 (Mw 7.7), 1913 (Mw 7.8), the Nazca 1942 and 1996 earthquakes (Mw 8.2 and Mw 7.7) (Figure
3.5).

The north Chile segment have presented great historical earthquakes, such as the events in 1604
(ML 8.7) and in 1877 (ML 8.8), both generating destructive tsunamis. The large-historical and
-recent earthquakes reported in the region include: the 1543 earthquake (Ms ≤ 7.7), 1615 (Ms 7.9),
1768 (Ms 7.7), 1933 (Ms 7.5), the Tocopilla earthquake in 2007 (Mw 7.7) and Iquique earthquake
in 2014 (Mw 8.1). Although it did not occur in this region itself, it is important to mention the
occurrence of the Antofagasta earthquake in 1995 (Mw 8.1), in the southern part of the segment,
because of its relationship with the Mejillones Peninsula, which acted as a barrier for the seismic
rupture [Ruegg et al., 1996; Delouis et al., 1996; Klotz et al., 1999; Carlo et al., 1999; Pritchard et al.,
2002] (Figure 3.5).

As it was mentioned in the previous section (Figure 3.4), the region shows a high-rate of
intermediate-depth seismicity. Less often than subduction events, this region exhibits some recorded
large earthquakes, which recurrence time is unknown. The Lamas earthquake in 2005 (Mw 7.5) hit
at 115 km depth the northern Peruvian segment. In 2005, Tarapaca earthquake (Mw 7.8) struck the
central part of the northern Chile area at 100 km depth [Peyrat et al., 2006; Delouis and Legrand ,
2007; Peyrat and Favreau, 2010], while in 1950, the southern part of the Chilean region was affected
by the Calama slab-pull event Mw 8.0 [Kausel and Campos, 1992].

Deep earthquakes occur less often and their mechanism of generation are poorly understood
[Frohlich, 2006]. Large deep earthquakes have been reported in the Central Andes, more precisely
in the south Peru segment. One of the biggest recent events recorded occurred in Bolivia at ∼600
km depth in 1994 with a magnitude Mw 8.3 [Kikuchi and Kanamori , 1994; Silver et al., 1995;
Ihmlé, 1998]. Ruiz et al. [2017b] have studied the deep doublet earthquakes occurred in 2015 with
focus depth of ∼600 km with magnitudes ofMw 7.5 andMw 7.6. These events in the region seem to
occur along the Wadati-Benioff zone, which delineates the cold core of subducting oceanic lithosphere
[Frohlich, 2006] or because of a kink in the subducted lithosphere [Ihmlé, 1998].
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3.2.3 Seismic Gaps, Interseismic Coupling and Lateral Segmentation

A seismic gap, defined as a region of simple plate boundaries that have not ruptured in great
earthquakes since many decades, is a likely site for future events [Kelleher et al., 1973; McCann
et al., 1979; Nishenko and McCann, 1981; Nishenko, 1991]. To considere a plate boundary segment
as being a seismic gap, it must have a history of prior great earthquakes ant not have ruptured in a
event for a long period of time [McCann et al., 1979; Nishenko, 1991]. Based on the historical and
recent earthquakes information, three areas can be considered as seismic gaps in the Central Andes:
the central and southern Peruvian segments and the north Chile region (described in the previous
section).

The central Peru segment has not been hit by a great earthquake since 1746, although several
large events have been reported. Interseismic coupling maps available in the region indicate that the
area is locked, indicating that the segment is quite mature and hosts a great earthquake in the next
decade. The magnitudes expected are between 8.6 - 9.2 Mw , comprising an area of ∼300 km from
the Mandaña fracture zone up to the Nazca ridge zone [Chlieh et al., 2011; Villegas-Lanza et al.,
2016a].

The south Peru zone was considered as a mature seismic gap [Dorbath et al., 1990; Nishenko,
1991; Comte and Pardo, 1991] until the occurrence of Arequipa earthquake in 2001 (Mw 8.4) that
broke the central part of this region. Villegas-Lanza et al. [2016a] performed a detailed analysis
of the geodetic data, obtaining a high and heterogeneous coupling in the region. They show that
coupling is localized within two regions of 100 - 150 km at latitudes of 16◦S and 18◦S. The northern
area is located south of the Nazca ridge and seems to have a relationship with the ruptures of large
earthquakes in 1913, 1942 and 1996, while the southern region previously broke during the large
earthquake in 1833 and with the great event in 1868. In both cases, the potential earthquake ex-
pected may have a magnitude ∼Mw 8.0. The area appears segmented by the region hit by Arequipa
earthquake in 2001. A shallow and highly coupled region, associated with the area of high 2001
coseismic slip patch, is much smaller than the full 2001 rupture surface. The highly coupled area
is surrounded by unlocked areas, which supports the idea of ongoing postseismic processes in this
region [Villegas-Lanza et al., 2016a].

Finally, the north Chile segment was considered a mature seismic gap for a long time, due to the
lack of great earthquakes since 1877 [Dorbath et al., 1990; Nishenko, 1991; Comte and Pardo, 1991].
Métois et al. [2016] provide an updated coupling map in the region, observing two main regions of
high locking degree (Camarones and Loa segments), separated by the Iquique low coupling region
separating them. The Tocopilla earthquake in 2007 (Mw 7.7) broke the southern part of the gap (Loa
segment), in the area of the Mejillones Peninsula and specifically the deeper part of the seismogenic
zone [Béjar-Pizarro et al., 2010; Peyrat et al., 2010]. Then, in 2014, Iquique earthquake struck the
central part of the gap breaking a small portion of the Camarones segment [Ruiz et al., 2014; Hayes
et al., 2014; Schurr et al., 2014; Yagi et al., 2014; Duputel et al., 2015]. These earthquakes did not
release the energy accumulated since the 1877 historical earthquake, leaving open the possibility to
generate earthquakes of Mw ≥ 8.0, on the Loa or Camarones segment [Béjar-Pizarro et al., 2010;
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Chlieh et al., 2011; Métois et al., 2013; Hayes et al., 2014; Ruiz et al., 2014]. Nevertheless, the
possibility to have a great earthquake breaking both segments at the same time cannot be ignored
[Métois et al., 2013; Schurr et al., 2014].
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Chapter 4

Processing and Analysis of GPS Data

4.1 Global Positioning System, GPS

4.1.1 Operating Principles

The Global Positioning System is a satellite constellation operated by the United States De-
partment of Defense to support military and civilian positioning, navigation and timing. At the
beginning, it was created as military system during the 70’s, and was open to all public during the
90’s. The constellation consists of 32 satellites orbiting the Earth in 6 nodal planes every 12 hours,
allowing between 5 to 12 satellites to be always visible at one point on the Earth surface. Each
GPS satellite transmits a unique signal coded on two L-band frequencies: L1 at 1575.42 MHz and
L2 at 1227.60 MHz (equivalent to 19 cm and 24 cm wavelengths). This signal consists of L-band
carrier waves modulated with a Standard or S code (C/A, Coarse Acquisition code), with a Precise
or P code and with a Navigation Message containing the coordinates of the satellites as a function
of time. C/A code was originally created for civilian activities with a wavelength of ∼300 m and
a precision of ∼100 m and at the beginning just on L1 band. The P code was created for military
purposes using a wavelength of ∼30 m, a precision of ∼10 m, coded on L1 and L2 bands. Initially,
the signal was encrypted, limiting the precision to civilians, but in 2000’s the anti-spoofing signal
was eliminated. Due to the cost of installation, at the beginning of the system, not to many GPS
stations were installed, but the number of stations increased significantly during the 90’s. Because
of the storage capacity, original receivers would register data at 15 - 30 s, but this sampling rate can
reach up to 1-20 Hz today.

Using this information, it is possible to calculate the position of the GPS antenna using either
the pseudo-ranges or the phases. Pseudo-ranges or code measurements can be based on either P or
C/A code and they are based mainly in the measurement of the distances contaminated by clock
errors (Figure 4.1). When 4 satellites are visible at one point on the surface, the 3D-position and the
receiver clock offset can be determined, with a precision depending on the configuration geometry
of the visible satellites and the station. Positioning by carrier phase measurements are more precise
than pseudo-ranges. It consists of the difference between the incoming satellite phase signal and the
phase signal generated by the receiver.
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Figure 4.1: Pseudo-range and phase measurement. Figure from King [1986].

4.1.2 GPS as an instrument of high precision

GPS is commonly used today around the world to get real-time position, but if the user wants
to obtain high precision positioning, some work needs to be done. The distance satellite-station (lji ,
where i represent a station and j represent the satellite) is affected by delays (following equations
described by Bock and Melgar [2016]):

lji = rji (t, t− τ
j
i (t)) + c [dti(t) + dtj(t− τ ji (t))] + M j

i ZTD
j
i − Iji +

λ (N j
i + Bi − Bj) + mj

i + εji (4.1)

where rji is the geometric distance between the station i and the satellite j, t is the time of the signal
reception, τ ji is the time delay between the transmission and the reception, and c is the speed of the
light. The second term on the right includes dti the receiver clock error and dtj the satellite clock
error. ZTDj

i (Zenithal Total Delay) is the tropospheric propagation delay in the zenith direction,
and M j

i is a function that maps the ZTD to lower elevation angles. Iji is the total delay due to the
ionosphere along the signal’s path. N j

i denotes the integer-cycle phase ambiguity, Bi and Bj denote
the non-integer (fractional) parts of the receiver and satellite-specific clock biases, respectively, and
λ is the wavelength at either L1 or L2 frequency. mj

i denotes the signal associated with multipath
effect and εji denotes the measurement error. The generation and effect of each term are discussed
below.

Satellite orbits are available from different institutions (e.g., International GNSS Service, IGS)
with a precision of ∼100 m (Figure 4.2). To increase the precision re-processed orbits, with uncer-
tainty values of ∼2.5 cm, are needed. Those recalculated precise orbits are available after few weeks.

The signal is affected when it crosses through the ionosphere, a dispersive medium that affects the
electric wavelength propagation, corrupting the distance measure and the inferred station position.
Ionospheric delay depends on the content of charged particles (ions and electrons) and the frequency
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of the considered wave (Figure 4.2). The particle content changes over time. Dual frequency GPS
allows to determine the number of particle and then to quantify the ionospheric delay on either L1
or L2. GPS can be used to compute Total Electronic Content (TEC) maps of the ionosphere.
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Figure 4.2: GPS Error Sources. The different GPS error sources affecting the calculation of GPS-satellite distance
are shown in red (see main text for further explanation). Figure modified from Metois [2012].

After the pass of the signal through the troposphere, also have been observed some delays (ZTD)
that produce positioning error of 1-50 cm. The ZTD can be modeled as the sum of a dry and wet part
(Figure 4.2). The zenithal dry delay (ZDD) depends on the molecular content of the atmosphere in
hydrostatic equilibrium, depending on the surface pressure, latitude and height. The standard devia-
tion of current modeled estimates of this delay is ∼0.5 mm. The non-hydrostatic or zenith wet delay
(ZWD) is associated with the amount of water vapor that is not in hydrostatic equilibrium. It is very
difficult to model because the water vapor in the atmosphere is highly variable in space and time.
The standard deviation of current modeled estimates of this delay is ∼2 cm [Bevis et al., 1992, 1994].

Antennas are very diverse (radomes, shapes, etc) and not standard around the world. The an-
tenna phase center is the wire in which the radio wave converted into an electric signal (Figure 4.2).
It is a mathematical point, which exact position depends on the signal alignment with the wire
(azimuth and elevation). There is not a direct access to the antenna phase center, so the user setup
the antenna using the Antenna Reference Point (ARP), and the offset between it and phase center
(1-2 cm) is needed to be corrected. The most common correction of this error is made using antenna
phase center variations available from IGS.
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Multipaths effects are produced because the GPS signal may be reflected by surfaces near the
receiver (wall, car, tree, etc), so the antenna receives a superposition of direct and reflected signals
(Figure 4.2). The multipath errors are up to 50 m using code measurements and up to 5 cm when
phase measurements are used. The Multipath effect repeats daily, because of repeat time of GPS
constellation, thus it can be used to filter it out. It is most critical at low elevation and for short
sessions, for which it is difficult to design a filtering.

Considering the clock errors (Figure 4.2), GPS satellites move at about 1 km/s, so 1 ms time
error results in 1 m range error. Using pseudo-range positioning, 1 ms is not a trouble. In the
case of phase positioning, if 1 mm error is required, the needed time accuracy should therefore be
10−6 s. The satellites have stable atomic clocks. The instability is ∼10−14 s (⇔ ∼10−9 s/day),
taking into account that there is a synchronization between all the satellites, and the navigation
message contains the clocks corrections. The receivers clocks are much more unstable (10−5 - 10−6,
⇔ ∼10−1 - 10−2 s/day), and regularly synchronized with GPS time. Single differences are affected
by satellites clock uncertainties or by the station clock uncertainties. To fix globally the those errors,
double-differencing is used in this thesis because it is free from any clock uncertainty (Figure 4.3).
In this case, the measurement of distances is performed between points or baselines, resulting in a
relative positioning. This procedure eliminates any common error between the receivers, and also the
atmospheric propagation errors are cancelled if receivers are close enough to each other. Therefore,
short baselines provide greater precision than long ones.

Δ

Satellite j
Satellite kΔLAB 

jk

ΔLAB 
j ΔLAB

k

Δ

ΔLAB 
jk = ΔLAB 

j– ΔLAB
k

Principles: At any time,
(1) clock bias at a
specific satellite is the
same for all stations,
(2)clock bias at a specific
station is the same for all
satellites being tracked.

Station A Station B
At each epoch, difference the single difference
data between satellites:

Double differencing

Figure 4.3: Diagram illustrating double differencing of GPS. Figure from Blewitt [2007].

Two methods are broadly used today in geophysics to estimate positions (with errors estimates
of the order of mm). The precise point positioning (PPP) [Zumberge et al., 1997] consists in cal-
culating the position of single stations using precise orbits and clock data. Softwares based on this
technique include BERNESE, by Astronomical Institute, University of Bern, Switzerland [Rothacher
et al., 1990], GIPSY-OASIS II software, by JPL, California Institute of Technology, USA [Webb and
Zumberge, 1993], or GINS (CNES). The relative positioning by double-differenced data using precise
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orbit data. The most common software based on this technique is GAMIT-GLOBK [Herring et al.,
2016] (BERNESE also provides this type of analysis), that has been used for the GPS processing
made for this Ph.D.

4.2 GPS Data used in this Ph.D. project

In the 90’s, geoscientists started to step up different campaign networks in the study area, such, as
South America-Nazca Plate Project (SNAPP) [Norabuena et al., 1998], Central Andes GPS Project
(CAP) [Kendrick et al., 2001], South American Geodynamic Activities (SAGA) [Klotz et al., 1999]
and Laboratoire International Associé “Montessus de Ballore" (LIA-MB) associated with French
institutions. During the 2000’s, LIA-MB [Métois et al., 2013, 2016] and Brooks et al. [2011] densified
the existent networks in North Chile and in Bolivia. During this same decade and due to the facili-
tate for the reduction of price and maintenance of GPS, permanent networks begun to be installed
as: Integrated Plate Boundary Observatory Chile (Chilean, French and German cooperation), Cen-
tral Andean Tectonic Observatory (CAnTO, Caltech), Instituto Geofísico Peruano (IGP), Institute
des Sciences de la Terre (ISTerre) and Centro Sismológico Nacional (CSN, Chile). Those networks
save data between 15 - 30 s at low frequency and between 1 - 20 Hz at high frequency, depending of
the institution in charge.

Although during this present thesis, only the continuous GPS data were processed and used in
the modeling and interpretation, some fieldwork was done as well. After the occurrence of Iquique
earthquake in 2014, the South Peru and North Chile survey networks were remeasured under the
leadership of the Department of Geophysics at the University of Chile. I was in charge of one team
whose work consists of: preparing the material needed to install the GPS (tripods, batteries, re-
ceivers, cables, antennas, tools and accessories). Also the receiver needed to be set up in terms of
time to save the data. Sessions of 30 s and 1 Hz were performed. The team was in charged to
perform measurements in Arica, Camarones, Pisagua, Iquique and Patache profiles in sessions of
3 days (Figure 4.4). Then, in 2015, a great effort between Peruvian, Chilean and French teams
was performed to make measurements in the all South Peru - North Chile seismic gap. The work
realized during this fieldwork was the same mentioned above, but in the profiles: Tocopilla, Patache,
Iquique, Pisagua and Camarones (Figure 4.4). Those datasets collected in the campaign effort has
been valorized for one master student in Chile (Department of Geophysics at University of Chile)
and by the laboratory ISTerre in order to calculate the interseismic velocity field and coupling map
associated, but they are not used during this work because they did not meet the objectives of the
Ph.D.
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(a)

(b)

Figure 4.4: (a) Map of sGPS Network in North Chile. The name of the profile is located on the left. (b) Picture
of sGPS AR90, located at side of Chungara Lake in the boundary between Chile and Bolivia at 4500 m. Figure (a)
from Metois [2012] and (b) credits by Jorge Jara.

4.3 GPS Processing

4.3.1 Subnetworking

All the cGPS data available in the area were processed (65 stations from different institutions
as was mentioned above Figure 4.4) using GAMIT 10.5 software. Because the maximum number of
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stations allowed by the software is 99, the Andean network was divided in two 1. The time span of
the entire network is 2000 - 2014, but the data availability is not constant with time. Each subnet-
work is composed of 50 stations, with 33 common stations to both subnetworks (Figure 4.5a). One
subnetwork spans 2000 - 2014 and the second one spans 2007 – 2014. 49 IGS stations surrounding
the subnetworks were selected, 22 located in South America continent and 2 in the Nazca Plate (the
two only available stations over the long term on this plate).
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Figure 4.5: (a) Map of the 2 local GPS subnetworks processed (Andes 2000 - 2014 in red and Andes 2007 -
2014 in cyan). Orange denotes the stations included in both subnetworks in the processing. (b) Global GPS network
processed. Green color indicates IGS stations included in the Global Processing, while purple indicate IGS stations
overlapping with the Andean subtnetworks.

1At the beginning of this thesis, GAMIT 10.6 was not available. This program allows to separate the subnetworks
in an automatic manner. This is one of the two reasons why we chose the subnetwork strategy. The second reason
relates to the number of baselines calculated during the processing. If this number is higher, better results and more
stable solution can be expected.
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The fact that the stations in SOAM plate are not all available since 2000 creates a problem in
the time series stabilization process (discussed in detail in the next section). To avoid this problem
and a get more accuracy during the processing, an IGS global network was designed and processed.
The IGS stations selected were the 49 (purple dots in Figure 4.5b) used in the processing of the
subnetworks mentioned above, plus 50 (green dots in Figure 4.5b) stations covering Mexico, Europe
and Iran, that are project which the Seismic Cycle team at ISTerre is involved.

4.3.2 Daily Processing

GAMIT/GLOBK software needs some apriori information to perform the data processing, such
as data from the GPS, the antenna and receiver information, and apriori coordinates of the sta-
tions. The experiment parameter was set up as RELAX, implying that the orbital parameters are
re-calculated during the processing. The ZTD is estimated every two hours and one couple of hori-
zontal tropospheric gradients per 24h session, using the Vienna Mapping Function (VMF1) [Boehm
et al., 2006], to map the tropospheric delay in zenithal direction, with a priori ZDD evaluated
from pressure and temperature values from the VMF1 grids. The precise orbits from the Interna-
tional GNSS Service for Geodynamics (IGS, www.igs.org), precise EOPs from the IERS bulletin
B (www.iers.org), IGS tables to describe the phase centers of the antennas, FES2004 ocean-tidal
loading corrections, as well as atmospheric loading corrections (tidal and non-tidal). The Choice of
Observables was set up as LC_AUTCLN, which means that the observables are the ionosphere-free.
It means that the program uses as observable directly the linear combination (LC) of the L1 and
L2 phases. In this case the total number of full carrier wave cycles travelled by the GPS signal is
unknown, this is widely known as integer-cycle phase and needs to be estimated. One way to extract
the number of integer-cycle phase ambiguities is using the “wide-lane" ot “Malrbourne-Wübbena"
combination with an effective wavelength of 86.2 cm [Hatch, 1991; Melbourne, 1985; Wübbena, 1985].
It allows to remove the ionospheric effects and most of the noise, facilitating the detection of the
cycle slips.

4.3.3 Reference Frame

The terrestrial Earth-centered Earth-fixed reference frame system is a convention taken by the
International Union of Geodesy and Geophysics. It is realized through the International Terrestrial
Reference Frame (ITRF) defined by the positions (X,Y,Z, Figure 4.6) and velocities (Vx,Vy,Vz) of
selected stations around the world.
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Figure 4.6: Geodetic coordinate system. GPS analysis is performed in the global Earth-centered fixed reference
frame in (X,Y,Z) and then transformed into local reference frame (N,E,U). Figure from Bock and Melgar [2016].

In order to obtain GPS time series, a stabilization process was used. To accomplish this, the
GAMIT daily solutions from the networks (2 local and 1 global) were combined using GLOBK soft-
ware. The program PYACS [Nocquet , 2017] was employed to do this part of the work due to the
robustness and facility, using ITRF08 [Altamimi et al., 2011] and then using the fix pole of stable
SOAM plate proposed by Nocquet et al. [2014] (see Table 4.1 for the statistics about the reference
frame used in the study and Figure 4.5b for station locations).

4.4 Times Series Analysis

4.4.1 Trajectory Model of the Seismic Cycle

Each station (65 in total) is modeled following a Trajectory Model [Bevis and Brown, 2014], in
order to obtain a first-order modeling of the main phases of the seismic cycle. The Trajectory Model
is described by:

x(t) = xR + v(t− tR) +

nj∑
j=1

bjH(t− tj) +

nF∑
k=1

[sk sin(ωkt) +ck cos(ωkt] +

nT∑
i=1

ai log(1 + ∆ti/Ti)

(4.2)
where xR is the reference position and tR its time. v symbolizes the velocity. H denotes the Heaviside
function applied each time an antenna change is registered at the station or an earthquake affects
the station signal. Here the strategy differentiates the earthquakes depending on their magnitude.
If the earthquake magnitude is 6.0 ≤ M ≤ 7.5, a simple offset is inverted using a Heaviside function.
To discriminate if the earthquake affects or not the station, we use the station – epicenter distance
criterion proposed by the Nevada Geodetic Laboratory (www.geodesy.unr.edu) such as:
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SITE Lon(o) Lat (o) wrms E (mm) wrms N (mm) wrms U (mm) vel E (mm/yr) vel N (mm/yr) vel U (mm/yr)
AJAC 8.7626 41.9275 1.5 1.6 4.4 0.0 -0.1 -0.3
ARTU 58.5605 56.4298 1.7 1.6 5.8 0.1 0.0 0.1
BARH -68.2217 44.3950 1.9 1.7 4.7 -0.1 -0.1 -0.2
BRAZ -47.8779 -15.9475 2.8 2.4 9.2 0.0 0.0 -0.0
BRFT -38.4255 -3.8774 1.8 2.4 6.7 0.0 0.0 0.1
CAGL 8.9728 39.1359 2.0 1.5 5.0 0.0 -0.1 -0.0
CAS1 110.5197 -66.2834 2.6 2.5 5.3 0.1 0.1 -0.1
CHAT -176.5658 -43.9558 2.2 2.1 5.2 -0.0 0.0 -0.1
CHPI -44.9852 -22.6871 2.3 2.5 6.9 -0.1 0.1 0.3
CIC1 -116.6658 31.8707 2.0 1.9 4.7 0.0 -0.2 0.2
CRO1 -64.5843 17.7569 2.9 1.9 8.7 0.1 -0.1 0.5
DARW 131.1327 -12.8437 3.4 3.9 8.9 0.1 0.0 0.1
DGAR 72.3702 -7.697 3.2 3.0 8.5 -0.1 0.0 0.1
FAIR -147.4992 64.9780 3.5 2.7 7.0 -0.1 -0.1 -0.2
FALK -57.8741 -51.6937 2.0 2.2 4.3 0.0 0.1 -0.2
GLPS -90.3037 -0.7430 1.8 1.8 4.2 -0.0 0.0 -0.3
GLSV 30.4967 50.3642 2.5 2.3 5.3 0.0 -0.1 0.0
GRAS 6.9206 43.7547 3.9 2.3 5.9 0.0 -0.1 -0.1
GRAZ 15.4935 47.0671 1.4 1.5 4.8 0.0 -0.0 0.1
GUAT -90.5202 14.5904 3.8 2.3 8.8 -0.3 -0.1 -0.0
HNLC -157.8645 21.3033 3.1 3.6 8.2 0.2 -0.1 0.2
HOFN -15.1979 64.2673 3.3 1.7 5.5 0.1 -0.0 -0.2
IRKT 104.3162 52.2190 3.6 3.2 6.6 -0.2 -0.1 0.1
ISPA -109.3444 -27.1250 2.7 2.3 7.7 -0.1 -0.3 -0.2
KIT3 66.8854 39.1348 3.6 3.1 9.6 -0.3 -0.0 0.3
KOKB -159.6649 22.1263 2.9 2.5 7.2 0.1 -0.2 -0.1
KOUR -52.8060 5.2522 4.8 2.9 10.1 0.1 -0.1 0.7
MAC1 158.9358 -54.4995 2.8 2.5 5.5 0.1 0.2 0.1
MAS1 -15.6333 27.7637 1.7 1.8 5.1 -0.1 -0.1 0.1
MATE 16.7045 40.6491 1.5 1.4 3.7 0.1 -0.1 0.1
MAUI -156.2570 20.7067 2.1 2.9 5.5 0.2 -0.2 -0.0
MAW1 62.8707 -67.6048 2.0 2.3 4.2 0.0 -0.0 -0.3
NKLG 9.6721 0.3539 3.1 3.6 8.5 -0.0 0.1 0.0
NOT1 14.9898 36.8758 2.1 1.6 4.9 0.0 -0.1 0.0
NRIL 88.3598 69.3618 1.9 1.7 5.7 0.0 -0.1 0.2
ONSA 11.9255 57.3953 1.1 1.2 4.2 -0.0 -0.0 -0.1
PENC 19.2815 47.7896 1.2 1.4 4.3 0.1 -0.1 -0.1
PIE1 -108.1189 34.3015 4.0 2.2 5.2 -0.2 -0.1 0.1
QUIN -120.9444 39.9746 2.4 2.8 8.1 -0.2 -0.1 0.2
RIOG -67.7511 -53.7855 2.3 2.6 5.6 0.0 0.3 0.1
SALU -44.2125 -2.5935 2.6 2.3 8.9 -0.6 0.1 0.7
SAVO -38.4323 -12.9392 2.2 2.1 7.0 0.1 0.1 0.2
STJO -52.6777 47.5952 2.2 2.1 5.2 -0.0 -0.0 -0.1
SUTH 20.8105 -32.3802 2.4 2.5 6.0 -0.1 0.1 -0.1
SUTM 20.8109 -32.3814 2.9 3.0 6.1 -0.2 0.4 0.0
THTI -149.064 -17.5771 2.9 2.7 8.7 0.0 -0.0 0.0
TIDB 148.9800 -35.3992 3.0 2.4 6.3 0.1 0.1 0.2
WILL -122.1678 52.2369 1.9 2.2 5.0 -0.1 -0.1 0.1
WSRT 6.6045 52.9146 1.1 1.1 4.1 -0.0 -0.0 0.2
WTZR 12.8789 49.1442 1.5 1.4 4.1 -0.1 -0.1 0.1
ZECK 41.5651 43.7884 3.2 2.6 6.6 -0.0 -0.1 0.2
ZIMM 7.4653 46.8771 2.2 1.8 4.2 0.0 -0.1 0.1

Table 4.1: GPS positions of the reference frame used during this study, with their respective statistics
(wrms and velocity). Everything is referenced in ITRF08 [Altamimi et al., 2011].

d(M) ≤ 10M/2−0.8 (4.3)

where M is the magnitude of the considered earthquake, and d(M) the distance epicenter – station .
If the distance is lower than d the earthquake is modeled. The threshold in magnitude is fixed in this
case asM = 6.0. The study area being very active, several jumps are seen associated with seismicity.
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If the considered earthquake is of magnitude M ≥ 7.5 a Heaviside function is applied H, but
also a log function to account for the postseismic signal generated by the earthquake (Equation
4.2). Ti is the relaxation time for each earthquake. The area is affected by 5 big earthquakes that
can be seen in the time series: Arequipa (Mw 8.4, 2001),Tarapaca (Mw 7.7), Pisco (Mw 7.7, 2007),
Tocopilla (Mw 7.7, 2007) and Iquique (Mw 8.1, 2014). To remove the post-seismic signal, the Relax-
ation Time τ is estimated. We start by fitting the postseismic signal of the older earthquake (here,
Arequipa earthquake in 2001), taking all the stations available and affected by the earthquake, and
then include iteratively younger earthquakes going forward in time. For each large earthquake, the
value of τ is explored from 1 to 1000 days. The best τ value is obtained minimizing the Model RMS
(τ = 61 days for 2001 Arequipa earthquake, Figure 4.7, see Table 4.2 for τ values). The functions
sin and cos are used to estimate annual and semi-annual seasonal signal. The stations positions and
velocity field obtained during the processing are in the Table 4.3, in the SOAM fixed reference frame.
All the parameters obtained during the processing can be found in the Appendix A. An example of
the model for AREQ station can be seen in the Figure 4.8 (All the models for each station can be
found in the Appendix A).

Figure 4.7: Normalized RMS from modeled time series as a function of the Relaxation Time (τ = 61 days).

Earthquake τ (days)
Arequipa 61
Tarapaca 66
Pisco 26

Tocopilla 6
Iquique 84

Table 4.2: Relaxation Time modeled for each earthquake M ≥ 7.5, for Arequipa earthquake.
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Figure 4.8: North, East and Vertical time series of AREQ stations. Blue dots represent the daily position time
series of the station while the red shows the model obtained from Equation 4.2. The box shows the velocity obtained for
each component with its respective error associated. Purple vertical lines indcate the antenna changes, yellow vertical
lines are earthquake with M ≥ 7.5 (for which post-seismic signal is modeled), while cyan vertical lines represent the
earthquakes 6.0 ≤ M < 7.5. Model RMS is annotated on the information boxes.
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Station Lon(o) Lat(o) wrms N wrms E wrms V North East Vertical
AEDA -70.178 -20.546 1.7 1.36 4.45 7.37+/-0.09 25.14+/-0.12 -4.29+/-0.31
AREQ -71.493 -16.466 1.91 1.67 4.01 1.82+/-0.13 13.58+/-0.14 -1.25+/-0.39
ATIC -73.697 -16.231 1.59 1.39 3.51 2.19+/-0.08 24.38+/-0.09 1.36+/-0.19
ATJN -70.137 -19.301 1.45 1.34 2.98 5.26+/-0.06 23.58+/-0.06 0.83+/-0.13
CBAA -68.448 -22.746 1.41 1.31 2.73 5.01+/-0.04 18.87+/-0.04 -1.5+/-0.09
CDLC -69.762 -22.19 1.47 1.32 3.04 7.23+/-0.04 29.45+/-0.05 4.69+/-0.1
CGTC -70.069 -20.177 1.41 1.28 2.81 5.29+/-0.02 24.94+/-0.02 2.14+/-0.04
CHMZ -69.194 -19.669 1.38 1.26 2.82 6.99+/-0.03 20.3+/-0.04 -0.5+/-0.07
CHRA -72.929 -16.517 1.48 1.39 5 2.59+/-0.07 18.48+/-0.07 1.23+/-0.25
CJNT -67.761 -23.028 1.44 1.32 3.07 3.82+/-0.05 16.32+/-0.06 -0.45+/-0.12
CLLA -69.357 -20.955 1.38 1.27 2.86 4.87+/-0.04 24.71+/-0.04 0.21+/-0.08
COLC -68.639 -19.276 1.68 1.5 4.53 5.54+/-0.07 19.82+/-0.08 0.61+/-0.22
COLL -68.65 -20.831 1.55 1.4 3.04 1.19+/-0.11 24.18+/-0.12 3.59+/-0.23
CRSC -70.08 -20.918 1.45 1.3 2.74 7.61+/-0.04 28.06+/-0.04 1.37+/-0.08
CTLR -70.097 -21.964 1.43 1.39 3.51 8.49+/-0.07 29.13+/-0.07 5.87+/-0.17
DANC -70.252 -17.265 1.43 1.33 3.05 4.35+/-0.06 9.77+/-0.06 -2.58+/-0.14
ENAP -69.755 -20.135 1.89 1.48 4.21 1.79+/-0.12 25.01+/-0.16 -2.96+/-0.35
FBAQ -74.404 -14.67 1.55 1.48 3.29 6.66+/-0.16 25.43+/-0.17 3.12+/-0.36
GLRV -75.787 -13.999 1.45 1.36 3.01 4.08+/-0.05 11.12+/-0.05 -0.55+/-0.1
GUAD -69.888 -20.278 1.68 1.38 4.23 0.84+/-0.07 16.95+/-0.08 1.2+/-0.2
HMBS -75.321 -12.042 1.53 1.29 4.72 5.94+/-0.12 25.25+/-0.14 3.72+/-0.45
HUAN -70.132 -20.274 1.6 1.35 3.77 1.34+/-0.09 9.62+/-0.11 0.85+/-0.25
IQQE -70.575 -23.289 1.58 1.49 3.77 3.87+/-0.05 28.14+/-0.05 2.17+/-0.12
JRGN -70.705 -15.723 1.61 1.47 3.29 11.25+/-0.04 34.28+/-0.04 -5.5+/-0.09
LAGN -76.273 -14.145 1.28 1.31 3.53 29.5+/-3.62 39.55+/-3.53 14.05+/-9.73
LAGU -75.851 -14.714 1.9 1.56 4.81 4.64+/-0.1 25.12+/-0.12 5.52+/-0.31
LOMI -70.569 -18.134 1.92 2.73 3.64 -8.81+/-0.09 13.85+/-0.07 5.57+/-0.13
LYAR -70.248 -22.746 1.41 1.3 3.34 2.71+/-0.07 18.09+/-0.08 1.91+/-0.18
MCLA -69.827 -21.715 1.5 1.3 2.84 8.72+/-0.03 29.28+/-0.04 -0.04+/-0.07
MICA -69.596 -19.131 1.34 1.29 2.64 5.63+/-0.04 27.58+/-0.04 5.35+/-0.08
MNMI -74.964 -14.857 1.5 1.36 3.19 7.24+/-0.15 19.11+/-0.16 -4.22+/-0.34
NZCA -69.957 -17.781 1.73 1.29 3.98 4.55+/-0.05 13.94+/-0.07 1.33+/-0.17
PALC -69.488 -21.044 1.48 1.35 3.39 4.81+/-0.06 11.42+/-0.07 -1.04+/-0.15
PB01 -69.893 -21.315 1.42 1.36 3.48 6.18+/-0.06 26.09+/-0.06 -0.07+/-0.15
PB02 -69.752 -22.049 1.49 1.35 3.23 7.79+/-0.03 29.08+/-0.04 2.49+/-0.08
PB03 -70.15 -22.335 1.65 1.43 3.44 6.96+/-0.04 28.67+/-0.04 4.18+/-0.09
PB04 -70.203 -22.853 1.6 1.34 3.24 8.93+/-0.03 28.93+/-0.03 0.69+/-0.07
PB05 -69.572 -22.706 1.76 1.43 3.56 8.97+/-0.03 28.55+/-0.04 1.14+/-0.07
PB06 -69.886 -21.727 1.51 1.3 3.35 5.19+/-0.02 25.6+/-0.02 -0.64+/-0.05
PB07 -69.161 -20.143 1.56 1.36 3.56 7.3+/-0.03 29.61+/-0.03 4.96+/-0.07
PB08 -69.656 -19.761 1.55 1.43 3.33 6.23+/-0.02 21.56+/-0.02 1.26+/-0.05
PB11 -70.107 -18.458 1.66 1.12 2.87 12.94+/-0.37 34.36+/-0.55 -17.01+/-0.95
PCCL -69.432 -19.87 1.45 1.29 3.23 4.4+/-0.06 16.71+/-0.07 -0.1+/-0.15
PCHA -69.335 -20.49 1.58 1.55 3.99 6.55+/-0.07 21.92+/-0.01 1.35+/-0.17
PICC -70.909 -17.949 1.81 1.64 3.6 7.86+/-0.18 23.94+/-0.2 -1.33+/-0.39
PMCA -70.448 -23.101 1.43 1.32 3.52 1.49+/-0.04 18.49+/-0.04 1.77+/-0.09
PMEJ -70.123 -19.597 1.7 1.37 4.05 9.89+/-0.05 32.55+/-0.06 -4.17+/-0.15
PSGA -71.37 -17.701 1.55 1.3 3.68 6.41+/-0.06 24.71+/-0.07 3.17+/-0.17
PTCL -74.311 -15.838 1.83 1.64 6.34 1.52+/-0.07 21.98+/-0.08 8.76+/-0.26
PTIN -69.574 -18.194 1.5 1.41 3.63 3.6+/-0.06 23.97+/-0.06 1.91+/-0.15
PTRE -72.429 -16.714 1.43 1.32 3.03 7.99+/-0.05 11.86+/-0.06 -3.4+/-0.12
QUCA -69.558 -21.692 1.51 1.49 4.32 -2.99+/-0.13 14.61+/-0.13 12.07+/-0.38
QUIL -68.927 -22.083 1.52 1.33 3.34 6.26+/-0.08 31.01+/-0.09 7.02+/-0.2
RADO -75.188 -15.363 1.51 1.31 3.19 4.82+/-0.05 22.05+/-0.06 -1.32+/-0.12
SJUA -77.211 -12.081 1.68 1.36 3.52 -1.65+/-0.05 26.71+/-0.06 -7.01+/-0.13
SLRZ -69.348 -22.871 1.76 1.44 3.9 3.62+/-0.05 22.27+/-0.06 3.49+/-0.13
SRGD -70.193 -22.089 1.46 1.3 3.44 5.22+/-0.04 24.95+/-0.04 0.18+/-0.1
TORA -70.852 -17.076 1.63 1.4 4.17 0.63+/-0.03 7.41+/-0.03 3.11+/-0.08
TQPL -70.643 -17.304 1.44 1.32 3.19 2.67+/-0.04 10.87+/-0.05 -0.48+/-0.1
TRTA -70.041 -17.482 1.5 1.62 3.49 5.39+/-0.08 9.57+/-0.07 -1.1+/-0.17
UAPE -70.141 -20.243 2.01 1.76 4.95 5.54+/-0.08 25.36+/-0.1 -0.28+/-0.23
UCNF -70.409 -23.679 1.51 1.28 3.41 9.66+/-0.07 32.65+/-0.08 1.19+/-0.17
URCU -70.153 -21.764 1.45 1.23 2.71 4.84+/-0.26 34.05+/-0.31 10.04+/-0.58
UTAR -70.297 -18.491 1.8 1.57 4.27 3.67+/-0.08 17.95+/-0.09 2.89+/-0.22
VLZL -69.965 -23.117 1.48 1.31 2.91 7.14+/-0.05 28.81+/-0.05 4.69+/-0.11

Table 4.3: Stations Locations, Statistics and Velocities for stations in the area of the seismic gap. Velocities
are referred to SOAM fixed reference frame proposed by Nocquet et al. [2014]. Wrms are in mm. Velocities
and errors are in mm/yr.

