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Introduction

Integer multiplication is used in practically every arithmetic algorithm, and problems in algorith-
mic number theory in particular often require rapid multiplication of very large integers. Factor-
ization of integers is one of the fundamental problems in number theory and gained significant
practical importance with the advent of the RSA public-key cryptographic system whose security
relies on the difficulty of factoring. This thesis presents improvements to the Schénhage-Strassen
algorithm for multiplication of large integers, to the P 1 and P+1 methods of factorization which
quickly find prime factors p where p — 1 or p + 1 have themselves no large prime factors, and
to the Number Field Sieve which is the fastest algorithm for factoring composite integers which
have no easy to find prime factors, such as occur in cryptographic applications.

Integer multiplication is ubiquitous, and multiplication of large integers occurs frequently
enough in scientific computation that it is somewhat surprising that the first algorithm faster than
the O(n?) bit operations required by the trivial grammar-school multiplication was discovered
only in 1962. In that year, Karatsuba and Ofman [51] showed how to reduce the problem of
multiplying n-bit numbers to three multiplications of n/2-bit numbers, achieving asymptotic
complexity O(n!589)
expressing integer multiplication by polynomial multiplication and using polynomial evaluation,
point-wise multiplication, and interpolation to compute the product polynomial. This allows
reducing the computation to 2k — 1 pieces of n/k bits each, for asymptotic cost O(nlogk(zk—l))
for k fixed. In principle, this permits any exponent 1 + ¢ in the asymptotic cost function,
however, large k are not efficient for input numbers of realistic size as the cost of evaluation
and interpolation would dominate. In 1971, Schénhage and Strassen [90] essentially solved the
problem of fast integer multiplication by using the Fast Fourier Transform (FFT), discovered by
Cooley and Tukey in 1965 [29], to perform the required convolution product. Their method uses
time only O(nlog(n)log(log(n))) to multiply n-bit numbers. Many programming libraries for
multiple precision arithmetic offer a fast integer multiplication algorithm. One such library is the
Gnu Multiple Precision arithmetic library (GMP) [49], developed mainly by Torbjérn Granlund.
It is widely used and enjoys a reputation for being exceptionally fast, both due to careful choice
of algorithms and highly optimized implementation. It uses the Schonhage-Strassen algorithm
for multiplication of very large integers. One application where the large-integer multiplication
of GMP is used extensively is GMP-ECM [103], an implementation of the P-1, P+1, and Elliptic
Curve methods of factorization developed mainly by Paul Zimmermann.

. A year later, Toom [97] generalized Karatsuba and Ofman’s algorithm by

Integer factoring is an ancient problem in number theory. It ceased to be a question
of purely academic interest and turned into a matter of significant economic relevance with
the publication of the now widely used Rivest-Shamir-Adleman (RSA) public-key cryptographic
system [85] which relies on the intractability of factoring large integers. Fermat’s Little Theorem
states

a? =1 (mod p)



2 Introduction

for any prime p and p { a, which Euler extended to composite moduli by
a®™ =1 (mod N)
for ged(a, N) = 1, where ¢(N) is the Euler totient function, defined by

Y- p) = (pr — V)P (g — Dpl !

with pq,...,pr distinct primes and vy, ..., v, positive integers. Thus, given the prime factoriza-
tion of N, it is easy to compute ¢(N). RSA uses a public key for encryption, consisting of an
odd composite modulus N = pq with p, ¢ primes of roughly equal size, and a public exponent e.
For decryption it uses a private key, consisting of N again and an integer d such that

de =1 (mod ¢(N)),

i.e., de = k¢(IN)+1 for some integer k. It encrypts a message expressed as an integer 1 < m < N
by
c=m®mod N,

and decrypts c to recover the original message by
¢ mod N = m% mod N = m**™N)+1 mod N = m.

Factoring N reveals d and so breaks the encryption. The keys for RSA are therefore chosen to
be as difficult as possible to factor with known algorithms, and of a size that is expected to be
out of reach for computing resources available during the key’s intended lifetime.

Factoring algorithms can be divided into two classes: special-purpose algorithms, and general-
purpose algorithms. The former make use of certain properties of the prime factors, most com-
monly their size, and their run time depends only little on the size of the input number (usually
only like the complexity of integer multiplication), but greatly on whether its factors have the
desired property. The run time of general-purpose algorithms depends almost exclusively on the
size of the input number, and not on any special properties of the factors. RSA keys are chosen
to be resistant to special-purpose methods so that only general-purpose algorithms are relevant
to their security. The best currently known factoring algorithm for attacking RSA is the Number
Field Sieve (NFS) with time complexity conjectured to be in Ly[1/3, (64/9)'/3], where

L, [oz, c] = e(c+0(1)) log(x)* log(log(z))

for x — oo, and the cost of factoring with the NFS is the major criterion for rating the security
of RSA key sizes. In spite of being useless for breaking RSA directly, special-purpose factoring
algorithms are still of great interest, on one hand for factoring numbers that aren’t RSA keys
and may have easy-to-find factors, and as a sub-routine for the NFS.

A central concept to modern integer factoring algorithms is that of smoothness: an integer
is called B-smooth if no prime factor exceeding B divides it, and B-powersmooth if no prime or
prime power exceeding B divides it.

The P-1 algorithm published by Pollard in 1974 [80] was the first of a class of special-purpose
factoring algorithms that find a prime factor p of N quickly if the order of a finite group defined
over [F}, is smooth. In the case of the P-1 algorithm, the group is simply the group of units of I,
and has order p—1. Stage 1 of his algorithm chooses some integer xg coprime to N and computes
x5 mod N, with e including all primes and prime powers up to a chosen bound B;. If p — 1 is
Bj-powersmooth and thus divides e, then 2§ =1 (mod p), and ged(z§ — 1, N) usually reveals p



except when this ged is composite. Pollard further proposes a stage 2 which looks for a collision
modulo p in selected powers of z{ which allows him to discover prime factors p where p—1 contains
a single prime between Bj and a second bound Bs, but is otherwise Bi-powersmooth. He shows
that a prime factor p can be found in time O(/pM (log(N))) if the collision detection is done by
polynomial multipoint evaluation with a fast FFT-based multiplication routine. Williams [101]
extends Pollard’s P-1 idea to the P+1 method which finds a prime p quickly if one of p — 1 or
p+ 1is smooth. The P 1 and P+1 algorithms sometimes find surprisingly large factors quickly
if p—1 or p+ 1 happens to be smooth enough, but if both group orders contain a large prime
factor, then these methods are powerless. For example, a fraction of about 1 —log(2) of integers
up to N is N'/2-smooth (see Section 5.3.1), so roughly half of 40-digit primes p have a prime
factor exceeding 20 digits in both p — 1 and p + 1, which makes these primes impractical to find
with either method.

Pollard’s idea for an asymptotically fast FFT stage 2 to the P 1 algorithm was first imple-
mented by Montgomery and Silverman [74]. The authors suggest several ideas to speed up their
algorithm further, and to adapt it to the P41 factoring method.

The asymptotically fastest special-purpose factoring algorithm is the Elliptic Curve Method
(ECM) by H. W. Lenstra Jr. [62] which can be viewed as a generalization of P-1 and P+1 in
that it works in a group of points on an elliptic curve over IF), with group order in [p—2,/p+1,p+
2,/p+1], depending on the curve parameters. It has the major advantage that it can keep trying
different curves until a lucky curve with smooth group order is found. With optimal choice of
parameters, ECM has conjectured complexity of L,[1/2,2] to find a prime factor p which, in the
worst case of p ~ VN, leads to Ly[1/2,1], making it the currently only special-purpose factoring
algorithm with sub-exponential running time. Brent [15] and Montgomery [65] present stage 2
extensions for ECM, and Montgomery [74] develops an FFT stage 2.

Even though ECM has far superior asymptotic complexity and the P-1 and P+1 methods
act, in a way, merely as two particular attempts at a smooth group order among the nearly
endless number of such trials offered by ECM, the older methods have some advantages that
still keep them useful. One advantage is sheer speed. The arithmetic during stage 1 is much
simpler for P 1 and P+1 than for ECM so that with comparable parameters, less CPU time
is spent. Another advantage is that for P-1 and P+1, a much faster FFT stage 2 algorithm is
possible, due to the fact that Z/NZ (or a quadratic extension thereof for P+1) has ring structure,
which is not the case for the group of points on an elliptic curve. The ring structure permits a
particularly efficient polynomial multipoint evaluation algorithm, allowing stage 2 to run with
much less CPU and memory usage than is possible for the FFT extension for ECM. Finally, for
some input numbers p — 1 is known to have a divisor n (e.g., cyclotomic numbers ¢, (x) for n,
x € N, unless p | n), which increases the probability that (p — 1)/n is smooth. These advantages
make it quite reasonable to give P-1 and P+1 a try before moving on to the fundamentally more
powerful, but also computationally more expensive ECM algorithm.

Currently the best factoring algorithm for attacking RSA moduli (and other numbers without
small or otherwise easy to find prime factors) is the Number Field Sieve. It was first proposed by
Pollard in 1988 [82]| and originally required that the integer to be factored has a simple algebraic
form such as a™ £ ¢ with small a and ¢, but in the following years was extended to factoring
general integers [20]. It factors an integer N in conjectured time Lx/[1/3,c] with ¢ = (32/9)'/3 for
input numbers of simple enough form, in which case the algorithm is called the Special Number
Field Sieve (SNFS), or with ¢ = (64/9)'/3 for general integers, then called General Number Field
Sieve (GNFS). An early success for the SNFS was the factorization of the 9th Fermat number
Fy =22 41 in 1990 [61] and for the GNFS that of a 130-digit RSA factoring challenge number
in 1996. In January 2010, the largest SNFS factorization is that of 2'%3% — 1 in 2007 [2], whereas
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the GNF'S record is the factorization of a 768-bit (232-digit) RSA challenge number in 2009 [55].

Like other general-purpose factoring algorithms, the NFS factors an integer N by finding a
congruence of squares, 22 = y? (mod N) with 2 # £y (mod N), from which a non-trivial factor
of N is obtained by taking ged(z+y, N). The values of z and y are found by collecting a large set
of “relations,” which are essentially pairs of smooth integers, from which a subset can be chosen
so that in their product each prime occurs in even exponent, resulting in squares. The most
time consuming part of the NFS (in both Special and General variant) is the relation collection
phase which examines a very large number of polynomial values to look for smooth values by use
of sieving techniques and other factoring algorithms. Here, an integer n is considered smooth
if it contains only prime factors up to a sieving bound B, except for up to k integers up to
a large prime bound L. The sieving routine reports such n where the cofactor after dividing
out the primes up B is small enough, say below LF. These cofactors need to be factored to
test if any prime factor exceeds L. The memory consumption of the sieving increases with
B, and for large-scale factorizations the available memory frequently limits B so that L and
perhaps k need to be increased to allow sufficiently many values to pass as smooth. This way,
a very large number of such cofactors occur during the sieving for an NFS factorization, and
algorithms optimized for high-throughput factorization of small integers need to be used to avoid
the cofactorization becoming the bottleneck of the sieving process. The Elliptic Curve Method
is frequently suggested for this purpose [7] [41], and the P-1 and P+1 methods are likewise good
candidates.

Contributions

In joint work with Pierrick Gaudry and Paul Zimmermann, we developed an improved implemen-
tation of the Schonhage-Strassen integer multiplication algorithm, based on the code in GMP
version 4.1.4 which was written by Paul Zimmermann. The new implementation improves cache
locality during the FFT phase, increases the possible convolution length for given input size, and
uses fine-grained choice of convolution length and other parameters depending on the size of the
input numbers. It is described in Chapter 1. These improvements resulted in a factor 2 speedup
over the code in GMP 4.1.4.

In joint work with Montgomery, we have implemented an improved version of the P 1 and
P-+1 stage 2 algorithm that implements the ideas mentioned in |74] and other improvements.
The implementation is based on GMP-ECM and is described in Chapter 2.

A library for high-throughput factorization of integers up to 38 digits, using the P 1, P+1,
and ECM algorithms, has been written for use in the NFS siever program developed in the
context of the CADO project (Crible algébrique: distribution, optimisation). Chapter 3 contains
an overview of the NFS algorithm. The details of the small-integer factoring implementation are
found in Chapter 4, and its cost-efficiency is compared to proposed hardware implementations
of ECM for NFS. An outline of methods to estimate the success probability of finding factors
with the P 1, P+1 and ECM algorithms in cofactors produced by the NFS sieving step is given
in Chapter 5.



Notation

An overview of mathematical notation used throughout the thesis. Most of it follows common
usage, but is listed here for reference.

Sets:

C The complex numbers

N The non-negative integers
P The rational primes

Q The rational numbers

Z The integers

Relations:
alb a divides b, there is an integer k such that b = ka
atb a does not divide b

alb a is coprime to b, ged(a,b) =1
allb a divides b exactly, a | b and b/a L a

Functions:
log(z)  The natural logarithm of x
logy(x)  The logarithm of x to base b

o(n) The Euler totient function, the number of integers 1 < k < n with k L n
<%) The Legendre symbol for a (mod p)

m(n) The prime counting function, the number of primes not exceeding n

[n] The floor function, the largest integer k with £ <n

[n] The ceiling function, the smallest integer k& with k > n

[n] The nearest integer function, |n + 3|

Val,(n) The p-adic valuation of n

Other frequently used symbols:
I6] The machine word base, typically 3 = 232 or g = 264
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Chapter 1

Integer Multiplication with
Schonhage-Strassen’s Algorithm

1.1 Introduction

The text in Sections 1.2 and 1.3 of this chapter is based on joint work with P. Gaudry and
P. Zimmermann which was published in [46].

Multiplication of integers is one of the most basic operations in arithmetic and as such plays a
vital role in computational arithmetic. For many algorithms the time spent performing multipli-
cations dominates. Numerous other operations can be reduced to integer multiplication: modular
multiplication (by Barrett reduction [5] or Montgomery’s REDC [64]), polynomial multiplication,
multi-point evaluation and factorization, or root-finding by iterative methods.

In several applications, the integers to be multiplied are large, in particular when reducing
polynomial arithmetic to integer multiplication [99, 8.4], for high-precision evaluation of con-
stants, primality testing or integer factorization. Allan Steel [94] gives an overview of algorithms
that can be implemented efficiently by reduction to multiplication. For these, a multiplication
algorithm with low asymptotic complexity is required to make large operand sizes practical.

Given two multiple precision non-negative integers a = > " a;w’ and b = E;L:O bjwj with
word base w and 0 < a;,b; < w, we would like to compute the integer ¢ = ZZ)"H crwk = ab
with 0 < ¢ < w. The convolution product of the sums for a and b yields

m n
ab = Zaiwiijwj (1.1)
i=0 =0
m-+n min(k,n)

= Z w” Z ag—;b;.
k=0

j=max(0,k—m)

Hence we can set
min(k,n)

Cp = Z ar—;b; (1.2)

j=max(0,k—m)

and have ¢ = Tkn:"[)"'“ cpwk = ST epw” however ¢, # ¢, in general since the ¢ may be

larger than w (but they do not exceed min(m + 1,n + 1) - (w — 1)?). The desired ¢, values can
be obtained by an additional step commonly called “carry propagation:” set ¢4p41 := 0 and
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then, for £k =0,...,m 4+ n in sequence,
. o Cr
Ck+1 = Cik+1 —
- - w
¢ = ¢ mod w.

The sum ZZQLO"H ¢w” is invariant under this process, and finally all &, < w so we can set
Cr ‘= Cg.

The steps of decomposing the input integers into a sequence of digits in a convenient word base
w, performing a convolution product on these sequences, and obtaining the correct sequence of
digits of the product by carry propagation is common to multiple precision integer multiplication
algorithms. With suitable choice of w, e.g., a power of 2 on a binary computer, the two steps
of decomposition and carry propagation are inexpensive, requiring only O(n + m) additions or
assignments of integers of size O(log(w)). The main difference between multiplication algorithms
is how the convolution product is computed, and this is where they greatly differ in speed.

The most simple convolution algorithm, the “grammar-school” method, computes each ¢
individually by the sum (1.2). This involves (m+1)(n+ 1) multiplications of single digit (in base
w) integers a; and b; and about as many additions; assuming constant cost for these operations,
the algorithm has complexity in O(mn), or for m and n of equal size, O(n?).

1.1.1 The Karatsuba Algorithm

The first algorithm to offer better asymptotic complexity than the grammar-school method
was introduced in 1962 by A. Karatsuba and Yu. Ofman [51] (English translation in [52]),
commonly called Karatsuba’s method. The idea is to compute a product of two 2n-word inputs
by three products of n-word values (whereas the grammar-school method would require four such
products). Writing a = ajw + ag and b = byw + by, where 0 < ag, a1, by, b1 < w, we can compute
the convolution product éaw? + é1w + & = a1byw? + (agby + a1bo)w + agby via

Ca = aib
éo = aobo
¢1 = (a1 +ag)(bi +bo) — é2 — Co.

This method can be applied recursively, where the size of the numbers to be multiplied is about
halved in each recursive step, until they are small enough for the final multiplications to be
carried out by elementary means, such as one-word multiplication or the grammar-school method.
Assuming a threshold of one machine word for these small multiplications so that they have
constant cost, Karatsuba’s method performs multiplication of 2"-word inputs in O(3™) one-word
multiplications and O(3") additions, for a complexity of O(n'%82(3)) ¢ O(n!-5%).

The underlying principle of Karasuba’s short-cut is that of evaluation and interpolation of
polynomials to obtain the coefficients of the product. Multiplication of multi-digit integers is
intimately related to multiplication of polynomials with integer coefficients. Given the integers
a and b in base w notation, we can write A(z) = Y1 ;2 and B(z) = > =0 bz’ so that
a = A(w) and b = B(w). Now we can compute the product polynomial C(x) = A(z)B(z) and
find ¢ = ab = C(w). The step of breaking down the input integers into digits in a certain word
base amounts to obtaining the coefficients of a polynomial, the convolution product computes
the product polynomial C'(x), and the carry propagation step evaluates C'(w).

In Karatsuba’s method, the product polynomial C(x) is computed by evaluating C(x) =
A(x)B(x) at sufficiently many points x so that the coefficients of C(z) can be determined
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uniquely. In the description given above (Karatsuba and Ofman’s original description reduces
multiplication to two squarings first), we compute A(0) = ag, B(0) = by, A(1l) = a1 + ay,
B(1) = by + by and (formally') A(c0) = a1, B(co) = by in what constitutes the evaluation phase
of the algorithm.

The values of the product polynomial C(x) are the products of the values of A(z) and B(z):
C(0) = A(0)B(0), C(1) = A(1)B(1), and C(o0) = A(c0)B(00). In this step, the results of the
evaluation phase are multiplied pair-wise. In Karatsuba’s method, three products are computed,
each multiplying numbers half the size of the input integers.

A polynomial of degree d is uniquely determined given d+ 1 values at distinct points, so these
three values suffice to obtain the coefficients of C(x) = éx? + &2 + ¢o in the interpolation phase
of the algorithm. In the case of Karatsuba’s method this is particularly simple, since ¢y = C/(0),
62 = C(OO) and él = C(l) - ég — éo.

1.1.2 The Toom-Cook Algorithm

In 1963, A. L. Toom [97] (English translation in [98]) suggested a method which implements a
generalization of Karatsuba’s method that allows splitting the input numbers into more than
two pieces each, leading to polynomials of larger degree but smaller coefficients that must be
multiplied. Cook’s thesis [28] translates the method to an algorithm, it is now commonly called
Toom-Cook method. Given two (r 4+ 1)-word integers a and b, we can compute their product
by writing a = > .i_ja;w’, b = >_ bw’, 0 < a;,b; < w, and multiplying the polynomials
A(z) = Y0y aiz’ and B(x) = YI_, bz’ to obtain the product polynomial C(z) = Y27 &
of degree 2r by evaluating A(z) and B(x) at 2r 4+ 1 distinct points, pair-wise multiplication of
the values (each about 1/(r + 1) the size of the input numbers) and interpolating C(z). For
example, for r = 2, the points of evaluation z = 0,00,%1, and 2 could be chosen, so that
A(0) = ag, A(0) = ag, A(1) = a2 + a1 + ag, A(—1) = as — a1 + ag, and A(2) = 4ay + 2a1 + ag
(likewise for B(z)). After the pair-wise products to obtain C(0), C(c0), C(1), C(—1), and C(2),
the interpolation determines the coefficients of C(x) = Z?:o c;xt by, e.g.,

0)
00

>8>
Q Q

(

¢y = C(0)

2¢9 = C(l) + C(— ) — 2¢4 — 2¢g

6¢g = 0(2) —20( ) — 14¢q — 269 + ¢
(1)

>
Al
Q

— €4 — 3 — C2 — Cp.

Toom-Cook with r = 2 computes a product of two 3n-word integers with five products of
two n-word integers each; applied recursively, the asymptotic cost of this method is O(nlog3(5)) -
O(n**7) and in general, for a fixed 7, O(n!°8r+1(2r+1)),

Even for r = 2 the evaluation phase and especially the interpolation phase are noticeably
more involved than for Karatsuba’s method. This complexity quickly grows with r; if carried out
in a straight-forward manner, the evaluation and interpolation performs O(r?) multiplications
of O(n/r)-bit integers with O(log(r)) bit integers which yields a complexity of O(rnlog(r)), and
selection of optimal sets of points of evaluation and of interpolation sequences is non-trivial [13].
Hence for a given m we cannot increase r arbitrarily: the increase of cost of evaluation and
interpolation quickly exceeds the saving due to smaller pair-wise products. Toom shows that by

'Evaluating a polynomial f(x) at & = oo should be interpreted as evaluating the homogenized polynomial
F(z,y) = y%°sY) f(x/y) at (z,y) = ( ) the point (1,0) of the projective line corresponds to the point at infinity
of the affine line.
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choice of 7 = ¢V1°8("/7) with a suitable constant ¢, an algorithm with complexity in O(n'*€) for
any positive € can be obtained; however to reach small €, unreasonably large n are required.

An advantage of Karatsuba’s method over Toom-Cook with » > 1 is that no division is
required in the interpolation stage which makes it applicable over finite fields of small charac-
teristic. Montgomery [71], extending work by Weimerskirch and Paar [100], gives division-free
Karatsuba-like formulas that split the input into more than two parts and obtain the product
coefficients (in a manner that does not adhere to the evaluation/interpolation principle) with a
number of multiplications closer to n'°22(3) than plain Karatsuba does when n is not a power of

2.

1.1.3 FFT-based Multiplication

The problem of costly evaluation and interpolation can be overcome by use of the Fast Fourier
Transform (FFT). An FFT of length ¢ computes from aq,...,ay—1 € R with R a suitable ring

/-1
4= aw’,  j=0,...,0-1 (1.3)
=0

where w € R is an /-th primitive root of unity (which must exist for R to be suitable).
When the a; are interpreted as coefficients of the polynomial A(x) = Zf:é a;x’, the FFT

can be viewed as a polynomial multi-point evaluation scheme
a; = A(wj)

which evaluates A(z) at the £ distinct points w’. Likewise, the inverse FFT computes the
polynomial coefficients a; from the FFT coefficients a; by

aw ™ i=0,...,0—1. (1.4)

The division by ¢ requires that ¢ is a unit in R. To see that (1.4) is the inverse operation of
(1.3), we can substitute a; in (1.4) as defined in (1.3) and note that Z?;é(wk)j is zero for £ 1 k,
and is ¢ for ¢ | k.

In practice the FFT is fastest to compute if £ is a power of 2. Assume £ = 2F and rewrite
(1.3) as

-1 £/2—-1 £/2—1
4= aw’ = Y agw’+ D agpw®
i=0 i=0 i=0
£/2—1 £/2—-1
= Z agiwzw —|—w3 Z a2i+1w2”
=0 i=0
for j =0,...,£— 1. Since w* = 1, we have w%¥ = w20=/2) g5 each of the two sums takes only
. £/2—1 i £/2—1 i
£/2 distinct values. These values af’*" = Ziio azi(w?)¥ and a;-)dd = Zz‘io agi1(w?)¥ for

j=0,...,¢/2—1 are the FFT of length £/2 of the coefficients of even and odd index, respectively.
Hence an FFT of length ¢ can be computed by two FFTs of length ¢/2 and O(¢) additional
ring operations. An FFT of length ¢ = 1 is just the identity function. Thus the arithmetic
complexity F'(¢) of the FFT satisfies F'(1) =1, F(2¢) = 2F(¢) + O(¢) and so F(£) € O(¢log(¥))

ring operations.
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Also, since w42 = —)J, we can compute
__even i odd
a; = a; " +wa; (1.5)
Qe = a?ven . wja?dd
where the product wjajo»dd needs to be computed only once, for j = 0,...,¢/2. This operation

can be performed in-place, with a; and a;, overwriting a§V*" and a?dd, respectively. Hence an

FFT algorithm can be formulated as in Algorithm 1. This recursive algorithm was first published
by Cooley and Tukey [29], although the relevant identities were known to previous authors |30],
including Gauss.

This algorithm operates in-place, and at each recursion level the input coefficients a; of even
index i are expected in the lower half of the data array and those of odd index in the upper half,
for the sub-FFT being computed. Over the entire recursion, this requires coefficients a; where
the least significant bit (LSB) of i is zero to be located in the low half of the input array and those
where the LSB of ¢ is one in the upper half. Within these two halves, coefficients with the second
LSB of i equal zero must be in the lower half again, etc. This leads to a storage location for a;
that is the bit-reverse of the index i. Let bitrevy(i),0 < i < 2% denote the bit-reverse of the k-bit
integer ¢ (extended to k bits with leading zero bits if necessary): if i = Eﬁ;é in2", in € {0,1},
then bitrevy (i) = Zﬁ;é ik—1-n2". Hence for a length ¢ = 2F in-place FFT, the input coefficient
a; must be placed in location bitrevy (i) in the data array. The output coefficient a; is stored in
location j. The reordering process due to in-place FFT algorithms is called “scrambling”.

Procedure FFT_DIT (¢, a, w)
Input: Transform length ¢ = 2% k € N
Input coefficients ag . ¢—1 € R, stored in bit-reversed order
Root of unity w € R,wf =1, w' # 1 for 0 <i < ¢
Output: The FFT coefficients a; = Zf:é a;w stored in normal order, replacing the
input

if ¢ > 1 then
FFT_DIT({/2, ag, ¢/o—1, w?) ;
FFT_DIT({/2, ag.. o—1, W) ;
for 0<i</¢/2—1do
(ais@iges2) = (a; + W'aipe,ai — wW'airesa) ;
Algorithm 1: Recursive Cooley-Tukey algorithm for Fast Fourier Transform

The Cooley-Tukey in-place FFT can be used by passing the input coefficients in bit-reverse
order, and fast algorithms exist to perform this permutation [86]. However, for computing con-
volution products with the FFT, a more elegant solution is available. Gentleman and Sande [47|
presented an alternative algorithm for computing the FF'T that can be derived by splitting the
computation of a; in (1.3) by even and odd j rather than even and odd i:

—1 0/2-1

0ii 90

ag; = E a;w ™ = E (a; + aiH/g)w "
=0 =0

£/2-1

-1

_ (2j41) _ ; 2ij

agjt1 = E a;w Pt = E w'(a; — aiyp2)w™
=0 i=0
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Hence we can compute the length-£ FFT from the two length-£/2 FFTs of the coefficients

a;" " =i+ age (1.6)
a?dd = wi(ai—aiw/z)’

for 0 < i < ¢/2. This leads to Algorithm 2 which takes unscrambled input (coefficient a; in
array location i) and produces scrambled output (coefficient a; in array location bitrevy(j)).
Additionally, the Cooley-Tukey algorithm can be used for an inverse FFT simply by replacing w
by w™! everywhere and dividing each output coefficient by £. For the pair-wise multiplication,
whether the FFT coefficients are scrambled or not does not matter, so long as both sequences
of FFT coefficients are in the same order. Hence we can use the Gentleman-Sande algorithm for
computing forward FFTs producing scrambled output, do point-wise multiplication of the FFT
coefficients, and use the Cooley-Tukey algorithm for the inverse FFT taking scrambled input and
producing output in normal order. This way, explicit re-ordering with a bit-reversal algorithm
is avoided completely.

Procedure FFT_DIF (¢, a, w)
Input: Transform length £ = 2% k € N
Input coefficients ag . ,—1 € R stored in normal order
Root of unity w € R,w’ =1, w' # 1 for 0 <i < ¢
Output: The FFT coefficients a; = Zf:é a;w, stored in bit-reversed order, replacing
the input

if ¢ > 1 then
for 0<i</¢/2—1do
(@is Qigrs2) = (@i + igpp2,w" (@i — aiye)2)) ;
FFT_DIF({/2, ag, . ¢/o-1, w?) ;
FFT_DIF (£/2, agjo. o 1, )
Algorithm 2: Recursive Gentleman-Sande algorithm for Fast Fourier Transform

When multiplying two polynomials A(z) of degree m and B(z) of degree n, the product
polynomial C'(z) has degree m+n, and an FFT of length m +n+ 1 < £ is required to determine
the coefficients of C(z) uniquely. The same transform length must be used for the forward
transforms (evaluating A(x) and B(z)) and for the inverse transform (interpolating C(z)); in
the forward transform, the coefficients of A(z) and B(x) are padded with zeros to fill the input
of the FFT up to the transform length.

If the degrees of the input polynomials are too large so that m +n 4+ 1 > £, the product
polynomial C(x) cannot be interpolated correctly. Let C(z) = 2°Cy(z) 4+ Co(x), deg(Co(x)) < £.
Since w’ = 1, C(w?) = Oy (w?)+Co(w?) for all j € N, so polynomials C(z) and C(x) mod (z¢ — 1)
have the same FFT coefficients, and the interpolation of polynomials with an inverse FFT of
length ¢ from a given set of FFT coefficients is unique only modulo zf — 1. In other words,
the coefficients of too high powers x*, i > ¢, in the product polynomial are wrapped around and
added to the coefficients of 27 ™°4¢ also called cyclic wrap-around or a cyclic convolution. Hence
for inputs A(x), B(x), a convolution product with a length-¢ FFT produces the ¢ coefficients
of A(z)B(x) mod (x* — 1); if the product polynomial has degree less than ¢, its coefficients are
not disturbed by this modulus. Algorithm 3 shows a cyclic convolution product using the Fast
Fourier Transform.

The implicit polynomial modulus in an FFT convolution can sometimes be used profitably,
but often a modulus other than ¢ —1 is desired. This is accomplished with a weighted transform.
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ao] [a1] [az] [a3] [a4] [as] [ae] [a7]

Gentleman-Sande
KoynT,-£a1000)

[@] [ [@2] [d] [@] [@5] [@] [@7]

Figure 1.1: Data flow in a length-8 FF'T. Here, w, denotes an n-th primitive root of unity. Read
from top to bottom, the diagram shows the data flow of the Gentleman-Sande algorithm with
a; as input coefficients and a; as output. Read from bottom to top, it shows the data flow of the
Cooley-Tukey algorithm, with a; as input and a; as output.

The FFT input coefficients a; and b; are multiplied by weights w?, for 0 < i < ¢; after the pair-
wise multiplication and inverse FFT, the output coefficients ¢; are multiplied by w™. In effect,
the FFT computes C(x) so that C(wx) = A(wz)B(wz) mod (z* —1). With A(wz)B(wz) =
z'w'Cy (wz) 4 Co(wz), we have C(wzx) = wC(wz)+ Co(wz) and thus C(z) = w'Cy(z) + Cy(z),
which causes the wrapped-around part to be multiplied by w’ and corresponds to a multiplication
C(z) = A(x)B(z) mod (z* — w’). To allow a particular polynomial modulus x* — 7, the ring
R over which the FFT is performed must contain a w so that w® = r, i.e., a (not necessarily
primitive) ¢-th root of r. For example if a modulus of z¢ 41 is desired, we require that w = /—1,
which is a (2¢)-th root of unity (and necessarily primitive if ¢ is a power of 2), exists in R. In
this case the wrapped-around coefficients of z%, £ < i < 2¢, are subtracted from the coefficients

of 27 ™04 ¢ which leads to a negacyclic convolution.

Unfortunately we cannot apply the FFT directly to the problem of multiplying integers (via
polynomials with integer coefficients) as the ring of integers Z does not offer any primitive roots
of unity of order greater than 2. In order to carry out the FFT, we must map the coefficients of
the polynomials A(z) and B(z) to some other ring first which has a primitive root of unity of
order ¢ and the appropriate weight w if a weighted transform is desired, where £ is a unit, and
where the coefficients ¢; of the product polynomial can be identified uniquely. This mapping is
what distinguishes different FFT based integer multiplication algorithms.
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Input: Convolution length ¢ = 2F

Input coefficients ag,.. ¢—1,bp,.. -1 € R, where R supports a length-¢ FF'T
Output: Coefficients ¢ -1 € R of cyclic convolution product of a and b
Data: ty 41, temporary storage

/* Compute primitive f-th root of unity in R */
w:=+v1,1€R,;
/* Copy a to c, compute forward FFT in-place */

€o,....0—1 = QaQ,... 1—1;

FFT_DIF(/, co,. -1, W) ;

/* Copy b to t, compute forward FFT in-place */
to,...e—1 = bo,... 1—1;

FFT_DIF({, to,. o1, w) ;

/* Compute pair-wise products */
for0<i</¢—1do

C; ‘= Cj - ti;
/* Compute inverse FFT in-place x/

FFT_DIT(Y, co o1, w1);
for0<i</¢—1do
C; 1= Ci/g;
Algorithm 3: Cyclic convolution product with the Fast Fourier Transform

1.2 An Efficient Implementation of Schonhage-Strassen’s Algo-
rithm

Schénhage and Strassen [90] were the first to present practical algorithms for integer multiplica-
tion based on the FFT. They gave two possibilities for performing the convolution product via the
FFT: one over the complex numbers C which has complexity O (N log(NN)log(log(N))'*¢) for any
positive € and with input numbers of N bits, and one over a residue class ring R=72/ (2" + 1) Z
with complexity O(N log(N)log(log(/N))). Even though both methods were published in the
same paper and are both used in practice, “Schonhage-Strassen’s algorithm” usually refers only
to the latter.

Since Fourier transforms over C are ubiquitous in signal processing, data compression, and
many other fields of scientific computation, a wealth of publications on and countless implemen-
tations of the complex FFT exist. General-purpose complex FFT implementations (e.g., [42])
can be readily used for large-integer multiplication, although specialized implementations for
fast convolution products with purely real input offer further opportunities for optimization.
The field of complex FFTs and their efficient implementation is vast, and we do not explore it
here any further, but focus on convolution products using FFTs over the ring Z/(2" + 1)Z.

1.2.1 Overview

Schonhage-Strassen’s algorithm (SSA) reduces the multiplication of two input integers a and b to
¢ multiplications in R,, = Z/ (2" + 1) Z, for suitably chosen ¢ and n. In order to achieve the stated
complexity, these multiplications must be performed efficiently, and SSA calls itself recursively
for this purpose, until the numbers to be multiplied are small enough for simpler algorithms such
as the grammar-school, Karatsuba, or Toom-Cook methods. In order to facilitate this recursive
use of SSA, it is formulated to accept any two integers 0 < a,b < 2V 4+ 1 for a given N as input
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and compute the product ab mod (2N + 1). If the inputs are such that ab < 2NV 4+ 1, then this
SSA of course lets us compute the correct integer product ab, so we can use this algorithm (by
choosing N suitably) to perform integer multiplication. If the product of the inputs is known not
to exceed 2V + 1, optimizations are possible that allow performing the top-most recursion level
of SSA more efficiently, see 1.2.6. The multiplication modulo 2V 4 1 is done with a negacyclic
convolution of length £ using an FFT over the ring R,,, so that arithmetic modulo 2 +1 can be
performed via arithmetic modulo z¢ 4 1, and the pair-wise products in R, can use SSA again.

Thus SSA maps the computation of ab in N to the computation of ab mod (2V 4- 1) in Ry,
maps this product in Ry to a product of polynomials A(z)B(z) in Z[z]/(z’ + 1), and maps
this convolution product to R,[z]/(z* + 1) so that R, supports a length-¢ weighted FFT for
a negacyclic convolution and allows lifting the coefficients of A(z)B(x) mod (zf + 1) uniquely.
Figure 1.2 shows the sequence of mappings.

7 = Ry = Z[z] mod (' 4+ 1) = R,[r] mod (z* +1) = R,
¥

No, recurse 7, sma
enough?

Yes, multiply

Figure 1.2: Diagram of mappings in the Schonhage-Strassen algorithm.

1.2.2 Description of SSA

For given a,b whose product modulo 2V + 1, 4 | N, is sought, write N = ¢M where ¢ = 2F,
k > 2, and choose an n so that

= Im, (1.7)
n > 2M + k.

The two conditions imply n > v/2N. The choice of good values for N, ¢, and n is of great
importance for the performance of SSA; how to select these is described in 1.2.7.

Let R, = 7Z/(2" +1)Z. Since 2" = (2™)¢ = —1 (mod 2" + 1), 2™ is an (2¢)-th primitive root
of unity in R,, so that it supports FFTs for cyclic convolutions of power-of-two length up to 2¢,
or weighted FF'Ts for negacyclic convolutions up to length £.

