Resolution of deducibility constraint systems for the composition of security-aware Web services

PhD Thesis by Tigran Avanesov supervised by Michaël Rusinowitch lots of help by Yannick Chevalier and Mathieu Turuani

Loria, INRIA Nancy - Grand Est, UHP Nancy - 1, IAEM Lorraine

September 19, 2011

T.Avanesov

Protocols analysis Intro Symbolic model

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Outline Protocols analysis

- Intro
- Symbolic model
- Dolev-Yao intruder
- Reduction to constraints
- 2 Deducibility constraints
 - Well-formed constraints
 - ACI symbol
 - Multiple intruders
 - General constraints
- 3 Web Services
 - Model
 - Composition
 - Orchestration
 - Implementation
 - Distributed orchestration
 - Non-disclosure policy
- 4 Conclusions

(protocol analysis)

T.Avanesov

Protocols analysis

Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrat Non-disclosure policy

Preserve security property: need cryptography

T.Avanesov

Protocols analysis

Intro

Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Preserve security property: need cryptography , but not straightforward

T.Avanesov

Protocols analysis

Intro

Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

A secure protocol may be not so secure...

We need to verify secure communication schemes

Even if you think they work well...

T.Avanesov

Protocols analysis

Intro

Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Symbolic model

Real encryption, e.g. AES

- Message: 'messagetoencrypt' 0x7468 6576 6572 7973 6563 7265 746b 6579
- Key: 'theverysecretkey' 0x6d65 7373 6167
 6574 6f65 6e63 7279 7074
- Encrypted message: 0xcd54 381e 3b8f 5981 f108 76e9 4e64 b4b6 (no good ASCII representation)

Abstraction

- Message: m
- Key: *k*
- Encrypted message: $\{m\}_k^s$

Messages may be complex, e.g. $\{\{m.n\}_k^s\}_{a.n}^s$ Abstract away algorithms.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints

Multiple intruders (protocol analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestrat Non-disclosure policy

Symbolic analysis

Symbolic representation

$\{t_1\}_{t_2}^a$	t_1 encrypted with public key t_2	
${t_1}_{t_2}^{s_2}$	t_1 encrypted with symmetric key t_2	
$t_1.t_2$	t_1 concatenated with t_2	
$\operatorname{priv}(t_2)$	private key for public key t_2	
$[t_1]_{\text{priv}(t_2)}$	signature of message t_1 with priv (t_2)	
$t_1(t_2)$	apply hash function t_1 on message t_2	

Public-key encryption: Two types of keys

- **<u>Public</u> key** (to encrypt),
- <u>**Private</u> key** (to decrypt), $< + \square \rightarrow \square$ </u>

Symmetric encryption: **one** shared key

- Decryption: $\rightarrow + \rightarrow \rightarrow$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis)

General constraints

Neb Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Messaging and Protocol participants

Terms

- *a*, *b*, *c*, ... atomic data. They are terms.
- X, Y, ... variables. They are terms.
- p, q terms $\implies \{p\}_q^s, p.q, \dots$ are terms.
- Ground terms (messages) are terms without variables.
- E.g. $\{\{a.b\}_k^s\}_{c.b}^s$ X. [X]_{priv(pk)} $\{a\}_{pk}^a$

Protocol participants (agents, protocol roles instances)

Agent's behavior is defined as $\frac{?}{!}t_1$; $\frac{?}{!}t_2$; ...; $\frac{?}{!}t_{k-1}$; $\frac{?}{!}t_k$? is "receive", ! is "send"

Example of an agent with four actions $\{X\}_{k}^{s}$; !md5(X); $\{X,Y\}$; $!\{token\}_{Y}^{s}$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Beduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol applysic)

General constraints

Neb Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Dolev-Yao intruder

- can intercept (read and block) messages

Resolution of CS

for WS composition

10 lorla Noncy University

Dolev-Yao intruder

- can generate and send messages (on behalf of honest users)

