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Une méthode d’évaluation de la
sécurité des services voix sur IP

1 Introduction

Note

Ce chapitre est une synthése en francais des me travaux de thése. Il résume les travaux présentés
plus en détails dans les autres chapitres en anglais du manuscrit.

1.1 Contexte

La voix sur IP s’impose aujourd’hui comme 'un des services majeurs de 'Internet actuel et ses
protocoles sont au cceur de 1’évolution vers 'Internet du futur. Son déploiement en plein essor
s’accompagne malheureusement d’une explosition du nombre de vulnérabilités liées, vulnérabil-
ités pouvant mener & des attaques et & des détournements majeurs. Déja soumis aux vulnéra-
bilités inhénrentes a la couche IP sur laquelle ce service s’appuie, il porte en lui de nouvelles
menaces pour la sécurité des systémes informatiques comme nous l’avons démontré dans [12].
Afin d’améliorer la sécurité de ces services, il convient de fournir aux experts du domaine et
aux développeurs des applications qui y sont déployées, des solutions capables d’automatiser le
processus de découverte de vulnérabilités ainsi que les moyens pour vérifier que ces vulnérabilités
sont bien couvertes par des protectoins efficaces dans des déploiements réels.

Nos travaux se placent dans cette perspective et portent sur la conception de tels environ-
nements pour des systémes communicants. Nous avons instancié nos approches sur le protocole
SIP décrit dans la section 2.

1.2 Contributions

Nos contributions portent sur 3 éléments essentiels de l’analyse de sécurité de services voix sur
IP. La premiére contribution est une architecture intégrée d’analyse de sécurité VolP. Cette ar-
chitecture permet d’automatiser le processus d’audit de sécurité d’une infrastructure voix sur IP
et assure l'intégration et 'interopérabilité des composnats via un modéle d’information unifié.
Elle est décrite dans la section 3. La seconde contribution de la thése est un nouveau modéle
de test de vulnérabilités capable d’aller tester par fuzzing un équipement dans des états avancés
de son protocole d’exécution. Cette contribution est présentée dans la section 4. La troisiéme
contribution porte sur une nouvelle méthode de fingerprinting d’équipements par analyse struc-
turelle des messages. Cette méthode est décrite dans la section 5. Une synthése des contributions
est donnée dans la section 6.

1.3 Publications

Les travaux présentés dans la thése ont fait ’objet des publications suivantes :
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[12] H. Abdelnur, R. State, and O. Festor. Failles et VoIP. In MISC Magazine - Edition
francgaise: Multi-System & Internet Security Cookbook. Misc #39, Septembre/Octobre
2008.

[9] H. J. Abdelnur, R. State, I. Chrisment, and C. Popi. Assessing the security of VoIP
Services. In The 10th IFIP/TEEE Symposium on Integrated Management (IM 2007),
Munich, Germany, May 2007.

[8] H. Abdelnur, V. Cridlig, R. State, and O. Festor. VolP Security Assessment: Methods
and Tools. In 1st IEEE Workshop on VoIP Management and Security (VoIP MaSe 2006),
pages 29-34, Vancouver, Canada, April 2006.

[11] H. Abdelnur, R. State, and O. Festor. Advanced Network Fingerprinting. In RAID ’08:
Proceedings of the 11th international symposium on Recent Advances in Intrusion Detection,
pages 372-389, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] H. Abdelnur, R. State, and O. Festor. KiF: a stateful SIP fuzzer. In IPTComm ’07:
Proceedings of the 1st international conference on Principles, systems and applications of
IP telecommunications, pages 47-56, New York, USA, 2007. ACM.

[14] H. Abdelnur, R. State, and O. Festor. SIPping your Network. In Shmoocon 2008,
Washington, USA, February 2008.

[13] H. Abdelnur, R. State, and O. Festor. Fuzzing for vulnerabilities in the VoIP space. In
EICAR ’08: 17th Annual Conference of the European Institute for Computer Anti-Virus
Research, Laval France, 2008.

[7] H. Abdelnur, T. Avanesov, M. Rusinowitch, and R. State. Abusing SIP Authentication.
In TAS ’08: Proceedings of the 2008 The Fourth International Conference on Information
Assurance and Security, pages 237-242, Washington, USA, 2008. TEEE Computer Society.

A ces publications, s’ajoutent la suite logicielle KiF distribuée en logiciel libre ainsi qu’un
brevet sur la méthode de fingerprinting.

2 Les services voix sur IP et le protocole SIP

Les infrastructures Voix sur IP comprennent un ensemble d’équipements dédiés (en général ori-
entés vers une application) utilisant des technologies de I'Internet comme transport sous-jacent.
Les usagers exploitent des équipements terminaux souvent simples (ex : des téléphones) inter-
agissant avec différents types de serveurs afin de gérer les comptes, la mobilité, la localisation et
bien stir I’établissement d’appel entre usagers. L’établissement d’appel est réalisé sur la base d'un
protocole de signalisation dont SIP est devenu un des principaux standards, soutenu notamment
par 'IETF. Un nombre croissant d’équipements VolP embarquent aujourd’hui une pile proto-
colaire SIP en charge du traitement des messages de ce méme protocole. Ces piles implantent
un automate complexe. Nous avons retenu le protocole SIP [120] et son instanciation dans le
domaine de la voix sur IP pour valider nos modéles. Son architecture est illustrée dans la figure
1.

Celle-ci s’articule autour d’un agent utilisateur (mode client et serveur) et d’un ensemble
de serveurs prenant en charge les services de localisation, d’enregistrement, de redirection et de
proxy. Ces derniers sont trés impliqués dans Iarchitecture en agissant pour le compte des agents
utilisateurs dans de nombreuses interactions.



3. Architecture d’audit
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y
Server MOy v TE(q)
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INVITE(3
OK (10)

@

Figure 1: Composants de ’architecture SIP

Le protocole SIP est un protocole en mode texte construit sur la base de protocoles tels HTTP
ou SMTP. Les échanges sont structurés en dialogues (relations pair-a-pair entre deux agents) qui
incluent des transactions (une interaction requéte/réponse). La figure 2 illustre cette hiérarchie.

Les menaces sur les services SIP sont multiples. En s’appuyant sur le modéle de menaces
STRIDE défini par Microsoft, elles apparaissent dans six catégories : 'usurpation d’identité,
I’altération de données, la répudiation, le déni de service et I’élévation de priviléges. L’alliance
VoIPSA qui regroupe des industriels du monde voix sur IP a défini sa propre classification de
menaces. Celle-ci inclue : les menaces sociales, I’écoute clandestine, l'interception et la modifi-
cation de données, la révélation de données, 'abus de services, la dégradation et 'interruption
de services par des méthodes physiques ou logicielles.
attaques. Ces pratiques vont de la généralisation de 'usage des mécanismes cryptographiques
a la structuration des réseaux et des composants de sécurité attachés tels les pare-feux. Si ces
régles sont bonnes, elles ne sont pas suffisantes pour protéger totalement toute infrastructure
voix sur IP. Le maillon faible reste ici toujours I'implantation d’un service qui, comme nous le
verrons dans la suite de ce chapitre, souffre souvent de multiples vulnérabilités.

3 Architecture d’audit

Offrir & des analystes de sécurité un environnment capable d’automatiser au maximum un en-
semble de processus d’audit, nécessite la disponibilité d’une architecture homogéne dans laquelle
différents outils viennent s’intégrer et sur laquelle le développement de nouvelles applications est
possible. Dans le monde de la sécurité voix sur IP, une telle architecture n’existait pas. Celle
que nous avons concue est présentée ci-dessous.
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Alice@dqﬂein.com Bob@domain.com
‘-"t..:l e
£ sw{".‘]
pcl INVITE sip:Bob@domain.com pc2
Via: SIP/2.0/UDP pcl.domain.com;branch= 29hG4bK34
From: <sip:Alice@domain.com>;tag=as07b23bqd
To: <sip:Bob@domain.com>
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Cseq: 100 INVITE
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BYE sip:Alice@domain.com
Via: SIP/2.0/UDP pc2.domain.com;branch=z9hG4bK78
From: <sip:Bob@domain.com>;tag=Cq0eb2d
. To: <sip:Alice@domain.com>;tag=as07b23bqd
Transaction Call-ID: 000b46d9-cb860180
#3 Cseq: 101 BYE

200 0K )

A

Y

Figure 2: Dialogues et transactions SIP

3.1 Composants de ’architecture

L’architecture que nous definissons est illustrée dans la figure 3.

Elle comporte trois blocs fonctionnels principaux et un modéle d’information intégrateur. Le
premier bloc fonctionnel est celui de la découverte des ressources & auditer sur un réseau. Pilotée
par un gestionnaire de découverte, ce bloc permet d’intégrer des blocs tiers de découverte tels
que des scanneurs passifs et actifs, génériques (SNMP, POF, ...) ou spécifiques & la couche SIP.

Le second bloc de l'architecture représente les fonctions d’attaque. Autour d’une base
d’attaques et de vulnérabilités, il permet d’intégrer des outils et/ou scripts tierces capables
d’effectuer les attaques sur les équipements énumérés par le bloc de découverte.

Le dernier bloc représente les applications tiers concues pour piloter les différents composants
de 'architecture. Nous avons développé un tableau de bord dans la mise en ceuvre de notre
architecture pour illustrer ce bloc.

4



3. Architecture d’audit

GUI Scripting
frontend <— Program
Enviroment SIP

Messages
Fuzzer
Information Model
ARP
@ Spoofing

—
%=

Figure 3: Vue globale de ’architecture d’audit de sécurité VolP

3.2 Modéle d’information

Le modele d’information que nous avons concu est le coeur d’intégration de notre architecture. 1l
assure la représentation et la cohérence des données entre les services de découverte, les services
de fourniture des attaques et les applications tierces. Le modéle est basé sur le standard de
modélisation des informations de gestion de réseau CIM (Common Management Information
Model) [4] développé au DMTF (Distributed Management Task Force). Notre modeéle étend
principalement les classes Device avec des informations de configuration ainsi que les détails des
services opérés par les équipements indentifiés. Le modéle est détaillé dans le chapitre 5 et
synthétisé dans la figure 5.2 de ce méme chapitre.

3.3 Ecriture de tests d’audit

Une fois que les informations sur la cible ont été collectées et insérées dans le modéle d’information,
une phase d’exécution de scripts d’attaque débute. Notre architecture réalise un ensemble
d’attaque prédéfinies. Elle permet également & ’analyste de réaliser ses propres scripts d’attaque
suivant une modélisation d’arbres d’attaques. La réalisation de ces scripts est faite en langage
Python.

3.4 Conclusion

Afin de permettre aux analystes en sécurité de disposer d'un environnement intégré d’analyse,
nous avons cong¢u une architecture unifiée, structurée autour de trois fonctions essentielles et
construite sur un modeéle d’information riche. Cette architecture & fait l’'objet d'une implémen-
tation dans laquelle nous offrons également aux analystes un support pour ’écriture de scripts
d’attaques par modélisation d’arbres d’attaques. L’intégralité de 'architecture a été réalisée en
Python. Elle n’est pas distribuée & ce jour. Ces travaux ont été publiés dans les actes du 10éme
congrés IFIP /IEEE International Symposium on Integrated Network Management [9].
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4 Test de vulnérabilités

Le test de vulnérabilités communément appelé Fuzzing est un élément important dans le proces-
sus d’évaluation de la sécurité d’un systéme. Le principe est trés simple ; il repose sur 'injection
de données aléaltoires dans toutes les interfaces (surface d’attaque) du systéme testé. La diffi-
culté de 'exercice réside (1) dans la génération de données qui vont permettre de révéler une
vulnérabilité dans un équipement cible et (2) dans la construction d’architectures qui vont pou-
voir mettre en ceuvre de telles fonctions. Le fuzzing vient se placer en complément d’autres
approches d’évaluation de la sécurité des logiciels tels que 'audit de code, le reverse engineer-
ing, le test actif, la mesure de risques par modélisation d’attaques (graphes, arbres, réseaux
d’attaques) et le déploiement de mécanismes de controle d’accés et d’inspection de traffic.

Nous avons congu une nouvelle approche de fuzzing capable, contrairement aux approches
existantes sur le marché, d’identifier des failles dans les états avancés d’une interaction proto-
colaire. Pour cela nous avons développé de nouveaux algorithmes de génération et de suivi de
fuzzing couplant apprentissage de protocoles et mutation de données. Nous avons implanté ces
algorithmes dans une architecture de fuzzing modulaire et ’avons mise en ceuvre sur de multiples
équipements. L’approche, I’architecture et les résultats de sa mise en ceuvre sont décrits dans ce
chapitre.

4.1 Architecture de fuzzing

L’architecture de fuzzing que nous avons développée comporte trois grands blocs fonctionnels.
Le premier assure I’échange des messages avec la cible en servant d’interface au point d’accés de
service. Le second bloc a en charge les états protocolaires (fuzzer protocolaire) et le troisiéme

gere les données des messages (fuzzer syntaxique). Leurs interactions sont illustrées dans la figure
4.

Fuzzer Syntaxique

Equipement
SIP

2

mesurqs

L
¥

Scénario

emulator||emulator

. INVITE sip:Bob@domain de
100 Trying . fug ny Fuzzer
180 Ringing @D o
> .
Fuzzer Protocolaire ®
@ : :
CANCEL sip:Bobedonai Regles de
< e transition
@ ©) @ rotocolair
sip
Message
GLR-Parser|

Scénario I

de
protocol ‘@

Machine a états
de I'activité

Passive Testing
State Machine

Le fuzzer syntaxique a pour objectif unique de générer des messages individuels d’attaque.
Il s’appuie pour cela sur la grammaire de ces messages exprimée & l'aide de la métasyntaxe

Figure 4:

Architecture de fuzzing




4. Test de vulnérabilités

ABNF (Augmented Backus Naur Form) ainsi que sur un scénario de fuzzing. Ce scénario pilote
la génération des régles de production dans la grammaire de la syntaxe. Il peut également
dépendre du fuzzer protocolaire afin de générer le message final qui sera envoyé a l’entité cible.

Le fuzzer protocolaire effectue du test passif et actif. Pour cela, deux automates sont requis.
Le premier spécifie la machine & états SIP; I’autre spécifie la machine & états de activité de test.
La premiére machine est utilisée dans le test passif. Elle contréle I’occurrence d’un comportement
anormal issu de la cible durant la phase de test. Cet automate peut étre inféré d’un ensemble de
traces SIP relatives a la cible collectées durant des phases opérationnelles normales. Le second
automate est utilisé pour du test actif ; il pilote le profil du test de sécurité. Cet automate est
défini par 'utilisateur et peut évoluer dans le temps.

4.2 Fuzzing syntaxique

Notre algorithme de fuzzing syntaxique a pour objectif de générer un message fuzzé a destination
d’une cible. Pour cela, il prend deux paramétres : la grammaire du protocole et un scénario de
fuzzing de syntaxe. Ce dernier comprend les régles a appliquer (nous 'appelons I'évaluateur de
fuzzing dans la these). Ces concepts sont formalisés au sein d’une grammaire d’expression de
fuzzer détaillée dans le chapitre 8, section 8.2.

4.3 Fuzzing protocolaire

La fonction de fuzzing protocolaire est spécifique & un protocole donné car elle requiert une
connaissance du comportement normal d’un protocole afin de pouvoir déterminer des états in-
consistents d’une implémentation de celui-ci. Dans ce but, notre approche s’appuie a la fois sur
du test actif et passif.

Le test passif consiste & surveiller l'intégralité du traffic entre l'attaquant (le fuzzer) et la
cible et de le comparer au comportement normal de l'automate d’interaction du protocole. Dans
notre approche, cet automate est construit automatiquement par notre approche & partir de
Pobservation de trages de la cible en conditions d’utilisation normales (sans attaques). Ces
observations nous permettent de construire les automates de base que constituent les transactions
dans SIP comme illustré dans la figure 5.

Une alternative a ce mécanisme aurait été de construire ’automate & partir des spécifications
du protocole dans les documents normatifs. Ceci n’aurait cependant pas permis de construire
les automates adaptés aux équipements cibles car d’une part la norme est trés (trop) permissive
et d’autre part, nombre d’équipements ne la respectent pas.

Par opposition au test passif qui vise & identifier les états de failles, le test actif consiste
a guider l'attaquant ou le fuzzer dans ses échanges avec la cible. Concrétement, le test actif
se traduit par des scénarios qui peuvent étre soit implémentés & la main par un testeur, soit
générés automatiquement. Dans I'environnement actuel, nous utilisons le modéle d’automates
finis étendus pilotés par des événements (EEFSM) défini par Lee et al. [90]. Un test actif est centré
sur un dialogue et peut intégrer plusieurs transactions. Tout nceud de 'automate comprend les
éléments suivants :

e la nature, le type et la direction du message attendu,

la pré-condition & satisfaire dans 'environnement de I’automate,

la fonction a appliquer sur la transition (scénairo de traitement de la syntaxe),

des contraintes temporelles,

un poids permettant la sélection de transitions concurrentes.
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Entity A Entity B

@ 100 Trying

Response codes meaning

g:}‘) )] 180 Ringing
200 OK
302 Moved temporarily

404 Not Found
407 Proxy authentication required
480 Temporarily not available

487 Request terminated

—
~
N\
\ Current State
7200
2180 enable(INFO)
enable(CANCEL) enable(BYE)

INVITE 486 Busy here
¢ 100 Trying 603 Decline
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Figure 5: Automate de fonctionnement appris a partir d’'un message INVITE
Les transitions marquées (?) indiquent que les messages correspondent a I’entité

qui répond. Le marquage (!) indique que les messages proviennent de l’entité

cliente.

Un scénario de test est illustré dans la figure 6.

Syntax Scenarios Stateful Scenario
Syntax Syntax Syntax . 7100 ?[4-5][0-9]*
Fuzzer Fuzzer Fuzzer timeout= (0,5) timeout= (0,5)
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180 Ringin s . ?%00(0 15)
imeout= (0,
183 Session in Progre L - B

IACK
Scenariol
weight = 3

?04- )
timeout= (0,5

Timeout

!ACK

Figure 6: Exemple de scenario de test SIP

Il est possible de définir de multiples scénarios de test dans le fuzzer.

4.4 Evaluation

L’application de notre approche & un grand nombre d’équipements voix sur IP a permis de dé-
couvrir de multiples vulnérabilités. A ce jour, aucun équipement testé ne s’est montré infaillible.
Dans cette section, nous synthétisons les grandes familles de vulnérabilités identifiées.



4. Test de vulnérabilités

Faiblesses dans la validation des entrées

La vulnérabilité que nous avons rencontrée le plus fréquemment est liée & un filtrage extrémement
faible (voir inexistant) des données fournies en entrée d’entités voix sur IP via le canal SIP. Ce
filtrage, lorsqu’il existe, ne traite pas proprement les méta caractéres, les caractéres spéciaux, les
données de grande longueur ou les caractéres spécifiques de formatage. Les failles qui en résultent
sont dues & des débordements de tampon/tas ou des vulnérabilités de type “format string”. La
cause la plus probable & cela est que les développeurs de ces systémes sont partis d’'un modéle de
menaces dans lequel la signalisation SIP est supposée générée par des piles protocolaires saines et
éprouvées. Une raison plus simple encore peut étre I’absence dans les processus de conception de
certains de ces équipements de toute ou partie de la dimension sécurité. Le véritable danger de
cette vulnérabilité provient du fait que dans la grande majorité des cas, un trés faible nombre de
paquets peut littéralement paralyser un réseau VolP complet. Ceci est d’autant plus dangereux
que dans le cas présent, les messages SIP sont transportés sur UDP, ouvrant la porte & des
attaques efficaces effectuées de facon furtive par des techniques simples de spoofing IP. Nous
mettons en exergue deux cas extrémes de vulnérabilités découvertes par notre approche : la
premiére vulnérabilité (publice dans CVE-2007-4753) révele que dans le cas étudie, méme le
test le plus simple de vérification de I'existence de données en entrée n’est pas effectué. Cette
absence de vérification permet des attaques extrémement simples et efficaces telles que 1’envoi
d’un paquet vide. Le second cas (CVE-2007-1561) est situé a U'extréme du premier sur 1’échelle
de la complexité. Ici un serveur VolP est vulnérable & une attaque dont la structure de données
d’entrée est relativement complexe. Le danger repose dans ce cas sur le fait qu’un unique paquet
va détruire le serveur voix sur IP de cceur et ainsi rendre indisponible I'ensemble du service
VoIP associé. Se prémunir de telles attaques & un niveau de défense réseau est possible via des
techniques d’inspection profonde de paquets couplées a des équipements de filtrage de paquets
spécifiques au domaine.

Vulnérabilités de suivi protocolaire

Les vulnérabilités de suivi protocolaire vont au dela du simple filtrage d’un unique message SIP.
Dans ce type de vulnérabilités, plusieurs messages vont amener un équipement cible dans un
état inconsistant ; tout message utilisé dans cette chaine d’attaque considéré en isolation ne
violera pas la spécification normative du protocole SIP. Ces vulnérabilités proviennent en grande
majorité d’une faiblesse dans I'implémentation des automates du protocole. Elles peuvent étre
exploitées de trois facons différentes :

e L’équipement peut recevoir des entrées qui ne sont pas attendues dans I’état courant du
protocole : par exemple en envoyant au systéme un BYE alors qu’il s’attend & recevoir un
INVITE,

e L’entrée peut prendre la forme de messages simultanés dirigés vers plusieurs états du pro-
tocole,

e De faibles variations dans les champs de suivi de dialogues et/ou transaction SIP peuvent
amener un équipement vers un état inconsistant.

La découverte de telles vulnérabilités est un probléme difficile. Le processus de fuzzing doit
ici étre capable d’identifier ol et & quel moment un équipement cible ne suit pas rigoureusement
le protocole et quels champs des messages peuvent étre “fuzzés” pour révéler la vulnérabilité.
L’espace de recherche est dans ce cas gigantesque, couvrant de multiples messages et champs de
données ; I'utilisation de techniques de fuzzing avancées pilotées par des méthodes d’apprentissage
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est ici indispensable. Comme pour le cas précédent (vulnérabilités liées au filtrage des données),
les vulnérabilités révélées par 'application de notre méthode sont de complexité variable.

Un cas simple est celui de la (CVE-2007-6371). Ici, 'envoi prématuré d’un message CANCEL
peut amener I’équipement dans un état inconsistant qui aboutit & un déni de service. Le danger
majeur de ce type d’attaques est qu’a ce jour, aucun pare-feu applicatif ne peut suivre et inspecter
un si grand nombre de flux et que méme dans le cas ou les signatures sont connues, des versions
polymorphiques d’attaques efficaces peuvent aisément étre obtenues et ainsi passer entre les
mailles des systémes de protection. A ce jour malheureusement, aucune solution efficace pour la
prévention de ce type d’attaque n’existe.

Nous avons également identifié un nombre conséquent de vulnérabilités lices & des faib-
lesses dans les implémentations. Ces faiblesses concernent des implémentations cryptographiques
faibles (CVE-2007-5468 et CVE-2007-5469), des supports d’injection SQL et/ou Javascript per-
mettant de la fraude a la facturation et la capacité de certains téléphones a permettre des écoutes
distantes sans aucune action du destinataire (CVE-2007-4498).

Vulnérabilités dans la spécification du protocole

Nous avons consacré une part importante de notre activité a la recherche de vulnérabilités sur
des implémentations spécifiques du protocole SIP sans initialement considérer la sécurité du
protocole en soi. C’est lors de ’exécution d’un scénario de fuzzing complexe qui nous avons relevé
la méme anomalie (et vulnérabilité apparente) sur tous les équipements sous test. Ceci nous a
naturellement conduit & lancer une analyse sur la spécification du protocole SIP, notamment en
utilisant des techniques formelles et outils supports tels AVISPA . Cette analyse nous a permis
d’identifier la vulnérabilité dans la conception méme du protocole, vulnérabilité qui rend toute
attaque d’escroquerie & la facturation possible sur tout réseau voix sur IP.

Le probléme vient du fait qu’une attaque classique de type relais est possible en forcant
une entité appelée a émettre un message de type RE-INVITE. Cette attaque étant nouvelle,
générique et sévére, elle est naturellement dangereuse. Voici comment elle se matérialise : un
attaquant établit un appel avec sa victime. Sa victime répond (décroche) et est amenée a mettre
Pappelant en attente (il existe plusieurs méthodes pour la conduire & entreprendre cette action, la
plus simple étant qu'un complice appelle la victime alors que celle-ci est en communication avec
Pattaquant). Lorsque l'attaquant regoit le message SIP re-invite qui spécifie la mise en attente,
celui-ci peut demander a la victime de s’authentifier. Cette derniére authentification peut étre
utilisée par I'attaquant pour se substituer a la victime sur son propre proxy et passer ainsi des
appels frauduleux a l'insu de la victime.

4.5 Synthése

Il existe un grand nombre d’outils de fuzzing sur le marché. Tous générent de facon plus ou moins
intelligente les données a injecter dans la cible afin de la perturber. Notre principale contribution
sur ce domaine est d’avoir congu un modeéle de fuzzing qui peut aller tester une cible dans des
états protocolaires avancés, ce qu’aucun autre fuzzer ne fait a ce jour.

Nous avons implanté notre méthode de fuzzing et 'avons instanciée sur SIP. Les résultats
sont trés encourageants avec un ensemble important de vulnérabilités identifiées sur tous les
équipements testés. L’outil KiF qui réalise I'architecture de fuzzing est distribué sous license
Open Source par ’équipe.

Ces travaux ont été publiés dans les actes de 1! international conference on principles, systems
and applications of IP Telecommunications, IPTComm 2007 [10] et 'outil KiF a été présenté a
Shmookon 2008 [14].
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5. Fingerprinting

5 Fingerprinting
5.1 Contexte

L’appelation fingerprinting regroupe en informatique communicante, ’ensemble des techniques
qui permettent d’identifier une entité distante (un composant physique, un pilote de périphérique,
un systéme d’explotation, un service ou une application) par 'empreinte que celle-ci génére en
échangeant des messages sur un réseau informatique. Comer et Lin [54] ont, dans le milieu des
années 1990 contribué a populariser cette technique qui s’est fortement développée depuis et qui
trouve de nombreux domaines d’applications en gestion de réseaux (gestion de l'inventaire par
exemple) et en sécurité.

11 existe aujourd’hui deux grandes familles d’approches qui permettent de réaliser des services
de fingerprinting : les approches actives et les approches passives. Le fingerprinting actif utilise
Pinjection de messages pour déclencher des réactions spécifiques chez sa cible. Ces réactions (en
général des réponses a U'injection), couplées aux injections sont utilisées pour identifier la source.
Cette identification est réalisée par comparaison de signatures de couples injection/réponse a des
couples similaires dans une base de connaissance comportant des triplets (injection/réponse/i-
dentification de cible). La difficulté essentielle de cette approche est la construction de la base
de connaissances. Ces approches sont en général extrémement précises et donnent d’excellents
taux de réussite. Elles ont cependant le désavantage d’étre invasives en générant un traffic
supplémentaire perturbateur sur le réseau.

L’approche passive se limite elle a observer du traffic standard sur un réseau et ne s’appuie
que sur ces données pour établir une identification. Naturellement non intrusive, elle donne en
général de moins bon résultats que sa contrepartie active.

5.2 Contributions

Nous proposons une nouvelle méthode de fingerprinting passif basée sur I'exploitation de la
structure des messages plutét que de son contenu, contenu trop facilement modifiable pour
leurrer les algorithmes de fingerprinting existants.

I’ensemble des éléments qui interviennent dans notre approche de fingerprinting ainsi que
leur enchainement sont présentés dans la figure 7.

Notre approche nécessite la connaissance préalable de la grammaire du protocole (de ses
messages). Celle-ci nous sert de surface d’observation. Sur la base de la grammaire, nous
effectuons une inférence structurelle d’un ensemble de messages collectés d’un équipement cible
(le terminal pour lequel nous cherchons & construire une base de signatures structurelles). Ceci
est réalisé dans une phase dite d’apprentissage ou de découverte de signatures. Deux taches
composent cette phase.

La premiére tache consiste a identifier des champs variables (appelés variants dans notre
approche) de la grammaire du protocole, pour un équipement donné. Concrétement, cela revient
a analyser un grand nombre de traces contenant des messages issus d'un équipement (requétes
et/ou réponses). Chaque message est traduit en un ensemble de nceuds (identifiés par chemins
dans la grammaire) et ces identités de nceuds sont comparées a toutes celles d’autres messages
du méme équipement. Le choix des noeuds & comparer se base sur un algorithme de calcul des
ressemblances tel que défini par A. Broder dans [34]. Le résultat de cette premiére phase est un
ensemble de neeuds invariants tirés de I’analyse de tous les noeuds observés dans ’ensemble des
messages d’apprentissage (traces SIP d’un équipement donné).

La seconde tache a pour objectif d’extraire d’un ensemble de signatures de différents équipements
cette fois-ci, celles qui vont permettre de les distinguer (nous appelons ces signatures des carac-
téristiques).

11
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Device Variant Identification Inter Device Features Significance

| Message x from device A | | Message y from device A | | Message x from device A | | Message y from device B |

Message Fingerprinting l
from

unknown

device

Figure 7: Blocs fonctionnels de I'architecture de fingerprinting

Partant d’un ensemble de traces de n équipements appris, nous recherchons au sein des invari-
ants de chaque équipement ceux qui sont uniques & un équipement donné et qui vont permettre
de le distinguer de maniére unique. Ceci donnera dans le cas idéal un ensemble de caractéris-
tiques pour tous les équipements. Une fois cette base établie, il suffit lors de 'observation d’un
message sur le réseau de rechercher quels sont ses invariants et quel équipements ils caractérisent.

Le principe est celui-décrit ci-dessus. L’implémentation réalisée opére de fagon complémen-
taire. La premiére phase calcule tous les variants d’un équipement. La seconde opére non pas
sur les invariants des équipements mais sur leurs variants fournis et compare les messages de
traces de tous les équipements pour en extraire les invariants intra-équipement et surtout ceux
d’entre eux qui vont étre des variants inter-équipements et former les caractéristiques.

5.3 Evaluation

Nous avons implémenté le modéle de fingerprinting et ’avons testé sur des traces réseau réelles
(21981 messages issus de 26 équipements différents). L’apprentissage a été réalisé sur 15 % des
traces. Les résultats de classification de 'ensemble des 21981 messages sont donnés dans la table
1.

Ces résultats démontrent la qualité de l'algorithme. L’analyse des faux négatifs montre
que ceux-ci proviennent essentiellement de deux primitives de services qui véhiculent trop peut
de données pour étre classifiées correctement. Ces messages sont des messages d’options, de
réponse 100 et d’ACK. L’analyse du passage & ’échelle de la phase d’apprentissage démontre
que approche reste trés efficace avec des taux d’apprentissage de traffic de 'ordre de 10%.
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6. Conclusion

Vrai Positif | Faux Positif
. . 21422 32
Classification Faux Négatif | Vrai Négatif
490 N.A.
Justesse Sensibilité Spécificité
0.998 0.976 0.999

Table 1: Résultats obtenus avec notre méthode de fingerprinting

5.4 Synthése

Etre capable d’identifier de facon explicite I’ensemble des entités qui opérent dans une infras-
tructure est essentiel & toute opération d’audit de sécurité. Nous avons pour cela congu une
nouvelle méthode passive exploitant les propriétés structurelles des messages échangés sur un
réseau. Notre approche est automatique et son évaluation a démontré son efficacité dans une
infrastructure Voix sur IP intégrant un nombre conséquent de terminaux hétérogénes.

Ces travaux ont fait 'objet d'un publication au 11éme Symposium RAID (Recent Advances
in Intrusion Detection) [11] et ont fait 'objet d’un dépot de brevet international en 2007.
L’impléméntation du modéle est opérationnelle et son extension se poursuit au sein de ’équipe.

