
HAL Id: tel-01746351
https://theses.hal.science/tel-01746351v2

Submitted on 3 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Secure Framework for Dynamic Task Delegation in
Workflow Management Systems

Khaled Gaaloul

To cite this version:
Khaled Gaaloul. A Secure Framework for Dynamic Task Delegation in Workflow Management
Systems. Computer Science [cs]. Université Henri Poincaré - Nancy I, 2010. English. �NNT :
2010NAN10058�. �tel-01746351v2�

https://theses.hal.science/tel-01746351v2
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale IAEM Lorraine

UFR Sciences et Technologies

Une Approche Sécurisée pour la
Délégation Dynamique de Tâches dans
les Systèmes de Gestion de Workflow

THÈSE

présentée et soutenue publiquement le 05/10/2010

pour l’obtention du

Doctorat de l’université Henri Poincaré – Nancy 1

(spécialité informatique)

par

Khaled Gaaloul

Composition du jury

Rapporteurs : Salima Benbernou, Professeur à l’Université Paris Descartes, LIPADE
Chihab Hanachi, Professeur à l’Université Paul Sabatier, IRIT

Examinateurs : Claude Godart, Professeur à l’Université Henri Poincaré, LORIA
Selmin Nurcan, Mâıtre de Conférences à l’Université Paris 1, CRI
Andreas Schaad, Senior Researcher, SAP AG, Allemagne
Samir Tata, Professeur à Telecom SudParis, INF

Directeur de thèse : François Charoy, Mâıtre de conférence, HDR, à l’Université Henri Poincaré, LORIA

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

Résumé

Les systèmes de gestion de workflow font maintenant partie de l’environnement classique
des grandes organisations. Ces systèmes sont cependant aujourd’hui considérés comme
trop rigides et de nombreux travaux ont pour but d’introduire de la flexibilité dans la mod-
élisation et l’exécution de leurs procédés. Dans cette problématique, la prise en compte de
la flexibilité organisationnelle est une étape importante. C’est à cette dernière que nous
allons nous intéresser à travers un mécanisme particulier : la délégation de tâches. En
effet, la délégation est un mécanisme qui permet d’obtenir une certaine flexibilité organi-
sationnelle dans un système de gestion de workflow. Elle permet également d’assurer une
forme de délégation des autorisations dans un système de contrôle d’accès. Dans ce con-
texte, une délégation sécurisée de tâches implique la présence d’un ensemble d’évènements
de délégation et de règles définissant les possibles délégations d’autorisation ainsi que les
moyens de contrôler les politiques associées.

Dans ce mémoire, nous définissons une approche sécurisée pour la délégation dy-
namique de tâches dans les systèmes de gestion de workflow. Pour ce faire, nous iden-
tifions les évènements spécifiques du modèle de tâches correspondant à la délégation
qui entrainent des changements dynamiques de la politique d’autorisation. Puis, nous
montrons comment notre approche permet de contrôler dynamiquement les autorisations
liées à la délégation et comment elle peut être intégrée dans les systèmes de contrôle
d’accès existants. Afin de contrôler le comportement de délégation et de spécifier ses
politiques d’autorisation, nous recueillons les événements pertinents qui définissent le
chemin d’exécution des tâches ainsi que les politiques générées pour la délégation. Finale-
ment, nous proposons une technique qui automatise les politiques de délégation et qui
permet d’accrôıtre la conformité des changements dus à la délégation dans la politique
d’autorisation existante.

Mots-clés: Workflow, tâche, délégation, contrôle d’accès, politique d’autorisation.

Abstract

Task delegation presents one of the business process security leitmotifs. We currently
observe a move away from predefined strict workflow modelling towards dynamic ap-
proaches supporting flexibility on the organisational level and dynamic authorisation on
the security level. One specific approach is that of task delegation. Delegation defines
a mechanism that bridges the gap between both workflow and access control systems.
There are two important issues relating to delegation, namely allowing task delegation to
complete, and having a secure delegation within a workflow. Delegation completion and
authorisation enforcement are specified under specific constraints. Constraints are defined
from the delegation context implying the presence of a fixed set of delegation events to
control the delegation execution.

In this dissertation, we aim to reason about delegation events to model task delegation
and to specify delegation policies dynamically. To that end, we present an event-based
task delegation model to monitor the delegation process. We then identify relevant events
for authorisation enforcement to specify delegation policies. Subsequently, we propose
a task-oriented access control model to address these requirements. Using our access
control model, we analyse and specify delegation constraints into authorisation policies.
Moreover, we propose a technique that automates delegation policies using event calculus
to control the delegation execution and to increase the compliance of all delegation changes
in the existing policy of the workflow.

Keywords: Workflow, access control, task, delegation, authorisation policy.

Remerciements

Je voudrais exprimer mes sentiments les plus sincères envers les personnes qui sans
lesquelles ce travail de thèse n’aurait pas pu voir le jour. Leur aide, accompagnement et
soutien m’ont été indispensables afin de pouvoir aboutir aux contributions de ma thèse.

Je voudrais tout d’abord exprimer ma reconnaissance envers tous les membres du jury
pour la grande attention qu’ils ont bien voulu porter à mon travail.

Je suis très reconnaissant à Monsieur François Charoy, mon directeur de thèse, qui m’a
encadré et dirigé dans mes recherches tout au long de ces années. Je lui dis ma gratitude
pour l’aide compétente qu’il m’a apportée, pour ses encouragements et pour la confiance
qu’il m’a toujours témoignée.

Mes plus chaleureux remerciements vont également à Monsieur Claude Godart, Pro-
fesseur à l’Université Henri Poincaré, pour m’avoir accueilli dans son équipe, pour sa
disponibilté et pour ses conseils précieux pendant les moments les plus difficiles de ma
thèse. Qu’il trouve ici l’expression de ma profonde reconnaissance.

Je remercie très sincèrement mes rapporteurs Madame Salima Benbernou, Professeur
à l’Université Paris Descartes, et Monsieur Chihab Hanachi, Professeur à l’Université
Paul Sabatier, pour avoir bien accepté d’être mes rapporteurs et pour avoir bien voulu
lire et évaluer mon travail de thèse. Je les remercie pour leurs lectures approfondies de
mon mémoire de thèse, pour tout le temps qu’ils m’ont accordé et pour les remarques
très constructives qu’ils m’ont données et qui ont été bénéfiques à la réalisation de ce
manuscrit.

Je remercie également Monsieur Samir Tata, Professeur à Telecom SudParis, Monsieur
Andreas Schaad, Senior Researcher à SAP Allemagne, et Madame Selmin Nurcan, Mâıtre
de Conférences à l’Université Paris 1, pour leur participation au jury de cette thèse et le
temps qu’ils ont bien voulu consacrer à l’évaluation de mon travail.

Je remercie l’ensemble des membres de SAP Research avec qui j’ai eu le plaisir de tra-
vailler ces trois dernières années. Je pense particulièrement à Philip Miseldine, Andreas
Schaad, Zoltan Nochta, Christian Wolter, Achim Brucker, Mathias Kohler et Helmut
Petritsch. Mes plus amicaux remerciements vont aussi à mes collègues du LORIA, no-
tamment Walid Fdhila, Bilel Nefzi, Ehteshem Zahoor, Nawal Guermouche et Gérald Oster
qui ont permis de faire de cette expérience de thèse une expérience riche tant scientifique-
ment que humainement. Je tiens à remercier aussi toutes les personnes qui travaillent
dans l’ombre mais qui répondent toujours présentes quand nous avons besoin d’elles, et
particulièrement Isabelle Herlich et Rudiger Winter.

Enfin, je voudrais remercier ma famille à qui je dédie ce travail, ma tante et sa famille,
en particulier mes cousins Sahbi et Ziad pour leurs soutiens et encouragements. Merci à
tous mes amis, en particulier Walid, Bilel, Morfus, Imotep, Samu, Phil, Mohsen, Mohamed
et à tous ceux que je vois encore et ceux que le vent a emmené vers d’autres rives.

5

6

Je dédie ce travail à mes parents à qui je dois TOUT, à ma sœur et mes frères, surtout mon
grand frère Walid mon exemple et mon meilleur soutien. À la mémoire de mes grands-parents

Ahmed et Aicha, vous me manquez énormément. Que vos âmes reposent en paix.

7

8

Contents

Résumé de la Thèse

Chapter 1

Introduction

1.1 Background and Motivation . 45

1.2 Thesis Objectives . 46

1.3 Thesis Structure . 47

Chapter 2

Context and Problematic

2.1 Introduction . 49

2.2 Context: Organisational Management in Workflow Systems 50

2.2.1 Resource management in the workflow life cycle 51

2.2.2 Organisational resources analysis 53

2.2.3 Definition of assignment and synchronisation policies 54

2.2.4 Resource integration . 56

2.2.5 Organisational maintenance at runtime 57

2.2.6 Summary . 57

2.3 Problem Statement : How to ensure a secure task delegation in workflow

systems ? . 58

2.3.1 Motivating example : e-Government workflow scenario 58

2.3.2 Problem statements . 61

2.4 Principles, Approach and Thesis Contributions 63

2.4.1 Principles . 63

2.4.2 Our approach . 64

2.4.3 Contributions . 65

2.4.4 Published results . 66

9

Contents

2.5 Conclusion . 67

Chapter 3

State of the Art

3.1 Introduction . 70

3.2 Business Processes and Workflows . 70

3.2.1 Workflow management systems . 70

3.2.2 Organisational model in WfMS . 73

3.2.3 Business process management vs. Workflows 74

3.2.4 Business process modelling . 75

3.2.5 Summary . 78

3.3 An Overview of Security Concepts . 79

3.3.1 The five pillars of information security 79

3.3.2 Access control approaches for security policies 82

3.3.3 XACML : a policy language . 86

3.3.4 Summary . 88

3.4 Level of Access Control within Workflows 89

3.4.1 Organisational goals . 89

3.4.2 Secure workflow approaches . 89

3.4.3 Summary . 91

3.5 Analysis of Delegation in Secure Workflows 91

3.5.1 Delegation in workflows . 91

3.5.2 Delegation in access control models 92

3.5.3 Summary . 93

3.6 Conclusion . 93

Chapter 4

Modelling Task Delegation in Workflows

4.1 Introduction . 96

4.2 Motivation Factors for Delegation . 97

4.2.1 Organisational . 97

4.2.2 Business process . 98

4.2.3 Resource . 99

4.2.4 Link with the case study . 100

4.2.5 Summary . 101

10

4.3 Organisational Flexibility in Workflows . 101

4.3.1 Flexibility constraints . 101

4.3.2 Organisational flexibility in practice 102

4.3.3 Requirements for organisational roles 103

4.3.4 Summary . 104

4.4 An Extended Analysis of Delegation in Business Processes 105

4.4.1 A workflow model . 105

4.4.2 Basic task delegation model . 105

4.4.3 Securing task delegation within a workflow 106

4.4.4 Summary . 108

4.5 Modelling Task Delegation for Human-centric Workflows 109

4.5.1 Delegation kind . 109

4.5.2 Delegation of privileges . 109

4.5.3 Task delegation model . 110

4.5.4 Negotiation in user-to-user delegation 111

4.5.5 Delegation protocol supporting negotiation 112

4.5.6 Summary . 113

4.6 Access Control Over Task Delegation in Workflows 114

4.6.1 Task execution model . 114

4.6.2 Task-oriented access control model 115

4.6.3 Access control over task delegation using TAC 117

4.6.4 Revocation . 119

4.6.5 Summary . 120

4.7 Conclusion . 121

Chapter 5

Securing Task Delegation in Access Control Systems

5.1 Introduction . 124

5.2 Modelling Task Delegation Using Access Control Systems 124

5.2.1 Context for dynamic delegation policies 125

5.2.2 Access control framework . 126

5.2.3 General control process . 128

5.2.4 Delegation protocols . 129

5.2.5 Access control enforcement . 132

5.2.6 Summary . 133

11

Contents

5.3 Event-based Task Delegation Policies . 133

5.3.1 Problem statement (part I) . 133

5.3.2 Security requirement for delegation 134

5.3.3 A secure framework for task delegation 135

5.3.4 Summary . 137

5.4 Integrating Event-based Delegation Policies 138

5.4.1 Problem statement (part II) . 138

5.4.2 Monitoring and securing task delegation 139

5.4.3 Modelling task delegation in event calculus 140

5.4.4 Building policies for delegation . 142

5.4.5 Modelling delegation policies in event calculus 143

5.4.6 Delegation automation . 144

5.4.7 Summary . 148

5.5 Conclusion . 148

Chapter 6

Deployment Environment

6.1 Introduction . 149

6.2 The Development Environment . 150

6.2.1 Project overview . 150

6.2.2 Collaboration infrastructure . 150

6.3 Delegation for Human-centric Workflows 152

6.3.1 Administrative communication layer 152

6.3.2 Collaborative workflow runtime . 153

6.3.3 ACL plugin supporting delegation 154

6.3.4 Email-centric task delegation tool 155

6.4 Delegation Policies Enforcement . 156

6.4.1 A secure delegation protocol . 156

6.4.2 Authentication management component 158

6.4.3 Authorisation decision component 159

6.4.4 Deployment and evaluation . 163

6.5 Conclusion . 166

12

Chapter 7

Conclusion and Perspectives

7.1 Thesis Summary and Contributions . 168

7.2 Limits and Perspectives . 169

Appendix A

Discrete Event Calculus Reasoner

A.1 Introduction . 171

A.2 Discrete Event Calculus Reasoner Language 172

A.2.1 Sorts . 172

A.2.2 Formulas . 173

A.2.3 Options . 173

Appendix B

Commonsense Reasoning for Task Delegation

Appendix C

List of Acronyms

Bibliography 185

13

Contents

14

List of Figures

1 Scénario de délégation MLA . 23
2 Modèle de délégation de tâches (MDT) . 26
3 Modèle de contrôle d’accès basé sur la tâche (CAT) 29
4 Un cadre sécurisé pour des politiques de délégation proactives 33
5 Un calcul événementiel basé sur le MDT 37
6 Plan de délégation . 40

2.1 Workflow life cycle . 52
2.2 A model for task-based organisational structures 53
2.3 Role resolution procedure at runtime . 55
2.4 An example of organisational role hierarchy and users in Eurojust 59
2.5 MLA scenario . 60

3.1 Workflow terminology . 71
3.2 The generic architecture of a WfMS . 72
3.3 Example of an organisational model . 73
3.4 Business process life cycle . 74
3.5 Horizontal and vertical modelling abstraction 76
3.6 BPMN example for DS1 . 78
3.7 RBAC model . 83
3.8 Static organisational context for RBAC . 84
3.9 RBAC Sessions . 85
3.10 XACML enforcement environment architecture 87
3.11 XACML policy language model . 88
3.12 Business and control goals in an organisation 90

4.1 Taxonomy of the motivation factors for delegation 97
4.2 An example of organisational role hierarchy and users in Eurojust 102
4.3 Organisational roles mapping . 104
4.4 Basic task delegation model . 106
4.5 Multi-layered state machine for secure task delegation 107
4.6 Task delegation model . 110
4.7 Delegation protocol negotiation-based . 113
4.8 Task execution model . 114
4.9 Task-oriented access control (TAC) model 115

15

List of Figures

5.1 Local delegation scenario from the MLA example 125
5.2 Access control framework . 127
5.3 Task assignment sequence diagram . 128
5.4 Task delegation pull model . 130
5.5 Task delegation push model . 131
5.6 Architectural extensions supporting delegation policies 136
5.7 Event calculus based task delegation model 141
5.8 Delegation mode choice . 142
5.9 Delegation plan . 145
5.10 Performance testing for sequential and parallel tasks 147

6.1 Modular architecture in R4eGov . 151
6.2 Administrative communication layer . 152
6.3 Adding Hook to MLA process using Bonita ProEd 153
6.4 Integrating the Bonita engine within the core R4eGov framework 155
6.5 CTM overview . 156
6.6 Delegated privileges during task’s resources access 157
6.7 The client application . 159
6.8 Implementing the access control framework for delegation 160
6.9 PERMIS decision engine architecture . 161
6.10 Parsing delegatee’s credentials . 162
6.11 The X.509 PMI RBAC Policy . 163
6.12 Policy editor for DS1 . 164
6.13 Policy tester for DS1 . 165

16

List of Tables

1 Politiques d’autorisations basées sur les évènements de délégation 28
2 Prédicats du calcul événementiel . 36
3 Politiques de délégation pour le mode Push 38

2.1 Logistic workflow : Relations between tasks, roles, applications and busi-
ness objects . 61

4.1 Summary of motivation factors for delegation scenarios in MLA 100
4.2 Negotiation factors specified by delegation principals 112

5.1 Delegation policies changes based on events 134
5.2 Event calculus predicates . 140
5.3 Push delegation policy rules-based events 143

A.1 The meaning of the symbols in the DECReasoner language 174

17

List of Tables

18

Résumé de la Thèse

19

Résumé de la Thèse

1 Introduction

Les systèmes de gestion de workflow font maintenant partie de l’environnement classique
des grandes organisations. Ces systèmes permettent la gestion et l’automatisation des
procédés métiers et organisationnels. Un procédé est classiquement défini comme un
ensemble d’activités coordonnées, également appelées tâches [WFM99]. Les systèmes ex-
istants sont cependant aujourd’hui considérés comme trop rigides et de nombreux travaux
ont pour but d’introduire de la flexibilité dans la modélisation et l’exécution des procédés.
Dans cette problématique, la prise en compte de la flexibilité organisationnelle, c’est à dire
des acteurs humains interagissant avec des systèmes de workflow structurés, est une étape
importante. C’est à cette dernière que nous allons nous intéresser à travers un mécanisme
particulier : la délégation de tâches [Sch03].

La délégation permet de façon dynamique de transférer l’exécution d’une tâche de la
personne à laquelle elle était assignée à un autre utilisateur tout en franchissant la barrière
des rôles définies par l’organisation. En effet, si nous considérons le graphe des relations
entre les rôles d’une organisation, la délégation va permettre, de façon temporaire, ex-
ceptionnelle, de transgresser certaines règles liées à ce graphe. Il faudra donc s’assurer
que cette délégation entraine les délégations d’autorisation nécessaires dans le système de
contrôle d’accès qui est en général basé sur le graphe organisationnel. En particulier, la
délégation d’une tâche à un subordonné, ou la délégation d’une tâche à un membre d’un
autre département de l’organisation va nécessiter des adaptations dynamique de la poli-
tique de sécurité. Cette délégation doit elle même faire partie de la politique de sécurité
de l’organisation.

Normalement, les organisations établissent un ensemble de politiques de sécurité qui
règlent la façon de gérer les procédés métiers et les ressources [AW05]. Une politique sim-
ple peut spécifier comment une tâche peut être assignée à un utilisateur. Une politique
plus complexe peut spécifier des contraintes d’autorisation supplémentaires pour perme-
ttre la délégation. Les contraintes d’autorisation de délégation sont définies par rapport
à des évènements sur les couches de contrôle, de données et d’assignement des tâches du
workflow [GSFC08]. Une délégation sécurisée de tâches implique la présence d’un en-
semble d’évènements de délégation défini et de règles définissant les possibles délégations
d’autorisation ainsi que les moyens de contrôler les politiques associées.

L’essentiel du travail fait dans le domaine des contraintes de sécurité et des droits
d’accès ne traite pas de la délégation de façon assez détaillée. En effet, les travaux traitant
du contrôle d’accès basé sur le modèle RBAC (“Role Based Access Control”) [SCFY96],
qui permettent de définir des politiques de délégation manquent de flexibilité. L’essentiel
des possibilités ou des règles de délégations sont définies à priori [SRS+05]. Les travaux
traitant des systèmes d’autorisation ne considèrent pas la possibilité de contrôler des
politiques dynamiques, c’est à dire susceptible de changer en fonction d’évènements de
contexte [BFA99]. Actuellement, les requêtes sur un système de contrôle d’accès sont
sans état. La réponse à une requête donnée n’est valide qu’à l’instant ou la requête est
faite. Si cette réponse change en raison d’une adaptation de la politique, aucun mécanisme
n’existe pour transférer cette nouvelle réponse au demandeur initial de façon proactive. Ce
mécanisme est cependant vital pour permettre une délégation dynamique d’autorisation.
Lorsque nous déléguons une tâche, une adaptation de la politique peut être nécessaire

20

en fonction des évènements de délégation. Le délégué, la personne à qui nous déléguons,
peut acquérir de nouveaux droits grâce à cette délégation mais il peut les reperdre en
cas de révocation de cette délégation. Ces évènements de délégation sont donc liés à des
changements dynamiques des autorisations. Ceci ne peut être négligé par un système de
sécurité avancé permettant la délégation de tâche de manière dynamique et assurant son
intégration de façon automatique.

Dans ce mémoire, nous allons donc proposer la définition d’une approche permettant
la délégation dynamique d’autorisation. Celle ci devra supporter des politiques proactives
dans un système de contrôle d’accès. Nous motiverons cette approche par un exemple né-
cessitant la délégation de tâches. Nous identifierons les évènements spécifiques du modèle
de tâches correspondant à la délégation qui entrainent des changements dynamiques de la
politique. Nous séparerons les différents aspects de la délégation entre les utilisateurs, les
tâches et les évènements, et nous les spécifierons en termes de politiques de délégation. Les
politiques définies incluront les comportements nécessaires pour permettre les interactions
en temps réel assurant la délégation dynamique d’autorisation. Nous présenterons ensuite
les environnements de contrôle d’accès existants et discuterons leur fonctionnalités et
leur limitations. Puis, nous montrerons comment notre approche permet de contrôler dy-
namiquement les autorisations liées à la délégation et comment elle peut être intégrée dans
les systèmes existants. Pour finir, nous présenterons une technique pour l’intégration des
politiques de délégation dans les politiques prédéfinies. Afin de contrôler le comportement
de délégation et de spécifier ses politiques, nous recueillerons les événements pertinents
qui définissent à la fois le chemin d’exécution des tâches ainsi que les politiques générées
pour la délégation. En utilisant, le calcul événementiel, nous proposerons une technique
qui automatise les politiques de délégation et qui permet d’accrôıtre la conformité des
changements dus à la délégation dans la politique d’autorisation existante.

2 État de l’art

La plupart des travaux réalisés dans le domaine des contraintes de modélisation et de
sécurité et pour les systèmes de gestion de workflow ont peu de travaux connexes portant
sur la délégation [AW05, Ven03]. Cette observation est corroborée par les études réalisées
par Russel et al. [RvdAHE05] et Hung et al. [HK03]. Ils ont souligné que les solutions
existantes, telles que le Modèle d’autorisation de workflow (WAM) [AW05], restent sta-
tiques et ne supportent pas les contraintes de sécurité dynamiques tel que la délégation
d’autorisation.

Le modèle d’autorisation de workflow (WAM) présente un cadre conceptuel, logique
et un modèle d’exécution qui se concentre sur l’application des flux d’autorisation entre
les tâches et leurs dépendances [AW05]. Bien que WAM aborde la synchronisation des
flux d’autorisation avec le workflow et assure une spécification des contraintes temporelles
d’une façon statique, il ne suffit pas à assurer la sécurité des workflows en général et de la
délégation de tâches en particulier. En effet, nous avons besoin de contrôler une délégation
en nous basant sur les différents aspects du workflow tels que les tâches, les événements
et les données.

Russel et al. ont proposé une approche supportant la délégation [RvdAHE05]. Ils

21

Résumé de la Thèse

ont décrit le cycle de vie d’un élément de travail sous la forme d’un diagramme d’états-
transitions en mettant l’accent sur les allocations de ressources. Le principal inconvénient
de cette approche est le fait d’être statique. De plus, elle ne tient pas compte d’autres
événements (transitions) lors de l’exécution de la délégation et ne supporte pas les inter-
actions dynamiques au sein des workflows.

Le modèle de contrôle d’accès extensible XACML (eXtensible Access Control Markup
Language) a été développé afin de définir de manière uniforme la spécification des poli-
tiques de contrôle d’accès dans le langage XML [Tim05]. Les politiques sont décrites par
des règles qui peuvent être restreintes par des conditions. Ces règles s’appliquent à des
cibles définies par un ensemble de sujets, de ressources et d’actions. Ces spécifications
sont reprises lors d’une requête, où elles seront confondues avec les attributs de la requête
(e.g. le demandeur comme sujet, la tâche comme ressource, la permission comme action).
Les résultats ou les effets d’une politique peuvent être : Permis, Refus, Non applicable
ou Indéterminée. Le standard XACML actuel ne fournit pas de support explicite de délé-
gation. Cependant, il y a eu quelques essais d’extension du modèle pour des règles de
délégation mais qui restent loin d’être concrètes pour des politiques réelles de délégation
[SRS+05].

Chadwick et al. [CON06] ont proposé une solution XACML supportant une délégation
dynamique des autorisations. L’approche décrit une entité appelée le service de validation
des attributs. Elle a pour but de se synchroniser avec le module XACML de décisions
(“Policy Decision Point”) pour la prise de décisions d’autorisation. L’architecture proposée
offre un moyen souple et dynamique pour gérer les informations d’identification, mais elle
ne couvre pas tous les aspects de délégation dynamique.

Seitz et al. [SRS+05] ont étudié la manière dont un système de gestion d’autorisation,
utilisant le langage XACML, peut être étendu à des mécanismes de délégations adminis-
tratives. Ils ont mis au point un module qu’ils ont appelé “Delegent” pour la gestion des
modifications autorisées sur des politiques. Ce travail a été implémenté par la suite dans
une solution logicielle appelée Axiomatics pour la gestion de contrôle d’accès. L’idée est de
fournir un outil d’administration pour la politique de contrôle d’accès supportant la mise
à jour de ces politiques. Cependant, cette administration reste passive et sans états. Elle
manque de réactivité pour supporter des changements dynamiques de politiques. Nous
avons besoin d’une approche réactive pour tenir compte des événements de délégation lors
de l’administration des politiques d’autorisation.

À notre connaissance, il n’y a pas de travaux spécifiques à la délégation de tâches
dans les systèmes de workflow. De plus, la plupart des travaux qui traitent des problèmes
d’autorisation relatifs à la délégation ignorent l’aspect organisationnel du workflow et re-
streignent la délégation à un simple problème d’attribution de rôles [BS00]. Outre le be-
soin de collaboration, il y aussi le besoin en interactions humaines inter-organisationnelles
qui sont définies par des mécanismes de délégation ad-hoc, ce qui est le cas dans notre
exemple de motivation e-gouvernemental (voir section 3). En effet, le fait de déléguer
une tâche exige plus d’efforts de spécifications liées à des événements spécifiques de délé-
gation. Dans la section 4 nous définissons un modèle de délégation de tâches qui fait
à la fois parti du procédé métier du workflow ainsi que des contraintes de sécurité liées
à l’autorisation. À partir de ce modèle, nous identifions les évènements permettant de
déterminer les politiques dynamiques de délégation afin d’assurer des décisions proac-

22

tives lorsque des événements sont déclenchés au cours de la délégation des tâches (voir
section 6). Dans la section 7, nous nous intéressons au problème d’administration des
politiques d’autorisation en développant un outil d’intégration des politiques dynamiques
de délégation dans la politique globale des workflows.

3 Contexte et problématique

3.1 Exemple de motivation

Pour illustrer la problématique que nous voulons développer, nous allons nous appuyer sur
un exemple tiré d’un cas réel impliquant la délégation de tâches. Dans le cadre des procé-
dures criminelles au niveau européen, ont été mises en place des procédures d’assistance
judiciaire mutuelle. Ceci permet par exemple à un état membre de faire exécuter une
mesure de protection des témoins par un autre état dans une procédure criminelle [R4e06].
Nous ne décrivons ici que la partie Eurojust (European Judicial Cooperation Unit) du
pays A de la procédure d’assistance mutuelle (“Mutual Legal Assistance”, MLA). Elle
consiste à recevoir une requête d’assistance d’un membre d’Europol (European Police Of-
fice) pour pouvoir la traiter et la transmettre à l’autorisation concernée du pays B (voir
figure 1). L’utilisatrice Alice, qui a le rôle Procureur est assignée à une partie du procédé
d’Eurojust A. Les activités du procédé sont représentées comme des tâches.

T1. Receive
Request

T2. Prepare Content

T3. Translate
Documents

T4. Approve
Request

T5. Forward
Request

Prosecutor

(T3, Prosecutor, Assistant, DC)

Assistant

E
ur

oj
us

t
A

E
u

ro
ju

st

B
E

u
o

p
o

l

Translate
Documents

5 days after
delegation acceptance

Figure 1: Scénario de délégation MLA

23

Résumé de la Thèse

Nous avons utilisé la notation BPMN (Business Process Modeling Notation) pour
modéliser notre exemple. BPMN définit une notation standard pour la modélisation
de procédés métiers [OMG06]. Dans ce scénario, la tâche “Translate Documents” T3
n’est accessible au départ que par le Procureur Alice. Ceci est défini par la politique du
procédé. Cette tâche est de longue durée et il est prévu 5 jours pour la terminer. Alice
n’est pas disponible pour la réaliser pour cause de maladie et doit donc la déléguer à
Bob. Bob a pour rôle Assistant et est subordonné au Procureur dans la hiérarchie de
l’organisation. La délégation doit fournir les moyens suffisants pour permettre ce type
de flexibilité organisationnelle. Ainsi, Alice et Bob sont respectivement le délégant et le
délégué.

Une politique peut être définie comme un moyen pour définir les accès aux ressource
d’une tâche. Nous définissons une politique d’autorisations P pour le procédé MLA.
Pendant une délégation, la politique P est mise à jour pour que l’utilisateur Bob puisse
réaliser la tâche à la place d’Alice. Bob revendique la tâche. Une requête de contrôle
d’accès est effectuée. L’accès est accordé et Bob peut exécuter la tâche. Après deux jours,
Alice revient au travail. Elle veut reprendre la tâche qui lui était affectée. Elle réclame à
nouveau la tâche. En raison de sa qualification, la tâche est réaffectée à Alice et retirée
de la liste de tâches de Bob. La politique de sécurité doit être à nouveau mise à jour pour
refléter le fait que seule Alice a maintenant accès à la tâche. La requête d’accès qui avait
permis à Bob d’accéder aux ressources de la tâche retourne maintenant une décision de
refus.

Dans les environnements de contrôle d’accès classique, un mécanisme qui préviendrait
Bob que son accès à une ressource est annulé automatiquement n’existe pas. Il n’est pas
possible de révoquer une réponse donnée par une requête d’accès précédente. En outre, un
contrôle manuel des droits d’accès couramment accordés pour l’exécution de tâche serait
long, couteux et source d’erreurs. Un mécanisme dynamique permettrait d’informer dy-
namiquement le délégué d’un changement de politique en fonction des évènements de délé-
gation. Ceci nécessite de supporter certaines interactions spécifiques dans l’architecture
de contrôle d’accès utilisée. Ces interactions concernent en particulier les évènements de
délégation de tâches qui doivent être capturés et retournés à l’émetteur de la requête pour
prendre les mesures appropriées.

3.2 Analyse et discussion

Nous allons nous baser sur un modèle de délégation basé sur les rôles pour contrôler des
interactions inter humaines dans le contexte de tâches de longue durée. Nous faisons
l’hypothèse que l’exécution d’une tâche est atomique et que la délégation d’autorisation
est accordée uniquement au délégué. Ainsi, nous ne considérons pas la possibilité de faire
de la délégation en cascade ou de la délégation partielle [ZOS03]. Lors d’un évènement
de délégation, nous définissons comme suit la relation de délégation :

24

Definition 1 (Relation de Délégation) Une relation de délégation RD ⊆ T ×U×
U × 2DC avec T l’ensemble des tâches, U l’ensemble des utilisateurs et DC l’ensemble
des contraintes de délégation. Une relation de délégation pour une tâche ti est définie
comme suit : RD = (ti, u1, u2, {DC}), où ti est la tâche déléguée, u1 le délégateur et
u2 le délégué.

Les contraintes de délégation correspondent aux droits de déléguer par rapport à la
politique définie pour le procédé. Par exemple, DC est basé sur la hiérarchie de rôles
(RH) d’Eurojust, où l’Assistant Bob est sous l’autorisation du Procureur Alice. De plus,
DC implique aussi une délégation temporaire. Une période de délégation doit être définie.
Bob n’est pas autorisé à dépasser la date limite de T3 (5 jours de travail). Nous définissons
la relation de délégation pour T3 ainsi :
RD = (T3,Alice,Bob,{RH,5 jours}).

La disponibilité d’un mécanisme dynamique ou proactif d’exécution des politiques de
sécurité est vital pour permettre la délégation de tâches de longue durée. Cela nécessite
d’être capable de capturer les évènements de délégation et de les transmettre à l’émetteur
de la requête pour faire les mises à jour nécessaires dans le système de contrôle d’accès.
Actuellement, nous savons contrôler les droits d’accès d’une délégation à travers une adap-
tation de la politique, pour permettre au délégué d’effectuer la tâche déléguée. Ensuite
nous devons mettre à jour la relation de délégation dans la politique du procédé chaque
fois qu’un tel évènement est produit. Cela consiste en l’introduction de nouvelles règles
d’autorisation pour le délégué. Si cette règle change suite à une révocation, une nouvelle
réponse devra être transmise au délégué dynamiquement.

En plus, nous avons besoin de contrôler le comportement de la délégation et de spécifier
ses politiques d’autorisation. Nous aurons besoin d’une technique qui automatise les poli-
tiques de délégation et qui permet par la suite d’accrôıtre la conformité des changements
dus à la délégation dans la politique globale d’autorisation.

4 Politiques de délégation de tâches basées sur un

modèle événementiel

Dans cette section, nous nous intéressons à l’identification d’événements qui pourraient
être à l’origine de la définition de nouvelles politiques d’autorisation. Tout d’abord, nous
présentons notre modèle de délégation de tâches, où nous définissons les transitions comme
des événements décrivant le cycle de vie d’une tâche. Ensuite, nous analysons les événe-
ments capable d’appliquer de nouvelles règles de changement aux politiques de délégation.
En effet, notre préoccupation est d’assurer une politique de délégation dynamique suppor-
tant l’exécution d’une tâche déléguée. Le but est de pouvoir répondre aux changements
dynamiques qui peuvent se produire lorsqu’une tâche est déléguée. Ceci est motivé par le
fait que lorsqu’un événement se produit, notre politique de gestion d’accès doit répondre
à ce changement conformément à l’évolution de l’exécution de la tâche déléguée.

25

Résumé de la Thèse

4.1 Modèle de délégation de tâches (MDT)

Nous définissons un modèle de délégation de tâches (appelé MDT). Ce modèle est basé
sur les spécifications du cycle de vie d’une tâche définies par la WfMC [WFM99]. MDT
définit un diagramme UML (Unified Modeling Notation) d’états/transitions d’une tâche
au sein d’un procédé de workflow. Une tâche une fois crée, est généralement attribuée à un
utilisateur. L’utilisateur peut par la suite l’exécuter ou la déléguer à quelqu’un d’autres.
La délégation dépend du droit dont dispose cet utilisateur pour requérir une demande de
délégation.

Initial Assigned
S:assign

Started
u1:start

Completed
U:complete

[transfer delegation / task
executed by delegator]

Waiting for
Delegation

Waiting for
Completion

Waiting for
Validation

u1:delegate

[pull delegation]u1
:c

an
ce

l

u2:accept

u1
:r

ev
ok

e

u1:delegate

[push delegation]

u2:execute
[grant delegation]

u1:validate

u1:revoke

u2:fail

u2:execute
[grant delegation]

S:abort

S:create

Delegated

Cancelled

Failed
U: fail

u2:complete

u2
:s

ta
rt

Waiting for
Execution

u2:execute
[transfer delegation]

Figure 2: Modèle de délégation de tâches (MDT)

Les événements intermédiaires définissent le contrôle de délégation de tâches (e.g.
“delegate”, “cancel”, “revoke”). Par exemple, si le délégant a besoin d’annuler son action,
le TDM doit proposer une alternative pour annuler la délégation (l’événement “cancel”)
et revenir à l’état précédent : “Assigned”. Le contrôle de délégation reste interne au
modèle de tâche et son comportement suit le flux de contrôle habituel, où “Completed”,
“Cancelled” et “Failed” représentent les états finaux d’une tâche (voir figure 2).

Il faut noter que les préfixes S ou U indiquent que les transitions sont soit initiées par
le système de workflow, soit une ressource humaine (un utilisateur). Nous définissons u1

et u2 appartenant à l’ensemble des utilisateurs U, avec respectivement u1 et u2 le délégant
et le délégué.

4.2 Analyse de besoins en sécurité

Dans notre modèle MDT, nous définissons les transitions comme des événements qui con-
trôlent le comportement de délégation. Nous avons enrichi ce modèle avec des propriétés
décrivant le mode et le type de délégation. En effet, une tâche déléguée peut s’exécuter
de différentes manières selon le contexte de son exécution. Un délégant peut avoir à sa

26

disposition une liste de délégués potentiels qui peuvent exécuter la tâche pour son compte.
Il s’agit dans ce cas d’un mode “Pull”. Une autre propriété concerne le type d’attribution
de privilèges (permissions) afin d’accéder aux ressources de la tâche pour l’exécuter. Dans
la littérature, nous distinguons deux types : “grant” et “transfer” [CK06]. Dans ce qui suit,
nous analysons les exigences en sécurité qui doivent être prises en compte pour définir les
politiques de délégation basées sur les événements de délégation (voir figure 2).

• Mode de délégation : Il définit la manière dont une requête de délégation est faite.
Le mode “Pull” suppose que le délégant dispose d’une liste de délégués potentiels qui
peuvent exécuter la tâche pour son compte. Le mode “Push” suppose qu’un délégant
est en attente d’acceptation d’un délégué correspondant au profil de la requête (e.g.
rôle). Nous définissons les évènements suivants “accept”, “cancel” et “revoke” comme
les évènements relatifs au mode “Push”.

• Type de délégation : Il existe deux types de délégation : “grant” et “transfer”.
Une délégation de type“grant” permet à la fois au délégant et au délégué que le droit
d’accès (privilèges) soit disponible. À ce titre, le délégant garde toujours le contrôle
sur sa tâche et a le droit de valider (“validate”) ou de révoquer (“revoke”) le travail
du délégué. Une délégation de type “transfer” donne tous les droits au délégué. Il
n’y a pas de validation requise et la tâche est terminée (“complete”/“fail”) par le
délégué.

• La délégation d’autorisation : Elle permet à un délégant de céder une partie de
ses privilèges à un délégué qui, à priori, ne possèdent pas les autorisations néces-
saires pour exécuter la tâche. Par exemple, “delegate” définit un événement qui
va déclencher la délégation de la tâche. Ainsi, “delegate” va entrâıner l’application
d’une nouvelle politique de contrôle d’accès pour le délégué. Nous allons assurer
une nouvelle règle dans la politique afin d’autoriser le délégué à exécuter la tâche
déléguée.

• Application du contrôle d’accès : Le but est de garantir une politique de délé-
gation dynamique. Par exemple, l’évènement “cancel” implique la révocation de la
délégation où le délégant va reprendre le contrôle sur sa tâche et, par conséquent,
annuler la décision précédente. Cette annulation définit une nouvelle règle dans la
politique en appliquant un refus d’accès instantané au délégué.

Par la suite, nous classons les événements de délégation et identifions les relations entre
ces événements, les propriétés de délégation et leur impact sur les politiques d’autorisation
(voir tableau 1).

En effet, pour une délégation de type “grant” le mode Push est basé sur les évènements
: u1:delegate, u2:accept, u1:cancel, u2:execute, u1:validate et u1:revoke. Les changements
de politiques peuvent s’opérer lors des évènements : u1:delegate, u2:accept et u1:revoke.
Pour mieux expliquer le tableau, nous considérons les deux exemples suivants :

27

Résumé de la Thèse

Évènements Mode Push Mode Pull Changement de politiques
Grant Transfer Grant Transfer

u1:delegate X X X X X
u2:accept X X X
u1:cancel X X
u2:execute X X
u1:validate X X
u1:revoke X X X

U:fail X X
U:complete X X

Table 1: Politiques d’autorisations basées sur les évènements de délégation

Exemple 1 : Dans le scénario e-gouvernemental que nous avons présenté, nous pou-
vons observer une politique de délégation dynamique régie par les évènements qui peuvent
avoir lieu au cours de l’exécution de la tâche T3. L’utilisateur Alice est de retour avant
la terminaison de délégation. Alice devrait révoquer l’effet de délégation en annulant ce
qui a été effectué par Bob. Alice sera en mesure d’exécuter la tâche T3 et ainsi annuler
la politique d’autorisation initialement déléguée à Bob. L’événement “revoke” va mettre
à jour la politique globale et une notification sera transmise à Bob pour procéder aux
actions nécessaires d’annulation.

Exemple 2 : L’événement “fail” est défini dans les deux modes de délégation (Push
et Pull). Il intervient lors d’une délégation de type “transfer”, où un délégué termine
la tâche sans besoin de validation. Les politiques de délégation prendront fin suite à la
terminaison de la tâche et aucun changement de politiques n’est nécessaire.

5 Les modèles de contrôle d’accès dans les workflows

En matière de gestion des autorisations en général, le modèle RBAC est largement adopté.
Il permet aux administrateurs d’attribuer des rôles aux utilisateurs. Dans notre travail de
thèse, nous essayons d’étendre ce modèle dans le but de résoudre les problèmes liés à la
délégation. En effet, la délégation est un mécanisme qui permet à un utilisateur d’attribuer
un sous-ensemble de ses autorisations à d’autres utilisateurs qui ne les possèdent pas
initialement.

Dans ce qui suit, nous définissons un modèle de contrôle d’accès basé sur le modèle
RBAC. Notre objectif sera par la suite de raisonner sur la délégation de tâches du point de
vue de l’organisation (ressources humaines) et celui des procédés (ressources matérielles)
afin d’analyser et de spécifier les contraintes de délégation.

5.1 Modèle de contrôle d’accès basé sur la tâche (CAT)

Nous proposons un modèle de contrôle d’accès basé sur la tâche (appelé CAT) (voir fig-
ure 3). Formellement, nous identifions les ensembles U, R, OU, T, P, S et TI en tant

28

que respectivement les ensembles des utilisateurs, de rôles, des unité d’organisations, des
tâches, des permissions, des sujets et des instances de tâches. Un sujet définit un util-
isateur choisissant un rôle lors d’une session (instanciation de la tâche). Cela permet de
gérer l’attribution (l’affectation) des instances de tâches (claimedby) lors de l’activation
d’un rôle par un utilisateur. Nous définissons la relation RH (Rôle Hiérarchique), avec
RH un ordre partiel dans R. ri et rj ∈ R, si ri est un rôle supérieur à rj, alors ri hérite
automatiquement des permissions de rj.

U R
URA RPA

P

TPA

S TI

Constraints

claimed_by

instance_of T

TRA

S
U

S
R

RH
OU

RM

Figure 3: Modèle de contrôle d’accès basé sur la tâche (CAT)

Nous définissons aussi la relation RM (Role Mapping), RM ⊆ OUi×OUj, avec OUi et
OUj deux unités d’organisations. RM définit les rôles externes qui accèdent aux ressources
distribuées inter-organisations. Concrètement, cela signifie que si rk ∈ OUi, rl ∈ OUj, et
rl est un rôle projeté sur rk, alors rl hérite automatiquement des permissions de rk.

Définitions des relations :

• URA ⊆ U ×R, définit la relation d’attribution des rôles aux utilisateurs.

• RPA ⊆ R× P , définit la relation d’attribution des permissions aux rôles.

• TPA ⊆ T × P , définit la relation d’attribution des permissions aux tâches.

• TRA ⊆ T ×R définit la relation d’attribution des tâches aux rôles.

Définitions des fonctions :

• SU :S → U une fonction qui définit l’association du sujet à son utilisateur.

• SR:S → R, une fonction qui définit l’association d’un sujet à son rôle, avec SR(s) =
r, (SU(s), r) ∈ URA} et le sujet s a comme permission p|(r, p) ∈ RPA}.

29

Résumé de la Thèse

• instanceof :T → TI, une fonction qui définit l’association d’une tâche à ses instances
de tâches.

• claimedby:TI → S, une fonction qui définit l’affectation d’une instance de tâche à
un sujet tel que s = claimedby(ti) avec :
{ti = instanceof (t), (r, u) ∈ URA|(SR(s) = r

∧
SU(s) = u), (t, r) ∈ TRA}.

Définitions des Contraintes :

Ici, nous parlons des contraintes de séparation de devoir (“Separation of duty” : SoD)
et de l’attachement de devoir (“Binding of duty” : BoD). Nous définissons les relations
entre les tâches pour les SoD et BoD comme suit :

TTSOD : {(ti, tj) ∈ T × T | ti est exclusive avec tj}

TTBOD : {(ti, tj) ∈ T × T | ti est attachée avec tj}

Si (ti, tj) ∈ TTSOD, alors ti and tj ne peuvent pas être affectées au même utilisateur.
Si (ti, tj) ∈ TTBOD, alors ti and tj doivent être affectées au même utilisateur.

