Keywords: middleware, distributed query processing, communication cost model, fetch size, message size, optimizing communication cost. v middleware, traitement des requêtes distribuées, coût de communication

Mourad Baïou for the continuous support of my PhD study. They always find a way to make a complex thought understandable

List of Figures

Introduction

Data transfer over a network is an inherent task of distributed query processing in the various existing distributed data management architectures [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] (e.g., Client-Server, Peer-to-Peer, Parallel and data integration (mediated) systems). In all such architectures, a given node (playing the role of a server, a client, a mediator, etc.) may send a query (or a subquery) to another node (a server or a mediator) which will execute the query and send back the query results to the requester node.

Despite the tremendous advances made both in networking and telecommunication technology from one side, and distributed computing and data management techniques from another side, the cost underlying data transfer (called also communication time) is still often an important source of performance problems. This is due to the ever-increasing load imposed by modern data-intensive applications. As a consequence, minimizing the communication time has been recognized for a long time as one of the major research challenges in distributed data management area [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. A long-standing research effort from both academia and industry focused on developing techniques that minimize the total amount of data that needs to be communicated over the network [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Haas | Optimizing queries across diverse data sources[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. When dealing with the communication cost, all but few state-of-the-art distributed query optimization techniques [START_REF] Haas | Optimizing queries across diverse data sources[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF] focus on the generation of query plans that minimize the amount of data to be exchanged over the network using various techniques, for example filtering outer relation with semijoin or Bloom-filter to reduce the volume of data [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF] and pushing the join to remote sites [START_REF] Haas | Optimizing queries across diverse data sources[END_REF] to avoid the communication overhead, etc. Query result prefetching and caching have also been used to reduce the latency of network and query execution e.g., by anticipating the computation of query results before they are needed by an application [START_REF] Ramachandra | Holistic optimization by prefetching query results[END_REF], just to mention a few.

In this thesis, we take a complementary look to the problem of optimizing the time for communicating query results in a distributed environment, by focusing on how data is transferred over a network. To achieve this goal, we investigate the relationship between the communication time and the middleware configuration. Indeed, today, most programs (including application programs, DBMSs, and modern massively parallel frameworks like Apache Hive 1 and Apache Spark 2) interact with data management systems using a remote data access middleware such as ODBC [START_REF] Geiger | Inside ODBC[END_REF], JDBC [START_REF] Shirazi | Java performance tuning[END_REF], or a proprietary middleware [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF]. A remote data access middleware (or simply, a middleware in the sequel) is a layer on top of a network protocol that is in charge of managing the connectivity and data transfer between a client application and a data server in distributed and heterogeneous environments. Of particular interest to our concerns, a middleware determines how data is divided into batches and messages before being communicated over the network. As we demonstrate in the sequel, this impacts drastically the communication time.

We analyze the middleware-based communication model and we identify empirically two middleware parameters that have a crucial impact on the communication time:

• The fetch size, denoted F, which defines the number of tuples in a batch that is communicated at once to an application consuming the data, and

• The message size, denoted M, which defines the size in bytes of the middleware buffer and corresponds to the amount of data that can be communicated at once from the middleware to the network.

The middleware parameters F and M can be tuned in virtually all standard or DBMS-specific middleware [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Geiger | Inside ODBC[END_REF][START_REF]PostgreSQL 9[END_REF][START_REF]Tabular data stream protocol[END_REF][START_REF] Shirazi | Java performance tuning[END_REF], where they are usually set manually by database administrators or programmers. The main thesis of this work is that tuning the middleware parameters F and M is:

• An important problem because the middleware parameters F and M have a great impact on the communication time of a query result and on resource consumption, and

• A non-trivial problem because the optimal values of the parameters are query-dependent and network-dependent.

We briefly illustrate these points via Example 1.1.

Example 1.1. We consider two queries (that we present later on in detail in Figure 3.3) having same selectivities and different tuple sizes:

-

Q 1 : result of ∼32GB = ∼165M tuples × 205B/tuple; -Q 3 : result of ∼4.5GB = ∼165M tuples × 27B/tuple.
Moreover, we take two networks: high-bandwidth (10Gbit/s) and low-bandwidth (50Mbit/s). Finally, we consider the following two different middleware configurations:

-Configuration C 1 : F=110K tuples and M=4KB; -Configuration C 2 : F=22K tuples and M=32KB.

For the moment ignore the choice of the actual values of middleware parameter; in Chapter 3, we discuss in greater detail the precise meaning of each parameter and we present extensive results for multiple combinations of parameter values that strengthen the points that we already make in this example.

(i) To show that the communication time is sensitive to the middleware configuration, we report in Table 1.1 the communication times (in seconds) for Q 1 and Q 3 , in the highbandwidth network. We observe that the time needed to transfer a given volume of data varies depending on the considered middleware configuration. For each query, we observe that different middleware configurations drive dramatically different communication times.

(ii) To illustrate that the best middleware configuration is query-dependent, we consider again Table 1.1, which reports the communication times (in seconds) for Q 1 and Q 3 , in the highbandwidth network. We observe that C 1 is the best configuration for Q 3 , whereas C 2 is the best configuration for Q 1 .

♦

To our knowledge, no existing distributed DBMS is able to automatically tune the middleware parameters, nor is able to adapt to different queries (that may vary in terms of selectivity and tuple size) and network environments (that may vary in terms of bandwidth). It is currently the task of the database administrators and programmers to manually tune the middleware to improve the system performance.

In this thesis, we present MIND (MIddleware tuNing by the Dbms), a framework for tuning the fetch size F and the message size M. Our approach is:

• Automatic, to alleviate the effort of database administrators and programmers.

• Query-adaptive, since every query has its own optimal middleware parameters.

• Network-adaptive, since every network has its own optimal middleware parameters.

To this purpose, we formalize and solve the problem of middleware tuning as an optimization problem:

Input: Query result of Q and network environment. Output: Best values of middleware parameters F and M that minimize the time for communicating the query result over the network.

To the best of our knowledge, the database research community does not have well-established strategies for tuning the middleware parameters F and M. However, existing technical documentations e.g., [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Shirazi | Java performance tuning[END_REF] put forward some recommendations, none of which being query-and network-dependent. Our experimental study shows that these strategies do not usually yield the best communication time in practice, even when they consume large resources by the middleware parameters F and M.

The distributed query processing mainstream literature [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Cheung | Sloth: Being lazy is a virtue (when issuing database queries)[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Haas | Optimizing queries across diverse data sources[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF][START_REF] Ramachandra | Holistic optimization by prefetching query results[END_REF] typically focuses on designing distributed query plans that minimize the communication time. To this purpose, they mainly rely on communication cost models where the total amount of data that needs to be communicated over the network is considered to have a major impact.

Our work is complementary to those cited in the previous paragraph because we focus on how a query result is communicated over the network, more precisely on how to tune the middleware parameters in order to minimize the communication time of a query result. Indeed, on the one hand, none of the aforementioned works take into account the interaction between the DBMS and the middleware, whereas on the other hand, we do not take into account the actual query plan that constructs a query result as we are interested only in how a query result can be optimally communicated over the network from the middleware point of view.

The state-of-the-art communication cost models in distributed databases area [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] have two components: (i) the per-message cost component i.e., the cost of constructing a message by the middleware of a data node, and (ii) the per-byte cost component i.e., the cost of communicating bytes of data over the network. Our experiments presented at Chapter 4 show that the estimation results returned by such communication cost models are not very accurate since the used estimation functions do not take into account the round-trips and the pipelining effects. To estimate the time needed to communicate a query result over the network, we develop a novel estimation function that is at the core of MIND. The proposed function takes into account the middleware parameters, the size of the query result, and the network environment. We show in Chapter 4 an experiment emphasizing the accuracy of the proposed estimation function.

An important point is that the low-level network parameters (e.g., part of the TCP/IP protocol [START_REF] Semke | Automatic tcp buffer tuning[END_REF][START_REF] Weigle | A comparison of tcp automatic tuning techniques for distributed computing[END_REF]) are not in the scope of our work. However, we take into account the network environment in our calibration phase, which allows to dynamically configure the weights of messages (network-dependent parameters) of our communication time estimation function. The parameter calibration achieved by MIND is in the spirit of the recent line of research on calibrating cost model parameters (for centralized DBMS) to take into account the specificities of the environment [START_REF] Hacigumus | Predicting query execution time: Are optimizer cost models really unusable[END_REF]. Also, we point out that the MIND framework is in the spirit of the research line on DBMS selftuning [START_REF] Chaudhuri | Self-tuning database systems: A decade of progress[END_REF][START_REF] Lee | Towards self-tuning data placement in parallel database systems[END_REF] and query-driven tuning [START_REF] Sattler | Quiet: Continuous query-driven index tuning[END_REF]. However, we are complementary to such approaches as we allow the DBMS to tune external parameters (i.e., from the middleware level), which falls outside the scope of existing DBMS. There are also recent works on software-defined networking for distributed query optimization [START_REF] Xiong | A software-defined networking based approach for performance management of analytical queries on distributed data stores[END_REF] that tune parameters outside the DBMS. We are orthogonal on such approaches since they tune the network bandwidth needed to communicate a query result, whereas we focus on tuning the middleware parameters.

We also emphasize that our middleware study is complementary to the distributed query processing mainstream literature [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Haas | Optimizing queries across diverse data sources[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] in the sense that we investigate how a query result is communicated over the network according to the middleware parameters F and M and not how to design an optimal query plan communicating as less data as possible.

Main contributions of the thesis

The goal of this thesis is to present the design and an empirical study of the MIND framework. Our main contributions are as follows:

• We present an experimental study (Chapter 3) having as goal to emphasize that the middleware configuration has a crucial impact on the time of communicating query results, and that research efforts need to be made to integrate the parameters F and M into the DBMS optimizer. Our study is extensive in the sense that we did a total number of ∼43K tests, spread over ∼7K distinct scenarios (two networks of different bandwidth × six queries of different selectivity × up to 629 different middleware configurations, depending on the result tuple size of each query). In particular, we show that the values of the middleware parameters F and M that minimize the communication time are query-and network-dependent. Moreover, we point out that none of the current recommendations found in technical documentations for tuning the middleware parameters is able to find the optimal values since such strategies do not take into account the query-and network-dependency.

• We introduce the MIND's function for estimating the communication time (Chapter 4). At the outset of our method are two crucial observations:

-Batches and messages are communicated differently over the network: batches are communicated synchronously, whereas messages in a batch are communicated in pipeline (assuming that a batch has several messages), hence it is possible to exploit the pipelining for minimizing the communication time, and -Due to network latency, it is more expensive to communicate the first message in a batch compared to any other message that is not the first in its batch.

These observations led to an estimation function where a message is treated differently depending on whether or not it is the first in its batch. Then, we propose an effective strategy for calibrating the costs (weights) of messages (first and non first in its batch), which are network-dependent parameters, of the communication time estimation function based on the actual network environment. We also show an experiments emphasizing the accuracy of our estimation.

• We develop an optimization algorithm to effectively compute the values of the middleware parameters F and M that minimize the communication time (Chapter 5). The proposed algorithm is iterative in the sense that it starts with initial (small) values of the two middleware parameters F and M and iterates to improve the estimation by updating the initial values. This allows us to quickly find (in small fraction of a second) values of the middleware parameters F and M for which the improvement in terms of communication time estimation between two consecutive iterations is insignificant. In practice, this translates to a good trade-off between low resource consumption and low communication time.

• We present an evaluation of the MIND framework (Chapter 5). In particular, we point out the improvement that we obtain over the current strategies for middleware tuning (in terms of communication time and/or resource consumption), the query-and network-adaptivity of MIND, and how the time estimation and the two middleware parameters F and M change during the iterations of the optimization algorithm.

Chapter 2

Communication cost in distributed data management systems

In this chapter, we briefly present different distributed DBMS architectures (Section 2.1) and we discuss cost models and techniques developed for optimizing communication time in distributed query processing (Section 2.2).

Distributed DBMS architectures

Distributed database management systems are at the convergence of two technologies: data processing and computer network technologies [START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. In this section, we focus on main distributed DBMS architectures proposed in the mainstream literature [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]: Client-Server systems, Peerto-Peer distributed DBMS and data integration (mediated) systems.

Client-Server architecture

A distributed DBMS architectures, as presented in Figure 2.1, are based on a general paradigm Client-Sever (or Master-Slave). This paradigm refers to a class of protocols that allows one node, namely client, to send a request to another node, called server, that processes the query and sends an answer as a response to this request. In this paradigm every node has a fixed role and always acts either as a client (query source) or as a server (data source) [START_REF] Kossmann | The state of the art in distributed query processing[END_REF].

[36] considers that the general idea behind Client-Server architecture is that the query processing functions are divided into two classes: server functions and client functions. In fact, the query processing, optimization, transaction management and storage management are done at the server node. In addition to the application and the user interface, the client has a DBMS module, which is in charge of managing the cached data that is gathered from DBMS node (data server) and sometimes managing transactions.

Client-Server

Client application DB Q Ans(Q) Peer-to-Peer DB 1 DB 2 Q Ans(Q) Mediator Mediator Data source 1 . . . Data sourcen Q 1 Qn Q Ans(Q)

Peer-to-peer architecture

As presented in Figure 2.1, in Peer-to-Peer architectures every node can act as a server that stores parts of the database and as a client that executes application programs and initiates queries [START_REF] Kossmann | The state of the art in distributed query processing[END_REF]. [START_REF] Özsu | Principles of Distributed Database Systems[END_REF] considers that the modern Peer-to-Peer systems go beyond this simple characterization and differ from the old Peer-to-Peer systems. The first difference is the massive distribution of data sources in current systems. The second difference is the inherent heterogeneity of distributed data sources and their autonomy. The third major difference is the considerable volatility of distributed data sources.

Data integration (mediated) architecture

In virtual data integration (mediated) systems, data stays at remote data sources and can be accessed as needed at query time [START_REF] Doan | Principles of Data Integration[END_REF]. As presented in Figure 2.1, these systems consist of integrating heterogeneous remote data sources in a virtual global schema, which is constructed at mediator node [START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. In this architecture, client node sends query to mediator node, which is in charge of constructing distributed query plan and decomposing query into subqueries that are sent to remote nodes. Each remote node processes the subquery and sends back results to the mediator node, which combines the results and send then back answer to the user.

Query optimization in distributed DBMS

The essence of Client-Server architecture is at the core of the aforementioned distributed architectures, in the sense that data is persistently stored in remote data servers and queries are initiated at client nodes [START_REF] Kossmann | The state of the art in distributed query processing[END_REF]. In distributed DBMS architectures, the dominant cost of computing a distributed query plan is typically the cost of transferring (intermediate) results over the network [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. As a consequence, minimizing the communication time has been recognized for a long time as one of the major research challenges in distributed data management area [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF].

A long-standing research effort has been devoted to the investigation of this problem, which led to the development of numerous distributed query optimization techniques [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Haas | Optimizing queries across diverse data sources[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF].

Next, we present different DBMS cost models used in query optimizer (Section 2.2.1) and we discuss different techniques developed to minimize the communication time in distributed query processing (Section 2.2.2).

Cost models in distributed DBMS

The query optimizer is a central component of a DBMS, having as goal to compute for a given query an execution plan that reduces the response time. A key difficulty underlying query optimization lies in the design of an accurate cost model that is used by the optimizer to estimate the costs of candidate query plans. Centralized DBMS s consider that the main components impacting query execution time is the CPU instructions and I/O operations. For instance, in a commercial open-source DBMS, namely PostgreSQL, the cost model used by the query optimizer consists of a vector of five components related to CPU instructions and I/O operations [START_REF] Hacigumus | Predicting query execution time: Are optimizer cost models really unusable[END_REF]. The cost of query plan is composed of the following five components:

• CPU instructions:

-The CPU cost to process tuples.

-The CPU cost to process tuples via index access.

-The CPU cost to perform operations such as a hash or aggregation.

• I/O operations:

-The I/O cost to sequentially access a page.

-The I/O cost to randomly access a page.

Distributed DBMS s optimizer, in addition to the cost components (CPU and I/O) of centralized DBMS s , takes into account the cost of transferring query results over the network. The stateof-the-art communication cost models in distributed databases area [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Karloff | A model of computation for mapreduce[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] consider as major parameters impacting the communication cost: the volume of data to be transferred (called per-byte cost component) and number of messages constructed (called per-message cost component). Next we present cost models proposed in mainstream literature [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Karloff | A model of computation for mapreduce[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF].

Cost models based on volume of data and constructed messages

This class of models consider that the communication cost can be estimated using two components:

• The per-message cost component i.e., the cost of constructing a message at a data node.

Precisely, it consists of estimating the overhead due to the construction of a message by DBMS node. Hence, the total number of messages is an important parameter in such cost models [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF].

• The per-byte cost component i.e., the cost of transferring bytes of data over the network. Concretely, it is the needed time of communicating a unit of data (e.g., byte or packet) of query result via network channel. Hence, the total size of query result influences the estimated cost in such models [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF].

This cost model is at the core of many distributed query optimizer [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. For instance, the popular R * optimizer [START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF] considers the combination of the aforementioned cost components to estimate the communication time in distributed query plan. Precisely, it considers:

• The cost of initiating all messages of query result (per-message cost). This cost encodes the time needed to construct a message before communicating it over the network. It is estimated by dividing the approximate number of instructions to initiate and receive a message by the MIP rate (Million Instructions Per Second), which measures the number of machine instructions that a computer can execute in one second.

• The cost of transferring over the network the total bytes of query result (per-byte cost) in all messages over the network. This cost encodes the time needed to communicate the bytes of a given message over the network. This cost is estimated by taking into account the actual transmission speed of the network.

Also, [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF] gives a formula to estimate the cost of sending and receiving a message from a data server node to client node for parallel query optimization. Concretely, this formula estimates the time for communicating a message as:

• The cost of constructing a data message before any data is placed onto network (permessage cost). This cost is considered a constant and estimated according to CP U cycles of used machines.

• The cost of communicating a message over the network (per-byte cost). The cost of communicating a message is computed according to the machine power (CPU cycles of the used machines).

It is worth noting that our experiments presented in Section 3.2 show that the estimation results returned by communication cost models based on per-byte and per-message are not very accurate because the used estimation functions do not take into account the round-trips and the pipelining effects.

Recently, in massively parallel systems, several cost models have being proposed in literature [START_REF] Duncan | A survey of models of parallel computation[END_REF] in order to optimize system performances. In these systems, the bottleneck is the communication of data between computation nodes. This is due to the fact that query can be evaluated by a large enough number of servers such that the entire data can be kept in the main memory and network speeds in a large clusters are significantly lower than main memory access [START_REF] Beame | Communication steps for parallel query processing[END_REF]. The recent research works focused on MapReduce framework has proposed the MapReduce Class (MRC) to optimize the communication cost [START_REF] Afrati | Gym: A multiround join algorithm in mapreduce and its analysis[END_REF][START_REF] Foto | Optimizing joins in a map-reduce environment[END_REF][START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Karloff | A model of computation for mapreduce[END_REF] in massively parallel systems. This model considers the amount of data assigned to a computation node and the number of communication rounds for communicating intermediate results between computation nodes. However, it does not take into account the overhead due to message construction and transfer.

