
HAL Id: tel-01748662
https://theses.hal.science/tel-01748662v3

Submitted on 28 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speeding up Integer Multiplication and Factorization
Alexander Kruppa

To cite this version:
Alexander Kruppa. Speeding up Integer Multiplication and Factorization. Other [cs.OH]. Université
Henri Poincaré - Nancy 1, 2010. English. �NNT : �. �tel-01748662v3�

https://theses.hal.science/tel-01748662v3
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale IAEM Lorraine

UFR STMIA

Speeding up Integer Multiplication and

Factorization

Améliorations de la multiplication et de la

factorisation d’entier

THÈSE

présentée et soutenue publiquement le 28 janvier 2010

pour l’obtention du

Doctorat de l’université Henri Poincaré – Nancy 1

(spécialité informatique)

par

Alexander Kruppa

Composition du jury

Rapporteurs : Karim Belabas (Professeur, Université Bordeaux 1)
Antoine Joux (Professeur associé (P.A.S.T.), Université de Versailles)Membres du jury : Isabelle Debled-Rennesson (Mâıtre de conférences, Université Henri Poincaré)
Marc Joye (Cryptographer, Thomson R&D)
Arjen Lenstra (Professeur, EPFL)
Herman te Riele (Directeur de Recherche, CWI)
Paul Zimmermann (Directeur de Recherche, INRIA)

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page ave la lasse thloria.

Contents
List of Tables viiAknowledgments ixIntrodution 1Notation 5Chapter 1 Integer Multipliation with Shönhage-Strassen's Algorithm 71.1 Introdution . 71.1.1 The Karatsuba Algorithm . 81.1.2 The Toom-Cook Algorithm . 91.1.3 FFT-based Multipliation . 101.2 An E�ient Implementation of Shönhage-Strassen's Algorithm 141.2.1 Overview . 141.2.2 Desription of SSA . 151.2.3 Arithmeti Modulo 2n + 1 with GMP . 171.2.4 Improved FFT Length Using √2 . 181.2.5 Improved Cahe Loality . 181.2.6 Multipliation without Redution Modulo 2N + 1 231.2.7 Parameter Seletion and Automati Tuning 241.3 Results . 26Chapter 2 An Improved Stage 2 to P±1 Fatoring Algorithms 292.1 Introdution . 292.2 The P�1 Algorithm . 292.2.1 New Stage 2 Algorithm . 302.3 The P+1 Algorithm . 312.3.1 Chebyshev Polynomials . 312.4 Overview of Stage 2 Algorithm . 32i

ii Contents2.5 Justi�ation . 332.6 Seletion of S1 and S2 . 332.7 Cyli Convolutions and Polynomial Multipliation with the NTT 352.7.1 Convolutions over Z/NZ with the NTT 362.7.2 Reiproal Laurent Polynomials and Weighted NTT 362.7.3 Multiplying General Polynomials by RLPs 372.7.4 Multiplying RLPs without NTT . 392.8 Computing Coe�ients of f . 392.8.1 Saling by a Power and Its Inverse . 402.9 Multipoint Polynomial Evaluation . 412.9.1 Adaptation for P+1 Algorithm . 432.10 Memory Alloation Model . 442.10.1 Potentially Large B2 . 442.11 Opportunities for Parallelization . 452.12 Our Implementation . 452.13 Some Results . 46Chapter 3 The Number Field Sieve 493.1 Introdution . 493.1.1 The Quadrati Sieve . 503.1.2 NFS: a First Experiment . 503.2 Overview of NFS . 523.2.1 Polynomial Seletion . 533.2.2 Sieving . 543.2.3 Filtering . 553.2.4 Linear Algebra . 573.2.5 Square Root . 583.3 NFS Fatoring Reords . 59Chapter 4 Fatoring small integers with P�1, P+1 and ECM 614.1 Introdution . 614.2 Trial Division . 634.2.1 Trial Division Algorithm . 634.2.2 Implementation . 644.2.3 Use in NFS . 654.2.4 Testing Several Primes at One . 654.2.5 Performane of Trial Division . 65

iii4.3 Modular Arithmeti . 664.3.1 Assembly Support . 664.3.2 Modular Redution with REDC . 684.3.3 Modular Inverse . 694.3.4 Modular Division by Small Integers . 714.4 P�1 Algorithm . 714.4.1 P�1 Stage 1 Performane . 724.5 P+1 Algorithm . 734.5.1 Luas Chains . 734.5.2 Byte Code and Compression . 774.5.3 P+1 Stage 1 Performane . 784.6 ECM Algorithm . 784.6.1 ECM Stage 1 . 794.6.2 Choie of Curve . 804.6.3 Luas Chains for ECM . 814.6.4 ECM Stage 1 Performane . 824.7 Stage 2 for P�1, P+1, and ECM . 824.7.1 Generating Plans . 844.7.2 Initialisation . 854.7.3 Exeuting Plans . 874.7.4 P+1 and ECM stage 2 Performane . 874.7.5 Overall Performane of P�1, P+1 and ECM 874.8 Comparison to Hardware Implementations of ECM 87Chapter 5 Parameter seletion for P�1, P+1, and ECM 935.1 Introdution . 935.2 Parametrization . 945.2.1 Parametrization for P�1 . 945.2.2 Parametrization for P+1 . 945.2.3 Parametrization for ECM . 955.2.4 Choie of Stage 1 Multiplier . 965.3 Estimating Suess Probability of P�1, P+1, and ECM 975.3.1 Smooth Numbers and the Dikman Funtion 975.3.2 E�et of Divisibility Properties on Smoothness Probability 1015.3.3 Suess Probability for the Two-Stage Algorithm 1025.3.4 Experimental Results . 1025.4 Distribution of Divisors . 103

iv Contents5.4.1 Evaluating ω(u) . 1035.4.2 Estimating Φ(x, y) . 1045.4.3 Divisors in Numbers with no Small Prime Fators 105Conlusion 107Bibliography 109

List of Figures
1.1 Data �ow in a length-8 FFT. 131.2 Diagram of mappings in the Shönhage-Strassen algorithm. 151.3 The FFT iruit of length 8 and a butter�y tree of depth 3. 201.4 Time for a length 128 and length 256 (k = 8) FFT 251.5 Time to multiply numbers with an FFT of length 2k for k = 5, 6, 7. 261.6 Comparison of GMP 4.1.4, GMP 4.2.1, Magma V2.13-6 and the new ode 271.7 Time for multipliation with our implementation, Prime95 and Gluas 281.8 Number of bits whih an be stored in an IEEE 754 double-preision �oating pointnumber for provably orret multipliation . 284.1 Number of primes p in [230, 230 + 108

] where the largest prime fator of p − 1,respetively the number of Pollard-Rho iterations to �nd p, is in [100n, 100n + 99]. 634.2 Length of binary and optimal Luas hains for odd primes p in [100, 15000] . . . 755.1 The Dikman funtion ρ(u) for 1 ≤ u ≤ 5. 995.2 The Buhstab funtion ω(u) for 1 ≤ u ≤ 4, and the limiting value eγ ≈ 0.56146. . 104

v

vi List of Figures

List of Tables
2.1 Estimated memory usage (quadwords) while fatoring 230-digit number. 452.2 Large P±1 fators found . 472.3 Timing for 24142 + 1 fatorization . 473.1 Reords for the General Number Field Sieve . 603.2 Reords for the Speial Number Field Sieve . 604.1 Time in seonds for trial division of 107 onseutive integers by the �rst n oddprimes on a 2 GHz AMD Phenom CPU. 664.2 Time in miroseonds for P�1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs. 724.3 Binary and optimal Luas hains for small odd values n 744.4 Time in miroseonds for P+1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs . 784.5 Some ellipti urves hosen by the Brent-Suyama parametrization with group orderdivisible by 12, and by Montgomery's parametrization with rational torsion groupof order 12. 814.6 Time in miroseonds for ECM stage 1 with di�erent B1 values on 2.146 GHzCore 2 and 2 GHz AMD Phenom CPUs . 824.7 Time in miroseonds for P+1 stage 2 with di�erent B2 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs . 884.8 Time in miroseonds for ECM stage 2 with di�erent B2 values on 2.146 GHzIntel Core 2 and 2 GHz AMD Phenom CPUs . 894.9 Expeted time in miroseonds and probability to �nd prime fators with P�1 . . 894.10 Expeted time in miroseonds and probability per urve to �nd prime fatorswith ECM . 904.11 Comparison of ECM with B1 = 910, B2 = 57000 for 126-bit and 135-bit input ona Virtex4SX25-10 FPGA and on AMD 64-bit miroproessors. 915.1 Experimentally determined average exponent of primes up to 19 in the order ofellipti urves with Brent-Suyama or Montgomery parametrization. 965.2 A omparison of experimental ounts Ψ(x1/3, x+5 · 107)−Ψ(x1/3, x− 5 · 107) andestimated number of x1/3-smooth numbers in]x− 5 · 107, x + 5 · 107]. 1015.3 Comparison of estimated probability of �nding a prime fator lose to 2n with theP�1, P+1, and ECM algorithm with empirial results. 1035.4 The number Φ(109, y) of positive integers up to 109 without prime divisors up to

y and omparison to estimates based on Buhstab's funtion. 105vii

viii List of Tables5.5 The number of prime fators z1 < p ≤ z1 + 107 with multipliity among theintegers in [1018, 1018 + 1011
] without prime divisors up to 107, and omparisonto estimates using Buhstab's funtion. 106

ixAknowledgmentsI have pro�ted enormously from working in an outstanding group of researhers for the durationof my thesis, and I'd like to thank all the members of the CACAO/CARAMEL team at LORIAwhom I've had the pleasure of meeting during my stay. I thank espeially Jérémy Detrey,Antonio Vera and Sylvain Chevillard for their help with writing the Frenh part of the thesis.The ountless hats with Pierrik Gaudry were a delightful pastime and provided invaluabledisussion of the algorithms presented here.I've had the honor and pleasure of working with Peter Lawrene Montgomery and thank himfor o�ering me this opportunity. Few have shaped modern integer fatoring as muh as he did,and reading his earlier work is a large part of what originally got me interested in the subjet.Above all I am indebted to my thesis advisor Paul Zimmermann for aepting me as hisstudent and his ontinual support and expert advie on all aspets of this thesis.

x

IntrodutionInteger multipliation is used in pratially every arithmeti algorithm, and problems in algorith-mi number theory in partiular often require rapid multipliation of very large integers. Fator-ization of integers is one of the fundamental problems in number theory and gained signi�antpratial importane with the advent of the RSA publi-key ryptographi system whose seurityrelies on the di�ulty of fatoring. This thesis presents improvements to the Shönhage-Strassenalgorithm for multipliation of large integers, to the P�1 and P+1 methods of fatorization whihquikly �nd prime fators p where p − 1 or p + 1 have themselves no large prime fators, andto the Number Field Sieve whih is the fastest algorithm for fatoring omposite integers whihhave no easy to �nd prime fators, suh as our in ryptographi appliations.Integer multipliation is ubiquitous, and multipliation of large integers ours frequentlyenough in sienti� omputation that it is somewhat surprising that the �rst algorithm faster thanthe O(n2) bit operations required by the trivial grammar-shool multipliation was disoveredonly in 1962. In that year, Karatsuba and Ofman [51℄ showed how to redue the problem ofmultiplying n-bit numbers to three multipliations of n/2-bit numbers, ahieving asymptotiomplexity O(n1.585). A year later, Toom [97℄ generalized Karatsuba and Ofman's algorithm byexpressing integer multipliation by polynomial multipliation and using polynomial evaluation,point-wise multipliation, and interpolation to ompute the produt polynomial. This allowsreduing the omputation to 2k − 1 piees of n/k bits eah, for asymptoti ost O(nlogk(2k−1))for k �xed. In priniple, this permits any exponent 1 + ǫ in the asymptoti ost funtion,however, large k are not e�ient for input numbers of realisti size as the ost of evaluationand interpolation would dominate. In 1971, Shönhage and Strassen [90℄ essentially solved theproblem of fast integer multipliation by using the Fast Fourier Transform (FFT), disovered byCooley and Tukey in 1965 [29℄, to perform the required onvolution produt. Their method usestime only O(n log(n) log(log(n))) to multiply n-bit numbers. Many programming libraries formultiple preision arithmeti o�er a fast integer multipliation algorithm. One suh library is theGnu Multiple Preision arithmeti library (GMP) [49℄, developed mainly by Torbjörn Granlund.It is widely used and enjoys a reputation for being exeptionally fast, both due to areful hoieof algorithms and highly optimized implementation. It uses the Shönhage-Strassen algorithmfor multipliation of very large integers. One appliation where the large-integer multipliationof GMP is used extensively is GMP-ECM [103℄, an implementation of the P�1, P+1, and ElliptiCurve methods of fatorization developed mainly by Paul Zimmermann.Integer fatoring is an anient problem in number theory. It eased to be a questionof purely aademi interest and turned into a matter of signi�ant eonomi relevane withthe publiation of the now widely used Rivest-Shamir-Adleman (RSA) publi-key ryptographisystem [85℄ whih relies on the intratability of fatoring large integers. Fermat's Little Theoremstates
ap−1 ≡ 1 (mod p)1

2 Introdutionfor any prime p and p ∤ a, whih Euler extended to omposite moduli by
aφ(N) ≡ 1 (mod N)for gcd(a,N) = 1, where φ(N) is the Euler totient funtion, de�ned by

φ(pν1
1 · · · p

νk

k) = (p1 − 1)pν1−1
1 · · · (pk − 1)pνk−1

kwith p1, . . . , pk distint primes and ν1, . . . , νk positive integers. Thus, given the prime fatoriza-tion of N , it is easy to ompute φ(N). RSA uses a publi key for enryption, onsisting of anodd omposite modulus N = pq with p, q primes of roughly equal size, and a publi exponent e.For deryption it uses a private key, onsisting of N again and an integer d suh that
de ≡ 1 (mod φ(N)),i.e., de = kφ(N)+1 for some integer k. It enrypts a message expressed as an integer 1 < m < Nby

c = me mod N,and derypts c to reover the original message by
cd mod N = mde mod N = mkφ(N)+1 mod N = m.Fatoring N reveals d and so breaks the enryption. The keys for RSA are therefore hosen tobe as di�ult as possible to fator with known algorithms, and of a size that is expeted to beout of reah for omputing resoures available during the key's intended lifetime.Fatoring algorithms an be divided into two lasses: speial-purpose algorithms, and general-purpose algorithms. The former make use of ertain properties of the prime fators, most om-monly their size, and their run time depends only little on the size of the input number (usuallyonly like the omplexity of integer multipliation), but greatly on whether its fators have thedesired property. The run time of general-purpose algorithms depends almost exlusively on thesize of the input number, and not on any speial properties of the fators. RSA keys are hosento be resistant to speial-purpose methods so that only general-purpose algorithms are relevantto their seurity. The best urrently known fatoring algorithm for attaking RSA is the NumberField Sieve (NFS) with time omplexity onjetured to be in LN [1/3, (64/9)1/3], where

Lx[α, c] = e(c+o(1)) log(x)α log(log(x))1−αfor x→∞, and the ost of fatoring with the NFS is the major riterion for rating the seurityof RSA key sizes. In spite of being useless for breaking RSA diretly, speial-purpose fatoringalgorithms are still of great interest, on one hand for fatoring numbers that aren't RSA keysand may have easy-to-�nd fators, and as a sub-routine for the NFS.A entral onept to modern integer fatoring algorithms is that of smoothness: an integeris alled B-smooth if no prime fator exeeding B divides it, and B-powersmooth if no prime orprime power exeeding B divides it.The P�1 algorithm published by Pollard in 1974 [80℄ was the �rst of a lass of speial-purposefatoring algorithms that �nd a prime fator p of N quikly if the order of a �nite group de�nedover Fp is smooth. In the ase of the P�1 algorithm, the group is simply the group of units of Fpand has order p−1. Stage 1 of his algorithm hooses some integer x0 oprime to N and omputes
xe

0 mod N , with e inluding all primes and prime powers up to a hosen bound B1. If p − 1 is
B1-powersmooth and thus divides e, then xe

0 ≡ 1 (mod p), and gcd(xe
0 − 1,N) usually reveals p

3exept when this gcd is omposite. Pollard further proposes a stage 2 whih looks for a ollisionmodulo p in seleted powers of xe
0 whih allows him to disover prime fators p where p−1 ontainsa single prime between B1 and a seond bound B2, but is otherwise B1-powersmooth. He showsthat a prime fator p an be found in time O

(√
pM(log(N))

) if the ollision detetion is done bypolynomial multipoint evaluation with a fast FFT-based multipliation routine. Williams [101℄extends Pollard's P�1 idea to the P+1 method whih �nds a prime p quikly if one of p − 1 or
p + 1 is smooth. The P�1 and P+1 algorithms sometimes �nd surprisingly large fators quiklyif p − 1 or p + 1 happens to be smooth enough, but if both group orders ontain a large primefator, then these methods are powerless. For example, a fration of about 1− log(2) of integersup to N is N1/2-smooth (see Setion 5.3.1), so roughly half of 40-digit primes p have a primefator exeeding 20 digits in both p− 1 and p + 1, whih makes these primes impratial to �ndwith either method.Pollard's idea for an asymptotially fast FFT stage 2 to the P�1 algorithm was �rst imple-mented by Montgomery and Silverman [74℄. The authors suggest several ideas to speed up theiralgorithm further, and to adapt it to the P+1 fatoring method.The asymptotially fastest speial-purpose fatoring algorithm is the Ellipti Curve Method(ECM) by H. W. Lenstra Jr. [62℄ whih an be viewed as a generalization of P�1 and P+1 inthat it works in a group of points on an ellipti urve over Fp with group order in [p−2

√
p+1, p+

2
√

p+1], depending on the urve parameters. It has the major advantage that it an keep tryingdi�erent urves until a luky urve with smooth group order is found. With optimal hoie ofparameters, ECM has onjetured omplexity of Lp[1/2, 2] to �nd a prime fator p whih, in theworst ase of p ≈
√

N , leads to LN [1/2, 1], making it the urrently only speial-purpose fatoringalgorithm with sub-exponential running time. Brent [15℄ and Montgomery [65℄ present stage 2extensions for ECM, and Montgomery [74℄ develops an FFT stage 2.Even though ECM has far superior asymptoti omplexity and the P�1 and P+1 methodsat, in a way, merely as two partiular attempts at a smooth group order among the nearlyendless number of suh trials o�ered by ECM, the older methods have some advantages thatstill keep them useful. One advantage is sheer speed. The arithmeti during stage 1 is muhsimpler for P�1 and P+1 than for ECM so that with omparable parameters, less CPU timeis spent. Another advantage is that for P�1 and P+1, a muh faster FFT stage 2 algorithm ispossible, due to the fat that Z/NZ (or a quadrati extension thereof for P+1) has ring struture,whih is not the ase for the group of points on an ellipti urve. The ring struture permits apartiularly e�ient polynomial multipoint evaluation algorithm, allowing stage 2 to run withmuh less CPU and memory usage than is possible for the FFT extension for ECM. Finally, forsome input numbers p − 1 is known to have a divisor n (e.g., ylotomi numbers φn(x) for n,
x ∈ N, unless p | n), whih inreases the probability that (p− 1)/n is smooth. These advantagesmake it quite reasonable to give P�1 and P+1 a try before moving on to the fundamentally morepowerful, but also omputationally more expensive ECM algorithm.Currently the best fatoring algorithm for attaking RSA moduli (and other numbers withoutsmall or otherwise easy to �nd prime fators) is the Number Field Sieve. It was �rst proposed byPollard in 1988 [82℄ and originally required that the integer to be fatored has a simple algebraiform suh as an ± c with small a and c, but in the following years was extended to fatoringgeneral integers [20℄. It fators an integer N in onjetured time LN [1/3, c] with c = (32/9)1/3 forinput numbers of simple enough form, in whih ase the algorithm is alled the Speial NumberField Sieve (SNFS), or with c = (64/9)1/3 for general integers, then alled General Number FieldSieve (GNFS). An early suess for the SNFS was the fatorization of the 9th Fermat number
F9 = 229

+ 1 in 1990 [61℄ and for the GNFS that of a 130-digit RSA fatoring hallenge numberin 1996. In January 2010, the largest SNFS fatorization is that of 21039− 1 in 2007 [2℄, whereas

4 Introdutionthe GNFS reord is the fatorization of a 768-bit (232-digit) RSA hallenge number in 2009 [55℄.Like other general-purpose fatoring algorithms, the NFS fators an integer N by �nding aongruene of squares, x2 ≡ y2 (mod N) with x 6= ±y (mod N), from whih a non-trivial fatorof N is obtained by taking gcd(x+y,N). The values of x and y are found by olleting a large setof �relations,� whih are essentially pairs of smooth integers, from whih a subset an be hosenso that in their produt eah prime ours in even exponent, resulting in squares. The mosttime onsuming part of the NFS (in both Speial and General variant) is the relation olletionphase whih examines a very large number of polynomial values to look for smooth values by useof sieving tehniques and other fatoring algorithms. Here, an integer n is onsidered smoothif it ontains only prime fators up to a sieving bound B, exept for up to k integers up toa large prime bound L. The sieving routine reports suh n where the ofator after dividingout the primes up B is small enough, say below Lk. These ofators need to be fatored totest if any prime fator exeeds L. The memory onsumption of the sieving inreases with
B, and for large-sale fatorizations the available memory frequently limits B so that L andperhaps k need to be inreased to allow su�iently many values to pass as smooth. This way,a very large number of suh ofators our during the sieving for an NFS fatorization, andalgorithms optimized for high-throughput fatorization of small integers need to be used to avoidthe ofatorization beoming the bottlenek of the sieving proess. The Ellipti Curve Methodis frequently suggested for this purpose [7℄ [41℄, and the P�1 and P+1 methods are likewise goodandidates.ContributionsIn joint work with Pierrik Gaudry and Paul Zimmermann, we developed an improved implemen-tation of the Shönhage-Strassen integer multipliation algorithm, based on the ode in GMPversion 4.1.4 whih was written by Paul Zimmermann. The new implementation improves aheloality during the FFT phase, inreases the possible onvolution length for given input size, anduses �ne-grained hoie of onvolution length and other parameters depending on the size of theinput numbers. It is desribed in Chapter 1. These improvements resulted in a fator 2 speedupover the ode in GMP 4.1.4.In joint work with Montgomery, we have implemented an improved version of the P�1 andP+1 stage 2 algorithm that implements the ideas mentioned in [74℄ and other improvements.The implementation is based on GMP-ECM and is desribed in Chapter 2.A library for high-throughput fatorization of integers up to 38 digits, using the P�1, P+1,and ECM algorithms, has been written for use in the NFS siever program developed in theontext of the CADO projet (Crible algébrique: distribution, optimisation). Chapter 3 ontainsan overview of the NFS algorithm. The details of the small-integer fatoring implementation arefound in Chapter 4, and its ost-e�ieny is ompared to proposed hardware implementationsof ECM for NFS. An outline of methods to estimate the suess probability of �nding fatorswith the P�1, P+1 and ECM algorithms in ofators produed by the NFS sieving step is givenin Chapter 5.