Contributions et Motivations :

Nous modélisons l’affectation des permissions aux tâches et aux rôles en nous basant
sur les besoins en ressources humaines (les utilisateurs) et matérielles (les objets métiers).
Le tuple (P,T,R) définit les relations TRA, TPA and RPA qui spécifient le contexte
d’exécution d’une tâche (voir définition 2).

Definition 2 (Les Conditions d’affectation d’une tâche) Une tâche t est affec-
tée à un rôle r si : (t, r) ∈ TRA⇒ {p ∈ P |(t, p) ∈ TPA} ⊂ {p|(r, p) ∈ RPA}.

La principale contribution est de préciser les conditions d’affectation des tâches basée
sur le modèle de contrôle d’accès (voir figure 3). En effet, deux conditions doivent être
vérifiées pour satisfaire la relation TRA. La première condition est liée aux ressources de
la tâche définies dans TPA. La deuxième condition est liée à l’attribution de la tâche à
un utilisateur qui doit disposer des permissions requises. La validation de cette condition
se fait au niveau de la relation RPA.

5.2 Utilisation du modèle CAT pour la délégation de tâches

Le modèle CAT définit la liste de délégués potentiels (RPA) qui peuvent satisfaire les
conditions d’affectation d’une tâche déléguée (TPA). Nous définissons une méthode de
contrôle d’accès sur la délégation des tâches en utilisant le modèle CAT. Dans ce qui suit,

30

Algorithm 1: Définition des délégués et des privilèges pour une tâche
Entrées : DR // Relation de Delegation

u1, u2 // utilisateurs ∈ U

r1, r2 // rôles ∈ R

ti, tj // tâches ∈ T

DR = ∅ /*Initialisation de DR*/
{(u1, r1), (u2, r2)} ⊆ URA /*Attribution des rôles aux utilisateurs*/
{(r1, pr1), (r2, pr2)} ⊆ RPA /*Attribution des permissions aux rôles*/
(ti, pti) ∈ TPA /*Attribution des permissions à la tâche avec pti ⊂ pr1*/
(ti, r1) ∈ TRA /*Attribution de la tâche au rôle*/
SU(s1) = u1 /*Association du sujet à son utilisateur*/
SR(s1) = r1 /*Association du sujet à son rôle*/
SU(s2) = u2

SR(s2) = r2
ti1 = instanceof (ti)
tj1 = instanceof (tj)
s1 = claimedby(ti1) /*ti1 assignée à s1*/
Precondition :
(@ tj1 | (TTSOD(ti,tj), s2 = claimedby(tj1)) AND (TTBOD(ti,tj), s1 = claimedby(tj1)))
Postcondition :
pti ⊂ pr2 ⇒ s2 = claimedby(ti1) /*ti1 déléguée à s2*/
pti 6⊂ pr2 ⇒ p′r2 ← pr2 ∪ pti /*p′r2 est l’ensemble des permissions associées à s2 pour la
durée de délégation*/
Résultat : DR = (ti,u1,u2, {DC})
DR1 ← instanceOf(DR)
DR1 = (ti1,s1,s2, {DC}) /*Instanciation de la relation de délégation*/

nous définissons un algorithme (voir algorithme 1) pour décrire la façon dont les délégués
seront gérés et si des privilèges sont nécessaires pour satisfaire les conditions de délégation.

La principale contribution de cette méthode est de préciser les conditions d’affectation
des tâches déléguées tout en identifiant le délégué et les privilèges. En effet, la méthode
est basée sur les exigences actuelles des instances d’une tâche. Ainsi les privilèges délégués
dépendent seulement de l’instance de la tâche et non pas de tous les privilèges accordés à
la tâche type. Le but est de déléguer seulement les permissions nécessaires à l’exécution
de cette instance.

En premier lieu, nous vérifions si les relations TPA et RPA sont valides, alors la tâche
ti est déléguée au délégué u2 en se basant sur la définition 2. En deuxième lieu, si u2

membre du rôle r2 n’a pas l’autorisation nécessaire pour exécuter ti et qu’il n’y a pas
de conflits avec la politique d’autorisation globale (BoD or SoD), alors le délégant lui
accordera les privilèges nécessaires à l’instance de la tâche ti1.

6 Une Approche sécurisée pour la délégation de tâches

Dans cette section, nous développons une approche sécurisée pour la délégation de tâches.
Notre approche a pour but de spécifier les contraintes exprimées dans notre modèle de

31

Résumé de la Thèse

contrôle d’accès en termes de politiques d’autorisation. Nous présentons une architecture
modulaire assurant une gestion dynamique pour la délégation de privilèges. Notre ap-
proche permet de supporter des politiques de contrôle d’accès proactives régies par les
évènements de délégation définis dans la section précédente.

Notre approche sera implantée au sein de systèmes existants de contrôle d’accès dans
le cadre de la délégation de tâches. Pour ce faire, lorsqu’une requête est émise, elle est
ensuite stockée de manière à informer le délégué si la décision politique à cette requête
vient de changer. En effet, la réponse peut évoluer en fonction des changements de
politiques se produisant au cours d’une délégation. Des évènements tels que l’annulation,
la révocation ou la non validation d’une tâche déléguée doivent forcément entrâıner une
nouvelle décision à la réponse précédente (voir les changements de politiques identifiés
dans le tableau 1). De ce fait, les requêtes antérieures seront réévaluées, et le délégué
sera informé que ses droits d’accès ont changé. L’implémentation de cette approche se
base sur des systèmes existants de contrôle d’accès. L’idée est de développer un module
dynamique comme extension à ces systèmes afin de supporter des politiques de délégation
proactives.

6.1 Spécification des politiques d’autorisation à partir du mod-
èle CAT

Une autorisation permet la liaison explicite entre un sujet (utilisateur), une ressource
de tâche (objet métier) et ses droits (actions). Cette liaison est définie sur la base des
spécifications du modèle CAT. Il inclut les entités définies dans les principales relations :
URA, TRA, RPA et TPA.

Une autorisation exprime le droit d’accès d’un utilisateur sur les ressources d’une tâche,
où une autorisation définit le droit d’exécuter une action sur une ressource. La définition
de l’autorisation doit être précisée dans une politique (voir définition 3). Une politique
de contrôle d’accès spécifie l’accès aux ressources d’une tâche à un niveau plus élevé.

Definition 3 (Politique) Nous définissons une politique P ⊆ target × rule × 2C,
avec target (cible) le domaine d’application de la politique, rule un ensemble de règles
définissant les décisions de la politiques, et C l’ensemble des contraintes validant le
résultat des règles.

Une pseudo expression formelle d’un target (cible) est :

<Autorisation>
<Sujet>[role]
<Resource>[object]
<Action>[operation]
<Tâche>[task type]

< /Authorisation>

32

Un exemple d’une politique où la décision est “Permit” pour un sujet ayant comme
rôle Procureur sur la tâche T1 “receive request” (voir figure 1) est :

<Poliy>
<target>[Procureur1,MLA1,read,T1]
<rule>[Permit]
<C>[none]
< /Poliy>

Dans la suite, nous présentons un cadre de contrôle d’accès (ACF) pour la délégation.
ACF est définie comme un ensemble de composants logiciels qui accepte les demandes
d’accès aux ressources, analyse ces demandes, et retourne une réponse fondée sur cette
analyse.

6.2 Vue d’ensemble de l’architecture

Nous présentons les principaux composants de l’architecture qui va assurer la gestion de
politiques proactives lors de la délégation de tâche. L’architecture et ses différents modules
sont décrits dans la figure (voir figure 4).

Systèmes de Contrôle
d´Accès existants

Récepteur Analyseur Répondeur

BD de
politiques

Adaptateur de
politiques

Évaluateur

BD de
Requêtes

Requête

Politique Gestionnaire
d´Invocation

Réponse

Requête
Réponse

Service Web d´Invocation

Demandeur

Gestionnaire
de politiques

Définit

Écoute

Figure 4: Un cadre sécurisé pour des politiques de délégation proactives

• Gestionnaire de politiques : Il permet à un administrateur de définir des poli-
tiques de contrôle d’accès. Grâce à une interface graphique, l’administrateur peut
naviguer dans la base de données des politiques, sélectionner un document, modifier
une politique (la cible, le sujet, les règles d’autorisation), et préciser les décisions
pour les éléments sélectionnés. Par exemple, un administrateur définit une politique
d’autorisation P qui retourne comme réponse“permis” (autoriser) pour la tâche cible
T3 ayant comme sujet l’utilisateur Alice dont le rôle est Procureur. Dans notre con-
texte de délégation, nous assumons qu’un délégant est autorisé à administrer des

33

Résumé de la Thèse

politiques, et ainsi à définir des règles de délégation. Les politiques de délégation en-
capsulent les attributs d’identification du délégué pour les besoins d’authentification
et d’autorisation.

• Cadre de contrôle d’accès (CCA) : Il est défini comme un ensemble de com-
posants logiciels qui gèrent les requêtes d’accès à une ressource donnée en analysant
les informations de cette requête dans la Base de données (BD) des politiques. Les
informations récupérées de cette requête rassemblent les attributs du demandeur
(l’émetteur de la requête) ainsi que la ressource requise (cible). Ces informations
seront traitées dans le CCA et une réponse sera émise par la suite. Pour illus-
trer l’architecture originale d’un CCA, nous décrivons les principaux composants
impliqués dans la gestion de contrôle d’accès. Une requête est émise par le deman-
deur, qui est reçue par le composant Récepteur. La requête est transmise ensuite au
composant Analyseur qui va vérifier les informations dans la base de données. Une
réponse est générée enfin par le composant Répondeur qui envoie le résultat de la
décision (e.g. permis, refus, indéterminé ou non applicable) au demandeur.

• Module des politiques dynamiques : Il définit notre approche pour supporter
des décisions de politiques proactives. Notre approche consiste à étendre l’architecture
du CCA avec des composants supplémentaires. Lorsque le Récepteur reçoit une
requête, il enregistre cette requête dans une BD de Requêtes. L’Adaptateur de poli-
tiques interroge la BD de politiques pour voir si un nouvel évènement qui pourrait
changer la décision précédente a été produit. Il procède en envoyant cette infor-
mation au composant Évaluateur qui va comparer avec l’ancienne politique stockée
dans la BD de requêtes. En cas de changement, la nouvelle politique sera renvoyée à
l’Analyseur et une nouvelle réponse sera émise. Un nouvel évènement tel que revoke
va entrâıner une modification de l’ancienne politique de délégation et ainsi une mise
à jour dans la BD des politiques d’autorisation sera faite. Au niveau utilisateurs,
un service d’invocation via un point de contact va notifier le délégué de la nouvelle
décision (voir figure 4).

6.3 Déploiement

Sur le plan architectural, les requêtes doivent être réévaluées à chaque changement de
politiques. Pour cela, nous aurons besoin d’un mécanisme de stockage des requêtes précé-
dentes ainsi que de leurs résultats. En effet, si la réévaluation d’une requête génère un
résultat différent du premier résultat enregistré, le CCA doit informer le demandeur du
nouveau résultat. Ainsi, il doit exister un mécanisme qui déclenche une nouvelle évalua-
tion lorsqu’il détecte un changement de politique. Ces effets de changement de politiques
seront capturés automatiquement et transmis au demandeur, dans ce cas le délégué, pour
procéder aux mesures appropriées à ce changement. En outre, nous définissons un élément
d’Invocation qui va acheminer cette information au délégué.

Sur le plan du langage, il faut définir de nouveaux constructeurs pour la description
de la méthode d’invocation que le CCA utilisera pour contacter le demandeur. Il s’agit de
développer un point de contact pour le demandeur. Dans une architecture orientée services

34

(SOA), ce point de contact peut être un point final d’un service (“service endpoint”) qui
pourra être invoqué par le système (voir le service web d’invocation dans figure 4). De ce
fait, toutes les politiques d’accès doivent être centralisées et référencées par l’architecture
SOA, qui sera protégée. Nous définissons un point d’accès unique et nous enregistrons les
services web dans notre CCA.

Sur le plan technique, le Gestionnaire de politiques génère des politiques dans lesquelles
il intègre des attributs d’authentification et d’autorisation [GSFC08]. Des fournisseurs
d’authentification tels que les autorités de certification numérique délivrent des certificats
au demandeur afin de traiter sa requête. À ce stade, le Récepteur agit comme un élément
d’application de la politique (“Policy Enforcement Point”) pour supporter la demande
d’accès et contrôler la décision de la politique. Par exemple, un Certificat d’Attributs
(CA) est délivré au délégué à des fins d’authentification et d’autorisation [CO02]. Un
CA assure l’intégrité, la protection et la non-répudiation des informations échangées par
l’intermédiaire d’une signature numérique. Le Récepteur obtient le certificat d’attributs
du délégué et calcule ses permissions par la suite. Ces attributs seront validés par rapport
à la politique (par exemple, le rôle du demandeur, la période de validité). Une fois que le
délégué a été authentifié avec succès, il tentera d’effectuer des actions sur les ressources
de la tâche spécifiée. À chaque tentative, le Récepteur transmet la demande d’accès à
l’Analyseur pour décider. Les résultats de décisions (permis, refus, ou non applicable)
seront alors envoyés via le Répondeur.

Une nouvelle réévaluation d’une nouvelle politique requiert de nouveaux CA pour des
requêtes ultérieures par rapport aux changements de politiques. Par exemple, une révo-
cation implique l’annulation du CA délivré précédemment pour le délégué. Actuellement,
des techniques comme des certificats temporaires ou des listes de révocation de certificats
sont basées sur la notion de temps, et par conséquent, ne répondent pas aux exigences des
événements de délégation. Pour y remédier, nous proposons un environnement orienté
services, où un service est appelé à prendre contact avec le délégué. En définissant un
accord mutuel entre les deux instigateurs (le délégant et le délégué), des mesures appro-
priées seront prises suite au déploiement de ce service. Dans notre étude de cas, Bob sera
amené à annuler son travail sur la tâche T3 en libérant les ressources et en fermant sa
session d’accès.

Afin de contrôler le comportement de la délégation et de spécifier ses politiques d’autor-
isation, nous aurons besoin d’une technique qui automatise les politiques de délégation et
qui permette par la suite d’accrôıtre la conformité des changements dus à la délégation
dans la politique d’autorisation existantes. Ceci sera abordé dans la section suivante.

7 Intégration des politiques de délégation basées sur

des événements

Dans cette section, nous présentons une technique pour l’intégration des politiques de
délégation dans les politiques existantes. Notre objectif est de raisonner sur les événe-
ments de délégation de façon dynamique. Pour ce faire, nous utilisons notre modèle de
délégation de tâches (MDT) basé sur les événements. Afin de contrôler le comportement

35

Résumé de la Thèse

de délégation et de spécifier ses politiques d’autorisation dynamique, nous recueillons les
événements pertinents qui définissent à la fois le chemin d’exécution des tâches ainsi que
les politiques générées pour la délégation de l’autorisation. En utilisant, le calcul événe-
mentiel, nous proposons une technique qui automatise les politiques de délégation et qui
permet d’assurer la conformité des changements dus à la délégation dans la politique
existante.

7.1 Le calcul événementiel

Cette section récapitule brièvement les fondements du calcul événementiel (plus de détails
dans l’annexe) et présente quelques notions fondamentales. Historiquement, le calcul
événementiel a été introduit par Kowalski et Sergot [KS89] comme formalisme logique de
programmation pour présenter des événements et leurs effets, particulièrement dans les
applications de base de données. Il est un cadre logique dans lequel il est possible d’inférer
ce qui est vrai, à certains instants, étant donné un ensemble d’événements et leurs effets
et permet de raisonner sur les effets d’actions réelles sur des états locaux.

Le calcul est basé sur des axiomes généraux concernant les notions d’événements, leurs
propriétés et les périodes de temps où ces propriétés se vérifient. Les événements lancent
et/ou terminent les périodes de temps où une propriété se vérifie. Pendant que les événe-
ments se produisent, les axiomes généraux permettent d’inférer de nouvelles propriétés qui
sont jugées vraies dans le nouvel état modélisé, et impliquent l’arrêt d’autres propriétés
qui ne sont plus jugées vraies. Le calcul événementiel, largement étudié formellement,
est basé sur un modèle d’événements, d’états et de relations de cause à effet et intègre
la persistance qui assure qu’une propriété persiste tant qu’un événement ne vient pas
l’interrompre.

Prédicat Interprétation
happens(a, t1, t2) Le déclenchement de l’action a s’est produit entre les instants t1 et t2
happens(a, t) Prédicat simplifié de happens(a, t1, t2) qui se produit à t
holdsAt(f, t) Le fluent f est vrai à à l’instant t

initiates(a, f, t) Le fluent f devient vrai après l’action a à l’instant t
terminates(a, f, t) Le fluent f devient faux après l’action e à l’instant t

InitiallyP (f) Le fluent f est vrai à partir de l’instant initial, c-à-d 0

Table 2: Prédicats du calcul événementiel

Ce formalisme est largement suffisant pour introduire les concepts de base de notre
modèle de délégation de tâches. En effet, il fournit un cadre pour le raisonnement temporel
en utilisant la logique des prédicats du premier ordre. Dans ce cadre il est possible de
maintenir une représentation dynamique à un niveau d’abstraction élevé en se basant sur
les axiomes fournis durant l’exécution d’une tâche déléguée. La formalisation utilisée pour
représenter les actions et leurs effets est basée sur la logique du premier ordre. Comme pour
tout langage du premier ordre, il faut commencer par choisir l’ontologie sous-jacente c’est-
à-dire les symboles de prédicats, les fonctions et les symboles de fonctions. Les concepts

36

importants dans l’ontologie d’un calcul événementiel sont : les actions qui représentent
les événements et les fluents qui sont des variables changeant au cours d’un intervalle de
temps. En effet, nous utilisons les fluents pour décrire les différents états du modèle MDT
(e.g. délégué, annulé).

Comme nous utilisons une version simplifiée du calcul événementiel, seuls les prédi-
cats de base sont décrits ici (voir tableau 2). Les événements et les actions ne sont pas
différenciés et les actions seront considérées de manière instantanée.

7.2 Modélisation de la délégation en utilisant le calcul événe-
mentiel

Les entités de base dans le modèle proposé sont les tâches. En calcul événementiel, elles
peuvent être considérées comme des sorts dans lesquels des fluents sont crées. Un sort
définit le type d’objet représentant la tâche déléguée. Ensuite, chaque tâche peut être
dans des états (states) différents en cours d’exécution. Par exemples, les états “assigned”,
“delegate” ou “revoke” changent avec le temps et peuvent donc être considérés comme des
fluents dans le calcul événementiel.

sort task
fluent Initial(task), Assigned(task), Delegated(task), Started(task)...

event Create(task)
[task, time] Initiates(Create(task), Initial(task) ,time).
event Assign(task)
[task, time] Initiates(Assign(task), Assigned(task) ,time).
[task, time1] Happens(Assign(task), time1)→ {time2} HoldsAt(Initial(task), time2)
& time1 > time2

Figure 5: Un calcul événementiel basé sur le MDT

Le calcul événementiel présenté ci-dessus, définit d’abord les sorts et fluents qui mar-
quent les différents états de la délégation. De la même façon, nous pouvons définir les
événements et leurs axiomes pour compléter le modèle MDT.

7.3 Construction des politiques de délégation

Dans cette section, nous analysons les besoins en sécurité dont auraient besoin les poli-
tiques de délégation. Nous utilisons le calcul événementiel pour implémenter une technique
capable de générer des nouvelles règles d’autorisation automatiquement.

Une règle de politique peut comporter des conditions et des obligations qui sont util-
isées pour identifier les différents cas dans lesquels une politique peut devenir applicable.
Nous définissons une règle en tant qu’un tuple (effect,condition,obligation) dont le résultat
est une décision de permission ou de refus. Notons qu’une obligation peut requérir une
évidence pour valider l’exécution de la tâche [Sch07]. Une règle sera par la suite définie

37

Résumé de la Thèse

dans la politique de délégation pour mettre à jour la politique existante (voir définition
4).

Definition 4 (Politique de Délégation) Nous définissons une politique de déléga-
tion PD ⊂ P, la politique d’autorisation et PD = (targetD,ruleD,CD), avec targetD =
DR (la relation de délégation), ruleD ⊆ rule, CD ⊂ C et CD = DC

⋃
events avec DC

l’ensemble des contraintes de délégation.

Dans ce qui suit, nous analysons les exigences en sécurité pour le mode push et nous
présentons un tableau qui récapitule les événements susceptibles de générer de nouvelles
règles d’autorisation (voir tableau 3).

Les évènements de délégation Le mode Push Ajout de règles
Grant Transfer

u1:delegate X X Ajout de règles selon l’acceptation
u2:accept X X Ajout de règles selon le type d’exécution
u1:cancel X X Pas d’ajout

u2:execute/Grant X (Permit,Push,Grant:Evidence)
u2:execute/Transfer X (Permit,Push,Transfer:NoEvidence)

u1:validate X Pas d’ajout
u1:revoke X (Deny,Push,Grant)

u2:fail X Pas d’ajout
u2:complete X Pas d’ajout

Table 3: Politiques de délégation pour le mode Push

Revenons à l’exemple, nous pouvons observer une politique dynamique de délégation
pour la tâche T3. Initialement, T3 est déléguée à l’Assistant u2 et la politique de déléga-
tion pour T3 est : PD = (RD,Permit,{Push,5 jour}) (voir tableau 3/u2:execute/Grant).
Pendant ce temps, le Procureur u1 est de retour au travail avant que la délégation soit
terminée. Le Procureur n’est pas satisfait de l’avancement des travaux et révoquera ce
qui a été effectué par son Assistant. L’événement revoke sera mis à jour dans la politique,
et une règle de refus est alors ajoutée. Ainsi, la politique de délégation pour T3 va générer
une nouvelle règle :
PD = (RD,Deny,{Push,Grant}) (voir tableau 3/u1:revoke).

Notons que la règle de révocation générée dépend de la relation de délégation RD.
Pour ce faire, nous avons déterminé l’octroi de droits d’accès basé sur le statut de la tâche
en cours et les besoins de ses ressources en utilisant un modèle de contrôle d’accès basé
sur les tâches (CAT) présenté dans la section précédente.

7.4 Modélisation des politiques de délégation en calcul événe-
mentiel

Afin de modéliser les politiques de délégation basées sur les événements, nous introduisons
des nouvelles sorts appelées effect, condition, et obligation au calcul événementiel. Les

38

effets possibles (effect) seront Deny et Permit, et les conditions sont les modes Push et
Pull. Les instances possibles pour une obligation seront Grant, Transfer, Evidence et
NoEvidence relatif au modèle de délégation de tâche MDT. Nous avons également ajouté
une action AddRule(effect, condition, obligation) comme événement pour supporter les
changements de politiques.

Dans ce qui suit, nous présentons un algorithme pour calculer les règles de délégation
basées sur les événements (voir algorithme 2).

Algorithm 2: Calcul des politiques de délégation de type Grant
Entrée : DPolicy // Delegation policy

sort // task, effect, condition, obligation

effect // Permit, Deny

fluent // AddRule(effect, condition, obligation)

event //AddPolicyRule(effect, condition, obligation)

time //time1 ≥ time2

while (HoldsAt(AddRule(effect, condition, obligation)) AND obligation = grant) do
if (Happens(PushDelegateAcceptExecuteGrant(task), time1) = true then

AddPolicyRule(Permit, Push, Evidence) /* Autorisation de permission */
else

if (Happens(PushDelegateAcceptRevokeGrant(task), time1) = true then
AddPolicyRule(Deny, Push, Grant) /* Annuler l’autorisation avec une règle de
refus */

Sorties : DPolicy = (AddPolicyRule(effect, condition, obligation), time1)

Les changements de politiques définis dans cet algorithme précisent que dès lors que
certaines actions sont déclenchées suites à des événements tels que “execute” ou “re-
voke”, ils provoquent un changement de politique et ajoutent, en plus, une nouvelle règle
dans la politique existante. Par exemple, PushDelegateAcceptExecuteGrant représente
l’événement “execute” avec la permission “grant” une fois que la demande PushDelegation
a été acceptée par un délégué (voir tableau 3).

Revenons à l’exemple. Une politique de délégation est définie pour la tâche T3.
L’événement “u1:delegate” (avec u1 le Procureur Alice) va enclencher l’action PushDele-
gateAcceptExecuteGrant(T3). Il s’agit d’une délégation en mode Push et de type Grant.
Le résultat est AddPolicyRule(Permit, Push, Evidence) où l’évidence définit la période
de délégation (5 jours). La politique de délégation pour T3 est ainsi :
PD = (RD,Permit,{Push,5 jour}).

7.5 Automatisaton de la délégation

Notre approche basée sur les événements assure l’automatisation de la délégation. L’auto-
matisation est nécessaire tant pour l’achèvement des tâches que la spécification de leurs
politiques. En raisonnant sur les événements de délégation, nous offrons une solution
capable de prévoir l’exécution de la délégation et d’accrôıtre le contrôle et la conformité
de la politique du workflow.

39

Résumé de la Thèse

Pour ce faire, nous utilisons l’outil de calcul évènementiel DECReasoner comme outil
de démonstration (voir annexe A). Notre raisonnement est basé sur le modèle de délégation
de tâches MDT. Pour le raisonnement, un plan est défini pour l’objectif fixé. En référence
à notre modèle, le but est d’avoir une tâche terminée, annulée ou échouée.

Nous ajoutons le but (goal) [task] HoldsAt(Completed(task),15) | HoldsAt(Failed(task),15)
| HoldsAt(Cancelled(task),15) pour notre raisonneur de calcul évènementiel avec la valeur
15 représentant la largeur maximale d’exécution pour le “timepoint”. En effet, une valeur
inférieure risque de ne pas atteindre le but dans TDM, c.à.d. une tâche terminée, annulée
ou échouée. L’invocation du raisonneur de calcul nous donnera toutes les solutions possi-
bles (appelées plans) pour la réalisation de l’objectif. Le plan qui suit reprend l’exemple
de motivation, où la tâche T3 est déléguée selon le mode Push (voir figure 6).

1389 variables and 7290 clauses
relsat solver
1 model
—
model 1:
0 Happens(Create(T3), 0).
1 +Initial(T3).
2 Happens(Assign(T3), 2).
3 +Assigned(T3).
4 Happens(PushDelegate(T3), 4).
5 +WaitingDelegation(T3).
6 Happens(PushDelegateAccept(T3), 6).
7 +WaitingCompletion(T3).
8 Happens(PushDelegateAcceptExecuteGrant(T3), 8).
Happens(AddPolicyRule(Permit, Push, Evidence), 8).
9 +RuleAdded(Permit, Push, Evidence).
+WaitingValidation(T3).
10 Happens(PushDelegateAcceptExecuteGrantValidate(T3), 10).
11 +Completed(T3).
—
;DECReasoner execution details
0 predicates, 0 functions, 12 fluents, 20 events, 90 axioms
encoding 0.5s - solution 0.2s - total 0.9s

Figure 6: Plan de délégation

Dans les changements de politiques deux scénarios sont possibles. Le premier scénario
est l’intégration d’une nouvelle politique d’autorisation parce que les conjectures (condi-
tions ou obligations) sont valables. Le deuxième scenario correspond à la modification de
cette règle suite à un évènement déclencheur tel que la révocation (e.g. révocation de la
tâche T3 déléguée à Bob par Alice). Le modèle de calcul évènementiel peut être enrichi
afin de permettre des changements de politique minimaux. En effet, nous pouvons tirer
parti d’une technique de vérification qui nous permet de choisir le meilleur candidat pour
la délégation en se basant sur les performances de ce dernier. Les performances sont liées

40

à la réussite et l’accomplissement de la tâche et ainsi la réduction d’ajout de nouvelles
règles dans la politique d’autorisation existante.

8 Conclusion et perspectives

Définir une politique de contrôle d’accès dynamique supportant les exigences de délégation
est loin d’être une tâche triviale. Dans ce mémoire, nous avons présenté les problèmes
et les exigences que demande un modèle de délégation de tâches. Nous avons également
présenté à un niveau conceptuel, les différents éléments qui sont nécessaires pour la mise en
oeuvre de telles politiques. La motivation de ce travail est inspiré de scenarios réels relatifs
aux procédés e-gouvernementaux, où les besoins d’interactions humaines se font de plus
en plus sentir. Nous considérons la délégation de tâches comme un support à la flexibilité
organisationnelle dans des systèmes de workflow. Elle permet également d’assurer une
forme de délégation des autorisations dans un système de contrôle d’accès. Pour ce faire,
nous avons montré que les politiques de délégation peuvent changer selon des évènements
spécifiques. Nous avons défini la nature de ces événements basés sur notre modèle de
tâche MDT, et avons décrit leurs interactions avec les règles de décisions des politiques
respectives. Lorsque des événements appropriés se produisent, nous définissons la façon
dont ils sont capturés et traités. Dans ce contexte, nous avons proposé une extension
aux systèmes de contrôle d’accès afin de permettre la spécification et le traitement des
politiques de délégation dynamiques.

De plus, nous avons présenté les problèmes et les exigences d’intégration des politiques
de délégation dans les systèmes de workflow. Pour ce faire, nous avons proposé une tech-
nique basée sur les événements afin d’assurer l’automatisation et la gestion des politiques
de délégation. En effet, nous avons défini des évènement spécifiques à la délégation que
nous avons intégré dans un modèle de calcul événementiel pour raisonner sur les règles
d’autorisation générées suite à une délégation. L’automatisation est nécessaire tant pour
l’accomplissement des tâches que par la spécification de leurs politiques. En raisonnant
sur les événements de délégation nous offrons une solution capable de prévoir l’exécution
de la délégation et d’accrôıtre le contrôle et la conformité de la politique d’autorisation
existante du workflow.

Pour la partie implémentation, nous nous sommes intéressés à la spécification des
évènements de délégation au sein d’un standard de contrôle d’accès dans le langage
XML. En plus, nous avons travaillé sur une extension du méta modèle en XACML. Cela
nous servira de base, par la suite, pour communiquer avec les modules de réévaluation,
d’adaptation et d’invocation orientés services.

Nos travaux futurs vont aussi dans la direction de la gestion des performances basée
sur l’extraction de l’historique des délégation. En effet, la gestion d’un tel historique peut
être une approche intéressante pour la vérification et l’audit.

41

Résumé de la Thèse

42

Thesis Manuscript:
A Secure Framework for Dynamic

Task Delegation in Workflow
Management Systems

43

Thesis Manuscript:A Secure Framework for Dynamic Task Delegation in Workflow Management Systems

44

Chapter 1

Introduction

1.1 Background and Motivation

The pace at which business is conducted has increased dramatically over recent years,
forcing many companies to re-evaluate the efficiency of their business processes [Ven03].
In the classical software engineering approach, the organisational context and the related
security requirements in the business process are often considered during the design phase,
but internal controls for human-centric processes are later defined and implemented in
a manual fashion disjoint from predefined models due to a semantic gap and a poor
understanding of the organisational aspect [CSBE08, ZM04b].

Workflow management systems automate the management and coordination of organi-
sational or business processes. Business processes automation requires the specification of
process structures as well as the definition of resources involved in the execution of these
processes. While the modeling of business processes and workflows is well researched,
the link between the organisational elements and process activities is less well understood
and does not consider the organisational aspect when considering heavily human-centric
interactions in workflow systems. Moreover, the roots of contemporary workflow manage-
ment solutions are oriented towards the automation of human-centric processes, thereby
discounting the organisational aspect of workflow solutions with little or no human inter-
vention.

Security is an essential and integral part of workflow management systems. Protect-
ing application data in workflow systems through access control policies has been widely
discussed. Sandhu et al. proposed a series of role-based access control (RBAC) models
[SCFY96, BS00] and discussed a variety of constraints and authorisation policies including
the role hierarchy and the separation of duties. The central idea of the RBAC model is that
access rights are associated with roles, to which users are assigned in order to get appropri-
ate authorisations. Within organisations, and thus in workflow applications, the concept
of a hierarchy of participants/roles is prevalent. Participants are users who are placed in
one or more units at different hierarchical levels. Therefore, it is important to discuss the
differences between the proposed organisational unit hierarchy and their corresponding
access control models to manage human resources dynamically within organisations. For
that reason, access control mechanisms have to deal with such organisational flexibility

45

Chapter 1. Introduction

and to be more adaptable with dynamic environments to a certain extent.
In previous work [Sch07, GC], we observed a tendency moving away from strict enforce-

ment approaches towards mechanisms supporting exceptions that are difficult to foresee
when modelling a workflow. Actually, business processes execution are determined by a
mix of ad-hoc as well as human-centric processes. This highly dynamic environment must
be supported by mechanisms allowing flexibility, security and on-the-fly shift of rights and
responsibilities both on a (atomic) task level and on a (global) process level [R4e06]. One
specific set of mechanisms ensuring human-centric interactions is that of task delegation.

We define task delegation as a mechanism for assigning tasks and its access rights from
one user to another user. The user who performs a delegation is referred to as a“delegator”
and the user who receives a delegation is referred to as a “delegatee”. Delegation is a mean
to support human interactions within an organisation. It can be very useful for real-world
situations where a user who is authorised to perform a task is either unavailable or too
overloaded with work to successfully complete it. It is frequently the case that delaying
these tasks executions will violate time constraints on the workflow, thereby impairing
the entire workflow execution. Therefore, delegation is a suitable approach to handle such
exceptions and to ensure alternative scenarios by making workflow management systems
more flexible and secure.

To the best of our knowledge, most of the work done in the area of workflow and
access control systems does not treat delegation in sufficient details and deserves more
investigations. On one hand, existing work in the domain of organisational management
in workflows remain static and lack of flexibility [AW05, CK08a]. On the other hand,
current access control mechanisms are relatively stateless and rigid [SRS+05, BFA99]. At
present, responses arising from access control requests are stateless such that a response is
given to a particular request which is valid and true only at the time the request is made.
If, however, this response changes due to a policy adaptation, no mechanism currently
exists that allows to ensure dynamic delegation of authority. Such a mechanism is vital
for supporting a secure framework for dynamic task delegation in workflow management
systems.

1.2 Thesis Objectives

In this dissertation, we aim to address issues related to the organisational needs and se-
curity requirements for task delegation within workflow systems. Concretely, delegation
works on ensuring flexible execution to support alternatives with unavailable workflow’s
actors to cope with the organisation rigidity. Since we aim to ensure a user-to-user delega-
tion with heavily human interactions, we need to support additional requirements related
to the organisation flexibility and the authorisation policy definition. In order to tackle
these problems, we need to address two important issues, namely allowing task delegation
to complete, and having a secure delegation within a workflow.

Allowing task delegation to complete requires a model that forms the basis of what can
be analysed during the delegation process. Securing delegation implies the controlled prop-
agation of authority during task execution. The monitoring of task delegation presents
an essential step to ensure delegation completion. A delegated task goes through different

46

1.3. Thesis Structure

states to be terminated. States depends on generated events during delegation. Events
such as revoke or validate are an integral part of the delegation process. Dealing with that,
we define an event-based task delegation model that can fulfill all these requirements. Our
model aspires to offer a full defined model supporting all kind of task delegation.

Moreover, we consider task delegation as an advanced security mechanism support-
ing dynamic policy enforcement. We define an approach to support dynamic delegation
of authority within an access control framework. The novelty consists of reasoning on
authorisation based on task delegation events, and specifying them in terms of delega-
tion policies. When one of these events changes, our access policy decision may change
implying dynamic delegation of authority. To do so, we propose a task delegation frame-
work to support automated enforcement of delegation policies. In order to monitor the
delegation process and to specify the authorisation policies in an automated manner, we
gather specific events that will define both the task execution path and the generated
policies. Dealing with that, we develop a technique that automates delegation policies
using event calculus to control the delegation execution and to increase the compliance of
all delegation changes in the authorisation policy.

1.3 Thesis Structure

The remainder of this dissertation is organised as follows. Chapter 2 presents the con-
text and the problematic of this thesis. We introduce the context of the thesis related
to the organisational management in workflow systems. In particular, we focus on the
organisational needs and security functionalities supporting human-centric interactions in
workflows. One type of mechanism supporting human interactions is that of task del-
egation. We then motivate our work with an e-governmental scenario supporting task
delegation. From our motivating example, we identify the problematic and we present the
major challenges and contributions of the thesis.

Chapter 3 outlines the state of the art of this thesis. We present fundamental concepts
to the understanding of workflow management systems as well as the security in infor-
mation systems. Our work is oriented access control requirements in business processes
based on the workflow modelling. Dealing with that, we present existing work on work-
flow, business process and access control systems and we highlight their functionalities
and limitations to support a secure framework for dynamic task delegation in workflow
systems.

Chapter 4 presents the first part of our approach. We define a novel approach for
modelling task delegation in workflow systems. We answer the interrogations defined in
the problematic related to the motivation factors, the delegation model and the access
control model using a detailed taxonomy for delegation. By leveraging the foundations
described in chapter 3, we define a task delegation model (TDM) that not only meets
the requirements at the organisational level, but also enables performing delegation in a
secure and flexible manner at the security level. To do so, we define additional require-
ments related to the organisation flexibility such as user-to-user negotiation. Moreover,
we propose a task oriented access control model (TAC) based on the RBAC model to
address security requirements for delegation.

47

Chapter 1. Introduction

Chapter 5 presents the second part of our approach. It deals with the definition of a
dynamic delegation of authority to support authorisation policies in access control sys-
tems. It is partly based on the insights gained in chapter 4. We answer the interrogations
defined in chapter 2 related to the delegation of authority and the integration of delega-
tion policies in existing access control systems. To that end, we analyse delegation events
impact on authorisation policies. We present a framework ensuring dynamic delegation
of authority and we show how proactive policy decisions will be implemented on existing
access control frameworks. Finally, we propose a technique based on event calculus that
gathers specific events and integrate delegation policies. We aim to control the delegation
execution and to ensure the compliance of delegation changes in the existing authorisation
policy.

In chapter 6, we implement the development environment for the delegation frame-
work. We apply our assumptions, techniques and models defined in chapters 4 and 5 to
test them and deploy them in a real development environment supporting delegation. We
firstly focus on the organisational aspect in order to support human interactions in general
and user-to-user delegation in particular. Dealing with that, we implement a delegation
plugin supporting negotiation within a workflow runtime engine. Then, we consider the
security requirements to support delegation policies. To do so, we develop a policy plugin
within an access control system and we discuss its functionalities and limitations.

In chapter 7, we conclude and recapitulate the main contributions of our work. We
outline also the limits that will be a part of our future works and discuss the future
directions of our research.

48

Chapter 2

Context and Problematic

Contents
2.1 Introduction . 49

2.2 Context: Organisational Management in Workflow Systems . 50

2.2.1 Resource management in the workflow life cycle 51

2.2.2 Organisational resources analysis 53

2.2.3 Definition of assignment and synchronisation policies 54

2.2.4 Resource integration . 56

2.2.5 Organisational maintenance at runtime 57

2.2.6 Summary . 57

2.3 Problem Statement : How to ensure a secure task delegation
in workflow systems ? . 58

2.3.1 Motivating example : e-Government workflow scenario 58

2.3.2 Problem statements . 61

2.4 Principles, Approach and Thesis Contributions 63

2.4.1 Principles . 63

2.4.2 Our approach . 64

2.4.3 Contributions . 65

2.4.4 Published results . 66

2.5 Conclusion . 67

2.1 Introduction

Many of the complex day to day applications in large organisations are conducted using
workflow management systems (WfMS). Workflow systems automate the management
and coordination of organisational or business processes. Within organisations, and thus
in workflow applications, the concept of a hierarchy of participants/roles is prevalent.

49

Chapter 2. Context and Problematic

Participants are users who are placed in one or more units such as departments, divisions,
or groups, and they have different bosses, at different hierarchical levels. It is important
to discuss the differences between the proposed organisational unit hierarchy and their
corresponding access control models to manage human resources within organisations.

The organisational context and the related security requirements are often considered
during the design phase in the business process, but internal controls for human-centric
processes are later defined and implemented in a manual fashion disjoint from predefined
models due to a semantic gap and a poor understanding of the organisational aspect
[CSBE08, ZM04b]. In this dissertation, we aim to address issues related to the organisa-
tional management with regards to user’s assignment, task’s definition and resource’s ac-
cess from design time to runtime in workflow systems. The main contribution is to bridge
the gap between organisational needs and security functionalities supporting human in-
teractions in workflows. This chapter is detailed as follows : we present the context of the
thesis by introducing concepts related the organisational resources analysis, the strategy
of work allocation in authorisation policies, the resources integration, their utilisation and
their monitoring in workflows. Then, we present the thesis context which is motivated by
an e-governmental scenario supporting delegation. Finally, we identify the problematic,
we present the major challenges of the thesis and we conclude.

2.2 Context: Organisational Management in Work-

flow Systems

Traditionally, workflows have been used by business organisations for modeling and con-
trolling the execution of business processes to achieve a business objective [WFM99]. In
the context of a workflow, a process is composed of a number of activities which are
connected in the form of a directed graph. An activity describes a piece of work that
forms one logical step within a process. During execution, an activity instance includes
tasks or services which are human implementations or computerised implementations of
an activity [WFM99]. Here, our main concern is human activities (so-called tasks) where
a human must be involved in performing manual activities.

Business processes automation requires the specification of process structures as well
as the definition of resources involved in the execution of these processes. While the
modeling of business processes and workflows is well researched, the link between the or-
ganisational elements and process activities is less well understood and does not consider
the organisational aspect of workflow applications [Law97, RvdAHW06]. Organisational
elements define workflow’s resources in terms of tasks, users and data. It reflects human
interactions within workflows. The importance of human involvement in workflow appli-
cations has recently been pointed out by several work which identified excessive activity
automation and poor design of work assignment strategies as critical issues in workflow
projects [Con02, Sch07].

Moreover, the roots of contemporary workflow management solutions are oriented to-
wards the automation of human-centric processes, thereby discounting the organisational
aspect of workflow solution and focusing exclusively on the coordination of control flow

50

2.2. Context: Organisational Management in Workflow Systems

structures. Proposed standards such as WSCL (Web Services Conversation Language)
[Ari02] and BPEL4WS (Business Process Execution Language for Web Services) [Ton03]
focused on the technical coordination of inter-enterprise processes, with little or no human
intervention. In this chapter, we aim to give an overview of the organisational aspects to
support human-centric interactions in the context of a workflow life cycle, and to develop
guidelines for the design of a workflow-enabled organisation during the different phases of
a workflow life cycle. A workflow-enabled organisation is a mean to manage organisational
elements (e.g. participants) in workflow systems [ZM04a].

2.2.1 Resource management in the workflow life cycle

As related in the literature review, the workflow is made of tasks, where a task defines
a unit of work that at each invocation performs the binding between different resources
needed to complete a specific part of the workflow [RvdAHE05]. The resources that may
be involved are different. We distinguish material and human resources for business ob-
jects and workflow actors, respectively. Generally, the manipulation of material resources
is interfaced by one or several entities called applications or services.

A resource model contains the definition of human and material resources that are
involved in the execution of a workflow model [Bal98]. While the resource model is a
structured representation of organisational entities, it should be noted that both this
model as well as the elements contained therein follow a life cycle and change over time.
Therefore, a workflow management system not only needs to provide a mechanism to
represent the organisational elements involved in the execution of workflows, but it also
needs to provide mechanisms for continuous change within these elements.

The workflow life cycle reflects the desire to continuously improve the performance of
business processes by monitoring the present, analysing the past, and planning for the
future [WGHS99]. The workflow life cycle shown in figure 2.1 is built on the approach
proposed by Zur Muehlen [ZM04a]. The black circles in figure 2.1 indicate the upcoming
sections that refer to the resource management in the workflow life cycle (see sections :
2.2.2, 2.2.3, 2.2.4 and 2.2.5).

The cycle starts with a goal specification and environmental analysis phase that de-
fines an initial analysis of the project goals and the organisational structures and rules
surrounding the new system. This phase is followed by a process design phase, during
which the overall process structure is engineered, the resulting workflow model is designed,
and the resources involved in the process execution are specified. This includes the model-
ing of organisational structures as well as the definition of assignment policies and conflict
resolution mechanisms.

The completed workflow models are input of the process implementation phase. Dur-
ing this phase, the workflow solution is integrated with surrounding information systems.
In terms of resource management, access to existing resource databases and security mech-
anisms need to be established. The synchronisation of tasks responsibilities with applica-
tion access rights is of paramount importance in this phase. If errors are made regarding
this synchronisation, tasks might be assigned to users who have insufficient access rights
to execute the applications necessary for the fulfillment of the pending task.

51

Chapter 2. Context and Problematic

Parallel to the process enactment phase process monitoring takes place. On the tech-
nical side the performance of the workflow management system itself is measured, while
on the organisational side metrics such as the length of work queues, the idle time of
resources, or the wait time of pending tasks are supervised.