Techniques for optimizing communication cost

Many efforts from both academia and industry focused on developing techniques that minimize the total amount of data that needs to be communicated over the network [1, 2, 5, 14, 17, 24-26, 29, 36], while few research works considered the problem of optimizing the number of communicated messages [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Kossmann | The state of the art in distributed query processing[END_REF]. New emerging research works propose to use software defined networking for distributed query optimization [START_REF] Xiong | A software-defined networking based approach for performance management of analytical queries on distributed data stores[END_REF].

Next we review different techniques that allow to minimize the time for communicating query result between computation nodes.

Query and data shipping techniques

There are three main approaches to minimize the communication overhead in distributed query processing [START_REF] Kossmann | The state of the art in distributed query processing[END_REF].

• Query shipping, consists in shipping the query to the lowest possible level in a hierarchy of sites (database server site). In commercial distributed DBMS s , the so-called hints are introduced to push operators (e.g., selection, projection and JOIN) to remote data nodes, which yield to reduce the communication cost [START_REF] Haas | Optimizing queries across diverse data sources[END_REF].

• Data shipping, queries are executed at the client machine, where data is cached in mainmemory or on disk at the client node.

• Hybrid shipping, is based on the combination of data and query shipping. Hybrid shipping approach, which provides a flexibility to execute query operators on client and server nodes, presents in general better performance than data or query shipping. This is because hybrid shipping enables to exploit client and server as well as intra-query parallelism. However, query optimization is significantly more complex [START_REF] Kossmann | The state of the art in distributed query processing[END_REF].

Techniques that reduce the volume of data

The popular techniques used to avoid communicating as less as possible of volume of data between computation nodes, are: filtering relations, fragmenting big tables and compressing data before being communicated over the network. The main ideas of these techniques are given bellow.

Semijoin technique: [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF] consider that the semijoin operation can be used to decrease the total time of join queries. The semijoin acts as a size reducer for a relation much as a selection does. The join of two relations R and S over attribute A, stored at sites 1 and 2, respectively, can be computed by replacing one or both operand relations by a semijoin with the other relation, using the following rules:

• R A S ⇔ (R A S) A S • ⇔ R A (S A R) • ⇔ (R A S) A (S A R)
The choice between one of the three semijoin strategies requires estimating their respective costs. The use of the semijoin is beneficial if the cost to produce and send it to the other site is less than the cost of sending the whole operand relation and of doing the actual join.

Bloom-Filter technique: similar to semijoin technique, the Bloom-filter (also called Bloomjoin) is a "hashed semijoin", in the sense that it filters out tuples that have no matching tuples in a JOIN operation [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF]. The main idea of Bloom-filter technique is to communicate as less data as possible from one site to another.

Reducing the number of communicated messages

Row-blocking (batching) technique

The main idea of this technique is to ship tuples, from one site to another via network, in blockwise fashion, rather than every tuple individually. This approach, implemented in commercial distributed DBMS, is obviously much cheaper than the naive approach of sending one tuple at a time because the data is communicated into fewer messages [START_REF] Kossmann | The state of the art in distributed query processing[END_REF]. The technical documentations of popular DBMS drivers (e.g., JDBC [START_REF] Shirazi | Java performance tuning[END_REF], ODBC [START_REF] Geiger | Inside ODBC[END_REF], and proprietary middleware: Oracle Net services [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF]Oracle. Oracle database, net services administrator's guide[END_REF] and Distributed Relational Database Architecture: DRDA of DB2 [START_REF]DB2 Connect User's Guide[END_REF]) emphasize the performance improvement obtained by communicating many rows at one time, which reduce the number of round-trips from client node to DBMS node. But, this is at the price of resource consumption, e.g., buffers and network bandwidth [START_REF] Shirazi | Java performance tuning[END_REF].

Despite the performance advantage provided by the row-blocking technique, to the best of our knowledge that there is not cost model proposed in the literature that takes into account the impact of row-blocking (batching).

In addition, other classical techniques have been used to reduce communicated volume of data and messages, such as vertical and horizontal partitioning for big relations [START_REF] Peter | Data allocation in distributed database systems[END_REF][START_REF] Shamkant | Vertical partitioning for database design: A graphical algorithm[END_REF] and data compression [START_REF] Lelewer | Data compression[END_REF].

Adaptive optimization

Recent research work [START_REF] Xiong | A software-defined networking based approach for performance management of analytical queries on distributed data stores[END_REF] proposes to use the software-defined networking to provide an optimal network bandwidth. Precisely, this work points out that:

• Each query needs a particular network bandwidth to communicate efficiently its query result from DBMS node to client node.

• DBMS optimizer can tune external parameters, such that network bandwidth, which can be controlled via Software Defined Network (SDN) to fix the necessary bandwidth for each query [START_REF] Xiong | A software-defined networking based approach for performance management of analytical queries on distributed data stores[END_REF].

We are orthogonal on such approach since it tunes the network bandwidth needed to communicate a query result, whereas we focus on tuning the middleware parameters. Furthermore, we point out that our research work is in the spirit of the research line on DBMS self-tuning [START_REF] Chaudhuri | Self-tuning database systems: A decade of progress[END_REF][START_REF] Lee | Towards self-tuning data placement in parallel database systems[END_REF], parametric optimization [START_REF] Yannis | Parametric query optimization[END_REF][START_REF] Trummer | Multi-objective parametric query optimization[END_REF] and query-driven tuning [START_REF] Sattler | Quiet: Continuous query-driven index tuning[END_REF]. However, we are complementary to such approaches as we allow the DBMS to tune external parameters (i.e., from the middleware level), which falls outside the scope of existing distributed DBMS.

Discussion

At the end of this chapter, it is important to stress that despite the developed approaches and techniques (Section 2.2), minimizing the communication time in distributed query processing remains an open research domain. This is motivated by the fact that: • Cost models proposed in literature [START_REF] Beame | Communication steps for parallel query processing[END_REF][START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF], which are based on the per-message and/or per-byte cost components are not suited to tune the middleware parameters F and M because they do not take into account the round-trip and pipeline communication effects. In Section 3.2.4, we give experiment results that strengthen this point.

SQL query

Query result

• Distributed query processing mainstream literature [1, 2, 5, 14, 17, 24-26, 29, 36] does not take into account the interaction between the DBMS and the middleware layer in distributed query processing. It typically focuses on designing distributed query plans that minimize the communicated volume of data and number of messages. The designed query plans do not take into account how query results are communicated between computation nodes. However, we argue that it is important to look inside the middleware black-box to understand what happens. For instance, the execution of a distributed query in Figure 2.2 raises several questions, such as:

-How data is communicated from DBMS node to client node (tuple-per-tuple, whole query result at once or batch by batch)?

-How SQL middleware allocates memory in both DBMS and client nodes to manage the query result?

-How client node processes the communicated query result (in streaming manner, wait until receiving the whole query result, computing result batch per batch or with other manner)?

-What is the influence of the communication layers (e.g., middleware, network protocol, etc.) in the improvement of distributed query execution?

-What is the parameters that impact the time for communicating query result and how they can be suited to provide a good communication time?

-Whether the classical cost models per-message and per-byte components are suited to estimate the time for communicating query result between computation nodes?

In this thesis we focus on all these questions and we take a new look to the problem of optimizing the time for communicating query results in a distributed architectures, by investigating the relationship between the communication time and the middleware configuration.

Chapter 3 DBMS-tuned Middleware

In this chapter, we recall the main functionalities provided by SQL middleware (in Section 3.1) and then we present our experimental study that emphasizes the crucial impact of the middleware configuration on the time for communicating query results over the network (in Section 3.2).

Middleware in distributed query processing

The term middleware refers to a software layer that provides a programming abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating systems and programming languages [START_REF] Coulouris | Distributed Systems: Concepts and Design[END_REF].

In distributed DBMS architectures, the middleware (e.g., JDBC [START_REF] Shirazi | Java performance tuning[END_REF], ODBC [START_REF] Geiger | Inside ODBC[END_REF], or proprietary middleware: Oracle-Net-services [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF]Oracle. Oracle database, net services administrator's guide[END_REF] and Distributed Relational Database Architecture: DRDA of DB2 [START_REF]DB2 Connect User's Guide[END_REF]) is a layer on top of a network protocol that determines, among others, how data is divided into batches and messages before being communicated from DBMS node to client node over the network (see Figure 3

Middleware functionalities

The main functionalities provided by the SQL middleware in distributed DBMS s architectures are:

• Establishing and managing connection between client and DBMS nodes. Indeed, the middleware is responsible to establish and keep alive connection between application and DBMS nodes throughout the query execution.

• Hiding heterogeneity problems (e.g., data types, synthetic variables of the query language, etc.) between client and DBMS nodes. That means providing a maximum of interoperability, in the sense that an application can access different heterogeneous DBMS s with a single program code.

For example, most SQL middleware implements SQL Call Level Interface (CLI) i.e., an API which provides standard functions to mainly send SQL statements to the DBMS and gather query results into application node. The goal of this interface is to increase the portability of applications by enabling them to become independent from particular DBMS [START_REF]Data management: Sql call level interface (x/open sql cli)[END_REF].

• Determining how data is divided into batches of F tuples and messages of M bytes before being communicated over the network from DBMS node to client node, such as illustrated in Figure 3.1.

• Receiving and caching data into buffers before being processed by client application.

Communication model

We focus on a simplified distributed architecture (cf. Figure 3.1), where client node sends a query Q to DBMS node, which in its turn sends back to client node the result of a query Q, assuming that the result of Q is needed by some application from client node. Such an architecture is at the core of several distributed architectures presented in Section 2.1 such as:

• The Client-Server, where client node is a client and sends its query to the server at DBMS node, which sends back the query result.

• The mediator, where client node is a mediator, having as role to compute a distributed query plan and decomposing Q into subqueries; then, it asks distributed data nodes such as DBMS node to compute subquery results.

• The peer-to-peer, where every node can play at the same time the roles of client and server, etc.

A simplified architecture as in Figure 3.1 allows us to stress test the communication time by requiring to communicate over the network the entire query result that is computed in DBMS node. We focus on the impact of the middleware configuration on the time for communicating query result from DBMS node to client node. In particular, the middleware of DBMS node is in charge of splitting query result in batches of F tuples and then splitting each batch in messages of M bytes. The values of middleware parameters F and M can be tuned in all standard or DBMS-specific middleware [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Geiger | Inside ODBC[END_REF][START_REF]PostgreSQL 9[END_REF][START_REF]Tabular data stream protocol[END_REF][START_REF] Shirazi | Java performance tuning[END_REF].

In the rest of this section, we describe the standard behaviour of these parameters. An important point is that batches and messages are communicated differently over the network.

Synchronous communication of batches

When DBMS node sends a batch of F tuples to client node, the communication is done synchronously i.e., client node needs to wait an ack signal and a request for a next batch from the part of client node to be able to send the next batch of F tuples. Moreover, client node is able to process a batch only after receiving all messages composing that batch and it is blocked while waiting all such messages. After client node receives and processes an entire batch, it sends to DBMS node a request for a next batch.

The number of batches that are used to communicate a query result is known as the number of round-trips [START_REF] Shirazi | Java performance tuning[END_REF]. Whereas the size of a batch F is usually given in tuples, it is sometimes important to quantify the actual size in bytes of a batch, that we denote by F B (this can be computed simply by multiplying F with the size in bytes of a tuple). For instance, client node needs to have F B bytes of available heap memory to store an entire batch while receiving it.

Pipeline communication of messages

To send a batch of F tuples over the network, the middleware of DBMS node splits it into messages, each message having M bytes. The messages of M bytes are sent in pipeline from DBMS node to client node (assuming that a batch of F tuples has more than one message of M bytes).

More precisely, the middleware at DBMS node has a buffer of M bytes that it continuously filled with tuples of the current batch; each time the buffer is full, the middleware of DBMS node sends a message of M bytes over the network, until the whole requested batch is achieved. This means that DBMS node sends messages over the network without waiting for ack signals from client node, hence several messages of a same batch can be communicated over the network at a specific moment.

Low-level network communication

The messages of M bytes are further split into network packets by a low-level network protocol such as TCP/IP [START_REF] Semke | Automatic tcp buffer tuning[END_REF], that we do not represent in Figure 3.1 for simplicity of presentation and because such low-level protocols are out of the scope of our work. The technical documentation of some state-of-the-art DBMS [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF] recommends using a middleware message that fits in a network packet to avoid the overhead of fragmenting a middleware message of M bytes in several network packets. However, our extensive empirical study shows that such a strategy never gives the best communication time in practice, which suggests that the number of round -trips and the network latency have the most dominant impact on the communication time.

Memory management

In this section, we focus on how middleware allocates and manages the query results communicated by DBMS node. Recall that the DBMS middleware communicates synchronously query results in one or several batches (i.e., many tuples that are communicated at once from DBMS node to client node. The number of tuples is fixed by a middleware parameter F). The middleware in client node is in charge to allocate a sufficient memory (buffers) to store an entire batch while receiving it, as depicted in Figure 3.1.

The popular JDBC middleware [START_REF]Application Programming Guide and Reference for Java[END_REF][START_REF]Oracle jdbc memory management[END_REF] allocates buffers that should store query result or batch of F tuples according to:

• The number of columns and their types for a given query (to compute an approximate size per row, where each column type has a its size).

• The size of the query result (if the whole query result is gathered at once) or batch (if query result is split into several batches).It is recommended that the size of a batch should be configured carefully because it has an enormous impact on memory consumption and system performance.

The memory allocation in client middleware is very sensitive, in the sense that:

• Small memory size implies batch of small sizes (i.e., a small F) which lead to poor performance in communication time because the client node needs many round-trips to process the entire query result [START_REF] Shirazi | Java performance tuning[END_REF]. In this case, the main advantage is that the middleware consumes a less memory resource, which does not impact system performance in client node.

• Large memory size for a batch of F tuples, in presence of enough bandwidth network, can improve considerably the communication time. The drawback in this case is that the middleware consumes a large memory, which impacts the system performance at client node and can generate an errors when the available memory is not enough to store a batch of F tuples.

To the best of our knowledge, no existing DBMS middleware is able to find the best value of the middleware parameter F that provides a good trade-off between communication time and memory consumption.

Furthermore and in addition to the memory consumption in client node, it is important to stress that middleware parameters F has an important impact on the network bandwidth and I/O disk access. We report in Appendix A the consumption of network bandwidth and I/O disk access according to the values of middleware parameters F and M during query execution.

Next we present the current practices used in commercial DBMS s to set the middleware parameters F and M.

Current practices for configuring middleware parameters

We focus on commercial distributed DBMS s , namely: Oracle [START_REF]Oracle. Oracle Database, JDBC Developer's Guide[END_REF][START_REF]Oracle. Oracle database, net services administrator's guide[END_REF], DB2 [START_REF]Performance Monitoring and Tuning Guide[END_REF][START_REF]DB2 Connect User's Guide[END_REF][START_REF]Managing Performance[END_REF], Post-greSQL [START_REF]PostgreSQL 9[END_REF], SQL Server1 and MySQL2 to analyse how the middleware parameters F and M are configured.

These DBMS s use different strategies to set the values of the middleware parameters F and M. These strategies are summarized in the following points:

• Leave default values set by the DBMS middleware.

• Leave F as default value and set M to maximum value.

• Set F to maximum value and leave M as default value.

• Set both parameters F and M to maximum values.

• Set M to maximum value and set F such that all tuples in a batch fit in a single message.

Next we give more detail on the current practices used in these DBMS s to set the values of the middleware parameters F and M.

Oracle

Batch Size F: Oracle JDBC middleware [START_REF]Oracle. Oracle Database, JDBC Developer's Guide[END_REF] sets the default F at 10 tuples and can be setted to maximum size that can be handled in the heap memory. Oracle ODBC3 middleware allows to configure the amount of memory to contain a batch of F tuples. In ODBC, the default size to handle a batch is fixed to 64 KB. For an application SQL -P lus command line, which uses a proprietary middleware (Oracle Net-Services), it sets a default F to 15 tuples and a maximum value to 5K tuples. Oracle considers that determining the best value of F is not obvious 4 .

Message Buffer Size M: Oracle Net-Services [START_REF]Oracle. Oracle database, net services administrator's guide[END_REF] uses a session parameter, namely session data unit (SDU, which is the M in our case). This parameter defines the size of data message that can be used for communicating query results between DBMS and client nodes. The size of message is negotiated between client and DBMS nodes at the connection time. The message size can range from 0.5KB to 65KB. The default message size is 8KB, and rarely larger than 8KB bytes. When large amounts of data are being transmitted, increasing the message size can improve performance and network throughput. However, technical documentations [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF] consider that the M should be less than the network packet limited by the parameter Maximum Transmission Unit MTU.

DB2

DB2 has two strategies to set the middleware parameters F and M [START_REF]Performance Monitoring and Tuning Guide[END_REF][START_REF]DB2 Connect User's Guide[END_REF][START_REF]Managing Performance[END_REF]. The first, called a limited block fetch, which is a default strategy. This strategy recommends to set the values of the middleware parameter F such that it fits in a one data message of M bytes. The second strategy, called continuous block fetch, which consists of setting the middleware parameter F such that it fits in several messages of M bytes. More detail on both strategies is given bellow.

Limited block fetch: consists of setting F such that it fits in one message of M bytes. The sizes of the F and M are fixed via parameter RQRIOBLK. The default value is 32KB and uses range of values from 4KB to 65KB. This strategy consumes less resources, but provides a worst communication time when a large query result is communicated. This is due to the fact that a large number of communicated batches (round-trips) is done synchronously (batch per batch) between DBMS and client nodes, since each batch of F tuples is communicated in one message of M bytes.

Continuous block fetch: consists of setting F such that it can be fitted in several messages of M bytes. This strategy shows a good communication time due to the pipelined communication, of messages in the same batch, between DBMS and client nodes. This is due to the fact that a DBMS node does not wait a signal from client node to send next messages of a current batch. However, DB2 client can receive multiple messages of M bytes from DBMS node for each batch of F tuples. This strategy needs a large memory allocation in client node. The number of messages of M bytes (called extra blocks in IBM documentation) is fixed by the parameter EXTRA BLOCKS SRV in server node and MAXBLKEXT in client node. The maximum messages of M bytes that can be communicated for a batch of F tuples is limited at 100 messages.

SQL Server

Batch Size F: the default configuration of Microsoft JDBC Driver5 is to retrieve the whole query result from DBMS node at once. If a large query result is gathered SQL Server can provide an adaptive buffering, but this can show an OutOfMemoryError in the JDBC application for the queries that produce very large results.