Resolution of CS

for WS composition

Inda Noncy University

Dolev-Yao intruder

- can be a legitimate user

8

Resolution of CS

for WS composition

o lorda Nancy University

Modeling intruder actions

Deduction rules for the intruder

Composition rules	Decomposition rules
$t_1, t_2 \rightarrow \{t_1\}_{t_2}^s$	$\{t_1\}_{t_2}^s, t_2 \to t_1$
$t_1, t_2 \rightarrow \{t_1\}_{t_2}^{\bar{a}}$	$\{t_1\}_{t_2}^{a}$, priv $(t_2) \rightarrow t_1$
$t_1, t_2 ightarrow t_1.t_2$	$t_1.t_2 ightarrow t_1$
$t_1, priv(t_2) o [t_1]_{priv(t_2)}$	$t_1.t_2 ightarrow t_2$
$t_1, t_2 ightarrow t_1(t_2)$	

Perfect cryptography

Encryption is a black box.

T.Avanesov

Protocols analysis

Symbolic mode

Dolev-Yao intruder

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrat Non-disclosure policy

Analysis of protocol's sessions

Sample protocol ("password restore")

$$A \to B: \quad \{A.K\}^{a}_{K_{B}}$$
$$B \to A: \quad \{pwd(A)\}^{s}_{K}$$

K — fresh symmetric key generated by A K_B — public key of Bpwd(A) — forgotten password

Protocol should guarantee

• pwd(A) is known only by A and B.

Protocol insecurity problem

Given a finite set of protocol instances (or their number), **find out** whether the security properties guaranteed by the protocol are not preserved in the presence of a DY intruder.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrat Non-disclosure policy

$$a(A) \text{ asks to restore his password on } b(B)$$

$$a \xrightarrow{\{a.k\}_{k_b}^a (1)}_{\langle \underbrace{\{Y\}_{k}^s}} i \xrightarrow{(2)}_{\langle 3 \rangle} \underbrace{\{a.X\}_{k_b}^a}_{\langle pwd(a)\}_{X}^s} b$$

Initial intruder's knowledge: i, a, b, k_b

Constraint system

$$i, a, b, k_b, \{a, k\}_{k_b}^a \triangleright \{a, X\}_k^a$$

$$i, a, b, k_b, \{a, k\}_{k_b}^a, \{pwd(a)\}_X^k \triangleright pwd(a)$$

One of the solutions: $\{X \mapsto i\}$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

$$a(A) \text{ asks to restore his password on } b(B)$$

$$a \xrightarrow{\{a,k\}_{k_b}^a (1)}_{\langle \underbrace{\{Y\}_k^s}} i \xrightarrow{\{2\}_{k_b}^a (2)}_{\langle 3\rangle \langle \underbrace{\{pwd(a)\}_X^s}} b$$

Initial intruder's knowledge: i, a, b, k_b

Constraint system

$$i, a, b, k_b, \{a.k\}_{k_b}^a \triangleright \{a.X\}_{k_b}^a$$

$$i, a, b, k_b, \{a.k\}_{k_b}^a, \{pwd(a)\}_X^s \triangleright pwd(a)$$

One of the solutions: $\{X \mapsto i\}$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

(protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

$$a(A) \text{ asks to restore his password on } b(B)$$

$$a \xrightarrow{\{a,k\}_{k_b}^a (1)}_{\xleftarrow{\{Y\}_k^s}} i \xrightarrow{\{2\}_{k_b}^a (2)}_{(3)\xleftarrow{\{pwd(a)\}_X^s}} b$$

Initial intruder's knowledge: i, a, b, k_b

Constraint system

One of the solutions: $\{X \mapsto i\}$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

(protocol analysis)

Neb Services

Model Composition Orchestration Implementation Distributed orchestratic Non-disclosure policy

$$a(A) \text{ asks to restore his password on } b(B)$$
$$a \xrightarrow{\{a,k\}_{k_b}^a \land (1)}_{\langle \underbrace{\{Y\}_k^s} \land (3) \land$$

Initial intruder's knowledge: i, a, b, k_b

Constraint system

$$i, a, b, k_b, \{a.k\}_{k_b}^a \triangleright \{a.X\}$$
$$i, a, b, k_b, \{a.k\}_{k_b}^a, \{pwd(a)\}_X^s \triangleright pwd(a)$$

One of the solutions: $\{X \mapsto i\}$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

(protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestratic Non-disclosure policy

Some formal definitions

Deducibility constraint system

 $\{E_i \triangleright t_i\}_{i=1,...,n}$, where E_i — finite set of terms, t_i — term for all i.

