Memory optimization strategies for linear mappings and indexation-based shared documents

M. Mumtaz Ahmad

Loria, INRIA Nancy - Grand Est, UHP Nancy - 1, IAEM Lorraine
November 14, 2011
iáa

Outline

(1) General introduction

- Speeding up computations
- Optimizing indexed communications
(2) Sequential break down of operations
- Problem description
- Contributions
(3) Decentralized collaborative editing system
- Problem description
- Contributions
(4) Conclusions
- Summary
- Research directions

General introduction

Speeding up computations

Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

(1) General introduction

- Speeding up computations
- Optimizing indexed communications
(2) Sequential break down of operations
- Problem description
- Contributions
(3) Decentralized collaborative editing system
- Problem description
- Contributions
(4) Conclusions
- Summary
- Research directions

H.
 Speeding up computations

Higher performnace

- Modern computer technology has increased the demand for higher performance in all areas of computing.

Speeding up computations

General introduction

Speeding up computations
Optimizing indexed communications

Sequential
break down of
operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary Research directions

Higher performnace

- Modern computer technology has increased the demand for higher performance in all areas of computing.

Significant growth in

(1) Hardware performance
(2) Architecture evolution

1
 Speeding up computations

General introduction

Speeding up computations

Optimizing indexed communications

Sequential
break down of
operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description Contributions

Conclusions
Summary
Research directions

Higher performnace

- Modern computer technology has increased the demand for higher performance in all areas of computing.

Significant growth in

(1) Hardware performance
(2) Architecture evolution

Stress is raised on

(1) Compiler technology
(2) Research communities

Optimizing indexed communications

Sequential

 break down of operationsProblem description Contributions

Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Micro-processor

- General-purpose PCs
- Servers to desktop, laptop
- Cell-phones such as iphone

Permanent challenge

Increasing :'ie performance

One of the possible approaches

- Sequential break down of operations

Micro-processor

- General-purpose PCs
- Servers to desktop, laptop
- Cell-phones such as iphone

Permanent challenge

* Increasing the performance

- Sequential break down of operations

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Micro-processor

- General-purpose PCs
- Servers to desktop, laptop
- Cell-phones such as iphone

Permanent challenge

* Increasing the performance

One of the possible approaches

- Sequential break down of operations

N. 8
 Hello, do you remember me...........

General introduction

Speeding up

 computationsOptimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative editing system
Problem description Contributions

Conclusions

Optimizing indexed communication

Computer networks inspired RCE

- Rapid development of computer networks inspired the advancement of RCE (real time collaborative editors).

Optimizing indexed communication

Computer networks inspired RCE

- Rapid development of computer networks inspired the advancement of RCE (real time collaborative editors).

In collaborative editing

- Participants are not bound to be in the same location
- Editing shared textual document, to draw a shared graph structure, record ideas during brainstorming meetings.

[^0]
Optimizing indexed communication

General introduction

Sequential break down of operations

Decentralized collaborative editing system

Computer networks inspired RCE

- Rapid development of computer networks inspired the advancement of RCE (real time collaborative editors).

In collaborative editing

- Participants are not bound to be in the same location
- Editing shared textual document, to draw a shared graph structure, record ideas during brainstorming meetings.

Documents could be

- Articles, wiki pages and programming source code.

Conflicts may occur

- In DCE (decentralized collaborative editing), multiple copies of the same document may create confusions.

Conflicts may occur

- In DCE (decentralized collaborative editing), multiple copies of the same document may create confusions.
- To reconcile conflicts, indexing the contents of shared document is considered as basic requirement.

Conflicts may occur

- In DCE (decentralized collaborative editing), multiple copies of the same document may create confusions.
- To reconcile conflicts, indexing the contents of shared document is considered as basic requirement.
- Decentralized collaborative editing system

Precision control indexing method (to design)

Outline

(1) General introduction

- Speeding up computations
- Optimizing indexed communications

(2) Sequential break down of operations

- Problem description
- Contributions
(3) Decentralized collaborative editing system
- Problem description
- Contributions
(4) Conclusions
- Summary
- Research directions

Problem description

Restriction

- A 32 bit processor performs operations on 32 bits.
- Any transformation of data structure required decomposition in successive operations on 32 bits.

Problem description

Restriction

- A 32 bit processor performs operations on 32 bits.
- Any transformation of data structure required decomposition in successive operations on 32 bits.