44



4.4.2 Common mode filtering

Large networks (involving large baselines between stations) are affected by common mode, asso-
ciated with a spatially correlated positioning error [Wdowinski et al., 1997; Williams et al., 2004].
One way to reduce this effect is applying a spatial filtering that consists in stacking all the stations
day by day and calculating the mean per day. Two different approaches have been applied depending
on the problem addressed.

In the case of the long precursory phase of Iquique earthquake (Chapter 7), the times series are
considered since 2010, applying on them the Equation 4.2 (Trajectory Model). The remaining noise
has been reduced by removing the common mode, obtained by selecting stations located within a
distance range of 50 - 500 km from the source region (SJUA, ATIC, CHRA, PTCL, LYAR, UTAR,
PCCL, PB02, PB04, MCLA, PB05, PMEJ, JRGN, UCNF, NZCA, AREQ, TORA, TQPL, DANC,
TRTA, PALC, PTRE, MNMI, COLC, CHMZ, PB11, PCHA, PB08, PB01, PB07, CDLC, RADO,
PB06, CBAA, VLZL AND CJNT, Figure 4.5 a) and by averaging their detrended signals. Then, in
order to mitigate the residual loading signal, from each time series the mean annual residual seasonal
movement computed between 2010 and 2013 is removed. This procedure reduced significantly the
scatter on the times series. In order to study the long-term transient in the times series, the data
after March 15th, 2014 are excluded (when the strong preseismic signal occurred), and then the
average velocity variations computed, by fitting a linear regression in a six-month sliding window
of the obtained detrended and de-noised time series. The Figures 4.9 and 4.10, show the effects of
removing the common mode and residual seasonal signals on the times series, using 1-year sliding
window to calculate the mean velocity, while Figures 4.11 and 4.12 show this using a six-month
sliding window. From these analyses, it is possible to appreciate that the preseismic signal is present
in the times series but more clear and clean in those ones which common mode and seasonal effect
have been removed.

For the interseismic transient deformation study (Chapter 6), we calculated the common mode
on the entire network, because of the wide area analyzed (∼1300 km along strike). The impact
of the common mode removal can be seen in Figures 4.13 and 4.14 for the coastal stations of the
network and in Figures 4.15 and 4.16 for the inland ones. In these cases, the preseismic signal is still
present in the time series but now is more difficult to observe. This effect is produced by removing
the foreshocks sequence through the modeling of the times series (Trajectory Model, Equation 4.2).
The effect is smaller and therefore less strong in the time series.

4.4.3 Noise analysis

To describe the noise of the GPS times series, a power law model P (f) = P0/f
n is used, where

f denotes the frequency and n is the spectrum index [Mandelbrot and Pignoni , 1983; Agnew , 1992].
Williams et al. [2004] has shown that the best form to model the GPS noise, it is summing the
white noise (n = 0) and the colored noise (1 < n < 2). For each residual time series obtained,
the spectrum is computed calculating the spectral index (Table 4.4), which is a combination of the
white and colored noise. The Figures 4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25 and 4.26 show
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Coastal Stations
Inland Stations

Figure 4.9: Detrended displacement time series for a selection of stations along the coast and inland, without
removing the common mode. Colors, indicate the trench parallel (left side) and trench perpendicular (right side)
velocities obtained by computing the average velocity over one year sliding windows. Vertical yellow line denotes the
date of the swarm occurrence in July 2013. The vertical blue line indicates March 15th, when the Iquique seismic
crisis started, while the red one shows the date of the mainshock (2014/04/01).

Coastal Stations
Inland Stations

Figure 4.10: Same caption as in Figure 4.9, but removing the common mode and seasonal effects.

examples of the Noise Analysis performed during this work at the stations: ATJN, CJNT, COLC,
DANC, IQQE, JRGN, LYAR, PB03, PICC and SJUA (Figure 4.5). The spectral values obtained
during this procedure can be used to construct synthetic time series, later used in the Chapter 6 to
perform synthetic tests.
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Coastal Stations
Inland Stations

Figure 4.11: Detrended displacement time series for a selection of stations along the coast and inland, without
removing the common mode. Colors, indicate the trench parallel (left side) and trench perpendicular (right side)
velocities obtained by computing the average velocity over six-month sliding windows. Vertical yellow line denotes
the date of the swarm occurrence in July 2013. The vertical blue line indicates March 15th, when the Iquique seismic
crisis started, while the red one shows the date of the mainshock (2014/04/01).

Coastal Stations
Inland Stations

Figure 4.12: Same caption as in Figure 4.11, but removing the common mode and seasonal effects.
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Figure 4.13: Detrended displacement time series for all the coastal stations ordered by latitude (Figure 4.5),
without removing the common mode. Colors indicate the trench parallel (on top) and trench perpendicular (on
bottom) velocities obtained by computing the average velocity over one year sliding window. Vertical lines the date
of earthquakes of magnitude ≥ 6.0.
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Figure 4.14: Same caption as in Figure 4.13, but removing the common mode.
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Figure 4.15: Detrended displacement time series for all the inland stations ordered by latitude (Figure 4.5),
without removing the common mode. Colors indicate the trench parallel (on top) and trench perpendicular (on
bottom) velocities obtained by computing the average velocity over one year sliding window. Vertical lines denote the
date of earthquakes of magnitude ≥ 6.0.
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Figure 4.16: Same caption as in Figure 4.15, but removing the common mode.
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a) b)

c) d)

e) f )

Figure 4.17: GPS noise analysis on North and East components at ATJN station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual ATJN times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

a) b)

c) d)

e) f )

Figure 4.18: GPS noise analysis on North and East components at CJNT station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual CJNT times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.
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Figure 4.19: GPS noise analysis on North and East components at COLC station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual COLC times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

a) b)

c) d)

e) f )

Figure 4.20: GPS noise analysis on North and East components at DANC station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual DANC times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.
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Figure 4.21: GPS noise analysis on North and East components at IQQE station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual IQQE times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

a) b)

c) d)

e) f )

Figure 4.22: GPS noise analysis on North and East components at JRGN station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual JRGN times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.
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Figure 4.23: GPS noise analysis on North and East components at LYAR station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual LYAR times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

a) b)

c) d)

e) f )

Figure 4.24: GPS noise analysis on North and East components at PB03 station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual PB03 times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.
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Figure 4.25: GPS noise analysis on North and East components at PICC station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual PICC times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

a) b)

c) d)

e) f )

Figure 4.26: GPS noise analysis on North and East components at SJUA station. a) and b) show the North and
East residual time series over 1000 days in blue. c) and d) North and East synthetic noise calculated as the sum of
white and colored noises in red. e) and f) North and East Fourier transform P (f) of the residual SJUA times series
(blue) and the computed synthetic noise (red). The black line shows the slope used to model the colored noise.

56



SITE North East
AEDA 1.95E-01 1.51E-01
AREQ 2.09E-01 1.65E-01
ATIC 2.39E-01 2.06E-01
ATJN 2.13E-01 1.76E-01
CBAA 2.29E-01 1.99E-01
CDLC 1.68E-01 1.37E-01
CGTC 2.30E-01 2.30E-01
CHMZ 2.75E-01 2.49E-01
CHRA 1.66E-01 1.49E-01
CJNT 2.43E-01 2.30E-01
CLLA 1.66E-01 1.75E-01
COLC 2.91E-01 1.38E-01
COLL 1.36E-01 2.39E-02
CRSC 1.69E-01 2.17E-01
CTLR 2.46E-01 1.89E-01
DANC 1.92E-01 2.09E-01
ENAP 2.11E-01 1.66E-01
FBAQ 2.00E-01 2.82E-01
GLRV 2.54E-01 1.73E-01
GUAD 1.56E-01 1.38E-01
HMBS 1.68E-01 1.75E-01
HUAN 2.52E-01 3.66E-01
IQQE 2.27E-01 1.24E-01
JRGN 2.36E-01 2.38E-01
LAGN 1.18E-01 1.96E-01
LAGU 2.17E-01 1.26E-01
LOMI 5.00E-01 3.85E-01
LYAR 1.91E-01 1.91E-01
MCLA 2.05E-01 1.27E-01
MICA 1.82E-01 2.01E-01
MNMI 1.96E-01 1.72E-01
NZCA 1.87E-01 1.87E-01
PALC 2.02E-01 2.03E-01
PB01 2.36E-01 2.86E-01
PB02 2.32E-01 1.73E-01
PB03 2.48E-01 2.82E-01
PB04 1.77E-01 1.87E-01
PB05 2.86E-01 2.55E-01
PB06 2.33E-01 2.00E-01
PB07 2.10E-01 1.89E-01
PB08 2.97E-01 1.68E-01
PB11 1.94E-01 3.24E-01
PCCL 2.01E-01 1.60E-01
PCHA 2.02E-01 2.78E-01
PICC 2.37E-01 2.23E-01
PMCA 1.91E-01 6.23E-02
PMEJ 2.42E-01 1.99E-01
PSGA 1.84E-01 7.20E-02
PTCL 2.83E-01 1.54E-01
PTIN 2.97E-01 2.69E-01
PTRE 1.44E-01 1.08E-01
QUCA 2.45E-01 1.57E-01
QUIL 9.14E-02 3.80E-02
RADO 2.22E-01 2.85E-01
SJUA 6.82E-02 9.40E-02
SLRZ 2.04E-01 9.86E-02
SRGD 1.94E-01 1.69E-01
TORA 4.16E-02 1.58E-01
TQPL 1.88E-01 1.17E-01
TRTA 8.68E-02 2.42E-01
UAPE 1.49E-01 7.63E-02
UCNF 1.53E-01 1.29E-01
URCU 1.43E-01 -2.06E-01
UTAR 1.57E-01 5.54E-02
VLZL 1.85E-01 8.03E-02

Table 4.4: North and East spectral index for each GPS station used in the study.
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4.5 Kinematic processing

High frequency GPS records (1 - 5 Hz) have been used and processed in kinematic way using
TRACK software. One reference site is chosen, far from the earthquake epicenter, and the relative
position between each station in the network and this reference site is calculated one hour and after
the earthquake occurrence. It allows to calculate the static offset produced by the earthquake, not
including postseismic offsets or early afterslip, that in general contaminate the signal using daily
GPS positioning [e.g., Ding et al., 2015]. This technique allows to get seismograms that can be used
in kinematic inversions after some filtering processing (e.g., sidereal filtering and common mode).

(a)

(b)

(c)

(d)

Figure 4.27: North (a), East (b) and Vertical (c) components of ATJN station together with the ATM values,
using UCNF (blue) and VALL (orange) as reference site.

The HRGPS data from 25 stations for the Iquique earthquake mainshock and 20 for its biggest
aftershock were employed during this Ph.D. (Figure 8.B.1). To do so, two reference sites are tested
during the procedure, VALL station that is located ∼1000 km south of the epicenter of Iquique
earthquake, while UCNF station sited ∼500 km from the epicenter. The tropospheric delays are re-
estimated starting from two-hour estimates given by the static daily solution obtained with GAMIT
software (Section 4.3). It allows having precise local atmospheric parameters, improving the TRACK
model that uses a global atmosphere model [Rivera, 2015; Klein et al., 2017]. The station UCNF
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is chosen as the reference site because the scatter on the signal is lower than VALL (Figure 4.27).
Although at the first order the shape of the signal is similar, some scatter is produced by the long
distance between VALL station and the network, where the atmospheric parameters might change
considerably, compared with the distance UCNF station - network.

(a)

(b)

(c)

(d)

Figure 4.28: Signal repeatability observed at the three components and atmosphere paratement at ATJN Station:
(a) north, (b) east, (c) vertical and (d) atmosphere. Each color denotes the day analyzed.

After the processing, the signal repeatability observed in each station (e.g., Figure 4.28) is re-
moved by applying a sidereal filtering. This filter removes the errors coming from the orbits or
multipath effect [Larson et al., 2003; Zhong et al., 2010]. The filter is estimated using 2 days before
or one day after the mainshock (depending on the data availability). The sidereal delay is taken
into account at the moment to calculate the kinematic processing for the previous and after days of
each earthquake. This value is considered as 246 s [Larson et al., 2007]. For each component (East,
North and Vertical), the signal obtained at the time of the earthquakes in the days preceding or
following it is stacked, and then removed from the coseismic signal (e.g., Figure 4.29).

After removing the sidereal filtering from the original signal, a spatial filtering or common mode
has been calculated. It allows to remove any effect produced by the earthquake, notably the effect
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Figure 4.29: North, East and Vertical sidereal filtering (green), original GPS signal for ATJN station (blue) and
corrected GPS signal by the sidereal filtering (orange)

Figure 4.30: Common mode signal (orange), GPS signal corrected from Figure S2 (ATJN station, blue) and GPS
corrected by Common Mode (green).

of the arrival of surface waves, at the reference site [Wdowinski et al., 1997]. The closest stations
to the reference site UCNF (PB06, PB05, PB04, PB07, PB02 and PB03, that are located within
a distance range of 100 km of the reference station) are stacked, and removed this signal from the
entire network (e.g., Figure 4.30), thus removing the effect of the surface waves passing through the
reference site.
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Chapter 5

Long-Term Interactions Between
Intermediate Depth and Shallow
Seismicity in North Chile Subduction
Zone

Paper published : Jara, J., Socquet, A., Marsan, D. & Bouchon, M. (2017). Geophysical
Research Letters, pp. 2983–2922, doi:10.1002/2017GL075029, 2017GL075029.1

5.1 Abstract

We document interactions between intermediate depth and interplate seismicity in the North
Chile subduction zone, over a 25 year period (1990–2015). We show that the 2005 Mw 7.8 Tarapaca
slab-pull earthquake was followed by 9 years of enhanced deep and shallow seismicity, together
with the decrease of eastward average GPS velocities and associated interplate coupling, eventually
leading to the 2014 Mw 8.1 Iquique megathrust earthquake. In contrast, megathrust ruptures (e.g.,
Mw 8.0 Antofagasta in 1995, or Mw 8.1 Iquique in 2014) initiate several years of silent background
seismicity in the studied area, both at shallow and intermediate depths. The plunge of a rigid slab
into a viscous asthenospheric mantle could explain the observed synchronization between deep and
shallow seismicity and their long-term interactions.

5.2 Introduction

Mechanisms leading to large megathrust earthquakes are still not well understood and described.
Recent studies showed that a triggering link exists between intermediate depth seismicity and the oc-
currence of megathrust earthquakes. For example, Lay et al. [2017] showed, from a detailed analysis
of source parameters using teleseismic body wave modeling, that the 2016 Mw 7.9 Solomon Islands

1Supporting Information of this work can be found at the end of this Chapter.
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earthquake was a compound event initiating as a compressional intraslab rupture that coseismi-
cally triggered a plate boundary thrust. More intriguing, Bouchon et al. [2016] have observed that
precursory seismicity, down to magnitude M = 1, at shallow and intermediate depths,occurred syn-
chronously before recent megathrust earthquakes(e.g., Mw 8.8 Maule, Chile, 2010, Mw 9.1 Tohoku-
Oki, Japan, 2011, and Mw 8.2 Iquique, Chile, 2014). The reduced magnitude of this precursory
seismicity makes direct triggering unlikely, but rather suggests a wider slab deformation or plunge
leading to the megathrust rupture. These studies all focus on a preearthquake period that is rela-
tively short in time. Although addressing a time span for deep-shallow seismicity interactions longer
than direct coseismic triggering, the latter study remains focused on the 2–3 months preceding the
megathrust rupture. However, it has been shown that megathrust earthquakes can be preceded
by a long (several months to years) preparation phase [Bouchon et al., 2013; Mavrommatis et al.,
2014; Yokota and Koketsu, 2015; Socquet et al., 2017], but interaction between such long precursors
and deep processes has not been evidenced so far. Durand et al. [2014] have described seismicity
interplay lasting up to 4 years distributed over a wide area in Greece. The authors proposed that an
intermediate-depth earthquake started a broad deformation of the slab which led to a large interface
earthquake and stretched the overriding plate over far distances. However, until now, no study exists
that analyzes the interactions at the decadal scale between deep and shallow subduction earthquakes
and their relationship with the megathrust earthquake cycle.

As North Chile subduction undergoes an important seismic activity at intermediate depths (Fig-
ure 5.1) and at the same time is a well-known seismic gap [Béjar-Pizarro et al., 2013; Comte and
Pardo, 1991; Métois et al., 2016] with different earthquakes occurring in neighboring parts of the
thrust, it represents an excellent case to study this inherent influence and interaction between deep
and shallow seismicity. On 13 June 2005, theMw 7.8 Tarapaca slab-pull earthquake occurred at 100
km depth [Delouis and Legrand , 2007; Peyrat et al., 2006; Peyrat and Favreau, 2010]. Nine years
later, on 1 April 2014, the Mw 8.1 Iquique megathrust earthquake broke the subduction interface
in the same latitude range [Duputel et al., 2015; Hayes et al., 2014; Lay et al., 2014; Ruiz et al.,
2014; Schurr et al., 2014; Yagi et al., 2014], following an important foreshock seismic activity [Kato
et al., 2016; Meng et al., 2015; Ruiz et al., 2014; Schurr et al., 2014] associated with a slow slip on
the subduction interface that initiated up to 8 months before the mainshock [Socquet et al., 2017].
Here we use both geodetic and seismological data available in the area to characterize the evolution
of deformation and seismicity several years before the occurrence of the megathrust and explore the
relation between deep and shallow processes, by focusing on the area affected by Tarapaca slab-pull
(Mw 7.8, 2005) and Iquique megathrust (Mw 8.1, 2014) earthquakes.

5.3 Data, Methods, and Results

5.3.1 GPS Data, Processing, and Average Velocities

GPS data from different networks in South Peru and North Chile (IPOC, LIA “Montessus de
Ballore”, CAnTO, ISTerre, IGP, and CSN) were processed in double difference using GAMIT 10.5
software [Herring et al., 2016]. The results were mapped into the ITRF 2008 (Altamimi et al., 2011)
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Figure 5.1: Seismotectonic context of North Chile-South Peru subduction zone. Historical and instrumental
rupture areas are color coded as a function of their date of occurrence. Dates and magnitudes of all earthquakes M >
7.0 in the area are indicated in squared boxes. Yellow stars and focal mechanisms indicate the epicenters of Mw 7.8
Tarapaca slab-pull earthquake in 2005 [Delouis and Legrand , 2007] andMw 8.1 Iquique megathrust earthquake in 2014
[Duputel et al., 2015]. The 1990–2016 seismicity (M ≥ 4.0) from the International Seismological Centre (ISC) (2017)
is color coded by depth and scaled by magnitude. The black line indicates the location of the profile represented in
Figure 1b. (b) Trench-perpendicular profile showing the slab interface from Slab 1.0 [Hayes et al., 2012]. Earthquake
hypocenters and hemispheric projection of the focal mechanisms are shown in yellow. Also 6 months of aftershocks
for each earthquake are plotted, color coded by depth and scaled by magnitude. Tarapaca earthquake fault plane
is indicated with a black line above its hypocenter star. (c) Seismicity histogram at depth between 19◦S and 21◦S,
taking into account 10 km to separate each segment.

(see supporting information for details [Boehm et al., 2006]).

To calculate the average interseismic velocities, the date of the Tarapaca earthquake is taken
as the origin date(13 June 2005). The period preceding the earthquake covers from 1 day after
the Arequipa earthquake (Mw 8.4, 23 June 2001 [Perfettini et al., 2005]) until the day before the
Tarapaca earthquake. The period following the Tarapaca earthquake starts 1 day after it and ends
at the beginning of August 2013, in order to avoid the 8 month precursory phase preceding Iquique
earthquake [Socquet et al., 2017]. A simple model taking into account the position xR at a given
reference time tR, the velocity v, and one displacement step for each large earthquake H (Heavi-
side function), at a given time tj , is inverted to calculate the velocities, following the Trajectory
Model principle [Bevis and Brown, 2014] (Equation 5.1). This model does not consider afterslip or
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Figure 5.2: Map of average GPS velocities before (black arrows) and after (green arrows) Tarapaca earthquake
2005. The first period covers 1 day after Arequipa earthquake (2001 Mw 8.4) until 1 day before Tarapaca earthquake.
The second period covers 1 day after Tarapaca earthquake up to the swarm activity seen in August 2013, preceding
Iquique earthquake. Pink inverted triangles symbolize the location of GPS stations with their respective names at side.
The 1990–2016 ISC seismicity is color coded by depth and scaled by magnitude (M ≥ 4.7, completeness magnitude).
The box shows the target zone where the seismicity is studied. Yellow stars indicate the epicenter of Tarapaca and
Iquique earthquakes. (b) East component displacement time series of UAPE station, detrended using 2001.44–2005.45
period as reference. Green dashed line shows the coseismically offset projection of the first period trend. Vertical
lines point out an earthquake or swarm occurrence: continuous lines represent events that occurred in the study area
and dashed events outside it. (c, d) The time evolution of shallow (z ≤ 40 km) and deep (z ≥ 80 km) seismicity,
respectively. Blue (red) and light blue (orange) are the cumulative number of events for ISC catalog and background
seismicity, respectively (M ≥ 4.7). Green lines show the seismicity trend in the period one (as in Figure 5.2b and
dashed lines show the trend projected to the second period.

viscoelastic relaxation, due to the fact that there are no clear postseismic signal visible on the GPS
time series because of the earthquake depth (100 km) (Figure 5.2b).

x(t) = xR + v(t− tR) +

nj∑
j=1

bjH(t− tj) (5.1)

These velocities are calculated for nine stations that have enough data before and after Tara-
paca earthquake (Figure 5.2a, see supporting information for further details on position time series,
velocities and errors). The eastward velocity of UAPE cGPS coastal station decelerates by 4 mm/yr
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after the occurrence of Tarapaca earthquake (Figure 5.2b). A similar change in velocity affects most
of the cGPS stations within the study area. Coastal stations in this region (IQQE and AEDA)
decelerate by 2 to 4 mm/yr, while inland stations (FBAQ, PICC, and COLL) decelerate by ∼6
mm/yr (Figure 5.2a and see supporting information for further details on the velocity values). In
comparison, stations located away from the study area (e.g., UTAR and PMEJ) do not exhibit such
a change in the average velocity (Figure 5.2). We hypothesize that this change in velocity is due to
a partial decoupling of the slip interface at depth; we thus aim at searching for futher evidences of
this in the seismicity.

5.3.2 Catalog and Background Seismicity

The ISC event catalog [International Seismological Centre, 2014] from 1990 to 2017 is used
to analyze raw and background seismicity. The area analyzed covers the latitude range between
11◦S–25◦S, and the longitude range 80◦W–66◦W (Figure 5.1a). We make use of a method devel-
oped by Ogata and Katsura [1993] and Daniel et al. [2008] to compute the catalog completeness
magnitude. Because IPOC seismic network was installed in 2007 in Northern Chile, two different
periods are considered: from 1990 to 2006 and from 2007 to 2017. Our approach assumes that
both periods are characterized by the same b value, thus allowing for a better resolved magnitude
of completeness (one for each period). The calculated completeness magnitudes are Mc = 4.5 for
the first period and Mc = 4.0 for the second period (in the whole South Peru-North Chile area
considered on which the declustering has been done). We have fixed Mc = 4.5 for the whole period
1990 – 2017 (see supporting information for further details).

An epidemic-type aftershock sequence (ETAS) model is performed to decluster the catalog and
estimate the background seismicity [Marsan et al., 2013, 2017]. The number of earthquakes (λ) per
unit of area (x and y) and unit of time (t) is modeled as the sum of two contributions:

λ(x, y, t) = µ(x, y, t) + ν(x, y, t) (5.2)

where ν(x, y, t) accounts for triggered earthquakes by a previous one (i.e., aftershocks) and µ is
the background seismicity rate (i.e., not triggered by a previous event). The parameters x and y

represent the location and t the time of occurrence of each event.

The aftershock rate ν(x, y, t) is obtained using

ν(x, y, t) =
∑
i|ti<t

νi(x, y, t) (5.3)

where ti is the occurrence time of the ith earthquake; νi(x, y, t) is computed as
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νi(x, y, t) =
κ(mi)

(t+ c− ti)p
· (γ − 1)L(mi)

γ−1

2π
(
(x− xi)2 + (y − y2) + L(mi)2

)(γ−1)/2
(5.4)

That is, the product of the Omori-Utsu law with a power spatial density, with c, γ, and p con-
stants. L(m) = L0×100.5(m−4.7) is the characteristic length in kilometer [Elst and Shaw , 2015; Utsu
and Seki , 1955]; and κ(m) is the productivity law, with α constant [Ogata, 1988].

Parameters α, p, c, L0, and γ are here imposed a priori to realistic values: α = 2, p = 1, c =
10−3 days, γ = 2, and L0 = 1.78 km. While these parameters can be optimized given the data,
in presence or not of a time- and space-varying background rate [Reverso et al., 2015], it is easier
and generally sufficient to impose fixed values (see Marsan et al. [2017], for a discussion on this in
the context of the northeast Japanese subduction zone). A parameter exploration is performed in
the supporting information to evaluate how the results of our analysis depend on this choice. In
contrast, parameters κ and µ(x, y, t) are inverted. The background rate µ(x, y, t) is calculated as

µ(x, y, t) =
∑
i

µ(xi, yi, ti)

λ(xi, yi, ti)
e−
√

(x−xi)2+(y−yi)2/`e−|t−ti|/τ × 1

2π`2ai
(5.5)

Where ` and τ are two smoothing parameters for space and time. ai is defined as ai =

2τ − τ(e−
ts−ti
τ − e−

te−ti
τ ). ts and te represent the starting and ending time of the catalog. Pa-

rameter κ is computed as

κ =

∑
i 1− µ(xi,yi,ti)

λ(xi,yi,ti)∑
i e
αmi(ln(te + c− ti)− ln c)

(5.6)

We have used a smoothing length ` of 100 km and smoothing duration τ of 100 days to preserve
the potential accelerations in the catalog [Marsan et al., 2017].

We perform the declustering for the whole area (Figure 5.1a) and eventually focus on the region
affected by the two mainshocks (box in Figure 5.2a). This smaller area is characterized by a slightly
larger Mc of 4.7 compared to the whole area on which the declustering has been performed (see sup-
porting information S1 for further details). Thus, the seismicity with magnitude over 4.7 is selected
from the regional declustered catalog to perform the analysis on the specific zone.

We separated shallow (z ≤ 40 km) and deep (z ≥ 80 km) background seismicity (Figures 5.2c
and 5.2d). This depth selection has been made to better separate deep and shallow events by
avoiding the seismicity between 40 and 80 km at depth, that is, a depth range with very little
seismicity (Figure 5.1c). It is obvious from Figure 5.2d that the declustering mostly removes the
aftershocks following the Tarapaca earthquake. Despite this, a clear increase both in deep and
shallow background seismicity can be seen after the 2005 Tarapaca earthquake (shallow seismicity
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in 2006 and deep seismicity in 2011). In order to characterize its temporal variability, seismicity
rates are calculated for reference periods ranging from 1 day to 2 years. Figures 5.3a and 5.3b offer
a view of deep and shallow seismicity rates computed for different time windows, ranging from 1 day
to 2 years, over 25 year time span. It shows that the 9 year period of increased deep and shallow
seismicity following 2005 Tarapaca slab-pull earthquake, is followed by a period of quiescence after
the occurrence of the 2014 earthquake. Similarly, the 1995 Antofagasta earthquake marks the limit
between an important seismic activity before, and no background seismicity after. It also allows one
to observe that the seismicity release does not occur steadily in the long-term, but rather through a
series of pulses.

Figure 5.3: The time evolution of normalized background seismicity rate calculated for different periods of refer-
ence (from 1 day rate to 2 years rate), for shallow (z ≤ 40 km) and deep (z ≥ 80 km) seismicity. Continuous (dashed)
lines indicate the time of occurrence of earthquakes into (outside) the study area. Blue (red) are shallow interplate
(intermediate depth intraplate) earthquakes. Interactions between shallow and deep seismicity: (c) Normalized cu-
mulative number of events for shallow (blue) and deep (in red) in the study area (Mc = 4.0). (d) Synchronization
coefficients defined to identify interactions between deep-shallow seismicity. They are color coded by time for 1.0
value (positive interaction) and grey for 0 value (no interaction). (e) Map view of shallow-deep seismicity interaction
identified between 14 June 2005 and 1 January 2014, color coded by time. Coupling map is from Métois et al. [2016].
Tarapaca and Iquique ruptures [Delouis and Legrand , 2007; Duputel et al., 2015] and 8 month of preseismic slip
[Socquet et al., 2017] are plotted and color coded by time.
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5.4 Discussion

5.4.1 A Change in Deformation and Seismicity After Tarapaca Slab-Pull Earth-
quake

After the 2005 Tarapaca earthquake, a significant change in the surface deformation can be
observed (Figure 5.2a). The reduction in eastward velocity could be related to post-seismic defor-
mation following the slab-pull event (e.g., poroelastic rebound [e.g., Jonsson et al., 2003; Peltzer
et al., 1998], afterslip [e.g., Hsu et al., 2006], or mantle’s viscoelastic relaxation [e.g., Khazaradze
et al., 2002; Klein et al., 2016]). Given the fact that the earthquake occurred at 100 km depth, it is
likely that poroelastic rebound, which usually takes place at shallow depths within structural com-
plexities of the fault [Jonsson et al., 2003; Peltzer et al., 1998]), does not exist or is hardly detectable
in the surface deformation field (if any occurs). Part of this velocity reduction of the stations is lo-
cated far from the coast (more than 6 mm/yr after the earthquake). Given the fact that the change
in velocity affects a large area, a viscoelastic relaxation has been invoked [Bie et al., 2017], although
it is not possible to observe the associated long-term typical exponential-like transient in the GPS
time series, that is usually associated with this type of mechanism. Whatever the mechanism, such
long-term changes in the surface displacement rates suggest that Tarapaca intraplate earthquake
had an important impact on the surface deformation field and therefore on the amount and pattern
of the interseismic compression in the upper plate and at the plate boundary. This broad change
in surface deformation generates a velocity reduction of ∼4 mm/yr at coastal stations and likely
modifies the stress regime close to the plate boundary, enhancing unclamping as well as a change in
the coupling on the subduction interface. Until recently, no slow slip events had been reported in the
area. Ruiz et al. [2014] and Schurr et al. [2014] have shown a strong transient deformation, for which
the aseismic nature is debated, during the weeks preceding the occurrence of Iquique earthquake,
and Socquet et al. [2017] showed that an 8 month aseismic slow slip preceded the earthquake. These
slow slip events have also been observed by the analysis of repetitive earthquakes. Kato et al. [2016],
Meng et al. [2015] and Yagi et al. [2014] have pointed out the occurrence of aseismic deformation
over the same period as Ruiz et al. [2014]. Taking a longer period of time, Kato et al. [2016] have
detected an aseismic slip starting in 2008 with a continuous rate of 0.67 mm/yr until the 2013 seismic
swarm. Because the average velocity field is calculated up to the 2013 swarm (avoiding the precur-
sory phase of Iquique earthquake, [Socquet et al., 2017]), the observed reduction of coastal velocities
is compatible with Kato et al. [2016] and we interpret this behavior as a reduction of coupling on
the subduction interface.

Associated with the decrease in eastward GPS velocities, an increase in seismicity rate is observ-
able both at deep and shallow depths during the interearthquake period, either in the whole ISC
catalog or in the background seismicity (Figures 5.2 and 5.3). The background seismicity is usually
considered to be a proxy of the tectonic loading in a specific area, so that any important deviation
from the average trend can be associated with slow slip events and fluid or magmatic migrations
[Marsan et al., 2017]. This therefore suggests an increase in the tectonic loading, which is compatible
with the observed decrease in GPS eastward velocity interpreted as an interplate decoupling (and
therefore an increased creep on the subduction interface). Interestingly, this increase in background
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seismicity rates concerns both shallow and deep earthquakes, suggesting that a link exists between
shallow and deep seismic responses.

5.4.2 Long-Term Interactions Between Shallow and Intraslab Seismicity

Figures 5.3a and 5.3b offer a view of the background seismicity rates over a 25 year time span,
for deep and shallow seismicity. Before Antofagasta megathrust earthquake (Mw 8.0, 1995 [Delouis
et al., 1997]), both deep and shallow background activities are significant. After this earthquake, the
study area entered in a silent period until the occurrence of the Arequipa earthquake in mid-2001
in South Peru (Mw 8.4 [Perfettini et al., 2005]). The Arequipa earthquake initiates the reactivation
of a subtle background seismic activity that accelerates at depth in the months preceding Tarapaca
slab-pull earthquake. The Tarapaca intraslab earthquake triggers an increase in both deep and shal-
low seismicity rates. At the end of 2007, in the southern part of the gap, the Tocopilla earthquake
(Mw 7.7 [Béjar-Pizarro et al., 2010; Peyrat and Favreau, 2010]) triggers a burst of shallow seismicity.
Then, 4 years before Iquique megathrust earthquake, the deep seismicity rate increases, followed in
August 2013 by the increase of the shallow background seismicity rate, 8 months before the main-
shock. In April 2014, Iquique megathrust earthquake ruptures a large part of the plate interface and
concludes a period of enhanced deep and shallow background seismic activity that initiated 9 years
before with the occurrence of Tarapaca slab-pull earthquake. Since the occurrence of the Iquique
megathrust in April 2014 (up to now), the background seismic activity is almost zero, at least at
Mc = 4.7.

Global tectonic models propose different forces leading the Earth’s convection. One primary
force responsible for this process is that generated by the slab subducting beneath the lithosphere.
These models have shown that a relationship exists between the “slab-pull" force and the pro-
cesses occurring in the seismogenic zone [e.g., Bilek et al., 2005; Conrad et al., 2004; Conrad and
Lithgow-Bertelloni , 2002; Spence, 1987]. From a local seismotectonic point of view, models describe
interactions between interplate and intraplate events. These models depend on how far in the seismic
cycle the thrust is. Prior to a thrust event, the stress regime at intermediate depth exhibits tensional
behavior generating preferentially slab-pull earthquakes. Conversely, after a thrust earthquake, the
stress regime changes to the opposite, generating compressional slab-push events [e.g., Astiz and
Kanamori , 1986; Astiz et al., 1988; Dmowska et al., 1988; Lay et al., 1989; Lemoine et al., 2001;
Malgrange and Madariaga, 1983]. The observed period of enhanced deep and shallow seismicity
after an intraslab event and silent periods following megathrust earthquakes might be explained
by such mechanical models. Usually, previous works focus the attention in earthquake occurrence.
Slab-push earthquakes in subduction zones have been documented after shallower activity [e.g.,
Fuenzalida et al., 2013; Lemoine et al., 2001, 2002; Peyrat and Favreau, 2010; Ruiz et al., 2011].
However, the quiescent periods have been less reported. Here we suggest that the observed arrest of
slab-pull seismicity (Mc = 4.7) could be explained by a similar mechanism. The observed increase
in the seismicity (at deep and shallow depths) after the slab-pull rupture, would be controlled by a
mechanism of afterslip and decoupling on the subduction interface, while the silent period following
megathrust ruptures, by clamping of the faults cutting the slab through an increase of compressive
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stress along the slab. In the shallow part, a possible mechanism could be the lack of interplate
earthquakes in the area that previously ruptured coseismically because of the large amount of stress
released during the earthquake, as it has been observed after Tohoku-Oki earthquake [Asano et al.,
2011].

5.4.3 Synchronization of Deep and Shallow Seismicity

Another interesting feature revealed by Figures 5.3a and 5.3b is the fact that the background seis-
mic activity is not continuous in time, but rather occurs by bursts, both for shallow and deep events.
These swarms are usually associated with aseismic episodes [Reverso et al., 2015, 2016]. The shallow
bursts are associated with swarms detected in 2006, 2008, and 2013 (see supporting information for
details), which may indicate the occurrences of SSEs, plus a few isolated background earthquakes
between 2005 and 2014 that occur as a response to tectonic loading (Figure 5.3). The fact that both
deep and shallow bursts occur within a short time span suggests some type of interaction between
deep and shallow seismic activities. In order to further explore these potential interactions, we have
tried to characterize the correlation of shallow seismicity with deep seismicity. Using the cumulative
number of earthquakes for shallow (z ≤ 40 km) and deep (z ≥ 80 km) seismicity (Figure 5.3c),
we look for each shallow earthquake if a deep earthquake occurred in the 2 days preceding it (see
supporting information for details in terms of time window selection, completeness magnitude, and
probability of synchronizations by chance). If so, a value 1 is assigned, otherwise this value is 0
(Figure 5.3d). In this part of the work, all the seismicity over magnitude 4.0 is considered. Doing
so, 16 interactions have been detected (Figure 5.3d), which is 133% of the number of interactions
expected to occur by pure chance (see Supporting Information for further details on the statistical
significance of the observed synchronizations). The results shown by Bouchon et al. [2016] (four
synchronizations) are replicated from January to 1 April 2014. Before that 12 additional deep and
shallow seismicity synchronizations are detected. The identified interactions correspond either to
swarms (e.g., 2006, 2008, and 2013) or background earthquakes (e.g., 2009 and 2011). Three areas in
the shallow part of the megathrust are systematically activated, surrounding the area that ruptured
during the 2014 Iquique earthquake. We have in total 16 synchronization episodes where we can
observe 24 shallow earthquakes. About 84% occurred in areas with a coupling factor between 0.3
and 0.8 [Métois et al., 2016], i.e., areas not fully coupled (Figure 5.3, see supporting information for
details in coupling model).