6 Conclusion

6.1 Synthése des contributions

Nos travaux ont porté sur 'analyse de sécurité de services dans 'Internet. L’application cible
retenue est celle de la voix sur IP utilisant la signalisation SIP. Notre objectif était de concevoir
une architecture d’analyse de sécurité qui permette & la fois de construire l'information nécessaire
a cette fonction et d’effectuer des services spécifiques tels que le fuzzing et le fingerprinting. Ces
travaux ont mené & trois contributions principales : (1) larchitecture d’audit, (2) un nouveau
procédé de fingerprinting et (3) un modéle de fuzzing générique. Nos contributions, résumées
ci-dessous ont toutes été implantées et validées sur des infrastructures VoIP.

Nous avons con¢u une architecture d’audit de sécurité pour la voix sur IP intégrant des infor-
mations issues de multiples sources (SNMP, fingerprinting, NMAP, ... ). Un modéle d’information
dédié permet cette intégration. Ce modéle, ainsi que les différents blocs fonctionnels de I'architecture,
ont été implantés dans un prototype en Python et expérimentés sur la plateforme VoIP de
I’équipe.

Nous avons cong¢u une nouvelle méthode pour générer des systémes de fingerprinting basés
sur 'analyse structurelle des messages d’'un protocole. Notre solution permet d’automatiser ce
processus lourd, manuel dans la grande majorité des approches concurrentes. Le modéle et
ses composants fonctionnels ont fait 'objet d’'un dépdt de brevet. Tout comme ’architecture
d’audit, le service de fingerprinting implantant notre méthode a été réalisé en Python et testé
sur plusieurs instances de réseaux VoIP. Les évaluations montrent d’excellents résultats.

Nous avons élaboré un modéle de fuzzing a états. Ce modéle flexible permet de découvrir des
vulnérabilités dans des états avancés d’une réalisation d’un protocole. Son implantation et son
application au protocole SIP ont démontré d’une part 'intérét du modéle et d’autre part la limite
des approches concurrentes incapables de découvrir des vulnérabilités au delad de la premiére
primitive de service d’un protocole donné. Nous avons identifié de multiples vulnérabiltés dans
toutes les implantation et équipements testés et avons démontré la réalisabilité d’un nombre
d’attaques ignorées par les standards et consortiums autour de la voix sur IP. Finalement, nous
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avons & 'aide de notre fuzzer indentifé une faille dans la spécification du protocole SIP, faille que
nous avons validée avec nos collégues de la réécriture et pour laquelle nous avons élaboré une
contre-mesure.

6.2 Travaux futurs

Notre approche de fingerprinting s’est montrée trés efficace sur le protocol SIP qui a la carac-
téristique d’étre trés bavard. L’approche que nous avons développée s’appuie uniquement sur la
structure des messages pris en isolation. Un extension naturelle de ’approche, en plus de son
application & d’autres protocoles bien stir, portera sur ’exploitation de dépendances intra- et
inter-messages pour optimiser le fingerprinting. Les dépendances intra-message portent sur des
corrélations entre différents champs au sein d’un méme message. Une mesure de I’entropie peut
étre utile ici et peut servir de base d’analyse pour la sélection de signatures. La méme approche
peut probablement s’appliquer a ’échelle d’une session.

Sur le domaine du fuzzing, nous comptons étendre a court terme ’environnement au travers
du support de protocoles cibles suppélmentaires. Ceci permettra d'une part de démontrer con-
crétement la généricité de nos méthodes et d’autre part d’offrir & la communauté un spectre de
tests plus large. Une seconde piste que nous explorons actuellement porte sur la conception de
mécanismes permettant d’évaluer la qualité et la couverture d’un processus de fuzzing et/ou de
prendre en compte des informations provenant de la cible pour guider le processus de fuzzing.
Pour ces deux objectifs, un mécanisme de mesure d’impact et de collecte d’informations sur la
cible est indispensable. Nous avons démarré la réalisation d’un tel service dans un environnement
virtualisé (Xen). D’autres sources de données tels que les journaux sont également intéressantes.
Sur ce dernier point nous coopérons actuellement avec des chercheurs d’Alcatel-Lucent Bellabs
sur la conception d’un format unifé de journaux pour de la signalisation SIP. Au dela de la
collecte d’information, nous envisageons la conception d’algorithmes d’adaptation du fuzzing ca-
pables de diriger les tests et le cas échéant de décider de 'arrét de ceux-ci en fonction d’une
couverture cible.

L’autonomie de nos approches de fingerprinting et de fuzzing est un objectif & plus long
terme. Nous entendons par autonomie, la capacité de nos approches & s’adapter automatiquement
sans intervention humaine & de nouveaux protocoles. Ceci est intéressant dans des cas ou la
spécification du protocole n’est pas disponible ou trop complexe (voire insuffisamment précise)
pour étre exploitable. Nous pensons qu’il est intéressant de coupler des systémes de reverse
engineering (par exemple de reconstruction de protocole & partir d’analyse de traces) avec des
systémes de fuzzing et de fingerprinting. Nous focalisons dans un premier temps sur un sous-
ensemble de protocoles avec comme but de dériver des fuzzers de facon automatique.

Dans une architecture d’analyse de sécurité d’une infrastructure, il y a de nombreux autres
sources d’informations qui peuvent étre extrémement utiles. Les configurations de pare-feux en
est une particuliérement intéressante qui peut aider soit & construire des fuzzers pour ces derniers
soit & guider les processus de fuzzing pour atteindre les équipements cibles placés derriére ces
pare-feux. Nous avons démarré une activité sur ce dernier point dans le cadre de la coopération
avec Alcatel-Lucent Bellabs.
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(zeneral Introduction

Voice over IP (VoIP) is emerging as the key technology of the Internet. VoIP networks are in a
major deployment phase and are becoming widely accepted due to their extended functionality
and cost efficiency. With the recent evolution in the VolP market, where more and more devices
and services are being pushed on a very promising market, assuring their security becomes crucial.
Meanwhile, as VolP traffic is transported over the Internet, it is the target of a range of
attacks that can jeopardize its proper functionality. Among the most dangerous threats to VoIP,
failures and bugs in the software implementation will be high on the list of vulnerabilities.

Summary of Contributions

The first contribution of this thesis is a VoIP specific security assessment framework. Assessment
is here automated with integrated discovery actions, data management and security attacks
allowing to perform VolP specific penetration tests. These tests are important because they
permit to search and detect existing vulnerabilities or misconfigured devices and services. This
contribution consist in an elaborated network information model usable for VolP assessment,
an extensible assessment architecture and its implementation, as well as in a comprehensive
framework for defining and composing VolP specific attacks.

Security assessment tasks and intrusion detection systems do rely on automated fingerprinting
of devices and services. Most current fingerprinting approaches use a signature matching scheme,
where a set of signatures is compared to traffic issued by an unknown entity. The entity is
identified by finding the closest match with the stored signatures. These fingerprinting signatures
are found mostly manually, requiring a laborious activity and needing advanced domain specific
expertise. The second contribution of this thesis describes a novel approach to automate this
process building a flexible and efficient fingerprinting systems able to identify the source entity
of messages in the network. A passive approach is followed without interacting with the tested
device. Application level traffic is captured passively and inherent structural features are used
for the classification process. A new technique is described and assessed for the automated
extraction of protocol fingerprints based on arborescent features extracted from an underlying
grammar. The technique has been successfully applied to the Session Initiation Protocol (SIP)
used in Voice over IP signalling.

The third contribution addresses the issue of detecting vulnerabilities using a stateful fuzzer.
An automated attack approach capable of tracking the state context of a target device is de-
scribed. The approach has been implemented and was able to discover vulnerabilities in market
leading equipments and software. Practical experience gained over a two years period in searching
for vulnerabilities in the VoIP space is described and illustrated. A landscape of dangerous vul-
nerabilities capable to lead to a complete compromise of an internal network is shown. All of the
described vulnerabilities have been disclosed responsibly by the Madynes group and they were
discovered using the developed fuzzing software KiF. However, this manuscript also describes
mitigation techniques for all described vulnerabilities.
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General Introduction

Organization of the Thesis

This manuscript is organized in four parts. The first part describes the current state of the
art of VoIP security assessment. Specifically, chapter 1 contains a general introduction to Voice
over IP networks, their difference with the traditional telephony, risks and best practices along
with a description of the SIP protocol which is the preferred used case of the work done in this
thesis. Chapter 2 describes the different assessment methodologies, current state of deployment
of assessment tools; threat modelling is also covered here. Chapter 3 describes the evolution of
fingerprinting research, the different classification of network fingerprinting and which are the
usage and target of fingerprinting approaches. Chapter 4 concludes the state of the art part by
focusing on system vulnerability checking. It makes special emphasis on an emerging discipline
of fuzzing in the assessment community. The chapter describes the typical mistakes conceived
in vulnerable softwares, how fuzzing methodologies behave over the softwares to trigger possible
problems and the different approaches conceived by this discipline.

The second part of the manuscript describes the first contribution. This is an assessment
approach which exploits different existing tool in order to build a common information model
for VoIP assessment (specifically to SIP). Thus, information gathered in the model can later be
used to conduct testing attacks in order to evaluate the network security level.

The third part of the thesis describes a novel fingerprinting approach. It describes how
messages are represented by the system, how the system making use of such representation
can automatically discriminate signatures out of traces and finally the experimental results are
shown.

The fourth part describes our fuzzing technique, how syntax and state are built and explored
in order to perform an extensive testing. Experimental results are described showing the most
remarkable vulnerabilities that we found. Indeed, a vulnerability has been found which is re-
ported to be a flaw in the design of the SIP protocol; this flaw is described and a mitigation
solution is given.

Finally this thesis summarizes a general conclusion and with the envisioned future work.
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Background
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Chapter 1

VoIP Services

From more than a century, the telephone system has been deployed with the purpose of allowing
remote entities to communicate over a switched infrastructure. This technology has evolved from
providing services for just a few interconnected private telephones to a huge public telecommu-
nication network.

Initially this technology allowed to transmit audio between two telephones only if both lo-
cations were physically connected by a single dedicated cable. As telecommunications were
becoming popular, this approach demonstrated to be highly inefficient and not scalable. There-
fore, a new architecture component has been conceived to interconnect two different users from a
group of telephones, the telephone operator or switch. This component was connected directly to
a set of telephones and served any request between its users to place them in a call with someone
else. Obviously, as the use of the service gain interest, a hierarchical structure of switches has
been designed to interconnect different cities, states and countries. This architecture is known
as the Public Switched Telephone Network (PSTN).

The PSTN consists of three major components as illustrated in Figure 1.1 and described
below:

Intermediate
switching
office(s)

Intertoll

trunk\

End

Jék o Son
=/ T\
OO

Figure 1.1: Public Switched Telephone Network architecture
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Local loop is the physical cable which connects a subscriber’s telephone to an End office switch.

Trunks are the lines used to connect between different switching offices. These lines support
multiple calls at the same time. Depending on their location in the hierarchy, they are
called either toll connecting trunk or interoffice trunks.

Switching Offices are the components in charge of accounting and routing incoming calls.
These components are known as end offices, toll offices or intermediate switching offices.

From a functionality point of view, there are two main factors that play against the traditional
telephony, opening doors to new telecommunication technologies [49]. First, the intelligence of
the PSTN network resides in the core components, the switching offices. Whenever a telephone
user initiates a call, receives or generates any type of request, the end office switch has been
generating all those requests on his behalf. Therefore, new functionalities have to be implemented
in the switches; making the equipment more expensive and difficult to cope with all the features
needed by the set of subscribed users. Secondly, the PSTN is a circuit-switched network where for
each routing call, it needs to allocate a fixed rate of bandwidth; 64-kbps. Even if the bandwidth
is used or not, the system can not reuse such resources for other purposes and finally it must
charge the parties for such consumption.

Voice over IP (VoIP) is being considered as the future for the telecommunications. VoIP
infrastructures instead, are built using application level devices exploiting IP technology as the
underlying transport layer. IP networking is founded on a packet-switching technology where
bandwidth is used as it is needed. Thus, making the service more cost-efficient and extensible
(e.g. since the bandwidth rate is not fixed, then it may allow new features like video). Secondly,
an important difference is that in the VoIP networks, the intelligence is distributed over the
devices rather than just in the core switching equipment as it is in the PSTN. Thus, as services
are not exclusive to the operators, it allows competition and directly decreases the production
cost.

To end users the migration process is transparent, they operate simple end devices (phones)
by leveraging different types of servers in order to manage the mobility, localization and user to
user call establishment. This call establishment is performed by signaling protocols, where the
Session Initiation Protocol [120] (SIP) is becoming the de facto standard body endorsed protocol.
A description of the SIP protocol is given below in section 1.1.

VoIP services have recently become widely deployed mostly because of their lower cost com-
paring to the traditional telephony, their facility to integrate new services like video conferences,
instant messaging, presence services, etc. Although, porting telecommunication to a public data
network may introduce some drawbacks comparing it with the traditional telephony, for instance:

e the current availability provided in VoIP is still lower than in traditional telephony. It is
expected that in the near future the two services will become equal in terms of expected
availability.

e Asin VoIP networks the bandwidth is not allocated at initiation of a call, Quality of Service
(QoS) is a challenge to be addressed since it has to deal with available bandwidth, latency,
packet loss, jitter, etc.

e Since in VolP all the data is supposed to be sent over public networks such as the Internet
(in practice some VoIP service providers do use dedicated trunks), security issues must be
addressed.

The PSTN is a closed trusted neighbor network where security is achieve by well-defined
network boundaries [56]. Since the terminals (e.g. the telephone lines) are dumb entities, the
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manipulation of the system is only possible if physical access to the core network is granted
[133]. First, it requires expensive material and secondly it requires break in the facilities of
the telecommunication operators. However, before the adoption of the Signalling System #7
Protocol [3| (SS7), the network was exposed to different attacks and frauds where having access
to the core equipments was not required. Previous signalling protocols were managing the call-
setup signaling in-band, e.g. using multi-frequency tones. Thus, they allowed attackers to send
such frequencies during a call to achieve unauthorized task by entering in the operator mode of
the trunks, such as making free phone calls [119].

VoIP relies on networks in which intelligence is distributed. Access to the network is granted
by just having one end device connected to it. Then, for voice data communications, security
becomes an important issue to be addressed. Section 1.2 refers to the possible attacks encountered
in VoIP networks, mitigation and best practices.

1.1 Session Initiation Protocol (SIP)

The SIP [120] protocol emerged as a standard from the the Internet Engineering Task Force!
(IETF) under the document reference RFC 2543, and it evolved over time (now known as RFC
3261). The Internet Assigned Numbers Authority? (IANA) shows more than 40 extensions that
have been standardized.

The designers of SIP leveraged well proven concepts from the HyperText Transfer Proto-
col [60] (HTTP) to build a robust and multi-features signaling protocol. The advance of highly
dynamic services deployed over multimedia enabled networks reaching powerful end user equip-
ment had to be matched by an appropriate signaling protocol. SIP is a signalling protocol used
to initiate, manage and tear down sessions. SIP is located at the application layer of the TCP/IP
model [33] and it has been designed to be independent of the underlying transport layers. The
media session is usually managed by the Real-time Transport Protocol [123] (RTP) encapsulat-
ing encoded audio/videodata. The specific characteristics of the RTP session are negotiated in
the SIP session. In the simplest case, call establishment with SIP has to be able to let the two
communicating partners send RTP data between their two locations.

1.1.1 Architecture

SIP is a decentralized protocol, where the intelligence is distributed through the entities that the
network is composed of. Thus, different components have been defined in the SIP architecture
playing different roles in a deployed network. Figure 1.2 illustrates these components and each
one of them is described below:

e User Agents (UA): they are the end-user devices in a SIP network. A regular UA can
be a soft or hard phone (i.e. software or hardware endpoints) as well as a gateway that
connects to other VoIP protocols or for instance to the PSTN. Each UA can be divided
into two logical entities:

— User Agent Client (UAC) which is the one in charge of initiating the requests.
— User Agent Server (UAS) which is the one responsible for generating the responses
to the received requests.

e SIP Location Sever: is referred to as a storage component. This server is used to keep
a database containing current location addresses, features and other preferences of all the

"http://www.ietf.org last checked December 2008
http://www.iana.org/assignments/sip-parameters last checked December 2008
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Figure 1.2: SIP architectural components

users from the domain. However, UAs do no directly interact with the location server but
indirectly by means of proxies, redirect or registrar servers. Basically, it is used by SIP
servers to allow application level mobility.

e SIP Servers: these components provide a vast range of extra functionalities to facilitate
the establishment of a session between two SIP UAs. According to their functionality, SIP
servers can be logically subclassified as follows:

— SIP Proxy Server: used to forward requests on behalf of other SIP entities. It
can not initiate a request by itself, but can offer additional services like for instance
security, authentication and authorization.

— SIP Registrar Server: receives the request from a UA which wants to register in its
SIP domain. Then, the server updates the location server with the UA’s information,
the user name, location address, preferences, etc. for future use.

— SIP Redirect Server: used to indicate the location where the initial request has to
be forwarded. It is mainly useful for mobility purposes. The difference with respect
to the proxy is that the Redirect Server tells the entity the contact address (of the
UA) rather than forwarding requests itself. The redirect server is also able to retrieve
multiple locations to allow the proxy to fork the call.

1.1.2 Functionality

SIP has been designed to establish, modify and teardown sessions. Only session signaling is
considered by SIP, however it can be used in combination with other protocols to build a complete
multimedia session. SIP does not rely on any specific transport layer. It neither imposes the
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media protocols, for instance, the Session Description Protocol [75] (SDP) is used for arranging
the media session. Usually, RTP is used to transport the media session. According to RFC
3261 [120], SIP supports five distinct features:

User location: identification of the end system to be used for the session. The protocol trans-
parently deals with participants which can move from one location to another, or they can
be reachable at several addresses.

User availability: requires parties approval to engage them in the session.
User capabilities: identification of which features are supported by each party.
Session setup: determination of parameters used by each of the parties.

Session management: modification of ongoing parameters in the session, tearing down the
communication, transfer and invoking additional services.

SIP is a Request/Response protocol. In a normal session many requests can be generated
where the request itself is identified by a Request Method and the possible responses (provisional
or final, see below) by the Response Codes. Table 1.1 illustrates the most common request
methods defined in SIP, new methods may be defined to extend the protocol functionality.

REGISTER | register the end point into a SIP domain. Thus the registered party is
is reachable from the Registrar server

OPTIONS used to query the capabilities supported/aliveness of each party

INVITE used to initiate a session between parties or to modify an ongoing session

UPDATE modifies the state of the session before it has been accepted. Thus, it only
exists between an INVITE and its corresponding final response

CANCEL cancels a pending call that has not yet been accepted

BYE finishes the current session

REFER used to transfer a call

MESSAGE transports an instant message

INFO sends information in a session already established using INVITE. For

instance, it can be used to send dial tones
SUBSCRIBE | used to subscribe to event notifications

NOTIFY transports the notification event

PUBLISH post an event into the server responsible, interpret and distribute this
event

ACK used to acknowledge final responses

PRACK used to acknowledge provisional responses

Table 1.1: SIP request methods

Responses to a request can be classified in two types: provisional and final. Provisional
responses provide information about the current status of the request but are not sent reliably
(i.e. no acknowledge response is needed). Final responses deliver information about the result
of the request and they are sent reliably. The response information is coded in six different
categories as described by table 1.2.
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1xx | Informational responses which are used to acknowledge that the request is being
processed, that the user has been notified (e.g. the device is ringing), etc.

2xx | Successful responses

3xx | Redirection responses used when the services have been moved (either permanently
or temporarily) or any other mean to inform that the messages have to go by
another route and/or another destination

4xx | Client failure responses used to report errors in the message format or content,
or to disallow such request in the current state (e.g. requiring authentication)

5xx | Server failure responses to describe unsupported methods, internal errors, etc.

6xx | Global failure responses

Table 1.2: SIP response codes

1.1.3 Message Format

SIP has been designed on the same basis as HTTP where each message is human readable.
Depending on the nature of the message (Request or Response), it is composed of: a Request
Line or a Status Line, several message headers and a message body as described in the following
ABNF:

SIP-message Request / Response

Request Request -Line
*( message-header )
CRLF

[ message-body ]

Status -Line
*( message-header )
CRLF
[ message-body ]

Response

The Request-Line indicates the request type (as described in table 1.1), the entity for which
the request is generated and the SIP version being used. The Status lines is composed of the
response code (as in table 1.2) and the SIP version being used. In fact, many of the Status codes
have been reused from to the ones defined in the HT'TP protocol.

The messages headers are used to provide the information about the current session, the local
and destination parties and possible hops in the transport, routes to follow, etc. A valid SIP
request must contain, at least, the Via, To, From, Call-ID, CSeq and Maz-Forwards headers
(described in table 1.3).

Finally, the SIP message can carry other types of information encoded in the message body
(Figure 1.3 lines 19 to 31). This information is, for instance, used to agree on the media codecs
of the session using SDP. However, other contents can be carried for different purposes.

In Figure 1.3 a complete SIP message is illustrated. The message is a session initiation
request; started from Alice and directed to Bob, in which Alice already specifies which codecs
her actual phone is able to use (i.e. the SDP content).

It is worth noting that the To header represents the original destination of the request, while
the Request-URI can be modified due to call forwarding or other proxy operations.
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Via This header contains the SIP version and the transport protocol been
used, together with the address and an identification tag (known as
branch) of the server that forwarded this request (as shown in Figure
1.3 line 2). One additional Via headers is added for

each SIP component who forwarded the message

From This header contains a display name, a SIP address from the entity
that generates the request together with an identification tag (as
shown in Figure 1.3 line 3)

To The same as the From header but concerning the entity to which the
message is addressed (as shown in Figure 1.3 line 4)

Call-ID This header contains information that uniquely identifies a session (SIP
dialog) as explained in section 1.1.4 (as shown in Figure 1.3 line 5)

CSeq The CSeq header contains an integer followed by a request method

which links the message to a specific SIP Transaction (as explained
in section 1.1.4). Shown in Figure 1.3 line 6.

Max-Forwards | This header specifies how many SIP hops the message can pass
before being discarded. Shown in Figure 1.3 line 7.

Table 1.3: SIP message header fields

1.1.4 Hierarchy

SIP messages can be classified in a hierarchical way according to Dialogs and Transactions.

SIP Dialogs: the SIP RFC defines the dialog as to represent a peer-to-peer relationship between
two user agents that persists for some time. A dialog is identified by the Call-ID value, local
tag and remote tag of the message. The local and remote tag are respectively identifiable
on the From and To header.

SIP Transactions: each transaction is defined to be a single request and any response to that
request, which includes zero or more provisional responses and at least one final response.
In the case where the request transaction is an INVITE, the transaction will also include
an ACK message only if the final response is not a 2xx (successful response). If the final
response is not a 2xx then the ACK is not considered to be part of the transaction.

One SIP dialog may contain several SIP transactions. Each transaction may be related
to a previous one given the protocol its stateful context (e.g. hanging up only after the
call has been established). A transaction is identified inside a dialog by the CSeq and the
parameters of Via headers (specifically the branch tag).

Figure 1.4 illustrates a simple dialog between two entities in which the caller (Alice) initiates
a session with the callee (Bob). They establish a Media Session and finally the caller hangs up
the phone.

1.1.5 Awuthentication

Each request message of SIP, except CANCEL and ACK, can be challenged for authentication.
Thus, the VoIP services can be protected against threats and attacks like impersonation, session
teardown, fraud and others [116,133]. Authentication in SIP has also been leveraged on the
design of HT'TP authentication. It is based on a challenge-response scenario.
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Chapter 1. VolP Services

INVITE sip:Bob@domain.com SIP /2.0 SIP
Via: SIP/2.0/UDP pcl.domain.com;branch=2z9hG4bK34

From: <sip:Alice@domain.com>;tag—as07b23bqd

To: <sip:Bob@domain.com>

Call-ID: 000b46d9-cb860180

CSeq: 100 INVITE

Max-Forwards: 70

User -Agent: IP_Phone/8.0

Contact: <sip:Alice@domain.com;transport=udp>

Expires: 180

Accept: application/sdp

Allow: ACK,BYE,CANCEL,INVITE,NOTIFY,OPTIONS,REFER,REGISTER ,6 UPDATE
Remote-Party-ID: "Alice" <sip:Alice@domain.com>;party=calling;
Supported: replaces, join,norefersub

Content -Length: 276

Content -Type: application/sdp

Content -Disposition: session;handling=optional

v=0 SDpP
o=SIPUA 12941 0 IN IP4 192.168.1.20
s=SIP Call

t=0 O

m=audio 32250 RTP/AVP 0 8 18 101
c=IN IP4 192.168.1.20

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA /8000

a=rtpmap:18 G729/8000

a=fmtp:18 annexb=no

a=rtpmap:101 telephone-event /8000
a=fmtp:101 0-15

a=sendrecv

Figure 1.3: SIP message

Authentication challenges are computed using pieces of information extracted from the au-
thenticate message plus the username and a shared secret. In the simplest case, the authentica-
tion response is computed as follows:

A1l = username ":" realm ":" passwd
A2 Method ":" Digest-URI
response MD5 (MD5 (A1) ":" nonce ":" MD5(A2))

The computed authentication response will be rejected if either the username, password or any
of the entries do not match the ones obtained from the challenged message. It is worth noting,
that the nonces should be one-time used just to avoiding an attacker to reuse the challenged
response for making unappropriated calls.

Figure 1.5 illustrates the challenge-response process between one UA and a SIP proxy. In the
process the caller (Alice) tries to initiate a session with Bob via its own proxy. The proxy will
ask Alice to authenticate to a generated challenge given in the 401 Authentication required
request. In the following, the caller must complete the challenge and generate a new INVITE
carrying the response in order to continue with the session establishment.

It is also worth noting that man-in-the middle attacks are still possible if the channel is not
encrypted.
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Figure 1.4: SIP dialog and transactions

1.2 VolP Threats

“The only truly secure system is one that is powered off, cast in a block of concrete
and sealed in a lead-lined room with armed guards - and even then I have my doubts”

Gene Spafford 3

All sort of deployed equipments are exposed to different security risks. The degree of expo-
sure is associated to how external factors can stimulate a component (e.g. the people having
direct/indirect access to the component) and how the system treats those factors and what effect
they trigger on it. Thus, a threat can be classified as a menace existing in the system, while a
vulnerability is a security breach that can be used to compromise it. In practice, threats and vul-
nerabilities are related to several factors, among them we can identify design and implementation
errors, misconfigured software, experimental features deployed, etc.

With all the new software components delivered (most of them do not fulfill all security stan-
dards) and with the Internet, the number of disclosure of threats and vulnerabilities has notably

3Source: Scientific American, 1989, pp 110, Computer Recreations: Of Worms, Viruses and Core War by A.
K. Dewdney
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Figure 1.5: SIP authentication

increased over the years, as illustrated by figure 1.2 extracted from the US-CERT database?.
All those vulnerabilities shown in the figure are only the ones publicly disclosed, and they
can be classified in six categories following the STRIDE threat model defined by Microsoft [78]:

Spoofing identity when someone else authentication is illegally used.

Tampering with data when alteration of data is illegally committed.

Repudiation when traces of illegal operations are properly hidden or erased.
Information disclosure when data is exposed to individuals which are not granted.
Denial of Service when an user is not able to use a service which is provided to him /her.

Elevation of privilege when somebody can gain privileged access to a system where he/she is
not supposed to.

“http://nvd.nist.gov last checked December 2008
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Figure 1.6: Software flaws (CVE) from 1988 until 2008

As the community of VoIP started to increase, the security awareness for such systems became
of importance. The Voice over TP Security Alliance® (VOIPSA) was therefore created with the
purpose of promoting, educating and providing methodologies and tools for people using VolP
services. VoIPSA has referenced several potential security threats for VoIP deployments [58|.
They are described below.

Social threats become an important concern in security and privacy. Different threats are
included in this class like misrepresentation which includes false information delivered
expressly with the intent to mislead. For instance, misrepresentation may range from
intentionally presenting a false identity as if it were true (e.g. caller ID, voice, contact
information), showing information from somebody else as its own with the objective to
bypass authentication mechanisms (e.g. passwords, usernames, organization) or to modify
the content of the information, to mislead the origin of the call (e.g. scams, phishing).
Theft of services is another threat related to any activity which unlawfully tries to gain
revenues from someone else’s services (e.g. billing records alteration, service abuse). Fi-
nally, contacting one entity without its prior consent, if required, or bypassing such consent
is also part of this category.

Eavesdropping is a method employed by an attacker in order to obtain, monitor or reconstruct
any kind of information exchanged between any other entities. It may include analysis of
call patterns, traffic capture or any type of message reconstruction (e.g. voice, fax, video,
text).

Interception and modification attacks require to both observe all or part of the traffic be-
tween two or more entities, and be able to modify such conversation or signalling. Instances
of attacks directed to the media data can be related to fax & conversation alteration, im-
personation and hijacking or any means to alter partial or total information in the content
of the message. In terms of the signalling, different attacks from this class can be observed

"http://voipsa.org last checked December 2008
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like Call Black Holing; when information is hidden or dropped, intending to prevent termi-
nation of the call under normal circumstances. Call Rerouting is another attack in which
the flow of the call is directed over unauthorized routes. Therefore, unauthorized nodes can
be added in the flow or even authorized ones will be removed from it. As a consequence,
this attack can, among others, degrade the conversation quality or hijack the session.

Service abuse is concerned with any improper use of the VolP services. For instance, call
conference abuse can be used to hide the identity and therefore commit frauds. Other
types of abuses such as bill alteration or bypassing as well as modification in the signaling
process are included in this threat.

Physical access is not only limited to breaking into the company facilities, it may be related
to degradation of the services when access to the physical network is gained. For instance,
obtaining access to the systems and equipments as well as to conduct man in the middle
(MiM) attacks, configuration changes and loss of power.

Interruption of services covers a vast range of threats from loss of power, resources exhaustion
to denial of services. These attacks can be performed by different means like flooding the
services (either with malformed messages or not), looping (in which messages are constantly
forwarded back and forth), sending malformed requests (which may trigger implementation
vulnerabilities), faking responses (which can maliciously teardown a session), degrading the
Quality of Service (QoS), etc.

1.3 Current Best Practices

VoIP networks are subject to more attacks than the PSTN. VoIP also introduces new threats in
IP networks if they are not well deployed. However, careful planning and proper management can
mitigate such risks and allow to benefit from VolP services. Several best-practices recommenda-
tions have been written to minimize such risks [6,87,107,114,116,133|. Such practices require
specific design in the network and engineering work to achieve certain levels of security. Such
measures describe actions like applying the current patch to known flaws or vulnerabilities, use
of Anti-Virus and Intrusion Detection Systems (IDS) and update them regularly, use of firewalls
and Application-Layer Gateways between trusted and untrusted zones, implement authentica-
tion, encryption and/or Virtual private network (VPN) on critical segments and isolation of VoIP
services via Virtual LAN (VLAN).

1.3.1 Deployment & Maintenance Support

Nowadays, as vulnerability disclosures are accessible to everybody, administrators must be in-
formed and prepared for any known/unknown threat that could exists in their network. Then,
several considerations have to be taken before and after the deployment of a VoIP network (it
may apply to any media network as well).

Physical security: access to the main equipments (including router, server, databases, etc.)
must be restricted and isolated.

Physical robustness: alternative routes, backup equipments/configurations must be main-
tained at all time.

Management security: strong authentication/encrypting algorithms must be used from both
trusted or untrusted networks.
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Equipment update: keeping up to date security patches or remediation techniques to defenses
against subsequent attacks.

Log analysis: traffic must be analyzed for the purposes of finding abnormal behaviour in the
network. This tasks must be assisted with the use of IDS and monitoring techniques.

Assessment: systems must be periodically tested using attacking techniques to identify weak-
nesses of the network and possibly find mitigation techniques.