Old Strategy

- To exchange contents of registers, it makes copies of the initial data.

Problem description

Restriction

- A 32 bit processor performs operations on 32 bits.
- Any transformation of data structure required decomposition in successive operations on 32 bits.

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative editing
system

Old Strategy

- To exchange contents of registers, it makes copies of the initial data.

Errors

- More number of registers are required
- Loss of speed/power consumption
- Signal duplication occurs

Proposed strategy

General introduction
Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions

Summary

Research directions

in situ design of computation

- It does not require any extra variable other than the variables available as input

Proposed strategy

in situ design of computation

- It does not require any extra variable other than the variables available as input

Example

- Let $E:\{0,1\}^{2} \longrightarrow\{0,1\}^{2}$ be the mapping defined as

$$
E\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)
$$

- To compute mapping E by a sequence of operations, we have two options:

Proposed strategy

in situ design of computation

- It does not require any extra variable other than the variables available as input

Example

- Let $E:\{0,1\}^{2} \longrightarrow\{0,1\}^{2}$ be the mapping defined as

$$
E\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)
$$

- To compute mapping E by a sequence of operations, we have two options:
- A basic program that completes the task.
- An in situ program that completes the task.

Comparison

Old strategy

$$
\begin{aligned}
x_{0} & :=x_{1} \\
x_{1} & :=x_{2} \\
x_{2} & :=x_{0}
\end{aligned}
$$

In situ strategy

$$
\begin{aligned}
& x_{1}:=f_{1}\left(x_{1}, x_{2}\right) \\
& x_{2}:=f_{2}\left(x_{1}, x_{2}\right) \\
& x_{1}:=g_{1}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
f_{1}\left(x_{1}, x_{2}\right)=f_{2}\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}
$$

Noticed that

The in situ strategy does not make use of an extra variable x_{n} which involved in basic strategv.

Comparison

General
introduction
Speeding up computations

Optimizing indexed communications

Sequential

break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary Research directions

In situ strategy

$$
\begin{aligned}
& x_{1}:=f_{1}\left(x_{1}, x_{2}\right) \\
& x_{2}:=f_{2}\left(x_{1}, x_{2}\right) \\
& x_{1}:=g_{1}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
f_{1}\left(x_{1}, x_{2}\right)=f_{2}\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}
$$

Noticed that

The in situ strategy does not make use of an extra variable x_{0} which involved in basic strategy.

How it works

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

N.
 Interpreting an assignment

General introduction
Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

N.
 Interpreting reference value

General introduction
Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Alternate strategy over fields

- IDC strategy to perform in situ computation has been proposed by Burckel et al [Bur07].

Alternate Approach

- A strategy based on Bézout's identity

Theorem

Every linear mapping $E:(x, y) \longrightarrow(m x+n y, p x+q y)$, where $m, n, p, q \in \mathbb{Z}$, can be computed by a sequence of at most 3 linear assignments with rational coefficients.

Investigating bound for IDC over integers

Objective

- To find the minimum number of assignments required to compute the mapping sequentially using in situ strategy.

General

introduction
Speeding up computations
Optimizing indexed communications

Sequential

break down of operations

Contributions

Investigating bound for IDC over integers

General introduction

Speeding up

 computationsOptimizing incexed communications

Sequential
break down of operations
system
Problem description Contributions

Conclusions

Summary

 Research directions
Objective

- To find the minimum number of assignments required to compute the mapping sequentially using in situ strategy.

Theorem

Let

$$
E_{n}:(x, y) \longrightarrow\left(F_{n-1} x+F_{n} y, F_{n} x+F_{n+1} y\right)
$$

be the mapping over \mathbb{Z}^{2}, where F_{n} is the Fibonacci number. Then the mapping $E_{4 k+2}$ is computed with $2 k+2$ assignments, where $k=0,1,2, \cdots, n$.

Investigating bound for IDC over integers

Theorem

There exists a linear mapping

General

introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary
Research directions

$$
E:(x, y) \longrightarrow(m x+n y, p x+q y)
$$

with $m, n, p, q \in \mathbb{Z}$, that cannot be computed by a sequence of at most 6 linear assignments

$$
\left.\begin{array}{l}
x:=a x+b y \\
y:=c x+d y \\
x:=e x+f y \\
y:=g x+h y \\
x:=i x+j y \\
y:=k x+l y
\end{array}\right\}
$$

where $a, b, c, d, e, f, g, h, i, j, k$, and $I \in \mathbb{Z}$.

