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Abstract

The department of surgery is the core unit of the patient care system within a hospital.
Due to continuous technical and medical developments, such departments are equipped
with increasingly high-tech surgery rooms. This provides higher benefits for patient treat-
ment, but also increases the complexity of the procedures’ workflow. This also induces
the presence of multiple electronic systems providing rich and various information about
the surgical processes.

The focus of this work is the development of statistical methods that permit the mod-
eling and monitoring of surgical processes, based on signals available in the surgery room.
These methods combine low-level signals with high-level information, and can be used to
detect events and trigger pre-defined actions. A main application is the development of
context-aware surgery rooms, providing adaptive user interfaces, better synchronization
within the surgery department and automatic documentation.

We introduce and formalize the problem of recognizing phases within a workflow,
using a representation of interventions in terms of multidimensional time-series formed by
synchronized signals acquired over time. We then propose methods for the modeling, off-
line segmentation and on-line recognition of surgical phases. The main method, a variant
of hidden Markov models augmented by phase probability variables, is demonstrated on
two medical applications. The first one is the monitoring of endoscopic interventions, using
cholecystectomy as illustrative surgery. Phases are recognized using signals indicating tool
usage and recorded from real procedures. The second application is the monitoring of a
generic surgery room workflow. In this case, phase recognition is performed by using
4D information from surgeries performed in a mock-up operating room in presence of a
multi-view reconstruction system.

Keywords:
Surgical Workflow, Surgical Activity Analysis, Context Aware Operating Rooms, Hidden
Markov Models, Cholecystectomy, Recognition from Multi-view Reconstruction






Résumé

Le bloc opératoire est au coeur des soins délivrés dans I’hopital. Suite a de nombreux
développements techniques et médicaux, il devient équipé de salles opératoires haute-
ment technologiques. Bien que ces changements soient bénéfiques pour le traitement des
patients, ils accroissent la complexité du déroulement des opérations. Ils impliquent éga-
lement la présence de nombreux systémes électroniques fournissant de I'information riche
et variée sur les processus chirurgicaux.

Ce travail s’intéresse au développement de méthodes statistiques permettant de modé-
liser le déroulement des processus chirurgicaux et d’en reconnaitre les étapes, en utilisant
des signaux présents dans le bloc opératoire. Ces méthodes combinent des signaux de
bas niveau avec de l'information de haut niveau et permettent a la fois de détecter des
événements et de déclencher des actions pré-définies. L'une des applications principales
est la conception de salles opératoires sensibles au contexte, fournissant des interfaces uti-
lisateurs réactives, permettant une meilleure synchronisation au sein du bloc opératoire
et produisant une documentation automatisée.

Nous introduisons et formalisons le probleme consistant a reconnaitre les phases réali-
sées au sein d'un processus chirurgical, en utilisant une représentation des chirurgies par
une suite temporelle et multi-dimensionnelle de signaux synchronisés. Nous proposons en-
suite des méthodes pour la modélisation, la segmentation hors-ligne et la reconnaissance
en-ligne des phases chirurgicales. La méthode principale, une variante de modele de Mar-
kov caché étendue par des variables de probabilités de phases, est démontrée sur deux
applications médicales. La premiere concerne les interventions endoscopiques, la cholé-
cystectomie étant prise en exemple. Les phases endoscopiques sont reconnues en utilisant
des signaux indiquant 1'utilisation des instruments et enregistrés lors de chirurgies réelles.
La deuxieme application concerne la reconnaissance des activités génériques d’'une salle
opératoire. Dans ce cas, la reconnaissance utilise de 'information 4D provenant de chi-
rurgies réalisées dans une maquette de salle opératoire et observée par un systeme de
reconstruction multi-vues.

Mots Clés:

Déroulement des Processus Chirurgicaux, Analyse des Activités Chirurgicales, Salles
d’Opération Réactives au Contexte, Modeles de Markov Cachés, Cholécystectomie,
Reconnaissance a partir de Reconstruction Multi-vues
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Part 1

Introduction, Motivation and
Related Work

In Chapter 1, we introduce the topic of the dissertation, namely the problem of recognizing
activities within a surgical workflow. We motivate this objective by describing how modern
operating rooms can benefit from context-aware support and how new technologies enable
it. Related work in activity recognition is then presented in Chapter 2, with a particular
emphasis on the medical field. Finally, chapter 3 describes in details the two applications
addressed in this thesis: the cholecystectomy application and the daily OR workflow.







CHAPTER 1

Introduction

The department of surgery is the core unit of the patient care system in a hospital.
This is the place where therapeutic treatments are performed, in close collaboration with
several other medical disciplines such as anesthesia. Surgery is continuously subject to
technological and medical innovations, illustrated by the accelerated development and
introduction of new imaging technologies, advanced surgical tools, navigation and patient
monitoring systems. The purpose of these advances is to improve patient treatment. But
at the same time, they also transform and complexify the pre-, intra- and post-operative
daily routine.

The increasing complexity of processes occurring in surgery rooms, as well as the
growing amount of available information, raise high interest for contextual support to the
Operating Room (OR) staff. Contextual support could display information in the most
suitable way at each timestep of the surgery, relieve the personnel from performing simple
but time-consuming tasks and also assist them in the tedious ones. Context awareness in
the OR is on the verge of becoming possible with the surgery rooms being revolutionized
by taking fully advantage of Information Technologies.

Context aware support requires that events and activities occurring in the OR can be
automatically recognized, based on signals available from the different OR tools and sys-
tems. The current difficulty to gather signals from the OR is a limiting factor to research
in this area. However, efforts towards the introduction of common standards should per-
mit to collect signals from many systems using a unique central interface in the future.
Clinicians and researchers have indeed recently stressed the crucial need for a new Op-
erating Room, called Operating Room of the Future, in which assistance systems should
in particular be fully integrated to deliver increased benefits for patients, surgical staff,
hospitals and the healthcare system in general [Cleary et al., 2005, Lemke et al., 2005].

Context-awareness and recognition within the OR are at their very early stages: it
is the purpose of this thesis to perform some groundwork in these directions. This is
accomplished in several steps. We first propose to model interventions in terms of mul-
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tidimensional time-series formed by synchronized signals acquired over time. We then
present machine learning approaches based on this representation to model, synchronize
and recognize phases within a surgical workflow.

We address two complementary scenarios to demonstrate the concepts: endoscopic
surgery workflow and daily operating room workflow. These two scenarios were not only
chosen because of their complementary nature: for both of them, there exist among
our medical partners interest in the application and also sustained effort to acquire the
required signals during real interventions.

1.1 The Operating Room of the Future

The Operating Room of the Future (ORF) is a concept for better operating rooms
and interventional suites. The improvements are defined in terms of patient treatment,
information handling, system integration and ease-of-use, system and person communi-
cations, workflow, patient throughput and cost efficiency [Satava, 2003, Feussner, 2003,
Berci et al., 2004, Cleary et al., 2005, Lemke et al., 2005, Sandberg et al., 2005]. In the
following, we briefly present several major directions for the ORF. They show how the
OR is getting increasingly high-tech and digital, up to a point where almost every activity
and action can be "observed" by some system signals. This will permit to stress how the
involved technologies make context-aware systems possible and also how the staff and the
surgery department could benefit from contextual support.

1.1.1 Image-guided Surgery

Less invasiveness has been a main objective in the development of image-guided proce-
dures [Peters, 2006]. Contrary to open surgery, in which significant lesions are necessarily
caused to soft tissues to obtain a direct access to the anatomical region of interest, mini-
mally invasive procedures only require small incisions and are characterized by less trauma
for the patient and by a faster recovery time. This is made possible by the use of specific
systems which allow indirect access to and visualization of the operation field.

A widespread technique for minimally invasive surgery is endoscopy, in which the re-
gion of interest is imaged in real-time by an endoscope, a generic name for a tool consisting
of a light source, an optic unit and a camera at its proximal end. It is introduced trough
a small incision or a natural opening and can be rigid (e.g. laparoscope or arthroscope) or
flexible (e.g. bronchioscope or colonoscope). Endoscopes can be used both for diagnosis
or surgery. To control his movements, the surgeon looks indirectly at the anatomy and
at the inserted tools on a video screen (see Figure 1.1(a)).

Endoscopes cannot however be used in all situations. Many pathologies remain for
instance invisible to the surgeon on simple video images. Alternative solutions targeted
in image-guided surgery involve the use of other imaging techniques for intra-operative
guidance. Currently available imaging modalities include X-rays, fluoroscopy, computed
tomography, magnetic resonance, positron emission tomography, nuclear probes and ul-
trasound. Even though they can sometimes be used regularly during the surgery, they
usually provide only indirect visualization to the surgeon. Imaging solutions suitable for
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(a) Endoscopic surgery. The surgeon looks at the monitor (b) Visualization of Joerg Traub’s foot with
for hand-eyes coordination. augmented reality (courtesy of Oliver Kutter
and Joerg Traub).

Figure 1.1: Example of minimally invasive techniques: navigation with endoscopy and
augmented reality.

intra-operative usage are x-rays, fluoroscopy, ultrasound and sometimes magnetic res-
onance. Modalities which can only be acquired pre-operatively or sparsely during the
surgery still provide valuable information about the structures and tissues to design a
surgical roadmap.

Several issues need however to be solved in order to optimally use the information
provided by these modalities during the surgery. A key difficulty is to relate with precision
the positions of the surgical tools in the real world (i.e. within the patient) to the different
coordinate systems of the images. This involves challenges in different areas, such as
segmentation, registration, tool tracking, compensation of patient movements and tissue
deformations [Peters, 2006, Yaniv and Cleary, 2006]. Presenting the resulting information
to the surgeon in the right way is also a challenge in itself. A promising direction is
Augmented Reality (AR) (see [Sielhorst et al., 2008] for a review of medical AR), in which
guidance information is directly incorporated into the surgeon’s field of view (as shown
in Figure 1.1(b)). The AR technology is particularly exciting for the development of
new ways to provide contextual information and interaction mechanisms to the surgeon
[Navab et al., 2007].

1.1.2 Surgical Robotics

The OR2020 report [Cleary et al., 2005] evokes the idea of a surgery room completely
robotized, where patients would go through similarly to cars on industry assembly lines.
This is far from being possible with the actual state-of-the-art in robotics, as the capacities
of decision and anticipation of a surgeon are way beyond the current possibilities of
machines. However, machines are predictable and their motion can be modeled. This
is not the case for humans, whose behaviours are hard to quantify and are influenced
by many factors such as e.g. stress, fatigue and lack of attention. Even though human
motion can be very precise, it may also be poorly reproducible and quantified.

Robotics could therefore be complementary to human abilities. The key idea is not
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Figure 1.2: Operating room in Paris using the da Vinci surgical robot. The robot is
controlled through a remote console, located on the left in the picture. Courtesy of
Intuitive Surgical, Inc.

to replace the surgeon, but to provide him/her with tools that enhance his capabilities,
under his/her control. Robotic assistance is especially indicated in fine operations or
minimally invasive surgery scenarios, in which the requirements create harder working
conditions, smaller areas of operation, and diminished visual and haptic perceptions.
Benefits include precision, miniaturization of access and ergonomy. The developments and
applications of robotic surgery are numerous [Davies, 2000, Taylor, 2008]. Most robots
are designed for specific surgeries. We briefly mention two major application areas of
surgical robots: the execution of planned tasks and the extension of the surgeon’s hand.
In the execution of planned tasks, the robot is used to perform an autonomous task
under surveillance of the medical team. Its planning has been decided beforehand by
taking into account pre-operative patient information. This has advantages in precision
and accuracy over a human. Example of application is the insertion of a needle based
on a target indicated in a pre-operative image. In the case of extending the surgeon’s
hand, robotic tools are controlled by the human through a human machine interface.
This permits enhancing features such as filtering of high-frequency motion in the human
hand, preventing movements from deriving away from a pre-planned route, or performing
non-natural gestures.