1.3.2 Protocol Protection

Since signalling has been shown to be susceptible to numerous attacks, SIP recommends different
alternatives for securing the integrity and content of transport and network layers. There are two
methodologies that can be used for this goal: hop-by-hop and end-to-end. Hop-by-hop encryption
assumes all the intermediaries are trusted sources and support the encryption mechanism. The
encryption properties are maintained between two consecutive entities and then, for each hop a
different encryption instance must be created. In case one of the hops does not, the traffic will
be sent in clear text losing its confidentiality. End-to-end encryption is simpler, but is mostly
inadequate for SIP when intermediary elements need to observe/modify certain values of the
message (e.g. for routing the message correctly). Below the recommended encryption techniques
for SIP are described:

SIP over TLS: the Transport Layer Security (TLS) [53| protocol has been conceived to provide
data integrity and confidentiality for TCP traffic between two consecutive hops. It is based
on the use of certificates provided by a trusted third party (Certificate Authority (CA))
or on the use of pre-shared keys. In SIP this mechanism is supported by the use of SIPS-
URIs (Secure SIP or SIP over TLS), slightly modifying the syntax of source, intermediary
and destinations addresses. This makes the implementation almost transparent to the SIP
application.

Although its usage has a low performance impact on SIP, there are a few limitations that
must be considered. It is a hop-by-hop mechanism and mutual authentication may not be
scalable [128] since it requires the deployment of a full-fledged Public Key Infrastructure
(PKI) [15]. Finally, it has been designed to be used with a reliable transport protocol,
therefore requiring all applications to use TCP or Stream Control Transmission Protocol
(SCTP) [130].

SIP over DTLS: the Datagram Transport Layer Security (DTLS) [118] protocol provides equiv-
alent protection mechanism than TLS using an unreliable transport layer, like UDP. Re-
cently, work has taken place in order to define a standard for the use of this protocol with
SIP [82]. It benefits and suffers from the same properties than TLS. However, there is no
known implementation yet.

IPSec: IPSec (IP Security) [85] allows to create a secure tunnel between end points, thus pro-
viding mutual authentication, encryption, anti-replay and data integrity. It can be used
end-to-end or hop-by-hop and it can be used without knowledge of the application it op-
erates for the network layer. It had been demonstrated in a study done on behalf of the
NIST [32] that establishing a SIP call using IPSec tunnels incorporate a delay of ~3 sec-
onds. In a scenario where Alice calls Bob via two intermediaries proxies (assuming each
UA are located behind their own proxy) the delay can take up to ~20 seconds. However,
industry standards require that this time should not exceed 250ms.
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S/MIME: Secure/Multipurpose Internet Mail Extensions [115] (S/MIME) message body en-
cryption can be used in an end-to-end fashion. This method relies on a Certificate Authority
(CA) to proceed with the encryption and can provide authentication, integrity, encryption
and non-repudiation of origin. It is independent of the transport layer and it may allow
to encrypt portion of content of the SIP message (except for the Via headers which must
always be readable). It requires a PKI deployment making it difficult to scale.

Securing the VolP traffic is critical and it must not be limited to just the signaling information.
Thus, different techniques must be addressed to preserve the integrity and confidentiality of the
media data.

SRTP: the Secure Real Time Protocol (SRTP) [123]| provides authentication, confidentiality,
integrity and replay protection of the media data. SRTP defines a mechanism for which
session keys are derived, however it does not define the key management. Multimedia
Internet KEYing (MIKEY) [81] addresses a real-time key management scenario for which
it became the recommended solution.

ZRTP: is defined as a key management scenario for SRTP. It uses the Diffie-Hellman key ex-
change protocol during call setup (the exchange is conceived in-band). It does not rely on a
PKI neither on CAs; the keys are exchanged in the session and displayed on the telephones
screen as a short authentication string. Then, the users must read the string out aloud; if
they match, then no man in the middle attack has been performed.

1.3.3 Network Design

All recommendations propose the segregation between VoIP and data networks as well as ded-
icated access control mechanisms. However, deployment of such practices may require extra
considerations in order not to disrupt specific services. For instance, when segregating the traf-
fic there may be some links between both networks that still need to be maintained (e.g. the
voice mail or the call records). This establishes a difficult challenge for VoIP administrators to
maintain their networks secure. Intermediary entities, such as firewalls, may need to look in the
content of body messages to do certain actions like opening the appropriate ports. Since media
ports are selected randomly, static rules are not useful. Therefore, Application-Layer Gateways
(ALGs) may be deployed to deal with such issues. They can dynamically open and close ports in
the firewall, preventing scanners detecting the topology and services running inside the network.
Also, ALGs can be used to filter abnormal or malformed traffic.

One possible approach to isolate the VoIP network, is for instance, to use VLANs. Thus
VoIP traffic is prioritized and can be protected from data network attacks. However, as VLANs
do not support user authentication, information can jump from one network segment to the
other. Another approach is the use of VPNs for sensitive information, where a call can be
encrypted /decrypted selectively. This may protect against attacks derived from spoofing or
sniffing information. However, as a consequence the Quality of Service (QoS), can be affected
by the cryptographic processing. The physical design of the network supported for the VolIP
services also plays an important role, Figure 1.7 exhibits a possible architecture.

Table 1.3.3 illustrates the mentioned best practices approaches and risk.

1.4 Summary

Voice over IP services are becoming widely used mostly due to the vast range of features that they
provide and their low cost. However, such a vital service can not afford to suffer a “system down”.
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Table 1.4: Best-Practice approaches and risk

Imaging trying to call an ambulance, police or any emergency entity while your phone/provider
says “Sorry for the inconvenience, we are rebooting”. The availability expected from the already
deployed PSTN is 99.999%, currently VoIP services are one order of magnitude lower [5]. Indeed,
the problem of emergency calls is that IP networks make the resolution of the geographical
location of the call difficult. This complicates the routing to the nearest call center [106] (imagine
using a VPN connection).

VoIP has demonstrated to be practical and it gained an incredible popularity. Nowadays,

security flaws are emerging due to the lack of testing from quick implementations, inexperienced
administrators and bad deployments. Even, if the previous statement is quite pessimistic, it is
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just a matter of time until VoIP replaces the PSTN. During that period, we are encouraged to
search for all type of vulnerabilities, defects and possible inconsistencies in order to make these
services more robust.

This thesis phased different approaches, first it aims to organize assessment techniques in
order to test and monitor deployed networks. Second, it aims the remotely identify equipments
based on particular properties presented in their messages. Third, it aims to the search of software
vulnerabilities before and after the devices are deployed using active testing algorithms.
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Security Assessment

Network security assessment provides the necessary knowledge to the administrators in order to
estimate the degree of security that their networks reach. Different concepts of assessment range
from inventory management to almost full fledged penetration tests [102]. The main objective
of an assessment is analyze the whole system under evaluation in order to find all the potential
vulnerabilities. Instead, a penetration test will be limited to find enough number of holes to
exploit such vulnerabilities. In terms of methodologies used, there is a thin borderline between
penetration testing and assessment. Even further, an assessment test is not supposed to exploit
vulnerabilities with a proof of concept code, but in practice in order to avoid false positives, this
is sometime crossed.

The best approach to avoid intruders to get into the network is to have the latest software
updates, restrict already known vulnerable services and the most important is to periodically
perform comprehensive assessment tests. For these tests, network devices and hosted services
must be automatically discovered by the assessment team and followed by the tests that are
planned to be be performed.

For illustration purposes, consider that a service by itself can provide a high level of security,
but when it is dependent on/or in relationship with others, a security breach might occur due to
their interaction. Information about the type of entities, the services on which they are dependent
as well as the hosting device is a starting point to discover flaws in the target system.

For instance, a simple SIP hard phone may depend on a DHCP service to obtain its [P address,
on the DNS service to resolve IP addresses, on a TFTP service to retrieve its configuration and
firmware, and on a SIP Proxy/Registrar to setup and receive calls. If one of those services is
impersonated or compromised, the overall functionality of the phone may become insecure.

To network administrators, many pieces of information regarding the topology and the con-
figuration of devices in the network are known. However, maintaining a static description of
services running on each network node is quite unrealistic since users are prone to install new ap-
plications. This information can be useful to make the assessment but it must be complemented
with network discovery tools which infer the presence of devices through advanced TCP /TP and
application level fingerprinting tools.

As a reminder, security assessment is less invasive than a real attack even though it has to
be carefully planned in order not to disrupt services and compromise the whole network.

Both a methodology as well as supporting tools for security assessment are becoming of
special interest®. Some recent books [114,116,133] as well as several technical reports [6,87,107]
describe the operation, best practices and recommendations for securing VoIP networks and
services without, however, providing guidelines on how to test them.

http://voipsa.org/Resources/tools.php last checked on December 2008
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Figure 2.1 shows a flow in which a network assessment campaign takes place in the network
and the following sections explain each component in detail.

Social engineering

Reconaissance gathering

Scanning & network mapping

Searching on CVEs Code audit
Disclosure or bug lists Active testing
Vulnerability scanning Reverse engineering

Risk Measurement

Access control mechanisms

Traffic inspection

Patching

Figure 2.1: Network assessment

2.1 Service Identification

The goal of this phase is to obtain host OS, topology and services information from the network
environment. Once the environment has been investigated, the flaws of the system can be
identified and be abused in later stages. Different types of identification methodologies are
considered for this phase and they are described below.

2.1.1 Social Engineering

Social engineering techniques abuse the tendency of human beings to trust. Its goal is to obtain
personal benefits on behalf of the target people. There are different techniques described in
the literature (for instance [71,111]), but they lie outside the scope of this thesis. In brief, the
used techniques include intimidation, impersonation, blackmail, deception, flattery, befriending,
authority, pressure, vanity and/or sympathy.

2.1.2 Reconnaissance Gathering

Reconnaissance techniques try to obtain as much information as possible from the company,
its employers and its I'T infrastructure. For instance, professional & personal web pages from
employers can provide internal or proprietary data. Also, several public registries (e.g. European
IP address allocation 7, US Army®) or utilities (e.g. whois, traceroute, nslookup, dig, host) can

"http://www.ripe.net last checked on December 2008
*http://whois.nic.mil last checked on December 2008
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be used for collecting such data. These tools and sites may allow the attacker to discover
information such as administrative contacts, network domains, allocated IP addresses, name
servers, mail servers, etc.

2.1.3 Scanning and Network Mapping

This step aims at inspecting the network architecture without any knowledge of it - as if it was an
attacker who is inspecting the network. Its main objective is to discover the network topology
(i.e. firewalls, routers, VLANS), active systems (i.e. application servers, IDS, configuration
servers) and OS information (i.e. Linux/Windows/Cisco 10S, open/closed ports).

Networks scanners lead the task of recognizing the network topology. Basically, they search
for listening ports at random or specific addresses. The process consists in sending traffic and
waiting for a timeout or a response. If there is a timeout, then the host does not exist, the
message was filtered or it has been dropped. If the host replies, it means that the port is open,
closed or not listening. Among the most popular scanning tools ?, we find Nmap, Superscan,
Unicornscan.

The process of identifying an entity or service from properties of the generated messages,
is called Network Fingerprinting. Fingerprinting systems can be classified in either active or
passive. A passive fingerprinting tool only listens to the traffic on the network and processes
it with the goal of recognizing the actual state and the device that generated the message. In
contrast, through the injection of crafted /normal packets, the active fingerprinting method tries
many techniques to discover information from the host.

In the following, we make a brief description of two of the most popular tools for such phase.

Nmap Active Scanner

One of the most recognized tool for remote OS detection and port scanning is Nmap'®. Its
discovery procedures are based on exact TCP/IP network stack fingerprinting. This is done by
sending multiple packets to the target machine and examining specific fields in the answered
TCP packets. Such packets belong to sample tests to discover supported options and vendor
specific stack behaviour. Once those tests are answered, the received messages are analyzed and
a fingerprint entry is created.

A signature entry is composed of many categories and is made of a list of attribute and value
pairs. A value as well as a whole test can be missed depending on many factors as, for example,
that the test is not supported by the system or if no reply was received, etc. The result of the
test includes categories like SEQ (sequence analysis of the probe packets), OPS (TCP option
received from the probes), WIN (windows sizes of the probes), etc.

Once the fingerprint entry is created it is compared with the OS or service fingerprint signa-
tures in the Nmap database to identify the device.

This type of discovery is very disrupting since most of the sent packets violate the specifi-
cations of the given network protocols. The information obtained by such a tool includes the
running operating system, the open/closed /filtered ports as well as the services hosted on them,
the version of the software, etc...

“http://sectools.org/ last checked on December 2008
Ohttp://www.insecure.org/nmap/ last checked on December 2008
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Pof Passive OS Fingerprinting

POf'! is a passive OS fingerprinting detection tool. As a passive fingerprinting tool, it listens to
the packets transiting on the network. It analyzes the different behaviours and peculiar protocol
level specifics presented by the target implementation. It uses fingerprinting techniques over the
incoming and outgoing packets of a connection as well as the information observed from refused
and established ones. Through this, it will identify the software or/and version running in the
target devices. POF provides a mechanism to add new fingerprint signatures which depend on
the combination of different values of the packet. The signature entry for a TCP /IP packet looks
like:

wwww:ttt:D:ss:000...:QQ:0S:Details (2.1)

as depicted in Table 2.1.

wwww | window size. It can be *, %nnn,
"Snn" (multiple of MSS) or
"Tnn" (multiple of MTU) are allowed.
ttt initial TTL
D don’t fragment bit (0 - not set, 1 - set)
SS overall SYN packet size
00O | options in the order they should appear in the
packet.
QQ list of oddities or bugs of this particular
stack.
0S OS type (Linux, Solaris or Windows)
details | OS description (2.0.27 on x86, etc)

Table 2.1: TCP/IP signature entry for pOf

Every packet captured by POF will be analyzed and compared with the list of signature
entries and filtered to match the corresponding OS of the device.

Since this is a passive tool, no packet is injected into the network and thus the tool can hardly
be detected. As a consequence it depends on the packets sent by the hosts, which makes it often
less accurate than active tools.

However, one important remark on POF is that it can detect fingerprints through a firewalled
connection, where active scanners will fail.

2.2 Finding Known Vulnerabilities

This phase consists in identifying the known vulnerabilities or security breaches that exist in the
network. Different techniques are mentioned below.

2.2.1 Vulnerability Searching

Nowadays, Internet contains several places were information about security vulnerabilities can be
found. The flaws are not always disclosed with a patch, mitigation or anything to avoid their ex-
ploitation. Among the typical sites we find the Common Vulnerabilities and Exposures'? (CVE),

Yhttp://1camtuf . coredump. cx/pOf . shtml last checked on December 2008
http://cve.mitre.org/ last checked on December 2008
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disclosure lists'®, vulnerabilities auctions '* and bugs & patches forums from the products.

2.2.2  Vulnerability Scanning

Vulnerability scanners were introduce in 1987 by R. Baldwin [21] with the U-Kuang system,
where its goal was to identify operational security problems running in a host. In 1990 D.
Farmer and G. Spafford [59]| described the Computer Oracle Password and Security System
(COPS). COPS is a composition of several tools (including U-Kuang) which objective was to
provide more instrumentation to administrator to assess a host. Further work of D. Farmer and
W. Venema conclude with the Security Administrator Tool for Analyzing Networks'® (SATAN).
SATAN was the approach which allowed administrators to analyze their own network from an
outsider perspective. The methodology consists in first checking which are the active hosts in
the network; including open ports and hosted services as it is done by the network scanner tools.
Secondly, it tries to identify running versions and patch level of softwares. Finally, when the
reconnaissance is done, it may - or may not - test if the vulnerability is effective by launching
the exploit. Note that if a tool of this type is launched by the administrator, it has to be used
with special care since it can disrupt the normal functioning of the network.

Since SATAN, several tools have emerged trying to provide more features and more complete
set of attacks'®. Among the listed tools, Nessus'” is one of the most popular vulnerability scanner
and it is briefly described below.

Nessus Vulnerability Scanner

Nessus is a vulnerability scanner designed as a plug-in architecture. It works by first identifying
the network components, open ports and hosted services (including their running version). It can
use its own port scanner or rely on the results of external ones (for instance Nmap). Afterwards,
it can trigger several attack scenarios like: remote control, missing patches, misconfiguration,
default passwords & dictionary attacks, denial of service, etc. Nessus includes its own attack
language (NASL: Nessus Attack Scripting Language) which allows users to write their own
exploits for specific contexts.

2.3 Vulnerabilities Testing

This phase looks for threats, vulnerabilities or bugs which are still unknown to the public.
Different entities may be interested to perform this procedure. For instance, a company may
want to improve the quality of its products over time; a consumer concerned by its own network
security may run such tests before deciding which equipment to buy. Indeed, it may periodically
test its equipments after having deployed them . And finally, security companies or researchers
may test equipment to publicly validate their techniques.

Different approaches (described below) may be used in this phase depending on budget, code
availability or personal preference.

"3http://seclists.org/fulldisclosure/ last checked on December 2008

Yhttp://wuw.wslabi.com last checked on December 2008

Y5http://www.porcupine.org/satan/ last checked on December 2008

"Shttp://wuw.securityinnovation.com/security-report/October/vulnScanners15.htm last checked on De-
cember 2008

Yhttp://wuw.nessus.org/ last checked on December 2008
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Code Audit

Code auditing is used to check structural errors in the source code of an application. It usually
searches for common vulnerabilities that may exist in the implementation since some program-
ming structures may require careful attention. Typically functions like strcpy, printf, scanf, etc.
or casting could lead to overflow vulnerabilities [20,111]. Incorrect input validation can lead to
SQL Injection [95] or Cross Site Scripting attacks [125]. Code auditing may find several flaws
in the code but not necessarily all. Indeed, it requires a high amount of work and it may report
many false positive alarms.

Reverse Engineering

Reverse engineering [40] is the process of inferring the software structure out of the closed-source
binary application. It observes in details the functional behavior of each component in order
to deduce how it is implemented. This technique can be used to understand the functionality
of the application, extract the code from the binary and then apply auditing techniques to find
possible vulnerabilities.

Active Testing

The active testing procedure creates different tests in order to evaluate features compliance,
performance and robustness of the application under test. Different techniques may be associated
to this routine depending on the availability of the source code as for instance white box, grey
box and black box testing which will be described in more detail in Chapter 4.

2.4 System Checking

From the network administrator security point of view it is important to assess the vulnerabilities
of the managed system. Once the inventory of services, equipments and vulnerabilities are
recognized, there are several actions which must follow. First, a check if the vulnerabilities
are exploitable in the current deployment is required. Then, agssuming that they are, a check if
correction patches or mitigations already exist must be performed. Finally, if the services remain
vulnerable, the administrator can take the necessary measures to make a trade off between the
desired level of security and available flexibility to existing services.

2.4.1 Risk Measurement

Different approaches are found in the literature [16, 18] which focus on measuring the risk ex-
position of a network. Common metrics are computed using existing, historical and probabilis-
tic vulnerability measurements. The exposure risks depend of the vulnerability successfulness,
propagation and remediation level. Indeed, risk measurement has been represented using attacks
trees, graphs and Petri nets [45,47,65,72,88,101,113,122,126,138|. These formalizations sup-
plement the risk exposure with information about the relationship between the vulnerabilities
and the network architecture. Their main objective is to help assessment testers to visualize and
analyze complex attacks.

Attack Trees

Attack trees [122] were designed to model security threats. Attacks trees are a special case
of Fault Trees [140] where their goal is rather to formalize the tolerance of engeneering faults.
They summarize possible actions or paths that must be taken to perform an assessment test.
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This formalization represents each action of the attack as a node of a tree, where the root node
represents the desired result actions. An action represented by an internal node is considered to
be concluded when one or all of its children (depending if defined as a disjunction or conjunction
respectively) are satisfied, i.e. a bottom-up flow. Thus, leaf nodes represent independent actions
that should be performed. To differentiate a disjunction from a conjunction of actions in an
internal node, the "and" string is attached to the bottom of the internal node if the action is
a conjunction, and an empty string where there is a disjunction. Figure 2.2 illustrates a social
threat to obtain access to the network.

Obtain
network access
blackmail bribe
admins admins
/\ %]d\
discover past kidnap get admin  get a Caribbean|
secrets his pet upset cruise
ask his/her ask users follow she/he does she/he  get some
ex about about after work has a pet steak

Figure 2.2: Attack tree example

Attack Graphs

Attack graphs [45,46,65,72,88,113,138] are based on a similar concepts, however this type of
representation allows to model cycles in the attacks. Each node in the graph represents one goal
or status in the attack while the edges represent condition in the transitions between the goals.
In practice, generating an attack graph manually is a tedious and error prone task. Therefore,
the authors of [126] proposed an automated generation of attack graphs able to help deciding
which are the most cost/efficient attacks.

Figure 2.3 illustrates an equivalent social threat as depicted by Attack Trees but using Attack
Graphs.

Attack Nets

M. Dacier et al. [46] introduce a mathematical model using Markov Chains to evaluate the mean
effort need by an attacker to send the system into a security failure state. The approach uses
Petri Nets [112] to build a model which will allows to characterize and evaluate the system
security. Some approaches have extended the attack modeling to colored or stochastic Petri net
attacks [47,48,101].

In the simplest attack nets approach, the goals are represented in a Petri net as places, while
each transaction defines the action that the attacker has to perform in order to pass to the next
goal. Contrarily to attack trees/graphs, attack nets allow to model concurrent behavior since
the tokens represent the current state in the attack and each movement defines the steps that it
has to follow to satisfy the goal. Figure 2.4 illustrates an equivalent threat as depicted by Attack
Trees and Attack Graphs but using Attack Nets.
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Figure 2.3: Attack graph example

2.4.2 Access Control Mechanisms & Traffic Inspection

Firewalls and Intrusion Detection Systems allow administrators to filter, analyze and log all
traffic in the network. Filtering works on the basis of known patterns or learnt rules which
may exploit specific vulnerabilities. However, for the same vulnerability, several exploits may
exist, thus patterns for the exploits are not always identical thus bypassing filtered patterns. In
contrast, the analysis of traffic can be used to trigger alarms when abnormal traffic is observed.
Finally, logging may be useful to understand attacks that were not detected in the network.

Following the real-time intrusion detection model introduced by D. Denning in [52], the
abnormal patterns searched on the network traffic are described below:

e Break-in attempts (for instance multiple telnet and user/passwords)

Masquerading (login as someone else, but perform different operations)

Privilege escalation by legitimate user (becoming root by a regular user)

User leakage (legitimate user, connecting at non allowed times)

Inference by user (get more data than needed)

Malware (Trojan, Virus, Worms)

Denial of service (resource monopolisation: bandwidth, CPU, etc)

Indeed, the model is composed of different components which will be used to identify and
filter such patterns (assuming that security violations can be detected by monitoring the audit
records):
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Unknown admin
Talk to people Searching for a pet
Pet identified Food bought
Bad secret found Kidnap the pet

Pet missing for 2 days
Send rescue letter
Admin afraid

Get admin permission

Network access granted

Figure 2.4: Attack net example

Subjects (can be a user/program /system)

Objects (resources: files, commands, devices or users)

Audit records (system generated in response to actions)

Profiles (statistical description of the subject-object interaction)

Anomaly records (generated when anomalies are detected)

Activity rules (actions to be taken when a condition is satisfied)

2.5 Summary

Assessment is the first step to take in order to protect a network. Since running services may not
always be secured or probably just their interaction is not. A security breach can be opened in
the network and thus jeopardize its whole behavior. It is expected that the security group acts
like real attackers but avoiding exposing the integrity of the system to a vulnerable state. The
first contribution of this thesis (chapter 5) proposes an environment where different scanners
and fingerprinting tools can interact in the construction of a general information model for
services that directly or indirectly interact with VoIP devices. Once that information model is
constructed, the assessment group may use it to feed different attacking tools and techniques.
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Chapter 3
Fingerprinting

The process of remote fingerprinting refers to the identification of a specific software or protocol
based on the observed network traffic. Although, assuming that standardized behavior should
be implemented in devices and applications, subtle differences coming from minor details not
fully specified, different interpretations of the specification, different set of supported features or
implementation bugs may allow to identify and to discriminate the origin of a given traffic.

Fingerprinting became an important methodology among the practices of security profes-
sionals. It started with the pioneering work of Comer and Lin [54]. Fingerprinting approaches
are not 100% precise, however their accuracy increases with the amount of information obtained
and analyzed from the sources. Although, it is important to note that they can be deliber-
ately misled, information coming from a source can be intentionally scrubbed - maliciously or
not [76,99,129,139]. Therefore, the difficulty to conceive such attacks/defenses is a challenge
based on the quantity of signatures identified by the fingerprinting system in its analysis of the
hosts.

We understand by signature the characteristics which differentiate messages belonging to one
device from the rest. Those are the characteristics found in the properties of the messages that
are always the same or maintain a value related to a specific function. Related to this concept
are the features of the system. Features are considered as the set of fields identified as signatures
associated with the value for each of the known devices. For instance, if we define:

System Features =< featurey, ..., feature, >
where each feature is linked to a specific characteristic of the message and these are of the form

feature; = signatureq, . .., signaturesdevices
then, each signature is the value for the i-device.

3.1 Fingerprinting Classification

In the last decade several approaches have presented different methods to identify the hosts or
software existing in a network. This classification is often performed based on network messages
generated by the hosts. These approaches, can be divided in three families:

1. those that are actively involved in the flow of messages, therefore they classify a host based
on its replies to messages generated from the fingerprinting system,

2. those which passively observe the messages on the network and one by one observe their
properties to build a classification and

3. those that once the fingerprinted host initiates a connection, then the fingerprinting system
has the ability to interact with.
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3.1.1 Active Fingerprinting

Active fingerprinting was first introduced in 1994 [54]. Through the injection of crafted /normal
network packets, the active fingerprinting uses many elements to discover the operating system
of a remote device under investigation: version, services, open ports, etc. The evaluation of these
replies provides a rich set of information that can be useful for detecting the different protocol
stack implementations. The system looks into several fields of the replies, for instance, reply
type, reply errors, specific contents, retransmission delay, etc.

To be successful, the fingerprinting system has to find the set of queries that generates differ-
ent responses in each different type of software and then creates a database of queries/signatures.
Once the system proceeds to fingerprint a device, a subset of the recognized queries is sent to
the target and, based on the replies from the device, the fingerprinting system should be able to
guess the software running in the target.

Active fingerprinting techniques are quite efficient and can help to detect the topology and
running services in which a small/medium network is composed. However, it can be disruptive
since most of the sent packets violate the specifications of given network protocols.

3.1.2 Passive Fingerprinting

In 1997 passive fingerprinting was first introduced [110]. In contrast to active fingerprinting,
passive fingerprinting is not meant to be invasive, it just monitors the traffic of the network and
processes the observed messages to identify the source implementation and current state in the
protocol.

Using passive discovery techniques has many advantages as described by O. Arkin in [19].
For instance, the monitoring of active items in the network, no impact on the performance of
the network and detection of elements which are behind firewalls. However, it also presents
weaknesses which are basically related to “what you see is what you get”. Thus, the deployment
location will restrict the flow visibility only to the partial set of services which are actively
working in the network.

Not everything can be determined passively; as a consequence, services or host classification
should be extended and compared with other types of analysis.

Passive fingerprinting, however, could be more challenging since the it does not have the
possibility of intercept/modify in anyway in the flow of the network as an active approach does.

3.1.3 Semi-Passive Fingerprinting

Semi-passive fingerprinting was introduced in 2005 by T. Kohno et al. in [86]. The fundamentals
behind this technique is that the fingerprinting system is not allowed to initiate a session, as it is
the case for passive fingerprinting. However, once a session has been established by the host, the
fingerprinting system can modify the generated replies in order to trigger events in the following
of the session. This technique assumes that the fingerprinting activity takes place in between the
session, either as man in the middle (e.g. an Internet Service Provider (ISP), Intrusion Detection
System (IDS), attacker) or as one end point of the session (e.g. the same webserver to whom
the request is generated). Thus, this family is more restricted than passive fingerprinting since
it can fingerprint active hosts which only send traffic through its scope. However, it can trigger
specific actions in the target host which will allow its recognition, like the procedures in the
active fingerprinting family.

Indeed, it can fingerprinting hosts behind a NAT or firewalls since it only waits for the host
to make the connection.
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3.2 Packet Fingerprinting

Independently of the active, passive and semi-passive families, fingerprinting techniques can be
also based on properties of the packet or in protocol level information (i.e. state machine of
the implementations). These methodologies have their pros and cons, and they are explained in
detail in the following subsections.

3.2.1 Packet Fingerprinting

Packet fingerprinting techniques consider the message as the whole source for analyses.The typical
signatures search are based on the information obtained from the observed messages, for instance,
banners, capabilities and flags, content order, etc.

For instance, figures 3.1 and 3.2 show four SIP messages (two messages each figure) generated
from two different sources illustrating such subtle differences between implementations. First, it
can be observed that in Equipment A, despite any possible configuration, all messages generated
by such device share specific properties (highlighted in the corresponding figure):

e ordering of Message Headers (e.g. Via before Max-Forwards, Max-Forwards before To and
S0 on),

o length of the first section of the Call-ID (note that after the “@Q” the device writes the local
IP/URL),

e order in which the Allowed Method are specified,

e the banner written in the User-Agent Header, etc.

For the messages of figure 3.2, the fields call-1D, allowed methods and banner have the same
values for all messages generated from Equipment B. However, they are different with respect to
the Equipment A. One exception is the Message Header order, in which the headers Expires and
Content-Length do not maintain a strict order (i.e. they had been switched).

SI P Eq u i pment A INVITE sip:794016192.168.1.144 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.49;rport;branch=z9hG4bKomjgpxec
REGISTER sip:192.168.1.144 SIP/2.0 Max-Forwards: 70
Via: SIP/2.0/UDP 192.168.1.2:7060;rport;branch=z9hGdbKgydxyvae| |To: <sip:79401€192.168.1.144>
Max-Forwards: 70 From: "Bob" <sip:6666€192.168.1.144>;tag=nsxsr
To: "humbol" <sip:5555€192.168.1.144> Call-ID: tjqbyxvysbcramy@192.168.1.49
From: "humbol" <sip:5555€192.168.1.144>;tag=jygph CSeq: 729 INVITE
Call-ID: ibfvgflurrpzqbe@l92.168.1.2 Allow: INVITE,ACK,BYE,CANCEL,OPTIONS,PRACK,REFER,NOTIFY, INFO
CSeq: 928 REGISTER Contact: <sip:6666€192.168.1.49>
Allow: INVITE,ACK,BYE,CANCEL,OPTIONS,PRACK,REFER,NOTIFY, INFO Content-Type: application/sdp
Contact: <sip:5555€192.168.1.2:7060>;expires=3600 Supported: replaces,norefersub,100rel
User-Agent: Twinkle/1.0.1 User-Agent: Twinkle/1.0.1
Content-Length: 0 Content-Length: 304

Figure 3.1: Equipment A: message signatures
Based on those visually identifiable characteristics, one can make a classification of the source

entity from the new messages. Table 3.1 depicts these signatures that were observed purely from
a syntactic point of view.
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SIP Equipment B

REGISTER sip:192.168.1.144 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.20:5060;branch=29hG4bK4205b326
From: <sip:79400192.168.1.144>;tag=000b46d9ch-1a84cfd8
To: <sip:7940€192.168.1.144>

Call-ID: 000b46d9-cb860003-66d2804£-527006cb@192.168.1.20
Max-Forwards: 70

CSeq: 102 REGISTER

User-Agent: Cisco-CP7940G/8.0

Contact: <sip:79406192.168.1.20:5060;transport=udp>;
Content-Length: 0

Expires: 3600

INVITE sip:6110192.168.1.144 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.49:5060;branch=29hG4bK50979e8b
From: "6666" <sip:6666€192.168.1.144>;tag=001ae2bc8b-4f6a3bch
To: <sip:611€192.168.1.144>

Call-ID: 00lae2bc-8b7c001a-40b4297e-1611ee9168192.168.1.49
Max-Forwards: 70

CSeq: 102 INVITE

User-Agent: Cisco-CP7940G/8.0

Contact: <sip:6666@192.168.1.49:5060;transport=udp>
Expires: 180

Allow: ACK,BYE,CANCEL,INVITE,NOTIFY,OPTIONS,REGISTER, UPDATE
Supported: replaces,join,norefersub

Content-Length: 276

Figure 3.2: Equipment B: message signatures

Equipment A Equipment B

Call-ID Length 15 35

Allow Order INVITE,ACK,BYE,CANCEL,OPTIONS, | ACK,BYE,CANCEL,INVITE,NOTIFY,
PRACK,REFER,NOTIFY,INFO OPTIONS,REGISTER,UPDATE

Twinkle/1.0.1 Cisco-CP7940G/8.0

User-Agent Banner

Table 3.1: Localized signatures from equipment A and B

3.2.2 Protocol Level Fingerprinting

Protocol level fingerprinting focuses its analysis on the behavior observed from the target entity.
The typical signatures search for this category are based on the type of responses to specific
events, time delay within request/responses, underlying sequencing function, etc. G. Shu et
al. introduced in [127] a formal approach to analyse protocol fingerprints. It is based in a
Parametric Extended Finite State Machine (PEFSM), for which each transaction in the state
machine represents a packet modeling the critical content of it (e.g. sequence number). Similar
approaches Fingerprinting techniques bellowing to this category can be modeled and compared
using this method. Indeed, the authors argued that longer fingerprinting sequences can be
identified thanks to the automatic analysis nature of the approach.

