

Etude des magmas primaires de l'arc des Petites Antilles par l'analyse in situ des inclusions vitreuses

Anne-Sophie Bouvier

► To cite this version:

Anne-Sophie Bouvier. Etude des magmas primaires de l'arc des Petites Antilles par l'analyse in situ des inclusions vitreuses. Géochimie. Université Henri Poincaré - Nancy 1, 2008. Français. NNT: 2008NAN10071 . tel-01748437v2

HAL Id: tel-01748437 https://theses.hal.science/tel-01748437v2

Submitted on 12 Jan 2009 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE HENRI POINCARE, NANCY I

Ecole doctorale RP2E

Nancy-Université

THESE DE DOCTORAT

Présentée pour obtenir le grade de **DOCTEUR D'UNIVERSITE**

Spécialité: Géosciences

Présenté par *Anne-Sophie Bouvier*

Etude des magmas primaires des Petites Antilles par l'analyse in situ des inclusions vitreuses

Soutenue publiquement le 21 novembre 2008 devant le jury composé de:

Rapporteurs:	Catherine Chauvel, Directeur de Recherche, LGCA, Grenoble Pierre Schiano, Professeur, LMV, Clermont-Ferrand
Examinateurs:	Matthew Thirlwall, Professeur, Royal Holloway, London Olivier Vanderhaegue, Professeur, G2R, Nancy
Directeurs de thèse:	Etienne Deloule , Directeur de Recherche, CRPG, Vandoeuvre les Nancy
./	Nicole Métrich, Directeur de Recherche au CNRS, LPS, CEA Saclay
INSU	

centre de recherches pétrographiques et géochimiques

Laboratoire Pierre Süe

On fait la science avec des faits, comme on fait une maison avec des pierres: mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison

Henri Poincaré

A mes parents,

Remerciements

Tout d'abord, je voudrais remercier mes directeurs de thèse, Etienne Deloule et Nicole Métrich pour m'avoir laissé la chance de faire cette thèse dans de très bonnes conditions, aussi bien analytiques que "relationnelles". Je les remercie aussi pour tous leurs conseils et nos discussions, qui m'ont beaucoup appris, mais également pour leur patience.

Merci à Catherine Chauvel et Pierre Schiano d'avoir accepté de lire et commenter ce manuscrit. Je suis également reconnaissante à Catherine Chauvel de m'avoir fait passer l'annonce pour cette thèse !

Je voudrais également remercier toute l'équipe sonde: Denis Mangin, Claire Rollion-Blard et Michel Champenois, pour leur aide et leur patience lors des sessions d'analyses ! Merci également à Julien Dubois qui a toujours répondu présent lors des pannes ! Merci à Michel Fialin et Frédéric Couffignal du service Camparis (Jussieu), mais aussi Johann Ravaux du Service Commun de Microscopie Electronique (UHP, Nancy), pour leur accueil, conseils et aides lors des mesures à la microsonde électronique.

Un grand merci également à Olfa Belhadj pour ces conseils sur la préparation des inclusions et son efficacité !

Merci à Pete Burnard et Laurie Reisberg pour avoir relu et commenter les deux premiers articles. Merci également à François Faure pour ses lumières en pétrologie, en particulier sur les olivines, et nos discussions sur les compositions des inclusions en éléments majeurs, et à Pierre Schiano pour nos discussions sur les inclusions et pyroxénites !

Je tiens aussi a remercié Ewan Pelleter pour ses conseils et pour notre discussion sur les zircons qui m'a bien aidé au bon moment ! Merci également à Shaza Labanieh, Marion Carpentier, Aurélie Germa, Marion Le Voyer et Maxime Mercier pour nos échanges d'informations sur les Antilles ou les inclusions. Merci également à Benoit Welsch pour nos discussions sur les inclusions et magmas, mais également pour ton aide pour l'utilisation d'Illustrator. Merci aussi pour toute la musique, les séries, et les nombreuses conversations « non scientifiques » ! Merci également à Aurélien Thomen pour nos discussions sur le δD et les sondes. Merci aussi a David Picard son soutien, mais aussi pour les soirées « mémorables » de l'EGU ! Merci aussi a Flurin Vils entre autre pour ces commentaires sur mes données, notamment sur le Li et B.

Merci à tous les thésards, ainsi que Laurent Tissandier, François Faure, Laurent Zimmerman et bien d'autres pour les pauses animées! Je remercie en particulier Romain, pour les "soirées craquages", les visites des alentours, les soirées, le St. Nectaire et bien d'autres choses !! Merci également à Marianne et Johanna, pour toutes nos discussions, les nombreuses pauses, les sorties ect! Je remercie également Maxence, Magalie, Jenny pour "les moments de détente" !! J'aimerais également remercier Stéphanie Duchène pour m'avoir permis de faire quelques-uns de ces TD à l'université. Ce fut une expérience très enrichissante. Un grand merci également à Aurélie Didot pour son efficacité à traiter tous les détails administratifs.

Ensuite, en dehors de ce cercle scientifique, je tiens à remercier Dorian, Brice, mais aussi encore une fois Romain, pour avoir toujours été présents durant ces 3 années, dans les meilleurs moments comme les moins bons. 1000 mercis à tous les 3 !!

Merci également a Yvi, pour nos soirées « parisiennes », son soutien moral via msn, les vacances dans deux endroits magnifiques, La Réunion et Mayotte, qui étaient nécessaire avant d'entamer la rédaction, mais également pour avoir pris le temps de relire l'introduction de cette thèse au lieu de corriger le rapport de sa stagiaire !

Ensuite, j'aimerais remercier ma famille, particulièrement mes parents, qui m'ont toujours soutenus durant ces 8 années d'études (et même avant, biensûr).

Et pour finir, je remercie tout particulièrement MarcO pour tout ce qu'il m'apporte et pour m'avoir soutenu ces dernières semaines!

Résumé

L'arc des Petites Antilles présente une large gamme de compositions des laves, allant de tholéitiques au nord, à calco-alcalines au centre et alcalines au sud. Des basaltes magnésiens (MgO > $9.0 \ \%$ pds), supposés représentatifs des magmas primaires, sont présents au sud de l'arc. Les études sur roches totales des éléments traces et de leurs rapports isotopiques ont montré une variation de l'influence des fluides issus de la plaque océanique subductée le long de l'arc mais également au sein d'une même île. Les contributions et la nature (fluide silicaté ou aqueux) des différents fluides sont encore débattues, ainsi que l'importance de la contamination crustale.

Les objectifs de cette thèse ont été d'apporter de nouvelles contraintes sur les conditions de genèse des magmas ainsi que sur l'influence et la nature des différents fluides issus de la plaque subductée sur la source mantellique. Pour cela, différentes mesures (teneurs en éléments légers et traces, δD , $\delta^7 Li$, $\delta^{11}B$, $\delta^{18}O$, $\delta^{34}S$) ont été entreprises dans des inclusions vitreuses piégées dans des olivines. L'étude de celles-ci permet un accès direct aux compositions des magmas primitifs, n'ayant encore pas subit de processus superficiels tels que les mélanges de magmas, la contamination crustale, la cristallisation fractionnée ou le dégazage.

Ce travail a constitué une base de données unique pour les Petites Antilles, enrichissant notamment les données disponibles pour cet arc en éléments légers et isotopes stables. Les échantillons utilisés sont des scories magnésiennes provenant de St. Vincent et Grenade, deux îles situées au sud de l'arc. Les olivines contenant les inclusions étudiées ont gardé leurs zonages, indiquant une remontée rapide du magma hôte, limitant ainsi les modifications post-piégeages que peuvent subir les inclusions. Les compositions en éléments majeurs de ces dernières sont proches de celles des roches totales, avec quelques exceptions pour St. Vincent. En effet, de nombreuses inclusions ont des compositions plus faibles en SiO₂, associées à des concentrations plus fortes en CaO et K₂O par rapport aux basaltes et basaltes magnésiens de cette île, reflétant l'interaction du magma avec des lithologies riches en amphiboles et clinopyroxènes.

La combinaison des mesures en éléments légers, traces et isotopes stables a permis de mettre en évidence l'influence de trois sortes de fluides sur les sources : 1- un fluide de compositions proche de celle de l'eau de mer, probablement relâché lors de la déshydratation du manteau serpentinisé entrainé en profondeur par le slab, 2- des fluides de déshydratation de la croûte océanique subductée et 3- des fluides issus de la déshydratation des sédiments. Ces fluides sont aqueux et montrent des concentrations différentes en éléments dissous, reflétant la profondeur à laquelle ils sont extraits. A Grenade, les fluides issus de la déshydratation des sédiments sont majoritairement riches en silicates et générés à fortes profondeurs (> 100 km), avec un comportement proche de ceux des magmas.

L'influence des fluides aqueux provenant de la croûte océanique et des serpentines semble similaire pour les deux îles, alors que la contribution de la déshydratation des sédiments serait plus importante à Grenade. L'ensemble des données révèle une genèse des magmas à plus forte profondeur et plus faible taux de fusion (7-15%) à Grenade, ceux de St. Vincent étant extraits vers 1190-1220°C, 13-14 kbar par 10-20% de fusion.

Abstract

The Lesser Antilles arc lavas display a large range of compositions, from tholeiitic in the north to calk-alkaline in the center and alkaline in the south. High magnesia basalts (MgO > 9.0 wt%), supposed to be representative of the primary magmas of erupted lavas, are present in the south of the arc. The trace elements compositions and their isotopic ratios measured in bulk rocks suggest a variable influence of fluids derived from the subducted oceanic lithosphere along the arc and within individual islands. The fluid contributions and their nature (silicate-rich or aqueous), are still a matter of debate, as is the role of the crustal contamination.

This PhD brings new constraints on magmagenesis conditions and on the influence and nature of fluids from the slab on the mantle source. Different analyses (light and trace elements, δD , $\delta^7 Li$, $\delta^{11}B$, $\delta^{18}O$, $\delta^{34}S$) have been performed on olivine-hosted melt inclusions. Their study gives a direct access to the primitive magma compositions as yet unaffected by superficial processes as magmas mixing, crustal contamination, fractional crystallization or degassing.

This study provides a unique database for the Lesser Antilles arc, increasing the published light elements and stable isotopes data for this arc. Samples used for this study are magnesia scoriae from St. Vincent and Grenada, two islands located in the south part of the arc. Host-olivines have preserved their zoning, suggesting a rapid transfer to the surface, thus limiting post-entrapment modifications that melt inclusion could undergo. Their major elements compositions are close to those of bulk rocks, with the exception of some St. Vincent melt inclusions having lower SiO₂ and higher CaO and K_2O than bulk basalts and high magnesia basalts. Their compositions are proposed to reflect magma interaction with amphibole and clinopyroxene-rich lithologies. The association of light and trace elements and stable isotope measurements permit three types of fluid components to be highlighted: 1- a seawater-like fluid, probably released by serpentinized mantle dehydration when it is pulled down by the slab, 2- fluids deriving from altered oceanic crust dehydration and 3- fluids issued from sediment dehydration. These aqueous fluids have different solute contents, reflecting their extraction depths. In Grenada, a part of fluids derived from sediment dehydration are silicate-rich, generated at depths (> 100 km) and behave as melts.

The influence of aqueous fluids from altered oceanic crust and serpentinized mantle is similar for the both islands, whereas the contribution of sediment dehydration is larger in Grenada. This dataset suggest a deeper genesis and lower partial melting rate (7-15%) for Grenada melts, St. Vincent melts being generated at 1190-1220°C, 13-14 kbar, from 10-20% partial melting.

Table des matières

INTRODUCTION GÉNÉRALE

1. Le volcanisme d'arc	1
2. Objectif de cette étude	3

CHAPITRE I: CONTEXTE GÉOLOGIQUE

I.1. La plaque Caraïbe	5
I.2. L'arc insulaire des Petites Antilles	6
I.3. St. Vincent	
I.4. Grenade	14
I.5. La Guadeloupe	19

CHAPITRE II: LES INCLUSIONS VITREUSES

II.1. Présentation des inclusions vitreuses	21
II.2. Représentativité des inclusions vitreuses	22
II.2.1. Taille des inclusions	22
II.2.2. Effet de la croissance de l'olivine	23
II.2.3. Modifications post-piégeage	24
II.2.4. Effet du temps de résidence de l'olivine dans le magma hôte	26
II.2.4.a. Perte en fer	26
II.2.4.b. Perte en eau	26
II.2.4.c. Ajout d'eau	27
II.2.4.d. Diffusion des éléments traces	27
II. 3. Correction de la cristallisation du minéral hôte aux bords de l'inclusi	on28
II.4. Descriptions des inclusions analysées	

CHAPITRE III: TECHNIQUES ANALYTIQUES

III.1 Préparation des échantillons	34
III.2. Micro-thermométrie optique	34
III.3. Analyses les éléments majeurs par microsonde électronique	35
III.3.1. Présentation et fonctionnement	35
III.3.2. Analyse des éléments majeurs.	37
III.4. Analyses des teneurs et isotopes des éléments légers : SIMS 1270	38
III.4.1. Principe de fonctionnement.	40

III	.4.2. 0	Conditions d'ana	alyses					40
III.5	Analy	ses d'éléments	traces, ter	re rare	s et δD: SIMS	S 3f	•••••	46
III	.5.1.A	nalyses des élé	ments trace	s et terr	es rares			46
III	.5.2. I	Détermination d	lu δD dans l	es inclu	<u>isions</u>		•••••	47
III.6.	Analy	ses des roches	totales et s	édimen	ıts	••••••		48
CHAPITRE	īV·	CARACTÉR	ISATION	DFS	MAGMAS	PRIMAIRES	DE	ST
CHAITRE	1	VINCENT		DES	MAGMAS		DE	51.

IV.1. Résumé étendu de l'article publié dans Journal of Petrology49
IV.2. Article publié dans Journal of Petrology58

CHAPITRE V: CARACTÉRISATION DES MAGMAS PRIMAIRES DE GRENADE

IV.1. Résumé étendu de l'article soumis à Earth and Planetary Science Letters.80		
IV.2. Article soumis à Earth and Planetary Science Letters	89	
Abstract	91	
1. Introduction	92	
2. Sample location and description	94	
3. Analytical methods	94	
4. Mineral chemistry	95	
5. Melt inclusions	96	
5.1. Major element chemistry	96	
5.2. SIMS data		
5.2.1. Volatiles and light element compositions		
5.2.2. Isotopic compositions	101	
6. Discussion		
6.1. Successive events of metasomatism of a MORB-type beneath Grenada	mantle source 103	
6.1.1. Metasomatised MORB-type mantle source		
6.1.2. Slab signatures of magmas		
6.2. Magma water variations		
6.3. Inference on melt extraction		
7. Conclusions	109	

CHAPITRE VI: COMPARAISON DES MAGMAS PRIMAIRES DE ST. VINCENT ET GRENADE ET COMPARAISON AVEC LES MAGMAS EVOLUÉS DE LA GUADELOUPE

VI.1. Résumé étendu de l'article en préparation pour Earth and Planetary Science Letters
VI.2. Article en préparation pour Earth and Planetary Science Letters116
Abstract118
1. Introduction119
2. Petrological and geochemical background121
2.1. Sampling121
2.2. Melt inclusions and their host olivines
2.2.1. Major elements121
2.2.2. Volatile, light elements and stable isotopes
3. Analytical methods123
4. Results
5. Discussion126
5.1. Selective enrichment vs. partial melting degree126
5.2. Slab influence: aqueous vs. silicate-rich fluids129
5.2.1. Aqueous fluid signature129
5.2.2. Solute-rich, High-T fluids component
6. Conclusions134
VI.3. Apports des compositions en éléments traces dans les olivines de St. Vincent et Grenade146
VI.4. Comparaison des inclusions de St. Vincent et Grenade avec les inclusions de l'éruption de 1530 A.D. de la Guadeloupe148
VI.4.1. Description des échantillons149
VI.4.2. Composition des minéraux hôtes150
VI.4.3. Composition des inclusions151
VI.4.3.1. Compositions en éléments majeurs151
VI.4.3.2. Composition en éléments légers et isotopes stables152
VI.4.4. Premières interprétations153

CONCLUSIONS GÉNÉRALES ET PERSPECTIVES

Conclusions Générales	155
Perspectives	159

Références bibliographiques	
Table des figures	175
Table des tableaux	

ANNEXES

- Annexe 1. Composition des laves et scories échantillonnées à St. Vincent et Grenade
- Annexe 2. Composition en éléments légers dans des sédiments et laves
- Annexe 3. Compositions en éléments majeurs des olivines de St. Vincent
- Annexe 4. Compositions en éléments majeurs des olivines de Grenade
- Annexe 5. Composition en éléments traces dans les olivines de Grenade
- Annexe 6. Composition en éléments traces dans les olivines de St. Vincent
- Annexe 7. Compositions en éléments majeurs des spinelles piégés dans les olivines de St. Vincent
- Annexe 8. Compositions en éléments majeurs des spinelles piégés dans les olivines de Grenade
- Annexe 9. Compositions en éléments majeurs des plagioclases et pyroxènes de la Guadeloupe
- Annexe 10. Compositions en éléments majeurs mesurées des inclusions de St. Vincent
- Annexe 11. Compositions en éléments majeurs corrigées de la cristallisation post-piégeage des inclusions de St. Vincent
- Annexe 12. Compositions en éléments majeurs mesurées des inclusions de Grenade
- Annexe 13. Compositions en éléments majeurs corrigées de la cristallisation post-piégeage des inclusions de Grenade
- Annexe 14. Compositions en éléments majeurs mesurées dans les inclusions de la Guadeloupe

Annexe 15. Modèle B vs. δ^{11} B

INTRODUCTION GÉNÉRALE

1. Le volcanisme d'arc.

Le volcanisme d'arc insulaire représente une part importante du magmatisme global sur Terre puisqu'il est le principal volcanisme après celui des rides médio-océaniques. Ce volcanisme joue un rôle majeur dans l'évolution de la Terre, car comme les zones de subduction sont les uniques sites de recyclage des matériaux crustaux dans le manteau, les volcans d'arc sont les sites de transfert de matériaux du manteau vers les continents, générant les croûtes continentales. Il a aussi un impact sociétal important, en générant des aléas majeurs, volcaniques et sismiques, dans des régions de plus en plus peuplées.

Les éléments et espèces volatils subductés, en particulier l'eau, influencent fortement ces transferts, en modifiant les propriétés rhéologiques du manteau, les dynamismes éruptifs et l'explosivité des éruptions. Les fluides libérés lors des changements métamorphiques subis par la plaque océanique subductée (aussi appelée slab) jouent en effet un rôle important dans la genèse des magmas. L'apport d'eau modifie les conditions d'extraction des magmas: un magma sera généré à plus forte pression mais plus faible température en condition hydratée qu'en condition anhydre (Pichavant et al., 2002; 2007). Certains auteurs (Peacock, 1990; Bebout et Barton, 1993) proposent un apport massif d'eau dans le manteau entourant la plaque subductée entre 60 et 120 km, correspondant en partie à la déstabilisation de l'amphibole entre 70-80 km (Tatsumi, 1989), alors que Philippot (1993) suggère que la majorité de l'eau soit relâchée entre 0 et 50 km, une faible fraction seulement (10%) étant transférée dans le manteau via des fluides silicatés ou magmas.

Bien que le magmatisme d'arc représente une part importante du volcanisme sur Terre, de nombreuses questions restent ouvertes sur les fluides qui y sont associés. Cette méconnaissance du rôle des fluides à plusieurs explications. Les expérimentations pour déterminer des conditions P-T précises de genèse des magmas nécessitent une bonne connaissance des teneurs en volatils dissous dans les magmas primaires, difficiles à déterminer car subissant des phénomènes de dégazage superficiel. De plus, la caractérisation de la nature et de l'influence des fluides nécessite d'obtenir des mesures complémentaires afin d'avoir une vision de l'ensemble des processus affectant les magmas. La majorité des magmas émis en surface sont différenciés, donc potentiellement affectés par les mélanges de magmas et/ou la contamination crustale, rendant difficile l'accès à la composition des magmas primaires, nécessaire pour des bilans de masses. De façon générale, une connaissance approfondie de ces compositions permettrait de comprendre le rôle des composants du slab (croûte océanique altérée et sédiments subductés) dans l'hétérogénéité mantellique observée dans les laves de points chauds ou de rides médio-océaniques. Cela permettrait également d'apporter de nouvelles contraintes sur le comportement de certains éléments et isotopes, tel que le Li, lors du métamorphisme et la déshydratation.

L'effet des fluides de déshydratation du slab sur le manteau est visible notamment sur la composition des roches totales. Comparées aux MORB (basaltes de ride médio-océanique), les laves d'arc sont appauvries en éléments à petit rayon ionique et forte charge (HFSE: Ti, Zr, Nb, Nd, T, U) par rapport aux éléments traces à fort rayon ionique (LILE, tels que K, Sr, Cs, Ba) et terres rares. Cette signature particulière est expliquée par la fusion d'un manteau de type MORB enrichi en LILE comparé aux HFSE, en équilibre avec des agents métasomatiques issus du slab (Gill, 1980; Kelement et al., 1993; Hawkesworth et al., 1993). La nature des fluides relâchés par le slab ainsi que leurs modes de transport restent incertains. Plusieurs modes de transport sont envisagés: flux diapirique d'un composant aqueux ou magmatique, flux poreux magmatique ou encore propagation de magma par des failles (Gaetani et Grove, 2007). Ces fluides pourraient être des magmas silicatés hydratés (Green and Ringwood, 1968) ou des fluides aqueux (Tatsumi et al., 1986). Une hypothèse plus récente propose l'existence de fluides riches en solutés, concentrés en silice et éléments alcalins du fait de l'augmentation de leur solubilité avec l'augmentation de la pression et de la température (Massare, 1992; Philippot, 1996; Kessel et al., 2005; Hermann et al., 2006). D'après ces auteurs, de tels fluides, aussi appelés fluides supercritiques (Kessel et al., 2005), auraient un comportement proche de celui des magmas. La déstabilisation de certains minéraux hydratés et riches en éléments traces, comme les épidotes, stables jusqu'à 300 km de profondeur pourraient engendrer de tels fluides (Schmidt, 1996).

Afin de déterminer la contribution du matériel transporté dans les zones de subduction sur la composition du manteau, les concentrations et rapports isotopiques en éléments mineurs et traces ont été déterminés dans les laves, roches basaltiques altérées et sédiments (par exemple: Plank et Langmuir, 1993; Leeman et al., 1994; Ryan et al., 1995, Carpentier et al., 2008, Labanieh, thèse en cours). Les enrichissements en Ba et Pb représentent l'influence des fluides aqueux, alors que les magmas (ou fluides supercritiques) sont enrichis en Nb, Ta, Th, U (Langmuir, 1994). Cependant, il reste difficile de contraindre les quantités de fluides influençant la source, du fait de la forte variabilité des concentrations de ces éléments dans les différentes lithologies, et du fait de notre connaissance imprécise de leurs coefficients de partage entre minéraux, magmas et fluides aqueux (Plank et Langmuir, 1998; Brenan et al., 1995). L'étude des isotopes stables peut être complémentaire aux mesures d'éléments traces, car ils sont peu affectés par les processus magmatiques tel que la cristallisation fractionnée, mais sont cependant largement affectés par les processus d'altération superficielle (Eiler et al., 1996; Elliott, 2004). Leurs variations de compositions observées dans les magmas primaires reflètent donc essentiellement les fluides influençant la source. Cependant, les compositions isotopiques en δ^{18} O et δ^{7} Li tracent seulement le slab façon générale (Elliott, 2004). En effet, pour ces systèmes isotopiques, la croûte océanique altérée et les sédiments ont des compositions similaires différentes de celle du manteau. Par exemple, les compositions en δ^{18} O des MORB sont estimées à +5.5 ± 0.2 ‰ (Mattey et al., 1994), alors que la croûte océanique supérieure et les sédiments ont des compositions en δ^{18} O variant entre +10 et +20‰ et entre +10 et +35‰, respectivement (Staudigel et al., 1995; Arthur et al., 1983; Kolodny et Epstein, 1976). En revanche, l'analyse des compositions en δ^{11} B permet de distinguer l'influence des sédiments et de la croûte océanique, car leurs signatures sont distinctes: ~-5% pour le manteau (Chaussidon and Libourel, 1993; Chaussidon and Jambon, 1994), 6 à 10 ‰ pour l'AOC (Chaussidon and Jambon, 1994; Chaussidon and Libourel, 1993; Spivack and Edmond, 1987) et ~ -10‰ pour les sédiments terrigènes (Smith et al., 1997). Les compositions en δ^{18} O sont supposées être préservées jusqu'à des dizaines de kilomètres de profondeur lors de la subduction (Bebout et Barton, 1989) et même lors du transport dans le manteau via les fluides aqueux ou silicatés (Eiler et al., 1998). Il est donc possible de

déterminer quantité de fluides grâce à ce système isotopique. Les isotopes du B et Li quant à eux fractionnent lors de la déshydratation. De récents modèles montrent l'évolution des compositions élémentaires et isotopiques de Li et B lors de la déshydratation. Le comportement du B permet une quantification du degré de déshydratation et de la quantité de fluides issus de différentes lithologies (Rose et al., 2001; Marshall et al., 2006), alors que celui du Li reste débattu (Zack et al., 2003; Marshall et al., 2007).

2. Objectif de cette étude.

La partie méridionale de l'arc antillais, à partir de Porto Rico, forme les Petites Antilles, dont la partie Sud est située en bordure de la plaque continentale Sud Amérique. Une caractéristique importante des Petites Antilles est la présence au sud de l'arc de basaltes hautement magnésiens (MgO > 10.0 % pds), supposés représentatifs des magmas primaires des laves émises en surface (Macdonald et al., 2000). De telles laves sont relativement rares en contexte de subduction, où elles subissent en général de nombreux processus modifiant leur composition chimique vers des termes plus évolués. Les études sur roches totales et sur minéraux, basées sur l'analyse des éléments majeurs, traces, des isotopes radiogéniques du Sr, Nd et Pb et des isotopes de l'oxygène (par exemple: Thirlwall and Graham, 1984; White et al., 1986; Thirlwall et al., 1996, Turner et al., 1996, Labanieh et al., thèse en cours), ainsi que quelques études d'isotopes cosmogéniques (³He/⁴He, Van Soest et al., 1998; 2002) et stables (δ^7 Li, δ^{11} B, Smith et al., 1997; Gurenko et al., 2005), ont montré l'influence des sédiments et de la croûte océanique altérée, avec une contribution des sédiments augmentant vers le sud de l'arc. L'influence de ces deux contributions sur la source mantellique est encore débattue, tout comme l'importance de la contamination crustale.

Cette étude a pour but d'apporter de nouvelles contraintes sur les conditions de magmagenèse ainsi que sur l'influence et la nature des différents fluides issus de la plaque subductée sur la source des magmas émis sur ces deux îles. Pour cela, les compositions chimiques et isotopiques des magmas primaires des Petites Antilles ont été déterminées grâce à l'étude d'échantillons magnésiens (MgO >9.0 % pds) provenant de St. Vincent et de Grenade, situées au sud de l'arc. Les mesures effectuées dans le cadre de cette étude sont focalisées sur les inclusions vitreuses piégées dans des olivines. La cristallisation précoce de ces minéraux au cours de l'évolution magmatique induit le piégeage d'un magma le plus primaire possible. Les olivines ont été triées dans des scories, matériel trempé où les inclusions sont souvent préservées à l'état vitreux, permettant l'analyse des concentrations en éléments volatils. Cette thèse étant financée par un programme français (chantier INSU DyETI, et programme ANR Subduction Factory), une dernière partie de ce travail a été consacrée à la caractérisation des magmas évolués de la Guadeloupe.

Les inclusions ont tout d'abord été caractérisées en éléments majeurs, ainsi que leurs olivines hôtes, afin de s'assurer de leur caractère primitif. Ensuite, les concentrations en H₂O, Li, B, F, S, Cl, δ^7 Li, δ^{11} B, δ^{18} O et δ^{34} S ont été mesurées par sonde ionique CAMECA IMS 1270 et les compositions en éléments traces et δ D par CAMECA IMS 3f. Tous ces éléments ont été choisis car ils apportent des informations complémentaires: certains tracent

efficacement les fluides aqueux, d'autres les fluides silicatés ou encore les taux de fusion et les volatils permettent de contraindre des conditions de genèse des magmas.

Le premier chapitre de cette thèse est consacré à la présentation de l'arc des Petites Antilles dans son ensemble puis, plus précisément, les îles de St. Vincent, Grenade et de la Guadeloupe. Le second chapitre présente les inclusions vitreuses, leur représentativité et les modifications post-piégeages. Le troisième chapitre commence par la préparation des échantillons, puis présente les méthodes utilisées : la micro-thermométrie optique, la microsonde électronique et les sondes ioniques IMS 1270 et IMS 3f. Les chapitres quatre et cinq sont constitués d'un résumé étendu et des articles présentant les résultats obtenus sur les échantillons de St. Vincent et Grenade respectivement. Le sixième chapitre présente l'article en préparation avec les données des éléments traces sur les deux îles étudiées. Ce dernier chapitre comprend également une brève description des compositions en éléments traces des olivines de St. Vincent et Grenade, ainsi que les premiers résultats obtenus sur des inclusions piégées dans des plagioclases et pyroxènes de deux échantillons de l'éruption de 1530 A.D. de La Guadeloupe. Ce manuscrit se termine par une synthèse des principaux apports de cette étude et ouvre sur des perspectives de travail.

En annexe, sont jointes les analyses de roches totales de laves et scories de St. Vincent et Grenade, effectuées au SARM et les données S, Cl, F, B analysées pour quelques couches sédimentaires des différents Leg des Petites Antilles. Les compositions en éléments majeurs des olivines et spinelles de St. Vincent et Grenade, ainsi que les compositions des plagioclases et pyroxène des échantillons de la Guadeloupe sont également jointes. Enfin, cinq autres annexes présentes les compositions inclusions de ces trois sites, en incluant les données corrigées de la cristallisation d'olivine aux parois des inclusions de Grenade et St. Vincent.

CHAPITRE I:

CONTEXTE GÉOLOGIQUE

I.1. La plaque Caraïbe:

La plaque Caraïbe est délimitée par 1) l'arc des Grandes Antilles au Nord, 2) l'arc des Petites Antilles à l'Est, 3) la subduction de la plaque Coco à l'Ouest, et 4) les failles transformantes El Pilar et Oca au Sud. L'origine de la plaque Caraïbe est encore discutée. Il existe deux théories (Fig. I.1):

Fig. I.1: Schémas illustrant les deux hypothèses sur l'origine de la plaque Caraïbe (D'après James, 2006). A: origine Pacifique, la plaque serait formée par l'action du point chaud des Galápagos et aurait migré jusqu'à son emplacement actuel. B: origine intra-américaine, par fusion par décompression.

- modèle d'une origine Pacifique:

La plaque Caraïbe aurait migré depuis l'océan Pacifique vers l'ouest, à la fin du Jurassique début Crétacé. Entre la fin du Campanien et la fin de l'Eocène, la plaque Caraïbe serait insérée entre les plaques Nord et Sud Américaines, où se développe un rifting et un magmatisme tholéïtique (Pindell et Barrett, 1990). Ce modèle suppose de grands déplacements et de fortes rotations de la plaque Caraïbe (Giunta et al., 2006).

Certains auteurs proposent que cette plaque soit devenue un plateau océanique par l'action du point chaud des Galápagos il y a 90-75 Ma (Pindell et Barrett, 1990, Duncan et Hargraves, 1984, Kerr et Tarney, 2005), d'autres encore suggèrent l'action de deux points chauds (Sala y Gomez et Galápagos). La première hypothèse (Galápagos) est actuellement la plus reconnue pour ce modèle.

- modèle d'une origine américaine:

James (2002, 2003, 2006), en reconstruisant théoriquement la Pangée, n'a trouvé aucun signe de rotations à grandes échelles pouvant prouver le modèle précédant. Il suggère que la plaque Caraïbe se serait formée le long du golfe du Mexique, du bassin du Yucatan et de la fosse des Caïmans, alors que l'Amérique du Nord se déplaçait vers le Nord-Ouest à la fin du Jurassique début Crétacé. L'épaississement de la plaque Caraïbe aurait eu lieu aux environs de l'actuel Venezuela par fusion par décompression, entre 90 et 75 Ma.

I.2. L'arc insulaire des Petites Antilles

L'arc antillais (Fig.I.2) forme une chaîne de 850 km de long, avec un large rayon de courbure (450 km). Cet arc volcanique résulte de la subduction de la plaque Atlantique vers l'ouest, sous la plaque Caraïbe, à une vitesse relativement faible de 2 cm/an (Minster et Jordan (1978). L'âge de la croûte océanique actuellement subductée varie entre 83 et 105 Ma du nord au sud (Carpentier et al., 2008).

Fig. I.2: Présentation de l'arc des Petites Antilles (Feuillet, 2000).

L'arc des Petites Antilles est composé de 2 parties (Fig.I.3):

Fig. I.3: Schémas de l'arc des Petites Antilles, modifiés d'après Poussineau (2005). A) Schéma montrant le positionnement des îles de l'arc interne volcanique et de l'arc externe sédimentaire, ainsi que les centres volcaniques principaux. B) Schéma indiquant les profondeurs du plan de Bénioff sous les différents segments de l'arc interne. La partie hachurée représente la partie verticale de la zone sud sous la croûte continentale Vénézuélienne (d'après Wadge et Sheperd, 1984).

- l'arc ancien (ou arc externe) passant notamment par Sombrero, St. Barthélemy, Antigua, La Désirade et les Marie-Galantes. L'activité de cet arc volcanique débute par un volcanisme sous-marin vers 50Ma (Eocène inférieur), puis devient aérien à l'Oligocène pour s'éteindre à la fin Oligocène, donnant naissance à des formations récifales (dépôts de tufs, calcaires) datées de l'Oligocène supérieur au Miocène inférieur (Westercamp, 1988). Après le Miocène inférieur, l'activité de l'arc des Petites Antilles semble s'être arrêtée entre 28-26 Ma et 20-18Ma (Westercamp, 1988). Ce hiatus dans l'activité volcanique pourrait refléter la propagation des rides transformantes océaniques atlantiques devant la zone de subduction (Bouysse et Westercamp, 1990).

- l'arc actuel commence à se développer à la reprise de l'activité volcanique, il y a 18 à 20 Ma (Gstalter, 1984). Ce volcanisme récent se situe dans une bande étroite de 10km de large,

le long de 2 segments d'orientation différentes. En effet, Sheperd et al. (1984) ont également montré que l'arc est divisé en un premier segment au Nord de la Martinique, de direction 330°, avec un plan de Benioff penté à 50-60° W-SW, et un deuxième segment, au sud, de direction 020°, avec un pendage de 45-50° W-NW dans la partie Nord de ce segment, et un pendage vertical dans la partie sud (Fig.I.3b).

L'arc des Petites Antilles se trouve dans un contexte particulier: il se situe en bordure d'une plaque continentale: la plaque Sud Amérique, dont l'érosion a donné naissance à un important prisme d'accrétion au sud de l'arc, pouvant atteindre jusqu'à 20 km d'épaisseur sous l'île de la Barbade (Westbrook, 1975). Les sédiments composant ce prisme sont charriés par l'Amazone et l'Orénoque (Burke, 1988). Une récente étude (Carpentier et al., 2008) a montré que le prisme est essentiellement constitué de carbonates, ainsi que de black shales et sables à zircons (DSDP Site 144, situé sur le plateau de Demerara, Fig. 4). Plus au Nord de l'arc, l'épaisseur des sédiments est réduite, et ceux-ci sont principalement composés de sédiments pélagiques (boues argileuses à radiolarites et boues argileuses cendreuses, DSDP Site 543, situé à la latitude de La Dominique, Fig. I.4).

Fig. I.4: Carte bathymétrique des Petites Antilles (Carpentier et al., 2008). Les âges de la croûte océanique actuellement subductée sont reportés, ainsi que les anomalie magnétiques, les zones de fractures (Speed et al., 1984) et enfin, la positions des deux sites DSDP 543 et 144 d'ou proviennent les sédiments étudiés par Carpentier et al. (2008).

Les différentes études sur les laves des Petites Antilles ont récemment été résumées par Macdonald et al. (2000). Les laves sont majoritairement de compositions évoluées, allant

d'andésites à dacites. Cependant, quelques laves magnésiennes, peu communes en contexte d'arc insulaire, sont présentes au sud de l'arc. La présence du prisme d'accrétion au sud de l'arc induit une zonalité chimique Nord-Sud des laves, allant de tholéitiques au Nord, calcoalcalines au centre et alcalines au sud. L'influence variable des sédiments est mise en évidence par l'augmentation des rapports isotopiques de Sr et Pb associée à la diminution du ratio Nd sur du Nord au Sud, ou encore par les variations des rapports K/Ta et Ba/Th (Fig. I.5): les îles du Nord ont des rapports Ba/Th et K/Ta plus élevés et des ⁸⁷Sr/⁸⁶Sr plus faibles que les îles du sud, impliquant une plus grande contribution de fluides aqueux au Nord de l'arc. Indépendamment de la zonalité chimique N-S, les laves des Petites Antilles peuvent être divisées en séries faiblement calcique (St. Vincent, Grenade M-série, Martinique, Saba, Montserrat) ou fortement calcique (Grenade C-série, Guadeloupe, St-Eustatius, St. Christophe, Redonda, La Dominique et Bequia). Elles peuvent aussi être subdivisées en de nombreux sous-groupes, selon leurs caractéristiques isotopiques ou teneurs en éléments traces, telles que les laves fortement ou faiblement potassiques. La composition et l'évolution des laves varient d'une île à l'autre mais également au sein d'un même centre volcanique, indiquant un manteau hétérogène et une variation des processus contrôlant la composition des magmas à petite échelle. Toutes les laves sont enrichies en terres rares légères (LREE), allant de paire avec un enrichissement en Ba, K₂O, Sr, Nb, Th et Zr, indiquant l'influence de la lithosphère subductée sur la source mantellique. Van Soest et al. (1998) expliquent la présence d'un composant très radiogénique en ²⁰⁶Pb/²⁰⁴Pb, associé à des rapports ⁸⁷Sr/⁸⁶Sr entre 0.703970 et 0.705463 ainsi que des ${}^{3}\text{He}/{}^{4}\text{He}_{(\text{olivines})}$ de 3.6 à 7.6 R_A et $\delta^{18}O_{(\text{olivines})}$ de 4.74 à 5.76 ‰ dans les îles du sud de l'arc par la présence de matériel sédimentaire de l'ancien avant-arc Aves, incorporé dans la croûte de l'arc. White et Dupré (1986) ainsi que Turner et al. (1996) proposent quant à eux l'influence variable (0.2-3%, ~2-15%, respectivement) des sédiments provenant du bouclier guyanais sur la source mantellique.

Fig. I.5: Variation des isotopes du Sr en fonction des rapports **a**) K/Ta et **b**) Ba/Th des laves de l'arc volcanique des Petites Antilles (Turner et al., 1996). La diversité géochimique des laves du nord au sud de l'arc est très bien

illustrée sur ces deux diagrammes. Notamment, le diagramme **b**) montre une influence variable du slab: les îles du Sud de l'arc (Grenade et les Grenadines) ont une très forte composante sédimentaire, reflétée par de forts ⁸⁷Sr/⁸⁶Sr, alors que la majorité des îles du Nord ont une influence plus marquée des fluides issus de la déshydratation de la plaque plongeante, signée par les forts Ba/Th et K/Ta.

Le taux de fusion partielle serait relativement constant le long de l'arc, variant de 10 à 15% (Turner et al., 1996), avec par exemple 14-15% de fusion partielle à St. Vincent (Heath et al., 1998; Pichavant et al., 2002), ou encore jusqu'à 17% de fusion partielle a Grenade (Shimizu et Arculus, 1975).

Bien que les laves évoluées dominent dans l'arc antillais, les picrites et basaltes riches en MgO (HMB, MgO= 10 à 15%) sont présents au Sud de l'arc. L'étude de ces laves magnésiennes suggèrent que les magmas primaires des Petites Antilles seraient générés dans un manteau de type MORB (basalte de ride médio-océanique), métasomatisé par l'ajout de fluides dérivés de la croûte océanique basaltique altérée et de la fusion des sédiments terrigènes subductés (Fig.I.6). La proportion de chaque composant dans les différentes laves est encore source de débats, comme le rôle de la contamination crustale sur les compositions en éléments traces et isotopiques mesurées. Il semblerait que l'importance des sédiments (fluides silicatés ou aqueux) soit plus importante dans la source des laves de Grenade, alors les sources des laves des îles situées au nord de l'arc (et celles faibles en K₂O) auraient une contribution plus importante de phases aqueuses issues de la croûte océanique altérée subductée (White et al., 1986; Turner et al., 1996 ; Macdonald et al., 2000).

Fig. I.6: Variation du rapport ⁸⁷Sr/⁸⁶Sr vs MgO. Ce graphe montre l'influence de différents composants sur la composition des magmas. S.C : Subduction Component ; F.C. : Fractional Crystallisation ; C.C. : Continental Crust. D'après MacDonald et al., 2000.

Les travaux expérimentaux de Pichavant et al. (2002) et Pichavant et MacDonald (2003) sur des basaltes primitifs riches en MgO provenant de St. Vincent ont montré que les basaltes primaires des Petites Antilles pouvaient être issus de l'extraction d'un liquide basaltique contenant ~2 wt% H₂O, à ~1230°C et à ~13 kbar. Cependant, les conditions d'extraction dépendent fortement de la teneur en eau du manteau, conditionnant à la fois la température et la pression de fusion. Les magmas primaires pourraient contenir jusqu'à 5 pds% H₂O, mais seuls les magmas les moins hydratés atteignent la surface, les autres cristallisent lors de la remontée et font éruption en surface avec des compositions plus évoluées.

Les variations de composition dans les suites magmatiques sont le résultat principalement de cristallisation fractionnée, accompagnée, en particulier dans les îles centrales, par de la contamination crustale, et par des mélanges mineurs de magmas (Van Soest et al., 2000;Thirlwall et al., 1994; 1996, Macdonald et al., 2000).

I.3. St. Vincent:

St. Vincent (Fig. I.7) est situé dans la partie sud de l'arc. La partie Nord de l'île est composée d'un stratovolcan actif, la Soufrière dont l'activité, caractérisée par l'extrusion de dômes de laves andésites basaltiques, aurait débuté il y a 0.6 Ma (Briden et al., 1979). Cependant, les âges des laves de St. Vincent sont relativement mal contraints, mais on estime qu'elles ont été mises en place entre le Pliocène, la lave la plus ancienne aurait 2.5 Ma (Briden et al., 1979), à l'actuel, la dernière éruption de la Soufrière datant de 1979. Les 6 autres centres volcaniques présents sur l'île (Richmond peak, Mt. Brisbane, Hermitage Mt., Grand et Petit Bonhomme, Mt. St. Andrew) sont éteints. St. Vincent est l'une des seules îles de l'arc des Petites Antilles, avec Grenade et les Grenadines, connue pour ses basaltes magnésiens sous-saturées en silice (par exemple : les laves de Black Point ont des teneurs en MgO de 12.5 wt%). Ces basaltes riches en MgO sont essentiellement associés au volcanisme ancien (0.6 Ma-10 ka) mais aussi décrits dans les produits récents (3600-4500 ans) de la formation pyroclastique des tufs jaunes qui, du fait de son volume (estimé à 0.48 km³), a recouvert une partie de l'île (Yellow Tuffs, Heath et al., 1998). Les produits plus évolués, comme les andésites sont également présents.

Les laves andésitiques de la Soufrière ont été étudiées en détail et sont interprétées comme dérivées des magmas basaltiques riches en MgO, voir des magmas picritiques, par cristallisation fractionnée dans un domaine de pression de 3 à 17 kbar (Heath et al., 1998).

Replacé dans le contexte géochimique des Petites Antilles, les laves de St. Vincent pourraient représenter une transition entre les suites magmatiques des îles centrales (calcoalcalines) et celles du sud (alcalines) selon Brown et al. (1977), ou encore une transition entre des laves tholéitiques et des laves calco-alcalines (Thirlwall et al., 1994). Smith et al. (1996) quant à eux considèrent les laves de St. Vincent comme tholéitiques.

Les travaux expérimentaux de Pichavant et al. (2002) sur un échantillon de basaltes magnésiens (St 301, Black Point), considéré comme représentatif des magmas les plus primaires de St. Vincent, démontrent l'influence de la teneur en eau sur les conditions d'extraction des magmas (Fig. I.8). La composition des basaltes magnésiens de St. Vincent suggèrent une teneur en eau de ~2% dans les magmas primaires générés à 1230°C, 13kbar.

Cependant, des liquides basaltiques (MgO > 10.0 % pds) plus hydratés (contenant jusqu'à 5% d'eau) impliquerait une fusion à plus faible température (~1170°C) et plus forte pression (~16 kbar, Fig. I.8). Ces magmas vont cristalliser en profondeur et ont peu de chance d'être émis directement en surface.

Fig. I.7: Schéma de l'île de St. Vincent. Le massif volcanique actif de la Soufrière est situé au nord de l'île et représenté en marron, les autres centres volcaniques, en bleus, sont éteints. Sont également représentés les sites d'échantillonnage des laves. 3-4 : route de Troumaka ; 6-11 : Belleisle; Jack Hills; 12: Mt. Coke; 19:Jumby Point ; 20: Ribishi Point; 24: Argyle.

Les magmas primitifs de St. Vincent seraient donc issus de la fusion de lherzolites mantelliques à spinelles dans des conditions relativement sèches (Pichavant et Macdonald, 2003) et moyennement oxydantes (FMQ +1.5 $< fO_2 <$ FMQ +1.8, Heath et al., 1998). Ces magmas se caractériseraient par une composition géochimique de MORB métasomatisé avec des fluides issus de la déshydratation de la lithosphère océanique subductée. Le degré de fusion partielle est estimé autours de 14%-15% (Heath et al., 1998 ; Pichavant et al., 2002). Les températures de cristallisation pour les basaltes de Yellow Tuff et Pre-Somma ont été estimées à 1026-1130°C (Heath et al., 1998), calculées avec le thermomètre olivine-spinelle de Ballhaus et al. (1991), en accord avec des travaux plus récents proposant 1060-1160°C pour la cristallisation des phénocristaux les plus primitifs (olivines Fo_{89.6}, clinopyroxènes riches en Mg, Al et Ti, et spinelles riches en Cr et Al ; Pichavant et al., 2007). La différenciation des magmas primitifs riches en magnésium (HMB) est contrôlée par le

fractionnement de ces assemblages de phénocristaux. 30 à 40% de cristallisation d'un tel assemblage laisse un résidu magmatique dont l'évolution mènera aux basaltes alumineux (HAB). Ces magmas pourraient contenir jusqu'à 7-8 pds% H_2O .

Fig. I.8: Diagramme montrant les conditions pression-température pour différents basaltes magnésiens et picrites d'arc contenant entre 10 et 13% pds MgO (Pichavant et al., 2002). La courbe en pointillés gras montre les conditions P-T-H₂O des magmas issus de STV301 (12.5 % pds MgO) dans les conditions d'équilibre avec une source mantellique de type lherzolite à spinelle. A et B sont deux exemples de P-T-H₂O dans les conditions de dernière équilibration/extraction des magmas. Les chemins de remontée adiabatique sont calculés d'après ces 2 points. Ce diagramme illustre la relation entre la teneur en eau dissoute dans les magmas primaires et leurs conditions d'extraction. Plus le magma est riche en eau, plus il sera extrait à forte pression et faible température.

Fig. I.9: Photographie de l'affleurement de la formation de Yellow tuff.

Fig. I.10: Photographie du niveau de scories échantillonné sur la route de Troumaka.

Une campagne de terrain effectuée au printemps 2005 a permis d'échantillonner différentes laves de St. Vincent, dont la plupart des sites sont reportés sur la Fig. 7. Un des objectifs de cette campagne était de récolter des scories magnésiennes contenant des olivines ayant piégées des inclusions vitreuses de tailles suffisamment importante pour être analysées. Sur l'ensemble des échantillons collectés (Fig. I.9-10), seul un, SVN4b, échantillonné sur la route de Troumaka, convenait pour l'étude des inclusions (Fig. I.10). Cet échantillon fait probablement partie de la formation de Yellow Tuff (Fig. I.9), décrite par Heath et al. (1998).

I.4. Grenade:

Grenade, île la plus septentrionale de l'arc des Petites Antilles, se situe dans un contexte géodynamique particulier. En effet, sa proximité avec la faille transformante El Pilar (Fig. I.11) délimitant le sud de la plaque Caraïbe induit une vitesse du coin mantellique quasiment nulle, suggérant une empreinte plus marquée des fluides du slab. Defant et al. (2000) montrent que la plaque océanique subductée se verticalise et se réchauffe au contact de la lithosphère continentale sud-américaine. Ces auteurs suggèrent également la fusion du slab, donnant naissance à des adakites.

L'île de Grenade présente cinq centres volcaniques majeurs (les Dômes Nord, le centre sud-est, Mt. Maitlet, Mt Granby- Fedon's Camp, Mt. Ste Catherine, et les cratères d'explosion près de St-Georges, Grand Etang, Lake Antoine, the Punchbowl, Green Islet et île de Caille) ayant émis à la fois des basanitoïdes et des basaltes alcalins sous-saturés en silice, mais aussi des laves allant de sub- alcalines à andésites, dacites (Arculus, 1976). Sur les roches émises à Grenade, 38% sont des andésites, 24% des basaltes alcalins, 17% sont des dacites, 16% des basaltes sub-alcalins, et 5% sont des basanitoïdes (Arculus, 1976).

Ces cinq centres volcaniques sont supposés avoir été actifs du Miocène à l'Holocène, cependant, les âges sont très mal contraints (Briden et al., 1979; Speed et al., 1993), contrairement aux âges des îles de La Guadeloupe et de la Martinique (Samper et al., 2007; Germa et al., en préparation). Le volume de laves émises est considérablement plus faible à Grenade comparé aux autres îles de l'arc.

Fig. I.11: Schéma simplifié de l'île de Grenade, modifié d'après Arculus (1973) et Devine (1995). Les cinq centres volcaniques sont représentés en vert, la carrière de Queen's Park d'où proviennent les échantillons est indiquée par une étoile noire, et la capitale, St. George, par un point noir. Quelques autres sites d'échantillonnage ont été représentés par des cercles vides. Enfin, la faille majeure traversant l'île est représenté par un trait noir.

Deux sortes de magmas sont décrits à Grenade, d'après leur composition en éléments majeurs (Arculus, 1978 ; Hawkesworth et al., 1979 ; Thirlwall et Graham, 1984):

- les laves riches en MgO (M-série), sont considérées comme représentatives des magmas primaires et dérivées d'un précurseur picritique généré à haute pression;

- les laves riches en CaO à mégacristaux de pyroxènes (C-série) sont interprétées par certains auteurs comme les produits d'évolution des magmas appartenant à la M-série par cristallisation fractionnée d'augite et plagioclase (Devine, 1995) et assimilation de sédiments. Thirlwall et al. (1984) proposent que la source de ces laves diffère de celle des M-serie par des contributions différentes des fluides issus de la plaque océanique subductée. Elle serait par exemple enrichie ⁸⁷Sr et autres éléments hydrophiles. D'autres auteurs ont récemment proposé que les laves riches en CaO dérivent de magmas sous-saturés en SiO₂, similaires aux magmas des M-Serie, qui auraient interagis avec les cumulas mantelliques métasomatisés et précédemment appauvris par fusion, comme les wherlites (Vannucci et al., 2007).

Toutes les laves de Grenade seraient issues de l'évolution magmatique par cristallisation fractionnée d'une picrite à 15% de MgO (Thirwall et al., 1996) issue de la fusion d'une source mantellique à grenat. La présence de grenat dans la source pourrait expliquer l'enrichissement des laves en terres rares lourdes (8 à 12 fois) comparées aux chondrites (Shimizu et Arculus, 1975). Toutes les laves sont enrichies en Ba, Nb et Sr, d'un facteur allant jusqu'à 4 dans les laves basaltiques, comparées aux MORB. Les terres rares sont toutes enrichies comparées aux chondrites, et extrêmement variables (enrichissement en terres rares légères d'un facteur 17 à 92), ce qui pourrait être expliqué par la fusion de source différentes et/ou des taux de fusions variables (Shimizu et Arculus, 1975).

En plus de la division des laves de Grenade sur la base des éléments majeurs, Thirlwall et al. (1996) définissent des sous-groupes, en fonction de leur variabilité en éléments traces: M-série avec de forts La/Y (La/Y>0.7), M-série avec de faibles La/Y (<0.7), M-C série de transition, C-série avec un lien directe avec M-Série, andésites riches en SiO₂. Ces mêmes auteurs ont défini trois composants influençant la composition de la source mantellique, pouvant expliquer ces variations:

* une composante avec de forts ¹⁴³Nd/¹⁴⁴Nd, reflétant l'influence des fluides aqueux issus de la déshydratation de la croûte océanique subductée,

* une composante avec de faibles ¹⁴³Nd/¹⁴⁴Nd suggérant l'influence des sédiments subductés, * une composante avec de forts ²⁰⁶Pb/²⁰⁴Pb, reflétant une possible contamination crustale des magmas lors de leur remontée vers la surface.

La complexité des laves de Grenade seraient expliquées par 3 points (Thirlwall et al., 1996) :

- une variation de la quantité de fluides aqueux présents dans la source mantellique (en accord avec Devine, 1995). Cette proportion augmenterait des laves magnesiennes (M-Série) aux laves calciques (C-Série).

- une variation des sédiments présents dans la source: ~0.2% pour la C-Série, ~0.4% pour la M-Série, ~2% pour la source picritique. Cette proportion de sédiments est relativement faible, comme suggéré par les études des isotopes du Sr (ratios de 0.704030 à 0.70501 pour les basanitoides; Arculus, 1976), impliquant une faible influence de la fusion de sédiments.

- une variation de la fraction de magma extraite, c'est-à-dire, une variation du taux de fusion partielle, estimée entre 10 et 30% (Devine, 1995) ou encore de 2 à 17% (Shimizu et Arculus, 1975).

Selon Devine (1995) les laves basaltiques à andésitiques de la M-Série montrent peu d'évidence de mélange magmatique ou contamination crustale alors que Thirlwall et al. (1996) suggèrent une contribution importante de la contamination crustale, surtout pour les C-Serie, mais également pour les laves M-Serie qui pourraient avoir subi 2-5% de contamination crustale.

La présence dans un même centre de laves de compositions différentes en éléments majeurs, traces et isotopes suggèrent une hétérogénéité latérale du manteau et/ou plusieurs gamme de magmas parents à Grenade (Macdonald et al., 2000; Arculus, 1976). De récentes études sur les xénolithes charriés par les basaltes alcalins ont montré que le manteau sous Grenade avait subi des événements successifs d'enrichissement par des magmas ou fluides ayant la signature du slab, ainsi que des étapes de fusion par interaction avec les magmas primaires enrichis, ayant de faibles teneurs en SiO₂, certainement semblables aux magmas des M-Serie, lors de leur remontée vers la surface. Cette succession d'évènements mène à la formation de lherzolites, dunites et wherlites, et pourrait expliquer la large variabilité de compositions des laves présentes à Grenade. En effet, l'interaction des magmas avec différents résidus mantelliques, variablement métasomatisés, pourrait générer des magmas allant de M-Serie à C-Serie, avec des signatures variables de la plaque subductée.

Il n'existe pas de travaux expérimentaux récents sur les laves de Grenade. Les seules estimations de pressions et températures d'extraction ont été essentiellement faites sur la base de la sous-saturation en silice des laves. Les compositions des basaltes de Grenade sont reproduites expérimentalement à 2.4-2.8 GPa pour un degré de fusion partielle variant entre 20 et 40% (Hirose et Kushiro, 1993).

Des valeurs minimales de teneurs en eau (1-2%) dans les magmas primaires de Grenade ont été estimées par Devine (1995), en supposant une teneur de 4% pds d'eau nécessaire pour stabiliser l'amphibole. Deux hypothèses sont considérées : celle d'une cristallisation précoce de l'amphibole et celle d'une cristallisation ou tardive. Les valeurs estimées ont été comparées aux données calculées par à partir des totaux des analyses faites par microsonde électronique sur des inclusions vitreuses. Devine (1995) conclue alors que les magmas primaires de Grenade contiendraient entre 1 et 2% pds d'eau, avec une cristallisation tardive d'amphibole. On peut noter cependant que la composition d'inclusion vitreuse reportée et supposée représentative d'un basalte primaire à Grenade est peu contrainte, la composition du minéral hôte n'étant pas précisée.

Comme à St. Vincent, différents cônes de scories (Queen's Park, Radix, Pilot Hill, Quarantine Point, High Cliffs, Mt Reuil; Fig. I.12 et I.13) et laves (Queen's Park) ont été échantillonnés, dont certains sites sont reportés dans la Figure I.8. Seuls 3 échantillons provenant de différents niveau du cône de scorie (G05-06 base, G05-07 intermédiaire ; G05-08 haut) de la carrière de Queen's Park (Fig. I.12) se sont révélés de bon candidats pour l'étude des inclusions vitreuses. La particularité de ces dépôts est la présence de fragments de nodules mantelliques (harzburgite, lherzolite, dunite) bien décrits et étudiés par Vannucci et al. (2007) et Parkinson et al. (2003).

Fig. I.12: Photographie du cône de scorie de Queen's Park.

Fig. I.13: Cône de l'affleurement de Pillot Hill.
I.5 Guadeloupe:

La Guadeloupe est constituée de deux îles séparées par un isthme marin: Grande Terre à l'Est (Fig. I.14) et Basse Terre à l'Ouest. L'une appartient à l'arc externe (Grande Terre), et l'autre, Basse Terre, est active et avec un relief plus marqué: elle appartient à l'arc récent.

Sur cette dernière île, on dénombre six ensembles volcano-structuraux (Gastler, 1984):

- des coulées massives à la base, mises en place au Pliocène moyen

- au plio-pleistocène se met en place la chaîne septentrionale, au nord ouest de l'île.

- au centre de l'île, le massif Piton Bouillante- Sans Toucher apparait, orienté selon un axe WNW-ESE

- Les Monts Caraïbe au sud de l'île, alignés sur un décrochement ENE-WSW.

- La chaîne andésitique de Bouillante, sur la côte est de l'île.

- Le Massif de la Madeleine Soufrière, au sud de l'île, encore actif à l'heure actuelle.

Fig. I.14. Model d'évolution digital de l'île de Basse-Terre (données IGN, modifié d'après Samper et al., 2007). 41 échantillons analysés pour datation par méthode K-Ar sont localisés sur cette carte par des triangles. Les différentes chaînes volcaniques sont indiquées et séparées par des lignes en pointillés.

Samper et al. (2007) ont montré que la majorité des laves de Basse Terre ont une composition andésitique, les basaltes et basaltes andésitiques (SiO₂ de 47 à 64 pds%, MgO <6

pds%) étant très rares. Seule une dacite a été trouvée dans cette étude de 48 laves. Ces laves appartiennent au groupe des laves faiblement à moyennement potassiques (low-K; medium-K), avec des teneurs en K₂O variant de 0.4 à 1.4 pds% (Fig. I.15). Les compositions en éléments traces placent ces laves dans les séries calco-alcaline à tholéïtique.

Fig. I.15: Diagramme K_2O vs SiO₂ pour les laves de Basse Terre. Les laves de Basse Terre appartiennent aux groupes moyennement à faiblement potassiques. La majorité des laves sont des andésites.

Les échantillons étudiés dans le cadre de cette étude proviennent de l'éruption de 1440 A.D. de la Soufrière de Guadeloupe, re-datés à 1530 A.D. (Boudon et al., 2008). Ces échantillons ont fait l'objet d'une thèse ayant pour but de déterminer la dynamique des magmas andésitiques en combinant études expérimentales et pétro-structurales (Poussineau, 2005).

Boudon et al. (1987, 2008) ont proposé le scénario suivant pour cette éruption:

- des manifestations explosives associées à l'émission de produit de débourrage du cratère conduisent à l'ouverture d'un cratère entaillant le dôme Amic ainsi qu'une partie d'Echelle.

- cette phase est suivie d'une éruption plinienne projetant des ponces blanches différenciées.

- un changement de régime intervient lors de cette éruption: elle se poursuit par l'émission de nuées ardentes de type "St. Vincent", de compositions andésitiques à andésites basaltiques.

- enfin, l'activité explosive s'interrompt, laissant place à un dôme dans le cratère.

La large gamme de compositions émises lors de cette éruption est attribuée à un déséquilibre entretenu dans le réservoir, entre un magma andésitique et l'arrivée continue d'un magma chaud plus basique. Les conditions pré-éruptives ont été estimées expérimentalement (Poussineau, 2005). Le magma andésitique contiendrait une teneur en eau dissoute proche de 5% et cristalliserait dans un intervalle de pression entre 1500 et 1700 bars et une température de ~875-900°C dans des conditions légèrement oxydantes (Δ NNO+0.8).

CHAPITRE II:

LES INCLUSIONS VITREUSES

II.1. Présentation des inclusions vitreuses:

Les inclusions vitreuses (Fig.II.1) sont de petites billes de magmas, piégées dans un cristal, au cours de la remontée du magma vers la surface.

On distingue plusieurs sortes d'inclusions: les inclusions primaires, et les inclusions secondaires. Les inclusions primaires sont co-génétiques à la formation de leur hôte, piégées essentiellement grâce à un mécanisme de croissance du cristal (Roedder, 1979, Faure et Schiano, 2005). Ces inclusions sont réparties de façon aléatoire ou alignées selon les plans de croissance du minéral, et souvent associées à des inclusions minérales telles que les spinelles, sulfures ou autres. Les inclusions secondaires sont postérieures à la croissance du minéral hôte et s'alignent sur des plans de déformation du minéral. Une autre catégorie peut également être mentionnée: les inclusions non totalement piégées dans le cristal hôte, appelées par la suite « golfes ». Ces inclusions sont restées en contact avec le liquide magmatique environnant, elles n'ont donc pas évoluées en système clos: elles ont alors perdu leurs volatils et présentent des compositions très souvent évoluées.

Fig. II.1: Inclusions vitreuses primitives dans des olivines d'échantillons de St. Vincent. Les inclusions présentent le plus souvent une bulle de rétractation thermique ainsi qu'un spinelle. A : l'inclusion est piégée avec 2 spinelles, dont un triangulaire de couleur verte, représentant un spinelle alumineux. B : la plus grosse inclusion englobe un spinelle vert à partir duquel on peut observer la croissance de petits cristaux fils.

Les inclusions magmatiques primaires sont un outil puissant pour les géochimistes et pétrologues, car sources d'informations pour de nombreux paramètres. En effet, les inclusions vitreuses piégées sont supposées isolées du magma parent, et donc non affectées par tous les processus affectant la composition des roches totales lors de la remontée du magma vers la surface, tels que les mélanges de magma, la cristallisation fractionnée, la contamination crustale, ou encore le dégazage superficiel, rendant difficile l'accès à la composition des magmas primitifs à l'origine des laves émises en surface. L'analyse des inclusions magmatiques peut s'appliquer notamment à:

- L'étude des processus de fusion (Sobolev et Shimizu, 1993)
- La détermination des conditions d'extraction du magma (Sobolev et Shimizu, 1993), les pressions de piégeage, notamment par la détermination des teneurs en éléments volatils dissous pré-éruptifs (Anderson, 1974; Clocchiatti, 1975), en particulier la teneur en eau (Métrich et al., 2004), couplée aux travaux expérimentaux (ex : Pichavant et al., 2002 ; Pichavant et al., 2007)

- La caractérisation de la source mantellique des magmas : par exemple l'analyse des éléments en traces des inclusions des laves de l'Etna suggère une transition progressive entre une source de point chaud (type OIB-HIMU) et source type arc (Schiano, 2003). Il est également possible, par l'étude des isotopes stables, de déterminer la proportion de composant du slab influant sur la source (par exemple, Rose et al., 2001).
- A l'étude des flux géochimiques entre le manteau et la croûte océanique subductée (Schiano, 2003).
- A l'étude de l'évolution des constituants volatils dissous CO₂, H₂O, S, Cl, F (par exemple: Métrich et al., 2004, Spilliaert et al., 2006, Sobolev et Chaussidon, 1996).

En résumé, l'étude des inclusions vitreuses peut apporter de nouveaux éléments à l'étude des flux géochimiques en contexte de subduction. Cette étude a été en grande partie consacrée aux inclusions vitreuses primitives pigées dans les olivines, minéral cristallisant tôt dans l'histoire magmatique, permettant d'avoir accès à la composition des magmas les plus primitifs.

II.2. Représentativité des inclusions vitreuses.

Depuis une dizaine d'années, l'étude des inclusions vitreuses s'est largement développée. Les techniques de plus en plus perfectionnées permettent toutes sortes d'analyses. Cette multiplication d'études a fait apparaître de très larges variabilités géochimiques (Sobolev, 1996; Schiano, 2003), interprétée par certains auteurs comme étant le reflet d'effets secondaires et non une hétérogénéité de la source (Spandler et al., 2007). De même, l'étude expérimentale de la formation des inclusions a permis de mettre en évidence que certaines inclusions pouvaient présenter des compositions chimiques anormales si elles sont piégées dans des olivines ayant cristallisées rapidement (Faure et Schiano, 2005).

Ces différents points sont résumés dans ce paragraphe, afin de montrer qu'il est important de bien choisir et étudier l'échantillon avant toute interprétation.

II.2.1. Taille des inclusions

La présence de "couche limite" adjacente aux cristaux en train de croître, reliée au gradient de diffusion, est un des processus responsable de la non représentativité des inclusions vitreuses, du fait de la faible diffusion des éléments incompatibles (Watson, 1996). Si de telles couches sont piégées en tant qu'inclusion dans un cristal, le verre peut être anormalement enrichi en certains éléments diffusant plus lentement que la vitesse de croissance, tel que P, S ou Cl. Anderson (1974) conclut toutefois que les phénomènes de piégeage de couches limites affectent peu les inclusions vitreuses et que cet effet n'est plus visible dans les inclusions de plus de 25µm de diamètre. Au contraire Baker (2008) accorde une large importance à l'effet de couche limite et au processus de fractionnement des

éléments en fonction de leur diffusivité. Baker suggère que les effets de couche limite sont fortement probables pour une vitesse de croissance 3 fois supérieure à la vitesse de diffusion de l'élément considéré. Ceci démontre la nécessité de faire une étude fine de la composition de l'inclusion et de son minéral hôte pour comprendre sa représentativité.

II.2.2. Effet de la croissance de l'olivine.

Faure et Schiano (2005) ont montré qu'il pouvait exister deux types d'inclusions, dépendants des conditions de formation de l'olivine (Fig. II.2):

Fig. II.2: Schémas et photographies illustrant les différents types d'olivines suivant leur vitesse de croissance, et leurs inclusions piégées (d'après Faure et Schiano, 2005). A: olivine squelettique, renfermant des inclusions de forme symétrique. B: olivine dendritique, avec une structure en queue d'hirondelle dans la photographie B2. C: olivine polyhédrale.

1- les inclusions formées dans des olivines dendritiques ou squelettiques, dont la croissance est contrôlée par la diffusion, vont piéger un petit volume de la bordure limite, dont la composition est différente de celle prédite par différenciation du magma. En effet, si le taux de croissance est plus rapide que le taux de diffusion dans le magma, l'équilibre chimique existera seulement à l'interface. Ces inclusions ne donnent donc pas d'informations directes sur la composition du magma parent (Fig. II.3).

2- les inclusions piégées dans des olivines polyhédrales, dont le taux de croissance cristalline est contrôlé par un processus de fixation à l'interface, sont représentatives du liquide dans lequel croissent les olivines, quelque soit la taille de l'inclusion. L'inclusion est en équilibre avec son olivine hôte si la trempe est assez rapide pour prévenir une évolution post piégeage, leurs compositions pouvant évoluer au cours de la différentiation (Fig. II.3).

Fig. II.3: Al₂O₃ vs. CaO dans des inclusions piégées dans différents types d'olivines (d'après Faure et Schiano, 2005). Les inclusions piégées dans les olivines polyhédrales, ayant eu une croissance lente, ont des compositions représentatives du magma parent.

II.2.3. Modifications post-piégeages:

Pour être représentatives du système magmatique, les inclusions ne doivent pas avoir subi d'évolution post-piégeage majeure. Il est important de signaler ici que les paragenèses de l'inclusion et de la roche totale peuvent être différentes, puisqu'elles évoluent dans deux systèmes distincts, les inclusions étant le plus souvent considérés comme un système clos.

L'évolution de la composition d'une inclusion après piégeage est conditionnée par différents paramètres (Fig. II.4):

- décompression durant l'ascension du magma: lors du piégeage, la pression interne de l'inclusion est égale à la pression de son hôte (Schiano et Bourdon, 1999). Lors de la remontée rapide du magma, l'inclusion se dilate de manière plus importante que le cristal. Si la surpression créée est supérieure à la pression de saturation des gaz contenus dans le liquide, un phénomène d'exsolution des gaz se produit. Le minéral hôte ne pouvant généralement pas compenser cette dilatation subite de l'inclusion, celle-ci va éclater. Ce phénomène est appelé décrépitation.

Fig. II.4: Schéma récapitulatif des phénomènes post-piégeages que peuvent subir les inclusions (d'après Spilliaert, 2005).

- conditions de refroidissement: la diminution rapide de température crée une contraction du liquide piégé, formant une bulle de rétractation thermique (ou bulle de retrait) dans l'inclusion. Ces bulles ont généralement un volume compris entre 0.1 à 10% du volume de l'inclusion. Anderson and Brown (1993) estime qu'une diminution la température de 100°C engendre une bulle de rétractation d'un volume représentant entre 0.9 et 1.6% du volume de l'inclusion. Si l'inclusion est riche en phase gazeuse dissoute, celle-ci peut diffuser dans la bulle lors de la décompression, ainsi une phase liquide ou gazeuse riche en CO₂ est présente dans la bulle des inclusions. Le CO₂ peut réagir pour créer des cristaux de carbonates qui tapissent la paroi des bulles (Fig. II.5). Pour des compositions riches en silice, la phase exsolvée est un fluide hydrosalin (Lowenstern, 1994).

Fig. II.5: Photographie de microcristaux de carbonates déposés sur la paroi de la bulle de rétractation d'une inclusions piégée dans une olivine de l'Etna (Kamenetsky et al., 2007).

L'absence de bulle de retrait indique un refroidissement très rapide. Au contraire, si le refroidissement est lent, des minéraux cristallisent à l'intérieur de l'inclusion, à partir des parois de l'inclusion. La composition du liquide résiduel de l'inclusion évolue, permettant la

cristallisation de minéraux différents. Un refroidissement lent entraîne une cristallisation totale des inclusions, comme par exemple dans les cristaux des laves. Pour étudier ces inclusions, il est nécessaire de les homogénéiser à l'aide de platines chauffantes, afin de fondre tous les minéraux fils présents. Cependant, les inclusions cristallisées puis homogénéisées montrent souvent une diminution de la concentration en eau, celle-ci pouvant être perdue soit avant soit au cours de l'expérience de chauffe comme détaillé dans le paragraphe II.2.4.b.–Leurs concentrations en éléments traces et compositions de certains isotopes à faible diffusivité peuvent néanmoins être déterminées sans biais induit par l'expérience de chauffe.

- échanges chimiques avec le minéral hôte (Schiano et al., 2003; Gaetani et Watson, 2002; Hauri, 2002). Par exemple, dans le cas d'oxydation et/ou de rééquilibration partielle avec le cristal accueillant, il devient difficile d'obtenir des informations fiables (Danyushesky et al., 2000). La composition chimique des inclusions peut aussi être affectée par différents phénomènes de diffusion : celle du fer vers le minéral hôte - en particulier dans le cas d'olivines très magnésiennes (Fo= Mg/Mg+Fe²⁺ \ge 0.90), ou la diffusion d'hydrogène à travers le réseau du minéral (Hauri, 2002). Ces effets sont détaillés dans le paragraphe II.2.4.

En résumé, les échantillons les plus propices à l'étude des inclusions vitreuses sont ceux qui ont subi un refroidissement rapide, limitant les échanges entre l'inclusion et le minéral.

II.2.4. Effet du temps de résidence de l'olivine dans le magma hôte.

Le temps de remontée du magma influe sur la composition des inclusions piégées dans les cristaux, notamment à cause des fortes vitesses de diffusion de certains éléments:

II.2.4.a. Perte en fer

Certains auteurs ont mis en évidence une perte en fer subie par les inclusions, par rééquilibration avec le minéral hôte, lors du refroidissement naturel de l'échantillon (Sobolev et Danyushevsky, 1994, Danyushevsky et al., 2000; 2002; Gaetani et Watson, 2000; 2002). Certains auteurs proposent une rééquilibration des inclusions avec leur minéral hôte (Sobolev et Danyushevsky, 1994, Danyushevsky et al., 2000; 2002), alors que Gaetani et Watson (2000; 2002) suggèrent une rééquilibration avec le magma hôte, dont l'importance dépend de la différence de compositions entre le magma hôte et l'inclusion. Dans les deux cas, ces rééquilibrations entraînent une diminution des teneurs en fer dans les inclusions comparées aux compositions initiales, généralement associées à des Kd supérieurs à ceux des basaltes naturels (0.30 ± 0.3 , Roeder et Emslie, 1970). Cette diffusion est le plus souvent mise en évidence par des profils de diffusion de Fe et Mg dans les olivines contenant des inclusions pauvres en Fe. La perte en Fe dépend du taux de refroidissement de l'olivine hôte dans la chambre magmatique avant l'éruption et de la différence de température entre le piégeage de l'inclusion et la vitrification de l'inclusion pendant l'éruption (Danyushevsky et al., 2000).

II.2.4.b. Perte en eau

La dissociation et diffusion d'hydrogène peuvent affecter les inclusions vitreuses, à l'état naturel avant refroidissement ou lors d'expérience de ré-homogénéisation (par exemple: Danyushevsky et al., 2002; Sobolev et al., 1989; Hauri, 2002). La ré-homogénéisation des inclusions à pression atmosphérique, sous platine chauffante entraine une perte en eau dont l'importance dépend du temps d'expérience. Le mécanisme de déshydratation implique la propagation de dislocations dans l'olivine avec une augmentation du volume de la cavité, se traduisant également par l'augmentation de la température d'homogénéisation de l'inclusion au cours du temps (Massare et al., 2002).

Si le magma remonte à la surface sans refroidissement significatif après le piégeage de l'inclusion, la pression à l'intérieur de l'inclusion reste proche de la pression initiale de piégeage. La pression du magma hôte diminuant, l'activité de l'hydrogène est plus forte à l'intérieur de l'inclusion que dans le magma hôte, générant une diffusion d'hydrogène de l'inclusion vers le magma et une dissociation de H_2O en réaction avec le Fe, suivant les réactions suivantes:

- dans le domaine de stabilité de la magnétite:

 $2H_2O_{melt} + 6FeO_{melt} = 2H_2\uparrow + 2Fe_3O_4 (1)$

- à températures supérieures au domaine de stabilité de la magnétite:

$$H_2O_{melt} + 2FeO_{melt} = H_2\uparrow + Fe_2O_{3melt} (2)$$

Cette réaction est donc limitée par la capacité du magma à s'oxyder. La présence de micro magnétite dans les inclusions vitreuses est une indication de perte d'eau (Danyushevsky et al., 2002).

II.2.4.c. Ajout d'eau

Portnyagin et al. (2008) ont expérimenté la capacité de l'olivine à préserver chimiquement l'inclusion du magma hôte. Ces auteurs ont testé en particulier la diffusion d'eau à partir d'un magma hydraté vers des inclusions quasiment anhydres provenant d'un basalte du plateau des Galápagos. Leurs résultats ont montré que les inclusions pouvaient s'enrichir en eau après 2 jours d'expérience à 200MPa et 1440°C. Cet enrichissement en eau change également la composition en éléments majeurs des inclusions, par rééquilibration avec l'olivine hôte. Cet échange d'eau pourrait également expliquer des fractionnements que les processus magmatiques ne peuvent créer, et le découplage entre H_2O et les éléments incompatibles tels que K_2O , souvent observés dans les contextes d'arc et MORB.

Les inclusions ayant préservées les teneurs en eau du magma initial impliquent un temps de résidence très court de l'olivine dans le magma.

II.2.4.d. Diffusion des éléments traces.

Partant de l'observation que certaines inclusions vitreuses piégées dans des phénocristaux avaient des compositions en éléments traces différentes de celles des laves émises associées, Spandler et al. (2007) ont effectué des expériences de diffusion des

éléments traces dans des inclusions vitreuses piégées dans des olivines. Le but de leurs travaux était d'évaluer le degré de rééquilibration entre l'inclusion et le magma hôte, ainsi que les coefficients de partition et de diffusion des terres rares. Pour cette étude, les compositions en terres rares ont été déterminées dans des inclusions piégées dans des olivines Fo₈₉₋₉₁ provenant de MORB de la ride Médio-Atlantique, ainsi que pour leurs olivines hôtes, avant d'être portées à 1300°C, dans un four vertical, avec une poudre de verres synthétique riche en terre rare. Différentes expériences de durées variables (1, 5 et 25 jours) ont montré des fortes vitesses de diffusions des terres rares, induisant notamment des changements de compositions en terre rares dans les inclusions. Ces auteurs concluent donc que la diffusion rapide des REE dans les olivines ne préserve pas les inclusions des modifications subies par le magma lors de la remontée vers la surface, lors de son passage dans la croûte. Cependant, cette étude est source de débat. Aucune photographie des inclusions étudiées n'a été publiée. Il est donc difficile d'exclure la possibilité de présence de fissures, qui accroitrait artificiellement la vitesse de diffusion des terres rares dans l'olivine et induirait un changement de composition dans les inclusions. De même, il serait nécessaire de vérifier ces résultats dans d'autres conditions expérimentales.

II. 3. Correction de la cristallisation du minéral hôte aux bords de l'inclusion.

Au cours de la remontée du magma vers la surface, l'olivine hôte peut cristalliser sur les parois de l'inclusion, en réponse à une décroissance de la température. Cette cristallisation a pour effet de diminuer les teneurs en Fe et Mg dans l'inclusion. Il est nécessaire avant toute interprétation des résultats obtenus sur les inclusions de vérifier l'équilibre entre l'inclusion et l'olivine par le calcul du coefficient de partage Kd (1) et prendre en compte les effets de la croissance post-piégeage du minéral hôte (Danyushevsky et al., 2000; 2002).

(1)
$$Kd = (FeO/MgO)_{olivine} / (FeO/MgO)_{inclusion}$$

Pour déterminer le Kd olivine-inclusion, la teneur en Fe^{II} doit être connue. Or les mesures effectuées par microsonde électronique donnent la valeur de Fer totale. De plus, les proportions de FeO et Fe₂O₃ sont généralement inconnues dans les systèmes silicatés. Comme le rapport FeO/Fe₂O₃ du magma change avec l'état d'oxydo-réduction, en connaissant la fugacité d'oxygène fO_2 , ainsi que les proportions relatives de chaque constituant, on peut obtenir le rapport Fe^{II}/Fe^{III} par la relation suivante (Sack, 1980):

(2)
$$\ln(X^{\text{liq}}_{\text{Fe2O3}}/X^{\text{liq}}_{\text{FeO}}) = a \ln f O_2 + b/T + c + \Sigma d_i X_i$$

Dans cette étude, le calcul de ces proportions a été réalisé via le programme pMelts (Ghiorso, 1995), et donne un rapport de FeO/Fe₂O₃ = 0.4, obtenu à partir des conditions d'oxydation issues de la littérature pour les Petites Antilles (Δ NNO +0.3, Pichavant et al., 2002, Devine, 1995, Heath et al., 1998).

Les corrections de la cristallisation d'olivine aux bords des inclusions ont été effectuées grâce au logiciel Petrolog (Danyushevsky et al., 2002). Cette correction s'applique à tous les éléments majeurs, même si seuls le fer et le magnésium sont fortement affectés par ce calcul. La correction consiste à simuler numériquement la fonte d'une certaine quantité d'olivine jusqu'à retrouver un équilibre entre la composition de l'inclusion et celle de l'olivine hôte. Plus clairement, on rajoute une fraction d'olivine de composition variable jusqu'à atteindre l'équilibre souhaité. Le logiciel recalcule la composition initiale de l'inclusion, et fournit le pourcentage d'olivine cristallisée aux parois de l'inclusion, ainsi que la température d'équilibre. Les calculs ont été faits par groupe d'inclusions appartenant à des olivines de même Fo (Fo = [(100 × Mg) / (Fe²⁺+Mg)]), afin d'être le plus juste possible. Le logiciel s'arrête de calculer à la composition en forstérite donnée. Pour les calculs, le Kd a été fixé à 0.3 entre inclusion et olivine, d'après Roeder et Emslie (1970) pour les basaltes naturels à latm, en accord avec la valeur théorique du Kd des inclusions calculé d'après le modèle de Toplis (2005). Les conditions d'oxydation ont été choisies à Δ NNO +0.3, d'après différentes données issues de la littérature sur les Petites Antilles.

II.4. Description des inclusions analysées.

Pour la majorité de cette étude, les inclusions sont piégées dans des cristaux d'olivines, dans un souci d'acquérir des données les plus proches possibles du magma primaire. Différents échantillons de scories magnésiennes ont été étudiés. Les scories étant des produits magmatiques remontés rapidement à la surface, il est plus facile de trouver des inclusions préservées à l'état vitreux, limitant les modifications post-piégeage. Les inclusions préservées à l'état vitreux et représentatives de magmas primitifs sont rares aux Petites Antilles. Par exemple, les produits des cônes basaltiques de Citerne et Echelle à la Guadeloupe sont altérés et les olivines iddingsitisées. Un échantillonnage exhaustif des produits pyroclastiques de St Vincent et Grenade a été réalisé. Une dizaine d'échantillons sur chaque île a été tamisés pour séparation des olivines. La majorité des inclusions magmatiques des olivines des produits primitifs des îles du sud de l'arc sont cristallisées, confirmant la remarque de Devine (1995). Sur l'ensemble de ces échantillons, seul un dépôt pyroclastique à St. Vincent (SVN4b) et différents niveaux d'un large cône de scories à Grenade (Queen's Park, G05-06;07;08;09) ont fourni des échantillons propices à l'étude des inclusions, car contenant des inclusions à l'état vitreux, sans cristallisation, de taille > 20 μ m. Ces inclusions sont communément associées à un spinelle, présentent une bulle de rétractation thermique (Fig. II.1). Elles sont piégées dans des phénocristaux ayant préservés leur zonation, impliquant un faible temps de résidence dans le magma hôte, puisque le Fer diffuse rapidement dans l'olivine (Danyushevsky et al., 2000). Les interactions entre inclusions et minéraux sont donc limitées.

Les inclusions étudiées par microsonde électronique puis sonde ionique sont le plus souvent de forme ovoïde, mais aussi allongée ou de forme plus variable. Leur taille varie de 40 à 150-200 μ m pour l'échantillon de St. Vincent, de 25 à 50 μ m à Grenade (à l'exception de 4 inclusions de ~100 μ m). La détermination de la composition en éléments majeurs des inclusions et olivines hôtes montre une légère diffusion du fer pour les inclusions piégées

dans les olivines magnésiennes (Fo > 87) de St. Vincent : dans un diagramme FeO_{inclusion} en fonction du Fo_{olivine hôte}, ces inclusions présentent des valeurs plus faibles en FeO (Fig. II.6). Cette perte en fer est également mise en évidence par le calcul du Kd : ces inclusions sont caractérisées par des Kd > 0.3 (jusqu'à 0.45). Plusieurs points d'analyses ont été effectués dans les olivines : au cœur, en bordure, et à proximité de l'inclusion. Les compositions des olivines à proximité des inclusions qui semblent avoir perdu du fer montre une diminution locale du pourcentage de forstérite. La teneur en fer pour les inclusions de St. Vincent a été recalculée comme égale à 9.5 wt%. Cette valeur est celle mesurée dans les basaltes magnésiens (HMB) de St. Vincent, mais également la plus élevée mesurée dans les inclusions piégées dans des Fo> 86 de cet échantillon. Ce phénomène n'est pas (ou peu) observé dans les échantillons de Grenade.

Fig. II.6: Variation de la teneur en FeO_{tot} mesurée dans les inclusions en fonction du pourcentage de forstérite Fo% des olivines hôtes. a) inclusions (carrés) et roches totales magnésiennes (basaltes et basaltes hautement magnésiens -HMB-; champs gris) de St. Vincent ; b) inclusions (cercles) et roches totales appartenant à la série des laves riches en MgO (M-series, champs vert) de Grenade. On remarque une perte en fer pour les inclusions de St. Vincent, abaissant les teneurs en FeO_{tot} sous les concentrations des roches totales. Les inclusions de Grenade ne semblent pas (ou peu) être affectées par ce processus: la majorité des inclusions ont les mêmes teneurs en FeO que les roches totales primitifs.

Les Kd calculés à partir des teneurs mesurées sont majoritairement plus faibles que les valeurs théoriques pour les basaltes naturels à 1 atm (0.30 ± 0.03 , Roeder and Emslie; 1970) et que les Kd théoriques calculés pour ces inclusions à partir du modèle de Toplis, 2005 (Kd théorique = 0.307 ± 0.01 pour St. Vincent et 0.302 ± 0.008 pour Grenade). Cela implique que les inclusions des différents échantillons ont subi de la cristallisation post-piégeage d'olivine aux parois. Les pourcentages de cristallisation post-piégeage ont été calculés avec Petrolog, en utilisant un Kd fixé à 0.3, des conditions d'oxydation NNO +0.3 et la composition de l'olivine hôte. À St. Vincent, les Kd varient de 0.1 à 0.4, impliquant 1.7 à 11.1 % de cristallisation. Les inclusions Grenade ont 1.3 à 18.5 % (moyenne: 8.34%) de cristallisation (Kd mesuré: 0.07 a 0.46). En général, les inclusions ayant subi plus de 12.5% de cristallisation n'ont pas été retenu pour les analyses SIMS.

Quelques mesures de Li et H₂O, éléments à forte vitesse de diffusion (Lundstom et al., 2005; Mackwell and Kohlstedt, 1990), ainsi que certains éléments traces et terres rares ont été réalisées dans certains cristaux, à proximité des inclusions, au cœur et en bordure. Aucun enrichissement n'a été observé aux abords des inclusions, suggérant qu'aucun de ces éléments n'a diffusé (Fig. II.7). Cette hypothèse a été vérifiée par les mesures de δD dans les inclusions et $\delta^7 Li$ dans les olivines. Les inclusions sont caractérisées par des δD négatifs, inférieurs à ceux des MORB (~ -80, Hauri, 2002), excluant toute diffusion de H⁺ de l'inclusion vers l'olivine, qui au contraire aurait dû se traduire par une augmentation de δD dans le verre (Hauri, 2002). Les compositions en $\delta^7 Li$ dans l'olivine ne révèlent pas de fractionnement isotopique à proximité de l'inclusion, en accord avec une absence de diffusion du Li.

Fig. II.7 : Profils des compositions en Li et δ^7 Li dans deux olivines de St. Vincent. Ces profils ne montrent pas enrichissement aux abords des inclusions, suggérant que le Li n'a pas diffusé de l'inclusion vers l'olivine hôte.

L'ensemble de ces résultats tend à montrer que les inclusions vitreuses de St. Vincent et Grenade n'ont pas subi de modifications post-piégeages majeures. Les résultats obtenus sont donc représentatifs des magmas dans lesquels se sont formées les inclusions.

La dernière partie de ce travail est consacré aux échantillons d'andésite basaltique (scories noires) et dacite (ponces grises) de la dernière éruption ayant eu lieu à la Guadeloupe en 1530 (Boudon et al., 2008). Les inclusions étudiées (Fig. II.8) sont piégées dans des cristaux de plagioclases et pyroxènes, donc piégeant des inclusions de compositions plus évoluées. Afin de vérifier si les inclusions étaient en équilibre avec leur minéraux hôtes,

quelques corrélations ont été vérifiées, telles que CaO vs. SiO_2 pour les inclusions piégées dans des plagioclases (Fig. II.9). Cette méthode permet de vérifier si les inclusions ont subi un enrichissement ou un appauvrissement en certains éléments. Toutes les inclusions analysées définissent une tendance recoupant la composition du minéral hôte, suggérant un équilibre entre inclusions et cristaux.

Fig. II.8: photographies d'inclusions de la Guadeloupe. A gauche: photographie en lumière réfléchie d'une inclusion naturellement vitrifiée dans un plagioclase. A droite: photographie en lumière naturelle d'inclusions homogénéisées, piégées dans un plagioclase.

Fig. II.9: Variation des teneurs en CaO en fonction des compositions en SiO₂ dans les inclusions des scories andésitiques et dacitiques de l'éruption de 1530 A.D. de La Guadeloupe. Sont représentés la composition des plagioclases hôtes (carrés) et celles des inclusions homogénéisées ou non. Ces diagrammes montrent que les inclusions sont en équilibre avec leurs hôtes (Poussineau, 2005).

Parmi les inclusions analysées, certaines présentaient des signes de cristallisation. Elles ont été ré-homogénéisées comme décrit dans le paragraphe III-2, à une température de 1000°C en four à 1atm. Cette température de chauffe a été déterminée sur platine chauffante sur des inclusions de différents cristaux. Aucune différence de composition entre les inclusions vitreuses ayant subi un refroidissement naturel et celles homogénéisées n'a été observée.

CHAPITRE III :

TECHNIQUES ANALYTIQUES

La caractérisation des compositions des inclusions vitreuses nécessite des méthodes d'analyses in situ. La détermination de leur composition en éléments majeurs se fait par analyse à la sonde électronique, méthode non destructive pour l'échantillon. Pour les mesures d'éléments traces et isotopes, la limite de détection de la sonde électronique ne permet pas ce type de mesures. Il existe des instruments plus sensibles, tels que les sondes ioniques, les shrimps, et les lasers ablations couplés à un spectromètre de masse à multi-collecteur. Les sondes ioniques sont le plus souvent utilisées pour les mesures d'éléments traces et isotopes.

III.1. Préparation des échantillons

L'analyse des inclusions magmatiques nécessite une préparation longue et minutieuse des échantillons. Les roches sont concassées au broyeur à mâchoires, puis lavées, étuvées et enfin tamisées en différentes fractions. Les cristaux d'olivines des fractions 0.5 à 1 mm sont triés manuellement sous une loupe binoculaire et collés sur une lame de verre grâce à du scotch double face. Ils sont ensuite inclus dans une pastille grâce à de la résine Epofix afin d'être polis et observés au microscope en lumière transmise. Les cristaux contenant des inclusions non cristallisées et suffisamment volumineuses (diamètre > 20 μ m) sont extraits de la résine en utilisant un fer à souder, puis montés séparément dans des petits cylindres métalliques (diamètre: 4 mm, hauteur: 10 mm) et inclus de nouveau dans de la résine Epofix. Chaque cristal est ensuite poli jusqu'à affleurement des inclusions, puis passé dans un bain à ultrason afin d'éliminer les impuretés induites par le polissage.

Les différents cylindres sont montés sur un support métallique pouvant accueillir six plots. Le tout est métallisé au carbone afin d'éliminer les charges électriques à la surface lors des analyses à la microsonde électronique. Les inclusions sélectionnées pour les analyses SIMS 1270 et 3f sont nettoyées de la couche de carbone, puis montées de nouveau dans des pastilles contenant de 9 à 12 cristaux et inclus dans de la résine Epofix. La métallisation sera alors faite à l'or pour une meilleure conduction.

III.2. Micro-thermométrie optique

Certaines inclusions des échantillons de la Guadeloupe présentaient des évidences de cristallisation, nécessitant une étape d'homogénéisation. Ce processus consiste à réchauffer l'inclusion jusqu'à sa température de piégeage afin d'inverser les processus intervenant lors du refroidissement (nucléation de minéraux fils, bulle de rétractation thermique, dévitrification). Le système minéral-inclusion est ensuite trempé afin d'avoir la composition du liquide initial.

Cette étape d'homogénéisation a été réalisée en deux temps:

- La température de chauffe des inclusions de la Guadeloupe a été déterminée sur platine chauffante à 1 atm fixée sur un microscope (LPS, CEA-Saclay) sur plusieurs inclusions de différents cristaux. La platine a été auparavant calibrée par fusions d'un point d'or (point de fusion à 1064°C) et d'un point d'argent (point de fusion à 963°C). Afin de

déterminer le point d'homogénéisation, la température a été augmentée progressivement: de 20°/min jusqu'à 600°C, puis de 5°C/min jusqu'à 700°C et enfin de 2°C/min jusqu'à observation de l'homogénéisation des inclusions. Les inclusions de la Guadeloupe s'homogénéisent à 1000°C. Le taux de refroidissement a été fixé à 100°C/min, afin de tremper les inclusions, sans toutefois les faire éclater.

- Le reste des inclusions a été homogénéisé dans un four 1 atm vertical, en utilisant la température déterminée par platine chauffante (1000°C). Les inclusions des échantillons de La Guadeloupe étant piégées dans des plagioclases et pyroxènes, il n'est pas nécessaire de contrôler parfaitement la fugacité d'oxygène, puisque ces minéraux s'oxydent moins rapidement que l'olivine. Les expériences sont donc réalisées sans flux d'hélium.

III.3. Analyses les éléments majeurs par microsonde électronique

III.3.1. Présentation et fonctionnement.

La microsonde électronique (Fig. III.1) permet une analyse quantitative ponctuelle et non destructrice sur des échantillons de diverses tailles, pouvant aller jusqu'à seulement quelques microns, en mesurant l'intensité du rayonnement X caractéristique émis par un élément, en réponse à un bombardement d'électron. Plusieurs modes d'analyses sont possibles : le mode ponctuel, focalisé sur un point, le mode traversées (ou profils), et le mode image.

Fig. III.1: Schéma d'une microsonde électronique.

Le canon à électrons (Fig. III.2) est le plus souvent constitué d'un filament de tungstène chauffé par effet Joule à 2700°K, un champ électrique, des déflecteurs et des lentilles électromagnétiques. Les électrons émis par le filament sont accélérés par le champ électrique régnant entre le filament et l'anode relié à la masse, puis passent entre les lentilles électromagnétiques, permettant de focaliser le faisceau, avant de bombarder la surface polie de l'échantillon. En réponse à ce bombardement, l'échantillon émet des rayons X (fig. III.3), dont l'intensité est mesurée grâce à un compteur proportionnel à flux gazeux, après avoir été réfractés sur un cristal monochromateur d'orientation variable. La longueur d'onde du faisceau de rayon X émis par l'échantillon (appelé faisceau secondaire) est déduite de la loi de Bragg :

$$n\lambda = 2d \sin\theta$$

où *n* est un nombre entier, λ la longueur d'onde de la raie de l'élément analysé, *d* la distance inter-réticulaire du cristal, et θ l'angle d'incidence entre le faisceau émergeant et la surface du cristal monochromateur. Les cristaux monochromateurs permettent de couvrir le spectre de longueurs d'onde caractéristiques des éléments allant du Bérilium à l'Uranium.

Fig. III.2 : schéma d'un canon à électron.

Fig. III.3: Schéma illustrant l'interaction entre le faisceau d'électron et l'échantillon poli.

La chaîne de comptage, constituée d'amplificateurs et d'un analyseur monocanal, permet d'obtenir à la sortie une impulsion de type numérique, constitué d'une suite de chiffre, comptabilisé par un compteur numérique, donnant le nombre d'impulsions reçues par seconde dans le compteur à flux gazeux. Il sera ensuite possible de déterminer l'intensité du rayonnement X émis par l'échantillon.

III.3.2. Analyse des éléments majeurs.

L'analyse ponctuelle des éléments majeurs dans les inclusions vitreuses, les olivines hôtes ainsi que les spinelles présents dans les olivines et parfois associés aux inclusions, ont été mesurées grâce à la microsonde électronique SX-50 (4 spectromètres et 8 cristaux) du Service Camparis de Jussieu (Paris VI) et la microsonde électronique SX-100 de l'université Henri Poincaré (Nancy I). Les analyses ponctuelles permettent de déterminer la concentration en éléments présents dans un volume de l'ordre du micron cube.

Tableau III-1: Composition en éléments majeurs des standards utilisés pour les analyses mircosonde électronique

_	ALV981 R23	VG2	CFA 47	San Carlos
SiO ₂	49.53	50.81	61.63	47.77
TiO ₂	1.27	1.85	0.42	-
Al ₂ O ₃	16.58	14.06	18.53	-
FeO	8.42	11.85	2.65	8.64
MnO	0.14	0.22	0.18	0.12
MgO	8.68	6.71	0.42	49.13
CaO	11.81	11.12	1.84	0.08
NiO	-	-	-	0.41
Na ₂ O	2.88	2.62	5.37	-
K ₂ O	0.05	0.19	7.98	-
total	99.42	99.86	99.02	99.38

ALV981 R23: bordure de pillow-lava tholétitique de la ride pacifique (Métrich and Clocchiatti, 1989), VG2: verre basaltique (Jarosewich et al., 1979), CFA 47: trachyte alcaline de Phlegrean Fields (Métrich and Clocchiatti, 1989), San Carlos: olivine Fo₉₁ (Spilliaert, 2005)

La calibration des mesures est faite pour chaque élément sur des standards naturels ou artificiels de compositions connues. De plus, afin de vérifier les calibrations et déterminer l'incertitude sur les mesures, les standards internes AlV981-R23 et VG2 pour les inclusions vitreuses, et San Carlos pour les olivines et spinelles, ont été utilisés. Les compositions de ces standards sont reportées dans le tableau III.1. Les mesures sur ces standards montrent des incertitudes < 1% sur SiO₂, Al₂O₃ and MgO, 1% sur CaO, 2% sur FeO, < 3% sur TiO₂ et Na₂O, 5% sur K₂O et 26% sur MnO.

Pour chaque inclusion, deux à trois points d'analyse ont été réalisés, selon la taille des inclusions. Les olivines ont été analysées en plusieurs points, situés de part et d'autre de l'inclusion, ainsi que près des bords et aux centres des olivines, afin de détecter une éventuelle

zonation de l'olivine, et observer la diffusion du fer et magnésium de l'inclusion vers l'olivine hôte. Les spinelles de taille appropriée à l'analyse ont été analysés en routine, avec les olivines.

Les concentrations en S et Cl ont également été mesurées sur une cinquantaine d'inclusions vitreuses de St. Vincent. Les conditions analytiques sont décrites dans le tableau III.2.

temps de comptage (s)	Inclusions	Olivines	Spinelles
SiO ₂	10	25	20
TiO ₂	10		60
Al ₂ O ₃	15		20
FeO tot	20	50	30
MnO	10	100	60
MgO	15	25	20
CaO	10	200	
Na ₂ O	10		
K ₂ O	15		
NiO		200	
Cr ₂ O ₃			30
S	200		
Cl	200		
courrant (nA)	10	40	40

Tableau III.2: Conditions d'analyses des éléments majeurs.

III.4. Analyses des teneurs et isotopes des éléments légers: IMS 1270

Les sondes ioniques de type IMS 1270 (ou supérieures, Fig. III.4), ainsi que les sondes ioniques IMS 3f et 6f et le SHRIMP permettent de mesurer in situ tous les éléments, même en faible quantité, ainsi que les isotopes, sur des échantillons d'une taille pouvant descendre jusqu'à 10 μ m. Les analyses de H₂O, B, Li, S, Cl, F et des isotopes du Li, B, O et S ont été réalisé sur la SIMS 1270 du CRPG (Nancy).