Extending the surgeon’s hands offers promising surgical possibilities, such as
telesurgery [Satava, 2005]. Telesurgery has been demonstrated on real operations per-
formed by two commercial robots: the da Vinci robot [Guthart and Jr., 2000] (see Figure
1.2) and the Zeus robot [Ghodoussi et al., 2002]. In fully robot assisted surgery room,
telesurgery could even permit to conduct remote surgeries in unmanned OR. This is for
example targeted by the Traumapod project [Friedman et al., 2007], which aims to pro-
vide an unmanned OR on the battlefield controlled remotely by a surgeon.

In robotic environments, rich signals for analyzing and monitoring the surgical pro-
cesses are directly available from the robots [Lin et al., 2006].
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1.1.3 Digital Operating Room

Most information used and exchanged during a surgery tend to be digital. Patient
information, operation schedules, surgical reports and image modalities are handled by
computers. Patient monitoring systems, image guided assistance systems, electronic tools,
intraoperative imaging devices and robots could have their signals digitally available.
Currently however, most devices present in the OR are working independently and do
not share information on a common platform. This slows down data exchanges between
staff, systems, departments and hospitals [Cleary et al., 2005, Lemke et al., 2005]. This
also prevents the design of user interfaces providing a complete overview of the OR status
[Meyer et al., 2007]. Lack of standardized interfaces and concurrent developments are at
the origin of this issue.

Propositions for new standards to design an integrated and digital OR are emerg-
ing [Lemke, 2007, Lemke and Vannier, 2006]. The driving idea is to extend the well-
established DICOM standard designed for picture archiving and communication sys-
tems (PACS) used in radiology to incorporate all components intervening in the sur-
gical processes in addition to imaging modalities. The concept proposed by Lemke et al.
[Lemke and Berliner, 2007] is called Therapy Imaging and Model Management System
(TIMMS). TIMMS aims at modeling all data exchanges and decision processes within
the surgery room (see Figure 1.3). It contains a communication platform and mod-
ules that model and control all components of a procedure, ranging from images and
signals to the visualization devices, including the procedure’s workflow and knowledge
databases. The system needs to be scalable, distributed and to provide interchangeable
objects. Design and experiments with an initial TIMMS framework are reported e.g. in
[Mayoral et al., 2008].

The adoption of a digital OR could improve the operative efficiency during the surgery,
by allowing smoother interaction, communication and decision processes. This could also
give way to an accelerated development of telecollaboration, since all information will be
available on-line with low transmission delays.

1.1.4 Workflow Optimization

Due to the increasing amount of information, systems and communication require-
ments, optimizing the workflow is a major objective in the design of the Operating Room
of the Future [Cleary et al., 2005, Lemke et al., 2005]. This should permit an improved
and more quantifiable treatment as well as cost reduction through better scheduling within
the surgery department and increased patient throughput. Workflow in the OR is condi-
tioned by communication interfaces, spatial layout, personnel skills and teamwork abili-
ties. The workflow can first be optimized off-line. This usually involves the redesign of the
OR and of the personnel guidelines by experts, based on statistics of the past surgeries.
Indeed, optimal integration and positioning of systems along with an optimal ordering of
personnel tasks can reduce setup, communication and usage delays.

Depending on situations and human factors, the surgical staff may however not always
behave optimally at each time-step, e.g. with respect to tool usage and scheduling. Staff
may also be overloaded by incoming information. For this reason, workflow should also

7



Introduction

<s=p- Data Exch.

<+— Control

Data and Models and
information intervention
records

Figure 1.3: Therapy Imaging and Model Management System (TIMMS). Courtesy of
[Lemke and Berliner, 2007].

be optimized on-line by providing the OR staff with context-sensitive support that relies
on actual conditions within the OR. Such support can be the display of the right infor-
mation at the right time, the triggering of reminders to the personnel, or the real-time
transmission of information about personnel and room availability. There is now a need
for intelligent systems that will use information from both previous surgeries and mod-
els provided by experts to propose opinionated and non-opinionated guidance through-
out the procedure (corresponding to the module "Kernel for Workflow and Knowledge
+ Decision Management" in Figure 1.3). Off-line and on-line optimizations are natu-
rally intertwined, but the on-line nature of such systems is becoming increasingly crucial
with the numerous tasks that have to be accomplished, e.g. in image guided surgery
[Navab et al., 2007, Lemke and Berliner, 2007].

1.2 Signal-based Surgical Workflow Analysis

1.2.1 Sensor-enriched Operating Rooms

The trends described in the previous section suggest that the Operating Room of
the Future will host a tremendous set of sensors and electronic devices that will provide
information about almost all activities occurring in the OR, performed either by surgeons,
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assistants or nurses. Surgical activity will be indicated by signals coming from the electric
activation of tools, from tool and staff tracking systems, robot movements, intra-operative
imaging devices, patient monitoring systems, etc. Peri-surgical activity will be perceived
by additional sensors, such as video cameras, RFID sensors and the usage of the hospital
information system. In addition to these real-time signals, patient specific information,
including age, previous treatments and pre-operative images will be digitally accessible.
When this information is available in real-time from a unique computer interface and in a
synchronized manner, the preliminary requirements for the development of a fully aware
operating room will have been met. The OR will then be equipped with multiple sensors
similarly to the Aware Home [Kidd et al., 1999], a testbed for developing context-aware
assistance in the home.

1.2.2 Surgical Workflows

In most current medical procedures and applications, the sequence of surgical steps
and actions that are accomplished to perform a treatment follows a repetitive schema.
This schema is usually called a workflow (see Section 1.2.4). Workflows do not only
structure the performance of the operation, from the first incision on the patient to the
last suturing, but also the complete usage of the surgery room, from the entrance of one
patient to the next one. In regular operations, patient and surgeon specificities influence
the surgical steps in their details. But they do not alter the overall workflow.

Workflows are described in medical books, formalized by protocols and learnt by the
personnel during medical studies and training. They are also enforced by the specialization
of surgery rooms and cost efficiency requirements [Herfarth, 2003]. In other industries,
for instance in production lines, formalization and optimization of workflows as well as
information technology integration are more advanced and have shown to be a key point
for reducing costs and improving quality. But contrary to each instance of an industrial
product, a patient cannot be processed by a simple automate. His variability and his
condition of human being raise additional technical and ethical issues.

1.2.3 Potential Applications

The presence of rich OR signals, combined with the constraints and repetitivity im-
posed by surgical workflows, offer new possibilities for analyzing, understanding and mon-
itoring workflows using machine learning approaches. Several applications are provided
in the following sections.

1.2.3.1 Situational Awareness

The huge amount of available information will permit the construction of decision
systems that can interpret the current signals based on a database of signals acquired
from previous interventions. Possible applications differ both in scope and coarseness of
their monitoring as well as in the amount of expert supervision required in the system
construction. Some application examples are:
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Scheduling: The current surgery stage can be synchronized in real-time to the standard
surgery workflow. This would permit to follow visually on a workflow diagram the progress
of an operation in a remote control room. Such information could be used to adapt room
and personnel scheduling within the surgery department.

Context-sensitive user-interfaces: User-interfaces that adapt to the context can per-
mit to display the right information to the right OR member at the right moment. They
could permit to trigger reminders and notifications to new surgical personnel about the
next steps that have to be performed. This could ease the preparation of instruments at
the right moment. In the long-term, this could even permit a certain degree of automation.

Documentation: Key events and their times of occurrence can be written down au-
tomatically, easing the hand out of the final report by the surgeon. Together with the
complete archiving of the data, this also provides objective material for legal matters.

Anomaly detection: Unpredicted variations from the signals with respect to the pre-
vious procedures can be used to trigger warnings to the surgical staff. More trivially, this
could be used to notify the personnel when immediate equipment maintenance or resource
replacement (for instance oxygen bottles) are required.

1.2.3.2 Surgical Data Mining

Traditional modeling and design of workflows is based on a manual approach performed
by experts. When the objective is to analyze and redraft an existing workflow, e.g. for
optimization purposes, objective and statistical information about the existing workflows
is very valuable. Experts can indeed be subject to bias, by observing the workflow as it
should be rather than how it really is [van der Aalst et al., 2003]. Set of signals, which
can also be referred to as process logs, can be analyzed automatically to provide their
underlying structure and statistics. This is precious information for experts, who can
more easily analyze and find out used resources, causal dependencies, sources of delays
and exceptions within the previous procedures.

In addition to their usage for the redrafting of a workflow to make it more efficient,
objective inputs can be used to design benchmarks for workflow comparisons. This would
be very useful to evaluate the impact and benefits of the introduction of a new medical
device.

1.2.3.3 Databases Analysis and Training

The archiving of all signals permits several applications such as planning based on
statistical analysis and search for previous similar cases. This can be achieved by analyz-
ing pre-operative images of previous patients, but also by visualizing previous surgeries,
including their specific potential issues. This is also particularly valuable for training.
Indeed, trainees could visualize surgeries of the same kind performed by different sur-
geons, displayed in a synchronized fashion. This could permit comparison and comments
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by a teacher. This would also allow the trainee to compare himself objectively to more
experienced surgeons.

1.2.4 Definitions Related to the Problem

Several terms related to recognition within workflows will be used throughout this
thesis. Terms referring to actions, their sub-parts and their compositions are not well-
defined, since their distinction and coarseness are a matter of application and time-scale.
We present below a usual terminology, based on a-priori semantic knowledge about the
application domain.

An action is defined as the fundamental element in the semantic interpretation of a
scene; it consists for example in picking up, handing, cutting. When several of these
actions are considered together, they form activities or behaviors [Bobick, 1997]. With
increasing complexity and timescale, we define a phase as a semantically meaningful group
of activities occurring somewhere inside a temporal sequence of actions, i.e. a "step" in
a process. Phases occur repetitively or constantly across different sequences; the order
in which they appear matters. Phases can have huge differences in durations, especially
across recordings. The semantic relevance which leads to considering a group of activities
as a phase, is purely determined on the basis of domain knowledge. Finally, a set of phases
along with their temporal relations is named a workflow.

In this thesis, the workflow analysis approaches are signal-based, i.e. the workflow
is observed by a time-series of multidimensional vectors containing signals (information
units), for instance obtained from video images and electronic systems. A multidimen-
sional vector of signals at a certain time-step can be referred to as an observation. The
time-series or sequence of observations obtained during the execution of a workflow is
called a workflow instance or workflow exemplar.

The regular recording of a workflow within a surgery room yields a database of work-
flow exemplars, illustrating the workflow and its variations, depending on patient, envi-
ronment and staff differences. Machine learning approaches on this database are used to
construct recognition systems. Recognition is said to be on-line, when it is performed for
each time step of the workflow instance, using all signals of the instance acquired up to
that particular time step. It is said to be off-line, when it is performed for each time-
step, but based on all signals of the workflow instance up to the last time step. In the
latter case, the recognition can only occur after the end of the execution of the workflow
instance. Real-time recognition is by nature an on-line process.

1.3 Contributions

The analysis of surgical workflow based on real-time signals is a recent research field.
To our knowledge, there is no published work presenting on-line workflow recognition
approaches for complete surgeries. In this thesis, we introduce and formalize the problem
of recognizing phases within a surgical workflow, using representations of interventions in
terms of multidimensional time-series formed by synchronized signals acquired over time.
We represent the entire surgical workflow within a single model that is learnt from fully
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or partially annotated data and permits either off-line segmentation, on-line recognition
or both.

The first contribution is a surgical workflow representation, which can be used for off-
line surgical phase segmentation of a sequential workflow. The approach combines high-
level annotation with average surgical signals and is based on surgery synchronization
with the dynamic time warping algorithm. The model is called annotated virtual surgery
representation (AVSR) and several approaches are proposed to construct it.