Recently, the work by J. Caballero et al. [37] described a novel approach for the automation
of Active Fingerprint generation which resulted in a vast set of possible signatures. It is one of
the few automatic approach found in the literature and it is based on finding a set of queries
(automatically generated) that generate different responses in the different implementations.

3.3 Fingerprinting Applications

Fingerprinting applicability ranges from topology discovery, hosts identification, attacks, mal-
wares & spam detection, forensic activities up to copyright infringements. Such applications are
illustrated in figure 3.3 and described below.

3.3.1 Assessment

Some of the most well known network fingerprinting tasks are done by Nmap, using a set of rules
and active probing techniques. Passive techniques became known mostly with the POF tool,
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Figure 3.3: Fingerprinting Applications

which is capable to do OS fingerprinting without requiring active probes. Many other tools like
(THC AMAP'8, XProbe!?, DISCO?%) do implement similar schemes.

In security assessment tasks many operations rely on the precise identification of a remote
device or a mere identification of part of it (e.g. network protocol stacks, services). Fingerprinting
is essentially required for evaluating the security of a remote and unknown system. On the other
hand, attackers can, as well, use this technique in order to identify hosts running vulnerable
services.

Device Enumeration

In 2002, S. Bellovin proposed in [26] a technique to count the number of hosts that are hidden
behind a NAT. This approach is based on the identification of the id field of an IP header. The id
field, or mostly known as IPid field, is a string used to make packets unique. However, Bellovin
found that most implementations implement such fields as a counter. Then, observing all the
traffic forwarded by the NAT, one can make an estimation of how many active hosts are hidden
behind the NAT.

T. Kohno et al. in [86] identified that hardware deviation of the system clock may be de-
tectable from the timestamp of TCP packets, regardless of the remote location of the fingerprint-
ing system. This technique not only allows to identify active hosts behind a NAT, but permits
to distinguish virtual honeynets, virtual machines and real computers due to the difference of
their clock oscillations.

OS Discovery

In 1994 Comer and Lin [54] first proposed an approach to probe differences between TCP im-
plementations. Their technique consists in sending abnormal - invalid combination of flags -
or malformed TCP messages to the host and observing the replies. Their original motivation
was to find implementation flaws, to deduce characteristics of the design and to check protocol
conformance in the implementations. Nmap developed by G. Lyon [97] was first released in 1997
and evolved to what became the preferred port scanner [96]. Thus, services which are running on
each of the open ports can be actively fingerprinted by Nmap where for each of those service it
may proceed to identify properties, running version, etc. Many other tools like (AMAP, XProbe)
do implement similar schemes but they lack of precision and usability.

"®http://freeworld.thc.org/thc-amap/ last checked on December 2008
http://xprobe.sourceforge.net/ last checked on December 2008
*Ohttp://www.altmode.com/disco/ last checked on December 2008
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V. Paxson showed in 1997 in [110] the first passive approach able to distinguish different
behavior from several TCP implementations. He based most of his observation on how hosts
under congestion deal with updating window values, retransmission timeout range, behavior
under out of sequence data, response delays, etc.

Service and Protocol Identification

Approaches like [28, 29,42, 84] introduced classification methods based on headers only. The
features analysed were related to host behavior, direction of flow, packet size/order/arrival,
etc. Thus, these approaches need a complete (sometimes a partial prefix suffices) sequence of
messages in the flow to be able to classify the running service. More important, all these methods
rely on an automated mechanism to train their systems (e.g. Support vector machine (SVM),
Gaussian-filtering, supervised machine learning).

Recently, work in the area of identifying properties of encrypted traffic has been reported
in [30,144]. These two approaches used probabilistic techniques based on packet arrival interval,
packet length and randomness in the encrypted bits to identify Skype?! traffic or the language
of conversation. While these works addressed the identification of the protocol building blocks
or properties in their packets, they do not assume a known protocol and they did not propose
an approach for identifying specific implementation stacks of the same protocol.

There have been recently similar efforts done in the research community with practical reverse
engineering of proprietary protocols [66,67] and a simple application of bio-informatics inspired
techniques to protocol analysis [24]. These initial ideas matured and several authors reported
good results of sequence alignment techniques [43,44,70,91,108,143|. Another major approach
for the identification of the structure in protocol messages is to monitor the execution of an
endpoint and identify the relevant fields using some tainted data [35,94].

Finally, other solutions have been proposed in the literature in this research landscape. Flow
based identification has been reported in [74], while a grammar/probabilistic based approach is
proposed in [31] and respectively in [98].

Application Identification

Application layer fingerprinting techniques, specifically for SIP, were first described in [73,145].
These approaches use both active and passive fingerprinting techniques. Their common baseline
is the lack of an automated approach for building the fingerprints and constructing the classifi-
cation process. Furthermore, the number of signatures described are a minimal set of observed
responses to unusual messages, banners and content presented in the message which let the sys-
tems easily exposed to approaches as the one described by D. Watson et al. [139], which can fool
them by obfuscation of such “observable” signatures.

3.3.2 Analysis & Prevention

Intrusion Detection System may use fingerprinting approaches to detect rogue systems, stealth
intruders and the behavior of worms which spread over the network. Filtering techniques, such
as for spammer detection may use fingerprints to identify spam messages. For instance, syntax
message fingerprinting can be used to filter abnormal traffic the classification is done per message.
Indeed, the SIP [120] specification says:

“servers MUST NOT attempt to challenge CANCEL requests since these requests
cannot be resubmitted. Generally, a CANCEL request SHOULD be accepted by a
server if it comes from the same hop that sent the request being canceled”

http://www.skype.com
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then an attacker can spoof a CANCEL message in the network and therefore teardown the session
as illustrated by figure 3.4.
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Figure 3.4: CANCEL tear down session

However, if an IDS detects that the CANCEL message do not match the signatures from
such device, it can assume that the host has been impersonated and it could the message dropp
to avoid the DoS attack.

Spam Detection

M. Chang and C. K. Poon [39] address an email SPAM detector trained from a collection of
traces. This approach focuses on identifying human written sentences from spam generators. It
applied techniques to analyze the lexicon of the messages and do not use information obtained
from the protocol.

Attack Analysis

C. Leita et al. introduced in [91] a technique capable of fingerprinting the expected behavior
of services targeted by malwares. Almost simultaneously W. Cui et al. [44] proposed a similar
technique. In both approaches the services behavior is analysed from stored traces having no
knowledge of the underlying protocol. The system is then capable of simulating the targeted
services as a typical honeypot. Thus the main objective is to fool malwares and during their
interaction make a deeper analysis of the techniques employed by the malware.

Forrest et al. in [64] proposed an anomaly detection technique in which abnomal behavior is
identified based on the system calls that it generates, since reverse engineering in the binaries is
not always feasible.

3.3.3 Copyright Infringements

Another important applicability of fingerprinting system resides in blackbox devices/application
testing for potential copyright infringements. In the latter case, when no access to source code is
provided, the only hints that might detect a copyright infringement can be obtained by observing
the network level traces and determine if a given copyright protected software/source code is used
unlawfully.
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3.4 Summary

Network fingerprinting is the main topic of many emerging research fields. Since several new
malwares/attacks are developed or new protocol are being designed - either as standards or
commercially - the need to automate the fingerprinting process is the target of several research
teams. In this chapter, we discussed different techniques that have been used and how they
evolved. However, we found that automatic techniques for fingerprinting the application level of
the messages are missing . Chapter 6 describes a novel contribution where a passive application
level fingerprinting is described. This approach tries to fill the gap of fingerprinting techniques
which identify the application running based only in the messages generated. It is important to
note that the classification model automatically identify signatures per message.
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Vulnerability Testing

Vulnerabilities represent a major issue in any networked application, especially in an emerging
technology landscape like VoIP. The number of implementations is increasing with both the
number of devices connected to the Internet and the number of software components being used
to deliver services on the Internet.

For instance, rapid deployment of SIP enabled boxes opens new revenues for attackers: they
can now use the Internet to carry out new fraud schemes against telecommunication providers.
Exploiting these new fraudulent schemes can not only lead to substantial benefits for the mali-
cious users but also, in some cases, to more severe consequences in both enterprise and private
networks (e.g. deactivation of emergency call capacity on a Voice over IP Phone).

Fault injection has been a major topic of research over the last decades [137], but very recently
the term “fuzzing” cornered the art of injecting user supplied data to applications in order to
detect potential vulnerabilities in software implementations. The most notorious exploitation
are due to generic buffer overflows and format string exploitation, but higher level application
and target specific vulnerabilities can also be discovered by fuzzing.

The conceptual idea behind fuzzing is very simple: generate random/malicious input data
and inject it in an application. This approach is different from the well-established discipline
of software testing where functional verification is checked. In fuzzing, this functional testing is
marginal; much more relevant is the goal to rapidly find potential vulnerabilities. Protocol fuzzing
is important for two main reasons. Firstly, having an automated approach eases the overall
analysis process. Such a process is usually tedious and time consuming, requiring advanced
knowledge in software debugging and reverse engineering. Second, there are many cases where
no access to the source code/binaries is possible, and where a “black box” type of testing is the
only viable solution. Therefore, major software vendors, ranging from Microsoft and Cisco, to
Morzilla and Redhat have introduced fuzzing as a key phase in their software development life
cycle [117,132].

4.1 Origins of Vulnerabilities

Vulnerable software is usually coming from bad coding & design techniques or even from common
errors during the implementation phase among other things. Typical exploitable errors come from
memory access violation, improper input data validation or wrongly computed logic assertions.

Memory Overflows

Programming languages like C allow the user to have full control over the allocation of memory.
If the allocation control fails due to improper coding, normal execution can be violated and then
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the system may be exposed to exploit attacks [20].

Figure 4.1 illustrates a snipped of C code where data is copied (in line 6) to a buffer of smaller
size without boundary checks. Thus, adjacent data in the buffer is modified allowing to change
the normal flow of the program.

#include <string.h>
void bof_function(char *str)
{
char buffer[16];
strcpy (buffer, str);
}
void main ()
{
char large_buffer [256];
memset (large_buffer, ’A’, 255);
bof_function(large_buffer);
}

Figure 4.1: C code overflow

Format Strings

String format functions in the C language take a string format followed by the arguments.
The string format can contain either printable characters or conversion specifications. The
conversion specifications fetch zero or more arguments, for which its value will be replaced.
If the arguments given to the string format function are different with respect to the quantity
of conversion specifications, then major exploitation opportunities exist [92]. In the case of an
overflow, the string format function will grab the next value in the memory. If the %n conversion
is used, information can be printed in the memory to deviate the normal flow of the application.
Figure 4.2 shows a vulnerable C code where if the user calls it with the %z argument, memory
information extracted from the stack will be printed.

void main(int argc, char * argv)
{

printf (argv [0]);
}

Figure 4.2: C format string overflow

SQL Injection

SQL injections occur when applications do not correctly escape input values and then these
values are been used for interacting with relational databases [95]. The following statement il-
lustrates a typical SQL query:

query = "SELECT * from User_Table where username = ’" + input_username + "’;"
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where if the input username is Alice, for instance, it will search for all the registers in the
User Table named Alice. However, if the input username is:

Alice’; DROP TABLE User_Table;#

it will make the same query, but just afterwards it will execute a new statement (DROP) and
remove the whole list of users.

Cross-Site Scripting (XSS)

Cross-Site Scripting is another type of code injection which allows an attacker to execute mali-
cious code in the client-side application across a non malicious third party [125]. This type of
attack is found in web applications which offer the user inputs to other visitors without filtering.
Assuming a webpage that displays the user input without filtering and that the input is in fact
a script code like:

<script> alert(’XSS attack!!?’); </script>

thus, the displayed information will be emptied but JavaScript code will be executed. FEx-
ecuting malicious JavaScript code can lead to a full compromise of the host computer. For
instance, MPack is a publicly known malicious tool sold in the black market which uses this
type of vulnerability. If a host visits a compromised webpage, MPack sends a script code able
to identify the host and therefore determine if any vulnerability exists on it [89]. If the host
contains a vulnerability known by MPack then the corresponding exploit is used to compromised
the system.

XSS can be classified into two types [125]: reflected and stored. In the first one, the executed
script is included in the request itself, therefore the attacker has to send the request to the victim;
for instance by email. The stored XSS vulnerability is more serious since the script is stored in a
permanent repository of the server and any user visiting the webpage will execute this malicious
script.

Race Conditions

Race conditions usually appears in muti-thread applications in which the timing of operations
execution is highly critical. A typical scenario is the case where an application check the rights
to do certain procedures and in the meantime (caused by external factors) the predicates is no
valuable anymore. Causing the application to perform an action for which it did not have the
rights anymore. Thus, the problems can be related to deadlock, livelocks, locking failures or
interference caused by untrusted processes [141].

4.2 Whitebox, Greybox and Blackbox Testing

As fuzzing is one more discipline of software testing, the high level definition of the approaches
used for testing is maintained [25]: Whitebox, Greybox and Blackbox testing.

In white-box testing, the source code of the application is analyzed in an attempt to track
down defective or vulnerable lines of code. This includes manual inspection of source code as
well as automated source code analysis using vulnerability scanners.

In black-box testing, the internal code of the application is not considered. Instead, the test
is driven according to the requirements of the application; special input test cases are generated
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and sent to the application. Then, the results returned by the application are analyzed for
unexpected behavior that indicates errors or vulnerabilities.

Greybox testing has many of the advantages of the two previous techniques; it can generate
input data based on observed analysis of the runtime code execution. Thus, the statistics used
can help to improve the future inputs. This technique relies on the availability of the binary
code, at least, and can be complemented with the protocol information of the application.

In practice, manual source code analysis is the prevalent approach for auditing and checking
applications for the presence of security vulnerabilities. Manual analysis has the advantage
that human analysts can understand the code and detect security vulnerabilities of any type.
Unfortunately, there are also a number of significant drawbacks to this approach. One is that
code auditing is a very time - and labor - intensive task. Since it requires well-trained experts
to find vulnerabilities, this process is very expensive. Finally, while humans are very good at
understanding programs, they can be tired, distracted, or losing focus. As a result, they might
miss bugs, especially when these bugs are buried under thousands of lines of source code. Because
of the difficulties and costs of manual code analysis, automated tools for finding vulnerabilities
are desirable.

4.3 Fuzzing

The first known fuzzing case is documented in the early 90’s, when B. Miller et al. [104] observed
that random input did crash most Unix applications. In that particular case, these crashes
were due to electrostatic fluctuations in a remote dial-up connection induced over the physical
wire. This observation brought this specific type of fault injection technique to the attention of
security researchers. For over two decades, some significant research activities were performed in
the testing community in order to automate the process of functionally testing the correctness
of software with respect to some well defined properties [17,50,79,83,100]. The key difference
with traditional testing is that fuzzing attempts to generate inputs and test cases leading to the
discovery of vulnerabilities, but many terms like blackbox fuzzing, whitebox fuzzing maintain
their semantics.

In the beginning, fuzzers were simple random data generation frameworks used in a manual
way by security researchers. These frameworks were suited to generate application specific input
data, ranging over multiple input formats: image files, command line arguments, multimedia
files, and network data. This changed over time [50|, where both increased activities of leading
software companies like Microsoft [79] and recent research papers [51,55,69] and books 117,131,
132] significantly raised the interest on the potential of fuzzing for detecting vulnerabilities in
blackbox, whitebox and graybox testing types.

In the context of SIP software, most SIP stack developers use fuzzing techniques to check
their code, but most of the used approaches seem to be highly manual. The well known team at
Columbia University, lead by Prof. Henning Schulzrinne [142], has been performing research on
VoIP vulnerabilities, but in their work they defined some static test cases that were used with
an open source fuzzer tool.

4.4 Fuzzer Environment Classification

Different categories of fuzzers have already been discussed, however it depends in the chosen
context to know which is the most effective approach for a specific task (e.g. what is needed to
be fuzzed, what is known from the protocol, available budget). Indeed, fuzzing just generates
“malicious” traflic but then an environment in which it is possible to observe the effectiveness of
the traffic is needed.
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4.4.1 Fuzzing Frameworks

Fuzzing frameworks are complex projects. Their objective is to provide a reusable and generic
environment where new fuzzers techniques can be eagsily deployed. Current environment provides
directives to interact with the target (e.g. sending/receiving traffic by the network, load files in
the applications, interact with the application memory), to monitor the state and to feedback
information from the tests. Among the most popular frameworks we find Sulley??, Peach?3,
Autodafe?*, BeSTORM?®.

4.4.2 Special-Purpose Fuzzers

Special purpose fuzzers focus their test on a specific protocol (proprietary or not). They are
generally quite effective and they do not require much interaction with the user to launch a new
test. However, they are difficult to extend current test cases as well to any other new protocol
that they were not intended for from the beginning. The most popular special-purpose fuzzers
are Codenomicon?®, Mu-400027 which are capable to fuzz over 130 and 50 protocols respectively.

4.4.3 General-Purpose Fuzzers

General purpose fuzzers are designed to adapt the testing to the protocol being fuzzed. In many
cases some information has to be provided to guide the generation of messages. While in other
approaches, they could observe the traffic and determine, by different metrics, which fields they
can modify in order to send the new crafted message to the target. Among the general-purpose
fuzzer we can find ProxyFuzz?®, SPIKE?’,

4.5 Input Generation

“The input should in most cases be good enough so applications will assume it’s valid
input, but at the same time be broken enough so that parsing done on this input will

fail.”

[lja van Sprundel [136]

The main challenge for syntax fuzzers is to generate the crafted message provided as input
to the fuzzed system. Much more effort has been put in the quest for smart approaches for such
generation. Basically, they can generate messages either from scratch or by mutating parts of an
existing one. Mutation is often simpler since there may not be actual knowledge of the current
protocol to flip a few bits. However, random fuzzers which do not use any knowledge of the
underlying protocol are often less effective.

In contrast, generation from scratch must have certain clues about how it must proceed to
create a single message, otherwise there is an extremely low chance to generate messages that pass
the lexer (e.g. been discarded because some mandatory fields are missing). Usually, specifications
taken from the protocol are used to manually construct such guidelines. C. Miller [105] made a

*?http://www.fuzzing.org/ last checked on December 2008

Z3http://peachfuzzer.com/ last checked on December 2008
*http://autodafe.sourceforge.net/ last checked on December 2008
*Shttp://www.beyondsecurity.com/ last checked on December 2008

*6http://www.codenomicon. com/ last checked on December 2008

*Thttp://www.mudynamics . com/products/mu-4000.html last checked on December 2008
*®http://theartoffuzzing.com/ last checked on December 2008

*http://www. immunitysec.com/resources-freesoftware.shtml last checked on December 2008
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survey of Mutation vs. Generation-Based fuzzing where he states that a generated-based fuzzer
can execute 76% more code than with mutation-based fuzzer. A generation-based approach must
create the message from scratch, thus messages can miss or have redundancy of some arguments.
Also, it should be considered in terms of message diversity, that selection proportionally depends
in the specifications given in the guidelines. Indeed, mutation techniques will consequently
modify minor sections of the message maintaining a structure similar to the original message.

Syntax fuzzers can have an engine independent of the environment in which they are running,
then the message creation can be sub-classified in Random, Block-based, Dynamic Generation
and Grammar-based fuzzers [132] depending on the protocol knowledge and techniques used by
the fuzzing guidelines.

Random Fuzzers

Random generators are the most basic fuzzers. They represent the very beginning of fuzzing
and their techniques were able to discover numerous vulnerabilities, albeit their approach was
naive. Basically, this technique treats a message as a random sequence of bits or bytes - as seen
in figure 4.3 - which will be delivered directly to the testing unit.

Queelrlyl USER! [(Verisiion [1].0)] [(Ack [16])

Figure 4.3: Random fuzzer message interpretation

Fuzzers of this type do not have any knowledge of the protocol and are, at most, suitable
only for request /response protocols or file fuzzing.

Block-Based Fuzzers

Block-based fuzzers were first introduced by D. Aitel [17]. He pointed out that there are known
factors in a network protocol and therefore, one can delimit the effect of unknown factors. In this
way, the input space can be drastically reduced to only a subset of chosen parameters. Basically,
this technique fragments the message in blocks; each block may represent fixed strings (these
portions of the protocol that are static), random inputs (e.g. string, numbers, binaries) or a
programmatic function (i.e. functions able to calculate lengths, checksum, etc). Thus, if the
length of the inputs values from the generated message has been modified, the content length
can be re-computed to remain correct.

Figure 4.4 illustrates how the same message than the one from figure 4.3 can be viewed from

a block-based approach.
(Velrsion %) (Alck
1.0 10

Figure 4.4: Block-based fuzzer message interpretation

Most current fuzzing approaches are based on this methodology®’. Among them we find

3%nttp://www.fuzzing.org/fuzzing-software and
http://wuw.fuzz-test.com/tools/ last checked on December 2008
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SPIKE?!, Sulley®?, Peach®?, Autodafe®® and many others.

Dynamic Generation

Dynamic fuzzers are not aware of the protocol being fuzzed but, however, they use heuristics,
machine learning or evolutionary algorithms to induce the structure of the message. Thus, these
fuzzers have a learning curve, in which if their attributes are well specified, the effectiveness of
the fuzzing can increase based on feedback inputs or behavior analysis. Among the fuzzers of
this type we find GPF?5, Sidewinder [57].

Grammar Based Generation

Input data validation ideas based on grammar formats dates back to the early 80s [25]. In
this methodology B. Beizer proposes that every input must conform to a format, therefore he
suggests the Backus-Naur Form (BNF) as a context-free grammar. Then, certain guidelines can
be followed to use the grammar and to generate the messages, inserting subtle modifications which
will generate malformation into the message. Certainly, grammar based methods were considered
as fault injection since they generate the messages based on a valid specification. However, the
work done by R. Kaksonen [83] was the first to take a grammar based message generation in
the fuzzing context. This work represented the basis of the well known Mini-Simulation Toolkit
from PROTOS.

Grammar based fuzzers are defined using context-free grammar. Their messages are created
by the reduction of rules defined in the grammar. Eventually, a rule may be reduced to a function
that may compute its value from a segment of the message (e.g. checksums, content lengths).
Figure 4.5 illustrates the granularity in which a grammar based approach can represent a message
being fuzzed. It can be interpreted as a tree representation induced from message based on a
free context grammar, where the representation is a top-down left-right reduction of the items
in the grammar and the leafs represent the content of the message.

Velrsion 1.0

Figure 4.5: Grammar based fuzzer

3mttp://www. immunitysec. com/resources-freesoftware.shtml last checked on December 2008
32http://www.fuzzing.org/ last checked on December 2008

33http://peachfuzzer.com/ last checked on December 2008
34http://autodafe.sourceforge.net/ last checked on December 2008

3 http://www.vdalabs.com/tools/efs_gpf.html last checked on December 2008
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4.6 Advanced Techniques for Fuzzing

“Program testing can be used to show the presence of bugs, but never to show their
absence!”

Edsger W. Dijkstra3

At the beginning, fuzzing approaches did look more like a random walk in a search space [104].
The search space is the sequence on the input data and the objective of its search is to find the
inputs that lead to the discovery of one or several vulnerabilities. There are no standard metrics
to evaluate the effectiveness of a fuzzer, however the basic ones relate to the speed to find
unknown or known vulnerabilities or to the number of substitution of strings based on the values
contained in a library for each of the fuzzed variables. Obviously, these types of metrics are not
valuable in term of effectiveness. For instance, which fuzzer will be better? one that finds only
one type of vulnerability as soon as it is launched or one that takes significantly longer but is
able to discover a wider range of vulnerabilities types.

In the following sections, further research in the topic will be briefly described. These ap-
proaches have proposed search space explorations techniques such as code coverage tools, feed-
back, statefulness among others to improve their efficiency. Efficiency is associated with rapidly
detecting highly relevant zones in the attack surface space and knowing when to stop a fuzzing
process. In fact, the attack surface is that portion of the code that is reachable by the the ex-
ternal data. These advanced methods seek to test as much code as possible, therefore trying to
modify entries to execute sections of the software which are less frequently used (e.g. deprecated
libraries, proprietary features). They assume that these libraries were subject to less intensive
testing and then possible some flaws may arise. This heuristic may take into account the impact
that a given input (generated by the fuzzer) has on the target.

4.6.1 Stateful Fuzzing

Several applications rely on protocols which are session based, thus each of their current action
will be reflected in the future of the session (i.e. they are stateful). Therefore, some of the
information currently sent to it may not be immediately used but needed for generating a future
request. Assuming that some specific information can trigger certain flaws, but only if used, we
give a concrete example.

For instance, the Contact header of a SIP message is a mandatory header. It is used to
know the location from where the remote entity can be contacted. During a SIP transaction,
implementations just reply to the message in the currently open channel (i.e. the same port
and address from where the message was received). However, there are cases where one of the
endpoints needs to initiate a new request - or transaction - then there is a need to create a new
channel. Thus, the new channel will be created using the information obtained from the Contact
header. So, if the Contact header was initially crafted and improperly filtered by the application,
the flow won’t be triggered until the implementation needs to generate the new request.

Usually most fuzzers don’t consider such statement and they send one message after the other
in order to observe how the target unit responds to them individually. Indeed, there are no links
between the sequence of sent messages (i.e. they are stateless). Few stateful approaches can
be found in the literature, among them approaches like Mini-Simulation Toolkit [83] and Bug
Catcher [61]. The later describes a simplistic method where message transitions are described
using a context-free grammar. This approach is more suitable for reaching a context in the
protocol rather than fuzzing (e.g. authenticating) and afterwards applying the fuzzing techniques.

36Source: Notes On Structured Programming, 1970, section 3, On The Reliability of Mechanisms.
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Indeed, they won’t be able to keep track of messages that are out of the session order, which in
fact could as well raise possible vulnerabilities.

Interstate |77] and Snooze [22] propose a follow up list of messages described in a meta-
language which defines the sequence of messages which has to be sent during the test. However,
this list of messages is rather naive giving a weak sense of statefulness.

In contrast, some interesting work has been developed by D. Lee et al. [90], where they
construct an automaton to induce from the ongoing messages in the network, the current state
of the devices. A different approach has been taken by E. Bayse et al. 23] where the construction
of the state machine is based on the protocol specification. The novelty is based in extracting a
set of properties from the state machine specification, called invariants. Thus, these invariants
describe the most important properties implementation behavior. However, the approaches 23,
90] analyses the state machine of the application focusing only for passive testing. Y. Hsu et
al. [80] extended this approach to induce the state machine of the protocol - based on previous
traces - in order to simulate the behavior of the protocol to be fuzzed, however this approach does
not have any knowledge in the protocol and many subtle details can not easily be discovered.
Thus, making it not really suitable for complex protocols (like SIP).

4.6.2 Unknown Protocol Fuzzing

Sometimes, the specifications of a protocol are not available, or too complex in order to take
them into account when designing a specific fuzzer. In many cases, obtaining these specifications
is an impossible process, as it was the case of the SAMBA project which took 12 years to fully
reverse engineer the Microsoft SMB protocol [134].

Automatic protocol reverse engineering is a complex and difficult problem. It can target
different levels. In the simplest case, the analysis only examines a single message. Such ap-
proaches are typically deployed as proxies which are kept in middle of the traffic of two normal
endpoints and mutate random bits in the network flow®”. A more general approach considers a
set of messages of a particular type. An analysis process at this level would produce a message
format specification that can include optional fields or alternative structures for parts of the
message. Typically, the message semantics inference is addressed by bio-informatics algorithms
(e.g. alignment) by approaches like the Protocol Informatics Project (PI) [24]. Finally, in the
most general case, the analysis process operates on complete application sessions. In this case,
it is not sufficient to only extract message format specifications, but also to identify the protocol
state machine. Moreover, before individual message formats can be extracted, it is necessary
to distinguish between messages of different types. Different state machine inference algorithms
have been proposed [44,80,91,108], all of them based on observed traces. However only [80]
used the inferred state machine for doing fuzzing while the other two used it for simulating the
behavior of the observed protocol.

4.6.3 Feedback Fuzzing

Feedback gathered from the assessed platform can be used to evaluate and drive the fuzzing
process. It is important during a fuzzing process to cover as much as possible executed code
in a target application and to be able to fine-tune and learn when and how to shift the fuzzing
process. It is also essential to know, in a fuzzing scenario, when to stop because no other step can
provide any valuable advance. A new research line focusing on the generation of smart fuzzing
approaches, capable of assessing their impact in terms of code coverage, memory impact and
capable of evolving during a life-cycle is described below.

3Thttp://www.theartoffuzzing.com last checked on December 2008
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The search space for fuzzing is quite big depending on the type of protocol being tested.
Assuming a simple snippet of a C program as shown in Figure 4.6, the integer entry value may
have 232 possible values for which only one (value “3”) will execute a new section of the code. In
such terms, it is highly improbable for a fuzzer to pick the “magic” value.

def check( value ):
if value ==
readData ()
else:
continue

Figure 4.6: C code snipped

As it is not always possible to get the source code of the application, the methodologies
Whitebox and Graybox fuzzing are named depending in if the source code or binary is avail-
able, respectively. In current blackbox fuzzing, few feedback can be used to drive the fuzzing
process rather than the replies or behavior from the application. Whitebox fuzzing can lever-
age code path related information to generate feedback for a fuzzer and to shift its fuzzing
engine [38,51,55,68,69|. Feedback should observe deviations in the target with respect to esti-
mated behavior as a good indicator of the potential of the current input sequence. Also analysis
of the code execution, memory operations and tainted data propagation monitored in a virtual-
ized environment could help to improve the techniques. Whitebox and graybox activities can use
this in order to make smart and intelligent fuzzers, capable to learn from their experience and
perform efficient fuzzing. Then, the fuzzing process is in essence a two players repeated game,
where the fuzzer is in fact playing a strategy with the target equipment.

