
HAL Id: tel-01746222
https://theses.hal.science/tel-01746222v2
Submitted on 19 Nov 2011 (v2), last revised 24 Apr 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory optimization strategies for linear mappings and
indexation-based shared documents

Mumtaz Ahmad

To cite this version:
Mumtaz Ahmad. Memory optimization strategies for linear mappings and indexation-based shared
documents. Discrete Mathematics [cs.DM]. Université Henri Poincaré - Nancy I, 2011. English. �NNT :
�. �tel-01746222v2�

https://theses.hal.science/tel-01746222v2
https://hal.archives-ouvertes.fr


Université 
Henri Poincaré
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Siva ANANTHARAMAN Professeur, Université d’Orléans, Orleans, FR
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1.4 Overview and structure . . . . . . . . . . . . . 16

1.1 Sequential Break-down of Operations

The rapid growth in the use of modern computer technology has increased the
demand for higher performance in all areas of computing. This demand for
ever greater performance led to growth in hardware performance and archi-
tecture evolution that resulted in a stress on compiler technology and research
communities. Since a high-performance microprocessor is at the heart of every
general-purpose computer, from servers, to desktop and laptop PCs, to cell-
phone platforms such as the iPhone. Therefore, increasing the performance
is considered to be a permanent challenge in computer science. Since a 32
bit processor performs operations on 32 bits. Therefore, any transformation
of data structure required decomposition in successive operations on 32 bits.
A well-known technique used in exchanging contents of registers is to make
copies of the initial data. However, it is possible that, dealing with large data
structure, such technique may generates some memory errors and slow down
the performance of computations. Moreover, to perform such operations, a
number of registers in a micro-processor, through compiler or an electronic

1



Chapter 1. Introduction

circuit, are involved, and to complete such operations, it requires to make
copies of contents of registers in the cache memory or in RAM or alternatively,
it requires signal duplication in the chip design. In both cases, it causes, a loss
of speed or an extra power consumption [BGT09].

O ”One of the possible approaches to this issue is the sequential
break down of operations in such a way that it does not re-

quire any extra variable other than the variables available as input.
Ultimately, it results in requiring no extra writing memory, there-
fore, such computations find applications in program optimization
and chip design”.

Moreover, such "In Situ Design of Computation (IDC)" enables to improve
performance of calculations and to calculate an operation related to n registers
by a sequence of assignments using only these n registers [SCT].

Such in situ computation are applied in computing mappings from a set Sn

to itself by performing a sequence of operations (assignments). Therefore, the
mapping E : Sn −→ Sn can be interpreted as the parallel computation of n
assignment mappings of the form Sn −→ S. These mappings (n assignments)
compute mapping E, either by mapping n input component variables onto n
output component variables separately, or by modifying n component variables
simultaneously. Such way of computation is termed as "In Situ Design of
Computation (IDC)". The idea of such type of computations is explained by
the following preliminary example.

Example 1. Let E : {0, 1}2 −→ {0, 1}2 be a mapping defined as E(x1, x2) =
(x2, x1) that actually, exchanges two boolean variables. A basic program that
completes the required task is: x0 := x1, x1 := x2, x2 := x0, whereas, an in
situ program that computes mapping E is x1 := f1(x1, x2), x2 := f2(x1, x2),
x1 := g1(x1, x2). The in situ program avoids using extra variable x0, with
f1(x1, x2) = f2(x1, x2) = g1(x1, x2) = x1 ⊕ x2.

As further interpretations, the mapping Sn −→ Sn (for S = {0, 1}) in-
terprets boolean networks that have been vastly studied for their theoreti-
cal interest in computer science as for their potential applications in nature
(genetic networks [Kum96], neuron networks, etc) or in the social sciences
[Kel96]. In the context of chip design, such approaches (like in situ) are
considered to be important and are discussed in electronic oriented papers
(see for example [RAS97]). In (MINs) multistage interconnection networks
[Agr83, BFJM89, Tom67], mappings Sn −→ S (assignments) can be inter-
preted as set of edges that form bipartite graph between the set Sn and Sn. For
all most 40 years, multistage interconnection networks (MINs) is considered to
be an active research area. Many investigations exist about MINs considering
various applications, for instance [Jur01, TM03, TH97, WT00, YW02, ZA02].
The technique for in situ computations can be viewed in the context of MINs,

2



1.1. Sequential Break-down of Operations

due to the fact that, making successive modifications of consecutive compo-
nents of a transformation in Sn is equivalent to routing a butterfly network
when S = {0, 1}, or a generalized butterfly network with greater degree for an
arbitrary finite set S [BGT09]. It has been proved that such in situ computa-
tion exists for linear mapping on binary field and some combinatorial results
have also been discussed [Mir01].

1.1.1 Optimization Context

In recent years, many computer scientists investigated the area of optimiza-
tion including compiler optimization, processor optimization, code optimiza-
tion [BDGR06], algorithm optimization etc. The optimization of specific lin-
ear algebra problems has been discussed on a large scale because such type of
optimizations have significant effect on processor performance. Whaley and
Dongarra discuss optimizing the widely used Basic Linear Algebra Subroutines
(BLAS) in [WD98]. Chatterjee et al. discuss layout optimizations for a suite
of dense matrix kernels in [CJL+99]. Park et al. discuss dynamic data remap-
ping to improve cache performance for the DFT in [PKBP00]. Frigo et al. in
[FLP+99], discusses the cache performance of cache oblivious algorithms for
the matrix transpose, FFT, and sorting. Optimizing blocked algorithms has
been extensively studied [LRW91].

A “An important optimization, affecting the performance of com-
piler code, is register allocation. Register allocation has been

studied extensively in compilation and is a NP-complete problem.
In 1981, Chaitin et al. [Cha82, CAC+81] modeled the problem of
assigning temporary variables to k machine registers as the problem
of coloring, with k colors the interference graph associated to the
variables”.

In general, register access is faster than memory access. Hence it is preferable
to use register than memory whenever it is possible. When it is not possi-
ble to use register then some variables must be transferred to memory. This
load/store operation has its cost. To avoid this cost, some classical approaches
have been introduced like in graph coloring algorithms [BDGR06]. An iter-
ated register coalescing algorithm, proposed by Appel and George [GA96] is a
modified version of previous developments by Chaitin et al. [Cha82, CAC+81]
and Briggs et al. [BCT94]. In these heuristics, spilling, coalescing (removing
register-to-register moves), and coloring (assigning variables to registers) are
done in the same framework. These techniques are very useful in compiler
optimization but still have to be revised to get better results. Burckel et al.
[BG08] proposed methods to compute mapping sequentially (by designing pro-
grams/electronic circuits), for performing operation on k registers of any sizes
in a processor, in such a way that it does not requires extra working memory
(such as other registers or external memories). These methods are directly con-
nected with processor and compiler optimization in the sense of applications.

3
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Moreover, it is proved that any mapping on {0, 1}n can be computed by such
an in situ program and three types of assignments are sufficient to complete
these operations [Bur96, BM00]. A boolean linear mapping of dimension n is
computed with a sequence of 2n − 1 linear assignments [BM04a, BM04b]. It
is also proved that every mapping E on Sn can be computed by an in situ
program of length 5n− 4 whereas 4n− 3 assignments are required when |S| is
a power of 2. Moreover, the maximal length of the program is 2n − 1, if the
mappings are bijective [BG08, BGT09].

1.2 Decentralized Collaborative Editing

Mobile technology and the ability to build connection between devices leads
the extension of existing applications into new realms, so that mobile device
users could communicate, process and present information. The rapid develop-
ment of computer network inspired the advancement of real-time collaborative
editing in which users are not bound to be in the same location, they can be
at different sites that are geographically dispersed. Collaborative editing is a
part of Computer Supported Collaborative Work (CSCW) [EGR91], and is a
major research area in computer science for over two decades. Collaborative
editing systems are used to allow physically dispersed people to edit a shared
textual document [EG89, KP93, RNRGa96a, MO92, SJZ+98, SM96], to draw
a shared graph structure [GM94, KBL93], to record ideas during a brainstorm-
ing meeting [HO92], or to hold a design meeting [OOSC92]. These documents
could be articles, wiki pages and programming source code. A real time collab-
orative editor can be considered as a shared software application that makes
it possible for several people to modify a shared document, provided they are
connected to each other by any suitable network system.

Although being distributed applications, Real-time collaborative editors (R-
CE) are specific in the sense that they must consider human factors. So, they
are characterized by the following requirements [Imi09]:

• High local responsiveness: the system has to be as responsive as its
single-user editors [EG89, SJZ+98, SXS+06];

• High concurrency: the users must be able to concurrently and freely
modify any part of the shared document at any time [EG89, SJZ+98];

• Consistency: the users must eventually be able to see a converged view
of all copies [EG89, SJZ+98];

• Decentralized coordination: all concurrent updates must be synchronized
in a decentralized fashion in order to avoid a single point of failure;

• Scalability: a group must be dynamic in the sense that users may join
or leave the group at any time.

4



1.2. Decentralized Collaborative Editing

A real-time collaboration editor can be based on a centralized or a replicated
architecture.

“In a centralized architecture, a central server is responsible to keep the
shared document and to manage various aspects of the collaboration, i.e., the
consistency, ordering of updates, resolving conflicts and the session member-
ship. It requires that every user propagates his/her action to the central server,
then the server will apply these changes to the document to ensure the intended
document state [Cit07, CMR07] ”.

“In a decentralized or replicated architecture, there is no central server to
hold the shared document. Each participating site holds a copy of the shared
document (replica) to work on separately. Each participant requires to broad-
cast its actions/updates to all participating sites so that each site can update
their replicas accordingly. As compared to centralized architecture, decentral-
ized architecture is more attractive specifically in wireless and ad-hoc networks.
The absence of central server enables user to continue his/her work even in
case of disconnection. The collaboration is managed by individual devices in
the absence of central server [Cit07, CMR07]”.

This issue presents challenges in implementing collaborative editors in a
replicated architecture, especially in a mobile network which is characterized
by limited resource reliability and availability. One of the main technical chal-
lenges in real time collaborative editing can be explained in the following ex-
ample.

Example 2. Suppose that two users U1 and U2 edit/modify a shared document
that contains, word “Hear”. Let user U1 deletes character ’H’, then inserts
character ’N’, so that word changes into “Near”. Let user U2, before he receives
either edit from U1, deletes character ’a’ so that the original word changes into
“Her”. Both of the users U1 and U2 then receive updates that were applied to
versions of the document that never existed on their own machines. Still it
is a challenge to figure out how to apply edits from remote users, which were
originally created in versions of the document that never existed locally, and
which may conflict with the user’s own local edits (explained with more detail
in part II, chapter 7, section 7.1.6).

Moreover, since users make conflicting modifications to their copies, these
multiple copies of the same document can cause confusion. The conflicting
modifications must be integrated into a coherent document. When users stop
working on different versions of a document, i.e, following delivery delays, the
problem of integration becomes even more complex. To address such issues,
indexing the content of shared documents seems to be the basic requirement.
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O “one of the possible approaches is that the shared document be mapped
to an interval I = [a, b] (where, 0 ≤ a < b and a, b ∈ R) such that

each character/line or object contained in the document is associated with a
unique identifier in the interval I. For this purpose, we introduce a precision
control indexing method that generates these identifiers such that the identifiers
are real. We start in computing these identifiers using midpoint formula with
particular modification and rounding conditions. It makes sure that each user
is able to insert elements (character, line, etc) with different identifiers in
the same interval and is able to knows his local as well as global cardinality
corresponding to the set of identifiers”.

1.2.1 Collaborative Editing Context

A comparison of several approaches to the problem of collaboratively editing
shared text has been proposed by Ignat et al. [IOM+07]. A number of col-
laborative applications are based on operational transformation (OT) [EG89,
LL04a, LL04b, SE98, SJZ+98] but OT considers collaborative editing based
on non-commutative operations and it transforms the arguments of remote
operations to take into account the effects of concurrent executions. In fact,
OT needs two conditions of correctness [RNRä96]. The transformation must
enables concurrent operations so that the execution should be in order, and the
transformation functions themselves should commute. The second condition
is more complex than the first one [PMSL09]. It has proven that all previously
proposed transformations don’t ensure these properties [IMOR03, IROM06].
Moreover, the solutions proposed later [LL07, OMUI06, SS06] are complex,
and their correctness can not be easily verified.

“All the OT-based algorithms [EG89, LL07, Ost06, RNRGA96b, SJZ+98]
belong to the logical level approach. The logical-level approach needs to main-
tain and scan historical log to decide right transformation paths for remote up-
date operations. The transformation procedure becomes expensive under heavy
workloads. Furthermore, operations defined on the logical view lose their cor-
rect position indexes as the document is edited, which creates difficulties for
undo operations. OT-algorithm [Ost06] also introduces ”tomb stone” as part
of their data structure. But the purpose is to resolve transforming ambiguities
on operations that update the same portion of a document.”.

Oster et al. [OUMI06] proposed WOOT algorithm to manage cooperative
editing and to support insert and delete operations . The proposed algo-
rithm WOOT, is also identified as a CRDT (Commutative Replicated Data
Types) [PMSL09]. In WOOT, each character assigned a unique identifier, and
maintains the identifiers of the previous and following characters at the initial
execution time. Moreover, data structure grows indefinitely, due to the reason
that there is no garbage collection or restructuring [SPBZ11].
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1.2. Decentralized Collaborative Editing

The WOOT [OUMI06] algorithm and the technique used in the editor TeN-
DaX [LHWBD06] belongs to the physical-level approach. The WOOT algo-
rithm defines a pair (site identifier, local counter) to create a unique identifier
for each character. The site identifier is unique to each site. The local counter is
incremented each time a new operation is executed. In TeNDax, each character
is assigned a unique integral identifier by a central server. In both approaches,
character identifiers are indexed (such as hash-tables or B-trees) so that they
can be quickly searched to determine data dependencies between operations.
The major problem in their approaches is that the identifiers do not carry
ordering information. Therefore, characters that are logically consecutive may
not be stored physically consecutive on disk [QC09].

Recently, Weiss et al. proposed the Logoot CRDT [WUM09] where they
introduce identifiers as tuple 〈i, s, c〉 with ‘i’ a digit, ‘s’ a peer identifier

and ‘c’ a clock. While, an approach consists of Treedoc’s dense binary tree is
proposed by Nuno et al. [PMSL09]. Weiss et al. introduced a position iden-
tifier as a list of (long) unique identifiers, and Logoot does not flatten. As
compared to Treedoc technique, Logoot has a high overhead. Another technique
to ensure consistency is executing operations in the same order at all copy
(replicas) [Lam78]. To make sure that an edit position has the same meaning
at all replicas needs either operating replicas in lock-step, or operational trans-
formation [SE98]. In the Treedoc design proposed by Nuno et al. [PMSL09],
common edit operations execute optimistically, without a latency and replicas
synchronize only in the background.

However, we noticed that both of the algorithms [PMSL09, WUM09] for
generating unique line and position identifiers do not support some criti-

cal situations. we discuss these problems by quoting examples, constructed by
using original algorithms.

1.2.2 Approach by Weiss et al.

In this section, we describe, in detail, the algorithm for generating identifiers,
proposed by Weiss et al. [WUM10]. The algorithm (proposed by Weiss et al.)
consists in two parts, Function 1 and Function 2. The authors, consider an
edit of a shared document as a set of operations, called patch. So performing
a set of operations (patch) results in insertion of lines that are contiguous or
grouped by contiguous blocks. In Function 1, N presents the size of a block.
So between two lines indexed by two line identifiers p and q, N denotes the
number of identifiers, that are to be generated on site s.

The boundary use to limit the distance between two successive line iden-
tifiers so that the constructed line identifiers can be apportioned. Therefore,
boundary helps in grouping line identifiers so that the space can be created for

7



Chapter 1. Introduction

next subsequent insertion. Within chosen boundary the identifiers can be ap-
portioned randomly and is called random strategy. The function prefix(p, i)

Function 1:(How to generate new Line Identifier)
Function: generateLineId

Input: (p, q, N, boundary, site)
1 begin

2 let list := π
3 index := 0
4 interval := 0
5 while (interval < N) do

6 index++
7 interval := prefix(q, index)− prefix(p, index)− 1

8 end

9 Let step := min(interval/N, boundary)
10 r := prefix(p, index)
11 for j:=1 to N do

12 list.add(constructId(r + Random(1, step), p, q, site))
13 r :=r + step

14 end

15 return list

16 end

(see line 10, Function 1) returns a number in base-BASE. The second part

Function 2:(How to Construct new ID)
Function: constructId

Input: (r, p, q, site)
1 begin

2 let id:={}
3 for i := 1 to |r| do

4 d:=ith digit of r
5 if d = pi.digit then

6 s := pi.siteid
7 c := pi.clock
8 else if d = qi.digit then

9 s := qi.siteid
10 c := qi.clock
11 else

12 s := site.identifier
13 c := site.clock + +

14 end

15 end

16 end

17 id := id.〈d, s, c〉
18 return id

19 end

20 end

of the algorithm [WUM10] (Function 2) constructs identifiers and is executed
through Function 1. In fact, Function 1 finds a place for N lines between the
shortest possible prefixes of identifiers p and q. After selecting the shortest
possible prefixes for N , Function 2 returns N identifiers.

We analyse capabilities of Functions (1 and 2) in the context of identifiers
exchange scenario which is explained below.
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1.2. Decentralized Collaborative Editing

Identifiers Exchange Scenario

For the sake of simplicity, we take two users U1 and U2 at site 1 and site 2 (see
Figure 1.1) and empty document with initial and final identifiers. Suppose that

Site 1

Id1: Identifier created at site 1

Id1 Id2

Site 2

Id2 Id1

Id2: Identifier created at site 2

Figure 1.1: Identifiers exchange scenario

two identifiers are generated at site 1 and site 2 respectively corresponding to
the insertion of two characters "a" and "b".

Suppose that updates are executed and identifiers are exchanged such that
each user sees two identifiers. Our investigation is that, if any of two users
inserts a new character between "a" and "b" then new identifier lies between
identifiers corresponding to characters "a" and "b" or not? Let us observe
“Approach by Weiss et al.” under identifier exchange scenario. According to
this approach, for empty document, we take the initial and final identifiers
〈0, NA, NA〉 and 〈MAX, NA, NA〉 respectively, where MAX = BASE− 1.
After exchanging identifiers by two users, each user can have some of the
identifiers of the form

〈i, sj, cj〉, for j = 1, 2, . . . , and i = 0, 1, . . . , MAX

Suppose that these two identifiers are

〈i, s1, c1〉 and 〈i, s2, c2〉

9
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s1 < s2 or s1 = s2 and c1 < c2

Suppose that user U1 intends to insert new character between the twos that are
already there. We detect some drawbacks in Algorithm (consists of functions
1 and 2) that are given below.

Infinite Iteration: For two identifiers with same values of i, Algorithm (con-
sists of Function 1 and Function 2) does not generate any new identifier
due to the fact that the value ”interval = −1” (see line 7, Function 1).
It runs the loop for an infinite iteration.

Now, suppose that we exit from infinite iteration by defining some extra con-
ditions for the Algorithm then still there is order preservation problem as
discussed below.

Order Alteration: To insert one identifier, we can take the value N = 1.
Since selecting value for boundary is optional so it can be taken as
“boundary = 1” then for two identifiers

p = 〈0, s, c〉 and q = 〈0, s, c〉

with p < q (say), the algorithm returns values as given below

step = min(1, 1) = 1 (see line 9, Function 1)

and

prefix(p, index) = 0 =⇒ r = 0 (see line 10, Function 1)

After execution of Function 1 for these values, Function 2 returns new
identifier as

id = 〈1, s, c〉 (see line 17, Function 2)

To preserve our desired order, computed identifiers should follow

p = 〈0, s, c〉 < 〈1, s, c〉 < 〈0, s, c〉 = q

which is not true because 1 /∈ [0, 0].

Formula failure: The formula proposed (by Weiss et al.) to compute number
of identifiers between two identifiers does not support some cases. For
example, suppose two lines are identified by the identifiers

p = 〈k1, 4, 7〉〈k2, 9, 5〉 and q = 〈k3, 5, 3〉〈k4, 3, 6〉〈k5, 3, 9〉

with assumption that BASE = 100, boundary = 10 and

Suppose that k1 = k2 = k3 = k4 = k5 = k

10
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Suppose that we are interested to insert N lines between two lines iden-
tified by the identifiers p and q, then to compute number of identifiers
using the formula we proceed as follows

prefix(q, 1)− prefix(p, 1)− 1 =

{

−1 if k3 = k1

0 if k3 = k1 + 1

Thus, formula does not work in this case, moreover, it does not work
to compute cardinality of the identifiers for sizes 2, 3 and so on, for the
values as prescribed above.

Redundancy of Identifiers: We explain redundancy of identifiers by propos-
ing the following scenario (see figure 1.2). Suppose that two users at two
different sites site 1 and site 2 have an empty shared document (see figure
1.2) with initial and final points

user 2

site 2

(id1, x)

(id2, y)

Delete (id1, x)

user 1

site 1

Insert (id1, x)

Insert (id2, y)

Delete (id1, x)

p=<9, 1, 1>

q

Figure 1.2: Redundancy of Identifiers

lb =< 0, NA, NA > and le =< 10, NA, NA >

respectively.

The operations labelled in the figure 1.2 perform the following tasks.

1. Insert (id1, x), inserts character "x" with an identifier "id1".

2. Delete (id1, x), deletes character "x" with an identifier "id1".

3. Insert (id2, y), inserts character "y" with an identifier "id2".

Let first user (user 1, with assumptions, s = 1 and initial clock c = 0)
inserts a character "x" (we take N = 1, for insertion of single character)

11
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and an identifier p (say) is created that, according to the algorithm (con-
sists of Function 1, Function 2), takes the value p =< 9, 1, 1 > (see line
4 to line 17, Function 2). We get the value p =< 9, 1, 1 > for the reasons
that any value can be chosen for boundary, therefore, it is possible that
(see for details, line 4 to line 9, Function 1)

boundary ≥ interval/N

In this case the following may holds

step=min(interval/N, boundary)=interval/N

It permits that
for N = 1, step=9

Thus, algorithm will return identifier p =< 9, 1, 1 > such that

{lb, p, le} = {< 0, NA, NA >, < 9, 1, 1 >, < 10, NA, NA >}

Let user 1 inserts another character "y" after "x" and an identifier q (say)
between

p =< 9, 1, 1 > and le =< 10, NA, NA >

is created. We observed that, this new identifier q generated by algorithm
(Function 1, Function 2) could be equal to p or le. Let q = p, but since
the contents of p and q are not necessarily the same. Therefore, let the
content of p be "x" and content of q be "y". The updates are sent to
user 2 at site 2 and suppose that user 2 intends to perform operation
“Delete (id1, x)” and send update to user 1. The execution of “Delete”
operation at site 2 (because of redundant identifiers) does not guarantee
the desired result and may leads to divergence.

1.2.3 Approach by Preguiça et al.

Nuno preguiça et al. [PMSL09] proposed an approach to construct unique
position identifiers in which they introduce unique disambiguators. They called
this approach as UDIS approach. The proposed algorithm (Function 3) is
described as below. We analyse Function 3 also, under “Identifiers Exchange
Scenario” described in Section 1.2.2 (Figure 1.1).
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1.2. Decentralized Collaborative Editing

Function 3:(Generating POSID)

Result: newPosID (PosIDp, PosIDf )
1 // d: new disambiguator.;
2 Require: PosIDp < PosIDf ∧ ∄

atom x such that PosIDp < PosIDx < PosIDf ;
3 begin
4 if PosIDp/+PosIDf then
5 Let PosIDf = c1 ⊙ . . .⊙ (pn : un);
6 end
7 return c1 ⊙ . . .⊙ pn ⊙ (0 : d);
8 else if PosIDf/+PosIDp then
9 Let PosIDp = c1 ⊙ . . .⊙ (pn : un);

10 end
11 return c1 ⊙ . . .⊙ pn ⊙ (1 : d);
12 else if MiniSibling(PosIDp, PosIDf ∨ ∃PosIDm > PosIDp

13 : MiniSibling(PosIDp, PosIDm ∧ PosIDm/+PosIDf then
14 Let PosIDp = c1 ⊙ . . .⊙ (pn : un);
15 end
16 return PosIDp ⊙ (1 : d)
17 end

Order Alteration Suppose that an empty document is marked with initial
and final identifiers (0, d0), and (1, d1) respectively. Let two users A and
B edit/modify the document and exchange the corresponding identifiers
(for example, PosIDa, PosIDb) by executing updates.

(PosIDa) A

++VVVVVVVVVVVVVVVVVVVV

B (PosIDb)

sshhhhhhhhhhhhhhhhhhhh

(PosIDb) (PosIDa)

After performing updates and exchange of identifiers, each user will see
two identifiers. Now, suppose that user B intends to create new identifier
between two identifiers (already computed, one of them is sent by other
user). Let us compute this new identifier according to Function 3 and
explain the problem with more detail using Figure 1.3.

Figure 1.3 presents an empty shared document with initial and final
point marked as ’Beg’ and ’End’ respectively. Now any new position
identifier must be the right child of the node ’Beg’ or the left child of the
node ’End’. Let user A wants to insert a character "a" and user B wants
to insert a character "c" at the same position. Suppose that dA and dB
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Beg

End ca

dBdA

A B

[1(0:dA)(1:dB)]

[1(0:dA)(1:dA)]

End

1

0
Disambiguator

Identifier

Identifier

Document

Figure 1.3: Generating POSID

denote the disambiguators for users A and B such that dA < dB then
according to the first “if condition” (see lines 4 to 6) of Function 3

PosIDa = [1(0 : dA)] and PosIDc = [1(0 : dB)]

Now two nodes marked as "a" and "c" are the siblings. Let user B is
interested in insertion of a new character "a1" between "a" and "c" then
he/she/it must has to create new identifier according to “if condition”
(see lines 12 to 15) of Function 3, that returns

PosIDa1
= [1(0 : dA)(1 : dB)]

Let
dA = (counter, siteID) = (1, 1)

and
dB = (counter, siteID) = (1, 2)

then
PosIDa = [1(0 : (1, 1))]

and
PosIDc = [1(0 : (1, 2))]

Now, identifier for character "a1" is computed as

PosIDa1
= [1(0 : (1, 1))(1 : (1, 2))]

14
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Following the definition as prescribed by Nuno preguiça et al. [PMSL09],
it gives

PosIDa < PosIDa1
and PosIDc < PosIDa1

i.e., PosIDa1
/∈ [PosIDa, PosIDc]

We focus to deal with such kind of problems that pose restriction to the users,
we intend to provide an environment where the identifiers follow a strict order
and can be seen like an ordered set. It will provide an open option for the
participants to start, whereas, the set of identifiers will be a finite ordered set
that preserves a strict order.

1.3 Contributions

We aim to extend the idea of sequential break down of operations applied
in computing mappings from a set Sn to itself by sequence of assign-

ments that does not require any extra variable other than the variables avail-
able as input variables. Such computations contribute in improving the perfor-
mance of calculations and to calculate operations related to n (say) registers
through sequence of assignments that involves the same number of registers.
Such type of contributions provide motivations and inspired us to look forward
in this area of research. The existence of such in situ computations over fields,
rings and for the boolean case has already been proved [Bur07, BGT09].

We start in explaining the existence of these computations over fields and
rings with different examples to provide a strong foundation. Then, we inves-
tigate the possibility of computing inverse mapping E−1 (say) by sequence of
assignments (keeping coefficients in fields or rings) generated by corresponding
sequence of assignments that computes mapping E and provide counter exam-
ples. For the fields, we propose an alternate simple technique using Bézout’s
Identity. For the rings, we design algorithm and implemented the idea suc-
cessfully. We prove the existence of such computation over the set of integers
and investigated bound over the minimum number of assignments (required
to compute mappings) by developing relations between mappings keeping Fi-
bonacci numbers as coefficients. We established relation between determinant
of matrix (that expresses coefficients of corresponding mapping) and the coef-
ficients of assignments that combine to compute mappings sequentially. This
identity provides quick reply in investigating the sequence that can compute
inverse mappings. In boolean case, it has already noticed that, every assign-
ment xi (say) performed in an in situ program to compute a boolean bijective
mapping must be linear in xi [BGT09]. Based on this linearity property, we
extend investigation and proposed a technique to compute bijective mapping
with respect to set of its components (boolean mappings) through construction
of boolean polynomials.
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In contributing to Collaborative Editing Systems.

We aim to design a decentralized collaborative editing system (DCES),
focusing into the existing limitations and to contribute in the required

perfections so that the system could be able to deal with the modern and newly
launched applications based on the collaborative editing. Some of the issues
(e.g, high concurrency, correct integration of updates) require proper indexing
of characters/lines or objects that comprise a shared document. For proper
indexing, it needs to create identifiers for each character/line or object. Some
techniques are available to generate these identifiers, see for instance [PMSL09,
WUM10]. These techniques avoid to use real numbers due to the precision issue
and the proposed algorithms don’t deal all cases of preserving order for these
identifiers, specifically during the remote computation and exchange of points.

”We introduce a precision control indexing method to generate a set of unique
identifiers such that these identifiers can be used for indexing characters/lines
or objects. These identifiers are still real numbers with a specific controlled
pattern of precision. The set of these identifiers is finite that enables us to
compute local as well as global cardinality. To generate a new identifier, only
the information about two neighboring identifiers is required. From an identi-
fier, the site, where it has been generated, can be identified immediately. We
start in indexing shared document, initially, with an interval I = [a, b] with
0 ≤ a < b for a, b ∈ R and new identifiers lie within the interval I. We
suppose a collaborative editing system as a network ℵ of n (n ∈ N) users/sites
or peers such that each site/peer also assigned an identifier generated under
specific precision. We implement the idea successfully by designing algorithm
that guarantees order preservation for the set of identifiers as well as over the
subsets ”.

1.4 Overview and structure

An overview of this thesis is outlined below.

Part I illustrates the existing strategies and contributes in developing new
strategies for sequential break-down of operations.

⋆ Chapter 2, gives a quick overview about compiler/processor opti-
mization and provides motivations in the area of research under
discussion.

⋆ Chapter 3, starts in providing the basic concept of "In Situ Design
of Computation (IDC)" for mappings, explains its existence over
fields, gives alternate strategy and illustrates with examples.

⋆ Chapter 4, verifies the existence of "IDC" for mappings over rings,
explains and discuss the case of inverse linear mappings.
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⋆ Chapter 5, proves the existence of "IDC" for mappings over in-
tegers, develops relations to determine bound over the number of
assignments and makes connection between matrices (presenting co-
efficients of mappings) and the coefficients of assignments involve
in computing mappings.

⋆ Chapter 6, illustrates in more simple ways "IDC" for bijective and
general boolean mappings and provides foundation to develop "IDC"
through polynomials over GF(2).

Part II provides foundation to design decentralized collaborative editing sys-
tem based on precision control indexing method.

⋆ Chapter 7, presents fundamental concepts related to collaborative
editing systems and provides a model for decentralized collaborative
editing system.

⋆ Chapter 8, provides precision control indexing strategy, illustrates
its implementation in generating identifiers used for indexation in
collaborative editing systems, proves the uniqueness of identifiers
and provides method to compute cardinality of these identifiers.

⋆ Chapter 9, presents some important properties of identifiers gener-
ated under precision control strategy, analysis of the algorithm that
generates identifiers, and comparisons of the output of the strategy
under certain conditions.

⋆ Chapter 10, provides different models for exchanging points across
the network and computing new points based on remote points, and
estimates the effect on cardinality of identifiers through experimen-
tations.

Part III Presents an evaluation.

⋆ Chapter 11, describes future research directions and presents con-
clusion.

Annexes 11.2 .

1. Annex A, provides an extensive experiment that helps in observing
the effect on cardinality during the exchange of points (see for detail,
chapter 10).

2. Annex B, provides Maple algorithm that implements the idea of in
situ computation over rings (see for detail, chapter 4).
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Relatively, in a short time, computers evolved from huge mainframes to
small and elegant computers including ultra-portable hand-held devices. With
passage of time the size of computers became smaller but computers became
faster. The first commercial computer (UNIVAC I), occupied 943 cubic feet
space and was able to perform 1, 905 operations per second. Now, a processor
equipped in an electronic shaver is able to perform the basic job. A processor
interprets sequences of particular instructions, while a computer program is
written using a high-level programming language. The program text must be
converted into suitable sequence of instructions so that it can be processed by
processor, this task is performed by compilers.

In this chapter, we take a brief look at the basic concepts of compilers,
processors and their applications. Section 2.1 discusses compilers, compiler
optimization and the techniques of compiler optimization. Section 2.2 de-
scribes processors and processor optimization. Applications are described in
section 2.3, whereas, section 2.4 gives motivations and objectives.
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2.1 Compilers

The main purpose to execute relatively simple commands is, to reduce the
complexity of building and designing computers. A program readable for a
computer must be developed by combining such kind of very simple com-
mands into a program in what is called machine language. Machine languages
are the languages that computers understand but are almost impossible for
humans to use because they are entirely based on numbers. Therefore, pro-
grammers, use either a high level programming language or an assembly lan-
guage. High level languages (for example, C++, Java, etc.) could be very
different from the language that a computer can execute. A high level lan-
guage must be converted to a language that a processor can understand, there-
fore, some measures are required to bridge the gap and compiler is actually
the mean to do this task. Compilers were introduced in the early 1950′s
[ABE+97, CD97, Ghu, gM10, Wir96].

A compiler (more generally, translator) is a software application that trans-
lates (compiles, converts) a program (code) written in a high-level program-
ming language that is suitable for human programmers into the low-level ma-
chine language that is required by computers. In addition, compilers also point
out the obvious programmer’s mistakes. A cross compiler is the compiler that
generates code for a computer different from the one that executes the com-
piler.

Programmer's Code
(High-Level Language)

Programmer can
 understand

Compiler 
using

Optimization

Optimized Code
(Machine Language)

Computer can
 understand

Code Compiler Interpreter

Figure 2.1: Compiler Interaction

Many compilers are available for the same language, for instance, a list of
FORTRAN compilers is shown in the Table 2.1. Besides Table 2.1, there is
a number of compilers. For example, C Compilers, C++ Compilers, ALGOL
Compilers, Haskell Compilers etc. The first compiler was constructed for the
language Fortran (formula translator) around 1956, the success was considered
as a daring step because it was not sure to achieve the goal. Almost 18 years
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2.1. Compilers

Compiler Author Windows Unix-like

Absoft Pro Fortran Absoft Yes Linux and Mac OS X

FTN95 Silverfrost Yes No

G95 Andy Vaught Yes Yes

gfortran GNU Yes Yes

Intel Fortran Compiler Intel Yes Linux and Mac OS X

Lathey Fortran Lathey Computer Systems, Inc. yes Linux only

NAG Fortran Compiler Numerical Algorithm Group Yes Yes

Open64 Google, HP, Intel, Nvidia, PathScale, Yes Yes

Tsinghua University and others

Table 2.1: Fortran Compilers

of effort were involved in developing the first compiler, that is why the project
was remarked as one of the largest programming project of the time.

Selecting a well defined and well structured source language helps in improv-
ing the quality and reducing the complexity of the translation process. Algol
60, first time, has introduced the technical foundations of compiler design.

Now, the translation process is guided by the structure of the analyzed text.
According to the syntax, the text is decomposed into its components. However,
the meaning of the source text is preserved by the translation.

The output of two different pieces of code in assembly language could be
equivalent, but they may perform the task using different sequence of steps.
As an example, there are different ways to add three numbers 1, 2 and 3, the
computer could execute this. One of the possible ways would be to add 1 and
2 together and then add 3 to that result (1 + 2) + 3. Another way to add
the three numbers would be to add 2 and 3 together, and then add 1 to that
result (2 + 3) + 1. A compiler has options in which specific implementation of
assembly language it will choose in making the translation from the high-level
programming language [Mir01, Wir96].

2.1.1 Compiler Optimization

Generally, the optimization aims at finding set of instructions that make a par-
ticular pattern (sequence of instructions) so that this pattern can be replaced
by another set of instructions. Compiler optimization enables computer pro-
grams to be more efficient and ultimately the whole process helps to increase
the speed for compilation. In addition, it aims to minimize the usage of mem-
ory storage and power consumption.