Theorem

Let $E: \mathbb{Z}^{2} \longrightarrow \mathbb{Z}^{2}$ be a linear mapping defined as $E(x, y) \longrightarrow(m x+n y, p x+q y)$

General introduction

Speeding up

 computationsOptimizing indexed communications

Sequential break down of operations

Problem description

Contributions

Decentralized collaborative editing
system
Problem description
Contributions
Conclusions with integral coefficients $m, n, p, q \in \mathbb{Z}$. Let E be computable by a sequence of linear assignments

$$
\left.\left.\begin{array}{c}
x:=a_{1} x+b_{1} y \\
y:=b_{1}^{\prime} x+a_{1}^{\prime} y \\
x:=a_{2} x+b_{2} y \\
y:=b_{2}^{\prime} x+a_{2}^{\prime} y \\
\vdots \\
:=\quad \vdots \\
x:=a_{k} x+b_{k} y \\
y
\end{array}\right\}=b_{k}^{\prime} x+a_{k}^{\prime} y \quad\right\}
$$

where $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime} \in \mathbb{Z}$ are integral coefficients for each $i=1, \ldots, k$. Then the identity

$$
\begin{equation*}
m q-p n=a_{1} a_{1}^{\prime} \ldots a_{k} a_{k}^{\prime} \quad \text { holds. } \tag{1}
\end{equation*}
$$

Outline

General

 introductionSpeeding up computations

Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing system
Problem description
Contributions
Conclusions
Summary
Research directions
(1) General introduction

- Speeding up computations
- Optimizing indexed communications
(2) Sequential break down of operations
- Problem description
- Contributions
(3) Decentralized collaborative editing system
- Problem description
- Contributions
(4) Conclusions
- Summary
- Research directions

Problem description

- To manage conflicting modifications in collaborative editing, indexing method is the fundamental requirement.
- Most recent methods are introduced by

Weiss et al [WUM09]

- Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed collaborative editing system on p 2 p networks.

IEEE Transactions on Parallel and Distributed Systems, 21:1162-1174, 2010.

Problem description

- To manage conflicting modifications in collaborative editing, indexing method is the fundamental requirement.
- Most recent methods are introduced by

General introduction

Speeding up computations
Optimizing incexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Weiss et al [WUM09]

- Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed collaborative editing system on p 2 p networks.

IEEE Transactions on Parallel and Distributed Systems, 21:1162-1174, 2010.

Preguiça et al [PMSL09]

- Nuno Preguiça and Joan Manuel Marquès and Marc Shapiro and Mihai Leţia. A commutative replicated data type for cooperative editing.

Distributed Computing Systems, International Conference on, 0: 395-403, 2009.

Following situation is not supported

Errors are detected

- These approaches don't support some of the situations.

General

 introductionSpeeding up computations Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions

Summary

Research dircctions

Following situation is not supported

Errors are detected

- These approaches don't support some of the situations.

General introduction

Speeding up computations
Optimizing incexed communications

Sequential
break down of operations
Problem description Contributions

Decentralized collaborative editing
system
Problem description Contributions

Conclusions Summary Research directions

Identifiers exchange scenario

(1) Two characters 'a' and 'b' inserted.
(2) Updates are executed.
(3) New character lies b/w 'a' and 'b' ?

Approach by Weiss et al

Order Alteration

- General form of identifiers corresponding to two insertions are

$$
\begin{gathered}
\left\langle i, s_{1}, c_{1}\right\rangle \text { and }\left\langle i, s_{2}, c_{2}\right\rangle \\
s_{1}<s_{2} \text { or } s_{1}=s_{2} \text { and } c_{1}<c_{2}
\end{gathered}
$$

- Let user U_{1} intends to insert new character.
- $N=1$. "boundary $=1$ " then for two identifiers

Approach by Weiss et al

General introduction

Speeding up computations
Optimizing indexed communications

Sequential
break down of operations

Order Alteration

- General form of identifiers corresponding to two insertions are

$$
\begin{gathered}
\left\langle i, s_{1}, c_{1}\right\rangle \text { and }\left\langle i, s_{2}, c_{2}\right\rangle \\
s_{1}<s_{2} \text { or } s_{1}=s_{2} \text { and } c_{1}<c_{2}
\end{gathered}
$$

- Let user U_{1} intends to insert new character.
- $N=1$. "boundary $=1$ " then for two identifiers
(1) $p=\langle 0, s, c\rangle$
with $p<q$ (say)
(2) $q=\langle 0, s, c\rangle$,

Approach by Weiss et al

Order Alteration

- New identifier computed by the algorithm

$$
i d=\langle 1, s, c\rangle
$$

- Computed identifier should follows

$$
p=\langle 0, s, c\rangle<\langle 1, s, c\rangle<\langle 0, s, c\rangle=q
$$

$\because 1 \notin[0,0]$
Therefore, new id does not lie b / w identifiers p and q.