Recent work [51] combined techniques on identifying segment blocks into the binaries reached
by inputs that can be used together with evolutionary algorithms to improve the code coverage.
Further on, [38] extended some ideas coming from symbolic computations in the automatic in-
strumentation of executable. Symbolic input is executed and traced by the proposed framework.
This approach makes it possible to run a single input and explore multiple execution paths. It
suffers from the drawback that access to the source code of the tested application is required.
From this point of view, this approach is closer to static analysis code approach than to fuzzing.
The level of instrumenting the target application might not be so strict and requires access to
the original source code. Similarly, C. Pacheco et al. [109] test JDK libraries where they create
a set of randomly generated sequences. Each sequence is linked to an existing method, and
therefore in each new generation the method’s arguments are filled with other sequences found
in the set that matches their type. Metaphorically speaking, it creates puzzles pieces which
may result in a program. However, sequences may be filtered based on their output execution
and avoid duplicated structures. A more generic approach is described in [69], where constraint
solving is the underlying model to generate input data. New input data is generated by running
somie initial seed data, analyzing the constraints encountered in the control flow of the program
and inducing how the input data will satisfy the constraints; then the problem is reduced to
a constraint optimization problem. One promising introduced idea there is that heuristics and
more specifically generational search might be useful to explore the search space. Similarly to
the previous approach, the model is whitebox oriented, but only access to the executed machine
code is required. In [68] the authors extended their approach to also use grammar specifications
to improve the seed for the whitebox approach. Thus, scoring the grammar token, the generated
messages can evolve to cover a wider area of the source application. The authors of [55] couple
a genetic algorithm inspired search model with a memory instrumentation technique in order to
drive a fuzzing process. Indeed, they identify the flow of the program that is guided by tainted
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data (i.e. variables that they had filled directly or indirectly by program inputs). Once identified
the coverage of the tainted data, the flow of the application can be modified by changing the
branch values in the machine code. This approach allows the system to check a wider area of
code but it has many limitations, as for instance, the executed code may never be reached (e.g.
if the machine code was modified just before the input data was filtered) and also lacks code
tracking support in the target application.

4.7 Summary

Software flaws are more exposed than before since networks (e.g. Internet) are making those
implementations reachable to almost everyone. Therefore, testing tools are highly used in the
development process as well as afterwards by researchers and attackers. One discipline that lately
got a lot of attention is fuzzing. From its naive beginning, it was able to find huge amounts of
vulnerabilities, flaws and errors. As millions have been spent to repair damages from software
attacks, security becomes a must rather to be considered as a feature. A lot of investment and
research is on the way and new techniques are constantly been proposed. In the thesis, two
novel contributions in the fuzzer context has been proposed, described in chapter 8. First, no
current technique describes a full stateful testing. The few existing approaches address a vague
definition of states, where everything has to be manually coded and there is no underlying checker
to observe what could be abnormal traffic or not (related to the software state). Therefore, we
address a stateful approach to test SIP implementations which merges active and passive testing
in order to guide the test and evaluate it at the same time.

The second contribution improves the message syntax generation model. Advanced existing
approaches modify syntax inputs by feedback from the source/machine code or through the
use of a BNF to guide the construction. Either they construct a message from scratch (those
who used a BNF) or mutate an existing seed to obtain derivations from the message (feedback
oriented). However, no-one considered an approach where mutations can be based on BNF
grammars using statistic measured from existing traces. Indeed, those statistics may allow to
scale to more complex BNF grammars and to provide a wider diversity of messages (still close
to what could be acceptable parameters of a message). Thus, we address this issue where the
main key to improve the message generation based on statistics is to has a syntax parser as well
as a syntax fuzzer generator.
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Chapter 5

Assessment

The best approach to avoid intruders to get into the network is to have the latest software updates,
restrict already known vulnerable services and the most important of all, periodically perform
comprehensive assessment tests. For these tests, network devices and hosted services must be
automatically discovered by the assessment team and once discovered the devices must be tested
for potential vulnerabilities. This topic is the main theme of this chapter and derived in the
following publication [9]. Our work was challenged by providing an automated approach capable
to be accurate in the discovery of the VoIP infrastructure, perform user driven attacks and allow
dynamic extension with security plugins. The major challenges were posed by the numerous types
of services that must be checked, the security constraints that exist, and additional firewalls and
NAT devices that do increase the difficulty of an accurate fingerprinting and discovery phase.
The three main challenges that an automated assessment must meet are:

1. Discover as much as possible the topology, the services and the configuration running on
the devices in the network,

2. Store and provide all the information gathered in an easily usable manner,

3. Launch different assessment tests, discovery and/or attack actions using the information
acquired.

It is worth noting that this approach is not meant to be worked out at once, but rather
progressively, in order to obtain all the information related to an assessment.

An architecture overview of the assessment framework is shown in Figure 5.1 where it is
possible to differentiate the three tasks previously mentioned. A more detailed description of
these concepts is given below. Note that the architecture design allows new capabilities to be
dynamically added as plugins into the corresponding levels of the implemented tool.

5.1 Discovery Actions

POf and Nmap tools are found on the lower levels of our discovery tools selection, where they
identify different operating systems or applications which are running on specific devices. Nmap,
as an active scanner, provides more output, but it is easily detected by IDS. On the other hand,
pOf is hard to be discovered and is also able to detect signatures of devices behind a firewall or
NATs. Meanwhile, the results offered by passive discovery are limited or incomplete as O. Arkin
describes in [19]. On top of them, a set of tools (described below) are found to fill the different
layers of the information model. The Cisco Discovery Protocol [2] (CDP) monitor allowed us
to collect even more information and helped to build a network topology. This protocol is
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Figure 5.1: Security assessment framework architecture overview

proprietary, but provides the most valuable source of device level information. Concerning the
SIP protocol, two fingerprinting detectors specific to this protocol complement the information
gathered by the other tools. Finally, the SIP monitoring manager is able to detect which is the
current state of a SIP device. All different pieces of information from the different tools are
merged together in order to provide a wider view of the current network.

SNMP Manager

A few VoIP devices support SNMP and if the latter is not properly secured, important infor-
mation can be leaked out by just interrogating the SNMP agent on the device. This entity is
capable to do basic SNMP brute forcing and retrieve management related data to be fed into
the assessment module.

Cisco Discovery Protocol (CDP) Manager

The Cisco Discovery Protocol [2] is a proprietary protocol used by Cisco devices to advertise
themselves and discover other devices in the network. The objective of this protocol is to broad-
cast the physical configuration of a device to its connected neighbors, thus being useful for the
determination of the network topology. The packets generated by the entities supporting this
protocol are distributed through multicast and contain relevant information. In the case of SIP
phones, a CDP packet exposes a range of data: the actual device model, the firmware version,
the device ID (which represents the name of the configuration file if this one is retrieved from a
TFTP server), the MAC and IP addresses, the VLAN Domain, and some other less important
information. In the functional context, every device periodically sends CDP messages to the
multicast address. Cisco entities which support this functionality store the information received
to be used as needed. Tools like Yersinia®® and IRPAS3? are instantiated in this module because

3®nttp://www.yersinia.net/ last checked on December 2008
*nttp://www.phenoelit.de/irpas/ last checked on December 2008
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of their ability to monitor CDP packets and launch different attacks.

SIP Stack Fingerprinting

Similar to pOf and Nmap, which use signatures to discover the operating system and running
services, additional VoIP specific fingerprinting is possible. One possible solution is the one
presented by Hong Yan et al. [145] which uses passive and active scanner techniques to find
out properties about the SIP entities. The above mentioned work provided a table describing
vendor and device specific particularities in their respective SIP stacks. This allows to identify
different implementations and to classify them accordingly. For the active discovery part, the
idea is to send "OPTIONS" messages and to check the returned set of capabilities. Depending
on the answer to malformed messages, the order in the fields and/or the order in the capabilities
this method is able to identify some fingerprints. Although a limited scope of devices can
be fingerprinted now, an updated database of fingerprint signatures might be a very accurate
method.

SIP Syntax Fingerprinting

A second approach for fingerprinting SIP traffic is proposed in this manuscript (Chapter 6).
Different with respect to the SIP stack fingerprinting, this approach is passive and does not
fingerprint the stack but the message syntax. It is an automated learning process for which the
database of signatures can increase more easily if traces from the device are properly found. Its
signatures are based on the structure of the message rather than the lexicon as it is explained in
the following chapter.

SIP Monitoring Manager

This module is in charge of classifying all the information related to SIP negotiation. Using
intercepted packets, it detects the current state of a phone (David Lee et al. in [90] demonstrated
it using the OSPF protocol, but the same approach can be achieved for the SIP protocol). From
isolated packets carrying information like the out-bound proxy, the SIP entities which the packet
has to traverse, etc. can also be recovered.

5.2 Information Model

The main objective of our Information Model is to represent in a structured fashion all the
gathered information and to simplify the access to it for any possible assessment. It represents
the topology of a network, provided services, applications and any relevant information that can
lead to find vulnerabilities.

Standards like the Common Information Model (CIM) [4] describe a sound and commonly
used way to design an Information Model. Concretely, it defines a conceptual schema, where it
specifies how elements are represented. It is based on UML from which it leverages the object
oriented modelling.

The gathered information is obtained in different ways and previous sections in this chapter
showed how discovery actions lead to such data. The design objectives must allow for an enhanced
usability and capability to represent security related information as well as serve for future
reuse. The main module contains a collection for every entity (i.e. devices, services or types
of configuration) such that checking for one device in particular should be easily done. The
navigation in the model should also allow starting from an entity and getting all the others
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pieces of information related to it. A simplified UML diagram of the model is shown in Figure
5.2,

The main module in the Information Model is the Device class, which contains information
of the discovered entities: OS, version, etc. It also includes the settings and the running con-
figuration, which are not necessarily the same. The first is related to the meta-configuration,
i.e. the values defined to configure the device, while the second are the values used by the
device. To illustrate such a case, we define the settings of the IP addresses to be either stati-
cally or dynamically configured while the actual IP address of the device belongs to the actual
configuration.

Each Device class is associated with a list of Service classes which represent the services
hosted by it. The Service entities that are primarily concerned in this model are the ones related
to SIP entities:

DHCP Service: if present in a network, some entities depend on it to obtain their IP address.
Also, extra information can be obtained, as for instance the routing gateway IP, the DNS
server IP, a TFTP server IP, etc. If this service is compromised (i.e. fake IPs information
is given by the service), the attacker can set up its own service and do malicious action as
explained below.

Routing Gateway: if this service is compromised, the attacker can act as a man in the middle
and filter, modify or intercept the VolP traffic.

DNS Service: entities rely on it to resolve IP addresses. Once the service is compromised, the
attacker can resolve URL names to an IP address which is not the real one and for which
he/she is providing a rogue service.

TFTP Service: many SIP phones request servers configuration information (i.e. files), that
are used for configuration purposes, from TFTP. If this service is compromised, the devices
relying on it will be under the control of the attacker.

NAT Service: in a SIP environment it presents an important role because its existence will
modify the payload transported at the application level. In order to fake information and
to be as convincing as possible, this information has to be well known.

Special interest is focused if the entity provides a SIP service. All SIP traffic is collected for
each discovered SIP entity. The traffic is saved following the conceptual structure of SIP Dialogs
and Transactions (described in section 1.1.4). Indeed, each packet is decomposed in the fields
corresponding to underlying transport layer, SIP (including the body message, e.g. SDP) and
RTP messages. The SIP configuration is as well saved following the architectural components of
STIP (described in section 1.1.1). For instance, which ports the entity uses for SIP or RTP traffic,
which user name, Registrars or Proxies are configured, etc.

Concerning the Information Model, the data can be acquired by two different interfaces which
provide more suitability for different tests and attacks.

Classical type: this is the classical syntax of Object Oriented programming languages to nav-
igate through the attributes of classes.

Filtering type: this technique shows an approach focused on the use of filters. Each entity in
a class has a function associated to it with the same name as the attribute. This function
takes as argument the parameter "filter", which consists of a string that can be validated in
each of the current entities. Only the entities satisfying the filter value will be returned in
a collection instance. Such a collection provides the same methods and the same attributes

70



1L

welSerp TN ) [PPOW UOIYRUWLIOU] g 'C 9INJI

Setting

dhcp-enabled : String

Configuratio

IP[*]
TFTP-IP
- DNS-IP
TFTP-Client Route-IP
File
IP N
Opcode 0.
ses
TFTP-Service
TFTP-Configuratio 1 files [*
repository : string
DHCP-Configuratio DHCP-Service
uses
authoritative : boolean 1 IP-pool [*]

DNS-Configuratio

authoritative : boolean

MAC-IP_Association [*]

RG-Configuratio

static : boolean

NAT-Configuratio

PortFoward [*]

uses DNS-Service
1
Domain-IP_Association [*]
ulses Routing-Gateway-Service|
routes [*]
uses NAT-Service
1
External-IP
1

1 | SIP-to-...-Gateway

uses

SIP-Message SDP-Message
1 0.1
Method
From compose
To
Device ia [
packet via [*]
OS : String 0.%
1 |version : String _I;(I;Om "
MAC-Address : String K l—
1 protocol composed
RTP-Session
0..* From d
o compose
Codec
hostedServices 0.1
0.*
Servi SIP-Dialog 0..* 1
ervice
From SIP-Transaction
software SIP-Entity | g.* 0.*% |To 1 0.*
version <] I Call-ID CSeq
[ listening-port Via Branches
account
user
pass
SIP-UA ; SIP-Registrar
- * 1 *
SIP-port 0.. L 0.. Users [¥]
RTP-port
updatds
4 d 0. 1 - uses
1 | 0..#0gge o SIP-Location uses
User_Location [*] 1 uses \
1
uses 1 SIP-Redirect
Redirection_IP [*]
1
uses

SIP-Proxy

NATAware

Stateless : boolean|

J9POJY UOUDUWLLOU] "F°C



Chapter 5. Assessment

declared by the items contained in it and its functionality is to map the methods and
attributes to every one of its items.

To illustrate the basic concepts of both syntaxes, consider an example where one desires to
retrieve all the TFTP service instances from the devices in the network (i.e. the ones identified by
the discovery tools), which contain the specific file "SIPO00B46D9CB86.cnf" in their repository.
Supposing that the Model variable is an instance of the Information Model, the two possible
ways to satisfy that request are shown below.

Classical type:

for device in Model.Device:

lltftplist = []
9
: for service in device.hostedServices:

U

if isinstance(service,TFTP-Service):

if "SIPOOOB46D9CB86.cnf" in service.files:
6 tftplist.append(service)
return tftplist

~I

Filtering type:

1| Model .Device () .hostedServices(
2 filter="""isinstance(self,TFTP-Service) and
3 >SIPO00OB46D9CB86.cnf?’ in self.files""")

It is worth noting that those two techniques can be freely interlaced.

5.3 Writing Assessment Tests

Once some necessary information was obtained, different kinds of scripts are launched. Those
scripts basically exploit some known vulnerabilities to show the degree of exposure of the system.
Also, other scripts retrieve new information that is added to the Information Model.

In order to launch different attacks, the framework provides a repository of scripts for which
the Information Model is used to represent the necessary data. Among the scripts, attacks like
ARP poisoning, Spanning tree attack, DoS, etc. can be launched derived from tools like Yersinia
and TRPAS. Other SIP related scripts are SIP-Registrar user enumeration, eavesdropping and
RTP play-out, which are instantiated in the fuzzy packet tool [8].

The Attack/Vulnerability repository also allows to store new scripts by simple addition of
attacks files. On the fly dynamic testing is possible by our Scripting Program environment which
offers an interface to create, try and modify those scripts.

To design an assessment test in order to achieve a complete assessment, multiple conceptual
solutions exist, among which the more important are Attack Trees, Attack Graphs, Petri’s Net-
work variants, etc. [47,122,126]. Our choice for the Attacks Trees design was made for the sake
of simplicity, in order to illustrate possible attacks. Once the achievement of a possible attack
explained, we proceed to show how it can be accomplished in our scripting environment.

Attack trees are considered to be limited in their functionality, but they provide a good
representation of the possible assessment test. In the following an attack tree will be exemplified
and we will explain how to perform it using the Information Model described in section 5.2 and
the Scripting Environment described in section 5.3.2.

5.3.1 VoIP Attack Tree Example

Figure 5.3 shows an attack tree example where the main objective of this is intercepting a call
(extra boxes that are used for the ease of the presentation).
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Intercept
a Call

Modify the UA Impersonate
Configuration a SIP-Proxy
Gain remote seta ARP
Access SIP-Proxy poisoning
/T\
Scan test known Discovery type,
Ports | |vulnerabilities firmware,etc
of the Device
— - = = = = — — — — — —
" box A Alter TFTP
related Services
/
/ and \
Alter TFTP — L.
/ : box 3
Service Devices gets \
/ | | Configuration \
o —_— Dynamically
1 from TFTP
Fake / \
box 1 B\ / Modify TFTP \
box 2 | Repository \ / and |
and \ /
/ \\ make device | | Discovery type, “
redirect Seta | / and retrieves new| | firmware, etc
/ TFTP IP TETP '/ |||configuration|| of the Device
/ Alter DHOP | | Obtain write . i
/ Service access 1o the Provide new ‘ ‘
. configuration file
A TFPT Repository ‘ ‘
Device gets | | Seta ARP ‘ - =
TFTP IP DHCP| |Spoofing |
Lfrom DHCP |
- - - - - - N N N N N - - N N 1

Figure 5.3: Attack tree example

This example shows two possible main branches to achieve this goal.

1. One approach in which the end-devices will not have to be exposed would be to intercept all
the out-going SIP transit traffic. This can be possible if, for example, the out-going proxy
of the network is impersonated. The next example describes this attack that requires two
actions to be done together: 1) Set up a rogue SIP-Proxy in order to provide the needed
services and 2) alter the default route to reach the original proxy via the rogue one. There
are several ways to achieve the latter action, like for instance ARP poisoning, Spanning

Tree attacks, DNS poisoning.

The second approach aims at changing the configuration of the SIP User Agent. It also
shows some possible ways to accomplish it.

(a) The first goal is to gain remote access to the device (if possible), which can be done
if the software is not up to date, for example. The steps described next aim at
discovering as much information as possible, and the use of tools like Nmap help
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to discover the open ports on the device as well as running services on each of them
(including the version and software). Once all that information is processed, databases
of known vulnerabilities as US-CERT*?, can be searched for the respective software
and version, and one can then check for known vulnerabilities and exploit them.

(b) Secondly, the assessment tester can alter the services which a STP UA is relying on (e.g.
DHCP server, TFTP server, etc.). Thus, those services can be compromised so that
every UA retrieving its configuration from the TFTP server gets rogue information,
which allows the attacker to intercept all its SIP traffic. This step, shown in the
Figure 5.3, is framed in the Box A. Each of its sub-boxes (i.e. 1, 2 and 3) regroups
related activities. Note that Box 3 has to be done in conjunction with Box 1 or 2 and
only afterwards, not as standalone:

e Box 1: This attack shows how to redirect all traffic to a rogue service. The first
thing that the attacker has to do is to set up a TEF'TP server. Once done, all the
traffic directed to the target TFTP has to be transferred to the machine running
this rogue TFTP service. One possible action to achieve this redirection is to
poison the network with spoofed ARP packets. This poisoning has to be done
just to the target devices or in switches close to the service. Other techniques
exist to accomplish the same, as, for example, Spanning Tree attacks, but are
out of the scope of this manuscript. Another solution to redirect the traffic is to
directly set up the IP address of the fake TF'TP server on the target device. This
can be easily done if the device is getting its TFTP TP address from the DHCP
service. If that is the case, the attacker can run such a service with this fake
information and overwrite the genuine data.

e Box 2: This approach shows a way where the files to be retrieved from the TFTP
server are overwritten. First the attacker has to know which files he wants to
overwrite or create. The identification can be done by a passive scanner which just
reads traffic on the network and interprets messages under the TFTP protocol.
This is possible, since no encryption is usually used in this step. Additionally,
some devices use a file name that is built using well know prefixes and postfix
attached to the MAC address of the device. Once the files are known, the TFTP
server can be tested to see if write access is granted on it and if possible, these
files are modified with rogue configuration data.

e Box 3: Finally the objective of this sub-tree framed in the box is to identify which
are the devices that retrieve their configuration from the TFTP servers and make
them reload the new configuration. The identification can be done as explained
in the Box 2 by a passive scanner which is listening to the TF'TP protocol. Once
the TFTP dependent devices are identified, information concerning their OS,
software, version, etc. will help to find vulnerabilities that will force the device
to retrieve the new configuration (e.g. reboot the device).

It is worth noting that those attacks are very naive and if they accomplish the objective, it is
very probable that they will be detected by an IDS. The contribution of this example is to show
how automation of these tasks can be done.

5.3.2 Scripting Environment

This extension represents the active assessment part of the architecture. It provides an envi-
ronment where pre-defined tests can be retrieved from a repository and where new ones can be

“Ohttp://www.kb.cert.org/vuls/ last checked on December 2008
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generated on the fly, with the possibility of storing the procedure in the repository for later use.

One of such scripts is the SIP Messages Fuzzer. Security testers of protocol implementations
have shown that malformed message fields are able to crash or exploit some entities. In a
well known case, only one out of nine SIP phones was able to pass the tests performed by
the “PROTOS Test-Suite: c07-sip” [135]. One single test may contain one or more exceptional
elements which can range from exceptional IPv4 addresses to malformed tags. The tests are
very simple and mostly probe the robustness of the parser, but they show the weakness in most
implementations. Further on, chapter 8 focuses in the searching of vulnerabilities using fuzzing
techniques and described one of the main contributions of this manuscript.

As the core implementation and the wrappers (i.e. wrappers for the external tools used) are
coded in Python, all tests are specified as a Python script and the interactive environment is a
derivation of the one from Python.

Python Language Embedding

Lately, tools like scapy®! (a Packet Manipulator Program) are gaining popularity, mostly because
their usability and flexibility of programming. Scapy allows the user to read and inject packets,
with all the desired custom options, in an extremely easy manner. Our approach was designed
with the same goals in mind, to include functionalities developed by these tools and comple-
ment them with information from application levels. Thus, the information included is the one
described in the Information Model which will provide all the data obtained by the discovery
actions. Meanwhile, the interactive environment corresponds to an extension of the Python in-
teractive environment which provides functionalities such as a low level packets generator and
pre-defined high level attacks.

Example Script

Figure 5.3 in box 1, shows a sub-attack that, as explained previously, tries to redirect the real
TFTP server IP to a rogue one.

To alter the DHCP Service, first a rogue server must be running in a vulnerable machine,
which will try to distribute the IP of the fake TFTP server.

To create an ARP spoofing attack the repository provides a predefined script, which may
require some information like the target IP, the IP of the device that has to be impersonated and
the MAC to redirect the packets. For such attacks, the application has to be launched inside the
LAN. The script attack is illustrated in Figure 5.4.

The second alternative to alter a TFTP Service described as Box 2 (Figure 5.3), i.e. for
discovery if writing access is granted, should proceed as in Figure 5.5.

Finally, the third box shown in Figure 5.3, which should work in conjunction with the box 1
or 2, requires that the device requests the new rogue configuration from the TFTP server. Some
SIP hard phones reboot after specific malformed messages or simpler they could reload the dial
plan by sending a NOTIFY message with the option event "check-cfg". The latter depends on
the current configuration. Figure 5.6 shows the last required script for the whole test.

5.4 Conclusion

Our current research, addresses the secure management of VolP networks. One of our main
work direction is an integrated system able to retrieve as much as possible the information of

Ihttp://www.secdev.org/projects/scapy/ last checked on December 2008
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### Retrieves all the Service instances of the devices ###
### which provides TFTP ###
>>> TFTPServices = Model.Services(filter=

"isinstance (self ,TFTP_Service)")

### Start ARP spoofing for each Server ###
>>> for tftp_server in TFTPServices:
tftpIP = tftp_server.Device.Configuration.IP

### For each of the IP of the clients of this TFTP ###
for clientIP in tftp_server.TFTP_Client ().IP:

### Launch ARP poisoning attack H##
>>> Attack.ARP_Poisoning/(
targetIP= clientIP,
impersonateIP= tftpIP,
fakeMAC= fakeMAC
)

Figure 5.4: ARP poisoning script

>>> from scapy import sril,IP,UDP
>>> from scapy.extras import TFTP

>>> grantedAccess = []

### Retrieves all the Service instances of the devices ###

### which provides TFTP ###

>>> TFTPServices = Model.Services(filter=
"isinstance (self ,TFTP_Service)")

### Check writing access for each Server H##

>>> for tftp_server in TFTPServices:
tftpIP = tftp_server.Device.Configuration.IP
for file in tftp_server.files:

### Use scapy to inject TFTP packets ###
p = sri(
IP(dst=tftpIP)/
UDP ()/
TFPT(dst_file=file,Opcode=WRITE_REQUEST)
)

H## Check the answer for writing access ###
if p[3].0pcode != ERROR_CODE:
grantedAccess.append ((tftpIP,file))

Figure 5.5: TFTP service alteration

the environment. Such data can be used by assessment tests and can show scenarios allowing to
identify where the flaws of the system are located.

In this chapter we mainly focused on VolP networks but we consider that this approach as
well as the architecture model can be extended to several other types of networks. We show how
accurate information from the network can be gathered, and next provide an Information Model
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>>>
>>>

H##
>>>

HH#H#

>>>

from scapy import sri1,IP,UDP
from scapy.extras import SIP

Retrieves all the UAs with the version that could be rebooted ###
sipUAs = Model.Services(
filter="isinstance(self ,SIP-UA)

and self.software = ?XXXX?
and self.version <= X.XX*"
)
Use scapy to inject the NOTIFY packets ###

for UA in sipUAs
UA_IP = UA.Device.Configuration.IP

p = sri(
IP(dst=UA_IP)/
UuDP () /
SIP(
Method="NOTIFY",
Event="check-cfg"
)
)

Figure 5.6: Reload dial plan using the NOTIFY message

capable to represent it in an appropriate way for assessment methods.

Three main contributions have been addressed: we propose a network information model
capable to represent the information required to perform VoIP assessment, we describe a VolP
assessment architecture and its implementation and we build a framework based on attack tree
modelling in order to represent and write VoIP attacks.
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Chapter 6
Fingerprinting

Security assessment tasks and intrusion detection systems do rely on automated fingerprinting of
devices and services. Most current fingerprinting approaches use a signature matching scheme,
where a set of signatures is compared with traffic issued by an unknown entity. The entity is
identified by finding the closest match with the stored signatures. These fingerprinting signatures
are found mostly manually, requiring a laborious activity and needing advanced domain specific
expertise. This chapter describes a novel approach to automate this process and build flexible
and efficient fingerprinting systems which deviated in the following publication [11]. This system
it is able to identify the source entity of messages in the network. A passive approach is followed
without need to interact with the tested device. Application level traffic is captured passively and
inherent structural features are used for the classification process. A new technique is described
and assessed for the automated extraction of protocol fingerprints based on arborescent features
extracted from the underlying grammar.

Most known application level and network protocols use a syntax specification based on for-
mal grammars. The essential issue is that each individual message can be represented by a tree
like structure. We have observed that stack implementers can be tracked by some specific sub-
trees and/or collection of subtrees appearing in the parse trees. The key idea is that structural
differences between two devices can be detected by comparing the underlying parse trees gen-
erated for several messages. A structural signature is given by features that are extracted from
these tree structures. Such distinctive features are called fingerprints. We will address in the
following the automated identification of them.

If we focus for the moment on individual productions (in a grammar rule), the types of
signatures might be given by:

e Different contents for one field. This is in fact a sequence of characters which can deter-
mine a signature. (e.g. a prompt or an initialization message).

e Different lengths for one field. The grammar allows to produce a repetition of items (e.g.
quantity of spaces after a symbol, capabilities supported). In this case, the length of the
field is a good signature candidate.

e Different orders in one field. This is possible, when no explicit order is specified in a set
of items. A typical case is how capabilities are advertised in current protocols.

We propose a discrimination method able to automatically identify distinctive structural
signatures. This is done by analyzing and comparing captured messages traces from the different
devices.
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6.1 Grammar Inference

6.1.1 ABNF Grammars

The key assumption made in our approach is that an Augmented Backus-Naur Form [41] (ABNF)
grammar specification is a priori known for a given protocol. Such a specification is made of
some basic elements as shown in Figure 6.1.

Choice between Sequence of 3 productions Non-Terminal

Query and Reply A/\» Productions

T— [ ==

—_— a“" n “ n *
Header Query” / “Reply” ) 1*SP Method
Rules \_(/' \_;/\
definition < Fixed Terminals Repetition from 1 on of the SP rule
I_A_\
Digit = %x30-39

Terminals Range in characters 0 to 9

Figure 6.1: Basic elements of a grammar

e A Terminal can represent a fixed string or a character to be chosen from a range of
legitimate characters.

A Non-Terminal is reduced using some rules to either a Terminal or a Non-Terminal.

e A Choice defines an arbitrary selection among several items.

A Sequence involves a fixed number of items, where the order is specified.

A Repetition involves a sequence of one item/group of items, where some additional
constraints might be specified.

Formally a grammar of the type consists of 4-tuple G = (X, N, P,ng) where:

Y = finite set of terminals (string literals).
N = finite set of non-Terminals.

P = finite set of mapping rules of the form P : N — e, where e is an expression as described
bellow.

no = a non-Terminal called the starting symbol.

An inductive definition of the expressions, where it is assumed that e, ey, .., e, are expressions
as well, is as follows:

e Terminals.

e non-Terminals.

Sequences e; .. e,

Choices e1 / .. / en
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e k-Repetitions e(t3) where 0 <i<k<y

Note that some assumptions were made for the sake of simplicity. All the other expressions
not mentioned (Character Classes Terminals, Incremental Choices, Sequence Groups, Specific
Repetitions and Optional Sequences) can be simulated by the previous expressions.

6.1.2 Structural Inference

A given message is parsed according to the fields defined in the grammar. Each element of the
grammar is placed in a n-ary tree which obeys to the following rules:

e A Terminal becomes a leaf node with a name associated (i.e. the terminal that it repre-
sents) which is associated to the encountered value in the message. Indeed, the established
order of the leaf from left-to-right is the message content itself.

e A Non-Terminal is an internal node associated to a name (i.e. the non-terminal rule)
and it has an unique child which can be any of the types defined here (e.g. Terminal,
non-Terminal, Sequence or Repetition).

e A Sequence is an internal node that has a fixed number of children. This number is in-line
with the rules of the syntax specification.

e A Repetition is also an internal node, but having a number of children that may vary
based on the number of items which appear in the message.

e A Choice does not create any node in the tree. However, it just marks the node that has
been elected from a choice item.

It is important to note that even if sequences and repetitions do not have a defined name
in the grammar rules, an implicit name is assigned to them that uniquely distinguishes each
instance of these items at the current rule.

Figure 6.2 shows a Toy ABNF grammar defined in (a), messages from different implementa-
tion compliant with the grammar in (b/c) and (d) the inferred structure representing one of the
messages in (d).

6.1.3 Grammar Paths

Grammar paths have been defined to provide the ability to navigate around the tree representa-
tion of the message, selecting nodes by a variety of criteria. Indeed, it may define a relative or
exact position. Besides, they will become quite useful in the tree comparison process as explained
in section 6.2.1.

A grammar path is basically a sequence of tag nodes starting from a specific node (usually
the root node unless otherwise stated) finishing in another node which must be a descendant of
the initial node.

Fach node tag in the tree representation of the message is represented in a grammar path
following different constraints depending on its node type:

Terminal items are represented in the grammar path with the regular expression or fixed string
that they defined.

non-Terminal items are represented by the rule name
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Message = Header 1*SP 1*( "(" Opt-Value ")") 1 Query USER (Version 1.0)(Ack: 1)
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Header = ("Query" / "Reply") 1*SP Method
3 Query NAME (Version 1.0)(Ack: 2)
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(a) Toy grammar

(c) Dialog between device B and D
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Header

Method
3 ]

[APra \ ALPHA | \ ALPHA | \ ALPHA |
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(d) Parsed structure from message number 2 of box (b)

Value : Alex

Ack : 1

Terminal

Terminal value

Non-Terminal
Sequence
Repetition

Filled shapes mean the
Choice Option is set

Figure 6.2: Parsed structure grammar

Choice items can be represented by the name of the chosen rule or by its appearance order in
the choice selections (starting from 0).

Sequence items are represented by the number that represent its order position in the sequence
(starting from 0). Note that the sequence itself is not specified in the path.

Repetition items are represented as (i), where ¢ is the order position as how it appears in the
message. Note that the repetition itself is not specific in the path as well.