The second contribution is a representation based on hidden Markov models, called
annotated workflow hidden Markov model (AWHMM), that permits both off-line segmen-
tation and on-line recognition of the phases of a workflow, possibly containing alternative
courses of activities. Several approaches are proposed to construct it. Like the AVSR,
the AWHMM is based on phase probability variables that retain semantic information.
These variables store the annotation and permit both to prevent semantic information
from getting blurred during training and to conveniently construct the model under partial
labeling.

The third contribution is to provide a solution for workflow monitoring of laparoscopic
cholecystectomies, based on tool usage during the procedure. Results are presented in
terms of recognition, modeling and remaining-time prediction, using recordings from real
procedures performed at the Hospital Rechts der Isar, Munich. We also present initial
steps towards the usage of the endoscopic video as input signal as well as a joint effort
with our medical partner to develop a trocar-camera system for real-time tool recognition.

The fourth contribution is an approach based on 4D features for recognition in a com-
plex OR workflow. To recognizes the phases, we propose to use 3D-flow computed directly
on multi-view reconstruction data. The approach is evaluated on surgeries containing al-
ternative workflows and performed in a mock-up OR. This application is motivated by the
installation of a 16-camera system within an interventional room at Hospital Grosshadern,
Munich.

Additionally, we present in Appendix A some early work to introduce wearable sensors
in the surgery room and to define automatically a motion vocabulary from this data for
action recognition in percutaneous vertebroplasties. The list of publications I authored
and co-authored during this thesis is available in appendix E. The abstracts of several
major publications that are not discussed within this thesis are available in appendix F.

1.4 Outline

We first present in Chapter 2 related work in the domains of action recognition
within workflows, of recognition within medical applications and of modeling of sur-
gical workflows. Chapter 3 introduces the two applications addressed in this the-
sis. The laparoscopic cholecystectomy procedure, the daily OR workflow scenario as
well as the setups and signal acquisition approaches are presented. Chapter 4 de-
scribes methods based on dynamic time warping to synchronize surgeries, to gener-
ate an annotated virtual surgery representation (AVSR) and to segment the surgical
phases of interest. Results are provided for the cholecystectomy application. Work
related to this chapter has been published in [Padoy et al., 2007a]. In chapter 5, hid-
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den Markov models are presented, as they are the core of the recognition methods pro-
posed in the next two chapters. Chapter 6 introduces the annotated workflow HMM
(AWHMM) in the context of laparoscopic procedures for modeling and performing on-
line recognition. Several methods described in this chapter have been published in
[Padoy et al., 2007b, Padoy et al., 2008, Blum et al., 2008a, Padoy et al., 2009]. Chap-
ter 7 presents the usage of 3D reconstruction data for recognition in a daily OR sce-
nario. An effective AWHMM initialization is described as well as experiments on a work-
flow containing alternative paths. Work related to this chapter has been published in
[Padoy et al., 2009]. Finally, conclusions of the thesis are presented in chapter 8.

Early work on defining a motion vocabulary from inertial sensor data obtained from
vertebropasty procedures is presented in Appendix A. Work related to this appendix
has been published in [Ahmadi et al., 2008, Ahmadi et al., 2009]. Major publications not
discussed in this thesis are briefly presented in Appendix F.
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CHAPTER 2

Related Work in Surgical Workflow Analysis

Human activity recognition is a large research domain that has been actively inves-
tigated in the last decade. The trend is higly motivated by the wide variety of applica-
tions concerned with understanding and modeling human behaviors, such as surveillance,
human-machine interaction and medical monitoring.

The surgical application left aside, extensive literature exist in the computer vision
and pattern recognition communities on human activity recognition. The proposed meth-
ods are principally based on the usage of video images or wearable sensors. It is however
important to note that actions in daily life are less constrained and less subtle than in
the operating room. For this reason, most work address the recognition of independent
actions, but do not consider the constraints of a workflow. In the operating room, recogni-
tion of surgical activity is a recent field of research. Only few work have directly addressed
this application under the specific constraints and difficulties implied by the surgical en-
vironment. Closely related is literature focusing on the evaluation of surgical skills in
minimally invasive surgery and on the design of robotic assistants for the OR. It provides
insights both in the OR signals that can be obtained and in the methods used for their
analysis. At a more abstract level, the increasing literature about formal modeling of
surgical processes stresses the important role played by the surgical workflow inside the
operating room.

As the surgical workflow recognition problem is highly multi-disciplinary, we decided
to present the different related areas. We first briefly present literature addressing general
human activity recognition, with a focus on vision-based approaches using workflow con-
straints and on approaches using wearable sensors. We then focus on recognition within
the department of surgery and on the formal modeling of surgical processes. We briefly
position our work with respect to the existing literature at the end of this chapter.
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2.1 Human Activity Recognition

Outside the surgery room, previous works have addressed problems such as the recog-
nition of human actions [Aggarwal and Cai, 1999, Yan et al., 2008]; the activity and
anomaly detection in public environments, [Grimson et al., 1998, Bremond et al., 2006,
Wang et al., 2007]; the modeling and identification of the primitive actions composing
activities [Moore and Essa, 2002, Shi et al., 2006]; the automatic discovery of the activi-
ties [Hamid et al., 2007, Xie et al., 2004] and the recognition of events in groups such as
in meetings [Oliver et al., 2004, Brdiczka et al., 2007].

These approaches rely on sensors placed within the environment or directly on the
observed persons. They differ either in the signal combinations and representations,
or in the machine learning approaches used for recognition. The Aware Home project
[Kidd et al., 1999] is representative of the sensors available for activity analysis. In this
project, a house containing ubiquitous sensing was built to study everyday’s activities and
develop context-aware services. Sensors included video cameras, RFIDs, microphones and
weight floor captors. Combining wearable computers with the external sensors is also pro-
posed. Currently, video is still the most widely studied support for research in activity
analysis, as cameras are non-invasive, cheap and already present in many locations.

A common underlying feature in the above-cited literature is the focus on recognizing
isolated actions or activities (e.g. pick up, wave, fight, etc). In this way, they comply
with most long-term applications, where relevant actions need to be detected but periods
of inactivity and uninteresting actions should be discarded. In this thesis, we address
the activity recognition problem in the context of a workflow. In this case, activities
follow a well-defined structure in a long period of time and can be semantically grouped
in relevant phases. The major characteristic of the phase recognition problem is the
temporal dependencies between phases and their highly varying durations.

In Section 2.1.1, we will first review the subpart of the computer vision literature in
which constraints of the workflow are considered in some ways. We will then present,
in section 2.1.2, existing work using wearable sensors. These sensors are prone to be
miniaturized and may get used soon into the OR [Yang, 2006].

2.1.1 Vision based

For a recent review of general action recognition methods based on video images, we
refer the reader to [Weinland, 2008]. In the following, only articles considering workflow
aspects are presented.

Pinhanez and Bobick [Pinhanez and Bobick, 1997] were among the first to analyze
complex flows of actions. In their seminal work, framing in a TV studio was proposed to
be done automatically, by triggering cameras based on the detection of events specified
in a script. Unfortunately, their vision system was not able to detect the events and the
authors were forced to generate them manually. Although progress has been done ever
since, using vision systems for recognition in complex environments remains difficult. The
problem is usually simplified by limiting the number of actors or that of actions, using a
distinctive background, restricting the activity area or discriminating the actions by their
spatial location.
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[Koile et al., 2003] introduced the concept of activity zones: regions in an environment
that are linked to specific activities. Likewise, [Nguyen et al., 2005] represented a room as
a collection of cells. In both cases a tracking system was used to determine the presence
of a person in a zone or the occupation of a cell. The goal of [Nguyen et al., 2005] was
to recognize behaviors that differed in the occupied cells and in the sequence of their
occupation. Hierarchical HMMs were used to recognize three behaviors, namely having a
snack, a normal meal or a short meal. [Moore et al., 1999] used a camera installed above
a desk to track a person’s hands and objects on the table. An HMM was used to detect
actions based on interactions of the hands with the objects. The use of model constraints
to recognize complex events has been suggested in works like [Xiang and Gong, 2008,
Moore and Essa, 2002, Vu et al., 2003, Shi et al., 2006].  [Xiang and Gong, 2008] ad-
dressed structure learning in HMMs to obtain temporal dependencies between a few
high-level events for video segmentation. An HMM modeled the simultaneous output
of event-classifiers to filter their wrong detections. [Moore and Essa, 2002 used stochas-
tic context-free grammars to recognize separable multi-tasked activities in a card game
from video. Production rules were manually defined to describe all the relations between
the tracked events. [Shi et al., 2004, Shi et al., 2006] proposed propagation networks to
model and detect from video the primitive actions of a task performed by a tracked person.
Propagation networks are graphical models that explicitly model parallel streams of events
and are used for classification. The detailed topology is handcrafted and trained from par-
tially annotated data. [Vu et al., 2003] used a symbolic approach to recognize complex
activities in surveillance applications. For each activity, a formal scenario was provided
by hand, including actors, objects and their spatio-temporal dependencies. Concerning
the computation of features to observe the scene from video data, the aforementioned lit-
erature mainly relied on detection and tracking of the persons and objects. Failure of one
of these components hinders the recognition of the events. These articles imposed con-
straints on the flow of events to design a better model and improve recognition results. In
most of them, the constraints were provided manually with an handcrafted topology and
annotated data. In [Nguyen et al., 2005, Xiang and Gong, 2008], the structure is learnt
from the data. To simplify the problem, the data either comes from constrained activities
(e.g. an action corresponds to a spatial area) or has been pre-processed to contain high
level semantic information. The main focus is on action classification. For this reason,
on-line detection results are rarely provided. Additionally, the actions usually have similar
short durations.

2.1.2 Wearable-sensor based

Even though cameras are available in many places, not all open areas can be covered
to observe human activities. Moreover, it remains difficult to estimate accurately human
postures and movements from videos in unconstrained environments. Wearable sensors
tend to become more comfortable than some years ago with the miniaturization of the
involved technologies, in particular of power supplies. They can thus provide additional
and complementary information on human activities.

[Bao and Intille, 2004] used two or five biaxial accelerometers worn on the body to
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recognize various physical activities, such as running, brushing teeth, reading, vacuum
cleaning. Features extracted with the fast Fourier transform were used by decision
tree for classification. [Huynh et al., 2007] used three biaxial accelerometers to classify
a wide range of daily activities. Classification results were compared using clustering
algorithms, support vector machines and HMMs. For the recognition of free-weight ac-
tivities, [Chang et al., 2007] used two three-dimensional accelerometers, one in a glove
and one on the waist. The approach, based either on Bayesian classifiers or on HMMs,
resulted in the automatic counting of repetitions. In [Kern et al., 2003], an architecture
for gathering data from multiple 3D accelerometers was presented. Physical activity was
classified with Bayesian classifiers. [Krause et al., 2003] used an armband containing two
biaxial accelerometers and sensors of physiological data to classify daily activities using
self-organizing maps. In [Lester et al., 2006], the authors proposed to use a single body
location, but a rich sensor-board including among others accelerometers, a barometer, a
compass and a microphone. Data was classified with HMMs after feature selection. To
recognize actions performed during an assembly task in a workshop, [Ward et al., 2006]
used a combination of wearable microphones and accelerometers. The different activities
were classified with linear discriminant analysis and HMMs. In [Subramanya et al., 2006],
activities were recognized together with locations, using a GPS and a sensor board. A dy-
namic Bayesian network was trained on partially annotated data to model dependencies
between activities and locations.

Medical applications of wearable sensors are for instance the analysis of gait
[Morris and Paradiso, 2002],  the monitoring of chronic patient [Patel et al., 2007,
Bravo et al., 2008] and the monitoring of disease processes [Yang, 2006] .