Figure 2.1: Workflow life cycle

During the process enactment phase, individual instances of the workflow model are
created and coordinated by the workflow enactment service. The process participants
which are part of the workflow-enabled organisation are notified of pending tasks through
their worklists and can select and activate these tasks. Upon completion of a task, control
is handed back to the workflow enactment service. Process participants may be human
resources, material resources, or a combination of both. The process evaluation phase
completes the workflow cycle. During this phase, the execution of workflow instances is
analysed based on the execution protocols (the so-called audit trail) [ZM04a].

52

2.2. Context: Organisational Management in Workflow Systems

2.2.2 Organisational resources analysis

During the design time, the workflow application designer has to design both the structure
of the business process to be automated, and the structure of the resources that carry
out the process. Resources and workflow’s tasks are linked through the construct role
[CKO92]. From a process perspective, a role is a subject to authorisations that define
permissions (operations) for the execution of a task. From a resource perspective, a role
represents a granted authorisation for a workflow actor (so-called user). Based on these
two perspectives, the design of the resource model can follow two different directions
namely the material and human resources. Material resources define business objects and
the way to use them. Human resources define the actors of the workflow.

From a material resource perspective, we define permissions as functions with oper-
ations to manipulate business objects. From a human resource perspective, we define a
subject as an assigned user who is member of a role to claim a task instance. The task
execution is added to the subject worklist. It defines the set of task instances claimed
by this subject. The access to resources will be dependent on the execution model of the
task. Figure 2.2 shows a meta model for task-based resource model, which analyses the
possible ways the resources access can be defined during the task execution.

Task Type
1

1..*

instance_of

Task Instance

Application

1..*

0..*

consist_of

Object Type Function

1..*

1..*

consist_of

1 1..*

manipulates

Worklist Subject
10..*

consist_of

11

hold

Role

Authorisation

Authorisation Instance

Object Instance

0..* 1..*is_assigned_to

1..*

0..*

is_member_of

0..*

1..*

is_subject_to

1

1..*
generates

1..*1

is_subject_to 1

1..*

defines

1

1..*
has_instances

User

0..*

1..*

is_assigned_to

1

1

initiates

Figure 2.2: A model for task-based organisational structures

In figure 2.2, we define a task as a set of applications or services that are accessed by
subjects via specific functions. These applications consist of functions that manipulate
business objects. From one task several task instances can be generated. Note that
we distinguish task type element from task since we assume that a task represents an
instantiation of a task type during execution, equally for business objects. A task instance

53

Chapter 2. Context and Problematic

corresponds to an actual execution of a task. This specific execution of the task (a task
instance) is allocated to only one subject through its unique worklist, where a subject
defines a user selecting a role during runtime.

We aim to address issues related to the organisational management in workflow sys-
tems with regards to user’s assignments, task’s definition and resource’s access. We mainly
focus on both material and human resources to analyse task requirements. We can iden-
tify from our analysis the main relationships between tasks, roles and resources :

• The set of Tasks, Applications, Objects and Functions defines the requirements that
are necessary to carry out a task.

• The set of Roles assigned to a task.

• The set of Authorisations defines the condition of assignment that a role must have
as permissions to execute a task.

• The set of Subjects, Worklists, Task Instances and Authorisation Instances defines
the task execution requirements.

Based on this specification, we define the organisational resources analysis based on
task requirements. As mentioned before, this will lead us to investigate the organisational
needs as well as the security requirements for human tasks in workflows, thereby defining
the strategy of work allocation, the resources integration, their utilisation and monitoring.
Finally, it is important to note that there is no single ideal model for a workflow-enabled
organisation. In workflow-based environments, the structure of the organisational entities
as well as the structure of the business processes can be adjusted to find an optimal mix
of resource and process efficiency [Mue99, ZM04a].

2.2.3 Definition of assignment and synchronisation policies

Assignment policies determine the strategy for work allocation among process participant
candidates [ZM04a]. Candidates define users who may perform a task. A task corresponds
to a single unit of work. Each executing task is termed a work item [RvdAHE05]. Upon
the instantiation of a workflow task, the workflow enactment service places work items
on the worklists of users who are determined using a process of role resolution (see figure
2.3). A pending task is placed on a shared worklist as a public work item. All qualified
users have access to this shared worklist. Once a user (performer) chooses to perform the
pending task (step 1 in figure 2.3), the workflow enactment service removes the public
work item from the shared worklist and places it on the private worklist of the designated
user (steps 2.a and 2.b in figure 2.3). This solution is based on the meta model for task-
based organisational structure defined in figure 2.2. It allows the workflow enactment
service to hold a master table of all pending work items, with access restrictions based on
the roles required by the individual tasks and held by the users.

54

2.2. Context: Organisational Management in Workflow Systems

Figure 2.3: Role resolution procedure at runtime

For the assignment of pending tasks, different strategies can be implemented. These
strategies have an impact on how the workflow enactment service prioritises tasks and
notifies users performers. The assignment policies have different work allocation strategies,
and are based on the research of Hoffmann and Zur Muehlen [ZM04a]. These strategies
are identified based on task and scheduling properties. In the following, we identify the
main properties for the assignment policies :

• 1. Task properties

� Task execution : The form of task execution (individual or collaborative) pre-
scribes, how many users may select a work item for execution.

� Decision hierarchy : It describes whether a task can be passed on from a
workflow performer to another delegatee performer. This act of substitution is
common during the absence of a resource [WKB07]. Task delegation challenges
and issues are part of this dissertation and will be discussed in the upcoming
sections.

• 2. Scheduling

� The planning of new work items : It describes the behavior of the workflow
enactment service, when new tasks become executable. For example, a net
change strategy would only determine the assignment for the new work item,
while a re-planning strategy would re-allocate all work items that have not yet
been started.

� Time of notification : The workflow enactment service can notify performers
about pending tasks either upon the availability of these tasks, at the latest
start time, or at an arbitrary time.

55

Chapter 2. Context and Problematic

� The queuing of work item : It can be performed either using a queue, ensuring
that work items are selected in the order in which they become available; a
pool, where resources can choose freely between available work items; or a
combination of the two, where resources select a collection of work items at a
time.

Once a work item has been placed on a shared worklist, synchronisation policies deter-
mine how it can be accessed by individual workflow participants [TH99]. In the following,
we discuss properties related to assignment policies :

• User selection : It can be either direct or indirect. During direct assignment, the
workflow system may check the availability of the selected users. In case of absence,
a delegation may be supported by the workflow system for a new assignment or
an exception is raised. Indirect selection is based on the set of roles that may be
assigned to the task which allow the grouping of individual human resources (see
figure 2.2).

• Assignment specification : It can be either static or dynamic. Using the static as-
signment, a task is associated with a set of predefined roles for workflow’s actor. A
dynamic assignment takes data from the current workflow instance into account for
the selection of qualified performers (subjects in figure 2.2). This data can either
relate to the current task instance or to the business objects processed in the current
workflow instance.

• The assignment of pending task : It can be either performed in a push or a pull
manner. Using the push mechanism, the workflow system determines the user who
should perform the selected task. Using a pull mechanism, a user requests the next
work item for execution.

The definition of assignment and synchronisation policies is a very important phase
during the workflow deployment. We discussed issues related to resources hierarchy and
their unavailability that may require delegation. Delegation is a mechanism that has to
be taken into account during policies specification within workflow systems.

2.2.4 Resource integration

A workflow application coordinates tasks, users, data and applications. We define a task
as a set of applications that are accessed by users, in this case performers, via specific
functions on specific data (e.g. business objects). Consequently, all these elements need
to be integrated to ensure the functionality of the workflow systems. User integration
is required by the workflow system to keep track of the workflow’s actors available for
tasks assignment. Data integration is required to make relevant data accessible to the
workflow system. This can be achieved by connecting the system to databases used by
external application systems. Application integration describes the ability of the workflow

56

2.2. Context: Organisational Management in Workflow Systems

system to invoke external application systems during the enactment of a process [Mue99,
BGMG02].

In addition, the use of existing security infrastructures is another important feature
of workflow applications. Security integration relates to the use of existing authentica-
tion and authorisation mechanisms through the workflow system, such as single-sign-on,
certification techniques and role-based access control mechanisms. Authentication and
authorisation issues are important to support our secure delegation framework and will
detailed in chapters 4 and 5.

2.2.5 Organisational maintenance at runtime

While the sequence of activities within a workflow definition is relatively stable, the re-
source model task-based needs to be constantly monitored at runtime to reflect the changes
on the organisational level (see figure 2.2). Zur Muehlen [ZM04a] identified two categories
of changes. It can be either macro changes at the entity level, or micro changes at the
attribute level.

Changes at the macro level include the arrival and departure of members of the organ-
isation, changes of the association between users and their roles, and the creation of new
units within an organisation. If the resource information is stored within the workflow
application itself, user accounts and their associated privileges need to be updated in the
organisational policies. Changes at the micro level relate to changes in the authorisation
profile of users such as the granting of additional authorisations, or the revocation of
temporary privileges. This can be the case when delegating a task and so granting new
privileges for the delegatee [GSFC08].

In addition to task assignment purposes, experience data is also useful during the
handling of exceptions due to constraints such as workload, lack of human resources or
deadlines that may overdue tasks. Instead of a hard-coded exception handling scheme, the
workflow enactment service could assign an escalating task to a more experienced user or
a substitute, if experience information is maintained in the system. Therefore, it is useful
to leverage an experience-based auditing by taking additional parameters into account,
such as the current workload of potential performers or their performances ranking to
ensure task completion and to optimise workflow execution [Bar03].

2.2.6 Summary

In this section, we have identified the major aspects of resources management following the
workflow life cycle. After a discussion of the human-centric interactions within a workflow
and their involvement on both technical and organisational levels, we presented a task-
based resource model which combines human and material resources for a task-oriented
modelling within a workflow. Subsequently, we outlined variations in the assignment and
synchronisation policies for the runtime allocation of tasks to performers, and discussed
the maintenance of the different resources.

The definition of assignment and synchronisation policies is a very important phase
during the workflow deployment. We discussed issues related to human resources hierar-
chy and unavailability. This defines exceptions on the organisational level, when initial

57

Chapter 2. Context and Problematic

performers are not able to execute a task. We motivated delegation as a mechanism
that has to be taken into account to support such exceptions. To the best of our knowl-
edge, most of the work done in the area of workflow and access control systems does not
treat delegation in sufficient details and deserves more investigations [AW05, CK08a]. We
currently observe, when substituting members of the organisation, a move away from pre-
defined strict workflow resources modelling towards approaches supporting flexibility on
the organisational level. In addition, the assignment and synchronisation of policies have
to consider the propagation of resource allocation and its authorisation during delegation.

2.3 Problem Statement : How to ensure a secure task

delegation in workflow systems ?

The delegation of a task can be very useful for real-world situations where a user who
is authorised to perform a task is either unavailable or too overloaded and so he will
ask another user to act on his behalf. It is frequently the case that delaying these task
executions will violate time constraints on the workflow, impairing the entire workflow
execution. Hence, delegation is a suitable approach to handle such exceptions and to
ensure alternative scenarios by making workflows more flexible and efficient.

Moreover, organisational flexibility depends on the rearrangement of the organisation
members when delegating a task. We have to decide how to ensure the delegation of
authority to a delegatee to access data’s resources. The delegation of authority has to be
defined in the access control systems. It expresses new delegation policies enforcement
defined in a dynamic manner and integrated in the existing policy. To that end, we need
to express task delegation requirements on both the organisational and the security levels
of a workflow.

2.3.1 Motivating example : e-Government workflow scenario

Electronic government (e-Government) is creating a comfortable, transparent, and cheap
interaction between government and citizens. e-Government is the civil and political con-
duct of government, including services provision, using information and communication
technologies. The prerequisites for an e-Government enactment strategy are the achieve-
ment of a technological interoperability of platforms and a deeper cooperation and security
at the organisational level using workflow management systems.

We introduce an e-Governmental workflow scenario related to the European admin-
istrations collaboration. Europol (European Police Office) and Eurojust (European Ju-
dicial Cooperation Unit) are two key elements of the European system of international
collaboration within the areas of law enforcement and justice. A specific scenario for this
collaboration is the Mutual Legal Assistance (MLA) [R4e06].

Mutual Legal Assistance (MLA) defines a collaborative workflow scenario involving
national authorities of two European countries regarding the execution of measures for
protection of a witness in a criminal proceeding. Here we describe the MLA process cross
Eurojust organisations A and B, and detail the different business actors and resources
models involved in the process. Basically, the work of the two organisations consists of

58

2.3. Problem Statement : How to ensure a secure task delegation in workflow systems ?

receiving the request of assistance from the Europol member in order to process it and send
it the concerned authority in country B. Eurojust infrastructure integrates systems such
as MLA service and CMS (Case Management System) to process data on the individual
cases on which Eurojust national members are working in temporary work files (see figure
2.5).

Eurojust defines an organisational hierarchy working together to achieve common
goals. Figure 4.2 illustrates the organisational role hierarchy and users role memberships
in the Eurojust organisation.

Eurojut National Memeber (EJNM)

Prosecutor Judge

National
Correspondant (NC) Assistant Deputy Collaborator (DC) Judicial Authority

Officer (JAO)

Secretary Contact Point Memeber (CPM) Police Officer

EJNM Prosecutor

NC Assistant

Eva Alice
Claude

Ben

(a) Eurojust Role Hierarchy (b) Users with role memeberships in Eurojust

JAOJudge

Cathy Kevin

Bob
David

Figure 2.4: An example of organisational role hierarchy and users in Eurojust

Note that we define users Alice and Bob as members of Eurojust A with roles Prose-
cutor and Assistant, respectively. Claude, David, Cathy and Kevin members of Eurojust
B with roles Prosecutor, Assistant, Judge and JAO, respectively.

We applied the Business Process Modeling Notation (BPMN) to the MLA process (see
figure 2.5). BPMN has emerged as a standard notation for capturing business processes,
especially at the level of domain analysis and systems design [OMG06].

In our example, we distinguish Prosecutor as the main responsible that collaborates
with internal and external employees (Assistant, National Correspondent (NC), Judge
and Judicial Authority Officer (JAO)) to process the MLA request. First, Prosecutor A
receives the request and checks it in the MLA information service (tasks 1, 2 and 3). If
the provided information are correct, the Prosecutor will continue to process the request
by asking for the preparation of the request document by his assistant (task 4). Note
that depending on the request context, the application process may differ in the data that
needs to be considered. In fact, the specific type of legal document requested will have
a direct effect on the involved controls. For instance, the “Translate Request Document”
task might be required to carry out the request preparation when exchanged documents
are issued in the local language; therefore we need to translate documents (task 3). After
the preparation of the required legal documents, the Prosecutor will send the request to
his Eurojust colleagues in country B (task 5). The next steps that need to be taken are
the review of the request, the determination of the judicial authority in order to forward
the request to the concerned authority in country B (Eurojust B) for the final approval
(tasks 6, 7 and 8).

The supporting table 2.1 summarises the required roles, applications, functions and
business objects associated to tasks.

59

Chapter 2. Context and Problematic

T1. Receive Request

T2. Check Request

T4. Prepare Content

T6. Review Request

T8. Forward
Request

MLA Information
Service

CMS WorkFile
System

Backend-Applications/
Service-provider

Translation Required?

T3. Translate
Document

Yes

No

No

Prosecutor

Prosecutor

Prosecutor

JAO

Request Outdated

Assistant

T5. Send Request Prosecutor

Review Status ?

Yes

T7. Determine
Judicial Authorities

Judge

E
ur

oj
us

t
A

E
ur

oj
us

t
B

E
u

o
p

o
l

MLA Process and Infornmation Flow

Prosecutor

Figure 2.5: MLA scenario

Several of the depicted tasks involve human interactions and are possibly time con-
suming. Tasks composing the MLA process involve several business actors such as a
Prosecutor, an Assistant or a Judge. Depending on the current control-flow sequence,
workflow actors can evolve and change from the predefined workflow model. Actually,
unexpected events can happen without being modelled beforehand in the workflow. For
instance, a Prosecutor may delegate a part of his work to a subordinate due to an ex-
pected absence. Delegation is a suitable approach to handle such exceptions and to ensure
alternative scenarios when deploying a workflow.

We define task delegation as a mechanism for assigning tasks and its access rights from
one user to another user. The user who performs a delegation is referred to as a“delegator”
and the user who receives a delegation is referred to as a “delegatee”. Delegating access
rights defines the propagation of authority (privileges) from the delegator to the delega-
tee. Delegated privileges define the required permissions to access task resources. For
instance, functions (query(), update(), translate() in table 2.1) define permissions needed
to access specific business objects to execute the different tasks of the MLA process. In
the following, we present two delegation scenarios (DS1 and DS2) describing local and
global delegation :

60

2.3. Problem Statement : How to ensure a secure task delegation in workflow systems ?

Task type Role Application Function Business Object
type

T1. Receive Re-
quest

Prosecutor MLA Informa-
tion Service

read() Request Document

T2. Check Re-
quest

Prosecutor MLA Informa-
tion Service

query(),
update()

Request Document

T3. Translate
Document

Prosecutor MLA Informa-
tion Service

translate() Request Document

T4. Prepare Con-
tent

Assistant CMS WorkFile
System

add() Request Document

T5. Send Request Prosecutor CMS WorkFile
System

send() Request File

T6. Review Re-
quest

Prosecutor CMS WorkFile
System

read(),
update()

Request File

T7. Determine
Judicial Authori-
ties

Judge CMS WorkFile
System

add(),
modify()

Request File

T8. Forward Re-
quest

JAO CMS WorkFile
System

send() Request File

Table 2.1: Logistic workflow : Relations between tasks, roles, applications and business
objects

Local delegation (DS1) : Our interest is related to the Eurojust organisation A.
The involved actors are responsible for the reception of the request of assistance and the
preparation of the required legal document to be sent to the concerned authority in coun-
try B. The role Prosecutor is a senior role and has at his disposal subordinates such as
NC and Assistant. In this scenario, the task “Translate Documents” T3 is originally only
accessible by Prosecutor Alice. Alice is unavailable to execute this task due to illness,
and will delegate it to user Bob. Bob is a member of role Assistant and is a subordinate
to Prosecutor in the organisation hierarchy based on the authorisation policy definition.

Global delegation (DS2) : It defines a delegation cross-organisations. We consider
an instance of the process where the MLA request exists already in the CMS system of
country B. The specialisation of Prosecutor B (user Claude member of role Prosecutor)
will motivate the Prosecutor Alice to delegate T2 for his colleague. Task delegation is
defined based on a role mapping (RM) cross organisations A and B, where distributed
resources with external roles are defined in the policy.

2.3.2 Problem statements

Task delegation is a mechanism supporting organisational flexibility in human-centric
workflow systems. Actually, when delegating a task we have to take into account all the

61

Chapter 2. Context and Problematic

invariants involved in a workflow. Users, tasks and data represent such invariants. Or-
ganisational flexibility depends on the rearrangement of the organisation members (users)
when reassigning a task to a delegatee. Moreover, we have to decide how to ensure the
delegation of authority to a delegatee to access data’s resources. The delegation of author-
ity has to be defined in the access control systems. It expresses new delegation policies
enforcement defined in a dynamic manner and integrated in the existing policy.

Typically, organisations establish a set of security policies, that regulate how the busi-
ness process and resources should be managed. While a simple policy may specify which
user can be assigned to execute a task, a complex policy may specify additional autho-
risation constraints supporting delegation. Any mechanism that is used to support task
delegation is based on workflow specifications and user authorisations information. Del-
egation authorisation constraints are defined as events on the control-, data- and task
assignment layers of a workflow [GSFC08]. Hence, the problematic is how to bridge the
gap between workflow and access control systems to secure task delegation.

Based on the delegation scenarios (DS1 and DS2), we aim to address issues related
to delegation requirements in workflow systems. On the organisational level, we have to
identify the list of potential delegatees having the ability to execute the delegated task. In
DS1, the delegatee Bob is a subordinate to the delegator Alice based on the role hierarchy
definition of the Eurojust organisation. In DS2, it is a role mapping cross organisations.
On the security level, we have to compute the required authorisation to execute the
delegated task. In DS1, Bob inherits of the rights assigned to the role Assistant. In DS2,
Prosecutors Alice and Claude have the same rights.

However, in DS1 the permissions to translate documents (translate()) in T3 are not
given to the Assistant (see table 2.1). Bob will need an access grant to execute T3. This
new access defines additional permissions for the delegatee and has to be updated in the
existing policy. This update presents a delegation of authority that will enforce a new
access control enforcement in the policy.

Moreover, the involved actors who are members of similar roles have to be distinguished
on the security level. For instance, Prosecutor is a role defined in both organisations A
and B. However, permissions given to Prosecutor Alice are different from those assigned
to Prosecutor Claude for privacy reasons. To distinguish between both Prosecutors of
Eurojust A and B on the security level, we need an additional mapping between workflow’s
actors and their security roles defined in access control systems to avoid authorisation
conflicts..

We observe that delegation is a non-trivial task to model and engineer. Actually, it
covers different entities related to the organisation (users), the process (tasks) and the
resources access (data). In order to tackle these problems, we need to address two impor-
tant issues, namely allowing task delegation to complete, and having a secure delegation
within a workflow. Allowing task delegation to complete requires a model that forms the
basis of what can be analysed during the delegation process. Secure delegation implies
the controlled propagation of authority based on the workflow authorisation constraints
related to the organisation policy and the resources access.

In addition, the delegation of authority defines an advanced security mechanism sup-
porting authorisation policies. Delegation policies are defined from existing policies and
are dynamically specified. However, existing work on access control systems remain state-

62

2.4. Principles, Approach and Thesis Contributions

less and do not consider this perspective. To that end, we have to come up with an
approach supporting automated enforcement for delegation policies. Additionally, the in-
tegration of such policies has to be computed and compliant with the existing policy based
on delegation constraints. In order to control the delegation behaviour and to specify its
authorisation policies in an automated manner, we have to monitor the task execution
during delegation and to define specific rules to generate and integrate delegation poli-
cies in the predefined policy. Hence, the essence of our thesis is to answer the following
interrogations :

1. What are the motivation factors for task delegation in a workflow and how to model
it based on the factors requirements ?

2. How to monitor the delegation process with regards to workflow’s layers : control
(users), task and data (resources) in order to ensure the delegation completion ?

3. How to enrich delegation constraints with organisational and security requirements
in the task delegation model based on both the task delegation model and the access
control model ?

4. How to propagate the delegation of authority to delegate privileges when accessing
task resources ?

5. How to specify and integrate delegation policies in existing access control systems
in a secure and a compliant manner ?

2.4 Principles, Approach and Thesis Contributions

2.4.1 Principles

We present a delegation approach to support organisational flexibility in human-centric
workflow systems, and to ensure delegation of authority in access control systems. Our ob-
jective is to ensure a secure task delegation within workflows. To that end, we have to cope
with issues related to the organisational management as well as the security properties in
workflow systems. These issues determine the main guiding principles detailed as follows :

• Organisational flexibility : The principle is the development of a methodology
and a supporting framework for the management of organisational resources in the
scope of workflow systems to support delegation. An organisation obtains flexi-
bility by increasing the levels of internal and external flexibility available to it by
increasing its ability to manage human resources. Depending on the current control
flow sequence, workflow actors (users) can evolve and change from the predefined
workflow model. In fact, unexpected situations where a user who is authorised to
perform a task is either unavailable or too overloaded may require a new policy
assignment. This can lead to a new rearrangement of users in order to optimise the
process execution. Delegation intra and inter organisations can be very useful to
ensure such flexibility.

63

Chapter 2. Context and Problematic

• Human-centric workflow : The principle is to support heavily human-centric
interactions in workflow systems. The requirements for interactions and monitoring
can be summarised as transparency and control. Transparency addresses the revela-
tion of the control flow dependencies. This allows to react accordingly to exceptions
and compensations during execution. Control fosters the behaviour of organisations
according to the defined policies. Existing solutions for workflows often appear to be
lacking transparency and control supporting concepts and mechanisms. One type of
transparency and control supporting mechanism in human-centric workflows is that
of task delegation. We do believe that user-to-user delegation is a suitable approach
to handle such interactions.

• Access control enforcement : Here, the principle is to give a coherent link from
workflow modelling to access control requirements. As motivated previously, we
aim to bridge the gap between organisational needs and security functionalities in
workflows. Task delegation will enforce new authorisation requirements, thereby
inquiring additional assignment and synchronisation for policies. Existing solutions
for access control systems do not support such requirements for the delegation of
authority. For instance, authorisation systems using role based-access control remain
stateless and do not consider dynamic enforcement of policies. At present, responses
arising from access control requests are stateless such that a response is given to a
particular request which is valid and true only at the time the request is made. If,
however, this response changes due to a delegation policy adaptation, no mechanism
currently exists that allows the new response to be conveyed to the original requestor
proactively. In addition, any policy change due to delegation has to be computed
and integrated in the existing policy automatically with regards to the organisational
policy compliance. For instance, a conflict of interest defines security constraints for
the computing of delegatees and their privileges based on the policy specification.
Such a mechanism is vital for supporting dynamic delegation of authority.

2.4.2 Our approach

The scope of our approach is to investigate the potential of delegation events to secure task
delegation within a workflow. When delegating a task, often the reasoning behind this is
dependent on transient conditions called events. Events define transitions ruling a task
life cycle, where intermediate events such as delegate, cancel or revoke define a controlled
delegation within a workflow. In addition, delegation has to be managed and executed in
a secure way. Authorisation constraints are defined based on events with regards to the
control-, data- and task assignment layers of a workflow, where delegation events may be
a source to a policy change, thereby introducing advanced security requirements in access
control systems.

Securing delegation involves the definition of authorisation policies which are compliant
with the policy of the workflow. Therefore, these delegation events will imply appropriate
authorisations on the delegatee side for further actions as well as contain specific con-
straints for those actions (e.g. deadline). In order to tackle these problems we need to
address two important issues, namely allowing the delegation completion, and having a

64

2.4. Principles, Approach and Thesis Contributions

secure delegation within a workflow. Allowing task delegation to complete requires the
definition a delegation process. Secure delegation implies the controlled propagation of
authority during task execution. Based on specific events, we define delegation policies
in a dynamic and automatic manner. To that end, we introduce a delegation model
that forms the basis of what can be analysed during the delegation process in terms of
monitoring and security.

The monitoring of task delegation is an essential step to ensure delegation completion.
A delegated task goes through different states to be terminated. States depends on gener-
ated events during the delegation life cycle. Events such as revoke or cancel are an integral
part of the delegation behaviour. Revoking a delegated task may be necessary when a
task is outdated or an access right is abused. Moreover, additional events such as validate
may be required when a delegation request is issued under a certain obligation where the
delegatee has to perform specific evidence to validate the task execution. Dealing with
that, we came up with an event-based task delegation model (TDM) that can fulfill all
these requirements. Our model aspires to offer a full defined model supporting all kind of
task delegation for human centric-interactions.

Additionally, we define an approach to support dynamic delegation of authority within
an access control framework. The novelty consists of reasoning on authorisation based on
task delegation events, and specifying them in terms of delegation policies. When one of
these events changes, our access policy decision may change implying dynamic delegation
of authority and specifying them in terms of delegation policies. Existing work on access
control systems remain stateless and do not consider such perspective. We propose a task
delegation framework to support dynamic enforcement of delegation policies and discuss
its integration into existing access control systems.

Finally, we leverage delegation constraints to automate delegation policies from ex-
isting policy specifications. With an automated mechanism, when the policy changes to
reflect delegation, the delegation policy will be derived automatically based on specific
facts related to the delegation constraints. Accordingly, it is not possible to foresee a deny
rule for revocation during the policy definition. Moreover, a manual review of the current
access control rights and task executions is costly, labor intensive, and prone to errors.
In order to control the delegation behaviour and to specify its authorisation policies in
an automated manner, we gather specific events that will define both the task execution
path and the generated policies for the delegation of authority. Using Event Calculus,
we present a technique to monitor the delegation execution. Afterwards, we explain how
generated policies change dynamically in response to delegation events.

2.4.3 Contributions

The main contribution of this doctoral thesis is the development of a methodology with
a supporting framework for the modelling and specification of human-centric interactions
as an internal control in the scope of businesses processes in order to ensure a secure
delegation within workflows. We present a generic access control approach for security
policies within workflows based on the process modelling specifications. The approach en-
compasses formal verification of access control requirements and the proper termination of
task delegation processes by the means of transient conditions (so-called events). To ease

65

Chapter 2. Context and Problematic

the monitoring of task delegation and the propagation of delegation authority, we present
an event-based task delegation model (TDM) amenable for supporting a framework to
model, analyse and generate delegation policies. Therefore, the main contributions of this
thesis can be summarised as follows :

• A delegation model supporting access control in business processes based on the
task lifecycle. After the analysis of organisational management in workflow systems
including a model for task-based organisational structures, internal control in terms
of security requirements are defined. Using a multi-layered state machine within a
workflow, we identify delegation interactions within workflow’s layers namely task,
control and data based on delegation events. Delegation events define the delegation
process and build the task delegation model to be integrated in the business process.
This model will guide us to define an access control model supporting delegation.

• Delegation as an advanced security mechanism is an enhanced access control
model used to capture task requirements and to express it in terms of authorisation
policy rules. The access control model is an extension of role-based access control
model (RBAC) and is linked to the task assignment requirements. We define it as a
Task-oriented Access Control (TAC) model. TAC provides new modelling elements
to enable the specification of access control requirements such as organisational
roles, resources requirements between users and tasks to restrict access to sensitive
data, to delegate privileges among users and to avoid potential conflict of interests
at runtime. In addition, we present a technique to optimise delegated privilege
computation based on the delegated task instance defined in the TAC model.

• We apply formal methods to integrate delegation policies and to detect compli-
ance properties with the authorisation policy. We utilise the Discrete Event Calculus
Reasoner (DECReasoner) for performing automated commonsense reasoning using
event calculus, a comprehensive and highly usable logic-based formalism. By rea-
soning on delegation events, we are able to address the policy stateless issue. We
can compute delegation policies from triggered events during task execution. Policy
automation offers many benefits. Actually, it reduces efforts for users and admin-
istrators. Administrator efforts can be related to the process definition and the
policy specification. Moreover, it increases control and compliance of all delega-
tion changes. Subsequently, a delegation request is accomplished under constraints
which are compliant to the existing policy.

• Finally, we present an access control framework to specify delegation policies.
Using PERMIS a policy based authorisation system, we develop an extension sup-
porting task delegation requirements during policies specifications. The developed
tool is used to specify and integrate delegation polices into existing access control
systems.

2.4.4 Published results

The main contributions results have been published in the following papers. Published
results are either directly relevant or intermediate based on or in reference to the research

66

2.5. Conclusion

findings presented in this thesis.

• Khaled Gaaloul, Ehtesham Zahoor, François Charoy, and Claude Godart. Dy-
namic Authorisation Policies for Event-based Task Delegation. The 22nd Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’10),
Hammamet, Tunisia, June 09-11, 2010.

• Khaled Gaaloul, François Charoy. Task Delegation Based Access Control Models
for Workflow Systems. The 9th IFIP WG 6.1 Conference on e-Business, e-Services
and e-Society, I3E 2009, Nancy, France, September 23-25, 2009.

• Walid Gaaloul, Khaled Gaaloul, Sami Bhiri, Armin Haller, Manfred Hauswirth.
Log-based transactional workflow mining. Journal of Distributed and Parallel Databases,
25(3): 193-240, 2009.

• Khaled Gaaloul, Philip Miseldine, and François Charoy. Towards Proactive Policies
supporting Event-based Task Delegation. The Third International Conference on
Emerging Security Information, Systems and Technologies, SECURWARE 2009,
Athens, Greece, June 2009.

• Khaled Gaaloul, François Charoy. Une Approche Dymanique pour la Gestion des
Politiques de Délégation dans les Systèmes de Contrôle d´Accès. 27ème Congrès In-
formatique des Organisations et Systèmes d’Information et de Décision, INFORSID
2009, Toulouse, France, May 2009.

• Khaled Gaaloul, François Charoy, and Andreas Schaad. Modelling Task Delega-
tion for Human-Centric eGovernment Workflows. The 10th International Digital
Government Research Conference, dg.o 2009, Puebla, Mexico, May 2009.

• Khaled Gaaloul, Andreas Schaad, Ulrich Flegel and François Charoy. A Secure Task
Delegation Model for Workflows. The 2nd International Conference on Emerging
Security Information Systems and Technologies, SECURWARE 2008, Cap Esterel,
France, August 2008.

• Khaled Gaaloul, François Charoy, Andreas Schaad, and Hannah Lee. Collabora-
tion for Human-Centric eGovernment Workflows. The 8th International Conference
on Web Information Systems Engineering, WISE Workshops 2007, Nancy, France,
December 2007.

2.5 Conclusion

In the context of heavily human-centric workflows, business processes are determined by
a mix of ad-hoc as well as process-based interactions. This highly dynamic environment
must be supported by mechanisms allowing the monitoring, secure and on-the-fly shift
of rights with respect to an ongoing human interactions both on a (atomic) task level
and on a (global) process level. One specific approach is that of task delegation. In this
dissertation, we aim to address the modelling and mapping of access rights to task

67

Chapter 2. Context and Problematic

delegation issue. This will lead us to the design and the implementation of a secure
framework of dynamic task delegation within workflow applications.

Task delegation is a mechanism that supports organisational flexibility, and ensures
delegation of authority in access control systems. To that end, we present a literature
review on delegation concepts as well as concrete supporting technologies in both workflow
and access control systems in chapter 3. We discuss their functionalities and limitations
with regards to our approach requirements in terms of organisational flexibility and
dynamic access control over task delegation.

The rest of the dissertation is detailed as follows. We identify delegation requirements
motivated by the delegation scenarios presented previously. We classify these alongside
a defined taxonomy of motivation factors for delegation with respect to the organisation,
the process and the security constraints. Basically, we aim to separate the various aspects
of delegation with regards to workflow’s actors, task and resources (see chapter 4).

Additionally, we provide an analysis regarding the development of a methodology and
a supporting framework for the modelling and specification of human-centric interactions
as an internal control in the scope of businesses processes to ensure a secure delegation
within workflows. Dealing with that, we leverage constraints properties to build and
integrate delegation authorisation policies dynamically in existing access control
systems to ensure compliancy (see chapter 5).

68

Chapter 3

State of the Art

Contents
3.1 Introduction . 70

3.2 Business Processes and Workflows 70

3.2.1 Workflow management systems 70

3.2.2 Organisational model in WfMS 73

3.2.3 Business process management vs. Workflows 74

3.2.4 Business process modelling . 75

3.2.5 Summary . 78

3.3 An Overview of Security Concepts 79

3.3.1 The five pillars of information security 79

3.3.2 Access control approaches for security policies 82

3.3.3 XACML : a policy language . 86

3.3.4 Summary . 88

3.4 Level of Access Control within Workflows 89

3.4.1 Organisational goals . 89

3.4.2 Secure workflow approaches . 89

3.4.3 Summary . 91

3.5 Analysis of Delegation in Secure Workflows 91

3.5.1 Delegation in workflows . 91

3.5.2 Delegation in access control models 92

3.5.3 Summary . 93

3.6 Conclusion . 93

69

Chapter 3. State of the Art

3.1 Introduction

The pace at which business is conducted has increased dramatically in recent years. Much
of this can be attributed to the Internet and the emergence of e-Government applications.
Most governmental organisations offer electronic services to citizens supporting processes
which are determined by a mix of ad-hoc as well as process-based human interactions.
Workflows aim to model and control the execution of business processes cross organisa-
tions. Thus, it is evident that workflow technology has a great influence on the business
operations of an organisation [WFM99].

Moreover, organisations establish a set of security policies, that regulate how the
business process and resources should be managed [AW05]. One of the major problems
with workflows is that they often use heterogeneous and distributed applications to execute
a given workflow. This gives rise to security policies and mechanisms that need to be
managed. Since security is an essential and integral part of workflows, workflow systems
have to be managed and executed in a secure way. In particular, additional mechanisms
are needed to allow controlled access of data objects, secure execution of tasks, and efficient
management and administration of security [HK03].

This chapter introduces concepts fundamental to an understanding of workflow man-
agement systems, processes modelling as well as the security concepts related to them.
Our work is oriented access control requirements in business processes based on the work-
flow modelling. Dealing with that, we present existing work on workflow, business process
and access control systems (sections 3.2 and 3.3) and we highlight their functionalities and
limitations to support a secure framework for dynamic task delegation in workflow systems
(sections 3.4 and 3.5).

3.2 Business Processes and Workflows

Many of the complex day to day applications in large organisations are conducted using
workflow management systems. Workflow systems automate the management and coor-
dination of business processes. Business processes are descriptions of routine activities in
an organisational environment which achieve goals that contribute to the overall goal of
the organisation. A workflow is “the automation of a business process, in whole or in part,
during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules” [WFM99].

3.2.1 Workflow management systems

The Workflow Management Coalition (WfMC) defines a workflow management system
(WFMS) as a “system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines, which is able
to interpret the process definition, interact with the workflow participants and, where
required, invoke the use of IT tools and applications” [WFM99]. The Workflow Manage-
ment Coalition offers a reference model for workflow management systems. It covers the
concepts, terminology, general structure of WfMS, their major functional components and

70

3.2. Business Processes and Workflows

the interfaces and information exchanges between them. The contents of this section are,
to a large extent, based on this document [WFM99].

Some of the terms that are fundamental to an understanding of workflows are the
concepts of a business process, activity, process instance and activity instance. Figure 3.1
is adapted from the Workflow Management Coalition [WFM99]. It provides a conceptual
overview of how the terms discussed below relate to the concept of workflows.

Figure 3.1: Workflow terminology

A business process depicts the association of activities that, when executed in a sys-
tematic way, ultimately achieve some goals or objectives. The relationships between these
activities and the objectives they achieve are typically defined according to organisational
policies and structures.

The Workflow Management Coalition [WFM99] defines an activity as a “description
of a piece of work that forms one logical step within a process”. Activities generally
represent the smallest unit of work in the workflow. Activities are classified as manual or
automated. Both types are represented in the process definition.

• Manual activities : They define activities that are not, or cannot be automated.
They are tasks that are executed by humans or constitute manual work. Human
tasks are included in the process definition but they are not capable of computer
automation.

71

Chapter 3. State of the Art

• Automated activities : They can be automated and managed by a WFMS. Auto-
mated activities are commonly referred to as “workflow activities”. The execution
of activities in a workflow process contributes to the achievement of some goal or
business objective where the order in which activities are executed is important
depending on the process definition.

Each execution of a workflow system creates a workflow instance. A workflow instance
represents a certain case of the workflow process. Each process may contain multiple
“cases”of an activity, which are termed“activity instances”or“task instances”. The term
“task” will be used interchangeably throughout the rest of this dissertation to
refer to workflow activities supporting human interactions. In the motivation
example, human activities are defined in the different delegation scenarios DS1 and DS2.

The Workflow Management Coalition (WfMC) has published a widely cited “Generic
Workflow Product Structure”. It has been referenced in numerous papers. We show that
model in figure 3.2 in simplified form and restricted to the runtime view.

Figure 3.2: The generic architecture of a WfMS

72

3.2. Business Processes and Workflows

This generic model shows the central component to be the workflow engine, which
maintains associations with several data repositories. User interaction goes through a
worklist handler and the interface to the engine is the worklist. Applications are accessed
directly from the user interface and the worklist handler. They manipulate the same data
repository as any processes invoked out of the workflow engine.

3.2.2 Organisational model in WfMS

Organisational model represents organisational entities and their relationships; it may
also incorporate a variety of attributes associated with the entities, such as skills or role.
The model normally incorporates concepts such as hierarchy, authority, responsibilities
and attributes associated with an organisational role. It may be referenced by a work-
flow management system as part of the mechanism by which process role is established
[WFM99].

Organisation model is part of the process definition within a workflow. It allows
workflow participants to be specified in terms of attributes (roles) contained within the
organisational model. During process execution the WfMS can obtain details of partici-
pants matching the attributes from the organisational model (see figure 3.3).

Figure 3.3: Example of an organisational model

A workflow participant assumes a role to access and process work from a workflow
management system. The role defines the context in which the user participates in a
particular process or activity. The role often embraces organisational concepts such as
structure and relationships, responsibility or authority.

The organisation model is important to support human-centric interaction in work-
flows. Especially during delegation, we need to check the attributes of both the delegator
and the delegatee within the organisation. It is a mean to confront them with the or-
ganisational policy to access and process work from workflow management systems (see
section 3.3).

73

Chapter 3. State of the Art

3.2.3 Business process management vs. Workflows

Business process management (BPM) is a collection of planning, organising, and control-
ling activities of an organisation’s value chain with respect to a specific business goal of a
process-oriented organisation [Dav93, ZM04b, GHS95]. A company can reach these busi-
ness goals only, when people and information systems work well together on these business
processes. Therefore, business process management encompasses methods, techniques,
and software to design, enact, control, and analyse a companies’ operations involving hu-
mans, organisations, applications, documents and other sources of information including
the continuous and incremental improvement of an organisation’s processes [Wes07].

In essence, the management activities related to business processes can be idealistically
arranged in a life cycle [AHW03, KLL09]. It represents an ideal situation of sequential
stages in engineering a process. As shown in figure 3.4 the life cycle comprises of activities
such as survey, design, implementation, enactment, and evaluation [KLL09, Wes07].

Figure 3.4: Business process life cycle

From the existing literature, the terminologies of BPM and WfMS may have dif-
ferent viewpoints. Business process management (BPM) is a process-oriented manage-
ment discipline. It is not a technology. Workflow is a flow management technology
found in business process management suites (BPMSs) and other product categories
[KLL09]. However in reality, to our best knowledge, many BPMs are still very much
WfMS [AHW03, KLL09, GHS95]. In addition, the workflow life cycle reflects the busi-
ness process life cycle. It reflects the desire to continuously improve the performance of
business processes by monitoring the present, analysing the past, and planning for the
future [ZM04a].

74

3.2. Business Processes and Workflows

3.2.4 Business process modelling

Process modelling performed as part of the design phase in the business process life cycle
is an approach for visually depicting how businesses conduct their operations by defining
the entities, activities, enablers and further relationships along control flows [AHW03].
Process visualisation is a core element within business process design, and this is often
achieved with a series of as-is and to-be process modelling tasks. It is employed to create
an abstraction of an otherwise complex business goal and realising business activities by
defining the coordination of such activities [Wes07].

a - Modelling abstraction

To reduce the complexity, business process modelling provides different level of abstrac-
tions [Wes07]. Horizontal abstraction allows to start the process design with the definition
of high level business goals. These goals are broken down to value chains that are then
further refined into business processes and eventually enriched with technical service ref-
erences understandable by technical experts and information systems for automated exe-
cution. This refinement is typically done in several steps involving different stakeholders,
ranging from high level business analysts and process experts to IT specialists.

Referring to figure3.5, a process model’s granularity depends on the level of horizontal
abstraction nevertheless on a single horizontal abstraction level different concerns may
be of interest. Vertical abstraction provides specific perspectives on a process model
depending on the point of interest of the modeler and potential stakeholders. Figure 3.5
describes an horizontal and vertical modelling abstraction of a gas processing scenario
defined in [Wes07] :

• The control-flow perspective (or process) perspective describes activities (tasks) and
their execution ordering through different constructors, which permit flow of execu-
tion control.

• The data perspective deals with business and processing data. Business documents
and other objects which flow between tasks, and local variables of the process,
qualify in effect pre- and post-conditions of tasks execution.

• The resource perspective provides an organisational structure anchor to the process
model in the form of involved humans and device roles responsible for executing
tasks.

• The operational perspective describes the elementary actions executed by tasks,
where the actions map into underlying applications. Typically, (references to) busi-
ness and process data are passed into and out of applications such as Web Services,
allowing data manipulation within applications.

The level of abstraction is also needed in the workflow life cycle where the process
modelling is performed as part of the design phase. It reflects a conceptual and logical level
with regards to the aspects of task, control and data layers within workflows. Workflow
layers depends on a set of invariants for workflows from the aspects of users, tasks and

75

Chapter 3. State of the Art

data. Workflow’s layers can be portrayed in terms of a multilayered state machine [HK03].
A multi-layered state machine can enable the analysis, simulation and validation of the
WfMS under study before proceeding to implementation. In addition, it can serve as
a powerful tool for modelling our task delegation framework at a conceptual
and logical level with regards to the aspects of task, control and data [GSFC08].

Figure 3.5: Horizontal and vertical modelling abstraction

Different modelling concepts emerged over time, with different strengths and weak-
nesses, such as the trade-off between expressibility and model analysis complexity, typi-
cally due to the variety of their underlying formalisms. Some techniques and notations
offer richer syntax sufficient to express most relevant business activities and their relation-
ships in the process model, while some provide more generic modelling constructs which
facilitate efficient process model analysis [KLL09].

