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Chapter 1

INTRODUCTION

1.1 Context

Several types of violas are played in numerous cultural manifestations throughout the Brazilian
territory. Such chordophones, which we can call in a general way of Brazilian violas, have variant
characteristics and are related to musical practices of specific regions. The Brazilian violas differ mainly
in the shape of the resonance box, number and arrangement of the strings, composition materials and
tuning type. This research is focused on the type of Brazilian viola known as viola caipira, which
permeates various genres of traditional and modern Brazilian music, and whose practice extends across all
regions of Brazil, being considered one of the Brazilian cultural symbols. Unlike other string instruments
such as guitars and violins, the viola caipira is a seldom explored instrument from the perspective
of musical acoustics. This thesis proposes the characterization of this instrument in vibrational and
acoustical terms with the objective of identifying its specificities.

The correlation between the structural characteristics of a musical instrument and the subjective
evaluation of its sound attributes is an issue investigated for at least five decades, and whose understanding
has advanced under contributions from different scientific domains such as the acoustics, mechanics,
signal processing, computation and psychology. In this context, two types of methodological approaches
complement each other: the objective, which proposes to study the relationship between the instrument
and the sound produced through physical parameters; and the perceptive, which analyses the sound
produced by the instrument from the sensory experience of the individual - musician and/or listener -
based on fundamentals and methods of contemporary psychology. In this Ph.D. work, the study of the
viola caipira is limited to physical characterization of the instrument involving different methods such as
vibration and sound pressure measurements, investigation of string motion using high speed camera,
physical modelling for sound synthesis purposes and numerical modelling using the finite element
method.

The sound produced by string instruments like the viola capira is the result of the interaction between
several subsystems: the mechanisms of excitation associated with the musician (e.g., finger, nail, pick or
plectrum), strings, instrument body and finally, the listener in the room where the instrument is played.
When the musician applies a gesture on the instrument, force transients are exerted on one or more strings,
which in turn resonate freely and transfer to the body of the instrument most of the energy that is converted
into radiated sound. Therefore, the interaction between the strings and instrument body, which naturally
depends on the physical characteristics of these two subsystems, is an important aspect in the production
of sound. In this sense, a set of methods known as physical modelling uses physical equations to describe
the vibrational behaviour of the string/body system usually through coupled partial differential equations
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containing information on material properties, geometry and boundary conditions. Given the input
parameters describing the distribution of one or more excitation forces and/or initial conditions along
the strings, a physical model consists in solving the motion equations numerically by using appropriated
approximations methods. The output of the model can be selected at a point, for example, the string
displacement at the excitation point or the radiated pressure at a specific point in front of the body. The
development of sound synthesis methods based on physical models has grown significantly in the last
three decades, mainly due to the advent of technology and consequent improvement in the processing
capacity of computers. In this context, this thesis proposes a physical model for sound synthesis able to
reproduce the sound specificities of the viola caipira.

Within the scope of musical acoustics, physical models for sound synthesis are also tools of great
interest for musical composition and performance, and building of musical instruments. Such models can
provide high-quality synthesizers for musicians or even reveal new possibilities of sounds and ways of
playing a given instrument. The luthier(French word to designate maker of stringed instruments such as
violins and guitars), for example, can use simulations to design or even conceive an instrument according
to desired effects so that the building process can be optimized. In this way, it is worth highlighting the
importance of complementary dialogue between musical acoustics researchers, musicians and luthiers:
despite being guided by different biases, they can exchange demands, questions and understandings.
This thesis permeates the context of the musical instruments making. It is a collaboration with the
PAFI project, Plateforme d’Aide & la Facture Instrumentale', held in the Acoustics Laboratory of the
University of Maine (Le Mans, France), which aims at developing adapted tools for luthiers, whether
small or large-scale production.

1.2 Thesis objectives

Based on the contextual aspects presented above, the main goals of this thesis are:

o To investigate experimentally the vibrational and acoustical behaviour of the viola caipira in order
to identify its specificities. Why does the viola caipira have such a particular timbre? Which
phenomena are relevant in the instrument’s sound production? These are the main questions to be
answered at this stage.

o To present a physical model for sound synthesis able to reproduce the sound specificities of the
viola caipira.
1.3 Thesis organization

This thesis consists of five chapters and its organization is presented as follows:

e Chapter 1 - In the rest of this chapter the viola caipira is briefly described in organological,
historical and socio-cultural terms.

e Chapter 2 - A bibliography review is presented where different aspects on the functioning of
plucked string instruments are approached. Previous works on the viola caipira as well as finite
difference schemes used in musical sound synthesis are also briefly reviewed.

1. Music Instrument Making Support Platform
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e Chapter 3 - An experimental study of the viola caipira using different methods is presented. First,
a high-speed camera is used to analyse a typical pluck of the instrument. Viola caipira sounds
are recorded and an analysis is carried out in terms of energy decay curves and spectrograms.
Vibrational analyses of the instrument body are performed including a modal analysis of the
soundboard and an operating deflection shape (ODS) analysis using an automatic impact hammer
and a laser vibrometer. Finally, the mode shape components at the string/body coupling points
of a viola caipira are extracted using a high resolution modal analysis of mobility measurements
obtained with a novel technique named ‘“Roving Wire-Breaking Technique”. This latter part
is presented as article entitled “The Roving Wire-Breaking Technique: a low cost mobility
measurement procedure for string musical instruments”, submitted to the Applied Acoustics
Journal in October 2017.

e Chapter 4 - The chapter is structured around the article entitled "Collisions in double string
plucked instruments: physical modelling and sound synthesis of the viola caipira”, submitted to
the Journal of Sound and Vibration in November 2017. In this paper is presented a modal-based
model comprising 10 strings with non-planar motions coupled with the body. A finite difference
scheme is used to generate a set of viola caipira sounds. The sound characteristics identified
experimentally are reproduced and discussed.

o Chapter 5 - The chapter presents the general conclusions of the thesis and perspectives for future
works.

1.4 What is a viola caipira?

1.4.1 General description

Figure 1.1a shows a typical viola caipira, which is a Brazilian plucked string instrument having, in
general, a smaller body with a narrower waist than those of classical guitars 2. As shown in Figure 1.1b,
it usually has ten metal strings > # arranged in five courses of two strings with the thinnest string (string
6) located in the middle. The first two courses have identical strings tuned in unison while the other three
have strings with different diameters tuned in an octave. Strings of the same course are usually played
together using the fingernails but a plectrum can be also attached to the thumb. The instrument as we
know it today has normally from 17 to 19 frets.

The viola caipira is played in all regions of Brazil but is typical of the South Central region, more
specifically the states of Sao Paulo, southern Minas Gerais, southern Goids, southeast Mato Grosso do
Sul and the Federal District. There is not a single standard of viola caipira since variants of shapes,
tuning types, materials and arrangement of strings are commonly encountered in different regions of the
country. Although different woods are used in the making of the instrument, the most usual species
are Picea engelmannii (Engelmann Spruce) and Picea rubens (Red Spruce) on the top and Dalbergia
latifolia (Indian Rosewood) on the sides and back. Figure 1.2 shows, for example, four violas caipiras

2. The term "classical guitar" is used in this text to designate the modern classical guitar (see, for example, reference [153],
page 7).

3. Originally, the violas caipiras had strings made with animal guts or vegetable fibers.

4. Although not so common, there are violas caipiras with 12 strings arranged in 3 doublets and 2 triplets, 7 strings arranged
in 1 triplet and 4 simple strings as well as 5 simple strings so that the strings divided in five courses is a strong characteristic of the
instrument.

5. Image retrieved from <http://www.rozini.com.br/default.asp?area=02&cat=5&Produto=87>.
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(a) Example of a viola caipira commercialized in large scale in Brazil.>

(b) Usual arrangement and numbering of the viola caipira strings.

Figure 1.1: (a) Viola caipira Rozini brand, Ponteio Profissional model; (b) From string 1 to 10, the commom
designation is: prima, contra-prima, requinta, contra-requinta, turina, contraturina, toeira, contra-toeira,
canotilho and contra-canotilho. The first two courses have identical strings tuned in unison while the other
three have strings with different diameters tuned in an octave. Strings 5, 7 and 9 are composed of a metal core
covered in wound metal (wound strings) and strings 1, 2, 3, 4, 6, 8 and 10 are composed of a single metal
wire (flat strings).
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(b) Classic model by José Esmerindo.

(c) Cabaga model by Levi Ramiro. (d) Dindmica model by Luciano Queiroz.

Figure 1.2: Examples of viola caipira models made with different materials and different resonance box
shapes. The respective builders are indicated.

with different shapes of resonance box made with different materials. As variant as the features of the
instrument, are the nomenclatures to designate it. Depending on the region and context the instrument
is also called viola cabocla, viola sertaneja, viola de pinho, viola de dez cordas, viola de arame, viola
cantadeira, viola chorosa, viola de folia, viola nordestina, viola de feira, etc. In this work, the term "viola
caipira" is used since it is the most popular.

In spite of the considerable differences between the varieties of violas caipiras, a typical style of the
instrument can be identified as the most widespread and played in the Brazilian territory. Figure 1.1a
shows an example of such style. The instrument body shape is similar to those of classical guitars
although with a smaller size and slightly narrower waist. The wood species as well as the thicknesses of
the soundboard, back plate and sides follow the same patterns used for classical guitars. The traditional
fan-bracing style © is also widely used to support and reinforce internally the soundboard and back plate
of the instrument. Figure 1.3 shows the names given to the main components of the viola caipira. Note
that they are the same of those of classical guitars.

6. Wright [153] highlights that "many of the standard features of the modern classical guitar (its larger size and fan arrangement
of struts) are attributed to Antonio de Torres, although it is true to say that such features were not invented by him. These design
features evolved during the early 19th century when the instrument underwent its period of accelerated evolution. Torres started his
work at the end of this period, absorbing some of the ideas of earlier luthiers, and through a combination of skilled designs and his
association with influential players such as Tarrega, popularised his guitars."
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A little more than a century ago, the structural resemblance between the violas caipira and classical
guitar were not as apparent as today ’. In the early 20th century, in Sdo Paulo, the viola caipira began
to be manufactured in large scale by factories that already produced classical guitars. By applying the
same "recipes" and construction techniques that were used for classical guitars, changes were gradually
incorporated to the viola caipira throughout the last century so that a pattern of the instrument has
somehow consolidated [33]. Excellent detailed accounts of the evolution of the viola caipira and its
construction are given by Corréa [34] and Vilela[143].

| e
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Figure 1.3: Main components of the viola caipira (adapted from [34]).

1.4.2 Tuning types

Unlike the classical guitar, which has a consolidated specific tuning 3, the viola caipira may be played
in various tuning types. Vilela [143] points out that from the nine Portuguese tunings that went to Brazil,
many others were developed, and that it is estimated that there are approximately twenty ways to tune
the viola in Brazil. Some of these tunings are rarely used, while the others are widespread in different
regions. While several are used in the same region, there are other regions with a predominance of a
certain tuning. Several researchers [33, 3, 4, 96] catalogued many tuning types throughout the Brazilian
territory. All these tuning types were compiled by Pedro ([110], page 151).

Although there are numerous tuning types for the viola caipira, the most commonly used ones,
especially in the Central South region of Brazil, are the Ceboldo D, Ceboldo E, Rio Abaixo and Natural,

7. The classical guitar, as we know it today, dates back about 250 years; the ancestor of the viola caipira, in turn, is close to
eight hundred years old [143].
8. Classical guitar standard tuning defines the string pitches as E, A, D, G, B, and E, from lowest (low E2) to highest (high E4).
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TasLE 1.1: The most popular viola caipira tuning types and respective notes, fundamental frequencies, lowest
notes and highest notes considering an instrument with 19 frets and A4 = 440 Hz.

Tuning types
Cebolao E Cebolao D Rio Abaixo Natural
String No. Note Freq. [Hz] Note Freq. [Hz] Note Freq. [Hz] Note Freq. [Hz]
1 E4 329.63 D4 293.67 D4 293.67 E4 329.63
2 E4 329.63 D4 293.67 D4 293.67 E4 329.63
3 B3 246.94 A3 220.00 B3 246.94 B3 246.94
4 B3 246.94 A3 220.00 B3 246.94 B3 246.94
5 G#3 207.65 F#3 185.00 G3 196.00 G3 196.00
6 G#4 415.30 F#4 369.99 G4 392.00 G4 392.00
7 E3 164.81 D3 146.80 D3 146.80 D3 146.80
8 E4 329.63 D4 293.70 D4 293.70 D4 293.70
9 B2 123.47 A2 110.00 G2 98.00 A2 110.00
10 B3 246.94 A3 220.00 G3 196.00 A3 220.00

Lowest note B2 123.47 A2 110.00 A2 110 G2 98.00
Highest note D#6 124451 C#6 1108.73 C#6 1108.73 D6 1174.66

whose notes, respective fundamental frequencies and frequency ranges (lowest and highest notes) are
shown in Table 1.1. The string diameters vary according to the tuning type. In order to establish a
reference, Corréa ([33], page 42) recommends the string diameters for a set of tuning types. More details
about string physical properties are given in Chapter 3, Table 1.1.

It is also important to note from Table 1.1 that, for a given tuning type, several strings have
fundamental frequencies or octaves in common, which makes such strings more susceptible to vibrate
sympathetically.

1.4.3 The origin of the viola caipira

The purpose of this part is to briefly present some relevant aspects about the origin of the viola
caipira, which is obviously related to many other cultural and social aspects of certain regions of Brazil.
Since the scope of this thesis lies much more in the musical acoustics perspective, this subsection
presents a short synthesis based on some of the numerous works about the instrument in the context of
humanities and social sciences [33, 34, 143, 144, 110, 48, 112, 103]. For a thorough investigation on the
history of the viola caipira, the reader is invited to refer to [143], whose some passages are quoted here.

The Brazilian violas, including the viola caipira, originated from the Portuguese violas. In
convergence with such assertion, Pinto [112] lists several researchers who share the same point of
view: Sardinha [122], Oliveira [103], Andrade [41], Aradjo [3], Cascudo [38], Lima[96], Corréa [34],
Martins [99], Vilela [144]. On the origin of the Brazilian violas, Vilela summarizes:

Viola® (Brazilian five-course guitar) is an instrument that was brought to Brazil by the first
people, pioneers and Jesuits. It was used as a tool for the cathequesis. This instrument was
transformed correspondently with the new land’s development at the hands of bandeirantes
(pathfinders), tropeiros (responsible for the transport of goods on donkeys) and popular
singers. Along with the configuration of the popular culture in Brazil, viola became the

9. The author uses here the term "viola" to refer to a sparse group of numerous plucked Brazilian violas, including the viola
caipira.
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speaker of the people of some regions, such as the south-east. [143]

The Portuguese violas, in turn, have their distant origins in the oud, whose origin dates back to the
Fertile Crescent '© at least 5000 years ago. When the Arabs arrived in the Iberian Peninsula in the year
722, the plucked string instruments existing in the Peninsula were the Celtic harps and the Greek-Roman
cithara [103]. The oud !! was the first plucked string instrument with a neck in which the tunes could be
changed, to reach Europe [143].

Another distant ancestor of the Portuguese violas, but not as distant as the oud, are the Latin guitars,
instruments of Arabic-Persian origin that arrived around the thirteenth century in the Iberian peninsula
and underwent many transformations and hybridizations until prefigure the violas quinhetistas, which are
considered somehow the first prototypes of Portuguese violas [103]. Therefore, the presence of Arabs and
their instruments, more specifically ouds and Latin guitars, in the Iberian Peninsula, led to the origin and
proliferation of the violas in different regions of Portugal. Vilela highlights that each Portuguese region
created its own viola:

Viola braguesa (from Braga) in the North; viola amarantina (from Amarante) or two-hearted
viola in the Northeast; viola beiroa (from Beira) in the central region; down below, near
Lisbon, viola toeira; and further down the South, in Alentejo, viola campanica. They varied
in size, shape and number of strings, but in most cases had a common feature: five courses
of strings. [143]

According to Corréa [34], there is an important material reference documenting the presence of the
five-course viola in Portugal in the sixteenth century. It is an instrument built by Belchior Dias in Lisbon
in 1581. This viola is exposed in the Royal College of Music in London and its features are similar to
those of the Brazilian violas as we know them today.

With the migration to Brazil, the Portuguese viola kept its shape, but with some variations, while
was disseminated through the vast Brazilian territory. However, the violists, also transplanted with the
instrument, mixed and germinated, renamed it with several names. In addition, they invented traditions,
represented by the creation of different genres and the re-elaboration of other musical elements [48].

