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RÉSUMÉ: Modélisation des systèmes de transport Multimodaux de

Grands réseaux

L’objectif de ce travail consiste en la modélisation des flux de véhicules d’un grand et dense

réseau de transport multimodal. Le travail s’organise en deux parties: un aspect théorique

et un aspect développement. L’étude théorique met l’accent sur la façon dont un réseau

multimodal peut être modélisé et comment sa performance en termes d’offre peut être opti-

misée. Pour ce faire, trois études principales sont réalisées: la prévision et la régulation des

flux de trafic sur les grands réseaux de surface, la multimodalité véhiculaire dans les grands

réseaux de surface prenant en compte les nouvelles formes de mobilité, et enfin l’impact de

l’information sur le coût des itinéraires. La partie développement consiste en la conception

d’un simulateur de flux de trafic pour réguler le trafic multimodal véhiculaire. Le simulateur

développé devrait aider les opérateurs de transport et les collectivités territoriales dans leurs

stratégies de gestion des flux de trafic.

Mots-clés: modélisation bidimensionnel du trafic, offre et demande du trafic, affectation

dynamique réactive, optimisation.

ABSTRACT: Modeling of Multimodal transportation systems of

Large networks

The objective of this work consists on the modeling of traffic flow of a large multimodal

transportation network. The work is organized in two parts: a theoretical study part and

a development part. The theoretical study emphasizes on how a multimodal network can

be model and how its performance in terms of supply can be optimized. To do so, three

main studies are discussed: the traffic flow prediction and regulation on large surface net-

works, the vehicular multimodality in big surface networks taking into account new forms

of mobility, and finally the impact of the information on the cost of the itineraries. The deve-

lopment part consists on the conception of a traffic flow simulator to regulate the vehicular

multimodal traffic. The developed simulator should assist transport operators and territorial

communities in their traffic flow management strategies.

Key-words: bi-dimensional traffic modeling, traffic supply and demand, reactive dynamic

assignment, optimization.
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Chapter 1

General introduction

This chapter motivates our research, defines its context, and eases the readability of the

remainder of this report as it is indicated in the table of contents below. In Sec. 1.1 we

present the context of this report. Next in Sec. 1.2 we summarize the objectives of our

work in more detail, which all focus on the development of vehicular multimodal traffic

flow model for traffic flow management of big multimodal transportation systems. Finally,

we provide an overview of (i) all conventions & notations that we frequently use in the

remainder of this report in Sec. 1.3, and (ii) the structure of this remainder in Sec. 1.5.

Contents

1.1 Context & Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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The report lies on the crossroad of system of hyperbolic partial differential equations,

traffic flow theory, convex optimization, and transport simulation. In our work we use ma-

thematical approaches to develop right vehicular traffic flow models specific to the type and

the topology of the transport networks. The models can be used as decision supports for the

management of the traffic of urban networks.

1.1 Context & Problem formulation

Naturally, transport models are complex. Most advanced models that allow a relative under-

standing of large systems are majority in static. Dynamic models have just emerged. Their

-21-



resolution is very complex and it requires a prohibitive computational time. In a dynamic

setting, macroscopic models do allow to get several properties of traffic flow on a road’s

stretch (meaning the highway). It is therefore quite reasonable to think to get a new ge-

neration of models which provide efficiency in a larger scale. That means to develop right

transport models for very large networks. This report provides solid mathematical models

able to reproduce traffic flows of transport networks at certain level-of-details. The models

are capable of reliability with large surface network where traffic data are difficult to acquire

due to insufficient traffic count sensors over such networks.

The challenge of the thesis is to design a dynamic and multimodal realistic macroscopic mo-

del that takes into account particular vehicles, electric and autonomous vehicles, and buses

for the mass transportation. The final model is handy for the numerical calculations. It

understands and performs several tasks such like:

• calculation of traffic indicators as travel costs, instantaneous travel times;

• calculation of dynamic multimodal shortest paths taking into account the variability

of the traffic, and the sudden changes derived from a huge number of interactions of

vehicles within a dense network;

• computation of traffic flow, traffic density and traffic speed in any location of a consi-

dered surface network.

1.2 Research objectives

The research we present in this thesis is a part of the MIC (Modeling - Interoperability -

Cooperation) project of the ‘Smart Territories’ program at IRT SYSTEM X (an Institute for

Technological Research). The MIC project aims at (refering to http://www.irt-systemx.

fr/en/project/mic/):

• develop technologies that improve multimodal travel, principally in urban areas, firstly

by optimizing the means of transport (capacity, performance, and energy consumption)

and, secondly, by providing supervision within transport systems, allowing optimal

operational running within the day-to-day reality of needs and unpredictable factors;

• demonstrate the usability of the technological components developed through the use
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of demonstrators representative of real-life situations, and evaluate the associated eco-

nomic models;

• extend the capabilities of system development environments, to effectively implement

a “systems of systems” dimension compliant with security of operation requirements;

• specify the open systems of systems architecture with regards to an attractive number

of project models for the various players in transport systems;

• facilitate the analysis of alternatives, from both a “business” and “technical” angle,

by constructing a modeling framework interlinked with these two aspects, allowing

the description of different “structured” scenarios, and enabling their verification and

comparison.

Within the MIC project, this Report comes up with solutions to efficiently reduce traffic con-

gestion on large surface networks by means of Reactive Dynamic Traffic Management. In

the sake of improving congestion management, our approaches consider the freeway net-

works and the underlying urban and rural networks in an integrated way. We develop a

multi-scale model in response to traffic congestion issues on very large networks. In our

study, we account intelligent demand responsive systems. We then integrate in the proposed

multi-scale model an archetype transport model of an intelligent transportation system. This

transport mode is coordinated - rather than isolated from - with the other transport modes

of the multimodal system. Therefore, the thesis develops an archetype multimodal macro-

scopic transport model for large networks comprising a surface network, the transit lines

and an automated system such as a railway intelligent transportation system. We propose a

developing multi-scale model comprising three specific traffic flow models:

• microscopic transport model for an intelligent transportation system, in particular for

a personal rapid transit system.

• model of multimodal traffic flow relying on main road links and public transport lines.

This model consists of two coupled models of similar structures. They are the follo-

wing: the GSOM (Generic Second Order Modeling [50]) family model (or a multiclass

traffic flow model) and the dynamic model of transport based on users’ activities (de-

veloped by Ma in [61]). The former model expresses a system of conservation equa-

tions on a graph. Its Lagrangian form is implemented. Afterwards, it is coupled with
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the latter model which distinguishes the passenger flow and vehicle traffic (see [60]

and the references therein).

• two-dimensional (or bi-dimensional) dynamic traffic flow model applied to very large

surface networks. Given the fact that, road stretches in dense transport networks are

very numerous, and it is impractical to collect data on each one of them, we provide

a high level aggregation of the large and dense road networks. This consists on two

approximations. The first is the approximation of the corresponding network domain

of the large surface network by an anisotropic medium with preferred directions of

propagation of the traffic flow. The second is the approximation of the traffic flow by

a two-dimensional fluid flow. We take as a starting point the works on bi-dimensional

models introduced in Saumtally [77].

The validation process of the developed multi-scale traffic flow model is supported by quasi-

real data of a multimodal transportation system.

1.3 Conventions & Notations

We use some terms of transport mobility, traffic flow theory, partial differential equations and

scientific computing that one may not be familiar with. Thus, here are some brief definitions

listed in the table below.

PRT personal rapid transit

MTF macroscopic traffic flow

BTF bi-dimensional traffic flow

DRS demand responsive system

MHI multiscale hybrid and integrated

FD fundamental diagram

MFD macroscopic fundamental diagram

NFD network fundamental diagram

Table 1.1: List of abreviations
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U • defines an open and bounded subspace of Rd , d = 1, 2

C0([R+ × U]) • set of continuous functions of two variables named t and x ,

with t ∈ R+ and x ∈ U

C1
c ([R

+ × U]) • set of continuously differentiable functions with compact support

in R+ × U

L∞(Y ) • set of infinitely integrable functions on the space Y

Table 1.2: Some mathematical sets

t : the time in the space R+

x : the position/location in the open and bounded space U

ρ(t, x) : traffic density at the time t and the position x

ρ̃(t, x) : traffic lineic density at the time t and the position x

in a specific direction of flow propagation

v(t, x) : traffic speed at the time t and the position x

x− : the position immediately upstream to the position x

x+ : the position immediately downstream to the position x

∆e(ρ(t, x−), x−) : equilibrium traffic demand upstream to the position x

at the time t

Σe(ρ(t, x+), x+) : equilibrium traffic supply downstream to the position x

at the time t

∆(ρ, x) : traffic demand field at the position x

Σ(ρ, x) : traffic supply field at the position x

Qe(ρ, x) : equilibrium traffic flow at the position x

q(t, x) : traffic flow at the time t and the position x

q̃(t, x) : traffic lineic flow at the time t and the position x

in a specific direction of flow propagation

QI(t, x) : traffic Inflow at the time t to the location x

QO(t, x) : traffic Outflow at the time t from the location x

Table 1.3: Some notations and variables
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1.4 Scientific Publications

Table 1.4 below lists all our publications that have been published until the compilation of this

report. The table indicate the underlying mathematical models (PRT: personal rapid transit,

DRS: demand responsive system, MTF: macroscopic traffic flow, BTF: bi-dimensional traffic

flow, RDTA: reactive dynamic traffic assignment, MHI: multiscale and hybrid integrated),

and their contributions to the specification or computation of the final integrated model.

Publication Model Major Contributions

[Sossoe 2016], RDTA • Ventilation of the traffic flow through the set of

ICSS’16, Poland directional inflows and outflows of 2d traffic zones

• Logit assignment of vehicles

• Reactive assignment scheme which

describes traffic variability in time

[Sossoe 2015b], BTF • High aggregation of road links and intersections

TGF’15, Netherlands in two-dimensional traffic zones

• Specific directions of propagation of traffic flows

through traffic zones

• Bi-dimensional flow estimation engine

[Sossoe 2015a], PRT • Time-dependent arrival of passengers at portals

EWGT’15, Netherlands & which define passengers’ travel demands

DRS • SkyTran system supply optimization to respond

to passengers’ travel demands

[Sossoe 2014], MTF • Sections, intersections, and its capacities which

ICNAAM’14, Greece define road network infrastructure and supply

• Multiclass multilane FDs which define

specific class traffic speeds equilibrium

Table 1.4: List of our publications.

1.5 Outline of this Report

This section provides the outline of this Report and briefly gives information about each

chapter.
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Chapter 2 presents an overview of the state-of-the-art of multimodal network mobility and

specific traffic flow models derived from the traffic flow theory. In this chapter, we discuss

the advantages and disadvantages of different traffic modeling approaches: both approaches

used in macroscopic and two-dimensional traffic flow modeling. Furthermore, we discuss

about macroscopic transport simulators as decision supports in the traffic flow management

and controlling of large scale multimodal transport networks.

Chapter 3 is based on Saumtally et al. [78] and Sossoe and et al. [81]. It focuses on the

methodology of the simplification of a surface network by a high level of aggregation of its

links and intersections. It specifies the type of network for which this network simplifica-

tion approach fits properly. The resulted traffic flow model predicts traffic dynamics of large

anisotropic network from scarce transport data.

Chapter 4 is based on personal rapid transit transport models of the literature, the work of

Sossoe and Lebacque [83], on Farhi et al. [18] and Sossoe and Lebacque [82]. On the one

side, we study in Section 4.2 a specific system, the skyTran autonomous intelligent trans-

portation system for mass transportation. This system is a Personal Rapid Transit (PRT for

short) system. It is the better way to reach one location in no time. On the other side, since

other traditional modes of transportation are available as services to mobility, we develop

for the traffic prediction on a multimodal road transport network, in Section 4.4, a multi-

class multilane macroscopic transport model. It comprises a system of conservation laws that

govern traffic dynamics on road stretches and intersections. They take into account traffic

interactions of vehicles, from different transport modes, moving on shared roads and dedi-

cated roads.

Chapter 5 concerns multiscale coupling of different traffic flow models. We present traffic

interactions between highways and secondary roads, and validate the approach by numerical

test. This chapter highlights further interactions between different transport modes/forms

of mobility used in a multimodal transportation system. This results in a multiscale traffic

flow simulation model for large multimodal transportation system.

Chapter 6 is based on Sossoe and Lebacque [84]. It is related to traffic assignment especially

the reactive dynamic traffic assignment of large surface networks.

Chapter 7 concludes this Report and gives some research directions for the future.
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Chapter 2

Background and Related work

2.1 Introduction

This chapter provides an introductory to mobility in transport networks, to the traffic flow

theory, dynamic traffic assignment and macroscopic transport simulators. It shall highlight

traffic flow models and what is called the reactive dynamic traffic assignment. It shall also

aid to respond to below issues which are still very much alive today. How should we model

a multimodal transportation system ? How can we properly estimate traffic states of large

and dense surface networks ? What are solutions to traffic breakdowns and traffic

congestion in the big transport networks ?
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Context

Technologies have been evolved considerably in industrialized cities. We note the emergence

of different intelligent transportation systems and transport services. For instance there are

the personal rapid transit system, the system of communication between vehicles and also

between vehicle and its environment. There are also new uses of certain modes of transport.

We note carpooling services, ride and share services, users’ services provided by demand

responsive systems, etc. In a multimodal transportation system which is equipped with such

technologies along with these uses, how can we contribute in a very truthful intermodality

between the different monomodal transportation systems ? The goal will be to get a fairly

realistic model of traffic flow for large multimodal transport networks.

Organization of the chapter

We shall review the mobility in multimodal transport network, some traffic flow models and

macroscopic transport simulators. We discuss about these in Sec. 2.2 and Sec. 2.3. We high-

light the law of the minimum between the traffic supply and the traffic demand. It induces

that the performed traffic demand in a network cannot be greater than the traffic supply itself.

Traffic demand and supply are very correlated by this physical law. The so-called macroscopic

and bi-dimensional traffic flow theories get our intention along the review. We introduce how

so far the bi-dimensional traffic flow theory can help in routing strategies within large-scale

surface networks. It is a parallel framework to that related to the macroscopic fundamental

diagram which provides the relation between the number of vehicles and the network per-

formance. One can apply traffic control on these both ways of the large networks modeling:

the bi-dimensional modeling and the modeling by the macroscopic fundamental diagram or

the network fundamental diagram. The objective is to overcome computational complexity

of network-wide control using traditional control levels of links or vehicles. Besides, still in

Sec. 2.2 (i) we discuss about the topology structure and the different layers of multimodal

transport network. Further, (ii) we provide an overview of different methods to extract spa-

tial structure of cities. That is to say the spatial distribution of the population in a city. It
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helps to better understand and describe the mobility in the cities.

2.2 Mobility in multimodal transport network

Mobility is fundamental in big cities. People move, travel for infinite reasons. These move-

ments or displacements are carried through available means of mobility and transport re-

sources. Since there are different modes of transportation in industrialized cities, to move

from one location to another location, one regularity take more than one mode of transporta-

tion in daily trips. These mobilities imply interactions of solicited modes of transportation.

They give rise to traffic incidents, for instance traffic jams, traffic breakdowns, traffic acci-

dent and time delays. The variability of traffic is complex. It is more complex when different

transport modes operating by separated systems are involved. Such a global transport system

is called a multimodal transportation system. The word “multimodal” refers to the different

transport modes, transport services, and traffic services available for the global system. Let

us give in the next section a clear definition of a multimodal transport network with respect

to two major aspects: the physical and the functional points of view.

Multimodal transport network

Definitions

There are many definitions to the multimodal transportation system, since a transportation

system is too complex to have a clear and straightforward definition, as it depends on the

perspective. A multimodal transportation system can be defined from the point of view of

transport modes. A transportation system is described in term of its components associated

with specific means of transportation and its services [64]. Main components of transporta-

tion system are the corresponding network, routes, intersections, junctions, stops, terminals,

stations, hub stations. There are also control centers in the case of a public transportation

system, a demand responsive transport system, a personal rapid transit system, an operating

center for taxi services, etc. A transport network is a set of routes and intersections. A route

is simply a single physical link between two locations. An intersection is a merge or diverge

junction of several road sections. Other components are the hubs, stations, exchange nodes

and terminals. They are the contact or exchange points where people may change from one

mode of transportation to another within a multimodal transport network. The following

summarizes what is a multimodal transport network/system.
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a-/ A multimodal transport network is a collection of networks (or sub-systems), each net-

work representing one mode of transportation. Each mode of the whole system com-

prises routes. Some of the latter bind up the separate networks (or the monomodal

networks) by the connection points or transfer nodes [89].

b-/ Multimodal transportation system is the set of several modes of transportation, their

operating systems with their offered transport services.

c-/ From the user point of view, multimodal transport network is as simple as a physical

network in which people could travel from one location to another location throught at

least two means of mobility [64].

d-/ Multimodal transportation system is transportation system that provides to users parti-

cularly transport services of different travel models. On the one side, such global system

comprises public and private vehicle modes which are divided among the network le-

vels such like urban/suburban, regional and national levels. The service levels are the

mass transportation, responsive and/or sharing services, and the personal uses. The

first are such like the metro, tram, train, and bus. The second are car-sharing, demand

responsive transport, carpooling, car-rent. The latter are trips via its own cars and also

carpooling. On the other side, physical networks comprise transport infrastructures for

the all transport modes. Figure 2.1 depicts the vehicle modes, types of function and

service levels of a multimodal transportation system.

In this report, we take into account both the physical and functional standpoints of the defini-

tion of a multimodal transportation system, regarding transport modes, their corresponding

physical networks (meaning the traffic services) and the transport services.

Structure of multimodal transport network

We have seen that there are two categories of transport networks:

• transport services or network services, for instance the bus or train services;

• traffic services or physical networks such as roadways or railways.

The transport service is always related to a physical network. Main characteristics of any

transport network from the user’s point of view are travel costs and travel time. The latter
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two are computed with respect to network characteristics and the variability of the traffic.

Transfer links and transfer nodes are mandatory in a multimodal transport network. Com-

bining private transport and public transport in a truly multimodal transport system offers

opportunities to capitalize on the strengths of the different monomodal transport systems.

The requirements for such a multimodal transportation system, however, are high. Users

have to be aware of the possibility for changing vehicle modes and the related benefits.

Thus, a high quality travel information is crucial. It shall come up from an advanced user

information system. Transfers between transport modes, and the transport services should

be seamless. It is appeared that a multimodal transport network can be approached by the

supernetwork theory. Relations between networks could be identified by the physical trans-

fer nodes, links, and hubs, or by a virtual transfer-network. Transfer nodes of a transfer

network are nodes that connect different network modes to a larger network wherein the

whole system shall operate differently compared to the separate systems. Let us give some

details on the following.

(a) The traffic transfers. Using at least two modes, a traffic transfert is mandatory. That is

done through a transfer node. Let us recall that a transfer is related to an inter-modal

transfer.

(b) The network modes and transport services. They are closely related and at the same time

have different meanings. A typical example of the usage of the term mode is in the mode

choice model, in which the user’s choice is between for instance cycling, taking a personal

car or a public transport. In this context the term mode is usually associated with the

vehicle used. However, in the case of a public transportation, the term mode is related to

the service characteristics. It is not specifically related to types of vehicle such as the bus,

tram, metro neither the train. Since multimodal travel is strongly related to transport

services, the term mode is hence usually related to service modes. Further, in the case

of common transport services, different types of transport services are distinguished,

because of their different characteristics as their accessibility, speed, frequency, rates

and vehicles used. Multimodal trip thus concerns transfers between different transport

modes and the transport services used. Figure 2.1 depicts the classification of transport

modes with function levels, network levels, and service levels.
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Figure 2.1: Classification of transport modes, related functions and service levels.

(c) The walking. Walking is nearly always part of a trip. Users walk from home to station,

office to station and from many other locations to a station, in the hubs and also via the

correspondences.

Modeling

In this subsection, we respond to the question: “How we should model properly multimodal

transport network for an advanced traveler information of a multimodal transportation sys-

tem”. We know that transport networks modeling relies on the graph theory. Most common

definition of the network is to regard it as a set of nodes together with a set of links; each link

connects a pair of nodes. For public transport networks, this type of representation includes

public transport lines. It results in a set of connected links, nodes and bus time tables (or

bus schedules). This type of description is appropriate to transportation network modeling.

It allows to describe all kinds of transportation networks found in practice. Let us denote

by G = (V, E) a directed multi-graph of a multimodal transport network. We assume that G

has mixed weighted time-dependent and time-independent arcs. G is either a set of graphs:

G =
�

⋃

`∈Λ
G`
�

∪ Gb. ` is the index of the network and Λ is the set of all the networks of the

multimodal transport network. For ` ∈ Λ, G` = (V`, E`) with V` the set of vertices (or nodes)

of the graph G` and E` the set of its arcs. The whole transport system shall be model as a

supernetwork with regard of its whole physical network and transport services. Figure 2.2

depicts the layers of a multimodal transport network, as well as the connections between the

layers.
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Figure 2.2: Representation of a multimodal transport network.

Mobility networks

Regarding any transportation system, it is relevant to have clear knowledge of existing forms

of mobility related to the physical network. In the acquisition of transport data, one extract

what it is called origins-destinations matrices. They represent the performed users’ demands

over the considered network. In reality, these matrices are time-dependent. Methods have

been developed to extract from origin-destination matrices a spatial distribution of the po-

pulation of cities. The spatial distribution determines major activities of cities concerned.

In most cases, Origin-Destination (OD) matrices are classified into two types of flows: in-

tegrated flows (between residential and employment hotspots) and random flows, whose

importance increases with the size of the network. Let us mention the “ICDR” method, de-

veloped by [58]. ICDR is the acronym for Integrated, Convergent, Divergent, Random. The

method allows the extraction of a coarse-grained signature of mobility networks under the

form of a 2× 2 matrix that separates network flows into four categories (2.1).

Definition 2.1 (Coarse-grained models). Coarse-grained models are computational

models that mimic the behavior of a complex system by breaking it down into simpler sub-
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components. The extent to which the system is broken down reflects the degree of granularity of

the model in question.

In transportation field, a coarse-grained signature of mobility refers to one larger granu-

larity of trajectories of displacements induced by users’ mobility in the city. Such signature is

obtained by analyzing for example users traffic data such as data on tickets validation from

validators transport tickets. So a coarse-grained signature of mobility network gives a clear

spatial distribution of users’ displacements over the city whose network is considered.

The method ICDR takes into account all types of flows of networks, and is more general

for the extraction of high level information of any weighted and directed graph. In that

context, denoting by Λ =
�

Fi j

�n
i, j=1 an OD matrix, Fi j is the number of users living in the

location i and commuting to the location j where they have their main and regular activities.

For a given city network, the method reduces the OD matrix to a 2× 2 matrix

Λ=





I D

C R



 . (2.1)

The main variables I , C , D and R are defined as following.

I =
∑

i=1...m, j=1...p

Fi j/
∑

i, j=1...n

Fi j

is the proportion of Integrated flows going from residential to work hotspots.

C =
∑

i=m+1...n, j=1...p

Fi j/
∑

i, j=1...n

Fi j

is the proportion of Convergent flows going from random activity places to work hotspots.

D =
∑

i=1...m, j=p+1...n

Fi j/
∑

i, j=1...n

Fi j

is the proportion of Divergent flows going from residential hotspots to random activity places.

R=
∑

i=m+1...n, j=p+1...n

Fi j/
∑

i, j=1...n

Fi j

is the proportion of random flows that occur “at random” in the city. These random flows

come from some places and are going to other places which both are not hotspots.
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Figure 2.3: Illustration of the ICDR method - OD Matrix of city network falls down in a
hotspots’ classification.

Let us recall that the method decomposes the commuting flows in the city in four categories:

the Integrated flows (I) from hotspot to hotspot, the Convergent flows (C) to hotspots, the

Divergent flows (D) originating from hotspots and, finally the Random flows (R) which are

neither starting nor ending at hotspots. For a city, from origin-destination matrices one com-

putes the four types of flows. That gives the picture of the mobility structure in the city.

The ICDR method comprises several steps. The first step relies on the identification of origin

and destination hotspots. It can be performed with any reasonable method. The second step

consists in aggregating the flows in four different types, depending whether they start from

a hotspot or end to a hotspot or none of the above. This method shows that independently

of the density threshold chosen to determine hotspots, the proportion of integrated flows (I)

decreases with the city size, while the proportion of random flows (R) increases. When the

size of the city increases, the largest impact relies on convergent flows (C) of the users that

live in smaller residential areas (typically in the suburbs) and the commuting to important

employment centers. The classification of cities based on the ICDR values highlights the

relationship between the size of the urban population and its commuting structure.

Network planning

Many software and strategical processes have been developed encompassing topological de-

sign, network-synthesis, and network-realization. There are several microscopic models and

macroscopic models or continuous models that have been developed so far in the literature
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as tools devised for transport network planning. Algorithms of optimization are designed for

networks supervision in the framework of traffic flow management and traffic controlling.

2.3 Continuum traffic models & Dynamic traffic assignment

Industrialized cities and countries mostly cope with traffic congestion and traffic incident.

These are one of the major problem on the economic, social and societal front. We need

to clearly understand what causes traffic congestion and traffic incidents. We need to know

too how traffic operations work in order to be able to properly monitor and control traffic

in any congested transport network. Infinite mobile jams often occur in dense networks.

During the last fifty years and so far, research in traffic theory encompasses a rich set of

mathematical and physical models. The models are often designed for specific networks

according to required level-of-details. The models aim at:

• predict and estimate traffic states over different types of networks,

• calculate traffic indicators such as travel times,

• provide alternative paths or routes in case of traffic breakdowns and also when certain

roads become inaccessible,

• ensure a greater safety and reduce multiple risks of traffic incidents, etc.

Many new trends of modeling and controlling emerged in the field of transportation net-

works modeling. They are used as decision tools for the traffic management, traffic control-

ling, traffic supervision, etc. In cases of networks traffic controlling, we note that specific

physical/mathematical models are required according to requirements of governmental de-

cisions makers, transport operators or transport planners. According to the level-of-details,

needs and expected results, right models are appropriate. They are numerically and compu-

tationally handleable in specific tools for traffic flow management.

These assets help the decision makers for an optimized management of transport net-

works. Several scales of modeling exist. Each scale represents a particular aspect of what is

modeling. Depending on desired level-of-details in the representation of traffic states, one

uses one approach (one scale of representation) rather than the other. The main scales of

traffic modeling range from microscopic, to mesoscopic, macroscopic and bi-dimensional. In
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our research, we mainly dig on models of surface transport networks. In our review, we do

not include microscopic models since we are more interesting on mathematical and physical

models that represent the traffic flow of networks. We do not include possible interactions

between vehicles and passengers within networks. The thesis concerns mostly macroscopic

and bi-dimensional traffic flow models and dynamic traffic assignment deriving from related

network loading models. We say mostly since we know that microscopic models are the limit

of kinematic and macroscopic models.

To the best of author’s knowledge, there is no available and reliable general multimodal

model (or seamlessly integrated models and algorithms) for the traffic controlling that takes

into account every available transport mode of a large-scale transportation system. We count

several families of traffic flow models that describe vehicular dynamics given a certain traffic

infrastructure and, if applicable, given additional routes choice information. The infrastruc-

ture comprises the considered road system in terms of topology (its geometry, characteris-

tics, right-of-way laws, and traffic signaling available on it), road sections speed limits and

capacities, and intersection properties, etc. Continuum traffic flow models are divided into

mesoscopic/gas-kinetic traffic flow models and fluid-dynamical models also named macro-

scopic traffic flow models.

Continuum traffic flow modeling

In this Section, we discuss on principal macroscopic and two-dimensional traffic flow models

introduced so far in the literature. We highlight their advantages and drawbacks according

to expected results and the types of considered surface networks.