There are two predominant formalisms on which process modeling is based, namely
graph-based formalisms and rule-based formalisms [SS93]. A graph-based modeling lan-
guage has its root in graph theory, which provides rich mathematical properties for the
syntax and semantics and theoretical support, while a rule-based modeling language is
based on formal logic and are competitive to the graph-based approach in terms of math-
ematical soundness, model robustness and verification techniques [SGN].

In the next section, we present an overview of formalisms and notations supporting
business process modelling based on graphical standards.

76

3.2. Business Processes and Workflows

b - Graphical standards

A multitude of graph-based notations emerged in the past decades, such as Flowcharts,
Flow-Block diagrams, Petri nets, IDEFs, UML Activity diagrams, EPCs or BPMN, many
of them tailored for a specific modeling purpose or target audience [AHW03, Sch92,
KLL09].

Unified Modelling Language (UML) Activity Diagrams

The Object Management Group (OMG) presented the Unified Modelling Language (UML)
(version 2.0) [OMG04], standardised in 2004, which is the backbone of the object oriented
software engineering computing paradigm. Broadly speaking, UML is a suite of 13 object-
oriented notations that captures all attributes and behaviour of the objects modelled. A
few examples of these notations include the Use Case Diagram (for documenting high-level
user requirements), the Sequence Diagram (for documenting program sequence), and the
Activity Diagram, etc. Of the two, the Activity Diagram (AD) is most commonly used to
model business processes in a graphical way [Hav05]. The UML AD is both a flowcharting
technique and a special kind of state machine whose activities are states and interactivity
links trigger-less transitions.

The suitability of UML as a business process modelling technique was assessed by
Russell et al. [RvdAHW06]. He concluded that UML AD offers comprehensive support
for the control-flow and data perspectives allowing the majority of the constructs encoun-
tered when analysing these perspectives to be directly captured. However, UML ADs
are extremely limited in modelling resource-related or organisational aspects of business
processes. These limitations are common to many other business process modelling for-
malisms and reflect the overwhelming emphasis that has been placed on the control-flow
and data perspectives in contemporary modelling notations [RvdAHW06].

In our work, we need a formalism that support resource-related and organisational
aspects of task delegation in business processes. For instance, time constraints for re-
sources need to be specified when delegating a task (see delegation scenario DS1). In
addition, we need specific notations to sperate the involved principals during delegation
(e.g. swimlane). For that reason, our choice to model task delegation within workflows is
based on the Business Process Modeling Notation (BPMN).

Business Process Modelling Notation (BPMN)

The Business Process Modeling Notation (BPMN) is a standardised business process no-
tation which is defined and specified by the Object Management Group (OMG) [OMG07]
and has become the de facto standard for graphical process modeling. The notation in-
herits and combines elements from a number of other proposed notations for business
process modeling, including the XML Process Definition Language (XPDL) [WFM05]
and the Activity Diagrams component of the Unified Modeling Notation (UML). Figure
3.6 depicts an excerpt of the BPMN meta-model.

For the sake of simplicity we omitted some elements that are not relevant in the
course of this chapter. BPMN process models are composed of flow objects such as
routing gateways, events, and activity nodes. Activities, commonly referred to as tasks,

77

Chapter 3. State of the Art

represent items of work performed by software systems or humans, i.e. human activities.
Activities are assigned to pools and lanes expressing organisational institutions, roles and
role hierarchies.

Routing gateways and events capture the flow of control between activities. Control
flow elements connect activity nodes by means of a flow relation in almost arbitrary ways.
BPMN supports so called artifacts that enrich the process model by information entities
that do not affect the underlying control flow and are a dedicated extension points to add
additional information to the model. In our work, we provided an extension for security
semantics in BPMN by adding authorisation constraints for task delegation.

T1. Receive
Request

T2. Prepare Content

T3. Translate
Documents

T4. Approve
Request

T5. Forward
Request

Prosecutor

(T3, Prosecutor, Assistant, DC)

Assistant

E
ur

oj
us

t
A

Translate
Documents

5 days after
delegation acceptance

Figure 3.6: BPMN example for DS1

3.2.5 Summary

This section introduced concepts that are fundamental to the understanding of workflow
systems. The content was based largely on the definitions and specifications developed
by the WfMC in several of its published documents. It is clear that workflow technology
has a significant impact on the operations of business processes and business in general.

Securing the information and procedures associated with workflows is an area of in-
creasing concern. It can almost be said that the success of a workflow implementation
depends largely on its secure execution. This is particularly true when we consider the
need to manage authorisation rights when dealing with sensitive data, information or
procedures during delegation. Delegating a task may inquire security requirements to
propagate authorisation within workflows. In the following sections, we give an overview
of security concepts and we discuss their integration in in workflow systems.

78

3.3. An Overview of Security Concepts

3.3 An Overview of Security Concepts

Nowadays, organisations define control goals with respect to information security to se-
cure and conduct their business activities [Sch03]. Information security became an or-
ganisational control goal that may be achieved by confidentiality, integrity or availability
providing mechanisms, techniques and processes purposefully designed in order to control
the business activities of individuals, groups, and whole organisations.

Information security constitutes the maintenance of five fundamental security prop-
erties, which results in the establishment of reliable systems that meet the needs of an
organisation. These properties, as defined in [IPS89], are identification authentication,
authorisation, confidentiality, integrity and non-repudiation. Satisfying these properties
ensures that management can make informed decisions that are based on accurate in-
formation. This enables them to act in accordance with the intentions of the business,
and thus gain a competitive edge in the external marketplace [Ven03]. Authorisation
is most relevant to this dissertation, but an overview of all five properties will
be given to illustrate the role that access control plays in supporting security
properties.

3.3.1 The five pillars of information security

a - Identification and Authentication

Firstly, systems must promote the principles of identification and authentication. This
involves identifying legal users to the system as well as ensuring that they are who they
claim to be. Identification concerns the manner in which a user provides his unique identity
to the IT system. The identity must be unique so that the system can distinguish among
different users. Authentication is the process of associating an individual with his unique
identity, that is, the manner in which the individual establishes the validity of his claimed
identity [FIS02].

The WfMC defines authentication as “the process by which a computer system or a
(human) system user unambiguously identifies themselves to another computer system,
normally in the context of gaining access to various services which the authenticated
party is authorised to use on that computer system” [WFM01]. It is rendered by defining
user identifications as well as implementing authentication mechanisms. Authentication
parameters typically come in three forms : something the user knows (PIN or password),
something the user possesses (token or memory card) and something genetically unique
to the user (fingerprint or retina scan) [IPS89].

b - Access Control (Authorisation)

Controlling access, in one form or another, is considered by most information systems
security experts to be a cornerstone to achieve information security. Access control, which
may be physical, technical, or administrative, is a mechanism to provide information
security. A given information system can implement access control systems in many
places and at different levels. Operating systems use access control to protect files and
directories while database management systems apply access control to regulate access

79

Chapter 3. State of the Art

to tables and views. Access control policies describe the ways in which information is
managed and company assets are protected by mediation of access requests of principals
or other information systems [FIS02].

The WfMC makes a distinction between the terms “authorisation” and “access con-
trol”. Authorisation is defined as “the process of identifying to the computer system the
various functions which a user (human and potentially a computer system) may under-
take” [WFM01]. Access control is defined as“the mechanism by which users are permitted
access to various operations or data within a computer system, according to their identity
(established by authentication) and associated privileges (established by authorisation)”.
However, the terms access control and authorisation will be used interchangeably through-
out this dissertation.

c - Confidentiality

Confidentiality models are used to describe what actions must be taken to ensure the
confidentiality of information. It is concerned with protecting information from being il-
legally retrieved by unauthorised people. Confidentiality is implemented using encryption
mechanisms which execute mathematical algorithms on plaintext data, thereby rendering
it as unintelligible ciphertext to illegal users [PP06].

The most commonly used model for describing the enforcement of confidentiality is
the Bell-LaPadula model [LB73]. It defines the relationships between resources and sub-
jects. The relationships are described in terms of the subjects assigned level of access or
privilege and the objects level of sensitivity. Formally, the Bell-LaPadula model consists
of a set of subjects S, a set of resources R and a set of security levels L. The function
Fconf : S ∪ R → L maps each subject s ∈ S and object r ∈ R to a security level l ∈ L,
where L, < is a lattice. As a preventive model, Bell-LaPadula defines two rules that must
be enforced by an access control system at anytime :

• No-Read-Up : A subject si ∈ S is granted read access to resource ri ∈ R if :
Fconf (ri) ≤ Fconf (si)

• No-Write-Down : A subject si ∈ S is granted write access to resource ri ∈ R if :
Fconf (si) ≤ Fconf (ri)

For example, a subject si which has a clearance level Secret should not be allowed
to read a data resource ri with a classification of Top Secret. Conversely, a subject sj is
holding the clearance level Secret should not be allowed to write to a data resource rj
which is rated Confidential. The first case represents a no-read-up requirement, while the
latter is called a no-write-down requirement.

In a workflow context, it is important to ensure that the confidentiality of informa-
tion is sustained. If it is not, it would mean that access control mechanisms have been
undermined. An elaboration of these principles is beyond the scope of this dissertation.

80

3.3. An Overview of Security Concepts

d - Integrity

Integrity is the protection of system data from intentional or accidental unauthorised
changes. The challenge is to ensure that data is maintained in the state that subjects
expect. Although it cannot improve the accuracy of data that is put into the system by
subjects, it can help to ensure that any changes are intended and correctly applied. It is
imperative, therefore, that no subject be able to modify data in a way that might corrupt
or lose assets or render decision-making information unreliable. Several integrity models
are discussed in the literature suggesting different approaches to achieve integrity such as
Biba [Bib75], Clark-Wilson [CW87] or Brewer-Nash [Har04].

As an example, we have a look at the Biba integrity model, which has been the first
model to address integrity within computer systems based on a hierarchical lattice of in-
tegrity levels. It comprises a set of subjects S, a set of resources R, and dedicated integrity
levels I. The integrity levels form a partial order ≤⊆ IxI. The function Fint : S ∪R→ I
returns the integrity level of a subject. In general, an access control system adhering to
the Biba model ensures the following two policies :

• Simple Integrity Policy : A subject si ∈ S can read a resource ri ∈ R if :
Fin(si) ≥ Fconf (si)

• Integrity Confinement Policy : if a subject si ∈ S has read access to resource
ri ∈ R if : Fconf (si) ≤ Fconf (ri) with integrity level Fin(ri) , then si can have write
access to resource si if and only if Fin(ri) ≥ Fin(rj)

In the context of a workflow, the maintenance of object integrity is important. Access
control contributes to the enforcement of object integrity by limiting user access to certain
objects. If, however, integrity is compromised through the unauthorised interception of
information, the integrity of the entire workflow will be compromised.

e - Non-repudiation (Non-denial)

Non-repudiation mechanisms require each party involved in any transaction to have in
their possession a secret digital signature that uniquely identifies them, thereby serving
as the equivalent of an analogue signature. Digital certificates verify the identity of the
sender, place a tamper-resistant seal on a message, and provide proof that a transaction
has occurred [Ven03]. Digital certificates give the Internet a high level of certainty, much
the way a passport or driver’s license verifies a person’s identity. These digital signatures
are incorporated with asymmetric (public key) encryption to enforce non-denial security.

In a workflow context, enforcement of non-denial is particularly important when tasks
have financial implications such as e-Government applications. We will discuss this issue
and present some techniques supporting non-repudiation mechanisms for authentication
purposes in this dissertation.

81

Chapter 3. State of the Art

3.3.2 Access control approaches for security policies

A security policy defines the expected standard of security enforcement using access con-
trol within an organisation. Primarily, a security policy addresses who has access to what
resources, as well as how this access is to be regulated and managed. Pfleeger et al. defines
an effective security policy as one that is durable so that it can adapt well to changing
circumstances, useful in that it can be understood and followed by everyone to whom it
applies and realistic in terms of its specification of realisable security goals [PP06].

A security policy document is significant in that it makes employees aware of the
organisation’s position, thereby safeguarding the organisation from accidental employee
security breaches. Furthermore, it defines a standard according to which retribution of
intentional offences may be assessed. The following approaches can be used to define
access control in an organisational security policy. They are, discretionary access control
(DAC), mandatory access control (MAC), and role-based access control (RBAC) in both
static and dynamic organisational contexts.

a - Discretionary Access Control (DAC)

The DAC approach allows the creator of an object, or anyone else that is authorised
to control it, to make access control decisions. These rights change dynamically at the
discretion of the owner of an object [PP06]. Access control mechanisms that support a
DAC policy include directory lists, access control lists and access control matrices.

Directory lists maintain a directory for each user (subject) in the system. Each direc-
tory entry contains fields of the object and associated access rights that a user has. A
pointer to each object is also included. A disadvantage of this approach is that manage-
ment complications arise in the event that an object is removed or renamed. Maintenance
is difficult when updates are required in the directory of many users [PP06].

b - Mandatory Access Control (MAC)

A MAC approach requires that access control decisions have to be made beyond the
control of the owner of an object. These access control decisions are determined by a
central authority, and users have no authority to change them [PP06]. The Bell and
Lapadula Model supports MAC policies [LB73].

The Bell and Lapadula Model deals with access rights such as read or write. It also
labels subjects and objects according to a predefined security ranking. This model is
slightly more flexible within organisations [LB73]. The Bell and Lapadula Model allows
for a flow of information between multiple levels in an organisational hierarchy. Read
access is granted to subjects with higher security classifications than the objects accessed,
and subjects with lower security levels have write access to objects of higher security
classifications. This is not practical for real-world workflow situations where classifications
may need to be changed periodically [Ven03].

Because of the rigidity of both DAC and MAC models, it is difficult to incorporate
delegation in them. For this reason, the focus will be on role-based access control (RBAC),
which can be seen as a combination of both MAC and DAC approaches.

82

3.3. An Overview of Security Concepts

c - Introduction to the Role-Based Access Control (RBAC) model

In most organisations, a security policy must be applied to hundreds, if not thousands,
of employees. To simplify security administration, many organisations define roles with
which multiple individuals can be associated. The security policy of the organisation then
defines how permissions are to be associated with these roles. Sandhu et al. presented
the RBAC approach which is particularly effective when changes are made to the organ-
isational security policy. The RBAC model needs only to be made to role assignments,
which are significantly fewer than individual assignments [SCFY96].

U R
UA PA

P

Session

Constraints

RH

Figure 3.7: RBAC model

RBAC elements include sets of five basic elements : users U, roles R, permissions
P, sessions, and constraints C. The fundamental definition is that individual users are
assigned to roles and permissions are assigned to roles. A role is a means for naming
many-to-many relationships among individual users and permissions.

A user in this model is a human being, a role is a job function or a job title, and
permission is an approval of executing an object method (access to one or more objects,
or privileges to carry out a particular task). A session is a mapping between a user and
possibly many roles. A session is always associated with a single user (so-called a subject)
and each user may establish zero or more sessions.

RBAC has two relations : user assignment (UA) and permission assignment (PA). The
user assignment is a many-to-many relation between users and roles. The permission as-
signment is a many-to-many relation between permissions and roles. Users are authorised
to use the permissions of roles to which they are assigned. RBAC additionally provides
the notion of role activation for the duration of one session. RBAC is also an effective
access control approach to use in workflow systems. Hence, due to the effectiveness of this
approach and its direct relevance to this dissertation, an in-depth discussion of RBAC will
be given in chapter 4, with direct references to Sandhu et al. model [SCFY96].

d - Static organisational context

An access control model defines which subjects are permitted to perform a certain oper-
ation on a resource. A subject defines a user selecting a role during runtime. Referring

83

Chapter 3. State of the Art

to Figure 3.8 subjects are assigned to one or more roles. Permissions define associations
to perform an operation on a resource. They are associated with a role by a permission
assignment. Thus, the use of resources is restricted to individuals authorised to assume
the associated role.

Role

Operation

Subject

Permission

Resource

User
Assignment

Permission
Assignment

Hierarchy
*

*

* *

*

*

*

1..n

Figure 3.8: Static organisational context for RBAC

In its simplest form the role-based access control model comprises a set of roles R, a set
of subjects S, a set of permissions P, a set of permissions assigned to roles PR ⊆ PxR,
a set of subjects assigned to roles SR ⊆ SxR, and a partially ordered role hierarchy
RH ⊆ RxR. A role-based access control system must ensure that a subject si ∈ S has
the permission pi ∈ P to perform an operation on an object oi ∈ O only if :

• Role-Permission Assignment :
Rpi = {ri ∈ R : ∃pi, ri ∈ PRpi}

• Subject-Role Assignment :
Spi = {si ∈ S : ∃si, ri ∈ SR, ri ∈ R}

In other words R(pi) is the set of roles holding the permission pi. Thus, R(pi) is the
set of users authorised to perform pi.

e - Dynamic organisational context

The conflicting entities paradigm introduced by Botha et al. [BE01] postulates that within
an organisation the risk of security incidents increases if associations with specific entities
are not carefully controlled and monitored by an access control management system.
Botha differentiates between four different types of conflicts, such as conflicting subjects,
conflicting roles, conflicting objects and conflicting permissions. Conflicting subjects refer
to individuals in an organisation that are likely to conspire due to a personal relationship
and together may share information or gain permissions that imply too much executive
power.

Similarly, conflicting roles and conflicting permissions are defined that, if assigned to
a single individual, may increase the likelihood of fraud. Conflicting objects relate to the
Chinese Wall principle [BN89], which is based on information or knowledge that is mutual
exclusive to be acquired by an individual.

84

3.3. An Overview of Security Concepts

This notion of conflicting entities is rather strict and applied to an organisational
context would require a very fine-grained distribution of access control permissions within
an organisation, hardly reflecting the original organisational structures and hierarchies.
For instance, we consider our motivating example in which a Prosecutor must act as a
pre processor or a post processor for the MLA request. In the organisations (Eurojust A
and B) exists only one kind of a Prosecutor, while the access control management system
must differentiate between two kinds of mutual exclusive Prosecutors types which may
not be assigned to the same performer (see delegation scenario DS2).

Role

Operation

Subject

Permission

Resource

User
Assignment

Permission
Assignment

Hierarchy
*

*

* *

*

*

*

1..n

Constraint

Session

Context

Role
Activation

1..n 0..n

0..n

Figure 3.9: RBAC Sessions

As discussed by Sandhu et al., the role-based access control model may be further
extended by sessions, which may be considered as a context as well to translate static
role-based separation of duty (SoD) constraints into a role activation constraint, which is
commonly referred to as a dynamic separation of duty constraint (see figure 3.9).

Crampton et al. first introduced the notion of entailment constraints, which restrict
permissions depending on contextual information, such as a subject’s recent activities
performed, data accessed or roles activated [Cra05]. Dynamic organisational context
defines additional constraints that have to be considered during delegation. We leverage
specifics constraints for tasks such as SoD to see whether a delegatee can claim a task
based on his role specifications in the organisational context (see chapter 5).

f - Others access control models

Task-based access control (TBAC) aims to provide task context to permission assignments.
A workflow system consisting of tasks is assumed. Each of these tasks is then assigned a
“protection state”, providing information as to who gets to have which permission on a task
basis. According to the current state of the workflow system moving through the process
instance, different permission assignments are activated or deactivated as ordered by the
protection state. The TBAC design is process oriented, offering time-related features such
as expiration and validity as well as instance-based characteristics [TS98].

Team based access control (TMAC) is an access control scheme similar to RBAC,
but it provides user context and object context. Thus, it allows for more fine-grained
specification of permissions on individual users in a team context, as well as isolated

85

Chapter 3. State of the Art

addressing of specific object instances relevant to tasks. The main contribution of TMAC
is the assignment of both users and (object access) permissions to teams. Each team
(instance) then is bound to the task it was created for. At runtime, more than one team
can be created out of the same template, but each team will be working on a different
task instance and accordingly will need access to different object instances [Tho97].

TBAC and TMAC were defined to support specific contexts which are out of the scope
of this dissertation. In our work, we use and extend the RBAC model since it is more
suitable for our approach. RBAC offers the possibility to support human interactions in
terms of user-to-user delegation. In addition, we leverage RBAC features (role-permission
relation) to extend it with task-permission relation in order to support task delegation
requirements (see chapter 4).

3.3.3 XACML : a policy language

We understand policies as persistent declarative specifications, derived from management
goals, defining choices in the behaviour of a system. Policy-based approaches to system
management allow the separation of the rules that govern the behaviour of a system from
the functionality provided by that system [Sch03].

There are currently numerous choices of policy languages available. Most of them can
be categorised as one of the languages based on logic, XML, or credential. Here, we will
look into the eXtensible Access Control Markup Language (XACML) policy specification
language. XACML is a declarative language based on XML for expressing security policies.
It is an open standard, ratified by the Organisation for the Advancement of Structured
Information Standards (OASIS) in 20051.

Beyond specifying the representation format of security policies, this standard also
defines the interpretation of those in a generic processing model. It also addresses the
issue of today’s distributed system architectures which are comprised of many system
entities, each of which has specific security requirements associated with multiple points
of enforcement, by proposing a modular and distributed system setup for its enforcement
architecture.

Currently XACML can be found in many publications in the area of research2. The
different research facilities paying attention to XACML can be classified as the big players
in the field of information technology, like IBM, Sun Microsystems, Oracle Corporation,
Cisco Systems, and SAP amongst others. Thus it is evident, that XACML is gaining
increasing attention and importance in the area of information security.

The major components making up the proposed architecture for XACML enforce-
ment environment, and its data flows are shown in Figure 3.10. The following sequence
introduces those components by tracking the flow of information between them.

1. At first the policies managed though the Policy Administration Point (PAP) are
made available to the Policy Decision Point (PDP). The PDP is the component

1For more information on the work of OASIS : http://www.oasis-open.org.
2A list of publications, standards, products, and specifications that contain substantial information

about XACML or make use of XACML in a substantial way can be found under http://docs.oasis-
open.org/xacml/xacmlRefs.html.

86

3.3. An Overview of Security Concepts

Figure 3.10: XACML enforcement environment architecture

which decides access requests by validating them against its policies.

2. An access requester wants to access a resource, therefore sends an access request to it,
which gets intercepted by a Policy Enforcement Point (PEP). The PEP component
ensures, that each access request to resources it protects is decided by a PDP.

3. To get an access decision, the PEP creates an according XACML request consisting
of information about the access attempt, and sends it to the PDP.

4. If the decision making process requires additional information which is not provided
with the XACML request, but is accessible through a Policy Information Point
(PIP), the PDP queries this information. A PIP could be any kind of repository or
data source.

5. The PIP returns the requested information to the PDP.

6. The PDP returns an XACML response consisting of the decision result.

7. After handling the results from the PDP, the PEP returns the access response to the
access requester. Depending on the PDP decision result, this could be the desired
access to the resource or an access denial.

The XACML meta-model is shown in figure 3.11. The root of all XACML policies
is a policy or a policyset element. Policysets may hold one or more policies or other
policysets. Each policy contains rule elements which are evaluated by the PDP. Target
elements specify the context a rule applies to or not. A target is composed of subject,
resource, and action elements. A subject element defines a human interacting with the
system. A resource element defines a protected entity, such as a Web Service, file or
process task in the context of a workflow management system. An action element defines

87

Chapter 3. State of the Art

the operation that is performed on the protected resource element. If more than one rule
applies a rule combining algorithm defines the outcome of the overall decision request
[Tim05].

Figure 3.11: XACML policy language model

Condition elements further restrict the overall decision based on the contextual at-
tributes of the access request. A condition contains a predicate which evaluates to either
true or false, e.g. a subject’s role attribute must be clerk. If the condition returns true
the rule’s effect is returned. The effect may result in a permit, deny, or not applicable
statement. An obligation is an additional activity (e.g. sending a notification email) that
must be performed by the policy enforcement point in case a policy applies to a specific
request and rule effect [Tim05].

Delegation requests are part of specifics requests including conditions and obligations
for delegatees. It is a mean to specify task delegation constraints (e.g. deadline, delegatee’s
attributes). In our work, we leverage XACML specifications to define delegation policies
in our approach (see chapter 5).

3.3.4 Summary

In this section, we presented an overview of security concepts which are relevant to work-
flow systems. The main security properties was introduced to explain the role that it
plays in total system protection. Moreover, we presented access control approaches (MAC,
DAC and RBAC) to support security properties and to specify authorisation policies. It
is widely accepted that RBAC models are most effective at enforcing workflow security.

88

3.4. Level of Access Control within Workflows

In the next section, we explain how such access control models will secure workflows in
general and task delegation in particular, and discuss their functionalities and limitations.

3.4 Level of Access Control within Workflows

Workflows traditionally have been used by business organisations for modeling and con-
trolling the execution of business processes to achieve a business objective [WFM99]. In
the classical software engineering approach the organisational context and related security
requirements and threats are often considered during the design phase of a workflow, but
internal controls are later defined and implemented in a manual fashion disjoint from pre-
defined models due to a semantic gap and poor understanding of integration dependencies
[CSBE08]. To tackle this issue, various frameworks, procedures and guides emerged to
achieve information security within an organisation.

3.4.1 Organisational goals

Organisations adopted and defined control goals with respect to information security to
secure and conduct their business activities [Sch03]. Information security became an or-
ganisational control goal that may be achieved by confidentiality, integrity and availability
providing mechanisms, techniques and processes purposefully designed in order to control
the business activities of individuals, groups, and whole organisations (see figure 3.12).

The Committee of Sponsoring Organisations of the Treadway Commission (COSO) de-
fines processes and measures by which an organisation should be coordinated and directed
to achieve information security [Moe07]. The COSO framework focuses on organisational
measures and the definition of those processes is usually kept abstract to emphasise the
independence of any technical, architectural and application level context. Other frame-
works, such as COBIT, try to bridge the gap between the organisational processes and
information systems. It is emphasis on achieving the linkage between the organisation,
measures, and information systems [ITG07], while frameworks, such as the NIST (National
Institute of Standards and Technology) Security Handbook [NoC95] primarily addressed
the measurement and assertion of information system security properties on a technical
level.

3.4.2 Secure workflow approaches

Much of the work on role-based access control systems within WfMS is based on the
context of the RBAC96 access control model family [SCFY96], which since then has
evolved to a NIST standard allowing for a standardised integration into security products
[FSG+01]. In the RBAC96 model family, the central notion is that permissions are as-
sociated with roles, and users are made members of appropriate roles, thereby acquiring
the roles permissions.

Atluri et al. presented the Workflow Authorisation Model (WAM) which concentrates
on the enforcement of authorisation flow in task dependency and transaction processing
by using petri nets. Though WAM only concentrates on the authorisation in a task’s

89

Chapter 3. State of the Art

Organisational
Goals

Control
Goals

Business
Activity

Business
Goals

Information
Security

Receive
Request

Forward
Request

Integrity Confidentiality Availability

Figure 3.12: Business and control goals in an organisation

state and primitives, not the authorisation during resources access. WAM discussed the
synchronisation of authorisation flow and the specification of temporal constraints in a
static approach, however this is not sufficient to support workflow security requirements.
This is because workflows need a more dynamic approach to synchronise the flow of
authorisations during execution [HK03]. This is the case when we propagate authority
from a Prosecutor to his Assistant to support delegation (see the motivating example :
DS1).

Oliver et al. considered the specification of application-level security in workflow
systems. The approach consisted of defining a workflow on three distinct levels. The level
3 describes workflow notions such as activities. Security requirements such as the fact that
users should only be granted access to objects, while they require the access to perform
some activity aspects are viewed as level 2. Level 1 consists of (one or more) databases
where the information is stored [OvdRG98]. However, the specification of application-
level security does not consider constraints that may appear frequently in WfMS, such as
separation of duties based on the time at which they can be evaluated within a workflow
[BFA99]. This is the case when we consider the same role (Prosecutor) for different
organisations (Eurojust), where authorisation assignment have to be separated (SoD)
from users and tasks perspectives (see the motivating example : DS2).

Another approach presented by Wainer et al. is an extension of the RBAC based on
the RBAC96 model [WKB07]. It defines a pair of role-based access control models for
workflow systems, collectively known as the W-RBAC models. The first of these models,
W0-RBAC is based on a framework that couples a powerful RBAC-based permission ser-
vice and a workflow component with clear separation of concerns for the administration
of authorisations. The approach provides an expressive logic-based language for the se-
lection of users authorised to perform workflow tasks, with preference ranking. Further,
authors extended the initial model to W1-RBAC model. It allows some constraints to be
overridden for the case that the workflow could not reach a defined end due to an unpre-
dictable behaviour [WKB07]. However, W-RBAC models remain stateless and lacks of
means to support dynamic policy enforcement when considering dynamic authorisations.
This is the case, when an authorisation policy is updated with new delegation rules that
grant authorisation for delegatees within the existing policy [GMC09].

90

3.5. Analysis of Delegation in Secure Workflows

3.4.3 Summary

As security is an essential part of workflows, a set of access control mechanisms should
be introduced into workflow management systems to allow controlled access of data ob-
jects, secure execution of tasks, and efficient security management. In this section, we
have presented organisational control goal in order to control and to secure the business
activities of individuals, groups, and whole organisations. We have discussed different ap-
proaches supporting security in workflows and presented their scopes and limits regarding
our thesis motivations for a secure and dynamic task delegation in workflows.

3.5 Analysis of Delegation in Secure Workflows

In a secure workflow system, it is imperative to specify which users (or roles) can be
authorised to execute which tasks. Users may also be able to delegate their rights of
executing a task to others. Much of research work in the area of delegation have been
carried out. In this section, we discuss different approaches that tackle delegation in
secure workflow systems. To do so, we firstly analyse delegation in workflows. We then
discuss access control systems to ensure delegation of authority within workflow systems
and present their limitations for our approach.

3.5.1 Delegation in workflows

The delegation of a task can be very useful for real-world situations where a user who
is authorised to perform a task is either unavailable or too overloaded with work to
successfully complete it. This can occur, for example, when certain users are sick or
on leave. It is frequently the case that delaying these task executions will violate time
constraints on the workflow impairing the entire workflow execution. Delegation is a
suitable approach to handle such exceptions and to ensure alternative scenarios by making
WfMS more flexible and efficient [Sch07].

Most of the work done in the area of security constraints and requirement modelling are
focused on the infrastructure of WfMS and secure transaction management in workflow
execution [AW05, Ven03]. There exists little related work in the domain of specifying
task-based delegation. This observation is supported by research done by Russel et al.
[RvdAHE05] and Hung et al. [HK03]. They outlined that existing solutions, such as the
Workflow Authorisation Model (WAM) [AW05], are static and do not support security
constraints in general and task delegation in particular.

Crampton et al. discussed delegation in the context of workflow systems using three
different workflow execution models [CK08b]. The work offers a greater understanding
of the effects of various delegation operations on the authorisation data structures in the
context of role-based workflows [CK06]. In addition, the authors were able to determine
when the delegator must be considered to be an authorised user and when the delegator
will be able to retain existing task assignments. However, they did not consider task del-
egation constraints when delegating authorisations. The integration of delegation policies
into existing policy is not treated and the problems of security conflicts with the policy
compliancy are not yet addressed.

91

Chapter 3. State of the Art

Atluri et al. have extended the notion of delegation to allow conditional delegation,
where the delegation conditions can be based on time, workload and task attributes.
When workflow systems entertain conditional delegation, different types of constraints
come into play, which include authorisation constraints, role activation constraints and
workflow dependency requirements [AW05]. Authors addressed the problem of assigning
users to tasks in a consistent manner such that none of these constraints are violated.
However, the problem of user-task assignment under delegation is not considered. The
assignment relation is very important during delegation and needs to be done under
specific constraints to ensure the delegation of authority.

Russel et al. proposed an approach supporting delegation [RvdAHE05]. They de-
scribed the life cycle of a work item in the form of a state transition diagram with a
particular focus on the resource allocation perspective. One of the main drawbacks of this
approach is that it defines a static binding of all work items associated with a task to a
single resource. This approach ignores additional events (transitions) during delegation
execution and does not support secure and dynamic interactions within a workflow with
regards to aspects of users, tasks, events, and data.

3.5.2 Delegation in access control models

Role-based access control (RBAC) is recognised as an efficient access control model for
large organisations. In [ZOS03, ZAC03], authors extend the RBAC96 model by defin-
ing some delegation’s rules. Zhang et al. proposed a flexible delegation model named
Permission-based Delegation Model (PBDM) [ZAC03]. PBDM supports user-to-user and
role-to-role delegations with features of multi-step delegation and multi-option revocation
which are out of the scope of this dissertation.

Barka and Sandhu proposed a role-based delegation model based on RBAC96 model.
The unit of delegation in them is a role. In addition, authors focused on role-based models
supporting role hierarchies when studying delegation in the context of both RBAC0 model
(flat roles) and RBAC1 model (hierarchical roles) of the RBAC96 family [BS00]. However,
users may want to delegate a piece of permission from a role, which is not supported in
such models. This will be an immediate priority in our approach to enrich our delegation
access control model to enforce authorisation mechanisms based on event-based delegation
policies.

The eXtensible Access Control Markup Language is an XML-based, declarative access
control policy language that lets policy editors to specify the rules about who can do
what and when. Unlike other application-specific, proprietary access-control mechanisms,
this standard can be specified once and deployed beyond the boundaries of organisations
and countries. Seitz et al. investigated how an authorisation management system based
on XACML can be extended to use flexible delegation mechanisms. They developed a
separate policy administration point component called “Delegent” that specifies allowed
modifications on different elements of an XACML policy for different users [SRS+05].
Administrating delegation policies is, however, stateless and lacks of reactivity to support
policy change when delegating a task. We need a reactive approach to reflect events
change and to support a dynamic enforcement of policies (see DS1 example when Alice
revoke Bob’s work).

92

3.6. Conclusion

Chadwick et al. developed a middleware authorisation framework, which focuses
mainly on role based access control (RBAC) model. It supports additional conditions
such as role assignment validity, delegation depth and target access clauses [CO02]. The
authorisation framework does not provide direct support for bilateral exchange of policies
and credentials to address privacy issue and trust. This is not enough to manage security
for systems in which organisations are dynamically built with the collaboration of multi-
ple independent organisations sharing their resources. This is especially the case when we
consider authorisation decision making supporting delegation policies for process-based
human interactions cross-organisations. For instance, two Prosecutors from different or-
ganisations need to collaborate together by sharing their resources in the global delegation
scenario DS2.

3.5.3 Summary

We have presented a literature review related to the delegation requirements in workflow
and access control models. We have discussed approaches, models, and technologies which
fit with delegation and highlighted their functionalities and limitations.

To the best of our knowledge, most of the work done in the area of workflow and access
control systems does not treat delegation in sufficient details and deserve more investiga-
tions. Secure delegation implies the controlled propagation of authority dynamically with
regards to workflow’s invariants (tasks, users and data). Consequently, an extension of
the RBAC model will be defined in the next chapter to support such requirements within
workflows.

3.6 Conclusion

This chapter outlined the research foundations of this thesis. We presented concepts fun-
damental to the understanding of workflow management systems, processes modelling as
well as the security in information systems. We have shown that in the classical software
engineering approaches, the organisational context and related security requirements are
often considered during the design phase, but internal controls supporting human inter-
actions such as task delegation are badly defined and disjoint from system specifications
due to a semantic gap and poor understanding of delegation requirements.

Based on this solid knowledge foundation, the next chapter will introduce our dele-
gation approach, its fundamental concepts, design decisions and supporting framework
requirements. We aim to come up with an approach to secure task delegation within
workflows. The motivation is to bridge the gap between organisational needs and
security functionalities. Our research directions is oriented access control require-
ments in business processes. From a process perspective, we will present a generic model
for task delegation to support organisational flexibility when modelling a work-
flow. From a resource perspective, we will define an access control model to ensure
delegation authorisation in access control systems.

Moreover, the delegation of authority defines policies which are defined from existing
policies and are specified dynamically. However, existing work on access control systems

93

Chapter 3. State of the Art

remain stateless and do not consider this perspective. In chapter 5, we come up with an
approach supporting dynamic enforcement of delegation policies. Additionally,
the integration of such policies have to be computed and compliant with the
existing policy based on the delegation constraints. In order to control the delegation
behaviour and to specify its authorisation policies in an automated manner, we will to
monitor the task execution during delegation and define specific rules to generate and
integrate delegation policies in the global authorisation policy.

94

Chapter 4

Modelling Task Delegation in
Workflows

Contents
4.1 Introduction . 96

4.2 Motivation Factors for Delegation 97

4.2.1 Organisational . 97

4.2.2 Business process . 98

4.2.3 Resource . 99

4.2.4 Link with the case study . 100

4.2.5 Summary . 101

4.3 Organisational Flexibility in Workflows 101

4.3.1 Flexibility constraints . 101

4.3.2 Organisational flexibility in practice 102

4.3.3 Requirements for organisational roles 103

4.3.4 Summary . 104

4.4 An Extended Analysis of Delegation in Business Processes . 105

4.4.1 A workflow model . 105

4.4.2 Basic task delegation model . 105

4.4.3 Securing task delegation within a workflow 106

4.4.4 Summary . 108

4.5 Modelling Task Delegation for Human-centric Workflows . . 109

4.5.1 Delegation kind . 109

4.5.2 Delegation of privileges . 109

4.5.3 Task delegation model . 110

4.5.4 Negotiation in user-to-user delegation 111

4.5.5 Delegation protocol supporting negotiation 112

4.5.6 Summary . 113

95

Chapter 4. Modelling Task Delegation in Workflows

4.6 Access Control Over Task Delegation in Workflows 114

4.6.1 Task execution model . 114

4.6.2 Task-oriented access control model 115

4.6.3 Access control over task delegation using TAC 117

4.6.4 Revocation . 119

4.6.5 Summary . 120

4.7 Conclusion . 121

4.1 Introduction

In this chapter, we present a novel approach for modelling task delegation in workflow
systems. By leveraging the foundations described in the chapter “State of the Art”, we
define a task delegation model that not only meets the requirements at the organisational
level, but also enables performing delegation in a secure and flexible manner at the security
level.

We answer the interrogations defined in the chapter“Context and Problematic”related
to the motivation factors, the delegation model and the access control model. In order to
capture the requirements regarding the definition of our delegation approach, we present,
first, a detailed taxonomy of factors for delegation with respect to workflow as-
pects. Basically, we aim to separate the various aspects of delegation with regards to
workflow’s actors, tasks and resources. Alongside this taxonomy, we motivate that the
task delegation model will support organisational flexibility in the human-
centric workflow systems, and ensure delegation of authority in access control
systems. On one hand, the organisational flexibility deals with the organisations adap-
tation capacity to support user-to-user delegation. On the other hand, the delegation of
authority defines constrained access control over workflow systems. Moreover, we
show how this model will support security requirements when considering our task-based
delegation approach.

This chapter is organised as follows. Section 4.2 presents the motivation factors for
delegation. It defines a classification based on both control and resource layers in a work-
flow. Delegation factors depend on the organisation requirements, the process definition,
and the resources constraints. In section 4.3, we introduce the notion of organisational
flexibility for task delegation. It motivates delegation within an organisation to ensure
flexible execution and to support exceptions when moving away from the predefined pol-
icy. Concretely, delegation works on defining alternatives with unavailable functional roles
(workflow’s roles) to cope with the organisation rigidity. Section 4.4 analyses delegation
in business processes. Workflows model and control the execution of business processes
in an organisation. It presents a novelty to study a delegation process as a multilayered
state machine to allow delegation to complete. Section 4.5 focuses on modelling task
delegation for human-centric workflows. We aim to ensure a user-to-user delegation with
heavily human interactions to perform a delegation request. This request needs to sup-
port additional requirements related to the organisation flexibility and the authorisation

96

4.2. Motivation Factors for Delegation

policy definition such as negotiation. Negotiation is defined when initiating delegation. It
aims to offer a wide choice of delegation ensuring flexibility and controlling access rights.
Finally, we address security requirements for delegation in section 4.6. We aim to reason
about task delegation from a resource perspectives to analyse and specify task delegation
constraints while accessing workflow’s resources. To that end, we define a task oriented
access control model (TAC) based on the RBAC model.

4.2 Motivation Factors for Delegation

The delegation process within workflow management systems is well studied at the con-
ceptual and technical levels [Sch03]. A non exhaustive identification of delegation factors
have been presented in [Gay05]. We motivate and enrich this classification based on both
the control and the resource layers in a workflow [GSFC08]. The delegation process will
inquire different needs to address two important issues, namely allowing task delegation to
complete, and having a secure delegation within a workflow. Allowing task delegation to
complete requires a model that forms the basis of what can be analysed during delegation
process from the negotiation phase to the completion phase [GSFC08]. Secure delegation
implies the controlled propagation of authority, ensuring confidentiality at the control and
data flow layers as well as availability at the task assignment layer and integrity at the
data layer, thereby specifying security requirements on both design and run time. Figure
4.1 is the graphical representation of this taxonomy.

Delegation

Business Process

TrainingEfficiency

Administration

Organisational

BoD
Wrong

Attribution

Security
Constraints

Flexibility
Constraints

SoDCompetence

Resource

Deadline

Task
Requirements

Equipement

Material
Resources

Workload

Human
Resources

UndefiniteDefinite

Figure 4.1: Taxonomy of the motivation factors for delegation

4.2.1 Organisational

The normal execution of the workflow reflects the real organisation. If a delegation process
occurs, it means that the normal execution does not model the real process anymore. The
following points describe the identified motivation factors regarding the organisational
factors of the delegation taxonomy :

• Flexibility constraints : Such constraints can be a causing factor for delegation
if they are well identified in the organisation and users are accepting the notion of

97

Chapter 4. Modelling Task Delegation in Workflows

collaborative work. It is often the case that implicit knowledge cannot be shared
among users and that only some specialists possess the competence on a specific field.

� Competence : The required competencies to achieve a task can evolve. The
level of needed competencies is lowered and the actual user could delegate the
task to someone with fewer technical skills, giving him time to concentrate on
other tasks (see DS1 scenario described in the motivating example). The in-
verse is also possible, with a task evolving toward a greater complexity and the
actual user is not able to deal with it anymore. Delegating to a better qualified
user will reorganise the workflow.

� Wrong attribution : Considering an administrative distribution of tasks, a
user assigned with a task not objectively fitting with his competence profile
may need delegation. This category of delegation solves the problem of wrong
attribution without involving another administrative process.

• Security constraints : Security is an essential and integral part of workflow
management systems. Protecting application data in workflow systems are defined
through access control policies. Organisational policies may conflict and require a
user to delegate. Specific organisational constraints are identified below :

� Separation of duty (SoD) : The separation of duty is normally modeled as
a gathering of rules that reflects the organisational policies. It is an important
structuring point of the architecture of a workflow in its normal execution. The
separation of duty ensures that a user delegates a task not to enter in conflict
with one of the organisational rules. SoD can be motivated by many reasons
such as Conflicts of interest (CoI) or frauds avoidance.

� Binding of Duty (BoD) : The principle of BoD is used to express that if
a certain user executed a task, this particular user must also execute specific
other tasks to complete a workflow. Therefore the other tasks are restricted
such, that only this user can execute them in the pertained workflow instance.
It can be seen as the inverse model to SoD, which demands to disperse the
responsibility for the execution of a set of tasks, while BoD demands to bind
it. Like for SoD, many delegation examples exist in the business world, in cases
where a delegator delegate his task, but due to entailment restrictions such as
the BoD, the delegatee must also execute additional tasks.

4.2.2 Business process

Workflow management systems automates the management and coordination of organisa-
tional or business processes. A workflow typically comprises a set of coordinated activities,

98

4.2. Motivation Factors for Delegation

known as tasks. The following points describe the identified motivation factors regarding
business process management in the delegation taxonomy :

• Task Requirements : In this category, the dynamic of the task is taken into ac-
count. Constraints or rules structuring the task as well as multiple external factors
can evolve. This evolution can be either predictable or not but it may inflict on the
execution of the task.

� Deadline : A deadline defines a time constraint linked to the task. For in-
stance, when the delegator is running out of time and he is not able to respect
a time limit. To not cancel the executed task, a delegation will be supported.

� Workload : Considering the current filling of his worklist, the delegation pro-
cess could be initiated if the worklist is overloaded and the addition of a new
task would result in time constraints not being met.

• Administration : A less technical but interesting motivation for delegation is the
interest of the managers in the performances of their processes and in the involve-
ment of the team management.

� Efficiency : A user may have all the required authorisations, resources and
competencies to achieve a task, but it may be a positive thing to delegate this
task to another more specialised principle in order to make the workflow more
efficient (see DS2 scenario in our motivating example).

� Training : By delegating a specific task, often, to a non specialised user it
will help him to acquire new skills and with the new responsibilities associ-
ated, to be better involved in his work. Depending on the result of work done,
the delegatee, through successive delegations can earn the delegator confidence.