Usually three types of optimizations are considered:
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1. Global optimization: It seeks to reorder the sequencing of a program in
order to eliminate redundant computations (for example, moving invari-
ant operations outside loop bodies, collapsing loops, etc.).

2. Register optimization: It adjusts the allocation of machine registers to
variables and intermediate quantities in such a way as to minimize the
number of a register has to be stored and later reloaded.

3. Local (time) optimization: It seeks to adapt the code to exploit particular
features of the machine architecture and to remove local mishandling
such as loading a register with a value that it already contains.

Compiler Optimization Techniques

Compiler optimization techniques are categorized as, machine dependent, ar-
chitecture dependent and independent. Machine dependent techniques de-
scribe the instruction level sensitivities of a compiler. Architecture dependent
techniques describe the parts of programs that relate to the general hardware
implementation, but not to a specific machine. Architecture independent tech-
niques describe the aspects of program formulation that do not depend on a
particular computer system or even on a type of implementation (e.g. pipeline
processing). Until now, manufacturers focus on machine dependent techniques.

Programming techniques take advantage of the optimizing compilers and
the system architecture, e.g., BLAS (a library of Basic Linear Algebra Sub-
routines). The subroutines included in this library are able to provide sig-
nificant enhancement in the performance of a program that is numerically
intensive. ESSL (Engineering Scientific Subroutine Library) is an extension
of BLAS library and includes high-performance mathematical routines for
chemistry, engineering, and physics. Several run-time techniques have been
introduced by computer architects based on the hardware. This enabled the
processor that it can run any ready instruction from an instruction window
[Cen, Kel96, Kum96, MO56, Sch73, Tom67].

2.2 Processors

Processor, also known as microprocessor (designed for microcomputers and
micro controllers) or CPU (Central Processing Unit), is a complete compu-
tation engine that is integrated in a single chip. In fact, it is an integrated
circuit, containing the arithmetic, logic, and control circuitry, and is used to
interpret and execute instructions from a computer program. This integrated
circuit, in combination with other integrated circuits that provide memory to
store and execute the program, form a chip. Microprocessor registers used to
hold temporary results, when the computation is being performed. Since these
registers and microprocessors are made by the same technology, therefore there
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is no speed disparity between them. Moreover, these registers act as processor
memory.

To improve the performance of microprocessor a small memory has been
introduced between microprocessor and main memory. This small memory is
called cache memory, it is expensive but fast and is first time introduced in
IBM 360/85 computer. The first microprocessor was the Intel 4004, introduced

Figure 2.2: Microprocessor

in 1971. It was able to perform only subtraction and addition up to 4 bits at a
time but everything was first time on a single chip. The microprocessors can
be classified based on:

• the semiconductor technology of their design, (e.g., TTL, CMOS or
ECL).

• the width of the data format (4, 8, 16, 32, 64-bit) they process.

• their instruction set, (e.g., CISC or RISC).

Due to low power consumption, CMOS (complementary-metal-oxide semi-
conductor) technology is preferred to use in portable computers and in other
devices that use batteries while TTL (transistor-transistor logic) is commonly
used. When high performance is needed, the ECL (emitter-coupled logic) is
used. Older high-end mainframe computers, like the Enterprise System/9000
use ECL but current IBM mainframes use CMOS [BEM+92]. Four-bit devices
are good for simple control applications and they are not so costly. CISC,
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(complex-instruction-set computer) processors, which have 70 to several hun-
dred instructions, are easier to program than RISC, (reduced-instruction-set
computer) processors, but are slower and more expensive [ACP+08, IR87,
SRAC91, Sla92].

2.2.1 Processor Optimization

How efficiently and effectively the processor executes instructions (provided in
the form of a program designed by using some high level language) is deter-
mined by its internal design, also called its architecture. A processor can be
considered as a combination of small blocks that organize to make a system.
To optimize the design space, a model is required that can predict the per-
formance of a processor as a function of the delays of the underlying blocks.
With such a model, one can evaluate how a change in the delay of a given
module will affect the system’s performance and can use this information to
optimize a design. Because the design space is complicated, therefore, it may
be difficult to know how changing the delay of a module will affect the overall
performance of a processor [ACP+08].

Processor architects continue their efforts to improve the performance of
processor every year. Some of the major techniques used by processor ar-
chitects are the use of wider data buses and registers, floating point units,
pipe lining and super scale architecture. As processor speed continues to in-
crease faster than memory speed, optimization to use the memory hierarchy
efficiently become ever more important. Blocking [GL89] or tiling [Wol89] is a
well-known technique that improves the data locality of numerical algorithms.
The improvement obtained from tiling can be far greater. Tiling can be used
for different levels of memory hierarchy such as physical memory, caches and
registers. Multi-level tiling can be used to achieve locality in multiple lev-
els of the memory hierarchy simultaneously [AS78, JDD90, KGS87, MSLW91,
MC69, WM91].

2.3 Applications

A fast computer program (as a result of compiler optimization) is not only
useful for computer scientist and computer architecture, it affects the general
public as well. Compiler optimization helps to increase the efficiency and ca-
pabilities of not only the sophisticated software but also increase the demand
of newly introduced computer based devices. Ultimately, compiler optimiza-
tion directly affect the computer based technology used in particular as well
as in common life. For example, an improvement in computer programs for
the medical community can affect all communities. An improved resolution of
images obtained through scanning process has a direct affect on doctors and
patients. An optimization may turn life of the public to an ease. A number
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of soft wares are being used only for the purpose of research to observe the
output of different results. A maple program can take more than a week to
produce the output of a program, but if the same program yields the result
within one hour or less, imagine, how fast will be the conclusions based on
these results.

Microprocessors are the result of the semiconductor industry’s ability to
place an ever-greater number of transistors in a single integrated circuit. Op-
timized processors at the heart of mobile products enable communications,
computing, and multimedia functions to be efficiently executed. Microproces-
sors also play supporting role within larger computers as smart controllers for
graphics displays, storage devices, and high-speed printers.

A vast majority of microprocessors are used to control everything from con-
sumer appliances to smart weapons. Microprocessors are the main reason to
have inexpensive hand-held electronic calculators, digital wristwatches, and the
electronic games. They are also used to control consumer electronic devices,
such as the programmable microwave oven and DVD player, to

Figure 2.3: IntelrCoreTM i7 proces-
sor

regulate gasoline consumption and anti
lock brakes in auto mobiles, to moni-
tor alarm systems, and to operate auto-
matic tracking and targeting systems in
aircraft, tanks, and missiles and to con-
trol radar arrays that track and iden-
tify aircraft, among other defense ap-
plications. IntelrCoreTM i7 processor is
the most ever advanced desktop proces-
sor, introduced by Intel corporation re-
cently in 2008. The Core i7 processor
(as shown in the Figure 2.3) is the first
member of a new family of Nehalem
processor designs and is the most so-
phisticated ever built, with new tech-
nologies that boost performance on demand and maximize data throughput.
The Core i7 processor speeds video editing, immersion games and other pop-
ular Internet and computer activities by up to 40 percent without increasing
power consumption.

2.4 Motivations and Objectives

Multi-core processors bring an evolution in computing technology. Almost, all
modern computers are equipped with multi-core processors. Multi-core pro-
cessors offer performance and productivity benefits beyond the capabilities of

27



Chapter 2. Compiler, Processor Optimization (A quick overview)

today’s single-core processors. This new trend of multi-core processors de-
manding new modifications in compilers so that they could be able to deal
with new challenges. Modern compilers are introduced with a significant num-
ber of optimization that have different effect on quality and size of code, time
taken and energy consumption etc. The code of the program that is to be com-
piled influenced the optimization as well and code optimization introduced new
trend both in hardwares and softwares [HE08, Sar08, Sar09].

Current architectures contain one or more processors that are equipped with
relatively small number of registers. The number of registers available on a
processor and the operations that can be performed using those registers have
significant impact on the quality of code generated by optimizing compilers.
These registers are constantly requested in the operations, however, it is ad-
visable to minimize the use of registers. It is proved that it is possible to
calculate an operation related to n registers by a sequence of assignments us-
ing only these n registers. Moreover, if this operation is linear or bijective,
the number of assignments is at most 2n. In the general case, this number of
assignments is at most 4n.

It is a fact that current computer architectures reach their theoretical limits
of performance. However, it is still possible to gain performance of calculations
by performing calculations in a new way. Such type of calculations, actually,
generalize the traditional principle of the exchange of two numbers A, B by
the sequence:

A := A + B

B := A−B

A := A−B

We aim to study these methods and focus to improve these techniques of
computations, especially to develop methods and efficient heuristic algorithms
to find these decompositions and implement these methods. We are interested
in improving the bounds over these computations, to obtain new methods of
computations for particular cases and implementing these methods in a com-
piler with an aim of optimizing code in machine language. This implemen-
tation can be provided in hardware through the design of new processors, in
the software, by optimizing compilers upstream (pre-level language compilers)
and downstream (post-machine language compilers).

28



Chapter 3
In Situ Design of Computation for
Linear Mappings over Fields

Contents
3.1 Sequential Computation . . . . . . . . . . . . . 30

3.1.1 In Situ Design of Computation (IDC) . . . . . . 31

3.2 Existence of IDC for Linear Mappings over
Fields . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Case-I . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Case-II . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Computing Inverse Mapping . . . . . . . . . . . 39

3.2.4 Case-III . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.5 Possibility of Computing Inverse Mappings . . . 41

3.3 An approach using Bézout’s Identity . . . . . 41

3.3.1 Case-I . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Case-II . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Computing Inverse Mappings: . . . . . . . . . . 45

Sequential computation of linear mappings in such a way that it requires
no extra variables other than the variables available as input, is an approach
towards optimization (for instance, processor, compiler, memory, code). A
fundamental step in this approach is investigating the existence of such com-
putations over fields, i.e., whether the coefficients of linear assignments (involve
in computing the given mapping) belong to a field or not.

In this chapter, we aim to discuss in detail, the existence of such compu-
tations over fields (has already been proved by Burckel et al [Bur07]). We
illustrate the corresponding assertion in section 3.2 and provides examples
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that explain, how to construct a sequence of linear assignments that com-
pute the given mapping and how to construct a sequence of assignments that
compute inverse mapping. We investigate the possibility of computing inverse
mapping and provide counter example. In section 3.3, we introduce an alter-
native approach using Bézout’s Identity, and give examples that explain this
approach.

3.1 Sequential Computation

Conversion of input into output under well defined sequence of basic computa-
tional steps leads towards the theory of sequential computations. A sequential
program implements mathematical function that maps a set of inputs to a set
of outputs. These mathematical functions are well defined and the notion of
computable functions has been introduced earlier by Church, Kleene and Tur-
ing. These functions are frequently used in untyped lambda calculus, recursive
functions, and Turing machines [Chu36, Kle36, Tur37].
These basic models help in designing and reasoning for programming lan-
guages, domain theory and denotational semantics introduced by Scott and
Strachey, and provide a global mathematical setting for sequential computa-
tion, building on top of the foundational theories [SS71]. This advancement
interconnects different programming languages and makes connection with the
mathematical world of algebra, topology, and logic. It inspires the program-
ming languages, type disciplines, and reasoning methods.

“An in-place algorithm converts data structure using a minimal constant
extra storage space. When such algorithms run, the input is overwritten by the
output. For example, heap sort is an in-place sorting algorithm ”.

“ An operation is said to be an in-place operation if it does not alter the
normal state of the system like a file backup can be stored over a running
system without altering the speed of the system, while an in-place operation
depends on the sophistication of the system”.

In order to improve cache performance, an algorithm or application should
increase data reuse, decrease cache conflicts, and decrease cache pollution,
because a large amount of cache pollution increases the bandwidth requirement
of the application, even though the application is not using more data [MPP02].

The technique, we use, is based on the principle of reusing, only, the available
set of input variables in computing a mapping sequentially.
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3.1.1 In Situ Design of Computation (IDC)

In this section, we explain the concept of "In Situ Design of Computation
(IDC)" and interpret a single linear mapping.

Burckel et al. (see for instance [BGT09]) introduce a technique to compute
mappings by sequence of linear assignments that are still linear mappings.
This sequence of linear mappings reuses the available set of input variables
and does not use any extra variable. This method of computation is known
as "In Situ Design of Computation (IDC)" of mappings. An ultimate effect of
this technique results in sequential break down of operations.

It starts in constructing the first assignment from matrix that represents
coefficients of the given mapping, then compute its reference value that use
in the next assignments where ever it needed to be referenced. Each linear
assignment, involved in the sequence, is restricted to have maximum number
of variables, not more than as available in the initial set of input variables. Each
assignment is constructed in such a way that its reference can be computed and
the computed reference is used in next assignments involved in the sequence,
if it is required there.

Assignment Reference Value

Assignment

Assignment Reference Value

Assignment Reference Value

Reference Value

Reference Value

Reference Value

Reference Value

Process continues

Evaluating assignments performs the desired operation

continuing

Using reference values of
 the previous assignments

M
A
P
P
I
N
G

Matrix of coefficients

Desired 
operation

Figure 3.1: Sequential break-down of operations
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An interpretation of the technique is shown in the Figure 3.1, where, as-
signments are shown by green bars and their corresponding reference values
are presented with blue bars. When the references of previous assignments are
used in the current assignments, it yields current transformation of mapping
according to current values. In fact a single operation (computing mapping)
is performed through sequence of assignments.

Interpreting a linear assignment

To interpret a linear assignment, a diagram is shown in Figure 3.2. Suppose
that ‘SOIV’ denotes the set of input variables and ‘v’ denotes an ith variable
of the set of input variables (SOIV). Delta contains elements of the set ’SOIV’
but it does not depend on ith variable ’v’, and ’alpha’ (acts as coefficient for
an assignment) denotes an element of field (say for instance) and it must be
non-zero for an assignment to be invertible. A linear assignment consists in
these parameters, is presented by green bar in the Figure 3.2. A small white
gap in the dark brown block makes difference between ’SOIV’ and ’Delta’.

SOIV

V alpha V Delta+*

FIELD

V

Arithmetic Operation

Set of Input Variables

Set of Input Variables
excluding variable 'V'

Figure 3.2: Interpreting linear assignment

How to compute reference value of a single assignment involving in sequence
of assignments, is interpreted in Figure 3.3. In this Figure 3.3, ’beta’ denotes
the inverse value of ’alpha’ that multiply with pink colored block of assign-
ments, where, ’v’ is the updated value of ith variable that could be used as
reference value, if it is needed, in the next assignments involve in the sequence
of assignments that compute a given mapping.

As an example, suppose that

SOIV = {x1, x2, x3, . . . , xi−1, xi, xi+1, . . . , xn}
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SOIV

V beta V Delta*

FIELD

V

Arithmetic Operation

Set of Input Variables

Set of Input Variables
excluding variable 'V'

_

Figure 3.3: Reference value of linear assignment

For an ith variable xi ∈ SOIV, an assignment is

xi := alpha(xi) + Delta

where,
Delta = {x1, x2, x3, . . . , xi−1, xi+1, . . . , xn}

The reference value is computed as

xi := beta(xi −Delta)

where,
beta = alpha−1 6= 0

Next, we explain the existence of (IDC) for linear mappings over fields.

3.2 Existence of IDC for Linear Mappings over

Fields

In this section, we explain that sequential computation of mappings by se-
quence of linear assignments (In Situ Design of Computation), such that the
coefficients of these linear assignments belong to the field, exist. We explain
the assertion (see [Bur07]) as follows.

Theorem 1. Let E be a linear mapping on Kn, where K is a field and n is a
positive integer. Then there exists a sequence f1, f2, . . . , fn−1, fn, gn−1, . . . , g2, g1
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of linear mappings (assignments) from Kn to K such that the program :

x1 := f1(x1, x2, . . . , xn)

x2 := f2(x1, x2, . . . , xn)
... :=

...
...

...
...

xn−1 := fn−1(x1, x2, . . . , xn)

xn := fn(x1, x2, . . . , xn)

xn−1 := gn−1(x1, x2, . . . , xn)
... :=

...
...

...
...

x2 := g2(x1, x2, . . . , xn)

x1 := g1(x1, x2, . . . , xn)

performs the operation X := E(X) for any X = (x1, x2, . . . , xn) in Kn .
Moreover:
For any i, gi will be xi or xi + xj for some j > i.
E will be bijective ⇐⇒ fi[i] 6= 0 for any i.
For any i, if fi[i] = 0 then gi = xi and fj[i] = 0 for any j ≥ i.

Proof. For aji ∈ K, let A = [aji], (i, j = 1, 2, . . . , n) be the matrix such
that AX presents mapping E in a way that each row of matrix AX is the
component of mapping E at current values of the variables (x1, x2, . . . , xn).
For example, the jth row aj1x1 +aj2x2 +aj3x3 + · · ·+ajnxn, of matrix AX will
be the Ej component of mapping E. These linear mappings are denoted by
Fi for i = 1, 2, . . . , n and the integers ri are introduced to manage the second
sequence. The first sequence fi is computed by an iterative process as follows:
For i from 1 to n, the following steps will be performed keeping ri = i at the
beginning.

Case 1: If aii = α 6= 0, then fi := Fi, and xi will be modified to
xi := αxi + ∆, where ∆ does not depend on xi. For any aji 6= 0, j > i,
the reference α−1(xi −∆) is used to compute next mappings.

Case 2: If aji = α = 0, ∀j ≥ i, then fi := Fi, and xi := ∆.

Case 3: If aii = α = 0, and aji 6= 0, for some j > i, then select aji = β
such that β 6= 0. and perform operation Fi := Fi − Fj, i.e., subtract jth
row from ith row so that ά = −β 6= 0, where ά denotes the new value of
α. It leads to be again in case 1 and by the hypothesis the value Ei−Ej

will be assigned to xi.
The operation Fi := Fi − Fj will introduce an assignment to the second
sequence that can be obtained by adding Ej to xi with ri := j.

Computation of the second sequence:
The integers ri, that are introduced, will be used to build the second se-

quence of assignments.
Therefore, from i = n to 1, the following steps will be performed iteratively.
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Step 1: If ri = i, then xi will be assigned in the first sequence and nothing
to do more.

Step 2: If ri = j such that j > i. Then because it results by the operation
Fi := Fi − Fj, therefore gi := xi + xj, but for i = n, this situation will
not exist.

The mapping E will not be injective in the case 2 of the computation of
first sequence but if aii 6= 0 for any i, then one can compute E−1 by writing
assignments, obtained, from last to first.
Compute xi := α−1(xi−∆) from xi := αxi+∆, (α 6= 0) and use these references
in the next assignments to compute E−1.

Next, we explain Theorem 1 and the construction of sequence of linear as-
signments in detail.

3.2.1 Case-I

In this section, we illustrate, by the following example, how to construct se-
quence of linear assignments that involves in computing mapping sequentially.

Example 3. Let E be a linear mapping defined as

E (x1, x2, x3) −→ (3x1 + 7x2 + 5x3, 8x1 + 4x2 + 9x3, 2x1 + x2 + 6x3)

Then for X := (x1, x2, x3), the mapping E can be expressed as AX, where A
denotes matrix of coefficients as given below.

A =







3 7 5
8 4 9
2 1 6







Now, since α = 3 6= 0, therefore, we are in the case-1. So we proceed in
constructing the first assignment directly from the first row of the matrix A. It
gives

x1 := 3x1 + 7x2 + 5x3 (3.1)

To use the reference value of assignment 3.1 in the next computation, we com-
pute the value for x1 as given below.

1
3

(x1 − 7x2 − 5x3)

Now, for β = 8, we perform the operation

x2 := x2 − βx1 + β
{

α−1 (x1 −∆)
}

on second row of the matrix A and
for β = 2, we perform the operation

x3 := x3 − βx1 + β
{

α−1 (x1 −∆)
}
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on third row of matrix A.
It gives,

x2 := 8x1 + 4x2 + 9x3 − 8x1 + 8
{1

3
(x1 − 7x2 − 5x3)

}

x2 :=
8
3

x1 −
44
3

x2 −
13
3

x3 (3.2)

Similarly,

x3 := 2x1 + x2 + 6x3 − 2x1 +
2
3

(x1 − 7x2 − 5x3)

x3 :=
2
3

x1 −
11
3

x2 +
8
3

x3

After performing these operations the matrix A takes the form

A =















3 7 5
8
3
−

44
3
−

13
3

2
3
−

11
3

8
3















Now, the reference value x2 for assignment 3.2, is given below,

8
44

x1 −
3
44

x2 −
13
44

x3

To compute third assignment, we proceed as follows.

For, α = −
44
3

and β = −
11
3

, perform the following operation:

x3 := x3 − βx2 + β
{

α−1 (x2 −∆)
}

x3 :=
2
3

x1 −
11
3

x2 +
8
3

x3 +
11
3

x2 −
11
3

{ 8
44

x1 −
3
44

x2 −
13
44

x3)
}

It gives

x3 :=
1
4

x2 +
15
4

x3 (3.3)

Combining (3.1), (3.2) and (3.3), we get the sequence of linear assignments,
that compute the given mapping

x1 := 3x1 + 7x2 + 5x3

x2 :=
8
3

x1 −
44
3

x2 −
13
3

x3

x3 :=
1
4

x2 +
15
4

x3
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Computing Inverse mappings

Let S denotes the sequence of assignments that compute mapping E.

S =



























x1 := 3x1 + 7x2 + 5x3

x2 :=
8
3

x1 −
44
3

x2 −
13
3

x3

x3 :=
1
4

x2 +
15
4

x3

To determine sequence of linear assignments that computes inverse mapping
E−1, we rewrite sequence S from bottom to top and invert each assignment
xi := αxi + ∆ in the sequence S as xi := α−1 {xi −∆} such that we obtain
new sequence Ś of assignments as given below.

Ś =



































x3 := 0x1 −
1
15

x2 +
4
15

x3

x2 :=
8
44

x1 −
3
44

x2 −
13
44

x3

x1 :=
1
3

x1 −
7
3

x2 −
5
3

x3

By evaluating sequence Ś of linear assignments, we get the inverse mapping
along with inverse of matrix A as given below.

A−1 =

























−1
11

37
165

−
43
165

2
11

−
8

165
−

13
165

0 −
1
15

4
15

























Further, it can be easily verified that A ∗ A−1 = I as given below.

A ∗ A−1 =







3 7 5
8 4 9
2 1 6





 ∗

























−1
11

37
165

−
43
165

2
11

−
8

165
−

13
165

0 −
1
15

4
15

























=







1 0 0
0 1 0
0 0 1






= I
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3.2.2 Case-II

In this section, we focus in explaining that, how to construct sequence of
assignments when matrix of coefficients has not some non-zero entries at the
position as described in Theorem 1 under case 2. We discuss this situation
with the following example.

Example 4. Consider a linear mapping

E (x1, x2, x3) −→ (5x2 + 7x3, x2 + 4x3, 3x1 + 2x3)

Given mapping E can be written as X := AX for a vector X := (x1, x2, x3)
and a matrix A of coefficients, given as under

A =







0 5 7
0 1 4
3 0 2







Since a11 = 0 = α. But a13 = 3 = β. Therefore we have to subtract third row
of matrix A from first row. The operation will be R1 := R1 −R3.
After the completion of this operation, the matrix A will take the form:

A =







−3 5 5
0 1 4
3 0 2







Now the first assignment will be of the form:

x1 := −3x1 + 5x2 + 5x3 (3.4)

The initial value of x1 will be

1
3

(−x1 + 5x2 + 5x3)

Now, we will perform the operation

x2 := x2 − βx1 + β
{

α−1 (x1 −∆)
}

and
x3 := x3 − βx1 + β

{

α−1 (x1 −∆)
}

The matrix A will take the form

A =







−3 5 5
0 1 4
−1 5 7







The second assignment will be

x2 := x2 + 4x3 (3.5)
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Now, the initial value of second assignment, x2 will be

x2 − 4x3

and for the computation of third assignment:
For, α = 1 and β = 5, We perform the following operation:

x3 := x3 − βx2 + β
{

α−1 (x2 −∆)
}

We get the third assignment as

x3 := −x1 + 5x2 − 13x3 (3.6)

The first assignment of second sequence that is obtained by the operation R1 :=
R1 −R3 will be.

x1 := x1 + x3

Hence the required sequence of assignments is

Sequence of assignments→























x1 := −3x1 + 5x2 + 5x3

x2 := x2 + 4x3

x3 := −x1 + 5x2 − 13x3

x1 := x1 + x3

3.2.3 Computing Inverse Mapping

The inverse mapping is computed by applying the same technique as described
in section 3.2.1, i.e., by inverting the assignments and rewriting from bottom
to top.

Sequence of assignments→



















































x1 := x1 − x3

x3 :=
1
13

(−x1 + 5x2 − x3)

x2 :=
4
13

x1 −
7
13

x2

x1 :=
1
3

(−x1 + 5x2 + 5x3)

3.2.4 Case-III

Following example illustrates, how to construct sequence of assignments when
the matrix of coefficients has not some non-zero entries at the position as
described in Theorem 1 under case 3. As compared to the previous two cases,
case 3 is easier.

Example 5. Let E be a linear mapping defined as

E (x1, x2, x3) −→ (3x1 + 5x2 + 7x3, x2 + 4x3, 2x3)

39



Chapter 3. In Situ Design of Computation for Linear Mappings over Fields

The mapping E is expressed as X := AX, where X := (x1, x2, x3), is a vector
and A is a matrix of coefficients as given below

A =







3 5 7
0 1 4
0 0 2







Since a11 = 3 6= 0 = α. Therefore the first assignment will be of the form:

x1 := 3x1 + 5x2 + 7x3 (3.7)

The initial value of x1 will be

1
3

(x1 − 5x2 − 7x3)

Since β = 0 both for second and third row, therefore, Matrix A will remain
unchanged, and no reference of x1 is used to compute the second assignment.
The second assignment will be

x2 := x2 + 4x3 (3.8)

In computation of third assignment, we also do not need to use any reference
of first or second assignment.

x3 := 2x3 (3.9)

Therefore, for such type of mappings (as defined in the Example 5) the sequence
of assignments can be written directly from the given mapping. Hence the
required assignments are

Sequence of Assignments→



















x1 := 3x1 + 5x2 + 7x3

x2 := x2 + 4x3

x3 := 2x3

Computing Inverse Mapping

Sequence of three assignments that computes the inverse mapping is given be-
low.

Computing Inverse Mapping→































x3 :=
1
2

x3

x2 := x2 − 4x3

x1 =
1
3

(x1 − 5x2 − 7x3)

The inverse of matrix A is as follows.

A−1 =

















1
3
−

5
3

13
6

0 1 −2

0 0
1
2
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3.2.5 Possibility of Computing Inverse Mappings

There exist some of the mappings for which a sequence of linear assignments
that computes corresponding inverse mapping does not exist. We prove by giv-
ing the following example that to compute inverse mapping, each assignment
must be invertible.

Example 6. Consider a linear mapping

E (x1, x2, x3) −→ (5x2 + 7x3, x2 + 4x3, 2x3)

For a vector X := (x1, x2, x3), the mapping E takes the form as X := AX,
where A is a matrix of coefficients as given below.

A =







0 5 7
0 1 4
0 0 2







Since a11 = 0 = α and β = 0, for all other cases, therefore we do not need
to perform any operation, and we construct the required assignments directly
from matrix A as given below.

Sequence of assignnments→















x1 := 5x2 + 7x3

x2 := x2 + 4x3

x3 := 2x3

“Now, to compute inverse mapping, each assignment must be invertible”.

Notice that one of the assignments (given above) is not invertible, and is
given below.

x1 := 5x2 + 7x3

Therefore, we cannot compute inverse mapping. Moreover, the matrix “A” is
a singular matrix.

3.3 An approach using Bézout’s Identity

In this section, we introduce an alternative approach (that use Bézout’s Iden-
tity) for constructing a sequence of linear assignments that computes the given
linear mapping. We prove it, here, for two dimensional linear mappings.

Definition 1. Bézout’s identity states that, if two integers a and b are rela-
tively prime then there exists u, v ∈ Z such that au + bv = 1.

Theorem 2. Every linear mapping E: (x, y) −→ (mx + ny, px + qy), where
m, n, p, q ∈ Z, can be computed by a sequence of at most 3 linear assignments
with rational coefficients.
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Proof. Suppose that the given mapping E is computed with a sequence of
three linear assignments as given below

Three linear Assignnments→











x := ax + by
y := cx + dy
x := ex + fy

(S)

with rational coefficients a, b, c, d, e, and f . The sequence of linear assign-
ments S (after evaluating sequentially) takes the form:

x := ax + by

y := cax + (cb + d)y

x := (ea + fca)x + (eb + fcb + fd)y

Coefficients of given Linear mapping E(x, y) −→ (mx + ny, px + qy), can be
expressed as a matrix of order 2× 2 as given below.

[

m n
p q

]

= A(say)

Determinant (A) = mq − np (3.10)

We establish a system of four equations as given below:

m = ea + fca
n = eb + fcb + fd
p = ca
q = bc + d



















(SOE)

By the equality 3.10 and the system of equations SOE, we have

mq − pn = aed

It yields that, the product of three variables a, e and d must be equal to
determinant of matrix A. Now, the general solution of the system of equations
SOE is as given below.

a = −
fp−m

e
, b = −

fq − n

e
, c = −

pe

fp−m
, d = −

mq − np

fp−m
(3.11)

To find particular solution, we modify matrix A using Bézout’s identity. Sup-
pose that m and p are relatively prime, then we find u, v ∈ Z such that
um + vp = 1 and modify matrix A by multiplying its rows by u and v respec-
tively. New matrix will satisfy conditions 3.11 and yields values for coefficients.
To return back to the original matrix, we perform the following operations.

y := y(
1
v

) and x := x(
1
u

)

If m and p are not co-prime, then we make them co-prime by extracting their
GCD and solve the mapping as, for co-prime case and finally assign the GCD
to the coefficient a.
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Next, we explain, Theorem 2 in detail, by examples.

3.3.1 Case-I

In this section, we discuss the case when the GCD of entries of first column of
the matrix (that represents coefficients of mapping), equals 1.

Example 7. Let E be a linear mapping as defined below

E : (x, y) −→ (55x + 89y, 34x + 21y)

such that matrix A represents the coefficients.

A =

[

m n
p q

]

=

[

55 89
34 21

]

The values corresponding to the entries m and p are co-prime, i.e., GCD(55, 34) =
1. Therefore, we apply Bézout’s identity to find integers u and v such that
55u + 89v = 1
A number of values are possible for u and v. Two of them are u = 13,
v = −21.
Multiply first row of matrix A by u and second by v, it gives

Á =

[

um un
vp vq

]

=

[

715 1157
−714 −441

]

Using

a = −
fp−m

e
, b = −

fq − n

e
, c = −

pe

fp−m
, d = −

mq − np

fp−m
(3.12)

we find the values a = 1, b = 716, c = −714, d = 510783, e = 1, f = −1
Therefore, the sequence of assignments is as given below:































x := x + 716y

y :=
1
13

(−714x + 510783y)

x := −
1
21

(x− y)

Next, we give another example to explain the case, when the entries of the
first column of matrix A are not co-prime

3.3.2 Case-II

In this section, we discuss the case when the GCD of entries of the first column
of matrix (that represent coefficients of mapping), is not equals 1.
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Example 8. Consider the mapping E: (x, y) −→ (25x + 13y, 35x + 21y),
whose coefficients are expressed by matrix A as given below.

A =

[

m n
p q

]

=

[

25 13
35 21

]

Notice that GCD(m, p) = GCD(25, 35) = 5 6= 1. We extract GCD to make
entries of the column co-prime

B =

[

m n
p q

]

=

[

5 13
7 21

]

Now GCD(5, 7) = 1, so solving Bézout’s identity 5u + 7v = 1, one of the
possible solutions is u = −4, v = 3. Multiply first row of the matrix B with u
and second row with v, It gives

B =

[

um un
vp vq

]

=

[

−20 −52
21 63

]

For matrix B, the system of equations SOE takes the form

−20 = ea + fca
−52 = eb + fcb + fd
21 = ca
63 = bc + d



















(SOE-1)

Solving the system of equations SOE-1, we find the values

a = 1, b = 11, c = 21
d = −168, e = 1, f = −1

The sequence of assignments for a = 1, is given below.

x := x + 11y

y := −
1
4

(21x− 168y)

x :=
1
3

(x− y)

Now, replace a = 5, and the required sequence of assignments for a = 5, is as
under































x := 5x + 11y

y := −
1
4

(21x− 168y)

x :=
1
3

(x− y)
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3.3.3 Computing Inverse Mappings:

In this section, we show by example, how to compute inverse mappings.

Example 9. The intermediate sequence of assignments that compute mapping
E, in Example 7, whose coefficients are represented by matrix

Á =

[

715 1157
−714 −441

]

is given as under










x := x + 716y
y := −714x + 510783y
x := x− y

(SOA)

We construct the sequence of assignments that compute inverse mapping, by
inverting and rewriting the sequence of assignments SOA, as given below.

x := x + y

y :=
1

510783
{714x + y}

x := x− 716y

and the inverse matrix Á−1 is obtained by evaluating the sequence of assign-
ments that compute inverse mapping.

Á−1 =











−
21

24323
−

89
39291

34
24323

55
39291











We compute A−1 by making some changes in the above sequence of assign-
ments, i.e., we multiply the first column of Á−1 by u and second by v. The
sequence of assignments that compute A−1 is given below:

x := u ∗ x + v ∗ y

y :=
1

510783
{714x + v ∗ y}

x := x− 716y

The matrix A−1 corresponding to matrix A is given below:

A−1 =











−
21

1871
89

1871
34

1871
−

55
1871
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Investigating the existence of "In Situ Design of Computation (IDC)" for
linear mappings over rings consists, actually, in finding whether the coefficients
of such "In Situ Design of Computation (IDC)" belong to rings or not. The
existence of IDC of linear mappings over rings is proved in [BGT09]. We
are interested to verify and implement the existence of "In Situ Design of
Computation (IDC)" over rings.

In this chapter, we explain the existence of "In Situ Design of Computation
(IDC)" for linear mappings over rings. We design algorithm (given in annex
B) to verify and implement the idea. Section 4.1 consists in explaining the
existence of such type of computations over rings, in detail. How a matrix is
decomposed into assignment matrices and how the corresponding assignments
can be constructed, is described in section 4.2. We discuss the possibility of
constructing sequence of assignments that compute inverse mappings in section
4.3 and provide counter example.
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4.1 Existence of IDC for Linear Mappings over

Rings

It is proved (see [BGT09]) that "In Situ Design of Computation (IDC)" for
linear mappings such that the coefficients of these linear mappings belong to
rings, exist. In this section we explain the idea for the ring Z/NZ.

Lemma 1 ([BGT09]). Suppose that x1, · · · , xn be co-prime integers and N
be an integer. Then, there exists integers λ2, · · · , λn such that x1 + Σiλixi ∈
(Z/NZ)∗, where (Z/NZ)∗ denotes the group of invertible elements.

Proof. Suppose that N be a prime power pv. It is given that integers xi are
co-prime, therefore there exists an integer i0 (say) such that xi0 is co-prime to
p. If x1 is itself co-prime to p, then one can select i0 = 1. If x1 is not co-prime
to p, i.e., if x1 is divisible by p, then x1 + xi0 is co-prime to p. So the result
holds when N = pv . For each prime power dividing N , we can therefore
construct n integers λpv

1 , · · · , λpv

n such that

λpv

1 = 1 and Σi(λi)pv

xi ∈ (Z/pvZ)∗

Applying Chinese Remainder Theorem, these vectors combine to form a global
solution

(1, λ2, · · · , λN)

satisfying the required property.

4.1.1 Assignment Matrices

In this section, we explain the basic idea of assignment matrices and the pos-
sibility of decomposing a matrix into assignment matrices under “modulo”
operation. An assignment matrix is actually the modified form of identity
matrix with a row different from identity matrix as defined below.

Definition 2. A matrix A is said to be an assignment matrix, if there exists
an integer i0 such that for all row and column indices (i, j), one has either
i = i0 or Ai,j = δj

i .

By definition 2, for a square matrix A, A−I has at most one non-zero row,
where I denotes the identity matrix.

Example 10. Let A be the square matrix as given below:

A =







2 3 5
4 7 1
5 6 7
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Performing operation with “modulo 8”, the given matrix A is decomposed into
four assignment matrices as given below.

