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Abstract

Mean Field Game (MFG) systems describe equilibrium configurations in differential games with infinitely

many infinitesimal interacting agents. The main question in this thesis is to find learning procedures in

these games and to investigate if they converge to an equilibrium. This thesis is delivered in 4 chapters.

We present in chapter 1, a unified review of different concepts we use throughout the thesis. First,

we give a brief explanation of two subjects, learning in game theory and the model of mean field games.

Second, we present our main contributions to the question of the thesis, that are explained more in

details in its subsequent chapters.

In chapter 2, we introduce a learning procedure, similar to the Fictitious Play [26], for MFGs and

show its convergence when the MFG is potential. Potential MFG were introduced by Lasry and Lions

[74] and are such that the equilibrium can be obtained by minimizing a functional, called the potential.

We can formally show that this class of game is a very natural extension of the potential game model of

Monderer and Shapley [80], defined for finitely many players and finite dimensional strategy spaces.

In chapter 3, we introduce a model of non-atomic anonymous games with the player dependent

action sets; typical examples of this model are first-order mean field games. We propose several learning

procedures based on the fictitious play and the online mirror descent and prove their convergence to

equilibrium under the classical monotonicity condition.

In chapter 4, we consider finite MFGs, i.e. with finite time and finite states. We adopt the framework

introduced by Gomes et al. [55] and study two seemly unexplored subjects. In the first one, we analyze

the convergence of the fictitious play learning procedure, inspired by the results in continuous MFGs, in

chapters 2 and 3. In the second one, we consider the relation of some finite MFGs and continuous first

order MFGs. Namely, given a continuous first order MFG problem and a sequence of refined space/time

grids, we construct a sequence finite MFGs whose solutions admit limits points and every such limit

point solves the continuous first order MFG problem.
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Résumé

Les systèmes de jeux à champ moyen (MFG) décrivent des configurations d’équilibre dans des jeux

différentiels avec un nombre infini d’agents infinitésimaux. L’objectif principal de cette thèse est de

trouver des procédures d’apprentissage dans ces jeux et d’étudier leur convergence vers un équilibre.

Cette thèse se structure autour de 4 chapitres.

Le chapitre 1 présente une revue unifiée des différents concepts que nous utilisons tout au long de

la thèse. Nous donnons en premier lieu une brève explication de l’apprentissage en théorie des jeux et

modèle de jeux à champ moyen. Nous présentons nos principales contributions, qui sont expliquées plus

en détails dans les chapitres suivants.

Le chapitre 2 introduit une procédure d’apprentissage, similaire au ’fictitious play’ [26] pour les MFGs

et montrons sa convergence lorsque le MFG est potentiel. Les MFG potentiels ont été introduits par

Lasry et Lions [74] et sont tels que l’équilibre peut être obtenu en minimisant une fonction, appelée

’potentiel’. Nous pouvons montrer formellement que cette classe de jeu est une extension naturelle du

modèle de jeu potentiel de Monderer et Shapley [80], défini pour un nombre fini de joueurs et d’espaces

de stratégie de dimension finie.

Le chapitre 3 introduit un modèle de jeux anonymes non atomiques avec des jeux d’action dépendants

du joueur. Des exemples typiques de ce modèle sont les jeux de champ à moyen de premier ordre. Nous

proposons plusieurs procédures d’apprentissage basées sur le ’fictitious play’ et le ’online mirror descent’

et prouvons leur convergence vers un équilibre sous la condition de monotonie classique.

Enfin, le chapitre 4, considère les MFG finis, c’est-à-dire des MFGs en temps et avec des états finis.

Nous utilisons le cadre introduit par Gomes et al. [55] en étudiant deux sujets jusqu’à present inexplorés.

Dans le premier, nous analysons la convergence de la procédure d’apprentissage de ’ficitious play’, inspirée

par les résultats des MFG continus, obtenus dans les chapitres 2 et 3. Dans le second, nous considérons

la relation entre certains MFG finis et les MFG continus de premier ordre. Notamment, étant donné un

problème MFG continu de premier ordre et une séquence de grilles spatiales/temporelles raffinées, nous

construisons une séquence MFG finie dont les solutions admettent des points limites où chacun de ces

points limite résout le problème MFG continu de premier ordre.
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Chapter 1

Introduction

In this chapter we briefly introduce the different concepts, notions and models we encounter throughout

the thesis. We first review preliminary game theory frameworks and related notions e.g. finite games,

potential games, non atomic games, monotone games, Nash equilibria, etc. Afterwards, we recall the

question of learning and adaptive schemes in games and review the two most classical procedures, ficti-

tious play and online convex optimisation schemes. We then give an introduction to Mean Field Games

(MFGs) by defining the second and first order ones and then recalling the different regularity notions

for solutions in cases with noise (stochastic and second order) and without noise (deterministic and first

order). At the end of the chapter, a summary of our contributions to the question of learning in mean

field games will be given; those are separately explained in more details in upcoming chapters. In order

to concisely cover all the material, we usually refer the reader to the corresponding references for detailed

explanations and proofs.

1.1 Game theory

Game theory studies situations where there is a conflict of interest on a result which is produced by the

decisions made by many decision makers. The decision-makers (or players) make decisions which yield a

final situation whose desirability is different for every individual. For each player involved in the game,

their actions do not just affect their own utility, they can also affect other players’ pay-offs. Since the

concept is quite general and covers many different problems, many different types of games appear in the

literature. There are differences reflecting various aspects of a game; for example finite versus infinite

number of agents, cooperative (coalition-wise) versus non-cooperative, finite versus infinite set of actions,

complete information and partial information. Some of the surveys and books covering the main topics

in game theory are [93][54][85][84][71].

Let us fix our notation for a few common concepts. We usually use I as the set of players. For every

player i ∈ I the set Xi denotes the set of decisions available to player i. The set of all profiles of decisions

is X =
∏
i∈I Xi. Typical element in Xi and X are denoted respectively by xi and x = (xi)i∈I . For every

profile x ∈ X and every player i ∈ I we write x = (xi,x−i), where xi ∈ Xi, x−i ∈ X−i =
∏
j∈I,j 6=iXj are

respectively the decisions of player i and of its adversaries in the profile x. For every individual i ∈ I, the

desirability of different profiles for player i is modelled by a preference relation on X, that is a complete

order �i on X. A numerical version of this preference is captured by a cost function, ci : X → R, where

the more desirable a profile is for i, the smaller the cost, i.e.

∀ x,x′ ∈ X : ci(x) ≤ ci(x′) if and only if x �i x′.

1



1.1.1 Finite games

We now review the most classical non-cooperative model in game theory, i.e. finite games. Let the set of

players I be finite. For every player i ∈ I, the set of its decisions is of the form Xi = ∆(Ai) that is the

set of all probability measures over a finite set Ai, usually called the set of actions. An arbitrary element

xi ∈ Xi is called a mixed strategy of player i; more specifically, the elements of the action set Ai which

can be regarded as the singular measures in Xi, usually are called pure strategies. The profiles of mixed

and pure strategies are denoted respectively by X =
∏
i∈I Xi and A =

∏
i∈I Ai. Every cost function

ci : A→ R which is defined on the profile of pure actions A, can be extended multi-linearly to the set of

all profiles of mixed strategies X:

∀ x = (xi)i∈I ∈ X : ci(x) =
∑

a=(ai)i∈I∈A

x(a) ci(a),

where x(a) =
∏
i∈I xi(ai), reflecting the fact that players choose their mixed strategies independently.

Definition 1.1.1. A profile of mixed strategies x̃ = (x̃i)i∈I ∈ X is a mixed Nash equilibrium iff

∀i ∈ I : ci(x̃i, x̃−i) = min
x∈Xi

ci(x, x̃−i).

The mixed Nash equilibrium x̃ = (x̃i)i∈I is called a pure Nash equilibrium if for all i ∈ I, xi ∈ Ai.

The notion of Nash equilibrium can be regarded as a stable profile where no player can be better-off

by individually deviating from their original decision. The existence of mixed equilibrium in finite games

is a classical theorem proved by Nash (1951) by using the Brouwer’s fixed point theorem:

Theorem 1.1.1 (Nash 1951 [81]). There is at least one mixed Nash equilibrium in every finite game.

The existence of an equilibrium profile can be seen as an existence of a fixed point for a map related

to the game. For every player i ∈ I the best reply of player i to a profile x ∈ X denoting by BR(i,x), is

defined as

BR(i,x) = argminx∈Xici(x,x−i).

The best reply correspondence BR : X 7→ X is obtained as the product of individual best response sets

BR(x) =
∏
i∈I BR(i,x). By definition x̃ is a Nash equilibrium if and only if it is a fixed point of the

best reply correspondence, i.e. if x̃ ∈ BR(x̃).

Finite potential games. Finite potential games were defined by Monderer and Shapley [80] as those

games whose the players face to an identical cost quantity called the potential. In these games, the

existence of a pure equilibrium can be obtained by finding a minimiser of the potential.

Definition 1.1.2. A finite game G is a potential game if there is a function φ : A→ R such that

∀ i ∈ I, ai, a′i ∈ Ai,a−i ∈ A−i : ci(ai,a−i)− ci(a′i,a−i) = φ(ai,a−i)− φ(a′i,a−i).

The function φ is called a potential of the game.

A game is potential if and only if the cost functions are in the form

∀i ∈ I, ∀a = (ai,a−i) ∈ A : ci(ai,a−i) = G(ai,a−i) + Fi(a−i) + fi(ai).

This game is a potential game with φ(a) = G(a) +
∑
i∈I fi(ai).

2



1.1.2 Static non atomic games

Non atomic games represent the strategic interactions with an infinite number of small deciders. These

games are called non atomic when every individual decision is negligible in the overall result and only

the aggregative behaviour of non-zero measure sets of players can change the pay-offs. The applications

are numerous, from traffic, internet routing, voting, etc. This branch of the literature was started by the

seminal works of Aumann [11][12], Schmeidler [89] and Mas-Colell [76]. We try to summarize the most

important and fundamental models and results in this topic.

Finite action set. We start by the model of Schmeidler 1972 ([89]) which is a starting point in the

literature. This is a game model with an infinite number of players where decisions are mixed strategies

over a finite set of actions. The set of players is the closed interval I = [0, 1] endowed with the Lebesgue

measure λ. For every i ∈ I the decision set of player i is Xi = ∆(A) where A is a finite set, usually

called the set of actions. The set of all profiles is ∆(A)I or equivalently all functions Ψ : I → ∆(A). We

shall work with a subset of profile of decisions, consisting of all measurable maps Ψ : I → ∆(A), where

the measurability is with respect to the Borel σ−fields over I and ∆(A). We denote this admissible set

of profiles as A. For every Ψ ∈ A there are measurable functions Ψa : I → [0, 1] for all a ∈ A, such that

Ψ(i) = (Ψa(i))a∈A ∈ ∆(A) and
∑
a∈A

Ψa(i) = 1, for all i ∈ I.

The cost of player i ∈ I facing the profile Ψ is constructed by auxiliary cost functions Ci : A×A → R, i ∈ I
as follows: ci(Ψ) =

∑
a∈A Ψa(i) Ci(a,Ψ).

Definition 1.1.3. A profile Ψ∗ ∈ A is called a Nash equilibrium if

for λ-almost every i ∈ I : supp(Ψ∗(i)) ⊆ argmina∈A Ci(a,Ψ∗),

where supp(m) represents the support of measure m.

Theorem 1.1.2 (Schmeidler [89]). Let A be endowed with the L1-weak topology. If the auxiliary cost

functions Ci (i ∈ I) are continuous in Ψ, then there is at least one mixed Nash equilibrium. In addition,

if Ci’s depend on Ψ only through (
∫
I

Ψa(i) dλ(i))a∈A then there is an equilibrium with pure actions for

each player.

Infinite action set. In contrast to the approach of Schmeidler, the Mas-Colell model [76] allows to

have players with infinite action spaces, e.g. positions or trajectories in Rd.
Before we start the model, let us fix a few notations. We call a tuple (S,FS) a measure space if FS be

a σ−field over set S. The probability measures over S respect to the σ−field FS , are denoted by PFS (S)
or for simplicity P(S) when FS is known; we use also the notation ∆(S) as the probability measures over

S, when S is finite and FS = 2S . For every measurable map ρ : (S,FS)→ (W,FW ), we can push-forward

the measures over S to measures over W . That is for every µ ∈ P(S), the push-forward of µ by ρ is an

element in P(W ) denoted by ρ]µ, and is defined by:

∀B ∈ FW : ρ]µ(B) = µ(ρ−1(B)).

Let us define the model of the game with continuum of players and infinite set of actions. Let

(X ,FX ), (Y,FY) be two measure spaces representing the set of types and actions of players. There is

a fixed given distribution µ ∈ P(X ) capturing the distribution of types of players. Each player with

type x ∈ X choosing y ∈ Y has to pay a cost equal to φ(x, y, ν) where ν ∈ P(Y) represents the induced

measure of actions chosen by all players. The definition of the Nash equilibria is as follows.

3



Definition 1.1.4. A measure ρ ∈ P(X × Y) is called a Nash equilibrium if πX ]ρ = µ and

ρ( { (x, y) ∈ X × Y | y ∈ argminz∈Yφ(x, z, ν) } ) = 1,

where ν = πY]ρ.

The existence of equilibria for compact metric X ,Y and continuous φ is a direct application of

Kakutani’s fixed point theorem (see for example [24], section 2). The continuity condition on φ can be

relaxed in an extent, which covers the cost functions depending on the density of ν; on a series of papers,

Blanchet, Carlier [23][24][25] provided an approach inspired by optimal transport theory, implying a full

characterisation of such equilibria, and convergent numerical computation schemes.

1.1.3 Monotone games

Inspired by the notion of maximal monotone operators, the so-called monotonicity condition in terms of

the cost functions was first defined by Rosen [88] under the terminology of the diagonal strict concavity

condition. This notion, usually yielding to uniqueness of a Nash equilibrium, has been used afterwards in

many games with different terminologies; Lasry, Lions [72][73] in mean field games dealt with monotone

couplings; Hofbauer, Sandholm [65] considered population games with monotone costs called stable

games; Blanchet, Carlier [24] worked in the framework of games with continuum of players and actions

sets, etc.

Let us illustrate the idea in a game with finitely many players. Let the set of players I be finite and

(ci)i∈I be the cost functions. For every player i, denote a convex compact set Xi ⊆ Rd as the set of

decisions of i. Let for every i ∈ I, the cost function ci(xi;x−i) be C1 with respect to the i−th variable

xi, and denote

∀ x = (xi;x−i) ∈ X : ∇xici(x) = vi(x).

We denote v(x) = (vi(x))i∈I and for all z = (zi; z−i) ∈ X we define:

〈v(x), z〉 =
∑
i∈I
〈vi(x), zi〉.

With this formulation, the Nash equilibria have a variational representation.

Proposition 1.1.1. If the profile x∗ ∈ X is an equilibrium then:

∀ x ∈ X : 〈v(x∗),x− x∗〉 ≥ 0.

Proof. By definition, it is sufficient to prove that for every i ∈ I, we have

∀ xi ∈ Xi : 〈vi(x∗), xi − x∗i 〉 ≥ 0.

Set xλ = (λxi + (1− λ)x∗i ,x∗−i) for λ ∈ [0, 1]. Since x∗ is an equilibrium, we have ci(x∗) ≤ ci(xλ). So

0 ≤ lim
λ→0

ci(xλ)− ci(x∗)
λ

= 〈vi(x∗), xi − x∗i 〉.

Definition 1.1.5. A finite game with differentiable cost function (ci)i∈I is called monotone if

∀ x,x′ ∈ X : 〈v(x)− v(x′),x− x′〉 ≥ 0,

and it is called strictly monotone if the above inequality holds strictly for x 6= x′.
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The monotonicity condition gives another characterization of the equilibria.

Theorem 1.1.3. For a monotone game:

1. a profile x∗ ∈ X is an equilibrium if and only if:

∀ x ∈ X : 〈v(x),x− x∗〉 ≥ 0, (1.1)

2. if the game is strictly monotone, then the equilibrium x∗ ∈ X is unique.

Proof. If x∗ is an equilibrium, by Proposition 1.1.1 and monotonicity definition 1.1.5, we have

∀ x ∈ X : 〈v(x),x− x∗〉 ≥ 〈v(x∗),x− x∗〉 ≥ 0.

Conversely, suppose (1.1) hold for x∗. Set x = (xi,x∗−i) for an arbitrary xi ∈ Xi. By the mean value

theorem we have for some λ ∈ (0, 1) and zi = λxi + (1− λ)x∗i ,

ci(xi,x∗−i)− ci(x∗i ,x∗−i) = 〈vi(zi,x∗−i), xi − x∗i 〉.

Using the fact that xi − x∗i = 1
λ (zi − x∗i ) and (1.1) we can conclude ci(xi,x∗−i) ≥ ci(x∗i ,x∗−i); this means

x∗ is an equilibrium since i ∈ I and xi ∈ Xi were arbitrary.

For the second statement, suppose the game is strictly monotone and there are two equilibriums

x∗, x̃∗. We have

〈v(x∗)− v(x̃∗),x∗ − x̃∗〉 = 〈v(x∗),x∗ − x̃∗〉+ 〈v(x̃∗), x̃∗ − x∗〉 ≤ 0,

by Proposition 1.1.1. Hence x∗ = x̃∗ by strict monotonicity condition.

We refer to [65][77] for more properties of monotone games. The inequality (1.1) informally says, for

every profile x ∈ X if we move slightly in the direction of v(x) we get closer to the equilibrium, even

without knowing where it is located. Hofbauer, Sandholm [65] proved that several dynamics in strict

monotone population games converge to the set of Nash equilibria. Mertikopoulos [77] applied the mirror

descent dynamics to monotone games and proved convergence to Nash equilibria.

1.2 Learning schemes in games

After the definition of various game frameworks and corresponding equilibria, the question of formation

of an equilibrium arises naturally. Actually, it is unreasonable to assume that all the players coordinate

their strategies to an equilibrium. The situation gets worse as the game becomes more complex, with a

large set of players and a large set of actions. We refer to [53][44][94] for an overview of different learning

procedures in games.

Fictitious play. Here we review a classical learning procedure in games called Fictitious Play (FP). It

was introduced by Brown [26] in the context of 2−players zero-sum games. Convergence towards Nash

equilibria has been proven in the case of 2 × 2 games [78], zero-sum games [87], potential games [79],

etc. The relation between the discrete procedure of fictitious play and best response dynamics has been

investigated using stochastic approximation techniques, see Benäım, Hofbauer and Sorin [19][20].

Suppose we have a finite game with set of players I. Let for every player i ∈ I, Ai be the finite set of

pure actions and Xi = ∆(Ai) the set of decisions (or mixed strategies). The cost functions ci are defined

on profiles
∏
i∈I Ai and extended multi-linearly to the set of mixed strategies

∏
i∈I Xi.
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Suppose the game is played repeatedly, and at every round, the action chosen by a player is a best

response with respect to the empirical average of actions of adversaries at previous rounds. More formally,

let the action played by the player i ∈ I at round n be denoted by ani ∈ Ai, and āni ∈ Xi be the empirical

average of actions up to round n. Then the fictitious play scheme reads as follows: for n = 1, 2, . . ..

(i) an+1
i ∈ BR(i, ān−i) = argmina∈Aici(a, ā

n
−i), for every i ∈ I,

(ii) ān+1
i = 1

n+1
∑n+1
k=1 a

k
i , for every i ∈ I,

(iii) ān+1 =
∏
i∈I ā

n+1
i ,

(1.2)

where
∏
i∈I denotes the Cartesian product. The main question in fictitious play is whether the empirical

average ān (or realized actions an) converges to the set of Nash equilibria or not. This question is

answered in the case of finite potential games by Monderer and Shapley [79]. Let us give a sketch of

their proof; their approach will give an idea for some of our arguments in the case of mean field games.

Theorem 1.2.1 (Monderer, Shapley [79]). Let {ān}n∈N be constructed by a fictitious play scheme pro-

posed in (1.2). If the game is potential, then limn→∞ d(ān, NE) = 0, where NE is the set of Nash

equilibria.

Sketch of the proof. Let φ be a potential of the game. By definition of average profiles

ān+1 = (ān+1
i )i∈I =

(
1

n+ 1(an+1
i − āni ) + āni

)
i∈I

and by multi-linearity of φ, we have

φ(ān+1)− φ(ān) = 1
n+ 1

(∑
i∈I

ci(an+1
i , ān−i)− ci(āni , ān−i)

)
+ Kn

(n+ 1)2 .

The quantities {Kn}n∈N are uniformly bounded, i.e. there is K > 0 such that |Kn| < K for all n ∈ N.

If we denote

bn =
∑
i∈I

ci(āni , ān−i)− ci(an+1
i , ān−i), n ∈ N,

then bn ≥ 0, since an+1
i ∈ argmina∈Aici(a, ā

n
−i) for all i ∈ I. Writing

φ(ān+1)− φ(ān) = −bn/(n+ 1) +Kn/(n+ 1)2,

and summing up over all n ∈ N gives,∑
n∈N

bn/(n+ 1) =
∑
n∈N

φ(ān)− φ(ān+1) +
∑
n∈N

Kn/(n+ 1)2 < +∞.

The boundedness of the first sum comes from the boundedness of the potential function and the fact that

the telescopic terms cancel each other consecutively; the second sum is finite since Kn’s are uniformly

bounded. We can deduce from
∑
n∈N bn/(n+ 1) < +∞ and positiveness of bn’s that

lim
k→∞

∑k
n=1 bn
k

= 0. (1.3)

We next show that for every ε > 0, for all enough large n, the average profile ān is an ε−equilibrium; it

yields limn→∞ d(ān, NE) = 0. Using the fact that ‖ān − ān+1‖ = O(1/n), we can prove that there is

C > 0 with |bn − bn+1| ≤ C/n, for all n ∈ N. This property with equation (1.3) gives limn→∞ bn = 0.
On the other hand, if ān is not an ε−equilibrium then by definition bn ≥ ε. Thus for all ε > 0, there

exists Nε ∈ N such that for all n > Nε the average profile ān is an ε−equilibrium.
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This summary would be incomplete without recalling the application of stochastic approximation in

convergence of fictitious play schemes. Due to techniques developed by Benäım, Hofbauer and Sorin

[19][20] one can assert that the convergence of best response dynamics implies the convergence of FP.

Their approach for the case of fictitious play is as follows: we can rewrite (1.2) as

(n+ 1)ān+1
i − nāni ∈ BR(i, ān−i) for all i ∈ I,

since an+1
i = (n+ 1)ān+1

i − nāni . Setting ān+1 = (ān+1
i )i∈I it gives us

ān+1 − ān ∈ 1
n+ 1 (BR(ān)− ān) ,

where BR(ān) =
∏
i∈I BR(i, ān−i). The stochastic approximation method relates the asymptotic be-

haviour of fictitious play scheme to the continuous dynamic ȧ(t) ∈ BR(a(t)) − a(t), called the best

response dynamics. For a survey on stochastic approximation, we refer to [18].

Online learning in convex optimization. Classical optimization problems deal with minimizing

some given function on some given region. In online optimisation problems, one has to optimize over a

flow of functions which are unknown at the beginning and become revealed after each step. The examples

are very frequent; from routing problems to applications in machine learning. For a few surveys on this

topic, we refer to [44][90].

Let us describe this framework more precisely. Let X be the set of choices and S ⊆ XR be the set of

cost functions. Consider a decision maker (DM) who chooses elements in X and pays costs according to

the following scheme: at every step n ∈ N,

• the DM chooses an element xn ∈ X ,

• a cost function fn ∈ S is revealed,

• then the DM has to pay fn(xn).

The goal of the decision maker is to choose ”optimally” the choices xn. The revealed history up to step

n, is defined by Hn = (X × S)n, and a typical element hn in Hn is in the form

hn = (x1, f1, . . . , xn, fn)

where xm, fm represent the choice of the decision maker and revealed cost function at step 1 ≤ m ≤ n.

We should notice that in a complete information scheme, the decision maker at step n+ 1 is completely

aware of past history hn = (x1, f1, . . . , xn, fn). Accordingly, a strategy is a map σ : ∪n∈NHn → X that

gives a rule to the decision maker to choose an element in X at step n+ 1 as a function of known history

up to step n, for all n ∈ N.

One of the criteria of optimality in these classes of problems is defined by Hannan [60] with the notion

of regret: the regret is a map R : ∪n∈NHn → R ∪ {+∞} such that for all n ∈ N:

∀hn = (x1, f1, . . . , xn, fn) ∈ Hn : R(hn) =
n∑

m=1
fm(xm)−min

x∈X

n∑
m=1

fm(x).

The value R(hn) captures the regret of the decision maker of not having chosen a fixed choice for the

steps up to n. This value can be considered as a tool to give a sense to optimal strategies in online

optimization problems.
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Definition 1.2.1. A strategy σ : ∪n∈NHn → X is called a no-regret strategy if for all revelation of cost

functions f1, f2, · · · ∈ S, we have

lim sup
n→∞

R(hn)
n

≤ 0,

where hn = (x1, f1, . . . , xn, fn) ∈ Hn is constructed under the strategy σ on the revealed cost functions,

i.e. xm+1 = σ(hm) for all m ∈ N.

Follow the regularized leader. A series of examples of strategies with relatively low regrets, are the

ones constructed by the Follow the Regularized Leader (FtRL) strategies introduced by Kalai, Vempala

[68].

Here we borrowed from [90]. We suppose that X ⊆ Rd is compact convex and there is L > 0 such

that all cost functions f ∈ S are L−Lipschitz convex functions from X to R. We call a map T : X → R
a strongly convex function, if there is K > 0 such that for all x, y ∈ X , λ ∈ [0, 1]:

T (λx+ (1− λ)y) ≤ λT (x) + (1− λ)T (y)−Kλ(1− λ)‖x− y‖2.

Definition 1.2.2. Let T : X → R be strongly convex and {εn}n∈N be a sequence of positive numbers.

The strategy σ : ∪n∈NHn → X defined with

σ(hn) ∈ argminx∈X
n∑

m=1
fm(x) + 1

εn
T (x), for n ∈ N, (1.4)

is called a Follow the Regularised Leader (FtRL) procedure.

The reason for this name is as follows: suppose each element x ∈ X represents an expert and f(x)
the cost of obeying the expert x while the cost function is f . At each round the decision maker has to

choose which expert to follow. So the equation (1.4) describes that the decision maker has followed the

best expert in performance up to the current round, regularized with a function T . The following lemma

gives an estimation of the regret imposed by FtRL procedure.

Lemma 1.2.1. Let σ : ∪n∈NHn → X be a FtRL strategy defined in (1.4) with εn = ε for all n ∈ N. For

every sequence of histories {hn}n∈N, hn ∈ Hn with

hn = (x1, f1, . . . , xn, fn), xn+1 = σ(hn), for all n ∈ N,

we have

R(hn) ≤ 1
ε
T (x1) +

n∑
m=2

fm(xm)− fm(xm+1). (1.5)

Example 1.2.1. Let X ⊆ Rd be bounded, convex, closed and the cost functions be of the form

fn(x) = 〈zn, x〉 for some zn ∈ Rd.

Fix N ∈ N. If T (x) = 1
2‖x‖

2, εn = ε for n ≤ N , then the FtRL procedure takes the following form:

xn+1 = πX (−ε(z1 + z2 + · · ·+ zn)), or xn+1 = πX (xn − εzn), for n ∈ N, n ≤ N, (1.6)

where πX : Rd → X is the projection on set X . The regret also can be bounded as follows:

R(hn) ≤ 1
ε
T (x1) + ε

n∑
m=1
‖zm‖2.

Hence, if the zn’s are uniformly bounded, one can chooses ε = 1√
N

that makes R(hn) ≤ C
√
N , for all

n ≤ N and for a quantity C > 0 independent of n,N . We can even set {εn}n∈N such that R(hn) ≤ C
√
n,
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for all n ∈ N (see [44], section 2.3). The idea called double trick, is as follows. Set εm = 1√
2k

for

2k ≤ m < 2k+1. For all n with 2k ≤ n < 2k+1 we denote:

hn = ĥ1 ⊕ ĥ2 ⊕ . . .⊕ ĥ2k−1 ⊕ ĥn−2k+1,

where

∀l ∈ N∗ : ĥ2l = (x2l , f2l , . . . , x2l+1−1, f2l+1−1), ĥn−2k+1 = (x2k , f2k , . . . , xn, fn),

and the operator ⊕ is the concatenation of the vectors. Then using the previous result we can write

R(hn) ≤
k−1∑
l=0

R(ĥ2l) +R(ĥn−2k+1) ≤ C
k∑
l=0

√
2l

≤ C√
2− 1

√
2k+1 ≤ C

√
2√

2− 1
√
n.

(1.7)

Thus in this way, for C ′ = C
√

2√
2−1 we have R(hn) ≤ C ′

√
n for all n ∈ N.

As shown in [43][10] the best asymptotic one can propose for regret at step n is in the order of
√
n.

Online mirror descent. The mirror descent methodologies started with the work of Nemirovski and

Yudin [82]. This procedure is a modification of FtRL when the cost functions are convex. Before we give

an exact definition, let us recall a property concerning convex maps.

Remark 1.2.1. Let X ⊆ Rd be an convex set. For every convex Lipschitz function f : X → R and every

x ∈ X there is a non-empty set ∂f(x) ⊆ Rd, called sub-gradient set of f at point x, such that

∀z ∈ ∂f(x), y ∈ X : f(y)− f(x) ≥ 〈z, y − x〉.

Recalling that the cost functions f ∈ S are convex, we can rewrite the relation (1.5) as follows:

R(hn) =
n∑

m=1
fn(xn)−min

x∈X

n∑
m=1

fn(x) ≤ R̃N =
n∑

m=1
〈zn, xn〉 −min

x∈X

n∑
m=1
〈zn, x〉.

with zn ∈ ∂fn(xn). We should note that R̃N is the regret with respect to the functions ln(x) = 〈zn, x〉, so

if we can bound the regret R̃N for linear functions {ln}n∈N we can do so for R(hn) and convex functions

{fn}n∈N. The FtRL procedure for convex cost functions takes the form:

xk+1 ∈ argminx∈X 〈
k∑

n=1
zn, x〉+ 1

ε
T (x), zk+1 ∈ ∂fk+1(xk+1) (1.8)

For k ∈ N. If we set yk = −ε(z1 + z2 + · · ·+ zk), we obtain the definition of online mirror descent:

Definition 1.2.3 (Online mirror descent). Suppose T : X → R is such that the mirror correspondence

QX : Rd 7→ X : QX (yk) := argminx∈X {T (x)− 〈yk, x〉} ,

is well-defined. For an arbitrary (x1, y1) ∈ X × Rd, we say the sequence {(xk, yk)}k∈N is constructed by

an online mirror descent (OMD) scheme if

xk+1 ∈ QX (yk), yk+1 = yk − εzk+1 with zk+1 ∈ ∂fk+1(xk+1). (1.9)
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Online learning in games. The online optimisation framework can be used as a learning procedure

in games. Suppose a game being played repeatedly. So a given player i, at round n ∈ N faces to the cost

function fn = ci(·,xn−i) where xn−i is the action of other players at the current round. Since xn−i is priorly

unknown before player i plays at stage n, this player is dealing with an optimal optimization framework

with its set of decisions Xi as the set of choices X . Consider for example the framework of games with

finitely many players. Let I be the set of players, Xi ⊆ Rd compact convex be the set of decisions of

i ∈ I and X =
∏
i∈I Xi. If all players apply the online mirror descent (1.9), then {xk}k∈N ⊆ X takes

the form

xk+1 ∈ QX(yk), yk+1 = yk − εkv(xk+1) (1.10)

where v(x) = (vi(x))i∈I with vi(x) = ∇xici(x), i ∈ I.

For the seminal applications of online algorithms for games, we refer to the series of works by Hart

and Mas-Colell applying the no-regret algorithms [61][62][63][64]. Foster and Vohra [52] proved the

convergence of a class of online algorithms to the set of correlated equilibria. Mertikopoulos [77] applied

the online mirror descent to monotone type games and prove convergence to Nash equilibria:

Theorem 1.2.2 (Mertikopoulos [77]). Consider a game with finitely many players and strictly monotone

cost functions defined in 1.1.5 with Xi compact convex. Then the sequence {xk}k∈N constructed by an

OMD scheme (1.10) with εk = 1/k, k ∈ N and T strictly convex, converge to the unique equilibrium.

The proof relies on the definition of Fenchel coupling corresponding to map T . The Fenchel coupling

is a function F : X × RNd → R defined as

F (y, x) = T (x) + T ∗(y)− 〈y, x〉, where T ∗(y) = sup
z∈X
〈y, z〉 − T (z).

By definition F (y, x) ≥ 0 and equality occurs if and only if x ∈ QX(y). Setting x∗ as the unique Nash

equilibrium in the game, Mertikopoulos [77] showed that limk→∞ F (yk,x∗) = 0; because T is strictly

convex this is equivalent to say xk → x∗.

1.3 Mean field games

In this thesis, we specifically study learning procedures for Mean Field Games. In this section, we briefly

present the main model of Mean Field Games, technical details and the related literature. Mean Field

Games (MFGs) were introduced by parallel works of Lasry, Lions [72][73][74][75] and Caines, Huang,

Malhamé [67]. The MFGs are symmetric differential games with a continuum of players. As shown by

Cardaliaguet et al. [37], the mean field games are the limit of the symmetric differential games with finite

number of players N , as N tends to infinity. It is called mean field since the players take into account

the role of other players using a mean field measure term, created by the states of the players. The

MFG equilibria satisfy a system of partial differential equations (PDE) of the Hamilton-Jacobi-Bellman

(HJB) type coupled with a Fokker-Planck or continuity equation. For references which studies these two

equations separately, we refer to [46][16][32][51][1] for HJB equations and its numerical analysis; and [49]

for Fokker-Planck equation.

The literature on MFG has been growing fast since its creation. The existence of solutions under

different growth conditions on data, and local/non-local couplings are studied in [58][34][35][38][86].

Probabilistic approach on MFG, dealing with backward SDE is proposed by Carmona and Delarue [42].

Numerical approaches have been developed in [5][3][30][4][1][40][41][21][27]. A discrete analogous of MFG

was proposed by Gomes et al. [55]. For a survey on the MFG, we refer to [33][59].

Let us introduce the MFGs framework precisely. Let T > 0 be finite, as the time horizon of the

game. Set a fixed filtration (Ft)t∈[0,T ] and a constant σ ≥ 0. A typical player chooses a (Ft)−adapted
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random process (αt)t∈[0,T ] with values is Rd, called control. Then its state xt ∈ Rd, t ∈ [0, T ] evolves

by the dynamic dxt = αtdt +
√

2σ dBt, where Bt is an adapted d−dimensional Brownian motion. The

agent aims to minimise the total cost function

E

(∫ T

0

(
L(xt, αt) + f(xt,m(t))

)
dt+ g(xT ,m(T ))

)
, (1.11)

over all adapted controls (αt)t∈[0,T ]. In the cost function, the map m : [0, T ] → P(Rd) describes the

evolving distribution of states of all players. We suppose that the agent is infinitesimal, this means that

the change of its states, does not affect the measures mt and it can assume the map m as given. For

solving the optimal control problem in (1.11), one introduces an auxiliary map called the value function

u : Rd × [0, T ]→ R as:

u(x, s) = inf
(αt)t∈[s,T ]

E

(∫ T

s

(
L(xt, αt) + f(xt,m(t))

)
dt+ g(xT ,m(T ))

)
,

where dxt = αt dt +
√

2σ dBt, xs = x and infimum is taken over all adapted controls (αt)t∈[s,T ]. The

value function satisfies the dynamic programming relation i.e. for all s ∈ [0, T ) and ε ∈ [0, T − s] we

have:

u(x, s) = inf
(αt)t∈[s,s+ε]

E
(∫ s+ε

s

(
L(xt, αt) + f(xt,m(t))

)
dt+ u(x(s+ ε), s+ ε)

)
.

We can deduce from the dynamic programming relation that the value function satisfies the Hamilton-

Jacobi-Bellman (HJB) equation:

− ∂tu− σ∆u+H(x,∇u(x, t)) = f(x,m(t)) with boundery condition u(T, x) = g(x,m(T )), (1.12)

where the Hamiltonian H : Rd × Rd → R is defined by

H(x, p) = L∗(x,−p), with L∗(x, p) = max
v∈Rd

〈v, p〉 − L(x, v).