From the input integers 0 < a,b < 2 + 1 we form polynomials

/-1
A) =Y a’, 0<a;<2Mfor0<i<(-1 (1.8)
1=0
0 <apy <2M,

that is, we cut a into £ pieces of M bits each, except the last piece may be equal to 2. Doing
likewise for b, we have a = A(2M) and b = B(2M). To obtain the product ¢ = ab mod (2V + 1),
we can use a negacyclic convolution to compute the product polynomial C(z) = A(x)B(z) mod
($£ + 1) so that, when the polynomials are evaluated at 2 = 2 the polynomial modulus zt+1

preserves the residue class modulo 2V + 1 = (ZM)Z + 1 of the integer product.
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The coefficients of the product polynomial C'(z) = Zf:é c;x' can be lifted exactly from R,

if ¢; mod (2™ + 1) is unique for all possible values of each ¢;. Due to the negacyclic wrap-around,
each ¢; can be defined by

low cl'] igh

Ci = ¢ i

with

Cliow = E aj bi_j

0<;j<i

high § b
¢ - anZ—J-i-fv

i<j<t

high

where all ¢ and ¢;"*" are non-negative and, applying the bounds from (1.8), satisfy

v o< (4 1)22M) 0<i</
A< (—1-9)22M ) 0<i<l-2
s < 22,

Thus, for all 0 <7 < /,
((i+1) = 022M < ¢; < (i +1)22M

so each ¢; is confined to an interval of length 22M¢ and it suffices to choose 2% + 1 > 22M¢, or
n > 2M + k with ¢ = 2¥. This minimal choice of n = 2M + k requires that the lifting algorithm
adjusts the range of each ¢; depending on ¢; if an algorithm is desired that works independently
of ¢, we must choose n > 2M + k + 1.

Hence the conditions on n given in (1.7) are sufficient to allow the computation of C(x) =
A(x)B(x) mod x4 1 with a negacyclic convolution by a weighted FFT over the ring R,,.

Given the coefficients of the product polynomial C(z), the integer ¢ = C'(2™) mod (2 + 1) =
ab mod (2N + 1) can be computed in the final carry propagation step. The ¢; may be negative or
greater than 2M —1, 50 0 < C(2M) < 2V +1 does not necessarily hold and the carry propagation
needs to take the modulus 2V + 1 into account.

The SSA thus consists of five consecutive steps, shown below. In this example, the coefficients
¢; of the product polynomial overwrite the coefficients a;.

1. Decompose a and b and apply weights
Allocate memory for array afi], 0 < i < £, with at least n+ 1 bits of storage per array entry
Store in afi] the i-th M-bit part of a
Apply weights by setting afi] := w' - a[i] mod (2" + 1), w = 27/
Do likewise for array b]|

2. Forward transform of ¢ and b
Perform length-¢ FFT in-place on array al] working modulo 2" + 1, with root of unity
W= 2211/[

Do likewise for array b]|

3. Pair-wise multiply
Set ali] := afi] - b[i] mod (2" + 1) for 0 < i < ¢

4. Inverse transform
Perform length-£ inverse FFT in-place on array a[|] working modulo 2"+1, including division
by ¢
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5. Apply inverse weights, carry propagation
Un-apply weights by setting a[i] := w™ - a[i] mod (2" + 1), w = 2"/*
Compute sum ¢ = (Zf;é ai2iM) mod (2 + 1)

Most of the ideas for the SSA presented so far were already present in the papers by Schonhage
and Strassen [90], or in follow-up papers by Schonhage [87]. We describe now several practical
improvements that allow SSA to multiply very large integers rapidly on contemporary computers.
The implementation is based on the implementation of SSA in the GNU Multiple Precision
arithmetic library (GMP) [49], version 4.2.1.

1.2.3 Arithmetic Modulo 2" + 1 with GMP

Arithmetic operations modulo 2" + 1 have to be performed during the forward and inverse
transforms, the point-wise products, when applying the weight signal, and when unapplying it.
Thanks to the fact that the primitive roots of unity are powers of two, the only needed operations
outside the point-wise products are additions, subtractions, and multiplications by a power of
two which can be performed by bit-wise shifts on a binary computer. Since 22* =1 (mod 2"+1),
division by 2¥ can be reduced to multiplication by 22*~*. Reduction modulo 2" +1 is inexpensive
as well, since a12" + ag = ap — a; (mod 2" + 1), so the reduction again requires only a bit-wise
shift and a subtraction.

To simplify arithmetic modulo 2" + 1, we require n to be a multiple of 3, the number of bits
per machine word. Since n must also be a multiple of £ = 2¥, this usually is not an additional
constraint unless k£ < 5 on a 32-bit computer or £ < 6 on a 64-bit computer, and SSA is typically
used for numbers that are large enough so that the transform length is at least 64. Let m =n/j
be the number of computer words corresponding to an n-bit number. A residue mod 2" + 1 has
a semi-normalized representation with m full words and one carry of weight 2™:

a = (G, Qp—1,---,00),

with 0 < a; < 28 for 0 <i <m, and 0 < a,, < 1.

The addition of two such representations is done as follows (we give here the C code using
GMP functions):

¢ — ajm| + bjm] + mpn_add_n (r, a, b, m);

rjm] = (r[0] < c);

MPN_DECR_U (r, m + 1, ¢ - r[m]);

The first line of this algorithm adds (a;,—1,...,a0) and (by,—1,...,bp), puts the low m words
of the result in (ry,—1,...,70), and adds the out carry to a,, + by,; we thus have 0 < ¢ < 3. The
second line yields 7, = 0 if rg > ¢, in which case we simply subtract ¢ from rg at the third line.
Otherwise r,,, = 1, and we subtract ¢ — 1 from ry: a borrow may propagate, but at most to r,.
In all cases 7 = a + bmod (2" 4 1), and r is semi-normalized.

The subtraction is done in a similar manner:

¢ — a|m| - b|m]| - mpn_sub_n (r, a, b, m);

]~ (¢ 1)

MPN_INCR_U (r, m + 1, rjm] - ¢);

After the first line, we have —2 < ¢ < 1. If ¢ = 1, then r,, = 1 at the second line, and the
third line does nothing. Otherwise, r,, = 0 at the second line, and we add —c to rg, where the
carry may propagate up to r,,. In all cases r = a — b mod (2" 4 1), and r is semi-normalized.
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The multiplication by 2¢ is more tricky to implement. However this operation mainly appears
in the butterflies  see below  [a,t] <+ [a+ b, (a — b)2¢] of the forward and inverse transforms,
which may be performed as follows:

1. Write e =d- 8+ s with 0 < s < 3, where 3 is the number of bits per word

2. Decompose a = (a1, ag), where a; contains the upper d words

3. Idem for b
4. t = (ao — by, by —al)
5. a:=a+b
6. t:=t-2°

Step 4 means that the most (m — d) significant words from ¢ are formed with ag — by, and the
least d significant words with by — a1, where we assume that borrows are propagated, so that ¢
is semi-normalized. Thus the only real multiplication by a power of two is that of step 6, which
may be efficiently performed with GMP’s mpn_1shift routine.

If one has a combined mpn_addsub routine which simultaneously computes = +y and = — y
faster than separate mpn_add and mpn_sub calls, then step 5 can be written a := (b1 + a1, ag+bg)
which shows that ¢ and @ may be computed with two mpn_addsub calls.

1.2.4 Improved FFT Length Using /2

Since all prime factors of 2" + 1 are p = 1 (mod 8) if 4 | n, 2 is a quadratic residue in R,
and it turns out that /2 is of a simple enough form to make it useful as a root of unity with
power-of-two order. Specifically, (i23”/4 F 2”/4)2 = 2 (mod 2" 4 1), which is easily checked by
expanding the square. Hence for a given n = 2¥m, k > 2, we can use, e.g., V2 = 23n/4 _on/4 a5 a
root of unity of order 25%2 to double the possible transform length. In the case of the negacyclic
convolution, this allows a length 2*+1 transform, and v/2 is used only in the weight signal. For
a cyclic convolution, v/2 is used normally as a root of unity during the transform, allowing a
transform length of 2872, This idea is mentioned in [8, §9] where it is credited to Schénhage,
who later pointed out [88] that he was aware of this trick from the start, but published it only
“encoded” in |89, exercise 18].

Multiplication by an odd power of /2 involves two binary shifts and a subtraction which
requires more arithmetic than multiplication by a power of 2, but is still inexpensive enough
that the smaller pair-wise products in the convolution due to larger transform length lead to a
net gain. In our implementation, this v/2 trick saved roughly 10% on the total time of integer
multiplication.

Unfortunately, using higher roots of unity for the transform is not feasible as prime divisors of
2" 41 are not necessarily congruent to 1 (mod 2¥3). Deciding whether they are or not requires
factoring 2" 41, and even if they are as in the case of the eighth Fermat number Fg = 2261 [17],
there does not seem to be a simple form for v/2 which would make it useful as a root of unity in
the transform.

1.2.5 Improved Cache Locality

When multiplying large integers with SSA, the time spent in accessing data for performing the
Fourier transforms is non-negligible; especially since the operations performed on the data are
so inexpensive, the relative cost of memory access is quite high. The literature is rich with
papers dealing with the organization of the computations in order to improve the data locality
and thus cache efficiency during an FFT. However, most of these papers are concerned with
contexts which are different from ours: usually the coefficients are small and most often they
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are complex floating-point numbers represented as a pair of double’s. Also there is a variety of
target platforms, from embedded hardware implementations to super-scalar computers.

We have tried to apply several of these approaches in our context where the coefficients are
integers modulo 2" 41 that each occupy at least a few cache lines and where the target platform
is a standard PC workstation.

In this work, we concentrate on multiplying large, but not huge integers. By this we mean
that we consider only 3 levels of memory for our data: level 1 cache, level 2 cache, and standard
RAM. In the future one might also want to consider the case where we have to use the hard disk
as a 4th level of storage.

Here are the orders of magnitude for these memories, to fix ideas: on a typical Opteron, a
cache line is 64 bytes; the L1 data cache is 64 KB; the L2 cache is 1 MB; the RAM is 8 GB. The
smallest coefficient size (i.e., n-bit residues) we consider is about 50 machine words, that is 400
bytes. For very large integers, a single coefficient barely fits into the L1 cache. For instance, in
our implementation, when multiplying two integers of 105,000,000 words each, a transform of
length 2! is used with coefficients of size 52 KB.

In an FFT computation, the main operation is the butterfly operation as described in equa-
tions (1.5) and (1.6). This is an operation in a ring R, that, for a Gentleman-Sande FFT,
computes a + b and (a — b)w, where a and b are coefficients in R,, and w is some root of unity.
In SSA this root of unity is a power of 2.

The very first FFT algorithm is the iterative one. In our context this is a really bad idea.
The main advantage of it is that the data is accessed in a sequential way. In the case where the
coefficients are small enough so that several of them fit in a cache line, this saves many cache
misses. But in our case, contiguity is irrelevant due to the size of the coefficients compared to
cache lines.

The next very classical FF'T algorithm is the recursive one. In this algorithm, at a certain
level of recursion, we work on a small set of coefficients, so that they must fit in the cache. This
version (or a variant of it) was implemented in GMP up to version 4.2.1. This behaves well for
moderate sizes, but when multiplying large numbers, everything fits in the cache only at the tail
of the recursion, so that most of the transform is already done when we are at last in the cache.
The problem is that before getting to the appropriate recursion level, the accesses are very cache
unfriendly.

In order to improve the locality for large transforms, we have tried three strategies found in
the literature: the Belgian approach, the radix-2* transform, and Bailey’s 4-step algorithm.

The Belgian transform

Brockmeyer et al. 18] propose a way of organizing the transform that reduces cache misses. In
order to explain it, let us first define a tree of butterflies as follows (we don’t mention the root
of unity for simplicity):

TreeBfy (A, index, depth, stride)
Bfy(A[index], A[index+stride])
if depth > 1
TreeBfy(A, index-stride/2, depth-1, stride/2)
TreeBfy (A, index+stride/2, depth-1, stride/2)

An example of a tree of depth 3 is given on the right of Figure 1.3. Now, the depth of
a butterfly tree is bounded by a value that is not the same for every tree. For instance, on
Figure 1.3, the butterfly tree that starts with the butterfly between ag and a4 has depth 1: one
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aoStep 1 . Step 2, Step 3a0

ai
a2
as
a4
as
ae
ar

Figure 1.3: The FFT circuit of length 8 and a butterfly tree of depth 3.

can not continue the tree on step 2. Similarly, the tree starting with the butterfly between a; and
as has depth 1, the tree starting between as and ag has depth 2 and the tree starting between
as and a7 has depth 3. More generally, the depth can be computed by a simple formula.

One can check that by considering all the trees of butterflies starting with an operation at
step 1, we cover the complete FFT circuit. It remains to find the right ordering for computing
those trees of butterflies. For instance, in the example of Figure 1.3, it is important to do the
tree that starts between as and a7 in the end, since it requires data from all the other trees.

One solution is to perform the trees of butterflies following the bitrev order. One obtains
the following algorithm, where ord_2 stands for the number of trailing zeros in the binary repre-
sentation of an integer (together with the 4-line TreeBfy routine, this is a recursive description
of the 36-line routine from [18, Code 6.1]):

BelgianFFT(A, k)
1 = 2~{k-1}
for i := 0 to 1-1
TreeBfy (A, bitrev(i, k-1), 1+ord_2(i+1), 1)

Inside a tree of butterflies, we see that most of the time, the butterfly operation will involve a
coefficient that has been used just before, so that it should still be in the cache. Therefore an
approximate 50% cache-hit is provided by construction, and we can hope for more if the data is
not too large compared to the cache size.

We have implemented this in GMP, and this saved a few percent for large sizes, thus con-
firming the fact that this approach is better than the classical recursive transform.

Higher radix transforms

The principle of higher radix transforms is to use an atomic operation which groups several
butterflies. In Arndt’s book [3] the reader will find a description of several variants in this spirit.
The classical FFT can be viewed as a radix-2 transform. The next step is a radix-4 transform,
where the atomic operation has 4 inputs and 4 outputs (without counting roots of unity) and
groups 4 butterflies of 2 consecutive steps of the FFT.

We can then build a recursive algorithm upon this atomic operation. Of course, since we
perform 2 radix-2 steps at a time, the number of levels in the recursion is reduced by a factor
of up to 2 from logy(¢) to [log,(¢)] (we have to handle the last recursion level by a radix-2
transform if the number £ of radix-2 FFT levels is odd).

In the literature, the main interest for higher radix transforms comes from the fact that the
number of operations is reduced for a transform of complex numbers (this is done by exhibiting
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a free multiplication by 7). In our case, the number of operations remains the same. However,
in the atomic block each input is used in two butterflies, so that the number of cache misses is
less than 50%, just as for the Belgian approach. Furthermore, with the recursive structure, just
as for the classical recursive FF'T, at some point we deal with a number of inputs which is small
enough so that everything fits in the cache.

We have tested this approach, and this was faster than the Belgian transform by a few
percent.

The next step after radix-4 is radix-8 which works in the same spirit, but grouping 3 levels
at a time. We have also implemented it, but this saved nothing, and was even sometimes slower
than the radix-4 approach. Our explanation is that for small numbers, a radix of 4 is close to
optimal with respect to cache locality, and for large numbers, the number of coefficients that fit
in the cache is rather small and we have misses inside the atomic block of 12 butterflies.

More generally, radix-2¢ groups ¢ levels together, with a total of 201 butterflies, over 2!
residues. If all those residues fit in the cache, the cache miss rate is less than 1/¢. Thus the
optimal strategy seems to choose for ¢ the largest integer such that 2'n bits fit in the cache
(either L1 or L2, whichever is the fastest cache where a single radix-2 butterfly fits).

Bailey’s 4-step algorithm

The algorithm we describe here can be found in a paper by Bailey [4]. In it, the reader will find
earlier references tracing back the original idea, which was in fact already mentioned in [47|. For
simplicity we stick to the “Bailey’s algorithm” denomination.

A way of seeing Bailey’s 4-step algorithm is as a radix-v/¢ transform, where ¢ = 2* is the
length of the input sequence. In other words, instead of grouping 2 steps as in radix-4, we group
k/2 steps. To be more general, let us write k = ki + ko, where k; and ko are to be thought
as close to k/2, but this is not really necessary. Then Bailey’s 4-step algorithm consists in the
following phases:

1. Perform 2*2 transforms of length 2%1;
2. Multiply the data by weights;
3. Perform 2% transforms of length 2*2.

There are only three phases in this description. The fourth phase is usually some matrix trans-
position?, but this is irrelevant in our case: the coefficients are large so that we keep a table of
pointers to them, and this transposition is just pointer exchanges which are basically for free,
and fit very well in the cache.

The second step involving weights is due to the fact that in the usual description of Bailey’s
4-step algorithm, the transforms of length 251 are exactly Fourier transforms, whereas the needed
operation is a twisted Fourier transform where the roots of unity involved in the butterflies are
different (since they involve a (2F)-th root of unity, whereas the classical transform of length 21
involves a (2%1)-th root of unity). In the classical FFT setting this is very interesting, since we
can then reuse some small-dimension implementation that has been very well optimized. In our
case, we have found it better to write separate code for this twisted FFT, so that we merge the
first and second phases.

Indeed, Bailey’s algorithm might be viewed as a two-dimensional transform of a matrix with 2*! rows and
2%2 columns, where Phase 1 performs 2*2 one-dimensional transforms on the columns, and Phase 3 performs 2%
one-dimensional transforms on the rows.



22 Chapter 1. Integer Multiplication with Schénhage-Strassen’s Algorithm

The interest of this way of organizing the computation is again not due to a reduction of
the number of operations, since they are exactly the same as with the other FFT approaches
mentioned above. The goal is to help locality. Indeed, assume that v/¢ coefficients fit in the
cache, then the number of cache misses is at most 2/, since each call to the internal FFT or
twisted FFT operates on V¢ coefficients.

Of course we are interested in numbers for which /¢ coefficients do not fit in the L1 cache, but
for all numbers we might want to multiply, they do fit in the L2 cache. Therefore the structure
of the code follows the memory hierarchy: at the top level of Bailey’s algorithm, we deal with
the RAM vs L2 cache locality question, then in each internal FFT or twisted FFT, we can take
care of the L2 vs L1 cache locality question. This is done by using the radix-4 variant inside our
Bailey-algorithm implementation.

We have implemented this approach (with a threshold for activating Bailey’s algorithm only
for large sizes), and combined with radix-4, this gave us our best timings. We have also tried a
higher dimensional transform, in particular 3 steps of size v/£. This did not help for the sizes we
considered.

Mixing several phases

Another way to improve locality is to mix different phases of the algorithm in order to do as much
work as possible on the data while they are in the cache. An easy improvement in this spirit
is to mix the pointwise multiplication and the inverse transform, in particular when Bailey’s
algorithm is used. Indeed, after the two forward transforms have been computed, one can load
the data corresponding to the first column, do the pointwise multiplication of its elements, and
readily perform the small transform of this column. Then the data corresponding to the second
column is loaded, multiplied and transformed, and so on. In this way, one saves one full pass
on the data. Taking the idea one step further, assuming that the forward transform for the first
input number has been done already (or that we are squaring one number), after performing
the column-wise forward transform on the second number we can immediately do the point-wise
multiply and the inverse transform on the column, so saving another pass over memory.

Following this idea, we can also merge the “decompose” and “recompose” steps with the
transforms, again to save a pass on the data. In the case of the “decompose” step, there is more
to it since one can also save unnecessary copies by merging it with the first step of the forward
transform.

The “decompose” step consists of cutting parts of M bits from the input numbers, then
multiplying each part a; by w® modulo 2" + 1, giving a;. If one closely looks at the first FFT
level, it will perform a butterfly between a} and af_, /9 With w? as multiplier. This will compute
ai + a;+é/2 and a} — a;+£/2, and multiply the latter by w?’. It can be seen that the M non-zero

bits from a) and a; do not overlap, thus no real addition or subtraction is required: the

+£/2
results aj + aj, ,, and a; — a;_,» can be obtained with just copies and ones’ complements. As a
consequence, it should be possible to completely avoid the “decompose” step and the first FFT
level, by directly starting from the second FFT level, which for instance will add a} + a;_i_g/z to
(a}— a;+z/2)w2j; here the four operands qg, a;+€/2’ aj, a;+£/2 will be directly taken from the input
integer a, and the implicit multiplier w? will be used to know where to add or subtract a;- and
a;+g/2. This example illustrates the kind of savings obtained by avoiding trivial operations like
copies and ones’ complements, and furthermore improving the locality. This idea was not used

in the results in §1.3.
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1.2.6 Multiplication without Reduction Modulo 2V + 1

The reason why SSA uses a negacyclic convolution is that it allows the algorithm to be used
recursively: the “pair-wise products” modulo 2" 4+ 1 can in turn be performed using the same
algorithm, each one giving rise to ¢ smaller pair-wise products modulo 2% + 1 (where n’ must
be divisible by ¢'). A drawback of this approach is that it requires a weighted transform, i.e.,
additional operations before the forward transforms and after the inverse transform, and an
(2¢)-th root of unity for the weights which halves the possible transform length for a given n.

The negacyclic transform is needed only to facilitate a modulus of zf 4+ 1 in the polynomial
multiplication which is compatible with the modulus of 2V 41 of the integer multiplication. But
at the top-most recursion level, we choose IV so that the integer product ¢ = ab is not affected by
any modulo reduction, and no particular modulus for the integer and hence for the polynomial
multiplication needs to be enforced.

Therefore one can replace Ry = Z/(2Y + 1)Z by Z/(2Y — 1)Z in the top-most recursion
level of SSA, and replace the negacyclic by a simple cyclic convolution (without any weights in
the transform), to compute an integer product mod 2V — 1, provided that ¢ = ab < 2V — 1.
We call this a “Mersenne transform,” whereas the original SSA performs a “Fermat transform”?.
This idea of using a Mersenne transform is already mentioned by Bernstein [8] where it is called
“cyclic Schonhage-Strassen trick”.

Despite the fact that it can be used at the top level only, the Mersenne transform is never-
theless very interesting for the following reasons:

e a Mersenne transform modulo 2V — 1, combined with a Fermat transform modulo 2V 4+ 1 and
CRT reconstruction, can be used to compute a product of 2N bits;

e as mentioned, a Mersenne transform can use a larger FFT length £ = 2* than the corresponding
Fermat transform. While ¢ must divide N for the Fermat transform so that the weight w = 2/V/¢
is a power of two, it only needs to divide 2N for the Mersenne transform so that w = 22V/¢ is
a power of two. This improves the efficiency for £ near v/ N, and enables one to use a value of £
closer to optimal. (The FFT length can be doubled again by using v/2 as a root of unity in the
transform as described in §1.2.4.)

The above idea can be generalized to a Fermat transform mod
transform mod 2°N — 1 for small integers a, b.

2¢N 1 1 and a Mersenne

Lemma 1. Let a,b be two positive integers. Then at least one of ged(2® + 1,2° — 1) and
ged (2% — 1,20 + 1) is 1.

Proof. Both geds are obviously odd. Let g = ged(a,b), r = 29, ' = a/g, ¥ = b/g. Denote
by ord,(r) the multiplicative order of r (mod p) for an odd prime p. In the case of ¥’ odd, p |
Y —1 = ord,(r) | ¥ = 2fordy(r), and p | 7% +1 = ord,(r) | 2a’ and ord,(r) { a’ = 2 | ord,(r),
hence no prime can divide both ¥ — 1 and r* + 1. In the other case of ¥’ even, o’ must be odd,
and the same argument holds with the roles of a’ an b’ exchanged, so no prime can divide both
r% —1 and ¥ + 1. O

It follows from Lemma 1 that for two positive integers a and b, either 2¢V + 1 and 20V — 1
are coprime, or 2V — 1 and 2°N 4 1 are coprime, thus we can use one Fermat transform of size
aN (respectively bN) and one Mersenne transform of size bN (respectively aN). However this
does not imply that the reconstruction is easy: in practice we used b = 1 and made only a vary
(see §1.2.7).

3Here, a “Fermat transform” is meant modulo 2~ + 1, without N being necessarily a power of two as in Fermat
numbers.
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1.2.7 Parameter Selection and Automatic Tuning

SSA takes for n a multiple of £, so that w = 22*/¢ is a primitive {-th root of unity, and w = 2"/
is used for the weight signal (or, if v/2 is used as described in 1.2.4, w = 2/* and w = (v/2)"/*.
The following omits the use of /2 for simplicity). As shown in 1.2.3, this ensures that all FFT
butterflies involve only additions/subtractions and shifts on a radix 2 computer. In practice one
may additionally require n to be a multiple of the machine word size 8 to simplify arithmetic
modulo 2™ 4 1.

For a given size N divisible by ¢ = 2*, we define the efficiency of the FFT-¢ scheme:

AN/l + k

)
n

where n is the smallest multiple of ¢ larger than or equal to 2N/¢ + k. For example for N =
1,000,448 and ¢ = 2'° we have 2N/ + k = 1964, and the next multiple of £ is n = 2¢ = 2048,
therefore the efficiency is % ~ 96%. For N = 1,044,480 with the same value of ¢, we have
2N/l + k = 2050, and the next multiple of ¢ is n = 3¢ = 3072, with an efficiency of about 67%.
The FFT scheme is close to optimal when its efficiency is near 100%.

Note that a scheme with efficiency below 50% does not need to be considered. Indeed, this
means that 2N/ + k < %n, which necessarily implies that n = ¢ (as n has to be divisible
by £). Then the FFT scheme of length ¢/2 can be performed with the same value of n, since
2(N/(£/2)) + (k—1) < 4N/l + 2k < n, and n is a multiple of £/2.

From this last remark, we can assume 2N /¢ > %n — neglecting the small k£ term —, which
together with n > £ gives:

¢ <2VN. (1.9)

It should be noted that choosing n minimal according to the conditions ¢ > 2N/¢ + k and
¢ | 2n (e.g., for a Fermat transform with use of v/2) is not always optimal. At the j 4 1-st
recursive level of a length-/ FFT, we multiply by powers of an ¢/27-th root of unity, i.e., by
212720/t for successive i, by performing suitable bit-shifts. When 292n,/¢ is a multiple of the word
size, no actual bit-shifts are performed any more, since the shift can be done by word-by-word
copies. On system where bit-shifting is much more expensive than mere word-copying, e.g., if
no well-optimized multiple precision shift code is available, it can be advantageous to choose n
larger to make 2n//¢ divisible by a small power of 2. This way the number of FFT levels that
perform bit-shifts is reduced. In our code, for transform lengths below the threshold for Bailey’s
algorithm and n that are small enough not to use SSA recursively, we ensure ¢ | n (even when
V2 is used and £ | 2n would suffice for a Fermat transform). If the resulting n satisfies n/l = 3
(mod 4), we round up some more to make 4/ | n. The comparative timings of length 128 (k = 7)
and length 256 (k = 8) can be seen in figure 1.4

Automatic Tuning
We found that significant speedups could be obtained with better tuning schemes, which we
describe here. All examples given in this section are related to an Opteron.

Tuning the Fermat and Mersenne Transforms

Until version 4.2.1, GMP used a naive tuning scheme for the FFT multiplication. For the Fermat
transforms modulo 2V + 1, an FFT of length 2k was used for t, < N < tr+1, where t; is the
smallest bit-size for which FFT-2* is faster than FFT-2*~1. For example on an Opteron, the
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k‘=7, n no‘t rounde‘d up IL:S, n ndt roundeﬁ up
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Figure 1.4: Time in milliseconds for a length 128 (k = 7) and length 256 (k = 8) FFT, for input
sizes of 1000 to 5000 words, with and without rounding up n to avoid bit-shifts

default gmp-mparam.h file uses k = 4 for a size less than 528 machine words, then k = 5 for less
than 1184 words, and so on:

#define MUL_FFT_TABLE { 528, 1184, 2880, 5376, 11264, 36864, 114688, 327680, 1310720,
3145728, 12582912, 0 }

A special rule is used for the last entry: here k = 14 is used for less than m = 12582912 words,
k = 15 is used for less than 4m = 50331648 words, and then k = 16 is used. An additional single
threshold determines from which size upward — still in words — a Fermat transform mod 2™ +1
is faster than a full product of two n-bit integers:

#define MUL_FFT_MODF_THRESHOLD 544

For a product mod 2" +1 of at least 544 words, GMP 4.2.1 therefore uses a Fermat transform,
with & = 5 until 1183 words according to the above MUL_FFT_TABLE. Below the 544 words
threshold, the algorithm used is the 3-way Toom-Cook algorithm, followed by a reduction mod
2" 4+ 1.

This scheme is not optimal since the FFT-2% curves intersect several times, as shown by
Figure 1.5.

To take into account those multiple crossings, the new tuning scheme determines word-
intervals [my, ms] where the FFT of length 2% is preferred for Fermat transforms:

#define MUL_FFT_TABLE2 {{1, 4 /*66%/}, {401, 5 /*96x*/}, {417, 4 /*98%/},
{433, 5 /%x96%/}, {865, 6 /*96x%/}, ...

The entry {433, 5 /*96+*/} means that from 433 words — and up to the next size of 865
words FFT-2° is preferred, with an efficiency of 96%. A similar table is used for Mersenne
transforms.

Tuning the Plain Integer Multiplication

Up to GMP 4.2.1, a single threshold controls the plain integer multiplication:

#define MUL_FFT_THRESHOLD 7680
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Figure 1.5: Time in milliseconds needed to multiply numbers modulo 2" 4+ 1 with an FFT of
length 2% for k = 5,6,7. On the right, the zoom (with only k = 5,6) illustrates that two curves
can intersect several times.

This means that SSA is used for a product of two integers of at least 7680 words, which
corresponds to about 148,000 decimal digits, and the Toom-Cook 3-way algorithm is used below
that threshold.

We now use the generalized Fermat-Mersenne scheme described in 1.2.6 with b = 1 (in our
implementation we found 1 < a < 7 was enough). Again, for each size, the best value of a is
determined by our tuning program:

#define MUL_FFT_FULL_TABLE2 {{16, 1}, {4224, 2}, {4416, 6}, {4480, 2},
{4608, 4}, {4640, 2},

For example, the entry {4608, 4} means that to multiply two numbers of 4608 words each
— or whose product has 2 x 4608 words — and up to numbers of of 4639 words each, the new
algorithm uses one Mersenne transform modulo 2 —1 and one Fermat transform modulo 24V 4-1.
Reconstruction is easy since 2V 4+ 1 =2 mod (2 — 1).

1.3 Results

On July 1st, 2005, Allan Steel wrote a web page (93] entitled “ Magma V2.12-1 is up to 2.3 times
faster than GMP 4.1.4 for large integer multiplication,” which was a motivation for working on
improving GMP’s implementation and we compare our results to Magma’s timings. We have also
tested other freely available packages providing an implementation for large integer arithmetic.
Among them, some (OpenSSL/BN, LiDiA/1ibI) do not go beyond Karatsuba algorithm, some do
have some kind of FF'T, but are not really made for really large integers: arprec, Miracl. Two
useful implementations we have tested are apfloat and CLN. They take about 4 to 5 seconds
on our test machine to multiply one million-word integers, whereas we need about 1 second.
Bernstein mentions some partial implementation Zmult of Schénhage-Strassen’s algorithm, with
good timings, but right now, only very few sizes are handled, so that the comparison with our
software is not really possible.

A program that implements a complex floating-point FFT for integer multiplication is George
Woltman’s Prime95. It is written mainly for the purpose of performing the Lucas-Lehmer algo-
rithm for testing large Mersenne numbers 2P — 1 for primality in the Great Internet Mersenne
Prime Search [102], and since its inception has found 10 new such primes, each one a new record
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Figure 1.6: Comparison of GMP 4.1.4, GMP 4.2.1, Magma V2.13-6 and our new code for the
plain integer multiplication on a 2.4GHz Opteron (horizontal axis in 64-bit words, vertical axis
in seconds).

at the time of its discovery. It uses a DWT for multiplication mod a2™ 4 ¢, with @ and ¢ not too
large, see [79]. We compared multiplication modulo 22*" — 1 in Prime95 version 24.14.2 with
multiplication of n-word integers using our SSA implementation on a Pentium 4 at 3.2 GHz,
and on an Opteron 250 at 2.4 GHz, see Figure 1.7. It is plain that on a Pentium 4, Prime95
beats our implementation by a wide margin, in fact usually by more than a factor of 10. On
the Opteron, the difference is a bit less pronounced, where it is by a factor between 2.5 and 3.
The reasons for this architecture dependency of the relative performance is that Prime95 uses
an SSE2 implementation of floating point FFT, which performs slightly better on the Pentium 4
than on the Opteron at a given clock rate, but more importantly that all-integer arithmetic as
in SSA performs poorly on the Pentium 4, but excellently on the Opteron, due to both native
64 bit arithmetic and a very efficient integer ALU. Some other differences between Prime95 and
our implementation need to be pointed out in this context: due to the floating point nature of
Prime95’s FFT, rounding errors can build up for particular input data to the point where the re-
sult will be incorrectly rounded to integers. While occurring with only low probability, this trait
may be undesirable in scientific computation. In particular, the specification of GMP requires a
correct multiplication algorithm for all input values, and when the first version of an FFT mul-
tiplication for GMP was written around 1998, it was not known how to choose parameters for
a complex floating-point FFT so that correct rounding could be guaranteed in the convolution
product. Therefore the preference was given to an all-integer algorithm such as Schonhage-
Strassens where the problem of rounding errors does not occur. As it turns out, multiplication
with the floating point FFT can be made provably correct, see again [79], but at the cost of using
larger FFT lengths, thus giving up some performance. Figure 1.8 shows the maximum number
of bits that can be stored per FFT element of type double so that provably correct rounding is
possible. Prime95’s default choice uses between 1.3 and 2 times as many, so for multiplication
of large integers, demanding provably correct rounding would about double the run time. Also,
the DWT in Prime95 needs to be initialized for a given modulus, and this initialization incurs
overhead which becomes very costly if numbers of constantly varying sizes are to be multiplied.
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Finally, the implementation of the FFT in Prime95 is done entirely in hand-optimized assembly
for the x86 family of processors, and will not run on other architectures.

Another implementation of complex floating point FFT is Guillermo Ballester Valor’s Glucas.
The algorithm it uses is similar to that in Prime95, but it is written portably in C. This makes
it slower than Prime95, but still faster than our code on both the Pentium 4 and the Opteron,
as shown in Figure 1.7.

16
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SSA on Opteron --------

1.4 + Glucas on Opteron
Prime95 on Opteron ———— e
Glucas on P4 ------- /

Prime95 on P4 - -- -- -

le6

Figure 1.7: Time in seconds for multiplication of different word lengths with our implementation,
Prime95 and Glucas on a 3.2 GHz Pentium 4, a 2.4 GHz Core 2, and a 2.4 GHz Opteron.
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bits/dbl| 16 15 14 13 12 11 10 9
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Figure 1.8: Number of bits which can be stored in an IEEE 754 double-precision floating point
number for provably correct multiplication of integers of bit-size N with an FFT of length K,
and number of bits used in Prime95 for FFT length K.

Fiirer |43] proposed an integer multiplication algorithm with complexity O(n log(n)21°g*(”)),
where log*(n) is the minimum number of logarithms one needs to stack, starting from n, to get
a result of at most 1. It is therefore asymptotically faster than Schénhage-Strassen’s algorithm
with complexity O(nlog(n)log(log(n))), although the difference of the two asymptotic functions
is small for n in the range of interest. We are not aware of a well-optimized implementation of
Fiirer algorithm, so no comparison of their speed in practice is possible at the moment.



Chapter 2

An Improved Stage 2 to P£1 Factoring
Algorithms

2.1 Introduction

This chapter is joint work with Peter Lawrence Montgomery and was published in [73].

It extends the work of |74], a fast stage 2 for the P—1 algorithm based on polynomial multi-
point evaluation where the points of evaluation lie in a geometric progression. The previous
paper mentioned several ideas how the method could be improved by using patterns in the roots
of the polynomial to build it more quickly, using symmetry in the resulting polynomial to reduce
storage space and speed up polynomial arithmetic, and to adapt the method to the P+1 factoring
algorithm.

These ideas are implemented in the current work, making efficient use of today’s computers
with large memory and multi-processing capability. Several large factors were found with the
new implementation, including a 60-digit factor of the Lucas number Losgg by the P+1 method
which still (at the end of 2009) stands as the record for this method. Some large factors were
found with the P-1 method, listed in Section 2.13, but sadly no new record was set in spite of
our best efforts.

2.2 The P-1 Algorithm

In 1974 John Pollard [80, §4| introduced the P-1 algorithm for factoring an odd composite
integer N. It hopes that some prime factor p of N has smooth p — 1. An integer is B-smooth if
it has no prime factors exceeding B. It picks by # +1 (mod N) and coprime to N and outputs
b1 = bf mod N for some positive exponent e. This exponent might be divisible by all prime
powers below a bound Bj. Stage 1 succeeds if (p — 1) | e, in which case by = 1 (mod p) by
Fermat’s little theorem. The algorithm recovers p by computing ged(by — 1, N) (except in rare
cases when this ged is composite). When this ged is 1, we hope that p — 1 = gn where n divides
e and ¢ is not too large. Then

bl = (b§)? = by! = (bgq)e/n = <b703_1>6/n =1"=1 (mod p), (2.1)

so p divides gcd(b‘f —1, N). Stage 2 of P—1 tries to find p when ¢ > 1 but ¢ does not exceed the
stage 2 search bound Bs.