A1 :=







7 1 4
0 1 0
0 0 1






, A2 :=







1 0 0
4 3 1
0 0 1







A3 :=







1 0 0
0 1 0
7 1 2





 , A4 :=







1 0 7
0 1 0
0 0 1







such that
A4 ∗ A3 ∗ A2 ∗ A1 = A (modulo 8)

Next, we explain the assertion regarding existence of "In Situ Design of
Computation (IDC)" over rings.

Proposition 1 (see [BGT09]). Let N be an integer. Any n × n matrix over
(Z/NZ) can be written as the product of at most 2n− 1 assignment matrices.

Proof. The result can be easily proved by the help of induction on the number
of rows (representing by n) of the given matrix. Therefore if n = 1, the result
is obvious.
For n > 1, we can proceed as follows. Consider the first column of the given
matrix “A” (say). Suppose that the entry a11 of the matrix “A” is not an
invertible element under modulo N . Let ‘g’ denotes GCD of the first column,
i.e., g = (a11, a21, · · · , an1). We construct an invertible element using Lemma
1 and we apply it to make a combination of the coefficients of this column
equal to g times an invertible element of (Z/NZ), with the constraint that this
combination has its first multiplier equal to 1. This implies that the n × n
matrix T defined by ti, j = δj

i for i > 1, and t1, j = λj , where the multipliers
1, λ2, · · · , λn are obtained from Lemma 1. Clearly, matrix T is an invertible
assignment matrix, and the product T ∗ A has a coefficient at position (1, 1)
which is equal to g times an invertible element modulo N . Now assuming
that a1, 1 ∈ g(Z/NZ)∗ . Let n′ be the number of columns of A . Let G =
diag(g, 1, · · · , 1), and let A′ be the integer matrix AG−1 (A′ has coefficients
in Z because g is the GCD of the first column). We have a′1, 1 ∈ (Z/NZ∗)
. We form an n′ × n′ assignment matrix U defined by ui, j = δj

i for i > 1,
and u1, j = a′1, j . The matrix U is invertible modulo N (its determinant is
a′1, 1 ). The first row of the matrix A′′ = A′ ∗ U−1 is equal to (1, 0, · · · , 0).
Notice further that UG is an assignment matrix as well (even though not
invertible modulo N). Putting together the different results we have that
A = T ×A′′× (UG), where the matrix T may be omitted. Applying the result
inductively on A′′ completes the proof.

Next, we explain Proposition 1 in detail and describe method for construct-
ing the sequence of linear assignments.
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4.2 Explanation and Construction

This section consists in explaining, how to implement Proposition 1 in con-
structing sequence of assignments.

Let “A” be the matrix that represents coefficients of the given mapping.
Now, there are two cases, whether the entry “a1, 1” of matrix “A” is invertible
under chosen value of modulo or not.

If the entry “a1,1” of the matrix “A” is invertible under chosen value of the
modulo then matrix T will be the identity matrix of the same order as of
matrix A and A′ = AG−1.

Otherwise, we construct matrix T as defined below

tij = δij for i > 1 and t1,j = λj

By definition, first row of the matrix T will consist of the multipliers 1, λ1, · · · , λn,
obtained by Lemma 1. It is noted that matrix T could be single matrix or
T = T1 · T2, · · · , Tn depending on number of prime factors of N .
An invertible matrix L can be constructed by solving the system TL = A.
i.e.

L1 = T1A, L2 = T2A, · · · , Ln = TnA

and
A = (T1 ∗ T2, · · · , Tn)Ln

where “g” denotes GCD of the first column of matrix Li obtained after Ti

transformation. So if
A = (T1 ∗ T2, · · · , Tn)Lf

then A′ = LfG−1, where Lf denotes the final invertible matrix after Ti, 1 ≤
i ≤ n transformation.

Matrix A will finally satisfy the relation A = (T1 ∗ T2, · · · , Tn)A′′UG.

Next, we show by examples, how these assignment matrices can be con-
structed.

4.2.1 Case-I

In this section, we explain the construction of sequence of linear assignments,
when N is the product of single integer.

Example 11. Consider a mapping E : (x1, x2) −→ (2x1 + 3x2, 5x1 + 7x2).
The coefficients can be represented by a square matrix

M =

[

2 3
5 7

]
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Suppose that N = 8 = 23.
For pv = 2, (2, 2) 6= 1, =⇒ m1,1 is not invertible.
Since λ2 = 1, therefore matrix

T =

[

1 1
0 1

]

Now, solving the system as given below

[

1 1
0 1

] [

a b
c d

]

=

[

2 3
5 7

]

We have values for coefficients a, b, c, and d as given below.

a = −3 = 5 (mod 8)

b = −4 = 4 (mod 8)

c = 5, d = 7

Now we construct matrix M as

M =

[

5 4
5 7

]

Further,

G =

[

5 0
0 1

]

where,

G−1 = 5−1

[

1 0
0 5

]

=

[

5 0
0 1

]

(mod 8)

M ′ = MG−1 =

[

5 4
5 7

] [

5 0
0 1

]

=

[

25 4
25 7

]

=

[

1 4
1 7

]

(mod 8)

U =

[

1 4
0 1

]

U−1 =

[

1 −4
0 1

]

UG =

[

1 4
0 1

] [

5 0
0 1

]

=

[

5 4
0 1

]

M ′′ = M ′U−1 =

[

1 4
1 7

] [

1 −4
0 1

]

=

[

1 0
1 3

]
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Notice that matrix M is decomposed into three assignment matrices T , M ′′

and UG such that

TM ′′UG =

[

10 11
5 7

]

=

[

2 3
5 7

]

(mod 8)

These three assignment matrices yield the sequence of linear assignments that
compute the given mapping E and is given below

Sequence of assignments→











a := 5a + 4b
b := a + 3b
a := a + b

4.2.2 Case-II

In this section, we explain the construction of sequence of linear assignments,
when N is not the product of single integer.

Example 12. Consider a mapping E : (x1, x2) −→ (2x1 +3x2, 5x1 +x2). The
coefficients can be represented by a square matrix

M =

[

2 3
5 1

]

and N = 6 = 21 ∗ 31

m1, 1 is not invertible with respect to pv = 2, (2, 2) 6= 1
λ1 = 1, and λ2 = 1,

T1 =

[

λ1 λ2

0 1

]

=

[

1 1
0 1

]

Now, by solving the following system

[

1 1
0 1

] [

a b
c d

]

=

[

2 3
5 1

]

We have values for coefficients a, b, c, and d as given below.

a = −3 = 3 (mod 6)

b = 2, c = 5, and d = 1

Then we proceed by constructing matrix

L1 =

[

3 2
5 1

]

Observe that entry l1, 1 is not invertible, For pv = 3, (3, 3) 6= 1
λ1 = 1, and λ2 = 1,

T2 =

[

1 2
0 1

]
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Again, solving the system
[

1 2
0 1

] [

a b
c d

]

=

[

3 2
5 1

]

We have values for coefficients a, b, c, and d as given below.

a = −7 = 5 (mod 6)

b = 0, c = 5, and d = 1

Now matrix

L2 =

[

5 0
5 1

]

G =

[

5 0
0 1

]

where,

G−1 = 5−1

[

1 0
0 5

]

= 5

[

1 0
0 5

]

=

[

5 0
0 1

]

(mod 6)

M ′ = MG−1 =

[

5 0
5 1

] [

5 0
0 1

]

=

[

25 0
25 1

]

=

[

1 0
1 1

]

(mod 6)

Now,

U =

[

1 0
0 1

]

U−1 =

[

1 0
0 1

]

UG =

[

5 0
0 1

]

M ′′ = M ′U−1 =

[

1 0
1 1

]

Thus, the matrix M is decomposed into three assignment matrices T = T1 ∗T2,
M ′′ and UG such that

T1T2M
′′UG =

[

20 3
5 1

]

=

[

2 3
5 1

]

(mod 6)

From these assignment matrices, the sequence of linear assignments (that com-
putes the given mapping) is constructed and is given below:

Sequence of assignments→











a := 5a
b := a + b
a := a + 3b
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4.3 Computing Inverse Mappings

In this section, we show, by examples, how to construct a sequence of linear as-
signments that computes inverse mapping, by a sequence of linear assignments
over the ring Z/NZ.

Example 13. Let E be a linear mapping defined as follows

E (x1, x2, x3) −→ (2x1 + 8x2 + 6x3, 3x1 + 13x2 + 7x3, 5x1 + 5x2 + x3)

and “A” be the matrix expressing coefficients of mapping E, given as under

A =







2 8 6
3 13 7
5 5 1







Suppose that we are to perform operations under “modulo 9”. Then

A =







2 8 6
3 4 7
5 5 1





 (modulo 9)

We construct the sequence of linear assignments that compute mapping E,
under “modulo 9” operation, and is given below

x1 := 2x1 + 8x2 + 6x3

x2 := 6x1 + x2 + 7x3

x3 := 7x1 + 3x2 + x3











(modulo 9) (S-1)

We are interested in computing a sequence of linear assignments under “modulo
9” that compute inverse mapping E−1. We obtain this sequence of assignments
by inverting and rewriting each assignment of the Sequence S-1 (from bottom
to top) that computes the given mapping E.

Sequence of assignments→











x3 := x3 − 7x1 − 3x2

x2 := x2 − 6x1 − 7x3

x1 := 2−1 (x1 − 8x2 − 6x3)
(S’-1)

Replacing “2−1” in the last assignment of the Sequence S’-1 of assignments by
its inverse “modulo 9”, we obtain the required sequence of assignments.

x3 := x3 − 7x1 − 3x2

x2 := x2 − 6x1 − 7x3

x1 := 5 (x1 − 8x2 − 6x3)











modulo 9

that computes inverse mapping. By, evaluating above sequence of linear as-
signments, we get the inverse of matrix A as given below.

A−1 =







7 2 7
7 4 2
2 6 1
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Verifying the product of assignment matrices

The matrix

A =







2 8 6
3 13 7
5 5 1







is decomposed into three assignment matrices under modulo 9 operation, these
matrices are as given below:

A1 =







2 8 6
0 1 0
0 0 1





 A2 =







1 0 0
3 13 7
0 0 1





 A3 =







1 0 0
0 1 0
5 5 1







The product of matrices is A3 ∗ A2 ∗ A1 = A.

4.3.1 Possibility of computing Inverse mappings

In this section, we provide example which proves that constructing a sequence
of linear assignments that computes the inverse mapping of a given mapping
may not exist.

Definition 3. A modular inverse of an integer “a” (modulo k) is the integer
“a−1“ such that

aa−1 ≡ 1 mod k

i.e, an integer ”a” has an inverse (modulo k) if and only if GCD(a, k) = 1.
If ”p” is a prime number, then for each a 6≡ 0 (modulo p), there exists a
multiplicative inverse mod p.

It is not always true that an integer “a” with a 6≡ 0 (mod k) has an inverse
mod k.

Consider, for instance, 2 6≡ 0 (mod 4) does not have modular inverse be-
cause of

2× 2 = 4 ≡ 0 mod 4

Thus (2 mod 4) has no modular inverse, otherwise, we could multiply both
sides of

2× 2 ≡ 0 mod 4

by the inverse of 2 and get the false result 2 ≡ 0 mod 4.

Next, we give an example to show that there may not exist a sequence of
linear assignments that required to compute inverse mapping.

Example 14. Let E be the linear mapping defined as under.

E (x1, x2, x3) −→ (2x1 + 8x2 + 6x3, 3x1 + 13x2 + 7x3, 5x1 + 5x2 + x3)
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The mapping E has already discussed in Example 13 with “modulo 9”. Suppose
that we want to construct the sequence of linear assignments keeping operation
under “modulo 12”. Then the required sequence of assignments is given below

Sequence of assignments→



















x1 := 5x1 + 5x2 + 9x3

x2 := 3x1 + 10x2 + 4x3

x3 := x1 + 4x3

x1 := x1 + 3x2

To construct sequence of assignments that computes inverse mapping E−1, we
need to invert each assignment and to rewrite the above sequence of assignments
from bottom to top. Performing this technique, we get sequence of assignments
as given below.

Sequence of assignments→



















x1 := x1 − 3x2

x3 := 4−1 (x3 − x1)
x2 := 10−1 (x2 − 3x1 − 4x3)
x1 := 5−1 (x1 − 5x2 − 9x3)

Observe that, the second and third assignment of the above sequence is not
invertible due to the reason that integers 4 and 10 have not their modular
inverses under “modulo 12” operation.

Similarly, the inverse of the matrix (that presents coefficients of the mapping
E) does not have its inverse under “modulo 12” because the determinant of
matrix A

|A| =

∣

∣

∣

∣

∣

∣

∣

2 8 6
3 13 7
5 5 1

∣

∣

∣

∣

∣

∣

∣

= 248

is not invertible under “modulo 12” operation.

“Therefore, to compute inverse mapping for a mapping, each linear assign-
ment in the sequence of linear assignments (that compute the mapping) must
be invertible”.
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Proving the existence of "In Situ Design of Computation (IDC)" over the
set of integers (to compute mappings) leads to perform these operations in
more simple way as compared to IDC for mappings over fields and rings. In
this chapter, (following the ideas of Serge Burckel), we prove the existence of
"In Situ Design of Computation (IDC)" over the set of integers (to compute
mappings sequentially). Section 5.1 describes the existence of "In Situ De-
sign of Computation (IDC)" for linear mappings over the set of integers and
explains the construction of assignments involve in IDC. Section 5.2 consists
in investigating bound over the number of assignments required to compute
mappings by IDC. An approach with Fibonacci numbers is attempted in the
same section. At the end of this section, we prove an identity that relates the
determinant of matrices (presenting coefficients of mappings) to the product
of coefficients of assignments involve in computing the given mappings.
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5.1 Existence of IDC for Linear Mappings over

Integers

In this section, following the ideas of Serge Burckel, we provide the existence
of "In Situ Design of Computation (IDC)" for linear mappings over integers.
The assertion is proved as the following theorem.

Theorem 3. Let E be a linear mapping on Zn. There exists a finite sequence
of linear assignments of the form:

xp1
:= xp1

+ fp1
(x1, . . . , xp1−1, xp1+1, . . . , xn)

xp2
:= xp2

+ fp2
(x1, . . . , xp2−1, xp2+1, . . . , xn)

... :=
...

...
...

...
...

...
...

...
...

...

xpm
:= xpm

+ fpm
(x1, . . . , xpm−1, xpm+1, . . . , xn)

xn := gn(x1, x2, . . . , xn)
... :=

...
...

...
...

x2 := g2(x1, x2, . . . , xn)

x1 := g1(x1, x2, . . . , xn)

that computes the mapping E, where p1, . . . , pm ∈ {1, 2, . . . , n} m, n ∈ Z.

Proof. The given mapping E can be expressed as AX, where A is a square
matrix of integer coefficients (i.e., for A = [aij], aij ∈ Z, i, j = 1, 2, . . . , n),
such that each row of the matrix AX represents a component of the mapping
E at current values of the variables (x1, x2, . . . , xn) and is a linear mapping.
We construct the sequence of linear assignments by considering the following
four different cases:

Case 1: If aij < 0, for i ≥ j, then multiply jth column by −1, so
that aij > 0 and construct the corresponding linear assignment xj as
xj := −xj.

Case 2: If aii > aij, for j > i, then perform the operation Ci := Ci−Cj,
and the corresponding linear assignment xj will be of the form xj :=
xj + f , where f does not depend on xj and Ci is the ith column of
matrix A.

Case 3: If aii ≤ aij, for j > i, then perform the operation Cj := Cj−Ci,
and corresponding linear assignment xi will take the form xi := xi + f .

Case 4: If aii = 0, then we perform the operation Ci := Ci − Cj, and xj

will take the form xj := xj + f .
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Performing this procedure iteratively, we transform the square matrix A into
triangular matrix L (say) as given below.

L :=



























l11 0 0 . . . 0 0 0
l21 l22 0 . . . 0 0 0
l31 l32 l33 . . . 0 0 0
...

...
...

. . .
...

...
...

ln−2,1 ln−2,2 ln−2,3 . . . ln−2,n−2 0 0
ln−1,1 ln−1,2 ln−1,3 . . . ln−1,n−2 ln−1,n−1 0
ln1 ln2 ln3 . . . ln,n−2 ln,n−1 lnn



























We construct the second sequence of linear assignments directly from matrix
L as follows:

xn := ln1x1 + ln2x2 + ln3x3 + . . . + ln,n−2xn−2 + ln,n−1xn−1 + lnnxn

xn−1 := ln−1,1x1 + ln−1,2x2 + . . . + ln−1,n−2xn−2 + ln−1,n−1xn−1

xn−2 := ln−2,1x1 + ln−2,2x2 + ln−2,3x3 + . . . + ln−2,n−2xn−2

... . . . . . . . . . . . . . . . . . . . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . .

x3 := l31x1 + l32x2 + l33x3

x2 := l21x1 + l22x2

x1 := l11x1

Now, let Á and V́ denote the modified form of the matrix A and vector V (of
variables) after performing any operation. Then, after each operation, it must
preserve and compute the original mapping effectively i.e.

AV = ÁV́

If T denotes the transformation matrix then

Á = AT

V́ = T−1V

=⇒ ÁV́ = A(TT−1)V = AV

We notice that, an assignment xi := αxi + f , repeated k times can be
written as a single assignment of the form.

xi := αkxi + f
(

αk−1 + αk−2 + . . . + α2 + α1 + α0
)

, α = 1

It enables us to modify the algorithm to avoid from repeated similar assign-
ments. So, we introduce the following modifications.
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5.1.1 Modifications:

Case 2: If aii > aij, for j > i, then the program will perform the opera-
tion Ci := Ci − β1Cj, and xj will be modified to xj := αxj + β1f , where
f does not depend on xj. Ci denotes the ith column of matrix A and
β1 = trunc(aii/aij). The function trunc returns integer quotient.

Case 3: If aij ≥ aii, for j > i, then the program will perform the opera-
tion Cj := Cj − β2Ci, and xi will be modified to xi := αxi + β2f , where
f does not depend on xi and β1 = trunc(aij/aii). The case aij = 0, can
be handled by taking β2 = 1

“We estimate an upper bound over the number of assignments with the help
of famous result presented by Gabriel Lamé [Lam44]”.

Suppose that γ denotes the total number of assignments involve in comput-
ing linear mapping E, then γ ≤ 5(n− 1)d + n, where d denotes the number of
digits in the entry a(i, j) of the matrix A such that i ≤ j, but i 6= n, Matrix
A is the matrix of coefficients of mapping E.

5.1.2 Explanation and construction of assignments:

We explain the construction of assignments by the following Example 15 and
will discuss step by step in Example 16.

Example 15. Suppose that E be the mapping with integer coefficients as de-
fined by

E (x1, x2) −→ (13x1 + 21x2, 21x1 + 34x2)

Let the matrix Mc represents the coefficients of mapping E.

Mc :=

[

13 21
21 34

]

We generate sequence of linear assignments by performing column/row opera-
tions on matrix Mc in such a way that it results with integer entries (excluding
division operation). In fact, the square matrix Mc is transformed into triangu-
lar matrix, at the completion of all operations. In Table 5.1, we show the steps
involve in generating sequence of linear assignments, that involve in computing
linear mapping E.
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Table 5.1: Example 15

Generating linear assignments

Matrix(input) Operation Assignment Matrix(output)

[

13 21
21 34

]

C2 − C1 x1 := x1 + x2

[

13 8
21 13

]

[

13 8
21 13

]

C1 − C2 x2 := x1 + x2

[

5 8
8 13

]

[

5 8
8 13

]

C2 − C1 x1 := x1 + x2

[

5 3
8 5

]

[

5 3
8 5

]

C1 − C2 x2 := x1 + x2

[

2 3
3 5

]

[

2 3
3 5

]

C2 − C1 x1 := x1 + x2

[

2 1
3 2

]

[

2 1
3 2

]

C1 − C2 x2 := x1 + x2

[

1 1
1 2

]

[

1 1
1 2

]

C2 − C1 x1 := x1 + x2

[

1 0
1 1

]

In Table 5.1, first column presents input matrices and second column presents
column operations performed on these matrices. The corresponding assign-
ments constructed are in third column while matrices (modified) after perform-
ing operations are presented in last column of the table. Instead of column
operations, row operations could be performed and assignments could be con-
structed accordingly.

We terminate the operations, when square matrix Mc is transformed into
triangular matrix, and we generate, the next part of sequence of assignments,
directly from triangular matrix, writing from last row to first as given below.

[

1 0
1 1

]

−→

{

x2 := x1 + x2

x1 := x1

If we ignore the last assignment, it will not affect the computation and we will
have a sequence of eight linear assignments in total.

Computing inverse mappings:

Generate the set of linear assignments that compute inverse mapping E−1, di-
rectly from the set of linear assignments that computes mapping E, by inverting
and rewriting from the last assignment to the first as given below.
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Table 5.2: Example 15

Generating linear assignments for E−1

Input Inverted Evaluated Coefficients

x2 := x1 + x2 x2 := −x1 + x2 x2 := −x1 + x2

[

−1 1
]

x1 := x1 + x2 x1 := x1 − x2 x1 := 2x1 − x2

[

2 −1
]

x2 := x1 + x2 x2 := −x1 + x2 x2 := −3x1 + 2x2

[

−3 2
]

x1 := x1 + x2 x1 := x1 − x2 x1 := 5x1 − 3x2

[

5 −3
]

x2 := x1 + x2 x2 := −x1 + x2 x2 := −8x1 + 5x2

[

−8 5
]

x1 := x1 + x2 x1 := x1 − x2 x1 := 13x1 − 8x2

[

13 −8
]

x2 := x1 + x2 x2 := −x1 + x2 x2 := −21x1 + 13x2

[

−21 13
]

x1 := x1 + x2 x1 := x1 − x2 x1 := 34x1 − 21x2

[

34 −21
]

Second column of the Table 5.2 presents set of linear assignments that compute
the inverse mapping E−1 of E defined by

E−1 (x1, x2) −→ (34x1 − 21x2, −21x1 + 13x2)

Consequently, we obtain inverse of matrix A as given below.

A−1 :=

[

34 −21
−21 13

]

A ∗ A−1 =

[

13 21
21 34

]

∗

[

34 −21
−21 13

]

=

[

1 0
0 1

]

Next, we give another example that explains the process of construction of
assignments step by step.

Example 16. Consider a linear mapping defined as

E (x1, x2, x3) −→ (5x1 − 3x2 + 5x3, 3x1 − 7x3, 4x1 + 8x2 + 13x3)
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We are interested to compute the given mapping by sequence of linear assign-
ments such that the coefficients of these assignments are integers. Let matrix
’A’ presents coefficients of given mapping E.

A :=







5 −3 5
3 0 −7
4 8 13







We compute mapping E by applying the procedure, keeping in mind different
cases, as described in Theorem 3.

Now, notice that a12 < 0, therefore, we are in the first case and we per-
form the operation C2 := −C2. The linear assignment corresponding to this
operation is

x2 := −x2

and matrix A will be modified to the form

A :=







5 3 5
3 0 −7
4 −8 13







Now, because a11 = 5 > a12 = 3, therefore, we are in the second case and we
perform the operation C1 := C1 −C2. The linear assignment corresponding to
this operation is

x2 := x1 + x2

and the matrix A will be modified.

A :=







2 3 5
3 0 −7
12 −8 13







Now, observe that a12 = 3 ≥ a11 = 2 therefore, we are in the third case and we
perform the operation C2 := C2 −C1. The linear assignment corresponding to
this operation is

x1 := x1 + x2

and the matrix A will be modified.

A :=







2 1 5
3 −3 −7
12 −20 13







Since a11 = 2 > a12 = 1, therefore, we perform the operation C1 := C1 − C2.
The linear assignment corresponding to this operation is x2 := x1 + x2 and the
matrix A will be modified.

A :=







1 1 5
6 −3 −7
32 −20 13
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Since a12 = 1 ≥ a11 = 1, therefore, we perform the operation C2 := C2 − C1.
The linear assignment corresponding to this operation is x1 := x1 + x2 and the
matrix A will be modified.

A :=







1 0 5
6 −9 −7
32 −52 13







Observe that a12 became zero, We will continue this process until a13 = 0.
Since a13 = 5 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear
assignment corresponding to this operation is x1 := x1 +x3. The matrix A will
be modified.

A :=







1 0 4
6 −9 −13
32 −52 −19







Since a13 = 4 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear
assignment corresponding to this operation is x1 := x1 +x3. The matrix A will
be modified.

A :=







1 0 3
6 −9 −19
32 −52 −51







Since a13 = 3 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear
assignment corresponding to this operation is x1 := x1 +x3. The matrix A will
be modified.

A :=







1 0 2
6 −9 −25
32 −52 −83







Since a13 = 2 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear
assignment corresponding to this operation is x1 := x1 +x3. The matrix A will
be modified.

A :=







1 0 1
6 −9 −31
32 −52 −115







Since a13 = 1 ≥ a11 = 1, we perform the operation C3 := C3 − C1. The linear
assignment corresponding to this operation is x1 := x1 +x3. The matrix A will
be modified.

A :=







1 0 0
6 −9 −37
32 −52 −147







Now the first column will remain unchanged throughout the next operations,
we will focus on second diagonal entry.
Since a23 = −37 < 0, we perform the operation C3 := −C3. The linear
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assignment corresponding to this operation is x3 := −x3. The matrix A will
be modified.

A :=







1 0 0
6 −9 37
32 −52 147







Since a22 = −9 < 0, we perform the operation C2 := −C2. The linear as-
signment corresponding to this operation is x2 := −x2. The matrix A will be
modified.

A :=







1 0 0
6 9 37
32 52 147







Since a23 = 37 ≥ a22 = 9, we perform the operation C3 := C3−C2. The linear
assignment corresponding to this operation is x2 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 9 28
32 52 95







since a23 = 28 ≥ a22 = 9, we perform the operation C3 := C3−C2. The linear
assignment corresponding to this operation is x2 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 9 19
32 52 43







Since a23 = 19 ≥ a22 = 9, we perform the operation C3 := C3−C2. The linear
assignment corresponding to this operation is x2 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 9 10
32 52 −9







Since a23 = 10 ≥ a22 = 9, we perform the operation C3 := C3−C2. The linear
assignment corresponding to this operation is x2 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 9 1
32 52 −61







Since a22 = 9 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 8 1
32 113 −61
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Since a22 = 8 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 7 1
32 174 −61







Since a22 = 7 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 6 1
32 235 −61







Since a22 = 6 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 5 1
32 296 −61







Since a22 = 5 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 4 1
32 357 −61







Since a22 = 4 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 3 1
32 418 −61







Since a22 = 3 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 2 1
32 479 −61







Since a22 = 2 > a23 = 1, we perform the operation C2 := C2 − C3. The linear
assignment corresponding to this operation is x3 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 1 1
32 540 −61
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Since a23 = 1 ≥ a22 = 1, we perform the operation C3 := C3 − C2. The linear
assignment corresponding to this operation is x2 := x2 +x3. The matrix A will
be modified.

A :=







1 0 0
6 1 0
32 540 −601







The matrix A is converted into lower triangular matrix and the last three as-
signments will be written directly from this lower triangular matrix. These
three assignments are:











x3 := 32x1 + 540x2 − 601x3

x2 := 6x1 + x2

x1 := x1

Possibility of computing inverse mappings:

IDC for inverse mappings over integers is not always possible. We illustrate
this by the following example

Example 17. Consider a mapping E

E (x1, x2, x3) −→ (2x1 + 3x2 + 5x3, 3x1 + 4x2 − 7x3, 8x2 + 13x3)

The mapping E can be computed by the following sequence of assignments.

Assignments























































































x1 := x1 + x2

x2 := 2x1 + x2

x2 := x1 + x2

x1 := −x1

x1 := x1 + x2

x1 := x1 + 5x3

x3 := −x3

x2 := x2 + 7x3

x3 := 24x1 − 16x2 + 219x3

x2 := x2

x1 := x1

The matrix of coefficients A for the mapping E can be written as

A :=







2 3 5
3 4 −7
0 8 13







and

A−1 :=
1

219







108 1 −41
−39 26 29
24 −16 −1
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Notice that
1

219
/∈ Z and the assignment

x3 := 24x1 − 16x2 + 219x3

is not invertible. Hence, the inverse mapping E−1 is not always computable
by inverting and rewriting the sequence of assignments that computes mapping
E.

5.2 Investigating bounds for the number of as-

signments:

We are interested in determining the minimum number of assignments required
to compute given mapping by "In Situ Design of Computation (IDC)" with
integer coefficients. We proceed by developing relations between mappings
that help to find minimum number of assignments and investigate by finding
different counter examples. Based on, one of such counter examples, we provide
the following theorem.

Theorem 4. There exists a linear mapping

E : (x, y) −→ (mx + ny, px + qy)

with m, n, p, q ∈ Z, that cannot be computed by a sequence of at most 6 linear
assignments

x := ax + by
y := cx + dy
x := ex + fy
y := gx + hy
x := ix + jy
y := kx + ly







































where a, b, c, d, e, f, g, h, i, j, k, and l ∈ Z.

Proof. Let E be a linear mapping E(x, y) −→ (461x + 286y, 353x + 219y),
whose coefficients can be viewed as a matrix given below.

[

461 286
353 219

]

= A(say)

We establish a system of four equations (by evaluating assignments), as given
below:



















461 = a(ie + ifc + jge + jgfc + jhc)
286 = ieb + ifcb + ifd + jgeb + jgfcb + jgfd + jhcb + jhd
353 = 461k + lgea + lgfca + lhca
219 = 286k + lgeb + lgfcb + lgfd + lhcb + lhd

(2)
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determinant (A) = mq − pn = aedihl

=⇒ The product of variables a, d, e, h, i, and l must be equal to determinant
of matrix A. Since, determinant of matrix A is equal to 1. Therefore,

a ∗ e ∗ d ∗ h ∗ i ∗ l = 1

and each of six variables take values from the set {1, −1}. Notice that, there
are

P (6, 2) + 2 = 32

cases of assigning values to a, d, e, h, i, and l.
Let us start by considering the case with values

a = 1, e = 1, d = 1, h = 1, i = 1, l = 1

It gives a set of equations:


















460 = fc + jg + jgfc + jc
286 = 461b + f + jgf + j
353 = 461k + g + gfc + c
218 = 286k + 353b− 461bk + gf

(3)

We observe that there are three general solutions for system 3 of equations:
First possible solution is of the form:

c =
461
j

, j = j, f = f, b = −
1

461
j +

286
461

k =
1

461
−460j + 461f + 353j2

j2
, g = −

1
j



















(first)

Second possible solution is of the form:

j = j, g =
460
j

, k =
1

461
−460 + 353j

j

b = −f −
1

461
j +

286
461

, f = f, c = 0















(second)

The third possible solution is of the form:

j = j, g = g, k = −
1

461
461g + c− 353− 353jg

1 + jg

c = c, b =
1

461
jg − 460 + 286c

c
, f = −

−460 + jg + jc

c(1 + jg)



















(third)

Consider the first possible solution:

Let g = −
1
j
∈ Z =⇒ j = 1 or − 1

Now, If j = 1 then

g = −1 ∈ Z, but b = −
1

461
+

286
461

=
285
461

/∈ Z
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Similarly, If j = −1 then

g = 1 ∈ Z, but b =
1

461
+

286
461

=
287
461

/∈ Z

Therefore integer solution is not possible for the solution first. In the second
possible solution:

g =
460
j

, k =
1

461
−460 + 353j

j

k can be written as k =
−g + 353

461
Observe that if k ∈ Z then −g + 353 ≥ 461

=⇒ g ≤ 353− 461 =⇒ g ≤ −108

’g’ is a divisor of 460 and it takes value from the set {−115, −230, −460}
because g ≤ −108. But for any of these values {−115,−230,−460} k /∈ Z.
Notice that,

if g = −230 then k =
230 + 353

461
=

583
461

/∈ Z

if g = −115 then k =
115 + 353

461
=

468
461

/∈ Z

if g = −460 then k =
460 + 353

461
=

813
461

/∈ Z

Therefore integer solution is not possible for second solution second. Now, in
the third possible solution:

b =
1

461
jg − 460 + 286c

c
and f = −

−460 + jg + jc

c(1 + jg)

Since c divides both jg− 460 + 286c and −460 + jg + jc, therefore, if b, f ∈ Z
then there exists some k1, k2 ∈ Z such that

460− jg − jc = ck1 (5.1)

and
460− jg = c(286− 461k2) (5.2)

By (5.1) and (5.2)
c(j + k1) = c(286− 461k2)

=⇒ j + k1 = 286− 461k2

=⇒ k2 = −
−286 + k1 + j

461
If k2 ∈ Z then −286 + k1 + j ≥ 461

=⇒ k1 + j ≥ 747 (5.3)
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c =
460− jg

j + k1

by equation (5.1)

and if c ∈ Z then
j + k1 ≤ 460− jg (5.4)

By (5.3) and (5.4), we can write

460− jg = 747 =⇒ jg = −287

=⇒ For j and g to be integers, they must be factors of 287 and the possible
factors of 287 are

{±1, ±7, ±41, ±287}

Let, for example, g = −287 then j = 1

=⇒ k1 = 746 =⇒ k2 = −1 =⇒ c = 1

But, then, f = −
−460− 287 + 1

1− 287
= −

34
13

/∈ Z

Thus, for all divisors of 287, f /∈ Z. In a similar way, it can be proved for other
31 possibilities of assigning values {1, −1} to variables a, d, e, h, i, and l.

5.2.1 An approach based on Fibonacci numbers

To investigate the minimum number of assignments required to perform "In
Situ Design of Computation (IDC)" for mappings over integers, we establish
relations, keeping Fibonacci numbers, as coefficients of the mapping.

Definition 4. We define a Fibonacci-like sequence as

Fn = Fn−1 + Fn−2

where F0 = F1 = 1.

Definition 5. We define a Fibonacci-like matrix to be a matrix of the form
[

Fn−1 Fn

Fn Fn+1

]

and the following relations.

R1 :

[

0 1
1 1

]n+1

=

[

Fn−1 Fn

Fn Fn+1

]

R2 :

[

F2 F3

F3 F4

]

∗

[

F4n+1 F4n+2

F4n+2 F4n+3

]

=

[

F4n+4 F4n+5

F4n+5 F4n+6

]

Theorem 5. Let En : (x, y) −→ (Fn−1x + Fny, Fnx + Fn+1y) be the map-
ping on Z2, where Fn is the Fibonacci number. Then the mapping E4k+2 is
computed with 2k + 2 number of assignments, where k = 0, 1, 2, · · · , n.
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Proof. For n = 2, E2 = (F1x + F2y, F2x + F3y) and the matrix of coefficients
is

A2 =

[

1 2
2 3

]

The assignments for A2 →

{

x := x + 2y
y := 2x− y

A3 =

[

2 3
3 5

]

The assignments for A3 →











x := x + 2y
y := 3x− y
x := −x + y

Now,

A3 =

[

2 3
3 5

]

∗ A2 =

[

1 2
2 3

]

= A6 =

[

8 13
13 21

]

by R2.

We obtain sequence of assignments required to compute E6 as follows. In fact,
we pack together the assignments require to compute E3 and the assignments
require to compute E2.

The assignments for A6 →































x := x + 2y
y := 3x− y
x := −x + y
x := x + 2y
y := 2x− y

→



















x := x + 2y
y := 3x− y
x := −x + 3y
y := 2x− y

Similarly, since A3 =

[

2 3
3 5

]

∗ A6 =

[

8 13
13 21

]

=

[

55 89
89 144

]

= A10

Therefore,

The assignments for A10 →



















































x := x + 2y
y := 3x− y
x := −x + y
x := x + 2y
y := 3x− y
x := −x + 3y
y := 2x− y

→







































x := x + 2y
y := 3x− y
x := −x + 3y
y := 3x− y
x := −x + 3y
y := 2x− y

Continuing in this way, we have, A3 ∗ A4k+2 = A4k+6

72



5.2. Investigating bounds for the number of assignments:

and

The assignments for A4k+6 →



















































































x := x + 2y
y := 3x− y
x := −x + y
x := x + 2y

y := 3x− y
x := −x + 3y

}

...
y := 3x− y
x := −x + 3y

}

y := 2x− y

=























































x := x + 2y
y := 3x− y
x := −x + 3y

}

...
y := 3x− y
x := −x + 3y

}

y := 2x− y

Hence, the number of assignments required to compute mapping whose coeffi-
cients are presenting by matrix A4k+2 is 2k + 2.