Message Buffer Size M: Sql Server6 uses a default packet size of 4KB. The message size M is very sensitive in Sql Server DBMS, since it can only tuned by an experienced database administrator or certified Sql Server technician.

PostgreSQL

Batch Size F: the default configuration of F in PostgreSQL7 is to collect all query results at once when the memory can handle it. For a large query results, the middleware (e.g., JDBC) can extract only a small sizes of F tuples from DBMS node.

Message Buffer Size M: PostgreSQL uses a message-based protocol8 for communicating query result from DBMS node to client node. In this kind of protocol, the size of message M is not fixed at session time, but each message contains its size in message-header.

MySQL

Batch Size F: by default MySQL9 retrieves all query result at once, which is stored in client middleware buffers. For queries handling a large query results, the middleware can extract small batches from DBMS node (e.g., JDBC driver uses setFetchSize method to set the F).

At the end of this section, we stress that:

• The commercial DBMS s do not provide methods and techniques to efficiently set middleware parameters F and M.

• The middleware parameters F and M are configured in commercial DBMS independently, in the sense that there is not a clear correlation (relationship) between the values of middleware parameters F and M, since a batch of F tuples is communicated in one or several messages of M bytes.

• The commercial DBMS s tune the values of middleware parameters F and M such that they are used for all queries and network environments. This approach can not be useful because there is not a unique optimal configuration of middleware parameters F and M that fits all queries and network environments, because these parameters are query-dependent and network-dependent.

Analysing the impact of middleware parameters

In this section, we present an experimental study emphasizing that the middleware configuration has a crucial impact on the time of communicating query results. We present the considered distributed architecture in Section 3.2.1, the experimental setup in Section 3.2.2, the trade-off between performance and resource consumption in Section 3.2.3 and we discuss our empirical observations in Section 3.2.4.

Query Q

Client node

(Application, Mediator, P2P, etc.)

Statistics

MIND

Compute Best Parameters

Sends best parameters

DBMS optimizer

Requests best parameters

Client middleware

Communicate with data nodes

Architecture

We focus on a simplified distributed architecture (cf. Figure 3.2), which is at the core of several distributed paradigms [START_REF] Kossmann | The state of the art in distributed query processing[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] such as: the Client-Server (where client node is a client and sends its query to the server at DBMS node, which sends back the query result), the mediator (where client node is a mediator, having as role to compute a distributed query plan and decomposing Q into subqueries; then, it asks distributed data nodes such as DBMS node to compute subquery results), the peer-to-peer (where every node can play at the same time the roles of client and server), etc. The components annotated with in Figure 3.2 correspond to the middleware tuning features proposed by our framework that we detail in Chapter 4 and Chapter 5.

A simplified architecture as in Figure 3.2 allows us to stress test the communication time by requiring to communicate over the network the entire query result that is computed in a DBMS node. We focus on the impact of the middleware on communicating the query result Ans(Q) from DBMS node to client node. In particular, the middleware of DBMS node is in charge of splitting Ans(Q) in batches of F tuples and then splitting each batch in messages of M bytes.

Recall that the middleware parameters F and M can be tuned in virtually all standard or DBMS-specific middleware [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Geiger | Inside ODBC[END_REF][START_REF]PostgreSQL 9[END_REF][START_REF]Tabular data stream protocol[END_REF][START_REF] Shirazi | Java performance tuning[END_REF]. We recall also that the standard behaviour of communicating query results in batches of F tuples and messages of M bytes is described in Section 3.1.2.

Experimental environment

Data and queries

We focus on data and queries provided by researchers from the astronomical domain. More precisely, the dataset consists of astronomical data from LSST10 (Large Synoptic Survey Telescope). The dataset has ∼34GB spread over two tables: OBJECT of objects detected in the sky (∼2GB, ∼4M tuples, 227 attributes) and SOURCE of sources used in the detection of these objects (∼32GB, ∼165M tuples, 92 attributes). More information on the schema of these tables can be found online 11 . Moreover, we focus on six queries (given in Figure 3.3) that we extracted from existing workloads that astro-physicists frequently run on astronomical data 12 . The only criteria that we took into account when choosing these queries is that they have diverse selectivities (their query results span from a few bytes to 32GB). We are not interested in the actual query plan that computes their query results as we are interested only in how their query results are communicated over the network.

Database

Commercial distributed relational database system DBMS is used to store and manage dataset in tables.

System environment

Our machines have CPU Xeon E5-2630 at 2.4 GHz, 8GB of memory, 250GB of hard drive (at 10K revolutions per minute), and run Ubuntu 12.04.

Network configurations

We use two configurations: (i) high-bandwidth (10Gbit/s) and (ii) low-bandwidth (50Mbit/s). In both cases, we have an Ethernet MTU (Maximum Transmission Unit) jumbo frame of 8.95KB (that is the size limit of a network packet that can be sent over our networks).

F and M configurations

We consider a set of 629 = 17 × 37 configurations as follows:

• For M we have 17 values: 1.5, and from 2 to 32KB with a step of 2. We have a minimum value of 1.5KB to simulate a standard Ethernet MTU that is usually fixed to 1.5KB.

Moreover, we have a maximum value 32KB for M because this is the maximum supported by the middleware of the commercial DBMS that we used.

• For F we have 37 values:

-9 values from 110 to 990 tuples with a step of 110, -9 values from 1.1K to 9.9K tuples with a step of 1.1K, -9 values from 11K to 99K tuples with a step of 11K, and -10 values from 110K to 1.1M tuples with a step of 110K.

We considered multiples of 110 tuples for F because 1.1K tuples can be communicated in one message of 32KB corresponding to the maximum M for query Q 3 (that we consider to be the "average" query since both its result size of 165M tuples and its tuple size of 27 bytes are the most frequent among all queries; Q 3 is actually the running example query throughout the thesis).

We have a maximum value of 1.1M tuples for F because this occupies the maximum heap space allowed for a middleware batch by our system (that is 30MB). We also point out that for the queries Q 1 , Q 2 , Q 4 having visibly larger tuples compared to Q 3 only a subset of the 629 configurations have been run successfully (since the largest batches that can be used for the three aforementioned queries are of 110K, 550K, 66K tuples, respectively).

Measures

We report the time needed to communicate the result of a query Q between two nodes, for a given network environment, a given F, and a given M. Each number reported for the high-bandwidth configuration is obtained as the average over ten runs, whereas for the low-bandwidth configuration over three runs. The reported communication times are provided by the DBMS trace files, which additionally provide information on the query execution time, number of transferred messages, etc. In Table 3.1, we zoom on the main information gathered from the DBMS trace files in each query execution. The meaning of each column is explained bellow: Table 3.1: Zoom on information gathered from DBMS trace files, according to experimental process described in Figure 3.4. (xi) Time, in seconds, for communicating all not first messages in all batches.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi
For an extensive study of the influence of the middleware parameters F and M, we develop a shell program on Linux OS that executes and analyses continuously for different values of middleware parameters F and M. The mains tasks of this program are shown in Figure 3.4.

Trade-off between performance and resource consumption

Unsurprisingly, an as it can be observed in our intensive experimentation (cf. 3.2.2), the cost of shipping query results is very sensitive to the network and middleware settings. Poor configurations of these two layers can increase significantly the communication cost.

DBMS-tuned Middleware

We discuss the trade-off between performance and resource consumption for extreme cases of F and M:

• Large value of F minimizes the number of round -trips (which minimizes the communication time in a network having a sufficiently large bandwidth), but increases the memory footprint (since all messages of a same batch need to be stored before processing them), and also increases the waiting time in Client node (since it is blocked while waiting for the entire batch);

• Small value of F does not consume large resources (and also avoids potential out-of-memory errors), but has the disadvantage of a large number of round -trips (which increases the communication time);

• Large value of M gives empirically good results, particularly when it is combined with a large F because this implies multiple messages in a batch that are communicated in pipeline, which reduces the communication time, but at the price of increasing memory footprint in both nodes and increasing network usage;

• Small value of M does not consume large resources and usually yields a pipelining implying good communication times, but sometimes implies an overhead due to splitting batches in a large number of messages in DBMS node and reconstructing the batches in Client node.

Our experiments confirm the intuitions outlined in this paragraph.

Empirical analysis

The goal of this section is to emphasize the impact of the middleware parameters F and M on the time of communicating a query result from DBMS node and client node. In particular, we show that:

• Two different middleware configurations can yield very different communication times;

• For a fixed network configuration, each query has a different best combination of F and M (i.e., the best middleware configuration is query-dependent);

• For a fixed query, each network configuration has a different best combination of F and M (i.e., the best middleware configuration is network-dependent);

• There is no current strategy of middleware tuning that allows to find the best parameters.

We next detail all these points.

Impact of the middleware configuration

To emphasize the impact of the middleware configuration on the communication time of a query result, we report in Figure 3.5 the best and worst communication times among 629 combinations of F and M parameters, six queries, and two networks (cf. Section 3.2.2). The difference between the best and the worst configuration is particularly visible for the queries having a large result. For example, for the queries Q 1 , Q 2 , and Q 3 that return the largest results, the difference is of two orders of magnitude in the high-bandwidth network and an order of magnitude in the low-bandwidth network. Moreover, we observe in Figure 3.6 that for the first five queries the communication times for the different combinations of F and M are not clustered neither around the best case nor around the worst case, but are rather spread over the entire space between them.

Query-dependency

We present in Figure 3.7 the resources consumed by the best and worst cases from Figures 3.5, 3.6. In particular, we observe that all queries have pairwise distinct combinations of F and M that yield the best communication time. This observation holds for both network configurations. For example, if we look at Q 3 and Q 5 in the high-bandwidth network, we notice that both best cases use M=32KB, but the query Q 3 that has a much larger result also needs a larger F to obtain its best time (it needs F=880K tuples compared to Q 5 that needs F=330K tuples).

Network-dependency

In the same Figure 3.7, we observe that, for the first five queries, the two network configurations have different combinations of F and M values that give the best result. For example, for Q 3 we observe that the low-bandwidth network requires a much smaller F (880K vs 22K tuples) due to the network latency.

Limitations of current strategies

As already mentioned in this chapter, to the best of our knowledge, the database research community does not have well-established strategies for middleware tuning. However, the documentation of the state-of-the-art DBMS e.g., [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Shirazi | Java performance tuning[END_REF] puts forward some recommendations. We next point out that none of these recommended strategies is able to capture the aforementioned queryand network-dependency in order to find optimal values for the middleware parameters F and M.

In this experiment, we zoom on queries Q 3 and Q 5 (that have different query result sizes), and we report the communication times for four scenarios, obtained by crossing the two queries with the two considered network configurations (high-and low-bandwidth). We discuss the following five strategies, introduced in Section 3.1.4, for setting the values of middleware parameters F and M.

(i) Leave default values set by the middleware of our DBMS (in our case F=15 tuples and M=8KB).

(ii) Set M to maximum value (32KB) and leave F as default.

(iii) Set F to maximum value and leave M as default.

(iv) Set both parameters to maximum values.

(v) Set M to maximum value and set F such that all tuples in a batch fit in a single message.

In our case, we have for both queries Q 3 and Q 5 the same F=1.1M tuples in (iii) and (iv), and the same F=1.1K tuples for (v) because the two queries have similar tuple sizes (cf. Figure 3.3). The five aforementioned strategies correspond, in order, to the first five bars of each plot from Figure 3.8. The default M (used in the strategies depicted in the first and third bar of each plot) is set such that a middleware message of M bytes fits in one network packet (whose size is limited by the MTU, which is set to 8.95KB in our system as mentioned in Section 3.2.2). Such a default choice is suggested as being "optimal" by a state-of-the-art DBMS [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF] to avoid the overhead due to splitting the middleware messages into network packets.

We observe that:

• There is no strategy that imposes itself as the best choice in all scenarios.

• The best combination of F and M as found after an exhaustive search over 629 combinations (i.e., the sixth bar of each plot) is always better than the best competing strategy.

• For each scenario, the worst performance is obtained by the strategies using a default (small) F value because this implies a very large number of round-trips (cf. Section 3.2.1); this suggests that the commercial DBMS that we use has chosen such a default F in order to sacrifice the performance in the favor of less resource consumption (and to avoid out-ofmemory errors).

• For the high-bandwidth network, the combination of the parameters F and M that yields the best communication time consumes less resources than the best competing strategy for Q 3 and Q 5 .

• Setting the middleware message M such that it fits in one network packet never gives the best communication time (this last point is in fact noticeable in Figure 3.7 for all combinations of queries and networks).

Limitations of classical communication cost models

As mentioned in Section 2.2, state-of-the-art cost models in distributed data management area are based on per-byte cost and per-message cost components to estimate the communication cost [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF]. Recall that intuitively, the per-message cost encodes the time needed to construct a message before actually communicating it over the network, whereas the per-byte cost encodes the time needed to actually communicate the bytes of a given message over the network. Our experiments show that such models are not precise enough to accurately estimate the communication time. We stress in Example 3.1 the limitation of this cost model for tuning middleware parameters F and M.

Example 3.1. We zoom on query Q 3 and we report in Figure 3.9(a) the communication times and in Figure 3.9(b) the number of communicated messages for four middleware configurations, namely F=1.1K, 2.2K, 3.3K and 4.4K tuples, with M=32KB. Figure 3.9(b) depicts the total number of messages with black bar, the total number of 1 st messages in batches with slash bar, and the total number of non first messages (i>1) in batches with backslash bar.

Observe that the four configurations transfer the same amount of data (4.5GB corresponding the result size of Q 3) using the same number of messages (150K messages as shown by the black bar of Figure 3.9(b)). In this case, classical per-message and per-byte cost models [START_REF] Ganguly | Efficient and accurate cost models for parallel query optimization (extended abstract)[END_REF][START_REF] Mackert | R* optimizer validation and performance evaluation for distributed queries[END_REF][START_REF] Özsu | Principles of Distributed Database Systems[END_REF] tend to derive the same communication cost for the four configurations which is contradicted by the measures reported at Figure 3.9(a). The reason behind this discrepancy comes from the fact that existing cost models do not take into account the round-trip effect while, as it can be observed at Figure 3.9(b), the communication time is tightly correlated to the number of 1 st messages communicated in all batches (which corresponds to the number of round-trips). ♦

Network overhead

Recall that the middleware messages of M bytes are further split into network packets by a low-level network protocol such as TCP/IP [START_REF] Semke | Automatic tcp buffer tuning[END_REF]. The documentation of some state-of-the-art DBMS [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF] puts forward a recommendation that suggests using a middleware message of M bytes that fits in a network packet. The goal of such an approach is to reduce the overhead due to the fragmentation of a middleware message in several network packets. However, our experiments show that such a recommendation never gives the best communication time in practice, which suggests that the number of round-trips (that is equivalent to the number of first messages) has the most dominant impact on the communication time. In the experiment that we present in Example 3.2, we analyze the impact of the number of round-trips and the pipeline communication of middleware messages of M bytes, and the effect of network overhead due to fragmentation of M into network packets. Recall that the maximum size of a network packet that can be sent over a network is limited by the MTU parameter (whose size is limited to 8.95KB in our network). In this example, we make two important points: (i) the effect of the fragmentation of middleware messages of M bytes into network packets, and (ii) the subtle interaction between the values of the middleware parameters F and M.

Effect of fragmenting M into network packets. We show below that the overhead due to the fragmentation of middleware messages into network packets is not a dominant cost.

• In configurations using F=110K tuples, the best communication time is obtained with M=32KB, as depicted in Figure 3.10(a). Note that this case (F=110K tuples and M=32KB) presents a maximum network fragmentation operations (see Figure 3.10(e)).

• In configurations using F=1.1K tuples, the best communication time is obtained with M=2KB, as depicted in Figure 3.10(a). The documentation of some state-of-the-art DBMS [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF] recommends setting the middleware message size M such that it fits in a single network packet. Such documentation claims that this approach is optimal because setting M MTU avoids the overhead due to splitting the middleware messages into network packets. However, we observe that such a recommendation does not fully capture the practical behavior. More precisely, we consider three values of M i.e., 2, 4, 8KB that are smaller than the MTU. In all three cases, although there is no cost associated to the fragmentation of M into network packets (cf. Figure 3.10(d)), the overall communication time varies from 64.98 seconds (for M=2KB) to 78.87 seconds (for M=8KB).

Subtle interaction between the values of F and M. Observe that there is a subtle interaction between the values of F and M. For example, with F=110K tuples, the best communication time is obtained using M=32KB, which is rather natural: we consume maximum resources of F and M, and we observe low communication time. On the other hand, for F=1.1K, the best communication time is obtained with M=2KB, which may appear unnatural because we use small message size, which increases the total number of messages. The rational behind such a behavior is that when smaller messages are sent through network of a large enough bandwidth, the data can be communicated in pipeline (i.e., several messages can be at the same time in the pipeline between DBMS node and client node) and, in addition, the cost of transferring the first message is cheaper when M is small. Recall that we detailed the pipeline phenomenon in Section 3.1.2. ♦

Conclusions of experimental study and research problem statement.

The experiments detailed in this section show that there is no single combination of F and M that is optimal for all the considered queries and networks (even when large resources are consumed). This motivates our work on the following research problem: given a query result size and a network environment, what is the best trade-off between the middleware parameters F and M in order to minimize the communication time of transferring the query result over the network? We present our techniques to solve this problem in the following chapters.

Discussion

At the end of this chapter, we stress that:

• Tuning the middleware parameters F and M is non trivial problem because the optimal values of the parameters are query-dependent (that may vary in terms of selectivity) and network-dependent (that may vary in terms of bandwidth).

• The classical communication cost models (based on per-byte and per-message cost components) can not estimate accurately the time for communicating query results between distributed computation nodes. This is because they do not capture the practical behavior of communicating query results over the network. Precisely, they do not take into account the round-trip and pipeline communication effects.

• To the best of our knowledge, no existing DBMS is able to automatically tune the middleware parameters F and M, nor is able to adapt to different queries (that may vary in terms of selectivity) and network environments (that may vary in terms of bandwidth). It is currently the task of the database administrators and programmers to manually tune the middleware to improve the system performance.

• The database research community does not have well-established strategies for middleware tuning. However, existing technical documentations e.g., [START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Shirazi | Java performance tuning[END_REF] put forward some recommendations, none of which being query-and network-dependent. Our intensive experimental study shows that these strategies do not usually yield the best communication time in practice, even when they consume large resources.

We present next our solution that is based on MIND framework, which allows to find the good values of middleware parameters F and M that minimize the communication time for a given query and network environment. Chapter 4

MIND framework

We propose the MIND framework, which tunes the middleware parameters F and M, in order to minimize the communication time, while adapting to different queries and networks. The key ingredients of MIND are a communication time estimation function that we present in this chapter and an iterative optimization algorithm, proposed in Chapter 5.