Approach by Prejuiça et al

Order Alteration

General introduction
Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions

Summary

Research directions

- $\operatorname{Pos} D_{a}=[1(0: d A)]$ and $\operatorname{Pos} D_{c}=[1(0: d B)]$

Approach by Prejuiça et al

- Let user B inserts a new character " a_{1} " between "a" and " c " then algorithm returns new identifier as $\operatorname{Pos} / D_{a_{1}}=[1(0: d A)(1: d B)]$

General introduction Speeding up computations

Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing system
Problem description
Contributions
Conclusions Summary
Research directions

- If $d A=($ counter, siteID $)=(1,1)$ and $d B=($ counter, siteID $)=(1,2)$

Approach by Prejuiça et al

- Let user B inserts a new character " a_{1} " between "a" and " c " then algorithm returns new identifier as $\operatorname{Pos} / D_{a_{1}}=[1(0: d A)(1: d B)]$
- If $d A=($ counter, siteID $)=(1,1)$
and $d B=($ counter, sitelD $)=(1,2)$
- Then PosID $D_{a}=[1(0:(1,1))]$ and ${\operatorname{Pos} / D_{c}}=[1(0:(1,2))]$
- PosID $D_{a_{1}}=[1(0:(1,1))(1:(1,2))]$
- Following the definition (Nuno Preguiça et al.) $\operatorname{Pos} D_{a}<\operatorname{Pos}^{2} D_{a_{1}}$ and PosID ${ }_{c}<\operatorname{Pos} D_{a_{1}}$

Approach by Prejuiça et al

- Let user B inserts a new character " a_{1} " between "a" and " C " then algorithm returns new identifier as

$$
\operatorname{Pos} / D_{a_{1}}=[1(0: d A)(1: d B)]
$$

- If $d A=($ counter, siteID $)=(1,1)$

$$
\text { and } d B=(\text { counter }, \text { sitel } D)=(1,2)
$$

- Then PosID $D_{a}=[1(0:(1,1))]$ and ${\operatorname{Pos} I D_{c}}=[1(0:(1,2))]$
- PosID $a_{a_{1}}=[1(0:(1,1))(1:(1,2))]$
- Following the definition (Nuno Preguiça et al.) Posl $_{a}<\operatorname{Pos}^{\prime} D_{a_{1}}$ and PosID ${ }_{c}<\operatorname{Pos} D_{a_{1}}$

General introduction
Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description Contributions

Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions

Summary

Research directions

Redundancy of identifiers

General introduction
Speeding up computations Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research difections

- Let the shared document is with initial and final points

$$
l b=<0, N A, N A>\text { and } l e=<10, N A, N A>
$$

- User U_{1} (with $s=1$ and initial clock $c=0$) begins

Redundancy of identifiers

- It is possible that, boundary \geq interval/ N

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

- In this case, step=min(interval/N, boundary)=interval/ N

It permits that for $N=1$, step $=9$

1
 Redundancy of identifiers

- It is possible that, boundary \geq interval/ N
- In this case, step=min(interval/N, boundary)=interval/ N

It permits that for $N=1$, step $=9$

- Algorithm returns an identifier $p=<9,1,1>$ such that
- $\{l b, p, l e\}=\{<0, N A, N A\rangle,\langle 9,1,1\rangle,<10, N A, N A\rangle\}$

Redundancy of identifiers

- It is possible that, boundary \geq interval/ N
- In this case, step=min(interval/N, boundary)=interval/ N

It permits that for $N=1$, step $=9$

- Algorithm returns an identifier $p=<9,1,1>$ such that
- $\{l b, p, l e\}=\{<0, N A, N A\rangle,\langle 9,1,1\rangle,<10, N A, N A\rangle\}$
- Let user 1 inserts another character " y " after " x " and an identifier " q " b/w $p=<9,1,1>$, le $=<10, N A, N A>$