29
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Pollard tests each prime ¢ in |Bj, Bs| individually. If ¢, and ¢,41 are successive primes, he
looks up b[f”“_q" mod N in a small table. It is conjectured that ¢,+1 — ¢ < log(qn+1)2, related
to Cramér’s conjecture which states

lim sup Gnt1 7 Gn _ 1

n— o0 log(qn)2

The prime gap that follows ¢, = 1693182318746371 has length 1132, giving the largest quotient
(@1 — Gn)/10g(gns1)* = 0.92... currently known. This prime is greater than any that will
be used in way of Pollard’s stage 2, so in practice the size of the table can be bounded by
log(Bz)? /2, as only even differences need to be stored if By > 2. Given b mod N, we can form
b mod N = b{" b ~* mod N with b{"*'~ " mod N taken from the precomputed table, and
test ged (b — 1, N). Pollard observes that one can combine ged tests: if p | ged(z, N) or p |
ged(y, N), then p | ged(zy mod N, N). His stage 2 cost is two modular multiplications per ¢: one

to compute b¥* and one to multiply by —1 to an accumulator A; plus O (log(Bg)z) multiplications

to build the table and taking ged(A, N) at the end, but these cost are asymptotically negligible.

Montgomery [65] uses two sets S; and Sg, such that each prime ¢ in |Bj, Bg] divides a
nonzero difference s; — so where s; € S; and s9 € S;. He forms bj' — bj? using two table
look-ups, saving one modular multiplication per ¢. Sometimes one s; — so works for multiple q.
Montgomery adapts his scheme to Hugh Williams’s P41 method and Hendrik Lenstra’s Elliptic
Curve Method (ECM). These changes lower the constant of proportionality, but stage 2 still uses
O(w(Bg) — m(B1)) operations modulo N.

The end of Pollard’s original P 1 paper [80] suggests an FFT continuation to P 1. Mont-
gomery and Silverman |74, p. 844| implement it, using a circular convolution to evaluate a
polynomial along a geometric progression. It costs O(\/B_210g(32)) operations to build and
multiply two polynomials of degree O(\/E), compared to O(By/log(Bs)) primes below B, so
the FFT stage 2 beats Pollard’s original stage 2 and Montgomery’s variant from [65] when By is
large.

Montgomery’s dissertation [67] describes an FFT continuation to ECM. He takes either the
ged of two polynomials, or uses a general multipoint evaluation method for polynomials with
arbitrary points of evaluation. These cost an extra factor of log(Bs) compared to when the points
are along a geometric progression. Zimmermann [103]| implements these FFT continuations to
ECM and uses them for the P+1 methods as well.

2.2.1 New Stage 2 Algorithm

Like in [74], in this chapter we evaluate a polynomial along geometric progressions. We exploit
patterns in its roots to generate its coefficients quickly. We aim for low memory overhead, saving
it for convolution inputs and outputs (which are elements of Z/NZ). Using memory efficiently
lets us raise the convolution length ¢. Many intermediate results are reciprocal polynomials,
which need about half the storage and can be multiplied efficiently using weighted convolutions.

Doubling £ costs slightly over twice as much time per convolution, but each longer convolution
extends the search for ¢ (and effective By) fourfold. Silverman’s 1989 implementation used 42
megabytes and allowed 250-digit inputs. It repeatedly evaluated a polynomial of degree 15360
at 8 - 17408 points in geometric progression, using ¢ = 32768. This enabled him to achieve
B2 ~ 1010.

Today’s (2008) PC memories are 100 or more times as large as those used in [74|. With
this extra memory, we achieve £ = 223 or more, a growth factor of 256. With the same number
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of convolutions (individually longer lengths but running on faster hardware) our By advances
by a factor of 2562 ~ 6.6 - 10*. We make use of multi-processor systems by parallel execution
of the convolution products. Supercomputers with many CPUs and huge shared memories do
spectacularly.

Most techniques herein adapt to P+1, but some computations take place in an extension
ring, raising memory usage if we use the same convolution sizes.

Section 2.13 gives some new results, including a record 60-digit P+1 factor.

The new algorithm to build a polynomial from its roots and the algorithm to evaluate that
polynomial on points along a geometric progression make use of the ring structure of Z/NZ for
P—1, or a quadratic extension thereof for P41. This ring structure is not present in elliptic curves
used for ECM, so these techniques do not apply to it. The method of choosing sets S; and S5
as in Section 2.6 to determine the roots and evaluation points for the polynomial can be used
for ECM, however, together with general algorithms of building a polynomial from its roots and
evaluating it on an arbitrary set of points, like those described in [67] or [103].

2.3 The P+1 Algorithm

Hugh Williams [101] introduced a P+1 factoring algorithm in 1982. It finds a prime factor p of
N when p + 1 (rather than p — 1) is smooth. It is modeled after P—1.

One variant of the P+1 algorithm chooses Py € Z/NZ and lets the indeterminate ag be a
zero of the quadratic f(z) = 22 — Pyz + 1. The product of the two roots of this quadratic is
the constant coefficient 1, hence they are g and aal, and their sum is Fy. We hope that this
quadratic is irreducible modulo the unknown factor p, i.e., that the discriminant A = PO2 —4is
a quadratic non-residue modulo p. If so, ag lies in /Fp, ie., has degree 2. By the Frobenius
endomorphism, o) # ag is the second root in Fy2. Hence apar = agagy = aé’“ =1 (mod p) and
the order of ag divides p + 1.

On the other hand, if P02—4 is a quadratic residue modulo p, then ag lies in F,, and ozg = ap, SO
that ag_l = 1 and the order of ag divides p—1. In this case, the P+1 algorithm behaves like the
P-1 algorithm. Since whether o has order dividing p—1 or p+1 depends on the unknown prime
p (and can vary for different prime factors p of one composite number), it generally is impossible
to tell which order results from a particular choice Fy, unless, say, the resulting determinant is
a rational square or known to be a quadratic residue modulo all candidate prime factors of the
input number. Williams suggests testing three different values for Py to reach a confidence of
87.5% that an element of order dividing p + 1 has been tried for a given prime factor p.

Stage 1 of the P+1 algorithm computes P, = a; + ozl_l where a1 = of (mod N) for some
exponent e, starting from Py = ag + agl and using Chebyshev polynomials to simplify the
computation. If ord(ag) | e, regardless of whether ord(ag) | p — 1 or ord(ag) | p + 1, then
P =oj+a;°=14+1=2 (mod N) and ged(P; —2, N) > 1; if this ged is also less than N, the
algorithm succeeds. Stage 2 of P+1 hopes that af =1 (mod p) for some prime ¢, not too large,
and some prime p dividing N.

2.3.1 Chebyshev Polynomials

Although the theory behind P+1 mentions ag and oy = of, an implementation manipulates
primarily values of off + " and af + «; " for various integers n rather than the corresponding
values (in an extension ring) of o and of.
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For integer n, the Chebyshev polynomials V,, of degree n and U, of degree n—1 are determined
by Va(X + X71) = X"+ X7 and (X — X HU,(X + X7!) = X" — X" The use of these
polynomials shortens many formulas, such as

P =ai+a;' =af+a;°=Vi(ap+ap') =Ve(Py) (mod N).

These polynomials have integer coefficients, so P; = V,(FPy) (mod N) is in the base ring Z/NZ
even when ag and g are not.
The Chebyshev polynomials satisfy many identities, including

Vi (X) = Vin(Va(X)),
Unn(X) = Un(X) Va(X) = Un-n(X), (2.2)
Unin(X) = V(X)) Un(X) 4+ Upn—n(X),
Vinn(X) = Vin(X) Va(X) = Vip—n (X)), (2.3)
Vinin(X) = (X% =) Upn(X) Up(X) + Vin(X).

For given integers n and Py, the value of the Chebyshev polynomial V,,(Py) can be evaluated
by the methods of Montgomery [66].

2.4 Overview of Stage 2 Algorithm

Our algorithm performs multipoint evaluation of polynomials by convolutions. Its inputs are the
output of stage 1 (b; for P-1 or P; for P+1), and the desired stage 2 interval | By, Bs].

The algorithm chooses a highly composite odd integer P. It checks for ¢ in arithmetic
progressions with common difference 2P. There are ¢(P) such progressions to check when
ged(q,2P) = 1.

We need an even convolution length ¢max (determined primarily by memory constraints)
and a factorization ¢(P) = s1s2 where s7 is even and 0 < s1 < fmax. Sections 2.6, 2.10.1 and
2.12 have sample values.

Our polynomial evaluations will need approximately

. [ Bs W _o(P) By
2P(€max - 81) 2P 81(€max - 81)

(2.4)

convolutions of length max. We prefer a small ¢(P)/P to keep (2.4) low. We also prefer s;
near {max/2, say 0.3 < s1/fmax < 0.7.

Using a factorization of (Z/PZ)* as described in Section 2.6, we construct two sets S; and
So of integers such that

(a) |S1| = s1 and |Ss| = so.
(b) Sy is symmetric around 0: if k € Sy, then —k € 5.

(c) If k € Z and ged(k, P) = 1, then there exist unique k1 € S1 and ko € S such that
k =k + ko (mod P).

Once S7 and Sy are chosen, for the P-1 method we compute the coefficients of

FO=x2 T] (X = b7) mod N (2.5)
k1€S1
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by the method in Section 2.8. Since S is symmetric around zero, this f(X) is symmetric in X
and 1/X.
For each ko € Sy we evaluate (the numerators of) all

FORTEMIUPY hod N (2.6)

for fmax — s1 consecutive values of m as described in Section 2.9, and check the product of these
outputs for a nontrivial ged with N. This checks s1(¢max — s1) candidates, not necessarily prime
but including all primes in | By, Bs], hoping to find gq.

For the P+1 method, replace b; by ay in (2.5) and (2.6). The polynomial f is still over
Z/NZ since each product (X — a3¥)(X — a7 1) = X2 — Vi, (P1) + 1 is in (Z/NZ)[X], but the

multipoint evaluation works in an extension ring. See Section 2.9.1.

2.5 Justification

Let p be an unknown prime factor of N. As in (2.1), assume b =1 (mod p) where ¢ is not too
large, and ged(q, 2P) = 1.

The selection of S; and Sy ensures there exist k; € S and ko € Sy such that (¢ — P)/2 =
k1 + ko (mod P). That is,

q =P+ 2k + 2ky + 2mP = 2k; + 2ky + (2m + 1)P (2.7)

for some integer m. We can bound m knowing bounds on ¢, k1, ks, detailed in Section 2.6. Both
bE2F are roots of f (mod p) since ) is symmetric around 0 and by (2.5). Hence

FHFEmIDPY 972y = ¢(p71) =0 (mod p). (2.8)

For the P+1 method, if af = 1 (mod p), then (2.8) evaluates f at X = a?kﬁ@m“)]g

off_zkl. The factor X — al_2k1 of f(X) evaluates to a~2¥1(af — 1), which is zero modulo p even
in the extension ring.

2.6 Selection of S; and S,
Let “+” of two sets denote the set of sums. By the Chinese Remainder Theorem,
(Z)(mn)Z)* =n(Z/mZ)* + m(Z/nZ)* if gcd(m,n) = 1. (2.9)

This is independent of the representatives: if S = (Z/mZ)* (mod m)and T = (Z/nZ)* (mod n),
then nS +mT = (Z/(mn)Z)* (mod mn). For prime powers, we have (Z/pFZ)* = (Z/pZ)* +
Y pU(Z/pT).

We choose S; and Sy such that S; 4+ Sy = (Z/PZ)* (mod P) which ensures that all values
coprime to P, in particular all primes, in the stage 2 interval are covered. One way uses a
factorization mn = P and (2.9). Other choices are available by factoring individual (Z/pZ)*,
p | P, into smaller sets of sums.

Let R, ={2i —n —1:1 <4 < n} be an arithmetic progression centered at 0 of length n
and common difference 2. For odd primes p, a set of representatives of (Z/pZ)* is Rp—1. Its
cardinality is composite for p # 3 and the set can be factored into arithmetic progressions of
prime length by

Ryn = Ry, + mR,y,. (2.10)



34 Chapter 2. An Improved Stage 2 to P£1 Factoring Algorithms

If p=3 (mod 4), alternatively %IRQ + %R(p_l)/g can be chosen as a set of representatives with
smaller absolute values. For example, for p = 7 we may use {—2,2} + {—1,0,1}.
Example. For P =3-5-7 = 105, we could use

(Z/105Z)" = 35(Z/3Z)* + 21(Z/5Z)* + 15(Z/TZ)*
by (2.9) and choose
S1+4 So =35{—1,1} +21{-3,-1,1,3} + 15{—5,—-3,—1,1,3,5}.
However, we can use (2.10) to write

{-3,-1,1,3} = 2{-1,1}+{-1,1}  and
{=5,—-3,-1,1,3,5} = 3{—1,1} +{-2,0,2}.

Now we can choose S7+ Sy = 35{—1,1} +42{—1,1} +21{—1,1} +45{—1,1} +15{—2,0, 2}, and
let for example S1 = 35{—1,1} +42{—1,1} + 21{—1,1} +45{—1,1} and Sy = 15{—2,0,2} to
make s; = |S1| = 16 (close to) a power of 2 and sy = |S3| small.

When evaluating (2.6) for all m; < m < mg and kg € So, the highest exponent coprime to
P that is not covered at the low end of the stage 2 range will be 2max(S; + S2) + (2m; — 1)P.
Similarly, the smallest value at the high end of the stage 2 range not covered is 2min(S; + S2) +
(2mg 4+ 1)P. Hence, for a given choice of P, S1, Sa, my and may, all primes in [(2m; — 1)P +
2max(S1 + S2) + 1, (2mg + 1) P 4+ 2min(S; + S2) — 1] are covered.

Example. To cover the interval [1000, 500000] with ¢max = 512, we might choose P = 1155,
s1 = 240, so = 2, my = —1, and mg = fmax — s1 + my = 271. With S; = 231({—1,1} +
{—2,2}) +165({—2,2} + {—1,0,1}) + 105({—3,3} + {—2,—1,0,1,2}) and Sy = 385{—1,1}, we
have max(S; + S2) = —min(S; + S2) = 2098 and thus cover all primes in [—3 - 1155 4 4196 +
1, 543 - 1155 — 4196 — 1] = [732, 622968].

For choosing a value of P which covers a desired |By, Bsg] interval, we can test candidate
P from a table. This table could contain values so that P and ¢(P) are increasing, and each
P is maximal for its ¢(P). We can select those P which, in order, cover the desired |By, Bs]
interval with ¢max (limited by memory), minimize the cost of stage 2 and maximize (2mg +
1)P + 2min(S; + S2). The table of P values may contain a large number of candidate values
so that a near-optimal choice can be found for various fmax and Bs parameters. To speed up
selection of the optimal value of P, some restrictions on which P to test are desirable.

Assume S; and Sy are symmetric around 0, so that M = max(S; + S2) = — min(S; + S2).
Then the effective start of the stage 2 interval is 2M + (2m; — 1)P + 1, the effective end is
—2M + (2mg + 1)P — 1, and their difference —4M + 2P(mg — m; + 1) — 2. Hence we require
By — By < 2(mg —mq + 1)P. Since my — mq + 1 < fmax, this implies By — By < 20max P or
P > (By — B1)/(2¢max), which together with an upper bound on fmax by available memory
provides a lower bound on P.

The cost of stage 2 is essentially that of initialising the multi-point evaluation once per stage
2 by building the reciprocal Laurent polynomials f(z) and h(x) (see Section 2.9) and computing
the discrete Fourier transform of h(z), and that of performing the multi-point evaluation sy
times per stage 2 by computing the polynomial g(x), its product with h(z) and the ged of
the coefficients of the product polynomial and N. The cost of polynomial multiplication is in
O(Ymax log(fmax)), but for the sake of parameter selection can be approximated by just fmax
— good parameters will use an fmax close to the largest possible, and for small changes of ¢max
(say, by up to a factor of 2), the effect of the log(fmax) term is small. The cost of building the
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polynomial f(x) is proportional to the cost of polynomial multiplication so that we may take the
cost of initialisation and of evaluation to be proportional with a positive real constant ¢. Hence
the cost of stage 2 can be approximated roughly but usefully as (¢ + s2)lmax. Since fmax > s1
and s1s2 = ¢(P), we have (¢ + s3)lmax > ¢(P) for any valid choice of stage 2 parameters, so
that once a set of acceptable parameters has been found, its cost can serve as an upper bound
on ¢(P) when looking for better parameters. Since the entries in the table of P values are in
order of increasing P and ¢(P), the bound on ¢(P) implies a bound on P.

For a given candidate P value within these bounds and for possible transform lengths fmax
for the multi-point evaluation, choose s; and sg so that sjse = ¢(P), s1 is even, s1 < max, S2
is minimal and under these conditions, [fmax/2 — s1| is minimal. For positive integers n < 1019,
the number of divisors of n does not exceed 4032 (attained for the highly composite number
97772875200) so that even exhaustive search of s; values from the prime factorization of ¢(P) is
sufficiently fast. If the multiplication routine for reciprocal Laurent polynomials (such as the one
in Section 2.7.2) rounds up transform lengths to a power of 2, it is preferable to choose s; slightly
below rather than slightly above a power of 2, so that having to round up transforms lengths
by almost a factor of 2 is avoided when building f as described in Section 2.8. The resulting
choice of P, fmax, s1, and sy is acceptable if the resulting my and ms values allow covering the
desired stage 2 interval |By, Bs]. Each such choice has an associated cost, and the acceptable
choice with the smallest cost wins. If several have the same cost, we use the one with the largest
effective Bs.

2.7 Cyclic Convolutions and Polynomial Multiplication with the
NTT

Most of the CPU time in this algorithm is spent performing multiplication of polynomials with
coefficients modulo N, the number to be factored. The Karatsuba (see Section 1.1.1) and Toom-
Cook (see Section 1.1.2) algorithms could work directly over R = Z/NZ, so long as the interpo-
lation phase does not involve division by a zero divisor of the ring, and since N is assumed not
to have very small prime factors, this is not a problem in practice. However, the FFT stage 2
gains its speed by fast arithmetic on polynomials of very large degree, in which case FFT based
multiplication algorithms (see Section 1.1.3) far exceed Karatsuba’s or Toom-Cook’s methods.

Unfortunately, the FFT for a large transform length ¢ cannot be used directly when R =
Z/NZ, since we don’t know a suitable {-th primitive root of unity. Instead, we need to map
coefficients of the polynomials to be multiplied to Z first, then to a ring that supports an FFT
of the desired length, back to Z and to Z/NZ again by reducing modulo N.

The Schonhage-Strassen algorithm described in Chapter 1 uses the ring R = Z/(2" + 1)Z
with £ | 2n (or £ | 4n if the v/2 trick is used) and the /-th root of unity 22*/¢ € R. It could
be used for our purpose, but the condition ¢ | 2n often makes it impracticable: most frequently
we want to factor input number of not too great size, say less than a few thousands bits, but
use polynomials of degrees in the millions. For the Schénhage-Strassen algorithm, in that case
we’d have to choose n in the millions also, too large by about three orders of magnitude. This
would make the multiplication unacceptably slow and memory use prohibitive. The problem
can be alleviated by the Kronecker-Schonhage segmentation trick, which reduces polynomial
multiplication to integer multiplication, see [99] or [103, p. 534]| and Section 2.12. However
for larger numbers N and polynomials of smaller degree, say in the ten-thousands, using SSA
directly is a viable option.

A very attractive approach to the problem of multiplying polynomials with relatively small
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coefficients and very large degree is the use of a number theoretic transform (NTT), described
in the following.
Nussbaumer [77| gives other convolution algorithms.

2.7.1 Convolutions over Z/NZ with the NTT

Montgomery and Silverman |74, Section 4] suggest a number theoretic transform (NTT). They
treat the input polynomial coefficients as integers in [0, N — 1] and multiply the polynomials over
Z. The product polynomial, reduced modulo X¢ — 1, has coefficients in [0, £(N — 1)2]. Select
distinct NTT primes p; that each fit into one machine word such that Hj pj > (N — 1)2. Require
each p; =1 (mod ¢), so a primitive ¢-th root of unity exists. Do the convolution modulo each
p; and use the Chinese Remainder Theorem (CRT) to determine the product over Z modulo
X% — 1. Reduce this product modulo N. Montgomery’s dissertation [67, Chapter 8] describes
these computations in detail.

The convolution codes need interfaces to (1) zero a Discrete Fourier Transform (DFT) buffer,
(2) insert an entry modulo N in a DFT buffer, reducing it modulo the NTT primes, (3) perform
a forward, in-place, DFT on a buffer, (4) multiply two DFT buffers point-wise, overwriting an
input, and perform an in-place inverse DFT on the product, and (5) extract a product coefficient
modulo N via a CRT computation and reduction modulo N.

2.7.2 Reciprocal Laurent Polynomials and Weighted NTT

Define a reciprocal Laurent polynomial (RLP) in = to be an expansion

d
ao+ Y aj (27 + a7 —ao+ZaJ (z+z71)
=1

for scalars a; in a ring. It is monic if ag = 1. It is said to have degree 2d if ag # 0. The degree
is always even. A monic RLP of degree 2d fits in d coefficients (excluding the leading 1). While
manipulating RLPs of degree at most 2d, the standard basis is {1} U {2/ + 277 :1 < j < d} =
{BBu{V (@ +a271) 1< <d}.

Let Q(z) = qo + Z;lqzl gj (27 + 277) be an RLP of degree at most 2d, and likewise R(z) an
RLP of degree at most 2d,.. To obtain the product RLP S(z) = Q(x)R(x) = 30+Z?S:1 sj (27 +a277)
of degree at most 2d; = 2(d, + d,), choose a convolution length ¢ > dy and perform a weighted
convolution product (as in Section 1.1.3) by computing S(wz) = Q(wz)R(wz) mod (z* — 1) for
a suitable weight w # 0.

Suppose S(z) = ZZ ésxﬂ and S(wz) = S(wr) mod (z° —1). We have

ds
S(wx) = so+z<szjx]+w_33jx£_3>
j=1
= g w sl + Z wi syl
j=l—ds
Z—ds—l ds

-1
S . » . - .
= E w!sja? + E w’ (sj+w sz_j)$3+ E w! " sp_ja?
=0

Jj=t—ds J=ds+1
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and so 5; = s; for 0 < j < { —dg, and §; = 5 + w_gsl_j for £ — ds; < j < ds. From the latter,
we can solve for s; and s;_; by the linear system

Care )02 )= ()

When the matrix is invertible, i.e., w’ # 41, there is a unique solution which can be computed
by

—lz. _ 3z, .
w5, — 5o
w2t —1

z -/
Sjl—j = S¢g—j; —wW §j5.

S5 =

This leads to Algorithm 4. It flows like the interface in Section 2.7.1.
Our implementation chooses the NTT primes p; = 1 (mod 3¢). We require 3 t £. Our
w is a primitive cube root of unity. Multiplications by 1 are omitted. When 3 { i, we use

wéqi + ”wj_"qi = —q; (mod p;) to save a multiply.
Substituting = = ¢ where i? = —1 gives
. . dq dr
QR = | qo +2 Z q; cos(jo) ro+ 2 Z r; cos(j0)
j=1 J=1

These cosine series can be multiplied using discrete cosine transforms, in approximately the same
auxiliary space needed by the weighted convolutions. We did not implement that approach.

2.7.3 Multiplying General Polynomials by RLPs

In Section 2.9 we will construct an RLP h(z) which will later be multiplied by various g(z).
The length-¢ DFT of h(x) evaluates h(w') for 0 < i < ¢, where w is an (-th primitive root of
unity. However since h(x) is reciprocal, h(w’) = h(w’™?) and the DFT has only £/2 + 1 distinct
coefficients. In signal processing, the DFT of a signal extended symmetrically around the center
of each endpoint is called a Discrete Cosine Transform of type I. Using a DCT-I algorithm [6],
we could compute the coefficients h(w?) for 0 < i < £/2 with a length /2 + 1 transform. We
have not implemented this.

Instead we compute the full DFT of the RLP (using 2 = 1 to avoid negative exponents). To
conserve memory, we store only the /2 + 1 possibly distinct DFT output coefficients for later
use.

In the scrambled output of a decimation-in-frequency FFT of length ¢ = 2", the possibly
distinct DFT coefficients h(w®) for 0 < i < £/2 are stored at even indices and at index 1. When
we multiply h(x) and one g(z) via the FFT, each h(w?) for 0 < 2i < ¢ must be multiplied to
two coefficients of the FFT output of g(z), which again will be in scrambled order. Rather than
un-scrambling the transform coefficients for the point-wise multiplication, the correct index pairs
to use can be computed directly.

For 0 < 2i < ¢, the FFT coefficients of h(x) stored at index 2i and index m; — 2, where
m; = 2U082(D]+3 _ olloga(DI+1 _ 1 correspond to h(wP™Vr(29)) and h(w!Pitrevr()) and thus are
equal. For the point-wise product with the scrambled FFT output of one g(x), we can multiply
the FFT coefficients of g(z) stored at index 2¢ and m; — 2¢ by the FFT coefficient of h that was
stored at index 2.
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Procedure MUL_RLP (sg..4,+d,, dg; 90...dy» r; T0...d,)
Input: RLP Q(x) =qo+ Z?qzl qj (27 + 277) of degree at most 2d,
RLP R(xz) =19+ E;l;l rj (27 + 277) of degree at most 2d,
Convolution length ¢ > d, + d,
CRT primes pq, ..., Pk
Output: RLP S(z) = sp + Z?;l sj (27 +277) = Q(x)R(z) of degree at most
2ds = 2dy + 2d,
(Output may overlap input)
Data: NTT arrays M and M’, each with ¢ elements per p; for auxiliary storage
(A squaring uses only M)

Zero M and M’
for1 <j<kdo
Choose w; with wg #0, £1 (mod p;) ;
M := qo mod pj;
M; == 19 mod pj;
for 1 <i<d, (in any order) do
for 1 <j<kdo /* Store Q(wz) mod p; in M; */
M;; = w;-qi mod pj;
Mj—; = w;"q; mod py;
if Q(z) # R(z) then
for 1 <i<d, (in any order) do
for 1 <j<kdo /* Store R(wx)modp; in M */

A S ..
Mjﬂ- = wiT mod pj;

= wj_iri mod pj;
for1 <j<kdo

NTT_DIF(M; .. 0—1, ¢, Pj); /* Forward transform of Q(wx) mod p; */
if Q(x) # R(z) then

NTT_DIF(M]QOMZ_I, l, pj); /* Forward transform of R(wz)mod p; */

M;o.o-1:= Mo 4-1- My/',o...é—l mod pj; /* Point-wise product */
else

Mj,O...Z—l = (Mj’o...g_1)2 mod Pjs /* Point-wise Squaring */
INTT_DIT(M,o..0—1, £, pj); /* Inverse transform */
for1<i</{—d,—1do

M;; = wj_iMj,i (mod pj); /* Un-weighting */

for { —d, <i<[{/2] do
t=(wM; — My_;)/(w™2 = 1);
Ml—j = Mg_j — w_ét;
M; = t;
for 0 <i<d; do
s; := CRT(M;.. 4, p1..x) modN

Algorithm 4: NTT-Based Multiplication Algorithm for reciprocal Laurent polynomials.
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2.7.4 Multiplying RLPs without NTT

If no suitable transform-based multiplication algorithm is available for the weighted convolution
of Section 2.7.2, RLPs can be multiplied with a regular polynomial multiplication routine, al-
though less efficiently. Given an RLP f(z) = fo + Zfil fi(zt 4+ 27%) of degree at most 2d; in
standard basis, we can write a polynomial f(z) = fo/2 + Z?il fiz" of degree at most dy so that
f(z) = f(x) + f(1/z). Likewise for g(z) and §(x).

Let rev (f(a:)) = 2% f(1/z) denote the polynomial with reversed sequence of coefficients. We
have rev(rev(f(x))) = f(z) and rev(f(a:)g(a:)) = rev(f(a;))rev(g(a:)). Let |f(x)] denote the
polynomial whose coefficients at non-negative exponents of x are equal to those in f(x), and
whose coefficients at negative exponents of x are 0. We have | f(x) + g(x)] = | f(x)]| + |g(x)].

Now we can compute the product

= (f(@) + F(1/2))(5(x) + §(1/x)) )
g(x) + ( )§/~(1/ z) + f(1/2)g(x) + F(1/2)3(1/2)
g(x) + =% f(x)rev(§(x)) + o~ Urev(f(z)rev(§(2))) + f(1/2)g(1/),

but we want to store only the coefficients at non-negative exponents in the product, so

[f(2)g()] = f(@)g(@) + la™% f(a)rev(g(a)) | + [~V rev (f(a)rev(3(2))) ] + fodo

produces a polynomial whose coefficients in monomial basis are equal to those of the RLP
f(x)g(x) in standard basis. This computation uses two multiplications of polynomials of degrees
at most dy and dy, respectively, whereas the algorithm in Section 2.7.2 has cost essentially
equivalent to one such multiplication.

2.8 Computing Coefficients of f

Assume the P+1 algorithm. The monic RLP f(X) in (2.5), with roots a2* where k € Sy, can
be constructed using the decomposition of S7. The coefficients of f will always be in the base
ring since P, € Z/NZ.

For the P-1 algorithm, set a; = by and P; = by + bl_l. The rest of the construction of f for
P—1 is identical to that for P+1.

Assume S7 and Sy are built as in Section 2.6, say S1 = T1 + 15 + - - - + T}, where each T} has
an arithmetic progression of prime length, centered at zero. At least one of these has cardinality
2 since s1 = |S1] = [, [T}] is even. Renumber the T} so |T1| = 2 and |T5| > |T3] > -+ > [Ty,

If Ty = {—k1, k1}, then initialize F}(X) = X + X' —a?¥ — o[ = X 4 X1 — Vi, (P1),
a monic RLP in X of degree 2.

Suppose 1 < j < m. Given the coefficients of the monic RLP F;(X) with roots ozlkl for
ki € Ty 4 --- 4+ T}, we want to construct

FnX)= [ Fx). (2.11)
ko€Tjq1

The set T4 is assumed to be an arithmetic progression of prime length ¢ = |Tj;1| centered
at zero with common difference k, say Tj11 = {(=1 —t)k/2 4+ ik : 1 <i < t}. If tis even, k is
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even to ensure integer elements. On the right of (2.11), group pairs ko when ks # 0. We need
the coefficients of

by Fi(a7"X) Fj(ah X), ift =2
+X) =90 px) D (Fi(ax) Fy(a7?X)), if tis odd.

7

(2.12)

Let d = deg(F}), an even number. The monic input Fj has d/2 coefficients in Z/NZ (plus the
leading 1). The output Fjq will have td/2 = deg(F)j11)/2 such coefficients.

Products such as Fj(a3¥ X) F;(a;?*' X) can be formed by the method in Section 2.8.1, using
d coefficients to store each product The interface can pass 2% + o T2k = Vori(P1) € Z/NZ as
a parameter instead of ai%’

For odd t, the algorithm in Section 2.8.1 forms (¢ — 1)/2 such monic products each with d
output coefficients. We still need to multiply by the input Fj. Overall we store (d/2) + 52d =
td/2 coefficients. Later these (¢t + 1)/2 monic RLPs can be multiplied in pairs, with products
overwriting the inputs, until Fj;, (with td/2 coefficients plus the leading 1) is ready.

All polynomial products needed for (2.11), including those in Section 2.8.1, have output
degree at most tdeg(F;) = deg(Fj4+1), which divides the final deg(F,,) = s;. The polynomial
coefficients are saved in the (MZNZ) buffer of 2.10. The (MDFT) buffer allows convolution
length ¢max/2, which is adequate when an RLP product has degree up to 2(fmax/2) — 1 > s;.
A smaller length might be better for a particular product.

2.8.1 Scaling by a Power and Its Inverse

Let F(X) be a monic RLP of even degree d, say F(X) = ¢y + sz/Ql ci(X? 4+ X%, where each

¢; € Z/NZ and cqjp = 1. Given Q € Z/NZ, where Q = v+ vy~ 1 for some unknown v, we
want the d coefficients (excluding the leading 1) of F(vX) F(y~'X) mod N in place of the d/2
such coefficients of F'. We are allowed a few scalar temporaries and any storage internal to the
polynomial multiplier.
Denote Y = X + X!, Rewrite, while pretending to know -,
/2
F(yX) = a+ Y a('X +47 X7
i=1
d/2

= Co+Z (7 + )X X + (vi—v‘i)(Xi—X‘i)>

=t Y5 (HQV) + (- U@ - X)),
i=1

1

Replace v by v~ and multiply to get

FOX)F(y'X) = G —(y—7 )X -X"1)?H?

= G- (Q*—4)(X - X"H2H? (2.13)
where
/2
G = ¢+ ch Vi(
/2
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This G is a (not necessarily monic) RLP of degree at most d in the standard basis {1} U
{V;(Y) : 1 < j <d/2}, with coefficients in Z/NZ. This H is another RLP, of degree at most
d — 2, but using the basis {U;(Y) : 1 < i < d/2}. Starting with the coefficient of Ug/o(Y'), we
can repeatedly use U; 11 (Y) = V;(Y)UL(Y)+U;j—1(Y) = V;(Y) + U;—1(Y) for j > 0, along with
Ui(Y) =1and Up(Y) = 0, to convert H to standard basis. This conversion costs O(d) additions
in Z/NZ.

Use the identities V;11(Q) = QV;(Q) — V;—1(Q) and U;11(Q) = QU;(Q) — U;—1(Q) from (2.3)
and (2.2) to evaluate V;(Q)/2 and U;(Q)/2 for consecutive i when computing the d/2 + 1 coeffi-
cients of G and the d/2 coefficients of H. If a weighted NTT-based algorithm such as Algorithm 4
is used for multiplying RLPs and a memory model as in Section 2.10, the algorithm can write
the NTT images of the standard-basis coefficients of G and H to different parts of (MDFT) and
recover the coefficients of G? and H? via the CRT and combine them directly into the coeffi-
cients of F(yx)F(y~'x) to avoid allocating temporary storage for G and H. Algorithm 5 shows
a simplified implementation with temporary storage.

2.9 Multipoint Polynomial Evaluation

We have constructed f = F,, in (2.5). The monic RLP f(X) has degree s1, say f(X) =

2 ; _j 2 ;
fo+ S 1 (X + X9 = V2 ) f5X0 where f; = [; € Z/NZ.

Assuming the P-1 method (otherwise see Section 2.9.1), compute r = bf’ € Z/NZ. Set
ezgmax anszB—l—sl/Q.

Equation (2.6) needs ged(f(X), N) where X = b%k2+(2m+1)P, for several consecutive m, say
m1 < m < mo. By setting xg = b?kﬁ(zml“)P, the arguments to f become zob?™ = zgr?™ for
0 < m < mg —m1. The points of evaluation form a geometric progression with ratio 72. We can
evaluate these for 0 < m < ¢ — 1 — s; with one convolution of length ¢ and O(¢) setup cost [1,
exercise 8.27].

To be precise, set h; = 3" f; for —s1/2 < j < s1/2. Then h; = h_;. Set h(X) =

2 ; . .
2;1:/_81/2 h; X7, an RLP. The construction of h does not reference zg ~ we reuse h as xq varies.

Let g; = xg/‘[_ir(M_i)2 for0<i</{—1and g(X)= Zf:é g X"

All nonzero coefficients in g(X)h(X) have exponents from 0—s;/2 to (¢ —1)+s1/2. Suppose
0<m<{l¢{—1—-—s. Then M —m—¥{ =—-1-—15/2—m < —s1/2 whereas M —m + { =
(0 —1+s1/2)+ (¢ —s1 —m) >L€—1+51/2. The coefficient of XM~ in g(X)h(X), reduced
modulo X¢ —1, is

$1/2
E gih; = E gihj = E M —m—jh;
0<i<i—1 0<i<i—1 j=—s1/2
—51/2<j<51/2 —51/2<j<51/2
i+j=M—m (mod £) i+j=M—-m
$1/2 $1/2
; N2 .2 2 ; 2
= D w T = Y g™ (wor®™) f = g™ flaor®™).
Jj=—s1/2 j=—s1/2

Since we want only ged(f(zor2™), N), the 2™ factors are harmless.
We can compute successive gy_; with two ring multiplications each since the ratios g;—1_;/g¢r—; =
zo 725171 form a geometric progression.
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Algorithm 5: Algorithm for scaling a reciprocal Laurent
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Input: RLP F(z) = fo + 72 fi(a® + 277), f; € Z/NZ

Q €Z/NZ
Output: Coefficients of F(yz)F(y ') in standard basis {1} U {2z’ + 27" : 1 <i < d},

where v+~ = Q, overwriting fo. 4

Data: Storage for v,u,g;,h; € Z/NZ, for 0 <i < d
vi=1; /* h(Q)/2=1
ui=Q/2; /* Vi(Q)/2 = Q)2
90 = fo;
for i :== 1 to d/2 do

9 = fiw;

(u,v) = (u@ — v, u); /* u:=V;11(Q)/2,v :=V;(Q)/2
/* Now G = gg + Zfﬁ giVi(x + :17_1)
MUL_RLP (g(O,...,d)a 9(0,...,d/2)> d/2, 9(0,...,d/2) d/2); /* Use Algorithm 4
/% Now G2 = go+ 30, giVi(z +a)
v :=0; /*x v:=Up(Q)/2=0
u:=1/2; /* u:=U1(Q)/2=1/2
for i :== 1 to d/2 do /* store h; shifted by 1 to simplify conversion to
basis */

hi—1 == fiu;

(u,v) := (u@Q — v, u); /¥ ui=U;i11(Q)/2,v :=U;(Q)/2
/% Now H =S¥ by \Uj(w +271)
for i :== d/2 downto 3 do /* convert h; from U; to V; basis

hi—3:=hi—3+ hi—1;
/* Now H = hg + Z?fl_l hiVi(x + :1:_1) , i.e., in standard basis
MUL_RLP (h(O,...,d—2): h(07___7d/2_1), d/2 —1, h(O,...,d/2—1): d/2—1); /* Use Algorithm 4
/% Now H?=ho+ 07 hiVi(z+a21)
fori=0tod—2do
hi := h; (Q* —4);
/% Now (Q*—4) H? =ho+ S5 hVi(x +a71)
/* Compute G? + (:17 — x_1)2 (Q2 — 4) H?

if d =2 then
go = go + 2ho;
g2 = g2 — ho;
else
9o := go + 2(ho — ho);
g1 := g1+ hi;
if d > 4 then
g1 := g1 — hs;

fori=2tod—4do

Gi = gi — hi—2 +2h; — hiyo;
ford—3tod—-2do

9i = gi — hi—2 + 2h;;
9d—1 = ga—1 — ha—3;

9d = 9gd — hq—2;
for i :=0 to d do
fi=g9i; /* Store result in f

inverse.