More precisely, in this chapter we present the intuition behind the estimation function of the MIND framework (Section 4.1) and the model used to estimate the communication cost (Section 4.2). And the parameter calibration algorithm (Section 4.3). We analyse the accuracy of the proposed estimation function (Section 4.4). And demonstrate the sensitivity of calibrated parameters to network environment (in Section 4.5).

Intuition

Before entering into the detail of the proposed communication cost model, we stress the fact that in our query workload the communication time is dominant as shown in Figure 4.1. This is due to the fact that we focus our study on optimizing the communication cost and we do not consider the additional costs related to local processing and I/O operations. We recall two crucial observations, presented in Section 3.1.2, that allow us to develop an effective cost model for estimating the communication time:

• The batches are communicated synchronously over the network, whereas the messages in a batch (assuming that a batch has more than a message) are communicated in pipeline, hence it is possible to exploit the pipelining for minimizing the communication time, and

• Due to network latency and pipelining, it is more expensive to communicate the first message in a batch compared to a message that is not the first in its batch.

We next detail the first observation that we have already introduced in Section 3.2.1. On the one hand, when DBMS node sends a batch of F tuples to client node (cf. Figure 3.2), the communication is done synchronously i.e., client node needs to wait to receive the whole batch before it can start processing the batch and request the next batch. On the other hand, the messages of M bytes are sent in pipeline from DBMS node to client node i.e., DBMS node can send messages over the network without waiting for ack signals from client node. More precisely, messages are sequentially sent over the network once the buffer is filled by the middleware, which means that several messages of a same batch can be pipelined in the network at a specific moment. Figure 3.2 presents an illustration of a pipeline communication of a batch. In Figure 4.2, we zoom on pipeline communication of n messages between DBMS node and client node.

As for the second observation, we argue that it is more expensive to communicate the first message of a batch compared to the time needed to communicate any other message.

We illustrate via Example 4.1 that the described intuition effectively matches the practical behaviour. To the best of our knowledge, there are no related works in the literature that exploit such observations to optimize the communication time.

Example 4.1. Take query Q 3 (cf. Figure 3.3; recall that it has a result set of ∼4.5GB). In the high-bandwidth network, the average time consumed by a first message is of 10 -3 seconds, whereas the average time consumed by a non first messages (messages i > 1 in Figure 4.2) is of 3 × 10 -5 seconds. The aforementioned numbers were obtained as an average for all 629 configurations of F and M (cf. Section 3.2.2). • The time of all first messages reach the highest values for small F (because this implies a large number of round -trips i.e., a large number of batches, hence a large number of first messages, which are more expensive)

Moreover, we report in

We observe that the aforementioned behaviour occurs in practice for all queries and both network configurations, although it is more visible for the queries Q 1 to Q 5 (which return larger results). ♦

As a consequence of this observation, the number of round -trips (first messages) has an important impact on the communication time. As shown in the example 3.1.

Communication cost model

In this section, before introducing MIND's function for estimating the communication time for a query result, we zoom on the intuition outlined in Section 4.1 and we enumerate in Figure 4.4 the communication steps and times needed for communicating a batch of F in messages of M bytes, which are:

• Step 1 : time needed to initiate a request of batch of F tuples from client node to DBMS node.

•

Step 2 : time needed to initiate a message of M bytes by DBMS node.

• Step 3 : time needed for communicating a message of M bytes over the network from DBMS node to client node.

• Step 4 : time needed from receiving first message of M bytes in its batch by client node.

• Step 5 : time needed from receiving not first message of M bytes in its batch by client node.

Relying on the Figure 4.4, MIND's function for estimating the communication time for a query result treats a communicated messages differently depending on whether or not it is the first in its batch since we want to exploit the pipelining. More precisely, given a query Q, we estimate the time C to communicate its result Ans(Q) from DBMS node to client node with the formula:

C V,α,β (F B , M) = α × V F B + β × V F B × F B M - 1
where:

• F B is the size in bytes of a batch i.e., the result of multiplying the number F of tuples in a batch and the size in bytes of a tuple in Ans(Q);

• V is the size in bytes of the query result i.e., the result of multiplying the number of tuples in Ans(Q) and the size in bytes of a tuple in Ans(Q);

• The parameters α and β capture the characteristics of the network environment between the two nodes: α captures the time of communicating the first message of each batch (it is the 4 which equal to the sum of of consumed times in steps 1 , 2 and 3), whereas β captures the time of communicating a message that is not the first in its batch (it is the time consumed in step 5);

• The coefficient of α i.e., V /F B gives the total number of first messages: Ans(Q) has V bytes, which are communicated in batches of F B bytes, consequently there are at all V /F B batches, hence V /F B first messages. As mentioned in Section 3.2.1, the number V /F B is known as the number of round-trips in the literature [START_REF] Shirazi | Java performance tuning[END_REF];

• The coefficient of β i.e., V /F B ×(F B /M -1)
gives the total number of messages that are not the first in their batch: F B /M is the number of messages in a batch, hence F B /M -1 is the number of messages in a batch except the first one, and by multiplying it with the total number of batches V /F B , we obtain the total number of messages that are not the first in their batch.

Our formula for estimating the communication time is query-dependent (via the parameter V) and network-dependent (via the parameters α and β). In Section 4.3, we show how to calibrate α and β for a given network, whereas in Chapter 5 we develop an optimization algorithm that finds the values of F and M that allow to minimize C.

We end this section with two observations on the presentation of our formula C V,α,β (F B , M):

• We omit the indices V, α, β when these parameters are clear from the context because the optimization is done for a query result and a network environment (hence these parameters do not change during the optimization), whereas we write F B and M as function input variables because their values change throughout the iterations.

• We used F B (the size in bytes of a batch) instead of F (the number of tuples in a batch) in the definition of C because this facilitates the presentation of the linear regression calibration algorithm (where both batch and message size are measured in bytes), which then also plays a role in the optimization algorithm.

Parameters calibration

As introduced in Section 4.2, α and β measure the time needed to communicate a message that is either the first or not the first in its batch, respectively. The parameter calibration introduced in MIND is in the spirit of the recent line of research on calibrating cost model parameters (for centralized DBMS) to take into account the specificities of the environment [START_REF] Hacigumus | Predicting query execution time: Are optimizer cost models really unusable[END_REF].

The calibration of α and β is the fundamental pre-processing step of the MIND framework, which allows to capture the network environment as part of the communication time estimation. Precisely, we capture the costs of first message in its batch via α and not first message in its batch via β. The general idea of our calibration algorithm is to iterate over a set of queries and different combinations of the two considered middleware parameters, and successively send over the network a query result according to a combination of parameters. Then, we leverage the observed communication times to estimate α and β.

In our calibration, we use the size of a batch in bytes (F B) rather than the number of tuples in a batch (F) as a normalization of the batch size of all queries used for calibration. Indeed, different queries may have different result tuple size, hence knowing only the number of tuples in A naive way to estimate α and β would be to represent them as constant real values that capture the averages of the observed communication times i.e., let α be the average time needed to communicate a message that is the first in its batch and let β be the average time needed to communicate a message that is not the first in its batch. However, such an approach does not capture the natural relationship between F B , M and the communication time, as we illustrate in Example 4.2.

Example 4.2. Take the query Q 3 and the 629 combinations of F and M values (cf. Section 3.2.2). We plot in Figures 4.6 and 4.7 the times observed for the messages that are the first and not the first in their batch, respectively. The natural dependency between them is a "plane" (i.e., a linear function of F B and M), whereas the plane given by choosing the calibration parameter α as an average value clearly does not capture this natural dependency. Also, Figure 4.5 shows a difference between average estimation and linear function estimation, where the last one provides an estimations very closer to real communication times. ♦

We observed in practice that the behaviour illustrated in Example 4.2 also holds for the other low-bandwidth network, and for other queries. This suggests that the natural way to capture the network environment via the parameters α and β is to define them as linear functions of F B and M. Such a representation of α and β is very intuitive since the time of communicating a message over the network obviously depends on the actual network environment, the size of the message, and the size of the batch from which the message comes.

Next, we introduce the LR (linear regression) calibration algorithm (Algorithm 1), which captures the linear dependency between F B and M by solving a linear regression based on the observed times. We use a ternary relation result 1 that stores three columns on each line: F B , M, and the observed communication time for a message that is first for α and not first for β. Then, we use a standard ordinary least squares (ols) regression to compute α as a function that captures the time to communicate a message that is the first in its batch. We similarly compute β as a function

α(F B , M) = a 1 × F B + b 1 × M + c 1
β(F B , M) = a × F B + b × M + c
that captures the time to communicate a message that is not the first in its batch, by using a similar data structure result to store the observed times.

Algorithm 1 LR (linear regression) algorithm for calibrating α and β. We use the index 1 when we refer to a message that is the first in its batch and no index for all other messages. • α(F B , M)= 2.02e -11 ×F B +1.17e -8 ×M + 4.5e -4 , which captures precisely the plane entitled "LR calibration" in Figure 4.6;

Input: set Q of queries,
• β(F B , M)=1.24e -14 × F B + 2.73e -10 × M + 4.35e -6 , which captures precisely the plane entitled "LR calibration" in Figure 4.7.

At the end of this section, it is important to note that a new calibration phase is needed when a network environment changes (that may vary in terms of bandwidth).

Accuracy of communication cost model

To emphasize the accuracy of the communication time estimation on top of the LR algorithm, we present in Figure 4.8 the real and estimated communication times, for all queries (cf. Figure 3.3) in high-bandwidth network (we report averages over the 629 combinations of F and M values cf. Section 3.2.2), using query Q 3 as calibration query. We observe that MIND achieves a very accurate estimation for all six queries, although the majority of them differ from the calibration query Q 3 in terms of both tuple size and/or number of tuples in the query result.

Moreover, we empirically observed that the estimation has the desirable monotonicity property i.e., when the estimated time for a combination of F and M values is smaller than for another combination, then the real communication time for the first combination of F and M values is also smaller than the second one. Such a property is useful because it implies that the combination of values that minimizes the estimation function is also the one minimizing the real communication time.

For instance, we depict in Figure 4.12 the real and estimated communication times for query Q 4 in the high-bandwidth network. Notice that query Q 4 that we present in Figure 4.12 differs from query Q 3 that we used for calibration in terms of both tuple size and number of tuples in the query result, which suggests the pertinence of our estimation method for middleware optimization. We empirically observed similar monotonicity behaviours for all queries and network bandwidths.

6 Q 5 Q 4 Q 3 Q 2 Q 1

Sensitivity of calibrated parameters to network environment

In this section, we show the sensitivity of calibrated parameters α and β on the network environment characteristics. We experiment only the sensitivity on network bandwidth. We use the network configurations (high and low bandwidth networks) introduced in Section 3.2.2.

We recall that in Section 3.2, we argue that the time for communicating a distributed query result is network-dependency presented.

To show the sensitivity of calibrated parameters α and β, we zoom on the values of these parameters in both network configurations (high-bandwidth (10 Gbps) and low-bandwidth (50 M bps)). We report the values of α and β calibrated on the same query Q 3 in Figure 4.15 for highbandwidth network and in Figure 4.16 for low-bandwidth network, respectively. We notice that:

• The calibration captures well the variation of network environment characteristics, in the sense that in high bandwidth the β values are negligible comparatively to the α values, whereas in low-bandwidth, the β values are not negligible and have an important weight as for the α values. This is because β captures a latency due to the low-bandwidth.

• The α values in high and low bandwidth networks shows a closer estimation time. This is due to the fact that α captures the time for communicating the first message in its batch. However, the first messages can avoid the network latency.

• The β calibration captures the variation of network environment characteristics, in the sense that β captures the time for communicating messages that are not first in their batches. Hence, large F B communicates an important number of messages in pipeline, which can not be consumed easily and quickly in low-bandwidth network. α(F B , M)= 2.02e -11 ×F B + 1.17e -8 ×M + 4.5e -4 , which captures precisely the plane entitled "LR calibration" in Figure 4. 15(a). The variance of the values of a 1 , b 1 and c 1 are +/-5.32e -13 (2.63%), +/-4.6e -10 (3.93%) and +/-8.4e -6 (1.86%), respectively, and

-β(F B , M)=1.24e -14 × F B + 2.73e -10 × M + 4.35e -6
, which captures precisely the plane entitled "LR calibration" in Figure 4. 15(b). The variance of the values of a, b and c are +/ -9.12e -14 (73.58%), +/ -8.06e -11 (2.94%) and +/ -1.53e -6 (3.53%), respectively.

• Low-bandwidth network:

α(F B , M)= 1.94e -11 ×F B + 2.94e -8 ×M + 5.12e -4 , which captures precisely the plane entitled "LR calibration" in Figure 4.16(c). The variance of the values of a 1 , b 1 and c 1 are +/ -7.787e -13 (4.00%), +/ -6.678e -10 (2.26%) and +/ -1.214e -5 (2.37%), respectively, and

-β(F B , M)=4.51e -11 × F B + 2.25e -8 × M + 1.29e -4
, which captures precisely the plane entitled "LR calibration" in Figure 4. 16(d). The variance of the values of a, b and c are +/ -2.41e -12 (5.34%), +/ -2.11e -9 (9.39%) and +/ -4.05e -5 (31.28%), respectively.

At the end of this section, it is important to note that the calibration of parameters α and β preserves the network-dependency feature on the estimation of the communication time, at the price of preprocessing phase to calibrate these parameters to a current network environment. The network-dependency is visible via the parameter β in high-and low-bandwidth networks, which presents a large difference between both network configurations. We report in Figure 4.17, the estimated and real communications times for all queries (cf.

Q 6 Q 5 Q 4 Q 3 Q 2 Q 1
(a) All 6 queries in high-bandwidth network. Real Estimated

Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 (b) All 6 queries in low-bandwidth network.

Discussion

At the end of this chapter, we stress that:

• Our estimation function (communication cost model) simulates accurately the real communication time, in the sense that it computes a good communication time estimation (cf. Section 4.4).

• This cost model takes into account the pipeline costs, since it considers that the batches of F tuples are communicated synchronously over the network, whereas the messages of M bytes in a batch are communicated in pipeline. Recall that the classical communication cost model (per-message and per-byte) can not provide a good estimation, because it does not take into a account the pipeline effect(cf. Section 3.2).

• This cost model preserves the query-dependency and network-dependency.

-Query-dependency, in the sense that the coefficients of α and β, which are the number of first messages and other messages i>1 respectively, change according to the query result and tuple sizes. Consequently, the estimated communication times (cf. Section 4.4) change according to the given query.

-Network-dependency, since the calibrated parameters α and β are very sensitive to the environment and capture the characteristics of the link between client and DBMS nodes, such as presented in Section 4.5.

• The number of combinations that should be used in calibration phase is an important element, in the sense that a large number of combinations of queries Q, F and M provide a good calibration of parameters α and β but at the price of a large time.

Next we present an iterative optimization algorithm of the MIND framework that allows to find a good middleware configuration (F and M) that minimizes the communication cost function and provides a good trade-off of resource consumption (particularly memory space should be reserved to F B).

Chapter 5

An iterative middleware tuning approach

In this chapter, we present our optimization algorithm that takes as input query result needed to be communicated from DBMS node to client node and effectively compute the values of the middleware parameters F and M that minimize the communication time using the estimation function described in Section 4.2. In Section 5.1, we introduce the optimization problem, in Section 5.2, we develop our optimization algorithm that efficiently finds good values for the middleware parameters, in Section 5.3, we evaluate MIND optimization algorithm, whereas in Section 5.4, we present how MIND optimization algorithm stops iterations via threshold (∆).

Optimization problem

We consider the optimization problem as computing F and M that aim to minimize the communication cost function C(F B , M) (cf. Section 4.2). We formulate our optimization problem as follows:

Input: Size of the query result (V), the tuple size in query result (T) and the network environment characteristics captured via the parameters α and β obtained from the calibration step.

Output: Parameters F and M that minimize the time for communicating the query result over the network and consume less memory resources.

The values of F and M are integers that can span over the intervals of all possible values [F min , F max] and [M min , M max], respectively. Notice that a brute-force algorithm would have to loop over all combinations of possible values from the two sets and see which combination minimizes the estimation of the communication time. It is easy to see that such an algorithm would need to explore a very large number of combinations, as we illustrate via Example 5.1.

Example 5.1. Assuming a system whose memory can handle batches of up to 1.1M tuples (for a tuple size of 27B), we obtain that [F min , F max] has 1.1M elements. Moreover, assuming that the same system can handle messages of size between 512B and 32KB, we obtain that [M min , M max] has more than 32K elements. Hence, there are more than 35 billions of distinct combinations of F and M values. ♦ Since it would be highly inefficient to naively explore all possible combinations, we developed an optimization algorithm (detailed in Section 5.2) that efficiently explores the large search space to quickly find the middleware parameters F and M that minimize the communication time estimation.

Optimization approach

We present an optimization algorithm based on the Newton optimization, which is a popular numerical optimization paradigm [START_REF] Nocedal | Numerical optimization[END_REF]. We have chosen to rely on such a paradigm because the optimization is done iteratively, which allows to control the number of iterations. Figure 5.1 illustrates how iterations are done in Newton resolution. In particular, the algorithm that we present in this section, the control is done via a threshold parameter measuring the gain in terms of communication time between two consecutive iterations. This allows to stop the algorithm when the gain is insignificant and comes at the price of large consumed resources, as illustrated in Figure 5.1. Our approach translates in practice to a good trade-off between low communication time and low resource consumption.

Recall that we introduced the communication time estimation function in Section 4.2 and the calibration algorithm for network-dependent parameters α and β in Section 4.3. The function that we optimize is (after replacing the calibration parameters in the estimation function):

C(F B , M) =(a 1 × F B + b 1 × M + c 1) × V F B + (a × F B + b × M + c) × V F B × F B M -1 .
We present the pseudo-code of the optimization algorithm in Algorithm 2, where we write x and y as simplified notations for F B and M, respectively. The input consists of:

• Two parameters related to the query: the result size in bytes V (it is not visible later on in the pseudo-code, but it is a necessary parameter of the estimation function C and its derivatives) and the tuple size in bytes T (which is used at the end of the algorithm to convert the batch size in bytes as computed by the algorithm in a batch size in number of tuples, as usually used in a DBMS);

• Six parameters related to the network environment (a 1 , b 1 , c 1 , a, b and c that capture the coefficients of the linear functions that are result of the calibration, cf. Section 4.3);

• The maximum size F B max of a batch in bytes, that we set as the maximum heap memory size allowed by the middleware for a batch (hence we can compute F max as the largest number of tuples that can fit in a batch that consumes the entire heap memory; we always assume F min = 1 tuple);

• The minimum and maximum values for the message size allowed by system: M min and M max , respectively;

• Threshold ∆ used to measure whether the gain of the time estimation between two consecutive iterations is small enough (insignificant) to stop the algorithm.

