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Introduction Automating reasoning

Motivation

How to be sure of a complex mathematical proof? 51!

(for instance: 4-color theorem) ’a
<P
f)’

How to certify complex software?

~» formalizing and automating proofs



Introduction Automating reasoning

Pure logic: well-studied (Frege, Hilbert, Gentzen, etc.)

But proofs are generally done within a theory

» first-order arithmetic
» pointer arithmetic
» etc.

How to present these theories to get better mechanized proof
system?



Introduction Automating reasoning

Pure logic: well-studied (Frege, Hilbert, Gentzen, etc.)

But proofs are generally done within a theory

» first-order arithmetic
» pointer arithmetic
» etc.

How to present these theories to get better mechanized proof
system?

Standard way of dealing with theories: axiomatization
» For instance, Peano’s axioms for first-order arithmetic

» Not adapted for proof search!



Introduction
14+1=2
In I
Ve, z+0=z
Vo y, z+s(y) = s(z +y)

Vey, z=y= X(z)= X(y)

Automating reasoning

T 1+1=s1+O0)r1+1=s110)1+1=2
" T 1+1-s(1+0),1+1-2 "~ T il+1-2v1+1-2
_ - T 1+1-s(1+0)>1+1-2r1+1-2
" I,1+40=1-140=1,1+1=2
" Tr14+0=11+1=2 :
1+0=1=>141=s1+0)=>1+1=2+1+1=2
" Tr1t+1=2
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Ve, z+0=z
Vo y, o+ s(y) = s(z +y)
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Automating reasoning
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T—1+1=5(1+0),1+1=2 T1+1=2r1+1=2
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Other approaches

» Satisfiability Modulo Theory: efficient proof search
methods, not generic

DPLL(T) [Ganzinger, Hagen, Nieuwenhuis, Oliveras and Tinelli,
2004]
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Introduction Automating reasoning

Other approaches

» Satisfiability Modulo Theory: efficient proof search
methods, not generic

DPLL(T) [Ganzinger, Hagen, Nieuwenhuis, Oliveras and Tinelli,
2004]

» Dependent and Inductive Types: universal, hard to
automatize

Coq, Isabelle, etc.

» Deduction Modulo and Superdeduction
[Dowek, Hardin and Kirchner, 2003, Wack, 2005]



Introduction Deduction modulo

Poincaré’s principle

In a proof, distinguish deduction from computation to better
combine them

Deduction modulo: inference rules (deduction) are applied
modulo a congruence (computation)

Universal model for computation: rewriting ~~ congruence
based on a rewrite system over terms and formulae



Introduction Deduction modulo

Example
z+0 -z
z+s(y) — s(z+y)
0=0-—-T

s(z) =s(y) =z =y

1+1=2—3s(1+0)=2—s51)=2-"50=0—T

H1l+1=2



|ntr0d uction Superdeduction

Compiling theories
Max(z,a) =z € aAVy, y€a=y<x

_ yebry<t
: Fan—yEbéygt
F'—teb ''eVy, yeb=>y<t
C I'vtebAVy, yeb=y<t
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Superdeduction

Introduction

Superdeduction

New rules (superrules) from a proposition rewrite system

» Natural deduction ~» supernatural deduction

[Wack, 2005]
Introduction and elimination superrules

» Sequent calculus ~ extensible sequent calculus
[Brauner, Houtmann and Kirchner, 2007]

Left and right supperrules

Term rewrite rules are still applied modulo



Introduction Superdeduction

Goal

How do deduction modulo and superdeduction help produce
better proofs from the mechanised-theorem-proving viewpoint?

@® more direct
® shorter

©® universal

10
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|ntr0d uction Superdeduction

Goal

How do deduction modulo and superdeduction help produce
better proofs from the mechanised-theorem-proving viewpoint?