4.2.3 Resource

A task cannot be achieved due to a lack of resources. In the literature, a task defines a unit
of work that at each invocation performs the binding between different resources needed
to complete a specific part of the workflow [RvdAHE05]. The resources that may be
involved are different. We distinguish material and human resources for business objects
and workflow actors, respectively. The following points describe the identified motivating
factors :

99

Chapter 4. Modelling Task Delegation in Workflows

• Human resources : The user who is authorised to perform a task misses one or
several necessary resources. We distinguish here, two types of motivation for dele-
gation related to human resources. This category gathers the situations where the
user will not be available during the execution of a task. Then he can delegate it to
another user to act on his behalf.

� Definite : Here the user is aware of the length of his absence and moreover it
can be a repetitive fact. This definite unavailability can be expected or unex-
pected.

� Indefinite : Here the user cannot tell how long he will not be able to perform
his allocated task. A representative case would be an employee leaving a com-
pany. This case can be both expected or unexpected.

• Material resources : Generally, the manipulation of material resources is inter-
faced by one or several entities called applications or services. These applications
consist of functions that manipulate business objects. We distinguish two motiva-
tion factors :

� Equipment : In this case the motivation to delegate is obvious as the execu-
tion of the task will be stopped by the absence of one or several material goods.

� Workload : See section 4.2.2.

4.2.4 Link with the case study

In the table below, we summarise the delegation scenarios described in the motivating
example. It contains the different observations based on the MLA case study and the the
motivations factors for each scenario.

Scenario Organisational Business Process Resource
DS1 Flexibility constraint

in the organisation hi-
erarchy

Workload : Prosecu-
tor Alice is overloaded

Human resource (e.g. Al-
ice requests a leave of ab-
sence)

DS2 Flexibility constraint
cross organisations

Efficiency : Prosecu-
tor Claude is more
specialised than Pros-
ecutor Alice

Material resource (e.g.
Alice is lacking informa-
tion about the MLA re-
quest)

Table 4.1: Summary of motivation factors for delegation scenarios in MLA

100

4.3. Organisational Flexibility in Workflows

4.2.5 Summary

The detailed classification of the delegation motivations factors presents the essence of this
chapter. Actually, organisational flexibility, task requirements and security issues will be
discussed in the rest of this chapter. Our delegation approach is a mechanism offering
flexibility during workflow execution by ensuring alternatives depending on the organisa-
tion adaptability. Organisation adaptability depends on organisational roles specified in
the existing policy where workflow’s actors execute a process based on their access per-
missions. In addition, a task delegation behaviour is related to the process and has to be
aligned with the process definition and responds to its objectives. Moreover, delegating a
task inquires a propagation of authority that must be controlled and does not abuse the
access control requirements. Delegation of authority aims to bridge the gap between both
workflow and access control systems.

4.3 Organisational Flexibility in Workflows

In the context of heavily human-centric workflow systems, the requirements for human in-
teractions and monitoring can be summarised as transparency and control. Transparency
addresses the revelation of the control flow dependencies. This allows to react accord-
ingly to exceptions and compensations during execution. Control fosters the behaviour
of organisations according to the existing policies. One type of transparency and control
supporting mechanism in human-centric workflows is that of task delegation [GCSL07].
Delegating a task may need additional requirements from the organisation itself. Actu-
ally, the process of delegation depends on different factors related to the organisational
flexibility in addition to its security constraints (see figure 4.1).

Flexibility is becoming more important for organisations. Information technology
(IT) has been proposed as a tool which can aid the attainment of flexibility. IT can be an
enabler of organisational flexibility. First, specific types of information technology provide
flexibility by providing more flexible ways of doing things. Second, the information systems
(IS) infrastructure can be designed so as to provide flexibility by allowing the organisation
to adapt the information systems to new competitive environments [GP00].

4.3.1 Flexibility constraints

Flexibility constraints can be a causing factor of delegation. It is often the case that
additional competence or a new task assignments may be required to achieve a task. In
this way, flexibility is achieved through diverse specialisation. This occurs where each
organisation focuses on what it does best and leverages the capabilities of other entities
for complementary activities.

The organisational flexibility is used to describe situations where individual organisa-
tions concentrate on their core competence and use internal or external human resources
where required to enable a task to be achieved. Such requirements express the need for
human resources management. An organisation obtains flexibility by increasing the lev-
els of internal and external flexibility available to it by increasing its ability to manage
human resources. The importance of the human element in creating flexibility is shown

101

Chapter 4. Modelling Task Delegation in Workflows

by Suarez et al. [FFSF95] who admits that high worker involvement and flexible wage
schemes provide organisations with more flexibility than the flexible IT they use.

Golden et al. [GP00] identifies four dimensions of flexibility; temporal, range, intention
and focus. The first is temporal; how long it takes an organisation to adapt. The second
is range; the number of options that an organisation has open to it for change that
was foreseen and the number of options it has available to react to unforeseen change.
The third is intention; whether the organisation is being proactive or reactive. The
fourth is focus; whether the flexibility is gained internally or externally. These dimensions
are important for delegation where time constraints, delegation scope [ZAC03], dynamic
delegation and user-to-user delegation define our approach to support task delegation
requirements.

4.3.2 Organisational flexibility in practice

We introduced a workflow scenario related to the European administrations collabora-
tion (see chapter “Context and Problematic”). In our example, we described the MLA
process cross Eurojust organisations A and B, and detailed the different business actors
and resources models involved in the process. We distinguish Prosecutor as the main
responsible that collaborates with internal and external employees (Assistant, National
Correspondent (NC), Judge and Judicial Authority Officer (JAO)) to process the MLA
request (see figure 4.2).

Eurojut National Memeber (EJNM)

Prosecutor Judge

National
Correspondant (NC) Assistant Deputy Collaborator (DC) Judicial Authority

Officer (JAO)

Secretary Contact Point Memeber (CPM) Police Officer

EJNM Prosecutor

NC Assistant

Eva Alice
Claude

Ben

(a) Eurojust Role Hierarchy (b) Users with role memeberships in Eurojust

JAOJudge

Cathy Kevin

Bob
David

Figure 4.2: An example of organisational role hierarchy and users in Eurojust

Depending on the current control-flow sequence, workflow actors can evolve and change
from the predefined workflow model. This can lead to a new rearrangement of actors in
order to optimise the process execution. In addition, unexpected events can happen
without being modelled beforehand. For example, a Prosecutor delegates a part of his
work to a subordinate due to emergency situations. For instance, Alice needs to send the
MLA request to authority B. Alice is overloaded (lack of resources) and needs to delegate
his assigned task to one of his assistant. Delegation criteria is based on the role hierarchy
(RH) of Eurojust, where the Assistant Bob is a subordinate to the Prosecutor Alice based
on the authorisation policy definition.

Role hierarchies are a natural means for structuring roles to reflect an organisation’s
lines of authority and responsibility, and are organised in partial order ≥, so that if r1

102

4.3. Organisational Flexibility in Workflows

≥ r2 then role r1 inherits the permissions of r2. A member of r1 is also implicitly a
member of r2. In such case, r1 is said to be senior to r2. Note that such hierarchy can
be mapped to a different organisations in a collaborative context based on role mapping
(RM). A new reassignment of a task can occur cross organisations while keeping the
same role but assigning it to a different user. This can be the case when a specific
specialisation is required and an external role is called from a different organisation to
perform a task. In our case study, Alice member of role Prosecutor sends a delegation
request to his colleague Claude located in the Eurojust organisation B (see DS2 scenario
in the motivating example).

4.3.3 Requirements for organisational roles

Within organisations, and thus in workflow applications, the concept of a hierarchy of
users/roles is prevalent. Users are placed in one or more units such as departments,
divisions, or groups, and they have different bosses, at different hierarchical levels. It is
important to discuss the differences between the proposed organisational unit hierarchy
and the one that is based on their role-based access control models hierarchy to manage
human resources [WKB07].

Organisational flexibility depends on the rearrangement of the organisation members
(users) when reassigning a task to a delegatee. The involved user’s members of similar
roles have to be distinguished on the security level. For instance, Prosecutor is a role
defined in both organisations A and B (see figure 4.2). However, permissions given to
Prosecutor A are different from Prosecutor B for privacy reasons. To distinguish between
prosecutors of Eurojust A and B on the security level, we need an additional mapping
between workflow’s actors and their security roles defined in the access control system.

Moreover, we observed that delegation depends on entities related to the organisation,
the process and the resource’s access in a workflow. In order to support such requirements,
we identify three entities : user, functional role and security role within an organisation.
The three entities behave like the class diagram described in figure 4.3.

A functional role defines the workflow’s actors. It depends on task’s assignment. A
security role is defined in the access control system and depends on rights. A user may be
assigned from the “can execute” association to functional roles for which he is entitled and
qualified. This assignment can take place at any time and does not describe the current
system state. Therefore it remains static. Only the association “executed” provides the
instantiation of the execution and the dynamic assignment of the functional role. This
association is described by an association class : the attributes “from” and “to” describe,
for what period a user assignment to a functional role is active. The active attribute
describes whether this user is performing effectively this role in the current system state
(e.g. the user is logged in).

Moreover, a user is member of security roles. Security roles is part of the access control
systems and defines the organisation policy in terms of users, rights and resources access.
A user can be assigned to one or more security roles that are explicitly defined in the
policy. In addition, we define memberships in security roles that are tied to the exercise
of a functional role. Permissions that are dependent upon whether a functional role is
being actively carried out, are represented on the “assigned when active” association : A

103

Chapter 4. Modelling Task Delegation in Workflows

0..* 0..*can_execute

1..* 0..*

0..*

0..*

as
si

gn
ed

0..*

1..*

assigned_w
hen

active

from: Integer
to: Integer

SecurityRole

User FunctionalRole

from: Integer
to: Integer
active: Integer

executed

Figure 4.3: Organisational roles mapping

user executing a functional role will inherits of the specific permissions mapped from the
security role that is assigned to the functional role when active (see figure 4.3).

The mapping of functional and security roles holds when a user logs in the system
with the appropriate security role. By logging the user’s “active” field is set to true : the
functional role is busy and active. In addition to the user, the validity of the transferred
rights is mapped to the security roles required for the execution as long as he is assigned
as active to execute a functional role. The mapping is important for task delegation. It
ensures that a delegatee is assigned to the functional role to execute the task and having
the required permissions to access its resources. Functional roles computation is based
on the RH (role hierarchy) or RM (role mapping) relations depending on the context of
delegation which may be local or global. In addition, security roles is specified in the
authorisation policy and transferred to the specific functional role when task assignment
is active.

In this dissertation, we assume that delegated roles define activated functional roles
inheriting security permissions. They are computed based on the access control model
specifications (see section 4.6.2).

4.3.4 Summary

The organisational flexibility in workflows is an important part for our delegation ap-
proach. It defines the capacity of an organisation to evolve during runtime and offers
alternatives to support exceptions within organisational processes. Organisational roles
presents a way to model, specify and organise policies. Policies are law regulations within
a workflow in order to support functional and security roles. Those roles are tightly related
and have to be mapped in order to control roles and rights during delegation. Mapping
roles is crucial to ensure the delegation of authority. It offers a solution to specify work-
flow actors into access control systems in order to compute their permissions during task

104

4.4. An Extended Analysis of Delegation in Business Processes

delegation. Delegated permissions defines privileges that have to be computed based on
the process and resources requirements. This analysis will be discussed in the upcoming
sections.

4.4 An Extended Analysis of Delegation in Business

Processes

In this section, we define task delegation in business processes. Workflows model and
control the execution of business processes in an organisation. A workflow is defined as a
set of coordinated activities (tasks) that achieves a common business objective. Tasks in a
workflow are related and dependent upon each other reflecting the coordinated activities
in the business process. Task delegation needs to take into account this ordering with
regards to users, tasks and resources. It defines the way to monitor and allow delegation
completion within a business process.

4.4.1 A workflow model

The workflow management coalition (WfMC) developed a model using states transitions
that illustrate the basic underlying concepts which are necessary to scope the effects of
the workflow applications [WFM99]. The workflow enactment service may be considered
as a state transition machine, where individual process and tasks instances change states
in response to external events (e.g. completion of a task) or to specific control decisions
taken by a workflow engine (see definition 5).

Definition 5 (A Workflow Model) A workflow model W is a partially ordered set
of tasks (T,≤) that is coordinated by a set of events E. The order of task execution is
orchestrated by matching the input and output event(s) E of each task.

In addition, we consider a task as a single unit of work. Each executing task is termed
a work item [RvdAHE05]. In an elementary form, a task is an atomic unit of work. In
a compound form, it modularises an execution order of a set of subtasks. It can define
a sub-process or a block of tasks. In this dissertation, we consider the elementary form.
The basic states for a task life cycle are Initial, Assigned, Executed, Cancelled Failed, and
Completed [WFM99].

4.4.2 Basic task delegation model

A task, once created, is generally assigned to a user. The assigned user can choose to
start it immediately or to delegate it. Delegation depends on the assignment transition,
where the assigned user has the authority to delegate the task to a delegatee in order to
act on his behalf.

Delegation can be introduced to a task model through an extension that supports
additional states and transitions. The transition Delegate is closely related to the Assign

105

Chapter 4. Modelling Task Delegation in Workflows

Assign

Executed

Revoked

Completed

Failed

Initial Assigned

Ca
nc
el_
D

Co
m
pl
et
e

Execute

Revoke

re
-A
ss
ig
n

Fail

Ex
ec
ut
e_
D

D
elegate

Delegated

Delegation extension

Figure 4.4: Basic task delegation model

transition, where the assigned user has the authority to Execute or Delegate the task.
The Revoke transition is derived from Delegate transition, such that it can be considered
as the cancellation of the task delegation. The internal delegation states are Executed,
Revoked and re-Assigned. The delegation behaviour remains internal according to the
task model, where Completed and Failed are the final states (see figure 4.4).

Note that revocation may be defined as an alternative to reassign the task again.
In addition, the delegation of a task from one user to another has to be managed and
executed in a secure way, in this context implying the presence of a fixed set of delegation
events (transitions) with regards to the workflow invariants (e.g. user, task and data).

4.4.3 Securing task delegation within a workflow

Security is an essential and integral part of workflows, addressing the properties of in-
tegrity, confidentiality and availability. In a secure workflow, integrity prevents the unau-
thorised modification of information, while confidentiality implies that no data or resource
is accessed by unauthorised users at anytime. Availability moreover, implies that a re-
source should be available when it is needed (see definition 6).

Definition 6 (A Secure Workflow Model) A secure workflow is a computer sup-
ported business process with security requirements defined in the authorisation policies.
Formally, a process is composed of tasks that need to be done by defined users U. Fur-
ther, each task is given an authorisation, which describes the possible data permissions.
A user needs access permissions P to a set of data D during task execution.

Our concern is to come up with a secure delegation model based on a set of invariants
for workflows from the aspects of users, tasks, and data. The novel part of this model
is separating the various aspects of control in a workflow and portraying it as a multi-
layered architecture. This model defines an initial draft for our final delegation framework.
Basically, it aims to give a clear and coherent link between control and authorisation flows

106

4.4. An Extended Analysis of Delegation in Business Processes

during delegation. Additional delegation requirements and constraints will be analysed
as one goes along with our delegation approach.

Olivier et al. state that a workflow system should be considered at three levels in terms
of its components (task’s assignment, control, data) [OvdRG98]. Securing a workflow
involves enforcing security principles at all three levels. Hung et al. developed a secure
workflow model using a multi-layered state machine to manage the flow of authorisations
at different layers for a secure workflow execution [HK03]. A multi-layered state machine
can enable the analysis, simulation and validation of the workflow under study before
proceeding to implementation. In addition, it can serve as a powerful tool for modelling a
secure delegation framework at a conceptual and logical level with regards to the aspects
of task, control and data.

We present a basic and secure task delegation model using a multi-layered state ma-
chine within a workflow. We define three layers : Task, Control and Data (see figure
4.5).

start(task_D)

Delegate(pr)

acquire(r,pr) revoked(r,pr)

ac
ce

ss
(r

,p
r)

re
le

as
e(

r,
pr

)

Started Terminated

terminate(task_D)

Access
Resources

Resources
Delegated

Resources
Revoked

C
on

tr
ol

 L
ay

er
D

at
a

La
ye

r

Revoke(pr)

Execute(task_D)

Grant(r,pr) Revoke(r,pr)

Assign

Executed

Revoked

Completed

Failed

Initial Assigned

Ca
nc
el_
D

Co
m
pl
et
e

Execute

Revoke

re
-A
ss
ig
n

Fail

Ex
ec
ut
e_
D

D
elegate

Delegated

T
as

k
La

ye
r

Figure 4.5: Multi-layered state machine for secure task delegation

The novelty of this model relies on the separation of the various aspects of delegation,
and in its portrayal as a multi-layered architecture. The major motivations for using
a multi-layered state machine are the modelling of different aspects of authorisations in

107

Chapter 4. Modelling Task Delegation in Workflows

a single framework, and the ability to address different security services to handle the
security properties in different layers. For instance, access control mechanisms can be
applied to Task Layer and Data Layer to handle the security property of authorisation
for delegating or revoking tasks and resources to and from users, respectively.

We impose security requirements on events (transitions) to ensure the security prop-
erties of integrity, confidentiality and availability. During delegation, the interactions
between the different layers are triggered by delegation events. These delegation events
imply appropriate authorisation on the delegatee side for further actions (e.g. starting
the delegated task) as well as contain required context for those actions (e.g. accessing
delegated task resources).

In the Task Layer, we require that Assign defines availability : “For every task there
must be at least one user (delegator) who is able to execute (delegate) the task”. In addition,
the assignment of the task means that the user has the authority to execute it, thereby
controlling confidentiality and integrity of the assigned task.

In the Control Layer, Delegate defines the authority of delegating a task. We define
a privilege (pr) (so called permissions) as a role assignment given authorisation to access
resources. We require that “A delegatee can only perform the delegated task if and only if
the task is delegated and delegated privilege is granted by the delegator”. The control layer
monitors the behaviour of the task delegation. It involves the events generated from the
task assignment layer and will generate events to trigger the data layer to be executed
(see acquire (r,pr) in figure 4.5).

In the Data Layer, data are stored as resources. We define (r,pr) as a delegated
resource to the delegatee. We require that “A delegatee can only access delegated resources
if and only if the delegated privilege is granted to access the delegated resources”. Granting
and revoking resources will ensure the integrity and confidentiality of resources.

Moreover, we define additional events supporting concurrent states. This is a practical
property for a workflow model because there may be more than one delegated task running
concurrently and also a given resources can be accessed by a set of concurrently running
tasks. In order to avoid an over-privileged delegatee at anytime during the execution
of a task, a delegatee is asked to release the resource based on the agreement with the
delegator (see release(r,pr) in figure 4.5).

4.4.4 Summary

Securing task delegation within workflows demands requirements with regards to work-
flow’s layers : task, control and data. We identified the main requirements allowing a
delegator to assign the delegated task, to monitor delegation by computing privileges,
and to control access resources. Monitoring delegation defines human interactions within
an organisation. The process is modeled in an ad-hoc manner where delegation principals
(the delegator and the delegatee) interact dynamically with respect to the organisation
policy. In addition, the defined policy specifies how this interactions will ensures resources
sharing in a secure way. Human interactions and access control over task delegation will
be discussed in the rest of this chapter.

108

4.5. Modelling Task Delegation for Human-centric Workflows

4.5 Modelling Task Delegation for Human-centric Work-

flows

In this section, we aim to model task delegation for human-centric workflows. In the
context of delegation, interactions describe a user-to-user delegation to issue and perform
delegation. Delegation needs to support requirements related to the organisation flexibil-
ity and the authorisation policy definition. To that end, we enrich our task delegation
model presented previously with additional requirements that may be inquired depending
on human interactions during workflow execution. Moreover, task delegation may involve
security requirements regarding resources access (e.g. time constraints, permissions man-
agement). These requirements can be defined during execution in order to offer a wide
choice of delegation ensuring flexibility and controlling access rights.

4.5.1 Delegation kind

Delegation defines a process describing the interaction between users, authorisation and
resources under specified constraints. Constraints are related to the way the delegation
is defined and will be executed. This varies from the type to the steps of delegation.
A delegation can be defined in two different ways. Actually, we distinguish between
two kinds of delegation that need to be clarified : Administrative delegation and Ad-hoc
delegation.

When task delegation occurs frequently, has a regular pattern, then this defines an
administrative delegation [Sch03]. Administrative delegation is the basic form of delega-
tion in which an administrator or system authority assigns attributes and privileges to
enable users to conduct certain tasks. This process typically happens when a user joins a
security domain. The delegator, in this case, represents the authority of the system. This
administration is predefined and a transfer of responsibilities from the delegator to the
delegatee.

However, new requirements may indicate that the current organisational structure
and procedures do not reflect the goals of the involved principals such as the evolution or
change of tasks. An initially temporary and ad-hoc delegation must now become part of
the regular administrative delegation supporting dynamic constraints for delegation.

4.5.2 Delegation of privileges

Delegation of privileges may be classified into at least two kinds : Transfer delegation and
Grant delegation [CK06]. In transfer delegation models, the ability to use a delegated
access right is transferred to the delegatee; in particular, the delegated access right is
no longer available to the delegator. It is often desirable that sensitive access rights
may not be available to a large number of users at any given time. Such requirements are
usually expressed in the context of administrative delegation, where the transfer delegation
policies prove to be more useful when an access control policy specifies cardinality limits
on the availability of access rights between users [Sch].

109

Chapter 4. Modelling Task Delegation in Workflows

A grant delegation model, following a successful delegation operation, allows a dele-
gated access right to be available to both the delegator and delegatee. Grant delegation
models are, primarily, concerned with allowing the delegatee to use the delegated access
right. Such requirements are usually expressed as cardinality constraints in the context
of ad-hoc delegation [Sch, CK06].

4.5.3 Task delegation model

Previously, we defined a basic task delegation model (TDM) based on the task life cycle
in the workflow management coalition. We fully complete the delegation process based
on additional events. Figure 4.6 depicts a UML state diagram that illustrates the life
cycle of our TDM in the form of a state transition diagram from the time that a task is
created through to final completion, cancellation or failure. It can be seen that there are
series of potential states that comprise this process. A task, once created, is generally
assigned to a user. The assigned user can choose to start it immediately or to delegate
it. Delegation depends on the assignment transition, where the assigned user has the
authority to delegate the task to a delegatee in order to act on his behalf.

Initial Assigned
S:assign

Started
u1:start

Completed
U:complete

[transfer delegation / task
executed by delegator]

Waiting for
Delegation

Waiting for
Completion

Waiting for
Validation

u1:delegate

[pull delegation]u1
:c

an
ce

l

u2:accept

u1
:r

ev
ok

e

u1:delegate

[push delegation]

u2:execute
[grant delegation]

u1:validate

u1:revoke

u2:fail

u2:execute
[grant delegation]

S:abort

S:create

Delegated

Cancelled

Failed
U: fail

u2:complete

u2
:s

ta
rt

Waiting for
Execution

u2:execute
[transfer delegation]

Figure 4.6: Task delegation model

Intermediate events define controlled delegation within a workflow (e.g. delegate, can-
cel, revoke). For instance, the delegator might want to cancel. Our TDM would then
go back to the previous state (Assigned state). The delegation control flow behaviour
remains internal according to the task model, where Completed, Cancelled and Failed are
the final states. Moreover, we enriched the model with intermediate states supporting
delegation features such as :

• Delegation mode : It defines how delegation request is issued. The Pull mode
assumes that a delegator has at his disposal a pool of delegatees to be selected to

110

4.5. Modelling Task Delegation for Human-centric Workflows

work on his behalf. The Push mode assumes that a delegator is waiting for an
acceptance from a potential delegatee. Derived transitions from push mode are
accept, cancel and revoke.

• Delegation type : It refers to the delegation of privileges management. It may be
classified into grant or transfer. A grant delegation model allows an instantiated task
to be available for both delegator and delegatee. As such, the delegator is still having
the control to validate or revoke the task, and the delegatee to execute it. However,
in transfer delegation models, the assigned task is transferred to the delegatee. There
is no validation required and the task is terminated by the delegatee. Transfer
delegation is used to support administrative delegation.

Note that each edge within the TDM is prefixed with either an S or an U indicating
that the transition is initiated by the workflow system or the human resource respectively.
We define u1 and u2 belonging to the set of users U, where u1 is the delegator and u2 the
delegatee.

4.5.4 Negotiation in user-to-user delegation

From our research perspective, we argue that task delegation may be seen as distinct from
administration. Three characteristics can be used to support this distinction. These are
the representation of the authority to delegate (grant); the specific relation of a principal
to an object (resources access); the duration of this relation (delegation constraints); and
the validation requirements (reviewing and evidence). In addition, we argued that an
ad-hoc delegation supporting human interactions can be done in two modes : either the
pull or the push mode. Pull mode assumes that a delegator has at his disposal a pool of
delegatees to be selected to work on his behalf. Push mode assumes that a delegator is
waiting for an acceptance from a potential delegatee.

In the ad-hoc delegation protocol, we can identify three main steps : negotiation,
declination and acceptance. The two last steps depend on negotiation. We consider
negotiation as the trigger point for the main operations. We identify several factors
related to user-to-user delegation during negotiation :

• F1. Scope : This factor describes the scope of delegation. Basically, the delegator
proposes the degree of delegation regarding the context of delegation propagation
in an organisation such as cascaded or multistep delegation [ZOS03].

• F2. Time : This factor defines one of the delegation constraints: the deadline.
Delegation may be actually temporary. This involves a time constraint specifying a
time window for the delegatee. This constraint utility can avoid also a long period
of inactivity of the delegatee.

• F3. Workload : The negotiation here deals with the delegated amount of work.
In fact, the delegatee may be overwhelmed by the number of tasks assigned to him,
a situation which can be sorted by reducing the workload.

111

Chapter 4. Modelling Task Delegation in Workflows

• F4. Evidence : This factor is a specific type of business object that can be
manipulated by a task. Task execution may generate evidence for review by the
delegator. The negotiation here deals with the reviewing specifications issued by
the delegator to validate the completion of delegation.

• F5. Privileges : This factor can be a role assignment or an action on a resource.
Privileges will be granted to the delegatee later on to execute tasks or access specified
resources. Privileges can be permanent or temporal depending on time constraints.

Moreover, we identify the relationship between delegated users and negotiation factors
(see table 4.2). Factors can be defined by the the delegators. In fact, they are the users
initially assigned to execute tasks and authorised to delegate, and so expresses their
delegation specifications. As part of the negotiation some of the factors can be modified
by the delegatee. In fact, both principals can negotiate time and workload. This consists
of giving the delegatee the ability to extend the deadline or to reduce the workload.

Factors Delegator Delegatee
F1 X
F2 X X
F3 X X
F4 X
F5 X

Table 4.2: Negotiation factors specified by delegation principals

The declination step occurs when the negotiation failed and the proposed specifica-
tions (negotiated factors) are rejected. We consider this step as a precondition to restart
delegation. The acceptance step consists of granting delegated privileges, performing the
task, and reviewing it in order to complete the request (see next section).

4.5.5 Delegation protocol supporting negotiation

We introduce a delegation protocol to support the dialogue between a delegator and
a delegatee during a secure task delegation. The delegation protocol will support the
defined Control Layer with regards to the aspects of users, tasks, events and resources.
A delegation protocol describes request and response message pairs from a delegator to a
delegatee. The core operations described in figure 4.7 are defined in the following :

The delegator issues a delegation request and sends it to the delegatee (InitDelegReq()).
The first step consists of negotiating the request based on the request specifications such as
deadline, evidence and workload (NegotiationReqIssue() and NegotiationReqResponse()).
The delegatee will then decide whether to perform the requested operation and will send
the response to the delegator (InitDelegResponse()). If the request is declined, the dele-
gator will check whether another delegatee exists and then will renew his request (Rede-
fineDelegReq()).

If the request is accepted, the delegatee will acquire delegated privileges issued by the
delegator (DPReqIssue() and DPReqResponse()). Once delegated privileges are acquired,

112

4.5. Modelling Task Delegation for Human-centric Workflows

Delegator Delegatee

Delegated
Privileges(DP)

InitDelegReq()

InitDelegResponse()

Request Declination

Request Acceptance

IssueDP()

DelegationResponse()

DeclineResponse()

AcceptResponse()

ReviewResponse()

Negotiation

RedefineDelegReq()

Check for another
delegatee and define
a new request

Revoke DP

Acquire DP

NegotiationResponse()

NegotiationReqIssue()

PerformTask()

else

Figure 4.7: Delegation protocol negotiation-based

the delegatee starts performing the delegated task and then sends as a response the
execution outcome to the delegator to review it based on evidence specifications defined
in the negotiation step (DelegationResponse()).

The reviewing step will lead to the acceptance or the declination of the delegation
response, and so the re-assignment or the acceptance of the delegated execution task
(DeclineResponse() and AcceptResponse()). Finally, the acceptance step will complete
the task and revoke the delegated privileges.

4.5.6 Summary

Human interactions define the involved users (principals) taking part in the delegation
process. Interactions is a mean to support heavily human-centric workflows. We observed
that such interactions is defined at both organisational and policy level inquiring flexibility
and access control requirements. In this section, we described how such requirements have
to be combined together to secure a delegation request. Securing delegation depends on
the delegated privileges. It manages how permissions can be granted to the delegatee and
when a revocation will happen to avoid access abuse or conflicts. Privileges managements
is based on access control systems and will be detailed in the next section.

113

Chapter 4. Modelling Task Delegation in Workflows

4.6 Access Control Over Task Delegation in Work-

flows

In this section, we aim to reason about task delegation from resources perspectives (mate-
rial resources) to analyse and specify task delegation constraints while accessing workflow’s
data (e.g. permissions on business objects). Any mechanism that is used to support task
delegation is based on workflow specifications and user authorisations information. In cur-
rent workflow management systems, the RBAC model is widely adopted, where system
administrators assign roles to users. Actually, it is more convenient for administrators to
manage roles than to manage users directly [BS00, XLfC].

Delegation is a mechanism that permits a user to assign a subset of his assigned
authorisations to other users who currently do not possess the authorisation. In our
work, we define a task oriented access control model based on the RBAC model. We aim
to support security delegation constraints with regards to potential delegatees and their
required privileges.

4.6.1 Task execution model

We define a task execution model using a UML activity diagram composed of three main
activities : Initialisation, Processing and Finalisation. During the initialisation of the
task, a task instance is created and then assigned to a user. During task processing, the
assigned user can start or delegate the task which gathers all operations and rights over
the business objects related to task’s resources. Finally, the task finalisation would notice
the workflow management system that the task is terminated, where termination defines
completeness, failure or cancellation.

Task
Initialisation

No

Yes

Authorisation granting?

Task
Processing

Task
Finalisation

Cancel

AC checks

Figure 4.8: Task execution model

Seeing the task as a block that needs protection against undesired accesses, the activity
diagram includes an access control (AC) transition that is in charge with granting or not
the access to the task. AC checks defines the transition from the creation of a task to its
assignment to a user. This assignment will lead to the processing or the cancellation of
the task. Cancellation can be triggered when the assigned user does not fulfill the required
authorisation to execute the task instance.

The AC transition defines the on-time authorisation supporting task execution. It
defines a relationship between users, task instances and authorisation instances. An au-
thorisation instance defines the permission P needed to execute operations on business
objects to carry out a task (see definition 7).

114

4.6. Access Control Over Task Delegation in Workflows

Definition 7 (Permissions) P is a set of permissions. P defines the right to execute
an operation on a resource type. A permission p is a pair (f,o) where f is a function
and o is a business object. We note : P ∈ F × O where F is a set of functions and O
is a set of business objects.

For instance, the task T7 “Determine Judicial Authorities” requires a permission that
defines functions add() and modify() to access the MLA business object (see table 2.1).
Therefore, the assigned user Cathy member of role Judge needs to be authorised to access
T7 task resources.

We aim by this AC specifications to motivate to two sides of task requirements, namely
material and human resources. Once the task’s resources requirements are identified, an
access control has to be defined to check the authorisation of the initiated user. An
authorisation makes the explicit binding between a user, a task resource (object) and his
rights over it (action). Such authorisation information may be specified using a simple
access control list where users may perform tasks for which they are authorised.

4.6.2 Task-oriented access control model

We propose a Task-oriented Access Control (TAC) model to support authorisation re-
quirements in workflow systems (see figure 4.9). Authorisation information will be inferred
from access control data structures, such as user-role assignment and task-role assignment
relations. We model permission assignment relations for tasks and roles in order to sup-
port both human and material resources. The tuple (P,T,R) specifies TRA, TPA and
RPA many-to-many relationships which are specifics to the task execution context. The
remaining relations are generic relations based on the RBAC model [SCFY96].

U R
URA RPA

P

TPA

S TI

Constraints

claimed_by

instance_of T

TRA

S
U

S
R

RH
OU

RM

Figure 4.9: Task-oriented access control (TAC) model

Formally, we define sets U, R, OU, T, P, S and TI as a set of users, roles, organi-
sations units, tasks, permissions, subjects and task instances, respectively. Note that we
use a subject to define the time a user selects roles for a session. It manages the task

115

Chapter 4. Modelling Task Delegation in Workflows

instantiation assignment (claimedby) in order to create a user’s current active role set.
We define RH (Role Hierarchy), where RH is a partial order on R. ri and rj ∈ R, RH
denotes that ri is a role superior to rj, as a result, ri automatically inherits the permissions
of rj.

We define RM (Role Mapping), where RM ⊆ OUi × OUj with OUi and OUj two
organisations units. RM defines external roles accessing distributed resources cross-
organisations [FPP+02]. It provide a decentralised access control mechanism where ex-
ternally known roles are publicly available :
rk ∈ OUi and rl ∈ OUj, RM denotes that rl is a role mapped to rk, as a result, rl auto-
matically inherits the permissions of rk.

a - Definitions of map relations

• URA ⊆ U × R, the user role assignment relation mapping users to roles they are
member of.

• RPA ⊆ R×P , the permission role assignment relation mapping roles to permissions
they are authorised to.

• TPA ⊆ T × P , the task permission assignment relation mapping tasks to permis-
sions. This defines the set of permission required to execute a task.

• TRA ⊆ T × R the task role assignment relation mapping roles to tasks they are
assigned to.

b - Definitions of functions

• SU :S → U a function mapping a subject to the corresponding user.

• SR:S → R, a function mapping each subject to a role, where SR(s) = r, (SU(s), r) ∈
URA} and s having as permission p|(r, p) ∈ RPA}.

• instanceof :T → TI, a function mapping a task type to its task type instances.

• claimedby:TI → S, a function mapping a task instance to a subject to execute it :
s = claimedby(ti) where :
{ti = instanceof (t), (r, u) ∈ URA|(SR(s) = r

∧
SU(s) = u), (t, r) ∈ TRA}.

,

c - Definitions of constraints

Here we discuss Separation of duty (SoD) and Binding of duty (BoD) constraints. We
define an exclusive relation between tasks for SoD, and binding relation between tasks for
BoD as follows :

TTSOD : {(ti, tj) ∈ T × T | ti is exclusive with tj}

116

4.6. Access Control Over Task Delegation in Workflows

TTBOD : {(ti, tj) ∈ T × T | ti is binding with tj}

If (ti, tj) ∈ TTSOD, then ti and tj cannot be assigned to the same user. For instance,
(T4, T6) ∈ TTSOD, where users with the role Prosecutor must be different (see figure
2.5).
If (ti, tj) ∈ TTBOD, then ti and tj must be assigned to the same user.

d - Contributions and motivations

The main contribution is to specify the task assignment conditions based on the RPA
and TPA requirements (see definition 8). Actually, two conditions have to be verified to
satisfy TRA relation. The first condition is related to task resources requirements. The
user’s permissions defined in RPA needs to satisfy the permissions defined in TPA. If this
condition is satisfied, the task is executed if and only if the user is assigned to it. Basically,
having permissions to execute a task but not being assigned to it will not satisfy those
conditions and, therefore, will deny the access to task resources.

Definition 8 (Task assignment conditions) A task can only be assigned to a role
if and only if : (t, r) ∈ TRA⇒ {p ∈ P |(t, p) ∈ TPA} ⊂ {p|(r, p) ∈ RPA}.

Returning to the motivating example, T2 “Check Request” is assigned a set of permis-
sions (query(), update()) via TPA in order to carry out this task. The user Alice with
the role Prosecutor is assigned to T2 since Alice is authorised to execute it based on the
authorisation policy definition. However, if we consider another Prosecutor from Eurojust
B such as user Claude, he is not allowed to execute T2. Claude’s permissions do not fulfill
T2 requirements since the user-task assignments is not defined in the policy (see figure
2.5, table 2.1), which is a condition for the TRA relation.

4.6.3 Access control over task delegation using TAC

Delegation is a mechanism that permits a user to assign a subset of his assigned autho-
risations (privileges) to other users who currently do not possess it. We remind that the
user who performs a delegation is referred to as a “delegator” and the user who receives a
delegation is referred to as a “delegatee”.

Definition 9 (Delegation Relation) We define a delegation relation DR ⊆ T ×
U × U × 2DC where T a set of tasks, U a set of users and DC a set of delegation
constraints. A task delegation relation is defined as DR = (t,u1,u2,{DC}), t is the
delegated task and t ∈ T, u1 the delegator and u2 the delegatee ∈ U.

For instance, delegation constraints can be related to time or evidence specifications.
Moreover, a role hierarchy (RH) defines the delegation relation condition in a user-to-user

117

Chapter 4. Modelling Task Delegation in Workflows

delegation. Returning to the example, we have :
(T3,u1:Prosecutor,u2:Assistant,{RH,5days}) ∈ DR.

The TAC model defines the list of potential delegatees (RPA) that may satisfy the
delegated task requirements (TPA). We define a method for access control over task
delegation using TAC. We present an algorithm to describe how valid delegatees are
checked and whether they need delegated privileges grant (see algorithm 3).

Algorithm 3: Optimised computation for delegatees and privileges
Require : DR // Delegation relation

u1, u2 // users ∈ U

r1, r2 // roles ∈ R

ti, tj // tasks ∈ T

DR = ∅ /*Initialisation of DR*/
{(u1, r1), (u2, r2)} ⊆ URA /*User role assignment */
{(r1, pr1), (r2, pr2)} ⊆ RPA /*Role permission assignment*/
(ti, pti) ∈ TPA /*Task permission assignment with pti ⊂ pr1*/
(ti, r1) ∈ TRA /*Task role assignment*/
SU(s1) = u1 /*Mapping a subject to the corresponding user*/
SR(s1) = r1 /*Mapping a subject to the corresponding role*/
SU(s2) = u2

SR(s2) = r2
ti1 = instanceof (ti)
tj1 = instanceof (tj)
s1 = claimedby(ti1) /*ti1 assigned to s1*/
Precondition :
(@ tj1 | (TTSOD(ti,tj), s2 = claimedby(tj1)) AND (TTBOD(ti,tj), s1 = claimedby(tj1)))
Postcondition :
pti ⊂ pr2 ⇒ s2 = claimedby(ti1) /*ti1 delegated to s2*/
pti 6⊂ pr2 ⇒ p′r2 ← pr2∪pti /*p′r2 set of permissions associated with s2 during delegation*/
Result : DR = (ti,u1,u2, {DC})
DR1 ← instanceOf(DR)
DR1 = (ti1,s1,s2, {DC})/*Instanciation of the delegation relation*/

For instance, u1 and u2 are members of roles r1 and r2 respectively; (ti,u1,u2,{DC})
∈ DR iff the delegatee u2 has no conflict with the delegated task ti and his permissions
(granted or transferred) allows him to execute ti. Note that we assume that the mapping
between functional and security roles of users u1 and u2 is already verified where r1 and
r2 are the security roles (see section 4.3).

The main contribution of this a method is to specify the delegated task assignment
conditions based on the RPA and TPA requirements. Actually, two conditions have to be
verified to satisfy delegation. The first condition is related to task resources requirements.
The delegatee’s permissions defined in RPA need to satisfy the permissions defined in
TPA (see definition 8). If this condition is satisfied, then the task ti is delegated to the
delegatee u2. However, if u2 do not have the permission required and there is no conflicts
(BoD or SoD) to execute ti. This condition will grant the required privileges for him. The
main steps in the algorithms consist of :

118

4.6. Access Control Over Task Delegation in Workflows

1. Defining the role and permission assignment for each users.

2. Instantiating the task ti1 and assigning it to the delegator s1 who is the current user.

3. Checking security constraints before delegation (SoD and BoD).

4. Computing the delegatee s2 based on his permissions assignment ((ti, pr2) ∈ TPA)
or;

5. Granting privileges for s2 based on the task instance permissions assignment (p′r2 ←
pr2 ∪ pti)

6. Defining the delegation relation instance : DR1 = (ti1,s1,s2,{DC}).

The computation of the privileges is based on the TRA relation defined in our TAC
model. Basically, we provide an optimised method to compute the least privileges to dele-
gate based on the current requirements of the task instances and not the full requirement
of the task type. The task instance is generated from the delegated task. We aim to
optimise the delegated privileges based on what the delegated task instance defines. For
instance, we consider the local delegation DS1 presented in the case study. The Prosecutor
Alice delegates T3 to his Assistant Bob. We assume that Bob do not have the permissions
to access T3 resources. Alice will grant just the permission translate() on the business
object type “Request Document” while keeping additional privileges related to the MLA
request treatment that have to be protected due to privacy reason. By computing the
task instance requirements for delegation, we ensure the grant of the least privileges for
the delegatee : (Assistant,translate()) ∈ RPA.

4.6.4 Revocation

Revocation is an important process that must accompany delegation. It is the subsequent
withdrawal of previously delegated objects such as a role or a task. A vast amount of
different views on the topic can be found in literature [WKB07, ZAC03, HJPPW01]. For
simplification, our model of revocation is closely related to the delegation model (TDM)
based on the user-to-user interactions. Actually, the decision of revocation is issued from
the delegator in order to take away the delegated privileges, or the desire to go back
to the state before privileges were delegated. The privileges consist of the delegating of
access rights provided to the delegatee. Basically, delegating access rights issued from the
delegator describes the permissions given to access to the task’s resources such as legal
request documents in the MLA scenario.

Analogous to the motivation factors for delegation, the revocation factors can be iden-
tified depending on the delegation context. For example, a delegator can take back his
tasks if his workload is being decreased or if the delegatee is not efficient anymore for per-
forming the delegated task. In short, we identify five factors that we assume supporting
our delegation approach defined in the previous section :

• Workload : If the task is not performed yet and the delegator workload is lightened,
the delegator will take back his task.

119

Chapter 4. Modelling Task Delegation in Workflows

• Deadline : Some delegating access rights are temporary for some security or work-
flow policy reasons. This involves a time constraint giving a validity time for the
delegatee and revoking it afterwards. This constraint utility can avoid also a long
period of inactivity of the delegatee (e.g. 5 days as a deadline to execute T3 by the
Assistant).

• Efficiency : It may be advantageous to revoke a task when a new situation arises
that makes performance by the earlier delegator more efficient than performance by
the delegatee.

• Organisational policies : Goals may conflict and specific organisational policies
may change generating new organisational requirements and pushing eventual revo-
cations.

• Task evolution : A task may have to be redefined due to some goals redefinition
or an evolution of some required competences by assigning new users or adding new
roles and thus revoking unnecessary delegatees.

The operation of revocation can be defined manually when the delegator decides to
revoke the selected task by removing the delegatee’s privileges or automatically by bending
a time constraint to delegation. This constraint will affect the delegating access rights
by deriving additional requirements for the access control enforcement. For instance, a
user can assume a temporary role during a delegation and so a temporary privilege. The
delegating access rights will not renew it once the delegation period is over.

On a technical level, we developed an approach that support dynamic revocation
[GMC09]. We leverage certification techniques when generating authorisation and sub-
sequently embed credentials attributes for authentication and authorisation purposes.
Currently, techniques like temporary certificates or certificate revocation list (CRL) are
time-based, and, therefore, do fulfill time-based delegation. Additionally, we came up with
a new solution to enrich our revocation approach using our event-based TDM model. This
solution will be discussed in the next chapter dealing with dynamic policies supporting
event-based task delegation.

4.6.5 Summary

We presented workflow authorisation constraints to support security requirements for
delegation. These requirements identify the main authorisation relationships regarding
users, tasks and resources in order to extend the RBAC model to support task delegation.
To do so, we presented a Task-oriented Access Control (TAC) model to support access
control over workflows. The novelty of this model is to reason about task delegation from
human and material resources. Our TAC model is enriched RBAC specifications with
additional task and resource requirements, thereby controlling delegatees assignment and
task execution resources. This model will help us to specify the delegation polices within
workflows afterwards.

120

4.7. Conclusion

4.7 Conclusion

In this chapter, we have presented the first part of our approach for task delegation in
workflow systems. Modelling task delegation goes through different steps related to the
organisation hierarchy and its policy definition. Our approach is based on our delega-
tion taxonomy. It identified the main delegation constraints within workflows. Task
delegation has to consider the process definition and the security properties in a workflow.
This defines additional constraints for delegation in order to cope with the organisation
flexibility and the authorisation policy. Basically, it involves requirements with regards
to workflow and access control systems.