These work show that recognition of individual activities using wearable sensors is
possible. The methods however do not take any workflow constraints into account. Since
such sensors are prone to be introduced in the OR [Yang, 2006], they are good candidates
for being used for action recognition in surgical workflows.

2.2 Surgical Activity Recognition

In Section 2.2.1, we present works aiming generally at the recognition of events or
activity within the OR for various applications. Recognition focused on activities per-
formed by the surgeon during a minimally invasive surgery will be presented in Section
2.2.2. In Section 2.2.3, we present some work addressing the evaluation of surgical skills in
endoscopy, since the acquired signals are particularly of interest for workflow recognition.

2.2.1 Recognition in the Operating Room

In [Agarwal et al., 2007], a system was presented for the automatic generation of an
electronic medical record (EMR). The system was recording information about the ad-
ministration of medicines, the presence of surgical staff and the occurrence of medically
significant events. For the detection of medical events, physiological signals were queried
using a rule-based knowledge system based on fuzzy logic and designed by experts. Exper-
iments were carried out in a trauma scenario with four events using physiological signals
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provided by a simulator. Detailed results were not presented, but the authors mentioned
high recognition rates with a generally high latency. Tracking of medical supplies and of
presence/absence of patient or staff was achieved using RFID sensors. An application of
the system is the automatic EMR generation within an unmanned OR. The development
of such an OR was targeted by the traumapod project for providing healthcare on the
battlefield, using telesurgery with the da Vinci robot from Intuitive Surgical and robotic
assistants [Friedman et al., 2007]. In [Agarwal et al., 2007], the system offered the display
of tracking information and recognized events, elementary checks such as the presence of
the right patient, and also convenient replay of videos recorded during the procedure.

[Meyer et al., 2007] pursued a similar objective. In collaboration with human factors
engineers, an integrated display was developed for the Operating Room of the Future at
the Massachusetts General Hospital, showing dynamic information gathered from RFID
tags and OR systems. The display adapted to the stage of the procedure, which was ob-
tained from the milestone data entered by the nursing personnel. In addition to the smart
display of contextual information to all staff members present in the OR, a mentioned
long-term objective was the integration of decision support into the system.

Location information Locations provide useful clues about the activities. So far,
RFID has been the most widely investigated technique for material and person tracking
within the hospital. Objectives were mainly intendance and reporting, but also activity
recognition. For instance, in [Bardram, 2004], a context-aware system using RFIDs was
presented for several nursing applications including monitoring a pill container, monitoring
the patient bed and using efficiently the electronic patient record. In [Favela et al., 2007,
Sanchez et al., 2008], input data containing personnel location and interactions was used
with neural networks or hidden Markov models to classify daily activities of medical
workers inside the hospital, such as taking care of patients or performing clinical case
assessment. The data was acquired manually from a study conducted at the hospital, but
could be obtained with RFIDs.

Within the surgery room, RFIDs have been mainly proposed to check the pres-
ence of the right patient and staff and to perform inventory tasks [Nagy et al., 2006,
Egan and Sandberg, 2007]. An important potential application is also the automatic
tracking and counting of sponges, to make sure none was left inside the patient
[Macario et al., 2006, Rogers et al., 2007]. In [Houliston and Parry, 2008], a setup based
on RFIDs was proposed to record the activities in the anesthesia department. The men-
tionned longer term objective was to monitor the anesthetist’s activity.

The usage of RFIDs for tracking the surgical tools would be highly beneficial, both
for inventory matters and for recognition of surgical activities. In other environments,
such as in the house, interactions between persons and objects have proven useful for
activity recognition [Wyatt, 2005]. However, the integration of RFID tags within the
small surgical instruments is still a technical issue. [Smith et al., 2005] proposes a glove
equipped with an RFID reader. It was tested on medical volunteers [Fishkin et al., 2004]
but was reported to be intrusive. Practical solutions for tool recognition in endoscopy are
at the moment video-based, by using autoclavable color markers attached to the instru-
ments [Ko et al., 2007, Radrich, 2008].[Tahar et al., 2008] attempted to employ the tools
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Figure 2.1: (a) Four-states HMM model for patient presence detection. (b) Decision rules
for endoscopy holder control in cholecystectomy procedure.

in open surgery as current interruptors to detect their usage, but this approach has too
many contraints to become practicable. Several kinds of minimally invasive surgeries, e.g.
imaged-guided neurosurgery, need the tools to be tracked. Tool presence is then directly
available from the guidance systems, such as VectorVision (Brainlab '), in which tools are
tracked optically using infrared reflectant markers placed at the tip of the instruments.

Physiological signals Physiological signals reflect the patient health state. They are
used to detect anomalies, by the anesthetist in the OR, but also by portable monitors in
daily life for patients at risk [Bar-Or et al., 2004]. Within regular and non-crucial surg-
eries, they do not provide much contextual information, especially as they contain many
artifacts. An original use of these signals was made in [Xiao et al., 2005] to automati-
cally detect when the patient entered and exited the OR. The detection was achieved
by processing the pulse oximetry, electrocardiogram and temperature readings, but was
however very sensitive to signal artifacts. The aim was to provide a hospital-wide system
for passively monitoring the status of the surgery rooms [Hu et al., 2006].

Videos In [Bhatia et al., 2007], four different OR states describing the surgery room
occupancy with respect to the patient bed presence and occupation were recognized using
external video information. Hue histograms of the video images were classified by support
vector machines and then filtered temporally using a four-states hidden Markov model,
illustrated in Figure 2.1(a).

2.2.2 Recognition in Endoscopy

Due to the simpler and more convenient access to surgical information that endoscopic
surgeries provide, especially in terms of signal acquisitions, they are the first kind of

1. http://www.brainlab.com
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surgeries that are addressed for recognition in the surgical domain. Additionally, the
existing acceptance and knowledge by the surgeon of the many advanced tools required
during the procedure simplifies the introduction of new technical systems that would be
based on surgical steps recognition.

The robotic community has an increasing interest in the recognition of surgical steps,
both for automation and development of context aware robotic assistants. Targeting
the development of a robotic scrub nurse that would automatically provide the correct
endoscopic instrument to the surgeon, [Miyawaki et al., 2005] analyzed movements of the
surgeon and of the nurse during a surgery to design timed-automata that model the
surgeon’s activities, the scrub nurse’s activities and the surgical steps. The conception of
the model was done by hand, based on recorded videos and on motion tracking obtained
from visual markers, which was time consuming. In this initial work, the suggestion was to
use the resulting model in conjunction with parametric model checking methods to control
the path planning of the robot. In further work [Yoshimitsu et al., 2007], they presented
a vision-based system using color markers recognizing when the surgeon is requesting a
laparoscopic instrument. The robot handed in the instrument, but it only worked with a
tiny set of instruments provided in a predefined order. This recognition was not used in
combination with the model.

In [Ko et al., 2007], a task model of cholecystectomy was designed for guidance of a
laparoscopic robot which was controlling the camera pose. A viewing mode was assigned
to each surgical stage and transition rules between the stages were defined manually based
on the active surgical tool detected using color markers. An excerpt of the rule system
is illustrated in Figure 2.1(b). It was clearly mentioned that a surgical step cannot be
always uniquely recognized from the current surgical tool. They could not distinguish
the ambiguity and they planned to address this problem in future work. An additional
issue to consider is that quite often different surgeons use the tools in different ways or
for different purposes than what these were originally intended for [Mehta et al., 2001].
A learning-based approach, as we propose, has the potential to adapt to the specific
technique of each surgeon.

In [Lo et al., 2003], the endoscopic video was used to classify four elementary tis-
sue/instrument interactions, namely idle, retraction, cauterization and suturing. Cues
including shape, deformation and illumination information were used within a Bayesian
network to perform the video frame classification. In this work, the objective was to as-
sess the surgical skills and results are provided on several sub-sequences of real surgeries.
Two of the four interactions, idle and cauterization obtained low classification results.
Within complete surgeries, classification rates obtained by using solely video information
are expected to be worse, due to the complex and cluttered scenes.

[James et al., 2007] addressed the recognition of one surgical step of a pig cholecys-
tectomy: the clipping of the cystic duct. The surgeon’s focus was tracked by an eye-gaze
system and the endoscopic video was processed to detect the presence/absence of an in-
strument inside a portion of the video. These two pieces of information were combined
and used with artificial neural networks to detect the step. The signals provided by the
eye-gaze tracker are illustrated in Figure 2.2(a).

In [Speidel et al., 2008], an approach for surgical risk assessment was presented and
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Figure 2.2: (a) Eye gaze tracking signals during a porcine cholecystectomy. (b) Risk
assessment in minimally invasive surgery. The system detects the proximity of the instru-
ment with a risk structure.

tested in an experimental setup. The authors proposed to describe high-risk surgical tasks
with a logic system that models interactions between anatomical objects and surgical tools
recognized from the endoscopic video. An augmented reality system was used to visually
notify the surgeon about detected risk situations by highlighting risk structures (see Figure
2.2(b)).

As can be seen from these works, motivation for recognition of endoscopic activities
is high. However, methods and signals are so far specific and totally dependent on the
targeted application and respective experimental setup.

2.2.3 Surgical Skills Evaluation

Interesting signals for the analysis of surgical gestures are the positions of tools or the
forces applied to them. These can be obtained indirectly by using a tracking system or
directly using a robot which can also provide the positioning information. Up to now, such
signals have been seldom available during regular surgeries and have been mainly used
for evaluating and comparing surgeons performing on a simulator. The need for objective
methods assessing the surgical dexterity has indeed increased with the introduction of
minimally invasive surgeries [Darzi et al., 1999].

In [Cao et al., 1996], endoscopic gestures were video-taped and decomposed into el-
ementary subtasks (called surgemes in [Lin et al., 2006]) to manually mark explicit dif-
ferences in the movements performed by expert and novice surgeons. [Rosen et al., 2006]
and [Megali et al., 2006] used force and torque or kinematic information from a simulator
to build hidden Markov models representing surgical dexterity. This allowed the defini-
tion of metrics for evaluating surgeons. [Leong et al., 2007] assessed surgeons’ hand-eyes
coordination by comparing the trajectories of surgical instruments recovered using a Po-
laris tracking system (NDI?). Two HMMs were built to model respectively the trajectories
performed by experts and by novices. These were then used to classify a new trajectory

2. http://www.ndigital.com
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into one of the two modeled skills classes. [Lin et al., 2006] acquired signals from a da
Vinci robot to classify surgeons’ skill levels on a suturing task. The approach used linear
discriminant analysis and Bayesian classification. In [Sielhorst et al., 2005], a method was
proposed to qualitatively compare the performance of a trainee using a birth simulator to
the performance of an expert. Trajectories of tracked forceps were temporally synchro-
nized using dynamic time warping and displayed simultaneously within an augmented
reality system.

The literature cited above focuses on particular gestures but not on complete surgeries.
However, similar signals as the ones acquired and used by these authors could be employed
for surgical workflow recognition, especially in case of robotic surgery, where such signals
are easily available without additional setups.

2.3 Formal Modeling of Surgical Workflows

Tools to formally describe surgical processes are needed for the analysis, visualiza-
tion and optimization of surgical workflows. There were a few attempts to automati-
cally generate workflow models from process logs, based on approaches from business
process modeling [van der Aalst et al., 2003]. For instance [Maruster et al., 2001] at-
tempted to derive a Petri-net from data describing hospital events. Another approach
from [Blum et al., 2008b] based on HMMs will be presented in section 6.6.3. However,
limitations arised from the lack of semantics present in the process logs. For this reason
most approaches are based on expert knowledge.