NotationAn overview of mathematial notation used throughout the thesis. Most of it follows ommonusage, but is listed here for referene.Sets:
C The omplex numbers
N The non-negative integers
P The rational primes
Q The rational numbers
Z The integersRelations:
a | b a divides b, there is an integer k suh that b = ka
a ∤ b a does not divide b
a ⊥ b a is oprime to b, gcd(a, b) = 1
a || b a divides b exatly, a | b and b/a ⊥ aFuntions:
log(x) The natural logarithm of x
logb(x) The logarithm of x to base b
φ(n) The Euler totient funtion, the number of integers 1 ≤ k < n with k ⊥ n
(

a
p

) The Legendre symbol for a (mod p)

π(n) The prime ounting funtion, the number of primes not exeeding n
⌊n⌋ The �oor funtion, the largest integer k with k ≤ n
⌈n⌉ The eiling funtion, the smallest integer k with k ≥ n
⌊n⌉ The nearest integer funtion, ⌊n + 1

2⌋
Valp(n) The p-adi valuation of nOther frequently used symbols:
β The mahine word base, typially β = 232 or β = 264

5

6 Notation

Chapter 1Integer Multipliation withShönhage-Strassen's Algorithm1.1 IntrodutionThe text in Setions 1.2 and 1.3 of this hapter is based on joint work with P. Gaudry andP. Zimmermann whih was published in [46℄.Multipliation of integers is one of the most basi operations in arithmeti and as suh plays avital role in omputational arithmeti. For many algorithms the time spent performing multipli-ations dominates. Numerous other operations an be redued to integer multipliation: modularmultipliation (by Barrett redution [5℄ or Montgomery's REDC [64℄), polynomial multipliation,multi-point evaluation and fatorization, or root-�nding by iterative methods.In several appliations, the integers to be multiplied are large, in partiular when reduingpolynomial arithmeti to integer multipliation [99, 8.4℄, for high-preision evaluation of on-stants, primality testing or integer fatorization. Allan Steel [94℄ gives an overview of algorithmsthat an be implemented e�iently by redution to multipliation. For these, a multipliationalgorithm with low asymptoti omplexity is required to make large operand sizes pratial.Given two multiple preision non-negative integers a =
∑m

i=0 aiw
i and b =

∑n
j=0 bjw

j withword base w and 0 ≤ ai, bj < w, we would like to ompute the integer c =
∑m+n+1

k=0 ckw
k = abwith 0 ≤ ck < w. The onvolution produt of the sums for a and b yields

ab =

m
∑

i=0

aiw
i

n
∑

j=0

bjw
j (1.1)

=
m+n
∑

k=0

wk

min(k,n)
∑

j=max(0,k−m)

ak−jbj.Hene we an set
ĉk :=

min(k,n)
∑

j=max(0,k−m)

ak−jbj (1.2)and have c =
∑m+n+1

k=0 ckw
k =

∑m+n
k=0 ĉkw

k, however ck 6= ĉk in general sine the ĉk may belarger than w (but they do not exeed min(m + 1, n + 1) · (w − 1)2). The desired ck values anbe obtained by an additional step ommonly alled �arry propagation:� set ĉm+n+1 := 0 and7

8 Chapter 1. Integer Multipliation with Shönhage-Strassen's Algorithmthen, for k = 0, . . . ,m + n in sequene,
ĉk+1 := ĉk+1 +

⌊

ĉk

w

⌋

ĉk := ĉk mod w.The sum ∑m+n+1
k=0 ĉkw

k is invariant under this proess, and �nally all ĉk < w so we an set
ck := ĉk.The steps of deomposing the input integers into a sequene of digits in a onvenient word base
w, performing a onvolution produt on these sequenes, and obtaining the orret sequene ofdigits of the produt by arry propagation is ommon to multiple preision integer multipliationalgorithms. With suitable hoie of w, e.g., a power of 2 on a binary omputer, the two stepsof deomposition and arry propagation are inexpensive, requiring only O(n + m) additions orassignments of integers of size O(log(w)). The main di�erene between multipliation algorithmsis how the onvolution produt is omputed, and this is where they greatly di�er in speed.The most simple onvolution algorithm, the �grammar-shool� method, omputes eah ĉkindividually by the sum (1.2). This involves (m+1)(n+1) multipliations of single digit (in base
w) integers ai and bj and about as many additions; assuming onstant ost for these operations,the algorithm has omplexity in O(mn), or for m and n of equal size, O(n2).1.1.1 The Karatsuba AlgorithmThe �rst algorithm to o�er better asymptoti omplexity than the grammar-shool methodwas introdued in 1962 by A. Karatsuba and Yu. Ofman [51℄ (English translation in [52℄),ommonly alled Karatsuba's method. The idea is to ompute a produt of two 2n-word inputsby three produts of n-word values (whereas the grammar-shool method would require four suhproduts). Writing a = a1w + a0 and b = b1w + b0, where 0 ≤ a0, a1, b0, b1 < w, we an omputethe onvolution produt ĉ2w

2 + ĉ1w + ĉ0 = a1b1w
2 + (a0b1 + a1b0)w + a0b0 via

ĉ2 = a1b1

ĉ0 = a0b0

ĉ1 = (a1 + a0)(b1 + b0)− ĉ2 − ĉ0.This method an be applied reursively, where the size of the numbers to be multiplied is abouthalved in eah reursive step, until they are small enough for the �nal multipliations to bearried out by elementary means, suh as one-word multipliation or the grammar-shool method.Assuming a threshold of one mahine word for these small multipliations so that they haveonstant ost, Karatsuba's method performs multipliation of 2n-word inputs in O(3n) one-wordmultipliations and O(3n) additions, for a omplexity of O(nlog2(3)) ⊂ O(n1.585).The underlying priniple of Karasuba's short-ut is that of evaluation and interpolation ofpolynomials to obtain the oe�ients of the produt. Multipliation of multi-digit integers isintimately related to multipliation of polynomials with integer oe�ients. Given the integers
a and b in base w notation, we an write A(x) =

∑m
i=0 aix

i and B(x) =
∑n

j=0 bjx
j so that

a = A(w) and b = B(w). Now we an ompute the produt polynomial C(x) = A(x)B(x) and�nd c = ab = C(w). The step of breaking down the input integers into digits in a ertain wordbase amounts to obtaining the oe�ients of a polynomial, the onvolution produt omputesthe produt polynomial C(x), and the arry propagation step evaluates C(w).In Karatsuba's method, the produt polynomial C(x) is omputed by evaluating C(x) =
A(x)B(x) at su�iently many points x so that the oe�ients of C(x) an be determined

1.1. Introdution 9uniquely. In the desription given above (Karatsuba and Ofman's original desription reduesmultipliation to two squarings �rst), we ompute A(0) = a0, B(0) = b0, A(1) = a1 + a0,
B(1) = b1 + b0 and (formally1) A(∞) = a1, B(∞) = b1 in what onstitutes the evaluation phaseof the algorithm.The values of the produt polynomial C(x) are the produts of the values of A(x) and B(x):
C(0) = A(0)B(0), C(1) = A(1)B(1), and C(∞) = A(∞)B(∞). In this step, the results of theevaluation phase are multiplied pair-wise. In Karatsuba's method, three produts are omputed,eah multiplying numbers half the size of the input integers.A polynomial of degree d is uniquely determined given d+1 values at distint points, so thesethree values su�e to obtain the oe�ients of C(x) = ĉ2x

2 + ĉ1x+ ĉ0 in the interpolation phaseof the algorithm. In the ase of Karatsuba's method this is partiularly simple, sine ĉ0 = C(0),
ĉ2 = C(∞) and ĉ1 = C(1)− ĉ2 − ĉ0.1.1.2 The Toom-Cook AlgorithmIn 1963, A. L. Toom [97℄ (English translation in [98℄) suggested a method whih implements ageneralization of Karatsuba's method that allows splitting the input numbers into more thantwo piees eah, leading to polynomials of larger degree but smaller oe�ients that must bemultiplied. Cook's thesis [28℄ translates the method to an algorithm, it is now ommonly alledToom-Cook method. Given two (r + 1)-word integers a and b, we an ompute their produtby writing a =

∑r
i=0 aiw

i, b =
∑r

i=0 biw
i, 0 ≤ ai, bi < w, and multiplying the polynomials

A(x) =
∑r

i=0 aix
i and B(x) =

∑r
i=0 bix

i to obtain the produt polynomial C(x) =
∑2r

i=0 ĉix
iof degree 2r by evaluating A(x) and B(x) at 2r + 1 distint points, pair-wise multipliation ofthe values (eah about 1/(r + 1) the size of the input numbers) and interpolating C(x). Forexample, for r = 2, the points of evaluation x = 0,∞,±1, and 2 ould be hosen, so that

A(0) = a0, A(∞) = a2, A(1) = a2 + a1 + a0, A(−1) = a2 − a1 + a0, and A(2) = 4a2 + 2a1 + a0(likewise for B(x)). After the pair-wise produts to obtain C(0), C(∞), C(1), C(−1), and C(2),the interpolation determines the oe�ients of C(x) =
∑4

i=0 cix
i by, e.g.,

ĉ0 = C(0)

ĉ4 = C(∞)

2ĉ2 = C(1) + C(−1)− 2ĉ4 − 2ĉ0

6ĉ3 = C(2)− 2C(1)− 14ĉ4 − 2ĉ2 + ĉ0

ĉ1 = C(1)− ĉ4 − ĉ3 − ĉ2 − ĉ0.Toom-Cook with r = 2 omputes a produt of two 3n-word integers with �ve produts oftwo n-word integers eah; applied reursively, the asymptoti ost of this method is O(nlog3(5)) ⊂
O(n1.47) and in general, for a �xed r, O(nlogr+1(2r+1)).Even for r = 2 the evaluation phase and espeially the interpolation phase are notieablymore involved than for Karatsuba's method. This omplexity quikly grows with r; if arried outin a straight-forward manner, the evaluation and interpolation performs O(r2) multipliationsof O(n/r)-bit integers with O(log(r)) bit integers whih yields a omplexity of O(rn log(r)), andseletion of optimal sets of points of evaluation and of interpolation sequenes is non-trivial [13℄.Hene for a given n we annot inrease r arbitrarily: the inrease of ost of evaluation andinterpolation quikly exeeds the saving due to smaller pair-wise produts. Toom shows that by1Evaluating a polynomial f(x) at x = ∞ should be interpreted as evaluating the homogenized polynomial
F (x, y) = ydeg(f)f(x/y) at (x, y) = (1, 0); the point (1, 0) of the projetive line orresponds to the point at in�nityof the a�ne line.

10 Chapter 1. Integer Multipliation with Shönhage-Strassen's Algorithmhoie of r = c
√

log(n/r) with a suitable onstant c, an algorithm with omplexity in O(n1+ǫ) forany positive ǫ an be obtained; however to reah small ǫ, unreasonably large n are required.An advantage of Karatsuba's method over Toom-Cook with r > 1 is that no division isrequired in the interpolation stage whih makes it appliable over �nite �elds of small hara-teristi. Montgomery [71℄, extending work by Weimerskirh and Paar [100℄, gives division-freeKaratsuba-like formulas that split the input into more than two parts and obtain the produtoe�ients (in a manner that does not adhere to the evaluation/interpolation priniple) with anumber of multipliations loser to nlog2(3) than plain Karatsuba does when n is not a power of
2.1.1.3 FFT-based MultipliationThe problem of ostly evaluation and interpolation an be overome by use of the Fast FourierTransform (FFT). An FFT of length ℓ omputes from a0, . . . , aℓ−1 ∈ R with R a suitable ring

aj =
ℓ−1
∑

i=0

aiω
ij , j = 0, . . . , ℓ− 1 (1.3)where ω ∈ R is an ℓ-th primitive root of unity (whih must exist for R to be suitable).When the ai are interpreted as oe�ients of the polynomial A(x) =

∑ℓ−1
i=0 aix

i, the FFTan be viewed as a polynomial multi-point evaluation sheme
aj = A(ωj)whih evaluates A(x) at the ℓ distint points ωj . Likewise, the inverse FFT omputes thepolynomial oe�ients ai from the FFT oe�ients aj by

ai =
1

ℓ

ℓ−1
∑

j=0

ajω
−ij , i = 0, . . . , ℓ− 1. (1.4)The division by ℓ requires that ℓ is a unit in R. To see that (1.4) is the inverse operation of(1.3), we an substitute aj in (1.4) as de�ned in (1.3) and note that ∑ℓ−1

j=0(ω
k)j is zero for ℓ ∤ k,and is ℓ for ℓ | k.In pratie the FFT is fastest to ompute if ℓ is a power of 2. Assume ℓ = 2k and rewrite(1.3) as

aj =
ℓ−1
∑

i=0

aiω
ij =

ℓ/2−1
∑

i=0

a2iω
2ij +

ℓ/2−1
∑

i=0

a2i+1ω
(2i+1)j

=

ℓ/2−1
∑

i=0

a2iω
2ij + ωj

ℓ/2−1
∑

i=0

a2i+1ω
2ijfor j = 0, . . . , ℓ − 1. Sine ωℓ = 1, we have ω2j = ω2(j−ℓ/2) so eah of the two sums takes only

ℓ/2 distint values. These values aevenj =
∑ℓ/2−1

i=0 a2i(ω
2)ij and aoddj =

∑ℓ/2−1
i=0 a2i+1(ω

2)ij for
j = 0, . . . , ℓ/2−1 are the FFT of length ℓ/2 of the oe�ients of even and odd index, respetively.Hene an FFT of length ℓ an be omputed by two FFTs of length ℓ/2 and O(ℓ) additionalring operations. An FFT of length ℓ = 1 is just the identity funtion. Thus the arithmetiomplexity F (ℓ) of the FFT satis�es F (1) = 1, F (2ℓ) = 2F (ℓ) + O(ℓ) and so F (ℓ) ∈ O(ℓ log(ℓ))ring operations.

1.1. Introdution 11Also, sine ωj+ℓ/2 = −ωj, we an ompute
aj = a

even
j + ωj

a
odd
j (1.5)

aj+ℓ = a
even
j − ωj

a
odd
jwhere the produt ωjaoddj needs to be omputed only one, for j = 0, . . . , ℓ/2. This operationan be performed in-plae, with aj and aj+ℓ overwriting aevenj and aoddj , respetively. Hene anFFT algorithm an be formulated as in Algorithm 1. This reursive algorithm was �rst publishedby Cooley and Tukey [29℄, although the relevant identities were known to previous authors [30℄,inluding Gauss.This algorithm operates in-plae, and at eah reursion level the input oe�ients ai of evenindex i are expeted in the lower half of the data array and those of odd index in the upper half,for the sub-FFT being omputed. Over the entire reursion, this requires oe�ients ai wherethe least signi�ant bit (LSB) of i is zero to be loated in the low half of the input array and thosewhere the LSB of i is one in the upper half. Within these two halves, oe�ients with the seondLSB of i equal zero must be in the lower half again, et. This leads to a storage loation for aithat is the bit-reverse of the index i. Let bitrevk(i), 0 ≤ i < 2k denote the bit-reverse of the k-bitinteger i (extended to k bits with leading zero bits if neessary): if i =

∑k−1
n=0 in2n, in ∈ {0, 1},then bitrevk(i) =

∑k−1
n=0 ik−1−n2n. Hene for a length ℓ = 2k in-plae FFT, the input oe�ient

ai must be plaed in loation bitrevk(i) in the data array. The output oe�ient aj is stored inloation j. The reordering proess due to in-plae FFT algorithms is alled �srambling�.Proedure FFT_DIT (ℓ, a, ω)Input: Transform length ℓ = 2k, k ∈ NInput oe�ients a0,...,ℓ−1 ∈ R, stored in bit-reversed orderRoot of unity ω ∈ R,ωℓ = 1, ωi 6= 1 for 0 < i < ℓOutput: The FFT oe�ients aj =
∑ℓ−1

i=0 aiω
ij stored in normal order, replaing theinputif ℓ > 1 thenFFT_DIT(ℓ/2, a0,...,ℓ/2−1, ω2) ;FFT_DIT(ℓ/2, aℓ/2,...,ℓ−1, ω2) ;for 0 ≤ i ≤ ℓ/2− 1 do

(ai, ai+ℓ/2) := (ai + ωiai+ℓ/2, ai − ωiai+ℓ/2) ;Algorithm 1: Reursive Cooley-Tukey algorithm for Fast Fourier TransformThe Cooley-Tukey in-plae FFT an be used by passing the input oe�ients in bit-reverseorder, and fast algorithms exist to perform this permutation [86℄. However, for omputing on-volution produts with the FFT, a more elegant solution is available. Gentleman and Sande [47℄presented an alternative algorithm for omputing the FFT that an be derived by splitting theomputation of aj in (1.3) by even and odd j rather than even and odd i:
a2j =

ℓ−1
∑

i=0

aiω
2ij =

ℓ/2−1
∑

i=0

(ai + ai+ℓ/2)ω
2ij

a2j+1 =

ℓ−1
∑

i=0

aiω
i(2j+1) =

ℓ/2−1
∑

i=0

ωi(ai − ai+ℓ/2)ω
2ij

12 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmHene we an ompute the length-ℓ FFT from the two length-ℓ/2 FFTs of the oe�ients
aeveni = ai + ai+ℓ/2 (1.6)
aoddi = ωi(ai − ai+ℓ/2),for 0 ≤ i < ℓ/2. This leads to Algorithm 2 whih takes unsrambled input (oe�ient ai inarray loation i) and produes srambled output (oe�ient aj in array loation bitrevk(j)).Additionally, the Cooley-Tukey algorithm an be used for an inverse FFT simply by replaing ωby ω−1 everywhere and dividing eah output oe�ient by ℓ. For the pair-wise multipliation,whether the FFT oe�ients are srambled or not does not matter, so long as both sequenesof FFT oe�ients are in the same order. Hene we an use the Gentleman-Sande algorithm foromputing forward FFTs produing srambled output, do point-wise multipliation of the FFToe�ients, and use the Cooley-Tukey algorithm for the inverse FFT taking srambled input andproduing output in normal order. This way, expliit re-ordering with a bit-reversal algorithmis avoided ompletely.Proedure FFT_DIF (ℓ, a, ω)Input: Transform length ℓ = 2k, k ∈ NInput oe�ients a0,...,ℓ−1 ∈ R stored in normal orderRoot of unity ω ∈ R,ωℓ = 1, ωi 6= 1 for 0 < i < ℓOutput: The FFT oe�ients aj =

∑ℓ−1
i=0 aiω

ij , stored in bit-reversed order, replaingthe inputif ℓ > 1 thenfor 0 ≤ i ≤ ℓ/2− 1 do
(ai, ai+ℓ/2) := (ai + ai+ℓ/2, ω

i(ai − ai+ℓ/2)) ;FFT_DIF(ℓ/2, a0,...,ℓ/2−1, ω2) ;FFT_DIF (ℓ/2, aℓ/2,...,ℓ−1, ω2) ;Algorithm 2: Reursive Gentleman-Sande algorithm for Fast Fourier TransformWhen multiplying two polynomials A(x) of degree m and B(x) of degree n, the produtpolynomial C(x) has degree m+n, and an FFT of length m+n+1 ≤ ℓ is required to determinethe oe�ients of C(x) uniquely. The same transform length must be used for the forwardtransforms (evaluating A(x) and B(x)) and for the inverse transform (interpolating C(x)); inthe forward transform, the oe�ients of A(x) and B(x) are padded with zeros to �ll the inputof the FFT up to the transform length.If the degrees of the input polynomials are too large so that m + n + 1 > ℓ, the produtpolynomial C(x) annot be interpolated orretly. Let C(x) = xℓC1(x)+C0(x), deg(C0(x)) < ℓ.Sine ωℓ = 1, C(ωj) = C1(ω
j)+C0(ω

j) for all j ∈ N, so polynomials C(x) and C(x) mod (xℓ − 1)have the same FFT oe�ients, and the interpolation of polynomials with an inverse FFT oflength ℓ from a given set of FFT oe�ients is unique only modulo xℓ − 1. In other words,the oe�ients of too high powers xi, i ≥ ℓ, in the produt polynomial are wrapped around andadded to the oe�ients of xi mod ℓ, also alled yli wrap-around or a yli onvolution. Henefor inputs A(x), B(x), a onvolution produt with a length-ℓ FFT produes the ℓ oe�ientsof A(x)B(x) mod (xℓ − 1); if the produt polynomial has degree less than ℓ, its oe�ients arenot disturbed by this modulus. Algorithm 3 shows a yli onvolution produt using the FastFourier Transform.The impliit polynomial modulus in an FFT onvolution an sometimes be used pro�tably,but often a modulus other than xℓ−1 is desired. This is aomplished with a weighted transform.

1.1. Introdution 13
a0 a1 a2 a3 a4 a5 a6 a7

+/−
·ω0

8

+/−
·ω1

8

+/−
·ω2

8

+/−
·ω3

8

+/−
·ω0

4

+/−
·ω1

4

+/−
·ω0

4

+/−
·ω1

4

+/−
·ω0

2

+/−
·ω0

2

+/−
·ω0

2

+/−
·ω0

2

a0 a4 a2 a6 a1 a5 a3 a7

Gentleman-S
ande Cooley-Tukey

Figure 1.1: Data �ow in a length-8 FFT. Here, ωn denotes an n-th primitive root of unity. Readfrom top to bottom, the diagram shows the data �ow of the Gentleman-Sande algorithm with
ai as input oe�ients and ai as output. Read from bottom to top, it shows the data �ow of theCooley-Tukey algorithm, with ai as input and ai as output.The FFT input oe�ients ai and bi are multiplied by weights wi, for 0 ≤ i < ℓ; after the pair-wise multipliation and inverse FFT, the output oe�ients ci are multiplied by w−i. In e�et,the FFT omputes C(x) so that C(wx) = A(wx)B(wx) mod (xℓ − 1). With A(wx)B(wx) =
xℓwℓC1(wx)+C0(wx), we have C(wx) = wℓC1(wx)+C0(wx) and thus C(x) = wℓC1(x)+C0(x),whih auses the wrapped-around part to be multiplied by wℓ and orresponds to a multipliation
C(x) = A(x)B(x) mod (xℓ − wℓ). To allow a partiular polynomial modulus xℓ − r, the ring
R over whih the FFT is performed must ontain a w so that wℓ = r, i.e., a (not neessarilyprimitive) ℓ-th root of r. For example if a modulus of xℓ +1 is desired, we require that w = ℓ

√
−1,whih is a (2ℓ)-th root of unity (and neessarily primitive if ℓ is a power of 2), exists in R. Inthis ase the wrapped-around oe�ients of xi, ℓ ≤ i < 2ℓ, are subtrated from the oe�ientsof xi mod ℓ, whih leads to a negayli onvolution.Unfortunately we annot apply the FFT diretly to the problem of multiplying integers (viapolynomials with integer oe�ients) as the ring of integers Z does not o�er any primitive rootsof unity of order greater than 2. In order to arry out the FFT, we must map the oe�ients ofthe polynomials A(x) and B(x) to some other ring �rst whih has a primitive root of unity oforder ℓ and the appropriate weight w if a weighted transform is desired, where ℓ is a unit, andwhere the oe�ients ci of the produt polynomial an be identi�ed uniquely. This mapping iswhat distinguishes di�erent FFT based integer multipliation algorithms.

14 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmInput: Convolution length ℓ = 2kInput oe�ients a0,...,ℓ−1, b0,...,ℓ−1 ∈ R, where R supports a length-ℓ FFTOutput: Coe�ients c0,...,ℓ−1 ∈ R of yli onvolution produt of a and bData: t0,...,ℓ−1, temporary storage/* Compute primitive ℓ-th root of unity in R */
ω := ℓ

√
1, 1 ∈ R;/* Copy a to c, ompute forward FFT in-plae */

c0,...,ℓ−1 := a0,...,ℓ−1;FFT_DIF(ℓ, c0,...,ℓ−1, ω) ;/* Copy b to t, ompute forward FFT in-plae */
t0,...,ℓ−1 := b0,...,ℓ−1;FFT_DIF(ℓ, t0,...,ℓ−1, ω) ;/* Compute pair-wise produts */for 0 ≤ i ≤ ℓ− 1 do

ci := ci · ti;/* Compute inverse FFT in-plae */FFT_DIT(ℓ, c0,...,ℓ−1, ω−1);for 0 ≤ i ≤ ℓ− 1 do
ci := ci/ℓ;Algorithm 3: Cyli onvolution produt with the Fast Fourier Transform1.2 An E�ient Implementation of Shönhage-Strassen's Algo-rithmShönhage and Strassen [90℄ were the �rst to present pratial algorithms for integer multiplia-tion based on the FFT. They gave two possibilities for performing the onvolution produt via theFFT: one over the omplex numbers C whih has omplexity O

(

N log(N) log(log(N))1+ǫ
) for anypositive ǫ and with input numbers of N bits, and one over a residue lass ring R = Z/ (2n + 1) Zwith omplexity O(N log(N) log(log(N))). Even though both methods were published in thesame paper and are both used in pratie, �Shönhage-Strassen's algorithm� usually refers onlyto the latter.Sine Fourier transforms over C are ubiquitous in signal proessing, data ompression, andmany other �elds of sienti� omputation, a wealth of publiations on and ountless implemen-tations of the omplex FFT exist. General-purpose omplex FFT implementations (e.g., [42℄)an be readily used for large-integer multipliation, although speialized implementations forfast onvolution produts with purely real input o�er further opportunities for optimization.The �eld of omplex FFTs and their e�ient implementation is vast, and we do not explore ithere any further, but fous on onvolution produts using FFTs over the ring Z/(2n + 1)Z.1.2.1 OverviewShönhage-Strassen's algorithm (SSA) redues the multipliation of two input integers a and b to

ℓ multipliations in Rn = Z/ (2n + 1) Z, for suitably hosen ℓ and n. In order to ahieve the statedomplexity, these multipliations must be performed e�iently, and SSA alls itself reursivelyfor this purpose, until the numbers to be multiplied are small enough for simpler algorithms suhas the grammar-shool, Karatsuba, or Toom-Cook methods. In order to failitate this reursiveuse of SSA, it is formulated to aept any two integers 0 ≤ a, b < 2N + 1 for a given N as input

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 15and ompute the produt ab mod (2N + 1). If the inputs are suh that ab < 2N + 1, then thisSSA of ourse lets us ompute the orret integer produt ab, so we an use this algorithm (byhoosing N suitably) to perform integer multipliation. If the produt of the inputs is known notto exeed 2N + 1, optimizations are possible that allow performing the top-most reursion levelof SSA more e�iently, see 1.2.6. The multipliation modulo 2N + 1 is done with a negaylionvolution of length ℓ using an FFT over the ring Rn, so that arithmeti modulo 2N +1 an beperformed via arithmeti modulo xℓ + 1, and the pair-wise produts in Rn an use SSA again.Thus SSA maps the omputation of ab in N to the omputation of ab mod (2N + 1) in RN ,maps this produt in RN to a produt of polynomials A(x)B(x) in Z[x]/(xℓ + 1), and mapsthis onvolution produt to Rn[x]/(xℓ + 1) so that Rn supports a length-ℓ weighted FFT fora negayli onvolution and allows lifting the oe�ients of A(x)B(x) mod (xℓ + 1) uniquely.Figure 1.2 shows the sequene of mappings.
Z =⇒RN =⇒ Z[x] mod (xℓ + 1) =⇒ Rn[x] mod (xℓ + 1) =⇒ Rn

n smallenough?No, reurse Yes, multiplyFigure 1.2: Diagram of mappings in the Shönhage-Strassen algorithm.1.2.2 Desription of SSAFor given a, b whose produt modulo 2N + 1, 4 | N , is sought, write N = ℓM where ℓ = 2k,
k ≥ 2, and hoose an n so that

n = ℓm, (1.7)
n ≥ 2M + k.The two onditions imply n >

√
2N . The hoie of good values for N , ℓ, and n is of greatimportane for the performane of SSA; how to selet these is desribed in 1.2.7.Let Rn = Z/(2n + 1)Z. Sine 2n = (2m)ℓ ≡ −1 (mod 2n + 1), 2m is an (2ℓ)-th primitive rootof unity in Rn, so that it supports FFTs for yli onvolutions of power-of-two length up to 2ℓ,or weighted FFTs for negayli onvolutions up to length ℓ.From the input integers 0 ≤ a, b < 2N + 1 we form polynomials

A(x) =

ℓ−1
∑

i=0

aix
i, 0 ≤ ai < 2M for 0 ≤ i < ℓ− 1 (1.8)

0 ≤ aℓ−1 ≤ 2M ,that is, we ut a into ℓ piees of M bits eah, exept the last piee may be equal to 2M . Doinglikewise for b, we have a = A(2M) and b = B(2M). To obtain the produt c = ab mod (2N + 1),we an use a negayli onvolution to ompute the produt polynomial C(x) = A(x)B(x) mod
(xℓ + 1) so that, when the polynomials are evaluated at x = 2M , the polynomial modulus xℓ + 1preserves the residue lass modulo 2N + 1 =

(

2M
)ℓ

+ 1 of the integer produt.