It is worth noting that the use of wildcards are allowed, either quote(?) or star(*). Quotes
are wildcards useful to just match all the children from the current node. Note that if the current
step refers to a repetition, then it has to be encapsulated by parenthesis as if it was a position.
While the star represents a wildcard which will match all the nodes in the current subtree.

Figure 6.3 illustrates several possible grammar paths linked to one message representation.
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(c) Tree representation of a message

Figure 6.3: Grammar paths

6.2 Node Comparison

One of the challenges posed by this work was based on the automation of the signature discov-
ery, therefore an effective function for comparing messages is the corner stone of the approach.
Assuming that we have two SIP-URIs (i.e. SIP addresses) with a structure as shown in Figure
6.4, then it will be incorrect to compare a User Name with a URL even if they have syntactically
much in common. In fact, their lexicon is similar but their semantic is totally different.

Then, the underlying grammar of the protocol syntax becomes an interesting candidate to
automatically identify the semantic of the lexicon in a message. Therefore, the comparison of
messages resemble a comparison of trees as detailed in the following sections.

6.2.1 Node Signatures and Resemblance

Comparison between nodes is summarizes to two steps: 1) find an appropriate object that
represents the attributes of each of the nodes, called a Node Signature and 2) the resemblance
function is computed from the Node Signatures identified from the two nodes.

While comparing two nodes we expect that the comparison takes places over two semantically
equivalent nodes. It is worth noting that nodes inside a repetition may be equivalent regardless
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sructure | »1p- EEENNERSY  HEERE

comparison

Figure 6.4: Comparison challenges

of their order on it. Therefore, the guidelines for designing the Node Signature (for a tree or a
sub-tree) should follow some principles like:

1. As more items are shared between trees, more similar must be their signatures.
2. Nodes that have different tags or ancestors must be considered different.

3. In cases where the parent node is a sequence, the location order in the Sequence should be
represented somehow in the tree signature.

4. If the parent node is a repetition, the location order should not be part of the tree signature,
order will be captured later on the fingerprinting features.

Different approaches exist in the literature targeting different goals. P. Zezula et al. [146]
define a tree signature as an n-tuple where n is the number of nodes in the tree. Each item
represents a node in the tree and their order in the n-tuple depends in the pre-order of appearance
in the tree. The representation of each node is specified as a 2-tuple containing the label and
the post-order of the node in the tree. As a consequence the information from the signature,
like the node depths, cardinality, etc. can be easily acquired. More important checking whether
subtrees are included in other trees is straightforward. However, this approach is not as flexible
as we require, since the order of the repetitions is preserved. Thus, our fourth principle is not
satisfied.

S. Flesca et al. [62] present a structural comparison of XML documents were they encode the
document with a bijective function that creates a sequence of values. Those values depend in
a tag encoding and in a document encoding, for which they propose a multilevel encoding able
to give different results according to the node name plus the ancestor value. Once the encoding
is done, suppose seq =< ayg, .., a, >, they define a function f(i) = a; where 0 < i < n. This
function normalized is given as an input to a Discrete Fourier Transformation (DFT), which
conserves some good properties regarding the tree structure. Then, the comparison between the
DFT transformations defines the similarity of the trees. However, this comparison is rather non
intuitive and will match two nodes with similar subtrees even so they are semantically different.
Thus, this approach fails to satisfy the second principle, as it focuses on the matching based on
the subtrees with similar structures ignoring different ancestor tags.

Finally, the approach published by D. Buttler in [36] is the one closest to satisfy all the
principles. This method starts by encoding the tree in a set. Fach element in the set represents
a partial path from the root to any of the nodes in the tree. A resemblance method defined by
A. Broder [34] uses the elements of the set as tokens. This resemblance is based on shingles,
where a shingle is a contiguous sequence of tokens from the document. Between documents D;
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Partial Paths Occurrences
Header.0.’Reply’ 1

EEE E]Q.('.7 ;EiE 517.7 ;E]E 5[,
Header.1.?7

Header.2.Method.?
Header.2.Method.?. ALPHA . %x41-5A
Header.2.Method.?. ALPHA .%x41-5A."U’
Header.2.Method.?.ALPHA .%x41-5A.’S’
Header.2.Method.?. ALPHA . %x41-5A.’E’
Header.2.Method.?. ALPHA.%x41-5A.’R’

=] =] ] e e ] nof ro| | =

(strikethrough) Strikethrough paths are the ones considered as cosmetics.
(7) Quotes define that the current path may be any of the repetition
items.

Table 6.1: Partial paths obtained from figure 6.2 (d)

and D; the resemblance is defined as:

_|S(Di,w) NS (Djw)
5(Di,w)US(Djw)]

where S(D;,w) creates the shingles of length w for the document D;.

r(Di, Dj) (6.1)

Definition 1. The Node Signature function is defined to be a Multi-Set of all partial paths
belonging to the sub-branch of the node.

The partial paths start from the current node rather than from the root of the tree, but still
go through all the nodes of the subtree which has the current element as its root like it was in
the original approach of D. Buttler. However, partial paths obtained from fields classified as
Cosmetics are excluded from this Multi-Set. The structure used is a Multi-Set rather than a Set
in order to store the quantity of occurrences for specific nodes in the sub-branch. For instance,
to illustrate the difference, the number of spaces after a specific field can determine a fingerprint
signature in an implementation.

It must be considered that sibling nodes in a sequence item are fixed and representative.
However, sibling nodes in a repetition are not representative. This repetition items are thus
represented in the partial paths of the Multi-Set using a quote wildcard rather than using their
respective position in the repetition.

Table 6.2.1 shows the Node Signature obtained from the node Header in the tree of Figure
6.2 (d).

Definition 2. The Resemblance function used to measure the degree of similarity between two
nodes is based on the Equation 6.1. The S(N;,w) function applies the Node Signature function
over the node N;.

Using w = I allows to compare the number of items these nodes have in common though
ignoring their position with respect to their siblings for the case of repetitions.

6.2.2 Structural Difference Identification

Algorithm 1 is used to identify differences between two nodes which share the same ancestor path
in the two trees, where the functions Tag, Value, Type return the name, value and respectively
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Algorithm 1 Node differences Location
procedure NODEDIFF (node,, nodey)
if Tag(node,) = Tag(nodey,) then
if Type(node,) = TERMIN AL then
if Value(node,) ! = Value(nodey) then
Report_Dif ference('Value', node,, nodey)

end if
else if T'ype(node,) = NON —TERMINAL then
NODEDIFF (node,.childy, nodey.childy)) > Non_ Terminals have

> unique child
else if Type(node,) = SEQUENCE then

for ¢ = 1..#node, do > In a Sequence
NODEDIFF (node,.child;, nodey.child;) > #node, = #nodey
end for

else if T'ype(node,) = REPETITION then
if not (#node, = #nodey,) then
Report_Dif ference(’ Length’, node,, nodey)
end if
matches := Identify Children M atches(node,, nodey)
if 3 (i,7) € matches: i!= j then
Report_Dif ference('Order’, nodey, nodey)
end if
for all (¢,j) € matches do
NODEDIFF(node,.child;, nodey.child;)
end for
end if
else
Report _Dif ference(’Choice’, node,, nodey)
end if
end procedure

the type of the current node. Note that the following property applies:
Tag(node,) = Tag(nodey) = Type(node,) = Type(nodey)

The function Report Difference takes the type of difference between the two nodes and
reports it. Each time the function is called, it creates one structure that stores the type of
difference, the partial path from the root of the tree to the current nodes (which is the same
for both nodes) and a corresponding value. For differences of type "Value’ it will store the two
terminal values, for ’Choice’ the two different Tag names, for 'Length’ the two lengths and for
"Order’ the matches.

The function Identify Children Matches identifies a match between children of different
repetition nodes. The similitude between each child from node, and node;, (with n and m children
respectively) is represented as a matrix, M, of size n  m where:

M; ; = resemblance(node,.child;, nodey.child;)

To find the most adequate match, a greedy matching assignment is used. Children with the
biggest similarity score are match. If a child from node, shares the same similarity score with
more than one child from nodey, then the nodes having a closer distance (respecting to their
position in the repetition item) will match.

Figure 6.5 illustrates an example match. Boxes (a) and (b) correspond to the portion of the
tree representations been compared. The matching process first compute the Node Signature for
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each item on both trees (the repetition items are highlighted in blue). Box (c) shows the obtained
node signatures from the Ack nodes (i.e. the partial path, type and item values for each node).
It is worth noting that the partial paths list does not include the parenthesis items wrapping
each node. Those items are called Cosmetics nodes, which are required in the message in order
to be compliant with the grammar but they do not provide useful information. On the contrary,
they can erroneously match uncommon nodes; since their resemblance will be bigger than zero
just because of the delimiters even though they do not share any other similarity. Therefore, this
cosmetics nodes are no included in the signature.

The second step of the matching algorithm consists in computing a pairwise resemblance
between each repetition items of the two nodes. Box (d) shows the resemblance results for the
node signatures obtained from the two Ack nodes. Thus we can obtain the following matrix
using the Resemblance method with the path “Message.2.?”. The rows in the matrix represent
the children from the subtree in (a) and the columns the children from subtree (b). Therefore,
the bold numbers in the matrix represent the performed match based on their highest score.

.00 .00 .00

M=1 .33 .00 .00

.00 .61 .90

Message Message
1* 1*
(" Opt-Value bl (' Opt-Value ) ‘(" )|Opt-Value ') ' Opt-Value ) (' Opt-Value ') '(" )|Opt-Value ')
m Version b (" Ack [ﬂ ' Value ) ' Ack Eﬂ ' Value Eﬂ ( Value '
Vers-it-:t;l 1.1 Valu;.:.Alex Value: alex Valu.e-:.AIex

‘Ack’ HCOLON 1%
‘Ack’ DIGIT
* . *
%x30-39
SP o SP
o R
%x20 %x20
(a) Message number 2 of figure 1 (b) (b) Message number 2 of figure 1 (c)
S,NS,
Partial Path Type Nodea Nodeh ‘SAUSU‘ |S4QSB‘ S1USB
ACK.1.HCOLON.O Static Length 1 0 1 0 0
ACK.1.HCOLON.2 Static Length 1 [0] 1 [0] [0]
ACK.2 Static Length 1 2 2 1 0.5
ACK.2.(?).DIGIT.%x30-39 |Static Value 1 1" 1 1 1
ACK.2.(?).DIGIT.%x30-39 |Static Value ‘0 1 (0] 0
6 2 0.33
(c) Node signatures from the Ack nodes (d) Shingle information from the Ack nodes

where S = S(N_1) and S,=(N,1)

Figure 6.5: Performed match between sub-branches of the tree
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6.3 Fingerprinting Automation (Signature Discovery)

The overview of the training and classification process is illustrated in Figure 6.6.

Device Variant Identification Inter Device Features Significance

| Message x from device A | | Message y from device A | | Message x from device A | | Message y from device B |

Message Fingerprinting l
from

unknown

device

Figure 6.6: Fingerprinting training and classification

The upper boxes in Figure 6.6 constitute the training period of the system. The output is
a set of signatures for each device presented in the training set. The lowest box represents the
fingerprinting process. The training is divided in two phases:

Phase 1 (Device Variant Identification). In this phase, the system automatically classifies each
field in the grammar. This classification is needed to identify which fields may change
between messages coming from the same device.

Phase 2 (Inter Device Features Significance) identifies among the Invariant fields of each im-
plementation, those having different values for at least two group of devices. These fields
will constitute part of the signatures set.

When one message has to be classified, the values of each invariant field are extracted and
compared to the signature values learned in the training phase.

6.3.1 Phase 1: Variant Identification

One major activity that was not yet described is how non-invariant fields are identified. The
process is done by using all the messages coming from one device, comparing them and finding
the differences between each two messages using algorithm 1. For each result, Algorithm 2 is
executed in order to fine tune the extracted classification. This algorithm recognizes only the
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Algorithm 2 Fields Classification Algorithm

procedure FIELDCLASSIFICATION(dif ferencesg p)
for all dif f € dif ferences,, do
if dif f.type ==' Value') then
Classify _as_Variant('Value',dif f.path)
else if dif f.type ==' Choice’ then
Classify as_Variant('Choice’,dif f.path)
else if dif f.type ==' Length’' then
Classify _as_Variant('Length',dif f.path)
else if dif f.type =='" Order’ then
if not (V (4,7), (z,2) € dif f.matches :
(i<zANj<z)V(i>xzAj>z)) then
> Check if a permutation exists between the matched items.
Classify _as_Variant('Order’,dif f.path)
end if
end if
end for
end procedure

fields that are Variant. The set of Invariant fields will be represented by the union of all the
fields not recognized as Variant.

The Classify as Variant function stores in the list fieldClassifications, for each of the
differences, a tuple with the partial path and the type of the found difference (e.g. 'Value’,
"Choice’, "Length’ or "Order’).

Assuming a training set Msg set, of messages compliant with the grammar as

Msg =i, msg_set;

where n is the quantity of devices and msg _set; is the set of messages generated by device i,
the total number of comparisons computed in this process is

n  |msg_set;|*(Jmsg_set;|—1)
Zi:() 2

6.3.2 Phase 2: Invariant Identification

In contrast to the Fields Classification, this process compares all the messages from the training
set sourced from different devices. All the Invariant Fields -for which different implementations
have different values- are identified and saved as features. Algorithm 3 describes how these
features are recognized. The algorithm inputs are the fieldClassifications computed by algorithm
2, the Devices Identifier to which the compared messages belong as well as the set of differences
found by Algorithm 1 between the messages.

The add _Feature function stores in recognizedFeatures, the partial path of the node
associated with the type of difference (i.e. Value, Name, Order or Length) and a list of devices
with their encountered value. However, the 'Order’ type represents a more complex approach,
requiring a mapping function between the nodes in the repetition and their position on it.

Concretely, order features are represented as Partially Ordered Sets (POSet). The algorithm
requires two stages to achieve this poset. First, all the children nodes for the repetition items (over
all the messages) are extracted and their node signatures are computed. The node signatures are
stored as the items of the poset. Once the minimal set of signature items has been identified, the
second phase identify the matches of the repetition children into the existing items in the poset
(using the resemblance function). The order of the current repetition is then computed based on
how the items in the message match the ones from the poset.
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Algorithm 3 Features Recognition Algorithm

procedure FEATURESRECOGNITION( fieldClassifications, DevIDgp,
dif ferencesqp)
for all dif f € dif ferences,, do
if not (dif f.type, dif f.path) € fieldClassifications then

if dif f.type == 'Value' then

addFeature('Value', dif f.path, DevIDgy, dif f.valueqp)
else if dif f.type == 'Choice’ then

addFeature('Choice’, dif f.path, DevID,y, diff.nameqp)
else if dif f.type == 'Length’ then

addFeature(’ Length’, dif f.path, DevID,y, dif f.length,.p)
else if dif f.type == 'Order’ then

if (3 (z,2) € dif f.-matches : x # z) then

addFeature('Order’, dif f.path, DevID,,
dif f.match, dif f.children_nodesq.p)

end if
end if
end if
end for
end procedure

Assuming the earlier Msg set set, the invariant identification process will do the following
number of comparisons:

Yoo Imsg_set;| * Z;‘:H_l Imsg _set;|

From the fieldClassifications, only the Static fields are used to fill the recognizedFeatures. The
recognized features define a sequence of items, where each one represents the field location path
in the tree representation and a list of Device ID with their associated value.

The Recognized Features can be classified in:

e Features that were found with each device and for which at least two distinct values are
observed for a pair of devices.

e Features that were found in some of the devices for which such a location path does not
exist in messages from other implementations.

6.3.3 Fingerprinting

The classification of a message uses the tree structure representation introduced in section 6.1.
The set of recognized features obtained in section 6.3.2 represents all the partial paths in a tree
structure that are used for the classification process.

In the cases where the features are of type 'Value’, ’Choice’ or ’Length’, their corresponding
values are easily obtained. However, the case of an 'Order’ represents a more complex approach,
requiring some minor improvements.

First, the Node Signature from the node’s children are computed, as defined in Section 6.2.1.
Then, from the set of Order features, a matching is done to find the item in the set that has
most resemblance to the current item. Once the matching is obtained, the order of the children
is checked against all the existing orders for the feature. The devices where their order respect
the message order are then possible candidates for the classification.

Figure 6.7 illustrates some identified features for an incoming message.
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Feature associated
Field path Type Value
Message.2 Version, Ack, Value
\Message.2.?.1.0pt-Value.Version.1 1
Message.2.?.1.0Opt-Value.Version.4.DIGIT.%x30-39 1"

Message

'Version'

Figure 6.7: Features identification

Once a set of distinctive features is obtained, some well known classification techniques can be
leveraged to implement a classifier. We have leveraged the classification technique in a k-neighbor
approach where the device with bigger score is considered as the matching device.

6.4 Optimization Issues

This section presents two rules of thumbs for optimizing the training and as consequence, the
performance of the fingerprinting system. The first rule is described in section 6.4.1 which
maximizes the classification of fields out of the training set of messages. The second rule described
in section 6.4.2 modifies the parser to avoid possible problems with delimiters.

6.4.1 Classifying the Fields

Section 6.3.1 described how the system automatically discovers the classification of each field in
the grammar. This process depends on the comparison of the messages from the same device,
described in section 6.2. Whenever a repetition is found while comparing messages, a permuta-
tion between the children is searched. This permutation was based in the resemblance scores,
which represents the best matching alternative for the children nodes in the message comparison.
However, in this phase the interest is not to find the best match subtree but to classify as many
fields as possible. To overcome this issue, in contrast to use the best permutation for comparison
of children, all of the possible permutations are used, in this way the scope for classifying items
radically increases.
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6.4.2 Optimizing the Parser

The reader may have noted that in the Toy grammar illustrated in figure 6.2 (a) the presented
delimiters were “(” and “)” (parenthesis). This has been chosen for the sake of simplicity and was
used to avoid exposing a leak of signature information during the explanation of the fingerprint-
ing. Assume, the new rule “Message” to replace the rule defined is:

Message= Header 1*SP Opt-Value *(’;’ Opt-Value)

In fact, it does not represent an important change in how the messages are written but it
does represent an important fact in the behavior of our fingerprinting approach, even so, only the
delimiter was changed. We can observe that the first “Opt-Value” in the message is not reduced
into the repetition. As a consequence, if the order of Opt-Value items in the message is changed
and this involves the first item, the fingerprinting system won’t be able to detect it as it does
not belong to the repetition.

To solve such problems, when the parser is built, a search for delimiters is done simultaneously.
This search consists in finding all the repetition productions in the grammar in which their first
(or last) items represent some type of delimiters. A delimiter is found in the beginning (ending)
of a repetition if the right-most (left-most) sibling of the repetition is the same production than
the one that immediately follows the delimiter. Using the above “Message” rule, the 77 is a
delimiter because “Opt-Value” is a sibling and the right-most child of the repetition. For each
delimiter found, the rule is modified in order to fulfill the leaking problem by joining the item
inside the repetition as a choice between them. This new rule accepts a bigger language but will
still be able to match the original message causing no problem to the fingerprinting algorithms.
Taking as an example the Message rule, the modification will be as follow:

Message= Header 1*xSP *(’;’ / Opt-Value)

6.5 Conclusion

In this chapter we described a novel approach for generating fingerprinting systems based on
the structural analysis of protocol messages. Our solution automates the generation by using
both formal grammars and collected traffic traces. It detects important and relevant complex
tree like structures and leverages them for building fingerprints. It is different than the approach
of H. Yan [145] since we do not require manual observation of the messages in order to extract
the signatures and our process classifies message per message independently, using a passive
approach. The applicability of our solution lies in the field of intrusion detection and security
assessment, where precise device/service/stack identification are essential. Our work is relevant
to the tasks of identifying the precise vendor/device that has generated a captured trace. We
do not address the reverse engineering of unknown protocols, but consider that we know the
underlying protocol. The current approach does not cope with cryptographically protected traffic.
A straightforward extension for this purpose is to assume that access to the original traffic is
possible. Our contribution consists in a novel solution to automatically discover significant
differences in the structure of the syntax messages. As a result it allows us to classify message
per message independently of the previous ones.
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Experimental Results

We have implemented the Fingerprinting Framework approach in Python. A scannerless GLR
parser (Generalized Left-to-right Rightmost derivation parser) has been used (Dparser*?) in order
to solve ambiguities in the definition of the grammar.

We have instantiated the fingerprinting approach on the SIP [120] protocol. The SIP messages
are sent in clear text (ASCII) and their structure is inspired from HTTP. Several primitives -
REGISTER, INVITE, CANCEL, BYE and OPTIONS - allow to perform session management
for a voice/multimedia call. Some additional extensions do also exist -INFO, NOTIFY, REFER,
PRACK- allowing to perform presence management, customization, vendor extensions etc.

We have captured 21981 SIP messages from a real network, summarized in table 7.1. These
message belong to 26 different implementations, considering also that some of them are different
versions of the same implementation. Indeed, the collected traces belong to different networks
with different configurations from each of the devices containing a wide diversity of messages.

It was sufficient to train the system with only 15% of the 21981 messages. The training set
of traces for each device is proportional to the number of messages generated by that device,
however they were randomly sampled. Finally, the system was tested to classify all the messages
from the set.

The training phases has been easily parallelized. We did deploy it using 150 computers from
the Grid5000 platform*3. The computers were Xeon-Woodcrest, dual-core 64 bits with 2GB
RAM. Table 7.2 shows the efficiency of each phase of the process.

271 features were discovered among all the different types of messages. It is worth noting that
the features are not linked to the type of message but to the fields of them. For instance, even if
a specific type of message was never seen before, the system will be able to classify it based on
the common structures shared between the messages. Thus, the features represent items order,
different lengths and values of fields where non protocol knowledge except its syntax grammar
had been used. Between two different devices the distance of different features ranges between
35 to 198 features, where most of the lower values correspond to different versions of the same
device.

The classification process usually recognized between 10 and 58 features in one message and
it takes in average 0.06 seconds to classify a single message. We consider that this number can
be improved if a more powerful language (like C) is used instead of Python.

To validate our approach we used the trained system to classify all the collected traces. We
keep the following constrains to evaluate our classifier:

“’http://dparser.sourceforge.net/ last checked on December 2008

“3Experiments presented in this manuscript were carried out using the Grid’5000 experimental testbed, an
initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and
RENATER and other contributing partners (see https://www.grid5000.fr)
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Device Software /Firmware version

Asterisk v1.4.4

Cisco CallManager v5.1.1

. vP0S3-08-7-00

Cisco 7940/7960 P0S3-08800

Grandstream Budge Tone-200 | v1.1.1.14

Linksys SPA941 v5.1.5

Thomson ST2030 v1.52.1

Thomson ST2020 v2.0.4.22
v1.60.289

SJPhone v1.60.320
v1.65

. v0.8.1

Twinkle 709

Snom v5.3

Kapanga v0.98

X-Lite v3.0

Kphone v4.2

3CX v1.0

Express Talk v2.02

Linphone v1.5.0

Ekiga v2.0.3

Table 7.1: Tested equipment

Type of Action Average time Number or comparison | Total computed
per comparison computed time)

Comparison for 722 milisec 571.234 1 hour

Phase 1

Comparison for 673 milisec 8.175.419 10 hours

Phase 2

(1) Experiments were carried out using the Grid’5000 experimental testbed

Table 7.2: Efficiency results obtained with the system

True Positives: Messages correctly classified (associated to their source) corresponding to de-
vices analyzed during the training.

True Negatives: Messages classified as unknown corresponding to devices which were not used
during the training.

False Positives: Messages classified to one of the known devices but were not generated from
such a device.

False Negative: Messages classified as unknown by the system from devices which were used
during the training.

Table 7.3 summarizes a weighted average obtained from the sensitivity, specificity and accu-
racy, computed individually from each device (whether our classifier identified it well or not).
The sensitivity represents the proportion of correctly classified corresponding device over all the
messages classified as such device.

Sensitivity = (true positives)/(true positives + false negatives)
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True Positive False Positive
. . 21422 32
Classification False Negative | True Negative
490 N.A.
Accuracy Sensitivity Specificity
0.998 0.976 0.999

Table 7.3: Accuracy results obtained with the system

The specificity represents the proportion of messages correctly classified as not being the specific
device over all the messages classified as not being such device.

Speci ficity = (true negatives)/(true negatives + false positives)

The accuracy represents the proportion of correct classifications.

true positives+true negatives
true positives+ false positives+true negatives+ false negatives

Accuracy = (

In table 7.3, we can observe that the results are very encouraging since the specificity is high
as well as the accuracy, however some observations made by deep analysis of the misclassified
messages are described below.

Figure 7.1 illustrates the messages which were misclassified. From what it can observed, 559
messages - just 2.5% of the total set of messages - were not successfully identified. The causes
of misclassification are:

559 (2.5%) 454 filtered correctly in top-2
miss 24 filtered correctly in top-3
11 filtered correctly in top-4

classifications

37 32 490
syntactically False False
invalid Positive Negative
17 9 203 126 95 64
2md_choice 3"_choice OPTIONS 100 Trying ACK left
same dev.
as from the 42 38 9
keep Alive same dev same dev. /\same dev. 3 # dev.

Figure 7.1: Miss-classification analysis

Syntactically Invalid: there are minor implementation issues which do not allow to parse any
message non-compliant with the underlying grammar (e.g. bugs, relax checking).

False Positives: just a few of the messages were associated to a wrong device. These where
messages usually forwarded by a proxy, thus they contained both signatures (the source
entity and the ones from the proxy).

False Negatives: this vast majority represents those messages for which the system did not
match enough signatures to make a successful classification. However, it is worth noting
that the system was able to filter the possible sources to 2 devices (in 454 messages), 3
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OPTIONS sip:192.168.1.4:5060 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.101;rport;branch=z9hG4bKc0a801650000000b4550c64£0
Content -Length: O

Call-ID: F28A8FE4 -1FF9-4937-AF8D-81B29FD607FEQ192.168.1.101

CSeq: 20 OPTIONS

From: <sip:0231555777@192.168.1.4>;tag=1286870423922

Max -Forwards: 70

To: <sip:192.168.1.4:5060>

DU W N e

o ~1 O

Figure 7.2: OPTIONS message as keep alive

devices (in 24 messages) and 4 devices (in 11 messages) where the appropriate one was in
the respective set. Also, from the set of False Negatives we can identify 4 groups:

OPTIONS: these 203 messages were generated by only one implementation and its
purpose was to keep the firewall port open (as SIP was transported by UDP). Figure
7.2 shows the message in which there is almost no sign of possible signatures.

100 Trying: these 126 messages were generated by only one implementation as well.
The message purpose is to temporally acknowledgement a request while it is being
processed. For the case of this specific device, there was almost no content in the
messages depending on specific configurations.

ACK: 95 messages of this type were miss-classified, most of them belonging to only 2
devices.

Others: 64 messages of diverse types for which no explanation was found were misclas-
sified..

Finally, we created a set of messages which have been manually modified. These modifications
include changing the User-Agent, Server-Agent and references to device name. As a result,
deleting a few such fields did not influence the decision of the system, neither did it the alteration
of the content of the banner implementation (e.g. modifying the User Agent field). However, as
more modifications were done, less precise the system became and more misclassification were
done. Also, we conducted a successful live demonstration at IPTComm 2008** where the public
was able to modify messages in order to test the robustness of the system.

7.1 Training Scalability

A remaining open question was “How many messages we need to get a sufficient training?”. This
depends on how representative the messages used in the training are. Therefore we conducted
experiments in which we wanted to observe how the classifier did improve as more data was used
for the training. Therefore we took a subset of traces, i.e. 2091 messages belonging to 6 devices
and we computed several trainings. The system has been trained 15 times using 15% of the
messages, b times for each successive 10% and 1 time using the 100% of the messages.

Table 7.4 shows the collected results for the different trained systems.

Figure 7.3 illustrates those results in a ROC graph (or sensitivity vs (1 - specificity) plot).
The red dotted line represents a random guess classifier. The closer the dots are to the Top-Left
corner, the more accurate the classifier is. We can observe that all the different instances of the
training fit in the Top-Left square which in fact give us a good feeling for the approach.

“4TPTComm ’08: Principles, Systems and Applications of IP Telecommunications, Heidelberg, Germany
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Messages | Features Accuracy

20 ~ 40%
50 ~ 90%

393 ~ 333 | 6~ 24
345 ~ 389

18 ~ 44 | 0.998 ~ 0.995
1~2 | 20~19 0.998

Table 7.4: Training details
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Figure 7.3: Training scalability

Figure 7.4 shows a closer look of the Top-Left square from the previous graph. The orange dot
represents the system trained with the 100% of the traces and it is the optimal performance/ac-
curacy that we can get with our approach. While the green dots represent each instance of the
training done with only 10% of the traces randomly chosen. It can be observed that all the
results are accurate but they proximity to the optimal training depends on how representative
the set of chosen traces is.

7.2 Conclusion

In this chapter we described and evaluated the experimental results obtained by the implemen-
tation of our passive fingerprinting approach. The obtained results are very encouraging. We
did not compared our approach with any other existing approaches for several reasons. First
our approach is passive, comparing it with an active fingerprinting does not make sense since
the objectives are different. We are working towards an approach capable of monitors a VolIP
network without disrupting or invading the network with packages. Second, we did not consider
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Figure 7.4: Zoomed training scalability

using passive approaches which classify the messages based on their banner (e.g. User Agent,
Server) since in certain collected traces we expressly configure the devices to hide their ban-
ners. This simple fact will be sufficient to obtain awful results from such naive fingerprinting
systems. Third, the only SIP passive fingerprinting system to our knowledge is [145], however
its features are extracted via a manual observation, which make it not scalable (currently 13
devices). Indeed, the two strongest features found by their analysis relates to the order in which
the Methods Allowed and Headers were presented. However, in our training we found that the
order of Headers is not a strict parameter since several devices often switch their positions. In
terms of the Methods Allowed, our system was equally able to identify it as feature given our
approach a more robust set of features.

The system has demonstrated to be really accurate, however we consider that its performance
can be highly improved if the approach is implemented in a different language, like C.
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Chapter 8

Fuzzing

Fuzzing is an important topic in the context of security assessment, software testing and black
box testing approaches. The major idea behind fuzzing is that input data will be tampered with
random payload and will be injected in order to test the data validation and processing of a
target application. Several ways exist to generate the injected data. The data can be generated
from scratch, by mutating existing valid data item or obtained by merging existing data. These
possibilities do not represent the challenge itself, because random functions can always generate
such data. The main challenge however resides in how to create input data that can reveal
software errors and/or noncompliance to standards.

From the point of view of a tested device, two main logical structures can be considered (as
illustrated in figure 8.1):

1. The unit which parses and translates a message to a structured format

2. the unit that will process that structured data and define the behavior to be executed

Structured Processing

Data Unit
InE”t Parser *

Unit

output

Figure 8.1: Device logical structures

Assuming the generic structures of Figure 8.1 a crafted message can be classified based on
the effect on the target:

1. Messages that are not syntactically compliant and are therefore rejected by the parser in
the target entity.

2. Messages that are not syntactically compliant, where the parser does not detect such ir-
regularities, but however the processing unit rejects them.

3. Messages syntactically not compliant, where neither the parser nor the processing unit are
able detect the irregularities.

4. Syntactically compliant messages containing semantic irregularities which are rejected by
the parser.

103



Chapter 8. Fuzzing

5. Syntactically compliant messages containing semantic irregularities that are rejected by
the processing unit.

The first and fifth types are directly considered as garbage because they do not have any
effect on the tested entity. The second type instead, allows the message to be processed but its
failure is detected in an upper layer. The message itself did not provoke a a fault in the target
device but reveals a potential security hole. New messages may dig further to find more serious
problems in the corresponding unit. In case of the third type, two consequences might arise:
either a vulnerability is found or the information crafted in the message is not of concern for
the entity. The latter may be the case of a proxy, which usually ignores the fields that are of no
interest to speed up the process. The fourth type is associated with messages that may restrict
the interoperability with other devices.