Derivability

Term t is derivable from set of terms E, if $t \in \text{Der}(E)$, where Der(E) is a closure of E w.r.t. deduction rules.

Model/solution of $E \triangleright t$

Ground substitution σ — model of $\{E_i \triangleright t_i\}_{i=1,...,n}$ iff $t_i \sigma \in \text{Der}(E_i \sigma)$ for all *i*.

T.Avanesov

Protocols analysis Intro

Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Well-formed constraint systems

$\{E_i \triangleright t_i\}_{i=1,...,n}$ is well-formed, iff it satisfies

- Knowledge monotonicity: $i < j \implies E_i \subseteq E_j$
- Variable origination:

 $x \in Vars(E_i) \implies x \text{ occurs in some } t_j, j < i.$

Decidable, NP-complete (2001)

Later: algebraic properties

- XOR (2003) i.e. $((a \oplus b) \oplus c) = (a \oplus (b \oplus c)), a \oplus b = b \oplus a \text{ and } a \oplus a = 0$
- Modular exponentiation (2003/4) $a^1 = a$, $(a^b)^c = a^{b \times c}$, \times is AC...
- Prefix rules (2005) $\{X,Y\}_{K}^{s} \rightarrow \{X\}_{K}^{s}$.
- Commutativity of public-key encryption (2003/4) $\left\{ \{m\}_{k_1}^a \right\}_{k_2}^a = \left\{ \{m\}_{k_2}^a \right\}_{k_1}^a (RSA)$
- Combination of theories (2005)

disjoint signatures OR bounded message depth, etc.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

Neb Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Contribution 1: Decidability modulo ACI

ACI: set behaviour

- Associative: $(a \bullet b) \bullet c = a \bullet (b \bullet c) = a \bullet b \bullet c$
- Commutative: $a \bullet b = b \bullet a$
- Idempotent: $(a \bullet a) = a$

Intruder's additional rules

 $m_1, m_2, \dots, m_n \to m_1 \bullet m_2 \bullet \dots \bullet m_n$ $m_1 \bullet m_2 \bullet \dots \bullet m_n \to m_i$ for all *i*

Modeling set of nodes in XML messaging

As a term: $a.2 \bullet b.1 \bullet$ $c.1 \bullet d.3$

In protocol we can write: $?c.N \bullet X$

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Beduction to constraints

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Dolev Yao intruder is too powerful

Example

Peer-to-peer communications. Dolev-Yao intruder should be able to intercept messages between any two peers!

We present another intruder model (which has DY intruder as a special case)

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraint

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Multiple intruders. Example.

Some spy

uses weak places in some network

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Multiple intruders. Example.

Some spy

uses weak places in some network

to implant his devices

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Contribution 2: Multiple intruders model

- Multiple "local" intruders, different control domains
- Cannot communicate during attack, only after
- Secrecy is decidable, for protocol sessions analysis

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints Well-formed constrain

ACI symbol

Multiple intruders (protocol analysis)

General constraint

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Multiple intruders require general constraints

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Neb Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Contribution 3: Deciding general constraint systems

Satisfiability of "general" deducibility constraint systems

- Decidable for both DY and DY+ACI
- NP-complete.

Closest work

L.Mazaré (PhD thesis, 2006): atomic keys, decidable for DY

Here:

- Complex symmetric keys
- ACI symbol

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Paduction to constraints

Deducibility constraints

Well-formed constraints

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Decidability of general constraint systems

Key property

If S is satisfiable then there exists a solution σ that maps each variable to a set of non-variable subterms of S (and private keys...) instantiated with σ .