The 16 episodes of deep-shallow seismicity synchronization (Figures 5.3d and 5.3e) may repre-
sent, as proposed by Bouchon et al. [2016], a slab deformation and plunge preceding the shallow
burst activity. These interactions help to identify where the aseismic deformation is occurring. In-
terestingly, the shallow seismicity triggered by these interactions is located in areas that are at the
transition between high and low interseismic coupling (Figure 5.3e). Moreover, these triggered seis-
mic events are all located at the border of the areas that have been shown to aseismically slip during
the 8 months preceding the 2014 Iquique megathrust, or within the area that slipped coseismically
(purple and pink contours, respectively, in Figure 5.3e [Socquet et al., 2017]). This precursory ac-
tivity marks the area that started to slip in the 9 years preceding the Iquique interface earthquake,
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as a response to Tarapaca slab-pull earthquake.

The observed synchronization of seismic activity at intermediate depth and on the shallow sub-
duction interface questions our understanding of the interaction mechanisms between deep and
shallow processes. The fact that Iquique earthquake megathrust occurred 9 years after the Tara-
paca slab-pull earthquake, rather pleads for a slow deformation process taking place within the
slab, possibly with a transient acceleration phases, marked by these synchronized pulses of deep
and shallow seismicity, rather than a simple static triggering (e.g., Coulomb stress increase) that is
difficult to invoke at such spatial and temporal distances. Our observations suggest that there exists
a strong link between interplate and intraslab seismicity. The presence of a rigid slab decoupled
from the surrounding asthenospheric mantle would favor the stress migration and aseismic deforma-
tion propagation from the slab to the subduction interface. Such decoupling would be allowed by
a low-viscosity channel, permitting transient deep rapid sliding of the slab, as it has been proposed
down to 70 km depth by Klein et al. [2016] to explain the postseismic GPS time series following
Maule earthquake Mw 8.8 in Chile.

5.5 Conclusions

This study presents clear evidence that strong interactions exist between the occurrence of inter-
mediate depth and shallow seismicity in subduction zones. The occurrence of the Tarapaca slab-pull
earthquake initiated a 9 year period of deep-shallow seismicity interactions in a burst form, associated
with a decrease of the interplate interseismic coupling, eventually leading to the 2014 Mw 8.1 Iquique
megathrust earthquake. Moreover, megathrust ruptures (Antofagasta 1995 and Iquique 2014) initi-
ate long periods (several years) of silent background seismicity, both on the plate interface, probably
due to decoupling associated with postseismic afterslip [Chlieh et al., 2007; Pritchard and Simons,
2006], and at intermediate depth, probably by clamping of the faults cutting the slab through an
increase of compressive stress [e.g., Astiz et al., 1988; Astiz and Kanamori , 1986; Dmowska et al.,
1988; Lay et al., 1989]. After a few years of silence, the background seismicity resumes both at
intermediate and shallow depths, and initiates a new cycle of deep shallow interactions.

If the seismogenic zone is already highly loaded, the occurrence of a large intermediate-depth
intraslab earthquake could trigger or clock-advance a megathrust event by enhancing the occurrence
of foreshocks and preslip on the subduction interface as a response to stress migration. Conversely,
if the interplate contact is not ready to nucleate a megathrust earthquake, our results suggest
that the slab deformation and plunge accommodated by the occurrence of a large intraslab event
generate an increased activity of deep and shallow seismicity that are most often synchronized. It
changes the stress conditions in the slab, up to the shallower depths. As a result, a decrease of
interseismic coupling (i.e., acceleration of slow slip on the plate interface) may change the average
GPS velocities and increase the background seismicity rate, both processes taking place as a series of
bursts. Such a long-term interaction between slab-pull and shallow earthquakes helps understand the
mechanisms leading to a megathrust earthquake. If this were true, the occurrence of intermediate-
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depth earthquakes could therefore significantly increase the probability of a possible future rupture
in megathrust.
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Appendix

5.A GPS Processing and Modelling

5.A.1 GPS daily processing

186 continuous GPS (cGPS) were processed from different networks in the Andean region (Fig-
ure 5.D.1 a) and around the world (Figure 5.D.1 b). 67 cGPS located in South Peru - North
Chile have been installed and maintained in the frame of the following projects: Integrated Plate
boundary Observatory Chile (IPOC, www.ipoc-network.org), LIA-MB (www.lia-mb .net), CAnTO
(www.tectonics.caltech.edu/), IGP (www.igp.gob.pe), ISTerre, CSN (www. sismologia.cl). The rest
(119 cGPS) are part of the Intertational GNSS Service (IGS, http://www.igs.org/) global network.
The stations included in the processing have been separated into 3 subnetworks (2 local and 1 global)
with 33 stations overlapping stations. The separation has been performed as a function of stations
measurement time span. Both local subnetworks contain 50 stations with 33 overlapping stations in
common plus 49 IGS stations. Stations included in this first local subnetwork have been measuring
from 2000 to 2014, while the second subnetwork covers 2007 - 2014. The global network includes
99 IGS stations around the world, 22 of which are located in South America. Data are processed in
double difference using GAMIT 10.5 software [Herring et al., 2016], choosing ionosphere-free com-
bination and fixing the ambiguities to integer values. Precise orbits from the IGS, precise EOPs
from the IERS bulletin B, IGS tables to describe the phase centers of the antennas, FES2004 ocean-
tidal loading corrections, as well as atmospheric loading corrections (tidal and non-tidal) have been
used. The estimation of one tropospheric zenith delay parameter every two hours and one couple of
horizontal tropospheric gradients per 24h session is carried out using the Vienna Mapping Function
(VMF1) [Boehm et al., 2006]. It allows mapping the tropospheric delay in zenithal direction, with
a priori ZHD evaluated from pressure and temperature values from the VMF1 grids. Daily solu-
tions and position time series are combined using PYACS software [Nocquet J.M., 2015, personal
communication] in a regional stabilisation approach. The results are mapped into ITRF 2008 ref-
erence frame [Altamimi et al., 2011].
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5.B Catalogs and Background Seismicity

5.B.1 ISC Resolution

The ISC catalog is analyzed in the region 11◦S - 25◦S and 80◦W - 66◦W between 1990 to 2017
to perform the declustering. We follow a probabilistic approach [Ogata and Katsura, 1993; Daniel
et al., 2008] to fit the frequency-magnitude curve, even below the maximum curvature which roughly
marks the completeness magnitude. This allows to homogenize the completeness magnitude for long
periods of time. Two periods of time are required because of the number of stations increases in
2007 in northern Chile. The selected periods are 1990 - 2007 and 2007 - 2017. For each period i, we
fit the number (Ni) of earthquakes per magnitude bin as:

Ni(m) = Ai × 10−bm × qi(m) (5.7)

Where qi(m) is the probability that an earthquake of magnitude m, occurring in the period i, is
effectively listed in the ISC catalog. We follow Ogata and Katsura [1993] and model q as:

qi(m) =
1

2
+

1

2
erf

(
m− µi√

2σ

)
(5.8)

Here erf is the error function. Note that only the pre-factor Ai (which is only a normalization
parameter) and, more important, µi depend on i. We optimize [A1, A2, µ1, µ2, b, σ] given the data,
and compute the completeness magnitude Mc as:

Mci = µi + 2σ (5.9)

i.e., a 97.7% probability threshold. Mc for the first period is 4.5 and for the second Mc is 4.0
with a b value of 0.99 (Figure 5.D.2 a). We eventually fix Mc=4.5 for the whole period 1990 - 2017.
A similar analysis is done for the area where the mainschoks ocurred (Figure 4.2 a in Main Text,
19◦- 21◦S and 72◦W - 68◦W), giving Mc1 = 4.7 and Mc2 = 4.0 for the two periods. We thus take
Mc = 4.7 for the whole period, for this subregion (Figure 5.D.2 b).

5.B.2 Background Seismicity Resolution

Realistic declustering parameters (Equation 4.4 in Main Text) have been used [e.g., Marsan
et al., 2013, 2017; Reverso et al., 2015, 2016]. Three of those parameters ( p, α and γ) are explored
in order to see how much they affect the processing. p value has been varied from 1 to 1.3 with a
step of 0.05, while γ and α have been changed from 1 to 2 with a step of 0.2. Using those values, 252
combinations of parameters, each generating 1 declustered catalog, have been tested (Figure 5.D.3).
We observe in Figure 5.D.4 that aftershocks are succesfully removed from the declustering process
after each mainshock, in the study area between 1990 - 2017, whatever the choice of parameter
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combination. This behaviour is easier to note when the seismicity is divided in shallow (z ≤ 40 km)
and deep (z ≥ 80 km) seismicity (Figure 5.D.4 b and c).

5.C Synchronization Detection Process

In order to explore potential synchronizations between deep (z ≥ 80 km) and shallow (z ≤ 40
km) earthquakes in the study area, we have analyzed the ISC catalog between 2006/06/14 and
2014/04/01. Mc=4.0 is used because we are mostly interested in the second period defined to per-
form the Mc analysis (Figure 5.D.2 b). For each shallow earthquake, we look for the occurrence of
a deep event before it. We explore different bin time windows from 1 hour to 90 days. Selecting
a time window of 2 days allows to reproduce the results obtained by Bouchon et al. [2016]: 16
synchronizations (Table 5.D.3) were found from 2005/06/14 to April 1st 2014. The choice of Mc =
4.0 is not a problem because the two interactions detected prior to 2007 involve earthquakes with
magnitudes greater or equal to 4.7 (Mc for the first period analyzed, Figure 5.D.2 b). Also, we have
explored the period from 1990/01/01 until 2005/06/13 to check if we could find synchronizations.
No synchronizations were found for a 2-day time window using either Mc = 4.0 or Mc = 4.7, the
first interaction appearing using 1-week time window (see Table 5.D.2).

In order to evaluate if the detected synchronizations might have occurred by chance, we have
determined the probability to have the number of bins activated with at least one earthquake (shal-
low and deep) over certain period of time, i.e.:

P(≥ N) =
∞∑
k=N

exp(−ns×nd
T )(ns×ndT )k

k !
(5.10)

Where ns and nd are the numbers of bins activated for shallow and deep activity, while T repre-
sents the number of bins in the period analyzed and N is the number of synchronizations detected.
The results can be seen in Tables 5.D.2 and 5.D.3. The evolution of the probabilities by chance as
a function of the bin time window considered (third column in Tables 5.D.2 and 5.D.3), as well as
the number of detected (first column, N) versus expected (second column, ns×ndT ) synchronizations,
show that after Tarapaca earthquake the detected synchronizations do not occur by chance (Table
5.D.3). Therefore, the interactions found during the 2005-2014 period are likely related to an aseis-
mic process than simply by chance. Instead, before Tarapaca, almost no synchronizations could be
detected over a short time window (Table 5.D.2). This suggests that Tarapaca slab-pull earthquake
marks an important change in deep-shallow interactions.

Also, we have investigated where is located the shallow seismicity activated during the synchro-
nizations. By comparing these locations with the interseismic coupling distribution by Métois et al.
[2016], we found that 84% of those earthquakes are located in areas of transition between low to
high interseismic coupling (0.3 - 0.8, Figure 5.D.5).
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5.D Appendix Figures and Tables

Table 5.D.1: GPS Position and Velocities for North (N), East (E) and Vertical (V) components before (B) and
after (A) Tarapaca Earthquake 2005 with their errors (e). Velocity values are in mm/yr and with respect to ITRF
2008 reference frame.

GPS Station Longitude Latitude N B e N B E B e E B V B e V B N A e N A E A e E A V A e V A
UTAR -70.297 -18.490 1.82 0.10 17.82 0.14 4.15 0.31 4.16 0.04 17.94 0.04 2.74 0.09
IQQE -70.131 -20.273 4.16 0.05 28.49 0.05 2.05 0.14 5.37 0.01 24.25 0.01 1.11 0.03
UAPE -70.141 -20.243 4.73 0.06 28.71 0.07 2.31 0.20 5.24 0.03 24.97 0.04 0.87 0.08
AEDA -70.177 -20.546 5.74 0.14 26.61 0.18 3.29 0.53 5.75 0.07 24.51 0.06 -2.32 0.16
COLL -68.649 -20.831 3.20 0.17 26.97 0.14 8.94 0.32 6.87 0.24 14.62 0.22 6.68 0.43
PICC -69.334 -20.489 4.21 0.11 27.33 0.12 4.18 0.29 3.52 0.07 21.88 0.08 1.74 0.15
FBAQ -69.755 -20.134 6.76 0.23 29.24 0.15 -0.35 0.33 5.01 0.06 21.78 0.07 3.75 0.11
QUIL -69.557 -21.692 6.77 0.06 31.33 0.08 7.45 0.29 6.45 0.07 28.52 0.08 -1.10 0.11
PMEJ -70.448 -23.100 9.28 0.09 31.58 0.11 -1.92 0.27 10.17 0.06 32.12 0.07 -5.32 0.15

Table 5.D.2: Number of synchronizations (N) over time, expected number of events (ns×nd
T

) and synchronization
probabilities by chance (Equation 5.10) in % for the period 1990 - 2005/06/13. Bin duration are in hours (h) or days
(d).

Mc = 4.0 Mc = 4.7
Bin Period N Expected N Probability (%) N Expected N Probability (%)

1h 0 0.1 100 0 0.01 100
3h 0 0.2 100 0 0.02 100
6h 0 0.4 100 0 0.04 100
12h 0 0.9 100 0 0.07 100
1d 0 1.7 100 0 0.1 100
2d 0 3.3 100 0 0.3 100
3d 2 4.7 94.85 0 0.4 100
4d 4 6.1 85.31 0 0.6 100
5d 6 7.8 78.37 0 0.7 100
6d 7 8.3 72.19 0 0.8 100
7d 8 9.4 72.33 1 0.9 60.47
8d 9 10.4 71.27 1 1.1 64.83
9d 10 11.2 67.73 1 1.1 68.04
10d 12 13.6 70.25 1 1.3 71.29
15d 21 16.5 16.42 3 1.9 28.65
20d 25 19.8 14.41 3 2.3 41.45
25d 29 22.8 11.64 4 2.8 30.33
30d 31 23.3 7.38 4 3.3 42.72
60d 37 25.9 2.33 8 4.3 8.65
90d 39 25.5 0.75 10 5.8 6.74
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Figure 5.D.1: (a) Map of the 2 local GPS subnetworks processed (Andes 2000 - 2014 in red and Andes 2007 -
2014 in cyan). Orange denotes the stations included in both subnetworks in the processing. (b) Global GPS network
processed. Green color indicates IGS stations included in the Global Processing, while purple indicate IGS stations
overlapping with the Andean subtnetworks.
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Figure 5.D.2: (a) Model of Equation 5.8 calculated for the whole area (11◦S- 25◦S and 80◦W - 66◦W) . The
calculation is performed for 2 periods (P1: 1990 - 2007 in blue and P2: 2007 - 2016 in magenta), with a common b
value. Completeness magnitudes (Mc1 and Mc2) are 4.5 and 4.0 , estimated for both periods. (b) Same caption than
(a) but for the seismicity in the study area (19◦S - 21◦S and 72◦W - 68◦W), for which we find Mc1 = 4.7 and Mc2 =
4.0. (c) Same caption than (b) but for shallow seismicity ( z ≤ 40 km), where Mc1 = 4.6 and Mc2 = 4.1. (d) Same
caption than (b) but for deep seismicity ( z ≥ 80 km ), where Mc1 = 4.6 and Mc2 = 4.0.
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Figure 5.D.3: Temporal evolution of the 252 declustered models. In black, the 251 models obtained by varying
the declustering parameters. The pink curve is the declustered model used for our analysis.

Figure 5.D.4: Temporal evolution of the seismicity in the study area. (a) ISC complete (black) and background
(grey) cumulative seismicity for both depth ranges. The vertical lines depict earthquakes (plain in the study area,
dashed out of the study area): megathrust earthquakes are in blue and intraslab earthquake in red. (b) Shallow ( z ≤
40 km) and (c) deep cumulative seismicity ( z ≥ 80 km ) for the ISC catalog (blue and red) and background seismicity
(light blue and orange). The background rate (µt) calculated over 30 days is plotted in bar shape.
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Figure 5.D.5: Normalized Histogram of Coupling distribution in the study area in blue using data published by
Métois et al. [2016]. In red, normalized histogram of coupling factor for events occurring in synchronization in the
shallow area. 84% of them are in zones of transition in terms of coupling factor (0.3 - 0.8).

Figure 5.D.6: (a) time evolution of raw (blue) and background (light blue) seismicity in the study area. Dark blue
bars are the background rate over 30 days. Continuous (dashed) vertical lines show the occurrences of earthquakes
into (outside) the study area. (b) Magnitude as function of time in the study area. Vertical dashed lines denote the
swarm time occurrence, color coded by time. (c) Map view of the seismicity analyzed to detect the swarm time. All
the seismicity occurring during a pick in the background rate shown in (a). Swarms are color coded and scaled by
time and magnitude. The rest of the seismicity (no swarms) are plotted in black. Coupling map by Métois et al.
[2016].
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Figure 5.D.7: Focal mechanisms of deep seismicity (z ≥ 80 km) in the study area, scaled by magnitude and
color coded by time. Focal mechanism data are from International Seismological Centre [2014], using GCMT
(http://www.globalcmt.org) and NEIC (www.earthquake.usgs.gov/earthquakes/search). 124 events have a focal mech-
anism available and 91% of them are slab-pull. The star symbolizes the epicenter of Iquique earthquake in 2014.
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Figure 5.D.8: Time evolution for shallow and deep seismicity for completeness magnitude of 5.0. Blue (red) and
light blue (orange) are the cumulative number of event for ISC catalog and background seismicity respectively (M
≥ 5.0). Vertical lines point out an earthquake or swarm occurrence: continuous lines represent events that occurred
in the study area and dashed events outside it. Green lines show the seismicity trend in the period 2001/06/24 -
2005/-6/13 and dashed lines show the trend projected to the second period (2005/06/14 - 2014/03/16).

Figure 5.D.9: (a) and (b) show the time evolution of normalized background seismicity rate calculated for
different periods of reference (from 1 day rate, up to 2 years rate) with Mc=5.0, for shallow (z ≤40 km) and deep
(z ≥ 80 km) seismicity. Continuous (dashed) lines indicate the time of occurrence of earthquakes into (outside) the
study area. Blue (red) are shallow interplate (intermediate depth intraplate) earthquakes.
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Table 5.D.3: Number of synchronizations (N) over time, expected number of events (ns×nd
T

) and synchronization
probabilities by chance (Equation 5.10) in % for the period 2005/06/14 to 2014/04/01. Bin duration are in hours (h)
or days (d).

Mc = 4.0 Mc = 4.7
Bin Period N Expected N Probability (%) N Expected N Probability (%)

1h 1 0.4 33.86 0 0.1 100
3h 2 1.1 31.60 0 0.2 100
6h 2 2.1 62.30 0 0.3 100
12h 6 3.8 18.25 1 0.6 47.48
1d 11 6.8 8.44 3 1.2 12.84
2d 16 12.0 15.62 7 2.4 1.12
3d 17 15.3 36.86 7 3.3 5.22
4d 21 20.0 41.07 8 4.3 6.75
5d 26 20.4 13.07 9 4.7 5.20
6d 30 23.2 9.74 10 6.0 8.30
7d 33 25.2 7.79 10 6.5 11.88
8d 34 27.2 11.47 10 7.2 18.85
9d 39 26.4 1.28 12 7.5 7.69
10d 43 27.7 0.42 12 8.0 11.12
15d 46 31.1 0.70 13 10.5 26.10
20d 47 30.0 0.24 13 11.5 36.69
25d 49 31.6 0.25 17 13.8 22.49
30d 50 31.1 0.11 19 14.3 13.92
60d 52 24.1 5.74×10−5 25 14.7 0.95
90d 53 21.2 4.59×10−6 27 14.8 0.27
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Chapter 6

Interseismic transient deformations in
South Peru - North Chile seismic gap

6.1 Introduction

During several years, the interseismic period has been studied using geodetic data (e.g., GPS or
InSAR) in different places worldwide [e.g., Prawirodirdjo et al., 1997; Mazzotti et al., 2000; Bevis
et al., 2001; Yoshioka et al., 2005; Bürgmann et al., 2005; Chlieh et al., 2011; Loveless and Meade,
2011; Béjar-Pizarro et al., 2013; Rousset et al., 2015; Jolivet et al., 2015; Métois et al., 2016; Villegas-
Lanza et al., 2016a]. The coupling maps are an approach widely used today to investigate from a
kinematic point of view, the state of locking on faults [e.g., Chlieh et al., 2011; Loveless and Meade,
2011; Béjar-Pizarro et al., 2013; Métois et al., 2016], exhibiting a complex and heterogeneous pat-
tern. Following those models, it is possible to distinguish two main areas on faults with different
behaviors. First, the areas that are locked during the interseismic period, that seems to be well
correlated with earthquake rupture regions [e.g., Moreno et al., 2010; Ruiz et al., 2016; Métois et al.,
2016; Villegas-Lanza et al., 2016a], thus those areas are associated with a stress accumulation that
will be liberated in a future earthquake. The second areas are those not fully locked, slipping in an
aseismic manner and can be associated with steady creep or by spontaneous events. Although some
models have described the interactions between the seismic and aseismic slip [Kaneko et al., 2010;
Hetland et al., 2010; Hetland and Simons, 2010; Kanda et al., 2013; Avouac, 2015], the mechanisms
controlling the interseismic creeping are poorly understood, especially in subduction zones.

With the fast development of new techniques and the rise of the geodetic data resolution, data
acquired during the interseismic period seems to exhibit small transient events. During the 90’s and
2000s, slow slip events (SSEs) were reported in several areas around the world, such as in Cascadia
[Dragert et al., 2001; Rogers and Dragert , 2003], Mexico [Lowry et al., 2001; Larson et al., 2004;
Marquez-Azua and DeMets, 2009], New Zealand [Douglas et al., 2005; Wallace and Beavan, 2006]
or Japan [Heki et al., 1997; Hirose et al., 1999; Ozawa et al., 2001; Miyazaki et al., 2003]. Apart
from looking at these large SSEs, more and more evidences lead to looking carefully at the data
because hidden slow slip events seem to be masked in the noise [Frank , 2016; Gardonio, 2017; Rous-
set et al., 2017]. Frank [2016] has shown in Mexico and Cascadia that the interseismic period is
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not quiescent, using the timing of cataloged low-frequency earthquakes (LFEs) and tremors, and
comparing with GPS data, revealing the intermittency of the tectonic release due to transient defor-
mation. Also in Mexico and applying a geodetic matched-filter, Rousset et al. [2017] point out the
occurrence of SSEs that are masked in the noise and correlated with the occurrence of LFEs. The
interseismic transient deformations are not only observed in subduction zones. It is possible to find
some cases in strike-slip faults, where they have been associated with bursts of creep, as in China
[Jolivet et al., 2013] and Turkey [Rousset et al., 2016]. However, interseismic transient deformations
have not been reported in areas with no LFEs or tremor activity detected so far in subduction zones.

Given the presence of detailed geodetic monitoring of the South Peru - North Chile subduction
zone, this is an excellent area to investigate the interseismic transient deformations. Aseismic defor-
mation has been reported prior to Iquique earthquake (Mw 8.1, 2014/04/01) associated with a long
precursory phase of 8-month [Kato et al., 2016; Socquet et al., 2017]. Also, this earthquake has been
preceded by an intense two weeks of foreshocks, where a strong transient signal occurred [Schurr
et al., 2014; Ruiz et al., 2014; Lay et al., 2014; Yagi et al., 2014; Bedford et al., 2015; Cesca et al.,
2016; Kato et al., 2016; Socquet et al., 2017]. Nevertheless, a debate remains on the mechanism
leading to this activity, notably on the existence or not of aseismic slip. Concerning the seismolog-
ical data, Kato et al. [2016] has shown the occurrence of repeating earthquakes in the interseismic
period in North Chile (2008-2013 July), relating them to the occurrence of aseismic slip. However,
the occurrence of interseismic transient deformations has not been reported in the region, employing
geodetic data. During this Chapter, the methodology proposed by Rousset et al. [2017] is followed,
that consists in applying a matched-filter on the GPS residual time series, in order to explore the
possibility of occurrence or not of aseismic deformation in the region.

6.2 Geodetic Matched-Filter

In order to detect and characterize potential transients of deformation (small slow slip events,
sSSEs) hidden in the noise of geodetic time series, we use a 2-step process:

1. Detection in time and location of potential transients through correlation of a deformation
rate template with the derivative of the GPS time series.

2. Characterization of the Mw and duration of the detected sSSEs using the position time series.

For each sSSEs detected, the network detection capacity is evaluated using synthetic time series.
For sSSEs of different Mw occurring on the activated patch, the deviation from the true location,
date of occurrence, duration and magnitude are computed to define a threshold. A detected sSSEs
is validated if its Mw exceeds the Mw detection threshold.
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6.2.1 Templates of Surface Displacement Time Series

The methodology proposed by Rousset et al. [2017] is based on a geodetic matched-filter, cor-
relating synthetic templates with the real GPS time series. The generation of synthetic templates
requires the calculation of static Green’s functions that link the static surface displacement at each
GPS station with a slip on a given area of the subduction interface. The Green’s functions are cal-
culated assuming that SSEs can be modeled as a slipping dislocation in an elastic half-space Okada
[1985] using the program DISLOC. The fault geometry is constrained by the trace of the trench
at the surface. A uniform dip of 15◦and a variable rake are assumed, so that the slip direction is
parallel to the plate convergence N77◦E [Angermann et al., 1999]. The fault is discretized into an
array of 48 × 14 elements, measuring approximately 15 × 15 km, although their size varies locally
since the fault follows the trench geometry (Figure 6.A.1).

The so-obtained static Green’s functions are then convolved with a temporal slip evolution for a
slip of unit amplitude, given by:

s(t1) =
1

2

[
1− cos

(πt1
T

)]
, t1 = [0 : ∆t : T ] (6.1)

And its derivative is given by:

ṡ(t1) =
π

2T
sin
(πt1
T

)
(6.2)

where t1 is the time vector of the template and T its total duration (Figure 6.1). The temporal
sampling of t1 (∆t), is a daily sampling for the GPS time series. The Figure 6.1 shows that s(t)
is a symmetrical function, with half of its duration corresponding to slip acceleration, followed by
a deceleration during the second half duration, which is a reasonable evolution for the short-term
SSEs searched in this study.
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Figure 6.1: Temporal evolution of the template (solid line) and its derivative (dashed line). A is the maximum
amplitude of the slip.

The template displacement time series at each GPS station (wi) are thus given by:

wi(t1) = wi
ss(t1) (6.3)

where wi
s represent the Green’s Function for each component i (North and East) and s stands for

the finite static displacement.

6.2.2 Correlation of Template and GPS Time Series

The correlation function Ci(t) between the template time series wi
s(t1) and the GPS time series

di(t) recorded for the i North and East components at each station is computed, where t is the
discrete time vector of the whole time series.

Time windows of di(t) with the same norm as wi(t1) are defined on t2 = (t− t1/2, ..., t+ t1/2)

with the same temporal sampling as t1 (∆t), so that ||t1|| = ||t2|| = N , N being the number of
days of the template. The inner product between wi(t1) and di(t2) is defined by:

〈
wi(t1),di(t2)

〉
N,∆t

=

N−1∑
j=0

wi(t1 + j∆t) di(t2) + j∆t) (6.4)

The correlation of non-monotonic functions is preferable, in order to optimize the correlation
operation. The discriminatory nature of the stationary point of the surface velocity (time derivative
of the surface displacement) at the middle of a SSE improves the timing precision (signal is clearer)
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[Rousset et al., 2017]. Thus, the temporal derivatives of wi(t1) and di(t2) are used, where the fully
normalized correlation function is defined as:

Ci(t) =

〈
ẇi(t1) , ḋi(t2)

〉
N,∆t√〈

ẇi(t1), ẇi(t1)
〉
N,∆t

〈
ḋi(t2), ḋi(t2)

〉
N,∆t

(6.5)

and the weighted Correlation Cw is:

Ci
w(t) =

|wi
s|

max(|wi
s|)

Ci(t) (6.6)

a) Sliding subfault

GPS station

Surface deformation

b) Lobes of Positive correlation 
for East Component

Lobes of Positive correlation 
for North Component
Lobes of negative correlation 
for North Component

+ +

+

+ -

-

Figure 6.2: Scheme showing the surface displacement due to a patch slipping on the subduction interface. The
patch is symbolized in blue and the GPS stations with a red triangle. b) Localization of areas on the fault plane
where the correlation between the modeled signal and the real data is positive (red) or negative (blue). The scratched
areas (purple lines) correspond to zones with maximum correlation values.

The stations used for the correlation procedure are selected employing wi
s > α × max(wi

s),
α being an empirical coefficient that in this case is set to 0.1. This selection allows discarding sta-
tions that recorded nonexistent or too small amplitude transient signals. The detection of the small
transients is made on a function computed as the sum (stack) of the weighted correlation functions
(Equation 6.6) over all the selected stations and both horizontal components. The weightening ex-
pressed in the Equation 6.6 has the advantage to give the right sign to each data, which is not the case
of the raw stack [Rousset et al., 2017], and to give more weight to stations that are affected by a large
signal (i.e., large signal / noise ratio), and less weight to stations that are affected by a small signal
(i.e., on which the signal / noise ratio is small). As shown in the Figure 6.2, the preferential direction
of deformation associated with a SSE on the North Chile subduction zone points toward the East,
meaning that the potential SSE will be recorded mainly on the East component. This weighting
procedure cleans the signal and facilitates the emergence of the transient deformation from the noise.
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6.2.3 Synthetic Time Series

Before doing any detection on real data, the network capability to detect sSSEs is tested, applying
the correlation procedure explained above on synthetic time series. The synthetics are constructed
as the sum of realistic GPS noise and transient events generated by a given slip on the subduction
interface. As explained in details in Chapter 4 (see the examples in this Chapter for further detail),
the GPS noise is a combination of colored and white noise [Williams et al., 2004]. Using a power
law that combines these noises, 1000 synthetic GPS noise time series are generated.

The Figure 6.3 shows an example of a correlation analysis for a synthetic transient event of
Mw 6.1 located in the southern part of the study area (Figure 6.3a). At the stations supposed to
record the highest displacement associated to this event, such as PB07, the expected displacement is
∼2.5 mm (Figure 6.3 b and c). The sum of all non-weighted or weighted correlation functions shows
peaks emerging at times of the transients events (Figure 6.3). Also, lower high amplitude peaks
are observed at times corresponding to pure noise, only on the non-weighted correlation, showing
that the use of the weighted correlations functions is a better manner to discriminate between noise
and transient events. Thus, the detections of transients correspond to the maximum peaks of the
weighted correlation function.
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Figure 6.3: (a) Blue surface corresponds to one patch on the subduction interface sliding with a slip of 0.1 m,
equivalent to Mw 6.1. The red arrows denote the static surface displacement due to the slip on the patch. The
stations MICA, PB02 and PB07 have the maximum amplitude of surface displacement of ∼2.5 mm. (b) Synthetic
time series at station PB07, for North component. The red curve shows 3 transient events (a 10-day transient centered
on time 100 days, a 20-day transient event centered on time 300 days and a 30-day transient centered on time 500
days). The blue dots correspond to the synthetic displacement time series, built from the noise analysis plus the
synthetic transient events. (c) Same as (b) for the East component. (d) The green and purple curves show stacks of
the correlation functions on all the stations and both horizontal components. The green curve is a simple stack of
all correlation functions for all selected stations, while the purple curve is a stack weighted by the amplitude of the
synthetic displacement for a given pair station – component. The vertical dashed black lines denote the occurrence
of a transient (at 100, 300 and 500 days). 90



6.2.4 Location, Duration and Magnitude Estimation

Based on the work of Rousset et al. [2017], for a given detection in time, the location of the slip
is the patch on the subduction interface that maximizes the weighted correlation.

Because the correlation function is computed using velocity time series (Equation 6.5 and 6.6),
the amplitude information is lost, that corresponds to the event magnitude. Consequently, the GPS
displacement time series are examined directly. The stack of the times series is employed because
transient signals on individual times series are likely small compared to the noise (Figure 6.4). The
same weighting as the one applied to the correlation function (Equation 6.6) is used for the GPS
weighted stack to give more weight to stations that recorded highest amplitude signal. On the
stations located to the north or south of a sliding patch, the North components have opposite signs
(Figure 6.2). If a simple stacking is performed, these opposite signs would remove the signal, so the
weighting stack has the advantage to give to each weight the correct sign and clearer signal to noise
ratio than the raw stack (Figure 6.4).
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Figure 6.4: Green curve denotes the raw stack of all GPS time series, for North and East components, while
the purple curve is the stack weighted by the amplitudes and polarities of the surface displacements of the template
(Figure 6.2). Dashed black lines indicate the time of the synthetic transient slip events shown in Figure 6.3.

The duration and magnitude of each event are estimated by modeling the weighted stack of the
GPS displacements. On a time window centered on the detection time, the model includes a tran-
sient signal modeled by s(t) and linear terms before and after the transient. Then, the best model
is estimated in a least-square sense, with more weight at the center of the window. The residuals
are weighted by a triangular-shaped function that has an amplitude of one at its center and zero at
its edges. Several models are tested varying the transient duration, taking the preferred duration as
the model that minimizes the residuals.
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Once the duration is estimated, the displacement amplitude in the weighted stack during the
transient event is measured. The magnitude is estimated by comparing the measured displacement
amplitude to the amplitudes obtained with templates of varying source slip area and slip amplitude.
The magnitude is taken that minimizes the residuals.

6.2.5 Methodology Applied on Real Data

The geodetic matched filter described above is applied on a real case in the South Peru - North
Chile subduction zone. The residual GPS times series obtained by the methodology explained in
Chapter 4 are employed during this Chapter. To use these data on the matched-filter, the temporal
derivative of the resulting time series is computed.

A threshold of four simultaneously active stations (i.e. stations with data) is taken, allowing for
a possible detection. The template used lasts 30 days, allowing for searches of events of similar or
shorter durations [Rousset et al., 2017]. The correlation peaks that have amplitude higher than 20%
of the maximum correlation in time are selected as positive detections. A slip event on a given patch
produces positive detections of lower amplitude on surrounding patches, thus the dates for which
more than 20 patches have a positive detection are kept. Once a detection is made for one day over
20 patches, the sSSEs location is defined on the patch where the maximum correlation is localized
and then, an exploration is performed to analyze the chance of secondary events: all the patches
at distances shorter than 0.5◦ from the maximum peak of correlation (primary event) are masked,
then all the patches that have at least 70% of the maximum correlation are analyzed to search for
a potential secondary event, repeating this procedure in an iterative way. This procedure allows for
detections of spatially individualized secondary events.

The detections with several dates closely spaced in time are clustered. This clustering is because
of multiple detections for a given event, corresponding to different locations of the templates for
this event. The clustering is made estimating the duration of each detected event on the stacked
displacement time series. If the estimated durations of two close events intersect, they are con-
sidered as a single one. The final detection times correspond to the mean of all detections in a
cluster of events. The location of a detected transient event corresponds to the patch that has the
maximum correlation at the detection time and then the magnitude and final duration are estimated.

A resolution analysis is performed to explore the reliability of each detection made during the
procedure. To do that, the synthetic time series are used. The same steps applied during the de-
tection process on real data are made on 1000 GPS noise times series. Then, synthetic time series
are made combining sSSEs and GPS realistic noise. The patch where the detection is located is
tested, using transients with durations of 10, 20 and 30 days, and magnitudes ranging between
5.5 - 7.0 Mw . The slip to define the magnitude changes according to each patch size. Then, the
matched-filter is applied to the synthetic time series, estimating first the time of the detection, then
the location (in the case of the location estimates, 100 synthetics are used by station instead of 1000
to save computing time), and finally estimating the duration and magnitude. A detailed comparison

92



is performed between the true and the estimated parameters, providing an idea of the offset between
estimated parameters and the true ones. This procedure provides resolution thresholds for each
transient duration (10, 20 and 30 days) considering the deviation from the true location, time of
detection, duration and magnitude of the event as a function of the Mw . For a given patch and
network configuration, the Mw threshold is defined as the maximum of the Mw corresponding to a
given deviation from the true value for each tested parameter (location, time of detection, duration
and magnitude) (Figure 6.5). The event detected is considered valid if it passes the corresponding
patch threshold.

6.3 Results

Applying this methodology, 102 events are detected between August 2005 and July 2014 (Table
6.1). Although the network has stations since the beginning of 2000, it is not until mid-2005 that
four stations are active close to Iquique area (∼20◦S). The Figure 6.5 shows examples of these reso-
lution tests. First, in Figure 6.5 (I) the resolution is shown for the patch where the event 9 is located
(Mw 5.98). In this example, the deviation from the true locations controls the threshold magnitude,
because it is not possible to estimate events lower than Mw 6.2 for synthetics with durations of 10
and 20 days, and Mw 6.3 for synthetics with duration of 30 days. As the event has a magnitude
5.98 and a duration of 3 days, in this case, it does not pass the threshold resolution (Table 6.1).
Figure 6.5 (II) shows the resolution test made on the patch of events 39, 60, 73, 79 and 92. Also,
the location plays an important factor, defining the threshold as Mw 6.4 for a synthetic duration of
10, 20 and 30 days. The magnitude of these events is ∼Mw 6.4 with a duration ∼ of 20 days, thus
they pass the threshold resolution.