1.4.4 The instrument in the caipira tradition and Brazilian recent music

It is believed that the caipira music was structured as we know it today between the eighteenth and
twentieth centuries, but its roots are founded in more remote times, in the beginning of the colonization
of Brazil [144]. The violas '* accompany the Brazilian cultural traditions since the Portuguese settlers,
bringing their cordophones, arrived in the territory that would become Brazil. These instruments were
initially used by the Jesuits in the catechesis of the indigenous peoples and remained for a long time
linked to religious practices.

It is safe to say that the viola became the viola caipira as it was consecrated, over the centuries, as
a symbol of the music practised by rural people who inhabited several settlements in the South Central
region of Brazil from the seventeenth century. The people from these settlements, which we can freely
call "the first caipiras", were formed, in general, by miscegenation of Portuguese settlers and Indians.
Candido [21] explains that these people became "more caipira" as they lost their Portuguese cultural

10. The modern-day countries with significant territory within the Fertile Crescent are Iraq, Syria, Lebanon, Cyprus, Jordan,
Israel, the State of Palestine, Egypt, as well as the southeastern fringe of Turkey and the western fringes of Iran.

11. Also known as the Arabic lute.

12. Images (a) and (b) were retrieved from <http://collectionsdumusee.philharmoniedeparis.fr/0158896-luth-ud.aspx> and <
https : [ |en.wikipedia.org/wiki/GuitarraLatina >, respectively.

13. Here we can consider the numerous types of ancient and modern violas, whether from Portugal or Brazil, including the viola
caipira.
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(a) (b)

(c)

Figure 1.4: "?Precursors of the viola caipira. (a) A typical oud; (b) Medieval painting of Latin guitar and
Morisca guitar from the thirteenth century; (c) A typical viola braguesa (extracted from [103]).



10 1 Introduction

traits and absorbed traits from aboriginal primitive cultures. Figure 1.5 reproduces the O Violeiro 4, a
famous work of the Brazilian Realist painter Almeida Junior, dated 1899, in which two typical caipiras
are depicted, while one of them plays a viola caipira.

Nowadays, the meaning of the term "caipira people" (or just "capira") is quite complex and involves
diverse social, cultural and anthropological aspects that will not be discussed in the scope of this thesis. In
addition, any attempt to translate this term into other languages could be imprecise and exclusive. In this
text, therefore, the terms "caipira" as well as "viola caipira" will be maintained in Portuguese language.
It can be stated in a simplistic way, however, that the caipira people are concentrated nowadays in rural
or urban areas, mainly in the Center-South region of Brazil. They have cultural traits inherited from the
"first caipiras" and traits from the Brazilian urban culture, combining in a continuous and complex way.
Many authors have studied different aspects of the caipira people. The interested reader may refer to
[21, 144], for example.

Figure 1.5: Reproduction of the O Violeiro. It was painted in the year 1899 and is currently in the Pinacoteca
of the state of Sao Paulo. It is one of the last works of the Sdo Paulo painter José Ferraz de Almeida Jinior
(1850-1899) who sought to insert in several of his paintings aspects of Brazilian regionalism.

The viola caipira is played in numerous activities and ludic-religious manifestations of the Caipira
tradition such as the Folia dos Santos Reis, Folia do Divino, the dances of Santa Cruz and Sao Gongalo
(shown in Figure 1.6), the Cururu, the Catira or Catereté, the Moda de Viola, the Quadrilha, the Cana-

14. "The Violist" in english.
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Verde, the Congado, the Mocambique, the Catopé, the Caiapé and others. Martins [99] highlights that
the musical dimension represented by the performances, genres and caipira rhythms that accompany such
manifestations, is presented as a fundamental element which acts both as a means of prayer and leisure.
The musical dimension of such practices is denominated caipira music.

Figure 1.6: Violists in the dance of Sdo Gongalo, in Sdo Francisco city (Minas Gerais State), in 2000.
(extracted from [34] )

Countless violists contributed and have contributed to the development caipira music as we know
it today 16 To name a few, names like Tido Carreiro, Helena Meirelles, Gededo da Viola, Zé Coco
do Riachio, Indio Cachoeira, Zé Mulato, Bambico, Zézinho da Viola, Antonio Madureira will remain
forever in the memory of Brazilian music. Taubkin [135] provides a list of hundreds of violists currently
active in Brazil and numerous viola manufacturers.

Although the viola caipira is most often associated to the caipira music, it has been present in many
others Brazilian music genres, especially since the mid-1970s . As Vilela [143] points out, important
players such as Renato Andrade, Almir Sater, Tavinho Moura, Roberto Corréa, Paulo Freire, Ivan Vilela,
Fernando Deghi, among others, merged in their works the universes of the caipira music and spheres of
erudite music, Brazilian popular and instrumental music (MPB) and jazz, each one in different manners,
intensities and using different influences. On the musical plurality of the viola caipira and the ways that
the instrument has recently taken, Vilela also writes:

There are many violists who played their music all over Brazil. From traditional violists to
recording violists, from concert performers like Renato Andrade to the new generations that
have emerged since the 1980s. Musicians who merged with the traditional way of playing

15. This photo was taken by Andréa Borghi.

16. For interested readers, the following links are recommended:
https : [ [www.youtube.com/watch?v = T.ecrlsnys (by Almir Sater)
https : [ [www.youtube.com/watch?v = —kUYMT K xn4g (by Tido Carreiro and Pardinho)
https : | [www.youtube.com/watch?v = ntS — pOmuZS E (by Lucas Reis and Thécio)
https : [ [www.youtube.com/watch?v = kcyMi8mhF Eg (by Helena Meirelles)
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various elements of their musical backgrounds, namely classical, Brazilian instrumental,
folklore, Brazilian Popular Music (MPB), jazz, regional, rock and other trends that have
emerged in the musical market in recent decades. Currently, young people from different
parts of the country have been playing the viola, leading this instrument to be used in other
musical segments in which the viola had never been considered.[143]



Chapter 2

STATE OF THE ART

The study of the physical functioning of a stringed instrument is an essential prerequisite for any
proposal of developing sound synthesis models. Regardless of the differences in sound or appearance
between plucked or bowed instruments, the principle of sound production of all chordophones are
substantially the same. Since the acoustic energy radiated by isolated strings is too weak to be perceived,
they are coupled to a radiating element, a role played by the soundboard. It is possible to systematize the
functioning of the instrument by means of a so-called functional diagram such as that of Figure 2.2.

Musician [« » Strings <« Body [« > Air «—  Listener
Gesture Resonant Radiating Produced sound
elements element

Figure 2.1: Simplified functional scheme of stringed instruments.

This diagram shows two distinct subsystems which constitute the instrument: the strings and the body.
The strings play the role of a resonant system since they are the ones that impose the pitch of the note due
to the periodic or pseudo-periodic effort that they exert on the bridge. The body is the radiating element
since it ensures sufficient acoustic energy for the instrument to be heard.

In the Sachs-Hornbostel organological classification system [145], the viola caipira belongs to the
lute family, that is to say, musical stringed instruments composed of a soundboard parallel to the strings
plane, a resonance box and strings coupled to the bridge and neck extremity. The neck is used to adjust,
by means of the fingers, the length of the strings and consequently the pitch of the note played. Being the
viola caipira the focus of this work, the state of the art which follows describes the current knowledge of
the various mechanisms involved in the sound production of plucked stringed instruments, in general.

2.1 The motion of isolated strings

The vibrating string problem has been studied since a long time. In 1746, D’ Alembert [94] stated
the one-dimensional wave equation whose solution describes the motion of an ideal string vibrating in a
single plane. Ten years later, Euler stated the three-dimensional wave equation and proposed a technique
for its solution [129]. The subsequent models are more complex as more physical phenomena are taken
into account.

13
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Ideal plucked strings

Let us assume an ideal string of length L, fixed at both extremities, mass per unit length y, subject
to a constant axial tension 7. For a small amplitude motion, the string transverse displacement y(x, f), at
position x and time ¢, is governed by the one-dimensional wave equation:

lﬁzy(x, n 0%y(x, 1)

¢z or ox?

2.1)

where

Y 2.2)

is the velocity of transverse waves xin the string. Since both string extremities are fixed, y(0,7) = 0,
y(L,t) = 0 and the solution of Equation 2.5 can be written as the modal superposition:

o

y(x, 1) = Z; 4, sin (n”—Lx)cos (n%) 2.3)

where a,, is the amplitude of the n” string mode shape.

Considering a null external force field, a simplified pluck can be described in terms of initial conditions
by imposing a triangular shape to the string at the instant of release. Thus, at ¢+ = 0, the string has null
velocity and transverse displacement £ at the excitation position x( so that its transverse displacement at
any point x can be obtained by Fourier series approximation:

= 2h cmt
1) = —————— sin(nnXy) sin(nw X cos( —), 2.4
1) ;nzano(l—Xo) (n7Xo) sin(nzX) cos (n— 2.4)
where Xy = xo/L and X = x/L are the positions normalized by L, the string vibrating length. It is worth
remembering that this equation is valid for an ideal pluck. In practice, the initial deformation of the
string is more complex than a simple triangle. However, several important points can already be noted

from Equation 2.4 as follows:

Assuming h is weak enough to remain linear, the amplitude of vibration increases as # is large, so
that the excitation amplitude is an important parameter.

The maximum vibration is reached for an excitation point xo = L/2, i.e., at the center of the string.
The amplitude of the partials globally decreases in n%

The excitation and observation positions lead to "filtering" effects of the overtones.

Concerning the last point above, for certain values of X or X, the terms sin(nnXy) and sin(nrX) do
not contribute the n* partial and its multiples. For example, if X, = 1/2 (excitation at the center of the
string), we have sin(nnXy) = sin (%) This term vanishes for every even n and is equal to 1 for every
odd n. The contributions of the partials of even orders are null because the string is excited at a position
corresponding to a node. It is also observed an overall decrease of the partial amplitudes proportional to

niz, which is modulated by a "filtering" effect due to the excitation and observation positions.
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Effect of bending stiffness: inharmonicity

In the ideal string model considered above, the spectrum resulting from a pluck is always composed by
harmonic components, whose frequencies are multiples of the fundamental frequency (see, for example,
Elie [54], page 16). In practice, the string has a certain stiffness which tends to bring it back to its resting
state. The string motion, in this case, is described by including a stiffness term to the wave equation 2.5
so that

1 0%y(x,1) _ *y(x,H) B o*y(x, 1)

2 e a2 T axt
where B is the string bending stiffness. The result is an inharmonicity peculiar to freely oscillating
strings, which means that the overtone frequencies are not exactly equal to multiples of the fundamental
frequency. According to Fletcher [62], the frequency £, of the n”" overtone with respect to the fundamental
frequency f writes

2.5)

fu=nfo N1+ Bn?, (2.6)

where B’ is the inharmonicity factor. It depends on the mechanical and string geometrical

parameters [139]:
nEd*
B = ———, 2.7
64T L? 2.7)
where d is the string diameter and E the Young’s modulus of its material.

Inharmonicity has often been studied in the cases of guitars and pianos, where tuning problems are
common [118, 125]. Inharmonicity factors of different guitar strings were measured experimentally by
David [40] and Jarveldinen and Karjalainen [84], while for different piano strings they were measured by
Fletcher [62], Lieber [95] and Fletcher et al. [63]. Elie ([54], page 18) regrouped and compared all those
values. The inharmonicity factors of the guitar strings are generally lower than those of the piano strings.

From a perceptual point of view, Jirveldinen et al. have studied our ability to discriminate an
inharmonic sound from a perfectly harmonic sound [84, 85]. From their studies, it was found that exists
a threshold value of B” whose sound is perceived as inharmonic. Below this threshold, inharmonicity is
not detectable. This threshold value is frequency-dependent since inharmonicity is perceived more easily
at low frequencies than at high frequencies.

Considering the inharmonicity is important for a realistic synthesis. In addition, the inharmonicity
factor B’ depends mainly on the intrinsic parameters of the string, so it is not accessible to a luthier. The
mechanical properties of the body, however, can slightly modify the inharmonicity [71, 139]. It is within
this framework that the luthier can intervene.

Damping mechanisms intrinsic to the string

When a string is excited, it is damped over time so that its movement is not perpetual. This
phenomenon is due to the transfer of energy from the string to an external system. In the case of
stringed instruments, part of the energy of the string is transmitted to the soundboard through the bridge
so that the soundboard can radiate. This dissipative mechanism can be called "damping mechanism by
coupling”. There are also dissipative mechanisms peculiar to the string, which can be called "intrinsic
damping mechanisms". The total damping of the string is then given by the sum of the terms of intrinsic
mechanisms and the term due to the coupling with body. Valette and Cuesta [139] provide a complete
review of the damping mechanisms intrinsic to an isolated string. A summary is given below.
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The air viscosity

Considering the string as a cylinder oscillating at a certain frequency in a viscous fluid, a mechanical
resistance leads to energy losses. The expression to calculate the mechanical resistance due to the air
viscosity is given by Stokes [130]:

R = 2nv4ir + 2md Vﬂ'vairpairf, (2.8)

where v,;, and p,; are the air dynamic viscosity and density, respectively. The contribution of the air
viscosity to the n'" string mode is given by the Q-factor[139]:
1 R 1

= — 2.9
n,air 27T/Jf;«, ( )

The visco and thermoelasticity

The visco and thermoelastic losses are generally represented by the addition of their respective loss
angles, oyg and drg, to the Young’s modulus written in the complex form:

E = E(1 +idyy), (2.10)

where dyr = dyg + org. For metal, the loss angles are generally considered as constant. The Q-factor
associated to the n* mode due to the visco and thermoelastic losses is given by[139]:

4A72El

Tr Ove + SrE) Sy @2.11)

Qn,VT =

The dry friction in wound strings

In wound strings another dissipation mechanism should be taking into account due to the dry friction
between two successive turns of wire. This mechanism is modelled by the addition of a loss angle dy in
the term of string tension, which is written in the complex form

T =T +idy) (2.12)

so that the the Q-factor associated to the n™ mode is given by Q;Vl = Ow.

The dislocation phenomenon

In order to consider the damping mechanism due to the dislocation phenomenon in the string
material [147], Cuesta [37] incorporates the term Q;l.lxl_ to the string total damping. Note that this term is
frequency-independent over the audio frequency range.

String damping models

Valette and Cuesta [139] propose a damping model for an isolated string taking into account the
above-presented damping mechanisms. The total expression for the modal Q-factor of an isolated string
is then given by

o= Ol + Ouvr + Qg (2.13)
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where the the terms in the right-hand side are respectively related to the air viscosity, visco and
thermoelastic and dislocation losses. For wound strings, the term Q;VI is added to Equation 2.13.

The identification of all the parameters of a damping model is long and tedious. A more pragmatic
approach has been proposed by Woodhouse in [150]. The determination of the loss factor 1, = Q,/2,
associated to the n'” string mode is given by:

_ T(qr +na/wy,) + Byp(nr/L)*
" T + B(nr/L)? ’

(2.14)

where 14, np and np are terms associated respectively to the losses due to the air viscosity, bending
stiffness and either friction between string turns, in wound strings, or inter-molecular effects, in flat
strings. Concerning the nature of such approach, Woodhouse summarizes:

This approach should be understood as a combination of physically-based modelling and
curve fitting, since the physical mechanisms are not understood in sufficient detail to provide
a fully convincing predictive model. ([150], page 956)

2.2 String/body coupling

The effects of strings/bridge coupling on the string dynamics have been studied by several authors.
Focusing on the violin family instruments, Raman [115] and Schelleng [123] investigated the coupling
between string and body resonances and found that the resonant response of a string is significantly
perturbed when it is strongly coupled to the main body resonance, which produces the well-known wolf-
note (refer to [9], Chapter 25, for a detailed discussion). In addition, Gough [71] developed an analytic
two-polarization model able to predict interactions between sympathetically tuned strings through the
bridge motion.

The bridge motion also affects the motion of the string by inducing degeneracy breaking of the two
transverse polarisations, which leads to beating tones and two-stage decay rates in the sound produced.
These phenomena result from the bridge action in the two polarizations [148].

Several works attempted to model and investigate the effects of the multiple-strings/bridge coupling
in pianos [148, 22, 24], whose strings are organized in pairs or triplets; sitars [8, 97, 126] and
tanpuras [19, 97], Indian musical instruments where strings/bridge contact is quite peculiar [116],
Portuguese guitars [42] and harps [93, 23, 66, 104].

In order to model string/body interactions, Woodhouse [149] proposed two approaches for the pluck
response synthesis of classical guitars: one is carried out in the frequency domain using transfer functions
and other uses modal superposition of string/body coupled modes. Although completely different, these
approaches start from the same information: input body admittance measured or simulated at the bridge
and string properties. Both methods are briefly described below. Finally, the effects on the string vibration
due to the coupling with the body are reviewed.