For the case of DY constraints (w/o ACI), instead of "ACI sets" we may use "pair of pairs".

Using this property we may find a bound on the size of such solution. Thus, bound a space for searching a solution.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestratii Non-disclosure policy

General constraints are more complex to solve

Subterm deduction system

- composition rules: $x_1, \ldots, x_k \to f(x_1, \ldots, x_k)$
- decomposition rules pattern: $f(t_1, \ldots, t_m) \rightarrow s$, where s is a subterm of t_i for some i.

Subterm (convergent) deduction system

Input: Subterm (convergent) deduction system *D* and a constraint system *C*.

Question: is C satisfiable?

Undecidable

if either knowledge monotonicity or variable origination is not satisfied.

Decidable for well-formed constraints

- Subterm-convergent equational theories [Baudet '05]
- Later, Subterm-convergent deduction systems

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestratic Non-disclosure policy

We are here...

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestra Non-disclosure polic

Web service

is a software system with machine-processable interface.

Web Service is a black box with...

- Interface (WSDL): set of operations, operation is a pair "receive-send".
- Usage scenario (e.g. WS-BPEL): sequence to follow, Moreover, one may need to invoke second operation with a specific value used in the first one.
- Security policies (WS-SecurityPolicy). E.g. a given part of the input of a given operation must be encrypted/signed with given key...

... Exactly as an instance of cryptographic protocol role ...

Web Services use XML as basis for the interface and communications.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Peduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestration Non-disclosure policy

Web Services composition options

- Orchestration: a central entity, mediator (orchestrator)→
- Choreography: services communicate directly with each other following a global strategy
- Distributed orchestration: mediator is decentralized ∠

Web Services orchestration problem

Given a finite set of available services

Each in a form of a sequence of operations on which the security policies are already applied.

Client

• Sequence of requests with expected responses.

To build a mediator

- Is a new "executable" Web Service, white box
- Satisfying the client's requests
- Reusing existing Web Services
- Adapting messages
- Have initial knowledge

(e.g. account information, public keys)

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition

Orchestration

Implementation Distributed orchestration Non-disclosure policy

Automata-based approaches (e.g. Roman model)

Available services

- State machines
- Transitions are labeled with service's operations

Orchestration problem

Simulate the behaviour of a given target service by delegating operation invocations to the community of available services

- Usually message structure is not considered (working on the level of operations)
- Security policies are not taken into account

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition

Orchestration

Implementation Distributed orchestration Non-disclosure policy

Web Services Example

T.Avanesov

Orchestration

Contribution 4: Tool for automatic orchestration

If the number of interactions is bounded:

- Build deducibility constraints for the Mediator M
- Can solve the constraint system \implies can implement M

WS Orchestration vs Protocol Analysis

Services	Protocols
Available service/Client	Protocol role
Mediator	Intruder
Final state of Client	Attack state (secret emitted)

Implemented as AVANTSSAR Orchestrator

- reused a tool (CL-AtSe) for protocol analysis
- http://avantssar.eu; http://cassis.loria.fr/, \rightarrow AVANTSSAR Orchestrator

$\mathsf{T}.\mathsf{Avanesov}$

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Neb Services

Model Composition Orchestration

Implementation Distributed orchestratio

About the approach

Advantages

- Allows fully automatic procedure
- Rich message adaptation abilities
- Take into account security primitives.