Doing these resolution analyses, the number of detection reduces considerably down to 41 vali-
dated events. The Figure 6.9 shows the correlation values of the patches where the detections are
performed. Also, the duration and magnitude of each final event are shown. The magnitudes range
between 6.1 - 6.9, while the durations range between 3 - 93 days. This procedure has been done for
all the patches, defining resolution maps shown in Figure 6.6 (10 days), Figure 6.7 (20 days) and
Figure 6.8 (30 days).

Four examples of detections are shown in the Figure 6.11 (events id 37 and 80) and in the Figure
6.12 (events id 39 and 82). The weighted stack of GPS in these figures shows a characteristic shape
of SSEs, while if we look at individual time series the occurrence of an event is not straightfor-
ward. The red lines on those plots are the static displacements at each station once the detection
and modeling of the event have been done. These displacements have very small amplitudes, be-
ing close to or even below the GPS noise level, but in most of the cases being consistent with the data.

Id Longitude Latitude Date Duration Mw Resolution 10d Resolution 20d Resolution 30d DTP
1 -69.69 -19.36 2005.61 47 6.83 6.7 6.7 6.8 y
2 -69.65 -23.29 2005.89 19 6.58 6.4 6.4 6.8 y
3 -69.41 -19.67 2006.05 19 6.88 6.5 6.5 6.5 y
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4 -69.24 -19.63 2006.58 19 6.73 6.6 6.6 6.7 y
5 -70.35 -19.14 2007.83 29 6.68 6.7 6.7 6.8 n
6 -70.32 -22.73 2007.99 19 6.23 6.1 6.1 6.2 y
7 -69.44 -20.42 2007.99 17 6.5 6.5 6.5 6.6 y
8 -68.99 -21.93 2008.08 2 6.33 - - - n
9 -70.09 -22.19 2008.08 3 5.98 6.2 6.2 6.3 n
10 -69.67 -20.10 2008.12 1 5.33 6.3 6.4 6.4 n
11 -71.00 -19.42 2008.12 14 6.35 6.7 6.7 6.7 n
12 -69.38 -22.52 2008.32 27 6.63 6 6 6 y
13 -69.93 -19.80 2008.41 12 5.73 6.1 6.1 6.7 n
14 -69.17 -21.93 2008.41 1 5 - - - n
15 -69.85 -20.13 2008.72 47 6.1 6.2 6.2 6.3 y
16 -69.55 -18.78 2008.72 49 6.53 6.7 6.7 6.7 n
17 -69.38 -22.52 2008.78 17 6.4 6 6 6 y
18 -69.22 -20.73 2008.90 23 6.53 6.5 6.5 6.6 y
19 -70.32 -22.73 2008.90 25 6.43 6.1 6.1 6.2 y
20 -69.36 -19.25 2008.90 17 6.6 6.6 6.6 6.7 y
21 -69.32 -20.04 2008.98 61 6.28 6.5 6.6 6.6 n
22 -70.29 -22.46 2008.98 13 5.58 6.2 6.2 6.3 n
23 -69.38 -22.52 2009.29 15 6.6 6 6 6 y
24 -68.99 -21.93 2009.57 5 6.75 - - - n
25 -70.62 -21.63 2009.57 15 6.15 6.7 6.7 6.7 n
26 -69.32 -20.04 2009.70 6 6.33 6.5 6.6 6.6 n
27 -70.29 -22.46 2009.70 23 5.95 6.2 6.2 6.3 n
28 -71.18 -19.11 2009.70 7 6.18 6.4 6.4 6.5 n
29 -69.50 -20.07 2009.81 1 5 6.4 6.4 6.4 n
30 -70.62 -17.31 2009.81 35 6.63 6.8 6.8 6.8 n
31 -69.72 -21.63 2009.81 3 6.15 6.3 6.3 6.3 n
32 -70.71 -22.94 2009.81 1 5 6.4 6.4 6.3 n
33 -72.37 -17.75 2009.81 3 6.45 - - - n
34 -69.38 -22.52 2009.86 3 6.38 6 6 6 y
35 -70.10 -19.84 2010.06 33 6.25 6.2 6.1 6.3 y
36 -69.72 -21.63 2010.12 93 6.3 6.3 6.3 6.3 y
37 -69.38 -22.52 2010.48 17 6.48 6 6 6 y
38 -69.17 -21.93 2010.54 3 5.75 - - - n
39 -69.50 -20.07 2010.66 23 6.35 6.4 6.4 6.4 y
40 -69.90 -21.35 2010.66 29 6.28 6.3 6.3 6.3 y
41 -69.67 -20.10 2010.80 25 6.23 6.3 6.3 6.4 n
42 -69.83 -18.30 2010.80 6 6.2 - - - n
43 -71.60 -18.55 2010.94 10 6.8 6.5 6.6 6.6 y
44 -69.90 -21.35 2011.02 41 6.48 6.3 6.3 6.3 y
45 -70.44 -21.36 2011.18 1 5 6.6 6.6 6.6 n
46 -69.17 -21.93 2011.18 21 6.63 - - - n
47 -69.90 -21.63 2011.25 15 6.18 6.3 6.3 6.3 n
48 -69.26 -20.40 2011.43 23 6.7 6.5 6.6 6.6 y
49 -69.72 -21.34 2011.43 21 6.45 6.3 6.3 6.3 y
50 -70.79 -20.00 2011.43 21 6.23 6.3 6.3 6.3 n
51 -70.32 -22.73 2011.53 43 5.98 6.1 6.1 6.2 n
52 -71.02 -17.64 2011.53 27 5.85 6.6 6.6 6.6 n
53 -69.85 -20.13 2011.53 43 5.8 6.2 6.2 6.3 n
54 -69.85 -20.13 2011.63 25 6.03 6.2 6.2 6.3 n
55 -70.26 -21.63 2011.63 1 5 6.5 6.5 6.6 n
56 -69.05 -22.85 2011.69 27 6.8 - - - n
57 -72.07 -16.01 2011.71 3 6.13 7 7 7 n
58 -69.58 -20.76 2011.76 59 6.6 6.5 6.5 6.9 n
59 -70.87 -19.73 2011.76 93 6.58 6.4 6.4 6.4 y
60 -69.50 -20.07 2011.97 19 6.43 6.4 6.4 6.4 y
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61 -69.05 -22.85 2012.16 37 6.75 - - - n
62 -69.83 -18.30 2012.16 12 6.53 - - - n
63 -69.72 -21.34 2012.23 1 5 6.3 6.3 6.3 n
64 -69.26 -20.40 2012.38 37 6.75 6.5 6.6 6.6 y
65 -69.38 -22.52 2012.38 27 6.43 6 6 6 y
66 -71.03 -19.02 2012.38 31 6.55 6.3 6.4 6.4 y
67 -72.83 -15.47 2012.39 11 7.45 - - - n
68 -69.15 -20.00 2012.61 13 6.53 6.6 6.6 - y
69 -69.00 -21.32 2012.65 27 6.85 - - - n
70 -69.38 -22.52 2012.67 5 6.43 6 6 6 y
71 -71.39 -18.82 2012.73 5 6.75 6.4 6.4 6.8 y
72 -70.27 -22.18 2012.92 19 6.15 6.4 6.4 6.4 n
73 -69.50 -20.07 2012.93 21 6.35 6.4 6.4 6.4 y
74 -71.05 -18.13 2012.93 39 6.3 6.6 6.6 6.6 n
75 -70.64 -17.82 2013.18 11 6.15 6.6 6.6 6.7 n
76 -69.67 -20.10 2013.19 1 5.4 6.3 6.3 6.4 n
77 -70.08 -21.35 2013.19 31 6.45 6.2 6.2 6.3 y
78 -69.38 -22.52 2013.32 49 6.23 6 6 6 y
79 -69.50 -20.07 2013.32 65 6.48 6.4 6.4 6.4 y
80 -70.11 -17.91 2013.35 23 6.35 - - - n
81 -70.27 -19.88 2013.53 4 6.3 6.5 6.5 6.5 n
82 -70.91 -18.03 2013.53 11 6.23 6.7 6.7 6.7 n
83 -72.01 -17.38 2013.53 7 6.43 6.8 6.8 6.8 n
84 -75.81 -14.52 2013.55 49 6.18 6.6 6.6 6.6 n
85 -69.22 -20.73 2013.60 23 6.78 6.5 6.5 6.6 y
86 -69.08 -23.09 2013.60 29 6.58 6.7 6.7 6.7 n
87 -70.79 -20.00 2013.60 25 6.28 6.3 6.3 6.3 y
88 -70.71 -22.94 2013.60 5 5.13 6.4 6.4 6.3 n
89 -71.18 -19.11 2013.71 1 5 6.4 6.4 6.5 n
90 -71.39 -18.82 2013.73 47 6.6 6.4 6.4 6.8 y
91 -69.83 -18.30 2013.73 7 6.15 - - - n
92 -69.50 -20.07 2013.90 11 6.4 6.4 6.4 6.4 y
93 -70.29 -22.46 2013.90 1 5 6.2 6.2 6.3 n
94 -70.29 -22.46 2013.90 25 6.15 6.2 6.2 6.3 y
95 -69.61 -20.44 2014.18 34 6.25 6.4 6.4 6.4 n
96 -69.73 -22.20 2014.20 6 6.3 6.3 6.3 6.3 y
97 -71.42 -17.96 2014.40 29 6.48 6.7 6.7 6.7 n
98 -72.48 -15.71 2014.40 25 7.15 - - - n
99 -69.46 -23.30 2014.40 25 6.58 6.8 6.8 6.8 n
100 -70.35 -22.97 2014.43 5 5.33 5.9 5.9 6 n
101 -69.38 -22.52 2014.43 1 5 6 6 6 n
102 -70.32 -20.53 2014.52 13 5.78 6.2 6.1 6.2 n

Table 6.1: Transient events detected with their id, localization (longitude and latitude), date of occurrence, duration
and magnitude estimated. The column DTP (Detection Threshold Pass) indicates if the event passed (y) or not (n)
the threshold Magnitude, based on the resolution analysis using synthetics. The columns Resolution 10-20-30 days
show the threshold resolution for each SSE based on the duration of the synthetics tested.
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Figure 6.5: (I) Resolution test for the patch of the event 9. (a) Deviation from the true location in km as function
of the Mw tested. Black (blue, pink) curve is for a synthetic duration of 10 days (20,30 days). Dashed vertical lines
denote the magnitude threshold color-coded by the synthetic duration. (b) Deviation from the true detection time,
(c) deviation from the true duration and (d) deviation from the true Mw . Horizontal green lines shows the limit used
to define the threshold: 150 km in (a), 5 days in (b) and (c), and 0.05 in (d) (II) Same caption as in (I), but for the
patch of events 39, 60, 73, 79 and 92 (Same patch and same network active)
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Figure 6.6: The map shows the minimum magnitude detectable for each fault patch, based on the method explain
in the main text, for events with a duration of 10 days. Inverted blue triangles denote the location of one GPS station.
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Figure 6.7: The map shows the minimum magnitude detectable for each fault patch, based on the method explain
in the main text, for events with a duration of 20 days. Inverted blue triangles denote the location of one GPS station.
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Figure 6.8: The map shows the minimum magnitude detectable for each fault patch, based on the method explain
in the main text, for events with a duration of 30 days. Inverted blue triangles denote the location of one GPS station.
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Figure 6.9: Black circles denote the cleaned detections on all patches. Detections made on less than 20 patches
have been removed. The final detections are shown by green circles together with their estimated duration, magnitude
and respective ids.
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Figure 6.10: The map shows the locations of the transient detections color-coded by date of occurrence and scaled
by magnitude. For those patches presenting more than one event, an arrow shows the number of detections and the
id of the event. Coupling maps from Métois et al. [2016]. Inverted pink triangles indicate the location of the GPS
stations employed in this work.
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Figure 6.11: (a) On top, the stack of the GPS horizontal components time series centered on the detection time
for the event 37 The black dots are the data and the red curve is the model from which the duration and magnitudes
are estimated. On the bottom, the GPS time series are shown for the North and East components. The red line
denotes the static amplitude of displacement at each station based on the location and magnitude estimated (indicate
on top right). (b) same caption as in (a) but for the event 80.
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Figure 6.12: (a) On top, the stack of the GPS horizontal components time series centered on the detection time
for the event 39. The black dots are the data and the red curve is the model from which the duration and magnitudes
are estimated. On the bottom, the GPS time series are shown for the North and East components. The red line
denotes the static amplitude of displacement at each station based on the location and magnitude estimated (indicate
on top right). (b) same caption as in (a) but for the event 82.
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6.4 Discussion

6.4.1 Interseismic Coupling and sSSEs Detected

The Figure 6.10 is a map view of the events color scaled by date of occurrence, comparing with
the coupling map available in the region from Métois et al. [2016]. This map shows that almost all
the events are located in the deeper part of the seismogenic zone. Three patches are activated twice
during the analysis, one patch is activated seven times, and another one 5 times. Comparing the
full coupling distribution from Métois et al. [2016] with the sSSEs detected coupling distribution we
found that:

• 4 events are located outside of areas where the coupling is available (9.76%)

• 15 events are in areas where the coupling factor is low (0 < φ < 0.25, 36.59%)

• 13 events are in areas where the coupling factor has intermediate values (0.25 < φ < 0.75,
31.70%)

• 9 events are in areas where the coupling factor is high (0.75 < φ < 1.0, 21.95%)

The fact that most small SSEs occur in areas characterized by a small coupling seems to indicate
that slip does not occur continuously on the subduction interface, but rather as a series of bursts.
Such burst behavior is for instance supported by two patches breaking repeatedly 5 times (event
with ids 39, 60, 73, 79 and 92) and 8 times (events with ids 12, 17, 23, 34, 37, 65, 70 and 78) (Figure
6.10). The fact that some events activate the same patch repeatedly might be seen as an effect of
increased loading in these zones.

The small SSEs located between 50 - 60 km depths correspond to areas with a low coupling
factor, and may correspond to events in a transition zone, where the seismogenic zone ends and the
slab begins to creep. This transition zone has been defined using geodetic data between 35 - 50 km
[Chlieh et al., 2004, 2011; Métois et al., 2016], although using seismological data, thrust earthquakes
have been reported down to depths of 60 km [Comte and Suárez , 1995; Comte et al., 2016]. It
suggests a complex interaction between seismic and aseismic slip at depths ranging between 35 - 60
km. Events that occur at depths greater than 60 km are usually associated very low coupling values
(φ < 0.25) may reflect the slow deformation of the slab, that is not steady state.

The events 1, 3 and 4 are close to the area affected by Tarapaca slab-pull earthquake which
occurred at 100 km depth [Peyrat et al., 2006; Peyrat and Favreau, 2010], and occur in the year that
followed the earthquake. Some events also occur at depth at the latitude of Tocopilla earthquake
[Béjar-Pizarro et al., 2010; Peyrat et al., 2010] (Figure 6.10). GPS time-series show a variation of
velocity during several years after Tocopilla that is probably associated with postseismic viscoelastic
relaxation in the mantle wedge that may drag the slab. These small SSEs following a great earth-
quake may be triggered by it, and reflect unmodeled complexities of the post-seismic relaxation
process.
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Figure 6.13: Histogram of the full coupling distribution in the region (blue) compared with the coupling distri-
bution of sSSEs detected (red). Histogram bins are each 0.25.

6.4.2 Background Seismicity and sSSEs Detected

In order to assess potential interactions between slow slip and seismic ruptures, it appears impor-
tant to compare the obtained small SSEs to the seismicity and background seismicity rate computed
using the Methodology explained in the Chapter 5 ([Jara et al., 2017]). Indeed, the background
seismicity is usually seen as a good proxy for the tectonic loading, so any important deviation from
its mean rate can be associated with aseismic deformation or fluid migration [Reverso et al., 2016;
Marsan et al., 2017]. We have separated the seismicity in shallow (z ≤ 40 km) and deep (z ≥ 80
km) seismicity in three zones: Zone 1 that corresponds to the South of Peru and Arica bend (17◦-
19◦S), Zone 2 associated with the Camarones segment that was affected by Tarapacà earthquake in
2005 and Iquique earthquake in 2014 (19◦- 21◦S) and finally Zone 3 that includes the Loa segment,
the Mejillones peninsula and the Tocopilla seismic rupture in 2007 (21◦- 24◦S). The completeness
magnitude calculated is Mc 4.7.

The background seismicity in Zone 1 is limited (Figure 6.14). There is no synchronization of
shallow-deep seismicity, 1 sSSE (id 43) is associated with the occurrence of the shallow seismic ac-
tivity, while 1 event (ids 71) is associated with deep seismicity. 1 event is not associated neither with
shallow nor deep seismicity. In this area, the poor coupling resolution, the low seismicity rate, and
the small amount event detected (due to the sparse GPS stations distribution) makes it difficult to
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interpret and conclude.

In Zone 2 (Figure 6.15), the background seismicity is more intense than in Zone 1. 5 sSSEs are
associated with both shallow and deep seismicity bursts (ids 4, 15, 59, 85 and 87). The event 4 is
likely associated with the postseismic of Tarapaca slab pull earthquake. Events 85 and 87 are associ-
ated with the swarm that occurred in 2013, when Iquique earthquake presumably started to prepare
[Kato et al., 2016; Socquet et al., 2017]. Bouchon et al. [2016] have shown interactions between
shallow and deep seismicity, linking them by aseismic deformation due to the slab plunge. Durand
et al. [2014] has observed a large-scale spread slab deformation with the capability to trigger shallow
seismicity activity. Events 85 and 87 support this idea that slab processes may affect the interface
seismic or aseismic slip . 8 sSSEs are related to the occurrence of deep background seismicity only
(ids 1, 3, 7, 35, 39, 48, 68 and 73). These events occur mostly between 50 - 60 km, in the transition
zone where the subduction interface starts to creep. 7 events are not associated with neither shallow
nor deep seismicity. One option that can explain why they are not associated with seismicity is due
to the high completeness magnitude employed in the analysis, suggesting that seismicity lower than
Mc 4.7 can be involved in the process. This needs to be further explored in order to understand
the mechanisms to explain them. Another interesting feature in the region, is that the aseismic
deformation seems to increase close to the date of Iquique earthquake. It may be produced by the
influence of Tarapaca slab-pull earthquake that may trigger aseismic deformation, facilitating the
preparation phase of the megathrust event through aseismic deformation, either in the seismogenic
interface and at slab depths.

The Zone 3 (Figure 6.16) presents 4 interactions between shallow slow slip and deep seismicity
(ids 36, 37, 49 and 96), in areas where the coupling is in transition values. 10 events are connected
with the occurrence of deep seismicity (ids 2, 6, 12, 23, 34, 40, 65, 77, 78 and 94), suggesting that
the slab processes have an important impact on the aseismic deformation like in the Zone 2. 3
events do not have a relationship with shallow or deep seismicity, and like the results in Zone 2, they
need to be further explored to explain the mechanisms of generation. Conversely to the increase of
the aseismic deformation observed in the Zone 2, this Zone shows a more constant activity during
all the period analyzed after the occurrence of Tocopilla earthquake, that had a long postseismic
phase due to the viscoelastic relaxation of the mantle [Weiss et al., 2016]. It suggests that Tocopilla
earthquake has excited the aseismic deformation related to deep processes, doing it more constant
over time because of the long postseismic phase.
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Figure 6.14: (a) shallow (z < 40 km) and (b) deep (z > 80 km) cumulative seismicity for the ISC catalog (blue
and red) and background seismicity (light blue and orange) for Zone 1 (Figure 6.10). The background rate (µt) over
20 days is plotted in bar shape. Vertical black lines denote the occurrence of a sSSE and their ids are written on top.
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Figure 6.15: Same caption as in Figure 6.14, but for Zone 2 (Figure 6.10).
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Figure 6.16: Same caption as in Figure 6.14, but for Zone 3 (Figure 6.10).

6.5 Conclusions

The conclusions of this Chapter are based on the preliminary results discussed above, but they
need to be further explored and analyzed. 41 sSSEs are detected in the South Peru - North Chile
subduction zone. These events are characterized by magnitudes ranging between 6.1 - 6.9 and
durations of 3 - 93 days. All these events are mostly located in the deeper part of the seismogenic
zone. The comparison of our results and the interseismic coupling shows that ∼68% of those events
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are located in areas where the coupling factor is low or with intermediate values (0.25 < φ <

0.75). The relationship between the background seismicity and the detected events reveals some
interactions between shallow seismicity, sSSEs at the transition zone and deep seismicity, suggesting
that the slab deformation may influence pulses of seismic and aseismic processes occurring on the
subduction interface, at shallow depths or in the transition zone. The temporal evolution of the
events detected shows that in the region affected by Tocopilla earthquake, the sSSEs are quite
intense during the full period analyzed. This fact may be an indicator of a long post-seismic after
Tocopilla earthquake, where the mantle wedge viscous relaxation may drag the slab and explain both
the activity intensity and the repetitive transients detected in the area as well. Close to Iquique
earthquake area, the increased sSSEs activity towards the date of the earthquake may be associated
to the long preparation phase of the megathrust earthquake.
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Appendix

6.A Appendix Figures and Tables
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Figure 6.A.1: Geometry Design used in the SSEs detection.
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Figure 6.A.2: Same caption as in Figure 6.11 but for events 1, 2, 3 and 4.
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Figure 6.A.3: Same caption as in Figure 6.11 but for events 6, 7, 12 and 15.
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Figure 6.A.4: Same caption as in Figure 6.11 but for events 17, 18, 19 and 20.
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Figure 6.A.5: Same caption as in Figure 6.11 but for events 23, 34, 36 and 40.
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Figure 6.A.6: Same caption as in Figure 6.11 but for events 43, 44, 48 and 49.
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Figure 6.A.7: Same caption as in Figure 6.11 but for events 59, 60, 64 and 65.
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Figure 6.A.8: Same caption as in Figure 6.11 but for events 66, 68, 70 and 71.
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Figure 6.A.9: Same caption as in Figure 6.11 but for events 73, 77, 78 and 79.

119



(a
)

(b
)

(c
)

(d
)

Figure 6.A.10: Same caption as in Figure 6.11 but for events 85, 90, 92 and 94.
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Figure 6.A.11: Same caption as in Figure 6.11 but for event 96.
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Chapter 7

An 8 month slow slip event triggers
progressive nucleation of the 2014 Chile
megathrust

Paper published : Socquet, A., Pina-Valdes, J., Jara, J., Cotton, F., Walpersdorf, A., Cotte,
N., Specht, S., Ortega-Culaciatti, F., Carrizo, D. & Norabuena, E. (2017). Geophysical Research
Letters, 44(9), 4046–4053, doi:10.1002/2017GL073023. 1

My contribution in this chapter consisted in: perform the GPS processing and reference frame
analysis, calculation of mean velocity for GPS and static displacement for the differents periods
analyzed and the participation in the discussion of this paper.

7.1 Abstract

The mechanisms leading to large earthquakes are poorly understood and documented. Here,
we characterize the long-term precursory phase of the April 1st 2014 Mw 8.1 North Chile megath-
rust. We show that a group of coastal GPS stations accelerated westward eight months before the
mainshock, corresponding to a Mw 6.5 slow slip event on the subduction interface, 80% of which
was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high fre-
quency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground
motions predicted by recent subduction models. Such ground-motions change suggests that, in re-
sponse to the slow sliding of the subduction interface, seismic ruptures are progressively becoming
smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities
into surrounding metastable areas could explain these observations, and might be the precursory
mechanism eventually leading to the mainshock.

1Supporting Information of this work can be found in the Appendix at the end of this Chapter.
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7.2 Introduction

Some earthquakes have been preceded by an intense foreshock activity [Bouchon et al., 2013;
Schurr et al., 2014; Ruiz et al., 2014; Lay et al., 2014; Bedford et al., 2015; Cesca et al., 2016; Kato
et al., 2016; Meng et al., 2015; Hasegawa and Yoshida, 2015; Kato et al., 2012; Ozawa et al., 2012;
Sato et al., 2013; Bouchon et al., 2011] raising the possibility that earthquake forecasting may be
achieved through a better understanding of precursory mechanisms. Two concurrent models have
been proposed to explain the initiation of seismic rupture [Dodge et al., 1996]. A first model assumes
that the accelerated moment release observed before large earthquakes [Bowman and King , 2001] is
triggered by a slow slip event on the fault interface [Bouchon et al., 2013; Ruiz et al., 2014; Dodge
et al., 1996]. Alternatively a slow cascade of failures eventually may trigger the mainshock [Dodge
et al., 1996].

The precursory phase of earthquakes is most usually studied using seismological data, which is
readily available in some regions. Because of limited in-situ monitoring combined with lower de-
tection thresholds, geodetic data is less commonly used to study earthquake precursors. Therefore,
the link between foreshock activity and associated deformation transients has never been directly
established for periods exceeding a few weeks, although it has been observed and suggested ([Obara
and Kato, 2016] and references therein).

The Mw 8.1 2014 Iquique earthquake occurred within the North Chile seismic gap, which had
not experienced a megathrust rupture since 1877 [Béjar-Pizarro et al., 2013; Métois et al., 2016].
The earthquake ruptured a ∼150 km long portion of the subduction zone [Schurr et al., 2014; Ruiz
et al., 2014], in an area that was partially locked before the earthquake [Béjar-Pizarro et al., 2013;
Métois et al., 2016]. The earthquake was preceded by a series of earthquake swarms beginning in
July 2013 [Schurr et al., 2014; Ruiz et al., 2014].

Given the presence of detailed seismic and geodetic monitoring of the Chilean subduction zone,
this earthquake is an excellent case to monitor the precursory seismic activity and associated defor-
mation. Previous studies focused mostly on the twenty days immediately preceding the earthquake
when a strong transient signal occurred [Schurr et al., 2014; Ruiz et al., 2014; Lay et al., 2014;
Bedford et al., 2015; Cesca et al., 2016]. Nevertheless a debate remains on the mechanisms leading
to this foreshock activity, notably on the existence or not of aseismic slip preceding the earthquake.
Apart from the study of the foreshock sequence [Schurr et al., 2014; Ruiz et al., 2014; Lay et al.,
2014; Bedford et al., 2015; Cesca et al., 2016; Kato et al., 2016; Meng et al., 2015], very little is
known about any potential long-term precursors, in particular in terms of deformation.

Here we use geodetic and seismological observations to document the precursory deformation
and foreshock frequency content for the two years preceding the Iquique earthquake.
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Figure 7.1: Pre-seismic ground deformation and foreshock frequency content over a four–year period, before the
April 1st 2014 megathrust in North Chile. Top right: Map of seismicity: foreshock activity color-coded by periods,
epicenters of Mw8.1 mainshock and Mw 6.7 foreshock are indicated by black and pink stars, Mw 8.1 slip distribution
with 1-meter contours. Triangles indicate the location of GPS stations, the red ones being stations whose time series
are shown to the left. Top left: Trench perpendicular, detrended time series of coastal cGPS, sorted by latitude. Colors
show the variation of average GPS velocities computed in 6-month sliding windows. Center left: Frequency content
evolution of interface foreshocks. Lines show average values of normalized residuals with respect to GMPE model
[Abrahamson et al., 2016] at high (reddish) and low (bluish) frequencies computed for each time-period. Standard
deviation of the model is shown by shaded colors, while dots show single earthquakes residuals. Bottom left: Foreshock
activity over time (dots). Blue curve shows the cumulative number of earthquakes. Red, blue and yellow vertical
lines separate the 3 pre-seismic periods, and depict respectively the Mw 8.1 mainshock on 2014/04/01, the Mw 6.7
foreshock of 2014/03/16 that is followed by an increase of seismicity rate two weeks before the mainshock, and the
July 2013 swarm.

7.3 Data and Methods

GPS data from several networks monitoring the North Chile subduction (IPOC, LIA Montessus
de Ballore, ISTerre, Caltech Andean Observatory, IGS) have been processed in double differences,
including tropospheric delays and gradients [Boehm et al., 2006], and mapped into the ITRF 2008
[Altamimi et al., 2011] (see supporting information for further details). The trend, as well as sea-
sonal signals and common modes were removed from the time series. In order to study the long
term transient in our time series, we excluded data after March 15th, 2014 (when a strong preseismic
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signal occurred), and then computed the average velocity variations, by fitting a linear regression
in a six-month sliding window of the detrended and de-noised time-series (Figure 7.1). In a second
step, we compute the displacement during two preseismic periods (preseismic 1: July 2013- March
13th 2014, preseismic 2: March 14th 2014-March 31st 2014), by taking as a reference the mean
interseismic loading trend before July 2013 (Figures 7.B.2 and 7.B.3).

Figure 7.2: Left: Long- and short-term slip events (in blue and purple respectively), preceding the Mw 8.1
mainshock, superimposed on the interseismic coupling distribution [Métois et al., 2016] in gray, and the co-seismic
slip 1 m contours in black. Foreshock seismic activity for the same periods is also shown (in blue, purple and green,
Mw > 4). Epicenters of the main shock and the Mw 6.7 foreshock are shown as black and pink stars. Right Inset:
Mean Fourier spectra computed for interface earthquakes (5.1< Mw < 5.2) grouped into 4 different time periods:
interseismic in green, pre-seismic 1 in cyan, pre-seismic 2 in purple, and post-seismic in orange. Station PB08 being
located at an even distance of the earthquakes studied, the computed variations in Fourier spectra shapes should be
unaffected by variations in attenuation, but instead characterize earthquake’s source.

The surface deformation fields were then inverted to retrieve the distribution of slip on the sub-
duction interface (Figure 7.2), by discretizing it as a series of dislocations buried in a layered elastic
half space [Wang et al., 2003b]. A Laplacian smoothing has been applied; the best compromise be-
tween model roughness and data – model misfit has been chosen [Jónsson et al., 2002]. The power of
our data to constrain the slip on the interface [Loveless and Meade, 2011] is high from 15 km depth
to more than 70 km depth in general (Figures 7.B.4-7.B.6). Although the details of slip distributions
can vary from one inversion to the other, the estimated geodetic moment of pre-seismic slow slip
events vary within less than 10% (Figure 7.B.7).

To complement the geodetic analysis, we analyzed the frequency content of interface seismicity.
The interface seismicity catalog (Figure 7.B.9) was compiled using the GEOFON moment tensor
catalog and the Global CMT catalog. We use a data driven algorithm to automatically determine
focal mechanism clusters with similar Style-of-Faulting (strike, rake, and dip, Figure 7.B.10).

The horizontal response and Fourier spectra of interface earthquakes were computed from the
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acceleration records of stations belonging to the IPOC network (Figure 7.B.9). The raw acceleration
records were demeaned, tapered and a zero pad has been applied at the beginning and the end before
being used to compute the spectra [Boore et al., 2012; Chiou et al., 2008]. The response spectra, were
also computed for each horizontal component of the records following the Nigam and Jennings [1969]
method with a damping of 5%. Finally, both Fourier and response horizontal spectra were computed
as the geometrical mean of the two horizontal response spectra at each station. Fourier source spectra
depend on source, propagations and site effects. Also, there is then a need to deconvolve the records
from propagation and site properties to analyze earthquake source-properties. In order to compare
the shape of Fourier spectra during the different time span studied, we selected three IPOC stations
located at equal distance from the earthquakes swarm to get rid of the attenuation effects, and per-
formed our analysis on earthquakes within a 0.1 magnitude range (Figure 7.B.11 and 7.2 right inset).

Second, we compared the measured ground accelerations, at different frequencies, with the re-
sponse spectra predicted by the recent Ground Motion Prediction Equation (GMPE’s) developed
for subduction interface earthquakes by Abrahamson et al. [2016]. Abrahamson et al. [2016] model
is recognized as one of the leading models to predict ground-motions in subduction areas and has
been recently selected for the Global Earthquake Model [Stewart et al., 2015]. The analysis of the
obtained residuals confirmed that this model is well suited for our data set (see supplementary infor-
mation for details). Between-event residuals were computed, for each frequency (0.75 Hz, 1 Hz, 1.25
Hz, 5 Hz, 10 Hz and PGA) and each earthquake, as the difference between the median of the obser-
vations of the given earthquake and the median of the model Abrahamson and Youngs [1992]. The
Ground Motion Prediction Equations is acting here as a backbone model which takes into account
first order magnitude and propagation effects. The analysis of relative time and spatial variations of
between-event residuals allow us to compare the source-effects of earthquakes with various magni-
tude and locations [Strasser et al., 2010; Al Atik et al., 2010; Youngs et al., 1995]. It has been shown
that response between-event residuals are fully correlated with “classical” Fourier stress-drops [Bindi
et al., 2007], so there is no information lost using Response spectra and GMPE’s compared to a
more classical Stress-drop analysis. The between events residuals were then organized as a function
of time, space and magnitude, in order to represent their variations and temporal evolution during
the different periods before or after the mainshock (Figure 7.3, Figure 7.B.15).

7.4 Results

7.4.1 Precursory slow slip and associated seismicity

We detected a westward acceleration of some permanent GPS stations with respect to the average
interseismic velocity (Figure 7.1). This acceleration begins ∼8 months before the mainshock, and
affects mostly coastal stations located within an area 100 km south of the Mw 8.1 source, which was
also affected by foreshock seismicity during the same period (Figure 7.1, blue dots). For comparison,
during the preceding interseismic period, the seismicity is evenly distributed within the deeper part
of the seismogenic zone (green dots on Figures 7.1 and 7.2). Inversion of these 8-month preseismic
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displacements (from July 2013 to mid-March 2014) suggests that a slow slip event occurred on the
subduction interface (Figure 7.2, blue contours), surrounding the mainshock slip patch. South of
the mainshock, the slow slip occurs in a zone of low coupling during the interseismic period [Mé-
tois et al., 2016], while it rather affects areas characterized by intermediate locking downdip and
north of the mainshock. The geodetic precursor is collocated with long-term foreshock activity
(Figure 7.2, blue dots). The comparison between geodesy and seismology shows that this long-term
pre-seismic signal is at least 80% aseismic in nature; the cumulative seismic moment release (1.2
× 1018 Nm) representing 17 to 19% of the slip derived from GPS observations (6.4 to 7.0 × 1018 Nm).

Figure 7.3: Time-space evolution of between-event residuals at the different frequency values shown in figure 1
(mid-panel). Residuals are normalized by the standard deviation of the GMPE model. Therefore average temporal
changes can be considered significant from one standard deviation.

On March 16th, 2014, a Mw 6.7 intraplate earthquake [Cesca et al., 2016] occurred two weeks
before the mainshock, north of the creeping area (pink star, Figure 7.2). This foreshock is the largest
of the whole sequence. It is followed by an abrupt increase of the seismicity rate and associated
b-value [Schurr et al., 2014], some of them in the upper plate, and most of them on the subduction
interface [Cesca et al., 2016], affecting the area that later ruptured during the Mw 8.1 megathrust.
During this fifteen-day preseismic period, GPS stations were affected by a large deformation tran-
sient [Ruiz et al., 2014] (Figure 7.2). This preseismic slip measured by geodesy resembles the one
released seismically: the location and shape of geodetic slip mimics the spatial distribution of epi-
centers (Figure 7.2, purple contours and dots) [Schurr et al., 2014], while the seismic moment is
65-67% of the geodetic moment (the remaining 33-35% is aseismic).
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7.4.2 Evolution of interface earthquakes ground-motions

To complement these findings, we analyzed the frequency content of interface seismicity. Mean
Fourier spectra at stations equidistant to the seismic crisis events show a consistent temporal decrease
in high frequencies from interseismic to pre-seismic, and eventually post-seismic periods (Figures 7.2
and B11).

The comparison of the measured accelerations for interface earthquakes with respect to the
ground-motion model [Abrahamson et al., 2016] provides an independent assessment of ground-
motion temporal variations. The time, space and magnitude dependencies of between event residuals
have been analyzed in order to search for a potential evolution of the source characteristic (Figures
7.3 and B15). Measured residuals do not depend on earthquakes magnitude (as expected given the
fact that the ground-motion predictive equation acts as a backbone model correcting for magnitude
and propagation effects). However, at frequencies of 5Hz and above, a clear clustering of between-
event residuals as a function of their time of occurrence is observed (Figure 7.B.15), indicating a
diminution of high-frequency energy release from interseismic period to pre-seismic period and later.
Also, the temporal evolution of residuals differs from one frequency band to the other: at frequencies
below 1.25 Hz residuals remain more or less constant with time, while at higher frequencies (5 Hz
and above) residuals decrease between interseismic period to pre-seismic and post-seismic periods
(Figures 7.1, 7.2 and 7.3). During the second preseismic period (i.e. during the 15 days between
the largest foreshock and the mainshock) and the post-seismic period, interface earthquakes show
no significant change of their energy radiation.

These two independent assessments of interface earthquake ground-motions indicate a reduction
of the high frequency radiation, which is coincident with the preseismic acceleration in GPS veloci-
ties eight months before the mainshock.

7.5 Discussion

Our results indicate that a geodetic precursor occurred simultaneously with an identified increase
in the seismicity rate (Figure 7.1, bottom panel), and a decrease in the b-value [Schurr et al., 2014].
Such observations can be modeled as an aseismic slow slip on the subduction interface collocated
with long-term foreshock activity (Figure 7.2, blue dots). This is consistent with the slow sliding of
conditionally stable area on the subduction interface, spread out by sparse, small seismic asperities
[Hetland and Simons, 2010], the seismic activity arising from the response of seismic asperities to
the aseismic forcing.