[MacKenzie et al., 2001] proposed a hierarchical decomposition of the tasks oc-
curring during a laparoscopic surgery. This was obtained manually based on a
dataset of recorded surgeries and helped in the understanding of tasks and interac-
tions for optimizing the workflow. In [Jannin et al., 2001], a model based on Unified
Markup Language (UML) was proposed in order to understand and optimize the us-
age of imaging modalities during a neurosurgical procedure. The model was illus-
trated in Figure 2.3. Using a database of instances, this model was proven to be
useful for pre-operative planning [Jannin and Morandi, 2007]. [Neumuth et al., 20064,
Burgert et al., 2006, Neumuth et al., 2006c| presented ontologies and tools to describe
and record surgeries in a formal manner. The work steps and interactions occurring in
surgeries could be recorded manually by assistants using a software that helps generating
standardized descriptions, which could in turn be used for an in-depth analysis of the work-
flow. Different workflow visualization methods were proposed in [Neumuth et al., 2006b].
An integration of such workflow descriptions within the DICOM standard was presented in
[Burgert et al., 2007, Lemke, 2007]. For querying and analyzing recorded surgical work-
flows, a data warehousing approach was proposed in [Neumuth et al., 2008]. Finally,
[Qi et al., 2006] proposed to build the hospital information system on a workflow model
that describes as a dependency graph the tasks that have to be accomplished by each
department.

The broadest and most widespread formalization for surgical processes is the concept
of a Therapy Imaging and Model Management System [Lemke and Berliner, 2007], illus-
trated in Figure 1.3 on page 8. It was proposed to extend the Picture Archiving and
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Communication System (PACS) concept used in radiology for the needs of surgery. At
term, it should model all surgical processes and objects, and contain a surgical workflow
module.

While these modelings provide interesting descriptions of the workflow, a link to real
signals still needs to be made for the models to be used in recognition systems.

2.4 Thesis Positioning

Previous sections describe several recent directions that have been taken in the lit-
erature for analyzing the surgical workflow. In this thesis, we investigate a new direc-
tion, which is complementary to existing work. We namely address the problem of auto-
matically recognizing and classifying the surgical phases during complete operations. In
[Neumuth et al., 2006a, Jannin and Morandi, 2007], detailed modelings of surgical work-
flow are proposed. These models are however not related to real surgical signals. There-
fore, they cannot be used for recognition. As opposed to these approaches, we propose
statistical models which directly rely on existing surgical signals and which are designed
for off-line and on-line recognition. Since they require less manual supervision, our models
do contain less semantic information, though.

The design of such a recognition system can be regarded as the development of a "Kernel
for Workflow and Knowledge+Decision Management" module within the TIMMS concept
introduced in [Lemke and Berliner, 2007]. In [Lin et al., 2006], the recognition of surgical
gestures is addressed. The focus is however on surgical skills evaluation. For this reason,
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experiments are carried out in experimental setups featuring generic surgical tasks. In-
stead, we focus on the recognition of phases during the complete surgery, for the purpose
of designing context aware support systems. In parallel work, [James et al., 2007] address
recognition in cholecystectomy. The approach is however designed to recognize only a
single phase. It also requires an eye-gaze system and results are so far only presented on
pig surgeries. In contrary, within our cholecystectomy application, we use generic signals
and present results based on acquisitions of real surgeries.

Another objective in this thesis is to learn how to recognize surgical activities during
complete surgeries, based on labeled recordings of the targeted application. As can be
seen from Section 2.1, HMMs are widely used for activity recognition in the computer
vision community, since they conveniently deal with time-series. In our applications, the
considered activities are constrained by a workflow. Classification without considering
the temporal contraints of the workflow is prone to errors due to ambiguities. For this
reason, we do not train HMMs for each activitiy separately, but train a global form of
HMM, in which the activities can be tracked using additional phase probability variables.
This modeling directly copes with variations in duration, takes workflow constraints into
accounts and does not require parameters for windowing on the data during on-line pro-
cessing.

We demonstrate our methods on two novel and complementary applications, each
featuring a different level of coarseness in the recognized semantic information. In the
cholecystectomy application, we recognize the endoscopic phases, based on tool usage
signals. This is the first work presenting an on-line approach and results of phase de-
tection evaluated on real and complete surgeries. The second application consists in the
recognition of the phases of a generic daily OR workflow. A multi-camera system is used
to observe the scene, motivated by the constraints of the complex and occluded surgical
environment. This is the first work proposing 4D features, not only for recognition in
surgical workflow, but also for recognition in complex reconstructed scenes containing
several objects and persons.

Within the following chapters, additional differences to closest work as well as further
discussions on their complementarity to ours are presented in more details.
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CHAPTER 3

Applications and Setups

Two main applications are addressed in this thesis: the cholecystectomy procedure
and the daily OR workflow. This chapter describes the scenarios, as well as the signal
acquisitions that we performed during real operations or in a mock-up OR.

Cholecystectomy is a common procedure, consisting in the removal of the gallbladder.
In most of the cases, it is performed in a minimally invasive setup using laparoscopy.
Even though the methods developed in this thesis can apply to other surgeries, either
endoscopic or open, provided that signals such as tool usage are available, this procedure
was the main medical application targeted in this work. It was at the origin of much effort
to acquire data in the OR during real procedures. It is indeed convenient for recordings
since it is frequent and safe, but also suitable for demonstration as it contains a complex
workflow.

Motivated by the future possibility of gathering rich and real-time reconstruction data
from a multi-camera system under development at one of our partner hospital, we fur-
ther investigated the usage of this data for recognition of the generic daily workflow in
the OR. In addition to the different kind of signals available, a major difference to the
cholecystectomy application is that the scenario is coarser and contains alternative paths
of activities.

Our clinical partners for the two applications were respectively from Hospital Rechts
der Isar and from Hospital Grosshadern, both located in Munich.

3.1 Laparoscopic Cholecystectomy

3.1.1 Description
3.1.1.1 Clinical Indication

The gallbladder is an organ located in the upper-right part of the abdomen, under
the liver, as illustrated in Figure 3.1. It stores the bile produced by the liver and releases
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Figure 3.1: Abdominal anatomy (left) and trocar positioning (right).

it into the intestine to help the digestion process. Gallstone disease, also know as the
biliary calculus disease, is the most common biliary disorder. It is caused by hard stones
appearing in the gallbladder or in the bile duct. They are formed by chemicals from the
bile when their proportions get unbalanced. They provoke no symptoms in most cases,
but may also cause irritation or pain. In the latter case, the common medical indication
is the removal of the gallbladder, as humans can live normally without it.

3.1.1.2 Brief History

The first open cholecystectomy is attributed to the german surgeon Carl Langenbuch
and took place in Berlin in 1882 [Morgenstern, 1992, Olsen, 2006]. The first laparoscopic
cholecystectomies were performed approximately one century later, independently by Dr.
Erich Muhe in 1985 in Germany and by Dr. Philippe Mouret in 1987 in France. The
success of laparoscopic cholecystectomies generated an unprecedented research effort to-
wards minimally invasive techniques that boosted the developments of endoscopic surgery
[Riskin et al., 2006]. Due to its recognized benefits, in particular faster recovery time and
less pain for the patient, laparoscopy is now the standard for cholecystectomy.

Most recent developments now permit the performance of cholecystectomy without
leaving any scar on the patient, either by using single port access through the umbili-
cus [Bucher et al., 2009], transluminal access [Jacques et al., 2007] using natural openings
with NOTES (natural orifice transluminal endoscopic surgery [Bucher et al., 2009]) or the
previous two techniques simultaneously [Zornig et al., 2008].

3.1.1.3 Procedure

The following paragraph describes the details of this procedure in non-medical terms.
Different variations in this procedure exist depending on patient specificities and technical
preferences of each medical school. Complete medical descriptions are e.g. available in
[Feussner et al., 1991, Dubois, 1993].

Before the beginning of the procedure, the patient first gets prepared for full-
anaesthesia. He is then positioned for surgery and connected to anaesthesia system for
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monitoring of vital signs. In the same time, patient data are displayed on the computer
interface and surgical tools are prepared in a sterile zone. The endoscopic environment,
including endoscopic tower, monitors, and electric coagulation and cutting devices are
connected and placed at their respective positions. The patient abdominal area is disin-
fected and the surgery is ready to start, upon arrival of the surgeon.

In laparoscopic cholecystectomy, the endoscopic procedure is performed with four tro-
cars which permit the introduction of the instruments inside the abdominal area. Their
exact positions depend on patient specificities and on surgeons’ preferences, but they are
usually placed in a configuration shown in Figure 3.1. The procedure starts with a first
incision at the umbilicus navel and the introduction of a needle for inflation of the ab-
dominal cavity with CO2. Then, the first trocar, of size 5mm, is introduced inside this
opening, and a first inspection of the abdomen is performed with the endoscope. Upon
this inspection, the other trocars with size bmm or 10mm are placed and inserted, one
after each other under endoscopic visualization.

At University Hospital Rechts der Isar, this endoscopic procedure is usually performed
with two assistants and one scrub nurse, in a setup called german position: the operating
surgeon uses trocars 2 and 3, while trocar 1 is used by an assistant to hold the liver with
a metal rod in order to reveal the gallbladder. Trocar 4 is used by a second assistant
holding the endoscopic camera.

The next steps, which are also the most delicate, consist in the dissection, clipping and
cutting of the bile duct and of the cystic artery. Using a grasper and a dissecting device,
the two vessels are revealed by dissection of neighboring tissues. Then, a clipping device
is introduced to ligate the two vessels by using two to three clips. The two vessels are cut
and the gallbladder is ready to be separated from the liver. Its dissection is performed
with an electronic cutting tool that applies high-frequency currents to the tissues, in
combination with an electronic coagulation device that stops bleedings. This part of the
procedure generates smoke that may slightly obscure the vision through the endoscopic
camera.

Finally, a retraction sac is introduced through the larger umbilical incision and the
gallbladder inserted into the bag using graspers. After removal of the trocar, the sac is
extracted. For it to pass through the hole, first the gallstones that caused the operation
are removed from it one by one. This is followed by the drainage of irrigation fluids, a
final control phase of the abdominal area, the removal of all instruments and the suturing
of the incisions.

An illustration of the main phases of the surgery, in pictures, is given in Figure 3.3 on
page 32.

3.1.1.4 Personnel

At the university Hospital Rechts der Isar, six persons are usually involved in the
procedure. The nurse and the scrub nurse first prepare the room and the surgical instru-
ments. Once the patient arrives in the room, he gets prepared for surgery by the assistants
and the anesthetist. After the start of the procedure, the sterile zone is occupied by the
surgeon performing the surgery, the assistant holding and controlling the camera, a second
assistant retaining the liver with a liver rod and the scrub nurse preparing and passing
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surgical tools to the surgeon. Additionally, a nurse is present outside the sterile zone to
take care of missing items, schedules, phone calls and other needs. In the anesthesia area,
an anesthetist monitors patient vital signs.

3.1.1.5 Relevance of the Procedure for Workflow Analysis

The cholecystectomy is a very convenient surgery for demonstration of workflow analy-
sis methods. It is indeed a common and safe procedure, for which recordings can regularly
take place. In the study [Feussner et al., 1991] conducted at our partner hospital Rechts
der Isar, it is reported that less than 3% of 178 cases have required conversion to open
surgery due to complications. Additionally, the procedure is complex, in the sense that it
requires many different surgical instruments and also many surgical steps to be performed.
This surgery is also widely used in the literature related to surgical workflow analysis, for
instance in [Miyawaki et al., 2005, James et al., 2007, Ko et al., 2007].

3.1.2 Representation

All signals providing information about the surgery room, the patient state, and the
staff actions are interesting for recognition during the surgery. Unfortunately, it is not
possible yet to obtain all of them simultaneously in a synchronized fashion. For recognition
of the phases occurring during cholecystectomy, we will show in the next chapters that
the endoscopic tool usage provides enough information.

3.1.2.1 Tool Usage

The history and combination of used tools correlate with the underlying workflow in
endoscopic surgeries. For this reason, we rely on tool usage to infer the actions performed
by the surgeon.