16 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmThe oe�ients of the produt polynomial C(x) =
∑ℓ−1

i=0 cix
i an be lifted exatly from Rnif ci mod (2n +1) is unique for all possible values of eah ci. Due to the negayli wrap-around,eah ci an be de�ned by

ci = clowi − chighiwith
clowi =

∑

0≤j≤i

ajbi−j

chighi =
∑

i<j<ℓ

ajbi−j+ℓ,where all clowi and chighi are non-negative and, applying the bounds from (1.8), satisfy
clowi < (i + 1)22M , 0 ≤ i < ℓ
chighi < (ℓ− 1− i)22M , 0 ≤ i < ℓ− 2
chighℓ−2 ≤ 22M .Thus, for all 0 ≤ i < ℓ,

((i + 1)− ℓ)22M ≤ ci < (i + 1)22M ,so eah ci is on�ned to an interval of length 22M ℓ and it su�es to hoose 2n + 1 > 22M ℓ, or
n ≥ 2M + k with ℓ = 2k. This minimal hoie of n = 2M + k requires that the lifting algorithmadjusts the range of eah ci depending on i; if an algorithm is desired that works independentlyof i, we must hoose n ≥ 2M + k + 1.Hene the onditions on n given in (1.7) are su�ient to allow the omputation of C(x) =
A(x)B(x) mod xℓ + 1 with a negayli onvolution by a weighted FFT over the ring Rn.Given the oe�ients of the produt polynomial C(x), the integer c = C(2M) mod (2N + 1) =
ab mod (2N + 1) an be omputed in the �nal arry propagation step. The ci may be negative orgreater than 2M −1, so 0 ≤ C(2M) < 2N +1 does not neessarily hold and the arry propagationneeds to take the modulus 2N + 1 into aount.The SSA thus onsists of �ve onseutive steps, shown below. In this example, the oe�ients
ci of the produt polynomial overwrite the oe�ients ai.1. Deompose a and b and apply weightsAlloate memory for array a[i], 0 ≤ i < ℓ, with at least n+1 bits of storage per array entryStore in a[i] the i-th M -bit part of aApply weights by setting a[i] := wi · a[i] mod (2n + 1), w = 2n/ℓDo likewise for array b[]2. Forward transform of a and bPerform length-ℓ FFT in-plae on array a[] working modulo 2n + 1, with root of unity

ω = 22n/ℓDo likewise for array b[]3. Pair-wise multiplySet a[i] := a[i] · b[i] mod (2n + 1) for 0 ≤ i < ℓ4. Inverse transformPerform length-ℓ inverse FFT in-plae on array a[] working modulo 2n+1, inluding divisionby ℓ

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 175. Apply inverse weights, arry propagationUn-apply weights by setting a[i] := w−i · a[i] mod (2n + 1), w = 2n/ℓCompute sum c =
(

∑ℓ−1
i=0 ai2

iM
)

mod
(

2N + 1
)Most of the ideas for the SSA presented so far were already present in the papers by Shönhageand Strassen [90℄, or in follow-up papers by Shönhage [87℄. We desribe now several pratialimprovements that allow SSA to multiply very large integers rapidly on ontemporary omputers.The implementation is based on the implementation of SSA in the GNU Multiple Preisionarithmeti library (GMP) [49℄, version 4.2.1.1.2.3 Arithmeti Modulo 2n + 1 with GMPArithmeti operations modulo 2n + 1 have to be performed during the forward and inversetransforms, the point-wise produts, when applying the weight signal, and when unapplying it.Thanks to the fat that the primitive roots of unity are powers of two, the only needed operationsoutside the point-wise produts are additions, subtrations, and multipliations by a power oftwo whih an be performed by bit-wise shifts on a binary omputer. Sine 22n ≡ 1 (mod 2n+1),division by 2k an be redued to multipliation by 22n−k. Redution modulo 2n +1 is inexpensiveas well, sine a12

n + a0 ≡ a0 − a1 (mod 2n + 1), so the redution again requires only a bit-wiseshift and a subtration.To simplify arithmeti modulo 2n + 1, we require n to be a multiple of β, the number of bitsper mahine word. Sine n must also be a multiple of ℓ = 2k, this usually is not an additionalonstraint unless k < 5 on a 32-bit omputer or k < 6 on a 64-bit omputer, and SSA is typiallyused for numbers that are large enough so that the transform length is at least 64. Let m = n/βbe the number of omputer words orresponding to an n-bit number. A residue mod 2n + 1 hasa semi-normalized representation with m full words and one arry of weight 2n:
a = (am, am−1, . . . , a0),with 0 ≤ ai < 2β for 0 ≤ i < m, and 0 ≤ am ≤ 1.The addition of two suh representations is done as follows (we give here the C ode usingGMP funtions): = a[m℄ + b[m℄ + mpn_add_n (r, a, b, m);r[m℄ = (r[0℄ <);MPN_DECR_U (r, m + 1, - r[m℄);The �rst line of this algorithm adds (am−1, . . . , a0) and (bm−1, . . . , b0), puts the low m wordsof the result in (rm−1, . . . , r0), and adds the out arry to am + bm; we thus have 0 ≤ c ≤ 3. Theseond line yields rm = 0 if r0 ≥ c, in whih ase we simply subtrat c from r0 at the third line.Otherwise rm = 1, and we subtrat c− 1 from r0: a borrow may propagate, but at most to rm.In all ases r = a + b mod (2n + 1), and r is semi-normalized.The subtration is done in a similar manner: = a[m℄ - b[m℄ - mpn_sub_n (r, a, b, m);r[m℄ = (== 1);MPN_INCR_U (r, m + 1, r[m℄ -);After the �rst line, we have −2 ≤ c ≤ 1. If c = 1, then rm = 1 at the seond line, and thethird line does nothing. Otherwise, rm = 0 at the seond line, and we add −c to r0, where thearry may propagate up to rm. In all ases r = a− b mod (2n + 1), and r is semi-normalized.

18 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmThe multipliation by 2e is more triky to implement. However this operation mainly appearsin the butter�ies � see below � [a, t]← [a + b, (a− b)2e] of the forward and inverse transforms,whih may be performed as follows:1. Write e = d · β + s with 0 ≤ s < β, where β is the number of bits per word2. Deompose a = (a1, a0), where a1 ontains the upper d words3. Idem for b4. t := (a0 − b0, b1 − a1)5. a := a + b6. t := t · 2sStep 4 means that the most (m−d) signi�ant words from t are formed with a0− b0, and theleast d signi�ant words with b1 − a1, where we assume that borrows are propagated, so that tis semi-normalized. Thus the only real multipliation by a power of two is that of step 6, whihmay be e�iently performed with GMP's mpn_lshift routine.If one has a ombined mpn_addsub routine whih simultaneously omputes x + y and x− yfaster than separate mpn_add and mpn_sub alls, then step 5 an be written a := (b1 +a1, a0 +b0)whih shows that t and a may be omputed with two mpn_addsub alls.1.2.4 Improved FFT Length Using √2Sine all prime fators of 2n + 1 are p ≡ 1 (mod 8) if 4 | n, 2 is a quadrati residue in Rn,and it turns out that √2 is of a simple enough form to make it useful as a root of unity withpower-of-two order. Spei�ally, (±23n/4 ∓ 2n/4
)2 ≡ 2 (mod 2n + 1), whih is easily heked byexpanding the square. Hene for a given n = 2km, k ≥ 2, we an use, e.g., √2 = 23n/4−2n/4 as aroot of unity of order 2k+2 to double the possible transform length. In the ase of the negaylionvolution, this allows a length 2k+1 transform, and √2 is used only in the weight signal. Fora yli onvolution, √2 is used normally as a root of unity during the transform, allowing atransform length of 2k+2. This idea is mentioned in [8, �9℄ where it is redited to Shönhage,who later pointed out [88℄ that he was aware of this trik from the start, but published it only�enoded� in [89, exerise 18℄.Multipliation by an odd power of √2 involves two binary shifts and a subtration whihrequires more arithmeti than multipliation by a power of 2, but is still inexpensive enoughthat the smaller pair-wise produts in the onvolution due to larger transform length lead to anet gain. In our implementation, this √2 trik saved roughly 10% on the total time of integermultipliation.Unfortunately, using higher roots of unity for the transform is not feasible as prime divisors of

2n +1 are not neessarily ongruent to 1 (mod 2k+3). Deiding whether they are or not requiresfatoring 2n+1, and even if they are as in the ase of the eighth Fermat number F8 = 2256+1 [17℄,there does not seem to be a simple form for 4
√

2 whih would make it useful as a root of unity inthe transform.1.2.5 Improved Cahe LoalityWhen multiplying large integers with SSA, the time spent in aessing data for performing theFourier transforms is non-negligible; espeially sine the operations performed on the data areso inexpensive, the relative ost of memory aess is quite high. The literature is rih withpapers dealing with the organization of the omputations in order to improve the data loalityand thus ahe e�ieny during an FFT. However, most of these papers are onerned withontexts whih are di�erent from ours: usually the oe�ients are small and most often they

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 19are omplex �oating-point numbers represented as a pair of double's. Also there is a variety oftarget platforms, from embedded hardware implementations to super-salar omputers.We have tried to apply several of these approahes in our ontext where the oe�ients areintegers modulo 2n +1 that eah oupy at least a few ahe lines and where the target platformis a standard PC workstation.In this work, we onentrate on multiplying large, but not huge integers. By this we meanthat we onsider only 3 levels of memory for our data: level 1 ahe, level 2 ahe, and standardRAM. In the future one might also want to onsider the ase where we have to use the hard diskas a 4th level of storage.Here are the orders of magnitude for these memories, to �x ideas: on a typial Opteron, aahe line is 64 bytes; the L1 data ahe is 64 KB; the L2 ahe is 1 MB; the RAM is 8 GB. Thesmallest oe�ient size (i.e., n-bit residues) we onsider is about 50 mahine words, that is 400bytes. For very large integers, a single oe�ient barely �ts into the L1 ahe. For instane, inour implementation, when multiplying two integers of 105, 000, 000 words eah, a transform oflength 215 is used with oe�ients of size 52 KB.In an FFT omputation, the main operation is the butter�y operation as desribed in equa-tions (1.5) and (1.6). This is an operation in a ring Rn that, for a Gentleman-Sande FFT,omputes a + b and (a − b)ω, where a and b are oe�ients in Rn and ω is some root of unity.In SSA this root of unity is a power of 2.The very �rst FFT algorithm is the iterative one. In our ontext this is a really bad idea.The main advantage of it is that the data is aessed in a sequential way. In the ase where theoe�ients are small enough so that several of them �t in a ahe line, this saves many ahemisses. But in our ase, ontiguity is irrelevant due to the size of the oe�ients ompared toahe lines.The next very lassial FFT algorithm is the reursive one. In this algorithm, at a ertainlevel of reursion, we work on a small set of oe�ients, so that they must �t in the ahe. Thisversion (or a variant of it) was implemented in GMP up to version 4.2.1. This behaves well formoderate sizes, but when multiplying large numbers, everything �ts in the ahe only at the tailof the reursion, so that most of the transform is already done when we are at last in the ahe.The problem is that before getting to the appropriate reursion level, the aesses are very aheunfriendly.In order to improve the loality for large transforms, we have tried three strategies found inthe literature: the Belgian approah, the radix-2k transform, and Bailey's 4-step algorithm.The Belgian transformBrokmeyer et al. [18℄ propose a way of organizing the transform that redues ahe misses. Inorder to explain it, let us �rst de�ne a tree of butter�ies as follows (we don't mention the rootof unity for simpliity):TreeBfy(A, index, depth, stride)Bfy(A[index℄, A[index+stride℄)if depth > 1TreeBfy(A, index-stride/2, depth-1, stride/2)TreeBfy(A, index+stride/2, depth-1, stride/2)An example of a tree of depth 3 is given on the right of Figure 1.3. Now, the depth ofa butter�y tree is bounded by a value that is not the same for every tree. For instane, onFigure 1.3, the butter�y tree that starts with the butter�y between a0 and a4 has depth 1: one

20 Chapter 1. Integer Multipliation with Shönhage-Strassen's Algorithm
a7

a6

a5

a4

a3

a2

a1

a0
Step 1 Step 2 Step 3

a7

a3

a5

a1

a6

a2

a4

a0

Figure 1.3: The FFT iruit of length 8 and a butter�y tree of depth 3.an not ontinue the tree on step 2. Similarly, the tree starting with the butter�y between a1 and
a5 has depth 1, the tree starting between a2 and a6 has depth 2 and the tree starting between
a3 and a7 has depth 3. More generally, the depth an be omputed by a simple formula.One an hek that by onsidering all the trees of butter�ies starting with an operation atstep 1, we over the omplete FFT iruit. It remains to �nd the right ordering for omputingthose trees of butter�ies. For instane, in the example of Figure 1.3, it is important to do thetree that starts between a3 and a7 in the end, sine it requires data from all the other trees.One solution is to perform the trees of butter�ies following the bitrev order. One obtainsthe following algorithm, where ord_2 stands for the number of trailing zeros in the binary repre-sentation of an integer (together with the 4-line TreeBfy routine, this is a reursive desriptionof the 36-line routine from [18, Code 6.1℄):BelgianFFT(A, k)l = 2^{k-1}for i := 0 to l-1TreeBfy(A, bitrev(i, k-1), 1+ord_2(i+1), l)Inside a tree of butter�ies, we see that most of the time, the butter�y operation will involve aoe�ient that has been used just before, so that it should still be in the ahe. Therefore anapproximate 50% ahe-hit is provided by onstrution, and we an hope for more if the data isnot too large ompared to the ahe size.We have implemented this in GMP, and this saved a few perent for large sizes, thus on-�rming the fat that this approah is better than the lassial reursive transform.Higher radix transformsThe priniple of higher radix transforms is to use an atomi operation whih groups severalbutter�ies. In Arndt's book [3℄ the reader will �nd a desription of several variants in this spirit.The lassial FFT an be viewed as a radix-2 transform. The next step is a radix-4 transform,where the atomi operation has 4 inputs and 4 outputs (without ounting roots of unity) andgroups 4 butter�ies of 2 onseutive steps of the FFT.We an then build a reursive algorithm upon this atomi operation. Of ourse, sine weperform 2 radix-2 steps at a time, the number of levels in the reursion is redued by a fatorof up to 2 from log2(ℓ) to ⌈log4(ℓ)⌉ (we have to handle the last reursion level by a radix-2transform if the number k of radix-2 FFT levels is odd).In the literature, the main interest for higher radix transforms omes from the fat that thenumber of operations is redued for a transform of omplex numbers (this is done by exhibiting

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 21a free multipliation by i). In our ase, the number of operations remains the same. However,in the atomi blok eah input is used in two butter�ies, so that the number of ahe misses isless than 50%, just as for the Belgian approah. Furthermore, with the reursive struture, justas for the lassial reursive FFT, at some point we deal with a number of inputs whih is smallenough so that everything �ts in the ahe.We have tested this approah, and this was faster than the Belgian transform by a fewperent.The next step after radix-4 is radix-8 whih works in the same spirit, but grouping 3 levelsat a time. We have also implemented it, but this saved nothing, and was even sometimes slowerthan the radix-4 approah. Our explanation is that for small numbers, a radix of 4 is lose tooptimal with respet to ahe loality, and for large numbers, the number of oe�ients that �tin the ahe is rather small and we have misses inside the atomi blok of 12 butter�ies.More generally, radix-2t groups t levels together, with a total of t2t−1 butter�ies, over 2tresidues. If all those residues �t in the ahe, the ahe miss rate is less than 1/t. Thus theoptimal strategy seems to hoose for t the largest integer suh that 2tn bits �t in the ahe(either L1 or L2, whihever is the fastest ahe where a single radix-2 butter�y �ts).Bailey's 4-step algorithmThe algorithm we desribe here an be found in a paper by Bailey [4℄. In it, the reader will �ndearlier referenes traing bak the original idea, whih was in fat already mentioned in [47℄. Forsimpliity we stik to the �Bailey's algorithm� denomination.A way of seeing Bailey's 4-step algorithm is as a radix-√ℓ transform, where ℓ = 2k is thelength of the input sequene. In other words, instead of grouping 2 steps as in radix-4, we group
k/2 steps. To be more general, let us write k = k1 + k2, where k1 and k2 are to be thoughtas lose to k/2, but this is not really neessary. Then Bailey's 4-step algorithm onsists in thefollowing phases:1. Perform 2k2 transforms of length 2k1 ;2. Multiply the data by weights;3. Perform 2k1 transforms of length 2k2 .There are only three phases in this desription. The fourth phase is usually some matrix trans-position2, but this is irrelevant in our ase: the oe�ients are large so that we keep a table ofpointers to them, and this transposition is just pointer exhanges whih are basially for free,and �t very well in the ahe.The seond step involving weights is due to the fat that in the usual desription of Bailey's4-step algorithm, the transforms of length 2k1 are exatly Fourier transforms, whereas the neededoperation is a twisted Fourier transform where the roots of unity involved in the butter�ies aredi�erent (sine they involve a (2k)-th root of unity, whereas the lassial transform of length 2k1involves a (2k1)-th root of unity). In the lassial FFT setting this is very interesting, sine wean then reuse some small-dimension implementation that has been very well optimized. In ourase, we have found it better to write separate ode for this twisted FFT, so that we merge the�rst and seond phases.2Indeed, Bailey's algorithm might be viewed as a two-dimensional transform of a matrix with 2k1 rows and
2k2 olumns, where Phase 1 performs 2k2 one-dimensional transforms on the olumns, and Phase 3 performs 2k1one-dimensional transforms on the rows.

22 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmThe interest of this way of organizing the omputation is again not due to a redution ofthe number of operations, sine they are exatly the same as with the other FFT approahesmentioned above. The goal is to help loality. Indeed, assume that √ℓ oe�ients �t in theahe, then the number of ahe misses is at most 2ℓ, sine eah all to the internal FFT ortwisted FFT operates on √ℓ oe�ients.Of ourse we are interested in numbers for whih √ℓ oe�ients do not �t in the L1 ahe, butfor all numbers we might want to multiply, they do �t in the L2 ahe. Therefore the strutureof the ode follows the memory hierarhy: at the top level of Bailey's algorithm, we deal withthe RAM vs L2 ahe loality question, then in eah internal FFT or twisted FFT, we an takeare of the L2 vs L1 ahe loality question. This is done by using the radix-4 variant inside ourBailey-algorithm implementation.We have implemented this approah (with a threshold for ativating Bailey's algorithm onlyfor large sizes), and ombined with radix-4, this gave us our best timings. We have also tried ahigher dimensional transform, in partiular 3 steps of size 3
√

ℓ. This did not help for the sizes weonsidered.Mixing several phasesAnother way to improve loality is to mix di�erent phases of the algorithm in order to do as muhwork as possible on the data while they are in the ahe. An easy improvement in this spiritis to mix the pointwise multipliation and the inverse transform, in partiular when Bailey'salgorithm is used. Indeed, after the two forward transforms have been omputed, one an loadthe data orresponding to the �rst olumn, do the pointwise multipliation of its elements, andreadily perform the small transform of this olumn. Then the data orresponding to the seondolumn is loaded, multiplied and transformed, and so on. In this way, one saves one full passon the data. Taking the idea one step further, assuming that the forward transform for the �rstinput number has been done already (or that we are squaring one number), after performingthe olumn-wise forward transform on the seond number we an immediately do the point-wisemultiply and the inverse transform on the olumn, so saving another pass over memory.Following this idea, we an also merge the �deompose� and �reompose� steps with thetransforms, again to save a pass on the data. In the ase of the �deompose� step, there is moreto it sine one an also save unneessary opies by merging it with the �rst step of the forwardtransform.The �deompose� step onsists of utting parts of M bits from the input numbers, thenmultiplying eah part ai by wi modulo 2n + 1, giving a′i. If one losely looks at the �rst FFTlevel, it will perform a butter�y between a′i and a′i+ℓ/2 with w2i as multiplier. This will ompute
a′i + a′i+ℓ/2 and a′i − a′i+ℓ/2, and multiply the latter by w2i. It an be seen that the M non-zerobits from a′i and a′i+ℓ/2 do not overlap, thus no real addition or subtration is required: theresults a′i + a′i+ℓ/2 and a′i− a′i+ℓ/2 an be obtained with just opies and ones' omplements. As aonsequene, it should be possible to ompletely avoid the �deompose� step and the �rst FFTlevel, by diretly starting from the seond FFT level, whih for instane will add a′i + a′i+ℓ/2 to
(a′j−a′j+ℓ/2)w

2j ; here the four operands a′i, a
′
i+ℓ/2, a

′
j , a

′
j+ℓ/2 will be diretly taken from the inputinteger a, and the impliit multiplier w2j will be used to know where to add or subtrat a′j and

a′j+ℓ/2. This example illustrates the kind of savings obtained by avoiding trivial operations likeopies and ones' omplements, and furthermore improving the loality. This idea was not usedin the results in �1.3.