Under suitable assumptions, the value function u corresponding to the variational problem (1.11), is the

only solution satisfying the HJB equation (1.12). We can obtain the optimal control of problem (1.11)

as a function of the value function by α(x, t) = −DpH(x,∇u(x, t)), where by ∇ we usually mean the

derivative with respect to the input x.

Up to now, the evolving repartition of players m : [0, T ]→ P(Rd) appears in the cost function just as

an input. In the case of equilibrium, the distributions (m(t))t∈[0,T ] are sustainable if they are produced

by the optimal behaviours of the players. For a given m0 ∈ P(Rd) as an initial distribution of initial

states, let (Xt)t∈[0,T ] be the process solution of the following stochastic differential equation

dXt = −DpH(Xt,∇u(Xt, t)) dt+
√

2σ dBt, L(X0) = m0.

where for every random variable Y,L(Y ) represents the law of Y on R. If m(t) = L(Xt), then m(t) has

a density (denoting by m(x, t)) that solves the Fokker-Planck equation:

∂tm− σ∆m− div(m(x, t) DpH(x,∇u(x, t))) = 0.

Hence the equilibrium in MFG is captured by all couples (u,m) (usually called the MFG solution)

satisfying the coupled HJB and Fokker-Planck with suitable boundary conditions:
(i) − ∂tu− σ∆u+H(x,∇u(x, t)) = f(x,m(t))

(ii) ∂tm− σ∆m− div(mDpH(x,∇u)) = 0

m(0) = m0, u(x, T ) = g(x,m(T )).

(1.13)
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We will make more precise later in what different senses (weak or strong) the solutions satisfy the MFG

equations (1.13). In contrast to the existence of classical solutions in the stochastic case (σ 6= 0 and called

second order), the deterministic case (σ = 0 and first order) requires defining a more general notion of

solution. We will explain these two different cases in later subchapters.

The reasonings for existence of solution satisfying MFG system (1.13) are through a fixed point

argument. Informally, the idea is as follows. For an evolving distribution µ : [0, T ]→ P(Rd) let uµ be a

solution of HJB equation

−∂tu− σ∆u+H(x,∇u(x, t)) = f(x, µ(t)), u(T, x) = g(x, µ(T )).

Then, set Λ(µ) = mµ where mµ : [0, T ]→ P(Rd) is a solution of the continuity equation

∂tm− σ∆m− div(m(x, t) DpH(x,∇uµ)) = 0, m(0) = m0.

So the existence of MFG solution is equivalent to find a fixed point µ for the map Λ, i.e. Λ(µ) = µ.

For the fixed point arguments, we first need to propose a compact set Z ⊆ P(Rd)[0,T ] and ensuring that

Λ(Z) ⊆ Z and Λ : Z → Z is continuous. This is where the technicalities concerning HJB and continuity

solutions come into the argument.

1.3.1 Assumptions on data

The existence of solutions are ensured under assumptions on couplings f, g and initial measure m0. Let

C2,1(Rd × [0, T ],R) denotes the set of functions h(x, t) twice derivable in x and once derivable in t,

W 1,∞(Rd × [0, T ],R) denotes the Sobolev space of functions with bounded weak derivatives, L∞(Rd ×
[0, T ],R) the set of measurable functions with bounded essential supremum. Let P1(Rd) be the set of all

probability distributions with bounded first order moment, i.e.

P1(Rd) =
{
m ∈ P(Rd) |

∫
Rd
‖x‖ dm(x) < +∞

}
.

The set P1(Rd) is equipped with Kantorovitch-Rubinstein metric d1 defined as

d1(m1,m2) = sup
f :Rd→R, 1-Lipschitz

∫
Rd
f(x) d(m1 −m2)(x).

Let f : Rd × P1(Rd)→ C2(Rd), g : Rd × P1(Rd)→ C3(Rd) be Lipschitz continuous and

sup
m∈P1(Rd)

‖f(·,m)‖C2 + ‖g(·,m)‖C3 < +∞. (1.14)

Here we mean by ‖h‖Ck , for all functions h ∈ Ck(Rd,R), the quantity ‖h‖Ck = supx
∑k
l=0 ‖Dlh(x)‖. For

the Hamiltonian H : Rd × Rd → R (with H(x, p) = L∗(x,−p)), we assume

H(x, ·) : Rd → R is twice differentiable for all x ∈ Rd, (1.15)

and there exists C > 0 such that

C−1Id ≤ DppH(x, p) ≤ CId, 〈DxH(x, p), p〉 ≥ −C(1 + ‖p‖2). (1.16)

for all (x, p) ∈ Rd×Rd. Let us recall the notation DvL = Lv and in the same way for Lx, Hx, Hp, fx, gx.

The initial distribution m0 ∈ P(Rd) has a smooth density with compact support, which still is denoted

with m0. The couplings f, g are called monotone if for all m,m′ ∈ P(Rd):∫
Td

(f(x,m)− f(x,m′))d(m−m′)(x) ≥ 0,
∫
Td

(g(x,m)− g(x,m′))d(m−m′)(x) ≥ 0. (1.17)
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1.3.2 Second order

The main theorem concerning second order MFGs is the following:

Theorem 1.3.1. Under assumptions (1.14)(1.15)(1.16) and σ > 0, the system (1.13) has a classical

solution u,m ∈ C2,1(Rd × [0, T ],R) such that

∀(x, t) ∈ Rd × [0, T ] : m(x, t) ≥ 0,
∫
Rd
m(z, t) dz = 1.

Moreover, this solution is unique if the couplings f, g are monotone (1.17).

It can be proved that there exists a C > 0 depending on the constants of the data, such that for

Z =
{
µ : [0, T ]→ P(Rd) | ∀t, s ∈ [0, T ] :

∫
Rd
‖x‖2dµ(x, t) ≤ C, d1(µ(t), µ(s)) ≤ C

√
|t− s|

}
we know Λ : Z → Z is continuous. The continuity of map Λ relies on estimation bounds for solutions

of parabolic equations of Hamilton-Jacobi and Fokker-Planck type. Then, the rest of the argument is to

use Schauder fixed point theorem implying a fixed point for map Λ. For more details, we refer to [33],

section 3.

1.3.3 First order

Here we review the notions around the first order mean field game solutions, from the viscosity solutions

of HJB equation to the weak solutions of continuity equation. The main theorem is the following:

Theorem 1.3.2 (Lasry, Lions [74]). Under assumptions (1.14)(1.15)(1.16), there exist u ∈W 1,∞(Rd ×
[0, T ],R) and m ∈ L∞(Rd × [0, T ],R) such that (u,m) satisfies the first order MFG system

(i) − ∂tu+H(x,∇u(x, t))− f(x,m(t)) = 0

(ii) ∂tm− div(mDpH(x,∇u)) = 0

m(0) = m0, u(x, T ) = g(x,m(T ))

for a.e. (x, t) ∈ Rd × [0, T ] : m(x, t) ≥ 0, and

∫
Rd
m(z, t) dz = 1.

(1.18)

in weak sense, i.e. u solves (i) in viscosity sense and m solves (ii) in distribution sense.

We will give the definition of viscosity solution later in definition 1.3.2. We say m satisfies (ii)(1.18)

in distribution sense, if for all φ ∈ C∞c (Rd × [0, T ),R) we have∫
Rd
φ(x, 0)m0(x) dx+

∫ T

0

∫
Rd

(∂tφ(x, t)− 〈∇xφ(x, t), DpH(x,∇u(x, t))〉)m(x, t) dx = 0. (1.19)

Theorem 1.3.2 uses the Schauder fixed point theorem by using convergence results for semi-concave

functions. In the proof the crucial point is that if (uk)k∈N, u ∈ C(Rd × [0, T ],R) are uniformly semi-

concave (the definition will be given later), if uk → u locally uniformly, then Duk(x, t) → Du(x, t) for

almost every (x, t) ∈ Rd × [0, T ]. The semi-concave viscosity solution u usually lacks the C1 regularity

and is differentiable only almost everywhere and one of the main challenge for system (ii)(1.18), is to

show that the weak solution m, that satisfies (1.19), is indeed unique.

Semi-concave functions. This property is crucial for the value functions coming from the determinis-

tic optimal control problems (that we will see in (1.20)). The locally uniform convergence of semi-concave

functions yields the convergence of derivatives almost everywhere. Look at [32] chapter 2 for the prop-

erties of semi-concave functions.
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Definition 1.3.1. Let S ⊆ Rd be convex. We say that a function u : S → R is semi-concave with linear

modulus if there is C > 0 such that for all x, y ∈ S:

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ Cλ(1− λ)‖x− y‖2.

The function u is semi-convex if −u is semi-concave.

We call the maps (uk)k∈N uniformly semi-concave, if the coefficient C > 0 in above definition, is

common for all of these maps.

Theorem 1.3.3 ([32] Theorem 2.1.7, Theorem 3.3.3). Suppose (uk)k∈N, u ∈ C(Rd × [0, T ],R) are uni-

formly semi-concave, then

1. {uk}k∈N, u ∈ C(Rd × [0, T ],R) are locally Lipschitz and hence almost every where differentiable,

2. if uk → u locally uniformly, then Duk(x, t)→ Du(x, t) for almost every (x, t) ∈ Rd × [0, T ].

Viscosity solutions. The weak solutions for linear PDEs are defined by the help of integrals and they

are the solutions that satisfy the equation in distribution sense. In non-linear PDEs instead, it is no

longer possible to extend the notion of solution from strong to weak by passing the derivatives to the

test functions. The idea of viscosity solution is to define a weak version of solutions for non-linear PDEs.

These weak solutions are compatible with classical ones if they are derivable enough.

Viscosity solutions were introduced by Crandall and Lions [47][45] for the HJB type equations. The

idea stemmed from an approach called vanishing viscosity. The HJB equation

−∂tu+H(t, x,∇u(x, t)) = 0,

lacks the existence of global classical solution even for convex smooth Hamiltonians H (see for example

[50], Chapter 3.2). Crandall, Lions [47] instead proved that the limit of solutions {uε}ε>0 of the perturbed

equation

−∂tuε +H(t, x,∇uε(x, t)) = ε∆uε,

as ε→ 0, should satisfy a series of conditions characterizing a viscosity solution. A suitable comparison

principle was proposed as well, implying the uniqueness of such solution.

Definition 1.3.2. We call u ∈ C(Rd× [0, T ],R) a viscosity solution of Hamilton-Jacobi equation −∂tu+
H(t, x,∇u(x, t)) = 0,

• if u is a subsolution, that is for every test function φ ∈ C∞(Rd × [0, T ]) such that u − φ has a

local strict maximum at (t∗, x∗) we have

−∂tφ(x∗, t∗) +H(t∗, x∗,∇φ(x∗, t∗)) ≤ 0.

• if u is a supersolution, that is for every test function φ ∈ C∞(Rd × [0, T ]) such that u− φ has a

local strict minimum at (t∗, x∗) we have

−∂tφ(x∗, t∗) +H(t∗, x∗,∇φ(x∗, t∗)) ≥ 0.

The comparison principle for viscosity solutions plays a key role for the uniqueness. There are a

variety of comparison principles for viscosity solutions which differs on the regularity assumptions on H

and solution u.
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Theorem 1.3.4 ([51] section 5, [32] section 5). Let H : [0, T ]×Rd×Rd → R be continuous and satisfies

∀t, x, p, q : |H(t, x, p)−H(t, x, q)| ≤ K(‖x‖+ 1)‖p− q‖,

for some K > 0. Suppose also that for all R > 0, there exists mR : [0,∞[→ [0,∞[ continuous, non-

decreasing, with mR(0) = 0 such that

∀x, y ∈ B(0, R), p ∈ Rd, t ∈ [0, T ] : |H(t, x, p)−H(t, y, p)| ≤ mR(‖x− y‖) +mR(‖x− y‖‖p‖).

Let u1, u2 ∈ C([0, T ]× Rd) be, respectively, viscosity sub-solution and super-solution of the equation

−ut +H(t, x,∇u(x, t)) = 0, (x, t) ∈ (0, T )× Rd

Then if u1(T, x) ≤ u2(T, x) for all x ∈ Rd then

∀(x, t) ∈ [0, T ]× R : u1(x, t) ≤ u2(x, t).

The comparison principle gives the uniqueness of HJB solution with a boundary condition: if there

are two viscosity solutions u1, u2 which are equal on the boundary, by the comparison principle we have

u1 = u2. The previous theorem can be used only for linear-like Hamiltonians and cannot be applied for

our very first example H(t, x, p) = 1
2‖p‖

2. Here is another comparison principle covering the quadratic

Hamiltonian but with assuming the periodicity for solutions u.

Theorem 1.3.5. Suppose there are two continuous functions u1, u2 : Rd × [0, T ] → R such that they

are periodic in space input with same periodicity, and u1(x, T ) = u2(x, T ) for all x ∈ Rd. Assume a

continuous Hamiltonian H : Rd × Rd × [0, T ]→ R with

|H(x, s, p)−H(x, t, p)| ≤ C|s− t|, 〈DxH(x, t, p), p〉 ≥ −C(1 + ‖p‖2).

If u1 (resp. u2) is the sub-solution (resp. super-solution) of HJB equation −∂tu(x, t)+H(x, t,∇u(x, t)) =
0, then we have u1(x, t) ≤ u2(x, t) for all (x, t) ∈ Rd × [0, T ].

Proof. Without loss of generality, suppose u1, u2 are 1−periodic in space input x; we work then with

d-dimensional torus Td as the set for input x. Suppose there is (x, t) ∈ Td × [0, T ] such that u1(x, t) −
u2(x, t) > σ for some σ > 0. Let

Φε(x, t, y, s) = u1(x, t)− u2(y, s)− λ(2T − t− s)− 1
2ε (‖x− y‖2 + (t− s)2),

and

(xε, tε, yε, sε) ∈ argmax(x,t,y,s)∈(Td×[0,T ])2Φε(x, t, y, s).

We can choose λ > 0 small enough such that |tε − T |, |sε − T | > δ > 0 with δ independent of ε. If we set

φ(x, t) = u2(yε, sε) + λ(2T − t− sε) + 1
2ε (‖x− yε‖2 + (t− sε)2),

then (xε, tε) ∈ argmax u1(x, t)− φ(x, t). Since u1 is sub-solution we can conclude:

−∂tφ(xε, tε) +H(xε, tε,∇xφ(xε, tε)) ≤ 0, which gives λ− 1
ε

(tε − sε) +H(xε, tε,
1
ε

(xε − yε)) ≤ 0.

Similarly if

φ(y, s) = u1(xε, tε)− λ(2T − tε − s)−
1
2ε (‖xε − y‖2 + (tε − s)2),

then (yε, sε) ∈ argmin u2(y, s)− φ(y, s) and u2 is super-solution. Hence

−∂sφ(yε, sε) +H(yε, sε,∇yφ(yε, sε)) ≥ 0, which gives − λ− 1
ε

(tε − sε) +H(yε, sε,
1
ε

(xε − yε)) ≥ 0
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So then, comparing two last inequalities gives:

H(yε, sε,
1
ε

(xε − yε))−H(xε, tε,
1
ε

(xε − yε)) ≥ 2λ.

Choosing (x∗, t∗, y∗, s∗) an accumulation point of {(xε, tε, yε, sε)}ε∈R+ as ε→ 0, then by

‖xε − yε‖, |tε − sε| = o(
√
ε),

we have x∗ = y∗, t∗ = s∗. On the other hand if we set pε = 1
ε (xε−yε) then xε = yε+ εpε and ε‖pε‖2 → 0.

We have

0 < 2λ ≤ H(yε, sε,
1
ε

(xε − yε))−H(xε, tε,
1
ε

(xε − yε)) = H(yε, sε, pε)−H(yε + εpε, tε, pε)

≤ C|tε − sε| − ε〈DxH(zε, tε, pε), pε〉 ≤ C|tε − sε|+ εC(1 + ‖pε‖2),

for some zε ∈ [xε, yε]. The last expression tends to 0 when ε→ 0, it is a contradiction with λ > 0.

Optimal control problem. The optimal control problem

inf
α:[t,T ]→Rd

∫ T

t

(
L(Xx,t[α](s), α(s)) + f(t,Xx,t[α](s))

)
ds+ g(Xx,t[α](T )), (1.20)

with Xx,t[α](s) = x+
∫ s
t
αr dr, has a close relation with the Hamilton-Jacobi equation

− ∂tu+H(x,∇u(x, t))− f(x, t) = 0 (1.21)

with H(x, p) = L∗(x,−p). Indeed, if u(x, t) is the value of the minimisation problem (1.20), then u is a

viscosity solution of (1.21) satisfying u(x, T ) = g(x).

Theorem 1.3.6 ([32], Theorem 7.2.4). Suppose the following conditions hold:

1. the conditions (1.15)(1.16) hold for H with H(x, p) = L∗(x,−p),

2. the function f : [0, T ]× Rd → R is Lipschitz continuous in time and there is C > 0 such that

max
t∈[0,T ]

‖f(·, t)‖C2 , ‖g(·)‖C2 ≤ C, (1.22)

Then the value function u of optimal control problem (1.20) is the only bounded uniformly continuous

viscosity solution of the equation (1.21) satisfying u(x, T ) = g(x). Moreover, u is semi-concave, locally

Lipschitz and almost everywhere derivable.

For all (x, t) ∈ Rd × [0, T ] let A(x, t) be the set of optimal control α : [t, T ] → Rd minimizing

the variational problem (1.20). The Euler-Lagrange optimality condition, characterize the elements in

A(x, t). Let us recall the notation DvL = Lv and the same for Lx, fx, gx.

Theorem 1.3.7. Suppose (1.15)(1.16)(1.22) hold. If α ∈ A(x, t), then α is of class C1 on (t, T ) with

d
dsLv(X

x,t[α](s), α(s)) = Lx(Xx,t[α](s), α(s)) + fx(Xx,t[α](s), s), s ∈ (t, T ),

Lv(Xx,t[α](T ), α(T )) = −gx(Xx,t[α](T )),
(1.23)

where Xx,t[α](s) = x +
∫ s
t
α(r) dr. In particular, there is a constant C > 0 such that, for (x, t) ∈

[0, T )× Rd and any α ∈ A(x, t) we have ‖α‖∞ ≤ C.

16



Proof. The characterization in (1.23) is classical, see for example ([32] Theorem 6.2.4). For the bound-

edness problem, set X,P : (t, T ] → Rd as X(s) = Xx,t[α](s), P (s) = −Lv(X(s), α(s)) for s ∈ (t, T ]. By

(1.23) we have

Ṗ (s) = −Lx(X(s), α(s))− fx(X(s), s), s ∈ (t, T ].

By relation H(x, p) = L∗(x,−p), we have α(s) = −Hp(X(s), P (s)), Lx(X(s), α(s)) = −Hx(X(s), P (s)).
So rewriting the last ODE gives

Ṗ (s) = Hx(X(s), P (s))− fx(X(s), s), s ∈ (t, T ].

Multiplying both side by P (s) and using (1.16)(1.22) implies

∃C ′ > 0 : d
ds

(
1
2‖P (s)‖2

)
≥ −C ′(1 + ‖P (s)‖2), ‖P (T )‖ ≤ C ′,

By a direct application of Gronwall theorem we can assert the existence of a constant C ′′ > 0 independent

of t, such that ‖P (s)‖ ≤ C ′′ for all s ∈ (t, T ]. Afterwards, by strong convexity condition (1.16) we can

demonstrate as well the uniform boundedness of α(s) for all s ∈ (t, T ].

The next theorem asserts that the points (x, t) where the value function u is derivable coincide with

the points (x, t) where the optimal control set A(x, t) is singleton.

Theorem 1.3.8 ([33], Lemma 4.9 ). Let (x, t) ∈ [0, T ]×Rd, α ∈ A(x, t) and let us set x(s) = x+
∫ s
t
αr dr.

Then

• (Uniqueness of the optimal control along optimal trajectories) for any s ∈ (t, T ], the restriction of

α to [s, T ] is the unique element of A(s, x(s)).

• (Uniqueness of the optimal trajectories) ∇u(x, t) exists if and only if A(x, t) is reduced to a single-

ton. In this case, −DpH(x,∇u(x, t)) = α(t) where A(x, t) = {α}.

In general, the value function u is not necessarily derivable but since it is semi-concave, it is almost

everywhere derivable; hence A(x, t) is singleton for almost every (x, t).

Continuity equation. Since the value function u is Lipschitz continuous, then it is almost everywhere

derivable and by Theorem 1.3.8, for almost every (x, t) the optimal control A(x, t) is singleton. Let us

consider a measurable selection β of the correspondence A. Let Φ be the associated flow, that is

Φ(x, t, s) = x+
∫ s

t

β(x, t)(τ) dτ, x ∈ Rd, t, s ∈ [0, T ], t ≤ s.

Let µ(t) ∈ P(Rd) be the transportation of initial distribution m0 by the flow Φ , i.e.

µ(t) = Φ(·, 0, t)]m0, t ∈ [0, T ].

Despite the lack of existence of derivative of u everywhere, the following theorem asserts that µ(t) actually

satisfies in distribution sense the continuity equation corresponding to the vector field −DpH(t,∇u(x, t))
and it is indeed absolutely continuous.

Theorem 1.3.9. The transported distribution µ(t) = Φ(·, 0, t)]m0, t ∈ [0, T ], is absolutely continuous

and satisfies the continuity equation

∂tµ− div(µDpH(x,∇u)) = 0

in a weak sense. That is for all φ ∈ C∞c (Rd × [0, T ],R) we have∫
Rd
φ(0, x)m0(x) dx+

∫ T

0

∫
Rd

(∂tφ(x, t)− 〈∇xφ(x, t), DpH(x,∇u(x, t))〉)µ(x, t) dx = 0.
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1.4 Our contributions

The main question in this thesis is to find learning procedures in mean field games and to investigate if

they converge to an equilibrium. Those are games involving a non atomic set of players each of them

is choosing an action in an infinite dimensional space (a trajectory in the euclidean space starting from

some player dependent initial position). The situation is therefore much more complex than usual finite

games. However, our thesis takes inspiration from the learning schemes in static finite games to design

adaptive procedures that converge to equilibria in several classes of MFGs.

More precisely we extend the fictitious play and the online mirror descent procedures to MFGs and

prove their convergence when the game is potential or monotone and provide approximations theorems

when the game is discretized in time and space. For example, the fictitious play algorithm extends

to MFGs as follows. Suppose the differential game is played in many rounds, each round containing

the whole time interval [0, T ]. At every round n, an estimation of the evolving measure (mt)t∈[0,T ] is

computed as the time average of the observed distributions in precedent rounds 0, . . . , n− 1. The agents

then behave optimally regarding to this estimation and then a new estimate is compute similarly in the

next step.

Chapter 2 concentrates on convergence of fictitious play in potential mean field games. Those have

already been defined by Lasry and Lions [74] and are such that the equilibrium can be obtained by

minimizing a functional, called the Potential, over a suitable complex space of functions. We can formally

show that this class of game is a very natural extension of the potential game model of Monderer and

Shapley [80] (defined for finitely many players and finite dimensional strategy spaces). Hence, it is quite

reasonable to start our thesis with this framework and to expect that the fictitious play will slightly

decrease the potential. This would imply that the time average behaviour converges to the minimiser

of the potential and so to a MFG equilibrium. This is what happens. Our approach for attacking the

problem is however more complex than in Monderer and Shapley and uses different spaces for second

and first order MFG. The space we work with in the case of second order are the classical solutions of

PDEs of HJB and Fokker-Planck type, while one needs to work with the space of trajectories in the

first order type. The potential for the case of the second order MFG was already defined by Lasry and

Lions however, for the case of first order MFGs, we provide a new and convenient representation of the

potential as a function of measures over trajectories. We finish this chapter by proving an approximation

theorem showing that the fictitious play procedure applied to a differential game with a finite number of

players, converges to the MFG equilibrium as the number of players goes to infinity.

In chapter 3, the goal is to prove convergence of fictitious play, and more generally of online mirror

descent schemes, in monotone mean field games (the second natural class of game in which one should

expect convergence). We start by observing that a MFG model deals with a continuum of players

choosing each from a player dependent infinite dimensional space (i.e. the space of trajectories with

an initial condition depending on the player’s position) and that the cost of a player does not depend

on the identities of the players but only on their distribution. This leads us to generalize this model

by working in an abstract model we call anonymous game. This is a normal form game with a non

atomic set of players, a player dependent action set and an anonymous payoff function. Keeping in mind

that the first order MFGs is our principal application, we provide conditions on the game (such as the

unique minimizer condition) under which fictitious play and online mirror descent procedures converge to

equilibria in all monotone anonymous games (and so also in all monotone first order MFGs, as desired).

The question of convergence in potential anonymous games (expected to hold), is postponed to a future

work, because we already know the answer in MFGs from the previous chapter.

In chapter 4 we look at a discrete (in time and space) version of MFGs introduced by Gomes et

al. [55], and investigate the convergence of fictitious play in this model. We prove that this framework
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is a particular instance of our general anonymous game model studied in the previous chapter 3 and

conclude convergence to the equilibrium in all monotone discrete MFGs. Finally, we provide a general

approximation theorem (which has nothing to do with learning per se) by proving convergence of the

discrete MFGs to the first order continuous MFGs when the mesh of the discretization (in time and space)

goes to zero (in a well chosen way). This confirms that the discrete model is close to the continuous

system (as it was expected in the field).

Before going to a more detailed exposition of the results, we want to remark that the dynamic nature

of MFGs implies that one can design more sophisticated learning algorithms better adapted to the

dynamic nature of the game (for example at half of the game a player can observe that the assumptions

he made was false and adapts his behaviour accordingly). Investigating this more complex behaviour is

delegated to a future work. Nevertheless, we believe that this thesis is a good starting point that builds

a bridge between learning in mean field games and learning in classical game theory.

1.4.1 Fictitious play in potential MFG

Chapter 2 is devoted to our first contribution, that is an application of fictitious play in Potential MFGs.

Assuming the data are periodic in state variable x, we work specially with the solutions of MFG system

which are periodic in x. Due to this, we consider the d-dimensional torus Td as the set of states.

We deal with the definition and corresponding results of derivative of functions with respect to the

measure arguments; they are borrowed from [37]. For a function K : P(Td)→ R, a derivative of K with

respect to the measure argument is a map denoted by δK
δm such that δK

δm : Td ×P(Td)→ R is continuous

and for any m,m′ ∈ P(Td)

lim
s→0

K((1− s)m+ sm′)−K(m)
s

=
∫
Td

δK

δm
(x,m) d(m′ −m)(x). (1.24)

We denote the last expression with δK
δm (m)(m′ −m) as well, that is the derivative of K at point m and

direction m′−m. We call a MFG (second or first order) a Potential mean field game if its couplings f, g

possess potentials. That means there exist continuously differentiable maps F,G : P(Td)→ R such that

δF

δm
= f,

δG

δm
= g.

where δF
δm ,

δG
δm are the derivative with respect to the measure argument. The following Proposition

characterize all derivable functions which can be written as a derivative of a potential.

Proposition 1.4.1. The map f : Td × P(Td)→ R derives from a potential, if and only if,

δf

δm
(x,m, y) + φ(x,m) = δf

δm
(y,m, x) + φ(y,m) ∀x, y ∈ Td, ∀m ∈ P(Td), (1.25)

for some φ : Td × P(Td)→ R where δf
δm (x,m, y) = δf(x,·)

δm (y,m) for all x, y ∈ Td,m ∈ P(Td).

If the couplings f, g possess potentials, then the second order MFG equilibrium can be obtained by

solving a variational problem.

Theorem 1.4.1 ([74], section 2.6). Let K be consisting of all (m,w) ∈ C0([0, T )× Td;R)× C0((0, T )×
Td;Rd) satisfying

∂tm− σ∆m+ div(w) = 0 in (0, T )× Td, m(0) = m0, (1.26)

in sense of distribution. Define Φ : K → R by

Φ(m,w) =
∫ T

0

∫
Td
m(x, t)H∗(x,−w(x, t)/m(x, t))dxdt+

∫ T

0
F (m(t))dt+G(m(T )), (1.27)
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for (m,w) ∈ K. Then (m̃, w̃) ∈ K is a solution of min(m,w)∈K Φ(m,w) if and only if

w̃(x, t) = −m̃(x, t)DHp(x,∇ũ(x, t)), for all (x, t) ∈ (0, T )× Td,

for a solution (ũ, m̃) of MFG system (1.13).

The fictitious play for the case of second order MFGs, where the solutions satisfy the MFG system

in the classical sense, takes the form :
(i) − ∂tun+1 − σ∆un+1 +H(x,∇un+1(x, t)) = f(x, m̄n(t)),

(ii) ∂tm
n+1 − σ∆mn+1 − div(mn+1DpH(x,∇un+1)) = 0,

mn+1(0) = m0, u
n+1(x, T ) = g(x, m̄n(T ))

(1.28)

with

m̄n+1(t) = 1
n+ 1

n+1∑
k=1

mk(t), for all t ∈ [0, T ]. (1.29)

The equation (1.28)(i) refers to an optimal control problem with m = m̄n; this means the players set

their belief at round n+ 1 equal to the average of the measures in previous steps. After the players fixed

their optimal control derived by m = m̄n, the equation (1.28)(ii) describes how the realized distribution

is computed as a result of the optimal control α(x, t) = −DpH(x,∇un+1(x, t)). At the end of the

(n+ 1)−th round the players refine their estimation with (1.29).

Theorem 1.4.2. Under suitable assumptions (see section 2.1.1), the family {(un,mn)}n∈N is uniformly

continuous and any cluster point is a solution to the second order MFG (1.13). If, in addition, the

monotonicity condition (1.17) holds, then the whole sequence {(un,mn)}n∈N converges to the unique

solution of (1.13).

The proof is based on the definition of the potential Φ as in (1.27). If wn(x, t) =
−mn(x, t)DpH(x,∇un(x, t)) then (mn, wn) ∈ K. Moreover, the values φn = Φ(mn, wn) are almost

decreasing, that means there are C > 0 and an > 0 for n ∈ N, such that

∀n ∈ N : φn+1 − φn ≤ −
an
n

+ C

n2 . (1.30)

Writing the exact expression for an and using the above inequality, it implies that an → 0 which yields

our desired result.

For the case of first order, due to the lack of regularity for solutions, we instead work with the space

of continuous trajectories Γ = C([0, T ],Td) and measures over Γ. Set the potential for first order case as

Φ : P(Γ)→ R with

Φ(η) :=
∫

Γ

∫ T

0
L(γ(t), γ̇(t)) dt dη(γ) +

∫ T

0
F (et]η) dt+G(eT ]η), (1.31)

where for every t ∈ [0, T ], the evaluation at instant t is the map et : Γ → Rd, et(γ) = γ(t); hence the

push-forward measure et]η captures the margin of distribution η at time t.

Remark 1.4.1. Informally speaking, the definition of potential in second order (1.27) and first order

case (1.31) are identical. First, the measures m(t) and et]η are both capturing the distribution of agents’

states at instant t ∈ [0, T ]. Second, w(x, t)/m(x, t) is equal to the drift α(x, t) that makes the measures

(m(t))t∈[0,T ] evolve; these drifts can be considered as the derivative of the trajectories in distribution η

as well. Hence we can write∫
Γ
L(γ(t), γ̇(t)) dη(γ) =

∫
Γ
L(γ(t), α(γ(t), t)) dη(γ) =

∫
Td
L(x, α(x, t)) d(et]η)(x)
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=
∫
Td
m(x, t) L(x, α(x, t)) dx =

∫
Td
m(x, t) H∗(x,−w(x, t)/m(x, t))dxdt,

since L(x, v) = H∗(x,−v).

Remark 1.4.2. The crucial point about the potential Φ defined in (1.31), is that for all η, η′ ∈ P(Γ) we

have

δΦ
δη

(η)(η′ − η) =
∫

Γ

(∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η)

)
d(η′ − η)(γ).

Roughly speaking, it implies that the minimiser η of Φ are concentrated on optimal curves with respect

to the (et]η)t∈[0,T ], i.e. they are equilibria.

For a probability measure over set of trajectories η ∈ P(Γ), let γη· : Td → AC([0, T ],Td) be a

measurable function such that for any x ∈ Td the trajectory γηx ∈ AC([0, T ],Td) be an optimal solution

to

inf
γ∈AC([0,T ],Td), γ(0)=x

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ),m(T )).

The fictitious play in the case of first order MFG takes the following form:

(i) ηn+1 := γη̄
n

· ]m0,

(ii) η̄n+1 := 1
n+ 1

n+1∑
k=1

ηk.
(1.32)

The equation (i)−(1.32) captures a distribution of curves ηn+1 with support on the optimal curves with

respect to the average distribution η̄n; the equation (ii)−(1.32) uses ηn+1 to revise the average.

Theorem 1.4.3. Under suitable assumptions (see section 2.1.1) the sequences (η̄n, ηn) is pre-compact

in P(Γ)× P(Γ) and any cluster point (η̄, η) satisfies the following: η̄ = η and, if we set

m(t) := et]η,

u(t, x) := inf
γ∈H1, γ(t)=x

∫ T

0
(L(γ(s), γ̇(s)) + f(γ(s), es]η)) ds+ g(γ(T ),m(T )),

(1.33)

then the pair (u,m) is a solution to the first order MFG system (1.18). If furthermore (1.17) holds, then

the entire sequence (η̄n, ηn) converges.

The proof idea is similar to the case of second order by using the potential (1.31). We can prove

an inequality similar to (1.30) with φn = Φ(η̄n) and obtaining our desired result. We proved that the

accumulation points of distributions η̄n are the equilibrium distributions η̃, i.e.

e0]η̃ = m0, supp(η̃) ⊆ argminγ∈AC([0,T ],Td)J(γ, η̃). (1.34)

where

J(γ, η) =
∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η).

We show in section 2.4 that we can construct the first order MFG solution (u,m) from an equilibrium

distribution η̃ as in (1.33).

Our last contribution in chapter 2 concerns with the question of convergence of fictitious play in a

symmetric differential game with finite number of players; as one expects, these fictitious play should

converge to an equilibrium of first order MFG, as N tends to infinity. For every N ∈ N, fix a sequence

of initial states xN1 , x
N
2 , · · · , xNN ∈ Td such that:

lim
N→∞

d1(mN
0 ,m0) = 0
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where mN
0 = 1

N

N∑
i+1

δxN
i

. Define the sequences η̄n,N , ηn,N ∈ P(Γ), for n ∈ N in the following way:

ηn+1,N = 1
N

(δγn+1,N
xN1

+ δγn+1,N
xN2

+ · · ·+ δγn+1,N
xN
N

)

η̄n+1,N = 1
n+ 1(η1,N + η2,N + · · ·+ ηn+1,N )

(1.35)

where γn+1,N
xN
i

is an optimal path which is a solution of infγ∈H1γ(0)=xN
i
J(γ, η̄n,N ).

Theorem 1.4.4. Consider the fictitious play for the N−player game as described in (1.35) and let η̄N

be an accumulation distribution of (η̄n,N )n∈N. Then every accumulation point of the pre-compact set of

{η̄N}N∈N is an MFG equilibrium. If furthermore the monotonicity condition (1.17) holds, then (η̄N ) has

a limit which is the MFG equilibrium.

1.4.2 Non atomic anonymous games

Inspired specifically by the games with continuum of players appeared in [89][76][24][25], we try to propose

in chapter 3 a general framework, with first order mean field games as a special case; this is the model

of non atomic anonymous games.

Let I be the set of players and λ ∈ P(I) a prior non-atomic probability measure on I modelling the

repartition of players on I. An individual i ∈ I chooses an action a from a player dependent set Ai ⊂ V
and pays a cost of the form J(a, η) where η is the distribution of actions chosen by other players. The

set of admissible profiles are measurable functions Ψ : I → V such that Ψ(i) ∈ Ai for all i ∈ I. For

every admissible profile Ψ : I → V , the measure Ψ]λ ∈ P(V ) is the push-forward of λ by map Ψ and

captures the distribution of actions chosen by players in profile Ψ. An admissible profile Ψ̃ is called a

Nash equilibrium if

Ψ̃(i) ∈ arg min
a∈Ai

J(a, Ψ̃]λ) for λ-almost every i ∈ I,

and the corresponding distribution η̃ = Ψ̃]λ over set of actions V , is called a Nash (or equilibrium)

distribution. We especially work with the sub-class of anonymous games with a monotone cost. The cost

function J : V × P(V )→ R is called monotone if for every η, η′ ∈ P(V ) the following inequality holds:∫
V

(J(a, η)− J(a, η′)) d(η − η′)(a) ≥ 0, (1.36)

Theorem 1.4.5. Let G = (I, λ, V, (Ai)i∈I , J) be a non atomic anonymous game. Under suitable as-

sumptions the game G will admit at least a Nash equilibrium. Moreover, the equilibrium is unique under

monotonicity condition (1.36).