III.4.1. Principe de fonctionnement:

La spectrométrie de masse d'ions secondaire est une technique d'analyse in situ destructive, consistant à éroder la surface d'un échantillon soit avec des ions, soit avec des électrons. En effet, il existe deux sortes de sources:

1) le duoplasmatron, source d'ions d'oxygène, utilisée pour déterminer les compositions élémentaires et isotopiques en éléments légers. Le duoplasmatron est constitué

Techniques Analytiques

d'une cathode de nickel, d'une électrode intermédiaire mobile, d'une bobine et d'une anode percée. Le plasma d'oxygène est formé par une décharge électrique dans la cathode creuse. L'électrode et la bobine confinent le plasma formé par l'arc. Le plasma passe par l'anode et les ions extraits de la surface sont accélérés dans la colonne primaire.

2) la source au césium couplée à un canon à électrons, utilisée pour déterminer les compositions élémentaires et isotopiques en éléments plus lourds ou émettant mieux sous un bombardement d'électrons. La vapeur de césium est produite en chauffant un réservoir de carbonate de césium. Cette vapeur est ionisée en ions Cs^+ quand elle entre en contact avec une plaque de tungstène portée à une température de 1100°C. Les ions sont alors extraits et accélérés par un champ électrique appliqué entre la plaque et la lentille d'extraction.

Fig. III.4: Schéma de la sonde ionique 1270.

Les ions créés par les sources (faisceau primaire) sont accélérés et focalisés sur la surface de l'échantillon. L'impact de ce faisceau va pulvériser la surface de l'échantillon, préalablement doré pour augmenter la conductivité. Il se créer alors un faisceau d'ions secondaires. Ces derniers vont être accélérés et séparés en fonction de leur énergie initiale grâce au secteur électrostatique, puis cette dispersion est corrigée dans le secteur électromagnétique où les particules vont être séparées en fonction de leur masse. Les ions de masse égale mais d'énergies différentes seront collectés en un même point de détection à la sortie des deux secteurs.

La détection du signal peut se faire de deux façons : 1) en monocollection (de manière séquentielle), ou 2) en multicollection (en parallèle). La multicollection est composée de 7 détecteurs d'ions comprenant deux cages de Faraday fixes et cinq détecteurs mobiles (cages

de Faraday ou multiplicateurs d'électrons). Elle permet ainsi l'analyse en simultané de différents isotopes d'un même élément.

III.4.2. Conditions d'analyses:

Pour ces mesures, les pastilles ont préalablement été nettoyées à l'éthanol pour enlever la couche de carbone nécessaire pour l'analyse des éléments majeurs par microsonde électronique. Puis les pastilles sont passées dans un bain à ultrasons. Toutes les mesures sont faites avec un faisceau projeté d'ions primaires de d'environ 10 μ m, un courant accélérant de 13kV pour le faisceau primaire (pour les sources à césium et oxygène) et de 4.5 kV pour le faisceau secondaire.

	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O
CY82-27-1V	50.67	1.64	15.39	9.22	-	7.70	11.52	3.08	0.26
CY82-31-2V	49.06	1.16	16.90	7.54	0.09	9.28	12.06	2.63	0.11
CY82-29-3V	49.27	0.84	16.11	8.37	0.10	9.56	12.54	2.12	0.03
ETNA2-3	48.22	1.71	16.87	6.42	0.16	5.51	10.33	3.72	1.89
ETNA3-0.5	47.72	1.73	16.09	10.04	0.18	6.16	10.32	3.25	1.85
ETNA3-2	47.17	1.66	15.90	9.72	0.19	6.02	10.11	3.16	1.81
ETNA3-3	46.97	1.67	15.76	9.86	0.16	5.96	9.99	3.17	1.80
ALV981 R23	49.53	1.27	16.58	8.42	0.14	8.68	11.81	2.88	0.05
KE12	70.30	0.33	7.62	8.36	0.26	-	0.35	7.28	4.27
CFA	61.63	0.42	18.53	2.65	0.18	0.42	1.84	5.37	7.98
BVHO-1	49.94	2.71	13.80	12.23	0.17	7.23	11.40	2.26	0.52
L-SVEC50	48.69	1.80	14.07	10.74	-	8.41	10.74	2.63	0.07
JB2	53.25	1.19	14.64	14.25	0.22	4.62	9.82	2.04	0.42
NIST610	71.00	0.24	13.75	2.70	-	0.16	0.77	3.82	5.99
KN18	74.60	0.18	10.53	3.45	-	0.07	0.15	5.68	4.39
GB4	72.94	0.06	15.57	0.79	0.01	0.14	0.57	4.56	4.14

Tableau III.3 : Compositions en éléments majeurs des standards utilisés pour les analyses IMS 1270

CY82-27-1V; 31-2V; 29-3V: verres provenant de MORB naturels non altérés (Chaussidon et al., 1991) ; **ETNA 2-3; 3-0.5; 3-2; 3-3**: standards synthétiques internes au CRPG, faits par Bruno Scaillet (ISTO, Orléans, France) ; **NIST610**: standard international du National Institute of Standard Technology, **ALV981 R23**: bordure de pillow-lava provenant de EPR (Métrich and Clocchiatti, 1989), **CFA 47**: trachyte acaline de Phlegrean Fields (Métrich and Clocchiatti, 1989) ; **KE12 and KN18**: rhyolites peralcalines du Kenya (Mosbash et al., 1991) ; **BHVO**: verres basaltiques naturels de laves de la coulée pahoehoe de 1919 à Halemaumau (compilation de données, accessible sur le site de l'USGS: <u>http://minerals.cr.usgs.gov/geo_chem_stand/basaltbhvo2.html</u>); **L-SVEC50**: verres basaltiques de Nazca, enrichis avec une solution de L-SVEC (Decitre, 2000) ; **JB2**: basalte naturel du Geological survey of Japan (Kasemann et al., 2001) ; **GB4**: verre synthétique du CRPG, fait par double fusion, avec broyage intermédiaire, réalisé par M. Chaussidon et B. Scaillet

	H ₂ O/ ³⁰ Si	H_2O/SiO_2	F/ ³⁰ Si		F/S	io2	S/ ³⁰ Si	S/SiO ₂	CI/30Si	CI/SIO ₂
	ratio mesurés	n ratio donné	ratio mesu	ırés	n rati	io donné	ratio mesurés n	ratio donné	ratio mesurés	n ratio donné
CY82-27-1V	1.23E-01 ± 7.50E-3	6 5.33E-03	6.75E-01	± 3.05E-2	4	4.77E-04	2.03E+00 ±3.25E-2 4	2.23E-03	3.00E-01 ± 2.00E-2	4 2.75E-04
CY82-31-2V							1.76E+00 ± 2.32E-2 5	1.79E-03		
CY82-29-3V	1.28E-01 ±7.50E-3	4 3.84E-03								
ETNA2-3	5.76E-01 ± 3.60E-2	6 7.47E-02						1.04E-04		8.30E-05
ETNA3-0.5	2.85E-01 ±4.75E-2	5 2.66E-02								
ETNA3-2	3.87E-01 ± 2.22E-2	3 5.11E-02								
ETNA3-3	4.83E-01 ± 9.50E-2	5 5.26E-02								
ALV981 R23			3.32E-01	± 4.96E-2	5	2.62E-04			1.01E-01 ± 1.16E-2	5 1.01E-04
KE12			1.15E+01	± 8.94E-1	4	5.97E-03	3.67E-01 ± 2.18E-2 4	2.92E-04		4 4.57E-03
CFA			6.58E+00	± 3.87E-2	4	3.26E-03			7.06E+00 ± 1.61E-1	4 8.46E-03
	Li/ ³⁰ Si	Li/SiO ₂	B/ ³⁰ Si		B/S	siO ₂				
	ratio mesuré	n ratio donné	ratio mesu	Iré	n rati	io donné				
BVHO	3.13E-03 ± 1.76E-4	13 1.00E-01	6.14E-04	± 8.93E-5	13 5	5.01E-02				
NIST610	3.18E-01 ± 3.75E-3	4 6.94E+00	4.01E-02	± 7.26E-4	4	I.88E+00				
KN18	7.12E-02 ± 2.25E-4	4 1.14E+00	1.83E-03	± 1.50E-5	4	4.02E-01				
GB4	2.17E-01 ± 4.44E-3	3 5.26E+00	9.30E-02	± 1.78E-4	ы 1	.33E+01				
					,					
CY82-27-1V; 3	1-2V; 29-3V: unaltered n	latural MORB glas	ses (Chaussi	don et al., 199	91)					
ETNA 2-3; 3-0	.5; 3-2; 3-3: CRPG synth	iethic glass standa	rds, made by	Bruno Scaille	et (ISTO	, Orléans, F	rance)			
ALV981 R23:	tholeiitic pillow-lava rim fi	rom EPR (Métrich	and Clocchia	itti, 1989)						
CFA 47: alkali-	trachyte from Phlegrean	Fields, (Métrich ar	nd Clocchiatti	, 1989)						
KE12: peralka	ine rhyolite from Kenya (I	Mosbash et al., 19	91)							
BHVO: natural	basaltic glass from surfa	ice layer of the 19'	19 pahoehoe	lava of Halem	Jaumau	(data comp	vilation, available on the U	JSGS website:		
http://minerals.	cr.usgs.gov/geo_chem_s	stand/basaltbhvo2.	html)							
GB4: CRPG s)	inthetic glass standard, n	nade by double me	elting, with int	termediate cru	ısh, pro	vided by M.	Chaussidon and B. Scail	let		
NIST610: inter	national standard from th	e National Institute	e of Standard	Technology p	orepared	d to contain	500 ppm element concer	ntrations		
KN18: peralka	line rhyolite from Kenya (Mosbash et al., 19	91)							

Tableau III.4: Ratios mesurés et donnés pour les standards de références pour H2O, F, S, Cl, Li et B

Les concentrations en H₂O, Li, B ainsi que δ^7 Li et δ^{11} B ont été mesurées en utilisant le duoplasmatron.

Les teneurs en Li, B et H₂O sont mesurées lors d'une même analyse en monocollection, avec un courant primaire de 10 à 15 nA, une résolution de masse de 1200 et un filtrage en énergie de -60V. Les intensités des pics ${}^{1}H^{+}$, ${}^{7}Li^{+}$, ${}^{11}B^{+}$, ${}^{30}Si^{+}$ sont mesurées, afin de normaliser H, Li et B au silicium. Les rapports sont calibrés par rapport à différents standards internationaux et internes, de compositions basaltiques à rhyolitiques (Tableaux III.3-5).

Les isotopes du lithium et bore sont mesurés lors d'une analyse de 15 cycles, en utilisant un courant primaire de 10-15 nA, une résolution de masse de 1500, sans filtrage en énergie. Le fractionnement isotopique a été déterminé pour chaque session avec les standards de verres basaltiques BHVO-1, L-SVEC et JB2 (Figure III.5, Tableaux III.3- 4, 6).

	H_2O^b	Li ^c	B ^c	$\delta^7 Li^d$	$\delta^{11}B^{d}$	\mathbf{S}^{a}	Cl ^a	F ^a	$\delta^{18}O^e$	$\delta^{34}S^{e}$
BHVO-1		5	2.5	5.8	-5.5					
L-SVEC50				0.7						
JB2				5.0	7.2					
GB4		384	970							
NIST610		506	351							
KN18		85	30							
CY82-27-1V	0.3					1104	136	236	6.0	6
CY82-29-3V	0.2								6.1	0.4
CY82-31-2V									5.7	1.3
ETNA II-3	3.6									
ETNA III-0.5	1.3									
ETNA III-2	2.4									
ETNA III-3	2.5									
ALV981-R23						1100	≤55	130		
KE12						205	3280	4400		
CFA							4800- 5500	2000		

Tableau III.5 : Valeurs de références pour les éléments et isotopes analysées par sondes ioniques 1270.

^a Les teneurs en S, Cl et F pour les standards ALV981-R23, KE12 et CFA proviennent de Spilliaert et al., 2006 (Cl et S sont déterminés par microsonde électronique, F par SIMS 1270. KE12: Cl= 3280 ± 120 ppm, F= 3830 ± 90 ppm, CFA47: F= 2270 ± 20 ppm), Métrich et al., 1996 (ALV981-R23: F= 1100 ± 100 ppm, déterminé par sonde électronique) et Mosbah et al., 1991 (ALV981-R23: F= 130 ± 15 ppm, KE12: Cl= 3300 ppm, F= 4400 ± 240 ppm, CFA: 4800 ppm, teneurs déterminées essentiellement par microsonde nucléaire).

^b Les teneurs en eau sont calibrées avec les standards ETNA, verres expérimentaux fabriqués par Scaillet (ETNAII-3, III-0.5, III-2 et III-3: 3.6 ± 0.01 ; 1.27 ± 0.00 ; 2.41 ± 0.04 et 2.47 ± 0.02 wt% H₂O), et MORB CY-82-27-1V; 29-3V ;31-2V, référencés par Chaussidon et al., 1991 (0.32; 0.19; 0.17 wt% H₂O, déterminé par SIMS 3f).

^c Li et B ont été calibrés avec NIST 610, un standard international provenant de l'institut national de standard et technologie, et KN 18, un verre naturel rhyolitique (Li= 506 ± 19 ppm et 100 ± 20 ppm, B= 350 ± 49 ppm et 29 ± 4 ppm, déterminé par microsonde nucléaire, Rio et al., 1995), BHVO-1, un verre basaltique naturel provennant de Hawaï (Li = 4.6 ± 1.6 ppm, B = 2.5 ± 0.6 ppm, déterminé par différentes méthodes compilées par Gladney and Roelandts, 1988) et GB4, un standard interne du CRPG (B= 970 ppm, Gurenko and Chaussidon, 1997).

^d Afin de définir le fractionnement instrumental pour les isotopes du Li et B, les standards suivants ont été utilisés :BHVO-1 (δ^7 Li = 5.8, déterminé par SIMS 1270, Decitre, 2000), L-SVEC50 (un verre basaltique naturel de Nazca enrichi avec une solution riche en Li, δ^7 Li = 0.7‰ déterminé par SIMS, Decitre, 2000), JB2 (un standard GSC; δ^{11} B= 7.17 ± 0.39‰, valeurs compilée de plusieurs méthodes par Rosner et al., 2008).

^e Les fractionnements instrumentaux pour δ^{18} O and δ^{34} S ont été calibrés par des standards MORB internes au CRPG CY-82-27-1V; 29-3V et 31-2V. Ces valeurs standards ont été déterminées par SIMS (Chaussidon et al., 1991).

La source Césium a été utilisée pour mesurer les concentrations en S, Cl, F ainsi que $\delta^{34}S, \delta^{18}O.$

Les teneurs en S, Cl et F sont analysées pendant une même mesure, avec un faisceau d'ions créé par la source à césium, en mono-collection, avec une résolution de masse de 3000 et sans filtrage en énergie. Les échantillons ont été bombardés avec un courant de 10 nA. L'intensité des pics ¹⁹F⁻, ³²S²⁻, ³⁵Cl⁻ et ³⁰Si⁻ sont mesurées. F, S, Cl sont normalisés à Si et calibrer grâce aux standards suivant: AlV981-R23, KE12, CFA, CY82-27-1V (Figure III.5, Tableaux III.3-5). Les analyses de S et Cl faites sur les inclusions de St. Vincent par microsonde électronique montrent des résultats comparables à ceux obtenus par sonde ionique sur 11 des 50 inclusions analysées par SX50.

	δ ¹⁸ Ο		$\delta^{18}\mathbf{O}$	δ ³⁴ S			δ ³⁴ S	δ ⁷ Li n	nes		δ ⁷ Li	δ ¹¹ B m	es		$\delta^{11}\mathbf{B}$
	mesuré	n	donné	mesu	ré	n	donné	mesu	ıré	n	donné	mesur	é	n	donné
CY82-27-1V	6.4 ± 0.3	8	6.0												
CY82-31-2V				-3.79	± 0.37	4	1.3								
CY82-29-3V	6.8 ± 0.2	9	6.1	-3.16	± 0.43	11	0.4								
вуно								42.9	± 1.5	13	5.8				
L-SVEC								37.5	± 0.7	4	0.7				
JB2								43.3	± 1.6	3	5.0	-24.7	± 0.6	3	7.32
GB4												-33.8	± 3.5	3	-12.09

Tableau III.6: Valeurs mesurées et données pour les standards utilisés pour calibrer le fractionnement isotopique

"n": nombre de mesures

 δ^{34} S et δ^{18} O ont été mesuré en multicollection, avec un courant primaire de 10nA, une résolution de masse de 3000, sans filtrage en énergie, pendant des mesures de 6 et 4 minutes respectivement.

Pour la composition isotopique en soufre des inclusions, l'intensité du pic 32 S est mesurée sur une cage de Faraday, le pic 34 S sur le mutiplicateur d'électron (EM axial). Le fractionnement instrumental est contrôlé par la mesure des standards naturels de MORB CY-82-29-3V and CY-82-31-2V (Tableaux III.3, 5-6).

Fig. III.5: Droites de calibrations pour les différents éléments analysés lors d'une session.

Les pics ¹⁶O et ¹⁸O sont mesurés en multi-collection sur des cages de Faraday pour déterminer les compositions isotopiques en oxygène, avec une intensité primaire de 10 nA et une résolution de masse de 2000, sans filtrage en énergie, et calibrés en utilisant les standards MORB CY-82-27-1V et CY-82-29-3V (Tableau III.3-5,6), avec une composition en éléments majeurs proche de celles des inclusions, afin d'éviter tout phénomène de fractionnement matriciel.

Les courbes de calibrations typiques d'une session de mesures sont représentées dans les Figures III.5 et III.6. Les incertitudes (1σ) définies sur les différents standards sont les

suivantes: 8% pour l'eau, 2% sur les mesures du Li, 4% sur B, 7% sur Cl, 3% pour S, 6% pour Cl, et $\pm 1.2\%$ pour δ^7 Li, $\pm 2.1\%$ pour δ^{11} B, $\pm 0.16\%$ pour δ^{18} O et $\pm 0.53\%$ pour δ^{34} S.

Les compositions isotopiques sont calculées par rapport à des valeurs références standards selon la formule suivante :

$$\delta^{7} \text{Li} = \left[\left(\left({^{7} \text{Li} / {^{6} \text{Li}} \right)_{\text{éch}} - \left({^{7} \text{Li} / {^{6} \text{Li}} \right)_{\text{std}} \right) / \left({^{7} \text{Li} / {^{6} \text{Li}} \right)_{\text{std}} \right] \times 1000$$

où le standard est L-SVEC (⁷Li/⁶Li = 12.175). Les mêmes calculs sont appliqués pour les autres compositions isotopiques: δ^{11} B est calculé par rapport au ratio 11 B/ 10 B de NBS 951 (4.044); δ^{18} O au ratio 18 O/ 16 O de SMOW (2005.2×10⁻⁶) et δ^{34} S au ratio 34 S/ 32 S de Canyon Diablo (4.43×10⁻²).

Fig. III.6: Calibrations des isotopes stables lors d'une session.

Les différentes analyses ont été faites sur le même spot, pour la plupart des inclusions, à cause de leur petite taille et la présence d'une bulle de rétractation thermique. Afin de vérifier que le premier spot n'endommageait pas de façon irréversible l'inclusion, la plupart des mesures ont été faites 2 ou 3 fois sur le même spot pour chaque élément, soit durant la même session, soit durant des sessions séparées de plusieurs mois. La reproductibilité moyenne (moyenne des écarts-types moyens des différentes mesures pour une inclusion, 1 σ) sont les suivantes : 15% sur H₂O, ~ 8 et 16% pour Li et B, respectivement, 18, 12 et 14% pour F, S et Cl, respectivement, $\pm 1.3\%$ pour δ^7 Li, $\pm 2.2\%$ pour δ^{11} B, $\pm 1.25\%$ pour δ^{18} O et \pm 0.71‰ pour δ^{34} S. Ces valeurs montrent que les résultats sont assez reproductibles, avec des erreurs supérieures à la reproductibilité sur les standards, mais significativement inférieurs à la gamme de variation mesurée sur les inclusions.

III.5. Analyses d'éléments traces, terre rares et δD: IMS 3f

L'analyses de quelques éléments traces et terres rares dans les inclusions et olivines hôtes, ainsi que les mesures des compositions en δD ont été mesurées par sonde ionique IMS 3f au CRPG (Nancy). Le principe de fonctionnement est identique à celui de la sonde ionique IMS 1270. Les rayons des secteurs électrostatiques et magnétiques étant plus petits que pour la sonde ionique IMS 1270, la résolution de masse de la SIMS 3f est moins importante.

III.5.1.Analyses des éléments traces et terres rares

Les éléments V, Ba, Nb, Sr, Zr, La, Ce, Nd, Sm, Eu, Y (et Yb dans les olivines) ont été mesurés dans les inclusions, afin de compléter l'analyses des terres rares légères et isotopes stables pour tracer l'influence des différentes sources. Ces analyses peuvent permettre de mieux quantifier ces influences et d'étudier les variations du taux de fusion.

1		1
	KL2-G	ML3B-G
éléments n	najeurs (%)	
SiO ₂	50.10	50.90
TiO ₂	2.60	2.09
Al ₂ O ₃	13.10	13.40
FeO	10.70	10.90
MnO	0.16	0.17
MgO	7.26	6.56
CaO	10.80	10.50
Na ₂ O	2.27	2.35
K ₂ O	0.48	0.38
total	97.47	97.25
éléments tr	races (ppm)	
V	370	240
Ba	123	80
Nb	15.8	9
La	13.2	8.96
Ce	32.9	23.3
Nd	21.7	16.8
Sr	364	315
Zr	159	126
Sm	5.55	4.79
Eu	1.95	1.68
Y	26.8	24.3

Tableau III-7: Compositions des standards utilisés pour les analyses 3f

Ces éléments ont été mesurés lors d'une même mesure de 16 cycles, en utilisant un faisceau projeté d'ions primaires d'environ $30\mu m$, un courant accélérant de 10kV pour le faisceau primaire et 4.5kV pour le courant secondaire. La source utilisée est le duoplasmatron. Chaque élément est mesuré pendant 10 secondes. Les standards internationaux ML3-B et KL2 (MP-DING standards, Tableau III.7) ont été utilisés pour calibrer les mesures. Les précisions obtenues sur les standards sont listées dans le tableau III.8.

Les données sont traitées afin d'éliminer les interférences dues à BaO, présentes sur les masses mesurées ¹⁵²Sm, ¹⁵⁴Sm, ¹⁵¹Eu et ¹⁵³Eu, ainsi que les interférences créées par GdO sur les masses ¹⁷²Yb et ¹⁷⁴Yb.

Tableau III.8: Incertitudes (en %) déterminées sur les standards pour les analyses en éléments traces et terres rares.

Eléments	Incertitudes (%)
Cr	4.3
V	5.7
Sr	3.7
Y	16.4
Zr	8.9
Nb	20.0
Ba	14.1
La	3.2
Ce	13.8
Nd	19.6
Sm	9.7
Eu	9.5

III.5.2. Détermination du δD dans les inclusions

Tableau III.9: Teneurs en eau et compositions isotopiques des standards utilisés pour les mesures	sδD
---	-----

	ETNA3-0.5	ETNA3-1	ETNA3-2	ETNA3-3	CY82-29-3
H ₂ O	1.27	1.75	2.41	2.47	0.19
δD	-177.73	-181.48	-158.28	-161.46	-80

Les compositions en δD ont été déterminées en utilisant un faisceau projeté d'ion primaire d'~30µm (intensité du courrant primaire: 10nA), une résolution de masse de 1100, un courant accélérant de 10kV pour le faisceau primaire et 4.5kV pour le faisceau secondaire. H, H² et D ont été mesurés pendant 100 cycles, pendant 4, 2 et 16 secondes respectivement. Le bruit de fond (calé sur une masse proche de H) est mesuré pendant 50 secondes. Les standards ETNA et MORB ont été utilisés afin de calculer le fractionnement instrumental (Tableau III.3, 9, Fig. III.7). La reproductibilité sur les standards montre une précision de $\sim \pm 5\%$, suivant les standards, les standards les moins riches en eau ayant les erreurs les + fortes.

Fig. III.7: Calibrations en début de sessions d'analyses des isotopes de l'hydrogène avec différents standards synthétiques de compositions basaltiques et avec des teneurs en eau variables.

III.6. Analyses des roches totales et sédiments

Oxydes	Incertitudes (%)	Eléments	Incertitudes
SiO ₂	1	В	1 ppm
TiO ₂	2	F	0.002%
Al ₂ O ₃	1	Cl	20 ppm
Fe ₂ O ₃	1	Th	7%
MnO	5	Rb	8%
MgO	1	Nb	5%
CaO	2	La	5%
Na ₂ O	2		
K ₂ O	2		
P_2O_5	10		

Tableau III.10: Incertitudes (en %) sur les éléments majeurs et éléments traces pour les analyses roches totales faites au SARM.

L'analyse des roches totales des échantillons de St. Vincent et Grenade, ont été effectué au SARM (CRPG, Nancy). Les compositions en éléments majeurs et traces ont été obtenues par mesures ICP-AES et ICP-MS respectivement. Quelques échantillons de sédiments des Leg DSDP 144 et 543 (fournis par M. Carpentier) ont également été analysés afin de déterminer leur teneur en Cl, F, S_{tot} et B. Le Soufre a été mesuré par Doseur Carbone-Soufre LECO SC 144DRPC), le chlore par Absorptiomètre Beckman DU62, le fluor par potentiomètre à électrode spécifique et le B par ICP-MS. Les incertitudes sont reportées dans le tableau III.10.

CHAPITRE IV :

CARACTERISATION DES MAGMAS PRIMAIRES DE ST-VINCENT
IV.1. Résumé étendu de l'article publié à Journal of Petrology

Il est communément admis que les magmas des Petites Antilles dérivent de la fusion d'un manteau de type MORB modifié par l'ajout de fluides issus de la lithosphère subductée. Cependant, les contributions respectives des différents fluides issus du slab sont encore source de débat.

Les basaltes fortement magnésiens (HMB, mg-number >70, MgO > 10 wt%) présents à St. Vincent sont considérés comme représentant les magmas parents des laves de l'arc des Petites Antilles (e.g. Pichavant et al., 2002; Macdonald et al., 2000). De récentes études expérimentales ont montré que les HMB de St. Vincent seraient générés par 15% de fusion partielle d'une source mantellique de type MORB à ~17 kbar (50-60 km) et ~1130°C (Pichavant et Macdonald, 2003, 2007). Cependant, le manteau a été modifié par l'ajout de fluides aqueux, modifiant les conditions P-T ainsi que le degré de fusion. Les magmas primaires des HMB pourraient avoir été extraits à 1235°C, 11.5 kbar pour un magma contenant 1.5 % pds H₂O, ou 1185°C, 16 kbar pour 4.5 % pds H₂O (Pichavant et al., 2002; Pichavant et Macdonald, 2007).

Afin de déterminer la nature et proportion des composants issus du slab sur la source mantellique, les teneurs en H₂O, S, Cl, F, Li, B et les compositions en δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S ont été déterminées dans des inclusions de 40 à 150 µm, préservées à l'état vitreux dans des phénocristaux d'olivines. Parmi tous les échantillons collectés à St. Vincent, un seul (SVN4b), échantillonné sur la côte ouest près de Troumaka, présentait ce type d'inclusions, suffisamment grandes pour être analysées et bien préservées afin de pouvoir analyser les teneurs en volatils et limiter les effets d'évolution post-piégeage.

Les olivines hôtes sont majoritairement zonées avec un cœur magnésien Fo₈₉₋₈₅ et une bordure plus évoluée Fo₈₅₋₇₇, suggérant une remontée rapide du magma hôte (Annexe 3). De nombreux spinelles, dont le Cr# ([Cr/(Cr+Al)]) varie de 0.45 à 0.63 (annexe 7), parfois associés à une inclusion, ont été piégés dans les olivines. Certains spinelles (4) associés aux inclusions présentent une surcroissance alumineuse (Cr# = 0.2-0.45, Al₂O₃ et MgO atteignant jusqu'à 60 % pds et 20 % pds), interprétée ici comme une réaction à faible température entre le spinelle et l'inclusion, dont les compositions sont riches en Al₂O₃ (14.6 to 23.2 % pds), sur la base des travaux expérimentaux (Pichavant et al., 2002).

Plus de 200 inclusions et golfes ont été caractérisés en éléments majeurs, dont 46 inclusions et 4 golfes analysés à la sonde ionique afin de déterminer leurs compositions en éléments légers, volatils et isotopes stables (annexes 10-11). La plupart des inclusions ont été analysés pour l'ensemble de ces éléments, afin de pouvoir comparer les différentes informations apportées par les isotopes stables, les éléments légers et volatils. Les inclusions n'étant pas toutes suffisamment volumineuses pour réaliser toutes ces mesures sur différents spots, la reproductibilité des résultats sur un même spot a été vérifiée Pour cela, les analyses ont été faites plusieurs fois, soit sur un même spot, soit sur un spot différent. Les résultats se sont avérés reproductibles, avec une variation entre 2 mesures bien inférieures à la variation observée sur l'ensemble des inclusions.

Les résultats obtenus sur les inclusions montrent tous une large variabilité chimique et isotopique (Tableau IV.1, Annexes 10-11). La majorité des inclusions ont des compositions

allant de basaltiques à sous-saturées en SiO_2 et riches en CaO, compositions couramment rencontrées dans les inclusions et laves d'arc (Schiano et al., 2000).

Fig. IV.1: Graphiques représentant les compositions des inclusions de St. Vincent. Les inclusions primaires $(K_2O < 0.5 \% \text{ pds})$ sont représentées par des carrés bleus, les inclusions évoluées et golfes par des carrés vides, les roches totales par des ronds jaunes. Pour comparaison, les inclusions piégées dans des plagioclases d'échantillons de Yellow Tuff (Heath et al., 1998) sont représentés, ainsi que la compositions des MORB (étoile noire, Workmann et al., 2005). a) Diagramme K₂O vs. SiO₂. Les inclusions primaires (K₂O < 0.5% pds) décrivent deux tendances: une première tendance similaire aux roches totales et aux inclusions évoluées, caractérisée par une corrélation K₂O-SiO₂. La deuxième tendance décrit une anti-corrélation de ces deux éléments. b) Diagramme CaO vs. MgO des inclusions primaires, modifié d'après Schiano et al. (2000). La moitié des inclusions de St. Vincent se situent vers le pôle à nepheline normative, l'autre moitié étant dans le champ des magmas issus de la fusion des lherzolites.

D'après les compositions en éléments majeurs, les inclusions peuvent être divisées en deux populations (Fig. IV.1):

1- les inclusions dont les compositions évoluent et montrent une variation des teneurs en MgO de < 5.0 à 9.1 % pds, SiO₂ de 46 à 55.9% pds et K₂O de 0.25 à 0.85 % pds (Fig. IV.1). Les plus primitives (K₂O < 0.5 % pds, Fo₈₅₋₈₉) ont les compositions similaires aux laves basaltiques de St. Vincent (annexe 1), mais elles sont en revanche plus riches en Al₂O₃ (jusqu'à 23 % pds) et CaO (jusqu'à 17 % pds), et moins magnésiennes comparées aux HMB (MgO > 10.0 % pds). L'ensemble de ces inclusions montre une corrélation positive SiO₂-K₂O (Fig IV.1a), tendance également décrite par les roches totales de St. Vincent, incluant les HMB, les basaltes et laves plus évoluées (Tableau IV.1). Cette évolution reflète la différentiation des magmas impliquant la cristallisation d'olivine, pyroxène et plagioclase (Heath et al., 1998).

2- les inclusions décrivant une anti-corrélation SiO₂-K₂O, piégées dans des olivines Fo_{87-89.9}. Ces inclusions ont des teneurs en MgO (\geq 7 % pds) typiquement basaltiques, mais sont sous-saturées en SiO₂ (43.7 to 45.9 % pds). Ces faibles teneurs en silice, plus faibles que ceux des roches totales de St. Vincent, ne peuvent pas être reliées à un biais analytique. En effet, les sommes des éléments majeurs analysés par microsonde électronique incluant les volatils varient de 97 à 99 % pds, sans corrélation avec les teneurs en SiO₂. Leurs

concentrations en CaO sont relativement élevées, allant de 14.1-16.9 % pds, avec des rapports CaO/Al₂O₃ > 0.80. Ces inclusions sont à néphéline-normative, caractéristique communément reportée pour les inclusions et certaines laves en contexte d'arc insulaire (Fig. IV.1, Schiano et al., 2000).

	δD	H ₂ O	Fo ¹	K ₂ O
SVN-14	-88.3	3.51	89	0.4
SVN-33c	-141.1	5.22	85	0.3
SVN-104a	-159.0	2.66	85	0.4
SVN-118	-199.5	2.36	88	0.3
SVN-119	-23.0	1.45	86	0.45
SVN-172	-71.7	1.43	85	0.4
SVN-182	-174.5	2.28	88	0.3
SVN-185b	-153.8	0.83	84	0.5
SVN-104b	-33.4	1.00	85	0.55
SVN-182v	-58.0	1.34	88	0.5

Tableau IV.1 : Compositions en δD et H₂O mesurées dans quelques inclusions de St. Vincent

¹ Fo (= $100 \times Mg / (Mg + Fe^{2+})$ déterminé dans les olivines hôtes des inclusions Les lettres « a, b, c... » différencient plusieurs inclusions dans un même cristal.

Les compositions en éléments légers, volatils et isotopes stables sont extrêmement variables (Tableau IV.2). Toutes les inclusions montrent un enrichissement sélectif en Cl, avec des teneurs comparables à celles mesurées dans les basaltes d'arcs (500 to 2000 ppm; Wallace, 2005), reflétant l'influence des fluides issus du slab, avec des rapports Cl/K₂O variables. Les teneurs en S des inclusions basaltiques varient de 610 à 1653 ppm, sans corrélation avec K2O, suggérant que cette gamme de valeur reflète l'hétérogénéité magmatique plutôt qu'un dégazage superficiel. Aucune corrélation avec K₂O n'a été observée pour le fluor et H₂O. Les teneurs en eau moyenne pour les inclusions basaltiques piégées dans des olivines Fo>88 et Fo₈₆₋₈₈ sont de 3.2 % pds ± 0.7 (1 σ) et 2.4 % pds ± 0.6 (1 σ), respectivement. Comme discuté dans le chapitre II, les inclusions piégées dans des olivines Fo>86 peuvent avoir subi une légère perte en FeO, et par conséquent une légère perte en eau. En effet, H⁺ diffuse rapidement dans l'olivine (Mackwell et Kohlstedt, 1990), pouvant générer une perte en eau dans les inclusions. Cependant ce processus ne permet pas d'expliquer une variation des teneurs en eau de 0.85 à 5.5% pds. Les inclusions de St. Vincent ne présentent pas de fractures ou d'auréoles, ni de corrélation Fe-H₂O, suggérant une absence de diffusion de proton. De même, les δD mesurés dans les inclusions (Tableau IV.1) montrent des valeurs négatives, inférieures à celles des MORB (-80‰, Hauri, 2002 ; Pineau et al., 1999), appuyant l'hypothèse d'une absence de diffusion de H+ de l'inclusion vers le minéral hôte. Ce processus serait responsable d'un décalage des compositions isotopiques vers des valeurs positives (Hauri, 2002). Les 2 valeurs les plus proches de 0 sont celles mesurées dans 2 golfes, évoluant en système ouvert donc dégazés.

Tableau IV.2: Compositions en éléments majeurs et traces légers et isotopes stables dans les inclusions de St.

 Vincent

Caractérisatio	ı des	Magmas	Primaires	de St.	Vincent
----------------	-------	--------	------------------	--------	---------

	Basalti	c M.I.														
	14	17	19	20	$33a^4$	$33b^4$	$33c^4$	$33d^4$	60	61b ⁴	$70a^4$	$70b^4$	$80a^4$	100	102	$104a^4$
Measured	compo	sitions														
SiO ₂	44.37	42.89	45.23	44.11	43.53	43.67	44.36	43.93	46.06	43.84	44.36	44.66	48.57	46.26	43.19	46.85
TiO ₂	1.03	1.11	1.11	1.15	1.02	0.93	0.95	1.04	1.17	1.24	0.95	1.16	1.02	1.24	1.01	1.27
Al_2O_3	19.03	19.49	18.37	18.90	18.13	16.70	16.35	16.74	19.26	19.71	16.35	19.05	19.37	20.12	19.77	18.39
FeO _{tot} ¹	6.76	6.33	7.02	8.49	8.89	9.84	9.62	10.10	8.43	6.91	6.49	6.12	6.42	6.94	7.17	7.23
MnO	0.11	0.13	0.14	0.09	0.12	0.17	0.20	0.15	0.22	0.11	0.20	0.07	0.10	0.14	0.11	0.15
MgO	6.55	5.62	6.48	5.71	5.82	5.93	6.05	5.79	5.57	5.91	6.05	7.90	4.74	5.42	6.22	5.84
CaO	13.42	14.92	13.71	13.87	13.62	12.92	12.60	12.64	11.73	14.28	12.60	13.68	11.95	13.99	14.34	11.45
Na ₂ O	3.13	3.13	2.86	2.85	2.61	2.65	2.50	2.68	3.42	3.17	2.50	2.73	3.60	3.23	2.86	3.16
K_2O	0.40	0.40	0.31	0.28	0.29	0.28	0.27	0.28	0.36	0.37	0.27	0.30	0.36	0.35	0.38	0.35
H_2O	3.51	3.37	3.42	1.63	3.95	4.33	5.23	3.42	2.32	3.26	1.73	2.39	2.17	1.27	3.04	2.66
Total	98.31	97.38	98.64	97.08	97.98	97.43	98.13	96.78	98.53	98.80	91.51	98.06	98.29	98.94	98.08	97.34
CaO/Al_2O_3	0.70	0.77	0.75	0.73	0.75	0.77	0.77	0.76	0.61	0.72	0.77	0.72	0.62	0.70	0.73	0.62
Corrected	compo	sitions														
SiO ₂	45.54	44.17	46.39	46.31	46.46	46.98	47.87	46.83	48.02	44.83	47.87	45.16	48.57	45.87	44.52	48.79
TiO ₂	1.00	1.05	1.09	1.19	1.08	0.98	1.01	1.08	1.21	1.22	1.01	1.15	0.95	1.17	0.99	1.32
Al_2O_3	18.39	18.45	18.08	19.52	19.19	17.57	17.38	17.37	19.93	19.37	17.38	18.92	18.06	18.98	19.40	19.14
Fe ₂ O ₃	2.21	2.31	2.19	2.04	2.14	2.45	2.35	2.61	1.92	2.22	2.35	2.20	2.17	2.28	2.19	2.01
FeO	6.94	6.96	6.93	6.54	6.92	7.76	7.60	8.37	6.48	6.93	7.60	7.12	7.21	7.37	6.95	6.91
MnO	0.11	0.12	0.14	0.09	0.13	0.18	0.21	0.16	0.23	0.11	0.21	0.07	0.09	0.13	0.11	0.16
MgO	9.45	9.48	8.56	6.76	6.59	7.40	7.25	7.40	6.18	7.80	7.25	8.78	8.12	7.62	8.58	6.11
CaO	12.97	14.12	13.50	14.32	14.42	13.60	13.39	13.12	12.14	14.04	13.39	13.59	11.14	13.20	14.07	11.92
Na ₂ O	3.03	2.96	2.82	2.94	2.76	2.79	2.66	2.78	3.54	3.12	2.66	2.71	3.36	3.05	2.81	3.29
K ₂ O	0.39	0.38	0.31	0.29	0.31	0.30	0.29	0.29	0.37	0.36	0.29	0.30	0.34	0.33	0.37	0.36
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PEC% ³	6.6	8.9	4.6	1.9	1.0	2.6	7.2	3.2	0.9	4.3	4.3	1.97	8.2	5.6	5.3	0.1
Olivine co	omposit	ions														
SiO ₂	40.39	40.54	40.75	40.46	40.00	40.00	40.13	40.13	39.80	38.16	40.23	39.69	39.62	40.27	40.66	40.27
MgO	49 10	48.98	47.69	46.15	45 71	45 71	44 76	44 76	45 59	46.26	46 71	46 70	45 73	45 41	46.85	44 50
MnO	0.19	0.17	0.13	0.26	0.34	0.34	0.19	0.19	0.21	0.15	0.16	0.17	0.22	0.23	0.17	0.22
FeO	10.37	9.94	10.82	13.41	13.64	13.64	14.52	14.52	13.61	11.40	10.76	11.00	11.57	12.99	11.24	14.21
NiO			-	-	_	_	-	-	0.11	0.20	0.27	0.30	0.17	0.19	0.22	0.17
CaO	0.21	0.13	0.17	0.15	0.17	0.17	1.11	0.11	0.15	0.20	0.16	0.16	0.16	0.20	0.17	0.18
Total	100.3	99.8	99.5	100.4	99.9	99.9	100.7	99.7	99.5	96.4	98.3	98.0	97.5	99.3	99.3	99.5
Fo/M.I.	89.4	89.8	88.7	86.0	85.7	85.7	85.6	84.6	85.7	87.8	88.5	88.3	87.6	86.2	88.1	84.8
Fo/core	-	-	-	-	-	-	-	-	85.7	-	88.5	88.5	-	-	88.2	87.0
Fo/rim	87.4	-	87.6	-	-	-	-	-	-	81.7	76.5	76.5	85.9	76.3	-	81.2
SIMS ana	lvses															
H ₂ O	3 51	3 37	3 42	1.63	3 95	4 33	5 23	3 42	2.32	3 26	1 73	2 39	2.17	1 27	3 04	2.66
n^5	3		2	2	2	2	2				2	3			4	2
Li	4.79	7.05	5.86	4.90	3.81	3.29	3.54	3.43	6.12	5.27	2.61	3.02	2.77	4.02	3.61	5.68
n^5	3		2	1	2	2	2				1	2			3	
В	9.25	9.05	8.17	26.97	11.62	9.69	11.34	15.79	10.04	7.97	24.48	26.46	21.51	9.99	13.81	24.51
n^5	2		2		2	2	2								2	
F	265	110	279	423	142	-	-	-	200	134	353	278	126	265	277	260
n^5	2	2	2		1				2			2		2	2	2
S	976	679	329	933	1158	-	-	-	947	883	913	1056	1266	803	850	1039
n^5	2								2	2				2	2	
Cl	1376	836	839	1164	1319	-	-	-	1028	914	1202	1855	982	1159	1050	820
n^5	2	2	2						2	2				2	2	2
$\delta^{34}S$	-	5.33	-2.47	2.25	-2.47	-	-	-	1.19	6.98	-8.97	-	-4.78	0.47	1.53	1.07
n^5		2												2		
$\delta^{18}O$	6.75	4.89	6.66	5.55	8.76	6.49	4.84	_	7.50	9.26	3.53	3.23	4.00	7.97	4.10	3.95
n^5	5.75		5.00	2.20	5.70	5					2.20	5.25		/ 1		5.70
δ^7 Li	-0.21	-4.30	1.42	0.62	0.84	2.97	0.72	-9.59	-2.85	-4.14	1.15	-8.55	-7.05	6.76	-3.82	0.44
n^5	2	2	2					2	2	2	2	2		2	2	
$\delta^{11}B$	5.83	4.04	10.28	6.97	-9.38	4.81	2.85	-12.00	2.87	1.64	9.10	6.70	-4.09	6.49	2.59	6.96
n^5																

Measure compositions visual		104emb ⁴	$104c^4$	107a ⁴	107b ⁴	108b ⁴	113a ⁴	113c ⁴	113d ⁴	118	119	134a ⁴	142emb ⁴	160	161	167	168	169				
Sic. 51.6 41.3 41.2 41.2 41.2 41.0 <th< td=""><td>Measured</td><td>compos</td><td>itions</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Measured	compos	itions																			
TO1 111 116 125 1.5 1.5 1.5 1.8 1.6 1.0 <td>SiO₂</td> <td>51.68</td> <td>42.30</td> <td>44.31</td> <td>47.23</td> <td>46.39</td> <td>45.28</td> <td>45.26</td> <td>45.99</td> <td>44.05</td> <td>46.48</td> <td>44.24</td> <td>49.55</td> <td>40.17</td> <td>45.30</td> <td>44.84</td> <td>44.13</td> <td>44.89</td>	SiO ₂	51.68	42.30	44.31	47.23	46.39	45.28	45.26	45.99	44.05	46.48	44.24	49.55	40.17	45.30	44.84	44.13	44.89				
ALO, 17.3 201 19.47 19.41 9.41 9.71 17.3 23.21 19.44 9.47 17.3 23.7 <th23.7< th=""> 23.7 23.7 <</th23.7<>	TiO ₂	1.71	1.11	1.16	1.25	1.15	1.37	1.44	1.46	1.04	1.33	1.33	2.14	1.29	1.10	1.28	1.04	1.10				
FeOm 1 100 9.02 6.86 6.79 7.30 7.37 7.37 7.37 7.37 7.37 7.37 7.34 6.87 7.02 MoO 0.388 5.98 5.91 101 0.10 <td>Al_2O_3</td> <td>17.32</td> <td>20.11</td> <td>19.87</td> <td>19.41</td> <td>19.63</td> <td>19.83</td> <td>19.88</td> <td>20.29</td> <td>18.55</td> <td>19.84</td> <td>19.71</td> <td>17.63</td> <td>23.24</td> <td>19.48</td> <td>19.53</td> <td>18.11</td> <td>20.31</td>	Al_2O_3	17.32	20.11	19.87	19.41	19.63	19.83	19.88	20.29	18.55	19.84	19.71	17.63	23.24	19.48	19.53	18.11	20.31				
Made 0	FeO _{tot} ¹	10.09	9.02	6.86	6.79	7.30	7.35	7.80	7.42	7.42	7.63	7.37	7.39	7.37	7.34	7.45	6.87	7.02				
Mg0 3.88 5.90 5.60 6.86 5.70 6.80 6.86 5.70 6.80 6.80 7.80 6.31 7.81 8.70 1.85 1.355 1.355 1.356 1.30 1.355 1.355 1.36 3.30 2.30 3.32 2.32 3.35 2.78 3.30 2.20 2.55 3.60 K0 0.2 0.32 0.30 0.41 0.35 0.55 0.50 0.30 0.45 1.84 2.40 2.00 0.30 0.45 Teal 9.95 96.39 97.4 98.53 96.35 97.8 95.5 97.5 97.6 98.61	MnO	0.23	0.16	0.09	0.18	0.10	0.10	0.10	0.11	0.14	0.16	0.11	0.16	0.08	0.09	0.12	0.15	0.13				
CaO 99 11 55 13 51 13 10 13 10 13 10 13	MgO	3.88	5.98	5.63	7.78	6.34	5.43	4.77	4.95	7.84	4.89	5.56	5.00	6.86	5.97	5.60	6.13	5.49				
Na00 3.52 2.74 2.73 3.88 3.40 3.61 2.83 3.75 2.78 3.75 2.92 2.55 3.60 H _C O 1.00 1.63 2.41 2.25 3.03 1.22 2.10 2.47 2.36 1.45 1.48 2.46 2.03 2.03 1.37 2.10 2.47 2.36 1.45 1.48 2.46 1.48 2.40 0.77 0.67 0.70 0.73 0.60 0.53 0.53 0.74 0.59 0.59 0.59 0.53 0.74 0.59 0.59 0.61 0.70 0.74 0.76 0.75 0.67 0.74 0.74 1.41 1.47 1.47 1.47 1.41 1.45 1.44 1.44 1.44 1.47 1.07 1.31 1.25 1.26 1.38 1.24 1.20 1.27 1.26 1.38 1.24 1.42 1.20 1.21 1.24 1.24 1.24 1.24 1.20 1.21 1	CaO	9.91	13.55	13.95	10.21	13.51	10.98	11.75	10.78	13.77	11.61	15.45	10.35	14.06	13.71	14.40	13.73	12.85				
K.O 0.62 0.32 0.27 0.29 0.27 0.29 0.27 0.28 0.47 0.48 0.47 1.88 2.41 0.48 0.47 1.88 2.41 0.48 0.47 1.88 2.44 0.20 0.77 Total 0.97 0.67 0.07 0.67 0.63 0.63 0.63 0.63 0.76 0.59 0.61 0.70 0.74 0.76 0.63 Corrected corrected corrected 4.424 4.54 1.44	Na ₂ O	3.52	2.74	2.70	3.34	2.73	3.58	3.40	3.61	2.53	3.72	2.97	3.28	3.15	2.78	2.92	2.55	3.60				
H-0 1.00 1.63 2.54 2.43 2.30 1.32 2.19 2.47 2.36 1.45 1.48 2.71 1.58 2.54 2.03 0.20 1.77 Ca0/ALO 0.57 0.67 0.70 0.53 0.69 0.55 0.69 0.55 0.58 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.69 0.55 0.69 0.55 0.69 0.55 0.69 0.75 0.60 0.70 0.74 0.70 0.74 0.70 0.74 0.70 0.71 0.60 0.71 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.71 0.74 0.72 703 707 707 707 707 707 707 707 707 707 707 707 707 707 707 707	K_2O	0.62	0.32	0.29	0.41	0.27	0.29	0.29	0.25	0.30	0.47	0.35	0.55	0.36	0.30	0.30	0.33	0.40				
Tatal 995 90,9 97.42 98.10 97.42 98.10 97.54 98.55 98.75 98.10 97.64 98.10 97.64 98.10 97.64 97.10 0.61 0.70 0.76 0.66 Corrected compositions 5 5.9 5.7 7.10 0.61 0.70 45.20 45.56 46.18 45.71 Tabl 1.12 1.14 1.42 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.47 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.41 1.43 1.41 1.43 1.43 1.41	H ₂ O	1.00	1.63	2.54	2.25	3.03	1.32	2.19	2.47	2.36	1.45	1.48	2.71	1.58	2.54	2.03	2.09	1.77				
CAD/ALO 0.57 0.67 0.74 0.53 0.53 0.54 0.55 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.50 0.61 0.60 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.70 700 <td>Total</td> <td>99.95</td> <td>96.93</td> <td>97.42</td> <td>98.85</td> <td>100.46</td> <td>95.53</td> <td>96.88</td> <td>97.32</td> <td>98.01</td> <td>97.58</td> <td>98.55</td> <td>98.75</td> <td>98.16</td> <td>98.61</td> <td>98.46</td> <td>95.13</td> <td>97.57</td>	Total	99.95	96.93	97.42	98.85	100.46	95.53	96.88	97.32	98.01	97.58	98.55	98.75	98.16	98.61	98.46	95.13	97.57				
Corrected compositions Stop: 44.42 45.56 46.51 47.44 44.54 45.56 46.518 45.56 46.518 45.56 46.518 45.56 46.518 45.56 46.518 45.56 46.518 45.56 46.18 45.56 45.56 45.56 46.18 45.56 46.18 45.76 10.0 18.00 17.10 1.45 <th 1.<="" colspan="4" td=""><td>CaO/Al₂O₃</td><td>0.57</td><td>0.67</td><td>0.70</td><td>0.53</td><td>0.69</td><td>0.55</td><td>0.59</td><td>0.53</td><td>0.74</td><td>0.59</td><td>0.78</td><td>0.59</td><td>0.61</td><td>0.70</td><td>0.74</td><td>0.76</td><td>0.63</td></th>	<td>CaO/Al₂O₃</td> <td>0.57</td> <td>0.67</td> <td>0.70</td> <td>0.53</td> <td>0.69</td> <td>0.55</td> <td>0.59</td> <td>0.53</td> <td>0.74</td> <td>0.59</td> <td>0.78</td> <td>0.59</td> <td>0.61</td> <td>0.70</td> <td>0.74</td> <td>0.76</td> <td>0.63</td>				CaO/Al ₂ O ₃	0.57	0.67	0.70	0.53	0.69	0.55	0.59	0.53	0.74	0.59	0.78	0.59	0.61	0.70	0.74	0.76	0.63
SiO2 14.2 15.56 47.93 47.64 47.64 47.44 44.54 45.57 44.54 4	Corrected	compos	itions																			
ThO: 1.12 1.14 1.27 1.10 1.44 1.47 1.07 1.31 1.25 1.26 1.08 1.24 1.02 1.00 FeO 213 212 1.95 2.09 1.95 2.12 2.14 2.29 2.24 2.29 2.24 2.00 1.98 1.71 1.96 FeO 710 7.06 6.92 7.03 6.95 7.32 7.15 7.00 7.02 7.03 7.02 7.93	SiO ₂		44.42	45.56	47.93	46.53	47.48	47.04	47.64	45.47	47.44	44.54		40.97	46.20	45.56	46.18	45.71				
ALO, 20.31 19.48 19.70 18.73 207 19.82 20.49 12.15 12.41 22 2.44 2.94 2.98 2.13 2.20 2.13 2.20 2.13 2.20 2.13 2.20 2.13 2.20 2.13 2.20 2.13 2.20 2.08 2.13 2.20 2.13 2.20 2.08 2.13 2.20 2.13 2.20 2.08 2.13 2.20 2.13 2.20 2.08 2.13 2.30 1.00 0.10 0.10 0.10 0.10 0.10 0.10 1.00 1.00 0.00 1.00	TiO ₂		1.12	1.14	1.27	1.10	1.44	1.44	1.47	1.07	1.31	1.25		1.26	1.08	1.24	1.02	1.06				
FeQ, 2.13 2.12 1.2 2.19 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 7.10 7.00	Al ₂ O ₃		20.31	19.48	19.70	18.73	20.79	19.82	20.49	19.15	19.48	18.52		22.74	19.09	18.90	17.71	19.64				
reb / 1.0 / 1.0 / 0.0 0.10 0.00 0.10 0.01 0.10 0.10 0.01 0.11 0.00 0.00	Fe_2O_3		2.13	2.12	1.95	2.09	1.98	2.10	2.00	2.12	2.14	2.29		2.08	2.13	2.20	2.19	2.18				
	FeO		7.10	/.06	6.92	7.03	6.95	7.23	/.1/	6.83	/.15	7.00		7.02	/.03	7.02	7.00	7.04				
	MnO M-O		0.16	0.09	0.18	0.10	0.11	0.10	0.11	0.14	0.16	0.10		0.08	0.09	0.12	0.15	0.13				
Calo 13.08 13.08 13.08 13.08 13.08 14.21 14.09 14.22 13.15	MgO CaO		8.00	1.95	/.90	8.6/	5.69	0.90	0.54	8.09	0.82	8.64		8.6/	1.92	/.91	9.52	12 42				
	VaO		13.08	2.65	2 20	2.69	2 75	2 20	10.88	2.61	2.65	2 70		2.09	15.44	2 82	2 40	12.45				
	Na ₂ O		0.32	0.28	0.42	2.01	0.30	0.29	0.25	0.31	0.46	0.33		0.35	0.20	2.85	2.49	0.30				
	Total		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$PEC\%^{3}$		4 2	53	1 4	5.6	2.1	4 8	3.0	0.0	4 5	74		4 2	4 5	5 4	7 5	5 7				
	Olivine co	mnositi		0.0	1.1	5.0	2.1	1.0	5.0	0.0	1.5	/.1		1.2	1.0	5.1	7.5	5.7				
	SiO	40.27	10 10	40.14	40.05	40.85	40.31	40.25	40.31	40.52	30.01	40.60	40.21	30.06	10.40	30.87	40.13	40.35				
	MσΩ	44 50	46 39	45.83	45.86	47.65	40.51	45.10	40.31	46.91	44 39	47.05	45 70	47.65	47.23	46 75	48.03	46.82				
	MnO	0.22	0.18	0.19	0.17	0.16	0.23	0.21	0.23	0.20	0.18	0.18	0.19	0.17	0.17	0.16	0.16	0.18				
	FeO	14.21	12.38	12.07	12.77	11.12	14.77	14.34	14.77	11.59	13.89	11.26	13.28	11.19	12.22	12.49	10.44	12.33				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NiO	0.17	0.21	0.26	0.22	0.17	0.19	0.23	0.19	0.27	0.26	0.18	0.24	0.19	0.23	0.16	0.35	0.21				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO	0.18	0.17	0.17	0.17	0.23	0.15	0.14	0.15	0.18	0.16	0.26	0.19	0.17	0.18	0.18	0.14	0.19				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	99.5	99.8	98.7	99.2	100.2	100.4	100.3	100.4	99.7	97.9	99.5	99.8	99.3	100.5	99.6	99.3	100.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fo/M.I.	84.8	87.0	87.1	86.5	88.4	84.4	84.9	84.4	87.8	85.1	88.2	86.0	88.4	87.3	87.0	89.1	87.1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fo/core	87.0	84.8	-	-	-	-	-	-	-	-	-	-	-	88.2	-	-	-				
SIMS analyses H2O 1.00 1.63 2.54 2.25 3.03 1.32 2.19 2.47 2.36 1.48 2.11 1.58 2.54 2.03 2.09 1.71 n ⁵ 3 3 2 4 2 2 2 2 3 2 2 2 3 2 Li 11.45 4.02 2.78 3.86 4.47 9.29 3.52 3.02 4.89 6.69 4.17 5.28 5.3 4.28 3.86 4.84 8.34 n ⁵ 2 2 2 3 1 3 2 1.67 16.86 10.68 10.70 7.39 11.30 3.38 n ⁵ 2 2 2 3 3.02 2.81 2.10 3.43 2.7 3.63 2.44 2.78 2.82 15.33 2.59 n ⁵ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </td <td>Fo/rim</td> <td>81.2</td> <td>81.2</td> <td>-</td> <td>-</td> <td>-</td> <td>81.1</td> <td>81.1</td> <td>81.1</td> <td>-</td> <td>-</td> <td>87.7</td> <td>-</td> <td>81.2</td> <td>88.0</td> <td>82.3</td> <td>88.2</td> <td>81.5</td>	Fo/rim	81.2	81.2	-	-	-	81.1	81.1	81.1	-	-	87.7	-	81.2	88.0	82.3	88.2	81.5				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SIMS ana	lyses																				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_2O	1.00	1.63	2.54	2.25	3.03	1.32	2.19	2.47	2.36	1.45	1.48	2.71	1.58	2.54	2.03	2.09	1.77				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n^5	3	3	2	4	2	2		2	2	3		2				2					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li	11.45	4.02	2.78	3.98	4.47	9.29	3.52	3.02	4.89	6.69	4.17	5.92	5.34	4.28	3.86	4.84	8.34				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n^5	2	2	2	3	3			1		3		2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	20.82	-	17.58	53.37	12.20	12.11	8.14	3.36	37.00	18.07	11.67	16.86	10.63	10.70	7.39	11.30	33.28				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n [°]		2	2		3					3		2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F	443	166	298	350	256	383	302	281	219	343	-	363	244	278	282	153	259				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n'	2	2	2	2	2	2	2	007	3	2		2	2	2	2	2	105				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	912	800	898	691	1007	958	1207	907	848	905	-	913	890	966	1093	963	105				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n [°]	1017	2	2	2	2	10(4	2	2	1105	000	1220	1104	2	2	2	1001	2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CI ⁵	1017	900	1006	987	2	1064	850	1412	2	988	1228	1194	1395	1424	13/9	1081	1306				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n 8 ³⁴ S	2	3	2 0.75	∠ 2.14	2 2 20	∠ 2.20	د د ح	2 0 1 2	5 1 5 0	4	1 72	2 2 1 4	2 2 10	2 2 02	2.05	1.04					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 11 ⁵	-	-	0.75	2.14	2.80	3.29	-7.32	-8.10	4.52	1.8/	1./3	-2.14	3.10	2.95	2.95	-1.94	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ν δ ¹⁸ Ο	8 24		5 00	5 57	∠ 5.25	7 16			5 70	5 28	5 56	Q 40	6 50	7 64	1 31	5 85	6 71				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n ⁵	0.24	-	5.50	5.57	3.43 2	7.40	-	-	3.12	5.58	5.50	7.40	0.39	7.04	4.31	5.05	0.71				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	π δ ⁷ Li	-2 71	-6 78	1 4 8	-246	-8.93	-3.80	-2.14	-3 80	-3.16	2 62	1.63	-8.18	3.02	-0.12	3 77	-0.53	2 52				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n^5	2./1	0.70	1.70	2.40	2	3	3	4	5.10	2.02	1.05	0.10	5.02	0.12	5.12	0.55	2.72				
n ⁵ 3 2	$\delta^{11}B$	-10.53	2.05	2.29	5.10	-1.04	3.01	10.95	11.80	2.80	2.11	4.33	-1.35	1.21	-3.41	2.94	9.34	6.60				
	n^5					3						2										

Caractérisation des Magmas Primaires de St. Vincent

										MI	with h	igh Ca($D/Al_{2}O$	2	
	172	180	182	182emb ⁴	185d ⁴	185emb ⁴	186	191	196	130	135a ⁴	170	173	3 199b ⁴	203
Measured	comp	osition	s										- / -		
6:0	44.52	44.00	42 5 1	50.04	44.50	40.96	42.05	44.07	47 10	41 75	11 (7	44.05	42.25	15 66	42.22
SIO_2	44.52	44.90	45.51	1 40	44.50	49.80	43.95	44.8/	4/.18	41.75	44.07	44.05	43.25	1.26	45.55
	10.21	17.76	10.52	1.49	19.40	16.26	10.13	19.88	20.89	1.25	17.09	18.93	1.23	18.90	18 75
FeO_{1}^{1}	8 58	6.20	6.98	9.93	7.00	10.20	7 90	5.93	7 13	7 59	636	6.87	6.73	8.62	6 58
MnO	0.14	0.12	0.12	0.19	0.09	0.30	0.08	0.10	0.18	0.13	0.14	0.10	0.09	0.02	0.50
MgO	5 20	5 94	6.00	4 49	5.76	4 31	5.07	5 46	4 98	5 74	5 67	5 84	5 57	5.01	5.26
CaO	13.75	13.89	14.00	9.86	13.86	9.92	13.86	15.30	13.47	15.86	16.73	17.02	16.49	16.10	16.14
Na ₂ O	3.31	2.53	3.03	3.89	2.79	3.91	2.81	3.23	3.44	3.05	2.53	3.22	3.41	3.18	2.79
K ₂ O	0.44	0.28	0.35	0.50	0.26	0.55	0.28	0.37	0.38	0.41	0.38	0.44	0.40	0.37	0.37
H_2O	1.43	2.64	2.28	1.34	2.61	0.83	3.02	1.24	1.89	1.87	2.03	1.69	1.52	1.68	1.68
Total	97.87	95.31	96.97	98.83	97.77	97.85	97.17	97.46	100.75	94.79	96.67	99.36	97.88	101.04	96.07
CaO/Al_2O_3	0.71	0.78	0.72	0.58	0.71	0.61	0.72	0.77	0.64	0.92	0.98	0.90	0.86	0.85	0.86
Corrected	compo	osition	S												
SiO ₂	46.24	46.78	44.89		45.59		46.03	44.59	46.35	44.28	45.74	43.87	43.39	45.75	44.27
TiO ₂	1.24	1.02	1.16		1.45		1.08	0.97	1.11	1.24	1.06	1.11	1.14	1.23	0.99
Al_2O_3	19.67	17.25	19.08		18.68		19.15	17.86	19.39	17.30	16.55	17.43	17.43	18.49	17.27
Fe_2O_3	2.09	2.19	2.21		2.16		2.19	2.39	2.18	2.48	2.40	2.45	2.56	2.28	2.46
FeO	6.53	6.96	6.96		7.05		7.12	7.25	7.25	6.76	6.76	6.78	7.18	6.64	7.26
MnO	0.14	0.12	0.12		0.09		0.08	0.09	0.17	0.13	0.14	0.09	0.08	0.16	0.09
MgO	6.23	9.48	8.59		8.71		7.37	9.88	7.49	8.34	8.34	9.23	9.77	6.34	9.89
CaO	14.03	13.49	13.69		13.35		13.88	13.74	12.51	15.99	16.21	15.67	15.00	15.67	14.87
Na ₂ O	3.38	2.46	2.96		2.69		2.81	2.90	3.19	3.07	2.45	2.97	3.10	3.10	2.57
K_2O	0.45	0.27	0.34		0.25		0.28	0.33	0.35	0.41	0.37	0.41	0.36	0.36	0.34
Total	100.0	100.0	100.0		100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PEC% ³	2.1	7.9	5.8		6.8		5.1	10.68	6.4	5.5	6.1	8.2	10.1	3.3	10.84
Olivine co	omposi	tions													
SiO ₂	40.21	40.65	40.65	39.69	40.50	40.12	39.68	40.22	40.73	40.80	40.63	40.44	40.606	41.33	41.46
MgO	45.70	48.20	47.66	42.50	47.85	45.51	46.31	47.59	46.17	47.31	47.07	48.36	48.464	46.01	49.04
MnO	0.22	0.19	0.19	0.29	0.19	0.22	0.21	9.67	12.85	0.14	0.16	0.14	0.183	14.07	10.53
FeO	14.23	10.33	11.53	17.95	10.97	14.81	12.55	0.15	0.20	11.32	11.31	9.97	10.059	0.21	0.16
NIO	0.17	0.26	0.25	0.13	0.25	0.20	0.19	0.43	0.25	0.26	0.21	0.25	0.304	0.17	0.23
CaU	0.17	0.18	0.21	0.18	0.18	0.16	0.20	0.21	0.16	0.16	0.22	0.17	0.158	0.18	0.18
Total Eo/M I	100.7 85.1	99.8 90.2	100.5	100.7	99.9	101.0 84.6	99.1	98.5	100.4 86.5	100.0 99 1	99.0 99.1	99.5	99.8 80.6	102.0 85.4	101.0
F0/IVI.I.	86.1	89.5 80.0	88 1	88 1	88.6	88.6	86.3	09.0	86.5	00.1	00.1	89.0	89.0	85.4 85.4	85.1
Fo/rim	85.3	86.2	80.8	80.8	82.1	82.1	84.2	86.3	87.1	-	-	78.7	79.5	84 3	89.3
SIMS ana	lycas	00.2	00.0	00.0	02.1	02.1	01.2	00.5	07.1			/0./	19.5	01.5	07.5
	1 42	264	2.20	1.24	2.61	0.82	2.02	1.24	1.90	1 07	2.02	1.60	1.52	1 60	1 60
$n_{2}O$	1.45	2.04	2.20	1.54	2.01	0.85	5.02	1.24	1.69	1.0/	2.05	1.09	1.32	1.08	1.08
n Li	4 4 9	4 43	3.98	9.24	3 48	10.29	4 79	5 52	4 97	5 20	3 47	3 80	3 57	3 17	3 69
n ⁵	т.т)	נד.ד 1	2	2	J.40	10.27	ч./) 1	5.52	ч.)/	5.20	3.77	5.00	2	2	3
B	11 54	8 68	36 99	12.75	8 54	14 29	13 48	12.52	9 89	15 76	6 53	15 84	11 69	12.79	5 43
n^5	11.01	0.00	00.77	2	0.01	1	12.10	12.02	2.02	10.70	0.00	10.01	11.09	2	3
F	272	113	319	355	403	462	138	179	24	176	264	64	218	82	32
n^5	2		3	2	2	2					2				
S	1379	1185	1184	619	1699	195	1150	804	54	755	769	-	1148	484	145
n^5	2		2			2				2	2				
Cl	1414	1118	1402	851	823	1408	1116	1093	123	1087	1217	-	1825	431	-
n^5	2		2	2		2				2	2				
$\delta^{34}S$	5.49	-	-	-	4.90	-4.93	3.68	3.01	2.72	4.44	4.64	-3.30	-1.62	1.76	2.30
n^5					2									2	2
$\delta^{18}O$	4.99	5.86	6.69	2.93	5.71	4.59	8.92	5.15	3.70	4.97	8.02	10.11	4.71	4.89	4.45
n^5						2					2				
δ ⁷ Li	3.83	-4.95	-3.16	-2.21	6.19	2.35	-2.40	4.72	2.91	-0.32	-2.25	3.07	1.95	-7.28	-1.81
n^5										2	2				
δ ¹¹ B	-2.40	-7.91	4.00	11.24	-	10.40	-2.79	-25.61	-6.86	0.29	3.11	-7.27	-0.17	-6.30	-16.28
n'															

(1) Fe = FeO_{tot} ; Fe_2O_3 est calculé pour 15% de FeO_{tot} . (2) Fo = $100x[Mg/(Mg + Fe^{2+})]$. (3) % d'olivine cristallisée post-piègeage, calculé avec Petrolog (Danyushevsky et al., 2000), à NNO+0.3. FeO (et Fe2O3) sont corrigés de la perte en Fer, avec FeO ref = 9.5 % pds (valeur pour un basales magnésien de St. Vincent) (4) a,b... Differentes inclusions dans le même cristal; "emb": verres (5) n est le nombre d'analyses SIMS."-" non determiné

Comme pour les volatils, Li et B présentent de large gamme de variation: de 3 à 53 ppm de B et de 2.6 à 11.4 ppm de Li pour l'ensemble des inclusions. Certaines inclusions basaltiques montrent un enrichissement sélectif en B, alors que d'autres définissent une tendance avec $B/K= 2.6 \times 10^{-3}$, représentant l'hétérogénéité de la source mantellique. Les concentrations en Li s'échelonnent de 2.6 à 9.2 ppm dans les inclusions basaltiques. Les golfes ont les teneurs les plus élevées (5.9 to 11.4 ppm), probablement dues à un processus de cristallisation fractionnée.

	H ₂ O	Li	В	$\delta^7 Li$	$\delta^{11} B$
	% pds	ppm	ppm		
SVN142-1	0.05	1.4	1.5	-6.2	-11.2
SVN142-2	0.07	1.6	0.7	-2.0	-28.6
SVN142-3	0.02	1.4	0.5	-4.0	-22.0
SVN142-4	0.02	1.1	0.8	-1.0	1.7
SVN142-5	0.02	1.2	0.7	7.2	-1.2
SVN108-1	0.02	1.2	0.7	0.0	-21.2
SVN108-2	0.01	1.2	0.6	-0.6	-7.0
SVN108-3	0.02	1.3	1.1	1.1	-18.6
SVN108-4	0.02	1.2	0.7	2.0	-17.7
SVN108-5	0.10	1.1	0.5	-2.0	-24.7
SVN108-6	0.01	1.2	0.9	0.6	-25.3
SVN108-7	0.02	1.2	0.8	0.2	-12.1
SVN108-8	0.01	1.3	0.3	-1.5	-18.3

Tableau IV.3 : Compositions en éléments légers et isotopes stables mesurées dans deux olivines de St. Vincent

Les inclusions riches en CaO ne se distinguent pas des inclusions basaltiques normales sur la base des compositions en isotopes stables, volatiles et éléments traces légers.

Les compositions isotopiques décrivent de larges variations. δ^7 Li varie de +7‰ à -9.6‰. Cette gamme de compositions couvre le champs des MORB (+3.4 to +4.7‰, Tomascak et al., 2008) et s'étend à des valeurs très négatives. Un fractionnement dû à une diffusion du Li de l'inclusion vers l'olivine hôte est exclu: ⁶Li étant plus rapide que ⁷Li (Lundstrom et al., 2005; Jeffcoate et al., 2007), la composition isotopique de l'inclusion devrait s'alourdir en cas de diffusion. Quelques mesures faites dans les olivines, à proximité de l'inclusion, au cœur et en bordure de l'olivine, attestent également que le Li n'a pas diffusé: aucun enrichissement en Li, ni de fractionnement n'a été observé à proximité de l'inclusion (Figure II.7, Tableau IV.3). δ^{11} B, δ^{18} O et δ^{34} S varient de -25.6 à +11.8 ‰, +3.2 à +10.1‰ et de -9.0 à +7.0%. Les valeurs négatives en δ^{34} S sont une caractéristique peu commune pour les basaltes non dégazés. Ces valeurs seront discutées en termes d'influence de source dans la discussion.

Fig. IV.2 : Modèle B vs. δ^{11} B, modifié d'après Rose et al. (2001). Ce modèle est décrit plus en détail dans l'annexe 15. La source mantellique de type MORB (Chaussidon et Libourel, 1993; Chaussidon et Jambon, 1994) est mélangée avec un fluide dérivant de l'eau de mer (4.4 ppm B, $\delta^{11}B = +40\%$; Straub et al., 2002). Le pourcentage de fusion de cette source modifiée est calculée en supposant une fusion par batch melting (Cliquide = $C_{\text{initiale}} / D \times ((1-F) + F)$ avec C la concentration, D le coefficient de partage et F le % de fusion). Le coefficient de partage magma/ roche (D) pour le bore utilisé est 0.015 (You et al., 1996). Les teneurs en B et compositions isotopiques pour la croûte océanique altérée (AOC) et les sédiments après différent degrés de déshydratation, ainsi que pour les fluides résultant de leurs déshydratations ont été calculées sur la base d'une distillation de Rayleigh, avec un $D_B^{\text{fluid/solid}} = 50$ (Rose et al., 2001) et un fractionnement isotopique entre fluide et solide $\Delta_{\text{f-s}} =$ +5‰. Les trajectoires théoriques calculées pour l'AOC et les sédiments déshydratés sont représentées par les flèches en pointillés (1 : sédiments, 2 : AOC) et les compositions des fluides issus de leur déshydratation sont représentées par les flèches en traits pleins 3 et 4 (sédiments et AOC respectivement). Les concentrations initiales en B (11 to 65 ppm) des sédiments terrigènes présents dans le prisme d'accrétion des Petites Antilles (champs « SED », ODP Leg 144, unités riches en silice, Annexe 2) ont été analysées au SARM-CRPG (Nancy). Leur composition isotopique est estimée à \sim -10‰ (Smith et al., 1997), valeur comparable à celle utilisée dans le modèle de Rose et al. (2001). Les compositions initiales de la croûte altérée (AOC) proviennent de Chaussidon et Jambon (1994), Chaussidon et Libourel (1993), Spivack et Edmond (1987). Pour comparaison, les valeurs pour l'eau de mer (Straub et al., 2002) et les carbonates (concentrations en B analysés au SARM-CRPG de quelques unités calcaires du Leg ODP 144; composition isotopique d'après Devhle et al., 2001) ont été indiquées. Les courbes de mélange entre la source mantellique et l'eau de mer indique suggèrent un apport allant jusqu'à 40% de B provenant de l'eau de mer (en supposant d'égales quantité d'eau de mer et de manteau). Les courbes de mélange entre le magma issu de la fusion du manteau modifié et les fluides résultant de la déshydratation de la lithosphère océanique subductées montrent que les inclusions vitreuses de St. Vincent ont enregistré des contributions variables de ces fluides, allant jusqu'à 40% pour les fluides de déshydratation de l'AOC (à 4.5% de déshydratation) et jusqu'à 45% pour les fluides de déshydratation des sédiments (6% de déshydratation).

Toutes les inclusions sont enrichies en eau, bore et chlore par rapport aux N-MORB, impliquant un métasomatisme de l'ensemble de la source mantellique avant l'étape de fusion enregistrée par les inclusions. En utilisant un modèle B vs δ^{11} B (Fig. IV.2, Annexe 15), basé sur la distillation de Rayleigh, modifié d'après Rose et al. (2001), la source pourrait avoir été enrichie par une faible quantité d'une fluide de composition proche de l'eau de mer (0.3 a 0.7%), enrichissant la source en B, H₂O et Cl, et modifiant les compositions isotopiques en B et O. En plus de ce métasomatisme affectant l'ensemble de la source mantellique, les variations observées en B et δ^{11} B reflètent l'influence de fluides de déshydratation des sédiments et de la croute océanique altérée. Les inclusions auraient piégé des magmas où l'influence des fluides de déshydratation des sédiments auraient apportée jusqu'à 45% de B, et ceux issus de la déshydratation de l'AOC jusqu'à 40%. Ces conclusions, basées sur le modèle du B, sont également vérifiées par les compositions en Li, δ^7 Li et δ^{34} S. En effet, les inclusions ont également enregistré des compositions en δ^7 Li très faibles, non affectées par des processus de diffusion de Li de l'inclusion vers l'olivine. Il est probable que ces faibles δ^7 Li, descendant jusqu'à -9.6‰, résultent d'un fractionnement isotopique lorsque les fluides de déshydratation de la croûte océanique altérée passent à travers d'autres lithologies, tels que les sédiments. Un simple processus de déshydratation ne suffit pas à expliquer de telles valeurs négatives. En effet, d'après Marshall et al. (2007), la déshydratation ne pourrait appauvrir la croute océanique altérée subductée que de 3‰, générant au maximum des valeurs minimales de δ^7 Li -3‰. Il semble alors peu probable que des fluides de déshydratation issus d'une telle croûte descendent jusqu'à ~-10‰, valeur observée dans les inclusions de St. Vincent.

La signature des sédiments est très bien marquée par les isotopes du soufre. Quelques inclusions ont des δ^{34} S négatifs (jusqu'à -8‰), rarement décrits pour les basaltes non dégazés. Celles-ci peuvent être expliquées par l'influence de black shales, sédiments présents dans le prisme d'accrétion de la Barbade, avec des compositions très faibles en δ^{34} S (jusqu'à -35‰; Cruse et Lyons, 2004). Ces variations ne sont pas reflétées par les roches totales portant une information moyennée sur un large volume de magma, alors que les inclusions ne représentent qu'un faible volume de magma piégé à un instant donné, donnant accès aux mécanismes et différentes étapes d'évolution des magmas. Les signatures les plus extrêmes, comme celle des black-shales en δ^{34} S, ne peuvent être préservées que par les inclusions.

Les teneurs en eau mesurées, extrêmement variables (0.85 à 5.5% pds), représentent un magma variablement enrichi par des fluides aqueux. Comparées aux travaux expérimentaux de Pichavant et al. (2002) sur des basaltes magnésiens de la Soufrière de St. Vincent, ces teneurs en eau impliqueraient des conditions d'extraction des magmas entre 13 et 14.5 kbar, et 1195-1220°C (Fig. IV.3).

Les inclusions riches en CaO ne se distinguent pas des autres inclusions en termes de composition isotopiques, ainsi qu'en éléments légers et volatils. De telles compositions sont souvent interprétées comme le résultat de la fusion de clinopyroxénites à la base ou dans la croûte (Danyushesvky et al., 2000; 2004; Schiano et al., 2000, Médard, 2004). Ici, ces inclusions peuvent représenter l'interaction des magmas enrichis par le slab avec des lithologies contenant des amphiboles et clinopyroxènes, résultats du métasomatisme du coin mantellique par un fluide semblable à l'eau de mer, à des pressions encore mantelliques (Fig IV.3).

Fig. IV.3: Schéma illustrant la genèse des magmas primaires de St. Vincent. Un premier fluide s'échappe du slab et métasomatise une large portion du coin mantellique, l'enrichissant notamment en H₂O, B et Cl, modifiant la paragenèse minérale en générant probablement des veines riches en amphibole et clinopyroxène. Deux autres sortes de fluides viennent ensuite influencer la source : des fluides de déshydratation de la croûte océanique altérée subductée, riches en B et avec des compositions légères en δ^7 Li, et des fluides issus de la déshydratation des sédiments, riches en Li, Cl, et avec des compositions négatives en δ^{11} B et δ^{34} S. Les teneurs en eau dissoutes, comparées aux travaux expérimentaux existants pour cette île (Pichavant et al., 2002) suggèrent des conditions d'extraction des magmas entre 13 et 14.5 kbar.

IV.2. Article publié dans Journal of Petrology: Slab-Derived Fluids in the Magma Sources of St. Vincent (Lesser Antilles Arc): Volatile and Light Element Imprints

2008

Slab-Derived Fluids in the Magma Sources of St. Vincent (Lesser Antilles Arc): Volatile and Light Element Imprints

A.-S. BOUVIER¹*, N. MÉTRICH² AND E. DELOULE¹

¹CENTRE DE RECHERCHE PÉTROGRAPHIQUES ET GÉOCHIMIQUES, NANCY-UNIVERSITÉ, CNRS 54501 VANDOEUVRE-LES-NANCY, FRANCE

²LABORATOIRE PIERRE SÜE, CNRS-CEA, CE-SACLAY, 91191 GIF-SUR-YVETTE CEDEX, FRANCE

RECEIVED DECEMBER 11, 2007; ACCEPTED MAY 6, 2008 ADVANCE ACCESS PUBLICATION JULY 7, 2008

It is generally accepted that the parental magmas of the Lesser Antilles arc were generated by partial melting of a mid-ocean ridge basalt (MORB)-type mantle source modified by slab-derived components. To determine the nature of these components, the H_2O , S, Cl, F, Li and B contents and $\delta^7 Li$, $\delta^{11}B$, $\delta^{18}O$ and $\delta^{34}S$ compositions were systematically determined in olivine-hosted melt inclusions from St. Vincent (southern part of the arc). Both the geochemical and isotopic data define a broad compositional spectrum. On the whole, the melt inclusions have basaltic to CaO-rich (>15.0 wt %), SiO_2 -poor (<45.7 wt %) compositions. Most of the entrapped melts result from $\sim 10-20\%$ batch partial melting of a MORBtype mantle source modified initially by dehydration fluids with low solute contents and a seawater-like chemical signature. As a result, the melt inclusions are enriched in B, Cl and H_2O compared with MORB and have $\delta^{II}B$ up to +15‰, $\delta^{34}S$ of ~2‰ and $\delta^{I8}O$ down to +3%. In contrast, some others record initial magmatic heterogeneities that require input of fluids derived from (1) the dehydration of altered oceanic crust in agreement with the selective Benrichment (up to 53 ppm) in the melt and negative lithium isotopic compositions, and (2) the dehydration of sediments resulting in distinctive $\delta^{II}B$ and $\delta^{34}S$ (down to -20‰ and -8‰, respectively) and high Li contents in the melts. The CaO-rich melt inclusions cannot be distinguished from the others on the basis of their isotopic signatures. They possibly reflect magma interactions with CaO-rich, amphibole-bearing lithologies. Combination of our results with literature experimental data leads to the conclusion that St. Vincent basaltic melt inclusions—whose water content varies from 2.2 to 3.6 wt %-represent magmas derived from a rather limited portion of the mantle wedge, by partial melting at between 13 and 14.5 kbar and a restricted temperature range (1220–1190 $^{\circ}C$).

KEY WORDS: Lesser Antilles arc; subduction; melt inclusions; volatiles; stable isotopes

INTRODUCTION

A number of processes can generate melting in the mantle wedge above subducted slabs of oceanic lithosphere (e.g. Gaetani & Grove, 2007): (l) anhydrous decompression melting, essentially active in back-arc spreading centres; (2) hydrous partial melting within buoyant diapirs, a process that appears limited because of the balance between buoyancy forces and thermal equilibration time; (3) melting by reactive porous flow of slab-derived fluids, inferred to be the dominant process in subduction zones. Fluids released from both the recycled altered oceanic crust and subducted sediments are thought to play a significant role in magma genesis in the sub-arc mantle.

The intra-oceanic volcanic arc of the Lesser Antilles (Fig. 1) is the result of the relatively slow (2 cm/year), westward subduction of the Atlantic plate beneath the Caribbean plate (see Macdonald *et al.*, 2000, for a review). From north to south along the arc, the lavas broadly vary in composition from low-K tholeiites (north) to calcalkaline (central part) to silica-undersaturated basalts in the southern part where picrites and rare ankaramites occur (Brown *et al.*, 1977; Macdonald *et al.*, 2000). Compositional variations in the magmatic suites of the Lesser Antilles lavas result from the superimposition of different processes, including polybaric fractional crystallization, crustal contamination and magma mixing, combined

Fig. 1. Map of the Lesser Antilles arc modified after Poussineau (2005). St. Vincent is located in the southern part of the inner volcanic arc, and shown in the inset on the left-hand side of the figure, with the locations of the lapilli deposits (SVN4) and HMB lava samples analysed in this study (numbers refer to the name of the sample; e.g. 4 means SVN4).

with a variety of compositions and proportions of slab components added to the mantle source (Macdonald et al., 2000). High-magnesia basalts (HMB, mg-number >70, MgO >10 wt %), are regarded as the parental magmas of most of the Lesser Antilles lava series (e.g. Macdonald et al., 2000, and references therein; Pichavant et al., 2002) although Draper & Johnston (1992) proposed that high-alumina basalts and basaltic andesites were produced by melting of the subducted slab. The generation or final equilibration of primary magmas beneath the arc has been inferred to take place at pressures between 15 and 30 kbar, based on pseudo-ternary projection of inferred primary lava compositions in the Ol-Di-Pl-Qz anhydrous system (Macdonald et al., 2000). The extent to which the most primitive parental magmas have been affected by assimilation and fractional crystallization (AFC) process has also been widely debated, particularly

at Grenada (Devine, 1995; Thirlwall *et al.*, 1996; Macdonald *et al.*, 2000). Thirlwall *et al.* (1996) proposed that even the picritic lavas have undergone minor crustal assimilation (2-5%), whereas Macdonald *et al.* (2000) suggested that only the ankaramitic 'C-series' at Grenada were affected by crustal contamination.

Lesser Antilles arc magmas have long been considered to originate from a normal mid-ocean ridge basalt (N-MORB) mantle source that has been affected by slabderived fluid components produced by dehydration of altered oceanic crust and melting of subducted sediments (Hawkesworth et al., 1979; Thirlwall & Graham, 1984; White & Patchett, 1984; White et al., 1985; Davidson, 1985; Davidson & Harmon 1989; Thirlwall et al., 1994; Pearce & Peate, 1995; Smith et al., 1997; McDonald et al., 2000). The contribution of 0.5-3.5% sediments to the mantle source was first hypothesized by White et al. (1985) to explain the enrichment of lavas in radiogenic Pb $(^{206}\text{Pb}/^{207}\text{Pb} = 20.16,$ 207 Pb/ 204 Pb = 15.85) specifically in the southern part of the arc. These proportions were re-evaluated to vary from 2% in the north to 15% in the south of the arc by Turner et al. (1996). Van Soest et al. (1998, 2002) also proposed that low ${}^{3}\text{He}/{}^{4}\text{He}$ ratios $(3 \cdot 6 - 7 \cdot 6 \ R_{A})$ in geothermal fluids and olivine crystals, and high δ^{18} O values (4.74–5.76‰) in olivines associated with radiogenic ⁸⁷Sr/⁸⁶Sr ratios (0.703970-0.705463; Davidson, 1985) in the lavas reflected the imprint of terrigenous sediments on the mantle wedge beneath the Martinique-Grenada section of the arc. The high ¹⁸⁷Os/¹⁸⁸Os ratios (0.134–0.164) of picritic lavas from Grenada were also interpreted as a sediment or slabderived fluid signature (Woodland et al., 2002).

Direct evidence of multi-stage metasomatism events in the mantle wedge and peridotite-melt interactions is found in peridotite xenoliths exhumed by alkali basalts from Grenada, where harzburgites (residue of $\sim 22\%$ fractional melting) are progressively transformed into lherzolites and ultimately into wehrlites (Parkinson *et al.*, 2003). Further remobilization and interaction with ascending alkali basaltic melts are also evidenced in these xenoliths (Vannucci *et al.*, 2007).

Recent studies of St. Vincent HMB have demonstrated that they were generated by around 15% partial melting of a MORB-type mantle source at ~17 kbar (50–60 km), ~1130°C, and an oxygen fugacity more oxidizing than the quartz-fayalite-magnetite solid buffer (FMQ+1; Heath *et al.*, 1998; Pichavant & Macdonald, 2003, 2007). This mantle source has been modified by the addition of slabderived aqueous fluid components, which strongly influence the P-T conditions of mantle partial melting. Parental melts giving rise to the HMB of St. Vincent could have been generated at 1235°C, 11.5 kbar when they contain 1.5 wt % H₂O, or 1185°C, 16 kbar with 4.5 wt % H₂O (Pichavant *et al.*, 2002; Pichavant & Macdonald, 2007). Assessing the chemical and isotopic composition of the primary magmas and their volatile content is challenging because of their scarcity in the geological record. The aim of this study is to determine the initial major and volatile element and isotopic composition of the primary magmas and to identify the slab-derived components by analysing melt inclusions (M.I.) hosted in high-Fo (85–89 mol %) olivines that are thought to be in equilibrium with the most primitive basaltic magmas of the southern Lesser Antilles arc. We focused in this work on olivine-rich lapilli from St. Vincent (Fig. l), located in the southern part of the arc, where relatively primitive basalts have been erupted as a consequence of fast ascent of magma without long-term storage in the crust (Heath *et al.*, 1998; Macdonald *et al.*, 2000).

The major element compositions of ~200 M.I. were determined by electron microprobe. The H₂O, Li, B, Cl, F, S contents and δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S of 50 selected M.I. were analysed by ion microprobe. The overall dataset allows us to discuss the petrogenetic processes that may have produced the St. Vincent magmas in the framework of the evolution of the Lesser Antilles arc.

SAMPLE LOCATION AND DESCRIPTION

Systematic sampling of scoria and lapilli deposits was undertaken on St. Vincent to collect suitable basaltic samples for melt inclusion studies and, in addition, some lava flows including HMB (Fig. 1). Pyroclastic deposits were collected: (1) on the west coast: fallout and lapilli deposits located south of Rose Bank, scoria from Jack Hill and Belleisle spatter cones; (2) from scoriae underlying the HMB lava flow at Ribishi point (SE); (3) from the pyroclastic sequence overlying the lava flows forming Jumby Point. Most of the samples, including the basaltic scoriae of the spatter cones (Jack Hill and Belleisle), contain crystallized or very small (<20 µm) M.I., which were not appropriate for volatile studies, as previously reported at St. Vincent and more broadly in the Lesser Antilles arc (Devine, 1995). One unit of slightly stratified black lapilli deposits located on the west coast near Troumaka (SVN4b) was found to be particularly rich in olivine crystals that contain glassy inclusions. Unfortunately, the bulk-rock sample was not suitable for accurate chemical analysis because of its richness in olivine crystals and the alteration of its matrix. This unit could belong to the Yellow Tuff formation on the description given by Heath et al. (1998), who reported the presence of basaltic lapilli in fall layers of the Yellow Tuff formation in the Rose Bank area. More than 500 olivine crystals from the 0.5-1 mm grain size fraction of different crushed scoriae fragments from this unit (SVN4b) were hand-picked under a binocular microscope and embedded in epoxy.

Their morphologies vary from euhedral (olivines with equant faces) to polyhedral, indicating different crystallization histories. About 200 olivine crystals were individually polished to expose their M.I. at the surface. Amongst the M.I. that were analysed for major elements, 50 were selected for secondary ionization mass spectrometry (SIMS) element and isotopic analyses.

ANALYTICAL METHODS Electron microprobe analysis (EMPA) of major elements

The major element compositions of olivine-hosted M.I., embayments that have preserved contact with the surrounding melt, host olivines, and spinels trapped in olivines were analysed using an SX50 CAMECA electron microprobe (Camparis-Jussieu, Paris). The analytical conditions were 5–10 μ m beam size, 10 nA beam current, an average 15 s (up to 40 s for K₂O) counting time for each major element for M.I. analyses, and a 40 nA focused beam and 200 s counting time for olivine and spinel analyses. Sulphur, chlorine and phosphorus were analysed with a 30 nA beam current and 200 s counting time. EMPA and SIMS (see below) results for S and Cl were cross-checked on 11 inclusions.

The reproducibility of analyses was checked using Alv981-R23 and VG2 basaltic glasses and San Carlos olivine as internal standards (see Electronic Appendix 1, available for downloading at http://www.petrology.oxford journals.org). Uncertainties (given for 1σ) are less than 1% for SiO₂, Al₂O₃ and MgO, 1% for CaO, 2% for FeO, less than 3% for TiO₂ and Na₂O, 5% for K₂O, and 26% for MnO. For each M.I., three points were analysed on average. Olivine compositions were systematically determined near the M.I. (to assess any Fe loss), and at the cores and rims (to check for zoning).

SIMS analyses

The H₂O, Li, B, F, S and Cl contents of the M.I. and their Li, B, O and S isotopic compositions were analysed using the CAMECA IMS 1270 ion probe at CRPG (Nancy, France), with a ~10 μ m projected beam size for all analyses, using a primary beam accelerating voltage of primary beam of 13 kV for both O⁻ and Cs⁺ ions and a 10 kV secondary accelerating voltage. For all these measurements, olivines were mounted in gold-coated epoxy rings.

H₂O, Li, B, δ^7 Li and δ^{11} B analyses were performed with an O⁻ primary beam. The H₂O, Li and B contents were measured in a single analysis, with a primary beam intensity of 10–15 nA, a mass resolution of 1500 and an energy filtering of -60 V. Intensities of ¹H⁺, ⁷Li⁺, ¹¹B⁺ and ³⁰Si⁺ were measured by peak switching, in monocollection ion counting mode. H, Li and B were normalized to Si, and their ionization yields relative to Si were calibrated by

	H ₂ O (wt %)	Li (ppm)	B (ppm)	δ ⁷ Li (‰)	δ ¹¹ Β (‰)	S (ppm)	CI (ppm)	F (ppm)	δ ¹⁸ Ο (‰)	δ ³⁴ S (‰)
BHVO-1 ¹		4.6 ± 1.6	2.5 ± 0.6	5.8 ± 1.7	-5.5 ± 2					
L-SVEC50 ²				0.7 ± 1.7						
JB2 ³				5.0 ± 1.7	$7{\cdot}2\pm0{\cdot}39$					
GB4 ⁴			970 ± 10							
NIST610 ⁵		450 ± 11								
		500 ± 18	342 ± 17							
		506 ± 19	350 ± 49							
KN18 ⁵		85 ± 2	30 ± 6							
		$89\pm\!2$	29 ± 4							
		100 ± 20								
CY82-27-1V ⁶	$0{\cdot}32\pm0{\cdot}01$					$1104\pm\!200$	136 ± 27	236 ± 47	$6{\cdot}0\pm0{\cdot}2$	6 ± 0.3
CY82-29-3V ⁶	$0{\cdot}19\pm0{\cdot}01$								$6{\cdot}1\pm0{\cdot}2$	$0{\cdot}4\pm0{\cdot}3$
CY82-31-2V ⁶	$0{\cdot}17\pm0{\cdot}01$								$5{\cdot}7\pm0{\cdot}2$	$1{\cdot}3\pm0{\cdot}3$
ETNA II-3 ⁶	$3{\cdot}60\pm0{\cdot}08$									
ETNA III-0.5 ⁶	$1{\cdot}27\pm0{\cdot}02$									
ETNA III-2 ⁶	$2{\cdot}41\pm0{\cdot}05$									
ETNA III-3 ⁶	$2{\cdot}47\pm0{\cdot}05$									
ALV981-R237						1100 ± 100	\leq 55	130 ± 12		
KE12 ⁷						205 ± 50	3280 ± 120	$4400\pm\!240$		
CFA ⁷							5100 ± 200	$2270\pm\!20$		

Table 1: Reference values for element and isotope analyses

¹BHVO-1, a natural basaltic glass from Hawai Li, B values (compilation from Gladney & Roelandts, 1987); δ^7 Li determined by SIMS 1270 with a relative error of 1.7‰ (Decitre *et al.*, 2002); δ^{11} B values were determined in this study, with a relative error of 2‰.

 2 L-SVEC50 δ^7 Li values were determined by SIMS 1270 with a relative error of 1.7‰ (Decitre *et al.*, 2002).

¹3JB2: a GSC standard rock; $\delta^{11}B = 7.17 \pm 0.39\%$ (compilation of various methods, Rosner *et al.*, 2008), and $\delta'Li =$ 5.0 ± 1.7 (Decitre, 2000). ⁴For B calibrations, we used GB4, a CRPG glass standard (B = 970 ± 10 ppm, Gurenko & Chaussidon, 1997).

⁵NIST610, standard from the National Institute of Standards and Technology and a natural peralkaline rhyolite (KN18) from Kenya for which Li and B were determined using absorptiometry and atomic absorption, respectively, on bulk fragments (CRPG-Nancy), SIMS and nuclear microprobe analysis (see Rio et al., 1995).

⁶Water contents were calibrated with ETNA experimental glasses (ETNA II-III series) synthesized at ISTO (Orléans, France), and analysed by Karl Fischer titration (B. Scaillet) with a relative error of 5%, and unaltered natural MORB (CY82 series) for which H_2O was determined using a VG602D mass spectrometer with a relative error of $\pm 5\%$. S, CI and F contents are measured by coulometric titration at CRPG, with a relative error of $\pm 20\%$. δ^{18} O and δ^{34} S were determined by VG602D mass spectrometer (Chaussidon *et al.*, 1991). ⁷Contents of S, CI and F of ALV981-R23, KE12 and CFA are averaged data from Spilliaert *et al.* (2006) (compilation of CI

and S electron microprobe analyses and of F analyses obtained using SIMS 1270 and nuclear microprobe, and specific electrode technique on bulk fragments) and electron microprobe analyses (this study: $CI = 3280 \pm 120$ ppm, $F = 3830 \pm 90$ ppm; CFA47: $F = 2270 \pm 20$ ppm), and Mosbah *et al.* (1991) (ALV981-R23: $F = 130 \pm 15$ ppm; KE12: $CI = 3300 \text{ ppm}, F = 4400 \pm 240 \text{ ppm}; CFA: CI = 4800 \text{ ppm}, essentially determined by nuclear microprobe).$

measuring international and laboratory standards (data are listed in Table 1). Major element compositions of the standards are reported in Electronic Appendix 1, and measured and published ratios are reported in Electronic Appendices 2, 3 and 5. For $\delta^7 \text{Li}$ and $\delta^{11}\text{B}$ determinations, ⁶Li, ⁷Li, ¹⁰B and ¹¹B were measured with a 10–15 nA O⁻ primary beam, at a mass resolution of 1500 without energy filtering, over a period of 18 min (15 cycles). The instrumental isotopic fractionation of lithium and boron was determined by analysing standards with basaltic compositions (Table 1, Electronic Appendices 2, 4 and 6).

The Cs⁺ primary beam was used for measuring F, Cl and S contents and $\delta^{34}S$, $\delta^{18}O$, ${}^{19}F^-$, ${}^{32}S^-$, ${}^{35}Cl^-$ and ${}^{30}Si^$ were measured together in monocollection mode, during a 15 cycle analysis, at 3000 mass resolution and without energy filtering with a 10 nA primary beam. F, Cl and S were normalized to Si, and their ionization yields relative to Si were determined by measuring international or laboratory standards (Table 1, Electronic Appendices 1, 2 and 5). SIMS and EMPA measurements of sulphur are comparable, suggesting there is no matrix effect using the SIMS Cs ion source, as also proposed by Spilliaert *et al.* (2006). δ^{34} S and δ^{18} O were measured in multicollection mode, with 3000 mass resolution, no energy filtering, a primary beam intensity of ~10 nA, and counting time of 6 and 4 min each, respectively. For δ^{34} S measurements, ³²S was measured with a Faraday cup (FC) and ³⁴S using an electron multiplier (EM), and the instrumental fractionation was determined on the glasses CY-82-29-3V and CY-82-31-2V (Table 1, Electronic Appendices 1, 4 and 6). For δ^{18} O, ¹⁶O and ¹⁸O were measured by FC, and calibrated against the MORB glasses CY-82-27-1V and CY-82-29-3V (Table 1, Electronic Appendices 1, 4 and 6), which have SiO₂ contents close to those of the melt inclusions (Electronic Appendix 1).

Because of the small size of the melt inclusions, several analyses had to be acquired successively on the same spot position. Therefore, we verified the reliability of multielement analyses performed on the same spot, using either the O_2 or the Cs source, by duplicated or triplicated volatile and isotopic analyses on the same spot, or on different spots when the inclusion was large enough. Almost half of the inclusions were measured two or three times for H₂O, Li, B, F, S and Cl contents and δ^7 Li, δ^{11} B, δ^{18} O and δ^{34} S, either in the same session, but not consecutively, or in different sessions, separated by several months. No systematic changes were observed; thus we conclude that there was no analytical bias caused by successive measurements on the same spot.