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 231.2.6 Multipliation without Redution Modulo 2N + 1The reason why SSA uses a negayli onvolution is that it allows the algorithm to be usedreursively: the �pair-wise produts� modulo 2n + 1 an in turn be performed using the samealgorithm, eah one giving rise to ℓ′ smaller pair-wise produts modulo 2n′

+ 1 (where n′ mustbe divisible by ℓ′). A drawbak of this approah is that it requires a weighted transform, i.e.,additional operations before the forward transforms and after the inverse transform, and an
(2ℓ)-th root of unity for the weights whih halves the possible transform length for a given n.The negayli transform is needed only to failitate a modulus of xℓ + 1 in the polynomialmultipliation whih is ompatible with the modulus of 2N +1 of the integer multipliation. Butat the top-most reursion level, we hoose N so that the integer produt c = ab is not a�eted byany modulo redution, and no partiular modulus for the integer and hene for the polynomialmultipliation needs to be enfored.Therefore one an replae RN = Z/(2N + 1)Z by Z/(2N − 1)Z in the top-most reursionlevel of SSA, and replae the negayli by a simple yli onvolution (without any weights inthe transform), to ompute an integer produt mod 2N − 1, provided that c = ab < 2N − 1.We all this a �Mersenne transform,� whereas the original SSA performs a �Fermat transform�3.This idea of using a Mersenne transform is already mentioned by Bernstein [8℄ where it is alled�yli Shönhage-Strassen trik�.Despite the fat that it an be used at the top level only, the Mersenne transform is never-theless very interesting for the following reasons:
• a Mersenne transform modulo 2N − 1, ombined with a Fermat transform modulo 2N + 1 andCRT reonstrution, an be used to ompute a produt of 2N bits;
• as mentioned, a Mersenne transform an use a larger FFT length ℓ = 2k than the orrespondingFermat transform. While ℓ must divide N for the Fermat transform so that the weight w = 2N/ℓis a power of two, it only needs to divide 2N for the Mersenne transform so that ω = 22N/ℓ isa power of two. This improves the e�ieny for ℓ near √N , and enables one to use a value of ℓloser to optimal. (The FFT length an be doubled again by using √2 as a root of unity in thetransform as desribed in �1.2.4.)The above idea an be generalized to a Fermat transform mod 2aN + 1 and a Mersennetransform mod 2bN − 1 for small integers a, b.Lemma 1. Let a, b be two positive integers. Then at least one of gcd(2a + 1, 2b − 1) and
gcd(2a − 1, 2b + 1) is 1.Proof. Both gds are obviously odd. Let g = gcd(a, b), r = 2g, a′ = a/g, b′ = b/g. Denoteby ordp(r) the multipliative order of r (mod p) for an odd prime p. In the ase of b′ odd, p |
rb′−1⇒ ordp(r) | b′ ⇒ 2 ∤ ordp(r), and p | ra′

+1⇒ ordp(r) | 2a′ and ordp(r) ∤ a′ ⇒ 2 | ordp(r),hene no prime an divide both rb′ − 1 and ra′

+ 1. In the other ase of b′ even, a′ must be odd,and the same argument holds with the roles of a′ an b′ exhanged, so no prime an divide both
ra′ − 1 and rb′ + 1.It follows from Lemma 1 that for two positive integers a and b, either 2aN + 1 and 2bN − 1are oprime, or 2aN − 1 and 2bN + 1 are oprime, thus we an use one Fermat transform of size
aN (respetively bN) and one Mersenne transform of size bN (respetively aN). However thisdoes not imply that the reonstrution is easy: in pratie we used b = 1 and made only a vary(see �1.2.7).3Here, a �Fermat transform� is meant modulo 2N +1, without N being neessarily a power of two as in Fermatnumbers.

24 Chapter 1. Integer Multipliation with Shönhage-Strassen's Algorithm1.2.7 Parameter Seletion and Automati TuningSSA takes for n a multiple of ℓ, so that ω = 22n/ℓ is a primitive ℓ-th root of unity, and w = 2n/ℓis used for the weight signal (or, if √2 is used as desribed in 1.2.4, ω = 2n/ℓ and w = (
√

2)n/ℓ.The following omits the use of √2 for simpliity). As shown in 1.2.3, this ensures that all FFTbutter�ies involve only additions/subtrations and shifts on a radix 2 omputer. In pratie onemay additionally require n to be a multiple of the mahine word size β to simplify arithmetimodulo 2n + 1.For a given size N divisible by ℓ = 2k, we de�ne the e�ieny of the FFT-ℓ sheme:
2N/ℓ + k

n
,where n is the smallest multiple of ℓ larger than or equal to 2N/ℓ + k. For example for N =

1, 000, 448 and ℓ = 210, we have 2N/ℓ + k = 1964, and the next multiple of ℓ is n = 2ℓ = 2048,therefore the e�ieny is 1964
2048 ≈ 96%. For N = 1, 044, 480 with the same value of ℓ, we have

2N/ℓ + k = 2050, and the next multiple of ℓ is n = 3ℓ = 3072, with an e�ieny of about 67%.The FFT sheme is lose to optimal when its e�ieny is near 100%.Note that a sheme with e�ieny below 50% does not need to be onsidered. Indeed, thismeans that 2N/ℓ + k ≤ 1
2n, whih neessarily implies that n = ℓ (as n has to be divisibleby ℓ). Then the FFT sheme of length ℓ/2 an be performed with the same value of n, sine

2(N/(ℓ/2)) + (k − 1) < 4N/ℓ + 2k ≤ n, and n is a multiple of ℓ/2.From this last remark, we an assume 2N/ℓ ≥ 1
2n � negleting the small k term �, whihtogether with n ≥ ℓ gives:

ℓ ≤ 2
√

N. (1.9)It should be noted that hoosing n minimal aording to the onditions ℓ ≥ 2N/ℓ + k and
ℓ | 2n (e.g., for a Fermat transform with use of √2) is not always optimal. At the j + 1-streursive level of a length-ℓ FFT, we multiply by powers of an ℓ/2j -th root of unity, i.e., by
2i2j2n/ℓ for suessive i, by performing suitable bit-shifts. When 2j2n/ℓ is a multiple of the wordsize, no atual bit-shifts are performed any more, sine the shift an be done by word-by-wordopies. On system where bit-shifting is muh more expensive than mere word-opying, e.g., ifno well-optimized multiple preision shift ode is available, it an be advantageous to hoose nlarger to make 2n/ℓ divisible by a small power of 2. This way the number of FFT levels thatperform bit-shifts is redued. In our ode, for transform lengths below the threshold for Bailey'salgorithm and n that are small enough not to use SSA reursively, we ensure ℓ | n (even when√

2 is used and ℓ | 2n would su�e for a Fermat transform). If the resulting n satis�es n/l ≡ 3
(mod 4), we round up some more to make 4l | n. The omparative timings of length 128 (k = 7)and length 256 (k = 8) an be seen in �gure 1.4Automati TuningWe found that signi�ant speedups ould be obtained with better tuning shemes, whih wedesribe here. All examples given in this setion are related to an Opteron.Tuning the Fermat and Mersenne TransformsUntil version 4.2.1, GMP used a naive tuning sheme for the FFT multipliation. For the Fermattransforms modulo 2N + 1, an FFT of length 2k was used for tk ≤ N < tk+1, where tk is thesmallest bit-size for whih FFT-2k is faster than FFT-2k−1. For example on an Opteron, the

1.2. An E�ient Implementation of Shönhage-Strassen's Algorithm 25

 0

 0.5

 1

 1.5

 2

 1000 1500 2000 2500 3000 3500 4000 4500 5000

k=7, n not rounded up
k=7, n rounded up

 0

 0.5

 1

 1.5

 2

 1000 1500 2000 2500 3000 3500 4000 4500 5000

k=8, n not rounded up
k=8, n rounded up

Figure 1.4: Time in milliseonds for a length 128 (k = 7) and length 256 (k = 8) FFT, for inputsizes of 1000 to 5000 words, with and without rounding up n to avoid bit-shiftsdefault gmp-mparam.h �le uses k = 4 for a size less than 528 mahine words, then k = 5 for lessthan 1184 words, and so on:#define MUL_FFT_TABLE { 528, 1184, 2880, 5376, 11264, 36864, 114688, 327680, 1310720,3145728, 12582912, 0 }A speial rule is used for the last entry: here k = 14 is used for less than m = 12582912 words,
k = 15 is used for less than 4m = 50331648 words, and then k = 16 is used. An additional singlethreshold determines from whih size upward � still in words � a Fermat transform mod 2n +1is faster than a full produt of two n-bit integers:#define MUL_FFT_MODF_THRESHOLD 544For a produt mod 2n+1 of at least 544 words, GMP 4.2.1 therefore uses a Fermat transform,with k = 5 until 1183 words aording to the above MUL_FFT_TABLE. Below the 544 wordsthreshold, the algorithm used is the 3-way Toom-Cook algorithm, followed by a redution mod
2n + 1.This sheme is not optimal sine the FFT-2k urves interset several times, as shown byFigure 1.5.To take into aount those multiple rossings, the new tuning sheme determines word-intervals [m1,m2] where the FFT of length 2k is preferred for Fermat transforms:#define MUL_FFT_TABLE2 {{1, 4 /*66*/}, {401, 5 /*96*/}, {417, 4 /*98*/},{433, 5 /*96*/}, {865, 6 /*96*/}, ...The entry {433, 5 /*96*/} means that from 433 words � and up to the next size of 865words � FFT-25 is preferred, with an e�ieny of 96%. A similar table is used for Mersennetransforms.Tuning the Plain Integer MultipliationUp to GMP 4.2.1, a single threshold ontrols the plain integer multipliation:#define MUL_FFT_THRESHOLD 7680

26 Chapter 1. Integer Multipliation with Shönhage-Strassen's Algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 500 1000 1500 2000 2500

mpn_mul_fft.5
mpn_mul_fft.6
mpn_mul_fft.7

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 700 750 800 850 900

mpn_mul_fft.5
mpn_mul_fft.6

Figure 1.5: Time in milliseonds needed to multiply numbers modulo 2n + 1 with an FFT oflength 2k for k = 5, 6, 7. On the right, the zoom (with only k = 5, 6) illustrates that two urvesan interset several times.This means that SSA is used for a produt of two integers of at least 7680 words, whihorresponds to about 148, 000 deimal digits, and the Toom-Cook 3-way algorithm is used belowthat threshold.We now use the generalized Fermat-Mersenne sheme desribed in 1.2.6 with b = 1 (in ourimplementation we found 1 ≤ a ≤ 7 was enough). Again, for eah size, the best value of a isdetermined by our tuning program:#define MUL_FFT_FULL_TABLE2 {{16, 1}, {4224, 2}, {4416, 6}, {4480, 2},{4608, 4}, {4640, 2}, ...For example, the entry {4608, 4} means that to multiply two numbers of 4608 words eah� or whose produt has 2 × 4608 words � and up to numbers of of 4639 words eah, the newalgorithm uses one Mersenne transform modulo 2N−1 and one Fermat transform modulo 24N +1.Reonstrution is easy sine 2aN + 1 ≡ 2 mod (2N − 1).1.3 ResultsOn July 1st, 2005, Allan Steel wrote a web page [93℄ entitled �Magma V2.12-1 is up to 2.3 timesfaster than GMP 4.1.4 for large integer multipliation,� whih was a motivation for working onimproving GMP's implementation and we ompare our results to Magma's timings. We have alsotested other freely available pakages providing an implementation for large integer arithmeti.Among them, some (OpenSSL/BN, LiDiA/libI) do not go beyond Karatsuba algorithm, some dohave some kind of FFT, but are not really made for really large integers: arpre, Miral. Twouseful implementations we have tested are apfloat and CLN. They take about 4 to 5 seondson our test mahine to multiply one million-word integers, whereas we need about 1 seond.Bernstein mentions some partial implementation Zmult of Shönhage-Strassen's algorithm, withgood timings, but right now, only very few sizes are handled, so that the omparison with oursoftware is not really possible.A program that implements a omplex �oating-point FFT for integer multipliation is GeorgeWoltman's Prime95. It is written mainly for the purpose of performing the Luas-Lehmer algo-rithm for testing large Mersenne numbers 2p − 1 for primality in the Great Internet MersennePrime Searh [102℄, and sine its ineption has found 10 new suh primes, eah one a new reord

1.3. Results 27

 0

 10

 20

 30

 40

 50

 60

 70

 80

2.5e6 5e6 7.5e6 1e7 1.25e7 1.5e7

GMP 4.1.4
Magma V2.13-6

GMP 4.2.1
new GMP code

Figure 1.6: Comparison of GMP 4.1.4, GMP 4.2.1, Magma V2.13-6 and our new ode for theplain integer multipliation on a 2.4GHz Opteron (horizontal axis in 64-bit words, vertial axisin seonds).at the time of its disovery. It uses a DWT for multipliation mod a2n± c, with a and c not toolarge, see [79℄. We ompared multipliation modulo 22wn − 1 in Prime95 version 24.14.2 withmultipliation of n-word integers using our SSA implementation on a Pentium 4 at 3.2 GHz,and on an Opteron 250 at 2.4 GHz, see Figure 1.7. It is plain that on a Pentium 4, Prime95beats our implementation by a wide margin, in fat usually by more than a fator of 10. Onthe Opteron, the di�erene is a bit less pronouned, where it is by a fator between 2.5 and 3.The reasons for this arhiteture dependeny of the relative performane is that Prime95 usesan SSE2 implementation of �oating point FFT, whih performs slightly better on the Pentium 4than on the Opteron at a given lok rate, but more importantly that all-integer arithmeti asin SSA performs poorly on the Pentium 4, but exellently on the Opteron, due to both native64 bit arithmeti and a very e�ient integer ALU. Some other di�erenes between Prime95 andour implementation need to be pointed out in this ontext: due to the �oating point nature ofPrime95's FFT, rounding errors an build up for partiular input data to the point where the re-sult will be inorretly rounded to integers. While ourring with only low probability, this traitmay be undesirable in sienti� omputation. In partiular, the spei�ation of GMP requires aorret multipliation algorithm for all input values, and when the �rst version of an FFT mul-tipliation for GMP was written around 1998, it was not known how to hoose parameters fora omplex �oating-point FFT so that orret rounding ould be guaranteed in the onvolutionprodut. Therefore the preferene was given to an all-integer algorithm suh as Shönhage-Strassens where the problem of rounding errors does not our. As it turns out, multipliationwith the �oating point FFT an be made provably orret, see again [79℄, but at the ost of usinglarger FFT lengths, thus giving up some performane. Figure 1.8 shows the maximum numberof bits that an be stored per FFT element of type double so that provably orret rounding ispossible. Prime95's default hoie uses between 1.3 and 2 times as many, so for multipliationof large integers, demanding provably orret rounding would about double the run time. Also,the DWT in Prime95 needs to be initialized for a given modulus, and this initialization inursoverhead whih beomes very ostly if numbers of onstantly varying sizes are to be multiplied.

28 Chapter 1. Integer Multipliation with Shönhage-Strassen's AlgorithmFinally, the implementation of the FFT in Prime95 is done entirely in hand-optimized assemblyfor the x86 family of proessors, and will not run on other arhitetures.Another implementation of omplex �oating point FFT is Guillermo Ballester Valor's Gluas.The algorithm it uses is similar to that in Prime95, but it is written portably in C. This makesit slower than Prime95, but still faster than our ode on both the Pentium 4 and the Opteron,as shown in Figure 1.7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2e5 4e5 6e5 8e5 1e6

SSA on P4
SSA on Core 2

SSA on Opteron
Glucas on Opteron

Prime95 on Opteron
Glucas on P4

Prime95 on P4

Figure 1.7: Time in seonds for multipliation of di�erent word lengths with our implementation,Prime95 and Gluas on a 3.2 GHz Pentium 4, a 2.4 GHz Core 2, and a 2.4 GHz Opteron.
K = 2k 212 214 216 218 220 221 223 225bits/dbl 16 15 14 13 12 11 10 9

N 3.27e5 1.22e5 4.58e5 1.7e6 6.29e6 1.15e7 4.1e7 1.5e8Prime95 21.37 21.08 20.78 20.49 20.22 19.94 18.29 17.76Figure 1.8: Number of bits whih an be stored in an IEEE 754 double-preision �oating pointnumber for provably orret multipliation of integers of bit-size N with an FFT of length K,and number of bits used in Prime95 for FFT length K.Fürer [43℄ proposed an integer multipliation algorithm with omplexity O
(

n log(n)2log∗(n)
),where log∗(n) is the minimum number of logarithms one needs to stak, starting from n, to geta result of at most 1. It is therefore asymptotially faster than Shönhage-Strassen's algorithmwith omplexity O(n log(n) log(log(n))), although the di�erene of the two asymptoti funtionsis small for n in the range of interest. We are not aware of a well-optimized implementation ofFürer algorithm, so no omparison of their speed in pratie is possible at the moment.

Chapter 2An Improved Stage 2 to P±1 FatoringAlgorithms2.1 IntrodutionThis hapter is joint work with Peter Lawrene Montgomery and was published in [73℄.It extends the work of [74℄, a fast stage 2 for the P�1 algorithm based on polynomial multi-point evaluation where the points of evaluation lie in a geometri progression. The previouspaper mentioned several ideas how the method ould be improved by using patterns in the rootsof the polynomial to build it more quikly, using symmetry in the resulting polynomial to reduestorage spae and speed up polynomial arithmeti, and to adapt the method to the P+1 fatoringalgorithm.These ideas are implemented in the urrent work, making e�ient use of today's omputerswith large memory and multi-proessing apability. Several large fators were found with thenew implementation, inluding a 60-digit fator of the Luas number L2366 by the P+1 methodwhih still (at the end of 2009) stands as the reord for this method. Some large fators werefound with the P�1 method, listed in Setion 2.13, but sadly no new reord was set in spite ofour best e�orts.2.2 The P�1 AlgorithmIn 1974 John Pollard [80, �4℄ introdued the P�1 algorithm for fatoring an odd ompositeinteger N . It hopes that some prime fator p of N has smooth p− 1. An integer is B-smooth ifit has no prime fators exeeding B. It piks b0 6≡ ±1 (mod N) and oprime to N and outputs
b1 = be

0 mod N for some positive exponent e. This exponent might be divisible by all primepowers below a bound B1. Stage 1 sueeds if (p − 1) | e, in whih ase b1 ≡ 1 (mod p) byFermat's little theorem. The algorithm reovers p by omputing gcd(b1 − 1,N) (exept in rareases when this gd is omposite). When this gd is 1, we hope that p− 1 = qn where n divides
e and q is not too large. Then

bq
1 ≡ (be

0)
q = beq

0 = (bnq
0)

e/n
=
(

bp−1
0

)e/n
≡ 1e/n = 1 (mod p), (2.1)so p divides gcd(bq

1 − 1, N). Stage 2 of P�1 tries to �nd p when q > 1 but q does not exeed thestage 2 searh bound B2. 29

30 Chapter 2. An Improved Stage 2 to P±1 Fatoring AlgorithmsPollard tests eah prime q in]B1, B2] individually. If qn and qn+1 are suessive primes, helooks up b
qn+1−qn

1 mod N in a small table. It is onjetured that qn+1− qn < log(qn+1)
2, relatedto Cramér's onjeture whih states

lim sup
n→∞

qn+1 − qn

log(qn)2
= 1.The prime gap that follows qn = 1693182318746371 has length 1132, giving the largest quotient

(qn+1 − qn)/ log(qn+1)
2 = 0.92 . . . urrently known. This prime is greater than any that willbe used in way of Pollard's stage 2, so in pratie the size of the table an be bounded by

log(B2)
2 /2, as only even di�erenes need to be stored if B1 > 2. Given bqn

1 mod N , we an form
b
qn+1

1 mod N = bqn

1 b
qn+1−qn

1 mod N with b
qn+1−qn

1 mod N taken from the preomputed table, andtest gcd(b
qn+1

1 − 1, N). Pollard observes that one an ombine gd tests: if p | gcd(x, N) or p |
gcd(y, N), then p | gcd(xy mod N, N). His stage 2 ost is two modular multipliations per q: oneto ompute bqn

1 and one to multiply bqn

1 −1 to an aumulator A; plus O
(

log(B2)
2
)multipliationsto build the table and taking gcd(A,N) at the end, but these ost are asymptotially negligible.Montgomery [65℄ uses two sets S1 and S2, suh that eah prime q in]B1, B2] divides anonzero di�erene s1 − s2 where s1 ∈ S1 and s2 ∈ S2. He forms bs1

1 − bs2
1 using two tablelook-ups, saving one modular multipliation per q. Sometimes one s1 − s2 works for multiple q.Montgomery adapts his sheme to Hugh Williams's P+1 method and Hendrik Lenstra's ElliptiCurve Method (ECM). These hanges lower the onstant of proportionality, but stage 2 still uses

O(π(B2)− π(B1)) operations modulo N .The end of Pollard's original P�1 paper [80℄ suggests an FFT ontinuation to P�1. Mont-gomery and Silverman [74, p. 844℄ implement it, using a irular onvolution to evaluate apolynomial along a geometri progression. It osts O
(√

B2 log(B2)
) operations to build andmultiply two polynomials of degree O

(√
B2

), ompared to O(B2/ log(B2)) primes below B2, sothe FFT stage 2 beats Pollard's original stage 2 and Montgomery's variant from [65℄ when B2 islarge.Montgomery's dissertation [67℄ desribes an FFT ontinuation to ECM. He takes either thegd of two polynomials, or uses a general multipoint evaluation method for polynomials witharbitrary points of evaluation. These ost an extra fator of log(B2) ompared to when the pointsare along a geometri progression. Zimmermann [103℄ implements these FFT ontinuations toECM and uses them for the P±1 methods as well.2.2.1 New Stage 2 AlgorithmLike in [74℄, in this hapter we evaluate a polynomial along geometri progressions. We exploitpatterns in its roots to generate its oe�ients quikly. We aim for low memory overhead, savingit for onvolution inputs and outputs (whih are elements of Z/NZ). Using memory e�ientlylets us raise the onvolution length ℓ. Many intermediate results are reiproal polynomials,whih need about half the storage and an be multiplied e�iently using weighted onvolutions.Doubling ℓ osts slightly over twie as muh time per onvolution, but eah longer onvolutionextends the searh for q (and e�etive B2) fourfold. Silverman's 1989 implementation used 42megabytes and allowed 250-digit inputs. It repeatedly evaluated a polynomial of degree 15360at 8 · 17408 points in geometri progression, using ℓ = 32768. This enabled him to ahieve
B2 ≈ 1010.Today's (2008) PC memories are 100 or more times as large as those used in [74℄. Withthis extra memory, we ahieve ℓ = 223 or more, a growth fator of 256. With the same number

2.3. The P+1 Algorithm 31of onvolutions (individually longer lengths but running on faster hardware) our B2 advanesby a fator of 2562 ≈ 6.6 · 104. We make use of multi-proessor systems by parallel exeutionof the onvolution produts. Superomputers with many CPUs and huge shared memories dospetaularly.Most tehniques herein adapt to P+1, but some omputations take plae in an extensionring, raising memory usage if we use the same onvolution sizes.Setion 2.13 gives some new results, inluding a reord 60-digit P+1 fator.The new algorithm to build a polynomial from its roots and the algorithm to evaluate thatpolynomial on points along a geometri progression make use of the ring struture of Z/NZ forP�1, or a quadrati extension thereof for P+1. This ring struture is not present in ellipti urvesused for ECM, so these tehniques do not apply to it. The method of hoosing sets S1 and S2as in Setion 2.6 to determine the roots and evaluation points for the polynomial an be usedfor ECM, however, together with general algorithms of building a polynomial from its roots andevaluating it on an arbitrary set of points, like those desribed in [67℄ or [103℄.2.3 The P+1 AlgorithmHugh Williams [101℄ introdued a P+1 fatoring algorithm in 1982. It �nds a prime fator p of
N when p + 1 (rather than p− 1) is smooth. It is modeled after P�1.One variant of the P+1 algorithm hooses P0 ∈ Z/NZ and lets the indeterminate α0 be azero of the quadrati f(x) = x2 − P0x + 1. The produt of the two roots of this quadrati isthe onstant oe�ient 1, hene they are α0 and α−1

0 , and their sum is P0. We hope that thisquadrati is irreduible modulo the unknown fator p, i.e., that the disriminant ∆ = P 2
0 − 4 isa quadrati non-residue modulo p. If so, α0 lies in Fp2/Fp, i.e., has degree 2. By the Frobeniusendomorphism, αp

0 6= α0 is the seond root in Fp2 . Hene α0α1 ≡ α0α
p
0 = αp+1

0 ≡ 1 (mod p) andthe order of α0 divides p + 1.On the other hand, if P 2
0−4 is a quadrati residue modulo p, then α0 lies in Fp and αp

0 = α0, sothat αp−1
0 = 1 and the order of α0 divides p−1. In this ase, the P+1 algorithm behaves like theP�1 algorithm. Sine whether α0 has order dividing p−1 or p+1 depends on the unknown prime

p (and an vary for di�erent prime fators p of one omposite number), it generally is impossibleto tell whih order results from a partiular hoie P0, unless, say, the resulting determinant isa rational square or known to be a quadrati residue modulo all andidate prime fators of theinput number. Williams suggests testing three di�erent values for P0 to reah a on�dene of
87.5% that an element of order dividing p + 1 has been tried for a given prime fator p.Stage 1 of the P+1 algorithm omputes P1 = α1 + α−1

1 where α1 ≡ αe
0 (mod N) for someexponent e, starting from P0 = α0 + α−1

0 and using Chebyshev polynomials to simplify theomputation. If ord(α0) | e, regardless of whether ord(α0) | p − 1 or ord(α0) | p + 1, then
P1 ≡ αe

0 + α−e
0 ≡ 1 + 1 ≡ 2 (mod N) and gcd(P1− 2, N) > 1; if this gcd is also less than N , thealgorithm sueeds. Stage 2 of P+1 hopes that αq

1 ≡ 1 (mod p) for some prime q, not too large,and some prime p dividing N .2.3.1 Chebyshev PolynomialsAlthough the theory behind P+1 mentions α0 and α1 = αe
0, an implementation manipulatesprimarily values of αn

0 + α−n
0 and αn

1 + α−n
1 for various integers n rather than the orrespondingvalues (in an extension ring) of αn

0 and αn
1 .