Proposition 2. The linear mapping

E : Zm −→ Zm, m > 2

with Fibonacci numbers as coefficients, defined by

E : (x1, x2, x3, · · · , xn) =



















F1x1 + F2x2 + F3x3 + . . . + Fmxn

F2x1 + F3x2 + F4x3 + . . . + Fm+1xn

F3x1 + F4x2 + F5x3 + . . . + Fm+2xn
...

...
...

...
...

. . . . . .
...

Fnx1 + Fn+1x2 + Fn+2x3 + . . . + F2n−1xn



















such that Fn := Fn−1 + Fn−2, n ∈ Z, is computed with m + 2 number of linear
assignments.

Proof. The given mapping E can be written as X := AX where A is a matrix
such that whose entries satisfy the relation Fn := Fn−1 + Fn−2, ∀n ∈ Z. we
construct assignments as given below:

First two assignments →

{

x1 := x1 + x2 + 2x3 + 3x4 + 5x5 + . . .
x2 := x1 + x2 + x3 + 2x4 + 3x5 + . . .

Next two assignments →

{

x3 := F1x1 + F2x2

x4 := x3 + (F2 − F1) x1 + F1x2

Intermediate assignments →























x5 := x3 + x4

x6 := x4 + x5
...

...
...

...
...

... .
xn := xn−2 + xn−1

Last two assignments →

{

x1 := x3 − (F2 − F1) x1 + F1x2

x2 := x3 − x1

This sequence of assignments compute mapping E effectively, and the number
of these assignments are n + 2.
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Next, we prove an identity that relates determinant of matrix of coefficients
to product of coefficients of assignments.

5.2.2 Identity (coefficient linkage):

The sequence of linear assignments (with integer coefficients) that compute
mapping E has an interesting property to compute determinant of matrix Mc

corresponding to mapping E. To explore this property, we prove the following
identity.

Theorem 6. Let E : Z2 −→ Z2 be a linear mapping defined as

E(x, y) −→ (mx + ny, px + qy)

with integral coefficients m, n, p, q ∈ Z. Let E be computable by a sequence of
linear assignments

x := a1x + b1y
y := b′1x + a′1y
x := a2x + b2y
y := b′2x + a′2y
... :=

...
...

x := akx + bky
y := b′kx + a′ky



















































where ai, a′i, bi, b′i ∈ Z are integral coefficients for each i = 1, . . . , k. Then the
identity

mq − pn = a1a
′
1 . . . aka′k holds. (5.5)

Proof. Proof by induction on k.
Base: For k = 1 we have x = a1x + b1y and y = a1b

′
1x + (b1b

′
1 + a′1)y, where

m = a1, n = b1, p = a1b
′
1, and q = b1b

′
1 + a′1.

Hence we have mq − pn = a1(b1b
′
1 + a′1) − a1b1b

′
1 = a1a

′
1, that satisfies the

required identity 5.5. Step: Let the identity 5.5 holds for some k − 1, we will
prove it for k.
We have E(x, y) −→ (mx + ny, px + qy) computed by the aforementioned
linear assignment sequence of length k − 1. To this we apply the step k with
x := akx + bky followed by y := b′kx + a′ky. After substitution we obtain
x = akx + bky and y = akb′kx + (bkb′k + a′k)y. We substitute x := mx + ny and
y := px + qy respectively in the right-hand sides, and obtain after some simple
manipulation, we have

x = (akm + bkp)x + (akn + bkq)y = m′x + n′y

y = (akb′km + bkb′kp + a′kp)x + (akb′kn + bkb′kq + a′kq)y = p′x + q′y.

Now we have new values for the coefficients m, n, p and q denoted by m′, n′, p′

and q′ which are equal to m′ = akm+bkp, n′ = akn+bkq, p′ = akb′km+bkb′kp+
a′kp, q′ = akb′kn + bkb′kq + a′kq. The expression m′q′ − p′n′, after a long and
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tedious multiplication and elimination calculus, is equal to (mq− pn)aka′k. By
assumption hypothesis we have mq − pn = a1a

′
1 . . . ak−1a

′
k−1, what proves the

required identity.

Example 18. Let E : Z2 −→ Z2 be a linear mapping defined as

E(x, y) −→ (33x + 307y, 103x + 610y)

The coefficients of mapping can be represented by matrix as given below.

A =

[

33 307
103 610

]

determinant (A) = −11491 (5.6)

Mapping E can be computed by the following sequence of linear assignments

Assignments







































x := x + 9y
y := 3x + y
x := x + 3y
y := 2x + y
x := x + y
y := 8012x− 11491y

Product of coefficients ais = −11491 (5.7)

The identity (Theorem 6) helps in determining whether a sequence (of linear
assignments) that computes the inverse mapping, exists or not. For example,
for the mapping E : Z2 −→ Z2, a sequence that computes E−1, exists if R.H.S
of identity 5.5 becomes numerically equal to 1.
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In Situ Design of Computation for
Boolean Mappings
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Decomposition of boolean functions is considered as an important problem
in the design of logic circuits and the area of research is considered as old as the
area of digital circuit engineering. Boolean polynomials occur either directly or
as a tool in the problem of decomposing boolean functions. The extensive use
of integrated circuits that includes “modulo 2 adders”, in electronics, draws
attention towards the representation of boolean functions in the form of poly-
nomials. Expressing boolean functions as boolean polynomials is considered
an extensive method in boolean algebra. Boolean polynomials have a large
number of applications in various fields including graph theory, law, medicine,
operations research and spectroscopy [Bei93, CH08, Leo98, MS77, Rud04].
Polynomial methods have been employed extensively in circuit complexity
and the boolean polynomials have variety of applications, e.g., they used in
Reed-Muller codes (error correcting codes). Besides a number of applications
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including text mining, knowledge discovery, role engineering, sequential com-
putation of boolean mappings also leads to decomposition of boolean matrices
and directed graphs. Burckel et al. [Bur96, BGT09, BM04b] proposed in situ
computation for boolean mappings and proved combinatorial results for the
number of assignments involved. We illustrate these results in section 6.2 and
6.3 as related work to provide general background. Section 6.1 gives basic
concept about boolean mappings whereas we propose strategy to develop se-
quence of assignments that computes boolean mappings (through construction
of boolean polynomials) sequentially, in section 6.4.

6.1 Boolean Mappings

Boolean mappings describe how to determine boolean valued output based
on some logical combinations from boolean inputs. These mappings can be
represented in propositional logic, or as multivariate polynomials over GF (2).
These mappings are important in the theory of complexity as well as in the
design of circuits/chips for digital computers. Besides, a number of applica-
tions exist in different other areas including artificial intelligence, propositional
logic, electrical engineering, game theory, reliability theory and combinatorics.
The properties of boolean mappings play a crucial role in cryptography, par-
ticularly in the design of symmetric key algorithms (a class of algorithms for
cryptography that use boolean function keys for both decryption and encryp-
tion), e.g., two fish, Serpent, Blowfish, CAST5, RC4, TDES, and IDEA.

Definition 6. A boolean mapping ‘f ’ is defined as

f : {0, 1}n −→ {0, 1}

The set {0, 1}n, of all n-tuples (x1, · · · , xn), where each xi is either 0 or 1, is
the domain for ‘f ’. There are 22n

, n-ary functions for every n.

Example 19. Let E(y1, y2, y3) be the boolean mapping from {0, 1}3 to {0, 1}
such that

y1 = x1 + x2 ∗ x3

y2 = x1 + x2 + x1 ∗ x3 + x1 ∗ x2 + x2 ∗ x3

y3 = x3 + x1 ∗ x2 + x2 ∗ x3

Components (y1, y2, y3) of the mapping E are expressed in the table 6.1 that
helps in verifying that the mapping E is bijective.

Definition 7. An in situ program that computes boolean mappings of the form

E : {0, 1}n −→ {0, 1}n

consists in a sequence of assignments of one bit component defined as below

xj := fj (x1, · · · , xn)

where fj : {0, 1}n −→ {0, 1} is a linear mapping and j is the index for input
variables.
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x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 0 1 1

Table 6.1: Boolean mapping

6.2 Computing Bijective Boolean Mappings

Burckel et al. [BGT09] proved that a bijective mapping on the set Sn is
computed by an in situ program involving 2n − 1 number of assignments
provided that n is the number of variables in the set of input variables. In this
section, we illustrate this result for the case S = {0, 1} in detail to provide a
foundation for further work.

Theorem 7. A bijective mapping E defined over {0, 1}n can be computed by
an in situ program of the form.

fn, fn−1, · · · , f3, f2, f1, g2, g3, · · · , gn−1, gn

with 2n− 1 number of assignments involved in the program.

Proof. For n = 1, the in situ program takes the form x1 := f1(x1). To prove
that the statement is true for n > 1, bipartite graph is used. Suppose that G =
(X, Y, A) be the bipartite multi-edges graph defined by X = Y = {0, 1}n−1,
and (x, y) ∈ X × Y is in A with the label xnyn, for xnyn ∈ {0, 1} if and only
if E(x, xn) = (y, yn).
The degree of vertices of graph G will be exactly 2 due to the bijection E
and graph G will be the union of disjoint even cycles due to the reason that
it is 2-color-able regular bipartite graph. Therefore, by definition, graph G
is 2-color-able [Hav07]. This is a particular case of a general result by König
on regular graphs [Kön16], from which this proof can be generalized to any
mapping on a finite set. Now, color the edges of G with elements of {0, 1}
and define two mappings E0, E1 on {0, 1}n−1 and two mappings fn, gn from
{0, 1}n to {0, 1} as follows.
For each color i ∈ {0, 1} and every edge (x, y) with color i and labeled xnyn,
define

Ei(x) = y

fn(x, xn) = i

gn(y, i) = yn
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By construction, any mapping Ei is bijective on {0, 1}n−1. Then under induc-
tion hypothesis, each Ei admits an in situ program of the form:

f i
n−1, · · · , f i

2, f i
1, gi

2, · · · , gi
n−1

Define, for every i ∈ {0, 1} and x ∈ {0, 1}n−1.

fj(x, i) = f i
j(x) for j = n− 1, · · · , 1

gj(x, i) = gi
j(x) for j = 2, · · · , n− 1

In other words,

fj(x, xn) = xn.f 1
j (x) + (1 + xn).f 0

j (x) for j = n− 1, · · · , 1

gj(x, xn) = xn.g1
j (x) + (1 + xn).g0

j (x) for j = n− 1, · · · , 1

By construction, for the bijective boolean mapping E, we obtain an in situ
program of length

2(n− 1)− 1 + 2 = 2n− 1

as given below

xn := fn(x1, · · · , xn)

xn−1 := fn−1(x1, · · · , xn) = f i
n−1(x1, · · · , xn−1)

xn−2 := fn−2(x1, · · · , xn) = f i
n−2(x1, · · · , xn−1)

...
...

...
...

x2 := f2(x1, · · · , xn) = f i
2(x1, · · · , xn−1)

x1 := f1(x1, · · · , xn) = f i
1(x1, · · · , xn−1)

x2 := g2(x1, · · · , xn) = gi
2(x1, · · · , xn−1)

...
...

...
...

xn−2 := gn−2(x1, · · · , xn) = gi
n−2(x1, · · · , xn−1)

xn−1 := gn−1(x1, · · · , xn) = gi
n−1(x1, · · · , xn−1)

xn := gn(x1, · · · , xn) = gn(y1, · · · , yn−1, i)

In other words at the first step, the component xn equals a color i, Then

Ei(x1, · · · , xn−1)

is computed by induction in 2(n − 1) − 1 steps. At the step before last, we
have

(x1, · · · , xn−1) = (y1, · · · , yn−1)

At the last step we have xn = yn.

Next, we explain Theorem 7 by giving two different examples.
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6.2.1 Explanation

This section explains theorem 7 by examples.

Example 20. Suppose that E1 is a bijective boolean mapping defined over
{0, 1}3 and is represented by the truth table 6.2. Mapping E1 can be computed

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

E1−→

x1 x2 x3

0 0 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
1 0 0
1 1 0

Table 6.2: Table for mapping E1

by performing a sequence of operations, as given below.

x1 := 1 + x2 + x1x3 (f ′1)

x2 := 1 + x1 + x2 + x1x3 + x2x3 + x1x2 (f ′2)

x3 := x1 + x2 + x3 + x2x3 (f ′3)

x2 := x1 + x2 + x1x3 (g′2)

x1 := 1 + x1 + x2 + x3 + x2x3 (g′1)

Sequence of operations consists in two sub-sequences. After performing the first
three operations f ′1, f ′2, f ′3, the mapping E1 transforms into another boolean
mapping that is still bijective then we perform the second sequence of opera-
tions g′2, g′1, and compute the mapping E1. Table 6.3 explains, how the given
mapping go through transformation process under the sequence of operations.
The Intermediate truth table presents the given mapping after performing the

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f ′

1
, f ′

2
, f ′

3−−−−−→

x1 x2 x3

1 1 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
0 0 0
1 0 0

g′

2
, g′

1−−−→

x1 x2 x3

0 0 0
1 1 1
0 0 1
0 1 1
1 0 1
0 1 0
1 0 0
1 1 0

Table 6.3: Transformation process
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sequence of first three operations. The final truth table shows the transfor-
mation obtained after performing the sequence of next two operations on the
intermediate truth table.

Next, we describe a second example to explain all steps involve in the com-
putation of boolean bijective mappings.

Example 21. Let E2 be a bijective boolean mapping over {0, 1}3 as described
in the Table 6.4. Given bijective mapping E2 can be computed by performing

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

E2−→

x1 x2 x3

1 1 1
0 1 1
1 1 0
0 0 1
0 0 0
1 0 1
1 0 0
0 1 0

Table 6.4: Bijective boolean mapping (example)

the following sequence of operations.

x1 := 1 + x1 + x2 + x3 + x2x3 (f ′1)

x2 := x1 + x2 + x1x3 (f ′2)

x3 := x3 + x1x2 (f ′3)

x2 := x2 + x3 + x1x3 (g′2)

x1 := x1 + x2 + x2x3 (g′1)

We illustrate step by step the transformation of bijective mapping E2 by apply-
ing the above sequence of operations.

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f ′

1−→

x1 x2 x3

1 0 0
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 1 0
1 1 1

f ′

2−→

x1 x2 x3

1 1 0
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 0 0
1 1 1

Table 6.5: First Two Operations
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Table 6.5 shows the transformation of given mapping E2 after performing the
first two operations f ′1 and f ′2. The intermediate transformation is the trans-
formation obtained after performing the very first operation. Transformation
of given mapping E2 under last three operations of the sequence of assignments
is shown in the Table 6.6.

f ′

3−→

x1 x2 x3

1 1 1
0 0 1
0 1 0
0 1 1
0 0 0
1 0 1
1 0 0
1 1 0

g′

2−→

x1 x2 x3

1 1 1
0 1 1
0 1 0
0 0 1
0 0 0
1 0 1
1 0 0
1 1 0

g′

1−→

x1 x2 x3

1 1 1
0 1 1
1 1 0
0 0 1
0 0 0
1 0 1
1 0 0
0 1 0

Table 6.6: Next Three Operations

It shows that total number of assignments involve in computing mapping
E2 is 5 that verifies the result proved in theorem 7.

Next, we describe an important property of the assignments involve in "In
Situ Design of Computation (IDC)" of bijective boolean mappings.

6.2.2 Linearity Property

Burckel et al. [BGT09] proposed a linearity property of the assignments involve
in "In Situ Design of Computation (IDC)" for bijective boolean mappings. We
illustrate this property in detail as follows.

Lemma 2. Every assignment xi := fi(x1, · · · , xn) performed in an in situ
program to compute a boolean bijective mapping must be linear in xi, i.e.

fi(x1, · · · , xn) = xi + h(x1, · · · , xi−1, xi+1, · · · , xn)

Proof. For x1 ∈ {0, 1}, there exist two possible cases for the given mapping

fi (x1, x2, x3, · · · , xn)

i.e., the given mapping can hold one of the following forms

fi (0, x2, x3 · · · , xn)

or
fi (1, x2, x3 · · · , xn)

83



Chapter 6. In Situ Design of Computation for Boolean Mappings

For each of these cases, there exists two possibilities for the output value, these
possibilities are as given below.

fi (0, x2, x3, · · · , xn) = 0 (a)

fi (0, x2, x3, · · · , xn) = 1 (b)

fi (1, x2, x3, · · · , xn) = 0 (c)

fi (1, x2, x3, · · · , xn) = 1 (d)

In the computation of bijection, exactly, one of the equations from the pair (a,
b) and one of the equations from the pair (c, d) will hold. Since the pairs of
equations (a, c) and (b, d) cannot hold simultaneously due to the bijection,
therefore, the only two possible pairs of equations (a, d) and (b, c) will hold.
But the pair (a, d) will define the mapping

fi (x1, x2, x3, · · · , xn) = x1

and the pair (b, c) defines

fi (x1, x2, x3, · · · , xn) = x1 + 1

Therefore for all cases

fi(x1, · · · , xn) = x1 + h(x2, · · · , xn)

where

h(x2, · · · , xn) =











0 for the pair (a, d)
and

1 for the pair (b, c)

Hence for the ith component, we have

fi(x1, · · · , xn) = xi + h(x1, · · · , xi−1, xi+1, · · · , xn)

In the next section, we discuss the "In Situ Design of Computation (IDC)"
for the case of general boolean mappings.

6.3 Computing General Boolean Mappings

The results included in this section have been proposed by Burckel et al. (see
for instance [BGT09] and related work). We are interested to illustrate these
results (concerning general boolean mappings over {0, 1}n) in detail so that a
foundation could be provided to proceed further. In general boolean mappings,
it is possible that two different vectors may have the same image that is not
the case for bijective mappings. We start with the following definition.
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Definition 8. A mapping ‘f ‘ on the set {0, . . . , M}, where, M > 0, is called
a step mapping if

0 ≤ f(y)− f(x) ≤ y − x

such that
0 ≤ x ≤ y ≤M

In particular one can have the following

f(x) ≤ f(x + 1) ≤ f(x) + 1

Next, we discuss simple mappings.

6.3.1 Simple Mappings

Simple mapping can be defined by making use of definition 8 and the mapping

φ : {0, 1}n −→ {2n}

defined as given below

φ(x1, x2, x3, . . . , xn) = 2n−1.xn + . . . + 22.x3 + 2.x2 + x1, ∀ n > 0

Definition 9. A mapping E on {0, 1}n is called a simple mapping if

E(x) = y ⇔ E ′(φ(x)) = φ(y)

is a step mapping, where, E ′ is a mapping on [2n].

Proposition 3. A simple mapping E on {0, 1}n, ∀ n > 0, can be computed
by an in situ program of the form

p1, p2, . . . , pn

with a length of ‘n’ assignments.
In brief, for E(x1, x2, x3, . . . , xn) = y1, y2, y3, . . . , yn and for each i = 1, 2, . . . n

pi(y1, . . . , yi−1, xi, . . . , xn) = yi

Proof. Since the minimum number of assignments for n input variables is n.
Therefore each function pi must return its correct final value to each of its
corresponding component xi. This method for in situ computation of simple
mapping is unique possible. However the correctness of this method is still
remains to prove due to the fact that the mappings being computed are simple.

Next, we describe the "In Situ Design of Computation (IDC)" for the general
boolean mappings.
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6.3.2 Decomposing general boolean mappings

In this section, we explain "In Situ Design of Computation (IDC)" of general
boolean mappings. The idea consists in decomposing the mapping E of {0, 1}n

in F ◦ P ◦G where F and G are bijective and P is simple.

Definition 10. Suppose that E be a mapping on {0, 1}n. A triple (F, P, G)
on {0, 1}n, with n > 0, of mappings is called a decomposition of the mapping
’E’ if

E = F ◦ P ◦G

where, F and G are bijective mappings and P is a simple mapping.

Procedure

Suppose that E be the mapping on {0, 1}n, the decomposition procedure
for the mapping E consists in the following steps.

Step 1. In the first step, vectors with the same images are grouped via a bijective
mapping G that gives intermediary consecutive images in lexicographical
order to vectors with same final images. This will actually maps the sets
E−1(x) for x ∈ {0, 1}n onto consecutive intervals of [2n] via φ ◦G.

Step 2. The second step consists in the identification of vectors with the same
final image via a simple mapping P such that φ◦P ◦φ−1 maps consecutive
intervals of [2n] on consecutive values of [2n].

Step 3. The third step consists in the attribution of the correct final image value
to each vector obtained by P ◦G via another bijective mapping F , that
is F (P (G(x))) = E(x). Then F is completed arbitrarily to a bijective
mapping on {0, 1}n.

Next, we explain the result regarding an upper bound of the program that
compute general boolean mappings.

Corollary 1 (see [BGT09] for more general case). Every mapping E on {0, 1}n

can be computed by an in situ program of the form

f1, . . . , fn, gn−1, . . . , g1, p2, . . . , pn−1, f ′n, . . . , f ′1, g′2, . . . , g′n

such that the number of assignments (involve in the program) is 5n− 4.

Proof. The procedure (6.3.2) of decomposition (given above) is used in con-
structing the proof. Suppose that E = F ◦ P ◦G, i.e., the triple (F, P, G) be
the decomposition of E, with F and G are bijective mappings and P is a simple
mapping. Both of the mappings F and G can be computed by a sequence of
2n−1 number of assignments (see Theorem 7). Similarly, the simple mapping

86



6.3. Computing General Boolean Mappings

P can be computed by a sequence of n assignments as shown in Proposition
3. Combining these number of assignments, the mapping E, can be computed
by a sequence of 5n− 2 number of assignments, of the form as given below

f1, . . . , fn, gn−1, . . . , g1, p2, . . . , pn−1, f ′n, . . . , f ′1, g′2, . . . , g′n

Two more assignments can be reduced by selecting a sequence of 2n − 1 as-
signments in such a way that it begins with the first variable for the mapping
G and with the last variable for the mapping F . Moreover, any two successive
assignments of the same component can be combined into a single assignment.
Therefore, g1, p1 can be replaced by a single assignment g1, and two assign-
ments pn, f ′n can be replaced by assignment f ′n.
Finally, we get a sequence of 5n− 4 assignments.

Definition 11. Let ‘v’ be the mapping defined by v : [2n] −→ N, then ‘v’ is
called valuation if it satisfies the following equality

v(0) + . . . + v(2n − 1) = 2n

The value l ∈ [2n] is denoted by v(l), and A ⊆ [2n] by extension

v(A) =
∑

l∈A

v(l)

A valuation v is called boolean compatible if

∑

j2i≤l<(j+1)2i

v(l) = 0 mod 2i

such that

0 ≤ i ≤ n, and, 0 ≤ j < 2n−i

Definition 12. Let v be the valuation, a mapping Pv : {0, 1}n −→ {0, 1}n is
called projection of v such that for l from 0 to 2n−1, v(l) consecutive elements
of {0, 1}n are mapped onto φ−1(l), beginning with (0, . . . , 0) ∈ {0, 1}n for the
first l with v(l) 6= 0. Pv is a simple mapping.

Lemma 3. Suppose that ‘v’ be a boolean-compatible valuation. Then for some
k, k′ ∈ [2n−i],

P−1
v (Ii,j) =

⋃

k≤l≤k′

Ii,l

where

Ii, j = φ−1([j2i, (j + 1)2i − 1])

with

0 ≤ i ≤ n, and, j ∈ [2n−i]
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Proof. Suppose that the interval of [2n] is the converse image of an interval
of {0, 1}n mapped by the mapping φ. Observe that, the converse image of an
interval {0, 1}n is also an interval of {0, 1}n mapped under the mapping Pv

(due to the reason that Pv is a simple mapping). Therefore, by definition of
Pv, it gives

|P−1
v (Ii,j)| =

∑

j2i≤l<(j+1)2i

v(l)

For all l ∈ φ(I, i, j), if v(l) = 0 then P−1
v (Ii,j) may be empty and it is given

that v is a boolean compatible. Therefore, it gives

∑

j2i≤l<(j+1)2i

v(l) = 0 (mod 2i)

Thus
|P−1

v (Ii,j)| = 0 (mod 2i)

By induction on j and for a fixed i, the result can be proved. Thus, if j = 0
then

|P−1
v (Ii,0)| = k.2i, for some, k ∈ [2n−i]

Now, suppose that P−1
v (Ii,0) is not empty, then by using definition of the

projection Pv, it is an interval of {0, 1}n containing (0, . . . , 0). The length of
this interval is k.2i which is the multiple of the factor 2i, so, it is of the form
as given below

⋃

0≤l≤k

Ii,l

Further, if the property is true for all l with 0 ≤ l < j, then

P−1
v (

⋃

0≤l<j

Ii,l) =
⋃

0≤l<j′

Ii,l

Since
|P−1

v Ii,j| = k.2i, for some k ∈ [2n−i]

we must have
P−1

v (
⋃

0≤l≤j

Ii,l) =
⋃

0≤l≤j′+k

Ii,l

Hence
P−1

v (Ii,j) =
⋃

j′<l≤j′+k′

Ii,l

Lemma 4. Suppose that v be a boolean compatible valuation and 1 ≤ i ≤ n.
For a, b ∈ {0, 1}n and l ≥ i, if al = bl, then

Pv(a)l = Pv(b)l , ∀ l ≥ i
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Proof. Suppose that al = bl, for l ≥ i. Also, suppose that c ∈ Sn, where,
S = {0, 1} is given as under

cn = an = bn, . . . , ci = ai = bi, ck−1 = 0, . . . , c1 = 0

It gives
φ(c) = 0 (mod 2i−1)

Thus for j ∈ [2n−i+1]
φ(c) = j.2i−1

Moreover, φ(a) and φ(b) are in the same interval [j.2i−1, (j + 1).2i−1 − 1]
whose elements have same components for l ≥ i. It gives that a and b belong
to Ii−1,j. Now, using Lemma 3, the inverse images of intervals of the form Ii−1,k

by projection Pv are unions of such consecutive intervals. Hence the image of
an interval Ii−1,j by projection Pv is an interval contained in an interval Ii−1,k

for some k ∈ [2n−i+1].
Hence for l ≥ i, Pv(a) and Pv(b) have the same components.

Proposition 4 ([BGT09]). Let E be a bijective mapping on {0, 1}n and is
computable by an in situ program of the form f1, . . . , fn. Then the mapping
E ◦ Pv (where v is a boolean compatible valuation) is computed by an in situ
program of the form p1, p2, . . . , pn. That is for E(x1, x2, . . . , xn) = (y1, . . . , yn)
and for each i = 1, 2, . . . , n:

pi(y1, . . . , yi−1, xi, . . . , xn) = yi

Proof. To prove the assertion, the same argument is used as for the computa-
tion of simple mappings, i.e., due to the fact that the number of assignments
is minimal, necessarily each function pi must gives its correct final value to
each component xi. But the correctness of the method is still to be proved.
On contrary basis, suppose that, at some step i, two different vectors x, x′

become the same vector, say z, whereas their final images y = E ◦ Pv(x) and
y′ = E ◦Pv(x′) are different. Because, now, they become the same vector, one
has

yi−1 = y′i−1 = zi−1, . . . , y1 = y′1 = z1

On the other side, one has

xn = x′n = zn, . . . , xi = x′i = zi

which implies, by Lemma 4

Pv(x)l = Pv(x′)l = z′l , ∀ l ≥ i

Now, suppose that
Pv(x) 6= Pv(x′)
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Since E is bijective, therefore, the mapping E ′ programmed by the sequence
f1, . . . , fi−1 is also bijective. But since E is programmed by f1, . . . , fn, where,
each component is modified at most once, it gives

E ′(Pv(x)) = E ′(Pv(x′)) = (z′n, . . . , z′i, z′i−1, . . . , z1)

A contradiction. Hence Pv(x) = Pv(x′) and y = y′

Definition 13. A boolean compatible decomposition of E defined over {0, 1}n

for n > 0 is a triple of mappings (F, P, G) on {0, 1}n, such that E = F ◦P ◦G
with F and G are bijective mappings and P is the projection Pv of a boolean
compatible valuation v = v′ ◦σ, where v′(l) is the number of elements of which
image by E is φ(l).

The construction of boolean compatible decomposition of a mapping is
explained by the following Algorithm.

Algorithm 4: Boolean Compatible Decomposition
Algorithm: How to build a boolean compatible decomposition

Define a valuation v by v(l) = |E−1(φ(l))|;
Define a permutation σ such that v ◦ σ is boolean-compatible;
Define a bijection G of {0, 1}n compatible with v ◦ σ;
begin

Set i=0;
for l from 0 to 2n − 1 do

for j from 1 to v ◦ σ(l) do
for every x ∈ {0, 1}n with E(x) = φ(l) do

G(x):=φ−1(i);
i:=i+1;

end

end

end
Define P = Pv;
Define a bijection F of {0, 1}n such that E = F ◦ P ◦G;
foreach element x ∈ {0, 1}n do F(P(G(x))):=E(x);

end
Complete the definition of F, keeping F bijective.

Theorem 8 (see [BGT09] for more detail). Every mapping E on {0, 1}n is
computed by an in situ program of the form as given below

f ′′1 , . . . , f ′′n , g′′n−1, . . . , g′′2 , f1, . . . , fn, g′n−1, . . . , g′1

such that the number of assignments involve is 4n− 3.
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Proof. Suppose that the triple (F, P, G) be boolean-compatible decomposi-
tion (by definition 13) of the mapping E. Now, since, F and G are bijective
mappings, therefore, by Theorem 7, it requires 2n− 1 assignments to compute
mappings F and G. Let

f ′1, . . . , f ′n, g′n−1, . . . , g′1

be the sequence of 2n− 1 assignments that compute mapping F and let

f ′′1 , . . . , f ′′n , g′′n−1, . . . , g′′1

be the sequence of 2n− 1 assignments that compute mapping G respectively.
Now, suppose that F ′ be the mapping on {0, 1}n computed by the sequence

f ′1, . . . , f ′n

Then by Proposition (4), the mapping F ′ ◦ P is computed by a sequence of n
assignments of the form

f1, . . . , fn

Thus, the given mapping E is computed by sequence of assignments as given
below

f ′′1 , . . . , f ′′n , g′′n−1, . . . , g′′1 , f1, . . . , fn, g′n−1, . . . , g′1

such that the number of assignments is 4n− 2, and the indices are the indices
of the concerned variables. Notice that the assignments g′′1 , f1 can be replaced
by a single assignment g1. It results that the required number of assignments
is 4n− 3.

Next, we introduce method to construct IDC by constructing polynomials
over GF (2) with respect to set of boolean mappings.

6.4 IDC for Polynomials over GF(2)

Investigating decomposition of functions with respect to a given system of
functions is a traditional problem of the theory of boolean functions. Decom-
posing boolean function is an important problem that deals with answering
theoretical questions of the theory of boolean functions as well as in technical
applications [VP93]. Some discussions about the polynomial form of boolean
functions and its applications are presented in [Fal99, Sch98]. In this section,
in the context of lemma 2 and discussion in previous sections, we propose a
strategy to develop sequence of assignments (via boolean polynomials) that
computes boolean bijective mappings. We start in constructing polynomials
over GF(2) with respect to set of boolean mappings

y1, y2, . . . , yi−1, yi, yi+1, . . . , yn
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and a set of their corresponding inverse mappings

x1, x2, . . . , xi−1, xi, xi+1, . . . , xn

linear both in yi and xi. Construction of such polynomials enables to develop
’IDC’ for bijective boolean mappings. As preliminary, GF (2) (Galois field of
two elements) is a finite field of elements 0 and 1 with the properties of addition
and multiplication as given in the Table 6.7.

+ 0 1
0 0 1
1 1 0

and,
∗ 0 1
0 0 0
1 0 1

Table 6.7: Properties of GF (2)

Next, we describe strategy that construct polynomials over GF (2) with re-
spect to set of boolean mappings and termed as “A First Tool“.

6.4.1 A First Tool

This strategy consists in constructing polynomials over GF(2) with respect to
set of boolean mappings such that the polynomials are linear with respect to
the ith (say) mapping and its corresponding inverse image. The strategy works
inductively and yields ’IDC’ to compute boolean bijective mappings. Let E
be a bijective boolean mapping of dimension n such that

Set of boolean
mappings→



































































y1 := f1 (x1, x2, x3, · · · , xn)
y2 := f2 (x1, x2, x3, · · · , xn)
y3 := f3 (x1, x2, x3, · · · , xn)
...

...
...

...
...

...
...

...
yi := fi (x1, x2, x3, · · · , xn)
...

...
...

...
...

...
...

...
yn−1 := fn−1 (x1, x2, x3, · · · , xn)
yn := fn (x1, x2, x3, · · · , xn)

(SBM)

We are interested to compute polynomial linear with respect to mapping yi

and its inverse mapping xi. For this purpose we proceed as follows.

Constructing Inverse Mappings

As a first step, we compute inverse images for each of the boolean mappings

y1, y2, . . . , yi−1, yi, yi+1, . . . , yn
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Corresponding to the set of boolean mappings (SBM), we denote by (SIM),
the set of inverse images, as given below

Set of inverse
images→



































































x1 := g1 (y1, y2, y3, · · · , yn)
x2 := g2 (y1, y2, y3, · · · , yn)
x3 := g3 (y1, y2, y3, · · · , yn)
...

...
...

...
...

...
...

...
xi := gi (y1, y2, y3, · · · , yn)
...

...
...

...
...

...
...

...
xn−1 := gn−1 (y1, y2, y3, · · · , yn)
xn := gn (y1, y2, y3, · · · , yn)

(SIM)

Computing Possible Products

Compute all possible products of boolean mappings contained in the set (SBM),
i.e., compute possible products of permutations of

y1, y2, . . . , yi−1, yi, yi+1, . . . , yn

These products are of the form as given below.

Possible products→























































































y1y2, y1y3, · · · , y1yn

y2y3, y2y4, · · · , y2yn

y3y4, y3y5, · · · , y3yn
...

...
...

...
...

...
y1y2y3, y1y2y4, · · · , y1y2yn

y1y3y4, y1y3y5, · · · , y1y3yn
...

...
...

...
...

...
...

...
y1y2y3y4, y1y2y3y5, · · · , y1y2y3yn

y1y2y3y4y5, y1y2y3y4y6, · · · , y1y2y3y4yn
...

...
...

...
...

...
...

...
...

...
...

Computing Possible Products of Inverse Mappings

Compute all possible products for the set of mappings (SIM), i.e., compute
the possible products of permutations of

x1, x2, . . . , xi−1, xi, xi+1, . . . , xn
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These products will be of the form as given below.

Possible products of
inverse mappings→























































































x1x2, x1x3, · · · , x1xn

x2x3, x2x4, · · · , x2xn

x3x4, x3x5, · · · , x3xn
...

...
...

...
...

...
x1x2x3, x1x2x4, · · · , x1x2xn

x1x3x4, x1x3x5, · · · , x1x3xn
...

...
...

...
...

...
...

...
x1x2x3x4, x1x2x3x5, · · · , x1x2x3xn

x1x2x3x4x5, x1x2x3x4x6, · · · , x1x2x3x4xn
...

...
...

...
...

...
...

...
...

...
...

Require

For an ith mapping of the set (SBM) and the corresponding inverse mapping
of the set (SIM), the following equality must be satisfied

yi + hi (y1, y2, . . . , yi−1, yi+1, . . . , yn) = xi + h́i (x1, x2, . . . , xi−1, xi+1, . . . , xn)
(6.1)

Establishing the System

To satisfy equality 6.1, establish a system of equations. For this purpose,
introduce a set of coefficients

c1, c2, . . . , ci−1, ci+1, . . . , cn

and start in generating one side of the equality 6.1, for instance, for ith com-
ponent, one of the possible expressions could be of the form

yi + a1y2 + a2y3 + a3y2y3 + . . . (6.2)

Then, compute values for the coefficients and evaluate the expression 6.2.
Finally, one can get the required polynomial by substituting back the values
of these coefficients and evaluating the corresponding expression.

A quick view of the procedure is given in the figure 6.1, where, ‘SBM’ de-
notes the set of boolean mappings (corresponding to bijective mapping) and
‘SIM’ denotes the set of inverse images corresponding to the set ‘SBM’. Yellow
bar shows the process of establishing and evaluating the system of equations.
Different steps included in the process are shown by arrows.