Among macroscopic models, we distinguish first-order models, second-order models, multi-

class models, multi-lane models and stochastic models, all in a mathematical formalism and

computer unit.

The major advantages of macroscopic models are their:

• flexible mathematical structures, and

• low number of parameters (compared to microscopic transport models).

The macroscopic models presented here are classified as hydrodynamic models regarding the

fact that they are derived from an hydrodynamic approach. Field quantities (or macroscopic

variables) are the density, the traffic flow and the traffic speed.
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• The density ρ(t, x) is the number of vehicles passing through the location x at the time

t, for all t ∈ T and for all x ∈ X. T denotes the space of the time and X denotes the

space of the location.

• The traffic flow q(t, x) is the number of vehicles passing the location x at the time t,

for all (t, x) ∈ T× X.

• The traffic speed v(t, x) is the velocity field of vehicles flow on the road at the location

x and at the time t, for all (t, x) ∈ T× X.

These physical quantities fields are assumed to be continuous (or at least piecewise con-

tinuous) functions with respect to the position space X and the time space T. The three

functions q, ρ, v are related by the following continuity relationship (2.2).

q(t, x) = ρ(t, x)× v(t, x) ∀(t, x) ∈ T× X. (2.2)

This relationship defines, in macroscopic traffic models, the speed v(t, x) in any position x

and time t given the flow q(t, x) and the density ρ(t, x) at the position x and at the time t.

First-order traffic models

The motorway network is viewed as an oriented graph. Traffic models have been developed

to simulate the dynamic aspects of the traffic flow. To do that, ones modeled the different

elements constituting the network. Traffic dynamics, on both arcs and nodes, are hence stu-

died and modeled. The main difficulties with modeling traffic on sections and intersections

lie with choosing the correct definition of the boundary conditions.

Let us consider the macroscopic first order LWR (Lighthill-Whitham-Richards) model [57,

76]. It is a continuous traffic flow model that describes vehicles flow on a road stretch without

intersection. The flow q(t, x), the density ρ(t, x) and the speed v(t, x) are its key variables.

These variables are solution of a system of relations-equation:

(i) The speed-concentration relation. The speed v is a function of ρ which shapes the

so-called density-speed fundamental diagram.

(ii) The continuity equation q = ρv derived from an analogy between traffic flow and a

one-dimensional compressible fluid.
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(iii) The conservation law on the density and the flow, which results in an hyperbolic partial

differential equation ρt + qx = s, where t and x denote the time and the position

variables, and s denotes the source term. s is a function of the time t and the position

x .

Let us consider the section (a, b) with a the upstream node of the section and b its down-

stream node (see figure 2.4).

Figure 2.4: Boundary condition of a section.

Notations are the following.

• qa is the in-flow at the node (a),

• qb is the out-flow at the node (b),

• ∆u is upstream demand,

• Ωa is the link supply,

• ∆b is the link demand,

• Ωd is the downstream traffic supply.

The subscripts u and d mean downstream and upstream respectively.

The traffic road is described by a nonlinear hyperbolic continuum Equation (2.3) which ex-

presses the conservation of vehicles flow and density:

∂tρ(t, x) + ∂xq(t, x) = 0 ∀(t, x) ∈ T× X. (2.3)

This equation is completed by the law of the minimum between the link demand and the

traffic supply, stated in [51], and the relation (2.2) above. The law of minimum implies

that performing users’ demands are constrained by traffic supplies. The demand and supply

are respectively an increasing function and a decreasing function of the density. They are

constrained by the network flow capacity which is the maximal supply of the network when

the network is empty.
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In [51], boundary conditions of a section are defined. They show for instance that

qa =min (∆u,Ωa) and qb =min (∆b,Ωd) (2.4)

Link-demand and traffic-supply for the LWR model The function minimum of the de-

mand and the supply functions yields a fundamental diagram, depicted by the Figure 2.5.

The function link demand at equilibrium is shown to be: ∆e (ρ, x) = max
r≤ρ

Qe(r, x). Corres-

pondingly, ones find the traffic supply at equilibrium being defined as follows: Σe (ρ, x) =

max
r≥ρ

Qe(r, x).

At the time t and at the position x , the local demand and the local supply are set to:

∆(t, x) =∆e

�

ρ(t, x−), x−
�

Σ(t, x) = Σe

�

ρ(t, x+), x+
�

(2.5)

The formulation (2.6)

q(t, x) =min (Σ(t, x),∆(t, x)) (2.6)

represents the Fundamental Diagram (FD for short). (2.6) is still valid if the function x 7−→

Qe(ρ, x) is piecewise continuous. This relation defines dynamics of traffic on motorways

sections.

Properties of LWR models that one can mention are characteristics, shock-waves and rare-

faction waves. They take into account the acceleration and the deceleration of vehicles on

road sections. They lead to LWR bounded-acceleration model and other related traffic flow

models.
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Density ρDensity ρ

Flow q
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Density ρ

Demand ∆e (ρ, x)
qmax

ρmaxρcrit

Density ρ

Supply Σe (ρ, x)

qmax

ρmaxρcrit

Figure 2.5: The fundamental diagram q = min (Σ,∆), the link demand and the link supply
functions (respectively from the left to right to the bottom).

Σe denotes the traffic supply at equilibrium (drawn with a red line) and ∆e denotes the link

demand at equilibrium (drawn with a blue line).

The LWR models have a crucial disadvantage: they do not take into account the driver at-

tributes such as the inter-vehicular distance between a leader vehicle and its follower vehicle.

The inter-vehicular distance increases with the velocity. The LWR models are nonetheless

more suitable for freeway traffic as explained by [88]. Among them, we note a systematic

methodology of data fitted first-order traffic models construction using an historic data col-

lection of the fundamental diagram. It is introduced by [17]. The methodology allows to

treat the flow per section and lane. The research efforts around the LWR models has led to

the so-called second-order traffic flow models.

Multi-attribute models

Several different first-order traffic flow models have been developed. The differences be-

tween them derive from the very definition of their fundamental diagram. Most of them

are designed at the mesoscopic and macroscopic scales. Multi-class models of [5, 37, 39]

and multi-lane models of authors [69, 44, 18, 82] are derived from this standard model. An

other type of model of a higher order is classified as attribute model. It is the GSOM model

[50, 53]. We review it in Section 2.3 in the sequel.
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Multi-attribute models describe traffic interactions such as

• overtaking lanes interactions,

• interactions between different classes of vehicles,

• interactions between different transportation vehicles modes that shared same physical

road lanes or roads.

The notion of multi-class refers to the classe of users as passengers or vehicles (such as the

personal car, the bus for mass transportation, the car for specific use, and/or the different

types of transport services, etc). It often raises the issue of using the right transport model,

or technology and strategies to optimize traffic interactions between transport modes, and

regularize access on motorways. On the one hand, depending on the type of the network and

its characteristics, and on the other hand with respect to purposes of the traffic controlling a

right model does not easy to build.

We see that the multi-class models developped by [5] take into account the behaviors of dif-

ferent type of vehicles (cars, trucks, buses, etc.) and drivers. They are designed for single

lane traffic and are described by a nonlinear hyperbolic system of three conservation laws.

They introduce a function that describes the difference between the velocity and some equi-

librium velocity where they take into account the length of cars. The model is written via a

system. The authors of multi-class models [5] introduce a grid (or cell) in time and space

and prove the convergence of the Godunov scheme to a weak entropy solution to the initial

value problem, as the step-size of space and of time tend to 0 with a fixed ratio satisfying

the C F L (Couran–Friedrichs–Lewy) condition. They compute the solution in every cell to

obtain an approximation of the flow with piecewise-constant initial data.

Gas-kinetic models

The gas-kinetic traffic flow models are based on descriptions of the dynamics of the phase-

space (or time-location) density, that is, the dynamics of the speed distribution functions of

vehicles in the traffic flow. Given the knowledge of the phase profile of density, one can de-

termine the macroscopic traffic variables such as density, mean speed, or flow rate, by means

of the method of moments.

These models have been developed starting from the works presented in Prigogine and Her-

man (1971) [75] by analogy with the kinetic theory of gases of Boltzmann.
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This section mainly discusses the model of Prigogine and Herman (1971) [75]. The model

assumes that the dynamic changes of the so called phase-space density (PSD for short) func-

tion (denoted by ρ(x , v, t) where x is the location, v the traffic speed and t the time) are

caused by a number of processes which are described in the following equation:

∂ ρ

∂ t
+ v

∂ ρ

∂ x
︸︷︷︸

convection

=
�

∂ ρ

∂ t

�

int
︸ ︷︷ ︸

interaction

+
�

∂ ρ

∂ t

�

rel
︸ ︷︷ ︸

relaxation

(2.7)

The phase-space density function is interpreted as follows: “at the instant time t, the ex-

pected number of vehicles present at a small cell [x , x + d x] driving with the speed v in the

region [v, v + dv] is equal to ρ(x , v, t)d xdv”. Based on the conservation law, the equation

for the dynamics of ρ(x , v, t) can be found.

The left hand side of Equation (2.7) describes the changes of the phase-space density due to

the motion of vehicles along the road, while the right hand side describes the changes of the

phase-space density due to events such as deceleration or relaxation. The model consists of

convection, interaction and relaxation, which are described in detail below:

• the convection term describes the continuous change of the PSD due to the inflow into

and outflow from a small cell [x , x + d x] within the time period [t, t + d t].

• the relaxation term reflects the continuous change of the phase-space density due to

the tendency of drivers to relax to the desired speed distribution.

• the interaction term describes the discontinuous change of the phase-space density

due to the interaction between fast and slow vehicles. When a faster vehicle catches

up with a slower one, it has to slow down to avoid a collision.

Interaction process In the model of Prigogine and Herman (1971), it is assumed that

when a faster vehicle driving with speed v catches up with a slower one driving with speed w

(w< v), the former either slows down to the speed of the latter or overtakes in order to avoid

a collision. To determine the interaction term in equation (2.7), the following assumptions

are used:

• If the faster vehicle overtakes, it does not change its speed.

• The slower vehicle is not influenced by the vehicle behind.
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• The vehicles are considered ‘points’ (the length of vehicles is neglected).

• The fast vehicle slows down instantaneously.

• The vehicles are uncorrelated (vehicular chaos).

• Interactions affecting more than two vehicles are neglected.

Based on these assumptions, the interaction term in equation (2.7) is determined as follows:

�

∂ ρ

∂ t

�

int
= (1− p)

∫ ∞

v
(w− v) f (x , t, v, w)dw− (1− p)

∫ v

0

(v −w) f (x , t, v, w)dw. (2.8)

In equation (2.8), p denotes the probability for overtaking; f (x , t, v, w) is the pair-distribu-

tion function of density. The assumption of vehicular chaos means that the correlation be-

tween vehicles is neglected. That is, the pair-distribution function can be decomposed as

follows:

f (x , t, v, w) = ρ(x , v, t)ρ(x , w, t) (2.9)

By substituting equation (2.9) into equation (2.8) the interaction term is reduced to:
�

∂ ρ

∂ t

�

int
= (1− p)ρ(x , v, t)

∫∞
v |w− v|ρ(x , w, t)dw−

(1− p)ρ(x , v, t)
∫ v

0 |w− v|ρ(x , w, t)dw.
(2.10)

Equation (2.10) reflects the fact that faster vehicles with speed w interact with slower vehicles

with speed v at a rate |wv|ρ(x , v, t)ρ(x , w, t), describing how often vehicles with speed w

and v encounter at location x and time instant t. If the faster vehicle can not overtake, it

decelerates to the speed of the slower vehicle. This deceleration process increases the phase-

space density ρ(x , v, t) accordingly (the plus term of the right hand side). When a vehicle

with speed v catches up with a slower vehicle with speed w, if the faster vehicle is unable

to overtake, it decelerates to the speed w. This process decreases the phase-space density

ρ(x , v, t) (the minus term of the right hand side).

Relaxation process Prigogine and Herman (1971) proposed the relaxation term in equa-

tion (2.7) as follows:
�

∂ ρ

∂ t

�

rel
= −

∂

∂ t

�

ρ
Vmax (v|x , t)− v

τ

�

(2.11)

In equation (2.11), Vmax (v|x , t) denotes the desired speed distribution; τ is the density-

dependent relaxation time. With this model, Prigogine and Herman (1971) found that the
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transition from the free to the congested traffic state occurs when the density is higher than

a certain critical value. This congested state is characterized by the appearance of a second

maximum of the speed distribution at v = 0. That means, there are some vehicles still

moving, while the others are at standstill. Since the works of [72], an extra degree of freedom

has been added, by introducing the joint distribution of speed and desired speed of users.

Many relevant researchs based on gas-kinetic approach can be cited such like [72, 73, 68,

29, 30, 92, 47, 33, 34, 35, 85, 69, 39]. That is as far as we had go because we do not use

the gas-kinetic modeling approach for our current developments.

GSOM traffic flow models

The traffic flow models such as the Payne-Whitham model, the ARZ model [4], the GSOM

family models [50, 53] (and generalizations thereof) are models of second order. They are

all characterized as (GSOM) generic second order modeling family models. They come up

with precisions on traffic waves such like shock waves, rarefactions and phantom traffic jams

named jamitons. In the sequel, we recall the GSOM traffic flow models with driver specific-

attributes. We give some examples of second order traffic flow models.

Structure of GSOM models GSOM traffic flow family models combines the LWR model

with dynamics of driver-specific attributes and is expressed as a system of conservation laws.

It is stated as
∂tρ + ∂x(ρv) = 0

∂t(ρI) + ∂x(ρvI) = ρϕ(I)

v = J (ρ, I)

(2.12)

with ρ the density as usual, v the speed, t the time, x the position, and I the driver-specific

attribute. The first equation of (2.12) expresses the conservation of vehicles. The second

equation represents dynamics of the driver attribute I . The third equation states the speed-

density fundamental diagram which depends on the driver-specific attribute I . The attribute

I can be a vector, and, depending on the model it can be related to an aspect of the traffic,

the network or its infrastructure or further the mode of transport involved. The possible

attributes fall down to the following.

1. The type of vehicle or the modal attribute. The modal attribute is typically the mode

of transportation that users take during their trips. It can be therefore a taxi, or a

demand responsive transport, or a bus, a private car used for carpooling or for ride-
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and-share services. This attribute also could be the motorization as an electrical vehicle

deployed for example in a car-sharing system. We note for instance the Autolib system,

implemented in the city of Paris, France.

2. The driver attribute related to origin-destination. It is just simply called the driver

destination. It is relevant when conducting a (dynamic) traffic flow assignment or

evaluating traffic volumes per destination. This attribute is pertinent in multi-class

traffic flow model performed for the simulation of multimodal transportation systems.

The driver attribute refers also to route choice and the driver behavior itself along the

routes taken during a trip.

3. The lane attribute. Mostly Logit lane assignment models or multi-lane traffic flow mo-

dels are governed by a system of conservation laws with source terms. The source

terms capture the change of traffic volumes between lanes of the road section. It is

calculated or predicted based on the probability of vehicles for changing lane accord-

ing to the transport utility, the mission of the vehicles, the destination. The list is not

exhaustive. It is the issue of lane choice. The lane choice is furthermore responsive

to the congestion on a target lane compared to traffic states on neighboring lanes.

Besides, certain lanes can be dedicated to specific category of vehicles. These lanes

are called segregated lanes or dedicated lanes. For instance it is the case of buses for

mass transportation along dedicated traffic lines. We notice the taxi mode for individ-

ual (or sometimes collective) services. Most of the time, this works within a demand

responsive operational system.

4. The traffic attribute. Because of the variability of the traffic on the one side, and the

perspective of the transport simulation model on the other side, it is necessary to model

and simulate the traffic accounting on stochastic perturbations. This type of pertuba-

tions refers to the traffic attribute. Further, there exists other traffic attribute related to

the type of the vehicle engine. Vehicles are either equipped with a hot engine or with

a cold engine. Particularly, this type of traffic attribute permits to estimate, based on

traffic flow models, the volume of the emission of pollutants. A third example of the

traffic attribute relies on the traffc model with a relaxation towards the norm.

Therefore, we see that GSOM family models are perfect match for modeling multimodal
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transportation system by combining different driver-specific attributes.

Some examples of GSOM models

1. The LWR model itself of course is a GSOM model (with no driver-specific attribute).

2. The Aw-Rascle model introduced in [4] and successively refined in several papers, (see

for instance [3, 5, 21, 22, 23, 45, 31, 67, 79] and the references therein) is a GSOM

model too. We recall in the following the system of equations that states the dynamics

of vehicles, modeled by the AR model.

We have:






∂tρ + ∂x[ρv(ρ, y)] = 0

∂tρ + ∂x[ρv(ρ, y)] = 0
with v(ρ, y) =

y
ρ
− p(ρ) (2.13)

where p is the traffic pressure which depends on the density ρ.

The general form of the model is the ARZ model. It is a GSOM model with attribute

I = v−Ve(ρ), where Ve(ρ) expresses an “average” fundamental diagram around which

the fundamental diagram v = Ve(ρ)+ I tends to. The “average” fundamental diagram,

Ve(ρ), evokes a fundamental diagram of equilibrium, depicts by Figure 2.6.

Figure 2.6: Flow rate curves of ARZ model.

3. Multi-commodity GSOM models. Here it is assumed that different drivers may have

different speeds at a same traffic density. It leads to different density-speed fundamen-

tals diagrams. Drivers speeds, however may be different even at the same density, they

are limited by a maximal speed that no driver exceeds.
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4. The Colombo 1−phase model.

5. The stochastic GSOM model.

6. The multi-lane impact model of [46].

7. Various models with eulerian source terms (such as (SMMR 09)), including higher

order traffic flow models such as (ZWD 09).

Supply and demand formulations of GSOM family models In case of a higher order

traffic flow model, the fundamental diagram depends on the driver specific attribute I under

the following properties:

1. x 7−→Qe(ρ, I , x) is a piecewise continuous function.

2. The function ρ, I 7−→Qe(ρ, I) is piecewise continuously differentiable.

Kinematic waves There are two (2) kinematic waves of the density: the velocity of

characteristics ∂ρQe and the fundamental diagram FD ρ 7−→ Qe(ρ, I , x). The attribute I is

continuous when traversing a shock wave.

Waves of attribute of contact discontinuity The velocity of waves of the attribute I ,

Ve(ρ, I , x) by definition is set to be: Ve(ρ, I , x)
de f
=

Qe

ρ
. It is shown that the velocity of waves

is always greater than or equal to the velocity of kinematic waves. The former is continuous

when traversing a contact discontinuity.

Riemann problem To compute numerically the conservation law, the network domain

is discretized in cells, and the time space in time-steps. The calculation of flow crossing every

cells lead to the Riemann problem. Such situation is represented in the figure 2.7.

x = 0x < 0 x > 0

ρu, Iu

Qe,u

ρd, Id

Qe,d

Figure 2.7: Riemann problem with the attribute I .
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The driver-specific attribute fundamental diagram Qe(ρ, I , x) is set to be:

Qe(ρ, I , x) =







Qe,u(ρ, I) if x < 0

Qe,d(ρ, I) if x > 0
(2.14)

At the downstream, the velocity is: vd = Ve,d(ρd , Id). FDs at upstream and downstream are

depicted by the below figure 2.8.

Figure 2.8: Colombo 1-phase and 2-phase fundamentals diagrams.

Since FD depends on I , and that (ρ, I) 7−→ Qe(ρ, I) is assumed to be piecewise continuous

differentiable, it is proved that the discontinuity of the variable I moves at the traffic speed,

which is in this case the speed at downstream vd . The calculation of the density, denoted by

ρm at the discontinuity point is the solution of the following equation (2.15).

Ve,d(ρm, Id) = vd (2.15)

The variable density ρm is pointed out in the the figure 2.9.

x

t

I = Iu

Qe,u(ρ, Iu) Qe,d(ρ, Iu)

Qe,d(ρ, Id)

I = Id

vd

ρu

ρd

ρm

S

Figure 2.9: Riemann problem for the density at the discontinuity contact in (x , t)-plan.
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The function ρ 7−→ Ve,d(ρm, Id) is continuous and bijective function. Therefore, its inverse

function V−1
e,d (., .) exists. One has:

ρm = V−1
e,d (vd , Iu) = V−1

e,d

�

Ve,d(ρm, Id), Iu

�

(2.16)

Hence the flow at the origin q0 of the link can be calculate simply, after compute the demand

and the supply:





∆u =∆e,u (ρu, Iu)

Σd = Σe,u (ρm, Iu) = Σe,u

�

V−1
e,d

�

Ve,d(ρm, Id), Iu

�

, Iu

�

(2.17)

Whence, q0 =min (δu,Σd). To close the section on GSOM models, let us now give properly

relations about driver-specific demand and supply, regarding the Riemann problem we study

above. At the equilibrium, similarly in the LWR model, the link-demand and the traffic-supply

are respectively defined as






∆e (ρ, I , x) =max
r≤ρ

Qe (r, I , x)

Σe (ρ, I , x) =max
r≥ρ

Qe (r, I , x)
(2.18)

The local demand and local supply are then derived. One has:





∆(t, x) =∆e

�

ρ(t, x−), I(t, x−), x−
�

Σ(t, x) = Σ?e
�

ρ(t, x+), I(t, x+), I(t, x−)
�

(2.19)

with

Σ?e
�

ρ(t, x+), I(t, x+), I(t, x−)
� de f
=

Σe

�

Ve−1
�

Ve

�

ρ(t, x+), I(t, x+), x+
�

, I(t, x−), x+
�

, I(t, x+), x+
�

By applying the law of the minimum, one obtains the flow at the position x and at the time

t.

q(t, x) =min [∆(t, x),Σ(t, x)] (2.20)

Inhomogeneous Riemann problems and boundary conditions are properly solved with the

GSOM family models. Therefore they capture in details shock-waves or rarefaction fans oc-

curred during breakdowns and traffic congestion.

On one hand, they enable a good estimation of traffic densities, traffic flows, cumulative

flows of roads networks with respect of driver-specific attribute. On the other hand, higher
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order macroscopic traffic flow models require many traffic count locations and more signifi-

cant traffic data. Therefore applied to very large networks, high order models may lead to

cumbersome computations and computer complexities in data assimilation and calculation

of links flows.

Junction traffic models

Concerning modeling of network nodes, one distinguishes single and multiple nodes. Mul-

tiples nodes are junction or intersection of nodes. A junction defines merge nodes or else

diverge nodes while intersection has a more general configuration with many incoming and

outgoing links, as in Figure 2.10. One may refer to [28] and [9] for modeling approaches of

a complex urban road intersections.

(Z)

>

i = 1

>

i = 2

>

j = 1

>
j = 2

>

j = 3

Figure 2.10: A general intersection with I -ingoing links indexed by i = 1, 2, · · · , I and J -
outgoing links indexed by j = 1,2, · · · , J .

The min-formula of the demand and supply (which yields to the fundamental diagram and

then to the definition of flow rate which really passes through) reflects the self-evident con-

straint that local traffic flow is bounded by:

• the flow that can be dismissed from the immediate upstream location, and

• the flow that can be absorbed by the immediately downstream location.

Three main principles are applied to an intersection:

• every upstream link provides a demand equal to its greatest possible inflow into the

intersection,

• every downstream link provides a supply equal to the greatest possible outflow it ac-

cepts from the intersection, and
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• the conservation of vehicles.

It is also applied to the intersection principle of local flow maximization subject to all phe-

nomenological constraints. Indeed, one notices the statement of drivers’ ride impulse which

is equivalently expressed by “Drive as fast as you can and stop only if you have to”. [9]

defines a class of a node model that maximizes a concave function of the flow. It comprises

the models of [32] and [7]. The study of dynamics of flow through node or intersection

yields to an optimization problem: the maximization of the inflow at the intersection under

constraints and principles. One notices the following:

• ∀i, j, 0≤ γi j ≤ 1 where γi j is the turning fractions from upstream (incoming) link (i)

to downstream (outgoing) link ( j). and ∀ j,
I
∑

i=1
γi j = 1.

• the inflow is superiorly bounded by the link-demand.

• the outflow is superiorly bounded by the traffic-supply.

• the flow rate satisfies the invariance principle. The invariance principle is the also

refered to the consistency principle. It states that traffic waves originating from a node

travel in the right directon (with negative speed at upstream and positive speed at

downstream).

• the flow is conserved: ∀ j, q j =
I
∑

i=1
γi jqi .

• the flow rate satisfies a supply constraint interaction rule.

• the flow rate satisfies node supply constraints.

The conservation of vehicles within the node and the compliance with turning fractions re-

quires that inflows and outflows do not exceed respectively link-demands and traffic-supplies.

The invariance principle also states that the throughput does not change:

• when the link-demand on an incoming link (i) at upstream of the node (Z), tends to

the flow capacity at downstream of any outgoing link ( j);

• when the traffic-supply at downstream of the node (Z) of a link ( j), tends to the flow

capacity of the same link ( j);
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• with respect to the node supply constraints, which are data specific to the intersec-

tion (or the node), arising from signaling and/or conflicts inside the node itself. It is

seen that such constraint is not easy to compute and it complicate substantially the

intersection modeling.

Afterwards, Flottërod et al. [19] have found a specification of node supply constraints. They

developed reliable algorithms for intersection traffic simulation.

LWR intersection model Let us mention that the LWR model is a GSOM model without

driver-specific attribute. It does not modify the fundamental diagram such we see it above, at

the beginning of the sub-subsection 2.3. In the next paragraph, we discuss about intersection

model with driver-specific attribute which modify the fundamental diagram.

The principle of the LWR intersection model concerns the outflow qi and the inflow r j , for

i = 1, · · · , I , j = 1, · · · , J , and their dynamics at intersection. In, it is shown that there exist

concave increasing functions Φi and Ψ j such that the dynamics of vehicles at intersection

reflects an optimization of

max
(qi)i ,(r j) j

 

∑

i

Φi(qi) +
∑

j

Ψ j(r j)

!

(2.21)

This objective function has following constraints.

i/ At the node, there is conservation of flow: r j =
∑

i
γi jqi at the entry of the link ( j).

�

γi j

�

i, j

are directional coefficients (also named turning movements) within the intersection (Z).

These coefficients can be set by a static assignment or could be time-depending in case

of a dynamic assignment applied to the LWR model for transport simulation.

ii/ At the entry of the link ( j), the inflow r j is constrained as follows. 0¶ r j ¶ σ j , with σ j

the supply of the link ( j).

iii/ Symmetrically, at the exit of the link (i), the outflow qi is such that 0¶ qi ¶ δi , with δi

the (i)-link-demand.

The function Φi corresponds to the supply of the intersection in the direction (i), for each

i ∈ I . Respectively, the function Ψ j corresponds to the demand of the intersection in the

direction ( j), for each j ∈ J .
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GSOM intersection model There is attribute I to include in the LWR intersection model

for corresponding to the GSOM intersection theory. The fundamental diagram of GSOM

model is modified compared to fundamental diagram of LWR model. Demand and supply

depend on the attribute I . It is found that the demand σ j in the direction ( j) is equal to
∑?

j

�

ρ j , I j , I?j
�

. ρ j is the density at the entry of the intersection from direction ( j), and I j is

the attribute in the direction ( j). Regarding I?j , it expresses the intersection attribute of the

traffic passing through the intersection and that goes to the direction ( j).

∀ j ∈ J , I?j =

∑

i∈I
γi jqi Ii

r j
. (2.22)

The calculation of I?j is difficult because its depends of unknowns qi and r j , whileσ j depends

on qi and r j; the former being dependent of σ j . It is a problem of fixed-point solvable via

specific fixed-point algorithms. This is not the subject of the thesis. It will not address in this

manuscript. Besides, let us mention that to address the general intersection of the GSOM

one shall use a buffer which is not also discuss in the thesis.