32 Chapter 2. An Improved Stage 2 to P±1 Fatoring AlgorithmsFor integer n, the Chebyshev polynomials Vn of degree n and Un of degree n−1 are determinedby Vn(X + X−1) = Xn + X−n and (X − X−1)Un(X + X−1) = Xn − X−n. The use of thesepolynomials shortens many formulas, suh as
P1 ≡ α1 + α−1

1 ≡ αe
0 + α−e

0 = Ve(α0 + α−1
0) = Ve(P0) (mod N).These polynomials have integer oe�ients, so P1 ≡ Ve(P0) (mod N) is in the base ring Z/NZeven when α0 and α1 are not.The Chebyshev polynomials satisfy many identities, inluding

Vmn(X) = Vm(Vn(X)),

Um+n(X) = Um(X)Vn(X)− Um−n(X), (2.2)
Um+n(X) = Vm(X)Un(X) + Um−n(X),

Vm+n(X) = Vm(X)Vn(X)− Vm−n(X), (2.3)
Vm+n(X) = (X2 − 4)Um(X)Un(X) + Vm−n(X).For given integers n and P0, the value of the Chebyshev polynomial Vn(P0) an be evaluatedby the methods of Montgomery [66℄.2.4 Overview of Stage 2 AlgorithmOur algorithm performs multipoint evaluation of polynomials by onvolutions. Its inputs are theoutput of stage 1 (b1 for P�1 or P1 for P+1), and the desired stage 2 interval]B1, B2].The algorithm hooses a highly omposite odd integer P . It heks for q in arithmetiprogressions with ommon di�erene 2P . There are φ(P) suh progressions to hek when

gcd(q, 2P) = 1.We need an even onvolution length ℓmax (determined primarily by memory onstraints)and a fatorization φ(P) = s1s2 where s1 is even and 0 < s1 < ℓmax. Setions 2.6, 2.10.1 and2.12 have sample values.Our polynomial evaluations will need approximately
s2

⌈

B2

2P (ℓmax − s1)

⌉

≈ φ(P)

2P

B2

s1(ℓmax − s1)
(2.4)onvolutions of length ℓmax. We prefer a small φ(P)/P to keep (2.4) low. We also prefer s1near ℓmax/2, say 0.3 ≤ s1/ℓmax ≤ 0.7.Using a fatorization of (Z/PZ)∗ as desribed in Setion 2.6, we onstrut two sets S1 and

S2 of integers suh that(a) |S1| = s1 and |S2| = s2.(b) S1 is symmetri around 0: if k ∈ S1, then −k ∈ S1.() If k ∈ Z and gcd(k, P) = 1, then there exist unique k1 ∈ S1 and k2 ∈ S2 suh that
k ≡ k1 + k2 (mod P).One S1 and S2 are hosen, for the P�1 method we ompute the oe�ients of

f(X) = X−s1/2
∏

k1∈S1

(X − b2k1
1) mod N (2.5)

2.5. Justi�ation 33by the method in Setion 2.8. Sine S1 is symmetri around zero, this f(X) is symmetri in Xand 1/X.For eah k2 ∈ S2 we evaluate (the numerators of) all
f(b

2k2+(2m+1)P
1) mod N (2.6)for ℓmax− s1 onseutive values of m as desribed in Setion 2.9, and hek the produt of theseoutputs for a nontrivial gd with N . This heks s1(ℓmax−s1) andidates, not neessarily primebut inluding all primes in]B1, B2], hoping to �nd q.For the P+1 method, replae b1 by α1 in (2.5) and (2.6). The polynomial f is still over

Z/NZ sine eah produt (X −α2k1
1)(X −α−2k1

1) = X2 − V2k1(P1) + 1 is in (Z/NZ)[X], but themultipoint evaluation works in an extension ring. See Setion 2.9.1.2.5 Justi�ationLet p be an unknown prime fator of N . As in (2.1), assume bq
1 ≡ 1 (mod p) where q is not toolarge, and gcd(q, 2P) = 1.The seletion of S1 and S2 ensures there exist k1 ∈ S1 and k2 ∈ S2 suh that (q − P)/2 ≡

k1 + k2 (mod P). That is,
q = P + 2k1 + 2k2 + 2mP = 2k1 + 2k2 + (2m + 1)P (2.7)for some integer m. We an bound m knowing bounds on q, k1, k2, detailed in Setion 2.6. Both

b±2k1
1 are roots of f (mod p) sine S1 is symmetri around 0 and by (2.5). Hene

f(b
2k2+(2m+1)P
1) = f(bq−2k1

1) ≡ f(b−2k1
1) ≡ 0 (mod p). (2.8)For the P+1 method, if αq

1 ≡ 1 (mod p), then (2.8) evaluates f at X = α
2k2+(2m+1)P
1 =

αq−2k1
1 . The fator X − α−2k1

1 of f(X) evaluates to α−2k1(αq
1 − 1), whih is zero modulo p evenin the extension ring.2.6 Seletion of S1 and S2Let �+� of two sets denote the set of sums. By the Chinese Remainder Theorem,

(Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗ if gcd(m,n) = 1. (2.9)This is independent of the representatives: if S ≡ (Z/mZ)∗ (mod m) and T ≡ (Z/nZ)∗ (mod n),then nS + mT ≡ (Z/(mn)Z)∗ (mod mn). For prime powers, we have (Z/pkZ)∗ = (Z/pZ)∗ +
∑k−1

i=1 pi(Z/pZ).We hoose S1 and S2 suh that S1 + S2 ≡ (Z/PZ)∗ (mod P) whih ensures that all valuesoprime to P , in partiular all primes, in the stage 2 interval are overed. One way uses afatorization mn = P and (2.9). Other hoies are available by fatoring individual (Z/pZ)∗,
p | P , into smaller sets of sums.Let Rn = {2i − n − 1 : 1 ≤ i ≤ n} be an arithmeti progression entered at 0 of length nand ommon di�erene 2. For odd primes p, a set of representatives of (Z/pZ)∗ is Rp−1. Itsardinality is omposite for p 6= 3 and the set an be fatored into arithmeti progressions ofprime length by

Rmn = Rm + mRn. (2.10)

34 Chapter 2. An Improved Stage 2 to P±1 Fatoring AlgorithmsIf p ≡ 3 (mod 4), alternatively p+1
4 R2 + 1

2R(p−1)/2 an be hosen as a set of representatives withsmaller absolute values. For example, for p = 7 we may use {−2, 2} + {−1, 0, 1}.Example. For P = 3 · 5 · 7 = 105, we ould use
(Z/105Z)∗ = 35(Z/3Z)∗ + 21(Z/5Z)∗ + 15(Z/7Z)∗by (2.9) and hoose

S1 + S2 = 35{−1, 1} + 21{−3,−1, 1, 3} + 15{−5,−3,−1, 1, 3, 5}.However, we an use (2.10) to write
{−3,−1, 1, 3} = 2{−1, 1} + {−1, 1} and

{−5,−3,−1, 1, 3, 5} = 3{−1, 1} + {−2, 0, 2}.Now we an hoose S1 +S2 = 35{−1, 1}+42{−1, 1}+21{−1, 1}+45{−1, 1}+15{−2, 0, 2}, andlet for example S1 = 35{−1, 1} + 42{−1, 1} + 21{−1, 1} + 45{−1, 1} and S2 = 15{−2, 0, 2} tomake s1 = |S1| = 16 (lose to) a power of 2 and s2 = |S2| small.When evaluating (2.6) for all m1 ≤ m < m2 and k2 ∈ S2, the highest exponent oprime to
P that is not overed at the low end of the stage 2 range will be 2max(S1 + S2) + (2m1 − 1)P .Similarly, the smallest value at the high end of the stage 2 range not overed is 2min(S1 + S2)+
(2m2 + 1)P . Hene, for a given hoie of P , S1, S2, m1 and m2, all primes in [(2m1 − 1)P +
2max(S1 + S2) + 1, (2m2 + 1)P + 2min(S1 + S2)− 1] are overed.Example. To over the interval [1000, 500000] with ℓmax = 512, we might hoose P = 1155,
s1 = 240, s2 = 2, m1 = −1, and m2 = ℓmax − s1 + m1 = 271. With S1 = 231({−1, 1} +
{−2, 2}) + 165({−2, 2} + {−1, 0, 1}) + 105({−3, 3} + {−2,−1, 0, 1, 2}) and S2 = 385{−1, 1}, wehave max(S1 + S2) = −min(S1 + S2) = 2098 and thus over all primes in [−3 · 1155 + 4196 +
1, 543 · 1155 − 4196 − 1] = [732, 622968].For hoosing a value of P whih overs a desired]B1, B2] interval, we an test andidate
P from a table. This table ould ontain values so that P and φ(P) are inreasing, and eah
P is maximal for its φ(P). We an selet those P whih, in order, over the desired]B1, B2]interval with ℓmax (limited by memory), minimize the ost of stage 2 and maximize (2m2 +
1)P + 2min(S1 + S2). The table of P values may ontain a large number of andidate valuesso that a near-optimal hoie an be found for various ℓmax and B2 parameters. To speed upseletion of the optimal value of P , some restritions on whih P to test are desirable.Assume S1 and S2 are symmetri around 0, so that M = max(S1 + S2) = −min(S1 + S2).Then the e�etive start of the stage 2 interval is 2M + (2m1 − 1)P + 1, the e�etive end is
−2M + (2m2 + 1)P − 1, and their di�erene −4M + 2P (m2 −m1 + 1) − 2. Hene we require
B2 − B1 ≤ 2(m2 −m1 + 1)P . Sine m2 −m1 + 1 ≤ ℓmax, this implies B2 − B1 ≤ 2ℓmaxP or
P ≥ (B2 − B1)/(2ℓmax), whih together with an upper bound on ℓmax by available memoryprovides a lower bound on P .The ost of stage 2 is essentially that of initialising the multi-point evaluation one per stage2 by building the reiproal Laurent polynomials f(x) and h(x) (see Setion 2.9) and omputingthe disrete Fourier transform of h(x), and that of performing the multi-point evaluation s2times per stage 2 by omputing the polynomial g(x), its produt with h(x) and the gcd ofthe oe�ients of the produt polynomial and N . The ost of polynomial multipliation is in
O(ℓmax log(ℓmax)), but for the sake of parameter seletion an be approximated by just ℓmax� good parameters will use an ℓmax lose to the largest possible, and for small hanges of ℓmax(say, by up to a fator of 2), the e�et of the log(ℓmax) term is small. The ost of building the

2.7. Cyli Convolutions and Polynomial Multipliation with the NTT 35polynomial f(x) is proportional to the ost of polynomial multipliation so that we may take theost of initialisation and of evaluation to be proportional with a positive real onstant c. Henethe ost of stage 2 an be approximated roughly but usefully as (c + s2)ℓmax. Sine ℓmax > s1and s1s2 = φ(P), we have (c + s2)ℓmax > φ(P) for any valid hoie of stage 2 parameters, sothat one a set of aeptable parameters has been found, its ost an serve as an upper boundon φ(P) when looking for better parameters. Sine the entries in the table of P values are inorder of inreasing P and φ(P), the bound on φ(P) implies a bound on P .For a given andidate P value within these bounds and for possible transform lengths ℓmaxfor the multi-point evaluation, hoose s1 and s2 so that s1s2 = φ(P), s1 is even, s1 < ℓmax, s2is minimal and under these onditions, |ℓmax/2− s1| is minimal. For positive integers n < 1010,the number of divisors of n does not exeed 4032 (attained for the highly omposite number
97772875200) so that even exhaustive searh of s1 values from the prime fatorization of φ(P) issu�iently fast. If the multipliation routine for reiproal Laurent polynomials (suh as the onein Setion 2.7.2) rounds up transform lengths to a power of 2, it is preferable to hoose s1 slightlybelow rather than slightly above a power of 2, so that having to round up transforms lengthsby almost a fator of 2 is avoided when building f as desribed in Setion 2.8. The resultinghoie of P , ℓmax, s1, and s2 is aeptable if the resulting m1 and m2 values allow overing thedesired stage 2 interval]B1, B2]. Eah suh hoie has an assoiated ost, and the aeptablehoie with the smallest ost wins. If several have the same ost, we use the one with the largeste�etive B2.2.7 Cyli Convolutions and Polynomial Multipliation with theNTTMost of the CPU time in this algorithm is spent performing multipliation of polynomials withoe�ients modulo N , the number to be fatored. The Karatsuba (see Setion 1.1.1) and Toom-Cook (see Setion 1.1.2) algorithms ould work diretly over R = Z/NZ, so long as the interpo-lation phase does not involve division by a zero divisor of the ring, and sine N is assumed notto have very small prime fators, this is not a problem in pratie. However, the FFT stage 2gains its speed by fast arithmeti on polynomials of very large degree, in whih ase FFT basedmultipliation algorithms (see Setion 1.1.3) far exeed Karatsuba's or Toom-Cook's methods.Unfortunately, the FFT for a large transform length ℓ annot be used diretly when R =
Z/NZ, sine we don't know a suitable ℓ-th primitive root of unity. Instead, we need to mapoe�ients of the polynomials to be multiplied to Z �rst, then to a ring that supports an FFTof the desired length, bak to Z and to Z/NZ again by reduing modulo N .The Shönhage-Strassen algorithm desribed in Chapter 1 uses the ring R = Z/(2n + 1)Zwith ℓ | 2n (or ℓ | 4n if the √2 trik is used) and the ℓ-th root of unity 22n/ℓ ∈ R. It ouldbe used for our purpose, but the ondition ℓ | 2n often makes it impratiable: most frequentlywe want to fator input number of not too great size, say less than a few thousands bits, butuse polynomials of degrees in the millions. For the Shönhage-Strassen algorithm, in that asewe'd have to hoose n in the millions also, too large by about three orders of magnitude. Thiswould make the multipliation unaeptably slow and memory use prohibitive. The probleman be alleviated by the Kroneker-Shönhage segmentation trik, whih redues polynomialmultipliation to integer multipliation, see [99℄ or [103, p. 534℄ and Setion 2.12. Howeverfor larger numbers N and polynomials of smaller degree, say in the ten-thousands, using SSAdiretly is a viable option.A very attrative approah to the problem of multiplying polynomials with relatively small

36 Chapter 2. An Improved Stage 2 to P±1 Fatoring Algorithmsoe�ients and very large degree is the use of a number theoreti transform (NTT), desribedin the following.Nussbaumer [77℄ gives other onvolution algorithms.2.7.1 Convolutions over Z/NZ with the NTTMontgomery and Silverman [74, Setion 4℄ suggest a number theoreti transform (NTT). Theytreat the input polynomial oe�ients as integers in [0, N−1] and multiply the polynomials over
Z. The produt polynomial, redued modulo Xℓ − 1, has oe�ients in [0, ℓ(N − 1)2]. Seletdistint NTT primes pj that eah �t into one mahine word suh that∏j pj > ℓ(N−1)2. Requireeah pj ≡ 1 (mod ℓ), so a primitive ℓ-th root of unity exists. Do the onvolution modulo eah
pj and use the Chinese Remainder Theorem (CRT) to determine the produt over Z modulo
Xℓ − 1. Redue this produt modulo N . Montgomery's dissertation [67, Chapter 8℄ desribesthese omputations in detail.The onvolution odes need interfaes to (1) zero a Disrete Fourier Transform (DFT) bu�er,(2) insert an entry modulo N in a DFT bu�er, reduing it modulo the NTT primes, (3) performa forward, in-plae, DFT on a bu�er, (4) multiply two DFT bu�ers point-wise, overwriting aninput, and perform an in-plae inverse DFT on the produt, and (5) extrat a produt oe�ientmodulo N via a CRT omputation and redution modulo N .2.7.2 Reiproal Laurent Polynomials and Weighted NTTDe�ne a reiproal Laurent polynomial (RLP) in x to be an expansion

a0 +
d
∑

j=1

aj

(

xj + x−j
)

= a0 +
d
∑

j=1

ajVj

(

x + x−1
)for salars aj in a ring. It is moni if ad = 1. It is said to have degree 2d if ad 6= 0. The degreeis always even. A moni RLP of degree 2d �ts in d oe�ients (exluding the leading 1). Whilemanipulating RLPs of degree at most 2d, the standard basis is {1} ∪ {xj + x−j : 1 ≤ j ≤ d} =

{1} ∪ {Vj

(

x + x−1
)

: 1 ≤ j ≤ d}.Let Q(x) = q0 +
∑dq

j=1 qj

(

xj + x−j
) be an RLP of degree at most 2dq and likewise R(x) anRLP of degree at most 2dr. To obtain the produt RLP S(x) = Q(x)R(x) = s0+

∑ds

j=1 sj

(

xj + x−j
)of degree at most 2ds = 2(dq + dr), hoose a onvolution length ℓ > ds and perform a weightedonvolution produt (as in Setion 1.1.3) by omputing S̃(wx) = Q(wx)R(wx) mod

(

xℓ − 1
) fora suitable weight w 6= 0.Suppose S̃(x) =

∑ℓ−1
j=0 s̃xj and S̃(wx) = S(wx) mod

(

xℓ − 1
). We have

S̃(wx) = s0 +

ds
∑

j=1

(

wjsjx
j + w−jsjx

ℓ−j
)

=

ds
∑

j=0

wjsjx
j +

ℓ−1
∑

j=ℓ−ds

wj−ℓsℓ−jx
j

=

ℓ−ds−1
∑

j=0

wjsjx
j +

ds
∑

j=ℓ−ds

wj
(

sj + w−ℓsℓ−j

)

xj +

ℓ−1
∑

j=ds+1

wj−ℓsℓ−jx
j

2.7. Cyli Convolutions and Polynomial Multipliation with the NTT 37and so s̃j = sj for 0 ≤ j < ℓ − ds, and s̃j = sj + w−ℓsl−j for ℓ− ds ≤ j ≤ ds. From the latter,we an solve for sj and sl−j by the linear system
(

1 w−ℓ

w−ℓ 1

)(

sj

sℓ−j

)

=

(

s̃j

s̃ℓ−j

)

.When the matrix is invertible, i.e., wℓ 6= ±1, there is a unique solution whih an be omputedby
sj =

w−ls̃j − s̃ℓ−j

w−2ℓ − 1

sl−j = s̃ℓ−j − w−ℓsj.This leads to Algorithm 4. It �ows like the interfae in Setion 2.7.1.Our implementation hooses the NTT primes pj ≡ 1 (mod 3ℓ). We require 3 ∤ ℓ. Our
w is a primitive ube root of unity. Multipliations by 1 are omitted. When 3 ∤ i, we use
wi

jqi + w−i
j qi ≡ −qi (mod pj) to save a multiply.Substituting x = eiθ where i2 = −1 gives

Q(eiθ)R(eiθ) =

q0 + 2

dq
∑

j=1

qj cos(jθ)

r0 + 2
dr
∑

j=1

rj cos(jθ)

 .These osine series an be multiplied using disrete osine transforms, in approximately the sameauxiliary spae needed by the weighted onvolutions. We did not implement that approah.2.7.3 Multiplying General Polynomials by RLPsIn Setion 2.9 we will onstrut an RLP h(x) whih will later be multiplied by various g(x).The length-ℓ DFT of h(x) evaluates h(ωi) for 0 ≤ i < ℓ, where ω is an ℓ-th primitive root ofunity. However sine h(x) is reiproal, h(ωi) = h(ωℓ−i) and the DFT has only ℓ/2 + 1 distintoe�ients. In signal proessing, the DFT of a signal extended symmetrially around the enterof eah endpoint is alled a Disrete Cosine Transform of type I. Using a DCT�I algorithm [6℄,we ould ompute the oe�ients h(ωi) for 0 ≤ i ≤ ℓ/2 with a length ℓ/2 + 1 transform. Wehave not implemented this.Instead we ompute the full DFT of the RLP (using xℓ = 1 to avoid negative exponents). Toonserve memory, we store only the ℓ/2 + 1 possibly distint DFT output oe�ients for lateruse.In the srambled output of a deimation-in-frequeny FFT of length ℓ = 2r, the possiblydistint DFT oe�ients h(ωi) for 0 ≤ i ≤ ℓ/2 are stored at even indies and at index 1. Whenwe multiply h(x) and one g(x) via the FFT, eah h(ωi) for 0 < 2i < ℓ must be multiplied totwo oe�ients of the FFT output of g(x), whih again will be in srambled order. Rather thanun-srambling the transform oe�ients for the point-wise multipliation, the orret index pairsto use an be omputed diretly.For 0 < 2i < ℓ, the FFT oe�ients of h(x) stored at index 2i and index mi − 2i, where
mi = 2⌊log2(i)⌋+3 − 2⌊log2(i)⌋+1 − 1, orrespond to h(ωbitrevr(2i)) and h(ωℓ−bitrevr(2i)) and thus areequal. For the point-wise produt with the srambled FFT output of one g(x), we an multiplythe FFT oe�ients of g(x) stored at index 2i and mi− 2i by the FFT oe�ient of h that wasstored at index 2i.

38 Chapter 2. An Improved Stage 2 to P±1 Fatoring Algorithms
Proedure MUL_RLP (s0...dq+dr

, dq, q0...dq
, dr, r0...dr

)Input: RLP Q(x) = q0 +
∑dq

j=1 qj

(

xj + x−j
) of degree at most 2dqRLP R(x) = r0 +

∑dr

j=1 rj

(

xj + x−j
) of degree at most 2drConvolution length ℓ > dq + drCRT primes p1, . . . , pkOutput: RLP S(x) = s0 +

∑ds

j=1 sj

(

xj + x−j
)

= Q(x)R(x) of degree at most
2ds = 2dq + 2dr(Output may overlap input)Data: NTT arrays M and M ′, eah with ℓ elements per pj for auxiliary storage(A squaring uses only M)Zero M and M ′for 1 ≤ j ≤ k doChoose wj with wℓ

j 6≡ 0, ±1 (mod pj) ;
Mj,0 := q0 mod pj;
M ′

j,0 := r0 mod pj;for 1 ≤ i ≤ dq (in any order) dofor 1 ≤ j ≤ k do /* Store Q(wx) mod pj in Mj */
Mj,i := wi

jqi mod pj;
Mj,ℓ−i := w−i

j qi mod pj ;if Q(x) 6= R(x) thenfor 1 ≤ i ≤ dr (in any order) dofor 1 ≤ j ≤ k do /* Store R(wx) mod pj in M ′
j */

M ′
j,i := wi

jri mod pj;
M ′

j,ℓ−i := w−i
j ri mod pj ;for 1 ≤ j ≤ k doNTT_DIF(Mj,0...ℓ−1, ℓ, pj); /* Forward transform of Q(wx) mod pj */if Q(x) 6= R(x) thenNTT_DIF(M ′

j,0...ℓ−1, ℓ, pj); /* Forward transform of R(wx) mod pj */
Mj,0...ℓ−1 := Mj,0...ℓ−1 ·M ′

j,0...ℓ−1 mod pj; /* Point-wise produt */else
Mj,0...ℓ−1 := (Mj,0...ℓ−1)

2 mod pj; /* Point-wise squaring */INTT_DIT(Mj,0...ℓ−1, ℓ, pj); /* Inverse transform */for 1 ≤ i ≤ ℓ− ds − 1 do
Mj,i := w−i

j Mj,i (mod pj); /* Un-weighting */for ℓ− ds ≤ i ≤ ⌊ℓ/2⌋ do
t := (w−lMj −Mℓ−j)/(w

−2ℓ − 1);
Ml−j := Mℓ−j − w−ℓt;
Mj := t;for 0 ≤ i ≤ ds do

si := CRT(M1...j,i, p1...k) modNAlgorithm 4: NTT-Based Multipliation Algorithm for reiproal Laurent polynomials.

