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Département de formation doctorale en informatique École doctorale IAEM Lorraine
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THÈSE

présentée et soutenue publiquement le 28. janvier 2010

pour l’obtention du

Doctorat de l’université Henri Poincaré – Nancy 1
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Introdu
tionInteger multipli
ation is used in pra
ti
ally every arithmeti
 algorithm, and problems in algorith-mi
 number theory in parti
ular often require rapid multipli
ation of very large integers. Fa
tor-ization of integers is one of the fundamental problems in number theory and gained signi�
antpra
ti
al importan
e with the advent of the RSA publi
-key 
ryptographi
 system whose se
urityrelies on the di�
ulty of fa
toring. This thesis presents improvements to the S
hönhage-Strassenalgorithm for multipli
ation of large integers, to the P�1 and P+1 methods of fa
torization whi
hqui
kly �nd prime fa
tors p where p − 1 or p + 1 have themselves no large prime fa
tors, andto the Number Field Sieve whi
h is the fastest algorithm for fa
toring 
omposite integers whi
hhave no easy to �nd prime fa
tors, su
h as o

ur in 
ryptographi
 appli
ations.Integer multipli
ation is ubiquitous, and multipli
ation of large integers o

urs frequentlyenough in s
ienti�
 
omputation that it is somewhat surprising that the �rst algorithm faster thanthe O(n2) bit operations required by the trivial grammar-s
hool multipli
ation was dis
overedonly in 1962. In that year, Karatsuba and Ofman [51℄ showed how to redu
e the problem ofmultiplying n-bit numbers to three multipli
ations of n/2-bit numbers, a
hieving asymptoti

omplexity O(n1.585). A year later, Toom [97℄ generalized Karatsuba and Ofman's algorithm byexpressing integer multipli
ation by polynomial multipli
ation and using polynomial evaluation,point-wise multipli
ation, and interpolation to 
ompute the produ
t polynomial. This allowsredu
ing the 
omputation to 2k − 1 pie
es of n/k bits ea
h, for asymptoti
 
ost O(nlogk(2k−1))for k �xed. In prin
iple, this permits any exponent 1 + ǫ in the asymptoti
 
ost fun
tion,however, large k are not e�
ient for input numbers of realisti
 size as the 
ost of evaluationand interpolation would dominate. In 1971, S
hönhage and Strassen [90℄ essentially solved theproblem of fast integer multipli
ation by using the Fast Fourier Transform (FFT), dis
overed byCooley and Tukey in 1965 [29℄, to perform the required 
onvolution produ
t. Their method usestime only O(n log(n) log(log(n))) to multiply n-bit numbers. Many programming libraries formultiple pre
ision arithmeti
 o�er a fast integer multipli
ation algorithm. One su
h library is theGnu Multiple Pre
ision arithmeti
 library (GMP) [49℄, developed mainly by Torbjörn Granlund.It is widely used and enjoys a reputation for being ex
eptionally fast, both due to 
areful 
hoi
eof algorithms and highly optimized implementation. It uses the S
hönhage-Strassen algorithmfor multipli
ation of very large integers. One appli
ation where the large-integer multipli
ationof GMP is used extensively is GMP-ECM [103℄, an implementation of the P�1, P+1, and Ellipti
Curve methods of fa
torization developed mainly by Paul Zimmermann.Integer fa
toring is an an
ient problem in number theory. It 
eased to be a questionof purely a
ademi
 interest and turned into a matter of signi�
ant e
onomi
 relevan
e withthe publi
ation of the now widely used Rivest-Shamir-Adleman (RSA) publi
-key 
ryptographi
system [85℄ whi
h relies on the intra
tability of fa
toring large integers. Fermat's Little Theoremstates
ap−1 ≡ 1 (mod p)1



2 Introdu
tionfor any prime p and p ∤ a, whi
h Euler extended to 
omposite moduli by
aφ(N) ≡ 1 (mod N)for gcd(a,N) = 1, where φ(N) is the Euler totient fun
tion, de�ned by

φ(pν1
1 · · · p

νk

k ) = (p1 − 1)pν1−1
1 · · · (pk − 1)pνk−1

kwith p1, . . . , pk distin
t primes and ν1, . . . , νk positive integers. Thus, given the prime fa
toriza-tion of N , it is easy to 
ompute φ(N). RSA uses a publi
 key for en
ryption, 
onsisting of anodd 
omposite modulus N = pq with p, q primes of roughly equal size, and a publi
 exponent e.For de
ryption it uses a private key, 
onsisting of N again and an integer d su
h that
de ≡ 1 (mod φ(N)),i.e., de = kφ(N)+1 for some integer k. It en
rypts a message expressed as an integer 1 < m < Nby

c = me mod N,and de
rypts c to re
over the original message by
cd mod N = mde mod N = mkφ(N)+1 mod N = m.Fa
toring N reveals d and so breaks the en
ryption. The keys for RSA are therefore 
hosen tobe as di�
ult as possible to fa
tor with known algorithms, and of a size that is expe
ted to beout of rea
h for 
omputing resour
es available during the key's intended lifetime.Fa
toring algorithms 
an be divided into two 
lasses: spe
ial-purpose algorithms, and general-purpose algorithms. The former make use of 
ertain properties of the prime fa
tors, most 
om-monly their size, and their run time depends only little on the size of the input number (usuallyonly like the 
omplexity of integer multipli
ation), but greatly on whether its fa
tors have thedesired property. The run time of general-purpose algorithms depends almost ex
lusively on thesize of the input number, and not on any spe
ial properties of the fa
tors. RSA keys are 
hosento be resistant to spe
ial-purpose methods so that only general-purpose algorithms are relevantto their se
urity. The best 
urrently known fa
toring algorithm for atta
king RSA is the NumberField Sieve (NFS) with time 
omplexity 
onje
tured to be in LN [1/3, (64/9)1/3 ], where

Lx[α, c] = e(c+o(1)) log(x)α log(log(x))1−αfor x→∞, and the 
ost of fa
toring with the NFS is the major 
riterion for rating the se
urityof RSA key sizes. In spite of being useless for breaking RSA dire
tly, spe
ial-purpose fa
toringalgorithms are still of great interest, on one hand for fa
toring numbers that aren't RSA keysand may have easy-to-�nd fa
tors, and as a sub-routine for the NFS.A 
entral 
on
ept to modern integer fa
toring algorithms is that of smoothness: an integeris 
alled B-smooth if no prime fa
tor ex
eeding B divides it, and B-powersmooth if no prime orprime power ex
eeding B divides it.The P�1 algorithm published by Pollard in 1974 [80℄ was the �rst of a 
lass of spe
ial-purposefa
toring algorithms that �nd a prime fa
tor p of N qui
kly if the order of a �nite group de�nedover Fp is smooth. In the 
ase of the P�1 algorithm, the group is simply the group of units of Fpand has order p−1. Stage 1 of his algorithm 
hooses some integer x0 
oprime to N and 
omputes
xe

0 mod N , with e in
luding all primes and prime powers up to a 
hosen bound B1. If p − 1 is
B1-powersmooth and thus divides e, then xe

0 ≡ 1 (mod p), and gcd(xe
0 − 1, N) usually reveals p



3ex
ept when this gcd is 
omposite. Pollard further proposes a stage 2 whi
h looks for a 
ollisionmodulo p in sele
ted powers of xe
0 whi
h allows him to dis
over prime fa
tors p where p−1 
ontainsa single prime between B1 and a se
ond bound B2, but is otherwise B1-powersmooth. He showsthat a prime fa
tor p 
an be found in time O

(√
pM(log(N))

) if the 
ollision dete
tion is done bypolynomial multipoint evaluation with a fast FFT-based multipli
ation routine. Williams [101℄extends Pollard's P�1 idea to the P+1 method whi
h �nds a prime p qui
kly if one of p − 1 or
p + 1 is smooth. The P�1 and P+1 algorithms sometimes �nd surprisingly large fa
tors qui
klyif p − 1 or p + 1 happens to be smooth enough, but if both group orders 
ontain a large primefa
tor, then these methods are powerless. For example, a fra
tion of about 1− log(2) of integersup to N is N1/2-smooth (see Se
tion 5.3.1), so roughly half of 40-digit primes p have a primefa
tor ex
eeding 20 digits in both p− 1 and p + 1, whi
h makes these primes impra
ti
al to �ndwith either method.Pollard's idea for an asymptoti
ally fast FFT stage 2 to the P�1 algorithm was �rst imple-mented by Montgomery and Silverman [74℄. The authors suggest several ideas to speed up theiralgorithm further, and to adapt it to the P+1 fa
toring method.The asymptoti
ally fastest spe
ial-purpose fa
toring algorithm is the Ellipti
 Curve Method(ECM) by H. W. Lenstra Jr. [62℄ whi
h 
an be viewed as a generalization of P�1 and P+1 inthat it works in a group of points on an ellipti
 
urve over Fp with group order in [p−2

√
p+1, p+

2
√

p+1], depending on the 
urve parameters. It has the major advantage that it 
an keep tryingdi�erent 
urves until a lu
ky 
urve with smooth group order is found. With optimal 
hoi
e ofparameters, ECM has 
onje
tured 
omplexity of Lp[1/2, 2] to �nd a prime fa
tor p whi
h, in theworst 
ase of p ≈
√

N , leads to LN [1/2, 1], making it the 
urrently only spe
ial-purpose fa
toringalgorithm with sub-exponential running time. Brent [15℄ and Montgomery [65℄ present stage 2extensions for ECM, and Montgomery [74℄ develops an FFT stage 2.Even though ECM has far superior asymptoti
 
omplexity and the P�1 and P+1 methodsa
t, in a way, merely as two parti
ular attempts at a smooth group order among the nearlyendless number of su
h trials o�ered by ECM, the older methods have some advantages thatstill keep them useful. One advantage is sheer speed. The arithmeti
 during stage 1 is mu
hsimpler for P�1 and P+1 than for ECM so that with 
omparable parameters, less CPU timeis spent. Another advantage is that for P�1 and P+1, a mu
h faster FFT stage 2 algorithm ispossible, due to the fa
t that Z/NZ (or a quadrati
 extension thereof for P+1) has ring stru
ture,whi
h is not the 
ase for the group of points on an ellipti
 
urve. The ring stru
ture permits aparti
ularly e�
ient polynomial multipoint evaluation algorithm, allowing stage 2 to run withmu
h less CPU and memory usage than is possible for the FFT extension for ECM. Finally, forsome input numbers p − 1 is known to have a divisor n (e.g., 
y
lotomi
 numbers φn(x) for n,
x ∈ N, unless p | n), whi
h in
reases the probability that (p− 1)/n is smooth. These advantagesmake it quite reasonable to give P�1 and P+1 a try before moving on to the fundamentally morepowerful, but also 
omputationally more expensive ECM algorithm.Currently the best fa
toring algorithm for atta
king RSA moduli (and other numbers withoutsmall or otherwise easy to �nd prime fa
tors) is the Number Field Sieve. It was �rst proposed byPollard in 1988 [82℄ and originally required that the integer to be fa
tored has a simple algebrai
form su
h as an ± c with small a and c, but in the following years was extended to fa
toringgeneral integers [20℄. It fa
tors an integer N in 
onje
tured time LN [1/3, c] with c = (32/9)1/3 forinput numbers of simple enough form, in whi
h 
ase the algorithm is 
alled the Spe
ial NumberField Sieve (SNFS), or with c = (64/9)1/3 for general integers, then 
alled General Number FieldSieve (GNFS). An early su

ess for the SNFS was the fa
torization of the 9th Fermat number
F9 = 229

+ 1 in 1990 [61℄ and for the GNFS that of a 130-digit RSA fa
toring 
hallenge numberin 1996. In January 2010, the largest SNFS fa
torization is that of 21039− 1 in 2007 [2℄, whereas



4 Introdu
tionthe GNFS re
ord is the fa
torization of a 768-bit (232-digit) RSA 
hallenge number in 2009 [55℄.Like other general-purpose fa
toring algorithms, the NFS fa
tors an integer N by �nding a
ongruen
e of squares, x2 ≡ y2 (mod N) with x 6= ±y (mod N), from whi
h a non-trivial fa
torof N is obtained by taking gcd(x+y,N). The values of x and y are found by 
olle
ting a large setof �relations,� whi
h are essentially pairs of smooth integers, from whi
h a subset 
an be 
hosenso that in their produ
t ea
h prime o

urs in even exponent, resulting in squares. The mosttime 
onsuming part of the NFS (in both Spe
ial and General variant) is the relation 
olle
tionphase whi
h examines a very large number of polynomial values to look for smooth values by useof sieving te
hniques and other fa
toring algorithms. Here, an integer n is 
onsidered smoothif it 
ontains only prime fa
tors up to a sieving bound B, ex
ept for up to k integers up toa large prime bound L. The sieving routine reports su
h n where the 
ofa
tor after dividingout the primes up B is small enough, say below Lk. These 
ofa
tors need to be fa
tored totest if any prime fa
tor ex
eeds L. The memory 
onsumption of the sieving in
reases with
B, and for large-s
ale fa
torizations the available memory frequently limits B so that L andperhaps k need to be in
reased to allow su�
iently many values to pass as smooth. This way,a very large number of su
h 
ofa
tors o

ur during the sieving for an NFS fa
torization, andalgorithms optimized for high-throughput fa
torization of small integers need to be used to avoidthe 
ofa
torization be
oming the bottlene
k of the sieving pro
ess. The Ellipti
 Curve Methodis frequently suggested for this purpose [7℄ [41℄, and the P�1 and P+1 methods are likewise good
andidates.ContributionsIn joint work with Pierri
k Gaudry and Paul Zimmermann, we developed an improved implemen-tation of the S
hönhage-Strassen integer multipli
ation algorithm, based on the 
ode in GMPversion 4.1.4 whi
h was written by Paul Zimmermann. The new implementation improves 
a
helo
ality during the FFT phase, in
reases the possible 
onvolution length for given input size, anduses �ne-grained 
hoi
e of 
onvolution length and other parameters depending on the size of theinput numbers. It is des
ribed in Chapter 1. These improvements resulted in a fa
tor 2 speedupover the 
ode in GMP 4.1.4.In joint work with Montgomery, we have implemented an improved version of the P�1 andP+1 stage 2 algorithm that implements the ideas mentioned in [74℄ and other improvements.The implementation is based on GMP-ECM and is des
ribed in Chapter 2.A library for high-throughput fa
torization of integers up to 38 digits, using the P�1, P+1,and ECM algorithms, has been written for use in the NFS siever program developed in the
ontext of the CADO proje
t (Crible algébrique: distribution, optimisation). Chapter 3 
ontainsan overview of the NFS algorithm. The details of the small-integer fa
toring implementation arefound in Chapter 4, and its 
ost-e�
ien
y is 
ompared to proposed hardware implementationsof ECM for NFS. An outline of methods to estimate the su

ess probability of �nding fa
torswith the P�1, P+1 and ECM algorithms in 
ofa
tors produ
ed by the NFS sieving step is givenin Chapter 5.



NotationAn overview of mathemati
al notation used throughout the thesis. Most of it follows 
ommonusage, but is listed here for referen
e.Sets:
C The 
omplex numbers
N The non-negative integers
P The rational primes
Q The rational numbers
Z The integersRelations:
a | b a divides b, there is an integer k su
h that b = ka
a ∤ b a does not divide b
a ⊥ b a is 
oprime to b, gcd(a, b) = 1
a || b a divides b exa
tly, a | b and b/a ⊥ aFun
tions:
log(x) The natural logarithm of x
logb(x) The logarithm of x to base b
φ(n) The Euler totient fun
tion, the number of integers 1 ≤ k < n with k ⊥ n
(

a
p

) The Legendre symbol for a (mod p)

π(n) The prime 
ounting fun
tion, the number of primes not ex
eeding n
⌊n⌋ The �oor fun
tion, the largest integer k with k ≤ n
⌈n⌉ The 
eiling fun
tion, the smallest integer k with k ≥ n
⌊n⌉ The nearest integer fun
tion, ⌊n + 1

2⌋
Valp(n) The p-adi
 valuation of nOther frequently used symbols:
β The ma
hine word base, typi
ally β = 232 or β = 264

5
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Chapter 1Integer Multipli
ation withS
hönhage-Strassen's Algorithm1.1 Introdu
tionThe text in Se
tions 1.2 and 1.3 of this 
hapter is based on joint work with P. Gaudry andP. Zimmermann whi
h was published in [46℄.Multipli
ation of integers is one of the most basi
 operations in arithmeti
 and as su
h plays avital role in 
omputational arithmeti
. For many algorithms the time spent performing multipli-
ations dominates. Numerous other operations 
an be redu
ed to integer multipli
ation: modularmultipli
ation (by Barrett redu
tion [5℄ or Montgomery's REDC [64℄), polynomial multipli
ation,multi-point evaluation and fa
torization, or root-�nding by iterative methods.In several appli
ations, the integers to be multiplied are large, in parti
ular when redu
ingpolynomial arithmeti
 to integer multipli
ation [99, 8.4℄, for high-pre
ision evaluation of 
on-stants, primality testing or integer fa
torization. Allan Steel [94℄ gives an overview of algorithmsthat 
an be implemented e�
iently by redu
tion to multipli
ation. For these, a multipli
ationalgorithm with low asymptoti
 
omplexity is required to make large operand sizes pra
ti
al.Given two multiple pre
ision non-negative integers a =
∑m

i=0 aiw
i and b =

∑n
j=0 bjw

j withword base w and 0 ≤ ai, bj < w, we would like to 
ompute the integer c =
∑m+n+1

k=0 ckw
k = abwith 0 ≤ ck < w. The 
onvolution produ
t of the sums for a and b yields

ab =

m
∑

i=0

aiw
i

n
∑

j=0

bjw
j (1.1)

=
m+n
∑

k=0

wk

min(k,n)
∑

j=max(0,k−m)

ak−jbj.Hen
e we 
an set
ĉk :=

min(k,n)
∑

j=max(0,k−m)

ak−jbj (1.2)and have c =
∑m+n+1

k=0 ckw
k =

∑m+n
k=0 ĉkw

k, however ck 6= ĉk in general sin
e the ĉk may belarger than w (but they do not ex
eed min(m + 1, n + 1) · (w − 1)2). The desired ck values 
anbe obtained by an additional step 
ommonly 
alled �
arry propagation:� set ĉm+n+1 := 0 and7



8 Chapter 1. Integer Multipli
ation with S
hönhage-Strassen's Algorithmthen, for k = 0, . . . ,m + n in sequen
e,
ĉk+1 := ĉk+1 +

⌊

ĉk

w

⌋

ĉk := ĉk mod w.The sum ∑m+n+1
k=0 ĉkw

k is invariant under this pro
ess, and �nally all ĉk < w so we 
an set
ck := ĉk.The steps of de
omposing the input integers into a sequen
e of digits in a 
onvenient word base
w, performing a 
onvolution produ
t on these sequen
es, and obtaining the 
orre
t sequen
e ofdigits of the produ
t by 
arry propagation is 
ommon to multiple pre
ision integer multipli
ationalgorithms. With suitable 
hoi
e of w, e.g., a power of 2 on a binary 
omputer, the two stepsof de
omposition and 
arry propagation are inexpensive, requiring only O(n + m) additions orassignments of integers of size O(log(w)). The main di�eren
e between multipli
ation algorithmsis how the 
onvolution produ
t is 
omputed, and this is where they greatly di�er in speed.The most simple 
onvolution algorithm, the �grammar-s
hool� method, 
omputes ea
h ĉkindividually by the sum (1.2). This involves (m+1)(n+1) multipli
ations of single digit (in base
w) integers ai and bj and about as many additions; assuming 
onstant 
ost for these operations,the algorithm has 
omplexity in O(mn), or for m and n of equal size, O(n2).1.1.1 The Karatsuba AlgorithmThe �rst algorithm to o�er better asymptoti
 
omplexity than the grammar-s
hool methodwas introdu
ed in 1962 by A. Karatsuba and Yu. Ofman [51℄ (English translation in [52℄),
ommonly 
alled Karatsuba's method. The idea is to 
ompute a produ
t of two 2n-word inputsby three produ
ts of n-word values (whereas the grammar-s
hool method would require four su
hprodu
ts). Writing a = a1w + a0 and b = b1w + b0, where 0 ≤ a0, a1, b0, b1 < w, we 
an 
omputethe 
onvolution produ
t ĉ2w

2 + ĉ1w + ĉ0 = a1b1w
2 + (a0b1 + a1b0)w + a0b0 via

ĉ2 = a1b1

ĉ0 = a0b0

ĉ1 = (a1 + a0)(b1 + b0)− ĉ2 − ĉ0.This method 
an be applied re
ursively, where the size of the numbers to be multiplied is abouthalved in ea
h re
ursive step, until they are small enough for the �nal multipli
ations to be
arried out by elementary means, su
h as one-word multipli
ation or the grammar-s
hool method.Assuming a threshold of one ma
hine word for these small multipli
ations so that they have
onstant 
ost, Karatsuba's method performs multipli
ation of 2n-word inputs in O(3n) one-wordmultipli
ations and O(3n) additions, for a 
omplexity of O(nlog2(3)) ⊂ O(n1.585).The underlying prin
iple of Karasuba's short-
ut is that of evaluation and interpolation ofpolynomials to obtain the 
oe�
ients of the produ
t. Multipli
ation of multi-digit integers isintimately related to multipli
ation of polynomials with integer 
oe�
ients. Given the integers
a and b in base w notation, we 
an write A(x) =

∑m
i=0 aix

i and B(x) =
∑n

j=0 bjx
j so that

a = A(w) and b = B(w). Now we 
an 
ompute the produ
t polynomial C(x) = A(x)B(x) and�nd c = ab = C(w). The step of breaking down the input integers into digits in a 
ertain wordbase amounts to obtaining the 
oe�
ients of a polynomial, the 
onvolution produ
t 
omputesthe produ
t polynomial C(x), and the 
arry propagation step evaluates C(w).In Karatsuba's method, the produ
t polynomial C(x) is 
omputed by evaluating C(x) =
A(x)B(x) at su�
iently many points x so that the 
oe�
ients of C(x) 
an be determined



1.1. Introdu
tion 9uniquely. In the des
ription given above (Karatsuba and Ofman's original des
ription redu
esmultipli
ation to two squarings �rst), we 
ompute A(0) = a0, B(0) = b0, A(1) = a1 + a0,
B(1) = b1 + b0 and (formally1) A(∞) = a1, B(∞) = b1 in what 
onstitutes the evaluation phaseof the algorithm.The values of the produ
t polynomial C(x) are the produ
ts of the values of A(x) and B(x):
C(0) = A(0)B(0), C(1) = A(1)B(1), and C(∞) = A(∞)B(∞). In this step, the results of theevaluation phase are multiplied pair-wise. In Karatsuba's method, three produ
ts are 
omputed,ea
h multiplying numbers half the size of the input integers.A polynomial of degree d is uniquely determined given d+1 values at distin
t points, so thesethree values su�
e to obtain the 
oe�
ients of C(x) = ĉ2x

2 + ĉ1x+ ĉ0 in the interpolation phaseof the algorithm. In the 
ase of Karatsuba's method this is parti
ularly simple, sin
e ĉ0 = C(0),
ĉ2 = C(∞) and ĉ1 = C(1)− ĉ2 − ĉ0.1.1.2 The Toom-Cook AlgorithmIn 1963, A. L. Toom [97℄ (English translation in [98℄) suggested a method whi
h implements ageneralization of Karatsuba's method that allows splitting the input numbers into more thantwo pie
es ea
h, leading to polynomials of larger degree but smaller 
oe�
ients that must bemultiplied. Cook's thesis [28℄ translates the method to an algorithm, it is now 
ommonly 
alledToom-Cook method. Given two (r + 1)-word integers a and b, we 
an 
ompute their produ
tby writing a =

∑r
i=0 aiw

i, b =
∑r

i=0 biw
i, 0 ≤ ai, bi < w, and multiplying the polynomials

A(x) =
∑r

i=0 aix
i and B(x) =

∑r
i=0 bix

i to obtain the produ
t polynomial C(x) =
∑2r

i=0 ĉix
iof degree 2r by evaluating A(x) and B(x) at 2r + 1 distin
t points, pair-wise multipli
ation ofthe values (ea
h about 1/(r + 1) the size of the input numbers) and interpolating C(x). Forexample, for r = 2, the points of evaluation x = 0,∞,±1, and 2 
ould be 
hosen, so that

A(0) = a0, A(∞) = a2, A(1) = a2 + a1 + a0, A(−1) = a2 − a1 + a0, and A(2) = 4a2 + 2a1 + a0(likewise for B(x)). After the pair-wise produ
ts to obtain C(0), C(∞), C(1), C(−1), and C(2),the interpolation determines the 
oe�
ients of C(x) =
∑4

i=0 cix
i by, e.g.,

ĉ0 = C(0)

ĉ4 = C(∞)

2ĉ2 = C(1) + C(−1)− 2ĉ4 − 2ĉ0

6ĉ3 = C(2)− 2C(1)− 14ĉ4 − 2ĉ2 + ĉ0

ĉ1 = C(1)− ĉ4 − ĉ3 − ĉ2 − ĉ0.Toom-Cook with r = 2 
omputes a produ
t of two 3n-word integers with �ve produ
ts oftwo n-word integers ea
h; applied re
ursively, the asymptoti
 
ost of this method is O(nlog3(5)) ⊂
O(n1.47) and in general, for a �xed r, O(nlogr+1(2r+1)).Even for r = 2 the evaluation phase and espe
ially the interpolation phase are noti
eablymore involved than for Karatsuba's method. This 
omplexity qui
kly grows with r; if 
arried outin a straight-forward manner, the evaluation and interpolation performs O(r2) multipli
ationsof O(n/r)-bit integers with O(log(r)) bit integers whi
h yields a 
omplexity of O(rn log(r)), andsele
tion of optimal sets of points of evaluation and of interpolation sequen
es is non-trivial [13℄.Hen
e for a given n we 
annot in
rease r arbitrarily: the in
rease of 
ost of evaluation andinterpolation qui
kly ex
eeds the saving due to smaller pair-wise produ
ts. Toom shows that by1Evaluating a polynomial f(x) at x = ∞ should be interpreted as evaluating the homogenized polynomial
F (x, y) = ydeg(f)f(x/y) at (x, y) = (1, 0); the point (1, 0) of the proje
tive line 
orresponds to the point at in�nityof the a�ne line.
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ation with S
hönhage-Strassen's Algorithm
hoi
e of r = c
√

log(n/r) with a suitable 
onstant c, an algorithm with 
omplexity in O(n1+ǫ) forany positive ǫ 
an be obtained; however to rea
h small ǫ, unreasonably large n are required.An advantage of Karatsuba's method over Toom-Cook with r > 1 is that no division isrequired in the interpolation stage whi
h makes it appli
able over �nite �elds of small 
hara
-teristi
. Montgomery [71℄, extending work by Weimerskir
h and Paar [100℄, gives division-freeKaratsuba-like formulas that split the input into more than two parts and obtain the produ
t
oe�
ients (in a manner that does not adhere to the evaluation/interpolation prin
iple) with anumber of multipli
ations 
loser to nlog2(3) than plain Karatsuba does when n is not a power of
2.1.1.3 FFT-based Multipli
ationThe problem of 
ostly evaluation and interpolation 
an be over
ome by use of the Fast FourierTransform (FFT). An FFT of length ℓ 
omputes from a0, . . . , aℓ−1 ∈ R with R a suitable ring

aj =
ℓ−1
∑

i=0

aiω
ij , j = 0, . . . , ℓ− 1 (1.3)where ω ∈ R is an ℓ-th primitive root of unity (whi
h must exist for R to be suitable).When the ai are interpreted as 
oe�
ients of the polynomial A(x) =

∑ℓ−1
i=0 aix

i, the FFT
an be viewed as a polynomial multi-point evaluation s
heme
aj = A(ωj)whi
h evaluates A(x) at the ℓ distin
t points ωj . Likewise, the inverse FFT 
omputes thepolynomial 
oe�
ients ai from the FFT 
oe�
ients aj by

ai =
1

ℓ

ℓ−1
∑

j=0

ajω
−ij , i = 0, . . . , ℓ− 1. (1.4)The division by ℓ requires that ℓ is a unit in R. To see that (1.4) is the inverse operation of(1.3), we 
an substitute aj in (1.4) as de�ned in (1.3) and note that ∑ℓ−1

j=0(ω
k)j is zero for ℓ ∤ k,and is ℓ for ℓ | k.In pra
ti
e the FFT is fastest to 
ompute if ℓ is a power of 2. Assume ℓ = 2k and rewrite(1.3) as

aj =
ℓ−1
∑

i=0

aiω
ij =

ℓ/2−1
∑

i=0

a2iω
2ij +

ℓ/2−1
∑

i=0

a2i+1ω
(2i+1)j

=

ℓ/2−1
∑

i=0

a2iω
2ij + ωj

ℓ/2−1
∑

i=0

a2i+1ω
2ijfor j = 0, . . . , ℓ − 1. Sin
e ωℓ = 1, we have ω2j = ω2(j−ℓ/2) so ea
h of the two sums takes only

ℓ/2 distin
t values. These values aevenj =
∑ℓ/2−1

i=0 a2i(ω
2)ij and aoddj =

∑ℓ/2−1
i=0 a2i+1(ω

2)ij for
j = 0, . . . , ℓ/2−1 are the FFT of length ℓ/2 of the 
oe�
ients of even and odd index, respe
tively.Hen
e an FFT of length ℓ 
an be 
omputed by two FFTs of length ℓ/2 and O(ℓ) additionalring operations. An FFT of length ℓ = 1 is just the identity fun
tion. Thus the arithmeti

omplexity F (ℓ) of the FFT satis�es F (1) = 1, F (2ℓ) = 2F (ℓ) + O(ℓ) and so F (ℓ) ∈ O(ℓ log(ℓ))ring operations.



1.1. Introdu
tion 11Also, sin
e ωj+ℓ/2 = −ωj, we 
an 
ompute
aj = a

even
j + ωj

a
odd
j (1.5)

aj+ℓ = a
even
j − ωj

a
odd
jwhere the produ
t ωjaoddj needs to be 
omputed only on
e, for j = 0, . . . , ℓ/2. This operation
an be performed in-pla
e, with aj and aj+ℓ overwriting aevenj and aoddj , respe
tively. Hen
e anFFT algorithm 
an be formulated as in Algorithm 1. This re
ursive algorithm was �rst publishedby Cooley and Tukey [29℄, although the relevant identities were known to previous authors [30℄,in
luding Gauss.This algorithm operates in-pla
e, and at ea
h re
ursion level the input 
oe�
ients ai of evenindex i are expe
ted in the lower half of the data array and those of odd index in the upper half,for the sub-FFT being 
omputed. Over the entire re
ursion, this requires 
oe�
ients ai wherethe least signi�
ant bit (LSB) of i is zero to be lo
ated in the low half of the input array and thosewhere the LSB of i is one in the upper half. Within these two halves, 
oe�
ients with the se
ondLSB of i equal zero must be in the lower half again, et
. This leads to a storage lo
ation for aithat is the bit-reverse of the index i. Let bitrevk(i), 0 ≤ i < 2k denote the bit-reverse of the k-bitinteger i (extended to k bits with leading zero bits if ne
essary): if i =

∑k−1
n=0 in2n, in ∈ {0, 1},then bitrevk(i) =

∑k−1
n=0 ik−1−n2n. Hen
e for a length ℓ = 2k in-pla
e FFT, the input 
oe�
ient

ai must be pla
ed in lo
ation bitrevk(i) in the data array. The output 
oe�
ient aj is stored inlo
ation j. The reordering pro
ess due to in-pla
e FFT algorithms is 
alled �s
rambling�.Pro
edure FFT_DIT (ℓ, a, ω)Input: Transform length ℓ = 2k, k ∈ NInput 
oe�
ients a0,...,ℓ−1 ∈ R, stored in bit-reversed orderRoot of unity ω ∈ R,ωℓ = 1, ωi 6= 1 for 0 < i < ℓOutput: The FFT 
oe�
ients aj =
∑ℓ−1

i=0 aiω
ij stored in normal order, repla
ing theinputif ℓ > 1 thenFFT_DIT(ℓ/2, a0,...,ℓ/2−1, ω2) ;FFT_DIT(ℓ/2, aℓ/2,...,ℓ−1, ω2) ;for 0 ≤ i ≤ ℓ/2− 1 do

(ai, ai+ℓ/2) := (ai + ωiai+ℓ/2, ai − ωiai+ℓ/2) ;Algorithm 1: Re
ursive Cooley-Tukey algorithm for Fast Fourier TransformThe Cooley-Tukey in-pla
e FFT 
an be used by passing the input 
oe�
ients in bit-reverseorder, and fast algorithms exist to perform this permutation [86℄. However, for 
omputing 
on-volution produ
ts with the FFT, a more elegant solution is available. Gentleman and Sande [47℄presented an alternative algorithm for 
omputing the FFT that 
an be derived by splitting the
omputation of aj in (1.3) by even and odd j rather than even and odd i:
a2j =

ℓ−1
∑

i=0

aiω
2ij =

ℓ/2−1
∑

i=0

(ai + ai+ℓ/2)ω
2ij

a2j+1 =

ℓ−1
∑

i=0

aiω
i(2j+1) =

ℓ/2−1
∑

i=0

ωi(ai − ai+ℓ/2)ω
2ij
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ation with S
hönhage-Strassen's AlgorithmHen
e we 
an 
ompute the length-ℓ FFT from the two length-ℓ/2 FFTs of the 
oe�
ients
aeveni = ai + ai+ℓ/2 (1.6)
aoddi = ωi(ai − ai+ℓ/2),for 0 ≤ i < ℓ/2. This leads to Algorithm 2 whi
h takes uns
rambled input (
oe�
ient ai inarray lo
ation i) and produ
es s
rambled output (
oe�
ient aj in array lo
ation bitrevk(j)).Additionally, the Cooley-Tukey algorithm 
an be used for an inverse FFT simply by repla
ing ωby ω−1 everywhere and dividing ea
h output 
oe�
ient by ℓ. For the pair-wise multipli
ation,whether the FFT 
oe�
ients are s
rambled or not does not matter, so long as both sequen
esof FFT 
oe�
ients are in the same order. Hen
e we 
an use the Gentleman-Sande algorithm for
omputing forward FFTs produ
ing s
rambled output, do point-wise multipli
ation of the FFT
oe�
ients, and use the Cooley-Tukey algorithm for the inverse FFT taking s
rambled input andprodu
ing output in normal order. This way, expli
it re-ordering with a bit-reversal algorithmis avoided 
ompletely.Pro
edure FFT_DIF (ℓ, a, ω)Input: Transform length ℓ = 2k, k ∈ NInput 
oe�
ients a0,...,ℓ−1 ∈ R stored in normal orderRoot of unity ω ∈ R,ωℓ = 1, ωi 6= 1 for 0 < i < ℓOutput: The FFT 
oe�
ients aj =

∑ℓ−1
i=0 aiω

ij , stored in bit-reversed order, repla
ingthe inputif ℓ > 1 thenfor 0 ≤ i ≤ ℓ/2− 1 do
(ai, ai+ℓ/2) := (ai + ai+ℓ/2, ω

i(ai − ai+ℓ/2)) ;FFT_DIF(ℓ/2, a0,...,ℓ/2−1, ω2) ;FFT_DIF (ℓ/2, aℓ/2,...,ℓ−1, ω2) ;Algorithm 2: Re
ursive Gentleman-Sande algorithm for Fast Fourier TransformWhen multiplying two polynomials A(x) of degree m and B(x) of degree n, the produ
tpolynomial C(x) has degree m+n, and an FFT of length m+n+1 ≤ ℓ is required to determinethe 
oe�
ients of C(x) uniquely. The same transform length must be used for the forwardtransforms (evaluating A(x) and B(x)) and for the inverse transform (interpolating C(x)); inthe forward transform, the 
oe�
ients of A(x) and B(x) are padded with zeros to �ll the inputof the FFT up to the transform length.If the degrees of the input polynomials are too large so that m + n + 1 > ℓ, the produ
tpolynomial C(x) 
annot be interpolated 
orre
tly. Let C(x) = xℓC1(x)+C0(x), deg(C0(x)) < ℓ.Sin
e ωℓ = 1, C(ωj) = C1(ω
j)+C0(ω

j) for all j ∈ N, so polynomials C(x) and C(x) mod (xℓ − 1)have the same FFT 
oe�
ients, and the interpolation of polynomials with an inverse FFT oflength ℓ from a given set of FFT 
oe�
ients is unique only modulo xℓ − 1. In other words,the 
oe�
ients of too high powers xi, i ≥ ℓ, in the produ
t polynomial are wrapped around andadded to the 
oe�
ients of xi mod ℓ, also 
alled 
y
li
 wrap-around or a 
y
li
 
onvolution. Hen
efor inputs A(x), B(x), a 
onvolution produ
t with a length-ℓ FFT produ
es the ℓ 
oe�
ientsof A(x)B(x) mod (xℓ − 1); if the produ
t polynomial has degree less than ℓ, its 
oe�
ients arenot disturbed by this modulus. Algorithm 3 shows a 
y
li
 
onvolution produ
t using the FastFourier Transform.The impli
it polynomial modulus in an FFT 
onvolution 
an sometimes be used pro�tably,but often a modulus other than xℓ−1 is desired. This is a

omplished with a weighted transform.
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Figure 1.1: Data �ow in a length-8 FFT. Here, ωn denotes an n-th primitive root of unity. Readfrom top to bottom, the diagram shows the data �ow of the Gentleman-Sande algorithm with
ai as input 
oe�
ients and ai as output. Read from bottom to top, it shows the data �ow of theCooley-Tukey algorithm, with ai as input and ai as output.The FFT input 
oe�
ients ai and bi are multiplied by weights wi, for 0 ≤ i < ℓ; after the pair-wise multipli
ation and inverse FFT, the output 
oe�
ients ci are multiplied by w−i. In e�e
t,the FFT 
omputes C(x) so that C(wx) = A(wx)B(wx) mod (xℓ − 1). With A(wx)B(wx) =
xℓwℓC1(wx)+C0(wx), we have C(wx) = wℓC1(wx)+C0(wx) and thus C(x) = wℓC1(x)+C0(x),whi
h 
auses the wrapped-around part to be multiplied by wℓ and 
orresponds to a multipli
ation
C(x) = A(x)B(x) mod (xℓ − wℓ). To allow a parti
ular polynomial modulus xℓ − r, the ring
R over whi
h the FFT is performed must 
ontain a w so that wℓ = r, i.e., a (not ne
essarilyprimitive) ℓ-th root of r. For example if a modulus of xℓ +1 is desired, we require that w = ℓ

√
−1,whi
h is a (2ℓ)-th root of unity (and ne
essarily primitive if ℓ is a power of 2), exists in R. Inthis 
ase the wrapped-around 
oe�
ients of xi, ℓ ≤ i < 2ℓ, are subtra
ted from the 
oe�
ientsof xi mod ℓ, whi
h leads to a nega
y
li
 
onvolution.Unfortunately we 
annot apply the FFT dire
tly to the problem of multiplying integers (viapolynomials with integer 
oe�
ients) as the ring of integers Z does not o�er any primitive rootsof unity of order greater than 2. In order to 
arry out the FFT, we must map the 
oe�
ients ofthe polynomials A(x) and B(x) to some other ring �rst whi
h has a primitive root of unity oforder ℓ and the appropriate weight w if a weighted transform is desired, where ℓ is a unit, andwhere the 
oe�
ients ci of the produ
t polynomial 
an be identi�ed uniquely. This mapping iswhat distinguishes di�erent FFT based integer multipli
ation algorithms.
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ation with S
hönhage-Strassen's AlgorithmInput: Convolution length ℓ = 2kInput 
oe�
ients a0,...,ℓ−1, b0,...,ℓ−1 ∈ R, where R supports a length-ℓ FFTOutput: Coe�
ients c0,...,ℓ−1 ∈ R of 
y
li
 
onvolution produ
t of a and bData: t0,...,ℓ−1, temporary storage/* Compute primitive ℓ-th root of unity in R */
ω := ℓ

√
1, 1 ∈ R;/* Copy a to c, 
ompute forward FFT in-pla
e */

c0,...,ℓ−1 := a0,...,ℓ−1;FFT_DIF(ℓ, c0,...,ℓ−1, ω) ;/* Copy b to t, 
ompute forward FFT in-pla
e */
t0,...,ℓ−1 := b0,...,ℓ−1;FFT_DIF(ℓ, t0,...,ℓ−1, ω) ;/* Compute pair-wise produ
ts */for 0 ≤ i ≤ ℓ− 1 do

ci := ci · ti;/* Compute inverse FFT in-pla
e */FFT_DIT(ℓ, c0,...,ℓ−1, ω−1);for 0 ≤ i ≤ ℓ− 1 do
ci := ci/ℓ;Algorithm 3: Cy
li
 
onvolution produ
t with the Fast Fourier Transform1.2 An E�
ient Implementation of S
hönhage-Strassen's Algo-rithmS
hönhage and Strassen [90℄ were the �rst to present pra
ti
al algorithms for integer multipli
a-tion based on the FFT. They gave two possibilities for performing the 
onvolution produ
t via theFFT: one over the 
omplex numbers C whi
h has 
omplexity O

(

N log(N) log(log(N))1+ǫ
) for anypositive ǫ and with input numbers of N bits, and one over a residue 
lass ring R = Z/ (2n + 1) Zwith 
omplexity O(N log(N) log(log(N))). Even though both methods were published in thesame paper and are both used in pra
ti
e, �S
hönhage-Strassen's algorithm� usually refers onlyto the latter.Sin
e Fourier transforms over C are ubiquitous in signal pro
essing, data 
ompression, andmany other �elds of s
ienti�
 
omputation, a wealth of publi
ations on and 
ountless implemen-tations of the 
omplex FFT exist. General-purpose 
omplex FFT implementations (e.g., [42℄)
an be readily used for large-integer multipli
ation, although spe
ialized implementations forfast 
onvolution produ
ts with purely real input o�er further opportunities for optimization.The �eld of 
omplex FFTs and their e�
ient implementation is vast, and we do not explore ithere any further, but fo
us on 
onvolution produ
ts using FFTs over the ring Z/(2n + 1)Z.1.2.1 OverviewS
hönhage-Strassen's algorithm (SSA) redu
es the multipli
ation of two input integers a and b to

ℓ multipli
ations in Rn = Z/ (2n + 1) Z, for suitably 
hosen ℓ and n. In order to a
hieve the stated
omplexity, these multipli
ations must be performed e�
iently, and SSA 
alls itself re
ursivelyfor this purpose, until the numbers to be multiplied are small enough for simpler algorithms su
has the grammar-s
hool, Karatsuba, or Toom-Cook methods. In order to fa
ilitate this re
ursiveuse of SSA, it is formulated to a

ept any two integers 0 ≤ a, b < 2N + 1 for a given N as input
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ompute the produ
t ab mod (2N + 1). If the inputs are su
h that ab < 2N + 1, then thisSSA of 
ourse lets us 
ompute the 
orre
t integer produ
t ab, so we 
an use this algorithm (by
hoosing N suitably) to perform integer multipli
ation. If the produ
t of the inputs is known notto ex
eed 2N + 1, optimizations are possible that allow performing the top-most re
ursion levelof SSA more e�
iently, see 1.2.6. The multipli
ation modulo 2N + 1 is done with a nega
y
li

onvolution of length ℓ using an FFT over the ring Rn, so that arithmeti
 modulo 2N +1 
an beperformed via arithmeti
 modulo xℓ + 1, and the pair-wise produ
ts in Rn 
an use SSA again.Thus SSA maps the 
omputation of ab in N to the 
omputation of ab mod (2N + 1) in RN ,maps this produ
t in RN to a produ
t of polynomials A(x)B(x) in Z[x]/(xℓ + 1), and mapsthis 
onvolution produ
t to Rn[x]/(xℓ + 1) so that Rn supports a length-ℓ weighted FFT fora nega
y
li
 
onvolution and allows lifting the 
oe�
ients of A(x)B(x) mod (xℓ + 1) uniquely.Figure 1.2 shows the sequen
e of mappings.
Z =⇒RN =⇒ Z[x] mod (xℓ + 1) =⇒ Rn[x] mod (xℓ + 1) =⇒ Rn

n smallenough?No, re
urse Yes, multiplyFigure 1.2: Diagram of mappings in the S
hönhage-Strassen algorithm.1.2.2 Des
ription of SSAFor given a, b whose produ
t modulo 2N + 1, 4 | N , is sought, write N = ℓM where ℓ = 2k,
k ≥ 2, and 
hoose an n so that

n = ℓm, (1.7)
n ≥ 2M + k.The two 
onditions imply n >

√
2N . The 
hoi
e of good values for N , ℓ, and n is of greatimportan
e for the performan
e of SSA; how to sele
t these is des
ribed in 1.2.7.Let Rn = Z/(2n + 1)Z. Sin
e 2n = (2m)ℓ ≡ −1 (mod 2n + 1), 2m is an (2ℓ)-th primitive rootof unity in Rn, so that it supports FFTs for 
y
li
 
onvolutions of power-of-two length up to 2ℓ,or weighted FFTs for nega
y
li
 
onvolutions up to length ℓ.From the input integers 0 ≤ a, b < 2N + 1 we form polynomials