We represent an endoscopic surgery of time length 7" by a multidimensional time-series

O where Oy € {0,1}% :
O, =1 if and only if signal £ is active at time ¢.

The signals represent the instruments’ usage during the laparoscopic surgery and in
our case the number of recorded instruments is K = 17. Signals obtained in one of the
surgeries we have recorded are displayed in figure 3.2. Here the signals from the operating
room are binary and recorded at a temporal resolution of one second.

3.1.2.2 Other Signals of Interest

Within the surgery room, other surgical information could provide interesting signals
related to the workflow of the procedure. Signals from the anesthesia devices could for
instance be of interest, especially for the detection of anomalies. The material usage
entered by the nurse into the hospital information system and the state of the operating
or room lights could provide further information about the progress of the surgery. Even
though these values are very dependent on the surgical case, the amount of water used
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Figure 3.2: Signals recorded from a surgery. The numbers on the top of the figure indicate
the different phases.

for irrigation, the quantity of liquid retrieved with the suction device and the amount
of CO2 give also interesting clues about the evolution within the workflow. Any other
additional signal, binary or not, could be included into the modeling with only little
further modification.

3.1.2.3 Phases

From the workflow described in section 3.1.1.3, together with our partner surgeon we
selected fourteen generic phases displayed in table 3.1. Even though these phases can
have high variations in duration, they can be easily and reproducibly identified within the
surgery instances by an expert. They are semantically meaningful by representing each a
different medical objective. These phases are the ones that will be used for segmentation
and detection in Chapters 4 and 6. They are displayed next to their corresponding signals
in Figure 3.2 and visually illustrated in Figure 3.3 on page 32.

3.1.3 Data Acquisition

In this section, we first describe the data acquisitions performed at Hospital Rechts
der Isar. We then present ongoing work for the automation of the acquisition process.

3.1.3.1 Approach

The first recordings were performed using two to three camcorders. One recorder
was connected to the external output of the endoscopic tower to collect the endoscopic
video. The second camrecorder was set up in the back of the room, in order to capture
the complete scene. In some cases, we used a third camrecorder to capture a zoomed
view of the surgical theater. Synchronization was performed by using a stopwatch with
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3.1 Laparoscopic Cholecystectomy

‘ ‘ Phase Name ‘ Duration ‘
1 | CO2 Inflation 188 (£93)
2 | Trocar Insertion 186 (£40)
3 | Dissection Phase 1 498 (+265)
4 | Clipping Cutting 1 110 (£47)
5 | Dissection Phase 2 110 (£146)
6 | Clipping Cutting 2 113 (£55)
7 | Gallbladder Detaching | 550 (4383)
8 | Liver Bed Coagulation 1 | 207 (£129)
9 | Gallbladder Packaging | 121 (£82)
10 | External Retraction 342 (£341)
11 | External Cleaning 104 (£120)
12 | Liver Bed Coagulation 2 | 181 (£62)
13 | Trocar Retraction 78 (£55)
14 | Abdominal Suturing 114 (£99)

Table 3.1: The fourteen cholecystectomy phases used in the recognition. The duration
column displays the mean and standard deviation of the phases durations, in seconds.
These values were computed for the 16 surgeries that are used in our experiments. The
average total duration is 48.5 (£18.5) minutes.

100Hz temporal resolution viewed at the beginning and at the end of the recordings by
all cameras.

In the last phase of the recordings, in a joined effort with Helmuth Radrich
[Radrich, 2008], we used a more sophisticated setup providing four precisely synchro-
nized videos. The first two videos provided endoscopic and room view, the two second
videos acquired direct views of the operating theater, for stereo tracking of surgical tools
[Radrich, 2008]. Pictures from the surgery rooms at hospital Rechts der Isar can be seen
in Figure 3.4.

The surgeries that have been recorded were performed by four different surgeons from

Figure 3.4: External views of three different operating rooms from Hospital Rechts der
Isar, Munich, where recordings have been performed.
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(a) Trocar camera (b) Instrument
with barcodes

Figure 3.5: Pictures from the trocar camera and from an instrument covered with bar-
codes.

the same medical school. Additionally, we have attended several cholecystectomy pro-
cedures carried out at another hospital (Klinikum Innenstadt, Munich), but could not
perform regularly recordings there. Note that the phases were the same. However, in-
struments were sometimes used in different ways. Such differences should be learnt by
the recognition system given that enough training data is available.

The instrument tool usage was obtained for the experiments presented in this work
by manual labeling of the videos using a dedicated software. The next section presents
an effort for real-time acquisition of these signals.

3.1.3.2 Trocar Camera

Even though the technology exists, at the moment no practical, reliable and cost-
effective solution exists for identification of endoscopic tools usage at each timestep. Sev-
eral companies, including Karl Storz, have been considering the integration of RFIDs
inside the tools, but they do not see enough market for it at the moment.

The trocar camera is a device investigated by the team of Prof. Feussner (Institute
for Minimally Invasive Therapy and Intervention, Hospital Rechts der Isar, Munich) that
should permit the recognition of the tools inserted in a trocar. It should be used in the
future for logistic and workflow monitoring purposes. It consists in components similar to
a flexible endoscope, as can be seen in Figure 3.5(a). A flexible tube contains two optic
cables: one for transmitting a light source, one for observation with a camera. The tube
can be connected to the side of the trocar for observation of the tools inserted into it. Its
design has to permit the usage in the sterile operating room conditions. An additional
advantage is that no electric cables need to be brought in proximity of the patient.

The device was manufactured by the company PolyDiagnost®. Tool recognition is
performed using barcode detection from the video image using a software that we devel-

1. http://www.polydiagnost.com
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3.2 Surgery Monitoring with a Multi-camera System

oped in collaboration with the company MVTech?. Issues arise from the poor contrast
and the reduced field of view of the camera, which does not capture the complete trocar
area, e.g. when a trocar of size 10mm is used. We proposed to solve this issue by using
short barcodes of type 2/5 Interleave, which do not incorporate redundancy, but fit fully
inside the video image. The camera used is a Guppy F046B from Allied Vision Tech-
nologies ®, which provides a framerate of 40fps. The instrument is covered with barcodes
for reliable detection, as shown in fig. 3.5(b). In a final setup, the barcodes would be
printed on the instruments by laser. Tests in a fully controlled environment resulted in
a correct detection. In animal experiment conditions, the device has shown unstability,
for technical reasons. A better fixation of the tube to the trocar is required, as well as a
fixed emplacement for the camera, so that the image stays stable. When this is improved,
further animal experiments will be carried out to test the system in real conditions, where
e.g. blood can alter the view of the instruments.

3.2 Surgery Monitoring with a Multi-camera System

The second application addressed in this thesis is the recognition of coarse daily OR
activities. This is complementary to the phase recognition problem in endoscopy, since
here the cholecystectomy procedure would consist in one of the phases. We investigate
the usage of multi-view reconstruction data provided by a permanent system that would
continuously observe the OR.

3.2.1 Description
3.2.1.1 Motivation for a Multi-camera System

The monitoring of surgical processes occuring within a surgery room requires a sensing
system that on the one hand does not impair the workflow, and on the other hand captures
enough information about the activities. For recognition at the scale of a surgery, tool
usage can be used, as in previous section. For recognition of overall daily activities, signals
that continuously observe the OR are required. Cameras are a natural choice, since they
are cheap, widespread, non-intrusive and can be easily installed on the ceiling. The
workflow in the OR comprises multiple, precise and complex activities usually involving
the interaction of several people and objects. As the crowded scene implies multiple
occlusions, a set of cameras is required to keep an overview of the whole activities.

Originally, the installation of the multi-camera system was launched within a research
project at the Chair for Computer Aided Medical Procedures of Prof. Navab to moni-
tor a robotic C-arm, the Zeego robot developed by Siemens (illustrated in Figure 3.6).
The objective was to prevent possible collisions between the system and the staff and
objects present in the room [Ladikos et al., 2008b]. This is a way to enforce safety re-
quirements, but also to potentially permit faster movements of the robots, as required
for better imaging results and usage of less contrast product. The solution proposed by

2. http://www.mvtec.com
3. http://wuw.alliedvisiontec.de
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Figure 3.6: Left) Zeego robot from Siemens. Right) Picture from the intervention room
at Klinikum Grosshadern, Munich, where the multi-camera system is installed.

[Ladikos et al., 2008b] is to compute the occupation of the room in real-time, generating
a reconstruction volume in which potential collisions between objects can be predicted
and therefore avoided, as illustrated in Figure 3.7.

We investigate in this thesis a further application of the system, namely the usage of
the reconstructed data for activity recognition. When observing the scene with a camera,
colors on clothes and tissues are similar and multiple occlusions occur as the personnel
principally work around a small area around the patient table. For these reasons, tracking
and recognition of fine-grained human actions in this specific environment are extremely
difficult and furthermore, not absolutely necessary for phase recognition. We postulate
that a global model of the scene obtained by the reconstruction is sufficient for coarse
recognition since the whole activity focus is on the patient. To capture the coherence of
this activity, we use the real-time reconstruction algorithm. This choice guarantees that
the system will not interfere with the normal behavior of the medical staff in the OR and
permits the usage of generic low-level features to characterize the phases.

The system at the hospital is currently under development. To prove the concept, we
used data that we recorded with a replicate multi-camera system present in one of our
laboratories.

3.2.1.2 System Setup

We describe here the multi-camera system used in our laboratory to perform the
recordings. Further details are available in [Ladikos et al., 2008a]. The architecture of
the system is depicted in fig. 3.8. It consists of one server and several clients. Locally,
each client handles up to four cameras and performs a partial reconstruction. Partial re-
constructions are then sent over the network to the server, which handles synchronization,
global reconstruction and display. All cameras are fully calibrated and mounted on the
ceiling to surround the room. The system is currently able to handle 16 cameras with a
framerate of 30fps, yielding a reconstruction volume of size 3.7 x 3.2 x 2.2 meters.
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Figure 3.7: External view of a potential collision between a screen and a C-arm. Courtesy
of [Ladikos et al., 2008b].
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Figure 3.8: Multi-camera reconstruction system layout, describing tasks accomplished by
the clients and server. Courtesy of [Ladikos et al., 2008b)].

Calibration The calibration process is performed once for a fixed camera configuration.
Following a method proposed by [Svoboda et al., 2005], a point light source is moved in-
side the dimmed room to easily compute point correspondences between the temporally
synchronized cameras. This permits the computation of the intrinsic and extrinsic param-
eters of each camera [Hartley and Zisserman, 2004]. Registration to the room coordinate
system is obtained by using a fixed calibration pattern, located on the floor of the room.

Reconstruction For reconstruction, a visual hull approach in voxel representation
[Laurentini, 1994, Szeliski, 1993] is used to meet real-time requirements. Segmen-
tation of silhouettes is performed using a robust background subtraction algorithm
[Fukui et al., 2006]. Reconstruction is then obtained by testing the occupancy of each
voxel in the reconstruction volume. This is done by backprojecting the voxel position into
the segmented silhouette image, using a GPU implementation on each client computer
for fast computation.
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3.2.2 Data Representation and Acquisition

3.2.2.1 Visual Hulls

For our work, we consider the input to be the reconstructed volumes delivered by the
existing real-time algorithm. Additional information, such as color would be of interest.
Textured reconstruction was however not available in real-time, but if needed, the texture
information could be introduced in the framework with few changes.

Let Q C R? be the spatial area that can be reconstructed by the system. The output of
the reconstruction at each time step is a 3D volume containing occupation probabilities.
The probabilities are thresholded to obtain the effective visual hull. In a sequence of
length T, we denote the sequence of computed visual hulls by

{rur}, r(v):Q— {01}, (3.1)

where v denotes the position of a voxel.
Examples of visual hulls reconstructed by the system can be seen in Figures 3.7, 3.10
and 3.11.