2.8. Computing Coe�ients of f 392.7.4 Multiplying RLPs without NTTIf no suitable transform-based multipliation algorithm is available for the weighted onvolutionof Setion 2.7.2, RLPs an be multiplied with a regular polynomial multipliation routine, al-though less e�iently. Given an RLP f(x) = f0 +
∑df

i=1 fi(x
i + x−i) of degree at most 2df instandard basis, we an write a polynomial f̃(x) = f0/2 +

∑df

i=1 fix
i of degree at most df so that

f(x) = f̃(x) + f̃(1/x). Likewise for g(x) and g̃(x).Let rev(f̃(x)
)

= xdf f̃(1/x) denote the polynomial with reversed sequene of oe�ients. Wehave rev(rev(f̃(x)
))

= f̃(x) and rev(f̃(x)g̃(x)
)

= rev(f̃(x)
)rev(g̃(x)

). Let ⌊f(x)⌋ denote thepolynomial whose oe�ients at non-negative exponents of x are equal to those in f(x), andwhose oe�ients at negative exponents of x are 0. We have ⌊f(x) + g(x)⌋ = ⌊f(x)⌋+ ⌊g(x)⌋.Now we an ompute the produt
f(x)g(x)

= (f̃(x) + f̃(1/x))(g̃(x) + g̃(1/x))

= f̃(x)g̃(x) + f̃(x)g̃(1/x) + f̃(1/x)g̃(x) + f̃(1/x)g̃(1/x)

= f̃(x)g̃(x) + x−dg f̃(x)rev(g̃(x)
)

+ x−df rev(f̃(x)rev(g̃(x))
)

+ f̃(1/x)g̃(1/x),but we want to store only the oe�ients at non-negative exponents in the produt, so
⌊f(x)g(x)⌋ = f̃(x)g̃(x) + ⌊x−dg f̃(x)rev(g̃(x)

)

⌋+ ⌊x−df rev(f̃(x)rev(g̃(x))
)

⌋+ f̃0g̃0produes a polynomial whose oe�ients in monomial basis are equal to those of the RLP
f(x)g(x) in standard basis. This omputation uses two multipliations of polynomials of degreesat most df and dg, respetively, whereas the algorithm in Setion 2.7.2 has ost essentiallyequivalent to one suh multipliation.2.8 Computing Coe�ients of fAssume the P+1 algorithm. The moni RLP f(X) in (2.5), with roots α2k

1 where k ∈ S1, anbe onstruted using the deomposition of S1. The oe�ients of f will always be in the basering sine P1 ∈ Z/NZ.For the P�1 algorithm, set α1 = b1 and P1 = b1 + b−1
1 . The rest of the onstrution of f forP�1 is idential to that for P+1.Assume S1 and S2 are built as in Setion 2.6, say S1 = T1 + T2 + · · ·+ Tm where eah Tj hasan arithmeti progression of prime length, entered at zero. At least one of these has ardinality

2 sine s1 = |S1| =
∏

j |Tj | is even. Renumber the Tj so |T1| = 2 and |T2| ≥ |T3| ≥ · · · ≥ |Tm|.If T1 = {−k1, k1}, then initialize F1(X) = X + X−1 − α2k1
1 − α−2k1

1 = X + X−1 − V2k1(P1),a moni RLP in X of degree 2.Suppose 1 ≤ j < m. Given the oe�ients of the moni RLP Fj(X) with roots α2k1
1 for

k1 ∈ T1 + · · ·+ Tj , we want to onstrut
Fj+1(X) =

∏

k2∈Tj+1

Fj(α
2k2
1 X). (2.11)The set Tj+1 is assumed to be an arithmeti progression of prime length t = |Tj+1| enteredat zero with ommon di�erene k, say Tj+1 = {(−1 − t)k/2 + ik : 1 ≤ i ≤ t}. If t is even, k is

40 Chapter 2. An Improved Stage 2 to P±1 Fatoring Algorithmseven to ensure integer elements. On the right of (2.11), group pairs ±k2 when k2 6= 0. We needthe oe�ients of
Fj+1(X) =

{

Fj(α
−k
1 X)Fj(α

k
1X), if t = 2

Fj(X)
∏(t−1)/2

i=1

(

Fj(α
2ki
1 X)Fj(α

−2ki
1 X)

)

, if t is odd. (2.12)Let d = deg(Fj), an even number. The moni input Fj has d/2 oe�ients in Z/NZ (plus theleading 1). The output Fj+1 will have td/2 = deg(Fj+1)/2 suh oe�ients.Produts suh as Fj(α
2ki
1 X)Fj(α

−2ki
1 X) an be formed by the method in Setion 2.8.1, using

d oe�ients to store eah produt. The interfae an pass α2ki
1 + α−2ki

1 = V2ki(P1) ∈ Z/NZ asa parameter instead of α±2ki
1 .For odd t, the algorithm in Setion 2.8.1 forms (t − 1)/2 suh moni produts eah with doutput oe�ients. We still need to multiply by the input Fj . Overall we store (d/2) + t−1

2 d =
td/2 oe�ients. Later these (t + 1)/2 moni RLPs an be multiplied in pairs, with produtsoverwriting the inputs, until Fj+1 (with td/2 oe�ients plus the leading 1) is ready.All polynomial produts needed for (2.11), inluding those in Setion 2.8.1, have outputdegree at most t deg(Fj) = deg(Fj+1), whih divides the �nal deg(Fm) = s1. The polynomialoe�ients are saved in the (MZNZ) bu�er of 2.10. The (MDFT) bu�er allows onvolutionlength ℓmax/2, whih is adequate when an RLP produt has degree up to 2(ℓmax/2)− 1 ≥ s1.A smaller length might be better for a partiular produt.2.8.1 Saling by a Power and Its InverseLet F (X) be a moni RLP of even degree d, say F (X) = c0 +

∑d/2
i=1 ci(X

i + X−i), where eah
ci ∈ Z/NZ and cd/2 = 1. Given Q ∈ Z/NZ, where Q = γ + γ−1 for some unknown γ, wewant the d oe�ients (exluding the leading 1) of F (γX) F (γ−1X) mod N in plae of the d/2suh oe�ients of F . We are allowed a few salar temporaries and any storage internal to thepolynomial multiplier.Denote Y = X + X−1. Rewrite, while pretending to know γ,

F (γX) = c0 +

d/2
∑

i=1

ci(γ
iXi + γ−iX−i)

= c0 +

d/2
∑

i=1

ci

2

(

(γi + γ−i)(Xi + X−i) + (γi − γ−i)(Xi −X−i)

)

= c0 +

d/2
∑

i=1

ci

2

(

Vi(Q)Vi(Y) + (γ − γ−1)Ui(Q)(X −X−1)Ui(Y)

)

.Replae γ by γ−1 and multiply to get
F (γX)F (γ−1X) = G2 − (γ − γ−1)2(X −X−1)2 H2

= G2 − (Q2 − 4)(X −X−1)2 H2, (2.13)where
G = c0 +

d/2
∑

i=1

ci
Vi(Q)

2
Vi(Y)

H =

d/2
∑

i=1

ci
Ui(Q)

2
Ui(Y).

2.9. Multipoint Polynomial Evaluation 41This G is a (not neessarily moni) RLP of degree at most d in the standard basis {1} ∪
{Vj(Y) : 1 ≤ j ≤ d/2}, with oe�ients in Z/NZ. This H is another RLP, of degree at most
d − 2, but using the basis {Ui(Y) : 1 ≤ i ≤ d/2}. Starting with the oe�ient of Ud/2(Y), wean repeatedly use Uj+1(Y) = Vj(Y)U1(Y) + Uj−1(Y) = Vj(Y) + Uj−1(Y) for j > 0, along with
U1(Y) = 1 and U0(Y) = 0, to onvert H to standard basis. This onversion osts O(d) additionsin Z/NZ.Use the identities Vi+1(Q) = QVi(Q)−Vi−1(Q) and Ui+1(Q) = QUi(Q)−Ui−1(Q) from (2.3)and (2.2) to evaluate Vi(Q)/2 and Ui(Q)/2 for onseutive i when omputing the d/2 + 1 oe�-ients of G and the d/2 oe�ients of H. If a weighted NTT-based algorithm suh as Algorithm 4is used for multiplying RLPs and a memory model as in Setion 2.10, the algorithm an writethe NTT images of the standard-basis oe�ients of G and H to di�erent parts of (MDFT) andreover the oe�ients of G2 and H2 via the CRT and ombine them diretly into the oe�-ients of F (γx)F (γ−1x) to avoid alloating temporary storage for G and H. Algorithm 5 showsa simpli�ed implementation with temporary storage.2.9 Multipoint Polynomial EvaluationWe have onstruted f = Fm in (2.5). The moni RLP f(X) has degree s1, say f(X) =

f0 +
∑s1/2

j=1 fj · (Xj + X−j) =
∑s1/2

j=−s1/2 fjX
j where fj = f−j ∈ Z/NZ.Assuming the P�1 method (otherwise see Setion 2.9.1), ompute r = bP

1 ∈ Z/NZ. Set
ℓ = ℓmax and M = ℓ− 1− s1/2.Equation (2.6) needs gcd(f(X), N) where X = b

2k2+(2m+1)P
1 , for several onseutive m, say

m1 ≤ m < m2. By setting x0 = b
2k2+(2m1+1)P
1 , the arguments to f beome x0b

2mP
1 = x0r

2m for
0 ≤ m < m2−m1. The points of evaluation form a geometri progression with ratio r2. We anevaluate these for 0 ≤ m < ℓ − 1 − s1 with one onvolution of length ℓ and O(ℓ) setup ost [1,exerise 8.27℄.To be preise, set hj = r−j2

fj for −s1/2 ≤ j ≤ s1/2. Then hj = h−j . Set h(X) =
∑s1/2

j=−s1/2 hjX
j , an RLP. The onstrution of h does not referene x0 � we reuse h as x0 varies.Let gi = xM−i
0 r(M−i)2 for 0 ≤ i ≤ ℓ− 1 and g(X) =

∑ℓ−1
i=0 giX

i.All nonzero oe�ients in g(X)h(X) have exponents from 0−s1/2 to (ℓ−1)+s1/2. Suppose
0 ≤ m ≤ ℓ − 1 − s1. Then M − m − ℓ = −1 − s1/2 − m < −s1/2 whereas M − m + ℓ =
(ℓ − 1 + s1/2) + (ℓ − s1 −m) > ℓ − 1 + s1/2. The oe�ient of XM−m in g(X)h(X), reduedmodulo Xℓ − 1, is

∑

0≤i≤ℓ−1
−s1/2≤j≤s1/2

i+j≡M−m (mod ℓ)

gihj =
∑

0≤i≤ℓ−1
−s1/2≤j≤s1/2

i+j=M−m

gihj =

s1/2
∑

j=−s1/2

gM−m−jhj

=

s1/2
∑

j=−s1/2

xm+j
0 r(m+j)2r−j2

fj =

s1/2
∑

j=−s1/2

xm
0 rm2 (

x0r
2m
)j

fj = xm
0 rm2

f(x0r
2m).Sine we want only gcd(f(x0 r2m), N), the xm

0 rm2 fators are harmless.We an ompute suessive gℓ−i with two ring multipliations eah sine the ratios gℓ−1−i/gℓ−i =
x0 r2i−s1−1 form a geometri progression.

42 Chapter 2. An Improved Stage 2 to P±1 Fatoring AlgorithmsInput: RLP F (x) = f0 +
∑d/2

i=1 fi(x
i + x−i), fi ∈ Z/NZ

Q ∈ Z/NZOutput: Coe�ients of F (γx)F (γ−1x) in standard basis {1} ∪ {xi + x−i : 1 ≤ i ≤ d},where γ + γ−1 = Q, overwriting f0...dData: Storage for v, u, gi, hi ∈ Z/NZ, for 0 ≤ i < d

v := 1; /* V0(Q)/2 = 1 */
u := Q/2; /* V1(Q)/2 = Q/2 */
g0 = f0;for i := 1 to d/2 do

gi = fiu;
(u, v) := (uQ− v, u); /* u := Vi+1(Q)/2, v := Vi(Q)/2 *//* Now G = g0 +

∑d/2
i=1 giVi

(

x + x−1
) */MUL_RLP (g(0,...,d), g(0,...,d/2), d/2, g(0,...,d/2), d/2); /* Use Algorithm 4 *//* Now G2 = g0 +

∑d
i=1 giVi

(

x + x−1
) */

v := 0; /* v := U0(Q)/2 = 0 */
u := 1/2; /* u := U1(Q)/2 = 1/2 */for i := 1 to d/2 do /* store hi shifted by 1 to simplify onversion to Vibasis */

hi−1 := fiu;
(u, v) := (uQ− v, u); /* u := Ui+1(Q)/2, v := Ui(Q)/2 *//* Now H =

∑d/2
i=1 hi−1Ui

(

x + x−1
) */for i := d/2 downto 3 do /* onvert hi from Ui to Vi basis */

hi−3 := hi−3 + hi−1;/* Now H = h0 +
∑d/2−1

i=1 hiVi

(

x + x−1
), i.e., in standard basis */MUL_RLP (h(0,...,d−2), h(0,...,d/2−1), d/2 − 1, h(0,...,d/2−1), d/2 − 1); /* Use Algorithm 4 *//* Now H2 = h0 +

∑d−2
i=1 hiVi

(

x + x−1
) */for i = 0 to d− 2 do

hi := hi

(

Q2 − 4
);/* Now (Q2 − 4

)

H2 = h0 +
∑d−2

i=1 hiVi

(

x + x−1
) *//* Compute G2 +

(

x− x−1
)2 (

Q2 − 4
)

H2 */if d = 2 then
g0 := g0 + 2h0;
g2 := g2 − h0;else
g0 := g0 + 2(h0 − h2);
g1 := g1 + h1;if d > 4 then

g1 := g1 − h3;for i = 2 to d− 4 do
gi := gi − hi−2 + 2hi − hi+2;for d− 3 to d− 2 do
gi := gi − hi−2 + 2hi;

gd−1 := gd−1 − hd−3;
gd := gd − hd−2;for i := 0 to d do
fi := gi; /* Store result in f */Algorithm 5: Algorithm for saling a reiproal Laurent polynomial by a power and itsinverse.

2.9. Multipoint Polynomial Evaluation 432.9.1 Adaptation for P+1 AlgorithmIf we replae b1 with α1, then r beomes αP
1 , whih satis�es r+r−1 = VP (P1). The above algebraevaluates f at powers of α1. However α1, r, hj , x0, and gi lie in an extension ring.Arithmeti in the extension ring an use a basis {1, √∆} where ∆ = P 2

1 − 4. The element
α1 maps to (P1 +

√
∆)/2. A produt (c0 + c1

√
∆)(d0 + d1

√
∆) where c0, c1, d0, d1 ∈ Z/NZan be done using four base-ring multipliations: c0d0, c1d1, (c0 + c1)(d0 + d1), c1d1∆, plus �vebase-ring additions.We de�ne linear transformations E1, E2 on (Z/NZ)[

√
∆] so that E1(c0 + c1

√
∆) = c0 and

E2(c0 + c1

√
∆) = c1 for all c0, c1 ∈ Z/NZ. Extend E1 and E2 to polynomials by applying themto eah oe�ient.Some multipliation involves powers of α1 and r. These have norm 1, whih may allowsimpli�ations. For example,

(c0 + c1

√
∆)2 = 2c2

0 − 1 + 2c0c1

√
∆needs only two multipliations and three additions if c2

0 − c2
1∆ = 1.To ompute rn2 for suessive n, we use reurrenes. We observe

rn2
= r(n−1)2+2 · V2n−3(r + r−1)− r(n−2)2+2,

rn2+2 = r(n−1)2+2 · V2n−1(r + r−1)− r(n−2)2 .After initializing the variables r1[i] := ri2 , r2[i] := ri2+2, v[i] := V2i+1(r + r−1) for two onseu-tive i, we an ompute r1[i] = ri2 for larger i in sequene by
r1[i] := r2[i− 1] · v[i− 2]− r2[i− 2], (2.14)
r2[i] := r2[i− 1] · v[i− 1]− r1[i− 2],

v[i] := v[i− 1] · V2(r + 1/r)− v[i− 2] .Sine we won't use v[i − 2] and r2[i − 2] again, we an overwrite them with v[i] and r2[i]. Forthe omputation of r−n2 where r has norm 1, we an use r−1 as input, by taking the onjugate.All v[i] are in the base ring but r1[i] and r2[i] are in the extension ring. Eah appliationof (2.14) takes �ve base-ring multipliations (ompared to two multipliations per rn2 in the P�1algorithm).We an ompute suessive gi = xM−i
0 r(M−i)2 similarly. One solution to (2.14) is r1[i] = gi,

r2[i] = r2gi, v[i] = x0r
2M−2i−1 + x−1

0 r1+2i−2M . Again eah v[i] is in the base ring, so (2.14)needs only �ve base-ring multipliations.If we try to follow this approah for the multipoint evaluation, we need twie as muh spaefor an element of (Z/NZ)[
√

∆] as one of Z/NZ. We also need a onvolution routine for theextension ring.If p divides the oe�ient of XM−m in g(X)h(X), then p divides both oordinates thereof.The oe�ients of g(X)h(X) oasionally lie in the base ring, making E2(g(X)h(X)) a poorhoie for the gcd with N . Instead we ompute
E1(g(X)h(X)) = E1(g(X))E1(h(X)) + ∆E2(g(X))E2(h(X)) . (2.15)The RLPs E1(h(X)) and ∆E2(h(X)) an be omputed one and for eah of the ℓmax/2 +

1 distint oe�ients of its length ℓmax DFT saved in (MHDFT). To ompute ∆E2(h(X)),multiply E2(r1[i]) and E2(r2[i]) by ∆ after initializing for two onseutive i. Then apply (2.14).

44 Chapter 2. An Improved Stage 2 to P±1 Fatoring AlgorithmsLater, as eah gi is omputed we insert the NTT image of E2(gi) into (MDFT) while saving
E1(gi) in (MZNZ) for later use. After forming E1(g(X))E1(h(X)), retrieve and save oe�ientsof XM−m for 0 ≤ m ≤ ℓ− 1− s1. Store these in (MZNZ) while moving the entire saved E1(gi)into the (now available) (MDFT) bu�er. Form the E2(g(X))E2(∆h(X)) produt and the sumin (2.15).2.10 Memory Alloation ModelWe aim to �t our major data into the following:(MZNZ) An array with s1/2 elements of Z/NZ, for onvolution inputs and outputs. This is usedduring polynomial onstrution.This is not needed during P�1 evaluation. During P+1 evaluation, it grows to ℓmaxelements of Z/NZ (if we ompute both oordinate of eah gi together, saving one of them),or ℓmax − s1 elements (if we ompute the oordinates individually).(MDFT) An NTT array holding ℓmax values modulo pj per prime pj, for use during DWTs.Setion 2.8.1 does two overlapping squarings, whereas Setion 2.8 multiplies two arbitraryRLPs. Eah produt degree is at most deg(f) = s1. Algorithm 4 needs ℓ ≥ s1/2 and mightuse onvolution length ℓ = ℓmax/2, assuming ℓmax is even. Two arrays of this length �tin MDFT.After f has been onstruted, MDFT is used for NTT transforms with length up to ℓmax.(MHDFT) Setion 2.9 sales the oe�ients of f by powers of r to build h. Then it builds and storesa length-ℓ DFT of h, where ℓ = ℓmax. This transform output normally needs ℓ elementsper pj for P�1 and 2ℓ elements per pj for P+1. The symmetry of h lets us ut these needsalmost in half, to ℓ/2 + 1 elements for P�1 and ℓ + 2 elements for P+1.During the onstrution of Fj+1 from Fj, if we need to multiply pairs of moni RLPs oupyingadjaent loations within (MZNZ) (without the leading 1's), we use (MDFT) and algorithm 4.The outputs overwrite the inputs within (MZNZ).During polynomial evaluation for P�1, we need only (MHDFT) and (MDFT). Send theNTT image of eah gi oe�ient to (MDFT) as gi is omputed. When (MDFT) �lls (with
ℓmax entries), do a length-ℓmax forward DFT on (MDFT), pointwise multiply by the savedDFT output from h in (MHDFT), and do an inverse DFT in (MDFT). Retrieve eah neededpolynomial oe�ient, ompute their produt, and take a gd with N .2.10.1 Potentially Large B2In 2008/2009, a typial PC memory is 4 gigabytes. The median size of omposite ofators N inthe Cunningham projet http://homes.erias.purdue.edu/~ssw/un/index.html is about230 deimal digits, whih �ts in twelve 64-bit words (alled quadwords). Table 2.1 estimates thememory requirements during Stage 2, when fatoring a 230-digit number, for both polynomialonstrution and polynomial evaluation phases, assuming onvolutions use the NTT approah inSetion 2.7.1. The produt of our NTT prime moduli must be at least ℓmax(N−1)2. If N2ℓmaxis below 0.99 · (263)25 ≈ 10474, then it will su�e to have 25 NTT primes, eah 63 or 64 bits.The P�1 polynomial onstrution phase uses an estimated 40.5ℓmax quadwords, vs. 37.5ℓmaxquadwords during polynomial evaluation. We an redue the overall maximum to 37.5ℓmax by

2.11. Opportunities for Parallelization 45Table 2.1: Estimated memory usage (quadwords) while fatoring 230-digit number.Array Construt f . Build h. Evaluate f .name Both P±1(MZNZ) 12(s1/2) 12(s1/2) 0 (P�1)
12ℓmax (P+1)(MDFT) 25ℓmax 25ℓmax 25ℓmax(MHDFT) 0 25(ℓmax/2 + 1) (P�1) 25(ℓmax/2 + 1) (P�1)

25(ℓmax + 2) (P+1) 25(ℓmax + 2) (P+1)Totals, if 28ℓmax + O(1) 40.5ℓmax + O(1) (P�1) 37.5ℓmax + O(1) (P�1)
s1 = ℓmax/2 53ℓmax + O(1) (P+1) 62ℓmax + O(1) (P+1)taking the (full) DFT transform of h in (MDFT), and releasing the (MZNZ) storage beforealloating (MHDFT).Four gigabytes is 537 million quadwords. A possible value is ℓmax = 223, whih needs 315million quadwords. When transform length 3 · 2k is supported, we ould use ℓmax = 3 · 222,whih needs 472 million quadwords.We might use P = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111546435, for whih φ(P) = 36495360 =

213 · 34 · 5 · 11. We hoose s2 | φ(P) so that s2 is lose to φ(P)/(ℓmax/2) ≈ 8.7, i.e., s2 = 9 and
s1 = 4055040, giving s1/ℓmax ≈ 0.48.We an do 9 onvolutions, one for eah k2 ∈ S2. We will be able to �nd p | N if bq

1 ≡ 1
(mod p) where q satis�es (2.7) with m < ℓmax − s1 = 4333568. As desribed in Setion 2.6, thee�etive value of B2 will be about 9.66 · 1014.2.11 Opportunities for ParallelizationModern PC's are multi-ore, typially with 2�4 CPUs (ores) and a shared memory. Whenrunning on suh systems, it is desirable to utilize multiple ores.While building h(X) and g(X) in Setion 2.9, eah ore an proess a ontiguous blok ofsubsripts. Use the expliit formulas to ompute r−j2 or gi for the �rst two elements of a blok,and the reurrenes elsewhere.If onvolutions use NTT's and the number of proessors divides the number of primes, thenalloate the primes evenly aross the proessors. The (MDFT) and (MHDFT) bu�ers in Se-tion 2.10 an have separate subbu�ers for eah prime. On NUMA arhitetures, the memoryfor eah subbu�er should be alloated loally to the proessor that will proess it. Aesses toremote memory our only when onverting the hj and gi to residues modulo small primes, andwhen reonstruting the oe�ients of g(x)h(x) with the CRT.2.12 Our ImplementationOur implementation is based on GMP-ECM, an implementation of P�1, P+1, and the ElliptiCurve Method for integer fatorization. It uses the GMP library [49℄ for arbitrary preisionarithmeti. The ode for Stage 1 of P�1 and P+1 is unhanged; the ode for the new Stage 2has been written from srath and has replaed the previous implementation [103℄ whih usedprodut trees of ost O

(

n(log n)2
) modular multipliations for building polynomials of degree n

46 Chapter 2. An Improved Stage 2 to P±1 Fatoring Algorithmsand a variant of Montgomery's POLYEVAL [67℄ algorithm for multipoint evaluation whih hasost O
(

n(log n)2
) modular multipliations and O(n log n) memory. The pratial limit for B2was between 1014 and 1015.GMP-ECM inludes modular arithmeti routines, using for example Montgomery's REDC [64℄,or fast redution modulo a number of the form 2n ± 1. It also inludes routines for polynomialarithmeti, in partiular onvolution produts. One algorithm available for this purpose is asmall prime NTT/CRT, using the �Expliit CRT� [12℄ variant whih speeds redution modulo

N after the CRT step but requires 2 or 3 additional small primes. Its urrent implementationallows only for power-of-two transform lengths. Another is Kroneker-Shönhage's segmentationmethod [103℄, whih is faster than the NTT if the modulus is large and the onvolution length isomparatively small, and works for any onvolution length. Its main disadvantage is signi�antlyhigher memory use, reduing the possible onvolution length.On a 2.4 GHz Opteron with 8 GB memory, P�1 Stage 2 on a 230-digit omposite ofatorof 12254 + 1 with B2 = 1.2 · 1015, using the NTT with 27 primes for the onvolution, an use
P = 64579515, ℓmax = 224, s1 = 7434240, s2 = 3 and takes 1738 seonds while P+1 Stage 2takes 3356 seonds. Using multi-threading to use both CPUs on the same mahine, P�1 Stage 2with the same parameters takes 1753 seonds CPU and 941 seonds elapsed time while P+1 takes
3390 seonds CPU and 2323 seonds elapsed time. For omparison, the previous implementationof P�1 Stage 2 in GMP-ECM [103℄ needs to use a polynomial F (X) of degree 1013760 and 80bloks for B2 = 1015 and takes 34080 seonds on one CPU of the same mahine.On a 2.6 GHz Opteron with 8 ores and 32 GB of memory, a multi-threaded P�1 Stage 2 on thesame input number with the same parameters takes 1661 seonds CPU and 269 seonds elapsedtime, while P+1 takes 3409 seonds CPU and 642 seonds elapsed time. With B2 = 1.34 · 1016,
P = 198843645, ℓmax = 226, s1 = 33177600, s2 = 2, P�1 Stage 2 takes 5483 seonds CPU and
922 elapsed time while P+1 takes 10089 seonds CPU and 2192 seonds elapsed time.2.13 Some ResultsWe ran at least one of P±1 on over 1500 omposite ofators, inluding:(a) Rihard Brent's tables with bn ± 1 fatorizations for 13 ≤ b ≤ 99;(b) Fibonai and Luas numbers Fn and Ln with n < 2000, or n < 10000 and ofator size

< 10300;() Cunningham ofators of 12n ± 1 with n < 300;(d) Cunningham ofators of 300 digits and larger.The B1 and B2 values varied, with B1 = 1011 and B2 = 1016 being typial. Table 2.2 has newlarge prime fators p and the largest fators of the orresponding p± 1.The 52-digit fator of 47146 + 1 and the 60-digit fator of L2366 eah set a new reord forthe P+1 fatoring algorithm upon their disovery. The previous reord was a 48-digit fator of
L1849, found by the author in Marh 2003.The 53-digit fator of 24142 + 1 has q = 12750725834505143, a 17-digit prime. To ourknowledge, this is the largest prime in the group order assoiated with any fator found by theP�1, P+1 or Ellipti Curve methods of fatorization.The largest q reported in Table 2 of [74℄ is q = 6496749983 (10 digits), for a 19-digit fator
p of 2895 + 1. That table inludes a 34-digit fator of the Fibonai number F575, whih was theP�1 reord in 1989.