A(x) =

ℓ−1
∑

i=0

aix
i, 0 ≤ ai < 2M for 0 ≤ i < ℓ− 1 (1.8)

0 ≤ aℓ−1 ≤ 2M ,that is, we 
ut a into ℓ pie
es of M bits ea
h, ex
ept the last pie
e may be equal to 2M . Doinglikewise for b, we have a = A(2M ) and b = B(2M ). To obtain the produ
t c = ab mod (2N + 1),we 
an use a nega
y
li
 
onvolution to 
ompute the produ
t polynomial C(x) = A(x)B(x) mod
(xℓ + 1) so that, when the polynomials are evaluated at x = 2M , the polynomial modulus xℓ + 1preserves the residue 
lass modulo 2N + 1 =

(

2M
)ℓ

+ 1 of the integer produ
t.
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ation with S
hönhage-Strassen's AlgorithmThe 
oe�
ients of the produ
t polynomial C(x) =
∑ℓ−1

i=0 cix
i 
an be lifted exa
tly from Rnif ci mod (2n +1) is unique for all possible values of ea
h ci. Due to the nega
y
li
 wrap-around,ea
h ci 
an be de�ned by

ci = clowi − chighiwith
clowi =

∑

0≤j≤i

ajbi−j

chighi =
∑

i<j<ℓ

ajbi−j+ℓ,where all clowi and chighi are non-negative and, applying the bounds from (1.8), satisfy
clowi < (i + 1)22M , 0 ≤ i < ℓ
chighi < (ℓ− 1− i)22M , 0 ≤ i < ℓ− 2
chighℓ−2 ≤ 22M .Thus, for all 0 ≤ i < ℓ,

((i + 1)− ℓ)22M ≤ ci < (i + 1)22M ,so ea
h ci is 
on�ned to an interval of length 22M ℓ and it su�
es to 
hoose 2n + 1 > 22M ℓ, or
n ≥ 2M + k with ℓ = 2k. This minimal 
hoi
e of n = 2M + k requires that the lifting algorithmadjusts the range of ea
h ci depending on i; if an algorithm is desired that works independentlyof i, we must 
hoose n ≥ 2M + k + 1.Hen
e the 
onditions on n given in (1.7) are su�
ient to allow the 
omputation of C(x) =
A(x)B(x) mod xℓ + 1 with a nega
y
li
 
onvolution by a weighted FFT over the ring Rn.Given the 
oe�
ients of the produ
t polynomial C(x), the integer c = C(2M ) mod (2N + 1) =
ab mod (2N + 1) 
an be 
omputed in the �nal 
arry propagation step. The ci may be negative orgreater than 2M −1, so 0 ≤ C(2M ) < 2N +1 does not ne
essarily hold and the 
arry propagationneeds to take the modulus 2N + 1 into a

ount.The SSA thus 
onsists of �ve 
onse
utive steps, shown below. In this example, the 
oe�
ients
ci of the produ
t polynomial overwrite the 
oe�
ients ai.1. De
ompose a and b and apply weightsAllo
ate memory for array a[i], 0 ≤ i < ℓ, with at least n+1 bits of storage per array entryStore in a[i] the i-th M -bit part of aApply weights by setting a[i] := wi · a[i] mod (2n + 1), w = 2n/ℓDo likewise for array b[]2. Forward transform of a and bPerform length-ℓ FFT in-pla
e on array a[] working modulo 2n + 1, with root of unity

ω = 22n/ℓDo likewise for array b[]3. Pair-wise multiplySet a[i] := a[i] · b[i] mod (2n + 1) for 0 ≤ i < ℓ4. Inverse transformPerform length-ℓ inverse FFT in-pla
e on array a[] working modulo 2n+1, in
luding divisionby ℓ
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hönhage-Strassen's Algorithm 175. Apply inverse weights, 
arry propagationUn-apply weights by setting a[i] := w−i · a[i] mod (2n + 1), w = 2n/ℓCompute sum c =
(

∑ℓ−1
i=0 ai2

iM
)

mod
(

2N + 1
)Most of the ideas for the SSA presented so far were already present in the papers by S
hönhageand Strassen [90℄, or in follow-up papers by S
hönhage [87℄. We des
ribe now several pra
ti
alimprovements that allow SSA to multiply very large integers rapidly on 
ontemporary 
omputers.The implementation is based on the implementation of SSA in the GNU Multiple Pre
isionarithmeti
 library (GMP) [49℄, version 4.2.1.1.2.3 Arithmeti
 Modulo 2n + 1 with GMPArithmeti
 operations modulo 2n + 1 have to be performed during the forward and inversetransforms, the point-wise produ
ts, when applying the weight signal, and when unapplying it.Thanks to the fa
t that the primitive roots of unity are powers of two, the only needed operationsoutside the point-wise produ
ts are additions, subtra
tions, and multipli
ations by a power oftwo whi
h 
an be performed by bit-wise shifts on a binary 
omputer. Sin
e 22n ≡ 1 (mod 2n+1),division by 2k 
an be redu
ed to multipli
ation by 22n−k. Redu
tion modulo 2n +1 is inexpensiveas well, sin
e a12

n + a0 ≡ a0 − a1 (mod 2n + 1), so the redu
tion again requires only a bit-wiseshift and a subtra
tion.To simplify arithmeti
 modulo 2n + 1, we require n to be a multiple of β, the number of bitsper ma
hine word. Sin
e n must also be a multiple of ℓ = 2k, this usually is not an additional
onstraint unless k < 5 on a 32-bit 
omputer or k < 6 on a 64-bit 
omputer, and SSA is typi
allyused for numbers that are large enough so that the transform length is at least 64. Let m = n/βbe the number of 
omputer words 
orresponding to an n-bit number. A residue mod 2n + 1 hasa semi-normalized representation with m full words and one 
arry of weight 2n:
a = (am, am−1, . . . , a0),with 0 ≤ ai < 2β for 0 ≤ i < m, and 0 ≤ am ≤ 1.The addition of two su
h representations is done as follows (we give here the C 
ode usingGMP fun
tions):
 = a[m℄ + b[m℄ + mpn_add_n (r, a, b, m);r[m℄ = (r[0℄ < 
);MPN_DECR_U (r, m + 1, 
 - r[m℄);The �rst line of this algorithm adds (am−1, . . . , a0) and (bm−1, . . . , b0), puts the low m wordsof the result in (rm−1, . . . , r0), and adds the out 
arry to am + bm; we thus have 0 ≤ c ≤ 3. These
ond line yields rm = 0 if r0 ≥ c, in whi
h 
ase we simply subtra
t c from r0 at the third line.Otherwise rm = 1, and we subtra
t c− 1 from r0: a borrow may propagate, but at most to rm.In all 
ases r = a + b mod (2n + 1), and r is semi-normalized.The subtra
tion is done in a similar manner:
 = a[m℄ - b[m℄ - mpn_sub_n (r, a, b, m);r[m℄ = (
 == 1);MPN_INCR_U (r, m + 1, r[m℄ - 
);After the �rst line, we have −2 ≤ c ≤ 1. If c = 1, then rm = 1 at the se
ond line, and thethird line does nothing. Otherwise, rm = 0 at the se
ond line, and we add −c to r0, where the
arry may propagate up to rm. In all 
ases r = a− b mod (2n + 1), and r is semi-normalized.
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ation with S
hönhage-Strassen's AlgorithmThe multipli
ation by 2e is more tri
ky to implement. However this operation mainly appearsin the butter�ies � see below � [a, t]← [a + b, (a− b)2e] of the forward and inverse transforms,whi
h may be performed as follows:1. Write e = d · β + s with 0 ≤ s < β, where β is the number of bits per word2. De
ompose a = (a1, a0), where a1 
ontains the upper d words3. Idem for b4. t := (a0 − b0, b1 − a1)5. a := a + b6. t := t · 2sStep 4 means that the most (m−d) signi�
ant words from t are formed with a0− b0, and theleast d signi�
ant words with b1 − a1, where we assume that borrows are propagated, so that tis semi-normalized. Thus the only real multipli
ation by a power of two is that of step 6, whi
hmay be e�
iently performed with GMP's mpn_lshift routine.If one has a 
ombined mpn_addsub routine whi
h simultaneously 
omputes x + y and x− yfaster than separate mpn_add and mpn_sub 
alls, then step 5 
an be written a := (b1 +a1, a0 +b0)whi
h shows that t and a may be 
omputed with two mpn_addsub 
alls.1.2.4 Improved FFT Length Using √2Sin
e all prime fa
tors of 2n + 1 are p ≡ 1 (mod 8) if 4 | n, 2 is a quadrati
 residue in Rn,and it turns out that √2 is of a simple enough form to make it useful as a root of unity withpower-of-two order. Spe
i�
ally, (±23n/4 ∓ 2n/4
)2 ≡ 2 (mod 2n + 1), whi
h is easily 
he
ked byexpanding the square. Hen
e for a given n = 2km, k ≥ 2, we 
an use, e.g., √2 = 23n/4−2n/4 as aroot of unity of order 2k+2 to double the possible transform length. In the 
ase of the nega
y
li

onvolution, this allows a length 2k+1 transform, and √2 is used only in the weight signal. Fora 
y
li
 
onvolution, √2 is used normally as a root of unity during the transform, allowing atransform length of 2k+2. This idea is mentioned in [8, �9℄ where it is 
redited to S
hönhage,who later pointed out [88℄ that he was aware of this tri
k from the start, but published it only�en
oded� in [89, exer
ise 18℄.Multipli
ation by an odd power of √2 involves two binary shifts and a subtra
tion whi
hrequires more arithmeti
 than multipli
ation by a power of 2, but is still inexpensive enoughthat the smaller pair-wise produ
ts in the 
onvolution due to larger transform length lead to anet gain. In our implementation, this √2 tri
k saved roughly 10% on the total time of integermultipli
ation.Unfortunately, using higher roots of unity for the transform is not feasible as prime divisors of

2n +1 are not ne
essarily 
ongruent to 1 (mod 2k+3). De
iding whether they are or not requiresfa
toring 2n+1, and even if they are as in the 
ase of the eighth Fermat number F8 = 2256+1 [17℄,there does not seem to be a simple form for 4
√

2 whi
h would make it useful as a root of unity inthe transform.1.2.5 Improved Ca
he Lo
alityWhen multiplying large integers with SSA, the time spent in a

essing data for performing theFourier transforms is non-negligible; espe
ially sin
e the operations performed on the data areso inexpensive, the relative 
ost of memory a

ess is quite high. The literature is ri
h withpapers dealing with the organization of the 
omputations in order to improve the data lo
alityand thus 
a
he e�
ien
y during an FFT. However, most of these papers are 
on
erned with
ontexts whi
h are di�erent from ours: usually the 
oe�
ients are small and most often they
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omplex �oating-point numbers represented as a pair of double's. Also there is a variety oftarget platforms, from embedded hardware implementations to super-s
alar 
omputers.We have tried to apply several of these approa
hes in our 
ontext where the 
oe�
ients areintegers modulo 2n +1 that ea
h o

upy at least a few 
a
he lines and where the target platformis a standard PC workstation.In this work, we 
on
entrate on multiplying large, but not huge integers. By this we meanthat we 
onsider only 3 levels of memory for our data: level 1 
a
he, level 2 
a
he, and standardRAM. In the future one might also want to 
onsider the 
ase where we have to use the hard diskas a 4th level of storage.Here are the orders of magnitude for these memories, to �x ideas: on a typi
al Opteron, a
a
he line is 64 bytes; the L1 data 
a
he is 64 KB; the L2 
a
he is 1 MB; the RAM is 8 GB. Thesmallest 
oe�
ient size (i.e., n-bit residues) we 
onsider is about 50 ma
hine words, that is 400bytes. For very large integers, a single 
oe�
ient barely �ts into the L1 
a
he. For instan
e, inour implementation, when multiplying two integers of 105, 000, 000 words ea
h, a transform oflength 215 is used with 
oe�
ients of size 52 KB.In an FFT 
omputation, the main operation is the butter�y operation as des
ribed in equa-tions (1.5) and (1.6). This is an operation in a ring Rn that, for a Gentleman-Sande FFT,
omputes a + b and (a − b)ω, where a and b are 
oe�
ients in Rn and ω is some root of unity.In SSA this root of unity is a power of 2.The very �rst FFT algorithm is the iterative one. In our 
ontext this is a really bad idea.The main advantage of it is that the data is a

essed in a sequential way. In the 
ase where the
oe�
ients are small enough so that several of them �t in a 
a
he line, this saves many 
a
hemisses. But in our 
ase, 
ontiguity is irrelevant due to the size of the 
oe�
ients 
ompared to
a
he lines.The next very 
lassi
al FFT algorithm is the re
ursive one. In this algorithm, at a 
ertainlevel of re
ursion, we work on a small set of 
oe�
ients, so that they must �t in the 
a
he. Thisversion (or a variant of it) was implemented in GMP up to version 4.2.1. This behaves well formoderate sizes, but when multiplying large numbers, everything �ts in the 
a
he only at the tailof the re
ursion, so that most of the transform is already done when we are at last in the 
a
he.The problem is that before getting to the appropriate re
ursion level, the a

esses are very 
a
heunfriendly.In order to improve the lo
ality for large transforms, we have tried three strategies found inthe literature: the Belgian approa
h, the radix-2k transform, and Bailey's 4-step algorithm.The Belgian transformBro
kmeyer et al. [18℄ propose a way of organizing the transform that redu
es 
a
he misses. Inorder to explain it, let us �rst de�ne a tree of butter�ies as follows (we don't mention the rootof unity for simpli
ity):TreeBfy(A, index, depth, stride)Bfy(A[index℄, A[index+stride℄)if depth > 1TreeBfy(A, index-stride/2, depth-1, stride/2)TreeBfy(A, index+stride/2, depth-1, stride/2)An example of a tree of depth 3 is given on the right of Figure 1.3. Now, the depth ofa butter�y tree is bounded by a value that is not the same for every tree. For instan
e, onFigure 1.3, the butter�y tree that starts with the butter�y between a0 and a4 has depth 1: one



20 Chapter 1. Integer Multipli
ation with S
hönhage-Strassen's Algorithm
a7

a6

a5

a4

a3

a2

a1

a0
Step 1 Step 2 Step 3

a7

a3

a5

a1

a6

a2

a4

a0

Figure 1.3: The FFT 
ir
uit of length 8 and a butter�y tree of depth 3.
an not 
ontinue the tree on step 2. Similarly, the tree starting with the butter�y between a1 and
a5 has depth 1, the tree starting between a2 and a6 has depth 2 and the tree starting between
a3 and a7 has depth 3. More generally, the depth 
an be 
omputed by a simple formula.One 
an 
he
k that by 
onsidering all the trees of butter�ies starting with an operation atstep 1, we 
over the 
omplete FFT 
ir
uit. It remains to �nd the right ordering for 
omputingthose trees of butter�ies. For instan
e, in the example of Figure 1.3, it is important to do thetree that starts between a3 and a7 in the end, sin
e it requires data from all the other trees.One solution is to perform the trees of butter�ies following the bitrev order. One obtainsthe following algorithm, where ord_2 stands for the number of trailing zeros in the binary repre-sentation of an integer (together with the 4-line TreeBfy routine, this is a re
ursive des
riptionof the 36-line routine from [18, Code 6.1℄):BelgianFFT(A, k)l = 2^{k-1}for i := 0 to l-1TreeBfy(A, bitrev(i, k-1), 1+ord_2(i+1), l)Inside a tree of butter�ies, we see that most of the time, the butter�y operation will involve a
oe�
ient that has been used just before, so that it should still be in the 
a
he. Therefore anapproximate 50% 
a
he-hit is provided by 
onstru
tion, and we 
an hope for more if the data isnot too large 
ompared to the 
a
he size.We have implemented this in GMP, and this saved a few per
ent for large sizes, thus 
on-�rming the fa
t that this approa
h is better than the 
lassi
al re
ursive transform.Higher radix transformsThe prin
iple of higher radix transforms is to use an atomi
 operation whi
h groups severalbutter�ies. In Arndt's book [3℄ the reader will �nd a des
ription of several variants in this spirit.The 
lassi
al FFT 
an be viewed as a radix-2 transform. The next step is a radix-4 transform,where the atomi
 operation has 4 inputs and 4 outputs (without 
ounting roots of unity) andgroups 4 butter�ies of 2 
onse
utive steps of the FFT.We 
an then build a re
ursive algorithm upon this atomi
 operation. Of 
ourse, sin
e weperform 2 radix-2 steps at a time, the number of levels in the re
ursion is redu
ed by a fa
torof up to 2 from log2(ℓ) to ⌈log4(ℓ)⌉ (we have to handle the last re
ursion level by a radix-2transform if the number k of radix-2 FFT levels is odd).In the literature, the main interest for higher radix transforms 
omes from the fa
t that thenumber of operations is redu
ed for a transform of 
omplex numbers (this is done by exhibiting
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ation by i). In our 
ase, the number of operations remains the same. However,in the atomi
 blo
k ea
h input is used in two butter�ies, so that the number of 
a
he misses isless than 50%, just as for the Belgian approa
h. Furthermore, with the re
ursive stru
ture, justas for the 
lassi
al re
ursive FFT, at some point we deal with a number of inputs whi
h is smallenough so that everything �ts in the 
a
he.We have tested this approa
h, and this was faster than the Belgian transform by a fewper
ent.The next step after radix-4 is radix-8 whi
h works in the same spirit, but grouping 3 levelsat a time. We have also implemented it, but this saved nothing, and was even sometimes slowerthan the radix-4 approa
h. Our explanation is that for small numbers, a radix of 4 is 
lose tooptimal with respe
t to 
a
he lo
ality, and for large numbers, the number of 
oe�
ients that �tin the 
a
he is rather small and we have misses inside the atomi
 blo
k of 12 butter�ies.More generally, radix-2t groups t levels together, with a total of t2t−1 butter�ies, over 2tresidues. If all those residues �t in the 
a
he, the 
a
he miss rate is less than 1/t. Thus theoptimal strategy seems to 
hoose for t the largest integer su
h that 2tn bits �t in the 
a
he(either L1 or L2, whi
hever is the fastest 
a
he where a single radix-2 butter�y �ts).Bailey's 4-step algorithmThe algorithm we des
ribe here 
an be found in a paper by Bailey [4℄. In it, the reader will �ndearlier referen
es tra
ing ba
k the original idea, whi
h was in fa
t already mentioned in [47℄. Forsimpli
ity we sti
k to the �Bailey's algorithm� denomination.A way of seeing Bailey's 4-step algorithm is as a radix-√ℓ transform, where ℓ = 2k is thelength of the input sequen
e. In other words, instead of grouping 2 steps as in radix-4, we group
k/2 steps. To be more general, let us write k = k1 + k2, where k1 and k2 are to be thoughtas 
lose to k/2, but this is not really ne
essary. Then Bailey's 4-step algorithm 
onsists in thefollowing phases:1. Perform 2k2 transforms of length 2k1 ;2. Multiply the data by weights;3. Perform 2k1 transforms of length 2k2 .There are only three phases in this des
ription. The fourth phase is usually some matrix trans-position2, but this is irrelevant in our 
ase: the 
oe�
ients are large so that we keep a table ofpointers to them, and this transposition is just pointer ex
hanges whi
h are basi
ally for free,and �t very well in the 
a
he.The se
ond step involving weights is due to the fa
t that in the usual des
ription of Bailey's4-step algorithm, the transforms of length 2k1 are exa
tly Fourier transforms, whereas the neededoperation is a twisted Fourier transform where the roots of unity involved in the butter�ies aredi�erent (sin
e they involve a (2k)-th root of unity, whereas the 
lassi
al transform of length 2k1involves a (2k1)-th root of unity). In the 
lassi
al FFT setting this is very interesting, sin
e we
an then reuse some small-dimension implementation that has been very well optimized. In our
ase, we have found it better to write separate 
ode for this twisted FFT, so that we merge the�rst and se
ond phases.2Indeed, Bailey's algorithm might be viewed as a two-dimensional transform of a matrix with 2k1 rows and
2k2 
olumns, where Phase 1 performs 2k2 one-dimensional transforms on the 
olumns, and Phase 3 performs 2k1one-dimensional transforms on the rows.
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hönhage-Strassen's AlgorithmThe interest of this way of organizing the 
omputation is again not due to a redu
tion ofthe number of operations, sin
e they are exa
tly the same as with the other FFT approa
hesmentioned above. The goal is to help lo
ality. Indeed, assume that √ℓ 
oe�
ients �t in the
a
he, then the number of 
a
he misses is at most 2ℓ, sin
e ea
h 
all to the internal FFT ortwisted FFT operates on √ℓ 
oe�
ients.Of 
ourse we are interested in numbers for whi
h √ℓ 
oe�
ients do not �t in the L1 
a
he, butfor all numbers we might want to multiply, they do �t in the L2 
a
he. Therefore the stru
tureof the 
ode follows the memory hierar
hy: at the top level of Bailey's algorithm, we deal withthe RAM vs L2 
a
he lo
ality question, then in ea
h internal FFT or twisted FFT, we 
an take
are of the L2 vs L1 
a
he lo
ality question. This is done by using the radix-4 variant inside ourBailey-algorithm implementation.We have implemented this approa
h (with a threshold for a
tivating Bailey's algorithm onlyfor large sizes), and 
ombined with radix-4, this gave us our best timings. We have also tried ahigher dimensional transform, in parti
ular 3 steps of size 3
√

ℓ. This did not help for the sizes we
onsidered.Mixing several phasesAnother way to improve lo
ality is to mix di�erent phases of the algorithm in order to do as mu
hwork as possible on the data while they are in the 
a
he. An easy improvement in this spiritis to mix the pointwise multipli
ation and the inverse transform, in parti
ular when Bailey'salgorithm is used. Indeed, after the two forward transforms have been 
omputed, one 
an loadthe data 
orresponding to the �rst 
olumn, do the pointwise multipli
ation of its elements, andreadily perform the small transform of this 
olumn. Then the data 
orresponding to the se
ond
olumn is loaded, multiplied and transformed, and so on. In this way, one saves one full passon the data. Taking the idea one step further, assuming that the forward transform for the �rstinput number has been done already (or that we are squaring one number), after performingthe 
olumn-wise forward transform on the se
ond number we 
an immediately do the point-wisemultiply and the inverse transform on the 
olumn, so saving another pass over memory.Following this idea, we 
an also merge the �de
ompose� and �re
ompose� steps with thetransforms, again to save a pass on the data. In the 
ase of the �de
ompose� step, there is moreto it sin
e one 
an also save unne
essary 
opies by merging it with the �rst step of the forwardtransform.The �de
ompose� step 
onsists of 
utting parts of M bits from the input numbers, thenmultiplying ea
h part ai by wi modulo 2n + 1, giving a′i. If one 
losely looks at the �rst FFTlevel, it will perform a butter�y between a′i and a′i+ℓ/2 with w2i as multiplier. This will 
ompute
a′i + a′i+ℓ/2 and a′i − a′i+ℓ/2, and multiply the latter by w2i. It 
an be seen that the M non-zerobits from a′i and a′i+ℓ/2 do not overlap, thus no real addition or subtra
tion is required: theresults a′i + a′i+ℓ/2 and a′i− a′i+ℓ/2 
an be obtained with just 
opies and ones' 
omplements. As a
onsequen
e, it should be possible to 
ompletely avoid the �de
ompose� step and the �rst FFTlevel, by dire
tly starting from the se
ond FFT level, whi
h for instan
e will add a′i + a′i+ℓ/2 to
(a′j−a′j+ℓ/2)w

2j ; here the four operands a′i, a
′
i+ℓ/2, a

′
j , a

′
j+ℓ/2 will be dire
tly taken from the inputinteger a, and the impli
it multiplier w2j will be used to know where to add or subtra
t a′j and

a′j+ℓ/2. This example illustrates the kind of savings obtained by avoiding trivial operations like
opies and ones' 
omplements, and furthermore improving the lo
ality. This idea was not usedin the results in �1.3.
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ation without Redu
tion Modulo 2N + 1The reason why SSA uses a nega
y
li
 
onvolution is that it allows the algorithm to be usedre
ursively: the �pair-wise produ
ts� modulo 2n + 1 
an in turn be performed using the samealgorithm, ea
h one giving rise to ℓ′ smaller pair-wise produ
ts modulo 2n′

+ 1 (where n′ mustbe divisible by ℓ′). A drawba
k of this approa
h is that it requires a weighted transform, i.e.,additional operations before the forward transforms and after the inverse transform, and an
(2ℓ)-th root of unity for the weights whi
h halves the possible transform length for a given n.The nega
y
li
 transform is needed only to fa
ilitate a modulus of xℓ + 1 in the polynomialmultipli
ation whi
h is 
ompatible with the modulus of 2N +1 of the integer multipli
ation. Butat the top-most re
ursion level, we 
hoose N so that the integer produ
t c = ab is not a�e
ted byany modulo redu
tion, and no parti
ular modulus for the integer and hen
e for the polynomialmultipli
ation needs to be enfor
ed.Therefore one 
an repla
e RN = Z/(2N + 1)Z by Z/(2N − 1)Z in the top-most re
ursionlevel of SSA, and repla
e the nega
y
li
 by a simple 
y
li
 
onvolution (without any weights inthe transform), to 
ompute an integer produ
t mod 2N − 1, provided that c = ab < 2N − 1.We 
all this a �Mersenne transform,� whereas the original SSA performs a �Fermat transform�3.This idea of using a Mersenne transform is already mentioned by Bernstein [8℄ where it is 
alled�
y
li
 S
hönhage-Strassen tri
k�.Despite the fa
t that it 
an be used at the top level only, the Mersenne transform is never-theless very interesting for the following reasons:
• a Mersenne transform modulo 2N − 1, 
ombined with a Fermat transform modulo 2N + 1 andCRT re
onstru
tion, 
an be used to 
ompute a produ
t of 2N bits;
• as mentioned, a Mersenne transform 
an use a larger FFT length ℓ = 2k than the 
orrespondingFermat transform. While ℓ must divide N for the Fermat transform so that the weight w = 2N/ℓis a power of two, it only needs to divide 2N for the Mersenne transform so that ω = 22N/ℓ isa power of two. This improves the e�
ien
y for ℓ near √N , and enables one to use a value of ℓ
loser to optimal. (The FFT length 
an be doubled again by using √2 as a root of unity in thetransform as des
ribed in �1.2.4.)The above idea 
an be generalized to a Fermat transform mod 2aN + 1 and a Mersennetransform mod 2bN − 1 for small integers a, b.Lemma 1. Let a, b be two positive integers. Then at least one of gcd(2a + 1, 2b − 1) and
gcd(2a − 1, 2b + 1) is 1.Proof. Both g
ds are obviously odd. Let g = gcd(a, b), r = 2g, a′ = a/g, b′ = b/g. Denoteby ordp(r) the multipli
ative order of r (mod p) for an odd prime p. In the 
ase of b′ odd, p |
rb′−1⇒ ordp(r) | b′ ⇒ 2 ∤ ordp(r), and p | ra′

+1⇒ ordp(r) | 2a′ and ordp(r) ∤ a′ ⇒ 2 | ordp(r),hen
e no prime 
an divide both rb′ − 1 and ra′

+ 1. In the other 
ase of b′ even, a′ must be odd,and the same argument holds with the roles of a′ an b′ ex
hanged, so no prime 
an divide both
ra′ − 1 and rb′ + 1.It follows from Lemma 1 that for two positive integers a and b, either 2aN + 1 and 2bN − 1are 
oprime, or 2aN − 1 and 2bN + 1 are 
oprime, thus we 
an use one Fermat transform of size
aN (respe
tively bN) and one Mersenne transform of size bN (respe
tively aN). However thisdoes not imply that the re
onstru
tion is easy: in pra
ti
e we used b = 1 and made only a vary(see �1.2.7).3Here, a �Fermat transform� is meant modulo 2N +1, without N being ne
essarily a power of two as in Fermatnumbers.
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tion and Automati
 TuningSSA takes for n a multiple of ℓ, so that ω = 22n/ℓ is a primitive ℓ-th root of unity, and w = 2n/ℓis used for the weight signal (or, if √2 is used as des
ribed in 1.2.4, ω = 2n/ℓ and w = (
√

2)n/ℓ.The following omits the use of √2 for simpli
ity). As shown in 1.2.3, this ensures that all FFTbutter�ies involve only additions/subtra
tions and shifts on a radix 2 
omputer. In pra
ti
e onemay additionally require n to be a multiple of the ma
hine word size β to simplify arithmeti
modulo 2n + 1.For a given size N divisible by ℓ = 2k, we de�ne the e�
ien
y of the FFT-ℓ s
heme:
2N/ℓ + k

n
,where n is the smallest multiple of ℓ larger than or equal to 2N/ℓ + k. For example for N =

1, 000, 448 and ℓ = 210, we have 2N/ℓ + k = 1964, and the next multiple of ℓ is n = 2ℓ = 2048,therefore the e�
ien
y is 1964
2048 ≈ 96%. For N = 1, 044, 480 with the same value of ℓ, we have

2N/ℓ + k = 2050, and the next multiple of ℓ is n = 3ℓ = 3072, with an e�
ien
y of about 67%.The FFT s
heme is 
lose to optimal when its e�
ien
y is near 100%.Note that a s
heme with e�
ien
y below 50% does not need to be 
onsidered. Indeed, thismeans that 2N/ℓ + k ≤ 1
2n, whi
h ne
essarily implies that n = ℓ (as n has to be divisibleby ℓ). Then the FFT s
heme of length ℓ/2 
an be performed with the same value of n, sin
e

2(N/(ℓ/2)) + (k − 1) < 4N/ℓ + 2k ≤ n, and n is a multiple of ℓ/2.From this last remark, we 
an assume 2N/ℓ ≥ 1
2n � negle
ting the small k term �, whi
htogether with n ≥ ℓ gives:

ℓ ≤ 2
√

N. (1.9)It should be noted that 
hoosing n minimal a

ording to the 
onditions ℓ ≥ 2N/ℓ + k and
ℓ | 2n (e.g., for a Fermat transform with use of √2) is not always optimal. At the j + 1-stre
ursive level of a length-ℓ FFT, we multiply by powers of an ℓ/2j -th root of unity, i.e., by
2i2j2n/ℓ for su

essive i, by performing suitable bit-shifts. When 2j2n/ℓ is a multiple of the wordsize, no a
tual bit-shifts are performed any more, sin
e the shift 
an be done by word-by-word
opies. On system where bit-shifting is mu
h more expensive than mere word-
opying, e.g., ifno well-optimized multiple pre
ision shift 
ode is available, it 
an be advantageous to 
hoose nlarger to make 2n/ℓ divisible by a small power of 2. This way the number of FFT levels thatperform bit-shifts is redu
ed. In our 
ode, for transform lengths below the threshold for Bailey'salgorithm and n that are small enough not to use SSA re
ursively, we ensure ℓ | n (even when√

2 is used and ℓ | 2n would su�
e for a Fermat transform). If the resulting n satis�es n/l ≡ 3
(mod 4), we round up some more to make 4l | n. The 
omparative timings of length 128 (k = 7)and length 256 (k = 8) 
an be seen in �gure 1.4Automati
 TuningWe found that signi�
ant speedups 
ould be obtained with better tuning s
hemes, whi
h wedes
ribe here. All examples given in this se
tion are related to an Opteron.Tuning the Fermat and Mersenne TransformsUntil version 4.2.1, GMP used a naive tuning s
heme for the FFT multipli
ation. For the Fermattransforms modulo 2N + 1, an FFT of length 2k was used for tk ≤ N < tk+1, where tk is thesmallest bit-size for whi
h FFT-2k is faster than FFT-2k−1. For example on an Opteron, the
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Figure 1.4: Time in millise
onds for a length 128 (k = 7) and length 256 (k = 8) FFT, for inputsizes of 1000 to 5000 words, with and without rounding up n to avoid bit-shiftsdefault gmp-mparam.h �le uses k = 4 for a size less than 528 ma
hine words, then k = 5 for lessthan 1184 words, and so on:#define MUL_FFT_TABLE { 528, 1184, 2880, 5376, 11264, 36864, 114688, 327680, 1310720,3145728, 12582912, 0 }A spe
ial rule is used for the last entry: here k = 14 is used for less than m = 12582912 words,
k = 15 is used for less than 4m = 50331648 words, and then k = 16 is used. An additional singlethreshold determines from whi
h size upward � still in words � a Fermat transform mod 2n +1is faster than a full produ
t of two n-bit integers:#define MUL_FFT_MODF_THRESHOLD 544For a produ
t mod 2n+1 of at least 544 words, GMP 4.2.1 therefore uses a Fermat transform,with k = 5 until 1183 words a

ording to the above MUL_FFT_TABLE. Below the 544 wordsthreshold, the algorithm used is the 3-way Toom-Cook algorithm, followed by a redu
tion mod
2n + 1.This s
heme is not optimal sin
e the FFT-2k 
urves interse
t several times, as shown byFigure 1.5.To take into a

ount those multiple 
rossings, the new tuning s
heme determines word-intervals [m1,m2] where the FFT of length 2k is preferred for Fermat transforms:#define MUL_FFT_TABLE2 {{1, 4 /*66*/}, {401, 5 /*96*/}, {417, 4 /*98*/},{433, 5 /*96*/}, {865, 6 /*96*/}, ...The entry {433, 5 /*96*/} means that from 433 words � and up to the next size of 865words � FFT-25 is preferred, with an e�
ien
y of 96%. A similar table is used for Mersennetransforms.Tuning the Plain Integer Multipli
ationUp to GMP 4.2.1, a single threshold 
ontrols the plain integer multipli
ation:#define MUL_FFT_THRESHOLD 7680
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Figure 1.5: Time in millise
onds needed to multiply numbers modulo 2n + 1 with an FFT oflength 2k for k = 5, 6, 7. On the right, the zoom (with only k = 5, 6) illustrates that two 
urves
an interse
t several times.This means that SSA is used for a produ
t of two integers of at least 7680 words, whi
h
orresponds to about 148, 000 de
imal digits, and the Toom-Cook 3-way algorithm is used belowthat threshold.We now use the generalized Fermat-Mersenne s
heme des
ribed in 1.2.6 with b = 1 (in ourimplementation we found 1 ≤ a ≤ 7 was enough). Again, for ea
h size, the best value of a isdetermined by our tuning program:#define MUL_FFT_FULL_TABLE2 {{16, 1}, {4224, 2}, {4416, 6}, {4480, 2},{4608, 4}, {4640, 2}, ...For example, the entry {4608, 4} means that to multiply two numbers of 4608 words ea
h� or whose produ
t has 2 × 4608 words � and up to numbers of of 4639 words ea
h, the newalgorithm uses one Mersenne transform modulo 2N−1 and one Fermat transform modulo 24N +1.Re
onstru
tion is easy sin
e 2aN + 1 ≡ 2 mod (2N − 1).1.3 ResultsOn July 1st, 2005, Allan Steel wrote a web page [93℄ entitled �Magma V2.12-1 is up to 2.3 timesfaster than GMP 4.1.4 for large integer multipli
ation,� whi
h was a motivation for working onimproving GMP's implementation and we 
ompare our results to Magma's timings. We have alsotested other freely available pa
kages providing an implementation for large integer arithmeti
.Among them, some (OpenSSL/BN, LiDiA/libI) do not go beyond Karatsuba algorithm, some dohave some kind of FFT, but are not really made for really large integers: arpre
, Mira
l. Twouseful implementations we have tested are apfloat and CLN. They take about 4 to 5 se
ondson our test ma
hine to multiply one million-word integers, whereas we need about 1 se
ond.Bernstein mentions some partial implementation Zmult of S
hönhage-Strassen's algorithm, withgood timings, but right now, only very few sizes are handled, so that the 
omparison with oursoftware is not really possible.A program that implements a 
omplex �oating-point FFT for integer multipli
ation is GeorgeWoltman's Prime95. It is written mainly for the purpose of performing the Lu
as-Lehmer algo-rithm for testing large Mersenne numbers 2p − 1 for primality in the Great Internet MersennePrime Sear
h [102℄, and sin
e its in
eption has found 10 new su
h primes, ea
h one a new re
ord
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Figure 1.6: Comparison of GMP 4.1.4, GMP 4.2.1, Magma V2.13-6 and our new 
ode for theplain integer multipli
ation on a 2.4GHz Opteron (horizontal axis in 64-bit words, verti
al axisin se
onds).at the time of its dis
overy. It uses a DWT for multipli
ation mod a2n± c, with a and c not toolarge, see [79℄. We 
ompared multipli
ation modulo 22wn − 1 in Prime95 version 24.14.2 withmultipli
ation of n-word integers using our SSA implementation on a Pentium 4 at 3.2 GHz,and on an Opteron 250 at 2.4 GHz, see Figure 1.7. It is plain that on a Pentium 4, Prime95beats our implementation by a wide margin, in fa
t usually by more than a fa
tor of 10. Onthe Opteron, the di�eren
e is a bit less pronoun
ed, where it is by a fa
tor between 2.5 and 3.The reasons for this ar
hite
ture dependen
y of the relative performan
e is that Prime95 usesan SSE2 implementation of �oating point FFT, whi
h performs slightly better on the Pentium 4than on the Opteron at a given 
lo
k rate, but more importantly that all-integer arithmeti
 asin SSA performs poorly on the Pentium 4, but ex
ellently on the Opteron, due to both native64 bit arithmeti
 and a very e�
ient integer ALU. Some other di�eren
es between Prime95 andour implementation need to be pointed out in this 
ontext: due to the �oating point nature ofPrime95's FFT, rounding errors 
an build up for parti
ular input data to the point where the re-sult will be in
orre
tly rounded to integers. While o

urring with only low probability, this traitmay be undesirable in s
ienti�
 
omputation. In parti
ular, the spe
i�
ation of GMP requires a
orre
t multipli
ation algorithm for all input values, and when the �rst version of an FFT mul-tipli
ation for GMP was written around 1998, it was not known how to 
hoose parameters fora 
omplex �oating-point FFT so that 
orre
t rounding 
ould be guaranteed in the 
onvolutionprodu
t. Therefore the preferen
e was given to an all-integer algorithm su
h as S
hönhage-Strassens where the problem of rounding errors does not o

ur. As it turns out, multipli
ationwith the �oating point FFT 
an be made provably 
orre
t, see again [79℄, but at the 
ost of usinglarger FFT lengths, thus giving up some performan
e. Figure 1.8 shows the maximum numberof bits that 
an be stored per FFT element of type double so that provably 
orre
t rounding ispossible. Prime95's default 
hoi
e uses between 1.3 and 2 times as many, so for multipli
ationof large integers, demanding provably 
orre
t rounding would about double the run time. Also,the DWT in Prime95 needs to be initialized for a given modulus, and this initialization in
ursoverhead whi
h be
omes very 
ostly if numbers of 
onstantly varying sizes are to be multiplied.



28 Chapter 1. Integer Multipli
ation with S
hönhage-Strassen's AlgorithmFinally, the implementation of the FFT in Prime95 is done entirely in hand-optimized assemblyfor the x86 family of pro
essors, and will not run on other ar
hite
tures.Another implementation of 
omplex �oating point FFT is Guillermo Ballester Valor's Glu
as.The algorithm it uses is similar to that in Prime95, but it is written portably in C. This makesit slower than Prime95, but still faster than our 
ode on both the Pentium 4 and the Opteron,as shown in Figure 1.7.
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as on a 3.2 GHz Pentium 4, a 2.4 GHz Core 2, and a 2.4 GHz Opteron.
K = 2k 212 214 216 218 220 221 223 225bits/dbl 16 15 14 13 12 11 10 9

N 3.27e5 1.22e5 4.58e5 1.7e6 6.29e6 1.15e7 4.1e7 1.5e8Prime95 21.37 21.08 20.78 20.49 20.22 19.94 18.29 17.76Figure 1.8: Number of bits whi
h 
an be stored in an IEEE 754 double-pre
ision �oating pointnumber for provably 
orre
t multipli
ation of integers of bit-size N with an FFT of length K,and number of bits used in Prime95 for FFT length K.Fürer [43℄ proposed an integer multipli
ation algorithm with 
omplexity O
(

n log(n)2log∗(n)
),where log∗(n) is the minimum number of logarithms one needs to sta
k, starting from n, to geta result of at most 1. It is therefore asymptoti
ally faster than S
hönhage-Strassen's algorithmwith 
omplexity O(n log(n) log(log(n))), although the di�eren
e of the two asymptoti
 fun
tionsis small for n in the range of interest. We are not aware of a well-optimized implementation ofFürer algorithm, so no 
omparison of their speed in pra
ti
e is possible at the moment.