Our algorithm is iterative in the sense that it starts with initial (small) values of x and y, and iterates to improve the estimation by updating the initial values. In particular, we configure the initial x 0 to contain a number of tuples that needs at least two messages of initial message size y 0 =M min (to exploit the pipeline communication of messages). It is important to note that N ewton optimization does not impose a particular rule to define the initial configuration.

Algorithm 2 MIND optimization algorithm (x and y are simplified notations for F B and M, respectively).

Input: V , T , a 1 b 1 , c 1 , a, b, c, F B max , M min , M max , ∆ Output: F and M minimizing C (cf. Section 4.2) let y 0 = M min let x 0 = 2 × y 0 let k = 0 while true do x k+1 y k+1 = x k y k -H(x k , y k) -1 × g 1 (x k , y k) g 2 (x k , y k) x k+1 = min(x k+1 , F B max) y k+1 = min(y k+1 , M max) if C(x k , y k) -C(x k+1 , y k+1) ≤ ∆ or (x k+1 = F B max and y k+1 = M max) then return (x k+1 T , y k+1) else k := k + 1
For every loop, we update the values of the middleware parameters F and M as follows. We rely on g 1 and g 2 that are the gradient functions of the N ewton optimization i.e., the first-order partial derivatives of the communication time estimation function C w.r.t. x and y, respectively:

g 1 (x, y) = ∂C(x, y) ∂x , g 2 (x, y) = ∂C(x, y) ∂y .
After applying standard differentiation rules, we obtain:

g 1 (x, y) = V × ((c -c 1) + (b -b 1) × y) x 2 + a × V y , g 2 (x, y) = V × (b 1 -b) x - V × (a × x + c) y 2 .
We also rely on the Hessian matrix H i.e., a square matrix of second-order partial derivatives of C. The four values of H are obtained by differentiating each of g 1 and g 2 w.r.t. x and y, respectively.

H(x, y) =   ∂g1(x,y) ∂x ∂g1(x,y) ∂y ∂g2(x,y) ∂x ∂g2(x,y) ∂y   .
After applying standard differentiation rules, we obtain:

H(x, y) =    -2×V ×((c-c1)+(b-b1)×y) x 3 V ×(b-b1) x 2 -a×V y 2 V ×(b-b1) x 2 -a×V y 2 2×V ×(a×x+c) y 3    .
We compute the new values x k+1 and y k+1 based on the current values x k and y k , the Hessian matrix, and the gradient functions applied on x k and y k . If any of the new values surpasses the corresponding maximum value F B max and M max , respectively, we normalize it as the maximum value. The algorithm stops when either • The gain in terms of communication time estimation between two consecutive iterations is below the threshold ∆ (this is the halt condition that occurred in all our experiments), or

• Both middleware parameters attain the maximum values (F B max and M max). The algorithm returns the last values of x (converted to number of tuples) and y.

The algorithm 2 works in practice because the gradient functions g 1 and g 2 , and the Hessian matrix H exist on the entire domain of the two input variables of the estimation function C (in other words the function C is twice differentiable). This happens because in our framework, x and y (that appear as denominators in g 1 , g 2 , and all four elements of H) can never be zero (since the size in bytes of a batch x > 0 and the size in bytes of a message y > 0). This algorithm allows us to quickly find (always in small fraction of a second) values of the middleware parameters F and M for which the improvement in terms of communication time estimation between two consecutive iterations is insignificant. In practice, this translates to a good trade-off between low resource consumption and low communication time.

We end this section by noting that the proposed optimization algorithm can be easily incorporated inside the DBMS. Indeed, when a DBMS node is required to compute the result of a specific query (e.g., as part of a distributed query plan), MIND can help the DBMS by computing the best parameters F and M (based on the query and the network configuration; these parameters are subsequently used when sending the query result over the network). middleware for a batch). For example, for Q 1 , Max F and Max F/M use batches of 110K tuples, whereas MIND needs batches of only 37K tuples to achieve a comparable communication time, etc.

Default Max M Max F Max F/M F in Max M MIND Common for both networks High-bandwidth Low-bandwidth F M F M F M F M F M F M F M
High-bandwidth network Default Max M Max F Max F/M F in Max M MIND Q 6 Q 5 Q 4 Q 3 Q 2 Q 1
Low-bandwidth network Default Max M Max F Max F/M F in Max M MIND Q 6 Q 5 Q 4 Q 3 Q 2 Q 1
Moreover, the good communication times of the two strategies using maximum F values are not confirmed in the low-bandwidth network since its latency precludes the pipelining of large batches. We recall that MIND is always the best strategy in the low-bandwidth network, which suggests another advantage of MIND that is the network-adaptivity. On the other hand, the existing strategies use the same middleware configuration regardless the network environment.

We also point out that the strategies using small values of F (i.e., Default and Max M) always give the worst communication times due to the overhead implied by a large number of round -trips (first messages), confirming the discussion from Section 3.2.4

The limitations of the current strategies for middleware tuning that we have discussed in this section are particularly interesting since all five competing strategies are recommended by technical documentations e.g., [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Shirazi | Java performance tuning[END_REF]. On the other hand, the middleware tuning achieved by MIND allows to find a good trade-off between a low communication time and low resource consumption by middleware parameters F and M.

Query-adaptivity of MIND

We next point out that the values of F and M returned by MIND change from query to query (cf. Figure 5.2). For both networks, all queries have pairwise distinct values for F and M. We recall that MIND always yields the best communication time in the low-bandwidth network, whereas in the high-bandwidth network it achieves comparable communication times to the strategies Max F and Max F/M that consume larger resources.

None of the competing strategies is query-adaptive. Indeed, every such strategy always assumes that the message size M is fixed for all queries, whereas the batch size F is fixed to the default value (strategies Default and Max M), fixed such that a batch occupies the entire allowed heap memory (strategies Max F and Max F/M), or fixed such that a batch occupies a maximum message size (strategy F in Max M). In particular, the approach of fixing the batch size such that it consumes the entire heap memory is not sustainable in practice (since all the memory is reserved for a single query).

In Tables 5.1 and 5.2, we show how MIND optimization algorithm changes the values of middleware parameters F and M over iterations. We focus on queries Q 3 and Q 5 that both queries having the same tuple size but differ in query result size. Table 5.1: Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 3 in high-bandwidth network (10Gbps). It.

It. F B F M C(F k , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1) 0 1024
F B F M C(F k , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1) 0 1

Network-adaptivity of MIND

To point out that MIND adapts to the network environment, we discuss how the values of F and M returned by MIND change from a network to another (cf. Figure 5.2). As already pointed out, none of the competing strategies adapts to the network environment.

For each of the first five queries, we observe that MIND returns values of F and M that differ between the high-and the low-bandwidth networks. For instance, we observe that for the first three queries (which have the largest results), MIND favors large values of F in the high-bandwidth network (to exploit the pipelining of the messages from a large batch). The fact that the values of F increase throughout the iterations (particularly fast for the high-bandwidth network) can be noticed in Figures 5.5, 5.6, 5.7, 5.8 and 5.9. On the other hand, in the low-bandwidth network, MIND tends to quickly attain the maximum M value during the first iterations to compensate the choice of a smaller F compared to the high-bandwidth (this happens because the low-bandwidth network has more latency, hence MIND avoids large batches).

In Tables 5.1 and 5.3 we show how MIND optimization algorithm changes the values of

Impact of iterations in MIND

We present in Figure 5.10(a) the estimated communication time over MIND iterations and in Figure 5.10(b) the corresponding gain between two consecutive iterations of the MIND optimization algorithm for five queries (Q 1 -Q 5 , except Q 6 which has a very small result set and the MIND optimization algorithm converge in one iteration). The estimated gain between two consecutive iterations is defined by the formula

C(F B k , M k) -C(F B k+1 , M k+1).
Also, we focus on queries Q 3 and Q 5 and we report in Tables 5.1 and 5.2 the successive iterations done by MIND optimization algorithm.

We observe that with a threshold ∆ set to a second, the optimization algorithm always stops after less than thirty iterations and the total time needed to compute these iterations is always Table 5.3: Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 3 in low-bandwidth network (50M bps). less than a small fraction of a second. Next (in Section 5.4) we present an other alternative that can be used to control the halt condition in MIND optimization algorithm.

It. F M C(F k , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M
To illustrate how the values of F and M change during the iterations, we zoom on queries Q 1 -Q 5 and show in Figures 5.5 A first observation is that MIND converges faster in the low-bandwidth network. This happens because, as already explained in the network-adaptivity paragraph, for such a network MIND quickly arrives at the maximum value of M and then chooses a value of F that is enough to obtain a gain below the threshold ∆. Moreover, we show in Figures 5.5, 5.6, 5.7, 5.8 and 5.9 the values of F and M, for queries Q 1 , Q 2 , Q 3 , Q 4 and Q 5 , respectively, that are considered by the MIND's optimization algorithm beyond the point where the gain is below ∆. For both networks, we observe that the resource consumption continues to increase. Since this increasing resource consumption implies only a small gain (quantified via comparison with threshold ∆), MIND decides to stop the iterations, and returns the current values of the two middleware parameters F and M.

Halt condition of the optimization algorithm

As introduced in previous section, MIND optimization algorithm is controlled via a threshold parameter that measures the improvement (gain of time) between two consecutive iterations. The halt condition could be improved by taking into account additional criteria. The general problem can be viewed as a multi-criteria optimization problem, in the sense that two parameters are worth to consider:

• The estimated improvement in communication time.

• The cost of consumed resources which can be expressed in terms of the cost of memory needed to store a batch of tuples (i.e., F B) or as a message of M bytes to communicate data over the network.

In Example 5.2 we consider two approaches and we illustrate the practical behaviour of both approaches (approach 1 and approach 2). For simplicity of presentation, we zoom only on the consumed resource by middleware parameter F over MIND iterations.

• Approach 1 is exactly the algorithm defined in Section 5.2. Recall that the halt condition in this algorithm consists of optimizing the gained communication time i.e., the MIND optimization algorithm stops when the improvement given by C(

F B k , M k)-C(F B k+1 , M k+1) ≤ ∆,
where ∆ is a given threshold (in seconds).

• Approach 2 is the same algorithm as defined in Section 5.2, except the halt condition.

Concretely, we replace the halt condition by

F B k+1 -F B k C(F B k , M k) -C(F B k+1 , M k+1) ≥ ∆,
where ∆ is a given threshold (in KB/second). This halt condition focuses on the price in bytes to pay for a gained second between two consecutive iterations i.e., the MIND optimization algorithm stops when the price to pay for a gained second is greater than a given threshold.

Example 5.2. Take queries Q 3 (having a relative large query result of 4.5GB) and Q 5 (having a relative small query result of 0.1GB) (cf. Figure 3.3) in high-bandwidth network. We report in Table 5.4 and Table 5.5 the obtained information over MIND iterations for Q 3 and Q 5 , respectively. In both tables, we report:

• Consumed F B in the iterations k and k + 1 in columns F B k and F B k+1 , respectively.

• The difference of consumed F B between two consecutive iterations (k and k + 1) in column (F B k+1 -F B k).

• Communication time improvement between two consecutive iterations in column C k -C k+1 . The formula is defined as

C(F B k , M k) -C(F B k+1 , M k+1) .
• Cost in KB for a gained second between two consecutive iterations (k and k + 1) in column Cost (KB/Second). The formula is defined as

F B k+1 -F B k C(F B k , M k) -C(F B k+1 , M k+1)
From these tables, we stress that: It is worth noting that both approaches can be combined, in the sense that MIND optimization algorithm stops when the first halt condition (∆ 1 or ∆ 2) is satisfied. ♦

Discussion

At the end of his chapter, we stress that:

• Middleware parameters F and M belong to a large research space (as explained in Section 5.1 where a naive approach needs to enumerate more than 35 billions of distinct combinations of F and M).

• MIND framework presents a good trade-off between communication time and consumed resource comparatively to the five strategies recommended by commercial DBMS s . • Values of middleware parameters F and M provided by MIND are sensitive to query and network environment, in the sense that they are query-and network-dependant parameters.

• MIND optimization algorithm converges quickly (in small fraction of a second) to the optimal region of middleware parameters F and M.

• Execution of MIND is controlled via a threshold parameter, which can be tuned to find in order to find trade-off between the improvement in the communication time and the consumed resources.

All these elements point out the effectiveness of MIND framework that aims to minimize the time for communicating query result from DBMS node to client node with a rational consumption of resource. Chapter 6

Conclusions

In our research work, we have taken a complementary look to the problem of optimizing the time for communicating query results in a distributed query processing, by focusing on how data is communicated over the network. To achieve this goal, we have investigated the relationship between the communication time and the middleware configuration. We have focused on two middleware parameters that are manually tuned by database administrators or programmers: the fetch size: F (i.e., the number of tuples that are communicated at once) and the message size: M (i.e., the size of the buffer at the middleware level).

We first motivated our research by presenting an intensive experimental study that emphasizes the impact of the middleware parameters F and M on the communication time. Also, we stress that tuning the middleware parameters is a non-trivial problem because the optimal values are query-dependent and network-dependent. Then, we designed MIND framework, which tunes the aforementioned middleware parameters, while adapting to different queries (that may vary in terms of selectivity) and networks (that may vary in terms of bandwidth). At the heart of the MIND framework, there is a cost model that estimates accurately the communication time. This cost model takes into account the middleware parameters F and M, together with the network environment and the volume of data to transfer. The MIND framework includes a calibration step that enables to tune the network dependent parameters. The cost model is exploited by an optimization algorithm that allows to compute for a given query and a network environment the F and M values while providing a good trade-off between optimized communication time and low resource consumption.

Looking ahead to future work, there are many directions for further investigation. We plan, in short term, to implement MIND framework inside a query optimizer in open-source DBMS. This is due to the fact that DBMS is the right place where the relevant information are available, in particular statistics and query plans.

Then, we project to refine the calibration process by investigating other approaches that allow dynamic calibration of a network-dependant parameters α and β. The dynamic calibration is important in the sense that (i) network-dependent parameters (α and β) are the core of the accuracy of the estimation cost function and (ii) the workload may vary in time (e.g., the number of concurrent queries may raise and the network characteristics may change). Also, current MIND optimization algorithm uses a basic iterative optimization method namely the Newton method, we plan to explore more sophisticated optimization techniques using subgradient methods (e.g., Volume method [START_REF] Barahona | The volume algorithm: producing primal solutions with a subgradient method[END_REF]) which is more powerful for controlling the iterations steps and halt conditions, in order to ensure that the function value is decreasing over iterations.

In addition, such method can be more easily implemented than the Newton method because it does not require calculation of the Hessian matrix and its inverse.

We also project in medium-term to explore how MIND framework can be used to built an optimized query plan that minimizes the time for communicating query results between computation nodes. More precisely, our goal is to be able to optimize communication time between the operators inside a distributed query plan (c.f. Figure 6.1). To achieve this goal, we need to be capable to incorporate in our cost model the production and consumption rates of query plan operators and design a more sophisticated optimization algorithm that is apt to handle such a complex cost model.

R 1 F 1 ,M 1 R 2 F 2 ,M 2 R 3 F 3 ,M 3 F 12 ,M 12

2. 1

 1 Main distributed architectures. 2.2 Communicating query result in a simplified client-server architecture. 3.1 Communication model in simplified Client-Server architecture. 3.2 Architecture for DBMS-tuned Middleware framework (called MIND). 3.3 Six real-world astronomical queries. 3.4 How query is executed in experimental process? . 3.5 Best and worst communication times in (H)igh and (L)ow bandwidth networks for six queries (cf. Section 3.3). 3.6 Repartition of communication times for all configurations (F and M) and for six queries (cf. Section 3.3). 3.7 Resources consumed by the bars in Figure 3.5. 3.8 Communication time in different strategies for Q 3 and Q 5 in high-and low-bandwidth networks . 3.9 Zoom on four configurations using Q 3 in high-bandwidth network. 3.10 Zoom on Q 3 using ten configurations defined in Example 3.2. 4.1 Elapsed versus communication times using Q 3 in high-bandwidth network. 4.2 Pipeline communication of a batch of n messages between DBMS and Client nodes. . 4.3 Time for communicating first messages vs not first messages in its batch using Q 3 in high-bandwidth network. 4.4 Consumed times for communicating a batch of F tuples in messages of M bytes from DBMS node to client node. 4.5 Comparison of LR versus AVG estimations using Q 3 in high-bandwidth network. . . 4.6 Calibration of parameter α in high-bandwidth network. 4.7 Calibration of parameter β in high-bandwidth network. 4.8 Average real and estimated communication times for all 6 queries (cf. Figure 3.3) in high-bandwidth network. 4.9 Zoom on Q 1 in high-bandwidth network. 4.10 Zoom on Q 2 in high-bandwidth network. 4.11 Zoom on Q 3 in high-bandwidth network. 4.12 Zoom on Q 4 in high-bandwidth network. 4.13 Zoom on Q 5 in high-bandwidth network. 4.14 Zoom on Q 6 in high-bandwidth network. 4.15 Communication time . x List of Figures 4.16 Communication time . 47 4.17 Communication time . 49 5.1 Illustration of consecutive iterations in Newton resolution. 52 5.2 Resources needed for each query by the strategies from Figures 5.3 and Figures 5.