2.2.1 String/body coupling using transfer functions

This method allows to compute the string velocity resulting from a pluck based on the fact that at the
coupling point, the string and bridge velocities are identical and the total force exerted is the sum of the
forces applied to the two separate subsystems. Thus, it follows the relation

vyl o=yl 4yl

coup. string bridge®

(2.15)
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where Yeoup., Ysiring and Yy iqqe represent respectively the coupled system admittance, the string admittance
and the bridge admittance at the string/body coupling point. The bridge admittance Ypi4q. is easily
accessible by measurement since it is defined in the frequency domain as the ratio between the velocity
response V(w) and the force F(w) applied at the same point. The string admittance is however more
difficult to measure, so its analytic expression is derived from the string properties. The velocity response
G = }F(fz)) , given at the plucking point x = x, due to a force applied at the string/body coupling point
x = Lis then computed by multiplying Y¢,,,. the dimensionless transfer function

L
H= )Q, (2.16)
y(x)
where y(L) and y(x) are respectively the displacement applied at x = L and the corresponding

displacement at x = x,. An analytical expression for H is given by [149]. Making use of the reciprocity

principle, one may obtain

_ ) (@)
F(L) F(xp)’

where y(x,) and F'(L) denote respectively the string velocity taken at x, and the impulse force applied at

the string extremity, at x = L. The time-domain velocity g is finally obtained by calculating the inverse

Fourier transform of G.

2.17)

G= coup.-

2.2.2 String/body coupled modes computation

Figure 2.2: Representation of the kinematics of one string coupled to the body assuming a single plane
motion. For reasons of clarity of the figure, the amplitude of ay(f) has been shown intentionally higher than
the amplitude of y(x, 1).

This method derives from substructuring analysis [35] and starts from the kinematics description of
string and instrument body separately. The string displacement is given by the sum of the Ny modes
associated to the string with simply supported ends to which is added one "constraint mode" whose shape
(%) = (%) corresponds to the static response of the string when the end at the coupling point x = L is
allowed to move. Accordingly, the string transverse displacement y(x, ) writes:

s

¥ = 3 sin (T a0 + @ (a), (2.18)

n=1

where ay(7) is the modal displacement associated to the "constraint mode" (see Figure 2.2). On the other
hand, the body transverse displacement at the coupling point is described as the sum of the N, modes:

Np
YLD = ) $Lbil), (2.19)
k=1
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where ¢Z(L) and by (f) are respectively the shape at the coupling point and the amplitude of the k< body
mode. The use of the "constraint mode" makes the string/body coupling possible since both string
and body have identical displacements at the coupling point so that ao(f) = y’(L,f). Thus, the string
displacement at a generic position x writes

s

Np
YO = Y sin (T a0 + 450 ) bUOGLL). (220)
k=1

n=1

The governing equations of the coupled system is then formulated as a set of N = N+ N, secondary-order
ordinary differential equations

Mq@) + Cq(n) + Kq(@) = f(1), (2.21)

where q(t) = (ai(®),...,an,(0),b1(D),..., bN,j(t))T is the vector containing string and body modal
displacements; M, C and K are respectively the mass, damping and stiffness matrices; and f is the column
vector containing the modal forces. The vector q(#) is the only unknown of the problem. Recasting
the system of equations 2.21 into the first-order form, the modes of the string/body coupled system are
computed and superposed to construct the string response to a given excitation. For further details the
reader is invited to refer to [149].

2.2.3 Coupling effects on the string modes

When the string end at x = L is coupled to a moving structure like the guitar body, the latter perturbs
the movement of the string, and in particular its wave number. This perturbation can be satisfactorily
described as the addition of a small term §, < 1 to the wave number of the isolated string [139]. By
making use of the continuity condition between string and bridge, more specifically, imposing the equality
of the admittances Y ing and Yy, qe. at the coupling point x = L, Pat€ et al [109] !, inspired by Valette and
Cuesta [139], show that the modal frequencies and modal Q-factors of the isolated string are perturbed
by the imaginary part (susceptance) and real part (conductance) of Y4, T€spectively, so that

. 2.2
- _Jc n‘n° El  Z.
fn - oL 1+ L2 T + nﬂS(Ybrldge(La fn)) (222)
and )
— -1 ol 1
= i Yri e L7 nl)) s 22
Q, Qn+ﬂL%(hdg( f))fn (2.23)

where ?n and Q, are the modal frequencies and the modal Q-factors of the string coupled to the body and
Z. = uT is the characteristic impedance of the string.

It is expected, therefore, that the imaginary part of the bridge admittance affects the modal frequencies
of the string and consequently its inharmonicity [71]. However, the imaginary parts of the measured
admittances on the electric [109] and acoustical [54] guitars never lead to a frequency shift larger than
1Hz.

The total Q-factor associated to the damping of the n”* overtone is the sum of two terms: a term
intrinsic to the string, given by Equation 2.13, which includes all energy dissipation mechanisms (visco-
elastic losses, visco-thermal, internal frictions, etc.), and a term relative to the coupling with the
instrument body, given by the second term in the right-hand side of Equation 2.23. This relationship

1. In this work, Paté et al study the solid body electric guitar, where the string/body coupling occurs mainly via the fingerboard
so that Yp,iqg. is neglected and the fingerboard admittance is included.
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reveals the compromise that the luthier has to face: a high level of bridge admittance ensures a certain
sound power but reduces the duration of sound. Moreover, since the bridge admittance varies with
frequency, the damping due to the coupling may considerably vary from note to note.

In scientific terms, the art of the luthier consists, not exclusively, of adjusting the duration and intensity
of sound by modifying the level of bridge admittance. To ensure a certain homogeneity in terms of sound
duration along the instrument frequency range, this adjustment sometimes is made locally. In this sense,
this work focuses more on the damping mechanism by coupling since it is somehow controllable by the
luthier, while the other terms are solely dependent on the intrinsic characteristics of the string.

In order to include all above-presented damping mechanisms to the string motion, i. e., coupling and
string-intrinsic effects, Valette and Cuesta [139] took the damping of each "inharmonic" overtone f,, into
account by introducing "corrected" modal Q-factors in the general solutions of the string equation 2.3:

o

Y0 = Y a,@sin (?) sin(zn?nz)e‘%’. (2.24)

n=1

2.3 Vibroacoustical behavior of the body

Experimental modal analysis

Since the soundboard acts as a radiating element (cf. Figure 2.2) in the sound production of guitar-
like instruments, its vibratory behaviour is determinant on the sound resulting from a note played by the
musician. Thus, numerous studies deal with the vibratory properties of the soundboard, coupled or not
with the rest of the entire guitar.

The shapes of the first guitar modes shown in Figure 2.4 reveal that the main vibrating region of the
instrument resonance box is located on the lower bout of the soundboard, under the rosette, being the
upper bout region very little mobile. In general the frequencies of these first modes vary little from one
guitar to another due to the small variation in the instrument geometry.
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Figure 2.3: Example of frequency response function measured at the bridge of a classical guitar. The
characteristic frequencies are indicated with their usual symbols. Extracted from [54].

Jansson [82] was the first to publish images of guitar mode shapes, which were obtained by means
of hologram interferometry. Firth [61] then applied the Chladni technique to determine the nodal lines
of the 8 first soundboard modes and 9 first back plate modes. In order to classify and specify the origin
of some of these modes, specific names have been assigned according to the nomenclature adopted by

him [61]:

e The first mode, denoted by Ay, is also called the "air cavity mode" and corresponds to the
predominant motion of the mass of air inside the instrument cavity coupled to the moving walls
of the resonance box (soundboard, back plate and sides). For classical guitars, in general, the
frequency f4, is systematically located at around 90-100 Hz [32].

o The first soundboard mode, denoted by T, is associated to considerable motion of the soundboard
coupled to the air cavity motion. Its frequency fr, is located at around 190-220 Hz for most classical

guitars [32].

It is worth mentioning that other instruments have similar characteristics, in particular the concert [92]
and Gothic harp [39], which also feature modes Ay and T}, but in different frequency ranges.

Another characteristic frequency is the Helmholtz frequency, commonly denoted by f;. It is "purely"
associated to the motion of the air cavity without coupling to the instrument structure. In guitars, it
appears as an antiresonance in the frequency response function measured at the bridge of the instrument,
as shown in Figure 2.3. The first peak, at around 75 Hz, just before the Ay mode, is a "global mode",
corresponding to an overall bending motion of the whole structure of the instrument. There is very little
documentation on this mode; Jansson [83] refers to a "bending motion of the complete guitar", while
Meyer [100] classify it as a "secondary resonance”. Figure 2.4 shows the first three mode shapes obtained
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(a) Ay (94.5 Hz) (b) T (182.5 Hz) (c) T» (218 Hz)

Figure 2.4: First three mode shapes of a classical guitar, extracted from[75].

by Hill and Richardson [75] for a classical guitar using holographic interferometry.

Simple guitar models with few degrees of freedom

In order to understand in a simple way the role of the low-frequencies in the guitar sound production,
some authors have proposed discrete models to study the coupling between the soundboard and the
air mass inside the cavity of the guitar. In the late 1970s, Firth [61] and Caldersmith [20] proposed
modelling the cavity as a bass-reflex enclosure. Firth proposed an equivalent electrical circuit describing
the mechanical behaviour of the guitar in the vicinity of the frequencies of the modes Ay and 7. This
circuit is very similar to a bass-reflex enclosure. The author concludes that the role of the air cavity is
essentially to amplify the response of the instrument in low frequencies. Using the geometrical data of the
guitar, as well as the mechanical properties of its materials, the Caldersmith model [20] allows to predict
the frequencies and quality factor of the modes Ag and T';.

In 1980, Christensen and Vistisen [32] proposed a discrete model with 2 degrees of freedom (DOF)
to study the coupling between the soundboard and the air cavity (see Figure 2.5a). The soundboard is
replaced by a piston of area A, and mass m,, connected to two springs, one describing the stiffness of
the plate, denoted by k,, and the other, not shown in Figure 2.5a, describing the coupling with the fluid
domain. my, denotes the mass of the air in the vicinity of the rosette represented by an air piston of area A,
oscillating against the stiffness of the air volume inside the cavity. The coupled motion of the soundboard
and the air cavity gives rise to the modes A 2 and T, which correspond respectively to a predominant air
cavity motion coupled with the soundboard and a predominant soundboard motion loaded by the cavity.
The antiresonance frequency f, observed between fy, and fr, corresponds to the resonant frequency of
the Helmholtz resonator associated to the rigid-wall air cavity motion. The frequencies f4,, fr, and f; are
linked to the frequency f, through the stiffness of the air in the cavity so that the the following relation is
given:

I+ 1= 1 + I, (2.25)

This model has the advantage of allowing an estimation of characteristic parameters of the guitar

2. The term "Helmholtz resonance" is sometimes applied to the Ap mode, but this resonance involves considerable motion of
the soundboard and back plate and so is not a simple Helmholtz cavity resonance.[63]
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Figure 2.5: Schemes for guitar models with 2 (a) and 3 (b) DOF (extracted from [64]).

from the simple measurement of the frequency response on the soundboard. Indeed, the values of f4,, fr,
and fj, can be extracted directly from the frequency response curve of the instrument (see, for example,
Figure 2.3). It is then possible to calculate the frequency f, from Equation 2.25. However, in terms of
frequency range, this model is very limited since it only describes the behaviour of the first two modes of
the instrument.

A natural extension of this model is to add a third degree of freedom, constituted by an additional
mass representing the back plate of the guitar. This model was proposed by Christensen [30] and
experimentally validated by Rossing ef al. [120], and later extended by Wright [153], who coupled strings
to the instrument body using the theory presented by Gough [71]. The frequencies fa,, fr,, fa. fn and fj
are then linked together by the relation

o+t + fy = fa + fi + fis (2.26)

where f; is the frequency of the mode associated to the motion of the back plate coupled with the whole
structure and air cavity, and f; is the second antiresonance, located between fr, and f7,.

Popp [113] recently proposed a 4-DOF model, which includes the sides. The modifications of the
boundary conditions imposed by the way that the musician hold the instrument can thus be taken as input
parameters of the model.

Soundboard radiation

The study of the guitar radiation begins with Lai and Burgess [89], published in 1990. The authors
use the same method employed by Suzuki [133] for piano soundboards to obtain the radiation efficiency
of different acoustic guitars. The method consists of exciting the guitar at its bridge using a shaker and
measuring the accelerance at the driving point and the sound intensity in the near field. The former
measurement is obtained by means of an impedance head; the latter, with a sound-intensity probe. The
radiation efficiency is then determined from the ratio of the soundboard radiated sound power and the
input power. It is shown in Figure 2.6a that the Ay mode is mainly related to a dominant sound radiation
in the region of the sound hole.

Boullosa et al. [16] proposed establishing a relationship between the magnitude of the total radiation



24 2 State of the art

efficiency of a guitar and its perceptual evaluation. The total radiation efficiency is defined as:

SN EAf,
St Afy

where E,, is the efficiency in band n and Af,, is the bandwidth of the corresponding one-third octave band.
From tests on four guitars, the authors conclude that the guitars with the greatest radiation efficiency
are those that are judged most positively, and that therefore the radiation efficiency plays somehow an
important role in the subjective appreciation of the instrument.

Etoral = (2.27)

(a) Ay (91 Hz) (b) T, (189 Hz)

Figure 2.6: Sound intensity contours for a classical guitar at the two first modes [89]. Dashed lines and lines
represent positive and negative countour values, in dB, respectively.

Christensen [31] extended his 2 and 3-DOF guitar models by coupling a moving piston to each
oscillator representing a degree of freedom. Each piston acts as a source of monopole radiation so that the
guitar sound pressure level is obtained by the superposition of the contributions from each oscillator. This
study allows to model the acoustic response function of guitars up to 600 Hz using only the parameters
of the first modes. More recently, Hill ef al. [75] improved this model taking into account the radiation
directivity of each piston. The three-dimensional diagrams of the radiated acoustic field for the first 3
modes of the guitar and respective shapes obtained by holographic interferometry are shown in Figure 2.7.
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Figure 2.7: Mode shapes and 3D diagrams of the radiated acoustic field for the three first classical guitar
modes [75].

2.4 Finite difference schemes in sound synthesis

As previously mentioned, the displacement of a simply supported isolated string in time and space
domains can be described by the partial differential equation 2.5 (PDE), whose general solution is
given analytically by the modal superposition in Equation 2.3. However, Equation 2.5 becomes more
complex as additional terms describing, for example, damping mechanisms, string terminations, bending
stiffness or excitation mechanisms, are incorporated to conveniently model the instrument. In such cases,
analytical solutions are normally no longer available so that numerical solution methods have to be
employed.

In musical instrument sound synthesis, the most used and straightforward method for solving PDEs
makes use of finite differences approximations [72, 131]. The initial idea of this method consists of
discretizing the spatial and temporal domains into a finite set of points and approximating derivatives by
differences between the values at nearby points. Substituting in the PDE the derivatives by their respective
approximations, a recursion formulae is then derived, which allows to compute the solution along the grid
of points in space and time. Compared to other solution methods such as digital waveguides [87, 128] or
modal synthesis [2, 1, 101], one of the main advantages of the finite difference method is its versatility,
since it can be applied to different systems, including those strongly non-linear. On the other hand,
computational cost and problems of numerical instability are points that deserve special attention when
such a method is employed.[11]

In 1969, Ruiz[121], followed by others [76, 77, 17, 5], pioneered the application of finite differences
schemes to solve PDEs and consequently obtain synthesized musical sounds. These works marked a first
important stage in the development of the string instruments synthesis, despite the computers at that time
did not have the required processing power to properly run the involved calculations. About 20 years later,
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Chaigne ef al. [28] use a central finite difference schemes, which are described in detail in a previous
work with Guyard [73], to discretize string motion equations taking into account string characteristics
(material, tension and geometry), boundary conditions (impedances at the bridge and stopping finger)
and excitation mechanisms (finger pluck, hammer strike, etc). They obtained close agreement between
numerically simulated and measured guitar sounds. In a subsequent work, Chaigne and Askenfelt [26, 27]
use a similar numerical approach to obtain synthesized piano sounds with a "high degree of realism".
In comparison with previous related studies, their physical model, as they themselves describe in the
paper, "is entirely based on finite difference approximations of the continuous equations for the transverse
vibrations of a damped stiff string struck by a non-linear hammer". Giordano and Jiang [70] considerably
extended this model by dealing with a complete model composed of three submodels: string and hammer
interactions and their respective motions, soundboard vibrations and sound production by the vibrating
soundboard.