Chapter 2An Improved Stage 2 to P±1 Fa
toringAlgorithms2.1 Introdu
tionThis 
hapter is joint work with Peter Lawren
e Montgomery and was published in [73℄.It extends the work of [74℄, a fast stage 2 for the P�1 algorithm based on polynomial multi-point evaluation where the points of evaluation lie in a geometri
 progression. The previouspaper mentioned several ideas how the method 
ould be improved by using patterns in the rootsof the polynomial to build it more qui
kly, using symmetry in the resulting polynomial to redu
estorage spa
e and speed up polynomial arithmeti
, and to adapt the method to the P+1 fa
toringalgorithm.These ideas are implemented in the 
urrent work, making e�
ient use of today's 
omputerswith large memory and multi-pro
essing 
apability. Several large fa
tors were found with thenew implementation, in
luding a 60-digit fa
tor of the Lu
as number L2366 by the P+1 methodwhi
h still (at the end of 2009) stands as the re
ord for this method. Some large fa
tors werefound with the P�1 method, listed in Se
tion 2.13, but sadly no new re
ord was set in spite ofour best e�orts.2.2 The P�1 AlgorithmIn 1974 John Pollard [80, �4℄ introdu
ed the P�1 algorithm for fa
toring an odd 
ompositeinteger N . It hopes that some prime fa
tor p of N has smooth p− 1. An integer is B-smooth ifit has no prime fa
tors ex
eeding B. It pi
ks b0 6≡ ±1 (mod N) and 
oprime to N and outputs
b1 = be

0 mod N for some positive exponent e. This exponent might be divisible by all primepowers below a bound B1. Stage 1 su

eeds if (p − 1) | e, in whi
h 
ase b1 ≡ 1 (mod p) byFermat's little theorem. The algorithm re
overs p by 
omputing gcd(b1 − 1, N) (ex
ept in rare
ases when this g
d is 
omposite). When this g
d is 1, we hope that p− 1 = qn where n divides
e and q is not too large. Then

bq
1 ≡ (be

0)
q = beq

0 = (bnq
0 )

e/n
=
(

bp−1
0

)e/n
≡ 1e/n = 1 (mod p), (2.1)so p divides gcd(bq

1 − 1, N). Stage 2 of P�1 tries to �nd p when q > 1 but q does not ex
eed thestage 2 sear
h bound B2. 29



30 Chapter 2. An Improved Stage 2 to P±1 Fa
toring AlgorithmsPollard tests ea
h prime q in ]B1, B2] individually. If qn and qn+1 are su

essive primes, helooks up b
qn+1−qn

1 mod N in a small table. It is 
onje
tured that qn+1− qn < log(qn+1)
2, relatedto Cramér's 
onje
ture whi
h states

lim sup
n→∞

qn+1 − qn

log(qn)2
= 1.The prime gap that follows qn = 1693182318746371 has length 1132, giving the largest quotient

(qn+1 − qn)/ log(qn+1)
2 = 0.92 . . . 
urrently known. This prime is greater than any that willbe used in way of Pollard's stage 2, so in pra
ti
e the size of the table 
an be bounded by

log(B2)
2 /2, as only even di�eren
es need to be stored if B1 > 2. Given bqn

1 mod N , we 
an form
b
qn+1

1 mod N = bqn

1 b
qn+1−qn

1 mod N with b
qn+1−qn

1 mod N taken from the pre
omputed table, andtest gcd(b
qn+1

1 − 1, N). Pollard observes that one 
an 
ombine g
d tests: if p | gcd(x, N) or p |
gcd(y, N), then p | gcd(xy mod N, N). His stage 2 
ost is two modular multipli
ations per q: oneto 
ompute bqn

1 and one to multiply bqn

1 −1 to an a

umulator A; plus O
(

log(B2)
2
)multipli
ationsto build the table and taking gcd(A,N) at the end, but these 
ost are asymptoti
ally negligible.Montgomery [65℄ uses two sets S1 and S2, su
h that ea
h prime q in ]B1, B2] divides anonzero di�eren
e s1 − s2 where s1 ∈ S1 and s2 ∈ S2. He forms bs1

1 − bs2
1 using two tablelook-ups, saving one modular multipli
ation per q. Sometimes one s1 − s2 works for multiple q.Montgomery adapts his s
heme to Hugh Williams's P+1 method and Hendrik Lenstra's Ellipti
Curve Method (ECM). These 
hanges lower the 
onstant of proportionality, but stage 2 still uses

O(π(B2)− π(B1)) operations modulo N .The end of Pollard's original P�1 paper [80℄ suggests an FFT 
ontinuation to P�1. Mont-gomery and Silverman [74, p. 844℄ implement it, using a 
ir
ular 
onvolution to evaluate apolynomial along a geometri
 progression. It 
osts O
(√

B2 log(B2)
) operations to build andmultiply two polynomials of degree O

(√
B2

), 
ompared to O(B2/ log(B2)) primes below B2, sothe FFT stage 2 beats Pollard's original stage 2 and Montgomery's variant from [65℄ when B2 islarge.Montgomery's dissertation [67℄ des
ribes an FFT 
ontinuation to ECM. He takes either theg
d of two polynomials, or uses a general multipoint evaluation method for polynomials witharbitrary points of evaluation. These 
ost an extra fa
tor of log(B2) 
ompared to when the pointsare along a geometri
 progression. Zimmermann [103℄ implements these FFT 
ontinuations toECM and uses them for the P±1 methods as well.2.2.1 New Stage 2 AlgorithmLike in [74℄, in this 
hapter we evaluate a polynomial along geometri
 progressions. We exploitpatterns in its roots to generate its 
oe�
ients qui
kly. We aim for low memory overhead, savingit for 
onvolution inputs and outputs (whi
h are elements of Z/NZ). Using memory e�
ientlylets us raise the 
onvolution length ℓ. Many intermediate results are re
ipro
al polynomials,whi
h need about half the storage and 
an be multiplied e�
iently using weighted 
onvolutions.Doubling ℓ 
osts slightly over twi
e as mu
h time per 
onvolution, but ea
h longer 
onvolutionextends the sear
h for q (and e�e
tive B2) fourfold. Silverman's 1989 implementation used 42megabytes and allowed 250-digit inputs. It repeatedly evaluated a polynomial of degree 15360at 8 · 17408 points in geometri
 progression, using ℓ = 32768. This enabled him to a
hieve
B2 ≈ 1010.Today's (2008) PC memories are 100 or more times as large as those used in [74℄. Withthis extra memory, we a
hieve ℓ = 223 or more, a growth fa
tor of 256. With the same number



2.3. The P+1 Algorithm 31of 
onvolutions (individually longer lengths but running on faster hardware) our B2 advan
esby a fa
tor of 2562 ≈ 6.6 · 104. We make use of multi-pro
essor systems by parallel exe
utionof the 
onvolution produ
ts. Super
omputers with many CPUs and huge shared memories dospe
ta
ularly.Most te
hniques herein adapt to P+1, but some 
omputations take pla
e in an extensionring, raising memory usage if we use the same 
onvolution sizes.Se
tion 2.13 gives some new results, in
luding a re
ord 60-digit P+1 fa
tor.The new algorithm to build a polynomial from its roots and the algorithm to evaluate thatpolynomial on points along a geometri
 progression make use of the ring stru
ture of Z/NZ forP�1, or a quadrati
 extension thereof for P+1. This ring stru
ture is not present in ellipti
 
urvesused for ECM, so these te
hniques do not apply to it. The method of 
hoosing sets S1 and S2as in Se
tion 2.6 to determine the roots and evaluation points for the polynomial 
an be usedfor ECM, however, together with general algorithms of building a polynomial from its roots andevaluating it on an arbitrary set of points, like those des
ribed in [67℄ or [103℄.2.3 The P+1 AlgorithmHugh Williams [101℄ introdu
ed a P+1 fa
toring algorithm in 1982. It �nds a prime fa
tor p of
N when p + 1 (rather than p− 1) is smooth. It is modeled after P�1.One variant of the P+1 algorithm 
hooses P0 ∈ Z/NZ and lets the indeterminate α0 be azero of the quadrati
 f(x) = x2 − P0x + 1. The produ
t of the two roots of this quadrati
 isthe 
onstant 
oe�
ient 1, hen
e they are α0 and α−1

0 , and their sum is P0. We hope that thisquadrati
 is irredu
ible modulo the unknown fa
tor p, i.e., that the dis
riminant ∆ = P 2
0 − 4 isa quadrati
 non-residue modulo p. If so, α0 lies in Fp2/Fp, i.e., has degree 2. By the Frobeniusendomorphism, αp

0 6= α0 is the se
ond root in Fp2 . Hen
e α0α1 ≡ α0α
p
0 = αp+1

0 ≡ 1 (mod p) andthe order of α0 divides p + 1.On the other hand, if P 2
0−4 is a quadrati
 residue modulo p, then α0 lies in Fp and αp

0 = α0, sothat αp−1
0 = 1 and the order of α0 divides p−1. In this 
ase, the P+1 algorithm behaves like theP�1 algorithm. Sin
e whether α0 has order dividing p−1 or p+1 depends on the unknown prime

p (and 
an vary for di�erent prime fa
tors p of one 
omposite number), it generally is impossibleto tell whi
h order results from a parti
ular 
hoi
e P0, unless, say, the resulting determinant isa rational square or known to be a quadrati
 residue modulo all 
andidate prime fa
tors of theinput number. Williams suggests testing three di�erent values for P0 to rea
h a 
on�den
e of
87.5% that an element of order dividing p + 1 has been tried for a given prime fa
tor p.Stage 1 of the P+1 algorithm 
omputes P1 = α1 + α−1

1 where α1 ≡ αe
0 (mod N) for someexponent e, starting from P0 = α0 + α−1

0 and using Chebyshev polynomials to simplify the
omputation. If ord(α0) | e, regardless of whether ord(α0) | p − 1 or ord(α0) | p + 1, then
P1 ≡ αe

0 + α−e
0 ≡ 1 + 1 ≡ 2 (mod N) and gcd(P1− 2, N) > 1; if this gcd is also less than N , thealgorithm su

eeds. Stage 2 of P+1 hopes that αq

1 ≡ 1 (mod p) for some prime q, not too large,and some prime p dividing N .2.3.1 Chebyshev PolynomialsAlthough the theory behind P+1 mentions α0 and α1 = αe
0, an implementation manipulatesprimarily values of αn

0 + α−n
0 and αn

1 + α−n
1 for various integers n rather than the 
orrespondingvalues (in an extension ring) of αn

0 and αn
1 .



32 Chapter 2. An Improved Stage 2 to P±1 Fa
toring AlgorithmsFor integer n, the Chebyshev polynomials Vn of degree n and Un of degree n−1 are determinedby Vn(X + X−1) = Xn + X−n and (X − X−1)Un(X + X−1) = Xn − X−n. The use of thesepolynomials shortens many formulas, su
h as
P1 ≡ α1 + α−1

1 ≡ αe
0 + α−e

0 = Ve(α0 + α−1
0 ) = Ve(P0) (mod N).These polynomials have integer 
oe�
ients, so P1 ≡ Ve(P0) (mod N) is in the base ring Z/NZeven when α0 and α1 are not.The Chebyshev polynomials satisfy many identities, in
luding

Vmn(X) = Vm(Vn(X)),

Um+n(X) = Um(X)Vn(X)− Um−n(X), (2.2)
Um+n(X) = Vm(X)Un(X) + Um−n(X),

Vm+n(X) = Vm(X)Vn(X)− Vm−n(X), (2.3)
Vm+n(X) = (X2 − 4)Um(X)Un(X) + Vm−n(X).For given integers n and P0, the value of the Chebyshev polynomial Vn(P0) 
an be evaluatedby the methods of Montgomery [66℄.2.4 Overview of Stage 2 AlgorithmOur algorithm performs multipoint evaluation of polynomials by 
onvolutions. Its inputs are theoutput of stage 1 (b1 for P�1 or P1 for P+1), and the desired stage 2 interval ]B1, B2].The algorithm 
hooses a highly 
omposite odd integer P . It 
he
ks for q in arithmeti
progressions with 
ommon di�eren
e 2P . There are φ(P ) su
h progressions to 
he
k when

gcd(q, 2P ) = 1.We need an even 
onvolution length ℓmax (determined primarily by memory 
onstraints)and a fa
torization φ(P ) = s1s2 where s1 is even and 0 < s1 < ℓmax. Se
tions 2.6, 2.10.1 and2.12 have sample values.Our polynomial evaluations will need approximately
s2

⌈

B2

2P (ℓmax − s1)

⌉

≈ φ(P )

2P

B2

s1(ℓmax − s1)
(2.4)
onvolutions of length ℓmax. We prefer a small φ(P )/P to keep (2.4) low. We also prefer s1near ℓmax/2, say 0.3 ≤ s1/ℓmax ≤ 0.7.Using a fa
torization of (Z/PZ)∗ as des
ribed in Se
tion 2.6, we 
onstru
t two sets S1 and

S2 of integers su
h that(a) |S1| = s1 and |S2| = s2.(b) S1 is symmetri
 around 0: if k ∈ S1, then −k ∈ S1.(
) If k ∈ Z and gcd(k, P ) = 1, then there exist unique k1 ∈ S1 and k2 ∈ S2 su
h that
k ≡ k1 + k2 (mod P ).On
e S1 and S2 are 
hosen, for the P�1 method we 
ompute the 
oe�
ients of

f(X) = X−s1/2
∏

k1∈S1

(X − b2k1
1 ) mod N (2.5)
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ation 33by the method in Se
tion 2.8. Sin
e S1 is symmetri
 around zero, this f(X) is symmetri
 in Xand 1/X.For ea
h k2 ∈ S2 we evaluate (the numerators of) all
f(b

2k2+(2m+1)P
1 ) mod N (2.6)for ℓmax− s1 
onse
utive values of m as des
ribed in Se
tion 2.9, and 
he
k the produ
t of theseoutputs for a nontrivial g
d with N . This 
he
ks s1(ℓmax−s1) 
andidates, not ne
essarily primebut in
luding all primes in ]B1, B2], hoping to �nd q.For the P+1 method, repla
e b1 by α1 in (2.5) and (2.6). The polynomial f is still over

Z/NZ sin
e ea
h produ
t (X −α2k1
1 )(X −α−2k1

1 ) = X2 − V2k1(P1) + 1 is in (Z/NZ)[X], but themultipoint evaluation works in an extension ring. See Se
tion 2.9.1.2.5 Justi�
ationLet p be an unknown prime fa
tor of N . As in (2.1), assume bq
1 ≡ 1 (mod p) where q is not toolarge, and gcd(q, 2P ) = 1.The sele
tion of S1 and S2 ensures there exist k1 ∈ S1 and k2 ∈ S2 su
h that (q − P )/2 ≡

k1 + k2 (mod P ). That is,
q = P + 2k1 + 2k2 + 2mP = 2k1 + 2k2 + (2m + 1)P (2.7)for some integer m. We 
an bound m knowing bounds on q, k1, k2, detailed in Se
tion 2.6. Both

b±2k1
1 are roots of f (mod p) sin
e S1 is symmetri
 around 0 and by (2.5). Hen
e

f(b
2k2+(2m+1)P
1 ) = f(bq−2k1

1 ) ≡ f(b−2k1
1 ) ≡ 0 (mod p). (2.8)For the P+1 method, if αq

1 ≡ 1 (mod p), then (2.8) evaluates f at X = α
2k2+(2m+1)P
1 =

αq−2k1
1 . The fa
tor X − α−2k1

1 of f(X) evaluates to α−2k1(αq
1 − 1), whi
h is zero modulo p evenin the extension ring.2.6 Sele
tion of S1 and S2Let �+� of two sets denote the set of sums. By the Chinese Remainder Theorem,

(Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗ if gcd(m,n) = 1. (2.9)This is independent of the representatives: if S ≡ (Z/mZ)∗ (mod m) and T ≡ (Z/nZ)∗ (mod n),then nS + mT ≡ (Z/(mn)Z)∗ (mod mn). For prime powers, we have (Z/pkZ)∗ = (Z/pZ)∗ +
∑k−1

i=1 pi(Z/pZ).We 
hoose S1 and S2 su
h that S1 + S2 ≡ (Z/PZ)∗ (mod P ) whi
h ensures that all values
oprime to P , in parti
ular all primes, in the stage 2 interval are 
overed. One way uses afa
torization mn = P and (2.9). Other 
hoi
es are available by fa
toring individual (Z/pZ)∗,
p | P , into smaller sets of sums.Let Rn = {2i − n − 1 : 1 ≤ i ≤ n} be an arithmeti
 progression 
entered at 0 of length nand 
ommon di�eren
e 2. For odd primes p, a set of representatives of (Z/pZ)∗ is Rp−1. Its
ardinality is 
omposite for p 6= 3 and the set 
an be fa
tored into arithmeti
 progressions ofprime length by

Rmn = Rm + mRn. (2.10)



34 Chapter 2. An Improved Stage 2 to P±1 Fa
toring AlgorithmsIf p ≡ 3 (mod 4), alternatively p+1
4 R2 + 1

2R(p−1)/2 
an be 
hosen as a set of representatives withsmaller absolute values. For example, for p = 7 we may use {−2, 2} + {−1, 0, 1}.Example. For P = 3 · 5 · 7 = 105, we 
ould use
(Z/105Z)∗ = 35(Z/3Z)∗ + 21(Z/5Z)∗ + 15(Z/7Z)∗by (2.9) and 
hoose

S1 + S2 = 35{−1, 1} + 21{−3,−1, 1, 3} + 15{−5,−3,−1, 1, 3, 5}.However, we 
an use (2.10) to write
{−3,−1, 1, 3} = 2{−1, 1} + {−1, 1} and

{−5,−3,−1, 1, 3, 5} = 3{−1, 1} + {−2, 0, 2}.Now we 
an 
hoose S1 +S2 = 35{−1, 1}+42{−1, 1}+21{−1, 1}+45{−1, 1}+15{−2, 0, 2}, andlet for example S1 = 35{−1, 1} + 42{−1, 1} + 21{−1, 1} + 45{−1, 1} and S2 = 15{−2, 0, 2} tomake s1 = |S1| = 16 (
lose to) a power of 2 and s2 = |S2| small.When evaluating (2.6) for all m1 ≤ m < m2 and k2 ∈ S2, the highest exponent 
oprime to
P that is not 
overed at the low end of the stage 2 range will be 2max(S1 + S2) + (2m1 − 1)P .Similarly, the smallest value at the high end of the stage 2 range not 
overed is 2min(S1 + S2)+
(2m2 + 1)P . Hen
e, for a given 
hoi
e of P , S1, S2, m1 and m2, all primes in [(2m1 − 1)P +
2max(S1 + S2) + 1, (2m2 + 1)P + 2min(S1 + S2)− 1] are 
overed.Example. To 
over the interval [1000, 500000] with ℓmax = 512, we might 
hoose P = 1155,
s1 = 240, s2 = 2, m1 = −1, and m2 = ℓmax − s1 + m1 = 271. With S1 = 231({−1, 1} +
{−2, 2}) + 165({−2, 2} + {−1, 0, 1}) + 105({−3, 3} + {−2,−1, 0, 1, 2}) and S2 = 385{−1, 1}, wehave max(S1 + S2) = −min(S1 + S2) = 2098 and thus 
over all primes in [−3 · 1155 + 4196 +
1, 543 · 1155 − 4196 − 1] = [732, 622968].For 
hoosing a value of P whi
h 
overs a desired ]B1, B2] interval, we 
an test 
andidate
P from a table. This table 
ould 
ontain values so that P and φ(P ) are in
reasing, and ea
h
P is maximal for its φ(P ). We 
an sele
t those P whi
h, in order, 
over the desired ]B1, B2]interval with ℓmax (limited by memory), minimize the 
ost of stage 2 and maximize (2m2 +
1)P + 2min(S1 + S2). The table of P values may 
ontain a large number of 
andidate valuesso that a near-optimal 
hoi
e 
an be found for various ℓmax and B2 parameters. To speed upsele
tion of the optimal value of P , some restri
tions on whi
h P to test are desirable.Assume S1 and S2 are symmetri
 around 0, so that M = max(S1 + S2) = −min(S1 + S2).Then the e�e
tive start of the stage 2 interval is 2M + (2m1 − 1)P + 1, the e�e
tive end is
−2M + (2m2 + 1)P − 1, and their di�eren
e −4M + 2P (m2 −m1 + 1) − 2. Hen
e we require
B2 − B1 ≤ 2(m2 −m1 + 1)P . Sin
e m2 −m1 + 1 ≤ ℓmax, this implies B2 − B1 ≤ 2ℓmaxP or
P ≥ (B2 − B1)/(2ℓmax), whi
h together with an upper bound on ℓmax by available memoryprovides a lower bound on P .The 
ost of stage 2 is essentially that of initialising the multi-point evaluation on
e per stage2 by building the re
ipro
al Laurent polynomials f(x) and h(x) (see Se
tion 2.9) and 
omputingthe dis
rete Fourier transform of h(x), and that of performing the multi-point evaluation s2times per stage 2 by 
omputing the polynomial g(x), its produ
t with h(x) and the gcd ofthe 
oe�
ients of the produ
t polynomial and N . The 
ost of polynomial multipli
ation is in
O(ℓmax log(ℓmax)), but for the sake of parameter sele
tion 
an be approximated by just ℓmax� good parameters will use an ℓmax 
lose to the largest possible, and for small 
hanges of ℓmax(say, by up to a fa
tor of 2), the e�e
t of the log(ℓmax) term is small. The 
ost of building the
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ation with the NTT 35polynomial f(x) is proportional to the 
ost of polynomial multipli
ation so that we may take the
ost of initialisation and of evaluation to be proportional with a positive real 
onstant c. Hen
ethe 
ost of stage 2 
an be approximated roughly but usefully as (c + s2)ℓmax. Sin
e ℓmax > s1and s1s2 = φ(P ), we have (c + s2)ℓmax > φ(P ) for any valid 
hoi
e of stage 2 parameters, sothat on
e a set of a

eptable parameters has been found, its 
ost 
an serve as an upper boundon φ(P ) when looking for better parameters. Sin
e the entries in the table of P values are inorder of in
reasing P and φ(P ), the bound on φ(P ) implies a bound on P .For a given 
andidate P value within these bounds and for possible transform lengths ℓmaxfor the multi-point evaluation, 
hoose s1 and s2 so that s1s2 = φ(P ), s1 is even, s1 < ℓmax, s2is minimal and under these 
onditions, |ℓmax/2− s1| is minimal. For positive integers n < 1010,the number of divisors of n does not ex
eed 4032 (attained for the highly 
omposite number
97772875200) so that even exhaustive sear
h of s1 values from the prime fa
torization of φ(P ) issu�
iently fast. If the multipli
ation routine for re
ipro
al Laurent polynomials (su
h as the onein Se
tion 2.7.2) rounds up transform lengths to a power of 2, it is preferable to 
hoose s1 slightlybelow rather than slightly above a power of 2, so that having to round up transforms lengthsby almost a fa
tor of 2 is avoided when building f as des
ribed in Se
tion 2.8. The resulting
hoi
e of P , ℓmax, s1, and s2 is a

eptable if the resulting m1 and m2 values allow 
overing thedesired stage 2 interval ]B1, B2]. Ea
h su
h 
hoi
e has an asso
iated 
ost, and the a

eptable
hoi
e with the smallest 
ost wins. If several have the same 
ost, we use the one with the largeste�e
tive B2.2.7 Cy
li
 Convolutions and Polynomial Multipli
ation with theNTTMost of the CPU time in this algorithm is spent performing multipli
ation of polynomials with
oe�
ients modulo N , the number to be fa
tored. The Karatsuba (see Se
tion 1.1.1) and Toom-Cook (see Se
tion 1.1.2) algorithms 
ould work dire
tly over R = Z/NZ, so long as the interpo-lation phase does not involve division by a zero divisor of the ring, and sin
e N is assumed notto have very small prime fa
tors, this is not a problem in pra
ti
e. However, the FFT stage 2gains its speed by fast arithmeti
 on polynomials of very large degree, in whi
h 
ase FFT basedmultipli
ation algorithms (see Se
tion 1.1.3) far ex
eed Karatsuba's or Toom-Cook's methods.Unfortunately, the FFT for a large transform length ℓ 
annot be used dire
tly when R =
Z/NZ, sin
e we don't know a suitable ℓ-th primitive root of unity. Instead, we need to map
oe�
ients of the polynomials to be multiplied to Z �rst, then to a ring that supports an FFTof the desired length, ba
k to Z and to Z/NZ again by redu
ing modulo N .The S
hönhage-Strassen algorithm des
ribed in Chapter 1 uses the ring R = Z/(2n + 1)Zwith ℓ | 2n (or ℓ | 4n if the √2 tri
k is used) and the ℓ-th root of unity 22n/ℓ ∈ R. It 
ouldbe used for our purpose, but the 
ondition ℓ | 2n often makes it impra
ti
able: most frequentlywe want to fa
tor input number of not too great size, say less than a few thousands bits, butuse polynomials of degrees in the millions. For the S
hönhage-Strassen algorithm, in that 
asewe'd have to 
hoose n in the millions also, too large by about three orders of magnitude. Thiswould make the multipli
ation una

eptably slow and memory use prohibitive. The problem
an be alleviated by the Krone
ker-S
hönhage segmentation tri
k, whi
h redu
es polynomialmultipli
ation to integer multipli
ation, see [99℄ or [103, p. 534℄ and Se
tion 2.12. Howeverfor larger numbers N and polynomials of smaller degree, say in the ten-thousands, using SSAdire
tly is a viable option.A very attra
tive approa
h to the problem of multiplying polynomials with relatively small
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oe�
ients and very large degree is the use of a number theoreti
 transform (NTT), des
ribedin the following.Nussbaumer [77℄ gives other 
onvolution algorithms.2.7.1 Convolutions over Z/NZ with the NTTMontgomery and Silverman [74, Se
tion 4℄ suggest a number theoreti
 transform (NTT). Theytreat the input polynomial 
oe�
ients as integers in [0, N−1] and multiply the polynomials over
Z. The produ
t polynomial, redu
ed modulo Xℓ − 1, has 
oe�
ients in [0, ℓ(N − 1)2]. Sele
tdistin
t NTT primes pj that ea
h �t into one ma
hine word su
h that∏j pj > ℓ(N−1)2. Requireea
h pj ≡ 1 (mod ℓ), so a primitive ℓ-th root of unity exists. Do the 
onvolution modulo ea
h
pj and use the Chinese Remainder Theorem (CRT) to determine the produ
t over Z modulo
Xℓ − 1. Redu
e this produ
t modulo N . Montgomery's dissertation [67, Chapter 8℄ des
ribesthese 
omputations in detail.The 
onvolution 
odes need interfa
es to (1) zero a Dis
rete Fourier Transform (DFT) bu�er,(2) insert an entry modulo N in a DFT bu�er, redu
ing it modulo the NTT primes, (3) performa forward, in-pla
e, DFT on a bu�er, (4) multiply two DFT bu�ers point-wise, overwriting aninput, and perform an in-pla
e inverse DFT on the produ
t, and (5) extra
t a produ
t 
oe�
ientmodulo N via a CRT 
omputation and redu
tion modulo N .2.7.2 Re
ipro
al Laurent Polynomials and Weighted NTTDe�ne a re
ipro
al Laurent polynomial (RLP) in x to be an expansion

a0 +
d
∑

j=1

aj

(

xj + x−j
)

= a0 +
d
∑

j=1

ajVj

(

x + x−1
)for s
alars aj in a ring. It is moni
 if ad = 1. It is said to have degree 2d if ad 6= 0. The degreeis always even. A moni
 RLP of degree 2d �ts in d 
oe�
ients (ex
luding the leading 1). Whilemanipulating RLPs of degree at most 2d, the standard basis is {1} ∪ {xj + x−j : 1 ≤ j ≤ d} =

{1} ∪ {Vj

(

x + x−1
)

: 1 ≤ j ≤ d}.Let Q(x) = q0 +
∑dq

j=1 qj

(

xj + x−j
) be an RLP of degree at most 2dq and likewise R(x) anRLP of degree at most 2dr. To obtain the produ
t RLP S(x) = Q(x)R(x) = s0+

∑ds

j=1 sj

(

xj + x−j
)of degree at most 2ds = 2(dq + dr), 
hoose a 
onvolution length ℓ > ds and perform a weighted
onvolution produ
t (as in Se
tion 1.1.3) by 
omputing S̃(wx) = Q(wx)R(wx) mod

(

xℓ − 1
) fora suitable weight w 6= 0.Suppose S̃(x) =

∑ℓ−1
j=0 s̃xj and S̃(wx) = S(wx) mod

(

xℓ − 1
). We have

S̃(wx) = s0 +

ds
∑

j=1

(

wjsjx
j + w−jsjx

ℓ−j
)

=

ds
∑

j=0

wjsjx
j +

ℓ−1
∑

j=ℓ−ds

wj−ℓsℓ−jx
j

=

ℓ−ds−1
∑

j=0

wjsjx
j +

ds
∑

j=ℓ−ds

wj
(

sj + w−ℓsℓ−j

)

xj +

ℓ−1
∑

j=ds+1

wj−ℓsℓ−jx
j
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ation with the NTT 37and so s̃j = sj for 0 ≤ j < ℓ − ds, and s̃j = sj + w−ℓsl−j for ℓ− ds ≤ j ≤ ds. From the latter,we 
an solve for sj and sl−j by the linear system
(

1 w−ℓ

w−ℓ 1

)(

sj

sℓ−j

)

=

(

s̃j

s̃ℓ−j

)

.When the matrix is invertible, i.e., wℓ 6= ±1, there is a unique solution whi
h 
an be 
omputedby
sj =

w−ls̃j − s̃ℓ−j

w−2ℓ − 1

sl−j = s̃ℓ−j − w−ℓsj.This leads to Algorithm 4. It �ows like the interfa
e in Se
tion 2.7.1.Our implementation 
hooses the NTT primes pj ≡ 1 (mod 3ℓ). We require 3 ∤ ℓ. Our
w is a primitive 
ube root of unity. Multipli
ations by 1 are omitted. When 3 ∤ i, we use
wi

jqi + w−i
j qi ≡ −qi (mod pj) to save a multiply.Substituting x = eiθ where i2 = −1 gives

Q(eiθ)R(eiθ) =



q0 + 2

dq
∑

j=1

qj cos(jθ)







r0 + 2
dr
∑

j=1

rj cos(jθ)



 .These 
osine series 
an be multiplied using dis
rete 
osine transforms, in approximately the sameauxiliary spa
e needed by the weighted 
onvolutions. We did not implement that approa
h.2.7.3 Multiplying General Polynomials by RLPsIn Se
tion 2.9 we will 
onstru
t an RLP h(x) whi
h will later be multiplied by various g(x).The length-ℓ DFT of h(x) evaluates h(ωi) for 0 ≤ i < ℓ, where ω is an ℓ-th primitive root ofunity. However sin
e h(x) is re
ipro
al, h(ωi) = h(ωℓ−i) and the DFT has only ℓ/2 + 1 distin
t
oe�
ients. In signal pro
essing, the DFT of a signal extended symmetri
ally around the 
enterof ea
h endpoint is 
alled a Dis
rete Cosine Transform of type I. Using a DCT�I algorithm [6℄,we 
ould 
ompute the 
oe�
ients h(ωi) for 0 ≤ i ≤ ℓ/2 with a length ℓ/2 + 1 transform. Wehave not implemented this.Instead we 
ompute the full DFT of the RLP (using xℓ = 1 to avoid negative exponents). To
onserve memory, we store only the ℓ/2 + 1 possibly distin
t DFT output 
oe�
ients for lateruse.In the s
rambled output of a de
imation-in-frequen
y FFT of length ℓ = 2r, the possiblydistin
t DFT 
oe�
ients h(ωi) for 0 ≤ i ≤ ℓ/2 are stored at even indi
es and at index 1. Whenwe multiply h(x) and one g(x) via the FFT, ea
h h(ωi) for 0 < 2i < ℓ must be multiplied totwo 
oe�
ients of the FFT output of g(x), whi
h again will be in s
rambled order. Rather thanun-s
rambling the transform 
oe�
ients for the point-wise multipli
ation, the 
orre
t index pairsto use 
an be 
omputed dire
tly.For 0 < 2i < ℓ, the FFT 
oe�
ients of h(x) stored at index 2i and index mi − 2i, where
mi = 2⌊log2(i)⌋+3 − 2⌊log2(i)⌋+1 − 1, 
orrespond to h(ωbitrevr(2i)) and h(ωℓ−bitrevr(2i)) and thus areequal. For the point-wise produ
t with the s
rambled FFT output of one g(x), we 
an multiplythe FFT 
oe�
ients of g(x) stored at index 2i and mi− 2i by the FFT 
oe�
ient of h that wasstored at index 2i.
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Pro
edure MUL_RLP (s0...dq+dr

, dq, q0...dq
, dr, r0...dr

)Input: RLP Q(x) = q0 +
∑dq

j=1 qj

(

xj + x−j
) of degree at most 2dqRLP R(x) = r0 +

∑dr

j=1 rj

(

xj + x−j
) of degree at most 2drConvolution length ℓ > dq + drCRT primes p1, . . . , pkOutput: RLP S(x) = s0 +

∑ds

j=1 sj

(

xj + x−j
)

= Q(x)R(x) of degree at most
2ds = 2dq + 2dr(Output may overlap input)Data: NTT arrays M and M ′, ea
h with ℓ elements per pj for auxiliary storage(A squaring uses only M)Zero M and M ′for 1 ≤ j ≤ k doChoose wj with wℓ

j 6≡ 0, ±1 (mod pj) ;
Mj,0 := q0 mod pj;
M ′

j,0 := r0 mod pj;for 1 ≤ i ≤ dq (in any order) dofor 1 ≤ j ≤ k do /* Store Q(wx) mod pj in Mj */
Mj,i := wi

jqi mod pj;
Mj,ℓ−i := w−i

j qi mod pj ;if Q(x) 6= R(x) thenfor 1 ≤ i ≤ dr (in any order) dofor 1 ≤ j ≤ k do /* Store R(wx) mod pj in M ′
j */

M ′
j,i := wi

jri mod pj;
M ′

j,ℓ−i := w−i
j ri mod pj ;for 1 ≤ j ≤ k doNTT_DIF(Mj,0...ℓ−1, ℓ, pj); /* Forward transform of Q(wx) mod pj */if Q(x) 6= R(x) thenNTT_DIF(M ′

j,0...ℓ−1, ℓ, pj); /* Forward transform of R(wx) mod pj */
Mj,0...ℓ−1 := Mj,0...ℓ−1 ·M ′

j,0...ℓ−1 mod pj; /* Point-wise produ
t */else
Mj,0...ℓ−1 := (Mj,0...ℓ−1)

2 mod pj; /* Point-wise squaring */INTT_DIT(Mj,0...ℓ−1, ℓ, pj); /* Inverse transform */for 1 ≤ i ≤ ℓ− ds − 1 do
Mj,i := w−i

j Mj,i (mod pj); /* Un-weighting */for ℓ− ds ≤ i ≤ ⌊ℓ/2⌋ do
t := (w−lMj −Mℓ−j)/(w

−2ℓ − 1);
Ml−j := Mℓ−j − w−ℓt;
Mj := t;for 0 ≤ i ≤ ds do

si := CRT(M1...j,i, p1...k) modNAlgorithm 4: NTT-Based Multipli
ation Algorithm for re
ipro
al Laurent polynomials.



2.8. Computing Coe�
ients of f 392.7.4 Multiplying RLPs without NTTIf no suitable transform-based multipli
ation algorithm is available for the weighted 
onvolutionof Se
tion 2.7.2, RLPs 
an be multiplied with a regular polynomial multipli
ation routine, al-though less e�
iently. Given an RLP f(x) = f0 +
∑df

i=1 fi(x
i + x−i) of degree at most 2df instandard basis, we 
an write a polynomial f̃(x) = f0/2 +

∑df

i=1 fix
i of degree at most df so that

f(x) = f̃(x) + f̃(1/x). Likewise for g(x) and g̃(x).Let rev(f̃(x)
)

= xdf f̃(1/x) denote the polynomial with reversed sequen
e of 
oe�
ients. Wehave rev(rev(f̃(x)
))

= f̃(x) and rev(f̃(x)g̃(x)
)

= rev(f̃(x)
)rev(g̃(x)

). Let ⌊f(x)⌋ denote thepolynomial whose 
oe�
ients at non-negative exponents of x are equal to those in f(x), andwhose 
oe�
ients at negative exponents of x are 0. We have ⌊f(x) + g(x)⌋ = ⌊f(x)⌋+ ⌊g(x)⌋.Now we 
an 
ompute the produ
t
f(x)g(x)

= (f̃(x) + f̃(1/x))(g̃(x) + g̃(1/x))

= f̃(x)g̃(x) + f̃(x)g̃(1/x) + f̃(1/x)g̃(x) + f̃(1/x)g̃(1/x)

= f̃(x)g̃(x) + x−dg f̃(x)rev(g̃(x)
)

+ x−df rev(f̃(x)rev(g̃(x))
)

+ f̃(1/x)g̃(1/x),but we want to store only the 
oe�
ients at non-negative exponents in the produ
t, so
⌊f(x)g(x)⌋ = f̃(x)g̃(x) + ⌊x−dg f̃(x)rev(g̃(x)

)

⌋+ ⌊x−df rev(f̃(x)rev(g̃(x))
)

⌋+ f̃0g̃0produ
es a polynomial whose 
oe�
ients in monomial basis are equal to those of the RLP
f(x)g(x) in standard basis. This 
omputation uses two multipli
ations of polynomials of degreesat most df and dg, respe
tively, whereas the algorithm in Se
tion 2.7.2 has 
ost essentiallyequivalent to one su
h multipli
ation.2.8 Computing Coe�
ients of fAssume the P+1 algorithm. The moni
 RLP f(X) in (2.5), with roots α2k

1 where k ∈ S1, 
anbe 
onstru
ted using the de
omposition of S1. The 
oe�
ients of f will always be in the basering sin
e P1 ∈ Z/NZ.For the P�1 algorithm, set α1 = b1 and P1 = b1 + b−1
1 . The rest of the 
onstru
tion of f forP�1 is identi
al to that for P+1.Assume S1 and S2 are built as in Se
tion 2.6, say S1 = T1 + T2 + · · ·+ Tm where ea
h Tj hasan arithmeti
 progression of prime length, 
entered at zero. At least one of these has 
ardinality

2 sin
e s1 = |S1| =
∏

j |Tj | is even. Renumber the Tj so |T1| = 2 and |T2| ≥ |T3| ≥ · · · ≥ |Tm|.If T1 = {−k1, k1}, then initialize F1(X) = X + X−1 − α2k1
1 − α−2k1

1 = X + X−1 − V2k1(P1),a moni
 RLP in X of degree 2.Suppose 1 ≤ j < m. Given the 
oe�
ients of the moni
 RLP Fj(X) with roots α2k1
1 for

k1 ∈ T1 + · · ·+ Tj , we want to 
onstru
t
Fj+1(X) =

∏

k2∈Tj+1

Fj(α
2k2
1 X). (2.11)The set Tj+1 is assumed to be an arithmeti
 progression of prime length t = |Tj+1| 
enteredat zero with 
ommon di�eren
e k, say Tj+1 = {(−1 − t)k/2 + ik : 1 ≤ i ≤ t}. If t is even, k is
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toring Algorithmseven to ensure integer elements. On the right of (2.11), group pairs ±k2 when k2 6= 0. We needthe 
oe�
ients of
Fj+1(X) =

{

Fj(α
−k
1 X)Fj(α

k
1X), if t = 2

Fj(X)
∏(t−1)/2

i=1

(

Fj(α
2ki
1 X)Fj(α

−2ki
1 X)

)

, if t is odd. (2.12)Let d = deg(Fj), an even number. The moni
 input Fj has d/2 
oe�
ients in Z/NZ (plus theleading 1). The output Fj+1 will have td/2 = deg(Fj+1)/2 su
h 
oe�
ients.Produ
ts su
h as Fj(α
2ki
1 X)Fj(α

−2ki
1 X) 
an be formed by the method in Se
tion 2.8.1, using

d 
oe�
ients to store ea
h produ
t. The interfa
e 
an pass α2ki
1 + α−2ki

1 = V2ki(P1) ∈ Z/NZ asa parameter instead of α±2ki
1 .For odd t, the algorithm in Se
tion 2.8.1 forms (t − 1)/2 su
h moni
 produ
ts ea
h with doutput 
oe�
ients. We still need to multiply by the input Fj . Overall we store (d/2) + t−1

2 d =
td/2 
oe�
ients. Later these (t + 1)/2 moni
 RLPs 
an be multiplied in pairs, with produ
tsoverwriting the inputs, until Fj+1 (with td/2 
oe�
ients plus the leading 1) is ready.All polynomial produ
ts needed for (2.11), in
luding those in Se
tion 2.8.1, have outputdegree at most t deg(Fj) = deg(Fj+1), whi
h divides the �nal deg(Fm) = s1. The polynomial
oe�
ients are saved in the (MZNZ) bu�er of 2.10. The (MDFT) bu�er allows 
onvolutionlength ℓmax/2, whi
h is adequate when an RLP produ
t has degree up to 2(ℓmax/2)− 1 ≥ s1.A smaller length might be better for a parti
ular produ
t.2.8.1 S
aling by a Power and Its InverseLet F (X) be a moni
 RLP of even degree d, say F (X) = c0 +

∑d/2
i=1 ci(X

i + X−i), where ea
h
ci ∈ Z/NZ and cd/2 = 1. Given Q ∈ Z/NZ, where Q = γ + γ−1 for some unknown γ, wewant the d 
oe�
ients (ex
luding the leading 1) of F (γX) F (γ−1X) mod N in pla
e of the d/2su
h 
oe�
ients of F . We are allowed a few s
alar temporaries and any storage internal to thepolynomial multiplier.Denote Y = X + X−1. Rewrite, while pretending to know γ,

F (γX) = c0 +

d/2
∑

i=1

ci(γ
iXi + γ−iX−i)

= c0 +

d/2
∑

i=1

ci

2

(

(γi + γ−i)(Xi + X−i) + (γi − γ−i)(Xi −X−i)

)

= c0 +

d/2
∑

i=1

ci

2

(

Vi(Q)Vi(Y ) + (γ − γ−1)Ui(Q)(X −X−1)Ui(Y )

)

.Repla
e γ by γ−1 and multiply to get
F (γX)F (γ−1X) = G2 − (γ − γ−1)2(X −X−1)2 H2

= G2 − (Q2 − 4)(X −X−1)2 H2, (2.13)where
G = c0 +

d/2
∑

i=1

ci
Vi(Q)

2
Vi(Y )

H =

d/2
∑

i=1

ci
Ui(Q)

2
Ui(Y ).
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essarily moni
) RLP of degree at most d in the standard basis {1} ∪
{Vj(Y ) : 1 ≤ j ≤ d/2}, with 
oe�
ients in Z/NZ. This H is another RLP, of degree at most
d − 2, but using the basis {Ui(Y ) : 1 ≤ i ≤ d/2}. Starting with the 
oe�
ient of Ud/2(Y ), we
an repeatedly use Uj+1(Y ) = Vj(Y )U1(Y ) + Uj−1(Y ) = Vj(Y ) + Uj−1(Y ) for j > 0, along with
U1(Y ) = 1 and U0(Y ) = 0, to 
onvert H to standard basis. This 
onversion 
osts O(d) additionsin Z/NZ.Use the identities Vi+1(Q) = QVi(Q)−Vi−1(Q) and Ui+1(Q) = QUi(Q)−Ui−1(Q) from (2.3)and (2.2) to evaluate Vi(Q)/2 and Ui(Q)/2 for 
onse
utive i when 
omputing the d/2 + 1 
oe�-
ients of G and the d/2 
oe�
ients of H. If a weighted NTT-based algorithm su
h as Algorithm 4is used for multiplying RLPs and a memory model as in Se
tion 2.10, the algorithm 
an writethe NTT images of the standard-basis 
oe�
ients of G and H to di�erent parts of (MDFT) andre
over the 
oe�
ients of G2 and H2 via the CRT and 
ombine them dire
tly into the 
oe�-
ients of F (γx)F (γ−1x) to avoid allo
ating temporary storage for G and H. Algorithm 5 showsa simpli�ed implementation with temporary storage.2.9 Multipoint Polynomial EvaluationWe have 
onstru
ted f = Fm in (2.5). The moni
 RLP f(X) has degree s1, say f(X) =

f0 +
∑s1/2

j=1 fj · (Xj + X−j) =
∑s1/2

j=−s1/2 fjX
j where fj = f−j ∈ Z/NZ.Assuming the P�1 method (otherwise see Se
tion 2.9.1), 
ompute r = bP

1 ∈ Z/NZ. Set
ℓ = ℓmax and M = ℓ− 1− s1/2.Equation (2.6) needs gcd(f(X), N) where X = b

2k2+(2m+1)P
1 , for several 
onse
utive m, say

m1 ≤ m < m2. By setting x0 = b
2k2+(2m1+1)P
1 , the arguments to f be
ome x0b

2mP
1 = x0r

2m for
0 ≤ m < m2−m1. The points of evaluation form a geometri
 progression with ratio r2. We 
anevaluate these for 0 ≤ m < ℓ − 1 − s1 with one 
onvolution of length ℓ and O(ℓ) setup 
ost [1,exer
ise 8.27℄.To be pre
ise, set hj = r−j2

fj for −s1/2 ≤ j ≤ s1/2. Then hj = h−j . Set h(X) =
∑s1/2

j=−s1/2 hjX
j , an RLP. The 
onstru
tion of h does not referen
e x0 � we reuse h as x0 varies.Let gi = xM−i
0 r(M−i)2 for 0 ≤ i ≤ ℓ− 1 and g(X) =

∑ℓ−1
i=0 giX

i.All nonzero 
oe�
ients in g(X)h(X) have exponents from 0−s1/2 to (ℓ−1)+s1/2. Suppose
0 ≤ m ≤ ℓ − 1 − s1. Then M − m − ℓ = −1 − s1/2 − m < −s1/2 whereas M − m + ℓ =
(ℓ − 1 + s1/2) + (ℓ − s1 −m) > ℓ − 1 + s1/2. The 
oe�
ient of XM−m in g(X)h(X), redu
edmodulo Xℓ − 1, is

∑

0≤i≤ℓ−1
−s1/2≤j≤s1/2

i+j≡M−m (mod ℓ)

gihj =
∑

0≤i≤ℓ−1
−s1/2≤j≤s1/2

i+j=M−m

gihj =

s1/2
∑

j=−s1/2

gM−m−jhj

=

s1/2
∑

j=−s1/2

xm+j
0 r(m+j)2r−j2

fj =

s1/2
∑

j=−s1/2

xm
0 rm2 (

x0r
2m
)j

fj = xm
0 rm2

f(x0r
2m).Sin
e we want only gcd(f(x0 r2m), N), the xm

0 rm2 fa
tors are harmless.We 
an 
ompute su

essive gℓ−i with two ring multipli
ations ea
h sin
e the ratios gℓ−1−i/gℓ−i =
x0 r2i−s1−1 form a geometri
 progression.
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toring AlgorithmsInput: RLP F (x) = f0 +
∑d/2

i=1 fi(x
i + x−i), fi ∈ Z/NZ

Q ∈ Z/NZOutput: Coe�
ients of F (γx)F (γ−1x) in standard basis {1} ∪ {xi + x−i : 1 ≤ i ≤ d},where γ + γ−1 = Q, overwriting f0...dData: Storage for v, u, gi, hi ∈ Z/NZ, for 0 ≤ i < d

v := 1; /* V0(Q)/2 = 1 */
u := Q/2; /* V1(Q)/2 = Q/2 */
g0 = f0;for i := 1 to d/2 do

gi = fiu;
(u, v) := (uQ− v, u); /* u := Vi+1(Q)/2, v := Vi(Q)/2 *//* Now G = g0 +

∑d/2
i=1 giVi

(

x + x−1
) */MUL_RLP (g(0,...,d), g(0,...,d/2), d/2, g(0,...,d/2), d/2); /* Use Algorithm 4 *//* Now G2 = g0 +

∑d
i=1 giVi

(

x + x−1
) */

v := 0; /* v := U0(Q)/2 = 0 */
u := 1/2; /* u := U1(Q)/2 = 1/2 */for i := 1 to d/2 do /* store hi shifted by 1 to simplify 
onversion to Vibasis */

hi−1 := fiu;
(u, v) := (uQ− v, u); /* u := Ui+1(Q)/2, v := Ui(Q)/2 *//* Now H =

∑d/2
i=1 hi−1Ui

(

x + x−1
) */for i := d/2 downto 3 do /* 
onvert hi from Ui to Vi basis */

hi−3 := hi−3 + hi−1;/* Now H = h0 +
∑d/2−1

i=1 hiVi

(

x + x−1
), i.e., in standard basis */MUL_RLP (h(0,...,d−2), h(0,...,d/2−1), d/2 − 1, h(0,...,d/2−1), d/2 − 1); /* Use Algorithm 4 *//* Now H2 = h0 +

∑d−2
i=1 hiVi

(

x + x−1
) */for i = 0 to d− 2 do

hi := hi

(

Q2 − 4
);/* Now (Q2 − 4

)

H2 = h0 +
∑d−2

i=1 hiVi

(

x + x−1
) *//* Compute G2 +

(

x− x−1
)2 (

Q2 − 4
)

H2 */if d = 2 then
g0 := g0 + 2h0;
g2 := g2 − h0;else
g0 := g0 + 2(h0 − h2);
g1 := g1 + h1;if d > 4 then

g1 := g1 − h3;for i = 2 to d− 4 do
gi := gi − hi−2 + 2hi − hi+2;for d− 3 to d− 2 do
gi := gi − hi−2 + 2hi;

gd−1 := gd−1 − hd−3;
gd := gd − hd−2;for i := 0 to d do
fi := gi; /* Store result in f */Algorithm 5: Algorithm for s
aling a re
ipro
al Laurent polynomial by a power and itsinverse.