*/
*/

*/

polynomial by a power and its
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2.9.1 Adaptation for P+1 Algorithm

If we replace b; with a4, then r becomes af, which satisfies r+r~1 = Vp(Py). The above algebra
evaluates f at powers of 1. However oy, r, hj, 2o, and g; lie in an extension ring.

Arithmetic in the extension ring can use a basis {1, v/A} where A = P? — 4. The element
oy maps to (P, +v/A)/2. A product (co + c1vVA)(dy + divV/A) where ¢, c1, dy, dy € Z/NZ
can be done using four base-ring multiplications: cody, c1dy, (co + ¢1)(do + d1), c1di A, plus five
base-ring additions.

We define linear transformations Ey, Fy on (Z/NZ)[v/A] so that Ey(cy + c;vVA) = ¢y and
Ey(co + c1VA) = ¢ for all ¢y, ¢; € Z/NZ. Extend E; and Ey to polynomials by applying them
to each coefficient.

Some multiplication involves powers of a; and r. These have norm 1, which may allow
simplifications. For example,

(co +c1VA)? =263 — 1+ 2¢e1 VA

needs only two multiplications and three additions if ¢2 — A = 1.
2 .
To compute 7™ for successive n, we use recurrences. We observe

Tnz _ T(n—1)2+2 . V2n—3(r + 7‘_1) . T(n—2)2+2’
rn2+2 _ r(n—1)2+2 . Vzn—l(T + 7“_1) _ r(n—2)2 ‘
After initializing the variables r1[i] := i, r2[i] := r©*2, v[i] := Vas1(r + 1) for two consecu-

tive 7, we can compute ri[i| = r* for larger i in sequence by

rifi] = r2[i—1]-v[i —2] —r2[i — 2], (2.14)
r2li] = r2@i—1]-vji —1] —ri[i — 2],
v[i] == v[i—1]-Va(r+1/r)—v[i—2] .

Since we won't use v[i — 2] and r2[i — 2] again, we can overwrite them with v[i] and r2[i]. For
the computation of r 1 as input, by taking the conjugate.

All v[i] are in the base ring but ri[i] and r2[i] are in the extension ring. Each application
of (2.14) takes five base-ring multiplications (compared to two multiplications per ™ in the P 1
algorithm).

n? _
"™ where r has norm 1, we can use r

. 3 _ )2
We can compute successive g; = xg/[ b (M—i)

r2[i] = r2g;, v[i] = wor?M-2-1 ¢ x61r1+2i_
needs only five base-ring multiplications.

similarly. One solution to (2.14) is r1[i| = g;,
2M  Again each v[i] is in the base ring, so (2.14)

If we try to follow this approach for the multipoint evaluation, we need twice as much space
for an element of (Z/NZ)[v/A] as one of Z/NZ. We also need a convolution routine for the
extension ring.

If p divides the coefficient of X™~™ in g(X)h(X), then p divides both coordinates thereof.
The coefficients of g(X)h(X) occasionally lie in the base ring, making Fs(g(X)h(X)) a poor
choice for the ged with N. Instead we compute

E1(9(X)h(X)) = Er(9(X))E1(h(X)) + AEa(9(X)) E2(h(X)) . (2.15)

The RLPs Eq(h(X)) and AE3(h(X)) can be computed once and for each of the fmax/2 +
1 distinct coefficients of its length fmax DFT saved in (MHDFT). To compute AEs(h(X)),
multiply Fs(r1[i]) and Ea(r2[i]) by A after initializing for two consecutive ¢. Then apply (2.14).
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Later, as each g; is computed we insert the NTT image of Es(g;) into (MDFT) while saving
E1(gi) in (MZNZ) for later use. After forming E1(g(X))E1(h(X)), retrieve and save coefficients
of XM=™ for 0 < m < £ —1— s;. Store these in (MZNZ) while moving the entire saved E(g;)
into the (now available) (MDFT) buffer. Form the F5(g(X))E2(Ah(X)) product and the sum
in (2.15).

2.10 Memory Allocation Model

We aim to fit our major data into the following:

(MZNZ) An array with s1/2 elements of Z/NZ, for convolution inputs and outputs. This is used
during polynomial construction.

This is not needed during P 1 evaluation. During P+1 evaluation, it grows to fmax
elements of Z/NZ (if we compute both coordinate of each g; together, saving one of them),
or {max — s1 elements (if we compute the coordinates individually).

(MDFT) An NTT array holding #max values modulo p; per prime pj;, for use during DWTs.

Section 2.8.1 does two overlapping squarings, whereas Section 2.8 multiplies two arbitrary
RLPs. Each product degree is at most deg(f) = s1. Algorithm 4 needs ¢ > s;/2 and might
use convolution length ¢ = fmax /2, assuming ¢max is even. Two arrays of this length fit
in MDFT.

After f has been constructed, MDFT is used for NTT transforms with length up to fmax.

(MHDFT) Section 2.9 scales the coefficients of f by powers of r to build A. Then it builds and stores
a length-¢ DFT of h, where £ = {max. This transform output normally needs ¢ elements
per p; for P-1 and 2/ elements per p; for P4+1. The symmetry of h lets us cut these needs
almost in half, to /2 + 1 elements for P-1 and ¢ + 2 elements for P+1.

During the construction of Fj;1 from Fj, if we need to multiply pairs of monic RLPs occupying
adjacent locations within (MZNZ) (without the leading 1’s), we use (MDFT) and algorithm 4.
The outputs overwrite the inputs within (MZNZ).

During polynomial evaluation for P-1, we need only (MHDFT) and (MDFT). Send the
NTT image of each g; coefficient to (MDFT) as g; is computed. When (MDFT) fills (with
fmax entries), do a length-fmax forward DFT on (MDFT), pointwise multiply by the saved
DFT output from h in (MHDFT), and do an inverse DFT in (MDFT). Retrieve each needed

polynomial coefficient, compute their product, and take a ged with N.

2.10.1 Potentially Large B,

In 2008/2009, a typical PC memory is 4 gigabytes. The median size of composite cofactors NV in
the Cunningham project http://homes.cerias.purdue.edu/~ssw/cun/index.html is about
230 decimal digits, which fits in twelve 64-bit words (called quadwords). Table 2.1 estimates the
memory requirements during Stage 2, when factoring a 230-digit number, for both polynomial
construction and polynomial evaluation phases, assuming convolutions use the NTT approach in
Section 2.7.1. The product of our NTT prime moduli must be at least fmax (N — 1)2. If N2/max
is below 0.99 - (203)2% ~ 10™, then it will suffice to have 25 NTT primes, each 63 or 64 bits.
The P-1 polynomial construction phase uses an estimated 40.5¢max quadwords, vs. 37.5max
quadwords during polynomial evaluation. We can reduce the overall maximum to 37.5¢max by
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Table 2.1: Estimated memory usage (quadwords) while factoring 230-digit number.

Array Construct f. Build h. Evaluate f.
name Both P£1
(MZNZ) 12(s1/2) 12(s1/2) 0 (P-1)
120max  (P+1)
(MDFT) 250max 250max 250max

(MHDFT) 0 25(fmax/2+1) (P 1) 25(fmax/2+1) (P 1)
25(fmax +2) (P+1) 25(fmax +2) (P+1)
Totals, if 28¢/max + O(l) 40.5¢max + O(l) (P-1) | 37.5/max +0O(1) (P-1)
s1 = fmax/2 53¢max + O(1) (P+1) 62¢max + O(1) (P+1)

taking the (full) DFT transform of h in (MDFT), and releasing the (MZNZ) storage before
allocating (MHDFT).

Four gigabytes is 537 million quadwords. A possible value is /max = 223, which needs 315
million quadwords. When transform length 3 - 2% is supported, we could use max = 3 - 222,
which needs 472 million quadwords.

We might use P=3-5-7-11-13-17-19-23 = 111546435, for which ¢(P) = 36495360 =
213.3%.5.11. We choose s | ¢(P) so that s is close to ¢(P)/(fmax/2) ~ 8.7, i.e., s5 =9 and
s1 = 4055040, giving s1/fmax ~ 0.48.

We can do 9 convolutions, one for each ko € S2. We will be able to find p | N if b =1
(mod p) where g satisfies (2.7) with m < fmax — s1 = 4333568. As described in Section 2.6, the
effective value of By will be about 9.66 - 104.

2.11 Opportunities for Parallelization

Modern PC’s are multi-core, typically with 2 4 CPUs (cores) and a shared memory. When
running on such systems, it is desirable to utilize multiple cores.

While building A(X) and ¢g(X) in Section 2.9, each core can process a contiguous block of
subscripts. Use the explicit formulas to compute =7 or g; for the first two elements of a block,
and the recurrences elsewhere.

If convolutions use NTT’s and the number of processors divides the number of primes, then
allocate the primes evenly across the processors. The (MDFT) and (MHDFT) buffers in Sec-
tion 2.10 can have separate subbuffers for each prime. On NUMA architectures, the memory
for each subbuffer should be allocated locally to the processor that will process it. Accesses to
remote memory occur only when converting the h; and g; to residues modulo small primes, and
when reconstructing the coefficients of g(x)h(x) with the CRT.

2.12 Our Implementation

Our implementation is based on GMP-ECM, an implementation of P 1, P+1, and the Elliptic
Curve Method for integer factorization. It uses the GMP library [49] for arbitrary precision
arithmetic. The code for Stage 1 of P 1 and P+1 is unchanged; the code for the new Stage 2
has been written from scratch and has replaced the previous implementation [103| which used
product trees of cost O(n(log n)z) modular multiplications for building polynomials of degree n
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and a variant of Montgomery’s POLYEVAL [67] algorithm for multipoint evaluation which has
cost O(n(log n)z) modular multiplications and O(nlogn) memory. The practical limit for By
was between 104 and 10'.

GMP-ECM includes modular arithmetic routines, using for example Montgomery’s REDC [64],
or fast reduction modulo a number of the form 2" 4+ 1. It also includes routines for polynomial
arithmetic, in particular convolution products. One algorithm available for this purpose is a
small prime NTT/CRT, using the "Explicit CRT” [12] variant which speeds reduction modulo
N after the CRT step but requires 2 or 3 additional small primes. Its current implementation
allows only for power-of-two transform lengths. Another is Kronecker-Schénhage’s segmentation
method [103], which is faster than the NTT if the modulus is large and the convolution length is
comparatively small, and works for any convolution length. Its main disadvantage is significantly
higher memory use, reducing the possible convolution length.

On a 2.4 GHz Opteron with 8 GB memory, P 1 Stage 2 on a 230-digit composite cofactor
of 12?° + 1 with By = 1.2 - 10", using the NTT with 27 primes for the convolution, can use
P = 64579515, fmax = 2%*, s1 = 7434240, s, = 3 and takes 1738 seconds while P-+1 Stage 2
takes 3356 seconds. Using multi-threading to use both CPUs on the same machine, P 1 Stage 2
with the same parameters takes 1753 seconds CPU and 941 seconds elapsed time while P+1 takes
3390 seconds CPU and 2323 seconds elapsed time. For comparison, the previous implementation
of P-1 Stage 2 in GMP-ECM [103] needs to use a polynomial F'(X) of degree 1013760 and 80
blocks for By = 10 and takes 34080 seconds on one CPU of the same machine.

On a 2.6 GHz Opteron with 8 cores and 32 GB of memory, a multi-threaded P—1 Stage 2 on the
same input number with the same parameters takes 1661 seconds CPU and 269 seconds elapsed
time, while P+1 takes 3409 seconds CPU and 642 seconds elapsed time. With By = 1.34 - 1016,
P = 198843645, fmax = 220, 51 = 33177600, sy = 2, P 1 Stage 2 takes 5483 seconds CPU and
922 elapsed time while P+1 takes 10089 seconds CPU and 2192 seconds elapsed time.

2.13 Some Results

We ran at least one of P£1 on over 1500 composite cofactors, including:

(a) Richard Brent’s tables with " + 1 factorizations for 13 < b < 99;

(b) Fibonacci and Lucas numbers F,, and L, with n < 2000, or n < 10000 and cofactor size
< 103

(c) Cunningham cofactors of 12" 4+ 1 with n < 300;

(d) Cunningham cofactors of 300 digits and larger.

The By and By values varied, with By = 10" and By = 10'6 being typical. Table 2.2 has new
large prime factors p and the largest factors of the corresponding p + 1.

The 52-digit factor of 47146 + 1 and the 60-digit factor of Losgs each set a new record for
the P+1 factoring algorithm upon their discovery. The previous record was a 48-digit factor of
L1g49, found by the author in March 2003.

The 53-digit factor of 242 + 1 has ¢ = 12750725834505143, a 17-digit prime. To our
knowledge, this is the largest prime in the group order associated with any factor found by the
P-1, P+1 or Elliptic Curve methods of factorization.

The largest ¢ reported in Table 2 of [74] is ¢ = 6496749983 (10 digits), for a 19-digit factor
p of 289% 4+ 1. That table includes a 34-digit factor of the Fibonacci number Fyr5, which was the
P 1 record in 1989.
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Input Factor p found Size
Method Largest factors of p £+ 1
73109 _ 1 76227040047863715568322367158695720006439518152299 c191
P1 12491 - 37987 - 156059 - 2244509 - 462832247372839 p50
6818 + 1 7506686348037740621097710183200476580505073749325089* c151
P-1 22807 - 480587 - 14334767 - 89294369 - 4649376803 - 5380282339 p52
24112 11 20489047427450579051989683686453370154126820104624537 c183
P1 4959947 - 7216081 - 16915319 - 17286223 - 12750725834505143 p53
4716 41 7986478866035822988220162978874631335274957495008401 c235
P+1 20540953 - 56417663 - 1231471331 - 1632221953 - 843497917739 p52
Loses 725516237739635905037132916171116034279215026146021770250523 | ¢290
P+1 932677 - 62754121 - 19882583417 - 751245344783 - 483576618980159 p60

* = Found during Stage 1

Table 2.2: Large P+1 factors found

Table 2.3: Timing for 24'*2 4 1 factorization

Operation Minutes (per CPU) Parameters
Compute f 22 P = 198843645
Compute h 2 lmax = 26
Compute DCT-I(h) 8 s1 = 33177600
Compute all g; 6 (twice) s9 =1
Compute g X h 17 (twice) my = 246
Test for non-trivial ged 2 (twice)

Total 3242-25=282

47

The largest P 1 factor reported in [103, pp. 538 539 is a 58-digit factor of 2209 41 with ¢ =

9909876848747 (13 digits).

(only ten digits).

The p53 of 2442 + 1 in Table 2.2 used B; = 10! at Montgomery’s site. Stage 1 took 44

hours using a 2200 MHz AMD Athlon processor in 32-bit mode.
Stage 2 ran on an 8-core, 32 GB Grid5000 cluster at the author’s site. Table 2.3 shows where
the time went. The overall Stage 2 time is 8 - 82 = 656 minutes, about 25% of the Stage 1 CPU

time.

Site http://www.loria.fr /~zimmerma/records/Pminusl.html
has other records, including a 66-digit factor of 96019 —1 found by P 1 for which ¢ = 2110402817
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Chapter 3

The Number Field Sieve

3.1 Introduction

The Number Field Sieve (NFS) is the best currently known general factorization algorithm. As
opposed to special factorization algorithms such as those described in Chapter 2 or ECM [62]
whose run time depend strongly on the size (or other properties) of the prime factor p of N we
hope to find and much less on the size of N, the run time of general factorization algorithms does
not depend on particular properties of the prime factors of an input number, but only on the size
of N. This makes the NFS the method of choice for factoring “hard” integers, i.e., integers that
contain no prime factors that are small or have other properties that would make them easy to
find by special factoring algorithms.

Factoring the modulus of the public key is one possible attack on the RSA encryption sys-
tem [85] and, for keys that are not weak keys and where the secret key cannot be obtained
directly, it is the most efficient known attack on RSA. A variant of NFS [48] can be used to solve
the discrete logarithm problem in F and so is one possible attack on the Diffie-Hellman (DH)
key exchange algorithm [36]. Therefore great effort has been made over the last twenty years to
improve NFS in order to estimate the minimum modulus size for RSA and DH keys that are out
of range for NFS with available computing resources. This size changed considerably over the
years, see Section 3.3 for an overview of NFS integer factoring records.

NFS is a successor of the Quadratic Sieve, which was the best general factoring algorithm
before the advent of NFS and has conjectured asymptotic running time in Lx[1/2, 1] for factoring
N, where the L-function is defined as

Lx [t, C] = e(C-‘rO(l)) 1Og(x)t log 10g(x)1*t )

The Number Field Sieve achieves conjectured complexity
LN[1/37 0]7

where the constant ¢ is (32/9)'/3 ~ 1.526 or (64/9)'/3 ~ 1.923, depending on the variant of NFS,
see Section 3.2.1.

This chapter gives a brief overview of the Number Field Sieve: how it relates to its pre-
decessor, the Quadratic Sieve, and a short description of the different steps performed in an
NEFS factorization, to provide context for the following Chapters which focus on the problem of
co-factorization in the sieving step of NFS.

49
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3.1.1 The Quadratic Sieve

The Quadratic sieve was developed by Carl Pomerance [84|, based on the unpublished (but
described in [84]) Linear Sieve by Schroppel. Silverman [92] implements a Multiple Polynomial
Quadratic Sieve variant based on ideas of Montgomery (which are also mentioned in [84]), and
Contini [27]| reduces the cost of polynomial changes with the Self-Initialising Quadratic Sieve.
We give a brief description of the QS to introduce a few concepts common to QS and NFS, and
don’t consider the mentioned improvements to QS here to keep the description simple.

The basic idea of the Quadratic Sieve is to collect relations y = 22 — N where x ranges over an
interval of integers close to v/N, and y will consequently take integer values bounded by N1/2+e,
Values of y which are “smooth”, i.e., that have no prime factor greater than some smoothness
bound B, are completely factored and stored together with the associated z-value. Once enough
such relations are found, a subset of these (z,y)-pairs such that the product of y-values in this
subset forms an integer square can be determined by linear algebra: an integer is a square if all
its prime factors appear in even power, and the exponent vector of the canonical factorization
of a product is the sum of the exponent vectors of the multiplier and the multiplicand. Thus
we can look for kernel vectors of a matrix over Fo to find a product of y-values whose exponent
vector has all components 0 (mod 2), i.e., which is an integer square. If we have at least as
many relations as primes appear among the factorizations of the y-values, the linear system can
be solved. The product of the so selected y-values and the product of the associated 22-values
thus form congruent squares,

X2=Y?% (mod N) (3.1)

where X and Y can be obtained from the stored x and factored y-values. If X # £Y (mod N),
then ged(X — Y, N) finds a proper factor of N. For composite N that are not pure powers, (3.1)
has at least 4 solutions for any X | N; if the factoring algorithm produces one of these solutions
at random, then the probability of having a non-trivial factorization is at least 1/2.

The great advantage of QS over earlier general factoring algorithms such as the Continued
Fraction Method [59] is that values of z where y is divisible by a prime p form arithmetic
progressions of common difference p, i.e., if f(z) is a polynomial with integer coefficients and we
choose an x such that p | f(z), then p | f(z+kp) for all integers k. This greatly simplifies the task
of factoring the y-values in the QS: given y = f(x) for n consecutive values of z, instead of trying
all candidate prime divisors 2 < p < B for each y-value individually with cost in O(n7(B)),

we determine the roots f(z1)2,) = 0 (mod p) for each 2 < p < B where (dl%ff)) # —1 with

cost O(m(%B)) and can divide out this prime p from all y = f(z)-values with =z = 24}, (mod p)
(“sieve,” similar as in the Sieve of Eratosthenes) for a cost approximately O(n/p), which gives a
total cost for sieving all primes p of only O(nloglog(B) + 7(B)).

3.1.2 NFS: a First Experiment

The basic idea of NFS; still in infancy, was described by Pollard [82] who demonstrated how to
factor the seventh Fermat number N = F; = 2128 4 1 by use of cubic integers. Underlying the
idea is the fact that a small multiple of NV can be expressed easily by a monic polynomial of
degree 3 as 2N = 2129 + 2 = f(x) = 23 + 2 for 2 = 2% ie., 2% is a root of f(x) mod N. A
complex root « of f(z) defines an algebraic number field Q[a] which contains the ring Z[a] of
elements a+ba+ca?, a,b,c € Z. A natural homomorphism ¢ : Q[a] — Z/NZ exists by o + 243
(mod N).
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Pollard now looks for a non-empty set S C Z? such that

A2 = H (a — ba) (3.2)

(a,b)eS

is the square of some element v € Z[a], and

7= 1] (a—02*) (3.3)

(a,b)eS

is the square of an integer g. With these, he computes v and uses the homomorphism ¢ to obtain
#(y) € Z/NZ such that ¢(v)? = ¢g* (mod N) but hopefully ¢(y) # +g (mod N), since then
ged(o(y) — g, N) produces a non-trivial factor of N.

The search for a suitable set .S works similarly as in the Quadratic Sieve: he collects relations,
(a,b)-pairs with a,b € Z and a L b, from a small search region |a| < 4800, 1 < b < 2000, where
the norm of a —ba (denoted N(a—ba), a rational integer) and of a+b2*3 both factor into primes
not exceeding B = 3571, plus at most one prime less than 10000 in each a + b2*3 value. This
is facilitated by using the fact that both N(a — ba) = a3 + 4b® and a — bM are homogeneous
polynomials in a and b. For each fixed value of b, the two polynomials can be sieved over a range
of a-values. In this example Z[a] is a unique factorization domain, is equal to the ring of integers
of Q[a], and has unit group of rank 1 where the principal unit 1+« is easy to find. This way each
a — ba of smooth norm can be readily factored over a small set of prime elements of Z[a/], a sign
and a power of the principal unit. Given sufficiently many relations with completely factored
a — ba (in Z[a]) and a — b2*3 (in Z), he constructs a set S satisfying (3.2) and (3.3), again by
use of linear algebra to ensure that in each of the two products all primes and units occur in
even exponent. Since the explicit factorization of each a — ba and a — b2*3 into powers of primes
and units is known, the square root can be taken by dividing exponents by 2 and computing the
product.

Both QS and NFS look for values of polynomials that are “smooth,” i.e., that contain no
prime factors greater than some smoothness limit 9. In case of (our simplified) QS, we choose
integers z close to v/N and look for smooth y = 22 — N where the y-values are roughly as large
as v/ N; for the NFS example, we look for pairs (a,b) where two polynomials F(a,b) = a® + 4b°
and G(a,b) = a+ b2*3 are simultaneously smooth. The reason why NFS is asymptotically faster
than QS, even though for each relation it requires two values both being smooth instead of only
one, is that the values are smaller. In Pollard’s example, the values of G(a,b) are of size roughly
N'/3 and the values of F(a,b) are smaller still. The probability of an integer n being smooth to
a given bound decreases rapidly with the size of n, and even though we have two values of size
roughly N1/3, for large enough N, assuming independent smoothness probability, they are more
likely both smooth than a single value around VN.

At the time of Pollard’s experiment, it was not at all clear whether the idea could be extended
to numbers that are not of such a simple form as 2!2® + 1, or where the relevant ring Z[a] in
the number field is not as “well-behaved,” and if it could, whether this algorithm would be faster
than the Quadratic Sieve for input sizes of interest. The answer to both turned out to be an
enthusiastic “yes,” and the NFS currently stands unchallenged for factoring hard integers of more
than approximately 100 decimal digits.
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3.2 Overview of NFS

In this section we briefly summarize the Number Field Sieve. It requires two distinct polynomials

d1 d2
fi(z) = Z frimt and fa(z) = qu:z:i (3.4)
=0 =0

of degree dy and da, respectively, with fi;, fo;, € Z, each polynomial irreducible over Q, of
content 1 and with a known common root M modulo N, the number to be factored:

fi(M) = fo(M)=0 (mod N). (3.5)

The homogeneous forms of these polynomials are

Fi(a,b) = fi (%) b and  Fy(a,b) = fo (%) b2, (3.6)

Let a; be a complex root of f1(z), then Q[a;] defines a number field which contains the
ring Z[aq], however this ring is not integral if fi(z) is non-monic and even if it is, generally is
neither the full ring of integers of Q[ay], nor has unique factorization. Since M is a root of fi(x)
(mod N), a natural homomorphism ¢y : Qay] — Z/NZ exists by a3 — M (mod N). Similarly
for the second polynomial.

The goal of NFS is to construct 1 € Z[a] and y2 € Z[ao] with ¢1(v?) = ¢2(72) (mod N),
since then X = ¢1(y1) and Y = ¢a(72) satisfy X2 =Y? (mod N) and so, if X Z +Y (mod N)

holds, ged(X — Y, N) reveals a proper factor of N. We achieve this by constructing

v o= H (a —baq) and (3.7)
(a,b)es

v = J] (a—bas) (3.8)
(a,b)es

with a suitably chosen set S such that (3.7) and (3.8) are a square in Z[«a1] and Z[as], respectively.
Since ¢1(a—bay) = a—bM = ¢a(a—bag) (mod N), the images of (3.7) and (3.8) are congruent
modulo N as required.

In a number field K = Q[z]/f(z)Qz] of degree d with o = Z the norm of an element
w(T) =D 0<icd c;xt is defined as N (w) = [li<j<qw(e;) where the a; are the d complex roots of
f(z). For w € Z[a] the norm is a rational integer if f(x) is monic, (otherwise the norm times the
leading coefficient of f(z) is an integer, for simplicity we assume the monic case) and for elements
a — ba we have simply N(a — ba) = b%f(a/b) = F(a,b), where F(a,b) is the homogeneous form
of f(x). The norm is multiplicative, i.e., N(wf) = N(w)N(0) for any w, § € K, implying that
N (w?) is an integer square for any w € Z[a].

To construct S, we look for relations (a,b), a L b, where F(a,b) is B1-smooth and F»(a,b)
is Bo-smooth. By considering the norms, we see that [], ;,cg Fi(a,b) must be a square in Z
for (3.7) to be a square in Z[ay] (likewise for the second polynomial in the following), but this
condition is generally not sufficient, as distinct primes in Z[a;] may have equal norm. Therefore,
instead of considering only the factorization of the norm F'(a, b) into rational primes, we consider
the factorization of the ideal generated by a — ba; in Z[ay] into prime ideals. Each prime ideal
that occurs as a divisor of (a — bay) is uniquely identified by (p,r) where p is a prime factor of
Fi(a,b) and is the norm of the prime ideal, and 7 = a - b~! (mod p) is the corresponding root
of fi(z) (mod p). That is, we do not consider only the prime factors of N(a — bay), but further
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distinguish them by which of the up to d; possible roots of f(z) (mod p) they correspond to.
The set S is then chosen such that all prime ideals occur in even exponent in both (3.7) and (3.8).
This is still not quite sufficient for ensuring that these products are squares in their respective
ring, as the unit group and class group parts might not be squares, but this problem is elegantly
circumvented by use of quadratic characters, described in Section 3.2.4.

Very frequently the second polynomial is chosen to be linear in which case Q[az] is simply Q
and factorization of a — ba into prime ideals is equivalent to factorization of F5(a,b) into rational
primes; then the condition that the product H(a,b)es F5(a,b) is an integer square is sufficient. In
this case everything relating to Z[asg] throughout the NFS algorithm is called the “rational side”
and anything relating to Z[ay] is called the “algebraic side.”

In the sieving step we try to find sufficiently many relations (a,b) within a sieving region
la]| < A,0 < b < B, see Section 3.2.2. The polynomials fi(z) and fa(z) are chosen such that
the values of Fy(a,b) and Fy(a,b) are likely smooth for a,b in the sieve region; an overview of
methods for polynomial selection is given in Section 3.2.1. The relations obtained in the sieving
step are processed to remove duplicate relations and to reduce the size of the resulting matrix,
see Section 3.2.3. In the linear algebra step we determine a subset S of the relations found
during sieving such that (3.7) and (3.8) hold. This involves solving a very large and very sparse
homogeneous linear system over Fg; two suitable algorithms are mentioned in Section 3.2.4. The
square root step, described in Section 3.2.5, determines ~; and o from 7% and 722, respectively,
and computes ged(¢1(v1) — ¢2(72), V), hoping to find a proper factor of N.

3.2.1 Polynomial Selection

To reduce the cost of the sieving, we try to choose fi(x) and fa(x) so as to maximise the expected
number of relations found in the sieve region, or conversely to allow the smallest sieve region to
produce the required number of relations that lets us construct congruent squares. As mentioned,
the probability of the polynomial values being smooth decreases rapidly with their size, so one
criteria is that we would like to choose polynomials with small coefficients. A trivial method is
to pick a degree d; ~ (3log(n)/log(log(n)))'/3 and to take M = | NV (@1+D | Now we can write
N in base-M to obtain the coefficients of fi(x), and choose fa(z) = —z+ M.

Somewhat surprisingly, this trivial idea is asymptotically the best possible (see [20, §3|) in
the sense that any improvements due to better polynomial selection are absorbed in the o(1)
term of the L.[t,c| notation. In practice, elaborate methods for finding good polynomials are
used which offer a significant speedup over the naive method.

Early GNFS implementations such as in [11] used basically the base-M method, but included
a brute-force search for a good value of M that leads to small polynomial coefficients.

Murphy |75] presents a way of modelling the expected number of relations found by sieving
two given polynomials over a sieve region with given smoothness bounds, and shows how to
improve the base-M method for selecting polynomials that enjoy not only small average value
over the sieve region, but also have favourable root properties. The root properties model the
average contribution of small prime factors to the size of polynomial values. For polynomials
which have many roots modulo small primes, this contribution is greater, and these polynomial
values are more likely smooth than when few small prime divisors are present.

Kleinjung [54] extends Murphy’s work by allowing a common root M of the two polynomials
that is not an integer close to N4+ but a rational number M = k/I. This leads to a linear
polynomial g(z) = lz — k and greatly extends the search space of suitable M values which allows
picking one that leads to particularly small polynomial values. He further improves techniques
to generate polynomials with good root properties.
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For integers IV of no special form, a suitable polynomial f(x) is found by the above methods
and the second polynomial g(x) is chosen to be linear; then the coefficients of both polynomials
are bounded by O(N'/41). With this bound, the constant c in (3.1) is conjectured to be (64/9)%/3.

For integers of a simple algebraic form such as F; = 2'%® + 1, a polynomial with very small
coefficients can easily be found manually. For this type of numbers, we can take the size of the

coefficients of f(x) to be bounded by a constant, which reduces the constant ¢ to conjecturally

(32/9)1/3.

3.2.2 Sieving

The task of the sieving step is to identify many relations, (a, b)-pairs with a L b such that Fj(a,b)
and Fy(a,b) are both smooth. The smoothness criterion determines the sieving parameters, so we
choose smoothness bounds B, and By, a typical order of magnitude being 107 for a factorization
of 150-digit numbers, and consider F}(a, b) smooth if no prime exceeding B, divides it (similarly
for Fy(a,b)). In practice, a large prime variant is used as it greatly increases the number of
relations found at little extra cost. We add large prime bounds £; and £o, usually about 100
times the respective factor base bound, and consider Fj(a,b) smooth if all its prime factor do
not exceed B except for at most k; prime factors up to £4, similarly for Fy(a,b).

To find (a,b)-pairs where Fi(a,b) and Fh(a,b) are smooth, a sieving method is used, using
the fact that Fj(a,b)-values (and likewise for Fy(a,b) in the following) that are divisible by a
prime p form a regular pattern in Z2. Let r be a root of fi(x) (mod p), then the (a,b)-pairs
where p | Fi(a,b) are exactly those where a = br (mod p). (The homogeneous form Fj(a,b) may
have roots with b = 0 (mod p), namely for p that divide the leading coefficient of f;(z); such
roots correspond to roots at infinity of fi(z) (mod p) and are not considered here.)

The sieving process starts by building a factor base: a list of primes p < *B; and for each the
roots of fi(z) (mod p), likewise for fo(z). For the rational side (assuming fo(x) is linear), this
process is simple enough to do it at the start of the siever program, for the algebraic side the
factor base is commonly computed once and stored in a file.

The sieving is performed over a sieve region —A < a < A, 0 < b < B which is chosen
large enough that one may expect to find sufficiently large set of relations so that the linear
algebra phase can find a subset S that satisfies (3.7) and (3.8). In principle, sieving can end
when the number of relations (forming the variables of the linear system over Fg, each relation
can be included in S or not) exceeds the number of prime ideals that occur among the relations
(forming the equations of the linear system, the sum of exponents of each prime ideal must be
even in the solution), since then the resulting matrix has at least one non-zero kernel vector. In
practice one wants a healthy amount of excess (the difference of the number of relations and of
the prime ideals among them), as this allows reducing the size of the matrix and several kernel
vectors may need to be tried to find a non-trivial factorization. A ratio of 10% more relations
than ideals is a good rule-of-thumb.

To speed up the sieving process, it is not performed on the values of Fj(a,b) and Fy(a,b)
themselves. Instead, for each (a, b) in the sieve region, a rounded base-I logarithm |log;(F}(a,b))]
is stored in an array, and each prime in the factor base that divides Fj(a,b) (“hits at (a,b)”)
subtracts |log;(p)]| from the corresponding array location. This replaces an integer division by
a simpler integer subtraction per hit; the logarithm base [ is commonly chosen such that the
rounded logarithms fit into one byte to conserve memory. The pairs (a,b) where Fj(a,b) is
smooth will have a small value remaining in their array entry; entries where the remaining sieve
value is below a threshold are remembered and the sieving process is repeated for Fy(a,b). The
repeated subtraction of rounded logarithms accumulates some rounding error which needs to be
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taken into account when choosing the sieve report threshold. Those (a,b) where both sieving
passes left values below the respective threshold are good candidates for being proper relations
and are examined more closely: the corresponding F} 2(a, b)-values are factored exactly over the
integers to test whether they satisfy the smoothness criterion. Here, the large prime variants
come into play: if one allows large primes, a larger sieve report threshold is chosen accordingly,
and the exact factorization of Fj2(a,b) needs to be able to handle composite cofactors after
dividing out the factor base primes. The cofactors can consist of between 16 — 30 decimal digits
(and even more for very large factorizations) and prime factors of typically 8 — 10 decimal digits
are permitted as large primes and need to be found efficiently. Suitable methods are described
in Chapter 4.

The sieve region [—A, A] x [1, B] () Z? is usually far too large to be sieved all at once. Instead
is it partitioned into smaller pieces which are sieved independently. Two major variants of this
sieving process exist: line sieving and lattice sieving.

Line sieving is the simpler one: for each value of b in the sieve region, the line —4 < a < A is
treated individually. If it is still too large, the line can be partitioned further. Within a line, for
each factor base prime p with root r, the smallest ag > —A with ag = br (mod p) is computed,
then each a = ag + kp < A, k € N, is hit by the sieving.

Lattice sieving was suggested by Pollard [83] and, while more complicated, performs sig-
nificantly better and has superseded line sieving in larger factorization efforts. The idea is to
consider the lattice in Z? where one of the two polynomials, usually F(a,b) (although for some
SNFS factorizations Fy(a,b) is chosen instead), is known to be divisible by a “special-¢” value. If

pis aroot of fi(z) (mod q), then q | Fy(a,b) if a = bp (mod ¢q), and ( Z > = ( g '(1) > (; >,

i,j € Z, is the lattice of points (a,b) where ab~! = p (mod q), implying ¢ | F}(a,b). Examining
only such a,b where we know a prime factor ¢ of Fj(a,b) significantly increases the chance that
F(a,b)/q will be smooth, thus increasing the yield of the sieving. This allows choosing a smaller
factor base and sieve region and still obtaining the required number of relations, thus reducing
computation time and memory use.

The sieving procedure becomes more complicated, however. The sieve region in the ¢, j-plane
is chosen relatively small, typically (depending on the size of the input number) —I < i < I,
0<j<JwithlI=2F J= I/2,11 <k < 16. Since each line in the sieve region in the i, j-plane
is rather short, line-sieving in this plane is inefficient, since each factor base prime would need to
be applied to each line individually, resulting in complexity O(J%B + I.J loglog(B)) per special-q.
Since B > I, the J%B term would dominate (corresponding to finding the first location in the line
where the factor base prime hits, yet in any given line, most factor base primes don’t hit at all).
Instead, for each factor base prime p and each associated root of the polynomial being sieved,
the lattice where p hits in the ¢, j-plane is computed which allows enumerating the locations that
are hit very efficiently, and the complexity drops to O(B + I.J loglog(®8)). The implied constant
for the B term is greater than that in the JB term seen before, due to the need to transform
the roots of factor base primes to the ¢, j-plane and to compute a reduced lattice basis for each,
but this increase is far smaller than the factor J (typically several thousand) that appears if
individual j-values were line-sieved.

Franke and Kleinjung [40] give the details of a very efficient lattice sieving algorithm.