Our next step is to propose a learning procedure similar to fictitious play and online mirror descent

for anonymous games and prove their convergence when the monotonicity condition (1.36) holds. The

fictitious play in anonymous games reads as follows:

(i) Ψn+1(i) = argmina∈AiJ(a, η̄n), for λ-almost every i ∈ I,
(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = n
n+1 η̄n + 1

n+1ηn+1.

(1.37)

Theorem 1.4.6. Consider a non atomic anonymous game with a monotone cost. Under suitable con-

ditions (appeared in Theorem 3.3.1), for the sequence ηn, η̄n constructed in (1.37) we have ηn, η̄n
d1−→ η̃

where η̃ ∈ PG(V ) is the unique Nash equilibrium distribution.
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The proof is done by defining the quantities φn =
∫
V
J(a, η̄n) d(η̄n−ηn+1)(a) for n ∈ N, and showing

the inequalities:

∀n ∈ N : φn+1 − φn ≤ −
1

n+ 1φn + εn
n
. (1.38)

hold for some values {εn}n∈N with limn→∞ εn = 0. The inequalities (1.38) with φn ≥ 0 give φn → 0,

which implies the convergence of η̄n towards the equilibrium distribution.

The second learning procedure we study for anonymous games is an analogue of the online mirror

descent. It reads as follows:

(i) Φn+1(i) = Φn(i)− βn∇aJ(Ψn(i), ηn), for every i ∈ I
(ii) Ψn+1(i) = QAi(Φn+1(i)), for every i ∈ I
(iii) ηn+1 = Ψn+1]λ.

(1.39)

where QA(y) = arg maxa∈A 〈y, a〉 − h(a) for a strongly convex map h. The first two (i, ii)−(1.39)

expressions are just an OMD procedure that the player i follows. The third expression (iii)−(1.39)

entangles the parallel OMD procedures that are being done simultaneously by all players. In the case of

monotone cost function J , this collective learning yields the convergence of ηn to equilibrium.

Theorem 1.4.7. Suppose J is monotone and convex with respect to the first input. Let one applies the

OMD algorithm proposed in (3.9) for βn = 1
n . Under suitable conditions (appeared in Theorem 3.4.1)

ηn = Ψn]λ converges to η̃ = Ψ̃]λ where η̃ ∈ P(V ) is the unique Nash equilibrium distribution.

The proof is inspired by the method in [77], and it proceeds by using the quantity:

∀n ∈ N : φn =
∫
I

(
h(Ψ̃(i)) + h∗Ai(Φn(i))− 〈Φn(i), Ψ̃(i)〉

)
dλ(i). (1.40)

where Ψ̃ is the profile of actions in equilibrium. Calculating the differences φn+1 − φn for all n ∈ N,

implies that the quantities ψn =
∫
V
J(a, η̃) d(ηn − η̃)(a) converge to 0, where η̃ denotes the equilibrium

distribution.

We complete chapter 3 by showing that we can write the first order MFG as a non atomic anonymous

game. Let the set of players be I = Rd and m0 ∈ P(I) a given non atomic Borel probability measure

on I. Let AC([0, T ],Rd) denotes the set of all absolutely continuous paths γ from [0, T ] to Rd. Set

V = C0([0, T ],Rd) and for each player i ∈ Rd its set of actions be

Ai := {γ ∈ AC([0, T ],Rd) | γ(0) = i,

∫ T

0
‖γ̇(t)‖2 dt ≤M}. (1.41)

for suitable M > 0. The MFG cost function J : V × P(V )→ R is defined as follows:

J(γ, η) =


∫ T

0 (L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η), if γ ∈ AC([0, T ],Rd)

+∞ otherwise,

where for every t ∈ [0, T ] the evaluation function et : C0([0, T ],Rd)→ Rd is defined by et(γ) = γ(t). We

call this non atomic anonymous game a first-order mean field game.

Theorem 1.4.8. If f, g : Rd×P(Rd)→ R are monotone in sense of (1.17), then the MFG cost function

J will be so in sense of (1.36).

Theorem 1.4.9. The first-order MFGs defined as above has at least a Nash Equilibrium Ψ̃ ∈ A under

suitable conditions (appeared in assumptions 3.5.1). This equilibrium is unique under monotonicity

assumption (1.36).
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If we set η̃ = Ψ̃]m0 for equilibrium profile Ψ̃, and et]η̃ = m̃t for all t ∈ [0, T ], then for m0−almost

every i ∈ Rd:

Ψ̃(i) = argminγ∈AC([0,T ],Rd),γ(0)=i

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), m̃t)) dt+ g(γ(T ), m̃T ).

This is exactly as in (1.34); hence as in section 2.4 proved, we can construct the first order MFG solution

(u,m) from an equilibrium distribution η̃ as in (1.33).

Completely compatible with (1.32), the fictitious play in this framework for MFG reads as follows:

(i) Ψn+1(i) = arg minγ∈AC([0,T ],Rd),γ(0)=i
∫ T

0 (L(γ(t), γ̇(t)) + f(γ(t), et]η̄n)) dt+ g(γ(T ), eT ]η̄n),
(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = 1
n+1

∑n+1
i=1 ηi.

(1.42)

Theorem 1.4.10. Let {ηn}n∈N be constructed as in (1.42). Then under suitable conditions (appeared

in assumptions 3.5.1) with monotonicity of cost function (1.36), the sequence ηn converges to the unique

Nash equilibrium distribution η̃.

The online mirror descent in the case of first order MFG is more complicated due to the calculation

of derivative of J :

〈DγJ(γ, η), z〉 = lim
ε→0

J(γ + εz, η)− J(γ, η)
ε

=
∫ T

0
(Lx(γt, γ̇(t)) · zt + Lv(γt, γ̇(t)) · żt + fx(γ(t), et]η) · zt) dt+ gx(γ(T ), eT ]η) · zT

Using this formulation for the gradient ∇γJ(·, η), one can conclude the convergence of OMD to the

equilibrium under good assumptions for L, f, g.

Theorem 1.4.11. If the cost function J is monotone and convex with respect to the first argument, then

under suitable conditions (appeared in assumptions 3.5.1), the online mirror descent algorithm proposed

in (1.39) for βn = 1
n (n ∈ N), converges to the unique first-order mean field game equilibrium.

1.4.3 Finite MFG: fictitious play and convergence to classical MFG

In chapter 4 we address the finite MFG model introduced by Gomes et al. [55]. This is a discrete version

of mean field games where the time interval and set of states are both finite sets. The model is as follows.

Let S and T = {t0, t1, . . . , tm} (with 0 = t0 < t1 < . . . < tm = T ), be finite sets representing the states

set and time set. We call a tuple (U,M) with U : T × S → R, M : T → P(S), an equilibrium solution

to the finite MFG, if there exists P̂ : S × S × T \ {T} → [0, 1] such that

(i) U(x, tk) = inf
p∈∆(S)

∑
y∈S

py
(
cxy(p,M(tk)) + U(y, tk+1)

)
, x ∈ S, 0 ≤ k < m,

(ii) P̂ (x, ·, tk) ∈ argminp∈∆(S)
∑
y∈S

py
(
cxy(p,M(tk)) + U(y, tk+1)

)
, x ∈ S, 0 ≤ k < m,

(iii) M(x, tk+1) =
∑
y∈S

M(y, tk)P̂ (y, x, tk), x ∈ S, 0 ≤ k < m,

(iv) U(x, T ) = g(x,M(T )), M(0) = M0

(1.43)

The relation (i)−(1.43) is the dynamic programming computing the value function from inter-temporal

cost cxy and the value function at its next time. For all x, y ∈ S the inter-temporal cost cxy(p,M)
capturing the cost of moving from x to y taking into account the dispersion p ∈ ∆(S) and distribution
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over states M ∈ P(S). The relation (ii, iii)−(1.43) describing the equilibrium configuration, where the

optimal solution to (i)−(1.43) constructs the evolving measure M .

The existence of an equilibrium is proved in [55] under some assumptions on data. In our approach,

we give a non atomic anonymous game representation to this game and uses our previous result in chapter

3. Set I = [0, 1] as the set of players and λ the Lebesgue measure over I. For every player i ∈ I define

its action set Ai and V as

KS,T =

 P : S × S × T \ {T} → [0, 1]
∣∣ ∑
y∈S

P (x, y, t) = 1, for all x ∈ S, t ∈ T \ {T}

 . (1.44)

We recall that for a typical element P ∈ V that is a function P : S × S × T \ {T} → [0, 1], the quantity

P (x, y, t) captures the probability of passing from state x to state y at time t. The set of profile of

actions is A = {Ψ : [0, 1]→ V | Ψ measurable}. For a typical Ψ ∈ A the aggregated distribution at time

t produced by the profile Ψ is defined by

MΨ(t) :=
∫
I

MM0
Ψ(i)(t) dλ(i) =

∫
V

MM0
P (t) dη(P ), for t ∈ T \ {T}, (1.45)

where for every P ∈ KS,T the measure MM0
P (t) is the induced measure at time t from initial measure

M0 and P a Markovian transition. We will abuse the notation and use Mη(t) (with η = Ψ]λ for Ψ ∈ A)

instead of MΨ(t), to insist on the dependency of aggregated distribution MΨ(t) through the induced

measure η. We suppose the following form of the cost function ci(Ψ) = J(Ψ(i),Ψ]λ), where

J(P, η) =
m−1∑
k=0

∑
x,y∈S

MM0
P (x, tk)P (x, y, tk)cxy(P (x, tk),Mη(tk)) +

∑
x∈S

MM0
P (x, T )g(x,Mη(T )). (1.46)

Theorem 1.4.12. The finite MFG possesses at least one equilibrium under suitable assumptions (see

assumptions 4.2.1).

The fictitious play scheme in finite MFG reads as follows: let M1 = M̄1 : T → ∆(S) is arbitrary, for

every iteration n = 1, . . . let:

1. for M̄n : T → ∆(S) known, construct (Un, Pn) as follows:

(i) Un(x, T ) = g(x, M̄n(T )), x ∈ S,

(ii) Un(x, tk) = min
p∈∆(S)

∑
y∈S

pycxy(p, M̄n(tk)) + pyUn(y, tk+1), x ∈ S, 0 ≤ k < m,

(iii) Pn(x, ·, tk) = argminp∈∆(S)
∑
y∈S

pycxy(p, M̄n(tk)) + pyUn(y, tk+1), x ∈ S, 0 ≤ k < m,

(1.47)

2. construct Mn+1 : T → ∆(S) with

Mn+1(x, 0) = M0(x), Mn+1(x, tk+1) =
∑
y∈S

Mn+1(y, tk)Pn(y, x, tk), x ∈ S, 0 ≤ k < m,

3. define M̄n+1 : T → ∆(S) with

M̄n+1 = n

n+ 1M̄n + 1
n+ 1Mn+1.

Theorem 1.4.13. Under suitable conditions (see Theorem 4.3.2) the sequence {(M̄n,Mn+1)}n∈N con-

verges to (M∗,M∗), where M∗ is the equilibrium.
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Our second question in chapter 4 refers to the convergence of finite scheme to continuous scheme

when the discretization becomes finer. Our main framework is as follows. Let (Ns
n) and (N t

n) be two

sequences of natural numbers such that limn→∞Ns
n = limn→∞N t

n = +∞ and let (εn) be a sequence of

positive real numbers such that limn→∞ εn = 0. Define ∆xn := 1/Ns
n and ∆tn := T/N t

n. For a fixed

n ∈ N, consider the discrete state set Sn and the discrete time set Tn defined as

Sn :=
{
xq := q∆xn | q ∈ Zd, ‖q‖∞ ≤ (Ns

n)2} ⊆ Rd,

Tn := {tk := k∆tn | k = 0, . . . , N t
n} ⊆ [0, T ].

(1.48)

For every x ∈ Sn let Ex :=
{
x′ ∈ Rd | ‖x′ − x‖∞ ≤ (∆xn)/2

}
and define Mn,0 ∈ ∆(Sn) as (Mn,0)x =

m0(Ex) for all x ∈ Sn. We consider a finite MFG with inter-temporal cost function

cxy(p,M) := ∆tn
(

1
q

∣∣∣∣y − x∆tn

∣∣∣∣q + f(x,M)
)

+ εn log(py).

for a q > 1 and set 1/q + 1/q′ = 1. The finite MFG system will be

Un(x, tk) = minp∈∆(Sn)

{∑
y∈Sn py

(
∆tn
q

∣∣∣y−x∆tn

∣∣∣q + Un(y, tk+1)
)

+ εnEn(p)
}

+ ∆tnf(x,Mn(tk))

∀ x ∈ Sn, 0 ≤ k ≤ N t
n − 1,

Un(x, T ) = g(x,Mn(T )) ∀ x ∈ Sn,

Mn(x, tk+1) =
∑
y∈Sn P̂n(y, x, tk)Mn(y, tk) ∀ x ∈ Sn, 0 ≤ k ≤ N t

n − 1,

Mn(x, 0) = (Mn,0)x ∀ x ∈ Sn,
(1.49)

where for all x ∈ Sn, 0 ≤ k ≤ N t
n − 1

(
P̂n(x, y, tk)

)
y∈Sn

= argminp∈∆(S)

∑
y∈Sn

py

(
∆tn
q

∣∣∣∣y − x∆tn

∣∣∣∣q + Un(y, tk+1)
)

+ εnEn(p)

 , (1.50)

and En : ∆(Sn) → R is the (non positive) entropy function defined by En(p) =
∑
x∈Sn px log(px) for all

p ∈ ∆(Sn). The main question here is the convergence of (Un,Mn) solving (1.49), to the solution (u,m)
of first order MFG system (1.18). Our theorem is the following

Theorem 1.4.14. Suppose that, as n → ∞, N t
n/N

s
n → 0, εn = o

(
1

Ntn log(Nsn)

)
and consider the corre-

sponding sequence (Un,Mn) of solutions to the finite MFGs (1.49). Then, there exists a solution (u,m)
to (1.18) such that, up to some subsequence, Un → u uniformly on compact subsets of Rd × [0, T ] and

Mn → m in C([0, T ];P1(Rd)).

The proof includes several steps; here we give a sketch of it. The set of evolving measures {Mn}n∈N,

that are extended to entire [0, T ] in affine manner, are compact in a suitable function space. For every

converging subsequence of {Mn}n∈N (that is still denoted by Mn’s), define

U∗(x, t) := lim sup
n→∞
Sn3y→x
Tn3s→t

Un(y, s), U∗(x, t) := lim inf
n→∞
Sn3y→x
Tn3s→t

Un(y, s) ∀ x ∈ Rd, t ∈ [0, T ]. (1.51)

We can prove U∗(x, T ) = U∗(x, T ) = g(x,m(T )) for all x ∈ Rd where m is the limit function of

Mn’s. Using the assumptions for N t
n, N

s
n, εn and a suitable comparison principle, we can deduce that

U∗ = U∗ = u, where u is the unique continuous viscosity solution to

−∂tu+ 1
q′ |∇u(x, t)|q

′
− f(x,m(t)) = 0 x ∈ Rd, t ∈ (0, T ),

u(x, T ) = g(x,m(T )) x ∈ Rd.
(1.52)
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or equivalently, u will be the value function of

u(x, t) = inf
α∈L2([0,T ];Rd)

∫ T

t

[
1
q
|α(s)|q + f(Xx,t[α](s),m(s))

]
ds+ g(Xx,t[α](T ),m(T )), (1.53)

where Xx,t[α](s) := x +
∫ s
t
α(s′)ds′ for all s ∈ [t, T ]. The rest of the proof relies on the compactness

of measures Pn, that are defined over set of trajectories by the aide of transitions P̂n. We prove that

every accumulation point of measures {Pn}n∈N is an equilibrium distribution η̃ in sense of (1.34). The

rest of the argument is again by following section 2.4; that we can construct the first order MFG system

solution (u,m) from an equilibrium distribution η̃ as in (1.33).
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Chapter 2

Learning in potential MFG with

fictitious play

Joint work with Pierre Cardaliaguet,

published in ESAIM: Control, Optimisation and Calculus of Variations

2.1 Introduction

Mean Field Game is a class of differential games in which each agent is infinitesimal and interacts with

a huge population of other agents. These games have been introduced simultaneously by Lasry, Lions

[72, 73, 74] and Huang, Malhamé and Caines [67], (actually a discrete in time version of these games

were previously known under the terminology of heterogenous models in economics. See for instance [6]).

The classical notion of equilibrium solution in Mean Field Game (abbreviated MFG) is given by a pair of

maps (u,m), where u = u(x, t) is the value function of a typical small player while m = m(x, t) denotes

the density at time t and at position x of the population. The value function u satisfies a Hamilton-Jacobi

equation—in which m enters as a parameter and describes the influence of the population on the cost

of each agent—, while the density m evolves in time according to a Fokker-Planck equation in which u

enters as a drift. More precisely the pair (u,m) is a solution of the MFG system, which reads
(i) − ∂tu− σ∆u+H(x,∇u(x, t)) = f(x,m(t))

(ii) ∂tm− σ∆m− div(mDpH(x,∇u)) = 0

m(0, x) = m0(x), u(T, x) = g(x,m(T )).

(2.1)

In the above system, T > 0 is the horizon of the game, σ is a nonnegative parameter describing the

intensity of the (individual) noise each agent is submitted to (for simplicity we assume that either σ = 0
(no noise) or σ = 1, some individual noise). The map H is the Hamiltonian of the control problem (thus

typically convex in the gradient variable). The running cost f and the terminal cost g depend on the

one hand on the position of the agent and, on the other hand, on the population density. Note that, in

order to solve the (backward) Hamilton-Jacobi equation (i.e., the optimal control problem of each agent)

one has to know the evolution of the population density, while the Fokker-Planck equation depends on

the optimal strategies of the agents (through the drift term −div(mDpH(x,∇u))). The MFG system

formalizes therefore an equilibrium configuration.

Under suitable assumptions recalled below, the MFG system (2.1) has at least one solution. This

solution is even unique under a monotonicity condition on f and g. Under this condition, one can also
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show that it is the limit of symmetric Nash equilibria for a finite number of players as the number of

players tends to infinity [37]; moreover, the optimal strategy given by the solution of the MFG system

can be implemented in the game with finitely many players to give an approximate Nash equilibrium

[67, 42]. MFG systems have been widely used in several areas ranging from engineering to economics,

either under the terminology of heterogeneous agent model [6], or under the name of MFG [2, 59, 66].

In the present paper we raise the question of the actual formation of an equilibrium. Indeed, the game

being quite involved, it is unrealistic to assume that the agents can actually compute the equilibrium

configuration. This seems to indicate that, if the equilibrium configuration arises, it is because the

agents have learned how to play the game. For instance, people driving every day from home to work are

dealing with such a learning issue. Every day they try to forecast the traffic and choose their optimal

path accordingly, minimizing the journey and/or the consumed fuel for instance. If their belief on the

traffic turns out not to be correct, they update their estimation, and so on... The question is wether such

a procedure leads to stability or not.

The question of learning is a very classical one in game theory (see, for instance, the monograph

[53]). There is by now a very large number of learning procedures for one-shot games in the literature.

In the present paper we focus on a very classical and simple one: fictitious play. The fictitious play

was first introduced by Brown [26]. In this learning procedure, every player plays at each step a best

response action with respect to the average of the previous actions of the other players. Fictitious play

does not necessarily converge, as shows the counter-example by Shapley [91], but it is known to converge

for several classes of one shot games: for instance for zero-sum games (Robinson [87]), for 2 × 2 games

(Miyasawa [78]), for potential games (Monderer and Shapley [79])...

Note that, in our setting, the question of learning makes all the more sense that the game is partic-

ularly intricate. Our aim is to define a fictitious play for the MFG system and to prove the convergence

of this procedure under suitable assumption on the coupling f and g. The fictitious play for the MFG

system runs as follows: the players start with a smooth initial belief (m0(t))t∈[0,T ]. At the beginning

of stage n + 1, the players having observed the same past, share the same belief (mn(t))t∈[0,T ] on the

evolving density of the population. They compute their corresponding optimal control problem with

value function un+1 accordingly. When all players actually implement their optimal control the popu-

lation density evolves in time and the players observe the resulting evolution (mn+1(t))t∈[0,T ]. At the

end of stage n + 1 the players update their belief according to the rule (the same for all the players),

which consists in computing the average of their observation up to time n + 1. This yields to define by

induction the sequences un,mn, m̄n by:
(i) − ∂tun+1 − σ∆un+1 +H(x,∇un+1(x, t)) = f(x, m̄n(t)),

(ii) ∂tm
n+1 − σ∆mn+1 − div(mn+1DpH(x,∇un+1)) = 0,

mn+1(0) = m0, u
n+1(x, T ) = g(x, m̄n(T ))

(2.2)

where m̄n = 1
n

∑n
k=1m

k. Indeed, un+1 is the value function at stage n + 1 if the belief of players on

the evolving density is m̄n, and thus solves (2.2)-(i). The actual density then evolves according to the

Fokker-Planck equation (2.2)-(ii).

Our main result is that, under suitable assumption, this learning procedure converges, i.e., any cluster

point of the pre-compact sequence (un,mn) is a solution of the MFG system (2.1) (by compact, we mean

compact for the uniform convergence). Of course, if in addition the solution of the MFG system (2.1) is

unique, then the full sequence converges. Let us recall (see [74]) that this uniqueness holds for instance

if f and g are monotone:∫
(f(x,m)− f(x,m′) d(m−m′)(x) ≥ 0,

∫
(g(x,m)− g(x,m′) d(m−m′)(x) ≥ 0

30



for any probability measures m,m′. This condition is generally interpreted as an aversion for congestion

for the agents. Our key assumptions for the convergence result is that f and g derive from potentials.

By this we mean that there exists F = F (m) and G = G(m) such that

f(x,m) = δF

δm
(x,m) and g(x,m) = δG

δm
(x,m).

The above derivative—in the space of measure—is introduced in subsection 2.1.2, the definition being

borrowed from [37]. Our assumption actually ensures that our MFG system is also “a potential game”

(in the flavor of Monderer and Shapley [80]) so that the MFG system falls into a framework closely

related to that of Monderer and Shapley [79]. Compared to [79], however, we face two issues. First we

have an infinite population of players and the state space and the actions are also infinite. Second the

game has a much more involved structure than in [79]. In particular, the potential for our game is far

from being straightforward. We consider two different frameworks. In the first one, the so-called second

order MFG systems where σ = 1—which corresponds to the case where the players have a dynamic

perturbed by independent noise—the potential is defined as a map of the evolving population density.

This is reminiscent of the variational structure for the MFG system as introduced in [74] and exploited in

[35, 38] for instance. The proof of the convergence then strongly relies on the regularity properties of the

value function and of the population density (i.e., of the un and mn). The second framework is for first

order MFG systems, where σ = 0. In contrast with the previous case, the lack of regularity of the value

function and of the population density prevent to define the same fictitious play and the same potential.

To overcome the difficulty, we lift the problem to the space of curves, which is the natural space of

actions. We define the fictitious play and a potential in this setting, and then prove the convergence,

first for the infinite population and then for a large, but finite, one.

As far as we are aware of, this chapter is the first work that considers a learning procedure in the

framework of mean field games. Let us nevertheless point out that, for a particular class of MFG systems

(quadratic Hamiltonians, local coupling), Guéant introduces in [58] an algorithm which is closely related

to a replicator dynamics: namely it is exactly (2.2) in which one replaces m̄n by mn in (2.2)-(i)). The

convergence is proved by using a kind of monotonicity of the sequence. This monotonicity does not hold

in the more intricate framework considered here.

For simplicity we work in the periodic setting: we assume that the maps H, f and g are periodic in

the space variable (and thus actually defined on the torus Td = Rd/Zd). This simplifies the estimates

and the notation. However we do not think that the result changes in a substantial way if the state space

is Rd or a subdomain of Rd, with suitable boundary conditions.

This chapter is organized as follows: we complete the introduction by fixing the main notation and

stating the basic assumptions on the data. Then we define the notion of potential MFG and characterize

the conditions of deriving from a potential. Section 2.2 is devoted to the fictitious play for second order

MFG systems while section 2.3 deals with the first order ones.

Acknowledgement. I wish to thank the support of ANR (Agence Nationale de la Recherche) MFG

(ANR-16-CE40-0015-01).

2.1.1 Preliminaries and assumptions

If X is a metric space, we denote by P(X) the set of Borel probability measures on X. When X = Td

(Td being the torus Rd/Zd), we endow P(Td) with the distance

d1(µ, ν) = sup
h

{∫
Td
h(x) d(µ− ν)(x)

}
µ, ν ∈ P(Td), (2.3)
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where the supremum is taken over all the maps h : Td → R which are 1-Lipschitz continuous. Then d1

metricizes the weak-* convergence of measures on Td.
The maps H, f and g are periodic in the space arguments: H : Td×Rd → R while f, g : Td×P(Td)→

R. In the same way, the initial condition m0 ∈ P(Td) is periodic in space and is assumed to be absolutely

continuous with a smooth density.

We now state our key assumptions on the data: these conditions are valid throughout the paper. On

the initial measure m0, we assume that

m0 has a smooth density (again denoted m0). (2.4)

Concerning the Hamiltonian, we suppose that H is of class C2 on Td × Rd and quadratic-like in the

second variable: there is C̄ > 0 such that

H ∈ C2(Td × Rd) and 1
C̄
Id ≤ D2

ppH(x, p) ≤ C̄Id ∀(x, p) ∈ Td × Rd . (2.5)

Moreover, we suppose that DxH satisfies the lower bound:

〈DxH(x, p), p〉 ≥ −C̄
(
|p|2 + 1

)
. (2.6)

The maps f and g are supposed to be globally Lipschitz continuous (in both variables) and regularizing:

The map m→ f(·,m) is Lipschitz continuous from P(Td) to C2(Td)
while the map m→ g(·,m) is Lipschitz continuous from P(Td) to C3(Td).

(2.7)

In particular,

sup
m∈P (Td)

‖f(·,m)‖C2 + ‖g(·,m)‖C3 <∞. (2.8)

Assumptions (2.4), (2.5), (2.6), (2.7), (2.9) are in force throughout the paper. As explained below, they

ensure the MFG system to have at least one solution.

To ensure the uniqueness of the solution, we sometime require f and g to be monotone: for any

m,m′ ∈ P(Td),∫
Td

(f(x,m)− f(x,m′))d(m−m′)(x) ≥ 0,
∫
Td

(g(x,m)− g(x,m′))d(m−m′)(x) ≥ 0. (2.9)

2.1.2 Potential mean field games

In this section we introduce the main structure condition on the data f and g of the game: we assume

that f and g are the derivative, with respect to the measure, of potential maps F and G. In this case

we say that f and g derive from a potential.

Let us first explain what we mean by a derivative with respect to a measure. Let F : P(Td)→ R be

a continuous map. We say that the continuous map δF
δm : P(Td)×Td → R is a derivative of F if, for any

m,m′ ∈ P(Td),

lim
s→0

F ((1− s)m+ sm′)− F (m)
s

=
∫
Td

δF

δm
(m,x) d(m′ −m)(x). (2.10)

As δF
δm is continuous, this equality can be equivalently written as

F (m′)− F (m) =
∫ 1

0

∫
Td

δF

δm
((1− s)m+ sm′), x)d(m′ −m)(x)ds,

for any m,m′ ∈ P(Td). We also use the notation δF
δm (m)(m′ − m) :=

∫
Td

δF
δm (m,x)d(m′ − m)(x) and

often see the map δF
δm as a continuous function from P(Td) to C(Td,R).
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Note that δF
δm is defined only up to an additive constant. To fix the ideas we assume the derivative

δ̃F
δm as the one that satisfies ∫

Td

δ̃F

δm
(m,x)dm(x) = 0 ∀m ∈ P(Td).

Definition 2.1.1. A Mean Field Game is called a Potential Mean Field Game if the instantaneous

and final cost functions f, g : Td × P(Td) → R derive from potentials, i.e., there exists continuously

differentiable maps F,G : P(Td)→ R such that

δF

δm
= f,

δG

δm
= g.

In the following we characterize the maps f which derive from a potential. Although this is not used

in the rest of the paper, this characterization is natural and we believe that it has its own interest.

To proceed we assume for the rest of the section that, for any x ∈ Td, f(x, ·) has a derivative and

that this derivative δf
δm : Td × P(Td)× Td → R is continuous. Then, for any m,m′ ∈ P(Td),

f(x, (1− s)m+ sm′) = f(x,m) + s

∫
Td

δf

δm
(x,m, y) d(m′ −m)(y) + o(s),

where lims→0
o(s)
s = 0.

Proposition 2.1.1. The map f : Td × P(Td)→ R derives from a potential, if and only if,

δf

δm
(x,m, y) + φ(x,m) = δf

δm
(y,m, x) + φ(y,m) ∀x, y ∈ Td, ∀m ∈ P(Td), (2.11)

for some φ : Td × P(Td)→ R.

Proof. First assume that f derives from a potential F : P(Td)→ R. Taking derivate the relation δF
δm = f

respect to m gives

δ̃2F

δm2 (m,x, y) = δ̃f

δm
(x,m, y) ∀x, y ∈ Td, m ∈ P(Td).

As shown in [37] (Section 2.2) there are some φ̃ : Td × P(Td)→ R such that

δ̃2F

δm2 (m,x, y) + φ̃(x,m) = δ̃2F

δm2 (m, y, x) + φ̃(y,m) ∀x, y ∈ Td, ∀m ∈ P(Td),

so the same is true for δ̃f
δm (x,m, y). It yields the relation (2.11) since for any derivative δf

δm = δf
δm (x,m, y)

there is some φ̂ : Td × P(Td)→ R such that

δ̃f

δm
(x,m, y)− δf

δm
(x,m, y) = φ̂(x,m) ∀x, y ∈ Td, ∀m ∈ P(Td).

Let us now assume the relation (2.11) for some φ : Td ×P(Td)→ R. Let us fix m0 ∈ P(Td) and set,

for any m ∈ P(Td),

F (m) =
∫ 1

0

∫
Td
f(x, (1− t)m0 + tm) d(m−m0)(x)dt.

We claim that F is a potential for f . Indeed, as f has a continuous derivative, so has F , with

δF

δm
(m, y) =

∫ 1

0
t

∫
Td

δf

δm
(x, (1− t)m0 + tm, y) d(m−m0)(x)dt+

∫ 1

0
f(y, (1− t)m0 + tm) dt (2.12)
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By assumption 2.11 we can write,

d
dtf(y, (1− t)m0 + tm) =

∫
Td

δf

δm
(y, (1− t)m0 + tm, x) d(m−m0)(x)

=
∫
Td

(
δf

δm
(y, (1− t)m0 + tm, x) + φ(y, (1− t)m0 + tm)

)
d(m−m0)(x)

=
∫
Td

(
δf

δm
(x, (1− t)m0 + tm, y) + φ(x, (1− t)m0 + tm)

)
d(m−m0)(x),

(2.13)

So

δF

δm
(m, y) =

∫ t

0
t

d
dtf(y, (1− t)m0 + tm)dt+

∫ 1

0
f(y, (1− t)m0 + tm)dt

−
∫ 1

0
t

∫
Td
φ(x, (1− t)m0 + tm)d(m−m0)(x)dt.

(2.14)

We have therefore after integration by parts in (2.14),

δF

δm
(m, y) =

[
t f(y, (1− t)m0 + tm)

]1
0
−
∫ 1

0
t

∫
Td
φ(x, (1− t)m0 + tm)d(m−m0)(x)dt

=f(y,m)−
∫ 1

0
t

∫
Td
φ(x, (1− t)m0 + tm)d(m−m0)(x)dt.

(2.15)

Since
∫ 1

0 t
∫
Td φ(x, (1− t)m0 + tm)d(m−m0)(x)dt is independent of y, we can write

F (m′)− F (m) =
∫ 1

0

∫
Td
f(y, (1− t)m+ tm′) d(m′ −m)(y)dt,

for any m,m′ ∈ P(Td).

2.2 The fictitious play for second order MFG systems

In this section, we study a learning procedure for the second order MFG system:
(i) − ∂tu−∆u+H(x,∇u(x, t)) = f(x,m(t)), (x, t) ∈ Td × [0, T ]

(ii) ∂tm−∆m− div(mDpH(x,∇u)) = 0, (x, t) ∈ Td × [0, T ]

m(0) = m0, u(x, T ) = g(x,m(T )), x ∈ Td.

(2.16)

Let us recall (see [74]) that, under our assumptions (2.4), (2.5), (2.6), (2.7), there exists at least one

classical solution to (2.16) (i.e., for which all the involved derivative exists and are continuous). If

furthermore (2.9) holds, then the solution is unique.

2.2.1 The learning rule and the convergence result

The fictitious play can be written as follows: given a smooth initial guess m0 ∈ C0([0, T ],P(Td)), we

define by induction sequences un,mn : Td × [0, T ]→ R by:
(i) − ∂tun+1 −∆un+1 +H(x,∇un+1(x, t)) = f(x, m̄n(t)), (x, t) ∈ Td × [0, T ]

(ii) ∂tm
n+1 −∆mn+1 − div(mn+1DpH(x,∇un+1)) = 0, (x, t) ∈ Td × [0, T ]

mn+1(0) = m0, u
n+1(x, T ) = g(x, m̄n(T )), x ∈ Td

(2.17)
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where m̄n(x, t) = 1
n

∑n
k=1m

k(x, t). The interpretation is that, at the beginning of stage n + 1, the

players have the same belief of the future density of the population (mn(t))t∈[0,T ] and compute their

corresponding optimal control problem with value function un+1. Their optimal (closed-loop) control is

then (x, t) → −DpH(x,∇un+1(x, t)). When all players actually implement this control the population

density evolves in time according to (2.17)-(ii). We assume that the players observe the resulting evolution

of the population density (mn+1(t))t∈[0,T ]. At the end of stage n + 1 the players update their guess by

computing the average of their observation up to time n+ 1.

In order to show the convergence of the fictitious play, we assume that the MFG is potential, i.e.

there are potential functions F,G : P(Td)→ R such that

f(x,m) = δF

δm
(m,x) and g(x,m) = δG

δm
(m,x). (2.18)

We also assume, besides the smoothness assumption (2.4), that m0 is smooth and positive.

Theorem 2.2.1. Under the assumptions (2.4), (2.5), (2.6), (2.7) and (2.18), the family {(un,mn)}n∈N
is uniformly continuous and any cluster point is a solution to the second order MFG (2.16). If, in

addition, the monotonicity condition (2.9) holds, then the whole sequence {(un,mn)}n∈N converges to

the unique solution of (2.16).

The key remark to prove Theorem 2.2.1 is that the game itself has a potential. Given m ∈ C0([0, T ]×
Td) and w ∈ C0([0, T ]× Td) such that, in the sense of distribution,

∂tm−∆m+ div(w) = 0 in (0, T )× Td m(0) = m0, (2.19)

let

Φ(m,w) =
∫ T

0

∫
Td
m(x, t)H∗(x,−w(x, t)/m(x, t))dxdt+

∫ T

0
F (m(t))dt+G(m(T )),

where H∗ is the convex conjugate of H:

H∗(x, q) = sup
p∈Rd

〈p, q〉 −H(x, p).

In the definition of Φ, we set by convention, when m = 0,

mH∗(x,−w/m) =
{

0 if w = 0
+∞ otherwise.

For sake of simplicity, we often drop the integration and the variable (x, t) to write the potential in a

shorter form:

Φ(m,w) =
∫ T

0

∫
Td
mH∗(x,−w/m) +

∫ T

0
F (m(t))dt+G(m(T )).

It is explained in [74] section 2.6 that (u,m) is a solution to (2.16) if and only if (m,w) is a minimizer

of Φ and w = −mDpH(·,∇u) and also constrained to (2.19). We show here that the same map can be

used as a potential in the fictitious play: Φ (almost) decreases at each step of the fictitious play and the

derivative of Φ does not vary too much at each step. Then the proof of [79] applies.