2.9. Multipoint Polynomial Evaluation 432.9.1 Adaptation for P+1 AlgorithmIf we repla
e b1 with α1, then r be
omes αP
1 , whi
h satis�es r+r−1 = VP (P1). The above algebraevaluates f at powers of α1. However α1, r, hj , x0, and gi lie in an extension ring.Arithmeti
 in the extension ring 
an use a basis {1, √∆} where ∆ = P 2

1 − 4. The element
α1 maps to (P1 +

√
∆)/2. A produ
t (c0 + c1

√
∆)(d0 + d1

√
∆) where c0, c1, d0, d1 ∈ Z/NZ
an be done using four base-ring multipli
ations: c0d0, c1d1, (c0 + c1)(d0 + d1), c1d1∆, plus �vebase-ring additions.We de�ne linear transformations E1, E2 on (Z/NZ)[

√
∆] so that E1(c0 + c1

√
∆) = c0 and

E2(c0 + c1

√
∆) = c1 for all c0, c1 ∈ Z/NZ. Extend E1 and E2 to polynomials by applying themto ea
h 
oe�
ient.Some multipli
ation involves powers of α1 and r. These have norm 1, whi
h may allowsimpli�
ations. For example,

(c0 + c1

√
∆)2 = 2c2

0 − 1 + 2c0c1

√
∆needs only two multipli
ations and three additions if c2

0 − c2
1∆ = 1.To 
ompute rn2 for su

essive n, we use re
urren
es. We observe

rn2
= r(n−1)2+2 · V2n−3(r + r−1)− r(n−2)2+2,

rn2+2 = r(n−1)2+2 · V2n−1(r + r−1)− r(n−2)2 .After initializing the variables r1[i] := ri2 , r2[i] := ri2+2, v[i] := V2i+1(r + r−1) for two 
onse
u-tive i, we 
an 
ompute r1[i] = ri2 for larger i in sequen
e by
r1[i] := r2[i− 1] · v[i− 2]− r2[i− 2], (2.14)
r2[i] := r2[i− 1] · v[i− 1]− r1[i− 2],

v[i] := v[i− 1] · V2(r + 1/r)− v[i− 2] .Sin
e we won't use v[i − 2] and r2[i − 2] again, we 
an overwrite them with v[i] and r2[i]. Forthe 
omputation of r−n2 where r has norm 1, we 
an use r−1 as input, by taking the 
onjugate.All v[i] are in the base ring but r1[i] and r2[i] are in the extension ring. Ea
h appli
ationof (2.14) takes �ve base-ring multipli
ations (
ompared to two multipli
ations per rn2 in the P�1algorithm).We 
an 
ompute su

essive gi = xM−i
0 r(M−i)2 similarly. One solution to (2.14) is r1[i] = gi,

r2[i] = r2gi, v[i] = x0r
2M−2i−1 + x−1

0 r1+2i−2M . Again ea
h v[i] is in the base ring, so (2.14)needs only �ve base-ring multipli
ations.If we try to follow this approa
h for the multipoint evaluation, we need twi
e as mu
h spa
efor an element of (Z/NZ)[
√

∆] as one of Z/NZ. We also need a 
onvolution routine for theextension ring.If p divides the 
oe�
ient of XM−m in g(X)h(X), then p divides both 
oordinates thereof.The 
oe�
ients of g(X)h(X) o

asionally lie in the base ring, making E2(g(X)h(X)) a poor
hoi
e for the gcd with N . Instead we 
ompute
E1(g(X)h(X)) = E1(g(X))E1(h(X)) + ∆E2(g(X))E2(h(X)) . (2.15)The RLPs E1(h(X)) and ∆E2(h(X)) 
an be 
omputed on
e and for ea
h of the ℓmax/2 +

1 distin
t 
oe�
ients of its length ℓmax DFT saved in (MHDFT). To 
ompute ∆E2(h(X)),multiply E2(r1[i]) and E2(r2[i]) by ∆ after initializing for two 
onse
utive i. Then apply (2.14).
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toring AlgorithmsLater, as ea
h gi is 
omputed we insert the NTT image of E2(gi) into (MDFT) while saving
E1(gi) in (MZNZ) for later use. After forming E1(g(X))E1(h(X)), retrieve and save 
oe�
ientsof XM−m for 0 ≤ m ≤ ℓ− 1− s1. Store these in (MZNZ) while moving the entire saved E1(gi)into the (now available) (MDFT) bu�er. Form the E2(g(X))E2(∆h(X)) produ
t and the sumin (2.15).2.10 Memory Allo
ation ModelWe aim to �t our major data into the following:(MZNZ) An array with s1/2 elements of Z/NZ, for 
onvolution inputs and outputs. This is usedduring polynomial 
onstru
tion.This is not needed during P�1 evaluation. During P+1 evaluation, it grows to ℓmaxelements of Z/NZ (if we 
ompute both 
oordinate of ea
h gi together, saving one of them),or ℓmax − s1 elements (if we 
ompute the 
oordinates individually).(MDFT) An NTT array holding ℓmax values modulo pj per prime pj, for use during DWTs.Se
tion 2.8.1 does two overlapping squarings, whereas Se
tion 2.8 multiplies two arbitraryRLPs. Ea
h produ
t degree is at most deg(f) = s1. Algorithm 4 needs ℓ ≥ s1/2 and mightuse 
onvolution length ℓ = ℓmax/2, assuming ℓmax is even. Two arrays of this length �tin MDFT.After f has been 
onstru
ted, MDFT is used for NTT transforms with length up to ℓmax.(MHDFT) Se
tion 2.9 s
ales the 
oe�
ients of f by powers of r to build h. Then it builds and storesa length-ℓ DFT of h, where ℓ = ℓmax. This transform output normally needs ℓ elementsper pj for P�1 and 2ℓ elements per pj for P+1. The symmetry of h lets us 
ut these needsalmost in half, to ℓ/2 + 1 elements for P�1 and ℓ + 2 elements for P+1.During the 
onstru
tion of Fj+1 from Fj, if we need to multiply pairs of moni
 RLPs o

upyingadja
ent lo
ations within (MZNZ) (without the leading 1's), we use (MDFT) and algorithm 4.The outputs overwrite the inputs within (MZNZ).During polynomial evaluation for P�1, we need only (MHDFT) and (MDFT). Send theNTT image of ea
h gi 
oe�
ient to (MDFT) as gi is 
omputed. When (MDFT) �lls (with
ℓmax entries), do a length-ℓmax forward DFT on (MDFT), pointwise multiply by the savedDFT output from h in (MHDFT), and do an inverse DFT in (MDFT). Retrieve ea
h neededpolynomial 
oe�
ient, 
ompute their produ
t, and take a g
d with N .2.10.1 Potentially Large B2In 2008/2009, a typi
al PC memory is 4 gigabytes. The median size of 
omposite 
ofa
tors N inthe Cunningham proje
t http://homes.
erias.purdue.edu/~ssw/
un/index.html is about230 de
imal digits, whi
h �ts in twelve 64-bit words (
alled quadwords). Table 2.1 estimates thememory requirements during Stage 2, when fa
toring a 230-digit number, for both polynomial
onstru
tion and polynomial evaluation phases, assuming 
onvolutions use the NTT approa
h inSe
tion 2.7.1. The produ
t of our NTT prime moduli must be at least ℓmax(N−1)2. If N2ℓmaxis below 0.99 · (263)25 ≈ 10474, then it will su�
e to have 25 NTT primes, ea
h 63 or 64 bits.The P�1 polynomial 
onstru
tion phase uses an estimated 40.5ℓmax quadwords, vs. 37.5ℓmaxquadwords during polynomial evaluation. We 
an redu
e the overall maximum to 37.5ℓmax by



2.11. Opportunities for Parallelization 45Table 2.1: Estimated memory usage (quadwords) while fa
toring 230-digit number.Array Constru
t f . Build h. Evaluate f .name Both P±1(MZNZ) 12(s1/2) 12(s1/2) 0 (P�1)
12ℓmax (P+1)(MDFT) 25ℓmax 25ℓmax 25ℓmax(MHDFT) 0 25(ℓmax/2 + 1) (P�1) 25(ℓmax/2 + 1) (P�1)

25(ℓmax + 2) (P+1) 25(ℓmax + 2) (P+1)Totals, if 28ℓmax + O(1) 40.5ℓmax + O(1) (P�1) 37.5ℓmax + O(1) (P�1)
s1 = ℓmax/2 53ℓmax + O(1) (P+1) 62ℓmax + O(1) (P+1)taking the (full) DFT transform of h in (MDFT), and releasing the (MZNZ) storage beforeallo
ating (MHDFT).Four gigabytes is 537 million quadwords. A possible value is ℓmax = 223, whi
h needs 315million quadwords. When transform length 3 · 2k is supported, we 
ould use ℓmax = 3 · 222,whi
h needs 472 million quadwords.We might use P = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111546435, for whi
h φ(P ) = 36495360 =

213 · 34 · 5 · 11. We 
hoose s2 | φ(P ) so that s2 is 
lose to φ(P )/(ℓmax/2) ≈ 8.7, i.e., s2 = 9 and
s1 = 4055040, giving s1/ℓmax ≈ 0.48.We 
an do 9 
onvolutions, one for ea
h k2 ∈ S2. We will be able to �nd p | N if bq

1 ≡ 1
(mod p) where q satis�es (2.7) with m < ℓmax − s1 = 4333568. As des
ribed in Se
tion 2.6, thee�e
tive value of B2 will be about 9.66 · 1014.2.11 Opportunities for ParallelizationModern PC's are multi-
ore, typi
ally with 2�4 CPUs (
ores) and a shared memory. Whenrunning on su
h systems, it is desirable to utilize multiple 
ores.While building h(X) and g(X) in Se
tion 2.9, ea
h 
ore 
an pro
ess a 
ontiguous blo
k ofsubs
ripts. Use the expli
it formulas to 
ompute r−j2 or gi for the �rst two elements of a blo
k,and the re
urren
es elsewhere.If 
onvolutions use NTT's and the number of pro
essors divides the number of primes, thenallo
ate the primes evenly a
ross the pro
essors. The (MDFT) and (MHDFT) bu�ers in Se
-tion 2.10 
an have separate subbu�ers for ea
h prime. On NUMA ar
hite
tures, the memoryfor ea
h subbu�er should be allo
ated lo
ally to the pro
essor that will pro
ess it. A

esses toremote memory o

ur only when 
onverting the hj and gi to residues modulo small primes, andwhen re
onstru
ting the 
oe�
ients of g(x)h(x) with the CRT.2.12 Our ImplementationOur implementation is based on GMP-ECM, an implementation of P�1, P+1, and the Ellipti
Curve Method for integer fa
torization. It uses the GMP library [49℄ for arbitrary pre
isionarithmeti
. The 
ode for Stage 1 of P�1 and P+1 is un
hanged; the 
ode for the new Stage 2has been written from s
rat
h and has repla
ed the previous implementation [103℄ whi
h usedprodu
t trees of 
ost O

(

n(log n)2
) modular multipli
ations for building polynomials of degree n



46 Chapter 2. An Improved Stage 2 to P±1 Fa
toring Algorithmsand a variant of Montgomery's POLYEVAL [67℄ algorithm for multipoint evaluation whi
h has
ost O
(

n(log n)2
) modular multipli
ations and O(n log n) memory. The pra
ti
al limit for B2was between 1014 and 1015.GMP-ECM in
ludes modular arithmeti
 routines, using for example Montgomery's REDC [64℄,or fast redu
tion modulo a number of the form 2n ± 1. It also in
ludes routines for polynomialarithmeti
, in parti
ular 
onvolution produ
ts. One algorithm available for this purpose is asmall prime NTT/CRT, using the �Expli
it CRT� [12℄ variant whi
h speeds redu
tion modulo

N after the CRT step but requires 2 or 3 additional small primes. Its 
urrent implementationallows only for power-of-two transform lengths. Another is Krone
ker-S
hönhage's segmentationmethod [103℄, whi
h is faster than the NTT if the modulus is large and the 
onvolution length is
omparatively small, and works for any 
onvolution length. Its main disadvantage is signi�
antlyhigher memory use, redu
ing the possible 
onvolution length.On a 2.4 GHz Opteron with 8 GB memory, P�1 Stage 2 on a 230-digit 
omposite 
ofa
torof 12254 + 1 with B2 = 1.2 · 1015, using the NTT with 27 primes for the 
onvolution, 
an use
P = 64579515, ℓmax = 224, s1 = 7434240, s2 = 3 and takes 1738 se
onds while P+1 Stage 2takes 3356 se
onds. Using multi-threading to use both CPUs on the same ma
hine, P�1 Stage 2with the same parameters takes 1753 se
onds CPU and 941 se
onds elapsed time while P+1 takes
3390 se
onds CPU and 2323 se
onds elapsed time. For 
omparison, the previous implementationof P�1 Stage 2 in GMP-ECM [103℄ needs to use a polynomial F (X) of degree 1013760 and 80blo
ks for B2 = 1015 and takes 34080 se
onds on one CPU of the same ma
hine.On a 2.6 GHz Opteron with 8 
ores and 32 GB of memory, a multi-threaded P�1 Stage 2 on thesame input number with the same parameters takes 1661 se
onds CPU and 269 se
onds elapsedtime, while P+1 takes 3409 se
onds CPU and 642 se
onds elapsed time. With B2 = 1.34 · 1016,
P = 198843645, ℓmax = 226, s1 = 33177600, s2 = 2, P�1 Stage 2 takes 5483 se
onds CPU and
922 elapsed time while P+1 takes 10089 se
onds CPU and 2192 se
onds elapsed time.2.13 Some ResultsWe ran at least one of P±1 on over 1500 
omposite 
ofa
tors, in
luding:(a) Ri
hard Brent's tables with bn ± 1 fa
torizations for 13 ≤ b ≤ 99;(b) Fibona

i and Lu
as numbers Fn and Ln with n < 2000, or n < 10000 and 
ofa
tor size

< 10300;(
) Cunningham 
ofa
tors of 12n ± 1 with n < 300;(d) Cunningham 
ofa
tors of 300 digits and larger.The B1 and B2 values varied, with B1 = 1011 and B2 = 1016 being typi
al. Table 2.2 has newlarge prime fa
tors p and the largest fa
tors of the 
orresponding p± 1.The 52-digit fa
tor of 47146 + 1 and the 60-digit fa
tor of L2366 ea
h set a new re
ord forthe P+1 fa
toring algorithm upon their dis
overy. The previous re
ord was a 48-digit fa
tor of
L1849, found by the author in Mar
h 2003.The 53-digit fa
tor of 24142 + 1 has q = 12750725834505143, a 17-digit prime. To ourknowledge, this is the largest prime in the group order asso
iated with any fa
tor found by theP�1, P+1 or Ellipti
 Curve methods of fa
torization.The largest q reported in Table 2 of [74℄ is q = 6496749983 (10 digits), for a 19-digit fa
tor
p of 2895 + 1. That table in
ludes a 34-digit fa
tor of the Fibona

i number F575, whi
h was theP�1 re
ord in 1989.



2.13. Some Results 47Input Fa
tor p found SizeMethod Largest fa
tors of p± 1

73109 − 1 76227040047863715568322367158695720006439518152299 
191P�1 12491 · 37987 · 156059 · 2244509 · 462832247372839 p50
68118 + 1 7506686348037740621097710183200476580505073749325089∗ 
151P�1 22807 · 480587 · 14334767 · 89294369 · 4649376803 · 5380282339 p52
24142 + 1 20489047427450579051989683686453370154126820104624537 
183P�1 4959947 · 7216081 · 16915319 · 17286223 · 12750725834505143 p53
47146 + 1 7986478866035822988220162978874631335274957495008401 
235P+1 20540953 · 56417663 · 1231471331 · 1632221953 · 843497917739 p52

L2366 725516237739635905037132916171116034279215026146021770250523 
290P+1 932677 · 62754121 · 19882583417 · 751245344783 · 483576618980159 p60
∗ = Found during Stage 1Table 2.2: Large P±1 fa
tors foundTable 2.3: Timing for 24142 + 1 fa
torizationOperation Minutes (per CPU) ParametersCompute f 22 P = 198843645Compute h 2 ℓmax = 226Compute DCT�I(h) 8 s1 = 33177600Compute all gi 6 (twi
e) s2 = 1Compute g × h 17 (twi
e) m1 = 246Test for non-trivial g
d 2 (twi
e)Total 32 + 2 · 25 = 82The largest P�1 fa
tor reported in [103, pp. 538�539℄ is a 58-digit fa
tor of 22098 +1 with q =

9909876848747 (13 digits). Site http://www.loria.fr/~zimmerma/re
ords/Pminus1.htmlhas other re
ords, in
luding a 66-digit fa
tor of 960119−1 found by P�1 for whi
h q = 2110402817(only ten digits).The p53 of 24142 + 1 in Table 2.2 used B1 = 1011 at Montgomery's site. Stage 1 took 44hours using a 2200 MHz AMD Athlon pro
essor in 32-bit mode.Stage 2 ran on an 8-
ore, 32 GB Grid5000 
luster at the author's site. Table 2.3 shows wherethe time went. The overall Stage 2 time is 8 · 82 = 656 minutes, about 25% of the Stage 1 CPUtime.
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Chapter 3The Number Field Sieve3.1 Introdu
tionThe Number Field Sieve (NFS) is the best 
urrently known general fa
torization algorithm. Asopposed to spe
ial fa
torization algorithms su
h as those des
ribed in Chapter 2 or ECM [62℄whose run time depend strongly on the size (or other properties) of the prime fa
tor p of N wehope to �nd and mu
h less on the size of N , the run time of general fa
torization algorithms doesnot depend on parti
ular properties of the prime fa
tors of an input number, but only on the sizeof N . This makes the NFS the method of 
hoi
e for fa
toring �hard� integers, i.e., integers that
ontain no prime fa
tors that are small or have other properties that would make them easy to�nd by spe
ial fa
toring algorithms.Fa
toring the modulus of the publi
 key is one possible atta
k on the RSA en
ryption sys-tem [85℄ and, for keys that are not weak keys and where the se
ret key 
annot be obtaineddire
tly, it is the most e�
ient known atta
k on RSA. A variant of NFS [48℄ 
an be used to solvethe dis
rete logarithm problem in F∗
p and so is one possible atta
k on the Di�e-Hellman (DH)key ex
hange algorithm [36℄. Therefore great e�ort has been made over the last twenty years toimprove NFS in order to estimate the minimum modulus size for RSA and DH keys that are outof range for NFS with available 
omputing resour
es. This size 
hanged 
onsiderably over theyears, see Se
tion 3.3 for an overview of NFS integer fa
toring re
ords.NFS is a su

essor of the Quadrati
 Sieve, whi
h was the best general fa
toring algorithmbefore the advent of NFS and has 
onje
tured asymptoti
 running time in LN [1/2, 1] for fa
toring

N , where the L-fun
tion is de�ned as
Lx[t, c] = e(c+o(1)) log(x)t log log(x)1−t

.The Number Field Sieve a
hieves 
onje
tured 
omplexity
LN [1/3, c],where the 
onstant c is (32/9)1/3 ≈ 1.526 or (64/9)1/3 ≈ 1.923, depending on the variant of NFS,see Se
tion 3.2.1.This 
hapter gives a brief overview of the Number Field Sieve: how it relates to its pre-de
essor, the Quadrati
 Sieve, and a short des
ription of the di�erent steps performed in anNFS fa
torization, to provide 
ontext for the following Chapters whi
h fo
us on the problem of
o-fa
torization in the sieving step of NFS. 49



50 Chapter 3. The Number Field Sieve3.1.1 The Quadrati
 SieveThe Quadrati
 sieve was developed by Carl Pomeran
e [84℄, based on the unpublished (butdes
ribed in [84℄) Linear Sieve by S
hröppel. Silverman [92℄ implements a Multiple PolynomialQuadrati
 Sieve variant based on ideas of Montgomery (whi
h are also mentioned in [84℄), andContini [27℄ redu
es the 
ost of polynomial 
hanges with the Self-Initialising Quadrati
 Sieve.We give a brief des
ription of the QS to introdu
e a few 
on
epts 
ommon to QS and NFS, anddon't 
onsider the mentioned improvements to QS here to keep the des
ription simple.The basi
 idea of the Quadrati
 Sieve is to 
olle
t relations y = x2−N where x ranges over aninterval of integers 
lose to √N , and y will 
onsequently take integer values bounded by N1/2+ǫ.Values of y whi
h are �smooth�, i.e., that have no prime fa
tor greater than some smoothnessbound B, are 
ompletely fa
tored and stored together with the asso
iated x-value. On
e enoughsu
h relations are found, a subset of these (x, y)-pairs su
h that the produ
t of y-values in thissubset forms an integer square 
an be determined by linear algebra: an integer is a square if allits prime fa
tors appear in even power, and the exponent ve
tor of the 
anoni
al fa
torizationof a produ
t is the sum of the exponent ve
tors of the multiplier and the multipli
and. Thuswe 
an look for kernel ve
tors of a matrix over F2 to �nd a produ
t of y-values whose exponentve
tor has all 
omponents 0 (mod 2), i.e., whi
h is an integer square. If we have at least asmany relations as primes appear among the fa
torizations of the y-values, the linear system 
anbe solved. The produ
t of the so sele
ted y-values and the produ
t of the asso
iated x2-valuesthus form 
ongruent squares,
X2 ≡ Y 2 (mod N) (3.1)where X and Y 
an be obtained from the stored x and fa
tored y-values. If X 6≡ ±Y (mod N),then gcd(X −Y,N) �nds a proper fa
tor of N . For 
omposite N that are not pure powers, (3.1)has at least 4 solutions for any X ⊥ N ; if the fa
toring algorithm produ
es one of these solutionsat random, then the probability of having a non-trivial fa
torization is at least 1/2.The great advantage of QS over earlier general fa
toring algorithms su
h as the ContinuedFra
tion Method [59℄ is that values of x where y is divisible by a prime p form arithmeti
progressions of 
ommon di�eren
e p, i.e., if f(x) is a polynomial with integer 
oe�
ients and we
hoose an x su
h that p | f(x), then p | f(x+kp) for all integers k. This greatly simpli�es the taskof fa
toring the y-values in the QS: given y = f(x) for n 
onse
utive values of x, instead of tryingall 
andidate prime divisors 2 ≤ p < B for ea
h y-value individually with 
ost in O(nπ(B)),we determine the roots f(x1|2,p) ≡ 0 (mod p) for ea
h 2 ≤ p < B where (disc(f)

p

)

6= −1 with
ost O(π(B)) and 
an divide out this prime p from all y = f(x)-values with x ≡ x1|2,p (mod p)(�sieve,� similar as in the Sieve of Eratosthenes) for a 
ost approximately O(n/p), whi
h gives atotal 
ost for sieving all primes p of only O(n log log(B) + π(B)).3.1.2 NFS: a First ExperimentThe basi
 idea of NFS, still in infan
y, was des
ribed by Pollard [82℄ who demonstrated how tofa
tor the seventh Fermat number N = F7 = 2128 + 1 by use of 
ubi
 integers. Underlying theidea is the fa
t that a small multiple of N 
an be expressed easily by a moni
 polynomial ofdegree 3 as 2N = 2129 + 2 = f(x) = x3 + 2 for x = 243, i.e., 243 is a root of f(x) mod N . A
omplex root α of f(x) de�nes an algebrai
 number �eld Q[α] whi
h 
ontains the ring Z[α] ofelements a+ bα+ cα2, a, b, c ∈ Z. A natural homomorphism φ : Q[α]→ Z/NZ exists by α 7→ 243

(mod N).



3.1. Introdu
tion 51Pollard now looks for a non-empty set S ⊂ Z2 su
h that
γ2 =

∏

(a,b)∈S

(a− bα) (3.2)is the square of some element γ ∈ Z[α], and
g2 =

∏

(a,b)∈S

(a− b243) (3.3)is the square of an integer g. With these, he 
omputes γ and uses the homomorphism φ to obtain
φ(γ) ∈ Z/NZ su
h that φ(γ)2 ≡ g2 (mod N) but hopefully φ(γ) 6≡ ±g (mod N), sin
e then
gcd(φ(γ) − g,N) produ
es a non-trivial fa
tor of N .The sear
h for a suitable set S works similarly as in the Quadrati
 Sieve: he 
olle
ts relations,
(a, b)-pairs with a, b ∈ Z and a ⊥ b, from a small sear
h region |a| ≤ 4800, 1 ≤ b ≤ 2000, wherethe norm of a−bα (denoted N(a−bα), a rational integer) and of a+b243 both fa
tor into primesnot ex
eeding B = 3571, plus at most one prime less than 10000 in ea
h a + b243 value. Thisis fa
ilitated by using the fa
t that both N(a − bα) = a3 + 4b3 and a − bM are homogeneouspolynomials in a and b. For ea
h �xed value of b, the two polynomials 
an be sieved over a rangeof a-values. In this example Z[α] is a unique fa
torization domain, is equal to the ring of integersof Q[α], and has unit group of rank 1 where the prin
ipal unit 1+α is easy to �nd. This way ea
h
a− bα of smooth norm 
an be readily fa
tored over a small set of prime elements of Z[α], a signand a power of the prin
ipal unit. Given su�
iently many relations with 
ompletely fa
tored
a − bα (in Z[α]) and a − b243 (in Z), he 
onstru
ts a set S satisfying (3.2) and (3.3), again byuse of linear algebra to ensure that in ea
h of the two produ
ts all primes and units o

ur ineven exponent. Sin
e the expli
it fa
torization of ea
h a− bα and a− b243 into powers of primesand units is known, the square root 
an be taken by dividing exponents by 2 and 
omputing theprodu
t.Both QS and NFS look for values of polynomials that are �smooth,� i.e., that 
ontain noprime fa
tors greater than some smoothness limit B. In 
ase of (our simpli�ed) QS, we 
hooseintegers x 
lose to √N and look for smooth y = x2 −N where the y-values are roughly as largeas √N ; for the NFS example, we look for pairs (a, b) where two polynomials F (a, b) = a3 + 4b3and G(a, b) = a+ b243 are simultaneously smooth. The reason why NFS is asymptoti
ally fasterthan QS, even though for ea
h relation it requires two values both being smooth instead of onlyone, is that the values are smaller. In Pollard's example, the values of G(a, b) are of size roughly
N1/3 and the values of F (a, b) are smaller still. The probability of an integer n being smooth toa given bound de
reases rapidly with the size of n, and even though we have two values of sizeroughly N1/3, for large enough N , assuming independent smoothness probability, they are morelikely both smooth than a single value around √N .At the time of Pollard's experiment, it was not at all 
lear whether the idea 
ould be extendedto numbers that are not of su
h a simple form as 2128 + 1, or where the relevant ring Z[α] inthe number �eld is not as �well-behaved,� and if it 
ould, whether this algorithm would be fasterthan the Quadrati
 Sieve for input sizes of interest. The answer to both turned out to be anenthusiasti
 �yes,� and the NFS 
urrently stands un
hallenged for fa
toring hard integers of morethan approximately 100 de
imal digits.



52 Chapter 3. The Number Field Sieve3.2 Overview of NFSIn this se
tion we brie�y summarize the Number Field Sieve. It requires two distin
t polynomials
f1(x) =

d1
∑

i=0

f1,ix
i and f2(x) =

d2
∑

i=0

f2,ix
i (3.4)of degree d1 and d2, respe
tively, with f1,i, f2,i ∈ Z, ea
h polynomial irredu
ible over Q, of
ontent 1 and with a known 
ommon root M modulo N , the number to be fa
tored:

f1(M) ≡ f2(M) ≡ 0 (mod N). (3.5)The homogeneous forms of these polynomials are
F1(a, b) = f1

(a

b

)

bd1 and F2(a, b) = f2

(a

b

)

bd2 . (3.6)Let α1 be a 
omplex root of f1(x), then Q[α1] de�nes a number �eld whi
h 
ontains thering Z[α1], however this ring is not integral if f1(x) is non-moni
 and even if it is, generally isneither the full ring of integers of Q[α1], nor has unique fa
torization. Sin
e M is a root of f1(x)
(mod N), a natural homomorphism φ1 : Q[α1]→ Z/NZ exists by α1 7→M (mod N). Similarlyfor the se
ond polynomial.The goal of NFS is to 
onstru
t γ1 ∈ Z[α1] and γ2 ∈ Z[α2] with φ1(γ

2
1) ≡ φ2(γ

2
2) (mod N),sin
e then X = φ1(γ1) and Y = φ2(γ2) satisfy X2 ≡ Y 2 (mod N) and so, if X 6≡ ±Y (mod N)holds, gcd(X − Y,N) reveals a proper fa
tor of N . We a
hieve this by 
onstru
ting

γ2
1 =

∏

(a,b)∈S

(a− bα1) and (3.7)
γ2
2 =

∏

(a,b)∈S

(a− bα2) (3.8)with a suitably 
hosen set S su
h that (3.7) and (3.8) are a square in Z[α1] and Z[α2], respe
tively.Sin
e φ1(a− bα1) ≡ a− bM ≡ φ2(a− bα2) (mod N), the images of (3.7) and (3.8) are 
ongruentmodulo N as required.In a number �eld K = Q[x]/f(x)Q[x] of degree d with α = x̄ the norm of an element
ω(x) =

∑

0≤i<d cix
i is de�ned as N(ω) =

∏

1≤j≤d ω(αj) where the αj are the d 
omplex roots of
f(x). For ω ∈ Z[α] the norm is a rational integer if f(x) is moni
, (otherwise the norm times theleading 
oe�
ient of f(x) is an integer, for simpli
ity we assume the moni
 
ase) and for elements
a− bα we have simply N(a− bα) = bdf(a/b) = F (a, b), where F (a, b) is the homogeneous formof f(x). The norm is multipli
ative, i.e., N(ωθ) = N(ω)N(θ) for any ω, θ ∈ K, implying that
N(ω2) is an integer square for any ω ∈ Z[α].To 
onstru
t S, we look for relations (a, b), a ⊥ b, where F1(a, b) is B1-smooth and F2(a, b)is B2-smooth. By 
onsidering the norms, we see that ∏(a,b)∈S F1(a, b) must be a square in Zfor (3.7) to be a square in Z[α1] (likewise for the se
ond polynomial in the following), but this
ondition is generally not su�
ient, as distin
t primes in Z[α1] may have equal norm. Therefore,instead of 
onsidering only the fa
torization of the norm F (a, b) into rational primes, we 
onsiderthe fa
torization of the ideal generated by a− bα1 in Z[α1] into prime ideals. Ea
h prime idealthat o

urs as a divisor of (a − bα1) is uniquely identi�ed by (p, r) where p is a prime fa
tor of
F1(a, b) and is the norm of the prime ideal, and r = a · b−1 (mod p) is the 
orresponding rootof f1(x) (mod p). That is, we do not 
onsider only the prime fa
tors of N(a− bα1), but further



3.2. Overview of NFS 53distinguish them by whi
h of the up to d1 possible roots of f(x) (mod p) they 
orrespond to.The set S is then 
hosen su
h that all prime ideals o

ur in even exponent in both (3.7) and (3.8).This is still not quite su�
ient for ensuring that these produ
ts are squares in their respe
tivering, as the unit group and 
lass group parts might not be squares, but this problem is elegantly
ir
umvented by use of quadrati
 
hara
ters, des
ribed in Se
tion 3.2.4.Very frequently the se
ond polynomial is 
hosen to be linear in whi
h 
ase Q[α2] is simply Qand fa
torization of a− bα into prime ideals is equivalent to fa
torization of F2(a, b) into rationalprimes; then the 
ondition that the produ
t ∏(a,b)∈S F2(a, b) is an integer square is su�
ient. Inthis 
ase everything relating to Z[α2] throughout the NFS algorithm is 
alled the �rational side�and anything relating to Z[α1] is 
alled the �algebrai
 side.�In the sieving step we try to �nd su�
iently many relations (a, b) within a sieving region
|a| ≤ A, 0 < b ≤ B, see Se
tion 3.2.2. The polynomials f1(x) and f2(x) are 
hosen su
h thatthe values of F1(a, b) and F2(a, b) are likely smooth for a, b in the sieve region; an overview ofmethods for polynomial sele
tion is given in Se
tion 3.2.1. The relations obtained in the sievingstep are pro
essed to remove dupli
ate relations and to redu
e the size of the resulting matrix,see Se
tion 3.2.3. In the linear algebra step we determine a subset S of the relations foundduring sieving su
h that (3.7) and (3.8) hold. This involves solving a very large and very sparsehomogeneous linear system over F2; two suitable algorithms are mentioned in Se
tion 3.2.4. Thesquare root step, des
ribed in Se
tion 3.2.5, determines γ1 and γ2 from γ2

1 and γ2
2 , respe
tively,and 
omputes gcd(φ1(γ1)− φ2(γ2), N), hoping to �nd a proper fa
tor of N .3.2.1 Polynomial Sele
tionTo redu
e the 
ost of the sieving, we try to 
hoose f1(x) and f2(x) so as to maximise the expe
tednumber of relations found in the sieve region, or 
onversely to allow the smallest sieve region toprodu
e the required number of relations that lets us 
onstru
t 
ongruent squares. As mentioned,the probability of the polynomial values being smooth de
reases rapidly with their size, so one
riteria is that we would like to 
hoose polynomials with small 
oe�
ients. A trivial method isto pi
k a degree d1 ≈ (3 log(n)/ log(log(n)))1/3 and to take M = ⌊N1/(d1+1)⌋. Now we 
an write

N in base-M to obtain the 
oe�
ients of f1(x), and 
hoose f2(x) = −x + M .Somewhat surprisingly, this trivial idea is asymptoti
ally the best possible (see [20, �3℄) inthe sense that any improvements due to better polynomial sele
tion are absorbed in the o(1)term of the Lx[t, c] notation. In pra
ti
e, elaborate methods for �nding good polynomials areused whi
h o�er a signi�
ant speedup over the naïve method.Early GNFS implementations su
h as in [11℄ used basi
ally the base-M method, but in
ludeda brute-for
e sear
h for a good value of M that leads to small polynomial 
oe�
ients.Murphy [75℄ presents a way of modelling the expe
ted number of relations found by sievingtwo given polynomials over a sieve region with given smoothness bounds, and shows how toimprove the base-M method for sele
ting polynomials that enjoy not only small average valueover the sieve region, but also have favourable root properties. The root properties model theaverage 
ontribution of small prime fa
tors to the size of polynomial values. For polynomialswhi
h have many roots modulo small primes, this 
ontribution is greater, and these polynomialvalues are more likely smooth than when few small prime divisors are present.Kleinjung [54℄ extends Murphy's work by allowing a 
ommon root M of the two polynomialsthat is not an integer 
lose to Nd1+1, but a rational number M = k/l. This leads to a linearpolynomial g(x) = lx−k and greatly extends the sear
h spa
e of suitable M values whi
h allowspi
king one that leads to parti
ularly small polynomial values. He further improves te
hniquesto generate polynomials with good root properties.



54 Chapter 3. The Number Field SieveFor integers N of no spe
ial form, a suitable polynomial f(x) is found by the above methodsand the se
ond polynomial g(x) is 
hosen to be linear; then the 
oe�
ients of both polynomialsare bounded by O
(

N1/d1
). With this bound, the 
onstant c in (3.1) is 
onje
tured to be (64/9)1/3 .For integers of a simple algebrai
 form su
h as F7 = 2128 + 1, a polynomial with very small
oe�
ients 
an easily be found manually. For this type of numbers, we 
an take the size of the
oe�
ients of f(x) to be bounded by a 
onstant, whi
h redu
es the 
onstant c to 
onje
turally

(32/9)1/3 .3.2.2 SievingThe task of the sieving step is to identify many relations, (a, b)-pairs with a ⊥ b su
h that F1(a, b)and F2(a, b) are both smooth. The smoothness 
riterion determines the sieving parameters, so we
hoose smoothness bounds B1 and B2, a typi
al order of magnitude being 107 for a fa
torizationof 150-digit numbers, and 
onsider F1(a, b) smooth if no prime ex
eeding B1 divides it (similarlyfor F2(a, b)). In pra
ti
e, a large prime variant is used as it greatly in
reases the number ofrelations found at little extra 
ost. We add large prime bounds L1 and L2, usually about 100times the respe
tive fa
tor base bound, and 
onsider F1(a, b) smooth if all its prime fa
tor donot ex
eed B1 ex
ept for at most k1 prime fa
tors up to L1, similarly for F2(a, b).To �nd (a, b)-pairs where F1(a, b) and F2(a, b) are smooth, a sieving method is used, usingthe fa
t that F1(a, b)-values (and likewise for F2(a, b) in the following) that are divisible by aprime p form a regular pattern in Z2. Let r be a root of f1(x) (mod p), then the (a, b)-pairswhere p | F1(a, b) are exa
tly those where a ≡ br (mod p). (The homogeneous form F1(a, b) mayhave roots with b ≡ 0 (mod p), namely for p that divide the leading 
oe�
ient of f1(x); su
hroots 
orrespond to roots at in�nity of f1(x) (mod p) and are not 
onsidered here.)The sieving pro
ess starts by building a fa
tor base: a list of primes p ≤ B1 and for ea
h theroots of f1(x) (mod p), likewise for f2(x). For the rational side (assuming f2(x) is linear), thispro
ess is simple enough to do it at the start of the siever program, for the algebrai
 side thefa
tor base is 
ommonly 
omputed on
e and stored in a �le.The sieving is performed over a sieve region −A ≤ a < A, 0 < b ≤ B whi
h is 
hosenlarge enough that one may expe
t to �nd su�
iently large set of relations so that the linearalgebra phase 
an �nd a subset S that satis�es (3.7) and (3.8). In prin
iple, sieving 
an endwhen the number of relations (forming the variables of the linear system over F2, ea
h relation
an be in
luded in S or not) ex
eeds the number of prime ideals that o

ur among the relations(forming the equations of the linear system, the sum of exponents of ea
h prime ideal must beeven in the solution), sin
e then the resulting matrix has at least one non-zero kernel ve
tor. Inpra
ti
e one wants a healthy amount of ex
ess (the di�eren
e of the number of relations and ofthe prime ideals among them), as this allows redu
ing the size of the matrix and several kernelve
tors may need to be tried to �nd a non-trivial fa
torization. A ratio of 10% more relationsthan ideals is a good rule-of-thumb.To speed up the sieving pro
ess, it is not performed on the values of F1(a, b) and F2(a, b)themselves. Instead, for ea
h (a, b) in the sieve region, a rounded base-l logarithm ⌊logl(F1(a, b))⌉is stored in an array, and ea
h prime in the fa
tor base that divides F1(a, b) (�hits at (a,b)�)subtra
ts ⌊logl(p)⌉ from the 
orresponding array lo
ation. This repla
es an integer division bya simpler integer subtra
tion per hit; the logarithm base l is 
ommonly 
hosen su
h that therounded logarithms �t into one byte to 
onserve memory. The pairs (a, b) where F1(a, b) issmooth will have a small value remaining in their array entry; entries where the remaining sievevalue is below a threshold are remembered and the sieving pro
ess is repeated for F2(a, b). Therepeated subtra
tion of rounded logarithms a

umulates some rounding error whi
h needs to be



3.2. Overview of NFS 55taken into a

ount when 
hoosing the sieve report threshold. Those (a, b) where both sievingpasses left values below the respe
tive threshold are good 
andidates for being proper relationsand are examined more 
losely: the 
orresponding F1,2(a, b)-values are fa
tored exa
tly over theintegers to test whether they satisfy the smoothness 
riterion. Here, the large prime variants
ome into play: if one allows large primes, a larger sieve report threshold is 
hosen a

ordingly,and the exa
t fa
torization of F1,2(a, b) needs to be able to handle 
omposite 
ofa
tors afterdividing out the fa
tor base primes. The 
ofa
tors 
an 
onsist of between 16− 30 de
imal digits(and even more for very large fa
torizations) and prime fa
tors of typi
ally 8− 10 de
imal digitsare permitted as large primes and need to be found e�
iently. Suitable methods are des
ribedin Chapter 4.The sieve region [−A,A]× [1, B]
⋂

Z2 is usually far too large to be sieved all at on
e. Insteadis it partitioned into smaller pie
es whi
h are sieved independently. Two major variants of thissieving pro
ess exist: line sieving and latti
e sieving.Line sieving is the simpler one: for ea
h value of b in the sieve region, the line −A ≤ a < A istreated individually. If it is still too large, the line 
an be partitioned further. Within a line, forea
h fa
tor base prime p with root r, the smallest a0 ≥ −A with a0 ≡ br (mod p) is 
omputed,then ea
h a = a0 + kp ≤ A, k ∈ N, is hit by the sieving.Latti
e sieving was suggested by Pollard [83℄ and, while more 
ompli
ated, performs sig-ni�
antly better and has superseded line sieving in larger fa
torization e�orts. The idea is to
onsider the latti
e in Z2 where one of the two polynomials, usually F1(a, b) (although for someSNFS fa
torizations F2(a, b) is 
hosen instead), is known to be divisible by a �spe
ial-q� value. If
ρ is a root of f1(x) (mod q), then q | F1(a, b) if a ≡ bρ (mod q), and ( a

b

)

=

(

q ρ
0 1

)(

i
j

),
i, j ∈ Z, is the latti
e of points (a, b) where ab−1 = ρ (mod q), implying q | F1(a, b). Examiningonly su
h a, b where we know a prime fa
tor q of F1(a, b) signi�
antly in
reases the 
han
e that
F (a, b)/q will be smooth, thus in
reasing the yield of the sieving. This allows 
hoosing a smallerfa
tor base and sieve region and still obtaining the required number of relations, thus redu
ing
omputation time and memory use.The sieving pro
edure be
omes more 
ompli
ated, however. The sieve region in the i, j-planeis 
hosen relatively small, typi
ally (depending on the size of the input number) −I ≤ i < I,
0 ≤ j < J with I = 2k, J = I/2, 11 ≤ k ≤ 16. Sin
e ea
h line in the sieve region in the i, j-planeis rather short, line-sieving in this plane is ine�
ient, sin
e ea
h fa
tor base prime would need tobe applied to ea
h line individually, resulting in 
omplexity O(JB + IJ log log(B)) per spe
ial-q.Sin
e B≫ I, the JB term would dominate (
orresponding to �nding the �rst lo
ation in the linewhere the fa
tor base prime hits, yet in any given line, most fa
tor base primes don't hit at all).Instead, for ea
h fa
tor base prime p and ea
h asso
iated root of the polynomial being sieved,the latti
e where p hits in the i, j-plane is 
omputed whi
h allows enumerating the lo
ations thatare hit very e�
iently, and the 
omplexity drops to O(B + IJ log log(B)). The implied 
onstantfor the B term is greater than that in the JB term seen before, due to the need to transformthe roots of fa
tor base primes to the i, j-plane and to 
ompute a redu
ed latti
e basis for ea
h,but this in
rease is far smaller than the fa
tor J (typi
ally several thousand) that appears ifindividual j-values were line-sieved.Franke and Kleinjung [40℄ give the details of a very e�
ient latti
e sieving algorithm.3.2.3 FilteringBefore a matrix is built, the relations are pro
essed in the �ltering step of NFS, to allow buildinga matrix that is easier to solve than one 
ontaining all relations found in the sieving would be.