N.
 Redundancy of identifiers

- It is possible that, boundary \geq interval/ N
- In this case, step=min(interval/N, boundary)=interval/N

It permits that for $N=1$, step $=9$

- Algorithm returns an identifier $p=<9,1,1>$ such that
- $\{l b, p, l e\}=\{\langle 0, N A, N A\rangle,\langle 9,1,1\rangle,\langle 10, N A, N A\rangle\}$
- Let user 1 inserts another character " y " after " x " and an identifier " q " b/w $p=<9,1,1>$, le $=<10, N A, N A>$
- Let user 2 removes character " x ", then it is not sure to perform the desired operation.

Errors.

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations

Problem description

Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary Research directions

Infinite Iteration

1... For two identifiers with same values of i, Algorithm does not generate any new identifier due to the reason that interval $=-1$.
2... Proposed formula does not work in certain cases

Errors..........

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative
editing
system
Problem description Contributions

Conclusions

Infinite Iteration

1... For two identifiers with same values of i, Algorithm does not generate any new identifier due to the reason that interval $=-1$.
2... Proposed formula does not work in certain cases

Example

$p=\left\langle k_{1}, 4,7\right\rangle\left\langle k_{2}, 9,5\right\rangle$ and $q=\left\langle k_{3}, 5,3\right\rangle\left\langle k_{4}, 3,6\right\rangle\left\langle k_{5}, 3,9\right\rangle$ with assumption $B A S E=100$, boundary $=10$ and $k_{1}=k_{2}=k_{3}=k_{4}=k_{5}=k$
To insert N lines between two lines identified by p and q,

$$
\operatorname{prefix}(q, 1)-\operatorname{prefix}(p, 1)-1= \begin{cases}-1 & \text { if } k_{3}=k_{1} \\ 0 & \text { if } k_{3}=k_{1}+1\end{cases}
$$

Precision control technique

General

 introductionSpeeding up compurations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system

Conclusions
Summary
Research directions

-
Basic principle $p_{r}<p_{\epsilon}<p_{d}$

User/site identifiers (USIDs)

Pattern

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary Research directions

- USID $\rightarrow 0.00 \ldots 0_{p_{r}+1} d_{1} d_{2} \ldots d_{p_{r}}$
- where $p_{r} \geq 1, p_{\epsilon} \geq p_{r}+\mu, \mu \geq 2, \mu \in \mathbb{N}$

5
 User/site identifiers (USIDs)

Pattern

- USID $\rightarrow 0.00 \ldots 0_{p_{r}+1} d_{1} d_{2} \ldots d_{p_{r}}$
- where $p_{r} \geq 1, p_{\epsilon} \geq p_{r}+\mu, \mu \geq 2, \mu \in \mathbb{N}$

General introduction
Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions Summary Research directions

Example

0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009

- Keeping this pattern, we are able to generate 9 different ensilons with $w_{m}=n_{r}-1$ For $n_{H}>1$
\square
- noperty \mid USID|pr $=0$

User/site identifiers (USIDs)

General introduction
Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description Contributions

Decentralized collaborative editing system

Pattern

- USID $\rightarrow 0.00 \ldots 0_{p_{r}+1} d_{1} d_{2} \ldots d_{p_{r}}$
- where $p_{r} \geq 1, p_{\epsilon} \geq p_{r}+\mu, \mu \geq 2, \mu \in \mathbb{N}$

Example

0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009

- Keeping this pattern, we are able to generate 9×10^{w} different epsilons with $w=p_{r}-1$. For $p_{r} \geq 1$
- The minimum value of epsilon is $1 \times 10^{-\left(p_{r}+2\right)}$
- The maximum value is $0.00 \ldots 0_{p_{r}+1} 99 \ldots 9_{p_{r}}$
- Property $|U S I D|_{p_{r}}=0$

Generating character/line identifiers LCIDs

Require

(1) Points computed for one user must be different from points computed for others
(2) Set of points computed for each user must be an ordered set
(3) It should be possible to compute cardinality for the set of points.

- We modified the classical midpoint formula $(a+b) / 2$, for an interval $I=\lceil a, b\rceil$ with $0<a<b$ such that $\forall x, y \in I$

Generating character/line identifiers LCIDs

Require

(1) Points computed for one user must be different from points computed for others
(2) Set of points computed for each user must be an ordered set
(3) It should be possible to compute cardinality for the set of points.