Finite difference methods have been used in numerous different approaches to synthesize the sound
of various instruments. By way of example, several works and respective addressed instruments can
be listed, such as xylophone [29], kettledrums [119], snare drum [12, 136], timpani [86], cymbal and
gong [50], harp [104], tanpura [141, 142], guitar [25, 13, 14], electric bass [80, 81], Portuguese guitar [42]
and violin [44, 45, 46, 47]. In addition, Portnoff [114] contributed significantly to the context of vocal
tract and speech synthesis. Finally, we cannot fail to mention the Bilbao’s book [11], in which is presented
a thorough study of finite difference schemes applied to various objects in the musical acoustics context
including strings, beams, plates, as well as coupled objects such as prepared strings, coupled beams,
string-plate coupling and transverse-longitudinal coupling in strings.

2.5 Previous works on the viola caipira

As previously mentioned, the viola caipira is an instrument little explored from the musical acoustics
perspective. The literature review performed for this research revealed that the only work addressing the
viola caipira in this field is the master dissertation [106] written by this author in 2012, which resulted
in the publication of two conference papers [108, 107]. The following is a brief summary of the results
obtained in these works.

In [106] is presented a set of finite element analyses of three models of the viola caipira resonance box
without strings and neck. These models have geometries with different detail levels: the first model adopts
approximate dimensions of a real viola caipira and neglects the internal reinforcements (struts, ribs, bars,
etc); the second model is an extension of the first model with internal reinforcements; the third model is
rigorously designed according to the dimensions of a real viola caipira, including internal reinforcements.
Three types of modal analysis are performed for each model. Acoustical modes associated to the air cavity
inside the resonance box as well as the structural ones are determined in terms of natural frequencies
and mode shapes. Structure and air cavity are then coupled and vibroacoustical modes are determined.
Experimental mode shapes and natural frequencies are obtained using the Chladni technique so that the
simulated results are finally validated.

It is observed that the inclusion of internal reinforcements leads to significant increase of the natural
frequencies (from 23% to 43%) and considerable change of the mode shapes, mainly from the fourth
mode, whose frequency is 280.68 Hz. This is expected since the first three modes are strongly determined
by the geometry of the instrument box [153]. On the other hand, it has been shown that the coupling with
the air cavity leads to the emergence of new modes and affects both frequency and mode shapes of all
modes in general. Figure 2.8 shows a comparison of the five first acoustical and structural modes of
the viola caipira with those obtained for the classical guitar by other authors. Note that the order of
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the acoustical modes A3 (fourth mode) and A4 (fifth mode) is reversed, that is, the fourth mode of the
classical guitar corresponds to the fifth mode of the viola caipira, and vice versa. In addition, it can also
be seen that in general the structural and acoustical mode shapes of both instruments are very similar.
Note that, for both instruments, the second structural mode, denoted by B(1,1), is characterized by the
predominance of the back plate vibration, while for the other modes, the soundboard vibration prevails.
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Figure 2.8: Comparison of the five first structural and acoustical numerical modes of the classical guitar
and viola caipira resonance boxes (adapted from [106]). The classical guitar acoustical modes, shown in the
second row, and structural modes, shown in the fourth row, were extracted from [53] and [60], respectively.

2.6 Summary

A bibliography review has been presented, where different pertinent aspects were approached:

Description of the motion of ideal and stiff strings uncoupled from the body;
String/body coupling methods and effects of such coupling on the string motion;
Experimental methods used to characterize vibration and radiation of guitars;
Finite difference schemes used for the sound synthesis of musical instruments;
Previous works on the viola caipira.






Chapter 3

EXPERIMENTAL STUDY OF THE Viola caipira

The viola caipira has a particular timbre. The objective of this chapter is to identify experimentally
sound and vibrational specificities of the instrument. Experimental tests are performed on a single
instrument (Rozini brand, Ponteio Profissional model) tuned in Rio Abaixo (see Table 1.1). Although the
viola caipira exists in a variety of types, the instrument studied in this chapter is representative since it
has five double courses of strings, which is the most common configuration, and a very typical resonance
box shape. This experimental study is divided in the following parts:

e Analysis of the string motion using a high speed camera;

e Analysis of a set of sounds resulting from instrument plucks;
e Vibrational analysis of the instrument body.

3.1 Analysis of the string motion using a high speed camera

Experimental setup

G

Figure 3.1: Experimental setup for motion analysis of the viola caipira strings using a high speed camera.

In order to analyse the motion of strings during and after a typical pluck, an experimental study was
carried out using a high speed camera Photron, model FASTCAM SA-X2, which provided an imaging

29
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performance of 1024 x 768 pixels of resolution at the recording rate of 5000 frames per second. To avoid
interference on the soundboard vibration and facilitate the observation of the strings motions, the guitar
was placed horizontally on a flat surface with its back plate in contact with a piece of foam, as shown
in Figure 3.1. A mirror attached to a stand was also positioned next to the instrument to capture images
from a different angle than that captured by the camera.

Double pluck

Figure 3.2: Series of snapshots captured during a viola caipira pluck with the thumbnail. (a) First pluck at
string 8 (D4). (b) Second pluck at string 7 (D3) after 14 ms. Three successive collisions between the two
strings are shown in (c), (d) and (e).

The fourth pair of strings (strings 7 and §) was plucked in the downward direction of strings using the
thumbnail, which is the usual way to pluck the pairs 3, 4 and 5. As shown in the series of snapshots in
Figures 3.2a and 3.2b, the excitation of the string pair is characterized by a double pluck: strings 8 and 7
are plucked successively and rapidly, within a time interval At,,x = 14 ms for the presented measure. The
objective of this analysis was not to measure precisely the time interval between the two successive plucks,
but rather to understand how the string excitation occurs in the viola caipira since the strings are plucked
by pairs, differently from classical guitars. A single image record is therefore sufficient to understand the
excitation phenomena. It is worth mentioning, however, that the value of At,;,.x may be affected directly
by factors such as spacing between strings, string diameters, instrument tuning and plucking direction. In
addition, obtaining a At value with reasonable approximation in terms of magnitude order will allow
us to initialize in a more realistic way the algorithm for sound synthesis presented in Chapter 4.

Collisions between strings

Figures 3.2c to 3.2e show that the strings collided successively three times after the second pluck,
within an interval of 3 ms. This phenomenon of string/string collisions is a remarkable specificity of
the vibrational behaviour of strings in the viola caipira and undoubtedly has a strong influence on the
instrument sound. This issue will be addressed more specifically in Chapter 4 by means of physics-based
sound syntheses.

Not shown here, many other plucks have been recorded. Different plucking conditions were used and
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different strings were excited. It was found qualitatively that the occurrence of string/string collisions
varies from pair to pair and depends on the string spacing, excitation force and plucking direction.
Collisions were observed only in cases where pairs 3, 4 and 5 were plucked in a direction predominantly
parallel to the soundboard by applying moderate force. Since the tensions on the strings of pairs 1 and 2
are relative higher, their vibration amplitudes are in general smaller considering that the same excitation
force is applied. Thus, to induce collisions in pairs 1 and 2, a higher plucking force is required. Even
though in a qualitative way, such observations give us reasonable results to conclude that the existence
of string/string collisions is associated to characteristics intrinsic to the instrument (string tensions),
parameters controlled by the musician (direction and force of the pluck) and and parameters adjusted
by the instrument maker (adjustment of string spacing).

It is worth suggesting that string/string collisions may also occur in plucked instruments where strings
are arranged and played by pairs such as mandolins, twelve-string guitars and Portuguese guitars. To the
knowledge of the author, such phenomenon is not reported in the literature yet.

3.2 Sound analysis

The experimental work presented in this section consisted in recording the sound resulting from two
configurations of the instrument: first a single string was excited while all the others were completely
damped so they were prevented from vibrating by sympathy; the same string was then excited under the
same conditions, but all the others strings were left free to vibrate. Time-frequency and energy analyses
of the recorded sounds were obtained.

Experimental setup

The experiment was performed in the laboratory environment where noise interference from
secondary sources was minimized. Measurements were performed using the following protocol. The
viola caipira is supported in a fixed position using a guitar stand. The instrument is hung by the head
and its body is fixed with modelling clay at the two contact points between its back plate and the stand
feet. A microphone (PCB 378B02) is positioned 12 cm from the soundboard pointing towards the sound
hole. A 56 um copper wire is used to excite the string. The wire is placed around the string 1 (D4, 293.67
Hz), at 8 cm from the bridge, and then is pulled aside in the direction normal to the soundboard until it
breaks abruptly. The wire excitation allows controllable and repeatable plucks since its breaking force is
expected to be quasi-invariable (for more details on the wire technique, the reader is invited to refer to
the article presented in the end of this chapter). When necessary, strings are completely damped by using
foam and cloth without contact with the soundboard. Signal acquisition is performed using National
Instrument I/O interface running at 44.1 kHz.

Double decay rate, string sympathetic resonances and beating

The analysis of the sound decay is done by means of the so-called energy decay curve (EDC), which
is computed by the backward integration [124]:

T
EDC(t) = f s2(r)dr, 3.1)

where s(t) is the analysed signal and T its total length.



32 3 Experimental study of the viola caipira

0
Single free string
w 5f Ten free strings |
N(\S
a
— —-10F b
°
S -15f 1
O
a
W —20r ——— ]
_25 1 1 1 1
0 1 2 3 4 5

Time (s)

Figure 3.3: Sound energy decay curves obtained when the string 1 (D4, 293.67 Hz) is plucked by means of
a copper wire in the direction normal to the soundboard. Two configurations are used: all the other strings
are completely damped (black curve) or left free to vibrate (gray curve).

The complexity of the energy decay is explained mainly by the coupling between polarizations of a
given string and by the coupling between different strings through the bridge motion. Figures 3.3 and 3.4
illustrate the effects of these different couplings when the string 1 (D4, 293.67 Hz) is plucked. Three
effects are identified as follows.

Double decay rate

Two phases can be defined during the sound energy decay:

e Attack phase, associated to the immediate sound during which the decay is faster. In this phase,
the decay is mainly explained by the coupling of the string with the flexural motion (out-of-plane
motion) of the soundboard. This coupling is relative strong and gives rise to a pumping energy
mechanism by the soundboard. For the string, this corresponds to a mechanism of damping.

o Sustain phase, associated to the aftersound during which the decay is slower. In this phase, the
decay is explained by the coupling of the string with the soundboard in-plane motion.

This mechanism of double decay rate is clearly visible in Figure 3.3, which shows the sound energy decay
curves obtained when the string 1 (D4, 293.67 Hz) is plucked with all the other strings being completely
damped (black curve) or free to vibrate (gray curve). The fact of isolating the string limits the couplings
at the origin of the decay so that the aftersound is simplified.

String sympathetic resonances

Figure 3.3 shows a higher aftersound level when the 10 strings of the instrument are free. Couplings
between strings through the bridge lead to string sympathetic resonances, which contribute to the
aftersound that would come from the isolated string. This aftersound augmentation due to the strings
coupling is perceived as a "halo of sound" [93], which is a characteristic of the instrument.

Beating

The string modes associated to the two polarizations are slightly perturbed by the bridge motion so
that they have very close frequencies [71]. These small frequency differences between string components
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can lead to beating tones, which are perceived with periodic variations in volume. This phenomenon may
appear on one or more partials of the same string, which is visible on the spectrogram of Figure 3.4a, or
even on a more complex interaction between partials of two or more strings as shown in the spectrogram
of Figure 3.4b.

Frequency (kHz)
Frequency (kHz)

Time (s) Time (s)
dB T T T T dB NN T — T s
-40 -30 -20 -10 O 10 -40 -30 -20 -10 0 10
(a) Single free string. (b) Ten free strings.

Figure 3.4: Sound spectrograms obtained when the string 1 (D4, 293.67 Hz) is plucked in the direction
normal to the soundboard using two different configurations: (a) all the other strings are completely damped
(associated to the black energy decay curve in Figure 3.3); (b) all the other strings are left free to vibrate
(associated to the gray energy decay curve in Figure 3.3).

3.3 Vibrational analysis of the body

After identifying in the previous section some specificities of the sound of the viola caipira, searching
for vibrational specificities of the instrument is the aim of this section. Do the vibrational modes of the
viola caipira have particularities which make different the instrument from the classical guitar or other
guitars?

3.3.1 Modal analysis of the soundboard

In order to investigate the dynamical behaviour of the viola caipira soundboard, which is assumed a
linear mechanical system, an experimental modal analysis was performed to obtain natural frequencies,
modal damping factors and respective mode shapes.

Experimental setup

The roving hammer technique was used to excite the instrument at 118 points along the soundboard
using a miniature impact hammer to provide a broad-band excitation (PCB 086ES80, sensitivity 20.06
mV.N). Acceleration responses resulting from the hammer excitations were collected by a lightweight
accelerometer with a mass of 2 g (PCB 352C23, sensitivity 0.523 mV/(m.s?)) fixed on the bridge and
mounted on a thin wax layer, as shown in Figure 3.5b. LMS Scadas was used to record the acceleration
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(b)

Figure 3.5: Setup used for the experimental modal analysis of the viola caipira soundboard.

and force data for further analysis. A guitar stand was used to hang the instrument by the head, as shown

in Figure 3.5a. The strings were completely damped with a light cloth so that their tensions on the body
instrument were kept.

Typical result for the inertance transfer function
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Figure 3.6: Modulus of a typical inertance transfer function measured at the bridge of the viola caipira.
Excitation and response points are shown in Figure 3.5b.

The inertance transfer functions were calculated between all excitation points and the fixed
acceleration response point. Figure 3.6 shows typical variations of the modulus of the inertance measured
at the bridge of the viola caipira. This plot have numerous modal contributions leading to a complicated
pattern. At low frequencies (below about 1500 Hz) the system is characterized by relatively isolated
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modes that can be easily extracted using classical Fourier based modal identification techniques. In the
mid and high-frequency ranges, the modal overlap is too large to allow robust modal identification since
modal contributions are no longer individually observable.
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Figure 3.7: Overall representation of the mobility measured at the bridge of the viola caipira

By integrating the inertance curve shown in Figure 3.6, one may obtain its associated mobility transfer
function. Figure 3.7 shows an overall description of such mobility. The so-called mean mobility (also
called characteristic admittance [127]) is calculated from 1500 Hz. It consists in computing the mean
value of the mobility, in dB, included in a sliding window of a certain span, this latter moving from a
sample to the next. Thus, the mean mobility G, writes

f
Gey(fe) = AF J; Yapdf, (3.2

where Af = £, — f1, fo = f';f 2, f1 and f> being respectively the lower and upper frequency bounds of the

sliding window. This quantity has been found useful to characterize and compare stringed instruments
[55, 57] since it allows a description of vibratory responses in the mid and high-frequency ranges, where
the modal overlap is too large. The viola caipira soundboard, like classical guitar soundboards have been
shown to resemble plate-like systems: their mean mobilities are nearly independent on the frequency.
This property is the one of a plate, whose equivalent parameters can be computed (cf. [55]).

Modal identification

To extract the modal parameters from the 118 obtained inertance transfer functions, a modal
identification procedure using the PolyMAX method [111] implemented into LMS Test.lab software was
carried and 36 modes were extracted between 0 and 1500 Hz, leading to the synthesized inertance curve
shown in Figure 3.8.

Figure 3.9 shows the natural frequencies and respective damping ratios of the 36 soundboard modes
identified between 0 and 1500 Hz. The values of damping ratios are of the order of few percent (0.15-
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2.1%), which is a usual range in the context of guitar-like instruments [55].

Figure 3.10 shows that the four first modes of the viola caipira soundboard resemble those of the
classical guitar (see for example [75] for a thorough description) with frequencies moderately higher
since the resonance box of the measured instrument is smaller. In this work mode shapes are labelled
according to the convention used in [153]. T'(1, 1); mode, also denoted Ay, is characterized by the motion
of the lower bout of the soundboard and mainly by a significant acoustic motion of the air piston in the
sound hole, which is not measured here. The 7'(1, 1), mode arises due to the coupling of the soundboard
with the air cavity and is often referred to the "fundamental soundboard mode". T'(1,1); and T(1, 1),
modes have similar shapes. Higher order modes such as T(2,1) and T(3,1) have nodal lines separating
vibrational lobes.
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Figure 3.8: Measured (gray line) and synthesized (black line) inertance transfer functions of the viola caipira.
Corresponding excitation and response points are shown in Figure 3.5b.
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Figure 3.9: 36 natural frequencies and respective damping ratios obtained from the modal analysis of the
viola caipira soundboard.
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Figure 3.10: Examples of mode shapes and respective natural frequencies obtained for the viola caipira
soundboard. Mode shapes are labelled according to the convention used in [153].

3.3.2 Operating deflection shape analysis

The standard method for determining the modes of a structure consists of measuring a large number
(usually several tens) of transfer functions and performing a modal fit as has been done in the previous
paragraph. An alternative to this technique is to use a scanning laser vibrometer. This tool automatically
allows to collect a very large number (several thousand) of transfer functions and, without performing a
modal fit, one can observe the vibrational levels at a given frequency. In this case, therefore, the obtained
of the vibration pattern of the structure is an operating deflection shape (ODS). When the modal overlap
is small, an operating deflection shape at a given resonance peak can be interpreted as a mode shape.