56 Chapter 3. The Number Field SieveThe pro
essing is performed in several su

essive stages.Dupli
ates. First of all, dupli
ate relations are deleted, as those might lead to trivial solutionsof the matrix whi
h would produ
e only trivial fa
torizations. Dupli
ate relations o

ur in largenumber when latti
e sieving is used, as one (a, b)-pair may have a polynomial value F1(a, b)(assuming the spe
ial-q values are 
hosen for the f1(x) polynomial) that 
ontains two or moreprime fa
tors in the range of primes that are used for spe
ial-q values. Even with line sieving,whi
h in theory does not produ
e dupli
ates, partial output from interrupted and re-startedsieving jobs or a

idental sieving of overlapping ranges of b-values often leads to dupli
ates inpra
ti
e. In the dupli
ate removal step, the number of relations de
reases while the number ofprime ideals o

urring among the relations stays 
onstant, so that the ex
ess de
reases by 1 forea
h deleted relation. This e�e
t makes it tri
ky to predi
t the number of useful relations foundby latti
e sieving via sampling the sieving over an estimated range of spe
ial-q values: in thesmall sampling data, the ratio of dupli
ates to unique relations will be very small, but in the
omplete data set, it is often as large as 30%.Singletons. In the next �ltering step, relations 
ontaining singleton ideals are deleted. Sin
ethe goal is �nding a subset of relations in whose produ
t every prime ideal o

urs to an evenpower, relations 
ontaining a prime ideal in an odd power (usually with exponent 1) that o

ursin no other relations 
annot be part of any solution, and 
an be omitted from the matrix. Whensu
h relations are deleted, prime ideals that o

urred among the deleted and exa
tly one notdeleted relation now be
ome new singletons (�ripple-e�e
t�), and the singleton removal 
an berepeated until no relations with singleton ideals remain or so few are left that they add negligiblesize to the matrix. Ea
h deleted relation 
ontains at least one prime ideal that o

urs nowhereelse among the relations, so that when the number of remaining relations de
reases by 1 thenumber of remaining prime ideals also de
reases by at least 1, thus the ex
ess does not de
reasein this step. In fa
t, some relations 
ontain two (very rarely more) singleton ideals, and deletingthese a
tually in
reases the ex
ess slightly.Sin
e the prime ideals o

urring among the relations must be identi�ed to �nd singletonideals, they 
an be 
ounted as well, and the exa
t amount of ex
ess 
an be determined. If thereremains any positive ex
ess after the singleton removal step, then a matrix 
ould in prin
iple bebuilt and solved. In pra
ti
e, one wants a good deal of ex
ess in order to redu
e the size of thematrix, and to be able to satisfy some additional 
onstraints on the produ
t of relations from aset of kernel ve
tors of the matrix.Conne
ted 
omponents. Given a relation set with ex
ess after singleton removal, the dataset and hen
e the matrix size 
an be shrunk very e�
iently by removing 
onne
ted 
omponents(often 
alled �
liques� in this 
ontext, although the 
onne
ted 
omponents in question aren'tne
essarily 
omplete subgraphs). For this, ea
h relation of the data set is 
onsidered a node of agraph, and two nodes are 
onne
ted if and only if they have a prime ideal that o

urs in odd powerin these two and in no other relation. Deleting any relation in a 
onne
ted 
omponent 
auses anideal that formed the vertex to this node to be
ome singleton, and by applying singleton removal,the entire 
onne
ted 
omponent is removed eventually. For ea
h deleted 
onne
ted 
omponent,the ex
ess drops by at most 1 (for the �rst relation that is deleted, as singleton removal doesnot redu
e ex
ess) and removing large 
onne
ted 
omponents is a very e�e
tive way of redu
ingex
ess in a way that minimizes the number of ideals among the remaining relations. Removing
onne
ted 
omponents may 
ause ideals among the deleted relations to o

ur in odd power among
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tly two of the remaining relations, 
ausing new verti
es to appear in the graph. Thus theremoval of 
onne
ted 
omponents should be done in several passes, until the ex
ess is redu
edto a small positive number, e.g., around 100.Merging. The remaining relations 
ould be turned into a matrix, using the 
on
atenatedexponent ve
tors modulo 2 of the prime ideals of Z[α1] and of Z[α2] as equations, and onevariable in F2 per relation (whether to in
lude it in the solution or not) as variables. Theresulting linear system is large and very sparse, and with algorithms typi
ally used for solvingsu
h sparse large matri
es over F2 su
h as Blo
k-Lan
zos and Blo
k-Wiedemann, the run timedepends on the produ
t wM2, where w is the weight (the number of nonzero entries) and M isthe dimension of the matrix. Therefore we may be able to save time in the matrix phase if we
an make the matrix smaller, but somewhat more heavy. This is the task of the merging phase.First observe that if a prime ideal o

urs to odd exponent in exa
tly two relations, then thosetwo relations must either be both in
luded to form a square, or both not in
luded. Hen
e thosetwo relations 
an be merged into one by taking their produ
t, i.e., adding their exponent ve
tors;the shared prime ideal o

urs to even exponent in this produ
t and does not o

ur in any otherrelation, thus it needs not be 
onsidered in the matrix. The resulting ve
tor will have at mosttwo non-zero entries fewer than the two original relations had, so the matrix dimension de
reasesby 1 and the weight by at least 2, making �2-way merges� always worthwhile.If a prime ideal o

urs in exa
tly 3 relations, we 
an form two distin
t produ
ts from themand use them in pla
e of the three original relations. Again one prime ideal disappears from thematrix, but now we have two relations that ea
h may be about twi
e as heavy as the originalones, so the total weight might in
rease. This 
an be mitigated by 
hoosing the two distin
tprodu
ts whose exponent ve
tors have smallest weight, but problem of weight in
rease duringmerging be
omes apparent, and be
omes more pressing for higher-way merges.Cavallar [21℄ des
ribes an implementation of the �ltering step of NFS, in
luding all steps fromdupli
ate removal to merges of relations with prime ideals of frequen
y up to 19, and examinesthe e�e
t of merging on the run-time of the Blo
k-Lan
zos algorithm for solving the resultingmatrix.3.2.4 Linear AlgebraThe goal of the linear algebra step of NFS is, given a set of relations produ
ed by the sieving and�ltering steps, to �nd a subset S su
h that (3.7) and (3.8) are satis�ed. In the �ltering we madesure that we 
an 
ombine the remaining relations into a produ
t where all prime ideals dividingthe ideal generated by γ1 and γ2, respe
tively, o

ur in even power, and this is a ne
essary
ondition for being a square in Z[α1] and Z[α2], respe
tively, but it is generally not su�
ient.In spite of this, we �rst look at the problem of �nding solutions whi
h ensure that all primeideals o

ur in even power; given a small number of su
h solutions, the remaining 
onditions 
anthen be satis�ed relatively easily.From the fa
torization of ea
h ideal (a−bα1) in Z[α1] and (a−bα2) in Z[α2] into prime ideals,we take the exponent modulo 2 of ea
h prime ideal to form 
olumn ve
tors over F2. This formsa matrix that 
ontains a 
olumn for ea
h (merged) relation and a row for ea
h prime ideal thato

urs among the relations. This produ
es a large and very sparse matrix, sin
e ea
h relation
ontains only a small number of prime ideals. For fa
torizations of general numbers of around
150 digits, the matrix size is of the order of a few million rows and 
olumns, see Table 3.1. Thenumber of entries per 
olumn is typi
ally between 50 and 150.
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h large, sparse linear systems, the venerable Gaussian elimination algorithm is ill-suited. As rows are added during the elimination, the sparseness of the matrix is lost, and a denserepresentation of the matrix would have to be used whi
h is not feasible for matri
es of dimensionwell above 106. Suitable algorithms are iterative methods su
h as Blo
k-Wiedemann [31℄ andBlo
k-Lan
zos [69℄ that both �nd a set of kernel ve
tors by performing only (possibly transposed)matrix-ve
tor produ
ts, leaving the matrix unaltered.Choosing a set S in this way with resulting produ
ts Γi of relations a−bαi for ea
h i = 1, 2 isgenerally not su�
ient to ensure that Γi is the square of an element of γi ∈ Z[αi]. The possibleobstru
tions are given in [20, �6℄.Fortunately, this problem 
an be solved easily with an elegant tri
k. For ea
h relation (a, b)we determine the quadrati
 
hara
ter χp(a − bα1) in Fp[x]/f(x) for a prime p that does notdivide any F (a, b) among our relations and likewise for the se
ond polynomial g(x) (unless it islinear, in whi
h 
ase attention must be given only to the unit −1 of Z if the values of G(a, b)
an be negative.) In any set S su
h that the produ
t (3.7) is a square, 1 =
∏

(a,b)∈S χp(a− bα1).Thus we 
an use quadrati
 
hara
ters as a �probabilisti
 squareness test� of sorts; by doingsu�
iently many and 
hoosing S su
h that they all indi
ate a square produ
t, we 
an be quite
ertain to obtain a proper square in Z[α]. Thus we 
an use log−1(χp(a − bα)), whi
h is 0 if the
hara
ter indi
ates a square and is 1 otherwise, and use it as an additional equation in the linearsystem. Solving the homogeneous system ensures that the sum of logarithms of ea
h 
hara
teris 0, i.e., their produ
t is 1, indi
ating that the solution is a square. Assuming that a randomnon-square element ω of Z[α] has χp(ω) = 1 with probability 1/2 and that the probabilities areindependent for χp with di�erent p, ea
h 
hara
ter added to the linear system redu
es the numberof non-square solutions in the kernel of the matrix by 1/2. By adding a few more 
hara
tersthan the rank of the unit group plus hZ[α], the 
lass number of Z[α], we 
an be reasonably surethat the kernel of the matrix 
ontains mostly ve
tors that indi
ate sets S that satisfy (3.7) and(3.8). Computing the 
lass number is itself a non-trivial problem, and in pra
ti
e one usually
hooses a 
onstant number of 
hara
ters that �ought to do it,� the a
tual number varying betweenimplementations, but usually being between 32 up to 64, rarely more.3.2.5 Square RootThe linear algebra step produ
ed a set S ⊂ Z2 that satis�es (3.7) and (3.8). We now needto take the square roots of γ2
1,2 in their respe
tive number �elds so that we 
an �nally take

gcd(φ(γ1)− φ(γ2), N), hoping to �nd a non-trivial fa
tor of N .In Pollard's �rst experiment, 
omputing the square root was easy, sin
e Z[
√
−2] enjoys uniquefa
torization so that he 
ould fa
tor ea
h a−b

√
−2 into prime elements. Given their fa
torization,he obtains the fa
torization of γ2

1 and 
omputes γ1 simply by halving the exponent of ea
h primeelement. With the se
ond polynomial linear, taking a square root on the rational side is simplytaking a square root of a rational integer.A simple approa
h that was 
onsidered impra
ti
al in the early days of NFS due to insu�
ientmemory in the available 
omputing hardware has re
ently been revived. The idea is to useisomorphism of Z[α1] with Z[x]/f(x)Z[x] and to 
ompute
Γ(x) =





∏

(a,b)∈S

(a− bx)



 mod f(x),where the 
oe�
ients of the resulting polynomial will be very large, and fast algorithms for in-teger multipli
ation su
h as the one des
ribed in Chapter 1 must be used; with a naïve O
(

n2
)
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toring Re
ords 59multipli
ation algorithm, this simple square root step has time 
omplexity similar to the sievingand linear algebra steps, but with fast multipli
ation te
hniques its time 
omplexity is asymptot-i
ally negligible and pra
ti
ally satisfa
tory. Given Γ(x), we would like to obtain γ(x) =
√

Γ(x)in Z[x]/f(x)Z[x], whi
h we 
an do by 
omputing √Γ(x) in Fp/f(x)Fp for a small prime p su
hthat f(x) is irredu
ible over Fp, and using Hensel lifting of the result to a power pk su
h that pkis greater than the 
oe�
ients of γ(x).Couveignes [32℄ presents an algorithm that performs the square root modulo di�erent smallerprime powers pki

i and 
onstru
ts the solution via the Chinese Remainder Theorem. It 
an operatewith less memory than the simple method, but works only for polynomials f(x) of odd degreeand has fallen out of use.Montgomery [68℄ proposes an algorithm based on latti
e redu
tion for 
omputing square(and higher) roots of produ
ts su
h as (3.7) and (3.8) in algebrai
 number �elds; Nguyen [76℄implements it. It is fast and uses little memory, but is far more 
omplex to implement than thetwo methods previously mentioned.3.3 NFS Fa
toring Re
ordsThe maximum size of numbers that 
an be fa
tored with NFS in
reased 
onsiderably over the20 years sin
e its in
eption, both due to algorithmi
 improvements and 
omputers with fasterCPUs and larger main memory be
oming available. Table 3.1 lists fa
torization re
ords for theGeneral Number Field Sieve and Table 3.2 lists re
ords for the Spe
ial Number Field Sieve.For SNFS, the di�
ulty is listed, whi
h is de�ned as the base-10 logarithm of the resultant ofthe two polynomials used. The number 2, 1642M refers to the algebrai
 fa
tor 2821 + 2411 + 1of 21642 + 1. Where available we give the number of unique relations obtained, size of matrixand total 
omputation time for the fa
torization. The latter is often hard to state pre
iselydue to a large number of di�erent 
omputer systems used within one fa
torization. Where aformal publi
ation of the result exists, it is 
ited. In the other 
ases, the fa
torization is usuallyannoun
ed by a message to a number theory mailing list; su
h messages of re
ord fa
torizationsare 
olle
ted by Contini [26℄.
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Number Digits Year Nr. rel. Matrix size Approx. time ByRSA-130 130 1996 56.515.672 3.516.502 1000 MIPS years Lenstra et al.RSA-140 140 1999 56.605.498 4.704.451 2000 MIPS years te Riele et al. [23℄RSA-155 155 1999 85.534.738 6.711.336 8000 MIPS years te Riele et al. [24℄
2953 + 1 158 2002 254.033.792 5.792.705 4 GHz-years Franke et al.RSA-160 160 2003 289.145.711 5.037.191 Franke et al.RSA-576 174 2003 Franke et al.
11281 + 1 176 2005 455.989.949 8.526.749 32 GHz years Aoki et al.RSA-200 200 2005 2.260.000.000 64.000.000 165 GHz years Franke et al.RSA-768 232 2009 47.762.243.404 192.796.550 3700 GHz years Kleinjung et al. [55℄Table 3.1: Re
ords for the General Number Field Sieve

Number Di�
ulty Year Nr. rel. Matrix size Approx. time By
10211 − 1 211 1999 56.394.064 4.895.741 11 CPU years The Cabal
2773 + 1 233.0 2000 85.786.223 6.758.509 57 CPU years The Cabal
2809 − 1 243.8 2003 343.952.357 Franke et al.
2, 1642M 247.4 2004 438.270.192 7.429.778 22 GHz years Aoki et al.
6353 − 1 275.5 2006 2.208.187.490 19.591.108 61 GHz years Aoki et al.
21039 − 1 312.8 2007 13.822.743.049 66.718.354 400 GHz years Aoki et al. [2℄Table 3.2: Re
ords for the Spe
ial Number Field Sieve



Chapter 4Fa
toring small integers with P�1, P+1,and ECM in the Number Field Sieve4.1 Introdu
tionThe sieving step of the Number Field Sieve [60℄ identi�es integer pairs (a, b) with a ⊥ b su
hthat the values of two homogeneous polynomials Fi(a, b), i ∈ {1, 2}, are both smooth, wherethe sieving parameters are 
hosen a

ording to the smoothness 
riterion. Typi
ally the twopolynomials ea
h have a �fa
tor base bound� Bi, a �large prime bound� Li, and a permissiblemaximum number of large primes ki asso
iated with them, so that Fi(a, b) is 
onsidered smoothif it 
ontains only prime fa
tors up to Bi ex
ept for up to ki prime fa
tors greater than Bi, butnone ex
eeding Li. For example, for the fa
torization of the RSA-155 
hallenge number [24℄ (ahard integer of 512-bit) the values B = 224, L = 109 and k = 2 were used for both polynomialsfor most of the sieving. Kleinjung [53℄ gives an estimate for the 
ost of fa
toring a 1024-bit RSAkey based on the parameters B1 = 1.1 · 109, B2 = 3 · 108, and L1 = L2 = 242 with k1 = 5 and
k2 = 4.The 
ontribution of the fa
tor base primes to ea
h polynomial value Fi(a, b) for a set of (a, b)pairs is approximated with a sieving pro
edure, whi
h estimates roughly what the size of thepolynomial values will be after fa
tor base primes have been divided out. If these estimates for aparti
ular (a, b) pair are small enough that both Fi(a, b) values might be smooth, the polynomialvalues are 
omputed, the fa
tor base primes are divided out, and the two 
ofa
tors ci are testedto see if they satisfy the smoothness 
riterion.If only one large prime is permitted, no fa
toring needs to be 
arried out at all for the largeprimes: if ci > Li for either i, this (a, b) pair is dis
arded. Sin
e generally Li < B2

i and all primefa
tors below Bi have been removed, a 
ofa
tor ci ≤ Li is ne
essarily prime and need not befa
tored.If up to two large primes are permitted, and the 
ofa
tor ci is 
omposite and therefore greaterthan the large prime bound but below L2
i (or a suitably 
hosen threshold somewhat less then

L2
i ), it is fa
tored. Sin
e the prime fa
tors in ci are bounded below by Bi, and Li is typi
ally lessthan B1.5

i , the fa
tors 
an be expe
ted not to be very mu
h smaller than the square root of the
omposite number. This way the advantage of spe
ial purpose fa
toring algorithms when smalldivisors (
ompared to the 
omposite size) are present does not 
ome into great e�e
t, and generalpurpose fa
toring algorithms like SQUFOF or MPQS perform well. In previous implementationsof QS and NFS, various algorithms for fa
toring 
omposites of two prime fa
tors have been used,in
luding SQUFOF and Pollard-Rho in [38, Chapter 3.6℄, and P�1, SQUFOF, and Pollard-Rho61



62 Chapter 4. Fa
toring small integers with P�1, P+1 and ECMin [22, �3℄.If more than two large primes are allowed, the advantage of spe
ial purpose fa
toring al-gorithms pays o�. Given a 
omposite 
ofa
tor ci > L2
i , we know that it 
an be smooth onlyif it has at least three prime fa
tors, of whi
h at least one must be less than c

1/3
i . If it hasno su
h small fa
tor, the 
ofa
tor is not smooth, and its fa
torization is not a
tually required,as this (a, b) pair will be dis
arded. Hen
e an early-abort strategy 
an be employed that usesspe
ial-purpose fa
toring algorithms until either a fa
tor is found and the new 
ofa
tor 
an betested for smoothness, or after a number of fa
toring attempts have failed, the 
ofa
tor may beassumed to be not smooth with high probability so that this (a, b) pair 
an be dis
arded.Suitable 
andidates for fa
toring algorithms for this purpose are the P�1 method, the P+1method, and the Ellipti
 Curve Method (ECM). All have in 
ommon that a prime fa
tor p isfound if the order of some group de�ned over Fp is itself smooth. A bene�
ial property is thatfor ECM, and to a lesser extent for P+1, parameters 
an be 
hosen so that the group order hasknown small fa
tors, making it more likely smooth. This is parti
ularly e�e
tive if the primefa
tor to be found, and hen
e the group order, is small, see Chapter 5.Although the P�1 and P+1 methods by themselves have a relatively poor asymptoti
 algebrai

omplexity in O(

√
p) (assuming an asymptoti
ally fast stage 2 as des
ribed in Chapter 2), they�nd surprisingly many primes in far less time, making them useful as a �rst qui
k try to eliminateeasy 
ases before ECM begins. In fa
t, P�1 and P+1 may be viewed as being equivalent to lessexpensive ECM attempts (but also less e�e
tive, due to fewer known fa
tors in the group order).Another well-known spe
ial-purpose fa
toring algorithm is Pollard's �Rho� method [81℄ whi
hlooks for a 
ollision modulo p in an iterated pseudo-random fun
tion modulo N , where p is aprime fa
tor of N we hope to �nd. When 
hoosing no less than √2 log(2)n + 0.28 integersuniformly at random from [1, n], the probability of 
hoosing at least one integer more thanon
e is at least 0.5, well known as the Birthday Paradox whi
h states that in a group of only 23people, two share a birthday with more than 50% probability. For the Rho method, the expe
tednumber of iterations to �nd a prime fa
tor p is in O

(√
p
), and in the 
ase of Pollard's originalalgorithm, the average number of iterations for primes p around 230 is 
lose to 215 ≈ √p, whereea
h iteration takes three modular squarings and a modular multipli
ation, for an average of

≈ 130000 modular multipli
ations when 
ounting squarings as multipli
ations. Brent [14℄ givesan improved iteration whi
h redu
es the number of multipli
ations by about 25% on average.We will see that a 
ombination of P�1, P+1, and ECM does better on average.Furthermore, trying the Pollard-Rho method with only a low number of iterations beforemoving on to other fa
toring algorithms has a negligible probability of su

ess � among the
4798396 primes in [230, 230+108], only 3483 are found with at most 1000 iterations of the originalPollard-Rho algorithm with pseudo-random map x 7→ x2 +1 and starting value x0 = 2. For P�1,there are 1087179 primes p in the same range where the largest prime fa
tor of p − 1 does notex
eed 1000, and exponentiating by the produ
t of all primes and prime powers up to B requiresonly B/ log(2) + O

(√
B
)

≈ 1.44B squarings, 
ompared to 4 multipli
ations per iteration forthe original Pollard-Rho algorithm. By using a stage 2 for P�1, its advantage in
reases further.Figure 4.1 shows the distribution of the largest prime fa
tor of p− 1 and the required number ofPollard-Rho iterations for �nding p, respe
tively, for primes p in [230, 230 +108]. The distributionof the largest prime fa
tor of p+1 is identi
al to that of p−1, up to statisti
al noise. We 
on
ludethat unlike P�1 and P+1, the Pollard-Rho method is not suitable for removing �easy pi
kings.�This 
hapter des
ribes an implementation of trial division for 
omposites of a few ma
hinewords, as well as the P�1, P+1, and Ellipti
 Curve Method of fa
torization for small 
ompositesof one or two ma
hine words, aimed at fa
toring 
ofa
tors as o

ur during the sieving phase of
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Figure 4.1: Number of primes p in [230, 230 + 108
] where the largest prime fa
tor of p − 1,respe
tively the number of Pollard-Rho iterations to �nd p, is in [100n, 100n + 99], n ∈ N. Theleft graph shows 0 ≤ n ≤ 1000, the right graph shows a zoom on 0 ≤ n ≤ 100.the Number Field Sieve. It is part of the CADO [45℄ implementation of the NFS.4.2 Trial DivisionBefore fa
toring of the non-sieved 
ofa
tor of the polynomial values into large primes 
an 
om-men
e, the 
ofa
tor needs to be determined by dividing out all the fa
tor base primes. Formedium size fa
tor base primes, say larger than a few hundred or a few thousand, a sievingte
hnique (�re-sieving�) 
an be used again that stores the primes when re-sieving hits a lo
ationpreviously marked as �likely smooth.� For large fa
tor base primes, say larger than a few tenthousand, the number of hits in the sieve area is small enough that the primes 
an be storedduring the initial sieving pro
ess itself. For the smallest primes, however, re-sieving is ine�
ient,and a trial division te
hnique should be used. This se
tion examines a fast trial division rou-tine, based on ideas by Montgomery and Granlund [50℄ [70℄, that pre
omputes several values per
andidate prime divisor to speed up the pro
ess.4.2.1 Trial Division AlgorithmGiven many 
omposite integers Ni, 0 ≤ i < n, we want to determine whi
h primes from someset P = {pj, 0 ≤ j < k} of small odd primes divide ea
h Ni. We assume n ≫ k. Ea
h Ni is amulti-word integer of up to ℓ + 1 words, Ni =

∑ℓ
j=0 ni,jβ

j , where β is the ma
hine word base(e.g., β = 232 or β = 264) and ℓ is on the order of �a few,� say ℓ ≤ 4. For ea
h prime p ∈ P , wepre
ompute wj = βj mod p for 1 ≤ j ≤ ℓ, pinv = p−1 (mod β) and plim =
⌊

β−1
p

⌋.Consider a parti
ular integer N =
∑ℓ

j=0 njβ
j, and a parti
ular prime p ∈ P . The algorithm�rst does a semi-redu
tion modulo p to obtain a single-word integer 
ongruent to N (mod p),then tests this single-word integer for divisibility by p.To do so, we 
ompute r = n0 +

∑ℓ
j=1 njwj ≤ (β − 1)(ℓ(p − 1) + 1). To simplify the nextsteps, we require p <

√

β
ℓ . Even for β = 232, ℓ = 4, this gives p < 32768 whi
h is easily su�
ientfor trial division in NFS.
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toring small integers with P�1, P+1 and ECMWith this bound on p, we have r < (β−1)(
√

βℓ−ℓ+1). We then de
ompose r into r = r1β+r0,where 0 ≤ r0 < β. This implies r1 <
√

βℓ, and r1w1 ≤ r1(p− 1) <
√

βℓ

(

√

β
ℓ − 1

)

= β −
√

βℓ.The algorithm then does another redu
tion step by s = r1w1 + r0. We would like s =
s1β + s0 < 2β − p, so that a �nal redu
tion step t = s0 + s1w1 < β produ
es a one-word result.Sin
e r1(p−1) < β−

√
βℓ, s < 2β−

√
βℓ−1 < 2β−p. Sin
e s1 is either 0 or 1, the multipli
ationand addition in s0 + s1w1 is really just a 
onditional addition.Now we have a one-word integer t whi
h is divisible by p if and only if N is. To determinewhether p | t, we use the idea from [50, �9℄ to 
ompute u = tp−1 mod β, using the pre
omputed

pinv = p−1 (mod β). If p | t, t/p is an integer < β and so the modular arithmeti
 mod β mustprodu
e the 
orre
t u = t/p. There are ⌊β−1
p + 1

⌋ multiples of p (in
luding 0) less than β, underdivision by p these map to the integers [0, . . . , ⌊β−1
p

⌋]. Sin
e p is 
oprime to β, multipli
ationby p−1 (mod β) is a bije
tive map, so all non-multiples of p must map to the remaining integers
[⌊

β−1
p

⌋

+ 1, β − 1
]. Hen
e the test for divisibility 
an be done by a one-word multipli
ation bythe pre
omputed 
onstant pinv, and one 
omparison to the pre
omputed 
onstant plim =

⌊

β−1
p

⌋.4.2.2 ImplementationThe algorithm is quite simple to implement on an x86 CPU, whi
h o�ers the two-word produ
tof two one-word arguments by a single MUL instru
tion. It might run as shown in Algorithm 6,where x1, x0 are registers that temporarily hold two-word produ
ts. A pair of registers holdinga two-word value r1β + r0 is written as r1 : r0. The values r0,1, s0,1, and t0 
an all use the sameregisters, written r0,1 here. The loop over j should be unrolled.Input: Length ℓ
N =

∑ℓ
i=0 niβ

i, 0 ≤ ni < βOdd prime p <
√

β
ℓ

wj = βj mod p for 1 ≤ j ≤ ℓ
pinv = p−1 mod β

plim =
⌊

β−1
p

⌋Output: 1 if p | N , 0 otherwise
r0 := n0;
r1 := 0;for 1 ≤ j ≤ ℓ do

x1 : x0 = nj · wj;
r1 : r0 = r1 : r0 + x1 : x0;

x0 = r1 · w1;
r0 = (r0 + x0) mod β;if last addition set 
arry �ag then

r0 = (r0 + w1) mod β;
r0 = (r0 · pinv) mod β;if r0 ≤ plim thenreturn 1;elsereturn 0;Algorithm 6: Pseudo-
ode for trial division of numbers of up to ℓ + 1 words.
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ode uses ℓ multipli
ations of two words to a two-word produ
t. These multipli
ationsare independent of one another, so they 
an overlap on a CPU with pipelined multiplier. On anAthlon64, Opteron, and Phenom CPUs, a multipli
ation 
an start every 2 
lo
k 
y
les, the lowword of the produ
t is available after 4 
lo
k 
y
les, the high word after 5 
lo
k 
y
les. Thus in
ase of ℓ = 4, the laten
y for the �rst 4 produ
ts and building their sum should be 12 
y
les.The two remaining multiplies, the additions and 
onditional moves should be possible in about11 
y
les, giving a theoreti
al total 
ount of about 23 
lo
k 
y
les for trial dividing a 5 wordinteger by a small prime. Data movement from 
a
he may introdu
e additional laten
y.4.2.3 Use in NFSGiven a sieve region of size s with every d-th entry a sieve report, trial dividing by the prime pfor all sieve reports has 
ost O(s/d), while resieving has 
ost O(rs/p), where r is the number ofroots modulo p the sieved polynomial has. Hen
e whether trial division or resieving is preferablewill depend on p
dr , where those p with p

dr < c for some threshold c should use trial division.As primes are divided out of N , the number of words in N may de
rease, making the followingtrial division faster. It might be worthwhile to try to redu
e the size of N as qui
kly as possible.The probability that a prime p divides N may be estimated as r/p, the size de
rease as log(p), sothe probability that trial division by p will de
rease the number of words in N may be estimatedas being proportional to r log(p)/p. For trial division, the 
andidate divisors p 
an be sorted sothat this estimate is de
reasing. This probability estimate does not take into a

ount the fa
tthat N , being a sieve report, is likely smooth, and under this 
ondition the probability that pdivides N in
reases by Bayes' theorem, more so for larger p than for small ones.4.2.4 Testing Several Primes at On
eAlgorithm 6 redu
es the input number to a one-word integer whi
h is 
ongruent to N (mod p),then tests divisibility by p of that one-word integer. It is possible to do the redu
tion step for
omposite 
andidate divisors q, then test divisibility of the resulting one-word integer for all
p | q. This way, for integers 
onsisting of several words, the expensive redu
tion needs to bedone only on
e for ea
h q, the relatively 
heap divisibility test for ea
h p. This is attra
tive ifthe bound q <

√

β/ℓ is not too small. With w = 264, ℓ = 4, we 
an use q < 2147483648, whi
hallows for several small primes in q. For integers N with a larger number of words, it may beworthwhile to introdu
e an additional redu
tion step (for example, using Montgomery's REDCfor a right-to-left redu
tion) to relax the bound on q to, e.g., q < w/ℓ, so that the number ofprimes in q 
an be doubled at the 
ost of only two additional multiplies. In NFS, if the primesfound by re-sieving have been divided out already before trial division begins, the Ni may notbe large enough to make this approa
h worthwhile.4.2.5 Performan
e of Trial DivisionTo measure the performan
e of the trial division 
ode, we divide 107 
onse
utive integers of
1, . . . , 5 words by the �rst n = 256, 512, 1024, and 2048 odd primes on a 2 GHz AMD PhenomCPU, see Figure 4.1. The higher timings per trial division for n = 256 are due to the additional
ost of dividing out found divisors, whi
h has a greater relative 
ontribution for smaller primeswhi
h divide more frequently. The timing for ℓ = 4, n = 2048 is 
lose to the predi
ted 23 
lo
k
y
les. The sudden in
rease for n = 2048 in the 
ase of N with one word is due to 
a
hing: with
7 stored values (p, pinv, plim, w1,...,4) of 8 bytes ea
h, n = 2048 has a table of pre
omputed valuesof size 112KB, whi
h ex
eeds the level-1 data 
a
he size of 64KB of the Phenom. For large
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toring small integers with P�1, P+1 and ECMNumber of words in N
n 1 2 3 4 5256 6.8 (2.6) 15.3 (6.0) 20.8 (8.1) 27.5 (10.7) 32.4 (12.6)512 11.3 (2.2) 28.2 (5.5) 38.8 (7.6) 52.0 (10.2) 61.32 (12.0)1024 21.3 (2.1) 54.9 (5.4) 75.9 (7.4) 102.0 (10.0) 120.7 (11.8)2048 85.4 (4.1) 108.4 (5.3) 149.8 (7.3) 200.8 (9.8) 237.8 (11.6)Table 4.1: Time in se
onds for trial division of 107 
onse
utive integers by the �rst n odd primeson a 2 GHz AMD Phenom CPU. Time per trial division in nanose
onds in parentheses.sets of 
andidate primes, the sequential passes through the pre
omputed data 
ause frequentmisses in the level-1 
a
he, and the trial divisions for N of only one word are fast enough thattransfer rate from the level-2 
a
he limits the exe
ution. This 
ould be avoided by 
omputingfewer wi 
onstants (i.e., 
hoosing a smaller ℓ) if the N are known to be small, or storing the wiin separate arrays rather than interleaved, so that the wi for larger i do not o

upy 
a
he whilethe N pro
essed are small. Sin
e the value of p is not a
tually needed during the trial division,it is possible to avoid storing it and re
omputing it, e.g., from pinv when it needs to be reportedas a divisor.4.3 Modular Arithmeti
The modular arithmeti
 operations are relatively inexpensive when moduli and residues of onlya few ma
hine words are 
onsidered, and should be implemented in a way that lets the 
ompilerperform in-lining of simple arithmeti
 fun
tions to avoid unne
essary fun
tion 
all overheadand data movement between registers, memory and sta
k due to the 
alling 
onventions of thelanguage and ar
hite
ture. Many simple arithmeti
 operations 
an be implemented easily ande�
iently using assembly language, but are 
umbersome to write in pure C 
ode, espe
ially ifmulti-word produ
ts or 
arry propagation are involved. The GNU C 
ompiler o�ers a very �exiblemethod of inje
ting assembly 
ode into C programs, with an interfa
e that tells the 
ompiler all
onstraints on input and output data of the assembly blo
k so that it 
an perform optimizationon the 
ode surrounding the assembly statements. By de�ning some 
ommonly used arithmeti
operations in assembly, mu
h of the modular arithmeti
 
an be written in C, letting the 
ompilerhandle register allo
ation and data movement. The resulting 
ode is usually not optimal, butquite usable. For the most time-
riti
al operations, writing hand-optimized assembly 
ode o�ersan additional speed improvement.For the present work, modular arithmeti
 for moduli of 1 ma
hine word and of 2 ma
hinewords with the two most signi�
ant bits zero is implemented. Implementation of arithmeti
 formoduli of 3 ma
hine words is in progress.4.3.1 Assembly SupportTo give an example of an elementary fun
tion that is implemented with the help of some assembly
ode, we examine modular addition with a modulus of 1 ma
hine word. This is among the mostsimple operations possible, but useful as an example.Let a �redu
ed residue� with respe
t to a positive modulus m mean an integer representative

0 ≤ r < m of the residue 
lass r (mod m). Modular addition of two redu
ed residues 
an be
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 67de�ned as
(a + b) mod m =

{

a + b−m if a + b−m ≥ 0

a + b otherwise.If any modulus m < β is permitted, where β is the ma
hine word base, then the problem that
a+b might over�ow the ma
hine word arises. One 
ould test for this 
ase, then test if a+b ≥ m,and subtra
t m if either is true, but this ne
essitates two tests. With a slight rearrangement, we
an do with one:

r := a + b;1
s := a−m;2
t := s + b;3 if last addition set 
arry �ag then4 r := t;5All arithmeti
 in this 
ode is assumed modulo the word base β, i.e., the integers in r, s, and tare redu
ed residues modulo β. In line 2, sin
e a is redu
ed modulo m, the subtra
tion a −mne
essarily produ
es a borrow, so that s = a−m + β. In line 3, if s + b < β, then this additiondoes not produ
e a 
arry, and t = a+b−m+β < β, i.e., a+b−m < 0. If s+b ≥ β, the additiondoes produ
e a 
arry, and 0 ≤ t = s+ b−β = a+ b−m. Hen
e t is the proper result if and onlyif a 
arry o

urs in line 3, to make up for the borrow of line 2. Lines 1 and 2 are independentand 
an be exe
uted in parallel, leading to a dependent 
hain of length 3. We require a < m for
orre
tness, if b ≥ m, the result still satis�es r ≡ a + b (mod m) and r < b, but not ne
essarily

r < m.The implementation in C with a GCC x86 assembly blo
k shown below. The value of s,shown separately for 
larity above, is stored in t here.r = a + b;t = a - m;__asm__ ("add %2, %1\n\t" /* t := t + b */"
mov
 %1, %0\n\t" /* if (
arry) r := t */: "+r" (r), "+&r" (t): "g" (b): "

");The 
omputation of the initial t and r are done in C, to give the 
ompiler some s
hedulingfreedom. Sin
e C does not provide dire
t a

ess to the 
arry �ag, the addition t := t + b andthe following 
onditional assignment are done in assembly. The 
onstraints on the data passedto the assembly blo
k state that the values of r and t must reside in registers ("r") sin
e thetarget of the 
onditional move instru
tion 
mov
 must be a register, and at least one of sour
e ortarget of the addition instru
tion add must be a register. We allow the variable b to be passedin a register, in memory or as an immediate operand ("g", �general� 
onstraint, for x86_64 the
orre
t 
onstraint is "rme" sin
e immediate 
onstants are only 32 bit wide), whi
h is the sour
eoperand to the add instru
tion. The "+" modi�er tells that the values in r and t will be modi�ed,and the "&" modi�er tells that t may be modi�ed before the end of the assembly blo
k and thusno other input variable should be passed in the register assigned to t, even if their values areknown to be identi
al. Finally, "

" tells the 
ompiler that the values of the �ags register may
hange. These 
onstraints provide the information the 
ompiler needs to be able to use the
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k 
orre
tly, while leaving enough �exibility that it 
an optimize register allo
ationand data movement, 
ompared to, e.g., 
ompilers that require all parameters to assembly blo
ksin a �xed set of registers.An alternative solution is to 
ompute r := b− (m− a) and adding m if the outer subtra
tionprodu
ed a borrow. However, this requires a 
onditional addition rather than a 
onditional move.Similar to the modular addition, various fun
tions su
h as modular subtra
tion and multipli-
ation for one and two-word moduli, two-word addition, subtra
tion, multipli
ation and binaryshift, and division with a two-word dividend (used, for example, for preparing a residue for usewith REDC modular redu
tion with a two-word modulus, see 4.3.2) are written as fun
tionswith assembly support. As optimization e�ort progresses, more time-
riti
al fun
tions 
urrentlywritten in C with assembly ma
ros will be repla
ed by dedi
ated assembly 
ode.4.3.2 Modular Redu
tion with REDCMontgomery presented in [64℄ a method for fast modular redu
tion. Given an integer 0 ≤ a <
βm, for odd modulus m of one ma
hine word and ma
hine word base β (here assumed a powerof 2), and a pre
omputed 
onstant minv = −m−1 mod β, it 
omputes an integer 0 ≤ r < mwhi
h satis�es rβ ≡ a (mod m). It does so by 
omputing the minimal non-negative tm su
hthat a + tm ≡ 0 (mod β), to make use of the fa
t that division by β is very inexpensive. Sin
e
t < β, (a + tm)/β < 2m, and at most one �nal subtra
tion of m ensures r < m. He 
alls thealgorithm that 
arries out this redu
tion �REDC,� shown in Algorithm 7.Input: m, the modulus

β, the word base
a < βm, integer to redu
e
minv < β su
h that mminv ≡ −1 (mod β)Output: r < m with rβ ≡ a (mod m)

t := a ·minv mod β;
r := (a + t ·m)/β;if r ≥ m then

r := r −m;Algorithm 7: Algorithm REDC for modular redu
tion with one-word modulus. All variablestake non-negative integer values.The redu
ed residue output by this algorithm is not in the same residue 
lass mod m asthe input, but the residue 
lass gets multiplied by β−1 (mod m) in the pro
ess. To preventa

umulating powers of β−1 (mod m) and having unequal powers of β when, e.g., adding or
omparing residues, any residue modulo m is 
onverted to Montgomery representation �rst, bymultiplying it by β and redu
ing (without REDC) modulo m, i.e., the Montgomery representationof a residue a (mod m) is aβ (mod m). This way, if two residues in Montgomery representation
aβ (mod m) and bβ (mod m) are multiplied and redu
ed via REDC, then REDC(aβbβ) ≡ abβ
(mod m) is the produ
t in Montgomery representation. This ensures the exponent of β in theresidues always stays 1, and so allows addition, subtra
tion, and equality tests of residues inMontgomery representation. Sin
e β ⊥ m, we also have aβ ≡ 0 (mod m) if and only if a ≡ 0
(mod m), and gcd(aβ,m) = gcd(a,m). Sin
e β = 232 or 264 is an integer square, the Ja
obisymbol satis�es (aβ

m

)

=
(

a
m

).For moduli m of more than one ma
hine word, say m < βk, a produ
t of two redu
ed residuesmay ex
eed β, but is below mβk. The redu
tion 
an be 
arried out in two ways: one essentially
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 69performs the one-word REDC redu
tion k times, performing O
(

k2
) one-word multiplies, theother repla
es arithmeti
 modulo β in REDC by arithmeti
 modulo βk, performing O(1) k-word multipli
ations. In either 
ase, a full redu
tion with (repeated one-word or a single multi-word) REDC divides the residue 
lass of the output by βk, and the 
onversion to Montgomeryrepresentation must multiply by βk a

ordingly. The former method has lower overhead andis preferable for small moduli, the latter 
an use asymptoti
ally fast multipli
ation algorithmsif the modulus is large. As in our appli
ation the moduli are quite small, no more than twoma
hine words, we use the former method.Before modular arithmeti
 with REDC for a parti
ular m 
an begin, the 
onstant minv needsto be 
omputed. If β is a power of 2, Hensel lifting makes this 
omputation very fast. To speedit up further, we try to guess an approximation to minv so that a few least signi�
ant bits are
orre
t, thus saving a few Newton iterations. The square of any odd integer is 
ongruent to 1