Seismic radiation spectra of interface events have been proposed, on average, to be representative
of the different frictional regimes of a subduction interface [Scholz , 1998; Lay et al., 2012]; regions of
unstable sliding can have large slip but generate modest amounts of short-period radiation upon fail-
ure, while smaller patchy regions of unstable sliding produce coherent short-period radiation when
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Figure 7.4: Schematic interpretation of the precursory phase of Mw 8.1 Earthquake. a) During the interseismic
phase, the subduction interface slowly creeps (yellow) at depth and in low coupling areas, where frictional asperities
are sparse. The rupture of small frictional asperities resisting this slow slip generates the background seismicity (red).
b) Eight months before the mainshock, slow slip accelerates in the seismogenic zone (maybe facilitated by fluids
migration), around the area ruptured by the mainshock. Seismic ruptures start to propagate into the conditionally
stable area surrounding the frictional asperities (light red). c) After the largest foreshock on March 16th (Mw 6.7),
slow slip goes on, but is superimposed onto a rough seismic signal generated by the post-seismic cascade. d) On April
1st 2014, Mw 8.1 earthquake ruptures a large portion of the subduction interface, breaking both frictional asperities
(red) and surrounding conditionally stable areas (light red).

loaded to failure by creep of conditionally stable surrounding regions [Lay et al., 2012; Meng et al.,
2015].

The reduction in high-frequency radiated energy often indicates a reduction in earthquake stress-
drop (i.e. a decrease of corner frequency). This phenomenon might be explained either by (a)
smoother ruptures [Radiguet et al., 2009], (b) lower rupture velocities, or (c) increasing high-
frequency attenuation. Given the foreshocks sequence does not migrate through time, a change
in attenuation characteristics over such a short period of time seems unlikely. Rapid fluid migration
within the fault zone may change the attenuation locally, within the few hundred meters of the dam-
aged fault zone (high pore fluid pressures are accompanied by very low Qs/Qp ratios — 0.1 to 0.4 for
saturated basalt that are primarily due to increased shear attenuation [Tompkins and Christensen,
2001]. However, once integrated over the whole path followed by seismic waves through continental
crust (a few hundred meters with increased attenuation, versus tens of kilometers with no change),
this local change in attenuation accounts for a minor part of the overall attenuation and only at
large frequencies (higher than 15-20 Hz). It will be considered as part of the source, distance inde-
pendent, high-frequency (kappa) attenuation. Therefore, the observed change of frequency content
at 5-10 Hz rather seems related to a modification of the earthquake source parameters, such as a
wider rupture area or slower rupture velocity. This is also compatible with the observed reduction
in b-value during the precursory time period, implying an increasing proportion of large to small
earthquakes. Such a decrease in b-value has been proposed as a precursor to major macro-failure
[Smith, 1981]. Our observations suggest that a slow aseismic forcing that started eight months before
the mainshock triggered an increased number of seismic events together with a modification of the
earthquake frequency content, interpreted as a widening of rupture surfaces [Lay et al., 2012]. This
suggests a progressive expansion of failures into the conditionally stable areas surrounding small seis-
mic asperities, in a mechanism that will eventually lead to the main rupture nucleation (Figure 7.4b).

Two weeks before the mainshock, the largest foreshock of the sequence triggered an increased
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deformation, seismicity, and b-value. This seismicity, which is much more focused both spatially and
temporally, might have been triggered by theMw 6.7 foreshock that induced a significant increase of
the Coulomb stress in the area. The seismicity and associated slow slip observed within the fifteen-
days before the mainshock may therefore result from a regular aftershock sequence and associated
afterslip following the Mw 6.7 event, overprinting the preexisting slow aseismic slip (Figure 7.4c).

On April 1st, 2014, the Mw 8.1 megathrust nucleates immediately north of the seismicity surge,
in an area of increased stress resulting from adjacent preseismic slip. The maximum slip (Figure 7.2,
black contours) occurs close to the area that started to slip before the mainshock (pink), slightly
downdip associated foreshock activity (pink dots), including repeating earthquakes [Meng et al.,
2015]. However, the rupture extends deeper to areas that were fully locked during the interseismic
period [Métois et al., 2016]. To the south, the rupture stops abruptly when it reaches the metastable
areas affected by the long-term aseismic precursor (blue).

7.6 Conclusions

These observations confirm that a long-term aseismic slip of the subduction interface led to the
nucleation of the Mw 8.1 Iquique megathrust earthquake. During the interseismic period, the seis-
micity was evenly distributed within the deeper part of the seismogenic zone (green dots on Figures
7.1 and 7.2), and ruptured small frictional asperities in response to deep interplate aseismic sliding
(Figure 7.4). Eight months before the mainshock, this slow sliding of plate interface started to
accelerate within the seismogenic zone. South of the mainshock this precursory creep occurs in an
area characterized by little interseismic coupling, while downdip and north of the mainshock, the
slow slip affects more coupled areas (Figure 7.2) [Métois et al., 2016], and may be seen as the slow
rupture of locked patches surrounding the mainshock. Small seismic asperities scattered in this area
ruptured repeatedly [Meng et al., 2015; Lay et al., 2012]. The change in the earthquake frequency
content during the foreshock sequence (a reduction of the stress drop) suggests that seismic failures
widen progressively, decelerate, and start to extend into the slowly sliding, conditionally stable areas
surrounding frictional asperities. This process can be seen as the start of the precursory phase that
will eventually lead to the megathrust rupture.

The simultaneous occurrence of slip acceleration, increased seismic activity and the slow decrease
of the high frequency radiations of foreshocks may provide a way to detect the preparation of great
earthquakes. Identifying aseismic slip combined with changes in associated earthquake spectra may
therefore significantly help to mitigate seismic hazard at plate boundaries.
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Appendix

7.A Methods

7.A.1 cGPS data analysis

We used data from several cGPS networks spanning the whole central Andes subduction (IPOC,
LIA Montessus de Ballore, ISTerre, and Caltech Andean Observatory), together with IGS stations.
These cGPS data were analyzed in double differences, in two distinct regional subnetworks, plus
a global network (Figure 7.B.1). The fifty stations available during the period 2000 - 2014 were
used to design the first regional subnetwork. The second regional subnetwork includes 50 stations
running from 2007 to 2014, 33 stations overlapping with the first subnetwork in order to ensure con-
sistency between the subnetworks. The global network includes 99 IGS sites worldwide, 22 of them
in South America, with 49 stations overlapping with the two regional subnetworks. 24-hour sessions
were reduced to daily estimates of station positions using the GAMIT 10.5 software, choosing the
ionosphere-free combination, and fixing the ambiguities to integer values. We use precise orbits from
the International GNSS Service for Geodynamics, precise EOPs from the IERS bulletin B, IGS tables
to describe the phase centers of the antennas, FES2004 ocean-tidal loading corrections, as well as
atmospheric loading corrections (tidal and non-tidal). We estimated one tropospheric zenith delay
parameter every two hours and one couple of horizontal tropospheric gradients per 24 h session,
using the Vienna Mapping Function (VMF1) [Boehm et al., 2006], to map the trophospheric delay
in zenithal diraction, with a priori ZHD evaluated from pressure and temperature values from the
VMF1 grids. Daily solutions and position time series are combined using PYACS software [Nocquet
J.M., 2015, personal communication] in a regional stabilisation approach. The results are mapped
into ITRF 2008 reference frame [Altamimi et al., 2011].

7.A.2 Time series analysis and identification of transient movements

Annual and semi-annual signals were removed from the obtained daily time series, as well as the
long-term constant deformation associated with interseismic loading, by fitting a linear regression
together with a pair of sinusoids terms. The remaining noise has been reduced by removing the
common-mode, obtained by selecting stations located within a distance range of 50-500km from
the source region (SJUA, ATIC, CHRA, PTCL, LYAR, UTAR, PCCL, PB02, PB04, MLCA, PB05,
PMEJ, JRGN, UCNF, NZCA, AREQ, TORA, TQPL, DANC, TRTA, PALC, PTRE, MNMI, COLC,
CHMZ, PB11, PCHA, PB08, PB01, PB07, PB03, CDLC, RADO, PB06, CBAA, VLZL, CJNT) and
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by averaging their detrended signals. Then, in order to mitigate the residual loading signal present in
our signal, we removed from each time series the mean annual residual seasonal movement computed
between 2010 and 2013. This procedure reduced significantly the scatter in our time series. In order
to study the long term transient in our time series, we excluded data after March 15th, 2014 (when
a strong preseismic signal occurred), and then computed the average velocity variations, by fitting a
linear regression in a six-month sliding window of the obtained detrended and de-noised time-series.
The results indicate a velocity change in July 2013 (appr. eight months before the mainshock) at
coastal stations located at 20.3◦S close to the city of Iquique. This velocity change propagated bi-
laterally and reached stations located within a distance of appr. 100 km parallel to the strike of the
subduction (parallel to the coastline). In a second step, we compute the average velocities by fitting
a linear regression to the detrended cGPS time series on three different time periods before July
2013 (interseismic), July 2013- 13th March 2014 (preseismic 1), 14th March 2014-March 31st 2014
(preseismic 2) (Figures 7.B.2 and 7.B.3). Uncertainties on linear regressions correspond to standard
deviation of one for each linear regression. Displacements for both pre-seismic periods have been
obtained by multiplying each station velocity by the time span. For the preseismic period 1, we
selected only stations showing a continuous time series since 2012, to avoid artifacts associated with
jumps or data holes in the time series. For both preseismic periods, we discarded noisy time series
generating the largest uncertainties in the displacement computation.

7.A.3 Slip distribution inversion and resolution

The surface deformation fields associated with the coseismic and preseismic phases were modeled
using a dislocation buried in a layered elastic half space [Wang et al., 2003b], taking Crust1.0 as a
velocity model. The fault geometry was constrained by the trace of the trench at the surface. We
assumed a uniform dip of 15◦ and a variable rake, so that the slip direction is parallel to the plate
convergence (76◦), and is taken constant at all patches.

The fault was discretized into an array of 24 × 11 elements, measuring approximately 15 × 15
km, although their size varies locally since the fault follows the trench geometry (Figures 7.B.4, 7.B.5
and 7.B.6). To solve for the slip distribution along the 264 fault patches, we used a least squares
minimization with a non-negativity constraint on the slip. Slip was forced to zero at the edges of
the fault. To limit oscillations of the solution, we applied smoothing by minimizing the second-order
derivative of the fault slip. We determined the optimal solution roughness [Jónsson et al., 2002]
that was used in our final models searching for a compromise between the roughness and misfit of
the solution. We estimate the sensitivity of our data set to unit displacements on each node of the
grid by summing the horizontal deformation on the whole network after Loveless and Meade [2011].
The power of our data to constrain the coupling on the interface is high from 15 km depth to more
than 70 km depth in general.

The coseismic offsets extracted from cGPS time series were used to invert for the coseismic slip
(Figure 7.B.4). The roughness of the preferred co-seismic distribution is 0.04 cm/km for a RMS (L2-
norm misfit) of 1.20 cm. The seismic moment is 1.7 × 1021 Nm, and corresponds to a Magnitude
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8.1. The inverted slip distribution for pre-seismic period 2 (Figure 7.B.5) corresponds to a moment
3.9 M0 = × 1019 Nm (Mw = 7.0) and a fit to the data with RMS = 1.3mm. The inverted slip
distribution for pre-seismic period 1 (Figure 7.B.6) corresponds to a moment M0 = 7 × 1018 (Mw =
6.5) and a fit to the data with RMS= 0.5 mm (Figure 7.B.7). Because we were able to estimate
accurately the long term transient displacement on a subset of stations only, mostly located along
the coast, the slip distribution for pre-seismic period 1 less well constrained than the co-seismic and
pre-seismic period 2. However, the patches that are found to be slipping by our inversions are located
in zones that are well constrained by our data (Figure 7.B.6). Depending on the smoothing applied
to the model, the estimate of the geodetic moment of pre-seismic slow slip events (for periods 1 and
2) vary within less than 10% (Figure 7.B.7), and the main features of the slip distribution are quite
stable whatever the smoothing applied (Figure 7.B.8).

7.B Appendix Figures
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Figure 7.B.1: Map of the network used in this study, showing the three subnetworks (Andes 2000 – 2014, Andes
2007 – 2014 (a) , and the Global Network (b)), as well as the stations used for the reference frame computation. Green
color in (b) indicates IGS stations included for global processing, while purple indicates IGS stations overlapping with
the Andes subtnetworks.
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Figure 7.B.2: N, E, U detrended daily displacements for IQQE station since 2010. Vertical lines indicate the
dates of the swarm of July 2013 (yellow), the Mw 6.7 foreshock on March 16th 2014 (blue) and the Mw 8.1 main
shock on April 1st 2014 (red). Linear regressions for the three preseismic periods are shown.
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Figure 7.B.3: Detrended displacement time series for a selection of stations along the coast and inland. Bottom 2
panels: Colors, indicate the trench parallel (left panels) and trench perpendicular (right panels) velocities obtained by
computing the average velocity over a six-month sliding window. Top 2 panels: Colors, indicate the N-S (left panels)
and E-W (right panels) velocities obtained by fitting a linear regression on the displacement time series for the three
preseismic periods.

137



Figure 7.B.4: Co-seismic displacements (observed : top left, and modeled: top right), co-seismic slip distribution
inverted from surface displacements (bottom left), residuals and power of GPS stations to constrain plate interface
behavior (i.e., sum of the partial derivatives relating GPS displacement to unit slip [Loveless and Meade, 2011])
(bottom right). One-meter contours are drawn.
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Figure 7.B.5: Left: Displacements (observed: blue, modeled: red) during preseismic period 2 (March 14th 2014
to March 31st 2014) and preseismic slip distribution for the two weeks preceding the main shock inverted from surface
displacements, Right: residuals and resolution. Two-cm contours are drawn.

Figure 7.B.6: Left: Displacements (observed: blue, modeled: red) during preseismic period 1 (July 6th 2013 to
March 13th 2014) and preseismic slip distribution for the two weeks preceding the main shock inverted from surface
displacements, Right: residuals and resolution. Five-mm contours are drawn.
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Figure 7.B.7: Geodetic moment as a function of the model roughness, for both preseismic models. Dots are color
coded with the model – data misfit. The preferred model is chosen as a compromise between smoothness and RMS.

Figure 7.B.8: Pre-seismic slip distribution for different model roughnesses. Top: 8 months preseismic (july 2013
– mid-March 2014), Bottom: 15-day pre-seismic (Mid-March to End March 2014).
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Figure 7.B.9: Map of the interface seismicity data set (dots colored as a function of the 4 periods defined in the
paper), and network of IPOC accelerometric stations (red inverted triangles) used to perform earthquakes frequency
content analysis. All these stations are installed on bedrock. Most of them are also colocated with GPS stations used
in this paper.
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Figure 7.B.10: Cross section of IPOC catalogue of earthquakes in North Chile. Colored dots represents the
classification of earthquakes (interface, unclassified or intraplate) as a function of their focal mechanism. The blue
line represents the Slab1.0 subduction interface. The events used in this study (contoured in blue) have been selected
as being interface events that occurred between January 2008 and June 2014.

Figure 7.B.11: Acceleration Fourier Spectra computed at stations PSGX, PB11 and PB08 (see Figure 7.B.9 for
location) for interface earthquake within 5.1-5.2 Magnitude range. Spectra are color-coded as function of the period
when occured the earthquake (interseismic in green, pre-seismic 1 in cyan, pre-seismic 2 in purple, post-seismic in
orange). Top line shows all individual spectra while bottom line shows the mean spectrum for each time period.

142



Figure 7.B.12: Histograms of ground motion absolute residuals normalized with respect to the total standard
deviation of the GMPE model [Abrahamson et al., 2016]. The Normal Density Function (NDF) of the residuals is
shown by the dashed lines and the expected normal distribution is represented by the gray lines.

Figure 7.B.13: Histograms of the Within-Events residuals normalized with respect to the Within-Event standard
deviation of the model. The Normal Density Function (NDF) of the residuals is shown by dashed lines and the expected
normal distribution by gray lines.
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Figure 7.B.14: Histograms of the Between-Event residuals normalized with respect to the Between-Event stan-
dard deviation of the model. The Normal Density Function (NDF) of the residuals is shown by dashed lines and the
expected normal distribution by gray lines.

Figure 7.B.15: Between-event residuals as a function of event magnitude at the different frequency values shown
in figure 1 (mid-panel). At frequencies above 5Hz, earthquakes occurring during the interseismic period exhibit
significantly larger residuals than earthquakes belonging to preseismic and postseismic sequences. Instead, values of
residuals are similar for all considered time periods at frequencies below 1.25Hz.
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Chapter 8

Kinematic Study of Iquique 2014 Mw 8.1
earthquake: understanding the
segmentation of the seismogenic zone

Paper to be submitted to EPSL: Jara, J., Sánchez-Reyes, H., Socquet, A., Cotton, J. Virieux,
F., Maksymowicz, Díaz-Mojica, J., Walpersdorf, A., Ruiz, J., Cotte, N. & Norabuena E. (2018). 1

8.1 Abstract

To understand the subduction segmentation in North Chile region, we present a complete study
of the rupture processes of Iquique earthquake Mw 8.1 (2014/04/01) and its biggest aftershock Mw

7.7 (2014/04/03). High-rate Global Positioning System (GPS) recordings and strong motion data
are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earth-
quakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes
from the inversion of the estimated static displacements and then, kinematic inversions in the fre-
quency domain are carried out taken into account this prior information. The preferred model for
the mainshock exhibits a seismic moment of 1.73 × 1021 Nm (Mw 8.1) and maximum slip of ∼9
m, while the aftershock model has a seismic moment of 3.88 × 1020 (Mw 7.7) and a maximum slip
of ∼3 m. For both earthquakes, the final slip distributions show two asperities (one shallow and
another deep) separated by an area with significant slip defficit, suggesting a segmentation along dip
which might be related to the change of the dipping angle of the subducting slab, as inferred from
gravimetric data. Along strike, the areas where the seismic ruptures stopped seem to be well cor-
related with geological features observed from geophysical information (high-resolution bathymetry,
gravimetry and coupling maps), suggesting a complex along-strike and along-dip segmentation in
the region. The results here presented support the idea that this seismic gap is not completely filled
yet, considering the small portions that were broken by these two earthquakes.

1Supporting Information of this work can be found at the end of this Chapter.
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8.2 Introduction

On 1 April 2014, a Mw 8.1 subduction earthquake struck the north of Chile offshore Iquique.
This earthquake is of interest for two main reasons. First, the megathrust rupture was preceded by a
long precursory phase characterized by a slow slip event that lasted several months [Kato et al., 2016;
Socquet et al., 2017], and interactions between shallow and intermediate depth seismicity [Bouchon
et al., 2016; Jara et al., 2017] that ended into an intense foreshock sequence, which origin remains
debated in terms of slip behavior [Ruiz et al., 2014; Schurr et al., 2014; Meng et al., 2015; Kato
et al., 2016]. This precursory phase has been the focus of a number of studies, and the present pa-
per targets another interesting question raised by Iquique earthquake: the mainshock occurred in a
mature seismic gap, where a moment deficit equivalent to ∼M 8.6 has been accumulating since the
1877 historical earthquake [e.g., Béjar-Pizarro et al., 2013; Métois et al., 2016] (Figure 8.1). With a
moment magnitude Mw 8.1, Iquique earthquake was therefore significantly smaller than what could
be feared in this area, and the different slip models published show that the earthquake together
with its larger aftershock of Mw 7.7 broke a spatially limited area (200 km along the subduction)
[e.g., Hayes et al., 2014; Lay et al., 2014; Ruiz et al., 2014; Schurr et al., 2014; Duputel et al., 2015;
Liu et al., 2015], leaving two regions with the potential capability to generate earthquakes of Mw ≥
8.0 [Hayes et al., 2014; Schurr et al., 2014; Ruiz et al., 2014; Duputel et al., 2015]. But the reason
why this earthquake together with its largest aftershock broke only this specific limited portion of
the seismic gap remains elusive. What are the physical conditions (slip deficit, state of stress, friction
or structural complexity) that contributed to enhance the ruptures, to end it? Do these earthquakes
contribute to fill the slip deficit derived from interseismic geodetic coupling? Are the mechanisms
that trigger the mainshock similar to the ones that initiate the aftershock? Is the ruptured area
structurally peculiar? Here we explore the reasons of this apparent paradox by studying the rup-
ture process of Iquique earthquake and its biggest aftershock (Mw 7.7, 2014/04/03), and then by
comparing our results with complementary geophysical data that describe the interseismic coupling
and the structural complexity in the area.

This earthquake has been well recorded by geodetic and strong motion networks (including co-
located stations), providing a unique opportunity to explore the compatibility of both datasets and
to show how high-rate GPS can help to better constrain the kinematic rupture processes. We perform
a two-step inversion in the frequency domain proposed by Hernandez et al. [1999], that consists in
carrying out a static inversion, used as apriori information in the kinematic models to explore the
source of both earthquakes. Inverting in the frequency domain has then a great advantage since it
can be evaluated how each frequency is explained (or not) by the inverted slip model. The method
employed offers the opportunity to have a continuum (in the frequency domain) between the static
and kinematic solution. However, frequency domain inversions have not been improving so much
these last years and there then is a need to take into account the recent development and ideas of
the slip inversion community (multigrid analysis [Bunks et al., 1995], sensitivity analysis [Duputel
et al., 2015], better control of the smoothing process [Wellington et al., 2017]), that are explored
during this work.
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Figure 8.1: (a) Seismotectonic Context of North Chile - South Peru subduction zone. Historical and instrumental
rupture areas are color coded as a function of their date of occurrence. Dates and magnitudes of all earthquakes M >
7.0 in the area are indicated in squared boxes. Mainshock (Mw 8.1 2014/04/01) and aftershock (Mw 7.7 2014/04/03)
focal mechanisms from Duputel et al. [2015]. Stars symbolize the mainshock and aftershock epicenters from CSN
catalog, as well as the seismicity since 2013/07/01 up to 2014/12/31 with magnitudes over 4.0, color coded by time
(blue dots denote events before the mainshock and dark brown events after it.) and scaled by magnitude. Preferred
slip models for the mainshock and aftershock are plotted with colors depending on the slip.

8.3 Data Analysis

8.3.1 High-rate Continuous GPS

High-rate GPS (HRGPS, 1 Hz) data from different networks located in South Peru - North
Chile (IPOC, LIA “Montessus de Ballore”, CAnTO, ISTerre, IGP and CSN, Figure 8.B.1) are pro-
cessed using TRACK software [Herring et al., 2016]. We use the LC combination and IGS precise
orbits, employing the atmospheric delay estimated from daily GPS processing each 2 hours (see
Supplementary Material for further details). TRACK computes a relative position with respect to
a reference station supposed to be fixed. Here, we have chosen as a reference UCNF station (Figure
8.B.1), located ∼150 km from the epicenters. When the seismic waves reach the reference station,
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its movement is reflected in the computed displacements of the whole network. This effect, together
with orbital errors, is corrected by removing a common mode from the original signal and a sidereal
filtering is applied to dismiss the multipath effects (Figures 8.B.2 and 8.B.3). The static co-seismic
offsets are then estimated by fitting a step function in the HRGPS signal, 500 s before and after the
earthquake (Figure 8.B.4 and Table 8.B.1).

8.3.2 Strong Motion versus HRGPS Seismograms

Strong motion stations located in North Chile from different networks are employed in this study
(IPOC, LIA “Montessus de Ballore” and CSN, Figures 8.4 and 8.6 b). The signals are doubly in-
tegrated to obtain the ground displacement, and then filtered between 0.01 - 0.5 Hz. To validate
our approach, we compare the signals from collocated HRGPS and strong motion stations. HRGPS
are filtered in the same frequency band as strong motions. The superposition of both signals shows
an excellent consistency in waveform between them (Figure 8.B.5). This procedure confirms the
relevance of using HRGPS for the kinematic inversion, avoiding the loss of information due to the
double integration procedure of the strong motion data.

8.4 Static and Kinematic Inversion Procedures

Let us first consider procedures for this two-step inversion where both the spatial discretization
and the model covariance matrices play crucial roles for reducing the intrinsic ill-posedness of this
inversion problem.

8.4.1 Static Inversion

GPS static displacements are inverted for the mainshock (Mw 8.1, 2014/04/01, Figure 8.2 b)
and for the biggest aftershock (Mw 7.7, 2014/04/03, Figure 8.2 d) to get the final slip distribution
associated with both earthquakes. A fault of 210 km x 175 km is discretized into 12 subfaults of 17.5
km along strike and 14 subfaults of 12.5 km along dip. The dip of the fault progressively increases
with depth (the shallower segment dips at 5o, followed by a segment at 9o, 3 segments at 15o, 4 at
20o and finally the 5 deepest segments at 23o). A constant strike is considered (346o for the main-
shock and 352o for the aftershock). The rake angle is allowed to vary within the two perpendicular
directions to the convergence angle of N77oE [Angermann et al., 1999]. In both cases, the fault plane
is fixed to a geometry compatible with the one of Slab 1.0 [Hayes et al., 2012] (Figures 8.B.6). The
static Green’s functions are calculated through the discrete wave number method [Bouchon, 1981] in
an elastic stratified medium with AXITRA program [Coutant , 1989], employing the velocity model
proposed by Peyrat et al. [2010] (Table 8.B.2). This procedure allows us to calculate the complete
Green’s functions, therefore the static displacement is simulated at zero frequency.
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For each station, the three components of the displacement field, compactly designed as d, are
inverted altogether in a least-squares sense [Tarantola, 2005], where the misfit function S is defined
as:

S(m) =
1

2
[(Gm− d)tC−1

d (Gm− d) + (m−m0)tC−1
m (m−m0)] (8.1)

The expected slip model m is defined by:

m = m0 + CmG
t(GCmG

t + Cd)
−1(d−Gm) (8.2)

where the prior model m0 is defined as zero static slip for both events. The data covariance matrix
Cd contains only diagonal terms with variances (σ2

d) associated with estimated errors during the
coseismic offsets calculation (Table 8.B.1). The model covariance matrix Cm is going to play an
important role in building the slip, requiring a band-diagonal structure given by:

Cm(x,x′) =

(
λ0

λdipλstrike

)
σ(x)F(x,x′), (8.3)

where the scaling factor λ0 is usually taken as the size of an individual subfault [Radiguet et al.,
2011] (here 15 km for both events). This band-limited structure of the covariance matrix reduce its
model-square complexity down to a more manageable model-like complexity. The model correlation
between two different positions x = (dip, strike) and x′ = (dip′, strike′) on the fault plane is ex-
pressed by the operator F . Its expression with a laplacian decay

F(x,x′) = exp

(
−|dip− dip

′|
λdip

− |strike− strike
′|

λstrike

)
, (8.4)

will provide more coupling than the often used Gaussian decay [Wellington et al., 2017]: a key
point for mitigating trade-off between parameter values for this static reconstruction. For static slip
inversion, this relatively slow decay behavior has been found to behave better than the often used
Gaussian decay [Radiguet et al., 2011]. The correlation lengths λdip and λstrike are considered as
homogeneous in this work, although they can be tuned to vary with the fault position, especially
when fault points are moving away from acquisition network. Correlation length λdip has been tested
between 5 - 100 km, with a step each 5km. Following the L-curve criterion [Hansen, 1992], we have
chosen the best compromise between the maximum slip and the normalized misfit (Figure 8.2 a and
c): optimal values are 20 km (mainshock) and 30 km (aftershock).

The operator σ(x) (with a model complexity) expresses the prior expected local variability or
sensitivity of the static slip: small values will prevent the static slip reconstruction to move away
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from the prior model value which is zero in our case. The operator σ(x) compensates for poor
geometry of the acquisition with respect to the active fault. The lack of sensitivity with depth can
be also controlled by this operator. Moreover, we may increase the sensitivity of zones where we
expect high values when fitting the data. The following operator

σ(x) = σmin + (σmax − σmin) exp

(
−|dip− dip0|

λdip0
− |strike− strike0|

λstrike0

)
(8.5)

has been selected where the position (dip0, strike0) is the zone with the most expected variation of
the static slip for the mainshock. We have assumed a circular shape through the choice for quantities
λdip0 and λstrike0 equal to 40 km and 40 km respectively, with values ranging from 0.01 to 2.5 m. For
the aftershock, such single-shape operator has been considered in a first trial: the data gradient still
drives us toward two zones of maximum slip. Therefore, we have considered in a second trial two
joint prior shapes with σ values ranging from 0.01 to 1.0 m around these expected high-slip zones:
the data gradient has built up a solution coherent with this second sensitivity design. In both cases
λdip0 and λstrike0 are equal to 25 km and 52.5 km.

For the final solution, two different strategies could give us some ideas about the model resolu-
tion, although they theoretically assume a normal distribution around the solution which is rarely
the case. On one side, the resolution matrix proposed by Tarantola and Valette [1982] given by:

R = CmG
t(GCmG

t + Cd)
−1G (8.6)

gives us low resolution for all subfaults (Figures 8.B.7 for mainshock and 8.B.8 for the aftershock,
a and b): for a perfectly resolved model, the matrix should be the identity. On the other side, the
data sensitivity defined by Duputel et al. [2015] through:

Sen = diag(GtC−1
d G) (8.7)

shows where the slip is well solved depending on the data error used during the inversion. This
quantity provides another evaluation of the model resolution (Figures 8.B.7 for mainshock and 8.B.8
for the aftershock, c and d).

8.4.2 Kinematic Inversion

The kinematic reconstruction of the rupture process is an even more ill-posed problem: we have
followed the two-step strategy proposed by Hernandez et al. [1999] for a reconstruction in the fre-
quency domain building the solution by sweeping from low to high frequencies. At each frequency,
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Figure 8.2: Static inversion results obtained using HRGPS for the mainshock and the aftershock. (a), (c)
Normalized misfit as a function of the maximum slip, showing the correlation length of the preferred slip model for
mainshock ((a), λ = 20 km) and aftershock ((c), λ = 30 km). Slip model and comparison between data and model
(horizontal in arrows and vertical in circles) for the mainshock (b) and aftershock (d). Pink stars symbolize the
epicenter of the events reported by the CSN catalog.

the static solution obtained from inversion of geodetic data will be used as the prior model in the
kinematic inversion. The synthetic displacement waveform in the frequency domain is computed
following the sparse parameterization proposed by Cotton and Campillo [1995] as:

Vi(w) =
n∑
k=1

Gski(w) [slipsk exp(−iwtk)Sk(Rk, w)] +

n∑
k=1

Gdki(w) [slipdk exp(−iwtk)Sk(Rk, w)]

(8.8)

where the Green’s function (i.e. the displacement for a unit constant slip on the k-th subfault for
the frequency w) is denoted by the symbol Gski for the strike component and by Gdki for the dip.
The slip is parametrized depending on the component as well: slip along strike by slipsk and slip
along dip by slipdk. The rupture time is indicated by tk, while the source time function (STF)
is given by the following analytical expression Sk(t) = 0.5(1 + tanh(t + Rk/2.0)2)), depending on
the rise time Rk. Therefore, four parameters have to be reconstructed for each sub-fault. Each
subfault is represented by an array of point sources, separated by distances of less than one sixth
of the shortest wavelength to be considered locally. For these point sources, Green’s functions are
computed and then, the sum of all point sources response delayed in time to include the travel-time
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difference, due to the rupture front propagation across each subfault [Cotton and Campillo, 1995].
The Green’s functions are calculated using the same strategy as for the static inversion with the
program AXITRA [Coutant , 1989], but keeping all the frequency range. We do not consider variable
rupture velocity inside each subfault which is allowed to slip once. The velocity model is the same
as the one used during the static inversion for both events.

The four parameters, namely strike slip, dip slip, rise time and rupture time in each subfault, are
inverted using the non-linear least-squares formulation proposed by Tarantola and Valette [1982].
A non-linear operator f relates the model parameters m to the data vector d through the general
expression d = f(m). The model solution is obtained through an repetitive procedure based on a
linearized approximation where the next modelml+1 is obtained from the current modelml following
the iterative algorithm:

ml+1 = ml + b(AtlC
−1
d Al + C−1

m )−1 (AtlC
−1
d (d− f(ml)) + C−1

m (m0 −ml)), (8.9)

which minimizes the least-squares data misfit. At each frequency, the initial model m0 will be used
also as a prior model. For the lowest frequency, the static solution will be considered as the ini-
tial/prior model and the final solution at this frequency will be used as the initial/prior model for
the next frequency. The Jacobian matrix Al are obtained by taking the closed-form derivative of the
Equation 8.8 with respect to the related parameter. The damping factor b between 0 and 1 prevents
any divergence. The data covariance Cd has a diagonal matrix filled with ones, reflecting the good
quality of data in the region, while the model covariance requires more attention as we see in the
multigrid approach we associate with the frequency sweeping.

Based on a multigrid approach, the inversion starts with a Large Subfault Size (LSS) discretiza-
tion sweeping over frequencies, obtaining a final solution [Bunks et al., 1995]. The final solution
is interpolated in a Small Subfault Size (SSS) discretization, repeating again the inversion scheme
with another set of frequency windows still sweeping from low to high frequencies. By combining
this dynamic frequency sampling and a recursive spatial sampling, we are able to improve the data
fit and to increase the model resolution with still stable results. For the LSS sampling , we have
adopted the same subfault geometry employed during the static inversion (168 subfaults). The SSS
sampling is obtained by dividing each subfault in four subsequent subfaults, so that the total fault
encompasses 672 subfaults (24 along strike with 8.75 km and 28 along dip with 6.25 km) for both
events.

The inversion procedure is performed by using a progressively broadened frequency range for
both events for fixed spatial sampling. The LSS model is initiated with a frequency range of 0.01 -
0.02 Hz using the static solution as the initial/prior model. The obtained solution is then used as
the new initial/prior model for the new frequency range of 0.01 - 0.03 Hz. We repeat this procedure
until the frequency range of 0.01 - 0.25 Hz is reached (24 models in total). The last LSS model
is then interpolated and used as the initial/prior model for the SSS sampling, considering the first
frequency range of 0.01 - 0.02 Hz. The same iterative procedure is repeated for the small-subfaults
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configuration until the frequency range of 0.01 - 0.3 Hz is reached (29 models in total).

For both events, the model covariance matrix Cm is defined as a diagonal matrix, leaving the
interaction between spatial points under the supervision of the multigrid strategy. The variances
σstrike and σdip are defined following the Equation 8.5 with the same strategy employed during the
static inversion. The σrup_time is defined with the same idea as in Equation 8.5, but increasing the
values from the epicenter of the earthquakes, because the rupture time may be better estimated near
the epicenter, but not far from it. We have started by allowing a considerable variability through
σdip (main slip direction) and σrup_time, but a lower one in the strike slip component (Table 8.B.3).
When the seismic moment reported for the earthquakes is reached, we keep the same proportion
mentioned to define σ in terms of variability, but reducing the values where the parameters are
allowed to move, in order to hold the seismic moment (Table 8.B.3). There is no physical reason to
constrain the rise time, so we have assigned the same σrise_time value to all the subfaults in both
models and events (LSS and SSS, Tables S3).

In order to avoid spurious jumps in the model parameters (slip along dip and strike, rise time), we
introduce a correlation length of 17.5 km in LSS model and 8.75 km in SSS model, for both events.
It allows to connect the adjacent subfaults providing a smooth rupture process. To evaluate the fit to
the data, we compute the variance reduction proposed by Cohee and Beroza [1994]. The sensitivity
is also analyzed (Equation 8.7) for the mainshock (Figure 8.B.15) and the aftershock (Figure 8.B.16).

8.5 Results

8.5.1 Static Inversion

The mainshock has broken an asperity localized between 15 - 40 km depth with a maximum
slip of ∼9 m. It is located south of the epicenter reported by CSN (∼40 km). The seismic moment
obtained is 1.52 x 1021 Nm, equivalent to Mw 8.1. The aftershock is composed of two asperities
localized on each side of the epicenter, with a maximum slip of ∼1.2 m. The shallower asperity (close
to the trench) is confined between 15 - 30 km depth, and the deeper one between 40 - 50 km depth.
The seismic moment obtained from the inversion is 3.68 x 1020 Nm, associated with an earthquake
magnitude Mw 7.6. Comparing those slip models to the resolution analysis (resolution matrix and
sensitivity) it appears that the data can better resolve the slip close to the coast than close to the
trench (Figures 8.B.7 for the mainshock and 8.B.8 for the aftershock). The poor resolution obtained
at the trench vicinity is typical for subduction zones lacking offshore instrumentation, due to the
lack of data close to the trench. The results are good enough to be used as our apriori model in
the kinematic inversion, especially because the spatial distribution is well resolved where the slip is
located.
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8.5.2 Kinematic Inversion

Mainshock

Some differences can be appreciated between the resulting kinematic and static slip distributions.
The final slip obtained during the kinematic inversion shows a very concentrated asperity south of
the epicenter (∼43 km) with a maximum slip of ∼9 m and confined between 15 - 35 km depth.
Conversely to the static solution, less slip is seen north of the epicenter and the emergence of a
second deep asperity is observed between 40 and 55 km depths (Figure 8.3 a) with a maximum slip
of 5 m.

Figure 8.3: Mainshock kinematic inversion results. Preferred slip model (a), rupture time (b) and rise time (c).
Plane depths are indicated inside white boxes in (a). The pink star indicates the epicenter location reported by CSN
catalog. (d) Mean variance reduction computed for each frequency between data of all the stations and synthetics.
(e) Cumulative seismic moment and (f) and STF.

The rupture is characterized by a very slow moment-rate during the first 25 s, leading to an
abrupt acceleration in the moment liberation at 30 s (Figure 8.3 e and f). After that, the moment-
rate decreases to reach the final rupture time at 125 s (Figure 8.3 e and f). The total seismic moment
obtained is 1.73 x 1021 Nm (Figure 8.3 e), equivalent to a magnitudeMw 8.1. The difference between
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data and synthetics corresponds to a mean variance reduction of 82.37%, fitting better the lower
frequencies 0.01 - 0.15 Hz (Figure 8.3 d). At higher frequencies, a limited mean variance reduction
up to 0.2 Hz is obtained. This is also visible in the data fit, where the low frequencies are better
fitted (Figure 8.4 a, see Supplementary Information for not normalized and frequency domain fit,
Figures 8.B.11 and 8.B.13), while the high frequencies are not well solved. Some complexity in the
rupture time (Figure 8.3 b) and rise time (Figure 8.3 c) are required to the south of the rupture to
fit the signal of southern stations. This complexity is also reflected in the STF after the 75 s (Figure
8.3 f). To the north, the rupture propagates at a much more constant rate than to the south (Figure
8.3 b). This variation in complexity might be associated with changes in the lithology that are not
reflected in the velocity model.