2.13. Some Results 47Input Fator p found SizeMethod Largest fators of p± 1

73109 − 1 76227040047863715568322367158695720006439518152299 191P�1 12491 · 37987 · 156059 · 2244509 · 462832247372839 p50
68118 + 1 7506686348037740621097710183200476580505073749325089∗ 151P�1 22807 · 480587 · 14334767 · 89294369 · 4649376803 · 5380282339 p52
24142 + 1 20489047427450579051989683686453370154126820104624537 183P�1 4959947 · 7216081 · 16915319 · 17286223 · 12750725834505143 p53
47146 + 1 7986478866035822988220162978874631335274957495008401 235P+1 20540953 · 56417663 · 1231471331 · 1632221953 · 843497917739 p52

L2366 725516237739635905037132916171116034279215026146021770250523 290P+1 932677 · 62754121 · 19882583417 · 751245344783 · 483576618980159 p60
∗ = Found during Stage 1Table 2.2: Large P±1 fators foundTable 2.3: Timing for 24142 + 1 fatorizationOperation Minutes (per CPU) ParametersCompute f 22 P = 198843645Compute h 2 ℓmax = 226Compute DCT�I(h) 8 s1 = 33177600Compute all gi 6 (twie) s2 = 1Compute g × h 17 (twie) m1 = 246Test for non-trivial gd 2 (twie)Total 32 + 2 · 25 = 82The largest P�1 fator reported in [103, pp. 538�539℄ is a 58-digit fator of 22098 +1 with q =

9909876848747 (13 digits). Site http://www.loria.fr/~zimmerma/reords/Pminus1.htmlhas other reords, inluding a 66-digit fator of 960119−1 found by P�1 for whih q = 2110402817(only ten digits).The p53 of 24142 + 1 in Table 2.2 used B1 = 1011 at Montgomery's site. Stage 1 took 44hours using a 2200 MHz AMD Athlon proessor in 32-bit mode.Stage 2 ran on an 8-ore, 32 GB Grid5000 luster at the author's site. Table 2.3 shows wherethe time went. The overall Stage 2 time is 8 · 82 = 656 minutes, about 25% of the Stage 1 CPUtime.

48 Chapter 2. An Improved Stage 2 to P±1 Fatoring Algorithms

Chapter 3The Number Field Sieve3.1 IntrodutionThe Number Field Sieve (NFS) is the best urrently known general fatorization algorithm. Asopposed to speial fatorization algorithms suh as those desribed in Chapter 2 or ECM [62℄whose run time depend strongly on the size (or other properties) of the prime fator p of N wehope to �nd and muh less on the size of N , the run time of general fatorization algorithms doesnot depend on partiular properties of the prime fators of an input number, but only on the sizeof N . This makes the NFS the method of hoie for fatoring �hard� integers, i.e., integers thatontain no prime fators that are small or have other properties that would make them easy to�nd by speial fatoring algorithms.Fatoring the modulus of the publi key is one possible attak on the RSA enryption sys-tem [85℄ and, for keys that are not weak keys and where the seret key annot be obtaineddiretly, it is the most e�ient known attak on RSA. A variant of NFS [48℄ an be used to solvethe disrete logarithm problem in F∗
p and so is one possible attak on the Di�e-Hellman (DH)key exhange algorithm [36℄. Therefore great e�ort has been made over the last twenty years toimprove NFS in order to estimate the minimum modulus size for RSA and DH keys that are outof range for NFS with available omputing resoures. This size hanged onsiderably over theyears, see Setion 3.3 for an overview of NFS integer fatoring reords.NFS is a suessor of the Quadrati Sieve, whih was the best general fatoring algorithmbefore the advent of NFS and has onjetured asymptoti running time in LN [1/2, 1] for fatoring

N , where the L-funtion is de�ned as
Lx[t, c] = e(c+o(1)) log(x)t log log(x)1−t

.The Number Field Sieve ahieves onjetured omplexity
LN [1/3, c],where the onstant c is (32/9)1/3 ≈ 1.526 or (64/9)1/3 ≈ 1.923, depending on the variant of NFS,see Setion 3.2.1.This hapter gives a brief overview of the Number Field Sieve: how it relates to its pre-deessor, the Quadrati Sieve, and a short desription of the di�erent steps performed in anNFS fatorization, to provide ontext for the following Chapters whih fous on the problem ofo-fatorization in the sieving step of NFS. 49

50 Chapter 3. The Number Field Sieve3.1.1 The Quadrati SieveThe Quadrati sieve was developed by Carl Pomerane [84℄, based on the unpublished (butdesribed in [84℄) Linear Sieve by Shröppel. Silverman [92℄ implements a Multiple PolynomialQuadrati Sieve variant based on ideas of Montgomery (whih are also mentioned in [84℄), andContini [27℄ redues the ost of polynomial hanges with the Self-Initialising Quadrati Sieve.We give a brief desription of the QS to introdue a few onepts ommon to QS and NFS, anddon't onsider the mentioned improvements to QS here to keep the desription simple.The basi idea of the Quadrati Sieve is to ollet relations y = x2−N where x ranges over aninterval of integers lose to √N , and y will onsequently take integer values bounded by N1/2+ǫ.Values of y whih are �smooth�, i.e., that have no prime fator greater than some smoothnessbound B, are ompletely fatored and stored together with the assoiated x-value. One enoughsuh relations are found, a subset of these (x, y)-pairs suh that the produt of y-values in thissubset forms an integer square an be determined by linear algebra: an integer is a square if allits prime fators appear in even power, and the exponent vetor of the anonial fatorizationof a produt is the sum of the exponent vetors of the multiplier and the multipliand. Thuswe an look for kernel vetors of a matrix over F2 to �nd a produt of y-values whose exponentvetor has all omponents 0 (mod 2), i.e., whih is an integer square. If we have at least asmany relations as primes appear among the fatorizations of the y-values, the linear system anbe solved. The produt of the so seleted y-values and the produt of the assoiated x2-valuesthus form ongruent squares,
X2 ≡ Y 2 (mod N) (3.1)where X and Y an be obtained from the stored x and fatored y-values. If X 6≡ ±Y (mod N),then gcd(X −Y,N) �nds a proper fator of N . For omposite N that are not pure powers, (3.1)has at least 4 solutions for any X ⊥ N ; if the fatoring algorithm produes one of these solutionsat random, then the probability of having a non-trivial fatorization is at least 1/2.The great advantage of QS over earlier general fatoring algorithms suh as the ContinuedFration Method [59℄ is that values of x where y is divisible by a prime p form arithmetiprogressions of ommon di�erene p, i.e., if f(x) is a polynomial with integer oe�ients and wehoose an x suh that p | f(x), then p | f(x+kp) for all integers k. This greatly simpli�es the taskof fatoring the y-values in the QS: given y = f(x) for n onseutive values of x, instead of tryingall andidate prime divisors 2 ≤ p < B for eah y-value individually with ost in O(nπ(B)),we determine the roots f(x1|2,p) ≡ 0 (mod p) for eah 2 ≤ p < B where (disc(f)

p

)

6= −1 withost O(π(B)) and an divide out this prime p from all y = f(x)-values with x ≡ x1|2,p (mod p)(�sieve,� similar as in the Sieve of Eratosthenes) for a ost approximately O(n/p), whih gives atotal ost for sieving all primes p of only O(n log log(B) + π(B)).3.1.2 NFS: a First ExperimentThe basi idea of NFS, still in infany, was desribed by Pollard [82℄ who demonstrated how tofator the seventh Fermat number N = F7 = 2128 + 1 by use of ubi integers. Underlying theidea is the fat that a small multiple of N an be expressed easily by a moni polynomial ofdegree 3 as 2N = 2129 + 2 = f(x) = x3 + 2 for x = 243, i.e., 243 is a root of f(x) mod N . Aomplex root α of f(x) de�nes an algebrai number �eld Q[α] whih ontains the ring Z[α] ofelements a+ bα+ cα2, a, b, c ∈ Z. A natural homomorphism φ : Q[α]→ Z/NZ exists by α 7→ 243

(mod N).

3.1. Introdution 51Pollard now looks for a non-empty set S ⊂ Z2 suh that
γ2 =

∏

(a,b)∈S

(a− bα) (3.2)is the square of some element γ ∈ Z[α], and
g2 =

∏

(a,b)∈S

(a− b243) (3.3)is the square of an integer g. With these, he omputes γ and uses the homomorphism φ to obtain
φ(γ) ∈ Z/NZ suh that φ(γ)2 ≡ g2 (mod N) but hopefully φ(γ) 6≡ ±g (mod N), sine then
gcd(φ(γ) − g,N) produes a non-trivial fator of N .The searh for a suitable set S works similarly as in the Quadrati Sieve: he ollets relations,
(a, b)-pairs with a, b ∈ Z and a ⊥ b, from a small searh region |a| ≤ 4800, 1 ≤ b ≤ 2000, wherethe norm of a−bα (denoted N(a−bα), a rational integer) and of a+b243 both fator into primesnot exeeding B = 3571, plus at most one prime less than 10000 in eah a + b243 value. Thisis failitated by using the fat that both N(a − bα) = a3 + 4b3 and a − bM are homogeneouspolynomials in a and b. For eah �xed value of b, the two polynomials an be sieved over a rangeof a-values. In this example Z[α] is a unique fatorization domain, is equal to the ring of integersof Q[α], and has unit group of rank 1 where the prinipal unit 1+α is easy to �nd. This way eah
a− bα of smooth norm an be readily fatored over a small set of prime elements of Z[α], a signand a power of the prinipal unit. Given su�iently many relations with ompletely fatored
a − bα (in Z[α]) and a − b243 (in Z), he onstruts a set S satisfying (3.2) and (3.3), again byuse of linear algebra to ensure that in eah of the two produts all primes and units our ineven exponent. Sine the expliit fatorization of eah a− bα and a− b243 into powers of primesand units is known, the square root an be taken by dividing exponents by 2 and omputing theprodut.Both QS and NFS look for values of polynomials that are �smooth,� i.e., that ontain noprime fators greater than some smoothness limit B. In ase of (our simpli�ed) QS, we hooseintegers x lose to √N and look for smooth y = x2 −N where the y-values are roughly as largeas √N ; for the NFS example, we look for pairs (a, b) where two polynomials F (a, b) = a3 + 4b3and G(a, b) = a+ b243 are simultaneously smooth. The reason why NFS is asymptotially fasterthan QS, even though for eah relation it requires two values both being smooth instead of onlyone, is that the values are smaller. In Pollard's example, the values of G(a, b) are of size roughly
N1/3 and the values of F (a, b) are smaller still. The probability of an integer n being smooth toa given bound dereases rapidly with the size of n, and even though we have two values of sizeroughly N1/3, for large enough N , assuming independent smoothness probability, they are morelikely both smooth than a single value around √N .At the time of Pollard's experiment, it was not at all lear whether the idea ould be extendedto numbers that are not of suh a simple form as 2128 + 1, or where the relevant ring Z[α] inthe number �eld is not as �well-behaved,� and if it ould, whether this algorithm would be fasterthan the Quadrati Sieve for input sizes of interest. The answer to both turned out to be anenthusiasti �yes,� and the NFS urrently stands unhallenged for fatoring hard integers of morethan approximately 100 deimal digits.

52 Chapter 3. The Number Field Sieve3.2 Overview of NFSIn this setion we brie�y summarize the Number Field Sieve. It requires two distint polynomials
f1(x) =

d1
∑

i=0

f1,ix
i and f2(x) =

d2
∑

i=0

f2,ix
i (3.4)of degree d1 and d2, respetively, with f1,i, f2,i ∈ Z, eah polynomial irreduible over Q, ofontent 1 and with a known ommon root M modulo N , the number to be fatored:

f1(M) ≡ f2(M) ≡ 0 (mod N). (3.5)The homogeneous forms of these polynomials are
F1(a, b) = f1

(a

b

)

bd1 and F2(a, b) = f2

(a

b

)

bd2 . (3.6)Let α1 be a omplex root of f1(x), then Q[α1] de�nes a number �eld whih ontains thering Z[α1], however this ring is not integral if f1(x) is non-moni and even if it is, generally isneither the full ring of integers of Q[α1], nor has unique fatorization. Sine M is a root of f1(x)
(mod N), a natural homomorphism φ1 : Q[α1]→ Z/NZ exists by α1 7→M (mod N). Similarlyfor the seond polynomial.The goal of NFS is to onstrut γ1 ∈ Z[α1] and γ2 ∈ Z[α2] with φ1(γ

2
1) ≡ φ2(γ

2
2) (mod N),sine then X = φ1(γ1) and Y = φ2(γ2) satisfy X2 ≡ Y 2 (mod N) and so, if X 6≡ ±Y (mod N)holds, gcd(X − Y,N) reveals a proper fator of N . We ahieve this by onstruting

γ2
1 =

∏

(a,b)∈S

(a− bα1) and (3.7)
γ2
2 =

∏

(a,b)∈S

(a− bα2) (3.8)with a suitably hosen set S suh that (3.7) and (3.8) are a square in Z[α1] and Z[α2], respetively.Sine φ1(a− bα1) ≡ a− bM ≡ φ2(a− bα2) (mod N), the images of (3.7) and (3.8) are ongruentmodulo N as required.In a number �eld K = Q[x]/f(x)Q[x] of degree d with α = x̄ the norm of an element
ω(x) =

∑

0≤i<d cix
i is de�ned as N(ω) =

∏

1≤j≤d ω(αj) where the αj are the d omplex roots of
f(x). For ω ∈ Z[α] the norm is a rational integer if f(x) is moni, (otherwise the norm times theleading oe�ient of f(x) is an integer, for simpliity we assume the moni ase) and for elements
a− bα we have simply N(a− bα) = bdf(a/b) = F (a, b), where F (a, b) is the homogeneous formof f(x). The norm is multipliative, i.e., N(ωθ) = N(ω)N(θ) for any ω, θ ∈ K, implying that
N(ω2) is an integer square for any ω ∈ Z[α].To onstrut S, we look for relations (a, b), a ⊥ b, where F1(a, b) is B1-smooth and F2(a, b)is B2-smooth. By onsidering the norms, we see that ∏(a,b)∈S F1(a, b) must be a square in Zfor (3.7) to be a square in Z[α1] (likewise for the seond polynomial in the following), but thisondition is generally not su�ient, as distint primes in Z[α1] may have equal norm. Therefore,instead of onsidering only the fatorization of the norm F (a, b) into rational primes, we onsiderthe fatorization of the ideal generated by a− bα1 in Z[α1] into prime ideals. Eah prime idealthat ours as a divisor of (a − bα1) is uniquely identi�ed by (p, r) where p is a prime fator of
F1(a, b) and is the norm of the prime ideal, and r = a · b−1 (mod p) is the orresponding rootof f1(x) (mod p). That is, we do not onsider only the prime fators of N(a− bα1), but further

3.2. Overview of NFS 53distinguish them by whih of the up to d1 possible roots of f(x) (mod p) they orrespond to.The set S is then hosen suh that all prime ideals our in even exponent in both (3.7) and (3.8).This is still not quite su�ient for ensuring that these produts are squares in their respetivering, as the unit group and lass group parts might not be squares, but this problem is elegantlyirumvented by use of quadrati haraters, desribed in Setion 3.2.4.Very frequently the seond polynomial is hosen to be linear in whih ase Q[α2] is simply Qand fatorization of a− bα into prime ideals is equivalent to fatorization of F2(a, b) into rationalprimes; then the ondition that the produt ∏(a,b)∈S F2(a, b) is an integer square is su�ient. Inthis ase everything relating to Z[α2] throughout the NFS algorithm is alled the �rational side�and anything relating to Z[α1] is alled the �algebrai side.�In the sieving step we try to �nd su�iently many relations (a, b) within a sieving region
|a| ≤ A, 0 < b ≤ B, see Setion 3.2.2. The polynomials f1(x) and f2(x) are hosen suh thatthe values of F1(a, b) and F2(a, b) are likely smooth for a, b in the sieve region; an overview ofmethods for polynomial seletion is given in Setion 3.2.1. The relations obtained in the sievingstep are proessed to remove dupliate relations and to redue the size of the resulting matrix,see Setion 3.2.3. In the linear algebra step we determine a subset S of the relations foundduring sieving suh that (3.7) and (3.8) hold. This involves solving a very large and very sparsehomogeneous linear system over F2; two suitable algorithms are mentioned in Setion 3.2.4. Thesquare root step, desribed in Setion 3.2.5, determines γ1 and γ2 from γ2

1 and γ2
2 , respetively,and omputes gcd(φ1(γ1)− φ2(γ2), N), hoping to �nd a proper fator of N .3.2.1 Polynomial SeletionTo redue the ost of the sieving, we try to hoose f1(x) and f2(x) so as to maximise the expetednumber of relations found in the sieve region, or onversely to allow the smallest sieve region toprodue the required number of relations that lets us onstrut ongruent squares. As mentioned,the probability of the polynomial values being smooth dereases rapidly with their size, so oneriteria is that we would like to hoose polynomials with small oe�ients. A trivial method isto pik a degree d1 ≈ (3 log(n)/ log(log(n)))1/3 and to take M = ⌊N1/(d1+1)⌋. Now we an write

N in base-M to obtain the oe�ients of f1(x), and hoose f2(x) = −x + M .Somewhat surprisingly, this trivial idea is asymptotially the best possible (see [20, �3℄) inthe sense that any improvements due to better polynomial seletion are absorbed in the o(1)term of the Lx[t, c] notation. In pratie, elaborate methods for �nding good polynomials areused whih o�er a signi�ant speedup over the naïve method.Early GNFS implementations suh as in [11℄ used basially the base-M method, but inludeda brute-fore searh for a good value of M that leads to small polynomial oe�ients.Murphy [75℄ presents a way of modelling the expeted number of relations found by sievingtwo given polynomials over a sieve region with given smoothness bounds, and shows how toimprove the base-M method for seleting polynomials that enjoy not only small average valueover the sieve region, but also have favourable root properties. The root properties model theaverage ontribution of small prime fators to the size of polynomial values. For polynomialswhih have many roots modulo small primes, this ontribution is greater, and these polynomialvalues are more likely smooth than when few small prime divisors are present.Kleinjung [54℄ extends Murphy's work by allowing a ommon root M of the two polynomialsthat is not an integer lose to Nd1+1, but a rational number M = k/l. This leads to a linearpolynomial g(x) = lx−k and greatly extends the searh spae of suitable M values whih allowspiking one that leads to partiularly small polynomial values. He further improves tehniquesto generate polynomials with good root properties.