Assessment of the tool

- Digital Contract Signing (OpenTrust)
- Public Bidding (OpenTrust)
- Car Registration Process (Siemens AG)

Disadvantages

• Limit on number of invocations (with all consequences)

T.Avanesov

Protocols analysis

Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration

Implementation Distributed orchestratio

AVANTSSAR platform, ASLan

Resolution of CS for WS composition

T.Avanesov

Protocols analysis Intro Symbolic model

Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis)

General constraint

Web Services

Model Compositio

Implementation Distributed orchestratio

Conclusions

AVANTSSAR Validation Platform

Contribution 5: Distributed orchestration model

- Available services S_i with list of actions
- Partners P_j with knowledge K_j , confidential data N_j
- Communication channels with message patterns p_l
- Accessibility of services (e.g. private services for organizations)

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints

ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Compositio

Orchestration

Implementation

Distributed orchestration

Non-disclosure policy

Non-disclosure policy

Problem

- Partner P_i represents some organization.
- P_i possesses some data (initial) K_i .
- K_i contains confidential information N_i .
- P_i does not want to send such messages to P_j that would allow P_j to obtain any element of N_i.
- Still, N_i can be used for WS invocations.

Direct approach

Use negative constraints, i.e. $E \not > n$ (E— knowledge of P_j , n — confidential data of P_i)

Sufficient condition we use

Confidential data n should not appear as a subterm in messages sent to partners.

T.Avanesov

Protocols analysis Intro Symbolic model

Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

(protocol analysis)

Neb Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Deciding existence of partner-mediators

- **Reducing** distributed orchestration to general constraint systems:
 - E.g., Partner P_i invokes service's operation: Current knowledge K_i ▷ operation input K_i := K_i∪ operation output
- Non-disclosure conditions: For every step P_i → P_j : t we must ensure Sub(t) ∩ N_i = Ø

Extending the general constraints satisfiability procedure

If exists solution for deducibility constraint system that satisfies non-disclosure condition, **then** there exists one with bounded size which satisfies both constraint system and non-disclosure condition.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis) General constraints

Veb Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Summary

Contributions

Deducibility constraints

- ACI symbol in deducibility constraints
- Relaxing "well-formedness"
- Complexity class NP-complete

Protocol analysis

- Multiple non-communicating intruders model
- Decidability for secrecy problem
- Modeling sets of XML nodes

Web services composition

- AVANTSSAR Orchestrator tool
- Model for a distributed orchestration with non-disclosure policy
- Automatic decision procedure for mediators synthesis

T.Avanesov

Protocols analysis

Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

- Well-formed constraints ACI symbol
- Multiple intruders (protocol analysis)
- General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Summary

Research directions

Theoretical

- Allowing negation in general constraint systems
- More algebraic properties for general constraints (e.g. XOR)
- Remove atomicity for public keys
- Web Services composition with unbounded number of invocations

Practical

- Explicit link (with a tool) from standards to model
- Effective implementation of general constraints satisfiability

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestratio Non-disclosure policy

Thank you for your attention

Resolution of CS for WS composition

T.Avanesov

Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Resolution of CS for WS composition

T.Avanesov

Protocols analysis

Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Conclusions

Might be useful

Special case: orchestration

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

General constraint

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Special case: choreography

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

(protocor analysis)

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Benefits of considering multiple intruders

- Communications resistant to DY intruder require more exigent protocols.
 Need a compromise between resources (including responsiveness) and security.
- An organization that knows the weak links (easy for physical access) can verify whether such multiple intruders may damage the confidentiality of their data.

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Digital Contract Signing

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Deducibility constraints

Well-formed constraints ACI symbol Multiple intruders

General constraints

Web Services

Model Composition Orchestration Implementation Distributed orchestrat Non-disclosure policy

AVANTSSAR Orchestrator scheme

T.Avanesov

Protocols analysis Intro Symbolic model Dolev-Yao intruder

Reduction to constraints

Deducibility constraints

Well-formed constraints ACI symbol

Multiple intruders (protocol analysis)

General constraints

Neb Services

Model Composition Orchestration Implementation Distributed orchestrati Non-disclosure policy

Ordering scenario

Bad request

ItemID>simpleItemID> <Cheque>cheque5</Cheque> <Address>addr</Address> <Comments>cmnts</Comments> <ltemID>gilded</ltemID>

cmnts =</Comments> <ltemID> gilded </ltemID> <Comments>

Conclusions

Resolution of CS