3.2.3 Filtering

Before a matrix is built, the relations are processed in the filtering step of NF'S, to allow building
a matrix that is easier to solve than one containing all relations found in the sieving would be.
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The processing is performed in several successive stages.

Duplicates. First of all, duplicate relations are deleted, as those might lead to trivial solutions
of the matrix which would produce only trivial factorizations. Duplicate relations occur in large
number when lattice sieving is used, as one (a,b)-pair may have a polynomial value Fj(a,b)
(assuming the special-¢ values are chosen for the fi(z) polynomial) that contains two or more
prime factors in the range of primes that are used for special-g values. Even with line sieving,
which in theory does not produce duplicates, partial output from interrupted and re-started
sieving jobs or accidental sieving of overlapping ranges of b-values often leads to duplicates in
practice. In the duplicate removal step, the number of relations decreases while the number of
prime ideals occurring among the relations stays constant, so that the excess decreases by 1 for
each deleted relation. This effect makes it tricky to predict the number of useful relations found
by lattice sieving via sampling the sieving over an estimated range of special-¢ values: in the
small sampling data, the ratio of duplicates to unique relations will be very small, but in the
complete data set, it is often as large as 30%.

Singletons. In the next filtering step, relations containing singleton ideals are deleted. Since
the goal is finding a subset of relations in whose product every prime ideal occurs to an even
power, relations containing a prime ideal in an odd power (usually with exponent 1) that occurs
in no other relations cannot be part of any solution, and can be omitted from the matrix. When
such relations are deleted, prime ideals that occurred among the deleted and exactly one not
deleted relation now become new singletons (“ripple-effect”), and the singleton removal can be
repeated until no relations with singleton ideals remain or so few are left that they add negligible
size to the matrix. Each deleted relation contains at least one prime ideal that occurs nowhere
else among the relations, so that when the number of remaining relations decreases by 1 the
number of remaining prime ideals also decreases by at least 1, thus the excess does not decrease
in this step. In fact, some relations contain two (very rarely more) singleton ideals, and deleting
these actually increases the excess slightly.

Since the prime ideals occurring among the relations must be identified to find singleton
ideals, they can be counted as well, and the exact amount of excess can be determined. If there
remains any positive excess after the singleton removal step, then a matrix could in principle be
built and solved. In practice, one wants a good deal of excess in order to reduce the size of the
matrix, and to be able to satisfy some additional constraints on the product of relations from a
set of kernel vectors of the matrix.

Connected components. Given a relation set with excess after singleton removal, the data
set and hence the matrix size can be shrunk very efficiently by removing connected components
(often called “cliques” in this context, although the connected components in question aren’t
necessarily complete subgraphs). For this, each relation of the data set is considered a node of a
graph, and two nodes are connected if and only if they have a prime ideal that occurs in odd power
in these two and in no other relation. Deleting any relation in a connected component causes an
ideal that formed the vertex to this node to become singleton, and by applying singleton removal,
the entire connected component is removed eventually. For each deleted connected component,
the excess drops by at most 1 (for the first relation that is deleted, as singleton removal does
not reduce excess) and removing large connected components is a very effective way of reducing
excess in a way that minimizes the number of ideals among the remaining relations. Removing
connected components may cause ideals among the deleted relations to occur in odd power among
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exactly two of the remaining relations, causing new vertices to appear in the graph. Thus the
removal of connected components should be done in several passes, until the excess is reduced
to a small positive number, e.g., around 100.

Merging. The remaining relations could be turned into a matrix, using the concatenated
exponent vectors modulo 2 of the prime ideals of Z[a;] and of Z]ag] as equations, and one
variable in Fo per relation (whether to include it in the solution or not) as variables. The
resulting linear system is large and very sparse, and with algorithms typically used for solving
such sparse large matrices over Fy such as Block-Lanczos and Block-Wiedemann, the run time
depends on the product wM?, where w is the weight (the number of nonzero entries) and M is
the dimension of the matrix. Therefore we may be able to save time in the matrix phase if we
can make the matrix smaller, but somewhat more heavy. This is the task of the merging phase.

First observe that if a prime ideal occurs to odd exponent in exactly two relations, then those
two relations must either be both included to form a square, or both not included. Hence those
two relations can be merged into one by taking their product, i.e., adding their exponent vectors;
the shared prime ideal occurs to even exponent in this product and does not occur in any other
relation, thus it needs not be considered in the matrix. The resulting vector will have at most
two non-zero entries fewer than the two original relations had, so the matrix dimension decreases
by 1 and the weight by at least 2, making “2-way merges” always worthwhile.

If a prime ideal occurs in exactly 3 relations, we can form two distinct products from them
and use them in place of the three original relations. Again one prime ideal disappears from the
matrix, but now we have two relations that each may be about twice as heavy as the original
ones, so the total weight might increase. This can be mitigated by choosing the two distinct
products whose exponent vectors have smallest weight, but problem of weight increase during
merging becomes apparent, and becomes more pressing for higher-way merges.

Cavallar [21] describes an implementation of the filtering step of NFS, including all steps from
duplicate removal to merges of relations with prime ideals of frequency up to 19, and examines
the effect of merging on the run-time of the Block-Lanczos algorithm for solving the resulting
matrix.

3.2.4 Linear Algebra

The goal of the linear algebra step of NFS is; given a set of relations produced by the sieving and
filtering steps, to find a subset S such that (3.7) and (3.8) are satisfied. In the filtering we made
sure that we can combine the remaining relations into a product where all prime ideals dividing
the ideal generated by =1 and -9, respectively, occur in even power, and this is a necessary
condition for being a square in Z[aq] and Z]as], respectively, but it is generally not sufficient.

In spite of this, we first look at the problem of finding solutions which ensure that all prime
ideals occur in even power; given a small number of such solutions, the remaining conditions can
then be satisfied relatively easily.

From the factorization of each ideal (a—bay) in Z[ay] and (a —bag) in Z[ag] into prime ideals,
we take the exponent modulo 2 of each prime ideal to form column vectors over Fy. This forms
a matrix that contains a column for each (merged) relation and a row for each prime ideal that
occurs among the relations. This produces a large and very sparse matrix, since each relation
contains only a small number of prime ideals. For factorizations of general numbers of around
150 digits, the matrix size is of the order of a few million rows and columns, see Table 3.1. The
number of entries per column is typically between 50 and 150.
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To solve such large, sparse linear systems, the venerable Gaussian elimination algorithm is ill-
suited. Asrows are added during the elimination, the sparseness of the matrix is lost, and a dense
representation of the matrix would have to be used which is not feasible for matrices of dimension
well above 10°. Suitable algorithms are iterative methods such as Block-Wiedemann [31] and
Block-Lanczos [69] that both find a set of kernel vectors by performing only (possibly transposed)
matrix-vector products, leaving the matrix unaltered.

Choosing a set S in this way with resulting products I'; of relations a — ba; for each ¢ = 1,2 is
generally not sufficient to ensure that I'; is the square of an element of v; € Z[a;]. The possible
obstructions are given in [20, §6].

Fortunately, this problem can be solved easily with an elegant trick. For each relation (a,b)
we determine the quadratic character x,(a — boy) in Fp[z]/f(x) for a prime p that does not
divide any F'(a,b) among our relations and likewise for the second polynomial g(x) (unless it is
linear, in which case attention must be given only to the unit —1 of Z if the values of G(a,b)
can be negative.) In any set S such that the product (3.7) is a square, 1 =[], ;) Xp(a — baz).
Thus we can use quadratic characters as a “probabilistic squareness test” of sorts; by doing
sufficiently many and choosing S such that they all indicate a square product, we can be quite
certain to obtain a proper square in Z[a|. Thus we can use log_; (xp(a — b)), which is 0 if the
character indicates a square and is 1 otherwise, and use it as an additional equation in the linear
system. Solving the homogeneous system ensures that the sum of logarithms of each character
is 0, i.e., their product is 1, indicating that the solution is a square. Assuming that a random
non-square element w of Z[a] has x,(w) = 1 with probability 1/2 and that the probabilities are
independent for x, with different p, each character added to the linear system reduces the number
of non-square solutions in the kernel of the matrix by 1/2. By adding a few more characters
than the rank of the unit group plus hz,), the class number of Z[a], we can be reasonably sure
that the kernel of the matrix contains mostly vectors that indicate sets S that satisfy (3.7) and
(3.8). Computing the class number is itself a non-trivial problem, and in practice one usually
chooses a constant number of characters that “ought to do it,” the actual number varying between
implementations, but usually being between 32 up to 64, rarely more.

3.2.5 Square Root

The linear algebra step produced a set S C Z? that satisfies (3.7) and (3.8). We now need
to take the square roots of 7%2 in their respective number fields so that we can finally take
ged(d(v1) — @(72), N), hoping to find a non-trivial factor of N.

In Pollard’s first experiment, computing the square root was easy, since Z[y/—2] enjoys unique
factorization so that he could factor each a—by/—2 into prime elements. Given their factorization,
he obtains the factorization of 7% and computes 1 simply by halving the exponent of each prime
element. With the second polynomial linear, taking a square root on the rational side is simply
taking a square root of a rational integer.

A simple approach that was considered impractical in the early days of NF'S due to insufficient
memory in the available computing hardware has recently been revived. The idea is to use
isomorphism of Z[ay] with Z[z]/f(z)Z[x] and to compute

I'(z) = H (a — bzx) | mod f(x),

(a,b)esS

where the coefficients of the resulting polynomial will be very large, and fast algorithms for in-
teger multiplication such as the one described in Chapter 1 must be used; with a naive O(nz)
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multiplication algorithm, this simple square root step has time complexity similar to the sieving
and linear algebra steps, but with fast multiplication techniques its time complexity is asymptot-
ically negligible and practically satisfactory. Given I'(z), we would like to obtain y(z) = /I'(x)
in Z[z]/ f(x)Z[z], which we can do by computing \/I'(z) in F,,/f(x)F, for a small prime p such
that f(z) is irreducible over F),, and using Hensel lifting of the result to a power p* such that p*
is greater than the coefficients of v(z).

Couveignes [32] presents an algorithm that performs the square root modulo different smaller
prime powers pfi and constructs the solution via the Chinese Remainder Theorem. It can operate
with less memory than the simple method, but works only for polynomials f(x) of odd degree
and has fallen out of use.

Montgomery [68] proposes an algorithm based on lattice reduction for computing square
(and higher) roots of products such as (3.7) and (3.8) in algebraic number fields; Nguyen |76|
implements it. It is fast and uses little memory, but is far more complex to implement than the
two methods previously mentioned.

3.3 NFS Factoring Records

The maximum size of numbers that can be factored with NFS increased considerably over the
20 years since its inception, both due to algorithmic improvements and computers with faster
CPUs and larger main memory becoming available. Table 3.1 lists factorization records for the
General Number Field Sieve and Table 3.2 lists records for the Special Number Field Sieve.
For SNFS, the difficulty is listed, which is defined as the base-10 logarithm of the resultant of
the two polynomials used. The number 2,1642M refers to the algebraic factor 2821 4 2411 4 1
of 21642 1 1. Where available we give the number of unique relations obtained, size of matrix
and total computation time for the factorization. The latter is often hard to state precisely
due to a large number of different computer systems used within one factorization. Where a
formal publication of the result exists, it is cited. In the other cases, the factorization is usually
announced by a message to a number theory mailing list; such messages of record factorizations
are collected by Contini [26].
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Number
RSA-130
RSA-140
RSA-155
2953 +1
RSA-160
RSA-576
11281 + 1
RSA-200
RSA-768

Number
1021 —1
2773 + 1
2809 -1
2,1642M

6353 -1
21039 -1

Chapter 3. The Number Field Sieve

Digits  Year Nr. rel. Matrix size  Approx. time

130 1996 56.515.672 3.516.502 1000 MIPS years
140 1999  56.605.498 4.704.451 2000 MIPS years
155 1999 85.534.738 6.711.336 8000 MIPS years

158 2002 254.033.792 0.792.705 4 GHz-years
160 2003 289.145.711 5.037.191

174 2003

176 2005  455.989.949 8.526.749 32 GHz years
200 2005  2.260.000.000  64.000.000 165 GHz years
232 2009 47.762.243.404 192.796.550 3700 GHz years

Table 3.1: Records for the General Number Field Sieve

Difficulty Year Nr. rel. Matrix size Approx. time

211 1999  56.394.064 4.895.741 11 CPU years
233.0 2000 85.786.223 6.758.509 57 CPU years
243.8 2003 343.952.357

2474 2004 438.270.192 7.429.778 22 GHz years

275.5 2006 2.208.187.490  19.591.108 61 GHz years

312.8 2007 13.822.743.049 66.718.354 400 GHz years

Table 3.2: Records for the Special Number Field Sieve

By

Lenstra et al.

te Riele et al. [23]
te Riele et al. [24]
Franke et al.
Franke et al.
Franke et al.

Aoki et al.

Franke et al.
Kleinjung et al. [55]

By

The Cabal
The Cabal
Franke et al.
Aoki et al.
Aoki et al.
Aoki et al. |2]



Chapter 4

Factoring small integers with P-1, P+1,
and ECM in the Number Field Sieve

4.1 Introduction

The sieving step of the Number Field Sieve [60] identifies integer pairs (a,b) with a L b such
that the values of two homogeneous polynomials F;(a,b), i € {1,2}, are both smooth, where
the sieving parameters are chosen according to the smoothness criterion. Typically the two
polynomials each have a “factor base bound” B;, a “large prime bound” £;, and a permissible
maximum number of large primes k; associated with them, so that F;(a,b) is considered smooth
if it contains only prime factors up to B; except for up to k; prime factors greater than B;, but
none exceeding £;. For example, for the factorization of the RSA-155 challenge number [24] (a
hard integer of 512-bit) the values B = 224, £ = 10° and k = 2 were used for both polynomials
for most of the sieving. Kleinjung [53| gives an estimate for the cost of factoring a 1024-bit RSA
key based on the parameters 28, = 1.1 - 109, By =3 - 1087 and £; = £9 = 2*2 with k; = 5 and
ko = 4.

The contribution of the factor base primes to each polynomial value Fj(a,b) for a set of (a,b)
pairs is approximated with a sieving procedure, which estimates roughly what the size of the
polynomial values will be after factor base primes have been divided out. If these estimates for a
particular (a, b) pair are small enough that both Fj(a,b) values might be smooth, the polynomial
values are computed, the factor base primes are divided out, and the two cofactors ¢; are tested
to see if they satisfy the smoothness criterion.

If only one large prime is permitted, no factoring needs to be carried out at all for the large
primes: if ¢; > £; for either ¢, this (a,b) pair is discarded. Since generally £; < ‘B? and all prime
factors below B; have been removed, a cofactor ¢; < £; is necessarily prime and need not be
factored.

If up to two large primes are permitted, and the cofactor ¢; is composite and therefore greater
than the large prime bound but below £2 (or a suitably chosen threshold somewhat less then
2%), it is factored. Since the prime factors in ¢; are bounded below by 9B;, and £; is typically less
than B!, the factors can be expected not to be very much smaller than the square root of the
composite number. This way the advantage of special purpose factoring algorithms when small
divisors (compared to the composite size) are present does not come into great effect, and general
purpose factoring algorithms like SQUFOF or MPQS perform well. In previous implementations
of QS and NFS, various algorithms for factoring composites of two prime factors have been used,
including SQUFOF and Pollard-Rho in |38, Chapter 3.6], and P 1, SQUFOF, and Pollard-Rho
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in |22, §3|.
If more than two large primes are allowed, the advantage of special purpose factoring al-
gorithms pays off. Given a composite cofactor ¢; > £2, we know that it can be smooth only

if it has at least three prime factors, of which at least one must be less than 03/3. If it has
no such small factor, the cofactor is not smooth, and its factorization is not actually required,
as this (a,b) pair will be discarded. Hence an early-abort strategy can be employed that uses
special-purpose factoring algorithms until either a factor is found and the new cofactor can be
tested for smoothness, or after a number of factoring attempts have failed, the cofactor may be
assumed to be not smooth with high probability so that this (a,b) pair can be discarded.

Suitable candidates for factoring algorithms for this purpose are the P—1 method, the P+1
method, and the Elliptic Curve Method (ECM). All have in common that a prime factor p is
found if the order of some group defined over F, is itself smooth. A beneficial property is that
for ECM, and to a lesser extent for P+1, parameters can be chosen so that the group order has
known small factors, making it more likely smooth. This is particularly effective if the prime
factor to be found, and hence the group order, is small, see Chapter 5.

Although the P-1 and P+1 methods by themselves have a relatively poor asymptotic algebraic
complexity in O(,/p) (assuming an asymptotically fast stage 2 as described in Chapter 2), they
find surprisingly many primes in far less time, making them useful as a first quick try to eliminate
easy cases before ECM begins. In fact, P 1 and P+1 may be viewed as being equivalent to less
expensive ECM attempts (but also less effective, due to fewer known factors in the group order).

Another well-known special-purpose factoring algorithm is Pollard’s “Rho” method [81] which
looks for a collision modulo p in an iterated pseudo-random function modulo N, where p is a
prime factor of N we hope to find. When choosing no less than /2log(2)n + 0.28 integers
uniformly at random from [1,n], the probability of choosing at least one integer more than
once is at least 0.5, well known as the Birthday Paradox which states that in a group of only 23
people, two share a birthday with more than 50% probability. For the Rho method, the expected
number of iterations to find a prime factor p is in O(\/]_)), and in the case of Pollard’s original
algorithm, the average number of iterations for primes p around 239 is close to 2% ~ /P, where
each iteration takes three modular squarings and a modular multiplication, for an average of
~ 130000 modular multiplications when counting squarings as multiplications. Brent [14] gives
an improved iteration which reduces the number of multiplications by about 25% on average.
We will see that a combination of P-1, P41, and ECM does better on average.

Furthermore, trying the Pollard-Rho method with only a low number of iterations before
moving on to other factoring algorithms has a negligible probability of success — among the
4798396 primes in [23°, 230 4-108], only 3483 are found with at most 1000 iterations of the original
Pollard-Rho algorithm with pseudo-random map z + 2%+ 1 and starting value zg = 2. For P-1,
there are 1087179 primes p in the same range where the largest prime factor of p — 1 does not
exceed 1000, and exponentiating by the product of all primes and prime powers up to B requires
only B/log(2) + O(\/E) ~ 1.44B squarings, compared to 4 multiplications per iteration for
the original Pollard-Rho algorithm. By using a stage 2 for P-1, its advantage increases further.
Figure 4.1 shows the distribution of the largest prime factor of p — 1 and the required number of
Pollard-Rho iterations for finding p, respectively, for primes p in [230,23Y +108]. The distribution
of the largest prime factor of p+1 is identical to that of p—1, up to statistical noise. We conclude
that unlike P-1 and P+1, the Pollard-Rho method is not suitable for removing “easy pickings.”

This chapter describes an implementation of trial division for composites of a few machine
words, as well as the P-1, P41, and Elliptic Curve Method of factorization for small composites
of one or two machine words, aimed at factoring cofactors as occur during the sieving phase of
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Figure 4.1: Number of primes p in [230,230 + 108] where the largest prime factor of p — 1,
respectively the number of Pollard-Rho iterations to find p, is in [100n, 100n + 99], n € N. The
left graph shows 0 < n < 1000, the right graph shows a zoom on 0 < n < 100.

the Number Field Sieve. It is part of the CADO [45] implementation of the NF'S.

4.2 Trial Division

Before factoring of the non-sieved cofactor of the polynomial values into large primes can com-
mence, the cofactor needs to be determined by dividing out all the factor base primes. For
medium size factor base primes, say larger than a few hundred or a few thousand, a sieving
technique ("re-sieving”) can be used again that stores the primes when re-sieving hits a location
previously marked as "likely smooth.” For large factor base primes, say larger than a few ten
thousand, the number of hits in the sieve area is small enough that the primes can be stored
during the initial sieving process itself. For the smallest primes, however, re-sieving is inefficient,
and a trial division technique should be used. This section examines a fast trial division rou-
tine, based on ideas by Montgomery and Granlund [50] [70], that precomputes several values per
candidate prime divisor to speed up the process.

4.2.1 Trial Division Algorithm

Given many composite integers N;, 0 < ¢ < n, we want to determine which primes from some
set P = {p;,0 < j < k} of small odd primes divide each N;. We assume n > k. Each N; is a
multi-word integer of up to £+ 1 words, N; = Zﬁ:o nmﬂj, where (3 is the machine word base
(e.g., B =2% or 8 =2%) and £ is on the order of "a few,” say ¢ < 4. For each prime p € P, we

precompute w; = B mod p for 1 < j <4, piny = p~ ! (mod B) and piim = L%J

Consider a particular integer N = Z?:o n]ﬂj, and a particular prime p € P. The algorithm
first does a semi-reduction modulo p to obtain a single-word integer congruent to N (mod p),
then tests this single-word integer for divisibility by p.

To do so, we compute r = ng + Z§:1 njw; < (6 —1)(¢(p — 1) +1). To simplify the next

steps, we require p < \/é. Even for 3 = 232, ¢ = 4, this gives p < 32768 which is easily sufficient
for trial division in NF'S.
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With this bound on p, we have r < (—1)(v/3¢—¢+1). We then decompose r into r = r15+ry,
where 0 < rg < . This implies r1 < /G0, and rqyw; < ri(p—1) < /B¢ <\/§ - 1) =33l

The algorithm then does another reduction step by s = ryw; + rg. We would like s =
s10 + so < 20 — p, so that a final reduction step t = sy + syw1 < B produces a one-word result.
Since r1(p—1) < B—+/B, s < 28—+/B0—1 < 23—p. Since sy is either 0 or 1, the multiplication
and addition in sy + sjw; is really just a conditional addition.

Now we have a one-word integer ¢ which is divisible by p if and only if NV is. To determine
whether p | t, we use the idea from [50, §9] to compute u = tp~*
Pinv = p_l
produce the correct u = t/p. There are L

mod (3, using the precomputed
(mod B3). If p | t, t/p is an integer < [ and so the modular arithmetic mod  must

-1

=t 1J multiples of p (including 0) less than 3, under

division by p these map to the integers [0, e {%H Since p is coprime to (3, multiplication

by p~! (mod f) is a bijective map, so all non-multiples of p must map to the remaining integers
H%J +1,6— 1}. Hence the test for divisibility can be done by a one-word multiplication by

the precomputed constant pi,y, and one comparison to the precomputed constant pjim, = L%J .

4.2.2 Implementation

The algorithm is quite simple to implement on an x86 CPU, which offers the two-word product
of two one-word arguments by a single MUL instruction. It might run as shown in Algorithm 6,
where x1, zg are registers that temporarily hold two-word products. A pair of registers holding
a two-word value 713 + r¢ is written as r1 : 9. The values rg 1, So,1, and ¢y can all use the same
registers, written 7o 1 here. The loop over j should be unrolled.

Input: Length ¢
N = Zfzomﬂi, 0<n; <p
Odd prime p < \/g
wj:ﬂjmodpfor1§j§€
Piny = p~ ' mod 3

Plim = %
Output: 1if p | N, 0 otherwise
To ‘= No;
r1 = 0;

for1<j</{do
T1 1Ty = Ny - Wy,

T1:iTog=T1:7T0+ X1 : Xo;
To = T1 - Wi,

ro = (ro + z¢) mod f;

if last addition set carry flag then
o = (ro + w1) mod f;

70 = (70 * Piny) mod f3;

if r¢o < pim then
return 1;

else
return 0;
Algorithm 6: Pseudo-code for trial division of numbers of up to £ 4+ 1 words.
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This code uses ¢ multiplications of two words to a two-word product. These multiplications
are independent of one another, so they can overlap on a CPU with pipelined multiplier. On an
Athlon64, Opteron, and Phenom CPUs, a multiplication can start every 2 clock cycles, the low
word of the product is available after 4 clock cycles, the high word after 5 clock cycles. Thus in
case of £ = 4, the latency for the first 4 products and building their sum should be 12 cycles.
The two remaining multiplies, the additions and conditional moves should be possible in about
11 cycles, giving a theoretical total count of about 23 clock cycles for trial dividing a 5 word
integer by a small prime. Data movement from cache may introduce additional latency.

4.2.3 Use in NFS

Given a sieve region of size s with every d-th entry a sieve report, trial dividing by the prime p
for all sieve reports has cost O(s/d), while resieving has cost O(rs/p), where r is the number of
roots modulo p the sieved polynomial has. Hence whether trial division or resieving is preferable
will depend on %, where those p with % < ¢ for some threshold ¢ should use trial division.

As primes are divided out of N, the number of words in N may decrease, making the following
trial division faster. It might be worthwhile to try to reduce the size of N as quickly as possible.
The probability that a prime p divides N may be estimated as r/p, the size decrease as log(p), so
the probability that trial division by p will decrease the number of words in /N may be estimated
as being proportional to rlog(p)/p. For trial division, the candidate divisors p can be sorted so
that this estimate is decreasing. This probability estimate does not take into account the fact
that N, being a sieve report, is likely smooth, and under this condition the probability that p
divides N increases by Bayes’ theorem, more so for larger p than for small ones.

4.2.4 Testing Several Primes at Once

Algorithm 6 reduces the input number to a one-word integer which is congruent to N (mod p),
then tests divisibility by p of that one-word integer. It is possible to do the reduction step for
composite candidate divisors ¢, then test divisibility of the resulting one-word integer for all
p | ¢. This way, for integers consisting of several words, the expensive reduction needs to be
done only once for each ¢, the relatively cheap divisibility test for each p. This is attractive if
the bound ¢ < \/ﬁ—/ﬁ is not too small. With w = 264, ¢ = 4, we can use ¢ < 2147483648, which
allows for several small primes in ¢q. For integers N with a larger number of words, it may be
worthwhile to introduce an additional reduction step (for example, using Montgomery’s REDC
for a right-to-left reduction) to relax the bound on ¢ to, e.g., ¢ < w/¢, so that the number of
primes in ¢ can be doubled at the cost of only two additional multiplies. In NFS, if the primes
found by re-sieving have been divided out already before trial division begins, the N; may not
be large enough to make this approach worthwhile.

4.2.5 Performance of Trial Division

To measure the performance of the trial division code, we divide 107 consecutive integers of
1,...,5 words by the first n = 256, 512, 1024, and 2048 odd primes on a 2 GHz AMD Phenom
CPU, see Figure 4.1. The higher timings per trial division for n = 256 are due to the additional
cost of dividing out found divisors, which has a greater relative contribution for smaller primes
which divide more frequently. The timing for £ = 4,n = 2048 is close to the predicted 23 clock
cycles. The sudden increase for n = 2048 in the case of N with one word is due to caching: with
7 stored values (p, Pinv, Plim, W1,...4) of 8 bytes each, n = 2048 has a table of precomputed values
of size 112KB, which exceeds the level-1 data cache size of 64KB of the Phenom. For large
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Number of words in IV
n 1 2 3 4 5
256 8 (2.6) 15.3 (6.0) 20.8 (8.1) 27.5(10.7) 32.4 (12.6)
512 11 3(22) 282 (55) 388 (7.6) 52.0(10.2) 61.32 (12.0)
1024 | 21.3 (2.1) 54.9 (5.4) 75.9 (7.4) 102.0 (10.0) 120.7 (11.8)
2048 | 85.4 (4.1) 108.4 (5.3) 149.8 (7.3) 200.8 (9.8) 237.8 (11.6)

Table 4.1: Time in seconds for trial division of 107 consecutive integers by the first n odd primes
on a 2 GHz AMD Phenom CPU. Time per trial division in nanoseconds in parentheses.

sets of candidate primes, the sequential passes through the precomputed data cause frequent
misses in the level-1 cache, and the trial divisions for N of only one word are fast enough that
transfer rate from the level-2 cache limits the execution. This could be avoided by computing
fewer w; constants (i.e., choosing a smaller ¢) if the N are known to be small, or storing the w;
in separate arrays rather than interleaved, so that the w; for larger ¢ do not occupy cache while
the N processed are small. Since the value of p is not actually needed during the trial division,
it is possible to avoid storing it and recomputing it, e.g., from pin, when it needs to be reported
as a divisor.

4.3 Modular Arithmetic

The modular arithmetic operations are relatively inexpensive when moduli and residues of only
a few machine words are considered, and should be implemented in a way that lets the compiler
perform in-lining of simple arithmetic functions to avoid unnecessary function call overhead
and data movement between registers, memory and stack due to the calling conventions of the
language and architecture. Many simple arithmetic operations can be implemented easily and
efficiently using assembly language, but are cumbersome to write in pure C code, especially if
multi-word products or carry propagation are involved. The GNU C compiler offers a very flexible
method of injecting assembly code into C programs, with an interface that tells the compiler all
constraints on input and output data of the assembly block so that it can perform optimization
on the code surrounding the assembly statements. By defining some commonly used arithmetic
operations in assembly, much of the modular arithmetic can be written in C, letting the compiler
handle register allocation and data movement. The resulting code is usually not optimal, but
quite usable. For the most time-critical operations, writing hand-optimized assembly code offers
an additional speed improvement.

For the present work, modular arithmetic for moduli of 1 machine word and of 2 machine
words with the two most significant bits zero is implemented. Implementation of arithmetic for
moduli of 3 machine words is in progress.

4.3.1 Assembly Support

To give an example of an elementary function that is implemented with the help of some assembly
code, we examine modular addition with a modulus of 1 machine word. This is among the most
simple operations possible, but useful as an example.

Let a “reduced residue” with respect to a positive modulus m mean an integer representative
0 < r < m of the residue class r (mod m). Modular addition of two reduced residues can be
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defined as
a+b—m ifa+b—m>0

a+b otherwise.

(a+b)m0dm:{

If any modulus m < ( is permitted, where [ is the machine word base, then the problem that
a+ b might overflow the machine word arises. One could test for this case, then test if a4+b > m,
and subtract m if either is true, but this necessitates two tests. With a slight rearrangement, we
can do with one:

17r:=a+b

2 s:=a—m;

3 t:=s+0b;

4 if last addition set carry flag then
5 ri—t;

All arithmetic in this code is assumed modulo the word base (3, i.e., the integers in 7, s, and ¢
are reduced residues modulo S. In line 2, since a is reduced modulo m, the subtraction a — m
necessarily produces a borrow, so that s =a —m + . In line 3, if s + b < §, then this addition
does not produce a carry, and t = a+b—m+ < §,i.e.,a+b—m < 0. If s+b > [, the addition
does produce a carry, and 0 <t =s+b—( = a+b—m. Hence t is the proper result if and only
if a carry occurs in line 3, to make up for the borrow of line 2. Lines 1 and 2 are independent
and can be executed in parallel, leading to a dependent chain of length 3. We require a < m for
correctness, if b > m, the result still satisfies = a + b (mod m) and r < b, but not necessarily
r < m.

The implementation in C with a GCC x86 assembly block shown below. The value of s,
shown separately for clarity above, is stored in t here.

r =a + b;
t = a - m;

asm__ (

"add %2, %1\n\t" /¥t =t + b x/

"cmove %1, %0\n\t" /x if (carry) r :=t */
||+r|| (r) s ||+&r|| (t)
||g|| (b)

"CC"

)

The computation of the initial t and r are done in C, to give the compiler some scheduling
freedom. Since C does not provide direct access to the carry flag, the addition ¢ := ¢ + b and
the following conditional assignment are done in assembly. The constraints on the data passed
to the assembly block state that the values of r and t must reside in registers ("r") since the
target of the conditional move instruction cmove must be a register, and at least one of source or
target of the addition instruction add must be a register. We allow the variable b to be passed
in a register, in memory or as an immediate operand ("g", “general” constraint, for x86 64 the
correct constraint is "rme" since immediate constants are only 32 bit wide), which is the source
operand to the add instruction. The "+" modifier tells that the values in r and t will be modified,
and the "&" modifier tells that t may be modified before the end of the assembly block and thus
no other input variable should be passed in the register assigned to t, even if their values are
known to be identical. Finally, "cc" tells the compiler that the values of the flags register may
change. These constraints provide the information the compiler needs to be able to use the
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assembly block correctly, while leaving enough flexibility that it can optimize register allocation
and data movement, compared to, e.g., compilers that require all parameters to assembly blocks
in a fixed set of registers.

An alternative solution is to compute r := b — (m — a) and adding m if the outer subtraction
produced a borrow. However, this requires a conditional addition rather than a conditional move.

Similar to the modular addition, various functions such as modular subtraction and multipli-
cation for one and two-word moduli, two-word addition, subtraction, multiplication and binary
shift, and division with a two-word dividend (used, for example, for preparing a residue for use
with REDC modular reduction with a two-word modulus, see 4.3.2) are written as functions
with assembly support. As optimization effort progresses, more time-critical functions currently
written in C with assembly macros will be replaced by dedicated assembly code.

4.3.2 Modular Reduction with REDC

Montgomery presented in [64] a method for fast modular reduction. Given an integer 0 < a <
Bm, for odd modulus m of one machine word and machine word base 3 (here assumed a power
of 2), and a precomputed constant mi,, = —m~! mod f3, it computes an integer 0 < r < m
which satisfies 73 = a (mod m). It does so by computing the minimal non-negative tm such
that a +tm =0 (mod (), to make use of the fact that division by f is very inexpensive. Since
t < B, (a+tm)/B < 2m, and at most one final subtraction of m ensures r < m. He calls the

algorithm that carries out this reduction “REDC,” shown in Algorithm 7.

Input: m, the modulus

(G, the word base

a < [Bm, integer to reduce

Miny < (B such that mmjy, = —1 (mod f)
Output: 7 < m with 78 = a (mod m)

t:= a- mjyy mod [;
ri=(a+t-m)/pB;
if » > m then
ri=r—m;
Algorithm 7: Algorithm REDC for modular reduction with one-word modulus. All variables
take non-negative integer values.

The reduced residue output by this algorithm is not in the same residue class mod m as
the input, but the residue class gets multiplied by 7! (mod m) in the process. To prevent
accumulating powers of 37! (mod m) and having unequal powers of 3 when, e.g., adding or
comparing residues, any residue modulo m is converted to Montgomery representation first, by
multiplying it by 4 and reducing (without REDC) modulo m, i.e., the Montgomery representation
of a residue a (mod m) is a8 (mod m). This way, if two residues in Montgomery representation
a3 (mod m) and b3 (mod m) are multiplied and reduced via REDC, then REDC(afb3) = abs3
(mod m) is the product in Montgomery representation. This ensures the exponent of 3 in the
residues always stays 1, and so allows addition, subtraction, and equality tests of residues in
Montgomery representation. Since 8 L m, we also have a8 = 0 (mod m) if and only if a = 0
(mod m), and ged(aB,m) = ged(a,m). Since f = 232 or 264 is an integer square, the Jacobi
symbol satisfies (%) = (%)

For moduli m of more than one machine word, say m < 3*, a product of two reduced residues
may exceed (3, but is below m/3*. The reduction can be carried out in two ways: one essentially
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performs the one-word REDC reduction k times, performing O(k‘2) one-word multiplies, the
other replaces arithmetic modulo # in REDC by arithmetic modulo 8*, performing O(1) k-
word multiplications. In either case, a full reduction with (repeated one-word or a single multi-
word) REDC divides the residue class of the output by ¥, and the conversion to Montgomery
representation must multiply by 8* accordingly. The former method has lower overhead and
is preferable for small moduli, the latter can use asymptotically fast multiplication algorithms
if the modulus is large. As in our application the moduli are quite small, no more than two
machine words, we use the former method.

Before modular arithmetic with REDC for a particular m can begin, the constant mjy, needs
to be computed. If § is a power of 2, Hensel lifting makes this computation very fast. To speed
it up further, we try to guess an approximation to miy, so that a few least significant bits are
correct, thus saving a few Newton iterations. The square of any odd integer is congruent to 1
(mod 8), so mijpy = m (mod 8). The fourth bit of myy,, is equal to the binary exclusive-or of
the second, third, and fourth bit of m, but on many microprocessors an alternative suggestion
from Montgomery [72] is slightly faster: (3m) XOR 2 gives the low 5 bits of miy, correctly.
Each Newton iteration x — 2z — z?m doubles the number of correct bits, so that with either
approximation, 3 iterations for § = 232 or 4 for 5 = 264 suffice.

Converting residues out of Montgomery representation can be performed quickly with REDC,
but converting them to Montgomery representation requires another modular reduction algo-
rithm. If such conversions are to be done frequently, it pays to precompute £ = 3% mod m, so
that REDC(af) = a8 mod m allows using REDC for the purpose.

In some cases, the final conditional subtraction of m in REDC can be omitted. If a < m,
then a + tm < mf since t < 3, so r = (a + tm)/f < m which can be used when converting
residues out of Montgomery form, or when division by a power of 2 modulo m is desired.

4.3.3 Modular Inverse

To compute a modular inverse r = a ™

(mod m) for a given reduced residue a and odd modulus
m with a L m, we use a binary extended Euclidean algorithm. Modular inverses are used at the
beginning of stage 2 for the P—1 algorithm, and for initialisation of stage 1 of ECM (except for
a select few curves which have simple enough parameters that they can be initialised using only
division by small constants). Our code for a modular inverse takes about 0.5us for one-word
moduli, which in case of P-1 with small By and By parameters accounts for several percent of
the total run-time, showing that some optimization effort is warranted for this function.