94



6.4. IDC for Polynomials over GF(2)

SBM FIELD SIM

Required Polynomial

Products

Set of Inverse mappings

Set of bijective mappings

Figure 6.1: Interpretation of ”A First Tool”

In this way, we develop basic step (as given below) that leads to construct
IDC through polynomials over GF (2).

y1 + h1 (y2, y3, . . . , yi−1, yi, yi+1, . . . , yn) :=
x1 + h́1 (x2, x3, . . . , xi−1, xi, xi+1, . . . , xn)

}

This polynomial (basic step) provides two assignments, the first assignment
and the last assignment, that are involve in computing bijective boolean map-
pings.

6.4.2 Explanation and Construction

In this section, we explain method "A First Tool" by constructing the first
required polynomial over GF(2). Let E : (x1, x2, x3) → (y1, y2, y3) be a
bijective mapping (see table 6.8), such that











y1 := 1 + x2 + x1x3

y2 := 1 + x1 + x2 + x1x2 + x2x3 + x1x3

y3 := x1 + x2 + x3 + x2x3

(SB)

To compute polynomial linear both in y1 as well as in x1, we compute the
possible products as given below:

Possible products→



















y1y2 := 1 + x1 + x2 + x1x2

y1y3 := x1 + x3 + x1x2 + x2x3

y2y3 := x3 + x1x3

y1y2y3 := x3 + x2x3 + x1x3 + x1x2x3

Then, corresponding to the set of boolean mappings (SB), we compute a set
of inverse mappings as shown below.

Set of inverse
mappings→











x1 := 1 + y1y3 + y2y1 + y3

x2 := 1 + y1y3 + y2y3 + y2

x3 := y1 + y2 + y1y3

(SI)
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x1 x2 x3 y1 y2 y3

0 0 0 1 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 1 0 0

Table 6.8: Bijective Mapping E

Then, we compute the possible products for the set of inverse mappings (SI),
that are listed below

Possible products of
inverse mappings→



















x1x2 := 1 + y2 + y3 + y2y3

x1x3 := y1 + y2 + y1y3 + y2y3

x2x3 := y1 + y2y3 + y1y3 + y2y1

x1x2x3 := y1 + y1y3 + y2y1 + y1y3y2

Now, we introduce three coefficients, α, β and γ. To construct the required
polynomial, we need to make an expression of the form

y1 + αy2 + βy3 + γ(y2 ∗ y3) (6.3)

that gives

y1 + αy2 + βy3 + γ(y2 ∗ y3) =



















(1 + x2 + x1x3)
+ α (1 + x1 + x2 + x1x2 + x2x3 + x1x3)
+ β (x1 + x2 + x3 + x2x3)
+ γ (x3 + x1x3)

Establish a system of equations by comparing the coefficients (in the above
equality) of unwanted products, e.g., x1x3 etc. Therefore











1 + α + γ = 0 (comparing coefficients of x1x3)
α = 0 (comparing coefficients of x1x2)
α + β = 1 (comparing coefficients of x1)

It gives
α = 0, β = 1, and γ = 1

Substituting these values of α, β and γ in (6.3), we get the required polynomial

x2x3 + x1 := 1 + y1 + y2y3 + y3 (6.4)

that is linear in y1 and x1. This is the basic step that leads to design sequence
of "In Situ Design of Computation (IDC)" for the boolean bijective mapping
E.
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Example 22. Let E : (x1, x2, x3)→ (y1, y2, y3) be boolean bijective mapping
such that











y1 := x1 + x2x3 + x1x3

y2 := x1 + x2 + x1x2 + x2x3

y3 := x1 + x1x2 + x2x3 + x1x3 + x3

(Set of mappings)

where, table 6.9 presents boolean values that construct boolean bijective mapping
E. Let A denotes polynomial over GF(2) linear both in y1 as well as in x1.

x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 0 1

Table 6.9: Bijective Mapping E

There are two such polynomials for the set of mappings y1, y2 and y3. One of
them is written as follows:

A := x2x3 + x1 + x2 + x3 = y1 + y2 + y3 (6.5)

Polynomial (6.5) leads to generate ’IDC’ for the mapping E by performing the
following steps:

• Construct first assignment by setting A equals x1 as

x1 := x2x3 + x1 + x2 + x3 (6.6)

• Construct two mappings E1 and E2 by letting A = 0 and A = 1 respec-
tively.

Table 6.10 presents mapping E1 and Table 6.11 presents mapping E2. Mappings

x2 x3 y2 y3

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

Table 6.10: Mapping E1

presenting table 6.10 are defined as

y2 = 1 + x3

y3 = 1 + x2

97



Chapter 6. In Situ Design of Computation for Boolean Mappings

• Construct polynomial linear in x2 and y2 and is given below

x2 + x3 = y2 + y3

Now, sequence of ’IDC’ that computes mapping E1 is










x2 := x2 + x3

x3 := 1 + x2 + x3

x2 := x2 + x3

(IDC for E1)

x2 x3 y2 y3

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

Table 6.11: Mapping E2

Mappings presenting table 6.11 are defined as

y2 = x2 + x3

y3 = x3

• Construct polynomial linear in x2 and y2 and that is

x2 + x3 = y2

Now, sequence of ’IDC’ that computes mapping E2 is










x2 := x2 + x3

x3 := x3

x2 := x2

(IDC for E2)

• Combine the sequence of IDC for E1 and the sequence of IDC for E2 as
given below

x2 := (1 + x1)(x2 + x3) + x1(x2 + x3)

x3 := (1 + x1)(x3) + x1(1 + x2 + x3)

x2 := (1 + x1)(x2) + x1(x2 + x3)

It gives three intermediate assignments as given below

x2 := x2 + x3

x3 := x1 + x3 + x1x2

x2 := x2 + x1x3

• Construct the sequence of ’IDC’ that computes mapping E as follows:






























x1 := x1 + x2 + x3 + x2x3

x2 := x2 + x3

x3 := x1 + x3 + x1x2

x2 := x2 + x1x3

x1 := x1 + x2 + x3

(IDC for E)
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Conclusion of the part

The strategies for in situ computation of mappings provide a strong foundation
to proceed further in this direction of research and to enhance the capabilities of
sequential computations. Along with, a quick glance of applications in matrix
decomposition, it motivates to implement the idea in circuit/chip design. A
number of publications (see for instance [Pin99]) could be found for further
motivations. The idea of in situ computation is a great effort in contributing to
optimization (for example processor/compiler/memory) and could be extended
further by finding real applications and implementations. But still there are
limitations that need attention to be resolved and the strategies need some
modifications to deal with such limitations.

To highlight these limitations, in chapter 3, we have explained the idea of
in situ computation for mappings over fields and provided counter example
that leads towards the modifications of the existing approach. An alternate
approach (using Bézout’s Identity) to generate sequence of assignments that
performs in situ computation for mappings with two dimensions has been dis-
cussed but the idea needs its further extension for general case and it requires
to investigate the possibility for the case of integers.

Similar limitations are observed in the case of rings and are highlighted by
providing counter example in generating sequence of assignments (from the
sequence of assignments that compute given mappings) to compute inverse
mappings. Thus, current approach requires modifications to deal with such
situations and could be applied possibly in different way.

In case of integers, (chapter 5), the combinatorial results and counter ex-
amples show that there are certain limitations for in situ strategies and it
require improvements and modifications. For example, reducing the number
of assignments (involved in computation), providing the possibility to generate
sequence of assignments that could compute inverse mapping and extending
the approach for general case. Moreover, in reducing number of assignments,
we have to deal carefully with some situations, e.g, packing similar assignments
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(involved in computation) may results in an assignment with a co-efficient to
be multiplied.

A tool for generating sequence of assignments (chapter 6) for in situ com-
putation of bijective boolean mappings through construction of polynomials
over GF(2) is a basic attempt to develop the required strategy. But still, it re-
mains to extend the idea for general case and to find some useful combinatorial
results.

100



Part II
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7.1 Introduction

Collaborative Editing Systems (CES), provide environment to group of users,
dispersed geographically, so that they can edit/modify the same data concur-
rently. For this purpose, collaborative editing tools have been designed that
enable authorized users to edit/modify a shared document, to see who else
is working over the same document and to know in real time, the changes
that are being made by others. Wikis, on-line office suites and version control
systems are the most popular collaborative editing tools [Cit07]. The shared
documents are similar to wikis in the sense that a number of users can make
modification by adding or deleting the content. Some of the collaborative
editing tools facilitate users to communicate by instant messaging (like a chat
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session) as an addition to collaborative editing. As an example, Wikipedia is
edited by 7.5 millions of users and got 10 millions of articles in only six years
[WUM09].

7.1.1 A Collaborative Editing Scenario

To understand, how the collaborative editing works, consider a collaborative
editing scenario as presented in the Figure 7.1.

Three users are participating in editing a shared document contained an
initial content ”behave”. The elapse of time is shown by vertical lines. An
operation generated locally is presented by circle and is executed immediately.
The propagation of local operations to other sites are presented by arrows.
Suppose that user-1 inserts character “r“ at position 2 of the initial content,

behave behavebehave

brave brave brave

User 1 User 2 User 3

Site 1 Site 2 Site 3

Op1: Insert 'r' at pos 2

Op2: Delete 'e'
Op3: Delete 'h'

Op1 Op2

Op3

Figure 7.1: A collaborative editing scenario

and user-2 deletes character “e“ at position 2, simultaneously. Each replica
is updated after the execution of operations “Op1“ and “Op2“ so that user-3
has replica modified to “brhave“. Now user-3 performs operation “Op3“ and
deletes “h“ at position 3 of the modified copy of the initial content. Updating
the document after executing operation ”Op3” results in containing the final
content as ”brave”.

Another simple example of collaborative editing is shown in Figure 7.2 (next
page), where INRIA research centres are joined with each other. Suppose users
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at different centres participate in editing an INRIA Research Report. A well
defined collaborative editing system (for example, INRIA Gforge) makes it
possible that all users can write a common research report.

Research 
Report

Nancy 
Grand-Est

Rocquen
court-Paris

Rennes 

Lille Grenoble 

Bordeaux 

Saclay 

Sophia 
Antipolis

Replay Replication Stream

Forward Update Request

Figure 7.2: An example of collaborative editing

To make it possible that all participants in real time collaborative editing,
edit and view the shared document, almost at the same time, some kind of syn-
chronization strategies between the participants must be used. Traditionally,
there exist two synchronization control approaches, in reaching this behavior
[Pre07], they are pessimistic concurrency control (lock based) and optimistic
concurrency control (lock free).

7.1.2 Pessimistic Concurrency Control

Pessimistic concurrency control (Lock based editing), is based on acquiring
a lock before starting edition for a given object/document. When a lock is
applied to facilitate one user, all other participants have to wait until the lock
is released. Therefore, only one user can edit a given object/document at a
time, that in some ways limits the parallel nature of collaborative editing.
Briefly, it can be described in the following three steps.

• Acquire the lock on the object “O“, given that it is not already acquired.

• Perform some edits to the object.

• Release the lock on the object ”O”.

Another relevant issue with lock based editing is when a participant actively
editing an object, it crashes or leaving the object locked forever.
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7.1.3 Optimistic Concurrency Control

A fast response and high degree of concurrency is the need of Real-time Ap-
plications. Optimistic concurrency control has the properties of non-blocking
and deadlock freedom, they are especially recommended to real-time trans-
action processing [HCL90, HSRT91, JS92]. Lock free editing, or optimistic
concurrency control, allows participants to more freely modify an object in a
more parallel nature. However, there are risks of conflicts that needs some
kind of algorithms to resolve these conflicts automatically. Further, it may
results in loss of data, when, for example, a user’s edits are overwritten during
the conflict resolving [CMR07, JBC05].

Collaborative editing between more than two participants require some
kind of group communication. However, different collaboration strategies re-
quire different styles of group communication guarantees.

7.1.4 Group Communication

Group communication allows reliable messaging between senders and receivers
comprise a network. In the basic form of group communication, two users
communicate with each other while others wait for their turn. Some of the
problems regarding group communication (for instance, reliability and order-
ing) are addressed using different techniques but still there exist some other
problems, when multi users are participating simultaneously. More difficult
problems occur in providing the reliability for transmission and ordering of
packets etc [Å10].

Total Ordering

To maintain the consistency among the replicas, a total ordering on the up-
dates must be provided. Total ordering within group communication guar-
antees that all broadcast messages will be received in the same order, by all
recipients. Being able to totally order the events can be very useful in imple-
menting distributed system. To see the importance of total ordering consider
an example of two clients C1 and C2. Suppose these two clients send updates
for a document “D” simultaneously, Suppose these updates are totally ordered,
so the servers either S1 receive first the update from C1 and then the update
from C2 or S2 receive first the update from C2 and then the update from C1.
In both cases, the replicas will remain consistent, since every server applies up-
dates in the same order. If these updates are not totally ordered, the servers
can apply updates in different orders that will cause the consistency problem
[Å10].

7.1.5 Centralized collaborative editing systems

In centralized systems, the messages have to go through a round trip and users
cannot see their own actions immediately. Therefore, local commands (includ-
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ing lock requests) are not of responsiveness. Existing collaborative editing
systems such as CVS, RCS or WIKIs are centralized and unanimously adopt
the client-server architecture. The server node holds a persistent copy of shared
document. Each client node stores a copy of the shared document. A user at a
client node updates the shared document through the local copy. All updates
are synchronized to other users through the server node. Such systems cannot
be adapted to peer-to-peer networks [OUMI06].

Below, we discuss some collaborative editing systems keeping the order of
their restrictiveness on collaboration.

RCS

RCS (Revision Control System) is a version control system where a single or
multiple users modify document through an explicit check-out step. In RCS,
when user attempts to check in a new version whose modifications are based
on a state version, editing conflicts occur. To detect these editing conflicts,
RCS uses a locking mechanism. It notifies impacted users through diagnostic
messages. Usually RCS is being used to handle source code in software de-
velopment, however, it is also used to support wiki applications, e.g., Twiki
[twi10].

MediaWiki

In MediaWiki, users are able to edit different parts of a document without
interference. If multi-user edit the same paragraph simultaneously, it causes
editing conflicts. A user releases edits by clicking a button manually. Medi-
aWiki uses diff3 [com10] to merge changes, automatically, that make by users
but these changes should be made in different parts of the document, otherwise,
impacted users are notified by diagnostic messages. MediaWiki is working as
underlying engine for the largest on-line encyclopedia, Wikipedia [kao10b].

Google Docs

Google Docs serves as collaborative tool and it combines, features of Writely
and Spreadsheets with a presentation program incorporating technology de-
signed by Tonic Systems. Since, January 13, 2010, a data storage capacity
of 1GB is introduced. Editing conflicts occur if more than one users simul-
taneously update the same sentence. Versions of Google Docs for the iPhone
and Android include functionality for editing spreadsheets and viewing pre-
sentations, along with an interface designed specifically for the device. Up-
dates between users are automatically synchronized within seconds and to
merge changes from different users, it uses differential-synchronization algo-
rithm [kao10a].
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Google Wave

Google Wave allows users to edit a shared document anywhere and anytime
that is why it considered as most liberal editing system. The system is able
to reconciles conflicts of edition, in all situations including, when users edit an
overlapping area simultaneously. Google Wave uses operational transforma-
tion (OT) [EG89], a non-blocking distributed concurrency control algorithm
to guarantee the data consistency. It also preserve the properties of conver-
gence and causality. The causality preservation follows Lamport’s logical clock
[Lam78], that needs all operations to be executed in their happened-before re-
lationships.

The collaborative editing systems described above differ by the degree of
restriction on collaboration and each of them uses different implementation
techniques. For instance, RCS (Revision Control System) uses locking mech-
anism, whereas Google Wave uses operational transformation [EG89] to guar-
antee the data consistency.

7.1.6 Decentralized collaborative editing systems

Decentralized collaborative systems provide environment in which a number
of users located at several sites are able to update common object (e.g., text
document) independently. Each participant in the network has a separate
replica (i.e., local copy) of the document and he/she modifies his/her replica.
Editing a shared text or document co-operatively, is considered to be a well-
studied example. When users make any modifications locally, the replicas
diverge from one another. The operations performed on some sites propagate
to other sites and are integrated or replayed there. Eventually, all sites execute
every action of users.

Collaborative systems based on the operational transformation approach
could be decentralized [EG89, SE98, WUM09]. The replicas might not con-
verge if the users execute operations in different orders. For convergence, two
basic approaches can be found in the literature. One of them is the serializing,
i.e., enforcing a total order of operations before execution [Lam78]. Second
approach is operational transformation, i.e., modifying the parameters of op-
erations to make them run in different orders [SE98]. The later approach is
considered to be complex and error-prone, as evidenced by the errors found in
published algorithms [OUMI05].

Consistency Issue

To maintain the consistency in a scalable and decentralized manner is a chal-
lenging problem due to the replication and exchange of updates. Concurrency
control techniques, such as (pessimistic/optimistic) locking and serialization,
are no more considered to be effective because they may ensure consistency at
the cost of responsiveness and loss of updates [EG89, LL04a, SJZ+98]. To illus-
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trate this problem, we present a scenario in Figure 7.3. where two users user-1

mutarz mutarz

mumtrz

Site 1

Op1: Insert 'm' at pos 3
Op2: Delete 'r' at pos 5

Op1 Op2

mutazmumtarz

mumtaz

Site 2

Figure 7.3: Wrong Integration

and user-2 work on a shared document represented by sequence of characters.
These characters are labeled by a sequence of natural numbers. Suppose that,
both users, initially, have a sequence “mutarz“ of characters. Let user-1 ex-
ecutes an operation “Op1“ and inserts a character “m“ at position 3, user-2
performs operation “Op2“ and deletes character “r“ at position 5. Now, Op1
is received at site 2 and after execution, it produces a sequence of characters
“mumtaz“. But, at site 1, “Op2“ has not the same effect because it produces
a different sequence “mumtrz“ as compared to the sequence produced at site
2. In spite of it, that all sites execute operations in the same order following
the requirement of serialization protocol [EG89], the final results are not the
same.

Operational Transformation

Operational transformation (OT) is basically invented for consistency mainte-
nance and concurrency control in collaborative editing of plain text documents.
In this approach, local operations are executed immediately after their gen-
eration, while remote operations must be transformed regarding concurrently
executed operations. To address the consistency issue, an OT approach has
been proposed in [EG89, Imi08]. Generally, it is an application-dependent
transformation algorithm, called IT, that works in a way that for every pos-
sible pair of concurrent updates, the application programmer has to specify
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how to integrate these updates regardless of reception order. To see the effect
of IT on previous example, consider the Figure 7.4. To have the same final

mutarz mutarz

mumtaz

Site 1

Op1: Insert 'm' at pos 3
Op2: Delete 'r' at pos 5

Op1 Op2

mutazmumtarz

mumtaz

Site 2

IT1 IT2

IT1: Delete 'r' at pos 6 
IT2: Insert 'm' at pos 3 

Figure 7.4: Correct Integration

result, on site 1 and site 2, operation ”Op2” has to be operated in a way such
that IT1(Op1, Op2)=Del(6). The operation IT1 includes the effect of both
operations ”Op1” and ”Op2”. The main task of OT is to assure consistency
in a decentralized way without the requirement of any global order. OT facil-
itates users in a way so that they can modify shared document concurrently
and exchange updates in any order. But still most of the OT algorithms does
not guarantee consistency, because there exist some bugs. The proposed OT
environments dealt with a fixed number of users in collaborative session. More-
over, scalability requirements are still needs attention from the OT research
community [IMOR03].

We aim to design decentralized collaborative editing system that could be
able to serve in a way better than the existing systems. In the next section,
we propose a model and describe our idea in detail:
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7.2 DCE Model

Our DCE (decentralized collaborative editing) model is based on precision con-
trol indexing method that we will discuss later in detail. Our idea is applicable
to all kind of documents that bear sequential structure but, here, for the sake of
simplicity, we illustrate it by taking a shared text document. To edit the shared
document, an Insert or Remove (delete) operation is followed by an Update to
synchronize the document replica (as shown in Figure 7.5). Insert operation,
requires in collecting information of neighboring elements, and computing new
identifier for an entry to be inserted. Therefore, a Collect action collects the in

Collect ( Information about two 
             neighboring characters )
Comp ( new Identifier )

Insert

Update
...........
...........
...........

Collect ( Information about character
                                 to be removed )

Remove

Update
............
............
............

Figure 7.5: Model

formation and Comp will compute
new identifier. One of the ad-
vantages of the technique is that,
for an Insert operation, it needs
the informations only about two
identifiers corresponding to charac-
ters neighboring the insertion po-
sition. For a Delete operation,
it needs information exactly about
the identifier corresponding to el-
ement (character, line, etc) to be
deleted. This is important because
it avoids communication overhead
for moving data items between ma-
chines given that Read operations
are frequent and may involve a large
amount of data items. Since all
document replicas are updated in
a global serialization order both
the convergence property and the
causality preservation property (see
section 7.2.1) are preserved. In this
model, users update the shared document without any restriction. All editing
conflicts are automatically reconciled. Our model can be treated as update-
anywhere-anytime Model. Further, the model can be easily interpreted as a
network ℵ of n (n ∈ N) users (sites or peers) that assigned a unique small
positive real value ′′ǫ′′ (chosen from a set of such values {ǫi, i = 1, 2, · · ·n },
generated under specific precision), to each user (site or peer) such that these
values act as identifiers for users (sites or peers). In our approach, a shared
document is mapped to an interval I = [ a, b ], where, 0 ≤ a < b, for a, b ∈ R
and unique identifiers are computed over the interval I such that these unique
identifiers could be assigned to characters or lines (to be edited) in the shared
document. Corresponding to the insertion or deletion of elements in the doc-
ument, there exists insertion/deletion of identifiers inside the interval I. The
idea of associating identifiers resembles with the idea of shared sequential buffer
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where each buffer entry is identified by unique identifier [PMSL09]. In a shared
document, an element may present a sequence of characters assigned a unique
identifier with the following properties:

1. Each element is assigned an identifier.

2. Two elements have two different identifiers.

3. The identifier once assigned does not change during the whole lifetime
of the document

4. There exists a total order on identifiers, < , consistent with the order of
elements.

5. For two identifiers ID1 < ID2, new identifier ID3 respects the inequality
ID1 < ID3 < ID2.

At the completion of process of insertion/deletion, the final set of unique-
identifiers will be an ordered set. In fact, an insertion of a point partitions the
interval I into further sub-intervals. Thus, an insertion of m ∈ N points in the
interval I takes the form

a = a0 < a1 < a2 < . . . < am−1 < am < am+1 = b

such that
am = am−1 +

am+1 − am−1

2
− ǫ

respecting rounding and computation conditions introduced to the Algorithm
8 (will be discussed in detail, later in chapter 8, section 8.1.3) used to create
these identifiers. Consider the Figure 7.6, a sequence of characters is indexed

0
0

x
0.292

m
0.392

y
0.492

z
0.992

b
1

0
0

x
0.292

y
0.492

z
0.992

b
1

Algo

Insertion of 'm' between
two characters 'x' & 'y'
indexed by identifiers

0.292 and 0.492
Characters

Identifiers

process Unit

Figure 7.6: Inserting single character
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by a sequence of identifiers. The initial and final characters are marked with
”0” and ”b”, whereas the initial and final points for the identifiers are marked
with ”0” and ”1”. A user is intended to insert a character ”m” between two
neighboring characters ”x” and ”y” indexed by two identifiers 0.292 and 0.492.
These identifiers are calculated using precision control indexing method (will
be discussed in detail later in chapter 8). New identifier 0.392 that used to
index new character “m” can be computed by executing Algorithm 8 (will be
discussed in next chapter).

7.2.1 Framework Description

It is supposed that all users in the network are capable to perform the same
activities and the network could be structured or unstructured. Each user is
capable to send and receive points in the network and any local modification
by any user eventually received by all users in the network. Each user performs
operations on a separate replica (i.e., local copy) of the document. Operations
may arrive and be executed at different sites in different orders, resulting in
different final results. For the sake of efficiency and fault-tolerance, the content
on the network is supposed to be replicated. This replication can be either
total or partial in the sense that each user/peer can owns a replica partially
or completely [WUM10]. A user can modify a replica at any time [Sun02]
and it helps to attain high responsiveness and concurrency in the system.
When a peer receives a modification, it replays it on its local replica. Thus,
replicas are allowed to diverge in a short time. This kind of replication is
known as optimistic replication [SS05] (or lazy replication). A collaborative
editing system is considered to be correct [SJZ+98] if it satisfies the following
conditions:

1. Causality: On every replica, the operations ordered by a precedence
relation, in the sense of the Lamport’s happened-before relation [Lam78],
are executed in the same order. This property ensures the consistency
of the execution orders of dependent operations during a cooperative
editing session.

2. Convergence: When the same set of operations have been executed at
all sites, all copies of the shared document are identical. The system
converges to a stable state, where all the replicas are consistent (con-
verge), i.e., all replicas are up to date [PC04]. This property ensures the
consistency of the final results at the end of a cooperative editing session.

3. Intention preservation: For any operation φ, the effects of executing φ at
all sites are the same as the intention of φ, and the effect of executing φ
does not change the effects of independent operations. the convergence
property ensures the consistency of the final results at the end of a coop-
erative editing session. The following definition of operation intentions
for textual documents is considered to be well-accepted:
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• delete: A deleted line (character) must not appear in the document unless
the inverse operation is not executed.

• insert: A line (character) inserted by user must appear to every user.
The order relation between the document lines (characters) and a newly
inserted line (character) must be preserved on every peer (as long as
these lines / characters exist) [LL07].

We are interested to build decentralized collaborative editing system respecting
CCI consistency model and supporting P2P constraints such as:

• Scalability: The system must be capable to handle the addition of users
or objects without suffering a noticeable loss of performance [Neu94]. It
means the system may consist of a finite large number of users / peers.

• Churn: Any user can be an active or lazy user, i.e., a user can participate
at any time.

• Unknown number of peers: The system must not subject to handle a fix
number of users / peers, it should be compatible for unknown number
of users / peers.

• Failures: It is possible that any peer can crash at any time without
warning other peers. So the system must deal with this situation.

7.2.2 Editing a Document

Our approach to edit a document can be viewed in the CRDT (Commutative
Replicated Data Type) framework [PMSL09] whose main idea is to provide
a genuine commutativity between concurrent operations. CRDTs guarantee
eventual consistency, provided that every site executes every operation in an
order consistent with happens-before, the final state of replicas is identical at
all sites. When the data type is an ordered list, such as a text document,
commutativity between insertions in the list can be obtained with unique and
totally ordered identifiers for each element. In our work, we consider a text
document as a sequence of elements where an element can be a character, a
line, a paragraph, etc.

Our approach is based on associating an identifier to each element. These
identifiers must be unique, dense, and totally ordered. Our method for creating
these identifiers is based on precision control, that falls under the floating
point arithmetic environment and leads to an extension of the research in this
direction. We prove the uniqueness of these identifiers and design algorithm
to implement the idea of creation of these identifiers.
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7.2.3 Modifying a Document

In the model that we proposed, users modify the shared document by inserting
or deleting characters/lines. In performing this task, a creation or removal of
corresponding identifiers occurs. Thousands of users are able to create millions
of points with epsilon assigned to it, and by changing precisions. Each user can
create points locally as well as based on the remote points during the exchange
of points between the users in the network. All users in the network use the
same criteria to compute points.

7.2.4 Mapping between elements and Identifiers

From a user’s perspective, a document consists of a sequence of elements (char-
acters, lines, etc.). If a new element is inserted, a portion of the sequence is to
be dispersed to create the space for the new element. Similarly, if a element is
deleted, a portion of the sequence is to be merged to reclaim the space. The
editing system keeps the elements of the document in a selected data structure.
The editing operation can be mapped to the creation/removal of corresponding
identifiers.

• Insert a new element corresponds to the creation of new identifier.

• Delete an existing element corresponds to the removal of an identifier.

Therefore, if a user edits a document locally then an element corresponds to
the creation or removal of an identifier.

To maintain the ordering information, for each element, its before and after
element’s identifiers need to be explicitly maintained. When reconstructing a
document’s content, the system has to follow these before and after identifiers
iteratively and maps them into their corresponding elements. A set of totally
ordered identifiers makes easy and efficient, the sequential reading and retriev-
ing the elements. When reconstructing a document’s content, the system has
to follow these before and after identifiers iteratively and maps them into their
corresponding elements. Consequently, the mapping between elements and
identifiers impacts the performance of sequential reading of elements and their
corresponding identifiers.
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In collaborative editing system (CES), due to concurrent editing conflicts,
the communication must be carefully constructed to maintain data consistency.
This leads towards the importance of generating unique identifiers that could
be associated with characters or lines to be edited. From user’s perspective
a document is a sequence of characters. Therefore, a set of ephemeral keys
which are prone to change with the modification of the document, is required
to index the document. We address this issue by assigning immutable and
ordered identifiers to the data items of a document. We introduce a precision
control technique capable to generate an ordered set of unique real identifiers
of the same pattern. To the best of our knowledge, before this, it was not
recommended to use real number (see for instance [PMSL09]) as identifiers
due to infinite precision. In this chapter, we explain, in detail, how to generate
unique identifiers and how to compute cardinality of a set of identifiers. First
section consists in explaining the precision control technique, rounding a value,
generating user (site, peer) identifiers and line or character identifiers, related
algorithms and explanations. Section 2 explains, the concept of local as well
as global cardinality and computing the cardinalities.
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8.1 Creating Unique Identifiers

In this section, we explain, Precision Control Technique (PCT), that we use
to generate unique element (line, character) identifiers (LCIDs). Then we
illustrate algorithms to generate identifiers with examples and figures.

Definition 14. We define precision as the number of digits following the point
of a value (rounded to decimal places/to significant digits), e.g., the precision
of the values 12.34600 and 12.345 is 5 and 3 respectively.

8.1.1 Precision Control Technique

To reduce existing errors and to provide strong foundation for collaborative
systems, we introduce precision control technique (PCT) which is based on the
following assumptions.

• A1 : ′′pd
′′ denotes the default precision that commonly used by program-

ming language over which we perform computations.
For example, in Maple, the precision used is controlled by the global
variable “Digits” which has 10 as its default value and floating point
arithmetic is done in decimal with rounding, so one can adjust de-
fault precision.

• A2 : ′′pǫ
′′ denotes the precision taken for small positive real numbers ’ǫ’

that acts as user/site identifiers (USIDs).

• A3 : ′′pr
′′ denotes the rounding precision and is kept less than both of

pǫ and pd.

Keeping in view, the above assumptions, we establish

pr < pǫ < pd (8.1)

inequality 8.1 and keep it as basic principle to generate unique identifiers
(LCIDs) and to perform computations accordingly. Following (PCT), we as-
sign a positive small real number ′′ǫ′′ to each user/site or peer (of the network
ℵ) that acts as site identifier or user identifier (USID). To create identifiers,
computation (calculation) are performed over the precision ′′p′′d presented by
gray bar in the Figure 8.1. and then values are rounded over precision ′′p′′r
presented by green bar in the Figure 8.1. The yellow bar presents precision
′′p′′ǫ taken to generate user/site identifiers (USIDs).
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Default Precision

Rounding
 Precision

Precision
 for USIDs

Pd

pr

P€

Figure 8.1: Precision control principle

Rounding values

To perform computation according to the basic principle (Inequality 8.1), we
introduce Function 5 that rounds a given value according to definition 14.

Function 5:(Round a value)

Function: Round a value

Input: Value to be rounded, Desired precision
Output: Rounded Value

1 begin
2 Let dp := Desired precision;
3 x := Value to be rounded;
4 prec←− 10dp;

5 y =
round(x ∗ prec)

prec
;

6 Rounded value←− y;
7 return Rounded value;
8 end

The function ′′round(x)′′ (see line 5, Function 5) rounds an expression x to
the nearest integer and the function ′′Round a value(x, pr)′′ rounds the decimal
part of an expression to the prth decimal place, e.g., round(−2.4) returns −2
and ′′Round a value(15.0766647, 4)′′ returns 15.0767 performing computation
using Maple 12. We denote ′′Round a value(x, pr)′′ by

∣

∣

∣x
∣

∣

∣

pr

, i.e., value x

rounded over precision pr by the function ′′Round a value′′.
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8.1.2 Generating user/site identifiers (USIDs)

A number of choices available in selecting values that could be assigned as
user/site identifiers but we observed that (in the existing techniques) there is
no computational link between these identifiers and that for indexing charac-
ters/lines. We propose an approach to generate USIDs that are involved in
generating line/character identifiers such that from an LCID, a USID could

Algorithm 6: How to generate USIDs

Algorithm: Generate USIDs

Result: user/site identifiers (USIDs)
1 begin
2 Let dp := Desired precision
3 U := Set of USIDs
4 w1 ←− dp + 2
5 w2 ←− 10dp − 1
6 for i from 1 to w2 do
7 w3 ←− ⌊log10 (i)⌋
8 w4 ←− − (w1 + w3)
9 USID ←− i ∗ 10w4

10 if member(USID, U) = false then

11 U := [ op(U), USID ]

12 Arrange set U in an order

13 end

14 end
15 return An Ordered Set of USIDs

16 end

be computed. In fact, we assign each user/site an epsilon (ǫ), a small positive
real value that acts as user/site identifier and generate different USIDs of the
form

ǫ = 0.00 . . . 0pr+1d1d2 . . . dpr

where pr ≥ 1, pǫ ≥ pr + µ, µ ≥ 2, µ ∈ N

Keeping this particular pattern makes it easy to deal with basic principle 8.1
and computing cardinality for LCIDs. Following this approach (as prescribed
above), we can generate 9× 10w different epsilons with w = pr − 1. Note that
for pr ≥ 1, the minimum value of epsilon is 1 × 10−(pr+2) and the maximum
value is

ǫ = 0.00 . . . 0pr+199 . . . 9pr

A set of user/site identifiers generated by keeping pr = 1 is shown in the table
8.1. To generate a set of different USIDs, we design Algorithm 6.
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Set of user/site identifiers

0.001 0.002 0.003 0.004 0.005

0.006 0.007 0.008 0.009

Table 8.1: A set of user/site identifiers

The function ′′member′′ (see line 10, Algorithm 6) verifies that either new
computed USID already exists in the set U or not. If it does not exist already
then “op“ (see line 11, Algorithm 6) collects it as a member of the set U.
Algorithm 6 returns a set of different epsilons under precision pr. For instance,
Generate USIDs(4) will return a set of 9000 different epsilons computed under
the precision pr = 4 with minimum value of epsilon equals 1× 10−6 and with
maximum value equals 0.000009999. Command op is used to write input within
an array. The USIDs maintain the property |USID|pr

= 0.

8.1.3 The Procedure

It is known that the classical midpoint formula computes midpoint of two given
points a and b as (a+b)/2 and if we apply it to compute all possible midpoints
of an interval, then it works iteratively and continues to partition the interval
infinitely. To compute each time different and finite possible midpoints for
an interval, it requires some modifications. Let n (n ∈ N) users compute all
possible midpoints over an interval I, we are interested in, that:

⋆ Points computed for one user must be different from points computed
for all others

⋆ Set of points computed for each user must be an ordered set

⋆ It should be possible to compute cardinality for the set of points.

To meet such requirements, we make some assumptions and modify the clas-
sical midpoint formula, for an interval I = [ a, b ] with 0 ≤ a < b such that
∀ x, y ∈ I with x < y, as given below

f(x, y) = x +
y − x

2
− ǫ (8.2)

where ǫ is one of the USIDs. Notice that the point computed in this way will
not be equidistant from the points x and y (as explained in Figure 8.2) due to
the conditions posed for computation. In all of our experimentations, we take
the interval as I = [ 0, 1 ] but we are not restricted to take only this interval.
For two points a1, b1, we implement the formula (8.2) by designing Function
7, with USIDmax = max(USIDs). Function 7 takes two points as input
and returns a new point by applying Formula (8.2) following the Precision
Control Technique (PCT). We introduce additional conditions to assure the

121



Chapter 8. Generating Identifiers

order preservation and to get the computed points in the form of an ordered
set. For this purpose we design Algorithm 8 that contains Function 7 as a part
of it. In the Algorithm 8, the function ′′nops′′ (see line 5, 6 and 10) computes

Function 7: middle( How to compute new identifier)
Function: middle

Input: I=[a1, b1], USID, USIDmax, Desired precision
Output: LCID

1 begin
2 Let dp := Desired precision;

3 a←−
∣

∣

∣a1

∣

∣

∣

dp
;

4 b←−
∣

∣

∣b1

∣

∣

∣

dp
;

5 ∇ :=
∣

∣

∣

∣

b− a

2

∣

∣

∣

∣

dp
;

6 if ∇ > USIDmax then

7 point :=
∣

∣

∣a +∇
∣

∣

∣

dp
− (USID);

8 end
9 return point;

10 end

number of elements in a set, for example, nops([ 5, 6, 7 ]) returns 3.