® more direct: Cut admissibility
® shorter: Proof length

® universal: Logical framework

10
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@ Cut admissibility
m Example
m Undecidability
m A completion procedure
m Implementation

@ Proof length

© Logical framework



Cut admissibility Example

The cut rule

. ILP=A ' P A
- ' A

Proof search procedures complete iff cut admissible

Without modulo, cut admissible (Gentzen's Hauptsatz)

11



CUt admISSIbl|lty Example

Inadmissibility in deduction modulo

A— A= B

Let us search a “minimal” counter-example:

12



Cut admissibility

Inadmissibility in deduction modulo

A— A= B

Let us search a “minimal” counter-example:

A= B, Av —A A= DB

Ar T|—A

Example

12



CUt admISSIbl|lty Example

Inadmissibility in deduction modulo

A— A= B

Let us search a “minimal”’ counter-example:

. A Bvw TOA- A ._; A A B
Tl_A:>B,AI— _ |—A7A:>B
A ! — A

[

12



CUt admISSIbI|Ity Example

Inadmissibility in deduction modulo

A— A= B

Let us search a “minimal”’ counter-example:

[ [

. ABvB " A A B A AB
A= B, A+ B — A A= BB
" . AvB . — A B
- — B

12



Cut admissibility Undecidability

Undecidability of cut admissibility

Theorem 1 ([LFCSO07]).

The problem:

Given a rewrite system R, does the sequent calculus
modulo R admits cut?

is undecidable

Sketch of proof: P valid iff the sequent calculus modulo
A — A = P admits cut

13



CUt admISSIbI|Ity A completion procedure

Completion

Recover confluence using standard completion
[Knuth and Bendix, 1970]

Complete A — A = B with B — T: cut admissibility

recovered

If only terms are rewritten: cut admissibility = confluence
[Dowek, 2003]

If propositions are rewritten: need for a generalization of
standard completion

14



CUt ad mISSIbI|Ity A completion procedure

Basic mechanism of completion (w/o
simplification)

R
add s — ¢
Confluent? ———= Return R
yes
no
critical pair

S+— —t
R R

15



Cut admissibility

A completion procedure

Basic mechanism of completion (w/o
simplification)

add rules for

building a proof Good property? ——= Return R
smaller than p yes

no

critical proof

p

15



CUt ad mISSIbI|Ity A completion procedure

Abstract canonical systems
[Dershowitz and Kirchner, 2006, Bonacina and Dershowitz, 2007]

Order on proofs
~~ critical proofs (minimal counter-examples)

~~ completion procedure

Instances: ground completion, standard completion, Moore
families, Horn theories, . ..

16



CUt admISSIbI|Ity A completion procedure

Deduction modulo as an ACS

Polarized unfolding sequent calculus:

AP A ' P A A

— L L+
A A A P TFl—A,A A P

Equivalent to the sequent calculus modulo, especially w.r.t.
cuts

Order on proofs: RPO with precedence - > ~ > r and
(A= B) >+ (A)

Well adapted to the cut elimination procedure

If the completion terminates, the limit admits cut

17



CUt admISSIbI|Ity A completion procedure

Critical proofs

m m
I'NA, P A ' Q, A A
T AeA AP T Treaa 40
- ' A

where
» 7 and 7’ without cut
» 7 and 7’ without useless application of rules
» 7 and ©’ apply ~ an atomic formulza only
» I" contains only atomic or universally quantified formulae
# A
» Dual for A

» All formulae in I'; A are used somewhere
18



CUt admISSIbI|Ity A completion procedure

Completing formulae

Find a proof smaller than a critical proof of ' A
~ Find a rewrite system R s.t. ' Fr A w/o cut

An algorithm Rew from sequents to rewrite systems

Theorem 2.
©FP iffFRew({l—H : He®}) P

Transforms axiomatic presentations of a theory into rewrite
systems

19



CUt admISSIbl|lty Implementation

Search for critical proofs

m m
AP+ A ' Q,A A
T T ACA AP mTroaa 40
- ' A

20



Cut adm|SS|b|||ty Implementation

Search for critical proofs

A, P A ' Q,A A

20



CUt admISSIbl|lty Implementation

Search for critical proofs

T 7!

A P QA

Search for a cut-free proof, complete branch respecting
conditions of critical proofs to find I'; A

20



Cut admissibility

Implementation

Search for critical proofs

T 7!