Figure 8.4: (a) Mainshock normalized Strong Motion - HRGPS (blue) and synthetic seismograms (red). For each
station and component, the maximum data displacement is shown in [cm]. (b) Final preferred slip model and stations
map used during the kinematic inversion. Green triangles symbolize strong motion location and magenta squares
HRGPS. Star indicates the epicenter of the event by CSN catalog. Also, at the bottom left is shown the slip averaged
along strike as a function of depth.
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Aftershock

The slip distribution of the largest aftershock is characterized by two asperities located on both
sides of the epicenter (Figure 8.5 a). The shallow asperity is confined between 15 - 30 km depths
with a maximum slip of 1.5 m, while the deeper one is located between 30 - 50 km depths with a
maximum slip of ∼3 m (Figure 8.5 a, see Supplementary Information for not normalized and fre-
quency domain fit, Figures 8.B.12 and 8.B.14). The calculated seismic moment is 3.88 x 1020 Nm,
equivalent to a magnitude Mw 7.7 (Figure 8.5 e and f). The result obtained during the kinematic
inversion is similar to the static one, but provides further details in the asperities location and the
slip distribution.

Figure 8.5: Same captionas as in Figure 8.3, but for the aftershock case.

The rupture has begun with an acceleration during the first 18 s (Figure 8.5 e), breaking the
asperity close to the trench. Then, the second deeper asperity has slipped during 40 s (Figure 8.5
e). The STF is more simple than the mainshock (Figure 8.5 f), and lasts 60 s. The fit to the data
corresponds to a mean variance reduction of 85.74%, solving the frequency range of 0.01 - 0.3 Hz
(Figure 8.5 d).
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Figure 8.6: Same caption as in Figure 8.4, but for the aftershock case.

Comparison between LSS and SSS models

LSS and SSS models have been compared in order to explore the differences and advantage of
SSS model for the mainshock (Figure 8.B.9) and the aftershock (Figure 8.B.10). For both earth-
quakes, the slip resolution is improved. Rupture time (Figures 8.B.9 and 8.B.10 c, d) and rise time
(Figures 8.B.9 and 8.B.10 e, f) show the same variation than the slip, but do not change the general
pictures of their behaviors. One important change between LSS and SSS models is the increase in
the frequency range resolution. For the mainshock (Figure 8.B.9 g), the resolution is improved by
about 40% in the frequency range of 0.1 - 0.15 Hz. At higher frequencies, the resolution still slightly
increases (∼15%), but not significantly. For the aftershock (Figure 8.B.10, g) the SSS models im-
proves significantly the mean variance reduction in the frequency range 0.1 - 0.25 Hz. The seismic
moment obtained with both models is of the same order (Figures 8.B.9 and 8.B.10 h, i). The STF
show some differences between LSS and SSS models (Figures 8.B.9 and 8.B.10 i): the STF is slightly
more smoothed in the SSS models due to the change in the subfault size, avoiding any large change
of the parameters between the adjacent subfaults. The resolution of the kinematic models (Figures
8.B.15 for the mainshock and 8.B.16 for the aftershock) is similar between LSS and SSS models.

The number of parameters inverted during the inversion increases from 672 in the LSS model
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to 2688 parameters in the SSS model. For both earthquakes the resolution close to the trench is
quite low because the stations are located inland. The increase of the number of parameters seems
to reduce the local resolution on each subfault, but the spatial pattern of the resolution is kept (well
resolved close to the epicenter, and poorly resolved by the trench, Figures 8.B.15 and 8.B.16).

8.6 Discussion

8.6.1 Along Strike Segmentation of the Seismogenic Zone

Our results confirm that 2014 Mw 8.1 Iquique earthquake together with its largest aftershock
ruptured a limited portion of the seismic gap (Figure 8.1). Moreover, the obtained slip distributions
show that both earthquakes ruptured into two distinct asperities, quite concentrated spatially (Fig-
ure 8.7).

Following Aki [1979], it is therefore likely that the earthquake stopped because it encountered
a geometric or inhomogeneous barrier. It has been proposed that large earthquakes rupture areas
that are strongly coupled, while aseismic slip as seen in poorly coupled zones has been proposed
to act as a barrier for seismic ruptures. This is supported by the occurrence of an 8-month slow
slip event surrounding the mainshock rupture area as derived from GPS time-series [Socquet et al.,
2017] (Figure 8.8 d). Our coseismic slip distribution compared to the interseismic slip distribution
obtained by Métois et al. [2016] tends to confirm this finding, at least for the mainshock (Figure 8.8
c). The mainshock was initiated in an area at the transition between low and high coupling, prone
to high stresses, possibly even further loaded by the 8-month slow slip that preceded the rupture.
The earthquake has then propagated southward and ruptured a highly locked patch, and eventually
stopped at the southern termination of this highly coupled patch (Figure 8.8 c). The mainshock
has therefore contributed to release the slip deficit accumulated in this locked asperity during the
interseismic period.

On the contrary, the largest aftershock has broken areas that were poorly coupled in the inter-
seismic period (Figure 8.8 c). In order to understand this apparent contradiction, we have calculated
the stress change produced by the mainshock on the subduction plane (Figure 8.7 a). The aftershock
is located in areas with positive Coulomb Stress change (Figure 8.7 a), and negative normal change
(Figure 8.7 c) that accounts for unclamping. This therefore suggests that the largest aftershock has
been triggered by the mainshock.

To further understand the parameters that control the location of such a seismic asperity and
high coupling patch, we compared our findings with the bathymetry and the free-air gravity anomaly
(Figure 8.8 a and b). Geological features affecting the subducting slab or the overriding plate (such
as fracture zones, ridges, changes in the slab geometry, peninsulas, fault systems and marine basins)
have been shown to correlate with low coupling zones and the arrest of seismic rupture [e.g., Armijo
and Thiele, 1990; Song and Simons, 2003; Wells et al., 2003; Audin et al., 2008; Perfettini et al.,
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Figure 8.7: Coulomb stress change (a), shear stress change (b) and normal stress change (c) on the fault plane
calculated using the mainshock preferred slip model. Green (pink) star and contours denote the epicenter of the
mainshock (aftershock) reported by CSN catalog and the slip produced by the event.

2010; Béjar-Pizarro et al., 2010; Contreras-Reyes and Carrizo, 2011; Contreras-Reyes et al., 2012;
Maksymowicz et al., 2015], and can be interpreted as a structural complexity that acts as a geo-
metrical barrier for the seismic rupture [Aki , 1979; King , 1986]. Using seismic velocity profiles and
gravity data, Wells et al. [2003] evidenced a spatial correlation between forearc basins and the peak
of slip of several great earthquakes, suggesting that the basin is an indicator of a long-term seismic
moment release. Song and Simons [2003] have proposed another way to analyse the gravity data
through the definition of the Trench Parallel Gravity Anomaly (TPGA), where areas of negatives
values correlate with the coseismic slip in subdution zones.

The asperity with highest slip value of 2014 Iquique mainshock is centered in the Iquique basin
[Armijo et al., 2015], inferred from high resolution bathymetry (Figure 8.8 a) and free-air gravity
anomaly (Figure 8.8 b). This is in agreement with the results shown and discussed by Meng et al.
[2015], who demonstrated that the main asperity is located in an area with negative value of TPGA.
The southern limit of the main rupture is characterized by an important change in the gravity
extracted from free-air anomaly gravity (Figure 8.8 b) and density gravity models [Maksymowicz
et al., 2016], probably associated with a change in the lithology, fracturing and fluid content inside
the continental wedge. This is supported by velocity models [Patzwahl et al., 1999; Comte et al.,
2016] and density gravity models [Maksymowicz et al., 2016], that evidence a strong change in the
size of the deformation front in the area, leaving the southern part more tectonically erosive than the
northern part. This strong gravity change is associated with a geological change that could explain
the complexity observed in the southern part of the rupture and the heterogeneities in the tail of
the STF (Figure 8.3 b and f).

The north limit of the aftershock also seems related to the gravity changes discussed above.
This sharp change marks an E-W line that separates both earthquakes. The southern limit of the
aftershock is not associated with any clear change in the gravity, but might be related to geological
features of the overriding plates responsible to stop the rupture. Audin et al. [2008] have pointed
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out the relationship between the Chololo coastal fault system and the southern end of Arequipa
coseismic rupture in Peru (Mw 8.4, 2001, Figure 8.1). The tectonic map of González et al. [2003]
indicates that the region where the aftershock stops at 21oS is characterized by an increased com-
plexity in the faults system. South of 21oS almost all the fault are parallel to the trench and the
coastal scarp (mainly normal faults), but north to this limit, the area of the Salar Grande is affected
by a series of E-W thrust faults combined with conjugated strike-slip faults [González et al., 2003].
This tectonic difference might be related to the southern termination of the aftershock rupture.
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Figure 8.8: (a) High-resolution topography [Contreras-Reyes et al., 2012] , (b) free air gravity anomaly [Sandwell
et al., 2014] and (c) and (d) coupling distribution [Métois et al., 2016] on the study area. Mainshock (green) and
aftershock (pink) slip contour of 2.0 m and 0.5 m are plotted. Violet line parallel to the trench represents the abrupt
change on dip proposed by [Contreras-Reyes et al., 2012] interpolated to the north, extracted from gravity models.
(d) Coupling map with the mainshock contours (green) and the 8-month SSE (red) shown by [Socquet et al., 2017]
contoured in mm.
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8.6.2 Along Dip Segmentation of the Seismogenic Zone

Both the mainshock and the large aftershock show an interesting bimodal pattern along dip
(Figure 8.4 b and Figure 8.6 b). In both cases, the shallow patch of slip extends from 15 km and 30
km depths, while the deep patch of slip is confined between 35 and 50 km depths. The upper limit
at 15 km depth corresponds to the deformation front extracted from gravity [Maksymowicz et al.,
2016] and seismic velocity models [Patzwahl et al., 1999; Comte et al., 2016]. The downdip limit
at ∼50 km depth is in agreement with other seismological [Comte and Suárez , 1995] and geodetic
[Béjar-Pizarro et al., 2010; Chlieh et al., 2011; Béjar-Pizarro et al., 2013; Métois et al., 2016] defi-
nitions of the lower extent of the seismogenic zone in North Chile subduction.

The most intriguing aspect of the observed along dip segmentation is the separation between
shallow and deep asperities. Indeed both earthquakes present almost no slip at 30 - 35 km depths.
Armijo and Thiele [1990] proposed that the coastal scarp could be a west-dipping normal fault reach-
ing the subduction zone at depth. A change in the slab dip has been inferred from wide-angle seismic
refraction and reflection data, complemented with relocated aftershock seismicity in the Tocopilla
area (∼22oS) [Contreras-Reyes et al., 2012] (Mw 7.7, 2007, Figure 8.1). Based on a correlation with
the coastal scarp and following the idea proposed by Armijo and Thiele [1990], the authors suggest
that this change in dip from 10o to 22o affects a wide portion of the slab. Maksymowicz et al. [2016]
have modeled the gravimetry in the region observing the same change in dip proposed by Contreras-
Reyes et al. [2012] in the Tocopilla area. Employing those results, we have inferred the location
towards the north of this change in the dip (purple line in Figure 8.8 a and b), observing that in
the area affected by Iquique earthquake, this feature seems to delimit a separation between the deep
and shallow asperities. This change in slab geometry may therefore act as a barrier for the rupture
by slowing its velocity and reducing the amount of slip in between the shallow and deep asperities.
Such an along dip segmentation had already been observed in the area during the 2007 Tocopilla
earthquake that ruptured the deeper part of the seismogenic interface [Béjar-Pizarro et al., 2010].

This along-dip segmentation is also associated with a change in the frequency content of the
seismic rupture. The deeper asperities both rupture into a pulse of slip that is much shorter than
the slippage of the shallower asperities (as shown from the rise time and the rupture speed, Fig-
ure 8.3 b and c and Figure 8.5 b and c). Meng et al. [2015] and Lay et al. [2014] have shown a
compatible observation: back projected high frequency energy is radiated in the deeper portion of
the rupture, close the to deep asperity. Although the structural complexity might be invoked, nu-
merical simulations also provide the simple explanation that the base of the coupled area is a zone
of high prestress that tends to keep partial ruptures confined, producing pulse-like ruptures that
propagate along strike [Michel et al., 2017]. Such observations are compatible with the along-dip
segmentation of the megathrust described in North Chile from the analysis of the frequency content
of moderate magnitude earthquakes [Piña-Valdés et al., In Press]. Also, Lay [2015] characterizes the
segmentation of the subduction zone through four domains (A, B, C and D), based on the radiated
energy generated by the earthquakes, using teleseismic data. Domain A corresponds to depths less
than 15 km, experiencing either aseismic deformation or large coseismic displacement in tsunami
earthquakes. Domain B is located between 15 - 35 km, observing the nucleation of megathrust
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earthquakes that generate large slip and high amount of low-frequency radiation. Domain C is lo-
calized between 35 - 60 km depths, where a large amount of high-frequency radiation is emitted and
asperities much smaller than region B are seen. Finally, the Domain D is placed deeper than 60 km
and is where slow slip events, low-frequency events, and seismic tremor have been reported, and it is
not reported in all subductions zones. Following the model proposed by Lay [2015], our results show
that the shallow asperities for the mainshock such as the aftershock, are located at depths between
15 - 35, suggesting they would break the Domain B. Also, for both events, the deeper asperities are
emplaced at depths between 35 - 60 km, suggesting they would break the Domain C, depicting the
heterogeneity of the seismogenic zone.

8.6.3 Differences Between our Results and Previous Works

Our results are very consistent with those presented by Duputel et al. [2015] for the mainshock
as well for the aftershock, although we use a different methodology. The main difference between
their work and ours, is the number of stations used in near field for the kinematic inversion. We
have employed 25 HRGPS and strong motion while they have used 19 HRGPS and strong motion
(plus all the other data set). We have found a rupture with 125 s of duration, they have used just
80 s. This longer rupture allows us to observe the second deep asperity and the complexity of the
rupture process to the south. We have found a similar static patch as Duputel et al. [2015] for the
aftershock, but our results are more clear because we have included more data. Comparing our
mainshock results with those of Liu et al. [2015], we obtain the same shallow asperity, but their
slip is closer to the trench and further north with respect to the epicenter. The difference in the
obtained slip can be attributed to the simpler geometry used by Liu et al. [2015] that does not follow
a realistic slab geometry. We conclude that the parametrization of the fault plane is a first order
characteristic required to perform kinematics inversions. For both events we have used more near
field data than Liu et al. [2015], allowing to get a better resolution and the apparition of the second
deep asperity. The use of HRGPS therefore seems to improve the resolution of the rupture process,
filling the data gap in areas where strong motion instruments are not installed.

When authors have used teleseismic data to invert the rupture process [Lay et al., 2014; Hayes
et al., 2014], the differences are due to the lack of resolution of those datasets to solve details that
the near field data can solve. Also, our models present more details in terms of the rupture process
than the static inversions [e.g., Socquet et al., 2017] because modelling the waveforms provides details
occurring during the rupture that a static change cannot see. The results obtained by Meng et al.
[2015] seem to move all the asperities landward, using repetitive earthquakes and backprojection.
As they do not have any apriori information of where the asperities provided by the static inversion
or teleseismic data are located, we suspect that their results are affected by a shift in the asperity
localization, providing a general picture about the slip, but incrementing the resolution in terms of
the frequency content generation through back projection technique.
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Table 8.1: Mainshock moment estimation and data fit using different parameterizations.

No of Subfaults Starting Velocity of Moment x1021 Nm Mean Variance Reduction (%)
Initial Rupture Front km/s

168 1.2 1.92 76.65
168 1.3 1.74 78.53
168 1.4 1.71 79.73
168 1.5 1.62 79.15
168 1.6 1.57 79.20
168 1.7 1.52 77.71
672 1.4 1.73 82.37

Table 8.2: Aftershock moment estimation and data fit using different parameterizations.

No of Subfaults Starting Velocity of Moment x1020 Nm Mean Variance Reduction (%)
Initial Rupture Front km/s

168 2.4 4.23 81.56
168 2.5 4.28 81.75
168 2.6 4.04 83.26
168 2.7 4.30 82.15
168 2.8 4.32 81.96
672 2.6 3.88 85.74

8.7 Conclusions

The kinematic rupture process of Iquique earthquake Mw 8.1 and its biggest aftershock Mw 7.7
provides interesting insights about the segmentation of the seismogenic zone. Both ruptures are
confined within 15 - 50 km depths, with a low slip zone that separates shallow and deep asperities,
which may be related to a change of dip in the subducting slab (or bending of it). We show that
the segmentation along strike depends on several factors. The mainshock is centered on a forearc
basin associated with an important gravity change in the area of ∼20.5oS, limiting the rupture to
the south. The aftershock rupture might have stopped in the vicinity of a fault system dissecting
the overriding plate. Several aseismic processes may affect the rupture extension, including the long
precursory slow slip surrounding the mainshock area, and the spatial distribution of interseismic
coupling before the earthquake. The mainshock contributed to fill the slip deficit in the area, but
changed the stresses in the region and likely triggered the biggest aftershock that ruptured a poorly
coupled zone. An along-dip segmentation is also observed, notably in the frequency content of the
earthquakes, in agreement with previous works in the area [Meng et al., 2015; Piña-Valdés et al., In
Press]. These results are very important to the seismic hazard studies, where the segmentation is a
primordial element of the models.
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Appendix

8.A GPS processing

8.A.1 Processing of co-seismic Highrate cGPS data

We have processed 25 HRGPS for the mainshock (Mw 8.1 2014/04/01, Figure 8.B.1) and 20
High-rate continuous (HRGPS) for the aftershock (Mw 7.7 2014/04/03, Figure 8.B.1) using TRACK
software [Herring et al., 2016]. This program uses the IGS orbits, LC combination and the tropo-
spheric delay to obtain the relative position between each station in the network and one reference
station. Because the kinematic processing of HRGPS is very sensitive to the atmosphere delay used,
we fixed the zenithal tropospheric delay to the values obtained every two hours from daily processing
of 186 continuous GPS stations performed in the Andes in the frame of other studies [e.g. Socquet
et al., 2017; Jara et al., 2017]. UCNF was chosen as our reference for the kinematic processing,
because of its location ∼150 km far from the epicenters of both events that allows a sufficient time
delay before the arrival of the surface waves (Figure 8.B.1). UCNF station position has been esti-
mated one hour before and after of both earthquakes.

To remove the errors coming from the orbits or multipath effect, a sidereal filtering is estimated
[Larson et al., 2003; Zhong et al., 2010]. The filter is estimated using 2 days before or one day
after the mainshock, and 2 days before the aftershock (depending on the data availability). The
sidereal delay is taken into account at the moment to calculate the kinematic processing for the
previous and after days of each earthquake. This value is considered as 246 s [Larson et al., 2007].
For each component (North, East, Up), the signal obtained at the time of the earthquakes in the
days preceding or following it is stacked, and then removed from the co-seismic signal (Figure 8.B.2).

After removing the sidereal filtering from the original signal, a spatial filtering or common mode
has been calculated. It allows to remove any effect produced by the earthquake, notably the effect
of the arrival of surface waves, at the reference site[Wdowinski et al., 1997]. We have stacked the
stations close to the reference site (PB06, PB05, PB04, PB07, PB02 and PB03 that are located
within a distance range of 100 km of the reference station, Figure 8.B.1), and removed this signal
from the entire network (e.g Figure 8.B.3), thus removing the effect of the surface waves passing
through the reference site.
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8.A.2 Static coseismic offset

The static co-seismic offsets have been estimated for each component in all the network. The
most simple Trajectory Model proposed by Bevis and Brown [2014] is considered:

x(t) = xR + v(t− tR) + bH(t− tR) (8.10)

where xR is the position at a given reference time tR, v the velocity and H is the Heaviside function
associated with the coseismic offset b. Assuming that the station should be stable before and after
the earthquake, we have taken 500 s since one minute before the earthquake occurrence (to avoid
any precursor effect) and 500 s ∼8 minutes after the event, avoiding the pass of the surface waves
(e.g. Figure 8.B.4). Table 8.B.1 shows the positions estimated for each station, the coseismic offsets
inverted from the data, with their respective errors for both the Mw 8.1 2014/04/01 mainshock and
the Mw 7.7 2014/04/03 aftershock.

8.B Appendix Figures and Tables

Table 8.B.1: GPS Position from the daily processing and mainshock - aftershock static displacements for North
(N), East (E) and Vertical (V) with their respectives errors in cm from kinematic processing.

Station Name Position Mainshock Aftershock
Lon(o) Lat (o) N eN E eE Z eZ N eN E eE Z eZ

TRTA -70.041 -17.482 -0.960 0.080 0.130 0.060 -0.310 0.090 - - - - - -
PALC -69.957 -17.781 -1.610 0.090 -0.550 0.160 -0.750 0.270 - - - - - -
PMCA -70.909 -17.949 -0.220 0.080 -0.590 0.100 -0.280 0.220 - - - - - -
LYAR -70.569 -18.134 -0.850 0.080 -0.390 0.060 -0.560 0.100 - - - - - -
PTRE -69.574 -18.194 -3.990 0.120 -4.710 0.060 -2.880 0.150 0.070 0.130 -0.010 0.060 0.030 0.090
PCCL -70.107 -18.458 -7.040 0.280 -5.260 0.050 -1.610 0.220 -0.140 0.160 -0.370 0.040 -0.140 0.080
UTAR -70.296 -18.491 -6.080 0.150 -4.420 0.070 -0.460 0.130 0.070 0.480 -0.200 0.090 -0.250 0.140
MNMI -69.596 -19.131 -11.320 0.070 -22.490 0.090 0.060 0.140 -1.210 0.280 -0.940 0.090 -0.460 0.200
ATJN -70.137 -19.301 -27.110 0.080 -48.840 0.090 -17.480 0.120 -1.300 0.090 -1.010 0.070 -0.140 0.130
PSGA -70.123 -19.597 -21.760 0.100 -73.300 0.120 -26.620 0.530 -0.940 0.230 -1.790 0.090 -1.050 0.190
COLC -68.639 -19.276 -4.030 0.610 -10.010 0.080 0.710 0.180 -1.360 0.350 -2.260 0.080 -0.110 0.130
IQQE -70.132 -20.274 4.690 0.100 -27.020 0.190 -0.520 0.240 -2.980 0.260 -16.710 0.110 6.170 0.190
CHMZ -69.194 -19.669 -2.650 0.150 -21.580 0.060 0.320 0.120 -2.300 0.130 -4.680 0.060 -0.160 0.130
PB11 -69.656 -19.761 -5.600 0.060 -41.140 0.090 -9.770 0.180 -3.680 0.390 -4.790 0.080 -1.780 0.160
PCHA -69.432 -19.869 -0.940 0.040 -29.040 0.060 -1.720 0.100 -3.750 0.580 -6.100 0.080 -1.460 0.180
PB08 -69.161 -20.143 2.000 0.090 -16.100 0.080 0.510 0.140 -1.420 0.080 -7.240 0.090 -0.900 0.250
CGTC -70.069 -20.177 2.830 0.100 -33.480 0.060 -1.580 0.110 -2.670 0.670 -11.150 0.070 2.340 0.190
PICC -69.335 -20.490 2.290 0.190 -12.130 0.070 0.130 0.300 -0.380 0.080 -10.040 0.080 -1.780 0.130
AEDA -70.178 -20.546 -2.370 0.260 -5.880 0.110 -0.970 0.150 -6.700 0.490 -20.810 0.100 8.800 0.150
CRSC -70.080 -20.918 -0.260 0.150 -1.470 0.090 -2.720 0.130 - - - - - -
PB01 -69.488 -21.044 1.950 0.140 -3.530 0.080 -2.230 0.110 2.130 0.100 -4.100 0.080 -1.350 0.170
PB02 -69.893 -21.315 0.170 0.060 -0.980 0.050 0.380 0.080 -0.100 0.960 -0.720 0.050 -0.160 0.140
PB07 -69.886 -21.727 0.240 0.050 0.060 0.050 0.050 0.070 -0.040 0.090 -0.240 0.040 0.020 0.090
PB03 -69.752 -22.049 -0.110 0.050 -0.250 0.050 -1.930 0.100 -0.040 0.060 0.000 0.050 -0.050 0.110
PB04 -70.150 -22.335 -0.420 0.090 0.110 0.050 -1.620 0.090 -0.020 0.040 0.060 0.040 0.100 0.100
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Table 8.B.2: Velocity Model from Peyrat et al. [2010].

Depth km VP km/s Vs km/s Density g/cm3

0 5.30 3.10 2.5
4 5.30 3.10 2.5
10 6.00 3.45 2.7
15 6.90 3.95 2.8
40 7.60 4.40 3.3
60 8.45 4.80 3.4

Table 8.B.3: Standard deviations (σ) of model parameters (strike and dip slip, rise time and rupture time),
used to define the variances in Cm. Model 1 refers to the model with high variability in the main text, while
Model 2 with less variability.

σstrike m σdip m σrt s σtime s
Model 1 Mainshock 0.04 - 0.3 0.3 - 3 2 0.001-30
Model 2 Mainshock 0.003 - 0.02 0.1 - 1 1 0.001-4
Model 1 Aftershock 0.03 - 0.35 0.07 - 1.32 2 0.001-27
Model 2 Aftershock 0.007 - 0.06 0.06 - 0.5 1 0.001-4
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Figure 8.B.1: Map of HRGPS used during this study (blue squares), stations employed to calculate the common
mode (red squares) and reference site (black square). Pink (green) star simbolizes the epicenter of the mainshock
(aftershock) reported by the CSN catalog.
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Figure 8.B.2: North, east and vertical sidereal filtering (green), original GPS signal for ATJN station (blue) and
corrected GPS signal by the sidereal filtering (orange).

Figure 8.B.3: Common mode signal (orange), GPS signal corrected from Figure 8.B.2 (ATJN station, blue) and
GPS corrected by Common Mode (green).

Figure 8.B.4: ATJN station GPS signal (blue) and inverted linear regressions before (red) and after (magenta)
for the mainshock. Boxes show the static offset caculated during the inversion procedure in mm.
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Figure 8.B.5: North, east and vertical compared displacements for HRGPS (continuous black line) and Strong
Motion (dashed red line), filtered for 0.01 - 0.5 Hz.
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Figure 8.B.6: Comparison between geometries used in the static and kinematic inversions with Slab 1.0 [Hayes
et al., 2012]. On the left, north, east and vertical profiles at depth for the mainshock and on the right for the
aftershock. The profiles were made at the north, center and south of the fault plane.
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Figure 8.B.7: Mainshock Static Inversion Resolution Analysis. (a) and (b) show diagonal of the resolution matrix
on strike and dip component. (c) and (d) present the sensitivity performed on strike and dip.
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Figure 8.B.8: Same caption as in Figure 8.B.7 but for the aftershock.
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Figure 8.B.9: Comparison between mainshock kinematic results (slip, rupture time and rise time) obtained using
large subfaults (a), (c) and (e) and a small discretization (b), (d) and (f). (g), (h) and (i) show the comparison
between the mean variance reductions, cumulative seismic moments and source time functions for large (blue) and
small (red) subfault.

Figure 8.B.10: Same caption as in Figure 8.B.9 but for the aftershock.
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Figure 8.B.11: Mainshock Strong Motion - HRGPS (blue) and synthetics seismograms (red). For each station
and component, the maximum data displacement is shown in cm.
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Figure 8.B.12: Same caption as in Figure 8.B.11 but for the aftershock.
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Figure 8.B.13: Mainshock normalized Strong Motion and - HRGPS and synthetics in frequency. For each station
and component, the maximum data amplitude spectrum is shown in ms.
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Figure 8.B.14: Same caption as in Figure 8.B.13 but for the aftershock.
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Figure 8.B.15: Mainshock kinematic sensitive for large ( (a) strike and (b) dip) and small ((c) strike and (d))
subfaults.
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Figure 8.B.16: Same caption as in Figure 8.B.15 but for the aftershock.
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Chapter 9

General Conclusions

During the four years of this thesis work, my research was focused on a better comprehension
of the relationship between the geodetic and seismological data. The need to integrate these data
sets becomes of great importance to understand the seismic versus aseismic behavior of a fault and
their relationships. My interest in this point becomes primordial in subduction zones, because of
the great earthquakes that are generated in these regions affecting the lives of millions of people
worldwide. The study area analyzed is the subduction zone of South Peru - North Chile, because
of the amount and good quality data available on both earthquakes and interseismic phase. In
addition, my Chilean nationality generates a particular personal interest in the seismic behavior
of this region. Understanding the physical processes that generate the earthquakes should provide
information that could be used to mitigate their effects on the population.

A brief summary of the main results obtained in the Chapters 5, 6, 7 and 8 is presented, indi-
cating as well, the potential future work in perspective to continue the research subject.

In Chapter 5, we show evidence for the interactions between shallow and intermediate depth
seismicity. The Taparaca slab-pull earthquake in 2005 initiates an increment of the shallow seis-
micity associated with the decoupling of the subduction interface, eventually leading to the Iquique
earthquake in 2014 (Figure 9.1). The 16 interactions between shallow and intermediate depth seis-
micity after Tarapaca earthquake occurrence, suggest that the subduction interface decoupling is
associated with aseismic deformation due to the slab plunge. An interesting future work would be
investigating how the aseismic deformation produced by the slab plunge is propagated to shallow
depths through a mechanical model. Because the magnitudes of the events are quite low (4 < Mw <

5.5), it is difficult to invoke changes in the Coulomb stress, suggesting that other interaction mech-
anisms need to be explored. The large completeness magnitude of the catalog may be a problem,
leading to a loss of informations for earthquakes of small magnitudes. One approach that could be
valuable to apply in the future on the seismological data is the matched-filter technique. It allows
detecting more events from continuous records, revealing phenomena like migration of seismicity and
repeating earthquakes, that might be an indicator of the seismic and aseismic interaction during the
shallow - deep synchronizations.

In Chapter 6, the preliminary results on the sSSEs detection in South Peru and Chile are pre-
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sented. 41 events are found with magnitudes between 6.1 - 6.9 and durations ranging between 3
- 93 days, located mostly in the deeper part of the seismogenic zone (Figure 9.1). Comparing the
results with the interseismic coupling indicates that 68% of these events are in zones with low or
intermediate coupling values. The temporal evolution of the detected sSSEs show an intense activity
in the region affected by Tocopilla earthquake after its occurrence, that may be an indicator of a
long-postseismic phase associated with mantle viscoelastic relaxation. Close to the region affected
by Iquique earthquake, the increment of sSSEs activity towards the date of the earthquake may
be associated with the long preparation phase of the earthquake. A better characterization of the
sSSEs is needed, notably on the recurrence time of SSEs in some areas and on repetitive events. It
would be interesting in the future to compare the results obtained in this chapter with seismological
studies on repeating earthquakes [e.g., Kato and Nakagawa, 2014; Meng et al., 2015; Kato et al.,
2016], since no tremor nor low-frequency earthquakes have been detected so far in the area.

In Chapter 7, the observations confirm that a long-term slow slip event of the subduction inter-
face led to the nucleation of Iquique earthquake in 2014 (Figure 9.1). The results show the capability
of the geodetic data in studying the preparation phase of the earthquakes, if one looks at them care-
fully, revealing the strong interaction between seismic and aseismic slip at this stage of the seismic
cycle. An interesting perspective work would be studying the spatial and temporal evolution of the
SSE employing a quasistatic approach [e.g., Radiguet et al., 2011]. Potentially, it would provide a
better constrain in the location and source information as well.

In Chapter 8, the kinematic rupture process of Iquique earthquake and its biggest aftershock is
explored. The results reveal a complex segmentation of the seismogenic zone in the area affected
by the earthquakes both along strike and along dip (Figure 9.1). This segmentation seems to be
controlled by changes in the gravimetry and tectonic structures in the forearc, and a change in the
slab geometry along dip. The results show the advantage to perform inversions in the frequency
domain, having a continuum between the static and kinematic solutions in terms of frequency, that
helped identifying an along depth change in frequency content. Also, the fact to provide a better
preconditioning to the inversions helps a lot to find the final solution. We find that the geometry is of
first-order importance for the kinematics of the rupture exploration. Advancing in models including
more realistic geometry design seems to be a step to consider. In the future progresses should be
made towards the implementation of a Bayesian inversion in the frequency domain as well as in
dynamic inversions, in order to explore more physical parameters.

The results presented in this thesis allow for a general conclusion that in the study area, the in-
terseismic period is not quiescent, revealing the complexity of the tectonic loading/release processes,
including the presence of small aseismic slip burst that had not been observed before (Figure 9.1).
Those results are made possible by going beyond the first order in the data exploration. The GPS
noise seems to contain masked information [Métois et al., 2014; Frank , 2016; Rousset et al., 2017]
that requires innovative methods to be investigated and exploited.
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Figure 9.1: 3D schematic overview of main results obtained during this Ph.D. Shallow (deep) seismicity are color
coded in blue (red) and scaled by magnitude in the period 1990 - 2014. Antofagasta, Tocopilla, Tarapaca and Iquique
rupture areas are plotted. The main slip behaviors in the area struck by Iquique earthquake are plotted since 2005.
Areas affected by sSSE’s are in yellow. Coupling map from Métois et al. [2016].
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The interaction between seismic and aseismic slip seems to play an important role in the prepa-
ration phase of earthquakes, as well as in the loading processes. This work shows one of the first
evidence of a long preparation phase of earthquakes due to aseismic processes loading the mainshock
area until the triggering of the main earthquake, supporting some models proposed [Ellsworth et al.,
1995; Dodge et al., 1996] and laboratory experiments [Dieterich, 1992; Ohnaka, 2003; McLaskey and
Lockner , 2014; Scuderi et al., 2016].

Another interesting point observed during the course of this thesis is the role of the slab in the
generation of slip on the subduction interface, whatever it is seismic or aseismic [Durand et al., 2014;
Bouchon et al., 2016; Lay et al., 2017]. The plunge of the slab seems to trigger a spread deforma-
tion that helps decoupling the interface generating aseismic deformation on it and favors slow slip
that leads the preparation phase of megathrust earthquakes. The observations need to be further
explored to find a mechanical model that explains this behavior.