Interval

Point lies in this region
in case of

 subtraction of a USID

c
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Point lies in this region
in case of

addition of a USID

Figure 8.2: Position of an identifier in the interval
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Algorithm 8: How to generate a set of LCIDs

Algorithm: Generate LCIDs

Input: Interval, USID, USIDmax, Desired precision
Output: Set of unique identifiers (LCIDs)

1 begin
2 Let res := Interval
3 dp := Desired precision
4 tempres := Set of LCIDs
5 while nops(tempres) 6= nops(res) do
6 if nops(tempres) 6= 0 then
7 res←− tempres
8 tempres←− φ

9 end
10 for i←− 1 to nops(res)− 1 do
11 LCID ←− middle(res[i], res[i + 1], USID, USIDmax, dp)
12 tempres := [ op(tempres), res[i] ]
13 if (LCID 6= res[i] and LCID 6= res[i + 1]) then
14 verify that
15 if (LCID < res[i + 1] and LCID > res[i]) then
16 tempres←− [ op(tempres), LCID ]
17 end

18 end

19 end
20 tempres←− [ op(tempres), res[nops(res)] ]
21 end
22 return Set of LCIDs

23 end

Next, we summarize all steps that are performed above, in computing LCIDs,
as follows.

Outlines

Let the interval I = [ a, b ], 0 ≤ a < b, presents an empty document or a and
b are two LCIDs for two corresponding characters/lines. To compute a new
LCID (say p) between a and b, we proceed as follows:

C1. Round a and b over the precision pr

C2. Evaluate ∇ =
|b|pr
−|a|pr

2
and round it over pr

C3. If ∇ > USIDmax then go to the next step

C4. p :=
∣

∣

∣|a|pr
+∇

∣

∣

∣

pr

− USID
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C5. Verify that p � a and p � b.

8.1.4 Explanation

In whole of our experimentation, it is supposed that an empty shared doc-
ument is mapped to an interval I = [ 0, 1 ], as we stated before. Here, we
explain the procedure for computing unique identifiers LCIDs. Figure 8.3

A
L
G
O
R
I
T
H
M

S
I
N
G
L
E

U
S
E
R

P1

EMPTY DOCUMENT

     p3                   p1                       p2

 p4          p3           p5        p1        p6        p2        p7

p    p4     p    p3    p     p5    p     p1    p    p6   p    p2  p   p7   p

[B,...,p,p,p,...p1,...,p,p,p,...E]

updating

first point

Figure 8.3: Insertion of points by single user

presents an overview of, how a single user inserts points, corresponding to
unique identifiers, starting with an empty document. p1 is the first identifier
computed corresponding to first insertion by user. This first identifier parti-
tion the corresponding interval into two sub-intervals. Now, user has choices
to insert new character on both sides of the first insertion. Therefore, let user
inserted two more characters, one to the left side and other to the right side
of the first insertion. This operation results in creation of two identifiers p2

and p3 to both sides of the first identifier p1. Two more partitions occurred in
the corresponding interval. After performing this operation, user inserted four
more characters, each new character between each existing pair. This opera-
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tion results in creation of four new corresponding identifiers p4, p5, p6 and p7

and partition of interval into further sub-intervals. Notice that each time we
require the information only about the neighboring identifiers of new creation.
This process continues and new points are presented by ps in the Figure 8.3
whereas an update operation is marked with ’updating’.

Next, we give an example to show that LCIDs computed by Algorithm 8
are different.

Example 23. Let pr = 1, and pǫ = 3. Consider a set of nine different USIDs
as given below

ǫ1 = 0.001, ǫ2 = 0.002, ǫ3 = 0.003, ǫ4 = 0.004, ǫ5 = 0.005

ǫ6 = 0.006, ǫ7 = 0.007, ǫ8 = 0.008, ǫ9 = 0.009, ǫ = 0.009

We compute all possible LCIDs for each user with different USIDs (by the
Algorithm 8) as listed in the Table 8.2, in such a way that first row presents the
points computed by first user, second row presents points computed by second
user and so on. Notice that there is no common point between any two rows

User Unique Identifiers

U1 0.099 0.199 0.299 0.399 0.499 0.599 0.699 0.799 0.899 0.999

U2 0.098 0.198 0.298 0.398 0.498 0.598 0.698 0.798 0.898 0.998

U3 0.097 0.197 0.297 0.397 0.497 0.597 0.697 0.797 0.897 0.997

U4 0.096 0.196 0.296 0.396 0.496 0.596 0.696 0.796 0.896 0.996

U5 0.095 0.195 0.295 0.395 0.495 0.595 0.695 0.795 0.895 0.995

U6 0.094 0.194 0.294 0.394 0.494 0.594 0.694 0.794 0.894 0.994

U7 0.093 0.193 0.293 0.393 0.493 0.593 0.693 0.793 0.893 0.993

U8 0.092 0.192 0.292 0.392 0.492 0.592 0.692 0.792 0.892 0.992

U9 0.091 0.191 0.291 0.391 0.491 0.591 0.691 0.791 0.891 0.991

Table 8.2: Set of unique identifiers

of the Table 8.2.

8.1.5 Uniqueness of line/character identifiers (LCIDs)

In this section, we prove that the algorithm 8 generates different LCIDs for
different participants assigned with different identifiers.

Theorem 9. Let two participants are assigned with two different USIDs (ǫi,
ǫj such that ǫi < ǫj, for 0 < i < j). Then for two operations performed by
two participants respectively, two different LCIDs will be generated (over the
interval I = [ a, b ] with 0 ≤ a < b).
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Proof. Suppose that U1 and U2 be the two users, assigned with two different
USIDs, ǫi and ǫj, compute two LCIDs, p1 and p2 by executing algorithm 8.
For xi, xj, yi, yj ∈ I = [ a, b ], and v = pr ∈ N, p1 and p2 can be written as

p1 =
∣

∣

∣

∣

xi+|
yi − xi

2
|v

∣

∣

∣

∣

v
− ǫi

p2 =
∣

∣

∣

∣

xj+|
yj − xj

2
|v

∣

∣

∣

∣

v
− ǫj

where xi =|xi|v, xj =|xj|v, xj =|xj|v, yj =|yj|v. For the sake of simplicity,
suppose that

mi =
∣

∣

∣

∣

xi+|
yi − xi

2
|v

∣

∣

∣

∣

v

mj =
∣

∣

∣

∣

xj+|
yj − xj

2
|v

∣

∣

∣

∣

v

So, it is enough to prove that

|mi −mj|+ (ǫj − ǫi) 6= 0 (8.3)

Now, for u1, u2 ∈ N
ǫi = li.d

i
1d

i
2d

i
3 . . . di

u1

ǫj = lj.d
j
1d

j
2d

j
3 . . . dj

u1

ǫj − ǫi = lk.dk
1dk

2dk
3 . . . dk

vdk
v+1 . . . dk

u2

ǫi 6= ǫj

∴ At least one of dk
k1 6= 0, v < k1 ≤ u2 ≤ u1 (8.4)

Let

α =|mi −mj| = lα.dα
1 dα

2 dα
3 . . . dα

v

and β = ǫj − ǫi = lβ.dβ
1 dβ

2 dβ
3 . . . dβ

v dβ
v+1 . . . dβ

u2

∵ v = pr < pǫ < pd (basic principle (8.1))

=⇒ pα < pβ =⇒ α 6= β

Also β 6= 0 by (8.4)

Hence α + β 6= 0 and (8.3) holds.
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8.1.6 Verifying uniqueness

To generate unique line/character identifier one must have to keep our pro-
posed specific pattern of user/site identifiers and precision control technique.
In the theorem 9, we prove the uniqueness even keeping only one zero after

Algorithm 9:
Algorithm: comparing different sets of LCIDs

Input: Desired precision, Interval
Output: LCIDs are unique

1 begin

2 Let dp := Desired precision
3 U := Set of USIDs
4 I := Interval
5 U←− Generate USIDs(dp)
6 USIDmax:= Max. value of USID in the set U
7 M:= No. of elements in the set U
8 for kk ←− 1 to M do

9 USID ←− U [kk]
10 d[kk]←− Generate LCIDs (I, USID, USIDmax, dp)

11 end

12 for i ←− 1 to M-1 do

13 MM:=No. of elements in d[i]
14 for j ←− 2 to MM-1 do

15 for k ←− i+1 to M do

16 if member(d[i][j], d[k]) = true then

17 USIDi:= USID corresponding to the set d[i]
18 USIDk:= USID corresponding to the set d[k]
19 if USIDi 6= USIDj then

20 d[i][j] is a common point between the sets d[i] and d[k]
21 please verify the precision conditions

22 end

23 else

24 No common points are there
25 end

26

27 end

28 end

29 end

30 return No collision

31 end

decimal point but in generating line/character identifiers we keep more than
one zero in that place. The reason is that, with only one zero, cardinality
formulation is complicated that could be observed by drawing graph for the
line/character identifiers generated by keeping only one zero. In addition to
theorem 9, we provide a simple algorithm that make a comparison between
line/character identifiers generated (see line 16) for different users and alerts
if there is any mistake in selecting specific pattern to generate such identifiers.

8.2 Computing cardinality

Cardinality of a set is the "number of elements in the set". For example, the
set A = {2, 4, 6} contains 3 elements, and therefore cardinality of set A is 3.
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Under Precision Control Technique (PCT), it is possible to compute cardinality
of line/character identifiers LCIDs, generated by taking a particular precision.

Definition 15. The possible number of identifiers (LCIDs) that could be cre-
ated for a user (site) under particular precision is called local cardinality and
is denoted by Cl.

8.2.1 Local cardinality

Let γ denotes the length of the interval I = [ a, b ], 0 ≤ a < b then γ = |b− a|
with γ > 0. For the precision pr, local cardinality for a single user can be
computed as

Cl =















γ × 10pr if b > a ≥ 0, for a, b ∈ N
(γ1 × 10pr)− 1 if b > a > 0, for a, b ∈ R

and γ1 = |γ|pr

such that
pr < pǫ < pd

USIDs are of the pattern as explained in section 8.1.2.

Example 24. Suppose that I1 = [0, 1], pr = 3, USIDmin = 0.00001, and
USIDmax = 0.0000999. The local cardinality of a set of LCIDs, that a single
user with USID = 0.0000439 can generate, is computed by Cl = 1∗103 = 1000.
Now, let the same user wants to compute local cardinality of LCIDs between
two LCIDs (already computed by him). Let I2 = [0.7609561, 0.8139561] then
γ1 = 0.053 and Cl = (0.053 ∗ 103)− 1 = 52.

8.2.2 Global cardinality

We define global cardinality as follows.

Definition 16. In a network of users/peers, the union of local cardinality
computed by/at each user/peer is called global cardinality and is denoted by
Cg.

Computing global cardinality of a network depends on the local cardinali-
ties, insertion/deletion, sending/receiving and the ways of exchange of LCIDs
by the participants. We compute, here, global cardinality for a simple sit-
uation. Consider a network of n (n ∈ N) users/peers and assume that each
user/peer generates LCIDs locally and send to others. Each user/peer can also
removes points that has already been created. Since two different users/peers
generate different LCIDs (by Theorem 9), therefore, no duplication of LCIDs
is possible during the exchange of elements between users/peers.
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Bounds over cardinality

For a particular precision pr, we take zero as the lower bound over local car-
dinality for a single user/peer and local cardinality computed by a single user
for an empty document is considered to be an upper bound over local car-
dinality. We take local cardinality computed by a single user for an interval
I = [ a, b ], 0 ≤ a < b (as explained in section 8.2.1) as a lower bound for
global cardinality of a network of n ∈ N users/peers. Similarly, we take an
upper bound over global cardinality as

Cg =
n

∑

i=1

Cli

that corresponds to an ideal situation in which each user/peer achieves an
upper bound over local cardinality.
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Set of identifiers LCIDs generated by algorithm 8 (see chapter 8, section
8.1.3) holds some important properties that show advantages of the precision
control indexing method. These properties provide assurance in generating
identifiers based on remote points. The existence of closure properties confirm
that there is no loss of identifier during exchange of points and all the identifiers
generated don’t escape from the interval allocated for all users in the network.
Similarly, an analysis of the function 8.2 helps in exploring the usefulness of
the function with rounding conditions and explains its limitations.
In this chapter, we prove some important properties that hold on the set of
identifiers LCIDs generated by the algorithm 8. In section 9.2, we present
an analysis of function 8.2 by comparing it with classical midpoint formula
under different situations. Section 9.2.4 presents effect of different rounding
conditions over the function (function 8.2) used in algorithm 8. Section 9.2.5
describes how our approach assure order preservation in exchange of points
across the network particularly when identifies are required to generate on the
basis of identifiers of remote points.
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9.1 Properties

In this section, we prove that set of identifiers LCIDs holds bijection property
as well as some closure properties.

9.1.1 Bijection property

Proposition 5. Let S ′ be the set defined over the interval I = [ a, b ], 0 ≤ a <
b, as

S ′ = {
n′

10pr
| n′ ∈ N, a < n′ ≤ β, β = γ ∗ 10pr}

where γ is the length of the interval I with |γ|pr
> 0. For 1 ≤ k ≤ n, n ∈ N,

let ǫk be one of the USIDs then the function fk : S ′ −→ S ′′ defined by fk(x′) =
x′ − ǫk, ∀x′ ∈ S ′, is a bijection.

Proof. The domain of the function fk is the set

S ′ = {
n′

10pr
| n′ ∈ N, a < n′ ≤ β, β = γ ∗ 10pr}

and the range of the function fk is the set

S ′′ = {x′ − ǫk | ∀ x′ ∈ S ′, pǫ ≥ pr + µ, µ ≥ 2}

Now, we have to prove that the given function fk is both injective and surjective

• Injection
Suppose that

x′1 6= x′2, ∀ x′1, x′2 ∈ S ′

then
fk(x′1) = x′1 − ǫk and fk(x′2) = x′2 − ǫk

Let
fk(x′1) = fk(x′2)

=⇒ x′1 = x′2

A contradiction to the supposition that x′1 6= x′2. Thus

fk(x′1) 6= fk(x′2)

• Surjection

For surjection, we have to prove that

∃ x′ ∈ S ′, such that x′′ = fk(x′), ∀x′′ ∈ S ′′

∵ x′ = x′′ + ǫk

∴ fk(x′′ + ǫk) = x′′ + ǫk − ǫk = x′′

=⇒ fk is a surjective functions

Hence for 1 ≤ k ≤ n, fk presents a family of bijective functions.
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The bijection property as described in proposition 5 helps in verifying the
cardinality formula proposed in previous chapters. Set S ′′ contains LCIDs
similar generated by the algorithm 8. For example, for the interval [0, 1], we
can generate values

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

It generates LCIDs by subtracting corresponding USIDs, under chosen round-
ing precision.

Definition 17. We denote, the set of USIDs computed by user Uk with USI-
D (ǫk) over the interval [a, b], 0 ≤ a < b, by Sk, where 1 ≤ k ≤ n, n ∈ N.

Corollary 2. For the interval I = [ a, b ], 0 ≤ a < b, two sets S ′′ and Sk are
equal.

Proof. For a USID = ǫk, the set Sk can be written as

Sk = {xk | xk = |xk|pr
− ǫk}

Let x́k ∈ Sk then x́k = |x́k|pr
− ǫk. Now |x́k|pr

∈ Ś, where

S ′ = {
n′

10pr
| n′ ∈ N, 1 ≤ n′ ≤ β, β = γ × 10pr}

But |x́k|pr
− ǫk ∈ S ′′ by Proposition 5.

Therefore Sk and S ′′ are equal sets generated over the same interval.

9.1.2 Closure properties

In this section, we prove some important closure properties.

First Property

Lemma 5. Let for 1 ≤ k ≤ n, n ∈ N, ǫk ∈ {ǫ1, ǫ2, ǫ3, . . . , ǫn−1, ǫn} be the
USID for user Uk and Sk be the set of LCIDs generated for the user Uk over
the interval I = [ a, b ], 0 ≤ a < b. Then for x, y ∈ Sk, x < y,

∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Proof. Let x, y ∈ Sk then

x = |x|pr
− ǫk, and |x|pr

∈ Ś

y = |y|pr
− ǫk, and |y|pr

∈ Ś

where

S ′ = {
n′

10pr
| n′ ∈ N, 1 ≤ n′ ≤ β, β = γ × 10pr}
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Suppose that

∇ =
∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

> (USID)max

That is, condition C5. (section 23) is satisfied. It gives ∇ ∈ Ś,
Now

|x|pr
<

∣

∣

∣|x|pr
+∇

∣

∣

∣ ≤ |y|pr

But
∣

∣

∣|x|pr
+∇

∣

∣

∣

pr

∈ Ś

Therefore, by definition 17.
∣

∣

∣|x|pr
+∇

∣

∣

∣

pr

− ǫk ∈ Sk

This property proves that over the set of identifiers generated for a user,
any new identifier generated (for the same user) on the basis of two identifiers
that have already generated, this new identifier lies in the same set.

Second Property

Lemma 6. Let Si, Sj, and Sk be the set of LCIDs generated for users Ui, Uj

and Uk with USIDs, ǫi, ǫj and ǫk over the interval I = [ a, b ], 0 ≤ a < b
respectively. Then for any two points x ∈ Si, y ∈ Sj, x < y and for ǫj < ǫk.

∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Proof. Let x ∈ Si and y ∈ Sj then

x = |x|pr
− ǫi, and |x|pr

∈ Ś

y = |y|pr
− ǫj, and |y|pr

∈ Ś

Also, the sets Si, Sj, and Sk can be written as

Si = {x′ − ǫi | ∀ x′ ∈ S ′, pǫ ≥ pr + µ, µ ≥ 2}

Sj = {x′ − ǫj | ∀ x′ ∈ S ′, pǫ ≥ pr + µ, µ ≥ 2}

Sk = {x′ − ǫk | ∀ x′ ∈ S ′, pǫ ≥ pr + µ, µ ≥ 2}

where

S ′ = {
n′

10pr
| n′ ∈ N, 1 ≤ n′ ≤ β, β = γ × 10pr}

Suppose that

∇ =
∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

> ǫ, with, ǫ = max(ǫi, ǫj, ǫk)
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=⇒ |x|pr
6= |y|pr

Otherwise, condition C5. (section 23) does not hold.
Now, let

ṕ =
∣

∣

∣|x|pr
+∇

∣

∣

∣

pr

then
|x|pr

< ṕ ≤ |y|pr

Let
ṕ = |y|pr

then
ṕ ∈ Ś

Now, since
ǫj < ǫk

Therefore,
ṕ− ǫk < ṕ− ǫj and ṕ− ǫk ∈ Sk

This property proves that if an identifier is generated for first user and
another identifier is generated for second user, then an identifier generated for
third user lies within the set of identifier generated for third user.

Third Property

Lemma 7. Let Si be the set of LCIDs generated by user (or at site) Ui with
USID = ǫi over the interval I = [ a, b ], 0 ≤ a < b. Then for any two points
x, y ∈ Si, x < y and for ǫi < ǫk.

∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Proof. Let

pi,1 =

∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

be the first rounded value computed by user Ui over the interval I. Since, each
user starts computing values over the same interval I keeping same conditions
of the algorithm. Therefore, for, 1 ≤ i ≤ n, we have

p1,1 = p2,1 = p3,1 = . . . = pi,1 = p(i+1),1 = . . . = pn,1

But by Theorem 9.

p1,1 − ǫ1 6= p2,1 − ǫ2 6= . . . 6= pi,1 − ǫi

6= p(i+1),1 − ǫi−1 6= . . . = pn,1 − ǫn
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By definition 17,

p1,1 − ǫ1 ∈ S1, p2,1 − ǫ2 ∈ S2, . . . , pn,1 − ǫn ∈ Sn

Hence
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

This property proves that if a set of identifiers is generated for first user
then a new identifier generated for second user (based on the set of identifiers
generated for first user), belongs to the set of identifiers generated for second
user.

Fourth property

Lemma 8. For 1 ≤ k ≤ n, n ∈ N, let Uk be the set of users/sites and

S =
n

⋃

k=1

Sk, with x < y be the set of USIDs generated by all Uk/sites then for

x, y ∈ S and ǫk ∈ {ǫ1, ǫ2, ǫ3, . . . , ǫn−1, ǫn}, the point
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Proof. Suppose that

∇ =
∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

> ǫ,

with
USIDmax = max(ǫ1, ǫ2, ǫ3, . . . , ǫn−1, ǫn)

Now, let x, y ∈ Sk then, by Lemma (5).
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Let x ∈ Si and y ∈ Sj then, by Lemma (6).
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Finally, let x, y ∈ Si then, by Lemma (7).
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ Sk

Since Sk ⊆ S, therefore
∣

∣

∣

∣

∣

|x|pr
+

∣

∣

∣

∣

|y|pr
− |x|pr

2

∣

∣

∣

∣

pr

∣

∣

∣

∣

∣

pr

− ǫk ∈ S

Hence the proof.
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9.2 Analysis

In this section, we make an analysis for the function 8.2 to explore some of its
advantages. The classical midpoint formula excludes condition C4. (see for
detail, chapter 8, section 8.1.3).

C4. p :=
∣

∣

∣|a|pr
+∇

∣

∣

∣

pr

− USID

and rounding restrictions described in Outlines (chapter 8, section 8.1.3). We
make a comparison between two formulas as follows:

9.2.1 Comparison under Rounding Conditions

Under rounding conditions formula 8.2 compute more points as compared to
the classical midpoint formula.

Example 25. Consider the interval I = [0, 0.001] with (user-identifier) =
0.00001, epsilon = 0.00001 and pr = 3. We are able to insert one point inside
the interval I using formula 8.2 as given below,

I = [0, 0.00099, 0.001]

with ∇ = 0.0005 and ∇ > epsilon, but we cannot insert any point inside the
interval I using classical midpoint formula due to the fact that rounding ∇
over pr = 3 returns ∇ = 0.001 which is the end point of the interval I.
Similarly for the interval I = [0, 0.002], using formula 8.2, we can compute
one more point over the interval I as compared to classical midpoint formula,
with pr = 3, epsilon = 0.00001 and (user-identifier) = 0.00001.

[0, 0.00099, 0.00199, 0.002]

[0, 0.001, 0.002]

With different values of epsilons and rounding scheme (as we proposed in
Theorem 9), formula 8.2 generate different points (see Table: 8.2), while the
classical midpoint formula does not do the same under the same environment
(see Table: 9.1). Nine users assigned with different USIDs as given below:

ǫ1 = 0.0100, ǫ2 = 0.0200, ǫ3 = 0.0300, ǫ4 = 0.0400

ǫ5 = 0.0500, ǫ6 = 0.0600, ǫ7 = 0.0700, ǫ8 = 0.0800

ǫ9 = 0.0900, ǫ = 0.0900

participate. The identifiers are listed in table 9.1.
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User Similar Identifiers

U1 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U2 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U3 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U4 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U5 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U6 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U7 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U8 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

U9 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000

Table 9.1: Similar Identifiers

I pe ǫi ǫ Cd(fc) Cd(f1) Cd(f1)− Cd(fc)
[0, 0.01] 3 0.003 0.003 3 33 30

[0, 0.01] 4 0.0003 0.0003 33 243 210

[0, 0.01] 5 0.00003 0.00003 257 2216 1959

[0, 0.01] 6 0.000003 0.000003 2049 19380 17331

[0, 0.0001] 7 0.0000003 0.0000003 257 2216 1959

[0, 0.0001] 8 0.00000003 0.00000003 2049 19580 17371

[0, 0.0001] 9 0.000000003 0.000000003 32769 165039 132270

Table 9.2: Cardinality Comparison

9.2.2 Comparison without Rounding Conditions

Let Cd(f1) and Cd(fc) denotes the cardinality of points inserted by formula 8.2
and classical formula respectively. With different values of epsilon and length of
the interval I, we observe a notable difference in Cd(f1) and Cd(fc) as given
in the Table 9.2. We observed that, on increasing the precision of epsilons,
the cardinality increases more for the points computed by the formula 8.2 as
compare to the cardinality computed by the classical formula.

9.2.3 Comparison under floating-point arithmetics

We also prefer to use the fraction

xi +
xi+1 − xi

2
over

xi+1 + xi

2

due to the fact that midpoint computed by later one may not lies within the
interval under certain restriction on floating-point arithmetics. For example,
for an interval I = [0.982, 0.987], if we are restricted to perform calculation on
a machine with three decimal digit chopped floating point arithmetic, then

x + y = 1.96 and
x + y

2
= 0.980 /∈ I
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9.2.4 Effect of different rounding conditions

In this section, we analyse function 8.2 with different rounding conditions so
that the effect over the set of identifiers LCIDs can be observed. Consider a
situation in which users/sites in the network participate in an order to compute
LCIDs. Each user in the network computes LCIDs locally and sends it to all
other users/sites. For a set of USIDs {ǫ1, ǫ2, ǫ3, . . . , ǫn−1, ǫn}, let USIDmin =
min(ǫk), where 1 ≤ k ≤ n, for n ∈ N,
To analyse function 8.2, we modify rounding conditions (see line 2 to line 4 in
the modified form of function 7 as given below).

Modification-I

Input: I=[a1, b1], USID, USIDmax, Precision(pr)
1 begin
2 a← a1;
3 b← b1;

4 ∇ :=
∣

∣

∣

∣

b− a

2

∣

∣

∣

∣

pr

;

5 if ∇ > USIDmax then
6 point := |a +∇|pr

− (USID);
7 end
8 return point;
9 end

We also exclude condition C5. of the outlines (section 8.1.3, page 123) to
compute LCIDs.
We consider the following two situations.

1. If the set of USIDs is in ascending order

2. If the set of USIDs is in descending order

Computing LCIDs keeping USIDs in ascending order

In this environment, we suppose that the user (site) assigned with USIDmin
starts computing and sends points to others such that the computation of
USIDs occurs in a way that user Ui+1 starts computation after user Ui. In this
case the set of USIDs is in ascending order, i.e. {ǫ1, ǫ2, ǫ3, . . . , ǫn−1, ǫn}. We
explain the situation by the following example.

Example 26. Suppose that I = [ 0.0, 0.02 ] be an interval and user U1 with
USID = 0.0001 starts computing LCIDs keeping precision pr = 2. Then the
set of USIDs generated corresponding to the modifications performed by user
U1 is given below.

S1 = [ 0.0, 0.0099, 0.0199, 0.02 ]
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Now, U1 sends LCIDs to other users/sites so that updates are executed at each
site of the network. Now, user U2 with USID = ǫ2 = 0.0002 has to compute
new USIDs based on the points sent by U1. The set of USIDs computed by U2

is
S2 = [ 0.0, 0.0099, 0.0198, 0.0199, 0.02 ]

U2 sends LCIDs to next users.
Similarly, user U3 with USID = ǫ3 = 0.0003 has to compute USIDs based on
the points that it received. But U3 is not able to compute any point because the
∇ condition is not valid. Consider, for example,

∇ =
∣

∣

∣

∣

0.0198− 0.0099
2

∣

∣

∣

∣

2
=

∣

∣

∣0.00495
∣

∣

∣

2
≯ USIDmax

Hence, for an interval I = [ 0, 1 ] and a set of nine users/sites assigned a
set of USIDs as given below

[ 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009 ]

User at site with USID = 0.001 computes 10 USIDs

[ 0, 0.099, 0.199, 0.299, 0.399, 0.499, 0.599, 0.699, 0.799, 0.899, 0.999, 1 ]

and sends to next users/sites. Now user U2 with USID = 0.002 computes 9
more LCIDs
but any other user could not be able to increase the global cardinality that is

A final set after the participation of each user

0.000 0.099 0.198 0.199 0.298

0.299 0.398 0.399 0.498 0.499

0.598 0.599 0.698 0.699 0.798

0.799 0.898 0.899 0.998 0.999 1.000

Table 9.3: Set of Identifiers (LCIDs)

21 as shown in the Table 9.3 We observe that

• Only two users are able to compute the points but not all.

• Final set of USIDs is an ordered set and USIDs are in ascending order.

Computing LCIDs keeping USIDs in descending order

In this environment, the user (site) assigned with USIDmax starts comput-
ing and sending points to others, in a way that user Ui starts computation
after user Ui+1. In this case the set of USIDs is in decreasing order, i.e.,
{ǫn, ǫn−1, ǫn−2, . . . , ǫ2, ǫ1}.
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Example 27. For the precision pr = 2, consider a set of 90 users such that
user U90 with USID = ǫ90 = 0.00099 starts computing points for the interval
I = [ 0, 0.02 ],

S90 = [ 0, 0.00901, 0.01901, 0.02 ]

and U90 sends LCIDs to the next user U89 with USID = ǫ89 = 0.00098. User
U89 computes one point based on the points sent by U90

[ 0, 0.00901, 0.01902, 0.01901, 0.02 ]

and sends to next users. Now, user U88 with USID = ǫ88 = 0.00097 computes
one point because the ∇ condition is valid. Consider two consecutive points,
for instance,

[ 0.01902, 0.00901 ]

∇ =
∣

∣

∣

∣

0.00901− 0.01902
2

∣

∣

∣

∣

2
= 0.01 > USIDmax

Therefore, next user can compute one more point as given below.

[ 0., 0.00901, 0.01903, 0.01902, 0.01901, 0.02 ]

Similarly, we observe that, all other users can compute LCIDs and gives the
global cardinality as 93 including the end points of the interval.

Thus for an interval I = [ a, b ], and a set of nine users with a set of nine
USIDs as given below

[ 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009 ]

User with USID = 0.009 will compute 10 points, while all other users compute
9 points as given in the Table 9.4. Thus the global cardinality for the given
interval is 84. We observe that

Similar Identifiers

0.0 0.091 0.199 0.198 0.197 0.196 0.195 0.194 0.193 0.192

0.191 0.299 0.298 0.297 0.296 0.295 0.294 0.293 0.292 0.291

0.399 0.398 0.397 0.396 0.395 0.394 0.393 0.392 0.391

0.499 0.498 0.497 0.496 0.495 0.494 0.493 0.492 0.491

0.599 0.598 0.597 0.596 0.595 0.594 0.593 0.592 0.591

0.699 0.698 0.697 0.696 0.695 0.694 0.693 0.692 0.691

0.799 0.798 0.797 0.796 0.795 0.794 0.793 0.792 0.791

0.899 0.898 0.897 0.896 0.895 0.894 0.893 0.892 0.891

0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 1.0

Table 9.4:

• All users are able to compute the points.

• The final set of Inserted points is not in order.
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Modification-II

To analyse function 8.2, we modify rounding conditions (see line 2 to line 6
in the modified form of function 7 as given below). Here, we also exclude

Input: I=[a1, b1], USID, USIDmax, Precision(pr)
1 begin
2 a← a1;
3 b← b1;

4 ∇ :=
b− a

2
;

5 if ∇ > USIDmax then
6 point := |a +∇|pr

− (USID);
7 end
8 return point;
9 end

condition C5. of the outlines (section 8.1.3, page 123) to compute LCIDs.

Computing LCIDs keeping USIDs in Ascending Order

Consider the following example, to observe the effect of above modification of
the Function 7.

Example 28. Let I = [ 0, 0.3 ] be the interval and user U1 with USID = ǫ1 =
0.001 starts computing USIDs under precision pr = 1, Then

S1 = [ 0, −0.001, 0.099, 0.199, 0.3 ]

U1 sends LCIDs to the next user U2 with USID = ǫ2 = 0.002. User U2

computes points based on the points sent by U1

S2 = [ 0, −0.001, −0.002, 0.099, 0.098, 0.199, 0.198, 0.3 ]

and sends to next users. Now, user U3 with USID = ǫ3 = 0.003 computes
points because the ∇ Condition is valid.

[0.,−0.001,−0.002,−0.003, 0.099, 0.098, 0.097, 0.199, 0.198, 0.197, 0.3]

At the completion of the process we have a set of 29 LCIDs as listed in the
Table 9.5

Similarly, under precision pr = 1, for an interval I = [0, 1] and a set of
nine users as given below

[0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009]

Each user is able to compute 10 points. So the global cardinality for the given
interval will be 92 as shown in the Table 9.6. We observe that

• Each user is able to insert points due to the modified rounding scheme

• Each patch of USIDs is in decreasing order.
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A final set after the participation of each user

0 −0.001 −0.002 −0.003 −0.004 −0.005

−0.006 −0.007 −0.008 −0.009 0.099 0.098

0.097 0.096 0.095 0.094 0.093 0.092

0.091 0.199 0.198 0.197 0.196 0.195

0.194 0.193 0.192 0.191 0.3

Table 9.5: Set of Identifiers

A final set after the participation of each user

0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.006 −0.007 −0.008 −0.009

0.099 0.098 0.097 0.096 0.095 0.094 0.093 0.092 0.091

0.199 0.198 0.197 0.196 0.195 0.194 0.193 0.192 0.191

0.299 0.298 0.297 0.296 0.295 0.294 0.293 0.292 0.291

0.399 0.398 0.397 0.396 0.395 0.394 0.393 0.392 0.391

0.499 0.498 0.497 0.496 0.495 0.494 0.493 0.492 0.491

0.599 0.598 0.597 0.596 0.595 0.594 0.593 0.592 0.591

0.699 0.698 0.697 0.696 0.695 0.694 0.693 0.692 0.691

0.799 0.798 0.797 0.796 0.795 0.794 0.793 0.792 0.791

0.899 0.898 0.897 0.896 0.895 0.894 0.893 0.892 0.891 1

Table 9.6: Set of Identifiers

Computing LCIDs keeping USIDs in descending order

With a set of USIDs in decreasing order, consider the same interval I = [ 0, 0.3 ]
and precision pr = 1, as taken in Example 28.

Example 29. Suppose pr = 1, user u1 at ǫ1 = 0.009 computes points for the
interval [0, 0.3],

[ 0, −0.009, 0.091, 0.191, 0.3 ]

and sends to the next user u2 at ǫ2 = 0.008. User u2 computes points on the
basis of points received from u1

[ 0, −0.009, −0.008, 0.091, 0.092, 0.191, 0.192, 0.3 ]

and sends to next users. Now, user u3 at ǫ3 = 0.007 computes points because
the ∇ Condition is valid.

[ 0.0, −0.009, −0.008, −0.007, 0.091, 0.092, 0.093, 0.191, 0.192, 0.193, 0.3 ]

we compute the LCIDs as given in the Table 9.7.
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A final set after the participation of each user

0 −0.009 −0.008 −0.007 −0.006 −0.005

−0.004 −0.003 −0.002 −0.001 0.091 0.092

0.093 0.094 0.095 0.096 0.097 0.098

0.099 0.191 0.192 0.193 0.194 0.195

0.196 0.197 0.198 0.199 0.3

Table 9.7: Set of Identifiers

Similarly for the interval I = [0, 1] with a set of nine users/sites assigned
a set of USIDs as given below

[ 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009 ]

User at epsilon = 0.009 will compute 10 points, and all other users also com-
putes 10 points. So the global cardinality for the given interval will be 92 as
listed in the Table 9.8.

A final set after the participation of each user

0 −0.009 −0.008 −0.007 −0.006 −0.005 −0.004 −0.003 −0.002 −0.001

0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099

0.191 0.192 0.193 0.194 0.195 0.196 0.197 0.198 0.199

0.291 0.292 0.293 0.294 0.295 0.296 0.297 0.298 0.299

0.391 0.392 0.393 0.394 0.395 0.396 0.397 0.398 0.399

0.491 0.492 0.493 0.494 0.495 0.496 0.497 0.498 0.499

0.591 0.592 0.593 0.594 0.595 0.596 0.597 0.598 0.599

0.691 0.692 0.693 0.694 0.695 0.696 0.697 0.698 0.699

0.791 0.792 0.793 0.794 0.795 0.796 0.797 0.798 0.799

0.891 0.892 0.893 0.894 0.895 0.896 0.897 0.898 0.899 1

Table 9.8: Set of Identifiers

• Notice that, if we ignore the negative values, the final set of USIDs will
be in order.