A P QA

Search for a cut-free proof, complete branch respecting
conditions of critical proofs to find I'; A

Implementation of the tableaux method TaMed
[Bonichon and Hermant, 2006]

20



CUt admISSIbI|Ity Implementation

Contributions [LFCS07]

v

Undecidability of cut admissibility in deduction modulo

v

Completion procedure to recover it

v

Algorithm to transform axiomatic presentations into
rewrite systems used modulo

Implementation in TOM/OCaml|

v

21
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Proof length Motivation

Speed-ups in higher-order arithmetic

Second-order arithmetic proves more than first-order
arithmetic, but also more quickly:

Theorem 3 ([Godel, 1936, Buss, 1994]).
There exists a family (P;);en such that

» forall j, Ay = P;

> there exists k such that for all j, Ayt P;

» there exists no k such that for all j, Ay P;

True for all orders 7 over 7 — 1

22



Proof length Motivation

Higher-order logic in deduction modulo

[Dowek, Hardin and Kirchner, 2001] HOLAo encodes the
higher-order logic based on simple type theory

Same proof length in HOL-A and in the sequent calculus
modulo HOL o

Possibility to encode higher-order arithmetic without
increasing proof length?

23



Proof length First results

No restrictions on the rewrite system?

R: rewrite system such that P% T for all first-order

tautology P

All proofs can be abridged to T = p

Are those really proofs?

Proof checking is not decidable

24



Proof length First results

A formal framework

If interested with links with complexity theory, proof checking
must be performed in polynomial time
[Cook and Reckhow, 1979]

In deduction modulo: the congruence should be decidable in
polynomial time

25



Proof length First results

Simple example

g = | A0 =T
Add(s(z),y,s(z)) — Add(z,y, 2)
Proposition 4.
> b gy Add(i, i, 2i)
> Ol Add(z, i,21) for all finite compatible
presentat/ons S}

—— is decidable in polynomial time
Add

26



Proof |ength Application to higher-order arithmetic

Encoding higher order in deduction modulo

Higher-order arithmetic

/ N\

Higher order: HO, Remaining axioms: fA

comprehension schema +
rules encoding formulae by terms
[Kirchner, 2006]

Theorem 5.

27



PrOOf |ength Application to higher-order arithmetic

“Oth order” 1st order - -- 1 — Ist order  4th order

Aiy b shorter
prolofs

speed-up |

speed-up (Buss) :

fA,0; F !

[

[

speed-up |

[

linear

28



Proof |ength Application to higher-order arithmetic

Contributions [CSLO7]

» Simple speed-ups in deduction modulo

» Even when counting rewrite steps
(using deep inference [Bruscoli and Guglielmi, 2008])

» Length-preserving simulation of higher-order arithmetic in
first order modulo

» Purely computational presentation of higher-order
arithmetic

29
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Logical framework Motivations

Encoding higher-order systems in first order
modulo?

well studied
existing efficient proof search procedures

near to implementation

vV v v v

universal (tool cooperation)

30
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Logical framework Motivations

Logical framework

[Pfenning, 1996]:

“a meta-language for the specification of deductive
systems”

most famous: ELF (based on AII)

HOLAo = specification of HOL-)\
Deduction modulo as a logical framework?

31



Logical framework Motivations

Logical framework

[Pfenning, 1996]:

“a meta-language for the specification of deductive
systems”

most famous: ELF (based on AII)

HOLAo = specification of HOL-)\
Superdeduction as a logical framework?

31



Logical framework Motivations

Logical framework

[Pfenning, 1996]:

“a meta-language for the specification of deductive
systems”

most famous: ELF (based on AII)

HOLAo = specification of HOL-)\
Superdeduction as a logical framework?
A methodology to specify a deductive system

~ Application to functional pure type systems

31



Logica| fra mework Application to the functional pure type systems

Pure type systems [Geuvers and Nederhof, 1991]

Tio=z|Xe:T, T|TT|Nx:T, T
A pure type system is given by
> sorts S
» axioms A C S x S
»rules RC S xS xS
Functional if A and R are graphs defining functions

32



Logica| fra mework Application to the functional pure type systems

Typing system

Empt
mPyY [] well-formed

I" well-formed I'—A:s
Iz : A well-formed

Declaration s€SandznotinT

Sort - vvFeII—forrT\ed (s1,%) € A
|l S D)

, I" well-formed
Variable T2 A z:AeTl

33



Logica| fra mework Application to the functional pure type systems

Typing system (cont.)