Two-dimensional traffic models

These models are simplified models and they concern very big and dense anisotropic net-

works. [93] deals with networks of several highly compact central business districts and

provides traffic flow model derived from continuum approximation of network flow with vari-

able users transport demands. The works of [74, 77, 81] are of the order of two-dimensional

modeling, and they are relevant by reducing computation efforts.

Towards development of dynamic two-dimensional traffic model, Saumtally used the fact

that, at any point P of coordinates (a, b) of the considered network area, local conservations

of vehicles are unavoidable. This is expressed by Equation (2.23).

∀ j, ∀P(a, b) q j(a, b) =
4
∑

i=1

γi j(a, b)qi(a, b). (2.23)

That is the local conservation of the traffic per direction of propagation taking into account

percentages of turning movements. γi j(a, b) is the turning rate of flow that going from the

direction (i) to the direction ( j). It is therefore a traffic model at intersections.

Particularly, let us state the traffic two-dimensional model introduced in [78]. They authors

provide a global conservation equation (2.25) in the elementary cells of the concerned net-
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work area. The governing system of the model is the following.






















































∂tρ1 + ∂x f1 + ∂y

�

f2γ21 − f4γ41

2
+
λ2

λ1

f1γ12 − f1γ14

2

�

= 0

∂tρ2 + ∂x

�

f1γ12 − f3γ32

2
+
λ1

λ2

f2γ21 − f2γ23

2

�

+ ∂y f2 = 0

∂tρ3 + ∂x(− f3) + ∂y

�

f2γ23 − f4γ43

2
+
λ2

λ1

f3γ32 − f3γ34

2

�

= 0

∂tρ4 + ∂x

�

f1γ14 − f3γ34

2
+
λ1

λ2

f4γ41 − f4γ43

2

�

+ ∂y(− f4) = 0

(2.24)

That is a system of 4 variables which are density per direction of propagation (i), i ∈ {1, 2,3, 4}

since it is assumed that at any point of the network area there is 4 possible directions for ve-

hicles in their displacement.

The variable the total density is set to ρ = ρ1 + ρ2 + ρ3 + ρ4. It is easily showed that ρ

verifies the simple conservation equation (2.25).

∂tρ + ∂x f1 + ∂x

�

f1 − f3 +
1
2

�

1+
λ1

λ2

�

[(1− γ11) f1 − (1− γ33) f3]
�

+∂y

�

f2 − f4 +
1
2

�

1+
λ2

λ1

�

�

(1− γ22) f2 − (1− γ44) f4
�

�

= 0.

(2.25)

This two-dimensional model is a static model. It is however right for the prediction of average

displacements of vehicles over network, without properly looking on details of vehicles’ dy-

namics. The results extracted are depicted by the Figure 2.11. Let us recall that the equation

(2.25) reduces to equation (2.26) in the particular case λ1 = λ2.

∂tρ + ∂x

�

(2− γ11) f1 − (2− γ33) f3
�

+ ∂y

�

(2− γ22) f2 −
�

2− γ44

�

f4
�

= 0. (2.26)
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Figure 2.11: At the left, traffic load from West to East. The traffic load increases as the
demand to the destinations increases. Denote that the number of iterations to reach an
approximated solution increases too. In every case, there are no network congestion.
At the right, Generation function Θm for m= North destination. [77].

It is a basic case scenario where the surface network of the city of Paris is considered. Network

domain of the surface network is cosntructed. It is meshed in 2d-cells. The simulation is done

with the mesh and simulation software Freefem++. It shows traffic states in each zones of

the network domain (see Fig. 2.11 and [77]).

The macroscopic fundamental diagram (MFD) Let us mention that there are other mo-

deling approaches of traffic flows derived in the notion of the macroscopic or network fun-

damental diagram (MFD or NFD) and the feedback-based gating concepts [6, 10, 40, 54, 48,

42, 41] and the references therein.

Under specific conditions, the network fundamental diagram describes a crisp relation-

ship between the average flow and the average density in an entire network. The limiting

condition is being that traffic conditions must be relatively homogeneous over the whole

network. The network fundamental diagram is hence not well adapted for great networks

in which traffic is extremely inhomogeneous.

Numerical methods applied to traffic flow models

Partial differential equations (shortly “PDE”) arise in a number of physical problems such as

fluid flow, heat transfer, solid mechanics and biological processes. In this section we only

concerned with the hyperbolic partial differential equations, and more on system of partial

differential equations. Hyperbolic systems of PDE or hyperbolic PDE fall into conservation

laws of mass, flow, momentum, etc. The book [87] are our primary asset to study the system

of hyperbolic PDE or the conservation laws we have developed along the scientific works

presented with this thesis. As we already see in the section 2.4 above, traffic flow models

are written based on conservation laws with respect to the flow and the density variables.

Numerical methods are essentials in solving partial differential equations where in theory an-

alytical solutions have been not find. Basic conservation law, defined on a bounded domain,

58



is the linear advection equation (which is a variable coefficient conservation law):

∂ u
∂ t
+
∂
�

cu
�

∂ x
= 0 for all a < x < b for all t > 0,

u(a, t) = v(t) for all t > 0,

u(x , 0) = u0(x) for all a < x < b.

(2.27)

where u is the physical conservative quantity, and c the velocity of u. The interval [a, b]

represents the interval domain of the study of u on where the latter is defined. The quantity

u represented a density i.e. the conserved quantity per length. In numerical analysis or

scientific computing courses, basics of numerical methods are discretization of the spacial

domain and the domain of time by a finite increasing sequence of grid points and time points,

follow-up to the definition of computational grid cells and timesteps. See Figure 2.12 spatial

and temporal discretization.

x−1/2

a

xi−/2 xi+3/2

b

0

tn

tn+1

T tN

Figure 2.12: Spatial and temporal discretizations.

The simplest numerical approximation to the linear advection equation is the explicit upwind

difference method:

un+1
i = un

i −
�

un
i − un

i

� c∆tn+1/2

∆x i
, 0< i < I

un+1
0 = un

0 −
�

cun
0 − f n+1/2

−1/2

� c∆tn+1/2

∆x i
.

(2.28)
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Figure 2.13: Explicit upwind stencil

It is a conservative difference scheme in which the numerical fluxes are computed by f n+1/2
i+1/2 =

cun
i for all 0¶ i < I and by the below equation

f n+1/2
−1/2 =

1
∆tn+1/2

∫ x i+1/2

x i−1/2

f (v(t))d t

for all 0≤ n< N , at the inflow boundary i = 0.

For other numerical methods, we are referred to finite volume methods, and these intro-

duced by Daganzo in [13, 14]. Lagrangian remapping schemes are best schemes to keep both

advantages of numerical solutions obtained from partial differential equation in Eulerian and

Lagrangian forms. The scheme is fully studied in [15].

Dynamic assignment

Traffic equilibrium

Facing the mass-production of automobiles and a rising demand for public transportation,

analysts, economists, mathematician and computer scientists have considered ways of coping

with road congestion and queuing. Wardrop [91] pointed out in his Second Principle, that

congestion can only occur if users choose their routes userly to optimize their own utility

functions. The transportation system is said at user traffic equilibrium state when all traffic

patterns stabilize and no driver (for car road system) or no passenger (for public system)

have any incentive to change their current route (Wardrop’s First Principle, [91]). By the

way, there is a central decision maker that assigns routes to drivers or passengers in order

to collectively optimize the utilization of the network. In this context, the system is said

at a social optimum state or social traffic equilibrium when the goal of the optimization is

achieved. Anyway, the evaluation of (alternative) routes is based on objective quantitative

criteria with respect to cost, travel time, comfort of the transportation mode up to use etc.

The cost depends on used path cost (according to network supply) and is a function of flow
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and capacity bound. A commonly used function is that of "Bureau of Public Roads" [27]

where the cost of an arc is function of its flow. It is a cost function which is strictly increasing

and differentiable. But it has the disadvantage of allowing assignment that exceeds road

capacity. And for that reason the cost function of Bureau of Public Roads is only valid in fluid

phase. In congested phase, one can apply the method of cross-entropy field of multimodal

dynamic assignment [28] which is also valid in fluid phase. In [29], authors have used the

notion of traffic intensity for proposing a variant of the problem of optimal transportation

cost taking into account congestion and Wardrop equilibrium. In static assignment, one has

to consider:

• fixed (stationary) demands since dynamics effects and traffic propagation are neglected

and

• the choice of routes for traveling to a target from one source in multimodal framework.

For the road network, there are many possible routes to reach a target from one source, for

instance, one notes the multiplicity of paths, and the use of combinatory paths. So they lead

to some difficulties as non-uniqueness of multimodality and the choice of departure time (in

dynamic case). Since there are a larger number of origins and destinations with multiple

paths connecting each origin-destination pair, during rush hours, the travel time on nume-

rous routes changes substantially due to traffic congestion, and thus alternative paths may

become competitive. On the other hand, change of environmental conditions, exceptional

events and incidents can alter the traffic condition in an unpredictable way. One needs some

strategies qualified as feedback or iterative strategies. They are highly efficient in establish-

ing appropriate user-optimal conditions on the basis of current traffic measurements. They

have the advantage of simplicity and low computational effort. One cites reactive feedback

strategies based on instantaneous reactive travel times [30]. For dynamic multimodal as-

signment, the principle is based on superposition of path choice and choice departure time

interval while dynamic cost contributes to dynamics pheromone levels per OD. Using the

cross-entropy method [28], the assignment is described in terms of path choice probabili-

ties and probabilities of choice of departure time. However the optimal choice constitutes

a very rare event, in the probabilistic sense, among possible events. It is obtained with a

sequence of probability laws that converge towards a law expressing equilibrium conditions
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that concentrated on optimal paths, where the convergence is measured by the Kullback-

Leibler distance (close to entropy for the estimation of OD matrices). This optimal law is

obtained heuristically from best paths configurations.

Reactive dynamic assignment

For a very large network, there are many challenges. The Dynamic Traffic Assignment (DTA)

has substantially evolved. [65, 66] are well-known as initial fieldwork on the DTA problems.

Many development have been deployed for dynamic traffic assignment problem. The dyna-

mic traffic asignment refers to a broad spectrum of problems, especially when large datum of

dense and large network is concerned, explained in [63, 62, 71, 38]. Thus it is important to

mention the type of dynamic assignment is related in this dissertation. We are not concerned

in user equilibrium problems neither in dynamic user equilibrium problems. Since one of the

major expectations from this thesis work is the modeling of flows of large transport networks,

the corresponding network loading model provided by this thesis work (see Chapters 3 and

6) shall be loaded with reactive assignment. A reactive assignment refers to

(i) the ways vehicles change their routes during trips according to instantaneous traffic

information, and the fact that

(ii) knowing the shortest path, there are nevertheless some users who use other roads

because their behaviors are more liable to a Logit based assignment model. That is to

say there is nonzero probability of users that use other routes other than shortest paths

between origin-destination points.

2.4 Macroscopic transport simulators
Generality

Computer simulation is more and more popular discipline in the filed of science in general.

There exist many strategies to simulate traffic systems which fall under the following three

categories:

1. The microscopic simulation including cellular automata, multi-agent simulation, par-

ticles system simulation.

2. The macroscopic simulation including statistical dispersion models, freeway traffic mo-

dels, generic second order modeling family models.
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3. The two-dimensional simulation including macroscopic fundamental diagram based

traffic models, two-dimensional traffic models and continuous approach based traffic

models.

Computer scientists have come up with theses above models and with strategies of hy-

bridization to cope with traffic issues. We are interesting on macroscopic simulators and

two-dimensional simulators since they are appropriate tools for large-scale traffic manage-

ment. There are plenty of macroscopic traffic simulators such like Transims, Transmodeler,

Dynamit, Dynasmart-P, Magister, Matsim [36]. The list is not exhaustive. The choice of sim-

ulators we deployed in the rest of the manuscript comes up with the simulators’ accessibility.

They are essentially macroscopic simulators. That means that the simulators result from im-

plementation of mathematical/physical macroscopic traffic flow models, and/or stochastic

multi-agent transport models.

These are appropriate tools for traffic analysis and traffic controlling. They allow to make

dynamic traffic assignment and rerouting of network flows in order to achieve dynamic user

equilibrium, and other purposes relevant for transportation safety and re-liabilities.

Let us talk a little bit about few well known and widely used traffic simulation packages:

1. TRANSIMS. The Transportation Analysis and Simulation System (TRANSIMS) is an

open source transportation modeling and simulation toolbox. It is an integrated set of

tools developed to conduct regional transportation system analyses. With the goal of

establishing TRANSIMS as an ongoing public resource available to the transportation

community, TRANSIMS is made available under the NASA Open Source Agreement

Version 1.3 and is supported by this online community.

2. TransModeler. TransModeler is a versatile traffic simulator with many advanced fea-

tures including support for key aspects of Intelligent Transportation Systems. Trans-

Modeler simulates a wide variety of facility types, including mixed urban and freeway

networks, and can be applied to specific geographic areas such as downtowns, highway

corridors, or beltways. It integrates traffic simulation models such as:

• model for freeway and urban networks

• model rotaries with driver behavior models that capture the unique interactions

between vehicles entering and vehicles inside the rotary,
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• model high occupancy vehicle (HOV) lanes, bus lanes and toll facilities to better

understand their effects on traffic system dynamics,

• model evacuation plans and scenarios for response to natural disasters, hazardous

spills, and other emergencies

• model work zones to manage traffic during the construction and maintenance

projects.

3. DynaMIT. DynaMIT aims to operate an ATIS (Advanced Traveler Information System)

to improve travel decisions. Its applications include:

• Generation of unbiased and consistent information to drivers.

• Optimizing the operation of TMCs through the provision of real-time predictions.

• Efficient operation of Variable Message Signs (VMS).

• Real-time incident management and control.

• Off-line evaluation of real-time incident management strategies.

• Evaluation of alternative traffic signals and ramp meters operation strategies.

• Co-ordination of evacuation and rescue operations in real-time emergencies (nat-

ural disasters, etc.) that could block highway links.

• Generating historical databases.

4. DYNASMART-P.

5. MAGISTER. It is a simulator with a graphical user interface. It is developed in C++.

Macroscopic models such as the bounded LWR model, the model of Daganzo (1-phase

and 2-phase), the GSOM model (with driver-specific attribute equals to the flow speed

minus the fundamental diagram equilibrium velocity). We means by the latter model,

the ARZ model.

6. MATSim. MATSim means Multi-Agent Transport Simulation.

It is appeared to us more pertinent to works with MATSim which sounds pretty well compared

to the other transport simulation packages, regarding numerous cases studies applied for. Let

us make focus on the MATSim transport simulator. We deploy it to perform on flow estimates

big surface networks.
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MATSim

The core components of MATSim is shown in the Figure 2.14.

Figure 2.14: Core components of MATSim.

The “initial demand” refers to input data to the simulation part. It comprises transport net-

work (the graph with information needed on the infrastructure and topology of the conside-

red network). The module “mobsim” is the MATSim engine for traffic estimates on the graph.

The “replanning” module is important in case of re-routing due to the change of departure

times in locations, or change of routes of passengers in order to achieve some scores.

The software come up with many functionalities (see Figure 2.15) for planning, contol, mul-

timodal simulation. It can account traffic signals during microsimulation. Its main function

being to simulate passengers and vehicles as agents over the network at the macroscopic

level.

Figure 2.15: MATSim full functionality.
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Configuring and running MATSim It is designed so far to simulate any transportation

system such urban network, public transit system, multimodal system, etc. It comprises

several transport models.

Figure 2.16: Minimal MATSim GUI.

Setting up and running MATSim As input for a simulation, one need three minimal files.

They are the following.

1. network.xml. It contains the physical network of the considered transport network

along with the network supply and its capacity.

2. population.xml. The file population, shall provides a synthetic population representing

the transport demand along with plans of agents. In fact, every user of the being

synthetic population, is consider as an agent.

3. config.xml is a configuration file. It configures all the files being used by MATSim. Also

it says MATSim modules that shall be used or solicited during the simulation. It says

whether re-routing is planning.
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Figure 2.17: Very large road network, seen with the MATSim network editor - the net-
workEdit.

2.5 Summary

We have so far presented macroscopic models related to transport simulation of vehicles in-

side surface networks. We have seen that two-dimensional modeling framework is a good

way for simulating large networks, without distinction of transport mode. In case one should

distinguishes transport modes in a network, it is relevant to use different flow models. Those

help to get realistic model of flow for entire multimodal transport network. A microscopic

model sometimes is required depending on the type of transport or provided transport ser-

vices. What shall be the right combination or coupling of models? Shall we build a very new

model from scratch? Let see that below in the rest of the manuscript.

Nowadays, many transport simulators allow a good estimation of network flows over

time. They even are capable of simulating very large network. However, sometimes the

computational complexity is very high, and they are not suited for large networks.
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Chapter 3

Bi-dimensional dynamic traffic flow modeling

Macroscopic traffic flow models applied to very large transport networks induces several

parameters and variables, and significant computational efforts. In the context of the traffic

management and traffic controlling of very large surface networks, new directions in

mathematical approaches emerge. We make a focus on one of these directions: the

bi-dimensional traffic flow theory. It is an efficient way to mitigate the lack of data in very

large surface networks since very large transport networks have a little real data – to the

best of our knowledge. We want to be able to simulate traffic on very large networks

(urban and motorway) using the minimum of the real data. Thus we can overcome the

data gaps on very large networks by applying the bi-dimensional traffic flow theory. Let us

see the content of this chapter which is fundamental to our work.
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3.1 Introduction

We introduce in this chapter the theory of the traffic flow at the two-dimensional scale which

results in specific approximations. These rely on fluid dynamics in continuous media. We

will justify and describe them in the remainder of this chapter.

Related work

The approach used to develop the proposed model in this chapter is known as bi-dimensional

dynamic traffic flow modeling or theory. It consists of modeling the area of the large trans-

port network in terms of a continuum anisotropic media where vehicles behave like a two-

dimensional fluid. Roads and vehicles will be aggregated respectively in zones of two dimen-

sions and flows. In such traffic zones, some directions of propagation of vehicular flows are

dominant (see [93, 77, Wong, Saumtally], and the references therein). The anisotropy of

the surface network is due to the dominants directions of propagation. We notice that little

research has been performed using this approach in the field of traffic flow management. Let

us note the existing researches concerning the traffic flow estimation methodology applied

to large-scale network of [93, 74, 77, Wong, Prez and Benitez, Saumtally]. They are under-

taken in the static case. Other recent approaches are based on the existence and the concept

of the MFD (Macroscopic Fundamental Diagram). The MFD has been firstly introduced by

[11, Daganzo], and used by [12, Daganzo and Geroliminis] with a traffic scenario on a con-

gested network which covers about 10km2 of Yokohama down town using traffic detectors.

Since then, dynamic traffic flow models for large-scale urban networks have been developed

with this approach [40, 42, 41, Keyvan-Ekbatani et al.] and certain references therein.

70



Organization of the chapter

The purpose of this chapter is to introduce the bi-dimensional dynamic traffic flow model

and compare it to the MFD-based traffic flow models. In this chapter, we provide methods

to manage and evaluate traffic on wide and dense networks with a minimum of available

measurements and data, through the modeling of global traffic behaviors of car-flow which

are derived from its local traffic behaviors. Local traffic behaviors reflect the properties of

the flow seen from a macroscopic viewpoint. As for global traffic behaviors, they correspond

to observable traffic dynamics seen from a high altitude after a planar projection of the

network graph onto its network domain. These observable dynamics, with some restrictions

in addition, represent the traffic flow at the bi-dimensional level. Let us note that the term

network domain corresponds to the traffic area of the traffic network.

Thereby, the networks we are considering and for which we apply the proposed sample

dynamic model are characterized as dense, large-scale, anisotropic and continuous.

In the next section (the section 3.2), it was considered important to address the intersec-

tion traffic models [8, Costeseque and Lebacque]. Since traffic zones of two-dimensions are

obtained by a high aggregation of road links and road intersections, we shall address road

intersections as nodes with internal traffics and external traffics. We will see in the sequel

how this aggregation is made, and what we call by traffic zones of two dimensions. We

therefore deduce properties of car-flow within urban network modeled from the high level

of aggregation of links and intersections. We build in Sec. 3.3 a two-dimensional hyperbolic

system of conservation laws. We will see that the hyperbolic system describes the dynamic of

car-flow in the corresponding network domain of the surface network. Moreover, we deduce

a Godunov-like scheme for a numerical analysis and numerical computations. We have found

that the numerical scheme allows easy numerical calculation of the car-flow and car-density

over the network domain. We also provide a physical model which is the semidiscretized

shape of the former multidimensional hyperbolic system. We will see how the physical mo-

del is efficient for dynamic network loading in Sec. 3.4. We will see also that our proposed

dynamic bi-dimensional traffic flow model converges very quickly.
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3.2 2d-Anisotropic Continuous Network

Definition 3.1 (Network anisotropy). In traffic theory, a network is said anisotropic when

there are many possible interactions and several directions of propagation of the traffic flow at

‘almost’ any location of the network.

For instance, the road network of the city of Paris is anisotropic. It forms a spiderweb,

ranking in the type of anisotropic networks. In the United States, cities are new and their

networks are rather orthotropic since roads are not gradually constructed as cities grow.

Definition 3.2 (Dense network within a continuum area). We mean by dense network, a

network with very high number of secondary roads that are very close to each other. The density

of the network in traffic refers to the plurality of road sections of short length and their closeness’s.

Definition 3.3 (Anisotropic continuous network: ACN). An ACN is a network whose traffic

area can be approached by a continuum media with preferred directions of propagation of the

flows.

In the remainder of the chapter, we discuss on the traffic dynamics of a dense surface net-

work and the bi-dimensional traffic flow theory. We will see that the dynamic bi-dimensional

traffic flow (BTF model for short) introduced in the present chapter is particularly timely re-

sponding to the issues of the traffic flow estimation over large and dense networks.

Definition 3.4 (Bi-dimensional traffic flow model). A bi-dimensional traffic flow model is a

mathematical traffic model that aggregates a network domain to anisotropic continuous network

and formulates the relationships among traffic flow characteristics like density, flow, mean speed

per dominant/preferred directions of propagation of the network traffic stream.

Consequence 3.1 (Bi-dimensional modeling approach). Traffic streams at the bi-dimensional

level are comparable to fluid streams flowing in bounded and euclidian two space dimensions.

Consequence 3.2. The bi-dimensional modeling approach shall fit both homogeneous and he-

terogeneous networks. The interest of this approach is more visible in the case of heterogeneous

networks.

Lemma 3.1. A continuum approach comes out by the aggregation of the road networks (as it

is showed in [93, 74, Wong, Prez and Benitez]) which makes vehicles behave on any 2d-ACN

(anisotropic continuous network) like a two-dimensional fluid.
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Let us denote by U the traffic area of a surface network. We assume that the surface

network is dense and large. U is also called the network domain. It shall be a bounded and

open subspace of the Euclidean space R2 since any city has a frontier and therefore its urban

road network also. Clearly U ⊂ R2 and meas(U) < +∞, with meas the Lebesgue measure

in two space dimensions. Let P(x , y) be a point of the network domain and (x , y) its coor-

dinates. Four preferred directions of propagation of the flow for the movement of vehicles

at the point P(x , y) are distinguished. Figure 3.1(a) depicts these dominant directions: four

outflows and four inflows to refer to the directions of propagation of the traffic.

i=1

i=2

i=3

i=4

P

(a) 4 directions of propagation

at any point P of a cell of the

network domain are considered.

0 e1

e2

u
v

(b) Computing 2d-cells within each zone

from the mesh; every cell has certain

number of lanes in considered directions.

θ

ξi = ξi+2 = ηi−3 = ηi−1

i ηi = ξi+1 = ξi+3
= ηi+2

u

v

(c) A zoom on a 2d computing cell and its dimensions. ξi and ηi denote the length and width (according

to the clues direction) of the cell.

Figure 3.1: The structure of an 2d elementary cell of the network domain.

The network domain U is assumed to be decomposable into traffic zones or sub-network

domains Um, m = 1, . . . , M . Any zone is a sub-domain of the network domain U which

follows the below criteria:

i- U =
M
⋃

m=1
Um
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ii- Um is a polygonal domain of R2 and the Lebesgue measure of its frontier is strictly

positive.

iii- Each zone Um is meshed in computational cells (often called 2d elementary cells) so that

the mesh is an admissible mesh in the sense of [16, Definition 5.1 of Eymard et al.].

iv- ∀m, m′ ∈ M ,
�

m 6= m′⇒ Um ∩ Um′ ∈ {∅, point, polygonal segment}
�

.

v- ∀m= 1, · · · , M , ∀C , C ′ elementary cells of Um,

C 6= C ′⇒ C ∩ C ′ ∈ {∅, point, segment}.

Keeping the anisotropy property of such a large network allows, in an easy way, the dynamical

modeling of its traffic flow. It induces a specific dynamic network loading model that we

develop in Sec. 3.4.

Flows functions and turning movements

Let t > 0 be the time variable, and P(x , y) ∈ U the position variable. The index i = 1,2, 3,4

denotes the direction of propagation of the traffic flow.

On a section of U , let us denote by q̃i(P, t) the car-flow and ρ̃i(P, t) the car-density in the

direction i = 1, 2,3, 4 at the time t and at the point P. These quantities can be considered

as the flow and density on individual links of the network in the direction i.

We denote for i ∈ {1, 2,3, 4} by:

• λi : the density of streets or arcs in the direction i.

• νi : the average number of lanes per street or arc in the direction i.

Consequence 3.3. For any i ∈ {1,2, 3,4}, λiνi defines the density of lanes in the direction

i. Let us denote by f = ( f1, f2, f3, f4) the vector density of lanes in the four directions i.e.

∀i = 1, 2,3, 4, fi
de f
= λiνi .

Lemma 3.2 (Local equilibrium of the traffic). According to the plain traffic conservation laws,

the flow q̃ j(P, t) in the direction j = 1,2, 3,4, satisfies the below equation (3.1):

∀P(x , y),∀t, q̃ j(P, t) =
4
∑

i=1

Γi j(P, t)q̃i(P, t) . (3.1)

This Eq. (3.1) is the formula of the traffic at the local equilibrium. Γ =
�

Γi j

�4
i, j=1 is the matrix

of the turning movement coefficients. The matrix form of Eq. (3.1) is:

∀P(x , y),∀t, q̃(P, t) = (q̃.Γ ) (P, t) (3.2)
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where q̃ =
�

q̃1 q̃2 q̃3 q̃4

�T
is the flow-vector of all directions. Further, there is a relationship be-

tween the vector lineic traffic flow q̃ and the vector cell traffic flow q. Correspondingly, the vector

lineic traffic density ρ̃ and the vector cell traffic density ρ are related by the same relationship.

They are stated below:




ρ̃i(P, t) = ρi(P, t)/λiνi

q̃i(P, t) = qi(P, t)/λiνi

∀P(x , y) ∈ U , ∀i ∈ {1,2, 3,4}, ∀t > 0. (3.3)

Let us set λ= (λ1,λ2,λ3,λ4) and ν= (ν1,ν2,ν3,ν4).

Remark 3.1. Let us recall that the function (P, t) 7→
�

Γi j(P, t)
�

i j defines the time-dependent

turning movement coefficients at the points P of the network domain U. Clearly Γi j(P, t) is the

fraction of turning movement coming from lanes of density λiνi in the directions i, reaching

the point P and going to direction j. The matrix Γ expresses the assignment of traffic in the

network. We have two obvious relations:

∀i, j = 1, 2,3, 4, ∀P(x , y),∀t, Γi j(P, t)¾ 0 (3.4)

and

∀i = 1, 2,3, 4, ∀P(x , y),∀t,
4
∑

j=1

Γi j(P, t) = 1. (3.5)

The equation (3.5) is interpreted as a conservation law, meaning that cars do not appear or dis-

appear on the lanes. The same equation shows clearly that the assignment matrix Γ is stochastic.