We observe that

• Each user is able to insert points due to the modified rounding scheme

• Negative values are not within the given interval.

Effect of condition C5.

Condition C5. (see for detail chapter 8, section 8.1.3) is introduced to strictly
preserve order of identifiers based on exchanged points. This order preservation
property is implemented in Algorithm 8 from line 13 to line 18. Condition C5.
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is still flexible in some cases and can be excluded partially or fully. It may
affect the global cardinality, particularly when identifiers are to be computed,
based on exchanged identifiers and users are participating without keeping any
order in participation. This section deals with observing the effect of condition
C5. in the outlines (section 8.1.3, page 123). For this purpose, we have not
made any change in function 7 but only exclude condition C5..

Computing LCIDs keeping USIDs in ascending Order

We perform the similar experiment as above.

Example 30. Suppose pr = 1, user U1 with USID = ǫ1 = 0.001 computes
LCIDs for the interval [ 0, 0.2 ] as given below

S1 = [ 0, 0.099, 0.199, 0.2 ]

Then U1 sends LCIDs to the next user U2 with USID = ǫ2 = 0.002. User U2

computes one point based on the points sent by U1

S2 = [ 0, 0.098, 0.099, 0.198, 0.199, 0.2 ]

and sends to next users.
Now, user U3 with USID = ǫ3 = 0.003 compute point because the ∇ Condition
is valid. For instance, for two points [ 0.099, 0.198 ]

∇ =
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∣

∣

∣

∣

∣

∣

∣0.198
∣

∣
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1
−

∣

∣

∣0.099
∣

∣

∣

1

2

∣

∣

∣

∣

∣

1

= 0.1 > USIDmax

After the completion of process, final set of USIDs is listed in the Table 9.9

A final set after the participation of each user

0 0.0910 0.0920 0.0930 0.0940

0.0950 0.0960 0.0970 0.0980 0.0990

0.191 0.192 0.193 0.194 0.195

0.196 0.197 0.198 0.199 0.2

Table 9.9: Set of Identifiers

Similarly, for the interval [ 0, 1 ], and a set of nine users/sites assigned with
a set of USIDs as given below

[0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009]

User with USID = 0.009 will compute 10 points, and all other users also
computes 10 points. So the global cardinality for the given interval is 92 as
shown in the Table 9.10. We observe that

• All users are able to compute the points.

• Final set of LCIDs is an ordered set.
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A final set after the participation of each user

0 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099

0.191 0.192 0.193 0.194 0.195 0.196 0.197 0.198 0.199

0.291 0.292 0.293 0.294 0.295 0.296 0.297 0.298 0.299

0.391 0.392 0.393 0.394 0.395 0.396 0.397 0.398 0.399

0.491 0.492 0.493 0.494 0.495 0.496 0.497 0.498 0.499

0.591 0.592 0.593 0.594 0.595 0.596 0.597 0.598 0.599

0.691 0.692 0.693 0.694 0.695 0.696 0.697 0.698 0.699

0.791 0.792 0.793 0.794 0.795 0.796 0.797 0.798 0.799

0.891 0.892 0.893 0.894 0.895 0.896 0.897 0.898 0.899

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1

Table 9.10: Set of Identifiers

Computing LCIDs keeping USIDs in descending Order

Consider the following example

Example 31. Suppose pr = 1, user U9 with USID = ǫ9 = 0.009 computes
points for the interval [ 0, 0.2 ],

[ 0, 0.091, 0.191, 0.2 ]

and sends to the next user U8 with USID = ǫ8 = 0.008. User U8 computes
one point based on the points sent by U9

[ 0, 0.092, 0.091, 0.192, 0.191, 0.2 ]

and sends LCIDs to next users.
Now, user U7 with USID = ǫ7 = 0.007 computes point because the ∇ Condition
is valid. For instance, for two points 0.091 and 0.192

∇ =
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1

= 0.1 > USIDmax

User U6 compute points

[ 0, 0.093, 0.092, 0.091, 0.193, 0.192, 0.191, 0.2 ]

Final set of USIDs computed is listed in the Table 9.11.

Thus, for an interval I = [ 0, 1 ], and a set of nine users/sites with a set of
USIDs as given below

[ 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009 ]

User with USID = 0.009 computes 10 points, and each other user/site also
compute 10 points. So the global cardinality for the given interval is 92 as
shown in the Table 9.12. We observe that

• All users are able to compute the points.

• Each patch of USIDs is in decreasing order.
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A final set of USIDs

0 0.099 0.098 0.097 0.096

0.095 0.094 0.093 0.092 0.091

0.199 0.198 0.197 0.196 0.195

0.194 0.193 0.192 0.191 0.2

Table 9.11: Set of Identifiers

A final set after the participation of each user

0 0.099 0.098 0.097 0.096 0.095 0.094 0.093 0.092 0.091

0.199 0.198 0.197 0.196 0.195 0.194 0.193 0.192 0.191

0.299 0.298 0.297 0.296 0.295 0.294 0.293 0.292 0.291

0.399 0.398 0.397 0.396 0.395 0.394 0.393 0.392 0.391

0.499 0.498 0.497 0.496 0.495 0.494 0.493 0.492 0.491

0.599 0.598 0.597 0.596 0.595 0.594 0.593 0.592 0.591

0.699 0.698 0.697 0.696 0.695 0.694 0.693 0.692 0.691

0.799 0.798 0.797 0.796 0.795 0.794 0.793 0.792 0.791

0.899 0.898 0.897 0.896 0.895 0.894 0.893 0.892 0.891

0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 1

Table 9.12: Set of Identifiers

9.2.5 Assuring order preservation

Generally, a midpoint, of two points, computed by classical midpoint formula
lies within these two points but it may not true under certain environment as
explained in section 9.2.3, where a midpoint does not contained in the interval.

In generating identifiers, order preserving problem exist specifically during
the exchange of updates and in computing identifiers based on remote points
(identifiers), we have discussed this problem in detail in section 1.2.2 and
section 1.2.3. To deal with this issue, we pose condition C5. (see, outlines,
section 8.1.3) so that the order preservation property can be assured.

Next, we present a scenario of shared document, where three users partici-
pate in edition/modification, we explain, how the corresponding identifiers are
created and order is preserved over them.

Multi-users scenario

We take a shared document marked with ’Beg’ and ’End’ (supposed to be
mapped on an interval [0, 1]) as shown in Figure 9.1. Let with precision
pr = 1, three users U1 (assigned a user identifier 0.007), U2 (assigned a user
identifier 0.004) and U3 (assigned a user identifier 0.001) start editing the
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U3

site 1

U1

site 3

U3

site 2

U2

user

updating

0.007 0.001

0.004

characters
identifiers

EndBeg
0.499 10

A

EndBeg A B
10 0.499 0.799

X EndBBeg Y A
0.293 10.7990 0.296 0.499

X EndBTBeg Y S A
0.293 10.7990.6960 0.296 0.393 0.499

X EndBTBeg Y S
0.293 10.7990.6960 0.296 0.393

Figure 9.1: A scenario of three users

shared document at three different sites as shown in the Figure 9.1. Let user
U3 inserts character ’A’ then the first associated identifier 0.499 is computed.
User U3 inserts a second character ’B’ between ’A’ and ’End’ and the associated
identifier between 0.499 and 1 is computed as 0.799. Now document is updated
and at each site sequence of characters ’AB’ is appeared. Now, user U1 and
user U2 concurrently inserted two characters ’X’ and ’Y’ between ’Beg’ and ’A’.
Notice that identifiers for both characters are to be computed between 0 and
0.499 and are 0.293 and 0.296 respectively. Again, updates are performed and
each user has sequence of characters ’XYAB’. Now, user U1 inserts character
’S’ between ’Y’ and ’A’, identifier for ’S’, 0.393 is computed using neighboring
identifiers of characters ’Y’ and ’A’. Similar insertion of character ’T’ between
characters ’A’ and ’B’ by user U2 is attempted. Identifier for ’T’, 0.696 is
computed using neighboring identifiers of characters ’A’ and ’B’. At the same
time user U3 removes character ’A’. Updates are executed and each site has a
sequence of characters ’XYSTB’. Notice that removal of ’A’ does not affect the
insertion by other users because each site has its own replicas.
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In decentralized collaborative editing, to generate new identifiers based on
remote points and updates, the information about identifiers of remote points
is also required along with updates. This will facilitate in resolving conflicts
during edition/modification. We are interested in designing a model for a
network of users/sites/peers in such a way that the global cardinality could be
maximized.

In this chapter, we present different models to observe the effect on global
cardinality during the exchange of points across the network. We provide a
comparison of these models and explain the limitations of certain situations.
We perform whole of experimentations with focusing in two different situations:

1. Delayed exchange of points

2. Real time exchange of points

Section 10.1 deals with the first situation whereas section 10.2 deals with the
second situation in detail. For whole of the communication in the network,
the identifiers are generated using the criteria (as explained in section 8.1.3,
Outlines, page 123) respecting the posed precision conditions.
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10.1 Delayed exchange of points

We propose this environment based on the supposition that users edit/modify
shared document one after the other, for example, one of the users U1 (say)
starts modifying/editing shared object/document and sends updates to all
other users (say lazy), then a second (any one else) user starts computing, af-
ter receiving the points from U1. After receiving updates, any user who wants
to compute points must have to verify the validity of the required conditions
(section 8.1.3, Outlines, chapter 8) on the points including the points that
he/she has received. This environment may prevent global cardinality in ap-
proaching to its upper bound. We explain this environment by considering two
different situations, firstly when users participate randomly and secondly when
they participate in an order. We describe the first situation by a stochastic-like
model and second by a deterministic-like model.

10.1.1 Random Participation

This section deals with random participations of participants and it allows
users to participate several times independent of any order.

Model 1

We propose a model that deals with exchange of points in the network ℵ, that
is based on the following assumptions.

1. Each user in the network is assigned an identifier from an ordered set U
of user/site-identifiers (USIDs) generated under a chosen precision.

2. Any user participate in edition/modification of shared document ran-
domly.

3. Users perform all possible operations and send these updates, at once,
to others, i.e., packets of points are exchanged during the process.

4. All updates receive at all sites.

5. To generate new identifiers, it has to verify the validity of the required
conditions (section 8.1.3, Outlines, chapter 8) on the points including
the points received.

6. If a new identifier is generated then global cardinality will be updated
otherwise it remains unchanged.

7. Any user can participate more than once, however, insertion of points
depend on the validity of the required conditions.
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We transform Model 1 in the form of an algorithm 10 and perform an experi-
ment in which 90 users participate in editing a shared documents and exchange
points across the network ℵ. Algorithm generates an ordered set of user iden-
tifiers and take any identifier randomly from the set. Then it computes all
possible identifiers (under selected precision) for a user and send the set of
these identifiers to all other users. Then algorithm take a second identifier
randomly from the set that has already generated and repeat the same pro-
cess as it completed first time. In fact, after first iteration, algorithm verify
conditions over the identifiers including identifiers that received from previous
iteration. It may create limitations in generating new identifiers due to the
reason of validity of conditions of the basic criteria. Algorithm 10 provides a
quick view of the Model 1 and helps to understand idea in a more simple way.

Algorithm 10: How to exchange points in Batch Mode
Algorithm: Batch Mode (Random Participation)

Input: Interval I = [a1, b1], Desired precision
Output: Set of USIDs after exchanges and global cardinality

1 begin
2 Let dp := Desired precision
3 U := Set of USIDs
4 L := Set of LCIDs
5 U←− Generate USIDs(dp)
6 USIDmax:= Max. value of USID in the set U
7 M:= No. of elements in the set U
8 for j ←− 1 to M do
9 USIDrand ←− USID randomly picked from set U

10 L←− Generate USIDs (L, USIDrand,
11 USIDmax, dp)
12 foreach USIDrand do
13 Update Global Cardinality if
14 new points are computed
15 end

16 end
17 return Final Set of LCIDs along-with global cardinality

18 end

Experiment

By taking rounding precision pr = 2, we perform an experiment for a set of 90
users assigned with different USIDs and record global cardinality (correspond-
ing to user-identifiers that participate in the experiment) in Table 10.1.
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Table 10.1: Cardinality observation with precision 2

An example with 90 users, participating randomly
user-identifier 0.0001900 0.0004900 0.0007500 0.0009600 0.0002500
cardinality 102 202 302 402 402
user-identifier 0.0005200 0.0006200 0.0007000 0.0005600 0.0003700
cardinality 402 402 402 402 402
user-identifier 0.0008400 0.0001200 0.0001400 0.0002000 0.0004600
cardinality 402 402 402 402 402
user-identifier 0.0008400 0.0001300 0.0003100 0.0004900 0.0006700
cardinality 402 402 402 402 402
user-identifier 0.0002000 0.0003900 0.0001500 0.0004100 0.0004900
cardinality 402 402 402 402 402
user-identifier 0.0003300 0.0008900 0.0002000 0.0003200 0.0005000
cardinality 402 402 402 402 402
user-identifier 0.0006100 0.0006700 0.0007600 0.0009000 0.0007400
cardinality 402 402 402 402 402
user-identifier 0.0007800 0.0001100 0.0004500 0.0007000 0.0009300
cardinality 402 402 402 402 402
user-identifier 0.0004000 0.0009000 0.0004000 0.0006300 0.0007600
cardinality 402 402 402 402 402
user-identifier 0.0006800 0.0007500 0.0002100 0.0005800 0.0009900
cardinality 402 402 402 402 502
user-identifier 0.0004400 0.0002400 0.0003500 0.0003300 0.0001700
cardinality 502 502 502 502 502
user-identifier 0.0007200 0.0008700 0.0003200 0.0008200 0.0003100
cardinality 502 502 502 502 502
user-identifier 0.0004100 0.0001800 0.0006200 0.0001200 0.0007800
cardinality 502 502 502 502 502
user-identifier 0.0001200 0.0008200 0.0009700 0.0004600 0.0006900
cardinality 502 502 502 502 502
user-identifier 0.0006100 0.0002500 0.0003800 0.0006000 0.0001200
cardinality 502 502 502 502 502
user-identifier 0.0005400 0.0007600 0.0004900 0.0008000 0.0008300
cardinality 502 502 502 502 502
user-identifier 0.0005800 0.0006900 0.0007800 0.0004200 0.0003900
cardinality 502 502 502 502 502
user-identifier 0.0001000 0.0009200 0.0001800 0.0007300 0.0005200
cardinality 502 502 502 502 502

We observe that two users with USID = 0.00049 and 0.00012 participate
4 times in the experiment and is the maximum participation, highlighted by
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light-gray color. We show the jumps in global cardinality by green color and the
maximum cardinality achieved during this process, by pink color. A graphical

Figure 10.1: Users participation

observation is noted in Figure 10.1 that shows the participation of users in
the network ℵ. X-axis presents the number of users while y-axis presents the
set of USIDs. It is easy to observe that who participates, how many times in
the experiment. There are 32 users out of 90 who did not participate in the
experiment.

Figure 10.2: Number of users vs global cardinality

Figure 10.2 shows updates in the global cardinality corresponding to users
in the network ℵ. X-axis presents the number of users while y-axis presents
global cardinality corresponding to USIDs. It is easy to observe that which
user does not make an increment in the global cardinality.

Probability of maximum global cardinality

Suppose that Tu denotes the total number of users participate in the experi-
ment of computing points, then the probability to get maximum global cardi-
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nality will be calculated by
1

T Tu
u

Example 32. Let the precision pr = 2 and pǫ = 5, then we have a set of
90 different users with different user-identifiers. If we perform the random
experiments as one of them is shown in the table 10.1 then the probability to
have the maximum global cardinality is given by

1
T Tu

u

=
1

9090 = 1.312726192 ∗ 10−176

10.1.2 Ordered Participation

In last section we discussed random participation of the participants and noted
the effect on global cardinality. This section deals with the second situation
in which participants participate one by one following an order.

Model 2

To deal with the second situation, we propose this model for the network ℵ of
users keeping following assumptions.

1. Each user in the network is assigned an identifier from an ordered set U
of user/site-identifiers (USIDs) generated under a chosen precision.

2. Users participate in editing shared document keeping an order.

3. Users perform all possible operations and send these updates, at once,
to others, i.e., packets of points are exchanged during the process.

4. All sites in the network are able to receive the points that sent by others.

5. To generate new identifiers, it has to verify the validity of the required
conditions (section 8.1.3, Outlines, chapter 8) on the points including
the points received.

6. If a user computes new points then global cardinality will be updated
otherwise it will remain unchanged.

7. A user can participate only once.

To notice the effect on global cardinality, we make small modification in al-
gorithm 10 and named it algorithm 11. The modification can be seen in line
9. This small modification makes it easy to perform an experiment keeping in
view Model 2.
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Algorithm 11: Batch Mode Ordered Participation
Algorithm: Exchange of points

Input: Interval I = [a1, b1], Desired precision
Output: Set of USIDs after exchanges and global cardinality

1 begin
2 Let dp := Desired precision
3 U := Set of USIDs
4 L := Set of LCIDs
5 U←− Generate USIDs(dp)
6 USIDmax:= Max. value of USID in the set U
7 M:= No. of elements in the set U
8 for j ←− 1 to M do
9 USIDj ←− Jth USID in the set U

10 L←− Generate USIDs (L, USIDj,
11 USIDmax, dp)
12 foreach USIDj do
13 Update Global Cardinality if
14 new points are computed
15 end

16 end
17 return Final Set of LCIDs along-with global cardinality

18 end

Experiment

Executing algorithm 11, we perform an experiment keeping rounding precision
pr = 2, with a set of 90 users assigned different USIDs. We record the global
cardinality corresponding to user-identifiers in the table 10.2.

Table 10.2: Cardinality observation with precision 2

An experiment with 90 users, participating randomly
user-identifier 0.0001000 0.0001100 0.0001200 0.0001300 0.0001400
cardinality 102 202 302 402 502
user-identifier 0.0001500 0.0001600 0.0001700 0.0001800 0.0001900
cardinality 602 702 802 902 1002
user-identifier 0.0002000 0.0002100 0.0002200 0.0002300 0.0002400
cardinality 1102 1202 1302 1402 1502
user-identifier 0.0002500 0.0002600 0.0002700 0.0002800 0.0002900
cardinality 1602 1702 1802 1902 2002
user-identifier 0.0003000 0.0003100 0.0003200 0.0003300 0.0003400
cardinality 2102 2202 2302 2402 2502

Continued on next page
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Table 10.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0003500 0.0003600 0.0003700 0.0003800 0.0003900
cardinality 2602 2702 2802 2902 3002
user-identifier 0.0004000 0.0004100 0.0004200 0.0004300 0.0004400
cardinality 3102 3202 3302 3402 3502
user-identifier 0.0004500 0.0004600 0.0004700 0.0004800 0.0004900
cardinality 3602 3702 3802 3902 4002
user-identifier 0.0005000 0.0005100 0.0005200 0.0005300 0.0005400
cardinality 4102 4202 4302 4402 4502
user-identifier 0.0005500 0.0005600 0.0005700 0.0005800 0.0005900
cardinality 4602 4702 4802 4902 5002
user-identifier 0.0006000 0.0006100 0.0006200 0.0006300 0.0006400
cardinality 5102 5202 5302 5402 5502
user-identifier 0.0006500 0.0006600 0.0006700 0.0006800 0.0006900
cardinality 5602 5702 5802 5902 6002
user-identifier 0.0007000 0.0007100 0.0007200 0.0007300 0.0007400
cardinality 6102 6202 6302 6402 6502
user-identifier 0.0007500 0.0007600 0.0007700 0.0007800 0.0007900
cardinality 6602 6702 6802 6902 7002
user-identifier 0.0008000 0.0008100 0.0008200 0.0008300 0.0008400
cardinality 7102 7202 7302 7402 7502
user-identifier 0.0008500 0.0008600 0.0008700 0.0008800 0.0008900
cardinality 7602 7702 7802 7902 8002
user-identifier 0.0009000 0.0009100 0.0009200 0.0009300 0.0009400
cardinality 8102 8202 8302 8402 8502
user-identifier 0.0009500 0.0009600 0.0009700 0.0009800 0.0009900
cardinality 8602 8702 8802 8902 9002

For the above table 10.2, we can compute global cardinality for any user by
knowing its USID and the local cardinality using the following formula.

lc + 2 + 100((USID)− 0.0001) ∗ 105

where, lc denotes the local cardinality.
As an example, for USID = 0.00088, the global cardinality is computed as

102 + 100 ∗ (0.00088− 0.0001) ∗ 105 = 7902

Figure 10.3 shows a contribution of each user in updating the global cardinal-
ity during the experiment whereas Figure 10.4 shows participation of each user
in the experiment. In both figures, x-axis presents the number of users par-
ticipate in the experiment, where y-axis shows updates in cardinality and the
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Figure 10.3: Users participation

Figure 10.4: Number of users vs global cardinality

set of user-identifiers respectively. Note that both figures present straight lines
showing equal participation of users in the experiment and equal contribution
in updating the global cardinality.

When users participate keeping the set of USIDs in descending order

We keep the set of USIDs in decreasing order and modify condition ?? of
Model 2 as

??-b. From the set U, we pick any user/site-identifier in decreasing order, i.e.,
next user participates in the process has USID smaller than the USID
hold by the previous user.

Suppose that user at USID = max(USIDs) starts computing points and send
to all other users in the network ℵ such that others are lazy and they start
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computing after receiving these points. We record the global cardinality versus
USID in the Table 10.3.

Table 10.3: Cardinality observation with precision 1

An experiment with 9 users
user-identifier 0.009 0.008 0.007
cardinality 12 12 12
user-identifier 0.006 0.005 0.004
cardinality 12 12 12
user-identifier 0.003 0.002 0.001
cardinality 12 12 12

It is clear by the Table 10.3, that only first user with USID = 0.0090000
succeeded to insert points but not others in the network ℵ due to the reason
that Condition C5. (outlines section 8.1.3, page 123) is not satisfied for other
users.

Example 33. As shown in the Table 10.3, the user at USID = 0.009 compute
a set of LCIDs for the interval I = [ 0, 1 ] (as listed in the Table 10.4). and

Set of USIDs

0 0.091 0.191 0.291

0.391 0.491 0.591 0.691

0.791 0.891 0.991 1

Table 10.4: Example

send to all other users. Now user/site with USID = 0.008 computes the first
point 0.092 for the sub-interval [ 0.0, 0.091 ]. But due to Condition C5., the
point 0.092 will not be accepted and it will leads to no update in the global
cardinality.

10.2 Real time exchange of points

Contrary to the environment discussed in section 10.1, we propose this en-
vironment based on the assumptions as illustrated in Model 3. Under this
environment the identifiers are not essentially computed on the basis of re-
mote points and all participants are supposed to be active. This environment
has significant effect on global cardinality too. Real time exchange of points
actually is an ideal situation to maximize the global cardinality. This situation
can be modeled in the following way.
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Model 3

This section deals to model the real time exchange of points (characters, iden-
tifiers). We propose a model based on the following assumptions.

1. Each user in the network is assigned an identifier from an ordered set U
of user/site-identifiers (USIDs) generated under a chosen precision.

2. To edit/modify shared document, users are free to participate in a ran-
dom way or in an ordered way.

3. Users perform all possible updates (and corresponding identifiers are
generated following the criteria (outlines section 8.1.3, page 123)) and
send these updates immediately without any delay, to others, i.e., users
send updates to others before receiving identifiers from others.

4. All users in the network are able to receive the points that sent by others.

5. To generate new identifiers, it is not necessary to verify the validity of
the required conditions (section 8.1.3, Outlines, chapter 8) on the points
received.

6. If new identifiers are generated then global cardinality will be updated
otherwise it will remain unchanged.

7. A user can participate once.

Model 3 makes it possible to maximize the global cardinality. If we sort out
the set of user-identifiers and corresponding cardinality in an increasing order
then we get a straight line inclined with horizontal line. From the straight line,
it is easy to compute global cardinality at any time.

10.2.1 Computing Instant Global Cardinality

Suppose that two users ui and uj at time ti and tj compute the global cardi-
nality gci and gcj. Suppose uei and uej are the user-identifiers assigned to Ui

and Uj then a third user uγ with ueγ can estimate the global cardinality at
time tγ, (when uγ completes its turn), as follows

gcγ =
gcj − gci

uej − uei

(ueγ − uei) + gci

Due to validity of condition 3 (Model 3), each user is able to insert all the
points that he/she can compute based on the computation criteria, so each
user achieves his/her local cardinality. Due to the fact that each user send
points immediately to all others, ultimately, each user is able to complete the
process of computation before receiving points from other users, as a result,
the global cardinality for this modal is the union of the local cardinalities of
all users in the network and this is the upper-bound for global cardinality.
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10.2.2 Comparison

This section presents a comparison of different situations that we have stud-
ied in this chapter. In Model 1, all users are not able to update the global
cardinality due to the reason that Condition C5. is not valid for all users.
For example, in the experiment performed under the scenario of Model 1, user
with USID = 0.00099 succeeded to insert 100 points and updates the global
cardinality from 402 to 502 but user with USID = 0.00044 did not succeed to
insert any point and ultimately, there is no update in the global cardinality is
observed.

Model 2, presents the situation of ordered participation and in the experi-
ment performed a user with USID = 0.0001 starts edition/modification and
sends updates to others. Since the users are assigned the USID in an in-
creasing order and they follow this order in sending the points. Therefore
Criteria (outlines section 8.1.3, page 123) including Condition C5. both re-
mains valid for each user in the network ℵ and each user succeed to make
edition/modification. It enables each user to achieve its local cardinality, ulti-
mately, each user updates global cardinality.
The most worst case is described in the table 10.3, where only one user is
able to insert points but all others fail to update global cardinality. In this
case, criteria (Outlines, section 8.1.3, chapter 8) is satisfied for all users but
Condition C5. is not satisfied.

An ideal situation in maximizing the global cardinality achieved by imple-
menting Model 3. The global cardinality achieved both in Model 2 and Model
3 is similar. But in Model 2, the users have to follow the order imposed in com-
puting and sending the points where as Model 3 (section 10.2) is independent
of such restrictions.
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Chapter 11
Further work and conclusion

This thesis comprises the successful efforts in advancing the capabilities of se-
quential computation and distributed systems through investigating, extend-
ing and introducing strategies that facilitate "In Situ Design of Computation
(IDC)" (part-I) and indexed communications in decentralized collaborative
editing systems (part-II). The key contributions aimed to focus at:

1. Sequential break-down of operations through in situ design of computa-
tion (IDC).

2. Designing decentralized collaborative editing system based on precision
control indexing technique (PCT).

This final chapter presents future work and further perspectives of the de-
scribed results.

11.1 Further work

We begin by discussing possible future research directions and identifying open
questions that have emerged from this thesis.

11.1.1 Dispersion

In collaborative editing, the process of exchange of points corresponds to the
insertion/deletion of points during the edition/modification of shared docu-
ment. The removal of point creates the possibility to insert new point. But
each removal of point does not guarantee the insertion of new point as one can
desire. We describe this problem as follows.
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Problem Description

Suppose that an experiment is performed in which a shared document id edited.
Let, for instance, there are nine points in the document (see figure 11.1) as
given below.

[ p1, p2, p3, p4, p5, p6, p7, p8, p9 ]

Suppose that no more points can be added. Let one of the users attempted
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Figure 11.1: General diagram for dispersion problem

to insert a point at the position between points p4 and p5 and Algorithm 8 is
executed to perform the task, but the request is not accepted. Next, suppose
that one/two user/site/users/sites removes/remove two points p3 and p7 and
updates are executed. A different/same user/site again attempted the insertion
of a point at the position between the points p4 and p5. But still the request
is not accepted by the Algorithm 8 because of the failure of conditions.
Suppose that there is a dispersion mechanism that can displace the points in
such a way that available space/memory can be fully utilized. Now, apply the
dispersion mechanism to create the space to facilitate the intension of user/site.
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After the execution of updates, the points mp4, mp5 and mp6 are the modified
points.
Notice that, a user/site attempted the insertion of point at the same position
and the request is now accepted by the Algorithm 8.
In fact, we are interested to design a comprehensive “Dispersion Mechanism“,
that enables to recover empty spaces (or memory slots).

Next, we explain one of the possible situations and propose one of the pos-
sible algorithms that could be helpful to understand the dispersion problem.

11.1.2 One of the possible situations

Suppose that there are two users U1 and U2, assigned with USIDs, ǫ1 and ǫ2

such that
USIDmax = max(ǫ1, ǫ2)

, compute, and let two sets S1 and S2 of LCIDs are computed such that

S1 ∪ S2 = S (say)

Let
pj, 1 ≤ j ≤ CdS

denotes position of points in the set S, where CdS denotes number of elements
in the set S. Let users U1, U2 are not allowed to remove points at positions
pj, for j = 1 and/or j = CdS.
Let nr denotes number of points removed and nin denotes number of points
that user can insert then nin = nr. Now, let U1/U2 remove nr consecutive
points at position pj,

n1 ≤ j ≤ n2

for some n1, n2 ∈ N.

11.1.3 Case-1

Let U1/U2 wants to insert points at the same position pj,

n1 ≤ j ≤ n2

In this case, due to the closure property, users U1/U2 will recompute the points
that has already been removed by U1/U2.

11.1.4 Case-2

Let U1/U2 wants to insert points at the position different than pj,

n1 ≤ j ≤ n2, n1 > 1, n2 < CdS

then users U1/U2 will insert points nin = nr at position pj, for

n0 ≤ j < n1, or, n2 < j ≤ n3, n2 > 1, n3 < CdS, n0 > 1
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• Let pj, n0 ≤ j < n1, n0 > 1 and nin = nr. In this case, we have two
options.

1. We add δ ∗nr to all the points at position pj, n1 ≤ j ≤ n2 and push
them towards right-hand to create space before inserting points nr,
where δ = 1× 10−pr .

2. We add δ to all the points at position pj, n1 ≤ j ≤ n2 each time
before inserting each point and shift them towards right-hand to
create space, and perform this process recursively.

• Let pj, n2 < j ≤ n3, and nin = nr. In this case, we repeat any one
of the above two options and subtract δ from the points at position pj,
n1 ≤ j ≤ n2 to shift them towards left.

We generalize this procedure in the form of an algorithm as follows:
Let CdSR denotes cardinality of the set S after removing some points.

Algorithm

1. If CdSR = CdS, then no insertion is possible.

2. If CdSR 6= CdS, then execute the Algorithm 8

(a) If conditions of Algorithm 8 are satisfied then insert the point/points,
otherwise go to next step

(b) Let user desires to insert a point between positions pj and pj+1 then
locate the empty positions in both directions, to the left of the pj

and to the right of the pj+1.
Suppose that pj+q1

or pj−q2
is empty position for some q1, q2 ∈ N

then

• Add δ to point (points) at position (positions) pi, for, j + 1 ≤
i ≤ j + q1, OR,

• Subtract δ to point (points) at position (positions) pi, for, j −
q2 ≤ i ≤ j, OR,

• One can perform both operations simultaneously.

(c) Insert the point if it is different from s, ∀s ∈ S, where

S =
⋃

Si

3. Continue the process until the condition CdSR 6= CdS holds.

11.1.5 Modifications and extensions of IDC

We observed limitations in the IDC strategies (designed to deal with sequential
break down of operations) that need attention to be resolved and the strategies
need some modifications to deal with such limitations.
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To highlighted these limitations for the fields and provided counter example
that leads towards the modifications of the existing approach. An alternate
approach (using Bézout’s Identity) to generate sequence of assignments that
performs in situ computation for mappings with two dimensions has been dis-
cussed but the idea needs its further extension for general case and it requires
to investigate the possibility for the case of integers.

Similar limitations are observed in the case of rings and are highlighted by
providing counter example in generating sequence of assignments (from the
sequence of assignments that compute given mappings) to compute inverse
mappings. Thus, current approach requires modifications to deal with such
situations and could be applied possibly in different way.

In case of integers, the combinatorial results and counter examples show
that there are certain limitations for in situ strategies and it require improve-
ments and modifications. For example, reducing the number of assignments
(involved in computation), providing the possibility to generate sequence of
assignments that could compute inverse mapping and extending the approach
for general case. Moreover, in reducing number of assignments, we have to deal
carefully with some situations, e.g, packing similar assignments (involved in
computation) may results in an assignment with a co-efficient to be multiplied.

A tool for generating sequence of assignments for in situ computation of
bijective boolean mappings through construction of polynomials over GF(2)
is a basic attempt to develop the required strategy. But still, it remains to
extend the idea for general case and to find some useful combinatorial results.
Throughout part I, investigation mostly remains limited to deal with linear
mappings. It is still remain to investigate for the more general case.

11.2 Conclusion

This thesis aims at developing strategies to enhance the power of sequential
computation and distributed systems particularly it deals with sequential break
down of operations and decentralized collaborative editing systems. Our con-
tributions lead to design decentralized collaborative editing system based on
precision control indexing method introduced in Part II. Along with evaluation
of some existing techniques, it explore algorithms, applications and experimen-
tation performed to verify the results. Such indexed communication between
distributed system ensures the reduction of conflicts. Since the uniqueness
of identifiers for indexing is proved, therefore, there is no chance of conflicts
in ordered or random exchange of points. A prescribed pattern of generated
identifiers allowed to pack them in allocated space, set or table, from where,
they are easy to access. Dealing with sequential break down of operations, we
explore limitations of the existing strategies, extended the idea by introducing
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new strategies. These strategies lead towards optimization (processor, com-
piler, memory, code). This style of decomposition attracts research community
for further investigation and practical implementation that could lead towards
designing an arithmetic unit.
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Contents
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A.1.2 Delayed exchange of points with ordered partic-
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In this chapter we describe experiments performed in the context of decen-
tralized collaborative editing system.

A.1 Exchange of points (an experiment with

900 Users)

We discuss two situations, section A.1.1 describes delayed exchange of points
with random participation, whereas, section A.1.2 describes delayed exchange
of points with ordered participation.