- We modified the classical midpoint formula $(a+b) / 2$, for an interval $I=[a, b]$ with $0 \leq a<b$ such that $\forall x, y \in I$

$$
\begin{equation*}
f(x, y)=x+\frac{y-x}{2}-\epsilon \quad \text { with } x<y \tag{2}
\end{equation*}
$$

Algorithm outlines

- Assume that an interval $I=[a, b], 0 \leq a<b$, presents shared document or a and b are two LCIDs corresponding to two characters/lines.
- To compute new LCIDs, we proceed as follows:

Algorithm outlines

General introduction

Speeding up computations
Optimizing indexed communications

- Assume that an interval $I=[a, b], 0 \leq a<b$, presents shared document or a and b are two LCIDs corresponding to two characters/lines.
- To compute new LCIDs, we proceed as follows:

Outlines

(1) Round a and b over the precision p_{r}
(2) Evaluate $\nabla=\frac{|b|_{p_{r}}-|a|_{p_{r}}}{2}$ and round it over p_{r}
(3) If $\nabla>U S I D_{\max }$ then go to the next step
(9) $p:=\left||a|_{p_{r}}+\nabla\right|_{p_{r}}-U S I D$
(5) Verify that $p \not \leq a$ and $p \nsupseteq b$.

Uniqueness of LCIDs

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Theorem

Let two participants are assigned with two different USIDs (ϵ_{i}, ϵ_{j} such that $\epsilon_{i}<\epsilon_{j}$, for $0<i<j$). Then for two operations performed by two participants respectively, two different LCIDs will be generated (over the interval $I=[a, b]$ with $0 \leq a<b$).

Example

User	Unique Identifiers												
U_{1}	0.099	0.199	0.299	0.399	0.499	0.599	0.699	0.799	0.899	0.999			
U_{2}	0.098	0.198	0.298	0.398	0.498	0.598	0.698	0.798	0.898	0.998			
U_{3}	0.097	0.197	0.297	0.397	0.497	0.597	0.697	0.797	0.897	0.997			
U_{4}	0.096	0.196	0.296	0.396	0.496	0.596	0.696	0.796	0.896	0.996			
U_{5}	0.095	0.195	0.295	0.395	0.495	0.595	0.695	0.795	0.895	0.995			
U_{6}	0.094	0.194	0.294	0.394	0.494	0.594	0.694	0.794	0.894	0.994			

N.
 Inserting single character

General introduction

Speeding up computations Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Explanation

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description Contributions

Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

- Let $I=[a, b], 0 \leq a<b$ and $\gamma=|b-a|$ with $\gamma>0$.

General

 introduction
Specing up

 computationsOptimizing indexed
communications
Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system

Conclusions
Summary
Research directions

- Then for the precision p_{r}, local cardinality that a user can attain is computed as

Cardinality

- Let $I=[a, b], 0 \leq a<b$ and $\gamma=|b-a|$ with $\gamma>0$.

General
introduction
Speeding up computations

Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

- Then for the precision p_{r}, local cardinality that a user can attain is computed as

Formula

$$
C_{I}= \begin{cases}\gamma \times 10^{p_{r}} & \text { if } b>a \geq 0, \text { for } a, b \in \mathbb{N} \\ \left(\gamma_{1} \times 10^{p_{r}}\right)-1 & \text { if } b>a>0, \text { for } a, b \in \mathbb{R} \\ & \text { and } \gamma_{1}=|\gamma|_{p_{r}}\end{cases}
$$

such that

$$
p_{r}<p_{\epsilon}<p_{d}
$$

General

introduction
Speeding up computations

Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions Summary Research clirections

Example

- Suppose that $I_{1}=[0,1], p_{r}=3, U S I D_{\min }=0.00001$, and $U S I D_{\max }=0.0000999$.
- The local cardinality of a set of LCIDs, that single user with $U S I D=0.0000439$ can attain, is computed by $C_{I}=1 * 10^{3}=1000$.

General introduction

Example

- Suppose that $I_{1}=[0,1], p_{r}=3, U S I D_{\min }=0.00001$, and $U S I D_{\max }=0.0000999$.
- The local cardinality of a set of LCIDs, that single user with $U S I D=0.0000439$ can attain, is computed by $C_{I}=1 * 10^{3}=1000$.