Hence, the two properties Eq. (3.4) and Eq. (3.5) show that Γ (P, t) =
�

Γi j(P, t)
�

i j is a non-

negative and positive stochastic matrix.

Corollary 3.1. Let us assume that the matrix Γ (P, t) is irreducible and consider the remark 3.1.

By applying the Theorem of Perron-Frobenius or the theorem of Brouwer of the Fixed Point to

Eq. (3.2), we show that Γ has a real maximum positive left eigenvalue µ(P, t) equal to 1 such

that: q̃(P, t) = µ(P, t)UΓ (P, t). UΓ is the eigenvector at left of Γ associated to the eigenvalue 1.

This eigenvector UΓ has all its components positive. It can be viewed as yielding the

dominant directional components of the traffic at any point P.
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Cell internal flow dynamics

Let∆ j denotes the lineic traffic demand and Ω j the lineic traffic supply. δ j denotes the traffic

demand per lane, and correspondingly σ j the traffic supply per lane. We deduce that:





δ j(P, t) = λ jν j ∆ j

�

ρ̃ j(P, t)
�

σ j(P, t) = λ jν j Ω j

�

ρ̃ j(P, t)
�

∀P(x , y) ∈ U , ∀ j ∈ {1, 2,3, 4}, ∀t > 0.

with ρ̃ j being the lineic density in the direction j. Let us note that the traffic density per lane

ρ j is defined as below:

ρ j(P, t) = λ jν j ρ̃ j(P, t)
�

∀P(x , y) ∈ U , ∀ j ∈ {1,2, 3,4}, ∀t > 0.

The function link demand ∆ j and the function link supply Ω j are respectively shown to be:








∆ j

�

ρ̃ j(P, t)
�

=max
r≤ρ̃ j

Qe, j(r, P)

Ω j

�

ρ̃ j(P, t)
�

=max
r≥ρ̃ j

Qe, j(r, P)
∀P(x , y) ∈ U , ∀ j ∈ {1, 2,3, 4}, ∀t > 0. (3.6)

Since every car aims to maximize its own time travel, there is an issue on the flow opti-

mization at the points P of the network domain U . This results in Eq. (3.7) according to

the intersection traffic flow model of [8, Costeseque and Lebacque]. We have the below

optimization problem:

max
q̃

4
∑

j=1
Φ j

�

q̃ j

�

under constraints







∀ j = 1, 2,3, 4, 0¶ q̃ j ¶min(δ j ,σ j),

∀ j = 1, 2,3, 4, q̃ j −
4
∑

i=1
q̃iΓi j = 0.

(3.7)

with ρ̃ j being the lineic density in the direction j and q̃ j its corresponding lineic flow. The

functions (Φ j) j=1,2,3,4 are assumed increasing and strictly concave with the flow (q̃ j) j=1,2,3,4.

Precisely, we can made this assumption in the case of a surface network wherein there is no

traffic regulation at the intersections, for instance in a urban and suburb networks. If there

are traffic lights, the functions (Φ j) j=1,2,3,4 are different (for instance linear). We mention

that
�

Φ j

�

j=1,2,3,4 are the attributes of the intersection model. In addition, we argue that

we should extend macroscopic traffic intersection models to obtain a right bi-dimensional

dynamic traffic flow model. Models extended are Lebacque’s Intersection model [8, 53,

Costeseque and Lebacque, Lebacque and Khoshyaran].
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Lemma 3.3. Under the Karush-Kuhn-Tucker conditions of optimality, we easily find the implicit

analytic expression of the flow function q̃i for i ∈ {1, 2,3, 4}.

We have:

∀i = 1, 2,3, 4, q̃i =min
�

ζi; min (δi ,σi)
�

(3.8)

with Φ
′−1
i the inverse function of the attribute Φi and ` = (`i)i=1,2,3,4 the Lagrange multiplier

vector associated to the last constraint listed in (3.7).

The function Φi is strictly increasing on [0, ki] and Φ′i(0)> 0. ζi =max
�

0,Φ
′−1
i

�

`i−
4
∑

j=1
` jΓi j

��

expresses an implicit traffic supply for the upstream link (i) of the intersection, given that the

admissible traffic demand on the link (i) is min (δi ,σi) for any i ∈ {1,2, 3,4}.

Eq. (3.8) expresses an implicit intersection charge of the link. Let us specify the functions

δi and σi . δi(P, t) is the users’ traffic demand in the direction (i) upstream to the point P at

the time t. σi(P, t) is the traffic supply in the direction (i) downstream to the same point P at

the same time t. We provide analytic expressions of δi(P, t) and σi(P, t) in Eq. (3.6) above.

They are depicted by the well-known flow-density FD (fundamental diagram) in Figure 3.2.

The flow-density FD emphasizes the equilibrium between the traffic demand and supply per

direction of propagation, which we depict by Figure 3.2.

Figure 3.2: Bi-dimensional flow rate curves following a lane and the propagation directions.

For the sake of accuracy in the traffic flow, speed, density computing, we should apply dif-

ferent fundamental diagrams (FDs) with respect to the direction of the propagation, the

characteristics of its lanes and the topology of the whole network domain. We assume that

the maximal capacity in the directions should also be different. Figure 3.2 depicts the Drake,

Drew, Greenber and Greenshields fundamental diagrams.
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Lemma 3.4. Under above assumptions and hypothesis of Corollary 3.1, the following relation

holds:

∀i ∈ {1, 2,3, 4}, q̃i = µUΓi , with µ= min
1≤ j≤4

¦

min(δ j ,σ j)/U
Γ
j

©

. (3.9)

Proof.

∀i ∈ {1, 2,3, 4}, one has µUΓi = q̃i because of Corollary 3.1.

In addition, ∀i ∈ {1, 2,3, 4}, q̃i ¶ min(δi ,σi) because of the law of the minimum between

the traffic demand and the traffic supply which says that “the flow could not exceed either the

supply or the demand”.

Hence, µ ¶ min
1≤i≤4

�

min(δi ,σi)/UΓi
	

. Besides, µ reaches its upper bound following the opti-

mality condition of the flows, verified by the physics of the traffic.

The relations (3.3) and (3.9) represent the traffic states of the resulted intersection mo-

del. Figure A.1 depicts the attribute function Φ j according to the lanes’ characteristics in the

direction j, for j ∈ {1,2, 3,4}.

3.3 Traffic dynamic within 2d Anisotropic continuous network

This section is devoted to the modeling of traffic flow within the network domain U . We

assume that U can be disaggregated in M traffic-zones Um, m= 1, . . . , M . A conservation law

of car-flow within each Um will result. It is stated by the system of hyperbolic conservation

laws (3.10).

Vehicles dynamics within 2d traffic zone

There is internal conservation of the mass flow in any direction i of propagation. The two

flow functions q̃i and qi are related with qi = λiνi q̃i formula. As mentioned above, each zone

Um is meshed by a family of 2d elementary cells, denoted by
�

Cα,β
m

�

α,β
for m = 1, . . . , M .

The cells satisfy [16, Definition 5.1 of Eymard et al.]. First we consider regular mesh. It

means that the 2d elementary cells Cα,β
m are square or rectangular cells (since besides four

directions of propagation of the traffic are considered).

We assume that λ3 = λ1 and λ4 = λ2, and that Γ13 = Γ31 = Γ24 = Γ42 = 0. The first rela-

tionship implies that at any point P there is always four directions which are pairwise side

by side. The second expresses that there is no U-turning movement at any point P.

Under these assumptions, the dynamical traffic flow model in [78, Saumtally et al.] is valid
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for the topological structure of the network discussed in this study. The model in [78, Saum-

tally et al.] boils down to a system of conservation laws of car-densities within an elementary

cell (3.10). For any fixed zone-index m= 1, 2, . . . , M , the same system shall be valid on Um,

since any cell of Um has the same values of lane-densities λi , i = 1, 2,3, 4 (which may differ

from one zone to another). Below, (3.10) is the multidimensional hyperbolic conservation

laws that describes the variation of car-density vector ρ in all directions. This holds in the

local basis (u, v) related to each elementary cell, and then for the zone containing the cell.

We have:
�

�

�

�

�

�

�

∀m= 1, . . . , M , ∀t ∈ R+, ∀P(x , y) ∈ Um ⊂ U ⊂ R2,

∂tρ + ∂xQx(q) + ∂yQ y(q) = 0.
(3.10)

with ρ =
�

ρ1 ρ2 ρ3 ρ4

�T
and q = (q1, q2, q3, q4)T taking values in R4, where ρi is the car-

density and qi the car-flow in the preferred direction of propagation i, i ∈ {1, 2,3,4}.

Qx(q) =
�

Qx
1 Qx

2 Qx
3 Qx

4

�T
(q) and Q y(q) =

�

Q y
1 Q y

2 Q y
3 Q y

4

�T
(q).

The vector function Q : R4 −→ R8, (q1, q2, q3, q4)T 7−→
�

Qx
1 Qx

2 Qx
3 Qx

4 Q y
1 Q y

2 Q y
3 Q y

4

�T
takes

into account the theory of hydrodynamic and velocity profiles applied in traffic theory.

Qx (q) =

















q1
1
2

�

Γ12q1 − Γ32q3 +
λ1

λ2
(Γ21 − Γ23)q2

�

−q3
1
2

�

Γ14q1 − Γ34q3 +
λ1

λ2

�

Γ41 − Γ43
�

q4

�

















, Q y (q) =

















1
2

�

Γ21q2 − Γ41q4 +
λ2

λ1

�

Γ12 − Γ14
�

q1

�

q2
1
2

�

Γ23q2 − Γ43q4 +
λ2

λ1

�

Γ32 − Γ34
�

q3

�

−q4

















. (3.11)

Qx(q) and Q y(q) are the flow vector functions for measuring the change in flow in the x-

direction and y-direction (see [78, Sautmally et al.]) of cells of the network domain.

To proof Eq. (3.11), one should integrate the laws qi(ρi). By using an affine transformation,

the system can be transformed regarding the global basis (e1, e2) (Figure 3.1(b)).

We assume for physical reasons, for instance according to the fundamental diagram and the

conservation of the traffic in the four directions, that the system (3.10) is hyperbolic. We

have not demonstrated this. One possibility would be to calculate:

∂qQ× ∂ρq = ∂ρQ (3.12)

Eq. (3.12) is a system of 4 equations of conservation in two space dimensions. Mathematical

literature says little about it.
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Cell transport demand and cell network supply

Let m be fixed. Let us make a focus on Um. We recall that Cα,β
m denotes an 2d elementary cell

of Um. For the sake of simplicity we omit the index m. The traffic supply and traffic demand

in the cell Cα,β in the direction i ∈ {1,2, 3,4} are defined as follows:




δ
α,β
i = λiνi∆

α,β
i

�

ρ
α,β
i /λiνi

�

σ
α,β
i = λiνiΩ

α,β
i

�

ρ
α,β
i /λiνi

�

∀Cα,β , ∀i ∈ {1,2, 3,4}, (3.13)

where Ωα,β
i and ∆α,β

i are the supply and demand at a point.

Inflows and outflows of an 2d elementary cell

Remark 3.2. Within the same zone Um for m fixed, values of λi from one cell to the other are

the same. Let us mention that, in the two dimensional approach, there is no buffer between

cells. Hence, cell outflow rates do not depend upon cell inflow rates. But the cell itself is a buffer

between its inflows and outflows.

Inflow and outflow rates in the four privileged directions with their constraints are ex-

pressed as follows. Inflow rates are set in the first column and outflow rates are in the second

one of the below equation (3.14).

α − 1 α α + 1

β − 1

β

β + 1

Cα,β

Γ11qα− 1
2 ,β

1

Γ22qα,β− 1
2

2

Γ33qα+ 1
2 ,β

3

Γ44qα,β+ 1
2

4

qα+ 1
2 ,β

1

qα,β+ 1
2

2

qα− 1
2 ,β

3

qα,β− 1
2

4

Figure 3.3: Inflows and outflows of 2d computing cells

Other turning flows can be suggested as:
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i- q
α,β− 1

2
1 Γ21 and q

α,β+ 1
2

4 Γ41 in the direction i = 1.

ii- q
α− 1

2 ,β
1 Γ14 and q

α+ 1
2 ,β

3 Γ34 in the direction i = 2.

iii- q
α,β− 1

2
2 Γ23 and q

α,β+ 1
2

4 Γ43 in the direction i = 3.

iv- q
α− 1

2 ,β
1 Γ14 and q

α+ 1
2 ,β

3 Γ34 in the direction i = 4.

We will see how to accommodate them effectively.

The constraints of supply and demand at the 4 interfaces of each cell C (α,β) are set below.

• (α,β)← (α+ 1,β) : q
α+ 1

2 ,β
3 ¶ σα,β

3

• (α,β)← (α− 1,β) : q
α− 1

2 ,β
1 ¶ σα,β

1

• (α,β)← (α,β − 1) : q
α,β+ 1

2
4 ¶ σα,β

4

• (α,β)← (α,β + 1) : q
α,β− 1

2
2 ¶ σα,β

2

• (α,β)→ (α+ 1,β) : q
α+ 1

2 ,β
1 ¶ δα,β

1

• (α,β)→ (α− 1,β) : q
α− 1

2 ,β
3 ¶ δα,β

3

• (α,β)→ (α,β − 1) : q
α,β+ 1

2
2 ¶ δα,β

2

• (α,β)→ (α,β + 1) : q
α,β− 1

2
4 ¶ δα,β

4

(3.14)

Flows at interfaces are maximal given their constraints and thus:

q
α− 1

2 ,β
1 = µα,βUα,β ,Γ

1 ; q
α+ 1

2 ,β
3 = µα,βUα,β ,Γ

3 ;

q
α,β− 1

2
2 = µα,βUα,β ,Γ

2 ; q
α,β+ 1

2
4 = µα,βUα,β ,Γ

4 .
(3.15)

where µα,β =min
�

µ
α,β
1 ,µα,β

2 ,µα,β
3 ,µα,β

4

�

with

µ
α,β
1 =min

�

δ
α−1,β
1 ,σα,β

1

�

/Uα,β ,Γ
1 ; µ

α,β
3 =min

�

δ
α+1,β
3 ,σα,β

3

�

/Uα,β ,Γ
3 ;

µ
α,β
2 =min

�

δ
α,β−1
2 ,σα,β

2

�

/Uα,β ,Γ
2 ; µ

α,β
4 =min

�

δ
α,β+1
4 ,σα,β

4

�

/Uα,β ,Γ
4 .

We recall that µα,β is the real maximum positive left eigenvalue of Eq. (3.2) which we assume

valid either at the points P(x , y) of the network domain (local equilibrium) or in each 2d

elementary cell (global equilibrium). Uα,β ,Γ =
�

Uα,β ,Γ
j

�

j=1,2,3,4
is the eigenvector at left of

the assignment matrix Γ related to the cell Cα,β . Uα,β ,Γ and µα,β are time-dependent and

different from one cell to another.

3.4 Numerical methods

We provide in this section the spatial domain for Riemann problem with respect to the di-

rections of propagation in the cells. Next, we provide a Godunov-type numerical scheme

construction for the system (3.10) - (3.15). The Godunov method that we describe in the

following is based on propagating waves normal to each 2d cell interface.
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Waves propagation in 2d elementary cells

Waves should propagate in a multidimensional manner and affect other cell averages besides

those adjacent to the interface. Waves are represented by fluctuations they produce. These

fluctuations in multidimensional domain are transverse and are splitted into two categories:

the up-going transverse fluctuations and the down-going transverse fluctuations. Spatial

domain for Riemann problem is thus either half plane or quater plane. Let us zoom in on

an internal cell of a network domain. Through each interface of the cell, there are plane

waves crossing it. At the corner of the cell, there is interference of such waves. Let assume

constants u the traffic velocity in directions 1 and 3 in the one hand, and v the traffic velocity

in the direction 2 and 4. In such a case a single wave should propagate in the direction (u, v).

There is a triangular portion of the wave originating from the cell Cα,β which should move

into cells Cα,β+1 and Cα−1,β−1, rather than cells Cα−1,β or Cα,β (see Fig. 3.4). Between the

latter, the first are up-going transverse fluctuations, the second are down going transverse

fluctuations.

direction 1
direction 3

direction 2

direction 4

82



u∆t

v∆t

β + 1

β

β − 1

α− 1 α α+ 1

ℓ = Cα−1,β ∩Cα,β

transverse propagation*

transverse propagation**

Figure 3.4: Generic two-dimensional waves in 2d elementary cells.

Transverse propagation* represents waves originating from the cell Cα,β passing through

the cell interface `= Cα−1,β ∩ Cα,β because of directions 3 and 4 of Cα,β .

Respectively, transverse propagation** represents waves originating from the cell Cα−1,β

passing through the same cell interface ` = Cα−1,β ∩ Cα,β because of directions 1 and 2 of

Cα−1,β .

Waves originating from the cell Cα,β will intersect as suggested specific waves from neighbor

cells. It is a very difficult problem. No analytical solution have been suggested. Therefore,

we provide schemes to compute densities and flows without addressing how to treat effec-

tively Riemann problem in the network domain of two space dimensions for the system of

hyperbolic PDEs (3.10).

The discretized model

A discretized model is the computational expression of a continuous model. Let us recall that

the model is built at the bi-dimensional scale. In a system of axes, α lies on the x-axis and β

on the y-axis correspondingly. The average value of the bi-dimensional dynamic traffic state
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ρ, at the time t over the cell Cα,β is defined as

ρα,β(t) =
1

�

�Cα,β
�

�

∫

Cα,β

ρ(x , y, t)d xd y. (3.16)

The solution at each time step t is described as a piece-wise constant function:

ρ(x , y, t) =
∑

m∈M

∑

αm ∈ N m
α

βm ∈ N m
β

ραm,βm(t) χαm,βm
(x , y) (3.17)

with

χαm,βm
(x , y) =







1 if (x , y) ∈ Cαm,βm

0 if (x , y) /∈ Cαm,βm

N m
α and N m

β
are sets of cells’ indexes of sub-network domain Um respectively in the x-axis

and y-axis.

The following is the first proposal for numerical schemes.

For each cell Cα,β the density vector at the next time level (t + 1) is computed as follows:
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∆t
ξ2η2

�

η2Γ22q
α,β− 1

2
2 +η3Γ32

λ2ν2

λ3ν3
q
α− 1

2 ,β
3 +η1Γ12

λ2ν2

λ1ν1
q
α+ 1

2 ,β
1 −η2q

α,β+ 1
2

2

�

(t)

ρ
α,β
3 (t + 1) = ρα,β
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ρ
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4 (t) +
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ξ4η4

�

η4Γ44q
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λ4ν4
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3 +η1Γ14

λ4ν4

λ1ν1
q
α− 1

2 ,β
1 −η4q
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�

(t)

(3.18)

Here we assume the model (3.9) at the behavior level together with the equation of con-

servation (3.10) and (3.11). We integrate the physical behavior governed by (3.15) in the

discretized model (3.18). This latter formulation does not integrate the intersection model

but only the assignment
�

Γi j

�

i, j=1,2,3,4.

Crossing flows q
α± 1

2 ,β
`

(t) and q
α,β± 1

2
`

(t) from the cell Cα,β appearing in the above formula-

tion (3.18) are determined by the traffic equilibrium principle at each time step t. It is the

traffic equilibrium between the four traffic demands in a cell and the four network supplies

of its neighbor cells. This is expressed by Eq. (3.15).

For i ∈ {1,2, 3,4}, ηi denotes the length of lanes in the direction i and ξi denotes the width

of lanes in the direction i + 1 modulo 4 (see Fig. 3.1(c)).

Replacing expressions of Eq. (3.15) in Eq. (3.18), we obtain Eq. (3.19) below.
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(3.19)

The latter equation really integrate the physical behavior expected which is expressed by the

eigenvector Uα,β ,Γ and the eigenvalue µα,β .

Remark 3.3. For any admissible mesh of quadrangular cells, one could apply the

method introduced in [90, Vides et al.] where a simple two-dimensional HLL Riemann Solver

has been proposed to find approximate solutions to the above system of nonlinear hyperbolic

conservation laws. HLL Riemann solver refers to “Upstream Differencing and Godunov-Type

Schemes for Hyperbolic Conservation Laws” [27, Harten et al.] ‘HLL’ is initials of authors of

[27]: Harten, Lax and van Leer. Their resulting solver for Riemann problem has been named

HLL Riemann Solver. In the case of application of a high-resolution method to the system (3.10),

we could adapt the works of LeVeque [56, 55, LeVeque and Shyue, LeVeque].

Algorithms

With regard to the two-dimensional system equations we present a snippet of pseudo-code

to compute the values of cell demands and cell supplies, flows across cell interfaces and cell

densities. The obtained pseudo-code below derives from [78, Saumtally et al.].
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Algorithm 1 Computation of flows of large orthotropic continuous networks

Input: ∗ the mesh of the considered network domain

(We use .msh file generated by GMSH software).

∗ lane density λi in the direction (i)

∗ average number of lanes νi per link in the direction (i)

∗ turning movement coefficients Γi j ←− the assignment matrix Γ

∗ boundary conditions: cell supplies σt=0
i and users’ demands δt=0

i along

network’s entry points and exit points

∗ ending time T for the simulation.

∗ empty network initial conditions (at time t = 0): ρα,β ,0
i = 0, i = 1,2, 3,4, for all the cells’ indexes α,β

for t = 0 to T do

for α= 1 to Nα do

for β = 1 to Nβ do

∗ calculate users’ demand
�

δ
α,β ,t
i

�

1≤i≤4
with (3.13)(a)

∗ calculate cell supply
�

σ
α,β ,t
i

�

1≤i≤4
with (3.13)(b)

∗ compute
�

Uα,β ,Γ
i

�

1≤i≤4
and µα,β

end for

end for

for α= 1 to Nα do

for β = 1 to Nβ do

∗ calculate the flows qα,β ,t
i across cell interfaces with the min-formula (3.15)

∗ calculate densities ρα,β ,t
i within each cell with the expressions of (3.18)

end for

end for

end for

Output: ∗ the flows qα,β ,t
i , t = 0 . . . , T and the densities ρα,β ,t

i , t = 0 . . . , T .

Table 3.1: Large orthotropic continuous networks Algorithm.

Computational aspects

Let us consider a large urban transportation network like the surface network of the city of

Paris. Let us see a map of such road network (see Fig. 3.5(a)). Let us extract specific geodesic

coordinates of boundaries of the city of Paris and the lake the “Seine”. External boundary of

the considered network domain is comprised with the “Boulevard Périphérique”. Geodesic

coordinates have been converted in Euclidean coordinates. We obtain an Euclidean subspace

of R2 which defines the network domain of the the real road map of such city. This domain

is meshed with GMSH software for the Godunov numerical scheme. The result is depicted by

Fig. 3.5(b). Input parameters or data are the vectors lane density λ= (λ1 λ2 λ3 λ4)T specific

to each cell, the average number of lanes per link in the directions ν = (ν1 ν2 ν3 ν4)T , the

cell capacity κ = (κ1 κ2 κ3 κ4)T . κ is the maximal or residual capacity to absorb transport
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demand in a cell with respect to the directions of the flow.

(a) Map of the Paris’s road network (b) Mesh of the network domain by the Gmsh soft-

ware

Figure 3.5: Mesh of surface network of the city of Paris in 2d elementary cells.

Gmsh is a finite element mesh generator developed by Christophe Geuzaine and Jean-François

Remacle. Released under the GNU General Public License (with an exception to allow linking

with other specific mesh generators), Gmsh is free software. Gmsh contains 4 modules, for

geometry description, meshing, solving and post-processing. Gmsh supports parametric input,

and has advanced visualization mechanisms [20, Geuzaine and Remacle].

We find that according to the outline border of the considered network, the obtained cells are

very small and do not satisfy the minimum length and width of 2d elementary cells according

to the bi-dimensional modeling approaches of traffic flow. The bi-dimensional traffic flow

theory estimate 2d elementary cells being of length and width between 1.5 km and 4 km, and

comprising more than 20 as lane density in each direction of propagation. To respond to these

criteria we shall cleverly force the mesh of the network domain by Gmsh in order to obtain

convenient elementary cells. Let us propose how to do that by a specific dynamic network

loading (DNL) model. This DNL model covers also the case where λi 6= λi+2 for i = 1,2;

what we have not previously considered so far. The DNL model loads a semidiscretized shape

of the dynamic BTF model. We discuss this in the following.
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SPECIFIC DYNAMIC NETWORK LOADING

Let us suppose a very large surface network which network domain is meshed by GMSH

in cells in two-dimensions. Let us mention that the directions of propagation of the flow

ventilate the generated traffic demands, from cell to cell.

Notation: We use following parameters and variables.

• a, b, c, d, e, f , g, h, k : indexes of computing cells. The cells are quadrangular surfaces. We

refer to Figure 3.6.

• δt : the time step.

• Nc,i(t) : the number of vehicles of the cell (c) at the time t in the direction (i).

• Q f c(t) : the incoming flow of the cell (c) from the cell ( f ) at the time t.

• Rcg(t) : the outgoing flow of the cell (c) to the cell (g) at the time t.

• qc,i(t+) : the internal inflow in the direction (i) of the cell (c) at the time t+.

• rc,i(t+) : the internal outflow in the direction (i) of the cell (c) at the time t+.

• t+ : refers to t+1/2. That is, from the discrete time t to the next discrete time t+1= t+δt,

internal traffic states qcell,i(t+) and rcell,i(t+) are calculated at t + δt/2. It comes to the

construction of flux splitting scheme.

• C : set of all cells or nodes of the network domain.

Let us highlight some correspondences between cells
�

Cα,β
�

α,β in the rigid square or

rectangular network and quadrangular cells of C in any anisotropic network: f = (α− 1,β)

or f = (α,β − 1), c = (α,β) and g = (α+ 1,β) or g = (α,β + 1) (see Fig. 3.6). So here,

in the proposed specific DNL model, we free ourselves from the rigid square network and

consider any anisotropic network.

Semidiscretized shape of the bi-dimensional flow model

The traffic flow theory applied to highways and urban networks on the one side and the

analogy with fluids flowing within two-dimensional domain on the other side suggest the

below equation (3.20) as the physical traffic conservation model for the estimation of the

number of vehicles in each 2d elementary cell.

Nc,i(t +δt) = Nc,i(t) +
�

Q f c(t)− Rcg(t) + rc,i(t
+)− qc,i(t

+)
�

δt (3.20)

i is the direction of propagation of flow inside the cell (c). ( f ) and (g) are respectively the

indexes of the cells located at the left and right of the cell (c).
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Cell (a)

Cell (b)

Cell (c)

Cell (d)Cell (e)

Cell (f) Cell (g)

Cell (h)

Cell (k)

direction 1
direction 2
direction 3
direction 4

Figure 3.6: Considered directions within 2d elementary cells with its neighbor cells.

Cell internal flows control Using intersection traffic flow model rules following [52,

Lebacque and Khoshyaran], we find out that these functions (or variables rc,i(t+) and qc,i(t+))

are solution of the the below linear-quadratic optimization problem (3.21). We recall that

rc,i and qc,i are respectively the outgoing vehicles flow and the incoming vehicles flow of the

cell (c) in the direction i.

max
(q,r)

�

4
∑

i=1
Φi(qi) +

4
∑

j=1
Ψ j(r j)

�

s.t.