The extended Euclidean algorithm solves
ar +ms = ged(a, m)

for given a, m by initialising eg = 0, fo = 1,90 = m and e; = 1, f; = 0,91 = a, and computing
sequences e;, f; and g; that maintain

ae; +mf; = g; (4.1)

where ged(a,m) | g; and the g; are strictly decreasing until g; = 0. The original Euclidean
algorithm uses g; = g;_2 mod g;_1, that is, in each step we write g; = ¢g;_2 — gi_ngzjj and

likewise e; = €;_9 — €;_1 ng:lJ and f; = fi_o — fi_1 ngjj, so that equation (4.1) holds for each

i. If n is the smallest ¢ such that g; = 0, then g,—1 = ged(a,m), s = f,—1, and r = e,,_1. Since
we only want the value of r = e,_1, we don’t need to compute the f; values. We can write
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U =e_1,v=¢,r = g1,y = ¢g; and for ¢ = 1 initialise u = 0,v = 1,z = m, and y = a. Then
each iteration 7 — ¢ + 1 is computed by

(U,’U,{L‘,y) = (Uvu_ \‘x/vaayv‘r - I_x/yjy)

At the first iteration where y = 0, we have r = u and x = 1 if @ and m were indeed coprime.

A problem with this algorithm is the costly computation of |x/y] as integer division is usually
slow. The binary extended Euclidean algorithm avoids this problem by using only subtraction
and division by powers of 2. Our implementation is inspired by code written by Robert Harley
for the ECCp-97 challenge and is shown in Algorithm 8. The updates maintain ua = —x2°
(mod m) and va = y2! (mod m) so that when y = 1, we have r = v2~! = a~! (mod m).

Input: Odd modulus m
Reduced residue a (mod m)
Output: Reduced residue r (mod m) with ar =1 (mod m), or failure if ged(a,m) > 1

if a =0 then
return failure;
t := Vals(a); /% 2L || a */

wi=0;v:=1;2:=m;y := a/2
while z # y do
¢:= Valy(z — y); /¥ 28| x—y */
if z < y then
(u,v, 2, y,t) = (u2u+v,z, (y — x) /2t + 0);
else
(u,v,2,y,t) = (u+v,02° (x —y) /2y, t +£);
if y # 1 then
return failure;

r:= 127" mod m;
Algorithm 8: Binary extended GCD algorithm.

In each step we subtract the smaller of x,y from the larger, so they are decreasing and
non-negative. Neither can become zero as that implies x = y in the previous iteration, which
terminates the loop. Since both are odd at the beginning of each iteration, their difference is
even, so one value decreases by at least a factor of 2, and the number of iterations is at most
logs(am). In each iteration, uy + vz = m, and since x and y are positive, u,v < m so that no
overflow occurs with fixed-precision arithmetic.

To perform the modular division r = v/2%  we can use REDC. While t > log,(/3), we replace
v := REDC(v) and ¢ := t — logy(). Then, if ¢ > 0, we perform a variable-width REDC to
divide by 2! rather than by 8 by computing r = (v + ((vminv) mod 2t) m) /2t with mmy,, = —1
(mod ). Since v < m, we don’t need a final subtraction in these REDC.

If the residue a whose inverse we want is given in Montgomery representation a3* mod m
with k-word modulus m, we can use REDC 2k times to compute a8~% mod m, then compute the
modular inverse to obtain the inverse of a in Montgomery representation: a~!3F = (aﬁ_k)_l
(mod m). This can be simplified by using the fact that the binary extended GCD computes
v = a2t If we know beforehand that t > log, 3, we can skip divisions by 3 via REDC both
before and after the binary extended GCD. Let the function ¢(z,y) give the value of ¢ at the
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end of Algorithm 8 for coprime inputs z,y. It satisfies

0 if x =y (implies x =y = 1),
t(x/2,y)+1 ifx#y, 2|,
t(r—y,y) if x>y, 21z,
t(y, x) ifx <y, 21z

t(m,y) =

Assuming y odd, case 3 is always followed by case 2, and we can substitute case 3 by t(z,y) =
t((x —y)/2,y) + 1. We compare the decrease of the sum x + y and the increase of ¢. In case 2,
(x+y) — z/2+y > (z+y)/2, and t increases by 1. In the substituted case 3, (z+y) — (z+y)/2,
and ¢ increases by 1. We see that whenever x +y decreases, t increases, and whenever ¢ increases
by 1, z +y drops by at most half, until 2 +y = 2. Hence t(z,y) > logs(x +y) — 1, and therefore
t(z,y) > logy(y), since = > 0.

Thus in case of k-word moduli ¥~ < m < ¥, we have t(x,m) > (k — 1)logy(f3) for any
positive z, so using a~! (mod m) as input to the binary extended GCD is sufficient to ensure
that at the end we get a1 = v2~¢ (mod m), or a~'g*F = v2-t+(E=D0oga(®) (mod m) and the
desired result a=8¥ can be obtained from v2~¢ with a division by 2¢=(k=Dlog2(8) via REDC.

4.3.4 Modular Division by Small Integers

Initialisation of P41 and ECM involves division of residues by small integers such as 3, 5, 7, 11,
13 or 37. These can be carried out quickly by use of dedicated functions. To compute r = ad ™"
(mod m) for a reduced residue a with d L m, we first compute ¢ = a + km, with k such that
t =0 (mod d), ie., k=a (—m_l) mod d, where —m~! mod d is determined by look-up in a
precomputed table for the d — 1 possible values of m mod d.

For one-word moduli, the resulting integer ¢ can be divided by d via multiplication by the
precomputed constant di,, = d~! (mod ). Since t/d < m < (3 is an integer, the result r =
tdiny mod 3 produces the correct reduced residue r. This implies that computing ¢t modulo G is
sufficient.

For two-word moduli, we can choose an algorithm depending on whether m and d are large
enough that ¢ may overflow two machine words or not. In either case, we may write t = t15+ ¢
with 0 < tg < 8,0 < t; < df and r = 78 + rg with 0 < rg,71 < [, and can compute
ro = todiny mod (.

If ¢t does not overflow, we may write ¢ = ¢’ + t/d3,0 < t’ < df, where d | t”. Then
r=t/d=1tp+1t"/d with t"/d < 3, so we can compute r; = [t1/d]. The truncating division by
the invariant d can be implemented by the methods of [50]. An advantage of this approach is
that the computation of the low word r¢ from tj is independent of the computation of the high
word rq from ;.

If ¢ may overflow two machine words, we can compute rg as before, and use that t — drg is
divisible by d3, so we may write 13+ 79 = t/d (mod 3?) as 71 = (t — dro)/ - diny (mod 3).

4.4 P-1 Algorithm

The P-1 algorithm is described in Section 2.2. We recapitulate some elementary facts here. The
first stage of P 1 computes
x1 = x5 mod N

for some starting value zp # 0,£1 (mod N) and a highly composite integer exponent e. By
Fermat’s little theorem, if p — 1 | e for any p | N, then 1 =1 (mod p) and p | ged(z1 — 1, N).
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This condition is sufficient but not necessary: it is enough (and necessary) that ord,(z¢) | e,
where ord, () is the order of zg in . To maximise the probability that ord,(zo) | e for a given
size of e, we could choose e to contain all primes and prime powers that divide ord,(zo) with
probability better than some bound 1/Bj. One typically assumes that a prime power ¢* divides

ordy(zg) with probability ¢ F, so that e is taken as the product of all primes and prime powers
not exceeding By, or e = lem(1,2,3,4,...,B;). The choice of e is described in more detail in
Chapter 5.

The value of e is precomputed and passed to the P—1 stage 1 routine, which basically consists
only of a modular exponentiation, a subtraction and a ged. The base x( for the exponentiation is
chosen as 2; in a left-to-right binary powering ladder, this requires only squarings and doublings,
where the latter can be performed quickly with an addition instead of a multiplication by xg.

To reduce the probability that all prime factors of N (i.e., N itself) are found simultaneously
and reported as a divisor at the end of stage 1, only the odd part of e is processed at first,
and then the factors of 2 in e one at a time by successive squarings. After each one we check
if the new residue is 1 (mod N), indicating that all prime factors of N have been found now,
and if so, revert to the previous value to use it for the ged. Unless the same power of 2 divides
ord,(zo) exactly for all primes p | N, then this will discover a proper factor. This backtracking
scheme is simple but satisfactorily effective: among 106 composite numbers that occurred during
an sieving experiment of the RSA155 number, each composite being of up to 86 bits and with
prime factors larger than 224, only 48 had the input number reported as the factor in P 1 stage 1
with By = 500. Without the backtracking scheme (i.e., processing the full exponentiation by e,
then taking a GCD), 879 input numbers are reported as factors instead.

The second stage of P—1 can use exactly the same implementation as the second stage of
P+1, by passing X1 = x; —|—x1_1 to the stage 2 algorithm. The stage 2 algorithm for ECM is very
similar as well, and they are described together in Section 4.7.

4.4.1 P-1 Stage 1 Performance

Table 4.2 compares the performance of the P-1 stage 1 implementation for different B; values
and modulus sizes on AMD Phenom and Intel Core 2 CPUs.

Core 2 Phenom
By 1 word 2 words —2 bits | 1 word 2 words —2 bits
100 3.15 6.24 2.49 4.59
200 5.38 12.2 4.12 8.26
300 7.28 17.2 5.51 11.3
400 9.23 22.2 6.92 14.5
500 11.4 27.8 8.49 18.0
600 13.2 32.7 9.83 21.0
700 15.4 38.2 11.4 24.4
800 17.2 43.1 12.7 27.5
900 19.4 48.5 14.2 30.9
1000 21.4 53.8 15.7 34.1

Table 4.2: Time in microseconds for P—1 stage 1 with different B; values on 2.146 GHz Intel
Core 2 and 2 GHz AMD Phenom CPUs.
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4.5 P+1 Algorithm

The P+1 algorithm is described in detail in Section 2.2. We recapitulate the basic algorithm
here.

The first stage of P+1 computes x1 = V.(z¢) mod N, where g € Z/NZ is a parameter,
Vi,(z) is a degree-n Chebyshev polynomial defined by Vj,(z +2~') = 2" + 27", and e is a highly
composite integer chosen as for the P—1 method. These Chebyshev polynomials satisfy Vj(z) = 2,
Vi(z) =z, Vo () = Vi(2), Vin(2) = Vi (Vi (2)), and Viygn () = Vip(2) Vi (2) — Vip—n(2).

We test for a factor by taking ged(zq — 2, N). If there is a prime p such that p | N and
p— <%) | e, where A = 22 — 4 and <%) is the Legendre symbol, then p | ged(x; — 2, N).

Since Vj,_, is required for computing V,, ., these polynomials cannot be evaluated with a
simple binary addition chain as in the case of the exponentiation in stage 1 of P—1. Instead, an
addition chain needs to be used that contains n —m whenever the sum n 4+ m is formed from n
and m. These chains are described in Section 4.5.1.

The required addition chain for the stage 1 multiplier e is precomputed and stored as com-
pressed byte code, see Section 4.5.2.

As for P 1, a backtracking scheme is used to avoid finding all factors of IV and thus reporting
the input number as the factor found. Since factors of 2 in e can easily be handled by V5, (z) =
Vo (Vu(7)) = Vi (x)? — 2, they need not be stored in the precomputed addition chain, and can
be processed one at a time. Similarly as in stage 1 of P-1, we remember the previous residue,
process one factor of 2 of e, and if the result is 2 (mod N), meaning that all factors of N have
been found, we revert to the previous residue to take the GCD with N. Using the same 10°
composite inputs as for P 1, P+1 with By = 500 reports 117 input numbers as factors with
backtracking, and 1527 without.

If stage 1 of P+1 is unsuccessful, we can try to find a factor yet by running stage 2, using as
input the output z; of stage 1. Our stage 2 is identical for P 1 and P+1, and very similar for
ECM, and is described in Section 4.7.

4.5.1 Lucas Chains

Montgomery shows in [66] how to generate addition chains ag,aq, ..., ay with ap = 1 and length
£ such that for any 0 < ¢ < ¢, there exist 0 < s,¢t < i such that a; = as + a; and as — a is
either zero, or is also present in the chain. He calls such chains “Lucas chains.” For example,
the addition chain 1,2,4,5 is not a Lucas chain since the last term 5 can be generated only from
441, but 4 — 1 = 3 is not in the chain. The addition chain 1,2, 3,5, however, is a Lucas chain.
For any positive integer n, L(n) denotes the length of an optimal (i.e., shortest possible) Lucas
chain that ends in n.

A simple but generally non-optimal way of generating such chains uses the reduction (n,n —
1) = ([n/2],[n/2]—1). We can compute V,,(x) and V;,_1(x) from Vi, j91(x), Vi j01-1(2), Vi(z) =
z, and Vp(x) = 2. In the case of n even, we use Vi (z) = Vj,21(x)? — Vo(z), and Vi,_1(z) =
Ving21(#)Vin 21-1(2) — Vi(x) and in the case of n odd, we use Vi, = Vi, 91 (2) Vi j21-1(2) — Vi(z)
and V,,_1(z) = V[n/z]_l(x)Q — Vo(z). The resulting chain allows processing the multiplier left-to-
right one bit at a time, and thus is called binary chain by Montgomery. Each bit in the multiplier
adds two terms to the addition chain, except that when processing the final bit, only one of the
two values needs to be computed, and if the two most significant bits (MSB) are 10, the above
rule would compute Va(x) twice of which one should be skipped. Any trailing zero bits can be
handled by Va,(x) = V,,(x)? — V() at the cost of 1 multiplication each. The length Ly(n2*) for
the binary Lucas chain for a number n2* with n odd is therefore 2|logy(n)| — 1 4 k if the two
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MSB are 10y, or 2|logy(n)] + k if n = 1 or the two MSB are 11;,. Examples are in Table 4.3.
It lists the binary chain, the length Ly(n) of the binary chain, an optimal chain, and the length
L(n) of an optimal chain, for odd n up to 15.

n Binary chain Ly(n) Optimal chain L(n)
3 =11, 1,2,3 2 1,2,3 2
5-=101, 1,2,3,5 3 1,2,3,5 3
7 =111, 1,2,3,4,7 4 1,2,3,4,7 4
9=1001, 1,2,3,4,5,9 5 1,2,3,6,9 4
11 =1011, 1,2,3,5,6,11 ) 1,2,3,5,6,11 5
13 =1101, 1,2,3,4,6,7,13 6 1,2,3,5,8,13 &
15=1111, 1,2,3,4,7,8,15 6 1,2,3,6,9,15 5

Table 4.3: Binary and optimal Lucas chains for small odd values n

The binary chain is very easy to implement, but produces non-optimal Lucas chains except for
very small multipliers. The smallest positive integer where the binary method does not produce
an optimal chain is 9, and the smallest such prime is 13. Montgomery shows that if n is a prime
but not a Fibonacci prime, an optimal Lucas chain for n has length L(n) > r with 7 minimal
such that n < F,y o — F,_3, where F}, is the k-th Fibonacci number. Since Fj, = (¢* — ¢7%)/\/5
where ¢ = (1 4+ v/5)/2 is the Golden Ratio, this suggests that if this bound is tight, for large n
an optimal chain for n should be about 28% shorter than the binary chain.

In a Lucas chain ag,aq,...,a¢ of length ¢, a doubling step ax+1 = 2aj causes all a; with
k < i < £ to be multiples of ay, and all these terms a; are formed using sums and differences only
of terms aj,k < j < ¢, see [66]. Such a doubling step corresponds to a concatenation of Lucas
chains. For composite n = nj - ng, a Lucas chain can be made by concatenating the chains of its
factors. E.g., for n = 15, we could multiply every entry in the chain 1,2,3,5 by 3 and append it
to the chain 1,2, 3 (omitting the repeated entry 3) to form the Lucas chain 1,2,3,6,9,15. Since
any Lucas chain starts with 1,2, every concatenation introduces one doubling step, and every
doubling step leads to a chain that is the concatenation of two Lucas chains. Chains that are not
the concatenation of other chains (i.e., that contain no doubling step other than 1,2) are called
simple chains. For prime n, only simple chains exist. In the case of binary Lucas chains, the
concatenated chain is never longer than the chain for the composite value and usually shorter,
so that forming a concatenated Lucas chain from chains of the prime factors of n (if known) is
always advisable. The same is not true for optimal chains, as shown below.

Optimal chains can be found by exhaustive search for a chosen maximal length [,,,x and
maximal end-value nyax. For odd n > 3, a Lucas chain for n always starts with 1,2,3 since a
doubling step 2,4 would produce only even values in the remainder of the chain. In the exhaustive
search, the Lucas chain ag,...,a; can be extended recursively if k < lnax and ap < Nmax by
adding an element agy1 > ay such that the resulting sequence is still a Lucas chain, i.e., satisfying
that there are 0 <4,j < k such that either ay41 = 2a;, or ag41 = a; + a; and a; — a; is present
in the chain. For each chain so created, we check in a table of best known lengths whether the
length k& + 1 is smaller than the previously known shortest length for reaching ax,1, and if so,
update it to k + 1 and store the current chain as the best known for reaching ag41. By trying
all possible chain expansions, we are certain to find an optimal chain for every n < nyax. This
recursive search is very time consuming due to a large number of combinations to try. To reach
a worthwhile search depth, the possible chain extensions can be restricted. The last step of an
optimal chain is always a; = ay_1 + ay_9 as otherwise one or both of ay_1,as_o are obsolete, so
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Figure 4.2: Length of binary and optimal Lucas chains for odd primes p in [100, 15000], and a
lower bound on the length for primes that are not Fibonacci primes. The graph for the bound
is set 0.5 lower to make it visible. The Fibonacci prime 1597 is seen to undershoot this lower
bound.

the table of best known lengths needs to be checked and updated only after such an addition
step, and the final recursion level of the search needs to consider only this addition step. Any
doubling step agy1 = 2aj causes the chain to become the equivalent of a concatenated chain,
so during the recursive chain expansion, doubling steps need not be considered. Instead the
recursive search produces only the optimal lengths of simple chains. Then for all possible pairs
3 < m < n < \/Mmay, the length of the chain for mn is updated with the sum of the lengths of
chains for m and n, if the latter is shorter. This is repeated until no more improvements occur.
After the first pass, the optimal lengths of chains for all n where n has at most two prime factors
are known. After the second pass, for all n that contain at most three primes, etc., until after at
most O(log(nmax)) passes optimal lengths for all values are known. Using this search method,
the minimal lengths of Lucas chains for primes 100 < n < 10000 have been determined, shown
in Figure 4.2. It compares the length of the binary Lucas chain, the optimal Lucas chain and
the lower bound on the length of Lucas chains for primes that aren’t Fibonacci primes. This
lower bound is quite tight, in the examined data L(n) does not exceed it by more than 1. The
Fibonacci prime 1597 can be seen to undershoot this lower bound (as do the smaller Fibonacci
primes, but they are difficult to see in the graph).

The exhaustive search method is extremely slow and useless for producing addition chains for
P+1 or ECM if large B; values are desired. Montgomery [66]| suggests the algorithm “PRAC,”
which produces Lucas chains based on GCD chains, noting that a subtractive GCD algorithm for
n,r withn > r and n L r always produces a valid Lucas chain for n. However, the resulting Lucas
chain has length equal to the sum of the partial quotients in the continued fraction expansion of
n/(n—r), and if a large partial quotient appears, the resulting Lucas chain is unreasonably long.
He fixes this problem by introducing additional rules for reduction in the GCD chain (rather
than just replacing the larger of the two partial remainders by their absolute difference as in a
purely subtractive GCD chain) to avoid situations where the quotient of the partial remainders
deviates too far from the Golden Ratio, yet satisfying the conditions for a Lucas chain. The
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great advantage is that PRAC usually produces very good chains and does so rapidly. This way
it is feasible to try a few different suitable r for a given n, and for n in the range of interest for
P+1 and ECM, one usually discovers an optimal chain this way.

It remains the problem of choosing a suitable r L n to start the GCD chain, hoping to find a
(near) optimal chain. Montgomery suggests trying r = n— |n/c] for several irrational ¢ such that
the continued fraction expansion of ¢ has small partial quotients. This way, the partial fraction
expansion of n/(n — r) starts with small partial quotients as well. Good choices are the golden
Ratio ¢y = ¢, whose partial quotients all are 1, or numbers with partial quotients all 1 except
for one or two 2 among the first 10 partial quotients. The resulting large number of multipliers
is not a problem if the Lucas chains are precomputed, but in cases where they are computed
on-the-fly during stage 1 of P41 or ECM, a smaller set of multipliers should be used, say, only
those with at most one 2 among the first ten partial quotients.

Even with a large set of ¢; values to try, PRAC in the form given by Montgomery cannot

always obtain an optimal chain. The smallest example is n = 751 which has two Lucas chains
of optimal length L(751) = 14:
1,2,3,5,7,12,19,24,43,67,110,177,287,464, 751 and
1,2,3,5,8,13,21, 34, 55,68,123,191, 314,437, 751.
Both chains involve an addition step that references a difference that occurred 5 steps before
the new term: for the former sequence in the step ag = 43 = a7y + ag = 24 + 19, with difference
ar — ag = b = ag, and for the latter sequence in the step a1g = 123 = ag + ag = 68 + 55, with
difference ag — ag = 13 = a5. The original PRAC algorithm does not have any rule that allows
utilizing a difference that occurred more than 4 steps before the new term and so cannot find
either of these two chains. Another, similar case is n = 1087. For primes below 10000, I found
40 cases where PRAC did not find an optimal chain. For the purpose of generating Lucas chains
for P+1 and ECM, these missed opportunities at optimal chains are of no great consequence.
When using P+1 and ECM as a factoring subroutine in NFS, the By value is often less than 751
so that such cases do not occur at all, and if a greater B; should be used, they occur so rarely
that adding more rules to PRAC so that optimal chains are found for all primes below B; would
increase the code complexity of our P+1 or ECM stage 1, which implements each PRAC rule
(see Section 4.5.2), for little gain. For our implementation, this was not deemed worthwhile. For
the purpose of finding optimal Lucas chains rapidly, it would be interesting to augment PRAC
with a suitable rule for the required addition step ap = arp_1 + ax_o with ax_1 — ap_o = ag_s,
and testing which primes remain such that the modified PRAC cannot find optimal chains.

For composite n = pq, we trivially have L(n) < L(p) + L(q), since we can concatenate the
chain for p and the chain for ¢q. In some cases, a shorter chain for the composite n exists than
for the concatenated chains of its factors. The smallest example is 1219 = 23 - 53 which has

1,2,3,4,7,11,18,29,47,76,123,170, 293, 463, 756, 1219

as an optimal chain of length 15, while an optimal chain for 23 is 1,2,3,4,5,9,14, 23 of length
7, and for 53 is 1,2,3,5,6,7,13, 20, 33,53 of length 9.

Similarly, composite numbers n exist where PRAC with a certain set of multipliers finds a
chain for n that is shorter than the concatenated simple chains for the divisors of n. A problem
is that the starting pair n,r for the GCD sequence must be coprime, possibly making several
¢ multipliers ineligible for an n with small prime factors. Starting with a large enough set of
multipliers, usually enough of them produce coprime n and r that an optimal chain can be
found, if one exists of a form suitable for PRAC. The example n = 1219 above is found, e.g.,
with 7 = 882, using the multiplier 3 — ® with continued fraction expansion //1,2,1,1,1,1,...//.
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4.5.2 Byte Code and Compression

In implementations of P+1 or ECM such as in GMP-ECM [103] that typically operates on
numbers of hundreds to ten-thousands of digits, or in the ECM implementation of Prime95 [102]
that operates on number of up to several million digits, the cost of generating good Lucas chains
on-the-fly during stage 1 is mostly negligible, except for P+1 on relatively small numbers of only
a few hundred digits. However, in an implementation of ECM and especially P+1 designed for
numbers of only a few machine words, the on-the-fly generation of Lucas chains would take an
unacceptable part of the total run-time. Since in our application of using P41 and ECM as a
factoring sub-routine in NFS, identical stage 1 parameters are used many times over again, it
is possible to precompute optimized Lucas chains and process the stored chain during P+1 or
ECM stage 1.

This raises the question how the chain should be stored. Since the PRAC algorithm repeatedly
applies one of nine rules to produce a Lucas chain for a given input, an obvious method is to
store the sequence of PRAC rules to apply. The precomputation outputs a sequence of bytes
where each byte stores the index of the PRAC rule to use, or one of two extra indices for the
initial doubling resp. the final addition that is common to all (near-)optimal Lucas chains. This
way, a byte code is generated that can be processed by an interpreter to carry out the stage 1
computations for P+1 or ECM. For each prime to include in stage 1, the corresponding byte
code is simply appended to the byte code, which results in a (long) concatenated Lucas chain
for the product of all stage 1 primes. If primes are to be included whose product is known to
have a better simple Lucas chain than the concatenation of the chains for the individual primes,
then their product should be passed to the byte-code generating function.

The byte code generated by PRAC is highly repetitive. For example, byte codes for the
PRAC chains for the primes 101, 103, 107, and 109 are

101: 10,3,3,0,3,3,0,5,3,3,3,11
103: 10,3,0,3,3,0,3,3,0,4,3,11
107: 10,3,0,3,3,0,3,0,4,3,3,3,11
109: 10,3,0,3,0,1,1,3,11

It is beneficial to reduce redundancy in the byte code to speed up stage 1. The byte code
interpreter that executes stage 1 must fetch a code byte, then call the program code that carries
out the arithmetic operations that implement the PRAC rule indicated by the code; thus there
is a cost associated with each code byte. If the interpreter uses a computed jump to the code
implementing each PRAC rule, there is also a branch misprediction each time a code byte is
different from the previous one, as current microprocessors typically predict computed jumps as
going to the same address as they did the previous time. Some PRAC rules frequently occur
together, such as rule 3 followed by rule 0, so that merging them may lead to simplifications
in the arithmetic. In particular, rules 11 (end of a simple chain) and 10 (start of a new simple
chain) always appear together, except at the very start and at the very end of the byte code.

These issues are addressed by byte code compression. A simple static dictionary coder greed-
ily translates frequently observed patterns into new codes. The byte code interpreter implements
merged rules accordingly. For example, the byte code sequence "3, 0" (for an addition followed
by a swap of variable contents) occurs very frequently and may be translated to a new code,
say 12, and the interpreter performs a merged addition and swap. The codes "11, 10" always
occur as a pair and can be substituted except at the very start and the very end of the bytecode,
but these two occurrences can be hard-coded into the interpreter, so they do not need to be
considered individually at all.
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Since we often can choose among several different Lucas chains of equal length for a given
stage 1 prime by using different multipliers in PRAC, we can pick one that leads to the simplest
compressed code by compressing each candidate chain, and choosing the one that has the smallest
number of code bytes and code byte changes.

For comparison, without any compression or effort to reduce the number of code bytes or
code changes when choosing PRAC multipliers, the byte code for a stage 1 with By = 500
consists of 1487 code bytes and 1357 code changes, whereas even with the simple substitution
rules described above and careful choice of PRAC multipliers to minimize the number of code
bytes and code changes, only 554 code bytes with 435 code changes remain.

4.5.3 P+1 Stage 1 Performance

Table 4.4 compares the performance of the P+1 stage 1 implementation for different By values
and modulus sizes on AMD Phenom and Intel Core 2 CPUs.

Core 2 Phenom
B, 1 word 2 words —2 bits | 1 word 2 words —2 bits
100 4.04 8.44 3.45 6.30
200 7.50 17.3 6.32 12.3
300 10.3 24.6 8.69 17.2
400 13.4 32.5 11.2 22.3
500 16.6 40.7 14.0 27.9
600 19.5 48.0 16.4 32.8
700 22.8 56.6 19.1 38.5
800 25.7 64.0 21.5 43.5
900 28.9 72.4 24.2 48.9
1000 32.0 80.4 26.7 54.2

Table 4.4: Time in microseconds for P+1 stage 1 with different B; values on 2.146 GHz Intel
Core 2 and 2 GHz AMD Phenom CPUs, using precomputed Lucas chains stored as compressed
byte code.

For comparison, without using byte code compression or choosing the PRAC multipliers to
minimize byte code length and number of code changes, on Core 2, P+1 stage 1 with 1 word
and By = 500 takes 20.4us and so is about 22% slower, and with 2 words takes 50.4us and so is
about 24% slower.

4.6 ECM Algorithm

The Elliptic Curve Method of factorization was introduced by H. W. Lenstra in 1987 [62].
Whereas P-1 works in the group F; of order p — 1 and P+1 in a subgroup of F;Z of order
p—1or p+ 1, ECM works in the Mordell-Weil group of points on an elliptic curve defined over
F,. By Hasse’s theorem, the number of points and therefore the order of the Mordell-Weil group
of an elliptic curve over [F,, is in [p+1—2,/p,p+ 14 2,/p]. The number of points on a particular
curve depends on both the curve parameters and the field. ECM finds a prime factor p of N if
the curve over ), has smooth order; the advantage of ECM over previous algorithms such as P 1
and P+1 (which always work in a group of order p — 1 or p + 1) is that many different curves
can be tried, until one with sufficiently smooth order is encountered.
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Any elliptic curve E over a field K of characteristic neither 2 nor 3 can be defined by the
Weierstrals equation

y? = 23 +ar +b. (4.2)

This equation defines an elliptic curve if and only if the discriminant 4a® 4 27b% does not vanish.
The set of points on FE consists of the solutions (x,y) € K? of (4.2), plus the point at infinity O.

The group addition law of two points on the curve is defined geometrically by putting a
straight line through the two points (or, if the points are identical, the tangent of the curve in
that point), taking the line’s new intersection point with the curve and mirroring it at the z-axis.
Since the curve is symmetric around the z-axis, the mirrored point is on the curve, and is the
result. If the straight line is vertical, no new intersection point exists; in this case the point at
infinity is taken as the result. The point at infinity is the identity element of the group, adding
it to any point results in the same point. The inverse of a point is the point mirrored at the
z-axis. This addition law on the points of an elliptic curve defines an Abelian group, see for
example [91].

The Weierstraft form of elliptic curves can be used for implementing ECM, but requires
a costly modular inverse in the computation of point additions. Montgomery [65] proposes an
alternative form of elliptic curve equation in projective coordinates so that its addition law avoids
modular inverses, while still keeping the number of required multiplications low. His curves are
of form

BY?Z = X(X? + AXZ + Z?), (4.3)

with points (X : Y : Z) € K3 satisfying (4.3), where X,Y, Z are not all zero. Two points are
identical if (Xo : Yy : Z3) = (kX1 : kY71 : kZ3) for some k € K, k # 0. The point at infinity is
O=(0:1:0).

Not all elliptic curves over finite fields can be brought into form (4.3), but we may restrict our
ECM implementation to use only these curves. Montgomery describes an addition law for curves
of this form. Given two distinct points P; and P,, we can compute the X and Z-coordinates
of P + P, from the X and Z-coordinates of P;, P» and P, — P,. Similarly, we can compute
the X and Z-coordinates of 2P from the X and Z-coordinates of P and the curve parameters.
Surprisingly, the Y-coordinate is not needed in these computations, and can be ignored entirely
when using curves in Montgomery form for ECM, and points are commonly written as only
(X :: Z) with Y-coordinate omitted. The details of the addition law are found in [65, 10.3.1] or
|67, 2.3].

This addition law requires that in order to form the sum of two points, their difference is
known or zero. This is reminiscent of the P+1 method where we need V,,_,(z) to compute
Vinn(z) from V,,,(x) and V,,(z), and the same Lucas chains used to compute Vi (z) for integer
k in P+1 can be used to compute the multiple kP of a point P on a curve in Montgomery form
in ECM.

4.6.1 ECM Stage 1

In stage 1 of ECM, we choose a suitable curve E of form (4.3) defined over Z/NZ, where N is
the integer we wish to factor. Naturally N is composite, so Z/NZ is a ring but not a field, but
this has little consequence for the arithmetic of the curve as the only operation that could fail is
inversion of a ring element, and an unsuccessful inversion of a non-zero element in Z/NZ reveals
a proper factor of IV which is the exact purpose of ECM. We often consider the curve E, for a
prime p | N, which is the curve E reduced modulo p, i.e., E over the field F,,.
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We then choose a point Py on E and compute P; = e - Py for a highly composite integer e,
usually taken to be divisible by all primes and prime powers up to a suitably chosen value Bj,
ie, e=1m(1,2,3,4,...,B;1). We hope that for some prime factor p of N, the order of Py on
E, is Bi-smooth (and thus divides e), since then the point P; on E, will be the point at infinity
(0 :: 0) so that P; has Z-coordinate 0 (mod p) and p | gcd(Pz, N).

To find a point Py on E over Z/NZ, we choose a point of E over Q and map it to Z/NZ.
The point over Q must not be a torsion point, or Py will have identical order on E,, for all p | N
(unless p divides the order of Py or the discriminant of E, which is unlikely except for small
primes) so that Pj is the point at infinity either for all £, or for none, producing only the trivial
factorizations N or 1.

By careful selection of the curve £/ we can ensure that number of points of F, is a multiple
of 12 or 16, significantly increasing the probability that the order of Fy is smooth. The choice of
FE is described in Section 4.6.2.

The computation of P, = e- Py on E is carried out by use of precomputed Lucas chains,
similarly as in the P41 algorithm. The selection of near-optimal Lucas chains for ECM is
described in Section 4.6.3.

If stage 1 of ECM is unsuccessful, we try stage 2 where we hope to find a prime p such that
the order of Py on E, factors into primes and prime powers up to Bj, except for one bigger
(but not too much bigger) prime ¢q. Our stage 2 is very similar for P 1, P+1, and ECM and is
described in Section 4.7.

4.6.2 Choice of Curve

In a letter to Richard Brent, Hiromi Suyama 95| showed that curves of form (4.3) over F,, always
have group order divisible by 4, and also showed a parametrization that ensures that the group
order is divisible by 12, which Brent describes in [16]. This parametrization generates an infinite
family of curves over Q which can be used to generate a large number of distinct curves modulo
N. For a given integer parameter o # 0,1, 3,5, let

u=o0?-5,v=4o,

Xo=u>2Zy=0v>and A= 7(v_“iigi“+v) -2

(4.4)

Then the point (Xo :: Zp) is on the curve (4.3) with parameter A. The same parametrization is
used by GMP-ECM [103, 1] and Prime95 [102].

Montgomery showed in his thesis [67] how to choose curves of form (4.3) such that the curve
over Q has a torsion subgroup of order 12 or 16, leading to group order divisible by 12 or 16,
respectively, when the curve is mapped to [, for almost all p.

For curves with rational torsion group of order 12 he uses

2 = w2-12 31
= T T s y s (4.5)
Xo=3a?>+1,Zp=4a and A = %,

where u? — 12u is a rational square. The solutions of v? = u? — 12u form an elliptic curve of
rank 1 and 2-torsion over Q, with generator (—2,4) and 2-torsion point (0,0). However, adding
the torsion point or not seems to produce isomorphic curves for ECM, so we ignore it. Hence
for a given integer parameter k > 1 we can compute suitable values of v and v by computing
k- (—2,4) on v = u® — 12u. We can then let t = v/(2u). This produces an infinite family of
curves over Q.
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Curves with torsion 16 and positive rank over Q are more difficult to generate, see |67,
6.2] for details. We currently implement only one such curve with Xy = 8, Z; = 15, and
A = 54721/14400.

These parametrizations ensure that the group order is divisible by 12 or 16, respectively, but
the resulting group order of the curve over F,, does not behave like an integer chosen uniformly
at random from the integers that are multiples of 12 or 16, respectively, in the Hasse interval
around p. In particular, the average valuation of 2 in the group order for curves with rational
torsion 12 is 11/3, slightly higher than 10/3 for curves in Brent-Suyama parametrization (which
have rational torsion 6), making them somewhat more likely to find factors. The divisibility
properties will be examined in more detail in Chapter 5.

Very small g-values for the Brent-Suyama parametrization lead to curves with simple ratio-
nals for the point coordinate and curve parameter, and very small k-values for Montgomery’s
parametrization for curves with rational torsion 12 lead to simple rationals for a, see Table 4.5.
These rationals can be mapped to Z/NZ easily, as the denominators are highly composite inte-
gers so that the required divisions modulo N can be done by the methods of Section 4.3.4 and
a few multiplications.

When factoring cofactors after the sieving step of NFS into large primes, only very few curves
are required on average since the primes to be found are relatively small, and with an early-abort
strategy, only the first few curves work on larger composites where arithmetic is more expensive.
In spite of the small number of curves with such simple rationals as curve parameters, it is useful
to implement them as special cases.

g X(] Z(] A

2 -1 512 —3645/32

4 1331 4096 6125/85184

k a XO Zo A

2 —3/13 196/169 —12/13 —4798/351

3 28/37 3721/1369 112/37 —6409583,/3248896

Table 4.5: Some elliptic curves chosen by the Brent-Suyama parametrization with group order
divisible by 12, and by Montgomery’s parametrization with rational torsion group of order 12.

4.6.3 Lucas Chains for ECM

In principle, Lucas chains for ECM can be chosen exactly as for P+1. However, a subtle difference
exists: in P+1, the cost of a doubling Vo, (z) = V,,(z)? — 2 is identical to that of an addition
Vinan () = Vi () Vi (2) — Vi—p if Viy—py 18 known and a squaring is taken to have the same cost
as a multiplication. This way, the cost of a Lucas chain depends only on its length.

In ECM, the cost of a point doubling usually differs from the cost of an addition of distinct
points. In the addition rules given by Montgomery, a doubling takes 5 modular multiplications
of which 2 are squarings, whereas an addition of distinct points takes 6 modular multiplications
of which again 2 are squarings.

These different costs can be taken into account when choosing Lucas chains. For example, to
multiply a point by 7, we can choose between the chains 1,2,3,5,7 or 1,2, 3,4, 7 of equal length.
In the former, all additions except for the initial doubling 1,2 are additions of distinct values.
In the latter, we can produce 4 by doubling 2, so that this Lucas chain would save 1 modular
multiplication in the elliptic curve arithmetic.
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When generating Lucas chains with PRAC using several multipliers, we can choose the best
chain not according to its length but by the cost of the arithmetic performed in each PRAC rule
that is used to build the chain.