3.2.2.2 Scenario and Acquisitions

Figure 3.9 displays the scenario and phases that we have defined for this application.
The scenario incorporates the main activities that occur daily in a surgery room before and
after surgery and is complementary to the cholecystectomy scenario studied previously.
We consider two kinds of surgeries: endoscopy and open surgery, both requiring different
setups. The aim is to prove the concept of using reconstructed data for recognition, until
data from the hospital system becomes available. We recorded in a mock-up OR different
instances of the workflow, performed by actors familiar with the OR. The phases of this
workflow are illustrated in Figure 3.11 on page 40. The scene contained simultaneously
up to three persons, three tables and a ceiling OR light.

A nine-camera system based on three clients was used in our experiments. As we
recorded the videos from all cameras in addition to the reconstructed volumes, we used
a frame-rate of 15fps to spare disk space. A higher framerate was not necessary for our
recognition objectives. The reconstruction grid resolution is 128 x 128 x 128 with a voxel
size of about 2.8 x 2.5 x 1.7 em?.

3.3 Conclusion

In this chapter, we have introduced the two applications considered for workflow anal-
ysis in this thesis: the laparoscopic cholecystectomy and the daily OR workflow. We
have presented the setups that are used for the recordings, as well as ongoing efforts to
automatically gather signals in the OR. We have also indicated the scenarios and the
observations that are going to be used as input data for recognition in the next part.
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Figure 3.9: Scenario describing the surgery workflow with its alternative paths. Phase
labels are given in parentheses.

Figure 3.10: External view and reconstruction of a fighting scene, with indication of the
nine camera positions. The reconstruction is viewed from the direction opposite to the
camera view shown on the left.
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(10) Cleaning (10) Cleaning

Figure 3.11: Hlustration of the daily OR scenario for two workflow instances on a bavarian
patient. Images from one view and associated 3D real-time reconstructions. Left) A
minimally-invasive surgery. Right) An open-surgery.
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Part 11

Methods for Monitoring in the
Surgery Room

In Chapter 4, we present off-line methods based on dynamic time warping synchronization
for segmentation of the surgical phases in a sequential workflow. We compare the methods
and show results for the cholecystectomy application. In order to perform on-line phase
recognition, and also to cope with non-sequential workflows, we later use a different
modeling based on hidden Markov models. An introduction to hidden Markov models is
given in Chapter 5. The on-line recognition methods are presented in Chapter 6 and first
demonstrated on the cholecystectomy application. The daily OR workflow application is
addressed in Chapter 7. Computation of 4D features is described as well as the adaption
of the method to a workflow containing alternative paths.
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CHAPTER 4

Synchronization and Segmentation of Endoscopic Surgeries

In this chapter, we present several off-line approaches for synchronizing endoscopic
surgeries and for segmenting their phases. The instruments used during a phase vary
and the presence of a particular instrument is generally not sufficient to characterize the
phase. The temporal sequence of actions plays indeed a decisive role. For this reason, the
proposed approaches use a temporal model of the surgery. They are based on extensions
of the dynamic time warping (DTW) algorithm and permit several applications such as
the simultaneous visual replay of surgeries and the drafting of surgical reports. We first
present the DTW algorithm in section 4.2.1 and describe related work. Synchronization
between surgeries for the creation of an wvirtual surgery representation is presented in sec-
tion 4.2.3. In section 4.3, this representation is used to construct an annotated virtual
surgery representation, which is further employed for segmentation. Three construction
approaches are presented, which are based on a different usage of supervised information.
In section 4.3.4, an adaptive weighting method for DTW based on AdaBoost is proposed.
This allows identification of the discriminative instruments and results in improved seg-
mentation.

4.1 Objectives

In the following, we denote surgeries by the time-series O of their observations, as
defined in section 3.1.2.1.

4.1.1 Synchronization

A first objective is to synchronize several surgeries. Synchronization can for instance be
used to display surgeries simultaneously in a visually meaningful manner. Given [ surgeries
0!, ...,0" of length T*,...,T', this implies the computation of a common timeline 7 =
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Figure 4.1: Overlaid signals from three surgeries, showing the signal variations and need
for non-linear time warping. Only a subset of the signals is represented for better visual-
ization.

{1,...,T} of length T, and of synchronization functions indicating the mapping between
the timeline and each surgery Q%

sync; » T —{1,...,T"} . (4.1)

Surgical gestures are unique, depending on patient and surgeon. For this reason, the
same surgical task can be performed differently in different cases, even when the same
surgeon is performing. For instance, clipping of a vessel can be done using from one up
to three clips. This implies that there exists no ground truth synchronization between
different surgeries and that "good" synchronizations are not unique. A synchronization
can be evaluated subjectively at the semantical level, by verifying that certain kinds of
semantic information about the surgeries match at each time step of the reference time-
line, in all surgeries. Semantic information that we consider here are the surgical phases.
Synchronization at the lower level, even though not unique, can for instance provide a
nice and smooth visualization. It is visually much better than a simple scaling between
validated synchronization points. Figure 4.1 shows several signals from three surgeries
simultaneously to illustrate the need for non-linear synchronization between the surgeries.

4.1.2 Segmentation

A second objective is the accurate identification of the surgical phases of a new surgery
O of length T', based on the knowledge of previously acquired surgeries Q*, ..., Q. If we
assign to each phase a label p € £ | this involves the computation of a labeling function
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Po:{1,....,T}— L . (4.2)
An example of labels for cholecystectomy phases is indicated in Table 3.1 on page 33.

4.2 Dynamic Time Warping Averaging

In this section, we present a method to construct the multi-dimensional signals repre-
senting a virtual surgery. The surgeries in the training set are all synchronized using the
dynamic time warping algorithm. This is then employed to generate a virtual surgery on
a virtual timeline, preserving the average length of the surgeries and of the actions. This
virtual surgery can be used for off-line synchronization and segmentation of new surg-
eries. It can also be used for an efficient generation of the hidden Markov models. The
presentation addresses complete surgeries. But the method can also be applied directly
to only subparts of surgeries, such as single phases (see Section 4.3.1.2).

4.2.1 Dynamic Time Warping

The dynamic time warping (DTW) algorithm [Sakoe and Chiba, 1978] is both a time-
invariant similarity measure and a method to synchronize two time series by finding a
non-linear warping path. It warps each point in one time series onto at least one point
in the other time series while respecting the temporal order. This is done in a way that
minimizes the sum of the distances between all points that are warped onto each other.

Formally, let w = (uy,...,ur«) and v = (v1,...,vpv) be two time-series of length T
and T, and d(-,-) be a distance. The algorithm uses dynamic programming to find the
discrete timeline {1,..., T} and temporal warping path sync,.,, = (t,,t,) with

WAL Ty = {1, T (4.3)
t,:{1,..., T} —{1,...,7"} (4.4)
minimizing
T
> d(u, @), Ve, 0)) (4.5)
t=1

under the warping constraints:

(tu(1),t,(1)) = (1,1)
boundary {(tu( T),t,(T)) = (T%T) (4.6)

(
|t (ng tu(t)]

6t +1 (47)

continuity {

Different warping functions can be obtained by using variations of the continuity
constraints [Sakoe and Chiba, 1978]. The optimal solution is found using dynamic pro-
gramming in O(T" x T"). A distance matrix D is computed according to the following
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recursive formula
Di,j = d(u“ Uj) + m@'n(Di_Lj_l, Di—l,j; Dz’,j—l) . (48)

Backtracking the optimal path provides the warping, as illustrated in Figure 4.2. The
timeline {1,...,T} corresponds to a discretization of the optimal path through the valley.

4.2.2 Related Work on Dynamic Time Warping

The DTW algorithm originates from the speech recognition community [Juang, 1984,
Sakoe and Chiba, 1978, Yaniv and Burshtein, 2003] where it was extensively used to
model spoken words. It was further used in many different research areas to syn-
chronize application-dependent time-series. It is for instance used in computer vi-
sion for the modeling of actions [Darrell et al., 1996], in chemistry for the synchro-
nization of batch processes [Kassidas et al., 1998] or for the mining of large databases
[Keogh and Ratanamahatana, 2005].

Our purpose is to use DTW for the modeling of surgeries represented by binary signals.
For a medical application, a DTW synchronization approach was proposed in our group
by [Sielhorst et al., 2005]. The movements performed by a trainee and an expert surgeon
on a birth simulator were recorded with a tracking system. DTW permitted to replay
and compare synchronously on an augmented reality display the superimposed movements
performed by the two surgeons. An initial work to synchronize six endoscopic surgeries
was proposed in [Ahmadi et al., 2006]. A surgical model was created using DTW and
manually labeled to segment a new surgery. Our approach extends this work by improving
the virtual model creation, by proposing a convenient framework for dealing with phase
labeling information, and also by presenting cross-validated results on a larger dataset.

4.2.3 Averaging

The construction of a virtual representation is based on a curve averaging method by
[Wang and Gasser, 1997]. In the following, we adapt the presentation to the discrete case
that is considered in this chapter. Let the [ surgeries Q!, ..., Q" be of length T", ... T"
and O™/ of length T7¢/ be a surgery taken as reference.

The DTW algorithm with euclidean distance is first used to synchronize the reference
07¢/ to each training surgery Q' yielding for i € {1,...,1} the synchronization functions

SYNCerni(Y) = (trep(y), ti(y)) - (4.9)

These functions give discrete correspondences between the timelines of the reference (t,y)
and of the surgeries (¢;).
The virtual timeline is computed from the reference as the function avg,,,,.(t):

{1,..., T} — [1,T]

L 1 4.10
tﬁi}m ooy, (4.10)

46



4.2 Dynamic Time Warping Averaging

Figure 4.2: DTW distance matrix. The path drawn through the valley displays the
optimal synchronization between time series u and v.

where #- denotes the cardinality operator. The function avg,;,,. takes real values, is
monotonically increasing between 0 and T = %Zﬁ T' and can therefore be inverted.
It is used to compute the virtual surgery representation @ on the discrete timeline
{1,...,|T]|} using linear interpolation and averaging over all surgeries. Let ¢, and t,
be the closest values in the range of avg,;,,. around the integer ¢ with t € [t,,t,]. Noting

Lo =A{y: tres(y) = aV8iime(ta)} and Iy = {y : tres(y) = avgyip.(ts)}, we then define

o1& (-t 1 N +(tb o )
t [Z tb—t)#I Z ti(y) (t _t)#z-bz . .

=1 y€L, yeLy

The virtual surgery Q has a timeline whose length is the average time between all training
surgeries. Its signals @, can be interpreted as the probability of instrument usage at
virtual time ¢. Provided an action was correctly synchronized between all surgeries, it
then appears with its average length within Q.

Similarly to [Wang and Gasser, 1997], we use three steps for our virtual surgery com-
putation:

1. Compute initial surgery reference
2. Compute first virtual surgery representation
3. Iterate computation using previous virtual surgery representation as reference

There are various ways to choose the initial reference. It could simply be one of
the training surgeries. Experiments have shown the following approach to yield the best
results. The reference is computed recursively by averaging pairwise the surgeries using
the approach described above. In order to average the representation of two surgeries
O and @7, we introduce a special surgery as the reference, which we will refer to as the
exhaustive surgery. This is useful in order to avoid that an activity from one surgery is
reduced to zero time-span if it is synchronized to a reference in which this activity did not
occur. Consequently, the exhaustive model preserves all information from both surgeries
by merely taking the raw result of their DT'W synchronization, which has the same length
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Figure 4.3: Signals of a virtual surgery representation.

as the size of the output range, namely sync,_;(y) = (t:(y),t;(y)):

i J
O + O
2

Using this reference prevents the complete disappearance of actions that might not occur
in one surgery. Moreover, when the virtual timeline is computed, Formula 4.10 ensures
that the virtual surgery keeps the average length of training surgeries.
An example of resulting virtual representation @ is shown in figure 4.3.