�

�

�

�

�

�

�

�

�

�

�

0≤ qi ≤∆
t+1/2
ci , ∀i ∈ {1,2, 3,4},

0≤ r j ≤ Σ
t+1/2
c j , ∀ j ∈ {1,2, 3,4},

−r j +
4
∑

i=1
qiΓ

t
c,i j = 0, ∀ j ∈ {1,2, 3,4}.

(3.21)

with q = (q1, q2, q3, q4) and r = (r1, r2, r3, r4) internal vectors flows which express traffic

states inside the cells. Functions Ψ`(ϑ`)
.
= Φ`(ϑ`) are defined by (3.22). They are assumed

of the same quadratic concave, increasing form. They describe interactions of vehicles inside

each cell. Functions (3.22) are used in intersection theory. They imply that higher capacity

directions (ϑ`,max higher) are privileged. The optimization problem (3.21) results in an

intersection model similar to the intersection models of [24, 86, Haj-Salem et al., Tampère

et al.].

Ψ`(ϑ`)
def
= −

1
2
ϑ2
` + ϑ`.ϑ`,max . (3.22)
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Notations and definitions are the following.

• ∀i ∈ {1, 2,3,4}, qi : the incoming vehicles flow in the direction i.

• ∀ j ∈ {1,2, 3,4}, r j : the outgoing vehicles flow in the direction j.

• `= i, j ∈ {1, 2,3, 4}, ϑ` : refers to qi or r j; ϑ`,max denotes qi,max or r j,max which is the

maximum flow constraint in the direction i or j.

• Γ t
c,i j : the assignment coefficients of flows within the cell (c), from the direction i to

the direction j, at the time step t.

• µci : the number of lanes in the cell (c) in the direction i.

• νci : the number of exiting lanes in the cell (c) with respect to the direction i.

• δi =∆ci(ρ t
ci) : the traffic demand per lane in the direction i of the cell (c).

• σ j = Σc j(ρ t
c j) : the traffic supply per lane in the direction j of the cell (c).

• ∆t+1/2
ci = µciδi : the traffic demand of (c) in the direction i, at the time t+ = t + 1/2.

• Σt+1/2
c j = µc jσ j : the traffic supply of (c) in the direction ( j), at the time t+ = t + 1/2.

•
�

qt+1/2
ci , r t+1/2

c j

�

i, j=1,2,3,4
: denote the solution of the above convex optimization prob-

lem (3.21). Its resolution is discussed in Appendix A.1.

Cell inflows and cell outflows Let (c) be a cell. The incoming flows and outgoing flows

through the cell (c) are denoted respectively by Q`c and Rc` for ` ∈ V (c), see Figure 3.6 and

the figure below. These crossing flows are governed by the law of the minimum between the

traffic demand at upstream of the cell (c) and the traffic supply at downstream of the same

cell (c). They are defined as follows (Eq. (3.23)). V (c) denotes the set of neighbors of the

cell (c) comprising the only adjacent cells that share together only one interface with the cell

(c).

We have:




Q`c(t) =min
�

δ`,`−>c(t),σc,`−>c(t)
�

Rc`(t) =min
�

δc,c−>`(t),σ`,c−>`(t)
�

∀` ∈ V (c). (3.23)
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(f) (c) (g)

Rcf

Qfc

Qgf

Rcg

For instance neighbors of (c) are V (c) = {( f ), (d), (g), (b)} according to Fig. 3.6. For all

elements ` of V (c), the directions `− > c and c− > ` are the directions 1, 2,3, 4 of the cell

(c).

Consequence 3.4. • Notations Q`c(t) and Rc`(t) generalize q
α± 1

2 ,β
`

(t) and q
α,β± 1

2
`

(t) used in

the rigid square network.

• Equations (3.21) - (3.22) and (3.23) discretize the phenomenological model (3.9).

COMPUTATIONAL ASPECTS

Using a finite volume mesh of a transportation network area (which can be obtained easily by

any mesh software for finite volume methods), we deduce a graph of the simplified network

obtained at the bi-dimensional scale.

Let us discretize the system of equations (3.10) and (3.11). Let t be fixed. N t
ci for c ∈ C

is the number of vehicles of cell c, at time t in the direction i. We supposed we know

N t
c = (N

t
c1, N t

c2, N t
c3, N t

c4) at time t in all its 4 directions.

The question is how to compute N t+1
c at the next time step t + 1.?

Let us propose a consistent time-split numerical scheme consisting by schemes 3.24 and

3.25. First, we solve the linear-quadratic optimization problem (3.21) for the internal flow

optimization model. It results r t
c and qt

c . The reader is referred to Appendix A for details of

the resolution.

After, we use the scheme 3.24 and get an intermediate value of the number of vehicle in each

cell, and this at time step t + 1/2 which we denote by N t+1/2
c .

∀t ¾ 0,∀c ∈ C, N t+1/2
c = N t

c +
�

r t
c − qt

c

�

δt (3.24)
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Further, we propose the discretization of equations (3.10) and (3.11) as follows (scheme

3.25).

∀t ¾ 0,∀c ∈ C, N t+1
c = N t+1/2

c +
∑

g∈Neighbor(c)

�

Qt
f c − Rt

cg

�

δt (3.25)

Hence, to compute bi-dimensional cells flows, the general structure of the algorithm is shown

schematically in Fig. 3.7.

Cell supplies

σt
j ,Σ

t+1/2
j and

demands δti ,∆
t+1/2
i

Volumes N t+1
c,i

and densities ρt+1
c,i

Internal cell
flows qt

+

c,i, r
t+

c,j

Cell Inflows
and Outflows
Qt

`c, R
t
c`

t→ t+ 1,
t ≤ T.

Simplified network at the
bi-dimensional scale with
performance parameters

Demands fc|i
at F(U) &
Matrices of

turning rates{
Γc
i,j

}c∈C

i,j=1,...,4

Update of (δ,∆, σ,Σ)

Figure 3.7: Bi-dimensional network flows computing engine.

At each time step in the computation, the number of vehicles Nc,i(t + 1) in cell c ∈ C is

calculated by applying successively the scheme 3.24 and the scheme 3.25. F (U) denotes

the cell interfaces at the entry and exit points of the network domain U . We summarrize

these with this large anisotropic Algorithm 3.2.
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Algorithm 2 Computation of flows of large anisotropic continuous networks

Step 1. Mesh surface network domain in 2d elementary cells. Calibrate

parameters of the network domain within cells: residual

capacity in the directions of each cell, density in the cells

at the initial time (network is it empty ?).

Step 2. Load the demand profile fc|i at the entries F (U) of the network

domain U and the matrices of turning rates
¦

Γ c
i, j

©c∈C

i, j=1,2,3,4
.

Step 3. Time iteration: Do the items below.

• Iterate through interfaces ` of each cell (c) ∈ C and calculate Inflows

QI t
`|i and Outflows QOt

`|i , taking into account the lane density λc|i .

• Resolve the linear-quadratic optimization problem (3.21) and get

the 4 cell internal inflows QI int t
`|i and 4 cell internal ouflows

QOint t
`|i , for all interfaces ` of each cell (c) ∈ C.

• Apply the conservation law to calculate the number of vehicles N t
c|i

for c ∈ C and for i ∈ {1, 2,3,4}.

• Compute the densities ρ t
c|i for c ∈ C and for i ∈ {1,2, 3,4}.

Table 3.2: Large anisotropic continuous networks Algorithm.

Numerical experiments are provided in the next section 3.5.

3.5 Validation

We provide in this section some numerical results and numerical analysis in order to validate

the proposed semi-discretized shape of the dynamic BTF model.

Case Studies

For the sake of simplicity we take a triangular FD (see Fig. 3.8) in all the case studies.
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Figure 3.8: Lane FD in each 2d elementary cell.

Let us mention that we do not address queues containing bulk traffic flow generated by the

profile traffic demand.

Case study 1

Let us take a surface network whose network domain is meshed in 4 rectangular cells. It is

depicted by Fig. 3.21.

direction 1

direction 2

direction 3

direction 4

Cell 1 Cell 2

Cell 3Cell 4

3km

2.5km
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Figure 3.9: Mesh of the Network domain 1 in four 2d elementary cells.

The area of the network is 30 km2. In the following we set the characteristics of the four

cells which comprise the network domain.

Cell 1, 2, 3, 4

Length 3 km

Width 2.5 km

µc,1 26

µc,2 25

µc,3 23

µc,4 21

Cell 1, 2, 3, 4

maximal density 720 Veh/km/lane

critical density 97.2 Veh/km/lane

maximal velocity 50 km/h/lane

Table 3.3: Characteristics of the surface network (network domain): case study 1.

The testing results. First we set the traffic demand constant and equal to 1080 Veh/h/lane

at the entry points of the network while the traffic supply at the exit points of the network is

equal to 1350 Veh/h/lane. The testing results are the following.

Figure 3.10: Inflows of the 2d elementary cells.
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Figure 3.11: Outflows from the 2d elementary cells.

Figure 3.12: Internal Inflows in the 2d elementary cells.

96



Figure 3.13: Internal Outflows in the 2d elementary cells.

Figure 3.14: Number of Vehicles in the 2d elementary cells.
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Figure 3.15: Density of the 2d elementary cells.

We consider the hypothetical network empty at the initial time of the simulation. In this

first case where the demand for travel is constant and less than the supply of the network

during the entire simulation, the hypothetical network fills up fast when running the two-

dimensional simulator. We reach the equilibrium of the traffic fairly quickly, in the order of

10 to 20 minutes.

Let us simulate again the traffic in the considered hypothetical network with some re-

strictions: we reduce the residual capacity/supply to 720 Veh/km/lane on the exits of the

cells 1 and 3, respectively in the directions 3 and 2, at the time t =
number of time steps

4
.

Below are the testing results.
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Figure 3.16: Inflows of the 2d elementary cells.

Figure 3.17: Outflows from the 2d elementary cells.
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Figure 3.18: Density of the 2d elementary cells.

As we expected, before the special time where the capacity of the network in some direc-

tions is restricted, inflows and outflows have evolved exactly as in the first case scenario. In

the direction 2 of the cell 3 and direction 3 of the cell 1, in and out flows have significantly

decreased from the time of the network capacity-restriction. That explains the fact that the

density has become important in such directions from this time, as shown by Fig. 3.18 above.

Another case scenario is an input demand profile and without any restriction, depicted

by Fig. 3.19 as below.
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Figure 3.19: Demand profile at the entry of the network 1

Figure 3.20 shows the evolution of the density with such a transport demand profile.

Figure 3.20: Density of the 2d elementary cells with non constant demand at the entry of
the network.

This result suggests a combination of the results of the two previous scenarios. It explains
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that the dynamic bi-dimensional traffic flow model handles efficiently a dynamic transport

demand, even during times the transport demand is greater than the network supply.

Case study 2: A greater surface network

Let us take some very large surface network of 12 km × 11.04 km= 132.48 km2. Its network

domain is meshed in 20 2d elementary cells. Below Fig. 3.21 shows the mesh of such surface

network and its graph representation.

Figure 3.21: Mesh to a Network domain

At the left, a non-uniform mesh of the network domain and at the right, its corresponding

weighted directed graph. Every node at the right represents the center of a quadrangular

cell at the left. In each quadrangular cell the considered directions of propagation of

vehicles flow are the same.

The testing results We run the bi-dimensional simulation engine using the network do-

main of Figure 3.21 shown above. Let us remind that there are 6 significant variables: the

internal flow and the internal outflow, the inflow and the outflow, the number of vehicles

and the density, all following the dominant directions of propagation of each bi-dimensional

cell. Since there are 20 cells, there is a total of 6×20= 120 figures to shown. We choose to

show the results concerning some cells, for instance cells 4, 5, 14 and 20. Cells 4 and 5 on

the one hand, and cells 14 and 20 on the other hand have a certain peculiarity. We see that

the dominant outgoing direction 1 of cell 4 and the dominant outgoing direction 4 of cell

5 cross the interface 1, 25. It is a peculiarity since 1 and 4 are not usual pairwise opposite

directions of propagation. In the same way, the outgoing directions 2 and 3 of cells 14 and

20 (respectively) through the interface 5,27 are not usual pairwise opposite directions of
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propagation since the common pairwise opposite directions of propagation are i and i + 2

for i = 1,2.

First, we take a constant demand equal to 1080 Veh/h/lane at the entries of the network

domain like in the case study 1. Let us see certain results below.

Figure 3.22: Inflows of the cells 4, 5, 14, 20.
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Figure 3.23: Outflows of the cells 4, 5, 14, 20.

Figure 3.24: Internal Inflows of the cells 4, 5, 14, 20.
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Figure 3.25: Internal Outflows of the cells 4, 5, 14, 20.

Figure 3.26: Density of the cells 4, 5, 14, 20.

Using the same profile demand at the entries of the network, we get below results.
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Figure 3.27: Density of the cells 4, 5, 14, 20 with non constant demand at the entry of the
network.

Convergence of the dynamic bi-dimensional traffic flow model

In all illustrations, the variables of ρ t
c,i are scaled by ρmax . The Courant-Friedrichs-Lewy

(CFL) number is defined by CFL=
`x y

2 ∗ Vmax
with `x y the minimal length of all lengths of the

2d elementary cells, and Vmax being the maximal velocity in all the four directions of cells.

The time step δt is set to be δt = 80%CFL.

In the case scenarios, the dynamic BTF model allows to reach the equilibrium of the traffic

fairly quickly, in the order of 10 to 20 minutes. It is a great advantage compared to micro-

scopic or macroscopic simulation traffic flow models.

Summary and perspectives

To summarize, large transportation networks management requires specific traffic flow simu-

lation model. We have developed mathematical and physical approaches in this framework.

We comes that we could simulate and regulate very large transport surface networks just

using scarce traffic data. In addition, the BTF model is efficient applied to any large scale

orthotropic or anisotropic surface networks for which their traffic is assumed homogeneous
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or even heterogeneous. That is not the case when MFD based dynamic traffic flow models

are used [11, 12, 6, 10, Daganzo, Daganzo and Geroliminis, Cassidy, Courbon and Leclercq].

The MFD is more right for Freeways networks. It is the case of MFD applied to large surface

networks which traffic is supposed to be homogeneous. The thing is that in a zone the MFD

approach defines its traffic states from an assumption of homogenization of traffic. In the bi-

dimensional traffic theory, as many fundamental diagrams as number of dominant directions

(or privileged directions) of propagation of flows need. Moreover, from any cell to another,

the BTF theory is right also when the dominant directions are different.

3.6 Conclusion

In the field of traffic flow modeling of large scale urban networks, a bi-dimensional model

of traffic flow within large-scale transportation networks is proposed for dynamic network

loading. In discrete-continuous network the coupling of GSOM macroscopic flow model with

the bi-dimensional traffic flow model is a key for modeling several cities (road) networks.

Such a transport model has the capability to reduce the cumbersome calculations involved

when traditional macroscopic flow models are applied to large, dense and inhomogeneous

networks. We have found that the dynamic BTF model is also suitable for networks with few

traffic detectors.

Mostly dynamic assignment is essential for efficient traffic controlling. We then proposed

an assignment methodology based on this bi-dimensional network loading model (refer to

the Chapter 6). The bi-dimensional model is completely achieved by the development of

BidiTSim (Bi-dimensional Transport Simulator) [80, Sossoe and Lebacque].
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Chapter 4

Vehicular multimodal traffic flow modeling
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4.1 Introduction

Several transportation systems (of road or rail types) have been progressively built so far,

since the recent century, to limit traffic congestion issues in industrialized cities. Since travel

demand grows exponentially contrary to physical transport networks, many transportation

issues occur.
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Motivation

We are witnessing the renewing of existing transport systems and services to mobility in or-

der to respond to daily travel demands of mass transportation in reliable and efficient ways.

These are renewing and reinforcements of transport infrastructures and deployments of rapid

buses for mass transit. They are complying with the regulation of the reduction of carbon

emissions since it use natural gas instead of fuel. Besides, as the technology increases consid-

erably, automatic and autonomous vehicles are designed for efficient Intelligent Transporta-

tion Systems (ITS). It is in the context of creating smart network infrastructures for smart

territories. One notes the case of Vehicle-to-Vehicle communication (V2V) and Vehicle-to-

Infrastructure (V2I) communication technologies. Personal Rapid Transit (PRT) system falls

within the framework of these so called intelligent transportation systems, and the scopes

for getting smart territories.

(a) skyTran routes designed through buildings (b) skyTran City-scape

Figure 4.1: skyTran PRT transporters for public transportation (Image courtesy of: www.skytran.com)

A special intelligent transportation system is the skyTran system. It consists of skyTran vehi-

cles operating autonomously in the style of demand-responsive system, equipped with ma-

glev technologies. SkyTran vehicles are also named personal rapid maglev-transporters or

sky-podcars. The physical network of the skyTran system is built in the air-space, and the

routes are sky-railways.

The skyTran system or technology is designed to respond to transportation issues in the fra-

mework of smart transportation for smart cities. skyTran vehicles are high-speed, low-cost,

green, elevated and personal rapid transit. These are their advantages: they are fast and

they do not operate in the same physical network space as the other ground transport vehi-

cles modes (such public traditional transit vehicles, buses for rapid transit, taxis for particular
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services, car-sharing vehicles, private vehicles, etc). Thus, the traffic space is considerably in-

creased in the cities where skyTran is constructed and in operation. The maglev-transporters

have the ability to be reliable and they contribute to alleviate traffic congestion.

Meanwhile, traditional modes of transport are also of great importance for the movement of

users. We consider that it is essential to combine the traditional modes with new modes and

uses. This should allow a greater possibility of choice of users in a multimodal transportation

system.

In this situation, what would be an efficient transport simulation model for the prediction

and the estimation of vehicles and/or passengers flow within multimodal transportation sys-

tems comprising traditional transport modes and theirs uses and by taking also into account

the skyTran system and its transport services ? Further issue is that, this transportation pat-

tern can it actually and considerably contribute to an optimal control of the skyTran transit

system to an highly optimized traffic monitoring and regulation ?

Organization of the chapter

Since this dissertation particularly focuses on the traffic modeling, we describe in the next

section (4.2) dynamics of maglev-personal rapid transporters. We provide a travel demand

pattern taking into account the sykTran transit network’s supply. Assumptions and analy-

sis for effective operation of this type of personal rapid transit (PRT) systems are carried

out. Dynamics of users getting in and out of skyTran vehicles at stations are addressed and

modeled. The reactive dynamic traffic assignment in such PRT system is further described. It

turns out that the transport model we develop (in the section 4.2) and applied to the skyTran

transit system is a traffic pattern for the skyTran system and an archetype for autonomous

demand responsive systems.

Theories of multi-graph and multicommodity traffic flow modeling are timely respond-

ing to the issues of finding comprehensive solutions to multimodal transport network flows

modeling. We hence look forward to improve traffic flow models which implementation

could easily induce performances evaluation of multimodal transport road network while

providing traffic flow forecasting and estimation (discussed in section 4.4). To achieve this,

transport attributes have been used. The reader is referred to multiclass, multilane and mul-

ticlass multilane traffic flow models [5, 69, 39, 82]. The multi-attribute model mentions the

traffic on highways (which is consisting in several lanes) and the traffic on public network
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transit. It corresponds to a macroscopic traffic flow model for main roads and for network

public transit lines of a heterogeneous transport network.

The two systems studied in this chapter are archetypes of non general transportation systems.

4.2 Modeling skyTran network

It is assumed that the PRT system is designed to operate autonomously, and that it is equipped

with an adaptive cruise control maneuvering for a smooth traffic controlling, to ensure safety,

reliability and security of the system. Let us recall that this system is an archetype for au-

tonomous demand responsive systems.

The corresponding graph

In connection with transport graph as well, a maglev-graph includes few different compo-

nents. Denoted by GM , it is a quadruple of sets (NM ,AM ,LM ,PM ). NM is the set of

all nodes. These are intersections and poles of stations (departures and arrivals portals of

sky-station) of the maglev system. AM is the set of arcs connecting two nodes of same

maglev-lanes. Maglev-lanes are deceleration lanes, non-stop guide-ways, acceleration non-

stop guide-ways (or simply called acceleration lanes) which are vertically set up above the

former. LM denotes the set of all lanes. PM denotes the set of all pairs of portals (departure

and arrival portals) that physically represent the stations. At any station, there is an “off line

guide-way" which keeps sky-podcars that are at rest waiting for passengers to board. Inter-

sections allow sky-podcars to switch from “acceleration lane" onto “low non-stop guide-way",

and inversely.

Model of the system

This section provides a fluid model for the dynamic of skyTran vehicles in Lagrangian coor-

dinates. Afterwards, the passengers travel demand, constrained by the supply of the syTran

transit system, is optimized. Moreover, we analyze spatial interactions of skyTran transit

system with existing systems of other transport modes.

Sky-podcar motion formulation

To set ideas on the dynamic of sky-podcars along sky-railways, the following assumptions

have made on the functioning of the skyTran transit system.

i- The number of sky-podcar stations in the system can be as high as desired to reach all

transport demands.
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ii- Sky-podcars do not takeover each other except at internal intersections (where they

can switch from vertical lines that are connected via specific intersection dedicated to

switching).

iii- The capacity of a sky-podcar is limited, taking a finite number of passengers of “similar

profile", for instance of same origin and destination.

iv- A sky-podcar is available for only one transport demand.

v- For each transport demand in the system, more than one passenger can enter in the

sky-podcar at the starter station from departure portal to the arrival portal of the target

destination station.

vi- Maglev-lines at the same elevation cannot intersect with each other at a station; maglev-

lines of different levels interconnect together at station poles. This allows avoidance of

collisions. Exchange of traffic between two maglev-lines of different levels is carried out

through the poles at the station levels.

vii- Generally, we assume that the considered demand-responsive transportation system is

equipped with an adaptive cruise control that increases the driving comfort, reducing

traffic accidents and increasing the traffic flow throughput.

viii- In the context of skyTran transit system energy consumption, it is assumed that acceler-

ation of sky-podcar does not cost anything while it is offset by deceleration. However,

this aspect which concerns the control of the energy consumption of the system is not

addressed in this dissertation.

Let S be the set of all stations s ∈ S of the maglev-system. Let x denote the position of sky-

podcar, t ¾ 0 the time and a the podcar index. {xa(t), t ∈ R+} refers to the trajectory of the

sky-podcar a ∈ Λ, Λ being the total number of sky-podcars that is operating in the skyTran

transit system, and x j
a(t) is referring to the position of a on the arc ( j) ∈ AM . Let ua(t) be

the speed of the sky-podcar a at the time t, and wa(t) the acceleration-deceleration of the

pod a at the time t. Assuming that vehicles are labeled according to a snapshot of line from

downstream to upstream, the sky-podcar labels will increase with the position x . Therefore,

ra(t) = xa−1(t)− xa(t) is the spacing between vehicle a and its leader a − 1 at time t, and

va(t) = ṙa(t) = ẋa−1(t)− ẋa(t) = ua−1(t)− ua(t) is its relative velocity at the same time t.
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Motion of skyTran vehicles along sky-ways stretches Let us describe the dynamic of the

vehicles along the sky transit network. Along the same lane, and on a section without in-

tersection and without switch pole, the dynamic of sky-podcar is governed by the following

system of equations (as one can observe it in several car-following transport models in the

literature, also known as time-continuous models):

∀t ≥ 0,∀a ∈ Λ,∃!( j) ∈AM such that:
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is the speed equilibrium relationship between followers skyTran vehicles on same

sky-lane. It is depicted by Fig. 4.2.
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Figure 4.2: Spacing-equilibrium speed fundamental diagram of sky-podcar motion

During high traffic interruption on sky-lane, we argue that sky-podcar speed should also

depend on what it is called the velocity profile of sky-podcar which depends on its mis-

sion, position on the sky-lane and spacing ra between its followers sky-podcars. We denote

upa

�

x j
a(t)

�

the sky-podcar velocity profile of the pod-car a. It depends on its mission and the

charge of the current link ( j). In the sake of capturing all cases, one may applied a following

dynamic system (4.2) instead of the system of governing equations (4.1):

∀t ≥ 0,∀a ∈ Λ,∃!( j) ∈ AM such that,
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where fa captures deceleration and acceleration constraints of the podcar a during inter-

rupted traffic or traffic breakdowns.
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Figure 4.3: Notations of sky-podcar following model.

Motion of sky-podcars across intersections In this paragraph is briefly described how

merges and diverges work in the proposed Lagrangian transport model for maglev PRT net-

work. It is clear that diverges are trivial. Merges are then analyzed in the following. Let

a be the first podcar on an upstream link ( j). Let (d1) be the next link pertaining to the

mission of the podcar a, and nd1 be the last podcar on this lane. Then the motion of the

podcar a is given by Eq. (4.2) with r j
a(t) being the sum of the distance from a to the inter-

section plus the distance from the intersection (I) to the podcar nd1. This can be stated as:

r j
a(t) = |xa(t)− x I |( j) + |x I − xnd1

|(d1).

Let us now consider a merge with two upstream links (u1) and (u2), and (d) the down-

stream link, a1 and a2 the first podcars on links (u1) and (u2) respectively, and ad the last

podcar on the downstream link. The two upstream podcars are liable to compete for passage

through the intersection (I). The first issue to be solved is to determine which podcar will

cross first the intersection (I). For each podcar ai , i = 1, 2, we calculate for i = 1, 2, time

∆t i = |xai
(t)− x I |(ui)/u

ui
ai
(t), required to reach the intersection (I) according to the incoming

line (i). The velocity uui
ai
(t) is calculated following Eq. (4.2), with the distance r j

ai
(t) being

the sum of the distance from ai to the intersection plus the distance from the intersection to

the podcar ad : r j
ai
(t) = |x j

ai
(t)− x I |(ui) + |x I − xad

(t)|(d).
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Figure 4.4: Merge node model

Once the order of passage is decided, it is not changed. The trajectory of the first podcar to

pass is calculated by Eq. 4.2 with respect to the podcar ad . Let a1 be this podcar. The trajec-

tory of the second podcar is calculated with respect to the podcar ad but with an additional

term forcing passage as second. This term is applied as long as the podcar a1 has not exited

link (a1). Thus, the velocity of the podcar a2 at the next instant time t + 1 being uu2
a2
(t + 1)

is calculated by:

uu2
a2
(t + 1) =min

�

uu2
a2
(t) +δtwu2

a2
(t), Ue

�

ru2
a2
(t)
�

, upa
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xu2
a2
(t)
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, α× u∗a2ña1
(t)
�

(4.3)

where

u∗a2ña1
(t) =

|xa2
(t)− x I |(a2)

|xa1
(t)− x I |(a1)

uu1
a1
(t) (4.4)

is the velocity constraint for a2 to be the second podcar to pass across the merge intersection

(I), from the time t to the time t + δt2 ¶ t + |xa2
(t) − x I |(a2) × u∗a2ña1

(t), and where the

coefficient α is a sensitivity parameter for the calibration.

Travelers’ demand optimization pattern

Notations and definitions are the following.

• k,`, m : the indexes of stations (destinations or origin points of the trips).

• Tm`(t) : the demand of displacement from the station ` to the station m : (` → m)

between the instants times t and t + δt. There is Tm`(t)δt passengers that want to

travel from the station ` to the station m.

• N`(t) : the number of sky-podcars at the station `.

• K`(t) : the maximal capacity in term of number of travelers that can board at the

station `, and at the time t.

The following relation holds : N`(t) ∗KR = K`(t), with KR the residual capacity of any

sky-podcar, with K`(t)¶ K` ∀t and N∗ 3 K` being the maximal number of sky-podcars

handle-able in the station `.

• Kσ(t) : the capacity of the sky-podcar σ at time t. This variable changes only at

stations due to the passengers boarding in σ and the passengers exiting the σ. So KR

constrains Kσ(t) such that Kσ(t)¶ KR,∀t.

116



• SW (`, t) : the ordered set of sky-podcars waiting at station ` to board passengers at

the time t.