Uncertainties (1σ) defined using the various standards are as follows: 8% on water, 2% on Li, 4% on B, 7% on Cl, 3% on S, 6% on Cl, and $\pm 1.2\%$ on δ^7 Li, $\pm 2.1\%$ on δ^{11} B, $\pm 0.16\%$ on δ^8 O and $\pm 0.53\%$ on δ^{34} S (Electronic Appendices 2–4). The average analytical reproducibilities (mean standard deviation, 1σ) between sample replicate measurements were 15% on H₂O, ~8 and 16% on Li and B, respectively, and 18, 12 and 14% on F, S and Cl, respectively. The sample reproducibilities for isotopic analyses are: $\pm 1.3\%$ for δ^7 Li, $\pm 2.2\%$ for δ^{11} B, $\pm 1.25\%$ for δ^{18} O and $\pm 0.71\%$ for δ^{34} S.

Isotopic compositions are reported relative to reference standard values, as

$$\delta^{7}Li = \{[(^{7}Li/^{6}Li)_{sample} - (^{7}Li/^{6}Li)_{std}]/(^{7}Li/^{6}Li)_{std}\} \times 1000$$

where the standard is L-SVEC (${}^{7}\text{Li}/{}^{6}\text{Li} = 12 \cdot 175$). The same calculation is applied for the other isotopic compositions: $\delta^{11}\text{B}$ is referenced to NBS 951 ${}^{11}\text{B}/{}^{10}\text{B}$ ratio (4.044); $\delta^{18}\text{O}$ to the SMOW ${}^{18}\text{O}/{}^{16}\text{O}$ ratio (2005·2 × 10⁻⁶) and $\delta^{34}\text{S}$ to the Canyon Diablo ${}^{34}\text{S}/{}^{32}\text{S}$ ratio (4.43 × 10⁻²).

MINERAL CHEMISTRY

Olivines show a large range of chemical variation from Fo_{90} to Fo_{72} (Fig. 2a). Of the more than 200 olivines analysed, a large proportion is rich in MgO and normally zoned, with Fo_{89-85} cores and Fo_{85-77} rims. Only rare

Fig. 2. (a) Compositional variation of St. Vincent olivines (Fo mol %). Most of the olivines have magnesian compositions, with Fo > 86. (b) Variation of CaO vs NiO (in wt %) in olivines. The grey field represents mantle olivine compositions (Parkinson *et al.*, 2003). For comparison, data for olivines from 'picritic' lavas and lapilli deposits from Ilet à Ramier in Martinique are also plotted (authors' unpublished data).

Fe-rich olivines show reverse zoning. These observations indicate insignificant olivine re-equilibration and rapid transfer from their crystallization site to the surface. Their NiO and CaO contents vary from 0.07 to 0.34 wt % and from 0.09 to 0.28 wt %, respectively (Fig. 2b). As a whole, NiO decreases with the Fo mol % of olivine, whereas statistically ~60% of the olivines have a CaO content between 0.15 and 0.20 wt % without a clear relationship between their Fo and CaO contents. Very few olivines have both a high CaO and Fo content (e.g. 0.26 wt % CaO in Fo_{88.6}; Electronic Appendix 7). Olivines with CaO <0.06 wt %, typical of mantle olivine (Parkinson et al., 2003), have not been found in our samples, but were observed in a few HMB lavas of St. Vincent (M. Pichavant, personal communication). In contrast, they can be common in primitive basalts from the Lesser Antilles arc; for example, in Grenada and Martinique (Parkinson et al., 2003, and unpublished data).

	Spinels i	solated in ol	ivine				Spinels associated with melt inclusions					
Sample:	173 sp	180 sp2	182 sp1	167 sp1	163 sp	182 sp1	173a sp	184a sp	108b sp	164a sp rim	164 sp core	
SiO ₂	0.05	0.11	0.03	0.10	0.08	0.04	0.30	0.07	0.09	0.17	0.46	
Al ₂ O ₃	17.04	16.13	20.49	20.72	30.00	21.81	36.03	59.53	41.20	55.71	24.60	
MgO	13.24	12.96	9·15	13.00	14.98	9.58	17.09	19.59	16.54	19.19	14.38	
TiO ₂	0.87	0.70	0.78	0.67	0.65	0.87	0.46	0.28	0.50	0.36	0.65	
Cr ₂ O ₃	44.90	45.84	37.99	39.59	28.40	35.93	26.07	0.20	19.37	2.84	31.18	
MnO	0.10	0.09	0.17	0.15	0.13	0.19	0.09	0.12	0.15	0.11	0.14	
FeO	14.80	15.08	21.71	15.55	14.08	21.40	12.59	11.58	13.57	12.42	14.61	
Fe ₂ O ₃	7.98	8.26	9.60	9.13	11.07	10.34	8.63	8.70	8.71	11.30	13.42	
Total	98.98	99·18	99.93	98·91	99.39	100.15	101.25	100.06	100.13	102.10	99.46	
$\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$	2.1	2.0	2.5	1.9	1.4	2.3	1.6	1.5	1.73	1.2	1.2	
100 \times Mg-no.	61.4	60.5	42.9	59.8	65.5	44.4	70.8	75·1	68·5	73.4	63·7	
100 \times Cr-no.	63.9	65.6	55·4	56·2	38.8	52·5	32.7	0.2	24.0	3.3	46.0	
Host olivine												
SiO ₂	40.61	40.30	40.65	40.19	39.84	39.66	40.25	40.33	40.85	40.14		
MgO	48.46	48.72	47.66	46.93	47.00	43.89	47.77	47.50	47.65	47.50		
MnO	0.18	0.16	0.19	0.22	0.16	0.23	0.18	0.17	0.16	0.16		
FeO	10.06	9⋅81	11.53	11.74	12.28	16.05	10.49	11.28	11.12	11.90		
NiO	0.30	0.28	0.25	0.25	0.23	0.23	0.26	0.25	0.17	0.26		
CaO	0.16	0.17	0.21	0.16	0.17	0.16	0.19	0.18	0.23	0.16		
Total	99.77	99.43	100.47	99.50	99.68	100.22	99.13	99.69	100.19	100.12		
Fo (mol %)	89.6	89.8	88·0	87.7	87·2	83·0	89.0	88.2	88.4	87.7		

Table 2: Selected compositions of spinel-olivine pairs and of spinel associated with melt inclusions

Mg-number $[=Mg/(Mg + Fe^{2+})]$ and Cr-number [=Cr/(Cr + AI)] are in mol %. Fo = $100 \times [Mg/(Mg + Fe^{2+})]$.

The olivines contain numerous Cr-spinel inclusions, of <10 to 20 µm in size, with a Cr number [Cr/(Cr+Al)] varying from 0.01 to 0.63 (Table 2; Figs 3 and 4a). They overlap the field reported for Cr-spinels in St. Vincent HMB (Heath et al., 1998; Pichavant & Macdonald, 2007). Amongst the analysed spinels (31), one-third are associated with melt inclusions and possibly favoured their trapping. These latter do not show significant difference from spinel isolated in the olivine except a few (four) grains that exhibit significant zoning with Cr number decreasing from 0.45 to 0.2 (Fig. 3) and Al₂O₃ and MgO contents increasing to 60 wt % and 20 wt %, respectively, in the late growth rim (Table 2; Fig. 4d). Al-rich spinels were previously reported in some basanitoids of Grenada (Arculus, 1974, 1978). Al-rich spinels and Al-rich rims surrounding Cr-rich core spinels have also been found in some arc basalts and interpreted as the crystallization products of anomalously Al-rich melts derived from the melting of amphibole-rich cumulates, probably in a subarc magma chamber (Della-Pasqua et al., 1995). However, we emphasize that the Al-rich spinel rims are found at

Fig. 3. Variation of Cr-number $[100 \times Cr/(Cr + Al)]$ vs Mg-number $[100 \times Mg/(Mg + Fe^{2+})]$ in spinels hosted in olivine. Literature data are from [1] Pichavant & Macdonald (2007), [2] Pichavant *et al.*, 2002 for experimental spinels, and [3] Heath *et al.* (1998) for spinels from St. Vincent post-caldera lavas.

Fig. 4. Photomicrographs of M.I. in St. Vincent olivines. (a) M.I. randomly distributed in the host crystal. Chromites are either associated with inclusions or isolated in olivine. (b) Isolated, rounded M.I. with a bubble and associated with a spinel. (c) Elongated inclusion with a small zoned spinel. (d) Detail of a spinel at the contact of a melt inclusion showing strong zoning on the micrometre scale with Cr number varying from 0.46 (core) to 0.03 (rim, sample 164, Table 2).

the contact with M.I. and might simply testify to low-temperature growth at the contact with an Al-rich melt. Indeed, St. Vincent M.I. are all rich in Al_2O_3 with concentrations varying from 14.6 to 23.2 wt %, a range similar of that of the St. Vincent basalts (14.2–21.5 wt %, Table 4 and unpublished data; Heath *et al.*, 1998). Moreover, Al, Mg-rich spinels have been experimentally reproduced at temperatures of 1160–1180°C and pressures between 9.5 and 14.5 kbar in St. Vincent HMB (Pichavant *et al.*, 2002; Pichavant & Macdonald, 2007), suggesting that these Al-rich spinel could crystallize from an Al-rich melt at upper mantle pressures.

MELT INCLUSIONS Major element chemistry

The M.I. in the analysed sample (SVN4b) are randomly distributed in polyhedral olivine phenocrysts whose

growth-rate led to trapping of a melt fraction inferred to be representative of the host magma (Faure & Schiano, 2005). They are free from cracks or other evidence of leakage. They are preserved as glass and range in size from 40 to 150 μ m. As a whole they are ovoid or elongated, with a shrinkage bubble (Fig. 4b and c), and often associated with spinel. No sulphide globules were observed. Some embayments, representing open systems (Fig. 4a) and often containing microlites, were analysed to assess the composition of more evolved melts.

We do not observe any relationship between major element composition and the size or shape of the inclusions. However, the M.I. have undergone variable extents of olivine post-entrapment crystallization. We calculate the $K_{\rm D}$ [(FeO/MgO)_{ol}/(FeO/MgO)_{melt}] for each melt inclusion, using an Fe₂O₃/FeO melt ratio of 0.4. This ratio was calculated using the spinel compositions (Maurel & Maurel, 1982) and the Kress & Carmichael (1991) equation for fO_2 at NNO+14 (Δ NNO = $[log_{10}fO_{2sample} \log_{10} f O_{2(NNO)}$) that was experimentally determined for St. Vincent HMB (Pichavant et al., 2002; Pichavant & Macdonald, 2003). The calculated $K_{\rm D}$ of the inclusions varies from 0.4 to 0.1. This range is much larger than the average value of 0.32 ± 0.03 obtained for St. Vincent HMB (Pichavant et al., 2002) and the theoretical value of 0.31 ± 0.01 calculated for the M.I. in this study using the $K_{\rm D}$ model of Toplis (2005). The lowest $K_{\rm D}$ values reflect post-entrapment crystallization on the inclusion walls. In addition, some inclusions, essentially those trapped in olivine Fo>86, may have also suffered Fe loss, resulting in high $K_{\rm D}$ (>0.32) and lower FeO contents (7.1 wt % on average) than the HMB lava from Black Point (9.5 wt %, Table 3), inferred to be representative of the primary magmas (Pichavant et al., 2002). Because some of the M.I. that have not suffered Fe loss have FeO contents as high as those measured in the HMB, we have used this value for the M.I. that have experienced Fe loss. Post-trapping olivine crystallization (PEC%) was evaluated using the Petrolog software (Danyushevsky et al., 2000, 2002). This correction leads to an uncertainty of $\sim 5\%$ on element abundances and affects the Fe/Mg ratio of the inclusions but not the ratios between other elements. The percentage of PEC ranges from 1.7 to 11.1% (Table 3). The data for M.I. discussed hereafter are corrected for PEC.

Nearly 200 M.I. were analysed in olivines (Fo_{89.9} to Fo_{<83}) for their major element contents using the electron microprobe. All of them display a wide compositional spectrum, with SiO₂ varying from 40·2 to 55·9 wt %, and K₂O from 0·25 to 0·85 wt %. In a plot of K₂O vs SiO₂ (Fig. 5a) two populations can be identified. In the first population, K₂O and SiO₂ are positively correlated. These M.I. are less evolved than those previously analysed in Yellow Tuff samples (Heath *et al.*, 1998). More specifically, the M.I. trapped in Fo₈₅₋₈₉ closely resemble the

whole-rock basaltic samples from St. Vincent (with $SiO_2 = 47.7-46.2 \text{ wt} \%$ and $K_2O = 0.34-0.30 \text{ wt} \%$; Fig. 5a). They display similar Na_2O/K_2O (0.11) and range in CaO/Al₂O₃ (0.58-0.76) (Fig. 5b and c) and MgO contents (~6.3 to ~9.1 wt %) (Fig. 5d). The most evolved melt inclusions (SiO₂>50 wt %, K₂O >0.5 wt %, MgO <4 wt %; Fig. 5a and d) are those trapped in Fe-rich olivines (Fo <83) and embayments that remained in contact with the surrounding matrix. Increasing SiO₂ and K₂O contents are correlated with decreasing Na₂O contents (Fig. 5b), reflecting late-stage melt differentiation.

A second population departs from this general evolution trend in having low SiO₂ (43·7–45·9 wt %) contents, weakly negatively correlated with K₂O (Fig. 5a). Their CaO content reaches $14\cdot1-16\cdot9$ wt % with CaO/Al₂O₃>0.80 (Fig. 5c). These Ca-rich M.I., mostly trapped in olivine Fo_{87·0–89.9}, display the same range of MgO

contents as the 'normal' basaltic M.I. (Fig. 5d). They are nepheline-normative, as commonly reported for M.I. in arc settings (Schiano et al., 2000), unlike M.I. from MORB and ocean island basalt (OIB), which are richer in SiO₂, hypersthene-normative, and inferred to be trapped at higher pressures (Médard et al., 2004). No clear correlation was observed between the M.I. CaO content and that of their host. Combination of careful optical observations and the major element compositions of the M.I. does not reveal a relationship between the melt CaO content or its CaO/Al₂O₃ and the presence of spinel, the late growth of which could have affected their composition after trapping. As a whole, the EMPA totals (including volatile contents) are between 97 and 99 wt % with no clear relationship with the SiO₂ content. We thus consider these low SiO2 contents to be reliable, representative of Ne-normative, Ca-rich melts.

Table 3: Selected PEC-corrected compositions of St. Vincent melt inclusions analysed by SIMS 1270

	M.I. with high CaO/Al ₂ O ₃ ratio									M.I. repr	resent	tative of t	the m	nodified M	ORB	source				
	130	n	135a	n	170	n	173	n	203	n	14	n	19	n	20	n	180	n	185d	n
Corrected c	ompositior	<i>าร</i>																		
SiO ₂	44·28		45.74		43.87		43.39		44·27		45.54		46.39		46.31		46.78		45.59	
TiO ₂	1.24		1.06		1.11		1.14		0.99		1		1.09		1.19		1.02		1.45	
Al_2O_3	17.3		16.55		17.43		17.43		17.27		18.39		18.08		19.52		17.25		18.68	
Fe ₂ O ₃	2.48		2.4		2.45		2.56		2.46		2.21		2.19		2.04		2.19		2.16	
FeO	6.76		6.76		6.78		7.18		7.26		6.94		6.93		6.54		6.96		7.05	
MnO	0.13		0.14		0.09		0.08		0.09		0.11		0.14		0.09		0.12		0.09	
MgO	8.34		8.34		9.23		9.77		9.89		9.45		8.56		6.76		9.48		8.71	
CaO	15·99		16.21		15.67		15		14.87		12.97		13.5		14.32		13.49		13.35	
Na ₂ O	3.07		2.45		2.97		3.1		2.57		3.03		2.82		2.94		2.46		2.69	
K ₂ 0	0.41		0.37		0.41		0.36		0.34		0.39		0.31		0.29		0.27		0.25	
Total	100		100		100		100		100		100		100		100		100		100	
${\rm CaO}/{\rm AI_2O_3}$	0.92		0.98		0.9		0.86		0.86		0.7		0.75		0.73		0.78		0.71	
PEC%	5.5		6.1		8·2		10.1		10.84		6.6		4.6		1.9		7.9		6.8	
Fo%	88·1		88·1		89.6		89.6		89·2		89.4		88.7		86		89.3		88.6	
SIMS analy	ses																			
H_2O wt %	1.9		2	4	1.7		1.5		1.7	2	3.5	3	3.4	2	1.6	2	2.6	2	2.6	1
Li ppm	5.2		3.5	3	3.8		3.6	2	3.7	3	4.8	3	5.9	2	4.9	1	4.4	1	3.5	1
B ppm	15.8		6.5		15.8		11.7		5.4	3	9.2	2	8.2	2	27		8.7		8.5	
F ppm	176		264	2	64		218		32		265	2	279	2	423		113		403	2
S ppm	755	2	769	2	-		1148		145		976	2	329		933		1185		1699	
CI ppm	1087	2	1217	2	-		1825		-		1376	2	839	2	1164		1118		823	
$\delta^{34}S~\%$	4.4		4.6		-3.3		-1.6		2.3	2	_		-2.5		2.3		_		4.9	2
δ^{18} O ‰	5		8	2	10.1		4.7		4.5		6.7		6.7		5.5		5.9		5.7	
δ^7 Li ‰	-0.3	2	-2.3	2	3.1		2		-1.8		-0.2	2	1.4	2	0.6		-4.9		6.2	
$\delta^{11}B~\%$	0.3		3.1		-7.3		-0.2		-16.3		5.8		10.3		7		-7.9		—	

(continued)

Table 3: Continued

	M.I. representative of the AOC contribution						M.I. representative of the sediment contribution													
	0b	n	105	n	107b	n	118	n	182	n	33a*	n	33d*	n	80a	n	191	n	196	n
Corrected co	ompositior	<i>15</i>																		
SiO ₂	45·16		43.82		47.93		45.47		44.89		46.46		46.83		48.57		44.59		46.35	
TiO ₂	1.15		1.29		1.27		1.07		1.16		1.08		1.08		0.95		0.97		1.11	
AI_2O_3	18.92		21.33		19.7		19.15		19.08		19.19		17.37		18.06		17.86		19.39	
Fe ₂ O ₃	2.2		2.01		1.95		2.12		2.21		2.14		2.61		2.17		2.39		2.18	
FeO	7.12		6.83		6.92		6.83		6.96		6.92		8.37		7.21		7.25		7.25	
MnO	0.07		0.12		0.18		0.14		0.12		0.13		0.16		0.09		0.09		0.17	
MgO	8.78		7.69		7.9		8.09		8.59		6.59		7.4		8.12		9.88		7.49	
CaO	13.59		13.68		10.36		14.21		13.69		14.42		13.12		11.14		13.74		12.51	
Na ₂ O	2.71		2.9		3.39		2.61		2.96		2.76		2.78		3.36		2.9		3.19	
K ₂ 0	0.3		0.33		0.42		0.31		0.34		0.31		0.29		0.34		0.33		0.35	
Total	100		100		100		100		100		100		100		100		100		100	
CaO/Al_2O_3	0.72		0.64		0.53		0.74		0.72		0.75		0.76		0.62		0.77		0.64	
PEC%	1.97		2.6		1.4		0		5.8		1		3.2		8.2		10.68		6.4	
Fo%	88.3		87		86.5		87.8		88		85.7		84.6		87.6		89.8		86.5	
SIMS analys	ses																			
H_2O wt %	2.39	3	0.86	3	2.25	4	2.36	2	2.28	3	3.95	2	3.42		2.17		1.24		1.89	
Li ppm	3.02	2	4 ⋅1		3.98	3	4.89		3.98	2	3.81	2	3.43		2.77		5.52		4.97	
B ppm	26.46		35.46		53.37		37		36.99		11.62	2	15.79		21.51		12.52		9.89	
F ppm	278	2	227	2	350	2	219	3	319	3	142	1	-		126		179		24	
S ppm	1056		689	2	691	2	848		1184	2	1158		_		1266		804		54	
CI ppm	1855		1121		987	2	1105	3	1402	2	1319		_		982		1093		123	
$\delta^{34}S$ ‰	_		-		2.14		4.52		_		-2.47		_		-4.78		3.01		2.72	
δ^{18} 0 ‰	3.23		9.8		5.57		5.72		6.69		8.76		_		4		5.15		3.7	
$\delta^7 Li~\%$	-8.55	2	2.48		-2.46	2	-3.16		-3.16		0.84		-9.59	2	-7.05		4.72		2.91	
$\delta^{11}B~\%$	6.7		3.69		5.1		2.8		4		-9.38		-12		-4.09		-25.61		-6.86	

 Fe_2O_3 calculated for NNO + 0.3. $Fo = 100 \times [Mg/(Mg + Fe^{2+})]$. PEC, post-entrapment crystallization, calculated with Petrolog Software (Danyushevsky et al., 2000). (See text for details of calculation.) AOC, altered oceanic crust; -, not determined; n, number of SIMS analyses. *a, b..., different M.I. in the same crystal.

Totals (major elements + volatile contents) as low as 97 wt % could result from a combination of the sample preparation technique and the analytical uncertainties (see Analytical Methods section).

SIMS analysis

We have carefully selected 49 M.I. and entrapped glasses for SIMS analysis of H₂O, B, Li, Cl, F, S and δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S on the basis of their major element compositions. Representative analyses are reported in Table 3 and the complete dataset of SIMS analyses is provided as supplementary data (Electronic Appendix 7).

Most M.I. (41) hosted in olivine Fo₈₅₋₈₉ were considered to be representative of basalts, having K₂O contents of 0.25-0.46 wt % (Fig. 5a), CaO/Al₂O₃ ratios between 0.65 and <0.80 (Fig. 5c) and MgO between 6.3 and 9.1 wt % (Fig. 5d). In addition, six M.I. with high CaO/Al₂O₃ and three evolved glass embayments $(K_2O > 0.5 \text{ wt } \%)$ representative of late-stage magma evolution were analysed by SIMS for comparison.

Sulphur, chlorine and fluorine

The chlorine content of the M.I. varies from 650 to 1855 ppm, a range that encompasses that of subductionrelated basalts (500-2000 ppm; Wallace, 2005). In a plot of Cl vs K_2O (Fig. 6a), the majority of the primitive basaltic M.I. have high Cl contents and show selective Cl enrichment, possibly tracking the influence of contaminants with different Cl/K ratios, as discussed below. Only few of these M.I. plot on a trend defined by the evolved M.I. and

JOURNAL OF PETROLOGY VOLUME 49 NUMBER 8 AUGUST 2008

 Table 4: Compositions of bulk HMB lava samples from

 St. Vincent

Sample: Location:	SVN10 Jack Hills sp	SVN14 Black Point	SVN20 Ribishi Point	SVN24 Argyle
SiO ₂	48.36	46.9	47.38	48.1
AI_2O_3	16.55	16.35	14.26	15.73
Fe ₂ O ₃ tot	9.56	9.56	9.62	9.58
FeOtot*	8.60	8.60	8.66	8.62
MnO	0.16	0.15	0.16	0.17
MgO	9.99	11.94	15.04	12.86
CaO	9.86	11.36	10.7	11.11
Na ₂ O	2.7	2.37	2.03	2.09
K ₂ 0	0.44	0.49	0.31	0.2
TiO ₂	0.87	1.03	0.72	0.7
P ₂ O ₅	0.11	0.1	0.08	0.08
PF	1.39	-0.36	0.19	-0.23
Total	99.99	99.89	100.49	100.39

sp, spatter cone. Bulk lava analyses from SARM-CRPG (Nancy) by ICP-OES.

*Total iron given as FeO (Fe₂O₃/1.111).

the embayments, which is extended by the trend related to late-stage magma evolution observed in the most evolved M.I. from St. Vincent (Heath *et al.*, 1998).

Sulphur abundances vary between 98 and 1653 ppm. The basaltic M.I. exhibit a large range of variation in their S contents from 610 to 1653 ppm (average 831 ppm), with no clear correlation between S and K_2O (Fig. 6b). The decrease of S with increasing K_2O in evolved M.I. and embayments tracks late-stage degassing.

Fluorine contents vary between 79 and 420 ppm, again with a large range of concentrations in the basaltic M.I. On average, F contents (230 ppm) are similar to those of MORB, although some F enrichment is accompanied by a slight decrease in K_2O (Fig. 6c). Fluorine and K_2O contents (F from 304 to 424 ppm) are generally positively correlated in the evolved M.I.

The CaO-rich inclusions $(CaO/Al_2O_3 > 0.8)$ do not differ from the typical basaltic inclusions, having similar ranges in S (468–1033 ppm), F (79–245 ppm) and Cl (1087–1217 ppm) contents (Table 3, Fig. 6).

Water

Water contents range from 0.8 to 5.2 wt % (Fig. 6d). The inclusions hosted in Fo_{86.0-89.9} olivine show a broad range of water contents between 1.3 and 3.8 wt %. However, inclusions with the lowest water contents have a large vapour bubble and could have partly lost their initial water. Interestingly, the average water content varies from $3.2 \text{ wt }\% \pm 0.7$ (1 σ) to $2.4 \text{ wt }\% \pm 0.6$ (1 σ) in M.I. trapped

in Fo_{>88} and Fo₈₆₋₈₈, respectively. The M.I. with the highest CaO/Al₂O₃ (>0.80) contain between 1.5 and 2.0 wt % of H₂O and cannot be distinguished from the other M.I. (Fig. 6d). No clear relationship between H₂O and K₂O or any other element has been observed.

As discussed above, inclusions in olivine $Fo_{>86}$ could have undergone some Fe loss. Consequently, we cannot exclude the possibility that some water has also been lost, as H⁺ diffuses rapidly in olivine (Mackwell & Kohlstedt, 1990). However, we have verified that there is no correlation between the post-entrapment evolution of the inclusions, water concentration and the extent of Fe loss.

We also note that M.I. with relatively high S and Cl (up to 1536 and 1855 ppm, respectively) do not have high water contents. In fact, Cl, S and H₂O concentrations do not co-vary. Similar conclusions can be drawn from literature data for other arcs where Cl concentrations of \sim 1000 ppm are found in M.I. with 0.3–6.0 wt % H₂O (Wallace, 2005), although these inclusions represent magmas produced by variable degrees of differentiation. Thus, we suggest here that the variation in water contents in the primitive basaltic M.I. of St. Vincent is not related to degassing, but rather to variable H₂O enrichment of the original magmas.

The evolved M.I. and embayments ($K_2O > 0.5\%$) have the lowest water contents (down to 0.8 wt %) for higher K_2O , in agreement with late-stage water degassing, as also shown for sulphur.

Boron and lithium

Boron contents vary widely from 8 to 53 ppm (with one value down to 3 ppm). In Fig. 7a, a B-K trend $(B/K = 2.6 \times 10^{-3})$ is defined by M.I. (6.3 wt % < MgO <9.5 wt %) for which B contents vary from 8 to 18 ppm. This variability cannot be explained by crystal fractionation, as these inclusions exhibit similar degrees of differentiation, but instead must track heterogeneities in the magmas themselves. Above this baseline, a number of inclusions have relatively constant K_2O (0.3–0.4 wt %), but variable B contents (10-37 ppm B; one value at 53 ppm) suggesting selective B enrichment. Actually, the most primitive basaltic M.I. (MgO>8.5 wt %) in olivine Fo>88 have between 8 and 37 ppm of B. No clear relationship was observed between Cl and B variations. The evolved glass embayments have B contents ranging from 13 to 21 ppm.

Lithium concentrations range from 2.6 to 9.2 ppm in basaltic M.I. (average 4.5 ppm). Lithium tends to increase with K content (Fig. 7b). Whether or not two distinct trends exist is not clear. Glass embayments have relatively high Li contents (5.9-11.4 ppm), probably caused by crystal fractionation as a result of the moderate incompatibility of Li.

The contrasting behaviour of B and Li is illustrated in Fig. 8a: a large number of M.I. show a narrow range in

Fig. 5. Variations of K_2O with SiO₂ (a) and CaO/Al₂O₃ (c), and variations of Na₂O (b) and MgO (d) with K₂O wt % in olivine-hosted M.I. The M.I. compositions (filled and open squares represent 'normal' and CaO-rich M.I., respectively) are corrected for post-entrapment crystallization and normalized to 100%. The evolved M.I. are melts trapped in Fo_{<83} and glass embayments (asterisks). For comparison, the compositions of the St. Vincent HMB and basalt whole-rocks (W.R.) are also plotted (this study; Heath *et al.*, 1998) and of the M.I. (not corrected for PEC) in pyroxenes and plagioclases of the pyroclastic fall Yellow Tuff deposits, dated between 3600 and 4500 years BP (crosses, [1], Heath *et al.*, 1998).

B concentrations (\sim 3–18 ppm) and a slightly larger range of Li contents (between 3 and 9 ppm) compared with the B-enriched M.I. In contrast, some M.I. display selective boron enrichment (up to 53 ppm) for little variation in Li concentration (\sim 3–5 ppm). The evolved embayments display Li enrichment with nearly constant B contents.

Isotopic compositions

The $\delta^7 \text{Li}$ isotopic compositions vary considerably from values close to MORB [+7‰ for M.I., and ~+5‰ for MORB according to Bouman *et al.* (2004)] to strongly negative values (-9.6‰) for a restricted range of Li contents (Fig. 8b). Strong negative $\delta^7 \text{Li}$ is inconsistent with diffusion of lithium from the inclusion towards its host. In fact, the more rapid diffusion of ⁶Li compared with that of ⁷Li (Lundstrom *et al.*, 2005; Jeffcoate *et al.*, 2007) would have resulted in heavier $\delta^7 \text{Li}$ values in the inclusions compared with the initial MORB-like magma (~+5‰, Bouman *et al.*, 2004). Moreover, Li concentration and isotope profiles were measured in some olivines to test for possible Li diffusive loss from the inclusions (Electronic Appendix 8). These profiles, made in two olivines hosting M.I. (SVN142 and SVN108), have $\delta^7 \text{Li} = -8.5$ and -8.9%, respectively. They show neither significant Li enrichment nor Li isotopic variation in olivine near M.I. We thus assume that $\delta^7 \text{Li}$ values measured in the melt inclusions are representative of that of the trapped melt. Major fractionation observed between core and rim of olivine is probably due to Li diffusion during cooling (Beck *et al.*, 2006). Glass embayments have variable Li isotopic composition (-8.2 to +2.3%).

 δ^{11} B values range from -25.6 to +11.8‰ (average 0.9‰ for primitive M.I.). Inclusions in which boron contents (3.4–18 ppm) are positively correlated with K and Li (Figs 7a and 8a) show a large range of δ^{11} B values from -16 to +12‰. In contrast, inclusions selectively enriched

Fig. 6. Variations of chlorine (a), sulphur (b), fluorine (c), and H_2O (d) vs K_2O wt % in St. Vincent M.I. In each diagram the average MORB composition is shown (Chaussidon *et al.*, 1991; Straub & Layne, 2003; Wallace, 2005). For F and H_2O , evolved M.I. refer only to glass embayments selected for SIMS analysis to be representative of evolved composition (see text).

Fig. 7. Variation of B (a) and Li (b) vs K_2O wt % (normalized to 100%) in St. Vincent M.I. Embayments refer here only to glass embayments selected for SIMS analysis to be representative of evolved compositions.

in B have heavier isotopic compositions and a more limited range of δ^{11} B values from +3 to +11‰, the significance of which is discussed below.

Oxygen isotopic compositions of primitive basaltic M.I. vary from +3.2 to +10.1% (average +6.1%). Glass embayments show a positive correlation between $\delta^{18}O$ and TiO₂. The latter can be related to crystallization of olivine \pm pyroxene according to Eiler *et al.* (2000) and is consistent with fractional crystallization identified on the basis of major element compositions.

The sulphur isotopic compositions of the M.I. range from -9.0 to +7.0% (on average, $\delta^{34}S = +1.1\%$ for primitive basaltic M.I., Table 3). Glass embayments have more negative $\delta^{34}S$ compositions, but the two measurements reported are not necessarily representative.

CaO-rich M.I. do not display distinctive isotopic compositions.

DISCUSSION

Most of the olivines have preserved their original zoning, suggesting direct transfer to the surface in the host magma. The observed chemical and isotopic variations of the M.I. are larger than analytical error and only partially explained by shallow-level differentiation processes. Instead, consistent with the relatively primitive nature of both the inclusions and their host olivine crystals,

Fig. 8. Variation of B (a) and $\delta^7 \text{Li}$ (b) vs Li. In each diagram, values for the different reservoirs for boron and lithium are shown: MORB (Bouman *et al.*, 2004; Elliott *et al.*, 2004), altered oceanic crust (AOC; boron data are from Spivack & Edmond, 1987; Chaussidon & Libourel, 1993; Chaussidon & Jambon, 1994; Li data from Bouman *et al.*, 2004) and Lesser Antilles sediments [Li contents of ODP Leg 144-207 from Carpentier, 2007; $\delta^7 \text{Li}$ of ODP site 27&543 from Bouman *et al.*, 2004; B data from CRPG-SARM analysis (this study) and Leeman & Sisson, 1996]. Embayments refer here only to glass embayments selected for SIMS analysis to be representative of evolved compositions. Other symbols as in Fig. 5.

and with the chemical and isotopic heterogeneities previously observed for St. Vincent bulk lavas (Heath *et al.*, 1998), the M.I. are considered to represent heterogeneities in the primary magmas. Their chemical and isotopic compositions suggest the involvement of melts from different sources, each with their own specific signatures.

Modified N-MORB source

The melt inclusions analysed in this study generally have major element compositions close to those of the St. Vincent basalts (see Results section), thought to be derived from modified MORB-source mantle (Heath *et al.*, 1998; Pichavant *et al.*, 2002; Pichavant & Macdonald, 2003, 2007).

Most of the analysed M.I. have F [230 ppm \pm 80 (1 σ)] and Li [4 ppm \pm 1 (1 σ)] contents and Li isotopic compositions (δ^7 Li from 2 to 6‰) in the range of MORB values (F = 200–300 ppm, Straub & Layne, 2003; Li ~5 ppm and δ^7 Li 4 \pm 2‰, Chan *et al.*, 1992; Elliott *et al.*, 2004). Our data therefore support the idea that the source of the basaltic magmas of St. Vincent is predominantly similar to MORB-source mantle as previously proposed (Heath et al., 1998; Pichavant et al., 2002; Pichavant & Macdonald, 2003). In agreement with previous data for whole-rocks from the Lesser Antilles arc (Macdonald et al., 2000), our M.I. data show that there is a contribution from slab fluid components as described below. The first indication is the higher K_2O contents of the M.I. (0.25-0.50 wt %)compared with typical MORB. Indeed, Lassiter et al. (2002) suggested that, with a maximum of \sim 50 wt % of the K₂O extracted from the subducted crust during dehydration, a corresponding input of 0.20-0.25 wt % K₂O to the mantle source is possible. Moreover, dehydration and/or melting of Lesser Antilles arc subducted sediments with high K_2O [from 0.98 to 1.6 wt %, Ocean Drilling Program (ODP) Leg 144, and Barbados; Carpentier, 2007] will produce fluids or melts rich in potassium. Other elements, such as Cl and water, should also provide clues for slab contributions. The relatively high chlorine content and Cl/H₂O ratio of the M.I. are generally enhanced by differential fractionation of Cl and H2O during fluid expulsion from the slab and/or migration through the mantle wedge prior to melting as proposed by Kent & Elliott (2002). The variation of the Cl/H₂O ratio (from 0.01 to 0.17) is consistent with contributions of between 2 and 15% equivalent NaCl following Wallace (2005). The nature of these slab contributions is discussed below on the basis of the chemical and isotopic SIMS analyses of the M.I.

Seawater-like signature

St. Vincent basaltic M.I. are all enriched in H₂O, Cl and B compared with N-MORB by a factor from 5 to >150 (Fig. 9a-c), even the most primitive M.I. (MgO >8.5 wt %). The latter contain \sim 3.2 wt % H₂O, 820–1402 ppm Cl and \sim 8–37 ppm B, implying the interaction of aqueous fluids with the mantle wedge.

A large proportion of the M.I. have B concentrations and $\delta^{11}B$ (~+10‰) higher than N-MORB (0.4 ppm and $\sim -5\%$; Straub & Layne, 2002). This is illustrated in Fig. 10, which is an interpretative plot of the isotopic compositions and concentrations of boron in the M.I. This diagram, modified from Rose et al. (2001), identifies the different slab-derived components able to change the composition of a MORB-type mantle source. The overall influence of seawater-like fluids (B ~ 4.4 ppm; $\delta^{11}B + 40\%$ for seawater; Straub & Lavne, 2002) is demonstrated by the high $\delta^{II}B$ and B enrichment of the M.I., implying that the source rock for these melts is enriched in both B and δ^{11} B. We calculate a mixing curve between a depleted MORB mantle (DMM) with B from 0.05 to 0.3 ppm and δ^{11} B from -6.5 to -1.5‰ (Chaussidon & Libourel, 1993; Chaussidon & Jambon, 1994) and a seawater-like fluid. A large proportion of the B and $\delta^{11}B$ compositions of the basaltic M.I. could be explained by the addition of 18-40% of the B in the mantle by seawater-like fluids JOURNAL OF PETROLOGY VOLUME 49 NUMBER 8 AUGUST 2008

Fig. 9. Histograms of H₂O content in wt % (a) and chlorine (b) and boron (c) contents in ppm where M.I. representative of St. Vincent basalts ($0.65 < CaO/Al_2O_3 \le 0.80$) are distinguished from CaO-rich inclusions (CaO/Al_2O_3>0.8). MORB data for H₂O from Baker *et al.* (1994) and Sobolev & Chaussidon (1996); for Cl from Lassiter *et al.* (2002), and references therein; for B from Straub & Layne (2002).

and 10–20% partial melting of this modified mantle source. For these calculations we assumed batch melting, δ^{11} B unchanged during melting (Rose *et al.*, 2001) and a melt/rock partition coefficient of 0.015 (You *et al.*, 1996; Rose *et al.*, 2001).

The input of seawater-like fluids into the mantle source is qualitatively in agreement with the Cl enrichment and

Fig. 10. Interpretative diagram modified after Rose et al. (2001) showing the evolution of B vs δ^{11} B in St. Vincent M.I. The MORB-type mantle source (Chaussidon & Libourel, 1993; Chaussidon & Jambon, 1994) is mixed with seawater-like fluids (4.4 ppm B, $\delta^{11}B = +40\%$; Straub & Layne, 2002). The percentage of melting of the modified mantle is calculated assuming batch melting and using a melt/rock partition coefficient of 0.015 (You et al., 1996). The content and isotopic composition of boron in altered oceanic crust (AOC) and sediments after variable extents of dehydration and in their extracted fluids are calculated using a Rayleigh distillation model assuming $D_{\rm B}^{\rm fluid/solid} = 50$ (Rose *et al.*, 2001) and isotopic fractionation between fluid and solid $\Delta_{f-s} = +5\%$. Theoretical trajectories for dehydrated AOC and sediments are represented by the dashed lines 1 and 2, respectively, and those for the fluids produced by variable dehydration (expressed in per cent) by the continuous lines 3 and 4, respectively. The initial boron contents (11-65 ppm) of the Lesser Antilles terrigenous sediments (field SED) of the ODP Leg 144 silica-rich units were analysed at SARM CRPG. Their Li isotopic compositions of $\sim -10\%$ are from Smith et al. (1997) and are closely comparable with those used by Rose et al. (2001). The initial AOC composition (AOC) is from Spivack & Edmond (1987), Chaussidon & Libourel (1993) and Chaussidon & Jambon (1994). For comparison, seawater (Straub & Layne, 2002) and carbonate compositions (B element analyses from SARM-CRPG; this study) and B isotopic compositions from Deyhle et al. (2001) are also shown. Mixing curves between MORB-source mantle and seawater indicates that a maximum of 40% of the initial B derives from seawater. Mixing curves between the modified mantle melt and fluids resulting from dehydration of AOC and sediments show that the M.I. record a contribution of up to 40% of fluids issued from 4.5% AOC dehydration and up to 45% of fluids resulting from 6% dehydration of terrigenous sediments. It should be noted that all St. Vincent M.I. are enriched in boron with respect to MORB (see text for details). Embayments refer here only to glass embayments selected for SIMS analysis to be representative of evolved compositions.

the heaviest δ^{34} S of most of the M.I. (~2.0‰ in M.I., seawater: +20‰, Taylor & Sheppard, 1986) compared with typical N-MORB compositions (~0‰, de Hoog *et al.*, 2001; Fig. 11b). Because of the high fluid/rock partition coefficients of B and Cl (e.g. $D_B^{\text{fluid/solid}} = 50$; You *et al.*, 1996), this fluid should be rich in these two elements. Consequently, the amount of fluid required for the observed enrichments should not be unusually large: an input of 18–40% of B in the source (~0.7–1.6 ppm B added) corresponds to ~0.3–0.7% seawater-derived fluid, using $D_B^{\text{fluid/solid}} = 50$. Moreover, after Lassiter *et al.* (2002),

Fig. 11. Evolution of boron (a) and δ^{34} S (b) vs δ^{18} O in St. Vincent M.I. The main reservoirs for boron, δ^{34} S and δ^{18} O are indicated in the two plots: notably sediments (terrigenous and carbonates, B contents from CRPG-SARM analysis, this study; δ^{18} O from Eiler *et al.*, 2000; δ^{34} S from de Hoog *et al.*, 2001; the theoretical composition of AOC-derived fluids (Leeman & Sisson, 1996; Alt & Shanks, 2006); MORB and arc basalts (δ^{18} O from Eiler *et al.*, 2000; Straub & Layne, 2002; δ^{34} S from de Hoog *et al.*, 2001). Negative δ^{34} S could be explained by a component derived from subducted black shales (see text). Embayments refer here only to glass embayments selected for SIMS analysis to be representative of evolved compositions.

assimilation of ~0.3% of a 50% NaCl brine could produce ~1000 ppm excess Cl. The limited shift toward low δ^{18} O values in the M.I. also suggests addition of a relatively small amount of this fluid. This idea is reinforced by the lithium isotope data: the M.I. do not show specific enrichment in δ^7 Li compared with MORB (Fig. 8), although seawater has much higher δ^7 Li (~32‰, Chan *et al.*, 1992). The negligible effect of the fluid on the δ^7 Li of the magma is accounted for by the low Li content of seawater (0.18 ppm).

We thus argue that dehydration aqueous fluids with a low solute content and a seawater-like signature, probably released from the slab at temperatures as low as 650°C (Hermann *et al.*, 2006), are responsible for a first-stage contamination of the MORB mantle source of the St. Vincent basalts. This initial contamination is recorded by all the M.I. that were analysed, independently of the more specific signatures discussed below. This interpretation agrees with the high δ^{11} B in fluids released at the onset of the slab-dehydration process relative to MORB values (Marschall *et al.*, 2007). Following this line of reasoning, serpentinites fluxed by fluids could be dragged down to the sub-arc region and release B-rich, high- δ^{11} B meta-somatizing fluids at greater depth when they exceed their stability limit.

Altered oceanic crust derived fluids

The Cl enrichments illustrated in Fig. 4a strongly suggest a contribution of other fluids in addition to the aqueous fluid with a seawater-like isotopic signature. We investigate the nature of these fluids by combining chemical data with specific isotopic signatures of the M.I. In particular, the B content and its isotopic composition can distinguish between the influence of sediments and that of altered oceanic crust (AOC). Boron is highly fractionated in aqueous fluids, leaving a B-depleted solid residue with light δ^{11} B values (Bebout *et al.*, 1993; Ryan *et al.*, 1995; Rose et al., 2001) as illustrated in Fig. 10 (dashed arrows 1 and 2). The selective B enrichment recorded by some St. Vincent M.I. $(\delta^{11}B \text{ between } +2.8 \text{ and } +11.8\%)$ is consistent with the addition of fluids derived from dehydration of AOC to a modified MORB source already enriched in B and $\delta^{II}B$. The B content and isotopic signature of fluids derived from AOC dehydration (curve 4 in Fig. 10) have been calculated on the basis of a Rayleigh model, with $D_{\rm B}^{\rm solid/fluid} = 50$, an isotopic fractionation factor between fluid and solid (Δ_{f-s}) of +5‰ (Rose *et al.*, 2001), an initial B content in AOC varying from 17 to 40 ppm and δ^{11} B from 6 to 10% (Spivack & Edmond, 1987; Chaussidon & Libourel, 1993; Chaussidon & Jambon, 1994). M.I. with selective B enrichment plot on a mixing curve between two end-members identified as the modified mantle melt and fluids from AOC dehydration. Based on this model and the M.I. data, we estimate that up to 40% of a fluid end-member with ~130 ppm B and light $\delta^{11}B$ (-8.5%), implying ~4.5% dehydration of the AOC, is necessary to account for the compositions of the B-enriched M.I. The contribution of fluids derived from AOC dehydration is in agreement with the $\delta^{18}O~(3{-}7{-}7{-})$ values of these M.I. that are selectively enriched in boron (Fig. 11a). For example, the δ^{18} O of a fluid extracted from AOC at between 200 and 300°C could be between 2 and 8‰, assuming equilibrium with a metabasalt having $\delta^{18}O = 8-11\%$ and an equal amount of chlorite and albite (Alt & Shanks, 2006).

The light δ' Li compositions (down to -10‰) of M.I. selectively enriched in boron also support the idea of AOC-derived fluid input, assuming no Li diffusion from the M.I. towards the host olivine and no δ^7 Li fractionation (see Analytical Methods section). Indeed, it is thought that ⁷Li preferentially partitions into aqueous fluids relative to ⁶Li during mineral-fluid or silicate melt-fluid interactions (Peacock & Hervig, 1999; Pistinier & Henderson, 2003). As a result, the Li isotopic composition of dehydrated rock residues becomes lighter as dehydration progresses. Dehydration fluids would also become lighter.

Zack *et al.* (2003) suggested that light δ^7 Li values (down to -11‰) measured in eclogites were produced by isotope fractionation through Rayleigh distillation during dehydration of clays and/or chlorite at an early stage of metamorphism. In this case, dehydration fluids issued from the eclogites (e.g. dehydrated oceanic crust) could have $\delta' \text{Li} \ge -11\%$, depending on the equilibrium of the expelled fluids with the rocks, the chosen values for $D_{\rm I,i}^{\ \rm rock/fluids}$ and the fractionation factor α (Marschall et al., 2007). In contrast, Marschall et al. (2007) proposed that dehydration of the subducted slab accounts for only -3‰ of the δ^7 Li variation of the subducted AOC composition, based on a Rayleigh model with variable $D_{\text{Li}}^{\text{rock/fluid}}$ depending on the P-T path and mineral composition of the dehydrated rocks (AOC: δ^7 Li from 0 to 14‰, Marschall et al., 2007, and references therein). They proposed, contrary to Zack et al. (2003), that the light Li isotopic compositions measured in eclogites are due to kinetic fractionation with the surrounding sediment pile. In this case, assuming fast ⁶Li diffusion and no interaction with other slab layers, fluids issued from the dehydration of the altered oceanic crust would not have $\delta' \text{Li} < -3\%$.

In this study the M.I. do not display very light δ^7 Li with high Li contents: Li contents are relatively constant, or slightly decrease with decreasing $\delta^7 \text{Li}$. The negative $\delta^7 \text{Li}$, measured in M.I. (down to -10%) could be ascribed to the contribution of fluid affected by kinetic fractionation during slab dehydration and fluid extraction and/or when dehydration fluids from AOC fluxed the sediments pile (Richter et al., 2006). In fact, the input of fluids derived from AOC dehydration as a source of the negative $\delta^7 Li$ of the M.I. is reinforced by their selective enrichment in boron (B up to 53 ppm, Fig. 11), and their high $\delta^{11}B$ (from +2.8 to +11.8‰) and $\delta^{18}O$ (~6‰) compositions. Moreover, we emphasize here that such light δ^7 Li compositions have not been reported for arc lavas (δ^7 Li from +3 to +7‰, Elliott et al., 2004; Ryan & Kyle, 2004). We thus propose that the M.I. record initial melt heterogeneities that are lost in the bulk magmas (lavas) in which Li can be easily homogenized because of its high diffusivity (Lundstrom et al., 2000).

In summary, the selective B enrichment recorded in a small number of M.I., as well as their high Cl contents, their light δ^7 Li and their δ^{18} O (3–7‰) signatures are readily explained by the addition of fluids derived from AOC dehydration to an already modified MORB-type mantle source. This fluid had a medium solute content, evident from its higher B and Cl contents compared with the aqueous fluids responsible for the first stage of mantle wedge metasomatism. We thus suggest that this AOC-fluid component is most probably released later (i.e. at greater depth) than the fluids with a seawater signature that modified the MORB source at an earlier stage (Hermann *et al.*, 2006).

Sediment-derived fluids

Each selective element enrichment and/or isotopic composition that deviates from an enriched-MORB magma signature is poorly explained by only addition of AOCderived fluids to the mantle source and implies addition of another component. Several inclusions show a wide range in B isotopic composition (down to -10‰) and B content (8-18 ppm) that could be explained by the contribution of sediment-derived fluids (Fig. 10) as opposed to AOCderived fluids. Moreover, these negative B isotopic compositions could not be explained by variation in the degree of source melting, because it would imply <1% batch melting (Fig. 10). In the Lesser Antilles arc, sediments have been dredged SE of Grenada at $\sim 9^{\circ}$ N in the western tropical Atlantic (ODP Site Leg 144-207, Demerara Rise). These represent a suitable proxy for the sediments subducted in the southern part of the arc, where the sediment series is composed of (from top to bottom) two Foraminifera and nannofossil-rich units, a black shale unit and a more silica-rich unit with zircon-bearing sand horizons (Carpentier, 2007, and ODP reports). Each sediment unit was analysed as a bulk sample at SARM-CRPG and found to contain from 11 to 65 ppm B. However, the isotopic compositions of the Lesser Antilles sediments are still poorly known. An average representative boron isotopic composition of $\delta^{11}B = -10\%$ was hypothesized for the Martinique continental and marine sediments (Smith et al., 1997), close to that of the sediments used in the Rose et al. (2001) model. Moreover, ODP Leg 144 contains many carbonaceous units, which should have high $\delta^{11}B$ values (between +15.3 and +39.8%; Deylhe et al., 2001), resembling that of seawater, as carbonates are expected to be strongly influenced by seawater. Nevertheless, the influence of such sediments cannot explain the large range of compositional variation found in M.I. with δ^{11} B values as low as -10‰.

We have calculated the concentration and isotopic composition of boron in the fluids produced by dehydration of Lesser Antilles terrigenous sediments (assuming $\delta^{11}B \sim 10\%$) during continuing dehydration. Following the Rose et al. (2001) model, we used a fractionation coefficient $\Delta_{\text{solid-fluid}}$ of +5‰. The St. Vincent M.I. intersect the calculated trend of residual dehydrated sediments using a Rayleigh model (Fig. 10). They cannot result from mixing between modified MORB-source mantle and a direct melt of the residual dehydrated sediments. M.I. with 16.8 ppm B and δ^{11} B of -12.0% would imply more than 80% of an hypothetical dehydrated sediment melt that should be Si-rich (Nichols et al., 1994; Prouteau et al., 2001) contrary to the main chemical characteristics of the St. Vincent M.I. We propose an alternative explanation involving fluids released from the dehydration of terrigenous sediments (B = 32 ppm and $\delta^{11}B = -34\%$) for the origin of the light $\delta^{11}B$ recorded by the M.I. The latter data plot on the

calculated mixing curve between the modified MORB source and fluids produced by $\sim 6\%$ sediment dehydration (Fig. 10). The fluid contribution is estimated to represent up to 45% of the B.

Several additional observations support this hypothesis, as follows.

- M.I. with light δ¹¹B have a heavy oxygen isotopic signature (δ¹⁸O up to +10‰) consistent with the δ¹⁸O of oceanic clays or clastic sediments (δ¹⁸O = 12–16‰ and 10–20‰, respectively; Eiler *et al.*, 2000, 2005). Assuming no δ¹⁸O fractionation between fluids and silicates, melt inclusions slightly enriched in Li, with negative δ¹¹B and δ¹⁸O from +6 to +10‰ would record a contribution of up to 50% of a fluid deriving from the dehydration of sediments having δ¹⁸O ~15‰ (taken as an average of both clays and clastic sediment compositions) to a modified mantle source having δ¹⁸O from +4 to +5‰.
- (2)A subset of these M.I. (nine, including seven 'normal' inclusions) have negative $\delta^{34}S$ (-2.0 to -4.8%; Fig. 11b), characteristic of organic-rich sediments. Indeed, pelagic sediment δ^{34} S composition varies with the amount of organic carbon such that microbial sulphate reduction diminishes δ^{34} S (up to -20%); Alt & Shanks, 2006). Black shales from the Demerara Rise in the Lesser Antilles have sulphur isotopic compositions as low as -35%, and S contents up to 6 wt % (Cruse & Lyons, 2004), whereas carbonaceous and siliceous sediments can have positive δ^{34} S and lower S contents (up to 14‰ and 850 ppm S, respectively; for example, at the ODP Site 800-802 in the Pacific; Alt & Shanks, 2006). Recycling of a black shale unit in the southern part of the Lesser Antilles arc has been proposed by Carpentier (2007). The influence of organic matter-rich sediments is also suggested on the basis of the δ^{13} C signature of hydrothermal fluids in the southern part of the arc (Van Soest et al., 1998).
- (3) These M.I. have Li contents ranging from 2.7 to 9.6 ppm (Fig. 8b), and variable $\delta^7 \text{Li}$ (from -9.6 to +4.7%). The highest Li contents (7–9.6 ppm) could be explained by the influence of sediments that have Li contents from 10 to 74 ppm (Bouman et al., 2004; Carpentier, 2007). The slightly negative δ^7 Li would also be consistent with Li isotopic fractionation during slab dehydration, which would result in lighter δ^7 Li in the residual sediments. As an example, Teng et al. (2007) calculated dehydrated metapelite δ' Li values in the range -2 to -10% using a Rayleigh distillation model and different fluid/rock isotopic fractionation factors (from 1.001 to 1.004). However, there is no strong influence of sediment observed in the δ' Li and Li abundance data, with only a few Li-enriched inclusions. This minimal influence possibly could be due to the close Li and $\delta^7 Li$

compositions of the sediments and the AOC (Elliott, 2007).

We thus argue for late-stage fluid extraction from subducted sediments that had experienced ~6% dehydration, which is required to explain the negative $\delta^{11}B$ signature of the M.I., and a black shale contribution, to account for the negative $\delta^{34}S$. These fluids have Cl and Li contents as high as AOC dehydration fluids, but lower B contents, and higher S content as a result of the black shale input.

CaO-rich inclusions

About 10% of the M.I. selected for SIMS analyses have high CaO/Al_2O_3 (>0.8). They are characterized by H₂O contents from 1.2 to 3.9 wt%, SiO₂ < 45.5 wt%, and K₂O between 0.3 and 0.45 wt %. These inclusions cannot be distinguished from the other 'normal' basaltic M.I. $(CaO/Al_2O_3 < 0.8)$, on the basis of their Cl, B or H₂O contents (Fig. 9a–c) and isotopic signatures (δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S). The significance of the Ca-rich M.I. hosted in olivine is strongly debated, as considered below. Although the origin of Ca-rich melts is beyond the scope of this work, we emphasize some interesting points that could be developed in future. Danyushevsky et al. (2004) proposed that M.I. in high-Fo olivine (Fo >85 mol %) having anomalously high CaO and low SiO₂ contents, already described in MORB, OIB and island arc basalts, result from dissolution-reaction-mixing (DRM) in the magmatic plumbing system. Fast cooling of the primitive magma should favour entrapment of numerous large M.I. in high-Fo olivines. Danyushevsky et al. (2004) argued that the magma bodies with which the melts react are often formed during differentiation of earlier batches of the same magma type, and thus no obvious isotopic anomalies should be observed. We cannot totally exclude a DRM process. However, we emphasize that (1) there is no relationship between the size, shape and composition of the St. Vincent M.I.; (2) in contrast to what was described by Danyushevsky et al. (2004), the M.I. in St. Vincent olivines have a rather small size and are rare; (3) St. Vincent M.I. that clearly depart from the compositional domain of St. Vincent lavas in terms of their high CaO/Al₂O₃ still preserved the influence of different slab-derived fluids, as the 'normal' basaltic M.I. do, and thus track the mantle source signatures.

Ca-rich, ne-normative melts are commonly described in arc settings (e.g. Schiano *et al.*, 2000; Médard *et al.*, 2004). Some workers have argued that such CaO-rich melts cannot be derived from fertile mantle peridotite sources (Della-Pasqua & Varne, 1997; Schiano *et al.*, 2000; Kogiso & Hirschmann, 2001), but instead could be explained by: (1) melting of carbonated or ($CO_2 + H_2O$) fluxed lherzolite (Della-Pasqua & Varne, 1997); (2) interaction between picritic melts and clinopyroxene-rich lithologies (Kamenetsky *et al.*, 1998); (3) melting of pyroxenitic or wehrlitic lithologies (Schiano et al., 2000; Kogiso & Hirschmann, 2001); (4) melting of depleted lherzolite (Kogiso & Hirschmann, 2001); (5) melting of amphibolebearing, wehrlite cumulates in the arc crust at 0.2 GPa (2 kbar) and 1220°C (Médard et al., 2004). Actually, CaOrich lavas (C-Series; Thirlwall & Graham, 1984) already exist in Grenada in the southern part of Lesser Antilles arc and could be derived from the melting of wehrlite veins in a mantle source that experienced successive metasomatism events (Vannucci et al., 2007). St. Vincent CaOrich, ne-normative melts trapped as M.I. in olivine could represent melting of amphibole- and pyroxene-bearing veins. Assuming such an hypothesis, the Ca-rich melts cannot be derived from a specific horizon in the mantle wedge beneath St. Vincent but instead from a mineralogically heterogeneous mantle wedge with dispersed veins, to explain the presence of CaO-rich melts that are isotopically indistinguishable from typical basaltic melts. A definitive conclusion about the origin of these specific M.I. in Lesser Antilles arc requires further investigation.

Water contents and magma extraction conditions

Water contents of M.I. representative of St. Vincent basaltic magmas range from 0.9 to 5.5 wt % (Fig. 9a–c), indicating an excess of water in these magmas compared with MORB (0.1 to ~0.6 wt % Newman *et al.*, 2000; 0.12 wt % for N-MORB to 0.5 wt % for E-MORB, Sobolev & Chaussidon, 1996). Variable aqueous fluid inputs from the slab and progressive fluid transfer to the overlying mantle wedge with increasing depth of subduction were previously highlighted by studies across different arcs (Ryan *et al.*, 1995; Walker *et al.*, 2003; Grove *et al.*, 2006; Portnyagin *et al.*, 2007). Similarly, decoupling between water and elements such as Cl, B and Li is consistent with differential fractionation of water and fluid-mobile elements as reported in arc magmas (Kent & Elliott, 2002).

The thermal conditions during mantle partial melting, and thus the thermal state of the mantle wedge beneath St. Vincent, can be estimated by combining our water data with the available high-pressure experimental data on St. Vincent basalts (Pichavant *et al.*, 2002; Pichavant & Macdonald, 2007). Based on experimental phase equilibria, the high-magnesia basalts erupted at St. Vincent are thought to have been produced by partial melting of a spinel lherzolite mantle source under relatively dry conditions (Pichavant *et al.*, 2002), in agreement with Devine (1995), who suggested a dissolved water concentration of ~ 2 wt % in the primary magmas of Grenada and Kick'emJenny.

A mantle source fluxed by a hydrous slab-derived component in the Lesser Antilles arc would produce hydrous melts (Pichavant & Macdonald, 2003). High-pressure experiments on phase equilibria have demonstrated that basaltic magmas containing up 6.5 wt % of H₂O can be generated by partial melting of the mantle wedge beneath St. Vincent, at 1160°C and 18.5 kbar (Pichavant & Macdonald, 2007). Combining the $P-T-H_2O$ experimental conditions of basaltic melt generation at St. Vincent (Pichavant *et al.*, 2002; Pichavant & Macdonald, 2007) and the range of water contents (between 2.2 and 3.6 wt %) of our primitive 'normal' M.I. (hosted in Fo_{>87}), we consider that partial melting occurred at between 13 and 14.5 kbar (~50 km), and temperatures of 1220°C and 1195°C, respectively. In such a model, magma extraction would take place under upper mantle conditions; however, the crustal thickness and structure beneath St. Vincent are poorly known (Macdonald *et al.*, 2000, and references therein).

Under such pressure– $X_{\rm H2O}$ conditions, St. Vincent-type magmas could have been generated by 10 to ~20% partial melting of a mantle source containing between 0.2 and 0.9 wt % H₂O (assuming that H₂O was perfectly incompatible during melting). These estimates are in agreement with the degrees of melting calculating in the B model (10–20%; see 'Seawater-like signature' section) and those that have previously been published for erupted HMB at St. Vincent (14–18%; Heath *et al.*, 1998; Pichavant *et al.*, 2002). St. Vincent parental magmas would therefore have MgO content between 11 and 14 wt %.

CONCLUSIONS: CONSTRAINTS ON THE GENESIS OF ST. VINCENT HIGH-MAGNESIA BASALTS

Melt inclusions in St. Vincent olivines record heterogeneities in the parental magma compositions at the mantle source depth that are lost during their transfer to the surface at the whole-rock scale. Indeed, they represent melts variably enriched in water and other elements that were produced by partial melting of the mantle wedge under variable pressure– temperature conditions.

At least three stages of contamination of an initial MORB-like mantle source are required to explain the compositions observed in the St. Vincent M.I. Figure 12 summarizes the successive inputs of fluids having an increasingly higher solute content: (1) an initial aqueous fluid with a low solute content and a seawater-like signature, rich in H₂O, B and Cl, with a heavy B isotopic composition; (2) a second fluid derived from dehydration of altered oceanic crust with an intermediate solute content, which was mainly responsible for selective enrichment of B in the melt; (3) finally, a late-stage fluid with a high solute content and the boron and sulphur isotopic signatures of dehydrated terrigenous sediments, probably involving black shales in agreement with other findings (Carpentier, 2007). The water-rich fluids interaction could have resulted in the formation of amphibole- and pyroxene-bearing lithologies in the mantle wedge beneath

Fig. 12. Schematic illustration summarizing the various stages of contamination of the mantle wedge beneath St. Vincent and the depth and temperature of generation of basaltic magmas. Chemical and isotopic compositions of olivine-hosted M.I. lead us to identify at least three different fluids that were progressively enriched in solutes: first an aqueous fluid with a seawater isotopic signature, a second fluid produced by dehydration of AOC, and a late-stage, solute-rich fluid extracted from partially dehydrated sediments. Pressures and temperatures of melt extraction are estimated on the basis of the water content of St. Vincent M.I. ($2\cdot 2-3\cdot 6$ wt %) and from P-T conditions of experimental phase equilibria published by Pichavant *et al.* (2002) and Pichavant & Macdonald (2007) (see text for details).

St. Vincent. Partial melting of a mineralogically heterogeneous mantle, with amphibole-bearing veins, could adequately explain the small volumes of CaO-rich melts trapped during olivine crystallization, which are otherwise isotopically or chemically indistinguishable from the remaining inclusions. By combining our data on the dissolved water concentrations of M.I. with experimental data (Pichavant *et al.*, 2002), we propose that the St. Vincent magmas could have been successively extracted from the upper mantle at a pressure between 13 and 14-5 kbar and temperatures from 1220 to 1195°C.

ACKNOWLEDGEMENTS

We thank Richard Robertson (Geological Survey of West Indies) and Aisha Samuels (Soufrière monitoring unit) for their kind help in sampling. We are grateful to R. Macdonald, V. Kamenetsky and an anonymous reviewer for their constructive criticisms, which greatly improved our manuscript. For technical assistance, we are grateful to Denis Mangin and Claire Rollion-Blard for ion probe measurements on the Cameca SIMS 1270, and Olfa Belhaj for her help in sample preparation and analysis. Michel Pichavant, Marion Carpentier, Marion Le Voyer, Estelle Rose, Pierre Schiano, Benoit Welsch and Pete Burnard are also acknowledged for their constructive discussions and suggestions. This study was funded by CNRS-INSU DyETI and ANR UD-Antilles.

SUPPLEMENTARY DATA

Supplementary data for this paper are available at *Journal* of *Petrology* online.

REFERENCES

- Alt, F. C. & Shanks, W. C. (2006). Stable isotope compositions of serpentine seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulphur metasomatism. *Earth and Planetary Science Letters* 242, 272–285.
- Baker, M. B., Grove, T. L. & Price, R. (1994). Primitive basalts and andesites the Mt Shasta region, N. California: products of varying melt fraction and water content. *Contributions to Mineralogy and Petrology* **118**, 111–129.
- Bebout, G. E., Ryan, J. & Leeman, W. (1993). B-Be systematics in subduction-related metamorphic rocks: Characterization of the subducted component. *Geochimica et Cosmochimica Acta* 57, 2227–2237.
- Beck, P., Chaussidon, M., Barrat, J. A., Gillet, Ph. & Bohn, M. (2006). Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites. *Geochimica et Cosmochimica Acta* **70**, 4813–4825.
- Bouman, C., Elliott, T. & Vroon, P. Z. (2004). Lithium inputs to subduction zones. *Chemical Geology* 212, 59–79.
- Brown, G. M., Holland, J. G., Sigurdsson, H., Tomblin, J. F. & Arculus, R. J. (1977). Geochemistry of the Lesser Antilles island arc. *Geochimica et Cosmochimica Acta* 41, 785–801.
- Carpentier, M. (2007). Composition chimique des sédiments entrant dans la zone de subduction des Petites Antilles, PhD thesis, Grenoble University, 354 pp.
- Chan, L. H., Edmond, J. M. & Thompson, G. (1992). Lithium isotopic composition of submarine basalts: implication for the lithium cycle in the oceans. *Earth and Planetary Science Letters* **108**, 151–160.
- Chaussidon, M. & Jambon, A. (1994). Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. *Earth and Planetary Science Letters* **121**, 277–291.
- Chaussidon, M. & Libourel, G. (1993). Boron partitioning in the upper mantle—an experimental and ion probe study. *Geochimica et Cosmochimica Acta* 57, 5053–5062.
- Chaussidon, M., Sheppard, S. M. F. & Michard, A. (1991). Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50'N. In: Taylor, H. P., O'Neil, J. R. & Kaplan, I. R. (eds) Stable Isotope Geochemistry: a Tribute to Samuel Epstein. Geochemical Society, Special Publication 3, 325–337.
- Cruse, A. M. & Lyons, T. W. (2004). Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. *Chemical Geology* **206**, 319–345.
- Danyushevsky, L. V., Della-Pasqua, F. N. & Sokolov, S. (2000). Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. *Contributions to Mineralogy and Petrology* **138**, 68–83.
- Danyushevsky, L. V., McNeill, A. W. & Sobolev, A. (2002). Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. *Chemical Geology* 183, 5–24.
- Danyushevsky, L. V., Leslie, R. A. J., Crawford, A. J. & Durance, P. (2004). Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. *Journal of Petrology* **45**(12), 2531–2553.
- Davidson, J. (1985). Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. *Earth and Planetary Science Letters* 72, 163–174.

AUGUST 2008

- Davidson, J. & Harmon, S. (1989). Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth and Planetary Science Letters 95, 255–270.
- Decitre, S. (2000). Variations de la composition isotopique du lithium dans les périotites océaniques serpentinisées et dans le manteau-Implications pour le cycle du lithium. PhD thesis, INPL, Nancy, 154 pp.
- Decitre, S., Deloule, E., Reisberg, L., James, R., Agrinier, P. & Mevel, C. (2002). Behavior of lithium and its isotopes during serpentinization of oceanic peridotites. Geochemistry, Geophysics, Geosystems, doi:10.1029/2001GC000178.
- De Hoog, J. C. M., Taylor, B. E. & Van Bergen, M. J. (2001). Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth and Planetary Science Letters 189, 237-252.
- Della-Pasqua, F. & Varne, R. (1997). Primitive ankaramitic magma in volcanic arc: a melt-inclusion approach. Canadian Mineralogist 35, 291 - 312.
- Della-Pasqua, F. N., Kamenetsky, V. S., Gasparon, M., Crawford, A. J. & Varne, R. (1995). Al-rich spinels in primitive arc volcanics. Mineralogy and Petrology 53, 1-26.
- Devine, J. D. (1995). Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. Journal of Volcanology and Geothermal Research 69, 1-33.
- Deyhle, A., Kopf, A. & Eisenhauer, A. (2001). Boron systematics of authigenic carbonates: a new approach to identify fluids processes in accretionary prisms. Earth and Planetary Science Letters 187, 191-205.
- Draper, D. S. & Johnston, A. D. (1992). Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc-alumina basalts. Contributions to Mineralogy and Petrology 112, 501 - 519
- Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W. & Stolper, E. (2000). Oxygen isotope geochemistry of oceanic-arc lavas. Journal of Petrology 41, 229-256.
- Eiler, J. M., Carr, M. J., Reagan, M. & Stopler, E. (2005). Oxygen isotope constraints on the sources of central American arc lavas. Geochemistry, Geophysics, Geosystems 6, Q07007.
- Elliott, T. (2007). Tracers of the slab. In: Eiler, J. (ed.) Inside the Subduction Factory. Geophysical Monograph, American Geophysical Union 138. 23-43.
- Elliott, T., Jeffcoate, A. & Bouman, C. (2004). The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth and Planetary Science Letters 220, 231-245.
- Faure, F. & Schiano, P. (2005). Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth and Planetary Science Letters 236, 882-898.
- Gaetani, G. A. & Grove, T. L. (2007). Experimental constraints on melt generation in the mantle wedge. In: Eiler, J. (ed.) Inside the Subduction Factory. Geophysical Monograph Series, American Geophysical Union 138, 107-131.
- Gladney, E. S. & Roelandts, I. (1987). Compilation of elemental concentration data for USGS BIR-1, DNC-1, and W-2. Geostandards Newsletter 12 63-118
- Grove, T., Chatterjee, N., Arman, S. W. & Médard, E. (2006). The influence of H₂O on mantle wedge melting. Earth and Planetary Science Letters 249, 74-89.
- Gurenko, A. A. & Chaussidon, M. (1997). Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine. Chemical Geology 135, 21-34.
- Hawkesworth, C. J., O'Nions, R. K. & Arculus, R. J. (1979). Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth and Planetary Science Letters 45, 237-248.

- Heath, E., Macdonald, R., Belkin, H., Hawkesworth, C. & Sigurdsson, H. (1998). Magmagenesis at Soufrière Volcano, St. Vincent, Lesser Antilles Arc. Journal of Petrology 39, 1721-1764.
- Hermann, J., Spandler, C., Hack, A. & Korsakov, A. V. (2006). Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399-417.
- Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K. & Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta 71, 202-218.
- Kamenetsky, V. S., Eggins, S. M., Crawford, A. J., Green, D. H., Gasparon, A. J. & Falloon, T. J. (1998). Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/ melting involving clinopyroxene-rich lithologies during MORB generation. Earth and Planetary Science Letters 160, 115-132.
- Kent, A. J. R. & Elliott, T. R. (2002). Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas. Chemical Geology 183, 263-286.
- Kogiso, T. & Hirschmann, M. M. (2001). Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contributions to Mineralogy and Petrology 142, 347-360.
- Kress, V. C. & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 108, 82-92.
- Lassiter, J. C., Hauri, E. H., Nikogosian, I. K. & Barsczus, H. G. (2002). Chlorine-potassium variations in melt inclusions from Rivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters 202, 525-540.
- Leeman, W. P. & Sisson, V. B. (1996). Geochemistry of boron and its implications for crustal and mantle processes. In: Grew, E. S. & Anovitz, L. M. (eds) Boron: Mineralogy, Petrology and Geochemistry. Mineralogical Society of America, Reviews in Mineralogy 33, 645–708.
- Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P. & Zimmerman, M. (2005). Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. Geochimica et Cosmochimica Acta 69, 735-751.
- Macdonald, R., Hawkesworth, C. J. & Heath, E. (2000). The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Science Reviews 49, 1-76.
- Mackwell, S. J. & Kohlstedt, D. L. (1990). Diffusion of hydrogen in olivine: implication for water in the mantle. Journal of Geophysical Research 95, 5079-5088.
- Marschall, H., Pogge von Strandmann, P. A. E., Seitz, H.-M., Elliott, T. & Niu, Y. (2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters 262(3-4), 563-580.
- Maurel, C. & Maurel, P. (1982). Etude expérimentale de l'équilibre Fe²⁺-Fe³⁺ dans les spinelles chromifères et les liquides silicatés basiques coexistants. Comptes Rendus de l'Académie des Sciences 285, 209 - 215
- Médard, E., Schmidt, M. W. & Schiano, P. (2004). Liquidus surfaces of ultra-calcic primitive melts: formation conditions and sources. Contributions to Mineralogy and Petrology 148, 201-215.
- Mosbah, M., Métrich, N. & Massiot, P. (1991). PIGME Fluorine determination using a nuclear microprobe with application to glass inclusions. Nuclear Instruments and Methods in Physics Research B58, 227-231
- Newman, S., Stolper, E. M. & Stern, R. J. (2000). H₂O and CO₂ in magmas from Mariana arc and back arc systems. Geochemistry, Geophysics, Geosystems doi:1:1999GC000027.

BOUVIER et al. MAGMA SOURCES OF ST. VINCENT

- Nichols, G. T., Wyllie, P. J. & Stern, C. R. (1994). Subduction zone melting of pelagic sediments constrained by melting experiments. *Nature* 371, 785–788.
- Parkinson, I. J., Arculus, R. J. & Eggins, S. M. (2003). Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. *Contributions to Mineralogy and Petrology* 146, 241–262.
- Peacock, S. M. & Hervig, R. L. (1999). Boron isotopic composition of subduction-zone metamorphic rocks. *Chemical Geology* 160, 281–290.
- Pearce, J. A. & Peate, D.W. (1995). Tectonic implications of the composition of volcanic arc magmas. *Annual Review of Earth and Planetary Sciences* 24, 251–285.
- Pichavant, M. & Macdonald, R. (2003). Mantle genesis and crustal evolution of primitive calc-alkaline basaltic magmas from the Lesser Antilles arc. In: Larter, R. D. & Leat, P. T. (eds) *Intra-Oceanic Subduction Systems: Tectonics and Magmatic Processes*. Geological Society, London, Special Publications **219**, pp. 239–254.
- Pichavant, M. & Macdonald, R. (2007). Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calcalkaline igneous suite: experimental evidence from St Vincent, LesserAntilles arc. Contributions to Mineralogy and Petrology 154, 535–558.
- Pichavant, M., Mysen, B. O. & Macdonald, R. (2002). Source and H₂O contents of high-MgO magmas in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. *Geochimica et Cosmochimica Acta* 66, 2193–2209.
- Pistinier, J. A. & Henderson, G. M. (2003). Lithium-isotope fractionation during continental weathering. *Earth and Planetary Science Letters* 214, 327–339.
- Portnyagin, M., Hoernle, K., Plechov, P., Mirinov, N. & Khubunaya, S. (2007). Constraints on mantle melting and compositions and nature of slab components in volcanic arcs from volatiles (H₂O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. *Earth and Planetary Science Letters* doi:10.1016/ j.epsl.2006.12.005.
- Poussineau, S. (2005). Dynamique des magmas andésitiques: approches expérimentales et pétrostructurale, application à la Soufrière de Guadeloupe et à la Montagne Pelée. PhD thesis, Orléans University, 299 pp.
- Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. (2001). Evidence for mantle metasomatism by hydrous silicic melt derived from subducted oceanic crust. *Nature* **410**, 197–200.
- Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio, N. C. & Beloso, A. D., Jr (2006). Kinetic isotopic fractionation during diffusion of ionic species in water. *Geochimica et Cosmochimica Acta* **70**, 277–289.
- Rio, S., Métrich, N., Mosbah, M. & Massiot, P. (1995). Lithium, boron and beryllium in volcanic glasses and minerals studied by nuclear microprobe. *Nuclear Instruments and Methods in Physics Research B* 100, 141–148.
- Rose, E. F., Shimizu, N., Layne, G. D. & Grove, T. L. (2001). Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. *Science* **293**, 281–283.
- Rosner, M., Wiedenbeck, M. & Ludwig, T. (2008). Compositioninduced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses. *Geostandards and Geoanalytical Research* **32**(1), 27–38.
- Ryan, J. G. & Kyle, P. R. (2004). Lithium abundance and lithium isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. *Chemical Geology* **212**, 125–142.
- Ryan, J. G., Morris, J., Tera, F., Leeman, W. P. & Tsvetkov, A. (1995). Cross-arc geochemical variations in the Kurile arc as a function of slab depth. *Science* 270, 625–627.

- Schiano, P., Eiler, J. M., Hutcheon, I. D. & Stopler, E. M. (2000). Primitive CaO-rich, silica-undersaturated melts in islands arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. *Geochemistry, Geophysics, Geosystems* doi:1:1999GC000032.
- Smith, H. J., Leeman, W. P., Davidson, J. & Spivack, A. J. (1997). The B isotopic composition of arc lavas from Martinique, Lesser Antilles. *Earth and Planetary Science Letters* 146, 303–314.
- Sobolev, A. V. & Chaussidon, M. (1996). H₂O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H₂O storage and recycling in the mantle. *Earth* and Planetary Science Letters **137**, 45–55.
- Spilliaert, N., Métrich, N. & Allard, P. (2006). S–Cl–F degassing pattern of water-rich alkali basalt: Modelling and relationship with eruption styles on Mount Etna volcano. *Earth and Planetary Science Letters* 248, 772–786.
- Spivack, A. J. & Edmond, J. M. (1987). Boron isotope exhange between seawater and ocean crust. *Geochimica et Cosmochimica Acta* 51, 1033–1043.
- Straub, S. M. & Layne, G. D. (2002). The systematics of boron isotopes in Izu arc front volcanic rocks. *Earth and Planetary Science Letters* **198**, 25–39.
- Straub, S. M. & Layne, G. D. (2003). The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. *Geochimica et Cosmochimica Acta* 67, 4179–4203.
- Taylor, H. P. & Sheppard, S. M. F. (1986). Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley, J. W., Taylor, H. P. & O'Neil, J. R. (eds) Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America, Reviews in Mineralogy 16, 227–271.
- Teng, F.-Z., McDonough, W. F., Rudnick, R. L. & Wing, B. A. (2007). Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine. *Chemical Geology* 239, 1–12.
- Thirlwall, M. F. & Graham, A. M. (1984). Evolution of high-Ca, high-Sr C-Series basalts from Grenada Lesser Antilles: the effects of intra-crustal contamination. *Journal of the Geological Society, London* 141, 427–445.
- Thirlwall, M. F., Smith, T. E., Graham, A. M., Thodorou, N., Hollings, P., Davidson, J. P. & Arculus, R. J. (1994). High field strength element anomalies in arc lavas: source or process? *Journal* of *Petrology* 35, 819–838.
- Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S. & Macpherson, C. G. (1996). Resolution of the effects of crustal contamination, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. *Geochimica et Cosmochimica Acta* **60**, 4785–4810.
- Toplis, M. J. (2005). The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural experimental systems. *Contributions to Mineralogy and Petrology* 149, 22–39.
- Turner, S., Hawkesworth, C., Van Calsteren, P., Heath, E., Macdonald, R. & Black, S. (1996). U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. *Earth and Planetary Science Letters* **142**, 191–207.
- Vannucci, R., Tiepolo, M., Defant, M. J. & Kepezhinskas, P. (2007). The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). *Lithos* 99, 25–44.
- Van Soest, M. C., Hilton, D. R. & Kreulen, R. (1998). Tracing crustal and contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. *Geochimica and Cosmochimica Acta* 62, 3323–3335.

- Van Soest, M. C., Hilton, D. R., Macpherson, C. G. & Mattey, D. P. (2002). Resolving sediments subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He–O–Sr isotope approach. *Journal of Petrology* **43**, 143–170.
- Walker, J. A., Roggensack, K., Patino, L. C., Cameron, B. I. & Matias, O. (2003). The water and trace element contents of melt inclusions across an active subduction zone. *Contributions to Mineralogy and Petrology* **146**, 62–77.
- Wallace, P. J. (2005). Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. *Journal of Volcanology and Geothermal Rresearch* 140, 217–240.
- White, W. M. & Patchett, P. J. (1984). Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust–mantle evolution. *Earth and Planetary Science Letters* 67, 167–185.
- White, W. M., Dupré, B. & Vidal, P. (1985). Isotope and trace element geochemistry of sediments from the Barbados Ridge–Demerara

Plain region, Atlantic Occan. Geochimica et Cosmochimica Acta 49, 1875-1886.

- Woodland, S. J., Pearson, D. G. & Thirlwall, M. F. (2002). A platinium group element and Re–Os isotope investigation of siderophile element recycling in subduction zone: comparison of Grenada, Lesser Antilles Arc and the Izu–Bonin Arc. *Journal of Petrology* 43, 171–198.
- You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H. & Spivack, A. J. (1996). Trace-element behaviour in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. *Earth and Planetary Science Letters* **140**, 41–52.
- Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpe, C. & Mcdonough, W. F. (2003). Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. *Earth and Planetary Science Letters* **208**, 279–290.

CHAPITRE V :

CARACTERISATION DES MAGMAS PRIMAIRES DE GRENADE

V.1. Résumé étendu de l'article soumis à EPSL :

Grenade est l'île la plus méridionale de l'arc des Petites Antilles. Sa proximité avec la faille transformante El Pilar lui confère un contexte géodynamique particulier: la vitesse du coin mantellique est supposée proche de zéro. Cela suggère une signature plus marquée des composants du slab sur le manteau. De plus, la lithosphère continentale Sud Amérique, chaude, proche de Grenade, peut induire une fusion de la plaque Atlantique plongeant sous la plaque Caraïbe. Grenade est également un site exceptionnel de part la présence d'une large gamme de composition des laves émises, divisées en 2 séries sur la base de leur composition en éléments majeurs: M et C-Séries, respectivement riches en MgO et riches en CaO (Hawkesworth et al., 1979; Thirlwall et Graham, 1984; Devine, 1995; Thirlwall et al., 1996). Les basaltes alcalins contiennent fréquemment des blocs de xénolithes mantelliques métasomatisés, arrachés lors de la remontée de ces magmas. Les études de ces xénolithes ont montré des étapes successives d'enrichissements et fusion du manteau sous Grenade, par interaction avec des magmas pauvres en SiO₂ (Parkinson et al., 2003; Vannucci et al., 2007).

Fig. IV.1 : Photographie d'une olivine vue au microscope électronique, en lumière transmise. La délimitation entre olivine mantellique et magmatique, marquée par la présence de nombreux spinelles et quelques inclusions, est accentuée par une courbe en pointillés. Cette délimitation a été vérifiée par les analyses des éléments majeurs.

Le travail présenté ici porte sur les inclusions vitreuses piégées dans les olivines de différents niveau d'un cône de scories, situé à Queen's Park. Comme pour les inclusions de St. Vincent, les teneurs en H₂O, S, Cl, F, Li, B et les compositions en δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S et δ D ont été déterminées dans des inclusions de 20 à 50 µm. Les olivines analysées ont des compositions variant de Fo_{79.8} à Fo_{91.5} (annexe 4). Parmi ces olivines, certaines sont mantelliques, caractérisées par des teneurs en CaO< 0.1 % pds et des compositions en Fo extrêmement variables, et présentant souvent des kink band. Les olivines magmatiques ont des teneurs en CaO > 0.1 % pds et des pourcentages de forstérite variant entre 86 et 91%. Ces olivines sont présentes soit en phénocristaux, soit en surcroissance sur une olivine mantellique (Fig. V.1). Toutes les olivines contiennent de nombreux spinelles, de compositions allant de Cr# [Cr/(Cr+Al)] = 0.70 à 0.36 et Mg# [Mg/(Mg+Al)] = 0.66 à 0.30 (annexe 8), correspondant aux compositions des spinelles mesurés par Parkinson et al. (2003) dans les
xénolithes de Grenade, et interprétées comme reflétant une première étape de fusion du manteau et des interactions manteau/magma.

Les 113 inclusions analysées par microsonde électronique ont des compositions variables. Les inclusions les plus primitives (K₂O< 0.1% pds) ont des compositions similaires aux laves appartenant à la M-Série (annexes 12-13). D'autres inclusions, avec des K₂O> 0.1% pds, montrent une corrélation K₂O-SiO₂, pouvant être expliquée par la cristallisation d'olivine, pyroxène, amphibole et plagioclase (Devine, 1995) ou par l'interaction du magma avec un manteau résiduel métasomatisé (ex: wherlite, Vannucci et al., 2007). Les Kd théoriques des inclusions (0.30 ± 0.01), calculés d'après le modèle de Toplis (2005), montrent que les inclusions ont des Kd mesurés plus faibles (0.19 ± 0.06), signe que les inclusions ont subi des processus de cristallisation d'olivine aux parois (7.7 ± 3.3%).

Pour les analyses SIMS, seules des inclusions primitives (44) piégées dans des olivines magmatiques ou surcroissances magmatiques ont été analysées (Tableau V.1). Les teneurs en eau montrent une gamme très étendue (0.16 to 6.4 % pds), encore jamais décrites au sein d'un même centre volcanique. 40% des inclusions ont des teneurs en eau similaires aux MORB (0.09-0.32 wt%; Chaussidon et al., 1991). Les δD mesurés dans certaines inclusions, ayant des H₂O variables, excluent une diffusion de H⁺ de l'inclusion vers l'olivine hôte (Danyushevsky et al., 2002; Hauri, 2002). En effet, toutes les inclusions ont des δD négatifs (-150‰ en moyenne, Fig. V.2), inférieurs aux valeurs des MORB. Or une diffusion de H⁺ devrait décaler les δD vers des valeurs positives (Hauri, 2002). L'association de certaines basses teneurs en eau avec de fortes teneurs en Cl et S exclue un effet du dégazage superficiel. Ces valeurs sont donc toutes représentatives d'un magma primitif variablement enrichi en eau.

Fig V.2 : Diagramme H_2O vs δD dans les inclusions de Grenade. Un histogramme des valeurs est ajouté en encart en haut à droite. Les valeurs typiques des MORB sont ajoutées pour comparaison (Hauri, 2002 ; Pineau et al., 1999). La majorité des inclusions mesurées ont des δD négatifs et inférieurs aux valeurs des MORB, excluant une diffusion de H^+ de l'inclusion vers l'olivine, responsable au contraire d'un décalage vers des valeurs

positives et d'une corrélation H_2O - δD . Une des valeurs présente dans l'histogramme ne l'est pas dans le diagramme par manque de mesure en H_2O .

	G05-5a ¹	G05-11a ¹	G05-13a ¹	G05-14	G05-46g1 ¹	G05-54	G05-61a ¹	G05-69	G05-74	G05-101a ¹
Measured co	omposition	S								
SiO ₂	48.45	46.23	46.05	45.24	46.91	43.72	46.07	46.56	44.32	45.19
TiO ₂	1.11	1.12	1.13	1.02	0.91	1.79	1.08	1.07	1.01	1.02
AI_2O_3	18.08	18.69	19.15	18.31	18.31	19.69	17.58	18.52	18.34	15.89
FeO _{tot} ²	7.69	8.71	7.79	8.36	9.27	7.00	8.47	9.54	11.48	8.29
MnO	0.11	0.09	0.15	0.08	0.15	0.09	0.17	0.15	0.20	0.15
MgO	6.18	5.19	5.71	4.73	6.76	4.98	5.14	5.14	5.85	7.65
CaO	13.12	12.77	13.63	15.52	11.25	11.92	13.98	13.33	12.83	12.88
Na ₂ O	3.10	3.78	3.26	1.51	3.33	4.15	2.89	2.96	2.55	2.40
K ₂ O	0.71	0.95	0.68	0.62	0.86	0.82	0.66	0.63	0.64	0.56
Total	98.55	97.53	97.55	95.39	97.75	94.16	96.03	97.91	97.22	94.04
CaO/Al ₂ O ₃	0.73	0.68	0.71	0.85	0.61	0.61	0.80	0.76	0.70	0.81
Corrected co	omposition	s								
SiO ₂	48.92	46.79	46.76	45.47	46.75	46.04	46.32	46.65	44.53	46.21
TiO ₂	1.10	1.05	1.09	1.01	0.86	1.78	1.06	0.95	0.96	0.99
AI_2O_3	17.84	17.59	18.52	17.70	16.28	19.57	17.20	16.49	16.15	15.46
Fe_2O_3	1.93	2.34	2.93	1.29	2.83	1.92	2.36	2.48	2.91	2.85
FeO	6.00	7.02	5.39	7.30	9.13	5.85	7.05	7.69	9.06	8.90
MnO	0.11	0.09	0.15	0.08	0.14	0.09	0.17	0.13	0.19	0.15
MgO	7.40	8.66	8.16	10.15	9.44	7.97	8.70	10.65	12.70	10.03
CaO	12.95	12.02	13.18	14.95	10.61	11.85	13.68	11.78	11.31	12.53
Na₂O	3.06	3.56	3.15	1.45	3.14	4.13	2.83	2.62	1.58	2.34
K ₂ O	0.70	0.89	0.66	0.60	0.81	0.82	0.65	0.56	0.60	0.55
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
PEC% ³	2.8	8.2	11.6	13.7	6.81	6.4	8.0	15.2	18.5	5.60
Host olivines	s composit	ions								
SiO ₂	40.12	41.22	41.26	41.38	39.44	39.81	39.27	41.28	40.37	40.89
MgO	48.33	48.21	49.10	47.29	45.74	48.09	47.22	48.24	47.68	46.60
CaO	0.14	0.16	0.14	0.10	0.23	0.18	0.18	0.26	0.14	0.15
NiO	0.39	0.26	0.28	0.26	0.14	0.35	0.23	0.22	0.29	0.23
FeO	9.50	10.80	9.93	9.80	12.55	9.60	11.10	9.28	10.39	11.56
MnO	0.15	0.18	0.14	0.17	0.19	0.11	0.16	0.18	0.19	0.19
$Fo \%^4$	88.00	88.84	89.80	89.59	86.66	89.93	88.34	90.26	89.11	87.78
Total	98.61	100.82	100.85	98.99	98.28	98.13	98.17	99.46	99.05	99.61
SIMS data										
H_2O (wt%) ⁵	0.48	0.48	2.48	1.85	0.22	3.91	2.70	0.21	1.68	4.10
Li(ppm)⁵	5.82	9.71	6.51	4.25	1.11	5.28	6.13	1.84	2.08	5.19
B (ppm)⁵	19.48	11.76	15.89	9.87	12.53	12.77	12.53	8.30	12.40	8.45
δ^7 Li (‰) ⁵	-6.22	3.64	6.17	7.03	2.01	-17.69	-5.69	-5.26	-5.38	-2.15
δ ¹¹ B (‰) ⁵	-19.58	-6.53	-9.74	-4.99	-7.39	n.d.	-4.96	-12.01	-10.19	-0.74
F (ppm)⁵	1298	421	n.d.	365	413	929	549	379	502	319
S (ppm)⁵	n.d.	1261	n.d.	2475	n.d.	n.d.	247	1672	n.d.	2400
Cl (ppm)⁵	2078	2593	n.d.	2582	323	768	2825	n.d.	n.d.	2273
δ ¹⁸ O (‰) ⁵	6.10	9.00	n.d.	11.40	4.00	5.00	6.20	8.00	5.40	11.32
δ ³⁴ S (‰) ⁵	n.d.	n.d.	n.d.	n.d.	n.d.	9.16	n.d.	-2.46	n.d.	n.d.
δD (‰) ⁶	nd	n d	n d	n d	-51	n d	n d	-167	n d	-127

 Tableau V.1: Composition en éléments majeurs et traces légers, et isotopes stables des inclusions de Grenade

 "sed" M.I.

¹ a,b... Differentes inclusions dans le même cristal. "g": golfes; ² Fe total exprimé en tant que FeO_{tot}; Fe₂O₃ est calculé pour 15% de FeO_{tot}; ³% de cristallisation d'olivine post-piégeage, calculé avec Petrolog (Danyushevsky et al., 2000) à NNO+0.3; ⁴ Fo = 100x[Mg/(Mg + Fe2+)]; ⁵ Données mesurées par CAMECA IMS 1270; ⁶

Données mesurées par CAMECA IMS 3f; Quelques inclusions, telles que G05-12, 14, 73, 46b, ont des faibles totaux, même en incluant les teneurs en volatiles. Ces faibles valeurs peuvent être dues à une sous-estimation de la concentrations en SiO₂.

Tableau V.1 (suite)

	_ (~~~~)			"variable	e F." M.I.					
	G05-101b ¹	G05-104a ¹	G05-109	G05-7a ¹	G05-9	G05-12	G05-13c ¹	G05-13v ¹	G05-15a ¹	G-19
Measured c	ompositions									
SiO ₂	45.92	42.34	45.94	44.23	45.64	45.10	49.80	49.13	46.38	44.61
TiO ₂	1.01	1.10	1.17	1.17	1.09	1.04	1.07	0.82	1.19	1.09
AI_2O_3	16.29	16.60	19.71	18.51	17.40	16.71	18.44	24.17	19.26	19.49
FeO _{tot} ²	8.08	9.52	7.58	9.38	8.73	8.75	7.08	6.50	7.83	10.65
MnO	0.18	0.09	0.18	0.14	0.14	0.19	0.09	0.13	0.19	0.21
MgO	7.09	5.07	5.14	6.32	5.39	5.91	5.28	2.06	5.79	4.47
CaO	13.04	13.79	14.32	13.84	14.51	13.14	12.53	12.83	14.48	12.24
Na ₂ O	2.40	2.21	3.38	3.01	3.63	2.42	3.50	3.33	3.27	3.30
K ₂ O	0.60	0.56	0.77	0.66	0.71	0.55	0.73	0.66	0.73	0.81
Total	94.62	91.28	98.17	97.25	97.24	93.81	98.51	99.64	99.13	96.87
CaO/Al ₂ O ₃	0.80	0.83	0.73	0.75	0.83	0.79	0.68	0.53	0.75	0.63
Corrected co	ompositions									
SiO ₂	46.23	44.88	46.18	45.23	46.14	47.91	50.16	48.09	46.53	45.26
TiO ₂	0.93	1.03	1.08	1.15	1.02	1.07	1.05	0.72	1.15	0.99
AI_2O_3	15.00	15.56	18.16	18.15	16.25	17.38	18.01	21.30	18.65	17.70
Fe_2O_3	2.85	3.00	2.02	2.43	2.48	2.20	1.79	1.68	2.03	2.75
FeO	8.98	9.37	6.12	7.40	6.93	7.06	5.62	6.24	6.07	8.98
MnO	0.17	0.08	0.17	0.14	0.13	0.18	0.09	0.12	0.18	0.19
MgO	11.08	10.55	9.27	8.34	9.44	7.96	6.93	7.03	7.50	9.28
CaO	12.01	12.93	13.19	13.57	13.55	13.27	12.24	11.31	14.02	11.12
Na ₂ O	2.21	2.07	3.11	2.95	3.39	2.40	3.42	2.93	3.17	3.00
K ₂ O	0.55	0.53	0.71	0.65	0.66	0.58	0.71	0.58	0.71	0.74
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
PEC% ³	9.84	13.03	9.5	4.6	9.4	4.4	3.8	12.2	4.0	12.0
Host olivine:	s composition	S								
SiO ₂	41.22	40.51	40.62	40.28	40.66	41.30	40.67	40.36	40.94	40.69
MgO	47.12	46.52	49.59	46.66	48.58	48.16	48.46	47.12	48.02	47.58
CaO	0.16	0.15	0.04	0.13	0.15	0.16	0.15	0.20	0.19	0.18
NiO	0.21	0.22	0.39	0.35	0.36	0.26	0.28	0.22	0.27	0.23
FeO	11.38	12.48	9.81	11.83	10.08	11.77	11.12	11.86	10.89	12.30
MnO	0.17	0.17	0.16	0.18	0.15	0.19	0.18	0.19	0.20	0.20
$Fo \%^4$	88.06	86.91	90.00	87.55	89.57	87.94	88.60	87.60	88.71	87.33
Total	100.26	100.04	100.61	99.43	99.98	101.84	100.86	99.95	100.51	101.17
SIMS data										
H_2O (wt%) ⁵	3.09	6.38	0.89	1.67	0.97	3.62	0.39	0.48	0.23	1.27
Li(ppm) ⁵	4.84	1.80	5.94	5.99	19.22	4.40	3.18	6.24	4.03	16.76
B (ppm)⁵	9.77	10.65	11.36	9.96	6.98	7.09	1.89	8.54	6.53	14.71
δ^7 Li (‰) ⁵	-0.58	-0.88	-2.41	n.d.	-0.30	7.27	7.43	4.51	-3.05	-3.91
δ ¹¹ B (‰) ⁵	-0.51	-5.18	-6.36	0.81	2.20	0.43	-5.84	2.84	1.28	5.52
F (ppm)⁵	345	273	507	583	665	349	n.d.	n.d.	369	396
S (ppm)⁵	2307	2670	96	1029	978	235	n.d.	n.d.	3519	1088
Cl (ppm) ⁵	2503	2074	1743	2041	1896	1103	n.d.	n.d.	869	1767
δ ¹⁸ O (‰) ⁵	10.71	9.35	2.71	8.20	5.30	6.50	n.d.	n.d.	6.24	6.98
δ ³⁴ S (‰) ⁵	n.d.	n.d.	n.d.	-5.26	-8.46	3.59	n.d.	n.d.	n.d.	n.d.
δD (‰) ⁶	-127	-154	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	-8	n.d.