A straightforward extension to the virtual surgery representation is the notion of surgi-
cal similarity, which can be given for each observation vector in the virtual representation.
Let us define

ref__exhaust __
Oy =

(4.12)

1 & — —
SIMt = E Z max(@tyk, 1-— (O)t,k) y (413)
k=1

where K is the size of the observation vectors. When SIM,; is close to 1, it means that a
reliable synchronization point between all surgeries was found. More intuitively, it means
that the surgical activity for this time point was unambiguous across all training surgeries.
In contrary, a value close to 0.5 implies ambiguity. This will be used later to efficiently
construct HMMs models.

4.3 Segmentation

For segmentation purposes, we present a formalization that combines both the result-
ing virtual surgery representation and the labeling information. We define an annotated
virtual surgery representation (AVSR) as a pair

I=(0,¢) , (4.14)

where

gt : {1’ MR |‘C|} - [O’ 1] (415)
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refer to a model annotation with phase probabilities. & (p) is the probability of being in
phase p € £ at virtual timestamp t from the virtual representation O.

The results of segmentation depend on how the AVSR is constructed. The methods
presented below differ by the required amount of labeled data and by the steps in the
construction process where the labels are used.

4.3.1 Different Approaches for Model Construction
4.3.1.1 Manual Annotation

A virtual surgery representation O is first computed out of all training surgeries
0',...,0" An annotation & € {0,1} is then determined manually by looking at the
signals on the virtual timeline. This possibility was initially used in [Ahmadi et al., 2006].
However, even though the virtual representation visually resembles a surgery, cues that
permit a precise annotation within the recorded surgeries are not so precise within the
virtual surgery. Manual annotation has also the major drawback that it has to be per-
formed each time a new surgery is included, or for each test in cross-validation experi-
ments. Additionally, backprojecting the labels from the virtual representation onto the
initial surgeries it was generated from showed poor synchronization at the label bound-
aries. The two methods below perform the model annotation more accurately and in an
automatic fashion.

4.3.1.2 Pre-annotation

We refer by the term pre-annotation to the fact that labeling information is used
prior to the construction of the virtual representation. This is a fully supervised frame-
work, in which the DTW averaging approach is applied phase-wise. The virtual surgery
representation is then constructed by the concatenation of virtual phase representations
computed out of all training surgeries @', ..., Q'. All training surgeries are labeled so
that the phases are identified.

Let IP’; be the phase from surgery Q' corresponding to label p € £. The virtual phase
PP, is constructed following the averaging framework described in Section 4.2.3, by using
as input the [ subsequences IP’Il), e ,IP’;.

The resulting virtual surgery representation @ is the concatenation of the virtual
phase representations P, . .. ,W. For each time ¢ on the resulting virtual timeline, the
annotation &; assigns the probability 1 to the phase p, given that the virtual time ¢
originally stemmed from the virtual phase representation p before concatenation. To the
other phases, the probability 0 is assigned.

4.3.1.3 Post-annotation

A virtual surgery representation O is first computed out of all training surgeries as
in Section 4.2.3. No surgery labeling information is required for this step. The anno-
tation & is obtained by synchronizing the virtual representation to the training surg-
eries O, ..., Q' that contain labeling information. For these surgeries, labeling functions
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Poi : {1,...,T"} — L are available. The synchronization performed using DTW yields I
functions

SYNCg0i(Y) = (tavg(y), 1:(y)) - (4.16)

The annotation is then determined from the labeling of these surgeries:

&p)oc D> Y 0(Puslti(y)),p) (4.17)

{y: tm;g(y):t} =1
with
1 itx=y
o9) = { 0 ifxy . (4.18)

For each virtual timestep t, &(+) is normalized to one.

4.3.2 Off-line Segmentation

Off-line segmentation is the process of segmenting a new surgery after the acquisition

of all signals @if,jt. The objective is to compute the phase Pgtest () at each time step ¢ while

knowing the complete signals Qs ... Q&L where T denotes the end of the surgery. If
an annotated virtual surgery representation I' = (0, £) is available from training data, the
process is the following: the time-series Q" is synchronized to the virtual representation

O using DTW. This gives a synchronization function

Sync@test(_,@(y) = (ttest(y)a tavg(y))'

The labels from the annotated virtual representation are then carried over to the new
surgery for each time t. Since it is possible that the time ¢ is synchronized to different
consecutive times of the virtual representation annotated with different most likely phases,
the overall most likely annotation is used:

Porest(t) = argmax Y &0 (D) - (4.19)

P {y: tiest (y):t}

4.3.3 Evaluation

Segmentation is evaluated by comparison to a ground truth labeling. We present
below evaluation measures and the obtained results.

4.3.3.1 Measures

We first use accuracy as general evaluation measure. It indicates the percentage of
correct detections in the complete surgery, compared to ground truth information. As
sizes between phases can vary largely, wrong detections inside short phases tend to be
hidden within the accuracy. For this reason, we also use two measures defined per phase.
Recall is the number of true positives divided by the total number of positives for the
phase in the ground truth. In other words, recall is the percentage of correct detections
inside each phase.
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4.3 Segmentation

Precision is the sum of true positives divided by the number of true and false positives.
This is complementary to recall be indicating whether parts of other phases are detected
incorrectly as the considered phase.

In order to present summarized results, we will use accuracy together with average
recall and average precision, corresponding to recall and precision averaged over all
phases.

4.3.3.2 Results

We have evaluated the methods on data of 16 cholecystectomies performed by 4 dif-
ferent surgeons, using the acquisitions detailed in Chapter 3. For statistical relevance,
the results are computed with cross-validation using the leave-one-out approach: for each
of the 16 surgeries, the training set contains the remaining 15 ones. Displayed values are
the mean results with standard deviations over all surgeries.

Comparison of the two evaluated construction approaches, pre-annotation (Section
4.3.1.2) and post-annotation (Section 4.3.1.3) is provided in Table 4.1. Both methods
yield a very good segmentation with measures above 94%. The pre-annotation method,
which fully relies on supervised construction, has the best values and has also a slightly
lower variance. Interestingly, only a few labeled surgeries are required to obtain such
results with the post-annotation method. This can be observed in Figure 4.4 showing all
measures as function of the number of labeled surgeries used for annotation. During this
experiment, tests are averaged on randomly selected subsets of varying size. The figure
suggests that labeling only forty percent of the available surgeries is sufficient to obtain
good segmentation results for this dataset.

The detailed results per phase, using the pre-annotation method are displayed in Table
4.2. All phases have measures above 90%. Lowest rates principally come from short
phases. This can be seen from the average relative length of each phase with respect
to the complete surgeries. It indeed occurs that some short phases become extremely
short in some surgeries. For instance, the second dissection phase has an average length
of 1 minute and 49 seconds. In a few surgeries, its duration is below 15 seconds, which
causes higher relative errors. Due to the variations of phase lengths, relative errors are
more indicative of the goodness of the segmentation than absolute errors in minutes. In
practice, they however hide the temporal effect on the application timeline.

Figure 4.5 displays in absolute time the average length of each phase and the mean
error per phase, corresponding to the duration in minutes of incorrect detections per
phase. These errors were obtained for the pre-annotation method. The maximum mean
error per phase occurs for phase 8 (liver bed coagulation 1) and is of 9 seconds. The
average length among all surgeries is 48 minutes.

4.3.4 Adaptive DTW

In [Ahmadi et al., 2006], a method has been proposed to weight signals iteratively
during the virtual surgery construction. Signals that are correctly synchronized to the
virtual surgery get iteratively a higher weight. An issue with this approach, as reported
in [Ahmadi, 2005], is that instruments which should intuitively get higher weights, such
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|

| Accuracy (%) | Average Recall (%) | Average Precision (%) |

AVSR (pre)

97.3 (£6.6)

97.6 (£5.6)

97.0 (£5.7)

AVSR (post)

95.1 (£6.6)

95.5 (£6.0)

94.0 (£6.2)

Table 4.1: Leave-one-out cross-validation on 16 surgeries performed by 4 surgeons. Global

measures with mean and standard deviation over all surgeries.

annotation, (post) construction with post-annotation.
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Figure 4.4: Accuracy (rate of success), average recall and average precision for AVSR with
post-annotation. Influence of number of annotated surgeries. The horizontal lines refer
to the best result for each curve, obtained when all training surgeries are labeled.
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4.3 Segmentation

’ \ Phase Label H Rel. Len. (%) H Recall (%) \ Precision (%) ‘
1 | CO2 Inflation 6.5 (£3.2) | 100.0 (£ 0.0) | 100.0 (£ 0.0)
2 | Trocar Insertion 6.4 (£1.4) 100.0 (£ 0.0) | 99.3 (+ 1.8)
3 | Dissection Phase 1 17 1 (£9.1) | 99.9 (£ 0.4) | 100.0 (£ 0.0)
4 | Clipping Cutting 1 (:i:1.6) 100.0 (£ 0.0) | 96.6 (£ 13.2)
5 | Dissection Phase 2 7 (£5.0) 93.8 (£ 24.2) | 92.8 (£ 24.3)
6 | Clipping Cutting 2 0 (£1.9) | 92.8 (£ 24.3) | 90.9 (£ 25.9)
7 | Gallbladder Detaching 18 9 (£13.1) | 95.1 (£ 17.6) | 93.5 (£ 21.2)
8 | Liver Bed Coagulation 1 1(£4.4) 90.8 (4 20.5) | 100.0 (£ 0.0)
9 | Gallbladder Packaging (:|:2.8) 99.6 (£ 1.6) | 974 (£ 5.2)
10 | External Retraction 11 T(EILT) | 96.7 (X 12.8) | 995 (£ 1.6)
11 | External Cleaning (:i:4.1) 95.8 (£ 12.2) | 94.5 (£ 21.2)
12 | Liver Bed Coagulation 2 2 (£2.1) 99.6 (+ 1.0) | 98.5 (£ 5.3)
13 | Trocar Retraction 6 (£1.9) 99.5 (£ 1.3) | 98.9 (£ 4.2)
14 | Abdominal Suturing 9 (+3.4) 100.0 (£ 0.0) | 93.5 (4 19.5)

Table 4.2: Detailed results per phase for the pre-annotation approach, with mean and
standard deviation over all surgeries. The third column (Rel. Len.) indicates the average
relative length of each phase with its standard deviation.

as the dissecting device, effectively get lower weights than instruments deemed less infor-
mative, such as a trocar. This comes from the fact that instruments whose state almost
does not change have much higher chances to be well synchronized, and therefore to
get a higher weight. An instrument which is unused and also does not change state at
all, receives an infinite weight with this procedure. All other instruments which do pro-
vide the contextual information will be ignored. For instance, instruments that are used
frequently during a phase have less chances to be correctly synchronized for each use,
especially as the number of uses can vary highly within different surgeries. However, such
an instrument brings interesting discriminative information for the phase it is used in.

This discussion suggests that to compute a signal weighting, the signals’ potential
to discriminate between the different phases has to be evaluated, instead of the signals’
potential to be well synchronized to the virtual surgery. We propose a discriminative
weighting approach based on weights per phase [Padoy et al., 2007a].

The idea is to apply the DTW algorithm with an adaptive distance measure. The
measure is defined from the discriminative power of each instrument with respect
to the current surgical phase, estimated by AdaBoost [Freund and Schapire, 1995] us-
ing the labeled training surgeries. AdaBoost has been widely used for feature selec-
tion [Viola and Jones, 2004] and provides a natural way for feature weighting.

This information is then included within the DTW averaging process to create the
virtual surgery representation out of labeled training surgeries. To synchronize an unseg-
mented surgery to the model, an adaptive version of DTW, called ADTW, is used. As
above, labels from the virtual model can be carried over to an unsegmented surgery using
this synchronization.
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