• D`(t) : the demand at the station ` and at the time t.

• N`m(t) : the number of sky-podcars that want to go to the stop (station) m from the

station ` at time t. This number represents the total demand at time t and at ` of

travelers that are going to m.

• U`(σ, t) : the set of stations for-which the sky-podcar σ can reach from the station `.

It refers to the pointed neighborhood of the station `. This set is assumed to contain

information on time-dependent shortest paths between the station ` and the other

stations m of the skyTran system.

• τ`m : the travel time from ` to the achievable-station m ∈ U`(σ, t).

• ν`mσ : the number of travelers from ` to m using the sky-podcar σ at the instant time

t. That is to say the satisfied demand from ` in order to reach m taking σ. This is

the number of travelers that is transferring exactly from the stop ` to m. This number

represents a packet of passengers in the sens of dealing with macroscopic dynamic of

travelers. That is to say the performed travelers’ demand by the system and from the

stop ` to m.

• n`m(t) : the performed travel demand. Hence, the following holds :

n`m(t) =min (N`m(t), K`m(t)) with the equality K`m(t) =
∑

σ∈S(`,t) ; m∈U`(σ,t)
Kσ(t).

• σ ∈ S(`, t) means that σ is at the station ` at time t.

• m ∈ U`(σ, .) means that the station m is in the neighborhood of the station ` and that

it is easily reachable from ` using the sky-podcar σ, when departing at time t from `.

At the station `, the demand D`(t) at time t reduces to: D`(t) =
∑

m

¦�

T`m(t)δt
KR

�

+ 1
©

where

bzc denotes the integer part of the number z. The real volume of traffic departs at the station

` at the time t is the following sum
∑

m∈U`(σ,t)
n`m(t), where the n`m(t) value is calculated as

follow by this analytical expression
∑

σ/m∈U`(σ,t)
ν`mσ(t).

The estimation of the travel time τ`m(σ, t) from ` to m of the sky-podcar σ, starting from
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the station ` at the time t, is suggested to follow the below integer programming problem

(4.5):

min
∑

σ∈S(`,t) ; m∈U`(σ,t)
ν`mσ(t) ∗τ`m(σ, t)

s.t.

�

�

�

�

�

�

�

�

∑

m∈U`(σ,t)
ν`mσ(t)¶ Kσ ∀σ

ν`mσ(t) ∈ N∗ ∀`, m,∀σ,∀t

(4.5)

We recall that the demand assigned to any sky-podcar σ cannot exceed its residual capacity

Kσ. We assume, for the sake of simplicity, that Kσ = KR,∀σ. That is to say that all sky-

podcars have the same residual capacity to transport the same maximum number of travelers

(users). The unperformed demand in the station ` to a station m, is simply the difference

r`m(t) = N`m(t) − n`m(t). This value, added to the arrival of sky-podcars at the next time

t + 1, denoted by a`m(t + 1) reduces to N`m(t + 1): N`m(t + 1) = r`m(t) + a`m(t + 1).

Numerical resolution of the integer programming (4.5)

We generate a travel demand data as input data of the integer programming problem (4.5)

and for the skyTran transport simulation, by implementing these equations and relations

(4.2)–(4.5). This profile of travelers’ demand depicted by the Figure 4.5 refers to the mean

volume of demand at the skyTran stations. We need to disaggregate such demand in time-

dependent origin-destination matrices, for successively calculating in time, the skyTran sys-

tem supply and the performed-travel demand.

Figure 4.5: The profile of the skyTran passengers’ transport demand.
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A first implementation of this new demand responsive and personal rapid transit system will

be held in the city of Tel-Aviv (see Figure 4.6).

Figure 4.6: Illustrated possible route and street view in a typical city deployment - skyTran
route in Tel-Aviv (Image courtesy of: www.skytran.com)

We take as direct weighted graph that of the transit network upon the Figure 4.6. Travel

times used in the script are listed in the table below as well as the graph of the transport

system.

To solve the optimization problem we use Pyomo. Pyomo is a collection of Python soft-

ware packages for formulating optimization models [25, 26]. It is an open source algebraic

modeling language.Since its introduction, Pyomo has undergone major restructuring and ex-

tension, such that Pyomo is now stable, flexible, and widely used. An overview of the current

features of Pyomo is shown in Figure 4.7. Pyomo supports a wide range of problem types

including Linear Programming (LP), Mixed-Integer Programming (MIP), Nonlinear Program-

ming (NLP), and Mixed-Integer Nonlinear Programming (MINLP) introduced in the litera-

ture of mathematical programming computation. Pyomo also provides interfaces to a variety

of optimization solvers and provides automatic differentiation (AD) for NLP problems via the

open source AMPL Solver Library (ASL).

One of Pyomo’s main advantages over other algebraic modeling languages is that it is

written in a high- level programming language, Python. Consequently, a user does not have

to learn a specialized modeling language in order to formulate and solve optimization prob-

lems; a basic understanding of Python is all that is required. Models are represented using

Python objects and can be formulated and manipulated in sophisticated ways using simple

scripts. Furthermore, Pyomo users have access to a large collection of other Python packages

which include tools for plotting, numerical and statistical analysis, and input/output. These
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capabilities enable the development of novel algorithms, complicated model formulations,

and general model transformations. All of these features make Pyomo a promising platform

for implementing extensions for problem classes such as dynamic optimization.

Figure 4.7: Summary of Pyomo features [70].

4.3 Towards vehicular multimodality
Spatial interactions between different transport modes

Let us consider a multimodal transport system with the sky-podcar transit system. We assume

that the whole multimodal system is semi-computerized, that is to say there is advanced in-

formation for travelers about traffic conditions, for each network mode. For the sky-podcar

transit system, there is dynamic allocation of podcars on stations with respect to the follo-

wing:

• the known cumulative demands,

• the stocks of sky-podcars at stations on the off line guide-way, and

• the foreseeable demands induced by passengers travel orders for some future times.

We propose a logit model for the modal choice in general, and user paths choice. In the case

of this PRT system, it is only up to the system manager to make the path choice according to

the origin, the destination and the traffic state of system itself. We assume only three choices
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for users in our considered multimodal system comprising only road network (by referring

to private vehicles) and personal maglev network. Any OD pair could be joined with respect

to following choices:

• choice c1 : the use of road vehicle, then parking search availability to park and parking,

and pedestrian walk for attending final destination, or

• choice c2 : the use of sky-podcar and pedestrian walk, or

• choice c3 : the use of both modes m1 and m2.

For p ∈ {1,2, 3} and a pair (o, d) = w ∈W (origin-destination), the Logit-based route alloca-

tion is deduced as [59]:

π
p
w = P

�

cp | w= (o, d)
�

=
exp

�

−θC
cp
w
�

∑

p′∈{1,2,3} exp
�

−θC
cp′
w

� (4.6)

θ is a parameter of sensitivity.

The probability of choosing the mode p, p = 1, 2,3 from an origin o to a destination d is set

by:








0≤ πp
w ≤ 1, ∀p = 1,2, 3 ,∀w= (o, d) ∈W

3
∑

p=1
P
�

cp | w= (o, d)
�

= 1 ,∀w= (o, d) ∈W
(4.7)

and by the above formulation (4.6). C
cp
w is the cost of using cp to reach destination d from

origin o; this cost depends on the monetary cost, the predicted travel time that will be spent

in the system, given by an ATIS information (advanced traveler information system). It also

depends on the the walking time and the search time for parking-car (in the case of taking

partially a car mode).

Experimental setup

We shall introduce the sky-podcars system in existing multimodal transport network in order

to evaluate its impact and its performance compared to other transport modes. Skypod could

be an intermediate “feeding system” for mass transportation such as the RER. Let us consider

the below transport infrastructure and transport services.
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i- Lines A and B of the RER (Réseau Express Régional - the commuter rail service serving

Paris and its suburbs).

ii- The network domain comprising these two lines RER A and RER B.

iii- The proposed line of the skyTran system (depicted by the Figure 4.8). Skypod-lines are

design as transverse lines with respect to RER A and RER B radial lines.

It compels to take into account only the OD matrices of commuters which will take routes

by lines A and B, and road ways with respect to all the existing modes and transport services

in the “Ile de France transport network". For sake of simplicity, we aggregated the lines A

and B of the RER that we are considering in this case scenario. The RER (A and B) lines are

aggregated respectively in 9 and 7 undirected and valued nodes. We assume the existence of

skyTran lines passing through the nine nodes on the brink of the 2-RER lines networks, that

is depicted by the Figure 4.8. We then obtain a multigraph from the multimodal transport

system forming by skyTran lines and the aggregated RER (A and B) lines. skyTran lines are

designed to be transverse with respect to the 2-radials RER lines.

Ant

SRC

MiC

CDG

CLH

Pois

SGL

BSL

MVC

CLH

Skyline-A

Skyline-B

Figure 4.8: Two skyTran lines could be integrated with the existing RER A and RER B lines.
Correspondences between the two different railways systems should take place via the cor-
ridors between RER hubs and skyTran portals.

We assume that passengers arrive exogeneously at the stop-stations of the skyTran sys-

tem. Most of the time, these passengers do not come from other modes of transport, that is to

say the correspondences. Passengers from other modes in their multimodal mobility arriving

at skyTran poles should be more/or less deterministic. That is to say their arrivals are deter-

ministic. Besides, the skyTran lines could be timely used as feeder of airports and centroids
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of the city. For example, passengers going to “Charles De Gaulle airport” from “Saint Rémi

les-Chevreuse” neighborhood could instead take RER-B and SkyLine-A and RER-B to reach

quickly the airport.

Model summary and perspectives

The skyTran system lines could be implemented in a city in such a way that it contributes to

traffic services’ regularity and reliability between airports and centroids of the city. Probable

choice of users in such multimodal system comprising skyTran system, RER system and road

network for private vehicles traffic is the following.

1/ Private vehicle + RER vehicle.

2/ Private vehicle + skyTran transporter.

We assume that people do not take both RER vehicle and skyTran transporter along their

multimodal trips in such network domain. Since just few routes are possible to take, during

travel, it would be easy the computation of instantaneous travel time. The reactive assign-

ment on such designed (or proposed) multimodal transportation system is fast and reliable.

The implementation of the model and the sky-podcar demand responsive system shall

show its real performance. The proposed system of equations is a queue approach with

adaptive cruise control on the dynamic of sky-podcars. The model proposed in this paper fo-

cused on Lagrangian coordinates of the motion of sky-podcars in the whole PRT system. We

discuss about multimodal trips that take into account the new responsive autonomous trans-

port system. The relocation of sky-podcars shall be addressed to respond to extra transport

demands at stations where there are no available sky-podcars to board passengers, and then

from where re-routing of other sky-podcars which are at rest in other stop-points is relevant.

4.4 Multiclass traffic flow modeling

Traffic is heterogeneous both in composition (depending on various types of vehicles and

classes of users) and spatially (with respect to lanes, etc.). This section analyses how to adapt

macroscopic models to such diversity. We therefore analyse multilane/multiclass model as

an archetype for macroscopic multimodal model.
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Multiclass multilane vehicular traffic flow model

ρ, q and v denote respectively the total density, flow and mean velocity variables for macro-

scopic traffic flow models. Let us consider that vehicles are dis-aggregated by class, denoted

by k ∈ K (K being the set of all vehicle classes), and that each class k ∈ K is dis-aggregated

by same destination d ∈ D. We denote by ρk, qk and vk the class specific densities, flows and

mean velocities of the vehicle class k ∈ K; and by ρk,d and qk,d the class specific densities and

class specific flows of vehicles indexed by class k ∈ K which are going to destination d ∈ D.

The class specific densities and flows, and the class-destination specific densities and flows

are partial quantities, and particularly ρk,∀k ∈ K are weighed according to the “passenger

car unit" [39]. The mean velocity v and the class specific velocity vk are defined respectively

by the following relationships q = ρv and qk = ρkvk thanks to the hydrodynamic approach

applied in Traffic Theory. We can also add new traffic attribute, that of driving behavior (see

works in [53]). Since roads network considered may have several lanes, the traffic attributes

considered in the model are related to transport mode, lanes on the roads and destinations

[18].

Traffic dynamic on shared roads

It is well known that the total density is a conservative physical quantity (according to the

well known LWR model of [57] and [76]). According to conservation law of density and flow,

class specific densities related to vehicle modes at any location and time are also conserved

along a homogeneous shared multilane highway stretches without entrances and exits. These

two properties are expressed by the following hyperbolic system of conservation laws:







∂tρ + ∂x (ρv) = 0

∂tρ
k + ∂x

�

ρkvk
�

= 0, ∀k ∈ K.
(4.8)

The relationship between the total and the class specific densities adopted in this paper is:

ρv =
∑

k
ρkvk [39]. The latter relation implies that v =

∑

k
χkvk and χkρ = ρk, with χk ≥ 0

the class specific vehicles fraction. Obviously the fractionsχk verify
∑

k
χk = 1. Class densities

depend on class-destination densities, and their relationships can be expressed as below:

ρk de f
=
∑

d

ρk,d ,∀k ∈ K. (4.9)
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Introducing variables such as the lane densities ρ` and the fraction of density indexed by the

class k and the lane ` that we denote ηk
`
,∀k,∀`, one has the following relation:

ρ`
de f
=
∑

k

ηk
`ρ

k,∀` ∈ L. (4.10)

A multiclass lane fundamental diagram for each lane is easily deduced. Class specific veloc-

ities are expressed at time t and location x as follow:

vk =
∑

`

ηk
`
v` =

∑

`

ηk
`
V`(ρ`), ∀k ∈ K. (4.11)

with V` the lane-velocity field. This is the maximum velocity of vehicles flowing on the lane

`. It is expressed below:

V`(ρ`) = αK` maxk V k
`
(ρ`), ∀` ∈ L. (4.12)

αK` The composition of the types (classes) of vehicle allowed to access the road by the lane

`, according to the road infrastructure and traffic signs. It also depends on density-speed

fundamental diagrams on the lane `.

The phenomenological behavior of class specific vehicles moving through lanes are formu-

lated thanks to Wageningen-Kessels’ thesis works [39] such below:

V k
` (ρ`) =







vk,max − (v
k,max−v`,cri t )ρ`
ρ`,cri t

for 0≤ ρ` < ρ`,cri t

v`,cri tρ`,cri t
ρ`, jam−ρ`,cri t

�

ρ`, jam
ρ`
− 1

�

for ρ`,cri t ≤ ρ` ≤ ρ`, jam

(4.13)

giving the multiclass lane fundamental diagram of the traffic in terms of speeds-densities

diagrams. vk,max and v`,cri t respectively denote maximal velocity of class k and critical ve-

locity on lane l; ρ`,cri t and ρ`, jam denote critical and jam densities on lane `. The first is the

limit value under which the traffic is assumed fluid and the second a quantity beyond which

the density is nil meaning that over this limit vehicles on road can not move. It is assumed

that all vehicle classes move at the same speed during congestion phase while at free phase,

vehicle velocity is more depending on the class than the density. In the congested phase

traffic dynamics respect the LWR [57, 76] model on each lane, whereas in the fluid phase

density-speed relationship from transport data depend exclusively on the different vehicle

classes that are traveling on the roads. For a class of vehicles such as buses for public trans-

portation, the maximal velocity is the commercial speed and the critical one is a function of

the mean headway between two followers buses. For each lane, the multiclass fundamental

diagram is depicted by the Figure 4.9.
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Figure 4.9: Multiclass lane fundamental diagram.

There are K× L free-flows velocities and L congested phases that can occur due to the total

number of lanes on the considered section; many transport demands occur on the section

with a unique transport supply.

In the sequel, a Logit model for traffic assignment through lanes [18, 37] will be dis-

cussed. This is to determine the rate of total density per vehicle class k ∈ K on lane ` ∈ L.

A Logit assignment model for vehicle classes The variable ηk
`

is a function of position

x and time t for determining the number of vehicles of class k on lane ` based on the lane

density and lane and class specific velocities. It is also depending on local travel time of class

k on the lane `. The local travel time is defined as the inverse of the local velocity as follow:

tk
`

de f
= 1/V k

`
(ρ`). We review the Logit assignment model per destination [18] and the model

of [37]

on multiclass assignment of users and vehicles. We formulate ηk
`

as follows:

ηk
` = exp(−θkρ

k/V k
` (ρ`) + ck`)/p

k (4.14)

where pk =
∑

r
exp

�

− θkρ
k/V k(ρr) + ckr

�

, with ` and r indexes of lanes. The parameters

ck` indicate the preference of lane ` for a vehicle class k. These parameters depend on the

position x and somewhat on the time t. Here we assume that ∀k,∀`, ck` is independent

from the location x and the time t once the concerned vehicles enter the lane `, due to the

fact that, some lanes are imposed to the traffic. For the same token, ηk
`
= 0 for certain vehicle
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classes with respect of specific(s) lane(s). Particularly, ck` is more explicit for buses for public

transportation where their routes and the real-time schedules are well known.

Let us mention that, in the formulation (4.14), {ηk
`
}k,` really result from the following

optimization problem:

max
(ηk
`)k,`

∑

`

∫ ρ`=
∑

k
ηk
`
ρk

0

ds

V k
`
(s)
−
∑

k,`

1
θk
(H(ηk

`)− ck`η
k
`)

∑

`

ηk
`
= 1,∀k

(4.15)

where H(x) = x(log(x)−1) is the negentropy function. By Karush-Kuhn- Tucker conditions,

we find that formulations (4.14) and (4.15) are equivalent. The focusing problem of car

users is the optimization of their global travel time which mainly depends on the routes they

will use during their trips and general traffic conditions of these routes. The global travel

time depends in turn on the successive local travel times which are increasing functions of the

density in correspondent locations. The first term of the objective function of the optimizing

problem (4.15) defines the local travel time of vehicle of class k along the lane ` in terms of

the inverse of specific lane and class velocity in local location. The second term is part of the

description of how users behave on the road regarding the competition between keep safe

spacing and react more flexibly for filling available gaps in order to optimize travel times.

Numerical schemes for multiclass traffic flow on arcs

Considering a long road section that is shared with a private and public vehicles, we use

a split Lagrange-remap scheme based on a finite volume discretization of the road section

in control volume for calculating numerically multiclass car-flows. The scheme consists in

two steps (a Lagrangian step and a Remapping step) for integrating the system 4.8 between

successive time instants tn and tn+1 = tn +∆t; ∆t being the time-step. We introduce two

grids: Lagrangian grid {X i+ 1
2
} and Eulerian grid {x i+ 1

2
}, and the (x , t) → (X , t) variable

change such that ρd x = ρ0dX where ρ0(x) denotes ρ(x , tn) the car-density at time tn.

With this variable change, we rewrite the system 4.8 in Lagrangian form 4.16 as follows:






∂t (ρ0s)− ∂X u= 0

∂t

�

ρk
0sk
�

− ∂X uk = 0, ∀k ∈ K
(4.16)

where s = 1/ρ is the spacing without distinction of vehicle classes, sk = 1/ρk, k ∈ K are spac-

ing between vehicles of class k ∈ K, u(s(X , t), t)
de f
= ∂t x(X , t) and uk(s(X , t), t)

de f
= ∂t xk(X , t)
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are respectively the correspondent (in Lagrangian system) specific car-speed and specific

class car-speeds. Let us note ρk
0(x) = ρ

k(x , tn) the class car-densities at time tn and lo-

cation x . Setting ρ0(x) = ρ(x , tn) we assume that Eulerian grids {x i− 1
2
} and Lagrangian

grids {X i− 1
2
} coincide at time tn. The trick is the calculation of the Lagrangian conservative

variables, notably by a discretization of the system (4.8) at time tn+1 on a non-regular grid,

and afterwards to remap them on the initial Eulerian grid. The two steps are described in

the following.

Lagrangian step Discretizing the system (4.16), we have the following formulation:











(ρ0s)n+1
i = (ρ0s)ni +

∆t
∆X

�

un
i+ 1

2
− un

i− 1
2

�

�

ρk
0sk
�n+1

i =
�

ρk
0sk
�n

i +
∆t
∆X

�

uk,n
i+ 1

2
− uk,n

i− 1
2

� (4.17)

while the moving of the Eulerian coordinates x located at x i+ 1
2

is governed by xn+1
i+ 1

2
= x i+ 1

2
+

∆t(u∗)n
i+ 1

2
, with xn+1

i+ 1
2

the new position of vehicles that exited the boundary x i+ 1
2

at time tn

after the during time-step∆t and where (u∗)n
i+ 1

2
is the speed of vehicles located at X i+ 1

2
with

respect to the Lagrangian system. Therefore, a third grid {xn+1
i+ 1

2
} results which is not regular

due to the fact that the speeds are not constants between two consecutive time instants.

Remapping step After the Lagrangian step, we remap sn
i+ 1

2
and (sk)n

i+ 1
2

values on the Eu-

lerian grid {x i+ 1
2
} by splitting and we obtain the densities at time tn+1 (and then the flows

crossing the boundary x i+ 1
2
):











ρn+1
i = ρn+1

0,i −
∆t
∆x

�

(u∗)n
i+ 1

2
(ρ∗)n

i+ 1
2
− (u∗)n

i− 1
2
(ρ∗)n

i− 1
2

�

ρ
k,n+1
i = ρk,n+1

0,i − ∆t
∆x

�

(uk,∗)n
i+ 1

2
(ρk,∗)n

i+ 1
2
− (uk,∗)n

i− 1
2
(ρk,∗)n

i− 1
2

�

k ∈ K.
(4.18)

The variables (ρ∗)n
i+ 1

2
and (ρk,∗)n

i+ 1
2

are obtained from the output of the first step of the

scheme, using relations between car-densities ρ, ρk and spacing s, sk, (for k ∈ K). Be-

sides, the discrete unknowns (u∗)n
i+ 1

2
and (uk,∗)n

i+ 1
2

are obtained thanks to the calculus of the

class specific rate {ηk
`
}k∈K,`∈L of vehicles on any lane by a fixed point method regarding the

equation (4.14). They could be solve by the concave optimizing problem (4.15). Following

speed-spacing lane class fundamental diagram obtained by introducing s`,cri t = 1/ρ`,cri t and

s`, jam = 1/ρ`, jam respectively the critical lane-spacing and the jam lane-spacing are hence

used.
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The Figure 4.10 below depicts the process of computation of the class specific flows and

class specific densities in cells.

xi− 1
2

xi+ 1
2

∆x

xk,n+1
i− 1

2
xk,n+1

i+ 1
2

∆Xk,n+1
i− 1

2

{xn+1
i− 1

2
} −→

{xi− 1
2
} −→ tn

tn+1 = tn +∆t

uk,∗,n
i− 1

2

uk,∗,n
i+ 1

2

Figure 4.10: Euler-Lagrange remap scheme

Numerical results We implement the multiclass scheme within Matlab software to get total

and partial densities over the time along a long shared road section. We take K = L = 2 as

number of lanes and vehicle classes. Each lane is 8 kilometers long. The time step ∆t = 1

second (in Lagrangian step) and ∆x = 200 meters (in Eulerian step). With artificial initial

condition, we show the partial ρ1, ρ2, ρ1, ρ2 densities at two different times t = 10 seconds

and t = 25 seconds. The later are depicted by Figure 4.11 and Figure 4.12.

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Total density at time : t = 10

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Density on lane 1 at time : t = 10

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Density on lane 2 at time : t = 10

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Class 1 density at time : t = 10

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Class 2 density at time : t = 10

Figure 4.11: Total density, lane densities and class densities at a time t = 10s.
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Figure 4.12: Total density, lane densities and class densities at a time t = 25s.

Intersection model with driver-specific attribute

Let us consider a multiclass node denoted by (Z). The term multiclass node, is used to specify

the fact that different class of vehicles are allowed to pass through the node (Z).

Notations and definitions are the following. I is the set of incoming links or arcs (i), and

the notation ` ∈ i means that the lane ` is part of the link (i); J is the set of outgoing links

or arcs ( j), and the notation λ ∈ j means that the lane λ is part of the link ( j).

It is known that a network, approached by a graph, is a collection in good manner of arcs

and nodes. In the sequel, we are going to discuss formulations of the dynamic of traffic flow

through intersections represented by nodes. The scope will be the design of an intersection

model which will easily calibrate with the model adopted for arcs. First of all, we add a new

parameter d j` in the formulation of ηk
`

(traffic rate per class and lane) for arcs. This new

parameter represent the preference of users going to ( j) via ` ∈ i. We assume that d j` is a

continuous and convex function with respect to the position x . More precisely, d j` is almost

certainly nil on ` ∈ i, except in the admissible region of (Z), at the side of the end of the

lane `. It is revealed that d j` is an increasing and strongly convex function of the position x .

Therefore, at the upstream of the node (Z) ∀i ∈ I , the fraction of vehicle flows indexed by k

and ` ∈ i, has a similar expressions as in (4.14):

ηk
i j` =

ex p(−θkρ
k/V k

`
(ρi`)+ck`+d j`)

∑

h∈i
ex p
�

−θkρk/V k
h (ρih)+ckh+d j`

� (4.19)

with d j` is the preference of users located on the lane ` ∈ i and which are going to the lane

130



j ∈ J ; d j` is a deterministic utility parameter.

The new formulation leads to: ρi` =
∑

k, j
ρk

i γ
k
i, jη

k
i j`, ∀i ∈ I , ∀` ∈ i.

The term ρk
i γ

k
i, j in the latter expression gives the exact traffic rate of users k coming from i

and going to j.

As mentioned before for the equation (4.14), for j ∈ J fixed,
�

ηk
i j`

�

i,`,k
are solutions of

the below concave optimization problem:

max
�

ηk
i j`

�

k, j,`

∑

`∈i

∫ ρi`=
∑

k, j
ρkγk

i, jη
k
i j`

0

dr

V k
`
(r)
−
∑

k,`∈i

1
θk

H(ηk
`) +

∑

k, j,`∈i

(ckl + d jl)η
k
i j`,

under the constraints
∑

l∈i
ηk

i jl = 1,∀k ∈ K.

(4.20)

(Z)

(i)ℓi

(j)

λj

{γk
ℓi,λj

}k
Figure 4.13: A multiclass node with incoming links and outgoing links.

The node is (Z) with incoming links (i), i ∈ I and outgoing links ( j), j ∈ J .

The arrows indicate the sens of propagation of the flows, and then specify the incoming and

outgoing links of any node (Z) of the network. {γk
`i ,λ j
}k∈K denote the turning coefficient

movements of users indexed by k and who are leaving the lane `i of (i) to reach the lane λ j

of ( j). Below variables for specific volumes passing through intersections.

• N k
i j: the number of users of class k going to ( j) from (i);

• Ni =
∑

j,k
N k

i j: the total number of users coming from lanes of (i);

• N j =
∑

i,k
N k

i j: the number of users of class k who have left lanes of (i) and are currently

on lanes of ( j).

Traffic fraction of class k at node (Z) of type `i ∈ i → λ j ∈ j is defined and expressed by

γk
Z ,`i ,λ j

= exp(−αd`i ,λ j
)/
∑

µ j∈ j
exp(−αd`i ,µ j

), with d`i ,µ j
“the local time distance" between the

end of `i and the beginning of µ j .
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From the total demand from lane ` ∈ i, one question arises: “Should one takes into

account the composition in class k of incoming vehicles on lanes with respect to ` ∈ i?

Firstly, on prorata by the number of class, one has: ∆i` (ρi`) =
∑

k
∆k

i` (ρi`) ×
ηk
`i
ρk

ρi`
with

∆k
i` (ρi`) a demand function. Therefore, the lane supply of ` ∈ (i) is expressed as σZ ,i`(Ni) =

∑

i (Ni)/#(` ∈ i). The exiting flow of (i), from lane ` is qi` = min
�

∆i` (ρi`) ,σZ ,i`(Ni)
�

.