Example

- If the same user wants to compute local cardinality of LCIDs between two LCIDs (already computed by him).
- For instance, let $I_{2}=[0.7609561,0.8139561]$ then

$$
\gamma_{1}=0.053 \text { and } C_{l}=\left(0.053 * 10^{3}\right)-1=52
$$

N.
 Assuring order preservation

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Some properties

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system

Problem description

Contributions
Conclusions

Summary

Research directions

Bijection property

- Let S^{\prime} be the set defined over the interval $I=[a, b], 0 \leq$ $a<b$, as

$$
S^{\prime}=\left\{\left.\frac{n^{\prime}}{10^{p_{r}}} \right\rvert\, n^{\prime} \in \mathbb{N}, a<n^{\prime} \leq \beta, \beta=\gamma * 10^{p_{r}}\right\}
$$

where γ is the length of the interval I with $|\gamma|_{p_{r}}>0$.

N.
 Some properties

General introduction

Speeding up computations
Optimizing indexed communications

Sequential
break down of operations

Bijection property

- Let S^{\prime} be the set defined over the interval $I=[a, b], 0 \leq$ $a<b$, as

$$
S^{\prime}=\left\{\left.\frac{n^{\prime}}{10^{p_{r}}} \right\rvert\, n^{\prime} \in \mathbb{N}, a<n^{\prime} \leq \beta, \beta=\gamma * 10^{p_{r}}\right\}
$$

where γ is the length of the interval I with $|\gamma|_{p_{r}}>0$.

- For $1 \leq k \leq n, n \in \mathbb{N}$, let ϵ_{k} be one of the USIDs then the function $f_{k}: S^{\prime} \longrightarrow S^{\prime \prime}$ defined by $f_{k}\left(x^{\prime}\right)=x^{\prime}-\epsilon_{k}, \forall x^{\prime} \in S^{\prime}$, is a bijection.

N. 1
 Some properties

General introduction

Speeding up computations
Optimizing indexed communications

Sequential
break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system

Conclusions

Summary

Research directions

One of the closure properties

- Let S_{i}, S_{j} and S_{k} be the set of LCIDs generated for users U_{i}, U_{j} and U_{k} with $U S I D s, \epsilon_{i}, \epsilon_{j}$ and ϵ_{k} over the interval $I=[a, b], 0 \leq a<b$ respectively.

Some properties

General introduction
 computations
Optimizing indexed communications

Sequential

break down of operations
Problem description Contributions

Decentralized collaborative

Conclusions

One of the closure properties

- Let S_{i}, S_{j} and S_{k} be the set of LCIDs generated for users U_{i}, U_{j} and U_{k} with USIDs, $\epsilon_{i}, \epsilon_{j}$ and ϵ_{k} over the interval $I=[a, b], 0 \leq a<b$ respectively.
- Then for any two points $x \in S_{i}, y \in S_{j}, x<y$ and for $\epsilon_{j}<\epsilon_{k}$.

$$
\left||x|_{p_{r}}+\left|\frac{|y|_{p_{r}}-|x|_{p_{r}}}{2}\right|_{p_{r}}\right|_{p_{r}}-\epsilon_{k} \in S_{k}
$$

1.
 Analysis of the function

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing system
Problem description
Contributions
Conclusions

Summary

Research directions
(1) Under rounding conditions.
(2) Under floating point arithmetic.
(3) Without rounding conditions,

- Proposed function works nicely.

I	p_{e}	ϵ_{i}	ϵ	$C d\left(f_{c}\right)$	$\operatorname{Cd}\left(f_{1}\right)$	$\operatorname{Cd}\left(f_{1}\right)-\operatorname{Cd}\left(f_{c}\right)$
$[0,0.01]$	3	0.003	0.003	3	33	30
$[0,0.01]$	4	0.0003	0.0003	33	243	210
$[0,0.01]$	5	0.00003	0.00003	257	2216	1959
$[0,0.01]$	6	0.000003	0.000003	2049	19380	17331
$[0,0.0001]$	7	0.0000003	0.0000003	257	2216	1959
$[0,0.0001]$	8	0.00000003	0.00000003	2049	19580	17371
$[0,0.0001]$	9	0.000000003	0.000000003	32769	165039	132270