Our first objective was to define a flexible technique capable to generate messages of any of
these types. We wanted to do more than current fuzzers do, which in most cases are restricted
to simple text based substitutions of large data chunks and/or injected format string attacks
required to test for common buffer and format string vulnerabilities. This work derived in the
following publications [10,14].

Some of the existing fuzzers use simplistic operational models, while others provide a rather
complex interface, requiring major work to adapt them for additional tests. This last issue was
one driving force in our work. We decided to research how complex fuzzers can be build on top
of a small set of evolving and adaptive key building blocks.

Our aim was to provide a self-learning fuzzer that can evolve and use structural domain
specific knowledge. Evolution is a key design feature required to built smart protocol fuzzers,
while a domain specific knowledge is a starting point for obtaining better results.

The second challenge that we addressed was how to evaluate the effectiveness of generated
fuzzed input. For this issue, some ideas can be found in the research papers on fuzzers and
software testing [25,90,100,124,135]. The major issue is how to automatically detect that a
fuzzed message was successful. If a device crashes, then probably checking its status before the
reboot, might detect the crash. Checking the on-line status for embedded devices is not sufficient.
There is a need for more complex approach where the target equipment is check at all time even
while the test is been executed.

Our final interest was set by the idea to be able to fuzz at a protocol behavior level rather
than only syntactically.

8.1 Fuzzing Framework

The test validation process described in this chapter is illustrated in Figure 8.2. It is composed
of two autonomous components, the Syntax Fuzzer and the State Protocol Fuzzer, which jointly
provide a stateful data validation entity. A test is generated by a scenario, where the scenario
is a set of directives which represents a high level goal. Note that one scenario can generate
several different tests, where each test is an instance of the directives used. Scenarios are based
on both protocol specific domain knowledge and random data injection. As well, based on their
functionality, scenarios can be divided in two: syntax and protocol scenarios. For instance,
a protocol scenario tests SIP verbs (INVITE, REGISTER, etc. transactions) while a syntax
scenario is useful for testing SIP fields (From, To, Content-Length, etc.).

The tests may be similar to the normal behavior or can flood the device with malicious input
data. Such malicious data can be syntactically non compliant (with respect to the protocol data
units), or contain semantic and content wide attack payload (buffer overflows, integer overflows,
formatted strings, or heap overflows).
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Figure 8.2: Fuzzing framework

The Syntax Fuzzer takes a syntax scenario and the provided ABNF syntax grammar to
generate new and crafted messages. The syntax scenario drives the generation of the rules in
the syntax grammar and may also depend on the protocol scenario in order to generate the final
message (appropriated or not) to be sent to the target entity.

The State Protocol Fuzzer component does passive and active testing. Therefore, two state
machines are required: 1) one specifying the SIP state machine and 2) one specifying the testing
state machine.

The first state machine is used for the passive testing and controls if there is any abnormal
behavior coming from the target entity during the execution of the tests. This state machine can
be manually specified or directly inhered from SIP traces of the target entity; thus its behavior
is induced after normal circumstances.

The second state machine is used for the active testing and it is the one that drives the
behavior of the test. This state machine is defined by the user and it can evolve according to
events triggered in the tests.

Figure 8.2 also shows the functional framework of the approach, where in the example our
framework initiates a session by sending an INVITE. Our User Agent Server (UAS) processes
the message and informs the Protocol Transition Engine. The latter checks with the protocol
scenario being used and induces the incoming or outgoing message that should follow. If it is
required by the protocol scenario to generate a new message, then it will be constructed by
the Syntax Fuzzer following specific parameters given by the protocol scenario. This message is
constructed by the Syntax Fuzzer according to the defined rules in the syntax scenario. Note
that if the protocol scenario decides that another message should be received in order to proceed,
the State Protocol Fuzzer will remain idle.

The traditional approach in the fuzzing community is based on data input validation. This
is done by generating crafted messages and observing the resulting behavior in the target entity.
Generally, the resulting behavior is observed in terms of “aliveness factors” (i.e. state of the
device: crashed or functional). With the help of the Error Reporter component we can extend
the analysis by observing incorrect transitions over the states and observe responses which are
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not syntactically compliant.

8.1.1

Stateful Fuzzing Evaluation

Three techniques to evaluate the effectiveness of crafted messages in a target entity have been
investigated in our work, each one of them can be considered as different protocol scenarios in
which they interact with each other over one test:

Learning Test : the normal behavior of the target entity should be learned for testing its

aliveness in case it crashes during the tests. This alive behavior may be obtained by sending
an OPTIONS message and observing its replies, if any. Some entities may not support or
be configured to ignore such messages. For these cases another sequence of messages may
be sent as REGISTER or INVITE and CANCEL to allow to learn the normal behavior.
This sequence is sent several times before starting the testing in order to ensure that the
entity replies always in the same manner. It is important to note that such messages are
not crafted because their only purpose is to evaluate the aliveness and correct functionality
of the target entity.

Active Test : the testing of the target functionality consists in a defined state machine with

sequences of messages - see the Testing State Machine in figure 8.2. This state machine
represents the scenario describing how the evaluator should react to specific events. It may
describe the behavior after unexpected messages, timeouts or normal events. In the case
where some transitions are not defined in the protocol scenario state machine, the passive
testing state machine can take control of the test generation in order to properly finish the
transaction.

Alive Test : finally, when the test is finished, it is also necessary to check if the device is alive

as well as if it is behaving in a usual manner. Note that a test may finish by timeout
which does not really mean that the device crashed, but that the crafted message was too
incorrect to be replied to. For this case, every time a active test is launched, the alive test
may try to detect that the target entity is either alive or that it is still coherent with its
initial behavior observed by the learning test. Once this step is made, errors are either
reported or it continues with a new active test.

8.1.2 Reporting Events

Events are reported in one of the following cases:
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o If a message generated by the target entity is not compliant with the protocol syntax, i.e.

the information was not well interpreted or was not considered at all, as it is the cases of
some proxies. This is considered a good starting point to dig for vulnerabilities.

If a message generated by the target entity generates a not recognized transition in the
Passive Testing state machine, i.e. the last or previous crafted messages drive the target
entity to a state where the protocol specification is violated.

If the target entity generates a message which is not contemplated by the active state
machine. This can be the case where the test is willing to avoid certain behaviour, for
instance bypassing the authentication challenge.

Finally, when the aliveness tests are not responding as they should, either because no
answer at all is obtained from the target entity or if a different one with respect to the
already learned one is got.
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8.2 Syntax Fuzzing

Different approaches propose interesting techniques for fuzze the syntax of the message [17,38,
51,68, 83]. However, they fail in the sense that messages need to be created from a seed or, if
not, most fields of the messages are either static, semi-random or do not consider the protocol
syntax as a point of reference. In our approach we use a context-free grammar to generate the
messages but it is complemented with a parser for the same grammar. Therefore, the parser can
extract information from previous messages and thus guide the fuzzer to generate the message
fields based on measured statistics. The latter will give the fuzzer a wider set of seed for each
specific field, where the quantity of seed will directly depend on how representative were the
traces and not just on some specific values given by the fuzzer designer.

Our syntax fuzzer approach supports different procedures in order to build a message: 1)
create the messages from scratch, 2) mutating some seed messages (or fields) or 3) merging
fields of different messages in order to build a new one. Even though, mutation is considered
less effective than generation [105], it is worth noting that all trials have been performed in
naive mutation fuzzers. This fuzzers where mostly random fuzzers and did almost have no
knowledge about the protocol been fuzzed. Thus, their efficiency were reduce to simple bit
mutations. Therefore, we expect better results from a fuzzer which can combine the same
techniques for generating messages from scratch or by mutation where it benefits from a solid
protocol background knowledge.

Fuzzers are often classified based on multiple criteria: their speed to generate messages,
their capability to discover vulnerabilities or by the number of substitutions supported. We
consider in this chapter a more formal approach where a Fuzzer Expression Grammar is defined
in order to describe the coverage of randomness in the generated message. We consider that this
approach is capable of describe all possible mutations of the fields involved in the message syntax.
This definition is closely related to the Parsing Expression Grammars [63], which formalizes the
parsing grammar concepts.

Another important fact of fuzzers is related to the inputs that have to be provided in order to
launch the test. Such inputs will define the generality, the specificity and the overall behavior. A
certain type of grammar is required as well as knowledge about the syntax of the messages and
the possible variable fields that may be changed by the fuzzer. Most of the time they require a
lot of information and cover only a small scenario of generated data. It is also hard to know if the
compliance with the protocol is kept or not. Very often, the rules to randomize such fuzziness
may be either too simplistic and limited or too complex to be used in the creation of new tests.

Our syntax fuzzing approach takes two inputs. The first is a ABNF (Augmented Backus-
Naur Form) grammar [41], which is the standard syntax definition of a protocol specification.
Thus, the fuzzer provides the flexibility to be adapted to different protocols. It is capable to
generate messages compliant or not with the underlying grammar based on the second input:
the Syntax Scenario..

8.2.1 Fuzzer Expression Grammars

A Fuzzer Expression Grammar inherits from an ABNF grammar, being inherently linked to the
underlying grammar. An additional syntax evaluator exists in a Fuzzer Expression Grammar.
This syntax evaluator is the entity guiding the reduction of the rules in order to create a new
message. As it will be explained later, this process may decide whether to be compliant or not
with the syntax of the grammar.

A Fuzzer Expression Grammar consists of a 5-tuple G = (X, N, P, E,ng) where the com-
ponents X, N and P represent the set of Terminals, Non Terminals and Production rules (re-
spectively), the ng represents the non Terminal rule to be reduced and the syntax evaluator F

107



Chapter 8. Fuzzing

is:

FE = Syntax fuzzer evaluator of the form E : e x 8 — ¥X* where e is the grammar expression
(as defined in section 6.1.1) to be fuzzed and 6 is the environment state. Thus, the syntax eval-
uator concludes the evaluation when a sequence of Terminals have been obtained.

A message m generated by this fuzzing grammar is
m = E(ng)

thus, the typical objective of such a message is to represent a data input validation test for a
protocol implementation instance.

8.2.2 Expressive Power

In order to formalize the expressiveness of the approach, an evaluation interface is defined in six
main functions:

e 7 :% x 6 — e x 0, which may replace a Terminal by another item.

e NV : N x 6 — e x 6, which may replace a Non-Terminal by another item.

C:e1/ ../ enx0— Ny, which decides which item index should be chosen.
e R:elhd) x 9 — Ny; jy, which decides how many repetitions should be reduced.
e S:ex N x 60 — ex 0, which may replace the i-item of the Sequence by another item.

e 7:ex N x 6 — e x 6, which may replace the i-repetition of the Repetition by another
item.

All these components interact with the syntax evaluator in order to generate a new fuzzed
message:
E,Ei:ex0— X"

e iteeX”
Eile,0) = { E(e,0) otherwise
E(e,o) = E10T(e,0) ifeecXU{e}
E(e,0) = E1 o N(e,0) ifee N

E(e;y .. en,0) = E1 0S(ey, 1,0)
.. E1o0S8(en,n,0)
E(ei/../en,0) = E(e;,0) where 1 <7 <n and
i=Cler/ ../ en,0)
E(e), o) = By 0Z(e,1,0)
. E1o0Z(ek,0) where k = R(el™), o)

For the functions 7,N,S,Z of the syntax evaluator, five operations were defined that can
help to progressively construct the X* based in the Fuzzer Evaluation itself. These operations
are described below:

e Produce either a fixed string or a random one generated from a regular expression.
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Append expression productions generated by another syntax evaluator.

Generate any rule defined by the grammar, which may be not the ones allowed in the
current reduction.

Generate a new rule defined on the fly, allowing the evolution of rules or addition of new
ones.

Generate a function rule. A function is a special case, because it escapes from the syntax
concepts to define semantic actions. It is evaluated after the whole message has been
reduced to X* union other functions. Based on other items generated for the message, it
generates the X* appropriated for its current field. This function can be useful to add fields
like checksum, content lengths, etc. However, infinite recursion has to be prevented.

The reduction of the expressions proceeds in a Depth First Search (DFS), where the generated

message may be viewed as a tree (Figure 8.3), such that all the internal nodes are non-Terminal
(e5), Choices (e2), Sequences (e; and ey) or Repetitions (e7) items and the leafs are Terminals
(e3, eg and eg) or functions before being evaluated (eg, where the functions set is denoted as F’
in the figure). In this way, each reduction branch can be uniquely identified in the tree by the
path from the root to the current position. Definition 3 formalizes the reduction path concept.

€1 —e€3...€3

/\

el eZopee
e3, € X* es €N er = eglid) ege F

| T

eg €2 eg, € Dy eg, € ¥

Figure 8.3: Tree reduction

Definition 3. A reduction path, x> xs, will define the steps for which an expression reduces to
another (i.e. from an expression e; to arrive to the expression ej). Each step is defined by the
relation = as:

(e,z>xs) =p (T(e),xs) ifee XU {e} and
T(e)=z

(e,x>as) =p (N(e),zs) if e € N and
Ne) ==z

(e1 .. en, x> x8) =F (S(ey), xs) if1<z<n

(e1/../en, x> xS) =F (€g,258) ifl<z<n

() x> x5) =5 (Z(e,x),z5) ifi<ax<j

and it s said that the reduction path x>xs success from e; to e; if the =F closure is equal to

(ei, x> xs) = (e [])

8.2.3 Example Evaluators

In this section, we will look at two example syntax evaluators for generating messages compliant
to the underlying grammar, and to generate messages based on the merging of different other
messages.
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Compliant Grammar Evaluator

A definition of the inner functions of £, which randomly creates well formatted messages accord-
ing to the specified grammar is illustrated below:

E:e—Y*

T(e)=e
N(e) = P(e)
Cleir/../en) =1 where 1 < i < n chosen randomly ) . . .
s I where 1 < i < k < j chosen randomly Since the items contained in 7 cre-

ate static strings, the ones from N invoke fixed rules, the ones from S represent an static order
of items and 7 are specific items of the grammar, it is clear that they can not be used to modify
the reduction of the message (if our intentions are to keep the generated message compliant with
the grammar). Thus, the only possible randomness in a compliant syntax evaluator E are the
functions C and R.

Merging Messages Evaluator

A more complex syntax evaluator where a message is generated out of the composition of several
messages (also maintaining its compliance with the underlying grammar) is showed here. We
begin by defining the following function.

Definition 4. Assuming that M represents the set of messages compliant with the grammar
(e.g. those that may have been generated by the Fuzzer Evaluator), and P is the set of all
possible reduction paths from all the expressions presented in such messages, the function p of
the form

p:MxP—eU{o}

obtains, if success, the corresponding expression for the reduction path, xs € P, starting from the
root expression of the message m € M that

(root(m),xs) = (e, [])
otherwise, if none expression exists, it returns &.
As a consequence, to allow the generation of messages out of the composition of others, the

environment state of F is defined to be § = M x P x P. The variables 7,9 € P will represent

the reduction paths from the initial and last triggered rule respectively. Assuming the variables
1 and & to be like:

Yv=46 V Yp=17+HI

cef{e|Imew:e=pim,) Ne # o}

the definitions of the inner functions are detailed below.

110



8.3. Stateful Fuzzing

T<€7w757 T) = (57 w76 Q 57 7_)
N(e,w,0,7) = (e,w,e, T < 0)

Cler/../en,w,0,7) =i where 1 <i<n
and e; = ¢
R(e(i’j),w,& T) =k where 0 <i <k <j

and k = length(§)
8(65 /l:’ w’ 67 7—) = (5,(&),5 < /1:7 7—)
I(€7 Z.7w7 57 7_) = (6,(.&)7(5 <] i’ T)

Is it worth noting that when replacing the expression e by &, the reduction still being com-
pliant with the underlying grammar, because £ is reduced from the same rule under another
context. However, the value of ¥ chosen will define a degree of fuzziness in the resulting message
due to the complete or relative path location of the expressions.

8.2.4 Learning Techniques

A feature not considered by syntax fuzzers is the fact of learning from observed messages and
use this knowledge as a base of smart fuzzing.

To illustrate the importance of such technique, we consider the following toy grammar and
use the random evaluator previously described in section 8.2.3 to generate fuzzed fields.

username = alphanum *(alphanum/"-"/"_"/"}%"/"&")

alphanum = ALPHA / DIGIT
ALPHA = %x41-5A / %x61-TA s A-Z / a-z
DIGIT =  %x30-39 ; 0-9

It can be assumed that the priority by which items appear in a username consists in letters,
number and then special symbols. However, a possible reduction of such grammar may look like:

username — d-&%%3&%-&q

For this example, the syntax evaluator is up to generate a username, and when reaching
the second item of the sequence, it has to decide among five choices, giving a low priority to
numbers and letters. Thus, a message with high dimension and often invalid is more probable
to be rejected by the target entity [136].

For this cause, the two interfaces below had been defined to provide some methods to generate
“smart” syntax evaluators:

e Record Choice Indexes
e Record Repetition Lengths

Both interfaces receive as input the sequence reductions from the first rule, allowing to record
statistics of repetition length and chosen items according to the function. Note that only these
two methods are sufficient, because they are the only ones that can modify the evaluation flow
of compliant messages.

8.3 Stateful Fuzzing

The State Protocol Fuzzer described in this section is targeted at the SIP protocol and it does
passive and active testing. Domain specific knowledge is needed for this issue due to the fact
that the fuzzer has to be able to distinguish between correct and incorrect behavior.
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8.3.1 Passive Testing

Passive testing is performed in our framework based in monitoring all the traffic directed to
the target entity and comparing with the known and allowed transitions in the underlying state
machine. This underlying state machine is a specification of the states and transitions that
represent a SIP implementation. This specification, beyond how it was conceived, will be used
to analyse and determinate inconsistencies or abnormalities in the proper behavior of the target
device.

The underlying protocol state machine on which the monitoring relies can be provided in two
ways:

e a fully detailed state machine as specified by the standards
e a state machine induced from a sample of messages.

The latter approach was chosen in this research as an starting point since different imple-
mentations do not really work in the same manner. Subtle differences have been found in our
experiments, where devices react differently to specific events. Even if a device does not behave
as expected by the protocol specification, this does not mean that a vulnerability was found.
Therefore, in order to evaluate the impact of the crafted input, the normal behavior of the target
entity should be known a priori. Note that general behavior could also be used for the passive
testing, but we risk of missing some device-specific anomalies.

SIP messages follow a hierarchy where Dialogs and Transactions are identified during a ses-
sion. A dialog is uniquely identified by the Call-ID and a local and remote tag; such tags are
presented in the From and To headers. Meanwhile, a transaction is identified by the CSeq header
and the Via Branches of the top most Via header located in the message. Thus, a transaction
belongs to only one dialog, but the latest may have many transactions. Also, a dialog is kept
between two entities, even in the case where more entities are involved in the session.

To assume a simple model, the state machine is conceived just for SIP transactions rather
than dialogs.

To induce the state machine we use the sample messages to fill the SIP Information Model
described in Chapter 5.2. Assuming we want to induce the state machine of an INVITE transac-
tion, the first step is to query the information model for all the SIP transactions in which their
first message is of type INVITE. From each different message following the INVITE in any of the
selected transactions, we create a new transition in the state machine. It is important to note
that the states do not store more information than just the outgoing transitions. Thus, after all
the messages for each SIP transaction have been observed, we obtain as a result a tree representa-
tion of the INVITE transaction (which can be converted to a state machine by merging common
states). We have studied several algorithms to optimize the inducing process [27,103,121], how-
ever as SIP transactions are quite simplistic, this naive approach is sufficient for our approach.
One important case is when a new SIP transaction is triggered in middle of an ongoing dialog
(e.g. the CANCEL transaction is good example since it takes place in the middle of an INVITE
transaction). Therefore, nodes in the state machine are provided with a forking feature which
will allow them to initiate intermediate transitions at specific states. Thus, leading to interleave
the transaction and in this way conclude a full SIP Dialog. Figure 8.4 illustrates an hypothet-
ical state machine obtained from samples of INVITE transactions. Each transition represent
either an outgoing message (!) or an incoming message (7) plus the specific type of message
(Response-Code or Request method).
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Entity A Entity B Response codes meaning
9 9 100 Tryi
2 g 1o e,
5 - 200 06
302 Moved temporarily
404 Not Found
407 Proxy authentication. required
INVITE 222 gig-lypgzgly not available
. 487 Request terminated
. 100 Trying 603 Decline
180 Ringing
—
~
N\
\ Current State
7200
180 ‘enable(BYE)
enable(CANCEL) enable(BYE)

Figure 8.4: Learned state machine from an INVITE message
The transition with quotation marks (?) means that these messages correspond

to the responding entity. The exclamation mark (!) means that the messages
belong to the requesting entity.

8.3.2 Active Testing

The Testing State Machine of the protocol fuzzer is used to guide the testing by emulating
malicious or normal behaviors. Such a state machine follows the principles of the Event-driven
Extended Finite State Machine (EEFSM) described by David Lee et al. in [90]. However, in
our approach, the above algorithm may not only be used to follow the system state but also to
simulate and force one entity to perform different assessment operations.

An active test is composed of an unique SIP Dialog but with several SIP Transactions.
Therefore, the test may have several state machines (one for each transaction). Thus, the test
is associated to the current SIP dialog identifiers (i.e. the same Call-ID as the first message
captured or generated which initialized the state machine) and then each outgoing/incoming
message has to match such identifiers in order to be used in the test (unless explicitly said). The
same applies to each state machine which in fact represents a SIP transaction and therefore they
are tight to their identifiers (CSeq and Via Branch).

Then, if an arriving message matches the dialogs identifiers and the transaction identifiers
of one of the state machines, the message is being processed by the state machine at its current
state. Otherwise, if an outgoing message is expected to be generated, then only one of the
outgoing transitions (denoted with !) matching the current state of the state machine will be
considered as the source to generate the next message.

In the evaluation process the state machine should decide which will be the new outgoing
message. This decision is computed from the testing state machine where it searches all the pos-
sible events that match the current state. Each state machine node has the following conditions
and properties for its transitions:

e The type of the expected message (i.e. the message type may be a request method or reply
code as INVITE, CANCEL, 180 RINGING, 200 OK, etc.),

113



Chapter 8. Fuzzing

e The direction of the message, either incoming or outgoing (Note that dialogs are between
two entities, therefore the state machine keep that property),

e Pre condition to satisfy based in the environment of the state machine,
e Function to apply when the transition is selected,

e Enabled time of the transition. Either a fixed starting and ending period or functions that
validate this period,

o Weighted transitions, in case more than one transition is applicable at a time.

If a transition triggers the generation of a new message, the Syntax Fuzzer is informed in
order to create such new requested message, otherwise new incoming messages are expected.

Based on this process, the Protocol State Machine may also report the existence of unex-
pected behaviors (e.g. unknown transitions). Assume that one test is trying to establish a call
without using the correct credentials, if the fuzzer succeeds in initiating such call then a flaw was
encountered or the credential has been guessed. In either case, the protocol behavior will look
normal but it will be worth to inspect what has been going on during the test.

Note that the emulated behavior of the Protocol State Evaluator may change from one
transaction to another. This is happening, because in a same Dialog different transactions may
be initiated by any of the entities. The only thing left to the scenario is the randomness to
initiate a new transaction as well as the randomness to select among the possible set of message
types to be send.

Figure 8.5 illustrates a protocol scenarios which consists in a INVITE transaction. Several
syntax scenarios are defined which correspond to different aggressively in the methodologies for
creating the fuzzed message.

Syntax Scenarios Stateful Scenario
IACK
Syntax Syntax  Syntax . ?100 ?[4-5][0-9]* Scenariol
Fuzzer  Fuzzer  Fuzzer timeout= (0,5) timeout= (0,5) weight = 3
Scenariol Scenario2 Scenario3
@ @ @ HINVITE
Scenario2 2407
weight = 3 timeout= (0,5)
KiF SIP Phone IINVITE aniechallenge
Scenario3 TS e 204
= weight = 1 timeout= (0,5 Timeout
% Start
>
Timeout  timeout= (0,5) timeout= (0,5)
INVITE !ACK
100 Trying Current State —
—
180 Ringing - 7200
< ., timeout= (0,15)
183 Session in Progre L - ) ” enable(B
timeout=(0,5)

Figure 8.5: Stateful SIP scenario
The quotation (?) and exclamation marks (!) are as in Figure 8.4.
The enable() function creates a fork in the current state machine to enable the
other state machine, meanwhile, information like Dialog ID and Transaction
ID is transfer to keep the state awareness.

8.4 Fuzzer Effectiveness

The fuzzer may be configured to respond in different ways according to its defined fuzzer scenar-
ios. Different types of behaviors have been proposed using the infrastructure defined in section
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8.2 which showed the possible types of syntax scenarios behaviors.

The first and simplest, but however the less effective, is the random generation of the whole
message. These messages are with certain probability compliant to the syntax provided by the
protocol, but in fact, for the problem mentioned in section 8.2.4, they mostly are garbage that
will simply be ignored by the target entity.

The second approach which results in more realistic messages is the mutation of existing
messages. This mutation takes a set of fields in the original message that will be replaced by
other values. Those latter values may be obtained by other rules, other choices or with random
functions.

The third scenario consists in learning seeds from each field in the grammar from already
existing messages. The seeds are stored and used following the directives of the syntax scenarios.
Note that as the entity has now some knowledge about typical fields structure, the first technique
will result in messages good enough to fool the target.

Finally, the last technique comes from the idea proposed by Lin Li et al. [93], where they
described a self-assembly process for software components. A component is composed by a series
of inputs and outputs, such that in order to assembly components their input/output have to
be considered as if they were molecules. In fact, the assembly process is an analogy with real
molecules, where they set the pressure, temperature and area to promote the assemblies. The
idea of assembly fields of the message depending in their grammar inputs and output has been
considered and tested during our experiments. The input of each field may be the global path
from the root rule or the path from the current rule. While the output is all the items that
may be reduced in the current field (i.e Terminals, Non-Terminals, Choice Index, number of
Repetitions, etc). In this way, one field is attached to another generating a message that is a
composition of many others. The function that defines which of the inputs may match with a
given output is left to the interface defined by the fuzzer. In this way approaches for Genetic
Algorithms (GA) may be defined.

Concerning the stateful testing, the protocol scenarios may evolve as well. Different envi-
ronments may be defined based on the sequence of messages to test. Such sequences may be
acquired from sample sessions or be manually constructed. In order to be able to reach to deeper
states, it is also important to specify which messages are the ones that should be fuzzed, the
time range for each type of response and the behavior after unknown events.

8.5 Conclusion

This chapter describes a stateful protocol fuzzer for SIP. The main contribution is a flexible,
adaptive fuzzer capable to track the state of the targeted application and device. One of the
components of our work is quite generic and reusable for any protocol for which an underlying
grammar is known. The second one is dependent on the domain specifics (SIP). Our method is
based on a learning algorithm where real network traces are used to learn and train an attack
automaton. This automaton is evolving during the fuzzing process. We performed tests on
VoIP phones and the results are promising (see chapter 9). We will continue our work by inte-
grating other protocols, testing more devices (session border controllers, routers, media gateway
controllers) and refining the learning/testing algorithms used in our framework.
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Experimental Results

We have built a tool implementing all the techniques described in chapter 8 (the tool is called KiF
and it is available at http://kif.gforge.inria.fr/). The protocol syntax can be fuzzed very
extensively, because the fuzzer can change every rule of the grammar. However this mechanism
is only useful for fuzzing the syntax of a protocol. In order to fuzz state, the two state engines
are used. One to represent the correct state, that an entity should be in and one to fuzz the
testing entity with a wrong state. This mechanism however is completely independent from the
functionality of the ABNF grammar. The passive state machine is induced from previous traces
taken from the device while different active state machines were manually constructed having
different goals in mind. Principally, the active state machines target different cases, some of
them include:

e Normal flow of SIP Dialogs (INVITEs, REGISTERs, OPTIONs, SUBSCRIBESS, etc.)
where the objective was to fuzze only specific messages in different state of the protocol.
Such cases fuzze the message syntax diversity in two ways: 1) in random fields and 2) more
smartly in chosen fields. The chosen fields depended in the goal of the test:

— For testing the device’s web server fields in the SIP message were fuzzed with typical
XSS exploits and SQL injections (if the equipment had any SQL record support).

— While testing the authentication mechanism, related fields to the challenge header
where fuzzed. The fuzzed values were typical malicious input, lengthy values, non-
existing/crafted options, invalid users (including SQL injection strings), etc.

e Unexpected/nonexistent messages at specif states where they include swapping the target
role (i.e. changing the behaviour from UA client to server without consent). For such
cases there is no defined behaviour in how the target must react, beside error responses.
As error responses were not always the typical case, to continue a deeper testing in such
invalid /unknown state, the active state machine was assessed by the passive state machine.
The later report which were the typical behaviour after such messages assuming normal
circumstances. This report was used to generate the next crafted message and continue
the test until it reach a goal or receive an error message.

The most frequent vulnerability encountered during our testing [12,13] is related to weak
filtering of input data. This filtering does not properly deal with meta-characters, special char-
acters, over lengthy input data and special formatting characters. Most of these vulnerabilities
are due to buffer/heap overflows, or format string vulnerabilities. The most probable cause is
that developers assumed a threat model in which VoIP signaling data would be generated only
by legitimate SIP stacks. The real danger of this vulnerability comes from the fact that in most
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cases, one or very few packets can completely take down a VoIP network. This is even more
dangerous when realizing that in these cases the SIP traffic is carried over UDP, such that highly
effective attacks can be performed stealthy via simple IP spoofing techniques.

Preventing these types of attacks at a network defense level is possible with deep packet
inspection techniques and proper domain and application specific packet filtering devices.

Protocol tracking vulnerabilities go beyond simple input filtering of single messages. In this
type of vulnerability several messages will lead a targeted device in an inconsistent state, albeit
each message on its own does not violate the SIP RFC [120]. This vulnerability is caused by
weak implementations of protocol state engines. Exploiting this vulnerability can be done in
three main ways:

1. the device might receive inputs that are not expected in its current protocol state: for
instance, when waiting for a ACK method, an 100 Trying is received,

2. the input might consist in simultaneous messages destined to different protocol states,

3. slight variations in SIP dialog/transaction tracking fields.

The discovery of such vulnerabilities is truly difficult. The fuzzing process should be able
to identify whether a targeted device is not properly tracking the signaling messages and which
fields can be fuzzed in order to detect it. The search space is in this case huge, being spread over
many messages and numerous protocol fields, thus requiring smart driven fuzzing approaches
[51,57,68,109|.

The major danger with this type of attacks is that no application level firewall can completely
track so many flows in real time and even in the case of known signatures, polymorphic versions
of known attacks can be easily obtained and these will remain under the security radar. As of
today, unfortunately no effective solution to prevent this type of attacks exists.

9.1 Security Advisories

This section describes some of the most remarkable vulnerabilities found during our testing. It
is worth to know that the traffic generated by our tool discovered inconsistencies in the targets
during the test, however a full analysis of each issue allowed us to identify the real vulnerability
and the associated problem. For many of the performed tests we designed a fuzzing scheme.
For instance, we wanted to conduct more complex scenarios like code injection. We wrote in
the syntax scenarios malicious ABNF rules which can generate fields containing SQL and XSS
injections. We taught the scenario possible fields where these rules may have some effect and we
also let the scenario to choose other fields following some probabilities. The results of the test
were encouraging and they are presented below, however external methodologies were used in
order to determinate if the target was affected (e.g. browsing its web applications).

9.1.1 Weak Input Validation

The simplest vulnerability found was against a Thomsom ST 2030 VoIP phone (version v1.52.1)
CVE-2007-4753. This attack consist in sending to the device a UDP message which does not
contain any payload (i.e. an empty message containing zero bit in the data). This instance of
an attack reflects the poor consideration taken for input generated maliciously.