I'—A:s Iz:Av B: s
I'—1Ilz: A, B: s3

Product (517 52, 53) €ER

'-T:1lz: A, B '-U:A

Applicati
ppiication Tv (T U):{U/2}B

'—1Ilz: A, B:s I'z:AvT:B
'-Xe: A T:1lz: A B

Abstraction

I'—T:A I'-B:s
I'—T:B

Conversion s €8 and A<"~3B

34



Logica| fra mework Application to the functional pure type systems

Encoding the A-terms

Binary predicate €(¢, u) to encode 7' : U (shallow encoding)

A-calculus with explicit substitutions [Kesner, 2000]
+ constants s for all sorts s € §

+ binary function 7, , ) for all rules (s;, s, 53) € R

additional term rewrite rules:

§[t] — 8
T(51,52,53) (a,0)[s] — T(51,5,58) (a[s],bllift(s)])

35



Logica| fra mework Application to the functional pure type systems

Encoding the inference rules through superrules

Find a rewrite rule of which one superrule correspond to the
inference rule

I'—A:s I'z:Av B: s

Product e Tz: A B 5 (s1,82,8) € R

€ (7:('<51752753> (a,b), 393) — €(a, 5)A\Vz. €(z,a) = €(b|cons(z)], $2)

()

'+ ec(a, ) [e(z,a) v~ e(bcons(2)], $)

[ o (7%<81,82,83> ((l, b> ’ :93)

—

(2) Z ¢ FV(Fa a, b)

36



Logica| fra mework Application to the functional pure type systems

Correctness
PTS(s,4,r): explicit substitutions +

€(51,5) =T (s1,%) €A (1)
€ (7'T<31,52,53) (a,b), 33) — e(a,8)AVz. €(z,a) = €(b[cons(2)], &)
(2)
€ (7.1—(81752783) (a,b), 33) A

€ (t,ﬁ'(sl,sz,sg) (aa b)) - V. G(Z, a) = g(}f Z,b [CORS(Z)]) (3)

S,AR

Theorem 6.
IFTKEAR T2 A then |T| HHPTSs.am ¢ (ITIF,|A|F)

37



Logica| framework Application to the functional pure type systems

Extra rules

SND(P7T S (s,4,r))

Variable

Product

Abstraction
Application

Conversion

modulo Ay

38
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Logica| fra mework Application to the functional pure type systems
Conservativeness

Extra rules:

e (71'(31,52,53) (a,0), 33)
I (CL, 81)

(2)1
i

By correctness of the translation, if
|z : A, B = (s 5,5 (@, b) then A : 5

Theorem 7.

IfT well formed and |T| FTPTSs.4m ¢ (a,b)
there exists A and B such that S AR

a |4 b 5 |B ri&AR 4. p

39



Logica| fra mework Application to the functional pure type systems

Contributions [LICS08]

v

Methodology to encode deductive systems in
superdeduction

v

Correct and conservative encoding of functional pure type
systems

v

Proof search in PTS via the extensible sequent calculus

v

New insight on normalization in PTS

40
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Conclusion Further work

Other simplicity criteria

» Normalization
» new instance of abstract canonical system?
» simplification rules?
A—-A=B;B—-T ~ A—-T,;B—T

» Decidability of the congruence

» decidable proof checking
» decidability in polynomial time

» Proof length
» A formal framework for proof complexity

» Link deduction modulo — Tseytin's extensions

41



Conclusion Further work
Automating the logical framework

» From axiomatic presentations to rewrite systems:
» automate
» ensure the good properties
» not always possible in intuitionistic logic

» Automated theorem proving
» term rewrite rule strategies for the modulo
» superrules application strategies
» automated or user specified?

» A universal proof environment
» share proof developments from different tools
» modular deduction modulo
» inductive types, subtyping, ...

42



Conclusion

(Fellowship | FO sequent calculus

(coq | cc ) (pvs [awoL) .-

[~

(Europa | Al-calculus modulo)

(Supernatu ral deduction

(Lemuridae | Intuitionistic Super Sequent Calculus )

Further work
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Conclusion Further work

(Fellowship | FO sequent calculus

[Sacerdoti Coen and Kirchner, 2006]

(coq | cc ) (pvs | amoL)

[Cousineau and Dowek, 2% //

(Europa | AlI-calculus modulo)

[Wack, 2006]
+
[Gentzen, 1934]

(Supernatu ral deduction

(Lemuridae | Intuitionistic Super Sequent Calculus )
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