Using a kinematic approach, the coupling maps provide some insights into the locking degree on
faults but not about the mechanical properties of the subduction interface. A manner to move on, is
the genesis of asperity models based on realistic physical parameters and geodetic data [Bürgmann
et al., 2005; Hetland and Simons, 2010; Kanda et al., 2013; Johnson et al., 2016]. Part of this work
has been started in collaboration with M. Simons during the course of this thesis, but it is not
finalized yet. I will continue working on this problem during my postdoc, in order to compare the
interseismic maps with models based on rate-and-state friction law. Also, these models provide an
insight into how the seismic and aseismic slip are interacting on the subduction interface, providing
a complementary approach to continue the work based on the scientific questions raised in this thesis.
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Appendix A

Supporting Information for Chapter 4:
“Processing and Analysis of GPS Data"

In this appendix can be find all the supporting information of the Chapter 4.
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A.1 GPS Parameters Estimated

A.1.1 Annual and Semi-Annual Parameters

Station N C1xcos A E C1xcos A V C1xcos A N C2xsin A E C2xsin A V C2xsin A
AEDA -0.43+/-0.03 -0.69+/-0.04 1.32+/-0.10 1.92+/-0.03 1.08+/-0.04 -0.59+/-0.11
AREQ 0.68+/-0.03 -0.24+/-0.04 0.40+/-0.08 1.22+/-0.04 1.91+/-0.04 -3.51+/-0.09
ATIC -1.40+/-0.03 -1.90+/-0.04 2.45+/-0.08 0.99+/-0.03 -0.44+/-0.04 -0.20+/-0.08
ATJN -1.12+/-0.03 -1.64+/-0.03 2.64+/-0.06 1.24+/-0.03 0.41+/-0.03 -0.64+/-0.06
CBAA -1.09+/-0.03 -1.56+/-0.03 2.20+/-0.06 1.27+/-0.03 0.04+/-0.03 -0.34+/-0.05
CDLC -1.18+/-0.03 -1.74+/-0.03 1.70+/-0.07 1.18+/-0.03 0.14+/-0.03 -0.45+/-0.06
CGTC -1.46+/-0.03 -0.92+/-0.03 2.34+/-0.06 -0.55+/-0.03 -1.55+/-0.03 1.75+/-0.06
CHMZ -0.83+/-0.03 0.31+/-0.03 -0.17+/-0.06 -1.39+/-0.03 -1.61+/-0.03 3.37+/-0.06
CHRA 1.44+/-0.03 0.56+/-0.03 -1.92+/-0.11 0.83+/-0.03 2.43+/-0.03 -3.46+/-0.10
CJNT -0.95+/-0.03 -1.52+/-0.03 2.66+/-0.07 1.33+/-0.03 0.30+/-0.03 0.18+/-0.06
CLLA -1.12+/-0.03 -0.35+/-0.03 0.71+/-0.06 -1.20+/-0.03 -1.62+/-0.03 1.55+/-0.06
COLC -0.78+/-0.03 -1.86+/-0.04 2.23+/-0.10 0.91+/-0.03 0.60+/-0.04 0.67+/-0.10
COLL -0.26+/-0.04 1.08+/-0.04 -2.43+/-0.08 -1.75+/-0.07 -1.66+/-0.08 -4.16+/-0.15
CRSC -0.77+/-0.03 -1.42+/-0.03 2.20+/-0.06 1.42+/-0.03 0.63+/-0.03 -0.95+/-0.06
CTLR -0.62+/-0.03 0.23+/-0.03 0.05+/-0.08 -1.21+/-0.03 -1.54+/-0.03 1.33+/-0.07
DANC 0.83+/-0.03 2.09+/-0.03 -3.33+/-0.06 -1.68+/-0.03 -1.08+/-0.03 3.85+/-0.06
ENAP -1.41+/-0.03 -0.89+/-0.04 0.29+/-0.09 0.28+/-0.03 -0.81+/-0.04 1.47+/-0.09
FBAQ -1.78+/-0.04 -1.38+/-0.04 1.54+/-0.09 1.15+/-0.04 -0.31+/-0.05 0.30+/-0.10
GLRV 0.91+/-0.03 3.11+/-0.03 -2.79+/-0.06 -1.50+/-0.03 0.42+/-0.03 2.39+/-0.07
GUAD -1.47+/-0.03 -0.96+/-0.04 1.32+/-0.09 -0.01+/-0.03 -1.17+/-0.04 1.87+/-0.09
HMBS 1.35+/-0.03 1.52+/-0.04 -4.06+/-0.11 0.04+/-0.03 0.92+/-0.04 0.31+/-0.12
HUAN -1.05+/-0.03 1.61+/-0.04 0.01+/-0.09 -2.12+/-0.04 -3.09+/-0.04 5.79+/-0.10
IQQE -0.42+/-0.03 0.40+/-0.03 -0.74+/-0.08 -1.26+/-0.03 -1.58+/-0.03 1.62+/-0.08
JRGN -1.04+/-0.03 -1.26+/-0.03 1.27+/-0.07 1.46+/-0.03 0.65+/-0.03 -0.67+/-0.07
LAGN 5.36+/-0.89 23.83+/-0.87 38.66+/-2.39 1.08+/-0.24 2.04+/-0.23 12.22+/-0.64
LAGU -1.42+/-0.03 -1.11+/-0.04 0.10+/-0.10 0.11+/-0.03 -1.34+/-0.04 -0.31+/-0.10
LOMI -1.69+/-0.06 -2.01+/-0.05 1.34+/-0.09 1.97+/-0.06 1.42+/-0.04 -2.23+/-0.07
LYAR -1.14+/-0.03 -1.68+/-0.03 2.78+/-0.08 1.25+/-0.03 0.17+/-0.03 -0.06+/-0.07
MCLA -0.82+/-0.03 -1.33+/-0.03 1.87+/-0.06 1.19+/-0.03 0.33+/-0.03 -0.39+/-0.06
MICA 1.14+/-0.02 0.71+/-0.03 -0.45+/-0.05 1.10+/-0.03 1.56+/-0.03 -2.49+/-0.06
MNMI 1.54+/-0.03 1.61+/-0.03 -1.54+/-0.07 -0.66+/-0.03 0.24+/-0.03 -0.41+/-0.07
NZCA -1.35+/-0.03 -2.72+/-0.04 2.55+/-0.09 1.20+/-0.03 -0.44+/-0.04 -0.07+/-0.09
PALC 0.92+/-0.03 2.13+/-0.03 -1.47+/-0.07 -1.88+/-0.03 -0.61+/-0.03 5.08+/-0.07
PB01 -0.61+/-0.03 -1.38+/-0.03 1.58+/-0.07 1.55+/-0.03 0.91+/-0.03 -0.71+/-0.07
PB02 -0.34+/-0.03 -1.47+/-0.03 0.57+/-0.07 1.77+/-0.03 1.04+/-0.03 -1.13+/-0.07
PB03 -0.36+/-0.03 -1.31+/-0.04 1.47+/-0.08 1.90+/-0.03 0.84+/-0.04 0.01+/-0.08
PB04 -0.53+/-0.03 -1.14+/-0.03 1.42+/-0.07 1.52+/-0.03 0.89+/-0.03 -0.01+/-0.06
PB05 -0.50+/-0.03 -1.54+/-0.04 1.39+/-0.08 1.57+/-0.03 0.86+/-0.04 0.25+/-0.07
PB06 -1.45+/-0.03 -1.25+/-0.03 1.44+/-0.07 0.63+/-0.03 -0.27+/-0.03 0.36+/-0.07
PB07 -0.99+/-0.03 -1.59+/-0.04 1.22+/-0.08 1.58+/-0.03 0.32+/-0.03 -1.12+/-0.07
PB08 -1.32+/-0.03 -1.73+/-0.04 2.56+/-0.08 1.22+/-0.03 -0.19+/-0.03 -1.14+/-0.07
PB11 2.03+/-0.09 4.47+/-0.13 -4.35+/-0.23 -0.87+/-0.10 2.53+/-0.14 -1.85+/-0.25
PCCL -1.47+/-0.03 -1.77+/-0.03 2.92+/-0.07 1.32+/-0.03 -0.09+/-0.03 -0.19+/-0.07
PCHA -0.46+/-0.03 0.53+/-0.03 -0.02+/-0.08 -1.68+/-0.03 -1.40+/-0.03 2.80+/-0.08
PICC 0.98+/-0.03 -0.21+/-0.04 0.77+/-0.07 1.10+/-0.04 1.52+/-0.04 -1.85+/-0.08
PMCA 0.69+/-0.02 1.79+/-0.03 -1.06+/-0.06 -1.71+/-0.03 -1.01+/-0.04 2.63+/-0.09
PMEJ -0.06+/-0.03 -1.03+/-0.04 0.49+/-0.09 1.53+/-0.03 1.00+/-0.04 0.09+/-0.08
PSGA 1.41+/-0.03 1.41+/-0.03 -1.73+/-0.08 -0.15+/-0.03 0.19+/-0.03 -1.16+/-0.08
PTCL -0.28+/-0.04 -1.78+/-0.04 3.71+/-0.14 2.01+/-0.04 1.75+/-0.04 -1.66+/-0.15
PTIN 0.30+/-0.03 1.61+/-0.03 -1.25+/-0.08 -1.46+/-0.03 -1.33+/-0.03 3.36+/-0.08
PTRE -1.31+/-0.03 -1.80+/-0.03 3.69+/-0.06 1.41+/-0.03 0.29+/-0.03 -1.66+/-0.06
QUCA 0.55+/-0.03 1.89+/-0.03 -3.73+/-0.08 -2.11+/-0.05 -0.94+/-0.05 5.87+/-0.15
QUIL -0.11+/-0.03 -0.39+/-0.04 3.02+/-0.08 2.14+/-0.04 0.90+/-0.04 0.13+/-0.09
RADO -0.04+/-0.03 -1.20+/-0.03 1.41+/-0.07 1.57+/-0.03 1.14+/-0.03 -1.83+/-0.06
SJUA 1.43+/-0.03 0.46+/-0.04 -1.04+/-0.08 1.10+/-0.03 2.45+/-0.04 -1.31+/-0.08
SLRZ -0.63+/-0.03 -2.68+/-0.04 3.37+/-0.08 0.01+/-0.03 -0.37+/-0.04 -1.05+/-0.09
SRGD -0.62+/-0.03 -1.46+/-0.03 1.96+/-0.08 1.34+/-0.03 0.68+/-0.03 -0.99+/-0.07
TORA 0.62+/-0.03 2.57+/-0.03 -3.52+/-0.08 -2.25+/-0.04 -0.99+/-0.04 1.96+/-0.11
TQPL -1.79+/-0.03 -1.58+/-0.03 4.23+/-0.07 0.16+/-0.03 -0.98+/-0.04 1.30+/-0.08
TRTA 2.29+/-0.04 2.39+/-0.04 -4.07+/-0.09 -1.05+/-0.04 0.22+/-0.04 1.86+/-0.08
UAPE 0.85+/-0.04 0.13+/-0.04 1.29+/-0.10 0.90+/-0.04 1.61+/-0.04 -1.80+/-0.10
UCNF 0.95+/-0.03 0.65+/-0.03 0.53+/-0.07 1.11+/-0.03 1.13+/-0.03 -0.94+/-0.08
URCU 0.43+/-0.04 -1.36+/-0.05 0.59+/-0.10 1.66+/-0.07 1.56+/-0.09 1.42+/-0.16
UTAR 0.15+/-0.03 -1.31+/-0.04 1.69+/-0.09 1.81+/-0.03 1.33+/-0.04 -2.01+/-0.09
VLZL -1.41+/-0.03 -1.36+/-0.03 1.81+/-0.06 0.38+/-0.03 -0.53+/-0.03 1.01+/-0.06

Table A.1: North, East and Vertical Annual amplitude coefficients inverted with equation 4.2. Coefficients
are in mm.
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Station N C3xcos SA E C3xcos SA V C3xcos SA N C4xsin SA E C4xsin SA V C4xsin SA
AEDA 0.32+/-0.03 0.05+/-0.03 0.84+/-0.09 0.08+/-0.03 -0.41+/-0.04 -0.22+/-0.09
AREQ 0.32+/-0.03 -0.28+/-0.04 0.03+/-0.08 -0.16+/-0.03 0.02+/-0.04 -0.57+/-0.08
ATIC 0.22+/-0.03 -0.26+/-0.03 -0.94+/-0.07 -0.05+/-0.03 0.06+/-0.03 0.41+/-0.07
ATJN 0.02+/-0.03 0.19+/-0.03 0.46+/-0.06 0.23+/-0.03 -0.32+/-0.03 -0.01+/-0.06
CBAA 0.20+/-0.03 0.09+/-0.03 -0.17+/-0.05 0.04+/-0.03 -0.47+/-0.03 -0.26+/-0.05
CDLC 0.16+/-0.03 0.05+/-0.03 -0.19+/-0.06 -0.08+/-0.03 -0.37+/-0.03 -0.43+/-0.06
CGTC 0.02+/-0.03 0.11+/-0.03 -0.43+/-0.06 -0.01+/-0.03 -0.06+/-0.03 -0.76+/-0.06
CHMZ -0.09+/-0.03 -0.27+/-0.03 -0.73+/-0.06 -0.12+/-0.03 0.23+/-0.03 -0.05+/-0.06
CHRA -0.27+/-0.03 0.42+/-0.03 1.69+/-0.10 0.02+/-0.03 0.03+/-0.03 0.76+/-0.10
CJNT 0.09+/-0.03 0.24+/-0.03 1.07+/-0.06 0.10+/-0.03 -0.46+/-0.03 0.00+/-0.06
CLLA -0.20+/-0.02 -0.05+/-0.03 0.26+/-0.06 -0.04+/-0.02 0.25+/-0.03 0.19+/-0.06
COLC -0.02+/-0.03 0.08+/-0.03 0.37+/-0.09 0.01+/-0.03 -0.59+/-0.03 0.17+/-0.09
COLL 1.31+/-0.04 0.43+/-0.04 1.04+/-0.09 0.83+/-0.04 -0.85+/-0.04 -1.02+/-0.08
CRSC 0.12+/-0.03 -0.01+/-0.03 0.21+/-0.05 0.17+/-0.03 -0.34+/-0.03 -0.33+/-0.06
CTLR -0.09+/-0.03 -0.27+/-0.03 -0.47+/-0.07 -0.10+/-0.03 0.37+/-0.03 0.57+/-0.07
DANC 0.03+/-0.03 -0.47+/-0.03 0.78+/-0.06 -0.43+/-0.03 -0.30+/-0.03 1.19+/-0.06
ENAP -0.35+/-0.03 0.89+/-0.04 1.60+/-0.08 -0.05+/-0.03 -0.18+/-0.04 0.95+/-0.08
FBAQ 0.47+/-0.03 -0.05+/-0.03 0.68+/-0.07 0.32+/-0.03 -0.04+/-0.03 -0.35+/-0.07
GLRV 0.08+/-0.03 -0.18+/-0.03 -0.51+/-0.06 -0.17+/-0.03 -0.41+/-0.03 0.64+/-0.06
GUAD -0.04+/-0.03 0.19+/-0.03 -0.70+/-0.09 0.22+/-0.03 0.43+/-0.03 -0.33+/-0.09
HMBS -0.39+/-0.03 0.52+/-0.03 2.74+/-0.11 0.62+/-0.03 -0.33+/-0.03 0.30+/-0.10
HUAN 0.16+/-0.03 1.38+/-0.03 2.16+/-0.08 -0.04+/-0.03 0.84+/-0.03 1.67+/-0.08
IQQE 0.09+/-0.03 -0.05+/-0.03 0.33+/-0.08 -0.14+/-0.03 0.09+/-0.03 -0.04+/-0.07
JRGN 0.13+/-0.03 0.14+/-0.03 -0.05+/-0.07 0.05+/-0.03 -0.39+/-0.03 -0.24+/-0.06
LAGN 1.08+/-0.11 2.89+/-0.10 4.00+/-0.29 -1.68+/-0.18 -5.57+/-0.18 -8.68+/-0.50
LAGU -0.24+/-0.03 0.35+/-0.04 1.02+/-0.10 0.22+/-0.03 0.29+/-0.04 -0.15+/-0.10
LOMI -0.73+/-0.05 -0.07+/-0.04 2.14+/-0.07 -0.91+/-0.06 -0.54+/-0.04 1.04+/-0.07
LYAR 0.01+/-0.03 0.16+/-0.03 -0.37+/-0.07 0.12+/-0.03 -0.26+/-0.03 -0.09+/-0.07
MCLA 0.15+/-0.03 0.12+/-0.03 0.03+/-0.06 0.17+/-0.03 -0.39+/-0.03 -0.10+/-0.06
MICA -0.45+/-0.03 -0.19+/-0.03 0.12+/-0.05 -0.08+/-0.02 0.38+/-0.03 0.83+/-0.05
MNMI -0.10+/-0.03 0.02+/-0.03 -0.37+/-0.06 0.09+/-0.03 -0.06+/-0.03 -0.11+/-0.06
NZCA 0.27+/-0.03 -0.10+/-0.04 -1.20+/-0.09 -0.25+/-0.03 -0.24+/-0.04 0.47+/-0.08
PALC -0.24+/-0.03 -0.14+/-0.03 0.30+/-0.07 -0.43+/-0.03 -0.22+/-0.03 1.18+/-0.07
PB01 0.07+/-0.03 -0.30+/-0.03 -0.18+/-0.07 0.12+/-0.03 -0.35+/-0.03 -0.43+/-0.07
PB02 0.08+/-0.03 -0.21+/-0.03 -0.18+/-0.06 0.00+/-0.03 -0.47+/-0.03 -0.34+/-0.07
PB03 -0.07+/-0.03 -0.14+/-0.03 -0.04+/-0.07 -0.07+/-0.03 -0.24+/-0.03 -0.34+/-0.07
PB04 0.05+/-0.03 -0.16+/-0.03 -0.18+/-0.06 -0.05+/-0.03 -0.35+/-0.03 0.04+/-0.06
PB05 0.06+/-0.03 -0.24+/-0.03 -0.37+/-0.07 0.08+/-0.03 -0.38+/-0.03 -0.21+/-0.07
PB06 -0.01+/-0.03 0.07+/-0.03 -0.24+/-0.07 -0.04+/-0.03 -0.28+/-0.03 0.02+/-0.07
PB07 -0.15+/-0.03 0.11+/-0.03 0.18+/-0.07 -0.15+/-0.03 0.04+/-0.03 0.69+/-0.07
PB08 -0.20+/-0.03 -0.07+/-0.03 0.48+/-0.07 0.00+/-0.03 0.07+/-0.03 0.66+/-0.07
PB11 0.07+/-0.05 1.09+/-0.07 0.44+/-0.12 0.40+/-0.05 -1.05+/-0.07 0.63+/-0.12
PCCL -0.08+/-0.03 0.27+/-0.03 0.38+/-0.07 0.18+/-0.03 -0.32+/-0.03 -0.01+/-0.06
PCHA 0.12+/-0.03 -0.36+/-0.03 -0.37+/-0.08 -0.04+/-0.03 0.12+/-0.03 -0.35+/-0.08
PICC 0.01+/-0.03 -0.08+/-0.04 0.66+/-0.07 -0.26+/-0.03 0.18+/-0.04 0.05+/-0.07
PMCA -0.19+/-0.03 -0.13+/-0.03 -0.11+/-0.07 -0.12+/-0.03 0.14+/-0.03 1.60+/-0.07
PMEJ 0.27+/-0.03 -0.23+/-0.03 -0.25+/-0.08 0.07+/-0.03 -0.26+/-0.03 -0.09+/-0.08
PSGA -0.06+/-0.03 0.43+/-0.03 0.34+/-0.08 0.21+/-0.03 -0.04+/-0.03 0.21+/-0.07
PTCL 0.15+/-0.03 -0.80+/-0.04 -1.14+/-0.13 0.15+/-0.03 -0.17+/-0.04 -0.56+/-0.13
PTIN 0.23+/-0.03 -0.16+/-0.03 -0.21+/-0.07 -0.68+/-0.03 0.12+/-0.03 0.97+/-0.07
PTRE -0.07+/-0.03 0.23+/-0.03 0.60+/-0.06 0.24+/-0.03 -0.37+/-0.03 0.49+/-0.06
QUCA 0.25+/-0.03 -0.24+/-0.03 -1.36+/-0.09 -0.74+/-0.03 -0.16+/-0.03 1.44+/-0.10
QUIL 1.12+/-0.03 -0.33+/-0.03 -0.29+/-0.08 0.65+/-0.03 -0.39+/-0.04 -1.21+/-0.08
RADO 0.11+/-0.03 -0.18+/-0.03 0.35+/-0.06 -0.12+/-0.03 -0.30+/-0.03 -0.01+/-0.06
SJUA 0.18+/-0.03 0.14+/-0.03 0.24+/-0.07 0.28+/-0.03 -0.31+/-0.03 -0.94+/-0.07
SLRZ 0.55+/-0.03 -0.07+/-0.03 -0.25+/-0.08 -0.07+/-0.03 -0.18+/-0.03 0.03+/-0.08
SRGD 0.19+/-0.03 -0.09+/-0.03 0.00+/-0.07 0.03+/-0.03 -0.44+/-0.03 -0.07+/-0.07
TORA -0.11+/-0.03 0.12+/-0.03 -0.68+/-0.08 -0.40+/-0.03 0.03+/-0.03 -1.12+/-0.08
TQPL 0.13+/-0.03 0.33+/-0.03 -1.47+/-0.06 0.08+/-0.03 0.32+/-0.03 0.07+/-0.06
TRTA 0.37+/-0.03 0.62+/-0.03 -0.14+/-0.07 -0.39+/-0.03 -0.23+/-0.03 0.83+/-0.07
UAPE 0.03+/-0.03 -0.28+/-0.04 0.48+/-0.10 -0.28+/-0.03 0.30+/-0.04 -0.36+/-0.10
UCNF -0.10+/-0.03 0.03+/-0.03 0.43+/-0.07 -0.29+/-0.03 0.27+/-0.03 0.15+/-0.07
URCU 0.48+/-0.03 -0.94+/-0.04 -1.99+/-0.07 -0.51+/-0.03 -0.19+/-0.04 -0.67+/-0.08
UTAR 0.05+/-0.03 -0.20+/-0.04 0.90+/-0.09 -0.14+/-0.03 -0.46+/-0.04 0.21+/-0.09
VLZL -0.10+/-0.03 0.47+/-0.03 0.37+/-0.06 0.05+/-0.03 -0.04+/-0.03 0.08+/-0.06

Table A.2: North, East and Vertical Semi-Annual amplitude coefficients inverted with equation 4.2. Coef-
ficients are in mm.

A.1.2 Coseismic and Postseismic Offsets for Earthquakes Mw ≥ 7.5

Station North East Vertical PS North PS East PS Vertical
AREQ -288.09+/-1.15 -418.92+/-1.32 -25.7+/-2.76 -65.71+/-1.61 -130.22+/-1.85 57.15+/-3.88

Table A.3: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for Arequipa Earthquake (Mw 8.4, 2001/06/23). Values and errors are in mm.

Station North East Vertical PS North PS East PS Vertical
AREQ -31.46+/-0.63 -34.02+/-0.73 -1.77+/-1.52 -14.41+/-0.79 -0.42+/-0.91 -12+/-1.90
UAPE -1.38+/-0.67 0.13+/-0.76 -0.35+/-1.88 -8.9+/-1.06 -3.77+/-1.21 -16.06+/-2.97

Table A.4: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for the biggest aftershock of Arequipa Earthquake (Mw 7.6, 2001/07/07). Values and errors are in mm.
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Station North East Vertical PS North Ps East Ps Vertical
AEDA -22.04+/-0.22 -41.88+/-0.28 29.4+/-0.73 -3.93+/-0.24 -3.38+/-0.3 3.27+/-0.78
AREQ -0.33+/-0.19 -0.95+/-0.22 -1.52+/-0.46 -0.54+/-0.26 -4.06+/-0.3 -0.78+/-0.62
COLL 0.84+/-0.07 -3.29+/-0.08 6.02+/-0.15 1.19+/-0.11 24.18+/-0.12 3.59+/-0.23
FBAQ 3.55+/-0.12 -15.14+/-0.12 4.73+/-0.26 -5.65+/-0.31 -10.72+/-0.32 -1.95+/-0.68
IQQE -13.14+/-0.27 -48.91+/-0.28 40.11+/-0.67 1.06+/-0.58 -12.19+/-0.62 3.96+/-1.47
PICC 34.42+/-0.18 -8.03+/-0.2 -55.43+/-0.4 -3.78+/-0.28 -9.7+/-0.31 -0.07+/-0.62
PMEJ -1.8+/-0.13 -1.35+/-0.17 2.54+/-0.4 -0.36+/-0.21 -4.24+/-0.26 -3.14+/-0.61
QUIL -0.16+/-0.24 0.88+/-0.27 0.19+/-0.6 0.65+/-0.18 -1.02+/-0.21 0.49+/-0.45
UAPE -13.88+/-0.42 -48.96+/-0.48 38.08+/-1.18 -2.95+/-0.26 -6.28+/-0.29 -6.05+/-0.72
UCNF 1.05+/-0.21 -1.52+/-0.25 -2.03+/-0.55 -2.22+/-0.4 -4.42+/-0.48 -1.63+/-1.07
UTAR 1.82+/-0.25 -4.31+/-0.29 5.24+/-0.69 0.45+/-0.25 -2.73+/-0.29 -2.29+/-0.69

Table A.5: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for Tarapaca Earthquake (Mw 7.7, 2005/06/13). Values and errors are in mm.

Station North East Vertical PS North PS East PS Vertical
AEDA 1.99+/-0.22 1.3+/-0.27 -3.56+/-0.71 -0.08+/-0.49 1.41+/-0.61 7.4+/-1.61
AREQ 2.13+/-0.34 -1.61+/-0.39 0.16+/-0.83 1.4+/-0.74 -5.41+/-0.85 6.13+/-1.78
ATJN 2+/-0.23 -0.93+/-0.25 -1.97+/-0.52 -1.4+/-0.52 3.36+/-0.56 8.3+/-1.17
CHMZ 1.91+/-0.24 -0.96+/-0.26 -0.66+/-0.53 -1.97+/-0.42 3.32+/-0.46 9.98+/-0.93
CRSC 0.58+/-0.24 -0.64+/-0.27 -1.49+/-0.5 -0.26+/-0.55 4.03+/-0.61 8.18+/-1.16
CTLR 0.77+/-0.26 -0.88+/-0.27 2.27+/-0.67 -0.57+/-0.49 4.86+/-0.51 1.18+/-1.24
ENAP -0.44+/-0.31 3.17+/-0.39 -4.89+/-0.88 0.71+/-0.09 1.64+/-0.12 -0.17+/-0.26
GUAD -2.13+/-0.84 -1.35+/-1.02 2.35+/-2.56 -1.98+/-0.86 0.07+/-1.04 5.37+/-2.62
HMBS 1.18+/-0.19 -0.42+/-0.22 -7.94+/-0.68 0.74+/-0.46 5.35+/-0.55 10.27+/-1.70
JRGN 1.41+/-0.26 -2.6+/-0.29 -1.03+/-0.59 -1.65+/-0.61 5.18+/-0.67 9.2+/-1.36
LAGU -2.43+/-0.97 -0.51+/-1.18 -2.61+/-3 -1.63+/-1 -6.87+/-1.22 -7.32+/-3.08
MCLA 0.37+/-0.23 -0.98+/-0.27 -3.1+/-0.51 0.07+/-0.54 5.38+/-0.62 10.02+/-1.18
MNMI 1.13+/-0.46 -0.01+/-0.51 -4.23+/-1.09 4.26+/-5.03 -2.51+/-5.55 57.22+/-11.79
PCCL 1.76+/-0.22 -1.1+/-0.24 -1.78+/-0.54 0.17+/-0.49 2.87+/-0.55 7.3+/-1.23
PCHA -7.26+/-1.15 -8.51+/-1.16 -6.08+/-2.89 -4.15+/-0.79 -157.44+/-0.79 -15.04+/-1.99
PICC 2.95+/-0.38 -0.43+/-0.42 2.57+/-0.84 -2.82+/-0.89 3.23+/-0.99 2.81+/-1.96
PMEJ 1.45+/-0.28 -4.34+/-0.34 -3.3+/-0.82 0.38+/-0.62 10.9+/-0.77 7.42+/-1.84
PSGA 2.83+/-0.23 1.46+/-0.27 0.95+/-0.64 -4.6+/-0.48 -0.42+/-0.57 -5.62+/-1.37
PTRE 2.1+/-0.22 -2.42+/-0.23 -0.38+/-0.49 -1.6+/-0.51 4.77+/-0.53 5.24+/-1.12
QUIL 3.16+/-0.09 -3.04+/-0.1 3.88+/-0.23 -1.19+/-0.19 -6.69+/-0.22 -16.24+/-0.47
SRGD 1.15+/-0.24 0.84+/-0.27 -1.31+/-0.64 -1.02+/-0.52 0.71+/-0.59 6.65+/-1.39
UAPE 0.93+/-0.38 1.74+/-0.43 1.16+/-1.06 0.1+/-0.83 -1.21+/-0.95 4.48+/-2.33
UTAR 0.03+/-0.29 -2.01+/-0.34 -3.2+/-0.8 2.41+/-0.66 3.77+/-0.76 4.41+/-1.79
VLZL 1.05+/-0.23 -1.48+/-0.26 -3.08+/-0.51 -0.97+/-0.51 4.01+/-0.58 7.03+/-1.14

Table A.6: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for Pisco Earthquake (Mw 8.0, 2007/08/15). Values and errors are in mm.

Station North East Vertical PS North PS East PS Vertical
AEDA 0.14+/-0.88 -2.58+/-1.1 -11.61+/-2.88 -0.41+/-0.32 0.17+/-0.4 8.13+/-1.05
AREQ 0.04+/-0.34 -0.15+/-0.39 -2.79+/-0.81 -0.22+/-0.44 0.6+/-0.5 -0.7+/-1.05
ATJN -0.21+/-0.23 -1.68+/-0.25 -0.57+/-0.52 0.92+/-0.36 -2.06+/-0.39 -0.12+/-0.80
CBAA 0.36+/-0.89 -9.39+/-0.96 3.27+/-1.86 -2.56+/-0.14 -14.77+/-0.15 5.9+/-0.29
CDLC -16.45+/-0.93 -11.58+/-1.03 -1.41+/-2.13 -6.61+/-0.14 -9.55+/-0.16 -2.83+/-0.33
CHMZ -0.48+/-0.18 -2.51+/-0.2 -1.43+/-0.41 -0.48+/-0.27 -1.4+/-0.3 -0.54+/-0.61
CJNT 1.74+/-0.96 -7.33+/-1.04 4.79+/-2.23 2.56+/-0.15 -9.45+/-0.16 3.66+/-0.34
COLC -0.69+/-0.41 0.59+/-0.46 3.36+/-1.24 0.01+/-0.24 -4.75+/-0.27 -4.78+/-0.73
CRSC -1.64+/-1.02 -3+/-1.14 -3.05+/-2.16 -0.6+/-0.4 -3.13+/-0.45 0.81+/-0.86
CTLR 7.5+/-0.2 -15.48+/-0.21 84.16+/-0.52 -2.67+/-0.31 -5.25+/-0.32 -4.7+/-0.79
JRGN -43.22+/-1.15 -19.29+/-1.26 87.71+/-2.57 -8.97+/-0.4 -20.41+/-0.44 16.33+/-0.90
LYAR 1.89+/-0.26 0.13+/-0.28 -2.27+/-0.67 -1.25+/-0.13 -1.59+/-0.14 3.51+/-0.34
MCLA -19.23+/-1.03 -12.79+/-1.18 93+/-2.25 -6.8+/-0.36 -13.78+/-0.41 0.22+/-0.78
PCCL -0.17+/-0.22 -1.51+/-0.24 -2.3+/-0.54 1.11+/-0.34 -0.57+/-0.37 1.24+/-0.84
PCHA 2.15+/-0.23 -2.03+/-0.24 0.97+/-0.59 0.7+/-0.54 5.74+/-0.54 -5.86+/-1.35
PMEJ -40.93+/-1.16 -26.52+/-1.44 139.99+/-3.43 -4.93+/-0.45 -23.73+/-0.56 25.93+/-1.33
PSGA 2.39+/-0.22 0.04+/-0.26 4.56+/-0.63 0.14+/-0.32 -2.34+/-0.38 -0.42+/-0.90
PTRE 1.59+/-0.22 -1.89+/-0.23 -3.61+/-0.49 -1.16+/-0.29 -1.61+/-0.3 2.71+/-0.63
QUIL 3.38+/-0.16 -1.15+/-0.19 -1.49+/-0.41 -0.97+/-0.36 2.14+/-0.41 -4.25+/-0.90
SRGD -0.4+/-0.97 -18.42+/-1.09 3.09+/-2.57 -1.91+/-0.34 -17.23+/-0.38 -8.1+/-0.90
UAPE -0.82+/-1.7 -2.12+/-1.94 -4.21+/-4.78 0.01+/-0.58 -1.92+/-0.66 4.4+/-1.63
UTAR -0.14+/-0.32 -1.63+/-0.37 -1.1+/-0.88 0.67+/-0.44 -1.09+/-0.51 -1.06+/-1.20
VLZL -11.23+/-0.94 -8.57+/-1.06 5.85+/-2.08 -1.59+/-0.33 -16.07+/-0.38 -4.75+/-0.74

Table A.7: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for Tocopilla Earthquake (Mw 7.7, 2007/11/14). Values and errors are in mm.
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Station North East Vertical PS North PS East PS Vertical
AEDA -6.74+/-0.17 -47.76+/-0.22 -5.58+/-0.57 0.57+/-0.92 0.48+/-1.15 -2+/-3.01
AREQ 1.15+/-0.3 0.06+/-0.34 -0.69+/-0.71 -1.53+/-1.15 0.8+/-1.32 4.26+/-2.76
ATIC 1.93+/-0.21 0.05+/-0.24 -3.73+/-0.53 -1.21+/-0.51 0.15+/-0.58 4.06+/-1.28
ATJN -18.33+/-0.2 -57.42+/-0.22 -20.13+/-0.45 0.44+/-1.11 -1.53+/-1.19 -2.74+/-2.46
CBAA -0.49+/-0.72 1.53+/-0.78 2.99+/-1.51 -0.99+/-0.61 -0.55+/-0.66 2.27+/-1.28
CGTC -12.03+/-0.15 -66.51+/-0.16 -20.81+/-0.32 -0.01+/-0.78 -0.39+/-0.86 3.36+/-1.72
CHMZ -9.5+/-0.33 -52.37+/-0.36 1.82+/-0.73 0.84+/-0.84 -0.96+/-0.92 0.84+/-1.87
CJNT -0.72+/-0.28 2.17+/-0.3 -0.71+/-0.65 0.26+/-0.68 -0.51+/-0.74 5.04+/-1.58
COLC -9.54+/-0.18 -35.68+/-0.2 1.49+/-0.53 0.64+/-0.94 -2.69+/-1.05 -0.4+/-2.84
CRSC -4.51+/-0.23 -21.52+/-0.26 -3.24+/-0.49 0.26+/-1.06 -2.31+/-1.18 2.41+/-2.24
DANC -0.58+/-0.05 -0.42+/-0.05 -0.2+/-0.11 0.14+/-0.58 -0.04+/-0.62 6.27+/-1.32
IQQE -9.42+/-0.22 -66.07+/-0.23 -15.3+/-0.56 0.02+/-1.22 -0.29+/-1.3 2.57+/-3.09
JRGN -1.38+/-0.21 1.48+/-0.23 -6.98+/-0.47 -1.49+/-0.8 3.29+/-0.88 3.11+/-1.80
LYAR -7.08+/-0.17 -8.69+/-0.18 -7.39+/-0.43 1.02+/-0.9 -2.12+/-0.98 2.93+/-2.31
MCLA -2.86+/-0.19 1.95+/-0.21 -2.49+/-0.41 -2.04+/-1.01 0.16+/-1.17 1.78+/-2.22
MNMI -21.11+/-0.18 -58.95+/-0.2 -4.99+/-0.41 -3.04+/-0.95 -2.81+/-1.04 2.04+/-2.22
NZCA 1.91+/-0.18 0.86+/-0.25 -0.3+/-0.57 0.28+/-0.46 0.42+/-0.62 3.52+/-1.42
PALC -19.56+/-8.4 -27.45+/-9.18 -2.96+/-21 0.96+/-0.59 -1.28+/-0.65 2.15+/-1.48
PB01 3.98+/-0.17 -21.97+/-0.18 -5.22+/-0.44 1.03+/-0.89 -1.37+/-0.93 5.51+/-2.28
PB02 -2.26+/-0.15 -6.46+/-0.17 -3.85+/-0.36 0.04+/-0.79 -0.02+/-0.89 2.14+/-1.91
PB03 -2.09+/-0.14 1.11+/-0.16 -0.96+/-0.34 0.63+/-0.73 -0.11+/-0.84 4.97+/-1.75
PB04 -3.31+/-0.17 2.07+/-0.2 -1.07+/-0.4 -0.32+/-0.92 -0.26+/-1.1 3.28+/-2.22
PB05 -2.82+/-0.15 3.2+/-0.19 -0.85+/-0.38 -1.99+/-0.8 -0.05+/-0.99 7.77+/-2.00
PB06 -1.53+/-0.15 -0.29+/-0.18 -3.17+/-0.4 -1.58+/-0.66 1.84+/-0.76 4.01+/-1.70
PB07 -2.71+/-0.16 -1.17+/-0.18 -3.72+/-0.41 0.85+/-0.7 -0.44+/-0.8 -0.57+/-1.82
PB08 -3.71+/-0.14 -51.88+/-0.16 -4.37+/-0.33 0.54+/-0.7 -1.33+/-0.76 1.45+/-1.63
PB11 -16.99+/-0.18 -65.87+/-0.27 -6.04+/-0.48 -0.01+/-0.33 -1.58+/-0.49 0.2+/-0.85
PCCL -21.3+/-0.19 -28.72+/-0.21 -9.85+/-0.46 0.06+/-1.03 -0.73+/-1.15 0.39+/-2.58
PCHA 1.53+/-0.39 -1.73+/-0.39 1.89+/-0.98 -3.49+/-0.25 -2.98+/-0.25 -0.46+/-0.62
PICC -0.12+/-0.25 -47.47+/-0.27 -5.93+/-0.54 0.21+/-1.36 -1.96+/-1.5 4.64+/-2.98
PMCA -7.26+/-4.31 -23.88+/-4.67 -8.65+/-11.5 -2.46+/-0.45 2.06+/-0.48 9.59+/-1.19
PMEJ -2.28+/-0.21 1.77+/-0.26 -0.66+/-0.62 -0.95+/-0.81 2.52+/-1.01 5.04+/-2.40
PSGA -18.21+/-0.18 -53.17+/-0.21 -20.65+/-0.5 0.77+/-0.97 -0.81+/-1.15 1.23+/-2.73
PTCL 3.34+/-0.21 -1.21+/-0.23 -1.07+/-0.81 -1.02+/-1.01 -0.53+/-1.13 7.94+/-3.91
PTRE -21.78+/-0.22 -17.98+/-0.23 0.6+/-0.47 0.31+/-1.1 -1.66+/-1.15 -1.73+/-2.41
RADO 1.18+/-0.17 -0.22+/-0.2 -0.2+/-0.41 -0.15+/-0.89 -1.66+/-1.03 1.78+/-2.17
SJUA -0.29+/-0.14 1.18+/-0.17 -0.82+/-0.36 -0.44+/-0.5 -0.66+/-0.61 3.74+/-1.28
SRGD -1.81+/-0.18 2.06+/-0.2 -2.27+/-0.47 -1.25+/-0.95 0.72+/-1.07 4.52+/-2.53
TORA -0.11+/-0.05 -0.11+/-0.05 -0.03+/-0.14 0.58+/-0.52 -1.65+/-0.61 -2.38+/-1.55
TQPL -1.3+/-0.15 0.55+/-0.16 -3.09+/-0.35 0.54+/-0.74 -2.05+/-0.8 0.88+/-1.79
TRTA -7.15+/-0.19 -0.37+/-0.17 -11.37+/-0.4 -0.55+/-0.96 -1.61+/-0.89 9.68+/-2.07
UAPE -9.43+/-0.32 -66.73+/-0.36 -10.88+/-0.89 -0.66+/-1.77 -0.12+/-2.02 -9.78+/-4.98
UCNF -2+/-0.17 1.37+/-0.2 -3.13+/-0.44 -1.77+/-0.62 0.91+/-0.74 4.51+/-1.66
UTAR -24+/-0.23 -27.75+/-0.27 -8.42+/-0.64 0.2+/-1.32 -2.13+/-1.51 -0.51+/-3.59
VLZL -2.31+/-0.18 1.36+/-0.2 -3.29+/-0.4 -2.26+/-0.66 1.02+/-0.74 4.06+/-1.46

Table A.8: Coseismic (North, East and Vertical) and Postseismic (PS) values obtained inverted the Equation
4.2 for Iquique Earthquake (Mw 8.1, 2014/04/01). Values and errors are in mm.

A.1.3 Coseismic Offsets Earthquakes of Mw < 7.5

Station North East Vertical
AREQ -10.67+/-1.24 -14.15+/-1.42 0.82+/-2.98
UAPE -3.09+/-1.09 2.17+/-1.25 -3.93+/-3.08

Table A.9: Coseismic parameters earthquake Mw 6.7 in 2001/06/26. Values and errors are in mm.

Station North East Vertical
UAPE 3.03+/-0.63 3.32+/-0.72 0.82+/-2.98

Table A.10: Coseismic parameters earthquake Mw 6.4 in 2001/07/24. Values and errors are in mm.