A.1.1 Delayed exchange of points with random partici-
pation

We generate an ordered set U of 900 unique user-identifiers, with initial value
of 0.00001 and final value of 0.0000999 keeping precision pr = 3 and pǫ > 3.
Our algorithm picks random identifier from the set U and computes cardinality,
then picks another value from set U and compute the cardinality, if the later
user adds in the cardinality then it updates the global cardinality otherwise it
remains unchanged. We continue this process and record the values in Table
A.1.
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Table A.1: Cardinality observation with precision 3

An experiment with 900 users, participating randomly
user-eps 0.0000109 0.0000402 0.0000290 0.0000148 0.0000782
cardinality 1002 2002 2002 2002 3002
user-eps 0.0000916 0.0000371 0.0000304 0.0000966 0.0000124
cardinality 4002 4002 4002 5002 5002
user-eps 0.0000868 0.0000515 0.0000638 0.0000678 0.0000687
cardinality 5002 5002 5002 5002 5002
user-eps 0.0000712 0.0000659 0.0000120 0.0000745 0.0000355
cardinality 5002 5002 5002 5002 5002
user-eps 0.0000503 0.0000913 0.0000871 0.0000843 0.0000439
cardinality 5002 5002 5002 5002 5002
user-eps 0.0000701 0.0000373 0.0000861 0.0000691 0.0000801
cardinality 5002 5002 5002 5002 5002
user-eps 0.0000859 0.0000163 0.0000363 0.0000680 0.0000970
cardinality 5002 5002 5002 5002 6002
user-eps 0.0000951 0.0000761 0.0000704 0.0000426 0.0000756
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000441 0.0000462 0.0000499 0.0000824 0.0000207
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000580 0.0000331 0.0000448 0.0000673 0.0000451
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000636 0.0000805 0.0000337 0.0000545 0.0000242
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000828 0.0000238 0.0000451 0.0000129 0.0000247
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000154 0.0000112 0.0000883 0.0000187 0.0000314
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000103 0.0000675 0.0000506 0.0000361 0.0000320
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000166 0.0000406 0.0000826 0.0000461 0.0000585
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000555 0.0000564 0.0000922 0.0000283 0.0000769
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000523 0.0000316 0.0000817 0.0000779 0.0000767
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000381 0.0000950 0.0000386 0.0000134 0.0000198
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000186 0.0000698 0.0000245 0.0000326 0.0000719
cardinality 6002 6002 6002 6002 6002
user-eps 0.0000793 0.0000771 0.0000941 0.0000472 0.0000992

Continued on next page
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 6002 6002 6002 6002 7002
user-eps 0.0000343 0.0000678 0.0000322 0.0000935 0.0000671
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000942 0.0000409 0.0000618 0.0000372 0.0000184
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000301 0.0000556 0.0000524 0.0000133 0.0000353
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000317 0.0000813 0.0000234 0.0000270 0.0000145
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000367 0.0000450 0.0000346 0.0000732 0.0000108
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000932 0.0000790 0.0000657 0.0000373 0.0000243
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000247 0.0000453 0.0000717 0.0000853 0.0000329
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000169 0.0000514 0.0000992 0.0000661 0.0000640
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000844 0.0000292 0.0000266 0.0000751 0.0000975
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000706 0.0000657 0.0000242 0.0000600 0.0000384
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000839 0.0000413 0.0000624 0.0000650 0.0000907
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000251 0.0000537 0.0000124 0.0000357 0.0000333
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000902 0.0000467 0.0000664 0.0000903 0.0000380
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000264 0.0000758 0.0000215 0.0000927 0.0000187
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000362 0.0000775 0.0000787 0.0000951 0.0000414
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000941 0.0000360 0.0000365 0.0000485 0.0000852
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000857 0.0000326 0.0000603 0.0000486 0.0000271
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000967 0.0000134 0.0000774 0.0000107 0.0000673
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000169 0.0000917 0.0000695 0.0000400 0.0000339
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000567 0.0000515 0.0000345 0.0000744 0.0000848

Continued on next page
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 7002 7002 7002 7002 7002
user-eps 0.0000560 0.0000370 0.0000517 0.0000577 0.0000804
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000895 0.0000497 0.0000215 0.0000145 0.0000314
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000477 0.0000144 0.0000225 0.0000107 0.0000684
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000413 0.0000572 0.0000612 0.0000467 0.0000325
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000735 0.0000831 0.0000159 0.0000844 0.0000487
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000419 0.0000529 0.0000541 0.0000148 0.0000603
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000932 0.0000162 0.0000516 0.0000145 0.0000584
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000572 0.0000537 0.0000952 0.0000507 0.0000157
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000153 0.0000955 0.0000549 0.0000917 0.0000782
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000431 0.0000882 0.0000217 0.0000220 0.0000111
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000213 0.0000429 0.0000800 0.0000662 0.0000579
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000294 0.0000869 0.0000881 0.0000895 0.0000285
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000434 0.0000771 0.0000434 0.0000578 0.0000174
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000101 0.0000547 0.0000390 0.0000837 0.0000628
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000801 0.0000643 0.0000333 0.0000243 0.0000130
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000110 0.0000518 0.0000956 0.0000960 0.0000536
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000538 0.0000155 0.0000906 0.0000150 0.0000503
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000621 0.0000758 0.0000843 0.0000538 0.0000614
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000563 0.0000722 0.0000223 0.0000307 0.0000763
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000621 0.0000235 0.0000493 0.0000486 0.0000428

Continued on next page
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 7002 7002 7002 7002 7002
user-eps 0.0000226 0.0000793 0.0000916 0.0000168 0.0000181
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000102 0.0000485 0.0000188 0.0000676 0.0000976
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000485 0.0000785 0.0000613 0.0000901 0.0000959
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000581 0.0000329 0.0000652 0.0000559 0.0000761
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000272 0.0000853 0.0000655 0.0000675 0.0000141
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000252 0.0000635 0.0000554 0.0000207 0.0000407
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000789 0.0000161 0.0000991 0.0000706 0.0000847
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000974 0.0000539 0.0000183 0.0000758 0.0000553
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000949 0.0000563 0.0000527 0.0000213 0.0000132
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000354 0.0000516 0.0000944 0.0000269 0.0000882
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000559 0.0000677 0.0000442 0.0000882 0.0000527
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000628 0.0000845 0.0000256 0.0000989 0.0000415
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000246 0.0000293 0.0000975 0.0000705 0.0000907
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000202 0.0000361 0.0000479 0.0000782 0.0000642
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000263 0.0000269 0.0000585 0.0000679 0.0000409
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000372 0.0000356 0.0000824 0.0000989 0.0000630
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000165 0.0000131 0.0000984 0.0000413 0.0000829
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000654 0.0000142 0.0000217 0.0000609 0.0000383
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000448 0.0000131 0.0000734 0.0000190 0.0000160
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000790 0.0000356 0.0000156 0.0000782 0.0000601

Continued on next page
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 7002 7002 7002 7002 7002
user-eps 0.0000411 0.0000567 0.0000437 0.0000434 0.0000640
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000852 0.0000535 0.0000866 0.0000383 0.0000129
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000884 0.0000909 0.0000449 0.0000376 0.0000736
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000159 0.0000923 0.0000988 0.0000317 0.0000276
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000603 0.0000459 0.0000495 0.0000373 0.0000833
cardinality 7002 7002 7002 7002 7002
user-eps 0.0000810 0.0000385 0.0000998 0.0000643 0.0000420
cardinality 7002 7002 8002 8002 8002
user-eps 0.0000446 0.0000112 0.0000491 0.0000292 0.0000430
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000474 0.0000521 0.0000429 0.0000242 0.0000310
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000592 0.0000821 0.0000848 0.0000636 0.0000688
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000217 0.0000759 0.0000593 0.0000997 0.0000357
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000436 0.0000317 0.0000613 0.0000905 0.0000960
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000182 0.0000904 0.0000469 0.0000695 0.0000662
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000234 0.0000310 0.0000744 0.0000582 0.0000681
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000449 0.0000819 0.0000395 0.0000185 0.0000580
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000643 0.0000178 0.0000698 0.0000289 0.0000392
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000501 0.0000581 0.0000157 0.0000702 0.0000465
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000502 0.0000560 0.0000252 0.0000394 0.0000588
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000573 0.0000657 0.0000511 0.0000838 0.0000671
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000979 0.0000753 0.0000817 0.0000788 0.0000925
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000416 0.0000983 0.0000507 0.0000662 0.0000420
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 8002 8002 8002 8002 8002
user-eps 0.0000470 0.0000227 0.0000922 0.0000244 0.0000345
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000709 0.0000762 0.0000355 0.0000576 0.0000930
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000333 0.0000394 0.0000168 0.0000198 0.0000369
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000838 0.0000244 0.0000161 0.0000628 0.0000246
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000450 0.0000424 0.0000670 0.0000628 0.0000234
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000637 0.0000556 0.0000846 0.0000157 0.0000686
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000376 0.0000556 0.0000648 0.0000652 0.0000766
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000885 0.0000571 0.0000649 0.0000237 0.0000987
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000331 0.0000143 0.0000924 0.0000832 0.0000687
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000105 0.0000319 0.0000714 0.0000430 0.0000445
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000440 0.0000598 0.0000840 0.0000328 0.0000213
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000759 0.0000282 0.0000736 0.0000890 0.0000584
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000337 0.0000893 0.0000500 0.0000772 0.0000416
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000866 0.0000357 0.0000535 0.0000534 0.0000480
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000665 0.0000965 0.0000203 0.0000946 0.0000356
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000726 0.0000542 0.0000201 0.0000442 0.0000510
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000897 0.0000921 0.0000414 0.0000145 0.0000105
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000390 0.0000560 0.0000938 0.0000312 0.0000394
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000188 0.0000765 0.0000976 0.0000369 0.0000643
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000132 0.0000256 0.0000557 0.0000762 0.0000208
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 8002 8002 8002 8002 8002
user-eps 0.0000161 0.0000913 0.0000375 0.0000177 0.0000138
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000239 0.0000894 0.0000100 0.0000568 0.0000982
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000605 0.0000965 0.0000692 0.0000234 0.0000269
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000496 0.0000934 0.0000741 0.0000472 0.0000420
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000368 0.0000507 0.0000143 0.0000960 0.0000313
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000438 0.0000422 0.0000897 0.0000447 0.0000871
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000511 0.0000715 0.0000245 0.0000841 0.0000179
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000627 0.0000496 0.0000529 0.0000436 0.0000449
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000263 0.0000702 0.0000211 0.0000325 0.0000206
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000329 0.0000723 0.0000152 0.0000308 0.0000849
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000121 0.0000468 0.0000518 0.0000665 0.0000756
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000174 0.0000471 0.0000939 0.0000614 0.0000291
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000450 0.0000502 0.0000180 0.0000220 0.0000935
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000250 0.0000418 0.0000275 0.0000294 0.0000792
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000959 0.0000240 0.0000683 0.0000606 0.0000187
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000485 0.0000691 0.0000685 0.0000725 0.0000807
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000221 0.0000737 0.0000417 0.0000913 0.0000469
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000848 0.0000329 0.0000487 0.0000945 0.0000511
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000361 0.0000817 0.0000387 0.0000255 0.0000406
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000857 0.0000853 0.0000742 0.0000453 0.0000502
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cardinality 8002 8002 8002 8002 8002
user-eps 0.0000429 0.0000953 0.0000918 0.0000823 0.0000256
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000605 0.0000810 0.0000653 0.0000465 0.0000104
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000277 0.0000672 0.0000493 0.0000546 0.0000656
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000642 0.0000329 0.0000920 0.0000527 0.0000187
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000329 0.0000424 0.0000729 0.0000765 0.0000397
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000204 0.0000170 0.0000849 0.0000257 0.0000662
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000693 0.0000620 0.0000750 0.0000688 0.0000892
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000454 0.0000738 0.0000344 0.0000532 0.0000403
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000382 0.0000512 0.0000206 0.0000659 0.0000667
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000711 0.0000176 0.0000206 0.0000839 0.0000967
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000702 0.0000234 0.0000179 0.0000262 0.0000375
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000754 0.0000686 0.0000732 0.0000657 0.0000560
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000734 0.0000998 0.0000212 0.0000335 0.0000227
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000231 0.0000715 0.0000697 0.0000467 0.0000915
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000324 0.0000529 0.0000382 0.0000958 0.0000746
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000301 0.0000828 0.0000612 0.0000190 0.0000147
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000872 0.0000596 0.0000994 0.0000960 0.0000708
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000676 0.0000303 0.0000406 0.0000880 0.0000393
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000930 0.0000283 0.0000218 0.0000923 0.0000684
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000436 0.0000570 0.0000612 0.0000550 0.0000998
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 8002 8002 8002 8002 8002
user-eps 0.0000806 0.0000833 0.0000558 0.0000354 0.0000613
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000468 0.0000259 0.0000320 0.0000550 0.0000756
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000956 0.0000734 0.0000546 0.0000196 0.0000741
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000817 0.0000781 0.0000703 0.0000812 0.0000824
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000577 0.0000754 0.0000978 0.0000212 0.0000479
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000223 0.0000195 0.0000746 0.0000585 0.0000220
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000405 0.0000664 0.0000621 0.0000486 0.0000237
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000249 0.0000643 0.0000721 0.0000831 0.0000564
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000550 0.0000833 0.0000359 0.0000921 0.0000625
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000772 0.0000190 0.0000567 0.0000320 0.0000854
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000235 0.0000187 0.0000651 0.0000516 0.0000683
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000330 0.0000855 0.0000915 0.0000471 0.0000405
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000379 0.0000290 0.0000552 0.0000779 0.0000358
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000788 0.0000986 0.0000309 0.0000861 0.0000657
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000928 0.0000286 0.0000240 0.0000360 0.0000167
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000379 0.0000692 0.0000433 0.0000358 0.0000523
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000992 0.0000172 0.0000332 0.0000500 0.0000339
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000498 0.0000417 0.0000520 0.0000334 0.0000689
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000205 0.0000402 0.0000713 0.0000248 0.0000749
cardinality 8002 8002 8002 8002 8002
user-eps 0.0000337 0.0000755 0.0000447 0.0000579 0.0000276
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Table A.1 – continued from previous page
An experiment with 900 users, participating randomly

cardinality 8002 8002 8002 8002 8002

In, Figure A.1, a set of 900 users presented along x-axis and a set of corre-
sponding 900 user-identifiers is presented along y-axis. It is noted that, the

Figure A.1: A view of users participation

user with user-identifier = 0.00001, 0.00004, 0.00006 and 0.00008 participate
only one time and a user with user-identifier = 0.00005 participates 2 times in
the experiment, whereas users with user-identifier = 0.00002, 0.00003, 0.00007
and 0.00009 don’t participate in the process. The first user who start comput-
ing the points is user with user-identifier = 0.0000109 and the last user who
participates in the process is with user-identifier = 0.0000276 and it partici-
pated 2 times. The maximum value of the user-identifier participated in the
experiment is 0.0000998 and this user participated 3 times. A total number
of 8000 points are inserted in the interval [0, 1] (supposed to be a an empty
document) during this process. Updates, at each step, in global cardinality is
presented in Figure A.2.

Notice that Table A.1 and Figure A.1 shows that user with user-identifier
= 0.0000329 participates 6 times in the process and it is the maximum par-
ticipation of any of the 900 users, this maximum participation is highlighted
by gray color in the Table A.1. We observe that 331 users participate 1 time,
173 users participate 2 times, 55 users participate 3 times, 8 users participate
4 times and there are 4 users who participate 5 times in the experiment. In
total, there are 572 users who have participated in this process and out of 900,
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Figure A.2: Updates in global cardinality

there are 328 users who did not take part in this experiment. Green cells in the
Table A.1 present an update in the global cardinality whereas pink cell shows
the maximum global cardinality achieved at the completion of this experiment.
A yellow cell shows the minimum and maximum value of the user-identifier
participated in the experiment.

A.1.2 Delayed exchange of points with ordered partici-
pation

We design a similar algorithm as described in section A.1.1, with a modification
that it does not picks random identifier from the set U but in an increasing
order and compute cardinality, then picks next value from set U and compute
the cardinality, if the later user adds in the cardinality then it updates the
global cardinality otherwise it remains unchanged. We continue this process
and record the values in the Table A.2.

Table A.2: Cardinality observation with precision 3

An experiment with 900 users, participating randomly
user-identifier 0.0000100 0.0000200 0.0000300 0.0000400 0.0000500
cardinality 1002 2002 3002 4002 5002
user-identifier 0.0000600 0.0000700 0.0000800 0.0000900 0.0000110
cardinality 6002 7002 8002 9002 9002
user-identifier 0.0000120 0.0000130 0.0000140 0.0000150 0.0000160
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000170 0.0000180 0.0000190 0.0000210 0.0000220
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000230 0.0000240 0.0000250 0.0000260 0.0000270
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000280 0.0000290 0.0000310 0.0000320 0.0000330
cardinality 9002 9002 9002 9002 9002
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000340 0.0000350 0.0000360 0.0000370 0.0000380
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000390 0.0000410 0.0000420 0.0000430 0.0000440
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000450 0.0000460 0.0000470 0.0000480 0.0000490
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000510 0.0000520 0.0000530 0.0000540 0.0000550
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000560 0.0000570 0.0000580 0.0000590 0.0000610
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000620 0.0000630 0.0000640 0.0000650 0.0000660
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000670 0.0000680 0.0000690 0.0000710 0.0000720
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000730 0.0000740 0.0000750 0.0000760 0.0000770
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000780 0.0000790 0.0000810 0.0000820 0.0000830
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000840 0.0000850 0.0000860 0.0000870 0.0000880
cardinality 9002 9002 9002 9002 9002
user-identifier 0.0000890 0.0000910 0.0000920 0.0000930 0.0000940
cardinality 9002 10002 11002 12002 13002
user-identifier 0.0000950 0.0000960 0.0000970 0.0000980 0.0000990
cardinality 14002 15002 16002 17002 18002
user-identifier 0.0000101 0.0000102 0.0000103 0.0000104 0.0000105
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000106 0.0000107 0.0000108 0.0000109 0.0000111
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000112 0.0000113 0.0000114 0.0000115 0.0000116
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000117 0.0000118 0.0000119 0.0000121 0.0000122
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000123 0.0000124 0.0000125 0.0000126 0.0000127
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000128 0.0000129 0.0000131 0.0000132 0.0000133
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000134 0.0000135 0.0000136 0.0000137 0.0000138
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000139 0.0000141 0.0000142 0.0000143 0.0000144
cardinality 18002 18002 18002 18002 18002
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000145 0.0000146 0.0000147 0.0000148 0.0000149
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000151 0.0000152 0.0000153 0.0000154 0.0000155
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000156 0.0000157 0.0000158 0.0000159 0.0000161
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000162 0.0000163 0.0000164 0.0000165 0.0000166
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000167 0.0000168 0.0000169 0.0000171 0.0000172
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000173 0.0000174 0.0000175 0.0000176 0.0000177
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000178 0.0000179 0.0000181 0.0000182 0.0000183
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000184 0.0000185 0.0000186 0.0000187 0.0000188
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000189 0.0000191 0.0000192 0.0000193 0.0000194
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000195 0.0000196 0.0000197 0.0000198 0.0000199
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000201 0.0000202 0.0000203 0.0000204 0.0000205
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000206 0.0000207 0.0000208 0.0000209 0.0000211
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000212 0.0000213 0.0000214 0.0000215 0.0000216
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000217 0.0000218 0.0000219 0.0000221 0.0000222
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000223 0.0000224 0.0000225 0.0000226 0.0000227
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000228 0.0000229 0.0000231 0.0000232 0.0000233
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000234 0.0000235 0.0000236 0.0000237 0.0000238
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000239 0.0000241 0.0000242 0.0000243 0.0000244
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000245 0.0000246 0.0000247 0.0000248 0.0000249
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000251 0.0000252 0.0000253 0.0000254 0.0000255
cardinality 18002 18002 18002 18002 18002
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Table A.2 – continued from previous page
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user-identifier 0.0000256 0.0000257 0.0000258 0.0000259 0.0000261
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000262 0.0000263 0.0000264 0.0000265 0.0000266
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000267 0.0000268 0.0000269 0.0000271 0.0000272
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000273 0.0000274 0.0000275 0.0000276 0.0000277
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000278 0.0000279 0.0000281 0.0000282 0.0000283
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000284 0.0000285 0.0000286 0.0000287 0.0000288
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000289 0.0000291 0.0000292 0.0000293 0.0000294
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000295 0.0000296 0.0000297 0.0000298 0.0000299
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000301 0.0000302 0.0000303 0.0000304 0.0000305
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000306 0.0000307 0.0000308 0.0000309 0.0000311
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000312 0.0000313 0.0000314 0.0000315 0.0000316
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000317 0.0000318 0.0000319 0.0000321 0.0000322
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000323 0.0000324 0.0000325 0.0000326 0.0000327
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000328 0.0000329 0.0000331 0.0000332 0.0000333
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000334 0.0000335 0.0000336 0.0000337 0.0000338
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000339 0.0000341 0.0000342 0.0000343 0.0000344
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000345 0.0000346 0.0000347 0.0000348 0.0000349
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000351 0.0000352 0.0000353 0.0000354 0.0000355
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000356 0.0000357 0.0000358 0.0000359 0.0000361
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000362 0.0000363 0.0000364 0.0000365 0.0000366
cardinality 18002 18002 18002 18002 18002
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000367 0.0000368 0.0000369 0.0000371 0.0000372
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000373 0.0000374 0.0000375 0.0000376 0.0000377
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000378 0.0000379 0.0000381 0.0000382 0.0000383
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000384 0.0000385 0.0000386 0.0000387 0.0000388
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000389 0.0000391 0.0000392 0.0000393 0.0000394
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000395 0.0000396 0.0000397 0.0000398 0.0000399
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000401 0.0000402 0.0000403 0.0000404 0.0000405
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000406 0.0000407 0.0000408 0.0000409 0.0000411
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000412 0.0000413 0.0000414 0.0000415 0.0000416
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000417 0.0000418 0.0000419 0.0000421 0.0000422
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000423 0.0000424 0.0000425 0.0000426 0.0000427
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000428 0.0000429 0.0000431 0.0000432 0.0000433
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000434 0.0000435 0.0000436 0.0000437 0.0000438
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000439 0.0000441 0.0000442 0.0000443 0.0000444
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000445 0.0000446 0.0000447 0.0000448 0.0000449
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000451 0.0000452 0.0000453 0.0000454 0.0000455
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000456 0.0000457 0.0000458 0.0000459 0.0000461
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000462 0.0000463 0.0000464 0.0000465 0.0000466
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000467 0.0000468 0.0000469 0.0000471 0.0000472
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000473 0.0000474 0.0000475 0.0000476 0.0000477
cardinality 18002 18002 18002 18002 18002

Continued on next page
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000478 0.0000479 0.0000481 0.0000482 0.0000483
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000484 0.0000485 0.0000486 0.0000487 0.0000488
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000489 0.0000491 0.0000492 0.0000493 0.0000494
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000495 0.0000496 0.0000497 0.0000498 0.0000499
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000501 0.0000502 0.0000503 0.0000504 0.0000505
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000506 0.0000507 0.0000508 0.0000509 0.0000511
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000512 0.0000513 0.0000514 0.0000515 0.0000516
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000517 0.0000518 0.0000519 0.0000521 0.0000522
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000523 0.0000524 0.0000525 0.0000526 0.0000527
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000528 0.0000529 0.0000531 0.0000532 0.0000533
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000534 0.0000535 0.0000536 0.0000537 0.0000538
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000539 0.0000541 0.0000542 0.0000543 0.0000544
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000545 0.0000546 0.0000547 0.0000548 0.0000549
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000551 0.0000552 0.0000553 0.0000554 0.0000555
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000556 0.0000557 0.0000558 0.0000559 0.0000561
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000562 0.0000563 0.0000564 0.0000565 0.0000566
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000567 0.0000568 0.0000569 0.0000571 0.0000572
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000573 0.0000574 0.0000575 0.0000576 0.0000577
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000578 0.0000579 0.0000581 0.0000582 0.0000583
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000584 0.0000585 0.0000586 0.0000587 0.0000588
cardinality 18002 18002 18002 18002 18002

Continued on next page
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000589 0.0000591 0.0000592 0.0000593 0.0000594
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000595 0.0000596 0.0000597 0.0000598 0.0000599
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000601 0.0000602 0.0000603 0.0000604 0.0000605
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000606 0.0000607 0.0000608 0.0000609 0.0000611
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000612 0.0000613 0.0000614 0.0000615 0.0000616
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000617 0.0000618 0.0000619 0.0000621 0.0000622
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000623 0.0000624 0.0000625 0.0000626 0.0000627
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000628 0.0000629 0.0000631 0.0000632 0.0000633
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000634 0.0000635 0.0000636 0.0000637 0.0000638
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000639 0.0000641 0.0000642 0.0000643 0.0000644
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000645 0.0000646 0.0000647 0.0000648 0.0000649
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000651 0.0000652 0.0000653 0.0000654 0.0000655
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000656 0.0000657 0.0000658 0.0000659 0.0000661
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000662 0.0000663 0.0000664 0.0000665 0.0000666
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000667 0.0000668 0.0000669 0.0000671 0.0000672
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000673 0.0000674 0.0000675 0.0000676 0.0000677
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000678 0.0000679 0.0000681 0.0000682 0.0000683
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000684 0.0000685 0.0000686 0.0000687 0.0000688
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000689 0.0000691 0.0000692 0.0000693 0.0000694
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000695 0.0000696 0.0000697 0.0000698 0.0000699
cardinality 18002 18002 18002 18002 18002

Continued on next page
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000701 0.0000702 0.0000703 0.0000704 0.0000705
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000706 0.0000707 0.0000708 0.0000709 0.0000711
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000712 0.0000713 0.0000714 0.0000715 0.0000716
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000717 0.0000718 0.0000719 0.0000721 0.0000722
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000723 0.0000724 0.0000725 0.0000726 0.0000727
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000728 0.0000729 0.0000731 0.0000732 0.0000733
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000734 0.0000735 0.0000736 0.0000737 0.0000738
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000739 0.0000741 0.0000742 0.0000743 0.0000744
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000745 0.0000746 0.0000747 0.0000748 0.0000749
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000751 0.0000752 0.0000753 0.0000754 0.0000755
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000756 0.0000757 0.0000758 0.0000759 0.0000761
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000762 0.0000763 0.0000764 0.0000765 0.0000766
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000767 0.0000768 0.0000769 0.0000771 0.0000772
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000773 0.0000774 0.0000775 0.0000776 0.0000777
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000778 0.0000779 0.0000781 0.0000782 0.0000783
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000784 0.0000785 0.0000786 0.0000787 0.0000788
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000789 0.0000791 0.0000792 0.0000793 0.0000794
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000795 0.0000796 0.0000797 0.0000798 0.0000799
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000801 0.0000802 0.0000803 0.0000804 0.0000805
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000806 0.0000807 0.0000808 0.0000809 0.0000811
cardinality 18002 18002 18002 18002 18002

Continued on next page
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000812 0.0000813 0.0000814 0.0000815 0.0000816
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000817 0.0000818 0.0000819 0.0000821 0.0000822
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000823 0.0000824 0.0000825 0.0000826 0.0000827
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000828 0.0000829 0.0000831 0.0000832 0.0000833
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000834 0.0000835 0.0000836 0.0000837 0.0000838
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000839 0.0000841 0.0000842 0.0000843 0.0000844
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000845 0.0000846 0.0000847 0.0000848 0.0000849
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000851 0.0000852 0.0000853 0.0000854 0.0000855
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000856 0.0000857 0.0000858 0.0000859 0.0000861
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000862 0.0000863 0.0000864 0.0000865 0.0000866
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000867 0.0000868 0.0000869 0.0000871 0.0000872
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000873 0.0000874 0.0000875 0.0000876 0.0000877
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000878 0.0000879 0.0000881 0.0000882 0.0000883
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000884 0.0000885 0.0000886 0.0000887 0.0000888
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000889 0.0000891 0.0000892 0.0000893 0.0000894
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000895 0.0000896 0.0000897 0.0000898 0.0000899
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000901 0.0000902 0.0000903 0.0000904 0.0000905
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000906 0.0000907 0.0000908 0.0000909 0.0000911
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000912 0.0000913 0.0000914 0.0000915 0.0000916
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000917 0.0000918 0.0000919 0.0000921 0.0000922
cardinality 18002 18002 18002 18002 18002

Continued on next page
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Table A.2 – continued from previous page
An experiment with 900 users, participating randomly

user-identifier 0.0000923 0.0000924 0.0000925 0.0000926 0.0000927
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000928 0.0000929 0.0000931 0.0000932 0.0000933
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000934 0.0000935 0.0000936 0.0000937 0.0000938
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000939 0.0000941 0.0000942 0.0000943 0.0000944
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000945 0.0000946 0.0000947 0.0000948 0.0000949
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000951 0.0000952 0.0000953 0.0000954 0.0000955
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000956 0.0000957 0.0000958 0.0000959 0.0000961
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000962 0.0000963 0.0000964 0.0000965 0.0000966
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000967 0.0000968 0.0000969 0.0000971 0.0000972
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000973 0.0000974 0.0000975 0.0000976 0.0000977
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000978 0.0000979 0.0000981 0.0000982 0.0000983
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000984 0.0000985 0.0000986 0.0000987 0.0000988
cardinality 18002 18002 18002 18002 18002
user-identifier 0.0000989 0.0000991 0.0000992 0.0000993 0.0000994
cardinality 18002 19002 20002 21002 22002
user-identifier 0.0000995 0.0000996 0.0000997 0.0000998 0.0000999
cardinality 23002 24002 25002 26002 27002

Figure A.3 shows that a total number of 27000 points are inserted in the in-
terval [0, 1] (supposed to be a an empty document) during this process. The
straight horizontal line shows that there is no update in the global cardinality.
In, Figure A.4, a set of 900 users presented along x-axis and a set of corre-
sponding 900 user-identifiers is presented along y-axis. We have also observed
that if we perform the experiment A.1.2 by keeping set U in decreasing order
i.e. the user at highest value of user-identifier starts computing the points,
then the global cardinality is only 1000 points. It is observed by the Table
A.2 and Figure A.4 that each user in the network participates only one time.
Green cells in the Table A.2 present an update in the global cardinality while
the pink cell shows the maximum global cardinality achieved during this pro-
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Figure A.3: Updates in global cardinality

Figure A.4: A users participation curve

cess. A yellow cell shows the minimum value of the user-identifier participated
in the process.

A comparison of the experiment A.1.1 and A.1.2

Comparing two experiments A.1.1 and A.1.2, a significant increment in the
cardinality has been observed in the experiment A.1.2 as compared to the
experiment A.1.1, but still there are 873 users out of 900 who did not insert
points during the process. Since the global cardinality increased in experiment
A.1.2 more than 3 times of the experiment A.1.2, therefore, clearly experiment
A.1.2 is better than experiment A.1.1.
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Mostly, we implemented our ideas using Maple and performed an extensive
experimentations that, sometimes, took a number of days but here we provide
one of the algorithms that implements the idea of in situ computation over
rings.

B.1 Algorithm

with(LinearAlgebra):

gcd_multipliers := proc(x::list, alpha::integer, i::integer)

local tmp , fac, projections,l,j,k,mres:

fac := ifactors(alpha)[2]:

projections := []:

for k from 1 to nops(fac) do

l := [seq(0, j=1..nops(x))]:

l[i] := 1:

if igcd(x[i], fac[k][1]) <> 1 then

for j from 1 to nops(x) do

if igcd(x[j], fac[k][1]) = 1 then

l[j] := 1:

break:

fi:
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od:

fi:

projections := [op(projections), l]:

od:

tmp := [seq(fac[k,1]^fac[k,2], k=1..nops(fac))]:

mres := []:

mres :=[op(mres), chrem(projections, tmp)][]:

end:

isone := proc(M::Matrix)

local i, j:

for i from 1 to RowDimension(M) do

for j from 1 to ColumnDimension(M) do

if M[i,j] != 1 then

return false:

fi:

od:

od:

return true:

end:

creatematrix := proc(d::integer)

local M, i:

M := Matrix(d,d,0):

for i from 1 to d do

M[i,i] := 1:

od:

return M:

end:

with(ListTools):

matrixop := proc(Ma::Matrix, N::integer)

local i,j,k,nr,nc, left, right,g,l,T,G,M, U, final, F:

M := copy(Ma):

left := []: right := []:

nr := RowDimension(M):

nc := ColumnDimension(M):

for k from 1 to min(nr, nc) do

g:= igcd ( seq(M[i,k], i=1..nr) ):

if g = 1 then

continue:

fi:

if igcd( M[k,k]/g, N) <> 1 then
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l := gcd_multipliers([seq(M[i,k]/g, i=1..nr)], N, k):

T := creatematrix(nr)mod N:

for j from 1 to nr do

T[k,j] := l[j]:

od:

M := Multiply(T , M)mod N:

left := [op(left), MatrixInverse(T)mod N]:

fi:

G:= creatematrix(nc):

G[k,k] := M[k,k]:

M := Multiply(M , MatrixInverse(G))mod N:

U := creatematrix(nc):

for j from 1 to nc do

U[k,j] := M[k,j]:

od:

M := Multiply(M , MatrixInverse(U))mod N:

right := [op(right), Multiply(U , G)mod N ]:

od:

final := []:

for i from 1 to nops(left) do

if isone(left[i]) = false then

final := [op(final), left[i] ]:

fi:

od:

for i from nops(right) to 1 by -1 do

if isone(right[i]) = false then

final :=[op(final), right[i]]:

fi:

od:

Reverse(final):

end:
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Glossary

CSCW : CSCW abbreviated for Com-
puter Supported Collaborative
Work

DCE : DCE stands for decentralized
collaborative editing, where users
are dispersed geographically.

DCE Model : A decentralized col-
laborative editing model based
on precision control indexing
method.

Dispersion Mechanism : A possible
strategy that enables to uti-
lize existing memory in such a
way that maximum cardinal-
ity could be obtained.

Elements : Elements describe char-
acters, lines, objects etc. that
could be modified during the
process of collaborative edit-
ing.

First Tool : A method to construct
polynomial over GF(2) so that
IDC can be constructed for boolean
mappings.

IDC : IDC denotes In Situ Design of
Computation, A sequential com-
putation that use no extra vari-
ables other than the variables
available as input.

LCID : LCID denotes identifiers that
we assign to lines or characters

in editing a shared document
collaboratively.

Local Cardinality : The possible num-
ber of identifiers USIDs that
could be created for a user/site
under particular precision is called
local cardinality and is denoted
by Cl.

Notation (ℵ) : Notation ℵ used to
denote a network comprises n
(n ∈ N) users, sites or peers,

PCT : Precision control technique that
enables to create unique real
identifiers.

Points : Points describe identifiers as
well as elements because ex-
change of elements cause ex-
change of identifiers too.

POSID : POSID denotes position iden-
tifiers created to associate with
characters (lines) in collabora-
tive editing.

Precision : number of digits follow-
ing the point of a value (rounded
to decimal places/to significant
digits), e.g., the precision of
the values 12.34600 and 12.345
is 5 and 3 respectively.

Precision (pǫ) : is a notation for pre-
cision taken to create identi-
fiers USID.

RCE : Real-time Collaborative Edi-
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Glossary

tors enable group of users to
edit simultaneously shared doc-
ument from physically dispersed
sites that are interconnected by
computer network.

Round a value : A function that
rounds value according to def-
inition of Precision.

USID : USID denotes identifiers that
we assign to users or sites par-
ticipating in editing a shared
document collaboratively.
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Abstract

This thesis aims at developing strategies to advance the capabilities of
sequential computations and distributed systems, particularly, it deals with
sequential break down of operations and decentralized collaborative editing
systems. In this thesis, we introduced a precision control indexing method
that enables to generate unique identifiers which are used for indexed com-
munication in distributed systems, particularly, in decentralized collaborative
editing systems. These identifiers are still real numbers with a specific con-
trolled pattern of precision. The set of identifiers is finite that facilitates in
computing local as well as global cardinality. This property plays important
role in dealing with indexed communication. In addition, we proved some
other properties including order preservation. The indexing method is tested
and verified through experimentation successfully and the method leads to de-
sign decentralized collaborative editing system. Dealing with sequential break
down of operations, we explore limitations of the existing strategies, extended
the idea by introducing new strategies. These strategies lead towards optimiza-
tion (processor, compiler, memory, code). This style of decomposition attracts
research communities for further investigation and practical implementation
that could lead towards designing an arithmetic unit.

Keywords: collaborative editing, distributed computing, optimistic replica-
tion, algorithms, optimization (processor, memory), logic and computation,
circuit design

Résumé

Cette thèse vise à développer des stratégies permettant d’augmenter la puis-
sance du calcul séquentiel et des systèmes distribués, elle traite en particulier,
la décomposition séquentielle des opérations ainsi que des systèmes d’édition
collaboratifs décentralisés. Nous introduisons, une méthode d’indexage avec
précision contrôlée. Celle-ci permet la génération d’identifiants uniques util-
isés dans l’indexage des communications dans les systèmes distribués, plus
particulièrement dans les systèmes d’édition collaboratifs décentralisés. Ces
identifiants sont des nombres réels avec un motif de précision contrôlé. Un
ensemble fini d’identifiants est conservé pour permettre le calcul de cardinal-
ités locales et globales. Cette propriété joue un rôle prépondérant dans la
gestion des communications indexées. De plus, d’autres propriétés incluant la
préservation de l’ordre sont observées. La méthode d’indexage a été testée et
vérifiée avec succès. Ceci a permis la conception d’un système d’édition col-
laboratif décentralisé. Aussi, nous explorons les stratégies existantes, relatives
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a la décomposition séquentielle d’opérations, que nous étendons à de nouvelles
stratégies. Ces stratégies mènent à une optimisation (processeur, compilateur,
mémoire, code). Ces styles de décomposition portent un intérêt majeur à la
communauté scientifique. Des recherches et des implémentations de plus en
plus rapides résultent de la conception d’unité arithmétique.

Mots-clés: édition collaborative, modèle de cohérence des données, structure
de données persistante, P2P, CRDT, réplication optimiste, algorithmes, opti-
misation de la mémoire, l’optimisation de processeur, la logique et de calcul,
la conception de circuits
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