Tableau V.1 (suite)

	G-22	G05-25	G05-36	G05-37a ¹	G05-44a ¹	G05-51	G05-60	G05-66	G05-91	G05-28a ¹
Measured co	omposition	s								
SiO ₂	47.07	45.41	45.98	44.71	43.53	45.77	42.97	42.83	50.04	43.71
TiO ₂	1.27	1.42	1.09	1.45	1.23	1.16	1.21	1.06	0.95	1.31
Al ₂ O ₃	18.45	17.08	16.92	18.60	20.87	18.73	16.99	18.46	18.85	17.26
FeO _{tot} ²	9.18	9.99	11.01	8.07	7.80	8.47	10.48	9.81	7.68	9.88
MnO	0.25	0.19	0.14	0.09	0.20	0.18	0.21	0.14	0.20	0.14
MqO	4.72	3.42	4.92	5.31	4.03	6.66	5.17	6.98	2.80	4.96
CaO	13.27	14.61	13.54	15.98	15.96	13.47	16.67	14.83	13.57	16.92
Na ₂ O	2.69	2.84	2.61	3.25	3.35	3.60	3.55	3.03	3.98	3.30
K ₂ O	0.53	0.61	0.52	0.87	0.69	0.79	0.86	0.66	0.75	0.55
Total	97.43	95.57	96.73	98.33	97.65	98.82	98.11	97.81	98.81	98.03
CaO/Al ₂ O ₃	0.72	0.86	0.80	0.86	0.75	0.72	0.98	0.79	0.72	0.98
Corrected co	omposition	s								
SiO ₂	47.12	45.68	46.04	45.25	43.88	45.99	43.12	43.00	49.50	44.30
TiO ₂	1.12	1.27	1.05	1.42	1.19	1.11	1.06	0.99	0.87	1.26
Al ₂ O ₃	17.48	15.37	15.80	18.18	19.04	17.94	14.91	16.76	17.18	16.63
Fe ₂ O ₃	2.44	3.18	2.90	2.26	2.21	2.21	4.75	2.67	2.19	2.90
FeO	7.80	9.55	8.99	6.19	6.56	6.55	7.35	7.84	6.59	7.56
MnO	0.21	0.16	0.16	0.09	0.19	0.17	0.18	0.13	0.18	0.14
MaQ	8.06	8.44	9.29	6.97	8.93	8.92	10.12	11.88	6.82	7.21
CaO	12.74	13.28	12.87	15.62	14.31	12.90	14.63	13.29	12.37	16.30
Na ₂ O	2.46	2.53	2.39	3.18	3.03	3.45	3.12	2.83	3.63	3.18
K ₂ O	0.56	0.56	0.52	0.85	0.67	0.76	0.76	0.62	0.68	0.53
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
PFC% ³	6.4	12.02	9.3	3.9	10.9	5.3	5.4	11.2	9.9	5.5
Host olivines	s composit	ions					••••			
SiO	41.01	39.89	39.70	40.30	40.85	39.50	39.65	40.76	40.44	40.25
MaQ	47 71	45 44	46.33	46 79	48 13	47.38	48 48	50.86	46 21	46.35
CaO	0.19	0.21	0.17	0.20	0.32	0.18	0.15	0.16	0.17	0.16
NiO	0.22	0.19	0.23	0.30	0.37	0.32	0.31	0.35	0.13	0.23
FeO	12.55	14 58	13 14	12 28	10.30	10.45	9.66	8 12	12 75	13.83
MnO	0.20	0.23	0.19	0.19	0.16	0.21	0.00	0.14	0.18	0.20
$Fo \%^4$	87.14	84.74	86.27	87.16	89.28	88.99	89.94	91.78	86.59	85.66
Total	101 87	100 54	99.76	100.06	100.13	98.04	98.40	100.38	99.88	101.01
SIMS data	101.07	100.01	00.10	100.00	100.10	00.01	00.10	100.00	00.00	101.01
H ₂ O (wt%) ⁵	0.59	n d	2 23	0 16	0.51	0.32	n d	0 27	0.38	0.53
$L_2^{(nnm)^5}$	18 57	n d	3 65	2.98	2 42	4 76	n d	2.13	10.06	4 24
$B (nnm)^5$	12.09	n d	13 67	6.48	4 82	10.36	n d	2 24	1 71	46 71
δ^{7} Li (%) ⁵	-3.26	n d	6.03	5 31	-3.02	1.63	7 19	4 26	-5.43	7 49
$\delta^{11} \mathbf{B} (\%)^5$	0.20	n d	8 92	-0.35	-1 18	4 98	-10 72	-8 75	-4 99	3 41
$F (ppm)^{5}$	739	493	670	151	n.d	668	305	n.d	191	398
S (npm) ⁵	1043	472	1681	nd	n d	1283	3408	n d	906	nd
$Cl (nnm)^5$	2017	943	1671	n d	n d	1750	3331	n d	1013	1076
δ ¹⁸ O (‰) ⁵	7 80	5.00	6 90	8 60	8 89	8.31	6.05	n d	5 47	640
δ^{34} S (%) ⁵	n d	n d	1 12	n d	n d	n d	n d	n d	n d	1.00
δD (%) ⁶	n d	-22	n d	n d	-146	-109	n d	-202	-173	-40
	n.u.	-22	n.u.	n.u.	140	103	n.u.	202	-175	

Tableau V.1 (suite)

	. ,						"AOC" M.I.		
	G05-28b ¹	G05-40	G05-46a ¹	G05-46b ¹	G05-46g2 ¹	G05-46c ¹	G05-68a ¹	G05-70	G05-72a ¹
Measured c	ompositions								
SiO ₂	44.71	44.31	45.38	42.38	45.22	45.01	43.79	45.71	43.87
TiO ₂	1.17	1.30	1.15	1.16	1.13	1.13	1.16	1.06	1.12
AI_2O_3	20.21	18.98	17.71	18.15	17.41	17.93	18.70	18.20	18.93
FeO _{tot} ²	7.92	8.93	9.65	10.71	10.09	10.62	8.70	8.84	9.63
MnO	0.12	0.12	0.16	0.19	0.15	0.21	0.09	0.20	0.12
MgO	5.20	4.39	5.86	5.88	5.86	5.51	5.64	5.53	4.71
CaO	14.37	14.53	13.09	15.12	12.74	14.94	16.21	13.10	14.86
Na ₂ O	3.23	2.64	3.82	2.76	3.87	2.68	3.22	2.58	2.88
K ₂ O	0.71	0.64	0.88	0.58	0.85	0.59	0.63	0.65	0.62
Total	97.64	95.84	97.69	96.93	97.31	98.62	98.13	95.86	96.73
CaO/Al ₂ O ₃	0.71	0.77	0.74	0.83	0.73	0.83	0.75	0.72	0.78
Corrected co	ompositions								
SiO ₂	45.44	44.94	46.15	42.55	43.59	46.09	43.65	46.07	44.38
TiO ₂	1.12	1.18	1.12	1.04	1.09	1.10	0.98	0.99	0.99
AI_2O_3	19.41	17.94	17.31	16.31	17.24	16.90	15.83	16.99	16.65
Fe ₂ O ₃	2.07	2.39	2.62	2.92	2.90	2.75	2.58	3.52	2.51
FeO	6.38	7.40	7.50	8.65	8.59	7.90	7.37	6.76	7.65
MnO	0.12	0.17	0.16	0.17	0.20	0.15	0.08	0.19	0.11
MgO	7.87	9.13	7.75	11.78	8.88	8.17	12.53	10.24	11.58
CaO	13.80	13.63	12.80	13.59	14.37	12.37	13.72	12.23	13.07
Na₂O	3.10	2.63	3.73	2.48	2.58	3.76	2.73	2.41	2.53
K ₂ O	0.68	0.59	0.86	0.52	0.57	0.83	0.53	0.61	0.55
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
PEC% ³	6.2	9.7	4.5	14.0	8.0	5.5	16.3	10.5	16.0
Host olivine	s compositio	ns							
SiO ₂	40.80	40.59	39.44	40.37	39.44	40.05	40.36	41.91	44.90
MgO	48.30	48.40	45.74	47.68	45.74	46.26	48.36	48.03	44.84
CaO	0.18	0.16	0.23	0.14	0.23	0.22	0.18	0.20	0.22
NiO	0.27	0.31	0.14	0.29	0.14	0.15	0.29	0.25	0.33
FeO	11.06	10.96	12.55	10.39	12.55	12.59	9.44	8.57	7.95
MnO	0.19	0.16	0.19	0.19	0.19	0.19	0.14	0.16	0.17
$Fo \%^4$	88.61	88.72	86.66	89.11	86.66	86.75	90.13	90.90	90.88
Total	100.80	100.58	98.28	99.05	98.28	99.45	98.77	99.12	98.41
SIMS data									
H_2O (wt%) ⁵	0.83	2.57	0.82	0.46	1.03	0.74	0.46	1.53	1.10
Li(ppm)⁵	4.50	4.76	11.20	3.94	11.61	8.01	5.34	3.42	2.64
B (ppm)⁵	31.36	21.70	19.21	26.99	15.34	29.60	17.48	20.87	18.86
δ^7 Li (‰) ⁵	3.13	2.81	2.88	-23.64	3.72	4.00	n.d.	8.21	6.75
δ ¹¹ B (‰) ⁵	-0.46	-2.83	5.42	-10.89	6.04	4.28	n.d.	4.31	0.34
F (ppm)⁵	724	707	1183	539	265	933	695	997	812
S (ppm)⁵	n.d.	545	n.d.	n.d.	1722	n.d.	151	377	583
Cl (ppm) ⁵	1475	n.d.	2857	n.d.	2838	1866	n.d.	n.d.	412
δ ¹⁸ O (‰) ⁵	7.30	7.50	5.90	4.60	3.33	6.20	3.00	5.10	7.70
δ ³⁴ S (‰) ⁵	n.d.	n.d.	n.d.	5.79	n.d.	9.16	n.d.	n.d.	3.95
δD (‰) ⁶	n.d.	n.d.	n.d.	-157	n.d.	-156	-151	n.d.	n.d.

_	G05-73	G05-77a ¹	G05-78	G05-85	G05-104g ¹
Measured co	mpositions				
SiO ₂	42.70	43.12	42.67	44.52	48.27
TiO ₂	1.18	1.28	1.21	1.10	1.15
AI_2O_3	18.96	18.07	18.44	18.29	16.97
FeO _{tot} ²	9.76	9.45	10.55	10.44	8.44
MnO	0.13	0.19	0.15	0.16	0.15
MgO	4.86	6.25	5.43	3.92	6.03
CaO	15.63	13.74	15.54	14.94	13.22
Na₂O	2.91	2.83	3.26	2.50	2.92
K ₂ O	0.65	0.66	0.75	0.65	0.67
Total	96.78	95.59	98.00	96.53	97.84
CaO/Al ₂ O ₃	0.82	0.76	0.87	0.79	0.78
Corrected co.	mpositions				
SiO ₂	43.00	43.53	42.89	44.77	48.04
TiO ₂	1.10	1.19	1.11	1.03	1.04
AI_2O_3	17.55	16.84	16.05	16.68	15.33
Fe ₂ O ₃	3.82	2.57	4.30	3.06	2.59
FeO	6.65	7.81	7.11	9.60	7.97
MnO	0.12	0.18	0.14	0.15	0.14
MgO	10.07	11.83	10.77	8.48	9.70
CaO	14.35	12.81	13.94	13.27	11.95
Na ₂ O	2.72	2.64	3.00	2.34	2.64
K ₂ O	0.61	0.62	0.69	0.61	0.61
Total	100.00	100.00	100.00	100.00	100.00
PEC% ³	12.1	12.6	11.9	11.54	10.61
Host olivines	compositic	ons			
SiO ₂	41.52	41.50	41.71	41.35	40.51
MgO	46.85	49.36	47.67	46.07	46.52
CaO	0.15	0.18	0.21	0.12	0.15
NiO	0.17	0.26	0.22	0.21	0.22
FeO	9.15	8.33	9.48	15.13	12.48
MnO	0.18	0.15	0.17	0.21	0.17
Fo %⁴	90.12	91.35	89.95	84.44	86.91
Total	98.09	99.79	99.45	103.09	100.04
SIMS data					
H_2O (wt%) ⁵	0.52	1.79	0.16	0.93	0.93
Li(ppm) ⁵	2.77	3.64	3.93	1.87	7.00
B (ppm) ⁵	23.83	44.85	32.94	38.16	16.65
δ'Li (‰) ⁵	n.d.	-5.78	-1.60	-15.96	4.68
δ^{11} B (‰) ⁵	n.d.	-4.87	-6.04	-1.37	-0.85
F (ppm)⁵	1036	457	308	505	328
S (ppm)⁵	n.d.	2960	n.d.	245	589
Cl (ppm)⁵	n.d.	2029	1544	2470	1763
δ ¹⁸ O (‰) ⁵	7.40	7.19	3.00	8.06	5.74
δ ³⁴ S (‰) ⁵	1.44	n.d.	1.36	n.d.	n.d.
δD (‰) ⁶	n.d.	n.d.	n.d.	-135	-186

Tableau V.1 (suite)

Les concentrations en F et Cl varient de 151 to 1298 ppm et 323 to 3331 ppm. La plupart des inclusions ont des teneurs en fluor comparables à celles des MORB (de 100 à 600 ppm,

Straub et Layne, 2003), alors qu'elles sont toutes enrichies en chlore. Les teneurs en S montrent une étonnante variabilité, allant de 96 à 3520 ppm. Les faibles teneurs en S sont associées à des teneurs en eau de type MORB ou supérieures, et des valeurs en Cl supérieures à celles des MORB, excluant une fois de plus un processus de dégazage superficiel.

	H ₂ O	Li	В	$\delta^7 Li$	$\delta^{11}B$
	% pds	ppm	ppm	‰	%0
G05-28-1	0.02	1.38	1.10	1.77	-32.44
G05-28-2	0.02	1.35	1.16	-1.15	-23.15
G05-28-3	0.02	1.32	0.91	0.39	-15.01
G05-28-4	0.02	1.31	0.82	-1.98	-19.04
G05-28-5	0.02	2.14	0.90	-3.81	-19.21
G05-101-1	0.03	1.38	0.86	-3.34	-23.33
G05-101-2	0.03	1.41	0.76	-2.77	-18.79
G05-101-3	0.03	1.40	0.76	2.70	-11.22
G05-101-4	0.02	1.46	0.63	2.91	-1.12
G05-101-5	0.02	1.72	0.82	-2.04	-16.15
G05-101-6	0.02	1.63	0.77	-1.75	-23.24
G05-101-7	0.01	2.12	0.80	-5.15	0.34
G05-101-8	0.01	1.40	1.45	-0.15	-20.51
G05-101-9	0.02	1.32	0.75	-5.82	1.66
G05-104-1	0.01	1.24	0.88	-0.08	-24.19
G05-104-2	0.01	1.22	8.41	-0.02	-20.92
G05-104-3	0.01	1.21	1.13	-6.21	-17.70
G05-104-4	0.03	1.19	0.83	-8.55	-21.31
G05-104-5	0.01	1.11	0.64	3.00	-29.21
G05-104-6	0.01	1.21	0.79	-3.30	-20.65
G05-104-7	0.02	1.11	0.82	-4.22	-29.68
G05-109-2	0.10	2.95	0.63	-14.71	-29.63
G05-109-3	0.10	2.87	0.95	-13.61	-76.43
G05-109-4	0.07	2.86	0.85	16.21	-7.57
G05-109-5	0.07	2.94	0.09	-1.08	-25.23
G05-109-6	0.24	3.83	5.06	4.05	-5.10

Tableau V.2 : Compositions en éléments légers et isotopes stables dans des olivines de Grenade

Les concentrations en B et Li s'étalent de 0.7 to 46.7 ppm et 1.1 to 19.2 ppm, respectivement. Toutes les inclusions ont des concentrations en B de 6 à 20 fois plus élevées que celles des MORB (0.34 to 0.74 ppm B; Chaussidon et Jambon, 1994), alors que les concentrations en Li montrent à la fois des valeurs supérieures et inférieures à celle des MORB. Les compositions en δ^7 Li et δ^{11} B varient de +8.2‰ à -6.2‰ et -19.6 à +8.9 ‰ respectivement et englobent celles des MORB, avec des valeurs inférieures et supérieures.

Les profils de Li et δ^7 Li, déterminés dans certaines olivines, n'ont pas mis en évidence de diffusion de Li de l'inclusion vers l'olivine hôte (Fig. II.7 et Tableau V.2). Les δ^{18} O varient également de valeurs inférieures (+2.1‰) à des valeurs supérieures (+11.4‰) à celle des MORB (+5.5 ± 0.2‰; Mattey et al., 1994). La plupart des inclusions ont des δ^{18} O supérieurs à ceux des MORB, avec des valeurs rarement atteintes pour des laves d'arc (Eiler et al., 2000; 2002). Les compositions en δ^{34} S n'ont pu être mesurées que dans certaines inclusions, notamment à cause des faibles teneurs en S de certaines inclusions. Les δ^{34} S sont compris entre -8.5 to +9.2‰, entourant une fois de plus les valeurs des MORB.

Ces larges variations de compositions chimiques et isotopiques sont interprétées en termes d'évènements successifs de métasomatisme, ainsi que par des évènements de fusion du manteau, et fusion le long d'une colonne. En effet, toutes les inclusions sont enrichies en Cl et B, associé à des δD très bas. En utilisant un modèle B vs $\delta^{11}B$ identique à celui utilisé pour St. Vincent (Annexe 15), basé sur le modèle de Rose et al. (2001), il apparait que la source mantellique sous Grenada a été modifié par l'apport d'un fluide de composition semblable à l'eau de mer. L'influence d'un tel fluide pourrait également expliquée 1) les faibles δD , signant des fluides salins de hautes températures (-120 a -220‰, Pineau et al., 1999, Hauri, 2002), ainsi que 2) les larges variations de Cl pour des K₂O constants (Hauri, 2002). La présence de fluides de composition proche de celle de l'eau de mer impliquerait la déshydratation de serpentine, qui génèrerait des fluides riches en B, Cl, avec de forts $\delta^{11}B$ (Marshall et al., 2007) et des compositions légères en δD (Wenner et Taylor, 1973).

Les variations observées dans les inclusions ne peuvent pas être expliquées par la seule influence d'un fluide de type eau de mer. Le modèle du B illustre l'influence de deux autres types de fluides :

- des fluides de déshydratation de la croûte océanique, enrichissant de 20 à 30 ppm le magma, générant de forts rapports B/H₂O (jusqu'à 0.02), Cl/H₂O (jusqu'à 0.2) et F/H₂O (jusqu'à 0.95), ainsi que des δ¹⁸O élevés (de +4.6 à +8.1‰, sauf 3 valeurs entre +2.1 et +3‰). Ces inclusions décrivent également de larges variations en δ⁷Li (-21.0 à +7.5 ‰) qui peuvent refléter un fractionnement cinétique lors du passage des fluides à travers différentes lithologies.
- 2) Des fluides de déshydratation des sédiments, enrichissant le magma de 4 à 10 ppm et générant des faibles δ^{11} B. Ces inclusions ont également des δ^{18} O très élevés (jusqu'à +11.4 ‰), des δ^7 Li variables mais aussi quelque δ^{34} S négatifs, reflétant probablement l'influence des black-shales, présents dans le prisme de la Barbade, sur la source mantellique.

Les variations en éléments légers et isotopes stables sont donc expliquées par des enrichissements de la source par différents type de fluides. Cependant, malgré ces enrichissements, la plupart des inclusions sont pauvres en eau. Une explication possible pour expliquer ces faibles valeurs serait une première étape de fusion du manteau, avant celle enregistrée par les inclusions. Cette hypothèse a été suggérée par les études des xénolithes de Grenade (Parkinson et al., 2003 ; Vannucci et al., 2007) et confirmée par l'analyse des spinelles contenus dans les olivines analysées lors de cette étude. En supposant un comportement totalement incompatible de l'eau, ainsi que deux étapes de fusion de la source mantellique (la première à 22% de fusion partielle, selon Parkinson et al. (2003), la deuxième

entre 7 et 15% de fusion partielle, déterminé grâce au modèle du B), 580 à 3410 ppm d'eau initiale (avant toute fusion), soit 3 à 7 fois plus que dans une source de MORB, sont nécessaires pour générer 0.2 à 0.5 % pds H_2O dans les inclusions. Ces estimations sont en accord avec les isotopes stables et éléments légers supposant un métasomatisme de la source. Ces calculs sont également vérifiés par un même modèle appliqué aux faibles concentrations en Li et en S.

Les inclusions enrichies en eau enregistrent également des signatures du slab, majoritairement une signature de sédiments. Ces fluides peuvent avoir été générés en profondeur, générant un large volume de magma (c'est-à-dire faibles taux de fusion). Durant leur ascension, ces magmas vont réagir avec le manteau résiduel métasomatisé, comme démontré par les surcroissances magmatiques sur les olivines mantelliques et l'étude des xénolithes (Parkinson et al., 2003, Vannucci et al., 2007).

V.2. Article soumis à Earth and Planetary Science Letters: Volatiles, light elements and stable isotopes in Grenada magmas (Lesser Antilles). Do melt inclusions record a pressure column melting of mantle?

1 2	Volatiles, light elements and stable isotopes in Grenada magmas (Lesser Antilles). Do melt inclusions record a pressure column melting of mantle?
3	
4	AS. Bouvier ^{1*} , N. Métrich ² , E. Deloule ¹
5	
6	
7 8	¹ Centre de Recherche Pétrographiques et Géochimiques, Nancy-Université, CNRS, 54501 Vandoeuvre-les-Nancy, France
9	² Laboratoire Pierre Süe, CNRS-CEA, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22 23 24 25 26 27 28 29 30	* Corresponding author: Anne-Sophie Bouvier CRPG-CNRS BP20 54501 Vandoeuvre-les-Nancy, France E-mail: abouvier@crpg.cnrs-nancy.fr Fax : +33 3 83 51 17 98

30 Abstract

Grenada Island is located at the southern end of the Lesser Antilles arc, generated by the subduction of the Atlantic plate beneath the Caribbean plate. Grenada lavas display an unusual compositional diversity including picrites and alkali olivine basalts commonly carrying a large variety of metasomatised sub-arc mantle xenoliths.

35 We present here a detailed study of melt inclusions trapped in olivines (Fo_{82-91}) from picritic scoriae. The preserved olivine zoning, as the occurrence of magmatic overgrowth on 36 37 mantle olivines, testify to a rapid magma ascent. Their melt inclusions show a large range in 38 major elements that encompasses that of Grenada basalts. Basaltic to picritic melt inclusions 39 representative of the poorly differentiated melts were specifically analysed for B, Cl, F, H₂O, δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S and δ D by ion microprobe. As a whole, they have Li and F abundances 40 resembling those of MORB, whereas their higher Cl and B contents, as heavy δ^{18} O signatures 41 42 imply fluid influence. They display a range of water content from 0.2 to 4.1 wt% (up to 6.4 wt%) - scarcely reported in arc magmas for a single volcanic centre - in association with 43 44 strongly negative δD (on average -150‰). Low H₂O (<0.5 wt%), and Li (<4ppm) contents and extreme S depletion (<<500 ppm) are suggested to reflect a depleted metasomatised 45 46 MORB-type mantle source. Superimposed to the effects of such processes is the influence of fluids derived from variable extents of dehydration of sediments and hydrothermally altered 47 48 oceanic crust that are discussed on the basis of the B chemical and isotopic compositions.

As a whole, Grenada basaltic to picritic melt inclusions record a broad range of water content dissolved water as a wide variability of chemical and isotopic compositions that are tentatively explained by partial melting of the heterogeneous, modified MORB-type mantle wedge underlying Grenada, along a pressure column.

53

54 **Keywords:** Lesser Antilles arc, subduction, Melt inclusions, picrites, volatiles, stable 55 isotopes

56

56 **1. Introduction**

57

58 The volcanism of Grenada, the southernmost island of the Lesser Antilles arc (Fig. 1), is 59 exceptional in providing (i) an unusual variety of magmas ranging from picrites and high-MgO basalts (M-series) to calcic, clinopyroxene megaphyric lavas (C-series) (Hawkesworth 60 et al., 1979; Thirlwall and Graham, 1984; Devine, 1995; Thirlwall et al., 1996) and (ii) 61 ultramafic mantle xenoliths (harzburgite, dunite, lherzolite and subordinate werlhite, and 62 pyroxenite), carried by alkali olivine basalts that testify to multistage sub-arc mantle-melt 63 64 reactions (Parkinson et al., 2003; Vannucci et al., 2007). Moreover, Grenada is located in proximity of the major transform bounding fault between the Caribbean plate and the South 65 American continental platform. The velocity of the convecting wedge flow beneath this island 66 would thus approach zero and enhance a larger time-integrated contribution of slab-fluids 67 68 (Defant et al., 2000).

69 Picrites (>11% MgO), uncommon in arc settings, are abundant in Grenada (e.g., Arculus, 1976; Thirlwall et al., 1996). This ubiquity has led to the suggestion of a direct transfer of 70 71 picritic magmas, possibly from depths greater than 65 km (Devine, 1995, Macdonald et al., 72 2000). Picrites were also found to be unaffected (White and Dupré, 1986; Devine, 1995), or 73 only slightly (Thirlwall et al., 1996), by high level crustal interaction, a feature consistent with 74 a short transit time preventing late stage crustal contamination. Finally, picritic magmas 75 compositionally match the experimental melts produced by batch melting of peridotite 76 (Hirose and Kushiro, 1993) in a pressure range of 2.4-2.8 GPa. Hence, they have been 77 regarded as the parental magmas of the M-series lavas (basalt-andesite-dacite; Devine, 1995), 78 and ultimately of the C-Series lavas (Thirlwall and Graham, 1984; Thirlwall et al., 1996). The 79 later are thought to involve significant assimilation of sedimentary material in the arc crust 80 and fractional crystallization (Thirlwall and Graham, 1984; Thirlwall et al., 1996). Nevertheless, an AFC origin for the C-series lavas has been questioned (Devine, 1995), 81 82 source enrichment (Thirlwall et al., 1996, Macdonald et al., 2000) or remelting of wehrlitic 83 lithology have been suggested as possible alternate mechanisms for producing high-Ca basalts (Parkinson et al., 2003). The C- and M- series lavas, which were erupted sometimes from the 84 same volcanic centre (MacDonald et al., 2000), are probably not related to each other by a 85 single stage process (Thirlwall and Graham, 1984; Thirlwall et al., 1996). They could be 86 87 generated in isotopically distinct mantle wedge regions (Thirlwall et al., 1996; Macdonald et 88 al., 2000). The origin of the two magma suites has been widely debated, particularly with 89 respect to the effects of lithostatic and water pressure on the stability fields of olivine and 90 clinopyroxene (Macdonald et al., 2000).

91 There is a general consensus that M-series magmas (including picrites) in Grenada are 92 issued from variable extents of melting of a MORB-type mantle source modified by the 93 respective contributions of hydrous fluids and a sediment component (Thirlwall et al., 1996; 94 Devine, 1995; Macdonald et al, 2000). However, the nature and the contribution of each 95 component are still under debate (Macdonald et al. 2000; Van Soest et al., 2002). M-series 96 rocks would show the largest contribution of the sediment-derived component with respect to 97 the other suites (Macdonald et al., 2000) that was estimated to range from 0.4-1.4% (against 98 0.2% in C-Serie; Thirlwall et al., 1996), and possibly up to 15% (Turner et al., 1996). 99 Grenada lavas also display unusual radiogenic Pb isotopic compositions, as do those of St. 100 Vincent and the Grenadines, interpreted as resulting from crustal contamination (Thirwall et

- 101 al., 1996) or from a sediment input (White and Dupré, 1986; Macdonald et al., 2000). More
- recently, it was proposed that the variability of Pb isotopes and the high ²⁰⁶Pb/²⁰⁴Pb, observed 102
- in lavas from the southernmost islands of the Lesser Antilles arc could be partly due to the 103 subduction of black shale sediments (²⁰⁶Pb/²⁰⁴Pb up to 27.69), which are present in the
- 104
- 105 accretionary prism near Barbados (OPD Leg 144, Carpentier et al., 2008).

106

107 Fig. 1. Map of the Lesser Antilles arc. The insert of Grenada island shows Queen's Park location, where the 108 studied scoriae are sampled (modified from Poussineau, 2000).

109

110 In summary, the geochemical variety of Grenada picrites and M-series lavas integrates the effects of variable extent of mantle partial melting, variable quantities of fluid components 111 112 brought to the mantle source, and variable nature and proportions of slab derived components added to the mantle wedge (Devine, 1995; Thirlwall et al., 1996; Macdonald et al., 2000). 113 114 Assessing the Grenada primary magma composition is also challenging because of the superposition of the geochemical signatures of several "metasomatic" events (Vannucci et al., 115 2007) in the mantle wedge. Picritic magmas are perhaps the most suitable candidates for 116 117 addressing questions of volatile abundances in Grenada primary melts and for trying to 118 evaluate the influence of slab-components in their geochemistry. We provide here a detailed 119 study of olivine-hosted melt inclusions (M.I.) from picritic scoriae, which combines chemical 120 analyses of major elements, H₂O, Li, B, Cl, F and S and isotopic measurements of H, Li, B,O 121 and S. M.I. display a large variability in their chemical and isotopic compositions 122 encompassing those of the Grenada M-series lavas. Here we discuss these compositional ranges in terms of enrichment and depletion of a MORB-type mantle source and variable
 contributions of fluids derived from the dehydration of the subducted altered oceanic crust
 (AOC) and sediments.

126

127 **2. Sample location and description**

128

129 A systematic sampling of basaltic scoriae and lapilli was conducted in Grenada to collect 130 quenched magma products suitable for M.I. analysis, scarce in the Lesser Antilles arc (Devine, 1995; Bouvier et al., 2008). All studied samples come from Queen's Park guarry, a 131 132 young scoriae cone, located in the southwest part of the island (Fig. 1). The scoria deposits 133 were sampled from the base (G05-06) to the top (G05-08) of the cone, where fragments of tectonized mantle xenoliths are ubiquitous, as previously observed (Devine, 1995). The lava 134 135 and scoria dominantly contain olivine and pyroxene phenocrysts, plagioclase being confined to the groundmass. Magmatic olivines are euhedral to polyhedral, whereas xenolith olivine 136 137 xenocrysts are often fragmented, occasionally with kink bands. As detailed further, magmatic 138 olivines frequently formed as overgrowths on mantle olivines, and iddingsite is sometimes 139 present at the rim-core boundary.

140 More than 500 olivines from the 3 samples were hand-picked under a binocular microscope, from the 0.5-1 mm grain size fraction of crushed scoriae, and embedded in 141 epoxy. Olivines containing M.I. were extracted and individually polished to expose their M.I. 142 143 at the surface. Two samples of lavas and scoriae from Queen's Park were analysed for major elements (Electronic appendix I), bracketing those previously reported for Queen's Park 144 145 (Devine, 1995). Olivine xenocrysts are ubiquitous and could have contributed to artificially increase the MgO content of the bulk rocks. They could explain values as high as 16.2 wt% 146 even though such high MgO abundances were previously reported at Grenada (Devine, 1995, 147 Thirlwall et al., 1996). 148

149

150 **3. Analytical methods**

151

152 Bulk rocks were analysed for major elements at the SARM (CRPG, Nancy) by ICP-OES. 153 Major elements were measured in M.I., olivines and spinels using a CAMECA SX50 electron microprobe (CAMPARIS, Paris), with the same analytical conditions as detailed in Bouvier et 154 155 al. (2008): 5-10 µm beam size, 40nA focussed beam and 200s counting time for olivine and spinel analyses, and a 10nA beam current, an average 15s (up to 40 s for K₂O) counting time 156 157 for each major element for M.I.. Each M.I. composition (Electronic appendix II) is the average of 3 points. Light trace element contents (H₂O, Li, B, F, S, Cl) and isotopic 158 compositions (δ^7 Li, δ^{11} B, δ^{18} O, δ^{34} S) were analysed using the CAMECA IMS 1270 of CRPG 159 160 (Nancy, France), with a $\sim 10 \,\mu m$ projected beam size. For each inclusion, an O⁻ primary beam 161 was used in mono-collection mode to measure H₂O, Li, B together in one analysis, while δ^7 Li, $\delta^{11}B$ were measured together in another analysis. A Cs⁺ primary beam was used for 162 measuring F, S, Cl in a single analysis in mono-collection mode, while δ^{18} O and δ^{34} S were 163 measured separately, in multi-collection EM-FC mode. The analytical methods and standards 164 165 used are described in Bouvier et al. (2008).

166 Uncertainties (1 σ) defined using the different standards are as follow: 8% on water, 2% on 167 Li, 4% on B, 7% on F, 3% on S, 6% on Cl, and 1.2‰ on δ^7 Li, 2.1‰ on δ^{11} B, 0.16‰ on δ^{18} O 168 and 0.53‰ on δ^{34} S. The average sample reproducibilities (1 σ) were 15% on H₂O, 8% on B, 169 16% on Li, 18% an F, 12% on S and 14% on Cl, 1.3‰ for δ^7 Li, 2.2‰ for δ^{11} B, 1.25‰ for 170 δ^{18} O and 0.71‰ for δ^{34} S.

171 δD measurements were performed on the CRPG CAMECA IMS 3f with a 10 kV, 10nA O⁻ primary beam, a 30 μ m beam size. H⁺, H₂⁺ and D⁺ were measured by peak switching in mono-172 collection ion counting mode during 100 cycles. The mass resolution was set to 1300 to 173 174 separate D and H₂ (Deloule et al., 1991). The instrumental fractionation was determined with experimental glasses (ETNA 3-0.5, 3-1, 3-2 and 3-3) and a MORB glass (CY-82-29-3V), 175 176 with water contents from 0.19 for the MORB to 2.47 wt% for ETNA 3-3, and δD from -80.0 for the MORB to -181.5 for ETNA 3-1 (Allard et al., 2006), but with similar SiO₂ contents (~ 177 178 49 wt%). The standard deviation is \pm 5‰.

179 Li isotopic compositions are calculated against reference standard values, as $\delta^7 \text{Li} =$ 180 [((⁷Li/⁶Li)ech - (⁷Li/⁶Li)std)) / (⁷Li/⁶Li)std] × 1000 using L-SVEC standard (⁷Li/⁶Li = 12.175). 181 The same calculation is applied for the other elements: δ^{11} B referenced to NBS 951 ¹¹B/¹⁰B 182 (4.044), δ^{18} O and δ D to SMOW (¹⁸O/¹⁶O: 2005.2×10⁻⁶; D/H: 1.5576×10⁻⁴) and δ^{34} S to 183 Canyon Diablo ³⁴S/³²S (4.43×10⁻²).

184

185 **4. Mineral chemistry**

186

187 Fig. 2. Variations of CaO vs Fo mol% in Grenada olivines. Each point represents a single spot analysis. Data for188 mantle olivine are from Parkinson et al. (2003).

189

190 Olivines show a large chemical variation, from $Fo_{91.5}$ to $Fo_{79.8}$ (Fig. 2). Their NiO and CaO 191 contents vary from 0.10 to 0.49 wt% and from 0.02 to 0.32 wt%, respectively. Olivines ($Fo_{91.5}$

 191 solution of the derived from mantle xenoliths have high NiO contents (> 0.2 wt%) and low

193 CaO contents (< 0.1 wt%; Parkinson et al., 2003; Vannucci et al., 2007). Typical magnatic

olivines (Fo₉₁₋₈₃) have CaO contents varying from 0.10 to 0.22 wt%, except in a few rims that

- have up to 0.32 wt% of CaO (Fig. 2). We cannot exclude that the high apparent CaO contents of some Fo-rich rims were induced by secondary fluorescence of Ca X-rays of the basaltic matrix surrounding the olivine (Dalton et Lane, 1996). The magmatic olivines are normally zoned from $Fo_{86.3-91.1}$ cores to $Fo_{78.9-89.7}$ rims or grew on a mantle-derived core attesting to mantle-magma interaction as described in Parkinson et al. (2003). The compositional transition between the two domains is sharp with olivines having typical mantle core $Fo_{80.8-91.0}$ and magmatic rim $Fo_{85.7-91.5}$.
- The olivines include numerous Cr-spinels with Cr# [Cr/(Cr+Al)] varying from 0.70 to 0.36 and Mg# [Mg/(Mg+Al)] from 0.66 to 0.30. They overlap the compositional domain of spinels
- described in Grenada xenoliths (Parkinson et al., 2003). The analysed olivine-spinel pairs plot
- either in the domain of the depleted mantle or in the field of mantle-magma interaction (Fig.
- 206 3).

207

Fig. 3. Spinel Cr# vs. olivine Mg#, modified from Parkinson et al., (2003). Compositions of spinels and olivines
 of Grenada xenoliths [1] are from Parkinson et al., (2003), Fields of pre-rift, oceanic and subduction peridotites
 from Bonatti and Michael (1989).

211

212 **5. Melt inclusions**

- 213
- 214 *5.1. Major element chemistry*
- 215

Melt inclusions of Grenada olivines were preserved as glass and range in size from <10 to 50 μ m (except two reaching ~100 μ m). The smallest (< 20 μ m) M.I., which are abundant, were not analysed to avoid any possible boundary layer effects (Anderson, 1974; Kuzmin and Sobolev, 2003). M.I. are ovoid, with a shrinkage bubble, without sulphide globules, and sometimes associated with a spinel. Infiltrated glasses were also analysed as some embayments, commonly containing microlites. Representative M.I. compositions are reported in electronic appendix II. Amongst the 113 M.I. analysed for major elements, more than a half are trapped in euhedral magmatic crystals (Fo_{86-91}) whereas the others are trapped in magmatic overgrowths on mantle olivine.

225

Fig. 4. Variations of CaO vs MgO (a) and K_2O vs SiO₂ (b) in Grenada olivine-hosted melt inclusions and glasses. Primary melt inclusions refer to basaltic to picritic inclusions in the text. Lavas and scoriae of Queen's Park are from this work (Electronic appendix I) and Devine (1995). The dark and light grey fields represent bulk compositions of M- and C-Series lavas, respectively (Georock data base). Compositions of infiltrated (Vannucci et al., 2007) and interstitial (Parkinson et al., 2003; Vannucci et al., 2007) glasses in xenoliths are plotted for comparison.

232

233 Specific attention has been paid to the post-entrapment crystallisation for primitive inclusions. Their average measured $K_{Dol/melt}$ [(FeO/MgO)_{ol}/(FeO/MgO)_{melt}] of 0.19 ± 0.06 is 234 lower than the reference value of 0.30 ± 0.03 for natural basaltic magmas at 1 atm (Roeder 235 236 and Emslie, 1970), implying post-entrapment crystallization (PEC). We used Toplis' K_D 237 model (Toplis, 2005) to calculate the average theoretical K_D value of 0.30 ± 0.01 for our M.I. 238 and Petrolog software (Danyushevsky et al., 2002) to assess their PEC. A Fe₂O₃/FeO melt 239 ratio of 0.2 is deduced from the available experimental data for fO_2 ($\Delta Ni-NiO + 1.4$) of the 240 Lesser Antilles magmas (Devine, 1995; Heath et al., 1998; Pichavant et al., 2002; Pichavant 241 and Macdonald, 2003). As a whole, M.I. did not suffer FeO-loss. Their FeO_{tot} content range 242 (from 7.0 to 12.3 wt%, except 3 values) is larger than that of Queen's Park basalts (9.6 to 10.1

243 wt%, electronic appendix I), but encompasses the domain of Grenada M-series basaltic lavas

244 (7.1-10.9 wt% FeO_{tot}, Georock database). Primitive M.I. have on average $7.7 \pm 3.3\%$ PEC. 245 All the data for these M.I. discussed hereafter are corrected for PEC.

246 As a whole the analysed M.I. display a wide compositional spectrum. Inclusions trapped in 247 magmatic euhedral olivines or overgrowths do not chemically differ. The compositional range 248 of the most primitive M.I. encompasses that of the Grenada M-Series lavas from olivine alkali 249 basalts to picrites but displays variations much broader than those of the Queen's Park picrites 250 (Electronic appendix I-II, Fig. 4a). Their MgO content ranges from 6.2 to 12.7 wt%, the 251 highest values (10-13 wt%) being close to Grenada picritic lavas (Fig. 4a; Thirlwall et al., 252 1996; Devine, 1995; Macdonald et al., 2000). They have low alkali contents ($K_2O < 1.0\%$), 253 with Na₂O/K₂O of ~ 4.2. Another population of M.I. appears to be more evolved as shown by 254 their higher K_2O (> 1.0 wt%) and SiO₂ (> 48 wt%) contents, the two oxides being positively 255 correlated (Fig. 4b). Interestingly they plot in the domain of Grenade C-Series lavas. The 256 increase of their SiO₂ and K₂O contents (Fig. 4b), associated with decreasing CaO/Al₂O₃ ratio 257 (from 0.74 down to 0.43), possibly results from crystal fractionation and removal of a solid 258 composed of olivine, pyroxene, amphibole ± plagioclase as proposed by Devine (1995). 259 Alternatively this trend could track mantle/melt interactions. In fact, the chemical evolution of 260 M.I. is similar to that reported for host lavas that have infiltrated mantle xenoliths (Fig. 4a, b), 261 supporting the idea that the C-Series magmas could result from interaction of low SiO₂-melt -262 similar to M-Series magmas - with re-fertilised mantle cumulates, as wherlites (Vannucci et al., 2007). The origin of the C-series at Grenada being beyond the scope of this paper, these 263 264 M.I. were not selected for SIMS analysis.

265

266 *5.2. SIMS data*

267

Forty-four M.I. representative of the chemical spectrum of M-series basaltic melts (Fig. 4) were selected for SIMS analysis of H₂O, B, Cl, F, H₂O, δ^7 Li, δ^{11} B, δ^{18} O and δ D (Electronic appendix II).

271

272 5.2.1. Volatiles and light element compositions

Water concentrations range from 0.16 to 6.4 wt% (Fig. 5a). The majority (80%) - comprise between 0.16-1.8 wt% - encompasses the domain of MORB values (0.09-0.32 wt%; Chaussidon et al., 1991). Only a minor part (20%) exceeds 2 wt% and one value achieves 6.4 wt%. We do not observe systematic difference in the dissolved water content (high or low) of M.I. trapped in the same crystals (e.g., G05-28,and 101; Electronic appendix II), whereas the glass embayments are partly degassed and depleted in water compared to M.I. (e.g. G05-13 a, c).

Because a large part of M.I. (40%) display low H_2O concentrations (0.16-0.5 wt%), we have examined the different processes that would provoke water loss and M.I. depletion. First, no relationship is observed between H_2O content and spot position, inclusion size, or olivine composition and zoning. Second, shallow magma degassing and water loss via H^+ diffusion (Danyushevsky et al., 2002; Hauri, 2002) - owing to its high diffusivity in olivine (Mackwell and Kohldtedt, 1990) - hardly explain the low water contents of M.I..

286

Fig. 5. Histograms and relative probabilities of a) water, b) fluorine, c) chlorine, d) sulphur, e) boron and f)
lithium in basaltic to picritic melt inclusions of Grenada. MORB fields are reported for each element (water:
Chaussidon et al., 1991; fluorine: Straub and Layne, 2003; chlorine: Wallace and Carmichael, 1992; sulphur:
Michael et al., 1998; boron: Chaussidon and Jambon, 1994; lithium: Tomascak et al., 2008).

291

Actually the former process is ruled because the water concentrations as low as 0.2-0.5 wt% imply sub-surface degassing owing to the high solubility of water in basalts (e.g. Dixon et al., 1995) and there is no systematic evidence of S and Cl degassing in these M.I. (S and Cl up to 1700 and 2590 ppm, respectively). Proton (H^+) diffusion is related to how easily the magma may be oxidised (Danyushevsky et al., 2002), which in turn depends on the Fe

content. M.I. having ~9.8 \pm 1.2 wt% FeO_T (~2.4 \pm 0.3 wt% Fe₂O₃), H⁺ diffusion would not 297 298 induce more than ~0.3 wt% H₂O-loss, whereas the variability observed for water is by far larger. In order to strengthen our arguments, δD measurements were performed on 17 M.I., 299 300 covering the range of measured water concentrations (from 0.21 to 6.4 wt%). The measured 301 δD range from -202 to -8.5‰, most of them (13) clustering between -150 and -175 ‰ (Fig. 6). Such very negative values are uncommon although reported for arc lavas representative of 302 303 partly or totally degassed magmas (-270 to -70‰, Pineau et al., 1999). Water-loss driven by 304 H^+ diffusion through the olivine should have shifted the δD values towards positive values 305 (Hauri, 2002). The only alternative process that could cause water depletion at constant δD is 306 molecular water-loss through olivine dislocations. In such a situation M.I. would exchange 307 with their surroundings. Decreasing water should shrink the olivine stability field, change the 308 olivine-melt equilibria and cause olivine zoning, not seen in analysed olivines. H₂O profiles 309 were also performed in 3 olivines having trapped M.I. with variable water contents (from 0.53 310 to 6.4 wt% H₂O). No water-diffusion profile was found, leading to propose that the range of 311 water concentrations measured in the M.I. is that of the Grenada M-series basalts.

312

Fig. 6. Plot of δD vs. H₂O in Grenada melt inclusions. The δD values (except 2) are significantly lower than MORB values (Pineau et al., 1999; Hauri, 2002), without correlation between δD and the dissolved H₂O content that could track H⁺ diffusion out of M.I.. The insert, is a zoom on the highly negative values.

316

Fluorine and chlorine contents vary from 151 to 1298 ppm and 323 to 3331 ppm, respectively (Fig. 5b, c). Two third of Grenada M.I. have F contents in the range of MORB (from 100 to 600 ppm, Straub and Layne, 2003), and a third is F-enriched (F > 600 ppm, up to 1300 ppm). All are enriched in Cl (from 300 to 3300 ppm) compared to uncontaminated MORB (from 30 to 100 ppm; Wallace et al., 2005; Michael et al., 1998), and encompass the Cl range of subduction-related basalts (500 to 2000 ppm; Wallace et al., 2005).

Sulphur abundances display a surprisingly large variation, from 96 to 3520 ppm (Fig. 5d) in Grenada M.I. which are not at sulphide saturation. Only a part of them has S contents akin to those of MORB (SCSS from 800 to 1500 ppm, Wallace and Carmichael, 1992), whereas the others are either richer or poorer (Fig. 5d). The lowest S contents (96 - <600 ppm) are associated with variable Cl (0.1-0.3 wt%) and water (0.9-3.6 wt%) contents that rules out shallow degassing. Moreover, the δ^{34} S measurement in many inclusions failed owing to their low S concentration and intensity. These observations allow us to propose that low S contentsare reliable although uncommon in undegassed magmas.

Boron contents show a large range, from 0.7 to 46.7 ppm, higher than those of MORB (0.34 to 0.74 ppm B; Chaussidon and Jambon, 1994). Most M.I. have B from 6 to 20 ppm, with only a few displaying lower or higher B contents (Fig. 5e).

Lithium concentrations range from 1.1 to 19.2 ppm (Fig. 5f) and tend to increase with K. Whereas most M.I. have Li contents similar to those of MORB (from 2.9 to 7.8 ppm, Tomascak et al., 2008), some are either depleted or enriched compared to MORB. In order to check if Li would have diffused from the inclusions towards their hosts, Li concentration profiles were performed in some olivines. No Li enrichment in olivine is observed close to M.I., excluding significant Li diffusion, as previously observed at St. Vincent (Bouvier et al., 2008).

341

342 5.2.2. Isotopic compositions

343

Fig. 7. Histograms and relative probabilities of **a**) $\delta^7 \text{Li}$, **b**) $\delta^{11}\text{B}$, **c**) $\delta^{18}\text{O}$ and **d**) $\delta^{34}\text{S}$. MORB fields are from Tomascak et al., (2008); Chaussidon and Jambon, (1994); Mattey et al., (1994); De Hoog et al., (2001), respectively. For all stable isotopes, M.I. display both heavier and lighter compositions than MORB.

347

The δ^7 Li isotopic compositions of M.I. vary widely, from +8.2‰ down to -6.2‰, 348 exceptionally to -23.6‰ (Fig. 7a). M.I. having δ^7 Li values lower than MORB (+3.4 to 349 350 +4.7‰, Tomascak et al., 2007) prevail, whereas a few have higher δ^7 Li. Heavy Li isotopic compositions could result from Li diffusion from M.I. in olivine, because of the 351 352 comparatively high ⁶Li diffusivity (Lundstrom et al., 2005). We thus performed δ^7 Li profiles 353 in the olivines to examine this hypothesis. We found no Li isotopic variation in olivine near M.I. and thus assumed that δ^7 Li values measured in inclusions are representative of those of 354 355 the trapped melt.

 δ^{11} B values (-19.6 to +8.9 ‰, Fig. 7b) bracket those of MORB (-6.5 to -1.5, Chaussidon and Jambon, 1994), but most M.I. have δ^{11} B higher than MORB.

Oxygen isotopes span a large range from +2.1 to +11.4‰ (Fig. 7c). Most of them are heavier than MORB (+5.5 \pm 0.2‰; Mattey et al., 1994), whereas only a few have low δ^{18} O compositions (< 4.5‰). As a whole they bracket the arc lavas (e.g. +5.5 to 8.5‰; Pineau et al., 1999; Eiler 2004) and the Grenada unalterated lavas (+5.5 to 8.0‰; Thirlwall et al., 1996). Values as high as 11.4% are uncommon in arc lavas (Pineau et al., 1999) but were found in St. Vincent M.I. (Bouvier et al., 2008).

 δ^{34} S was determined in only 14 M.I. because of the low S contents in most of them. The δ^{34} S values range from -8.5 to +9.2‰ (Fig. 7d). As is true for Li, B and O isotopic compositions, the δ^{34} S of M.I. bracket the MORB values (~0‰, De Hoog et al., 2001), with a tendency towards heavier compositions (Fig. 7d) as observed in arc lavas (De Hoog et al., 2001). It has to be noted that the 2 M.I. with particularly low S content (<500 ppm) do not show peculiar δ^{34} S fractionation (3.8-4‰; Electronic appendix II) whereas S degassing should drive the S isotopic composition towards negative values (De Hoog et al., 2001).

371

372 **6. Discussion**

373

Basaltic to picritic M.I. (7-12.7 wt% MgO) compositionally match the Grenada M-Series
lavas. They record very large variability in volatile, light element, and isotopic compositions,
with no distinction between the different layers sampled in the Queen's Park tephra.

377 The presence of mantle olivines surrounded by magmatic overgrowths, without core-rim 378 equilibration, is an exceptional feature. In the Lesser Antilles arc, such olivines are known 379 only in La Martinique (Ilet à Ramier basalt carrying mantle olivines), where they are either 380 inclusion-free or contain crystallized M.I. (authors unpublished data). These features, in 381 addition to the preserved chemical zoning of magmatic olivines and the lack of Fe-loss in 382 M.I., are consistent with rapid magma ascent through major tectonic fractures, such as the 383 SW-NE fault crossing Grenada (Devine, 1995; Van Soest et al., 2002). Moreover, the idea of 384 a deep origin for the Grenada picritic/basaltic melts is supported by the Si-undersaturated 385 nature of the M.I. (and bulk rocks).

The prevailing characteristics of Grenada M.I. are their low water contents (Fig. 5a) associated with low δD (<-100‰, Fig. 6) and their overall enrichments in B and Cl, which contrast with their Li and F contents that closely match those of MORB (Fig. 5). These geochemical features can be explained in the framework of the peculiar geodynamic setting of Grenada. It has been suggested that the mantle wedge in this region has been exposed successively to enrichment in LILE, depletion by magma extraction events, and refertilisation by LREE, U, Th-rich slab-derived fluids, with a possible large time-integrated
contribution of such fluids (Defant et al., 2000; Parkinson et al., 2003; Vannucci et al., 2007).
The chemical and isotopic compositions of our M.I. shed light on the processes that affected
the mantle source of picritic to basaltic magmas erupted at Grenada.

- 396
- 397

7 6.1. Successive events of metasomatism of a MORB-type mantle source beneath Grenada

398

399 6.1.1. Metasomatised MORB-type mantle source

400 One of the most striking features of Grenada M.I. is their enrichment in B and Cl relative to MORB, heavy δ^{18} O (5.5 to 11.4‰) and strongly negative δ D. Hence, we first explore the 401 processes allowing B enrichment with high $\delta^{11}B$ (~ +5‰, Fig. 7b) by using the B vs. $\delta^{11}B$ 402 model (Fig. 8), modified from Rose et al. (2001). For these calculations we have considered a 403 seawater end-member component with ~ 4.4 ppm of B and $\delta^{11}B$ +40% (Straub and Layne, 404 2002), the partial melting of a MORB-type mantle source having 0.05-0.3 ppm of B and $\delta^{11}B$ 405 from -7.4 to +0.6‰ (Chaussidon and Libourel, 1993; Chaussidon and Jambon, 1994). We 406 used a B Kd^{fluid/solid} of 50 (Bebout et al., 1993). Following this model, the B enriched M.I. 407 associated with high δ^{11} B require 7 to 15% (possibly up to 25%) partial melting of a MORB-408 type mantle that was earlier enriched in B by a factor of 3-5 by the influence of seawater-409 derived fluid. Variable extents of mantle partial melting well explain the co-variation between 410 B and Li observed for these inclusions (Fig. 9a) and a large variation of Li content (from 2.1 411 to 11.6 ppm) within a relatively restricted range of δ^7 Li values (from -5.4 to 7.3, Figs. 7b and 412 413 9b).

414

415 **Fig. 8**. Interpretative diagram modified from Rose et al. (2001), showing B vs. δ^{11} B in Grenada inclusions. 416 Symbols used are as in Figure 7, with in addition symbols for water-rich M.I.. Fields are shown for the mantle 417 source (Chaussidon and Libourel, 1993; Chaussidon and Jambon, 1994), sediments (A) and altered oceanic crust 418 (B). The initial B contents of AOC (altered oceanic crust) and δ^{11} B range from 17 to 40 ppm B and δ^{11} B from 6 419 to 10 ‰ (Chaussidon and Jambon, 1994; Chaussidon and Libourel, 1993; Spivack and Edmond, 1987), whereas

- 420 sediments have $\delta^{11}B \sim -10\%$ (Smith et al., 1997) and B contents from 11 to 66 ppm (DSDP Site 144 sediments, 421 this study. Electronic appendix III). The element and isotopic compositions of boron in AOC and sediments after 422 variable extents of dehydration and in their extracted fluids are calculated using a Rayleigh distillation model 423 assuming $D_B^{\text{fluid/solid}} = 50$ (Rose et al., 2001) and isotopic fractionation between fluid and solid $\Delta_{\text{f-s}} + 5\%$. 424 Theoretical trajectories for the fluids produced by variable extents of dehydration (expressed in %) are 425 represented by the solid lines a and b, respectively, and those for the dehydrated AOC and sediment by dashed 426 lines (c: dehydrated sediments, d: dehydrated AOC). Seawater composition is from Straub and Layne, (2002). 427 All Grenada M.I. are enriched in boron with respect to MORB (see text), with addition of 10 to 30% of B from a 428 seawater-like fluid in the mantle source derived from a fluid with a seawater.-like signature. A batch melting 429 model of the modified MORB-mantle source was used to calculate melt compositions, as indicated by vertical 430 arrows. Melting of dehydrated sediments is also shown, by vertical dashed arrows. F indicates extent of partial 431 melting.
- 432

433 Most of the measured δD values range between -120 and -180 (fig. 6), that is much lower 434 than MORB values (-80 to -60‰, Pineau et al., 1999; Hauri, 2002). Such low δD values were reported in Kamtchaka lavas (-110 to -220%) and interpreted as the result of shallow magma 435 equilibrium outgassing or via Rayleigh distillation (Pineau et al., 1999). In Kamtchaka 436 samples, δD widely varies for a nearly constant $\delta^{18}O$ and becomes lighter as water decreases, 437 when for Grenada M.I. δ^{18} O and H₂O values vary for nearly constant low δ D values. Negative 438 δD signature in magmas are possibly explained by the contribution of fluids derived from 439 440 seawater or serpentine dehydration (Lassiter et al., 2002; Wallace et al., 2005) as evoked for 441 Cl and B enrichment. Accounting for brine-melt fractionation, brine from boiling seawater should have $\delta D \sim -120\%$ (Hauri, 2002), down to -220% (Pineau et al., 1999). 442

Brine assimilation also accounts for large Cl variations at nearly constant K_2O (Hauri, 2002), as observed in Grenada M.I.. The high fluid/rock partition coefficient of Cl implies that addition of small amounts of Cl-rich fluid can largely enrich the mantle source: addition of only 0.3 % of 50% NaCl brine increase Cl from 1000 ppm in the melt (Lassiter et al., 2002). Grenada M.I. having up to 2000 ppm excess of Cl compare to MORB, up to 0.6 % of 50% NaCl brine could have modified the mantle source.

449 In summary, M.I. record an early stage of mantle source contamination by fluid(s) 450 resembling seawater brine(s). Dehydration of serpentinized mantle (e.g. mantle metasomatised by first fluids released by the slab) carried down to the sub-arc region is a 451 process able to produce deep high- δ^{11} B, Cl and B-rich fluids, (Marschall et al. 2007). In the 452 same way, the low δD values in Grenada M.I. could be explained by the contribution of low 453 454 temperature fluids, with negative δD , issued from the serpentine dehydration (Wenner and 455 Taylor 1973). However, M.I. also record other selective B input, as Li and B isotopic 456 modifications implying other enrichments by fluids derived from sediments and AOC. These 457 later modifications are not recorded by δD , probably because of similar compositions of fluids 458 from serpentine and slab dehydration.

459

460 6.1.2. Slab signatures of magmas

461

462 The chemical and isotopic variations in M.I. probably reflect different components acting 463 on the mantle source. In order to quantify the slab contributions, we used the B vs. δ^{11} B

model (Fig. 8), because of the distinguishable B and δ^{11} B compositions of AOC and 464 sediments. Based on a Rayleigh model, with $D_B^{\text{solid/fluid}} = 0.015$ for AOC and sediments and 465 an isotopic fractionation factor between fluid and solid (Δ_{f-s}) of +5 ‰ (Rose et al., 2001), we 466 have calculated the composition of the dehydration fluids of Lesser Antilles terrigenous 467 468 sediments (curve a) and AOC (curve b), and of their residues (curves c and d: composition of 469 dehydrated sediments and AOC residues, respectively). It has to be noted that changes in $D_B^{\text{solid/fluid}}$ and $\Delta_{\text{f-s}}$ will essentially modify the proportions of B derived from each component, 470 not its nature (AOC or sediments). Grenada M.I. show the contribution of fluids derived from 471 472 the AOC or sediments.

In Figure 8, M.I. having δ^{11} B from -6.0 to +4.3 ‰ plot on mixing curves between end-473 members identified as the modified mantle melt and fluids from AOC dehydration slightly 474 475 variable in ~ B (186 and 47.3 ppm, respectively) and $\delta^{11}B$ (-6‰ and -16‰, respectively). 476 Boron enrichment (up to 20-30 ppm) is explained by the addition of up to 30% and 60% of B 477 from the two fluid end-members issued from ~ 4 to 5.5% dehydration of the AOC, 478 respectively. These M.I. also intersect the evolution curve of residual dehydrated AOC (curve 479 d; Fig. 8). However, mixing between modified MORB and melts of residual AOC would 480 imply high amount (Fig. 8) of such melts that is guite unlikely. Instead, the influence of a B-481 rich aqueous fluid is also supported by the high B/H₂O (up to 0.02), Cl/H₂O (up to 0.2) and F/H₂O (up to 0.95) of this sample set, as their heavy signature in δ^{18} O (from +4.6 to +8.1‰, 482 483 except 3 values from +2.1 to +3%, electronic appendix II). Actually the hydrothermally 484 alterated crust have high δ^{18} O, particularly the upper AOC (7 to 15% against 0 to 6% for the lower AOC; Binderman et al., 2005 and reference therein; Alt et al., 2006). In a plot of δ^7 Li 485 486 vs. Li (Fig. 9b), these inclusions display a large range of δ^7 Li (-21.0 to +7.5 ‰). As discussed 487 before (section 5.1.1), negative δ^7 Li values do not result from Li diffusion from inclusion to 488 the host. Instead, they most likely reflect kinetic fractionation during fluids expulsion and/or 489 fluids passing through different lithologies of the slab (Marshall et al., 2007), a feature also 490 observed in St. Vincent basaltic inclusions (Bouvier et al., 2008).

Other M.I. with light δ^{11} B, plot on a mixing curve between the modified mantle source and 491 492 residual dehydrated sediments or dehydration fluids (curves ca and a, respectively; Fig. 8). 493 The contribution of silicate fluids issued from the 2 to 25% batch melting of residual 494 dehydrated sediments would imply a proportion of 50-80% of such melts. When considering 495 that sediment melting would produce Si-rich melts (Prouteau et al., 2001; Nichols et al., 1994) 496 such a hypothesis is inconsistent with the M.I. major element compositions. Instead, the influence of dehydration fluids derived from terrigenous sediments (B = 35 ppm and $\delta^{11}B$ = -497 35‰) much better explains light δ^{11} B signature. We assessed that the addition of 4-10 ppm of 498 499 B to the melt implies that 15 to 45% of B is provided by the fluids issued from $\sim 6.5\%$ sediment dehydration. Moreover, this set of M.I. displays very high δ^{18} O (up to +11.4 %); 500 Electronic appendix II), qualitatively consistent with high δ^{18} O in pelagic clavs (δ^{18} O = +15 501 to +25 ‰; Eiler et al., 2004) and more importantly sediments in the southern Lesser Antilles 502 arc (+20%; Davidson 1987). These M.I. have $\delta^7 Li$ from -6.2 to +7.0% (Fig. 10b), 503 encompassing the Lesser Antilles sediment isotopic compositions (from -1.7 to +1.1‰, Chan 504 505 et al., 2002; Bouman et al., 2004) and meta-sediment compositions (down to -10%), as 506 calculated using a Rayleigh distillation model and different fluid/rock isotopic fractionation 507 factors (from 1.001 et 1.004, Teng et al., 2007).

508

509 6.2. Magma water variations

510

511 One of the basic arguments that supports mantle refractory characteristics comes from the 512 compositions of the Cr-spinel (Cr# = 0.48-0.70; Mg#_{olivine} > 0.88) trapped in magmatic 513 olivines that overlap those of Grenada mantle xenoliths (Fig. 5a). The later were used to 514 propose a depletion event of the sub-arc mantle beneath Grenada by $\leq 22\%$ partial melting 515 (Parkinson et al., 2003). Similar conclusion was drawn from the HREE pattern of xenolith 516 clipopyroyenes and orthopyroyenes (Parkinson et al., 2003, Vannucci et al., 2007)

516 clinopyroxenes and orthopyroxenes (Parkinson et al., 2003, Vannucci et al., 2007).

517

Fig. 9. Variations of B and δ^7 Li vs. Li in grenada melt inclusions For comparison are plotted data for MORB (Chaussidon and Jambon, 1994; Tomascak et al., 2008), altered oceanic crust (AOC, Chaussidon and Jambon, 1994; Chan et al., 2002; Chaussidon and Libourel, 1993; Spivack and Edmond), sediments (this study, electronic appendix III; Carpentier et al., 2008; Chan et al., 2002; Bouman et al., 2004) and the calculated metasediment composition, after Teng et al. (2007). Symbols are the same as in Figure 8.

523

524 The water contents directly measured in M.I. descend to values < 0.5 wt%, lower than the 525 previous estimates for Grenada primary magmas (1-2 wt%, Devine, 1995). These low H₂O 526 contents are rare features in arc front magmas (H₂O from 2.0 to 6.2 wt%, Wallace et al., 2005 and references therein). Similar values were reported for high-alumina basalts from Cascades
arc (Black Crater; Sisson and Layne, 1993) and magnesian basalts from Galunggung in
Indonesia (Sisson and Bronto, 1998), both resulting from mantle upwelling and pressurerelease melting. In those cases, the low water contents are coupled with low K₂O whereas
Grenada M.I. display a large range of water content without any correlation with K₂O.

532 A variation of the H₂O concentrations from 0.16 to 0.5 wt% in the Grenada M.I. is possibly 533 explained by 7 to 15% batch melting, as derived from B content and δ^{11} B values (Fig. 8), of a mantle source having between 128 to 750 ppm of H₂O assuming its incompatible behaviour. 534 535 Such values fall in the domain of MORB-mantle source (80 to 1200 ppm, Sobolev and Chaussidon, 1996; Backer et al., 1994), but do not fit with the refractory nature of the mantle 536 537 source beneath Grenada, and the contrasting behaviour of H₂O (depletion) and B and Cl 538 (enrichment). We have thus considered an alternative process involving a two stages melting 539 of a MORB-type source having 128 to 750 ppm of H₂O after undergoing up to 22% partial 540 melting as previously suggested on the basis of mantle xenoliths studies (Parkinson et al. 541 2003; Vannucci et al., 2007). The mantle initial water content should have been from 580 to 542 3410 ppm, 3 to 7 times more than MORB source. Such observations corroborate the 543 hypothesis drawn from B data of an early enrichment of the MORB-type source (Fig. 8).

Similarly, M.I. with Li contents from 1 to 4.5 ppm, most having $H_2O < 0.93$ wt%, are depleted compared to MORB (Fig. 9a; b; 10a). Following the same line of reasoning as for water, 22% of partial melting of a MORB-mantle source having 2.9-7.8 ppm Li (Chan et al., 2002; Tomascak et al., 2008) would leave a Li depleted mantle source with 0.24 to 0.65 ppm Li (assuming Kd_{fluid/rock} = 15). Melts issued from 7 to 15% partial melting of such a depleted source results in Li concentrations (1.15 to 4.5 ppm) similar to those measured in Grenada M.I..

The low S contents (96- 500 ppm) possibly reflect depletion of mantle volatiles by previous melting, because of their association with high δ^{34} S (from +3.5 to +4.0‰, Electronic Appendix II) as previously suggested for central Asia peridotites (Ionov et al., 1992). The sulphur amount in residual MORB-type mantle source (~200-300 ppm, Chaussidon et al., 1989) after 22% partial melting should be of the order of 44-132 ppm, generating magmas with 293-1650 ppm S in the melt after 7 to 15% partial melting, assuming incompatible behaviour of sulphur and constant oxidation state.

558 In summary, SIMS analyses on Grenada picritic to basaltic inclusions record the signatures 559 of a several stages evolution of a MORB-type mantle source, enriched by a brine-like fluids, 560 AOC and sediment-derived aqueous fluids and depleted via partial melting and magma 561 extraction.

562

564

565 One of the most outstanding characteristics of the picritic to basaltic magmas as recorded 566 by Grenada melt inclusions is the range in water concentrations from 0.16 to 4.1 wt%, with a 567 single value up to 6.4 wt%. Water concentrations ≥ 2.0 wt% are measured in M.I. having Li 568 (4.4-6.1 ppm, Fig. 10a) and F (270-550 ppm) contents typical of MORB, but K₂O (0.5-0.7 569 wt%), B (up to 21.7 ppm) and Cl (up to 2825 ppm, Electronic Appendix II) contents higher 570 than MORB. Based on the plot B vs. δ^{11} B (Fig. 8), these water-rich M.I. record from 10 to

^{563 6.3.} Inference on melt extraction

- 571 12% partial melting. They appear to essentially record sediment influence on a modified
- 572 mantle source (Fig. 10b).

573

Fig. 10. Plots of (a) Li and (b) B vs. H₂O in Grenada melt inclusions. In this plot, M.I. representative of AOC
and sediment influence, and those reflecting varying extents of modified mantle partial melting are distinguished
(see text). MORB literature data are from (B: Chaussidon and Jambon, 1994, Tomascak et al., 2008; Li:
Tomascak et al., 2008; H₂O: Chaussidon et al., 1991).

578

579 Phase equilibria experiments have shown that hydrous melts are generated at lower 580 temperatures and higher pressures than anhydrous melts (e.g. Pichavant et al., 2002, 2007). The degree of mantle partial melting is expected to be strongly controlled by the amount of 581 582 hydrous fluid added to the mantle wedge in a process of fluxed mixing. Instead 583 decompression melting does not require such a relationship, in which adding water to the mantle wedge may increase the pressure and depth of melt extraction as its volume instead of 584 585 changing the extents of mantle wedge partial melting (Asimow et al., 2000). Actually, at Grenada there is no direct relationship between the melt water content and the estimated 586 587 degrees of partial melting, as discussed above.

588 Following these considerations, slab-derived water-rich fluids, possibly fluids derived from 589 sediment dehydration (Fig. 10b), could have triggered melting of a large volume of 590 metasomatised mantle, generating water-rich melts at high pressures and low temperatures.

591 During ascent, these melts react with the overlying metasomatised mantle wedge rich in B 592 and Cl but depleted in water, as also supported by magmatic overgrowths on mantle olivines 593 in our samples and multistage mantle-melt reaction events recorded in Grenada xenoliths 594 (Parkinson et al. 2003; Vannucci et al. 2007).

595

596 **7. Conclusions**

597

Rapid magma ascent through crustal fractures at Grenada brought to the surface olivines with melt inclusions spanning a large compositional range. Extensive chemical and isotopic analysis of inclusions representative of Grenada M-Series basalts as data on olivines and spinels point to a multi-stage history of the sub-arc mantle:

602 1- Cl and B enrichments and low δD of Grenada melt inclusions are interpreted as
 603 preserved signature of metasomatism of a MORB-type mantle source by a seawater-derived
 604 fluid.

605 2- Stable isotopes trace the signatures of both upper AOC and sediments dehydration606 fluids.

3- The low H₂O, Li and S contents points out the mantle wedge depletion by a previous melting event.

609 4- Water-rich M.I. having the B chemical and isotopic signature of sediment-derived 610 fluids, and high δ^{18} O reaching 9.4 to 11.4‰ possibly suggest the involvement of slab-derived 611 water-rich fluids triggering a melting event of the residual metasomatised mantle source. Such 612 involvement of sediment fluids well explains its prevalence in isotopic characteristics of 613 Grenada lavas and M.I. (Devine, 1995; Thirlwall et al., 1996; Macdonald et al., 2000).

614 Although experimental constraints on the P-T conditions of melt extraction at Grenada are 615 lacking, the range of water concentrations (0.2 to 4-6 wt%) reported here for Grenada basalts 616 having on average 10 wt% MgO require variable pressure and temperature conditions. In 617 order to reconcile the high variability in melt water content observed in our Grenada samples 618 with their other chemical and isotopic characteristics, and the absence of direct relationship between water and the degree of mantle partial melting, we propose that picritic to basaltic 619 melt inclusions recorded partial melting of Cl, B, δ^{11} B, δ^{18} O-enriched mantle wedge by 620 621 different slab-fluids along a pressure column beneath Grenada.

Hence, there is no indubitable evidence of fluxed melting as the dominant process to
generate picritic and basaltic magmas at Grenada. Such a situation is in good agreement with
the peculiar tectonic setting enhancing fast uprise of picritic and basaltic magmas.

625

626 Acknowledgments

627

For technical assistance, we are grateful to Denis Mangin and Claire Rollion-Blard for measurements on the Cameca IMS 1270 and 3f, and Olfa Belhaj for her help in sample preparation. François Faure and Laurie Reisberg are also acknowledged for their constructive discussions. This study was funded by CNRS- INSU DyETI and ANR-2005-UD-Antilles.

632 **References**

- Allard., P., Métrich, N., Deloule, E., Belhadj, O., Mandeville, C. and Spilliaert, N., 2006. First ion microprobe
 determination of water and sulfur isotopic ratios in melt inclusions of olivines at Mount Etna: Constraints on
 volatile sources and magma degassing processes. Eos Trans. AGU, AGU Fall Meet. Suppl. Abstracts, V13D08.
- Alt, F. C., Shanks, W. C., 2006. Stable isotope compositions of serpentine seamounts in the Mariana forearc:
 Serpentinization processes, fluid sources and sulphur metasomatism. Earth Planet. Sci. Lett. 242, 272-285.
- Anderson, A.T., Jr. 1974. Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J.
 Petrology 15, 243-267.
- 642 Arculus, R.J.,1976. Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser
 643 Antilles island arc. Geol. Soc. Amer. Bull. 87, 612-624.
- 644 Asimow, P.D., Langmuir, C.H., 2003. The importance of water to oceanic mantle melting regimes. Nature 421,
 645 815-820.
- Baker, M. B., Grove, T. L., Price, R., 1994. Primitive basalts and andesites the Mt Shasta region, N. California:
 products of varying melt fraction and water content. Contrib. Mineral. Petrol. 118, 111-129.
- Bebout, G. E., Ryan, J., Leeman, W., 1993. B-Be systematics in subduction-related metamorphic rocks:
 Characterization of the subducted component. Geochim. Cosmochim. Acta 57, 2227-2237.
- Binderman, I.N., Eiler, J.M., Yogodzinski, G. M., Tatsumi, Y., Stern, C.R., Grove, T.L., Portnyagin, M.,
 Hoernle, K., Danyushevsky, L.V., 2005. Oxygen isotope evidence for slab melting in modern and ancient
 subduction zones. Earth Planet. Sci. Lett. 235, 480-496.
- Bonatti, E., Michael, P.J., 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones.
 Earth Planet. Sci. Lett. 91, 297-311.
- Bouman, C., Elliott, T., Vroon, P. Z., 2004. Lithium inputs to subduction zones. Chem. Geol. 212, 59-79.
- Bouvier, A.-S., Métrich, N., Deloule, E., 2008. Slab-Derived Fluids in Magma Sources of St. Vincent (Lesser
 Antilles Arc): Volatile and Light Element Imprints. J. Petrol. 49, 1427-1448.
- 658 Carpentier, M., Chauvel, C., Mattielli, N., (2008). Pb-Nd isotopic constraints on sedimentary input into the
 659 Lesser Antilles arc system. Earth Planet. Sci. Lett. 272, 199-211.
- 660 Chan, L. H., Edmond, J. M., Thompson, G., 1992. Lithium isotopic composition of submarine basalts:
 661 implication for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151-160.
- 662 Chan, L. H., Alt, J. C., Teagle, D. A. H., 2002. Lithium and lithium isotope profiles through the upper oceanic
 663 crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 183, 5-24.
- 664 Chaussidon, M., Jambon, A., 1994. Boron content and isotopic composition of oceanic basalts: geochemical and
 665 cosmochemical implications. Earth Planet. Sci. Lett. 121, 277-291.
- 666 Chaussidon, M., Libourel, G., 1993. Boron partitioning in the upper mantle an experimental and ion probe
 667 study. Geochim. Cosmochim. Acta 57, 5053-5062.
- 668 Chaussidon, M., Albarède, F., Sheppard, S. M. F., 1989. Sulphur isotope variations in the mantle from ion
 669 microprobe analyses of micro-sulfide inclusions. Earth Planet. Sci. Lett. 92, 144-156.

- 670 Chaussidon, M., Sheppard, S. M. F., Michard, A., 1991. Hydrogen, sulphur and neodymium isotope variations in
 671 the mantle beneath the EPR at 12°50'N. In: Taylor, H. P., O'Neil, J. R. & Kaplan, I. R. (eds) Stable Isotope
 672 Geochemistry: a tribute to Samuel Epstein. Geochim. Soc., Spec. publication n°3, 325-337.
- 673 Cruse, A. M., Lyons, T. W., 2004. Trace metal records of regional paleoenvironmental variability in 674 Pennsylvanian (Upper Carboniferous) black shales. Chem. Geol. 206, 319-345.
- Danyushevsky, L. V., McNeill A. W., Sobolev, A., 2002. Experimental and petrological studies of melt
 inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and
 complications. Chem. Geol. 183, 5-24.
- Deloule, E., Albarède, F., Sheppard, S.M.F., 1991. Hydrogen isotope heterogeneities in the mantle from ion
 probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543-553.
- De Hoog, J. C. M., Taylor, B. E., Van Bergen, M. J., 2001. Sulfur isotope systematics of basaltic lavas from
 Indonesia: implications for the sulfur cycle in subduction zones. Earth Planet. Sci. Lett. 189, 237-252.
- Devine, J. D., 1995. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc,
 revisited. J. Volcanol. Geotherm. Res. 69, 1-33.
- Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in
 mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607-1631
- Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W., Stopler, E., 2000. Oxygen isotope
 geochemistry of oceanic-arc lavas. J. Petrol. 41, 229-256.
- 688 Grove, T.L., Parman, S.W., Bowring, S.A., Price, R.C., Baker, M.B., 2002. The role of a H₂O-rich fluid
 689 component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N
 690 California. Contrib. Mineral. Petrol. 142, 375-392.
- Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt
 inclusions. Chem. Geol. 183, 115-141.
- Hawkesworth, C. J., O'Nions, R. K., Arculus, R. J., 1979. Nd and Sr isotope geochemistry of island arc
 volcanics, Grenada, Lesser Antilles. Earth Planet. Sci. Lett. 45, 237-248.
- Heath, E., Macdonald, R., Belkin, H., Hawkesworth, C., Sigurdsson, H., 1998. Magmagenesis at Soufriere
 Volcano, St. Vincent, Lesser Antilles Arc. J. Petrology 39, 1721-1764.
- Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: Determination of compositions
 of melts segragated from peridotite using aggregated of diamond, Earth Planet. Sci. Lett. 114, Issue 4, 477489.
- Ionov, D.A., Hoefs, J., Hans Wedepohl, K., Wiechert, U., 1992. Content and isotopic composition of sulphur in
 ultramafic xenoliths from central Asia. Earth Planet. Sci. Lett. 111, 269-286.
- Kuzmin, D.V., Sobolev, A.V., 2003. Boundary layer effect on the composition of melt inclusions in olivine.
 EGS AGU EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 11 April 2003, abstract #5665.
- Lassiter, J. C., Hauri, E. H., Nikogosian, I. K., Barsczus, H. G., 2002. Chlorine-Potassium variations in melt
 inclusions from Rivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and
 evidence for brine-induced melting of oceanic crust. Earth Planet. Sci. Lett. 202, 525-540.
- Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., Zimmerman, M., 2005. Observations of Li isotopic
 variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting.
 Geochim. Cosmochim. Acta 69, 735-751.

- Macdonald, R., Hawkesworth, C. J., Heath, E., 2000. The Lesser Antilles volcanic chain: a study in arc
 magmatism. Earth-Science Reviews 49, 1-76.
- Mackwell, S. J., Kohlstedt, D. L., 1990. Diffusion of hydrogen in olivine: implication for water in the mantle. J.
 Geophys. Res. 1995, 5079-5088.
- Marschall, H., Pogge von Strandmann, P. A. E., Seitz, H. -M., Elliott, T., Niu, Y., 2007. The lithium isotopic
 composition of orogenic eclogites and deep subducted slabs. Earth Planet. Sci. Lett. 262, Issues 3-4, 563580.
- Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen isotope composition of mantle peridotite. Earth Planet.
 Sci. Lett. 128, Issue 3-4, 231-241.
- Michael, P.J., Cornell, W.C., 1998. Influence of spreading rate and magma supply on crystallization and
 assimilation beneath midocean ridges: evidence from chlorine and major element chemistry of mid-ocean
 ridge basalts. J. Geophys. Res. 103, 18,325–18,356.
- Nichols, G. T., Wyllie, P. J., Stern, C. R., 1994. Subduction zone melting of pelagic sediments constrained by
 melting experiments. Nature 371, 785-788.
- Parkinson, I. J., Arculus, R. J., Eggins, S. M., 2003. Peridotite xenoliths from Grenada, Lesser Antilles Island
 Arc. Contrib. Mineral. Petrol. 146, 241-262.
- Pichavant, M., Macdonald, R., 2007. Crystallization of primitive basaltic magmas at crustal pressures and
 genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc.
 Contrib. Mineral. Petrol. 154, 535-558.
- Pichavant, M., Macdonald, R., 2003. Mantle genesis and crustal evolution of primitive calc-alkaline basaltic
 magmas from the Lesser Antilles arc. Geological Society 219, 239-254.
- Pichavant, M., Mysen, B. O., Macdonald, R., 2002. Source and H₂O contents of high-MgO magmas in island arc
 settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc.
 Geochim. Cosmochim. Acta 66, 2193-2209.
- Pineau, F., Semet, M.P., Grassineau, N., Okrugin, V.M., Javoy, M., 1999. The genesis of the stable isotope (O,
 H) record in arc magmas: the Kamtchatka's case. Chem. Geol. 135, 93-124.
- Poussineau, S., 2005. Dynamique des magmas andésitiques: approches expérimentales et pétrostructurale,
 application à la Souffrière de Guadeloupe et à la Montagne Pelée, PhD thesis, Orléans University, France, pp.
 1-299.
- Prouteau, G., Scaillet, B., Pichavant, M., Maury, R., 2001. Evidence for mantle metasomatism by hydrous silicic
 melt derived from subducted oceanic crust. Nature 410, 197-200.
- 742 Roeder, P. L., Emslie, R. F., 1970. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275-289.
- Rose, E.F., Shimizu, N., Layne, G.D., Grove, T.L., 2001. Melt production beneath Mt. Shasta from boron data in
 primitive melt inclusions. Science 293, 281-283.
- Schiano, P., Eiler, J. M., Hutcheon, I. D., Stopler, E. M., 2000. Primitive CaO-rich, silica-undersatured melts in
 islands arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc
 magmas. Geochem. Geophys. Geosyst. doi: 1: 1999GC000032.
- Sisson, T.M., Bronto, S., 1996. Evidence for pressure-release melting beneath magmatic arcs from basalt at
 Galunggung, Indonesia. Nature 391, 883-886.
- Sisson, T.W., Layne, G.D., 1993. H₂O in basalt and basaltic andesite glass inclusions from four subduction related volcanoes. Earth Planet. Sci. Lett. 117, Issues 3-4, 619-635.

- Smith, H.J., Leeman, W.P., Davidson, J., Spivack, A.J., 1997. The B isotopic composition of arc lavas from
 Martinique, Lesser Antilles, Earth Planet. Sci. Lett. 146, 303-314.
- Sobolev, A. V., Chaussidon, M., 1996. H₂O concentrations in primary melts from supra-subduction zones and
 mid-ocean ridges: Implications for H₂O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45 55.
- Spivack, A. J., Edmond, J. M., 1987. Boron isotope exchange between seawater and ocean crust. Geochim.
 Cosmochim. Acta 51, 1033-1043.
- Straub, S. M., Layne, G. D., 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic
 rocks: Implications for volatile recycling in subduction zones
 Geochim. Cosmochim. Acta 67, 4179-4203.
- Straub, S. M., Layne, G. D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth
 Planet. Sci. Lett. 198, 25-39.
- Teng, F-Z., McDonough, W. F., Rudnick, R. L., Wing, B. A., 2007. Limited lithium isotopic fractionation during
 progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine.
 Chem. Geol. 239, 1-12
- Thirlwall, M. F., Graham, A. M., 1984. Evolution of high-Ca, high-Sr C-Series basalts from Grenada Lesser
 Antilles: the effects of intra-crustal contamination. J. Geol. Soc. London 141, 427-445.
- Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S., Macperson, C. G., 1996. Resolution of the
 effects of crustal contamination, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O
 isotope geochemistry of Grenada, Lesser Antilles. Geochim. Cosmochim. Acta 60, 4785-4810.
- Toplis, M.J., 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria
 for assessing and predicting equilibrium in natural experimental systems. Contrib. Mineral. Petrol. 149, 22 39.
- Tomascak, P. B., Langmuir, C.H., le Roux, P.J., Shirey, S.B., 2008. Lithium isotopes in global mid-ocean ridge
 basalts. Geochim. Cosmochim. Acta, doi:10.1016/j.gca.2007.12.021.
- Turner, S., Hawkesworth, C., Van Calsteren, P., Heath, E., Macdonald, R., Black, S., 1996. U-series isotopes
 and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet. Sci. Lett. 142, 191-207.
- Van Soest, M. C., Hilton, D. R., Macpherson, C. G., Mattey, D. P., 2002. Resolving sediments subduction and
 crustal contamination in the Lesser Antilles Island Arc: a combined He-O-Sr isotope approach. J. Petrology
 43, 143-170.
- Vannucci, R., Tieplo, M., Defant, M. J., Kepezhinskas, P., 2007. The metasomatic record in the shallow
 peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99, 25-44.
- 785 Wallace, P., Carmichael, I.S.E., 1992. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863-1874.
- Wallace, P. J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion
 and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217-240.
- Wenner, D.B., Taylor, H.B. Jr., 1973. Oxygen and hydrogen isotope studies of serpentinization of ultramafic
 orcks in oceanic environments and continental ophiolite complexes. Amer. J. Sci. 273, 207-239.
- White, W.M., Dupré, B., 1986. Sediment subduction and magma genesis in the Lesser Antilles: isotopic and
 trace element constraints. J. Geophys. Res., 91, 5927-5941.

CHAPITRE VI:

COMPARAISON DES MAGMAS PRIMAIRES DE ST. VINCENT ET GRENADE ET COMPARAISON AVEC LES MAGMAS EVOLUÉS DE LA GUADELOUPE

VI.1- Résumé étendu de l'article en préparation pour Earth and Planetary Science Letters

Pour cette étude, seules les inclusions primitives de St. Vincent et Grenade analysées par sonde ionique IMS 1270 ont été considérées. Certaines inclusions de Grenade, du fait de leur petite taille, n'ont pas pu être analysées en éléments traces parce que trop abîmées par les précédentes analyses.

Les compositions en éléments traces des inclusions de Grenade et St. Vincent sont reporté dans les Tableau V.1-2. Les inclusions des deux îles montrent des compositions en éléments traces, normalisées au manteau primitif (Hofmann, 1988), similaires à celles des roches totales, avec de plus larges variations (base de données de Georoc, http://georoc.mpchmainz.gwdg.de/georoc: Grenade: Shimizu and Arculus, 1975; Arculus, 1976; Devine, 1995; Thirlwall et al., 1996; Turner et al., 1996; Van Soest et al., 2002; Woodlan et al., 2002; St. Vincent: Turner et al., 1996; Heath et al., 1998). Cette similarité de composition à deux implications: 1- les compositions mesurées dans les inclusions sont représentatives des magmas primaires et n'ont pas subit de diffusion des éléments traces vers l'olivine hôte, comme suggéré par Spandler et al., (2007) et 2- les roches totales n'ont pas (ou peu) subit de contamination crustale lors de la remontée. La plus large variabilité de compositions en éléments traces décrites par les inclusions comparées aux roches totales a été mise en évidence dans plusieurs études et interprétées comme reflétant la variabilité de composition des magmas et des degrés de fusion avant d'être affecté par les processus superficiels tels que les mélanges de magmas, la cristallisation fractionnée et la contamination crustale (par exemple: Sobolev et Shimizu, 1993, Gurenko et Chaussidon, 1995; Schiano et al., 2000). Comparées aux MORB (Hofmann, 1988), les inclusions montrent un enrichissement en Ba et Sr, deux éléments mobiles apportés par les fluides issus du slab. De manière générale, les inclusions de Grenade sont enrichies en éléments traces comparées aux MORB, alors que celle de St. Vincent sont soit enrichies, soit appauvries. Toutes les inclusions (sauf 2) de St. Vincent présentent une anomalie négative en Nb, avec des teneurs inférieures à la movenne des MORB (Hofmann, 1988) pour la plupart. 11 inclusions de Grenade et 3 de St. Vincent présentent une anomalie positive en Zr, avec des teneurs atteignant 1274 ppm, concentration peu commune pour des magmas basaltiques.

La variation des éléments en traces peut être expliquée par plusieurs processus. Dans un diagramme H₂O/Y vs. Nb/Y (Fig. V.1), on remarque que les inclusions de St. Vincent peuvent être divisées en 2 groupes : un groupe d'inclusions avec des rapports Nb/Y = 0.1 ± 0.01 , suggérant des magmas issus de la fusion d'~12% de fusion d'un E-DMM, en utilisant les compositions et coefficient de partage roche/magma de Nb et Y de Workmann et al., 2005. Le deuxième groupe d'inclusions montre des rapports Nb/Y = 0.18 ± 0.02 . Ces rapports ne peuvent pas être expliqués par une fusion de E-DMM, mais plutôt par une fusion d'un E-DMM ayant subit une première extraction de magma (1% d'extraction). A Grenade, quelques inclusions montrent des Nb/Y = 0.14 ± 0.01 , correspondant à ~6% de fusion d'un E-DMM. La majorité des inclusions décrivent des Nb/Y = 0.43 ± 0.13 , rapports trop élevés pour correspondre à un modèle de fusion d'un E-DMM. Cependant, ces rapports sont recréés par 11% de fusion d'un E-DMM ayant précédemment subit 5% d'extraction de magma. Quelques autres inclusions montrent des rapports Nb/Y > 0.9, reproduits par aucun modèle de fusion. Ces inclusions montrent un enrichissement en Nb, qui par ailleurs est associé à des faibles
teneurs en Y. Les inclusions enregistrent donc des taux de fusion variables de source mantellique métasomatisée ayant subit un épisode antérieur d'extraction (variable) de magma. A cela se superposent un enrichissement en Nb pour quelques inclusions de Grenade, et surtout un apport de fluides aqueux, démontrés par les larges variations des rapports H_2O/Y .

L'influence de fluides aqueux, déjà démontrée précédemment par les concentrations et compositions isotopiques en B dans ces inclusions (Bouvier et al., 2008 et soumis), est illustrée ici par les forts rapports Cl/F, Ba/La et B/Ce. Ce dernier rapport suggère jusqu'à 4.2 et 6.6% d'influence de fluides aqueux pour St. Vincent et Grenade, d'après le modèle de Walker et al. (2003). De manière générale, sur l'ensemble des données, les fluides aqueux interagissant avec les sources mantelliques de Grenade et St. Vincent ont de forts rapports Sr/F (> 12), H₂O/Y (> 4500), Ba/La (> 50), B/Ce (> 5) et des rapports relativement faibles pour [La/Sm]_N (< 1.5), Zr/Y (< 10) et F (<100 ppm). Les δ^{18} O mesurées dans les inclusions indiquent également l'influence de fluides aqueux issus du slab. Contrairement aux éléments traces, les δ^{18} O montrent une plus grande contributions des fluides aqueux (jusqu'à 40%), en accord avec les estimations obtenues par le modèle du B (Bouvier et al., 2008 et soumis). Cette différence de contribution est expliquée par les différentes mobilités des éléments utilisés.

Fig. VI.1: Diagramme H₂O/Y en fonction de Nb/Y dans les inclusions de St. Vincent (carrés) et Grenade (ronds) modifié d'après Métrich et Wallace, 2008. Pour comparaison, les champs des compositions mesurées dans les inclusions des laves d'Amérique Centrale, du Kamtchatka et de Mexico sont représentés. 4 rectangles montrant les variations de Nb/Y pour 5 à 20% de fusion de sources DMM, E-DMM et D-DMM (avec 5 et 20% d'extraction de magmas). Les valeurs utilisées pour ces compositions et coefficients de partage proviennent de Workmann, 2005. Les inclusions de Grenade et St. Vincent couvrent toute la gamme des compositions mesurées dans les différents contextes. Les inclusions de St. Vincent montrent 12% de fusion de E-DMM et fusion de D-DMM (1%), alors que les inclusions de Grenade montrent ~6% de E-DMM, 11% de fusion de D-DMM et un enrichissement en Nb. Les larges H2O/Y démontrent l'influence de fluides sur les sources mantelliques.

Les inclusions de Grenade montrent de fortes teneurs en F, Nb, Zr et K₂O, associées à de forts Zr/Y, Nb/Y et [La/Sm]_N. Des valeurs élevées de ces rapports sont souvent interprétés

en termes d'influence des sédiments subductés, ou encore en termes de variation de taux de fusion (Kent et Elliott, 1992). Or ici, les très larges variations ne peuvent être expliquées seulement par une variation des taux de fusion, comme le montre la Fig. VI.1. Ces valeurs reflètent plutôt l'influence de fluides plus chargés en solutés, probablement générés à plus forte profondeur (Straub et al., 2004). En effet, avec l'augmentation de la pression et température, les fluides relâchés se chargent en soluté, du fait de l'augmentation de la solubilité de la silice et des éléments traces (Herman et al., 2006, Kessel et al., 2005). Par exemple, des éléments comme Nb ou Zr ont une mobilité qui passe de 0.94 et 0.41 à 700°C et 4 GPa à 81.7 et 43.3 à 1000°C et 4 GPa (Kessel et al., 2005). Les fluides HP-HT influançant la source mantellique sous Grenade sont caractérisés par des faibles rapports des fortes concentrations en F (> 1300 ppm), des rapports élevés pour Nb/Y (> 40), [La/Sm]_N (> 4), Zr/Y (> 85) associés à des faibles Ba/La (< 30), B/Ce (< 4), Cl/F (<2), Sr/F (< 0.5) et H₂O/F (< 10). Parmi les inclusions montrant l'influence de ces fluides chargés en solutés, 5 inclusions de Grenade montrent des teneurs en Zr extrêmement élevées (jusqu'à 1274 ppm). De telles valeurs ne sont pas reportées pour les basaltes et pourraient être expliquées par 1- la fusion de lithologies à amphiboles et pyroxènes, deux minéraux pouvant contenir plusieurs centaines de ppm de Zr (Powell et al., 2004 ; Grégoire et al., 2000), ou 2- l'influence de lithologies sédimentaires riches en Zr. Un modèle de fusion d'amphibole et pyroxène n'explique la présence de telles concentrations qu'avec de très fortes proportions de telles lithologies, non reflétées par les éléments majeurs. Une dissolution de zircons en présence de fluides riches en F et alcalins peut facilement entrainer le Zr (Dubinska et al., 2004; Breiter et al., 2006), enrichissant ainsi fortement les magmas en cet élément. Ces fluides issus de la déshydratation HP-HT de sables riches en zircons sont caractérisés par de forts F (400-750 ppm), Nb/Y (0.4-2.4), et faibles Cl/F (<3.5), Sr/F (<1.7) et H₂O/F (<70).

Cette étude est complémentaire de celles faites sur les isotopes et éléments légers dans ces mêmes inclusions. Le modèle du B révèle différentes sources pour les fluides issus de la déshydratation du slab : un fluide de composition semblable à l'eau de mer issu de la déshydratation des serpentines, des fluides de déshydratation de la croûte océanique altérée et des fluides de déshydratation des sédiments. Ces fluides sont plutôt de nature aqueuse, puisque le B est un élément mobile, relâché à relativement faible profondeur (Ishikawa and Nakamura, 1994). Les analyses des éléments traces apportent essentiellement des informations sur la nature de ces fluides. Les contributions des fluides aqueux sur les sources mantelliques de Grenade et St. Vincent sont quasiment identiques, alors que la contribution des fluides riches en solutés, générés à forte profondeur, influencent essentiellement la source mantellique des magmas de Grenade. Les éléments traces permettent toutefois ici de tracer une des sources des fluides HP-HT. L'analyse des éléments traces sur ces inclusions a également permis de mettre en évidence une première extraction de magma à Grenade, en accord avec l'étude des xénolithes (Parkinson et al., 2003 ; Vannucci et al., 2007) et les faibles teneurs en eau, Li et S dans ces même inclusions (Bouvier et al., soumis).

VI.2- Article en préparation pour Earth and Planetary Science Letters: Complementarities of light, heavy traces elements and stables isotopes determined in melt inclusions: application to the Lesser Antilles arc.

Magma sources of St. Vincent and Grenada islands (Lesser Antilles): Light and trace element signatures of melt inclusions

A.-S. Bouvier^{1*}, E. Deloule¹, N. Métrich²

¹Centre de Recherche Pétrographiques et Géochimiques, Nancy-Université, CNRS, 54501

Vandoeuvre-les-Nancy, France

²Laboratoire Pierre Süe, CNRS-CEA, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France

* Corresponding author:

Anne-Sophie Bouvier CRPG-CNRS BP20 54501 Vandoeuvre-les-Nancy, France E-mail: abouvier@crpg.cnrs-nancy.fr Fax: +33 3 83 51 17 98

Abstract:

St. Vincent and Grenada islands are located in the south part of the Lesser Antilles arc, generated by the subduction of the Atlantic plate beneath the Caribbean plate. In the both islands, the erupted high-MgO basalts (MgO > 10.0 wt%) are thought to be representative of the primary magmas and generated by the melting of a MORB mantle source enriched by fluids derived from the subducted slab.

We present here SIMS measurements of trace elements in basaltic melt inclusions trapped in olivines from both islands. These melt inclusions display trace element patterns that encompass those of whole rocks, with a larger variability at Grenada. As a whole, they are enriched but poorly fractionated compared to MORB. They all show typical Ba and Sr enrichments. St. Vincent melt inclusions display Nb negative anomaly, whereas Zr positive anomaly is present in Grenada melt inclusions. Trace element variations observed in melt inclusions hardly accounted for by one single process of partial melting, but are rather explained by variable extents of partial melting of metasomatised mantle sources having undergone variable melt extraction. Inputs of slab fluids are superimposed to the melting processes, as illustrated by large H₂O/Y variations. Combining trace and light elements data with stable isotopes allows us to indentify the contribution of different type fluids. The influence of slab aqueous fluids is demonstrated by coeval enrichment in Cl and Sr and high Cl/F and Sr/F ratios. Relative enrichments in K, F, Nd associated with high Zr/Y, Nb/Y and (La/Sm)_N ratios for Grenada melts require influence of solute-rich, HP-HT fluids on the mantle-source. A few Grenada melt inclusions recording the influence of HP-HT fluids display Zr enrichment (up to 1274 ppm), a rare feature in basaltic melts, that is explained by zircon dissolution of zircon-bearing sandstones in specific conditions.

Keywords: Lesser Antilles arc, subduction, melt inclusions, basalt, volatiles, stable isotopes, trace elements

1. Introduction

St-Vincent and Grenada Islands are located in the southern part of the Lesser Antilles arc (Fig. 1), generated by the 2 cm.y⁻¹ westward subduction of the Atlantic plate beneath the Caribbean plate. The two islands are characterized by the presence of basalts with high MgO contents (MgO> 10.0 wt%) thought to be representative of the primary magmas, designed as the M-serie basalts at Grenada (Thirlwall et al., 1994, 1996; Devine, 1995) and the high magnesian basalts (HMB) at St. Vincent (Heath et al., 1998; Macdonald et al., 2000; Pichavant et al., 2002; Pichavant and Macdonald 2007). There is a general consensus to propose that the basaltic to picritic melts generated at St. Vincent and Grenada are issued from the partial melting of a MORB-type mantle source modified by dehydration slab fluids, involving fluid components deriving from AOC and sediments (see Macdonald et al., 2000, for a review).

Sediment contribution to the magma sources is thought to increase from 2% in the North to 15% in the South of the arc (Turner et al., 1996), although this contribution was also estimated from 0.5 to 3.5% (White et al., 1986). Enhanced sediment-derived fluid contribution to the mantle source in the southern islands was related to the presence of the large accretion prism (Westbrook et al., 1984; White et al., 1986). Moreover, the proximity of Grenada to the El Pilar giant transform bounding fault between the Caribbean plate and the South American continental platform creates a peculiar situation with a near zero velocity of the convecting wedge flow (Defant et al., 2000). Studies on both Grenada M-Serie whole rocks (Devine, 1995, Thirlwall et al., 1984, 1994, 1996), minerals (Thirlwall et al., 1996), tectonized mantle xenoliths (Parkinson et al., 2003 and Vannucci et al., 2007) and melt inclusions (Devine, 1995; Bouvier et al, submitted) converge to demonstrate a direct, possibly rapid, magma transfer without major interaction with the crust, from depth that could achieve 65 km (Devine, 1995; Hirose and Kushiro, 1993). Actually, Grenada picritic melts are possibly experimentally reproduced by batch melting (20-40% partial melting) of mantle peridotite at pressure of 20-30 kbars (Devine, 1995; Hirose and Kushiro, 1993). Instead melt extraction at St. Vincent assessed by combining high pressure-temperature experiments (Pichavant et al., 2002; 2007) and water abundance dissolved in basaltic magmas (i.e., melt inclusions) is proposed to take place within a lower pressure range (13-14 kb; Bouvier et al., 2008).

Systematic analyses of major, light elements and Li, B, O, S isotopic compositions were performed in melt inclusions (M.I.) hosted in olivine Fo₈₄₋₉₁ of basaltic scoriae from St. Vincent and Grenada (Bouvier et al., 2008 and submitted). In both cases Li contents and the δ^7 Li and δ^{18} O signatures of M.I. testify the melting of a MORB-type mantle source, whereas enrichments in Cl, B, H₂O and their high δ^{11} B compositions reflect the contribution of lowsolute, seawater-derived fluid(s). The nature and proportions of slab-fluids derived from AOC and sediments were also assessed by their specific signatures in B and δ^{11} B. These dataset point to the fact that basaltic magmas from both islands share similar ranges of δ^{11} B, δ^7 Li, and δ^{34} S values but differ in H₂O, S, Cl, F and K₂O contents.

The present work aims at 1- elucidating the peculiar enrichment in K_2O and halogens of Grenada basaltic M.I. relative to those of St. Vincent, which could be explained by larger sediment influence, different fluids additions, and/or lower partial melting degree, and 2-

providing additional constraints on the nature of the slab-derived fluids that modified the mantle wedge beneath these islands. In particular, the contribution of sediment was invoked to explain low and constant ⁸⁷Sr/⁸⁶Sr ratios (0.7045) in lavas from the southern part of Antilles arc, as their lower ¹⁴³Nd/¹⁴⁴Nd but higher Δ^{207} Pb and Th/U ratio with respect to MORB (Thirlwall et al., 1996). Sediment contribution via silicate melt was suggested by Turner et al. (1996). Instead, both B content and δ^{11} B signature of melt inclusions testify to the involvement of aqueous fluids, variably enriched in solute, issued from the dehydration of the subducted sediments and AOC (Bouvier et al., 2008, submitted). Here, we present and discuss trace elements in basaltic melt inclusions representative of poorly differentiated magmas from both St. Vincent and Grenada that complement the data previously acquired for volatiles, light elements and isotopes.