Entering on ( j), the lane λ ∈ j has one supply: σ jλ
not.
=
∑

j,λ

�

ρ j,λ

�

is the supply of the lane

λ of the arc ( j); which depends on ρ j,λ of the lane λ ∈ j. Traffic fraction of class k inside

the node (Z) coming from lane ` ∈ i and going to j is following
∑

k
ηk

Z , j,`.

The demand of (Z) for the arc ( j) is deduced as

∆Z , j

�

N j
�

=
∑

`∈i

�∑

k

ηk
Z , j,`

�

∆Z , j`

�

N j
�

. (4.21)

where ηk
Z , j,` denotes the traffic fraction of class k inside the node (Z) coming from lane ` ∈ i

and going to j. Hence, the exiting flow from (Z) towards the lane λ of ( j) is equaled to

ΩZ , j` =min
�

∆Z , jl

�

N j
�

,σ j`

�

.

Dynamics of vehicles within a generic node (Z) are governed by the below equation:

d
d t

N k
i j =

∑

`∈i,λ∈ j,k

qi` ∗ γk
Z ,`,λ −

∑

λ∈ j

ΩZ , j,λ ∗ηk
Z , j,λ. (4.22)

4.5 Conclusion

We introduce an approach for modeling multimodal vehicular within transportation road net-

works. The proposed multiclass traffic flow model for the multimodal road traffic simulation

is more flexible to capture macroscopic mixed traffic flow, notably the proposed numerical

scheme well reduces growing discontinuities of outputs traffic data during a simulation, by

introducing an arbitrary Euler-Lagrange method. Even though, one can use a high-order split

method of [15] for more accuracy in the numerical approximation of the multiclass model.

Within a multimodal transport system, the multiclass model allows to determine travel time

of users depending on what transport modes are used during trips, and describe interactions

between existing type of vehicles in the traffic. The multiclass model is evaluated and vali-

dated with artificial traffic data. Furthermore, the model is suitable to estimate vehicles flow

from time-dependent OD matrices and from some classes of driving behavior. This model is

applied (with some modifications) in Chap. ?? along with other traffic flow models of type

two-dimensional. The choice of transport attributes and application of the model on a small
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urban network are setting during which numerical analysis of the multiclass node model is

investigated.

133



This page is intentionally left blank.

134



Chapter 5

Multiscale traffic flow simulation
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5.1 Introduction

In this chapter, we propose an hybridization and a multiscale coupling of the three models

we develop in this Report. Let us recall the developed models. They are (i) the resulted

integrated microscopic transport model which we instantiate on a proposed skyTran-lines

and a compressed form of the RER-lines, (ii) the multiclass macroscopic traffic flow model

for specific multimodal road networks, and (iii) the developed dynamic bi-dimensional traffic

flow model for large (homogeneous and heterogeneous) surface networks.
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Motivation

We argue that a vehicular multimodal traffic flow model shall handle traffic interactions

between its different transport modes or transportation systems. We consider a large multi-

modal transportation system comprising road networks and railways networks. For instance

we assume that road networks comprise highways and urban area, and mass transportation

lines (for example the bus-lines). We suppose that railways networks comprise the skyTran

demand responsive system, and the system of RER lines under its compressed form (see

Figure 4.8). Let us recall that this is stated in Sec. 4.2, and that the model applied to the

skyTran network is considered as a generic dynamic transport model for the travel demand

in rail transportation systems. In parallel, for a surface network which comprises main ar-

teries/highways and secondary roads, it is obvious to think about an hybridization of the

macroscopic and bi-dimensional models which are applicable and adequate respectively to

a network of main arteries/highways and a network of secondary roads.

Organization of the chapter

This chapter is organized as follows. The section 5.2 presents how the traffic exchange

is due between the macroscopic model and the bidimensional model along and through

specific curve lines (i.e. 2d cell interfaces) where 2d-elementary cells and 1d-elementary cells

intersect. The former are computing cells of the network domain of surface network. Since in

this chapter the surface network is assumed to comprise secondary roads and main arteries,

its network domain shall also contain 1d-elementary cells. We derive a specific mesh of the

network domain. The specific mesh is the mesh of the area of the network in 2d traffic zones

(and then in 2d-elementary cells), but also the mesh of main arteries in 1d discrete cells. We

present an algorithm for the estimation of the traffic from the hybrid model and multiscale

model introduced in Sec. 5.2 and Sec. 5.3. Our key contributions are efficient techniques

for the dynamic coupling of individual vehicles traffic (from a rail system, public transport

bus service, skyTran demand transportation system, etc.) with aggregate behavior of the

macroscopic traffic and bi-dimensional traffic (from main arteries and secondary roads). We

demonstrate the flexibility and scalability of our interactive visual simulation techniques on

extensive road networks using synthetic scenarios.
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5.2 Hybrid traffic flow modeling

Transport networks in this section are assumed discrete-continuous networks. It is the case

of road network consisting of urban area (comprising a high number of secondary roads)

with highways which refer to principal or main roads. For such networks, it is convenient to

develop hybrid model to compute their traffic states. Many hybrid traffic flow models have

been developed in the literature. We note hybridization of different microscopic models

with macroscopic models. In this chapter, hybridization refers to 2d ↔ 1d hybridization,

specifically it is about the hybridization of the BidiTSim model which is applicable to traffic

area of secondary roads and the GSOM model which is convenient for principal roads.

Interaction between bi-dimensional cells and artery links

Let us consider the situation depicted in figure 5.1. This is the simplest interaction situation

between a 2d cell (c) (dense surface network) and a major artery (a), with the artery consti-

tuting a border element of the 2d cell. More complicated situations would be: major artery

crossing a 2d cell; or a major artery with one 2d cell on each side. The major elements of

the model are the following.

(a)

(s)

(s−1)

(s+1) (j)

(i)

(c)

Figure 5.1: Interaction between 2d cells and artery links.

• The artery denoted by (a) is divided into 1d cells (s) (typically much smaller than 2d

cells (c));
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• Since the cells (s) are much smaller than the cells (c), their time-step is much smaller,

actually a divider of the time step of bi-dimensional cells. But this difference will not be

stressed in the sequel and we will just loosely invoke the "time" t which is the time-step

of artery cells;

• Supply and demand functions of the artery per lane in cell (s) are ∆a,s() and Σa,s();

• The number of lanes of (a) in (s) is νa,s;

• The number of lanes devoted to the outflow (s)→ (c) is νs→c
a,s ;

• The number of lanes devoted to the outflow (c)→ (s) is νc→s
a,s ;

• The density of cell (s) at time t is ρ t
a,s, its inflow qt

a,s−1, its outflow qt
a,s;

• These quantities are liable to be disaggregated with respect to destination d: ρd,t
a,s , its

inflow qd,t
a,s−1, its outflow qd,t

a,s ;

• γd
a,s→c the assignment coefficient of users in cell (s) with destination d who choose the

cell (c) to reach this destination and γd
a,s→s+1 = 1− γd

a,s→c; In an artery cell (s), there

is only two directions of propagation of its outflow: the movement (s) to (c) and the

movement (s) to (s+ 1).

• The number of lanes devoted to the outflow (c)→ (s) is νc→s
c,i , follows direction (i);

• The number of lanes devoted to the inflow (s)→ (c) is νs→c
c, j , follows direction ( j); This

number is the outgoing lanes of the artery cell (s) following the direction ( j) of the cell

(c).

• Supply and demand functions of the cell (c) per lane are ∆c,i() and Σc, j() ;

• Γ d
c,i→a the assignment coefficient of users in direction (i)with destination d who choose

the artery (a) to reach this destination;

• N d,t
c,i the number of users in direction (i)with destination d withρd,t

c,i their mean density

per lane (obtained by dividing N d,t
c,i by the total length of lanes in direction (i) in cell

(c)).
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Since the densities (of cells (s)) and number of vehicles (of the cell (c)) are calculated from

one time-step to the next according to conservation of vehicles, the main difficulty is to

calculate the flows. Typically the Godunov scheme [51] will apply for the cells (s) and a

scheme extending the model developed in section 3.4 will apply for the cells (c). This is the

question we are addressing here. It is also necessary to take into account the fact that there

are several artery time-steps in one bi-dimensional cell time-step. For the sake of simplicity,

we set the bi-dimensional cell time-step to be a multiple of the artery cell time-step. Let

us mention that the two time-steps (the bi-dimensional cell time-step and the artery cell

time-step) respect the Courant-Friedrichs-Lewy condition of stability. The cell supplies and

demands are the following for the artery.

• the demand from (s) to (s + 1): δt
a,s =

�

νa,s − νs→c
a,s

�

∆a,s(ρs→s+1,t
a,s ), with ρs→s+1,t

a,s =
∑

d
γd

a,s→s+1ρ
d,t
a,s =

∑

d
(1−γd

a,s→c)ρ
d,t
a,s ; Here we consider concentration on the lanes used

and on the link (s)→ (s+ 1).

• the demand from (s) to (c): δs→c,t
a,s =

�

νs→c
a,s

�

∆a,s(ρs→c,t
a,s ), with ρs→c,t

a,s =
∑

d
γd

a,s→cρ
d,t
a,s ;

• the supply for flow from (s− 1): ςt
a,s =

�

νa,s − νs→c
a,s

�

Σa,s(ρ t
a,s);

• the supply for flow from (c): ςc→s,t
a,s =

�

νs→c
a,s

�

Σa,s(ρ t
a,s).

Figure 5.2 below depicts some variables of interactions between cell (c) and artery link (a).

The cell supplies and demands are the following for (c) with respect to (s).

• Demand of cell (c) for cell (s): δc→s,t
c,i = νc→s

c,i ∆c,i(ρ
c→a,t
c,i ) with ρc→a,t

c,i =
∑

d
Γ d

c,i→aρ
d,t
c,i ;

• Supply of cell (c) for cell (s): ςs→c,t
c, j = νs→c

c, j Σc, j(ρ t
c, j).

The flows result from the min formula [51], and driver attributes as in the GSOM model

could easily be accomodated following [24], [53]. We obtain the following flows:

• Flow between sections of the artery: qt
a,s =min

�

δt
a,s,ς

t
a,s+1

�

;

• Flow from (s) to (c): qs→c,t
c, j =min

�

δs→c,t
a,s ,ςs→c,t

c, j

�

;

• Flow from (c) to (s): qc→s,t
c,i =min

�

δ
c→s,t
c,i ,ςc→s,t

a,s

�

.
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(s + 2)

(s + 1)

(s)

(s− 1)

(c)

ρtc,jqt
a,s−1

δta,s−1

qc→s,t
c,i

δc→s,t
c,i

qs+1→c,t
c,j

δs+1→c,t
a,s+1

ρt
a,s+2

Figure 5.2: Traffic from cell (c) to artery link (a), and conversely.

If needed it is possible to disaggregate these flows per destination. The rule is simple: the

flow per destination equals the total flow times the fraction of users with the considered

destination. It can for instance be argued that destinations are passive driver attributes and

we apply the GSOM model calculation [53].

For instance the composition of the flow from artery to cell, qs→c,t
c, j , is

χ
s→c,d,t
c, j = γd

a,s→cρ
d,t
a,s /ρ

s→c,t
a,s , (5.1)

and thus the partial flow from artery to cell with destination d is given by

qs→c,d,t
c, j = χ s→c,d,t

c, j qs→c,t
c, j . (5.2)

The conservation laws

Let us provide the governing equations for the evolution of densities of the links and bi-

dimensional cells in the case of a considered mixed-network.
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The density of an artery cell follows the below conservation law.

∀t > 0, for any artery cell (s), we have:

ρs→s+1,t+1
a,s = ρs→s+1,t

a,s +δt
�

qt
a,s−1 − qt

a,s

�

/Ls→s+1
a . (5.3)

where ρs→s+1,t
a,s is the density of (s) with respect to the direction (s)→ (s+ 1), and Ls→s+1

a is

the length of lanes from the cell (s) to the cell (s+ 1). The density ρs→s+1,t
a,s is defined as

ρs→s+1,t
a,s

de f
= γa,s→s+1 ρ

t
a,s = (1− γa,s→c) ρ

t
a,s . (5.4)

In addition, we have:

ρs→c,t
a,s

de f
= γa,s→c ρ

t
a,s . (5.5)

Let us mention that, for a bi-dimensional cell (c), we found that the density in dominant

direction j = 1,2, 3,4 follows different conservation law which takes into account internal

flows inside cell (c).

∀t > 0, ∀c ∈ C, ∀ j = 1,2, 3,4, we have:

ρ t+1
c, j = ρ

t
c, j +∆t

�

Qt
c, j −Qt

c, j + r t
c, j − qt

c, j

�

/Lc, j . (5.6)

with

• Lc, j is the length of lanes inside the cell (c) in the direction j;

• Qt
c, j is inflow, follows direction ( j), from neighbor cell of cell (c), at time t;

• Qt
c, j is outflow of (c) follows direction ( j) at time t;

• r t
c, j is internal inflow of cell (c) at time t;

• qt
c, j is internal outflow of cell (c) at time t.

Let us give the governing equation of the density of cell (c), with respect to dominant

directions j = 1,2, 3,4 and interactions between artery cells (s) and cell (c). These traffic

interactions are depicted in Fig. 5.2.

For a cell (c) at a border of the artery, it exists a direction ( j) corresponding to (s)→ (c), and

at any time t > 0, we have:

ρ t+1
c, j = ρ

t
c, j +∆t

�

F s→c,t
a,s −Qt

c, j + r t
c, j − qt

c, j

�

/Lc, j (5.7)

with

F s→c,t
a,s =

n
∑

y=1

qs→c,t−∆t+y(δt)
a,s . (5.8)
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Let us recall that t+1 := t+∆t; and ∆t = n(δt) where δt is the artery time-step and ∆t is

the bi-dimensional time-step. n is a fixed integer number determined such that ∆t and δt

follow the Courant-Friedrichs-Lewy condition of stability.

F s→c,t
a,s is an accumulate traffic flow from (s) to (c) during ∆t. It is taken into account at

the next iteration t to t + 1 = t +∆t in order to correctly compute traffic flows and traffic

densities in the four dominant directions of all bi-dimensional cells.

Experiences on a large mixed road network

We apply and validate in this section the multiscale modeling theory we propose in the previ-

ous section. We will see through this section that the coupling of the GSOM family applied to

highways and the dynamical bi-dimensional traffic flow model applied to surface network of

secondary roads rightly resolves the issues of cumbersome calculations which we discussed

in Chapter 3.

Considered road network

We consider a surface network comprising a principal road or highway and a great number

of secondary roads. For instance we take the network domain represented by Figure 3.21 of

the case study 1. We assume the existence of a principal road such like depicted by the below

Figure 5.3. The highway (in gray color) comprises 6 lanes: 3 lanes in each direction of traffic

(the direction 2 and 4 according to the four dominant directions in a 2d elementary cell).

Theirs characteristics are set in the Table 5.1 below. We assume some intersections/junctions

on such a multi-lane highway that allow traffic change between the urban area and itself.

For instance the traffic change is due between Cell 2 and Cell 3 of the surface network and

the highway, all depicted by Fig. 5.3. We mesh the highway in twelve (12) 1d cells/links of

0.500 km: s = 0; s = 1; . . . ; s = 11. a1 denotes the lanes of the highway in the direction 2

of propagation; and a2 denotes the lanes in the direction 4 of propagation.

The characteristics of the principal artery are set below in the table 5.1.

maximal density 236.25 Veh/km/lane

critical density 33.75 Veh/km/lane

maximal velocity 80 km/h/lane

maximal flow 2700 Veh/h/lane

Table 5.1: Characteristics of the principal artery for GSOM flow computing.
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s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = 7

s = 8

s = 9

s = 10

s = 11

the 1d cells

3km

2.5km

direction 1

direction 2

direction 3

direction 4

a highway lane

Cell 1 Cell 2

Cell 3Cell 4

νa1,s = νa2,s = 3

νs→c
a1,s = νs→c

a2,s = 1

Figure 5.3: Network domain comprising secondary roads and a multi-lane highway.

A surface network represented by such network domain (see above Fig. 5.3) could derived

from peri-urban traffic area connected to a metropolitan city.

Common data

We set artificial turning rates for internal movements of the bi-dimensional cells. We attribute

the same stochastic matrix Γ∗ (respectively Γ ∗) to cells 1 and 4 (respectively to cells 2 and

3).

Γ∗ =















0.4686 0.2236 0 0.3078

0.0405 0.469 0.4905 0

0 0.3109 0.2904 0.3987

0.3512 0 0.4097 0.2391















Γ ∗ =















0.4686 0.2236 0 0.3078

0.0405 0.469 0.4905 0

0 0.3109 0.2904 0.3987

0.3512 0 0.4097 0.2391















The 1d cells are numbered from 0 to 11. s = 0 and s = 11 are 1d boundaries cells of the

artery a = (a1, a2) and have no connection (no commun interface) with the bi-dimensional

cells. Only the 1d cells s ∈ {1,2, · · ·10} share together with the bi-dimensional cells c = 2

and c = 3. We observe them in the above figure 5.3.
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Let us recall that γa,s→c denotes the turning rates of flow from artery to cell. The matrix of

these turning rates are then, with respect to the considered mixed-network of Fig. 5.3:

�

γa,s→c

�

s,c =





0 γa1,s1→c2
γa1,s2→c2

γa1,s3→c2
γa1,s4→c2

γa1,s5→c2
0 0 0 0 0 0

0 0 0 0 0 0 γa2,s6→c3
γa2,s7→c3

γa2,s8→c3
γa2,s9→c3

γa2,s10→c3
0





T

(5.9)

where if A is a matrix, AT denotes its transpose matrix; and γak ,s`→cm
is the turning rates of

flow from the lane of ak of the link s = ` to the bi-dimensional cell c = m.

Testing results

We set the traffic demand constant and equal to 1620 Veh/h/lane at the entry of the artery

a1 and 2520 Veh/h/lane at the entry of the artery a2. For the residual traffic supply of the 1d

cells/links, we set the same value equals to 2700 Veh/h/lane. The input data related to the

bi-dimensional cells are the same as in the case study 1 of Chap. 3. The matrix of turning

rates from artery cells to bi-dimensionals cells is
�

γa,s→c

�

s,c .

On arteries of the highway, we obtain the following numerical results. We show below the

evolution of flows accross 1d links of arteries a1 and a2. Colors ’red’ and ’magenta’ are

specific to directions 2 and 4 respectively. Then, the first color represents physical quantities

of artery a1 and the second color is for artery a2.
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Figure 5.4: Flow on the arteries at certain time steps.
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Figure 5.5: Density of arteries at certain time steps.

Let us zoom in on the traffic flows between the considered traffic urban area and the highway.

Traffic flows originating from the highway to traffic urban area constitute the travel demand

at the border of the bi-dimensional cells 2 and 3, following the dominant direction 3 of

propagation. Besides, traffic flows originating from the bi-dimensional cells 2 and 3, precisely

outflows of cell 2 and 3, in the direction 1 are travel demand to the 1d cells of arteries of the

highway.

Figure 5.6: Flows between the bi-dimensional cells and the highway.
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On the bi-dimensional cells which represent the urban traffic area, the numerical results are

the following.

Figure 5.7: Inflows of the bi-dimensional cells.
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Figure 5.8: Outflows from the bi-dimensional cells.

Figure 5.9: Internal Inflows in the bi-dimensional cells.
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Figure 5.10: Internal Outflows in the bi-dimensional cells.

Figure 5.11: Density of the bi-dimensional cells.

We have proved in the previous chapter 3 and this current chapter 5 that one can estimate

traffic flows and densities by following at once macroscopic and two-dimensional traffic flow

theories. That is the way we argue to reduce intensive calculations in the case of very large

surface networks comprising an urban traffic area (secondary roads) and highways. Since

the consideration of large and dense surface networks is not the only focus of this Report,

we will go through the next section 5.3 to provide how to take into account the vehicular

multimodality in the estimation of vehicles flow and density over large networks.

Therefore, in the next section we discuss about considering traffic attributes such like

transportation modes to provide estimation of traffic flows and densities estimation per the-

ses attributes. For instance we consider transportation modes such as mass transportation

(bus, train, tram, metro), specific modes via demand responsive transport systems, car-

pooling systems, share and ride travel systems, personal rapid transit systems. The traffic

area involved will be large and dense, and comprise ground traffic area and specific air traffic

area. The latter traffic area is the one we have discussed in the section 4.2 of the chapter 4.
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5.3 Multiscale coupling

This section provides a model which could be applied to traffic area of urban network com-

prising different transportation modes which share a ground traffic area and a specific air

traffic area. It is a question of coupling models of different scales: the microscopic, macro-

scopic and bi-dimensional scales.

Issues of multiscale modeling

Remarkably, existing models at the same scale typically follow different modeling approaches

and, hence, it is difficult to relate these models to each other. In addition, models at diffe-

rent modeling scales are rarely coupled. For example, a macroscopic model typically lacks

a microscopic basis and a microscopic model does not have its macroscopic counterpart.

Therefore, an ideal multiscale modeling approach should emphasize not only model quality

at each individual scale but also the coupling between different scales.

Governing equations

Let U be the traffic area of a multimodal network. We assume that this multimodal network

is very large and dense. Since U is large, we could apply the bi-dimensional modeling ap-

proach and then mesh or disaggregate the traffic area U in 2d elementary cells c ∈ C, where

C is the set of all 2d elementary cells of U .

Let (c) be an element of C and that it comprises at least a part of roads used by a bus-line

and a demand responsive system (DRS).

We already know that global flows of such 2d computing cell (c) per its dominant directions

could be easily compute. We have fully developed the dynamical bi-dimensional traffic flow

model for that in Chap. 3. However, to compute these directional cell flows in the situa-

tion where buses-lines and/or DRS-lines cross the area of a 2d elementary cell (c), we shall

consider the flow originating from buses of commun transportation and the flow originating

from the DRS vehicles. In that way, we provide a governing system that describes dyna-

mics of vehicles from different forms of mobility inside any same 2d elementary cell. Is to

do multi-scale modeling. The main variables and parameters of the multiscale model we

introduce are the following.

• The lenght of lanes in the 4 privileged directions of the cell (c) is L∗cc without accounting

the lanes of buses and of DRS’s vehicles;
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• The number of buses in the cell (c) at the time t is N ∗bc (t);

• The lenght of buses lines in the cell (c) is L∗bc ;

• The density ρ∗bc (t) of buses in the cell (c) at the time t is defined as

ρ∗bc (t) = N ∗bc (t)/L∗bc ;

• The inflow of buses in the cell (c) at the time t is q∗bc (t) ;

• The number of DRS’s vehicles in the cell (c) at the time t is N ∗sc (t);

• The lenght of DRS’s vehicles in the cell (c) is L∗sc ;

• The density ρ∗sc (t) of DRS’s vehicles in the cell (c) at the time t is defined as

ρ∗sc (t) = N ∗sc (t)/L∗sc ;

• The inflow of DRS’s vehicles in the cell (c) at the time t is q∗sc (t).

The dynamic of heterogeneous particles such as the buses for commun transportation, and

vehicles for demand responsive travel and personal vehicles is difficult to describe. In the

following we suggest a physical approach to describe such dynamic.

Let us denote by Kc(t) the density of the cell (c) in its dominant/privileged directions

accounting other roads dedicated to commun transportation or responsive travel. We define

this variable density as

Kc(t) = χ
b
c ρ
∗b
c (t) +χ

s
cρ
∗s
c (t) +χ

c
c

 

∑

i=1,2,3,4

Γ t
c,iiρc,i(t)

!

(5.10)

with χ c
c + χ

b
c + χ

s
c = 1. For each cell (c), Γ t

c,ii is the rate of vehicles going straight from

the same direction i within the cell at time t. We recall that
�

Γ t
c,i j

�

i, j=1,2,3,4
is the stochastic

matrix of assignment of flows within the cell (c) at time t. χ b
c and χ s

c are respectively the

fraction of flow of (c) located on the bus lines, and the fraction of flow of (c) located on the

DRS routes.

Thus, the conservation law results in

Lc
d
d t

Kc(t) = (rc(t)− qc(t)) +
∑

g∈Neighbor(c)

�

Qgc(t)− Rcg(t)
�

(5.11)
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with Lc = L∗cc + L∗bc + L∗sc .

Qgc(t) represents the inflow of (c) taking into account q∗bc (t) and q∗sc (t). Correspondingly,

Rcg(t) accounts the outflow r∗bc (t) and the outflow r∗sc (t). rc(t) and qc(t) are same variables

(of Chap. 3) which denote the solution of the linear-quadratic intersection traffic flow model

(3.21).

5.4 Perspectives

This chapter presents a perspective on traffic flow modeling at a spectrum of three scales:

microscopic, macroscopic and bi-dimensional. In order to ensure modeling consistency, it

is critical to address the coupling among models at different scales, i.e. how less detailed

models are derived from more detailed models and, conversely, how more detailed models

are aggregated to less detailed models. Consequently, traffic flow is modeled as the motion

and interaction of all vehicles.

We should implemented these hybrid and multiscale models respectively presented in Sec.

5.2 and Sec. 5.3 in a real case scenario. However we argue that our case study is right since

it results from efficient hybridization and multicoupling thechnics.
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Chapter 6

RDTA over large transport networks
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The acronym RDTA of this chapter 6 is referred to Reactive Dynamic Traffic Assignment.

It is a way for making dynamic traffic assigment by using a reactive scheme relying on the

traffic flow prediction and traffic information rather than on an equilibrium dynamic traffic

assignment.

6.1 Introduction

Traffic assignment is one of the recurring issues in the preoccupations of networks operators.

Particular attention is taken in the case of transport since large urban networks allow peo-

ple to move every day providing to them means of mobility. The government and territorial
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communities are concerned. There are many static equilibrium allocation models dedicated

to transport planning with respect to assignment problems in the literature. There are also

dynamic allocation models. We are focusing on the second kind of assignment. Most algo-

rithms rely on shorthest paths schemes (this is assumed to results from the preferences of

drivers). Versatile algorithms such genetic algorithms, greedy algorithms, evolutionary algo-

rithms, have been developed addressing assignment issues in traffic control over networks.

Traffic flow models incorporating such algorithms are of good quality depending on the pur-

poses for which they are deployed, and the particular networks concerned. Nevertheless, it

is not obvious whether they represent accurately the dynamic aspects of network flows when

very large transport networks are involved.

Organization of the chapter

In this chapter we propose a model of dynamic assignment of vehicles flow to predicte and

estimate the traffic on wide and dense networks. Using instantaneous travel times of users

over networks, the RDTA model developped by Khoshyaran and Lebacque [43] and applied

on networks allows to adequately describe movements of users over networks. It allows

with specific accomodations that we provide in this Report in Chap. 3, Chap. 5 and Chap. 6,

to compute accurately two-dimensional cell flows of large surface networks. The specific

accomodations are set out below. (i) We consider that traffic information flows from one

bi-dimensional cell to another, along arcs that connect them together. Bi-dimensional cells

are modeled as nodes with internal traffic flows along dominant/privileged directions. (ii)

Traffic flows are propagated from bi-dimensional cell to another through links/arcs connect-

ing bi-dimensional cells. (iii) Travel costs are estimated based on traffic information in time,

traffic densities over the considered network and the variability of paths used.

Our developed RDTA model is a Logit-based model and is fully described in Sec. 6.2. Paths of

users are allocated along the directional inflows and directional outflows of bi-dimensional

cells. In the previous Chapter 5, we have proposed a versatile hybrid/multiscale traffic si-

mulation for discrete-continuous networks. Bi-dimensional transport simulator will denote

transport simulator based on (the semi-discretized shape of) the bi-dimensional traffic flow

model and the proposed RDTA scheme. The implementation of its simulation model has

been provided in [80].
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6.2 Reactive dynamic assignment

Let us introduce our RDTA model applied to the Lagrangian two-dimensional traffic flow

model developed in the previous chapter 3. Given time-dependent OD matrices, a first allo-

cation of traffic demands is based both on averaged travel times (from cell to cell, pointed by

directional outflows) and traffic states in all cells of the whole network domain. Cells refer

to 2d elementary/bi-dimensional cells which are fully described in Chap. 3.