2.2.2 Proof of the convergence

Before starting the proof of Theorem 2.2.1, let us fix some notations. First we set

wn(x, t) = −mn(x, t)DpH(x,∇un(x, t)) and w̄n(x, t) = 1
n

n∑
k=1

wk(x, t). (2.20)
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Since the Fokker-Planck equation is linear we have :

∂tm̄
n+1 −∆m̄n+1 + div(w̄n+1) = 0, t ∈ [0, T ], m̄n+1(0) = m0. (2.21)

Recall that H∗ is the convex conjugate of H:

H∗(x, q) = sup
p∈Rd

〈p, q〉 −H(x, p).

We define p̂(x, q) as the minimizer in the above right-hand side:

H∗(x, q) = 〈p̂(x, q), q〉 −H(x, p̂(x, q)). (2.22)

Note that p̂ is characterized by q = DpH(x, p̂(x, q)). The uniqueness comes from the fact that H satisfies

DppH ≥ 1
C Id, which yields that DpH(x, ·) is one-to-one. We note for later use that

mH∗(x,− q

m
) = sup

p∈Rd
−〈p, q〉 −mH(x, p)

Next we state a standard result on uniformly convex functions, the proof of which is postponed:

Lemma 2.2.1. Under assumption (2.5), we have for any x ∈ Td, p, q ∈ Rd:

H(x, p) +H∗(x, q)− 〈p, q〉 ≥ 1
2C̄
|q −DpH(x, p)|2

The following Lemma explains that Φ is “almost decreasing” along the sequence (m̄n, w̄n).

Lemma 2.2.2. There exists a constant C > 0 such that, for any n ∈ N∗,

Φ(m̄n+1, w̄n+1)− Φ(m̄n, w̄n) ≤ − 1
C

an
n

+ C

n2 , (2.23)

where an =
∫ T

0
∫
Td m̄

n+1
∣∣w̄n+1/m̄n+1 − wn+1/mn+1

∣∣2.

Throughout the proofs, C denotes a constant which depends on the data of the problem only (i.e.,

on H, f , g and m0) and might change from line to line. We systematically use the fact that, as f and g

admit F and G as a potential and are globally Lipschitz continuous, there exists a constant C > 0 such

that, for any m,m′ ∈ P(Td) and s ∈ [0, 1],

‖F (m+ s(m′ −m))− F (m)− s
∫
Td
f(x,m)d(m′ −m)(x)‖ < C|s|2,

‖G(m+ s(m′ −m))−G(m)− s
∫
Td
g(x,m)d(m′ −m)(x)‖ < C|s|2.

Proof of Lemma 2.2.2. We have

Φ(m̄n+1, w̄n+1) = Φ(m̄n, w̄n) +A+B,

where

A =
∫ T

0

∫
Td
m̄n+1H∗(−w̄n+1/m̄n+1)− m̄nH∗(−w̄n/m̄n) (2.24)

B =
∫ T

0

(
F (m̄n+1(t))− F (m̄n(t))

)
dt+

(
G(m̄n+1(T ))−G(m̄n(T ))

)
. (2.25)

Since F is C1 with respect to m with derivative f , we have

B ≤
∫ T

0

∫
Td
f(x, m̄n(t))d(m̄n+1 − m̄n) +

∫
Td
g(x, m̄n(T ))(m̄n+1(T )− m̄n(T )) + C

n2 .
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As m̄n+1 − m̄n = 1
n (mn+1 − m̄n+1), we find after rearranging:

B ≤ 1
n

∫ T

0

∫
Td
f(x, m̄n(t))(mn+1 − m̄n+1) + 1

n

∫
Td
g(x, m̄n(T ))(mn+1(T )− m̄n+1(T )) + C

n2 .

Using now the equation satisfied by un+1 we get

B ≤ 1
n

∫ T

0

∫
Td

(
− ∂tun+1 −∆un+1 +H(x,∇un+1)

)
(mn+1 − m̄n+1)

+ 1
n

∫
Td
g(x, m̄n(T ))(mn+1(T )− m̄n+1(T )) + C

n2

≤ 1
n

∫ T

0

∫
Td

(
∂t(mn+1 − m̄n+1)−∆(mn+1 − m̄n+1)

)
un+1

+ 1
n

∫ T

0

∫
Td
H(x,∇un+1)(mn+1 − m̄n+1) + C

n2 ,

where we have integrated by parts in the second inequality. Using now the equation satisfied by mn+1−
m̄n+1 derived from (2.20) and integrating again by parts, we obtain

B ≤ 1
n

∫ T

0

∫
Td
〈wn+1 − w̄n+1,∇un+1〉+H(x,∇un+1)(mn+1 − m̄n+1) + C

n2 .

Note that by Lemma 2.2.1,

−〈w̄n+1,∇un+1〉 −H(x,∇un+1)m̄n+1 ≤ m̄n+1H∗(x,−w̄n+1/m̄n+1)

− 1
2C̄

m̄n+1∣∣w̄n+1/m̄n+1 − wn+1/mn+1∣∣2
while, by the definition of wn+1,

〈wn+1,∇un+1〉+H(x,∇un+1)mn+1 = −mn+1H∗(x,−wn+1/mn+1).

Therefore

B ≤ 1
n

∫ T

0

∫
Td
m̄n+1H∗(x,−w̄n+1/m̄n+1)−mn+1H∗(x,−wn+1/mn+1)

− 1
2C̄n

∫ T

0

∫
Td
m̄n+1∣∣w̄n+1/m̄n+1 − wn+1/mn+1∣∣2 + C

n2 .

(2.26)

On the other hand, recalling the definition of p̂ in (2.22) and setting p̄n+1 = p̂(·,−w̄n+1/m̄n+1), we can

estimate A as follows:

A ≤
∫ T

0

∫
Td
−〈p̄n+1, w̄n+1〉 − m̄n+1H(x, p̄n+1) + 〈p̄n+1, w̄n〉+ m̄nH(x, p̄n+1)

= 1
n

∫ T

0

∫
Td
〈p̄n+1, w̄n+1〉+ m̄n+1H(x, p̄n+1)− 〈p̄n+1, wn+1〉 −mn+1H(x, p̄n+1)

≤ 1
n

∫ T

0

∫
Td
mn+1H∗(x,−wn+1/mn+1)− m̄n+1H∗(x,−w̄n+1/m̄n+1).

(2.27)

Putting together (2.26) and (2.27) we find:

Φ(m̄n+1, w̄n+1)− Φ(m̄n, w̄n) ≤ − 1
2C̄

an
n

+ C

n2

where an =
∫ T

0

∫
Td
m̄n+1∣∣w̄n+1/m̄n+1 − wn+1/mn+1∣∣2.
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In order to proceed, let us recall some basic estimates on the system (2.17), the proof of which is

postponed:

Lemma 2.2.3. For any α ∈ (0, 1/2) there exist a constant C > 0 such that for any n ∈ N∗

‖un‖C1+α/2,2+α + ‖mn‖C1+α/2,2+α ≤ C, mn ≥ 1/C,

where C1+α/2,2+α is the usual Hölder space on [0, T ]× Td.

As a consequence, the un, the mn and the wn do not vary too much between two consecutive steps:

Lemma 2.2.4. There exists a constant C > 0 such that

‖un+1 − un‖∞ + ‖∇un+1 −∇un‖∞ + ‖mn+1 −mn‖∞ + ‖wn+1 − wn‖∞ ≤
C

n
.

Proof. As m̄n−m̄n−1 = (mn−m̄n−1)/n, where the mn (and thus the m̄n) are uniformly bounded thanks

to Lemma 2.2.3, we have by Lipschitz continuity of f and g that

sup
t∈[0,T ]

∥∥f(·, m̄n+1(t))− f(·, m̄n(t))
∥∥
∞ +

∥∥g(·, m̄n+1(T ))− g(·, m̄n(T ))
∥∥
∞ ≤

C

n
. (2.28)

Thus, by comparison for the solution of the Hamilton-Jacobi equation, we get

‖un+1 − un‖∞ ≤
C

n
. (2.29)

Let us set z := un+1 − un. Then z satisfies

−∂tz −∆z +H(x,∇un +∇z)−H(x,∇un) = f(x, m̄n(t))− f(x, m̄n−1(t)).

Multiplying by z and integrating over Td × [0, T ] we find by (2.28) and (2.29):

−
[∫

Td

z2

2

]T
0

+
∫ T

0

∫
Td
|∇z|2 + z(H(x,∇un +∇z)−H(x,∇un)) ≤ C

n2 .

Then we use the uniform bound on the ∇un given by Lemma 2.2.3 as well as (2.29) to get∫ T

0

∫
Td

(|∇z|2 − C

n
|∇z|) ≤ C

n2 .

Thus ∫ T

0

∫
Td
|∇z|2 ≤ C

n2 ,

which implies that ‖∇z‖∞ ≤ C/n since ‖∇2z‖∞ + ‖∂t∇z‖∞ ≤ C by Lemma 2.2.3.

We argue in a similar way for µ := mn+1 −mn: µ satisfies

∂tµ−∆µ− div(µDpH(x,Dun+1))− div(R) = 0,

where we have set R = mn
(
DpH(x,∇un+1)−DpH(x,∇un)

)
. As ‖R‖∞ ≤ C/n by the previous step,

we get the bound on ‖mn+1 −mn‖∞ ≤ C/n by standard parabolic estimates. This implies the bound

on ‖wn+1 − wn‖∞ by the definition of the wn.

Combining Lemma 2.2.3 with Lemma 2.2.4 we immediately obtain that the sequence (an) defined in

Lemma 2.2.2 is slowly varying in time:

Corollary 2.2.1. There exists a constant C > 0 such that, for any n ∈ N∗,

|an+1 − an| ≤
C

n
.
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Proof of Theorem 2.2.1. From Lemma 2.2.2, we have for any n ∈ N∗,

Φ(m̄n+1, w̄n+1)− Φ(m̄n, w̄n) ≤ − 1
C

an
n

+ C

n2

where an =
∫ T

0

∫
Td
m̄n+1∣∣w̄n+1/m̄n+1 − wn+1/mn+1∣∣2.

Since the potential Φ is bounded from below the above inequality implies that∑
n≥1

an/n < +∞.

From Corollary 2.2.1, we also have, for any n ∈ N∗,

|an+1 − an| ≤
C

n
.

Then Lemma 2.2.5 below implies that limn→∞ an = 0.

In particular we have, by Lemma 2.2.3:

lim
n→∞

∫ T

0

∫
Td

∣∣w̄n/m̄n − wn/mn
∣∣2 ≤ C lim

n→∞

∫ T

0

∫
Td
m̄n
∣∣w̄n/m̄n − wn/mn

∣∣2 = 0.

This implies that the sequence {w̄n/m̄n − wn/mn}n∈N—which is uniformly continuous from Lemma

2.2.3—uniformly converges to 0 on [0, T ]× Td.
Recall that, by Lemma 2.2.3, the sequence {(un+1,mn, m̄n, w̄n)}n∈N is pre-compact for the uniform

convergence. Let (u,m, m̄, w̄) be a cluster point of the sequence {(un+1,mn, m̄n, w̄n)}n∈N. Our aim is

to show that (u,m) is a solution to the MFG system (2.16), that m̄ = m and that w̄ = −mDpH(·,∇u).
Let ni ∈ N, i ∈ N be a subsequence such that (uni+1,mni , m̄ni , wni) uniformly converges to

(u,m, m̄, w̄). By the estimates in Lemma 2.2.3, we have DpH(x,∇unj ) converges uniformly to

DpH(x,∇u), so that by (2.20) and the fact that the sequence {w̄n/m̄n − wn/mn}n∈N converges to

0,

−DpH(x,∇u) = w

m
= w̄

m̄
. (2.30)

We now pass to the limit in (2.17) (in the viscosity sense for the Hamilton-Jacobi equation and in the

sense of distribution for the Fokker-Planck equation) to get

(i) − ∂tu−∆u+H(x,∇u(x, t)) = f(x, m̄(t)), (x, t) ∈ Td × [0, T ]

(ii) ∂tm−∆m− div(mDpH(x,∇u)) = 0, (x, t) ∈ Td × [0, T ]

m(0) = m0, u(x, T ) = g(x, m̄(T )), x ∈ Td.

(2.31)

Letting n→ +∞ in (2.21) we also have

∂tm̄−∆m̄+ div(w̄) = 0, t ∈ [0, T ], m̄(0) = m0.

By (2.30), this means that m and m̄ are both solutions to the same Fokker-Planck equation. Thus they

are equal and (u,m) is a solution to the MFG system.

If (2.9) holds, then the MFG system has a unique solution (u,m), so that the compact sequence

{(un,mn)} has a unique accumulation point (u,m) and thus converges to (u,m).

In the proof of Theorem 2.2.1, we have used the following Lemma, which can be found in [79].

Lemma 2.2.5. Consider a sequence of positive real numbers {an}n∈N such that
∑∞
n=1 an/n < +∞.

Then we have

lim
N→∞

1
N

N∑
n=1

an = 0.

In addition, if there is a constant C > 0 such that |an − an+1| < C
n then limn→∞ an = 0.
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Proof. We reproduce the proof of [79] for the sake of completeness. For every k ∈ N define bk =∑∞
n=k an/n. Since

∑∞
n=1 an/n < +∞ we have limk→∞ bk = 0. So we have:

lim
N→∞

1
N

N∑
k=1

bk = 0,

which yields the first result since:
N∑
n=1

an ≤
N∑
k=1

bk.

For the second result, consider ε > 0. We know that for every λ > 0 we have:

lim
N→∞

1
N

+ 1
N + 1 + · · ·+ 1

[(1 + λ)N ] = log(1 + λ),

where [a] denotes the integer part of the real number a. So if λε > 0 is so small that log(1 + λε) < ε
2C̄ ,

then there exist Nε ∈ N large enough that for N ≥ Nε we have

1
N

+ 1
N + 1 + · · ·+ 1

[(1 + λε)N ] <
ε

2C . (2.32)

Let N ≥ Nε. Assume for a while that aN > ε. As |ak+1 − ak| ≤ C/k, (2.32) implies that ak >
ε
2 for

N ≤ k ≤ [N(1 + λε)]. Thus

1
[N(1 + λε)]

[N(1+λε)]∑
k=1

ak ≥
λε

1 + λε

ε

2 .

Since the average N−1∑N
k=1 ak converges to zero, the above inequality cannot hold for N large enough.

This implies that aN ≤ ε for N sufficiently large, so that (ak) converges to 0.

Proof of Lemma 2.2.1. For simplicity of notation, we omit the x dependence in the various quantities.

As by assumption (2.5) we have 1
C̄
Id ≤ D2

ppH ≤ C̄Id, H
∗ is differentiable with respect to q and the

following inequality holds: for any q1, q2 ∈ Rd,

〈DqH
∗(q1)−DqH

∗(q2), q1 − q2〉 ≥
1
C̄
|q1 − q2|2.

Let us fix p, q ∈ Rd and let q̂ ∈ Rd be the maximum in

max
q′∈Rd

〈q′, p〉 −H∗(q′) = H(p).

Recall that p = DqH
∗(q̂) and thus q̂ = DpH(p). Then

H(p) +H∗(q)− 〈p, q〉 = H∗(q)−H∗(q̂)− 〈q − q̂, p〉

=
∫ 1

0
〈DqH

∗((1− t)q̂ + tq)−DqH
∗(q̂), q − q̂〉dt

=
∫ 1

0

1
t
〈DqH

∗((1− t)q̂ + tq)−DqH
∗(q̂), ((1− t)q̂ + tq)− q̂〉dt

≥
∫ 1

0
t

1
C̄
|q̂ − q|2 = 1

2C̄
|DpH(p)− q|2.

Proof of Lemma 2.2.3. Given m̄n ∈ C0([0, T ],P(Td)), the solution un+1 is uniformly Lipschitz con-

tinuous. Hence any weak solution to the Fokker-Planck equation is uniformly Hölder continuous in

C0([0, T ],P(Td)). This shows that the right-hand side of the Hamilton-Jacobi equation is uniformly
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Hölder continuous; then the Schauder estimate provide the bound in C1+α/2,2+α for α ∈ (0, 1/2), by

combining [70, Theorem 2.2], to get a uniform Holder estimates for Dun+1, with [70, Theorem 12.1], to

obtain the full bound by considering −H(x,∇un+1(x, t))+f(x, m̄n(t)) as a Holder continuous right-hand

side for the heat equation. Plugging this estimate into the Fokker-Planck equation and using again the

Schauder estimates gives the bounds in C1+α/2,2+α on the the mn. The bound from below for the mn

comes from the strong maximum principle.

2.3 The fictitious play for first order MFG systems

We now consider the first order order MFG system:
(i) − ∂tu+H(x,∇u(x, t)) = f(x,m(t)), (x, t) ∈ Td × [0, T ]

(ii) ∂tm+ div(−mDpH(x,∇u(x, t))) = 0, (x, t) ∈ Td × [0, T ]

m(0) = m0, u(x, T ) = g(x,m(T )), x ∈ Td
(2.33)

In contrast with second order MFG systems, we cannot expect existence of classical solutions: namely

both the Hamilton-Jacobi equation and the Fokker-Planck equation have to be understood in a gen-

eralized sense. In particular, the solutions of the fictitious play are not smooth enough to justify the

various computations of section 2.2. For this reason we introduce another method—based on another

potential—, which also has the interest that it can be adapted to a finite number of players.

Let us start by recalling the notion of solution for (2.33). Following [74], we say that the pair (u,m)
is a solution to the MFG system (2.33) if u is a Lipschitz continuous viscosity solution to (2.33)-(i) while

m ∈ L∞((0, T )× Td) is a solution of (2.33)-(ii) in the sense of distribution.

Under our standing assumptions (2.4), (2.5), (2.6), (2.7), there exists at least one solution (u,m) to

the mean field game system (2.33). If furthermore (2.9) holds, then the solution is unique (see [74] and

Theorem 5.1 in [34]).

2.3.1 The learning rule and the potential

The learning rule is basically the same as for second order MFG systems: given a smooth initial guess

m0 : Td × [0, T ]→ R, we define by induction sequences un,mn : Td × [0, T ]→ R heuristically given by:

(i) − ∂tun+1 +H(x,∇un+1(x, t)) = f(x, m̄n(t)), (x, t) ∈ Td × [0, T ]

(ii) ∂tm
n+1 + div(−mn+1DpH(x,∇un+1)) = 0, (x, t) ∈ Td × [0, T ]

mn+1(0) = m0, u
n+1(x, T ) = g(x, m̄n(T )), x ∈ Td

(2.34)

where m̄n(x, t) = 1
n

∑n
k=1m

k(x, t). If equation (2.34)-(i) is easy to interpret, the meaning of (2.34)-(ii)

would be more challenging and, actually, would make little sense for a finite number of players. For this

reason we are going to rewrite the problem in a completely different way, as a problem on the space of

curves.

Let us fix the notation. We denote

H1([0, T ],Td) =
{
γ ∈ AC([0, T ],Td)

∣∣∣ ∫ T

0
‖γ̇(t)‖2 dt < +∞

}
.

Let Γ = C0([0, T ],Td) be the set of curves. It is endowed with usual topology of the uniform convergence

and we denote by B(Γ) the associated σ−field. We define P(Γ) as the set of Borel probability measures
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on B(Γ). We view Γ and P(Γ) as the set of pure and mixed strategies for the players. For any t ∈ [0, T ]
the evaluation map et : Γ→ Td, defined by:

et(γ) = γ(t), ∀γ ∈ Γ

is continuous and thus measurable. For any η ∈ P(Γ) we define mη(t) = et]η as the push forward of the

measure η to Td i.e.

mη(t)(A) = η({γ ∈ Γ | γ(t) ∈ A})

for any measurable set A ⊂ Td. We denote by P0(Γ) the set of probability measures on Γ such that

e0]η = m0. Note that P0(Γ) is the set of strategies compatible with the initial density m0.

Given an initial time t ∈ [0, T ] and an initial position x, it is convenient to define the cost of a path

γ ∈ C0([t, T ],Td) payed by a small player starting from that position when the repartition of strategies

of the other players is η. It is given by

J(t, γ, η) :=


∫ T

t

L(γ(s), γ̇(s)) + f(γ(s),mη(s))ds+ g(γ(T ),mη(T )) if γ ∈ H1([t, T ],Td)

+∞ otherwise.

where L(x, v) := H∗(x,−v) and H∗ is the Fenchel conjugate of H with respect to the last variable. If

t = 0, we simply abbreviate J(γ, η) := J(0, γ, η). We note for later use that J(t, ·, η) is lower semi-

continuous on Γ.

We now define the fictitious play process. We start with an initial configuration η̄0 = η0 ∈ P0(Γ)
(the belief before the first step of a typical player on the actions of the other players). We now build by

induction the sequences (ηn) and (η̄n) of P(Γ), η̄n being interpreted as the belief at the end of stage n of a

typical player on the actions of the other agents and ηn+1 the repartition of strategies of the players when

they play optimally in the game against η̄n. More precisely, for any x ∈ Td, let γ̄n+1
x ∈ H1([0, T ],Td) be

an optimal solution to

inf
γ∈H1, γ(0)=x

J(γ, η̄n).

In view of our coercivity assumptions on H and the definition of L, the optimum is known to exist.

Moreover, by the measurable selection theorem we can (and will) assume that the map x → γ̄n+1
x is

Borel measurable. We then consider the measure ηn+1 ∈ P0(Γ) defined by

ηn+1 := γ̄n+1
· ]m0 ∀t ∈ [0, T ]

and set

η̄n+1 := 1
n+ 1

n+1∑
k=1

ηk = η̄n + 1
n+ 1(ηn+1 − η̄n). (2.35)

As in section 2.2, we assume that our MFG is potential, i.e., that there exists of potential functions

F,G : P(Td)→ R such that:

f(x,m) = δF

δm
(x,m), g(x,m) = δG

δm
(x,m). (2.36)

Here is our main convergence result.

Theorem 2.3.1. Assume that (2.4), (2.5), (2.6), (2.7) and (2.36) hold. Then the sequences (η̄n, ηn) is

pre-compact in P(Γ)× P(Γ) and any cluster point (η̄, η) satisfies the following: η = η̄ and, if we set

m̄(t) := et]η̄, ū(x, t) = inf
γ∈H1, γ(t)=x

J(t, γ, η̄), (2.37)

then the pair (ū, m̄) is a solution to the MFG system (2.33). If furthermore (2.9) holds, then the entire

sequence (η̄n, ηn) converges.
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The proof of Theorem 2.3.1 is postponed to the next subsection. As for the second order problem,

the key idea is that our MFG system has a potential. However, in contrast with the second order case,

the potential is now written on the space of probability on curves and reads, for η ∈ P(Γ),

Φ(η) :=
∫

Γ

∫ T

0
L(γ(t), γ̇(t)) dt dη(γ) +

∫ T

0
F (et]η) dt+G(eT ]η). (2.38)

Note that Φ(η) is well-defined and belongs to (−∞,+∞]. The potential defined above is reminiscent

of [36] or [35]. For instance, in [35]—but for MFG system with a local dependence and under the

monotonicity condition (2.9)—it is proved that the MFG equilibrium can be found as a global minimum

of Φ. We will show in the proof of Theorem 2.3.1 that the limit measure η̄ is characterized by the

optimality condition
δΦ
δη

(η̄)(η̄) ≤ δΦ
δη

(η̄)(θ) ∀θ ∈ P0(Γ).

Before proving that Φ is a potential for the game, let us start with preliminary remarks. The first

one explains that the optimal curves are uniformly Lipschitz continuous.

Lemma 2.3.1. There exists a constant C > 0 such that, for any x ∈ Td and any n ≥ 0,

‖γ̇n+1
x ‖∞ ≤ C. (2.39)

In particular, the sequences (η̄n) and (ηn) are tight and

d1(et]η̄n, et′]η̄n) ≤ C|t− t′| ∀t, t′ ∈ [0, T ].

Proof. Under our assumption on H, f and g, it is known that the (un) are uniformly Lipschitz continuous

(see, for instance, the appendix of [34]). As a byproduct the optimal solutions are also uniformly Lipschitz

continuous thanks to the classical link between the derivative of the value function and the optimal

trajectories (Theorem 6.4.8 of [32]): this is (2.39). The rest of the proof is a straightforward consequence

of (2.39).

Next we compute the derivative of Φ with respect to the measure η. Let us point out that, since Φ is

not continuous and can take the value +∞, the derivative, although defined by the formula (2.10), has

to be taken only at points and direction along which Φ is finite. This is in particular the case for the ηn

and the θn.

Lemma 2.3.2. For any η, η′ ∈ P(Γ) such that Φ(η),Φ(η′) < +∞, we have

δΦ
δη

(η)(η′ − η) =
∫

Γ
J(γ, η) d(η′ − η)(γ).

Proof. This is a straightforward application of the definition of Φ in (2.38) and of the continuous deriv-

ability of F and G.

By abuse of notation, we also define δΦ
δη (η)(θ) for a positive Borel measure θ on Γ by setting

δΦ
δη

(η)(θ) =
∫

Γ
J(γ, η)dθ(γ).

Note that, as J is bounded below, the quantity δΦ
δη (η)(θ) is well-defined and belongs to (−∞,+∞].

Next we translate the optimality property of γ̄nx to an optimality property of η̄n.

Lemma 2.3.3. For any n ∈ N∗,

δΦ
δη

(η̄n)(ηn+1) =
∫
Td
J(γ̄n+1

x , ηn)m0(x)dx = min
θ∈P0(Γ)

δΦ
δη

(ηn)(θ).
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Proof. The first equality is just the definition of ηn+1. It remains to check that, for any θ ∈ P0(Γ),∫
Td
J(γ̄n+1

x , η̄n)m0(x)dx ≤
∫

Γ
J(γ, η̄n)dθ(γ).

As m0 = e0]θ, we can disintegrate θ into θ =
∫
Td θxdm0(x), where θx ∈ P(Γ) with γ(0) = x for θx−a.e.

γ. By optimality of γ̄n+1
x we have, for m0−a.e. x ∈ Td,

J(γ̄n+1
x , η̄n) ≤

∫
Γ
J(γ, η̄n) dθx(γ)

and therefore, integrating with respect to m0:∫
Td
J(γ̄n+1

x , η̄n)m0(x)dx ≤
∫
Td

∫
Γ
J(γ, η̄n) dθx(γ)m0(x)dx =

∫
Γ
J(γ, η̄n)dθ(γ).

The next proposition states that the potential Φ is indeed almost decreasing along the sequence (ηn).

Proposition 2.3.1. There is a constant C > 0 such that, for any n ∈ N∗, we have

Φ(η̄n+1) ≤ Φ(η̄n) + 1
n+ 1

δΦ
δη

(η̄n)(ηn+1 − η̄n) + C

(n+ 1)2 (2.40)

where

δΦ
δη

(η̄n)(ηn+1 − η̄n) =
∫

Γ
J(γ, η̄n) d(ηn+1 − η̄n)(γ) ≤ 0. (2.41)

Proof. Recalling (2.35), we have

Φ(η̄n+1)− Φ(η̄n) =
∫ 1

0

δΦ
δη

((1− s)η̄n + sη̄n+1)(η̄n+1 − η̄n)ds

= 1
(n+ 1)

∫ 1

0

δΦ
δη

((1− s)η̄n + sη̄n+1)(ηn+1 − η̄n)ds.
(2.42)

Let us estimate the right-hand side of the inequality. For any s ∈ [0, 1], Lemma 2.3.2 states that

δΦ
δη

((1− s)η̄n + sη̄n+1)(ηn+1 − η̄n) =
∫

Γ
J(γ, (1− s)η̄n + sη̄n+1)) d(ηn+1 − η̄n)(γ)

=
∫

Γ
J(γ, η̄n) d(ηn+1 − η̄n)(γ) +R(s)

(2.43)

where, by the definition of J and Lipschitz continuity of f and g,

R(s) =
∫

Γ

∫ T

0

(
f(γ(t), et]((1− s)η̄n + sη̄n+1))− f(γ(t), et]η̄n)

)
dt d(ηn+1 − η̄n)(γ)

+
∫

Γ

(
g(γ(T ), eT ]((1− s)η̄n + sη̄n+1))− g(γ(T ), eT ]η̄n)

)
d(ηn+1 − η̄n)(γ)

≤ C sup
t∈[0,T ]

d1
(
et]((1− s)η̄n+1 + sη̄n)), et]η̄n

)
.

(2.44)

Note that, by the definition of d1, we have for any t ∈ [0, T ],

d1(et]((1− s)η̄n+1 + sη̄n)), et]η̄n)

≤ sup
ξ

∫
Td
ξ(x) d(et]((1− s)η̄n+1 + sη̄n))(x)−

∫
Td
ξ(x) d(et]η̄n)(x)

≤ (1− s) sup
ξ

∫
Td
ξ(x) d(et]η̄n+1)(x)−

∫
Td
ξ(x) d(et]η̄n)(x)

≤ (1− s)
n+ 1 sup

ξ

∫
Td
ξ(x) d(et](ηn+1 − η̄n))(x)

≤ (1− s)
n+ 1 sup

ξ

∫
Td

(ξ(x)− ξ(0)) d(et]ηn+1 − et]η̄n)(x) ≤ C

n+ 1 ,
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where the supremum is taken over the set of Lipschitz maps ξ : Td → R with Lipschitz constant not

larger than 1. Therefore

Φ(η̄n+1)− Φ(η̄n) ≤ 1
(n+ 1)

∫
Γ
J(γ, η̄n) d(ηn+1 − η̄n)(γ) + C

(n+ 1)2 ,

where the first term in the right-hand side is non-positive thanks to Lemma 2.3.3.

2.3.2 Convergence of the fictitious play

In this subsection, we prove Theorem 2.3.1. Recall that Lemma 2.3.1 states that the sequence (η̄n) is

tight. We next Lemma characterizes the cluster distribution :

Lemma 2.3.4. Any cluster point η̄ of the sequence (η̄n) satisfies

δΦ
δη

(η̄)(η̄) ≤ δΦ
δη

(η̄)(θ) ∀θ ∈ P0(Γ), (2.45)

which means that η̄−a.e. γ is optimal for the map γ̃ → J(γ̃, η̄) under the constraint γ̃(0) = γ(0).

Proof. Let us define:

an+1 := −δΦ
δη

(η̄n)(ηn+1 − η̄n) = −
∫

Γ
J(γ, η̄n)d(ηn+1 − η̄n)

=
∫

Γ
J(γ, η̄n)dη̄n(γ)− min

θ∈P0(Td)

∫
Γ
J(γ, η̄n)dθ(γ),

where the last equality come from Lemma 2.3.3. Then according to Proposition 2.3.1 the sequence (an)
is non-negative and, by (2.40), the quantity

∑
k a

k/k is finite (because Φ is bounded below). Therefore

by Lemma 2.2.5 we have:

lim
N→+∞

1
N

N∑
k=1

ak = 0. (2.46)

Let us now check that |an+1 − an| ≤ C/n for some constant C. By arguments similar to the ones in the

proof of Proposition 2.3.1, we have, for any θ ∈ P0(Γ),∣∣∣∣δΦδη (η̄n)(θ)− δΦ
δη

(η̄n+1)(θ)
∣∣∣∣ ≤ C

n
. (2.47)

On the other hand, by optimality of ηn+1 and ηn+2 in Lemma 2.3.3 and (2.47), we have

δΦ
δη

(η̄n)(ηn+1) = min
θ∈P0(Td)

∫
Γ
J(γ, η̄n)dθ(γ) ≤

∫
Γ
J(γ, η̄n)dηn+2(γ)

≤
∫

Γ
J(γ, η̄n+1)dηn+2(γ) + C/n = δΦ

δη
(η̄n+1)(ηn+2) + C/n

= min
θ∈P0(Td)

∫
Γ
J(γ, η̄n+1)dθ(γ) + C/n

≤
∫

Γ
J(γ, η̄n+1)dηn+1(γ) + C/n = δΦ

δη
(η̄n)(ηn+1) + C/n,

which proves that ∣∣∣∣δΦδη (η̄n)(ηn+1)− δΦ
δη

(η̄n+1)(ηn+2)
∣∣∣∣ ≤ C/n.
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So we have:∣∣an+1 − an
∣∣ =

∣∣∣∣δΦδη (η̄n)(η̄n − ηn+1)− δΦ
δη

(η̄n+1)(η̄n+1 − ηn+2)
∣∣∣∣

≤
∣∣∣∣δΦδη (η̄n)(η̄n)− δΦ

δη
(η̄n+1)(η̄n+1)

∣∣∣∣+
∣∣∣∣δΦδη (η̄n)(ηn+1)− δΦ

δη
(η̄n+1)(ηn+2)

∣∣∣∣
≤
∣∣∣∣δΦδη (η̄n)(η̄n − η̄n+1)

∣∣∣∣+ C/n = 1
n+ 1

∣∣∣∣δΦδη (η̄n)(ηn+1 − η̄n)
∣∣∣∣+ C/n ≤ C/n.

By (2.46) and the above estimate, we conclude that an → 0 thanks to Lemma 2.2.5.

Let now η̄ be any cluster point of the sequence (η̄n). Let us check that (2.45) holds. Let θ ∈ P0(Td).
Then, from Lemma 2.3.3, for every n ∈ N we have:

δΦ
δη

(η̄n)(η̄n)− an = δΦ
δη

(η̄n)(ηn+1) ≤ δΦ
δη

(η̄n)(θ).

If (η̄ni)i∈N is such that η̄ni → η̄, then:

∀γ ∈ Γ : |J(γ, η̄)− J(γ, η̄ni)| ≤ K sup
t∈[0,T ]

d1(et]η̄ni , et]η̄),

where the last term tends to 0 because the maps t→ et]η̄
ni are uniformly continuous (from Lemma 2.3.1)

and converges pointwisely (and thus uniformly) to t→ et]η̄. This yields that (δΦ
δη

(η̄ni)(θ)) converges to

δΦ
δη

(η̄)(θ). On the other hand, by lower semicontinuity of the map γ → J(γ, η̄) on Γ, we have

δΦ
δη

(η̄)(η̄) ≤ lim inf δΦ
δη

(η̄)(η̄ni) = lim inf δΦ
δη

(η̄ni)(η̄ni),

which proves (2.45).

Let us check that η̄−a.e. γ is optimal for the map γ̃ → J(γ̃, η̄) under the constraint γ̃(0) = γ(0). Let

θ =
∫
Td δγ̄xm0(x)dx where γ̄x is (a measurable selection of) an optimal solution for γ̃ → J(γ̃, η̄) under

the constraint γ̃(0) = x. If we disintegrate η̄ into η̄ =
∫
Td η̄xm0(x)dx, then, for m0−a.e. x and η̄x−a.e.

γ we have

J(γ̄x, η̄) ≤ J(γ, η̄). (2.48)

Integrating over η̄x and then against m0 then implies that

δΦ
δη

(η̄)(θ) =
∫
Td
J(γ̄x, η̄)m0(x)dx ≤

∫
Γ
J(γ, η̄)dη̄(γ) = δΦ

δη
(η̄)(η̄).

As the reverse inequality always holds, this proves that there must be an equality in (2.48) a.e., which

proves the claim.

Proof of Theorem 2.3.1. Let (η̄, η) be the limit of a converging subsequence (η̄ni , ηni). We set

ū(x, t) := inf
γ∈Γ, γ(t)=x

J(t, γ, η̄) and m̄(t) := et]η̄.

By standard argument in optimal control, we know that ū is a viscosity solution to (2.34)-(i) with terminal

condition ū(T, x) = g(x, m̄(T )). Moreover, ū is Lipschitz continuous and semiconcave (cf. for instance

Lemma 5.2 in [34]).