Fig. 1: Map of the Lesser Antilles arc. The inserts of St. Vincent and Grenada islands show sampling locations (modified from Poussineau, 2000).

2. Petrological and geochemical background

2.1. Sampling

The samples studied here are quenched magma products suitable for M.I. analysis, scarce in the Lesser Antilles arc (Devine, 1995). These samples come from lapilli deposits possibly related to the early Yellow Tuff formation in Rose Bank area (SVN4b) on the west coast of St. Vincent (Bouvier et al., 2008a), and from a large scoriae cone (Queen's Park; G05-06 to G05-08), located in the southwest part of the Grenada Island, (Bouvier et al., submitted). For each samples, more than 500 olivines from the 0.5-1 mm grain size fraction of different crushed scoriae of each sample were hand-picked under a binocular microscope and embedded in epoxy. About 200 crystals for St. Vincent sample and ~110 for Grenada samples were individually polished in order to expose their M.I. at the surface.

2.2. Melt inclusions and their host olivines

Trace elements were determined in melt inclusions from St. Vincent and Grenada samples that were previously analyzed by SIMS for light and volatile elements as stable isotopes. They are trapped in magmatic olivines Fo₈₆ to Fo_{91.0} (Grenada) and Fo₈₄ to Fo_{89.9} (St. Vincent). Most olivines are zoned with cores Fo₈₉₋₈₅ and rims Fo₈₅₋₇₇ at St. Vincent and Fo₈₉₋₈₀ at Grenada. It has to be noted that a part of M.I. from Grenada is trapped in magmatic overgrowth of mantle-derived olivine cores. All olivines include numerous Cr-spinels, of <10 to 20 µm in size, with a Cr *number* [Cr/(Cr+Al)] varying from 0.45 to 0.63 (St. Vincent), and from 0.36 to 0.70 (Grenada). They overlap the field reported for Cr-spinels in St. Vincent HMB (Cr *number* = 0.51; Mg *number* = 0.53; Heath *et al.*, 1998; Pichavant and Macdonald 2007), and match the composition domain of spinels of Grenada xenoliths (Cr# from 0.71 to 0.25, Mg# from 0.65 to 0.29; Parkinson et al., 2003).

M.I. in both samples are preserved as glass. They are ovoid, with a shrinkage bubble, without sulphide globules and commonly associated with a spinel. They range in size from 40 to 150 μ m for St. Vincent and from <10 to 50 μ m for Grenada. The smallest (< 20 μ m) were not analysed to avoid any boundary layer effects (Anderson, 1974; Kuzmin and Sobolev, 2003).

We summarize hereafter their main characteristics with respect to major, volatile and light elements as B, Li and O isotopes that are detailed in Bouvier et al. (2008, and submitted)

2.2.1. Major elements

As a whole, the melt inclusions of St. Vincent and Grenada olivines display a large range of major element compositions, with SiO₂ from 42.0 to 56.7, and K₂O up to 2.4wt% as illustrated in Figure 2a. In the present work we have focussed on the melt inclusions having the most primitive compositions ($43 > SiO_2 > 50$ wt%; MgO up to 11.8 wt% at Grenada, and up to 10.0 wt% at St. Vincent) that resemble Grenada M-Serie basalts and picrites and St. Vincent basalts (Fig. 2b). In the later sample set, CaO-rich, Ne-normative M.I systematically occur but do not differ from the others in light element and stable isotope compositions. They have been proposed to reflect melt interaction with amphibole, clinopyroxene-rich lithologies (Bouvier et al., 2008). This interaction is not so pronounced at Grenada possibly due to a deeper origin and/or a rapid ascent of the melts.

2.2.2. Volatiles, light elements and stable isotopes

An exceptional characteristic of M.I. from the two sample sets is their large ranges in dissolved water contents. The later are comprised between 0.16 and 6.4 wt% at Grenada, with values dominantly <1 wt%, and between 0.8 and 5.2 wt% at St. Vincent where concentrations between 2.2 and 3.6 wt% prevail. The significance of both water variation and low abundances in Grenada M.I. has been discussed as primary features (Bouvier *et al.*, 2008, and submitted). The H₂O profiles performed in their host olivines do not show any evidence of

 H_2O diffusion, indicative of H_2O -loss from the inclusion to the host. This hypothesis was verified by the δD negative values (on average -150‰) measured in Grenada M.I., regardless to their H_2O contents (0.2 to 6.4 wt%). Hence, the range of water contents in Grenada M.I. has been thought to be representative of that of the magma batches and interpreted in term of partial melting of the mantle wedge over a pressure column rather than a continuous process of mantle fluxing by water-rich fluids (Bouvier et al., submitted). At St. Vincent, the more restricted range of water concentrations is accounted for by mantle partial melting at pressure ranging from 13 and 14 kbars (Bouvier et al., 2008).

Fig. 2: Variations of K₂O wt% (a) and MgO wt% (b) vs. SiO₂ wt% in Grenada (circles) and St. Vincent (squares) melt inclusions (M.I.). Filled symbols represent the M.I. representative of the primitive magmas that are selected for trace element measurements and were previously analysed for volatile and light elements as B, Li, and O isotopes (Bouvier et al., 2008 [2]; submitted [1]). St. Vincent basalts and Grenada M-Series whole rocks are reported for comparison (data from Georoc database: <u>http://georoc.mpch-mainz.gwdg.de/georoc</u>: <u>Grenada</u>: Shimizu and Arculus, 1975; Arculus, 1976; Devine, 1995; Thirlwall et al., 1996; Turner et al., 1996; Van Soest et al., 2002; Woodlan et al., 2002; <u>St. Vincent</u>: Turner et al., 1996; Heath et al., 1998).

The chlorine and fluorine contents also display large variations, with broader range for Grenada (Cl = 650-1855 ppm; F = 24-371 ppm) relative to St. Vincent (Cl = 323-3330 ppm, F

= 151-1298 ppm) samples. Chlorine is enriched in those M.I. compared to uncontaminated MORB (30-100 ppm, Wallace et al., 2005; Michael et al., 1998) as B that shows a large spectrum of values (from 1.7 up to 47-53 ppm) and is prevalently enriched relative to MORB (0.34 to 0.74 ppm B; Chaussidon and Jambon, 1994). Fluorine contents encompass those of MORB (100-600 ppm, Straub and Layne, 2003), even though specific F enrichment (> 600 ppm) was observed in a few inclusions from Grenada samples, a feature that is discussed further. δ^{11} B values range from -25.6 to +11.8 ‰ for St. Vincent M.I., and from -19.6 to +8.9 ‰ for Grenada M.I.. Many M.I. have higher δ^{11} B than MORB (-6.5 to -1.5, Chaussidon and Jambon, 1994). δ^{18} O span a large range from +2.1 to +11.4‰ for Grenada and from +3.2 to +10.1 ‰ from St. Vincent M.I. They bracket the arc lavas (e.g. +5.5 to 8.5‰; Pineau et al., 1999; Eiler 2004), but most values are significantly heavier than MORB (+5.5 ± 0.2 ‰; Mattey et al., 1994).

3. Analytical methods

Trace elements were measured using the CAMECA IMS 3f (CRPG, Nancy), using a 10 kV accelerating voltage of O⁻ primary beam with a 15 nA intensity, a projected beam size of ~30µm, a 4.5 kV secondary accelerating voltage, a -80V offset and a mass resolution of 300. A restricted number of REE was measured due to the restricted volume of the MI. Background is measured on mass 29.2, then ³⁰Si, ⁴⁴Ca, ⁵⁰Cr, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴²Nd, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵¹Eu, ¹⁵²Sm, ¹⁵³Eu were measured. From mass 29.2 to ⁹³Nb, the counting time is 5 sec, and 10 sec for the other mass. Each analysis consists in 15 cycles. The mass ⁵⁰Cr to ¹⁵³Eu are normalized to ⁴⁴Ca, in order to limit dilution effect: some M.I. having size close to projected beam size (30µm), particularly in Grenada sample, we cannot exclude partial ablation of the hosted olivine, poor in trace elements. The calculated Eu contents are corrected from the BaO interference, and isobaric interferences were eliminated by deconvolution techniques. The international standards used for controlling the instrumental drift and calculating the concentration of elements in the sample were Max Plank basaltic glasses ML3B-G and KL2-G (Jochum et al., 2006). Typical mean error (1 σ) is ±10%.

4. Results

The trace element analyses of M.I. are reported as electronic appendix and their patterns normalized to primitive mantle (Hofmann, 1988) in Figure 3. St. Vincent and Grenada M.I. display the same trace element patterns than bulk basaltic lavas (MgO >6.0 wt%) at St. Vincent and M-Serie basalts and picrites at Grenada (georoc database: <u>http://georoc.mpch-mainz.gwdg.de/georoc</u>). The wider variability in trace element contents observed in our M.I. compared to the bulk rocks (Fig. 3) was already reported in other contexts (e.g.: Sobolev and Shimizu, 1993, Gurenko and Chaussidon, 1995; Schiano et al., 2000). Accordingly, it reflects a range of source compositions and/or variable extents of melting, before mixing and/or AFC processes.

M.I. of both sample set are moderately enriched (by a factor of \sim 2-4) compare to averaged N-MORB (Hofmann, 1988). The enrichment factor achieves 7 for Zr in St. Vincent M.I. and

Sr in Grenada M.I. even to 30 for Ba in Grenada M.I.. Despite this enrichment compared to MORB, M.I. are not or only slightly fractionated relative to MORB (Fig. 3). For example, the Nb/Y ratios fall in the domain of MORB values (0.05 to 0.90; Workmann and Hart, 2005), with an averaged Nb/Y of 0.15 ± 0.09 for St. Vincent M.I. and of 0.65 ± 0.7 for Grenada M.I.. A few Grenada M.I. display high Nb/Y, up to 3.1.

All M.I. display Ba and Sr positive anomalies, often associated with negative Nb anomaly. The negative Nb anomaly is more pronounced in Vincent M.I. and points to Nb depletion relative to MORB (Fig. 3a). A strong positive anomaly in Zr was also repeatedly detected in Grenada M.I. (Fig. 3a). This anomaly is uncommon in St. Vincent M.I (3) and accompanied by depletion in REE compared to MORB (Fig. 3a). The Zr anomaly, and the surprisingly high Zr contents (up to 1274 ppm in Grenada M.I.) in basaltic melt cannot be explained by analytical bias. These high values were measured in different analytical sessions, and not in all M.I.. The possible isobaric interferences with 90 Zr are 58 FeO₂, accounting for only 0.32% of FeO₂, 58 NiO₂ (68.85% of NiO₂) and 39 K₂C (85.72% of K₂C). Due to the low Ni contents, the rarity of K₂C and low abundance of 58 FeO₂ in M.I. (~0.02%) of the M.I., these interferences at the 90 Zr mass, could not explain the high values that were measured. Moreover, we obtained the expected Zr contents in basaltic glass standards. We thus consider the Zr positive anomaly detected in M.I. as real and will discuss it hereafter in term of slab influence.

Fig. 3: Trace element pattern for **a**) St. Vincent and **b**) Grenada M.I.. The incompatibility order of the trace elements and the primitive mantle values for normalisation are from Hofmann (1988). The grey fields represent whole rock pattern (St. Vincent basalts and HMB and Grenada M-Serie; Georoc database: http://georoc.mpch-mainz.gwdg.de/georoc). For comparison, the MORB pattern is reported (Hofmann, 1988). In figure a) circles shows the curves of Zr-rich, REE-poor M.I..

Figure 4 shows the variations from both islands of La, Sr and H₂O compared with K₂O, CaO, and Sm. Although water-poor (Fig. 4c), Grenada M.I. are significantly richer in K₂O, La and Sr, for a similar range of Sm and CaO than St. Vincent melts, some of them being even selectively enriched in those elements compared to MORB. St. Vincent and Grenada M.I. have low La/Y and relatively low Sr contents associated with relatively high MgO > 7 wt%, similar to those of some Grenada M-Series. Thirlwall et al. (1996) suggest that such melts should have undergone minor crustal contamination (~2%), although, other authors, as White and Dupré (1986) and Devine (1995) propose they are not affected by crustal contamination. For comparison, Grenada lavas suggested to have undergone large crustal contamination have up to 1400 ppm Sr, SiO₂ > 50.0 wt%, and La/Y > 1.0 (Thirlwall et al., 1996).

Fig. 4: Plots of elemental compositions against elemental or isotopic compositions in St. Vincent and Grenada M.I.. La vs. (a) K_2O and (b) Sm, (c) H_2O vs. K_2O and (d) Sr vs. CaO. In each plot the average MORB composition is shown (major and trace element from Hofmann, 1988; H_2O from Chaussidon et al., 1991). Grenada M.I. display larger variations in trace elements and higher K_2O than St. Vincent, but comparable CaO contents.

The M.I. major element compositions are though to be representative of primary magmas free of crustal contamination (Bouvier et al., 2008 and submitted), on the basis of their low SiO₂, high H₂O, CaO, MgO and relatively low Li contents. SiO₂ under-saturated M.I., associated with high CaO contents, are reported in literature (e.g Schiano et al., 1998, 2000, 2003, Danyushevsky et al., 2000; 2002; Kamenetsky et al., 2000). Experimental works aiming at reproduce low-SiO₂, high-CaO M.I. in different setting (Médard et al., 2004) do not reproduce exactly our M.I. compositions. CaHy (low-SiO₂, CaO-rich) M.I. of OIB setting, are suggested extract at 1365-1420°C, 0.7-1.5 GPa (Médard et al., 2004), have higher SiO₂ (47.9 to 49.8 wt%) and lower Al₂O₃ (< 14.3 wt%) than most of our M.I. (42.0 to 48.0 wt% and 16.5 to 21.3 wt%, respectively). They however could explain CaO contents up to 15.7 wt% (up to 16.3 in our M.I.), and K₂O contents of St. Vincent M.I.. In arc setting, as for the Lesser Antilles arc, M.I. are rather CaNe and supposed extract at low T° (1190-1275°C) at extremely low pressure (from 0.0001 to 0.7 GPa). This range of T° is comparable to T° of melt extraction determined for St. Vincent (Pichavant et al., 2002; Bouvier et al., 2008). Their experimental composition are similar to low SiO₂ (44.2-46.2 wt%) observed in our M.I. as high Al₂O₃ contents (15.8-18.0 wt%). However, K₂O is much higher than St. Vincent M.I. and MgO lower than Grenada M.I. (< 9.9 wt%). It is important to note here that these experimental works are fluid-absent liquidus experiments, whereas St. Vincent and Grenada M.I. suggest slab-fluids inputs (Bouvier et al., 2008 and submitted). Indeed, in the presence of aqueous fluids in the mantle wedge, melting can occur at lower temperatures for a given pressure (Pichavant et al., 2002). Thus, CaNe M.I. could be generated at 1190-1275°C, but at greater depth, in the mantle wedge. These observations suggest that all primitive M.I. are trapped after mantle source melting, during the ascent in the upper mantle, and before reaching crustal pressures.

5. Discussion

5.1. Selective enrichment vs. partial melting process

M.I. from both islands display variations of trace elements, with most of them being enriched compared to MORB. Crystal fractionation is not considered here as the dominant process that control their pattern because the analysed M.I. have comparable degree of differentiation, with most of them having high MgO (> 6.0 wt%; up to 10.0 and 13.5 wt%). Alternatively, variable extents of mantle partial melting and/or variable input by slab-derived fluids are processes able to generate magma enrichments. Grenada M.I. display significant enrichments in trace elements, as K₂O, Cl or F compared to St. Vincent, which would be discussed here in term of extents of mantle partial melting and/or variable input by slabderived fluids.

We have first verified if the trace element variations observed in our samples (Fig. 3) could be generated by variations of extents of melting (F) of a E-DMM or DMM source (Table 1). At St. Vincent, for reproducing 1.6 to 12.8 ppm La, 1 to 15% partial melting of E-DMM is requested (compared to 0.5 to 11% melting of DMM source), whereas Nd, Eu, Zr compositions (Electronic appendix) would imply << 0.1 to 20-25% melting of E-DMM (<< 0.1 to 15-20% of DMM). Similar lines of reasoning were applied to Grenada taking into account at least a first melt extraction via a maximum of 22% partial melting (Parkinson et al., 2003; Vannucci et al., 2007). 1.4 to 25.7 ppm La and 2.6 to 29.8 ppm Nd would be reproduced by 2.5 to > 30% and <<0.01 to 11% melting of a "depleted" E-DMM. These variations of F seem unlikely, implying slab influence.

Fig. 5: Model for calculations of extents of partial melting using H_2O/Y vs. Nb/Y, modified after Métrich and Wallace, 2008. The fields of M.I. from the subduction settings of Costa Rica, Mexico, Etna and Kamchatka are reported (Portnyagin et al. 2007, Sadofsky et al. 2007; Wade et al., 2006; Johnson et al. in prep.; Vigouroux et al. in review; Bertagnini et al. 2003; Kamenetsky et al. 2007), as the MORB fields (Roux et al. 2006; Workman and Hart 2005). Four rectangles represent 5-20% melting of DMM, E-DMM and D-DMM (22 and 5% melt extraction). The Nb and Y compositions and D used are listed in Table 1. M.I. record variable extents of melting of an E-DMM source having undergone variable extents of melt extraction. Superimpose to these variations, M.I. have recorded the influence of aqueous fluids, as demonstrated by the large H_2O/Y variations and Nb enrichment for some Grenada M.I..

The effect of F variations and enrichments by slab-derived fluids could be illustrated in a plot H₂O/Y vs. Nb/Y (Fig. 5; modified from Métrich et Wallace, 2008). For comparison, M.I. from Kamchatka, Central America and Mexico are reported (see caption for references). Our M.I. cover the range of H₂O/Y and Nb/Y measured in these arc settings. Four rectangles represent 5-20% melting of DMM, E-DMM and D-DMM (22 and 5% melt extraction). The Nb and Y compositions and D used are listed in Table 1. In this plot, St. Vincent M.I. could be divided into two groups: M.I. with Nb/Y = 0.1 ± 0.01 and those with Nb/Y = 0.18 ± 0.02 . The first group suggest ~12% partial melting of an E-DMM source, whereas the second group doesn't fit with melting of a DMM or E-DMM source. It would suggest either Nb enrichment, which is not the case (except two M.I., Fig. 3a), or ~16% melting of a D-DMM source (1-2% melting of an E-DMM source. Most Grenada M.I. have Nb/Y = 0.14 ± 0.03 , implying ~6% melting of an E-DMM source (5% melt extraction). Some other M.I.

have Nb/Y > 0.9, which could not be explained by melting of D-DMM, but rather by Nb enrichment and low Y (Electronic appendix). For summarizing, M.I. record variable extents of melting of an E-DMM source having undergone variable extents of melt extraction (0%: E-DMM, >1%:"D"-DMM). Grenada mantle wedge have undergone higher melt extraction (> 5%) than St. Vincent (1-2%). Moreover, most St. Vincent M.I. show an E-DMM source rather than D-DMM, whereas most Grenada M.I. suggest D-DMM source for the melt and only a few have been originated from melting of a E-DMM source. Superimpose to these variations, M.I. have recorded the influence of aqueous fluids, as demonstrated by the large H₂O/Y variations and Nb enrichment for some Grenada M.I.

Table 1: Compositions and coefficient partition used for melting models:

	DMM E	E-DMM I) bulk
Ti wt%	0.164	0.2	0.040
Nb ppm	0.149	0.6175	0.003
Zr ppm	5.082	6.087	0.033
Y ppm	3.326	3.94	0.088

After Hofmann (1988), Workmann et al. (2005) and Kelley et al. (2006).

These calculated F could be verified using a TiO₂/Y model (Kelley et al., 2006). These authors use the estimation of DMM composition, the composition of the mantle source and correct the effect of crystal fractionation (melt in equilibrium with Fo₉₀). For applying this model to our M.I., Ti compositions of DMM (0. 164 wt%), E-DMM (0.2 wt%) and D-DMM are taking into account. DMM and E-DMM compositions are from Workmann et al., 2005. The D-DMM compositions were calculated assuming 22 (Ti = 0.12 wt%), 5 (Ti = 0.08 wt%) and 1% (Ti = 0.07 wt%) melt extraction, as for the Fig. 5. The calculations applied were:

$$C_{0 \text{ TiO2}} = \left[(\text{TiO}_2/\text{Y})_{\text{sample}} / (\text{TiO}_2/\text{Y})_{\text{MORB}} \right] / (\text{TiO}_2)_{\text{MORB}}$$
(1)

$$F = [C_{0 \text{ TiO2}} / C \text{ TiO2}) - D_{\text{Ti}}] / (1 - D_{\text{Ti}})$$
(2)

where C_0 is the TiO₂ contents in the mantle source, F is the extent of partial melting and D_{Ti} is the partition coefficient, fixed at 0.04 (Kelley et al., 2006). Based on the TiO₂ contents used, (TiO₂/Y)_{MORB} = 0.04509, (TiO₂/Y)_{E-MORB} = 0.05583 and (TiO₂/Y)_{D-MORB} = 0.03250, 0.2233 and 0.01954 for 22, 5 and 1% melt extraction. The St. Vincent M.I. with Nb/Y = 0.01 suppose ~13% melting of an E-DMM source, whereas the M.I. with Nb/Y = 0.18 suggest ~14% melting of a D-DMM source (1% melt extraction). These estimations are closed to those calculated based on Nb/Y. Using this model, 3 values show extents of melting up to 40%, which seems unlikely. These 3 M.I. correspond to M.I. enriched in Zr and depleted in REE and with low Y. The extents of melting estimated based on Nb/Y and TiO₂/Y are close to those of B model determined on M.I., which propose a variation of the extent of melting of an E-DMM source from 10 to 20 % (Bouvier et al., 2008). For Grenada, the M.I. with Nb/Y = 0.14 suggest ~10% melting of E-DMM, whereas more than a half of Grenada M.I., with Nb/Y = 0.43 suggest 15% melting of a D-DMM source (5% melting). The Nb enriched M.I. do not fit with realistic F using the TiO2/Y model (F > 25%).

Note here that F estimated here are based on M.I., and thus represent local F. Moreover, these estimations are based on several approximations, as melting of a homogeneous E-DMM source. However, although approximated, melting extents calculated are also close to those determined by experimental works made on HMB from St. Vincent, suggesting 14-15% partial melting (Heath et al., 1998; Pichavant et al., 2002).

5.2. Slab influence: aqueous vs. silicate-rich fluids

Barium is proposed to be a fluid-mobile element in aqueous fluids (Gill, 1981; Hawkesworth et al., 1991 and reference therein) relative to HFSE (Nb, Ta, Zr), REE and Th (e.g. Brenan et al., 1995). Accordingly the Ba/La, Ba/Nb, Ba/Zr ratios would be increased by aqueous fluid interaction. Instead low Ba/Th, Ba/La but relatively high La/Sm would reflect sediment-derived melt or silicate-rich fluid influence (Kent et al., 1992; Elliott et al., 1997), or partial melting degree because of their incompatibility during melting. An exception is given by Aleutian arc where the correlation between Ba, Th, Pb was related to melting of subducted oceanic crust in the eclogite facies and subsequent silicate melt interaction with mantle (Kelemen et al., 2003). Here we discuss the relative contribution of aqueous and silicate-rich fluids to the mantle wedge beneath St. Vincent and Grenada on the basis of trace elements in the light of stable isotope and light element data.

5.2.1. Aqueous fluid signature

All St. Vincent M.I. and two third of Grenada M.I. are water-enriched (Fig. 4c) compared to MORB (0.09 to 0.32 wt%, Chaussidon et al., 1991), implying aqueous fluids input. The aqueous fluids influence is illustrated by the variation of Ba/La ratios from 4 to 50 in our samples at relatively constant $[La/Sm]_N$ (Fig. 6a). The influence of aqueous fluids is also illustrated by the selective enrichments in mobile elements as B and Sr (Fig. 4d and Bouvier et al., 2008 and submitted). However, no Ba-B (or Sr-B) nor B or Sr-water correlations have been observed. This could be explained by their different sources of B, Ba and Sr, implying interactions with several aqueous fluids.

Most of the M.I. from both St. Vincent and Grenada display Ba/La ratios between 20 and 30 (Fig. 6a). The average Ba/La of St. Vincent M.I. is higher (25 ± 8) than that of Grenada M.I. (21 ± 7) , suggesting a slightly larger aqueous fluids influence for St. Vincent. The Ba/La of both samples is lower than those of the low-K suites of Antilles arc lavas (Ba/La ~ 40). Similar Ba/La ratios (12-65) for a restricted range of [La/Sm]_N (0.69-2.7) are measured in Marianna M.I. (Kent and Elliott, 1992). Some Ba/La measured in Marianna M.I. are lower than Ba/La observed in Marianna lavas. These data were interpreted by Kent et al. (1992) as reflecting variable flux of slab-derived components (aqueous Ba-rich fluid and sediment melt component), although variable F could play a role. The lower Ba/La in St. Vincent and Grenada M.I. compared to those of northern Lesser Antilles islands lavas could imply a larger

aqueous fluids flux in the north, consistent with previous studies, summarised in Macdonald et al. (2000).

Fig. 6: Variations of Ba/La vs. $[La/Sm]_N$ (a) and B/Ce vs. Zr/Y (b). $[La/Sm]_N$ ratios are normalised to primitive mantle values (Hofmann, 1988). (a) For comparison, Grenada and St. Vincent basalts and high magnesia basalts whole rocks are reported (georoc data base, see Fig. 3 for a detail of references), as Marianna M.I. and MORB fields (Kent et al., 2002). The average composition of sediments "sed." from different Leg of the accretionary prism of the Lesser Antilles arc: [1]: Leg 14, in the south of the prism; [2]: Leg 78 in the North, [3]: Barbados prism (Carpentier et al.; 2008) The composition of the melt issued from variable extents of melting of a DMM and E-DMM source are shown. (b) Plot modified from Walker et al. (2003), showing the influence of slab-fluid additions and sediments. The slab-fluid component is supposed to have 90 ppm B, 1.6 ppm Ce, 16 ppm Zr and 6 ppm Y (Walker et al., 2003). The B value is an average of two slab-fluids described in Leeman et al. (2004). Ce and Zr are the minimum contents suggested for slab fluids compositions calculated by Bizimis et al. (2000) on the basis of trace element measured in cpx of supra-subduction zones peridotites. Y content is calculated such that Zr/Y of slab fluids and the mantle source were equivalentfrom (Walker et al., 2003). Slab-fluids influence reach up to 4.2 and 6.6% for St. Vincent and Grenada M.I., respectively, whereas sediment contribution via silicate-rich fluids is testified by the Zr/Y. Variable from 2 to 16% batch melting do not account for the B/Ce and Zr/Y variation observed, particularly in Grenada M.I.

The Cl/F ratios (Fig. 7a-b) vary from 0.5 to 10.9 and 2.2 to 10.9 for, respectively, Grenade and St. Vincent M.I., without significant difference between the two sample sets, except that F is significantly enriched in Grenada M.I. (Fig. 7a-b). Slab devolatilization would produce slab–derived fluids with high Cl/F ratios (> 11) in the Lesser Antilles arc, even higher than that given for Marianna arc (~9.5; Straub and Layne, 2003). Considering all the data, the aqueous fluids interacting with St. Vincent and Grenada mantle source have high Sr/F (> 12), H₂O/Y (> 4500), Ba/La (> 50), B/Ce (> 5) and relatively low [La/Sm]_N (< 1.5), Zr/Y (< 10) and F (<100 ppm).

Fig. 7: Variation of Cl/F vs. F ppm (**a**) and Sr/F (**b**), H_2O/F (**c**) and Zr ppm (**d**) vs. F in St. Vincent and Grenada M.I. **a**) At a given Cl/F, Grenada M.I. have higher F contents, suggesting influence of fluids richer in solutes in Grenada compared to St. Vincent. **b**) St. Vincent and Grenada M.I. display same variation of Sr/F and Cl/F. Sr and Cl are correlated. **c**) H_2O/F decreases with increasing F content, suggesting influence of F-rich and H_2O -poor fluids, particularly in Grenada samples. **d**) The Zr-rich M.I. have high F contents, agreeing with zircon dissolution.

The aqueous slab-fluid influence on trace element of the source could be approximated using B/Ce- Zr/Y model (Fig. 6b; Walker et al., 2003). Indeed, B is supposed to be mobilized in aqueous fluids, whereas Ce, Zr and Y are supposed rather immobile (mobility at 700°C: 61, 2.3, 0.41 and 0.36 respectively; Kessel et al., 2005). M.I. compositions are compared with E-DMM compositions (Workman et al., 2005) and slab-fluid composition. The slab-fluid component is supposed to have 90 ppm B, 1.6 ppm Ce, 16 ppm Zr and 6 ppm Y (Walker et al., 2003). The B value is an average of two slab-fluids described in Leeman et al. (2004), based on B data from Cascades lavas. Ce and Zr are the minimum contents suggested for slab fluids compositions calculated by Bizimis et al. (2000) on the basis of trace element measured in cpx of supra-subduction zones peridotites. Using the minimum values give a maximum

influence estimation. Y content is from Walker et al. (2003). These authors have calculates Y contents such that Zr/Y of slab fluids and the mantle source were equivalent. Using this model, St. Vincent and Grenada M.I. compositions (Fig. 6b) reflect a maximum of 4.2 and 6.6 % slab-fluid addition, respectively, with most of St. Vincent M.I having from less than 0.5% of fluid input (Ba/La < 2.0), and less than 0.1% for Grenada M.I. (Ba/La < 1.2; Fig. 8b).

Most δ^{18} O measured in M.I. are significantly heavier than MORB as illustrated by the Figure 8 with extreme value > 9.5% (up to 11.4%), higher than δ^{18} O observed in most arc lavas. The averaged values of 6.0 and 6.7‰, for, respectively, St. Vincent and Grenada M.I. are also higher than MORB values, implying the influence of slab-fluids on the mantle source (e.g. Eiler et al., 1996; Elliott, 2004). Such high δ^{18} O is a rare feature in basaltic lavas. δ^{18} O values up to 11.4‰ require the contribution of 40% of slab-derived fluids having $\delta^{18}O$ of ~20% to a DMM source (+5.5%; Mattey et al., 1994). The slab fluid δ^{18} O is from by Eiler et al. (2000). This value is an average from siliceous glasses from xenoliths and maximum values for sediments and volcanoclastic rocks. The estimation of the slab-fluid contribution using δ^{18} O matches those assessed by modelling the B and δ^{11} B data indicating successive contributions of fluids derived from the dehydration of AOC (40-45%), and sediments (45-50 %) in both islands (Bouvier et al., 2008 and submitted). These amounts of fluid brought to the mantle wedge, determined using stable isotopes, strongly diverge from those assessed from trace element ratios (e.g. B/Ce, Fig. 7b). This features may be reconciled when considering the diverging mobility of B that can be early extracted and has a tendency to declines with water across an arc (e.g. Ishikawa and Nakamura, 1994; Le Voyer et al., 2008) whereas trace elements (as Nd, Zr, Nd, Sm...) are rather mobilized at depth, even though the mobility of such elements depends on the temperature (Kessel et al., 2005). The δ^{18} O compositions of the different slab lithologies are suggested preserved up to ten or so kilometers (Eiler et al., 2000) and B mobility tend to be constant with the increase of temperatures (Kessel et al., 2005).

Fig. 8: (a) Distribution of δ^{18} O values in St. Vincent (red) and Grenada (blue) M.I.. The average is shown of each island. Grenada M.I. have δ^{18} O compositions shifted to higher values than St. Vincent melts, as indicated by their average δ^{18} O composition of 6.7 ± 2.1 and $6.0\% \pm 1.8\%$.

5.2.2. Solute-rich, high-T fluid contribution

As describe above, M.I. analysed here display large $[Nb/La]_N$, $[La]_N$, $[La/Sm]_N$ and Zr/Y (Fig. 5, 7) that cannot be explained by aqueous fluids input, because of their incompatible behavior, nor by variable extents of partial melting of a E-DMM source. This implies a trace element input by the slab to the mantle source. Fluid inclusions studies in eclogites suggest high solubility of silicate component in high P-T fluids (Scambelluri and Philippot, 2001) and experimental studies prove that some trace element (as Sr, Ba, Nb, Zr, La, Ce, Nd, Sm) solubility largely increases with increasing P and T, contrary to B for which solubility is rather stable (Kessel et al., 2005). Some other trace elements tend to keep their immobile behaviour with increasing depth and pressures (e.g. Y or Er, Yb, Lu and Sc, not analysed here). It is also thought that fluids become K₂O-richer as slab depth increases (e.g. Straub et al. 2004; Hermann et al., 2006).

Several lines of reasoning converge to propose that a part of M.I. record a contribution of solute-rich fluids derived from subducted sediments to the mantle wedge beneath Grenada with respect to St Vincent.

As describe above, the high Nb contents in Grenada M.I. (up to 28 ppm), higher than MORB contents and higher than St. Vincent M.I., are not reproduce by variation of extent of melting of an D-DMM source (Fig. 6a). Enrichments in Nb could be explained by the influence of solute-rich, high-T fluids. Indeed, Nb is an immobile element a low T° (0.94 at 700°C), but with increasing T° and P°, its mobility increase (up to 81.7 at 1000°C and 4 GPa, Kessel et al., 2005). When compare with H₂O (Fig. 6a), Grenada M.I. display H₂O and Nb enrichment, associated with relatively low Y contents (Electronic appendix). This observation is consistent with solute-rich, high-T fluid input. Indeed, Y is an immobile element, even at HT-HP, where its mobility doesn't exceed 4.2 at 1000°C and 4 GPa. An input of solute-rich fluids would dilute the Y content of the source compared to Nb and H₂O.

F is thought to be released at greater depth than B and Cl (Straub and Layne, 2003). Grenada M.I. display higher F than St. Vincent, associated with low Cl/F (< 3; Fig. 7a-b), low Sr/F ratios (< 2.5; Fig. 7b) and H₂O/F ratios (Fig. 7c; most of them are <80). These characteristics, as the enrichment K₂O compared to St. Vincent, reflect the influence of fluids released at greater depth than in St. Vincent and thus enriched in solute.

Some Grenada M.I., display high Zr/Y associated with low B/Ce (Fig. 6b). The Zr/Y ratio is often used for calculating partial melting degree (e.g. Kent et al., 1992), but variations observed here are by far larger than that generated by variable melting, as demonstrated by the curve illustrating the variations on Zr/Y due to a large variation from 2 to 16% of F of a DMM or E-DMM source. Alternatively, high Zr/Y possibly track sediment melt (Kent et al., 1992) or influence of high-T, silicate-rich fluids. Indeed, as for Nb, Zr mobility increase with increase of T and P, from 0.41 a 700°C, 4 GPa to 43.3 at 1000°C, 4 GPa (Kessel et al., 2005).

Some Grenada M.I. thus record the influence of HP-HT fluids, having high F (> 1300 ppm), Nb/Y (> 40), $[La/Sm]_N$ (> 4), Zr/Y (> 85) and relatively low Ba/La (< 30), B/Ce (< 4), Cl/F (<2), Sr/F (< 0.5) and H₂O/F (< 10).

These high-solute, high-T fluids could be supercritical liquids, defined as fluids or melts beyond the end point of the solidus, that mean, beyond the intersection of miscibility gap's critical curve with the solidus (Kessel et al., 2005). These liquids have high elements contents

even at low temperatures, but at high pressures (150-180 km depth). The ability of supercritical fluids to extract trace elements is well known (e.g. Pokrovski et al., 2005).

Amongst the M.I. with high Zr/Y, 5 M.I., MgO-rich (MgO > 9.0 wt%) have high Zr contents (Zr> 950 ppm; Fig.7d). This enrichment is thus a primitive feature, hardly explained by AFC processes. Instead, two processes are able to generate such high contents:

1- Batch melting of amphibole and pyroxene, two minerals that may incorporate a high amount of Zr, up to 213 ppm for mantle amphibole (Powell et al., 2004), and up to 300 ppm for mantle clinopyroxenes (Grégoire et al., 2000). We used these values to assess the amount of Zr brought to magma via the melting of Zr-rich amphiboles and clinopyroxenes. We considered Kd values of 0.1113 and 0.12 for amphibole and clinopyroxene, respectively (GERM database), and 10 to 20% batch melting as reported above. In order to generate a melt with ~ 600 ppm Zr (as observed in St. Vincent M.I.), 47 to 68% of melt should be issued from the melting of amphibole and clinopyroxene in proportion 50:50 mantle/cpx-amph. These values are unlikely. Moreover, such a mechanism do not explain Zr concentrations as high as 1274 ppm as measured in Grenada M.I., and SiO₂, CaO, Al₂O₃ contents tend to decrease with increasing Zr, excluding both amphibole and clinopyroxene melting. No Ti-Zr correlation has been observed, excluding melting of rutile.

2- Input of sediment component. A small proportion of zircon dissolution is able to provide large amounts of Zr. In Barbados accretionnary prism, HFSE-rich, zircon-bearing sandstone containing from 117 to 274 ppm Zr are present (Carpentier et al., 2008). Subducted sediments beneath St. Vincent and Grenada have more than 105 Ma (Carpentier et al., 2008), suggesting that they could be affected by U and Th radioactive decay. It is known that U and P radioactive decay damage the zircon structure from crystalline to metamict, increasing its solubility and trace elements mobility (Riznova et al., 2000). Although Zr was often considered as an immobile element, its mobility was demonstrated in hydrothermal and metamorphic settings (Dubinska et al., 2004; Breiter et al., 2006). Fluorine and phosphorus-rich aqueous fluids are regarded as important transporters of Zr as alkali-rich fluids (Dubinska et al., 2004). These Zr-rich M.I. have high F (400-750 ppm), Nb/Y (0.4-2.4), and relatively low, Cl/F (<3.5), Sr/F (< 1.7) and H₂O/F (< 70), revealing a solute-rich, HP-HT fluids.

Grenada M.I. thus record influence of at least two solute-rich fluids, with one of them being released by the subducted sediment dehydration. These considerations are consistent with the idea of a rather deep origin of magmas at Grenada previously proposed (Devine, 1995), compared to St. Vincent (e.g. Pichavant et al., 2002), where the majority of M.I. rather suggest aqueous fluids influence, release at lower T^o and/or lower pressures.

6. Conclusions

Trace elements distribution in basaltic M.I. from the Lesser Antilles arc is discussed here in the light of their volatile and light element contents and isotopic compositions. Although the significance of REE patterns in olivine-hosted M.I. became recently matter of debate, owing to the high diffusivity of REE in olivine (Spandler et al., 2007), our data report equivalent REE patterns for olivine-hosted M.I. and their bulk rocks (e.g., Kamenetsky et al., 2007; Métrich et al., 2007).

The ranges of trace element abundances and ratios measured in St Vincent and Grenada M.I. are not accounted for by only F variations, but rather by variable F of enriched mantle sources having undergone variable extent of melt extraction, process superimposed by enrichments by at least two different slab-derived fluids. St. Vincent mantle source have undergone minor melt extraction, whereas Grenada mantle source have undergone large melt extraction, with more than 5% melt extracted.

In both islands aqueous fluids deriving from the slab contribute to the mantle wedge. Indeed, high Cl, Sr and Ba, associated with high Ba/La and B/Ce reflect aqueous fluids, present in both St. Vincent and Grenada melts in equal quantities. Solute-rich (possibly supercritical) fluids issued from the HP-HT dehydration of the slab explain the high K_2O , F, Nb and Zr contents, as high Zr/Y and $[La/Sm]_N$ ratios measured in Grenada M.I. A few Grenada M.I. display Zr selective enrichment, signing the HP-HT dehydration of zirconbearing sandstone.

These conclusions are complementary to those drawn by the previous studies of these M.I., based on light elements and stable isotopes. The first analyses have permitted to characterised the different sources of aqueous fluids (dehydrations fluids from AOC and sediments), whereas the sources of the fluids is poorly constrains using trace elements. Only zirconbearing sandstone is recognized.

Acknowledgements: We thank Richard Robertson (Geological Survey of West Indies) and Aisha Samuels (Soufriere monitoring unit) for their kind help in collecting St. Vincent samples. For technical assistance, we are grateful to Denis Mangin, Claire Rollion-Blard and Michel Champenois for measurements on the Cameca IMS 1270 and 3f, and Olfa Belhadj for her help in sample preparation. We also are thanks Ewan Pelleter for his discussion about Zr and zircon dissolution. This study was funded by CNRS- INSU DyETI and ANR-2005-UD-Antilles.

References

- Arculus, R.J.,1976. Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser Antilles island arc. Geol. Soc. Amer. Bull. 87, 612-624.
- Arthur, M.A., Anderson, T.F., Kaplan, I.R., 1983. Stable isotopes in sedimentary geology. Soc. Econ. Paleont. Mineral. Short Courses 10, variously paginated.
- Bizimis M., Salters V.J.M., Bonatti E., 2000. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs, Chem. Geol. 165, 67-85.
- Bouvier, A.-S., Métrich, N., Deloule, E., 2008. Slab-Derived Fluids in Magma Sources of St. Vincent (Lesser Antilles Arc): Volatile and Light Element Imprints. J. Petrol. 49, 1427-1448.

- Bouvier, A.-S., Métrich, N., Deloule, E., submitted. Volatiles, light elements and stable isotopes in Grenada magmas (Lesser Antilles). Do melt inclusions record a pressure column melting of mantle? submitted to EarthPlanet. Sci. Lett.
- Breiter, K., Förster, H.-J., Škoda, R., 2006. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 88, 15-34.
- Carpentier, M., Chauvel, C., Mattielli, N., 2008. Pb-Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth Planet. Sci. Lett. 272, 199-211.
- Chaussidon, M., Jambon, A., 1994. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 121, 277-291.
- Chaussidon, M., Libourel, G., 1993. Boron partitioning in the upper mantle an experimental and ion probe study. Geochim. Cosmochim. Acta 57, 5053-5062.
- Chaussidon, M., Sheppard, S. M. F., Michard, A., 1991. Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50'N. In: Taylor, H. P., O'Neil, J. R. & Kaplan, I. R. (eds). Stable Isotope Geochemistry: a tribute to Samuel Epstein. The Geochemical Society, Special publication n°3, 325-337.
- Danyushevsky, L. V., Della-Pasqua, F. N., Sokolov, S., 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib. Mineral. and Petrol. 138, 68-83.
- Danyushevsky, L. V., McNeill A. W., Sobolev, A., 2002. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183, 5-24.
- Defant, M.J., Kepezhinskas, P.K., de Boer, J., 2000. Slab melting at the Southern Terminus of the Lesser Antilles Arc: the petrology, geochemistry and tectonics of the Grenada Region. AGU Fall Meeting, EOS vol. 81, F1289.
- Devine, J. D. (1995). Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. J. Volcanol. and Geotherm.Res. 69, 1-33.
- Dubinska, E., Bylna, P., Kozlowski, A., Dörr, W., Nejbert, K., Schastok, J., Kulicki, C., 2004.U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodinsite shell (Sudetic ophiolite, SW Poland). Chem. Geol. 203, 183-203.
- Eiler, J. M., Carr, M. J., Reagan, M., Stopler, E., 2005. Oxygen isotope constraints on the sources of central American arc lavas. Geochem. Geophys. Geosyst 6, Q07007.
- Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W., Stopler, E., 2000. Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol41, 229-256.
- Grégoire, M., Moine, B.N., O'Reilly, S.Y., Cottin, J. Y., Giret, A., 2000. Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate- and Carbonate-rich Melts (Kerguelen Islands, Indian Ocean). J. Petrol. 41, 477– 509.
- Gurenko, A. A., Chaussidon, M., 1997. Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine. Chem. Geol. 135, 21-34.

- Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115-141.
- Heath, E., Macdonald, R., Belkin, H., Hawkesworth, C., Sigurdsson, H., 1998. Magmagenesis at Soufriere Volcano, St. Vincent, Lesser Antilles Arc. J.Petrol 39, 1721-1764.
- Hermann, J., Spandler, C., Hack, A., Korsakov, A. V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399-417. Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segragated from peridotite using aggregated of diamond, Earth Planet. Sci. Lett. 114, Issue 4, 477-489.
- Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314.
- Jochum, K. P., et al. (2006), MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios, *Geochem. Geophys. Geosyst.*,7(2), doi:10.1029/2005GC001060.
- Kessel, R., Schmidt, M. W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437, 724-727.
- Kress, V. C., Carmichael, I. S. E., 1991. The compressibility of silicate liquids containing Fe₂O₃ and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib.Mineral. Petrol. 108, 82-92.
- Kuzmin, D.V., Sobolev, A.V., 2003. Boundary layer effect on the composition of melt inclusions in olivine. EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #5665.
- Lassiter, J. C., Hauri, E. H., Nikogosian, I. K., Barsczus, H. G., 2002. Chlorine-Potassium variations in melt inclusions from Rivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth Planet. Sci. Lett. 202, 525-540.
- Macdonald, R., Hawkesworth, C. J., Heath, E., 2000. The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Science Reviews 49, 1-76.
- Mackwell, S. J., Kohlstedt, D. L., 1990. Diffusion of hydrogen in olivine: implication for water in the mantle. J. Geophy. Res. 1995, 5079-5088.
- Marschall, H., Pogge von Strandmann, P. A. E., Seitz, H.-M., Elliott, T., Niu, Y., 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet. Sci. Lett. 262(3-4), 563-580.
- Michael, P.J., Cornell, W.C., 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18,325–18, 356.
- Parkinson, I. J., Arculus, R. J., Eggins, S. M., 2003. Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contrib. Mineral. Petrol.146, 241-262.

- Pichavant, M., Macdonald, R., 2007. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St. Vincent, Lesser Antilles arc. Contrib. Mineral. Petrol. 154, 535-558.
- Pichavant, M., Macdonald, R., 2003. Mantle genesis and crustal evolution of primitive calcalkaline basaltic magmas from the Lesser Antilles arc. Geol. Soc. 219, 239-254.
- Pichavant, M., Mysen, B. O., Macdonald, R., 2002. Source and H₂O contents of high-MgO magmas in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim. Cosmochim. Acta 66, 2193-2209.
- Pineau, F., Semet, M.P., Grassineau, N., Okrugin, V.M., Javoy, M., 1999. The genesis of the stable isotope (O, H) record in arc magmas: the Kamtchatka's case. Chem. Geol. 135, 93-124.
- Pokrovski, G.S., Roux, J., Harrichoury, J.C., 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems, Geol Soc Am 33, 657-660.
- Powell, W., Zhang, M., O'Reilly, M.Y., Tiepolo, M., 2004. Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia Lithos 75, 141–171
- Roeder, P. L., Emslie, R. F., 1970. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275-289.
- Rose, E.F., Shimizu, N., Layne, G.D., Grove, T.L., 2001. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science 293, 281-283.
- Scambelluri, M., Philippot, P., 2001. Deep fluids in subduction zones. Lithos 55, 213-227.
- Schiano, P., 2003. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Science Reviews 63, 121–144.
- Schiano, P., Allère ,C.J., Dupré, B., Lewin, E., Joron, J.-L., 1993. Variability of trace elements in basaltic suites. Earth Planet. Sci. Lett. 119, 37-51.
- Schiano, P., Eiler, J. M., Hutcheon, I. D., Stopler, E. M., 2000. Primitive CaO-rich, silicaundersatured melts in islands arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochem. Geophy. Geosyst. doi: 1: 1999GC000032.
- Spandler, C., O'Neill. H. St C., Kamenetsky, V. S., 2007. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447, 303-306.
- Sobolev, A. V., Shimizu, N., 1993. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363, 151-153.
- Straub, S. M., Layne, G. D., 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones Geochim. Cosmochim. Acta 67, 4179-4203.
- Straub, S. M., Layne, G. D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet. Sci. Lett. 198, 25-39.
- Thirlwall, M. F., Graham, A. M., 1984. Evolution of high-Ca, high-Sr C-Series basalts from Grenada Lesser Antilles: the effects of intra-crustal contamination. J. Geol. Soc. London 141, 427-445.

- Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S., Macperson, C. G., 1996. Resolution of the effects of crustal contamination, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochim. Cosmochim. Acta 60, 4785-4810.
- Thirlwall, M. F., Smith, T. E., Graham, A. M., Thodorou, N., Hollings, P., Davidson, J. P., Arculus, R. J., 1994. High field strength element anomalies in arc lavas: source or process? J. Petrol. 35, 819-838.
- Tomascak, P. B., Langmuir, C.H., le Roux, P.J., Shirey, S.B., 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta, doi:10.1016/j.gca.2007.12.021.
- Toplis, M.J., 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural experimental systems. Contrib. Mineral. Petrol. 149, 22-39.
- Turner, S., Hawkesworth, C., Van Calsteren, P., Heath, E., Macdonald, R., Black, S., 1996. U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet. Sci. Lett. 142, 191-207.
- Vannucci, R., Tieplo, M., Defant, M. J., Kepezhinskas, P., 2007. The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99, 25-44.
- Wallace, P. J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol Geotherm. Res. 140, 217-240.
- Walker, J. A., Roggensack, K., Patino, L. C., Cameron, B. I., Matias, O., 2003. The water and trace element contents of melt inclusions across an active subduction zone. Contrib. Mineral. Petrol. 146, 62-77.
- White, W. M., Patchett, P. J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167-185.
- Workman, R. K., Hart, S. R., 2005. Major and trace element composition of the depleted MORB mantle. Earth Planet. Sci. Lett. 231, 53-72.

æ
ĩã
er
ō
Ð
σ
ns
<u>9</u> .
ns
D
·=
les
S
an
Ö
es
ğ
Ë
et
S
Je
ě
ŵ
Ĩ
ē
na
5
Ĕ
Э
é'n
é
Ľ
č
<u>ē</u> .
sit
ğ
Ē
ō
0
÷
5
Ξ
ea
ă
a
-

	G05-7a ¹	G05-9	G05-11a ¹	G05-12	G05-13a ¹	G05-13c ¹	G05-13v ¹	G05-14	G05-15a ¹	G05-19	G05-22	G05-28a ¹	G05-28b ¹	G05-36	G05-40	G05-44a ¹
compositions	corrigée d	le la crista	allisation d'o	olivine aux	paroies											
SiO ₂	45.23	46.14	46.79	47.91	48.18	50.16	48.09	46.87	46.53	45.26	46.12	44.30	45.44	46.04	44.94	43.88
MgO	8.34	9.44	8.66	7.96	10.50	6.93	7.03	10.04	7.50	9.28	8.06	7.21	7.87	9.29	9.13	8.93
K ₂ 0	0.65	0.66	0.89	0.58	0.70	0.71	0.58	0.68	0.71	0.74	0.56	0.53	0.68	0.52	0.59	0.67
Fo % ^z	87	89	88	87	89	88	87	89	88	86	86	85	88	86	88	89
OIv% ³	4.6	9.4	8.2	4.4	11.6	3.8	12.2	13.7	4.0	12.0	6.4	5.5	6.2	9.3	9.7	10.9
compositions	mesurées	par IMS	1270													
H ₂ O (%pds)	1.67	0.97	0.48	3.62	2.48	0.39	0.48	1.85	0.23	1.27	0.59	0.53	0.83	2.23	2.57	0.51
B ppm	19.96	6.98	11.76	7.09	15.89	1.89	8.54	9.87	6.53	14.71	12.09	46.71	31.36	13.67	21.70	4.82
F ppm	583	665	421	349	n.d.	n.d.	n.d.	365	369	396	739	398	724	670	707	n.d.
CI ppm	2041	1896	2593	1103	n.d.	n.d.	n.d.	2582	869	1767	2017	1076	1475	1671	n.d.	n.d.
δ ¹¹ Β	0.81	2.20	-6.53	0.43	-9.74	-5.84	2.84	-4.99	1.28	5.52	0.82	3.41	-0.46	8.92	-2.83	-1.18
δ ¹⁸ Ο	8.20	5.30	9.00	6.50	n.d.	n.d.	n.d.	11.40	6.24	6.98	7.80	6.40	7.30	6.90	7.50	8.89
compositions	mesurées	par IMS	3f													
V ppm	333.1	377.9	492.7	199.5	28.5	344.4	358.9	409.4	335.7	71.6	717.9	223.2	460.3	456.4	536.5	330.8
Ba ppm	93.2	323.0	211.6	129.2	128.5	197.6	135.0	149.7	94.2	47.0	265.4	100.9	26.7	192.7	281.2	70.6
Nb ppm	1.3	7.3	9.5	6.5	28.3	6.8	6.4	21.5	3.1	15.2	19.8	13.3	3.9	13.1	21.7	2.7
La ppm	0.2	8.5	8.7	5.0	6.1	7.4	5.2	8.4	5.7	1.4	13.5	9.1	2.4	10.3	7.7	6.1
Ce ppm	0.7	14.3	13.1	12.9	19.9	15.7	14.0	23.2	4.0	4.4	30.8	9.6	6.4	30.2	21.9	10.1
Nd ppm	1.7	6.6	5.3	12.9	10.4	8.2	9.4	9.6	2.6	19.8	17.7	3.2	14.0	15.3	15.1	5.8
Sr ppm	n.d.	372.4	496.2	172.3	277.7	351.0	262.9	261.9	319.7	18.9	432.9	60.1	451.5	538.8	435.8	291.5
Zr ppm	9.8	950.4	238.9	166.9	669.1	321.3	91.5	497.3	81.2	1129.1	394.3	170.6	74.5	978.0	1274.2	200.2
Sm ppm	2.4	2.2	2.1	6.3	4.9	2.6	2.8	4.5	3.0	20.6	3.7	4.6	21.2	2.4	2.4	4.3
Eu ppm	1.4	0.3	1.0	3.2	2.4	0.8	1.1	1.8	1.5	9.6	0.9	2.0	12.1	1.1	1.2	1.9
Y ppm	10.9	11.5	14.5	9.1	9.0	19.8	13.1	18.2	23.5	6.3	44.2	7.0	19.7	35.0	22.4	14.7
¹ "a, b, c…" d ∠ ⊑o – 100 v h	lifférencie	es différe.	ntes inclusi	ons piégée	es dans un	même crista	_									
³ Olv% est le	pourcenta	e / ge de cris	tallisation d	l'olivines a	ux paroies	de l'inclusior	is. Correcti	ons faites	avec le logi	ciel Petrol	bo					

	fe
	Ins)
•	۲.
-	5
	au
•	e
1	a

	G05-46e ¹	G05-46f	G05-51	G05-54	G05-60	G05-61a ¹	G05-66	G05-70	G05-72a ¹	G05-77a ¹	G05-78	G05-91	G05-101b ¹	G05-104a ¹	G05-104b ¹	G05-109
compositions	s corrigée de	la cristallisé	ation d'oliv	ine aux pa	aroies											
SIO ₂	47.18	46.09	45.99	46.04	43.20	46.32	43.00	46.40	44.38	43.53	42.91	49.50	48.43	45.88	48.16	46.18
MgO	7.63	8.17	8.92	7.97	7.54	8.70	11.88	10.11	11.58	11.83	10.47	6.82	8.01	8.46	6.91	9.27
K ₂ O	0.88	0.83	0.76	0.82	0.85	0.65	0.62	0.61	0.55	0.62	0.69	0.68	0.63	0.57	0.69	0.71
Fo % ²	86	86	89	89	86	88	06	89	06	06	88	86	88	86	86	06
OIv%3	1.6	5.5	5.3	6.4	5.4	8.0	11.2	10.5	16.0	12.6	11.9	9.9	1.3	7.4	1.6	9.5
compositions	s mesurées p	ar IMS 127	0													
H ₂ O (%pds)	0.22	1.03	0.32	3.91	n.d.	2.70	0.27	1.53	1.10	1.79	0.16	0.38	3.09	6.38	0.93	0.89
B ppm	12.53	15.34	10.36	12.77	n.d.	12.53	2.24	20.87	18.86	44.85	32.94	1.71	9.77	10.65	16.65	11.36
F ppm	413	265	668	929	305	549	n.d.	266	812	457	308	191	345	273	328	507
CI ppm	323	2838	1750	768	3331	2825	n.d.	n.d.	412	2029	1544	1013	2503	2074	1763	1743
δ ¹¹ B	-7.39	6.04	4.98	n.d.	-10.72	-4.96	-8.75	4.31	0.34	-4.87	-6.04	-4.99	-0.51	-5.18	-0.85	-6.36
8 ¹⁸ O	4.00	3.33	8.31	5.00	6.05	6.20	n.d.	5.10	7.70	7.19	3.00	5.47	10.71	9.35	5.74	2.71
compositions	s mesurées p	ar IMS 3f														
V ppm	357.5	433.1	327.6	643.4	487.0	441.9	742.8	507.6	278.9	686.8	392.8	564.9	439.2	419.8	477.3	1060.6
Ba ppm	164.8	194.8	75.9	82.4	168.5	119.7	277.2	280.1	64.0	440.1	162.4	383.6	103.9	132.3	123.1	411.7
Nb ppm	7.6	8.9	5.9	10.9	15.4	2.6	17.8	11.0	5.0	26.8	6.4	17.5	3.4	3.4	4.2	11.4
La ppm	8.9	12.4	5.7	2.1	7.3	7.3	16.2	11.4	3.6	19.5	7.4	13.9	8.3	6.6	9.3	25.7
Ce ppm	23.8	35.0	15.8	4.0	15.1	19.0	45.4	32.3	9.4	55.0	19.5	41.3	21.4	11.4	18.6	34.2
Nd ppm	13.5	18.6	8.3	4.3	6.4	12.3	22.9	16.5	4.5	29.8	8.9	14.8	13.3	84.5	11.1	19.8
Sr ppm	417.9	470.3	268.4	317.0	604.1	923.6	656.8	623.2	235.0	725.0	369.9	590.2	520.0	393.1	683.1	672.4
Zr ppm	93.5	160.3	53.1	756.8	201.6	106.3	200.0	186.1	524.6	1062.2	493.0	211.1	70.3	72.7	113.0	370.9
Sm ppm	1.9	2.4	6.8	2.4	2.3	3.7	4.1	2.1	3.3	4.7	3.9	2.2	3.2	4.5	3.3	5.2
Eu ppm	0.6	1.1	3.8		1.0	1.5	1.6	0.6	1.6	2.0	1.0	1.0	0.8	2.1	1.1	1.5
Y ppm	27.5	28.0	12.4	11.7	23.4	26.4	50.2	33.7	11.1	48.6	17.2	44.3	26.3	26.3	29.3	45.7
		A STREET	5.													

"a, b, c..." différencie les différentes inclusions piégées dans un même cristal
 Fo = 100 x Mg / (Mg+Fe^{2*})
 ³ Olv% est le pourcentage de cristallisation d'olivines aux paroies de l'inclusions. Corrections faites avec le logiciel Petrolog

-
F
5
8
Ĕ
.=
>
· .
to
0)
A)
4
0
S
-
ō
-
1
0
_
S
Ð
S
5
(C)
σ
10
ő
ä
ĭ
2
+
÷
Φ
0
22
Ð
σ
Ψ,
-
in
2
Ð
-
20
1
20
Ē
Ð
Ē
1
<u>.</u>
(Dr
_
-
Ð
-
0
· H
÷
S
0
0
F
5
x
0
2
>
-
-
a)
Ð
-
9
a a

	SVN4b-14	SVN4b-33a	SVN4b-33b ¹	SVN4b-33c ¹	SVN4b-33d ¹	SVN4b-60	SVN4b-61b	SVN4b-70a	SVN4b-70b	SVN4b-80a ¹	SVN4b-100	SVN4b-104a
compositions	corrigée de	la cristallisation	d'olivine aux	paroies								
sio ₂	45.26	46.07	46.52	47.39	46.83	47.61	44.47	46.23	45.16	48.24	45.87	48.34
MgO	9.93	7.60	8.49	8.32	7.40	7.13	9.06	9.13	8.78	8.54	7.62	7.01
K ₂ O	0.38	0.30	0.28	0.28	0.29	0.36	0.35	0.25	0.30	0.33	0.33	0.354
Fo % ²	89.0	86.0	86.0	86.0	84.0	86.0	88.0	88.0	88.0	87.0	86.0	85.0
olv%3	7.87	3.58	5.47	4.66	3.15	3.37	7.49	6.85	1.97	9.35	5.58	2.46
compositions	: mesurées p	ar IMS 1270										
H ₂ O (%pds)	3.51	3.95	4.33	5.23	3.42	2.32	3.26	1.73	2.39	2.17	1.27	2.66
B ppm	9.25	11.62	9.69	11.34	15.79	10.04	7.97	24.48	26.46	21.51	9.99	24.51
F ppm	244	137				194	124	328	273	114	250	254
CI ppm	1376	1319				1028	914	1202	1855	982	1159	820
δ ¹¹ Β	5.83	-9.38	4.81	2.85	-12.00	2.87	1.64	9.10	6.70	-4.09	6.49	6.96
8 ¹⁸ O	6.75	8.76	6.49	4.84		7.50	9.26	3.53	3.23	4.00	7.97	3.95
compositions	mesurées p	bar IMS 3f										
V ppm	309.5	438.2	419.7	374.5	400.0	439.6	574.9	448.1	510.1	438.5	529.7	434.2
Ba ppm	147.7	112.6	104.1	91.1	176.1	138.2	212.7	107.7	195.5	99.3	141.2	105.1
Nb ppm	2.3	3.3	3.3	3.1	3.3	4.9	2.8	2.1	2.3	3.6	2.2	3.5
La ppm	7.3	4.3	4.8	3.4	4.5	5.6	11.3	6.1	7.0	3.7	7.6	4.1
Ce ppm	15.8	11.3	11.5	9.5	11.4	16.5	26.7	15.9	20.7	11.0	20.8	10.9
Nd ppm	13.6	7.8	8.4	6.8	7.8	10.4	21.6	15.3	15.7	6.0	17.3	7.5
Sr ppm	224.3	266.8	239.3	215.9	252.4	344.6	288.0	206.3	250.1	225.6	259.1	223.6
Zr ppm	72.3	124.4	90.2	100.0	124.8	163.3	84.8	64.8	104.7	206.9	81.2	158.8
Sm ppm	5.3	2.5	2.4	2.3	2.7	3.4	5.9	5.1	5.3	2.7	5.7	2.0
Eu ppm	1.9	1.3	1.1	1.3	1.4	1.4	2.1	1.6	1.4	1.1	2.3	0.8
Y ppm	18.4	20.5	18.2	17.6	18.1	31.2	29.0	16.7	20.9	20.7	22.5	20.8
¹ "a, b, c" c ² Fo = 100 x	lifférencie les Mg / (Mg+Fe	s différentes incl (²⁺)	lusions piégée	s dans un mêr	me cristal							
³ Olv% est le	pourcentage	e de cristallisatio	on d'olivines au	ux paroies de l	'inclusions. Co	prrections fait	tes avec le logi	iciel Petrolog				

Comparaison des Magmas Primaires de St. Vincent et Grenade

Tableau VI.2 (suite)

	CVNAL 404-	CUMINE 405	CUNIAL ADTo	CIMINE ADTE	CIVILIAL 4430	CVNAL 4495	CVNAL 4424	CLALAL AND	011111 1110	CVNAL 4540	CVNIAL 42EA
	OV N4D-104C	CUT-04NVC	SVIN40-10/8	0101-04NAC	BCI I-04NIAC	2011-04NAC	DCI I-04NIAC	SVN4D-110	SVN4D-119	DV N40-1348	BCCI-04NIAC
compositions (corrigée de la cr	ristallisation d'o	livine aux paroies	S							
sio ₂	44.15	43.51	45.28	47.30	46.96	46.62	47.22	45.03	47.01	44.28	45.46
MgO	8.42	8.93	8.37	10.02	7.12	7.93	7.27	9.87	7.85	9.10	8.79
K ₂ O	0.32	0.32	0.28	0.39	0.29	0.28	0.25	0.29	0.45	0.32	0.36
Fo % ^z	87.0	88.0	87.0	89.0	85.0	86.0	85.0	89.0	86.0	88.0	88.0
OIv%3	5.40	5.70	6.43	5.42	3.72	7.49	5.47	4.55	7.18	8.61	7.31
compositions r	nesurées par IN	AS 1270									
H ₂ O (%pds)	1.63	0.86	2.54	2.25	1.32	2.19	2.47	2.36	1.45	1.48	2.03
B ppm		35.46	17.58	53.37	12.11	8.14	3.36	37.00	18.07	11.67	6.53
F ppm	157	214	279	331	368	279	266	209	318		245
8 ¹¹ B	006	1121	1006	987	1064	850	1412	1105	988	1228	1217
F ppm	2.05	3.69	2.29	5.10	3.01	10.95	11.80	2.80		4.33	3.11
8 ¹⁸ O		9.80	5.90	5.57	7.46			5.72	5.38	5.56	8.02
compositions r	nesurées par IN	AS 3f									
V ppm	441.8	1329.7	516.1	456.3	527.1	399.9	541.3	469.3	406.1	539.6	411.3
Ba ppm	91.3	105.5	86.3	18.4	107.2	96.3	43.4	138.2	114.9	78.3	99.7
Nb ppm	2.6	1.5	2.1	0.8	3.0	3.3	2.0	2.1	3.9	2.8	3.3
La ppm	3.2	6.0	3.3	4.9	3.3	1.9	1.6	7.2	3.2	2.3	2.6
Ce ppm	8.4	13.8	8.1	13.6	8.3	5.1	4.4	18.4	8.1	6.2	7.7
Nd ppm	5.5	10.8	5.8	9.1	10.6	6.8	6.1	14.1	5.8	7.8	4.6
Sr ppm	230.2	206.0	263.9	6.0	243.5	233.2	279.2	244.3	220.8	284.1	219.3
Zr ppm	163.9	62.9	96.1	25.5	137.6	715.2	207.0	61.0	172.0	256.0	123.7
Sm ppm	2.0	5.2	2.6	2.7	3.2	2.3	1.9	5.7	2.1	2.9	1.7
Eu ppm	1.0	1.5	1.6	0.4	1.3	0.7	1.0	1.8	1.7	1.7	0.9
Y ppm	14.8	15.0	19.4	5.7	26.9	18.5	22.4	19.2	18.5	21.7	19.8
""ahc"	férencie les diffe	árentes inclusio	ans niáráas dans	tıın même crista	_						
² Fo = 100 x M	a / (Ma+Fe ²⁺)		ous pregees uans		-						
³ Olv% est le p	ourcentage de	cristallisation d	'olivines aux parc	oies de l'inclusion	s. Corrections fa	aites avec le logi	ciel Petrolog				

Tableau VI.2 (suite)

	SVN4b-160	SVN4b-161	SVN4b-167	SVN4b-168	SVN4b-169	SVN4b-170	SVN4b-172	SVN4b-173	SVN4b-180	SVN4b-182	SVN4b-185d	SVN4b-186
compositions	s corrigée de la	cristallisation (d'olivine aux pa	aroies								
SiO ₂	45.62	45.79	45.28	45.88	45.43	43.62	45.88	43.39	46.47	44.62	45.31	45.64
MgO	8.41	9.19	8.34	10.01	8.36	9.71	7.19	9.77	96.6	9.05	9.16	8.51
K ₂ O	0.31	0.28	0.29	0.32	0.38	0.40	0.44	0.36	0.27	0.34	0.25	0.27
Fo % ^z	87.0	88.0	87.0	89.0	87.0	89.0	86.0	89.0	89.0	88.0	88.0	87.0
olv%³	7.72	7.69	6.59	8.78	6.88	9.46	4.51	10.08	9.16	7.07	8.02	7.96
compositions	s mesurées par	- IMS 1270										
H ₂ O (%pds)	1.58	2.54	2.03	2.09	1.77	1.69	1.43	1.52	2.64	2.28	2.61	3.02
B ppm	10.63	10.70	7.39	11.30	33.28	15.84	11.54	11.69	8.68	36.99	8.54	13.48
F ppm	226	256	263	139	241	58	260	196	102	371	127	176
δ ¹¹ Β	1395	1424	1379	1081	1306		1414	1825	1118	1402	823	1116
F ppm	1.21	-3.41	2.94	9.34	6.60	-7.27	-2.40	-0.17	-7.91	4.00		-2.79
0 _{ar} S	6.59	7.64	4.31	5.85	6.71	10.11	4.99	4.71	5.86	6.69	5.71	8.92
compositions	s mesurées par	- IMS 3f										
V ppm	463.1	442.8	450.2	389.2	934.7	299.5	377.8	476.4	430.2	457.0	823.7	452.8
Ba ppm	142.9	130.4	121.2	138.8	256.9	383.1	156.4	204.8	139.7	189.8	139.3	122.8
Nb ppm	2.1	1.8	2.0	2.0	9.3	4.9	2.4	7.3	2.1	2.2	3.6	2.0
La ppm	7.3	7.6	6.8	7.4	11.8	2.8	12.8	12.5	7.8	11.6	7.3	6.5
Ce ppm	19.2	18.5	15.6	15.9	31.0	5.2	30.3	13.8	14.5	20.8	11.8	17.8
Nd ppm	14.7	15.0	14.9	13.6	21.3	3.3	18.8	17.7	16.1	16.6	22.3	15.3
Sr ppm	262.5	238.4	240.7	231.6	301.6	128.2	373.4	239.8	218.2	240.3	114.2	221.6
Zr ppm	62.2	58.3	60.1	58.6	225.5	329.2	80.9	621.0	62.9	95.6	72.6	70.2
Sm ppm	4.0	4.0	4.9	3.9	6.9	2.3	5.6	6.1	4.2	5.2	16.9	5.9
Eu ppm	1.1	1.3	1.6	1.4	2.7	0.8	1.6	2.5	1.2	1.5	7.9	1.7
Y ppm	21.8	20.5	19.8	19.8	51.5	8.0	21.0	71.7	20.3	20.2	33.9	20.0
"a, b, c" (différencie les d	lifférentes inclu	usions piégées	dans un même	e cristal							
³ Olv% est le	Mg / (Mg+Fe pourcentage d) le cristallisatior	ud'olivines au	k paroies de l'in	clusions. Corr	ections faites	avec le logicie	l Petrolog				

Tableau VI.2 (suite)

	SVN4b-191	SVN4b-196	SVN4b-199b
compositions	corrigée de la	cristallisation	d'olivine aux paroies
SiO ₂	46.53	47.58	45.75
MgO	6.387	5.841	6.336
K ₂ O	0.378	0.377	0.36
Fo % ²	89.0	86.0	85.0
Olv% ³	1.68	1.97	3.27
compositions	mesurées par	IMS 1270	
H ₂ O (%pds)	1.24	1.89	1.68
B ppm	12.52	9.89	12.79
F ppm	24	79	30
δ ¹¹ B	1093	123	431
F ppm	-25.61	-6.86	-6.30
δ ¹⁸ Ο	5.15	3.70	4.89
compositions	mesurées par	IMS 3f	
V ppm	394.9	503.6	553.9
Ba ppm	78.6	142.5	154.0
Nb ppm	0.7	4.9	4.3
La ppm	2.5	6.0	4.8
Ce ppm	7.0	18.2	14.0
Nd ppm	4.9	10.6	7.8
Sr ppm	132.7	375.8	369.0
Zr ppm	28.5	133.6	87.7
Sm ppm	2.6	3.7	2.8
Eu ppm	1.4	1.3	1.4
Y ppm	3.0	36.1	21.8

 1 "a, b, c..." différencie les différentes inclusions piégées dans un même cristal 2 Fo = 100 x Mg / (Mg+Fe^{2^+})

³ Olv% est le pourcentage de cristallisation d'olivines aux paroies de l'inclusions. Corrections faites avec le logiciel Petrolog

VI.3- Apports des compositions en éléments traces dans les olivines de St. Vincent et Grenade.

Dans le cadre d'un stage de Master 2 en 2008, quelques olivines des échantillons de St. Vincent et Grenade ont été analysés en éléments traces par IMS 3f. Les données sont présentées en annexes 5-6. Les spectres des éléments traces pour les deux îles montrent un enrichissement en Ba, Sr, Nd et un appauvrissement en La et Y comparés au manteau primitif (Hofmann, 1988 ; Fig. VI.2).

Fig. VI.2: Spectres d'éléments traces normalisés par rapport au manteau primitif (Hofmann, 1988) dans les olivines de Grenade et St. Vincent. Chaque spectre représente un point d'analyse dans une olivine. A Grenade, 5 olivines ont été analysées (5 à 7 points d'analyses dans chaque olivine), dont une olivine typiquement mantellique avec une teneur en CaO < 0.1 % pds. Les compositions en éléments traces de 5 olivines de l'échantillon de St. Vincent ont été déterminé (7 à 9 points dans chaque olivine). Les olivines de St. Vincent sont plus riches en Ba et Sr comparées aux inclusions de Grenade. Ces deux éléments étant mobiles, cela peut signifier une influence plus importante des fluides à St. Vincent. A Grenade, l'olivine mantellique ne présente pas d'enrichissement en Ba et Sr, ni d'anomalie négative en Nb, suggérant que cette olivine se soit formée avant toute contamination par des fluides aqueux.

L'enrichissement en Ba, Sr, Nd est caractéristique de l'apport de fluides aqueux. Les olivines de Grenade montrent une plus grande variation des compositions comparée à celle de St. Vincent, comme pour les inclusions de ces deux îles, suggérant une source plus hétérogène à Grenade. Quelques points de mesures ont été faits dans une olivine mantellique de Grenade et montrent des teneurs en Sr similaires au manteau primitif, et un enrichissement en Ba moins marqué que pour les autres inclusions (Fig. IV.2). Cela suggère que le manteau a été enrichi par un premier fluide riche en Ba avant la formation de cette olivine, et avant l'arrivée de fluides riches en Ba et Sr déclenchant la fusion lors de laquelle les olivines magmatiques analysées ont été formées, en accord avec les études des xénolithes mantelliques de Grenade (Parkinson et al., 2003 ; Vannucci et al., 2007).

Fig. VI.3: Diagramme montrant les variations du rapport Ba/La en fonction du rapport $[La/Sm]_N$ (normalisé au manteau primitif, Hofmann, 1988) dans les olivines de Grenade (ronds) et St. Vincent (carrés). Les olivines de Grenade et St. Vincent montrent des variations similaires en Ba/La, impliquant des influences similaires des fluides aqueux. En revanche, quelques olivines de Grenade présentent des valeurs plus élevées en $[La/Sm]_N$ comparées à celles de St. Vincent, associées à des faibles Ba/La. Ces valeurs reflétent l'influence des sédiments sur la source mantellique.

Les olivines de Grenade et St. Vincent montrent des enrichissements similaires en Ba et Sr, deux éléments mobilisés par les fluides aqueux. De même, les olivines de Grenade et St. Vincent montrent des variations similaires en Ba/La (Fig. VI.3), impliquant des influences relativement similaires des fluides aqueux.

Quelques olivines de Grenade présentent des valeurs plus élevées en $[La/Sm]_N$ comparées à celles de St. Vincent, associées à des faibles Ba/La. Ces valeurs reflètent l'influence des sédiments et/ou de fluides riches en solutés sur la source mantellique. Ce diagramme est similaire a celui décrit par les inclusions vitreuses (Bouvier et al., en cours de soumission à EPSL). De même, comme pour les inclusions, certains points dans les olivines magmatiques présentent une anomalie positive en Zr (1 point à St. Vincent, 3 à Grenade), reflétant l'influence de fluides riches en silicates issus de la déshydratation en profondeur des sédiments.

Comparaison des Magmas Primaires de St. Vincent et Grenade

Les compositions en éléments traces dans les olivines confirment les conclusions apportées par les inclusions vitreuses, c'est-à-dire un apport similaire de fluides aqueux pour les deux îles et une influence plus importante de fluides riche en solutés, probablement issus de la déshydratation des sédiments.

VI.4- Comparaison des inclusions de St. Vincent et Grenade avec les inclusions de l'éruption de 1530 A.D. de la Guadeloupe

L'échantillonnage effectué sur l'île de la Guadeloupe (Echelle-Matylis et Citerne) n'a pas permis d'avoir accès a des magmas peu différenciés contenant des inclusions préservées à l'état vitreux de taille supérieur à $20\mu m$. Les quelques inclusions analysées dans les olivines de ces scories ($50.8 < SiO_2 < 53.4$, MgO entre 3.6 et 4.8 % pds) montrent des compositions évoluées similaires aux roches totales ($46.6 < SiO_2 < 55.4$ % pds, 2.3 < MgO < 5.0 % pds, Tableau VI.3), cependant leur taille ne permet pas d'analyses par sonde ionique.

	Mc2a	Mc2b	Mc4 v	Mc3	Mc46a	Mc46b	Mc11v	Mc18a	Mc18b	Mc18c	Mc18 v
SiO ₂	48.25	47.45	49.33	49.45	55.40	54.26	51.18	49.71	48.96	48.46	53.58
TiO ₂	1.39	1.30	1.55	1.93	1.50	0.78	1.61	1.50	0.85	0.97	1.30
Al ₂ O ₃	15.09	14.99	15.77	15.54	15.30	16.92	15.77	15.48	16.25	16.24	18.47
FeO	14.27	14.05	12.49	13.07	11.50	11.05	12.71	14.41	14.17	14.46	11.09
MnO	0.18	0.28	0.26	0.25	0.27	0.30	0.26	0.25	0.32	0.28	0.08
MgO	4.81	5.01	4.54	5.00	3.21	2.33	3.61	4.47	4.40	4.78	2.31
CaO	9.20	9.13	8.54	8.85	7.46	8.46	9.67	8.22	9.28	9.15	9.88
Na₂O	2.88	2.72	3.07	2.80	2.76	3.68	3.29	3.29	3.17	3.06	3.42
K ₂ O	0.60	0.62	0.71	0.73	0.91	0.78	0.78	0.77	0.69	0.67	0.93
P_2O_5	0.16	0.16	0.21	0.19	0.22	0.12	0.17	0.24	0.30	0.13	0.22
CI	0.14	0.15	0.17	0.15	0.19	0.20	0.17	0.16	0.15	0.14	0.16
S	0.10	0.10	0.04	0.05	0.03	0.12	0.05	0.06	0.10	0.12	0.03
H ₂ O	1.78		0.64	1.85		oxyde			oxyde		
CaO/Al ₂ O ₃	0.61	0.61	0.54	0.57	0.49	0.50	0.61	0.53	0.57	0.56	0.53
Olivine											
Fo %	0.72	0.72	0.72	0.71	0.65	0.65	0.69	0.69	0.69	0.69	0.69
SiO ₂	37.56	37.56	36.78	38.04	37.21	37.21	37.50	37.42	37.42	37.42	37.42
MgO	36.52	36.52	36.49	35.92	32.35	32.35	34.38	34.47	34.47	34.47	34.47
FeO	25.67	25.67	25.57	25.56	30.98	30.98	27.54	27.42	27.42	27.42	27.42
MnO	0.59	0.59	0.50	0.46	0.60	0.60		0.52	0.52	0.52	0.52
CaO	0.25		0.19	0.25	0.21	0.21	0.23	0.28	0.28	0.28	0.28

Tableau VI.3 : Compositions en éléments majeurs des inclusions des Mt. Caraïbes

a, b, c désignent différentes inclusions dans un même cristal d'olivine (v : verre)

 $Fo = 100 \times Mg/(Mg + Fe^{2+})$

	Mc29	Mc51	Mc64	Mc69	MC67a	MC67b	Mc60	Mc60	Mc72v1	Mc72v2	Mc66 v
SiO ₂	49.45	46.66	50.44	51.48	47.73	46.75	50.26	49.01	50.11	50.85	55.09
TiO ₂	1.73	0.81	1.44	0.94	1.50	1.07	1.20	0.91	1.47	1.36	1.55
Al ₂ O ₃	15.40	17.61	15.92	17.07	18.76	18.50	17.78	17.07	16.52	16.47	15.36
FeO	13.74	13.31	12.59	12.09	12.50	13.05	11.62	13.38	11.97	11.27	10.57
MnO	0.28	0.19	0.23	0.28	0.24	0.19	0.33	0.21	0.29	0.16	0.28
MgO	4.51	4.61	3.55	2.54	4.09	4.09	2.81	2.94	3.07	2.60	3.04
CaO	9.22	10.90	8.80	9.91	9.87	10.85	10.53	10.29	9.90	9.17	7.58
Na₂O	3.39	2.42	3.48	3.31	3.55	3.34	2.75	2.54	3.69	3.17	3.06
K ₂ O	0.70	0.48	0.74	0.57	0.75	0.65	0.55	0.55	0.77	0.72	0.85
P_2O_5	0.16	0.13	0.22	0.19	0.15	0.14	0.10	0.10	0.19	0.19	0.23
CI	0.16	0.14	0.18	0.17	0.16	0.16	0.09	0.09	0.16	0.17	0.18
S	0.06	0.16	0.08	0.15	0.12	0.13	0.10	0.10	0.07	0.05	0.03
H₂O							oxyde	oxyde			oxyde
CaO/Al ₂ O ₃	0.60	0.62	0.55	0.58	0.53	0.59	0.59	0.60	0.60	0.56	0.49
Olivine											
Fo %	0.70	0.63	0.69	0.68	0.68	0.70	0.71	0.71	0.70	0.70	0.66
SiO ₂	37.36	37.03	37.08	37.70	37.70	37.69	38.36	38.36	37.69	37.69	37.05
MgO	34.98	27.59	34.30	34.34	34.34	35.06	35.34	35.34	35.06	35.06	32.51
FeO	26.14	28.51	27.57	28.57	28.57	26.43	26.20	26.20	26.43	26.43	30.15
MnO	0.45	0.44	0.52	0.41	0.41	0.47	0.49	0.49	0.47	0.47	0.57
CaO	0.22	0.35	0.25	0.25	0.25	0.18	0.23	0.23	0.18	0.18	0.17

Tableau VI.3 : (suite)

a, b, c désignent différentes inclusions dans un même cristal d'olivine (v : verre)

 $Fo = 100 \times Mg/(Mg + Fe^{2+})$

En revanche, les cristaux de l'éruption de 1530 A.D., qui ont fait l'objet de plusieurs études ces dernières années (notamment: Poussineau, 2005; Bourdon et al., 2008), contiennent des cristaux renfermant des inclusions de taille supérieure à 20 μ m, le plus souvent à l'état vitreux. La dynamique des magmas, ainsi que les conditions pré-éruptives sont bien définies. Cependant, aucune étude isotopique n'a été effectuée afin de tracer l'influence du slab. Une étude des éléments majeurs couplée aux compositions élémentaires et isotopiques en Li et B a donc été entreprise dans quelques inclusions.

VI.4.1. Description des échantillons

Les échantillons étudiés proviennent de différents faciès issus de l'éruption de 1530 A.D.: un faciès clair homogène, constitué de ponces grises plus ou moins vésiculées, et un faciès sombre, constitué de scories noires homogènes (Fig. VI.4). Il existe également des scories présentant des figures de mélange, mais elles n'ont pas été sélectionnées pour cette étude. Ces échantillons ont été décrits par Poussineau, 2005.

Les compositions en éléments majeurs, réalisé par ce même auteur, ont montré que les ponces grises ont des compositions d'andésites acides (SiO₂ aux alentours de 60 wt%) et sont de nature calco-alcaline. Il existe néanmoins au sein de ce faciès une variation des compositions d'andésite basaltiques à andésite.

Du point de vue minéralogique, ces faciès sont composés majoritairement de plagioclases, mais aussi d'orthopyroxènes, clinopyroxènes, magnétites et ilménites. Les plagioclases peuvent être de forme arrondie et irrégulière ou de forme plus régulière et anguleuse, et semblent tous zonés. Les orthopyroxènes se présentent sous forme de petits prismes réguliers optiquement homogènes.

Les inclusions étudiées ont été piégées dans des plagioclases et pyroxènes des deux faciès décrit précédemment. Les inclusions ont en majorité des tailles supérieures à $40\mu m$, atteignant jusqu'à $200\mu m$. Certaines inclusions présentes dans les minéraux des scories noires montraient des signes de cristallisation, et ont donc été homogénéisées comme décrit dans le paragraphe III.2.

Fig. VI.4: Photographies des différents échantillons de l'éruption de 1530 A.D. de la Guadeloupe (modifiées d'après Poussineau, 2005). A: ponces grises homogènes, B: scorie noire.

VI.4.2. Composition des minéraux hôtes

Les compositions des plagioclases et pyroxènes sont reportées en annexe 9. Les plagioclases appartenant aux scories noires (échantillon G1440) montre une variabilité chimique, allant de An_{51} à An_{83} . La plupart sont zonés, avec des bordures généralement ~ An_{65} . Ces résultats sont en accord avec les résultats de Poussineau (2005), bien que montrant une plus large gamme de compositions. Cet auteur décrit des plagioclases An_{60} à An_{80} et des bordures An_{67} . Les plagioclases des ponces grises ont des compositions très proches de ceux des scories noires. En effet, ces ponces renferment des plagioclases An_{48} à An_{83} , avec des bordures ~ An_{66} . Poussineau (2005) avait déterminé que les plagioclases avaient des compositions An_{55} à An_{75} et des bordures An_{60} .
Comparaison des Magmas Primaires de St. Vincent et Grenade

Les orthopyroxènes analysés dans cette étude sont de compositions relativement homogènes, sans zonation. Leurs compositions s'étendent de En_{55} à En_{58} dans les scories noires, et de En_{54} à En_{58} pour les ponces grises, en accord avec les données existantes (En_{56} à En_{60} pour l'ensemble des cristaux, Poussineau, 2005).

Les clinopyroxènes, peu abondants, ont des compositions homogènes, tout comme les orthopyroxènes. Celles-ci varient de $En_{35-38}Wo_{41-44}$ pour les clinopyroxènes des ponces grises, et de $En_{37-38}Wo_{43-44}$ pour ceux des scories noires, dans la même gamme que ceux analysés précédemment (Poussineau, 2005).

VI.4.3. Composition des inclusions

VI.4.3.1. Compositions en éléments majeurs

Dans l'échantillon de scories noires, 21 inclusions vitreuses et 15 inclusions homogénéisées ont été analysées en éléments majeurs à la microsonde électronique. 76 inclusions piégées dans les différents cristaux des ponces grises ont également été analysées (Annexe 14). Les standards utilisés pour calibrer ces mesures sont Alvin 981 R 23, de composition basaltique, et CFA, de composition plus siliceuses (Tableau III.1).

Fig. VI.5: Diagramme CaO anhydre vs. SiO_2 anhydre dans les inclusions des différents faciès (G1440 et GSA). Les inclusions piégées dans les plagioclases et celles piégées dans les pyroxènes sont différenciées, tout comme celles qui ont été homogénéisées avant analyses. Ces différents types d'inclusions ne montrent pas de différence significative de compositions.

Toutes les inclusions montrent des compositions très évoluées, riches en SiO₂. Les inclusions naturelles des minéraux des scories noires ont des compositions variant de 68.9 à 74.9 wt% SiO₂, 12.3 à 14.4 wt% Al₂O₃ et 1.9 à 4.0 wt% CaO, comparables aux compositions des inclusions homogénéisées: 67.7 à 75.3 wt% SiO₂, 12.1 à 14.5 wt% Al₂O₃ et 1.9 à 4.0 wt% CaO. Aucune différence significative de compositions n'a été observée entre les inclusions piégées dans les plagioclases ou pyroxènes, ces derniers semblant juste renfermer des inclusions aux compositions légèrement moins variables (Fig. VI.5).

VI.4.3.2. Composition en éléments légers et isotopes stables

Les inclusions des scories noires (G1440) et ponces grises (GSA) ont été analysées en Li, B, δ^7 Li et δ^{11} B. Les résultas obtenus montrent de très larges gammes de variations: les teneurs en Li varient de 2.7 à 26.7 ppm pour l'échantillon de scorie noires, et de 1.3 à 23.7 pour les ponces grises (Fig. VI.6a). Les concentrations en Li tendent à augmenter avec l'augmentation de la teneur en silice, probablement dû à l'effet de cristallisation fractionnée, puisque le Li est un élément modérément incompatible (Fig. VI.6a). Le B montre également une large gamme pour les deux échantillons: de 2.0 à 43.8 ppm et de 4.2 à 55.6 ppm pour les scories noires et ponces grises respectivement (Fig. VI.6b). Comparées aux teneurs en SiO₂, les concentrations en B tendent à diminuer, sans claire corrélation. Les compositions isotopiques en Li et B s'étalent de -27.3 à +12.5‰ et -41.1 à +27.45‰ pour les scories noires, et de -14.4 à +14.3‰ et -21.0 à +27.4 pour les ponces grises (Fig. VI.7a-b). Dans l'ensemble, les deux échantillons montrent des gammes similaires de compositions isotopiques et élémentaires.

Fig. VI.6: Graphique représentant les teneurs en Li (a) et B (b) dans les inclusions des deux faciès (carrés: inclusions des ponces grises, ronds: inclusions des scories noires). Les deux échantillons montrent des compositions similaires en SiO₂, Li et B. Li tend à augmenter avec l'augmentation, pouvant être le reflet de l'évolution du magma par cristallisation fractionnée, puisque le Li est un élément modérément incompatible. Au contraire, le B aurait plutôt tendance à décroître avec l'augmentation de SiO₂, bien que cette tendance soit peu marquée.

Li et B ont tendance à décrire une co-variation, essentiellement dans l'échantillon de scories noires. En revanche, aucune corrélation élément vs. isotopes n'est observée, ni de corrélation isotope vs. isotope.

Fig. VI.7: Histogramme des compositions en δ^7 Li (a) et δ^{11} B (b) dans les inclusions de G1440 et GSA. Les compositions des toutes ces inclusions décrivent les mêmes gammes de variations, suggérant un même magma parents pour les inclusions des deux faciès.

VI.4.4. Premières interprétations

Bien que provenant de deux types de scories ayant des compositions en éléments majeurs différentes (scories noires de compositions d'andésite basaltique, et ponce grise acide; Poussineau, 2005), les inclusions piégées dans les différents minéraux montrent des compositions en éléments majeurs, légers et isotopes semblables. Les minéraux hôtes sont également de compositions similaires, avec un zonage préservé pour les plagioclases. Ces similitudes de compositions révèlent que ces cristaux sont hérités: ils ont poussé dans un magma évolué, comme le montrent les compositions en éléments majeurs des inclusions, probablement dans la chambre magmatique, et ont été remobilisé lors de la remontée des magmas donnant ces deux types de laves. Les inclusions piégées ne sont donc pas

représentatives du magma transportant ces cristaux jusqu'à la surface. Les larges variations en éléments légers et isotopes stables, sans corrélation claire peuvent avoir deux implications:

- le mélange de magma ayant lieu dans la chambre magmatique, décrit par Poussineau (2005) entre un magma acide et l'arrivée d'un magma chaud basique, ré-homogénéise les compositions, effaçant l'enregistrement des influences de la plaque plongeante. Ce mélange de magmas est mis en évidence par la présence des deux types de scories (ponces grises et scories noires) de compositions légèrement différentes, et par la présence de scories rubanées. Poussineau (2005) a montré que ce mélange était un déséquilibre entretenu dans la chambre magmatique.

- le temps de résidence du magma dans la chambre magmatique, certainement important, a pu favoriser un processus de contamination crustale, entraînant une augmentation des teneurs en Li et B, et un décalage des isotopes vers des valeurs plus lourdes.

L'étude de ces inclusions s'est révélée un contre exemple de l'étude des inclusions de St. Vincent et Grenade. Cela prouve qu'il est important de bien caractériser les inclusions et leur minéral hôte afin de s'assurer de leur représentativité. Ici, les inclusions ne sont pas représentatives du magma hôte et ont piégé un magma ayant probablement subit des mélanges et contamination crustale. Le résultat observable sur les éléments légers et isotopes est une très large variation sans corrélation entre éléments et isotopes, contrairement aux inclusions primitives de St. Vincent et Grenade qui montrent des tendances, renseignant sur l'influence des fluides sur la source mantellique.

CONCLUSIONS GÉNÉRALES ET PERSPECTIVES

CONCLUSIONS GÉNÉRALES:

Les données acquises lors de cette étude étendent considérablement la base de données de l'arc des Petites Antilles, notamment en B, F, Cl (Fig. A) ainsi qu'en δ^7 Li et δ^{11} B. Les données précédemment publiées sur teneurs en H₂O, Li et S, les plus abondantes parmi les éléments légers, sont déterminées essentiellement sur roches totales, le plus souvent de compositions évoluées. Les données ajoutées par cette étude sont les premières sur des inclusions vitreuses représentatives des magmas primaires des laves émises en surface aux Petites Antilles.

Fig. A: Histogramme montrant le nombre de données en éléments légers pour l'arc des Petites Antilles. Les données en bleu sont issues de la base de données Georoc (http://georoc.mpch-mainz.gwdg.de/georoc/) et rassemblent toutes les analyses en éléments légers publiées sur les roches totales, verre et minéraux. Les données en violet sont issues de ce travail, incluant les données sur les inclusions et roche totale.

Les compositions mesurées au sein de chaque échantillon montrent des gammes de variations importantes, recouvrant souvent la gamme de variation observée sur les laves de différents arcs (Fig. B). Cela illustre des sources mantelliques hétérogènes à petite échelle, non préservées dans les laves émises en surface. L'étude des inclusions vitreuses primitives fournit de nombreuses informations dont les roches totales ne permettent pas l'accès. De plus, la combinaison de différentes analyses élémentaires et isotopiques a permis de mettre en évidence différents processus affectant la source mantellique.

Composition de la source mantellique:

A Grenade, les inclusions vitreuses ont des compositions en éléments majeurs semblables à celles des M-Séries, les inclusions de compositions plus évoluées correspondant aux compositions des C-Series. Les inclusions de St. Vincent ont pour la plupart des compositions proches des laves de St. Vincent, les autres se caractérisant par des SiO₂ plus

faibles, K₂O et CaO plus élevés que les basaltes. Ces compositions sont interprétées en terme d'interaction du magma avec des lithologies riches en amphiboles et clinopyroxènes, probablement dans le manteau, alors que la plupart des auteurs reportant ces compositions proposent une interaction à des pressions crustales. Les magmas primaires de Grenade n'ont pas gardé de façon aussi claire la signature de cette interaction, qui pourrait être moins marquée du fait d'une origine plus profonde et d'une remontrée plus rapide des magmas.

Fig. B: Histogramme et courbes cumulatives des compositions en δ^{18} O. L'histogramme en gris représente les compositions en δ^{18} O publiées pour les laves des arc du Japon, des Antilles, des Andes et de l'Indonésie (d'après Pineau et al., 1999). Pour comparaison, le champs des valeurs des MORB non altérés est représenté en vert (Mattey et al., 1994). Les inclusions de Grenade (courbe cumulative fine, rouge) et de St. Vincent (courbe cumulative épaisse, bleu) montrent une gamme de composition encadrant toutes les données publiées sur les arcs, en incluant quelques valeurs plus faibles et plus élevées, non préservées dans les roches totales.

L'ensemble des données (éléments majeurs, traces, légers) obtenues sur les inclusions vitreuses indique une source mantellique de type MORB, modifiée par les fluides issus de la déshydratation du slab, en accord avec les précédentes études réalisées essentiellement sur roches totales (Macdonald et al., 2000).

Influence de différents fluides issus du slab:

Les études publiées sur l'arc des Petites Antilles proposent l'influence sur la source mantellique de fluides aqueux issus de la déshydratation de la croûte océanique subductée et de fluides ou magmas issus des sédiments. Les mesures des éléments légers et isotopes stables acquises au cours de cette thèse ont permis de préciser la composition de ces fluides. Trois sortes de fluides sont mises en évidence, le premier à grande échelle, les deux autres de façon plus locale:

1- un premier type de fluide enrichi le coin mantellique en H₂O, B, Cl et modifiant les δ^{11} B vers des valeurs élevées. Ce fluide a une signature proche de celle de l'eau de mer et

pourrait être apporté en profondeur par la déshydratation du manteau serpentinisé par les premiers fluides relâchées par la plaque subductée (Fig. C). De façon plus quantitative, le modèle B vs. δ^{11} B suggèrent que leur influence varie entre 0.3 et 0.7% à St. Vincent et entre 0.2 à 0.5% à Grenade.

2- les fluides issus de la déshydratation de la croûte océanique supérieure altérée (Fig. C), responsable d'un enrichissement sélectif en B dans certaines inclusions. Ces fluides sont également associés à des signatures légères en δ^7 Li, probablement générées par un fractionnement cinétique lors de leur passage à travers différentes lithologies. L'influence de ces fluides sur les sources mantelliques des deux îles est estimée jusqu'à 40-45%.

3- les fluides issus de la déshydratation des sédiments subductés, caractérisés par des δ^{11} B négatifs et des teneurs élevées en Li. L'influence de ces fluides pourrait atteindre jusqu'à 50%.Certaines de ces inclusions présentent la signature de black-shales (δ^{34} S négatifs), présents dans le prisme d'accrétion au sud de l'arc.

L'analyse des éléments traces dans ces mêmes inclusions apportent les informations complémentaires, précisant la nature de ces fluides. En effet, les fluides relâchés par le slab ont les charges en solutés différentes, impliquant qu'ils sont extraits à différentes profondeurs. Plusieurs études (Philippot, 1996; Kessel et al., 2005; Hermann et al., 2006) ont prouvé l'augmentation de la solubilité des silicates et éléments de même affinité avec l'augmentation de la pression. Les fluides issus de la déshydratation des serpentines et de la croûte océanique subductée sont aqueux. La contribution des sédiments sur la source mantellique serait également sous forme de fluides aqueux à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides nueva à St. Vincent, alors qu'elle serait principalement sous forme de fluides riches en silicates, aussi appelé fluides supercritiques (Kessel et al., 2005), à Grenade. Ces mesures ont également permis de mettre en évidence de fortes teneurs en Zr (jusqu'à 1250 ppm), jamais décrites pour des basaltes, attestant de la dissolution de zircons, contenus dans les unités de sables riches en zircon du prisme au nord de l'arc.

En comparant les données acquises sur les deux îles, il semble que la contribution des fluides aqueux issus de déshydratation du slab soit identique pour les deux îles, avec cependant une influence du premier type de fluide plus marquée à St. Vincent.

Conditions de genèse:

Les teneurs en eau mesurées directement dans les inclusions préservées à l'état vitreux, couplées aux mesures de δD , montrent de large gamme de variation, représentatives d'un magma variablement enrichi par des fluides. Cette variation des teneurs en eau implique une variation des conditions d'extraction du magma. Couplées aux travaux expérimentaux existant pour les basaltes magnésiens de St. Vincent (Pichavant et al., 2002; 2007), les teneurs en eau mesurées dans les inclusions de cette île impliquent une extraction des magmas primitifs entre 1195 et 1220°C, 14 et 13 kbar. Ces conditions peuvent varier en fonction de la teneur en eau dissoute dans le magma. Des magmas contenant jusqu'à 5% pds H₂O seraient extraits à 1170°C et 16 kbar.

Fig. C: Schéma récapitulatif de la genèse des magmas de St. Vincent et Grenade. Les magmas de St. Vincent sont extraits entre 13 et 14 kbar par 10 à 20% de fusion d'une source mantellique de type MORB métasomatisée par des fluides de compositions proches de celle de l'eau de mer, probablement relâchés lors de la déshydratation du manteau serpentinisé. De façon plus locale, la source mantellique est influencée par des fluides aqueux issus de la déshydratation de la croûte océanique et des sédiments. A Grenade, aucune contrainte précise de pression et température n'a été apportée. Cependant, la présence de fluides supercritiques suggère une genèse en profondeur. La composition des inclusions révèle une première fusion du manteau métasomatisé par différents fluides, comme pour Grenade. Puis, l'apport de nouveaux fluides, d'origine profonde, engendre une nouvelle fusion entre 7 à 15% de ce manteau modifié appauvri.