The traffic assignment model shall identify travel paths of minimum cost, and related direc-

tional outflows of cells of these paths. Let us recall that cell flows could be computed with

the bi-dimensional traffic flow engine (depicted by Fig. 3.7) which is fully implemented,

tested and validated in Chap. 3.

Let us summarize the principle of the approach. The paths are considered from bi-dimensional

cell to bi-dimensional cell. Trips inside bi-dimensional cells are approximated by trips from

cell center to boundary or from boundary to cell center. The main difficulties reside in mo-

deling trips, and estimating travel costs. Trips are the succession of crossed cells.

Notations are the following.

• πd
c (t) : the weight of the path of minimum cost at the time t that reaches the destina-

tion cell (d) originating from the cell (c). The destination (d) could be a border of a

cell.

• πd,k
c : the weight of the path of minimum cost at the time t that reaches the cell

destination or the cell border (d) from the cell (c), consisting in k-routes. Here we

assume that k is equal to 2. This is related to a simplifying assumption on possible

directions vehicles or users will use when moving out of a cell towards a destination.

We highlight this later in this Sec. 6.2.

• Γc,i j(t) : turning rate movements of vehicles within the cell (c), from direction (i) to

direction ( j), at time t. We recall that
�

Γi j

�

i j is the stochastic traffic assignment matrix

depending on the time and cells.

• Γ d
c,i j(t) : turning rates of incoming flow at the time t in the cell (c) in the direction (i)

which going to the direction ( j), in order to reach the cell (d) as its destination.

• $cc′(t) : the cost of the arc (c, c′) at the time t. An arc is the link between two adjacent
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cells. So the arc (c, c′) is a link that connects the cell c to the cell c′, and vice versa. The

arc (c, c′) is different from the arc (c′, c) depending on the direction of travel. We mean

that considered bi-dimensional network domains are modeled as direct and weighted

graph.

From a simple mesh of a transportation network area (depicted by Figure 6.2) we are able

to construct a new network graph at the two-dimensional scale (see figure 6.2).

Travel cost

The cost of travelling from the cell (c) to the cell (g), denoted by $t
cg , can be estimated in

the framework of the proposed model by the instantaneous travel time, which itself can be

estimated at each time-step t by the following approximation:

$cg(t)≈ Nc,i(t)/Rcg(t) (6.1)

if the cell (g) is such that the exit direction (i) of the cell (c) is its entry direction (see the

below figure). The above approximation (6.1) of the travel cost$cg(t) is valid only if Nc,i(t)

and Rcg(t) are different of zero, and lower bounded by strictly positive number.

(c) (g)

i

Rcg

Lci

In other way, by default we have the following:

$cg(t) =
1
2

�

Lc,i

Vc,i,max
+

Lg, j

Vg, j,max

�

(6.2)

where Vc,i,max is the maximal exit speed of vehicles from the cell (c) follows direction i, and

Lc,i is the length of lanes in cell (c) in direction i.

The unit of measurement of Nc,i(t)/Rcg(t) is

�

Nc,i(t)

Rcg(t)

�

=
Veh

Veh/s
= s. Therefore units of

measurement of $cg(t) and Nc,i(t)/Rcg(t) are the same.

The instantaneous travel time from one origin to a destination via a path is the sum of in-

stantaneous travel time of the cells located on such path.
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Instantaneous travel time

Let (c) ∈ C be a cell. For (i) a direction, we denote by V t
c,i the cell exit speed of (c) in

the direction (i) = c → g. We are defining instantaneous travel time (I T T) for cell links:

that is the links in 2d-cell that lie in the preferred directions of flow propagation. It is a good

approximation since flows will assign through these preferred directions of propagation. This

is even the main expected feature in two-dimensional modeling: reduce the great number of

links and nodes of dense network in a simplified network while still ensure a way of providing

good sufficient information about network traffic states. Let us mention that instantaneous

travel time in two-dimension space shall be describe as an integral along the path a user or

vehicle will follow with respect to its velocity. A formal definition of I T T is the following

(see [49]).

I T T (path; t) =

∫

path

dχ/V (χ, t) (6.3)

This formula is valid in non-interrupted traffic flow, particularly when velocity is always

bound by a strictly positive lower speed.

The authors of [49] have give clear computational definition of the I T T in interrupted

traffic. The cell exit speed defined as V t
c,i = Rcg(t)Lc,i/Nc,i(t) permits emulation of ‘First In

First Out’ (FIFO) behavior within each 2d-cell [84]. A proper discretization constraint such

Rcg(t)δt ≤ N t
c,i is set.

(c) (g)

i

Rcg

Lci

Let us use instantaneous travel time for an arc/link, and adapted it to a bi-dimensional cell

with respect to its dominant directions of propagation. Let us denote by T t
c,i the instantaneous

travel time from the entire length of the cell (c) in direction (i), estimated at time t.

Hence, introducing the cell travel time I T T t
c,i = T t

c,i − T t
f ,i , the below (6.4) formulas hold
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along the cells of a path:


















I T T t+1
c,i − Lc,i/V

t
c,i =

�

1−
αc,iν

t
c,i

1−νt
c

��

I T T t
c,i − Lc,i/V

t
c,i

�

−
�

T t+1
f ,i − T t

f ,i

�

,

if νt
c,i ≤

1
1+αc,i

I T T t+1
c,i − Lc,i/V

t
c,i = −

1−αc,i

αt
c,iν

t
c,i

�

T t+1
f ,i − T t

f ,i

�

if νt
c,i ≥

1
1+αc,i

(6.4)

Coefficients αc,i and νt
c,i are defined such as:

αc,i
de f
= Vc,i,maxδt/Lc,i and νt

c,i
de f
= V t

c,i/Vc,i,max = Rt
c,gδt/

�

αc,iN
t
c,i

�

. (6.5)

Vc,i,max is the maximal exit speed of vehicles from the cell (c) with respect to the direction i.

Logit formulation

Let us introduce a Logit model for the choice of neighbor cells, and address shortest paths

computation. From a cell, vehicles have 4 possible choices for their next motion since there

are 4 exit directions. Let d be a destination. d can be a cell or a border of cell. Let (c) is any

cell. We assume that (c) is different from d in case where d is a cell.

From cell (c), vehicles/users have generally just 2 possible directions that they may

take when they are going out of the cell. This is a simplifying assumption.

Figure 6.2 depicts the 2 possible directions, from a cell (c) to other cell or a border of other

cell, named d which could be a destination.

(f)

(g)(c)

(d)

Figure 6.1: Possible paths, with respect to the traffic information and exit speeds in dominant
directions of propagation of cells located on the paths, from cell (c) (which could be origin)
to other cell or a border of other cell (named d as destination).
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Therefore, the weight of the path of minimum cost πd
c (t) at the time t can be decomposed

as below:

πd
c (t) →







$t
c f +π

d
f

�

t +$t
c f

�

= Cd
f (t)

$t
cg +π

d
g

�

t +$t
cg

�

= Cd
g (t) .

(6.6)

This approximation (6.6) is justified because there are privileged/dominant directions of

travel in each cell.

Figure 6.2: Zone-based surface newtork representation

Each node represents a zone. Each arc is a connection between two adjacent zones, from

zone center to zone center. Zones are two-dimensional computing cells, with at most

4-directions of propagation of the vehicles flows: (4-inflows and 4-outflows for each

cell/node or zone).

We can determine the probability of choice of users for choosing either one cell between

neighbor cells from the cell they are located, at time t. The formulation of this probability is

given by Eq. (6.7):














P ((choice= ( f )/Dest.= d) (t) =
exp

�

− θCd
f (t)

�

exp
�

− θCd
f (t)

�

+ exp
�

− θCd
g (t)

� =F d
c f (t)

P (choice= (g)/Dest.= d) (t) =
exp

�

− θCd
g (t)

�

exp
�

− θCd
f (t)

�

+ exp
�

− θCd
g (t)

� =F d
cg(t) .

(6.7)

Parameters F d
c f (t) and F d

cg(t) allow the calculation of coefficients of turning rates.

Therefore, the time-dependent cost of the path from (c) to d is defined in the following.

∀(c, d) ∈ C× C,∀t, πd
c (t) =F

d
c f (t) · C

d
f (t) +F

d
cg(t) · C

d
g (t)

=F d
c f (t) · C

d
f (t) +

�

1−F d
c f (t)

�

· Cd
g (t)

(6.8)
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This is a recursive formula on the calculation of the cost of shortest paths with respect to the

bi-dimensional traffic flow prediction and traffic information. Nevertheless, we can easily

compute πd
c (t) by the below array formula of algebra (min,+) type, which can be improved

as a Dijkstra algorithm (see Table 6.1).

Dijkstra based (min,+) algebra for time-dependent shortest paths computation

For each time-step t > 0, ∀(c, d) ∈ C× C,

• πd,1
c (t) = 0 (Initialization).

• If c 6= d, πd,1
c (t) =$cd(t) if exists arc (c, d), or =∞ if not.

• πd,k+1
c (t) =min

�

πd,k
c (t) , min

c′∈Succ(c)

�

$cc′(t) +π
d,k
c′
�

t +$cc′(t)
�

�

�

.

Table 6.1: Time-dependent shortest paths findings.

Succ(c) is the set of successors of the cell (c), since (c) represents a node of the graph corre-

sponding to the network domain.

The RDTA scheme

Let us recall the algorithmic scheme used, from Chap. 3, to compute traffic flow of surface

networks. It is a scheme without assignment since we do not calculate the stochastic matrix

of assignment Γ t
c,i j along the previous simulations. We recall that the assignment matrix we

have used has been generated according to the works of Sautmally et al. [78] in case of a

static assignment. In the following, let us recall the actual scheme without assignment from

Chap. 3. It is the scheme with which we calculated bi-dimensional cell flows in its dominant

or preferred or privileged directions.

The scheme from Chap. 3: a scheme with static assignment

Let us assume to be at the time step t of the computation of cell flows in the directions of

propagation.

We could assume that we have values of N t
ci and ρ t

ci for all c ∈ C and i ∈ {1, 2,3, 4} at

this time step t. Let us then summarize steps to compute N t+1
ci and ρ t+1

ci for all c ∈ C and

i ∈ {1, 2,3,4}.

• Internal traffic demand and internal traffic supply are set to be:

δci(ρ
t
ci) = λciνci∆ci(ρ

t
ci) and σci(ρ

t
ci) = λciνciΣci(ρ

t
ci)

∆ci() and Σci() are lineic traffic demand and lineic traffic supply functions of cell (c) follows

direction i. Hence, ∆ci(ρ t
ci) and Σci(ρ t

ci) are the internal traffic demand and internal traffic
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supply per lane and direction.

• The traffic demand and traffic supply at the border of the network domain are

∆t
cg = νcg∆ci(ρ t

ci) if the cell (g) is the cell in the direction (i) when being in the cell (c), and

Σt
hc = νhcΣci(ρ t

ci) if (h) is the cell as shown below.

νcg and νhc are numbers of lanes of cell (c) in directions j = c → g and i = h→ c respec-

tively.

• Calculation of internal flows: qt
ci and r t

ci .

We recall that these variables are solution of the below linear-quadratic optimization prob-

lem, which we have solved with the ‘CVXOPT’ Python based solver.

max
(qc ,rc)

�

4
∑

i=1
Φi(qci) +

4
∑

j=1
Ψ j(rc j)

�

s.t.

�

�

�

�

�

�

�

�

�

�

�

0≤ qci ≤ δt
ci , ∀i ∈ {1,2, 3,4},

0≤ rc j ≤ σt
c j , ∀ j ∈ {1,2, 3,4},

rc j =
4
∑

i=1
qciΓ

t
c,i j , ∀ j ∈ {1,2, 3,4}.

(6.9)

with qc = (qc1 qc2 qc3 qc4) the vector inflow of cell (c) and rc = (rc1 rc2 rc3 rc4) its vector

outflow.

• Calculation of flows at the border: qt
cg =min

�

∆t
cg ,Σt

cg

�

.

• Intermediate important variable is N t+1/2
ci = N t

ci +∆t
�

r t
ci − qt

ci

�

at time step t + 1/2.

• In doing so, we can at the end compute N t+1
ci = N t+1/2

ci +∆t
�

Qt
gc −Qt

ch

�

is the number

of vehicles in cell (c) at the next time step t + 1.

• ρ t+1
ci = N t+1

ci /Lci is the density of the cell (c) in the direction (i) at the time step t + 1,

where Lci is the length of lanes of cell (c) in the direction i.

We are going to introduce the destination attribute denoted by d and itineries in the

above scheme. With these notions, we deduce a scheme of dynamic assignment. The re-

sulted scheme is commonly known as a kind of reactive DTA. At each time step, values of

the stochastic matrix assignment
�

Γ t
c,i j

�

i, j=1,2,3,4
of each cell (c) may change and then are

recalculated.

Scheme of reactive DTA: calculation of the stochastic matrix of assignment

In this section, we provide the analytical expression of the stochastic matrix of assignment

Γc =
�

Γ t
c,i j

�

i, j=1,2,3,4
for each c ∈ C and its calculation over time during a simulation. For
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c ∈ C, Γc is related to the following coefficients of turning rates γd,t
c, j according to the desti-

nation attribute d.

Let us pose χd,t
ci = N d,t

ci /N
t
ci . Then χd,t

ci = ρ
d,t
ci /ρ

t
ci . χ

d,t
ci is the fraction of cell (c) concentra-

tion’, which is moving at the time t towards the destination d ∈D.

∀c ∈ C, ∀i, j = 1, 2,3, 4, we have:

Γ t
c,i j =

∑

d∈D
γ

d,t
c, j χ

d,t
ci (6.10)

The relevant variable is then the turning rates γd,t
c, j related to the destination attribute d. Its

formulation is given by (6.13) below.

• Calculation of γd,t
c,j , coefficients of turning rates in cell (c) follows direction j towards

destination d. First, we need to know the travel time when traveling from a cell to its

neighbor cells. Let us recall its formulation. Given the following figure,

(c) (h)

• i •i′

the travel time or travel cost from the cell (c) to the cell (h) is given by:

$t
ch ≈

1
2

�

N t
ci

Qt
ch

+
N t

hi′

Qt
ch

�

=
N t

ci + N t
hi′

2Qt
ch

. (6.11)

We initialize the Dijkstra-based algorithm as below:
�

�

�

�

�

�

�

π1,t
c =

N t
c1

Rt
c1

if the cell (c) is on the border (1)

π1,t
c = +∞

Next we execute the Dijkstra-based algorithm and find k-shortest paths from (c) to d, and

then compute the travel cost πd,t
c . Let us mention that, according to the RDTA routes of

probability non nil to be used, k = 2.

Given the above precedent figure, we write:

Cd,t
ch =$

t
ch +π

d,t
h (6.12)

Let us specify that Cd,t
ci ≡ Cd,t

ch if and only if (h) lies in the direction i from (c).

We argue that the turning rates γd,t
ci derives from cross-entropy formulation based on the
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travel cost Cd,t
c j , where j represents the directions i − 1 and i + 1.

γ
d,t
ci =

exp
�

−θCd,t
ci

�

exp
�

−θCd,t
c,i−1

�

+ exp
�

−θCd,t
c,i+1

� (6.13)

• Calculation of ρd,t
c,i , the density of cell (c) along direction j per destination attribute d.

Expression (6.10) will be injected in the convex-optimization problem (6.9). A disaggrega-

tion by destination d ∈D is hence appropriate.

In each cell (c), internal flows are then: qd,t
c,i = χ

d,t
ci qt

c,i and rd,t
c, j =

�

∑

i
qd,t

c,i

�

γ
d,t
c j . The cell

crossing flows are simply: Qd,t
ch =Qt

chχ
d,t
ci according to the figure below.

(g) (c) (h)

i

Lci

We formulate the number of vehicles in cell (c) per destination d as the following:





N d,t+1/2
ci = N d,t

ci +∆t
�

rd,t
ci − qd,t

ci

�

N d,t+1
ci = N d,t+1/2

ci +∆t
�

Qd,t
gc −Qd,t

ch

�

∀(c, d) ∈ C×D,∀t (6.14)

according to the same figure (in above). The cell density is easy to compute knowing above

variables. We have: ρd,t+1
ci = N d,t+1

ci /Lci .
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Algorithm of RDTA and Bi-dimensional assignment coefficients

Loop on all bi-dimensional computing cells c ∈ C

loop on neighbor cells f of the cell c

compute $t
c f with (6.11)

Initialisation of Dijkstra-based algorithm for each destination d ∈D

Execute Dijkstra-based for each destination d ∈D

compute πd,t
c from all c ∈ C

Loop on all bi-dimensional computing cells c ∈ C

loop on dominant neighbor directions i and f of the cell c

compute Cd,t
c f and γd,t

ci with (6.12) and (6.13)

computation of Γ t
c,i j with the Formula (6.10)

computation of flows, densities and number of vehicles, and per destination.

In doing so, the traffic assignment model identifies the minimum cost travel paths, and

the directional outflow within cells of each path, which is discussed in this Section 6.2. The

general structure of the reactive algorithm is shown in Figure 6.3.

Shortest routes obtained by instantaneous travel time

Bi-dimensional network loading:
Cell demands and supplies per destination

Cell flows and densities per destination
Cell exit speeds

Path travel times

Path set update (including latest time-
dependent instantaneous k-shorthest paths)

Paths adjustment

Simplified network at the
bi-dimensional scale with
performance parameters

Time-dependent
O-D matrices
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Figure 6.3: Structure of solution algorithm to the RDTA (Reactive Dynamic Traffic Assign-
ment) problem.

The constructed assignment model of Figure 6.3 enables flow assignment of big cities, if their

transportation networks areas could be approximated into two-dimensional (orthotropic or

anisotropic) media.

6.3 Numerical experiments

We provide in this section the simulation results based on our proposed reactive dynamic

traffic assignment scheme. Let us use an hypothetical network domain represented by the

network-graph depicted by the Figure 6.4. The network domain has 12 rectangular cells and

then 12 bi-dimensional nodes.

Figure 6.4: Graph of an hypothetical network-domain for the RDTA scheme application.

The resulted traffic simulator associated to the Reactive DTA allow the calculation of time-

dependent origin-destination matrices. In fact, we develop a travel demand generator that

handled the input travel demand from some cells referred as origins to other cells referred

as destinations. More precisely, origins and destinations are located in the set of bound

interfaces of the network domain.

A serie of graphics for outflows, inflows and densities of all bi-dimensional cells are shown

below.
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Figure 6.5: Outflows of cells 1, 2, 3, and 4.

Figure 6.6: Outflows of cells 5, 6, 7 and 8.
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Figure 6.7: Outflows of cells 9, 10, 11 and 12.

Figure 6.8: Inflows of cells 1, 2, 3, and 4.
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Figure 6.9: Inflows of cells 5, 6, 7 and 8.

Figure 6.10: Inflows of cells 9, 10, 11 and 12.
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Figure 6.11: Density of cells 1, 2, 3, and 4.

Figure 6.12: Density of cells 5, 6, 7 and 8.
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Figure 6.13: Density of cells 9, 10, 11 and 12.

The constructed assignment process and the optimization models allow easy computation

of traffic flow at bi-dimensional scale. We show that the application of the two-dimensional

traffic flow theory and the reactive dynamic traffic assignment theory allow adequately to

simulate very large surface networks. The algorithm based on the principle of reactive dyna-

mic assignment owes its reliability to the fact that it makes possible to obtain the real state

of the traffic in comparison with the algorithms related to the user-equilibrium or dynamic

user-equilibrium. In addition, our numerical results prove that the algorithm is flexible and

fast. Its speed is linked even to the simplicities approaches of two-dimensional traffic theory.

They lead to traffic control and supervision of large and dense (orthotropic and anisotropic)

surface networks whether the trafic is homogeneous or inhomogeneous.

6.4 Conclusion

Reactive dynamic traffic assignment framework is compatible with vehicular multimodality

(distinguishing between private cars, taxis, electric vehicles, demand responsive systems etc).

By modifying the estimated travel time, the network is monitored. We refer to works of

Atmani [2] and references therein. We could extend the multiscale coupling, presented in

170



Sec. 5.3, and adapt it to vehicular multimodality of very large transportation systems. We

could then apply the reactive dynamic traffic assigment model, the RDTA model, to any large

multimodal transportation system. That will highlight traffic interactions between different

forms of mobility that are present in the considered multimodal transportation network, even

when the traffic domain of the network is meshed in bi-dimensional cells.
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Chapter 7

Conclusion et perspectives

Contents
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7.1 Summary

We find out that large scale surface networks require specific modeling approaches of the

traffic flow theory. We have developed a dynamic bi-dimensional traffic flow (BTF) model

which is adequate for traffic flow management from a high level of road networks simpli-

fication. The numerical results obtained show that this flow aggregation model predicts,

estimates and manages the traffic flow of very large road networks efficiently.

The BTF model is very fast compared to macroscopic traffic flow models. Chapter 3 showed

this. However, in the context of vehicular multimodality, it is essential to couple this mo-

del with a specific macroscopic model especially the GSOM (Generic Second Order Model)

along with microscopic transport models. The coupling of GSOM traffic flow approach with

the two-dimensional traffic flow approach is successful. It suits very large and dense road

transportation networks. We further respond to the three main objectives which are summed

up in

• the reduction of involved cumbersome calculations and prohibitive computational time

in case of macroscopic simulators deployment on large and dense surface networks,

• the traffic regulation and control, and
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• the estimation of vehicle flows per mode of transportation with respect to its related

transportation system.

7.2 Research relevance

The research relevance of this thesis is described in terms of theoretical achievements and

practical results.

• Theoretical relevance

The developed models provide an extension and refinement of the current multilane traf-

fic flow theory of Farhi et. al [18], the dynamical bidimensional model of Saumtally [78],

the current dynamic network loading model for large-scale dynamic traffic assignment of

Ziliaskopoulos [94]. The final multiscale traffic flow model gives insights into traffic interac-

tions between different road transport modes (or forms of mobility) and the impact of PRT

(personal rapid transit) demand responsive system within a multimodal transportation sys-

tem. Furthermore, the urban network traffic module of the multiscale traffic flow simulation

model accounts for interactions between traffic streams going through traffic zones. Con-

sequently, dynamics of traffic flow at two-dimensional scale are predicted even from scarce

transport data.

• Practical relevance

The research results will be applied for traffic flow estimation and traffic control over large

and dense networks (comprising a huge number of secondary roads and/ or principal roads

(the highways)). The module upon traffic of PRT (personal rapid transit) demand responsive

system can be applied as generic model for other kind of this system for control approaches.

7.3 Open Problems & Future Prospects

Since we focus on studies of vehicle flows and networks supply, there are somes traffic issues

related to the vehicular multimodality which are not addressed in this Report. Let us men-

tion notably the dynamic of passagers in multimodal transportation.

Besides, we should compare the bi-dimensional traffic flow model with the multi-agent trans-

port simulator called MATSim [36], since this latter is widely used for traffic flow manage-

ment of any kind of ground transportation system. Some traffic module has been recently

developed by the MATSim group to integrate multimodal aspects in the MATSim simula-
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tor. However all the transport models implemented in such a simulator are for the most

part microscopic, mesoscopic or macroscopic. They estimate the number of vehicles as the

number of agents moving in the systems. Moreover, the agent-based approach is literally

different from the flux approach. Thus the comparison of these two competitive simulation

approaches (the MATSim and the Bi-dimensional transport simulator) is difficult to make

and requires specific methodological developments.
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Appendix A

CVXOPT convex optimization python package

We present in details the resolution of the intersection model (3.21) resulted from internal

traffic within 2d elementary cells. Let us recall it below.

In each cell (c) ∈ C, it is a question of finding the optimal solution of A.1.

max
(q,r)

�

4
∑

i=1
Φi(qi) +

4
∑

j=1
Ψ j(r j)

�

s.t.

�

�

�

�

�

�

�

�

�

�

�

0≤ qi ≤∆
t+1/2
ci , ∀i ∈ {1, 2,3, 4},

0≤ r j ≤ Σ
t+1/2
c j , ∀ j ∈ {1,2, 3,4},

−r j +
4
∑

i=1
qiΓ

t
c,i j = 0, ∀ j ∈ {1,2, 3,4}.

(A.1)

with q = (q1 q2 q3 q4) and r = (r1 r2 r3 r4) unknown variables, and Φi and Ψ j being

quadratic functions: Φ j(x) = Ψ j(x) = −
1
2 x2

j + x j.x j,max , ∀ j = 1,2, 3,4; x = (x1 x2 x3 x4)

and xmax = (x1,max x2,max x3,max x4,max) a given vector.

A.1 Resolution of the linear-quadratic optimization problem

Let us rewrite explicitly such a problem (A.1). For the sake of simplicity, we omitt the index

of time and indexes of cells.
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We obtain the below formulation:

max
(q,r)

4
∑

`=1
−1

2

�

q2
`
+ r2

`

�

+
�

q`q`,max + r`r`,max

�

s.t.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−qi ¶ 0 ∀i ∈ {1, 2,3, 4},

−r j ¶ 0 ∀ j ∈ {1,2, 3,4},

qi ¶ σi ∀i ∈ {1, 2,3, 4},

r j ¶ δ j ∀ j ∈ {1,2, 3,4},
4
∑

i=1
qiΓi j − r j = 0 ∀ j ∈ {1,2, 3,4},

(A.2)

with q = (q1 q2 q3 q4) and r = (r1 r2 r3 r4).

In its matrix form, we obtain as follows.

min
z=(q,r)

1
2zT Mz + Lz

s.t.

�

�

�

�

�

�

Gz ¶ h

Az = b

(A.3)

with

z = (q1 q2 q3 q4 r1 r2 r3 r4)T ; M = Id8,8; L = −(q1,max q2,max q3,max q4,max r1,max r2,max r3,max r4,max)
′
;

h= (0 0 0 0 0 0 0 0 σ1 σ2 σ3 σ4 δ1 δ2 δ3 δ4)T ;

G =





−Id8,8

Id8,8



 ; Γ = (Γ )1≤i, j≤4 is the stochastic matrix of assignment coefficients.

Figure A.1 depicts the attribute function Ψ j with respect to characteristics of lanes in direction

( j), j = 1,2, 3,4.

Figure A.1: Optimization profile of car-flows at intersection without signaling
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We take for numerical tests values below for the stochastic matrix Γ (from Saumtally [77]).

Γ =















0.4686 0.2236 0 0.3078

0.0405 0.469 0.4905 0

0 0.3109 0.2904 0.3987

0.3512 0 0.4097 0.2391















.

The equality constraint of (3.7) or (A.2) in a matrix format gives: Az = b, with

A=















Γ11 Γ21 0 Γ41 −1 0 0 0

Γ12 Γ22 Γ32 0 0 −1 0 0

0 Γ23 Γ33 Γ43 0 0 −1 0

Γ14 0 Γ34 Γ44 0 0 0 −1















=
�

Γ T | −Id4,4

�

and b = O8,1.

We solve the obtained optimization models in Python with the CVXOPT Python package for

Convex Optimization [1]. The update of the stochastic matrix Γ is due by routes calculation

with the Python Networkx library and the application of the cross-entropy method. Hence,

traffic assignment easily identifies minimum cost travel paths, and directional outflows of

cells of each path. The constructed assignment process and optimization models applied to

very large networks allow easy computation of traffic flow at bi-dimensional scale.
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