Station North East Vertical
AEDA 0.13+/-0.90 -0.02+/-1.13 -3.93+/-3.08
CDLC -37.00+/-0.91 -107.78+/-1.01 2.92+/-1.78
CJNT 2.21+/-0.97 -13.86+/-1.06 5.61+/-2.95
CRSC 0.25+/-1.04 -0.68+/-1.16 -70.17+/-2.10
JRGN -109.19+/-1.16 -151.42+/-1.28 -4.34+/-2.26
MCLA -52.22+/-1.04 -91.67+/-1.20 -3.09+/-2.20
PMEJ -84.47+/-1.18 -218.49+/-1.47 144.20+/-2.61
QUIL -38.11+/-0.65 -58.13+/-0.74 172.75+/-2.28
SRGD 4.17+/-0.98 -119.08+/-1.10 191.02+/-3.50
UAPE 1.26+/-1.73 1.57+/-1.98 -29.00+/-1.62
VLZL -19.54+/-0.95 -96.91+/-1.08 -44.76+/-2.60

Table A.11: Coseismic parameters earthquake Mw 6.3 in 2007/11/15. Values and errors are in mm.
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Station North East Vertical
CBAA 1.05+/-0.22 3.45+/-0.23 -2.06+/-4.87
CDLC 2.50+/-0.22 1.66+/-0.25 -34.13+/-2.11
CJNT -1.16+/-0.23 2.60+/-0.25 -2.71+/-0.45
CRSC 0.26+/-0.27 0.63+/-0.30 -0.91+/-0.52
CTLR 0.37+/-0.24 0.72+/-0.25 -1.61+/-0.54
JRGN 5.40+/-0.31 -6.13+/-0.34 0.07+/-0.58
MCLA -0.16+/-0.27 -1.78+/-0.31 3.43+/-0.60
PB01 1.68+/-0.26 0.88+/-0.28 -11.31+/-0.69
PB02 0.66+/-0.23 0.77+/-0.26 -1.02+/-0.60
PB03 1.45+/-0.22 2.39+/-0.26 -4.91+/-0.67
PB04 1.69+/-0.26 -0.10+/-0.32 -2.41+/-0.56
PB05 1.46+/-0.24 -0.44+/-0.29 0.82+/-0.54
PMEJ -1.30+/-0.36 -4.93+/-0.45 -5.24+/-0.64
QUIL -0.16+/-0.24 0.88+/-0.27 -1.83+/-0.59
RADO 1.85+/-0.37 7.12+/-0.42 -26.07+/-1.07
SRGD 0.74+/-0.26 4.91+/-0.29 0.19+/-0.60
URCU 0.16+/-0.13 -0.61+/-0.15 2.41+/-0.89
VLZL -3.58+/-0.25 5.37+/-0.29 3.22+/-0.68

Table A.12: Coseismic parameters earthquake Mw 6.8 in 2007/11/15. Values and errors are in mm.

Station North East Vertical
AEDA -4.38+/-0.21 0.82+/-0.26 -2.22+/-0.29
ATJN -1.48+/-0.22 -0.45+/-0.23 10.60+/-0.56
CHMZ -1.92+/-0.17 -1.30+/-0.18 0.38+/-0.68
COLC -1.50+/-0.25 -0.22+/-0.27 -0.52+/-0.48
CRSC -1.85+/-0.21 0.00+/-0.23 -0.76+/-0.37
MICA -2.28+/-0.47 0.42+/-0.49 2.03+/-0.74
PB01 -0.05+/-0.19 -0.27+/-0.20 -1.45+/-0.44
PB02 -0.61+/-0.17 0.06+/-0.19 -4.11+/-0.96
PCCL -1.62+/-0.20 -0.43+/-0.23 -3.16+/-0.48
PCHA -4.18+/-0.22 -3.68+/-0.22 -3.39+/-0.40
PSGA -0.95+/-0.21 0.69+/-0.25 -1.96+/-0.50
QUIL 0.65+/-0.18 -1.02+/-0.21 3.65+/-0.56
UAPE -1.58+/-0.34 0.66+/-0.39 1.93+/-0.59
URCU 0.12+/-0.13 -2.01+/-0.16 0.49+/-0.45
UTAR -2.16+/-0.28 -0.73+/-0.33 2.00+/-0.95

Table A.13: Coseismic parameters earthquake Mw 6.3 in 2008/02/04. Values and errors are in mm.

Station North East Vertical
ATJN -4.96+/-0.13 -10.82+/-0.14 -3.36+/-0.30
CGTC 0.04+/-0.12 -2.49+/-0.13 2.82+/-0.77
CHMZ -0.61+/-0.10 -1.83+/-0.11 -3.04+/-0.28
CLLA -0.56+/-0.10 -0.92+/-0.11 -1.93+/-0.27
COLC 5.28+/-0.11 -1.61+/-0.13 -0.48+/-0.22
CRSC -1.17+/-0.12 -0.60+/-0.13 0.64+/-0.23
HMBS -0.20+/-0.09 -2.02+/-0.11 -14.98+/-0.34
IQQE -1.36+/-0.15 -0.87+/-0.16 -1.39+/-0.25
LYAR -1.27+/-0.11 -1.30+/-0.12 7.13+/-0.33
MNMI -2.32+/-0.13 -3.70+/-0.14 -1.49+/-0.37
PB01 -0.11+/-0.09 0.06+/-0.09 -1.69+/-0.27
PB08 -0.56+/-0.21 -1.82+/-0.22 -2.98+/-0.31
PCCL -2.15+/-0.12 -1.29+/-0.14 1.44+/-0.22
PSGA -0.85+/-0.11 -9.10+/-0.13 1.99+/-0.48
PTCL -0.65+/-0.13 -2.22+/-0.15 -2.11+/-0.30
PTRE -2.65+/-0.12 -0.68+/-0.13 -3.63+/-0.32
TQPL 0.06+/-0.13 -1.40+/-0.14 14.06+/-0.51
TRTA -1.57+/-0.13 -0.11+/-0.12 1.29+/-0.27
UAPE -1.42+/-0.85 -1.25+/-0.97 -1.89+/-0.30

Table A.14: Coseismic parameters earthquake Mw 6.5 in 2009/11/13. Values and errors are in mm.

209



Station North East Vertical
AREQ 0.65+/-0.15 -1.21+/-0.17 0.65+/-0.27
ATJN 0.66+/-0.13 -1.15+/-0.13 1.44+/-2.38
CBAA -1.01+/-0.39 -1.35+/-0.42 -0.08+/-0.35
CDLC -1.08+/-0.40 -1.45+/-0.45 0.20+/-0.28
CGTC 0.94+/-0.09 0.37+/-0.10 -1.02+/-0.81
CHMZ 0.76+/-0.10 0.52+/-0.11 -3.56+/-0.93
CJNT 0.45+/-0.43 -1.85+/-0.47 1.39+/-0.20
CLLA -0.24+/-0.36 -0.39+/-0.40 1.15+/-0.21
COLC 1.08+/-0.11 -0.91+/-0.13 0.27+/-1.01
CRSC 1.58+/-0.12 0.67+/-0.13 3.97+/-0.82
CTLR -1.48+/-0.39 0.08+/-0.40 2.71+/-0.34
ENAP 0.71+/-0.09 1.64+/-0.12 1.38+/-0.24
HMBS 1.51+/-0.12 0.43+/-0.14 -2.33+/-0.99
IQQE 0.49+/-0.14 1.82+/-0.15 -0.17+/-0.26
JRGN 0.50+/-0.16 -1.25+/-0.17 0.66+/-0.42
LAGU -1.78+/-0.10 2.88+/-0.12 0.35+/-0.36
LYAR 0.81+/-0.11 0.31+/-0.11 1.92+/-0.35
MCLA 1.40+/-0.08 -0.61+/-0.10 -19.74+/-0.32
MICA -0.19+/-0.30 -0.24+/-0.31 2.95+/-0.27
MNMI 0.63+/-0.12 -0.15+/-0.13 0.82+/-0.18
PB04 0.38+/-0.52 1.06+/-0.62 -1.27+/-0.61
PB06 0.66+/-0.12 0.17+/-0.14 -0.32+/-0.28
PB07 1.60+/-0.13 -0.42+/-0.15 -2.00+/-1.25
PCCL 1.10+/-0.12 -1.24+/-0.13 3.24+/-0.31
PICC 1.39+/-0.17 1.07+/-0.19 -2.57+/-0.33
PMEJ 1.25+/-0.11 0.74+/-0.14 1.62+/-0.29
PSGA 0.52+/-0.11 0.41+/-0.14 1.08+/-0.38
PTRE -0.04+/-0.12 0.04+/-0.13 -5.03+/-0.33
RADO -0.62+/-0.39 -1.35+/-0.45 2.84+/-0.32
SLRZ 1.08+/-0.08 0.72+/-0.10 2.46+/-0.27
SRGD -0.27+/-0.48 -1.39+/-0.54 -1.77+/-0.95
TQPL -0.42+/-0.10 -0.43+/-0.10 -0.49+/-0.22
TRTA -1.70+/-0.13 -2.81+/-0.12 0.63+/-1.28
UAPE 1.37+/-0.20 0.13+/-0.22 3.31+/-0.23
UCNF 1.61+/-0.09 1.28+/-0.11 0.13+/-0.28
UTAR 1.50+/-0.16 -1.67+/-0.18 0.54+/-0.55
VLZL 1.85+/-0.19 1.14+/-0.21 -2.58+/-0.25

Table A.15: Coseismic parameters Maule earthquake Mw 8.8 in 2010/02/27. Values and errors are in mm.

Station North East Vertical
CBAA 1.99+/-0.39 0.48+/-0.43 3.98+/-0.43
CDLC 1.43+/-0.41 -0.19+/-0.46 -0.71+/-0.42
CJNT 1.59+/-0.44 -0.08+/-0.48 -0.06+/-0.82
CLLA 0.77+/-0.36 0.23+/-0.39 1.82+/-0.95
CTLR 2.53+/-0.39 0.14+/-0.41 -1.17+/-1.02
MICA 1.20+/-0.31 0.74+/-0.32 -2.49+/-0.81
PB04 0.82+/-0.52 -0.81+/-0.62 -0.85+/-0.99
RADO 0.93+/-0.39 0.89+/-0.45 3.38+/-0.63
SRGD 1.47+/-0.49 0.30+/-0.55 1.98+/-1.25

Table A.16: Coseismic parameters earthquake Mw 6.3 in 2010/03/24. Values and errors are in mm.

Station North East Vertical
GUAD 0.36+/-0.09 0.52+/-0.11 1.99+/-0.95

Table A.17: Coseismic parameters earthquake Mw 6.1 in 2010/05/23. Values and errors are in mm.

Station North East Vertical
CBAA 0.70+/-0.09 0.26+/-0.10 -1.04+/-1.29
CDLC -0.10+/-0.16 -0.20+/-0.18 4.15+/-0.28
CJNT 0.85+/-0.12 0.51+/-0.13 -0.46+/-0.20
MICA 1.35+/-0.08 1.28+/-0.09 3.10+/-0.37
PB06 0.66+/-0.10 -0.98+/-0.12 0.67+/-0.28
SRGD 0.33+/-0.10 -0.16+/-0.12 -1.08+/-0.17

Table A.18: Coseismic parameters earthquake Mw 6.3 in 2010/07/12. Values and errors are in mm.

Station North East Vertical
ATJN 1.32+/-0.17 -0.57+/-0.18 0.02+/-0.26
LYAR -0.30+/-0.11 -0.46+/-0.12 0.55+/-0.27
MNMI -0.48+/-0.10 -1.03+/-0.11 -1.67+/-0.37
PCCL 0.09+/-0.10 0.17+/-0.11 -0.16+/-0.27
PTRE 0.23+/-0.09 0.11+/-0.09 -0.90+/-0.23
TRTA 0.31+/-0.12 -2.31+/-0.11 -1.77+/-0.24

Table A.19: Coseismic parameters earthquake Mw 6.3 in 2011/03/06. Values and errors are in mm.
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Station North East Vertical
CBAA 0.21+/-0.08 -0.55+/-0.09 -2.03+/-0.20
CDLC -0.26+/-0.10 -1.29+/-0.11 0.38+/-0.26
CLLA 0.18+/-0.08 -1.08+/-0.09 0.27+/-0.17
MICA 1.13+/-0.07 -0.35+/-0.07 -0.39+/-0.22
PB01 0.12+/-0.09 -1.01+/-0.10 0.79+/-0.18
PB07 -0.45+/-0.10 -0.93+/-0.12 -1.32+/-0.13
RADO -0.16+/-0.09 -0.60+/-0.10 0.78+/-0.24

Table A.20: Coseismic parameters earthquake Mw 6.4 in 2011/06/20. Values and errors are in mm.

Station North East Vertical
ATIC -0.56+/-0.09 -0.57+/-0.10 1.30+/-0.27
CHRA -0.43+/-0.08 -1.42+/-0.09 2.98+/-0.21
GLRV -1.42+/-0.09 -2.61+/-0.10 -2.25+/-0.23
GUAD -11.07+/-0.11 -8.29+/-0.13 0.49+/-0.29
HUAN -1.77+/-0.10 -2.50+/-0.12 -0.75+/-0.21
NZCA -0.31+/-0.10 -8.45+/-0.13 -4.64+/-0.33
PTIN -0.55+/-0.08 -1.00+/-0.08 -1.97+/-0.28
SJUA -0.03+/-0.09 -2.14+/-0.11 -2.49+/-0.30

Table A.21: Coseismic parameters earthquake Mw 6.9 in 2011/10/28. Values and errors are in mm.

Station North East Vertical
GLRV 1.30+/-0.08 -2.65+/-0.09 2.73+/-0.20
GUAD 1.91+/-0.11 -4.05+/-0.13 -1.99+/-0.24
LAGU 3.30+/-0.18 -5.75+/-0.22 0.22+/-0.19
LOMI -3.43+/-0.18 -2.42+/-0.13 0.76+/-0.34

Table A.22: Coseismic parameters earthquake Mw 6.4 in 2012/01/30. Values and errors are in mm.

Station North East Vertical
ATJN 0.55+/-0.09 0.13+/-0.10 -3.25+/-0.57
COLC -0.64+/-0.11 -0.34+/-0.12 2.93+/-0.25
DANC 0.45+/-0.08 -1.06+/-0.09 0.97+/-0.21
LYAR 0.24+/-0.10 -0.71+/-0.11 5.13+/-0.33
MNMI -0.44+/-0.11 -0.23+/-0.12 0.69+/-0.19
PALC 0.80+/-0.08 -1.14+/-0.09 0.08+/-0.27
PCCL 0.90+/-0.11 0.57+/-0.12 1.28+/-0.25
PSGA -0.72+/-0.10 0.83+/-0.11 -1.54+/-0.21
PTCL -0.64+/-0.12 -1.55+/-0.13 1.06+/-0.26
TQPL -0.15+/-0.10 -0.13+/-0.11 -0.72+/-0.27
TRTA 2.07+/-0.13 1.51+/-0.12 -5.22+/-0.47
UTAR 0.16+/-0.12 1.23+/-0.14 1.77+/-0.24

Table A.23: Coseismic parameters earthquake Mw 6.2 in 2012/05/14. Values and errors are in mm.

Station North East Vertical
AREQ 0.66+/-0.18 -0.15+/-0.20 1.43+/-0.28
ATIC 0.13+/-0.09 -0.42+/-0.11 -1.68+/-0.33
CHRA -0.26+/-0.08 -0.26+/-0.09 2.80+/-0.43
QUCA 2.70+/-0.14 0.50+/-0.14 0.63+/-0.24

Table A.24: Coseismic parameters earthquake Mw 6.1 in 2012/06/07. Values and errors are in mm.

Station North East Vertical
AREQ 0.55+/-0.16 -0.75+/-0.18 0.44+/-0.30
ATIC -1.87+/-0.10 -0.30+/-0.11 -10.58+/-0.40
CHRA -1.58+/-0.10 0.72+/-0.10 -0.77+/-0.38
DANC 0.30+/-0.09 1.01+/-0.09 -2.55+/-0.25
GLRV -6.84+/-0.15 -1.89+/-0.16 -0.34+/-0.35
GUAD -0.23+/-0.10 -0.39+/-0.12 -1.27+/-0.20
LAGU 0.58+/-0.11 -0.42+/-0.14 -3.08+/-0.34
LOMI 8.42+/-0.15 1.74+/-0.11 -0.27+/-0.30
LYAR 0.04+/-0.10 0.05+/-0.10 -2.22+/-0.35
NZCA -2.54+/-0.08 -0.56+/-0.11 -3.61+/-0.20
PALC 1.04+/-0.09 -0.69+/-0.09 -1.41+/-0.25
PCCL 0.88+/-0.10 1.08+/-0.12 -1.47+/-0.26
PTCL 0.49+/-0.17 0.24+/-0.19 -1.41+/-0.21
SJUA 6.47+/-0.09 -5.16+/-0.11 -1.56+/-0.26
TQPL 0.29+/-0.08 0.45+/-0.09 -7.57+/-0.66
TRTA -0.95+/-0.11 1.00+/-0.10 3.02+/-0.23
UTAR 0.62+/-0.13 0.31+/-0.15 -1.06+/-0.19
RADO 1.83+/-0.10 -1.06+/-0.12 -1.24+/-0.24
PTIN -6.04+/-0.10 -7.26+/-0.11 -5.04+/-0.35

Table A.25: Coseismic parameters Acari earthquake Mw 7.1 in 2013/09/25. Values and errors are in mm.
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Station North East Vertical
AEDA -0.72+/-0.26 -0.65+/-0.32 24.06+/-0.24
ATJN 0.33+/-0.30 0.76+/-0.32 -0.99+/-0.27
CGTC -0.91+/-0.21 0.61+/-0.23 -0.52+/-0.83
CHMZ -0.16+/-0.23 0.55+/-0.25 -4.00+/-0.67
CRSC 0.54+/-0.29 0.13+/-0.32 -2.98+/-0.47
IQQE 0.17+/-0.33 0.03+/-0.35 -1.74+/-0.51
LYAR -0.11+/-0.25 1.85+/-0.27 -2.47+/-0.61
MNMI -1.64+/-0.24 0.22+/-0.27 -3.30+/-0.84
PB01 0.02+/-0.25 1.02+/-0.27 -0.87+/-0.64
PB02 -0.10+/-0.22 0.63+/-0.25 0.67+/-0.57
PB08 -0.61+/-0.19 1.09+/-0.21 -2.25+/-0.65
PB11 -2.37+/-0.14 -0.98+/-0.20 -0.81+/-0.53
PCCL -0.53+/-0.29 1.54+/-0.32 0.77+/-0.45
PCHA 0.72+/-0.32 2.60+/-0.32 2.11+/-0.35
PICC 0.06+/-0.37 2.09+/-0.41 -2.91+/-0.72
PSGA 0.06+/-0.26 0.22+/-0.31 0.87+/-0.80
UAPE -0.68+/-0.48 -0.74+/-0.55 -1.88+/-0.81
UTAR -0.88+/-0.37 2.72+/-0.42 0.34+/-0.74

Table A.26: Coseismic parameters earthquake Mw 6.3 in 2014/03/03. Values and errors are in mm.

Station North East Vertical
GUAD -2.13+/-0.84 -1.35+/-1.02 -5.65+/-1.34
LAGU -2.43+/-0.97 -0.51+/-1.18 -3.84+/-0.99
LOMI 0.00+/-1.08 1.53+/-0.76 2.35+/-2.56
NZCA -3.14+/-0.16 1.08+/-0.22 -2.61+/-3.00
SJUA -2.21+/-0.18 0.78+/-0.22 4.38+/-1.44

Table A.27: Coseismic parameters earthquake Mw 6.2 in 2014/03/14. Values and errors are in mm.

Station North East Vertical
GUAD -1.98+/-0.86 0.07+/-1.04 2.71+/-0.50
LAGU -1.63+/-1.00 -6.87+/-1.22 2.58+/-0.47
LOMI 0.26+/-1.11 0.04+/-0.78 5.37+/-2.62

Table A.28: Coseismic parameters earthquake Mw 6.0 in 2014/03/15. Values and errors are in mm.

Station North East Vertical
AEDA -0.93+/-0.90 1.68+/-1.12 -7.32+/-3.08
ATJN -1.60+/-1.09 0.62+/-1.17 -1.96+/-1.48
CDLC -1.59+/-0.29 0.97+/-0.32 -3.00+/-2.95
CGTC -1.22+/-0.77 2.29+/-0.85 -2.48+/-2.42
CHMZ -1.24+/-0.83 1.73+/-0.90 0.38+/-0.67
COLC -2.97+/-0.24 -0.19+/-0.27 -6.76+/-1.69
CRSC -1.24+/-1.04 1.81+/-1.17 -1.03+/-1.84
DANC -2.70+/-0.16 0.14+/-0.17 2.52+/-0.73
IQQE -1.63+/-1.20 2.76+/-1.28 -0.15+/-2.21
LYAR -2.74+/-0.40 -0.39+/-0.43 4.78+/-0.36
PALC -3.38+/-0.16 0.99+/-0.17 -4.90+/-3.05
PB01 -2.26+/-0.32 -0.88+/-0.34 4.80+/-1.03
PB02 0.04+/-0.80 0.90+/-0.89 4.04+/-0.40
PB03 -2.39+/-0.19 1.31+/-0.22 5.48+/-0.83
PB04 -1.80+/-0.23 1.41+/-0.28 -1.93+/-1.92
PB07 -2.55+/-0.18 1.69+/-0.21 0.77+/-0.45
PB08 -0.93+/-0.69 1.50+/-0.75 1.90+/-0.56
PB11 -1.69+/-0.32 0.11+/-0.48 2.94+/-0.47
PCCL -2.36+/-0.48 -0.10+/-0.54 0.92+/-1.60
PCHA -1.23+/-1.16 1.18+/-1.17 2.86+/-0.84
PICC -1.46+/-1.34 1.04+/-1.48 4.50+/-1.21
PSGA -1.02+/-0.95 2.38+/-1.13 -3.22+/-2.92
PTCL -3.55+/-0.27 2.19+/-0.30 -3.43+/-2.93
PTRE -2.30+/-0.40 1.72+/-0.42 -0.16+/-2.69
RADO -2.62+/-0.23 1.01+/-0.27 3.42+/-1.04
TORA -2.97+/-0.14 2.77+/-0.16 2.24+/-0.88
TQPL -2.37+/-0.19 1.64+/-0.21 3.14+/-0.56
TRTA -4.92+/-0.25 1.23+/-0.24 1.52+/-0.42
UAPE -1.34+/-1.74 2.54+/-1.99 5.59+/-0.47
UTAR -1.21+/-1.30 -0.34+/-1.49 4.55+/-0.55

Table A.29: Coseismic parameters earthquake Mw 6.6 in 2014/03/16. Values and errors are in mm.
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Station North East Vertical
AEDA 0.91+/-0.95 -3.11+/-1.19 -5.08+/-4.90
ATJN -3.58+/-1.15 -4.52+/-1.24 -2.68+/-3.53
CGTC 0.41+/-0.81 -5.79+/-0.89 4.38+/-3.11
CHMZ -1.60+/-0.86 -2.65+/-0.94 5.45+/-2.56
CRSC 0.89+/-1.10 -1.64+/-1.23 9.85+/-1.79
IQQE 1.10+/-1.27 -6.81+/-1.35 5.10+/-1.92
PB02 -1.98+/-0.79 -1.42+/-0.89 4.19+/-2.33
PB08 -1.37+/-0.72 -1.13+/-0.78 9.00+/-3.21
PB11 -1.02+/-0.34 -3.66+/-0.51 4.87+/-1.91
PCHA -1.20+/-1.23 -2.54+/-1.23 3.15+/-1.67
PICC 0.06+/-1.39 -2.32+/-1.54 4.79+/-0.88
PSGA -4.24+/-1.00 -6.05+/-1.19 8.95+/-3.08
UAPE 0.75+/-1.84 -5.63+/-2.10 6.45+/-3.05
UTAR -1.62+/-1.37 0.65+/-1.57 3.28+/-2.84

Table A.30: Coseismic parameters earthquake Mw 6.1 in 2014/03/17. Values and errors are in mm.

Station North East Vertical
AEDA -1.23+/-0.95 -4.16+/-1.19 12.14+/-5.17
ATJN -2.80+/-1.15 -5.23+/-1.24 8.16+/-3.73
CGTC -1.90+/-0.81 -6.22+/-0.89 -3.77+/-3.11
CRSC -2.36+/-1.10 -5.35+/-1.23 -3.03+/-2.56
IQQE -1.80+/-1.27 -4.92+/-1.35 -3.52+/-1.79
PB11 -2.78+/-0.34 -6.29+/-0.51 -2.89+/-2.33
PCCL -2.30+/-1.06 -5.51+/-1.18 -2.98+/-3.21
PCHA -2.59+/-1.23 -5.22+/-1.23 -4.50+/-0.88
PSGA -2.29+/-1.00 -6.63+/-1.19 -4.04+/-2.64
UAPE -1.86+/-1.84 -7.07+/-2.10 -2.87+/-3.08
UTAR -2.15+/-1.37 -6.92+/-1.57 -1.26+/-2.84

Table A.31: Coseismic parameters earthquake Mw 6.0 in 2014/03/22. Values and errors are in mm.

Station North East Vertical
AEDA 1.57+/-0.92 2.83+/-1.15 1.30+/-5.17
ATJN -0.92+/-1.11 -0.14+/-1.19 -3.89+/-3.73
CGTC 1.65+/-0.78 2.31+/-0.86 7.43+/-3.01
CHMZ -0.54+/-0.42 -1.69+/-0.46 5.00+/-2.46
CRSC 1.48+/-1.06 4.27+/-1.18 4.99+/-1.72
IQQE 1.60+/-1.22 2.48+/-1.30 0.38+/-0.94
LYAR -0.70+/-0.43 -0.46+/-0.47 5.48+/-2.24
PB08 -0.36+/-0.35 -1.11+/-0.38 2.45+/-3.09
PB11 1.19+/-0.33 1.69+/-0.49 0.08+/-1.10
PCCL 0.63+/-1.03 3.66+/-1.15 0.80+/-0.81
PCHA 0.97+/-1.18 2.55+/-1.18 5.82+/-0.85
PICC -0.66+/-0.68 -1.14+/-0.75 5.82+/-2.58
PSGA -0.60+/-0.97 -1.61+/-1.15 6.90+/-2.97
PTRE -1.23+/-0.53 -0.90+/-0.55 0.79+/-1.49
UAPE 2.37+/-1.77 4.46+/-2.02 1.11+/-2.73
UTAR 1.10+/-1.32 4.63+/-1.51 1.67+/-1.15

Table A.32: Coseismic parameters earthquake Mw 6.2 in 2014/03/23. Values and errors are in mm.

Station North East Vertical
AEDA -10.78+/-1.23 -72.46+/-1.53 1.40+/-4.98
ATJN -282.16+/-1.49 -540.47+/-1.60 3.83+/-3.59
CGTC 68.26+/-1.05 -409.04+/-1.16 -15.69+/-4.02
CHMZ -15.33+/-0.56 -116.08+/-0.62 -158.32+/-3.30
COLC -13.30+/-0.65 -54.06+/-0.72 -6.82+/-1.26
CRSC -2.03+/-0.71 -8.11+/-0.79 -0.23+/-1.95
DANC -10.09+/-0.79 -5.28+/-0.85 -9.38+/-1.50
LYAR -19.99+/-1.21 -13.81+/-1.31 -9.38+/-1.50
MCLA -0.86+/-1.43 1.43+/-1.65 0.03+/-1.81
MNMI -61.06+/-0.65 -125.81+/-0.72 -3.49+/-3.14
PALC -28.25+/-0.99 -17.25+/-1.08 -10.46+/-1.52
PB05 -1.84+/-1.13 0.93+/-1.40 -8.44+/-2.40
PB06 -1.24+/-0.93 0.03+/-1.08 -5.07+/-3.05
PB07 -1.79+/-0.96 -3.65+/-1.09 -9.05+/-2.82
PB11 -60.20+/-0.44 -461.92+/-0.65 -0.96+/-2.40
PCCL -37.22+/-0.69 -33.80+/-0.77 -87.45+/-1.14
PCHA -4.15+/-0.79 -157.44+/-0.79 -4.62+/-1.73
PICC 20.43+/-0.91 -62.43+/-1.01 -15.04+/-1.99
PMCA -2.69+/-0.69 -1.66+/-0.75 -7.98+/-2.00
PSGA -231.52+/-1.30 -810.67+/-1.54 -7.98+/-2.00
PTCL 3.57+/-1.38 -0.61+/-1.55 -12.31+/-1.84
PTRE -26.88+/-0.74 -24.50+/-0.77 -6.08+/-5.36
RADO 3.94+/-1.22 -3.66+/-1.41 -0.33+/-1.62
SRGD -0.96+/-1.35 -0.99+/-1.52 -0.33+/-1.62
TORA -1.62+/-0.71 -1.53+/-0.83 -0.96+/-2.97
TQPL -5.72+/-1.02 -1.13+/-1.10 -2.00+/-3.58
TRTA -17.39+/-1.32 -9.32+/-1.22 -0.27+/-2.12
UTAR -35.25+/-0.89 -28.16+/-1.02 -4.03+/-2.85

Table A.33: Coseismic parameters earthquake Mw 6.7 in 2014/04/02. Values and errors are in mm.
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Station North East Vertical
AEDA -68.88+/-1.23 -243.14+/-1.53 -13.17+/-2.41
AREQ 3.11+/-1.20 -1.07+/-1.38 -13.17+/-2.41
ATIC -1.35+/-0.54 2.30+/-0.62 97.55+/-4.02
ATJN -5.48+/-1.49 -13.26+/-1.60 -2.37+/-2.89
CBAA 3.84+/-0.74 -4.36+/-0.80 1.72+/-1.36
CGTC -30.33+/-1.05 -139.43+/-1.16 -4.17+/-3.30
CHMZ -28.96+/-0.84 -52.87+/-0.92 -1.54+/-1.54
CJNT 2.58+/-0.71 -4.94+/-0.77 7.37+/-2.31
COLC -11.89+/-0.94 -19.88+/-1.05 -4.86+/-1.87
CRSC -16.75+/-1.42 -67.12+/-1.59 -1.44+/-1.65
DANC 1.65+/-0.79 -1.25+/-0.85 -2.54+/-2.83
IQQE 7.94+/-1.64 -477.44+/-1.74 -3.82+/-3.01
JRGN -0.96+/-0.84 -1.22+/-0.93 -3.87+/-1.81
LYAR -0.68+/-0.88 -1.38+/-0.95 13.24+/-4.15
MCLA -0.56+/-1.04 -1.53+/-1.20 2.40+/-1.89
MNMI -15.85+/-0.94 -20.88+/-1.04 6.12+/-2.25
NZCA 0.07+/-0.47 -0.91+/-0.63 2.53+/-2.27
PALC 0.51+/-1.12 0.00+/-1.22 -3.54+/-2.21
PB01 19.92+/-1.22 -48.17+/-1.28 -2.88+/-1.45
PB02 2.41+/-1.09 -15.82+/-1.21 -2.05+/-2.79
PB03 0.77+/-0.72 -4.75+/-0.84 0.64+/-3.13
PB04 -0.92+/-0.91 -1.70+/-1.09 -5.69+/-2.61
PB05 0.13+/-0.82 -2.05+/-1.02 -1.79+/-1.74
PB06 0.56+/-0.68 -0.97+/-0.79 -2.56+/-2.21
PB07 1.41+/-0.96 -1.89+/-1.09 1.02+/-2.04
PB08 3.32+/-0.94 -256.17+/-1.02 0.63+/-1.75
PB11 -38.91+/-0.44 -59.15+/-0.65 -1.07+/-2.49
PCCL -5.25+/-1.01 -4.08+/-1.12 -21.95+/-2.18
PCHA -35.66+/-1.58 -72.14+/-1.59 -16.27+/-1.14
PICC 0.32+/-1.82 -103.48+/-2.01 -6.68+/-2.51
PMCA 2.57+/-0.74 -0.86+/-0.81 -21.47+/-3.98
PMEJ -1.36+/-0.85 -1.40+/-1.06 -23.11+/-3.99
PSGA -11.98+/-1.30 -27.52+/-1.54 -0.22+/-1.99
PTCL 2.14+/-1.01 -0.84+/-1.13 -5.50+/-2.52
PTRE -3.07+/-1.08 -3.83+/-1.12 -3.96+/-3.66
RADO 4.21+/-0.89 -8.29+/-1.03 -8.67+/-3.90
SJUA 1.06+/-0.49 1.25+/-0.61 -0.35+/-2.36
SRGD 1.17+/-0.98 -1.68+/-1.10 -2.02+/-2.17
TQPL 1.78+/-0.74 -2.54+/-0.80 -3.17+/-1.28
TRTA -0.85+/-0.96 -3.08+/-0.89 1.00+/-2.59
UAPE 15.95+/-2.37 -514.78+/-2.71 -0.14+/-1.78
UCNF -0.11+/-0.65 0.09+/-0.77 -2.23+/-2.07
UTAR -6.08+/-1.28 -7.43+/-1.47 110.75+/-6.68
VLZL -0.59+/-0.69 -1.06+/-0.78 0.13+/-1.74

Table A.34: Coseismic parameters earthquake Mw 7.6 in 2014/04/03. Values and errors are in mm.

Station North East Vertical
AEDA -7.37+/-0.89 -23.83+/-1.11 11.07+/-3.49
ATJN -3.92+/-1.08 -12.03+/-1.16 -1.09+/-1.53
CGTC -7.08+/-0.76 -15.87+/-0.84 4.20+/-2.91
CRSC -0.43+/-1.04 -12.42+/-1.16 -2.98+/-2.39
IQQE -8.00+/-1.18 -20.82+/-1.26 -5.99+/-1.67
PB01 0.95+/-0.89 -6.84+/-0.93 3.42+/-2.20
PB02 0.44+/-0.79 -4.09+/-0.88 -7.17+/-3.01
PB07 -2.00+/-0.70 -3.34+/-0.81 -13.65+/-2.27
PB08 -2.36+/-0.68 -5.88+/-0.74 -1.84+/-1.89
PB11 -7.51+/-0.33 -8.98+/-0.48 -1.51+/-1.84
PCHA -7.26+/-1.15 -8.51+/-1.16 -1.48+/-1.59
PICC -1.88+/-1.32 -9.00+/-1.46 -1.90+/-0.84
PSGA -3.70+/-0.94 -9.43+/-1.11 -6.08+/-2.89
UAPE -6.43+/-1.72 -16.25+/-1.96 -4.71+/-2.89

Table A.35: Coseismic parameters earthquake Mw 6.0 in 2014/04/04. Values and errors are in mm.

Station North East Vertical
ATIC -1.30+/-0.14 1.29+/-0.17 -8.46+/-2.65
NZCA -1.91+/-0.13 0.09+/-0.17 -15.25+/-4.83

Table A.36: Coseismic parameters earthquake Mw 6.2 in 2014/08/24. Values and errors are in mm.
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A.2 North, East and Vertical Displacements of Network Stations

(a)

(b)

(c) (d)

Figure A.1: Daily Displacement Time Series and its best-fit trajectory model (red curves) for (a) AEDA, (b)
ATIC, (c) ATJN and (d) CBAA stations. The box shows the velocity obtained for each component with its respective
error associated. Purple vertical lines indcate the antenna changes, yellow vertical lines are earthquake with M ≥ 7.5
(for which post-seismic signal is modeled), while cyan vertical lines represent the earthquakes 6.0 ≤ M < 7.5. Model
RMS is annotated on the information boxes.
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(a) (b)

(c) (d)

Figure A.2: Same caption as in Figure A.1, but for (a) CDLC, (b) CGTC, (c) CHMZ and (d) CHRA stations.
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(a) (b)

(c) (d)

Figure A.3: Same caption as in Figure A.1, but for (a) CJNT, (b) CLLA, (c) COLC and (d) COLL stations.
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(a)
(b)

(c) (d)

Figure A.4: Same caption as in Figure A.1, but for (a) CRSC, (b) CTLR, (c) DANC and (d) ENAP stations.
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(a)
(b)

(c) (d)

Figure A.5: Same caption as in Figure A.1, but for (a) FBAQ, (b) GLRV, (c) GUAD and (d) HMBS stations.
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(a) (b)

(c)

(d)

Figure A.6: Same caption as in Figure A.1, but for (a) HUAN, (b) IQQE, (c) JRGN and (d) LAGN stations.
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(a) (b)

(c) (d)

Figure A.7: Same caption as in Figure A.1, but for (a) LAGU, (b) LOMI, (c) LYAR and (d) MCLA stations.
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(a)
(b)

(c) (d)

Figure A.8: Same caption as in Figure A.1, but for (a) MICA, (b) MNMI, (c) NZCA and (d) PALC stations.
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(a) (b)

(c) (d)

Figure A.9: Same caption as in Figure A.1, but for (a) PB01, (b) PB02, (c) PB03 and (d) PB04 stations.
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(a) (b)

(c) (d)

Figure A.10: Same caption as in Figure A.1, but for (a) PB05, (b) PB06, (c) PB07 and (d) PB08 stations.
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(a)
(b)

(c)
(d)

Figure A.11: Same caption as in Figure A.1, but for (a) PB11, (b) PCCL, (c) PCHA and (d) PICC stations.
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(a) (b)

(c)
(d)

Figure A.12: Same caption as in Figure A.1, but for (a) PMCA, (b) PMEJ, (c) PSGA and (d) PTCL stations.
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(a) (b)

(c) (d)

Figure A.13: Same caption as in Figure A.1, but for (a) PTIN, (b) PTRE, (c) QUCA and (d) QUIL stations.
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(a)
(b)

(c) (d)

Figure A.14: Same caption as in Figure A.1, but for (a) RADO, (b) SJUA, (c) SLRZ and (d) SRGD stations.
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(a) (b)

(c) (d)

Figure A.15: Same caption as in Figure A.1, but for (a) TORA, (b) TQPL, (c) TRTA and (d) UAPE stations.
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(a)
(b)

(c)
(d)

Figure A.16: Same caption as in Figure A.1, but for (a) UCNF, (b) URCU, (c) UTAR and (d) VLZL stations.
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