The speedup in practice is relatively small: with two-word modulus, ECM stage 1 with
B; = 500 is about 1% faster when counting the cost of a doubling as 5/6 of the count of an
addition when choosing Lucas chains. Still, this improvement is so simple to implement that it
may be considered worthwhile.

As for P+1, the precomputed addition chains are stored as byte code that describes a sequence
of PRAC rules to apply. Code compression may be used to reduce the overhead in the byte code
interpreter, but since the elliptic curve arithmetic is more expensive than in the case of P41, the
relative speedup gained by compression is much smaller.

4.6.4 ECM Stage 1 Performance

Table 4.6 compares the performance of the ECM stage 1 implementation for different B; values
and modulus sizes on AMD Phenom and Intel Core 2 CPUs.

Core 2 Phenom
B, 1 word 2 words —2 bits | 1 word 2 words —2 bits
100 11.8 35.6 9.33 24.4
200 24.5 77.9 194 52.6
300 35.3 113 27.8 76.0
400 46.7 151 36.6 101
500 58.7 190 46.2 127
600 69.6 226 54.6 151
700 82.3 266 64.5 178
800 93.6 302 72.4 202
900 105 342 82.5 229
1000 117 381 92.0 255

Table 4.6: Time in microseconds for ECM stage 1 with different B values on 2.146 GHz Core 2
and 2 GHz AMD Phenom CPUs

4.7 Stage 2 for P-1, P+1, and ECM

Stage 1 of P-1, P+1, and ECM all compute an element g§ of some (multiplicatively written)
group G for a highly composite integer e, typically chosen as e = lem(1,2,3,4,..., B;) for some
integer By. If the order of gg is Bi-smooth, then g; = g§ is the identity in G. Since G is
defined over ), where p divides IV, the number to factor, we can construct from the identity in
G a residue r (mod N) such that 7 = 0 (mod p) but hopefully not » = 0 (mod N), and then
ged(r, N) usually reveals p. If the order of gg is not Bj-smooth, stage 1 fails to find p. However,
we may be able to find it yet if the order of gg consists of a Bi-smooth part times a not-too-large
prime gq.

Stage 2 of P 1, P41, and ECM tries to find the value of ¢ efficiently on the assumption that
g is prime and not very large, although larger than Bj, by looking for a match gi"* = g7 which
occurs when ¢ | m —n. We will describe the stage 2 for the P+1 algorithm; P 1 can use the
same algorithm by adjusting its stage 1 output, and the stage 2 for ECM is structurally very
similar. Differences between the P+1 and ECM stage 2 are noted.
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Our stage 2 is modeled after the enhanced standard continuation described by Montgomery [65].
For given search limits By and Bs and input X it chooses a value d with 6 | d and computes
two lists

fi = Vig(X1) mod N for |By/d] <i < |Bg/d] and (4.6)
g;i = Vj(X1)mod N for1<j<d/2andjLd,

so that all primes ¢ in | By, By] can be written as ¢ = id — j or ¢ = id + j.
Let X7 = a1 + 1/a; (mod N), where oy may be in a quadratic extension of Z/NZ, and
assume
al=1 (mod p) (4.8)

for some unknown prime p, p | N and a prime ¢, By < ¢ < By. Let ¢ =id — j or ¢ = id + j.
Then, using V_,,(X) = V,,(X), we have

Via(X1) = Vorj (X1) = of +1/afY
= o +1/a}f = V(X)) = Vi(X1) (mod p)

and so

Via(X1) = V;(X1) =0 (mod p). (4.9)

After the lists f;, g; are computed, we can collect the product

A= J] (fi—g;) modN. (4.10)
idtj=q
B1<q<B>
If there is a prime ¢ in |By, Bs] such that (4.8) holds, the product (4.10) will include i,j such
that (4.9) holds, and thus p | ged(A, N).

Stage 1 of P 1 computes z; = zf§ (mod N) and we can set X; = x; + 1/2; to make the P 1
stage 1 output compatible with our stage 2 at the cost of one modular inverse. Stage 1 of P+1
computes x1 = Ve(rg) = Ve(ap + 1/ag) = af + 1/af and we may simply set X = 1.

For P-1 stage 2, we could also use f; = xﬁd mod N and g; = 2] mod N, for 1 < j < d
and j L d, instead of (4.6). An advantage of using (4.6) is that V_,(X) = V,,(X), so that
gj = V;(X) mod N needs to be computed only for 1 < j < d/2, and one (4, j)-pair can sometimes
include two primes at once. The same could be achieved by using f; = x&id)Q and g; = le-2’ but
computing these values for successive i or j via (z(HD)? g2n+DH1) — (gn? . g2n+l p2ntl . 42)
costs two multiplications, whereas V,,11(x) = V,,(2)Vi(z) — V,—1(x) costs only one. However, a
modular inverse is required to convert the P 1 stage 1 output into the required form. Which
approach is better thus depends on the choice of stage 2 parameters, i.e., on how many values
need to be precomputed for the f; and g; lists. Assuming a small By, when using B2 ~ 5000 and
d = 210, we need about 24 values for f; and another 24 for g;. The cost of a modular inverse
is roughly 50 times the cost of a modular multiplication in our implementation, so the two
approaches are about equally fast. Using the same stage 2 for P-1 and P+1 has the advantage
of requiring only one implementation for both methods.

For ECM, we again would like two lists f; and g; such that f; = g; (mod p) ifid- P, =j - P,
on E,, where P; is the point that was output by ECM stage 1. We can use f; = (id - P;)x, the
X-coordinate of id- P, and g; = (jP1)x. A point and its inverse have the same X-coordinate on
curves in Weierstralh and Montgomery form, so again we have f; — g; =0 (mod p) if ¢ | id £ j.
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With points in projective coordinates, the points need to be canonicalized first to ensure that
identical points have identical X-coordinates, which is described in Section 4.7.2.

How to choose the parameter d and the set (i,j)-pairs needed during stage 2 for given Bj
and By values is described in Section 4.7.1. Section 4.7.2 shows how to compute the lists f; and
g; efficiently, and Section 4.7.3 describes how to accumulate the product (4.10).

4.7.1 Generating Plans

The choice of d, the sets of 7 and j values to use for generating f; and g;, respectively, and the set
of (i, j)-pairs for which to accumulate the product of f; —g; depend on the By and By parameters
for stage 2, but are independent of NV, the number to factor. These choices are precomputed for
given By and By and are stored as a “stage 2 plan.” The stage 2 implementation then carries
out the operations described by the plan, using arithmetic modulo N.

The plan provides the values d, g, 71, a set S and a set T', chosen so that all primes ¢ in
|B1, B2 appear as ¢ = id + j for some (i,5) € T with ig <1i <4 and j € S.

We try to choose parameters that minimize the number of group operations required for
building the lists f; and g; and minimize the number of (4, j)-pairs required to cover all primes
in the | By, Bs| interval. This means that we would like to maximise iy, minimize i1, and cover
two primes in | By, By] with a single (4, j)-pair wherever possible.

We choose d highly composite and S = {1 < j < d/2,j L d}, so that all integers coprime
to d, in particular all primes not dividing d, can be written as id 4+ j for some integer ¢ and
j € 5. We assume Bj is large enough that no prime greater than By divides d. Choosing values
of ip = | B1/d] and iy = [ Ba/d| is sufficient, but may be improved as shown below.

Computing the lists f; and g; requires at least one group operation per list entry, which is
expensive especially in the case of ECM. The list f; has iy — ig + 1 entries where iy — iy ~
(By — By)/d, and g; has ¢(d)/2 entries, so we choose d highly composite to achieve small ¢(d)
and try to minimize i; —ig+ 1+ ¢(d)/2 by ensuring that i; —ig+ 1 and ¢(d)/2 are about equally
large. In our application of finding primes up to, say, 23? as limited by the large prime bound
used in the NF'S sieving step, the value of By will usually be of the order of a few thousand, and
a choice d = 210 works well in this case. With By = 5000, iy = 24 and |S| = 24, so the two lists
of f; and g; are about equally large, assuming small i5. For smaller By, a smaller d is preferable,
for example d = 90 for B; = 100, By = 1000.

We have chosen i1 as an upper bound based on Bs, but we may reduce iy yet if [i1d —
d/2,i1d + d/2] does not include any primes up to Bs, and so obtain the final value of ;.

Having chosen d, S, and i;, we can choose T. We say a prime ¢ € |Bj, By] is covered by
an (i,7)-pair if ¢ | id £ j; assuming that only the largest prime factor of any id £ j value lies
in |By, By], each pair may cover up to two primes. For each prime ¢ € |Bj, By] we mark the
corresponding entry afg] in an array to signify a prime that yet needs to be covered.

Let r be the smallest prime not dividing d. Then ¢ | id+j and g # id+j implies ¢ = (id+j)/s
with s > r since ¢d £ j L d, thus ¢ < (id & j)/r. Hence composite values of id &+ j with i < iy
can cover only primes up to |(i1d + d/2)/r], and each prime ¢ > |(i1d + d/2)/r]| can be covered
only by ¢ =id £ j.

In a first pass, we examine each prime ¢, |(i1d 4+ d/2)/r| < q¢ < Ba, highest to lowest and
the (i, 7)-pair covering this prime. This pair is the only way to cover ¢ and must eventually be
included in T If this (i, j)-pair also covers a smaller prime ¢’ as a composite value, then a[q'] is
un-marked.

In a second pass, we look for additional (4, j)-pairs that cover two primes, both via composite
values. We examine each (i, j)-pair with ig < i < 47 highest to lowest, and j € S. If there are
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two primes ¢’ and ¢” marked in the array that are covered by the (4, j)-pair under examination,
then a[¢] and a[q¢”] are un-marked, and aid — j] is marked instead.

In the third pass, we cover the remaining primes ¢ < |(i1d + d/2)/r| using (4, j)-pairs with
large i, if possible, hoping that we may increase the final iy value. As in the second pass, we
examine each (7,j)-pair in order of decreasing i and, if there is a prime ¢’ with a[q'] marked,
q | id £ j but ¢’ # id + j, we un-mark a[¢'] and mark a[id — j] instead. This way, all primes in
|B1, Bs] are covered, and each with an (i, j)-pair with the largest possible i < i;.

We now choose the final iy value by looking for the smallest (not necessarily prime) ¢ such
that a afg] is marked, and setting iyg = [¢/d]. The set T is determined by including each (i, j)-
pair where an array element a[id — j| or afid + j] is marked. The pairs in T are stored in order
of increasing ¢ so that the f; can be computed sequentially for P 1 and P+1.

4.7.2 Initialisation

In the initialisation phase of stage 2 for P-1 and P+1 (and similarly for ECM), we compute the
values g; = V;(X1) with 1 < j < d/2, j L d and set up the computation of f; = Vi4(X;) for
10 <4 < 41. To do so, we need Lucas chains that generate all required values of id and j. We
try to find a short Lucas chain that produces all required values to save group operations which
are costly especially for ECM.

Lucas chains for values in an arithmetic progression are particularly simple, since the differ-
ence of successive terms is constant. We merely need to start the chain with terms that generate
the common difference and the first two terms of the arithmetic progression.

The values of j with j L d and 6 | d can be computed in two arithmetic progressions 1 + 6m
and 5 4 6m, via the Lucas chain 1,2,3,5,6,7,11,13,17,19,23,... For d = 210, the required 24
values of j can therefore be generated with a Lucas chain of length 37.

To add the values of id with ig < i < iy, we need to add d, igd, and (ig + 1)d to the chain.
If 2 || d, we have d/2—2 1 d and d/2+ 2 L d and we can add d to the Lucas chain by including
4=2+2andd=d/2+2+d/2—2. If4|d, we have d/2 —1 L d and d/2+ 1 L d and we can
add d simply viad =d/2+1+4+d/2+1 as 2 is already in the chain. Since ig is usually small, we
can compute both igd and (ig + 1)d from d with one binary chain.

Using this Lucas chain, we can compute and store all the g; = V;(X1) residues as well as
Va(X1), fiea(X1), and fio11)a(X1)-

In the case of P-1 and P+1, since the (i, j)-pairs are stored in order of increasing 4, all the
fi values need not be computed in advance, but can be computed successively as the (i, j)-pairs
are processed.

Initialisation for ECM

For ECM stage 2 we use curves in Montgomery form with projective coordinates, just as in
stage 1, to avoid costly modular inverses. The initialisation uses the same Lucas chain as in 4.7.2
for the required values of ¢d and j, so that ¢d- P; and j- P can be computed efficiently. However,
two points (X7 :: Z1) and (Xa :: Z3) in projective coordinates being identical does not imply
X1 = Xo, but Xy/7) = Xo/Zs, where Z; and Z, are generally not equal, so the X-coordinates
of these points cannot be used directly to build the lists f; and g;.

There are several ways to overcome this obstruction. Several authors (for example [33, 7.4.2]
or [78]) propose storing both X and Z coordinate in the f; and g; lists, and then accumulating
the product A = []; yer ((fi)x(9;)z — (9;)x (fi)z). An advantage of this approach is that the
fi can be computed sequentially while the product is being accumulated and the number of g;
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to precompute and store can be controlled by choice of d, which allows ECM stage 2 to run
under extremely tight memory conditions such as in an FPGA implementation. The obvious
disadvantage is that each (4, j)-pair now uses 3 modular multiplications instead of 1 as in (4.10).

Another approach and much preferable in an implementation where sufficient memory is
available is canonicalizing the precomputed points so that all points have the same Z-coordinate.
To produce the desired lists f; and g;, we therefore compute all the required points Q); = id - P
and R; = j- P. If all Z-coordinates of ); and R; are made identical, ); = R; on FE, implies
(Qi)x = (Rj)x (mod p), as desired, and we may set f; = (Q;)x and g; = (R;)x.

We suggest two methods for this. One is to set all Z-coordinates to 1 (mod N) via (X ::
Z) = (XZ7! =2 1). To do so, we need the inverse modulo N of each Z-coordinate of our
precomputed points. A trick due to Montgomery, described for example in |25, 10.3.4], replaces
n modular inverses of residues rp modulo N, 1 < k < n, by 1 modular inverse and 3n — 3
modular multiplications. This way we can canonicalize a batch of n points with 4n — 3 modular
multiplications and 1 modular inverse. Not all points needed for the f; and g; lists need to be
processed in a single batch; if memory is insufficient, the points needed for f; can be processed
in several batches while product (4.10) is being accumulated.

A faster method was suggested by P. Zimmermann. Given n > 2 points Pi,..., P,, P, =
(Xi = Z;), we set all Z-coordinates to [[;<;<, Zi by multiplying each Xy by T), = [[1<;< iz Zi-
This can be done efficiently by computing two lists s, = [[,<;<x Zi and t = [], i<, Zi for
1 < k < n, each at the cost of n —2 modular multiplications. Now we can set T7 = t1,1), = Sn_1,
and T; = s;_1t; for 1 < i < n, also at the cost of n—2 multiplications. Multiplying X; by T; costs
another n modular multiplications for a total of only 4n — 6 modular multiplications, without
any modular inversion. Algorithm 9 implements this idea. Since the common Z-coordinate of
the canonicalized points is the product of all points ¢:dP; and jP;, the complete set of points
needed for the f; and g; lists must be processed in a single batch.

Interestingly, if the curve parameters are chosen such that the curve initialisation can be
done with modular division by small constants rather than with a modular inverse, then ECM
implemented this way does not use any modular inverses at all, without sacrificing the optimal
cost of 1 modular multiplication per (7, j)-pair in stage 2.

Input: n > 2, an integer
N, a positive integer
Z1y..., Ly, residues modulo N
Data: s, a residue modulo N
Output: Ti,...,T,, residues modulo N with T; = ngign’#k Z; (mod N)
Tho1:=Zp;
for k:=n — 1 downto 2 do
Tk—l = Tk . Zk mod N;
S = Zl;
Ty :=1T5 - s mod N;
for k:=3 ton do
s:=8-2Zr_1 mod N;

Ty =T - smod N;
Algorithm 9: Batch cross multiplication algorithm.
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4.7.3 Executing Plans

The stage 2 plan stores the (¢, j)-pairs which cover all primes in |B1, B2]. The f; and g; lists are
computed as described in 4.7.2. Stage 2 then reads the stored (i, j)-pairs, and multiplies f; — g;
to an accumulator:

A= T (fi—gj) mod N. (4.11)

(4,9)€T

Since the pairs are stored in order of increasing 4, the full list f; need not be precomputed for
P-1 and P+1, but each f; can be computed sequentially by Vi 1)q(X1) = Vig(X1)Va(X1) —
Vii—1)a(X1). At the end of stage 2, we take r = gcd(A, N), hoping that 1 <7 < N and so that
r is a proper factor of V.

Backtracking

We would like to avoid finding all prime factors of the input number N simultaneously, i.e.,
finding N as a trivial factor. As in stage 1 of P 1 and P+1, a backtracking mechanism is used
to recover from such a situation.

Since r = ged(A4, N) and A is a reduced residue modulo N, we find » = N as a factor if and
only if A = 0. We set up a “backup” residue A" = 1 at the start of evaluation of (4.11). At
periodic intervals during the evaluation of (4.11), for example each time that 7 is increased, we
test if A = 0, which is easy since the residue does not need to be converted out of Montgomery
representation if REDC (see Section 4.3.2) is used for the arithmetic. If A = 0, we take r =
ged(A’, N) and end stage 2. Otherwise, we set A’ = A. This way, a proper factor of N can be
discovered so long as all prime factors of N are not found between two tests for A = 0.

4.7.4 P+1 and ECM stage 2 Performance

Tables 4.7 and 4.8 compares the performance of the P41 and the ECM stage 2 implementation
for different By values and modulus sizes on AMD Phenom and Intel Core 2 CPUs. In each case,
the timing run used B; = 10 and d = 210, and the time for a run with B; = 10 and without any
stage 2 was subtracted.

4.7.5 Overall Performance of P-1, P+1 and ECM

Tables 4.9 and 4.10 shows the expected time to find primes close to 22°,226, ..., 232 for moduli of
1 word and of 2 words, and the By and By parameters chosen to minimize the expected time. The
empirically determined probability estimate is based on the elliptic curve with rational 12 torsion
and parameter k£ = 2 in Section 4.6.2. That the B; and By parameters are not monotonously
increasing with factor size is due to the fact that the expected time to find a prime factor as a
function of By and Bs is very flat around the minimum, so that even small perturbations of the
timings noticeably affect the parameters chosen as optimal.

4.8 Comparison to Hardware Implementations of ECM

Several hardware implementations of ECM for use as a cofactorization device in NFS have been
described recently, based on the proposed design “SHARK” by Franke et al. [41]. SHARK
is a hardware implementation of GNFS for factoring 1024-bit integers which uses ECM for
cofactorization after sieving. The idea of implementing GNFS in hardware is inspired by the



88 Chapter 4. Factoring small integers with P 1, P41 and ECM

Core 2 Phenom
By 1 word 2 words —2 bits | 1 word 2 words —2 bits
1000 3.06 6.72 2.91 6.24
2000 4.09 9.86 3.64 8.08
3000 5.07 12.7 4.37 10.1
4000 6.00 15.5 5.01 11.8
5000 6.95 18.2 5.77 13.8
6000 7.80 20.8 6.40 15.4
7000 8.83 23.7 7.09 17.3
8000 9.69 26.3 7.73 19.0
9000 10.7 29.0 8.39 20.7
10000 11.5 31.4 9.01 22.5
20000 20.3 57.0 15.3 39.3
30000 28.9 81.8 21.3 55.0
40000 374 106 27.2 70.8
50000 | 45.7 130 33.1 86.2
60000 54.1 154 38.8 102

Table 4.7: Time in microseconds for P+1 stage 2 with different By values on 2.146 GHz Intel
Core 2 and 2 GHz AMD Phenom CPUs

observation of Bernstein [7] that dedicated hardware could achieve a significantly lower cost in
terms of Area-Time product than a software implementation that uses sieving on a regular PC.
He proposes, among other algorithms, to use ECM for the smoothness test.

Pelzl et al. [78] present a scalable implementation of ECM stage 1 and stage 2 for input num-
bers of up to 200 bits, based on Xilinx Virtex2000E-6 FPGAs with an external microcontroller.
Their design has one modular multiplication unit per ECM unit, and each ECM unit performs
both stage 1 and stage 2. They propose using the bounds B; = 910 and By = 57000 for finding
primes of up to about 40 bits. They use curves in Montgomery form (4.3) and a binary Lucas
chain for stage 1 that uses 13740 modular multiplications (including squarings), and estimate
that an optimized Lucas chain could do it in &~ 12000 modular multiplications. They use an
enhanced standard stage 2 that uses 3 modular multiplications per (i, j)-pair, see 4.7.2. With a
value d = 210, they estimate 303 point additions and 14 point doublings in the initialisation of
stage 2, and 13038 modular multiplications for collecting the product (4.10) with 4346 different
(i, )-pairs for a total of 14926 modular multiplications in stage 2. However, to minimize the AT
product, they propose using d = 30 with a total of 24926 modular multiplications in stage 2.

In our implementation, stage 1 with B; = 910 and PRAC-generated chains (using cost 6
for point addition, 5 for doubling, 0.5 for each byte code and 0.5 for each byte code change as
parameters for rating candidate chains) uses 11403 modular multiplications, 83% of the figure
for the binary Lucas chain. (Using chains for composite values where the resulting chain is
shorter than the concatenated chains for the factors is not currently used and could probably
reduce this figure by a few more percent.) Our stage 2 with By = 57000 and d = 210 uses 290
point additions, 13 point doublings, 1078 modular multiplications for point canonicalization and
4101 pairs which cost 1 modular multiplication each, for a total of 6945 modular multiplications.
The cost of computing and canonicalizing the points idP; has a relatively large share in this
figure, suggesting that a value for d such that Ba/(d¢(d)) is closer to 1 might reduce the total
multiplication count. In a hardware implementation, the extra memory requirements may make
larger d values inefficient in terms of the AT product, but this is not an issue in a software
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Core 2 Phenom
By 1 word 2 words —2 bits | 1 word 2 words —2 bits
1000 5.86 17.2 7.10 17.5
2000 7.46 21.5 7.87 19.7
3000 8.83 25.4 8.79 22.0
4000 10.1 29.7 9.55 24.1
5000 11.5 33.7 10.5 26.5
6000 12.7 37.6 11.2 28.2
7000 14.0 41.4 12.1 30.8
8000 15.4 45.8 12.9 32.7
9000 16.7 49.6 13.7 34.6
10000 17.9 53.4 14.5 36.9
20000 30.5 91.3 22.3 56.6
30000 | 42.8 128 29.7 75.0
40000 54.9 164 37.2 94.3
50000 66.7 200 44.5 113
60000 78.3 235 51.8 131

Table 4.8: Time in microseconds for ECM stage 2 with different Bs values on 2.146 GHz Intel
Core 2 and 2 GHz AMD Phenom CPUs

n By By Prob. 1 word 2 words —2 bits
25| 300 5000 0.249 46 103
26 | 310 6000 0.220 55 125
27 1 320 6000 0.186 67 151
28 | 400 6000 0.167 81 182
29 | 430 7000 0.149 100 224
30 | 530 11000 0.158 119 275
31| 530 10000 0.128 144 330
32 | 540 10000 0.105 177 410

Table 4.9: Expected time in microseconds and probability to find prime factors close to 2"
of composites with 1 or 2 words with P 1 on 2 GHz AMD Phenom CPUs. The By and B,
parameters are chosen empirically to minimize the time/probability ratio.

implementation on a normal PC. In our implementation, d = 630 provides the minimum total
number of 5937 modular multiplications in stage 2, only 40% of the number reported by Pelzl et
al. for d = 210, and only 24% of their number for d = 30.

These figures suggest that a software implementation of ECM on a normal PC enjoys an
advantage over an implementation in embedded hardware by having sufficient memory available
that choice of algorithms and of parameters are not constrained by memory, which significantly
reduces the number of modular multiplications in stage 2. This problem might be reduced by
separating the implementation of stage 1 and stage 2 in hardware, so that each stage 1 units
needs only very little memory and forwards its output to a stage 2 unit which has enough memory
to compute stage 2 with a small multiplication count, while the stage 1 unit processes the next
input number.

Gaj et al. [44] improve on the design by Pelzl et al. mainly by use of a more efficient im-
plementation of modular multiplication, by avoiding limitations due to the on-chip block RAM
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n B, By Prob. 1 word 2 words —2 bits
25| 130 7000 0.359 67 176
26 | 130 7000 0.297 81 213
27 | 150 11000 0.290 101 264
28 | 160 13000 0.256 124 324
29 | 180 12000 0.220 151 395
30 | 200 12000 0.188 190 496
31 | 260 14000 0.182 231 604
32 | 250 15000 0.147 283 744

Table 4.10: Expected time in microseconds and probability per curve to find prime factors close
to 2™ of composites with 1 or 2 words with ECM on 2 GHz AMD Phenom CPUs. The B; and
B> parameters are chosen empirically to minimize the expected time.

which allows them to fit more ECM units per FPGA, and removing the need for an external
microcontroller. The algorithm of ECM stage 1 and stage 2 is essentially the same as that of
Pelzl et al. They report an optimal performance/cost ratio of 311 ECM runs per second per $100
for an input number of up to 198 bits with B; = 910, B, = 57000, d = 210, using an inexpensive
Spartan 3E XC3S1600E-5 FPGA for their implementation. They also compare their implemen-
tation to an ECM implementation in software, GMP-ECM [39], running on a Pentium 4, and
conclude that their design on a low-cost Spartan 3 FPGA offers about 10 times better perfor-
mance/cost ratio than GMP-ECM on a Pentium 4. However, GMP-ECM is a poor candidate
for assessing the performance of ECM in software for very small numbers with low B; and Bs
values. GMP-ECM is optimized for searching large prime factors (as large as reasonably possible
with ECM) of numbers of at least a hundred digits size by use of asymptotically fast algorithms
in particular in stage 2, see [103]. For very small input, the function call and loop overhead in
modular arithmetic and the cost of generating Lucas chains on-the-fly in stage 1 dominates the
execution time; likewise in stage 2, the initialisation of the polynomial multi-point evaluation
and again function call and loop overhead will dominate, while the Bs value is far too small to
let the asymptotically fast stage 2 (with time in O(y/Bz)) make up for the overhead.

De Meulenaer et al. |34| further improve the performance/cost-ratio by using a high-per-
formance Xilinx Virtex4SX FPGA with embedded multipliers instead of implementing the mod-
ular multiplication with general-purpose logic. They implement only stage 1 of ECM and only
for input of up to 135 bits. One ECM unit utilizes all multipliers of the selected FPGA, so one
ECM unit fits per device. By scaling the throughput of the design of Gaj et al. to 135-bit input,
they conclude that their design offers a 15.6 times better performance/cost ratio. In particular,
assuming a cost of $116 per device, they state a throughput of 13793 ECM stage 1 with B; = 910
per second per $100.

We compare the cost of finding 40-bit factors using our software implementation of ECM
with that given by de Meulenaer et al. Our implementation is currently limited to moduli of
size 2 words with the two most significant bits zero, or 126 bits on a 64-bit system, whereas the
implementation of de Meulenaer et al. allows 135-bit moduli. Extending our implementation to
numbers of 3 words is in progress, but not functional at this time. We expect that ECM with
3-word moduli will take about twice as long as for 2-word moduli. For the comparison we use
timings for 126-bit moduli (2 words) and estimates for 135-bit moduli (3 words).

The timings for our code are obtained using an AMD Phenom X4 9350e with four cores at
2.0 GHz. The AMD 64-bit CPUs all can perform a full 64 x 64-bit product every 2 clock cycles,
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Device XC4VSX25-10 | Phenom 9350e | Phenom IT X4 955
Clock rate 0.22 GHz 2.0 GHz 3.2 GHz
Cores per device 1 4 4
126-bit modulus (2 words in software)

Time per stage 1 62.5us 232.1us ~ 145us
Time per stage 2 59.2us 121.5us R T6us
Time per trial 121.7us 353.6us ~ 221us
#Trials/sec/device 8217 11312 18100
Cost per device $300 $215
#Trials/sec/$100 2739 8418
135-bit modulus (3 words in software)

Time per stage 1 62.5us ~ 464us ~ 290us
Time per stage 2 59.2us =~ 243us ~ 152us
Time per trial 121.7 ~ 707us ~ 442
#Trials/sec/device 8217 ~ 5658 ~ 9052
Cost per device $300 $215
#Trials/sec/$100 2739 4210

Table 4.11: Comparison of ECM with B; = 910, By, = 57000 for 126-bit and 135-bit input on a
Virtex45X25-10 FPGA and on AMD 64-bit microprocessors.

making them an excellent platform for multi-precision modular arithmetic. The fastest AMD
CPU currently available is a four-core 3.2 GHz Phenom II X4 955 at a cost of around $215
(regular retail price, according to www.newegg.com on July 28th 2009) and we scale the timings
linearly to that clock rate. Since the code uses almost no resources outside the CPU core, linear
scaling is reasonable. The number of clock cycles used is assumed identical between the Phenom
and Phenom II. Similarly, running the code on n cores of a CPU is assumed to increase total
throughput n-fold.

Table 4.11 compares the performance of the implementation in hardware of de Meulenaer
et al. and of our software implementation, using the parameters By = 910, By = 57000. The
software implementation uses d = 630 for stage 2. De Meulenaer et al. do not implement stage 2,
but predict its performance as capable of 16,900 stage 2 per second per device. We use this
estimate in the comparison. They also give the cost of one Xilinx XC4VSX25-10 FPGA as $116
when buying 2500 devices. The current quote at www.nuhorizons.com and www.avnet.com for
this device is about $300, however. We base the price comparison on the latter figure. Only the
cost of the FPGA or the CPU, respectively, are considered. The results show that a software
implementation of ECM can compete in terms of cost per ECM trial with the published designs
for ECM in hardware. An advantage of the software implementation is flexibility: it can run
on virtually any 64-bit PC, and so utilize otherwise idle computing resources. If new systems
are purchased, they involve only standard parts that can be readily used for a wide range of
computational tasks. Given a comparable performance/cost ratio, an implementation in software
running on standard hardware is the more practical.

Our current implementation is sufficient for one set of parameters proposed by the SHARK
[41] design for factoring 1024-bit integers by GNFS which involves the factorization of approx-
imately 1.7 - 10 integers of up to 125 bits produced by the sieving step. The time for both
stage 1 and stage 2 with By = 910, By = 57000 is 353.6s on a 2 GHz Phenom, and about 221us
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on a 3.2 GHz Phenom II. Using the latter, 1.7 - 10'* ECM trials can be performed in approxi-
mately 300 CPU-years. But how many curves need to be run per input number? Pelzl et al. [78|
state that 20 curves at By = 910, By = 57000 find a 40-bit factor with > 80% probability, and
doing 20 trials per input number gives a total time of about 6000 CPU years. However, the vast
majority of input numbers will not be 29%-smooth, and fewer than 20 curves suffice to establish
non-smoothness with high probability, making this estimate somewhat pessimistic. Assuming a
cost of about $350 for a bare-bone but functional system with one AMD Phenom II X4 955 CPU,
this translates to a pessimistic estimate of about $2.1M for hardware capable of performing the
required ECM factorizations within a year.

Bernstein et al. [10] recently demonstrated a highly efficient implementation of ECM on
graphics cards that support general-purpose programming. An NVidia GTX 295 card is reported
as performing stage 1 of 4928 ECM curves with B; = 8192 and a 210-bit modulus per second,
and is estimated to perform 5895 curves with the same parameters with a 196-bit modulus.
Asgsuming a purchase price of $500 per card, this translates to 11.8 curves per Dollar and second.
Our implementation of ECM takes 2087us on a Phenom 9350e per curve (only stage 1) with
the same parameters and a 126-bit modulus; with 192-bit modulus on a Phenom II X4 955 we
estimate the time as approximately 2609us, or 1533 curves per second per device, which results
in approximately 7.1 curves per Dollar and second. ECM on graphics cards is therefore a serious
contender for performing cofactorization in the NFS. The graphics card implementation does
not include a stage 2, however, and implementing one may be difficult due to severely restricted
low-latency memory in graphics processing units.



Chapter 5

Parameter selection for P-1, P+1, and
ECM

5.1 Introduction

In Chapter 4 we described an efficient implementation of the P-1, P+1, and ECM factoring
algorithms tailored for rapidly processing many small input numbers. However, nothing was said
about how to choose the various parameters to these algorithms, in particular the B; and By
values and, for ECM, the parameters of the curve, so that the algorithms can be used efficiently
within the Number Field Sieve.

The sieving phase of the Number Field Sieve looks for (a,b)-pairs with a L b such that
the values of two homogeneous polynomials Fj(a,b), ¢ € 1,2, are both smooth as described in
Section 4.1. The sieving step identifies which of the primes up to the factor base limit 28; divide
each Fj(a,b) and produces the cofactors ¢; of Fj(a,b) after the respective factor base primes
have been divided out. The task of the cofactorization step in the sieving phase is to identify
those cofactors that are smooth according to some smoothness criterion; typically a cofactor ¢; is
considered smooth if it does not exceed the cofactor bound C; and has no prime factor exceeding
the large prime bound L;. The typical order of magnitude for B; is around 107 ...10%, and the
L; are typically between 1008; and 1000B;.

To determine whether the cofactor pair (c1,cz) satisfies this smoothness criterion, we try to
factor it. For this we attempt a sequence of factoring methods, where by “method” we mean a
factoring algorithm with a particular set of parameters, such as: ECM with the elliptic curve
generated by the Brent-Suyama parametrization with parameter ¢ = 6, with B; = 200 and
By = 5000.

In order to choose good parameters, we need to be able to compute the probability that a
particular parameter choice finds a factor of the input number. That is, we need to compute
the probability that a method finds a factor of a particular size and the expected number of
factors in the input number of that size so that by summing over possible factor sizes we get the
expected value for the number of factors the method will find.

We start by examining which parameters of the factoring methods affect the probability of
finding a factor in Section 5.2, then show how this probability can be computed in Section 5.3.
Finally we give an accurate estimate of the expected number of prime factors in a cofactor
produced by NFS in Section 5.4.

93
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5.2 Parametrization

In this section we take a closer look at the parameters available for the P 1, P41, and ECM
algorithms, how they affect run-time and the divisibility properties of the associated group orders.
Each method finds a prime factor p of N if the starting element xp in a (here additively written)
group G defined over F, has smooth order; more precisely, if a multiple exg of the starting
element is the identity element of the group, or if gex( for a not-too-large prime ¢ is the identity.
The group operation of G, requires arithmetic modulo p, a yet unknown prime factor of IV,
but we can instead do all arithmetic in Z/NZ which contains F,. From the identity element of
the group, a residue r (mod N) is constructed with » = 0 (mod p) so that p | ged(r, N), but
hopefully 7 # 0 (mod N), since then the ged reveals a proper factor of N.

Stage 1 of these algorithms computes exg in their respective group, where e is typically chosen
as e =lem(1,2,3,4,...,By) for an integer parameter By, the “stage 1 bound,” so that e includes
as divisors all primes and prime powers up to By. This way, exg is the identity if the order of xg
is Bi-powersmooth, i.e., has no prime or prime power greater than B; as a divisor.

If stage 1 is unsuccessful, stage 2 takes exg as input and efficiently tests if any gex for many
candidate primes ¢ is the identity element; the set of primes to test is typically chosen as all
primes greater than Bj, but not exceeding an integer parameter Bs, the “stage 2 bound.”

The property that determines success or failure of these methods is the smoothness of the
order of the starting element zg in G,, and unlike P-1, the P+1 and Elliptic Curve methods
have parameters that affect the order of the group G, and hence the order of xy. By careful
choice of parameters, the probability that the order of G, (and hence of xg) is smooth can be
increased significantly. We therefore examine how the choice of parameters affects divisibility
properties of the group order |Gp| for a random prime p. By the probability of a random prime
p having a property, we mean the ratio of primes p < n that have that property in the limit of
n — 00, assuming this limit exists.

The effect of these modified divisibility properties on the probability of the order of g being
smooth is examined in Section 5.3.

5.2.1 Parametrization for P-1

The P 1 method, described in Section 2.2 and Section 4.4, always works in the multiplicative
group K} of order p — 1, independently of the choice of the starting element zy. Therefore
we choose zg primarily to simplify the arithmetic in stage 1 of P 1, which is basically just a
modular exponentiation. With xg = 2, the modular exponentiation can be carried out with only
squarings and doublings in a binary left-to-right exponentiation ladder. A minor effect of the
choice xy = 2 is that 2 is a quadratic residue if p = +1 (mod 8), so in this case we know that
ord,(zo) | (p —1)/2, and (assuming 4 | e) that p — 1 | 2e is sufficient for finding any prime p.

The probability that Val,(p — 1) = k for a random prime p with ¢ prime is 1 —1/(qg — 1) for
k=0 and 1/¢"* for k > 0; the expected value for Val,(p — 1) is ¢/(q — 1)

5.2.2 Parametrization for P41
The P+1 method, described in Section 2.3 and Section 4.5, works in a subgroup of the group of

units of F[X]/(X? — 20X + 1) with 29 #Z 0 (mod p); the order of the group is p — (%) where

A = azg — 4, hence it can be either p — 1 or p + 1, depending on p and the choice of xy. This
allows choosing zo so that the group order is more likely to be smooth.
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For example, with A = —1 - k? for some rational k, the group order is always divisible by 4,
increasing the average exponent of 2 in the group order from 2 to 3. Other prime factors in the
group order appear with average exponent as in the P-1 method. A suitable value is zy = 6/5,
giving A = —64/25 = —1-(8/5)2.