9.1.2 Input Validation

Usually PBXs provide several VoIP services and gateways to the PTSN. Asterisk is one of them,
an open source implementation widely used. However, in versions 1.4.1, 1.2.16 and older ones,
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after receiving a crafted message the software crashes abruptly CVE-2007-1561. The message
in this case is an anonymous INVITE where the SDP contains 2 connection headers. The first
one must be valid, however the second must have an invalid IP address. Even more, the callee
needs not to be a valid user. In cases where Asterisk is set to disallow anonymous call, a valid
user and password should be used, and while responding the corresponding INVITE challenge
the information should be crafted as above. This attack has been of a bigger magnitude due to
the fact that a whole VoIP domain can be torn down by a unique message.

9.1.3 Attacks Against the Internal Network

Most VoIP devices have embedded web servers that are typically used to configure them, or to
allow the user to see the missed calls, and all the call log history. The important issue is that, the
user will check the missed calls and other device related information from her/his machine, which
is usually on the internal network. If the presented information is not properly filtered, the user
will expose her/his machine (located on the internal network) to malicious and highly effective
malware. The following example discovered during driven fuzzing proves CVE-2007-5411 affects
the Linksys SPA-941 VoIP Phone (Version 5.1.8). This phone has an integrated web server which
allows configuration and call history checking. A Cross Site Scripting vulnerability (XSS) [125]
allows a malicious entity to perform XSS injection because the "FROM" field coming from the
SIP message is not properly filtered. By sending a crafted SIP packet with the FROM field set
for example to :

FROM: "<script x=’" <sip:’src=’http://attacker.com/beef/y.js’>0domain.org>;tag=1"

the browser is redirected to include a javascript file (y.js) from an external machine (attacker.com)
as show in Figure 9.1. This external machine is under the control of an attacker and the injected
javascript [125] allows to a remote attacker to use the victim’s machine in order to scan the
internal network, perform XSRF (Cross Site Request Forgery) attacks, as well as obtain highly
sensitive information (call record history, configuration of the internal network), deactivate fire-
walls or even redirect the browser towards malware infested web pages (like for instance the
underground tool MPACK*®) to compromise the victim’s machine. The major and structural
vulnerability comes in this case, by the venture of two technologies (SIP and WEB) without
addressing the security of the cross-technological information flow.

CVE-2007-5411 g

INVITE sip:Bob@domain
From: sip:Alex@domain
To: “<script>..."”sip:”</script>

Lincsys®

Figure 9.1: Linksys SPA-941 XSS attack

The impact of this vulnerability is very high : most firewalls/IPS will not protect the in-
ternal network against XSS attacks delivered over SIP. Additionally, users will connect to these

“http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2007/05/11/MPack.pdf last checked on
December 2008
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devices directly from the internal network and therefore the internal network can be compro-
mised. Jeremiah Grossmann [125] showed how firewalls can be deactivated with XSS attacks and
many other malicious usages do exist. Unfortunately, most VoIP devices have weak embedded
WEB applications, such that other vulnerable systems exist and are probably exploited in the
wild.

9.1.4 Stateful Crash

As it has been previously described, stateful fuzzing is more difficult to follow. Once a vulner-
ability has been encountered, it may be quite difficult to analyze the actual problem. One of
such examples is the vulnerability found in the Nokia N95 cellphone which runs a VolP client
(RM-159 V 12.0.013) CVE-2007-6371. For this example, 2 dialogs are needed, the first one which
set the device to an inconsistent state and the second dialogs that triggers the DoS in the whole
cellphone.

Figure 9.2 shows the sequence of events which trigger this vulnerability. Basically, a CANCEL
message arriving earlier than expected can turn the device into an inconsistent state which will
end up in a Denial of Service attack.

= CVE-2007-6371 B
Nokie; N95 KiF
p _ INVITE sip:Bob@domain
- 100 Trying _ }Transaction #1
Dialog #1 < - CANCEL sip:Bob@domain }Transaction #2
OK (to the CANCEL) > }Transaction #1
487 Request Terminated } )
\§ > Transaction #2
o INVITE sip:Bob@domain
100 Trying -
Dialog #2 < 180 Ringing _
DoS
.

Figure 9.2: Nokia N95 DoS attack

9.1.5 Remote Eavesdropping Vulnerabilities

A rather unexpected vulnerability was discovered in the VoIP phone Grandstream GXV-3000
(v 1.0.1.7) CVE-2007-4498. Several SIP messages sent to the affected device put the phone
off-hook without notifying the users. The attacker is thus capable to remotely eavesdrop all the
conversations performed at the remote location. Figure 9.3 shows the messages exchanged by
the attack. The impact if this vulnerability goes beyond the simple eavesdropping of VolP calls,
because an entire room/location can be remotely monitored by the loudspeaker integrated in
the phone. This risk is major and should be considered when deploying any VolP equipment.
Although in the presented case, a software error was probably the cause, such backdoor left by
a malicious entity/device manufacturer represent very serious and dangerous threats.
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é CVE-2007-4498
Grandstréeam g
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INVITE sip:Bob@domain
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183 Session Progress
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Figure 9.3: Grandstream GXV-3000 remote eavesdrop

9.1.6 Weak Cryptographic Implementations

The authentication mechanism in SIP is a standard shared secret and challenge-response based
one (section 1.1.5). Nonces are generated by the server and submitted to an authenticating
entity. The latter must use its shared key to compute a hash which is afterwards sent to the
authenticator. This hash is computed on several values extracted from the authenticate message
as well as the shared secret between the entities. The computed authentication is validated by
the server and checked to authenticate a client. For efficiency reasons, very few server implemen-
tations track the life cycle of a valid token. In at least two Registrars/Proxies, Cisco CallManager
and OpenSer (v5.1.1.3000-5 and v1.2.2 respectively) CVE-2007-5468, CVE-2007-5469, vulner-
abilities where found where intercepted tokens could be replayed. These vulnerabilities are not
simple man in the middle attacks, since intercepted tokens were reusable for long time periods.
Even more authentication could be used for any other destination call due that the tested im-
plementations do not allow to check if the provided URI in the Digest authentication header is
the same as the REQUEST-URI of the message. However, from the SIP RFC [120]

“RFC 2617 [17] requires that a server check that the URI in the request line
and the URI included in the Authorization header field point to the same resource.
In a SIP context, these two URIs may refer to different users, due to forwarding at
some prozy. Therefore, in SIP, a server MAY check that the Request-URI in the
Authorization header field value corresponds to a user for whom the server is willing
to accept forwarded or direct requests, but it is not necessarily o failure if the two
fields are not equivalent.”

it can be extracted that a server MAY check depending in the context of the call, which is not
the case of any of the tested entities.

Figure 9.4 shows the flow of messages for such an attack. The impact of such a vulnerability
is very high. Toll frauds and spoofing call identifiers are the straightforward consequences. The
mitigation consists in trading off performance versus security and implementing efficient and
secure cryptographic token management procedures.

9.1.7 Toll Fraud Vulnerabilities

Toll frauds occur when the true source of a call is not charged. This can happen by the usage
of a compromised VolP infrastructure or by manipulating the signaling traffic. It is rather
amazing to see that although technology evolved, the basic conceptual trick of the 70’s, where
phreakers reproduced the 2600 Hz signal used by the carriers is still working. Thirty years after,
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Registrar User A
URI-Domain: PBX.2 CVE-2007-5468 SIP-URI: Joe@PBX.2
< INVITE sip:Alex@domain
401 Authentication required
User B (Authentication Challenge) -
SIP-URI: Alex@PBX.1 J ACK
2
INVITE sip:Alex@domain
INVITE sip:Alex@PBX.1 - (Authentication Response) =~
180 Ringing > 180 Ringing -
200 OK - >
> 200 OK >
P ACK
User C B
SIP-URI: Bob@PBX.3
n ob@ INVITE sip:Bob@PBX.3
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INVITE sip:Bob@PBX.3 ;Eggﬁggﬁ:‘ﬁi onse)
o FROM: Joe@PBX.2 < P
D 180 Ringi 180 Ringi
80 Ringing > 80 Ringing >
i ACK

Figure 9.4: Replay attack

the signaling plane can be still tampered with and manipulated by a malicious user. What did
change however, is the needed technology. Nowadays, SQL injection commands can be performed
in the signaling plane, and the toll fraud is possible.

Some SIP Registrars/Proxies store information gathered from SIP headers into databases.
This is necessary for authentication, billing and accounting purposes. If this information is not
properly filtered, a SQL injection can be performed. Even more, once it will the information
is displayed to the administrator, the data can be interpreted as Java Scripts allowing a XSS
attack.

In this case, two consequences can result: First, the database can be changed -for instance
the call length can be changed to a small value - and thus the caller can do toll fraud. Second,
the administrator can be exposed to an XSS attack (same as described in section 9.1.3).

Asterisk®® is a popular, largely deployed and open source Linux based VoIP PBX. This
software allows to log the Call Detail Records (CDR) in the MySQL database. FreePBX?" and
Trixbox*® use the information stored in such database in order to manage, compute generate
billing reports or display the load of the PBX.

Certain functions do not properly escaped input characters from fields of incoming calls before
storing them in the database.

This specific attack may be performed by an user not subscribed in the domain and negative
numbers can be inserted in the CDR table in order to change the recorded length /other parame-
ters of a given call. The direct consequence is that no accurate accounting is performed and the
charging process is completely controlled by an attacker.

A second and more serious consequence is that this attack can be escalated by injecting

“Shttp://www.asterisk.org/ last checked on December 2008
“Thttp://freepbx.org last checked on December 2008
“®http://www.trixbox.com/ last checked on December 2008
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JavaScript [125] tags to be executed by the administrator PC when he/she will perform simple
management operations. In this case, a Cross-Site Scripting Attack (XSS) [125] attack is resulted,
because malicious JavaScript can be stored into the database by the SQL injection. This malware
gets executed on the browser when the administrator will check it - this is a very similar process
to the log injection attacks known by the Web application security community. Similarly to the
previous case, tools like Beef and XSS proxy can scan the internal network,deactivate firewalls
and realize all the CSRF /XSRF specific attacks

The main issue is that most current applications that deal with CDR data are not considering
this type of threat. If the target system is not well secured, SQL injection can lead to system
compromise because most database server allow some interaction with the target OS [95].

This type of vulnerability is rather dangerous because few application implement filtering on
SIP headers. All applications do consider SIP related information to be sourced from a trusted
origin and no security screening is performed. The mitigation should be proper input and output
filtering whenever data is stored /read from another software component.

9.2 Protocol Design Flaw

Our main work consisted in searching for vulnerabilities in specific SIP implementations without
considering the security of the SIP protocol itself. We were however surprised to discover during
a complex fuzzing scenario the same anomaly (and apparent vulnerability) shared by all devices
under test. Under a more careful analysis, we did realize that in fact the vulnerability comes
from the SIP protocol itself and therefore makes toll fraud possible on any VoIP network *°. The
major issue is that this attack, called Relay Attack, is possible by forcing a called party to issue
a re-Invite operation.

Due to the novelty and severity of it, section 9.3 describes the known Replay Attack which
will allow to understand the difference with the Relay Attack which is described in details at
section 9.4. A formal validation using AVISPA [1]| have been performed in cooperation with the
CASSIS research team of INRIA [7].

9.3 Replay Attack

When SIP is deployed without any underling cryptographic protection mechanism, the typical
man in the middle and impersonation attacks between a caller and its proxy, (see Figure 9.4) are
straightforward. However, these must are constrained by some important factors . Firstly, the
attacker willing to impersonate the user has to be in the middle of the session path and be able
to manipulate the session traffic. Secondly, the attacker cannot trigger the user to make such a
call at a specific time. Finally, the attacker is restricted to use the generated response just to
call the entity for which the user directed the call. In other words, the attacker is not able to
call an entity of its choice.

However, if the nonces are not correctly check to be one time used, the third argument could
be bypassed since

“..in SIP, a server MAY check that the Request-URI in the Authorization header
field value corresponds to a user for whom the server is willing to accept forwarded or
direct requests, but it is not necessarily o failure if the two fields are not equivalent.”

SIP RFC [120]

“http://voipsa.org/pipermail/voipsec_voipsa.org/2007-November/002475.html last checked on Decem-
ber 2008
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9.4 Design Flaw (Relay Attack)

The synopsis is as follow: an attacker will issue a call directly to the victim, the victim answers
and later on, puts the attacker on hold (transfers him to any other place or uses any other
method which requires a re-INVITE). Once the attacker receives the re-INVITE specifying the
"On hold", he will immediately request the victim to authenticate. This last authentication may
be used by the attacker to impersonate the victim at its own proxy.

Note, that to perform this attack, there are two headers in the INVITE message that are
essential. The Contact header has to have the destination call that the attacker wants to call,
because, as specified by SIP [120], this information will be used to generate the message by the
user entity. The Record-Route header specifies that all outgoing messages from the user entity
go directly to that entity.

Notations:

e P is the proxy located at URL: proxy.org

e X is the attacker located at URL: attacker.lan.org

e V is the victim located at URL: victim.lan.org

e V is also registered with P under the username victim at proxy.org

e Y is the accomplice of X (it can be in fact X), but we use another notation for clarity sake

The described attack will show how X calls a toll fraud number 1-900-XXXX impersonating
V.

1. X calls’s directly V.
"The route set MUST be set to the list of URIs in the Record-Route header field from the
request... The remote target MUST be set to the URI from the Contact header field of the
request.” RFC 3261 [120] Section 12.1.1 UAS behaviour

X ———------- INVITE victim.lan.org ------------- >V
From : attacker at attacker.lan.org
To: victim at victim.lan.org
Contact: 1900-XXXX at proxy.org
Record -Route: attacker.lan.org

2. The normal SIP processing

X <emmmmmm e - 180 Ringing ------------------ \Y
D 200 0K -----------------~——~—- Y
X e-cmmmmmmmm o - - - Media Data --------------—---- >V

3. The accomplice Y steps in and invites victim V, and then the victim decides to put X on
hold

4. The victim, V, sends a re-INVITE to X (to put it on hold)
"The UAC uses the remote target and route set to build the Request-URI and Route header
field of the request." RFC 3261 [120] 12.2.1.1 Generating the Request (Requests within a

Dialog)
X - INVITE 190XXXX at proxy.org ------ \
From: victim at victim.lan.org
To : attacker at attacker.lan.org
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5. X calls 1900-XXXX using the proxy P and the proxies asks X to authenticate using a

Digest Access Authentication with nonce="Proxy-Nonce-T1" and realm ="proxy.org"

6. X request the victim to authenticate the re-INVITE from step 4 using the same Digest
Access Authentication received in step 5

X ———-mmmom o - 401/407 Authenticate ------------- > v
Digest: realm ="proxy.org",
nonce="Proxy-Nonce-T1"

7. In this step the victim will do the work for X (Relay Attack)

X <-—--ommm— - INVITE 190XXXX at proxy.org -------- \Y
Digest: realm ="proxy.org",
nonce="Proxy-Nonce-T1"
username= "victim",
uri="1900XXXX at proxy.org",
response="the victim computed response"

8. X may reply now to the Proxy with the valid Digest Access Authentication computed by
the victim. Note that the Digest itself it is a perfectly valid one.

Figure 9.5 summarized the whole attack.

9.5 Mitigation

Authentication challenges in SIP are computed using pieces of information extracted from the au-
thenticate message plus the username and shared secret. In the simplest case the authentication
response is computed by:

A1l = username ":" realm ":" passwd
A2 = Method ":" Digest-URI
response = MD5(MD5(A1) ":" nonce ":" MD5(A2))

where response is the actual authentication response (as explained in Chapter 1.1.5). Thus,
the computed authentication responses will be rejected if the method of the message is different
than the method used to generate the response.

However, the described attack abuses that restriction due to the fact that SIP defines an
INVITE method which can be used in different contexts (i.e. for initiation of a session and
renegotiation). Therefore, the variable A2 is the same in both contexts. If different methods
names are used for those contexts, then the generated authentication response cannot be used
for such an attack.

We propose a mitigation that consists in defining the re-INVITE method as a proper method
with a new name: RE-INVITE. Note that computed authentication for such message will use
the RE-INVITE method in the variable A2 rather than INVITE. Thus, it will generate an
authentication token useful only for re-INVITEs messages. Our proposed solution is simple and
it should not require to much modifications in the overall protocol.

9.6 Conclusion

Our conclusions after a long term work on searching vulnerabilities in the VoIP space are rather
pessimistic. Feedback and support when contacting vendors remains highly unpredictable and
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User B Attacker

User X
IP-URI: .
SIP-URI: Bob@PBX.2 SIP-URI: X@XXX.1

Q INVITE sip:Bob@PBX.2

pe

Contact: sip:Piggy@Hotline
<Record-Route: sip:X@XXX.1

100 Trying L
180 Ringin g
200 OK .
. = Registrar
<« ACKsip:Bob@PBX.2 URI-Domain: PBX.2
Media Data J
actual
Media Data conversation
INVITE sip:Piggy@Hotline dgigg
transfer 10$ per Ca”
INVITE sip:Piggy@Hotline - plus ...
o . FROM: Bob@PBX.2 > Piggy@Hotline
401 Authentication Required 401 Authentication Required
(iame Authentication Challenge),// _ (Authentication Challenge)
INVITE sip:Piggy@Hotline
(Authentication Response) > INVITE sip:Piggy@Hotline
FROM: Bob@PBX.2 INVITE sip:Pi Hotline
- 200 OK m\ji> (same Authentication Resgons$ FROM: ng@gggx@z
o 180 Ringing - 180 Ringing
< 200 OK - 200 OK
ACK sip:Piggy@Hotline | Ack sip:Piggy@Hotline |,
Media Data Media Data

Figure 9.5: Relay attack to SIP summarized

poor. All tested devices have been found vulnerable. The scope of the detected vulnerabilities
is very large. Trivial input validation vulnerabilities affecting highly sensitive communication
materials are rather usual. More complex and protocol tracking related ones do also exist, though
their discovery and exploitation is rather complex. The cause of these vulnerabilities is the weak
software security life-cycle of their vendors. The integration of Web and VoIP technology is a
Pandora’s box comprising even more powerful and hidden dangers. Web specific attacks can
be carried out over the SIP plane leading to potential devastating effects, like for instance the
complete compromise of an internal network. This is possible since no application specific firewall
today can easily interact with several technologies and no proper guidelines for the secure Web
and VolP exist. The more structural cause is a missing VolP specific threat model. The VOIPSA
did develop a threat model [58] which however does not reflect the current state. Highly efficient
Denial of Service attacks can be done with single-shot packets, remote eavesdropping goes beyond
the simple call interception and the VolP plane itself can be a major security threat to the overall
IT infrastructure. Much remains to be done in the future, among which “Security Build in VoIP
devices” remains the major among them. Changes in the software development cycles must be
followed by an comprehensive security assessment and testing. Protocol fuzzing is one essential
building block in this landscape, since no other additional approach can be used by independent
security research. We have described in this chapter our practical and hand-on experience in
testing embedded SIP stack implementation. These tests were performed in order to validate our
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research on advanced security fuzzing techniques and the discovered vulnerabilities were properly
and responsibly disclosed.
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Our research performed in the MADYNES research group, addresses the secure management
of VoIP networks. We work towards an integrated system able to retrieve as much as possible
information from the target environment. Such data can be used by assessment tests and can
build scenarios allowing to identify where the flaws of the system are located. This thesis mainly
focuses on VoIP networks but our approaches as well as the designed architectural model can be
extended to other types of networks or services.

This thesis shows how accurate information from the network can be gathered, and provides
an Information Model capable to represent it in an appropriate way for assessment methods.
A network information model capable to represent the information required to perform VolP
assessment, is part of the proposed model. A VolIP assessment architecture and its implementation
has been described. A framework based on attack tree modeling in order to represent and write
VoIP attacks has been built.

A novel approach for generating fingerprinting systems based on the structural analysis of
protocol messages has been designed. Most existing fingerprinting systems are built manually
and require a long lasting development process. Our solution automates the discrimination of
signatures by using a structural approach, where formal grammars and collected network traffic
are used. It detects important and relevant complex tree like structures and leverages them for
building fingerprints.

The applicability of our solution lies in the field of intrusion detection and security assess-
ment, where precise device/service/stack identification are essential. A SIP specific fingerprinting
system has been implemented and its performance has been evaluated. The obtained results are
very encouraging. This is due to the fact that a structural message analysis is performed. Fu-
ture work will consist in improving the method and applying it to other protocols and services
and towards the natural evolution, where the underlying grammar is unknown. Features are
identified by paths and their associated values in the parse tree.

A stateful protocol fuzzer for SIP has been described. The main contribution is a flexible,
adaptive fuzzer capable to track the state of the targeted application and device. One of the
components of this work is quite generic and reusable for any protocol for which an underlying
grammar is known. The second one is dependent on the domain specifics (SIP). To the best of
our knowledge, this is the first SIP fuzzer capable to go beyond the simple generation of random
input data. The quantitative conclusions after a long term work on searching vulnerabilities in
the VoIP space are surprisingly high. Feedback and support when contacting vendors remains
highly unpredictable and poor. All tested devices have been found vulnerable. The scope of
the detected vulnerabilities is very large. Trivial input validation vulnerabilities affecting highly
sensitive communication materials are rather usual. More complex and protocol tracking related
ones do also exist, though their discovery and exploitation is rather complex. The cause of these
vulnerabilities is the weak software security life-cycle of their developers. The integration of Web
and VoIP technology is a Pandora’s box comprising even more powerful and hidden dangers.
Web specific attacks can be carried out over the SIP plane leading to potential devastating
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effects, like for instance the complete compromise of an internal network. This is possible since
no application specific firewall today can easily interwork with several technologies and no proper
guidelines for the secure interworking of Web and VoIP exist. The more structural cause is a
missing VoIP specific threat model. The VoIPSA alliance did develop a threat model which does
not fully reflect the current state. Highly efficient Denial of Service attacks can be done with
single-shot packets, remote eavesdropping goes beyond the simple call interception and the VoIP
plane itself can be a major security threat to the overall IT infrastructure. Much remains to
be done in the future, among which “Security Build in VoIP devices” remains the major among
them. Changes in the software development cycles must be followed by an comprehensive security
assessment and testing. Protocol fuzzing is one essential building block in this landscape, since
no other additional approach can be used by independent security research. We have described
our practical and hand-on experience in testing embedded SIP stack implementation. These
tests were performed in order to validate our research on advanced security fuzzing techniques
and the discovered vulnerabilities were properly and responsibly disclosed.

The work presented in this manuscript has been published in parts in international confer-
ences and magazines. The work of security assessment presented in chapter 5 has been published
in IM 2007%° [9]. The content of chapter 6 related to passive fingerprinting has been published in
RAID 2008>! [11] and a live demonstration has been conducted at IPTComm 2008°2. Chapter 8
describing a stateful SIP fuzzer has been published at IPTComm 2007°3 [10]. A public demon-
stration of the tool has taken place in ShmooCon 2008%4 [14]. The fuzzing experiences presented
in chapter 9 have been published in EICAR 08%° [13] and in MISC #3936 [12].

The resulting tool of our fuzzing approach, KiF, is open source and available free of charge
at http://kif.gforge.inria.fr/ under an special license to avoid malicious use. Currently,
the tool is been partially supported by a cooperation lab between Alcatel-Lucent and INRIA.

Future Work

Assessment related tasks are usually more effective when more information is acquired from the
network. One useful case would be to known the common rules or patterns used by firewalls.
Thus, their inspection can speed up the process of assessment techniques for the search of vulner-
abilities. Our current activities consist in how such rules can be used for improving assessment
to find the rules weaknesses and to possibly reforce them.

Currently a standardisation proposal for a common log file for SIP has been submitted to
the 74" Internet Engineering Task Force (IETF). The standardisation of the log format can be
a valuable work since it will allow different researchers to evaluate their own approaches across
different traces, even more for IDS which can detect abnormal behavior in real time.

The fingerprinting approach was limited to study the structural representation of the mes-
sage, however we realized that there are fields which have some relationship within each other.
An interesting study case can be directly related to measure the entropy between fields. This
entropy can be analyzed between messages of one session or even between fields of an individ-
ual message. Other concerns are related to actively fingerprinting devices and automatically

50TM 2007: the 10" IFIP/IEEE Symposium on Integrated Management

SIRAID 2008: the 11*" international symposium on Recent Advances in Intrusion Detection, Boston, USA

S2IPTComm ’08: the 2"? international conference on Principles, Systems and Applications of IP Telecommu-
nications, Heidelberg, Germany

S3IPTComm ’07: the 1° international conference on Principles, Systems and Applications of IP Telecommuni-
cations, New York, USA

%4 ShmooCon 2008, Washington DC, USA

SSEICAR 08: the 17" Annual Conference of the European Institute for Computer Anti-Virus Research, Laval,
France

*The MISC Magazine - Edition francaise: Multi-System & Internet Security Cookbook
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identifying meaningful queries using our fuzzing approach.

In the short term, we will focus on extending our fuzzing framework by addressing addi-
tional protocols, case studies and implementations. Surface covering is an active field for fuzzer
comparison. Our current research is oriented towards comparison made out of virtualization
environment where the full behavior of the system can be observed and analyzed. An immediate
follow up goal is where feedback gathered from the assessed platform can be used to evaluate and
drive the fuzzing process. It is important during a fuzzing process to cover as much as possible
of executed code in a target application and be able to fine-tune and learn when and how to shift
the fuzzing process. It is also essential to know, in a fuzzing scenario, when to stop because no
other step can provide any valuable advance.

One definition of performance in the fuzzing landscape is related to the capability to adapt
to an unknown protocol. Sometimes, the specifications of a protocol are not available, or too
complex in order to take them into account when designing a specific fuzzer. Future work
will address this task by coupling work on automated reverse engineering of unknown protocols
and fuzzing techniques. The first goal is to develop and validate sound approaches for reverse
engineering of an unknown protocol. The best illustration is the following: starting from a
network capture, can the individual protocol message units and associated message structure
by automatically identified? The second sub-goal is to derive a fuzzing framework where the
discovered protocol elements can be automatically fuzzed.
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Glossary

ABNF : Augmented Backus-Naur Form is context-free grammar specification used to formally
describe the message syntax in protocol specifications
ARP : Address Resolution Protocol is used for finding a host’s MAC address using its IP address

CDP : The Cisco Discovery Protocol is a proprietary protocol used by Cisco devices to advertise
themselves and discover other devices in the network

CVE : Common Vulnerabilities and Exposures is a database of publicly known security vulner-
abilities and exposures

DHCP : Dynamic Host Configuration Protocol is a protocol used for providing the required
information for end points to connect to an IP network

DoS : Denial of Service is a term used when a component is disabled from its normal service

DTLS : Datagram Transport Layer Security protocol provides equivalent protection mechanism
to TLS using an unreliable transport layer, like UDP

HTTP : HyperText Transfer Protocol is the protocol for retrieving documents used in the
Internet

IDS : Intrusion Detection System is a software designed to detect anomalies, attacks and un-
wanted manipulation on a network

IETF : Internet Engineering Task Force is an organization which develops and promotes protocol
standards for the Internet

IPSec : IP Security allows to create a secure tunnel between end points, thus providing mutual
authentication, encryption, anti-replay and data integrity

ISP : Internet Service Provider is a company that provides Internet services

PBX : Private Branch Exchange is a telephone component used by private organizations to
carry its telephone calls
PSTN : Public Switched Telephone Network is the traditional public telephony network

RFC : Request For Comments is the document in the IETF used for describing standards
RTP : Real-time Transport Protocol is a protocol used for encapsulating media data in real
time

S/MIME : Secure/Multipurpose Internet Mail Extensions is used for message body encryption
and it can be used in an end-to-end fashion

SDP : Session Description Protocol is a format used for describing multimedia sessions

SIP : Session Initiation Protocol is a signaling protocol used for establishing, modifing and
tearing down multimedia sessions

SIPS : Is a term used for specifing a SIP resource in which a secure connection is required
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Glossary

SQL : Structured Query Language is a language defined for querying and modifying relational
databases

SRTP : Secure Real Time Protocol provides authentication, confidentiality, integrity and replay
protection of the media data

SS7 : Signaling System #7 is a set of protocols used for managing the communication calls in
the PSTN

STRIDE : Is a threat model defined by Microsoft. STRIDE stands for Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, Elevation of privilege

TFTP : Trivial File Transport Protocol is used for transfer files. Usually used for network
booting

TLS : Transport Layer Security is a cryptographic protocol designed to provide data integrity
and confidentiality for TCP traffic between two consecutive hops

UA : User Agent for the SIP protocol (i.e. end point device). It can be logically divided in User
Agent Server (UAS) and User Agent Client (UAC) depending on the role in which is
playing

UDP : User Datagram Protocol is an unreliable protocol used for simple transmission of data
over the network

URI : Uniform Resource Identifier is a string used to identify a resource on the Internet

URL : Uniform Resource Locator specifies the mechanism needed for retrieving a resource on
the Internet

VoIP : Voice over IP is a term for the voice communications over the Internet

VoIPSA : Voice over IP Security Alliance (VOIPSA) was therefore created with the purpose
of promoting, educating and providing methodologies and tools for people using VolP
services

VPN : Virtual Private Network is a computer network where the nodes do not need to be
physically connected instead a tunneled connection is carried on

XML : Extensible Markup Language is a general purpose language used to store or transport
data

XSS : Cross-Site Scripting is referred as XSS to not get confused with Cascading Style Sheets.
XSS is a type of code injection which allows an attacker to execute malicious code in
the client-side of web applications

ZRTP : is defined as a key management scenario for SRTP
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Résumé

Les solutions voix sur IP (VoIP) sont actuellement en plein essor et gagnent tous le jours de
nouveaux marché en raison de leur faible coiit et d’une palette de services riche. Comme la voix
sur IP transite par I'Internet ou utilise ses protocoles, elle devient la cible de multiples attaques
qui peuvent mettre son usage en péril. Parmis les menaces les plus dangereuses on trouve les
bugs et les failles dans les implantations logicielles des équipements qui participent & la livraison
de ces services.

Cette thése comprend trois contributions a 'amélioration de la sécurité des logiciels. La pre-
miére est une architecture d’audit de sécurité pour les services VolP intégrant découverte, gestion
des données et attaques a des fins de test. La seconde contribution consiste en la livraison d’une
approche autonome de discrimination de signatures de messages permettant I’automatisation de
la fonction de fingerprinting passif utilisée pour identifier de fagon unique et non ambigiie la
source d’un message. La troisiéme contribution porte sur la détection dynamique de vulnérabil-
ités dans des états avancés d’une interaction protocolaire avec un équipement cible. L’expérience
acquise dans la recherche de vulnérabilités dans le monde de la VoIP avec nos algorithmes est
également partagée dans cette thése.

Mots-clés: Sécurité VolP, audit de sécurité réssau, fingerprinting passif, extraction de carac-
téristiques, inférence structurelle de syntaxe, fuzzing, fuzzing de protocoles, vulnérabilités SIP

Abstract

VoIP networks are in a major deployment phase and are becoming widely accepted due to
their extended functionality and cost efficiency. Meanwhile, as VolP traffic is transported over
the Internet, it is the target of a range of attacks that can jeopardize its proper functionality.
Assuring its security becomes crucial. Among the most dangerous threats to VoIP, failures and
bugs in the software implementation will continue rank high on the list of vulnerabilities.

This thesis provides three contributions towards improving software security. The first is a
VolIP specific security assessment framework integrated with discovery actions, data management
and security attacks allowing to perform VoIP specific assessment tests. The second contribution
consists in an automated approach able to discriminate message signatures and build flexible
and efficient passive fingerprinting systems able to identify the source entity of messages in the
network. The third contribution addresses the issue of detecting vulnerabilities using a stateful
fuzzer. It provides an automated attack approach capable to track the state context of a target
device and we share essential practical experience gathered over a two years period in searching
for vulnerabilities in the VoIP space.

Keywords: VoIP Security, Network Assessment, Passive Network Fingerprinting, Feature ex-
traction, Structural syntax inference, Fuzzing, Protocol Fuzzer, SIP Vulnerabilities