Moreover, the novelty of this approach relies on the separation of the various aspects of
delegation, and in its portrayal as a multi-layered state machine. The interaction between
different layers is triggered by delegation events. Delegation events define the dele-
gation process and build the task delegation model (TDM) to be integrated
in the business process. This model will guide us to define an access control model
supporting delegation. In fact, delegation events ensure the appropriate authorisation to
delegate or revoke a task, thereby supporting security properties. Additionally, we de-
tailed a delegation protocol with a specific focus on the initial negotiation step between
the involved principals where we envisaged a wide-ranging request that gives flexibility
for delegation.

In addition to the organisation flexibility, we have shown that such a delegation pro-
cess inquires additional requirements for security. Enormous amount of data flow cross-
organisations along processes and are shared by many different users. Their security
must be assured. To that end, we analysed the relevant authorisation requirements in
workflow management systems. Then, we proposed the task-oriented access control
(TAC) model based on the RBAC model. This model will grant authorisations based on
workflow specifications and user authorisation information from access control systems.

In chapter 5, we consider task delegation as an advanced security mechanism support-
ing policy decision. We will define an approach to support dynamic delegation of authority
within an access control framework. The novelty consists of reasoning on authorisation
dependently on task delegation events, and specifies them in terms of delegation policies.
Moreover, we will propose a technique that automates delegation policies using event
calculus to control the delegation execution and increase the compliance of delegation
changes in the global authorisation policy.

121

Chapter 4. Modelling Task Delegation in Workflows

122

Chapter 5

Securing Task Delegation in Access
Control Systems

Contents
5.1 Introduction . 124

5.2 Modelling Task Delegation Using Access Control Systems . . 124

5.2.1 Context for dynamic delegation policies 125

5.2.2 Access control framework . 126

5.2.3 General control process . 128

5.2.4 Delegation protocols . 129

5.2.5 Access control enforcement . 132

5.2.6 Summary . 133

5.3 Event-based Task Delegation Policies 133

5.3.1 Problem statement (part I) . 133

5.3.2 Security requirement for delegation 134

5.3.3 A secure framework for task delegation 135

5.3.4 Summary . 137

5.4 Integrating Event-based Delegation Policies 138

5.4.1 Problem statement (part II) . 138

5.4.2 Monitoring and securing task delegation 139

5.4.3 Modelling task delegation in event calculus 140

5.4.4 Building policies for delegation 142

5.4.5 Modelling delegation policies in event calculus 143

5.4.6 Delegation automation . 144

5.4.7 Summary . 148

5.5 Conclusion . 148

123

Chapter 5. Securing Task Delegation in Access Control Systems

5.1 Introduction

The contribution of the chapter is the definition of a dynamic delegation of authority
approach to ensure authorisation policies in access control systems. We propose to reason
on authorisation dependently on task delegation events, and specifies them in terms of
delegation policies. When one of these events occurs, our access policy decision may
change proactively implying dynamic delegation of authority.

We answer the interrogations defined in the chapter “Context and Problematic” re-
lated to the delegation of authority and the integration of delegation policies in existing
access control systems. We observed that the delegation completion and its authorisation
enforcement are specified under specific constraints. Constraints are defined from the del-
egation context implying the presence of a fixed set of delegation events to control the
delegation execution. Our objective will be to define and specify delegation policies in
an automatic manner. To do so, we have to investigate the potential of delegation events
to ensure a secure task delegation within a workflow. Securing delegation involves
the definition of authorisation policies which are compliant with the policy of
the workflow. Therefore, these delegation events will imply appropriate authorisations
on the delegatee side for further actions as well as contain specific constraints for those
actions. To that end, we leverage our task delegation model that forms the basis of what
can be analysed during the delegation process in terms of monitoring and security. Deal-
ing with that, we will propose a technique that automates delegation policies using event
calculus to control the delegation execution and to increase the compliance of all
delegation changes in the authorisation policy.

The remainder of this chapter is organised as follows. Section 5.2 introduces a motiva-
tion scenario based on the MLA example to secure task delegation in access control sys-
tems. Section 5.3 analyses delegation events impact on authorisation policies, it presents
a framework ensuring dynamic delegation of authority and it shows how proactive policy
decisions will be implemented on existing access control framework. Finally, we present
an approach for the integration of delegation policies in section 5.4. Using Event Calculus,
we propose a technique that gathers specific events and integrates delegation policies to
control the delegation execution and to ensure the compliance of delegation changes in
the global authorisation policy.

5.2 Modelling Task Delegation Using Access Control

Systems

In this section, we introduce a delegation scenario based on the MLA example to secure
task delegation in access control systems. We motivate the use of the Task-oriented Access
Control (TAC) model for an access control framework and detail its deployment within
a workflow. We mainly focus on the involved users to ensure the delegation of authority
in access control systems based on workflow specifications. To that end, we present a
modular architecture for access control systems and show how a delegation request will
interact between both workflow and access control components.

124

5.2. Modelling Task Delegation Using Access Control Systems

5.2.1 Context for dynamic delegation policies

We present an instance of the MLA process supporting task delegation locally. User Alice
member of role Prosecutor is assigned to execute the MLA request in Eurojust A.

T1. Receive
Request

T2. Prepare Content

T3. Translate
Documents

T4. Approve
Request

T5. Forward
Request

Prosecutor

(T3, Prosecutor, Assistant, DC)

Assistant
E

ur
oj

us
t

A
E

u
ro

ju
st

B

E
u

o
p

o
l

Translate
Documents

5 days after
delegation acceptance

Figure 5.1: Local delegation scenario from the MLA example

In this scenario, the task “Translate Documents” T3 is originally only accessible by
Prosecutor Alice, a fact defined in the workflow policy. This task is a long-running task
and is expected to take 5 working days to complete. Alice is overloaded (lack of resources),
and will delegate it to User Bob. Bob is a member of role Assistant and is a subordinate to
Prosecutor in the organisation hierarchy. Delegation criteria is based on the role hierarchy
(RH) of Eurojust, where the Assistant Bob is a subordinate to the prosecutor Alice. The
delegation relation DR = (T3,Alice,Bob,RH).

Task delegation inquires security requirements to ensure delegation of authority in ac-
cess control systems. A policy can be defined as a level of defining access to task resources.
We define an authorisation policy P for the MLA process. During delegation, the policy
P is updated so that User Bob is now allowed to complete task T3. As such, Alice and
Bob are here the delegator and the delegatee, respectively. Bob claims the task and issues
an access control request to execute it. Authorisation policy enforcement mechanism is
vital for supporting delegation in long-running tasks. For that reason, we need to support
specific interactions based on delegation events that would be automatically captured, and
conveyed back to the requestor for appropriate actions within the access control system.

125

Chapter 5. Securing Task Delegation in Access Control Systems

At present, we can enforce delegation access rights via policy adaptation (i.e. per-
mitting the delegatee to perform the delegated tasks). Subsequently, we need to update
the delegation relation DR in the workflow policy once a delegation event is triggered.
It consists of adding a new policy authorisation constraint for the delegated user. If this
constraint changes due to a policy adaptation (e.g. a task revocation event), a new re-
sponse needs to be conveyed to the delegatee dynamically. Moreover, we have to compute
automatically the new delegation within the existing policy P. This computation will en-
sure compliancy by adding valid rules for delegation in the workflow’s policy using access
control systems.

5.2.2 Access control framework

An access control has to be defined to check the authorisation of the initiated user (the
subject). An authorisation makes the explicit binding between a subject, a task resource
(object) and his rights over it (action). This binding is defined based on the TAC spec-
ifications. It includes entities defined in the four main relations of TAC namely URA,
TRA, RPA and TPA. Subsequently, an authorisation expresses a user’s permissions on a
task’s resources, where a permission is the right to execute an action on a resource. The
definition of the authorisation has to be specified in a policy (see definition 10).

Definition 10 (Policy) We define a policy P ⊆ target × rule × 2C, where target
defines where a policy is applicable, rule is a set of rules that defines the policy decision
result, and C the policy constraints set that validates the policy rule.

The pseudo formal expression of a target is :

<Authorisation>
<Subject>[role]
<Resource>[object]
<Action>[operation]
<Task>[task type]

< /Authorisation>

The rule effect is the authorisation decision. It can return as a result a permit, a deny
or an indeterminate request. Constraints are related to the workflow authorisation speci-
fications. For instance, the separation of duty (SoD) is a constraint for users assignment
and resources access.

An example of a policy where the decision returns “Permit” for a subject member of
role Prosecutor on the task T1 “receive request” (see figure 5.1) is :

<Poliy>
<target>[Prosecutor1,MLA1,read,T1]
<rule>[Permit]
<C>[none]
< /Poliy>

126

5.2. Modelling Task Delegation Using Access Control Systems

Existing access control systems in the domain of role-based access control (RBAC) de-
fine an approach for restricting system access to authorised users. Here, we restrict task’s
resources to undesirable users. To do so, we present an access control framework (ACF)
to support authorisation requests based on our access control model (TAC) specifications.
The main components are described as follows :

• Policy Manager : It allows an administrator to define policies. Through a graph-
ical user interface, the administrator can navigate through the policy document, se-
lect document elements (e.g. targets, authorisation rules, obligations), and specify
values for selected elements. For instance, an administrator defines an authorisa-
tion policy P with decision permit on target task T3 for subject Alice with role
Prosecutor. In the context of delegation, delegation policies will embed delegatee’s
attributes for authentication and authorisation purposes.

• ACF : An access control framework (ACF) is defined as a set of software com-
ponents which accept requests to access resources, analyse these against policies
representing actual access rights to resources, and return a response based on this
analysis. To illustrate the original architecture of an ACF, a request is issued by the
requestor, which is received by the Receiver component in ACF. This is then sent
to the Analyser component that queries policies stored in a policy database. A re-
sponse is generated by the Responder component, which defines a decision (permit,
deny, or notapplicable) that is sent back to the requestor. It should be noted, that
the above appears asynchronous for the requestor; they provide the request, and a
response is produced.

Receiver Request

Responder

Analyser
Policy

Database

Requestor Policy Authority

Existing ACF

0. Define Policy1. Issue Request 2. Receive
Request

3. Send
Request

4. Analyse
Request

5. Send
Response

Response

6. Generate
Response

7. R
eceive

R
esponse

Policy Doc Policy
Manager

Figure 5.2: Access control framework

127

Chapter 5. Securing Task Delegation in Access Control Systems

5.2.3 General control process

The general control process illustrates the message flow between access control and work-
flow components. It defines what workflow operations a user can perform. We present
a UML sequence diagram that illustrates whenever a subject, as an instance of a user,
claims a task instance. Basically, a task assignment can be defined in the worklist by the
workflow system [WFM99]. In addition, a subject can claim a task access request without
being initially assigned, thereby involving dynamic checks of his authorisation credentials
(see figure 5.3).

Authorisation Decision Component

Authorisation
Decision Point

Request Access

Subject

Authorisation
Enforcement

Point

Policy
Manager

Task Service
Manager

WorkList

Request Authorisation
Decision

Return Policy Set

Forward Request

else

Browse Policy

Repository

Update Subject Worklist

Task claimedby Subject

Get Policies Affected to
Request

Query Task Status
Browse Task

Assignment List

Evaluate Policy Set

Return Task Assignmenet Historly List

Authorisation Decision
Reply

Access
Denied

Return Access denied

Access
Granted

Add Task to Worklist Execute
Task

Task not in
the Worklist

Figure 5.3: Task assignment sequence diagram

Whenever a subject issues a claim request to perform a task that is protected by the
control components, all requests will be intercepted by an authorisation enforcement point.
The authorisation point is not capable of making an access decision on its own. Therefore,
the authorisation enforcement point will request a decision from the authorisation decision
point.

To make a decision, the decision point queries the policy manager for all policies that
are affected to this request. Thus, all policies that apply to the identity of the subject, his
role, and policies related to the requested task instance in the corresponding workflow are
prompted from the policy manager. The policy manager will browse through its policy
repository and returns the set of affected policies to the decision point.

Some of these policies may contain dynamic constraints depending on the current
task state and the process history. To get this information the decision point will ask
the Task Service Manager (TSM) for the current process state. The TSM retrieves all
relevant state information and returns it to the authorisation decision point. The state

128

5.2. Modelling Task Delegation Using Access Control Systems

information tell us about the availability and the state of progress of the task life cycle
based on its triggered events (e.g. create, complete). If the task is already assigned and
being executed, no further assignment will be allowed.

Now the decision point is able to evaluate the static and dynamic policies. Depending
on the rule effect the binary authorisation decision is returned, i.e. access denied or access
granted. In the case the access request is denied, the enforcement point will mediate this
decision to the subject, for instance as some error message. In the case access was granted,
the intercepted request is forwarded to the TSM hosting all task instances. The TSM will
initialise the task and passes the original request to it. In case that the claimed task is not
in the subject worklist, the TSM will update the worklist and the task will be performed
and will send back potential results to the subject.

We made some assumptions and simplifications in the task assignment process. For
instance, we assume the subject’s identity and his role attribute are already known in the
control architecture. Otherwise the subject has to identify himself against some trusted
authority or authentication mechanisms. The first one could issue some kind of identity
certificate that can be verified by the control architecture, the later one would request
the subject’s password before the access request will be accepted by the authorisation en-
forcement component. Note that authentication issues will be discussed and implemented
in the ”Deployment Environment” chapter.

5.2.4 Delegation protocols

We introduce delegation protocols to support both push and pull modes. Delegation
protocols define two different models that depict the dialogue between a delegator and a
delegatee during a secure task delegation. We model the different protocols using UML
sequence diagrams. Delegation protocols will ensure delegation of authority in access con-
trol systems.

a - Pull Delegation (TDM1)

The pull delegation model (TDM1) is based on a direct allocation of the task through
a delegation without any notion of role. This model associates implicitly an authorisation
to a subject.

When a subject holding a task initiates a delegation process, then the following pro-
cedure manages it :

1. First the delegator is sending a request for delegation to the Delegation Component
for a specific task (delegated task) and a specific subject (the delegatee).

2. The Delegation Component checks with the help of the Authorisation Component
(AC) if the delegator can actually delegate and the delegatee can receive the request.

• a) The AC first retrieves the attributes affecting the policy and conducts an
initial evaluation regarding the delegator’s right to delegate. This is due to
the fact that certain task assignments are exclusive and are not allowed to

129

Chapter 5. Securing Task Delegation in Access Control Systems

Authorisation
Component

(1) Request for delegation

Delegetor

Delegation
Component

Task Service
Manager

WorkLists

(2) Check Request

(5) Update Subjects Worklists

else

(2-a) Evaluate
Policy Set

Browse Task

Assignment List

(2-c) Decision

Return Task Assignmenet
Historly List

Response

Request
Rejected

Request Declined

Request
Accepted

Delegatee

(2-b) Query Task Status

(3) History
tracking

(6) Delegation forwarded

(4) Update policy

Figure 5.4: Task delegation pull model

be delegated. In the context of an access control policy, it is defined as an
obligation to a rule effect (see section 5.4.4).

• b) The AC checks then the task status with the Task Service Manager (TSM)
component which browses the current task assignment list to check the avail-
ability of the task (i.e. executed, aborted)

• c) The AC receives the history list from TSM. Finally, the AC sends a response
to the delegation component based on the intermediate results received.

3. The Delegation Component then keeps track of the current delegation within inter-
nal history records.

4. The delegation component updates the appropriate policy in the policy repository.

5. The delegation component updates the appropriate worklists (delegator and dele-
gatee) if the delegation is related to a task instance.

6. The delegation request is forwarded to the designated delegatee.

In case of transfer delegation, the given authorisation from the delegator’s set are re-
moved from the policy repository.

b - Push Delegation (TDM2)

The model TDM2 is based on an allocation of the task through a delegation to a role
and not directly to a subject.

When a subject holding a task initiates a delegation process, then the following pro-
cedure manages it :

130

5.2. Modelling Task Delegation Using Access Control Systems

Delegatees memeber of ROLE A

Authorisation
Component

(1) Request for
delegation

Delegetor

Delegation
Component

Task Service
Manager

WorkLists

(2) can_delegate

(8) Update Subjects Worklists

else

(2-a) Evaluate
Policy Set

Browse Task

Assignment List

(2-c) Decision

Return Task Assignmenet
Historly List

Response

Request
Rejected

Request Declined

Request
Accepted

Delegatee X

(2-b) Query Task Status

(6) History
tracking

(9) Delegation forwarded

(7) Update policy

Delegatee Y

(3) Notification to delegate a task

(3) Notification to delegate a task

(4) Acceptanace

(5) can_receive

Response

Figure 5.5: Task delegation push model

1. First the delegator is sending a request for delegation to the delegation component
for a specific task and a specific role (Role A).

2. The delegation component checks with the help of the Authorisation Component
(AC) if the delegator can actually delegate based on his policy attributes, then with
the task service manager regarding the delegated task status.

3. The delegation component notifies all the subjects belonging to the role (Role A) of
the availability of the task.

4. The first one to respond is allocated with the task.

5. The delegation component checks with the help of the AC if the delegatee can
actually receive the task.

6. The delegation component then keeps track of the current delegation within internal
history records.

7. The delegation component updates the appropriate policy in the policy repository.

8. The delegation component updates the appropriate worklists (delegator and dele-
gatee) if the delegation is related to a task instance.

9. The delegation is forwarded to the designated delegatee.

131

Chapter 5. Securing Task Delegation in Access Control Systems

5.2.5 Access control enforcement

The access control model handles normally a delegated task and does not need to be
modified. The expression of the associated authorisation for delegation is updated in the
existing policy. This way provides several advantages :

• In our TDM1 model, the delegatee is not granted with a new role. The delegation
process does not need further control of the permission; the access control model
handles normally a delegated task and does not need to be modified. The delegatee
inherits his own permissions.

• In our TDM2 model, the link of the authorisation with the role is kept. It allows us
to reuse the established access control model role-based.

Based on the case study, we exemplify here our work. The TDM1 model delegation
answers the requirements defined in the local delegation scenario (DS1). User Bob exists
in the delegatees list of the delegator Alice and is directly assigned to the task T3. The
formal expression of the authorisation in TDM1 is :

<Delegation>
<Issuer>[Subject:Alice]
<Receiver>[Subject:Bob]
<Task>[T3]x[TaskId]
<Authorisation>[Authorisation Instance]

< /Delegation>

The TDM2 model answers the requirements defined in the global delegation scenario
(DS2). User Alice needs to delegate based on the role equivalence (role mapping). In
Eurojust B, user Claude with role Prosecutor is one of the potential delegatees that may
accept this delegation request. User Claude is the first to accept the request. The formal
expression of the authorisation in TDM2 is :

<Delegation>
<Issuer>[Subject:Alice]
<Receiver>[Subject:Claude]x[Role:Prosecutor]
<Task>[T2]x[TaskId]
<Authorisation>[Authorisation Instance]

< /Delegation>

If the request is granted by the delegation component then this delegation message
will be forwarded to the delegatee that will include the given authorisation to its own
set. The delegatee can claim achieving the task as he is provided with the same access
rights functions (permissions) as the previous owner of the task (the delegator). The
authorisation instance is explicitly related to the role of the first owner of the authorisation
to execute an instance of the task. The attributes defined to express authorisation in
TDM1 and TDM2 are defined based on the TAC model (see chapter 4).

132

5.3. Event-based Task Delegation Policies

5.2.6 Summary

In this section, we have presented how delegation will occur during the execution of
an MLA scenario. We detailed two different protocols for delegation to support human
interactions (push and pull modes). Additionally, we noticed that the access control
enforcement has to take into account new changes due to delegation in order to update
the existing policy. The computation of policy changes will be discussed in the next
section.

5.3 Event-based Task Delegation Policies

In this section, our concern is to identify events that enforce policy changes. We define an
approach to support dynamic delegation of authority within an access control framework.
The novelty consists of reasoning on authorisation dependently on task delegation events,
and specifies them in terms of delegation policies. When one of these events changes, our
access policy decision may change proactively implying dynamic delegation of authority.
Existing work on access control systems remain stateless and do not consider this perspec-
tive. We highlight such limitations, and propose a task delegation framework to support
proactive enforcement of delegation policies.

5.3.1 Problem statement (part I)

A policy can be defined as a level of defining access to task resources. We define an
authorisation policy P for the MLA process (see figure 5.1). During delegation, the policy
P is updated so that User Bob is now allowed to complete task T3. User Bob claims the
task and an access control request is granted to execute the delegated task. After two
days, Alice interrupts her sick leave and returns to work. Once again, Alice is able to claim
the task. Due to qualification considerations, it is decided that Alice should complete the
task, and that Bob should revoke his actions, and free the task. The policy P needs to
be updated to reflect that only Alice has access to the task. As such, the original request
made by Bob would now evaluate to a deny decision for access.

In traditional access control frameworks no mechanism exists that would alert User
Bob of this fact automatically [BCFM00, SRS+05]. Accordingly, it is not possible to revoke
a previous response given to an access control request. Moreover, a manual review of the
current access control rights and task executions is costly, labor intensive, and prone to
errors. With a proactive mechanism, when the policy changes to reflect delegation events,
the delegatee will be informed proactively. For that reason, we need to support specific
interactions on the access control architecture that they run on. Specific interactions are
meant to be task delegation events that would be automatically captured, and conveyed
back to the requestor for appropriate actions. Delegation policies will reflect those actions
dynamically based on specific events that will be discussed in the next section.

133

Chapter 5. Securing Task Delegation in Access Control Systems

5.3.2 Security requirement for delegation

We define delegation transitions as events ruling delegation behaviour. We have enriched
our TDM with additional events supporting delegation requirements such as pull/push
mode and grant/transfer kind. The internal behaviour based on events may be a source
to a policy change, thereby introducing advanced security requirements in access control
enforcement systems. For instance, events like delegate or revoke inquire access control
enforcement supporting new delegatee privileges. From the TDM, we analyse security
requirements that need to be taken into account to define event-based delegation policies
(see figure 4.6).

The requirement statements that need to be taken into account to enforce delegation
policies are defined as follows :

• Delegation mode : It defines how delegation request is issued : the pull and the
push mode (see section 4.5.3).

• Delegation type : It may be classified into grant or transfer (see section 4.5.3).

• Delegation of authority : It permits to a delegator to assign a subset of his
assigned privileges to a delegatee who currently does not possess the required au-
thorisation to execute the task. For instance, delegate is an event that will trigger
task delegation, thereby updating a policy to enforce access control for a delegatee.

• Access control enforcement : It permits dynamic policy enforcement. For in-
stance, revoke implies the revocation of delegated privileges where the delegator will
take the control back on his assigned task and, therefore, cancel the previous policy
decision.

The specified events define the condition to validate the policy decision effect. An event
change may inquire a policy decision change. In the following, we classify delegation events
and identify the relationship between delegation events, delegation criteria and policies
decision change (see table 5.1).

Delegation Events Push Delegation Pull Delegation Policy Decision Change
Grant Transfer Grant Transfer

u1:delegate X X X X X
u2:accept X X X
u1:cancel X X
u2:execute X X
u1:validate X X
u1:revoke X X X

U:fail X X
U:complete X X

Table 5.1: Delegation policies changes based on events

We do believe that events such as accept or revoke are a part of delegation policies
and have a direct impact on delegated authority, thereby inquiring dynamic enforcement

134

5.3. Event-based Task Delegation Policies

of policies. In table 5.1, a grant delegation using a push mode is based on events :
u1:delegate, u2:accept, u1:cancel, u2:execute, u1:validate and u1:revoke. In this case, del-
egation policies changes when u1:delegate, u2:accept and u1:revoke. From our motivation
scenario, we present two examples to explain the table 5.1 :

Example 1 : revoke event is defined in both push and pull modes. It supports grant
delegation, where a delegatee needs to wait for the validation from the delegator. This
event will enforce a policy change and terminates authorisation policy for the delegatee.
The revocation leads to the completion of the task, and the revocation of the delegated
privileges. For instance, Bob work is cancelled by Alice and then his delegated authority
is no more valid in the policy.

Example 2 : fail event is defined in both push and pull modes. It supports transfer
delegation, where a delegatee terminates the task by himself without validation. Defined
policy will take effect until the termination of the task during transfer delegation, where
no new updates are required since all the task privileges are transferred to the delegatee.

Returning to the example 1, we can observe a dynamic policy enforcement during
delegation. We define a delegation policy as following :

Definition 11 (Delegation Policy) Let P a global authorisation policy : P = (tar-
get,rule,C), we define a delegation policy PD = (targetD,ruleD,CD), where targetD =
DR : the delegation relation, ruleD ⊂ rule, CD ⊂ C and CD = DC

⋃
events where

DC the set of delegation constraints.

Initially, T3 is delegated to Bob and the delegation policy for T3 : PD = (DR,permit,{RH,
5 days,delegate}). In the meanwhile, User Alice is back to work before task is done and
would like to cancel what was performed by User Bob so far. Alice is once again able
to claim the task and will cancel the policy effect (permit) for Bob. The event revoke
will be updated in the policy, and a notification (deny) is then conveyed back to Bob for
appropriate actions. Thus, the delegation policy for T3 needs to be updated and PD =
(DR,deny,revoke).

5.3.3 A secure framework for task delegation

In this section, we develop a framework to support secure task delegation. We present a
modular architecture ensuring dynamic delegation of authority and show how proactive
policy decisions will be implemented on existing access control frameworks (ACF). In the
context of delegation, when a request is issued, it is stored along with details of how to
inform the requestor (the delegatee) if the policy decision to the request changes. When a
policy is changed, previous requests are re-evaluated, and the requestor is informed that
his access rights have changed. To support this approach, we propose an extension to the
ACF architecture (see figure 5.2) that permits proactive enforcement of policies, based on
delegation events that would alter previous policy decisions (see table 5.1).

135

Chapter 5. Securing Task Delegation in Access Control Systems

a - Architecture overview

We describe the main components of the task delegation framework supporting proac-
tive policy enforcement. We detail what parts were changed and what the new extended
architecture looks like (see figure 5.6).

Existing ACF

Receiver Analyser Responder

Policy
Database

Policy
Adaptation

Listener
Re-Evaluator

Request
Database

Request

Policy Invocation
Manager

Response

Request
Response

Invoke Web Service

Requestor

Policy
Manager

Define

Figure 5.6: Architectural extensions supporting delegation policies

• Policy Manager : see section 5.2.2.

• ACF : see section 5.2.2.

• Dynamic Policy Enforcement Component : It implements our approach to
support proactive policy decisions. We extend the ACF architecture with addi-
tional components related to the policy database. When the Receiver receives a
request, it sends this to a Request Database that stores this request. A Policy
Adaptation Listener component polls the Policy Database and sends an event to
a Re-evaluator component when a policy has changed (see delegation events that
change policy in table 5.1). This queries the Request Database to retrieve the pre-
vious requests made, and sends this to the Analyser component for re-evaluation.
The Analyser then sends back a new response to the Re-evaluator, which queries
the Request Database to see if this is different to the response given to the request
being analysed. If this is a different response, the Invocation Manager component
invokes the “contact point” provided by the requestor (and stored in the Request
object) with the new response.

136

5.3. Event-based Task Delegation Policies

b - Architecture requirements

On an architectural level, as requests are required to be re-evaluated upon a policy
change, a storage mechanism of previous requests and the given response are needed. If
a previous request is re-evaluated and a different response to the one stored is produced,
the ACF must inform the requestor of the new result. Thus, a mechanism must exist that
triggers a re-evaluation when it detects a policy change. These effects of the policy change
would be automatically captured, and conveyed back to the requestor for appropriate
actions. In addition, an invocation component is needed that actually marshals this
information to the requestor.

On a language level, the approach would require new constructs to describe the
invocation method that the ACF can use to contact the requestor. As such, this acts as
a “contact point” for the requestor. In a service-oriented architecture (SOA), this contact
point could consist of the endpoint of a service that could be invoked (see the Invoke Web
Service in figure 5.6). Subsequently, all access policies must be centralised and referenced
by the SOA architecture which is protected. We give an SOA a single point of access and
we let the services register with our ACF. Since services are essentially black boxes, we
define how to contact them and to sort out what it means when policy changes.

On a technical level, the Policy Manager generates policies and subsequently em-
bed credentials attributes for authentication and authorisation purposes. Credentials
providers such as certification of authorities issue digital certificates to the requestor in
order to compute his request by the ACF. At this stage, the Receiver component acts as
a policy enforcement point to perform access control by making decision request and en-
forcing decisions. For instance, an Attribute Certificate (AC) is issued to the delegatee for
authentication and authorisation purposes [CO02]. AC will ensure integrity, protection
and non-repudiation through a digital signature. The Receiver gets his attributes certifi-
cate and checks his permissions afterwards. The retrieved attributes are validated against
the policy (e.g. subject attributes, validity time). Once the delegatee has been success-
fully authenticated, he will attempt to perform specified actions on task resources. At
each attempt, the Receiver passes the access request to the Analyser to decide. Decisions
results (permit, deny, or not applicable) are then sent via the Responder.

A new re-evaluation of a policy defines new attributes for further request with re-
gards to policy changes. For instance, a revocation implies the cancellation of the issued
attribute certificate for the delegatee previously. Currently, techniques like temporary cer-
tificates or certificate revocation list (CRL) are time-based, and, therefore, do not fulfill
event-based requirements. As a first solution, a service is invoked to contact the delegatee
and based on the mutual agreement between delegation principals, appropriate actions
will take place (e.g. the cancellation of his work and the log off from the system).

5.3.4 Summary

In this section, we have architected a solution based on existing access control frameworks
to support delegation policies. We have also presented at a conceptual level the differ-
ent components that are necessary to support dynamic policy enforcement. Delegation
policies may change according to specific events. We defined the nature of events based

137

Chapter 5. Securing Task Delegation in Access Control Systems

on task, and described their interactions with the policy decisions. When relevant events
occur, we defined how they are detected and how to interact with them. In this context,
we proposed an extension to an access control framework (ACF) architecture that ensures
delegation policies enforcement, thereby supporting dynamic delegation of authority.

The next stage of our work is the computation of delegation policies that will be
integrated in the existing policy. We will propose a technique that automates delegation
policies using event calculus.

5.4 Integrating Event-based Delegation Policies

In this section, we develop a solution for the integration of delegation policies into ex-
isting policies. We aim to reason about delegation events to specify delegation policies
dynamically. To that end, we use our event-based task delegation model (TDM) to mon-
itor the delegation process. In order to control the delegation behaviour and to specify
its authorisation policies dynamically, we gather relevant events that will define both the
task execution path and the generated policies for the delegation of authority. Using
Event Calculus (EC), we propose a technique that automates delegation policies to con-
trol the delegation execution and to increase the compliance of all delegation changes in
the existing policy.

5.4.1 Problem statement (part II)

In the motivation example (see figure 5.1), we observe that the authorisation policy P
needs to reflect the new requirements for delegation. In order to derive a delegation
policy from the existing policy, we have to specify additional authorisation rules to support
delegation, where a rule defines the policy decision effect (e.g. permit, deny). Considering
a user-to-user delegation, we motivated that such delegation is done in ad-hoc manner,
thereby supporting a negotiation protocol. We consider negotiation as a fundamental step
for delegation. It involves all the principals (delegator and delegatee) and negotiation
specifications (e.g. time, evidence). Our intention is to envisage a wide-ranging request
that gives flexibility for the delegation request. Subsequently, such specifications have to
be included in the delegation policy to define specific conditions to validate the policy
decision effect.

We consider a different situation for the delegation scenario DS1 where the delegator
Prosecutor sends a delegation request for all users members of role Assistant. This defines
a push delegation mode, where a delegatee is chosen dynamically based on the negotia-
tion step. An acceptance of delegation inquires a new access control enforcement in the
existing policy, thereby adding a new authorisation rule for the delegatee under defined
conditions (i.e. time) and/or obligations (i.e. evidence) agreed between the delegation
principals. The Prosecutor may need to review all the translations done by his Assistant
for validation. Validation is done based on evidence defined during negotiation. Evi-
dence can be related to the language of translated documents or the number of translated
documents within 5 day. To that end, an authorisation rule permitting the access (e.g
read, write) to the legal document, is constrained by an obligation allowing to investigate

138

5.4. Integrating Event-based Delegation Policies

whether evidence were satisfactorily met. If however, evidence are not satisfied, a revoke
action may be triggered including a deny result for the previous policy effect.

In traditional access control frameworks no mechanism exists that would support such
delegation constraints. Delegation constraints are meant to automate delegation policies
from existing policy specifications. Accordingly, it is not possible to foresee a deny rule for
revocation during the policy definition. Moreover, a manual review of the current access
control rights and task executions is costly, labor intensive, and prone to errors. With an
automated mechanism, when the policy changes to reflect delegation, the delegation policy
will be derived automatically based on specific facts related to the delegation process. A
delegation process defines a task delegation life cycle within the existing process. It is
enriched with additional constraints to be compliant with the existing policies. Delegation
constraints will have to support specific interactions that would be automatically captured,
and specified in the delegation policies for appropriate actions. We do believe that such
interactions are intermediate states in the delegation process driven by specified events to
control the delegation behaviour.

5.4.2 Monitoring and securing task delegation

Securing delegation involves the definition of authorisation policies which have to compli-
ant with the policy of the workflow. To do so, we need to address two important issues,
namely allowing task delegation to complete, and having a secure delegation within a
workflow. Allowing task delegation to complete requires a model that forms the basis
of what can be analysed during the delegation process. Secure delegation implies the
controlled propagation of authority during task execution. To that end, we use the TDM
model that forms the basis of what can be analysed during the delegation process in terms
of monitoring and security.

The monitoring of task delegation is an essential step to ensure delegation completion.
A delegated task goes through different states to be terminated. States depends on gen-
erated events during the delegation life cycle. Events such as validate may be required
when a delegation request is issued under a certain obligation where the delegatee has to
perform specific evidence to validate the task execution. For instance, the delegation of
T3 can generate evidence related to the number of translated documents within a period
of 5 day. Subsequently, evidence validation will be an important step in the delegation
process.

Additionally, we consider task delegation as an advanced security mechanism support-
ing the policy decision. We define an approach to support dynamic delegation of authority
within an access control framework. The novelty consists of reasoning on authorisation
based on task delegation events, and specifying them in terms of delegation policies. When
one of these events changes, our access policy decision may change implying dynamic del-
egation of authority. Delegation policies are defined from existing policy and are specified
from triggered events. For instance, T3 evidence are not satisfied and the validation will
trigger the event revoke for the delegatee. T3 is not anymore authorised to be executed
by the delegatee. In this case, another rule has to be integrated in the policy with an
effect of deny for the authorisation.

In order to control the delegation behaviour and to specify its authorisation policies in

139

Chapter 5. Securing Task Delegation in Access Control Systems

an automated manner, we gather specific events that will define both the task execution
path and the generated policies for the delegation of authority. In the rest of this chapter,
we will present a technique to monitor the delegation execution using Event Calculus
and we will explain how generated policies change dynamically in response to delegation
events.

5.4.3 Modelling task delegation in event calculus

We use our task delegation model to monitor the delegation execution. It defines how
delegation request is issued and then executed depending on delegation constraints. The
idea is to offer a technique to monitor the delegation execution based on specific events.
Using Event Calculus, we can foresee the delegation behaviour within a workflow.

a - Background and motivations

The proposed approach for the representation of task delegation process relies on the
Event Calculus (EC) formalism [KS89]. The choice of EC is motivated by several reasons
for delegation. Actually, given the representation of the task delegation model and the
corresponding events that enforce policy changes, an event calculus reasoner can be used
to reason about such events.

Event Calculus is a logic programming formalism for representing events and is being
widely used for modeling different aspects such as flexible process design, monitoring and
verification [ZPG10]. It comprises the following elements : A is the set of events (or
actions), F is the set of fluents (fluents are reified3), T is the set of time points, and X
is a set of objects related to the particular context. In EC, events are the core concept
that triggers changes to the world. A fluent is anything whose value is subject to change
over time. EC uses predicates to specify actions and their effects. Basic event calculus
predicates used for modelling the proposed framework are defined in the table 5.2 :

Predicate Interpretation
Initiates(e, f, t) fluent f holds after timepoint t if event e happens at t

Terminates(e, f, t) fluent f does not hold after timepoint t if event e happens at t
Happens(e, t) is true iff event e happens at timepoint t
HoldsAt(f, t) is true iff fluent f holds at timepoint t
Initially(f) fluent f holds from time 0

Clipped(t1, f, t2) fluent f was terminated during time interval [t1, t2]
Declipped(t1, f, t2) fluent f was initiated during time interval [t1, t2]

Table 5.2: Event calculus predicates

The reasoning modes provided by event calculus can be broadly categorised into ab-

3Fluents are first-class objects which can be quantified over and can appear as the arguments to
predicates.

140

5.4. Integrating Event-based Delegation Policies

ductive, deductive and inductive tasks. In reference to our proposal, given a TDM and
authorisation policies, it will be interested to find a plan for task delegation, that allows
to identify what possible actions (policy changes) will result from the task delegation and
may opt to choose the optimal plan in terms of minimal policy changes, this leads to
the “abduction reasoning”. Then, it will be also interested to find out the possible effects
(including policy changes) for a given set of actions (a set of events that will allow task
delegation), this leads to the choice of “deduction reasoning” and using the event calculus
is thus twofold.

The event calculus models are presented using the discrete event calculus language
[Mue06] and we will only present the simplified models that represent the core aspects.
All the variables such as task and time are universally quantified and in case of existential
quantification, it is represented with variable name within curly brackets, {variablename}.

b - Event calculus based on TDM

The basic entities in the proposed model are tasks. In terms of discrete event calculus
terminology, they can be considered as sorts, from which instances can be created. Then,
each task can be in different states during the delegation execution. In reference to the
task delegation model presented earlier (see figure 4.6), the possible task states include
Initial, Assigned, Delegated, Completed and others. As task states change over time, they
can thus be regarded as fluents in event calculus terminology. Further, the state change
is governed by a set of actions/events and in relation to task delegation model, the task
state changes from Initial to Assigned as a result of assign event occurring. Finally the
task delegation model introduces a set of orderings, such as the state of a task cannot
be assigned, if it is not created earlier. In reference to the event calculus model, we will
introduce a set of axioms to handle these dependencies. The event calculus model below
introduces the fluents, basic events and dependency axioms :

sort task
fluent Initial(task), Assigned(task), Delegated(task), Started(task)...

event Create(task)
[task, time] Initiates(Create(task), Initial(task) ,time).
event Assign(task)
[task, time] Initiates(Assign(task), Assigned(task) ,time).
[task, time1] Happens(Assign(task), time1)→ {time2} HoldsAt(Initial(task), time2)
& time1 > time2

Figure 5.7: Event calculus based task delegation model

The event calculus model presented in figure 5.7, first defines sort and fluents that
mark the different task states. Then we define an event Create(task), and an Initiates
axiom that specifies that the fluent Initial(task) continues to hold after the event happens
at some time. Similarly, we define the event/axiom for the assignment event and fluent.
We further introduce an axiom that specifies that in order to assign some task at time1,

141

Chapter 5. Securing Task Delegation in Access Control Systems

that a task must already be created and thus in Initial state at time2, and time1 is greater
than time2. In a similar fashion, we can define events and associated Initial axioms for
the complete TDM model.

For the basic event calculus model above, the solutions (plans) returned by the reasoner
may also include the trivial plans which does not enforce the delegation and directly start
or abort the task once assigned. In order to give the user ability to choose the delegation
mode once the task is assigned, we enrich the model to include the following axioms (see
figure 5.8) :

[task, time] !Happens(Abort(task), time).
[task, time] !Happens(Start(task), time).
[task, time] !Happens(PullDelegate(task), time).

Figure 5.8: Delegation mode choice

The event calculus model above, specifies that the task does not either Start, Abort
or requires PullDelegation once assigned, and thus the only option for the reasoner is
to conclude that the model requires a PushDelegation mode . We can similarly restrict
the delegation permission (Grant/Transfer), once the task is in the WaitingforCompletion
state (see TDM states in figure 4.6).

5.4.4 Building policies for delegation

Here we analyse the security requirements that need to be taken into account to define
event-based delegation policies. Additional requirements such as pull/push mode and
grant/transfer type may be a source to a policy change during delegation. Using Event
Calculus, we present a technique capable of computing and generating new policy rules
automatically.

We define delegation transitions as events ruling delegation behaviour. The internal
behaviour is based on events defined in our TDM, and may be a source to a policy change,
thereby requiring the integration of additional authorisation rules.

A policy rule may include conditions and obligations which are used to identify various
conditions or cases under which a policy may become applicable. Conditions and obli-
gations are related to delegation security constraints when defining delegation policies.
Based on the result of these rules different policies can become applicable in the context
of delegation (see definition 12).

Definition 12 (Delegation Rule) We define a delegation rule ruleD ⊆ PD, where
ruleD = (effect,condition,obligation), where effect returns the policy decision result
(permit, deny), condition defines the delegation mode (push, pull) and obligation
checks evidence.

We analyse security requirements that need to be taken into account in a push mode
to define delegation policy rules based on TDM (see figure 4.6). We present a table

142

5.4. Integrating Event-based Delegation Policies

that gathers specific events for push delegation and analyse them in terms of policy rules.
Adding rules in the workflow policy will ensure the delegation of authority, thereby adding
the required effect (permit, deny) to the delegation policy rules (see table 5.3).

Delegation Events Push Delegation Adding Policy Rule
Grant Transfer

u1:delegate X X Add rules if accepted
u2:accept X X Add rules based on execution type
u1:cancel X X No add

u2:execute/Grant X (Permit,Push,Grant:Evidence)
u2:execute/Transfer X (Permit,Push,Transfer:NoEvidence)

u1:validate X No add
u1:revoke X (Deny,Push,Grant)

u2:fail X No add
u2:complete X No add

Table 5.3: Push delegation policy rules-based events

Returning to the example, we can observe a dynamic policy enforcement during del-
egation. Initially, T3 is delegated to the Assistant u2 (the delegatee) and the delegation
policy for T3 : PD = (RD,Permit,{Push,5 days}) (see table 5.3/u2:execute/Grant). In
the meanwhile, the Prosecutor u1 (the delegator) is back to work before delegation is done
and is not satisfied with the work progress and would revoke what was performed by his
assistant so far. The Prosecutor is once again able to claim the task and will revoke the
policy effect (permit) for the Assistant. The event revoke will be updated in the policy,
and a deny rule is then updated in the policy. Thus, the delegation policy for T3 needs
to generate a new rule and the delegation policy is updated to :
PD = (RD,Deny,{Push,Grant}) (see table 5.3/u1:revoke).

Note that the generated rule depends on the RD relation to check access rights con-
flicts. We determined access rights based on the current task status and its resources
requirements using a task-based access control model (TAC) for delegation presented in
the previous chapter. Our access control model ensures task delegation assignments and
resources access to the delegatees corresponding to the authorisation policy constraints.

5.4.5 Modelling delegation policies in event calculus

In order to model the delegation policy, we introduce new sorts called effect, condition, and
obligation to the event calculus model for the table 5.3 and specify instances of each sort
to be the possible effects, conditions and obligations. Possible effects include Deny and
Permit results, and conditions define the Push and Pull modes. The possible instances
for obligations include Grant, Transfer, Evidence and NoEvidence which are constraints
related to delegation type and mode. We further add an action AddRule(effect, condition,
obligation) and enrich the model to specify the policy changes as a result of events. We
define an algorithm to describe how to compute delegation policy rules. For a sake of
simplicity, we will just present the grant type (see algorithm 4).

143

Chapter 5. Securing Task Delegation in Access Control Systems

Algorithm 4: Computing grant delegation policies for a task
Require : DPolicy // Delegation policy

sort // task, effect, condition, obligation

effect // Permit, Deny

fluent // AddRule(effect, condition, obligation)

event //AddPolicyRule(effect, condition, obligation)

time //time1 ≥ time2

while (HoldsAt(AddRule(effect, condition, obligation)) AND obligation = grant) do
if (Happens(PushDelegateAcceptExecuteGrant(task), time1) = true then

AddPolicyRule(Permit, Push, Evidence) /* Grant authorisation with a permit
rule */

else
if (Happens(PushDelegateAcceptRevokeGrant(task), time1) = true then
AddPolicyRule(Deny, Push, Grant) /* Cancel authorisation with a deny rule */

Result : DPolicy = (AddPolicyRule(effect, condition, obligation), time1)

The policy change specifies that once certain actions happen (execute, revoke), they
cause policy change and thus we add a new rule to the existing policy. The name of
actions/events depicts their invocation hierarchy, PushDelegateAcceptExecuteGrant is the
execute event with a grant permission once the PushDelegation request has been accepted
by a delegatee and has to be validated before completion (see table 5.3).