(mod 8), so minv ≡ m (mod 8). The fourth bit of minv is equal to the binary ex
lusive-or ofthe se
ond, third, and fourth bit of m, but on many mi
ropro
essors an alternative suggestionfrom Montgomery [72℄ is slightly faster: (3m) XOR 2 gives the low 5 bits of minv 
orre
tly.Ea
h Newton iteration x 7→ 2x − x2m doubles the number of 
orre
t bits, so that with eitherapproximation, 3 iterations for β = 232 or 4 for β = 264 su�
e.Converting residues out of Montgomery representation 
an be performed qui
kly with REDC,but 
onverting them to Montgomery representation requires another modular redu
tion algo-rithm. If su
h 
onversions are to be done frequently, it pays to pre
ompute ℓ = β2 mod m, sothat REDC(aℓ) = aβ mod m allows using REDC for the purpose.In some 
ases, the �nal 
onditional subtra
tion of m in REDC 
an be omitted. If a < m,then a + tm < mβ sin
e t < β, so r = (a + tm)/β < m whi
h 
an be used when 
onvertingresidues out of Montgomery form, or when division by a power of 2 modulo m is desired.4.3.3 Modular InverseTo 
ompute a modular inverse r ≡ a−1 (mod m) for a given redu
ed residue a and odd modulus
m with a ⊥ m, we use a binary extended Eu
lidean algorithm. Modular inverses are used at thebeginning of stage 2 for the P�1 algorithm, and for initialisation of stage 1 of ECM (ex
ept fora sele
t few 
urves whi
h have simple enough parameters that they 
an be initialised using onlydivision by small 
onstants). Our 
ode for a modular inverse takes about 0.5µs for one-wordmoduli, whi
h in 
ase of P�1 with small B1 and B2 parameters a

ounts for several per
ent ofthe total run-time, showing that some optimization e�ort is warranted for this fun
tion.The extended Eu
lidean algorithm solves

ar + ms = gcd(a,m)for given a,m by initialising e0 = 0, f0 = 1, g0 = m and e1 = 1, f1 = 0, g1 = a, and 
omputingsequen
es ei, fi and gi that maintain
aei + mfi = gi (4.1)where gcd(a,m) | gi and the gi are stri
tly de
reasing until gi = 0. The original Eu
lideanalgorithm uses gi = gi−2 mod gi−1, that is, in ea
h step we write gi = gi−2 − gi−1⌊gi−2

gi−1
⌋ andlikewise ei = ei−2 − ei−1⌊gi−2

gi−1
⌋ and fi = fi−2 − fi−1⌊gi−2

gi−1
⌋, so that equation (4.1) holds for ea
h

i. If n is the smallest i su
h that gi = 0, then gn−1 = gcd(a,m), s = fn−1, and r = en−1. Sin
ewe only want the value of r = en−1, we don't need to 
ompute the fi values. We 
an write



70 Chapter 4. Fa
toring small integers with P�1, P+1 and ECM
u = ei−1, v = ei, x = gi−1, y = gi and for i = 1 initialise u = 0, v = 1, x = m, and y = a. Thenea
h iteration i 7→ i + 1 is 
omputed by

(u, v, x, y) := (v, u− ⌊x/y⌋v, y, x − ⌊x/y⌋y).At the �rst iteration where y = 0, we have r = u and x = 1 if a and m were indeed 
oprime.A problem with this algorithm is the 
ostly 
omputation of ⌊x/y⌋ as integer division is usuallyslow. The binary extended Eu
lidean algorithm avoids this problem by using only subtra
tionand division by powers of 2. Our implementation is inspired by 
ode written by Robert Harleyfor the ECCp-97 
hallenge and is shown in Algorithm 8. The updates maintain ua ≡ −x2t

(mod m) and va ≡ y2t (mod m) so that when y = 1, we have r = v2−t = a−1 (mod m).Input: Odd modulus mRedu
ed residue a (mod m)Output: Redu
ed residue r (mod m) with ar ≡ 1 (mod m), or failure if gcd(a,m) > 1if a = 0 thenreturn failure;
t := Val2(a); /* 2t || a */
u := 0; v := 1;x := m; y := a/2t;while x 6= y do

ℓ := Val2(x− y); /* 2ℓ || x− y */if x < y then
(u, v, x, y, t) := (u2ℓ, u + v, x, (y − x)/2ℓ, t + ℓ);else
(u, v, x, y, t) := (u + v, v2ℓ, (x− y)/2ℓ, y, t + ℓ);if y 6= 1 thenreturn failure;

r := v2−t mod m; Algorithm 8: Binary extended GCD algorithm.In ea
h step we subtra
t the smaller of x, y from the larger, so they are de
reasing andnon-negative. Neither 
an be
ome zero as that implies x = y in the previous iteration, whi
hterminates the loop. Sin
e both are odd at the beginning of ea
h iteration, their di�eren
e iseven, so one value de
reases by at least a fa
tor of 2, and the number of iterations is at most
log2(am). In ea
h iteration, uy + vx = m, and sin
e x and y are positive, u, v ≤ m so that noover�ow o

urs with �xed-pre
ision arithmeti
.To perform the modular division r = v/2ti , we 
an use REDC. While t ≥ log2(β), we repla
e
v := REDC(v) and t := t − log2(β). Then, if t > 0, we perform a variable-width REDC todivide by 2t rather than by β by 
omputing r =

(

v +
(

(vminv) mod 2t
)

m
)

/2t with mminv ≡ −1
(mod β). Sin
e v < m, we don't need a �nal subtra
tion in these REDC.If the residue a whose inverse we want is given in Montgomery representation aβk mod mwith k-word modulus m, we 
an use REDC 2k times to 
ompute aβ−k mod m, then 
ompute themodular inverse to obtain the inverse of a in Montgomery representation: a−1βk ≡

(

aβ−k
)−1

(mod m). This 
an be simpli�ed by using the fa
t that the binary extended GCD 
omputes
v = a−12t. If we know beforehand that t ≥ log2 β, we 
an skip divisions by β via REDC bothbefore and after the binary extended GCD. Let the fun
tion t(x, y) give the value of t at the
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oprime inputs x, y. It satis�es
t(x, y) =























0 if x = y (implies x = y = 1),

t(x/2, y) + 1 if x 6= y, 2 | x,

t(x− y, y) if x > y, 2 ∤ x,

t(y, x) if x < y, 2 ∤ x.Assuming y odd, 
ase 3 is always followed by 
ase 2, and we 
an substitute 
ase 3 by t(x, y) =
t((x− y)/2, y) + 1. We 
ompare the de
rease of the sum x + y and the in
rease of t. In 
ase 2,
(x+y) 7→ x/2+y > (x+y)/2, and t in
reases by 1. In the substituted 
ase 3, (x+y) 7→ (x+y)/2,and t in
reases by 1. We see that whenever x+y de
reases, t in
reases, and whenever t in
reasesby 1, x + y drops by at most half, until x+ y = 2. Hen
e t(x, y) ≥ log2(x + y)− 1, and therefore
t(x, y) ≥ log2(y), sin
e x > 0.Thus in 
ase of k-word moduli βk−1 < m < βk, we have t(x,m) ≥ (k − 1) log2(β) for anypositive x, so using aβ−1 (mod m) as input to the binary extended GCD is su�
ient to ensurethat at the end we get a−1β ≡ v2−t (mod m), or a−1βk ≡ v2−t+(k−1) log2(β) (mod m) and thedesired result a−1βk 
an be obtained from v2−t with a division by 2t−(k−1) log2(β) via REDC.4.3.4 Modular Division by Small IntegersInitialisation of P+1 and ECM involves division of residues by small integers su
h as 3, 5, 7, 11,
13 or 37. These 
an be 
arried out qui
kly by use of dedi
ated fun
tions. To 
ompute r ≡ ad−1

(mod m) for a redu
ed residue a with d ⊥ m, we �rst 
ompute t = a + km, with k su
h that
t ≡ 0 (mod d), i.e., k = a

(

−m−1
)

mod d, where −m−1 mod d is determined by look-up in apre
omputed table for the d− 1 possible values of m mod d.For one-word moduli, the resulting integer t 
an be divided by d via multipli
ation by thepre
omputed 
onstant dinv ≡ d−1 (mod β). Sin
e t/d < m < β is an integer, the result r =
tdinv mod β produ
es the 
orre
t redu
ed residue r. This implies that 
omputing t modulo β issu�
ient.For two-word moduli, we 
an 
hoose an algorithm depending on whether m and d are largeenough that t may over�ow two ma
hine words or not. In either 
ase, we may write t = t1β + t0with 0 ≤ t0 < β, 0 ≤ t1 < dβ and r = r1β + r0 with 0 ≤ r0, r1 < β, and 
an 
ompute
r0 = t0dinv mod β.If t does not over�ow, we may write t = t′′ + t′dβ, 0 ≤ t′′ < dβ, where d | t′′. Then
r = t/d = t′β + t′′/d with t′′/d < β, so we 
an 
ompute r1 = ⌊t1/d⌋. The trun
ating division bythe invariant d 
an be implemented by the methods of [50℄. An advantage of this approa
h isthat the 
omputation of the low word r0 from t0 is independent of the 
omputation of the highword r1 from t1.If t may over�ow two ma
hine words, we 
an 
ompute r0 as before, and use that t − dr0 isdivisible by dβ, so we may write r1β + r0 ≡ t/d (mod β2) as r1 ≡ (t− dr0)/β · dinv (mod β).4.4 P�1 AlgorithmThe P�1 algorithm is des
ribed in Se
tion 2.2. We re
apitulate some elementary fa
ts here. The�rst stage of P�1 
omputes

x1 = xe
0 mod Nfor some starting value x0 6≡ 0,±1 (mod N) and a highly 
omposite integer exponent e. ByFermat's little theorem, if p − 1 | e for any p | N , then x1 ≡ 1 (mod p) and p | gcd(x1 − 1, N).
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toring small integers with P�1, P+1 and ECMThis 
ondition is su�
ient but not ne
essary: it is enough (and ne
essary) that ordp(x0) | e,where ordp(x0) is the order of x0 in F∗
p. To maximise the probability that ordp(x0) | e for a givensize of e, we 
ould 
hoose e to 
ontain all primes and prime powers that divide ordp(x0) withprobability better than some bound 1/B1. One typi
ally assumes that a prime power qk divides

ordp(x0) with probability q−k, so that e is taken as the produ
t of all primes and prime powersnot ex
eeding B1, or e = lcm(1, 2, 3, 4, . . . , B1). The 
hoi
e of e is des
ribed in more detail inChapter 5.The value of e is pre
omputed and passed to the P�1 stage 1 routine, whi
h basi
ally 
onsistsonly of a modular exponentiation, a subtra
tion and a g
d. The base x0 for the exponentiation is
hosen as 2; in a left-to-right binary powering ladder, this requires only squarings and doublings,where the latter 
an be performed qui
kly with an addition instead of a multipli
ation by x0.To redu
e the probability that all prime fa
tors of N (i.e., N itself) are found simultaneouslyand reported as a divisor at the end of stage 1, only the odd part of e is pro
essed at �rst,and then the fa
tors of 2 in e one at a time by su

essive squarings. After ea
h one we 
he
kif the new residue is 1 (mod N), indi
ating that all prime fa
tors of N have been found now,and if so, revert to the previous value to use it for the g
d. Unless the same power of 2 divides
ordp(x0) exa
tly for all primes p | N , then this will dis
over a proper fa
tor. This ba
ktra
kings
heme is simple but satisfa
torily e�e
tive: among 106 
omposite numbers that o

urred duringan sieving experiment of the RSA155 number, ea
h 
omposite being of up to 86 bits and withprime fa
tors larger than 224, only 48 had the input number reported as the fa
tor in P�1 stage 1with B1 = 500. Without the ba
ktra
king s
heme (i.e., pro
essing the full exponentiation by e,then taking a GCD), 879 input numbers are reported as fa
tors instead.The se
ond stage of P�1 
an use exa
tly the same implementation as the se
ond stage ofP+1, by passing X1 = x1 +x−1

1 to the stage 2 algorithm. The stage 2 algorithm for ECM is verysimilar as well, and they are des
ribed together in Se
tion 4.7.4.4.1 P�1 Stage 1 Performan
eTable 4.2 
ompares the performan
e of the P�1 stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom
B1 1 word 2 words −2 bits 1 word 2 words −2 bits
100 3.15 6.24 2.49 4.59
200 5.38 12.2 4.12 8.26
300 7.28 17.2 5.51 11.3
400 9.23 22.2 6.92 14.5
500 11.4 27.8 8.49 18.0
600 13.2 32.7 9.83 21.0
700 15.4 38.2 11.4 24.4
800 17.2 43.1 12.7 27.5
900 19.4 48.5 14.2 30.9
1000 21.4 53.8 15.7 34.1Table 4.2: Time in mi
rose
onds for P�1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs.



4.5. P+1 Algorithm 734.5 P+1 AlgorithmThe P+1 algorithm is des
ribed in detail in Se
tion 2.2. We re
apitulate the basi
 algorithmhere.The �rst stage of P+1 
omputes x1 = Ve(x0) mod N , where x0 ∈ Z/NZ is a parameter,
Vn(x) is a degree-n Chebyshev polynomial de�ned by Vn(x + x−1) = xn + x−n, and e is a highly
omposite integer 
hosen as for the P�1 method. These Chebyshev polynomials satisfy V0(x) = 2,
V1(x) = x, V−n(x) = Vn(x), Vmn(x) = Vm(Vn(x)), and Vm+n(x) = Vm(x)Vn(x)− Vm−n(x).We test for a fa
tor by taking gcd(x1 − 2, N). If there is a prime p su
h that p | N and
p−

(

∆
p

)

| e, where ∆ = x2
0 − 4 and (∆

p

) is the Legendre symbol, then p | gcd(x1 − 2, N).Sin
e Vn−m is required for 
omputing Vn+m, these polynomials 
annot be evaluated with asimple binary addition 
hain as in the 
ase of the exponentiation in stage 1 of P�1. Instead, anaddition 
hain needs to be used that 
ontains n−m whenever the sum n + m is formed from nand m. These 
hains are des
ribed in Se
tion 4.5.1.The required addition 
hain for the stage 1 multiplier e is pre
omputed and stored as 
om-pressed byte 
ode, see Se
tion 4.5.2.As for P�1, a ba
ktra
king s
heme is used to avoid �nding all fa
tors of N and thus reportingthe input number as the fa
tor found. Sin
e fa
tors of 2 in e 
an easily be handled by V2n(x) =
V2 (Vn(x)) = Vn(x)2 − 2, they need not be stored in the pre
omputed addition 
hain, and 
anbe pro
essed one at a time. Similarly as in stage 1 of P�1, we remember the previous residue,pro
ess one fa
tor of 2 of e, and if the result is 2 (mod N), meaning that all fa
tors of N havebeen found, we revert to the previous residue to take the GCD with N . Using the same 106
omposite inputs as for P�1, P+1 with B1 = 500 reports 117 input numbers as fa
tors withba
ktra
king, and 1527 without.If stage 1 of P+1 is unsu

essful, we 
an try to �nd a fa
tor yet by running stage 2, using asinput the output x1 of stage 1. Our stage 2 is identi
al for P�1 and P+1, and very similar forECM, and is des
ribed in Se
tion 4.7.4.5.1 Lu
as ChainsMontgomery shows in [66℄ how to generate addition 
hains a0, a1, . . . , aℓ with a0 = 1 and length
ℓ su
h that for any 0 < i ≤ ℓ, there exist 0 ≤ s, t < i su
h that ai = as + at and as − at iseither zero, or is also present in the 
hain. He 
alls su
h 
hains �Lu
as 
hains.� For example,the addition 
hain 1, 2, 4, 5 is not a Lu
as 
hain sin
e the last term 5 
an be generated only from
4 + 1, but 4− 1 = 3 is not in the 
hain. The addition 
hain 1, 2, 3, 5, however, is a Lu
as 
hain.For any positive integer n, L(n) denotes the length of an optimal (i.e., shortest possible) Lu
as
hain that ends in n.A simple but generally non-optimal way of generating su
h 
hains uses the redu
tion (n, n−
1) 7→ (⌈n/2⌉, ⌈n/2⌉−1). We 
an 
ompute Vn(x) and Vn−1(x) from V⌈n/2⌉(x), V⌈n/2⌉−1(x), V1(x) =
x, and V0(x) = 2. In the 
ase of n even, we use Vn(x) = V⌈n/2⌉(x)2 − V0(x), and Vn−1(x) =
V⌈n/2⌉(x)V⌈n/2⌉−1(x)−V1(x) and in the 
ase of n odd, we use Vn = V⌈n/2⌉(x)V⌈n/2⌉−1(x)− V1(x)and Vn−1(x) = V⌈n/2⌉−1(x)2−V0(x). The resulting 
hain allows pro
essing the multiplier left-to-right one bit at a time, and thus is 
alled binary 
hain by Montgomery. Ea
h bit in the multiplieradds two terms to the addition 
hain, ex
ept that when pro
essing the �nal bit, only one of thetwo values needs to be 
omputed, and if the two most signi�
ant bits (MSB) are 10b, the aboverule would 
ompute V2(x) twi
e of whi
h one should be skipped. Any trailing zero bits 
an behandled by V2n(x) = Vn(x)2−V0(x) at the 
ost of 1 multipli
ation ea
h. The length Lb(n2k) forthe binary Lu
as 
hain for a number n2k with n odd is therefore 2⌊log2(n)⌋ − 1 + k if the two
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toring small integers with P�1, P+1 and ECMMSB are 10b, or 2⌊log2(n)⌋ + k if n = 1 or the two MSB are 11b. Examples are in Table 4.3.It lists the binary 
hain, the length Lb(n) of the binary 
hain, an optimal 
hain, and the length
L(n) of an optimal 
hain, for odd n up to 15.

n Binary 
hain Lb(n) Optimal 
hain L(n)
3 = 11b 1, 2, 3 2 1, 2, 3 2
5 = 101b 1, 2, 3, 5 3 1, 2, 3, 5 3
7 = 111b 1, 2, 3, 4, 7 4 1, 2, 3, 4, 7 4
9 = 1001b 1, 2, 3, 4, 5, 9 5 1, 2, 3, 6, 9 4
11 = 1011b 1, 2, 3, 5, 6, 11 5 1, 2, 3, 5, 6, 11 5
13 = 1101b 1, 2, 3, 4, 6, 7, 13 6 1, 2, 3, 5, 8, 13 5
15 = 1111b 1, 2, 3, 4, 7, 8, 15 6 1, 2, 3, 6, 9, 15 5Table 4.3: Binary and optimal Lu
as 
hains for small odd values nThe binary 
hain is very easy to implement, but produ
es non-optimal Lu
as 
hains ex
ept forvery small multipliers. The smallest positive integer where the binary method does not produ
ean optimal 
hain is 9, and the smallest su
h prime is 13. Montgomery shows that if n is a primebut not a Fibona

i prime, an optimal Lu
as 
hain for n has length L(n) ≥ r with r minimalsu
h that n ≤ Fr+2 − Fr−3, where Fk is the k-th Fibona

i number. Sin
e Fk = (φk − φ−k)/

√
5where φ = (1 +

√
5)/2 is the Golden Ratio, this suggests that if this bound is tight, for large nan optimal 
hain for n should be about 28% shorter than the binary 
hain.In a Lu
as 
hain a0, a1, . . . , aℓ of length ℓ, a doubling step ak+1 = 2ak 
auses all ai with

k ≤ i ≤ ℓ to be multiples of ak, and all these terms ai are formed using sums and di�eren
es onlyof terms aj , k < j ≤ ℓ, see [66℄. Su
h a doubling step 
orresponds to a 
on
atenation of Lu
as
hains. For 
omposite n = n1 · n2, a Lu
as 
hain 
an be made by 
on
atenating the 
hains of itsfa
tors. E.g., for n = 15, we 
ould multiply every entry in the 
hain 1, 2, 3, 5 by 3 and append itto the 
hain 1, 2, 3 (omitting the repeated entry 3) to form the Lu
as 
hain 1, 2, 3, 6, 9, 15. Sin
eany Lu
as 
hain starts with 1, 2, every 
on
atenation introdu
es one doubling step, and everydoubling step leads to a 
hain that is the 
on
atenation of two Lu
as 
hains. Chains that are notthe 
on
atenation of other 
hains (i.e., that 
ontain no doubling step other than 1, 2) are 
alledsimple 
hains. For prime n, only simple 
hains exist. In the 
ase of binary Lu
as 
hains, the
on
atenated 
hain is never longer than the 
hain for the 
omposite value and usually shorter,so that forming a 
on
atenated Lu
as 
hain from 
hains of the prime fa
tors of n (if known) isalways advisable. The same is not true for optimal 
hains, as shown below.Optimal 
hains 
an be found by exhaustive sear
h for a 
hosen maximal length lmax andmaximal end-value nmax. For odd n ≥ 3, a Lu
as 
hain for n always starts with 1, 2, 3 sin
e adoubling step 2, 4 would produ
e only even values in the remainder of the 
hain. In the exhaustivesear
h, the Lu
as 
hain a0, . . . , ak 
an be extended re
ursively if k < ℓmax and ak < nmax byadding an element ak+1 > ak su
h that the resulting sequen
e is still a Lu
as 
hain, i.e., satisfyingthat there are 0 ≤ i, j ≤ k su
h that either ak+1 = 2ai, or ak+1 = ai + aj and ai − aj is presentin the 
hain. For ea
h 
hain so 
reated, we 
he
k in a table of best known lengths whether thelength k + 1 is smaller than the previously known shortest length for rea
hing ak+1, and if so,update it to k + 1 and store the 
urrent 
hain as the best known for rea
hing ak+1. By tryingall possible 
hain expansions, we are 
ertain to �nd an optimal 
hain for every n ≤ nmax. Thisre
ursive sear
h is very time 
onsuming due to a large number of 
ombinations to try. To rea
ha worthwhile sear
h depth, the possible 
hain extensions 
an be restri
ted. The last step of anoptimal 
hain is always al = aℓ−1 + aℓ−2 as otherwise one or both of aℓ−1, aℓ−2 are obsolete, so
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Figure 4.2: Length of binary and optimal Lu
as 
hains for odd primes p in [100, 15000], and alower bound on the length for primes that are not Fibona

i primes. The graph for the boundis set 0.5 lower to make it visible. The Fibona

i prime 1597 is seen to undershoot this lowerbound.the table of best known lengths needs to be 
he
ked and updated only after su
h an additionstep, and the �nal re
ursion level of the sear
h needs to 
onsider only this addition step. Anydoubling step ak+1 = 2ak 
auses the 
hain to be
ome the equivalent of a 
on
atenated 
hain,so during the re
ursive 
hain expansion, doubling steps need not be 
onsidered. Instead there
ursive sear
h produ
es only the optimal lengths of simple 
hains. Then for all possible pairs
3 ≤ m ≤ n ≤ √nmax, the length of the 
hain for mn is updated with the sum of the lengths of
hains for m and n, if the latter is shorter. This is repeated until no more improvements o

ur.After the �rst pass, the optimal lengths of 
hains for all n where n has at most two prime fa
torsare known. After the se
ond pass, for all n that 
ontain at most three primes, et
., until after atmost O(log(nmax)) passes optimal lengths for all values are known. Using this sear
h method,the minimal lengths of Lu
as 
hains for primes 100 < n < 10000 have been determined, shownin Figure 4.2. It 
ompares the length of the binary Lu
as 
hain, the optimal Lu
as 
hain andthe lower bound on the length of Lu
as 
hains for primes that aren't Fibona

i primes. Thislower bound is quite tight, in the examined data L(n) does not ex
eed it by more than 1. TheFibona

i prime 1597 
an be seen to undershoot this lower bound (as do the smaller Fibona

iprimes, but they are di�
ult to see in the graph).The exhaustive sear
h method is extremely slow and useless for produ
ing addition 
hains forP+1 or ECM if large B1 values are desired. Montgomery [66℄ suggests the algorithm �PRAC,�whi
h produ
es Lu
as 
hains based on GCD 
hains, noting that a subtra
tive GCD algorithm for
n, r with n > r and n ⊥ r always produ
es a valid Lu
as 
hain for n. However, the resulting Lu
as
hain has length equal to the sum of the partial quotients in the 
ontinued fra
tion expansion of
n/(n−r), and if a large partial quotient appears, the resulting Lu
as 
hain is unreasonably long.He �xes this problem by introdu
ing additional rules for redu
tion in the GCD 
hain (ratherthan just repla
ing the larger of the two partial remainders by their absolute di�eren
e as in apurely subtra
tive GCD 
hain) to avoid situations where the quotient of the partial remaindersdeviates too far from the Golden Ratio, yet satisfying the 
onditions for a Lu
as 
hain. The
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toring small integers with P�1, P+1 and ECMgreat advantage is that PRAC usually produ
es very good 
hains and does so rapidly. This wayit is feasible to try a few di�erent suitable r for a given n, and for n in the range of interest forP+1 and ECM, one usually dis
overs an optimal 
hain this way.It remains the problem of 
hoosing a suitable r ⊥ n to start the GCD 
hain, hoping to �nd a(near) optimal 
hain. Montgomery suggests trying r = n−⌊n/c⌉ for several irrational c su
h thatthe 
ontinued fra
tion expansion of c has small partial quotients. This way, the partial fra
tionexpansion of n/(n − r) starts with small partial quotients as well. Good 
hoi
es are the goldenRatio c0 = φ, whose partial quotients all are 1, or numbers with partial quotients all 1 ex
eptfor one or two 2 among the �rst 10 partial quotients. The resulting large number of multipliersis not a problem if the Lu
as 
hains are pre
omputed, but in 
ases where they are 
omputedon-the-�y during stage 1 of P+1 or ECM, a smaller set of multipliers should be used, say, onlythose with at most one 2 among the �rst ten partial quotients.Even with a large set of ci values to try, PRAC in the form given by Montgomery 
annotalways obtain an optimal 
hain. The smallest example is n = 751 whi
h has two Lu
as 
hainsof optimal length L(751) = 14:
1, 2, 3, 5, 7, 12, 19, 24, 43, 67, 110, 177, 287, 464, 751 and
1, 2, 3, 5, 8, 13, 21, 34, 55, 68, 123, 191, 314, 437, 751.Both 
hains involve an addition step that referen
es a di�eren
e that o

urred 5 steps beforethe new term: for the former sequen
e in the step a8 = 43 = a7 + a6 = 24 + 19, with di�eren
e
a7 − a6 = 5 = a3, and for the latter sequen
e in the step a10 = 123 = a9 + a8 = 68 + 55, withdi�eren
e a9 − a8 = 13 = a5. The original PRAC algorithm does not have any rule that allowsutilizing a di�eren
e that o

urred more than 4 steps before the new term and so 
annot �ndeither of these two 
hains. Another, similar 
ase is n = 1087. For primes below 10000, I found
40 
ases where PRAC did not �nd an optimal 
hain. For the purpose of generating Lu
as 
hainsfor P+1 and ECM, these missed opportunities at optimal 
hains are of no great 
onsequen
e.When using P+1 and ECM as a fa
toring subroutine in NFS, the B1 value is often less than 751so that su
h 
ases do not o

ur at all, and if a greater B1 should be used, they o

ur so rarelythat adding more rules to PRAC so that optimal 
hains are found for all primes below B1 wouldin
rease the 
ode 
omplexity of our P+1 or ECM stage 1, whi
h implements ea
h PRAC rule(see Se
tion 4.5.2), for little gain. For our implementation, this was not deemed worthwhile. Forthe purpose of �nding optimal Lu
as 
hains rapidly, it would be interesting to augment PRACwith a suitable rule for the required addition step ak = ak−1 + ak−2 with ak−1 − ak−2 = ak−5,and testing whi
h primes remain su
h that the modi�ed PRAC 
annot �nd optimal 
hains.For 
omposite n = pq, we trivially have L(n) ≤ L(p) + L(q), sin
e we 
an 
on
atenate the
hain for p and the 
hain for q. In some 
ases, a shorter 
hain for the 
omposite n exists thanfor the 
on
atenated 
hains of its fa
tors. The smallest example is 1219 = 23 · 53 whi
h has

1, 2, 3, 4, 7, 11, 18, 29, 47, 76, 123, 170, 293, 463, 756, 1219as an optimal 
hain of length 15, while an optimal 
hain for 23 is 1, 2, 3, 4, 5, 9, 14, 23 of length
7, and for 53 is 1, 2, 3, 5, 6, 7, 13, 20, 33, 53 of length 9.Similarly, 
omposite numbers n exist where PRAC with a 
ertain set of multipliers �nds a
hain for n that is shorter than the 
on
atenated simple 
hains for the divisors of n. A problemis that the starting pair n, r for the GCD sequen
e must be 
oprime, possibly making several
c multipliers ineligible for an n with small prime fa
tors. Starting with a large enough set ofmultipliers, usually enough of them produ
e 
oprime n and r that an optimal 
hain 
an befound, if one exists of a form suitable for PRAC. The example n = 1219 above is found, e.g.,with r = 882, using the multiplier 3−Φ with 
ontinued fra
tion expansion //1, 2, 1, 1, 1, 1, . . . //.



4.5. P+1 Algorithm 774.5.2 Byte Code and CompressionIn implementations of P+1 or ECM su
h as in GMP-ECM [103℄ that typi
ally operates onnumbers of hundreds to ten-thousands of digits, or in the ECM implementation of Prime95 [102℄that operates on number of up to several million digits, the 
ost of generating good Lu
as 
hainson-the-�y during stage 1 is mostly negligible, ex
ept for P+1 on relatively small numbers of onlya few hundred digits. However, in an implementation of ECM and espe
ially P+1 designed fornumbers of only a few ma
hine words, the on-the-�y generation of Lu
as 
hains would take anuna

eptable part of the total run-time. Sin
e in our appli
ation of using P+1 and ECM as afa
toring sub-routine in NFS, identi
al stage 1 parameters are used many times over again, itis possible to pre
ompute optimized Lu
as 
hains and pro
ess the stored 
hain during P+1 orECM stage 1.This raises the question how the 
hain should be stored. Sin
e the PRAC algorithm repeatedlyapplies one of nine rules to produ
e a Lu
as 
hain for a given input, an obvious method is tostore the sequen
e of PRAC rules to apply. The pre
omputation outputs a sequen
e of byteswhere ea
h byte stores the index of the PRAC rule to use, or one of two extra indi
es for theinitial doubling resp. the �nal addition that is 
ommon to all (near-)optimal Lu
as 
hains. Thisway, a byte 
ode is generated that 
an be pro
essed by an interpreter to 
arry out the stage 1
omputations for P+1 or ECM. For ea
h prime to in
lude in stage 1, the 
orresponding byte
ode is simply appended to the byte 
ode, whi
h results in a (long) 
on
atenated Lu
as 
hainfor the produ
t of all stage 1 primes. If primes are to be in
luded whose produ
t is known tohave a better simple Lu
as 
hain than the 
on
atenation of the 
hains for the individual primes,then their produ
t should be passed to the byte-
ode generating fun
tion.The byte 
ode generated by PRAC is highly repetitive. For example, byte 
odes for thePRAC 
hains for the primes 101, 103, 107, and 109 are
101 : 10, 3, 3, 0, 3, 3, 0, 5, 3, 3, 3, 11
103 : 10, 3, 0, 3, 3, 0, 3, 3, 0, 4, 3, 11
107 : 10, 3, 0, 3, 3, 0, 3, 0, 4, 3, 3, 3, 11
109 : 10, 3, 0, 3, 0, 1, 1, 3, 11It is bene�
ial to redu
e redundan
y in the byte 
ode to speed up stage 1. The byte 
odeinterpreter that exe
utes stage 1 must fet
h a 
ode byte, then 
all the program 
ode that 
arriesout the arithmeti
 operations that implement the PRAC rule indi
ated by the 
ode; thus thereis a 
ost asso
iated with ea
h 
ode byte. If the interpreter uses a 
omputed jump to the 
odeimplementing ea
h PRAC rule, there is also a bran
h mispredi
tion ea
h time a 
ode byte isdi�erent from the previous one, as 
urrent mi
ropro
essors typi
ally predi
t 
omputed jumps asgoing to the same address as they did the previous time. Some PRAC rules frequently o

urtogether, su
h as rule 3 followed by rule 0, so that merging them may lead to simpli�
ationsin the arithmeti
. In parti
ular, rules 11 (end of a simple 
hain) and 10 (start of a new simple
hain) always appear together, ex
ept at the very start and at the very end of the byte 
ode.These issues are addressed by byte 
ode 
ompression. A simple stati
 di
tionary 
oder greed-ily translates frequently observed patterns into new 
odes. The byte 
ode interpreter implementsmerged rules a

ordingly. For example, the byte 
ode sequen
e "3, 0" (for an addition followedby a swap of variable 
ontents) o

urs very frequently and may be translated to a new 
ode,say 12, and the interpreter performs a merged addition and swap. The 
odes "11, 10" alwayso

ur as a pair and 
an be substituted ex
ept at the very start and the very end of the byte
ode,but these two o

urren
es 
an be hard-
oded into the interpreter, so they do not need to be
onsidered individually at all.
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toring small integers with P�1, P+1 and ECMSin
e we often 
an 
hoose among several di�erent Lu
as 
hains of equal length for a givenstage 1 prime by using di�erent multipliers in PRAC, we 
an pi
k one that leads to the simplest
ompressed 
ode by 
ompressing ea
h 
andidate 
hain, and 
hoosing the one that has the smallestnumber of 
ode bytes and 
ode byte 
hanges.For 
omparison, without any 
ompression or e�ort to redu
e the number of 
ode bytes or
ode 
hanges when 
hoosing PRAC multipliers, the byte 
ode for a stage 1 with B1 = 500
onsists of 1487 
ode bytes and 1357 
ode 
hanges, whereas even with the simple substitutionrules des
ribed above and 
areful 
hoi
e of PRAC multipliers to minimize the number of 
odebytes and 
ode 
hanges, only 554 
ode bytes with 435 
ode 
hanges remain.4.5.3 P+1 Stage 1 Performan
eTable 4.4 
ompares the performan
e of the P+1 stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom
B1 1 word 2 words −2 bits 1 word 2 words −2 bits100 4.04 8.44 3.45 6.30200 7.50 17.3 6.32 12.3300 10.3 24.6 8.69 17.2400 13.4 32.5 11.2 22.3500 16.6 40.7 14.0 27.9600 19.5 48.0 16.4 32.8700 22.8 56.6 19.1 38.5800 25.7 64.0 21.5 43.5900 28.9 72.4 24.2 48.91000 32.0 80.4 26.7 54.2Table 4.4: Time in mi
rose
onds for P+1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs, using pre
omputed Lu
as 
hains stored as 
ompressedbyte 
ode.For 
omparison, without using byte 
ode 
ompression or 
hoosing the PRAC multipliers tominimize byte 
ode length and number of 
ode 
hanges, on Core 2, P+1 stage 1 with 1 wordand B1 = 500 takes 20.4µs and so is about 22% slower, and with 2 words takes 50.4µs and so isabout 24% slower.4.6 ECM AlgorithmThe Ellipti
 Curve Method of fa
torization was introdu
ed by H. W. Lenstra in 1987 [62℄.Whereas P�1 works in the group F∗

p of order p − 1 and P+1 in a subgroup of F∗
p2 of order

p− 1 or p + 1, ECM works in the Mordell-Weil group of points on an ellipti
 
urve de�ned over
Fp. By Hasse's theorem, the number of points and therefore the order of the Mordell-Weil groupof an ellipti
 
urve over Fp is in [p+1− 2

√
p, p+1+2

√
p]. The number of points on a parti
ular
urve depends on both the 
urve parameters and the �eld. ECM �nds a prime fa
tor p of N ifthe 
urve over Fp has smooth order; the advantage of ECM over previous algorithms su
h as P�1and P+1 (whi
h always work in a group of order p − 1 or p + 1) is that many di�erent 
urves
an be tried, until one with su�
iently smooth order is en
ountered.



4.6. ECM Algorithm 79Any ellipti
 
urve E over a �eld K of 
hara
teristi
 neither 2 nor 3 
an be de�ned by theWeierstraÿ equation
y2 = x3 + ax + b. (4.2)This equation de�nes an ellipti
 
urve if and only if the dis
riminant 4a3 +27b2 does not vanish.The set of points on E 
onsists of the solutions (x, y) ∈ K2 of (4.2), plus the point at in�nity O.The group addition law of two points on the 
urve is de�ned geometri
ally by putting astraight line through the two points (or, if the points are identi
al, the tangent of the 
urve inthat point), taking the line's new interse
tion point with the 
urve and mirroring it at the x-axis.Sin
e the 
urve is symmetri
 around the x-axis, the mirrored point is on the 
urve, and is theresult. If the straight line is verti
al, no new interse
tion point exists; in this 
ase the point atin�nity is taken as the result. The point at in�nity is the identity element of the group, addingit to any point results in the same point. The inverse of a point is the point mirrored at the

x-axis. This addition law on the points of an ellipti
 
urve de�nes an Abelian group, see forexample [91℄.The Weierstraÿ form of ellipti
 
urves 
an be used for implementing ECM, but requiresa 
ostly modular inverse in the 
omputation of point additions. Montgomery [65℄ proposes analternative form of ellipti
 
urve equation in proje
tive 
oordinates so that its addition law avoidsmodular inverses, while still keeping the number of required multipli
ations low. His 
urves areof form
BY 2Z = X(X2 + AXZ + Z2), (4.3)with points (X : Y : Z) ∈ K3 satisfying (4.3), where X,Y,Z are not all zero. Two points areidenti
al if (X2 : Y2 : Z2) = (kX1 : kY1 : kZ1) for some k ∈ K, k 6= 0. The point at in�nity is

O = (0 : 1 : 0).Not all ellipti
 
urves over �nite �elds 
an be brought into form (4.3), but we may restri
t ourECM implementation to use only these 
urves. Montgomery des
ribes an addition law for 
urvesof this form. Given two distin
t points P1 and P2, we 
an 
ompute the X and Z-
oordinatesof P1 + P2 from the X and Z-
oordinates of P1, P2 and P1 − P2. Similarly, we 
an 
omputethe X and Z-
oordinates of 2P from the X and Z-
oordinates of P and the 
urve parameters.Surprisingly, the Y -
oordinate is not needed in these 
omputations, and 
an be ignored entirelywhen using 
urves in Montgomery form for ECM, and points are 
ommonly written as only
(X :: Z) with Y -
oordinate omitted. The details of the addition law are found in [65, 10.3.1℄ or[67, 2.3℄.This addition law requires that in order to form the sum of two points, their di�eren
e isknown or zero. This is reminis
ent of the P+1 method where we need Vm−n(x) to 
ompute
Vm+n(x) from Vm(x) and Vn(x), and the same Lu
as 
hains used to 
ompute Vk(x) for integer
k in P+1 
an be used to 
ompute the multiple kP of a point P on a 
urve in Montgomery formin ECM.4.6.1 ECM Stage 1In stage 1 of ECM, we 
hoose a suitable 
urve E of form (4.3) de�ned over Z/NZ, where N isthe integer we wish to fa
tor. Naturally N is 
omposite, so Z/NZ is a ring but not a �eld, butthis has little 
onsequen
e for the arithmeti
 of the 
urve as the only operation that 
ould fail isinversion of a ring element, and an unsu

essful inversion of a non-zero element in Z/NZ revealsa proper fa
tor of N whi
h is the exa
t purpose of ECM. We often 
onsider the 
urve Ep for aprime p | N , whi
h is the 
urve E redu
ed modulo p, i.e., E over the �eld Fp.



80 Chapter 4. Fa
toring small integers with P�1, P+1 and ECMWe then 
hoose a point P0 on E and 
ompute P1 = e · P0 for a highly 
omposite integer e,usually taken to be divisible by all primes and prime powers up to a suitably 
hosen value B1,i.e., e = lcm(1, 2, 3, 4, . . . , B1). We hope that for some prime fa
tor p of N , the order of P0 on
Ep is B1-smooth (and thus divides e), sin
e then the point P1 on Ep will be the point at in�nity
(0 :: 0) so that P1 has Z-
oordinate 0 (mod p) and p | gcd(PZ , N).To �nd a point P0 on E over Z/NZ, we 
hoose a point of E over Q and map it to Z/NZ.The point over Q must not be a torsion point, or P0 will have identi
al order on Ep for all p | N(unless p divides the order of P0 or the dis
riminant of E, whi
h is unlikely ex
ept for smallprimes) so that P1 is the point at in�nity either for all Ep or for none, produ
ing only the trivialfa
torizations N or 1.By 
areful sele
tion of the 
urve E we 
an ensure that number of points of Ep is a multipleof 12 or 16, signi�
antly in
reasing the probability that the order of P0 is smooth. The 
hoi
e of
E is des
ribed in Se
tion 4.6.2.The 
omputation of P1 = e · P0 on E is 
arried out by use of pre
omputed Lu
as 
hains,similarly as in the P+1 algorithm. The sele
tion of near-optimal Lu
as 
hains for ECM isdes
ribed in Se
tion 4.6.3.If stage 1 of ECM is unsu

essful, we try stage 2 where we hope to �nd a prime p su
h thatthe order of P0 on Ep fa
tors into primes and prime powers up to B1, ex
ept for one bigger(but not too mu
h bigger) prime q. Our stage 2 is very similar for P�1, P+1, and ECM and isdes
ribed in Se
tion 4.7.4.6.2 Choi
e of CurveIn a letter to Ri
hard Brent, Hiromi Suyama [95℄ showed that 
urves of form (4.3) over Fp alwayshave group order divisible by 4, and also showed a parametrization that ensures that the grouporder is divisible by 12, whi
h Brent des
ribes in [16℄. This parametrization generates an in�nitefamily of 
urves over Q whi
h 
an be used to generate a large number of distin
t 
urves modulo
N . For a given integer parameter σ 6= 0, 1, 3, 5, let

u = σ2 − 5, v = 4σ,

X0 = u3, Z0 = v3 and A = (v−u)3(3u+v)
4u3v

− 2.
(4.4)Then the point (X0 :: Z0) is on the 
urve (4.3) with parameter A. The same parametrization isused by GMP-ECM [103, 1℄ and Prime95 [102℄.Montgomery showed in his thesis [67℄ how to 
hoose 
urves of form (4.3) su
h that the 
urveover Q has a torsion subgroup of order 12 or 16, leading to group order divisible by 12 or 16,respe
tively, when the 
urve is mapped to Fp for almost all p.For 
urves with rational torsion group of order 12 he uses

t2 = u2−12
4u , a = t2−1

t2+3

X0 = 3a2 + 1, Z0 = 4a and A = −3a4−6a2+1
4a3 ,

(4.5)where u3 − 12u is a rational square. The solutions of v2 = u3 − 12u form an ellipti
 
urve ofrank 1 and 2-torsion over Q, with generator (−2, 4) and 2-torsion point (0, 0). However, addingthe torsion point or not seems to produ
e isomorphi
 
urves for ECM, so we ignore it. Hen
efor a given integer parameter k > 1 we 
an 
ompute suitable values of u and v by 
omputing
k · (−2, 4) on v2 = u3 − 12u. We 
an then let t = v/(2u). This produ
es an in�nite family of
urves over Q.



4.6. ECM Algorithm 81Curves with torsion 16 and positive rank over Q are more di�
ult to generate, see [67,6.2℄ for details. We 
urrently implement only one su
h 
urve with X0 = 8, Z0 = 15, and
A = 54721/14400.These parametrizations ensure that the group order is divisible by 12 or 16, respe
tively, butthe resulting group order of the 
urve over Fp does not behave like an integer 
hosen uniformlyat random from the integers that are multiples of 12 or 16, respe
tively, in the Hasse intervalaround p. In parti
ular, the average valuation of 2 in the group order for 
urves with rationaltorsion 12 is 11/3, slightly higher than 10/3 for 
urves in Brent-Suyama parametrization (whi
hhave rational torsion 6), making them somewhat more likely to �nd fa
tors. The divisibilityproperties will be examined in more detail in Chapter 5.Very small σ-values for the Brent-Suyama parametrization lead to 
urves with simple ratio-nals for the point 
oordinate and 
urve parameter, and very small k-values for Montgomery'sparametrization for 
urves with rational torsion 12 lead to simple rationals for a, see Table 4.5.These rationals 
an be mapped to Z/NZ easily, as the denominators are highly 
omposite inte-gers so that the required divisions modulo N 
an be done by the methods of Se
tion 4.3.4 anda few multipli
ations.When fa
toring 
ofa
tors after the sieving step of NFS into large primes, only very few 
urvesare required on average sin
e the primes to be found are relatively small, and with an early-abortstrategy, only the �rst few 
urves work on larger 
omposites where arithmeti
 is more expensive.In spite of the small number of 
urves with su
h simple rationals as 
urve parameters, it is usefulto implement them as spe
ial 
ases.