Experimental setup

In this experiment, optical measurements allowing non-contact data acquisition were performed to
analyse the vibrational behaviour and obtain the ODSs of the front of the viola caipira. A vibration
mapping of the instrument soundboard and neck was obtained by using a Polytech PSV-500 laser scanning
vibrometer and an automatic hammer Maul-Theet vimpact-60, as shown in Figure 3.11. As in the
experimental modal analysis of the soundboard, the instrument was suspended using a guitar stand and
strings were completed damped. Impulse excitations over a broad frequency band were provided by the
automatic hammer at a fixed position at the bridge. A set of time-domain response signals at 1000 points
was measured normal to the soundboard using the scanning vibrometer, which was positioned about 1.5
m distant from the instrument. By means of the PSV software linked to the vibrometer, an FFT analysis
was performed and mobility curves up to 5000 Hz were obtained for the multiple measurements.

Typical results for ODSs

ODSs b, ¢, d and f in Figure 3.13 correspond respectively to modes 7'(1, 1), T(1, 1), T(2,1), T(3,1) in
Figure 3.10, which allows to confirm that the ODS analysis gives results close to those obtained with the
classical modal analysis. Some minor differences are however visible mainly between corresponding
frequencies. Small variations in the instrument tuning, hygrometry of the enviroment, instrument
boundary conditions and the perturbation due to the mass of the accelerometer used in the modal analysis
may explain such differences.
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Automatic impact hammer

Laser scanning
vibrometer

Figure 3.11: Setup composed by an automatic impact hammer and a laser scanning vibrometer used for
measuring the vibration response on the front of the viola caipira.
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Figure 3.12: Typical mobility transfer function measured at the viola caipira bridge using laser scanning
vibrometer.
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Figure 3.13: Eight examples of operating deflection shapes of the front of the viola caipira and respective
natural frequencies.
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3.3.3 Mobility variation along the bridge saddle

The most of string energy vibration converted into radiated sound is transferred to the body through
the bridge at the coupling points along the saddle. This energy exchange can be studied by mobility
measurements at the bridge, which quantify the conversion of string force into bridge velocity. Mobilities
at the 10 coupling points are measured in this subsection . In practice, measurements were performed at
the vicinity of the string/saddle contact points, as shown in Figure 3.14a, because the obtained signal-to-
noise ratio was much better.
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Figure 3.14: (a) Mobility measurement positions 1 to 10 on the bridge saddle of the viola caipira; (b)
Mobilities measured at points 1, 2, 5 and 10.

When the points are close, the mobilities are similar as shown in Figure 3.14b (see mobility curves at
points 1 and 2). The differences between some mobilities are explained by the fact that mode shapes vary
along the saddle. In particular, some mode shapes have nodal regions at the saddle and may not contribute
to certain mobilities (see for example mode shape T(2,1) at point 5).

Figure 3.15 summarizes the set of mobilities measured along the saddle as a function of the string
attachment points and frequency. In this figure the values of fundamental frequencies of certain notes
are added, which gives information about the energy exchange between strings and body. At a given
frequency, the higher the mobility is, more quickly the energy is radiated by the body so that the sound
produced is relatively powerful with a short duration. According to Figure 3.15 this may occur, for
example, when the notes C4 and C4 are played in strings 3, 4, 5 and 10. Conversely, smaller mobility
leads to a slower energy flow resulting in a less powerful sound with a longer duration, which may occur
when G4 is played in string 4, for example.
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Figure 3.15: Mapping of mobility along the bridge saddle obtained from the interpolation of mobilities
measured at the 10 points shown in Figure 3.14a. Mobilities are obtained in the frequency range between 80
Hz and 1000 Hz on which fundamental frequencies of notes from frets O to 12 are indicated for each string
considering the Rio Abaixo tuning type.

3.3.4 Cross term of the bridge inertance matrix: coupling between horizontal
and vertical motions

(a) (b)

Figure 3.16: Setup for measuring direct (a) and cross (b) inertance transfer functions at the bridge of the
viola caipira.

Forces and acceleration responses at the bridge have in-plane and out-of-plane components. The 2D-
inertance matrix is a quantity describing the coupling between these components. The cross term of the
2D-inertance matrix expresses the coupling between horizontal and vertical motions in the bridge. Cross
and direct terms, defined respectively by H,y(w) = a.(w)/Fy(w) and H ,(w) = a.(w)/F.(w), are measured
in the directions shown in Figure 3.16. The variations of the inertances with the frequency are shown in
Figure 3.17. It is clear that the cross term of the inertance matrix is lower than the direct term, which
shows that the coupling between polarization induced by the motion of the bridge exists but is moderate.
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Figure 3.17: Typical results for cross and direct inertance transfer functions measured at the bridge of the
viola caipira.

3.3.5 Mobility measurements and modal analysis at the bridge of a viola caipira
using the Roving Wire-Breaking Technique

This subsection is presented as an article entitled “The Roving Wire-Breaking Technique: a low cost
mobility measurement procedure for string musical instruments”, submitted to the Applied Acoustics
Journal in October 2017. In that article, the mode shape components at the bridge of a viola caipira are
estimated using a high resolution modal analysis of mobility measurements obtained by means of a novel
technique named “Roving Wire-Breaking Technique”.
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The Roving Wire-Breaking Technique: a low cost mobility
measurement procedure for string musical instruments

12G. 0. Paiva, 'F. Ablitzer, 'F. Gautier and 2J. M. C. dos Santos

"Université du Maine, LAUM, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
ZUniversity of Campinas, UNICAMP-FEM-DMC, Rua Mendeleyev, 200, CEP 13083-970 Campinas, SP, Brazil

Abstract

Bridge mobilities are usually used to characterize the couplings between the strings and the body
of plucked or bowed string instruments. Such transfer functions are classically measured using impact
hammer technique. An alternative method called wire-breaking method (also known as step relaxation
method), introduced initially for the excitation of large structures is investigated in this paper. The
method has been recently adapted to string instruments: it consists in placing a thin copper wire around
the string in a position very close to the bridge saddle and pulling aside in the direction of interest
until the wire breaks abruptly imparting a step function force to the driving point. When carried out
with damped strings, the acceleration of the bridge measured with a miniature sensor provides a good
estimation of transfer mobilities. The limits of the technique in terms of repeatability and signal-to-
noise ratio are investigated making use of comparisons with results obtained by the classical impact
hammer method. It is finally shown that the bridge admittances measured using the “Roving Wire-
Breaking Technique” may be used to identify mode shapes components at the bridge using a high
resolution modal analysis. Since no force sensor is needed to measure mobility, the technique is low
cost and can be used in the instrument maker workshop for instrument modal characterization.
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1.1 Introduction

The sound produced by string musical instruments is the result of interactions of several subsystems:
the excitation mechanism, the strings, the instrument body, the air and the listener. In the acoustical guitars
and violins, the most of the energy that will be converted into radiated sound is transferred to the body
through the bridge. The energy flow from each string depends primarily on how strongly it is coupled to
the body: the stronger the coupling, the quicker the energy is transferred to the body. The bridge mobility
(or admittance), defined as the ratio in the frequency domain between velocity and force, is an indicator of
the string/body coupling. For plucked string instruments the mobility governs the compromise between
duration and power. For bowed string instruments, the mobility is one of the key factors determining
playability. When considering velocity and force in the out-of-plane and in-plane directions, the mobility
takes the form of a 2-D matrix whose diagonal terms describe the degree of coupling with the body in
each direction considered separately and whose cross terms describe the coupling between the two string
polarizations.

Mobility measurements are typically made to characterize and compare string instruments [55, 57,
152, 54, 150, 56, 90, 15]. Mobilities measured at the bridge of string instruments can be also used to feed
several sound synthesis models for plucked [149, 42] and bowed [79, 44] string instruments based on the
modal description of strings and body separately. In such hybrid methods, modal parameters of the body
are obtained from experimental data while string modal parameters are defined from analytical models.

This work is directly linked to the development of a tool for instrument makers (PAFI, Plateforme
d’aide a la facture instrumentale, available at http://pafi.univ-lemans.fr/) which aims at supporting the
maker decisions when building or adjusting musical instruments. This tool consists of online post-
processing packages, including hybrid sound synthesis, a low cost bridge mobility measurement system
and a musical instrument database [55, 57, 56, 67]. As a consequence, there is a need to develop a low
cost methodology for measuring body modal parameters (frequencies, damping coefficients and mode
shapes components at the coupling points).

The main goal of this paper is to investigate the capability of the wire breaking technique to play
this role. Such technique is not widely used and consists in exciting the instrument body by placing
a thin copper around a string very close to the bridge and pulling it until it breaks. The limitations of
this low cost technique in terms of signal-to—noise ratio and repeatability are pointed out. The paper
is organized as follows: in the rest of the current section a bibliography review on the wire excitation
technique is presented, followed by the statement of the problem of using the classical hammer method
for measuring mobilities at the bridge of string instruments. Section 3.3.5 presents the principle of the
wire-breaking method and the experimental setup used for the measurements presented in this paper. In
Section 3.3.5, the limitations of the wire-breaking method are investigated by making comparisons with
results obtained by the hammer method. A calibration method for mobility measurement is proposed in
Section 3.3.5. Finally, in Section 3.3.5, the "Roving Wire-Breaking Technique" is used to identify mode
shapes at the bridge from mobility measurements.

1.1.1 Bibliography review

The wire-breaking method is based on the analysis of the response of a structure to a step force.
Also known in other fields as “step relaxation method", this method has been investigated in the dynamic
characterization of some engineering systems such as wind turbines [91, 105], bridges [98, 49, 102] and
launch vehicles [43], where mechanical excitations for modal testing are not so easy to produce (see
Figure 1.18). In the musical acoustics context, such technique has been introduced by Woodhouse [150]
in two different applications. Firstly, it was used for obtaining controlled pluck responses on classical
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guitars: the wire provides at the pluck position a repeatable excitation in terms of level of stress, in
the direction of interest. The acoustic and vibration responses were recorded using a microphone and
accelerometer, respectively, allowing comparisons with synthesized sounds. Secondly, the method was
employed to measure mobility curves at the bridge of a classical guitar, which allowed to feed sound
synthesis models. Calibrated mobilities were obtained by comparison with measurements obtained with
impact hammer and vibrometer laser previously calibrated. In [7], a guitar sound synthesis has been
obtained from a passive admittance modelling whose parameters were extracted from admittance curves
measured at the bridge using the wire-breaking technique. In [154], mobility measurements on cellos
using a copper wire were carried out with a pickup system mounted on the bridge to collect the input
force signals at the string notches. The measurements were compared with hammer excitation and normal
bowing: nothing fundamentally different was observed between those methods. The wire technique was
also used in [138] for measuring the bridge impulse response on violins with completely damped strings:
the string excited at the bowing position leads the breaking wire to impart an impulse that runs along
the string and hits the bridge. In [65], the wire excitation allowed a controllable pluck at different string
positions: the recorded sounds using a microphone were submitted to a high resolution modal analysis
and the modal contributions of string and body on different guitar sounds were identified. Finally, in
[109], a copper wire has been used to pluck a rigidly anchored string. Optical sensors were used to
measure the resulting signals from which modal parameters were extracted via a high resolution method
and used to feed the string damping model proposed in [139].

=l

(a) (b)

Figure 1.18: Schematic illustrating applications of the step relaxation method to excite (a) a bridge [102]
and (b) a launch vehicle [43].

1.1.2 Statement of the problem

For a linear system, the mobility transfer function Y;;(w) is defined in the frequency domain as the
ratio between the velocity response V;(w) at degree of freedom i due to the force F;(w) applied at the
degree of freedom j,

Vi(w)

Yij(w) = Fi@)

(1.3)

where w is the angular frequency.

For bowed and plucked string instruments, the mobility measured at the bridge quantifies the
conversion of string force into bridge velocity. Both string forces and bridge velocities are assumed to be
composed by two orthogonal components, parallel and perpendicular to the soundboard, corresponding
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respectively to y and z directions as shown in Figure 1.19, so that

V@ |_ o[ Fw
[@wLYhhﬂ’ (1.4)

where Y is the 2 X 2 mobility matrix defined as

Y{g@)&w} (1.5)

Yzy () Yi(w)

The description above neglects both string and bridge longitudinal motions since the parallel and
perpendicular components are much higher. It is also assumed that no torque is exerted on the body when
forces are applied to the driving points, so that the component in the x direction is ignored (cf. [17]).

(a) (b)

Figure 1.19: Setups used for mobility measurements at the bridge of string instruments using (a) the hammer
technique and (b) the wire technique.

Mobility matrices measured at the string/bridge contact points of string instruments are usually used
to feed models for sound synthesis [90, 7, 149]. The classical method used for measuring these transfer
functions is based on the so-called hammer method: an impulse force is imparted at the point in the
direction of interest by means of a miniature impact hammer and the resulting acceleration is measured
by a laser vibrometer or a lightweight accelerometer mounted on the bridge. Figure 1.19a depicts a
typical experimental setup used for measuring mobilities at the bridge of classical guitars using hammer
and accelerometer.

1.2 The wire-breaking method

Although the wire technique can be used for different types of excitation (see Subsection 3.3.5), this
paper focuses on the use of this technique for mobility measurement at the bridge of string instruments.
In the rest of this paper, therefore, wire-breaking method refers to the method that uses a thin copper wire
to excite the points where the strings make contact with the bridge. The wire is placed around the string
in a position as close as possible to the saddle and then is pulled aside in the direction of interest until it
breaks abruptly imparting a step function force to the excitation point. The measurement of the bridge
response without the effect of string motion is feasible when the strings are completely damped. Under
those conditions, the acceleration response to the wire excitation measured with a miniature sensor
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mounted on the bridge provides a good estimation of bridge mobilities without using any force sensor.

1.2.1 Equivalence between v-impulse response and a-step response

Let us consider a system described by N degrees of freedom, a mass matrix M, a damping matrix C,
a stiffness matrix K, a displacement N X 1 vector x(t), excited by a force N X 1 vector f(t). The Laplace
transform of the motion equation

Mx(r) + Cx(t) + Kx(¢) = £(r) (1.6)

leads to
X(s) = [*Mx + sC + K] 'f(s) + [s*M + sC + K]"'((sM + C))x(0) + Mx(0)). (1.7)

The Laplace transform of the velocity vector resulting from a Dirac excitation applied at one single degree
of freedom f5(r) = [0---0 &(r) 0---0]T is given by

L{x(0)} = s[s*M + sC+K]7'[0---0 1 0---0]". (1.8)

The excitation force resulting from the wire break at one degree of freedom can be represented as a step
function, fg(1) = [0---0 fy(H@®) —1) 0---0]T, where H(¢) is the Heaviside function and f; is the wire
force amplitude. The Laplace transform of the acceleration resulting from fy(¢) is written as

L)} = s[s*M + sC+K]7'[0---0 fy 0---0]". (1.9)

The right-hand sides of Equations 1.8 and 1.9 are equal if the wire force f; is unitary. As a consequence,

the velocity resulting from a Dirac excitation is equivalent to the acceleration response resulting from a

unitary step excitation. Thus, the mobility of the system can be obtained from the Fourier transform of

the acceleration response resulting from a step force excitation, divided by the wire force as follows:
A(w)

Y = — 1.10
(w) T (1.10)

1.2.2 Experimental setup

All the measurements reported in this paper were performed in the same laboratory environment.
The results presented in Section 3.3.5 regard to measurements performed on a classical guitar. The
instruments were placed in fixed positions using a guitar stand. The instruments were hung by the head
and fixed on two of the stand feet using modelling clay so that the contact between the stand and the
body only occurred at two points. Before any measurement, the strings were tuned to their usual static
tensions. All the measurements were carried out with damped strings.

For measurements using the hammer method, the force signal was provided by a miniature impact
hammer PCB Piezotronics 086E80 whose head was mounted on a flexible beam clamped at its extremity.
Such setup is a convenient way to control precisely the impact location and to avoid multiple hits. The
impact was exerted on the saddle, as close as possible to the point where the E-string makes contact, as
shown in Figure 1.19a.

For measurements using the wire-breaking method, the step force excitation was provided by a thin
copper wire with a diameter of 0.1 mm placed around the E-string in a position very close to the saddle
(see Figure 1.19b). For both hammer and wire-breaking methods, acceleration signals were collected by
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a lightweight accelerometer PCB Piezotronics 352C23 (mass 0.2 g) mounted on the bridge, close to the
excitation point.