5.4.6 Delegation automation

Automation is necessary for both the task completion and the policy specification dur-
ing delegation. Reasoning on delegation events using Event Calculus offers a solution to
foresee the delegation execution and increase the control and compliance of all delegation
changes.

a - Benefits

By reasoning on specific events, we are able to control the order of delegation execution
which is computed automatically based on events. Events can distinguish between the
order of execution by checking the delegation mode and type. For instance, an execution
expects a validation transition if and only if we are in a grant delegation type. In addition,
we are able to address the policy stateless issue. We can compute delegation policies from
triggered events during task execution [GZCG].

Delegation automation offers many benefits. Actually, it reduces efforts for users and
administrators. Administrator efforts can be related to the process definition and poli-
cies specification. Moreover, it increases control and compliance of all delegation changes.
Subsequently, task delegation is accomplished under constraints which are compliant with
the global policy of a workflow. For instance, time constraint has to be taken into account
when granting a temporal access for delegation (i.e. T3 deadline in figure 5.1).

144

5.4. Integrating Event-based Delegation Policies

b - Reasoning

In our study, we utilise the Discrete Event Calculus Reasoner (DECReasoner) for per-
forming automated commonsense reasoning using the event calculus. It solves problems
efficiently by converting them into satisfiability (SAT) problems. Actually, the DECRea-
soner attempts to find a solution by transforming the EC model into a SAT problem and
invoking the SAT solver for the solution [GZCG]..

The event calculus based on the task delegation model can be used to reason about
the delegation process. As we discussed earlier, the reasoning can either be abductive or
deductive. For the abductive reasoning, a plan is sought for the specified goal. A plan is
a sequence of EC Happens clauses that specify the temporal ordering of different actions
event-based, whose execution leads to the goal. In reference to our proposal, the goal is
to have either the task in completed, cancelled or failed states, so we add the goal [task]
HoldsAt(Completed(task),15) | HoldsAt(Failed(task),15) | HoldsAt(Cancelled(task),15) to
the event calculus model and add an instance of the delegated task T3, where 15 is the
width of the timepoint interval. For instance, a value less than 15 may stop our execution
before the defined goal (e.g. completed, cancelled or failed).

1389 variables and 7290 clauses
relsat solver
1 model
—
model 1:
0 Happens(Create(T3), 0).
1 +Initial(T3).
2 Happens(Assign(T3), 2).
3 +Assigned(T3).
4 Happens(PushDelegate(T3), 4).
5 +WaitingDelegation(T3).
6 Happens(PushDelegateAccept(T3), 6).
7 +WaitingCompletion(T3).
8 Happens(PushDelegateAcceptExecuteGrant(T3), 8).
Happens(AddPolicyRule(Permit, Push, Evidence), 8).
9 +RuleAdded(Permit, Push, Evidence).
+WaitingValidation(T3).
10 Happens(PushDelegateAcceptExecuteGrantValidate(T3), 10).
11 +Completed(T3).
—
;DECReasoner execution details
0 predicates, 0 functions, 12 fluents, 20 events, 90 axioms
encoding 0.5s - solution 0.2s - total 0.9s

Figure 5.9: Delegation plan

The invocation of the event calculus reasoner will then give us a set of possible solutions
(called plans) for achieving the goal. Let us first consider the case, when the chosen

145

Chapter 5. Securing Task Delegation in Access Control Systems

delegation mode is PushDelegation with the grant of permissions to the delegatee, the
event calculus reasoner returns the plan detailed in figure 5.9.

The execution plan follows the delegation of T3 described in the delegation scenario
DS1. It shows the actions that need to be considered for delegation and most importantly,
it shows the possible policy changes as a result of delegation. Steps from 1 to 11 depicts
the delegation process execution. Having a push mode as a condition, we derive the rel-
evant rules to be added in the policy. For instance, step 8 and 9 show when a delegatee
request the task T3 for execution. Delegatee acceptance went through the “WaitingDele-
gation”, “WaitingAcceptance” and “WaitingCompletion” states (see figure 4.6). Based on
those events, we deduce that an authorisation rule is added at this stage under a cer-
tain obligation (evidence for task validation), and finally a task validation completes the
delegation execution (see steps 10 and 11 in figure 5.9).

All the defined axioms using the DECReasoner language can be given to the reasoner
for finding a solution (if exists) to support policy changes, which automatically orients
these axioms into delegation rules. Then, given as inputs the specification of the conditions
and obligations expressed when adding rules, the generated plan by the reasoner shows
that either the authorisation rules result in a permit or a deny decision (Verification results
and encoding details can be found in the Appendix B).

In concrete policy changes, there are two possible scenarios. The first scenario is the
adding of a new policy rule because the conjectures (conditions or obligations) are valid.
The second scenario concerns cases corresponding to an overriding of this rule to a deny
result.

c - Discussion

If there are some conflicts in the event calculus model this leads to empty solution
set and requires the verification of the model to identify any conflicts with delegation
constraints. Our approach for verification relies on the SAT solver to provide a set of
near-miss models and/or unsatisfied clauses [ZPG10]. As an example, we consider the
delegation type constraint transfer added to the event calculus model, saying that the
delegated task ti should not be validated once executed by the delegatee. In case of plan-
ning, the reasoner will only generate the solutions that will respect this constraint :

Happens(PushDelegateAcceptExecuteTransfer(ti), 18)

Completed(ti)

However, if no such solution exists and the only solution is to validate ti before com-
pletion :

Happens(PushDelegateAcceptExecuteGrantRevoke(ti), 19)

Happens(AddPolicyRule(Deny, Push, Grant),19)

This can be misleading when adding a new rule if the validation is not satisfied (re-
voking a rule). Thus, the planner will return a near-miss model highlighting the type of
constraint (transfer) where no validation is required for the transfer of delegation.

146

5.4. Integrating Event-based Delegation Policies

d - Evaluation

We aim to check the performance of our reasoning algorithm to evaluate the per-
formance of the proposed framework. The example presented in figure 5.9 computed
the time of encoding for a single delegated task. Here, we have tested the event-calculus
model for sequential and parallel tasks (about 50 tasks) using the DEC reasoner. The
tests were conducted on a MacBook Pro Core 2 Duo 2.53 Ghz and 4GB RAM running
Mac OS-X 10.6. The DEC reasoner version 1.0 and the SAT reasoner, relsat-2.0 were
used for reasoning.

Figure 5.10 illustrates two curves for sequential and parallel tasks. Time is computed
based on the total of time encoding (DEC reasoner) and solution computation (SAT).
We can observe that the sequential task curve reflects a good performance of our model.
For instance, 40 delegated tasks in sequence will take less than 25 seconds to be encoded
and solved. However, parallel (concurrent) tasks are more time consuming. For the same
number of tasks, we will need about 2 minutes. This can be explained by the algorithm
of encoding for parallel tasks. The algorithm complexity is Θ(n2), which presents an
exponential growth in the graph (see appendix B).

Figure 5.10: Performance testing for sequential and parallel tasks

In general the encoding process does not scale well especially with the increase in
timepoints. and as a future work, we aim to modify the proposed DECreasoner encoding
to make the process faster. For the delegation process re-instantiation, a key observation
is that it always takes less time than the initial solution as we do have a partial plan
and that reduces the problem. Subsequently, we can leverage the trace of encoding in
DECReasoner to give all necessary information (events, fluents and timepoints) to help
designer (policy administrator) to detect policies problems. The event calculus model can
further be enriched with additional axioms to ensure minimal policy changes. To do so, we
can use an auditing technique that allow us to choose the best candidate based on his
performance using a potential list of delegatees that can accept delegation. Performance

147

Chapter 5. Securing Task Delegation in Access Control Systems

may be related to the successful completion of a task and so the reduction of rules update
in the policy.

5.4.7 Summary

In this section, we have presented problems and requirements to integrate dynamic del-
egation of authority in workflow systems. We proposed a technique for delegation to
specify delegation policies automatically. Delegation policies may change according to
specific events. We defined the nature of events based on task delegation constraints,
and described their interactions with policies decisions. When relevant events occur, we
presented how delegation will behave and how policy rules will change dynamically in
response to this change. Using Event Calculus formalism, we implemented our technique
and deployed an example for task delegation ensuring authorisation policy changes in a
compliant manner.

5.5 Conclusion

In this chapter, we have presented the second part of our approach to secure task delega-
tion in access control systems. Actually, we have observed that the delegation completion
and its authorisation enforcement are specified under specific constraints defined in the
task delegation model. On one hand, control constraints define a fixed set of delegation
events to monitor the delegation execution. On the other hand, delegation policies
may change according to security constraints. We defined the nature of events based
on such constraints, and described their interactions with policy authorisation decisions.
When relevant events occur, we defined how delegation will behave and how
policy rules changed dynamically in response to this change.

Moreover, we addressed the issue related to the integration of delegation policies. To do
so, we have investigated the potential of delegation events to ensure authorisation
policies which are compliant with the authorisation policy of the workflow.
We have proposed a technique that automates delegation policies using event calculus to
control the delegation execution and increase the compliance of all delegation changes in
the existing policy.

Besides that, we detailed delegation protocols to support human interactions. We
argued that the access control enforcement has to take into account new changes due
to delegation events in order to update the existing policy. Dealing with that, we have
architected a solution based on existing access control systems and extended it with a
dynamic policy enforcement component for delegation policies. The implementation of
access control framework supporting dynamic task delegation will be discussed in the next
chapter.

148

Chapter 6

Deployment Environment

Contents
6.1 Introduction . 149

6.2 The Development Environment 150

6.2.1 Project overview . 150

6.2.2 Collaboration infrastructure . 150

6.3 Delegation for Human-centric Workflows 152

6.3.1 Administrative communication layer 152

6.3.2 Collaborative workflow runtime 153

6.3.3 ACL plugin supporting delegation 154

6.3.4 Email-centric task delegation tool 155

6.4 Delegation Policies Enforcement 156

6.4.1 A secure delegation protocol 156

6.4.2 Authentication management component 158

6.4.3 Authorisation decision component 159

6.4.4 Deployment and evaluation . 163

6.5 Conclusion . 166

6.1 Introduction

This chapter presents the development environment for the delegation framework. We
have implemented our framework within the R4eGov (Research for e-Government) project4.
We present the collaborative infrastructure for e-government applications and we focus on
interactive processes supporting human interactions. To do so, we have developed a dele-
gation plugin that we integrated within the workflow system in R4eGov. By this means,
we aim to model and monitor task delegation within workflows. In addition, it

4For more details : http://www.r4egov.eu/

149

Chapter 6. Deployment Environment

is necessary to provide access to delegated resources intra and inter organisations. To do
so, we have extended our delegation plugin with security requirements for authorisation
policies. Using access control mechanisms in R4eGov, we have developed a secure dele-
gation application to enforce dynamic delegation policies within the global policy of
the workflow system.

6.2 The Development Environment

In this section, we present our conceptual architecture based on a decentralised collabo-
ration approach tailored to provide transparency and control features to support human-
centric interactions (i.e. user-to-user delegation) within e-Governmental workflows.

6.2.1 Project overview

The R4eGov project consists of inter-organisational collaboration between European ad-
ministrations. It describes an interagency collaboration within the areas of law enforce-
ment and justice. One of the objectives is to establish a collaboration, including informa-
tion exchange cross organisations based on a global policy, to which they have to comply.
Those objectives can be achieved using collaborative workflow systems.

Moreover, the project follows a decentralised approach, combining the local workflows
to form a collaborative workflow, integrating the existing systems of the involved part-
ners, and adding a decentralised collaborative administration architecture. Partners are
members of the different organisations involved in the e-Government project. The whole
infrastructure operates on global collaboration policies and makes local workflow data and
events visible to all partners according to these policies.

6.2.2 Collaboration infrastructure

We identify key components to leverage an existing workflow system onto decentralised
collaboration. As indicated by figure 6.1 the proposed architecture is divided into a
control-flow layer and an administration layer which are consisting of the following com-
ponents :

Abstraction Layer : The abstraction layer wraps a collaborative partner’s underlying
workflow management system (WfMS). It provides a unified access to the local
WfMS by publishing services of the local WfMS that are necessary for the collabo-
rative workflow coordination.

Interoperability Gateway : The interoperability gateway (IOP) intercepts internal and
external control-flow messages, such as local application calls and remote web ser-
vice invocation. The IOP intercepts the messages, reports them to the collaborative
messaging framework and forwards the messages to their destination.

Collaborative Messaging Framework : The collaborative messaging framework (CMF)
provides a layer for exchanging coordination messages between distributed partners

150

6.2. The Development Environment

Figure 6.1: Modular architecture in R4eGov

that are not directly part of the workflow-based message exchange (e.g. local com-
pensation events have to be send to the other collaboration partners). It mediates
local events, such as message sending, message reception, local state transitions, and
audit data to the collaborative partners according to collaborative policies.

Collaborative Process Manager : The Collaborative process manager (CPM) has ac-
cess to the overall collaborative process model and policies. Each partner has infor-
mation about the overall collaborative process. The global model is used to align
received events (e.g. a cancellation event) and collaborative information with the
overall workflow and participating peers.

Collaborative Event Management : The event management is used to queue incom-
ing information from external partners for later processing by the CPM. The event
management is used to dispatch events to the process management or other local
components (e.g. a policy decision component).

The described core components provide the minimal necessary functionality to en-
able the communication between distributed workflow systems by using the messaging
framework. On top of the messaging framework additional components have to be de-
ployed to add monitoring and security requirements supporting human interactions. One
mandatory component is that of task delegation. Based on the process execution, we will
identify specific events that will trigger delegation requests. Delegation events will be
conveyed via the messaging framework and processed using a communication
layer to support user-to-user delegation, thereby ensuring a delegation dialogue
between the delegator and the delegatee.

151

Chapter 6. Deployment Environment

6.3 Delegation for Human-centric Workflows

The motivation example (Mutual legal Assistance scenario) provided by the R4eGov
project is mainly human-centric and contains only few automated processes. The existence
of a task management system to deal with such human tasks is therefore a fundamental
part of the extended runtime architecture to support task delegation.

6.3.1 Administrative communication layer

As discussed previously, the process needs to publish events or performs requests to the
collaborative components. To do so, we propose to set up a workflow to workflow collab-
oration by defining a layer which we call an Administrative Communication Layer (ACL)
[SIP07].

The ACL architecture is divided into a control-flow layer and an administration layer.
The control-flow communication layer mediates workflow related messages of the workflow
engines to directly involved actors of the workflow (users). The administrative collabora-
tion layer is used by the collaborative process manager to send administrative messages
beyond the control-flow via the messaging framework (see figure 6.2). The local message
exchange can be identified between both layers. This allows to monitor the local workflow
execution and to enforce global policies according to the principles of transparency and
control.

Figure 6.2: Administrative communication layer

The term Administrative Communication Layer (ACL) refers to the distinction of
administrative events (e.g. starting/completion of one task) with control events (e.g.
starting a workflow instance). The following aspects of administrative communication
between the local process engine and the involved users are supported :

• Status management to represent the overall status of the collaborative workflow
(displaying the local process of the executing users together with the overall workflow
of all involved organisations).

152

6.3. Delegation for Human-centric Workflows

• Exceptions handling and execution of alternative scenarios which cannot be han-
dled as part of the regular process model (e.g. A Prosecutor delegates a part of his
work to his Assistant).

The messaging framework enables administrative information exchange by mediating
information to the collaborative event management and process management components.
We mainly aim to illustrate such collaboration for delegation. We will leverage the messag-
ing framework infrastructure to set up a first delegation protocol once a task is delegated
within a workflow (see next section).

6.3.2 Collaborative workflow runtime

We use an open-source workflow engine which is chosen as a basis for the prototype
development to model and monitor task delegation within workflows. We describe
the Bonita5 WfMS used to execute workflows/business processes. The Bonita WfMS is
a workflow system having innovative features such as activities being able to start in
anticipation. Bonita has an awareness infrastructure allowing user notification of any
events occurring during the execution in a given process. Traditional workflow features
such as dynamic user/roles resolution, and activity performer are also included in Bonita.

Figure 6.3: Adding Hook to MLA process using Bonita ProEd

5More details about Bonita can be found at : http://wiki.bonita.objectweb.org/

153

Chapter 6. Deployment Environment

Bonita is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The Bonita API is accessible through a set of session
beans. Processes are created using a graphical definition tool (ProEd see figure6.3). XPDL
(XML Process Definition Language) specifies the modelling processes language which is
suitable to support human interactions.

The terminologies regarding the concepts of Bonita that have been used extensively
are as follows :

• An activity is the smallest unit of task/work that is realised by Nodes.

• A process is a set of activities. The term project is also used to mean process in
Bonita.

• A hook is a piece of code that adds automatic behavior to activities/nodes and
workflow processes/projects.

Our concern is related to the messaging service in Bonita. We aim to collect specific
messages related to delegation. Activity Hooks are user-defined logic that can be triggered
at some defined points in the activity life cycle. For instance, they can be used to start a
delegation request once an activity is started (see figure 6.3). Thus, each method call will
involve a state modification of the workflow system which is registered into a JMS (Java
Message Service) topic. The notification can be done via Instant Messaging services, or a
Traditional Mailer. The notification of a delegation requests will initiate the user-to-user
delegation protocol (see next sections).

6.3.3 ACL plugin supporting delegation

The ACL plugin aims to allow the propagation of events from and to a Bonita work-
flow engine within the main R4eGov framework. These produced events are conceptually
published to a JMS topic, called by default “TestTopic”. These two available features
were used when designing the plugin. The BonitaLocalListener and BonitaLocalControl
components are acting as an abstracting layer for the underlying workflow engine. The
BonitaLocalListener component is a message producer, which translates messages pub-
lished by the engine on the TestTopic topic into messages.

The BonitaLocalControl is a message consumer, which can command the underlying
workflow engine to a certain extent. Bonita offers a so-called Hook mechanism, allowing a
programmer to enrich workflow instances with calls to specified java classes. For this plu-
gin, we relied on this mechanism for intercepting tasks items interacting with workflow’s
actors. Basically, depending on the process events (activity start) hooks will handle the
local communication via messages display or mails. We leverage this method to convey
delegation events once a user needs to delegate his assigned task. To do so, a user acting
as a delegator may specify via a hook message a delegation request that will be sent as an
e-mail (see figure 6.4). The detailed method and its implementation is discussed in the
following section.

154

6.3. Delegation for Human-centric Workflows

Figure 6.4: Integrating the Bonita engine within the core R4eGov framework

6.3.4 Email-centric task delegation tool

We developed a solution to support user-to-user delegation via e-mail. We use the col-
laborative task management solution (CTM)6. CTM is designed to support user’s task
management. It assists the user in delegating tasks to colleagues and in controlling the
status of work [Gaa08].

CTM is closely related to the messaging framework component and the administration
layer already developed in the R4eGov framework. The CTM Office-Integrated Task
Management Client is a Microsoft Outlook Add-In with proprietary extensions of the
Outlook mail and task items.

CTM features offers a suitable solution to support our delegation protocol.
It support the delegation’s negotiation and the acceptance (see figure 6.5). The
delegator defines his delegation requests and can add negotiation factors related to the
request deadline, the workload, etc. Once the request is issued, the delegatee, as the email
receiver, may accept or decline this request. In addition, he can negotiate the deadline or
asks for less work. This will give us more flexibility when defining a delegation request.

The next step will be to discuss security issue when delegating a task. Once the dele-
gation negotiation is validated and the request is accepted, we need to delegate privileges
to grant resources access to the delegatee. This part will be discussed in the following
section.

6For more details : http://www.eudismes.de/

155

Chapter 6. Deployment Environment

Figure 6.5: CTM overview

6.4 Delegation Policies Enforcement

In the R4eGov framework, policy enforcement extension modules are a mean to extent
the built-in security mechanisms of the encapsulated workflow management system. Del-
egation policies represent an integral part of the policy enforcement component. In this
section, we discuss how a delegation request is issued in a secure manner and
analyse its implementation within an access control system.

6.4.1 A secure delegation protocol

In order to secure task delegation, we have to deal with delegated privileges. Privileges
define rights or permissions to execute a task. In the context of access control systems, we
delegate a privilege by ensuring access rights to the delegatee. Basically, once a delegated
task is accepted, a delegatee must be authenticated and then authorised to perform the
delegated task.

Delegated privileges may be associated with roles to execute a delegated task and to
access to task’s resources. Delegated privileges are granted by the delegator to the dele-
gatee. In order to control access to the delegated task’s resources, both authentication
and authorisation are required. Authentication and authorisation requirements are both

156

6.4. Delegation Policies Enforcement

specified in the delegated privileges.
We developed a privilege management infrastructure based on digital certificates. We

consider that a public key certificate (PKC) is used for authentication and maintains a
strong binding between a user’s name and his public key, whilst an attribute certificate
(AC) is used for authorisation and maintains a strong binding between a user’s name
and one or more privilege attributes. Therefore, we consider PKC as a passport and AC
as a visa. We assume that both PKC and AC will be issued by the delegator to the
delegatee. The scenario below (see figure 6.6) illustrates how a delegatee gets access to
task resources. This scenario assumes that the delegator issued already a certificate for
the delegatee to act on his behalf.

Authorisation Decision ComponentAuthentication Management Component

CA/IIS

AuthenticateRq(PKC)

Delegatee

Authentication
Service

Authorisation
Service

SOA/LDAP
Task Delegated

Resources

ValidateAuthenticationRq()

Result()

AccessRq(AC_DN)

Result()

AccessRsource()

CheckCert()

Authentication
Faield

AuthenticationFailed()

Authentication
Accepted

else

CheckCertRole()

Access
Denied

AccessDenied()

Access
Granted

else

ValidateAuthorisationRq()

Figure 6.6: Delegated privileges during task’s resources access

In figure 6.6, the Authentication Management Component (AMC) authenticates the
user, and then asks the Authorisation Decision Component (ADC) if the user is allowed
to perform the requested action on the particular task resource. The ADC accesses one
or more LDAP (Lightweight Directory Access Protocol) directories to retrieve the autho-
risation policy and the role ACs for the user, and bases its decision on these. The main
steps are detailed as follows :

1. A delegatee initiates an authentication request to the AMC using his PKC.

2. The AMC check the authentication request based on his CA (e.g. CA defined in
the IIS Windows OS). If it is accepted then AMC passes the Distinguish Name
(DN) of the delegatee to the ADC through a call to get his attribute certificate
(AC) and check his permissions afterwards. For instance, the delegatee would be

157

Chapter 6. Deployment Environment

authenticated in different ways such as sending an S/MIME email message to the
ADC, or opening an SSL connection. In all cases the delegatee will be digitally
signing the opening message, and verification of the signature will yield his DN.

3. The ADC uses this DN to retrieve the role ACs of the delegatee from the list
of LDAP. The role ACs are validated against the policy (e.g. to check that the
DN is within a valid subject domain, and to check that the ACs are within the
validity time of the policy etc). Policy based authorisation is specified by the domain
administrator such as the source of authority (SOA).

4. Once the delegatee has been successfully authenticated he will attempt to perform
certain actions on the resources. At each attempt, the AMC passes the access request
to the ADC to decide. Decision checks if the action is allowed for the role that the
delegatee has in his AC. If the action is allowed, ADC returns access granted, if it
is not allowed it returns denied.

The next step will implement the different components for delegation. First, we de-
veloped the authentication component based on digital certificates. We then leveraged
certificates properties to manage delegated privileges and compute authorisation creden-
tials for the delegatee.

6.4.2 Authentication management component

We developed a solution based Windows Communication Foundation (WCF)7 to support
authentication. WCF is a migration from the WSE 3.0 Web Services to WCF. The
benefits of the migration include improved performance and the support of additional
transports, additional security scenarios, and WS-* specifications. WCF security provides
confidentiality and integrity for message exchanges. It supports both symmetric and
asymmetric cryptography implementation. In this work, we discuss WCF security using
X509 (asymmetric) specifically for authentication purposes. WCF enables three different
bindings using X509 namely Https, SSL over TCP and Message Security.

We developed a solution supporting message level security. Message security uses WS-
* protocol to secure messages. WCF enables this through its various standard bindings
with message security mode. Moreover, it supports both SSL and Mutual Certificate
protocol.

In our application, we implemented a certificate-based mutual authentication where
the server and the client (the delegatee) authenticate one another. First, we use the tool
makecert.exe to create X509 certificate. This tool is packed along with Microsoft .Net
2008. It permits to create a temporary certificate that will sign and authorise client/server
certificates. Both certificates are made to secure the endpoint of the client and web service,
respectively. Then, we create a new website called WCF509 service for authentication via
X509 certificates. This service will be then executed by a client application. We focus
on the aspect of authentication when a client is requesting a service and need to be
authenticated using digital certificates. The first step of the application is to ensure the

7For more details : http://msdn.microsoft.com/en-us/library/ms735119.aspx

158

6.4. Delegation Policies Enforcement

authentication of the requestor by identifying his credentials attributes by the service.
The client application calls the service as follows :

using WCFX509Client.WCFX509Service;

class Client
{

public static void Main(string[] args)
{

WCFX509Client client = new WCFX509Client();

client.ClientCredentials.ClientCertificate.SetCertificate(
StoreLocation.CurrentUser,
StoreName.My,
X509FindType.FindBySubjectDistinguishedName,
"CN=client, O=SAP, L=KA, S=BW, C=DE");

// Authentication Request

Console.WriteLine(client.Authenticate());

Console.Read();

client.Close();
}

Figure 6.7: The client application

The idea is to retrieve the client credentials from his X509 certificate, to compute
his attribute using his distinguish name and to authenticate him against the service,
thereby calling the java class Authenticate(). Once the server/client sides implemented
and configured, the last step is to add the service reference that the client will reach in the
WCFX509Client class. It defines the URL address of the service web. The deployment
of the authentication component if successful will return the requestor attributes and
authenticate the requestor.

In the context of delegation, authorisation attributes provided to the requestor (the
delegatee) are restrictive in terms of actions on targets (resources). The next step will be
the computation of his authorisation attributes against the authorisation policy.

6.4.3 Authorisation decision component

In order to secure our delegation protocol, we developed a privilege management applica-
tion responsible for the authentication and authorisation of the delegatee. Authorisation
will define delegation policies to be integrated into existing access control systems. Using
an authorisation decision making mechanism, a delegatee will access task’s resources via
an application gateway.

a - Access control framework architecture

The application gateway known as application proxy or application-level proxy is an ap-
plication program that runs on a firewall system between two networks. When a delegatee
establishes a connection to a destination service, it connects to an application gateway,
or proxy. We present the implementation of our access control framework for delegation
in figure 6.8. We implemented a policy plugin within the authorisation deci-
sion engine PERMIS. The arrows in yellow, X509 Attribute Certificate and PERMIS

159

Chapter 6. Deployment Environment

Authorisation decision, are implemented in the application gateway as AMC and ADC
components, respectively. The Contact Point/SOA is not supported in this application.

The AMC authenticates the user, and then asks the authorisation component (ADC) if
the delegatee is allowed to perform the requested action on the particular target resource.
The ADC accesses the specified LDAP directory to retrieve the authorisation policy and
the role ACs for the delegatee, and bases its decision on these using the PERMIS decision
engine.

In summary, when a delegatee submits an access request to a target, the AMC, acting
as PEP (Policy Enforcement Point), gives the credentials to the ADC acting as PDP
(Policy Decision Point). The delegatee’s identifier and his role/attribute are given in our
AMC application. The first step is to recognise the delegatee’s identifier and his different
roles/attributes. The second step is to convert the user’s identifier into a distinguished
name. The third step is to convert the different roles/attributes into the PERMIS autho-
risation token in order to be understandable by the PERMIS decision engine. Because
the PERMIS decision engine is an RBAC-Based Authorisation infrastructure and defines
roles/attributes to make access control decisions [ASL08].

Figure 6.8: Implementing the access control framework for delegation

b - PERMIS decision engine

PERMIS8 is a policy based authorisation system, a Privilege Management Infrastructure.
It can work with any and every authentication system (Shibboleth, Kerberos, PKI, user-
name/PW, etc.). Given a username, a target and an action, the PERMIS decision engine
says whether the user is granted or denied access based on the policy for the target. The
policy is role/attribute based i.e. users are given roles/attributes and roles/attributes are
given permissions to access targets.

8For more details : http://sec.cs.kent.ac.uk/permis/index.shtml

160

6.4. Delegation Policies Enforcement

Figure 6.9: PERMIS decision engine architecture

The interface to the PERMIS decision engine (PDP) has being enhanced to support
the XACML request context and to return the XACML response context. This presents
an interest for our work to support features that are not currently supported by XACML,
such as dynamic delegation of authority [CON09]. Moreover, the PERMIS decision engine
can work in push mode (attributes are sent to PERMIS by the application) or pull mode
(PERMIS fetches them itself given the distinguished name of the user by the application).
In our application, we used push mode for the sake of simplicity. It can be considered as
a lightweight authorisation decision engine.

c - Decoding credentials

The PERMIS API for the decision engine comprises 3 methods : GetCreds, Decision,
Shutdown, and a Constructor. The Constructor builds the PERMIS API java object. For
construction, the AMC passes the delegatee’s credentials to the ADC which retrieves the
policy AC and subsequently the role ACs (see figure 6.10).

When a delegatee initiates a call to the target, the AMC authenticates the delegatee,
and then passes the LDAP DN of the delegatee to the ADC through a call to GetCreds.
The delegatee will be digitally signing the opening message, and verification of the sig-
nature will yield the delegatee’s DN. The ADC uses this DN to retrieve the role of each
attribute certificate of the delegatee from the list of LDAP URIs passed at initialisation
time. The role ACs are validated against the policy e.g. to check that the DN is within a
valid subject domain, and to check that the ACs are within the validity time of the policy
etc. Invalid role ACs are discarded, whilst the roles from the valid ACs are extracted
and kept for the delegatee. In our model, GetCreds supports the “push” model, whereby

161

Chapter 6. Deployment Environment

the AMC can pass a set of ACs to the ADC, instead of retrieving them from the LDAP
directories.

protected static String consult(issrg.simplePERMIS.SimplePERMISPrincipal
principal,

issrg.pba.Action action, issrg.pba.Target target)
{

//Parsing User Credentials
issrg.pba.Subject subject;
issrg.simplePERMIS.SimplePERMISTokenParser testParserTok = new
issrg.simplePERMIS.SimplePERMISTokenParser(principal.getName());

testParserTok.setAuthTokenParsingRules(ssampf.getParsedPolicy().getAuthTokenParsing
Rules());

subject = null;
java.util.Vector newCreds = new java.util.Vector();
newCreds.add(principal);
subject = adf.getCreds(principal.getEntryName(), newCreds.toArray());
try
{

if (!adf.decision(subject, action, target, null))
return "1: the action is not allowed";

else
return "0: action succeeded";

}
catch (Exception ex)
{

throw new Exception(POLICY_LOAD_ERROR + " " + ex.Message);
}

}

Figure 6.10: Parsing delegatee’s credentials

d - Computing delegatee’s request

Once the delegatee has been successfully authenticated he will attempt to perform cer-
tain actions on the target. At each attempt, the ACM passes the target name and the
attempted action along with its parameters, to the ADC via a call to Decision. Decision
checks if the action is allowed for the roles that the delegatee has, taking into account
all the conditions specified in the TargetAccessPolicy. If the action is allowed, Decision
returns granted, if it is not allowed it returns denied.

The delegatee may attempt an arbitrary number of actions on different targets, and
Decision is called for each one. In order to stop the delegatee keeping the connection open
for an infinite amount of time (for example until after his ACs have expired), the PERMIS
API supports the concept of a session time out. On the call to GetCreds the AMC can
say how long the session may stay open before the credentials should be refreshed. If the
session times out, its PDP will throw an exception, telling the AMC to either close the
delegatee’s connection or call GetCreds again.

162

6.4. Delegation Policies Enforcement

6.4.4 Deployment and evaluation

Here, we deploy the policy plugin within the authorisation decision engine
PERMIS. We firstly present the authorisation policy definition. We then specify the
delegation policy and deploy it in the runtime environment based on the delegation sce-
nario DS1. We conclude our test by analysing the results.

a - The authorisation policy

The authorisation policy specifies who has what type of access to which targets, and under
which conditions. PERMIS uses the hierarchical RBAC model for specifying authorisa-
tions. We have specified an RBAC policy specifically designed for use with an X.509
attribute certificate based PMI. The top level X.509 PMI RBAC Policy is composed of a
number of sub-policies as shown in the figure below. The domain of the PMI Policy is the
union of all the domains of the subpolicies. Each policy is given a unique object identifier
(OID) that globally unambiguously identifies it. This OID is passed to the Permis API by
the caller, in order to guarantee that the correct policy will be used in all the subsequent
access control decisions made by the API implementation.

Figure 6.11: The X.509 PMI RBAC Policy

Data Type Definition (DTD) for the PERMIS policy is a meta-language that holds
the rules for creating the XML policies. The DTD comprises the following components :

• SubjectPolicy : this specifies the subject domains i.e. only users from a subject
domain may be authorised to access resources covered by the policy.

• RoleHierarchyPolicy : this specifies the different roles and their hierarchical rela-
tionships to each other.

• SOAPolicy : this specifies which SOAs are trusted to allocate roles, and permits the
distributed managements of role allocation to take place.

• RoleAssignmentPolicy : this specifies which roles may be allocated to which subjects
by which SOAs, whether delegation of roles may take place or not, and how long
the roles may be assigned for.

163

Chapter 6. Deployment Environment

• TargetPolicy : this specifies the target domains covered by this policy.

• ActionPolicy : this specifies the actions (or methods) supported by the targets,
along with the parameters that should be passed along with each action e.g. action
Open with parameter Filename.

• TargetAccessPolicy : this specifies which roles have permission to perform which
actions on which targets, and under which conditions.

b - Deploying delegation policies

We use the PERMIS Policy Editor for creating and editing delegation policies (see figure
6.12). Our policy file (DS1.xml) specifies which action is allowed or denied based on the
DS1 scenario. If a request is not relevant to the policy, it will be reported as an error
encountered by the application. We define the delegator and the delegatee as Prosecutor
and Assistant, respectively. We specify privileges for the delegator and give him the right
to delegate the action translate() on the resource legal document MLAdoc (see DS1.0.xml
policy file in figure 6.12).

Figure 6.12: Policy editor for DS1

The delegatee member of role Assistant is assigned to this target and allowed to

164

6.4. Delegation Policies Enforcement

execute it. However, he is not allowed to further delegate it due to privacy restrictions.
Additional delegation constraints such as obligations, conditions or validity (deadline) can
be specified based on the delegation requirements for this task.

In order to execute our delegation request, we use the Policy Tester which is a tool
used to test PERMIS policies created by the Policy Editor. Test cases can be created to
simulate any users accessing any resources under any conditions, and the users will then
be granted or denied access according to the delegation policy that is read into the Policy
Tester. The result of running the tests are shown in the output window of the Policy
Tester (see figure 6.13). We illustrate the computation of the Assistant authorisation
against to the DS1 policy. The delegatee attributes with the role Assistant is identified
in the policy but his delegated privileges are limited to translate() in the defined target.
Subsequently, the request of another target such as MLA rsr1 resources on the service
resource is not allowed (a deny decision).

Figure 6.13: Policy tester for DS1

165

Chapter 6. Deployment Environment

c - Evaluation and discussion

The PERMIS Policy Tester can also allow dynamic updates of policies. This offers a
suitable solution to add new delegation rules that grant or revoke delegated privileges,
thereby supporting dynamic delegation policies. However, this tool does not support
event-based approach for proactive policies. The Contact Point/SOA defined in chapter 5
is not supported in this tool. For that reason, any further changes in policy will be made
externally from PERMIS and does not depend on the event-based delegation approach.
Moreover, the adding of delegation policies to existing policy cannot be checked. Thus,
we may have conflicts with the predefined policy due to security constraints (e.g. SoD).

The next steps of our implementation will be the development of the delegation au-
tomation approach using event calculus in access control systems. Currently, we are
looking to enrich our delegation policy plugin with an event listener component that
permits to interact with the delegation execution and its policy definition based on the
automation approach presented in chapter 5.

6.5 Conclusion

In this chapter, we have presented the implementation of a delegation tool within a work-
flow management system. We have introduced the development environment inspired
from the R4eGov project. We then focused on the organisational aspect in order to sup-
port human interactions in general and user-to-user delegation in particular.
We have integrated this aspect via an email plugin within the workflow runtime Bonita.
Finally, we considered the security requirements to support delegation policies. We pre-
sented a solution to integrate and test delegation policies dynamically. To do so,
we have implemented a policy plugin within the authorisation decision engine PERMIS
and we have discussed its functionalities and limitations.

The deployment of the delegation framework presents, however, some limits. On the
organisational level, we developed an e-mail centric solution for user-to-user delegation.
Basically, we triggered delegation events using messaging Hook in the workflow system
Bonita. However, this is not a standardised approach supporting a user-to-user commu-
nication within collaborative workflows. On the security level, we integrated delegation
policies in a local manner and we did not test it in the global policy. Actually, PERMIS
does not offer rich specifications for distributed resources and external roles when defin-
ing a policy. For that reason, we were not able to deploy the second delegation scenario
DS2. Moreover, the security plugin does not support event-based approach for proactive
policies. The Contact Point/SOA for event-based policy enforcement is not supported
yet in our framework. Hence, any further changes in the policy does not depend on the
event-based delegation approach and will be made externally from PERMIS. These limits
will be a part of our future works.

166

Chapter 7

Conclusion and Perspectives

Providing access control mechanisms to secure task delegation in workflow management
systems is a non-trivial task to model and engineer. In this dissertation, we have presented
problems and requirements that such a model demands, and developed a solution to
model task delegation within workflows and to specify delegation of authority into access
control systems. The motivation of this direction is based on a real world process from
an e-government scenario, where a task delegation is required and may support dynamic
changes during execution. We aim to bridge the gap between organisational needs and
security functionalities in workflow systems. To do so, we have considered two strong
concepts namely workflow and access control systems in order to reach our objective.
This can be detailed as follows :

• Organisational flexibility : An organisation obtains flexibility by offering means
to manage human resources when dealing with user-o-user delegation. Accordingly,
workflow’s actors can evolve and change from the predefined workflow model. This
can lead to a new rearrangement of users in order to ensure alternative scenarios by
making the workflow more flexible and efficient.

• Dynamic access control enforcement : The idea is to give a coherent link from
workflow modelling to access control requirements. Task delegation will enforce new
authorisation requirements, thereby inquiring additional assignment and synchroni-
sation for authorisation policies. In addition, any policy change due to delegation
has to be computed and integrated in the existing policy automatically with regards
to the organisational policy compliance.

Most of the work done in the area of workflow and access control systems does not treat
delegation in sufficient details and deserves from us more investigations. On one hand,
existing work in the domain of organisational management in workflows remain static
and lack of flexibility [AW05, CK08a]. On the other hand, current solutions for access
control are relatively stateless and rigid [SRS+05, BFA99]. At present, no mechanism
exists that allows to ensure dynamic delegation of authority. Such a mechanism is vital
for supporting a secure framework for dynamic task delegation in workflow management
systems.

167

Chapter 7. Conclusion and Perspectives

7.1 Thesis Summary and Contributions

The main contribution of this thesis is the development of a methodology with a support-
ing framework to secure dynamic task delegation within workflows. Securing delegation
involves the definition of authorisation policies which are compliant with the existing
policy of the workflow. To that end, we need to address two important issues, namely
allowing the delegation completion, and having a secure delegation within a workflow.
Allowing task delegation to complete requires a model that forms the basis of what can
be analysed during the delegation process. Secure delegation implies the controlled prop-
agation of authority during task execution. To ease the monitoring of task delegation and
the propagation of delegation authority, we have presented an event-based task delega-
tion model (TDM) amenable for supporting a framework to model, analyse and generate
delegation policies. The thesis contributions can be summarised as follows :

• A delegation model supporting access control in business processes based on the
task lifecycle. We have identified delegation interactions within workflow’s layers
namely task, control and data based on delegation events. Delegation events define
the delegation process and build the task delegation model to be integrated in the
business process.

• Delegation as an advanced security mechanism defines an enhanced access con-
trol model used to capture task requirements and to express it in terms of authori-
sation policy rules. We defined a Task-oriented Access Control (TAC) model with
new modelling elements to enable the specification of access control requirements
such as organisational roles and resources requirements between users and tasks.
In addition, we presented a technique to optimise delegated privilege computation
based on the delegated task instance defined in the TAC model.

• We have applied formal methods to integrate delegation policies and to detect
compliance properties with the authorisation policy. We reasoned using event calcu-
lus formalism to address the delegation policy integration issue. Moreover, we came
up with a technique to increase control and compliance of all delegation changes.

• Finally, we have presented an access control framework to specify delegation
policies. We have architected a solution based on existing access control systems and
extended it with a dynamic policy enforcement component for delegation policies.

Finally, we have presented the implementation of our framework within a workflow
management system. We have integrated the organisational aspect via a task manage-
ment plugin within the workflow runtime Bonita in order to support human interactions
in general and user-to-user delegation in particular. We then focused on the security re-
quirements to support delegation policies. We presented a solution to integrate and to
test delegation policies dynamically within the authorisation decision engine PERMIS.

168

7.2. Limits and Perspectives

7.2 Limits and Perspectives

Throughout this thesis, we have considered task delegation as an atomic unit of work. We
do not consider sub tasks delegation where delegation can be done partially. In addition,
we assumed that user-to-user delegation is exclusive to the delegator and the delegatee and
that there is no further delegations supporting cascaded or multistep delegation [ZAC03].
In the context of human-to-human interactions, we argued that a delegated task is atomic
when considering the user-to-user delegation protocol. The protocol introduced steps such
as negotiation, acceptance and declination to give more choice and flexibility when defining
a delegation request. Negotiation includes facts (i.e. evidence, deadline, privileges) that
were agreed between delegation principals which are exclusive to them and can not be
shared by additional delegatees. For instance, if a delegatee agreed on a time deadline
to perform a task, he is not allowed to extend this deadline and delegates it further to
another delegatee. In addition, such a delegation may be a security threat since delegated
privileges are granted based on the delegatee’s role in the organisation and his associated
permissions in the authorisation policy.

Moreover, the deployment of the delegation framework presents some limits. On the
organisational level, the solution for user-to-user delegation using messaging Hook is not a
standardised approach within workflow systems. On the security level, the integration of
delegation policies is done locally and does not support distributed resources and external
roles when considering the second delegation scenario cross organisations. Besides that,
the security plugin does not support event-based approach for proactive policies. Hence,
any further changes in the authorisation policy does not depend on the event-based del-
egation approach and will be made externally from the access control framework. These
discussed limits will be a part of our future works.

Future perspectives can be considered in this dissertation. The next steps of our
implementation will be the development of the delegation automation approach using
event calculus. We aim to enrich the delegation policy component with an event listener
component in the access control framework. Having an event listener component will
allow to synchronise between the policy definition and the automation approach. In
addition, we will work on implementing our framework using XACML standard. We
aim to enrich delegation policy constraints with XACML elements such as condition and
obligation. The PERMIS decision engine has being enhanced to support the XACML
request context and to return the XACML response context. This will present an interest
for our future works to support features that are not currently supported by XACML,
such as dynamic delegation of authority [CON09].

In addition, we will look at enriching our approach with additional delegation con-
straints supporting historical records. Delegation history will be used to record all dele-
gations that have been made to address administrative requirements such as auditing. In
general, the encoding process does not scale well especially with the increase in timepoints.
Our reasoning model will use historical records to guarantee that delegations are enforced
correctly. We aim to modify the proposed DECreasoner encoding to make the process
faster. A key observation is that it always takes less time than the initial solution as we
do have a partial plan and that reduces the problem. Subsequently, we can leverage the
trace of encoding in DECReasoner to give all necessary information (events, fluents and

169

Chapter 7. Conclusion and Perspectives

timepoints) to detect policies problems (e.g. indeterminate rule). To that end, we will
use an auditing technique allowing us to choose the best candidate for delegation based
on the delegatee’s historical performance.

Finally, we consider as a future work delegation in Web services (WS). Web service
is the emerging standard that supports the seamless interoperation between different
applications. While the interoperability, flexibility and automated composition are con-
tinuously enhanced, security is still the major hurdle. In recent years, lots of studies
have been conducted in web service security and various security standards have been
proposed [STY07, BSM04, BS00]. But most of these studies and standards focus on the
access control policies for individual web services and do not consider the access issues in
composed services. However, problems such as how much privilege to delegate, how to
confirm cross-domain delegation, how to delegate additional privilege when needed arise.
WS Policy specifies a framework for expressing web service constraints and requirements
as authorisation policies using policy assertions. WS Security Policy extends WS security
by specifying the policy assertions to describe security policies [Asi07]. We would propose
a delegation-based security model to address all these issues. It will extend the basic secu-
rity model defined in WS Policy and will support flexible delegation and evaluation-based
access control model for web services.