σ X0 Z0 A

2 −1 512 −3645/32
4 1331 4096 6125/85184

k a X0 Z0 A

2 −3/13 196/169 −12/13 −4798/351
3 28/37 3721/1369 112/37 −6409583/3248896Table 4.5: Some ellipti
 
urves 
hosen by the Brent-Suyama parametrization with group orderdivisible by 12, and by Montgomery's parametrization with rational torsion group of order 12.4.6.3 Lu
as Chains for ECMIn prin
iple, Lu
as 
hains for ECM 
an be 
hosen exa
tly as for P+1. However, a subtle di�eren
eexists: in P+1, the 
ost of a doubling V2n(x) = Vn(x)2 − 2 is identi
al to that of an addition

Vm+n(x) = Vm(x)Vn(x)− Vm−n if Vm−n is known and a squaring is taken to have the same 
ostas a multipli
ation. This way, the 
ost of a Lu
as 
hain depends only on its length.In ECM, the 
ost of a point doubling usually di�ers from the 
ost of an addition of distin
tpoints. In the addition rules given by Montgomery, a doubling takes 5 modular multipli
ationsof whi
h 2 are squarings, whereas an addition of distin
t points takes 6 modular multipli
ationsof whi
h again 2 are squarings.These di�erent 
osts 
an be taken into a

ount when 
hoosing Lu
as 
hains. For example, tomultiply a point by 7, we 
an 
hoose between the 
hains 1, 2, 3, 5, 7 or 1, 2, 3, 4, 7 of equal length.In the former, all additions ex
ept for the initial doubling 1, 2 are additions of distin
t values.In the latter, we 
an produ
e 4 by doubling 2, so that this Lu
as 
hain would save 1 modularmultipli
ation in the ellipti
 
urve arithmeti
.



82 Chapter 4. Fa
toring small integers with P�1, P+1 and ECMWhen generating Lu
as 
hains with PRAC using several multipliers, we 
an 
hoose the best
hain not a

ording to its length but by the 
ost of the arithmeti
 performed in ea
h PRAC rulethat is used to build the 
hain.The speedup in pra
ti
e is relatively small: with two-word modulus, ECM stage 1 with
B1 = 500 is about 1% faster when 
ounting the 
ost of a doubling as 5/6 of the 
ount of anaddition when 
hoosing Lu
as 
hains. Still, this improvement is so simple to implement that itmay be 
onsidered worthwhile.As for P+1, the pre
omputed addition 
hains are stored as byte 
ode that des
ribes a sequen
eof PRAC rules to apply. Code 
ompression may be used to redu
e the overhead in the byte 
odeinterpreter, but sin
e the ellipti
 
urve arithmeti
 is more expensive than in the 
ase of P+1, therelative speedup gained by 
ompression is mu
h smaller.4.6.4 ECM Stage 1 Performan
eTable 4.6 
ompares the performan
e of the ECM stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom

B1 1 word 2 words −2 bits 1 word 2 words −2 bits
100 11.8 35.6 9.33 24.4
200 24.5 77.9 19.4 52.6
300 35.3 113 27.8 76.0
400 46.7 151 36.6 101
500 58.7 190 46.2 127
600 69.6 226 54.6 151
700 82.3 266 64.5 178
800 93.6 302 72.4 202
900 105 342 82.5 229
1000 117 381 92.0 255Table 4.6: Time in mi
rose
onds for ECM stage 1 with di�erent B1 values on 2.146 GHz Core 2and 2 GHz AMD Phenom CPUs4.7 Stage 2 for P�1, P+1, and ECMStage 1 of P�1, P+1, and ECM all 
ompute an element ge

0 of some (multipli
atively written)group G for a highly 
omposite integer e, typi
ally 
hosen as e = lcm(1, 2, 3, 4, . . . , B1) for someinteger B1. If the order of g0 is B1-smooth, then g1 = ge
0 is the identity in G. Sin
e G isde�ned over Fp where p divides N , the number to fa
tor, we 
an 
onstru
t from the identity in

G a residue r (mod N) su
h that r ≡ 0 (mod p) but hopefully not r ≡ 0 (mod N), and then
gcd(r,N) usually reveals p. If the order of g0 is not B1-smooth, stage 1 fails to �nd p. However,we may be able to �nd it yet if the order of g0 
onsists of a B1-smooth part times a not-too-largeprime q.Stage 2 of P�1, P+1, and ECM tries to �nd the value of q e�
iently on the assumption that
q is prime and not very large, although larger than B1, by looking for a mat
h gm

1 = gn
1 whi
ho

urs when q | m − n. We will des
ribe the stage 2 for the P+1 algorithm; P�1 
an use thesame algorithm by adjusting its stage 1 output, and the stage 2 for ECM is stru
turally verysimilar. Di�eren
es between the P+1 and ECM stage 2 are noted.



4.7. Stage 2 for P�1, P+1, and ECM 83Our stage 2 is modeled after the enhan
ed standard 
ontinuation des
ribed by Montgomery [65℄.For given sear
h limits B1 and B2 and input X1 it 
hooses a value d with 6 | d and 
omputestwo lists
fi = Vid(X1) mod N for ⌊B1/d⌉ ≤ i ≤ ⌊B2/d⌉ and (4.6)
gj = Vj(X1) mod N for 1 ≤ j < d/2 and j ⊥ d, (4.7)so that all primes q in ]B1, B2] 
an be written as q = id− j or q = id + j.Let X1 ≡ α1 + 1/α1 (mod N), where α1 may be in a quadrati
 extension of Z/NZ, andassume

αq
1 ≡ 1 (mod p) (4.8)for some unknown prime p, p | N and a prime q, B1 < q ≤ B2. Let q = id − j or q = id + j.Then, using V−n(X) = Vn(X), we have

Vid(X1) ≡ Vq±j(X1) ≡ αq±j
1 + 1/αq±j

1

≡ α±j
1 + 1/α±j

1 ≡ V±j(X1) ≡ Vj(X1) (mod p)and so
Vid(X1)− Vj(X1) ≡ 0 (mod p). (4.9)After the lists fi, gj are 
omputed, we 
an 
olle
t the produ
t
A =

∏

id±j=q
B1<q≤B2

(fi − gj) mod N. (4.10)If there is a prime q in ]B1, B2] su
h that (4.8) holds, the produ
t (4.10) will in
lude i, j su
hthat (4.9) holds, and thus p | gcd(A,N).Stage 1 of P�1 
omputes x1 = xe
0 (mod N) and we 
an set X1 = x1 + 1/x1 to make the P�1stage 1 output 
ompatible with our stage 2 at the 
ost of one modular inverse. Stage 1 of P+1
omputes x1 = Ve(x0) = Ve(α0 + 1/α0) = αe

0 + 1/αe
0 and we may simply set X1 = x1.For P�1 stage 2, we 
ould also use fi = xid

1 mod N and gj = xj
1 mod N , for 1 ≤ j < dand j ⊥ d, instead of (4.6). An advantage of using (4.6) is that V−n(X) = Vn(X), so that

gj = Vj(X) mod N needs to be 
omputed only for 1 ≤ j < d/2, and one (i, j)-pair 
an sometimesin
lude two primes at on
e. The same 
ould be a
hieved by using fi = x
(id)2

1 and gj = xj2

1 , but
omputing these values for su

essive i or j via (x(n+1)2 , x2(n+1)+1) = (xn2 · x2n+1, x2n+1 · x2)
osts two multipli
ations, whereas Vn+1(x) = Vn(x)V1(x) − Vn−1(x) 
osts only one. However, amodular inverse is required to 
onvert the P�1 stage 1 output into the required form. Whi
happroa
h is better thus depends on the 
hoi
e of stage 2 parameters, i.e., on how many valuesneed to be pre
omputed for the fi and gj lists. Assuming a small B1, when using B2 ≈ 5000 and
d = 210, we need about 24 values for fi and another 24 for gj . The 
ost of a modular inverseis roughly 50 times the 
ost of a modular multipli
ation in our implementation, so the twoapproa
hes are about equally fast. Using the same stage 2 for P�1 and P+1 has the advantageof requiring only one implementation for both methods.For ECM, we again would like two lists fi and gj su
h that fi ≡ gj (mod p) if id ·P1 = j ·P1on Ep, where P1 is the point that was output by ECM stage 1. We 
an use fi = (id · P1)X , the
X-
oordinate of id ·P1, and gj = (jP1)X . A point and its inverse have the same X-
oordinate on
urves in Weierstraÿ and Montgomery form, so again we have fi − gj ≡ 0 (mod p) if q | id ± j.



84 Chapter 4. Fa
toring small integers with P�1, P+1 and ECMWith points in proje
tive 
oordinates, the points need to be 
anoni
alized �rst to ensure thatidenti
al points have identi
al X-
oordinates, whi
h is des
ribed in Se
tion 4.7.2.How to 
hoose the parameter d and the set (i, j)-pairs needed during stage 2 for given B1and B2 values is des
ribed in Se
tion 4.7.1. Se
tion 4.7.2 shows how to 
ompute the lists fi and
gj e�
iently, and Se
tion 4.7.3 des
ribes how to a

umulate the produ
t (4.10).4.7.1 Generating PlansThe 
hoi
e of d, the sets of i and j values to use for generating fi and gj , respe
tively, and the setof (i, j)-pairs for whi
h to a

umulate the produ
t of fi−gj depend on the B1 and B2 parametersfor stage 2, but are independent of N , the number to fa
tor. These 
hoi
es are pre
omputed forgiven B1 and B2 and are stored as a �stage 2 plan.� The stage 2 implementation then 
arriesout the operations des
ribed by the plan, using arithmeti
 modulo N .The plan provides the values d, i0, i1, a set S and a set T , 
hosen so that all primes q in
]B1, B2] appear as q = id± j for some (i, j) ∈ T with i0 ≤ i ≤ i1 and j ∈ S.We try to 
hoose parameters that minimize the number of group operations required forbuilding the lists fi and gj and minimize the number of (i, j)-pairs required to 
over all primesin the ]B1, B2] interval. This means that we would like to maximise i0, minimize i1, and 
overtwo primes in ]B1, B2] with a single (i, j)-pair wherever possible.We 
hoose d highly 
omposite and S = {1 ≤ j < d/2, j ⊥ d}, so that all integers 
oprimeto d, in parti
ular all primes not dividing d, 
an be written as id ± j for some integer i and
j ∈ S. We assume B1 is large enough that no prime greater than B1 divides d. Choosing valuesof i0 = ⌊B1/d⌉ and i1 = ⌊B2/d⌉ is su�
ient, but may be improved as shown below.Computing the lists fi and gj requires at least one group operation per list entry, whi
h isexpensive espe
ially in the 
ase of ECM. The list fi has i1 − i0 + 1 entries where i1 − i0 ≈
(B2 − B1)/d, and gj has φ(d)/2 entries, so we 
hoose d highly 
omposite to a
hieve small φ(d)and try to minimize i1− i0 +1+φ(d)/2 by ensuring that i1− i0 +1 and φ(d)/2 are about equallylarge. In our appli
ation of �nding primes up to, say, 232 as limited by the large prime boundused in the NFS sieving step, the value of B2 will usually be of the order of a few thousand, anda 
hoi
e d = 210 works well in this 
ase. With B2 = 5000, i1 = 24 and |S| = 24, so the two listsof fi and gj are about equally large, assuming small i0. For smaller B2, a smaller d is preferable,for example d = 90 for B1 = 100, B2 = 1000.We have 
hosen i1 as an upper bound based on B2, but we may redu
e i1 yet if [i1d −
d/2, i1d + d/2] does not in
lude any primes up to B2, and so obtain the �nal value of i1.Having 
hosen d, S, and i1, we 
an 
hoose T . We say a prime q ∈ ]B1, B2] is 
overed byan (i, j)-pair if q | id ± j; assuming that only the largest prime fa
tor of any id ± j value liesin ]B1, B2], ea
h pair may 
over up to two primes. For ea
h prime q ∈ ]B1, B2] we mark the
orresponding entry a[q] in an array to signify a prime that yet needs to be 
overed.Let r be the smallest prime not dividing d. Then q | id±j and q 6= id±j implies q = (id±j)/swith s ≥ r sin
e id ± j ⊥ d, thus q ≤ (id ± j)/r. Hen
e 
omposite values of id ± j with i ≤ i1
an 
over only primes up to ⌊(i1d + d/2)/r⌋, and ea
h prime q > ⌊(i1d + d/2)/r⌋ 
an be 
overedonly by q = id± j.In a �rst pass, we examine ea
h prime q, ⌊(i1d + d/2)/r⌋ < q ≤ B2, highest to lowest andthe (i, j)-pair 
overing this prime. This pair is the only way to 
over q and must eventually bein
luded in T . If this (i, j)-pair also 
overs a smaller prime q′ as a 
omposite value, then a[q′] isun-marked.In a se
ond pass, we look for additional (i, j)-pairs that 
over two primes, both via 
ompositevalues. We examine ea
h (i, j)-pair with i0 ≤ i ≤ i1 highest to lowest, and j ∈ S. If there are



4.7. Stage 2 for P�1, P+1, and ECM 85two primes q′ and q′′ marked in the array that are 
overed by the (i, j)-pair under examination,then a[q′] and a[q′′] are un-marked, and a[id− j] is marked instead.In the third pass, we 
over the remaining primes q ≤ ⌊(i1d + d/2)/r⌋ using (i, j)-pairs withlarge i, if possible, hoping that we may in
rease the �nal i0 value. As in the se
ond pass, weexamine ea
h (i, j)-pair in order of de
reasing i and, if there is a prime q′ with a[q′] marked,
q′ | id ± j but q′ 6= id ± j, we un-mark a[q′] and mark a[id − j] instead. This way, all primes in
]B1, B2] are 
overed, and ea
h with an (i, j)-pair with the largest possible i ≤ i1.We now 
hoose the �nal i0 value by looking for the smallest (not ne
essarily prime) q su
hthat a a[q] is marked, and setting i0 = ⌊q/d⌉. The set T is determined by in
luding ea
h (i, j)-pair where an array element a[id− j] or a[id + j] is marked. The pairs in T are stored in orderof in
reasing i so that the fi 
an be 
omputed sequentially for P�1 and P+1.4.7.2 InitialisationIn the initialisation phase of stage 2 for P�1 and P+1 (and similarly for ECM), we 
ompute thevalues gj = Vj(X1) with 1 ≤ j < d/2, j ⊥ d and set up the 
omputation of fi = Vid(X1) for
i0 ≤ i ≤ i1. To do so, we need Lu
as 
hains that generate all required values of id and j. Wetry to �nd a short Lu
as 
hain that produ
es all required values to save group operations whi
hare 
ostly espe
ially for ECM.Lu
as 
hains for values in an arithmeti
 progression are parti
ularly simple, sin
e the di�er-en
e of su

essive terms is 
onstant. We merely need to start the 
hain with terms that generatethe 
ommon di�eren
e and the �rst two terms of the arithmeti
 progression.The values of j with j ⊥ d and 6 | d 
an be 
omputed in two arithmeti
 progressions 1 + 6mand 5 + 6m, via the Lu
as 
hain 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, . . . For d = 210, the required 24values of j 
an therefore be generated with a Lu
as 
hain of length 37.To add the values of id with i0 ≤ i ≤ i1, we need to add d, i0d, and (i0 + 1)d to the 
hain.If 2 || d, we have d/2− 2 ⊥ d and d/2 + 2 ⊥ d and we 
an add d to the Lu
as 
hain by in
luding
4 = 2 + 2 and d = d/2 + 2 + d/2 − 2. If 4 | d, we have d/2 − 1 ⊥ d and d/2 + 1 ⊥ d and we 
anadd d simply via d = d/2 + 1 + d/2 + 1 as 2 is already in the 
hain. Sin
e i0 is usually small, we
an 
ompute both i0d and (i0 + 1)d from d with one binary 
hain.Using this Lu
as 
hain, we 
an 
ompute and store all the gj = Vj(X1) residues as well as
Vd(X1), fi0d(X1), and f(i0+1)d(X1).In the 
ase of P�1 and P+1, sin
e the (i, j)-pairs are stored in order of in
reasing i, all the
fi values need not be 
omputed in advan
e, but 
an be 
omputed su

essively as the (i, j)-pairsare pro
essed.Initialisation for ECMFor ECM stage 2 we use 
urves in Montgomery form with proje
tive 
oordinates, just as instage 1, to avoid 
ostly modular inverses. The initialisation uses the same Lu
as 
hain as in 4.7.2for the required values of id and j, so that id ·P1 and j ·P1 
an be 
omputed e�
iently. However,two points (X1 :: Z1) and (X2 :: Z2) in proje
tive 
oordinates being identi
al does not imply
X1 = X2, but X1/Z1 = X2/Z2, where Z1 and Z2 are generally not equal, so the X-
oordinatesof these points 
annot be used dire
tly to build the lists fi and gj .There are several ways to over
ome this obstru
tion. Several authors (for example [33, 7.4.2℄or [78℄) propose storing both X and Z 
oordinate in the fi and gj lists, and then a

umulatingthe produ
t A =

∏

(i,j)∈T ((fi)X(gj)Z − (gj)X(fi)Z). An advantage of this approa
h is that the
fi 
an be 
omputed sequentially while the produ
t is being a

umulated and the number of gj
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toring small integers with P�1, P+1 and ECMto pre
ompute and store 
an be 
ontrolled by 
hoi
e of d, whi
h allows ECM stage 2 to rununder extremely tight memory 
onditions su
h as in an FPGA implementation. The obviousdisadvantage is that ea
h (i, j)-pair now uses 3 modular multipli
ations instead of 1 as in (4.10).Another approa
h and mu
h preferable in an implementation where su�
ient memory isavailable is 
anoni
alizing the pre
omputed points so that all points have the same Z-
oordinate.To produ
e the desired lists fi and gj , we therefore 
ompute all the required points Qi = id · P1and Rj = j · P1. If all Z-
oordinates of Qi and Rj are made identi
al, Qi = Rj on Ep implies
(Qi)X ≡ (Rj)X (mod p), as desired, and we may set fi = (Qi)X and gj = (Rj)X .We suggest two methods for this. One is to set all Z-
oordinates to 1 (mod N) via (X ::
Z) = (XZ−1 :: 1). To do so, we need the inverse modulo N of ea
h Z-
oordinate of ourpre
omputed points. A tri
k due to Montgomery, des
ribed for example in [25, 10.3.4℄, repla
es
n modular inverses of residues rk modulo N , 1 ≤ k ≤ n, by 1 modular inverse and 3n − 3modular multipli
ations. This way we 
an 
anoni
alize a bat
h of n points with 4n− 3 modularmultipli
ations and 1 modular inverse. Not all points needed for the fi and gj lists need to bepro
essed in a single bat
h; if memory is insu�
ient, the points needed for fi 
an be pro
essedin several bat
hes while produ
t (4.10) is being a

umulated.A faster method was suggested by P. Zimmermann. Given n ≥ 2 points P1, . . . , Pn, Pi =
(Xi :: Zi), we set all Z-
oordinates to ∏1≤i≤n Zi by multiplying ea
h Xk by Tk =

∏

1≤i≤n,i6=k Zi.This 
an be done e�
iently by 
omputing two lists sk =
∏

1≤i≤k Zi and tk =
∏

k<i≤n Zi for
1 ≤ k < n, ea
h at the 
ost of n−2 modular multipli
ations. Now we 
an set T1 = t1, Tn = sn−1,and Ti = si−1ti for 1 < i < n, also at the 
ost of n−2 multipli
ations. Multiplying Xi by Ti 
ostsanother n modular multipli
ations for a total of only 4n − 6 modular multipli
ations, withoutany modular inversion. Algorithm 9 implements this idea. Sin
e the 
ommon Z-
oordinate ofthe 
anoni
alized points is the produ
t of all points idP1 and jP1, the 
omplete set of pointsneeded for the fi and gj lists must be pro
essed in a single bat
h.Interestingly, if the 
urve parameters are 
hosen su
h that the 
urve initialisation 
an bedone with modular division by small 
onstants rather than with a modular inverse, then ECMimplemented this way does not use any modular inverses at all, without sa
ri�
ing the optimal
ost of 1 modular multipli
ation per (i, j)-pair in stage 2.Input: n ≥ 2, an integer

N , a positive integer
Z1, . . . , Zn, residues modulo NData: s, a residue modulo NOutput: T1, . . . , Tn, residues modulo N with Ti ≡

∏

1≤i≤n,i6=k Zi (mod N)
Tn−1 := Zn;for k := n− 1 downto 2 do

Tk−1 := Tk · Zk mod N ;
s := Z1;
T2 := T2 · s mod N ;for k := 3 to n do

s := s · Zk−1 mod N ;
Tk := Tk · s mod N ;Algorithm 9: Bat
h 
ross multipli
ation algorithm.
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uting PlansThe stage 2 plan stores the (i, j)-pairs whi
h 
over all primes in ]B1, B2]. The fi and gj lists are
omputed as des
ribed in 4.7.2. Stage 2 then reads the stored (i, j)-pairs, and multiplies fi − gjto an a

umulator:
A =

∏

(i,j)∈T

(fi − gj) mod N. (4.11)Sin
e the pairs are stored in order of in
reasing i, the full list fi need not be pre
omputed forP�1 and P+1, but ea
h fi 
an be 
omputed sequentially by V(i+1)d(X1) = Vid(X1)Vd(X1) −
V(i−1)d(X1). At the end of stage 2, we take r = gcd(A,N), hoping that 1 < r < N and so that
r is a proper fa
tor of N .Ba
ktra
kingWe would like to avoid �nding all prime fa
tors of the input number N simultaneously, i.e.,�nding N as a trivial fa
tor. As in stage 1 of P�1 and P+1, a ba
ktra
king me
hanism is usedto re
over from su
h a situation.Sin
e r = gcd(A,N) and A is a redu
ed residue modulo N , we �nd r = N as a fa
tor if andonly if A = 0. We set up a �ba
kup� residue A′ = 1 at the start of evaluation of (4.11). Atperiodi
 intervals during the evaluation of (4.11), for example ea
h time that i is in
reased, wetest if A = 0, whi
h is easy sin
e the residue does not need to be 
onverted out of Montgomeryrepresentation if REDC (see Se
tion 4.3.2) is used for the arithmeti
. If A = 0, we take r =
gcd(A′, N) and end stage 2. Otherwise, we set A′ = A. This way, a proper fa
tor of N 
an bedis
overed so long as all prime fa
tors of N are not found between two tests for A = 0.4.7.4 P+1 and ECM stage 2 Performan
eTables 4.7 and 4.8 
ompares the performan
e of the P+1 and the ECM stage 2 implementationfor di�erent B2 values and modulus sizes on AMD Phenom and Intel Core 2 CPUs. In ea
h 
ase,the timing run used B1 = 10 and d = 210, and the time for a run with B1 = 10 and without anystage 2 was subtra
ted.4.7.5 Overall Performan
e of P�1, P+1 and ECMTables 4.9 and 4.10 shows the expe
ted time to �nd primes 
lose to 225, 226, . . . , 232 for moduli of
1 word and of 2 words, and the B1 and B2 parameters 
hosen to minimize the expe
ted time. Theempiri
ally determined probability estimate is based on the ellipti
 
urve with rational 12 torsionand parameter k = 2 in Se
tion 4.6.2. That the B1 and B2 parameters are not monotonouslyin
reasing with fa
tor size is due to the fa
t that the expe
ted time to �nd a prime fa
tor as afun
tion of B1 and B2 is very �at around the minimum, so that even small perturbations of thetimings noti
eably a�e
t the parameters 
hosen as optimal.4.8 Comparison to Hardware Implementations of ECMSeveral hardware implementations of ECM for use as a 
ofa
torization devi
e in NFS have beendes
ribed re
ently, based on the proposed design �SHARK� by Franke et al. [41℄. SHARKis a hardware implementation of GNFS for fa
toring 1024-bit integers whi
h uses ECM for
ofa
torization after sieving. The idea of implementing GNFS in hardware is inspired by the
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toring small integers with P�1, P+1 and ECMCore 2 Phenom
B2 1 word 2 words −2 bits 1 word 2 words −2 bits
1000 3.06 6.72 2.91 6.24
2000 4.09 9.86 3.64 8.08
3000 5.07 12.7 4.37 10.1
4000 6.00 15.5 5.01 11.8
5000 6.95 18.2 5.77 13.8
6000 7.80 20.8 6.40 15.4
7000 8.83 23.7 7.09 17.3
8000 9.69 26.3 7.73 19.0
9000 10.7 29.0 8.39 20.7
10000 11.5 31.4 9.01 22.5
20000 20.3 57.0 15.3 39.3
30000 28.9 81.8 21.3 55.0
40000 37.4 106 27.2 70.8
50000 45.7 130 33.1 86.2
60000 54.1 154 38.8 102Table 4.7: Time in mi
rose
onds for P+1 stage 2 with di�erent B2 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUsobservation of Bernstein [7℄ that dedi
ated hardware 
ould a
hieve a signi�
antly lower 
ost interms of Area-Time produ
t than a software implementation that uses sieving on a regular PC.He proposes, among other algorithms, to use ECM for the smoothness test.Pelzl et al. [78℄ present a s
alable implementation of ECM stage 1 and stage 2 for input num-bers of up to 200 bits, based on Xilinx Virtex2000E-6 FPGAs with an external mi
ro
ontroller.Their design has one modular multipli
ation unit per ECM unit, and ea
h ECM unit performsboth stage 1 and stage 2. They propose using the bounds B1 = 910 and B2 = 57000 for �ndingprimes of up to about 40 bits. They use 
urves in Montgomery form (4.3) and a binary Lu
as
hain for stage 1 that uses 13740 modular multipli
ations (in
luding squarings), and estimatethat an optimized Lu
as 
hain 
ould do it in ≈ 12000 modular multipli
ations. They use anenhan
ed standard stage 2 that uses 3 modular multipli
ations per (i, j)-pair, see 4.7.2. With avalue d = 210, they estimate 303 point additions and 14 point doublings in the initialisation ofstage 2, and 13038 modular multipli
ations for 
olle
ting the produ
t (4.10) with 4346 di�erent

(i, j)-pairs for a total of 14926 modular multipli
ations in stage 2. However, to minimize the ATprodu
t, they propose using d = 30 with a total of 24926 modular multipli
ations in stage 2.In our implementation, stage 1 with B1 = 910 and PRAC-generated 
hains (using 
ost 6for point addition, 5 for doubling, 0.5 for ea
h byte 
ode and 0.5 for ea
h byte 
ode 
hange asparameters for rating 
andidate 
hains) uses 11403 modular multipli
ations, 83% of the �gurefor the binary Lu
as 
hain. (Using 
hains for 
omposite values where the resulting 
hain isshorter than the 
on
atenated 
hains for the fa
tors is not 
urrently used and 
ould probablyredu
e this �gure by a few more per
ent.) Our stage 2 with B2 = 57000 and d = 210 uses 290point additions, 13 point doublings, 1078 modular multipli
ations for point 
anoni
alization and
4101 pairs whi
h 
ost 1 modular multipli
ation ea
h, for a total of 6945 modular multipli
ations.The 
ost of 
omputing and 
anoni
alizing the points idP1 has a relatively large share in this�gure, suggesting that a value for d su
h that B2/(dφ(d)) is 
loser to 1 might redu
e the totalmultipli
ation 
ount. In a hardware implementation, the extra memory requirements may makelarger d values ine�
ient in terms of the AT produ
t, but this is not an issue in a software
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B2 1 word 2 words −2 bits 1 word 2 words −2 bits
1000 5.86 17.2 7.10 17.5
2000 7.46 21.5 7.87 19.7
3000 8.83 25.4 8.79 22.0
4000 10.1 29.7 9.55 24.1
5000 11.5 33.7 10.5 26.5
6000 12.7 37.6 11.2 28.2
7000 14.0 41.4 12.1 30.8
8000 15.4 45.8 12.9 32.7
9000 16.7 49.6 13.7 34.6
10000 17.9 53.4 14.5 36.9
20000 30.5 91.3 22.3 56.6
30000 42.8 128 29.7 75.0
40000 54.9 164 37.2 94.3
50000 66.7 200 44.5 113
60000 78.3 235 51.8 131Table 4.8: Time in mi
rose
onds for ECM stage 2 with di�erent B2 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs

n B1 B2 Prob. 1 word 2 words −2 bits
25 300 5000 0.249 46 103
26 310 6000 0.220 55 125
27 320 6000 0.186 67 151
28 400 6000 0.167 81 182
29 430 7000 0.149 100 224
30 530 11000 0.158 119 275
31 530 10000 0.128 144 330
32 540 10000 0.105 177 410Table 4.9: Expe
ted time in mi
rose
onds and probability to �nd prime fa
tors 
lose to 2nof 
omposites with 1 or 2 words with P�1 on 2 GHz AMD Phenom CPUs. The B1 and B2parameters are 
hosen empiri
ally to minimize the time/probability ratio.implementation on a normal PC. In our implementation, d = 630 provides the minimum totalnumber of 5937 modular multipli
ations in stage 2, only 40% of the number reported by Pelzl etal. for d = 210, and only 24% of their number for d = 30.These �gures suggest that a software implementation of ECM on a normal PC enjoys anadvantage over an implementation in embedded hardware by having su�
ient memory availablethat 
hoi
e of algorithms and of parameters are not 
onstrained by memory, whi
h signi�
antlyredu
es the number of modular multipli
ations in stage 2. This problem might be redu
ed byseparating the implementation of stage 1 and stage 2 in hardware, so that ea
h stage 1 unitsneeds only very little memory and forwards its output to a stage 2 unit whi
h has enough memoryto 
ompute stage 2 with a small multipli
ation 
ount, while the stage 1 unit pro
esses the nextinput number.Gaj et al. [44℄ improve on the design by Pelzl et al. mainly by use of a more e�
ient im-plementation of modular multipli
ation, by avoiding limitations due to the on-
hip blo
k RAM
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n B1 B2 Prob. 1 word 2 words −2 bits
25 130 7000 0.359 67 176
26 130 7000 0.297 81 213
27 150 11000 0.290 101 264
28 160 13000 0.256 124 324
29 180 12000 0.220 151 395
30 200 12000 0.188 190 496
31 260 14000 0.182 231 604
32 250 15000 0.147 283 744Table 4.10: Expe
ted time in mi
rose
onds and probability per 
urve to �nd prime fa
tors 
loseto 2n of 
omposites with 1 or 2 words with ECM on 2 GHz AMD Phenom CPUs. The B1 and

B2 parameters are 
hosen empiri
ally to minimize the expe
ted time.whi
h allows them to �t more ECM units per FPGA, and removing the need for an externalmi
ro
ontroller. The algorithm of ECM stage 1 and stage 2 is essentially the same as that ofPelzl et al. They report an optimal performan
e/
ost ratio of 311 ECM runs per se
ond per $100for an input number of up to 198 bits with B1 = 910, B2 = 57000, d = 210, using an inexpensiveSpartan 3E XC3S1600E-5 FPGA for their implementation. They also 
ompare their implemen-tation to an ECM implementation in software, GMP-ECM [39℄, running on a Pentium 4, and
on
lude that their design on a low-
ost Spartan 3 FPGA o�ers about 10 times better perfor-man
e/
ost ratio than GMP-ECM on a Pentium 4. However, GMP-ECM is a poor 
andidatefor assessing the performan
e of ECM in software for very small numbers with low B1 and B2values. GMP-ECM is optimized for sear
hing large prime fa
tors (as large as reasonably possiblewith ECM) of numbers of at least a hundred digits size by use of asymptoti
ally fast algorithmsin parti
ular in stage 2, see [103℄. For very small input, the fun
tion 
all and loop overhead inmodular arithmeti
 and the 
ost of generating Lu
as 
hains on-the-�y in stage 1 dominates theexe
ution time; likewise in stage 2, the initialisation of the polynomial multi-point evaluationand again fun
tion 
all and loop overhead will dominate, while the B2 value is far too small tolet the asymptoti
ally fast stage 2 (with time in Õ(
√

B2)) make up for the overhead.De Meulenaer et al. [34℄ further improve the performan
e/
ost-ratio by using a high-per-forman
e Xilinx Virtex4SX FPGA with embedded multipliers instead of implementing the mod-ular multipli
ation with general-purpose logi
. They implement only stage 1 of ECM and onlyfor input of up to 135 bits. One ECM unit utilizes all multipliers of the sele
ted FPGA, so oneECM unit �ts per devi
e. By s
aling the throughput of the design of Gaj et al. to 135-bit input,they 
on
lude that their design o�ers a 15.6 times better performan
e/
ost ratio. In parti
ular,assuming a 
ost of $116 per devi
e, they state a throughput of 13793 ECM stage 1 with B1 = 910per se
ond per $100.We 
ompare the 
ost of �nding 40-bit fa
tors using our software implementation of ECMwith that given by de Meulenaer et al. Our implementation is 
urrently limited to moduli ofsize 2 words with the two most signi�
ant bits zero, or 126 bits on a 64-bit system, whereas theimplementation of de Meulenaer et al. allows 135-bit moduli. Extending our implementation tonumbers of 3 words is in progress, but not fun
tional at this time. We expe
t that ECM with
3-word moduli will take about twi
e as long as for 2-word moduli. For the 
omparison we usetimings for 126-bit moduli (2 words) and estimates for 135-bit moduli (3 words).The timings for our 
ode are obtained using an AMD Phenom X4 9350e with four 
ores at
2.0 GHz. The AMD 64-bit CPUs all 
an perform a full 64× 64-bit produ
t every 2 
lo
k 
y
les,
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e XC4VSX25-10 Phenom 9350e Phenom II X4 955Clo
k rate 0.22 GHz 2.0 GHz 3.2 GHzCores per devi
e 1 4 4

126-bit modulus (2 words in software)Time per stage 1 62.5µs 232.1µs ≈ 145µsTime per stage 2 59.2µs 121.5µs ≈ 76µsTime per trial 121.7µs 353.6µs ≈ 221µs#Trials/se
/devi
e 8217 11312 18100Cost per devi
e $300 $215#Trials/se
/$100 2739 8418

135-bit modulus (3 words in software)Time per stage 1 62.5µs ≈ 464µs ≈ 290µsTime per stage 2 59.2µs ≈ 243µs ≈ 152µsTime per trial 121.7 ≈ 707µs ≈ 442µs#Trials/se
/devi
e 8217 ≈ 5658 ≈ 9052Cost per devi
e $300 $215#Trials/se
/$100 2739 4210Table 4.11: Comparison of ECM with B1 = 910, B2 = 57000 for 126-bit and 135-bit input on aVirtex4SX25-10 FPGA and on AMD 64-bit mi
ropro
essors.making them an ex
ellent platform for multi-pre
ision modular arithmeti
. The fastest AMDCPU 
urrently available is a four-
ore 3.2 GHz Phenom II X4 955 at a 
ost of around $215(regular retail pri
e, a

ording to www.newegg.
om on July 28th 2009) and we s
ale the timingslinearly to that 
lo
k rate. Sin
e the 
ode uses almost no resour
es outside the CPU 
ore, linears
aling is reasonable. The number of 
lo
k 
y
les used is assumed identi
al between the Phenomand Phenom II. Similarly, running the 
ode on n 
ores of a CPU is assumed to in
rease totalthroughput n-fold.Table 4.11 
ompares the performan
e of the implementation in hardware of de Meulenaeret al. and of our software implementation, using the parameters B1 = 910, B2 = 57000. Thesoftware implementation uses d = 630 for stage 2. De Meulenaer et al. do not implement stage 2,but predi
t its performan
e as 
apable of 16, 900 stage 2 per se
ond per devi
e. We use thisestimate in the 
omparison. They also give the 
ost of one Xilinx XC4VSX25-10 FPGA as $116when buying 2500 devi
es. The 
urrent quote at www.nuhorizons.
om and www.avnet.
om forthis devi
e is about $300, however. We base the pri
e 
omparison on the latter �gure. Only the
ost of the FPGA or the CPU, respe
tively, are 
onsidered. The results show that a softwareimplementation of ECM 
an 
ompete in terms of 
ost per ECM trial with the published designsfor ECM in hardware. An advantage of the software implementation is �exibility: it 
an runon virtually any 64-bit PC, and so utilize otherwise idle 
omputing resour
es. If new systemsare pur
hased, they involve only standard parts that 
an be readily used for a wide range of
omputational tasks. Given a 
omparable performan
e/
ost ratio, an implementation in softwarerunning on standard hardware is the more pra
ti
al.Our 
urrent implementation is su�
ient for one set of parameters proposed by the SHARK[41℄ design for fa
toring 1024-bit integers by GNFS whi
h involves the fa
torization of approx-imately 1.7 · 1014 integers of up to 125 bits produ
ed by the sieving step. The time for bothstage 1 and stage 2 with B1 = 910, B2 = 57000 is 353.6µs on a 2 GHz Phenom, and about 221µs
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toring small integers with P�1, P+1 and ECMon a 3.2 GHz Phenom II. Using the latter, 1.7 · 1014 ECM trials 
an be performed in approxi-mately 300 CPU-years. But how many 
urves need to be run per input number? Pelzl et al. [78℄state that 20 
urves at B1 = 910, B2 = 57000 �nd a 40-bit fa
tor with > 80% probability, anddoing 20 trials per input number gives a total time of about 6000 CPU years. However, the vastmajority of input numbers will not be 240-smooth, and fewer than 20 
urves su�
e to establishnon-smoothness with high probability, making this estimate somewhat pessimisti
. Assuming a
ost of about $350 for a bare-bone but fun
tional system with one AMD Phenom II X4 955 CPU,this translates to a pessimisti
 estimate of about $2.1M for hardware 
apable of performing therequired ECM fa
torizations within a year.Bernstein et al. [10℄ re
ently demonstrated a highly e�
ient implementation of ECM ongraphi
s 
ards that support general-purpose programming. An NVidia GTX 295 
ard is reportedas performing stage 1 of 4928 ECM 
urves with B1 = 8192 and a 210-bit modulus per se
ond,and is estimated to perform 5895 
urves with the same parameters with a 196-bit modulus.Assuming a pur
hase pri
e of $500 per 
ard, this translates to 11.8 
urves per Dollar and se
ond.Our implementation of ECM takes 2087µs on a Phenom 9350e per 
urve (only stage 1) withthe same parameters and a 126-bit modulus; with 192-bit modulus on a Phenom II X4 955 weestimate the time as approximately 2609µs, or 1533 
urves per se
ond per devi
e, whi
h resultsin approximately 7.1 
urves per Dollar and se
ond. ECM on graphi
s 
ards is therefore a serious
ontender for performing 
ofa
torization in the NFS. The graphi
s 
ard implementation doesnot in
lude a stage 2, however, and implementing one may be di�
ult due to severely restri
tedlow-laten
y memory in graphi
s pro
essing units.



Chapter 5Parameter sele
tion for P�1, P+1, andECM
5.1 Introdu
tionIn Chapter 4 we des
ribed an e�
ient implementation of the P-1, P+1, and ECM fa
toringalgorithms tailored for rapidly pro
essing many small input numbers. However, nothing was saidabout how to 
hoose the various parameters to these algorithms, in parti
ular the B1 and B2values and, for ECM, the parameters of the 
urve, so that the algorithms 
an be used e�
ientlywithin the Number Field Sieve.The sieving phase of the Number Field Sieve looks for (a, b)-pairs with a ⊥ b su
h thatthe values of two homogeneous polynomials Fi(a, b), i ∈ 1, 2, are both smooth as des
ribed inSe
tion 4.1. The sieving step identi�es whi
h of the primes up to the fa
tor base limit Bi divideea
h Fi(a, b) and produ
es the 
ofa
tors ci of Fi(a, b) after the respe
tive fa
tor base primeshave been divided out. The task of the 
ofa
torization step in the sieving phase is to identifythose 
ofa
tors that are smooth a

ording to some smoothness 
riterion; typi
ally a 
ofa
tor ci is
onsidered smooth if it does not ex
eed the 
ofa
tor bound Ci and has no prime fa
tor ex
eedingthe large prime bound Li. The typi
al order of magnitude for Bi is around 107 . . . 108, and the
Li are typi
ally between 100Bi and 1000Bi.To determine whether the 
ofa
tor pair (c1, c2) satis�es this smoothness 
riterion, we try tofa
tor it. For this we attempt a sequen
e of fa
toring methods, where by �method� we mean afa
toring algorithm with a parti
ular set of parameters, su
h as: ECM with the ellipti
 
urvegenerated by the Brent-Suyama parametrization with parameter σ = 6, with B1 = 200 and
B2 = 5000.In order to 
hoose good parameters, we need to be able to 
ompute the probability that aparti
ular parameter 
hoi
e �nds a fa
tor of the input number. That is, we need to 
omputethe probability that a method �nds a fa
tor of a parti
ular size and the expe
ted number offa
tors in the input number of that size so that by summing over possible fa
tor sizes we get theexpe
ted value for the number of fa
tors the method will �nd.We start by examining whi
h parameters of the fa
toring methods a�e
t the probability of�nding a fa
tor in Se
tion 5.2, then show how this probability 
an be 
omputed in Se
tion 5.3.Finally we give an a

urate estimate of the expe
ted number of prime fa
tors in a 
ofa
torprodu
ed by NFS in Se
tion 5.4. 93
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tion for P�1, P+1, and ECM5.2 ParametrizationIn this se
tion we take a 
loser look at the parameters available for the P�1, P+1, and ECMalgorithms, how they a�e
t run-time and the divisibility properties of the asso
iated group orders.Ea
h method �nds a prime fa
tor p of N if the starting element x0 in a (here additively written)group Gp de�ned over Fp has smooth order; more pre
isely, if a multiple ex0 of the startingelement is the identity element of the group, or if qex0 for a not-too-large prime q is the identity.The group operation of Gp requires arithmeti
 modulo p, a yet unknown prime fa
tor of N ,but we 
an instead do all arithmeti
 in Z/NZ whi
h 
ontains Fp. From the identity element ofthe group, a residue r (mod N) is 
onstru
ted with r ≡ 0 (mod p) so that p | gcd(r,N), buthopefully r 6≡ 0 (mod N), sin
e then the gcd reveals a proper fa
tor of N .Stage 1 of these algorithms 
omputes ex0 in their respe
tive group, where e is typi
ally 
hosenas e = lcm(1, 2, 3, 4, . . . , B1) for an integer parameter B1, the �stage 1 bound,� so that e in
ludesas divisors all primes and prime powers up to B1. This way, ex0 is the identity if the order of x0is B1-powersmooth, i.e., has no prime or prime power greater than B1 as a divisor.If stage 1 is unsu

essful, stage 2 takes ex0 as input and e�
iently tests if any qex0 for many
andidate primes q is the identity element; the set of primes to test is typi
ally 
hosen as allprimes greater than B1, but not ex
eeding an integer parameter B2, the �stage 2 bound.�The property that determines su

ess or failure of these methods is the smoothness of theorder of the starting element x0 in Gp, and unlike P�1, the P+1 and Ellipti
 Curve methodshave parameters that a�e
t the order of the group Gp, and hen
e the order of x0. By 
areful
hoi
e of parameters, the probability that the order of Gp (and hen
e of x0) is smooth 
an bein
reased signi�
antly. We therefore examine how the 
hoi
e of parameters a�e
ts divisibilityproperties of the group order |Gp| for a random prime p. By the probability of a random prime
p having a property, we mean the ratio of primes p < n that have that property in the limit of
n→∞, assuming this limit exists.The e�e
t of these modi�ed divisibility properties on the probability of the order of x0 beingsmooth is examined in Se
tion 5.3.5.2.1 Parametrization for P�1The P�1 method, des
ribed in Se
tion 2.2 and Se
tion 4.4, always works in the multipli
ativegroup F∗

p of order p − 1, independently of the 
hoi
e of the starting element x0. Thereforewe 
hoose x0 primarily to simplify the arithmeti
 in stage 1 of P�1, whi
h is basi
ally just amodular exponentiation. With x0 = 2, the modular exponentiation 
an be 
arried out with onlysquarings and doublings in a binary left-to-right exponentiation ladder. A minor e�e
t of the
hoi
e x0 = 2 is that 2 is a quadrati
 residue if p ≡ ±1 (mod 8), so in this 
ase we know that
ordp(x0) | (p− 1)/2, and (assuming 4 | e) that p− 1 | 2e is su�
ient for �nding any prime p.The probability that Valq(p− 1) = k for a random prime p with q prime is 1− 1/(q − 1) for
k = 0 and 1/qk for k > 0; the expe
ted value for Valq(p− 1) is q/(q − 1)2.5.2.2 Parametrization for P+1The P+1 method, des
ribed in Se
tion 2.3 and Se
tion 4.5, works in a subgroup of the group ofunits of Fp[X]/(X2 − x0X + 1) with x0 6≡ 0 (mod p); the order of the group is p −

(

∆
p

) where
∆ = x2

0 − 4, hen
e it 
an be either p − 1 or p + 1, depending on p and the 
hoi
e of x0. Thisallows 
hoosing x0 so that the group order is more likely to be smooth.