With A = —3 - k2, the group order is always divisible by 6, which increases the average
exponent of 3 in the group order from 3/4 to 3/2, with other primes factors of the group order
behaving as in P-1. A suitable value is zg = 2/7, giving A = —192/49 = —3-(8/7)%. This choice
is suggested in [65, §6].

5.2.3 Parametrization for ECM

The Elliptic Curve Method, described in Section 4.6, works in the group of points of an elliptic
curve defined over F,.  The order of the group is an integer in the Hasse interval
[p +1-2/pp+1+ 2\/]3] and depends on both p and the curve parameters.

Careful selection of the curve parameters allows forcing the group order to be divisible by
12 or by 16 and increasing the average exponent of small primes even beyond what this known
factor of the group order guarantees, which greatly increases the probability of the group order
being smooth, especially if the prime to be found and hence the order is small.

The ECM algorithm needs a non-singular curve over I, and a starting point Py known to
be on the curve. Since the prime factor p of N we wish to find is not known in advance, one
chooses a non-singular curve over Q with a rational non-torsion point on it, and maps both to
Z/NZ, hoping that the curve remains non-singular over F,, which it does for all primes p that
don’t divide the curve’s discriminant.

The torsion points on an elliptic curve over QQ remain distinct when mapping to I, for almost
all p, and the map to I, retains the group structure of the torsion group, so that a curve with
rational n-torsion over Q guarantees a subgroup of order n of the curve over I, hence a group
order divisible by n. By a theorem of Mazur [25, 7.1.11], the torsion group of an elliptic curve
over Q is either cyclic with 1 < n < 10 or n = 12, or is isomorphic to Z/2Z x Z/(2m)Z with
1 <m <4, giving n € {4,8,12,16}. Thus the two largest possible orders of the torsion group
are 12 and 16.

For an effective ECM implementation we therefore seek a parametrization of elliptic curves
that produces a large, preferably infinite, family of non-singular curves with a known point over
@, that have a large torsion group over QQ, and whose curve parameters and coordinates of the
starting point can be computed effectively in Z/NZ where N is composite with unknown prime
factors, which in particular rules out taking any square roots.

The first choice to make is the form of the curve equation. Any elliptic curve over a field
with characteristic neither 2 nor 3 can be written in the short Weierstraft form

y?* =23+ azx +b,

however the addition law for points on this curve over Z/NZ involves a costly modular inverse.
Montgomery [65] suggests projective curves of the form

BY?Z = X(X? + AXZ + Z?) (5.1)

which allow for an addition law without modular inverses, but require that to add two points,
their difference is known, leading to more complicated addition chains for multiplying a point by
an integer, described in 4.5.1 and 4.6.3.
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2 3 ) 7 11 13 17 19
127 3 1.5 0.25 0.167 0.1 0.0833 0.0625 0.0556
o=2 3.323 1.687 0.301 0.191 0.109 0.0898 0.0662 0.0585
oc=11 3.666 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0584
torsion 12 | 3.667 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0585
167Z 3 0.5 0.25 0.167 0.1  0.0833 0.0625 0.0556
torsion 16 | 5.333 0.680 0.302 0.191 0.109 0.0898 0.0661 0.0584

Table 5.1: Average exponent of primes up to 19 in integers that are a multiple of 12 or 16, and
experimentally determined average exponent in the order of elliptic curves with Brent-Suyama
parametrization and parameter 0 = 2 and 11, and in curves with Montgomery’s parametrization
for rational torsion 12 and 16.

Edwards [37] suggests a new form of elliptic curve which Bernstein et al. [9] use for an efficient
implementation of ECM. Edwards’ curve form was not used for the present work, but in the
light of the results of Bernstein et al. should be considered in future implementations of ECM.

The Brent-Suyama Parametrization

The Brent-Suyama parametrization of elliptic curves in Montgomery form, described in Sec-
tion 4.6.2, is the most popular in existing implementations of ECM and is used, for example,
in GMP-ECM and in Prime95. It produces curves with 6 rational torsion points, plus complex
points of order 12 of which at least one maps to I, for almost all p, leading to a group order of
the curve over I, that is divisible by 12. However, the order does not behave like an integer that
is a multiple of 12 chosen uniformly at random from the Hasse interval; the average exponent of
small primes is greater than ensuring divisibility by 12 suggests. Table 5.1 compares the average
exponent of small primes in integers that are divisible by 12 and in the group orders of elliptic
curves over [, 103 < p < 10, using the Brent-Suyama parametrization with o = 2 (all other
integer o-values examined, except for ¢ = 11, produced same average exponents up to statistical
noise) as well as the choice o = 11, which surprisingly leads to a higher average exponent of 2 in
the order.

The unexpected increase of the average exponent of 2 for ¢ = 11 has been examined by Bar-
bulescu [19] who found two sub-families of curves produced by the Brent-Suyama parametrization
that show this behavior. For each sub-family the o-values live on an elliptic curve of rank 1 over
@Q, thus producing an infinite family of curves for ECM.

The Montgomery Parametrizations

Montgomery [67, Chapter 6] gives two parametrizations for curves of form (4.3), one for curves
with rational 12-torsion and one with rational 16-torsion, see Section 4.6.2.

Table 5.1 shows the average exponent of small primes in curves with 12 (kK = 2) or 16
(A = 54721/14400) rational torsion points; curves with other parameters in the respective family
produce similar figures.

5.2.4 Choice of Stage 1 Multiplier

The usual choice of the stage 1 multiplier is £ = lem(1,2,..., By), i.e., the product of all primes
and prime powers up to By. This is based on the rationale that we want to include each prime
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and prime power that has a probability of dividing the group order of at least 1/B;. However,
this choice does not take into account the different cost of including different primes ¢ in the
multiplier, which grows like log(q).

Consider the probability Pr[¢* || n] where n is the value that we hope will divide E (say,
the order of the starting element in the P 1, P+1 or ECM algorithm). In order to have n | E,
every prime ¢ must divide E in at least the same exponent as in n. Examining each prime ¢
independently, we can choose to increase the exponent k of ¢ so long as the probability that this
increase causes ¢ to occur in high enough power, divided by the cost of increasing k by 1, is better
than some constant ¢, i.e., choose k maximal such that Pr[¢* || n]/log(q) > ¢. This modified
choice favours the inclusion of smaller primes, in higher powers than in lem(1,2,..., By).

For a comparison, we assume that n behaves like a “random” integer, meaning that Pr[g" ||
n] = (1-1/q)/¢*. With E = lem(1,...,227), there are 871534 integers in [900000000, 1100000000]
with n | E, whereas using the improved choice with ¢ = 1/1200 gives E'/E = 27132/50621 =
22.3.7-17-19/(223 - 227) and finds 913670 in the same interval, a 4.8% increase, even though
E' is slightly smaller than E. The advantage quickly diminishes with larger Bj, however.
With F = lem(1,...,990), 7554965 integers are found, whereas the choice ¢ = 1/6670 leads
to E'/E = 182222040/932539661 = 23-3.5-7-11-13-37-41/(971 - 977 - 983) and finds 7623943
integers, approximately a 1% increase. Here, the ratio E//E ~ 1/5 is higher than before, but this
is not the reason for the smaller gain. Even with 6E’, the number of integers found is 7635492,
still only an about 1% difference.

The group order |Gp| in P 1, P41, and ECM does not behave like a random integer, but for
small primes ¢ the probability that ¢* divides exactly the group order |G,| (or better, the order
of the starting element x( in G)) for a random prime p is easy enough to determine empirically,
which allows choosing the multiplier £ so that the particular divisibility properties of the group
order are taken into account.

5.3 Estimating Success Probability of P-1, P41, and ECM

5.3.1 Smooth Numbers and the Dickman Function

To estimate the probability of finding a prime factor with the P-1, P+1, or ECM algorithms,
we need to estimate the probability that the order of the starting element is smooth. Even
though the order of the starting element does not behave quite like a random integer, we start by
recapitulating well-known methods of estimating smoothness probabilities for random integers,
and show how to modify the estimate to take into account the known divisibility properties of
the order of the starting element.

I have investigated the question of how to compute smoothness probabilities using Dickman’s
p-function, and how to modify the computation to give the probability of smoothness of an integer
close to N in the context of my Diploma thesis [58]. The relevant parts of the text are included
here for completeness.

Let S(x,y) be the set of y-smooth natural numbers not exceeding x, ¥(x,y) the cardinality
of the set S(z,%), P(1/u,z) the number of z'/*-smooth integers not exceeding z for real u > 0,
and p(u) the limit of P(1/u,x)/x for z — oo (Dickman’s function, [35]).
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S(x,y) fneNn<z:pePp|lz=p<y}
U(z,y) = |[S(z,y)]
P(l/u,x) = ¥(z,z'/")
p(u) = lim W

That the limit for p(u) exists is proved, for example, by Knuth and Trapp-Pardo [57] where
they show that U(z,y) and p(u) satisfy

(2, 2" = p(u)z + O <10gaz$)> . (5.2)

They also give an improvement that lowers the error term,

z, 2" = plu)z + o(u < z )
Wla o) = plu)e -+ o) + 0 (s ) (5.3

with o(u) = (1 —v)p(u — 1).

Evaluating p(u)

The Dickman p(u) function can be evaluated by using the definition

0 u<0
plu) =41 0<u<l (5.4)

u p(t—1)
1— [reDgp > 1.

In principle p(u) can be computed from (5.4) for all u via numerical integration, however when
integrating over this delay differential equation, rounding errors accumulate quickly, making it
difficult to obtain accurate results for larger w.

This problem can be alleviated somewhat by using a closed form of p(u) for small u. For

example, for 1 < u < 2 we have
Yot —1
plu) = 1—/ p(t )dt
1

“1
=1 [
1t

= 1—log(u)

and for2 < u <3

_og [l
pu) = 1 /1 ; dt
“1—log(t—1)
= 1—1log(2) — /2 fdt
= 1-1log(2) — (log(t) + log(t) (log(1 — 1) — log(t — 1)) + Lix(t)) :
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Figure 5.1: The Dickman function p(u) for 1 < u <5.

where Lig(x) is the dilogarithm of =, which is defined by the sum

Lis(z) = Y ]‘Z
k=1

k

[\

Note that some authors and software define the dilogarithm of = as what corresponds to Liy(1—z)
in our notation. To avoid negative arguments to logarithms, we use the functional identity

Liy(z) = %712 —log(z)log(1 — x) — Lig(1 — x)

and Lig(—1) = —72/12 which produces for 2 < u <3

2
plu) =1+ % —log(u) (1 —log(u — 1)) + Lig(1 — u).

In this way, values of p(u) for 0 < u < 3 can easily be computed with high accuracy. Values
up to approximately w = 7 can be computed via numerical integration; for larger values the
accumulated rounding errors start having significant effect on the computed p(u)-values. For our
application, only relatively small u-values are considered, so the numerical integration approach
is sufficient. A graph of p(u) for 1 < wu <5 is shown in 5.1.

If p(u) is needed with high accuracy for possibly large u-values, Marsaglia and Zama [63| show
how to compute p(u) (and other functions defined by delay-differential equations) accurately to
up to hundreds of digits by expressing p(u) piecewise as power series.

Smooth Numbers Close to x

Dickman’s function estimates the ratio of z'/“-smooth numbers between 1 and z. However, we
would like to compute the probability that a number of a certain magnitude close to some x is
smooth instead. Fortunately it is easy to convert to this model.

The ratio of y-smooth integers between z and x + dz is

U(z +dx,y) — V(z,y)
dx
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Using the approximation (5.2) with u = log(z)/log(y) and ignoring the O(x/log(z)) term, we
get

p () (@ + da) — p(u)e

log(y) _
dx
log(1+d
<u , log(1+ d)) N (e S — o)
’ log(y) d
and with d — 0, this becomes
1 /
u) + u) =
pla) + o ()
U /
Mw+bﬂ@pW)
Now substituting p'(u) = —p(u — 1)/u yields
— —1). .
pla) — fosplu 1) (5:5)

Considering the O(x/log(z)) term again, we find
dx =p(w)+0 log(z)

for x — oo, no better than using Dickman’s function immediately. Starting instead with the
better approximation (5.3) leads to

plu—1) plu—2)
pWMﬂﬁ%Gy—ﬂ—w;E%F
and
U(x +de,y) —V(z,y) ) — plu—1) 1
d =P = oy O(log(x)?)
for x — oo. Thus we define we 1)
plu) = pla) ~ ) (5.6

and have

- = 2p(u, ) +O<W>. (5.7)

This approximation shows that using (5.3), which includes the o(u) correction term but
estimates the ratio of smooth values between 1 and x, actually produces a worse result for the
ratio of smooth numbers close to x than the plain Dickman p(u) alone, whereas (5.5), which
estimates the ratio to smooth values close to  but without the o(u) term, does not result in any
improvement of the estimate over the p(u)-function, leaving the magnitude of the error almost
the same but changing the sign.

Table 5.2 compares the estimates produced by the Dickman function p(3) and by p(3, x) with
experimental counts. The relative error of the plain p(3) function is between 12 and 16 percent
in the investigated range, while the relative error for p(3,z) for larger = is more than an order
of magnitude smaller and about 0.5 percent for x > 10'4. For larger values of u, the relative
error for p(u,z) is significantly higher, due to the p(u — 2) factor in the O() term. The ratio
p(u—2)/p(u) increases quickly with u, approximately like u? |57, 6.3|. For example, the relative
error for p(5,10'%) is about 12 percent.
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T Count p(3) - 108 p(3,2) - 108
Est. Rel. err. in % Est. Rel. err. in %

109 | 4192377 | 4860839 15.94 4006146 —4.44
1010 | 4239866 | 4860839 14.64 4091615 —3.50
10M | 4238110 | 4860839 14.69 4161545 —1.81
1012 | 4280377 | 4860839 13.56 4219819 —1.41
10 | 4304040 | 4860839 12.94 4269128 —0.81
10™ | 4336571 | 4860839 12.09 4311393 —0.58

Table 5.2: A comparison of experimental counts W(z/3, 2z 4+ 5-107) — ¥(z'/3, 2 — 5-107) and
estimated number of 2'/3-smooth numbers in ]z — 5- 107,z + 5 - 107).

5.3.2 Effect of Divisibility Properties on Smoothness Probability

The P-1, P+1, and ECM algorithms all find a prime factor p if a group defined over I, has
smooth order, and we have seen that the group order does not behave like a random integer with
respect to divisibility by small primes. We would like to quantify the effect of these divisibility
probabilities of small primes on the probability that the order is smooth so that the effectiveness
of different parameter choices can be compared accurately.

The effect of the higher frequency of small factors on smoothness probability can be estimated
with a technique developed by Schréppel and Knuth for the analysis of the Continued Fraction
method of factorisation [56, 4.5.4]. The idea is to compare the average exponent f(q,S) of
small primes ¢ in values chosen uniformly at random from the set S of numbers being tested for
smoothness with the average exponent found when choosing values from the integers, f(q,N) =
1/(g —1).

When choosing an s € S and dividing out the primes ¢ < k, we can expect the remaining
cofactor r to have logarithmic size

log(r) =log(s) — > f(g,S)log(q). (5.8)
qeP,q<k

Comparing the size of this cofactor with that for the case S = N, we find that the expected value

for log(r) is smaller by
i= % (fas)- 5 ) oeta) 59

qeP,q<k

Knuth and Trapp-Pardo then argue that, since the log size of the cofactor is smaller by 6, the
number s is as likely smooth as a random integer smaller by a factor e’
For the P-1 algorithm,

1
o= 3 (Gt )

qeP,q<k

1
= Z Wlog(Q)a

qeP,q<k

in value.

which is approximately 1.22697 for k — oo.

For the P+1 algorithm with xg = 6/5, the group order is always divisible by 4. The average
exponent of primes in the group order is as in P-1, except for the exponent of 2 which is
3 on average instead of 2, giving dpy14 = dp 1 + log(2) ~ 1.92012. With zy = 2/7, the
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group order is divisible by 6, increasing the average exponent of 3 from 3/4 to 3/2, so that
dp+1,6 = 0p 1 + 3/41log(3) ~ 2.05093.

For ECM it is more difficult to give a theoretical estimate for the average exponent of small
primes in the group order, although Montgomery [67, 6.3| proposes conjectures for the exponent
of 2 and 3 in the group order in curves with rational torsion 12 or 16. The approximate § value for
ECM has been determined experimentally by computing the average exponent as in Table 5.1,
but extended to primes up to 100:

ECMo=2 ECMo =11 ECM torsion 12 ECM torsion 16
) 3.134 3.372 3.373 3.420
el 22.97 29.14 29.17 30.57

5.3.3 Success Probability for the Two-Stage Algorithm

The P 1, P+1, and ECM factoring algorithms work in two stages, where stage 1 finds a factor
p if the order |G| of the respective group over p is Bj-smooth, and stage 2 finds p if the order
contains one prime factor ¢ with By < ¢ < Bs, and the cofactor |G)p|/q is Bj-smooth. Assuming
that a stage 2 prime ¢ divides the order with probability 1/q, the probability of a factoring
method finding a factor can therefore be computed as

P(Net, By, Bs) = p (1100gg((B > o 4 31232 (%) Nett/4, (5.10)

qE]P’

where Neg = Ne ¢ is the approximate size of p, adjusted by the § parameter for the respective
factoring algorithm as described in Section 5.3.2. For sufficiently large B; and Bs, the sum can
be replaced by an integral as shown for example in [15], but in our case where these parameters
are quite small, the sum produces significantly more accurate results and is still acceptably fast
to evaluate.

5.3.4 Experimental Results

We compare the ratio of prime factors being found by P-1, P+1, and the Elliptic Curve
Method with the estimate produced by Equation (5.10). For n = 25,26 we test primes in
[2” — 109,27 + 106] and for each 27 < n < 32 we test primes in [2” — 107,27 + 107] with the P
1 method, P+1 with g = 6/5 and z¢p = 2/7, and ECM with the Brent-Suyama parametrization
with ¢ = 2 as well as the parametrization for curves with rational 12 and 16 torsion, and record
the ratio of primes found by the respective method. The Brent-Suyama parametrization with
o = 11 behaves identically to that of curves with rational 12-torsion. The By and By parameters
for P-1 and P+1 are chosen as in Table 4.9 and all ECM parametrizations use the B and By
values from Table 4.10.

The largest relative error of about 3% occurs for P-1 with n = 25, but most errors are below
1%. It is somewhat surprising how accurate the results are, considering that estimating the
density of y-smooth numbers around x by p(log(x)/log(y)) includes a rather large error term
for small values of x. From a purely pragmatic point of view, however, we may be content with
using (5.10) as an easily computable and, for the range of parameters we are interested in, very
accurate estimate of the probability of success for our factoring algorithms.
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n

P-1

Est.

Emp.

P+1

ZEO:6/5

Est.

Emp.

1‘0:7/2

Est.

Emp.

o=2

Est.

Emp.

ECM
12 torsion

Est.

FEmp.

103

16 torsion

Est.

Emp.

25
26
27
28
29
30
31
32

0.242
0.217
0.186
0.166
0.148
0.157
0.126
0.104

0.249
0.220
0.186
0.167
0.149
0.158
0.128
0.105

0.287
0.259
0.220
0.198
0.177
0.186
0.150
0.124

0.289
0.258
0.221
0.197
0.177
0.186
0.150
0.126

0.297
0.267
0.226
0.204
0.183
0.190
0.154
0.128

0.299
0.265
0.227
0.203
0.183
0.191
0.155
0.129

0.336
0.275
0.271
0.238
0.203
0.177
0.170
0.136

0.337
0.276
0.271
0.237
0.207
0.178
0.172
0.137

0.358
0.295
0.291
0.256
0.218
0.189
0.182
0.147

0.359
0.297
0.290
0.256
0.220
0.188
0.182
0.147

0.363
0.299
0.291
0.255
0.217
0.189
0.183
0.145

0.359
0.298
0.291
0.254
0.216
0.190
0.182
0.144

Table 5.3: Comparison of estimated probability of finding a prime factor close to 2" with the
P 1, P+1, and ECM algorithm with empirical results. The choice of parameters is described in
the text.

5.4 Distribution of Divisors

In Section 5.3 we estimate the probability that a factoring method finds a factor of a certain size
if it exists. To estimate the expected number of factors the method finds for an input number
N, we also need the expected number of such factors in N, taking into account the available
information on the number: its size, that it is composite, and that it has no prime factors up to
the factor base bound used for sieving. That is, we would like to compute the expected number of
prime factors p with p € [z1, 23] of a composite N, chosen uniformly at random from the integers
in [N7, No] that have no prime factors up to y. To do so, we need to estimate the number of
integers up to a bound that have no small prime factors.
Let

T(z,y) = {neN1<n<z:pePplz=p>y}, z>y>2 (5.11)
d(z,y) = |T(z,y)l (5.12)

be the set of positive integers up to x having no small prime factors up to y (which always
includes 1 in T'(x,y)) and the number of such integers, respectively.

Much like Dickman’s function p(u), with u = log(z)/log(y) throughout, can be used to
estimate the number U(z,y) of positive integers up to x that have no large prime factor above
y, the Buchstab function w(u) can be used to estimate ®(z,y). Tenenbaum [96, I11.6.2] shows
that

O (z,y) = (vw(u) — y)/log(y) + O(x/log(y)?) for 23 <y <a. (5.13)

This estimate is reasonably accurate for large v and y, but not for small v > 2. Since we
frequently need to treat composites that have only two relatively large prime factors, we need
an estimate that is more accurate for 2 < v < 3, which is described in 5.4.2.

5.4.1 Evaluating w(u)
The Buchstab w(u) function is defined by

B 1/u 1<u<?2

wlu) = {(1 + @) A w2, (5.14)
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Figure 5.2: The Buchstab function w(u) for 1 < wu < 4, and the limiting value €7 ~ 0.56146.

Figure 5.2 shows the graph for 1 <u < 4.
Like the Dickman function, the Buchstab function can be expressed in logarithms and the
dilogarithm for small » values:

1/u 1<u<?2
w(u) =< (1 +log(u—1))/u 2<u<3 (5.15)
(Lig(2 —u) + (1 +log(u — 2)) log(u — 1) + 72/12 4+ 1) /u 3 <u <A4.

However, unlike the Dickman function p(u) which monotonously tends to 0 for u — oo, the
Buchstab function w(u) oscillatingly tends to e™” and has almost reached this limit for v = 4
already, with relative error only —2.2 - 107%. This greatly simplifies the evaluation for w(u) for
our application, as using w(u) = e~ for u > 4 is sufficiently accurate for our purposes, and for
smaller u values the closed forms of (5.15) can be used.

The methods of Marsaglia, Zaman, and Marsaglia |63| can be readily applied to the Buchstab
w(u) function if highly accurate results for large u are required.

5.4.2 Estimating ®(z,y)

Equation (5.13) is not sufficiently accurate for some small values of v = log(z)/log(y). For

example, ®(10%,15000) = 54298095, but (5.13) estimates 55212172. This estimate has a relative

error of only 1.7%, but we need the number of composites with no small prime factors, and after

subtracting 7(10%) — 7(15000) = 50845780, the number of primes between 15000 and 10° from

both, the correct value is 3452315 while the estimate is 4366392 with 26% relative error.
Fortunately a better estimate is given in [96, III, 6.4]:

e’ lo u—l
O(x,y) = xﬁ /0 w(u —v)y "do. (5.16)

Using = y*, (5.16) can be rewritten as

O(x,y) ~ %’gg) /1u w(v)ydv. (5.17)
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Yy u  ®(10%,y) Estimate Rel. error Estimate Rel. error
by (5.13) in percent by (5.16) in percent
1000 3 81515102 81702575 0.23 81540712 0.031
2000 | 2.73 73931443 74604335 0.91 73964201 0.044
3000 | 2.59 69618529 70581865 1.4 69649564 0.045

4000 | 2.50 66671714 67774139 1.7 66688977 0.026
5000 | 2.43 64375942 65618739 1.9 64392876 0.026
10000 | 2.25 57680218 59021636 2.3 57679743  —0.00082

15000 | 2.16 54298095 55212172 1.7 54278816 —0.036
20000 | 2.09 52354286 52522945 0.32 52330198 —0.046

Table 5.4: The number ®(10%,%) of positive integers up to 10 without prime divisors up to y
and comparison to estimates based on Buchstab’s function.

By Mertens’ 3rd Theorem, 1/¢(1,y) = [[ cp <, (1 —1/p) = 1/(€7 log(y)) and for our purpose
where y is the factor base bound and hence in the millions, the estimate by Mertens’ theorem is
accurate enough (for y = 108, the relative error is 0.03%) and we can simplify (5.17) to

log(z)/log(y)
O(z,y) ~ /1 w(v)y’dv. (5.18)

This estimate gives ®(10?,15000) ~ 54319245 with relative error only 0.039%, and after sub-
tracting 7(10%) — m(15000), the relative error is still only 0.6%. Table 5.4 shows the values of
®(10%, y) for other y-values and compares them to the estimate using (5.17) (since these y-values
are rather small, the simplified form (5.18) introduces a noticeable error).

5.4.3 Divisors in Numbers with no Small Prime Factors

We would like to estimate the total number

D(z,y,z1,22) = Z Z Val,(n), x>z >z >y>2 (5.19)
neT(x,y) peP
z1<p<z2

of prime divisors p € |21, 23] with multiplicity among positive integers up to x that have no prime
factors up to y. A hint towards the solution is Buchstab’s identity [96, §6.2, (14)]

Olr,y) =1+ Y, > O(x/p’.p)

pEP v>1
y<p<z

which partitions T'(x,y) into {1} and sets of integers divisible by a prime p > y and by no other
prime ¢ < p, for y < p < x. For our problem, however, we would like to count integers which
contain several prime factors (possibly as powers) from |21, z3] with multiplicity. This leads to

D(‘Tﬂyﬂzlv'z?): Z Zq)(x/p”,y)

peP  v>1
z21<p<z2

which for each prime z; < p < z9 counts the positive integers kp” < x such that k£ has no prime
factor up to y, i.e., k € T(z/p",y).
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21 D(10"® 410,107, 21,21 +107)  Estimate  Rel. error
—D(10'8,107, 21, 21 + 107) using (5.20) in percent
1-107 168541774 168537797 —0.002
2.107 97523916 97542736 0.02
3-107 68793931 68800701 0.01
4.107 53152172 53155498 0.006
5-107 43292469 43305316 0.03
6-107 36540046 36531701 —0.02
7-107 31578964 31587779 0.03
8. 107 27811212 27820533 0.03
9.107 24867513 24854715 —0.05
10 - 107 22475389 22459308 —0.07
15 - 107 15144159 15150750 0.04
20 - 107 11429968 11427841 —0.02
25 - 107 9168249 9172594 0.05
30-107 7665357 7660398 —0.06
35107 6573271 6576127 0.04
40 - 107 5758937 5760733 0.03
45 - 107 5123766 5125277 0.03
50 - 107 4609652 4616138 0.1

Table 5.5: The number D(10'® 4 100,107, 21, z; + 107) — D(10'8,107, 21, z; + 107) of prime
factors z; < p < z; + 107 with multiplicity among the integers in [1018, 108 + 1010] without
prime divisors up to 107, and comparison to estimates using (5.20).

If z1 is reasonably large, the contribution of prime powers (v > 1) is quite small and can be
omitted for an approximate result. By replacing the resulting sum by an integral over (5.18), we
obtain

D(z,y,21,22) =~ /22 O(x/t,y)/log(t)dt

21

/22 1 /U—log(t)/log(y) (o) dv | d (5.20)
~ — w(v)y’do | dt, )

- 1og() \s ’

where u = log(x)/log(y).

By D(x2,y,21,22) — D(21,y, 21,22) we can estimate the number of prime factors p with
21 < p < z9 among numbers N € [z, x| that have no prime factors up to y. Table 5.5 compares
this estimate with experimental counts for parameters of approximately the magnitude as might
occur in the Number Field Sieve: we consider composites in [10'®, 1018 +10!] that have no prime
factors up to 107, and estimate the number of prime factors in [z 2107, (i + 1) - 107] for some ¢
up to 50. The estimates in this table are remarkably accurate, with relative error mostly below

0.1%.



Conclusion

Here we briefly summarize the results of the individual chapters of the thesis.

Schonhage-Strassen’s algorithm is among the fastest integer multiplication algorithms that
use only integer arithmetic. Significant speedups can be gained by improving cache-locality,
using v/2 as a root of unity in the transform to double the possible transform length, mixing
Mersenne and Fermat transforms at the top-most recursion level, and fine-grained parameter
selection depending on input number size. These improvements combined resulted in a factor 2
speedup over the implementation of Schénhage-Strassen’s algorithm in GMP version 4.1.4, on
which our implementation is based.

The P 1 and P+1 factoring methods allow a particularly fast implementation for stage 2 of
the algorithms. It is based on polynomial multi-point evaluation. The polynomial to be evaluated
can be built from its roots much more quickly than with a general product tree by exploiting
patterns in the roots. With suitably chosen roots it is a reciprocal Laurent polynomial, and such
polynomials can be stored using half the space, and can be multiplied with a weighted Fourier
transform in about half the time, as general polynomials of the same degree. The multi-point
evaluation of the polynomial is particularly efficient for the P-1 algorithm, requiring essentially
only one cyclic convolution product. It can be adapted to the P+1 algorithm, but needs to work
in a quadratic extension ring, increasing memory use and computation time. The new code is
distributed as part of GMP-ECM version 6.2 and later.

The sieving step is in practice the most computationally expensive step of the Number Field
Sieve. The cofactorization during the sieving can be performed efficiently with the P-1, P+1, and
ECM algorithms. We have designed a software implementation optimized for low-overhead, high-
throughput factorization of small integers that is competitive in terms of cost/performance-ratio
with proposed FPGA implementations of ECM for NFS.

The following ideas may be worth considering for further research.

The excellent performance of convolutions with a complex floating-point FFT for integer
multiplication is intriguing, but requiring guaranteed correct rounding would greatly increase
the necessary transform length and thus run-time. A promising idea is to use the Schonhage-
Strassen algorithm only at the top-most recursive level, and compute the point-wise nega-cyclic
convolutions with a complex floating-point FF'T. The relatively short length of those FFTs
should make an implementation with correct rounding feasible without too great a sacrifice in
speed.

Fiirer’'s algorithm for integer multiplication has slightly better asymptotic complexity of
O(n 10g(n)2log*(”)) than Schonhage-Strassen’s with complexity O(nlog(n)log(log(n))). Which
one is faster in practice? No well-optimized implementation of Fiirer’'s algorithm seems to exist
at the time of writing, and creating one might be worthwhile.

Schonhage and Strassen conjecture in the paper introducing their algorithm that the complex-
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ity for an optimal integer multiplication algorithm should be O(nlog(n)), but no such algorithm
is known so far, although Fiirer’s algorithm shortened the gap. Discovery of such an algorithm
would be an exiting result for computational complexity theory, and if fast in practice, of great
value in large-integer arithmetic.

Is a stage 2 for ECM possible that is similarly fast as stage 2 for P 1 and P+1?7 Currently
it is not clear how it might work, as for P-1 and P+1 the rapid construction of a polynomial
from its roots and the multi-point evaluation use the fact that Z/NZ (or a quadratic extension
for P+1) has ring structure which is not present in the group of points on an elliptic curve. But
maybe another novel approach might offer a significant speedup for the ECM stage 2.

Factoring small integers with P-1, P+1, and ECM with a software implementation on a
general-purpose CPU was found to be very competitive with implementations of ECM in FPGAs,
but alternative computing hardware such as graphics cards that support general purpose pro-
gramming offer vast amounts of processing power at consumer prices which may give them the
advantage. A complete implementation of ECM with stage 1 and stage 2 on graphics cards would
be interesting; if it should turn out to be too difficult due to restricted memory, doing stage 1
on the graphics card and stage 2 on the CPU might be feasible.

Parameters can be chosen accurately for cofactorization with P—1, P+1, and ECM to max-
imise the ratio of probability of success versus time for one individual method and one composite
number. However, pairs of composites that both must be smooth to form a relation need to be
factored in the sieving step of NFS, and generally a succession of factoring methods needs to be
tried to obtain the factorization of each. How can we choose a sequence of factoring attempts
on the two numbers so that a conclusion, either by factoring both or finding at least one (prob-
ably) not smooth, is reached as quickly as possible? This choice should take into account the
effect of unsuccessful factoring attempts on the expected number of factors of a given size in the
composite number.
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Abstract

This thesis explores improvements to well-known algorithms for integer multiplication and
factorization.

The Schonhage-Strassen algorithm for integer multiplication, published in 1971, was the first
to achieve complexity O(nlog(n)log(log(n))) for multiplication of n-bit numbers and is still
among the fastest in practice. It reduces integer multiplication to multiplication of polynomials
over finite rings which allow the use of the Fast Fourier Transform for computing the convolution
product. In joint work with Gaudry and Zimmermann, we describe an efficient implementa-
tion of the algorithm based on the GNU Multiple Precision arithmetic library, improving cache
utilization, parameter selection and convolution length for the polynomial multiplication over
previous implementations, resulting in nearly 2-fold speedup.

The P 1 and P+1 factoring algorithms find a prime factor p of a composite number quickly
if p — 1, respectively p 4+ 1, contains no large prime factors. They work in two stages: the first
step computes a high power g; of an element gg of a finite group defined over F,, respectively
[F,2, the second stage looks for a collision of powers of g; which can be performed efficiently via
polynomial multi-point evaluation. In joint work with Peter Lawrence Montgomery, we present
an improved stage 2 for these algorithms with faster construction of the required polynomial and
very memory-efficient evaluation, increasing the practical search limit for the largest permissible
prime in p — 1, resp. p + 1, approximately 100-fold over previous implementations.

The Number Field Sieve (NFS) is the fastest known factoring algorithm for “hard” integers
where the factors have no properties that would make them easy to find. In particular, the
modulus of the RSA encryption system is chosen to be a hard composite integer, and its fac-
torization breaks the encryption. Great efforts are therefore made to improve NFS in order to
assess the security of RSA accurately. We give a brief overview of the NFS and its history. In
the sieving phase of NFS, a great many smaller integers must be factored. We present in de-
tail an implementation of the P 1, P+1, and Elliptic Curve methods of factorization optimized
for high-throughput factorization of small integers. Finally, we show how parameters for these
algorithms can be chosen accurately, taking into account the distribution of prime factors in
integers produced by NFS to obtain an accurate estimate of finding a prime factor with given
parameters.

Keywords: Arithmetic, Integer Multiplication, Integer Factoring, Elliptic Curves, Number Field
Sieve



Résumé

Cette thése propose des améliorations aux problémes de la multiplication et de la factorisation
d’entier.

L’algorithme de Schonhage-Strassen pour la multiplication d’entier, publié en 1971, fut le
premier a atteindre une complexité de O(nlog(n)log(log(n))) pour multiplier deux entiers de
n bits, et reste parmi les plus rapides en pratique. Il réduit la multiplication d’entier a celle
de polynéme sur un anneau fini, en utilisant la transformée de Fourier rapide pour calculer le
produit de convolution. Dans un travail commun avec Gaudry et Zimmermann, nous décrivons
une implantation efficace de cet algorithme, basée sur la bibliotheque GNU MP; par rapport aux
travaux antérieurs, nous améliorons 1’utilisation de la mémoire cache, la sélection des parameétres
et la longueur de convolution, ce qui donne un gain d’un facteur 2 environ.

Les algorithmes P—1 et P+1 trouvent un facteur p d’un entier composé rapidement si p — 1,
respectivement p+ 1, ne contient pas de grand facteur premier. Ces algorithmes comportent deux
phases : la premiére phase calcule une grande puissance ¢g; d'un élément gy d’un groupe fini défini
sur [, respectivement F 2, la seconde phase cherche une collision entre puissances de g1, qui est
trouvée de maniére efficace par évaluation-interpolation de polynémes. Dans un travail avec Peter
Lawrence Montgomery, nous proposons une amélioration de la seconde phase de ces algorithmes,
avec une construction plus rapide des polyndmes requis, et une consommation mémoire optimale,
ce qui permet d’augmenter la limite pratique pour le plus grand facteur premier de p — 1, resp.
p+ 1, d’un facteur 100 environ par rapport aux implantations antérieures.

Le crible algébrique (NFS) est le meilleur algorithme connu pour factoriser des entiers dont les
facteurs n’ont aucune propriété permettant de les trouver rapidement. En particulier, le module
du systéme RSA de chiffrement est choisi de telle sorte, et sa factorisation casse le systéme. De
nombreux efforts ont ainsi été consentis pour améliorer NFS, de fagon & établir précisément la
sécurité de RSA. Nous donnons un bref apercu de NFS et de son historique. Lors de la phase
de crible de NFS, de nombreux petits entiers doivent étre factorisés. Nous présentons en détail
une implantation de P 1, P+1, et de la méthode ECM basée sur les courbes elliptiques, qui est
optimisée pour de tels petits entiers. Finalement, nous montrons comment les paramétres de
ces algorithmes peuvent étre choisis finement, en tenant compte de la distribution des facteurs
premiers dans les entiers produits par NFS, et de la probabilité de trouver des facteurs premiers
d’une taille donnée.

Mots-clés: Arithmétique, multiplication des entiers, factorisation des entiers, courbes ellip-
tiques, crible algébrique

(English abstract on inside back cover)