4

 4

of Tables 1 . 1

 11 (F in tuples, M in KB). 56 5.3 Communication times of six middleware tuning strategies, in high bandwidth network. 56 5.4 Communication times of six middleware tuning strategies, in low bandwidth network. 56 5.5 Evolution of the values of F and M using Q 1 throughout the iterations of the MIND algorithm. 57 5.6 Evolution of the values of F and M using Q 2 throughout the iterations of the MIND algorithm. 58 5.7 Evolution of the values of F and M using Q 3 throughout the iterations of the MIND algorithm. 58 5.8 Evolution of the values of F and M using Q 4 throughout the iterations of the MIND algorithm. 59 5.9 Evolution of the values of F and M using Q 5 throughout the iterations of the MIND algorithm. 59 5.10 Estimated time and corresponding gain computed with the MIND optimization algorithm, for queries Q 1 to Q 5 in high-bandwidth network. We do not plot Q 6 , which always needs only one iteration. 61 5.11 Estimated time and corresponding gain computed with the MIND optimization algorithm, for queries Q 1 to Q 5 in low-bandwidth network. We do not plot Q 6 , which always needs only one iteration. 62 5.12 MIND using threshold according to communication time improvement (∆=1 second in our case) using Q 3 and Q 5 in high-bandwidth network. 67 5.13 MIND using threshold according to memory cost (∆=100KB/second in our case) using Q 3 and Q 5 in high-bandwidth network. 68 5.14 MIND using threshold according to the improvement (∆ 1 =1 second in our case) and the memory cost (∆ 2 =100KB/second in our case) in each improvement over iterations using Q 3 and Q 5 in high-bandwidth network. 69 6.1 Simplified distributed query plan. 72 A.1 Hard drive throughput of I/O operations in the execution of query Q 3 in DBMS node. One cycle (e.g., from 01:00 to 05:30) presents hard drive throughput of 37 configurations of F in high-bandwidth network (cf. Section 3.2.2). 77 A.2 Network traffic sent in the execution of query Q 3 by DBMS node. One cycle (e.g., from 01:00 to 05:30) presents consumed network bandwidth for 37 configurations of F in high-bandwidth network (cf. Section 3.2.2). 77 A.3 CP U usage in the execution of query Q 3 in DBMS node. One cycle (e.g., from 01:00 to 05:30) presents CP U consumption of 37 configurations of F in high-bandwidth network (cf. Section 3.2.2). 78 A.4 Hard drive throughput of I/O operations in the execution of query Q 3 in client node. This figure presents hard drive throughput different configurations of F in high-bandwidth network (cf. Section 3.2.2). 78 A.5 Network traffic received by client node in the execution of query Q 3 . One cycle (e.g., from 01:00 to 05:30) presents consumed network bandwidth for 37 configurations of F in high-bandwidth network (cf. Section 3.2.2). 79 xi A.6 CP U usage in the execution of query Q 3 in client node. This figure presents CP U consumption of different configurations of F in high-bandwidth network (cf. Section 3.2.2). D.1 Connexion of client node to DBMS node in TCP/IP layer. D.2 Zoom on requested batches in TCP network layer. D.3 Cost of first and next messages in batches in TCP network layer. D.4 Zoom on message of M=32KB fragmented in four network packets according to MTU (which is setted to 8.95KB). D.5 Overhead time of fragmentations of message of M=32KB into network packets according to MTU (which is setted to 8.95KB). xii List Communication times in high-bandwidth network. 1.2 Communication times for query Q 3 . 3.1 Zoom on information gathered from DBMS trace files, according to experimental process described in Figure 3.4. 5.1 Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 3 in high-bandwidth network (10Gbps). 5.2 Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 5 in high bandwidth network (10Gbps). 5.3 Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 3 in low-bandwidth network (50M bps). 5.4 Cost of consumed resource F versus gained time over MIND iterations using Q 3 in high bandwidth network (10Gbps). 5.5 Cost of the resource consumed versus gained time over iterations done by MIND optimization algorithm using Q 5 in high bandwidth network (10Gbps). B.1 Real communication times using query Q 1 in high-bandwidth network B.2 Estimated communication times using query Q 1 in high-bandwidth network B.3 Real communication times using query Q 2 in high-bandwidth network B.4 Estimated communication times using query Q 2 in high-bandwidth network B.5 Real communication times using query Q 3 in high-bandwidth network B.6 Estimated communication times using query Q 3 in high-bandwidth network B.7 Real communication times using query Q 4 in high-bandwidth network B.8 Estimated communication times using query Q 4 in high-bandwidth network B.9 Real communication times using query Q 5 in high-bandwidth network B.10 Estimated communication times using query Q 5 in high-bandwidth network B.11 Real communication times using query Q 6 in high-bandwidth network B.12 Estimated communication times using query Q 6 in high-bandwidth network C.1 Iterations of MIND optimization algorithm using Q 1 in high bandwidth network (10Gbps). C.2 Iterations of MIND optimization algorithm using Q 1 in low bandwidth network (50M bps). 97 C.3 Iterations of MIND optimization algorithm using Q 2 in high bandwidth network (10Gbps). xiii Chapter 1

Figure 2 . 1 :

 21 Figure 2.1: Main distributed architectures.

Figure 2 . 2 :

 22 Figure 2.2: Communicating query result in a simplified client-server architecture.

 Compute query result Ans(Q) DBMS middleware • Send Ans(Q) according to F and M -Split Ans(Q) in batches of F tuples -Split batch in messages of M bytes DB

Figure 3 . 1 :

 31 Figure 3.1: Communication model in simplified Client-Server architecture.

Figure 3 . 2 :

 32 Figure 3.2: Architecture for DBMS-tuned Middleware framework (called MIND).

Figure 3 . 3 :

 33 Figure 3.3: Six real-world astronomical queries.

Figure 3 . 5 :

 35 Figure 3.5: Best and worst communication times in (H)igh and (L)ow bandwidth networks for six queries (cf. Section 3.3).

Figure 3 . 6 :

 36 Figure 3.6: Repartition of communication times for all configurations (F and M) and for six queries (cf. Section 3.3).

Figure 3 . 7 :

 37 Figure 3.7: Resources consumed by the bars in Figure 3.5.

Example 3 . 2 .

 32 Take query Q 3 in the high-bandwidth network, using ten configurations obtained by crossing values of F (1.1K and 110K tuples), and M (2, 4, 8, 16, and 32KB). We report the communication times in Figure3.10(a), the number of communicated messages for F=1.1K in Figure 3.10(b) and for F=110K tuples in Figure 3.10(c). Moreover, Figure 3.10(d) and Figure 3.10(e) present the number of fragmentation operations of middleware messages of M bytes into network packets, which is defined as M MTU -1.

 Q in high-bandwidth network configuration.

 Q in low-bandwidth network configuration.

 Q in high-bandwidth network configuration.

 Q in low-bandwidth network configuration.

Figure 3 . 8 :

 38 Figure 3.8: Communication times in different strategies for Q 3 and Q 5 in high-and lowbandwidth networks.

Figure 3 . 9 :

 39 Figure 3.9: Zoom on Q 3 and four configurations to show the influence of first and non first messages (i>1).

 Zoom on communication times for query Q 3 .

 Number of messages of size M communicated for F=1.1K tuples.

 Number of messages of size M communicated for F=110K tuples. Number of fragmentation operations on M to produce a network packet of MTU size (8.95KB) for F=1.1K tuples. Number of fragmentation operations on M to produce a network packet of MTU size (8.95KB) for F=110K tuples.

Figure 3 . 10 :

 310 Figure 3.10: Zoom on Q 3 using ten configurations introduced in Example 3.2.

Figure 4 . 1 :

 41 Figure 4.1: Elapsed versus communication times using Q 3 in high-bandwidth network.

Figure 4 . 2 :

 42 Figure 4.2: Pipeline communication of a batch of n messages between DBMS and Client nodes.

Figure 4 .

 4 3(a) andFigure 4.3(b) the total time of all first messages and the total time of all non first messages, respectively, for the same query Q 3 in the high-bandwidth network. Notice that: Time for communicating first messages.

 Time for communicating non first messages.

Figure 4 . 3 :

 43 Figure 4.3: Time for communicating first messages vs not first messages in its batch using Q 3 in high-bandwidth network.

Figure 4 . 4 :

 44 Figure 4.4: Consumed times for communicating a batch of F tuples in messages of M bytes from DBMS node to client node.

Figure 4 . 5 :

 45 Figure 4.5: Comparison of LR versus AVG estimations using Q 3 in high-bandwidth network.

Figure 4 . 6 :

 46 Figure 4.6: Calibration of parameter α in high-bandwidth network.

Figure 4 . 7 :

 47 Figure 4.7: Calibration of parameter β in high-bandwidth network.

Figure 4 . 8 :

 48 Figure 4.8: Average real and estimated communication times for all 6 queries (cf. Figure 3.3) in high-bandwidth network.

Figure 4 . 9 :

 49 Figure 4.9: Zoom on Q 1 in high-bandwidth network.

Figure 4 . 14 :

 414 Figure 4.14: Zoom on Q 6 in high-bandwidth network.

 Time consumed for communicating first message in each batch in high bandwidth for Q 3 . Time consumed for communicating next message that is not the first in its batch in high bandwidth for Q 3 .

Figure 4 . 15 :

 415 Figure 4.15: Sensitivity of calibrated parameters α and β in high-bandwidth networks using Q 3 in calibration phase.

Figure 4 . 16 :

 416 Figure 4.16: Sensitivity of calibrated parameters α and β in low-bandwidth networks using Q 3 in calibration phase.

Figure 3 . 3)

 33 the averages communication times over 629 F and M values in both networks (high and low-bandwidth). From this Figure, we notice that our communication cost model presents a good adaptivity to network bandwidth variation (from high:10 Gbps to low:50 M bps), in the sense that the estimated communication times are closer to the real communication times, as presented in this figure.

Figure 4 . 17 :

 417 Figure 4.17: Real and estimated communication times, for all queries (cf. Figure 3.3) in high and low-bandwidth networks.

Figure 5 . 1 :

 51 Figure 5.1: Illustration of consecutive iterations in Newton resolution.

Figure 5 . 2 :

 52 Figure 5.2: Resources needed for each query by the strategies from Figures 5.3 and Figures 5.4(F in tuples, M in KB).

Figure 5 . 3 :

 53 Figure 5.3: Communication times of six middleware tuning strategies, in high bandwidth network.

Figure 5 . 4 :

 54 Figure 5.4: Communication times of six middleware tuning strategies, in low bandwidth network.

Figure 5 . 5 :

 55 Figure 5.5: Evolution of the values of F and M using Q 1 throughout the iterations of the MIND algorithm.

Figure 5 . 6 :

 56 Figure 5.6: Evolution of the values of F and M using Q 2 throughout the iterations of the MIND algorithm.

Figure 5 . 7 :

 57 Figure 5.7: Evolution of the values of F and M using Q 3 throughout the iterations of the MIND algorithm.

Figure 5 . 8 :

 58 Figure 5.8: Evolution of the values of F and M using Q 4 throughout the iterations of the MIND algorithm.

Figure 5 . 9 :

 59 Figure 5.9: Evolution of the values of F and M using Q 5 throughout the iterations of the MIND algorithm.

 Estimated time -high-bandwidth network.

 Estimated time gain -high-bandwidth network.

Figure 5 . 10 :

 510 Figure 5.10: Estimated time and corresponding gain computed with the MIND optimization algorithm, for queries Q 1 to Q 5 in high-bandwidth network. We do not plot Q 6 , which always needs only one iteration.

 Estimated time -low-bandwidth network.

 Estimated time gain -low-bandwidth network.

Figure 5 . 11 :

 511 Figure 5.11: Estimated time and corresponding gain computed with the MIND optimization algorithm, for queries Q 1 to Q 5 in low-bandwidth network. We do not plot Q 6 , which always needs only one iteration.

 , 5.6, 5.7, 5.8 and 5.9 all intermediate values considered by the algorithm. More detail on the values and iterations of each query is reported in Appendix C.

5 Figure 5 . 12 :

 5512 Figure 5.12: MIND using threshold according to communication time improvement (∆=1 second in our case) using Q 3 and Q 5 in high-bandwidth network.

Figure 5 . 13 :

 513 Figure 5.13: MIND using threshold according to memory cost (∆=100KB/second in our case) using Q 3 and Q 5 in high-bandwidth network.

Figure 5 . 14 :

 514 Figure 5.14: MIND using threshold according to the improvement (∆ 1 =1 second in our case) and the memory cost (∆ 2 =100KB/second in our case) in each improvement over iterations using Q 3 and Q 5 in high-bandwidth network.

Node 1 2 3 Figure 6 . 1 :

 12361 Figure 6.1: Simplified distributed query plan.

Figure A. 3 :

 3 Figure A.3: CP U usage in the execution of query Q 3 in DBMS node. One cycle (e.g., from 01:00 to 05:30) presents CP U consumption of 37 configurations of F in high-bandwidth network (cf. Section 3.2.2).

Figure A. 4 :

 4 Figure A.4: Hard drive throughput of I/O operations in the execution of query Q 3 in client node. This figure presents hard drive throughput different configurations of F in high-bandwidth network (cf. Section 3.2.2).

Figure A. 5 :

 5 Figure A.5: Network traffic received by client node in the execution of query Q 3 . One cycle (e.g., from 01:00 to 05:30) presents consumed network bandwidth for 37 configurations of F in high-bandwidth network (cf. Section 3.2.2).

Figure A. 6 :

 6 Figure A.6: CP U usage in the execution of query Q 3 in client node. This figure presents CP U consumption of different configurations of F in high-bandwidth network (cf. Section 3.2.2).

(a)

 a Requested batch of F= 1.1K tuples (e.g., lines 32, 40, 47 and 54) is sent in one message of M=32KB (e.g., lines 30, 37, 44, 51 and 58) and each M is split into four network packets (e.g., lines 34, 35, 36 and 37 constitute one M). Each DBMS response of batch (e.g., line 30 in Figure) is succeeded by another request for batch of F= 1.1K tuples (e.g., line 32 in Figure). (b) Requested batch of F= 110K tuples (e.g., lines 29) is sent in several messages of M=32KB communicated in pipeline (e.g., lines 34, 40, 47, 53, ...) and each M is split into four network packets (e.g., lines 31, 32, 33 and 34 constitute one M).

Figure D. 2 :

 2 Figure D.2: Zoom on requested batches in TCP network layer. 108

 (a) Communication time of first message in a batch of F= 1.1K tuples and M=32KB for query Q 3 in high-bandwidth network. Recall that a batch is communicated in one data message, which presents an expensive communication time. (b) Communication time of first message in a batch of F= 110K tuples and M=32KB for query Q 3 in high-bandwidth network. The first message presents an expensive communication time. (c) Cost of next messages in a batch of F= 110K tuples and M=32KB for query Q 3 in highbandwidth network. The time for communicating not first messages in its batch is more cheaper than the first message in its batch.

Figure D. 3 :

 3 Figure D.3: Cost of first and next messages in batches in TCP network layer.

Figure D. 4 :

 4 Figure D.4: Zoom on message of M=32KB fragmented in four network packets according to MTU (which is setted to 8.95KB).

Figure D. 5 :

 5 Figure D.5: Overhead time of fragmentations of message of M=32KB into network packets according to MTU (which is setted to 8.95KB).

Table 1 .

 1 1: Communication times in high-bandwidth network.

		Q 1	Q 3
	C 1	25.61 5.09
	C 2	20.48 8.22

Table 1 .

 1 2: Communication times for query Q 3 . To show that the best middleware configuration is network-dependent, we report in Table 1.2 the communication times (in seconds) for Q 3 , in both high-and low-bandwidth networks. We observe that C 1 is the best configuration for the high-bandwidth network, whereas C 2 is the best for the low-bandwidth one.

		High-bandwidth Low-bandwidth
	C 1	5.09	452.16
	C 2	8.22	66.49
	(iii)		

 set F of possible F values, set M of possible M values Output: α, β (each of them as a function of F B and M) Example 4.2 (continued). The linear function α(F B , M) and β(F B , M) result of applying a linear regression on the observed points from Figures 4.6and 4.7 are, respectively:

	let result 1 =∅, result=∅
	for each (Q, F, M) ∈ Q × F × M do
	update 1 (result 1)
	update (result)
	return (ols(result 1), ols(result))

 Figure 4.10: Zoom on Q 2 in high-bandwidth network.Figure 4.11: Zoom on Q 3 in high-bandwidth network.Figure 4.12: Zoom on Q 4 in high-bandwidth network.Figure 4.13: Zoom on Q 5 in high-bandwidth network.

																Real				Real
		60		2K											Estimated	Estimated
	Time (seconds)	30	Time (seconds)	1K																	
		0		0																	
	0.11K	0.11K																	
			1.1K		1.1K																
			11K F (# o f tu p le s)	11K F (# o f tu p le s) 110K	110K 32 1.1M	1.1M 28 30	32 26	30 24	28 22	26 20	24 18	20 14 M (KB) 22 16	18 12	14 M (KB) 16 6 8 10	12	4	10	2	8	6 1.5	4	2	1.5
																Real				Real
		60		2K											Estimated	Estimated
	Time (seconds)	30	Time (seconds)	1K																	
		0		0																	
	0.11K	0.11K																	
			1.1K		1.1K																
			11K F (# o f tu p le s)	11K F (# o f tu p le s) 110K	110K 32 1.1M	1.1M 28 30	32 26	30 24	28 22	26 20	24 18	20 14 M (KB) 22 16	18 12	14 M (KB) 16 6 8 10	12	4	10	2	8	6 1.5	4	2	1.5
																				Real
				60													Estimated
			Time (seconds)	30																	
				0																	
			0.11K																	
					1.1K																
					11K F (# o f tu p le s)	110K	1.1M	32	30	28	26	24	22	20	18	14 M (KB) 16	12		10		8	6	4	2	1.5

Table 5 .

 5

			40	512	2 003.700		
	1	1 538	57	682	2 003.700	1 353.000	650.740
	2	2 311	86	889	1 353.000	905.340	447.660
	3	3 474	129	1 135	905.340	612.200	293.140
	4	5 224	193	1 428	612.200	410.300	201.890
	5	7 859	291	1 779	410.300	278.010	132.290
	6	11 829	438	2 203	278.010	188.640	89.370
	7	17 817	660	2 719	188.640	128.230	60.413
	8	26 860	995	3 349	128.230	88.232	39.998
	9	40 535	1 501	4 122	88.232	60.280	27.952
	10	61 250	2 269	5 074	60.280	42.158	18.122
	11	92 691	3 433	6 249	42.158	29.318	12.840
	12	140 520	5 205	7 702	29.318	20.905	8.413
	13	213 490	7 907	9 502	20.905	14.997	5.908
	14	325 150	12 043	11 740	14.997	10.941	4.057
	15	496 640	18 394	14 528	10.941	8.196	2.745
	16	761 060	28 187	18 012	8.196	6.245	1.951
	17	1 170 600	43 355	22382	6.245	4.878	1.367
	18	1 807 900	66 958	27 883	4.878	3.899	0.979
	19	2 804 500	103 870	32 767	3.899	3.219	0.680
	20	4 385 300	162 420	32 767	3.219	2.745	0.474
	21	6 937 100	256 930	32 767	2.745	2.446	0.299
	22	11 033 000	408 630	32 767	2.446	2.254	0.191
	23	17 536 000	649 460	32 767	2.254	2.151	0.104
	24	27 583 000	1 021 600	32 767	2.151	2.088	0.063

2: Consumed resources by F and M over MIND iterations, and gained time obtained between iterations for query Q 5 in high bandwidth network (10Gbps).

Table 5 .

 5 4: Cost of consumed resource F versus gained time over MIND iterations using Q 3 in high bandwidth network (10Gbps). Using the Approach 1 with threshold parameter (∆ 1 =1 second), the MIND optimization algorithm stops at the iteration 17 with memory cost=292.61KB/second and memory consumption F B =1 143.16KB. Whereas for query Q 5 , the MIND optimization algorithm stops at the iteration 8 with memory cost=8.45KB/second and memory consumption F B =26.23KB.• For Approach 2, MIND provides a different values of F and M comparatively to Approach 1. For instance, for threshold (∆ 2 =100KB/second), MIND stops at iteration 15 for query Q 3 (cf. Table5.4), with memory consumption F B =485KB. Whereas it stops at iteration 11 for query Q 5 (cf. Table5.5), with memory consumption F B =90.52KB.