1.3 Results and discussion

1.3.1 Mobilities obtained with the hammer and wire-breaking methods

Typical mobility measurements at the bridge of banjos, Brazilian guitars, classical guitars and violins
obtained by the hammer method are compared in Figure 1.20, which highlights the difference of profiles
of those four instruments. All the mobilities are characterized by numerous resonances, which induce
variations around the averaged value over the useful frequency range. The mean mobility and the modal
density are important features of the instrument soundbox [54]. Since the soundboard of the banjo is a
membrane, its mobility is the highest up to 1500 Hz. On the other hand, the violin mobility is amplified
in the vicinity of 2500 Hz, presenting the highest values: this feature is often referred to as the bridge hill
[15, 51, 151]. The guitar soundboards (classical and Brazilian) have been shown to behave as plate-like
systems: their mean mobilities and the modal densities are nearly independent on the frequency. This
property is the one of a plate, whose equivalent parameters can be computed (cf. [54]).

Figure 1.21 shows the comparison between calibrated and uncalibrated mobilities, from 0 to 2000
Hz, obtained with the hammer and wire-breaking methods, respectively. Figure 1.22 shows the same
measurements in a frequency range from 2000 Hz to 7000 Hz. In general, both curves present similar
patterns except for the difference in level, which is about 10 dB in the overall frequency range. These
discrepancies are expected since the measurements obtained by the wire method are not calibrated, i.e.
the factor fj is not taken into account. It is also observed that, at frequencies higher than 4000 Hz, the
hammer method leads to noisier results, revealing another advantage of using the wire-breaking method
in such frequency range. The results presented in Figures 1.21 and 1.22 show that the determination of
the factor fj is crucial to validate mobility measurements obtained with the wire-breaking method.
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Figure 1.21: Mobility curves, from 0 to 2000 Hz, measured using the hammer (black line) and wire-breaking
(blue line) methods. The dB scale reference is 1 m.s~'.N~! (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Figure 1.20: (a) Experimental setups and (b) respective mobility curves measured using the hammer method
at the bridge of different instruments: i) banjo (blue line), ii) viola caipira (magenta line), iii) classical guitar
(green line), viola caipira (magenta line), iv) violin (red line). The dB scale reference is 1 m.s™'.N~!. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Figure 1.22: Mobility curves, from 2000 Hz to 7000 Hz, measured using the hammer (black line) and wire-
breaking (blue line) methods. The dB scale reference is 1 m.s™' .N~!. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

1.3.2 Repeatability of the wire-breaking method

In order to assess the repeatability of the wire-breaking method, five mobility curves were measured
under the same measurement conditions and compared in Figure 1.23. It can be observed that all the
curves have substantially the same profile, which confirms the satisfactory repeatability of the method.
Since the breaking force f; is expected to be invariable for samples from the same reel and the choice
of the excitation angles are controllable, the method allows reproducible measurements in different
environments, by manipulation of different operators.
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Figure 1.23: Five mobility curves measured under the same conditions using the wire-breaking method. The
dB scale reference is 1 m.s™!.N~!. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

1.3.3 Influence of the wire diameter

The wire thickness is directly related to the magnitude of the wire breaking force f; so that the choice
of the wire diameter is determinant in the reliability of the measurements. Thicker wires may provide
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an excitation force f; enough to move the instrument body while the wire is pulled aside, which leads
to distorted measurements. Conversely, thinner wires may provide a low signal to noise ratio resulting
in unreliable measurements. Figure 1.24 shows a comparison between mobility curves measured using
wires of three different diameters. Although measurements using the 150 um wire have shown to be
the most satisfactory in terms of signal-to-noise ratio, the provided excitation force was too high so that
the guitar moved from the support. On the other hand, as can be shown in the same figure, the 56 um
wire provided the noisier results. The 100 um wire is, therefore, a good choice since it provides a good
signal-to-noise ratio and a suitable force for the measured instrument.
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Figure 1.24: Mobility curves measured at the bridge of a classical guitar using wires of 3 different diameters:
56 pum (green line), 100 um (blue line) and 150 um (red line) . The green and blue curves are offset on the
y-axis so that the comparison between the curves is feasible. The dB scale reference is 1 m.s™'.N~!. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

1.4 Calibration of the wire-breaking method

Wire measurements require only one acceleration sensor for measuring mobilities on the bridge of
the instruments. As a consequence, the breaking force f; has to be determined in a preliminary phase in
order to compute calibrated mobilities.

1.4.1 Measuring the wire-breaking force

Figure 1.25 shows the experimental setup used for measuring the wire-breaking force. The
measurements consist in threading the wire through a rigid holder attached to the head of an impact
hammer PCB Piezotronics 086C03, while the opposite hammer end is clamped onto a flat surface. In
this way, the magnitude of the force measured by the hammer while the wire is pulled until it breaks
is equivalent to the force exerted on the string. The value of fj, therefore, is given by the maximum
magnitude of the force curve measured in function of time, named the wire-breaking force curve.



52 3 Experimental study of the viola caipira

Wire
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Figure 1.25: Experimental setup used for measuring the wire-breaking force: the wire is attached to a fixed
force sensor and pulled until it breaks.

Figure 1.26a shows a typical wire-breaking force curve. For the sake of better visualization the signal
of the measured force was inverted. At first, an upward force region is observed, which corresponds to
the time interval that the wire is stretched. Then, the wire breaks and the measured force falls abruptly
since no tension is exerted by the wire.

Finally, the measured force features a damped oscillatory behavior that fades out progressively.
Figure 1.26b shows the comparison between 10 measures of the wire-breaking force curves obtained
under the same conditions. Although all the curves have similar profiles, small differences can be
observed, which can be due to slight variations of the gesture made by the operator while pulling the
wire. Since the factor fj is given by the maximum magnitude of the wire-breaking force curves, a value
of fo = (4.32 £ 0.14) N is obtained as indicated in Figure 1.26b. Noting that the wire-breaking setup
consists of two strands that equally share the pulling load, the maximum force withstood by the strand
that breaks is f;/2, which corresponds to a stress of 275 MPa. This value is in line with typical ultimate
tensile strength reported for enamelled copper wire [78].
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Figure 1.26: (a) Typical measure (b) and ten measures of the breaking force curve of a 100 um wire. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Figure 1.27 allows to compare the bridge mobilities measured with the hammer method and the wire-
breaking method after calibration via the procedure described above. It can be observed a satisfactory
agreement between both curves, which indicates that the experimental procedure used for measuring the
wire-breaking force curves provides a suitable calibration for the wire-breaking method.



54 3 Experimental study of the viola caipira

v_I (dB)
a A
o o

Hammer

=70} — Wire T

_80 Il Il Il Il Il

0 500 1000 1500 2000 2500 3000
Frequency (Hz)

Figure 1.27: Mobility curves measured using the hammer method (black line) and the wire-breaking method
(blue line) after calibration. The dB scale reference is 1 m.s™'.N~!. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

1.5 Application: Roving Wire-Breaking Technique

1.5.1 High resolution modal analysis

Since impact hammer measurements can be replaced by breaking wire measurements, can a modal
analysis procedure be performed on these measurements with sufficient precision? To address this issue,
a “Roving Wire-Breaking Technique" is defined and is carried out on a Brazilian guitar, the viola caipira,
which is composed of 5 pairs of strings (see Figure 1.28). The aim is to determine the body modal
parameters, i.e frequencies, damping coefficients and mode shapes components at the 5 coupling points
(denoted 1 to 5) in both directions (out-of-plane direction denoted z and in plane direction y).

Wire holder SESSRIRG

Figure 1.28: Scheme used for estimation of mode shapes at the bridge of the viola caipira using the wire-
breaking method. Collocated mobility is measured at point O (in red), where the accelerometer is fixed;
the wire is . Points 1 to 5 (in yellow) are excited using the wire technique in the z and y directions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

At the bridge of a string instrument, it is common that the accelerometer cannot be placed exactly on
one of the coupling points. To circumvert this difficulty, a reference point denoted 0 is selected in such a
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way that a collocated measurement at this point is possible. Responses resulting from the wire-breaking
excitation are measured by a miniature accelerometer located at point 0. By roving the wire between
the 6 measurement locations (5 coupling points + 1 reference point) and by orienting the wire in both
directions z and y, a set of 12 responses can be measured. Dividing by the calibration factor fy, 12 impulse
responses y;;(f) can be obtained, where subscript i denotes the response degree of freedom (chosen here
as i = 0z) and subscript j denotes the excitation degree of freedom. For example yj. i, is the impulse
response measured at point 0 in the direction z resulting from a wire break at point 1 and in the direction
y. The modal analysis is performed in two steps.

e The first step concerns the identification of modal frequencies and damping coefficients using
the high resolution technique ESPRIT described in [52, 57]. This technique is based on the
time-domain representation of the signal s(f) as a sum of complex exponentials, whose discrete
representation s[#n] is written as:

2K 2K
S[l’l] — Z ake—(l,:nej(zﬂf,:nﬂﬁk) — Z bk(Zk)n, (111)
k=1 k=1

where the K modes are characterized by their dimensionless modal frequencies f/, and their
damping factors ', and are associated to amplitudes a; and phases ¢;. The identification procedure
consists in estimating the poles z; = e~%*/>*% from which a collection of modal frequencies and
modal damping coeflicients can be obtained from

arg(zx) » _ —FsInjzl

= 1.12
ox Fsand & 2], (1.12)

fi =
where F; is the sampling frequency. The pole identification is performed using the ESPRIT
algorithm, which is based on the decomposition of the input vector space onto two orthogonal
subspaces, namely the signal and noise subspaces [6].
e The second step consists in estimating the modeling order and the mode shape components based
on a fit in the frequency domain. For this purpose, the mobility Y;;(w) is computed as the Fourier
Transform of the response y;;(f). The modal model of Y;;(w) is written as:

K
Yij(w) = ) AcHi(w) (1.13)
k=1

with )
w
Hy(w) = /

a)l% P j2§kwkw and Ak = (Dikq)jk’ (114)

where @ j; and @ j; are the ith and jth components of the kth mode shape (mass normalized). The
amplitudes A; such that the modal sum of Eq. (1.13) best fits the measured mobility can be found
by solving a least squares problem. Two aspects must be considered to properly perform this least
squares estimation. Firstly, it should be noted that the amplitudes A, are real, whereas H(w) is
complex-valued. Secondly, in the particular case of the collocated mobility Y, o,(w), the amplitudes
Ay = ¢ozxPo.x are positive. To satisfy these two constraints, the estimation of amplitudes is first
performed on the collocated mobility using a non-negative least squares (NNLS) procedure. The
problem is expressed as

min || Cx —d |3 with the constraint x>0 V&, (1.15)



56 3 Experimental study of the viola caipira

where x = [A1 Y VA AK]T is the vector of unknown modal amplitudes,
[ Re(Hl (ﬁnin)) Re(Hk(fmin)) Re(HK(fmin)) ]
Re(Hl (fmax)) Re(Hk(fmax)) Re(HK (fmax))
C= .. ... (1.16)
Im(H, (fmin)) Im(Hk(fmin)) Im(Hl((fmin )
L Im(H1(fimax)) Im(Hi(fiax)) Im(Hg (fimax)) |

is a 2Ngreq X K matrix whose columns form a basis of unitary modal responses and

[ Re(Ho0:(finin)) |

Re(HOZ,Oz (fmax ))
d= (1.17)
Im(H 0z,0z (f min ))

L Im(H()z,Ozfmax)) |

is @ 2Ngq X 1 vector containing the measured mobility. The splitting of the unitary modal responses
Hi(w) and the measured mobility Hy,o.(w) into their real and imaginary parts is necessary to
enforce that the estimated amplitude A; are real. A characteristic of the NNLS procedure is that
the solution x consists of two subsets, one containing only strictly positive values and the other
containing only zeros. Consequently, the procedure intrinsically provides a model order selection,
since it does not use all poles identified by ESPRIT to fit the measured response. In the present
application of the method, 47 modes were retained out of 165 candidate modes. Once the modal
amplitudes of the collocated mobility have been estimated, those of the cross mobilities can be
obtained by solving a standard least squares problem, which has the same form as Eq. (1.15)
without the non-negative constraint. The identification of modal amplitudes for each cross-mobility
measurement allows to determine the z- and y-components of mode shapes at the different coupling
points (Dj,k = Aj,k/q)0z,k (j=1z,1y,22,2y...).

Figure 1.29a compares the collocated mobility Hy,o, reconstructed from the NNLS solution to the
measured mobility. A good fit is obtained in the frequency band of interest. The cross mobility Hy, g,
reconstructed from the standard least squares solution using the same modes is compared to the measured
mobility in Figure 1.29b. The signal-to-noise ratio of this measurement is lower due to the smaller
amplitude of the soundboard vibrations in the y-direction. However, the reconstructed mobility overall
well follows the measured mobility.

1.5.2 Synthesis of the mobility matrix

An example of reconstruction of the full mobility matrix at one coupling point is shown in Figure 1.30.
Note that a matrix concerns degrees of freedom whose physical access is difficult or impossible. Since
the mobility matrix provide a full characterization of the instrument body at the coupling point, such a
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Figure 1.29: Modulus of (a) the direct mobility H, and (b) the cross mobility Hy., at the reference point
0. Black curve: measurement using the wire-breaking method. This curve is shaded below f,;, = 50 Hz and
above fi.x = 3000 Hz to highlight the frequency range considered for modal amplitudes estimation. Magenta
curve: reconstruction using 47 real modes obtained by the ESPRIT/NNLS procedure.(For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

data is a useful input data for sound synthesis tools based on hybrid techniques.

1.5.3 Identification of mode shapes

Figure 1.31a shows a selection of identified mode shapes at the bridge in the out-of-plane direction.
Operating deflection shapes (ODS) of the instrument body at peak frequencies close to these modes are
shown in Figure 1.31b for comparison purpose. These ODS were obtained by exciting the bridge with
an automatic impact hammer (Maul-Theet vImpact-60) and measuring the resulting velocity at numerous
locations using a scanning laser vibrometer (Polytech PSV-500). The first mode shape identified by the
procedure corresponds to a rigid-body mode of the instrument (see ODS a). Modes shape 3 and 7 are
those of the AO and T1 modes, which are the lowest modes significantly contributing to sound radiation
of a guitar. They correspond to coupled motion of the top plate (see ODS b and c) and air piston in
the soundhole through the stiffness of the air cavity. The resulting motion at the bridge involves in-
phase, piston-like motion of the 10 coupling points. Mode 10 corresponds to the T2 mode, which is
related to a top plate mode shape with a single longitudinal nodal line crossing bridge (see ODS d). As
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Figure 1.30: Modulus the mobility matrix terms at coupling point 1 reconstructed using the modal parameters
identified by the method. Black continuous line: direct out-of-plane mobility H,,, black dashed line: direct
in-plane mobility H,,;,, gray continuous line: cross mobility H,;,. The dots on the out-of-plane mobility
indicates the modes identified by the method and used for the mobility synthesis. The mode shapes of modes
pointed out by their number are shown in Figure 1.31a.

a result, it is the first mode where out-of-phase motion between coupling points occurs, namely between
the treble and bass sides of the bridge. Although this may come as a surprise, piston-like motion of the
bridge again occurs at some higher modal frequencies (e.g. modes 18 and 19). This can be understood
when considering the related ODS (see ODS f and g), where the top plate exhibits more complex modal
patterns but the bridge is not crossed by any nodal line. In contrast, mode 21 involves more rapid spatial
variations of amplitude along the bridge, which is constrained to follow a motion of top plate involving
more closely spaced longitudinal nodal lines (see ODS h). The knowledge of these relative amplitudes
and phase relationships for the different modes can be useful in a model to account more accurately for
sympathetic vibration between all strings.

1.6 Conclusion

This paper has investigated the capability of the wire-breaking method to accurately obtain the
mobilities transfer functions at the bridge of a string instruments. Since no force sensor is required,
this methodology is a low cost and well-adapted procedure for measurements in the environment of
instrument maker workshop. The method was shown to be repeatable and provided results in reasonable
agreement with the classical hammer method. A calibration method for mobilities obtained from wire-
breaking measurement was proposed and validated. Finally, a modal analysis of the mobility curves
measured at the bridge using the “Roving Wire-Breaking Technique” allowed the estimation of natural
frequencies, damping factors and mode shapes at the string/bridge coupling points using a high resolution
modal analysis. Such results can be used to feed sound synthesis models.
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Figure 1.31: (a) Mobility curve synthesized using estimated modal parameters; (b) examples of mode shapes
at the bridge saddle and (c) corresponding operating deflection shapes of the viola caipira body.
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3.4 Summary

An experimental study of the viola caipira has been presented in this chapter where different aspects
were approached:

o The high speed camera analysis also revealed existence of collisions between strings located in the
same pair;

e The analysis of the sound resulting from the viola caipira pluck when all the strings are free to
vibrate revealed the existence of string sympathetic resonances, which are perceived as a sound
halo, constituting an important sound feature of the instrument;

e The modal analysis of the viola caipira soundboard carried out by the classical hammer method
revealed some differences and similarities with the classical guitar: the first four modes of the
viola caipira soundboard resemble those of the classical guitar while frequencies are moderately
higher since the resonance box of the instrument is relatively smaller. In addition, the viola caipira
soundboard, like classical guitar soundboards have been shown to plate-like systems since their
mean mobilities are nearly independent on the frequency;

e Measurements using a scanning laser vibrometer and an automatic impact hammer have been
performed to obtain the ODSs of the front of the viola caipira. At a set of resonance peaks the
obtained ODSs gives results close to those obtained with the classical modal analysis using impact
hammer and accelerometer;

e Bridges mobilities have been measured using the wire-breaking method, which is simple to use and
inexpensive since it does not require the use of a force sensor. Combined with a high-resolution
modal analysis (ESPRIT method), these measurements enabled to determine the modal shapes at
the string/body coupling points and thus to characterize the instrument.