A Grenade, il est difficile de contraindre les conditions d'extraction des magmas, puisque le manteau sous Grenade a subi au moins un premier événement de fusion avant celui enregistré par les inclusions (Parkinson et al., 2003; Vannucci et al., 2007). Il est donc difficile de comparer les teneurs en eau mesurées à Grenade aux travaux expérimentaux sur les basaltes de St. Vincent. Cependant, la présence importante de fluides supercritiques à Grenade comparé à St. Vincent laisse supposer une genèse des magmas à plus forte profondeur. En comparant l'ensemble des données obtenues pour Grenade et St. Vincent, on s'aperçoit que St. Vincent représente la première étape de fusion qu'à subi le manteau sous Grenade (Fig. C).

Les taux de fusion calculés à partir des concentrations mesurées en B indiquent que les magmas primitifs de St. Vincent seraient générés par 10 à 20% de fusion de la source

mantellique métasomatisée, en accord avec les données déjà publiées (Heath et al., 1998; Pichavant et al., 2002). Ceux de Grenade seraient générés par 7 à 15% de fusion partielle de la source résiduelle métasomatisée.

PERSPECTIVES

Cette étude, par la combinaison des différentes mesures, a donc apporté de nouvelles contraintes sur les conditions de genèse des magmas ainsi que sur l'influence et la nature des différents fluides issus de la plaque subductée sur la source des magmas émis à St. Vincent et Grenade. Cependant, quelques points sont encore à développer. Notamment à Grenade, où il serait intéressant 1- de mieux contraindre les conditions pression-température d'extraction des magmas par des travaux expérimentaux, similaires à ceux réalisés sur les basaltes magnésiens de St. Vincent, 2- de caractériser en éléments légers et isotopes stables de différents nodules mantelliques, pour une meilleure compréhension des étapes d'enrichissements par des fluides et d'appauvrissement par fusion de la source mantellique sous Grenade et enfin, 3- étudier ces mêmes éléments, associée aux éléments traces, dans les inclusions de Grenade ayant des compositions similaires aux laves riches en CaO (C-Serie), afin d'apporter de nouveaux éléments au débat concernant leur origine.

Cette thèse pourrait être étendue à l'arc des Petites Antilles, afin d'étudier plus en détail l'évolution des fluides agissant sur la source mantellique, par l'étude de quelques inclusions des laves tholéitiques des îles du Nord. De même, l'étude d'autres échantillons des îles du centre (La Martinique et La Guadeloupe) apporterait de nouveaux arguments à l'étude du rôle de la contamination crustale.

Il pourrait également être intéressant de déterminer la composition isotopique du Pb dans les inclusions analysées ici, notamment celles présentant des signatures possibles de Black Shales, afin de vérifier cette hypothèse.

Références bibliographiques

Α

- Allard., P., Métrich, N., Deloule, E., Belhadj, O., Mandeville, C. and Spilliaert, N., 2006. First ion microprobe determination of water and sulfur isotopic ratios in melt inclusions of olivines at Mount Etna: Constraints on volatile sources and magma degassing processes. Eos Trans. AGU, AGU Fall Meet. Suppl. Abstracts, V13D-08.
- Alt, F. C., Shanks, W. C., 2006. Stable isotope compositions of serpentine seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet. Sci. Lett. 242, 272-285.
- Anderson, A.T., Jr. 1974. Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J. Petrology 15, 243-267.
- Anderson, A. T., and Brown, G. G., 1993, CO₂ contents and formation pressures of some Kilauean melt inclusions: Amer. Mineral., v. 78, p. 794-803.
- Arculus, R.J., 1978. Mineral Petrolof Grenada, Lesser Antilles island arc. Contrib. Mineral. Petrol. 65, 413–424.
- Arculus, R.J.,1976. Geology and geochemistry of the alkali basalt-andesite association of Grenada, Lesser Antilles island arc. Geol. Soc. Amer. Bull. 87, 612-624.
- Arthur, M.A., Anderson, T.F., Kaplan, I.R., 1983. Stable isotopes in sedimentary geology. Soc. Econ. Paleont. Mineral. Short Courses 10, variously paginated.
- Asimow, P.D., Langmuir, C.H., 2003. The importance of water to oceanic mantle melting regimes. Nature 421, 815-820.

В

- Baker, D.R., 2008. The fidelity of melt inclusions as records of melt composition. Contrib Mineral Petrol, DOI 10.1007/s00410-008-0291-3
- Baker, M. B., Grove, T. L., Price, R., 1994. Primitive basalts and andesites the Mt Shasta region, N. California: products of varying melt fraction and water content. Contrib. Mineral. Petrol. 118, 111-129.
- Bebout, G. E., Ryan, J., Leeman, W., 1993. B-Be systematics in subduction-related metamorphic rocks: Characterization of the subducted component. Geochim. Cosmochim. Acta 57, 2227-2237.
- Beck, P., Chaussidon, M., Barrat, J. A., Gillet, Ph., Bohn, M., 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70, 4813-4825.

- Boudon, G., 1987. Mécanisme éruptifs et mode de mise en place des dépôts d'éruptions explosives dirigées. Exemple de la Soufriere (Guadeloupe) et de la Montagne Pelée (Martinique). thèse d'état, Univ Paris VII, Paris, 382 pp.
- Boudon, G., Komorowski, J.-C., Villemant, B., Semet, M.P., 2008. A new scenario for the last magmatic eruption of La Soufri`ere de Guadeloupe (Lesser Antilles) in 1530 A.D. Evidence from stratigraphy, radiocarbon dating and magmatic evolution of erupted products, J. .Volcanol. Geotherm Res., doi: 10.1016/j.jvolgeores.2008.03.006
- Bouman, C., Elliott, T. Vroon, P. Z., 2004. Lithium inputs to subduction zones. Chem Geol 212, 59-79.
- Binderman, I.N., Eiler, J.M., Yogodzinski, G. M., Tatsumi, Y., Stern, C.R., Grove, T.L., Portnyagin, M., Hoernle, K., Danyushevsky, L.V., 2005. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet. Sci. Lett. 235, 480-496.
- Bonatti, E., Michael, P.J., 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet. Sci. Lett. 91, 297-311.
- Bouman, C., Elliott, T., Vroon, P. Z., 2004. Lithium inputs to subduction zones. Chem. Geol. 212, 59-79.
- Bouvier, A.-S., Métrich, N., Deloule, E., 2008. Slab-Derived Fluids in Magma Sources of St. Vincent (Lesser Antilles Arc): Volatile and Light Element Imprints. J. Petrol. 49, 1427-1448.
- Bouvier, A.-S., Métrich, N., Deloule, E., submitted. Volatiles, light elements and stable isotopes in Grenada magmas (Lesser Antilles). Do melt inclusions record a pressure column melting of mantle? submitted to EarthPlanet. Sci. Lett.
- Bouysse, P., Westercamp, D. and Andreieff, P., 1990. The Lesser Antilles island arc. In: J.C. Moore and A. Mascle (Editors), Proceedings of the Ocean Drilling Program, Scientific Results, 110. Ocean Drilling Program, College Station, pp. 29-44.
- Breiter, K., Förster, H.-J., Škoda, R., 2006. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 88, 15-34.
- Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1995. Mineral–aqueous fluid partitioning of trace elements at 9008C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 59, 3331–3350.
- Briden, J.C., Rex, D.C., Faller, A.M., Tomblin, J.F., 1979. KrAr geochronology and palaeomagnetism of volcanic rocks in the Lesser Antilles island arc. Philos. Trans. R. Soc. London, Ser. A 291, 485–528.
- Brown, G. M., Holland, J. G., Sigurdsson, H., Tomblin, J. F., Arculus, R. J., 1977. Geochemistry of the Lesser Antilles island arc. Geochim Cosmochim Acta 41, 785-801.
- Burke, K., 1988. Tectonic evolution of the Caribbean. Annual Review of Earth and Planetary Sciences 16, 201–230.

С

Carpentier, M., Chauvel, C., Mattielli, N., 2008. Pb-Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth Planet. Sci. Lett. 272, 199-211.

- Chan, L. H., Edmond, J. M., Thompson, G., 1992. Lithium isotopic composition of submarine basalts: implication for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151-160.
- Chan, L. H., Alt, J. C., Teagle, D. A. H., 2002. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 183, 5-24.
- Chaussidon, M., Albarède, F., Sheppard, S. M. F., 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulfide inclusions. Earth Planet. Sci. Lett. 92, 144-156.
- Chaussidon, M., Jambon, A., 1994. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 121, 277-291.
- Chaussidon, M., Libourel, G., 1993. Boron partitioning in the upper mantle an experimental and ion probe study. Geochim. Cosmochim. Acta 57, 5053-5062.
- Chaussidon, M., Sheppard, S. M. F., Michard, A., 1991. Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50'N. In: Taylor, H. P., O'Neil, J. R., Kaplan, I. R. (eds) Stable Isotope Geochemistry: a tribute to Samuel Epstein. Geochim. Soc., Spec. publication n°3, 325-337.
- Clocchiatti, R., 1975. Les inclusions vitreuses des cristaux de quartz. Etude optique, thermo-optique et chimique. Applications géologiques, Mem. Soc. Géol. Fr. 54: 96 pp.
- Cruse, A. M., Lyons, T. W., 2004. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chem. Geol. 206, 319-345.

D

- Danyushevsky, L. V., Della-Pasqua, F. N., Sokolov, S., 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib. Mineral. and Petrol. 138, 68-83.
- Danyushevsky, L. V., Leslie, R. A. J., Crawford, A. J., Durance, P., 2004. Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J. Petrol 45(12), 2531-2553.
- Danyushevsky, L. V., McNeill A. W., Sobolev, A., 2002. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183, 5-24.
- Davidson, J., 1985. Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci Lett 72, 163-174.
- Davidson, J., Harmon, S., 1989. Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95, 255-270.
- De Hoog, J. C. M., Taylor, B. E., Van Bergen, M. J., 2001. Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth Planet. Sci. Lett. 189, 237-252.

- Decitre, S., 2000. Variations de la composition isotopique du lithium dans les périotites océaniques serpentinisées et dans le manteau Implications pour le cycle du lithium. PhD Thesis, I.N.P.L., Nancy, France, pp 154.
- Decitre, S., Deloule, E., Reisberg, L., James, R., Agrinier, P., Mevel, C., 2002. Behavior of Lithium and its isotopes during serpentinization of oceanic peridotites. Geochem Geophy Geosyst, doi: 10.1029/2001GC000178.
- Defant, M.J., Kepezhinskas, P.K., de Boer, J., 2000. Slab melting at the Southern Terminus of the Lesser Antilles Arc: the petrology, geochemistry and tectonics of the Grenada Region. AGU Fall Meeting, EOS vol. 81, F1289.
- Della -Pasqua, F. N., Kamenetsky, V. S., Gasparon, M., Crawford, A. J., Varne, R., 1995. Al-rich spinels in primitive arc volcanics. Mineral Petrol53, 1-26.
- Della-Pasqua, F., Varne, R., 1997. Primitive ankaramitic magma in volcanic arc: a melt-inclusion approach. The Canadian Mineralogist 35, 291-312.
- Deloule, E., Albarède, F., Sheppard, S.M.F., 1991. Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543-553.
- Devine, J. D., 1995. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. J. Volcanol. Geotherm. Res. 69, 1-33.
- Deyhle, A., Kopf, A., Eisenhauer, A., 2001. Boron systematics of authigenic carbonates: a new approach to identify fluids processes in accretionary prisms. Earth Planet Sci Lett 187, 191-205.
- Dixon, J.E., Stolper, E.M., Holloway, J.R., 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607-1631
- Draper, D. S., Johnston, A. D., 1992. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc-alumina basalts. Contrib Mineral Petrol 112, 501-519.
- Dubinska, E., Bylna, P., Kozlowski, A., Dörr, W., Nejbert, K., Schastok, J., Kulicki, C., 2004. U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodinsite shell (Sudetic ophiolite, SW Poland). Chem. Geol. 203, 183-203.
- Duncan, R.A., Hargraves, R.B., 1984. Plate tectonic evolution of the Caribbean region in the mantle reference frame. Geol Soc Am Memoir, 162, 81-93.

E

- Eiler, J. M., Carr, M. J., Reagan, M., Stopler, E., 2005. Oxygen isotope constraints on the sources of central American arc lavas. Geochem. Geophys. Geosyst 6, Q07007.
- Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W., Stopler, E., 2000. Oxygen isotope geochemistry of oceanic-arc lavas. J. Petrol. 41, 229-256.
- Eiler, J.M., Farley, K.A., Valley, J.W., Hauri, E., Craig, H., Hart, S., Stopler, E.M., 1996. Oxygen isotope variations in ocean islant basalt phenocrysts. Geochim Cosmochim Acta 61, 2281-2293.

- Eiler, J.M., McInnes, B., Valley, J.W., Graham, C.M., Stopler, E.M., 1998. Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle, Nature 393, 777-781.
- Elliott, T., Jeffcoate, A., Bouman, C., 2004. The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220, 231-245.
- Elliott, T., 2007. Tracers of the slab. In: Eiler, J. (ed) Inside the subduction factory. Geophysical Monograph Series 138, 23-43.

F et G

- Faure, F., Schiano, P., 2005. Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236, 882-898.
- Gaetani, G. A., Grove, T. L., 2007. Experimental constraints on melt generation in the mantle wedge. In: Eiler, J. (ed) Inside the subduction factory. Geophysical Monograph Series 138, 107-131.
- Gaetani, G. A., Watson, E. B., 2000. Open system behavior of olivine-hosted melt inclusions, Earth Planet Sci Lett 183, 27-41
- Gaetani, G. A., Watson, E. B., 2002. Modeling the major-element evolution of olivine-hosted melt inclusions, Chem. Geol. 183, 25-41
- Ghiorso, M.S., Sack, R.O., 1995. Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contrib Mineral Petrol 119, 197-212
- Gill, J.B., 1980. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin, 390 pp.
- Gladney, E. S., Roelandts, I., 1987. Compilation of elemental concentration data for USGS BIR-1, DNC-1, and W-2. Geostandards Newsletter 12, 63-118.
- Green, D.H., Ringwood, A.E., 1968. Genesis of the calcalkaline igneous rock suite. Contrib. Mineral. Petrol. 18, 163–174.
- Grégoire, M., Moine, B.N., O'Reilly, S.Y., Cottin, J. Y., Giret, A., 2000. Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate- and Carbonate-rich Melts (Kerguelen Islands, Indian Ocean). J. Petrol. 41, 477–509.
- Grove, T., Chatterjee, N., Arman, S. W., Médard, E., 2006. The influence of H₂O on mantle wedge melting. Earth Planet Sci Lett 249, 74-89.
- Grove, T.L., Parman, S.W., Bowring, S.A., Price, R.C., Baker, M.B., 2002. The role of a H₂O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol. 142, 375-392.
- Giunta, G., Beccaluva, L., Siena, F., 2006. Caribbean Plate margin evolution: constraints and current problems Geologica Acta 4, 265-277
- Gstalter N., 1986. Les formations ponceuses à quartz de la région sud de Basse-Terre (Guadeloupe), Pétrologie, géochimie, thermobarométrie et chimie des inclusions vitreuses. Thèse de l'Université de Paris sud, Orsay, n°. 92, 296 pp.

- Gurenko, A. A., Chaussidon, M., 1997. Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine. Chem. Geol. 135, 21-34.
- Gurenko, A.A., Trumbull, R.B., Thomas, R., Lindsay, J.M., 2005. A Melt Inclusion Record of Volatiles, Trace Elements and Li-B Isotope Variations in a Single Magma System from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles, J. Petrol, doi: 10.1093/petrology/egi063

Η

- Hauri, E., 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115-141.
- Hawkesworth, C. J., O'Nions, R. K., Arculus, R. J., 1979. Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet. Sci. Lett. 45, 237-248.
- Heath, E., Macdonald, R., Belkin, H., Hawkesworth, C., Sigurdsson, H., 1998. Magmagenesis at Soufriere Volcano, St. Vincent, Lesser Antilles Arc. J. Petrol 39, 1721-1764.
- Hermann, J., Spandler, C., Hack, A., Korsakov, A. V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399-417.
- Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segragated from peridotite using aggregated of diamond, Earth Planet. Sci. Lett. 114, 477-489.

I et J

- Ionov, D.A., Hoefs, J., Hans Wedepohl, K., Wiechert, U., 1992. Content and isotopic composition of sulphur in ultramafic xenoliths from central Asia. Earth Planet. Sci. Lett. 111, 269-286.
- James, K.H., 2002. Cretaceous-Eocene flysch deposits of the Caribbean area: Chronological record of discussions and implications for tectonic history and early phases of hydrocarbon generation, 16th Caribbean Geological Conference, Barbados, Abstracts.
- James, K.H., 2003. A Simple Synthesis of Caribbean Geology. AAPG International Conference, Barcelona, Extended Abstracts Compact Disc.
- James, K.H., 2006 Arguments for and against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American origin Geologica Acta 4, 279-302
- Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K., Brooker, R. (2007). Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta71, 202-218.

Κ

- Kasemann, S., Meixner, A., Rocholl, A., Vennemann, T., Rosner, M., Schmitt, A. K., Wiedenbeck, M., 2001. Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612 and reference materials JB-2 and JR-2. Geostand Geoan Res 25, 405-416.
- Kamenetsky, V. S., Crawford, A. J., Eggins, S., Muhe, R., 1997. Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subducted components. Earth Planet Sci Lett 151, 205-223.
- Kamenetsky, V. S., Eggins, S. M., Crawford, A. J., Green, D. H., Gasparon, A. J., Falloon, T. J., 1998. Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet Sci Lett 160, 115-132.
- Kamenetsky, V.S., Pompilio, M., Metrich, N., Sobolev, A.V., Kuzmin, D.V., Thomas, R., 2007. Arrival of extremely volatile-rich high-Mg magmas changes explosivity of Mount Etna. Geology, 35 (3), 255-258.
- Kelemen, P.B., Shimizu, N., Dunn, T., 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during meltrrock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111–134.
- Kent, A. J. R., Elliott, T. R., 2002. Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas. Chem Geol 183, 263-286
- Kerr, A.C., Tarney, J., Marriner, G.F., Klaver, G.T., Saunders, A.D., Thirwall, M.F., 1996. The geochemistry and petrogenesis of the late Cretaceous picrites and basalts of Curaçao, Netherlands Antilles: a remnant of an oceanic plateau. Contrib Mineral Petrol, 124, 29-43.
- Kessel, R., Schmidt, M. W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437, 724-727.
- Kogiso, T., Hirschmann, M. M., 2001. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol142, 347-360.
- Kolodny, Y., Epstein, S., 1976. Stable isotope geochemistry of deep sea cherts. Geochim. Cosmochim. Acta40, 1195-1209.
- Kress, V. C., Carmichael, I. S. E., 1991. The compressibility of silicate liquids containing Fe_2O_3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib.Mineral. Petrol. 108, 82-92.
- Kuzmin, D.V., Sobolev, A.V., 2003. Boundary layer effect on the composition of melt inclusions in olivine. EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #5665.

L

Langmuir, C.H., 1994. Water and the solid Earth. Nature 369, 704–705.

- Lassiter, J. C., Hauri, E. H., Nikogosian, I. K., Barsczus, H. G., 2002. Chlorine-Potassium variations in melt inclusions from Rivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth Planet. Sci. Lett. 202, 525-540.
- Leeman, W.P., Carr, M.J., Morris, J.D., 1994. Boron geochemistry of the Central American volcanic arc: constraints on the genesis of subduction-related magmas. Geochim Cosmochim Acta 58, 149-168.
- Leeman, W. P., Sisson, V. B., 1996. Geochemistry of boron and its implications for crustal and mantle processes. In: Grew, E. S., Anovitz, L. M. (eds) Boron: Mineralogy, Petrology and Geochemistry, Rev Mineralo33, 645-708.
- Lowenstern, J. B., 1994. Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy, Am. Mineral. 79, 353-369
- Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., Zimmerman, M., 2005. Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. Geochim. Cosmochim. Acta 69, 735-751.

M

- Macdonald, R., Hawkesworth, C. J., Heath, E., 2000. The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Science Reviews 49, 1-76.
- Mackwell, S. J., Kohlstedt, D. L., 1990. Diffusion of hydrogen in olivine: implication for water in the mantle. J. Geophys. Res. 1995, 5079-5088.
- Marschall, H.R., Altherr, R., Ludwig, T., Kalt, A., Gméling, K., Kasztovszky, Z., 2006. Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks Geochim Cosmochim Acta70, 4750–4769.
- Marschall, H.R., Pogge von Strandmann, P. A. E., Seitz, H. -M., Elliott, T., Niu, Y., 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet. Sci. Lett. 262, Issues 3-4, 563-580.
- Massare, D., Métrich, N., Clocchiatti, R., 2002. High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H₂O concentrations. Chem Geol 183, 87–98
- Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen isotope composition of mantle peridotite. Earth Planet. Sci. Lett. 128, Issue 3-4, 231-241.
- Maurel, C., Maurel, P., 1982. Etude expérimentale de l'équilibre Fe²⁺-Fe³⁺ dans les spinelles chromifères et les liquides silicatés basiques coexistants. Comptes Rendus de l'Académie des Sciences de Paris 285, 209-215.
- Médard, E., Schmidt, M. W., Schiano, P., 2004. Liquidus surfaces of ultra-calcic primtive melts: formation conditions and sources. Contrib Mineral Petrol 148, 201-215.
- Métrich, N., Allard, P., Spilliaert, N., Andronico, D., and Burton, M., 2004. 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna's evolution in the last three decades: Earth Planet. Sci. Lett. 228, p. 1-17.

- Métrich, N., Clocchiatti, R., 1996. Sulfur abundance and its speciation in oxidized alkaline melt. Geochim Cosmochim Acta 60, 4151-4160.
- Métrich, N., Clocchiatti, R., 1989. Melt inclusion investigation of the volatile behavior in historic alkaline magmas of Etna. Bul Volcanol 51, 185-198
- Métrich, N., Wallace P.J., soumis. Volatile Abundances in Basaltic Magmas 1 and Their Degassing Paths Tracked by Melt Inclusions. Rev. Min.
- Michael, P.J., Cornell, W.C., 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath midocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18,325–18,356.
- Moriguti, T., Nakamura, E., 1998. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163, 167-174.
- Mosbah, M., Métrich, N., Massiot, P., 1991. PIGME Fluorine determination using a nuclear microprobe with application to glass inclusions. Nuclear Instruments and Methods in Physics Research B58, 227-231.

N et P

- Newman, S, Stolper, E. M., Stern, R. J., 2000. H₂O and CO₂ in magmas from Mariana arc and back arc systems. Geochem Geophy Geosyst doi: 1: 1999GC000027
- Nichols, G. T., Wyllie, P. J., Stern, C. R., 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371, 785-788.
- Parkinson, I. J., Arculus, R. J., Eggins, S. M., 2003. Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contrib. Mineral. Petrol. 146, 241-262.
- Peacock, S.M., 1990. Fluid processes in subduction zones. Science 248, 329-337.
- Peacock, S. M., Hervig, R. L., 1999. Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160, 281-290.
- Pearce, J. A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Rev of Earth Planet Sci Lett 24, 251-285.
- Philippot, P., 1993. Fluid–melt–rock interaction in mafic eclogites and coesite-bearing metasediments: constraints on volatile recycling during subduction. Chem. Geol. 108, 93–112.
- Philippot, P., 1996. The chemistry of high-pressure fluids _1 to 3 GPa.: natural observations vs. experimental constraints. Earth Sci. Front., Chin. Univ. Geosci., Beijing 3, 39–52.
- Pichavant, M., Macdonald, R., 2007. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib. Mineral. Petrol. 154, 535-558.
- Pichavant, M., Macdonald, R., 2003. Mantle genesis and crustal evolution of primitive calc-alkaline basaltic magmas from the Lesser Antilles arc. Geological Society 219, 239-254.
- Pichavant, M., Mysen, B. O., Macdonald, R., 2002. Source and H₂O contents of high-MgO magmas in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim. Cosmochim. Acta 66, 2193-2209.

- Pindell, J.L., and Barrett, S.F., 1990. Geologic evolution of the Caribbean region: a plate-tectonic perspective. *In* Dengo, G., and Case, J.E. (Eds.), *The Caribbean Region*. Geol. Soc. Am., Geol. North. Am. Ser., H:405-432.
- Pineau, F., Semet, M.P., Grassineau, N., Okrugin, V.M., Javoy, M., 1999. The genesis of the stable isotope (O, H) record in arc magmas: the Kamtchatka's case. Chem. Geol. 135, 93-124.
- Pistinier, J. A., Henderson, G. M., 2003. Lithium-isotope fractionation during continental weathering. Earth Planet Sci Lett 214, 327-339.
- Plank, T., Langmuir, C.H., 1993. Tracing trace elements from sediment input to volcanic output at subduction zone, Nature 362, 739-743.
- Plank, T., Langmuir, C.H., 1998. The chemical composition of the subducting sediment and its consequences for the crust and mantle, Chem Geol 145, 325-394.
- Portnyagin, M., Hoernle, K., Plechov, P., Mirinov, N., Khubunaya, S., 2007. Constraints on mantle melting and compositions and nature of slab components in volcanic arcs from volatiles (H₂O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett, doi: 10.1016/j.epsl.2006.12.005.
- Portnyagin, M., Almeev, R., Matveev, S., Holtz, F., 2008. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2008.05.020
- Poussineau, S., 2005. Dynamique des magmas andésitiques: approches expérimentales et pétrostructurale, application à la Souffrière de Guadeloupe et à la Montagne Pelée, PhD thesis, Orléans University, France, pp. 1- 299.
- Pokrovski, G.S., Roux, J., Harrichoury, J.C., 2005. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems, Geol Soc Am 33, 657-660.
- Powell, W., Zhang, M., O'Reilly, M.Y., Tiepolo, M., 2004. Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia Lithos 75, 141–171
- Prouteau, G., Scaillet, B., Pichavant, M., Maury, R., 2001. Evidence for mantle metasomatism by hydrous silicic melt derived from subducted oceanic crust. Nature 410, 197-200.

R

- Richter, F. M., Mendybaev, R. A., Christensen, J. N., Hutcheon, I. D., Williams, R. W., Sturchio N. C., Beloso, A. D. Jr., 2006. Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim Cosmochim Acta 70, 277-289.
- Rio, S., Métrich, N., Mosbah, M., Massiot, P., 1995. Lithium, boron and beryllium in volcanic glasses and minerals studied by nuclear microprobe. Nuclear Instruments and Methods in Physics Research B 100, 141-148.
- Roedder, E., 1979. Origin and significance of magmatic inclusion, Bull. Minéral. 102, 487-510.

Roeder, P. L., Emslie, R. F., 1970. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275-289.

- Rose, E.F., Shimizu, N., Layne, G.D., Grove, T.L., 2001. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science 293, 281-283.
- Rosner, M., Wiedenbeck, M., Ludwig, T., 2008. Composition-induced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses. Geostand Geoan Res 32 (1), 27–38.
- Ryan, J. G., Kyle, P. R., 2004. Lithium abundance and lithium isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem Geol 212, 125-142.
- Ryan, J. G., Morris, J., Tera, F., Leeman, W. P., Tsvetkov, A., 1995. Cross-Arc Geochemical Variations in the Kurile ARC as a function of slab Depth. Science 270, 625-627.

S

- Sack, R.O., 1980. Some constraints on the thermodynamic mixing properties of Fe–Mg orthopyroxenes and olivines. Contrib Mineral Petrol 71, 257–269.
- Samper, A., Quidelleur, X., Lahitte, P., Mollex D., 2007. Timing of effusive volcanism and collapse events within an oceanic arc island: Basse-Terre, Guadeloupe archipelago (Lesser Antilles Arc) Earth Planet Sci Lett 258, 175–191.
- Sano, T., Fukuoka, T., Hasenaka, T., Yonezawa, C., Matsue, H., Sawahata, H., 1999. Accurate and efficient determination of boron content on volcanic rocks by neutron induced prompt gammaray analysis. J. Radioana Nucl Chem 239, 613-617.
- Scambelluri, M., Philippot, P., 2001. Deep fluids in subduction zones. Lithos 55, 213-227.
- Schiano, P., 2003. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Science Reviews 63, 121–144
- Schiano, P., Bourdon, B., 1999. On the preservation of mantle information on ultramafic nodules: glass inclusions within minerals versus interstitial glasses, Earth Planet. Sci. Lett. 169, 173-188
- Schiano, P., Eiler, J. M., Hutcheon, I. D., Stopler, E. M., 2000. Primitive CaO-rich, silica-undersatured melts in islands arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochem. Geophys. Geosyst. doi: 1: 1999GC000032.
- Smith, H. J., Leeman, W. P., Davidson, J., Spivack, A. J., 1997. The B isotopic composition of arc lavas from Martinique, Lesser Antilles. Earth Planet Sci Lett 146, 303-314.
- Schmidt, M.W., 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science 272, 1927-1930.
- Shimizu, N., Arculus, R.J., 1975. Rare earth element concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles. Contrib. Mineral. Petrol. 50, 231-240.
- Sisson, T.M., Bronto, S., 1996. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883-886.
- Sisson, T.W., Layne, G.D., 1993. H₂O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 117, Issues 3-4, 619-635.

- Smith, H.J., Leeman, W.P., Davidson, J., Spivack, A.J., 1997. The B isotopic composition of arc lavas from Martinique, Lesser Antilles, Earth Planet. Sci. Lett. 146, 303-314.
- Sobolev, A. V., Chaussidon, M., 1996. H₂O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H₂O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45-55.
- Sobolev, A.V., 1996. Melt inclusions in minerals as a source of principal petrological information. Petrology 4, 209–220.
- Sobolev, A. V., Danyushevsky, L. V., 1994. Petrology and geochemistry of boninites from the north termination of the Tong trench: constraints on the generation conditions of primary high-Ca boninite magma, J. Petrol. 35, 1183-1211
- Sobolev, A. V., Shimizu, N., 1993. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363, 151-153.
- Sobolev, A.V., Sobolev, N.V., Smith, C.B., Dubessy, J.,1989. Fluid and melt compositions in lamproites and kimberlites based on the study of inclusions in olivine. In: Ross, J. (Ed.), 4-th International Kimberlite Conference, GSA Special Publication No.14 Kimberlites and Related Rocks. V.1. Their composition, Occurrence, Origin and Emplacement. Blackwell Sci. Publ., Perth, pp. 220–240.
- Spandler, C., O'Neill. H. St C., Kamenetsky, V. S., 2007. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447, 303-306.
- Speed, R.C. et al., 1984. Lesser Antilles arc and adjacent terranes, Atlas 10, Ocean Margin drilling Program, Regional Atlas Series: Marine Science International, Woods Hole, Massachussets, 27 sheets pp.
- Speed, R.C., Smith-Horowitz, P.L., Perch-Nielsen, K.S., Saunders, J.B. et Sanfilippo, A.B., 1993. Southern Lesser Antilles arc platform : pre-late Miocene stratigraphy, structure and tectonic evolution, Geol. Soc. Am. Spec. Pap., pp. 98.
- Spilliaert, N., 2005. Dynamique de remontée, dégazage et éruptions des magmas basaltiques riches en volatils: Traçage par les inclusions vitreuses et modélisation des processus dans le cas de l'Etna, 2000-2002. IPGP, pp. 294.
- Spilliaert, N., Métrich, N., Allard, P., 2006. S-Cl-F degassing pattern of water rich alkali basalt: Modelling and relationship with eruption styles on Mount Etna volcano. Earth Planet Sci Lett 248, 772-786.
- Spivack, A. J., Edmond, J. M., 1987. Boron isotope exchange between seawater and ocean crust. Geochim. Cosmochim. Acta 51, 1033-1043.
- Straub, S. M., Layne, G. D., 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones Geochim. Cosmochim. Acta 67, 4179-4203.
- Straub, S. M., Layne, G. D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet. Sci. Lett. 198, 25-39.
- Sun, S.-s., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. Saunders, A. D. N., M.J., Geological Society Special Publication. 42: 313-345.

Т

- Tatsumi, Y., 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. 94, 4697–4707.
- Tatsumi, Y., Hamilton, D.L., Nesbitt, R.W., 1986. Chemical characteristics of fluid phase released in from a subducted litosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res. 29, 293–309.
- Taylor, H. P.,, Sheppard, S. M. F., 1986. Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley, J. W., Taylor, H. P., O'Neil J. R. (Eds), Stable isotopes in high temperature geological processes, Reviews in Mineralogy 16, 227-271.
- Teng, F-Z., McDonough, W. F., Rudnick, R. L., Wing, B. A., 2007. Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine. Chem. Geol. 239, 1-12
- Thirlwall, M. F., Graham, A. M., 1984. Evolution of high-Ca, high-Sr C-Series basalts from Grenada Lesser Antilles: the effects of intra-crustal contamination. J. Geol. Soc. London 141, 427-445.
- Thirlwall, M. F., Graham, A. M., Arculus, R. J., Harmon, R. S., Macperson, C. G., 1996. Resolution of the effects of crustal contamination, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochim. Cosmochim. Acta 60, 4785-4810.
- Thirlwall, M. F., Smith, T. E., Graham, A. M., Thodorou, N., Hollings, P., Davidson, J. P., Arculus, R. J., 1994. High field strength element anomalies in arc lavas: source or process? J.Petrol. 35, 819-838.
- Toplis, M.J., 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural experimental systems. Contrib. Mineral. Petrol. 149, 22-39.
- Tomascak, P. B., Langmuir, C.H., le Roux, P.J., Shirey, S.B., 2008. Lithium isotopes in global midocean ridge basalts. Geochim. Cosmochim. Acta, doi:10.1016/j.gca.2007.12.021.
- Tomascak, P. B., Widom, E., Benton, L. D., Goldstein, S. L., Ryan, J. G., 2002. The control of lithium budgets in island arcs. Earth Planet Sci Lett 196, 227-238.
- Turner, S., Hawkesworth, C., Van Calsteren, P., Heath, E., Macdonald, R., Black, S., 1996. U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet. Sci. Lett. 142, 191-207.

V

Van Soest, M. C., Hilton, D. R., Kreulen, R., 1998. Tracing crustal and contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim Cosmochim Acta 62, 3323-3335.

- Van Soest, M. C., Hilton, D. R., Macpherson, C. G., Mattey, D. P., 2002. Resolving sediments subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He-O-Sr isotope approach. J. Petrol 43, 143-170.
- Vannucci, R., Tieplo, M., Defant, M. J., Kepezhinskas, P., 2007. The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99, 25-44.

W

- Wadge, G., Shepherd, J.B., 1984. Segmentation of the Lesser Antilles subduction zone. Earth Planet. Sci. Lett. 71, 297–304.
- Walker, J. A., Roggensack, K., Patino, L. C., Cameron, B. I., Matias, O., 2003. The water and trace element contents of melt inclusions across an active subduction zone. Contrib. Mineral. Petrol. 146, 62-77.
- Wallace, P., Carmichael, I.S.E., 1992. Sulfur in basaltic magmas. Geochim. Cosmochim.Acta 56, 1863-1874.
- Wallace, P. J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217-240.
- Watson, E. B., 1996. Surface enrichment and trace-element uptake during crystal growth, Geochim. Cosmochim. Acta 60, 5013-5020
- Wenner, D.B., Taylor, H.B. Jr., 1973. Oxygen and hydrogen isotope studies of serpentinization of ultramafic orcks in oceanic environments and continental ophiolite complexes. Amer. J. Sci. 273, 207-239.
- Westbrook, G.K., 1975. The structure of the crust and upper mantle in the region of Barbados and the Lesser Antilles. Royal Astronomical Society Geophysical Journal, 43: 201-242.
- Westercamp, D., 1988. Magma generation in the Lesser Antilles : geological constraints. Tectonophysics, 149(1-2), 145-163.
- White, W.M., Dupré, B., 1986. Sediment subduction and magma genesis in the Lesser Antilles: isotopic and trace element constraints. J. Geophys. Res., 91, 5927-5941.
- White, W.M., Dupré, B., Vidal, P., 1985. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochim Cosmochim Acta49, 1875-1886.
- White, W. M., Patchett, P. J., 1984. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167-185.
- Woodland, S. J., Pearson, D. G., Thirlawall, M.F., 2002. A platinium group element and Re-Os isotope investigation of siderophile element recycling in subduction zone: comparison of Grenada, Lesser Antilles Arc and the Izu-Bonin Arc. J. Petrol 43, 171-198.
- Workman, R. K., Hart, S. R., 2005. Major and trace element composition of the depleted MORB mantle. Earth Planet. Sci. Lett. 231, 53-72.

Y et Z

- You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., Spivack, A. J., 1996. Trace-element behaviour in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci Lett 140, 41-52.
- Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpe, C., Mcdonough, W. F., 2003. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208, 279-290.

Table des figures

CHAPITRE I: CONTEXTE GEOLOGIQUE

Fig. I.1: Schémas illustrant les deux différentes hypothèses sur l'origine de la plaque Caraïbe (D'après
James, 2000)
Fig. I.2: Présentation de l'arc des Petites Antilles (Feuillet, 2000)
Fig. I.3: schémas de l'arc des Petites Antilles, modifiés d'après Poussineau (2005)7
Fig. I.4: Carte bathymétrique des Petites Antilles (Carpentier et al., 2008)
Fig. I.5: Variation des isotopes du Sr en fonction des rapports a) K/Ta et b) Ba/Th des laves de l'arc volcanique des Petites Antilles (Turner et al., 1996)
Fig. I.6: Variation du rapport ⁸⁷ Sr/ ⁸⁶ Sr vs MgO10
Fig. I.7: Schéma de l'île de St. Vincent
Fig. I.8: Diagramme montrant les conditions pression-température pour différents basaltes magnésiens et picrites d'arc contenant entre 10 et 13% pds MgO (Pichavant et al., 2002)
Fig. I.9: Photographie de l'affleurement de la formation de Yellow tuff13
Fig. I.10: Photographie du niveau de scories échantillonné sur la route de Troumaka14
Fig. I.11: Schéma simplifié de l'île de Grenade, modifié d'après Arculus (1973) et Devine (1995)15
Fig. I.12: Photographie du cône de scorie de Queen's Park
Fig. I.13: Cône de l'affleurement de Pillot Hill
Fig. I.14. Model d'évolution digital de l'île de Basse-Terre (données IGN, modifié d'après Samper et al., 2007)
Fig. I.15 : Diagramme K ₂ O vs SiO ₂ pour les laves de Basse Terre20

CHAPITRE II: LES INCLUSIONS VITREUSES

Fig. II.1 : Inclusions vitreuses primaires dans des olivines d'échantillons de St. Vincent
Fig. II.2 : Schémas et photographies illustrant les différents types d'olivines suivant leur vitesse de croissance, et leurs inclusions piégées (d'après Faure et Schiano, 2005)23
Fig. II.3: Al ₂ O ₃ vs. CaO dans des inclusions piégées dans différents types d'olivines (d'après Faure et Schiano, 2005)
Fig. II.4: Schéma récapitulatif des phénomènes post-piégeages que peuvent subir les inclusions (d'après Spilliaert, 2005)
Fig. II.5: Photographie de microcristaux de carbonates déposés sur la paroi de la bulle de rétractation d'une inclusions piégée dans une olivine de l'Etna (Kamenetsky et al., 2007)25
Fig. II.6: Variation de la teneur en FeO _{tot} mesurée dans les inclusions en fonction du pourcentage de forstérite Fo% des olivines hôtes
Fig. II.7 : Profils des compositions en Li et δ^7 Li dans deux olivines de St. Vincent

Fig. II.8: photographie d'inclusion de la Guadeloupe	
Fig. II.9: Variation des teneurs en CaO en fonction des compositions en SiO ₂ dans les inclusi	ons des scories
andésitiques et dacitiques de l'éruption de 1530 A.D. de La Guadeloupe	

CHAPITRE III: TECHNIQUES ANALYTIQUES

Fig. III.1: Schéma d'une microsonde électronique	35
Fig. III.2 : schéma d'un canon à électron	36
Fig. III.3: Schéma illustrant l'interaction entre le faisceau d'électron et l'échantillon poli	36
Fig. III.4: Schéma de la sonde ionique 1270	39
Fig. III.5: Droites de calibrations pour les différents éléments analysés lors d'une session	44
Fig. III.6: Calibrations des isotopes stables lors d'une session	45
Fig. III.7: Calibrations en début de sessions d'analyses des isotopes de l'hydrogène avec différents sta	indards
synthétiques de compositions basaltiques et avec des teneurs en	eau
variables	48

CHAPITRE IV: CARACTERISATION DES MAGMAS PRIMAIRES DE ST. VINCENT

Fig. IV.1: Graphiques représentant les compositions des in	nclusions de St. Vincent50
Fig. IV.2 : Modèle B vs. δ^{11} B, modifié d'après Rose et al.	(2001)
Fig. IV.3: Schéma illustrant la genèse des magmas primain	res de St. Vincent58

CHAPITRE V: CARACTERISATION DES MAGMAS PRIMAIRES DE GRENADE

Fig. IV.1 : Photographie d'une olivine vue au microscope électronique, en lumière transmise	80
Fig V.2 : Diagramme H ₂ O vs δ D dans les inclusions de Grenade	81

Article soumis à EPSL:

Fig. 1. Map of the Lesser Antilles arc
Fig. 2. Variations of CaO vs Fo mol% in Grenada olivines
Fig. 3. Spinel Cr# vs. olivine Mg#, modified from Parkinson et al., (2003)96
Fig. 4. Variations of CaO vs MgO (a) and K ₂ O vs SiO ₂ (b) in Grenada olivine-hosted melt inclusions and glasses
Fig. 5. Histograms and relative probabilities of a) water, b) fluorine, c) chlorine, d) sulphur, e) boron and f) lithium in basaltic to picritic melt inclusions of Grenada
Fig. 6. Plot of δD vs. H ₂ O in Grenada melt inclusions
Fig. 7. Histograms and relative probabilities of a) δ^7 Li, b) δ^{11} B, c) δ^{18} O and d) δ^{34} S101
Fig. 8. Interpretative diagram modified from Rose et al. (2001), showing B vs. δ^{11} B in Grenada inclusions

Fig. 9. Variations of B and δ^7 Li vs. Li in Grenada melt inclusions	106
Fig. 10. Plots of (a) Li and (b) B vs. H ₂ O in Grenada melt inclusions	108

CHAPITRE VI: COMPARAISON DES MAGMAS PRIMAIRES DE ST. VINCENT ET GRENADE ET COMPARAISON AVEC LES MAGMAS EVOLUÉS DE LA GUADELOUPE

Fig. VI.1: Diagramme H₂O/Y en fonction de Nb/Y dans les inclusions de St. Vincent (carrés) et Grenade (ronds) modifié d'après Métrich et Wallace (soumis à RiMG).....

Article en préparation pour EPSL:

Figure 1: Map of the Lesser Antilles arc
Figure 2: K ₂ O wt% (a) and MgO wt% (b) vs. SiO ₂ wt%
Figure 3: Trace elements pattern for a) St. Vincent and b) Grenada M.I
Figure 4: Fig. 4: Plots of elemental compositions against elemental or isotopic compositions in St. Vincent and Grenada M.I
Figure 5: Model for calculations of extents of partial melting using H ₂ O/Y vs. Nb/Y, modified after Métrich and Wallace, 2008
Figure 6: Variations of Ba/La vs. $[La/Sm]_N$ (a) and B/Ce vs. Zr/Y (b)130
Figure 7: Cl/F vs. F ppm (a) and Sr/F (b), H ₂ O/F (c) and Zr ppm (d) vs. F in St. Vincent and Grenada M.I
Figure 8: histogram of δ^{18} O compositions in St. Vincent (light curve) and Grenada (dark curve) M.I

Fig.	VI.2: Spectres d'éléments traces normalisés par rapport au manteau primitif (Hofmann, 1988) dans les
	olivines de Grenade et St. Vincent146
Fig.	VI.3: Diagramme montrant les variations du rapport Ba/La en fonction du rapport [La/Sm] _N (normalisé au manteau primitif, Hofmann, 1988) dans les olivines de Grenade (ronds) et St. Vincent (carrés)
Fig.	VI.4: Photographies des différents échantillons de l'éruption de 1530 A.D. de la Guadeloupe (modifiées d'après Poussineau, 2005)
Fig.	VI.5: Diagramme CaO anhydre vs. SiO ₂ anhydre dans les inclusions des différents faciès (G1440 et GSA)
Fig.	VI.6: Graphique représentant les teneurs en Li (a) et B (b) dans les inclusions des deux faciès (carrés: inclusions des ponces grises, ronds: inclusions des scories noires)
Fig.	VI.7: Histogramme des compositions en δ^7 Li (a) et δ^{11} B (b) dans les inclusions de G1440 et GSA

CONCLUSIONS GÉNÉRALES ET PERSPECTIVES

Fig. A: Histogramme montrant le nombre de données en éléments légers pour l'arc des Petites Antilles	s155
Fig. B: Histogrammes et courbes cumulatives des compositions en $\delta^{18}O$	156
Fig. C: Schéma récapitulatif de la genèse des magmas de St. Vincent et Grenade	158

Table des tableaux

CHAPITRE III: TECHNIQUES ANALYTIQUES

Tableau III.1: Composition en éléments majeurs des standards utilisés pour les analyses microsonde
électronique
Tableau III.2: Conditions d'analyses des éléments majeurs
Tableau III.3 : Compositions en éléments majeurs des standards utilisés pour analyses IMS 127040
Tableau III.4: Ratios mesurés et donnés des standards références pour H ₂ O, F, S, Cl, Li et B41
Tableau III.5 : Valeurs de références pour les éléments et isotopes analysés par sondes ioniques 127042
Tableau III.6: Valeurs mesurées et données des standards utilisés pour calibrer le fractionnement
isotopique43
Tableau III.7: Compositions des standards utilisés pour les analyses 3f
Tableau III.8: Incertitudes (en %) déterminées sur les standards pour les analyses en éléments traces et
terres rares
Tableau III.9: Teneurs en eau et compositions isotopiques des standards utilisés pour les mesures δD47
Tableau III.10: Incertitudes (en %) sur les éléments majeurs et éléments traces pour les analyses roches
totales faites au SARM48

CHAPITRE IV: CARACTERISATION DES MAGMAS PRIMAIRES DE ST. VINCENT

$\label{eq:tableau} \textbf{IV.1}: Compositions en \ \delta D \ et \ H_2O \ mesurées \ dans \ quelques \ inclusions \ de \ St. \ Vincent$.51
Tableau IV.2 : Compositions en éléments majeurs, traces légers et isotopes stables dans les inclusions de St. Vincent	e .56
Tableau IV.3 : Compositions en éléments légers et isotopes stables mesurées dans deux olivines de St. Vincent	58

CHAPITRE V: CARACTERISATION DES MAGMAS PRIMAIRES DE GRENADE

Tableau	V.1 :	Compositions	en éléments	majeurs et	traces	légers,	et isotopes	stables	des	inclusions	de
		Grenade									.82
										_	

Tableau V.2 : Compositions en éléments légers et isotopes stables dans des olivines de Grenade......87

CHAPITRE VI: COMPARAISON DES MAGMAS PRIMAIRES DE ST. VINCENT ET GRENADE ET COMPARAISON AVEC LES MAGMAS EVOLUÉS DE LA GUADELOUPE

ANNEXES

	St Vincent												Grenad	в	
	SVN 3	Q9 NAS	2 NN 7	SVN 8	6 NAS	SVN 10	SVN 11	SVN 12	SVN 14	SVN 19	SVN 20	SVN 24	G05-11	G05-07	G05-29
SiO_2	50.48	51.48	50.74	51.96	51.33	48.36	56.07	50.01	46.9	53.73	47.38	48.1	45.99	46.41	51.06
Al_2O_3	21.55	16.41	18.9	21.05	20.63	16.55	17.65	18.86	16.35	19.93	14.26	15.73	13.64	14.20	17.00
${\rm FeO_{tot}}^1$	8.46	8.91	9.16	8.42	8.85	9.56	8.22	9.96	9.56	8.02	9.62	9.58	10.10	9.81	8.72
FeO^{1}	6.35	6.68	6.87	6.32	6.64	7.17	6.17	7.47	7.17	6.02	7.22	7.19	7.58	7.35	6.54
MnO	0.14	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.15	0.14	0.16	0.17	0.17	0.17	0.16
MgO	3.52	9.11	6.02	3.06	3.96	9.99	4.23	4.71	11.94	3.63	15.04	12.86	16.18	14.51	6.66
CaO	10.67	9.59	10.65	9.97	10.25	9.86	8.02	10.46	11.36	9.49	10.7	11.11	10.72	10.94	10.94
Na_2O	2.84	2.89	2.71	3.26	3.17	2.7	3.57	2.79	2.37	3.3	2.03	2.09	2.02	1.98	3.16
K_2O	0.44	0.37	0.29	0.42	0.37	0.44	0.63	0.5	0.49	0.7	0.31	0.2	0.44	0.47	0.81
TiO_2	0.94	0.75	0.8	0.97	0.91	0.87	0.79	1.12	1.03	0.81	0.72	0.7	0.83	0.85	06.0
P_2O_5	0.09	0.09	0.11	0.1	0.09	0.11	0.11	0.14	0.1	0.11	0.08	0.08	0.14	0.16	0.20
PF^2	0.69	0.12	0.31	0.45	0.1	1.39	0.39	1.11	-0.36	-0.03	0.19	-0.23	-0.02	0.42	0.41
Total	99.8	9.99	9.66	99.8	99.8	100.0	99.8	99.8	6.66	99.8	100.5	100.4	100.2	9.99	100.0
CaO/Al ₂ O ₃	0.50	0.58	0.56	0.47	0.50	0.60	0.45	0.55	0.69	0.48	0.75	0.71	0.79	0.77	0.64
				Í											

Annexe 1: Compositions de quelques laves échantillonnées à St. Vincent et Grenade, analysées au SARM-CRPG

localisation des échantillons:

SVN3: route de Troumaka; SVN6b: Belleisle; SVN7: Jack Hills; SVN8: Snugg river; SVN9: Indian Gallows; SVN10: Jack Hills; SVN12: Mt. Coke; SVN14: Black Point;

SVN19:Jumby Point ; SVN20: Ribishi Point; SVN24: Argyle G05-07; 11: Queen's Park; C05-29: Quarantine Point

 1 FeO mesuré comme Fe $_2\mathrm{O}_3,$ FeO calculé a 75% de FeO $_{\mathrm{tot}}$

² PF: perte au feu

	S tot	В	CI	F ppm
	%	ppm	ppm	ppm
543-11	0.11	66	11800	670
543-22	0.08	92	9300	810
543-19	0.07	109	6830	1040
543-5	0.06	120	7650	750
543-24	0.08	68	6980	710
144-15		56		
144-22	0.49	66	7290	1030
144-2	0.10	60	11360	580
144-36	0.38	22	1690	220
144-34	0.57	65	3910	430
144-26	1.50	52	11960	1470
144-24	0.27	11	2290	100
144-29	1.05	41	14240	540
SVN7	<0.01	7	210	90
SVN11	<0.01	7	63	180
SVN6b	<0.01	6	345	100
SVN9	0.02	9	690	250
SVN14	<0.01	4	600	190
SVN8	<0.01	7	71	180
G05-11	<0.01	5	495	290
G05-7	<0.01	7	680	260
G05-29	<0.01	6	480	160

Annexe 2: Composition en éléments légers dans des sédiments et laves

543: sédiments siliceux provenant du Leg IODP au Nord des Petites Antilles prélevés à la latitude de la Dominique

144: sédiments provenant du Leg IODP au sud des Petites Antilles. 2-15: carbonates;

34-36: sables a zirons; 24-29: black shales

SVN: laves échantillonnées à St. Vincent

G05: laves échantillonnées à Grenade

mesures effectuées au SARM, CRPG (Nancy, France)
	svn4b-6	svn4b-6	svn4b-6	svn4b-9b	svn4b-14	svn4b-17	svn4b-18	svn4b-19	svn4b-19	svn4b-20	svn4b-22	svn4b-24	svn4b-25a	svn4b-26
SiO_2	39.49	38.96	40.51	39.26	40.39	40.54	39.48	40.75	40.53	40.46	39.85	40.30	39.73	40.08
MgO	47.83	45.22	49.39	43.05	49.10	48.98	43.85	47.69	47.17	46.15	47.67	45.77	44.84	49.05
MnO	0.18	0.28	0.18	0.15	0.19	0.17	0.35	0.13	0.21	0.26	0.13	0.12	0.19	0.20
FeO^{1}	11.48	15.32	10.37	17.13	10.37	9.94	16.27	10.82	11.85	13.41	11.01	13.03	15.75	9.81
NiO	n.d.	n.d.												
CaO	0.22	0.11	0.15	0.25	0.21	0.13	0.27	0.17	0.14	0.15	0.17	0.15	0.18	0.10
total	99.2	6.66	100.6	99.8	100.3	9.66	100.2	99.5	6.66	100.4	98.8	99.4	100.7	99.2
$F0\%^{4}$	88.1	84.0	89.5	81.7	89.4	80.8	82.8	88.7	87.6	86.0	88.5	86.2	83.5	89.9
	svn4b-26	svn4b-28	svn4b-33	svn4b-33	svn4b-36	svn4b-60	svn4b-60	svn4b-61	svn4b-61	svn4b-61	svn4b-65	svn4b-65	svn4b-65	svn4b-70
-			M.I.c	p.I.M				M.I.		rim				
SiO_2	38.09	39.40	40.00	40.13	39.59	39.25	39.80	38.02	38.16	38.93	37.46	38.67	37.70	39.69
MgO	42.63	41.79	45.71	44.76	44.81	45.17	45.59	42.32	46.26	43.99	37.09	42.55	38.77	46.70
MnO	0.46	18.65	0.34	0.19	0.30	0.19	0.21	0.25	0.15	0.22	0.39	0.24	0.34	0.17
FeO^{1}	17.76	0.38	13.64	14.52	14.52	13.54	13.61	16.84	11.40	14.46	22.69	16.39	20.96	11.00
NiO	n.d.	n.d.	n.d.	n.d.	n.d.	0.17	0.11	0.14	0.20	0.16	0.07	0.15	0.07	0.30
CaO	0.14	0.11	0.17	0.11	0.12	0.17	0.15	0.20	0.20	0.18	0.22	0.16	0.22	0.16
total	99.1	100.3	6.66	99.7	99.3	98.5	99.5	97.8	96.4	97.9	97.9	98.2	98.1	98.0
$F0\%^2$	81.1	80.0	85.7	84.6	84.6	85.6	85.7	81.7	87.8	84.4	74.4	82.2	76.7	88.3
	svn4b-70	svn4b-70	svn4b-80	svn4b-80	svn4b-80	svn4b-86	svn4b-86	svn4b-88	svn4b-88	svn4b-88	svn4b-93	svn4b-93	svn4b-93	svn4b-95
		rim												
SiO_2	40.23	38.34	39.62	39.38	39.59	39.98	40.47	39.18	40.35	38.91	39.22	39.28	38.73	39.07
MgO	46.71	38.91	45.73	43.58	44.84	46.43	47.32	43.95	45.30	41.21	41.32	41.35	38.99	40.90
MnO	0.16	0.36	0.22	0.23	0.20	0.14	0.19	0.20	0.19	0.28	0.32	0.31	0.36	0.36
FeO^{1}	10.76	21.33	11.57	14.74	13.15	11.15	10.84	14.44	13.57	18.01	18.77	18.28	21.47	18.84
NiO	0.27	0.09	0.17	0.17	0.17	0.24	0.26	0.18	0.20	0.13	0.17	0.17	0.12	0.22
CaO	0.16	0.24	0.16	0.09	0.15	0.13	0.13	0.15	0.16	0.19	0.12	0.18	0.18	0.10
total	98.3	99.3	97.5	98.2	98.1	98.1	99.2	98.1	99.8	98.7	6.66	9.66	6.66	99.5
$F_{0\%}^{2}$	202	2 91	5 10	010	020	1 00	× 00	6 1 0	05 6	00.2		00.1	K JL	201

¹ FeO totale mesuré comme FeO, ² Fo = $100x[Mg/(Mg + Fe^{2+})]$ rim (bordure), M.I. (inclusion), gl (verre), sp (spinelle) indique la position du point d'analyse dans l'olivine

Annexe 3: Composition en éléments majeurs des olivines de St. Vincent

	50 41 mm	50 41 mm	to 4b and	T0-41-07	conth 07	evn.th.00	outh 00	sen (h-00	cun.1h-100	cun4h-103	cundh-104	5014-104	cundh-104	cundb-105
											m.L.a	6	M.Lc	
SiO_2	39.33	38.10	40.21	39.60	39.35	39.28	38.96	39.41	40.27	40.66	40.27	39.00	40.49	40.25
MgO	41.53	41.33	46.54	46.11	40.67	43.94	43.50	45.04	45.41	46.85	44.50	41.23	46.39	45.70
MnO	0.33	0.29	0.17	0.17	0.32	0.22	0.20	0.18	0.23	0.17	0.22	0.30	0.18	0.22
FeO^{1}	18.55	18.34	11.61	12.01	19.64	14.29	14.66	13.30	12.99	11.24	14.21	17.01	12.38	12.13
NiO	0.23	0.18	0.29	0.30	0.12	0.14	0.20	0.16	0.19	0.22	0.17	0.13	0.21	0.21
CaO	0.11	0.14	0.17	0.18	0.21	0.19	0.18	0.18	0.20	0.17	0.18	0.17	0.17	0.16
total	100.1	98.4	0.66	98.4	100.3	98.1	7.76	98.3	99.3	99.3	99.5	97.8	99.8	98.7
$F0\%^2$	80.0	80.1	87.7	87.2	78.7	84.6	84.1	85.8	86.2	88.1	84.8	81.2	87.0	87.0
	svn4b-107	svn4b-107	svn4b-108	svn4b-109	svn4b-109	svn4b-112	svn4b-113	svn4b-113	svn4b-113	svn4b-113	svn4b-113	svn4b-118	svn4b-119	svn4b-124
	M.I.a	M.I.b	M.I.b	M.I. a	M.I. b		gl	M.I.b	M.I.c	M.I.d	M.I.e			
SiO_2	40.14	40.05	40.85	40.15	39.96	40.33	35.41	38.77	40.25	40.31	39.72	40.52	39.01	40.51
MgO	45.83	45.86	47.65	42.38	42.20	45.74	30.31	40.39	45.10	44.77	42.18	46.91	44.39	46.71
MnO	0.19	0.17	0.16	0.29	0.31	0.19	0.19	0.31	0.21	0.23	0.25	0.20	0.18	0.20
FeO^{1}	12.07	12.77	11.12	17.12	19.02	12.92	15.39	18.32	14.34	14.77	17.55	11.59	13.89	11.03
NiO	0.26	0.22	0.17	0.16	0.14	0.14	0.14	0.13	0.23	0.19	0.11	0.27	0.26	0.27
CaO	0.17	0.17	0.23	0.24	0.23	0.27	0.16	0.20	0.14	0.15	0.19	0.18	0.16	0.19
total	98.7	99.2	100.2	100.3	101.9	9.66	81.6	98.1	100.3	100.4	100.0	7.66	97.9	98.9
$F_{0}\%^{2}$	87.1	86.5	88.4	81.5	79.8	86.6		79.7	84.9	84.4	81.1	87.8	85.1	88.3
	svn4b-123	svn4b-123	svn4b-130	svn4b-134	svn4b-134	svn4b-134	svn4b-135	svn4b-142	svn4b-145	svn4b-154	svn4b-160	svn4b-160	svn4b-160	svn4b-161
	M.I.a	d.I.b		M.I.a	M.I.b	M.I.c	M.I.a				rime	M.I. a	M.I. b	core
SiO_2	40.37	38.44	40.80	40.60	40.86	40.81	40.63	40.21	40.80	41.20	38.52	40.55	39.96	40.75
MgO	46.02	38.28	47.31	47.05	47.17	46.88	47.07	45.70	45.62	48.25	41.99	47.38	47.65	48.08
MnO	0.21	0.37	0.14	0.18	0.19	0.16	0.16	0.19	0.22	0.16	0.31	0.20	0.17	0.20
FeO^{1}	13.64	20.99	11.32	11.26	11.60	11.72	11.31	13.28	13.55	11.16	17.33	12.10	11.19	11.49
NiO	0.22	0.08	0.26	0.18	0.16	0.24	0.21	0.24	0.17	0.21	0.14	0.24	0.19	0.27
CaO	0.17	0.21	0.16	0.26	0.28	0.19	0.22	0.19	0.26	0.18	0.17	0.18	0.17	0.17
total	100.6	98.4	100.0	99.5	100.3	100.0	9.66	99.8	100.6	101.2	98.4	100.6	99.3	101.0
$F0\%^{4}$	85.7	76.5	88.1	88.2	87.9	87.7	88.1	86.0	85.7	88.5	81.2	87.5	88.4	88.2

	:				:				!		!	:		
	svn4b-161	svn4b-161	svn4b-162	svn4b-162	svn4b-162	svn4b-162 ive	svn4b-164 iva	svn4b-164	svn4b-167	svn4b-167	svn4b-167	svn4b-167	svn4b-168	svn4b-168
	M.I.	rime / sp	M.I. a	M.I. b	rime	M.I. c	M.I. a	rime	rime	M.I.	sp1	sp2	sp/ M.I.	M.I.
SiO_2	40.49	41.28	40.74	40.01	39.73	41.06	40.14	38.01	38.44	39.87	40.19	40.22	40.17	40.13
MgO	47.23	48.21	47.50	46.53	44.65	48.57	47.50	40.27	42.73	46.75	46.93	46.84	48.07	48.03
MnO	0.17	0.16	0.24	0.18	0.26	0.16	0.16	0.37	0.26	0.16	0.22	0.18	0.20	0.16
FeO^{1}	12.22	11.67	12.04	12.75	14.71	10.54	11.90	21.53	16.32	12.49	11.74	12.64	10.81	10.44
NiO	0.23	0.20	0.35	0.19	0.12	0.27	0.26	0.07	0.15	0.16	0.25	0.13	0.27	0.35
CaO	0.18	0.15	0.14	0.16	0.18	0.16	0.16	0.20	0.18	0.18	0.16	0.17	0.17	0.14
total	100.5	101.7	101.0	99.8	99.7	100.8	100.1	100.5	98.1	9.66	99.5	100.2	7.96	99.3
$F0\%^{2}$	87.3	88.0	87.5	86.7	84.4	89.1	87.7	76.9	82.3	87.0	87.7	86.8	88.8	89.1
	svn4b-168	svn4b-169	svn4b-169	svn4b-170	svn4b-170	svn4b-170	svn4b-170	svn4b-171	svn4b-171	svn4b-172	svn4b-172	svn4b-172	svn4b-172	svn4b-175
	rime	M.I.	rime	M.I. a	M.I. b	rime	M.I. c	M.I. a	gl	sp1	sp2	rime	M.I.	core
SiO_2	40.59	40.35	38.52	40.44	39.75	39.12	40.28	39.58	38.02	40.17	40.29	40.84	40.21	40.29
MgO	47.95	46.82	41.94	48.36	46.02	41.24	47.96	45.35	38.33	46.44	46.34	46.46	45.70	48.37
MnO	0.18	0.18	0.27	0.14	0.21	0.35	0.17	0.21	0.37	0.19	0.19	0.25	0.22	0.16
FeO^{1}	11.40	12.33	16.93	9.97	13.28	19.89	10.59	14.23	21.86	13.13	13.38	14.25	14.23	10.68
NiO	0.22	0.21	0.15	0.25	0.17	0.15	0.25	0.15	0.09	0.21	0.22	0.17	0.17	0.27
CaO	0.16	0.19	0.18	0.17	0.24	0.20	0.17	0.24	0.24	0.18	0.15	0.16	0.17	0.17
total	100.5	100.1	98.0	99.3	99.7	101.0	99.4	9.66	98.9	100.3	100.6	102.1	100.7	6.66
$F_{0}\%^{2}$	88.2	87.1	81.5	89.6	86.1	78.7	89.0	85.0	75.8	86.3	86.1	85.3	85.1	89.0
	svn4b-175	svn4b-175	svn4b-176	svn4b-176	svn4b-176	svn4b-176	svn4b-177	svn4b-177	svn4b-177	svn4b-177	svn4b-178	svn4b-178	svn4b-178	svn4b-179
	rime	M.I.	M.I. a	core	rime	M.I. b	rime / sp	rime	M.I.	gl	M.I. a	rime	M.I. b	M.I. a
SiO_2	37.84	40.44	40.36	39.97	38.97	39.92	40.01	38.92	40.82	39.72	39.77	39.08	39.98	40.43
MgO	39.57	48.01	47.64	48.24	45.08	45.76	43.57	41.38	46.83	43.57	45.07	41.12	44.27	47.57
MnO	0.34	0.17	0.15	0.14	0.24	0.21	0.29	0.31	0.20	0.29	0.21	0.27	0.19	0.21
FeO^{1}	21.09	10.95	11.36	10.26	14.11	13.56	16.63	17.91	12.87	17.25	14.22	18.40	15.61	11.32
NiO	0.10	0.16	0.17	0.28	0.17	0.29	0.14	0.10	0.18	0.14	0.22	0.15	0.22	0.26
CaO	0.23	0.24	0.23	0.15	0.17	0.15	0.18	0.20	0.18	0.19	0.17	0.17	0.16	0.17
total	99.2	100.0	6.66	99.0	98.7	6.66	100.8	98.8	101.1	101.2	7.66	99.2	100.4	100.0
$F0\%^2$	77.0	88.7	88.2	89.3	85.1	85.7	82.4	80.5	86.6	81.8	85.0	79.9	83.5	88.2

				007 17			101 11	101 1					101 1	
	SVN4D-179 MIL b	5VD4D-18U	SVD4D-18U	SVN4D-18U	SVD4D-18U	SVN410-181	SVD4D-181	svn4b-1ð1 ما	50140-152 M T	SVD4D-182	SVN4D-182	svn4b-182 ما	SVN4D-184	SVN4D-184 M T
SiO	40.31	40 64	40 30	40.19	40.65	40.18	30.50	39 97	40.65	40.60	30 66	30.60	40.54	40.33
MgO	44.83	48.54	48.72	46.28	48.20	45.31	41.58	43.54	47.66	47.07	43.89	42.50	47.73	47.50
MnO	0.18	0.17	0.16	0.21	0.19	0.25	0.28	0.27	0.19	0.15	0.23	0.29	0.12	0.17
FeO^{1}	14.30	9.69	9.81	13.25	10.33	15.27	19.80	17.44	11.53	11.34	16.05	17.95	11.33	11.28
NiO	0.24	0.29	0.28	0.17	0.26	0.19	0.10	0.14	0.25	0.25	0.23	0.13	0.22	0.25
CaO	0.17	0.17	0.17	0.19	0.18	0.16	0.20	0.16	0.21	0.15	0.16	0.18	0.19	0.18
total	100.0	99.5	99.4	100.3	99.8	101.4	101.5	101.5	100.5	9.66	100.2	100.7	100.1	7.66
F0% ²	84.8	89.9	89.8	86.2	89.3	84.1	78.9	81.6	88.0	88.1	83.0	80.8	88.2	88.2
	svn4b-184	svn4b-184	svn4b-185	svn4b-185	svn4b-185	svn4b-185	svn4b-185	svn4b-186	svn4b-186	svn4b-186	svn4b-187	svn4b-187	svn4b-187	svn4b-187
	rime	gl	M.I. a	rime	M.I. b	M.I. c	M.I. d	core	rime	M.I.	M.I. a	M.I. b	core	rime
SiO_2	39.85	40.80	38.76	38.55	40.12	39.41	40.50	40.34	40.44	39.68	39.01	39.34	38.85	39.07
MgO	45.79	48.22	42.25	42.31	45.51	44.93	47.85	46.70	45.06	46.31	41.00	41.11	41.11	41.29
MnO	0.15	0.19	0.27	0.24	0.22	0.19	0.19	0.18	0.20	0.21	0.30	0.32	0.31	0.31
FeO^{1}	12.74	10.72	17.89	16.48	14.81	14.42	10.97	13.23	15.06	12.55	19.60	19.66	19.34	19.09
NiO	0.20	0.24	0.17	0.12	0.20	0.14	0.25	0.16	0.16	0.19	0.18	0.13	0.10	0.10
CaO	0.17	0.18	0.19	0.18	0.16	0.17	0.18	0.19	0.20	0.20	0.11	0.13	0.10	0.16
total	98.9	100.4	99.5	97.9	101.0	99.3	6.66	100.8	101.1	99.1	100.2	100.7	99.8	100.0
$F_{0}\%^{2}$	86.5	88.9	80.8	82.1	84.6	84.7	88.6	86.3	84.2	86.8	78.8	78.8	79.1	79.4
	svn4b-190	svn4b-190	svn4b-190	svn4b-190	svn4b-191	svn4b-191	svn4b-191	svn4b-191	svn4b-192	svn4b-192	svn4b-192	svn4b-192	svn4b-192	svn4b-192
	M.I.	M.I.	rim	core	M.I.	M.I.	rim	core	rim	M.I. a	M.I. b	core	M.I. d	core
SiO_2	40.24	40.01	40.37	40.74	40.22	37.80	39.69	37.29	37.73	38.38	38.92	39.17	39.43	39.36
MgO	45.95	45.67	45.68	47.90	47.59	38.69	44.91	38.17	38.04	38.18	40.03	40.22	41.71	41.28
MnO	12.16	12.74	13.04	9.70	9.67	20.66	12.69	20.32	21.66	22.12	19.54	19.63	17.54	17.91
FeO^{1}	0.19	0.20	0.19	0.14	0.15	0.37	0.19	0.34	0.37	0.36	0.33	0.33	0.28	0.29
NiO	0.27	0.19	0.17	0.40	0.43	0.11	0.37	0.09	0.09	0.07	0.05	0.05	0.09	0.07
CaO	0.17	0.20	0.18	0.17	0.21	0.22	0.14	0.22	0.20	0.18	0.17	0.30	0.23	0.23
total	0.66	0.66	9.66	99.0	98.3	97.8	98.0	96.4	98.1	99.3	0.66	7.99	99.3	99.1
$F0\%^{4}$	87.1	86.5	86.2	89.8	89.8	76.9	86.3	77.0	75.8	75.5	78.5	78.5	80.9	80.4

	svn4h-192	svn4h-193	svn4h-193	svn4h-193	svn4h-193	svn4h-193	svn4h-196	svn4h-196	svn4h-196	svn4h-196	svn4h-197	svn4h-197	svn4b-197	svn4h-197
	M.I. c	rim	M.I. a	M.I. a	M.I. b	core	rime	M.I.	M.I.	core	rime	M.I.	M.I.	core
SiO_2	40.30	41.03	41.00	40.66	40.20	40.90	40.40	40.73	39.74	41.40	41.06	40.93	40.60	38.29
MgO	47.52	47.93	47.43	47.19	45.05	44.98	45.84	46.17	43.04	46.90	46.25	46.42	47.30	41.08
MnO	9.97	10.22	10.36	11.15	13.38	15.09	12.07	12.85	16.72	13.05	13.22	12.89	10.95	16.93
FeO^{1}	0.14	0.16	0.18	0.17	0.20	0.22	0.20	0.20	0.26	0.19	0.21	0.20	0.16	0.24
NiO	0.32	0.28	0.26	0.29	0.17	0.23	0.24	0.25	0.13	0.22	0.25	0.24	0.33	0.14
CaO	0.16	0.18	0.19	0.19	0.12	0.16	0.17	0.16	0.09	0.17	0.17	0.15	0.14	0.19
total	98.4	8.66	99.4	9.66	99.1	101.6	98.9	100.4	100.0	101.9	101.2	100.8	99.5	96.9
$F0\%^{2}$	89.5	89.3	89.1	88.3	85.7	84.2	87.1	86.5	82.1	86.5	86.2	86.5	88.5	81.2
	svn4b-198	svn4b-198	svn4b-198	svn4b-198	svn4b-199	svn4b-199	svn4b-199	svn4b-199	svn4b-200	svn4b-200	svn4b-200	svn4b-201	svn4b-201	svn4b-201
	rime	M.I.	M.I.	core	core	M.I. b	M.I. a	core	rime	core	M.I. b	rime	M.I.	M.I.
SiO_2	39.18	39.42	38.65	38.55	40.79	38.54	40.67	41.33	40.58	38.86	38.02	39.55	40.55	40.71
MgO	40.78	35.48	41.15	38.57	45.22	36.99	44.39	46.01	46.79	41.17	37.31	42.22	45.77	45.28
MnO	18.32	16.48	16.92	21.93	15.07	23.37	15.67	14.07	11.62	17.91	22.05	17.03	13.15	14.04
FeO^{1}	0.29	0.28	0.26	0.39	0.23	0.41	0.23	0.21	0.19	0.27	0.36	0.27	0.21	0.23
NiO	0.11	0.10	0.14	0.10	0.17	0.10	0.18	0.17	0.23	0.13	0.09	0.21	0.28	0.24
CaO	0.22	1.60	0.18	0.20	0.17	0.28	0.16	0.18	0.18	0.19	0.25	0.17	0.17	0.14
total	98.9	93.4	97.3	99.7	101.6	7.99	101.3	102.0	9.66	98.5	98.1	99.5	100.1	100.6
$F_{0}\%^{2}$	79.9	79.3	81.3	75.8	84.2	73.8	83.5	85.4	87.8	80.4	75.1	81.5	86.1	85.2
	svn4b-202	svn4b-203	svn4b-203	svn4b-203	svn4b-203	svn4b-204	svn4b-204	svn4b-204	svn4b-204					
	core	rime	M.I.	M.I.	core	rime	M.I. a/b	M.I. a	core					
SiO_2	41.59	40.51	41.46	40.87	40.00	39.62	39.96	39.38	39.44					
MgO	48.60	47.91	49.04	47.68	44.65	43.80	42.86	42.31	42.84					
MnO	11.61	10.28	10.53	10.97	13.91	15.36	17.26	17.83	17.53					
$\rm FeO^1$	0.19	0.18	0.16	0.18	0.22	0.28	0.29	0.28	0.29					
NiO	0.24	0.27	0.23	0.17	0.18	0.15	0.13	0.12	0.18					
CaO	0.16	0.22	0.18	0.21	0.19	0.22	0.25	0.19	0.16					
total	102.4	99.4	101.6	100.1	99.1	99.4	100.7	100.1	100.4					
F0% ²	88.2	89.3	89.2	88.6	85.1	83.6	81.6	80.9	81.3					

	G05-06-1	G05-06-1	G05-06-1	G05-06-3	G05-06-3	G05-06-4	G05-06-4	G05-06-4	G05-06-4	G05-06-5	G05-06-5	G05-06-5	G05-06-5
	iv	inter	bord	centre	bord	Ż	Ņ	centre	bord	Ż	iv	centre	bord
SiO ₂	40.53	40.85	40.83	39.56	39.77	39.25	39.30	38.25	39.82	40.12	40.34	40.14	40.90
MgO	48.61	49.48	47.90	45.72	47.15	45.17	46.44	46.65	47.89	48.33	47.75	46.39	47.52
CaO	0.16	0.11	0.15	0.04	0.08	0.13	0.13	0.13	0.14	0.14	0.14	0.05	0.21
NiO	0.16	0.47	0.26	0.26	0.26	0.23	0.31	0.30	0.24	0.39	0.26	0.28	0.17
FeO _{tot} ¹	10.59	9.21	11.03	13.54	11.40	13.13	11.79	10.42	11.36	9.50	11.22	12.31	12.40
MnO	0.16	0.15	0.17	0.23	0.20	0.23	0.20	0.18	0.18	0.15	0.17	0.22	0.22
Total	100.21	100.26	100.34	99.35	98.86	98.14	98.19	95.93	99.63	98.61	99.88	99.38	101.43
Fo mol%⁴	89.11	90.55	88.56	85.75	88.05	85.98	87.53	88.86	88.26	90.07	88.35	87.04	87.23
	G05-06-6	G05-06-6	G05-06-6	G05-06-6	G05-06-7	G05-06-7	G05-06-7	G05-06-7	G05-06-24	G05-06-24	G05-06-24	G05-06-24	G05-06-24
	iv	iv	centre	bord	iv	iv	verre	[verre; spin	_	iv			bord
SiO ₂	41.22	40.64	41.07	40.77	40.46	40.28	40.20	39.67	40.49	40.22	40.57	40.48	39.86
MgO	48.18	47.71	48.42	48.01	46.77	46.66	47.05	46.33	47.80	47.29	48.18	48.40	47.19
CaO	0.18	0.20	0.16	0.17	0.17	0.13	0.10	0.14	0.16	0.17	0.17	0.16	0.17
NiO	0.17	0.17	0.26	0.23	0.25	0.35	0.34	0.27	0.21	0.20	0.22	0.29	0.26
FeO _{tot} ¹	11.56	11.84	11.23	11.07	12.40	11.83	11.74	12.28	12.06	12.20	11.46	10.70	11.10
MnO	0.16	0.17	0.17	0.17	0.20	0.18	0.19	0.20	0.17	0.20	0.19	0.19	0.19
Total	101.47	100.74	101.30	100.41	100.26	99.43	99.62	98.90	100.89	100.27	100.77	100.22	98.76
Fo mol% ⁴	88.13	87.77	88.49	88.55	87.04	87.55	87.71	87.05	87.60	87.35	88.22	88.96	88.34
	G05-06-25	G05-06-27	G05-06-27	G05-06-27	G05-06-27	G05-06-27	G05-06-28						
	bord		iv	sp et iv		bord	sp2			iv		bord	iva
SiO ₂	41.36	41.00	39.89	39.93	39.86	39.15	41.00	40.01	40.65	40.49	40.60	40.57	40.25
MgO	48.74	48.06	45.44	45.63	45.95	45.93	48.23	46.15	48.11	48.27	48.51	47.40	46.35
CaO	0.21	0.10	0.21	0.21	0.08	0.19	0.16	0.10	0.15	0.16	0.16	0.19	0.16
NiO	0.19	0.28	0.19	0.21	0.25	0.21	0.26	0.26	0.29	0.26	0.28	0.18	0.23
FeO _{tot} ¹	12.15	12.48	14.58	14.59	13.32	11.55	11.75	13.28	11.20	10.96	10.47	12.26	13.83
MnO	0.20	0.21	0.23	0.23	0.22	0.19	0.19	0.22	0.19	0.17	0.16	0.21	0.20
Total	102.86	102.13	100.54	100.80	99.68	97.22	101.58	100.01	100.59	100.30	100.18	100.81	101.01
Fo mol%⁺	87.73	87.28	84.74	84.78	86.01	87.63	87.97	86.10	88.45	88.70	89.20	87.32	85.66

Annexe 4: Compositions en éléments majeurs dans les olivines de Grenade, mesurées par microsonde électronique SX50

¹ FeO totale mesuré comme FeO

 2 Fo = 100x[Mg/(Mg + Fe²⁺)]

les différents points sont fait près des inclusions (notées "iv", suivi de "a, b, c" lorsqu'il y a plusieurs inclusions dans l'olivine, "v" lorsqu'il s'agit d'un golfe), vers les bords, au cœur où à des points intermédiaires. Les localisations de chaques points sont indiquées en deuxième ligne de ce tableau, sous le nom de l'olivine.

	G05-06-28	G05-06-28	G05-06-28	G05-06- 29	G05-06-29	G05-06-30	G05-06-30	G05-06-30	G05-06-30	G05-06-30	G05-06-30	G05-06-31	G05-06-31	G05-06-49
			ivb	verre			ivb	iva			bord	iva	centre	iva
SiO ₂	40.12	40.58	40.80	39.81	40.02	39.14	39.62	39.79	39.63	39.93	40.84	40.14	39.45	40.22
MgO	46.19	47.79	48.30	45.73	46.22	44.02	44.89	45.21	44.66	45.64	48.96	46.51	44.14	47.84
CaO	0.13	0.13	0.18	0.14	0.11	0.08	0.22	0.10	0.12	0.09	0.15	0.20	0.05	0.15
NiO	0.21	0.25	0.27	0.21	0.22	0.24	0.24	0.25	0.26	0.25	0.32	0.26	0.26	0.28
FeO _{tot} ¹	13.89	12.28	11.06	13.85	13.39	15.82	14.91	14.47	14.91	14.58	10.71	13.27	15.73	10.86
MnO	0.23	0.18	0.19	0.23	0.20	0.26	0.25	0.24	0.23	0.24	0.17	0.22	0.26	0.16
Total	100.76	101.22	100.80	99.97	100.16	99.55	100.12	100.06	99.81	100.72	101.14	100.60	99.88	99.50
Fo mol% ⁴	85.56	87.39	88.61	85.47	86.01	83.22	84.29	84.77	84.22	84.80	89.06	86.20	83.33	88.70
	G05-06-31	G05-06-33	G05-06-33	G05-06-33	G05-06-34	G05-06-34	G05-06-34	G05-06-34	G05-06-45	G05-06-45	G05-06-45	G05-06-46	G05-06-46	G05-06-52
	bord	iv		bord	V1		8			iv	bord		iva-b	bord
SiO ₂	40.92	40.56	40.75	41.16	39.87	40.40	40.24	39.86	41.38	41.49	41.28	39.58	39.93	40.87
MgO	47.20	46.44	47.67	48.47	44.12	45.36	44.70	42.22	49.19	48.67	47.68	45.65	46.02	48.36
CaO	0.23	0.08	0.14	0.17	0.21	0.21	0.22	0.29	0.14	0.16	0.23	0.22	0.22	0.12
NiO	0.15	0.28	0.27	0.25	0.18	0.20	0.16	0.10	0.33	0.22	0.18	0.14	0.16	0.31
FeO _{tot} ¹	13.03	13.18	12.19	11.71	16.18	15.13	16.10	19.06	10.05	11.34	12.54	12.79	12.73	10.55
MnO	0.23	0.21	0.19	0.19	0.29	0.26	0.30	0.38	0.17	0.16	0.21	0.18	0.20	0.16
Total	101.76	100.74	101.21	101.94	100.84	101.56	101.72	101.91	101.26	102.03	102.12	98.56	99.26	100.37
Fo mol% ⁴	86.59	86.26	87.45	88.06	82.93	84.23	83.19	79.78	89.71	88.44	87.13	86.41	86.57	89.09
	G05-06-46	G05-06-46	G05-06-46	G05-06-46	G05-06-46	G05-06-46	G05-06-46	G05-06-47	G05-06-47	G05-06-47	G05-06-47	G05-06-48	G05-06-48	G05-06-56
	iva-b		iva	ivd	ive			iv	iv		ds	iv	iv	bord
SiO ₂	39.91	39.83	40.05	39.19	39.44	39.51	39.41	39.86	39.98	40.35	40.68	39.92	40.29	40.28
MgO	45.95	45.89	46.26	45.29	45.74	45.79	45.97	48.44	48.51	48.46	48.56	46.03	47.11	48.66
CaO	0.22	0.21	0.22	0.23	0.23	0.23	0.21	0.17	0.16	0.11	0.12	0.20	0.17	0.13
NiO	0.16	0.16	0.15	0.15	0.14	0.14	0.15	0.28	0.25	0.40	0.36	0.17	0.22	0.35
FeO _{tot} ¹	12.66	12.47	12.59	12.79	12.55	12.73	12.61	9.28	8.89	9.44	9.40	12.54	11.51	9.81
MnO	0.21	0.20	0.19	0.18	0.19	0.18	0.17	0.12	0.12	0.14	0.12	0.19	0.17	0.15
Total	99.11	98.76	99.45	97.82	98.28	98.58	98.52	98.14	97.91	98.90	99.23	90.06	99.47	99.39
Fo mol%⁺	86.60	86.77	86.75	86.32	86.66	86.50	86.66	90.29	90.67	90.15	90.20	86.73	87.95	89.83

	G05-06-49	G05-06-49	G05-06-49	G05-06-50	G05-06-50	G05-06-50	G05-06-50	G05-06-51	G05-06-51	G05-06-51	G05-06-52	G05-06-52	G05-06-52
	iva	ivb	ivb	iva	iva	ds	bord	bord	iv	centre	centre	iv	iv
SiO ₂	40.02	39.84	40.01	39.80	40.13	40.09	40.04	39.32	39.50	40.21	39.92	40.46	40.14
MgO	46.54	46.21	47.77	47.70	48.59	47.97	47.49	46.83	47.38	48.12	47.39	47.92	47.30
CaO	0.08	0.11	0.15	0.14	0.14	0.15	0.16	0.14	0.15	0.15	0.12	0.13	0.13
Nio	0.27	0.27	0.30	0.29	0.34	0.31	0.27	0.28	0.28	0.31	0.30	0.26	0.26
FeO _{tot} ¹	12.20	12.28	10.55	10.32	9.17	9.58	10.40	10.07	10.45	9.77	10.62	10.88	10.92
MnO	0.17	0.18	0.17	0.15	0.13	0.14	0.17	0.17	0.17	0.16	0.15	0.16	0.16
Total	99.29	98.88	98.94	98.38	98.51	98.23	98.51	96.82	97.93	98.71	98.51	99.80	98.91
Fo mol% ⁴	87.17	87.03	88.97	89.17	90.42	89.92	89.05	89.23	88.99	89.77	88.83	88.70	88.53
	G05-06-53	G05-06-53	G05-06-53	G05-06-53	G05-06-54	G05-06-54	G05-06-55	G05-06-55	G05-06-55	G05-06-56	G05-06-56	G05-06-56	G05-06-56
	centre	iv	ds	bord	bord	iv	bord	iv	centre	iva	iva	ivb	ivb
SiO ₂	40.39	39.87	39.30	38.24	40.29	39.11	39.89	40.35	39.64	39.26	39.59	39.47	39.81
MgO	48.87	48.35	48.79	45.39	48.84	48.09	47.73	47.57	47.46	47.13	47.83	48.50	47.88
CaO	0.16	0.17	0.15	0.17	0.19	0.15	0.19	0.14	0.13	0.14	0.13	0.14	0.14
NiO	0.32	0.30	0.28	0.20	0.30	0.35	0.28	0.28	0.30	0.30	0.31	0.26	0.30
FeO _{tot} ¹	9.92	9.78	9.97	12.80	9.17	9.60	10.52	11.30	10.73	11.57	10.07	10.13	10.12
MnO	0.15	0.16	0.16	0.20	0.10	0.09	0.14	0.16	0.15	0.19	0.15	0.16	0.15
Total	99.81	98.63	98.64	97.01	98.88	97.39	98.75	99.81	98.41	98.59	98.07	98.66	98.40
Fo mol% ⁴	89.77	89.80	89.71	86.34	90.47	89.93	88.99	88.23	88.74	87.89	89.44	89.51	89.40
	G05-06-57	G05-06-57	G05-06-57	G05-06-57	G05-06-58	G05-06-58	G05-06-58	G05-06-59	G05-06-59	G05-06-59	G05-06-60	G05-06-60	G05-06-60
	iv	iv	ds	bord	iv	iv	bord	iv	iv	bord	iv	iv	bord
SiO ₂	39.63	39.18	40.26	38.48	39.63	39.94	41.24	37.65	37.80	38.23	38.86	39.89	39.65
MgO	47.65	47.80	49.00	43.13	47.84	47.52	49.07	43.17	43.11	45.69	46.06	46.34	48.48
CaO	0.14	0.12	0.12	0.24	0.12	0.12	0.13	0.11	0.09	0.11	0.04	0.06	0.15
NiO	0.27	0.28	0.22	0.11	0.35	0.29	0.30	0.20	0.21	0.21	0.28	0.27	0.31
FeO _{tot} ¹	10.38	10.35	8.55	15.81	10.07	10.36	10.05	15.98	16.14	13.61	12.81	12.29	9.66
MnO	0.17	0.16	0.15	0.29	0.14	0.15	0.16	0.21	0.23	0.20	0.21	0.18	0.15
Total	98.23	97.88	98.29	98.05	98.16	98.38	100.95	97.32	97.57	98.03	98.26	99.03	98.40
Fo mol%⁺	89.11	89.17	91.08	82.94	89.43	89.10	89.69	82.80	82.63	85.68	86.50	87.05	89.94

	G05-06-61	G05-06-61	G05-06-61	G05-06-62	G05-06-62	G05-06-62	G05-06-63	G05-06-63	G05-06-63	G05-06-64	G05-06-64	G05-06-64	G05-07-8	G05-07-8
	iva	iva-b	ivb	iva	ivb	ds	iva	iva-sp	bord	iv	iv	bord	iv	iv
SiO ₂	38.27	38.80	38.73	40.36	40.35	40.30	40.44	40.06	41.02	40.48	40.64	41.09	38.94	39.20
MgO	47.22	47.75	47.90	48.36	48.39	48.19	48.67	47.35	47.59	47.12	47.18	47.39	43.03	41.74
CaO	0.16	0.15	0.15	0.18	0.13	0.17	0.07	0.18	0.21	0.05	0.05	0.04	0.20	0.24
NiO	0.23	0.26	0.28	0.29	0.36	0.29	0.36	0.20	0.19	0.32	0.31	0.31	0.19	0.14
FeO _{tot} ¹	11.10	10.69	10.44	9.44	9.70	10.21	9.86	11.65	12.07	12.35	12.35	12.55	17.11	18.50
MnO	0.15	0.17	0.15	0.14	0.13	0.14	0.16	0.19	0.19	0.17	0.17	0.19	0.35	0.38
Total	97.14	97.81	97.64	98.77	90.06	99.30	99.55	99.63	101.26	100.49	100.68	101.57	99.82	100.19
Fo mol% ⁴	88.34	88.84	89.10	90.13	89.89	89.37	89.79	87.86	87.54	87.18	87.19	87.06	81.76	80.08
	G05-07-8	G05-07-8	G05-07-8	G05-07-9	G05-07-9	G05-07-9	G05-07-10	G05-07-10	G05-07-10	G05-07-10	G05-07-11	G05-07-11	G05-07-11	G05-07-11
	verre a	verre bord	verre bord	iv	iv	bord	iv	iv	centre	bord	iv	iv	centre	bord
SiO ₂	40.42	40.22	41.24	41.74	40.66	39.36	39.21	40.00	41.29	40.28	41.22	40.11	41.10	40.74
MgO	48.68	48.54	49.03	49.90	48.58	44.85	44.28	44.39	48.76	46.38	48.21	45.80	47.95	47.68
CaO	0.15	0.15	0.13	0.13	0.15	0.08	0.08	0.08	0.18	0.05	0.16	0.05	0.18	0.16
NiO	0.32	0.27	0.37	0.40	0.36	0.22	0.19	0.20	0.25	0.28	0.26	0.26	0.22	0.26
FeO _{tot} ¹	10.34	10.29	9.61	9.61	10.08	14.19	14.93	15.20	10.91	13.14	10.80	13.64	11.81	10.94
MnO	0.15	0.16	0.16	0.14	0.15	0.22	0.23	0.24	0.18	0.22	0.18	0.23	0.21	0.17
Total	100.07	99.63	100.54	101.91	99.98	98.93	98.93	100.11	101.56	100.35	100.82	100.10	101.47	99.94
Fo mol% ⁴	89.35	89.37	90.09	90.24	89.57	84.92	84.09	83.88	88.85	86.28	88.84	85.67	87.86	88.59
	G05-07-12	G05-07-12	G05-07-12	G05-07-12	G05-07-13	G05-07-14								
	iv	iv	centre	bord	bord	12	iva	ivb	ivb	V1	verre	ivc	sp	ivb
SiO ₂	41.30	39.72	40.67	40.96	38.49	40.36	40.57	40.27	39.76	40.17	40.45	40.67	40.22	40.93
MgO	48.16	44.70	47.93	48.60	44.28	47.12	47.20	46.25	45.86	47.27	47.83	48.46	46.41	47.99
CaO	0.16	0.06	0.20	0.16	0.26	0.20	0.14	0.16	0.15	0.21	0.13	0.15	0.16	0.16
NiO	0.26	0.26	0.15	0.26	0.14	0.22	0.29	0.24	0.24	0.21	0.27	0.28	0.27	0.26
FeO _{tot} ¹	11.77	14.54	12.29	11.07	13.02	11.86	12.19	13.47	13.76	12.06	11.95	11.12	12.56	11.09
MnO	0.19	0.25	0.24	0.17	0.22	0.19	0.20	0.20	0.23	0.21	0.19	0.18	0.18	0.20
Total	101.84	99.52	101.47	101.22	96.42	99.95	100.59	100.59	99.99	100.13	100.82	100.86	99.80	100.62
Fo mol%⁺	87.94	84.57	87.42	88.67	85.84	87.62	87.34	85.95	85.58	87.47	87.70	88.59	86.81	88.52

	G05-07-14	G05-07-14	G05-07-15	G05-07-15	G05-07-15	G05-07-15	G05-07-15	G05-07-16	G05-07-16	G05-07-16	G05-07-35	G05-07-35	G05-07-36	G05-07-36
	ivc	bord	iva	a-b	verreb	centre	bord	verreb	verrea	verrec	iv		centre	
SiO ₂	39.81	41.07	40.94	40.95	40.79	40.77	41.12	40.99	39.93	40.92	40.22	40.08	39.40	39.19
MgO	44.77	49.19	48.02	48.99	49.23	48.26	47.69	47.73	44.78	47.55	47.45	46.86	43.72	43.65
CaO	0.06	0.13	0.19	0.15	0.14	0.15	0.21	0.18	0.04	0.18	0.19	0.19	0.07	0.06
NiO	0.23	0.27	0.27	0.30	0.27	0.31	0.17	0.26	0.29	0.22	0.26	0.25	0.22	0.23
FeO _{tot} ¹	14.71	9.87	10.89	10.37	9.48	9.84	12.00	11.91	15.13	11.12	11.85	12.05	16.18	16.34
MnO	0.20	0.14	0.20	0.16	0.12	0.16	0.20	0.21	0.26	0.19	0.21	0.21	0.25	0.24
Total	99.77	100.67	100.51	100.90	100.02	99.48	101.40	101.27	100.43	100.18	100.18	99.65	99.82	99.71
Fo mol% ⁴	84.43	89.87	88.71	89.38	90.24	89.74	87.62	87.72	84.06	88.39	87.71	87.39	82.80	82.64
	G05-07-36	G05-07-36	G05-07-36	G05-07-36	G05-07-37	G05-07-37	G05-07-37	G05-07-37	G05-07-37	G05-07-37	G05-07-38	G05-07-38	G05-07-39	G05-07-39
	iv	iv		bord	iva	ivb				bord	verre	verre	centre	iv
SiO ₂	39.59	39.70	38.94	39.48	40.30	40.21	40.07	39.99	40.24	40.41	40.15	40.15	41.14	41.32
MgO	44.85	46.33	43.34	46.05	46.79	46.41	45.46	45.23	47.22	48.25	46.90	46.53	49.88	49.91
CaO	0.16	0.17	0.07	0.24	0.20	0.22	0.05	0.05	0.14	0.17	0.18	0.22	0.13	0.17
NiO	0.21	0.23	0.23	0.19	0.30	0.29	0.30	0.30	0.31	0.32	0.25	0.26	0.49	0.46
FeO _{tot} ¹	14.21	13.14	16.08	12.01	12.28	13.07	14.30	14.26	11.49	10.13	12.40	12.69	8.75	9.01
MnO	0.19	0.19	0.23	0.21	0.19	0.20	0.22	0.23	0.18	0.16	0.20	0.20	0.13	0.15
Total	99.21	99.76	98.88	98.17	100.06	100.39	100.40	100.06	99.58	99.44	100.07	100.05	100.52	101.03
Fo mol% ⁴	84.90	86.27	82.77	87.23	87.16	86.35	84.99	84.97	87.98	89.46	87.08	86.73	91.04	90.80
	G05-07-39	G05 07 39	G05-07-40	G05-07-40	G05-07-40	G05-07-40	G05-07-40	G05-07-40	G05-07-41	G05-07-41	G05-07-41	G05-07-42	G05-07-42	G05-07-42
		bord	centre		iv et sp	sp2 et 3	bord	autre bord	sp3	iv	sp2	iv		
SiO ₂	41.35	40.85	41.00	40.82	40.59	40.19	39.91	39.42	40.37	40.43	40.50	40.36	39.61	39.98
MgO	50.10	48.75	48.32	48.19	48.40	47.06	46.68	45.25	47.13	46.55	47.98	47.21	45.56	45.90
CaO	0.14	0.15	0.16	0.15	0.16	0.18	0.16	0.22	0.16	0.23	0.17	0.22	0.05	0.05
NiO	0.42	0.38	0.27	0.29	0.31	0.24	0.24	0.16	0.23	0.19	0.27	0.22	0.21	0.22
FeO _{tot} ¹	9.04	9.89	10.77	10.82	10.96	12.14	11.59	13.19	12.17	12.86	11.16	12.10	13.87	13.73
MnO	0.14	0.15	0.16	0.17	0.16	0.19	0.18	0.23	0.20	0.22	0.16	0.18	0.21	0.21
Total	101.19	100.17	100.68	100.44	100.58	99.99	98.75	98.47	100.26	100.49	100.23	100.28	99.50	100.08
Fo mol% ²	90.81	89.77	88.89	88.81	88.72	87.36	87.77	85.94	87.34	86.57	88.45	87.43	85.40	85.62

	G05-07-66	G05-07-66	G05-07-66	G05-07-68	G05-07-68	G05-07-68	G05-07-68	G05-07-69	G05-07-69	G05-07-69	G05-07-69	G05-07-70	G05-07-70	G05-07-70
	iv	bord	centre	centre	iv	iv	bord	bord	iv	iv	centre	centre	iv	iv
SiO ₂	40.76	41.108	40.235	40.578	40.254	40.67	40.559	41.101	40.885	41.277	39.895	40.877	41.3	41.919
MgO	50.862	49.641	50.349	49.52	49.617	50.037	50.101	48.685	49.491	48.243	47.02	46.248	46.75	48.528
CaO	0.155	0.21	0.054	0.06	0.069	0.122	0.096	0.205	0.149	0.258	0.08	0.066	0.066	0.143
NiO	0.345	0.191	0.282	0.32	0.3	0.29	0.305	0.176	0.28	0.219	0.241	0.312	0.326	0.33
FeO _{tot} ¹	8.117	8.772	8.893	9.397	9.21	8.598	8.771	8.706	8.678	9.275	11.415	10.606	10.005	7.898
MnO	0.139	0.165	0.141	0.151	0.157	0.159	0.157	0.151	0.155	0.182	0.174	0.153	0.159	0.106
Total	100.38	100.09	99.96	100.03	99.61	99.88	99.99	99.02	99.64	99.46	98.83	98.26	98.61	98.92
Fo mol% ⁴	91.78	90.98	90.98	90.37	90.56	91.20	91.05	90.88	91.04	90.26	88.01	88.60	89.28	91.63
	G05-07-70	G05-07-72	G05-07-72	G05-07-72	G05-07-72	G05-07-73	G05-07-73	G05-07-73	G05-07-73	G05-07-74	G05-07-74	G05-07-74	G05-07-75	G05-07-75
	bord	centre	iv	iv	bord	bord	iv	iv	centre	iv	bord	centre	centre	iv
SiO ₂	41.912	41.158	40.972	44.762	40.587	41.517	40.776	39.926	39.791	40.369	40.99	39.818	39.695	39.923
MgO	48.031	50.505	50.675	44.484	51.48	46.846	50.51	47.329	47.819	47.681	50.617	46.934	47.881	49.005
CaO	0.2	0.161	0.167	0.202	0.169	0.232	0.155	0.07	0.073	0.137	0.14	0.075	0.084	0.108
NiO	0.246	0.29	0.272	0.289	0.301	0.166	0.342	0.248	0.251	0.287	0.338	0.238	0.218	0.235
FeO _{tot} ¹	8.572	7.655	7.661	7.953	7.824	9.146	7.429	10.56	10.668	10.387	8.051	11.685	11.373	9.983
MnO	0.158	0.116	0.121	0.147	0.137	0.18	0.128	0.157	0.166	0.185	0.14	0.182	0.176	0.161
Total	99.12	99.89	99.87	97.84	100.50	98.09	99.34	98.29	98.77	99.05	100.28	98.93	99.43	99.42
Fo mol% ⁴	90.90	92.16	92.18	90.88	92.14	90.12	92.37	88.87	88.87	89.11	91.80	87.74	88.24	89.74
	G05-07-75	G05-07-75	G05-07-76	G05-07-76	G05-07-76	G05-07-77	G05-07-77	G05-07-77	G05-07-78	G05-07-78	G05-07-78	G05-07-78	G05-07-79	G05-07-79
	iv	bord	centre	Ņ	bord		iv	iv	bord	iv	iv	centre	bord	iva
SiO ₂	40.078	40.579	40.126	40.023	38.804	41.357	41.5	41.499	41.706	41.157	41.066	40.461	41.565	41.182
MgO	50.138	50.386	48.9	47.546	49.873	49.458	49.363	49.971	47.666	46.335	46.098	46.803	48.592	47.015
CaO	0.102	0.19	0.084	0.134	0.183	0.175	0.183	0.169	0.207	0.054	0.052	0.05	0.175	0.108
NiO	0.266	0.238	0.322	0.201	0.222	0.261	0.261	0.292	0.221	0.348	0.323	0.326	0.265	0.26
FeO _{tot} ¹	8.992	8.436	9.141	10.739	9.059	8.517	8.329	8.206	9.484	10.896	11.158	11.37	8.637	10.313
MnO	0.147	0.142	0.15	0.182	0.158	0.132	0.153	0.139	0.167	0.178	0.186	0.183	0.136	0.18
Total	99.72	99.97	98.72	98.83	98.30	99.90	99.79	100.28	99.45	98.97	98.88	99.19	99.37	90.06
Fo mol%⁺	90.85	91.41	90.50	88.75	90.75	91.19	91.35	91.56	89.95	88.34	88.04	88.00	90.93	89.04