It remains to check that m̄ satisfies (2.34)-(ii). By Lemma 2.3.4, we know that

δΦ
δη

(η̄)(η̄) ≤ δΦ
δη

(η̄)(θ) ∀θ ∈ P0(Γ),
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which means that η̄−a.e. γ is optimal for the map γ̃ → J(γ̃, η̄) under the constraint γ̃(0) = γ(0).
Following Theorem 6.4.9 in [32], the optimal solution for J(·, η̄) is unique at any point of differentiability

of ū(0, ·) (let us call it γ̄x). Disintegrating η̄ into η̄ =
∫
Td η̄xdm0(x), we have therefore, since m0 is

absolutely continuous,

η̄x = δγ̄x for m0−a.e. x ∈ Td,

so that

η̄ =
∫
Td
δγ̄xm0(x)dx and m̄(t) = γ̄·(t)]m0 ∀t ∈ [0, T ]. (2.49)

Let us also recall that the derivative of ū(t, ·) exists along the optimal solution γ̄x and that

˙̄γx(t) = −DpH(γ̄x(t),∇ū(t, γ̄x(t)) ∀t ∈ (0, T ]

(see Theorems 6.4.7 and 6.4.8 of [32]). This proves that m̄ is a solution in the sense of distribution of

(2.34)-(ii) (where we denote by ∇ū any fixed Borel measurable selection of the map (x, t) → D∗u(x, t),
the set of reachable gradients of u at (x, t), see [32]). Proposition 2.4.1 in appendix states that (2.34)-(ii)

has a unique solution and that this solution has a density in L∞: thus m̄ is in L∞, which shows that the

pair (ū, m̄) is a solution of the MFG system (2.34).

In order to identify the cluster point η, let us recall that ηn is defined by

ηn = γ̄n· ]m0,

where, for any x ∈ Td, γ̄nx is a minimum of J(·, η̄n) under the constraint γ(0) = x. As the criterion

J(·, η̄ni) Γ−converges to J(·, η̄) and since at any point of differentiability of ū(0, ·) the optimal solution

γ̄x is unique, standard compactness arguments show that (γ̄nix ) converges to γ̄x for a.e. x ∈ Td. Therefore

(ηni) converges to γ̄·]m0, which is nothing but η̄ by (2.49). So we conclude that η = η̄.

Finally, if (2.9) holds, then we claim that η̄ is independent of the chosen subsequence. Indeed,

since from its very definition the dependence with respect to η̄ of J(γ, η̄) is only through the family of

measures (m̄(t) = et]η̄) and since, by (2.9), there exists a unique solution to the MFG system and thus

m̄ is uniquely defined, J(γ, η̄) is independent of the choice of the subsequence. Then γ̄x defined above is

also independent of the subsequence, which characterizes η̄ in a unique way thanks to (2.49). Therefore

the entire sequence (η̄n, ηn) converges to (η̄, η̄).

Remark 2.3.1. The proof shows that a measure η̄ ∈ P0(Γ) which satisfies (2.45) can be understood

as the representation of a MFG equilibrium. Indeed, if we define (ū, m̄) as in (2.37), then (ū, m̄) is a

solution to the MFG system (2.34). Conversely, if (ū, m̄) is a solution to the MFG system (2.34), then

the relation (2.49) identifies uniquely a measure η̄ ∈ P0(Γ). For this reason, we call such a measure an

equilibrium measure.

2.3.3 Fictitious play scheme in N-players first order games

In this part we show that the fictitious play in the Mean Field Game with large (but finite) number of

players N ∈ N converges in some sense to the equilibrium of our Mean Field Game with infinite number

of players. For every N ∈ N, fix a sequence of initial states xN1 , x
N
2 , · · · , xNN ∈ Td such that:

lim
N→∞

d1(mN
0 ,m0) = 0
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where mN
0 = 1

N

N∑
i+1

δxN
i

is the empirical measure associated with the {xNi }i=1,...,N . As in the case of an

infinite population, let us define the sequences ηn,N , θn,N ∈ P(Γ), for n ∈ N∗ in the following way:

ηn+1,N = 1
n+ 1(θ1,N + θ2,N + · · ·+ θn+1,N )

θn+1,N = 1
N

(δγn+1,N
xN1

+ δγn+1,N
xN2

+ · · ·+ δγn+1,N
xN
N

)
(2.50)

where γn+1,N
xN
i

is an optimal path which minimizes J(·, ηn,N ) under constraint γ(0) = xNi . As before one

can show that if

an+1,N := −δΦ
δη

(ηn,N )(θn+1,N − ηn,N ) = −
∫

Γ
J(γ, ηn,N )d(θn+1,N − ηn,N )(γ)

=
∫

Γ
J(γ, ηn,N )dηn,N (γ)− min

θ∈P(Γ),e0]θ=mN0

∫
Γ
J(γ, ηn,N )dθ(γ),

then we have limn→∞ an,N = 0. This proves that any accumulation distribution η̄N of the sequence

{ηn,N}n∈N∗ satisfies: ∫
Γ
J(γ, η̄N )dη̄N (γ) = min

θ∈P(Γ),e0]θ=mN0

∫
Γ
J(γ, η̄N )dθ(γ). (2.51)

So if η̄N = 1
N

(η̄Nx1
+ η̄Nx2

+ · · ·+ η̄NxN ) then

supp(η̄Nxi) ⊆ argminγ(0)=xiJ(γ, η̄N ).

Note that, in contrast with the case of an infinite population, this is not an equilibrium condition, since

the deviation of a player changes the measure η̄N as well.

In the following Theorem we prove that any accumulation point η̄ of {η̄N} satisfies:∫
Γ
J(γ, η̄)dη̄(γ) = min

θ∈P0(Γ)

∫
Γ
J(γ, η̄)dθ(γ), (2.52)

where P0(Γ) is the set of measure θ ∈ P(Γ) such that e0]θ = m0. We have seen in Remark 2.3.1 that

this condition characterizes an MFG equilibrium.

Theorem 2.3.2. Assume that (2.4), (2.5), (2.6), (2.7) and (2.36) hold. Consider the fictitious play

for the N−player game as described in (2.50) and let η̄N by an accumulation distribution of (ηn,N )n∈N.

Then every accumulation point of pre-compact set of {η̄N}N∈N is an MFG equilibrium. If furthermore

the monotonicity condition (2.9) holds, then (η̄N ) has a limit which is the MFG equilibrium.

Proof. Consider η̄ as an accumulation point of the set {η̄N}N∈N. It is sufficient to show that for every

θ ∈ P(Γ) such that e0]θ = m0, we have∫
Γ
J(γ, η̄)dη̄(γ) ≤

∫
Γ
J(γ, η̄)dθ(γ). (2.53)

Since m0 is absolutely continuous with respect to the Lebesgue measure, there exists an optimal transport

map τN : Td → Td such that:

τN ]m0 = mN
0 , d1(m0,m

N
0 ) =

∫
Td
|x− τN (x)|dm0(x)

(see [8]). We define the functions ξN : Γ→ Γ as follows:

ξN (γ) = γ − γ(0) + τN (γ(0))
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and set θN = ξN ]θ. Then we have

e0]θ
N = e0](ξN ]θ) = (e0 ◦ ξN )]θ = (τN ◦ e0)]θ = τN ](e0]θ) = τN ]m0 = mN

0 .

Then the characterization (2.51) of η̄N yields:∫
Γ
J(γ, η̄N )dη̄N (γ) ≤

∫
Γ
J(γ, η̄N )dθN (γ). (2.54)

By lower semicontinuity of J we have∫
Γ
J(γ, η̄)dη̄(γ) ≤ lim inf

N

∫
Γ
J(γ, η̄N )dη̄N (γ).

On the other hand, by the definition of ξN and θN and the decomposition θ =
∫
Td θxm0(x)dx, we have∫

Γ
J(γ, η̄N )dθN (γ)

=
∫
Td

∫
Γ
(
∫ T

0
L(γ(t)− γ(0) + τN (γ(0)), γ̇(t)) + f(γ(t)− γ(0) + τN (γ(0)), et]η̄N ) dt

+g(γ(t)− γ(0) + τN (γ(0)), eT ]η̄N ))m0(x)dθx(γ)dx,

where, by dominate convergence, the right-hand side converges to the right-hand side of (2.53). So letting

N →∞ in (2.54) gives exactly (2.53).

Under (2.9), the MFG equilibrium is unique. Hence, for any ε > 0 there exists Nε ∈ N such that for

any N > Nε and any accumulation point η̄N we have d1(η̄, η̄N ) < ε.

Corollary 2.3.1. Assume (2.4), (2.5), (2.6), (2.7) and (2.36) and (2.9). Then, for any ε > 0 there is

Nε ∈ N such that for any N > Nε,

∃n(N, ε) ∈ N : ∀n > n(N, ε) : d1(ηn,N , η̄) < ε,

where η̄ is the MFG equilibrium. In other words, for every ε > 0, one can reach to the ε−neighborhood

of the equilibrium point if the number of players N is large enough.

2.4 Well-posedness of a continuity equation

We consider the continuity equation{
∂tm− div(mDpH(x,∇ū)) = 0 in (0, T )× Td

m(0, x) = m0(x).
(2.55)

where ū is the viscosity solution to{
−∂tu+H(x,∇u(x, t)) = f(x, m̄(t)), (x, t) ∈ Td × [0, T ]
u(T, x) = g(x,m(T )), x ∈ Td

Let us recall that ū is semi-concave. In (2.55) we denote by ∇ū any fixed Borel measurable selection of

the map (x, t)→ D∗u(x, t) (the set of reachable gradients of u at (x, t), see [32]). The section is devoted

to the proof of the following statement.

Proposition 2.4.1. Given a fixed map ū, there exists a unique solution m̄ of (2.55) in the sense of

distribution. Moreover m̄ is absolutely continuous and satisfies

sup
t∈[0,T ]

‖m̄(t, ·)‖∞ ≤ C.
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The difficulty for the proof comes from the fact that the vector field −DpH(t, x,∇u) is not smooth:

it is even discontinuous in general. The analysis of transport equations with non smooth vector fields has

attracted a lot of attention since the DiPerna-Lions seminal paper [49]. We face here a simple situation

where the vector field generates almost everywhere a unique solution. Nevertheless uniqueness of solution

of the associated continuity equation requires the combination of several arguments. We rely here on

Ambrosio’s approach [7], in particular for the “superposition principle” (see Theorem 2.4.1 below).

Let us start with the existence of a bounded solution to (2.55): this is the easy part.

Lemma 2.4.1. There exists a solution to (2.55) which belongs to L∞.

Proof. We follow (at least partially) the perturbation argument given in the proof of Theorem 5.1 of [34].

For ε > 0, let (uε,mε) be the unique classical solution to
−∂tuε − ε∆uε +H(x,∇uε) = f(x, m̄(t)) in (0, T )× Td

∂tm
ε − ε∆mε − div(mεDpH(x,∇uε)) = 0 in (0, T )× Td

mε(0, x) = m0(x), uε(T, x) = g(x, m̄(t)) in Td

Following the same argument as in [34], we know that the (mε) are uniformly bounded in L∞: there

exists C > 0 such that

‖mε‖∞ ≤ C ∀ε > 0.

Moreover (by semi-concavity) the (∇uε) are uniformly bounded and converge a.e. to ∇ū as ε tends to

0. Letting ε → 0, we can extract a subsequence such that mε converges in L∞−weak* to a solution m

of (2.55).

The difficult part of the proof of Proposition 2.4.1 is to check that the solution to (2.55) is unique.

Let us first point out some basic properties of the solution ū: we already explained that ū is Lipschitz

continuous and semiconcave in space for any t, with a modulus bounded independently of t. We will

repetitively use the fact that ū can be represented as the value function of a problem of calculus of

variation:

ū(x, t) = inf
γ, γ(t)=x

∫ T

t

L̃(s, γ(s), γ̇(s), m̄(s))ds+ g̃(γ(T )) (2.56)

where we have set, for simplicity of notation,

L̃(s, x, v) = L(x, v) + f(x, m̄(s)), g̃(x) = g(x, m̄(T )).

For (x, t) ∈ [0, T )×Td we denote by B(x, t) the set of optimal trajectories for the control problem (2.56).

We need to analyze precisely the connexion between the differentiability of ū with respect to the x

variable and the uniqueness of the minimizer in (2.56) (see [32], Theorems 6.4.7 and 6.4.9 and Corollary

6.4.10). Let (x, t) ∈ Td × [0, T ] and γ ∈ Γ. Then

1. (Uniqueness of the optimal control along optimal trajectories) Assume that γ ∈ B(x, t). Then,

for any s ∈ (t, T ], ū(s, ·) is differentiable at γ(s) for s ∈ (t, T ) and one has γ̇(s) =
−DpH(γ(s),∇ū(s, γ(s))).

2. (Uniqueness of the optimal trajectories)∇u(x, t) exists if and only if B(x, t) is a reduced to singleton.

In this case, γ̇(t) = −DpH(x,∇ū(x, t)) where B(x, t) = {γ}.

3. (Optimal synthesis) conversely, if γ(·) is an absolutely continuous solution of the differential equa-

tion {
γ̇(s) = −DpH(s, γ(s),∇ū(s, γ(s))) a.e. in [t, T ]
γ(t) = x,

(2.57)

then the trajectory γ is optimal for ū(x, t). In particular, if ū(t, ·) is differentiable at x, then

equation (2.57) has a unique solution, corresponding to the optimal trajectory.
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The next ingredient is Ambrosio’s superposition principle, which says that any weak solution to the

transport equation (2.55) can be represented by a measure on the space of trajectories of the ODE

γ̇(s) = −DpH(γ(s),∇ū(s, γ(s)). (2.58)

Theorem 2.4.1 (Ambrosio superposition principle). Let µ be a solution to (2.55). Then there exists

a Borel probability measure η on C0([0, T ],Td) such that µ(t) = et]η for any t and, for η−a.e. γ ∈
C0([0, T ],Td), γ is a solution to the ODE (2.58).

See, for instance, Theorem 8.2.1. from [8].

We are now ready to prove the uniqueness part of the result:

Proof of Proposition 2.4.1. Let µ be a solution of the transport equation (2.55). From Ambrosio super-

position principle, there exists a Borel probability measure η on C0([0, T ],Td) such that µ(t) = et]η for

any t and, for η−a.e. γ ∈ C0([0, T ],Td), γ is a solution to the ODE γ̇ = −DpH(t, γ(t),∇u(t, γ(t))). As

m0 = e0]η, we can disintegrate the measure η into η =
∫
Td ηxdm0(x), where γ(0) = x for ηx−a.e. γ and

m0−a.e. x ∈ Td. Since m0 is absolutely continuous, for m0−a.e. x ∈ Td, ηx−a.e. map γ is a solution

to the ODE starting from x. By the optimal synthesis explained above, such a solution γ is optimal for

the calculus of variation problem (2.56). As, moreover, for a.e. x ∈ Td the solution of this problem is

reduced to a singleton {γ̄x}, we can conclude that dηx(γ) = δγ̄x for m0−a.e. x ∈ Td. Hence, for any

continuous map φ : Td → R, one has∫
Td
φ(x)µ(t, dx) =

∫
Td
φ(γ̄x(t))m0(x)dx

which defines µ in a unique way.
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Chapter 3

Learning in anonymous non atomic

games

Submitted in INFORMS: Mathematics of Operations Research

3.1 Introduction

Mean field games (MFGs) are symmetric differential games with an infinite number of non-atomic players.

The model was first introduced simultaneously by Lasry and Lions [73][74][74][70] and Huang, Caines

and Malhamé [66][67]. In this game, each player chooses a control and accordingly, incurs a cost that

depends on the distribution of all the other players’ states. More formally, a typical player chooses a

path γ : [0, T ]→ Rd, γ(0) = x via a control α : [0, T ]→ Rd, with the dynamic dγ(t) = αtdt, and incurs

the cost:

J(γ, (mt)t∈[0,T ]) =
∫ T

0

(
L(γ(t), αt) + f(γ(t),mt)

)
dt+ g(γ(T ),mT ), (3.1)

where (mt)t∈[0,T ] ⊆ P(Rd) is the evolving distribution of other players. The Lagrangian L : Rd×Rd → R
captures the running cost depending on the tuple (γ(t), αt) and f, g : Rd × P(Rd) → R are the maps

describing the cost of interaction of this player with other players. Under classical assumptions, the

optimal control of this player, that minimizes the cost (3.1), can be obtained by solving the Hamilton-

Jacobi equation:

−∂tu+H(x,∇u(x, t)) = f(x,mt), u(x, T ) = g(x,mT )

with H(x, p) = − infv∈Rd〈p, v〉+ L(x, v). The desired optimal control will be computed as

α̃(x, t) = −DpH(x,∇u(x, t)).

for almost every (x, t) ∈ Rd× [0, T ]. If every player chooses its optimal control, the evolving distribution

of players is given by the Fokker-Planck equation:

∂tm− div(mDpH(x,∇u)) = 0, m(0, x) = m0(x).

Hence the notion of Nash Equilibrium (or stability) is captured by the system of coupled Hamilton-Jacobi

(backward) and Fokker-Planck (forward) equations written above.

The equilibrium configuration in MFGs is quite complicated and its occurrence requires a huge amount

of information and a large degree of cooperation between players. The question of formation of equilib-

rium arises naturally. Thus, one would conclude that the formation of MFG equilibrium is justifiable
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because there is a reasonable way of adapting (or learning) of players via observation and revision of the

beliefs about the other players’ behaviour.

In the current chapter, our main purpose is to prove the convergence of some learning procedures to

the Nash equilibrium in first-order MFGs with monotone costs; however, since the approach can be used

for a larger class of games, we work under a more general framework, that is the model of non atomic

anonymous games.

Non atomic anonymous games model the strategic situations where there is a huge set of negligible

agents (reflecting the non atomic nature), and cost functions depend to the distribution of actions

(reflecting the anonymity characteristic). The non atomic games are known in the literature; look at

Schmeidler [89], Mas-Colell [76], as the seminal works in this area. Contrasting to the approach by

Mas-Colell [76], we work with a non atomic game with player dependent action sets and an identical cost

function for all of players. This is the case in first-order MFGs; the players choose the paths with fixed

(player dependent) initial positions as their actions, and the cost function as in (3.1), is identical for all

players.

We provided sufficient conditions proving the existence of an equilibrium. Moreover, we proved the

uniqueness of the equilibrium under an adapted monotonicity notion. The monotonicity condition in

game frameworks, introduced by Rosen [88]. The strict monotonicity yields the uniqueness of the Nash

equilibrium in several games (Lasry and Lions [73],[74], Hofbauer and Sandholm [65], Blanchet and

Carlier [24]). In non atomic anonymous games with (not necessarily strict) monotone costs, equilibrium

uniqueness is a direct consequence of monotonicity and an additional assumption, called the unique

minimiser condition.

There are several learning procedures in static games with finitely many players and/or a finite

number of actions per player (see for example the monograph [53]). Here we extend two of the most

known of them to non atomic anonymous games: fictitious play and online mirror descent.

Fictitious play introduced by Brown[26], describes a learning procedure in which a fixed game is

played over and over in repeated discrete rounds. At every round, each player sets their belief as the

empirical frequency of play of the player’s opponents, and then chooses its best action with respect to

this belief. Convergence to a Nash equilibrium has been proved for different classes of finite games, for

example potential games (Monderer, Shapley [79]), zero sum games (Robinson [87]) and 2 × 2 games

(Miyasawa [78]). Cardaliaguet, Hadikhanloo [39] proved the convergence of fictitious play in first and

second order potential MFGs. Our approach here covers a different class of first-order MFGs, i.e. the

ones with monotone costs.

The second procedure we consider is the online mirror descent (OMD). The method was first in-

troduced by Nemirovski, Yudin [82], as a generalization of standard gradient descent. The form of the

algorithm is closely related to the notion of no-regret procedures in online optimization. A good ex-

planatory introduction can be found in Shalev Shwartz[90]. Roughly speaking, the procedure deals with

two variables, a primal one and a dual one. They are revised at every round; the dual is revised by

using the sub-gradient of the objective function and the primal is obtained by a quasi projection via a

strongly convex penalty function on the convex domain. Mertikopolous [77] proved the convergence of

OMD to equilibria in the class of games with convex action sets and concave costs. Here we examine the

convergence properties of OMD in monotone anonymous games.

In the proof of convergence of both procedures to the Nash equilibrium, we define a value φn ∈ R, n ∈
N measuring how much the actual behaviour at step n is far from being an equilibrium; in fictitious play

the quantity φn is calculated by using the best response function and in OMD by the Fenchel coupling.

We then prove that indeed limn→∞ φn = 0; this gives our desired convergence toward the equilibrium.

Here is how the paper is organized: in section 3.2 a general model of anonymous game is proposed.
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The notion of Nash equilibrium is reviewed and the existence is proved under general continuity condi-

tions. Then we define monotonicity in terms of the cost function, and its consequence on the uniqueness

of the Nash equilibrium. Section 3.3 is devoted to the definition of fictitious play and its convergence

under Lipschitz regularity conditions. Section 3.4 deals with the online mirror descent algorithm and

its convergence. Section 3.5 shows that the first order MFG can be considered as an example of anony-

mous games and shows that the previous results can be applied under suitable conditions. For sake of

completeness, we provide in the Appendix some disintegration theorems which are used in the proofs.

Acknowledgement. The extension of online mirror descent to the case of non atomic anonymous

games was inspired from the explanations of Panayotis Mertikopoulos; I would like to sincerely thank

him for his permanent supports. I wish to thank as well the support of ANR (Agence Nationale de la

Recherche) MFG (ANR-16-CE40-0015-01).

3.2 Non atomic anonymous games

3.2.1 Model

Let us introduce our general model of anonymous game G. For a measure space X let P(X) denotes the

set of probability measures on X. Let I be the set of players and λ ∈ P(I) a prior non-atomic probability

measure on I modelling the repartition of players on I. Let V be a measure space. For every player

i ∈ I, let Ai ⊂ V be the action set of i. Define the set of admissible profiles of actions

A = {Ψ : I → V measurable | Ψ(i) ∈ Ai for λ-almost every i ∈ I}.

We identify the action profiles up to λ−zero measure subsets of I, i.e. Ψ1 = Ψ2 iff Ψ1(i) = Ψ2(i) for

λ-almost every i ∈ I. The induced measure of a typical profile Ψ ∈ A on the set of actions, that captures

the portion of players who have chosen a given subset of actions, is denoted by Ψ]λ ∈ P(V ). More

precisely, Ψ]λ is the push-forward of the measure of λ by the application Ψ, that is for every measurable

set B ⊆ V we have Ψ]λ(B) = λ(Ψ−1(B)). Since the set consisting of measures Ψ]λ for all admissible

profiles Ψ, may be different from P(V ), it is sufficient to work with:

PG(V ) = { η ∈ P(V ) | ∃ Ψ ∈ A : η = Ψ]λ }.

For every i ∈ I let ci : A → R be the cost paid by player i. We call the game anonymous, if for every

player i ∈ I, there exists Ji : Ai × PG(V )→ R such that ci(Ψ) = Ji(Ψ(i),Ψ]λ). In other words, Ji(a, η)
captures the cost endured by a typical player i ∈ I, whose action is a ∈ Ai while facing the distribution

of actions η ∈ P(V ) chosen by other players. We consider here anonymous games where the players have

identical cost function, i.e. there is J : V × PG(V ) → R such that for every i ∈ I we have Ji = J . We

use the following notation for referring to such game:

G = (I, λ, V, (Ai)i∈I , J).

Example 3.2.1 (Population Game [65]). Set I = [0, 1] be the set of players and λ the Lebesgue measure

as the distribution of players on I. Let N ∈ N represents the number of populations in the game i.e.

there is a partition of players I1, I2, · · · , IN ⊆ I where for every 1 ≤ p ≤ N, Ip ⊆ I represents the set

of players belonging to population p. For every player i ∈ I suppose the set of actions Ai is finite and

depends only on the population where the player i comes from, i.e. for every population p there is Sp

such that for all i ∈ Ip we have Ai = Sp. Set V = ∪pSp. For every population p the cost function has the

form Jp : Sp × ∆(V ) → R where Jp(a, (mj)1≤j≤|V |) is the cost payed by a typical player in population
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p whose action is a ∈ Sp while facing (mj)1≤j≤|V | where for every 1 ≤ j ≤ |V |, mj ≥ 0 is the portion

of players who have chosen action j ∈ V . The form of the cost function illustrates the fact that the

population games are anonymous.

Example 3.2.2. In section 5, we show that the First order MFG is an anonymous game with suitable

actions sets and cost function.

3.2.2 Nash equilibria

Inspired from the notion of Nash equilibrium in non-atomic games (see Schmeidler [89], Mas-Colell [76]),

we omit the effect of λ−zero measure subsets of players in the definition of equilibria:

Definition 3.2.1. A profile Ψ̃ ∈ A is called a Nash equilibrium if

Ψ̃(i) ∈ arg min
a∈Ai

J(a, Ψ̃]λ) for λ-almost every i ∈ I.

The corresponding distribution η̃ = Ψ̃]λ is called a Nash (or equilibrium) distribution.

One can note that the definition of Nash equilibrium highly depends on the prior distribution of

players λ. The following theorem gives a sufficient condition under which the game possesses at least

one equilibrium. Let I be a topological and V be a metric space (with B(I),B(V ) as their σ−fields).

Suppose the Ai’s are uniformly bounded for λ-almost every i ∈ I, i.e. there exist M > 0, v ∈ V such

that:

for λ−almost every i ∈ I and every a ∈ Ai : dV (v, a) < M. (3.2)

This condition gives us PG(V ) ⊆ P1(V ) where:

P1(V ) = { η ∈ P(V ) | ∃v ∈ V :
∫
V

dV (v, a) dη(a) < +∞ }

endowed with the metric:

d1(η1, η2) = sup
h:V→R, 1-Lipschitz

∫
V

h(a) d(η1 − η2)(a).

For technical reasons we work with closure convex hull of PG(V ) i.e. cov(PG(V )).

Definition 3.2.2. We say G = (I, λ, V, (Ai)i∈I , J) satisfies the unique minimiser condition, if for every

η ∈ cov(PG(V )), there exists Iη ⊆ I with λ(I \Iη) = 0, such that for all i ∈ Iη there is exactly one a ∈ Ai
minimizing J(·, η) in Ai.

Informally, the definition says facing to every distribution of actions, (almost) every player has a

unique best response.

Definition 3.2.3. A correspondence A : I → V,A(i) = Ai is called continuous if:

• it is upper semi continuous i.e. the graph {(i, a) ∈ I × V | a ∈ Ai} is closed in I × V ,

• it is lower semi continuous i.e. for every open set U ⊆ V the set {i ∈ I | Ai ∩U 6= ∅} is open in I.

For more detailed theorems about set valued maps, see [9].

Assumption 3.2.1. Here are the assumptions we consider for the non atomic anonymous games:

1. the correspondence A : I → V, A(i) = Ai is continuous and compact valued,
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2. there is an extension J : V × cov(PG(V ))→ R which is lower semi-continuous,

3. the function Min : I × PG(V )→ R, Min(i, η) := mina∈Ai J(a, η) is continuous,

4. cov(PG(V )) is compact,

5. G satisfies the unique minimiser condition.

Theorem 3.2.1. Let G = (I, λ, V, (Ai)i∈I , J) be an anonymous game. Suppose the assumptions (3.2.1)

hold. Then G will admit at least a Nash equilibrium.

Assumptions (3.2.1)(1-4) provide enough continuity and compactness conditions we need for the fixed

point theorem. The assumption (3.2.1)(5) allows us to prove the existence of pure Nash equilibrium; it

is crucial as well for the uniqueness of equilibrium and convergence results in learning procedures that

we will propose. So we add it here as an assumption for being coherent in the entire chapter. Before we

start the proof let us provide some lemmas which will be used here and in the rest of paper:

Lemma 3.2.1. Define the best response correspondence as follows

BR : I × cov(PG(V ))→ V, BR(i, η) = arg min
a∈Ai

J(a, η).

If the assumptions (3.2.1) hold, then for every η ∈ PG(V ) the correspondence BR(·, η) : I → V , that is

almost everywhere singleton, is almost everywhere continuous and hence measurable.

Proof. Fix η ∈ cov(PG(V )). According to the unique minimiser condition there exists Iη ⊆ I with

λ(I \ Iη) = 0, such that BR(i, η) is singleton for every i ∈ Iη. We will show the continuity of the

restricted best response function BR(·, η) : Iη → V which completes our proof. Consider i, in ∈ Iη

such that in → i. Set an = BR(in, η). The set {an}n∈N is pre-compact since A : I → V is a compact

valued correspondence and hence A({in}n∈N ∪ {i}) = ∪nAin ∪ Ai is compact. Suppose ã ∈ V is an

accumulation point of {an}n∈N. So there is a sub-sequence {ank}k∈N such that limk→∞ ank = ã. We

have ã ∈ Ai since the correspondence A : I → V is upper semi continuous and an ∈ Ain . By definition

J(an, η) = Min(in, η) which gives:

J(ã, η) ≤ lim inf
nk

J(ank , η) = lim inf
nk

Min(ink , η) = Min(i, η),

since the Min function is continuous. It yields ã = BR(i, η). So every accumulation point of {an}n∈N
should be BR(i, η) which shows an → BR(i, η).

Lemma 3.2.2. Define the best response distribution function Θ : cov(PG(V ))→ PG(V ) as follows:

Θ(η) = BR(·, η)]λ, for every η ∈ cov(PG(V )).

If the assumptions (3.2.1) hold then Θ is continuous.

Proof. Let ηn → η. If J = Iη ∩n∈N Iηn then we have λ(I \ J) = 0. One can show as for Lemma 3.2.1

that for every i ∈ J :

BR(i, ηn)→ BR(i, η).

Since the Ai’s are uniformly bounded for λ−almost every i ∈ J , the dominated Lebesgue convergence

theorem implies
∫
I

dV (BR(i, ηn), BR(i, η)) dλ(i)→ 0. Thus Θ(ηn) d1−→ Θ(η) since:

d1(Θ(ηn),Θ(η)) = sup
f :V→R, 1-Lipschitz

∫
V

f(v) d(Θ(ηn)−Θ(η))(v) =

sup
f :V→R, 1-Lipschitz

∫
I

(f(BR(i, ηn))− f(BR(i, η))) dλ(i) ≤
∫
I

dV (BR(i, ηn), BR(i, η)) dλ(i)→ 0.
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Proof of Theorem 3.2.1. Consider the best response distribution function Θ defined in Lemma 3.2.2. We

have by definition

Θ(cov(PG(V ))) ⊂ PG(V ) ⊂ cov(PG(V )),

which implies that the image of Θ is pre-compact. Since Θ is continuous (Lemma 3.2.2) and cov(PG(V ))
is convex, by the Schauder’s fixed point theorem, there is η̃ ∈ cov(PG(V )) such that Θ(η̃) = η̃. Since

Θ(η̃) = BR(·, η̃)]λ ∈ PG(V ) so if we set Ψ̃(·) = BR(·, η̃) ∈ A then

Ψ̃]λ = η̃, Ψ̃(i) ∈ arg min
a∈Ai

J(a, η̃) for λ-almost every i ∈ I.

This means Ψ̃ is the desired Nash equilibrium.

3.2.3 Anonymous games with monotone cost

Here we give a definition of monotonicity and its additional consequences on the structure of the game

and its equilibria.

Definition 3.2.4. The anonymous game G = (I, λ, V, (Ai)i∈I , J) has a monotone cost J if for any

η, η′ ∈ cov(PG(V )): ∫
V

|J(a, η)| dη′(a) < +∞,

and ∫
V

(J(a, η)− J(a, η′)) d(η − η′)(a) ≥ 0.

We call J a strict monotone cost function if the later inequality holds strictly for η 6= η′.

This condition is usually interpreted as the aversion of players for choosing actions that are chosen

by many of players i.e. congestion avoiding effect.

Remark 3.2.1. If J is monotone and if Ψ̃ ∈ A is a Nash equilibrium, then for every Ψ ∈ A we have:

if η̃ = Ψ̃]λ , η = Ψ]λ :
∫
V

J(a, η) d(η − η̃)(a) ≥
∫
V

J(a, η̃) d(η − η̃)(a) ≥ 0.

Proof. Since J is monotone we have
∫
V

(J(a, η)− J(a, η̃)) d(η − η̃)(a) ≥ 0 and so:∫
V

J(a, η) d(η − η̃)(a) ≥
∫
V

J(a, η̃) d(η − η̃)(a).

On the other hand ∫
V

J(a, η̃) d(η − η̃)(a) =
∫
I

(
J(Ψ(i), η̃)− J(Ψ̃(i), η̃)

)
dλ(i)

by the definition of push-forward measures. Since Ψ̃ is an equilibrium, for λ-almost every i ∈ I, we have

J(Ψ(i), η̃)− J(Ψ̃(i), η̃) ≥ 0, which gives our result.

The strict monotonicity yields the uniqueness of the Nash equilibrium in different frameworks, e.g.

Haufbauer, Sandholm [65], Blanchet, Carlier [24], Lasry, Lions [73]. In the following we show that in

non atomic anonymous games, the monotonicity and unique minimiser conditions are sufficient for the

uniqueness of the equilibrium.

Theorem 3.2.2. Consider a game G = (I, λ, V, (Ai)i∈I , J). Then the game G admits at most one Nash

equilibrium if J is monotone and G satisfies the unique minimiser condition.
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Proof. Let Ψ1,Ψ2 ∈ A be two Nash equilibria. We will show that Ψ1(i) = Ψ2(i) for λ-almost every i ∈ I.

Set ηi = Ψi]λ for i = 1, 2. Since Ψ1 is an equilibrium, we have:∫
I

(J(Ψ1(i), η1)− J(Ψ2(i), η1)) dλ(i) ≤ 0,

since J(Ψ1(i), η1) ≤ J(Ψ2(i), η1) for λ-almost every i ∈ I. On the other hand:∫
I

(J(Ψ1(i), η1)− J(Ψ2(i), η1)) dλ(i) =
∫
V

J(a, η1) d(η1 − η2)(a),

from the definition since Ψi]λ = ηi for i = 1, 2. So∫
V

J(a, η1) d(η1 − η2)(a) ≤ 0 and (similarly)

∫
V

J(a, η2) d(η2 − η1)(a) ≤ 0.

Summing up the last inequalities gives us:∫
V

(J(a, η1)− J(a, η2)) d(η1 − η2)(a) ≤ 0.

Hence by monotonicity of J we should have the equality in the previous inequalities. So for λ-almost

every i ∈ I, one has J(Ψ1(i), η1) = J(Ψ2(i), η1). Since Ψ1(i) ∈ Ai is the unique minimiser of J(·, η1) on

Ai so Ψ1(i) = Ψ2(i) for λ-almost every i ∈ I.

Remark 3.2.2. One can similarly show that if J is strictly monotone and not necessarily satisfies the

unique minimizer condition, then there exists at most one Nash equilibrium distribution.

3.3 Fictitious play in anonymous games

Here we introduce a learning procedure similar to the fictitious play and prove its convergence to the

unique Nash equilibrium under monotonicity condition.

Let G = (I, λ, V, (Ai)i∈I , J). For technical reasons, we suppose that assumptions (3.2.1) hold through-

out this section. Suppose G is being played repeatedly on discrete rounds n = 1, 2, . . .. At every round,

the players set their belief equals to the average of the action distribution observed in the previous rounds

and then react their best to such belief. At the end of the round players revise their beliefs by a new

observation. More formally, consider Ψ1 ∈ A, η̄1 = η1 = Ψ1]λ ∈ PG(V ) an arbitrary initial belief.

Construct recursively (Ψn, ηn, η̄n) ∈ A× PG(V )× cov(PG(V )) for n = 1, 2, . . . as follows:

(i) Ψn+1(i) = BR(i, η̄n), for λ-almost every i ∈ I,
(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = 1
n+1

∑n+1
k=1 ηk = n

n+1 η̄n + 1
n+1ηn+1.

(3.3)

One should notice that by assumption (3.2.1)(5) and Lemma 3.2.1 the expressions in (3.3)(i, ii) are well

defined. We will show now that this procedure converges to the Nash Equilibrium when G is monotone.

Theorem 3.3.1. Consider a non atomic anonymous game G = (I, λ, V, (Ai)i∈I , J) satisfying as-

sumptions 3.2.1. Suppose the cost function J is monotone and there exists C > 0 such that for all

a, b ∈ V, η, η′ ∈ cov(PG(V )):

|J(a, η)− J(a, η′)− J(b, η) + J(b, η′)| ≤ C dV (a, b) d1(η, η′),

|J(a, η)− J(a, η′)| ≤ C d1(η, η′).
(3.4)

Construct (Ψn, ηn, η̄n) ∈ A × PG(V ) × cov(PG(V )) for n ∈ N by applying the fictitious play procedure

proposed in (3.3). Then:

ηn, η̄n
d1−→ η̃

where η̃ ∈ PG(V ) is the unique Nash equilibrium distribution.
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Inspired from [65], the proof requires several steps. The key idea is to use the quantities φn ∈ R
defined by

φn =
∫
V

J(a, η̄n) d(η̄n − ηn+1)(a), for every n ∈ N.