	It.	F B k (KB)	F B k+1 (KB)	F B k+1 -F B k (KB)	C k -C k+1	Cost (KB/Second)
	1	1.00	1.50	0.50	650.740	0.0008
	2	1.50	2.26	0.75	447.660	0.0017
	3	2.26	3.39	1.14	293.140	0.0039
	4	3.39	5.10	1.71	201.890	0.0085
	5	5.10	7.67	2.57	132.290	0.0194
	6	7.67	11.55	3.88	89.370	0.0434
	7	11.55	17.40	5.85	60.413	0.0968
	8	17.40	26.23	8.83	39.998	0.2208
	9	26.23	39.58	13.35	27.952	0.4778
	10	39.58	59.81	20.23	18.122	1.1163
	11	59.81	90.52	30.70	12.840	2.3913
	12	90.52	137.23	46.71	8.413	5.5518
	13	137.23	208.49	71.26	5.908	12.0616
	14	208.49	317.53	109.04	4.057	26.8804
	15	317.53	485.00	167.47	2.745	61.0094
	16	485.00	743.22	258.22	1.951	132.3540
	17	743.22	1 143.16	399.94	1.367	292.6115
	18	1 143.16	1 765.53	622.36	0.979	635.8756
	19	1 765.53	2 738.77	973.24	0.680	1 431.9756
	20	2 738.77	4 282.52	1 543.75	0.474	3 255.4829
	21	4 282.52	6 774.51	2 491.99	0.299	8 327.1810
	22	6 774.51	10 774.41	3 999.90	0.191	20 892.6735
	23	10 774.41	17 125.00	6 350.59	0.104	61 210.4669
	24	17 125.00	26 936.52	9 811.52	0.063	155 523.6964
	•					

Table 5 .

 5 5: Cost of the resource consumed versus gained time over iterations done by MIND optimization algorithm using Q 5 in high bandwidth network (10Gbps).

	It.	F B k (KB)	F B k+1 (KB)	F B k+1 -F B k (KB)	C k -C k+1	Cost (KB/Second)
	1	1.00	1.50	0.50	16.9970	0.030
	2	1.50	2.26	0.75	11.6930	0.065
	3	2.26	3.39	1.14	7.6569	0.148
	4	3.39	5.10	1.71	5.2732	0.324
	5	5.10	7.67	2.57	3.4556	0.745
	6	7.67	11.55	3.88	2.3340	1.661
	7	11.55	17.40	5.85	1.5784	3.705
	8	17.40	26.23	8.83	1.0443	8.456
	9	26.23	39.58	13.35	0.7304	18.284
	10	39.58	59.81	20.23	0.4734	42.730
	11	59.81	90.52	30.70	0.3351	91.618
	12	90.52	137.23	46.71	0.2195	212.764
	13	137.23	208.49	71.26	0.1543	461.976
	14	208.49	317.53	109.04	0.1065	1023.493
	15	317.53	485.00	167.47	0.0712	2353.406
	16	485.00	743.22	258.22	0.0515	5013.740
	17	743.22	1143.16	399.94	0.0350	11411.248
	18	1143.16	1765.53	622.36	0.0253	24554.694
	19	1765.53	2738.77	973.24	0.0177	54920.275
	20	2738.77	4282.52	1543.75	0.0121	127151.800
	21	4282.52	6774.51	2491.99	0.0083	300750.937
	22	6774.51	10774.41	3999.90	0.0033	1218479.405
	23	10774.41	17125.00	6350.59	0.0023	2708485.494
	24	17125.00	26936.52	9811.52	0.0054	1819138.488

Table C .

 C Table C.1: Iterations of MIND optimization algorithm using Q 1in high bandwidth network (10Gbps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)The iterations of MIND optimization algorithm in low bandwidth network (50M bps)on Q 6 are presented in Table C.11. Table C.2: Iterations of MIND optimization algorithm using Q 1 in low bandwidth network (50M bps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1) 3: Iterations of MIND optimization algorithm using Q 2 in high bandwidth network (10Gbps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 5 16 146.000												
	1	7		16 146.000 10 838.000	5 307.900									
	2	11		10 838.000 7 302.000	3 535.700									
	3	17		7 302.000	4 934.200	2 367.800									
	4	25	1.235	1.145 4 934.200 1.061	1.065 3 346.900 1.082	1.120 1 587.300 1.156	1.190	1.221	1.268	1.315	1.343	1.388	1.434	1.480	1.526	1.547
	5	3300 38	0.951	0.854 3 346.900 0.761	0.747 2 281.600 0.755	0.774 1 065.300 0.790	0.814	0.837	0.869	0.890	0.921	0.940	0.971	1.002	1.033	1.048
	1.72 1.56 1.48 1.46 1.41 1.37 1.39 1.43 1.45 1.43 1.49 1.45 1.44 1.46 1.46 1.47 1.47 4.42 4.38 4.35 4.33 4.22 4.18 4.16 4.15 4.15 4.14 4.14 4.13 4.13 4.12 0.989 0.749 0.533 0.480 0.423 0.379 0.347 0.368 0.330 0.235 0.203 0.185 0.196 0.164 0.173 0.174 0.163 0.150 0.146 0.140 0.152 0.144 0.147 0.139 0.611 0.518 0.458 0.417 0.384 0.360 0.338 0.249 0.219 0.205 0.195 0.189 0.188 0.183 0.181 0.180 0.176 0.179 0.183 0.183 0.193 0.194 0.185 0.210 0.187 2 281.600 2.13 2.04 2.12 2.17 2.17 2.09 2.01 2.17 2.15 2.08 2.06 2.03 2.00 2.02 1.98 1.96 5.48 5.45 5.42 5.40 5.30 5.27 5.26 5.24 5.24 5.23 5.23 5.23 5.23 5.22 0.896 0.701 0.555 0.514 0.484 0.454 0.400 0.402 0.391 0.337 0.294 0.300 0.303 0.283 0.259 0.263 0.252 0.270 0.198 0.207 0.207 0.200 0.182 0.191 0.713 0.625 0.569 0.530 0.497 0.474 0.454 0.369 0.341 0.329 0.317 0.313 0.313 0.308 0.306 0.305 0.307 0.314 0.323 0.325 0.343 0.345 0.331 0.375 0.335 1 565.600 1 083.400 22 576.7 C(F 0 5 500 3.22 6 600 3.14 7 700 2.75 8 800 2.71 9 900 2.56 11x10 2.52 22x10 2.54 33x10 2.73 44x10 2.59 55x10 2.53 66x10 2.49 77x10 2.50 88x10 2.46 99x10 2.44 11x10 2.40 22x10 2.37 7 700 6.42 8 800 6.39 9 900 6.36 11x10 6.34 22x10 6.25 33x10 6.22 44x10 6.20 55x10 6.19 66x10 6.18 77x10 6.18 88x10 6.18 99x10 6.17 11x10 6.17 22x10 6.16 0.906 3300 0.703 4400 0.642 5500 0.600 6600 0.543 7700 0.524 8800 0.487 9900 0.492 11x10 0.456 22x10 0.388 33x10 0.388 44x10 0.348 55x10 0.360 66x10 0.351 77x10 0.361 88x10 0.348 99x10 0.338 11x10 0.314 22x10 0.239 33x10 0.247 44x10 0.253 55x10 0.240 66x10 0.219 77x10 0.218 4400 0.813 5500 0.728 6600 0.670 7700 0.633 8800 0.601 9900 0.577 11x10 0.559 22x10 0.476 33x10 0.448 44x10 0.436 55x10 0.424 66x10 0.420 77x10 0.422 88x10 0.416 99x10 0.415 11x10 0.414 22x10 0.420 33x10 0.432 44x10 0.445 55x10 0.447 66x10 0.473 77x10 0.476 88x10 0.457 99x10 0.517 11x10 0.463 6 58 042 7 87 279 8 131 572 M C(F 0 It. F 5 It. F M 20 9 198 933 758.110 1 8 22 576.7 15 364 1 30 4 039.400 10 299 379 538.060 2 11 143 15 363.9 10 555 2 45 2 712.400 11 453 930 388.770 3 17 702 10 555.1 7 348.5 3 68 1 828.200 12 688 613 287.120 4 26 527 7 348.5 5 209.8 4 102 1 235.900 13 1 047 461 217.630 5 39 734 5 209.8 3 782.7 5 153 838.850 14 1 598 517 169.900 6 59 481 3 782.7 2 829.4 6 230 071 572.280 15 2 447 834 136.930 7 90 978 2 829.4 2 191.5 7 347 315 393.070 16 3 761 483 114.020 8 137 484 2 191.5 1 763.2 8 524 615 272.360 17 5 802 554 97.981 9 212 312 1 763.2 1 474.1 9 792 986 190.900 18 8 992 162 86.672 10 328 825 1 474.1 1 277.4 10 1 198 444 135.770 19 14 001 458 78.631 11 512 450 1 277.4 1 142.2 11 1 815 010 98.354 20 21 912 635 72.864 12 801 767 1 142.2 1 059.7 12 2 757 712 72.867 21 34 471 946 68.691 13 1 259 767 1 059.7 1 010.3 13 4 198 585 55.432 22 54 509 712 65.645 14 1 966 767 1 010.3 983.27 14 6 409 671 43.448 23 86 631 767 63.401 15 2 993 767 983.27 972.56 15 9 817 027 35.164 24 110 000 767 61.781 16 4 269 767 972.56 973.14 16 15 093 724 29.402 17 5 262 767 973.14 977.58 17 23 300 857 25.366	1.95 1.80 1.68 1.62 1.58 1.49 1.46 1.34 1.31 1.34 1.31 1.32 1.33 1.32 1.30 1.33 1.30 4.08 4.04 4.01 3.98 3.86 3.82 3.80 3.79 3.78 3.78 3.77 3.77 3.77 3.76 0.931 0.672 0.504 0.465 0.434 0.369 0.348 0.313 0.297 0.260 0.177 0.170 0.157 0.139 0.149 0.152 0.139 0.135 0.117 0.126 0.133 0.120 0.144 0.119 0.589 0.494 0.434 0.388 0.353 0.327 0.305 0.212 0.180 0.166 0.155 0.149 0.147 0.142 0.140 0.138 0.133 0.134 0.136 0.136 0.143 0.143 0.137 0.155 0.138 1 565.600 1.88 1.71 1.59 1.50 1.46 1.39 1.35 1.26 1.28 1.29 1.27 1.29 1.29 1.32 1.32 1.33 1.31 3.99 3.93 3.89 3.85 3.82 3.69 3.65 3.63 3.61 3.61 3.60 3.59 3.59 3.59 3.58 0.887 0.625 0.503 0.421 0.370 0.327 0.305 0.285 0.265 0.187 0.160 0.143 0.140 0.128 0.122 0.121 0.121 0.113 0.106 0.101 0.108 0.111 0.107 0.103 0.591 0.492 0.427 0.380 0.345 0.318 0.293 0.195 0.162 0.147 0.136 0.130 0.127 0.122 0.120 0.118 0.112 0.112 0.113 0.113 0.118 0.118 0.113 0.127 0.114 1 083.400 758.110 538.060 7 212.7 1.89 1.70 1.59 1.52 1.47 1.38 1.34 1.26 1.29 1.30 1.28 1.29 1.31 1.30 1.28 1.30 1.28 3.92 3.86 3.80 3.77 3.73 3.59 3.55 3.52 3.51 3.50 3.49 3.49 3.48 3.48 3.47 0.945 0.667 0.538 0.456 0.391 0.343 0.300 0.298 0.285 0.195 0.160 0.147 0.139 0.129 0.133 0.116 0.121 0.116 0.100 0.099 0.106 0.106 0.110 0.107 0.600 0.497 0.427 0.378 0.341 0.315 0.291 0.188 0.153 0.137 0.125 0.119 0.116 0.111 0.108 0.106 0.099 0.098 0.099 0.099 0.103 0.103 0.099 0.111 0.099 716.050 1.82 1.63 1.51 1.41 1.35 1.28 1.26 1.14 1.19 1.20 1.21 1.23 1.23 1.25 1.21 1.24 1.24 3.89 3.81 3.76 3.72 3.68 3.53 3.48 3.46 3.44 3.43 3.42 3.42 3.41 3.41 3.40 1.061 0.742 0.585 0.487 0.420 0.379 0.336 0.312 0.286 0.193 0.162 0.147 0.138 0.131 0.135 0.113 0.120 0.114 0.102 0.103 0.105 0.101 0.109 0.107 0.614 0.504 0.434 0.385 0.344 0.316 0.290 0.183 0.147 0.130 0.119 0.112 0.108 0.103 0.101 0.099 0.091 0.089 0.090 0.090 0.094 0.093 0.089 0.100 0.089 482.130 325.310 2 712.400 1 327.000 220.050 388.770 4 808.9 1 828.200 884.190 149.290 287.120 3 206.6 1 235.900 592.240 101.640 217.630 2 138.7 838.850 397.090 69.488 169.900 1 427.1 572.280 266.570 47.734 136.930 953.25 393.070 179.210 32.969 114.020 637.91 272.360 120.700 22.914 97.981 428.29 190.900 81.467 16.037 86.672 289.1 135.770 55.127 11.309 78.631 196.68 98.354 37.416 8.041 72.864 135.17 72.867 25.487 5.767 68.691 82.502 55.432 17.434 4.173 65.645 49.444 43.448 11.984 3.046 63.401 27.028 35.164 8.284 2.244 61.781 10.715 29.402 5.762 1.620 60.725 -0.588 25.366 4.036 1.056 -4.437 22.516 2.849	1.69 1.51 1.37 1.28 1.22 1.16 1.12 1.01 1.05 1.08 1.08 1.05 1.08 1.08 1.08 1.07 1.08 3.87 3.79 3.74 3.69 3.65 3.49 3.44 3.41 3.39 3.38 3.37 3.37 3.36 3.36 3.34 1.058 0.729 0.597 0.497 0.407 0.363 0.338 0.314 0.280 0.187 0.168 0.137 0.126 0.126 0.117 0.108 0.103 0.104 0.091 0.089 0.089 0.096 0.098 0.107 0.626 0.520 0.443 0.390 0.348 0.320 0.294 0.182 0.145 0.127 0.115 0.107 0.103 0.099 0.096 0.094 0.085 0.083 0.084 0.083 0.087 0.086 0.082 0.092 0.082	1.67 1.47 1.35 1.25 1.18 1.12 1.07 0.92 0.96 0.99 1.00 1.02 1.01 1.01 1.02 1.02 1.03 3.87 3.79 3.72 3.68 3.64 3.46 3.40 3.38 3.36 3.35 3.34 3.33 3.33 3.32 3.31 1.181 0.828 0.640 0.524 0.444 0.402 0.360 0.325 0.296 0.194 0.164 0.142 0.128 0.118 0.108 0.105 0.102 0.102 0.090 0.084 0.086 0.091 0.092 0.093 0.644 0.529 0.452 0.397 0.356 0.324 0.298 0.181 0.143 0.124 0.112 0.104 0.100 0.095 0.092 0.090 0.081 0.079 0.079 0.078 0.081 0.081 0.077 0.087 0.077	1.71 1.51 1.38 1.27 1.19 1.13 1.09 0.94 0.94 0.95 0.95 0.97 1.00 0.97 0.97 0.98 0.98 3.88 3.79 3.72 3.67 3.63 3.44 3.38 3.35 3.33 3.32 3.31 3.30 3.30 3.30 3.28 1.147 0.807 0.620 0.518 0.446 0.408 0.351 0.319 0.300 0.189 0.151 0.130 0.117 0.110 0.104 0.096 0.092 0.094 0.076 0.074 0.078 0.084 0.082 0.078 0.661 0.543 0.464 0.409 0.362 0.330 0.304 0.183 0.142 0.123 0.110 0.102 0.098 0.093 0.090 0.087 0.077 0.075 0.075 0.074 0.077 0.077 0.073 0.082 0.073	1.75 1.54 1.39 1.28 1.19 1.12 1.07 0.93 0.92 0.95 0.92 0.93 0.94 0.95 0.95 0.95 0.92 3.89 3.80 3.73 3.67 3.63 3.43 3.36 3.33 3.31 3.30 3.29 3.28 3.28 3.27 3.25 1.171 0.814 0.637 0.515 0.451 0.385 0.351 0.317 0.298 0.188 0.146 0.126 0.115 0.107 0.101 0.097 0.089 0.090 0.074 0.071 0.074 0.080 0.079 0.080 0.686 0.557 0.476 0.414 0.371 0.339 0.309 0.185 0.142 0.123 0.109 0.101 0.097 0.091 0.088 0.085 0.075 0.073 0.073 0.071 0.074 0.074 0.070 0.079 0.070	1.76 1.55 1.37 1.26 1.19 1.13 1.06 0.90 0.90 0.87 0.88 0.87 0.87 0.87 0.87 0.87 0.86 3.91 3.81 3.73 3.68 3.63 3.42 3.35 3.32 3.30 3.28 3.27 3.27 3.26 3.26 3.24 1.269 0.881 0.676 0.561 0.482 0.428 0.382 0.346 0.321 0.195 0.152 0.128 0.119 0.108 0.102 0.096 0.090 0.092 0.077 0.072 0.076 0.079 0.080 0.078 0.701 0.577 0.488 0.424 0.381 0.343 0.317 0.187 0.143 0.122 0.108 0.100 0.096 0.090 0.087 0.084 0.073 0.070 0.070 0.069 0.072 0.071 0.067 0.076 0.067	1.84 1.58 1.42 1.32 1.22 1.15 1.08 0.88 0.89 0.85 0.85 0.86 0.85 0.83 0.84 0.84 0.82 3.93 3.82 3.74 3.68 3.63 3.42 3.34 3.31 3.28 3.27 3.26 3.25 3.25 3.24 3.22 1.258 0.865 0.663 0.552 0.477 0.423 0.372 0.331 0.309 0.188 0.144 0.125 0.113 0.105 0.095 0.095 0.087 0.082 0.072 0.067 0.070 0.073 0.072 0.073 0.726 0.589 0.498 0.440 0.389 0.351 0.320 0.188 0.144 0.122 0.108 0.100 0.094 0.089 0.086 0.083 0.071 0.069 0.068 0.067 0.070 0.069 0.065 0.073 0.065	1.87 1.60 1.44 1.33 1.22 1.16 1.09 0.88 0.83 0.83 0.82 0.83 0.82 0.81 0.81 0.80 0.79 3.95 3.84 3.76 3.69 3.64 3.41 3.34 3.30 3.27 3.26 3.25 3.24 3.23 3.23 3.21 1.310 0.901 0.692 0.572 0.495 0.435 0.381 0.352 0.322 0.208 0.147 0.128 0.113 0.102 0.099 0.093 0.090 0.087 0.074 0.066 0.072 0.073 0.073 0.076 0.740 0.601 0.515 0.449 0.397 0.359 0.327 0.191 0.145 0.123 0.108 0.099 0.094 0.088 0.085 0.082 0.070 0.067 0.067 0.065 0.068 0.067 0.064 0.071 0.063	1.93 1.67 1.49 1.36 1.27 1.20 1.14 0.93 0.89 0.87 0.85 0.85 0.84 0.82 0.82 0.82 0.81 3.97 3.86 3.77 3.71 3.65 3.41 3.33 3.29 3.27 3.25 3.24 3.23 3.22 3.22 3.20 1.308 0.900 0.692 0.576 0.493 0.424 0.380 0.346 0.323 0.186 0.147 0.121 0.110 0.097 0.091 0.086 0.086 0.078 0.069 0.059 0.062 0.067 0.065 0.069 0.763 0.620 0.525 0.457 0.405 0.371 0.338 0.195 0.147 0.124 0.109 0.100 0.094 0.089 0.085 0.082 0.069 0.066 0.065 0.064 0.066 0.066 0.062 0.070 0.062	1.96 1.68 1.50 1.37 1.26 1.17 1.13 0.87 0.83 0.81 0.80 0.79 0.80 0.79 0.79 0.79 0.78 4.00 3.88 3.79 3.72 3.67 3.41 3.33 3.29 3.26 3.24 3.23 3.22 3.22 3.21 3.19 1.306 0.899 0.681 0.567 0.477 0.413 0.368 0.338 0.309 0.183 0.147 0.119 0.111 0.091 0.090 0.083 0.080 0.072 0.065 0.055 0.059 0.060 0.065 0.065 0.787 0.640 0.541 0.472 0.418 0.378 0.344 0.197 0.149 0.125 0.109 0.100 0.094 0.088 0.084 0.081 0.068 0.065 0.064 0.063 0.065 0.064 0.061 0.068 0.060	1.99 1.73 1.59 1.39 1.27 1.19 1.15 0.90 0.86 0.82 0.82 0.81 0.82 0.81 0.79 0.78 0.76 4.03 3.91 3.81 3.74 3.68 3.42 3.33 3.28 3.26 3.24 3.23 3.22 3.21 3.20 3.18 1.372 0.921 0.700 0.584 0.504 0.420 0.378 0.342 0.318 0.174 0.139 0.117 0.102 0.094 0.088 0.081 0.085 0.070 0.061 0.050 0.051 0.051 0.053 0.052 0.799 0.650 0.550 0.479 0.425 0.384 0.350 0.201 0.151 0.126 0.110 0.100 0.095 0.088 0.084 0.081 0.068 0.064 0.063 0.062 0.064 0.063 0.060 0.067 0.059
	88x10 99x10 18 5 258 767 977.58 0.209 0.212 18 36 130 545 22.516 0.181 0.141 0.181 0.144 977.56 11x10 0.218 0.173 0.140 19 5 260 767 977.56 977.57 19 56 296 942 20.488	0.114 0.114 20.488 0.111 19.031	0.105 0.107 0.021 0.104 -0.011	0.104 0.102 2.029 0.099 0.102 0.101 0.103 1.457	0.090 0.093 0.095	0.092 0.093 0.087	0.081 0.083 0.080	0.079 0.080 0.075	0.076 0.076 0.078	0.074 0.071 0.073	0.072 0.077 0.069	0.062 0.063 0.060	0.065 0.061 0.061	0.052 0.052 0.052
	20 5 259 767 977.57 20 88 162 250 19.031 977.57	17.977	0.005	1.055									
	21 5 260 767 977.57 21 138 780 728 17.977 977.57	17.205	-0.003	0.771									
	22 5 259 767 977.57 22 219 600 767 17.205 977.57	16.638	0.001	0.568									
	23 5 260 767 977.57 23 349 240 767 16.638 977.57	16.215	-0.001	0.423									
	24 5 259 767 977.57 24 550 000 767 16.215 977.57	15.898	0.000	0.317									