	605-07-79	G05-07-80	G05-07-80	G05-07-80	G05-07-80	G05-07-81	G05-07-81	G05-07-81	G05-07-82	G05-07-82	G05-07-82	G05-07-82	G05-07-84	G05-07-84
	centre	centre	iva	dvi	bord	bord	iva	centre	i v	iv V	centre	bord	bord	iv
SiO ₂	40.609	40.855	40.765	41.02	40.003	40.644	41.010	40.409	40.415	40.120	40.728	39.461	40.056	52.079
MgO	44.357	44.851	44.917	47.876	46.372	45.910	46.066	45.536	45.381	45.270	45.877	45.605	45.816	34.201
CaO	0.057	0.071	0.072	0.161	0.075	0.094	0.049	0.080	0.070	0.045	0.053	0.053	0.043	
NiO	0.254	0.243	0.25	0.238	0.216	0.251	0.258	0.233	0.263	0.260	0.251	0.305	0.305	0.139
FeO _{tot} ¹	12.413	12.13	12.121	9.573	11.978	13.276	13.590	13.867	13.758	13.786	13.800	11.922	12.516	8.814
MnO	0.233	0.184	0.21	0.145	0.194	0.216	0.199	0.186	0.195	0.182	0.190	0.200	0.217	0.213
Total	97.92	98.33	98.33	99.01	98.84	100.391	101.173	100.310	100.083	99.663	100.899	97.547	98.954	96.173
Fo mol% ⁴	86.43	86.82	86.85	89.91	87.34	86.04	85.79	85.40	85.46	85.40	85.56	87.21	86.71	87.36
	G05-07-84	G05-07-85	G05-07-85	G05-07-85	G05-07-86	G05-07-86	G05-07-86	G05-07-86	G05-07-90	G05-07-90	G05-07-91	G05-07-91	G05-07-91	G05-07-92
	iv	bord	iv	centre	bord	iv	iv	centre	bord	iv	bord	iv	iv	centre
SiO ₂	40.687	41.250	40.210	41.350	40.649	40.873	40.071	39.893	40.460	40.572	40.499	40.439	40.336	40.28
MgO	46.955	47.805	44.493	46.068	44.959	45.071	44.179	47.054	47.313	47.290	47.197	46.210	46.038	44.88
CaO	0.042	0.172	0.064	0.122	0.139	0.136	0.127	0.175	0.167	0.154	0.179	0.173	0.179	0.06
NiO	0.313	0.200	0.221	0.210	0.206	0.197	0.213	0.191	0.251	0.243	0.146	0.131	0.157	0.30
FeO _{tot} ¹	12.525	11.461	15.469	15.130	15.754	15.701	15.740	11.203	10.875	10.792	11.674	12.748	12.840	13.86
MnO	0.210	0.181	0.238	0.212	0.225	0.226	0.205	0.168	0.190	0.185	0.182	0.181	0.182	0.22
Total	100.733	101.069	100.695	103.092	101.931	102.205	100.535	98.684	99.255	99.235	99.877	99.882	99.732	09.60
Fo mol% ⁴	86.98	88.14	83.67	84.44	83.57	83.65	83.34	88.21	88.57	88.65	87.81	86.59	86.47	85.23
	G05-07-92	G05-07-92	G05-07-93	G05-07-93	G05-07-94	G05-07-94	G05-07-94	G05-07-94	G05-07-95	G05-07-95	G05-07-95	G05-07-96	G05-07-96	G05-07-96
	bord	iv	iv	centre	bord	iv	iv	centre	bord	ivab	centre	bord	iv	centre
SiO ₂	41.81	41.04	39.52	39.51	39.29	39.88	40.25	40.54	39.19	39.84	40.34	40.30	40.09	39.82
MgO	46.86	46.11	44.69	44.55	51.85	48.06	48.52	48.25	46.70	43.42	42.60	44.52	44.88	47.10
CaO	0.17	0.16	0.09	0.08	0.04	0.15	0.06	0.03	0.15	0.12	0.09	0.08	0.08	0.23
NiO	0.28	0.28	0.28	0.29	0.40	0.38	0.39	0.44	0.30	0.28	0.25	0.21	0.22	0.16
FeO _{tot} ¹	11.86	12.31	14.19	14.90	10.53	11.56	10.85	10.97	10.95	13.54	15.89	13.62	14.41	12.26
MnO	0.17	0.20	0.22	0.24	0.15	0.17	0.17	0.17	0.17	0.21	0.24	0.22	0.24	0.21
Total	101.15	100.10	98.98	99.56	102.25	100.19	100.23	100.40	97.46	97.41	99.40	98.95	99.90	99.78
Fo mol%⁺	87.57	86.97	84.88	84.19	89.77	88.11	88.85	88.69	88.37	85.11	82.69	85.34	84.73	87.25

	G05-07-97	G05-07-97	G05-07-97	G05-07-97	G05-07-98	G05-07-98	G05-07-98	G05-07-99	G05-07-99	G05-07-99	G05-07-100	G05-07-100	G05-07-100	G05-07-101
	bord	iv	iv	centre	bord	iv	centre	bord	iv	centre	centre	iv	bord	iva
SiO ₂	41.61	41.27	41.15	40.35	41.28	41.03	40.60	40.84	40.97	41.10	39.78	41.10	40.96	40.89
MgO	44.85	46.52	45.40	46.14	44.10	44.68	44.71	47.51	46.08	46.14	43.32	46.92	46.43	46.60
CaO	0.04	0.07	0.12	0.04	0.06	0.10	0.05	0.22	0.13	0.08	0.06	0.18	0.21	0.15
NiO	0.30	0.29	0.25	0.32	0.28	0.26	0.28	0.27	0.25	0.25	0.25	0.29	0.27	0.23
FeO _{tot} ¹	13.53	12.92	14.01	13.51	13.66	13.43	13.43	11.04	12.21	12.71	15.96	11.06	11.08	11.56
MnO	0.23	0.21	0.25	0.20	0.21	0.21	0.21	0.19	0.17	0.18	0.26	0.17	0.17	0.19
Total	100.55	101.29	101.18	100.56	99.58	99.71	99.29	100.07	99.80	100.46	99.62	99.72	99.11	99.61
Fo mol% ⁴	85.52	86.51	85.24	85.89	85.19	85.56	85.57	88.46	87.06	86.61	82.86	88.32	88.19	87.78
	01-/0-000	101-10-000	101-10-000 1	201-10-005	701-10-000	201-20-200	201-20-000	201-20-000	cul-10-cub	cu1-10-cu5	+01-J0-C05	to1-0-000	+01-10-COD	COI/0-COS
	ivb	bord	centre	centre	bord	iv	bord	dvi	centre	centre	bord	centre	verre	bord
SiO ₂	41.22	41.74	41.05	41.04	40.16	41.57	40.63	40.48	40.14	39.98	41.40	40.51	40.56	40.86
MgO	47.12	45.68	46.64	45.19	47.08	45.55	46.16	46.60	46.40	44.84	44.98	46.52	45.96	45.94
CaO	0.16	0.18	0.15	0.14	0.18	0.15	0.07	0.15	0.13	0.06	0.15	0.15	0.21	0.04
Nio	0.21	0.20	0.23	0.19	0.20	0.19	0.32	0.28	0.27	0.28	0.17	0.22	0.21	0.32
FeO _{tot} ¹	11.38	11.48	11.37	12.66	12.06	12.47	12.44	12.28	12.44	14.13	12.70	12.48	11.56	12.93
MnO	0.17	0.20	0.17	0.21	0.19	0.20	0.19	0.19	0.20	0.22	0.16	0.17	0.16	0.21
Total	100.26	99.48	99.61	99.43	99.87	100.13	99.80	99.97	99.59	99.51	99.57	100.04	98.65	100.30
Fo mol% ⁴	88.06	87.64	87.96	86.41	87.43	86.68	86.86	87.12	86.92	84.97	86.33	86.91	87.63	86.36
	G05-07-105	5 G05-07-105	5 G05-07-106	G05-07-106	G05-07-106	G05-07-107	. G05-07-107	7 G05-07-107	G05-07-107	G05-07-108	G05-07-108	G05-07-108	G05-07-109	G05-07-109
	iv	centre	bord	centre	iv	bord	centre	ivc	ivb	bord	centre	iva	bord	iv
SiO ₂	40.88	40.79	40.05	40.89	41.36	39.73	40.05	40.50	40.78	42.13	39.98	41.03	39.58	40.62
MgO	46.11	45.95	49.11	45.38	48.75	46.70	45.68	45.68	46.91	46.90	44.25	45.56	50.59	49.59
CaO	0.04	0.04	0.18	0.10	0.16	0.10	0.07	0.28	0.15	0.17	0.09	0.15	0.04	0.04
Nio	0.30	0.32	0.27	0.35	0.41	0.30	0.29	0.25	0.30	0.27	0.21	0.26	0.39	0.39
FeO _{tot} ¹	13.07	12.88	10.47	12.87	9.81	13.71	13.54	13.69	12.23	11.00	15.65	12.97	9.93	9.81
MnO	0.22	0.19	0.18	0.20	0.15	0.20	0.21	0.23	0.20	0.16	0.23	0.18	0.14	0.16
Total	100.62	100.18	100.25	99.78	100.64	100.74	99.84	100.63	100.57	100.63	100.41	100.14	100.67	100.61
Fo mol%⁴	86.27	86.40	89.31	86.27	89.85	85.85	85.74	85.60	87.24	88.37	83.43	86.23	90.08	90.00

	G05-07-105) G05-07-11(0 G05-07-110	G05-07-110	G05-07-111	G05-07-111	G05-07-111	G05-07-111	G05-07-112	G05-07-112	G05-07-112	G05-07-112	G05-07-113	G05-07-113
	centre	bord	centre	ivab	bord	iv	iv	centre	bord	iv	centre	centre	bord	iv
SiO ₂	41.31	41.10	40.50	41.53	40.85	41.01	41.80	42.00	40.81	41.27	40.80	40.66	38.40	40.90
MgO	48.61	46.64	46.05	47.59	51.32	48.32	48.33	46.81	48.13	48.26	47.55	48.74	41.12	47.76
CaO	0.04	0.18	0.06	0.19	0.18	0.17	0.17	0.17	0.16	0.15	0.15	0.14	0.39	0.16
NiO	0.38	0.27	0.27	0.29	0.29	0.28	0.29	0.29	0.34	0.38	0.32	0.36	0.07	0.28
FeO _{tot} ¹	9.81	10.46	13.76	11.25	10.23	10.87	10.57	11.21	9.95	10.16	9.94	9.44	19.55	10.98
MnO	0.16	0.15	0.19	0.17	0.15	0.16	0.15	0.17	0.15	0.15	0.17	0.14	0.37	0.16
Total	100.30	98.80	100.82	101.02	103.02	100.81	101.30	100.64	99.53	100.37	98.92	99.48	99.89	100.24
Fo mol% ⁴	89.82	88.82	85.64	88.28	89.94	88.79	89.07	88.15	89.61	89.43	89.50	90.20	78.94	88.57
	G05-07-113	3 G05-08-17	G05-08-17	G05-08-17	G05-08-18	G05-08-18	G05-08-18	G05-08-18	G05-08-19	G05-08-19	G05-08-19	G05-08-19	G05-08-20	G05-08-20
	centre	verre	verr-centr	bord	iva	ivb	centre	bord a	iva	iva,b	centre	bord	iv	bord
SiO ₂	41.37	40.33	41.43	40.21	40.52	39.13	41.04	41.18	40.46	41.12	40.69	40.81	40.28	41.18
MgO	48.38	47.77	47.31	47.11	47.03	42.01	47.37	46.87	45.83	47.40	47.58	48.71	48.57	48.54
CaO	0.14	0.16	0.22	0.15	0.17	0.06	0.14	0.02	0.12	0.04	0.18	0.13	0.13	0.17
NiO	0.34	0.25	0.14	0.19	0.20	0.15	0.20	0.31	0.22	0.33	0.23	0.33	0.27	0.28
FeO _{tot} ¹	10.60	10.54	13.34	12.06	12.64	18.13	12.33	13.75	15.47	12.99	12.30	10.00	10.28	10.97
MnO	0.16	0.20	0.23	0.20	0.21	0.29	0.20	0.22	0.26	0.23	0.20	0.15	0.16	0.19
Total	100.99	99.25	102.67	99.93	100.77	99.76	101.28	102.34	102.35	102.10	101.17	100.12	99.67	101.33
Fo mol% ⁴	89.05	88.98	86.33	87.44	86.89	80.50	87.25	85.86	84.07	86.67	87.33	89.67	89.39	88.74
	G05-08-21	G05-08-21	G05-08-21	G05-08-21	G05-08-22	G05-08-22	G05-08-22	G05-08-22	G05-08-43	G05-08-43	G05-08-43	G05-08-43	G05-08-44	G05-08-44
	iv	iv	centre	bord	iv	iv	verre	bord	iva			bordure	centre	
SiO ₂	39.90	40.92	39.74	42.22	41.09	41.13	41.01	41.13	40.62	40.44	40.44	40.90	41.02	40.86
MgO	44.52	45.45	44.75	49.72	47.51	48.59	47.71	47.69	46.76	46.80	46.12	48.52	48.61	48.35
CaO	0.08	0.09	0.05	0.19	0.05	0.10	0.19	0.05	0.16	0.16	0.14	0.16	0.15	0.15
NiO	0.27	0.29	0.26	0.22	0.26	0.29	0.22	0.28	0.31	0.29	0.28	0.31	0.35	0.36
FeO _{tot} ¹	15.31	14.91	15.33	11.62	12.80	11.57	12.55	12.26	13.11	13.35	13.73	10.65	10.63	10.59
MnO	0.28	0.27	0.27	0.21	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.18	0.19	0.16
Total	100.36	101.92	100.40	104.18	101.91	101.87	101.87	101.60	101.16	101.25	100.92	100.72	100.95	100.46
Fo mol% ⁺	83.82	84.45	83.88	88.40	86.86	88.22	87.14	87.39	86.41	86.20	85.68	89.03	89.07	89.05

	G05-08-44	G05-08-44	G05-08-44	G05-08-44	G05-09-23	G05-09-23	G05-09-23
	iv1	iv2		bord	golfe	golfe	centre
SiO ₂	40.85	40.95	40.75	40.20	40.59	40.78	40.18
MgO	48.13	48.71	48.10	46.83	48.19	48.12	47.54
CaO	0.32	0.15	0.14	0.21	0.16	0.15	0.15
NiO	0.37	0.36	0.28	0.18	0.29	0.27	0.25
FeO _{tot} ¹	10.30	10.55	11.10	11.98	10.53	10.74	11.15
MnO	0.16	0.16	0.17	0.22	0.18	0.19	0.19
Total	100.13	100.87	100.53	99.62	99.93	100.24	99.46
Fo mol%⁴	89.28	89.16	88.54	87.45	89.08	88.87	88.37

Les olivines sont les mêmes qu'analysées précédemment en majeurs. Les profils sont constitué de plusieurs points (pt: ordre des points dans le profil) allant d'un bord à l'autre de l'olivine

Annexe 5: Teneurs (en ppm) des éléments traces mesurées dans les olivines de Grenade

	SnV 107	SnV 118	SnV 104													
pt	~	ო	4	5	9	ო	4	5	9	7	8	-	ю	4	8	б
ບັ	157830	11128	16444	26736	13170	12661	11967	11631	10559	11179	11709	9290	10474	10334	137230	12515
>	879	255	297	777	254	242	248	239	215	220	207	253	222	237	996	274
Rb	0.26	0.45	1.12	0.72	1.76	1.30	1.44	1.45	1.35	1.29	1.28	2.60	1.89	1.52	2.28	1.81
Ba	5.58	6.13	5.32	3.89	4.78	4.11	7.21	4.93	6.29	3.38	5.52	4.90	5.62	9.28	8.54	5.75
qN	0.09	0.12	0.13	0.15	0.12	0.14	0.13	0.15	0.16	0.12	0.16	0.16	0.16	0.13	0.16	0.11
La	0.15	0.10	0.10	0.10	0.10	0.10	0.12	0.06	0.07	0.13	0.10	0.08	0.11	0.14	0.14	0.07
ဗီ	0.93	0.84	0.56	0.90	1.16	0.93	0.93	0.85	0.98	0.84	1.01	0.76	0.79	0.45	1.08	0.58
PN	3.41	3.25	2.80	3.48	2.90	2.66	3.08	3.21	2.98	2.93	2.19	79.11	2.96	2.34	3.66	3.17
S	76.1	48.1	10.5	35.0	37.6	51.1	51.4	59.5	6.99	54.9	52.0	61.4	58.3	67.0	96.3	68.1
Zr	11.19	8.12	3.26	6.91	6.08	5.72	8.66	57.61	6.49	6.16	7.34	11.07	90.6	10.83	12.42	8.31
Sm	1.67	0.71	0.69	0.84	0.81	0.61	0.68	0.65	0.74	0.72	0.63	0.92	0.52	1.70	0.96	0.74
Еu	0.17	0.13	0.11	0.13	0.13	0.13	0.13	0.10	0.13	0.14	0.12	0.11	0.09	0.17	0.15	0.13
≻	0.18	0.12	0.06	0.07	0.08	0.10	0.09	0.08	0.09	0.12	0.09	0.34	0.15	0.11	0.18	0:30
٩Y	0.31	0.28	0.41	0.26	0.30	0.23	0.31	0.32	0.32	0.35	0.33	0.40	0.26	0.35	0.44	0.33

Annexe 6: Teneurs (en ppm) des éléments traces mesurées dans les olivines de St. Vincent

Les olivines sont les mêmes qu'analysées précédemment en majeurs. Les profils sont constitué de plusieurs points (pt: ordre des points dans le profil) allant d'un bord à l'autre de l'olivine

	spinelles isol	lés dans les o	livines										
	svn4b-108	svn4b-107	svn4b-112	svn4b-142	svn4b-142	svn4b-151	svn4b-161	svn4b-162	svn4b-162	svn4b-163	svn4b-167	svn4b-172	svn4b-173
SiO_2	0.09	3.01	0.26	1.40	0.40	0.25	0.10	0.08	0.06	0.08	0.10	1.00	0.05
AI_2O_3	41.20	11.22	27.52	20.50	10.30	23.34	22.00	19.60	18.00	30.00	20.72	19.83	17.08
MgO	16.54	6.62	11.91	13.14	6.23	12.19	13.04	9.06	8.68	14.98	13.00	11.81	13.15
TiO_2	0.50	5.44	0.89	0.65	5.05	0.83	0.67	0.53	0.58	0.65	0.67	0.67	0.83
Cr_2O_3	19.37	14.31	26.67	37.21	20.75	32.26	39.09	39.44	41.17	28.40	39.59	39.76	44.79
MnO	0.15	0.25	0.17	0.10	0.35	0.13	0.10	0.22	0.22	0.13	0.15	0.09	0.0
FeO	13.57	30.38	18.23	16.06	27.10	17.31	16.00	21.24	21.46	14.08	15.55	18.51	14.81
${\rm Fe}_2{ m O}_3$	8.71	23.91	12.05	6.72	25.49	11.99	8.74	8.89	8.46	11.07	9.13	7.31	7.86
Total	100.1	95.1	<i>7.</i> 76	95.8	95.7	98.3	7.66	99.1	98.6	99.4	98.9	0.66	98.7
$Mg\#^{1}$	68.48	27.96	53.79	59.32	29.07	55.66	59.23	43.20	41.88	65.46	59.84	53.20	61.28
$Cr\#^2$	23.98	46.11	39.40	54.91	57.48	48.11	54.38	57.45	60.54	38.84	56.18	57.36	63.77
$F0\%^3$	88.4	87.1	86.6	86.0	86.0	n.d.	88.0	86.6	86.6	87.2	87.7	86.3	89.6
	spinelles isol	lés dans les o	livines										
	svn4b-177	svn4b-180	svn4b-180	svn4b-182	svn4b-182	svn4b-182	svn4b-183	svn4b-184					
SiO_2	0.05	0.11	0.08	0.03	0.04	0.04	0.09	0.08					
AI_2O_3	21.16	16.13	21.66	20.49	12.57	21.81	11.53	20.46					
MgO	9.51	12.96	13.89	9.15	7.93	9.58	7.56	12.71					
TiO_2	0.54	0.70	0.72	0.78	2.41	0.87	4.75	0.79					
Cr_2O_3	40.63	45.84	39.08	37.99	33.48	35.93	21.92	39.04					
MnO	0.16	0.09	0.16	0.17	0.24	0.19	0.26	0.08					
FeO	21.14	15.08	14.29	21.71	23.26	21.40	25.53	16.35					
Fe_2O_3	6.80	8.26	8.85	9.60	18.94	10.34	26.70	10.25					
Total	100.0	99.2	98.7	6.66	98.9	100.1	98.3	7.66					
$Mg\#^{1}$	44.51	60.51	63.40	42.89	37.79	44.39	34.54	58.08					
$Cr#^2$	56.30	65.60	54.76	55.44	64.12	52.50	56.06	56.15					
$F0\%^3$	82.4	89.9	89.8	88.0	83.0	83.0	n.d.	85.2					

Annexe 7: Composition des spinelles piégés dans les olivines de St. Vincent

 1 Mg# = (100*Mg)/(Mg+Fe²⁺) dans le spinelle 2 Cr # = (100*Cr)/(Cr+Al) 3 Fo% = 100x[Mg/(Mg + Fe²⁺)] de l'olivine hôte n.d. = non déterminé

Annexe 7 (suite)

	spinelles ass	ociés aux incl	lusions vitreı	uses						
	svn4b-100	svn4b-118	svn4b-119	svn4b-142	svn4b-162	svn4b-163	svn4b-171	svn4b-173	svn4b-181	svn4b-184
SiO_2	0.06	0.30	0.06	3.51	0.09	0.06	0.09	0.30	0.07	0.07
AI_2O_3	60.36	13.72	25.37	18.55	43.44	23.93	58.67	36.03	58.09	59.53
MgO	19.24	10.50	11.76	10.19	17.71	12.93	18.57	17.09	18.13	19.59
TiO_2	0.28	0.70	1.06	2.98	0.48	0.81	0.36	0.46	0.27	0.28
Cr_2O_3	0.83	33.08	28.57	26.23	17.37	34.93	0.19	26.07	3.99	0.20
MnO	0.12	0.10	0.16	0.19	0.08	0.12	0.14	0.09	0.14	0.12
FeO	11.80	14.06	18.05	24.19	12.88	16.24	13.71	12.59	14.53	11.58
Fe_2O_3	5.90	12.45	12.71	7.37	10.25	9.88	10.36	8.63	7.83	8.70
Total	98.6	84.9	97.7	93.2	102.3	98.9	102.1	101.3	103.1	100.1
$Mg\#^{1}$	74.40	57.10	53.72	42.87	71.02	58.67	70.71	70.76	68.99	75.09
$Cr\#^2$	0.91	61.80	43.03	48.68	21.15	49.48	0.22	32.68	4.41	0.23
F0% ³	86.2	87.8	85.1	86.0	87.5	n.d.	85.0	89.0	84.1	88.2

	spinelles is	olés dans les (olivines de G	renade											
	G05-06-25	G05-06-25	G05-07-13	G05-07-13	G05-07-13	G05-07-41	G05-07-41	G05-07-40	G05-07-40	G05-06-63	G05-06-55	G05-07-41	$G05\ 07\ 40$	G05-06-62	G05-06-53
SiO_2	0.12	2.16	0.10	0.08	0.07	0.09	14.64	5.94	10.45	0.40	0.09	0.08	0.26	0.08	0.04
Al_2O_3	21.07	19.21	27.61	27.17	20.39	20.80	12.27	16.60	17.28	16.21	18.47	19.23	19.60	22.82	19.91
MgO	12.97	14.23	13.30	13.32	13.07	12.18	17.34	12.05	8.81	10.22	9.63	10.93	10.15	11.99	10.81
TiO_2	0.42	0.47	1.49	1.41	0.85	0.60	1.28	0.97	1.33	0.55	0.83	0.58	0.59	0.65	0.68
Cr_2O_3	42.28	39.65	23.59	24.42	31.44	39.47	21.69	33.05	27.33	42.36	36.95	40.56	38.51	34.44	39.02
MnO	0.28	0.24	0.20	0.22	0.24	0.33	0.39	0.35	0.35	n.d.	n.d.	0.32	0.38	n.d.	n.d.
FeO	22.96	24.50	31.45	31.42	32.07	25.93	32.73	34.76	34.46	19.29	20.26	27.29	29.31	17.43	18.37
${\rm Fe}_2{\rm O}_3$	12.57	13.92	22.30	22.01	20.07	14.62	24.08	21.62	22.83	9.81	10.95	15.03	16.54	10.00	9.85
Total	112.7	114.4	120.0	120.0	118.2	114.0	124.4	125.3	122.8	98.8	97.2	114.0	115.3	97.4	98.7
$Mg^{#1}$	59.07	60.32	58.04	58.30	59.65	55.95	52.84	45.28	30.51	48.55	45.86	51.16	47.53	55.08	51.19
$Cr \#^2$	57.38	58.07	36.43	37.61	50.85	56.01	54.25	57.19	51.48	63.67	57.31	58.59	56.87	50.30	56.81
Fo % ³	84.8	84.8	86.8	86.8	86.8	87.3	87.3	87.4	87.4	87.9	88.2	88.5	88.7	89.4	89.9
	spinelles is	olés dans les o	olivines de G	renade									spinelles ass	ociés aux inc	lusions
	G05-06-53	G05-06-50	G05-06-50	G05-06-50	G05-06-50	G05-06-50	G05-06-47	G05-06-47	G05-06-47	G05-06-47	G05-06-57	G05-06-57	G05-06-25	G05-07-40	G05-07-41
SiO_2	0.05	1.77	7.90	0.07	0.35	8.04	0.28	0.35	0.10	0.39	0.10	0.37	0.48	5.08	0.12
AI_2O_3	19.61	18.15	18.07	18.48	17.90	16.81	19.08	19.74	20.30	20.05	13.90	13.96	18.24	21.25	20.69
MgO	9.85	10.20	9.86	11.22	11.88	16.83	10.81	10.67	14.03	14.39	8.14	13.19	11.79	15.40	11.86
TiO_2	0.69	0.65	0.77	0.56	0.56	0.42	0.53	0.63	0.42	0.45	0.85	0.45	1.16	0.63	0.68
Cr_2O_3	38.31	36.40	32.18	39.11	42.58	30.90	39.49	37.31	42.79	42.35	39.25	48.48	26.20	29.81	37.59
MnO	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.26	0.24	0.27
FeO	19.59	20.36	29.14	17.32	16.50	19.09	18.27	18.74	13.37	13.45	21.49	13.76	39.17	27.95	27.15
Fe_2O_3	10.52	11.20	17.89	9.17	8.48	11.90	9.70	10.21	6.99	7.09	10.90	6.57	26.21	18.24	15.59
Total	98.6	98.7	115.8	95.9	98.2	104.0	98.2	97.6	98.0	98.2	94.6	96.8	123.5	118.6	114.0
$Mg^{#1}$	47.26	47.16	37.62	53.60	56.21	61.10	51.34	50.36	65.17	65.58	40.30	63.07	53.79	58.90	54.79
$Cr\#^2$	56.72	57.37	54.45	58.68	61.48	55.22	58.14	55.91	58.58	58.63	65.45	69.97	49.08	48.48	54.93
Fo %'	89.9	89.9	89.9	89.9	6.68	89.9	90.2	90.2	90.2	90.2	91.1	91.1	84.8	88.7	87.3

Annexe 8: Compositions des spinelles piégés dans les olivines de Grenade

 1 Mg# = (100*Mg)/(Mg+Fe²⁺) dans le spinelle 2 Cr # = (100*Cr)/(Cr+Al) 3 Fo% = 100x[Mg/(Mg + Fe²⁺)] de l'olivine hôte n.d. = non déterminé

Guadeloupe
le la
Ŕ
1530
de
'éruption
de
cristaux
des
majeurs
éléments
Compositions en
ö
Annexe

a) Plagioclases

8m - /m	00000		0.1700	0.100	0.100	0.0100	0.100	0.100		1 4 1 0 0		0.100	0.4100	0 1 4 0 0	0.100
	L-Acob	L-CASD	Z-Acci	Z-Acco	Z-ACOD	Z-ACOD	Z-Acco	Z-ACOD	C-CACD	C-ACOD	0-CAUD	0-800D	0-YCCD	G-CASD	6-Acci
	bord	cœur	bord	iv-a	iv-b	iv-d	bord	cœur	bord	iv-a	bord	iv	cœur	bord	iv-b
SiO ₂	54.7	52.7	50.7	48.9	48.9	48.6	47.4	50.9	52.7	53.5	53.1	50.7	49.9	54.1	48.4
Al ₂ O ₃	29.3	29.9	32.0	33.2	32.6	32.9	32.6	31.4	29.6	29.6	28.6	30.8	31.8	30.1	33.4
FeO	0.45	0.45	0.47	0.59	0.48	0.38	0.54	0.63	09.0	0.62	0.54	0.59	0.56	0.45	0.49
MnO	0.02	0.00	00.0	0.00	0.00	0.00	0.12	0.04	0.01	0.02	0.02	0.05	00.0	0.04	0.00
MgO	0.07	0.02	0.05	0.05	0.01	0.02	0.03	0.06	0.06	0.05	0.05	0.04	0.05	0.05	0.02
CaO	11.8	12.5	14.5	15.9	15.5	15.9	15.3	14.0	12.6	12.5	11.7	13.9	14.7	12.2	16.1
Na ₂ O	5.0	4.1	3.2	2.4	2.8	2.4	2.6	3.4	4.1	4.3	4.4	3.4	3.2	4.5	2.3
K₂O	0.11	0.10	0.09	0.02	0.07	0.05	0.03	0.06	0.09	0.12	0.10	0.09	0.10	0.10	0.06
total	101.4	99.9	101.0	101.2	100.4	100.3	98.6	100.5	99.8	100.6	98.6	9.66	100.3	101.6	100.7
An ¹	56.5	62.4	71.0	78.4	75.0	78.3	76.5	69.5	62.7	61.1	59.1	69.0	71.4	59.7	79.4
Ab^{2}	42.9	37.0	28.5	21.5	24.6	21.4	23.3	30.1	36.8	38.2	40.3	30.4	28.0	39.7	20.3
Or ³	0.6	0.6	0.5	0.1	0.4	0.3	0.1	0.4	0.6	0.7	0.6	0.6	0.6	0.6	0.3
	GS5A-9	GSA5-10	GS5A-10	GS5A-10	GS5A-10	GSA5-12	GSA5-12	GSA5-12	GSA5-12	GSA5-12	GSA5-13	GS5A-13	GS5A-13	GS5A-14	GS5A-14
	cœur	bord	iv-b	iv-a	cœur	bord	iv-ab	iv-ac	cœur	iv-ed	bord	cœur	bord	bord	iv
SiO ₂	47.7	51.5	49.3	48.5	47.1	48.5	50.3	49.6	49.3	50.8	49.7	52.3	49.7	53.4	52.9
Al ₂ O ₃	33.5	30.5	32.3	32.1	32.2	31.1	31.4	31.5	32.0	30.5	29.5	30.8	32.2	29.3	29.5
FeO	0.51	0.38	0.50	0.62	0.45	0.55	0.48	0.45	0.56	0.55	0.55	0.57	0.67	0.54	0.48
MnO	00.00	0.02	0.02	0.00	0.01	0.07	0.02	0.14	0.00	0.08	0.00	0.00	0.03	0.01	0.00
MgO	0.05	0.05	0.03	0.01	0.05	0.04	0.02	0.03	0.07	0.04	0.04	0.04	0.07	0.05	0.05
CaO	16.7	13.4	15.2	15.4	15.4	15.0	14.4	14.6	15.0	13.5	13.1	13.9	15.0	11.8	12.4
Na ₂ O	2.2	3.8	2.8	2.8	2.5	2.6	3.2	3.2	2.7	3.4	3.5	3.4	2.7	4.3	4.1
K₂O	0.02	0.10	0.08	0.05	0.04	0.08	0.09	0.04	0.09	0.10	0.08	0.08	0.03	0.13	0.13
total	100.6	99.8	100.2	99.5	97.8	98.0	99.9	99.4	99.8	0.06	96.5	101.0	100.4	9.66	8.66
An ¹	81.0	65.9	74.9	75.2	77.2	76.0	71.1	71.7	74.9	68.1	66.8	69.1	75.0	59.5	62.1
Ab^{2}	18.9	33.5	24.6	24.5	22.6	23.5	28.3	28.1	24.6	31.3	32.7	30.5	24.8	39.7	37.2
or³	0.1	0.6	0.5	0.3	0.2	0.5	0.5	0.2	0.6	0.6	0.5	0.5	0.2	0.8	0.8

¹ An = 100 x Ca / (Ca+Na+Ka) ² Ab = 100 x Na / (Ca+Na+K) ³ Or = 100 x K /(Ca+Na+K) interm = point entre le cœur et la bordure, iv= point proche de l'inclusion

	GS5A-14	GS5A-16	GS5A-16	GS5A-16	GS5A-17	GS5A-17	GS5A-17	GS5A-17	GS5A-17	GS5A-17	GS5A-18	GS5A-18	GS5A-18	GS5A-18	GS5A-19
	cœur	bord	ż	cœur	bord	iv-c	iv-bd	iv-a	bord	cœur	bord	iv-a	cœur	iv-b	bord
SiO ₂	52.4	52.2	53.2	53.8	54.8	54.0	49.6	49.7	49.1	49.1	51.7	51.6	51.5	50.0	51.9
Al ₂ O ₃	30.4	28.7	29.2	29.2	29.3	28.6	31.2	31.0	31.1	31.8	29.3	28.7	28.8	29.1	28.9
FeO	0.58	0.44	0.50	0.43	0.48	0.53	0.57	0.54	0.48	0.61	0.55	0.50	0.44	0.48	0.49
MnO	0.03	00.0	0.04	0.01	0.00	00.0	0.09	0.05	0.00	0.00	0.00	0.06	0.03	0.00	0.00
MgO	0.03	0.06	0.04	0.04	0.05	0.01	0.05	0.06	0.03	0.00	0.05	0.01	0.02	0.06	0.02
CaO	13.4	12.3	12.4	12.2	11.7	11.7	14.2	14.1	14.5	14.8	12.8	11.8	12.3	12.4	12.2
Na ₂ O	3.7	4.2	4.3	4.4	4.6	4.6	3.2	3.5	3.1	3.1	4.1	4.5	4.3	3.8	4.5
K₂O	0.10	0.11	0.08	0.11	0.12	0.11	0.07	0.08	0.06	0.05	0.11	0.08	0.11	0.12	0.10
total	100.8	98.0	99.8	100.2	101.1	9.66	0.06	99.1	98.5	9.66	98.5	97.3	97.6	96.0	98.1
An ¹	66.1	61.3	61.1	60.1	58.1	57.8	70.5	69.0	71.5	72.2	63.0	58.8	60.7	63.7	59.9
Ab^{2}	33.3	38.0	38.5	39.2	41.2	41.5	29.1	30.5	28.1	27.5	36.3	40.7	38.6	35.6	39.5
or³	0.6	0.7	0.5	0.6	0.7	0.6	0.4	0.5	0.3	0.3	0.7	0.5	0.7	0.7	0.6
	GS5A-19	GS5A-19	GS5A-20	GS5A-20	GS5A-20	GS5A-20	GS5A-20	GS5A-21	GS5A-21	GS5A-21	GS5A-21	GS5A-21	GS5A-22	GS5A-22	GS5A-22
	iv	cœur	bord	iv-bc	cœur	iv-d	bord	iv-d	cœur	iv-a	iv-bc	iv-e	bord	iv-b	cœur
SiO ₂	52.0	52.5	48.3	51.4	50.0	51.5	51.7	47.8	47.7	63.7	50.7	48.1	48.0	50.0	51.0
Al ₂ O ₃	29.5	30.1	31.1	29.5	30.3	30.2	30.8	31.0	32.5	20.2	31.0	33.2	32.9	31.3	31.5
FeO	0.46	0.64	0.51	0.58	0.54	0.50	0.55	0.66	0.60	2.25	0.53	0.52	0.64	0.44	0.61
MnO	0.08	0.10	0.00	0.08	0.00	0.03	0.05	0.06	0.00	0.18	0.12	0.04	0.00	0.13	0.05
MgO	0.05	0.03	0.06	0.07	0.00	0.07	0.04	0.00	0.00	0.34	0.00	0.02	0.10	0.06	0.04
CaO	12.9	12.7	14.9	13.3	13.7	13.4	13.7	15.2	16.0	7.5	13.7	16.4	16.1	14.9	14.4
Na ₂ O	4.3	4.2	2.9	3.7	3.5	3.8	3.5	2.8	2.3	3.6	3.5	2.2	2.4	3.2	3.2
K₂O	0.08	0.09	0.05	0.10	0.08	0.06	0.09	0.07	0.07	1.19	0.05	0.05	0.02	0.05	0.06
total	99.4	100.4	97.8	98.8	98.2	99.5	100.4	97.7	99.1	99.3	99.7	100.4	100.3	100.0	100.9
An ¹	62.3	62.6	73.5	66.0	67.8	66.1	68.3	74.4	79.1	48.3	68.0	80.4	78.4	72.0	71.1
Ab^{2}	37.2	36.9	26.3	33.4	31.8	33.6	31.1	25.2	20.4	42.5	31.7	19.3	21.5	27.7	28.5
or³	0.5	0.5	0.3	0.6	0.4	0.3	0.5	0.4	0.4	9.2	0.3	0.3	0.1	0.3	0.3

~ ~
<u>م</u>
<u> </u>
-
·=
_
~
\sim
-
o
-
A \
÷
~
-
a
=
-
_
-
< <tr></tr>
-

	C-650-22	C-650-23	C-650-23	C-650-23	C-CEA-2A	10-252	C-650-24	10-252	C-550-25	C-650-75	CSEA-25	C-650-26	C-55.26	255A-26	C-550-26
	e-vi	bord			hord				hord			hord	e-vi		
sio,	52.0	50.0	49.4	50.7	52.5	52.8	49.8	49.5	63.3	52.9	51.9	48.5	50.9	48.9	50.7
AI ₂ O ₃	29.9	31.0	30.3	30.9	29.5	29.3	30.9	30.8	18.8	29.8	30.3	32.3	31.2	32.7	31.9
FeO	0.45	0.55	0.75	0.54	0.56	0.64	0.61	0.61	2.33	0.54	0.41	0.48	0.48	0.65	0.54
MnO	0.00	0.11	0.00	0.03	0.00	0.00	0.02	0.00	0.07	0.04	0.10	0.01	0.00	0.10	0.04
MgO	0.01	0.04	0.06	0.04	0.02	0.06	0.03	0.00	0.37	0.00	0.01	0.03	0.04	0.00	0.02
CaO	13.0	14.9	14.3	14.0	12.6	12.8	14.1	14.4	6.8	12.6	13.3	15.9	14.6	15.8	14.9
Na ₂ O	4.1	3.0	2.9	3.3	4.1	4.0	3.2	3.2	3.3	4.0	3.8	2.4	3.3	2.5	2.9
K ₂ 0	0.10	0.05	0.11	0.06	0.11	0.10	0.09	0.08	1.25	0.11	0.12	0.04	0.05	0.03	0.06
total	9.66	99.7	97.9	9.66	99.4	99.8	98.7	98.6	90.6	100.0	100.0	99.8	100.6	100.8	101.2
An ¹	63.5	72.8	72.5	69.5	62.3	63.4	70.3	70.8	48.1	63.2	65.2	78.3	70.7	77.5	73.4
Ab^{2}	35.9	26.9	26.9	30.1	37.1	36.0	29.2	28.8	41.4	36.2	34.1	21.5	29.0	22.3	26.2
or³	0.6	0.3	0.6	0.4	0.6	0.6	0.5	0.5	10.5	0.6	0.7	0.2	0.3	0.2	0.4
		0014.07	00LA 07	20 V 100	00LA 07	0014 00	0014.00	0014.00	0014 00					0014.00	
	92-ACSD	12-8000	12-9000	12-Acco	12-9005	82-8005	82-8005	87-800D	620A-30	625A-30	G25A-3U	G 5 5 A - 3 Z	GS5A-32	620A-32	G00A-32
	bord	bord	iv-b	cœur	iv-a	bord	Ņ	cœur	bord	N	cœur	bord	iv-a	iv-b	cœur
SiO ₂	54.1	50.1	52.4	53.0	54.0	54.8	51.9	52.5	54.7	53.2	52.9	49.0	53.3	51.8	50.3
Al ₂ O ₃	29.8	31.5	29.9	29.3	28.8	29.9	29.7	29.7	28.9	29.5	29.3	31.4	28.6	29.6	31.3
FeO	0.50	0.43	0.43	0.44	0.63	0.58	0.63	0.46	0.51	0.54	0.49	0.53	0.48	0.54	0.53
MnO	0.09	0.00	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.11	0.02	0.05	0.00	0.00
MgO	0.04	0.03	0.07	0.03	00.0	0.00	0.02	0.04	0.06	0.07	0.07	0.00	0.06	00.00	0.00
CaO	12.6	14.8	13.2	12.2	11.7	11.9	12.9	12.2	11.3	12.3	11.8	15.0	11.6	12.7	14.2
Na ₂ O	4.3	2.9	3.8	4.5	4.7	4.4	3.6	4.3	4.8	4.2	4.3	2.9	4.5	3.8	3.2
K₂0	0.11	0.07	0.09	0.13	0.13	0.13	0.10	0.13	0.12	0.08	0.11	0.07	0.10	0.06	0.05
total	101.5	99.9	100.0	9.66	100.1	101.7	98.8	99.2	100.5	100.0	99.1	98.9	98.7	98.5	99.5
An ¹	61.5	73.2	65.3	59.6	57.5	59.7	66.1	60.8	56.3	61.2	59.8	74.1	58.3	65.0	71.1
Ab^{2}	37.9	26.4	34.2	39.7	41.7	39.5	33.3	38.4	43.0	38.4	39.5	25.5	41.1	34.6	28.6
or³	0.7	0.4	0.5	0.7	0.8	0.8	0.6	0.8	0.7	0.5	0.6	0.4	0.6	0.4	0.3

(suite)
6
Annexe

	CCE A.22	CCEA-22	CC5A_22	CC5 A-22	CCEA-24	CCEA-24	CCE A_24	CCEA-24	CCEA_2E	CCEA.2E	CCEA-25	CCEA.25	CC5 A.27	CC5A-27	CCEA_27
	iv-c	bord	~~~.≥	coent	bord	iv-a	coeur	d-vi	bord		coeur	iv-a	bord		coent
SiO ₂	53.3	52.8	49.6	51.7	54.4	53.6	53.1	49.3	52.8	52.2	53.0	51.5	52.7	52.4	51.9
AI ₂ O ₃	29.6	29.9	31.3	30.5	27.6	28.2	28.7	31.0	29.1	29.8	29.3	30.6	29.6	30.3	30.1
FeO	0.44	0.51	0.59	0.56	0.81	0.58	0.44	0.56	0.42	0.50	0.58	0.51	0.47	0.37	0.42
MnO	00.0	00.0	0.06	0.00	0.07	0.10	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.01	0.01
MgO	0.02	0.09	0.07	0.02	0.10	0.07	0.04	0.05	0.06	0.01	0.00	0.06	0.04	00.0	0.04
CaO	12.5	12.8	14.4	13.3	12.0	11.7	11.8	14.3	12.0	12.8	12.2	13.6	12.6	13.2	12.7
Na ₂ O	4.2	4.0	2.9	3.5	3.6	4.6	4.5	3.1	4.4	4.2	4.4	3.4	4.4	3.9	4.1
K ₂ 0	0.13	0.13	0.05	0.09	0.38	0.14	0.09	0.06	0.09	0.08	0.11	0.07	0.12	0.07	0.11
total	100.2	100.2	0.06	99.66	99.1	0.66	98.6	98.5	98.9	9.66	99.7	99.7	100.0	100.3	99.4
An ¹	61.7	63.3	73.2	67.7	63.1	57.8	58.8	71.3	59.9	62.4	60.1	68.3	60.8	65.1	62.9
Ab^{2}	37.5	35.9	26.5	31.8	34.6	41.3	40.6	28.4	39.6	37.1	39.3	31.3	38.5	34.5	36.5
or³	0.8	0.7	0.3	0.6	2.4	0.8	0.5	0.3	0.5	0.5	0.7	0.4	0.7	0.4	0.6
	GS5A-38	GS5A-38	GS5A-38	G1440-2	G1440-2	G1440-2	G1440-2	G1440-3	G1440-3	G1440-3	G1440-3	G1440-5	G1440-5	G1440-5	G1440-6
	bord	iv	cœur	bord	interm	cœur	i	bord	interm	iv	cœur	bord	interm	cœur	bord
SiO ₂	47.6	47.9	47.3	48.1	49.8	48.7	52.7	53.2	52.5	53.7	53.4	52.5	53.2	51.3	50.2
AI_2O_3	32.0	33.0	33.5	31.8	32.1	32.7	28.8	29.2	30.3	28.9	29.1	30.5	29.8	30.7	28.6
FeO	0.67	0.58	0.45	09.0	0.47	0.57	0.33	0.63	0.62	0.60	09.0	0.46	0.47	0.55	0.56
MnO	0.02	0.01	0.05	0.00	0.00	0.00	0.07	0.00	0.01	0.00	0.00	0.00	0.00	00.0	0.01
MgO	0.06	0.02	00.00	0.02	0.03	0.01	0.03	0.03	0.05	0.04	0.04	0.05	0.02	0.03	0.03
CaO	15.9	16.0	16.5	15.7	15.5	16.0	12.2	12.3	13.4	11.8	12.0	13.4	12.6	13.7	12.9
Na ₂ O	2.4	2.1	1.8	2.8	2.9	2.5	4.6	4.6	3.9	4.6	4.4	4.0	4.5	3.8	4.3
K ₂ 0	0.06	0.05	0.03	0.05	0.07	0.06	0.13	0.12	0.09	0.13	0.15	0.09	0.09	0.08	0.13
total	98.7	99.6	93.6	99.1	100.8	100.6	98.8	100.1	101.0	6.66	99.8	100.9	100.8	100.3	96.7
An ¹	78.5	80.4	83.3	75.6	74.5	77.8	58.8	59.4	65.2	58.1	59.6	64.6	60.4	66.1	62.0
Ab^{2}	21.1	19.3	16.5	24.1	25.1	21.8	40.5	39.9	34.3	41.2	39.5	34.8	39.1	33.4	37.3
or³	0.4	0.3	0.2	0.3	0.4	0.3	0.7	0.7	0.5	0.8	0.9	0.5	0.5	0.5	0.7

lite)
ns) i
(e 9
ne)
5

	G1440-6	G1440-6	G1440-8	G1440-8	G1440-8	G1440-8	G1440-8	G1440-8	G1440-13	G1440-13	G1440-13	G1440-13	G1440-14	G1440-14	G1440-14
ļ	interm	cœur	bord	interm	interm	cœur	iv-a	iv-b	bord	interm	iv	cœur	bord	interm	cœur
SiO ₂	50.1	50.7	51.7	51.6	47.4	52.8	50.3	52.0	53.6	51.8	51.7	53.0	54.0	53.6	53.0
AI_2O_3	30.0	29.6	30.7	31.0	33.8	30.1	31.5	31.0	31.0	31.9	31.8	31.2	29.0	28.9	28.8
FeO	0.42	0.51	0.46	0.46	0.47	0.45	0.53	0.42	0.43	0.45	0.50	0.49	0.45	0.53	0.48
MnO	0.07	0.00	0.04	00.0	0.01	0.03	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.03
MgO	0.04	0.04	00.0	0.01	0.00	0.01	0.02	0.04	0.03	0.04	0.03	0.02	0.04	0.04	0.04
CaO	13.9	13.2	14.0	13.9	17.5	12.8	14.7	13.9	13.4	14.5	14.4	13.8	11.9	12.0	12.0
Na ₂ O	3.7	4.0	3.6	3.4	1.9	4.1	3.1	3.6	4.0	3.4	3.3	4.0	4.7	4.6	4.6
K ₂ 0	0.07	0.11	0.10	0.08	0.03	0.08	0.08	0.09	0.08	0.08	0.08	0.09	0.14	0.13	0.11
total	98.3	98.2	100.6	100.5	101.0	100.4	100.1	101.1	102.6	102.1	101.8	102.6	100.3	6.66	99.0
An ¹	67.3	63.9	68.0	68.7	83.8	62.7	72.3	67.7	64.4	70.0	70.4	65.0	58.1	58.4	58.8
Ab^{2}	32.3	35.4	31.4	30.8	16.1	36.8	27.3	31.7	35.1	29.6	29.1	34.5	41.1	40.9	40.5
or³	0.4	0.6	0.6	0.5	0.2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.7	0.6
	G1440-14	G1440-15	G1440-15	G1440-15	G1440-17	G1440-17	G1440-17	G1440-18	G1440-18	G1440-18	G1440-18	G1440-19	G1440-19	G1440-19	G1440-19
	. <u>></u>	bord	interm	coeur	interm	cœur	bord	bord	.≥	interm	coeur	bord	interm	interm	coeur
SiO ₂	53.7	50.6	50.1	50.1	46.8	47.4	47.9	51.1	50.8	54.1	52.7	48.3	50.4	53.0	54.4
Al ₂ O ₃	28.5	31.6	30.9	31.0	32.3	31.5	33.0	28.4	31.4	29.3	30.1	32.8	31.7	30.2	29.3
FeO	0.50	0.49	0.54	0.45	0.58	0.55	0.55	0.55	0.49	0.43	0.53	0.74	0.46	0.40	0.50
MnO	0.00	0.00	0.01	0.03	0.01	00.0	0.00	00.0	0.00	0.01	0.06	0.02	0.08	0.00	0.01
MgO	0.04	0.02	0.04	0.03	0.03	0.04	0.01	0.03	0.05	0.04	0.05	0.05	0.00	0.05	0.03
CaO	11.9	14.6	13.8	14.3	16.2	15.2	16.2	12.4	14.3	12.1	12.9	16.4	14.7	12.7	11.8
Na ₂ O	4.8	3.4	3.6	3.5	2.4	3.0	2.5	4.6	3.5	4.7	4.4	2.1	3.0	4.2	4.8
K ₂ 0	0.16	0.05	0.09	0.08	0.05	0.05	0.05	0.11	0.11	0.13	0.12	0.03	0.07	0.13	0.12
total	99.7	100.8	99.2	99.5	98.5	97.7	100.3	97.3	100.7	100.9	100.8	100.5	100.4	100.7	100.9
An ¹	57.1	70.4	67.7	69.2	78.7	73.6	78.1	59.5	68.6	58.3	61.7	80.7	72.5	62.1	57.0
Ab^{2}	42.0	29.3	31.8	30.3	21.0	26.2	21.6	39.9	30.8	41.0	37.6	19.1	27.1	37.2	42.3
٥r³	0.9	0.3	0.5	0.4	0.3	0.3	0.3	0.6	0.6	0.7	0.7	0.2	0.4	0.7	0.7

	G1440-19	G1440-20	G1440-20	G1440-20	G1440-20	G1440-20	G1440-21	G1440-21	G1440-21	G1440-21	G1440-22	G1440-22	G1440-23	G1440-23
	.≥	bord	iv-a	iv-b	cœur	iv-c	bord	cœur	iv-a	iv-b	bord	cœur	bord	cœur
SiO ₂	51.7	54.4	50.0	49.4	51.4	51.0	53.3	53.5	60.6	53.4	54.0	53.2	53.1	54.9
Al ₂ O ₃	31.5	29.1	31.5	31.7	30.6	30.7	29.0	29.2	23.6	29.5	29.4	29.7	29.1	28.5
FeO	0.45	0.50	0.58	0.58	0.51	0.40	0.41	0.48	1.36	0.47	0.48	0.55	0.55	0.46
MnO	0.02	0.00	0.00	0.06	0.02	00.0	0.00	0.00	0.00	0.01	0.00	0.05	00.0	0.02
MgO	0.01	0.06	0.06	0.04	0.04	0.03	0.05	0.05	0.19	0.04	0.05	0.01	0.03	0.03
CaO	14.3	11.9	14.9	14.5	13.4	14.1	12.1	12.0	8.8	12.2	11.8	12.1	11.7	11.3
Na_2O	3.5	4.6	2.9	3.0	3.7	3.4	4.4	4.6	4.3	4.4	4.6	4.4	4.7	4.8
K ₂ 0	0.08	0.08	0.08	0.06	0.08	0.08	0.11	0.11	0.76	0.10	0.13	0.08	0.08	0.11
total	101.6	100.7	100.1	99.4	99.7	99.8	99.3	99.8	99.8	100.1	100.3	100.2	99.2	100.1
An ¹	68.7	58.3	73.9	72.5	66.3	69.6	60.2	58.8	50.5	60.0	58.2	59.9	57.7	55.9
Ab^{2}	30.8	41.2	25.6	27.1	33.2	29.9	39.1	40.5	44.3	39.4	41.0	39.6	41.8	43.4
٥r³	0.4	0.5	0.5	0.3	0.5	0.5	0.6	0.7	5.2	0.6	0.8	0.5	0.5	0.7
	G1440-23	G1440-23	G1440-24	G1440-24	G1440-24	G1440-24	G1440-24	G1440-24	G1440-25	G1440-25	G1440-25	G1440-25	G1440-26	G1440-26
	iv-a	iv-b	bord	iv-a	cœur	iv-b	iv-c	bord	bord	cœur	iv-b	bord	bord	iv
SiO ₂	53.8	49.5	52.1	49.9	50.0	49.4	49.0	53.8	50.3	47.4	50.7	51.8	51.9	53.3
Al ₂ O ₃	29.8	31.9	28.3	30.8	31.0	31.3	32.2	29.4	31.4	32.5	29.8	28.5	29.1	29.3
FeO	0.43	0.54	0.49	0.53	0.54	0.45	0.53	0.43	0.67	0.48	0.52	0.46	0.48	0.51
MnO	0.01	0.00	0.03	0.02	00.0	0.00	0.06	0.00	0.08	0.07	0.00	0.05	0.04	0.00
MgO	0.04	0.05	0.00	00.00	0.06	0.06	0.05	0.05	0.08	0.04	0.04	0.11	00.0	0.05
CaO	12.6	15.0	11.7	14.1	14.4	14.7	15.1	11.9	14.6	16.1	13.5	12.1	12.6	12.4
Na_2O	4.3	3.0	4.6	3.2	3.1	3.0	2.7	4.7	2.8	2.3	3.5	4.6	4.1	4.0
K ₂ 0	0.11	0.06	0.12	0.08	0.08	0.05	0.06	0.13	0.06	0.03	0.06	0.10	0.10	0.11
total	101.1	<u>99.9</u>	97.4	98.6	99.2	0.06	99.7	100.4	100.0	0.06	98.1	97.7	98.4	99.8
An ¹	61.2	73.2	57.9	70.9	71.6	72.7	75.3	58.0	74.1	79.1	68.0	58.8	62.5	62.5
Ab^{2}	38.2	26.5	41.4	28.6	27.9	27.1	24.4	41.2	25.6	20.7	31.6	40.6	36.9	36.8
or³	0.6	0.3	0.7	0.5	0.5	0.3	0.3	0.7	0.4	0.2	0.3	0.6	0.6	0.6

	G1440-26	G1440-27	G1440-27	G1440-27
	cœur	bord	iv	cœur
SiO ₂	53.5	47.5	51.4	48.4
AI_2O_3	29.4	33.4	31.0	33.3
FeO	0.54	0.45	0.62	0.59
MnO	0.04	0.12	00.00	0.03
MgO	0.02	00.00	00.00	0.03
CaO	12.2	16.2	13.6	16.4
Na ₂ O	4.1	2.1	3.5	2.3
K ₂ 0	0.12	0.04	0.09	0.07
total	100.1	99.9	100.2	101.1
An ¹	61.6	80.9	67.7	79.5
Ab^{2}	37.7	18.8	31.7	20.1
٥r³	0.7	0.2	0.6	0.4

b) Pyr	oxènes													
	G1440-1	G1440-1	G1440-1	G1440-4	G1440-4	G1440-4	G1440-4	G1440-4	G1440-4	G1440-4	G1440-10	G1440-10	G1440-10	G1440-10
	bord	interm	cœur	bord	interm	cœur	iv-a	iv-b	cœur	cœur	bord	interm	interm	cœur
SiO ₂	50.8	51.4	51.7	52.4	52.5	53.1	52.0	51.1	53.1	51.6	52.9	52.4	51.7	51.0
TiO ₂	0.20	0.26	0.21	0.20	0.19	0.17	0.20	0.17	0.15	0.15	0.20	0.14	0.17	0.18
AI_2O_3	0.87	0.74	0.89	0.87	0.91	0.93	1.06	1.10	0.90	0.95	0.89	0.83	0.81	0.81
FeO	23.7	24.5	24.9	23.7	24.0	24.4	24.5	24.8	24.5	24.5	23.8	24.2	24.3	24.4
MnO	0.96	0.95	0.91	0.78	0.88	06.0	0.94	0.94	06.0	0.92	0.96	0.92	0.93	0.91
MgO	20.0	20.0	19.7	19.5	19.2	19.2	19.4	18.9	19.0	18.9	18.4	18.5	18.4	18.2
CaO	1.46	1.44	1.47	1.44	1.48	1.42	1.31	1.33	1.44	1.43	1.57	1.49	1.43	1.44
Na_2O	0.00	0.03	0.03	0.00	0.02	0.02	0.02	0.06	0.03	0.01	0.03	0.01	0.01	0.03
K₂O	0.00	0.01	0.00	0.02	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00
total	98.0	99.4	99.8	0.06	99.2	100.2	99.5	98.5	100.0	98.5	98.8	98.5	97.8	96.9
Wo ⁴	3.0	3.0	3.0	3.0	3.2	3.0	2.8	2.8	3.1	3.1	3.4	3.2	3.1	3.1
En ⁵	58.3	57.5	56.6	57.7	56.9	56.6	56.9	56.0	56.3	56.2	56.0	55.7	55.7	55.3
Fs ⁶	38.7	39.5	40.3	39.3	39.9	40.4	40.4	41.1	40.7	40.8	40.6	41.0	41.2	41.6
	G1440-10	G1440-12	G1440-12	G1440-16	G1440-16	G1440-16	G1440-16	G1440-16	G1440-16	G1440-7	G1440-7	G1440-7	G1440-7	G1440-9
	iv-a	bord	cœur	iv-a	interm	cœur	interm	iv-cb	bord	bord	interm	interm	cœur	bord
SiO ₂	50.7	51.3	51.9	51.1	51.6	51.8	52.0	51.6	52.3	50.1	50.5	51.1	50.9	50.4
TiO ₂	0.20	0.20	0.22	0.15	0.13	0.15	0.14	0.11	0.21	0.42	0.43	0.33	0.26	0.42
Al ₂ O ₃	0.95	0.98	0.92	1.03	1.13	1.00	1.03	1.12	0.91	1.56	1.60	1.40	1.35	2.20
FeO	24.3	25.0	25.0	23.8	24.4	24.5	23.9	24.6	24.7	12.2	11.8	11.8	11.9	11.9
MnO	0.99	1.01	0.95	0.88	0.83	0.86	0.92	0.82	0.83	0.47	0.52	0.47	0.51	0.51
MgO	18.1	19.1	19.0	20.2	20.2	20.1	20.0	20.1	19.8	12.4	12.4	12.5	12.7	12.9
CaO	1.55	1.45	1.49	1.21	1.22	1.21	1.23	1.13	1.37	20.16	20.40	20.42	20.42	20.72
Na ₂ O	0.00	0.00	0.04	0.03	0.02	0.00	0.03	0.00	0.04	0.22	0.26	0.26	0.25	0.29
total	96.8	0.66	99.5	98.4	99.5	99.5	99.2	99.5	100.3	97.5	98.0	98.4	98.4	99.3
Wo ⁴	3.4	3.1	3.1	2.5	2.5	2.5	2.6	2.3	2.8	42.9	43.5	43.4	43.0	43.2
En ⁵	55.1	55.8	55.8	58.6	58.1	57.8	58.3	57.9	57.1	36.7	36.8	37.0	37.3	37.5
Fs ⁶	41.6	41.1	41.1	38.8	39.4	39.7	39.1	39.7	40.0	20.3	19.7	19.6	19.6	19.3

 $^{^4}$ Wo= 100 x Ca / (Ca+Mg+Fe) 5 En = 100 x Mg / (Ca+Mg+Fe) 6 Fs = 100 x Fe / (Ca+Mg+Fe) interm = point entre le cœur et la bordure, iv= point proche de l'inclusion

	G1440-9	G1440-9	GSA5-7	GS5A-7	GS5A-7	GSA5-11	GS5A-11	GS5A-11	GS5A-15	GS5A-15	GS5A-31	GS5A-31	GS5A-31	GS5A-36	GS5A-36
	interm	cœur	bord	Ņ	cœur	bord	iv-ab	cœur	i<	bord	bord	iv	cœur	bord	iv-a
SiO ₂	51.2	51.0	51.8	50.2	50.8	53.6	51.5	51.3	51.5	51.3	51.8	52.1	51.4	52.7	51.8
TiO ₂	0.33	0.27	0.19	0.21	0.27	0.25	0.17	0.21	0.21	0.31	0.14	0.19	0.19	0.23	0.22
Al ₂ O ₃	1.70	1.68	1.00	1.34	0.85	0.95	0.94	0.86	0.92	0.94	0.95	1.02	0.93	1.06	0.81
FeO	12.1	11.8	24.2	24.3	24.8	24.7	25.2	24.8	24.2	24.8	24.0	24.5	25.1	24.5	25.0
MnO	0.46	0.51	1.07	0.63	1.01	0.88	0.91	0.97	1.00	0.91	0.71	0.91	0.67	0.99	0.78
MgO	12.9	12.9	19.7	19.0	19.3	20.2	19.8	19.4	19.5	19.2	19.3	19.7	19.4	18.2	18.1
CaO	20.46	20.50	1.46	1.33	1.44	1.40	1.42	1.45	1.54	1.40	1.49	1.32	1.29	1.53	1.55
Na ₂ O	0.31	0.27	0.05	0.03	0.02	0.06	0.07	0.04	0.04	0.02	0.03	0.04	0.00	0.03	0.00
K ₂ 0	0.00	0.00	0.01	0.00	00.0	0.02	0.02	0.00	0.01	0.02	0.01	0.01	0.01	0.02	0.00
total	99.5	98.9	99.5	97.1	98.5	102.1	100.0	99.1	98.9	98.9	98.5	99.8	98.9	99.3	98.3
Vo⁴	42.7	43.0	3.05	2.84	3.01	2.87	2.92	3.03	3.24	2.95	2.06	1.78	1.75	2.19	2.21
En ⁵	37.6	37.7	57.4	56.6	56.4	57.6	56.6	56.4	57.0	56.3	57.1	57.3	56.4	55.1	54.5
Fs ⁶	19.7	19.3	39.5	40.6	40.6	39.5	40.5	40.5	39.8	40.7	39.7	39.9	40.9	41.6	42.2
	GS5A-36	GS5A-36	GS5A-3	GS5A-3	GS5A-3	GS5A-4	GS5A-4	GS5A-4	GSA5-8	GS5A-8	GS5A-8				
	cœur	iv-b + bord	bord	.≥	cœur	bord	.≥	cœur	bord	.≥	cœur				
SiO ₂	51.4	52.6	53.0	57.0	53.0	51.0	51.7	51.6	52.6	51.4	50.8				
TiO ₂	0.15	0.19	0.30	0.41	0.20	0.37	0.40	0.36	0.28	0.37	0.34				
Al ₂ O ₃	0.89	1.22	1.35	5.56	1.13	1.52	1.49	1.50	1.27	1.40	1.53				
FeO	25.4	24.8	12.1	9.5	12.2	12.1	12.2	12.6	12.0	11.8	12.2				
MnO	0.81	0.86	0.56	0.31	0.43	0.50	0.52	0.53	0.35	0.54	0.52				
MgO	18.4	17.3	13.2	9.1	13.1	12.7	12.8	13.0	13.1	12.8	13.0				
CaO	1.45	1.41	20.07	15.97	20.34	20.27	20.15	19.68	20.23	20.12	20.25				
Na ₂ O	0.02	0.19	0.25	1.52	0.29	0.27	0.24	0.21	0.36	0.28	0.30				
total	98.6	98.7	100.9	99.8	100.7	98.8	99.4	99.5	100.2	98.7	0.06				
Vo⁴	2.04	2.09	41.92	44.40	42.35	42.74	42.47	41.34	42.25	42.66	42.27				
En ⁵	54.6	53.7	38.3	35.1	37.8	37.3	37.5	38.0	38.2	37.9	37.8				
Fs ⁶	42.3	43.2	19.8	20.5	19.8	19.9	20.0	20.7	19.6	19.5	19.9				

	SVN4b-1a ¹	SVN4b-3	SVN4b-6	SVN4b-9a ¹	SVN4b-9b ¹	SVN4b-14	SVN4b-15a ¹	SVN4b-15b ¹	SVN4b-16a ¹	SVN4b-16b ¹	SVN4b-16c ¹	SVN4b-17	SVN4b-18a ¹
SiO ₂	44.00	48.26	44.18	45.01	44.63	44.37	50.18	51.76	46.08	51.98	49.33	42.89	45.06
TIO ₂	1.17	1.59	1.24	1.21	1.32	1.03	1.80	1.72	1.18	1.70	1.56	1.11	0.99
Al ₂ O ₃	19.56	17.26	18.66	18.45	18.08	19.03	16.66	16.10	16.63	16.57	16.38	19.49	18.53
FeO _{tot} ²	7.02	12.52	7.97	10.08	10.77	6.76	8.40	8.97	13.00	10.01	10.66	6.33	10.05
Feo Cor	9.19		9.24			9.10						9.02	
FeO	6.89	9.39	6.93	7.56	8.08	6.82	6.30	6.73	9.75	7.51	8.00	6.77	7.54
MnO	0.10	0.19	0.13	0.20	0.12	0.11	0.22	0.22	0.22	0.29	0.23	0.13	0.19
MgO	5.77	3.94	5.66	5.26	5.21	6.55	5.08	4.99	5.20	4.35	4.52	5.62	4.88
CaO	14.86	9.67	15.03	14.07	14.22	13.42	10.11	9.31	10.20	9.83	10.06	14.92	14.93
Na ₂ O	3.00	3.78	3.38	2.87	2.92	3.13	3.67	3.75	2.72	3.42	4.01	3.13	2.75
K₂O	0.32	0.46	0.42	0.33	0.30	0.40	0.53	0.51	0.38	0.59	0.57	0.40	0.27
P_2O_5	0.10	0.15	n.d.	0.11	0.11	0.12	0.17	0.18	n.d.	0.17	0.15	0.11	0.08
CI	0.120	0.119	n.d.	0.1075	0.107	0.1403	0.1375	0.1158	n.d.	0.112	0.115	0.148	0.082
S	0.124	0.041	n.d.	0.108	0.1295	0.1217	0.0765	0.0208	n.d.	0.013	0.0235	0.126	0.083
Total	96.14	97.97	96.65	97.80	97.91	95.19	97.03	97.64	95.60	99.03	97.62	94.40	97.90
CaO/Al ₂ O ₃	0.76	0.56	0.81	0.76	0.79	0.70	0.61	0.58	0.61	0.59	0.61	0.77	0.81
$F0\%^3$	89.8	73.2	88.1	81.7	81.7	89.4	86.3	86.3	74.6	74.6	74.6	89.8	82.8

Annexe 10: Compositions mesurées en éléments majeurs par microsonde électronique, dans les inclusions de St. Vincent

¹ "a, b, c.." indiquent que plusieurs inclusions étaient à l'effleurement dans l'olivine. La letter "v" est utilisé pour les verres.

² FeO total est mesuré en tant que FeO. Les porportions de Fe2+ et Fe3+ sont calculés avec 75% de FeO total. Certaines teneurs en FeO (< 8.0 pds%), supposées diminuées par perte en Fer, sont corrigées par rapport aux FeO de Black Point, un basalte magnésien de St. Vincent, contenant 9.56 % pds FeO tot, correspondant aussi à une partie des FeO total des inclusions

³ Fo = $100x[Mg/(Mg + Fe^{2+})]$

	SVN4b-18b ¹	SVN4b-18c ¹	SVN4b-18d ¹	SVN4b-19a ¹	SVN4b-20	SVN4b-21	SVN4b-22	SVN4b-24	SVN4b-25a ¹	SVN4b-25b ¹	SVN4b-26a ¹	SVN4b-26b ¹	SVN4b-27
SiO ₂	44.61	44.81	45.33	45.23	44.11	44.53	45.94	49.82	52.20	48.86	44.03	54.15	43.82
TIO ₂	1.12	1.05	1.08	1.11	1.15	1.33	1.12	1.44	2.24	1.59	1.21	2.29	1.32
Al ₂ O ₃	18.38	18.78	18.94	18.37	18.90	19.25	17.99	18.02	14.63	18.79	19.46	15.19	18.79
FeO _{tot} ²	10.98	9.69	9.43	7.02	8.49	7.81	7.20	6.98	11.04	8.51	6.29	8.54	7.16
Feo Cor				9.14		9.38	9.11	9.21			9.34		9.24
FeO	8.24	7.27	7.07	6.85	6.37	7.03	6.83	6.91	8.28	6.38	7.00	6.41	6.93
MnO	0.12	0.21	0.16	0.14	0.09	0.09	0.14	0.09	0.22	0.15	0.13	0.17	0.06
MgO	5.30	5.49	5.22	6.48	5.71	4.79	6.13	5.51	4.27	4.88	5.47	3.97	5.35
CaO	14.25	14.73	14.39	13.71	13.87	16.13	13.39	10.10	8.22	10.91	16.35	7.83	15.88
Na ₂ O	2.61	2.45	2.50	2.86	2.85	3.44	2.80	3.65	4.20	3.92	3.79	3.88	3.46
K ₂ 0	0.26	0.25	0.28	0.31	0.28	0.32	0.28	0.46	0.67	0.47	0.46	0.81	0.44
P_2O_5	0.11	0.08	0.11	0.11	0.12	0.16	0.10	0.14	0.24	0.15	0.13	n.d.	0.12
CI	0.097	0.08	0.085	0.1140	0.1043	0.118	0.0973	0.1063	0.1340	0.1125	0.1840	n.d.	0.16
S	0.095	0.079	0.078	0.1073	0.1297	0.1565	0.0818	0.0487	0.0150	0.041	0.1500	n.d.	0.141
Total	97.91	97.70	97.59	95.56	95.81	98.11	95.26	96.37	98.08	98.39	97.66	96.84	96.70
CaO/Al ₂ O ₃	0.78	0.78	0.76	0.75	0.73	0.84	0.74	0.56	0.56	0.58	0.84	0.52	0.85
F0% ³	82.8	82.8	82.8	88.7	86.0	86.6	88.5	86.2	83.5	83.5	89.9	81.1	87.9

0	oning
-	2
020	540
5	

	SVN4b-28	SVN4b-31	SVN4b-33a	SVN4b-33b ¹	SVN4b-33c ¹	SVN4b-33d	SVN4b-34a	SVN4b-34b	SVN4b-36	SVN4b-38	SVN4b-52v	SVN4b-53a	SVN4b 54a
	44.72	52.96	43.53	43.67	44.36	43.93	44.32	49.88	49.54	53.12	43.53	50.08	49.68
-io ₂	0.93	2.49	1.02	0.93	0.95	1.04	1.19	1.57	1.52	2.37	1.21	1.39	1.55
N ₂ O ₃	17.59	14.88	18.13	16.70	16.35	16.74	19.57	16.79	17.91	15.84	19.41	18.90	16.94
5eO _{tot} ²	10.66	9.48	8.89	9.84	9.62	10.10	6.73	10.81	8.59	9.18	7.31	7.29	9.97
eo Cor							9.04				9.25	9.16	
eO	7.99	7.11	6.67	7.38	7.21	7.57	6.78	8.10	6.44	6.89	6.94	6.87	7.47
0u0	0.15	0.18	0.12	0.17	0.20	0.15	0.09	0.22	0.17	0.14	0.12	0.12	0.19
Ogh	3.77	4.32	5.82	5.93	6.05	5.79	5.72	4.24	4.83	2.90	6.08	3.28	4.35
a0	13.11	8.99	13.62	12.92	12.60	12.64	12.69	9.60	10.07	8.64	15.21	10.37	10.42
la₂O	2.60	3.04	2.61	2.65	2.50	2.68	3.48	3.96	3.92	4.09	3.16	3.88	3.60
ر ₂ 0	0.31	0.79	0.29	0.28	0.27	0.28	0.38	0.58	0.52	0.83	0.38	0.52	0.52
205	0.09	0.24	0.11	0.09	0.10	0.09	0.13	0.16	0.17	0.22	0.13	n.d.	n.d.
Л	0.132	0.1685	0.124	0.123	0.1145	0.123	0.1340	0.1187	0.1213	0.1215	0.139	n.d.	n.d.
	0.161	0.0245	0.143	0.144	0.131	0.132	0.1653	0.0253	0.0340	0.0145	0.128	n.d.	n.d.
otal	94.22	97.55	94.40	93.46	93.26	93.71	94.60	97.94	97.40	97.45	96.79	95.82	97.21
3aO/Al ₂ O3	0.74	0.60	0.75	0.77	0.77	0.76	0.65	0.57	0.56	0.55	0.78	0.55	0.62
0% ³	80.0	82.2	85.7	85.7	84.6	84.6	88.1	88.1	84.6	79.8	89.0	82.0	77.8

	SVN4b 54b ¹	SVN4b 57a ¹	SVN4b 57b ¹	SVN4b 58	SVN4b-59a ¹	SVN4b-60	SVN4b-61a ¹	SVN4b-61b ¹	SVN4b-61c ¹	SVN4b-62	SVN4b-63	SVN4b-65	SVN4b-65v ¹
SiO ₂	50.18	43.73	43.61	44.10	43.67	46.06	48.56	43.84	44.32	44.48	44.39	44.76	51.88
TIO ₂	1.67	1.13	1.06	1.30	1.02	1.17	1.24	1.24	1.09	1.16	1.15	1.16	1.75
Al ₂ O ₃	16.61	19.69	18.66	19.17	17.28	19.26	19.06	19.71	19.03	18.79	19.89	17.69	16.58
FeO _{tot} ²	11.65	7.33	7.34	7.18	7.70	8.43	6.79	6.91	8.00	6.63	7.54	11.06	8.64
Feo Cor		9.17	8.99	9.34			9.20	9.17		9.23	9.35		
FeO	8.74	6.88	6.74	7.00	5.78	6.32	6.90	6.88	6.00	6.92	7.01	8.30	6.48
MnO	0.30	0.13	0.22	0.14	0.16	0.22	0.17	0.11	0.17	0.07	0.10	0.20	0.11
MgO	4.29	5.15	5.05	5.31	4.63	5.57	5.37	5.91	7.57	5.19	6.11	5.11	4.40
CaO	9.93	15.41	14.98	16.51	16.04	11.73	11.01	14.28	13.25	16.46	14.75	14.34	06.6
Na ₂ O	3.27	2.93	2.79	3.62	2.68	3.42	3.42	3.17	2.97	2.99	3.15	3.25	4.06
K₂O	0.54	0.41	0.33	0.35	0.29	0.36	0.37	0.37	0.34	0.42	0.29	0.38	0.55
P_2O_5	n.d.	n.d.	n.d.	n.d.	0.104	0.108	0.11	0.11	n.d.	0.15	0.12	0.12	n.d.
CI	n.d.	n.d.	n.d.	n.d.	0.154	0.077	0.065	0.131	n.d.	0.108	0.146	0.122	n.d.
S	n.d.	n.d.	n.d.	n.d.	0.151	0.111	0.1	0.115	n.d.	0.116	0.101	0.143	n.d.
Total	98.43	95.91	94.04	97.67	93.87	96.50	96.27	95.89	96.74	96.56	97.75	98.34	97.87
CaO/Al ₂ O ₃	0.60	0.78	0.80	0.86	0.93	0.61	0.58	0.72	0.70	0.88	0.74	0.81	09.0
F0% ³	78.7	88.4	88.2	87.7	88.3	85.6	87.8	87.8	87.8	89.0	87.1	74.4	76.7

(m)	
Ë,	
SC	
Ĩ	
5	
đ	
ž	
e	
Ξ	
~	

	SVN4b-70a ¹	SVN4b-70b ¹	SVN4b-75a ¹	SVN4b-75b ¹	SVN4b-77c ¹	SVN4b-78a ¹	SVN4b-78b ¹	SVN4b-78c ¹	SVN4b-78d ¹	SVN4b-79a ¹	SVN4b-80a ¹	SVN4b-82a ¹
SiO ₂	46.39	44.66	45.97	47.43	53.10	47.86	43.22	48.41	50.04	46.14	48.57	49.59
TIO ₂	1.15	1.16	1.27	1.62	2.37	1.09	1.32	1.52	1.47	1.08	1.02	1.61
Al ₂ O ₃	19.63	19.05	19.29	19.70	14.23	18.84	19.57	16.07	15.99	19.93	19.37	16.28
FeO _{tot} ²	6.49	6.12	8.57	6.87	11.82	6.29	8.10	9.83	10.08	5.92	6.42	10.10
Feo Cor	9.26	9.15		9.20		8.76				9.19	9.19	
FeO	6.95	6.86	6.43	6.90	8.87	6.57	6.08	7.37	7.56	6.89	6.89	7.58
MnO	0.10	0.07	0.14	0.16	0.24	0.11	0.08	0.24	0.09	0.10	0.10	0.20
MgO	6.34	7.90	5.16	4.59	3.73	4.72	4.80	4.76	4.08	5.96	4.74	4.00
CaO	13.51	13.68	12.91	11.16	8.23	9.95	14.17	9.49	10.01	13.84	11.95	10.06
Na ₂ O	2.73	2.73	3.22	4.15	2.49	2.34	3.07	3.92	3.27	2.89	3.60	3.43
K₂O	0.27	0.30	0.32	0.50	0.79	0.40	0.33	0.57	0.50	0.26	0.36	0.45
P_2O_5	0.11	n.d.										
CI	0.095	n.d.										
S	0.098	n.d.										
Total	96.91	95.67	96.84	96.19	97.00	91.61	94.67	94.81	95.53	96.13	96.12	95.72
CaO/Al ₂ O ₃	0.69	0.72	0.67	0.57	0.58	0.53	0.72	0.59	0.63	0.69	0.62	0.62
$F_{0\%}^{3}$	88.3	88.3	85.9	85.3	85.2	86.9	86.8	81.5	81.5	88.4	87.6	83.8

	SVN4b-83	SVN4b-85	SVN4b-86	SVN4b-87	SVN4b-88a ¹	SVN4b-90a ¹	SVN4b-90b ¹	SVN4b-91a ¹	SVN4b-92a ¹	SVN4b-93a ¹	SVN4b-93b ¹	SVN4b-93c ¹	SVN4b-94a ¹
SiO ₂	49.91	44.82	42.89	44.16	50.15	49.54	46.86	43.51	42.86	43.56	43.75	52.52	43.12
TIO ₂	1.49	1.22	1.20	1.28	1.49	1.63	1.01	1.21	1.29	1.10	1.15	2.24	1.16
Al ₂ O ₃	16.25	20.09	18.37	19.12	16.87	19.76	20.71	18.67	18.88	16.37	19.51	14.70	18.41
FeO _{tot} ²	8.98	6.47	7.51	7.10	9.94	6.95	5.90	8.79	7.38	11.97	11.77	11.98	8.35
Feo Cor		9.07	9.17	8.96		9.35	9.18		9.17				
FeO	6.73	6.80	6.88	6.72	7.46	7.01	6.88	6.60	6.87	8.98	8.83	8.99	6.26
MnO	0.23	0.13	0.07	0.05	0.17	0.15	0.04	0.20	0.10	0.31	0.16	0.28	0.08
MgO	5.34	4.91	5.66	5.13	4.67	4.87	4.49	5.08	5.49	8.28	4.81	4.74	6.28
CaO	9.68	14.24	16.91	13.40	9.62	10.45	11.27	14.20	16.02	13.49	13.87	8.27	15.24
Na ₂ O	3.50	2.71	2.95	3.13	3.69	3.94	5.01	2.87	3.48	2.68	2.76	2.45	3.32
K₂O	0.44	0.29	0.33	0.37	0.50	0.47	0.71	0.33	0.38	0.32	0.40	0.70	0.35
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	95.82	94.88	95.89	93.74	97.09	97.75	96.00	94.87	95.87	98.07	98.17	97.88	96.32
CaO/Al ₂ O ₃	09.0	0.71	0.92	0.70	0.57	0.53	0.54	0.76	0.85	0.82	0.71	0.56	0.83
$F0\%^3$	88.1	89.0	88.0	87.0	85.0	87.7	88.3	86.0	87.3	79.7	80.1	76.4	87.0

	SVNAH-04H	CVN14P-06	SVN14P-06	CVN145-07-4	CVN14P.07P4	CVNAL 07c4	C//N/AP_00644	CVNAP-400	CVNAP 400	с\\NAh-1045 ¹	SVNAP-404P	SVNAH-1045
SiO	52.93	48 86	43.09	43 97	45.37	47.37	47 88	46.26	43 10	46.85	51.68	42 30
200	00:20	00.01	0000	0.01	0.01	10.11	00.11	07:01	2	00.01	00000	00:11
TIO ₂	2.32	1.32	1.24	1.09	1.22	1.20	1.24	1.24	1.01	1.27	1.71	1.11
Al ₂ O ₃	15.04	19.66	18.94	19.72	19.34	19.57	19.92	20.12	19.77	18.39	17.32	20.11
FeO _{tot} ²	10.70	9.17	7.79	7.40	7.15	7.60	7.06	6.94	7.17	7.23	10.09	9.03
Feo Cor			9.21	9.23	9.21	9.27	9.12	9.34	9.09	9.05		
FeO	8.03	6.88	6.91	6.92	6.90	6.96	6.84	7.00	6.81	6.79	7.57	6.77
MnO	0.31	0.14	0.05	0.19	0.09	0.11	0.19	0.14	0.11	0.15	0.23	0.16
MgO	4.28	4.04	5.61	6.14	6.24	5.89	3.18	5.42	6.22	5.84	3.88	5.98
CaO	8.39	8.89	16.11	14.80	13.98	11.82	12.04	13.99	14.34	11.45	9.91	13.55
Na ₂ O	3.65	3.59	3.13	2.92	2.62	3.14	3.47	3.23	2.86	3.16	3.52	2.74
K ₂ 0	0.73	0.45	0.38	0.35	0.30	0.32	0.42	0.35	0.38	0.35	0.62	0.32
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
C	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	98.36	96.13	96.33	96.57	96.30	97.02	95.39	97.68	95.04	94.68	98.95	95.30
CaO/Al ₂ O ₃	0.56	0.45	0.85	0.75	0.72	0.60	09.0	0.70	0.73	0.62	0.57	0.67
$F_{0\%}^{3}$	87.4	80.0	89.0	87.7	87.2	78.7	84.0	86.2	88.1	84.8	84.8	87.0
(- F)	suite											
---------	---------------											
4	2											
	NINexe											
	1											

	SVN4b-104v ¹	SVN4b-105	SVN4b-107a ¹	SVN4b-107b ¹	SVN4b- 108b ¹	SVN4b-108c ¹	SVN4b-109a ¹	SVN4b-109b ¹	SVN4b-112	SVN4b-113a ¹	SVN4b-113b ¹
sio ₂	50.88	41.91	44.31	47.23	44.73	44.88	48.04	49.55	44.51	45.28	49.10
TIO ₂	1.85	1.26	1.16	1.25	1.25	1.15	1.73	1.50	1.14	1.37	1.45
Al ₂ O ₃	16.15	20.89	19.87	19.41	20.38	19.36	16.87	17.26	19.05	19.83	17.20
FeO _{tot} ²	11.18	8.79	6.86	6.79	7.30	8.20	8.84	10.09	6.90	7.35	10.11
Feo Cor			9.07	9.23	9.11				9.02	9.01	
FeO	8.38	6.59	6.80	6.93	6.83	6.15	6.63	7.56	6.77	6.75	7.59
MnO	0.20	0.12	0.09	0.18	0.15	0.12	0.14	0.30	0.12	0.10	0.17
MgO	4.51	6.37	5.63	7.78	5.59	5.61	5.22	4.52	5.72	5.43	4.68
caO	9.45	13.40	13.95	10.21	12.57	14.67	10.60	10.33	12.59	10.98	10.36
Na ₂ O	3.70	2.84	2.70	3.34	2.96	2.79	3.29	3.61	3.91	3.58	3.85
K ₂ 0	0.61	0.32	0.29	0.41	0.33	0.35	0.40	0.49	0.44	0.29	0.52
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
ū	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	98.52	95.89	94.87	96.60	95.25	97.13	95.13	97.64	94.37	94.20	97.45
CaO/Al ₂ O ₃	0.58	0.64	0.70	0.53	0.62	0.76	0.63	0.60	0.66	0.55	0.60
F0% ³	81.2	87.0	87.1	86.5	88.4	88.0	81.5	79.8	86.6	77.8	79.7

	SVN4b-113c ¹	SVN4b-113d ¹	SVN4b-113e ¹	SVN4b-113v ¹	SVN4b-116a ¹	SVN4b-118	SVN4b-119	SVN4b-123a ¹	SVN4b-123b ¹	SVN4b-123c ¹	SVN4b-124	SVN4b-130
SiO ₂	45.26	45.99	49.47	49.44	48.89	44.05	46.48	48.33	44.17	48.03	44.15	41.75
TIO ₂	1.44	1.46	1.50	1.56	1.50	1.04	1.33	1.43	1.32	0.96	1.19	1.23
Al ₂ O ₃	19.88	20.29	16.96	17.10	16.37	18.55	19.84	20.28	19.38	20.43	19.23	17.16
FeO _{tot} ²	7.80	7.43	9.97	9.97	10.74	7.42	7.63	6.79	6.77	5.92	6.80	7.59
Feo Cor	9.05	9.07				9.14	9.19	9.29	9.32	9.39	8.99	8.88
FeO	6.79	6.80	7.48	7.48	8.06	6.86	6.89	6.97	6.99	7.04	6.75	6.66
MnO	0.10	0.11	0.26	0.18	0.26	0.14	0.16	0.12	0.06	0.10	0.11	0.13
MgO	4.77	4.95	4.44	4.87	4.93	7.84	4.89	4.86	5.55	7.14	5.89	5.74
CaO	11.75	10.78	10.19	10.22	9.63	13.77	11.61	11.21	16.51	8.79	13.69	15.86
Na ₂ O	3.40	3.61	3.91	3.66	3.72	2.53	3.72	3.67	3.39	6.07	2.71	3.05
K ₂ 0	0.29	0.25	0.51	0.49	0.57	0:30	0.47	0.46	0.39	0.76	0:30	0.41
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	94.69	94.86	97.20	97.48	96.62	95.64	96.14	97.15	97.53	98.21	94.08	92.92
CaO/Al ₂ O ₃	0.59	0.53	09.0	09.0	0.59	0.74	0.59	0.55	0.85	0.43	0.71	0.92
F0% ³	84.9	84.4	81.1	77.8	81.0	87.8	85.1	85.7	76.5	76.5	88.3	88.1
F0% ³	84.9	84.4	81.1	77.8	81.0	87.8	85.1	85.7	76.5	76.5	88.3	

	SVN4b- 134a ¹	SVN4b-134b ¹	SVN4b- 134c ¹	SVN4b-135a ¹	SVN4b-135v ¹	SVN4b-142	SVN4b-145	SVN4b-150a ¹	SVN4b-151	SVN4b-153a ¹	SVN4b-153b ¹
SiO ₂	44.24	53.15	42.88	44.67	50.20	49.55	44.00	43.17	51.11	44.52	43.50
TIO ₂	1.33	2.64	1.22	1.09	1.73	2.14	1.25	1.15	1.67	1.09	1.05
Al ₂ O ₃	19.71	15.26	19.66	17.08	16.94	17.63	19.23	20.18	18.51	18.12	18.02
FeO _{tot} ²	7.37	9.13	7.42	6.36	9.64	7.39	8.37	7.91	9.44	7.33	6.78
Feo Cor	9.28		9.07	9.05		9.18		9.13		8.98	8.97
FeO	6.96	6.85	6.80	6.79	7.23	6.89	6.28	6.84	7.08	6.73	6.73
MnO	0.11	0.17	0.17	0.14	0.13	0.16	0.14	0.04	0.20	0.14	0.17
MgO	5.56	4.09	5.30	5.67	4.35	5.00	4.42	5.82	3.35	6.67	6.78
CaO	15.45	8.20	15.17	16.73	9.92	10.35	14.75	14.21	10.44	13.19	14.40
Na ₂ O	2.97	3.36	2.70	2.53	3.66	3.28	2.68	2.65	3.20	2.56	2.77
K₂O	0.35	0.85	0.37	0.38	0.55	0.55	0.33	0.31	0.53	0.29	0.36
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	97.08	96.83	94.90	94.64	97.11	96.05	95.17	95.45	98.43	93.90	93.83
CaO/Al ₂ O ₃	0.78	0.54	0.77	0.98	0.59	0.59	0.77	0.70	0.56	0.73	0.80
F0% ³	88.2	87.9	89.0	88.1	88.5	86.0	85.7	85.2	80.2		

	SVN4b-154	SVN4b-160a ¹	SVN4b-160b ¹	SVN4b-161	SVN4b-162a ¹	SVN4b-162b ¹	SVN4b-162c ¹	SVN4b-163	SVN4b-164a ¹	SVN4b-166	SVN4b-167	SVN4b-168
SiO ₂	42.13	46.07	40.17	45.30	53.25	46.33	44.11	43.92	44.06	49.63	44.84	44.13
TIO ₂	1.16	1.23	1.29	1.10	2.07	1.18	1.17	1.36	1.36	1.64	1.28	1.04
Al ₂ O ₃	18.73	20.05	23.24	19.48	15.32	20.03	19.33	19.16	18.95	19.60	19.53	18.11
FeO _{tot} ²	6.46	7.37	7.56	7.34	10.25	7.67	7.14	6.77	8.29	7.45	7.45	6.87
Feo Cor	8.78	9.36	9.25	9.18		9.36	9.30	9.27		9.34	9.22	8.89
FeO	6.59	7.02	6.94	6.89	7.69	7.02	6.97	6.95	6.22	7.01	6.91	6.67
MnO	0.12	0.13	0.08	0.09	0.16	0.16	0.12	0.17	0.08	0.07	0.12	0.15
MgO	6.32	5.32	6.86	5.97	4.14	5.36	5.49	5.44	5.34	3.72	5.60	6.13
CaO	14.12	14.30	14.06	13.71	8.58	13.48	16.06	16.18	15.90	11.29	14.40	13.73
Na ₂ O	2.40	3.12	3.15	2.78	3.41	3.34	3.43	3.50	3.23	3.84	2.92	2.55
K ₂ O	0.41	0.34	0.36	0.30	0.72	0.37	0.42	0.43	0.36	0.49	0.30	0.33
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	91.87	97.94	96.77	96.07	97.89	97.92	97.27	96.96	97.56	97.73	96.44	93.04
CaO/Al ₂ O ₃	0.75	0.71	0.61	0.70	0.56	0.67	0.83	0.84	0.84	0.58	0.74	0.76
$F0\%^3$	88.5	87.5	88.4	87.3	87.5	86.7	89.1	88.9	87.7	85.7	87.0	89.1

	SVN4b-169	SVN4b-170a ¹	SVN4b-170c ¹	SVN4b-171a ¹	SVN4b-171v ¹	SVN4b-172	SVN4b-173a ¹	SVN4b-173b ¹	SVN4b-173c ¹	SVN4b-174a ¹	SVN4b-174b ¹
SiO ₂	44.89	44.05	43.53	43.83	52.38	44.52	43.25	52.48	52.62	49.26	44.70
TIO ₂	1.10	1.21	1.28	1.34	2.19	1.21	1.25	2.00	2.29	1.47	1.16
Al ₂ O ₃	20.31	18.93	18.81	18.55	14.84	19.28	19.17	14.94	15.99	16.73	18.97
FeO _{tot} ²	7.02	6.87	6.89	8.88	10.79	8.58	6.73	10.47	8.90	10.38	7.40
Feo Cor	9.16	9.34	9.22				9.21				8.98
FeO	6.87	7.00	6.91	6.66	8.09	6.44	6.91	7.85	6.67	7.79	6.73
MnO	0.13	0.10	0.11	0.11	0.20	0.14	0.09	0.18	0.18	0.25	0.11
MgO	5.49	5.84	5.46	5.45	4.19	5.20	5.57	3.65	3.91	4.85	6.02
CaO	12.85	17.02	16.21	15.31	8.51	13.75	16.49	8.15	8.74	9.89	12.26
Na ₂ O	3.60	3.22	3.66	3.26	3.83	3.31	3.41	2.93	3.04	3.84	2.97
K ₂ 0	0.40	0.44	0.48	0.34	0.75	0.44	0.40	0.69	0.71	0.54	0.33
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	95.80	97.67	96.42	97.06	97.68	96.44	96.37	95.49	96.38	97.21	93.91
CaO/Al ₂ O ₃	0.63	06.0	0.86	0.83	0.57	0.71	0.86	0.55	0.55	0.59	0.65
$F0\%^3$	87.1	89.6	86.1	85.0	75.8	85.1	89.0	79.5	88.9	86.7	86.7

suite
9
exe
ľ

	SVN4b-175	SVN4b-176a ¹	SVN4b-176b ¹	SVN4b-177	SVN4b-177v ¹	SVN4b-178a ¹	SVN4b-178b ¹	SVN4b-179a ¹	SVN4b-179b ¹	SVN4b-180	SVN4b-181a ¹
SiO ₂	44.54	43.95	52.676	49.72	49.72	51.19	44.82	44.81	53.18	44.90	47.91
TIO ₂	1.26	1.30	1.701	1.33	1.42	1.77	1.26	1.32	2.76	1.05	1.06
Al ₂ O ₃	19.54	19.15	18.019	18.95	17.59	17.23	19.58	19.47	15.20	17.76	20.27
FeO _{tot} ²	6.58	6.74	9.174	6.34	9.97	7.11	9.35	6.81	8.82	6.20	8.30
Feo Cor	9.05	9.22		9.12		9.15		9.23		8.86	
FeO	6.79	6.91	6.88	6.84	7.48	6.86	7.01	6.93	6.62	6.64	6.23
MnO	0.08	0.14	0.244	0.10	0.13	0.17	0.19	0.09	0.10	0.12	0.15
MgO	3.93	5.30	3.18	4.93	4.38	3.98	3.25	5.35	4.09	5.94	4.72
CaO	15.27	15.89	9.165	10.35	10.20	10.54	13.55	15.50	8.22	13.89	12.59
Na ₂ O	3.13	3.52	4.044	3.30	3.88	3.32	3.33	2.87	2.74	2.53	3.16
K₂O	0.36	0.43	0.623	0.44	0.50	0.42	0.35	0.38	0.85	0.28	0.37
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	94.69	96.43	98.83	95.44	97.80	95.73	95.68	96.59	95.96	92.67	98.53
CaO/Al ₂ O ₃	0.78	0.83	0.51	0.55	0.58	0.61	0.69	0.80	0.54	0.78	0.62
$F_{0}\%^{3}$	88.7	88.2	85.7	86.6	81.8	85.0	83.5	88.2	84.8	89.3	89.7

	-
suite	
\sim	-
9	
exe	
nn	
~	

	SVN4b-181b ¹	SVN4b-182	SVN4b-182v ¹	SVN4b-183	SVN4b-184	SVN4b-184v ¹	SVN4b-185b ¹	SVN4b-185c ¹	SVN4b-185d ¹	SVN4b-186	SVN4b-187a ¹	SVN4b-187b ¹
SiO ₂	53.10	43.51	50.04	50.97	44.03	52.71	49.86	44.08	44.50	43.95	46.58	48.50
TIO ₂	2.22	1.19	1.49	1.28	1.28	2.10	1.61	1.16	1.50	1.08	0.84	0.81
Al ₂ O ₃	14.97	19.52	17.10	18.45	19.30	14.70	16.26	19.14	19.40	19.13	18.59	19.04
FeO _{tot} ²	11.07	6.98	9.93	5.57	7.23	10.73	10.31	8.00	6.77	7.90	10.38	9.58
Feo Cor		9.05		9.15	9.27				9.07	9.00		
FeO	8.30	6.79	7.45	6.86	6.95	8.05	7.73	6.00	6.81	6.75	7.79	7.19
MnO	0.23	0.12	0.19	0.16	0.13	0.21	0.30	0.21	0.09	0.08	0.16	0.20
MgO	3.97	6.00	4.49	4.80	5.25	3.93	4.31	5.58	5.76	5.07	5.34	3.64
CaO	8.30	14.00	9.86	10.59	15.92	8.53	9.92	14.13	13.86	13.86	10.60	10.73
Na ₂ O	3.51	3.03	3.89	3.43	3.43	2.96	3.91	2.64	2.79	2.81	2.28	2.61
K₂0	0.72	0.35	0.50	0.49	0.40	0.71	0.55	0.28	0.26	0.28	0.31	0.34
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
C	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	98.08	94.69	97.48	95.74	96.97	96.59	97.02	95.22	94.93	94.15	95.08	95.44
CaO/Al ₂ O ₃	0.55	0.72	0.58	0.57	0.82	0.58	0.61	0.74	0.71	0.72	0.57	0.56
F0% ³	84.1	88.4	80.8	80.0	88.2	83.9	84.6	84.7	88.6	86.8	78.8	78.8