Since the best response distribution of η̄n is ηn+1, the quantity φn describes how much η̄n is far from

being an equilibrium. By using monotonicity and the regularity conditions, one gets

∀n ∈ N : φn+1 − φn ≤ −
1

n+ 1φn + εn
n
,

for suitable {εn}n∈N such that limn→∞ εn = 0. We show the later inequality is sufficient to prove

limn→∞ φn = 0 and then we conclude that the accumulation points of η̄n, ηn is the equilibrium distribu-

tion η̃. As one will see, the unique minimiser assumption plays a key role in Lemma 3.3.2 and hence in

our main result.

Lemma 3.3.1. Consider a sequence of real numbers {φn}n∈N such that lim infn φn ≥ 0. If there exists

a real sequence {εn}n∈N such that limn→∞ εn = 0 and :

∀ n ∈ N : φn+1 − φn ≤ −
1

n+ 1φn + εn
n
,

then limn→∞ φn = 0.

Proof. Let bn = nφn for every n ∈ N. We have:

∀ n ∈ N : bn+1

n+ 1 −
bn
n
≤ − bn

n(n+ 1) + εn
n
,

which implies bn+1 ≤ bn + (n+ 1)εn/n ≤ bn + 2|εn|. Then we get bn ≤ b1 + 2
∑n−1
i=1 |εi| for n ∈ N and so:

0 ≤ lim inf
n

φn ≤ lim sup
n

φn ≤ lim sup
n

b1 + 2
∑n−1
i=1 |εi|

n
= 0.

which proves limn→∞ φn = 0.

Lemma 3.3.2. Let (ηn)n∈N be defined by (3.3). Then

d1(η̄n, η̄n+1) = O(1/n), lim
n→∞

d1(ηn, ηn+1) = 0.

Proof. Let M > 0, v ∈ V be chosen from (3.2). For every 1-Lipschitz continuous map h : V → R we

have: ∣∣∣∣∫
V

h(a) d(η̄n+1 − η̄n)
∣∣∣∣ = 1

n+ 1

∣∣∣∣∫
V

h(a) d(ηn+1 − η̄n)(a)
∣∣∣∣

= 1
n+ 1

∣∣∣∣∫
V

(h(a)− h(v)) d(ηn+1 − η̄n)(a)
∣∣∣∣

≤ 1
n+ 1

(∫
V

dV (a, v) dηn+1(a) + 1
n

n∑
k=1

∫
V

dV (a, v) dηk(a)
)
.

(3.5)

By the definition we have:∫
V

dV (a, v) dηk(a) =
∫
V

dV (Ψk(i), v) dλ(i) ≤M, for every k ∈ N.

So we can write ∣∣∣∣∫
V

h(a) d(η̄n+1 − η̄n)
∣∣∣∣ ≤ 2M

n+ 1 ,
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or d1(η̄n, η̄n+1) ≤ 2M
n+1 since h is an arbitrary 1−Lipschitz continuous function.

For the second part of the lemma, let us consider the best response distribution function Θ defined

in Lemma 3.2.2. Since Θ is continuous (Lemma 3.2.2) and cov(PG(V )) is compact, there exists a non

decreasing continuity modulus

ω : R+ → R+, lim
x→0+

ω(x) = 0

such that:

∀ η1, η2 ∈ cov(PG(V )) : d1(Θ(η1),Θ(η2)) ≤ ω(d1(η1, η2)).

Since for all n ∈ N we have η̄n ∈ cov(PG(V )) and Θ(η̄n) = ηn+1 we have

0 ≤ d1(ηn+1, ηn+2) = d1(Θ(η̄n),Θ(η̄n+1)) ≤ ω(d1(η̄n, η̄n+1)).

It gives our desired result since d1(η̄n, η̄n+1) = O(1/n).

The proof of previous lemma relies heavily on the unique minimizer assumption. Instead without it,

one cannot conclude that ηn, ηn+1 are close even if η̄n, η̄n+1 are so. Even for η̄n = η̄n+1, one might have

very different best responses ηn and ηn+1.

Proof of Theorem 3.3.1. Let {φn}n∈N be defined by:

φn =
∫
V

J(a, η̄n) d(η̄n − ηn+1)(a), for every n ∈ N.

We have φn ≥ 0 for all n ∈ N. Indeed, rewriting the definition of φn, we have:

φn =
∫
I

1
n

n∑
k=1

(J(Ψk(i), η̄n)− J(BR(i, η̄n), η̄n)) dλ(i),

and the positiveness comes from the definition of the best response. We now prove that exists C > 0
such that:

φn+1 − φn ≤ −
1

n+ 1φn + C
d1(ηn, ηn+1) + 1/n

n
, for every n ∈ N. (3.6)

Let us rewrite φn+1 − φn = A+B, where:

A =
∫
V

J(a, η̄n+1) dη̄n+1(a)−
∫
V

J(a, η̄n) dη̄n(a),

B =
∫
V

J(a, η̄n) dηn+1(a)−
∫
V

J(a, η̄n+1) dηn+2(a).

We have:

B ≤
∫
V

J(a, η̄n) dηn+2(a)−
∫
V

J(a, η̄n+1) dηn+2(a)

=
∫
V

(J(a, η̄n)− J(a, η̄n+1)) dηn+2(a)

≤
∫
V

(J(a, η̄n)− J(a, η̄n+1)) dηn+1(a) + C

n
d1(ηn+1, ηn+2),

since by (3.4) and Lemma 3.3.2 there exists C such that the function J(·, η̄n)− J(·, η̄n+1) : V → R is a

C/n−Lipschitz continuous function. Let us rewrite the expression A as follows:

A =
∫
V

J(a, η̄n+1) d(η̄n + 1
n+ 1(ηn+1 − η̄n))(a)−

∫
V

J(a, η̄n) dη̄n(a)

=
∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a) + 1
n+ 1

∫
V

J(a, η̄n+1) d(ηn+1 − η̄n)(a)

≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a) + 1
n+ 1

∫
V

J(a, η̄n) d(ηn+1 − η̄n)(a) + C

n2
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since by (3.4) and Lemma 3.3.2 we have |J(a, η̄n)− J(a, η̄n+1)| ≤ C d1(η̄n+1, η̄n) = O(1/n). So

A ≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) dη̄n(a)− φn
n+ 1 + C

n2 .

Then if we set εn = C(d1(ηn+1, ηn+2) + 1/n), by using the above inequalities for A,B, we have :

A+B ≤
∫
V

(J(a, η̄n+1)− J(a, η̄n)) d(η̄n − ηn+1)(a)− φn
n+ 1 + εn

n

= −(n+ 1)
∫
V

(J(a, η̄n+1)− J(a, η̄n)) d(η̄n+1 − η̄n)(a)− φn
n+ 1 + εn

n

≤ − φn
n+ 1 + εn

n
,

(3.7)

and the last inequality comes from the monotonicity assumption. By Lemmas 4.3.1 and 3.3.2, the

inequality (3.6) implies φn → 0. Let (η, η̄) ∈ PG(V ) × cov(PG(V )) be an accumulation point of the

set {(ηn+1, η̄n)}n∈N. We have η = Θ(η̄) due to the continuity of best response distribution function Θ
(Lemma 3.2.2) and the fact that ηn+1 = Θ(η̄n).

Take an arbitrary θ ∈ PG(V ). Since J is lower semi-continuous we have (see [8] section 5.1.1):∫
V

J(a, η̄) d(η̄ − θ)(a) ≤ lim inf
∫
V

J(a, η̄) d(η̄n − θ)(a) = lim inf
∫
V

J(a, η̄n) d(η̄n − θ)(a)

= lim inf
∫
V

J(a, η̄n) d(ηn+1 − θ)(a) + φn ≤ lim inf φn = 0

since ηn+1 = Θ(η̄n) and
∫
V
J(a, η̄n) d(ηn+1 − θ)(a) ≤ 0 for every θ ∈ PG(V ). So:

∀ θ ∈ PG(V ) :
∫
V

J(a, η̄) d(η̄ − θ)(a) ≤ 0. (3.8)

We rewrite the above inequality as follows: since η̄ ∈ cov(PG(V )) by Corollary 3.6.1 we can disintegrate

it with respect to (Ai)i∈I i.e. there are {η̄i}i∈I ⊆ P(V ) such that for λ−almost every i ∈ I we have

supp(η̄i) ⊂ Ai and for every integrable function h : V → R:∫
V

h(a) dη̄(a) =
∫
I

∫
Ai

h(a) d(η̄i)(a) dλ(i).

Specially for h = J(·, η) we have:∫
V

J(a, η̄) dη̄(a) =
∫
I

∫
Ai

J(a, η̄) d(η̄i)(a) dλ(i),

and for all Ψ ∈ A:∫
V

J(a, η̄) d(Ψ]λ)(a) =
∫
I

J(Ψ(i), η̄) dλ(i) =
∫
I

∫
Ai

J(Ψ(i), η̄) d(η̄i)(a) dλ(i).

Combining the previous equalities with (3.8), gives us:

∀Ψ ∈ A :
∫
I

∫
Ai

(J(a, η̄)− J(Ψ(i), η̄)) d(η̄i)(a) dλ(i) =
∫
V

J(a, η̄) d(η̄ −Ψ]λ)(a) ≤ 0.

In particular if Ψ = BR(·, η̄) we have:∫
I

∫
Ai

(J(a, η̄)− J(BR(i, η̄), η̄)) d(η̄i)(a) dλ(i) ≤ 0,

which gives the equality by definition of best response action. So by unique minimizer we have η̄i =
δBR(i,η̄) for λ−almost every i ∈ I. It means η̄ = BR(·, η̄)]λ or η̄ = Θ(η̄). Hence η̄ = η and they are both

equal to η̃ ∈ PG(V ), the unique fixed point of Θ, or equivalently, the unique equilibrium distribution.
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3.4 Online mirror descent

Here we investigate the convergence to a Nash equilibrium by applying Online Mirror Descent (OMD)

in anonymous games. The form of OMD algorithm is closely related to the online optimization and no

regret algorithms. The reader can find a good explanatory note in [90]. The goal of the algorithm is to

act optimally in online manner by ”minimizing” a function that itself changes at each step. In the game

frameworks, the cost function changes due to change of the actions chosen by adversaries in each round.

As one can notice in the following, we need the structure of vector space for the action sets.

3.4.1 Preliminaries

Before we propose the main OMD, let us review some definitions and lemmas.

Definition 3.4.1. Let (W, ‖ · ‖W ) be a normed vector space. For K > 0 we say that h : W → R is a

K−strongly convex function if

∀a1, a2 ∈W, ∀λ ∈ [0, 1] : h(λa1 + (1− λ)a2) ≤ λh(a1) + (1− λ)h(a2)−Kλ(1− λ)‖a1 − a2‖2W .

Definition 3.4.2. The Fenchel conjugate of a function h : W → R on a set A ⊆W is defined by:

h∗A : W ∗ → R ∪ {+∞} : h∗A(y) = sup
a∈A
〈y, a〉 − h(a), for all y ∈W ∗

and the related maximiser correspondence by:

QA : W ∗ → A : QA(y) = arg max
a∈A

〈y, a〉 − h(a), for all y ∈W ∗.

Remark 3.4.1. The corresponding QA is not empty if A is weakly closed and h is weakly lower semi-

continuous and coercive, i.e. lima→∞ h(a)/‖a‖W = +∞.

If W be a Hilbert space (so W ∗ = W ) and h(a) = 1
2‖a‖

2
W then the correspondence QA will be the

classical projection on A:

QA(y) = arg max
a∈A

〈y, a〉W −
1
2‖a‖

2
W = arg max

a∈A
−‖y − a‖2W = πA(y).

Lemma 3.4.1. Let h : W → R be a K−strongly convex function and A a convex subset of W . For any

y1, y2 ∈W ∗ let ai ∈ QA(yi), i = 1, 2. Then we have:

2K‖a1 − a2‖2W ≤ 〈y1 − y2, a1 − a2〉.

It implies ‖a1 − a2‖W ≤ 1
2K ‖y1 − y2‖W∗ . In particular if y1 = y2 then a1 = a2 i.e. the correspondence

QA(y) is either empty or single valued for every y ∈W ∗.

Proof. Since A is convex, for every ε ∈ (0, 1] we have (1− ε)a1 + εa2 ∈ A. By definition:

〈y1, a1〉 − h(a1) ≥ 〈y1, (1− ε)a1 + εa2〉 − h((1− ε)a1 + εa2),

and K−strongly convex condition for h gives:

h((1− ε)a1 + εa2) ≤ (1− ε)h(a1) + εh(a2)−Kε(1− ε)‖a1 − a2‖2.

So by combining the above inequalities:

〈y1, a1〉 − h(a1) ≥ 〈y1, (1− ε)a1 + εa2〉 − (1− ε)h(a1)− εh(a2) +Kε(1− ε)‖a1 − a2‖2,
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which gives:

ε〈y1, a1 − a2〉 ≥ εh(a1)− εh(a2) +Kε(1− ε)‖a1 − a2‖2.

After dividing the both sides by ε and then tending ε→ 0+ we will get:

〈y1, a1 − a2〉 ≥ h(a1)− h(a2) +K‖a1 − a2‖2.

By exchanging the role of (a1, y1) and (a2, y2) we have:

〈y2, a2 − a1〉 ≥ h(a2)− h(a1) +K‖a2 − a1‖2.

It yields the desired result if we sum up the two last inequalities.

Definition 3.4.3. Let F : W → R be a convex function. We say that v ∈W ∗ is a sub-gradient of F at

a ∈W if:

∀ b ∈W : F (b)− F (a) ≥ 〈v, b− a〉,

and set ∂F (a) ⊆W ∗ the set of all sub-gradients at a.

One can notice that if F : W → R is differentiable (in sense of Fréchet) at a ∈ W , then ∂F (a) =
{DF (a)}.

3.4.2 OMD algorithm and convergence result

Consider an anonymous game G = (I, λ, V, (Ai)i∈I , J). Suppose that the following conditions hold:

• there is a normed vector space (W, ‖ · ‖W ) such that⋃
i∈I

Ai ⊆W ⊆ V,

and let h : W → R be a K−strongly convex function for a real K > 0.

• for every i ∈ I the action sets Ai are weakly closed in W and h is weakly lower semi-continuous

and coercive (and hence QAi is single valued by Remark 3.4.1),

• for every (a, η) ∈ W × PG(V ) the function J(·, η) : W → R is convex and exists a subgradient

y(a, η) ∈ ∂aJ(·, η) ⊆W ∗,

Let {βn}n∈N be a sequence of real positive numbers. Set an arbitrary initial measurable functions

Ψ0 ∈ A, η0 = Ψ0]λ, Φ0 : I → W ∗. The following procedure (3.9) is called the Online Mirror Descent

(OMD) on anonymous game G:

(i) Φn+1(i) = Φn(i)− βny(Ψn(i), ηn), for every i ∈ I
(ii) Ψn+1(i) = QAi(Φn+1(i)), for every i ∈ I
(iii) ηn+1 = Ψn+1]λ.

(3.9)

Theorem 3.4.1. Suppose one applies the OMD algorithm proposed in (3.9) for βn = 1
n . Suppose the

following conditions hold:

1. the game G satisfies assumptions (3.2.1),

2. for every i ∈ I the action sets Ai are convex and exists M > 0 such that for λ−almost every i ∈ I
we have ‖a‖W ≤M for all a ∈ Ai and we have R(M) := sup‖a‖≤M |h(a)| < +∞,

3. the map Φ0 : I →W ∗ is bounded,
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4. the cost function J is monotone,

5. there exists δ > 0 such that for λ−almost every i ∈ I and all a ∈ Ai, η ∈ PG(V ),

‖y(a, η)‖W∗ ≤ δ. (3.10)

Then ηn = Ψn]λ converges to η̃ = Ψ̃]λ where η̃ ∈ PG(V ) is the unique Nash equilibrium distribution.

Remark 3.4.2. For every y, z ∈W ∗ and any A ⊆W we have :

∀a ∈ QA(y) : h∗A(y)− h∗A(z) ≤ 〈y − z, a〉.

This is obvious since h∗A(y)− 〈y, a〉+ h(a) = 0 ≤ h∗A(z)− 〈z, a〉+ h(a).

Proof of Theorem 3.4.1. Let Ψ̃ ∈ A be a Nash equilibrium profile. Define the real sequence {φn}n∈N as

follows:

∀n ∈ N : φn =
∫
I

(
h(Ψ̃(i)) + h∗Ai(Φn(i))− 〈Φn(i), Ψ̃(i)〉

)
dλ(i).

By definition of Fenchel conjugate we know φn ≥ 0. For making the rest of argument well-defined, we

first show that φn is indeed finite. We have∫
I

(
h(Ψ̃(i)) + h∗Ai(Φn(i))− 〈Φn(i), Ψ̃(i)〉

)
dλ(i) =

∫
I

(
h(Ψ̃(i))− h(Ψn(i))− 〈Φn(i), Ψ̃(i)−Ψn(i)〉

)
dλ(i)

since Ψn(i) = QAi(Φn(i)) for λ−almost every i ∈ I. Moreover,

| h(Ψ̃(i))− h(Ψn(i))− 〈Φn(i), Ψ̃(i)−Ψn(i)〉 | ≤ 2R(M) + 2‖Φn(i)‖W∗M,

since ‖Ψ̃(i)‖W , ‖Ψn(i)‖W ≤M for λ−almost every i ∈ I. By (3.9)(i) we have:

∀n ∈ N : ‖Φn‖∞ ≤ δ(1 + 1
2 + · · ·+ 1

n− 1) + ‖Φ0‖∞

which yields |φn| <∞. Let us compute the difference φn+1 − φn:

φn+1 − φn =
∫
I

(
h∗Ai(Φn+1(i))− h∗Ai(Φn(i))− 〈Φn+1(i)− Φn(i), Ψ̃(i)〉

)
dλ(i)

So from Remark 3.4.2:

φn+1 − φn ≤
∫
I

〈Φn+1(i)− Φn(i),Ψn+1(i)− Ψ̃(i)〉 dλ(i)

= −βn
∫
I

〈y(Ψn(i), ηn),Ψn+1(i)− Ψ̃(i)〉 dλ(i)

= −βn
∫
I

(
〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉+ 〈y(Ψn(i), ηn),Ψn+1(i)−Ψn(i)〉

)
dλ(i)

≤ −βnαn + Cβ2
n

where αn =
∫
I
〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉 dλ(i) and since by condition (3.10) we have:

|〈y(Ψn(i), ηn),Ψn+1(i)−Ψn(i)〉| ≤ δ‖Ψn+1(i)−Ψn(i)‖W

≤ δ

2K ‖Φn+1(i)− Φn(i)‖W∗ = βn
δ

2K ‖y(Ψn(i), ηn)‖W∗ ≤ βn
δ2

2K .

By definition of the sub-gradient we have:

∀b ∈W : 〈y(a, ηn), a− b〉 ≥ J(a, ηn)− J(b, ηn).
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So:

αn =
∫
I

〈y(Ψn(i), ηn),Ψn(i)− Ψ̃(i)〉 dλ(i) ≥
∫
I

(
J(Ψn(i), ηn)− J(Ψ̃(i), ηn)

)
dλ(i) =∫

X

J(a, ηn) d(ηn − η̃)(a) ≥
∫
X

J(a, η̃) d(ηn − η̃)(a) ≥ 0,

by Remark 3.2.1. If we set ψn =
∫
X
J(a, η̃) d(ηn − η̃)(a), then since βn = 1

n we have:

N∑
n=1

ψn
n
≤

N∑
n=1

αn
n

=
N∑
n=1

βnαn ≤
N∑
n=1

(
φn − φn+1 + C

n2

)
= φ1 − φN+1 +

N∑
n=1

C

n2 < +∞ (3.11)

so
∑∞
n=1

ψn
n < +∞. We show then that |ψn+1 − ψn| = O(1/n). We remind from Lemma 2.2.5 that this

yields limn→∞ ψn = 0. We have

ψn+1 − ψn =
∫
X

J(a, η̃) d(ηn+1 − ηn)(a) =
∫
X

(J(Ψn+1(i), η̃)− J(Ψn(i), η̃)) dλ(i),

and from the definition of sub-gradient:

〈y(Ψn(i), η̃),Ψn+1(i)−Ψn(i)〉 ≤ J(Ψn+1(i), η̃)− J(Ψn(i), η̃) ≤ 〈y(Ψn+1(i), η̃),Ψn+1(i)−Ψn(i)〉

so |J(Ψn+1(i), η̃)− J(Ψn(i), η̃)| = O(1/n) which gives |ψn+1 − ψn| = O(1/n).
Since PG(V ) is pre-compact, there exist a sequence {ni}i∈N ⊆ N and η′ ∈ PG(V ) such that

limi→∞ ηni = η′. Since J(·, η̃) : V → R is lower semi-continuous, we have:∫
V

J(a, η̃) d(η′ − η̃)(a) ≤ lim inf
i

∫
V

J(a, η̃) d(ηni − η̃) = lim inf
i
ψni = 0,

which yields η′ = η̃ due to the Corollary 3.6.1 and the definition of Nash equilibrium distribution. So

every accumulation point of set {ηn}n∈N ⊆ PG(V ) is η̃ which gives limn→∞ ηn = η̃ since PG(V ) is

pre-compact.

3.5 Application to first order MFG

3.5.1 Model

Let us show the first-order mean field games are special case of non atomic anonymous games proposed

in section 3.2. Set I = Rd with the usual topology, as the set of players and m0 ∈ P(I) a given non

atomic Borel probability measure on Rd. Let V = C0([0, T ],Rd) endowed with the supremum norm

‖γ‖∞ = supt∈[0,T ] ‖γ(t)‖. For each player i ∈ Rd let Ai = Si,M ⊆ C0([0, T ],Rd) where:

∀x ∈ Rd, M > 0 : Sx,M := {γ ∈ AC([0, T ],Rd) | γ(0) = x,

∫ T

0
‖γ̇(t)‖2 dt ≤M}, (3.12)

where AC([0, T ],Rd) denotes the set absolutely continuous function from [0, T ] to Rd. We will explain

later how to choose M > 0 properly.

Let H1([0, T ],Rd) defined as

H1([0, T ],Rd) =
{
γ ∈ AC([0, T ],Rd) |

∫ T

0
‖γ̇(t)‖2 dt < +∞

}
.

We denote P1(C0([0, T ],Rd)) be the set of Borel probability measures with finite first moment on

C0([0, T ],Rd). Set for every t ∈ [0, T ] the evaluation function et : C0([0, T ],Rd) → Rd as et(γ) = γ(t).
The MFG cost function J : C0([0, T ],Rd)× P1(C0([0, T ],Rd))→ R is defined as follows:

J(γ, η) =


∫ T

0 (L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η), if γ ∈ H1([0, T ],Rd)

+∞ otherwise,
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We call the anonymous game G = (Rd,m0, C0([0, T ],Rd), (Si,M )i∈Rd , J) a first-order mean field game.

Remark 3.5.1. For every admissible profile of actions Ψ : I → C0([0, T ],Rd) that Ψ(i) ∈ Si,M , for

η = Ψ]m0 we have:

d1(et]η, es]η) ≤
∫

Γ
‖γ(t)− γ(s)‖dη(γ) ≤

√
|t− s|

∫
Γ

√∫ s

t

‖γ̇(r)‖2dr dη(γ) ≤
√
M |t− s|,

due to definition of M in (3.12). That means for every η ∈ PG(V ) the map t → et]η is 1
2−Holder

continuous.

Suppose that the following conditions hold for the data:

Assumption 3.5.1. Let

1. m0 has a compact support,

2. for every x ∈ Rd the map L(x, ·) : Rd → Rd is twice differentiable and there exists C > 0 such that

for all (x, v) ∈ Rd × Rd we have:

1
C
Id ≤ DvvL(x, ·) ≤ CId, ‖Lx(x, v)‖ ≤ C,

3. the functions f, g : Rd × P1(Rd) → R are continuous and for every m ∈ P1(Rd) the maps

f(·,m), g(·,m) : Rd → R are C1(Rd;R),

4. suppose that there exist C > 0 such that:

∀ x ∈ Rd,m ∈ P1(Rd) : ‖fx(x,m)‖ , ‖gx(x,m)‖ ≤ C.

Remark 3.5.2 ([32], Theorem 7.2.4). If conditions 3.5.1(2,3,4) hold, then there is at least one minimizer

of variational problem

min
γ∈AC([0,T ],Rd), γ(0)=x

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), et]η)) dt+ g(γ(T ), eT ]η). (3.13)

The minimizer γ : [0, T ]→ Rd belongs to C1([0, T ],Rd), Lv(γ(t), γ̇(t)) is absolutely continuous and

d
dtLv(γ(t), γ̇(t)) = Lx(γ(t), γ̇(t)) + fx(γ(t), et]η), for almost every t ∈ [0, T ], (3.14)

with γ̇(T ) = −gx(γ(T ), eT ]η). In addition there is M > 0 such that ‖γ̇‖∞ ≤
√
M/T for every solution

of (3.14). This is the way we set M in (3.12) as a function of constants of data in 3.5.1(2,3,4).

The following remark asserts that the definition of action sets in (3.12) and conditions in 3.5.1(2,3)

imply the assumptions (3.2.1) for first order mean field game.

Remark 3.5.3. If K ⊆ Rd be compact such that supp(m0) ⊆ K, then

1. for x ∈ K we have ‖γ‖∞ ≤ maxy∈K ‖y‖+MT, for γ ∈ Sx,M , which gives the condition (3.2),

2. the correspondence A : I → V, A(i) = Si,M is continuous and by Arzela-Ascoli Si,M is compact for

all i ∈ I,

3. the convexity of L(x, ·) implies that for every η ∈ P(V ) the function J(·, η) : C0([0, T ],Rd)→ R is

lower semi-continuous,
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4. the function Min : I × PG(V )→ R, Min(i, η) := mina∈Ai J(a, η) is continuous,

5. by Arzela-Ascoli the following set:

S = SK,M = {γ ∈ C0([0, T ],Rd) | γ(0) ∈ K ,

∫ T

0
‖γ̇(t)‖2 dt ≤M}

is precomact in V . For every η ∈ cov(PG(V )) we have supp(η) ⊆ S, so cov(PG(V )) is tight and

hence it is pre-compact in (P1(V ),d1),

6. the minimiser of problem (3.13) is unique as is explained in section 2.4. Hence the unique minimiser

condition holds.

Corollary 3.5.1. The first-order MFGs defined above, satisfies the assumptions (3.2.1) and hence by

Theorem 3.2.1 has at least a Nash equilibrium Ψ̃ ∈ A. If we set η̃ = Ψ̃]m0 and et]η̃ = m̃t for all

t ∈ [0, T ], then for m0−almost every i ∈ Rd:

Ψ̃(i) = argminγ∈H1([0,T ],Rd), γ(0)=i

∫ T

0
(L(γ(t), γ̇(t)) + f(γ(t), m̃t)) dt+ g(γ(T ), m̃T ).

The measure η̃ is an equilibrium distribution in sense of (1.34). Under stronger assumptions, by following

section 2.4 we can construct the first order MFG system solution (u,m) from the equilibrium distribution

η̃ as in (2.37).

We prove that the uniqueness of equilibrium is a consequence of the monotonicity of f, g and the

unique minimizer condition. This is the counterpart for the uniqueness result in [73].

Lemma 3.5.1. If f, g : Rd × P(Rd)→ R are monotone, then the MFG cost function will be so.

Proof. Let η1, η2 ∈ P(V ). If we define mi,t = et]ηi for i = 1, 2 and t ∈ [0, T ], we then have:∫
V

(J(γ, η1)− J(γ, η2)) d(η1 − η2)(γ) =

∫
V

(∫ T

0
(f(γ(t),m1,t)− f(γ(t),m2,t)) dt+ g(γ(T ),m1,T )− g(γ(T ),m2,T )

)
d(η1 − η2)(γ) = A+B

where

A =
∫ T

0

(∫
Rd

(f(x,m1,t)− f(x,m2,t)) d(m1,t −m2,t)(x)
)

dt ≥ 0

B =
∫
Rd

(g(x,m1,T )− g(x,m2,T )) d(m1,T −m2,T )(x) ≥ 0,

since the couplings f, g are monotone.

Corollary 3.5.2. The monotone first order MFG satisfying assumptions 3.5.1 possesses a unique equi-

librium.

3.5.2 Fictitious play in monotone first order MFG

The fictitious play in first-order MFG takes such form: for initial profile of actions

Ψ1 ∈ A, η̄1 = η1 = Ψ1]λ ∈ P(V )
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the players play as follows at round n = 1, 2, . . . :

(i) Ψn+1(i) = arg minγ∈H1,γ(0)=i
∫ T

0 (L(γ(t), γ̇(t)) + f(γ(t), et]η̄n)) dt+ g(γ(T ), eT ]η̄n),
(ii) ηn+1 = Ψn+1]λ,

(iii) η̄n+1 = 1
n+1

∑n+1
i=1 ηi.

(3.15)

where (i) holds for m0−almost every i ∈ Rd . Here we apply the convergence result in fictitious play (Sec-

tion 3) for monotone first-order MFG. We suppose the assumptions 3.5.1 (and hence (3.2.1)) conditions

hold.

Lemma 3.5.2. If f, g : m→ f(·,m), g(·,m) are Lipschitz from P(Rd) to C1(Rd) then there is a constant

C > 0 such that:

|J(γ, η)− J(γ, η′)− J(γ′, η) + J(γ′, η′)| ≤ C ‖γ − γ′‖∞ d1(η, η′)

|J(γ, η)− J(γ, η′)| ≤ C d1(η, η′)

for every γ, γ′ ∈ H1([0, T ],Rd) and η, η′ ∈ P(V ).

Proof. Since f : m→ f(·,m) is Lipschitz from P(Rd) to C1(Rd) there is C > 0 such that:

‖f(·,m)− f(·,m′)‖C1 ≤ Cd1(m,m′), ‖g(·,m)− g(·,m′)‖C1 ≤ Cd1(m,m′)

which means that for every x, x′ ∈ Rd we have

|f(x,m)− f(x,m′)− f(x′,m) + f(x′,m′)| ≤ C‖x− x′‖d1(m,m′),

|f(x,m)− f(x,m′)| ≤ Cd1(m,m′).

Similar inequalities hold with respect to g. We have:

|J(γ, η)− J(γ, η′)− J(γ′, η) + J(γ′, η′)|

≤
∫ T

0
|f(γ(t), et]η)− f(γ(t), et]η′) + f(γ′(t), et]η)− f(γ′(t), et]η′)| dt

+|g(γ(T ), eT ]η)− g(γ(T ), eT ]η′)− g(γ′(T ), eT ]η) + g(γ′(T ), eT ]η′)|

≤ C
∫ T

0
‖γ(t)− γ′(t)‖ d1(et]η, et]η′) dt+ ‖γ(T )− γ′(T )‖ d1(eT ]η, eT ]η′)

≤ C
∫ T

0
‖γ − γ′‖∞ d1(η, η′) dt+ ‖γ − γ′‖∞ d1(η, η′) = (CT + 1) ‖γ − γ′‖∞ d1(η, η′),

and

|J(γ, η)− J(γ, η′)| ≤
∫ T

0
|f(γ(t), et]η)− f(γ(t), et]η′)| dt+ |g(γ(T ), eT ]η)− g(γ(T ), eT ]η′)|

≤ C
∫ T

0
d1(et]η, et]η′) dt+ d1(eT ]η, eT ]η′) ≤ (CT + 1) d1(η, η′).

Corollary 3.5.3. If f, g : m → f(·,m), g(·,m) are Lipschitz, then by Lemma 3.5.2, the convergence

result of fictitious play (Theorem 3.3.1) holds for the first-order monotone MFG.
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3.5.3 Online mirror descent in monotone first order MFG

Here we use the convergence result proved in section 4 for the first-order MFG with a monotone convex

cost function J . Let us suppose that the couplings f, g are monotone and L(·, ·), f(·,m), g(·,m) are convex

for every m ∈ P(Rd). It easily yields that J is monotone (by Lemma 3.5.1) and for every η ∈ P(V ), the

function J(·, η) : H1([0, T ],Rd)→ R is convex.

Remark 3.5.4. We propose an example of data L, f, g such that they are convex in x, v inputs. Before

we start the precise definition, let us point out that we can relax the condition 3.5.1(4) and replace it

with the following assumption. Suppose that there exists M > 0 in (3.12) such that for all solution γ of

Euler-Lagrange equation (3.14) with η ∈ PG(V ), we have ‖γ̇‖∞ ≤
√
M/T . This assumption with the

conditions (3.5.1)(1,2,3) give the existence of equilibrium as in Corollary 3.5.1.

For the example, set

L(x, v) = 1
2‖v‖

2, f(x,m) = α〈x,Emz〉, g(x,m) = β〈x,Emz〉,

for some α, β > 0 where Emz =
∫
Rd z dm(z). Set α, β,R > 0 with

αT 2R+ βTR+ sup
x∈supp(m0)

‖x‖ ≤ R.

and the constant M > 0 in (3.12) with M = T (αTR+ βR)2. For every η ∈ PG(V ) we have

for η-almost every γ: ‖γ(t)‖ ≤ sup
x∈supp(m0)

‖x‖+
√
MT ≤ sup

x∈supp(m0)
‖x‖+ αT 2R+ βTR ≤ R.

Hence for every η ∈ PG(V ):
sup

t∈[0,T ], x∈supp(et]η)
‖x‖ ≤ R. (3.16)

The Euler Lagrange equation (3.14) in this example read as

d
dt γ̇(t) = αEet]ηz, for almost every t ∈ [0, T ], (3.17)

and γ̇(T ) = βEeT ]ηz, γ(0) ∈ supp(m0). That yields

sup
t∈[0,T ]

‖γ̇(t)‖ ≤ αTR+ βR, sup
t∈[0,T ]

‖γ(t)‖ ≤ R, (3.18)

for all η ∈ PG(V ) since (3.16) holds. That means for every η ∈ PG(V ) the optimal trajectories γ satisfies

(3.18) and hence ‖γ̇‖∞ ≤
√
M/T .

Let us set W = H1([0, T ],Rd) endowed with inner product:

∀ γ1, γ2 ∈W : 〈γ1, γ2〉W = 〈γ1(0), γ2(0)〉Rd +
∫ T

0
〈γ̇1(t), γ̇2(t)〉Rd dt.

We clearly have ⋃
i∈I

Ai ⊆W ⊆ V,

and Ai are uniformly bounded in W for m0−almost every i ∈ I. For integrable functions F,D ∈
L2([0, T ],R) and G ∈ R we define y = [[F,D,G]] ∈W ∗ by:

〈y, γ〉 =
∫ T

0
(F (t) · γ(t) +D(t) · γ̇(t)) dt+G · γ(T ), for every γ ∈W
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After a few computation we have:

〈y, γ〉 =
∫ T

0

(∫ T

t

F (s) ds+D(t) +G

)
· γ̇(t) dt+

(∫ T

0
F (s) ds+G

)
· γ0.

We can find γy ∈W as a representation of y ∈W ∗ i.e. for all γ ∈ H1([0, T ],Rd) we have 〈y, γ〉 = 〈γy, γ〉W .

The representation γy corresponding to y should solve

γy(0) =
∫ T

0
F (s) ds+G,

d
dt (γy)(t) =

∫ T

t

F (s) ds+D(t) +G. (3.19)

or

γy(t) =
∫ T

0
F (s) min(t, s) ds+

∫ t

0
D(s) ds+ (t+ 1)G+

∫ T

0
F (s) ds. (3.20)

By assumptions 3.5.1(2,3) and using dominated Lebesgue convergence theorem, we can conclude that

the function J(·, η) : W → R is differentiable for every η ∈ P(V ). So the sub-differential set is singleton

∂J(·, η)(γ) = {DγJ(γ, η)} ⊆W ∗ and the derivative is calculated by:

∀ z ∈W : 〈DγJ(γ, η), z〉 = lim
ε→0

J(γ + εz, η)− J(γ, η)
ε

=
∫ T

0
(Lx(γt, γ̇(t)) · zt + Lv(γt, γ̇(t)) · żt + fx(γ(t), et]η) · zt) dt+ gx(γ(T ), eT ]η) · zT

or according to our representation:

DγJ(γ, η) = [[Lx(γ(·), γ̇(·)) + fx(γ(·), e(·)]η), Lv(γ(·), γ̇(·)), gx(γ(T ), eT ]η)]].