170

Appendix A

Discrete Event Calculus Reasoner

A.1 Introduction

The Discrete Event Calculus Reasoner is a program for performing automated common-
sense reasoning using the discrete event calculus [Mue06], a version of the classical logic
event calculus [KS89]. The program supports such types of reasoning as deduction, tem-
poral projection, abduction, planning, postdiction, and model finding. The Discrete Event
Calculus Reasoner supports the following commonsense phenomena :

• The commonsense law of inertia, which states that an event typically changes only
a small number of things and everything else in the world remains unchanged. For
example, moving

• Conditional effects of events. For example, the results of turning on a television set
depend on whether or not it is plugged in.

• Release from the commonsense law of inertia. For example, if a person is holding a
glass, then the location of the glass is released from the commonsense law of inertia
so that the location of the glass is permitted to vary.

• Event ramifications or indirect effects of events. The tool supports state constraints.
For example, a glass moves along with the person holding it. The tool supports
causal constraints, which deal with the instantaneous propagation of interacting
indirect effects, as in idealised electrical circuits.

• Events with nondeterministic effects. For example, flipping a coin results in the coin
landing either heads or tails.

• Gradual change such as the changing height of a falling object or volume of a balloon
in the process of inflation.

• Triggered events or events that are triggered under certain conditions. For example,
if water is owing from a faucet into a sink, then once the water reaches a certain
level the water will overflow.

171

Appendix A. Discrete Event Calculus Reasoner

• Concurrent events with cumulative or canceling effects. For example, if a shopping
cart is simultaneously pulled and pushed, then it will spin around.

Here is how you use the Discrete Event Calculus Reasoner. First, you place a domain
description into a file. The domain description consists of :

• an axiomatization describing a commonsense domain or domains of interest,

• observations of world properties at various times, and

• a narrative of known event occurrences.

The domain description is expressed using the Discrete Event Calculus Reasoner lan-
guage. Then, you invoke the Discrete Event Calculus Reasoner on the domain description.
The program transforms the domain description into a satisfability (SAT) problem. The
SAT problem is expressed in the standard format used by most SAT solvers [Eri08]. The
program then runs a SAT solver, which produces zero or more solutions, called models.
The program decodes these models and displays them.

A.2 Discrete Event Calculus Reasoner Language

In this section, we describe the Discrete Event Calculus Reasoner in more detail.

A.2.1 Sorts

Sentences are expressed in the language of many-sorted first-order predicate calculus with
subsort orders. This means that:

• sorts can be subsorts of other sorts,

• every variable, constant, and function symbol has an associated sort,

• every argument position of every function and predicate symbol has an associated
sort, and

• for a term to fill an argument position of a function or predicate symbol, the sort
associated with the term must be a subsort of the sort associated with the argument
position.

We define a sort called object as follows :
sort object

We define a sort agent that is a subsort of object as follows :
sort agent: object

The sort associated with a variable is determined by removing digits from the variable.
For example, the sort of the variable snowflake72 is snowflake. A constant’s sort is
specified when the constant is defined. For example, the following defines three constants
whose sort is agent :

172

A.2. Discrete Event Calculus Reasoner Language

agent Fred, Annie, Thea

Each object in the world is assumed to be named by a unique constant. That is, the
constants Annie and Thea do not refer to the same person. This is known as the unique
names assumption. Here is a definition of a function symbol Floor whose sort is integer
and whose first and only argument position is of sort room :
function Floor(room): integer Here is a definition of a predicate symbol PartOf

that takes two arguments of sort physobj and object :
predicate PartOf(physobj,object)

A.2.2 Formulas

The following grammar, which is based on that of the Bliksem theorem prover [Han99],
in conjunction with the sort constraints described above, specifies how sentences are con-
structed as follows :

A variable consists of one or more lowercase letters followed by zero or more digits.
A constant consists of (a) one or more digits or (b) an uppercase letter followed by zero
or more letters or digits. functionsymbols and predicatesymbols consist of an uppercase
letter followed by zero or more letters or digits. Fluent and event symbols are predicate
symbols. The meaning of the symbols is defined in the table A.2.2 :

A.2.3 Options

The option statement can be used to specify the values of certain program options [Eri08].
The syntax of this statement is :
option optionname optionvalue

The following optionnames are supported :
debug If the optionvalue is on, detailed debugging output is produced. The default value

173

Appendix A. Discrete Event Calculus Reasoner

Table A.1: The meaning of the symbols in the DECReasoner language

of this option is off.
encoding The value of this option specifies the event calculus-to-SAT encoding method.
finalstatefile The value of this option specifies the name of a file to which the final
state of the run will be written.
manualrelease If on, automatic generation of assertions of the form !Released(fluent,0)

is inhibited, so that such assertions can be added manually on a case-by-case basis. The
default value of this option is off.
modeldiff If on, differences from one model to the next are shown, instead of complete
models. The default value of this option is off.
renaming If on, the technique of renaming subformulas is used to convert to a compact
conjunctive normal. The default value of this option is on.
showpred If on, the truth values of all predicates other than fluents and events are shown.
The default value of this option is on.
solver The value of this option specifies the name of the solver to use. The default value
of this option is relsat.
timediff If on, differences from one timepoint to the next are shown, instead of complete
states. The default value of this option is on.
tmpfilerm If on, temporary files, which are stored in the temporary directory, are re-
moved at the end of each run. The default value of this option is on.
trajectory If on, Trajectory axioms are supported. The default value of this option is
off.

174

Appendix B

Commonsense Reasoning for Task
Delegation

The Verification results and encoding details of the delegation scenario DS1 using our
reasoning model in DECReasoner is detailed as follows :

load foundations/Root.e

load foundations/EC.e

sort task , effect , condition , obligation

task T3

effect Permit , Deny

condition Push , Pull

obligation Grant , Transer , Evidence , NoEvidence}

fluent Initial(task)

fluent Assigned(task)

fluent WaitingDelegation(task)

fluent WaitingCompletion(task)

fluent Delegated(task)

fluent Started(task)

fluent WaitingValidation(task)

fluent Failed(task)

fluent Completed(task)

fluent Cancelled(task)

fluent RuleAdded(effect , condition , obligation)

event AddPoliycRule(effect , condition , obligation)

[effect , condition , obligation , time]

Initiates(AddPoliycRule(effect , condition , obligation) ,

RuleAdded(effect , condition , obligation) ,time).

;[task , effect , condition , obligation , time1 , time2]

175

Appendix B. Commonsense Reasoning for Task Delegation

Happens(PushDelegateAcceptExecuteGrant(task), time1) & time2 != time1 ->

!Happens(AddPoliycRule(effect , condition , obligation), time2).

;[task , effect , condition , obligation , time]

Happens(PushDelegateAcceptExecuteGrant(task), time) & effect != Permit

& condition != Push & obligation != Evidnce ->

!Happens(AddPoliycRule(effect , condition , obligation), time).

event Create(task) ;Initial

[task , time] Initiates(Create(task), Initial(task) ,time).

event Assign(task) ;Assigned ; once created

[task , time]Initiates(Assign(task), Assigned(task) ,time).

[task , time1] Happens(Assign(task), time1) ->

{time2} HoldsAt(Initial(task), time2) & time1 > time2.

event PushDelegate(task) ; WaitingDelegation; once assigned

[task , time] Initiates(PushDelegate(task), WaitingDelegation(task) ,time).

[task , time1] Happens(PushDelegate(task), time1) ->

{time2} HoldsAt(Assigned(task), time2) & time1 > time2.

event PushDelegateCancel(task) ; Assigned; once WaitingDelegation

[task , time] Initiates(PushDelegateCancel(task), Assigned(task) ,time).

[task , time1] Happens(PushDelegateCancel(task), time1) ->

{time2} HoldsAt(WaitingDelegation(task), time2) & time1 > time2.

event PushDelegateAccept(task) ; WaitingCompletion; once waitingDelegation

[task , time] Initiates(PushDelegateAccept(task),

WaitingCompletion(task) ,time).

[task , time1] Happens(PushDelegateAccept(task), time1) ->

{time2} HoldsAt(WaitingDelegation(task), time2) & time1 > time2.

event PullDelegate(task) ; Delegated ; once Assigned

[task , time] Initiates(PullDelegate(task), Delegated(task) ,time).

[task , time1] Happens(PullDelegate(task), time1) ->

{time2} HoldsAt(Assigned(task), time2) & time1 > time2.

event Start(task) ; ;Started ; once Assigned

[task , time] Initiates(Start(task), Started(task) ,time).

[task , time1] Happens(Start(task), time1) ->

{time2} HoldsAt(Assigned(task), time2) & time1 > time2.

event PushDelegateAcceptRevoke(task) ; Assigned; once waitingCompletion

[task , time] Initiates(PushDelegateAcceptRevoke(task),

Assigned(task) ,time).

[task , time1] Happens(PushDelegateAcceptRevoke(task), time1) ->

{time2} HoldsAt(WaitingCompletion(task), time2) & time1 > time2.

176

event PushDelegateAcceptExecuteGrant(task) ; WaitingValidation;

once waitingCompletion

[task , time] Initiates(PushDelegateAcceptExecuteGrant(task),

WaitingValidation(task) ,time).

[task , time1] Happens(PushDelegateAcceptExecuteGrant(task), time1) ->

{time2} HoldsAt(WaitingCompletion(task), time2) & time1 > time2.

event PushDelegateAcceptFailTransfer(task) ; Failed;

once waitingCompletion

[task , time] Initiates(PushDelegateAcceptFailTransfer(task),

Failed(task) ,time).

[task , time1] Happens(PushDelegateAcceptFailTransfer(task), time1) ->

{time2} HoldsAt(WaitingCompletion(task), time2) & time1 > time2.

event PushDelegateAcceptCompleteTransfer(task) ; Completed;

once waitingCompletion

[task , time] Initiates(PushDelegateAcceptCompleteTransfer(task),

Completed(task) ,time).

[task , time1] Happens(PushDelegateAcceptCompleteTransfer(task),time1)

-> {time2} HoldsAt(WaitingCompletion(task), time2) & time1 > time2.

event PullDelegateStart(task); Started; once delegated

[task , time] Initiates(PullDelegateStart(task), Started(task) ,time).

[task , time1] Happens(PullDelegateStart(task), time1) ->

{time2} HoldsAt(Delegated(task), time2) & time1 > time2.

event PullDelegateStartExecuteGrant(task); WaitingValidation ,

Once Started ,

once pull delegated ,

[task , time] Initiates(PullDelegateStartExecuteGrant(task),

WaitingValidation(task) ,time).

[task , time1] Happens(PullDelegateStartExecuteGrant(task), time1)

-> {time2} HoldsAt(Delegated(task), time2) & time1 > time2.

[task , time1] Happens(PullDelegateStartExecuteGrant(task), time1)

-> {time2} HoldsAt(Started(task), time2) & time1 > time2.

event Complete(task); Completed; once Started

[task , time] Initiates(Complete(task), Completed(task) ,time).

[task , time1] Happens(Complete(task), time1) ->

{time2} HoldsAt(Started(task), time2) & time1 > time2.

event Fail(task); Failed; once started

[task , time] Initiates(Fail(task), Failed(task) ,time).

[task , time1] Happens(Fail(task), time1) ->

{time2} HoldsAt(Started(task), time2) & time1 > time2.

177

Appendix B. Commonsense Reasoning for Task Delegation

event Abort(task); Cancelled; once assigned

[task , time] Initiates(Abort(task), Cancelled(task) ,time).

[task , time1] Happens(Abort(task), time1) ->

{time2} HoldsAt(Assigned(task), time2) & time1 > time2.

event PullDelegateStartExecuteGrantRevoke(task); Failed ;

once WaitingValidation , once pull delegated

[task , time] Initiates(PullDelegateStartExecuteGrantRevoke(task),

Failed(task) ,time).

[task , time1] Happens(PullDelegateStartExecuteGrantRevoke(task),time1)

-> {time2} HoldsAt(WaitingValidation(task), time2) & time1 > time2.

[task , time1] Happens(PullDelegateStartExecuteGrantRevoke(task), time1)

-> {time2} HoldsAt(Delegated(task), time2) & time1 > time2.

event PushDelegateAcceptExecuteGrantValidate(task); Completed;

once WaitingValidation , once WaitingCompletion

[task , time] Initiates(PushDelegateAcceptExecuteGrantValidate(task),

Completed(task) ,time).

[task , time1] Happens(PushDelegateAcceptExecuteGrantValidate(task),time1)

-> {time2} HoldsAt(WaitingValidation(task), time2) & time1 > time2.

[task , time1] Happens(PushDelegateAcceptExecuteGrantValidate(task),time1)

-> {time2} HoldsAt(WaitingCompletion(task), time2) & time1 > time2.

;Ordering

;----------

[task , time] HoldsAt(Initial(task), time) -> !Happens(Create(task), time)

[task , time] HoldsAt(Assigned(task), time) -> !Happens(Assign(task), time)

[task , time] HoldsAt(WaitingDelegation(task), time) ->

!Happens(PushDelegate(task), time).

[task , time] HoldsAt(WaitingCompletion(task), time) ->

!Happens(PushDelegateAccept(task), time).

[task , time] HoldsAt(Delegated(task), time) ->

!Happens(PullDelegate(task), time).

[task , time] HoldsAt(Started(task), time) ->

!Happens(Start(task), time).

;event PushDelegateAcceptRevoke(task) ; Assigned; once waitingCompletion

[task , time] HoldsAt(WaitingValidation(task), time)

-> !Happens(PushDelegateAcceptExecuteGrant(task), time).

[task , time] HoldsAt(Failed(task), time) ->

!Happens(PushDelegateAcceptFailTransfer(task), time).

[task , time] HoldsAt(Completed(task), time) ->

!Happens(PushDelegateAcceptCompleteTransfer(task), time).

[task , time] HoldsAt(Started(task), time) ->

178

!Happens(PullDelegateStart(task), time).

[task , time] HoldsAt(WaitingValidation(task), time) ->

!Happens(PullDelegateStartExecuteGrant(task), time).

[task , time] HoldsAt(Completed(task), time) ->

!Happens(Complete(task), time).

[task , time] HoldsAt(Failed(task), time) ->

!Happens(Fail(task), time).

[task , time] HoldsAt(Cancelled(task), time) ->

!Happens(Abort(task), time).

[task , time] HoldsAt(Failed(task), time) ->

!Happens(PullDelegateStartExecuteGrantRevoke(task), time).

[task , time] HoldsAt(Completed(task), time) ->

!Happens(PushDelegateAcceptExecuteGrantValidate(task), time).

;Initialisations

;------------------

[task] !HoldsAt(Initial(task),0).

[task] !HoldsAt(Assigned(task),0).

[task] !HoldsAt(WaitingDelegation(task),0).

[task] !HoldsAt(WaitingCompletion(task),0).

[task] !HoldsAt(Delegated(task),0).

[task] !HoldsAt(Started(task),0).

[task] !HoldsAt(WaitingValidation(task),0).

[task] !HoldsAt(Failed(task),0).

[task] !HoldsAt(Completed(task),0).

[task] !HoldsAt(Cancelled(task),0).

[effect , condition , obligation]

!HoldsAt(RuleAdded(effect , condition , obligation),0).

;Implicit Orderings

;------------------

[task , time1 , time2] Happens(Abort(task), time1) & time2 >= time1 ->

!Happens(Start(task), time2) & !Happens(PullDelegate(task), time2)

& !Happens(PushDelegate(task), time2).

[task , time1 , time2] Happens(PushDelegate(task), time1) & time2 >= time1

-> !Happens(Start(task), time2) & !Happens(PullDelegate(task), time2)

& !Happens(Abort(task), time2).

[task , time1 , time2] Happens(PullDelegate(task), time1) & time2 >= time1

-> !Happens(Start(task), time2) & !Happens(PushDelegate(task), time2)

& !Happens(Abort(task), time2).

[task , time1 , time2] Happens(Start(task), time1) & time2 >= time1 ->

!Happens(PullDelegate(task), time2) & !Happens(PushDelegate(task), time2)

& !Happens(Abort(task), time2).

;PushDelegateAcceptExecuteGrant

;PushDelegateAcceptFailTransfer

179

Appendix B. Commonsense Reasoning for Task Delegation

;PushDelegateAcceptCompleteTransfer

;PushDelegateAcceptRevoke

[task , time1 , time2] Happens(PushDelegateAcceptExecuteGrant(task), time1)

& time2 >= time1 ->

!Happens(PushDelegateAcceptFailTransfer(task), time2)

& !Happens(PushDelegateAcceptCompleteTransfer(task), time2)

& !Happens(PushDelegateAcceptRevoke(task), time2).

[task , time1 , time2] Happens(PushDelegateAcceptFailTransfer(task), time1)

& time2 >= time1 ->

!Happens(PushDelegateAcceptExecuteGrant(task), time2)

& !Happens(PushDelegateAcceptCompleteTransfer(task), time2)

& !Happens(PushDelegateAcceptRevoke(task), time2).

[task , time1 , time2] Happens(PushDelegateAcceptCompleteTransfer(task),time1)

& time2 >= time1 ->

!Happens(PushDelegateAcceptExecuteGrant(task), time2)

& !Happens(PushDelegateAcceptFailTransfer(task), time2)

& !Happens(PushDelegateAcceptRevoke(task), time2).

[task , time1 , time2] Happens(PushDelegateAcceptRevoke(task), time1)

& time2 >= time1 ->

!Happens(PushDelegateAcceptExecuteGrant(task), time2)

& !Happens(PushDelegateAcceptFailTransfer(task), time2)

& !Happens(PushDelegateAcceptCompleteTransfer(task), time2).

;Happens axioms to force reasoner to choose delegation

;---

;which delegation mode , ater assignment

[task , time] !Happens(Abort(task), time).

[task , time] !Happens(Start(task), time).

[task , time] !Happens(PullDelegate(task), time).

;[task , time] !Happens(PushDelegate(task), time).

;which push delegation mode

[task , time] !Happens(PushDelegateAcceptExecuteGrant(task), time).

;[task , time] !Happens(PushDelegateAcceptFailTransfer(task), time).

[task , time] !Happens(PushDelegateAcceptCompleteTransfer(task), time).

;we dont want delagation cancelled and revoked

[task , time] !Happens(PushDelegateAcceptRevoke(task), time).

[task , time] !Happens(PushDelegateCancel(task), time).

;Policy updations

;----------------

[task , effect , condition , obligation , time]

180

Happens(AddPoliycRule(effect , condition , obligation), time) ->

Happens(PushDelegateAcceptExecuteGrant(task), time) |

Happens(PushDelegateAcceptFailTransfer(task), time) |

Happens(PushDelegateAcceptCompleteTransfer(task), time).

[task , time] Happens(PushDelegateAcceptExecuteGrant(task), time)

-> Happens(AddPoliycRule(Permit , Push , Evidence), time)

& !Happens(AddPoliycRule(Deny , Push , Evidence), time)

& !Happens(AddPoliycRule(Deny , Push , Transer), time)

& !Happens(AddPoliycRule(Permit , Pull , Grant), time)

& !Happens(AddPoliycRule(Permit , Push , Transer), time)

& !Happens(AddPoliycRule(Deny , Push , Grant), time)

& !Happens(AddPoliycRule(Deny , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Evidence), time)

& !Happens(AddPoliycRule(Permit , Push , Grant), time)

& !Happens(AddPoliycRule(Permit , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Transer), time)

& !Happens(AddPoliycRule(Deny , Pull , Grant), time)

& !Happens(AddPoliycRule(Deny , Pull , Transer), time)

& !Happens(AddPoliycRule(Permit , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Pull , Evidence), time).

[task , time] Happens(PushDelegateAcceptFailTransfer(task), time)

-> Happens(AddPoliycRule(Deny , Push , Transer), time)

& !Happens(AddPoliycRule(Deny , Push , Evidence), time)

& !Happens(AddPoliycRule(Permit , Push , Evidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Grant), time)

& !Happens(AddPoliycRule(Permit , Push , Transer), time)

& !Happens(AddPoliycRule(Deny , Push , Grant), time)

& !Happens(AddPoliycRule(Deny , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Evidence), time)

& !Happens(AddPoliycRule(Permit , Push , Grant), time)

& !Happens(AddPoliycRule(Permit , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Transer), time)

& !Happens(AddPoliycRule(Deny , Pull , Grant), time)

& !Happens(AddPoliycRule(Deny , Pull , Transer), time)

& !Happens(AddPoliycRule(Permit , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Pull , Evidence), time).

[task , time] Happens(PushDelegateAcceptCompleteTransfer(task), time)

-> Happens(AddPoliycRule(Permit , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Push , Evidence), time)

& !Happens(AddPoliycRule(Permit , Push , Evidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Grant), time)

& !Happens(AddPoliycRule(Permit , Push , Transer), time)

& !Happens(AddPoliycRule(Deny , Push , Grant), time)

181

Appendix B. Commonsense Reasoning for Task Delegation

& !Happens(AddPoliycRule(Deny , Push , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Evidence), time)

& !Happens(AddPoliycRule(Permit , Push , Grant), time)

& !Happens(AddPoliycRule(Deny , Push , Transer), time)

& !Happens(AddPoliycRule(Deny , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Permit , Pull , Transer), time)

& !Happens(AddPoliycRule(Deny , Pull , Grant), time)

& !Happens(AddPoliycRule(Deny , Pull , Transer), time)

& !Happens(AddPoliycRule(Permit , Pull , NoEvidence), time)

& !Happens(AddPoliycRule(Deny , Pull , Evidence), time).

;[task , time] Happens(PushDelegateAcceptExecuteGrant(task), time)

-> Happens(AddPolicyRule ().

;Goal

;----------

[task] HoldsAt(Completed(task),15) | HoldsAt(Failed(task),15) |

HoldsAt(Cancelled(task),15).

range time 0 20

range offset 1 1

option showpred off

182

Appendix C

List of Acronyms

ACF Access Control Framework
ACL Administrative Communication Layer
ADC Authorisation Decision Component
AMC Authentication Management Component
BoD Binding of Duty
BPM Business Process management
CMS Case management System
DAC Discretionary Access Control
DC Delegation Constraints
DPolicy Delegation Policy
DR Delegation Relation
DS Delegation Scenario
EC Event Calculus
e-Government Electronic Government
Eurojust European Judicial Cooperation Unit
Europol European Police Office
JAO Judicial Authority Officer
MAC Mandatory Access Control
MLA Mutual Legal Assistance
NC National Correspondent
OU Organisation Unit
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
RBAC Role Based Access Control model
RH Role Hierarchy
RM Role Mapping
RPA Role Permission Assignment
SoD Separation of Duty

183

Appendix C. List of Acronyms

SR A function mapping each subject (S) to a set of roles (R)
SU A function mapping a subject (S) to the corresponding user (U)
TAC Task-oriented Access Control model
SU A function mapping a subject (S) to the corresponding user (U)
TAC Task-oriented Access Control model
TDM Task Delegation Model
TI Task Instance
TPA Task Permission Assignment relation
TRA Task Role Assignment relation
URA User Role Assignment relation
WfMC Workflow Management Coalition
WfMS Workflow Management System
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

184

Bibliography

[AHW03] Wil M. P. Van Der Aalst, Arthur H. M. Hofstede, and Mathias Weske.
Business process management: A survey. In Business Process Management,
International Conference, BPM 2003, Eindhoven, The Netherlands, June
26-27, 2003, Proceedings, pages 1–12. Springer, 2003.

[Ari02] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh
Chopella, Kannan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon,
Gregory Pogossiants, Shamik Sharma, Scott Williams. Web Services Con-
versation Language (WSCL) 1.0, 2002. World Wide Web Consortium
(W3C), Palo Alto, CA, USA.

[Asi07] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo,
Prasad Yendluri, Toufic Boubez. Web Services Policy 1.5 - Framework,
04 September 2007. W3C Recommendation.

[ASL08] Mickael von Riegen Andreas Schaad, Khaled Gaaloul and Hanna Lee. Spec-
ification of advanced security and privacy mechanisms. Technical report,
6th Framework Programme, Information Society Technologies, R4eGov,
April 2008.

[AW05] Vijayalakshmi Atluri and Janice Warner. Supporting conditional delegation
in secure workflow management systems. In SACMAT ’05: Proceedings of
the tenth ACM symposium on Access control models and technologies, pages
49–58, New York, NY, USA, 2005. ACM.

[Bal98] Raman Balasubramanian. Adding workflow analysis techniques to the is
development toolkit. In HICSS ’98: Proceedings of the Thirty-First Annual
Hawaii International Conference on System Sciences-Volume 4, page 312,
Washington, DC, USA, 1998. IEEE Computer Society.

[Bar03] Albert-László Barabási. Linked: The new science of networks. J. Artificial
Societies and Social Simulation, 6(2), 2003.

[BCFM00] Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. Specifying
and enforcing access control policies for xml document sources. World Wide
Web, 3(3):139–151, 2000.

185

Bibliography

[BE01] Reinhardt A. Botha and Jan H. P. Eloff. Separation of duties for ac-
cess control enforcement in workflow environments. IBM Systems Journal,
40(3):666–682, 2001.

[BFA99] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. The specification
and enforcement of authorization constraints in workflow management sys-
tems. ACM Trans. Inf. Syst. Secur., 2(1):65–104, 1999.

[BGMG02] Jörg Becker, Marc Gille, Michael Zur Muehlen, and Dr. Marc Gille.
Workflow application architectures: Classification and characteristics of
workflow-based information systems. In in: Fischer, L. (Ed.): Work-
flow Handbook 2002, Future Strategies, Lighthouse Point, FL, pages 39–50,
2002.

[Bib75] Kenneth J. Biba. Integrity considerations for secure computer systems.
technical report mtr-3153, mitre corporation, 1975.

[BN89] Dr. David F.C. Brewer and Dr. Micheal J. Nash. The chinese wall security
policy. Security and Privacy, IEEE Symposium on, 0:206, 1989.

[BS00] E. Barka and R. Sandhu. Framework for role-based delegation models.
In Proceedings of the 16th Annual Computer Security Applications Confer-
ence, pages 168–176, Washington, DC, USA, 2000. IEEE Computer Society.

[BSM04] E. Bertino, A. C. Squicciarini, and D. Mevi. A fine-grained access control
model for web services. In SCC ’04: Proceedings of the 2004 IEEE In-
ternational Conference on Services Computing, pages 33–40, Washington,
DC, USA, 2004. IEEE Computer Society.

[CK06] Jason Crampton and Hemanth Khambhammettu. Delegation in role-based
access control. In Proceedings of the Computer Security - ESORICS 2006,
11th European Symposium on Research in Computer Security, Hamburg,
Germany, September 18-20, 2006, Lecture Notes in Computer Science,
pages 174–191. Springer, 2006.

[CK08a] Jason Crampton and Hemanth Khambhammettu. Delegation and satisfia-
bility in workflow systems. In SACMAT ’08: Proceedings of the 13th ACM
symposium on Access control models and technologies, pages 31–40, New
York, NY, USA, 2008. ACM.

[CK08b] Jason Crampton and Hemanth Khambhammettu. On delegation and work-
flow execution models. In SAC ’08: Proceedings of the 2008 ACM sympo-
sium on Applied computing, pages 2137–2144, New York, NY, USA, 2008.
ACM.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Commun.
ACM, 35(9):75–90, 1992.

186

[CO02] David W. Chadwick and Alexander Otenko. The permis x.509 role based
privilege management infrastructure. In SACMAT ’02: Proceedings of the
seventh ACM symposium on Access control models and technologies, pages
135–140, New York, NY, USA, 2002. ACM.

[Con02] Connie Moore. Common Mistakes in Workflow Implementations, 2002.
Cambridge, MA: Giga Information Group. IdeaByte, RIB-062002-00118.

[CON06] David W. Chadwick, Sassa Otenko, and Tuan-Anh Nguyen. Adding sup-
port to xacml for dynamic delegation of authority in multiple domains. In
Communications and Multimedia Security, 10th IFIP TC-6 TC-11 Inter-
national Conference, CMS 2006, Heraklion, Crete, Greece, October 19-21,
2006, pages 67–86, 2006.

[CON09] David W. Chadwick, Sassa Otenko, and Tuan-Anh Nguyen. Adding sup-
port to xacml for multi-domain user to user dynamic delegation of author-
ity. Int. Journal Information Security, 8(2):137–152, 2009.

[Cra05] Jason Crampton. A reference monitor for workflow systems with con-
strained task execution. In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies, pages 38–47, New
York, NY, USA, 2005. ACM.

[CSBE08] Manuel Clavel, Viviane Silva, Christiano Braga, and Marina Egea. Model-
driven security in practice: An industrial experience. In ECMDA-FA ’08:
Proceedings of the 4th European conference on Model Driven Architecture,
pages 326–337, Berlin, Heidelberg, 2008. Springer-Verlag.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial and mil-
itary computer security policies. Security and Privacy, IEEE Symposium
on, 0:184, 1987.

[Dav93] Thomas H. Davenport. Process Innovation – Reengineering Work through
Information Technology. Harvard Business School Press, 1993.

[Eri08] Erik T. Mueller. Discrete Event Calculus Reasoner Documentation, March
2008. IBM Thomas J. Watson Research Center, P.O. Box 704 Yorktown
Heights, NY 10598,USA.

[FFSF95] Michael A. Cusumano Fernando F. Suarez and Charles H. Fine. An em-
pirical study of flexibility in manufacturing. In Sloan Management Review
Fall, 1995.

[FIS02] Federal Information Security Management Act FISMA. The 2002 Federal
Information Security Management Act (FISMA), May 2002.

[FPP+02] Eric Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan, and Vi-
jay Karamcheti. drbac: Distributed role-based access control for dynamic

187

Bibliography

coalition environments. In ICDCS ’02: Proceedings of the 22 nd Inter-
national Conference on Distributed Computing Systems (ICDCS’02), page
411, Washington, DC, USA, 2002. IEEE Computer Society.

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed nist standard for role-based access
control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

[Gaa08] Khaled Gaaloul. Basic mapping of rights to tasks : Delegation and revoca-
tion in r4egov. Technical report, 6th Framework Programme, Information
Society Technologies, R4eGov, June 2008.

[Gay05] Sébastien Gayral. Access control over Task Delegation in Workflow Man-
agement Systems. Matser thesis, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzer, 2005.

[GC] Khaled Gaaloul and François Charoy. Task delegation based access control
models for workflow systems. In I3E 2009: Proceedings of Software Services
for e-Business and e-Society, 9th IFIP WG 6.1 Conference on e-Business,
e-Services and e-Society, Nancy, France, September 23-25, 2009., volume
305 of IFIP. Springer.

[GCSL07] Khaled Gaaloul, François Charoy, Andreas Schaad, and Hannah Lee. Col-
laboration for human-centric egovernment workflows. In WISE ’07: Pro-
ceedings of the 8th Web Information Systems Engineering 2007, Nancy,
France, Lecture Notes in Computer Science, pages 201–212. Springer, 2007.

[GHS95] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview
of workflow management: from process modeling to workflow automation
infrastructure. Distrib. Parallel Databases, 3(2):119–153, 1995.

[GMC09] Khaled Gaaloul, Philip Miseldine, and François Charoy. Towards proac-
tive policies supporting event-based task delegation. SECURWARE ’09:
Proceedings of the 3rd International Conference on Emerging Security In-
formation, Systems, and Technologies, 0:99–104, 2009.

[GP00] William Golden and Philip Powell. Towards a definition of flexibility: in
search of the holy grail? Omega, 28(4):373–384, August 2000.

[GSFC08] Khaled Gaaloul, Andreas Schaad, Ulrich Flegel, and François Charoy. A
secure task delegation model for workflows. In SECURWARE ’08: Pro-
ceedings of the Second International Conference on Emerging Security In-
formation, Systems and Technologies, pages 10–15, Washington, DC, USA,
2008. IEEE Computer Society.

[GZCG] Khaled Gaaloul, Ehtesham Zahoor, François Charoy, and Claude Godart.
Dynamic authorisation policies for event-based task delegation. In Ad-
vanced Information Systems Engineering, 22nd International Conference,
CAiSE 2010, Hammamet, Tunisia, June 7-9, 2010., pages 135–149.

188

[Han99] Hand de Neville. Bliksem 1.10 user manual, 1999.

[Har04] Shon Harris. CISSP(R) All-in-One Exam Guide, Third Edition. McGraw-
Hill Osborne Media, 2004.

[Hav05] Michael Havey. Essential Business Process Modeling. O’Reilly Media, Inc.,
2005.

[HJPPW01] Asa Hagstrom, Sushil Jajodia, Francesco Parisi-Presicce, and Duminda Wi-
jesekera. Revocations-A Classification. In CSFW ’01: Proceedings of the
14th IEEE workshop on Computer Security Foundations, page 44, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[HK03] Patrick C. K. Hung and Kamalakar Karlapalem. A secure workflow model.
In ACSW Frontiers ’03: Proceedings of the Australasian information se-
curity workshop conference on ACSW frontiers, pages 33–41. Australian
Computer Society, Inc., 2003.

[IPS89] IPS, Information Processing Systems - Open System Interconnection - Ba-
sic Reference Model. Part 2: Security Architecture, 1989.

[ITG07] IT Governance Institute ITGI. COBIT 4.1. ISA, 2007.

[KLL09] Ryan K L Ko, Stephen S G Lee, and Eng Wah Lee. Business process
management (bpm) standards: A survey. In To appear on Business Pro-
cess Management journal Vol. 15 No. 5, 2009. Emerald Group Publishing
Limited. Accepted on 2 Dec 2008, 2009.

[KS89] Robert Kowalski and Marek Sergot. A logic-based calculus of events. pages
23–51, 1989.

[Law97] Peter Lawrence, editor. Workflow handbook 1997. John Wiley & Sons,
Inc., New York, NY, USA, 1997.

[LB73] Len Lapadula and D. Elliott Bell. Secure computer systems: A mathemat-
ical model. technical report mtr 2547 vol. 1, mitre corporation, bedford,
massachusetts., 1973.

[Moe07] Robert Moeller. Coso enterprise risk management: understanding the new
integrated erm framework. John Wiley & Sons, Inc., New York, NY, USA,
2007.

[Mue99] Michael Zur Muehlen. Resource modeling in workflow applications. In
Proceedings of the 1999 Workflow Management Conference (WFM99, pages
137–153, 1999.

[Mue06] Erik T. Mueller. Commonsense Reasoning. Morgan Kaufmann Publishers
Inc., CA, USA, 2006.

189

Bibliography

[NoC95] National Institute of Standards NIST and Technology Technology Admin-
istration U.S. Department of Commerce. An Introduction to Computer
Security: The NIST Handbook, October 1995.

[OMG04] Object Management Group OMG. UML 2.0 Superstructure Specification”,
available at: ”http://www.omg.org/cgibin/ doc?ptc/2004-10-02., 2004.

[OMG06] OMG, Object Management Group. Business Process Modeling Notation
Specification, March 2006. http://wwww.bpmn.org/.

[OMG07] Object Management Group OMG. Business Process Modeling Notation
(BPMN)”, available at: ”http://www.bpmn.org/”, 2007.

[OvdRG98] Martin S. Olivier, Reind P. van de Riet, and Ehud Gudes. Specifying
application-level security in workflow systems. In DEXA ’98: Proceedings
of the 9th International Workshop on Database and Expert Systems Ap-
plications, pages 346–351, Washington, DC, USA, 1998. IEEE Computer
Society.

[PP06] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Computing
(4th Edition). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[R4e06] Technical Annex R4eGov. Towards e-administration in the large, March
2006. http://www.r4egov.eu/.

[RvdAHE05] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. Hofstede, and David
Edmond. Workflow resource patterns: Identification, representation and
tool support. In Proceedings of the Advanced Information Systems En-
gineering, 17th International Conference, CAiSE 2005, Porto, Portugal,
pages 216–232, 2005.

[RvdAHW06] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. Hofstede, and Petia
Wohed. On the suitability of uml 2.0 activity diagrams for business process
modelling. In APCCM ’06: Proceedings of the 3rd Asia-Pacific conference
on Conceptual modelling, pages 95–104, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38–
47, 1996.

[Sch] Andreas Schaad. An extended analysis of delegating obligations. In
Research Directions in Data and Applications Security XVIII, IFIP
TC11/WG 11.3 Eighteenth Annual Conference on Data and Applications
Security, July 25-28, 2004, Sitges, Catalonia, Spain, pages 49–64. Kluwer.

[Sch92] August-Wilhelm Scheer. Architecture of Integrated Information Systems:
Foundations of Enterprise Modelling. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA, 1992.

190

http://wwww.bpmn.org/
http://www.r4egov.eu/

[Sch03] Andreas Schaad. A Framework for Organisational Control Principles.
Ph.D. thesis, The University of York, England, 2003.

[Sch07] Andreas Schaad. A framework for evidence lifecycle management. In Web
Information Systems Engineering, Proceedings of the WISE 2007 Inter-
national Workshops, Nancy, France, Lecture Notes in Computer Science,
pages 191–200. Springer, 2007.

[SGN] Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Model-
ing control objectives for business process compliance. In Business Process
Management, 5th International Conference, BPM 2007, Brisbane, Aus-
tralia, year = 2007, pages = 149-164, publisher = Springer, series = Lec-
ture Notes in Computer Science.

[SIP07] Mohammed Ashiqur Rahaman Sarath Indrakanti, Khaled Gaaloul and
Henrik Plate. Prototype extended collaborative workflow tool. Techni-
cal report, 6th Framework Programme, Information Society Technologies,
R4eGov, March 2007.

[SRS+05] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo. Policy
administration control and delegation using xacml and delegent. In GRID
’05: Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing, pages 49–54, Washington, DC, USA, 2005. IEEE Computer
Society.

[SS93] Paul R. Smith and Richard Sarfaty. Creating a strategic plan for configu-
ration management using Computer Aided Software Engineering (CASE)
tool. Paper For 1993 National DOE/Contractors and Facilities CAD/CAE
User’s Group, 1993.

[STY07] Wei She, Bhavani Thuraisingham, and I-Ling Yen. Delegation-based secu-
rity model for web services. High-Assurance Systems Engineering, IEEE
International Symposium on, 0:82–91, 2007.

[TH99] Jui Chiew Tan and Patrick T. Harker. Designing workflow coordination:
Centralized versus market-based mechanisms. Information System Re-
search, 10(4):328–342, 1999.

[Tho97] Roshan K. Thomas. Team-based access control (tmac): a primitive for
applying role-based access controls in collaborative environments. In RBAC
’97: Proceedings of the second ACM workshop on Role-based access control,
pages 13–19, New York, NY, USA, 1997. ACM.

[Tim05] Tim Moses. eXtensible Access Control Markup Language (XACML) Ver-
sion 2.0, 2005. Committee specification, OASIS.

[Ton03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,

191

Bibliography

Satish Thatte, Ivana Trickovic, Sanjiva Weerawarana. Business Process
Execution Language for Web Services Version 1.1, 2003. IBM, Microsoft.

[TS98] Roshan K. Thomas and Ravi S. Sandhu. Task-based authorization controls
(tbac): A family of models for active and enterprise-oriented autorization
management. In Proceedings of the IFIP TC11 WG11.3 Eleventh Inter-
national Conference on Database Securty XI, pages 166–181, London, UK,
UK, 1998. Chapman & Hall, Ltd.

[Ven03] Karin Venter. A Model for the Dynamic Delegation of Authorisation Rights
in a Secure Workflow Management System. Ph.D. thesis, Faculty of Science
at the Rand Afrikaans University, Johannesburg, South Africa, May 2003.

[Wes07] Mathias Weske. Business Process Management: Concepts, Languages, Ar-
chitectures. Springer-Verlag, 2007.

[WFM99] WFMC, The Workflow Management Coalition. Workflow Management
Coalition Terminology and Glossary, 1999. Document Number WFMC-
TC-1011.

[WFM01] WFMC, The Workflow Management Coalition. Workflow Security Consid-
erations, 2001. White Paper, Document Number WFMC-TC-1019.

[WFM05] WFMC, The Workflow Management Coalition. Process Definition Interface
: XML Process Definition Language, 2005. http://www.wfmc.org/.

[WGHS99] Mathias Weske, Thomas Goesmann, Roland Holten, and Rüdiger Striemer.
A reference model for workflow application development processes. SIG-
SOFT Softw. Eng. Notes, 24(2):1–10, 1999.

[WKB07] Jacques Wainer, Akhil Kumar, and Paulo Barthelmess. Dw-rbac: A formal
security model of delegation and revocation in workflow systems. Informa-
tion System, 32(3):365–384, 2007.

[XLfC] Li Zhang Xu Liao and Stephen Chi fai Chan. A task-oriented access con-
trol model for wfms. pages 168–177. Information Security Practice and
Experience, First International Conference, ISPEC 2005, Singapore, April
11-14, 2005, Proceedings, Springer, 2005.

[ZAC03] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A rule-based frame-
work for role-based delegation and revocation. ACM Trans. Information
System Security, 6(3):404–441, 2003.

[ZM04a] Michael Zur Muehlen. Organizational management in workflow applica-
tions – issues and perspectives. Inf. Technol. and Management, 5(3-4):271–
291, 2004.

192

http://www.wfmc.org/

[ZM04b] Michael Zur Muehlen. Workflow-based Process Controlling. Foundation,
Design, and Application of workflow-driven Process Information Systems.
Logos Verlag Berlin, 2004.

[ZOS03] Xinwen Zhang, Sejong Oh, and Ravi Sandhu. PBDM: a flexible delegation
model in RBAC. In SACMAT ’03: Proceedings of the eighth ACM sympo-
sium on Access control models and technologies, pages 149–157, New York,
NY, USA, 2003. ACM Press.

[ZPG10] Ehtesham Zahoor, Olivier Perrin, and Claude Godart. A declarative ap-
proach to timed-properties aware Web services composition, INRIA inter-
nal report 00455405, February 2010.

193

	Couverture
	Résumé
	Abstract
	Remerciements
	Dédicace
	Contents
	Résumé de la Thèse
	Introduction
	Background and Motivation
	Thesis Objectives
	Thesis Structure

	Context and Problematic
	Introduction
	Context: Organisational Management in Workflow Systems
	Resource management in the workflow life cycle
	Organisational resources analysis
	Definition of assignment and synchronisation policies
	Resource integration
	Organisational maintenance at runtime
	Summary

	Problem Statement : How to ensure a secure task delegation in workflow systems ?
	Motivating example : e-Government workflow scenario
	Problem statements

	Principles, Approach and Thesis Contributions
	Principles
	Our approach
	Contributions
	Published results

	Conclusion

	State of the Art
	Introduction
	Business Processes and Workflows
	Workflow management systems
	Organisational model in WfMS
	Business process management vs. Workflows
	Business process modelling
	Summary

	An Overview of Security Concepts
	The five pillars of information security
	Access control approaches for security policies
	XACML : a policy language
	Summary

	Level of Access Control within Workflows
	Organisational goals
	Secure workflow approaches
	Summary

	Analysis of Delegation in Secure Workflows
	Delegation in workflows
	Delegation in access control models
	Summary

	Conclusion

	Modelling Task Delegation in Workflows
	Introduction
	Motivation Factors for Delegation
	Organisational
	Business process
	Resource
	Link with the case study
	Summary

	Organisational Flexibility in Workflows
	Flexibility constraints
	Organisational flexibility in practice
	Requirements for organisational roles
	Summary

	An Extended Analysis of Delegation in Business Processes
	A workflow model
	Basic task delegation model
	Securing task delegation within a workflow
	Summary

	Modelling Task Delegation for Human-centric Workflows
	Delegation kind
	Delegation of privileges
	Task delegation model
	Negotiation in user-to-user delegation
	Delegation protocol supporting negotiation
	Summary

	Access Control Over Task Delegation in Workflows
	Task execution model
	Task-oriented access control model
	Access control over task delegation using TAC
	Revocation
	Summary

	Conclusion

	Securing Task Delegation in Access Control Systems
	Introduction
	Modelling Task Delegation Using Access Control Systems
	Context for dynamic delegation policies
	Access control framework
	General control process
	Delegation protocols
	Access control enforcement
	Summary

	Event-based Task Delegation Policies
	Problem statement (part I)
	Security requirement for delegation
	A secure framework for task delegation
	Summary

	Integrating Event-based Delegation Policies
	Problem statement (part II)
	Monitoring and securing task delegation
	Modelling task delegation in event calculus
	Building policies for delegation
	Modelling delegation policies in event calculus
	Delegation automation
	Summary

	Conclusion

	Deployment Environment
	Introduction
	The Development Environment
	Project overview
	Collaboration infrastructure

	Delegation for Human-centric Workflows
	Administrative communication layer
	Collaborative workflow runtime
	ACL plugin supporting delegation
	Email-centric task delegation tool

	Delegation Policies Enforcement
	A secure delegation protocol
	Authentication management component
	Authorisation decision component
	Deployment and evaluation

	Conclusion

	Conclusion and Perspectives
	Thesis Summary and Contributions
	Limits and Perspectives

	Discrete Event Calculus Reasoner
	Introduction
	Discrete Event Calculus Reasoner Language
	Sorts
	Formulas
	Options

	Commonsense Reasoning for Task Delegation
	List of Acronyms
	Bibliography