N.
 Exchange of points

Delayed exchange of points

- Users modify/edit shared document one by one and sends updates to all other users.
- It requires to verify the validity of the algorithm for the points including the points that user has received.
- Under this environment, we studied two cases
© Random narticination (2) Ordered participation

Exchange of points

Delayed exchange of points

- Users modify/edit shared document one by one and sends updates to all other users.
- It requires to verify the validity of the algorithm for the points including the points that user has received.
- Under this environment, we studied two cases.
(1) Random participation
(2) Ordered participation

Exchange of points

Delayed exchange of points

- Users modify/edit shared document one by one and sends updates to all other users.
- It requires to verify the validity of the algorithm for the points including the points that user has received.
- Under this environment, we studied two cases.
(1) Random participation
(2) Ordered participation

Effect on global cardinality

- This environment may prevent global cardinality in approaching to its upper bound.

Exchange of points

Real time exchange of points

- Contrary to the delayed exchange environment, we propose this environment.
- Under this environment, the identifiers are not required to
compute on the basis of remote points and all participants
- Under this environment, the identifiers are not required to
compute on the basis of remote points and all participants are supposed to be active.

Two situations

- Under this environment, we studied two cases.

Exchange of points

Real time exchange of points

- Contrary to the delayed exchange environment, we propose this environment.
- Under this environment, the identifiers are not required to compute on the basis of remote points and all participants are supposed to be active.

Two situations

- Under this environment, we studied two cases.
(1) Random participation
(2) Ordered participation

Model (Maximizing global cardinality)

General introduction

Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions

Summary

Research directions

Effect on global cardinality

- This environment makes it possible that global cardinality could reach its upper bound.

General introduction

Speeding up computations

Optimizing indexed
communications
Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing system
Problem description
Contributions
Conclusions
Summary
Research directions
(1) General introduction

- Speeding up computations
- Optimizing indexed communications

2) Sequential break down of operations

- Problem description
- Contributions

3 Decentralized collaborative editing system

- Problem description
- Contributions
(4) Conclusions
- Summary
- Research directions

Further work

General

 introductionSpeeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative editing system
Problem description
Contributions
Conclusions

Summary

Research directions

We contributed in advancing the capabilities of

(1) Sequential computation and
(2) Distributed systems

Dispersion problem

Further work

We contributed in advancing the capabilities of

(1) Sequential computation and
(2) Distributed systems

But still a lot of work is to be done both in

(1) Sequential break-down of operations
(2) Decentralized collaborative editing system

Further work

We contributed in advancing the capabilities of

(1) Sequential computation and
(2) Distributed systems

But still a lot of work is to be done both in
(1) Sequential break-down of operations
(2) Decentralized collaborative editing system

Dispersion problem

- The removal of point(s) creates the possibility of insertion of point(s).

- The insertion of new point(s)

Further work

We contributed in advancing the capabilities of

(1) Sequential computation and
(2) Distributed systems

But still a lot of work is to be done both in

(1) Sequential break-down of operations
(2) Decentralized collaborative editing system

Dispersion problem

- The removal of point(s) creates the possibility of insertion of point(s).

Each removal does not assure

- The insertion of new point(s).

General introduction
Speeding up computations
Optimizing indexed communications

Sequential break down of operations
Problem description
Contributions
Decentralized collaborative
editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

Modification/extension for IDC

Limitations

- Combinatorial results and counter examples show that the in situ strategies have certain limitations.

Modifications

- Modification of the idea is required so that the investigated draw backs could be removed.

Extensions

- Extension of the idea is required to deal with general cases and the real implementation is required.

General

introduction
Speeding up computations

Optimizing indexed communications

Questions?

Problem description
Contributions
Decentralized collaborative editing
system
Problem description
Contributions
Conclusions
Summary
Research directions

References

General introduction Speeding up computations

圊 Serge Burckel．
The parallel－sequential duality：Matrices and graphs．
CoRR，abs／0709．4397， 2007.
嗇 Nuno Preguiça，Joan Manuel Marquès，Marc Shapiro，and Mihai Leția．
A commutative replicated data type for cooperative editing．
Distributed Computing Systems，International Conference on，0：395－403， 2009.
國 Stéphane Weiss，Pascal Urso，and Pascal Molli．
Logoot：A scalable optimistic replication algorithm for collaborative editing on p 2 p networks．
In ICDCS，pages 404－412．IEEE Computer Society， 2009.

[^0]: - Articles, wiki pages and programming source code