So by the computation in (3.20) the gradient ∇γJ(γ, η) ∈W is obtained as follows:

∇γJ(γ, η)(t) =
∫ T

0
(Lx(γs, γ̇s) + fx(γs, es]η)) min(t, s) ds+

∫ t

0
Lv(γs, γ̇s) ds

+ (t+ 1)gx(γ(T ), eT ]η) +
∫ T

0
(Lx(γs, γ̇s) + fx(γs, es]η)) ds.

(3.21)

Theorem 3.5.1. Suppose a first-order MFG satisfies the assumptions 3.5.1. If the cost function J is

monotone and convex w.r.t. first argument, then the online mirror descent algorithm proposed in (3.9)

for h : W → R, h(γ) = 1
2‖γ‖

2
H1 and βn = 1

n (n ∈ N), converges to the unique first-order mean field game

equilibrium.

Proof. The function h : W → R, h(γ) = 1
2‖γ‖

2
H1 is 1

2−strongly convex function and lower semi-

continuous for the weak topology, so the mirror projection QAi will have singleton values.

The game satisfies the assumptions (3.2.1). Since the assumptions 3.5.1 hold, there is C ′ > 0 such

that:

∀γ ∈ H1, η ∈ PG(V ) : ‖DγJ(γ, η)‖W∗ ≤ C ′(‖γ̇‖L2 + 1).

So all of the conditions in Theorem 3.4.1 are satisfied and the desired convergence result holds.

Remark 3.5.5. Since the space H1([0, T ],Rd) is Hilbert, we identify it by its dual space. Hence by choice

h(γ) = 1
2‖γ‖

2
H1 we have:

QAi(γ) = πAi(γ) = min(‖γ̇‖L2 ,
√
M)

‖γ̇‖L2
(γ − γ0) + i.
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by the choice of Ai. Then, the OMD algorithm have such form

(i) Φn+1(i) = Φn(i)− 1
n∇J(Ψn(i), ηn), for every i ∈ I

(ii) Ψn+1(i) = min(‖Φ̇n+1(i)‖L2 ,
√
M)

‖Φ̇n+1(i)‖L2
(Φn+1(i)− Φn+1(i)0) + i, for every i ∈ I

(iii) ηn+1 = Ψn+1]λ.

(3.22)

or in explicit way it takes the following form: let γ̂0,x = 0 for every x ∈ Rd and:

γ̂n+1,x(t) = γ̂n,x(t)− 1
n

∫ T

0
(Lx(γn,x(s), γ̇n,x(s)) + fx(γn,x(s), es]ηn)) min(t, s) ds

− 1
n

∫ t

0
Lv(γn,x(s), γ̇n,x(s)) ds− t

n
gx(γn,x(T ), eT ]ηn),

γn+1,x = cn+1γ̂n+1,x + x, cn+1 = min(‖ ˙̂γn+1,x‖L2 ,
√
M)

‖ ˙̂γn+1,x‖L2
,

ηn+1 = γn+1,·]λ.

(3.23)

3.6 Appendix

Here we extend the disintegration Theorem 5.3.1 in [8], and demonstrate its modification that is used in

the precedent proofs. Suppose I a Polish space and V a metric space. Let A : I → V be a correspondence

with A(i) = Ai. For a Borel probability measure λ ∈ P(I) we say η ∈ P(V ) disintegrates with respect

to (Ai)i∈I if there are {ηi}i∈I ⊂ P(V ) such that for λ−almost every i ∈ I we have supp(ηi) ⊆ Ai, and

for every bounded measurable f : V → R:∫
V

f(a) dη(a) =
∫
I

∫
V

f(a) dηi(a) dλ(i).

Theorem 3.6.1. Suppose A : I → V be upper semi continuous. Let {ηn}n∈N ⊆ P1(V ) with ηn → η in

weak sense. If for every n ∈ N, ηn disintegrates with respect to (Ai)i∈I then the same holds true for η.

Proof. For every n ∈ N, define mn ∈ P(I × V ) as follows: for every bounded measurable f : I × V → R
let: ∫

I×V
f(i, a) dmn(i, a) =

∫
I

∫
V

f(i, a) dηin(a) dλ(i).

Obviously πI]mn = λ, πV ]mn = ηn where πI , πV are respectively projections of I × V on I, V . Since

{ηn} are tight and I is a Polish space, for every ε > 0, there is a compact set Iε ⊆ I,Kε ⊆ V such that

λ(I \ Iε), ηn(V \Kε) < ε for all n ∈ N. In addition

mn(Iε ×Kε) ≥ 1−mn(I × V \Kε)−mn(I \ Iε × V )

= 1− ηn(V \Kε)− λ(I \ Iε) ≥ 1− 2ε,

which means the set {mn}n∈N is tight too. Hence there exists m ∈ P(I×V ) and a subsequence {mnk}k∈N
such that mnk → m. We directly have ηnk = πV ]mnk → πV ]m which means πV ]m = η. On the other

hand, due to the disintegration theorem (see [8] Theorem 5.3.1) there are mi ∈ P(V ) for every i ∈ I,

such that for every bounded measurable f : I × V → R:∫
I×V

f(i, a) dm(i, a) =
∫
I

∫
V

f(i, a) dmi(a) dλ(i).

So since the second marginal of m is η, we can write: for every bounded measurable f : I × V → R:∫
V

f(a) dη(a) =
∫
I

∫
V

f(a) dmi(a) dλ(i).
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So what is left is to show that for λ−almost every i ∈ I we have supp(mi) ⊆ Ai. Set f : I × V → R
as f(i, a) = 1a∈Ai . We know the function f is upper semi continuous since the correspondence A : I →
V, A(i) = Ai is upper semi continuous. For every n ∈ N we have:∫

I×V
f(i, a) dmn(i, a) =

∫
I

∫
V

f(i, a) dηin(a) dλ(i) = 1.

Hence

1 = lim sup
k

∫
I×V

f(i, a) dmnk(i, a) ≤
∫
I×V

f(i, a) dm(i, a) ≤ 1,

so
∫
I×V f(i, a) dm(i, a) = 1 which is equivalent to say for λ−almost every i ∈ I we have supp(mi) ⊆

Ai.

Corollary 3.6.1. Every element η ∈ cov(PG(V )) disintegrates with respect to (Ai)i∈I , λ ∈ P(I).

Proof. Let S ⊂ P(V ) be the set of all measures which disintegrates with respect to (Ai)i∈I . Clearly S is

convex and due to Theorem 3.6.1 it is closed. Also, we have PG(V ) ⊆ S since for all Ψ ∈ A we have for

every bounded measurable f : I × V → R:∫
V

f(a) d(Ψ]λ)(a) =
∫
I

∫
V

f(a) dδΨ(i)(a) dλ(i),

hence it gives cov(PG(V )) ⊆ S.
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Chapter 4

Finite MFG: fictitious play and

convergence to classical MFG

Joint work with Francisco José Silva

4.1 Introduction

Mean Field Games (MFGs) were introduced by Lasry and Lions in [72, 73, 74] and, independently, by

Huang, Caines and Malhamé in [67]. One of the main purposes of the theory is to develop a notion of Nash

equilibria for dynamic games, which can be deterministic or stochastic, with an infinite number of players.

More precisely, if we consider a N -player game and we assume that the players are indistinguishable and

small, in the sense that a change of strategy of player j has a small impact on the cost for player i,

then, under some assumptions, it is possible to show that as N → ∞ the sequence of equilibria admits

limit points (see [37]). The latter correspond to probability measures on the set of actions and define

the notion of equilibria with a continuum of agents. An interesting feature of the theory is that it allows

to obtain important qualitative information on the equilibria and the resulting problem is amenable to

numerical computation. We refer the reader to the lessons by P.-L. Lions [75] and to [33, 59, 57, 56] for

surveys on the theory and its applications.

Most of the literature about MFGs deals with games in continuous time and where the agents are

distributed on a continuum of states (see [33]). In this article we consider a MFG problem where the

number of states and times are finite. For the sake of simplicity, we will call finite MFGs the games of this

type. This framework has been introduced by Gomes, Mohr and Souza in [55], where the authors prove

results related to the existence and uniqueness of equilibria, as well as the convergence to a stationary

equilibrium as time goes to infinity.

Our contribution to these type of games is twofold. First, we consider the fictitious play procedure,

which is a learning process introduced by Brown in [26]. We refer the reader to [53, Chapter 2] and

the references therein for a survey on this subject. Loosely speaking, the procedure is that, at each

iteration, a typical player implements a best response strategy to his belief on the action of the remaining

players. The belief at iteration n ∈ N is given, by definition, by the average of outputs of decisions of the

remaining players in the previous iterations 1, . . . , n− 1. In the context of continuous MFGs, the study

of the convergence of such procedure to an equilibrium has been first addressed in [39], for a particular

class of MFGs called potential MFGs. This analysis has then been extended in chapter 3, by assuming

that the MFG is monotone, which means that agents have aversion to imitate the strategies of other
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players. Under an analogous monotonicity assumption, we prove in Theorem 4.4 that the fictitious play

procedure converges also in the case of finite MFGs. As pointed out in [39], the convergence of a learning

procedure in MFGs theory is interesting, because, in practice, it is related with the formation of the

equilibria.

Our second contribution concerns the relation between continuous and finite MFGs. We consider here

a first order continuous MFG and we associate to it a family of finite MFGs defined on finite space/time

grids. By applying the results in [55], we know that for any fixed space/time grid the associated finite

MFG admits at least one solution. Moreover, any such solution induces a probability measure on the

space of strategies. Letting the grid length tend to zero, we prove that the aforementioned sequence of

probability measures is precompact and, hence, has at least one limit point. The main result of this

article is given in Theorem 4.4.1 and states that any such limit point is an equilibrium of the continuous

MFG problem. To the best of our knowledge, this is the first result relating the equilibria for continuous

MFGs, introduced in [74], with the equilibria for finite MFGs, introduced in [55]. Let us point out

that, contrary to [41], where the authors propose a discretization of a first order continuous MFG, the

approximation result in Theorem 4.4.1 has no practical application. Indeed, for fine space/time grids

the numerical computation of finite MFG equilibrium is very costly because of the very large number of

unknowns involved in the problem. Thus, we insist that our main result in Theorem 4.4.1 has, for the

time being, only a theoretical importance since it relate two interesting MFG models.

The article is organized as follows. In Section 4.2 we recall the finite MFG introduced in [55] and

we state our first assumption that ensures the existence of at least one equilibrium. In Section 4.3 we

describe the fictitious play procedure for the finite MFG and prove its convergence under a monotonicity

assumption on the data. In Section 4.4 we introduce the first order continuous MFG under study, as

well as the corresponding space/time discretization and the associated finite MFGs. As the length of the

space/time grid tends to zero, we prove several asymptotic properties of the finite MFGs equilibria and

we also prove our main result showing their convergence to a solution of the continuous MFG problem.

4.2 The finite state and discrete time Mean Field Game prob-

lem

We begin this section by presenting the MFG problem introduced in [55] with finite state and discrete

time. Let S be a finite set, and, given T > 0, let T = {0, . . . ,m}. We denote by |S| the number of

elements in S, and by

P(S) :=
{
m : S → [0, 1]

∣∣ ∑
x∈S

m(x) = 1
}
,

the simplex in R|S|, which is identified with the set of probability measures over S. We define now the

notion of transition kernel associated to S and T .

Definition 4.2.1. We denote by KS,T the set of all maps P : S × S × (T \ {m}) → [0, 1], called the

transition kernels, such that P (x, ·, k) ∈ P(S) for all x ∈ S and k ∈ T \ {m}.

Note that KS,T can be seen as a compact subset of R|S|×|S|×m. Given an initial distribution M0 ∈
P(S) and P ∈ KS,T , the pair (M0, P ) induces a probability distribution over Sm+1, with marginal

distributions given by

MM0
P (xk, 0) := M0(x0), ∀ x0 ∈ S,

MM0
P (xk, k) :=

∑
(x0,x1,...,xk−1)∈SkM0(x0)

∏k−1
k′=0 P (xk′ , xk′+1, tk′) ∀ k = 1, . . . ,m, xk ∈ S,

(4.1)

76



or equivalently, written in a recursively form,

MM0
P (xk, 0) := M0(x0), ∀ x0 ∈ S,

MM0
P (xk, k) :=

∑
xk−1∈SM

M0
P (xk−1, k − 1)P (xk−1, xk, k − 1) ∀ k = 1, . . . ,m, xk ∈ S.

(4.2)

Now, let c : S ×S ×P(S)×P(S)→ R, g : S ×P(S)→ R, M : T → P(S) and define JM : KS,T → R as

JM (P ) :=
m−1∑
k=0

∑
x,y∈S

MM0
P (x, k)P (x, y, k)cxy(P (x, k),M(k)) +

∑
x∈S

MM0
P (x,m)g(x,M(m)),

where, for notational convenience, we have set cxy(·, ·) := c(x, y, ·, ·) and P (x, k) := P (x, ·, k) ∈ P(S).
We consider the following MFG problem: find P̂ ∈ KS,T such that

P̂ ∈ argminP∈KS,T JM (P ) with M = MM0
P̂

. (MFGd)

In order to rewrite (MFGd) in a recursive form (as in [55]), given k = 0, . . . ,m− 1, x ∈ S and P ∈ KS,T ,

we define a probability distribution in Sm−k+1 whose marginals are given by

Mx,k
P (xk, k) := δx,xk , ∀ xk ∈ S,

Mx,k
P (xk′ , k′) :=

∑
xk′−1∈S

Mx,k
P (xk′−1, k

′ − 1)P (xk′−1, xk′ , k
′ − 1) ∀ k′ = k + 1, . . . ,m, xk′ ∈ S,

where δx,xk := 1 if x = xk and δx,xk := 0, otherwise. Given M : T → P(S), we also set

Jx,kM (P ) :=
m−1∑
k′=k

∑
x,y∈S

Mx,k
P (xk′ , k′)P (x, y, k′)cxy(P (x, k′),M(k′)) +

∑
x∈S

Mx,k
P (x,m)g(x,M(m)).

Since for every M : T → P(S) the function

UM (x, k) := inf
P∈KS,T

Jx,kM (P ) ∀ k = 0, . . . ,m− 1, x ∈ S, UM (x,m) := g(x,M(m)), ∀ x ∈ S,

satisfies the Dynamic Programming Principle (DPP),

UM (x, k) = inf
p∈P(S)

∑
y∈S

p(y) [cxy(p,M(k)) + UM (y, k + 1)] , ∀ k = 0, . . . ,m− 1, x ∈ S, (4.3)

problem (MFGd) is equivalent to find U : S × T → R and M : T → P(S) such that

(i) U(x, k) =
∑
y∈S

P̂ (x, y, k)
[
cxy(P̂ (x, k),M(k)) + U(y, k + 1)

]
, ∀ k = 0, . . . ,m− 1, x ∈ S,

(ii) M(x, k) =
∑
y∈S

M(y, k − 1)P̂ (y, x, k − 1), ∀ k = 1, . . . ,m, x ∈ S,

(iii) U(x,m) = g(x,m), M(x, 0) = M0(x) ∀ x ∈ S,

(4.4)

where P̂ ∈ KS,T satisfies

P̂ (x, ·, k) ∈ argminp∈P(S)
∑
y∈S

p(y) [cxy(p,M(k)) + U(y, k + 1)] , ∀ k = 0, . . . ,m− 1, x ∈ S, (4.5)

and in the argument of cxy in (i) we have written P̂ (x, k) for P̂ (x, ·, k). As in [55], we will assume that

(H1) The following properties hold true:

Assumption 4.2.1. (i) For every x ∈ S the functions g(x, ·) and P(S) × P(S) 3 (p,M) 7→∑
y∈S p(y)cxy(p,M) are continuous.
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(ii) For every U : S → R, M ∈ P(S) and x ∈ S, the optimization problem

inf
p∈P(S)

∑
y∈S

p(y) [cxy(p,M) + U(y)] , (4.6)

admits a unique solution p̂(x, ·) ∈ P(S).

Remark 4.2.1. (i) By using Brower’s fixed point theorem, it is proved in [55, Theorem 5] that under

(H1), problem (MFGd) admits at least one solution.

(ii) As a consequence of the DPP, we have that (H1)(ii) implies that for every M : T → P(S), problem

inf
P∈KS,T

JM (P )

admits a unique solution.

(iii) An example running cost cxy satisfying that P(S) × P(S) 3 (p,M) 7→
∑
y∈S p(y)cxy(p,M) is con-

tinuous and (H1)(ii) is given by

cxy(p,M) := K(x, y,M) + ε log(p(y)) (4.7)

where ε > 0, K(x, y, ·) is continuous for all x, y ∈ S, with the convention that 0 log 0 = 0. This type of

cost has been already considered in [55], and, given x ∈ S, the unique solution of (4.6) is given by

p̂(x, y) = exp (− [K(x, y,M) + U(y)] /ε)∑
y′∈S exp (− [K(x, y′,M) + U(y′)] /ε) .

In Section 4.4 we will consider this type of cost in order to approximate continuous MFGs by finite ones.

4.3 Fictitious play for the finite MFG system

Inspired by the fictitious play procedure introduced for continuous MFGs in chapter 3, we consider in

this section the convergence problem for the sequence of functions transition kernels Pn ∈ KS,T and

marginal distributions Mn : T → P(S) constructed as follows: given M1 : T → P(S) arbitrary, set

M̄1 = M1 and, for n ≥ 1, define

Pn := argminP∈KS,T JM̄n
(P ),

Mn+1(·, k) := MM0
Pn

(·, k), ∀ k = 0, . . . ,m,

M̄n+1(·, k) := n
n+1M̄n(·, k) + 1

n+1Mn+1(·, k), ∀ k = 0, . . . ,m,

(4.8)

where we recall that M0 is given and for P ∈ KS,T , the function MM0
P : S ×T → [0, 1] is defined by (4.1)

(or recursively by (4.2)). Note that by Remark 4.2.1(ii), the sequences (Pn) and (Mn) are well defined

under (H1).

The main object of this section is to show that, under suitable conditions, the sequence (Pn) converges

to a solution P̂ to (MFGd) and (Mn) converges to MM0
P̂

, i.e. the marginal distributions at the equilibrium.

In practice, in order to compute Mn+1 from M̄n, we find first Pn backwards in time by using the DPP

expression for UM̄n
in (4.3) and then we compute Mn+1 forward in time by using (4.2). Notice that both

computations are explicit in time.

4.3.1 Generalized fictitious play

For the sake of simplicity, we present here an abstract framework that will allow us to prove the con-

vergence of the sequence constructed in (4.8). We begin by introducing some notations that will be also
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used in Section 4.4. Let X and Y be two Polish spaces and Ψ : X → Y be a Borel measurable function.

Given a Borel probability measure µ on X , we denote by Ψ]µ the probability measure on Y defined by

Ψ]µ(A) := µ(Ψ−1(A)) for all A ∈ B(Y). Denoting by P(X ) the set of Borel probability measures on

X and by d the metric on X , we set Pp(X ) for the subset of P(X ) consisting on measures µ such that∫
X dX (x, x0)pdµ(x) < +∞ for some x0 ∈ X . For µ1, µ2 ∈ Pp(X ) define

Π(µ1, µ2) := { γ ∈ P(X × X )
∣∣ ρ]π1 = µ1 and ρ]π2 = µ2},

where π1, π2 : X × X → R, are defined by πi(x1, x2) := xi for i = 1, 2. Endowed with the Monge-

Kantorovic metric

dp(µ1, µ2) = inf
γ∈Π(µ1,µ2)

(∫
X×X

d(x, y)p dγ(x, y)
)1/p

,

the set Pp(X ) is shown to be a Polish space (see e.g. [8, Proposition 7.1.5]). Let us recall that d1

corresponds to the Kantorovic-Rubinstein metric, i.e.

d1(µ1, µ2) = sup
{∫
X
f(x)d(µ1 − µ2)(x) ; f ∈ Lip1(Rd)

}
, (4.9)

where Lip1(X ) denotes the set of Lipschitz functions defined in X with Lipschitz constant less or equal

than 1 (see e.g. [92]).

Let C ⊆ X be a compact set. Then, by definition, P(C) = Pp(C) for all p ≥ 1, and dp metricizes the

weak convergence of probability measures on C (see e.g. [8, Proposition 7.1.5]). Moreover, the set P(C)
is compact.

Now, let F : C × P(C) → R be a given continuous function. Given x1 ∈ C set η̄1 := δx1 , the Dirac

mass at x1, and for n ≥ 1 define:

xn+1 ∈ argminx∈CF (x, η̄n), η̄n+1 = 1
n+ 1

n+1∑
k=1

δxk = n

n+ 1 η̄n + 1
n+ 1δxn+1 . (4.10)

We consider now the convergence problem of the sequence (η̄n) to some η̃ ∈ P(C) satisfying that

supp(η̃) ⊆ argminx∈CF (x, η̃), (4.11)

where supp(η̃) denotes the support of the measure η̃. We call such η̃ an equilibrium and its existence

can be easily proved by using Fan’s fixed point theorem.

We will prove the convergence of (η̃n) under a monotonicity and unique minimizer condition for F .

Definition 4.3.1 (Monotonicity). The function F is called monotone, if∫
C

(F (x, µ1)− F (x, µ2)) d(µ1 − µ2)(x) ≥ 0, ∀ µ1, µ2 ∈ P(C), µ1 6= µ2. (4.12)

Moreover, F is called strictly monotone if the inequality in (4.12) is strict.

Definition 4.3.2 (Unique minimizer condition). The function F satisfies the unique minimizer condition

if for every η ∈ P(C) the optimization problem infx∈C F (x, η) admits a unique solution.

The following remark states some elementary consequence of the previous definitions.

Remark 4.3.1. (i) If the unique minimizer condition holds then any equilibrium must be a Dirac mass.

Moreover, the application P(C) 3 η 7→ xη := argminx∈CF (x, η) ∈ C is well defined and uniformly

continuous.

(ii) If F is monotone and the unique minimizer condition holds then the equilibrium must be unique.
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Indeed, suppose that there are two different equilibria η̃ = δx̃ and η̃′ = δx̃′ . Then, by the unique minimizer

condition,

F (x̃, δx̃) < F (x̃′, δx̃), and F (x̃′, δx̃′) < F (x̃, δx̃′).

This gives
∫
C (F (x, δx̃)− F (x, δx̃′)) d(δx̃ − δx̃′)(x) < 0, which contradicts the monotonicity assumption.

Arguing as in [33, Proposition 2.9]), it is easy to see that uniqueness of the equilibrium also holds if

F is strictly monotone but does not necessarily satisfy the unique minimizer condition.

Theorem 4.3.1. Assume that

(i) F is monotone and satisfies the unique minimizer condition.

(ii) F is Lipschitz, when P(C) is endowed with the distance d1, and there exists C > 0 such that

|F (x1, η1)− F (x1, η2)− F (x2, η1) + F (x2, η2)| ≤ CdX (x1, x2)d1(η1, η2), (4.13)

for all x1, x2 ∈ C, and µ1, µ2 ∈ P(C)

Then, there exists x̃ ∈ C such that η̃ = δx̃ is the unique equilibrium and the sequence (xn, η̄n) defined by

(4.10) converges to (x̃, δx̃).

Before we prove the theorem, let us recall a preliminary result (see chapter 3).

Lemma 4.3.1. Consider a sequence of real numbers (φn) such that lim infn→∞ φn ≥ 0. If there exists

a real sequence (εn) such that limn→∞ εn = 0 and

φn+1 − φn ≤ −
1

n+ 1φn + εn
n
, ∀ n ∈ N,

then limn→∞ φn = 0.

Proof. Let bn = nφn for every n ∈ N. We have

bn+1

n+ 1 −
bn
n
≤ − bn

n(n+ 1) + εn
n
, ∀ n ∈ N,

which implies that bn+1 ≤ bn + (n+ 1)εn/n ≤ bn + 2|εn|. Then, we get bn ≤ b1 + 2
∑n−1
i=1 |εi| and, hence,

0 ≤ lim inf
n→∞

φn ≤ lim sup
n→∞

φn ≤ lim
n→∞

b1 + 2
∑n−1
i=1 |εi|

n
= 0,

from which the result follows.

Proof of Theorem 4.3.1. Let us define the real sequence (φn) as

φn :=
∫
C
F (x, η̄n)dη̄n(x)− F (xn+1, η̄n).

We claim that φn → 0. Assuming that the claim is true, then any limit point (x̃, η̃) of (xn, η̄n) satisfies

that

F (x̃, η̃) ≤ F (x, η̃) ∀ x ∈ C, and F (x̃, η̃) =
∫
C
F (x, η̃)dη̃(x),

which implies that η̃ satisfies (4.11), i.e. η̃ is an equilibrium. Using that F is monotone and Remark

4.3.1(ii), the assertions on the theorem follows.

Thus, it remains to show that φn → 0, which will be proved with the help of Lemma 4.3.1. By

definition of xn+1 we have that φn ≥ 0. Let us write φn+1 − φn = A+B, where

A =
∫
C
F (x, η̄n+1) dη̄n+1(x)−

∫
C
F (x, η̄n) dη̄n(x), B = F (xn+1, η̄n)− F (xn+2, η̄n+1).
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We have

B ≤ F (xn+2, η̄n)− F (xn+2, η̄n+1)

≤ F (xn+1, η̄n)− F (xn+1, η̄n+1) + C dX (xn+2, xn+1)d1(η̄n, η̄n+1)

≤ F (xn+1, η̄n)− F (xn+1, η̄n+1) + C

n+ 1 dX (xn+2, xn+1)d1(δxn+1 , η̄n),

(4.14)

where we have used (4.13) to pass from the first to the second inequality and (4.9) from the second to

the third inequality. Similarly, using (4.10) and that F is Lipschitz,

A =
∫
C
(F (x, η̄n+1)− F (x, η̄n)) dη̄n(x) + 1

n+ 1

[
F (xn+1, η̄n+1)−

∫
C
F (x, η̄n+1) dη̄n(x)

]
≤
∫
C
(F (x, η̄n+1)− F (x, η̄n)) dη̄n(x) + 1

n+ 1

[
F (xn+1, η̄n)−

∫
C
F (x, η̄n) dη̄n(x)

]
+ C

n+ 1d1(η̄n, η̄n+1)

≤
∫
C
(F (x, η̄n+1)− F (x, η̄n)) dη̄n(x)− 1

n+ 1φn + C

(n+ 1)2 d1(η̄n, δxn+1).

(4.15)

On the other hand, the second relation in (4.10) yields −(n+ 1)(η̄n+1 − η̄n) = η̄n − δxn+1 . Therefore,

F (xn+1, η̄n)− F (xn+1, η̄n+1) +
∫
C
(F (x, η̄n+1)− F (x, η̄n)) dη̄n(x) =

−(n+ 1)
∫
C
(F (x, η̄n+1)− F (x, η̄n)) d(η̄n+1 − η̄n)(x) ≤ 0,

(4.16)

by the monotonicity condition of F . From estimates (4.14)-(4.15) and inequality (4.16) we deduce that

φn+1 − φn ≤ −
1

n+ 1φn + C

n+ 1d1(δxn+1 , η̄n)
(

1
n+ 1 + dX (xn+2, xn+1)

)
. (4.17)

Using that P(C) is compact (and so bounded in d1), we get that

φn+1 − φn ≤ −
1

n+ 1φn + εn
n
,

where εn := C ′( 1
n+1 + dX (xn+2, xn+1)), with C ′ > 0 and independent of n. Remark 4.3.1 implies that

dX (xn+2, xn+1) → 0 as n → ∞ (because d1(η̄n, η̄n+1) = d1(η̄n, δxn+1)/(n + 1) → 0). Thus, εn → 0 and

the result follows from Lemma 4.3.1.

4.3.2 Convergence of the fictitious play for finite MFG

In this section, we apply the abstract result in Theorem 4.3.1 to the finite MFG problem (MFGd). Under

the notations of Section 4.2, in what follows, will assume that cxy(·, ·) has a separable form. Namely,

cxy(p,M) = K(x, y, p) + f(x,M), ∀ x, y ∈ S, p, M ∈ P(S), (4.18)

where K : S ×S ×P(S)→ R and f : S ×P(S)→ R are given. In order to write (MFGd) as a particular

instance of (4.11), given η ∈ P(KS,T ) we define Mη := T → P(S) and F : KS,T × P(KS,T )→ R as

Mη(k) :=
∫
KS,T

MM0
P (k) dη(P ), ∀ k = 0, . . . ,m, and F (P, η) := JMη (P ). (4.19)

Under assumption (H1), we have that F is continuous and satisfies the unique minimizer condition

in Definition 4.3.2. Therefore, by Remark 4.3.1(i), associated to any equilibrium η ∈ P(KS,T ) for F ,

i.e. η satisfies (4.11) with C = KS,T , there exists Pη ∈ KS,T such that η = δPη , from which we get that
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Pη solves (MFGd). Conversely, for any solution P to (MFGd) we can associate the measure ηP := δP ,

which solves (4.10). An analogous argument shows that the fictitious play procedures (4.8) and (4.10)

are equivalent.

We consider now some assumptions on the data of the finite MFG problem that will ensure the

validity of assumptions (i)-(ii) for F in Theorem 4.3.1.

(H2) We assume that

(i) f and g are monotone, in the sense that setting h = f , g, we have∑
x∈S

(h(x, p1)− h(x, p2)) (p1(x)− p2(x)) ≥ 0 ∀ p1, p2 ∈ P(S).

(ii) f and g are Lipschitz with respect to their second argument.

The following result is a straightforward consequence of the definitions.

Lemma 4.3.2. If f and g are monotone, then F is monotone in sense of Definition 4.3.1.

Proof. For any two distributions η, η′ ∈ P(C) we want to show
∫
C (F (P, η)− F (P, η′)) d(η− η′)(P ) ≥ 0.

By using the exact form of the cost function F by equation (4.19) and taking into account the separable

form of the running cost (4.18), we have:

F (P, η)− F (P, η′) =
m−1∑
k=0

∑
x∈S

MM0
P (x, k) [f(x,Mη(k))− f(x,Mη′(k))]

+
∑
x∈S

MM0
P (x,m) [g(x,Mη(m))− g(x,Mη′(m))] .

Thus,∫
KS,T

(
F (P, η) − F (P, η′)

)
d(η − η′)(P ) =

m−1∑
k=0

∑
x∈S

[f(x,Mη(k)) − f(x,Mη′(k))]
∫
KS,T

MM0
P (x, k) d(η − η′)(P )

+
∑
x∈S

[g(x,Mη(m)) − g(x,Mη′(m))]
∫
KS,T

MM0
P (x,m) d(η − η′)(P )

=
m−1∑
k=0

∑
x∈S

[f(x,Mη(k)) − f(x,Mη′(k))] (Mη(x, k) −Mη′(x, k))

+
∑
x∈S

[g(x,Mη(m)) − g(x,Mη′(m))] (Mη(x,m) −Mη′(x,m)) ≥ 0,

where the positiveness follows from from the monotonicity of f and g.

By Remark 4.3.1 we directly deduce the following result.

Proposition 4.3.1. If (H1) and (H2)(ii) hold, then the finite MFG (MFGd) has a unique equilibrium.

Remark 4.3.2. The previous result slightly improves [55, Theorem 6], where the uniqueness of the

equilibrium is proved under a stronger strict monotonicity assumption on f and g.

In order to check assumption (ii) in Theorem 4.3.1, we need first a preliminary result.

Lemma 4.3.3. There exists a constant C > 0 such that

|MM0
P (k)−MM0

P ′ (k)| ≤ C|P − P ′|∞ ∀ P, P ′ ∈ KS,T , k = 0, . . . ,m. (4.20)

In particular,

|MM0
η (k)−MM0

η′ (k)| ≤ Cd1(η, η′) ∀ η, η′ ∈ P(KS,T ), k = 0, . . . ,m. (4.21)
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Proof. For any k = 0, . . . ,m− 1 and x ∈ S we have

MM0
P (x, k + 1)−MM0

P ′ (x, k + 1) =
∑
y∈S

MM0
P (y, k)P (y, x, k)−

∑
y∈S

MM0
P ′ (y, k)P ′(y, x, k)

≤
∑
y∈S

MM0
P (y, k)(P (y, x, k)− P ′(y, x, k))

+ |MM0
P (k)−MM0

P ′ (k)|∞
∑
y∈S

P ′(y, x, tk)

≤ |P − P ′|∞ + |S||MM0
P (k)−MM0

P ′ (k)|∞,

(4.22)

where we have used that
∑
y∈SM

M0
P (y, k) = 1. Using that MM0

P (0) = MM0
P ′ (0) = M0, inequality (4.20)

follows by applying (4.22) recursively. Now, given γ ∈ Π(η, η′), i.e. γ ∈ P(KS,T ×KS,T ) with marginals

given by η and η′, we have

|MM0
η (k)−MM0

η′ (k)| =
∣∣∣∫KS,T MM0

P (k) dη(P )−
∫
KS,T M

M0
P ′ (k) dη′(P ′)

∣∣∣
=

∣∣∣∫KS,T (MM0
P (k)−MM0

P ′ (k)) dγ(P, P ′)
∣∣∣

≤ C
∫
KS,T |P − P

′|∞ dγ(P, P ′).

Inequality (4.21) follows by taking the infimum over γ ∈ Π(η, η′).

Lemma 4.3.4. Assume that (H2)(ii) holds. Then, there exists C > 0 such that

|F (P, η)− F (P, η′)− F (P ′, η) + F (P ′, η′)| ≤ C |P − P ′|∞d1(η, η′),

|F (P, η)− F (P, η′)| ≤ Cd1(η, η′),
(4.23)

for all P , P ′ ∈ KS,T and η, η′ ∈ P(KS,T ).

Proof. Let us first prove the second relation in (4.23). Denoting by c > 0, the maximum between the

Lipschitz constants of f and g, we can write |F (P, η)− F (P, η′)| ≤ A+B with

A :=
m−1∑
k=0

∑
x∈S

MM0
P (x, k)|f(x,Mη(k))− f(x,Mη′(k))| ≤

m−1∑
k=0

∑
x∈S

MM0
P (x, k) cmd1(η, η′) = cm2d1(η, η′),

and

B :=
∑
x∈S

MM0
P (x,m)|g(x,Mη(m))− g(x,Mη′(m))| ≤

∑
x∈S

MM0
P (x,m) cd1(η, η′) = cmd1(η, η′),

where the inequalities follow from (4.21). Thus, the second estimate in (4.23) follows. In order to prove

the first relation in (4.23), let us write |F (P, η)− F (P, η′)− F (P ′, η) + F (P ′, η′)| ≤ A′ +B′ with

A′ :=
m−1∑
k=0

∑
x∈S
|MP (x, k)−MP ′(x, tk)| |f(x,Mη(k)))− f(x,Mη′(k))| ≤ Cm|S||P − P ′|∞d1(η, η′),

B′ :=
∑
x∈S
|MP (x,m)−MP ′(x,m)| |g(x,Mη(m)))− g(x,Mη′(m))| ≤ C|S||P − P ′|∞d1(η, η′).

The result follows.

By combining Lemma 4.3.2, Lemma 4.3.4 and Theorem 4.3.1, we get the following convergence result.

Theorem 4.3.2. Assume (H1) and (H2) and let (Pn,Mn, M̄n) be the sequence generated in the fictitious

play procedure (4.8). Then, (Pn,Mn, M̄n)→ (P̂ ,MM0
P̂

,MM0
P̂

), where P̂ is the unique solution to (MFGd).
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4.4 First order MFG as limits of finite MFG

In this section we consider a relaxed first order MFG problem in continuous time and with a continuum

of states. We define a natural finite MFG associated to a discretization of the space and time variables.

We address our second main question in this work, which is the convergence of the solutions of finite

MFGs to solutions of continuous MFGs when the discretization parameters tend to zero.