Chapter 4

PHYSICAL MODELLING AND SOUND SYNTHESIS OF THE
viola caipira.

The experimental study presented in Chapter 3 revealed that the interaction between the viola caipira
strings may occur in two different ways: through the motion of the bridge, whereby all the strings
are coupled, and through successive collisions of strings located in the same pair. This chapter aims
at presenting a physical modelling for sound synthesis of the viola caipira able to reproduce both
phenomena, which, undoubtedly, contribute to the sound particularity of the instrument.

The text below is structured around the article entitled "Collisions in double string plucked
instruments: physical modelling and sound synthesis of the viola caipira”, submitted to the Journal of
Sound and Vibration in November 2017. In that article is presented a modal-based model comprising ten
strings with non-planar motions coupled with the body. The model includes string/string collisions and
combines an analytical approach to describe the vibrations of strings and experimental data describing
the body. Simulations in the time domain reveal the main sound characteristics of the viola caipira.

In order to further explore the sound synthesis model developed in the article, complementary
simulations are presented in Complement 1.

61
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Collisions in double string plucked instruments: physical modelling
and sound synthesis of the viola caipira

12G. 0. Paiva, 'F. Ablitzer, 'F. Gautier and 2J. M. C. dos Santos

'Université du Maine, LAUM, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
ZUniversity of Campinas, UNICAMP-FEM-DMC, Rua Mendeleyev, 200, CEP 13083-970 Campinas, SP, Brazil

Abstract

The viola caipira is a folk guitar widely used in traditional and modern Brazilian music. It consists,
in general, of 10 metallic strings arranged in five pairs, tuned in unison or octave, with the thinnest
string located in the middle. An experimental study of the viola caipira pluck by means of a high speed
camera reveals some specificities of the instrument. It is found that the instrument is characterized by
a double pluck excitation since the two strings of a given pair are plucked successively and rapidly.
Collisions between strings arranged in the same pair are identified. A hybrid model, based on a modal
approach, is carried out for sound synthesis purposes. It includes 10 strings with non-planar motions
coupled with the body and collisions between strings. A finite difference scheme is used to compute the
coupling forces at each time-step, which permits a set of sound simulations. The effects of string/string
collisions on the viola caipira sounds are identified and discussed. It is found that the model reproduces
the main vibroacoustic features of the viola caipira, among which the sympathetic string resonances
and the string/string collisions observed in the video analysis.
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4.1 Introduction

Collisions are strongly non-linear phenomena present in various mechanisms of musical instruments.
Such phenomena are closely related to the timbre characteristics of many instruments and can occur in
two general ways: at a well-defined instant and specific location, as in the hammer/string interaction
in pianos, or continuously in time and spatially distributed, as in the bridge/string interaction in typical
Indian instruments like the tampura and sitar.

Numerous authors have addressed different types of collisions in string instruments modelling. Such
works may be gathered in different groups according to the objects involved: fret/string [13, 58, 59, 80,
81], bridge/string [19, 97, 146, 140], hammer/string [25, 26, 14, 17, 134]. Many works adopt physical
models and employ numerical schemes to discretize and solve partial differential equations describing
the string motion. Some models rely on finite differences schemes in space and time [76, 25, 10, 14, 19],
while others employ modal representations of strings [79, 42, 137, 44, 149]. There are also works
that combine modal and non-modal representations using different methodologies [80, 81, 104, 140].
Standard time stepping methods of solution consist in decreasing the step until the simulation achieves
convergence with the desired precision. In this case, the choice of a very small time step to
calculate accurately non-linear collision forces may lead to high computation times. Alternatively,
several authors [10, 14, 19, 80, 81, 140] have used energy-based methods, which enables by means
of energy conservation frameworks suitable stability conditions to numerical schemes employed. In
addition, digital waveguide methods have been also applied to simulate vibrating strings interacting with
obstacles [117, 88].

Although numerous types of collision have been investigated in previous works, string/string
collisions, to our knowledge, are not reported yet in the literature. Apparently, this is an unexplored
subject that can be of considerable interest for the sound synthesis field. String/string collisions are
evidently dependent on the spacing between strings and therefore are expected to occur specially in
plucked instruments with double strings like lutes, mandolins, Portuguese guitars, viola caipira, etc. On
the other hand, it is reasonable to expect that collisions between strings might not occur, or occur less
frequently, in instruments where the string spacings are relatively large, like classical guitars.

This paper aims at evidencing experimentally and modelling collision phenomena in double strings of
a typical Brazilian guitar known as viola caipira (see Figure 4.1). A physical model for sound synthesis
able to reproduce such collision phenomena is presented and a set of time domain simulations is obtained.
Such model uses a modal-based approach and includes 10 strings with non-planar motions coupled
with the body. Analytical expressions of mode shapes, natural frequencies and damping factors are
used to obtain the modal basis of each string while body modal parameters are extracted from mobility
measured at the instrument bridge. In order to compute string time responses to an excitation force, a
finite difference scheme is used to discretize and integrate numerically string and body modal equations
in time. By imposing displacement continuity at the points where strings and body are connected, an
expression to calculate the set of unknown coupling forces at each instant is derived, which allows the
computation of string responses. This strategy of solution has been previously adopted for the violin [44]
and piano [137].

The method is applied for the sound synthesis of viola caipira. The main vibroacoustic phenomena
occurring in the instrument such as string/string collisions, string sympathetic vibrations and beating
tones are discussed and reproduced by means of a fully coupled model including non-planar vibrations
of 10 strings coupled to the body through the bridge.
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Figure 4.1: String arrangement in the viola caipira: five courses of double strings. From right to left, the
strings are numbered from 1 to 10 and pairs from 1 to 5.

The viola caipira is originally played in numerous cultural manifestations associated to ludic-religious
practices in the Central South region of Brazil. The instrument is closely related with the musical genres
called caipira and sertanejo, and in the recent decades has significantly interacted with other genres of
the classical and popular modern musics. The viola caipira has, in general, 10 metal strings arranged
in five courses of double strings and the thinnest string (string 6 referred in Figure 4.1) is located in the
middle. The first two courses have identical strings tuned in unison, while the other three have strings
with different diameters tuned in an octave. Strings 5, 7 and 9 are composed of a metal core covered in
wound metal (wound strings), while the others are composed of a single metal wire (flat strings). The
body shape is similar to those of classical guitars although with a smaller size and slightly narrower
waist. It is estimated that there are approximately twenty ways to tune the instrument [143]. Some of
these tunings are rarely used, while others are widespread in different regions of Brazil.

This paper is organized as follows: in Section 2 is presented an experimental study of the viola caipira
pluck using a high speed camera. A collision model used to calculate impact forces between strings is
described in Section 4.3. In Section 4.4, a modal-based model of the fully coupled system including 10
strings with non-planar motions interacting with the instrument body is presented. The determination of
the model parameters and a set of simulations reproducing physical aspects of the viola caipira are finally
obtained and discussed in Section 4.5.

4.2 Experimental observations

The objective of this section is to identify experimentally string/string collisions in the viola caipira
by means of a high speed camera. Experimental tests are performed on a single instrument (Rozini brand,
Ponteio Profissional model).

4.2.1 High speed camera setup

In order to analyse the motion of strings during and after a pluck, an experimental observation was
carried out using a high speed camera Photron, model FASTCAM SA-X2, which provided an imaging
performance of 1024 x 768 pixels of resolution at the recording rate of 5000 frames per second. To
facilitate the observation of the strings motions, the guitar was placed horizontally on a flat surface with
its back plate in contact with a piece of foam, as shown in Figure 4.2. A mirror attached to a stand was



4.2 Experimental observations 65

also positioned next to the instrument to capture images from a different angle than that captured directly
by the camera. The fourth pair (strings 7 and 8) was then plucked in the downward direction of strings
using the thumbnail.

3

g

Figure 4.2: Experimental setup for motion analysis of the viola caipira strings using a high speed camera.

4.2.2 Identification of string/string collisions

As shown in the series of snapshots in Figures 4.3a and 4.3b, strings 8 and 7 are plucked successively
and rapidly, within a time interval A,z = 14 ms for the presented measure. This single measure of the
Atk allow us to understand the phenomenon and provides a realistic value to initialize the algorithm for
sound synthesis presented in Section 4.4. However, it is worth highlighting that the value of At may
be affected directly by factors such as the spacing between strings, string diameters, instrument tuning and
pluck direction. Figures 4.3c to 4.3e show that the strings collided successively three times, but not only,
after the string 7 is plucked (second pluck), within an interval of 3 ms. This phenomenon of string/string
collisions is a remarkable specificity of the viola caipira and may strongly influence the sound produced.
This issue is addressed in Section 4.5.5 by means of sound simulations.

Not shown here, other plucks have been observed. Different plucking conditions were used and
different strings were excited. It was found that the occurrence of collisions varies from pair to pair and
depends on the string spacing, excitation force and plucking direction. Collisions were observed only
in cases where pairs 3, 4 and 5 were plucked in a direction predominantly parallel to the soundboard
by applying moderate force. Since the tensions on the strings of pairs 1 and 2 are relative higher, their
vibration amplitude is in general smaller considering that the same excitation force is applied. Thus,
to induce collisions in pairs 1 and 2, a higher plucking force is required. Even though in a qualitative
way, such observations give us reasonable results to conclude that the existence of string/string collisions
is associated to characteristics intrinsic to the instrument (string tensions), parameters controlled by the
musician (direction and force of the pluck) and parameters adjusted by the instrument maker (adjustment
of string spacing).
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Figure 4.3: Series of snapshots captured during a viola caipira pluck with the thumbnail. (a) First pluck at
string 8 (D4); (b) second pluck at string 7 (D3) after 14 ms. Three successive collisions between the two
strings are shown in (c), (d) and (e).

4.3 String/string collisions modelling

The experimental results presented in Section 4.2 revealed the occurrence of string/string collisions
in the viola caipira and such phenomena are expected to play a relevant role on the sound produced. To
investigate numerically this issue, a string/string collision model is first described in this section.

A. Kinematics of two colliding strings

Based on the above-presented experimental observations, it is assumed that collisions occur only
between strings located in the same pair. For the sake of simplicity, a single pair of strings is considered
in the formulation below (strings 1 and 2). Let us consider two co-planar cross-sections with radii r; and
r2, as depicted in Figure 4.4a, whose coordinates (Y'(x, 1), Z'(x, 1)) and (Y?(x, 1), Z*(x, t)) are given by

YO(x, 1) = ygs) +y90x, 0 and ZW(x, 1) = ng) +729(x, 1), 4.1)

with s = 1,2. Note that for a the for given string s at rest, the coordinate of a generic cross-section is

given by (ygs),zgs)). This problem is similar to those of two-ball collisions (see for example [69]). As

shown in Figure 4.4a, the distance between the centroids of the cross-sections writes

r(x,1) = N(Y2(x,0) = Y (x,D))? + (Z2(x, 1) — Z'(x, 1))? 4.2)

and the angle y(x, ) is given by

2 _ 71
Z2(x,1) - Z'(x, t)). 4.3)

y(x, t) = arctan (m
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Figure 4.4: (a) Scheme of coordinates for two cross-sections parallel to the zy-plane; (b) Scheme of impact
forces at two colliding cross-sections.

B. Collision model

Impact is defined as the interaction between two colliding bodies throughout a short-time collision
event, during which large resultant pairs of action-reaction forces act in opposite directions over the
contact area of the colliding bodies [18, 132]. Such phenomenon is also characterized by the occurrence
of a compression phase followed by a restitution phase. During the former phase the two bodies come
into contact and press against each other. In the latter phase the bodies move away from one another
while remaining in contact [69].

Figure 4.4b depicts the contact between two colliding coplanar cross-sections located at a generic
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point x, where d(x, ) is the resultant collision indentation. A pointwise string/string contact is assumed.
The vectors F™Pl(x, 1) = (FimPly Fimp1zy and Fi™P2(x, 1) = (F™P2, F™P22) represent the pair of action-
reaction impact forces acting at x, where a frictionless contact between the cross-sections occurs. The
non-linear model for elastic collisions proposed by Hunt and Crossley [36] is used. It incorporates a
hysterical damping term to the classical Hertz model [74]. The energy loss during the impact occurs
through heat dissipation caused by internal damping mechanisms intrinsic to the colliding body materials.
Since body deformation is assumed to occur in the elastic range of material properties, the body shape
remains undeformed after the contact period. The vectors of impact forces FI™P1(x, 1) and FI™P2(x, ¢) are
opposite with identical magnitudes given by

[FImPO) (x, 1)] = Ke6P(x, 1) + Aa6” (x, S (x, 1), (4.4)

where 6(x,t) = max {0, r(x,t) — (r; + r2)}, with s = 1,2, where K, is the contact stiffness, p is the
compliance exponent, A, is the damping coefficient, 6(x, f) is the indentation velocity.
The y and z components of the impact force vector FI™P1¥(x, 1) are computed as follows:

Fme = - [F™(x, 1) cos(y(x, 1) @.5)
and

Fmets = — [Fm2L(x, )] sin(y(x, 1)), (4.6)
The y and z components of FimpZ(x, f) are then given by Fimp2y — _pimply anq Fimp2z — _pimplz Qipce

the impact forces are calculated along the entire string length, a distribution of impact forces, given in
N/m, is considered in Section 4.4.

4.4 Fully coupled system modelling

Let us consider a set of 10 stiff strings coupled to the body. For a given string s, a small-amplitude
vibration is assumed and the following properties are assigned: length L), mass per unit length u(®,
tension T® and bending stiffness B). The string is simply supported at one end located at x*) = 0,
and attached to the body through the bridge so that it is allowed to move at the other end located at
& = LW, Body and string displacements are set to be identical at P = L in such a way that
both structures are coupled. The string transverse motion is expressed as the sum of the components
y9(x, £) and 79 (x, 1), oriented normal and parallel to the soundboard plane, respectively (see Figure 4.5).

Accordingly, the transverse body motion at the s” string coupling point pﬁs) = (9,9, zﬁ‘v)) is described

by the components yb(pff), 1) and 7% (p&s), 7). Axial and torsional string motions are neglected since they
are ineffective in exciting the instrument body. Geometrical non-linearities intrinsic to the strings are also

neglected.

4.4.1 Modal formulation
A. String kinematics

For a given string s, the displacement in each of the two orthogonal polarizations is described as the
sum of N, modes associated to the string with simply supported ends to which an interface mode is
added, whose shape

' =(5) @)
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Figure 4.5: Scheme representing the decomposition of string and body non-planar transverse motions into
components normal and parallel to the soundboard.

corresponds to the static response of the string when it is simply supported at x® = 0 and loaded at the
end attached to the body, xE.S) =1L, Accordingly, the transverse displacements y(s)(x, t) and z(s)(x, 1) write

Nis)
YO0 = a0 () + Y a0 () 4.8)
Jj=1
and
Nes)
0,0 = a0 () + D a0 (), (4.9)
j=1

where ¢§.S)‘V(x) and ¢§s)z(x) are the j” mode shapes in both string polarizations, ags)y () and ay)z(t) are

the corresponding modal amplitudes, and af;)y (#) and aff)z(t) are the modal amplitudes associated to the
interface mode ¢§)5)(x). The mode shapes associated to the string with both simply supported ends are
given by .
)y _ 4z N _ o (JTX
$0" (x) = ¢ (x) = sm(L(S)). (4.10)

The j” modal angular frequency taking into account the string inharmonicity is given by w;s) =
WicH TOLO)
formulation, it is convenient to define the generic vector of string mode shapes

ic® . s 5 . . . .
iz 1+ j2 (B(—)”Z), where ¢ = | % is the wave velocity of the ideal string. For further

W (x) = ( ¢(()s)(w)( ), ¢(1s)(w)( X),..., ¢§3()f)w)(x)), 4.11)

where s = 1,..., 10 and w stands for y or z.
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B. Body kinematics

Accordingly, the body transverse displacements at the s™ string/body coupling point P&, in both
polarizations, are described as the sum of N, body modes:

N,
YOS, =) g ®) (4.12)
k=1
and
N
@0 =D bnel(pd), 4.13)
k=1

where ¢”(p®) and ¢%*(p®) are the k™ body mode shapes at p®® in both polarizations, and by(?) is the
© (Pe . (Pe y p Pc p

corresponding modal amplitude. It is also convenient to define the generic vector of body mode shapes

¢ ) = ("0, ... 43" ®). (4.14)

where s = 1,..., 10, and w stand for y or z.