5.2. Parametrization 95For example, with ∆ = −1 · k2 for some rational k, the group order is always divisible by 4,in
reasing the average exponent of 2 in the group order from 2 to 3. Other prime fa
tors in thegroup order appear with average exponent as in the P�1 method. A suitable value is x0 = 6/5,giving ∆ = −64/25 = −1 · (8/5)2.With ∆ = −3 · k2, the group order is always divisible by 6, whi
h in
reases the averageexponent of 3 in the group order from 3/4 to 3/2, with other primes fa
tors of the group orderbehaving as in P�1. A suitable value is x0 = 2/7, giving ∆ = −192/49 = −3 ·(8/7)2. This 
hoi
eis suggested in [65, �6℄.5.2.3 Parametrization for ECMThe Ellipti
 Curve Method, des
ribed in Se
tion 4.6, works in the group of points of an ellipti

urve de�ned over Fp. The order of the group is an integer in the Hasse interval
[

p + 1− 2
√

p, p + 1 + 2
√

p
] and depends on both p and the 
urve parameters.Careful sele
tion of the 
urve parameters allows for
ing the group order to be divisible by

12 or by 16 and in
reasing the average exponent of small primes even beyond what this knownfa
tor of the group order guarantees, whi
h greatly in
reases the probability of the group orderbeing smooth, espe
ially if the prime to be found and hen
e the order is small.The ECM algorithm needs a non-singular 
urve over Fp and a starting point P0 known tobe on the 
urve. Sin
e the prime fa
tor p of N we wish to �nd is not known in advan
e, one
hooses a non-singular 
urve over Q with a rational non-torsion point on it, and maps both to
Z/NZ, hoping that the 
urve remains non-singular over Fp, whi
h it does for all primes p thatdon't divide the 
urve's dis
riminant.The torsion points on an ellipti
 
urve over Q remain distin
t when mapping to Fp for almostall p, and the map to Fp retains the group stru
ture of the torsion group, so that a 
urve withrational n-torsion over Q guarantees a subgroup of order n of the 
urve over Fp, hen
e a grouporder divisible by n. By a theorem of Mazur [25, 7.1.11℄, the torsion group of an ellipti
 
urveover Q is either 
y
li
 with 1 ≤ n ≤ 10 or n = 12, or is isomorphi
 to Z/2Z × Z/(2m)Z with
1 ≤ m ≤ 4, giving n ∈ {4, 8, 12, 16}. Thus the two largest possible orders of the torsion groupare 12 and 16.For an e�e
tive ECM implementation we therefore seek a parametrization of ellipti
 
urvesthat produ
es a large, preferably in�nite, family of non-singular 
urves with a known point over
Q, that have a large torsion group over Q, and whose 
urve parameters and 
oordinates of thestarting point 
an be 
omputed e�e
tively in Z/NZ where N is 
omposite with unknown primefa
tors, whi
h in parti
ular rules out taking any square roots.The �rst 
hoi
e to make is the form of the 
urve equation. Any ellipti
 
urve over a �eldwith 
hara
teristi
 neither 2 nor 3 
an be written in the short Weierstraÿ form

y2 = x3 + ax + b,however the addition law for points on this 
urve over Z/NZ involves a 
ostly modular inverse.Montgomery [65℄ suggests proje
tive 
urves of the form
BY 2Z = X(X2 + AXZ + Z2) (5.1)whi
h allow for an addition law without modular inverses, but require that to add two points,their di�eren
e is known, leading to more 
ompli
ated addition 
hains for multiplying a point byan integer, des
ribed in 4.5.1 and 4.6.3.



96 Chapter 5. Parameter sele
tion for P�1, P+1, and ECM2 3 5 7 11 13 17 19
12Z 3 1.5 0.25 0.167 0.1 0.0833 0.0625 0.0556

σ = 2 3.323 1.687 0.301 0.191 0.109 0.0898 0.0662 0.0585
σ = 11 3.666 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0584torsion 12 3.667 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0585
16Z 5 0.5 0.25 0.167 0.1 0.0833 0.0625 0.0556torsion 16 5.333 0.680 0.302 0.191 0.109 0.0898 0.0661 0.0584Table 5.1: Average exponent of primes up to 19 in integers that are a multiple of 12 or 16, andexperimentally determined average exponent in the order of ellipti
 
urves with Brent-Suyamaparametrization and parameter σ = 2 and 11, and in 
urves with Montgomery's parametrizationfor rational torsion 12 and 16.Edwards [37℄ suggests a new form of ellipti
 
urve whi
h Bernstein et al. [9℄ use for an e�
ientimplementation of ECM. Edwards' 
urve form was not used for the present work, but in thelight of the results of Bernstein et al. should be 
onsidered in future implementations of ECM.The Brent-Suyama ParametrizationThe Brent-Suyama parametrization of ellipti
 
urves in Montgomery form, des
ribed in Se
-tion 4.6.2, is the most popular in existing implementations of ECM and is used, for example,in GMP-ECM and in Prime95. It produ
es 
urves with 6 rational torsion points, plus 
omplexpoints of order 12 of whi
h at least one maps to Fp for almost all p, leading to a group order ofthe 
urve over Fp that is divisible by 12. However, the order does not behave like an integer thatis a multiple of 12 
hosen uniformly at random from the Hasse interval; the average exponent ofsmall primes is greater than ensuring divisibility by 12 suggests. Table 5.1 
ompares the averageexponent of small primes in integers that are divisible by 12 and in the group orders of ellipti

urves over Fp, 103 < p < 109, using the Brent-Suyama parametrization with σ = 2 (all otherinteger σ-values examined, ex
ept for σ = 11, produ
ed same average exponents up to statisti
alnoise) as well as the 
hoi
e σ = 11, whi
h surprisingly leads to a higher average exponent of 2 inthe order.The unexpe
ted in
rease of the average exponent of 2 for σ = 11 has been examined by Bar-bules
u [19℄ who found two sub-families of 
urves produ
ed by the Brent-Suyama parametrizationthat show this behavior. For ea
h sub-family the σ-values live on an ellipti
 
urve of rank 1 over

Q, thus produ
ing an in�nite family of 
urves for ECM.The Montgomery ParametrizationsMontgomery [67, Chapter 6℄ gives two parametrizations for 
urves of form (4.3), one for 
urveswith rational 12-torsion and one with rational 16-torsion, see Se
tion 4.6.2.Table 5.1 shows the average exponent of small primes in 
urves with 12 (k = 2) or 16(A = 54721/14400) rational torsion points; 
urves with other parameters in the respe
tive familyprodu
e similar �gures.5.2.4 Choi
e of Stage 1 MultiplierThe usual 
hoi
e of the stage 1 multiplier is E = lcm(1, 2, . . . , B1), i.e., the produ
t of all primesand prime powers up to B1. This is based on the rationale that we want to in
lude ea
h prime
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ess Probability of P�1, P+1, and ECM 97and prime power that has a probability of dividing the group order of at least 1/B1. However,this 
hoi
e does not take into a

ount the di�erent 
ost of in
luding di�erent primes q in themultiplier, whi
h grows like log(q).Consider the probability Pr[qk || n] where n is the value that we hope will divide E (say,the order of the starting element in the P�1, P+1 or ECM algorithm). In order to have n | E,every prime q must divide E in at least the same exponent as in n. Examining ea
h prime qindependently, we 
an 
hoose to in
rease the exponent k of q so long as the probability that thisin
rease 
auses q to o

ur in high enough power, divided by the 
ost of in
reasing k by 1, is betterthan some 
onstant c, i.e., 
hoose k maximal su
h that Pr[qk || n]/ log(q) ≥ c. This modi�ed
hoi
e favours the in
lusion of smaller primes, in higher powers than in lcm(1, 2, . . . , B1).For a 
omparison, we assume that n behaves like a �random� integer, meaning that Pr[qk ||
n] = (1−1/q)/qk. With E = lcm(1, . . . , 227), there are 871534 integers in [900000000, 1100000000]with n | E, whereas using the improved 
hoi
e with c = 1/1200 gives E′/E = 27132/50621 =
22 · 3 · 7 · 17 · 19/(223 · 227) and �nds 913670 in the same interval, a 4.8% in
rease, even though
E′ is slightly smaller than E. The advantage qui
kly diminishes with larger B1, however.With E = lcm(1, . . . , 990), 7554965 integers are found, whereas the 
hoi
e c = 1/6670 leadsto E′/E = 182222040/932539661 = 23 · 3 · 5 · 7 · 11 · 13 · 37 · 41/(971 · 977 · 983) and �nds 7623943integers, approximately a 1% in
rease. Here, the ratio E′/E ≈ 1/5 is higher than before, but thisis not the reason for the smaller gain. Even with 6E′, the number of integers found is 7635492,still only an about 1% di�eren
e.The group order |Gp| in P�1, P+1, and ECM does not behave like a random integer, but forsmall primes q the probability that qk divides exa
tly the group order |Gp| (or better, the orderof the starting element x0 in Gp) for a random prime p is easy enough to determine empiri
ally,whi
h allows 
hoosing the multiplier E so that the parti
ular divisibility properties of the grouporder are taken into a

ount.
5.3 Estimating Su

ess Probability of P�1, P+1, and ECM5.3.1 Smooth Numbers and the Di
kman Fun
tionTo estimate the probability of �nding a prime fa
tor with the P�1, P+1, or ECM algorithms,we need to estimate the probability that the order of the starting element is smooth. Eventhough the order of the starting element does not behave quite like a random integer, we start byre
apitulating well-known methods of estimating smoothness probabilities for random integers,and show how to modify the estimate to take into a

ount the known divisibility properties ofthe order of the starting element.I have investigated the question of how to 
ompute smoothness probabilities using Di
kman's
ρ-fun
tion, and how to modify the 
omputation to give the probability of smoothness of an integer
lose to N in the 
ontext of my Diploma thesis [58℄. The relevant parts of the text are in
ludedhere for 
ompleteness.Let S(x, y) be the set of y-smooth natural numbers not ex
eeding x, Ψ(x, y) the 
ardinalityof the set S(x, y), P (1/u, x) the number of x1/u-smooth integers not ex
eeding x for real u > 0,and ρ(u) the limit of P (1/u, x)/x for x→∞ (Di
kman's fun
tion, [35℄).
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S(x, y) = {n ∈ N, n ≤ x : p ∈ P, p | x⇒ p ≤ y}
Ψ(x, y) = |S(x, y)|

P (1/u, x) = Ψ(x, x1/u)

ρ(u) = lim
x→∞

P (1/u, x)

x
.That the limit for ρ(u) exists is proved, for example, by Knuth and Trapp-Pardo [57℄ wherethey show that Ψ(x, y) and ρ(u) satisfy

Ψ(x, x1/u) = ρ(u)x + O

(

x

log(x)

)

. (5.2)They also give an improvement that lowers the error term,
Ψ(x, x1/u) = ρ(u)x + σ(u)

x

log(x)
+ O

(

x

log(x)2

) (5.3)with σ(u) = (1− γ)ρ(u − 1).Evaluating ρ(u)The Di
kman ρ(u) fun
tion 
an be evaluated by using the de�nition
ρ(u) =











0 u ≤ 0

1 0 < u ≤ 1

1−
∫ u
1

ρ(t−1)
t dt u > 1.

(5.4)In prin
iple ρ(u) 
an be 
omputed from (5.4) for all u via numeri
al integration, however whenintegrating over this delay di�erential equation, rounding errors a

umulate qui
kly, making itdi�
ult to obtain a

urate results for larger u.This problem 
an be alleviated somewhat by using a 
losed form of ρ(u) for small u. Forexample, for 1 < u ≤ 2 we have
ρ(u) = 1−

∫ u

1

ρ(t− 1)

t
dt

= 1−
∫ u

1

1

t
dt

= 1− log(u)and for 2 < u ≤ 3

ρ(u) = 1−
∫ u

1

ρ(t− 1)

t
dt

= 1− log(2)−
∫ u

2

1− log(t− 1)

t
dt

= 1− log(2)−
(

log(t) + log(t)
(

log(1− t)− log(t− 1)
)

+ Li2(t)
)∣

∣

∣

u

2
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Figure 5.1: The Di
kman fun
tion ρ(u) for 1 ≤ u ≤ 5.where Li2(x) is the dilogarithm of x, whi
h is de�ned by the sum
Li2(x) =

∞
∑

k=1

xk

k2
.Note that some authors and software de�ne the dilogarithm of x as what 
orresponds to Li2(1−x)in our notation. To avoid negative arguments to logarithms, we use the fun
tional identity

Li2(x) =
1

6
π2 − log(x) log(1− x)− Li2(1− x)and Li2(−1) = −π2/12 whi
h produ
es for 2 < u ≤ 3

ρ(u) = 1 +
π2

12
− log(u)

(

1− log(u− 1)
)

+ Li2(1− u).In this way, values of ρ(u) for 0 ≤ u ≤ 3 
an easily be 
omputed with high a

ura
y. Valuesup to approximately u = 7 
an be 
omputed via numeri
al integration; for larger values thea

umulated rounding errors start having signi�
ant e�e
t on the 
omputed ρ(u)-values. For ourappli
ation, only relatively small u-values are 
onsidered, so the numeri
al integration approa
his su�
ient. A graph of ρ(u) for 1 ≤ u ≤ 5 is shown in 5.1.If ρ(u) is needed with high a

ura
y for possibly large u-values, Marsaglia and Zama [63℄ showhow to 
ompute ρ(u) (and other fun
tions de�ned by delay-di�erential equations) a

urately toup to hundreds of digits by expressing ρ(u) pie
ewise as power series.Smooth Numbers Close to xDi
kman's fun
tion estimates the ratio of x1/u-smooth numbers between 1 and x. However, wewould like to 
ompute the probability that a number of a 
ertain magnitude 
lose to some x issmooth instead. Fortunately it is easy to 
onvert to this model.The ratio of y-smooth integers between x and x + dx is
Ψ(x + dx, y)−Ψ(x, y)

dx
.



100 Chapter 5. Parameter sele
tion for P�1, P+1, and ECMUsing the approximation (5.2) with u = log(x)/ log(y) and ignoring the O(x/ log(x)) term, weget
ρ
(

log(x+dx)
log(y)

)

(x + dx)− ρ(u)x

dx
=

ρ

(

u +
log(1 + d)

log(y)

)

+
ρ
(

u + log(1+d)
log(y)

)

− ρ(u)

dand with d→ 0, this be
omes
ρ(u) +

1

log(y)
ρ′(u) =

ρ(u) +
u

log(x)
ρ′(u).Now substituting ρ′(u) = −ρ(u− 1)/u yields

ρ(u)− 1

log(x)
ρ(u− 1). (5.5)Considering the O(x/ log(x)) term again, we �nd

Ψ(x + dx, y)−Ψ(x, y)

dx
= ρ(u) + O

(

1

log(x)

)for x → ∞, no better than using Di
kman's fun
tion immediately. Starting instead with thebetter approximation (5.3) leads to
ρ(u)− γ

ρ(u− 1)

log(x)
− (1− γ)

ρ(u− 2)

u log(x)2and
Ψ(x + dx, y)−Ψ(x, y)

dx
= ρ(u)− γ

ρ(u− 1)

log(x)
+ O

(

1

log(x)2

)for x→∞. Thus we de�ne
ρ̂(u, x) = ρ(u)− γ

ρ(u− 1)

log(x)
(5.6)and have

Ψ(x + dx, y)−Ψ(x, y)

dx
= xρ̂(u, x) + O

(

1

log(x)2

)

. (5.7)This approximation shows that using (5.3), whi
h in
ludes the σ(u) 
orre
tion term butestimates the ratio of smooth values between 1 and x, a
tually produ
es a worse result for theratio of smooth numbers 
lose to x than the plain Di
kman ρ(u) alone, whereas (5.5), whi
hestimates the ratio to smooth values 
lose to x but without the σ(u) term, does not result in anyimprovement of the estimate over the ρ(u)-fun
tion, leaving the magnitude of the error almostthe same but 
hanging the sign.Table 5.2 
ompares the estimates produ
ed by the Di
kman fun
tion ρ(3) and by ρ̂(3, x) withexperimental 
ounts. The relative error of the plain ρ(3) fun
tion is between 12 and 16 per
entin the investigated range, while the relative error for ρ̂(3, x) for larger x is more than an orderof magnitude smaller and about 0.5 per
ent for x ≥ 1014. For larger values of u, the relativeerror for ρ̂(u, x) is signi�
antly higher, due to the ρ(u − 2) fa
tor in the O() term. The ratio
ρ(u− 2)/ρ(u) in
reases qui
kly with u, approximately like u2 [57, 6.3℄. For example, the relativeerror for ρ̂(5, 1015) is about 12 per
ent.
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x Count ρ(3) · 108 ρ̂(3, x) · 108Est. Rel. err. in % Est. Rel. err. in %

109 4192377 4860839 15.94 4006146 −4.44
1010 4239866 4860839 14.64 4091615 −3.50
1011 4238110 4860839 14.69 4161545 −1.81
1012 4280377 4860839 13.56 4219819 −1.41
1013 4304040 4860839 12.94 4269128 −0.81
1014 4336571 4860839 12.09 4311393 −0.58Table 5.2: A 
omparison of experimental 
ounts Ψ(x1/3, x + 5 · 107) − Ψ(x1/3, x − 5 · 107) andestimated number of x1/3-smooth numbers in ]x− 5 · 107, x + 5 · 107].5.3.2 E�e
t of Divisibility Properties on Smoothness ProbabilityThe P�1, P+1, and ECM algorithms all �nd a prime fa
tor p if a group de�ned over Fp hassmooth order, and we have seen that the group order does not behave like a random integer withrespe
t to divisibility by small primes. We would like to quantify the e�e
t of these divisibilityprobabilities of small primes on the probability that the order is smooth so that the e�e
tivenessof di�erent parameter 
hoi
es 
an be 
ompared a

urately.The e�e
t of the higher frequen
y of small fa
tors on smoothness probability 
an be estimatedwith a te
hnique developed by S
hröppel and Knuth for the analysis of the Continued Fra
tionmethod of fa
torisation [56, 4.5.4℄. The idea is to 
ompare the average exponent f(q, S) ofsmall primes q in values 
hosen uniformly at random from the set S of numbers being tested forsmoothness with the average exponent found when 
hoosing values from the integers, f(q, N) =

1/(q − 1).When 
hoosing an s ∈ S and dividing out the primes q < k, we 
an expe
t the remaining
ofa
tor r to have logarithmi
 size
log(r) = log(s)−

∑

q∈P,q<k

f(q, S) log(q). (5.8)Comparing the size of this 
ofa
tor with that for the 
ase S = N, we �nd that the expe
ted valuefor log(r) is smaller by
δ =

∑

q∈P,q<k

(

f(q, S)− 1

q − 1

)

log(q). (5.9)Knuth and Trapp-Pardo then argue that, sin
e the log size of the 
ofa
tor is smaller by δ, thenumber s is as likely smooth as a random integer smaller by a fa
tor eδ in value.For the P�1 algorithm,
δP�1 =

∑

q∈P,q<k

(

q

(q − 1)2
− 1

q − 1

)

log(q)

=
∑

q∈P,q<k

1

(q − 1)2
log(q),whi
h is approximately 1.22697 for k →∞.For the P+1 algorithm with x0 = 6/5, the group order is always divisible by 4. The averageexponent of primes in the group order is as in P�1, ex
ept for the exponent of 2 whi
h is

3 on average instead of 2, giving δP+1,4 = δP�1 + log(2) ≈ 1.92012. With x0 = 2/7, the
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tion for P�1, P+1, and ECMgroup order is divisible by 6, in
reasing the average exponent of 3 from 3/4 to 3/2, so that
δP+1,6 = δP�1 + 3/4 log(3) ≈ 2.05093.For ECM it is more di�
ult to give a theoreti
al estimate for the average exponent of smallprimes in the group order, although Montgomery [67, 6.3℄ proposes 
onje
tures for the exponentof 2 and 3 in the group order in 
urves with rational torsion 12 or 16. The approximate δ value forECM has been determined experimentally by 
omputing the average exponent as in Table 5.1,but extended to primes up to 100:ECM σ = 2 ECM σ = 11 ECM torsion 12 ECM torsion 16

δ 3.134 3.372 3.373 3.420
eδ 22.97 29.14 29.17 30.575.3.3 Su

ess Probability for the Two-Stage AlgorithmThe P�1, P+1, and ECM fa
toring algorithms work in two stages, where stage 1 �nds a fa
tor

p if the order |Gp| of the respe
tive group over p is B1-smooth, and stage 2 �nds p if the order
ontains one prime fa
tor q with B1 < q ≤ B2, and the 
ofa
tor |Gp|/q is B1-smooth. Assumingthat a stage 2 prime q divides the order with probability 1/q, the probability of a fa
toringmethod �nding a fa
tor 
an therefore be 
omputed as
P (Ne�, B1, B2) = ρ̂

(

log(Ne�)
log(B1)

)

Ne� +
∑

B1<q≤B2
q∈P

ρ̂

(

log(Ne�/q)
log(B1)

)

Ne�/q, (5.10)where Ne� = Ne−δ is the approximate size of p, adjusted by the δ parameter for the respe
tivefa
toring algorithm as des
ribed in Se
tion 5.3.2. For su�
iently large B1 and B2, the sum 
anbe repla
ed by an integral as shown for example in [15℄, but in our 
ase where these parametersare quite small, the sum produ
es signi�
antly more a

urate results and is still a

eptably fastto evaluate.5.3.4 Experimental ResultsWe 
ompare the ratio of prime fa
tors being found by P�1, P+1, and the Ellipti
 CurveMethod with the estimate produ
ed by Equation (5.10). For n = 25, 26 we test primes in
[

2n − 106, 2n + 106
] and for ea
h 27 ≤ n ≤ 32 we test primes in [2n − 107, 2n + 107

] with the P�1 method, P+1 with x0 = 6/5 and x0 = 2/7, and ECM with the Brent-Suyama parametrizationwith σ = 2 as well as the parametrization for 
urves with rational 12 and 16 torsion, and re
ordthe ratio of primes found by the respe
tive method. The Brent-Suyama parametrization with
σ = 11 behaves identi
ally to that of 
urves with rational 12-torsion. The B1 and B2 parametersfor P�1 and P+1 are 
hosen as in Table 4.9 and all ECM parametrizations use the B1 and B2values from Table 4.10.The largest relative error of about 3% o

urs for P�1 with n = 25, but most errors are below
1%. It is somewhat surprising how a

urate the results are, 
onsidering that estimating thedensity of y-smooth numbers around x by ρ̂(log(x)/ log(y)) in
ludes a rather large error termfor small values of x. From a purely pragmati
 point of view, however, we may be 
ontent withusing (5.10) as an easily 
omputable and, for the range of parameters we are interested in, verya

urate estimate of the probability of su

ess for our fa
toring algorithms.
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x0 = 6/5 x0 = 7/2 σ = 2 12 torsion 16 torsion

n Est. Emp. Est. Emp. Est. Emp. Est. Emp. Est. Emp. Est. Emp.
25 0.242 0.249 0.287 0.289 0.297 0.299 0.336 0.337 0.358 0.359 0.363 0.359
26 0.217 0.220 0.259 0.258 0.267 0.265 0.275 0.276 0.295 0.297 0.299 0.298
27 0.186 0.186 0.220 0.221 0.226 0.227 0.271 0.271 0.291 0.290 0.291 0.291
28 0.166 0.167 0.198 0.197 0.204 0.203 0.238 0.237 0.256 0.256 0.255 0.254
29 0.148 0.149 0.177 0.177 0.183 0.183 0.203 0.207 0.218 0.220 0.217 0.216
30 0.157 0.158 0.186 0.186 0.190 0.191 0.177 0.178 0.189 0.188 0.189 0.190
31 0.126 0.128 0.150 0.150 0.154 0.155 0.170 0.172 0.182 0.182 0.183 0.182
32 0.104 0.105 0.124 0.126 0.128 0.129 0.136 0.137 0.147 0.147 0.145 0.144Table 5.3: Comparison of estimated probability of �nding a prime fa
tor 
lose to 2n with theP�1, P+1, and ECM algorithm with empiri
al results. The 
hoi
e of parameters is des
ribed inthe text.5.4 Distribution of DivisorsIn Se
tion 5.3 we estimate the probability that a fa
toring method �nds a fa
tor of a 
ertain sizeif it exists. To estimate the expe
ted number of fa
tors the method �nds for an input number

N , we also need the expe
ted number of su
h fa
tors in N , taking into a

ount the availableinformation on the number: its size, that it is 
omposite, and that it has no prime fa
tors up tothe fa
tor base bound used for sieving. That is, we would like to 
ompute the expe
ted number ofprime fa
tors p with p ∈ [z1, z2] of a 
omposite N , 
hosen uniformly at random from the integersin [N1, N2] that have no prime fa
tors up to y. To do so, we need to estimate the number ofintegers up to a bound that have no small prime fa
tors.Let
T (x, y) = {n ∈ N, 1 ≤ n ≤ x : p ∈ P, p | x⇒ p > y}, x ≥ y ≥ 2, (5.11)
Φ(x, y) = |T (x, y)| (5.12)be the set of positive integers up to x having no small prime fa
tors up to y (whi
h alwaysin
ludes 1 in T (x, y)) and the number of su
h integers, respe
tively.Mu
h like Di
kman's fun
tion ρ(u), with u = log(x)/ log(y) throughout, 
an be used toestimate the number Ψ(x, y) of positive integers up to x that have no large prime fa
tor above

y, the Bu
hstab fun
tion ω(u) 
an be used to estimate Φ(x, y). Tenenbaum [96, III.6.2℄ showsthat
Φ(x, y) = (xω(u)− y)/ log(y) + O

(

x/ log(y)2
) for x1/3 ≤ y ≤ x. (5.13)This estimate is reasonably a

urate for large u and y, but not for small u > 2. Sin
e wefrequently need to treat 
omposites that have only two relatively large prime fa
tors, we needan estimate that is more a

urate for 2 < u < 3, whi
h is des
ribed in 5.4.2.5.4.1 Evaluating ω(u)The Bu
hstab ω(u) fun
tion is de�ned by

ω(u) =

{

1/u 1 ≤ u ≤ 2

(1 +
∫ u−1
1 ω(t) dt)/u u > 2.

(5.14)
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Figure 5.2: The Bu
hstab fun
tion ω(u) for 1 ≤ u ≤ 4, and the limiting value eγ ≈ 0.56146.Figure 5.2 shows the graph for 1 ≤ u ≤ 4.Like the Di
kman fun
tion, the Bu
hstab fun
tion 
an be expressed in logarithms and thedilogarithm for small u values:
ω(u) =











1/u 1 ≤ u ≤ 2

(1 + log(u− 1))/u 2 < u ≤ 3
(

Li2(2 − u) + (1 + log(u− 2)) log(u− 1) + π2/12 + 1
)

/u 3 < u ≤ 4.

(5.15)However, unlike the Di
kman fun
tion ρ(u) whi
h monotonously tends to 0 for u→ ∞, theBu
hstab fun
tion ω(u) os
illatingly tends to e−γ and has almost rea
hed this limit for u = 4already, with relative error only −2.2 · 10−6. This greatly simpli�es the evaluation for ω(u) forour appli
ation, as using ω(u) = e−γ for u > 4 is su�
iently a

urate for our purposes, and forsmaller u values the 
losed forms of (5.15) 
an be used.The methods of Marsaglia, Zaman, and Marsaglia [63℄ 
an be readily applied to the Bu
hstab
ω(u) fun
tion if highly a

urate results for large u are required.5.4.2 Estimating Φ(x, y)Equation (5.13) is not su�
iently a

urate for some small values of u = log(x)/ log(y). Forexample, Φ(109, 15000) = 54298095, but (5.13) estimates 55212172. This estimate has a relativeerror of only 1.7%, but we need the number of 
omposites with no small prime fa
tors, and aftersubtra
ting π(109) − π(15000) = 50845780, the number of primes between 15000 and 109 fromboth, the 
orre
t value is 3452315 while the estimate is 4366392 with 26% relative error.Fortunately a better estimate is given in [96, III, 6.4℄:

Φ(x, y) ≈ x
eγ log(y)

ζ(1, y)

∫ u−1

0
ω(u− v)y−vdv. (5.16)Using x = yu, (5.16) 
an be rewritten as

Φ(x, y) ≈ eγ log(y)

ζ(1, y)

∫ u

1
ω(v)yvdv. (5.17).
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y u Φ(109, y) Estimate Rel. error Estimate Rel. errorby (5.13) in per
ent by (5.16) in per
ent

1000 3 81515102 81702575 0.23 81540712 0.031
2000 2.73 73931443 74604335 0.91 73964201 0.044
3000 2.59 69618529 70581865 1.4 69649564 0.045
4000 2.50 66671714 67774139 1.7 66688977 0.026
5000 2.43 64375942 65618739 1.9 64392876 0.026
10000 2.25 57680218 59021636 2.3 57679743 −0.00082
15000 2.16 54298095 55212172 1.7 54278816 −0.036
20000 2.09 52354286 52522945 0.32 52330198 −0.046Table 5.4: The number Φ(109, y) of positive integers up to 109 without prime divisors up to yand 
omparison to estimates based on Bu
hstab's fun
tion.By Mertens' 3rd Theorem, 1/ζ(1, y) =

∏

p∈P,p≤y(1−1/p) ≈ 1/(eγ log(y)) and for our purposewhere y is the fa
tor base bound and hen
e in the millions, the estimate by Mertens' theorem isa

urate enough (for y = 106, the relative error is 0.03%) and we 
an simplify (5.17) to
Φ(x, y) ≈

∫ log(x)/ log(y)

1
ω(v)yvdv. (5.18)This estimate gives Φ(109, 15000) ≈ 54319245 with relative error only 0.039%, and after sub-tra
ting π(109) − π(15000), the relative error is still only 0.6%. Table 5.4 shows the values of

Φ(109, y) for other y-values and 
ompares them to the estimate using (5.17) (sin
e these y-valuesare rather small, the simpli�ed form (5.18) introdu
es a noti
eable error).5.4.3 Divisors in Numbers with no Small Prime Fa
torsWe would like to estimate the total number
D(x, y, z1, z2) =

∑

n∈T (x,y)

∑

p∈P

z1<p≤z2

Valp(n), x ≥ z2 ≥ z1 ≥ y ≥ 2 (5.19)of prime divisors p ∈ ]z1, z2] with multipli
ity among positive integers up to x that have no primefa
tors up to y. A hint towards the solution is Bu
hstab's identity [96, �6.2, (14)℄
Φ(x, y) = 1 +

∑

p∈P

y<p≤x

∑

ν≥1

Φ(x/pν , p)whi
h partitions T (x, y) into {1} and sets of integers divisible by a prime p > y and by no otherprime q ≤ p, for y < p ≤ x. For our problem, however, we would like to 
ount integers whi
h
ontain several prime fa
tors (possibly as powers) from ]z1, z2] with multipli
ity. This leads to
D(x, y, z1, z2) =

∑

p∈P

z1<p≤z2

∑

ν≥1

Φ(x/pν , y)whi
h for ea
h prime z1 < p ≤ z2 
ounts the positive integers kpν ≤ x su
h that k has no primefa
tor up to y, i.e., k ∈ T (x/pν , y).
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z1 D(1018 + 1011, 107, z1, z1 + 107) Estimate Rel. error

−D(1018, 107, z1, z1 + 107) using (5.20) in per
ent
1 · 107 168541774 168537797 −0.002
2 · 107 97523916 97542736 0.02
3 · 107 68793931 68800701 0.01
4 · 107 53152172 53155498 0.006
5 · 107 43292469 43305316 0.03
6 · 107 36540046 36531701 −0.02
7 · 107 31578964 31587779 0.03
8 · 107 27811212 27820533 0.03
9 · 107 24867513 24854715 −0.05
10 · 107 22475389 22459308 −0.07
15 · 107 15144159 15150750 0.04
20 · 107 11429968 11427841 −0.02
25 · 107 9168249 9172594 0.05
30 · 107 7665357 7660398 −0.06
35 · 107 6573271 6576127 0.04
40 · 107 5758937 5760733 0.03
45 · 107 5123766 5125277 0.03
50 · 107 4609652 4616138 0.1Table 5.5: The number D(1018 + 1010, 107, z1, z1 + 107) − D(1018, 107, z1, z1 + 107) of primefa
tors z1 < p ≤ z1 + 107 with multipli
ity among the integers in [1018, 1018 + 1010

] withoutprime divisors up to 107, and 
omparison to estimates using (5.20).If z1 is reasonably large, the 
ontribution of prime powers (ν > 1) is quite small and 
an beomitted for an approximate result. By repla
ing the resulting sum by an integral over (5.18), weobtain
D(x, y, z1, z2) ≈

∫ z2

z1

Φ(x/t, y)/ log(t)dt

≈
∫ z2

z1

1

log(t)

(

∫ u−log(t)/ log(y)

1
ω(v)yvdv

)dt, (5.20)where u = log(x)/ log(y).By D(x2, y, z1, z2) − D(x1, y, z1, z2) we 
an estimate the number of prime fa
tors p with
z1 < p ≤ z2 among numbers N ∈ [x1, x2] that have no prime fa
tors up to y. Table 5.5 
omparesthis estimate with experimental 
ounts for parameters of approximately the magnitude as mighto

ur in the Number Field Sieve: we 
onsider 
omposites in [1018, 1018 +1010] that have no primefa
tors up to 107, and estimate the number of prime fa
tors in [i · 107, (i + 1) · 107

] for some iup to 50. The estimates in this table are remarkably a

urate, with relative error mostly below
0.1%.



Con
lusionHere we brie�y summarize the results of the individual 
hapters of the thesis.S
hönhage-Strassen's algorithm is among the fastest integer multipli
ation algorithms thatuse only integer arithmeti
. Signi�
ant speedups 
an be gained by improving 
a
he-lo
ality,using √2 as a root of unity in the transform to double the possible transform length, mixingMersenne and Fermat transforms at the top-most re
ursion level, and �ne-grained parametersele
tion depending on input number size. These improvements 
ombined resulted in a fa
tor 2speedup over the implementation of S
hönhage-Strassen's algorithm in GMP version 4.1.4, onwhi
h our implementation is based.The P�1 and P+1 fa
toring methods allow a parti
ularly fast implementation for stage 2 ofthe algorithms. It is based on polynomial multi-point evaluation. The polynomial to be evaluated
an be built from its roots mu
h more qui
kly than with a general produ
t tree by exploitingpatterns in the roots. With suitably 
hosen roots it is a re
ipro
al Laurent polynomial, and su
hpolynomials 
an be stored using half the spa
e, and 
an be multiplied with a weighted Fouriertransform in about half the time, as general polynomials of the same degree. The multi-pointevaluation of the polynomial is parti
ularly e�
ient for the P-1 algorithm, requiring essentiallyonly one 
y
li
 
onvolution produ
t. It 
an be adapted to the P+1 algorithm, but needs to workin a quadrati
 extension ring, in
reasing memory use and 
omputation time. The new 
ode isdistributed as part of GMP-ECM version 6.2 and later.The sieving step is in pra
ti
e the most 
omputationally expensive step of the Number FieldSieve. The 
ofa
torization during the sieving 
an be performed e�
iently with the P�1, P+1, andECM algorithms. We have designed a software implementation optimized for low-overhead, high-throughput fa
torization of small integers that is 
ompetitive in terms of 
ost/performan
e-ratiowith proposed FPGA implementations of ECM for NFS.The following ideas may be worth 
onsidering for further resear
h.The ex
ellent performan
e of 
onvolutions with a 
omplex �oating-point FFT for integermultipli
ation is intriguing, but requiring guaranteed 
orre
t rounding would greatly in
reasethe ne
essary transform length and thus run-time. A promising idea is to use the S
hönhage-Strassen algorithm only at the top-most re
ursive level, and 
ompute the point-wise nega-
y
li

onvolutions with a 
omplex �oating-point FFT. The relatively short length of those FFTsshould make an implementation with 
orre
t rounding feasible without too great a sa
ri�
e inspeed.Fürer's algorithm for integer multipli
ation has slightly better asymptoti
 
omplexity of
O
(

n log(n)2log∗(n)
) than S
hönhage-Strassen's with 
omplexity O(n log(n) log(log(n))). Whi
hone is faster in pra
ti
e? No well-optimized implementation of Fürer's algorithm seems to existat the time of writing, and 
reating one might be worthwhile.S
hönhage and Strassen 
onje
ture in the paper introdu
ing their algorithm that the 
omplex-107
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lusionity for an optimal integer multipli
ation algorithm should be O(n log(n)), but no su
h algorithmis known so far, although Fürer's algorithm shortened the gap. Dis
overy of su
h an algorithmwould be an exiting result for 
omputational 
omplexity theory, and if fast in pra
ti
e, of greatvalue in large-integer arithmeti
.Is a stage 2 for ECM possible that is similarly fast as stage 2 for P�1 and P+1? Currentlyit is not 
lear how it might work, as for P�1 and P+1 the rapid 
onstru
tion of a polynomialfrom its roots and the multi-point evaluation use the fa
t that Z/NZ (or a quadrati
 extensionfor P+1) has ring stru
ture whi
h is not present in the group of points on an ellipti
 
urve. Butmaybe another novel approa
h might o�er a signi�
ant speedup for the ECM stage 2.Fa
toring small integers with P-1, P+1, and ECM with a software implementation on ageneral-purpose CPU was found to be very 
ompetitive with implementations of ECM in FPGAs,but alternative 
omputing hardware su
h as graphi
s 
ards that support general purpose pro-gramming o�er vast amounts of pro
essing power at 
onsumer pri
es whi
h may give them theadvantage. A 
omplete implementation of ECM with stage 1 and stage 2 on graphi
s 
ards wouldbe interesting; if it should turn out to be too di�
ult due to restri
ted memory, doing stage 1on the graphi
s 
ard and stage 2 on the CPU might be feasible.Parameters 
an be 
hosen a

urately for 
ofa
torization with P�1, P+1, and ECM to max-imise the ratio of probability of su

ess versus time for one individual method and one 
ompositenumber. However, pairs of 
omposites that both must be smooth to form a relation need to befa
tored in the sieving step of NFS, and generally a su

ession of fa
toring methods needs to betried to obtain the fa
torization of ea
h. How 
an we 
hoose a sequen
e of fa
toring attemptson the two numbers so that a 
on
lusion, either by fa
toring both or �nding at least one (prob-ably) not smooth, is rea
hed as qui
kly as possible? This 
hoi
e should take into a

ount thee�e
t of unsu

essful fa
toring attempts on the expe
ted number of fa
tors of a given size in the
omposite number.
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Abstra
tThis thesis explores improvements to well-known algorithms for integer multipli
ation andfa
torization.The S
hönhage-Strassen algorithm for integer multipli
ation, published in 1971, was the �rstto a
hieve 
omplexity O(n log(n) log(log(n))) for multipli
ation of n-bit numbers and is stillamong the fastest in pra
ti
e. It redu
es integer multipli
ation to multipli
ation of polynomialsover �nite rings whi
h allow the use of the Fast Fourier Transform for 
omputing the 
onvolutionprodu
t. In joint work with Gaudry and Zimmermann, we des
ribe an e�
ient implementa-tion of the algorithm based on the GNU Multiple Pre
ision arithmeti
 library, improving 
a
heutilization, parameter sele
tion and 
onvolution length for the polynomial multipli
ation overprevious implementations, resulting in nearly 2-fold speedup.The P�1 and P+1 fa
toring algorithms �nd a prime fa
tor p of a 
omposite number qui
klyif p − 1, respe
tively p + 1, 
ontains no large prime fa
tors. They work in two stages: the �rststep 
omputes a high power g1 of an element g0 of a �nite group de�ned over Fp, respe
tively
Fp2, the se
ond stage looks for a 
ollision of powers of g1 whi
h 
an be performed e�
iently viapolynomial multi-point evaluation. In joint work with Peter Lawren
e Montgomery, we presentan improved stage 2 for these algorithms with faster 
onstru
tion of the required polynomial andvery memory-e�
ient evaluation, in
reasing the pra
ti
al sear
h limit for the largest permissibleprime in p− 1, resp. p + 1, approximately 100-fold over previous implementations.The Number Field Sieve (NFS) is the fastest known fa
toring algorithm for �hard� integerswhere the fa
tors have no properties that would make them easy to �nd. In parti
ular, themodulus of the RSA en
ryption system is 
hosen to be a hard 
omposite integer, and its fa
-torization breaks the en
ryption. Great e�orts are therefore made to improve NFS in order toassess the se
urity of RSA a

urately. We give a brief overview of the NFS and its history. Inthe sieving phase of NFS, a great many smaller integers must be fa
tored. We present in de-tail an implementation of the P�1, P+1, and Ellipti
 Curve methods of fa
torization optimizedfor high-throughput fa
torization of small integers. Finally, we show how parameters for thesealgorithms 
an be 
hosen a

urately, taking into a

ount the distribution of prime fa
tors inintegers produ
ed by NFS to obtain an a

urate estimate of �nding a prime fa
tor with givenparameters.
Keywords: Arithmeti
, Integer Multipli
ation, Integer Fa
toring, Ellipti
 Curves, Number FieldSieve



RésuméCette thèse propose des améliorations aux problèmes de la multipli
ation et de la fa
torisationd'entier.L'algorithme de S
hönhage-Strassen pour la multipli
ation d'entier, publié en 1971, fut lepremier à atteindre une 
omplexité de O(n log(n) log(log(n))) pour multiplier deux entiers de
n bits, et reste parmi les plus rapides en pratique. Il réduit la multipli
ation d'entier à 
ellede polyn�me sur un anneau �ni, en utilisant la transformée de Fourier rapide pour 
al
uler leproduit de 
onvolution. Dans un travail 
ommun ave
 Gaudry et Zimmermann, nous dé
rivonsune implantation e�
a
e de 
et algorithme, basée sur la bibliothèque GNU MP; par rapport auxtravaux antérieurs, nous améliorons l'utilisation de la mémoire 
a
he, la séle
tion des paramètreset la longueur de 
onvolution, 
e qui donne un gain d'un fa
teur 2 environ.Les algorithmes P�1 et P+1 trouvent un fa
teur p d'un entier 
omposé rapidement si p− 1,respe
tivement p+1, ne 
ontient pas de grand fa
teur premier. Ces algorithmes 
omportent deuxphases : la première phase 
al
ule une grande puissan
e g1 d'un élément g0 d'un groupe �ni dé�nisur Fp, respe
tivement Fp2 , la se
onde phase 
her
he une 
ollision entre puissan
es de g1, qui esttrouvée de manière e�
a
e par évaluation-interpolation de polyn�mes. Dans un travail ave
 PeterLawren
e Montgomery, nous proposons une amélioration de la se
onde phase de 
es algorithmes,ave
 une 
onstru
tion plus rapide des polyn�mes requis, et une 
onsommation mémoire optimale,
e qui permet d'augmenter la limite pratique pour le plus grand fa
teur premier de p− 1, resp.
p + 1, d'un fa
teur 100 environ par rapport aux implantations antérieures.Le 
rible algébrique (NFS) est le meilleur algorithme 
onnu pour fa
toriser des entiers dont lesfa
teurs n'ont au
une propriété permettant de les trouver rapidement. En parti
ulier, le moduledu système RSA de 
hi�rement est 
hoisi de telle sorte, et sa fa
torisation 
asse le système. Denombreux e�orts ont ainsi été 
onsentis pour améliorer NFS, de façon à établir pré
isément lasé
urité de RSA. Nous donnons un bref aperçu de NFS et de son historique. Lors de la phasede 
rible de NFS, de nombreux petits entiers doivent être fa
torisés. Nous présentons en détailune implantation de P�1, P+1, et de la méthode ECM basée sur les 
ourbes elliptiques, qui estoptimisée pour de tels petits entiers. Finalement, nous montrons 
omment les paramètres de
es algorithmes peuvent être 
hoisis �nement, en tenant 
ompte de la distribution des fa
teurspremiers dans les entiers produits par NFS, et de la probabilité de trouver des fa
teurs premiersd'une taille donnée.Mots-
lés: Arithmétique, multipli
ation des entiers, fa
torisation des entiers, 
ourbes ellip-tiques, 
rible algébrique(English abstra
t on inside ba
k 
over)