In order to introduce the MFG problem, we need first to introduce some definitions. Let us define

Γ = C([0, T ];Rd) and given m0 ∈ P(Rd), called the initial distribution, let

Pm0(Γ) = {η ∈ P(Γ) ; e0]η = m0} ,

where, for each t ∈ [0, T ], the function et : Γ → Rd is defined by et(γ) = γ(t). Let q ∈ (1,+∞), with

conjugate exponent q′ := q/(q − 1), and f , g : Rd × P1(Rd)→ R. Given m ∈ C([0, T ];P1(Rd)) consider

the following family of optimal control problems, parametrized by the initial condition,

inf
{∫ T

0

[
1
q
|ż(t)|q + f(z(t),m(t))

]
dt+ g(z(T ),m(T ))

∣∣ z ∈W 1,q([0, T ];Rd), z(0) = x

}
, x ∈ Rd.

(4.24)

Definition 4.4.1. We call ξ∗ ∈ Pm0(Γ) a MFG equilibrium for (4.24) if [0, T ] 3 t 7→ et]ξ
∗ belongs to

C([0, T ];P1(Rd)) and ξ∗-almost every γ solves the optimal control problem in (4.24) with x = γ(0) and

m(t) = et]ξ
∗ for all t ∈ [0, T ].

Assuming that the cost functional of the optimal control problem in (4.24) is meaningful, which is

ensured by the conditions on f and g in assumption (H3) below, the interpretation of a MFG equilibrium

is as follows: the measure ξ∗ is an equilibrium if it only charges trajectories in Rd, distributed as m0 at

the initial time, minimizing a cost depending on the collection of time marginals of ξ∗ in [0, T ].

Remark 4.4.1. Usually, see e.g. [74] and [33], a first order MFG equilibrium is presented in the form of

a system of PDEs consisting in a HJB equation, modelling the fact that a typical agent solves an optimal

control problem, which depends on the marginal distributions of the agents at each time t ∈ [0, T ], coupled

with a continuity equation, describing the evolution of the aforementioned marginal distributions if the

agents follow the optimal dynamics. The definition of equilibrium that we adopted in this work corresponds

to a relaxation of the PDE notion of equilibrium, and has been used, for instance, in [39], [22, Section 3]

and, recently, in [31].

Throughout this section, we will suppose that the following assumption holds.

(H3)(i) For h = f , g we have that h is continuous and there exists C > 0 such that

sup
m∈P1(Rd)

{‖h(·,m)‖∞ + ‖Dxh(·,m)‖∞} ≤ C. (4.25)

(ii) The initial distribution m0 ∈ P(Rd) has a compact support.

Now we will focus on a particular class of finite MFGs and relate their solutions, asymptotically,

with the MFG equilibria for (4.24). Let (Ns
n) and (N t

n) be two sequences of natural numbers such

that limn→∞Ns
n = limn→∞N t

n = +∞ and let (εn) be a sequence of positive real numbers such that

limn→∞ εn = 0. Define ∆xn := 1/Ns
n and ∆tn := T/N t

n. For a fixed n ∈ N, consider the discrete state

set Sn and the discrete time set Tn defined as

Sn :=
{
xq := q∆xn | q ∈ Zd, |q|∞ ≤ (Ns

n)2} ⊆ Rd,

Tn := {tk := k∆tn | k = 0, . . . , N t
n} ⊆ [0, T ].

(4.26)
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Let us also define the (non positive) entropy function En : P(Sn)→ R by

En(p) =
∑
x∈Sn

px log(px) ∀ p ∈ P(Sn),

with the convention that 0 log 0 = 0. For every x ∈ Sn set Ex :=
{
x′ ∈ Rd | |x′ − x|∞ ≤ ∆xn/2

}
. Since

we will be interested in the asymptotic as n → ∞, we can assume, without loss of generality, that

m0(∂Ex) = 0 for all x ∈ Sn. Similarly, by (H3)(ii), we can assume that the support of m0 will be

contained in ∪x∈SnEx. Based on these considerations, setting

Mn,0(x) := m0(Ex) ∀ x ∈ Sn,

we have that Mn,0 ∈ P(Sn). We consider the finite MFG, written in a recursive form (see (4.4)),

(i) Un(x, tk) = minp∈P(Sn)

{∑
y∈Sn p(y)

(
∆tn
q

∣∣∣y−x∆tn

∣∣∣q + Un(y, tk+1)
)

+ εnEn(p)
}

+∆tnf(x,Mn(tk)) ∀ x ∈ Sn, 0 ≤ k < N t
n,

(ii) Mn(y, tk+1) =
∑
x∈Sn P̂n(x, y, tk)Mn(x, tk) ∀ y ∈ Sn, 0 ≤ k < N t

n,

(iii) Mn(x, 0) = Mn,0(x), Un(x, T ) = g(x,Mn(T )) ∀ x ∈ Sn,

(4.27)

where for all x ∈ Sn, 0 ≤ k ≤ N t
n − 1, P̂n(x, ·, tk) ∈ P(Sn) is given by

P̂n(x, ·, tk) = argminp∈P(Sn)

∑
y∈Sn

p(y)
(

∆tn
q

∣∣∣∣y − x∆tn

∣∣∣∣q + Un(y, tk+1)
)

+ εnEn(p)

 . (4.28)

Note that system (4.27) is a particular case of (4.4), with

cxy(p,M) := ∆tn
(

1
q

∣∣∣∣y − x∆tn

∣∣∣∣q + f(x,M)
)

+ εn log(py).

Remark 4.4.2. The positive parameter εn is introduced in (4.27) in order to ensure that P̂n is well-

defined, and so that assumption (H1) for system (4.27) is satisfied in this case. In particular, by the

results in the previous sections, the fictitious play procedure converges for system (4.27) if the couplings

f and g are monotone.

Remark 4.2.1 ensures the existence of at least one solution (Un,Mn) of (4.27), with associated tran-

sition kernel P̂n given by (4.28). In order to study the asymptotic behaviour of (Un,Mn, P̂n), let us

introduce some useful notations. We set Kn := KSn,Tn (see Definition 4.2.1) and, given x ∈ Sn and

t ∈ Tn, we denote by ΓSn,Tnx,t ⊆ Γt the set of continuous functions γ : [t, T ]→ Rd such that γ(t) = x and

for each 1 ≤ k ≤ m with tk ∈ Tn ∩ (t, T ], we have that γ(tk) ∈ Sn and the restriction of γ to the interval

[tk−1, tk] is affine. Given P ∈ Kn let us define ξx,t,nP ∈ P(Γ) by

ξx,t,nP :=
∑

γ∈ΓSn,Tnx,t

px,t,nP (γ)δγ , where px,tP (γ) :=
∏

tk∈Tn∩[t,T ]

P (γ(tk), γ(tk+1), tk). (4.29)

For later use, note that, recalling (4.29), equation (4.27)(i) is equivalent to

Un(x, tk) = minP∈Kn
{
E
ξ
x,tk,n

P

(
∆tn

∑Ntn−1
k′=k

[
1
q

∣∣∣y−x∆tn

∣∣∣q + f(γ(tk′),Mn(tk′))
]

+ g(γ(T ),Mn(T ))
)

+εnEξx,tk,n
P

(∑Ntn−1
k′=k

∑
y∈Sn P (γ(tk′), y, tk′) logP (γ(tk′), y, tk′)

)}
,

(4.30)
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for all x ∈ Sn and k = 0, . . . , N t
n − 1. Finally, let us define ξn ∈ P(Γ) by

ξn :=
∑
x∈S

Mn,0(x) ξx,0,n
P̂n

.

Notice that, by definition, Mn(t) = et]ξn for all t ∈ Tn. We extend Mn : Tn → P1(Rd) to Mn : [0, T ]→
P1(Rd) via the formula

Mn(t) := et]ξn for all t ∈ [0, T ]. (4.31)

4.4.1 Convergence analysis

We now study the limit behaviour of the solutions (Un,Mn) in (4.27), and of the associated sequence

(ξn), as n → ∞. In the remainder of this section, for a given Borel measurable function L : Γ → R we

set Eξn(L) :=
∫

Γ L(γ)dξn(γ), provided that the integral is well-defined.

Let us prove first two simple but useful results.

Lemma 4.4.1. Suppose that εn = O
(

1
Ntn log(Nsn)

)
. Then, there exists a constant C > 0, independent of

n, such that

sup
x∈Sn, t∈Tn

|Un(x, t)| ≤ C, (4.32)

Eξn

(∫ T

0
|γ̇(t)|qdt

)
≤ C. (4.33)

Proof. Let us first prove (4.32). Since the cardinality of Sn is equal to (2(Ns
n)2 + 1)d, we have that

(
1

(2(Ns
n)2 + 1)d , . . . ,

1
(2(Ns

n)2 + 1)d

)
= argmin

{∑
x∈Sn

px log px ; p ∈ P(Sn)
}
.

Hence, our assumption over εn implies the existence of Ĉ > 0, independent of n, such that∣∣∣∣∣∣εnEξx,t,nP

Ntn−1∑
k′=k

∑
y∈Sn

P (γ(tk′), y, tk′) logP (γ(tk′), y, tk′)

∣∣∣∣∣∣ ≤ Ĉ ∀ P ∈ Kn. (4.34)

Thus, the lower bound is a direct consequence of the uniform bounds for f and g in (4.25). In order to

obtain the upper bound, choose P ∈ Kn in the right hand side of (4.30) such that P (x, x, tk′) = 1 for all

k′ = k, . . . , N t
n − 1. The bound in (4.25) implies that

Un(x, tk) ≤ C (T + 1) + Ĉ,

and so (4.32) follows. In order to prove (4.33), note that the boundedness of f and g and the bound

(4.32) imply the existence of Ĉ1 > 0, independent of n, such that

Eξn

(∫ T

0
|γ̇(t)|qdt

)
= Eξn

∆tn
Ntn−1∑
k=0

∣∣∣∣γ(tk+1)− γ(tk)
∆tn

∣∣∣∣q
 ≤ Ĉ1.

The result follows.

Lemma 4.4.2. Let C > 0. Then the set

ΓC :=
{
γ ∈W 1,q([0, T ];Rd) | |γ(0)| ≤ C and

∫ T

0
|γ̇(t)|qdt ≤ C

}
,

is a compact subset of Γ.
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Proof. Let (γn) be a sequence in ΓC . Then, for all 0 ≤ s ≤ t ≤ T , the Hölder inequality yields

|γn(t)− γn(s)| ≤
∫ t

s

|γ̇n(t′)|dt′ ≤ C1/q(t− s)1/q′ . (4.35)

Thus,

|γn(t)| ≤ |γn(0)|+ |γn(t)− γn(0)| ≤ C + C1/qT 1/q′ . (4.36)

As a consequence of (4.35)-(4.36) and the Arzelà-Ascoli theorem we have existence of γ ∈ Γ such that,

up to some subsequence, γn → γ uniformly in [0, T ]. Moreover, since γ̇n is bounded in Lq((0, T );Rd) and

the function Lq((0, T );Rd) 3 η 7→
∫ T

0 |η(t)|qdt ∈ R is convex and continuous, and hence, weakly lower

semicontinuous, we have the existence of η̄ ∈ Lq((0, T );Rd) such that, up to some subsequence, γ̇n → η̄

weakly in Lq((0, T );Rd) and
∫ T

0 |η̄(t)|qdt ≤ lim infn→∞
∫ T

0 |γ̇n(t)|qdt ≤ C. By passing to the limit in the

relation

γn(t) = γn(0) +
∫ t

0
γ̇n(s)ds ∀ t ∈ [0, T ],

we get that

γ(t) = γ(0) +
∫ t

0
η̄(s)ds ∀ t ∈ [0, T ],

and, hence, γ ∈ W 1,q([0, T ];Rd), with γ̇ = η̄ a.e. in [0, T ], |γ(0)| ≤ C and
∫ T

0 |γ̇(t)|qdt ≤ C. Therefore,

γ ∈ ΓC and so the set ΓC is compact.

As a consequence of the previous results we easily obtain a compactness property for (ξn).

Proposition 4.4.1. Suppose that εn = O
(

1
Ntn log(Nsn)

)
. Then, the sequence (ξn) is a relatively compact

subset of P(Γ) endowed with the topology of narrow convergence.

Proof. By Prokhorov’s theorem it suffices to show that (ξn) is tight, i.e. we need to prove that for every

ε > 0 there exists a compact set Kε ⊆ Γ such that supn∈N ξn(Γ \Kε) ≤ ε. Given ε > 0, the bound (4.33)

and the Markov’s inequality yield

ξn

({
γ ∈ Γ | γ ∈W 1,q((0, T );Rd) and

∫ T

0
|γ̇(t)|qdt > C

ε

})
≤ ε ∀ n ∈ N. (4.37)

On the other hand, by (H)(ii), there exists c0 > 0 such that for ξn-almost every γ ∈ Γ we have

|γ(0)| ≤ c0. By Lemma 4.4.2 and (4.37), the set Kε := ΓCε with Cε := max{c0, C/ε}, satisfies the

required properties.

Now, we study the compactness of the collection of marginal laws, with respect to the time variables,

in the space C([0, T ];P1(Rd)).

Proposition 4.4.2. Suppose that εn = O
(

1
Ntn log(Nsn)

)
. Then, there exists C > 0 such that for all n ∈ N

we have: ∫
Rd
|x|qdMn(t)(x) = Eξn (|γ(t)|q) ≤ C ∀ t ∈ [0, T ], (4.38)

d1(Mn(t),Mn(s)) ≤ C|t− s|1/q
′
∀ t, s ∈ [0, T ]. (4.39)

As a consequence, Mn ∈ C([0, T ];P1(Rd)) for all n ∈ N and the sequence (Mn) is a relatively compact

subset of C([0, T ],P1(Rd)).

87



Proof. By definition, for all t ∈ [0, T ] we have that

Eξn (|γ(t)|q) ≤ 2q−1Eξn

(
|γ(0)|q + T q/q

′
∫ T

0
|γ̇(t)|q dt

)
≤ C, (4.40)

for some constant C > 0, independent of n. In the second inequality above we have used that m0 has

compact support and (4.33). This proves (4.38). In order to prove (4.39), by definition of d1, we have

that d1(Mn(t),Mn(s)) ≤ dq(Mn(t),Mn(s)) and, setting ρn := (et, es)]ξn ∈ P(Rd × Rd),

dqq(Mn(t),Mn(s)) ≤
∫
Rd×Rd

|x− y|qdρn(x, y) =
∫

Γ
|γ(t)− γ(s)|q dξn(γ)

≤ |t− s|q/q
′
∫

Γ

∫ T

0
|γ̇(t)|qdt dξn(γ) = |t− s|q/q

′
Eξn

(∫ T

0
|γ̇(t)|qdt

)
≤ C|t− s|q/q

′
,

from which (4.39) follows.

Finally, relation (4.38) implies that for all t ∈ [0, T ] the set {Mn(t) ; n ∈ N} is relatively compact

in P1(Rd) (see [8, Proposition 7.1.5]) and (4.39) implies that the family (Mn) is equicontinuous in

C([0, T ];P1(Rd)). Therefore, the last assertion in the statement of the proposition follows from the

Arzelà-Ascoli theorem.

Suppose that εn = O (1/ (N t
n log(Ns

n))) and let ξ∗ ∈ P(Γ) be a limit point of (ξn) (by Proposition

4.4.1 there exists at least one) and, for notational convenience, we still label by n ∈ N a subsequence of

(ξn) narrowly converging to ξ∗. By Proposition 4.4.2, we have that (Mn) converges to m(·) := e(·)]ξ
∗

in C([0, T ];P1(Rd)). We now examine the limit behaviour of the corresponding optimal discrete costs

(Un). In Proposition 4.4.3 we prove that (Un) converges, in a suitable sense, to a viscosity solution of

−∂tu+ 1
q′ |∇u(x, t)|q′ = f(x,m(t)) x ∈ Rd, t ∈ (0, T ),

u(x, T ) = g(x,m(T )) x ∈ Rd.
(4.41)

Classical results imply that under (H)(i) equation (4.41) admits at most one viscosity solution (see e.g.

[48, Theorem 2.1]). In [15, Proposition 1.3 and Remark 1.1] the existence of a viscosity solution u is

proved, as well the following representation formula: for all (x, t) ∈ Rd × (0, T )

u(x, t) = inf
{∫ T

t

[
1
q
|ż(s)|q + f(z(s),m(s))

]
ds+ g(z(T ),m(T ))

∣∣ z ∈W 1,q([0, T ];Rd), z(t) = x

}
.

(4.42)

Standard arguments using the expression (4.42) show that u is continuous in Rd × [0, T ] (see e.g. [15,

Theorem 2.1]).

Remark 4.4.3. Definition 4.4.1 can thus be rephrased as follows: ξ∗ ∈ Pm0(Γ) is a MFG equilibrium

for (4.24) if [0, T ] 3 t 7→ m(t) := et]ξ
∗ belongs to C([0, T ];P1(Rd)) and for ξ∗-almost all γ we have that

u(γ(0), 0) =
∫ T

0

[
1
q
|γ̇(t)|q + f(γ(t),m(t))

]
dt+ g(γ(T ),m(T )),

where u is the unique viscosity solution to (4.41).

In order to prove the convergence of Un to u, we will need the following auxiliary functions

U∗(x, t) := lim sup
n→∞
Sn3y→x
Tn3s→t

Un(y, s), U∗(x, t) := lim inf
n→∞
Sn3y→x
Tn3s→t

Un(y, s) ∀ x ∈ Rd, t ∈ [0, T ]. (4.43)
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By (4.4.1), the functions U∗ and U∗ are well defined if εn = O (1/(N t
n log(Ns

n))). In some of the next

results, we will need to assume a stronger hypothesis on εn, namely εn = o (1/(N t
n log(Ns

n))), which will

allow us to eliminate the entropy term in the limit.

Before proving the convergence of the value functions, we will need a preliminary result.

Lemma 4.4.3. Assume that εn = O
(

1
Ntn log(Nsn)

)
. Then,

(i) U∗ and U∗ are upper and lower semicontinuous, respectively.

(ii) If in addition, εn = o
(

1
Ntn log(Nsn)

)
, we have that U∗(x, T ) = U∗(x, T ) = g(x,m(T )) for all x ∈ Rd.

Proof. The proof of assertion (i) is the same than the proof of [14, Chapter V, Lemma 1.5]. Let us prove

(ii). For n ∈ N, let xn ∈ Sn, tn ∈ Tn and k : N→ N such that tn = tk(n) (recall that Tn = {0, t1, . . . , tNtn}).
Because of our assumption on εn, we can write

Un(xn, tn) =
∑

γ∈ΓSn,Tn
xn,tn

px
n,tn

P̂n
(γ)
(∑Ntn−1

k=k(n) ∆tn
[

1
q

∣∣∣ γ(tk+1)−γ(tk)
∆tn

∣∣∣q + f(γ(tk),Mn(tk))
]

+ g(γ(T ),Mn(T ))
)

+o(1),
(4.44)

where we recall that px
n,tn

P̂n
is defined in (4.29). Using the definition of Un and arguing as in the proof of

Lemma 4.4.1, we have that

Ntn−1∑
k=k(n)

∆tnf(γ(tk),Mn(tk)) = O(T − tk(n)),

Un(xn, tn) ≤ g(xn,Mn(T )) +O(T − tn) + o(1).

Therefore, if xn → x ∈ Rd and tn → T , we have

lim sup
n→∞

Un(xn, tn) ≤ g(x,m(T )),

from which we deduce that U∗(x, T ) ≤ g(x,M(T )) for all x ∈ Rd. Next, for every γ ∈ ΓSn,Tnxn,tn we have

|γ(T )− xn|q ≤

 Ntn−1∑
k=k(n)

|γ(tk+1)− γ(tk+1)|

q

≤ (N t
n − k(n))q−1

Ntn−1∑
k=k(n)

|γ(tk+1)− γ(tk+1)|q,

which implies that

Ntn−1∑
k=k(n)

∆tn
q

∣∣∣∣γ(tk+1)− γ(tk)
∆tn

∣∣∣∣q ≥ ∆tn
q(N t

n − k(n))q−1

∣∣∣∣γ(T )− xn
∆tn

∣∣∣∣q = 1
q(T − tn)q−1 |γ(T )− xn|q . (4.45)

Thus, setting px
n,tn

T,y := ξx
n,tn

P̂n
({γ ∈ Γ | γ(T ) = y}), equation (4.44) and the last inequality above yield

Un(xn, tn) ≥
∑
y∈Sn

px
n,tn

T,y

(
|y − xn|q

q(T − tn)q−1 + g(y,Mn(T ))
)

+O(T − tn) + o(1)

≥ min
y∈Sn

{
|y − xn|q

q(T − tn)q−1 + g(y,Mn(T ))
}

+O(T − tn) + o(1).
(4.46)

Suppose that y∗n minimizes the “min” term in the last line above. By definition, we have

|y∗n − xn|
q

q(T − tn)q−1 ≤ g(xn,Mn(T ))− g(y∗n,Mn(T )) ≤ C |y∗n − xn| ,

where the last inequality follows from (4.25). As a consequence, we get that |y∗n − xn| = O(T − tn) and

so
|y∗n−x

n|q
(T−tn)q−1 → 0 as n→∞. Therefore, as n→∞,

min
y∈Sn

{
|y − xn|q

q(T − tn)q−1 + g(y,Mn(T ))
}

= |y∗n − xn|
q

q(T − tn)q−1 + g(y∗n,Mn(T ))→ g(x,m(T )).
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By (4.46), this implies that

lim inf
n→∞

Un(xn, tn) ≥ g(x,m(T )),

from which we deduce that U∗(x, T ) ≥ g(x,m(T )). The result follows.

Now, we prove the convergence of the sequence (Un). The argument of the proof uses some ideas

from the theory of approximation of viscosity solutions (see e.g. [17]).

Proposition 4.4.3. Assume that, as n→∞, N t
n/N

s
n → 0 and εn = o

(
1

Ntn log(Nsn)

)
. Then, U∗ = U∗ = u,

where u is given by (4.42), or equivalently, where u is the unique continuous viscosity solution to (4.41).

As a consequence, for every compact set Q ⊆ Rd we have that

sup
(x,t)∈(Sn∩Q)×Tn

|Un(x, t)− u(x, t)| → 0 as n→∞. (4.47)

Proof. Let us prove that U∗ is a viscosity subsolution of equation (4.41). Let φ ∈ C1(Rd × [0, T ]) and

(x∗, t∗) ∈ Rd × (0, T ) be such that (x∗, t∗) is a local maximum of U∗ − φ on Rd × (0, T ).
By standard arguments in the theory of viscosity solutions (see e.g. [14, Chapter II]), we may assume

that φ is bounded as well as its time and space derivatives and that (x∗, t∗) is a strict global maximum of

U∗−φ. Arguing as in the proof of [14, Chapter V, Lemma 1.6], we can show the existence of a sequence

(xn, tn) in Sn × Tn such that (xn, tn) → (x∗, t∗), Un(xn, tn) → U∗(x∗, t∗) and Un − φ has maximum at

(xn, tn) in the set (Sn × Tn) ∩Bδ, where Bδ := {(x, t) ∈ Rd × (0, T ) ; |x− x∗|+ |t− t∗| ≤ δ} and δ > 0
is such that Bδ ⊆ Rd × (0, T ).

Now, let ξ ∈ C∞(Rd × [0, T ]) be such that 0 ≤ ξ ≤ 1, ξ(x, t) = 0 if (x, t) ∈ B δ
2

and ξ(x, t) = 1 if

(x, t) ∈
(
Rd × (0, T )

)
\Bδ. Then, using that Un and φ are bounded, we can choose M > 0 large enough

such that, setting φ̄ := φ+Mξ, the function Un− φ̄ has maximum in Sn×Tn at the point (xn, tn). Note

that ∂tφ̄(x∗, t∗) = ∂tφ(x∗, t∗) and ∇φ̄(x∗, t∗) = ∇φ(x∗, t∗).
As in the proof of Lemma 4.4.3, let k : N→ N be such that tn = tk(n). Since Un(xn, tn) satisfies

Un(xn, tn) = min
p∈P(Sn)

∑
y∈Sn

p(y)
(

∆tn
q

∣∣∣∣y − xn∆tn

∣∣∣∣q + ∆tnf(xn,Mn(tn)) + Un(y, tk(n)+1)
)

+ εnEn(p),

and Un(y, tk(n)+1)− Un(xn, tn) ≤ φ̄(y, tk(n)+1)− φ̄(xn, tn) for all y ∈ Sn, we have that

0 ≤ min
p∈P(Sn)

∑
y∈Sn

p(y)
(

∆tn
q

∣∣∣∣y − xn∆tn

∣∣∣∣q + ∆tnf(xn,Mn(tk(n))) + φ̄(y, tk(n)+1)− φ̄(xn, tk(n))
)

+ εnEn(p),

≤ min
y∈Sn

{
∆tn
q

∣∣∣∣y − xn∆tn

∣∣∣∣q + ∆tnf(xn,Mn(tk(n))) + φ̄(y, tk(n)+1)− φ̄(xn, tk(n))
}

+ εnEn(p),

(4.48)

where the second inequality follows from the first one by taking for each y ∈ Sn the vector p ∈ P(Sn)
defined as p(z) = 1 iff z = y. Dividing by ∆tn and recalling that εn = o

(
1

Ntn log(Nsn)

)
, we get

0 ≤ f(xn,Mn(tn)) + min
y∈Sn

{
1
q

∣∣∣∣y − xn∆tn

∣∣∣∣q +
φ̄(y, tk(n)+1)− φ̄(xn, tk(n))

∆tn

}
+ o(1),

and so, taking liminf,

0 ≤ f(x∗,m(t∗)) + lim inf
n

min
y∈Sn

{
1
q

∣∣∣∣y − xn∆tn

∣∣∣∣q +
φ̄(y, tk(n)+1)− φ̄(xn, tk(n))

∆tn

}
, (4.49)
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where we have used that Mn → m in C([0, T ];P1(Rd)). Let us study the second term in the right hand

side above. For fixed n, let y∗n be such that

y∗n ∈ argminy∈Sn

{
1
q

∣∣∣∣y − xn∆tn

∣∣∣∣q +
φ̄(y, tk(n)+1)− φ̄(xn, tk(n))

∆tn

}
,

or equivalently, setting α∗n := y∗n−x
n

∆tn ,

1
q
|α∗n|

q +
φ̄(xn + ∆tnα∗n, tk(n)+1)− φ̄(xn, tk(n))

∆tn
≤ 1
q

∣∣∣∣y − xn∆tn

∣∣∣∣q +
φ̄(y, tk(n)+1)− φ̄(xn, tk(n))

∆tn
, (4.50)

for all y ∈ Sn. By taking y = xn in the expression above and using that ∂tφ̄ and ∇φ̄ are bounded,

we obtain that the sequence (α∗n) is bounded. Let α∗ be a limit point of this sequence and consider a

subsequence of (αn), still indexed by n, such that α∗n → α∗. The condition N t
n/N

s
n → 0 implies that for

any α ∈ Rd we can find a sequence (yn) in Sn such that yn−xn
∆tn → α as n→∞. Taking y = yn in (4.50)

and passing to the limit yields

1
q
|α∗|q +∇φ(x∗, t∗) · α∗ ≤ 1

q
|α|q +∇φ(x∗, t∗) · α ∀ α ∈ Rd. (4.51)

which implies that
1
q
|α∗|q +∇φ(x∗, t∗) · α∗ = − 1

q′
|∇φ(x∗, t∗)|q

′
.

Passing to the limit in (4.49) gives

−∂tφ(x∗, t∗) + 1
q′
|∇φ(x∗, t∗)|q

′
≤ f(x∗,m(t∗)),

which proves that U∗ is a subsolution to (4.41). Similarly, we can prove that U∗ is a supersolution to

(4.41). Assumption (H3)(i) ensures a comparison principle for (4.41) (see [48, Theorem 2.1]). Therefore,

since U∗(·, T ) = U∗(·, T ) by Lemma 4.4.3(ii), we have that U∗ = U∗ = u as announced. Using this result,

the proof of (4.47) is identical to the proof of [14, Chapter V, Lemma 1.9].

We have now all the elements to prove the main result in this article. We will need an additional

assumption over f and g.

There exists C > 0 and a modulus of continuity ω : [0,+∞)→ [0,+∞) such that for h = f , g

|h(x,m)− h(x,m′)| ≤ C(1 + |x|q)ω (d1(m,m′)) ∀ x ∈ Rd, m, m′ ∈ P1(Rd).
(4.52)

Theorem 4.4.1. Suppose that (H3) and (4.52) hold and, as n → ∞, N t
n/N

s
n → 0 and εn =

o
(

1
Ntn log(Nsn)

)
. Then, the following assertions hold true:

(i) There exists at least one limit point ξ∗ of (ξn), with respect to the narrow topology in P(Γ), and every

such limit point is a MFG equilibrium for (4.24).

(ii) Consider any converging subsequence of (ξn′) of (ξn), with limit ξ∗ ∈ P(Γ), and let (Un′ ,Mn′) be the

associated solutions to (4.27). Denote by u be the unique viscosity solution to (4.41) with m(t) := et]ξ
∗

for all t ∈ [0, T ]. Then, the sequence (Mn′) ⊆ C([0, T ];P1(Rd)), defined by (4.31), converge to m in

C([0, T ];P1(Rd)) and (4.47) holds for (Un′) and u.

Proof. Assertion (ii) is a straightforward consequence of the first assertion and Proposition 4.4.3, hence,

we only need to prove (i). The existence of at least one limit point ξ∗ of (ξn) is a consequence of

Proposition 4.4.1. Let us still index by n a subsequence of (ξn) narrowly converging to ξ∗. By Proposition
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4.4.2, we have that m(·) := e(·)]ξ
∗ is the limit in C([0, T ];P1(Rd)) of Mn. By definition of ξn and our

condition over εn, we have

Eξn

(∫ T

0

[
1
q
|γ̇(t)|q + f(γ([t]Tn),Mn([t]Tn))

]
dt+ g(γ(T ),Mn(T ))

)
+ o(1) =

∑
x∈Sn

Un(x, 0)Mn,0(x),

(4.53)

where [t]Tn is the greatest element in Tn not larger than t. Using that the support of Mn,0 is uniformly

bounded and relation (4.47) in Proposition 4.4.3, we easily get that the right hand side above converges

to
∫
Rd u(x, 0)dm0(x) = Eξ∗ (u(γ(0), 0)), where u is the unique viscosity solution to (4.41). On the other

hand, arguing as in the proof of Lemma 4.4.2 we obtain that the mapping

Γ 3 γ 7→


∫ T

0
1
q |γ̇(t)|q dt, if γ ∈W 1,q([0, T ];Rd),

+∞ otherwise,

is lower semicontinuous. Therefore, by [8, Lemma 5.1.7] and (4.33), we have

Eξ∗
(∫ T

0

1
q
|γ̇(t)|q dt

)
≤ lim inf

n
Eξn

(∫ T

0

1
q
|γ̇(t)|q dt

)
<∞, (4.54)

which, together with (4.38), implies that the support of ξ∗ is contained in W 1,q([0, T ];Rd). By assumption

(H3)(i), for all k = 0, . . . , N t
n − 1 we have that∣∣∣∣Eξn (∫ tk+1

tk

[f(γ(tk),Mn(tk))− f(γ(t),Mn(tk))] dt
)∣∣∣∣ ≤ CEξn (∫ tk+1

tk

|γ(t)− γ(tk)|dt
)
. (4.55)

Since γ(t) = γ(tk) + γ̇(t)(t− tk) for ξn-almost all γ and all t ∈ (tk, tk+1), the bound (4.33) gives

Eξn
(∫ tk+1

tk

|γ(t)− γ(tk)|dt
)

= ∆tn(∆tn)
1
q′

[
Eξn

(∫ T

0
|γ̇(t)|qdt

)] 1
q

≤ C(∆tn)1+ 1
q′ ,

for some constant C > 0. Thus, by (4.55),

Eξn

(∫ T

0
f(γ([t]Tn),Mn([t]Tn))dt

)
= Eξn

(∫ T

0
f(γ(t),Mn([t]Tn))dt

)
+ o(1).

The relation above and (4.52) yield

Eξn
(∫ T

0 f(γ([t]Tn),Mn([t]Tn))dt
)

= Eξn
(∫ T

0 f(γ(t),m(t))dt
)

+C
(

1 + supt∈[0,T ] Eξn(|γ(t)|q)
)

supt∈[0,T ] d1(Mn([t]Tn),m(t))

+o(1)

= Eξn
(∫ T

0 f(γ(t),m(t))dt
)

+ o(1),
(4.56)

where, in the last equality, we have used (4.38) and the fact that Mn → m in C([0, T ];P1(Rd)). Analo-

gously,

Eξn (g(γ(T ),Mn(T ))) = Eξn (g(γ(T ),m(T ))) + o(1). (4.57)

Therefore, passing to the limit n→∞ in (4.53) and using (4.54), (4.56) and (4.57), we get

Eξ∗
(∫ T

0

[
1
q
|γ̇(t)|q + f(γ(t),m(t))

]
dt+ g(γ(T ),m(T ))

)
≤ Eξ∗ (u(γ(0), 0)) . (4.58)
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Using that, by definition,

u(γ(0), 0) ≤
∫ T

0

[
1
q
|γ̇(t)|q + f(γ(t),m(t))

]
dt+ g(γ(T ),m(T )) ∀ γ ∈W 1,q([0, T ];Rd),

inequality (4.58) implies that for ξ∗-almost all γ we have that

u(γ(0), 0) =
∫ T

0

[
1
q
|γ̇(t)|q + f(γ(t),m(t))

]
dt+ g(γ(T ),m(T )),

i.e. ξ∗ is a MFG equilibrium for (4.24) (see Remark 4.4.3).
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[20] M. Benäım, J. Hofbauer, and S. Sorin. Stochastic approximations and differential inclusions, part

ii: Applications. Mathematics of Operations Research, 31(4):673–695, 2006. 5, 7

[21] J.-D. Benamou and G. Carlier. Augmented Lagrangian methods for transport optimization, mean

field games and degenerate elliptic equations. Journal of Optimization Theory and Applications,

167(1):1–26, 2015. 10

[22] J.-D. Benamou, G. Carlier, and F. Santambrogio. Variational mean field games. In Active particles.

Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., pages 141–
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Résumé

Les jeux à champ moyen (MFG) sont
une classe de jeux différentiels dans
lequel chaque agent est infinitésimal
et interagit avec une très grande pop-
ulation d’agents. Dans cette thèse,
nous soulevons la question de la for-
mation effective de l’équilibre MFG.
En effet, le jeu étant très complexe,
il est irréaliste de supposer que les
agents peuvent réellement calculer
la configuration d’équilibre. Cela
semble indiquer que si la configu-
ration d’équilibre se présente, c’est
parce que les agents ont appris
à jouer au jeu. Donc, la ques-
tion principale est de trouver des
procédures d’apprentissage dans les
jeux à champ moyen et d’analyser
leurs convergences vers un équilibre.
Nous nous sommes inspirés par des
schémas d’apprentissage dans les
jeux statiques et avons essayé de les
appliquer à notre modèle dynamique
de MFG. Nous nous concentrons
particulièrement sur les applications
de fictitious play et online mirror de-
scent sur différents types de jeux à
champ moyen: Potentiel, Monotone
et Discret.

Mots Clés

Jeux à champ moyen, contrôle opti-
male, fictitious play, algorithm de de-
scente miroir.

Abstract

Mean Field Games (MFG) are a
class of differential games in which
each agent is infinitesimal and inter-
acts with a huge population of other
agents. In this thesis we raise the
question of the actual formation of
the MFG equilibrium. Indeed, the
game being quite involved, it is un-
realistic to assume that the agents
can actually compute the equilibrium
configuration. This seems to indicate
that, if the equilibrium configuration
arises, it is because the agents have
learned how to play the game. Hence
the main question is to find learning
procedures in mean field games and
investigating if they converge to an
equilibrium. We have inspired from
the learning schemes in static games
and tried to apply them to our dynam-
ical model of MFG. We especially fo-
cus on fictitious play and online mir-
ror descent applications on different
types of mean field games; those
are either Potential, Monotone or Dis-
crete.

Keywords

Mean field games, optimal control,
fictitious play, online mirror descent
algorithm.
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