C. String dynamics

Within a modal framework, the motion equations of the 10 strings for a forced response can be
formulated as a set of z;ﬂl 2(N(s5)+ 1) secondary-order ordinary differential equations (ODEs) and written
in the following matrix form:

Mm! o) 1[a'n ] [C! ONEXGY
o+ N
(0) M| [an] [(©0) c[a"@)
N——— e —— N—————
M® ar) (o a(r) 4.15)
K! 0) ][ a'®) () '
St Sol=l o |
N —— N—— N——
K’ a(r) £5(1)

where M®, C® and K? are respectively the modal mass, modal damping and modal stiffness matrices. The
partitioned column vectors a and f*® represent the modal coordinates and the associated modal forces of
the 10 strings in the two polarizations. For a given string s, the corresponding subvectors setting up a and
f$ are respectively given by

s)y S S S T
a¥(t) = (ay” (@),...,ay", ay (), ..., ay (1) (4.16)

and
3 s5)y s s 5)Z T
£O0) = (17O S SO, fO) 4.17)
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All the matrices in Equation 4.15 are block diagonal matrices set up by submatrices containing the string
modal properties of each string. For a given string s (s = 1,..., 10),

) MW 0 CGy 0 . KO 0
(s) — (s) — () —
MY = [ 0 M©: | CY = 0 Clo) and K" = 0 KO: (4.18)
where, forw =y, z,
y ',u(‘)L(" L(‘v)ﬂ(ﬂ L("),u(" LC ‘),u(” 3
()3() (l)n() 2” N(A)n
fes L 0
L y® () 1 (5)
MW — 2’; ”T , 4.19)
: (0) :
L(.r)y(x) H(A)L(A)
L Nym 2
. . . 2 (s)2 4 n(s) 4
KO0 = gigg[ L0 T 8O Nl N (4.20)
81260 210 T2y T 2o 2ALOY | :
and
(W) _ . 4 WIT(Y)/J(‘S) o 4 WIT(Y)/J(‘S)
C™" = diag |0, o o | (4.21)
2Q1 ZQN(;)

where Q;s) is the Q-factor associated to the j” string mode. In 4.7, the computation of M® and K
is presented in details. A simplified way to include a viscous damping model consists in assuming the
damping matrix is diagonal for both strings and body. This assumption has no real physical background
but is consistent with the assumption that the structure is lightly damped (see for example [68], Chapter
3). The string damping model used to calculate Qi,s) is described in 4.8.

Let us consider that the external physical forces acting on a given string s are:

e The excitation force F¥®)(r) = (F¢0%, F¢)X) at the point x\”, applied in an angle 6 from the
positive y-axis so that F¢&» = |Fe(s)(t)| cos 0 and FeU” = |Fe(5)(t)| sin 6;

e The coupling force F€®(r) = (FO Fe6X) at the point x* resulting from the string/body
interaction;

e The distributed impact forces acting on the string given by F™P®)(x, £) = (F™mPUY (x, 1), F™P7(x, 1)).

The distribution of external forces F® (x, 1) = (F*(x, 1), F%(x, 1)) acting on the string then writes

FO(x,1) = FO()6(x — x) + FO()8(x — x9) + F™PO)(x, 1) (4.22)

so that the string forces associated to the j’” mode (j = 0,...,N), in both polarizations, are then
calculated by projecting the components of F®(x, 7) on the corresponding string mode shapes:

L) L)
£ = f FOx, 09" (0dx and (1) = f FO%(x, 0¢' (x)dx. (4.23)
’ 0 ’ 0 ’

The string is discretized into a set of M(s) points using a space step Ax so that M(s) = % . This

approach allows to compute separately collision forces at each point x,, = nAx (n = 1,..., M(s)) in case
of string/string contact by using Equation 4.4. An approximation of Equation 4.17 can be finally obtained:

£ = (@) F - (@) F +(@},,,) F™Ax, 4.24)

imp
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where ,
F¢ = (FCly,FClZ, o ’FCIOy’Fcloz) , (4.25)
| T
Fe = (FU, Fes R Fe) (4.26)
and
Fimp — (Fimply’ Fimplzy o Fimpl()y’ Fimpl()z)T ) 4.27)

Matrices ®@;, ®¢ and @ p are described in 4.9

E. Body dynamics

Similarly to the strings, the equations describing the body motion are also written within a modal
framework and formulated in the matrix form as the set of N, secondary-order ODEs

MPb(r) + C’b(r) + KPb(2) = £°(2), (4.28)

where MP, C? and K" are respectively the mass, damping and stiffness modal matrices, which are given
by

M = diag (ml;, ... ,mﬁ,b), (4.29)
C" = diag (2m}g). ... 2mly Wl I3 (4.30)
and
K = diag (mf(@}), ..., m}, (w},)?). (4.31)
where mZ, 4 ,i’ and ‘”Z (k = 1,...,N,) are respectively the mass, damping ratio and angular frequency

associated to the k” body mode. The column vectors b and fP represent respectively the modal
coordinates and the associated modal forces of the body given by

b(t) = (bi(D), ..., by, (1))" (4.32)

and .
20 = (F7@)..... 15,0) . (4.33)

The distribution of external forces acting at a generic point p = (x,y,z) on the body is given by
F(p, 1) = (F?(p, 1), F*(p, 1)), with p € Q, where Q represents the structural body domain. Assuming a
continuous representation of the body structure, the modal force associated to the k" body mode is given
by the modal projection

£ = fg F2(p, 06 (p)ds + fg F¥(p, 06 (p)ds. 434)

Let us consider that FP(p, 7) is only composed of the set of forces resulting from strings/body interactions
at the coupling points pis), with s = 1,...,10. According to the action and reaction principle, the forces
exerted by the strings on the body are equal in magnitude and opposite in direction to the forces exerted
by the body on the strings so that

10 10
FP(p,0) = Y F 08 (p-pd) and F*(p.n) = ) F*(05*(p - p). (4.35)

s=1 s=1
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Equation 4.33 then are rewritten as the sum of contributions from the coupling forces at the 10 string/body
attachment points as follows

£ = (@) F, (4.36)
where
> (ph)
)
o = : . (4.37)
#” (pl)
$*(pl%)

4.5 Numerical simulations

4.5.1 Finite differences scheme

The first step to solve equations 4.15 and 4.28 numerically is to discretize them in time domain. Let
us consider the time series w; (w stand for a, b, F¢, F¢ and F"?), which represents an approximation to
w(t;), where t; = iAt, for the time step i, so that At = t;,| —t;. The sampling frequency f; is the number of

samples per second in the synthesized signal and is given by f; = é.

A. Recurrence equations

Approximations of the first and second derivatives in Equations 4.15 and 4.28 are obtained using
centred finite differences and recurrence equations associated to strings and body modal displacements
are written as follows:

A = Aa — GSF?, (4.38)

b1 = BB - G"F¢, (4.39)
where A, @, G*, B, B and G" are as given in Table 4.3 in 4.9.

B. Coupling forces computation

To obtain an expression to compute the vector F;, whose components are unknown, the displacement
continuity at the s string/body coupling point (s = 1,...,10) is imposed at #;,:

G, 1) = L0, 1) = ¢, = ¢ (pbi (4.40)

i+1
Substituting Equations 4.38 and 4.39 into Equation 4.40, one may obtain
-1
Ff = [G*+G"| [(@:Ae) - (@PBB)]. (4.41)

Once the coupling forces are computed using Equation 4.41, one may compute the string modal
displacements a;,; from Equation 4.38. The string responses in physical coordinates are finally computed
by modal superposition.



74 4 Physical modelling and sound synthesis of the viola caipira.

4.5.2 Model parameters
A. String parameters

The Rio Abaixo (“Downriver" in English) tuning is used in experiments and simulations. This is a
very popular tuning type widespread in many regions of Brazil. Table 4.1 shows the open string notes,
respective fundamental frequencies, mass per unit length, and position coordinates of each string/body
coupling point in the xy plane. Strings have the same length, L® = 0.585 m, and bending stiffnesses are
given by B®) = E®WJ®_ For the sake of simplicity, all the strings are assumed parallel: usually the spacing
between the viola caipira strings at the nut and saddle are not the same and may vary from 2.5 mm to 3.5
mm. Strings of the same pair are spaced at 3.5 mm from each other. Modal frequencies of each string are
calculated up to 5000 Hz and inharmonicity effects are taken into account. The usual value of Young’s
modulus of the steel, E® =2 x10'! Pa, is selected for all strings. String modal Q-factors are computed
from Equation 4.21. Usual values for standard temperature and pressure conditions for the following
parameters are selected: pg;, = 1.2 kg.m‘3 and 174 = 1.8 X 1073 kg.m‘l.s‘l. Following Valette [139],
the value for the sum of viscoelastic and thermoelastic loss angles is 6,¢/, = 1 X 1073, Finally, the value
corresponding to losses due to the dislocation phenomenon is Q4. = 5500, as obtained in [109].

TasLE 4.1: Open string note considering Rio Abaixo tuning, fundamental frequency, diameter, linear density,
diameter, modal truncation order and string/body coupling point coordinates for the 10 strings.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
String number 1 3 5 7 9
2 4 6 8 10
Note D4 B3 G3 D3 G2
D4 B3 G4 D4 G3
fgx) [Hz) 293.67 246.94 196.00 146.80 98.00
293.67 246.94 392.00 293.70 196.00
d® [mm] 0.28 0.30 0.51 0.64 0.91
0.28 0.30 0.23 0.30 0.38
19 [107* kg/m] 5.27 5.93 1.41 1.88 435
5.27 5.93 3.78 7.16 3.8
TG [N] 61.57 49.12 73.94 55.49 57.39
61.57 49.12 79.3 84.52 55.72
Ns) 16 19 25 33 50
16 19 12 16 25
p® [mm] (585,0,0)  (585,12.0,0) (58524.0,0) (585,36.0,0) (585,48.0,0)

(585,3.5,0) (585,15.5,0) (585,27.5,0) (585,39.5,0) (585,51.5,0)

B. Body parameters: Modal analysis at the bridge
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Figure 4.6: Scheme for body modal parameters estimation at 5 string/body coupling points at the bridge
saddle using the roving hammer technique.

In order to feed the synthesis model above-presented, the following body modal parameters are
required: natural frequencies, modal masses, modal damping ratios and modal shapes in the y and z
directions at the string/body coupling points. These parameters are extracted from inertance transfer
functions measured at the bridge using the roving hammer technique. Figure 4.6 illustrates the scheme
used for such measurements. Double strings are assumed to be coupled with the body at a single point
located at the bridge saddle so that five string/body coupling points (points 1 to 5) are considered for the
fully coupled system. From the scheme shown in Figure 4.6, one may define the inertance functions

AO,z(w)
F j,w(a)) ’

Hj,(w) = (4.42)
where Ay is the acceleration response measured at the point 0 due to the force F ) applied at the point
Jj in the direction w (j = 0,1,...,5, and w = y,z). Since it is not possible to excite coupling points 2,
3 and 4 in the y direction using the hammer, the following assumptions are made: H»,(w) = H| y(w),
H; y(w) = Hyy(w) and Hyy(w) = Hs y(w).

The excitation forces are provided by a miniature impact hammer PCB Piezotronics 086E80 at points
0 to 5 in the z direction and points 0, 1 and 5 in the y direction; acceleration signals are collected by a
lightweight accelerometer PCB Piezotronics 352C23 (0.2 g) mounted on the bridge, fixed at the point 0
shown in Figure 4.6. Nine inertance transfer functions are obtained from measurements and the other
three are obtained from the assumptions described above. Modal parameters are finally estimated using
the Polymax method [111] by means of a Multiple-Input, Single-Output (MISO) analysis, which led to
20 body modes between 0 Hz and 1000 Hz.

C. Computational parameters

The plucking point is located at 8.5 cm from the bridge, i.e. at approximately 1/7" of the total string
length. A simplified excitation model is used: the force applied to a given string s is a linear ramp whose
maximum amplitude is F (()X). The excitation starts at the initial instant tl(.s) and ends at the release instant
1 5o that the excitation force magnitude writes

(s)

[F®(1)| = —(S)F b= )H( - 1) = H(t = 1) (4.43)
5 —6")
For the simulations presented in this paper F/ (()S) =3Nand ¥ - tl@ = 8 ms. Such a force corresponds to a
rapid realistic gesture of high amplitude. Impact model parameters are chosen as shown in Table 4.2.
Strings are discretized using a Ax = 1 mm. The sampling frequency value f; is selected from the
convergence tests presented in Subsection 4.5.3.

TaBLE 4.2: Impact model parameters

Ay [N.s/mP*2] K. [N/mP*'] p
108 10° 1.5
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4.5.3 Convergence study

To ensure accurate computations and minimize numerical errors, a small enough Az (or a high enough
fs) is required for numerical solution. In addition, collision phenomena are strongly non-linear in such
a way that the time-step must be significantly increased to obtain accurate results. In order to opt for
a convenient time-step, an analysis on the convergence of simulated results with regard to the choice
of different values of time-step is presented. The analysis is done separately for the cases with and
without string/string collisions and ignoring the coupling with the body for simplicity. For each case,
two-string model simulations are performed using the same initial conditions with four different sampling
frequencies, and comparisons are shown in Figure 4.7. As shown in Figure 4.7a, simulated results without
collisions completely converges from f; = 220.5 kHz, while results with collisions completely converge
from f; = 441.0 kHz, as shown Figure 4.7b. Based on these tests and in order to balance calculation time
and accuracy, the chosen sampling frequency values for further simulations in this paper will be f; =
220.5 kHz for cases without collisions, and f; = 441.0 kHz for cases with collisions.

4.5.4 Results: organization of collisions in space and time

The organization of collisions in space and time is investigated by considering a pair of strings with
simply supported boundary conditions, i.e. without any coupling with the bridge. Figure 4.8 shows a
sequence of snapshots of two colliding strings in the xy plane. After being released at t = 8.0 ms, the
excited string behaves as a typical plucked string. A first contact between the plucked string and the string
at rest is occurring at + = 12.1 ms. The two strings remain in contact during a short period of time (from
t =12.1 ms to t = 12.4 ms). During this contact phase, the interaction point is moving in the x direction.
The two strings finally separate after ¢t = 12.4 ms.

The phenomenon of moving contact point is also shown in Figure 4.9a, which is a space-time diagram
representing the occurrence of collisions: each black point in this diagram corresponds to a contact point
between the two strings. The space-time diagram reveals that the moving contact point phenomenon is
repeated several times, with ever shorter durations involving ever smaller portions of the string. It also
reveals that collisions occur only in the immediate transient phase just after the pluck, between 12.5 ms
and 71.6 ms for the studied case. Two “gaps” are also observed in the third contact phase (see Fig. 4.9b).
These gaps can be explained by the fact that the collided string, which is initially at rest, starts vibrating
after the first collision. The following contact phases (the third one being the first of them) may therefore
be disturbed by short temporary contact losses.

4.5.5 Collisions effects on the sound

In order to identify the effects of string/string collisions on sound, a simulation is performed on the
same pair of strings by adding the coupling with the body. Three different effects can be distinguished.

Buzzing effect and spectral enrichment

The repeated collisions in the early transient phase induce a clearly perceptible buzzing effect. This
permits to conclude that such buzzing effect constitutes an important sound feature of the viola caipira.
In the frequency domain, such effect induces a spectral enrichment, clearly visible in Figure 4.10.
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(a) Model without string/string collisions.
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(b) Model with string/string collisions.

Figure 4.7: Tests of convergence: influence of the sampling frequency f;. Two-string model with strings 7
and 8. Only string 7 (D3) is plucked, parallel to the soundboard plane. Zoomed numerical displacement of

string 7 in the y-polarization, at the plucking point, for four sampling frequencies, (a) with collision (b) and
without collisions.

Redistribution mechanism of the spectral components

Figure 4.10 shows the comparison between two spectrograms of the bridge velocity at the same point,
resulting from identical pluck conditions but with or without considering string/string collisions. In both
spectrograms, string and body spectral components are clearly distinguishable: contributions due to the
string modes coupled with the body are quasi-harmonic with longer duration and contributions due to the
body modes are inharmonic with shorter duration. The string being excited approxima<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>