k k k

Table C .

 C 4: Iterations MIND optimization algorithm using Q 2 in low bandwidth network (50M bps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 20 5 885.9		
	1	30		5 885.9	4 009.5	1876.4
	2	45	144	4 009.5	2 758.5	1251
	3	68	705	2 758.5	1 924.3	834.16
	4	103	534	1 924.3	1 368	556.33
	5	155	749	1 368	996.79	371.2
	6	236	516	996.79	748.9	247.89
	7	359	052	748.9	583.07	165.83
	8	550	636 583.07	471.8	111.27
	9	848	608 471.8	396.76	75.037
	10 1 315	376 396.76	345.78	50.980
	11 2 052	425 345.78	310.81	34.975
	12 3 218	767 310.81	290.6	20.207
	13 5 055	767 290.6	278.57	12.025
	14 7 863	767 278.57	272.30	6.272
	15 11 840 767 272.3	270.23	2.074
	16 16 446 767 270.23	270.89	-0.665
	17 19 255 767 270.89	271.96	-1.065
	18 18 724 767 271.96	271.73	0.225
	19 19 006 767 271.73	271.85	-0.118
	20 18 869 767 271.85	271.79	0.058
	21 18 939 767 271.79	271.82	-0.030
	22 18 904 767 271.82	271.81	0.015
	23 18 922 767 271.81	271.81	-0.008
	24 18 913 767 271.81	271.81	0.004

k

Table C .

 C 5: Iterations of MIND optimization algorithm using Q 3 in high bandwidth network (10Gbps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 40 2 003.700		
	1	57		2 003.700	1 353.000	650.740
	2	86		1 353.000	905.340	447.660
	3	129	135	905.340	612.200	293.140
	4	193	428	612.200	410.300	201.890
	5	291	779	410.300	278.010	132.290
	6	438	203	278.010	188.640	89.370
	7	660	719	188.640	128.230	60.413
	8	995	349	128.230	88.232	39.998
	9	1 501	122	88.232	60.280	27.952
	10 2 269	074	60.280	42.158	18.122
	11 3 433	249	42.158	29.318	12.840
	12 5 205	702	29.318	20.905	8.413
	13 7 907	502	20.905	14.997	5.908
	14 12 043	740 14.997	10.941	4.057
	15 18 394	528 10.941	8.196	2.745
	16 28 187	012 8.196	6.245	1.951
	17 43 355		6.245	4.878	1.367
	18 66 958	883 4.878	3.899	0.979
	19 103 870	767 3.899	3.219	0.680
	20 162 420	767 3.219	2.745	0.474
	21 256 930	767 2.745	2.446	0.299
	22 408 630	767 2.446	2.254	0.191
	23 649 460	767 2.254	2.151	0.104
	24 1 021 600 767 2.151	2.088	0.063

k

Table C .

 C 6: Iterations of MIND optimization algorithm using Q 3 in low bandwidth network (50M bps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 40 3 068.2		
	1	60		2 929	1 993.05	935.95
	2	90	143	1 993.13	1 369.1	624.03
	3	136	704	1 369.1	952.96	416.1
	4	206	532	952.96	675.43	277.53
	5	311	745	675.43	490.24	185.19
	6	473	507	490.24	366.54	123.7
	7	721	034	366.54	283.75	82.784
	8	1 107	600 283.75	228.17	55.586
	9	1 710	542 228.17	190.64	37.528
	10 2 659	261 190.64	165.1	25.539
	11 4 159	234 165.1	147.54	17.563
	12 6 539	767 147.54	137.32	10.221
	13 10 310 767 137.32	131.22	6.098
	14 16 124 767 131.22	127.98	3.24
	15 24 487 767 127.98	126.82	1.16
	16 34 505 767 126.82	127.05	-0.235
	17 41 324 767 127.05	127.61	-0.555
	18 40 523 767 127.61	127.53	0.075
	19 40 940 767 127.53	127.57	-0.039
	20 40 735 767 127.57	127.55	0.019
	21 40 839 767 127.55	127.56	-0.01
	22 40 787 767 127.56	127.56	0.005
	23 40 813 767 127.56	127.56	-0.002
	24 40 800 767 127.56	127.56	0.001

k

Table C .

 C 7: Iterations of MIND optimization algorithm using Q 4 in high bandwidth network (10Gbps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 2 979.97		
	1	3		979.97	657.46	322.51
	2	4		657.46	442.51	214.95
	3	7		442.51	298.67	143.85
	4	10		298.67	202.3	96.369
	5	15		202.3	137.66	64.641
	6	23		137.66	94.235	43.422
	7	35	193	94.235	65.018	29.217
	8	52	469	65.018	45.319	19.698
	9	79	807	45.319	32.006	13.313
	10 119	224	32.006	22.984	9.023
	11 181	739	22.984	16.848	6.136
	12 274	377	16.848	12.659	4.188
	13 417	168	12.659	9.787	2.873
	14 636	152	9.787	7.806	1.981
	15 972	379	7.806	6.432	1.373
	16 1 492	913	6.432	5.473	0.959
	17 2 299	837	5.474	4.799	0.675
	18 3 558	259 4.799	4.320	0.479
	19 5 531	315 4.320	3.978	0.342
	20 8 642	186 3.978	3.732	0.247
	21 13 572 101 3.732	3.552	0.180
	22 21 426 360 3.552	3.420	0.131
	23 33 998 767 3.420	3.323	0.097
	24 54 879 767 3.323	3.258	0.065

k

Table C .

 C 8: Iterations of MIND optimization algorithm using Q 4 in low bandwidth network (50M bps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 2 1 308.7		
	1	3		1 308.7	889.56	419.17
	2	5	141	889.56	610.08	279.48
	3	7	698	610.08	423.72	186.36
	4	10	518	423.72	299.42	124.3
	5	16	712	299.42	216.46	82.958
	6	24	434	216.46	161.03	55.425
	7	36	879	161.03	123.93	37.107
	8	55	283 123.93	98.993	24.933
	9	85	925 98.993	82.143	16.850
	10 131	118 82.143	70.661	11.482
	11 204	224 70.661	62.755	7.907
	12 319	767 62.755	57.672	5.083
	13 500	767 57.672	54.584	3.087
	14 784	767 54.584	52.821	1.763
	15 1 207 767 52.821	52.014	0.807
	16 1 766 767 52.014	51.895	0.119
	17 2 300 767 51.895	52.126	-0.231
	18 2 433 767 52.126	52.209	-0.083
	19 2 376 767 52.170	52.192	-0.023
	20 2 390 767 52.209	52.172	0.037
	21 2 406 767 52.172	52.191	-0.019
	22 2 391 767 52.191	52.182	0.009
	23 2 399 767 52.182	52.187	-0.005
	24 2 395 767 52.187	52.184	0.002

k

Table C .

 C 9: Iterations of MIND optimization algorithm using Q 5 in high bandwidth network (10Gbps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 40 52.338		
	1	53		52.338	35.341	16.997
	2	80		35.341	23.648	11.693
	3	120	135	23.648	15.991	7.657
	4	180	428	15.991	10.717	5.273
	5	271	779	10.717	7.262	3.456
	6	408	203	7.262	4.928	2.334
	7	614	719	4.928	3.350	1.578
	8	926	349	3.350	2.305	1.044
	9	1 398	122	2.305	1.575	0.730
	10 2 112	074	1.575	1.101	0.473
	11 3 196	249	1.101	0.766	0.335
	12 4 846	702	0.766	0.547	0.220
	13 7 362	502	0.547	0.392	0.154
	14 11 212	740 0.392	0.286	0.107
	15 17 125	528 0.286	0.215	0.071
	16 26 243	012 0.215	0.163	0.052
	17 40 365	382 0.163	0.128	0.035
	18 62 340	883 0.128	0.103	0.025
	19 96 706	767 0.103	0.085	0.018
	20 151 220 767 0.085	0.073	0.012
	21 239 210 767 0.073	0.065	0.008
	22 380 450 767 0.065	0.061	0.003
	23 604 670 767 0.061	0.059	0.002
	24 951 130 767 0.059	0.064	0.005

k

Table C .

 C 10: Iterations of MIND optimization algorithm using Q 5 in low bandwidth network (50M bps). ,M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 40 72.079		
	1	60		72.079	49.109	24.525
	2	90	144	49.109	33.795	15.315
	3	136	705	33.795	23.583	10.212
	4	205	535	23.583	16.773	6.8104
	5	311	752	16.773	12.229	4.544
	6	471	522	12.229	9.194	3.0345
	7	718	064	9.194	7.1642	2.0298
	8	1 100	659 7.1642	5.8023	1.3619
	9	1 696	655 5.8023	4.884	0.91826
	10 2 631	464 4.884	4.2603	0.62371
	11 4 106	582 4.2603	3.8325	0.42777
	12 6 440	632 3.8325	3.5879	0.24465
	13 10 115 857 3.5879	3.4424	0.14548
	14 15 722 219 3.4424	3.3672	0.07521
	15 23 626 127 3.3672	3.3433	0.02394
	16 32 660 497 3.3433	3.3523	-0.00907
	17 37 901 974 3.3523	3.365	-0.01265
	18 36 768 108 3.365	3.362	0.00303
	19 37 372 339 3.362	3.3636	-0.0016
	20 37 078 219 3.3636	3.3628	0.00078
	21 37 229 278 3.3628	3.3632	-0.0004
	22 37 154 248 3.3632	3.363	0.0002
	23 37 192 263 3.363	3.3631	-0.0001
	24 37 172 256 3.3631	3.363	0.00005

k

Table C .

 C 11: Iterations of MIND optimization algorithm using Q 6 in high bandwidth network (10Gbps).

	It. F C(F 0 M 40 0.00097		
	1	59.852 392.61 0.00097	0.00049	0.00048

k , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

Table C .

 C 12: Iterations of MIND optimization algorithm using Q 6 in low bandwidth network (50M bps). , M k) C(F k+1 , M k+1) C(F k , M k) -C(F k+1 , M k+1)

	It. F C(F 0 M 40 512 0.00097		
	1	60.118 765.713 0.00097	0.00066	0.00031

k

https://technet.microsoft.com/en-us/library/aa342344%28SQL.90%29.aspx

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html

https://docs.oracle.com/cd/B28359_01/server.111/b32009/app_odbc.htm#UNXAR403

http://docs.oracle.com/cd/B25221_04/web.1013/b13593/optimiz011.htm

https://technet.microsoft.com/en-us/library/aa342344%28SQL.90%29.aspx

https://technet.microsoft.com/en-us/lib rary/ms177437.aspx

https://jdbc.postgresql.org/documentation/head/query.html

https://www.postgresql.org/docs/9.3/static/protocol.html

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-implementation-notes.html

http://www.lsst.org/lsst/

https://lsst-web.ncsa.illinois.edu/schema/index.php?sVer=PT1_1

https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest

Table B.7: Real communication times using query Q 4 in high-bandwidth network F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb Table B.8: Estimated communication times using query Q 4 in high-bandwidth network F \ M 1.5Kb 2Kb 4Kb 6Kb 8Kb 10Kb 12Kb 14Kb 16Kb 18Kb 20Kb 22Kb 24Kb 26Kb 28Kb 30Kb 32Kb

(ii) M value: the size in bytes of middleware buffer, which corresponds to the amount of data that can be communicated at once from the middleware to the network;

(iii) F value: the number of tuples in a batch that is communicated at once;

(iv) Elapsed time: the query execution time in seconds;

(v) CP U time: the consumed time, in seconds, by CP U in the query execution;

(vi) Number of fetch operations (called also in the literature round -trips);

(vii) Number of rows in query result;

(viii) Number of first messages communicated;

Client DBMS

Evaluation of MIND framework

In this section, we present an evaluation of the MIND framework as an end-to-end solution. In particular, we point out the improvement that we obtain over the current strategies for middleware tuning (in terms of communication time and/or resource consumption), the query-and network-adaptivity of MIND, and how the time estimation and the two middleware parameters F and M change during the iterations. Moreover, recall that we have already shown an experiment for the accuracy of the MIND estimation function in Section 4.4.

Throughout this section, we rely on the experimental setup introduced in Section 3.2.2 when we motivated our study on the impact of the middleware configuration. In particular, we use the same data (the astronomical dataset of ∼34GB), queries (six queries of diverse selectivity cf. Figure 3.3), and network configurations (high-and low-bandwidth networks).

Middleware tuning strategies

We benchmark MIND against the same five strategies introduced in Section 3.2.4. In the remainder of this section, by MIND we denote the combination of F and M returned by the MIND optimization algorithm (cf. Figure 2), with [M min , M max]= [512B, 32KB], the maximum heap memory size allowed by the middleware for a batch F B max =30MB, the threshold ∆ set to a second, and network parameters calibrated with the LR algorithm (with input the query Q 3 and the 629 combinations of F and M cf. Section 3.2.2).

We also recall the five strategies from Section 3.2.4, which correspond to recommendations found in technical documentations for tuning the middleware parameters e.g., [START_REF] Bulumulle | Oracle middleware layer net8 performance tuning utilizing underlying network protocol[END_REF][START_REF] Donald | Oracle Tuning: The Definitive Reference[END_REF][START_REF] Shirazi | Java performance tuning[END_REF]:

(i) Default (default values set by the middleware of our DBMS), (ii) Max M (set M to maximum value and leave F as default), (iii) Max F (set F to maximum value i.e., all tuples in a batch consume the entire heap memory allowed by the middleware for a batch, and leave M as default),

(iv) Max F/M (set both parameters to maximum values), (v) F in Max M (set M to maximum value and set F such that all tuples in a batch fit in a single message).

Comparison of middleware tuning strategies

We report in Figures 5.3, 5.4 and 5.2 the times and the resources needed to communicate over the network the result of each query, using each strategy and each network i.e., high-and lowbandwidth.

The only query for which all strategies yield the same communication time is Q 6 , which has the smallest query result. Nonetheless, we observe that MIND consumes less resources to achieve this communication time i.e., messages of only 0.5KB. Next, we make some important points that hold for the first five queries, which have large results i.e., between ∼0.1GB and ∼32GB.

MIND gives particularly good results in the low-bandwidth network, where it is always the best among all strategies. In the high-bandwidth network, the two strategies using maximum F values (i.e., Max F and Max F/M) obtain slightly smaller communication times, but at the price of consuming much larger resources (since they consume the entire heap memory allowed by the Appendix C

Iterations of MIND algorithm on different queries

To find the best configuration F and M that minimize the communication time for a given q query. The MIND optimization algorithm (Section 5.2) applied for each query gives the following iterations. In these iterations, we report for each iteration: the F, M, communication cost for current iteration (Com. time K), communication cost fro next iteration (Com. time K+1) and the difference between the communication times in current and next iterations ((K) -(K+1)).

The input that should be introduced MIND optimization algorithm:

• The estimated size of the query result (V) and tuple size (T) are indicated in Table 3.3,

• weights α and β are calibrated on Q 3 (Section 4.3).

The iterations of MIND optimization algorithm in high bandwidth network (10Gbps) on Q 1 are presented in Table C

Appendix D Network overhead

Pictures provided in this appendix are produced from trace files generated by TCPDUMP 1 and analysed by wireshark 2 . These pictures are captured in client node (TCP layer).