	SVN4b-190	SVN4b-191	SVN4b-192a ¹	SVN4b-192b ¹	SVN4b-192c ¹	SVN4b-192d ¹	SVN4b-193a ¹	SVN4b-193b ¹	SVN4b-196	SVN4b-197	SVN4b-198	SVN4b-199a ¹
SiO ₂	44.75	44.87	52.51	55.96	45.66	44.49	43.81	44.60	47.18	50.29	52.00	53.49
TIO ₂	1.15	1.08	2.25	1.12	1.08	0.83	1.14	1.09	1.20	1.39	1.83	2.23
Al ₂ O ₃	19.35	19.88	13.34	19.78	19.52	18.86	18.98	19.72	20.89	20.15	16.32	14.89
FeO _{tot} ²	7.78	5.93	12.80	5.70	10.76	11.68	6.28	6.61	7.13	7.01	8.39	11.15
Feo Cor	9.28	9.20		9.29			9.06	9.18	9.45	9.56	9.18	
FeO	6.96	6.90	9.60	6.97	8.07	8.76	6.80	6.88	7.09	7.17	6.88	8.36
MnO	0.19	0.10	0.31	0.01	0.20	0.26	0.11	0.16	0.18	0.12	0.11	0.14
MgO	5.33	5.46	3.87	1.48	3.68	3.75	5.57	5.15	4.98	5.04	3.80	4.22
CaO	15.31	15.30	9.50	9.55	14.21	15.14	15.62	15.39	13.47	11.72	9.93	8.78
Na ₂ O	2.91	3.23	1.94	3.07	2.55	1.94	2.96	2.86	3.44	3.84	3.14	2.95
K₂O	0.35	0.37	0.83	0.49	0.27	0.15	0.33	0.40	0.38	0.45	0.51	0.74
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	97.11	96.21	97.33	97.16	97.94	97.10	94.79	95.97	98.86	100.00	96.02	98.59
CaO/Al ₂ O ₃	0.79	0.77	0.71	0.48	0.73	0.80	0.82	0.78	0.64	0.58	0.61	0.59
F0% ³	87.0	84.1	75.4	78.5	89.4	80.9	89.0	85.7	86.4	88.5	81.2	83.4

~	_
Ì	[
Ū	5
è	5
ā	5
à	5
2	
-	_

	SVN4b-199b ¹	SVN4b-200a ¹	SVN4b-200b ¹	SVN4b-201	SVN4b-202	SVN4b-203	SVN4b-204a ¹	SVN4b-204b ¹	SVN4b-205	SVN18-1a ¹	SVN18-1b ¹	SVN18-2	SVN18-3
SiO ₂	45.66	44.72	49.77	50.24	53.15	43.33	44.30	43.49	45.86	50.28	50.91	56.53	52.87
TIO ₂	1.26	1.00	1.85	1.09	0.99	1.07	1.16	1.10	1.30	0.44	0.62	1.35	1.25
Al ₂ O ₃	18.99	19.39	13.97	18.55	17.32	18.75	19.11	19.32	19.23	18.85	18.93	15.76	14.42
FeO _{tot} ²	8.62	7.25	14.14	6.39	8.34	6.58	9.10	9.69	8.75	9.05	8.62	8.72	11.32
Feo Cor	9.50	9.21					9.25	9.34					
FeO	7.12	6.91	10.60	4.79	6.26	4.94	6.94	7.01	6.56	6.79	6.46	6.54	8.49
MnO	0.16	0.19	0.29	0.09	0.22	0.10	0.12	0.17	0.12	0.16	0.21	0.27	0.31
MgO	5.01	5.14	4.18	4.39	3.39	5.26	4.04	4.80	4.90	2.69	2.48	2.47	6.10
CaO	16.10	15.76	10.73	10.80	9.74	16.14	15.68	15.78	16.09	10.41	9.69	5.50	8.32
Na ₂ O	3.18	2.66	3.59	3.69	3.37	2.79	2.96	3.07	3.12	2.73	3.15	3.35	2.56
K₂O	0.37	0.29	0.52	0.46	0.35	0.37	0.31	0.33	0.38	0.34	0.45	0:00	0.47
P_2O_5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CI	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
S	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Total	99.36	96.39	99.04	95.70	96.87	94.39	96.77	97.74	99.75	94.96	95.05	94.84	97.61
CaO/Al ₂ O ₃	0.85	0.81	0.77	0.58	0.56	0.86	0.82	0.82	0.84	0.55	0.51	0.35	0.58
F0% ³	73.8	81.5	75.1	86.0	88.0	87.7	81.0	81.0					
Са∪/АI ₂ O ₃ Fo% ³	0.85 73.8	u.ช۱ 81.5	u.rr 75.1	0.98	ac.u 88.0	u.ơo 87.7	u.ŏ∠ 81.0	0.82 81.0	U.¤4	cc.n	10.0	0.30	

. Vincent
de St
% pds)
< 0.5
(K2O
primitives
nclusions
alculées des l
nesurées et rec
Compositions n
nexe 11: (
∢

	svn4b-187b ¹	svn4b-109b ¹	svn4b-95	svn4b-93b'	SVN4b-28	svn4b-187a ¹	SVN4b-9a ¹	SVN4b-9b	svn4b-109a ¹	SVN4b-18b ¹	SVN4b-18d ¹
composition:	s mesurées										
SIO ₂	48.50	49.55	48.86	43.75	44.72	46.58	45.01	44.63	48.04	44.61	45.33
TIO ₂	0.81	1.50	1.32	1.15	0.93	0.84	1.21	1.32	1.73	1.12	1.08
Al ₂ O ₃	19.04	17.26	19.66	19.51	17.59	18.59	18.45	18.08	16.87	18.38	18.94
$Fe_2O_3^2$	2.40	2.52	2.29	2.94	2.66	2.60	2.52	2.69	2.21	2.75	2.36
FeO ²	7.19	7.56	6.88	8.83	7.99	7.79	7.56	8.08	6.63	8.24	7.07
MnO	0.20	0.30	0.14	0.16	0.15	0.16	0.20	0.12	0.14	0.12	0.16
MgO	3.64	4.52	4.04	4.81	3.77	5.34	5.26	5.21	5.22	5.30	5.22
CaO	10.73	10.33	8.89	13.87	13.11	10.60	14.07	14.22	10.60	14.25	14.39
Na ₂ O	2.61	3.61	3.59	2.76	2.60	2.28	2.87	2.92	3.29	2.61	2.50
K₂O	0.34	0.49	0.45	0.40	0.31	0.31	0.33	0.30	0.40	0.26	0.28
total	95.4	97.6	96.1	98.2	93.8	95.1	97.5	97.6	95.1	97.6	97.3
CaO/Al ₂ O ₃	0.56	0.60	0.45	0.71	0.74	0.57	0.76	0.79	0.63	0.78	0.76
Fo %³	78.0	79.0	80.0	80.0	80.0	80.2	81.0	81.0	82.0	82.0	82.0
compositions	s recalculées										
SiO ₂	50.79	50.60	50.51	44.33	47.11	49.29	46.13	45.61	50.51	45.46	46.51
TIO ₂	0.83	1.52	1.34	1.12	0.93	0.89	1.23	1.33	1.82	1.11	1.10
Al ₂ O ₃	19.58	17.45	19.88	19.05	17.61	19.67	18.79	18.16	17.74	18.16	19.27
Fe ₂ O ₃	1.98	2.37	2.01	2.86	2.76	2.10	2.48	2.72	2.11	2.72	2.26
FeO	7.85	8.07	7.80	9.48	9.20	8.28	7.91	8.48	7.17	8.78	7.50
MnO	0.21	0.30	0.14	0.16	0.15	0.17	0.20	0.12	0.15	0.12	0.16
MgO	4.69	5.11	5.25	6.38	6.19	5.65	5.68	6.08	5.49	6.73	5.75
CaO	11.03	10.44	8.99	13.54	13.12	11.22	14.33	14.28	11.15	14.08	14.64
Na ₂ O	2.68	3.65	3.63	2.70	2.60	2.41	2.92	2.93	3.46	2.58	2.54
K₂O	0.35	0.50	0.46	0.39	0.31	0.33	0.34	0.30	0.42	0.26	0.29
OIv%*	2.4	1.3	2.9	4.1	6.1	0.0	0.8	2.0	0.0	3.5	1.0
						:					

¹ "a, b, c.." indiquent que plusieurs inclusions sont présentes à l'affleurement. La lettre v est attribué aux verres.
² FeO est calculer pour 75% de FeO totale
³ Fo = Fo = 100x[Mg/(Mg + Fe²⁺)].
⁴ Olv% correspond au pourcentage d'olivine cristallisée en bordure de l'inclusions. ⁶ Kd mesuré entre inclusion et olivine = (FeO/MgO)_{ol}/(FeO/MgO)_{met}

(suite)
7
эхэг
Anr

	svn4b-113a ¹	SVN4h-25h	svn4h-178h ¹	svn4b-113d	svn4b-98b ¹	svn4b-104a ¹	SVN4b-33d ¹	svn4b-181a	svn4b-123a ¹	svn4h-119	svn4b-113c ¹
composition	s mesurées										
SiO ₂	45.28	48.86	44.82	45.99	47.88	46.85	43.93	47.91	48.33	46.48	45.26
TIO ₂	1.37	1.59	1.26	1.46	1.24	1.27	1.04	1.06	1.43	1.33	1.44
Al ₂ O ₃	19.83	18.79	19.58	20.29	19.92	18.39	16.74	20.27	20.28	19.84	19.88
Fe ₂ O ₃ ²	1.84	2.13	2.34	1.86	1.76	1.81	2.52	2.08	1.70	1.91	1.95
Fe0 ²	5.51	6.38	7.01	5.57	5.29	5.42	7.57	6.23	5.10	5.72	5.85
MnO	0.10	0.15	0.19	0.11	0.19	0.15	0.15	0.15	0.12	0.16	0.10
MgO	5.43	4.88	3.25	4.95	3.18	5.84	5.79	4.72	4.86	4.89	4.77
CaO	10.98	10.91	13.55	10.78	12.04	11.45	12.64	12.59	11.21	11.61	11.75
Na ₂ O	3.58	3.92	3.33	3.61	3.47	3.16	2.68	3.16	3.67	3.72	3.40
K₂O	0.29	0.47	0.35	0.25	0.42	0.35	0.28	0.37	0.46	0.47	0.29
total	94.2	98.1	95.7	94.9	95.4	94.7	93.4	98.5	97.2	96.1	94.7
CaO/AI ₂ O ₃	0.55	0.58	0.69	0.53	09.0	0.62	0.76	0.62	0.55	0.59	0.59
Fo % ³	83.0	83.0	83.0	84.0	84.0	84.0	84.0	84.0	85.0	85.0	85.0
:	:										
composition:	s recalculées										
SiO ₂	47.48	49.98	46.45	47.64	48.44	48.79	47.17	48.65	48.29	47.44	47.04
TIO ₂	1.44	1.62	1.22	1.47	1.16	1.32	1.10	1.06	1.37	1.31	1.44
Al ₂ O ₃	20.79	19.12	18.97	20.49	18.69	19.14	17.67	20.23	19.44	19.48	19.82
Fe ₂ O ₃	1.98	1.91	2.39	2.00	2.21	2.01	2.48	1.82	2.06	2.14	2.10
FeO	6.95	6.40	7.74	7.17	7.62	6.91	7.95	6.37	7.18	7.15	7.23
MnO	0.11	0.15	0.18	0.11	0.18	0.16	0.16	0.15	0.12	0.16	0.10
MgO	5.69	5.26	6.36	6.34	6.74	6.11	7.02	5.64	6.85	6.82	6.90
CaO	11.51	11.10	13.13	10.88	11.30	11.92	13.34	12.57	10.75	11.40	11.71
Na ₂ O	3.75	3.99	3.23	3.65	3.26	3.29	2.83	3.15	3.52	3.65	3.39
K₂O	0.30	0.48	0.34	0.25	0.39	0.36	0.30	0.37	0.44	0.46	0.29
OIv%*	0.0	0.7	7.7	3.0	9.0	0.1	2.1	2.1	4.9	4.5	4.8

(suite)	
÷	
Annexe	

	SVN4b-60	svn4b-178a	svn4b-172	SVN4b-33a ¹	SVN4b-33c ¹	SVN4b-33b ¹	svn4b-145	svn4b-185c'	svn4b-177	SVN4b-24	svn4b-186	SVN4b-20
compositions	s mesurées											
SIO ₂	46.06	51.19	44.52	43.53	44.36	43.67	44.00	44.08	49.72	49.82	43.95	44.11
TIO ₂	1.17	1.77	1.21	1.02	0.95	0.93	1.25	1.16	1.33	1.44	1.08	1.15
Al ₂ O ₃	19.26	17.23	19.28	18.13	16.35	16.70	19.23	19.14	18.95	18.02	19.13	18.90
$Fe_2O_3^2$	2.11	1.78	2.15	2.22	2.40	2.46	2.09	2.00	1.58	1.75	1.97	2.12
Fe0 ²	6.32	5.33	6.44	6.67	7.21	7.38	6.28	6.00	4.75	5.24	5.92	6.37
MnO	0.22	0.17	0.14	0.12	0.20	0.17	0.14	0.21	0.10	0.09	0.08	0.09
MgO	5.57	3.98	5.20	5.82	6.05	5.93	4.42	5.58	4.93	5.51	5.07	5.71
CaO	11.73	10.54	13.75	13.62	12.60	12.92	14.75	14.13	10.35	10.10	13.86	13.87
Na ₂ O	3.42	3.32	3.31	2.61	2.50	2.65	2.68	2.64	3.30	3.65	2.81	2.85
K₂O	0.36	0.42	0.44	0.29	0.27	0.28	0.33	0.28	0.44	0.46	0.28	0.28
total	96.2	95.7	96.4	94.0	92.9	93.1	95.2	95.2	95.4	96.1	94.2	95.5
CaO/Al ₂ O ₃	0.61	0.61	0.71	0.75	0.77	0.77	0.77	0.74	0.55	0.56	0.72	0.73
Fo % ³	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.1	86.0	86.0	86.0	86.0
composition	s recalculées											
SiO ₂	48.02	51.61	46.24	46.46	47.87	46.98	46.16	46.50	50.18	50.46	46.03	46.31
TIO ₂	1.21	1.68	1.24	1.08	1.01	0.98	1.26	1.22	1.28	1.41	1.08	1.19
Al ₂ O ₃	19.93	16.37	19.67	19.19	17.38	17.57	19.45	20.19	18.20	17.63	19.15	19.52
Fe ₂ O ₃	1.92	2.14	2.09	2.14	2.35	2.45	2.07	1.87	2.02	2.08	2.19	2.04
FeO	6.48	7.41	6.53	6.92	7.60	7.76	6.63	6.13	7.23	7.10	7.12	6.54
MnO	0.23	0.16	0.14	0.13	0.21	0.18	0.14	0.22	0.10	0.09	0.08	0.09
MgO	6.18	7.06	6.23	6.59	7.25	7.40	6.33	5.89	7.47	7.34	7.37	6.76
CaO	12.14	10.01	14.03	14.42	13.39	13.60	14.92	14.91	9.94	9.88	13.88	14.32
Na ₂ O	3.54	3.15	3.38	2.76	2.66	2.79	2.71	2.79	3.17	3.57	2.81	2.94
K₂O	0.37	0.40	0.45	0.31	0.29	0.30	0.33	0.30	0.42	0.45	0.28	0.29
OIv%*	0.9	7.6	2.1	1.0	1.8	2.6	4.2	0.0	6.1	4.3	5.1	1.9

	svn4b-97b ¹	svn4b-97c ¹	svn4b-80a ¹	svn4b-169	svn4b-105	svn4b-162b ¹	svn4b-104c ¹	svn4b-107a ¹	svn4b-161	svn4b-160a ¹	svn4b-97b'	SVN4b-61b
composition:	s mesurées											
SiO ₂	48.09	47.37	48.57	44.89	41.91	46.33	42.30	44.31	45.30	46.07	45.37	43.84
TIO ₂	1.10	1.20	1.02	1.10	1.26	1.18	1.11	1.16	1.10	1.23	1.22	1.24
Al ₂ O ₃	19.64	19.57	19.37	20.31	20.89	20.03	20.11	19.87	19.48	20.05	19.34	19.71
Fe ₂ O ₃ ²	1.61	1.90	1.60	1.76	2.20	1.92	2.26	1.71	1.83	1.84	1.79	1.73
FeO ²	4.82	5.70	4.81	5.27	6.59	5.76	6.77	5.14	5.50	5.52	5.36	5.18
MnO	0.04	0.11	0.10	0.13	0.12	0.16	0.16	0.09	0.09	0.13	0.09	0.11
MgO	4.91	5.89	4.74	5.49	6.37	5.36	5.98	5.63	5.97	5.32	6.24	5.91
CaO	11.67	11.82	11.95	12.85	13.40	13.48	13.55	13.95	13.71	14.30	13.98	14.28
Na ₂ O	2.00	3.14	3.60	3.60	2.84	3.34	2.74	2.70	2.78	3.12	2.62	3.17
K ₂ O	0.37	0.32	0.36	0.40	0.32	0.37	0.32	0.29	0.30	0.34	0.30	0.37
total	94.3	97.0	96.1	95.8	95.9	97.9	95.3	94.9	96.1	97.9	96.3	95.5
CaO/Al ₂ O ₃	0.59	0.60	0.62	0.63	0.64	0.67	0.67	0.70	0.70	0.71	0.72	0.72
Fo % ³	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0
composition:	s recalculées											
SiO ₂	49.10	47.81	48.57	45.71	43.82	46.29	44.42	45.56	46.20	45.91	46.12	44.83
TiO ₂	1.05	1.16	0.95	1.06	1.29	1.11	1.12	1.14	1.08	1.16	1.20	1.22
Al ₂ O ₃	18.73	18.90	18.06	19.64	21.33	18.89	20.31	19.48	19.09	18.84	19.03	19.37
Fe ₂ O ₃	1.93	2.06	2.17	2.18	2.01	2.20	2.13	2.12	2.13	2.21	2.11	2.22
FeO	7.42	7.15	7.21	7.04	6.83	7.12	7.10	7.06	7.03	7.09	6.97	6.93
MnO	0.04	0.11	0.09	0.13	0.12	0.15	0.16	0.09	0.09	0.12	0.09	0.11
MgO	8.36	8.06	8.12	7.93	7.69	8.02	8.00	7.95	7.92	7.99	7.85	7.80
CaO	11.13	11.42	11.14	12.43	13.68	12.71	13.68	13.68	13.44	13.44	13.75	14.04
Na ₂ O	1.91	3.03	3.36	3.48	2.90	3.15	2.77	2.65	2.73	2.93	2.58	3.12
K ₂ O	0.35	0.31	0.34	0.39	0.33	0.35	0.32	0.28	0.29	0.32	0.30	0.36
OIv% ⁺	8.1	5.2	8.2	5.7	2.6	6.5	4.2	5.3	4.5	6.6	3.7	4.3

(suite)
7
Annexe

	svn4b-167	svn4b-97a ¹	svn4b-134c ¹	svn4b-107b ¹	svn4b-118	svn4b-160b ¹	svn4b-108b ¹	SVN4b-70a ¹	svn4b-124	svn4b-185d [°]	svn4b-182
composition	s mesurées										
SiO ₂	44.84	43.97	42.88	47.23	44.05	40.17	44.73	46.39	44.15	44.50	43.51
TIO ₂	1.28	1.09	1.22	1.25	1.04	1.29	1.25	1.15	1.19	1.50	1.19
Al ₂ O ₃	19.53	19.72	19.66	19.41	18.55	23.24	20.38	19.63	19.23	19.40	19.52
$Fe_2O_3^2$	1.86	1.85	1.86	1.70	1.85	1.89	1.82	1.62	1.70	1.69	1.74
Fe0 ²	5.59	5.55	5.57	5.09	5.56	5.67	5.47	4.87	5.10	5.08	5.23
MnO	0.12	0.19	0.17	0.18	0.14	0.08	0.15	0.10	0.11	0.09	0.12
MgO	5.60	6.14	5.30	7.78	7.84	6.86	5.59	6.34	5.89	5.76	6.00
CaO	14.40	14.80	15.17	10.21	13.77	14.06	12.57	13.51	13.69	13.86	14.00
Na ₂ O	2.92	2.92	2.70	3.34	2.53	3.15	2.96	2.73	2.71	2.79	3.03
K₂O	0.30	0.35	0.37	0.41	0.30	0.36	0.33	0.27	0.30	0.26	0.35
total	96.4	96.6	94.9	96.6	95.6	96.8	95.2	96.6	94.1	94.9	94.7
CaO/Al ₂ O ₃	0.74	0.75	0.77	0.53	0.74	0.61	0.62	0.69	0.71	0.71	0.72
Fo %³	87.0	87.0	87.0	87.1	87.6	88.0	88.0	88.0	88.0	88.0	88.0
141											
composition	is recalculees										
SIO ₂	45.56	44.72	44.35	47.93	45.47	40.97	45.83	46.53	45.71	45.59	44.89
TIO ₂	1.24	1.07	1.19	1.27	1.07	1.26	1.19	1.10	1.16	1.45	1.16
Al ₂ O ₃	18.90	19.37	19.23	19.70	19.15	22.74	19.47	18.73	18.81	18.68	19.08
Fe ₂ O ₃	2.20	2.21	2.25	1.95	2.12	2.08	2.09	2.09	2.15	2.16	2.21
FeO	7.02	6.91	7.04	6.92	6.83	7.02	7.21	7.03	7.04	7.05	6.96
MnO	0.12	0.19	0.17	0.18	0.14	0.08	0.14	0.10	0.11	0.09	0.12
MgO	7.91	7.78	7.93	7.90	8.09	8.67	8.90	8.67	8.69	8.71	8.59
CaO	13.93	14.54	14.84	10.36	14.21	13.75	12.01	12.89	13.39	13.35	13.69
Na ₂ O	2.83	2.87	2.64	3.39	2.61	3.08	2.83	2.61	2.65	2.69	2.96
K ₂ 0	0.29	0.34	0.36	0.42	0.31	0.35	0.32	0.26	0.29	0.25	0.34
OIv% [‡]	5.4	3.8	6.0	0.0	0.0	4.2	7.7	5.6	6.3	6.8	5.8

(suite)
7
Annexe

	svn4b-102	SVN4b-22	SVN4b-19a ¹	svn4b-154	svn4b-108c ¹	svn4b-175	svn4b-134a ¹	SVN4b-14	svn4b-168	SVN4b-17	svn4b-180
compositions	mesurées										
SiO ₂	43.19	46.77	45.23	42.13	44.88	44.54	44.24	44.37	44.13	42.89	44.90
TIO ₂	1.01	1.16	1.11	1.16	1.15	1.26	1.33	1.03	1.04	1.11	1.05
Al ₂ O ₃	19.77	18.46	18.37	18.73	19.36	19.54	19.71	19.03	18.11	19.49	17.76
$Fe_2O_3^2$	1.79	1.81	1.76	1.62	2.05	1.64	1.84	1.69	1.72	1.58	1.55
FeO ²	5.38	5.43	5.27	4.85	6.15	4.93	5.53	5.07	5.15	4.75	4.65
MnO	0.11	0.12	0.14	0.12	0.12	0.08	0.11	0.11	0.15	0.13	0.12
MgO	6.22	6.21	6.48	6.32	5.61	3.93	5.56	6.55	6.13	5.62	5.94
CaO	14.34	13.51	13.71	14.12	14.67	15.27	15.45	13.42	13.73	14.92	13.89
Na ₂ O	2.86	2.88	2.86	2.40	2.79	3.13	2.97	3.13	2.55	3.13	2.53
K₂O	0.38	0.29	0.31	0.41	0.35	0.36	0.35	0.40	0.33	0.40	0.28
total	95.0	96.7	95.2	91.9	97.1	94.7	97.1	94.8	93.0	94.0	92.7
CaO/AI ₂ O ₃	0.73	0.73	0.75	0.75	0.76	0.78	0.78	0.70	0.76	0.77	0.78
Fo %³	88.0	88.0	88.0	88.0	88.0	88.0	88.0	89.0	89.0	89.0	89.0
compositions	racalculáas										
	44.52	47 22	46 30	74 74	46 11	45 30	44 54	45 54	46 18	44.17	46.78
LiO,	0.99	1.11	1.09	1.18	1.13	1.15	1.25	1.00	1.02	1.05	1.02
Al ₂ O ₃	19.40	17.73	18.08	19.10	19.06	17.77	18.52	18.39	17.71	18.45	17.25
Fe_2O_3	2.19	2.17	2.19	2.16	1.99	2.38	2.29	2.21	2.19	2.31	2.19
FeO	6.95	7.00	6.93	6.91	6.29	7.29	7.00	6.94	7.00	6.96	6.96
MnO	0.11	0.12	0.14	0.12	0.12	0.07	0.10	0.11	0.15	0.12	0.12
MgO	8.58	8.64	8.56	8.53	7.77	8.99	8.64	9.45	9.52	9.48	9.48
CaO	14.07	12.97	13.50	14.40	14.44	13.89	14.52	12.97	13.43	14.12	13.49
Na ₂ O	2.81	2.77	2.82	2.45	2.75	2.85	2.79	3.03	2.49	2.96	2.46
K₂O	0.37	0.28	0.31	0.42	0.35	0.33	0.33	0.39	0.32	0.38	0.27
OIv%*	5.3	5.7	4.6	4.4	4.8	12.0	7.4	6.6	7.5	8.9	7.9

(suite)	
÷	
Annexe	

	Inclusions a	vec forts CaC	0/AI ₂ O ₃									
	SVN4b-18a ¹	SVN4b-65	svn4b-123b ¹	svn4b-164a ¹	svn4b-179a ¹	SVN4b-6	svn4b-184	svn4b-176a ¹	svn4b-171a ¹	svn4b-162c ¹	SVN4b-26a ¹	svn4b-86
composition:	s mesurées											
SiO ₂	45.06	44.76	44.17	44.06	44.81	42.91	44.03	43.95	43.83	44.11	44.03	42.89
TIO ₂	0.99	1.16	1.32	1.36	1.32	1.31	1.28	1.30	1.34	1.17	1.21	1.20
Al ₂ O ₃	18.53	17.69	19.38	18.95	19.47	19.05	19.30	19.15	18.55	19.33	19.46	18.37
$Fe_2O_3^2$	2.51	2.77	6.99	2.07	1.70	2.09	1.81	1.69	2.22	1.79	1.57	1.88
FeO ²	7.54	8.30	2.33	6.22	5.11	6.28	5.42	5.06	6.66	5.36	4.72	5.63
MnO	0.19	0.20	0.06	0.08	0.09	0.13	0.13	0.14	0.11	0.12	0.13	0.07
MgO	4.88	5.11	5.55	5.34	5.35	5.31	5.25	5.30	5.45	5.49	5.47	5.66
CaO	14.93	14.34	16.51	15.90	15.50	15.38	15.92	15.89	15.31	16.06	16.35	16.91
Na ₂ O	2.75	3.25	3.39	3.23	2.87	3.50	3.43	3.52	3.26	3.43	3.79	2.95
K₂0	0.27	0.38	0.39	0.36	0.38	0.43	0.40	0.43	0.34	0.42	0.46	0.33
total	97.6	98.0	100.1	97.6	96.6	96.4	97.0	96.4	97.1	97.3	97.2	95.9
CaO/Al ₂ O ₃	0.81	0.81	0.85	0.84	0.80	0.81	0.82	0.83	0.83	0.83	0.84	0.92
Fo % ³	82.0	82.0	86.9	87.0	88.0	88.0	88.0	88.0	85.0	89.0	89.0	88.0
composition	s recalculées											
SiO ₂	45.94	45.43	45.28	45.16	45.03	43.99	44.31	44.30	45.28	44.16	43.77	43.91
TIO ₂	0.98	1.14	1.35	1.35	1.23	1.25	1.20	1.22	1.37	1.07	1.10	1.16
Al ₂ O ₃	18.41	17.36	19.87	18.81	18.19	18.15	18.04	17.99	18.90	17.71	17.71	17.72
Fe ₂ O ₃	2.55	2.92	1.84	2.15	2.29	2.45	2.42	2.42	2.27	2.42	2.47	2.45
FeO	7.99	8.68	5.11	6.16	7.01	7.00	6.92	6.85	6.56	6.90	6.81	6.82
MnO	0.19	0.20	0.06	0.08	0.08	0.12	0.12	0.13	0.11	0.11	0.12	0.07
MgO	6.13	6.65	5.69	6.94	8.65	8.64	8.54	8.45	6.25	9.39	9.28	8.41
CaO	14.83	14.07	16.93	15.78	14.48	14.65	14.88	14.93	15.60	14.71	14.88	16.31
Na ₂ O	2.73	3.19	3.48	3.21	2.68	3.33	3.21	3.31	3.32	3.14	3.45	2.85
K₂0	0.27	0.37	0.40	0.36	0.36	0.41	0.37	0.40	0.35	0.39	0.42	0.32
OIv%*	3.0	3.9	0.0	3.6	7.9	7.8	7.9	7.5	1.6	9.3	9.2	6.4

	svn4b-130	svn4b-135a ¹	svn4b-170a ¹	svn4b-170c ¹
compositions	mesurées			
SiO ₂	41.75	44.67	44.05	43.53
TIO ₂	1.23	1.09	1.21	1.28
Al ₂ O ₃	17.16	17.08	18.93	18.81
$Fe_2O_3^2$	1.90	1.59	1.72	1.72
FeO ^z	5.69	4.77	5.15	5.17
MnO	0.13	0.14	0.10	0.11
MgO	5.74	5.67	5.84	5.46
CaO	15.86	16.73	17.02	16.21
Na ₂ O	3.05	2.53	3.22	3.66
K ₂ 0	0.41	0.38	0.44	0.48
total	92.9	94.6	97.7	96.4
CaO/Al ₂ O ₃	0.92	0.98	06.0	0.86
Fo % ³	88.0	88.0	89.0	89.0
sinniendiinn	Iecalculees			
SiO ₂	44.28	45.74	43.87	43.91
TIO ₂	1.24	1.06	1.11	1.19
Al ₂ O ₃	17.30	16.55	17.43	17.41
Fe ₂ O ₃	2.48	2.40	2.45	2.49
FeO	6.76	6.76	6.78	6.80
MnO	0.13	0.14	0.09	0.10
MgO	8.34	8.34	9.23	9.26
CaO	15.99	16.21	15.67	15.01
Na ₂ O	3.07	2.45	2.97	3.39
K ₂ 0	0.41	0.37	0.41	0.44
OIV%*	5.5	6.1	8.2	9.0

	G05-06-1a'	G05-06-1b'	G05-06-4a'	G05-06-4b'	G05-06-5a'	G05-06-5b'	G05-06-6a'	G05-06-6b'	G05-06-7a'	G05-06-7b'	G05-06-24	G05-06-25
SiO ₂	40.27	43.13	49.92	51.51	48.45	41.99	49.86	40.91	44.23	48.20	42.35	44.70
TIO ₂	1.10	1.03	2.05	2.54	1.11	1.05	1.70	1.13	1.17	1.61	1.29	1.38
	19.73	17.96	15.80	15.71	18.08	18.18	17.02	19.07	18.51	16.51	17.22	16.76
FeO _{tot} ²	8.09	8.08	10.07	8.51	7.69	7.83	9.32	8.08	9.38	9.56	8.75	10.16
FeO	6.06	6.06	7.55	6.39	5.76	5.87	6.99	6.06	7.03	7.17	6.56	7.62
Fe ₂ O ₃	2.02	2.02	2.52	2.13	1.92	1.96	2.33	2.02	2.34	2.39	2.19	2.54
MnO	0.16	0.07	0.27	0.19	0.11	0.08	0.09	0.10	0.14	0.19	0.14	0.17
MgO	4.48	5.98	4.61	4.79	6.18	5.88	4.08	3.92	6.32	5.11	5.03	3.75
CaO	15.00	14.04	9.40	8.98	13.12	13.64	10.17	14.99	13.84	11.14	17.59	14.48
Na ₂ O	2.25	2.09	3.23	3.40	3.10	1.97	3.93	2.56	3.01	4.35	3.77	2.76
K ₂ 0	0.67	0.60	1.32	1.78	0.71	0.69	1.41	0.75	0.66	1.26	06.0	0.61
total	91.73	92.97	96.68	97.41	98.54	91.31	97.58	91.50	97.25	97.94	97.04	94.77
CaO/Al ₂ O ₃	0.76	0.78	0.60	0.57	0.73	0.75	0.60	0.79	0.75	0.68	1.02	0.86
Fo %'	89.00	89.00	86.00	87.50	88.00	88.00	90.00	88.30	87.00	87.00	87.70	84.80
	C.06_06_07	G05-06-28a'	G05-06-28b'	C.05_06_20	G05-06-30a'	G05-06-30b'	G05-06-21	C.05_06_22	G05-06-34a [°]	G05-06-34b'	COF OF AF	G05-06-46a'
SiO,	42.28	43.71	44.71	49.81	42.47	42.23	43.09	45.79	49.26	49.25	49.12	45.38
TIO ₂	1.35	1.31	1.17	1.80	1.13	0.99	1.09	1.09	1.72	1.80	1.62	1.15
	16.79	17.26	20.21	15.39	17.33	17.35	17.92	17.79	15.50	16.58	16.95	17.71
FeO _{tot} ²	8.01	9.88	7.92	11.99	9.55	9.93	9.91	9.09	12.24	12.24	10.44	9.65
FeO	6.01	7.41	5.94	8.99	7.17	7.44	7.43	6.82	9.18	9.18	7.83	7.24
Fe ₂ O ₃	2.00	2.47	1.98	3.00	2.39	2.48	2.48	2.27	3.06	3.06	2.61	2.41
MnO	0.17	0.14	0.12	0.20	0.16	0.16	0.17	0.16	0.25	0.27	0.18	0.16
MgO	6.29	4.96	5.20	4.66	5.31	4.71	5.14	5.09	4.42	4.14	3.85	5.86
CaO	16.91	16.92	14.37	9.92	15.28	15.19	15.71	13.10	10.26	10.63	11.48	13.09
Na ₂ O	3.47	3.30	3.23	3.37	3.16	2.80	3.35	2.66	3.23	3.24	3.92	3.82
K ₂ 0	0.80	0.55	0.71	1.33	0.68	0.67	0.75	0.64	1.26	1.19	1.16	0.88
total	96.07	98.03	97.64	98.46	95.08	94.03	97.12	95.41	98.12	99.35	98.72	97.69
CaO/Al ₂ O ₃	1.01	0.98	0.71	0.64	0.88	0.88	0.88	0.74	0.66	0.64	0.68	0.74
Fo %'	88.70	85.70	88.60	85.70	84.80	84.30	86.20	86.30	83.50	81.70	88.40	86.50

Annexe 12: Compositions en éléments majeurs mesurées par microsonde ionique SX50, non corrigée de l'effet de cristallisation d'olivine aux parois

¹ a,b,c ... représente différentes inclusions mesurées dans la même olivines. La lettre v est attribuée aux golfes ouverts ² FeO total déterminer par la mesure de FeO. La proportion de FeO et Fe₂O₃ est recalculé avec 75% de FeO ³ Fo% dans l'olivine hôte, calculé a partir de l'équation: Fo = 100x[Mg/(Mg + Fe²⁴)]

	G05-06-46b'	G05-06-46c'	G05-06-46e'	G05-06-46f	G05-06-47	G05-06-48	G05-06-49a'	G05-06-49b'	G05-06-50v'	G05-06-51	G05-06-52	G05-06-54
0.0												
SiO_2	41.08	42.01	45.61	45.22	50.29	50.34	42.34	49.49	48.28	45.77	42.14	43.72
TIO ₂	1.16	1.13	0.91	1.13	2.11	2.17	1.22	1.80	1.46	1.16	1.25	1.79
Al ₂ O ₃	18.15	17.93	18.31	17.41	15.46	15.65	17.19	15.37	17.11	18.73	17.43	19.69
FeO _{tot} ²	10.71	10.62	9.27	10.09	9.76	9.55	9.82	11.59	10.83	8.47	8.75	7.00
FeO	8.03	7.96	6.95	7.57	7.32	7.16	7.37	8.69	8.12	6.35	6.56	5.25
Fe ₂ O ₃	2.68	2.65	2.32	2.52	2.44	2.39	2.46	2.90	2.71	2.12	2.19	1.75
MnO	0.19	0.21	0.15	0.15	0.14	0.24	0.16	0.31	0.27	0.18	0.13	0.09
MgO	5.88	5.51	6.76	5.86	4.21	4.14	4.78	4.33	4.55	6.66	5.60	4.98
CaO	15.12	14.94	11.25	12.74	9.40	9.20	17.17	10.45	11.15	13.47	16.83	11.92
Na ₂ O	2.76	2.68	3.33	3.87	4.04	4.05	3.57	3.22	3.50	3.60	3.49	4.15
K₂O	0.58	0.59	0.86	0.85	1.74	1.80	0.74	1.34	1.09	0.79	0.84	0.82
total	95.63	95.62	96.45	97.31	97.16	97.14	96.99	97.91	98.25	98.82	96.46	94.16
CaO/Al ₂ O ₃	0.83	0.83	0.61	0.73	0.61	0.59	1.00	0.68	0.65	0.72	0.97	0.61
Fo %'	86.50	86.50	86.50	86.50	90.30	87.00	88.00	88.00	89.50	89.50	88.70	90.00
	(<u>605-06-56a</u> '	G05-06-56b'	G05-06-57a	00 00 CO	G05-06-61a	G05-06-61b	G05-06-62a	605-06-63a	G05-06-64a'	G05-07-8a	G05-07-8b'	102-07-9a
SiO,	51.55	40.74	49.24	41.54	44.07	48.69	42.06	49.64	42.77	50.56	51.50	45.34
TIO,	2.09	1.31	1.86	1.21	1.08	1.70	1.07	1.93	1.20	2.31	1.97	1.09
Al ₂ O ₃	15.78	16.34	15.01	16.99	17.58	15.63	18.57	15.28	16.27	15.72	16.50	17.40
FeO _{tot} ²	8.34	8.99	11.20	9.48	8.47	9.67	7.11	10.68	9.15	10.11	9.63	8.73
FeO	6.25	6.74	8.40	7.11	6.35	7.25	5.33	8.01	6.87	7.58	7.22	6.55
Fe_2O_3	2.08	2.25	2.80	2.37	2.12	2.42	1.78	2.67	2.29	2.53	2.41	2.18
MnO	0.20	0.11	0.25	0.21	0.17	0.12	0.16	0.26	0.12	0.28	0.26	0.14
MgO	4.50	6.50	4.78	5.17	5.14	4.94	5.68	5.11	8.31	3.94	3.71	5.39
CaO	7.82	17.69	9.87	16.67	13.98	13.14	14.00	11.19	16.02	8.79	8.08	14.51
Na ₂ O	4.27	3.80	3.91	3.55	2.89	3.18	2.37	3.09	3.41	4.42	4.16	3.63
K ₂ 0	2.04	0.81	1.47	0.86	0.66	0.99	0.68	1.33	0.76	1.81	2.04	0.71
total	96.59	96.27	97.58	95.68	94.03	98.06	91.68	98.51	98.02	97.93	97.83	96.94
CaO/Al ₂ O ₃	0.50	1.08	0.66	0.98	0.80	0.84	0.75	0.73	0.98	0.56	0.49	0.83
Fo %'	89.50	89.50	89.00	86.70	88.30	89.00	90.00	87.00	87.00	89.00	81.00	90.00

(suite
12
эхэг
Anr

	G02-07-11a'	(<u>505-07-</u> 12a'	G05-07-43a'	GU5-07-13h	G05-07-13c	505-07-4344	G05-07-1340	505-07-1343	G05-07-14a'	G05-07-14b'
	811-10-000	B71-10-000	000-01-100	noi - 10-000	201-10-000		7401-10-000	CACI-10-000	B+1-10-000	
SIO ₂	46.23	44.84	45.48	42.11	49.80	47.62	49.13	47.74	44.35	44.98
TIO ₂	1.12	1.04	1.15	0.98	1.07	1.14	0.82	1.73	1.08	0.97
Al ₂ O ₃	18.69	16.89	18.46	16.62	18.44	20.53	24.17	15.41	18.49	17.06
FeO _{tot} ²	8.71	8.42	8.66	10.57	7.08	9.06	6.50	12.33	8.12	8.63
FeO	6.53	6.31	6.50	7.92	5.31	6.79	4.87	9.25	6.09	6.47
Fe ₂ O ₃	2.18	2.10	2.17	2.64	1.77	2.26	1.62	3.08	2.03	2.16
MnO	0.09	0.17	0.15	0.17	0.09	0.18	0.13	0.20	0.13	0.10
MgO	5.19	5.76	5.35	4.95	5.28	4.21	2.06	4.68	4.02	7.85
CaO	12.77	12.89	9.77	11.45	12.53	11.95	12.83	10.63	13.86	12.47
Na ₂ O	3.78	2.33	2.63	2.35	3.50	3.54	3.33	4.06	1.66	2.82
K ₂ 0	0.95	0.56	0.73	0.50	0.73	0.84	0.66	1.17	0.73	0.63
total	97.53	92.89	92.37	89.69	98.51	99.05	99.64	97.95	92.42	95.51
CaO/Al ₂ O ₃	0.68	0.76	0.53	0.69	0.68	0.59	0.53	0.69	0.75	0.73
Fo %'	87.00	87.00	87.30	85.80	88.60	87.50	87.60	87.70	88.50	88.50
	G05-07-14c	G05-07-15a'	G05-07-16a	G05-07-16b	G05-07-16d	G05-07-35	G05-07-36	G05-07-37a'	G05-07-37b'	G05-07-38
SiO ₂	46.74	46.38	49.43	49.77	48.79	49.12	43.12	44.71	43.63	50.06
TIO ₂	1.28	1.19	2.47	1.74	1.87	1.04	1.07	1.45	1.20	2.23
Al ₂ O ₃	17.64	19.26	15.14	17.26	14.82	17.29	16.09	18.60	17.56	16.12
FeO _{tot} ²	10.15	7.83	9.86	10.82	12.47	7.38	10.56	8.07	9.41	9.06
FeO	7.61	5.87	7.39	8.11	9.35	5.53	7.92	6.05	7.06	6.79
Fe ₂ O ₃	2.54	1.96	2.46	2.70	3.12	1.84	2.64	2.02	2.35	2.26
MnO	0.18	0.19	0.26	0.19	0.20	0.16	0.16	0.09	0.13	0.20
MgO	4.12	5.79	4.83	4.25	4.61	5.28	5.25	5.31	5.25	4.61
CaO	11.67	14.48	11.35	10.06	9.67	12.67	13.11	15.98	16.70	9.44
Na ₂ O	4.17	3.27	4.26	3.77	3.44	3.17	2.43	3.25	3.36	4.31
K ₂ 0	1.09	0.73	1.51	1.18	1.42	0.70	0.53	0.87	0.80	1.63
total	97.05	99.13	99.10	99.04	97.29	96.81	92.32	98.33	98.04	97.66
CaO/Al ₂ O ₃	0.66	0.75	0.75	0.59	0.65	0.73	0.82	0.86	0.95	0.59
Fo %'	84.40	88.70	84.00	87.70	88.30	87.50	85.60	87.20	86.40	87.00

	G05-07-39	G05-07-40	G05-07-41	G05-07-42	G05-07-14	GU2-U/-CD2	G05-07-66	GUD-U/-088	G05-07-69	G05-07-70	GUD-U/-/18	GU2-0/-/0-CU5
SiO ₂	41.80	42.84	44.40	46.79	44.22	55.35	41.18	43.79	45.86	44.71	42.99	42.51
TIO ₂	1.20	1.23	1.46	1.57	1.11	0.53	1.06	1.16	1.07	1.06	1.31	1.24
Al ₂ O ₃	20.58	18.71	16.86	15.01	17.51	13.59	17.95	18.70	17.52	18.20	16.97	18.13
FeO _{tot} ²	6.60	8.76	12.06	9.83	8.06	5.85	9.81	8.70	9.25	8.84	8.30	8.80
FeO	4.95	6.57	9.04	7.37	6.05	4.39	7.36	6.52	6.94	6.63	6.22	6.60
Fe ₂ O ₃	1.65	2.19	3.01	2.46	2.02	1.46	2.45	2.17	2.31	2.21	2.07	2.20
MnO	0.12	0.18	0.18	0.14	0.14	0.11	0.14	0.09	0.15	0.20	0.12	0.20
MgO	3.36	4.91	3.79	5.49	5.81	4.73	6.98	5.64	5.14	5.53	7.08	5.79
CaO	15.50	14.22	11.32	13.06	11.87	10.45	14.23	16.21	13.33	13.10	16.60	16.18
Na ₂ O	2.64	2.74	3.58	2.38	1.75	1.92	3.03	3.22	2.96	2.58	3.71	3.52
K ₂ 0	0.73	0.61	1.37	0.06	0.86	0.84	0.66	0.63	0.63	0.65	0.85	0.79
total	92.53	94.20	95.01	94.32	91.32	93.36	95.05	98.13	95.91	94.86	97.93	97.17
CaO/Al ₂ O ₃	0.75	0.76	0.67	0.87	0.68	0.77	0.79	0.87	0.76	0.72	0.98	0.89
Fo %'	90.80	88.70	87.30	87.40	90.20		91.00	90.90	90.60	90.50		
	1505-07-70a	COE 07 72	COE 07 74	COE 07 7E	.505-07-76a	G05-07-766	677-77-205	.977-70-202	COE 07 70	.602-07-79a	.502-07-803	CU5-07-806
0.0	10 000	51-10-000	41.00	C1-10-CDD	10 COO	10.00	11 22	10 70	01-10-COD	40.44	10.66	40.70
3102	43.10	40.30	41.00	40.73	43.00	40.04	41.22	40./0	41.23	40.4	49.00	49.12
TiO ₂	1.12	1.18	1.06	1.06	1.25	1.71	1.28	1.83	1.21	1.20	1.92	2.01
Al ₂ O ₃	18.93	18.76	16.74	17.44	17.28	15.31	18.07	15.26	17.44	16.05	15.13	16.30
FeO _{tot} ²	9.11	9.76	11.43	7.95	8.36	11.30	9.45	11.74	10.55	11.13	10.00	8.46
FeO	6.83	7.32	8.57	5.97	6.27	8.48	7.09	8.80	7.91	8.35	7.50	6.35
Fe ₂ O ₃	2.28	2.44	2.86	1.99	2.09	2.83	2.36	2.93	2.64	2.78	2.50	2.12
MnO	0.12	0.13	0.21	0.15	0.18	0.28	0.19	0.22	0.15	0.20	0.14	0.19
MgO	4.71	4.86	5.76	5.11	4.76	4.83	6.25	4.65	5.43	8.87	4.49	4.13
CaO	14.86	15.33	11.41	12.59	15.44	9.99	13.74	10.03	15.14	8.87	9.82	10.36
Na ₂ O	2.88	2.91	1.75	3.74	3.20	4.09	2.83	4.22	3.26	3.38	4.32	4.48
K ₂ 0	0.62	0.65	0.66	0.85	0.70	1.24	0.66	1.37	0.75	0.91	1.54	1.51
total	95.49	94.49	90.10	97.63	94.84	96.80	93.69	98.10	95.16	99.01	97.02	97.17
CaO/Al ₂ O ₃	0.78	0.82	0.68	0.72	0.89	0.65	0.76	0.66	0.87	0.55	0.65	0.64
Fo %'	91.50	90.50	89.10	90.30	88.70	88.70	91.50	91.50	88.20	90.00	88.40	88.40

	, U 2 0 4 U.	- UE UA 04P	00100			0010100	0010100		,900 U U U U U U U U U U		
	202-01-018	010-10-005	G05-07-82	G05-07-84	G05-07-85	G05-07-86	G05-07-90	G05-07-91	076-10-005	G05-07-93	G05-07-94
SiO ₂	50.80	51.77	49.36	48.59	42.59	43.54	46.82	50.04	49.65	51.82	54.37
TIO ₂	1.98	1.79	1.04	0.92	1.10	1.09	1.20	0.95	1.74	1.79	1.81
Al ₂ O ₃	16.80	17.31	20.20	19.61	18.19	17.91	16.83	18.85	13.73	14.13	18.27
FeO _{tot} ²	7.18	6.86	7.64	5.14	9.44	11.95	10.73	7.68	9.62	7.39	5.11
FeO	5.39	5.15	5.73	3.85	7.08	8.96	8.05	5.76	7.22	5.54	3.83
Fe ₂ O ₃	1.80	1.72	1.91	1.28	2.36	2.99	2.68	1.92	2.41	1.85	1.28
MnO	0.13	0.04	0.09	0.10	0.16	0.17	0.24	0.20	0.23	0.18	0.04
MgO	3.17	2.81	5.69	5.25	3.92	4.71	5.10	2.80	11.41	6.32	3.50
CaO	11.54	11.81	8.70	00.6	14.44	11.95	11.69	13.57	8.62	10.79	8.73
Na ₂ O	3.81	4.29	5.55	3.03	2.50	1.83	3.99	3.98	2.74	3.78	5.45
K ₂ 0	1.66	1.55	1.11	0.17	0.65	0.50	1.02	0.75	1.41	1.89	2.10
total	97.08	98.24	99.38	91.70	93.00	93.64	97.62	98.81	99.15	98.07	99.40
CaO/Al ₂ O ₃	0.69	0.68	0.43	0.46	0.79	0.67	0.69	0.72	0.63	0.82	0.48
Fo %'	85.70	85.40	85.40	87.00	84.00	83.00	88.50	87.80	86.97	84.88	88.85
	G05-07-95a	G05-07-95b	G05-07-97	G05-07-96a	G05-07-96b	G05-07-99a	G05-07-100a	G05-07-100t	o. G05-07-101a	G05-07-101b	G05-07-102
SiO ₂	48.34	40.23	51.34	48.86	44.13	51.60	48.07	45.06	45.19	45.92	56.70
TIO ₂	1.34	1.18	1.91	1.75	1.12	2.14	1.47	1.04	1.02	1.01	0.54
Al ₂ O ₃	18.72	16.38	15.56	15.20	15.66	16.56	16.02	16.56	15.89	16.29	16.12
FeO _{tot} ²	8.91	10.43	10.08	11.05	10.50	7.70	10.62	9.30	8.29	8.08	6.38
FeO	6.68	7.82	7.56	8.29	7.88	5.77	7.96	6.97	6.22	6.06	4.79
Fe ₂ O ₃	2.23	2.61	2.52	2.76	2.63	1.92	2.65	2.32	2.07	2.02	1.60
MnO	0.14	0.12	0.17	0.20	0.09	0.21	0.18	0.15	0.15	0.18	0.11
MgO	3.73	6.22	4.18	4.80	5.65	3.35	5.01	6.07	7.65	7.09	3.16
CaO	11.22	15.86	9.39	9.86	14.72	11.38	11.07	13.51	12.88	13.04	10.98
Na ₂ O	3.61	3.12	3.96	3.29	1.92	3.78	3.74	2.65	2.40	2.40	3.46
K₂O	1.02	0.71	1.84	1.42	0.46	1.68	1.17	0.56	0.56	0.60	1.23
total	97.04	94.25	98.42	96.41	94.25	98.40	97.35	94.90	94.04	94.62	98.68
CaO/Al ₂ O ₃	09.0	0.97	0.60	0.65	0.94	0.69	0.69	0.82	0.81	0.80	0.68
Fo %'	85.11	85.11	85.24	87.25	87.25	87.06	88.32	88.32	87.78	88.06	86.68

	G05-07-103a'	G05-07-103b	. G05-07-104a	G05-07-104b	G05-07-107	G05-07-107a'	G05-07-107b	G05-07-107c	G05-07-108a'	G05-07-108b	G05-07-109	G05-07-112
sio,	47.91	46.38	42.34	46.27	47.68	50.97	51.01	52.19	40.40	49.32	45.94	45.64
TIO2	1.26	1.26	1.10	1.15	1.70	2.08	1.71	1.54	1.10	0.89	1.17	1.31
	17.16	17.92	16.60	16.97	13.67	16.13	16.14	19.02	17.00	23.43	19.71	16.20
FeO _{tot} ²	7.87	7.74	9.52	8.44	11.86	6.25	7.31	6.15	10.96	4.98	7.58	10.40
FeO	5.91	5.80	7.14	6.33	8.90	4.68	5.49	4.62	8.22	3.73	5.68	7.80
Fe ₂ O ₃	1.97	1.93	2.38	2.11	2.97	1.56	1.83	1.54	2.74	1.24	1.89	2.60
MnO	0.14	0.14	0.09	0.15	0.29	0.15	0.06	0.10	0.16	0.05	0.18	0.20
MgO	5.08	5.16	5.07	6.03	8.19	2.82	5.20	3.09	5.49	1.94	5.14	5.93
CaO	13.77	13.95	13.79	13.22	8.87	11.22	10.75	11.48	15.30	11.98	14.32	12.20
Na ₂ O	3.70	3.77	2.21	2.92	3.10	3.96	4.65	4.37	2.83	3.40	3.38	3.38
K ₂ O	0.91	0.88	0.56	0.67	1.20	2.54	0.80	0.41	0.73	0.69	0.77	0.90
total	97.80	97.19	91.28	95.84	96.56	96.10	97.63	98.35	93.95	96.67	98.17	96.16
CaO/Al ₂ O ₃	0.80	0.78	0.83	0.78	0.65	0.70	0.67	0.60	0.90	0.51	0.73	0.75
Fo %'	87.12	87.12	87.63	87.63	85.80	85.60	87.24	87.24	86.23	86.23	90.00	89.43
	G05-07-113	G05-08-17b'	G05-08-18a'	<u>G05-08-18b</u> .	<u>G05-08-19a'</u>	<u>G05-08-19b</u> .	G05-08-20	G05-08-21a'	G05-08-22a ⁻	G05-08-22b'	G05-08-43	G05-08-44a'
SiO ₂	47.68	47.72	40.27	48.49	44.61	45.55	48.33	48.11	49.42	43.80	43.69	41.01
TIO ₂	1.24	1.83	1.11	1.73	1.09	0.91	1.60	1.61	1.91	1.13	1.05	1.23
Al ₂ O ₃	11.23	15.63	17.54	15.43	19.49	19.24	15.60	16.14	15.45	18.08	18.28	19.77
FeO _{tot} ²	9.68	11.92	10.67	11.46	10.65	10.39	11.09	10.49	12.23	9.29	8.28	7.50
FeO	7.26	8.94	8.00	8.60	7.99	7.80	8.32	7.87	9.17	6.97	6.21	5.63
Fe ₂ O ₃	2.42	2.98	2.67	2.87	2.66	2.60	2.77	2.62	3.06	2.32	2.07	1.88
MnO	0.17	0.24	0.17	0.26	0.21	0.09	0.21	0.25	0.25	0.21	0.16	0.20
MgO	18.63	4.41	5.62	4.86	4.47	4.73	5.03	4.04	4.39	5.21	6.95	4.03
CaO	6.97	10.24	15.12	10.27	12.24	11.62	10.40	11.34	10.01	13.10	13.11	14.86
Na ₂ O	2.29	3.75	3.10	3.97	3.30	3.03	3.80	3.83	3.61	2.69	2.51	3.15
K₂O	0.95	1.34	0.68	1.27	0.81	0.74	1.30	1.41	1.36	0.56	0.63	0.69
total	98.83	97.07	94.27	97.74	96.87	96.30	97.37	97.21	98.61	94.07	94.67	92.43
CaO/Al ₂ O ₃	09.0	0.66	0.86	0.67	0.63	09.0	0.67	0.70	0.65	0.72	0.72	0.75
Fo %'	88.57	88.00	86.00	80.50	84.00	86.60	89.00	84.00	87.50	87.00	86.30	89.30

Annexe 12 (suite)

	G05-08-44b'	G05-09-23a'
SiO ₂	40.82	49.42
TiO ₂	1.23	1.72
Al ₂ O ₃	19.49	17.06
FeO _{tot} ²	7.62	10.15
FeO	5.72	7.61
Fe ₂ O ₃	1.91	2.54
MnO	0.20	0.17
MgO	4.24	4.06
CaO	14.66	10.38
Na ₂ O	3.14	4.19
K ₂ 0	0.70	1.33
total	92.10	98.48
CaO/Al ₂ O ₃	0.75	0.61
Fo %'	89.20	89.00

de Grenade
(1.0 %pds)
$\overset{\circ}{\sim}$
2
Ŧ
primives
Iclusions
sir
ur le
olog po
Petr
giciel
2
'aide dı
à
ecalculées.
Compositions 1
13
Annexes

						,	,, _, _, ,					
	G05-07-66	G05-06-6a	G05-06-6b	G05-07-65a	G05-07-73	G05-07-72a	G05-07-77a	G05-07-68a	G05-07-9a	G05-07-14b	G05-07-69	G05-07-70
SiO ₂	42.92	44.42	44.74	54.07	43.15	44.25	43.43	43.65	45.67	46.42	46.32	45.89
TIO ₂	0.95	1.06	0.96	0.44	1.04	0.95	1.15	0.98	0.97	0.94	0.92	0.95
Al ₂ O ₃	16.13	16.50	16.66	11.36	16.55	16.03	16.21	15.83	15.44	16.52	15.13	16.25
Fe ₂ O ₃ ²	2.66	2.44	2.31	2.26	2.51	2.50	2.56	2.58	2.60	2.34	2.60	2.43
FeO ₂	7.82	7.74	7.52	7.68	7.40	7.64	7.79	7.37	7.35	7.27	8.07	7.84
MnO	0.13	0.16	0.07	0.09	0.12	0.10	0.17	0.08	0.12	0.10	0.13	0.18
MgO	13.30	13.17	12.80	13.06	12.58	12.99	13.25	12.53	11.13	11.01	12.22	11.88
CaO	12.79	11.30	12.50	8.74	13.52	12.58	12.33	13.72	12.87	12.07	11.51	11.70
Na ₂ O	2.72	2.64	1.81	1.61	2.57	2.44	2.54	2.73	3.22	2.73	2.56	2.30
K₂O	0.59	0.56	0.63	0.70	0.57	0.53	0.59	0.53	0.63	0.61	0.54	0.58
T°C³	1335.7	1331.5	1309.3	1324.5	1313.0	1322.2	1331.5	1312.8	1287.0	1278.6	1309.9	1297.6
Fo % ⁴	91	91	91	91	91	91	91	91	06	06	06	06
0IV % ⁵	14.6	19.8	15.4	19.3	17.5	19.1	15.9	16.3	13.5	7.1	16.7	14.8
۴d°	0.11	0.09	0.10	0.07	0.07	0.08	0.11	0.10	0.11	0.21	0.10	0.10
	G05-07-75	G05-07-14	G05-07-79a ¹	G05-07-39	G05-06-54	G05-06-62a ¹	G05-06-1a ¹	G05-06-1b ¹	G05-08-44a ¹	G05-08-44b ¹	G05-06-61b ¹	G05-06-51
SiO ₂	46.68	48.60	49.34	43.15	44.80	44.06	43.06	45.43	41.48	42.86	48.64	45.74
TIO ₂	0.84	1.16	1.17	1.00	1.60	0.97	1.02	0.99	0.95	1.10	1.52	1.09
Al ₂ O ₃	13.85	18.24	15.66	17.17	17.60	16.84	18.38	17.33	15.29	17.40	14.01	17.65
$Fe_2O_3^2$	2.87	1.71	2.26	2.56	2.39	2.51	2.43	2.33	3.35	2.71	2.55	2.31
FeO ₂	8.74	5.99	7.37	8.06	7.33	7.96	7.74	7.49	10.29	8.15	7.48	6.86
MnO	0.12	0.15	0.20	0.10	0.08	0.15	0.15	0.07	0.16	0.18	0.11	0.17
MgO	13.24	9.07	11.17	12.21	11.10	12.05	10.53	10.20	14.02	11.10	10.18	9.34
CaO	10.00	12.36	8.66	12.93	10.66	12.70	13.97	13.55	11.49	13.09	11.78	12.69
Na ₂ O	2.97	1.82	3.30	2.20	3.71	2.15	2.10	2.02	2.44	2.80	2.85	3.39
K ₂ 0	0.68	06.0	0.89	0.61	0.73	0.62	0.62	0.58	0.53	0.63	0.89	0.75
T°C³	1346.3	1212.5	1302.2	1304.7	1297.4	1299.6	1258.9	1247.2	1365.9	1286.5	1262.9	1241.3
Fo % ⁴	06	06	06	06	06	06	89	89	89	89	89	89
0IV % ⁵	19.9	6.3	5.2	20.7	14.2	14.7	13.9	9.4	24.6	16.1	12.4	6.5
Kd°	0.10	0.13	0.17	0.07	0.11	0.13	0.11	0.15	0.10	0.10	0.11	0.15
Ţ												

¹ "a, b, c.." indiquent que plusieurs inclusions sont présentes à l'affleurement. La lettre v est attribué aux verres. ² FeO est calculer pour 75% de FeO totale ³ La température d'homogénisation (et donc de piègeage) est calculée d'après le logiciel pétrolog. ⁴ Fo = Fo = 100x[Mg/(Mg + Fe²⁺)]. ⁵ Olv% correspond au pourcentage d'olivine cristallisée en bordure de l'inclusions. ⁶ Kd mesuré entre inclusion et olivine = (FeO/MgO)_o/(FeO/MgO)_{met}

		005 07 4 4-1	005 07 1 1F	005 07 45.1	001 00 01			001 00 100		001 07 10	12 20 200
	000-00-009	GUD-U/-14a	041-11-10-CNS	GUD-U/-128	GUD-UD-Z/	GUD-U0-49a	GUD-UD-018	20-00-005	GUD-U0-28D	GUD-U/-40	GUD-U/-/4
SiO_2	42.25	46.51	46.70	45.51	43.27	41.89	45.95	43.19	44.60	44.77	44.70
Ti0 ₂	1.29	1.00	0.99	1.08	1.32	1.00	1.03	1.19	1.06	1.17	0.99
Al ₂ O ₃	16.09	17.12	17.40	17.51	16.36	14.10	16.82	16.64	18.35	17.73	15.67
$Fe_2O_3^2$	2.86	2.34	2.33	2.44	2.79	3.65	2.49	2.80	2.43	2.46	2.93
FeO ₂	6.54	8.00	7.26	7.38	6.92	9.67	7.51	7.10	7.53	7.63	10.11
MnO	0.11	0.12	0.10	0.17	0.17	0.13	0.16	0.12	0.11	0.17	0.20
MgO	8.91	9.87	8.97	9.11	8.54	11.93	9.27	8.77	9.29	9.42	12.48
CaO	17.42	12.83	12.72	13.16	16.48	14.09	13.37	16.06	13.05	13.48	10.68
Na_2O	3.74	1.54	2.88	2.97	3.38	2.93	2.77	3.33	2.93	2.60	1.64
K ₂ 0	0.80	0.68	0.64	0.66	0.78	0.61	0.63	0.80	0.65	0.58	0.62
T°C³	1224.0	1237.9	1226.0	1231.2	1211.9	1319.3	1232.8	1220.3	1236.5	1234.8	1317.9
Fo % ⁴	89	88	88	88	88	88	88	88	88	88	88
0IV %5	5.3	13.7	2.0	8.3	5.1	18.0	9.5	7.4	10.0	10.4	15.7
Kd°	0.15	0.10	0.20	0.14	0.15	0.11	0.13	0.14	0.13	0.12	0.11
	G05-07-76a ¹	G05-07-78	G05-07-13c ¹	G05-06-64a ¹	G05-06-7a ¹	G05-07-12a ¹	G05-07-11a ¹	G05-08-22b ¹	G05-06-24	G05-07-35	G05-07-37a ¹
SiO_2	45.08	42.91	48.43	43.51	45.23	47.55	46.51	46.00	43.12	49.00	44.48
TiO ₂	1.17	1.12	0.96	1.22	1.15	1.05	1.05	1.10	1.23	0.97	1.35
Al ₂ O ₃	16.22	16.13	16.46	16.55	18.14	17.05	17.54	17.62	16.42	16.18	17.32
Fe ₂ O ₃ ²	2.67	3.06	2.37	2.75	2.43	2.32	2.49	2.45	2.93	2.38	2.60
FeO ₂	7.40	8.48	7.50	6.86	7.41	7.50	7.47	7.85	7.03	7.45	7.27
MnO	0.17	0.14	0.08	0.12	0.14	0.17	0.08	0.21	0.13	0.15	0.08
MgO	9.13	10.46	9.25	8.46	8.35	8.44	8.42	8.85	7.91	8.39	8.18
CaO	14.50	14.00	11.19	16.29	13.57	13.01	11.99	12.76	16.77	11.86	14.88
Na ₂ O	3.00	3.02	3.12	3.47	2.95	2.35	3.55	2.62	3.60	2.97	3.03
K₂0	0.66	0.69	0.65	0.77	0.65	0.57	0.89	0.55	0.86	0.66	0.81
T°C³	1229.5	1274.7	1242.8	1210.3	1207.9	1204.9	1224.1	1221.9	1196.4	1215.2	1201.3
Fo % ⁴	88	88	88	88	87	87	87	87	87	87	87
Olv %5	10.2	11.9	9.9	0.0	4.7	5.7	7.8	8.3	6.9	7.6	7.1
Kď	0.12	0.12	0.13	0.23	0.18	0.17	0.12	0.13	0.14	0.14	0.15

	001 01 100	001 07 102	001 07 10-1	001 07 40.00	001 00 10-1	001 00 101	001 00 00	001 00 00	001 00 101	001 00 10F	001 00 101
	G05-07-42	GUD-U/-13a	GUD-U/-13V	GUD-U/-13VZ	GUD-U8-188	GUD-U8-19D	GU2-00-60	GUD-U6-33	GUD-U0-46a	GUD-U0-40D	GU2-00-40C
SiO_2	48.75	48.43	46.87	45.96	42.48	46.45	41.88	47.43	44.56	41.31	42.10
TIO ₂	1.52	1.15	1.01	0.63	1.09	0.84	1.09	1.07	1.02	1.01	0.98
Al ₂ O ₃	14.52	18.42	18.18	18.60	17.20	17.81	15.29	17.43	15.76	15.85	15.48
$Fe_2O_3^2$	2.59	2.13	2.38	2.49	3.09	2.61	3.63	2.36	3.27	3.61	3.57
FeO ₂	8.23	7.82	7.97	9.06	8.58	8.83	9.32	7.61	9.54	10.79	10.80
MnO	0.14	0.15	0.16	0.10	0.17	0.08	0.19	0.16	0.14	0.17	0.18
MgO	9.27	8.80	8.98	10.21	8.87	9.13	9.64	7.87	9.87	11.15	11.17
CaO	12.63	9.75	10.58	9.87	14.83	10.76	15.00	12.84	11.65	13.20	12.90
Na ₂ O	2.30	2.62	3.13	2.56	3.04	2.80	3.20	2.61	3.40	2.41	2.31
K ₂ 0	0.06	0.73	0.74	0.51	0.67	0.69	0.77	0.63	0.78	0.51	0.51
T°C³	1227.3	1231.2	1240.4	1271.0	1231.1	1244.2	1261.7	1192.7	1275.1	1300.3	1299.3
Fo % ⁴	87	87	87	87	86	86	86	86	86	86	86
0IV %	5 8.8	7.6	11.9	20.9	7.5	10.9	11.4	6.4	10.5	13.8	14.8
۴d°	0.14	0.12	0.11	0.05	0.17	0.12	0.14	0.16	0.17	0.15	0.14
	G05-06-46e ¹	G05-06-46f ¹	G05-07-37b ¹	G05-08-43	G05-06-31	G05-07-36	G05-06-28a ¹	G05-07-13b ¹	8		
SiO_2	45.54	44.45	44.24	45.73	44.02	47.29	44.55	47.62	1		
TIO ₂	0.85	0.99	1.16	1.09	1.04	1.14	1.28	1.07			
Al ₂ O ₃	17.06	15.32	16.97	19.02	17.16	17.10	16.88	18.08			
$Fe_2O_3^2$	2.91	3.42	2.76	2.25	2.84	2.44	2.77	2.30			
FeO ₂	9.40	10.00	7.17	7.29	7.77	7.56	7.21	7.78			
MnO	0.14	0.13	0.13	0.17	0.16	0.17	0.14	0.19			
MgO	9.72	10.34	7.41	7.54	8.03	7.21	6.88	7.42			
CaO	10.48	11.21	16.14	13.64	15.04	13.94	16.54	12.45			
Na ₂ O	3.10	3.40	3.25	2.61	3.21	2.58	3.23	2.56			
K ₂ 0	0.80	0.75	0.77	0.66	0.72	0.56	0.54	0.54			
T°C³	1268.9	1290.8	1176.9	1178.4	1202.2	1168.2	1156.0	1179.7			
Fo % ⁴	86	86	86	86	86	85	85	85			
0IV %	5 7.6	11.8	5.2	0.7	7.0	3.7	4.6	4.6			
۶d	0.20	0.16	0.16	0.21	0.20	0.14	0.15	0.14			

a Guadeloupe
e 0
iclusions d
es ir
s S
stable
isotopes
ŝet
légers
majeurs,
i éléments
Compositions en
4
Annexe 1

	Inclusions vi	itreuses pié	gées dans de	es plagioclase	s et pyroxène	de la partie ;	andésite basa	altique						
	G1440-2a ¹	G1440-3	G1440-4a ¹	G1440-4b ¹	G1440-4d ¹	G1440-8a ¹	G1440-8b ¹	G1440-9a ¹	G1440-10a ¹	G1440-10b ¹	G1440-14a ¹	G1440-14b ¹	G1440-13	G1440-15
composit	tions en élém	ents majeu	rs (%) mesure	ées dans les i	inclusions									
SiO ₂	71.58	68.89	74.20	74.08	74.22	72.35	73.05	73.71	74.62	74.58	72.68	73.22	71.84	72.56
TiO ₂	0.36	0.49	0.57	0.63	0.36	0.44	0.43	0.71	0.46	0.46	0.54	0.44	0.52	0.47
Al ₂ O ₃	13.13	14.11	13.08	12.91	12.82	12.44	12.31	14.41	13.39	13.35	12.92	13.00	13.31	13.39
FeO	0.75	3.29	1.10	1.12	1.13	1.93	1.79	0.97	1.11	1.31	2.45	2.70	4.24	3.02
MnO	0.11	0.11	0.07	0.08	0.07	0.05	0.11	0.04	0.10	0.05	0.10	0.07	0.10	0.13
MgO	0.05	0.64	0.05	0.11	0.07	0.25	0.28	0.03	0.12	0.12	0.41	0.45	0.63	0.62
CaO	2.37	3.96	2.21	2.33	2.15	2.38	2.33	2.75	2.46	2.25	2.48	2.53	3.08	2.46
Na ₂ O	3.81	4.34	3.88	3.68	3.59	3.08	2.88	5.20	3.37	3.55	3.54	2.78	3.37	3.92
K₂0	2.12	2.10	1.71	1.54	1.77	2.08	2.16	0.38	1.34	1.80	2.71	2.60	3.02	2.24
total	94.3	97.9	96.9	96.5	96.2	95.0	95.3	98.2	97.0	97.5	97.8	97.8	100.1	98.8
composit	tions des min-	éraux hôte	(0											
An % ^z	77.8	59.6				62.7	62.7				58.8	58.8	65.0	69.2
Ab %³	21.8	39.5				36.8	36.8				40.5	40.5	34.5	30.3
or %⁴	0.3	0.9				0.5	0.5				0.6	0.6	0.5	0.4
°% مە			3.0	3.0	3.0			43.0	3.1	3.1				
En % ⁶			56.6	56.6	56.6			37.7	55.3	55.3				
Fs % ⁷			40.4	40.4	40.4			19.3	41.6	41.6				
Composi	tions en élén	nents légers	s (ppm) et isot	topes stables	() mesurées	par IMS1270								
Li ppm	n.d.	n.d.	17.0	21.8	15.5	6.4	8.7	n.d.	18.4	16.7	6.2	6.0	n.d.	n.d.
B ppm	n.d.	n.d.	29.7	32.3	28.4	10.2	20.7	n.d.	28.5	28.6	43.8	8.8	n.d.	n.d.
8 ′Li	n.d.	n.d.	-10.0	-26.8	-10.2	n.d.	-9.5	n.d.	-9.7	-9.9	0.9	-4.1	n.d.	n.d.
δ'' Β	n.d.	n.d.	-4.5	-41.1	0.3	n.d.	-23.9	n.d.	10.9	14.4	23.9	26.7	n.d.	n.d.

1 "a, b, c..." distinguent les différentes inclusions piégées dans un même cristal
2 An = 100 x Ca / (Ca+Na+Ka)
3 Ab = 100 x Na / (Ca+Na+K)
4 Or = 100 x K /(Ca+Na+K)
5 Woe = 100 x Ca / (Ca+Mg+Fe)
6 En = 100 x Mg / (Ca+Mg+Fe)
7 Fs = 100 x Fe / (Ca+Mg+Fe)

suite)	
e 14 :(s	
Annex	

								Inclusions home	ogénéisées da	ns plagioclases	s de la partie an	désite basaltiq	er
	G1440-16a ¹	G1440-16b ¹	G1440-16c ¹	G1440-17a ¹	G1440-17b ¹	G1440-18	G1440-19	G1440-23b ¹	G1440-23a ¹	G1440-21a ¹	G1440-21b ¹	G1440-21c ¹	G1440-20a ¹
compos	itions en éléme	ents majeurs (%	6) mesurées de	ans les inclusio	ns								
SiO ₂	71.93	73.48	73.19	69.82	69.69	71.23	74.93	71.85	74.28	71.76	73.66	72.63	73.15
TiO ₂	0.39	0.35	0.35	0.48	0.72	0.33	0.47	0.23	0.26	0.54	0.54	0.54	0.57
Al ₂ O ₃	12.97	13.15	13.48	12.85	13.05	13.50	12.52	13.42	12.93	13.99	13.89	14.07	14.47
FeO	2.98	1.11	1.19	3.64	4.34	3.37	3.11	2.80	3.01	2.40	2.94	2.51	1.90
MnO	0.07	0.09	0.07	0.06	0.15	0.12	0.08	0.04	0.08	0.04	0.03	0.10	0.03
MgO	0.46	0.07	0.08	0.78	0.77	0.47	0.52	0.50	0.54	0.42	0.53	0.44	0.29
CaO	1.89	2.07	2.13	2.79	2.84	3.32	1.92	2.79	2.48	3.17	2.95	3.40	4.07
Na ₂ O	3.48	3.72	3.70	3.88	3.53	3.27	3.77	3.72	4.04	3.15	3.99	3.89	3.09
K ₂ 0	2.35	2.19	2.24	2.53	2.77	2.76	2.22	1.90	2.11	1.82	2.07	1.91	2.06
total	96.5	96.2	96.4	96.8	97.8	98.4	99.5	97.3	99.7	97.3	100.6	99.5	9.66
compos	itions des miné	şraux hôtes											
An % ^z				73.6	73.6	61.7	57.0	73.2	61.2	50.5	60.09	60.2	73.9
Ab $\%^3$				26.2	26.2	37.6	42.3	26.5	38.2	44.3	39.4	39.1	25.6
Or % ⁴				0.3	0.3	0.7	0.7	0.3	0.6	5.2	0.6	0.6	0.5
°% م۷	2.5	2.5	2.5										
En % ⁶	57.8	57.8	57.8										
Fs %′	39.7	39.7	39.7										
Compos	itions en élém	ents légers (ppi	m) et isotopes	stables () mes	urées par IMS	1270							
Li ppm	25.4	26.7	24.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	15.0
B ppm	41.5	40.8	40.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
δ ′ Li	-27.3	-6.3	-3.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	12.4
δ'' Β	15.5	21.2	27.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	10.9

(suite)
14:(
Annexe

										Inclusions vitr	euses de la p	artie acide	
	G1440-20b ¹	G1440-20c ¹	G1440-24a ¹	G1440-24b ¹	G1440-24c ¹	G1440-25a ¹	G1440-25b ¹	G1440-26	G1440-27	GS5Aa-1a [']	GS5Aa-1b ¹	GS5Aa-2d ¹	GS5Aa-2c ¹
composi	tions en éléme	nts majeurs (%)	mesurées dan	is les inclusions									
SiO ₂	75.26	74.29	67.99	69.43	71.18	67.74	70.62	71.30	72.27	74.72	74.48	72.51	74.24
TIO ₂	0.53	0.39	0.60	0.77	0.66	0.67	0.38	0.55	0.41	0.40	0.45	0.59	0.59
Al ₂ O ₃	12.91	12.42	12.61	13.65	13.51	13.38	12.13	12.27	13.32	12.33	12.27	13.02	12.59
FeO	2.67	3.00	2.52	3.39	2.40	3.61	3.14	2.88	2.72	2.56	2.45	3.29	3.25
MnO	0.01	0.12	0.11	0.04	0.13	0.12	0.06	0.08	0.05	0.10	0.07	0.11	0.15
MgO	0.40	0.54	0.44	0.51	0.36	09.0	0.75	0.42	0.45	0.40	0.41	0.61	0.55
CaO	2.13	2.27	2.77	2.73	2.98	3.34	2.80	2.66	2.83	2.14	2.08	2.81	2.69
Na ₂ O	3.99	3.67	3.58	3.97	3.58	3.74	3.33	3.07	3.65	3.85	3.67	3.86	3.29
K ₂ 0	2.63	2.28	2.01	2.36	2.10	1.79	1.89	2.22	1.82	2.12	2.15	2.01	2.08
total	100.5	99.0	92.6	96.8	96.9	95.0	95.1	95.5	97.5	98.6	98.0	98.8	99.4
composi	tions des minéi	raux hôtes											
An % ^z	72.5	69.69	70.9	72.7	75.3	88.6	68.0	62.5	80.9	62.4	62.4	78.3	75.0
Ab $\%^3$	27.1	29.9	28.6	27.1	24.4	11.2	31.6	36.8	18.8	37.0	37.0	21.4	24.6
or %⁴	0.3	0.5	0.5	0.3	0.3	0.1	0.3	0.6	0.2	0.6	0.6	0.3	0.4
wo %²													
En % ⁶													
Fs % ⁷													
Compos	itions en éléme	ints légers (ppm	ι) et isotopes st	tables () mesur	ées par IMS127	20							
Li ppm	23.2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
B ppm	24.0	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
δ ′ Li	12.5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
8' 'B	10.4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

	GS5Aa-2e	GS5Aa-2b'	GS5Aa-2a'	GS5Aa-3	GS5Aa-4	GS5Aa-5a	GS5Aa-5b'	GS5Aa-6	GS5Aa-7	GS5Aa-8	GS5Aa-9a'	GS5Aa-9b'	GS5Aa-9c'	GS5Aa-10a
compos	itions en élém.	ents majeurs (%) mesurées d	lans les inclu	Isions									
SiO ₂	74.72	71.32	72.90	72.26	69.47	72.32	73.27	73.82	74.49	72.96	74.94	73.83	74.14	74.04
TiO ₂	0.54	0.46	0.44	0.53	0.48	0.39	0.55	0.55	0.41	0.40	0.50	0.44	0.65	0.52
Al ₂ O ₃	12.46	14.98	12.26	12.86	12.09	12.58	12.36	12.60	12.15	12.11	12.32	12.66	12.65	12.49
FeO	3.08	2.74	2.92	3.03	3.90	3.56	3.32	3.17	3.93	3.51	2.58	3.41	3.64	3.09
MnO	0.08	0.04	0.09	0.07	0.01	0.06	0.01	0.08	0.13	0.05	0.02	0.03	0.12	0.07
MgO	0.52	0.46	0.50	0.41	1.40	0.58	0.58	0.54	0.74	0.47	0.46	0.79	09.0	0.56
CaO	2.30	3.85	2.36	2.58	4.02	2.36	2.35	2.22	2.72	2.27	2.16	2.45	2.56	2.35
Na ₂ O	3.39	3.57	3.72	3.60	2.91	3.09	3.68	3.08	3.36	3.04	3.88	3.66	3.86	3.64
K ₂ 0	2.10	1.83	2.05	2.10	1.67	2.10	1.88	2.03	1.73	2.32	2.04	1.88	1.96	2.03
total	99.2	99.2	97.2	97.4	95.9	97.0	98.0	98.1	99.7	97.1	98.9	99.1	100.2	98.8
compos	itions des min-	éraux hôtes												
An %²	69.5	75.0	78.4			61.1	61.1	69.0			59.7	79.4	79.4	75.2
Ab $\%^3$	30.1	24.6	21.5			38.2	38.2	30.4			39.7	20.3	20.3	24.5
or %⁴	0.4	0.4	0.1			0.7	0.7	0.6			0.6	0.3	0.3	0.3
wo %،				41.9	42.5				2.8	42.7				
En % ⁶				38.3	37.5				56.6	37.9				
Fs % ⁷				19.8	20.0				40.6	19.5				
Compos	sitions en élém	nents légers (p	pm) et isotopes	s stables () r	nesurées pa	r IMS1270								
Li ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	20.3	n.d.	n.d.	n.d.	n.d.
B ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	46.3	n.d.	n.d.	n.d.	n.d.
δ ′Li	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	-8.4	n.d.	n.d.	n.d.	n.d.
δ'' Β	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	7.9	n.d.	n.d.	n.d.	n.d.

uite)	
14 :(s	
Annexe	

	GS5Aa-10b ¹	GS5Aa-11b ¹	GS5Aa-11c ¹	GS5Aa-12a ¹	GS5Aa-12b ¹	GS5Aa-12c ¹	GS5Aa-12d ¹	GS5Aa-12e ¹	GS5Aa-12f	GS5Aa-13a ¹	GS5Aa-13b ¹	GS5Aa-13c ¹
compos	itions en éléme	nts majeurs (%)	mesurées dans	les inclusions								
SiO_2	73.22	74.01	72.81	75.75	73.32	73.35	73.85	73.30	74.72	73.22	72.52	73.01
TiO ₂	0.58	0.41	0.37	0.47	0.36	0.31	0.40	0.40	0.58	0.66	0.59	0.58
Al ₂ O ₃	12.18	11.97	12.60	12.55	12.32	12.32	12.28	12.33	12.63	12.51	12.48	12.59
FeO	3.51	3.92	3.86	2.84	2.67	2.67	2.63	2.52	3.61	3.39	3.60	3.38
MnO	0.05	0.09	0.04	0.01	0.08	0.06	0.09	0.06	0.15	0.18	0.09	0.08
MgO	0.57	0.53	0.36	0.46	0.44	0.51	0.41	0.44	09.0	0.59	0.66	0.60
CaO	2.56	3.18	2.76	2.32	2.13	2.13	2.14	2.05	2.68	2.34	2.27	2.23
Na_2O	3.51	2.69	3.43	3.71	3.77	3.86	3.71	3.64	3.99	3.75	3.62	3.54
K ₂ 0	1.94	1.93	1.69	2.14	2.15	2.15	2.14	2.15	1.97	2.02	2.05	2.09
total	98.1	98.7	97.9	100.2	97.2	97.4	97.7	96.9	100.9	98.7	97.9	98.1
compos	itions des minéi	raux hôtes										
An % ²	74.9			71.1	71.1	71.7	68.1	68.1	68.1	66.8	66.8	66.8
Ab $\%^3$	24.6			28.3	28.3	28.1	31.3	31.3	31.3	32.7	32.7	32.7
or %⁴	0.5			0.5	0.5	0.2	0.6	0.6	0.6	0.5	0.5	0.5
wo %،		2.9	2.9									
En % ⁶		56.6	56.6									
Fs % ⁷		40.5	40.5									
Compo	sitions en éléme	ints légers (ppm)) et isotopes sta	ibles () mesuré	es par IMS1270							
Li ppm	n.d.	14.7	11.9	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
B ppm	n.d.	20.6	55.6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
δ ′ Li	n.d.	11.7	3.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
8'' B	n.d.	12.2	-7.8	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

_
(D)
ž
S.
\sim
4
<u> </u>
Φ
×
e
<u> </u>
5
<

	GS5Aa-13d ¹	GS5Aa-13e ¹	GS5Aa-14	GS5Aa-15	GSA-16	GSA-17a ¹	GSA-17b ¹	GSA-17d ¹	GSA-18a ¹	GSA-18b ¹	GSA-19	GSA-20a ¹	GSA-20b ¹	GSA-20c ¹
compos	itions en élémei	nts majeurs (%)	mesurées dan:	s les inclusior	SI									
SiO ₂	74.50	67.12	74.08	71.95	72.69	71.85	71.66	71.84	70.66	71.07	70.87	71.13	70.48	71.91
TiO ₂	0.59	0.37	0.54	0.41	0.51	0.48	0.46	0.45	0.40	0.47	0.57	0.44	0.39	0.49
Al ₂ O ₃	12.64	17.20	12.58	12.39	12.11	12.30	12.17	12.08	11.63	12.22	12.38	12.02	11.79	11.91
FeO	3.13	2.51	3.10	4.09	2.55	2.98	3.29	2.95	3.05	3.48	3.93	3.06	3.05	2.99
MnO	0.05	0.00	0.04	0.16	0.01	0.13	0.13	0.13	0.11	0.08	0.10	0.11	0.10	0.05
MgO	0.58	0.40	0.56	0.57	0.40	0.54	0.61	0.47	0.52	0.67	0.84	0.52	0.51	0.54
CaO	2.29	5.17	2.25	2.52	1.98	2.44	2.35	2.20	2.24	2.57	2.54	2.08	2.19	2.05
Na_2O	3.84	3.82	3.82	3.36	3.85	3.60	3.56	3.72	3.49	3.35	3.61	3.72	3.76	3.52
K ₂ 0	2.07	1.40	1.98	1.96	2.03	2.09	2.09	2.17	1.98	1.99	1.88	1.95	1.91	2.07
total	99.7	98.0	98.9	97.4	96.1	96.4	96.3	96.0	94.1	95.9	96.7	95.0	94.2	95.5
compos	itions des minér	aux hôtes.												
An % ²	66.8	66.8	62.1		61.1	69.0	70.5	70.5	58.8	63.7	62.3	73.5	66.0	66.0
Ab %³	32.7	32.7	37.2		38.5	30.5	29.1	29.1	40.7	35.6	37.2	26.3	33.4	33.4
or %⁴	0.5	0.5	0.8		0.5	0.5	0.4	0.4	0.5	0.7	0.5	0.3	0.6	0.6
wo %،				3.2										
En % ⁶				57.0										
Fs % ⁷				39.8										
Compo	sitions en éléme	nts légers (ppm)) et isotopes st	ables () mesu	urées par IN	AS1270								
Li ppm	n.d.	n.d.	n.d.	23.7	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	20.3	1.3	n.d.
B ppm	n.d.	n.d.	n.d.	35.4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	40.6	4.2	n.d.
δ ′ Li	n.d.	n.d.	n.d.	-7.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.2	n.d.	n.d.
δ'' Β	n.d.	n.d.	n.d.	-1.4	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	15.4	n.d.	n.d.

suite)	
14:(
Annexe	

GSA-20d ¹		GSA-21a ¹	GSA-21b ¹	GSA-21c ¹	GSA-21d ¹	GSA-21e ¹	GSA-22a ¹	GSA-22b ¹	GSA-23	GSA-24	GSA-25	GSA-26a ¹	GSA-26c ¹	GSA-26b ¹	GSA-27a ¹	GSA-27b ¹
	compos	itions en élén	nents majeur	rs (%) mesur	iées dans les	s inclusions										
72.30	SiO ₂	65.17	72.82	72.36	71.14	73.09	71.59	72.01	70.28	71.00	70.50	71.73	72.93	71.33	72.23	69.83
0.45	TIO ₂	0.40	0.42	0.52	0.55	0.51	0.43	0.46	0.77	0.56	0.55	0.52	0.48	0.41	0.61	0.64
12.09	Al ₂ O ₃	18.60	12.12	12.27	12.12	12.38	12.25	12.19	11.83	12.09	11.97	11.92	12.09	13.30	12.14	14.14
2.85	FeO	2.35	3.04	3.17	3.69	3.24	3.27	3.36	3.80	3.14	3.26	2.99	2.96	2.74	3.44	3.12
0.02	MnO	0.04	0.08	0.08	0.11	0.03	0.08	0.03	0.09	0.09	0.08	0.03	0.00	0.05	0.10	0.07
0.49	MgO	0.36	0.54	0.51	0.57	0.58	0.52	0.52	0.54	0.55	0.58	0.44	0.49	0.44	0.54	0.51
2.01	CaO	6.59	2.31	2.31	2.51	2.36	2.23	2.11	2.45	2.29	2.42	2.35	2.24	2.89	2.63	3.33
3.70	Na ₂ O	3.67	3.63	3.65	3.87	3.43	3.75	3.69	3.33	3.57	3.27	3.48	3.59	3.34	3.48	3.31
1.94	K₂0	1.34	1.97	2.01	1.93	1.97	1.98	1.90	1.74	1.97	2.05	2.01	2.01	1.83	1.87	2.08
95.8	total	98.5	96.9	96.9	96.5	97.6	96.1	96.3	94.8	95.3	94.7	95.5	96.8	96.3	97.0	97.0
	compos	itions des mir	néraux hôtes													
66.1	An % ^z	48.3	68.0	68.0	74.4	80.4	63.5	72.0	72.5	63.4	63.2	70.7	73.4	73.4	57.5	65.3
33.6	$Ab \%^3$	42.5	31.7	31.7	25.2	19.3	35.9	27.7	26.9	36.0	36.2	29.0	26.2	26.2	41.7	34.2
0.3	or % ⁴	9.2	0.3	0.3	0.4	0.3	0.6	0.3	0.6	0.6	0.6	0.3	0.4	0.4	0.8	0.5
	wo %،															
	En % ⁶															
	Fs % ⁷															
	Compo	sitions en élér	nents légers	(ppm) et isc	topes stable	is () mesurée	es par IMS12	270								
4.3	Li ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						
19.8	B ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						
-14.4	8 ′Li	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						
18.5	8'' B	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.						

Annexe 14:(suit	ê
Annexe 14:(;	suit
Annexe 1	4 :
Annexe	<u> </u>
Ann	ехе
	Ann

				1900 100			010 0 00	146 430	000 250	LASC ASC		000 000	1920 230	100 V 30	20 V 00	
	92-729	G2A-30	G0A-31	028-32D	608-328	GOA-33	G0A-543	GOA-54D	BCC-ACD	000-400	008-90C	60A-303	002-905	008-90C	G0A-31	G2A-38
compos	itions en élé	∳ments maj∈	aurs (%) m	esurées dan:	s les inclusic	suc										
SiO ₂	72.32	72.53	70.24	71.31	70.43	71.53	71.98	71.46	73.00	71.21	71.91	72.25	72.51	72.95	73.44	71.69
TiO ₂	0.69	09.0	0.47	0.45	0.37	0.57	0.46	0.45	0.46	0.52	0.57	0.46	0.42	0.55	0.33	0.49
Al ₂ O ₃	12.34	12.17	12.42	12.09	14.53	12.28	12.16	12.12	12.13	12.16	12.21	12.16	12.02	12.55	12.11	12.06
FeO	3.28	2.74	4.57	2.83	2.46	3.45	3.08	2.96	2.59	3.52	3.73	4.12	4.12	4.04	2.40	2.99
MnO	0.12	0.10	0.11	0.08	0.12	0.11	0.11	0.11	0.08	0.12	0.09	0.17	0.11	0.08	0.09	0.11
MgO	0.51	0.48	0.76	0.48	0.41	0.39	0.49	0.45	0.40	0.54	0.54	0.49	0.50	0.53	0.36	0.45
CaO	2.37	2.16	2.98	2.14	3.55	2.27	2.17	2.10	2.11	2.62	2.60	2.66	2.18	2.69	1.87	2.24
Na ₂ O	3.43	3.67	3.58	3.34	3.80	3.32	3.64	3.84	3.69	3.83	3.59	3.20	3.14	3.29	3.74	2.92
K ₂ 0	1.98	2.03	1.54	1.93	1.75	2.01	1.98	1.94	1.96	1.91	1.89	2.00	2.11	2.09	2.03	1.99
total	97.0	96.5	96.7	94.7	97.4	95.9	96.1	95.4	96.4	96.4	97.1	97.5	97.1	98.8	96.4	94.9
compos	itions des m	inéraux hôt	es													
An %²	66.1	61.2		65.0	58.3	73.2	57.8	71.3	68.3	59.9	62.4				65.1	80.4
Ab %³	33.3	38.4		34.6	41.1	26.5	41.3	28.4	31.3	39.6	37.1				34.5	19.3
or %⁴	0.6	0.5		0.4	0.6	0.3	0.8	0.3	0.4	0.5	0.5				0.4	0.3
wo %،			1.8									2.2	2.2	2.2		
En % ⁶			57.3									54.5	54.5	54.5		
Fs % ⁷			39.9									42.2	42.2	42.2		
Compos	itions en éle	éments lége	∋rs (ppm) ∈	it isotopes sta	ables () mes	surées par l	IMS1270									
Li ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2.1	11.3	1.6	n.d.	n.d.
B ppm	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	11.7	44.3	14.5	n.d.	n.d.
8 ′Li	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	-3.1	-4.7	n.d.	n.d.
δ'' Β	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	-21.0	-3.8	n.d.	n.d.

Annexe 15: Modèle B vs. δ^{11} B

La contribution des différents fluides, ainsi que les taux de fusion ont été estimés en utilisant un modèle B vs. δ^{11} B, modifié d'après Rose et al. (2001).

Le modèle présenté part de l'hypothèse de fusion d'un manteau métasomatisé auquel on ajoute deux autres contributions, provenant des fluides de déshydratation de la croûte océanique altérée et des sédiments. La source mantellique est supposée métasomatisée puisque toutes les inclusions de St. Vincent présentent un enrichissement en eau, chlore et bore auquel se superposent d'autres enrichissements. Le métasomatisme de la source est représentée par une droite de mélange isotopique, c'est-à-dire ne prenant pas en compte la concentration en B des pôles choisis, entre un pôle DMM (Chaussidon et Libourel, 1993; Chaussidon et Jambon, 1994) et un pôle représenté par un fluide de composition semblable à l'eau de mer (4.4 ppm B, $\delta^{11}B = +40\%$; Straub et al., 2002). Ce mélange linéaire implique une modification simultanée des teneurs en B et compositions en $\delta^{11}B$ et n'induit pas de notion de volume. De même, cela permet de s'affranchir de l'incertitide concernant les concentrations en B du fluide de composition isotopique proche de l'eau de mer. Ce fluide représente un des premiers fluides de déshydratation.

Le manteau métasomatisé est ensuite fondu. Le pourcentage de fusion de cette source modifiée est calculé en supposant une fusion par batch melting, suivant l'équation suivante:

$$C_{\text{liquide}} = C_{\text{initiale}} / D \times ((1-F) + F)$$

avec C la concentration, D le coefficient de partage magma/ roche et F le pourcentage de fusion. Le D_B utilisé est 0.015 (You et al., 1996), ce qui implique que plus la teneur en B est basse, plus le taux de fusion est élevé.

Deux pôles extrêmes de composition de la source métasomatisée ont été pris ici afin d'expliquer les variations de composition de la ligne de base des inclusions. Un premier pôle avec 0.9 ppm de B (18% de B provenant du fluide similaire à l'eau de mer) et un second, avec 1.8 ppm (40% de B ajouté) de B dans la source mantellique modifiée. Les taux de fusion varient de 10 à 20% pour les inclusions de St. Vincent les plus proches de la source métasomatisée (rectangle, Fig. IV.2). Les inclusions en dehors de ce rectangle ne peuvent pas être expliquées seulement par une variation du taux de fusion. En effet, les inclusions avec ~25 ppm B et $\delta^{11}B \sim +7-8\%$ supposeraient un taux de fusion de 5%. Les inclusions ayant des teneurs en B supérieurs à 25 ppm et $\delta^{11}B \sim +5\%$ impliquent des taux de fusion trop faibles. De même; les inclusions avec ~20 ppm D et $\delta^{11}B < -5\%$ ne peuvent dériver de la fusion d'une source DMM, car cela impliquerait des taux de fusion largement inférieurs à 1% (a recalculer avec la courbe masse a masse). De tels taux de fusion paraissent improbables. Le même raisonnement à été appliquer à Grenade.

Afin d'expliquer les variations de compositions en B et δ^{11} B, l'influence de fluides issus de la déshydratation de la lithosphère plongeante est nécessaire. Pour cela, les teneurs en
B et compositions isotopiques pour les fluides résultant de leurs déshydratations ont été calculées sur la base d'une distillation de Rayleigh, ainsi l'évolution des compositions de la croûte océanique altérée (AOC) et les sédiments après différents degrés de déshydratation. Le $D_B^{\text{fluid/solid}}$ utilisé est égal à 50 (Rose et al., 2001) et le fractionnement isotopique entre fluide et solide $\Delta_{\text{f-s}} = +5\%$.

Les courbes de mélange de δ^{11} B entre le magma issu de la fusion du manteau modifié et les fluides résultant de la déshydratation de la lithosphère océanique subductées montrent que les inclusions vitreuses de St. Vincent ont enregistré des contributions variables de ces fluides, allant jusqu'à 40% pour les fluides de déshydratation de l'AOC (à 4.5% de déshydratation) et jusqu'à 45% pour les fluides de déshydratation des sédiments (6% de déshydratation)

D'autres alternatives peuvent exister pour ce modèle:

1- Un mélange masse à masse, qui donnerait une courbe de mélange entre le pôle eau de mer et le manteau concave (Fig A) : l'ajout de B provenant d'un fluide de composition similaire à de l'eau de mer induit une modification plus rapide des compositions en $\delta^{11}B$. Cependant, il paraît peu réaliste physiquement de mélanger le manteau et l'eau de mer, surtout en quantités égales. Le modèle du B proposé ci-dessus ne propose qu'une modélisation de l'ajout de B par ce fluide. Les taux de fusion nécessaires pour expliquer les teneurs en B des inclusions avec un modèle masse à masse seraient beaucoup plus faibles: <1.5% pour les inclusions les plus pauvres en B. De tels taux de fusion paraissent peu probables, et ne sont pas en accord avec les compositions en éléments majeurs des inclusions. Ensuite, tenant en comptes l'influence des fluides issus de la déshydratation de la croûte océanique altérée et des sédiments, les compositions des inclusions pourraient également être expliquées par l'influence de deux fluides de déshydratation d'après ce modèle. Cependant, il est plus difficile de contrainte les taux de fusions, ainsi que les courbes de mélange entre les deux pôles de fluides de déshydratations. En effet, un grand nombre de courbes pourraient expliquer les compositions des inclusions. Il serait nécessaire de fixer au moins une des inconnues afin de quantifier les différentes influences. Le modèle de mélange isotopique était plus simple, tout en mettant en évidence à la fois les différentes influences et les taux de fusions sans fixer une de ces valeurs. C'est pourquoi ce premier modèle a été choisi afin expliquer les variations des inclusions de Grenade et St. Vincent.

2- Les estimations de quantités de B apportées par les fluides de déshydratation de la croûte océanique altérée et des sédiments peuvent être légèrement différentes. En utilisant un fractionnement de +1% (Rose et al., 2001), les proportions de B ajouté par ces 2 pôles seraient supérieures à celles estimées avec un fractionnement de +5%.

3- Le modèle pourrait partir de l'hypothèse d'une fusion puis d'ajout des trois différents fluides dans le magma. Cependant, ce modèle serait très aléatoire, puisque aucune données ne permettrait de s'arrêter sur un taux de fusion ni sur une quantité de B ajouté par tel fluide.

Fig.A : Modèle B vs. δ^{11} B supposant un mélange masse à masse entre le manteau et le fluide de composition semblable à l'eau de mer. Les taux de fusion nécessaire pour reproduire la composition des inclusions sont trop faibles (<1.5%).

4- Fusion après interaction avec les 3 fluides. Tout comme pour la proposition 3, ce modèle ne permettrait pas de fixé un pourcentage de déshydratation ni une quantité de B ajoutée.

En résumé, même si le modèle proposer n'est qu'approximatif, il reste la meilleure approche et permet de mettre en évidence l'influence des trois fluides, ainsi qu'une estimation maximale des taux de fusion.