54 Chapter 3. The Number Field SieveFor integers N of no speial form, a suitable polynomial f(x) is found by the above methodsand the seond polynomial g(x) is hosen to be linear; then the oe�ients of both polynomialsare bounded by O
(

N1/d1
). With this bound, the onstant c in (3.1) is onjetured to be (64/9)1/3 .For integers of a simple algebrai form suh as F7 = 2128 + 1, a polynomial with very smalloe�ients an easily be found manually. For this type of numbers, we an take the size of theoe�ients of f(x) to be bounded by a onstant, whih redues the onstant c to onjeturally

(32/9)1/3 .3.2.2 SievingThe task of the sieving step is to identify many relations, (a, b)-pairs with a ⊥ b suh that F1(a, b)and F2(a, b) are both smooth. The smoothness riterion determines the sieving parameters, so wehoose smoothness bounds B1 and B2, a typial order of magnitude being 107 for a fatorizationof 150-digit numbers, and onsider F1(a, b) smooth if no prime exeeding B1 divides it (similarlyfor F2(a, b)). In pratie, a large prime variant is used as it greatly inreases the number ofrelations found at little extra ost. We add large prime bounds L1 and L2, usually about 100times the respetive fator base bound, and onsider F1(a, b) smooth if all its prime fator donot exeed B1 exept for at most k1 prime fators up to L1, similarly for F2(a, b).To �nd (a, b)-pairs where F1(a, b) and F2(a, b) are smooth, a sieving method is used, usingthe fat that F1(a, b)-values (and likewise for F2(a, b) in the following) that are divisible by aprime p form a regular pattern in Z2. Let r be a root of f1(x) (mod p), then the (a, b)-pairswhere p | F1(a, b) are exatly those where a ≡ br (mod p). (The homogeneous form F1(a, b) mayhave roots with b ≡ 0 (mod p), namely for p that divide the leading oe�ient of f1(x); suhroots orrespond to roots at in�nity of f1(x) (mod p) and are not onsidered here.)The sieving proess starts by building a fator base: a list of primes p ≤ B1 and for eah theroots of f1(x) (mod p), likewise for f2(x). For the rational side (assuming f2(x) is linear), thisproess is simple enough to do it at the start of the siever program, for the algebrai side thefator base is ommonly omputed one and stored in a �le.The sieving is performed over a sieve region −A ≤ a < A, 0 < b ≤ B whih is hosenlarge enough that one may expet to �nd su�iently large set of relations so that the linearalgebra phase an �nd a subset S that satis�es (3.7) and (3.8). In priniple, sieving an endwhen the number of relations (forming the variables of the linear system over F2, eah relationan be inluded in S or not) exeeds the number of prime ideals that our among the relations(forming the equations of the linear system, the sum of exponents of eah prime ideal must beeven in the solution), sine then the resulting matrix has at least one non-zero kernel vetor. Inpratie one wants a healthy amount of exess (the di�erene of the number of relations and ofthe prime ideals among them), as this allows reduing the size of the matrix and several kernelvetors may need to be tried to �nd a non-trivial fatorization. A ratio of 10% more relationsthan ideals is a good rule-of-thumb.To speed up the sieving proess, it is not performed on the values of F1(a, b) and F2(a, b)themselves. Instead, for eah (a, b) in the sieve region, a rounded base-l logarithm ⌊logl(F1(a, b))⌉is stored in an array, and eah prime in the fator base that divides F1(a, b) (�hits at (a,b)�)subtrats ⌊logl(p)⌉ from the orresponding array loation. This replaes an integer division bya simpler integer subtration per hit; the logarithm base l is ommonly hosen suh that therounded logarithms �t into one byte to onserve memory. The pairs (a, b) where F1(a, b) issmooth will have a small value remaining in their array entry; entries where the remaining sievevalue is below a threshold are remembered and the sieving proess is repeated for F2(a, b). Therepeated subtration of rounded logarithms aumulates some rounding error whih needs to be

3.2. Overview of NFS 55taken into aount when hoosing the sieve report threshold. Those (a, b) where both sievingpasses left values below the respetive threshold are good andidates for being proper relationsand are examined more losely: the orresponding F1,2(a, b)-values are fatored exatly over theintegers to test whether they satisfy the smoothness riterion. Here, the large prime variantsome into play: if one allows large primes, a larger sieve report threshold is hosen aordingly,and the exat fatorization of F1,2(a, b) needs to be able to handle omposite ofators afterdividing out the fator base primes. The ofators an onsist of between 16− 30 deimal digits(and even more for very large fatorizations) and prime fators of typially 8− 10 deimal digitsare permitted as large primes and need to be found e�iently. Suitable methods are desribedin Chapter 4.The sieve region [−A,A]× [1, B]
⋂

Z2 is usually far too large to be sieved all at one. Insteadis it partitioned into smaller piees whih are sieved independently. Two major variants of thissieving proess exist: line sieving and lattie sieving.Line sieving is the simpler one: for eah value of b in the sieve region, the line −A ≤ a < A istreated individually. If it is still too large, the line an be partitioned further. Within a line, foreah fator base prime p with root r, the smallest a0 ≥ −A with a0 ≡ br (mod p) is omputed,then eah a = a0 + kp ≤ A, k ∈ N, is hit by the sieving.Lattie sieving was suggested by Pollard [83℄ and, while more ompliated, performs sig-ni�antly better and has superseded line sieving in larger fatorization e�orts. The idea is toonsider the lattie in Z2 where one of the two polynomials, usually F1(a, b) (although for someSNFS fatorizations F2(a, b) is hosen instead), is known to be divisible by a �speial-q� value. If
ρ is a root of f1(x) (mod q), then q | F1(a, b) if a ≡ bρ (mod q), and (a

b

)

=

(

q ρ
0 1

)(

i
j

),
i, j ∈ Z, is the lattie of points (a, b) where ab−1 = ρ (mod q), implying q | F1(a, b). Examiningonly suh a, b where we know a prime fator q of F1(a, b) signi�antly inreases the hane that
F (a, b)/q will be smooth, thus inreasing the yield of the sieving. This allows hoosing a smallerfator base and sieve region and still obtaining the required number of relations, thus reduingomputation time and memory use.The sieving proedure beomes more ompliated, however. The sieve region in the i, j-planeis hosen relatively small, typially (depending on the size of the input number) −I ≤ i < I,
0 ≤ j < J with I = 2k, J = I/2, 11 ≤ k ≤ 16. Sine eah line in the sieve region in the i, j-planeis rather short, line-sieving in this plane is ine�ient, sine eah fator base prime would need tobe applied to eah line individually, resulting in omplexity O(JB + IJ log log(B)) per speial-q.Sine B≫ I, the JB term would dominate (orresponding to �nding the �rst loation in the linewhere the fator base prime hits, yet in any given line, most fator base primes don't hit at all).Instead, for eah fator base prime p and eah assoiated root of the polynomial being sieved,the lattie where p hits in the i, j-plane is omputed whih allows enumerating the loations thatare hit very e�iently, and the omplexity drops to O(B + IJ log log(B)). The implied onstantfor the B term is greater than that in the JB term seen before, due to the need to transformthe roots of fator base primes to the i, j-plane and to ompute a redued lattie basis for eah,but this inrease is far smaller than the fator J (typially several thousand) that appears ifindividual j-values were line-sieved.Franke and Kleinjung [40℄ give the details of a very e�ient lattie sieving algorithm.3.2.3 FilteringBefore a matrix is built, the relations are proessed in the �ltering step of NFS, to allow buildinga matrix that is easier to solve than one ontaining all relations found in the sieving would be.

56 Chapter 3. The Number Field SieveThe proessing is performed in several suessive stages.Dupliates. First of all, dupliate relations are deleted, as those might lead to trivial solutionsof the matrix whih would produe only trivial fatorizations. Dupliate relations our in largenumber when lattie sieving is used, as one (a, b)-pair may have a polynomial value F1(a, b)(assuming the speial-q values are hosen for the f1(x) polynomial) that ontains two or moreprime fators in the range of primes that are used for speial-q values. Even with line sieving,whih in theory does not produe dupliates, partial output from interrupted and re-startedsieving jobs or aidental sieving of overlapping ranges of b-values often leads to dupliates inpratie. In the dupliate removal step, the number of relations dereases while the number ofprime ideals ourring among the relations stays onstant, so that the exess dereases by 1 foreah deleted relation. This e�et makes it triky to predit the number of useful relations foundby lattie sieving via sampling the sieving over an estimated range of speial-q values: in thesmall sampling data, the ratio of dupliates to unique relations will be very small, but in theomplete data set, it is often as large as 30%.Singletons. In the next �ltering step, relations ontaining singleton ideals are deleted. Sinethe goal is �nding a subset of relations in whose produt every prime ideal ours to an evenpower, relations ontaining a prime ideal in an odd power (usually with exponent 1) that oursin no other relations annot be part of any solution, and an be omitted from the matrix. Whensuh relations are deleted, prime ideals that ourred among the deleted and exatly one notdeleted relation now beome new singletons (�ripple-e�et�), and the singleton removal an berepeated until no relations with singleton ideals remain or so few are left that they add negligiblesize to the matrix. Eah deleted relation ontains at least one prime ideal that ours nowhereelse among the relations, so that when the number of remaining relations dereases by 1 thenumber of remaining prime ideals also dereases by at least 1, thus the exess does not dereasein this step. In fat, some relations ontain two (very rarely more) singleton ideals, and deletingthese atually inreases the exess slightly.Sine the prime ideals ourring among the relations must be identi�ed to �nd singletonideals, they an be ounted as well, and the exat amount of exess an be determined. If thereremains any positive exess after the singleton removal step, then a matrix ould in priniple bebuilt and solved. In pratie, one wants a good deal of exess in order to redue the size of thematrix, and to be able to satisfy some additional onstraints on the produt of relations from aset of kernel vetors of the matrix.Conneted omponents. Given a relation set with exess after singleton removal, the dataset and hene the matrix size an be shrunk very e�iently by removing onneted omponents(often alled �liques� in this ontext, although the onneted omponents in question aren'tneessarily omplete subgraphs). For this, eah relation of the data set is onsidered a node of agraph, and two nodes are onneted if and only if they have a prime ideal that ours in odd powerin these two and in no other relation. Deleting any relation in a onneted omponent auses anideal that formed the vertex to this node to beome singleton, and by applying singleton removal,the entire onneted omponent is removed eventually. For eah deleted onneted omponent,the exess drops by at most 1 (for the �rst relation that is deleted, as singleton removal doesnot redue exess) and removing large onneted omponents is a very e�etive way of reduingexess in a way that minimizes the number of ideals among the remaining relations. Removingonneted omponents may ause ideals among the deleted relations to our in odd power among

3.2. Overview of NFS 57exatly two of the remaining relations, ausing new verties to appear in the graph. Thus theremoval of onneted omponents should be done in several passes, until the exess is reduedto a small positive number, e.g., around 100.Merging. The remaining relations ould be turned into a matrix, using the onatenatedexponent vetors modulo 2 of the prime ideals of Z[α1] and of Z[α2] as equations, and onevariable in F2 per relation (whether to inlude it in the solution or not) as variables. Theresulting linear system is large and very sparse, and with algorithms typially used for solvingsuh sparse large matries over F2 suh as Blok-Lanzos and Blok-Wiedemann, the run timedepends on the produt wM2, where w is the weight (the number of nonzero entries) and M isthe dimension of the matrix. Therefore we may be able to save time in the matrix phase if wean make the matrix smaller, but somewhat more heavy. This is the task of the merging phase.First observe that if a prime ideal ours to odd exponent in exatly two relations, then thosetwo relations must either be both inluded to form a square, or both not inluded. Hene thosetwo relations an be merged into one by taking their produt, i.e., adding their exponent vetors;the shared prime ideal ours to even exponent in this produt and does not our in any otherrelation, thus it needs not be onsidered in the matrix. The resulting vetor will have at mosttwo non-zero entries fewer than the two original relations had, so the matrix dimension dereasesby 1 and the weight by at least 2, making �2-way merges� always worthwhile.If a prime ideal ours in exatly 3 relations, we an form two distint produts from themand use them in plae of the three original relations. Again one prime ideal disappears from thematrix, but now we have two relations that eah may be about twie as heavy as the originalones, so the total weight might inrease. This an be mitigated by hoosing the two distintproduts whose exponent vetors have smallest weight, but problem of weight inrease duringmerging beomes apparent, and beomes more pressing for higher-way merges.Cavallar [21℄ desribes an implementation of the �ltering step of NFS, inluding all steps fromdupliate removal to merges of relations with prime ideals of frequeny up to 19, and examinesthe e�et of merging on the run-time of the Blok-Lanzos algorithm for solving the resultingmatrix.3.2.4 Linear AlgebraThe goal of the linear algebra step of NFS is, given a set of relations produed by the sieving and�ltering steps, to �nd a subset S suh that (3.7) and (3.8) are satis�ed. In the �ltering we madesure that we an ombine the remaining relations into a produt where all prime ideals dividingthe ideal generated by γ1 and γ2, respetively, our in even power, and this is a neessaryondition for being a square in Z[α1] and Z[α2], respetively, but it is generally not su�ient.In spite of this, we �rst look at the problem of �nding solutions whih ensure that all primeideals our in even power; given a small number of suh solutions, the remaining onditions anthen be satis�ed relatively easily.From the fatorization of eah ideal (a−bα1) in Z[α1] and (a−bα2) in Z[α2] into prime ideals,we take the exponent modulo 2 of eah prime ideal to form olumn vetors over F2. This formsa matrix that ontains a olumn for eah (merged) relation and a row for eah prime ideal thatours among the relations. This produes a large and very sparse matrix, sine eah relationontains only a small number of prime ideals. For fatorizations of general numbers of around
150 digits, the matrix size is of the order of a few million rows and olumns, see Table 3.1. Thenumber of entries per olumn is typially between 50 and 150.

58 Chapter 3. The Number Field SieveTo solve suh large, sparse linear systems, the venerable Gaussian elimination algorithm is ill-suited. As rows are added during the elimination, the sparseness of the matrix is lost, and a denserepresentation of the matrix would have to be used whih is not feasible for matries of dimensionwell above 106. Suitable algorithms are iterative methods suh as Blok-Wiedemann [31℄ andBlok-Lanzos [69℄ that both �nd a set of kernel vetors by performing only (possibly transposed)matrix-vetor produts, leaving the matrix unaltered.Choosing a set S in this way with resulting produts Γi of relations a−bαi for eah i = 1, 2 isgenerally not su�ient to ensure that Γi is the square of an element of γi ∈ Z[αi]. The possibleobstrutions are given in [20, �6℄.Fortunately, this problem an be solved easily with an elegant trik. For eah relation (a, b)we determine the quadrati harater χp(a − bα1) in Fp[x]/f(x) for a prime p that does notdivide any F (a, b) among our relations and likewise for the seond polynomial g(x) (unless it islinear, in whih ase attention must be given only to the unit −1 of Z if the values of G(a, b)an be negative.) In any set S suh that the produt (3.7) is a square, 1 =
∏

(a,b)∈S χp(a− bα1).Thus we an use quadrati haraters as a �probabilisti squareness test� of sorts; by doingsu�iently many and hoosing S suh that they all indiate a square produt, we an be quiteertain to obtain a proper square in Z[α]. Thus we an use log−1(χp(a − bα)), whih is 0 if theharater indiates a square and is 1 otherwise, and use it as an additional equation in the linearsystem. Solving the homogeneous system ensures that the sum of logarithms of eah harateris 0, i.e., their produt is 1, indiating that the solution is a square. Assuming that a randomnon-square element ω of Z[α] has χp(ω) = 1 with probability 1/2 and that the probabilities areindependent for χp with di�erent p, eah harater added to the linear system redues the numberof non-square solutions in the kernel of the matrix by 1/2. By adding a few more haratersthan the rank of the unit group plus hZ[α], the lass number of Z[α], we an be reasonably surethat the kernel of the matrix ontains mostly vetors that indiate sets S that satisfy (3.7) and(3.8). Computing the lass number is itself a non-trivial problem, and in pratie one usuallyhooses a onstant number of haraters that �ought to do it,� the atual number varying betweenimplementations, but usually being between 32 up to 64, rarely more.3.2.5 Square RootThe linear algebra step produed a set S ⊂ Z2 that satis�es (3.7) and (3.8). We now needto take the square roots of γ2
1,2 in their respetive number �elds so that we an �nally take

gcd(φ(γ1)− φ(γ2), N), hoping to �nd a non-trivial fator of N .In Pollard's �rst experiment, omputing the square root was easy, sine Z[
√
−2] enjoys uniquefatorization so that he ould fator eah a−b

√
−2 into prime elements. Given their fatorization,he obtains the fatorization of γ2

1 and omputes γ1 simply by halving the exponent of eah primeelement. With the seond polynomial linear, taking a square root on the rational side is simplytaking a square root of a rational integer.A simple approah that was onsidered impratial in the early days of NFS due to insu�ientmemory in the available omputing hardware has reently been revived. The idea is to useisomorphism of Z[α1] with Z[x]/f(x)Z[x] and to ompute
Γ(x) =

∏

(a,b)∈S

(a− bx)

 mod f(x),where the oe�ients of the resulting polynomial will be very large, and fast algorithms for in-teger multipliation suh as the one desribed in Chapter 1 must be used; with a naïve O
(

n2
)

3.3. NFS Fatoring Reords 59multipliation algorithm, this simple square root step has time omplexity similar to the sievingand linear algebra steps, but with fast multipliation tehniques its time omplexity is asymptot-ially negligible and pratially satisfatory. Given Γ(x), we would like to obtain γ(x) =
√

Γ(x)in Z[x]/f(x)Z[x], whih we an do by omputing √Γ(x) in Fp/f(x)Fp for a small prime p suhthat f(x) is irreduible over Fp, and using Hensel lifting of the result to a power pk suh that pkis greater than the oe�ients of γ(x).Couveignes [32℄ presents an algorithm that performs the square root modulo di�erent smallerprime powers pki

i and onstruts the solution via the Chinese Remainder Theorem. It an operatewith less memory than the simple method, but works only for polynomials f(x) of odd degreeand has fallen out of use.Montgomery [68℄ proposes an algorithm based on lattie redution for omputing square(and higher) roots of produts suh as (3.7) and (3.8) in algebrai number �elds; Nguyen [76℄implements it. It is fast and uses little memory, but is far more omplex to implement than thetwo methods previously mentioned.3.3 NFS Fatoring ReordsThe maximum size of numbers that an be fatored with NFS inreased onsiderably over the20 years sine its ineption, both due to algorithmi improvements and omputers with fasterCPUs and larger main memory beoming available. Table 3.1 lists fatorization reords for theGeneral Number Field Sieve and Table 3.2 lists reords for the Speial Number Field Sieve.For SNFS, the di�ulty is listed, whih is de�ned as the base-10 logarithm of the resultant ofthe two polynomials used. The number 2, 1642M refers to the algebrai fator 2821 + 2411 + 1of 21642 + 1. Where available we give the number of unique relations obtained, size of matrixand total omputation time for the fatorization. The latter is often hard to state preiselydue to a large number of di�erent omputer systems used within one fatorization. Where aformal publiation of the result exists, it is ited. In the other ases, the fatorization is usuallyannouned by a message to a number theory mailing list; suh messages of reord fatorizationsare olleted by Contini [26℄.

60 Chapter 3. The Number Field Sieve
Number Digits Year Nr. rel. Matrix size Approx. time ByRSA-130 130 1996 56.515.672 3.516.502 1000 MIPS years Lenstra et al.RSA-140 140 1999 56.605.498 4.704.451 2000 MIPS years te Riele et al. [23℄RSA-155 155 1999 85.534.738 6.711.336 8000 MIPS years te Riele et al. [24℄
2953 + 1 158 2002 254.033.792 5.792.705 4 GHz-years Franke et al.RSA-160 160 2003 289.145.711 5.037.191 Franke et al.RSA-576 174 2003 Franke et al.
11281 + 1 176 2005 455.989.949 8.526.749 32 GHz years Aoki et al.RSA-200 200 2005 2.260.000.000 64.000.000 165 GHz years Franke et al.RSA-768 232 2009 47.762.243.404 192.796.550 3700 GHz years Kleinjung et al. [55℄Table 3.1: Reords for the General Number Field Sieve

Number Di�ulty Year Nr. rel. Matrix size Approx. time By
10211 − 1 211 1999 56.394.064 4.895.741 11 CPU years The Cabal
2773 + 1 233.0 2000 85.786.223 6.758.509 57 CPU years The Cabal
2809 − 1 243.8 2003 343.952.357 Franke et al.
2, 1642M 247.4 2004 438.270.192 7.429.778 22 GHz years Aoki et al.
6353 − 1 275.5 2006 2.208.187.490 19.591.108 61 GHz years Aoki et al.
21039 − 1 312.8 2007 13.822.743.049 66.718.354 400 GHz years Aoki et al. [2℄Table 3.2: Reords for the Speial Number Field Sieve

Chapter 4Fatoring small integers with P�1, P+1,and ECM in the Number Field Sieve4.1 IntrodutionThe sieving step of the Number Field Sieve [60℄ identi�es integer pairs (a, b) with a ⊥ b suhthat the values of two homogeneous polynomials Fi(a, b), i ∈ {1, 2}, are both smooth, wherethe sieving parameters are hosen aording to the smoothness riterion. Typially the twopolynomials eah have a �fator base bound� Bi, a �large prime bound� Li, and a permissiblemaximum number of large primes ki assoiated with them, so that Fi(a, b) is onsidered smoothif it ontains only prime fators up to Bi exept for up to ki prime fators greater than Bi, butnone exeeding Li. For example, for the fatorization of the RSA-155 hallenge number [24℄ (ahard integer of 512-bit) the values B = 224, L = 109 and k = 2 were used for both polynomialsfor most of the sieving. Kleinjung [53℄ gives an estimate for the ost of fatoring a 1024-bit RSAkey based on the parameters B1 = 1.1 · 109, B2 = 3 · 108, and L1 = L2 = 242 with k1 = 5 and
k2 = 4.The ontribution of the fator base primes to eah polynomial value Fi(a, b) for a set of (a, b)pairs is approximated with a sieving proedure, whih estimates roughly what the size of thepolynomial values will be after fator base primes have been divided out. If these estimates for apartiular (a, b) pair are small enough that both Fi(a, b) values might be smooth, the polynomialvalues are omputed, the fator base primes are divided out, and the two ofators ci are testedto see if they satisfy the smoothness riterion.If only one large prime is permitted, no fatoring needs to be arried out at all for the largeprimes: if ci > Li for either i, this (a, b) pair is disarded. Sine generally Li < B2

i and all primefators below Bi have been removed, a ofator ci ≤ Li is neessarily prime and need not befatored.If up to two large primes are permitted, and the ofator ci is omposite and therefore greaterthan the large prime bound but below L2
i (or a suitably hosen threshold somewhat less then

L2
i), it is fatored. Sine the prime fators in ci are bounded below by Bi, and Li is typially lessthan B1.5

i , the fators an be expeted not to be very muh smaller than the square root of theomposite number. This way the advantage of speial purpose fatoring algorithms when smalldivisors (ompared to the omposite size) are present does not ome into great e�et, and generalpurpose fatoring algorithms like SQUFOF or MPQS perform well. In previous implementationsof QS and NFS, various algorithms for fatoring omposites of two prime fators have been used,inluding SQUFOF and Pollard-Rho in [38, Chapter 3.6℄, and P�1, SQUFOF, and Pollard-Rho61

62 Chapter 4. Fatoring small integers with P�1, P+1 and ECMin [22, �3℄.If more than two large primes are allowed, the advantage of speial purpose fatoring al-gorithms pays o�. Given a omposite ofator ci > L2
i , we know that it an be smooth onlyif it has at least three prime fators, of whih at least one must be less than c

1/3
i . If it hasno suh small fator, the ofator is not smooth, and its fatorization is not atually required,as this (a, b) pair will be disarded. Hene an early-abort strategy an be employed that usesspeial-purpose fatoring algorithms until either a fator is found and the new ofator an betested for smoothness, or after a number of fatoring attempts have failed, the ofator may beassumed to be not smooth with high probability so that this (a, b) pair an be disarded.Suitable andidates for fatoring algorithms for this purpose are the P�1 method, the P+1method, and the Ellipti Curve Method (ECM). All have in ommon that a prime fator p isfound if the order of some group de�ned over Fp is itself smooth. A bene�ial property is thatfor ECM, and to a lesser extent for P+1, parameters an be hosen so that the group order hasknown small fators, making it more likely smooth. This is partiularly e�etive if the primefator to be found, and hene the group order, is small, see Chapter 5.Although the P�1 and P+1 methods by themselves have a relatively poor asymptoti algebraiomplexity in O(

√
p) (assuming an asymptotially fast stage 2 as desribed in Chapter 2), they�nd surprisingly many primes in far less time, making them useful as a �rst quik try to eliminateeasy ases before ECM begins. In fat, P�1 and P+1 may be viewed as being equivalent to lessexpensive ECM attempts (but also less e�etive, due to fewer known fators in the group order).Another well-known speial-purpose fatoring algorithm is Pollard's �Rho� method [81℄ whihlooks for a ollision modulo p in an iterated pseudo-random funtion modulo N , where p is aprime fator of N we hope to �nd. When hoosing no less than √2 log(2)n + 0.28 integersuniformly at random from [1, n], the probability of hoosing at least one integer more thanone is at least 0.5, well known as the Birthday Paradox whih states that in a group of only 23people, two share a birthday with more than 50% probability. For the Rho method, the expetednumber of iterations to �nd a prime fator p is in O

(√
p
), and in the ase of Pollard's originalalgorithm, the average number of iterations for primes p around 230 is lose to 215 ≈ √p, whereeah iteration takes three modular squarings and a modular multipliation, for an average of

≈ 130000 modular multipliations when ounting squarings as multipliations. Brent [14℄ givesan improved iteration whih redues the number of multipliations by about 25% on average.We will see that a ombination of P�1, P+1, and ECM does better on average.Furthermore, trying the Pollard-Rho method with only a low number of iterations beforemoving on to other fatoring algorithms has a negligible probability of suess � among the
4798396 primes in [230, 230+108], only 3483 are found with at most 1000 iterations of the originalPollard-Rho algorithm with pseudo-random map x 7→ x2 +1 and starting value x0 = 2. For P�1,there are 1087179 primes p in the same range where the largest prime fator of p − 1 does notexeed 1000, and exponentiating by the produt of all primes and prime powers up to B requiresonly B/ log(2) + O

(√
B
)

≈ 1.44B squarings, ompared to 4 multipliations per iteration forthe original Pollard-Rho algorithm. By using a stage 2 for P�1, its advantage inreases further.Figure 4.1 shows the distribution of the largest prime fator of p− 1 and the required number ofPollard-Rho iterations for �nding p, respetively, for primes p in [230, 230 +108]. The distributionof the largest prime fator of p+1 is idential to that of p−1, up to statistial noise. We onludethat unlike P�1 and P+1, the Pollard-Rho method is not suitable for removing �easy pikings.�This hapter desribes an implementation of trial division for omposites of a few mahinewords, as well as the P�1, P+1, and Ellipti Curve Method of fatorization for small ompositesof one or two mahine words, aimed at fatoring ofators as our during the sieving phase of

4.2. Trial Division 63

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 p

rim
es

n

Pollard rho
p-1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 p

rim
es

n

Pollard rho
p-1

Figure 4.1: Number of primes p in [230, 230 + 108
] where the largest prime fator of p − 1,respetively the number of Pollard-Rho iterations to �nd p, is in [100n, 100n + 99], n ∈ N. Theleft graph shows 0 ≤ n ≤ 1000, the right graph shows a zoom on 0 ≤ n ≤ 100.the Number Field Sieve. It is part of the CADO [45℄ implementation of the NFS.4.2 Trial DivisionBefore fatoring of the non-sieved ofator of the polynomial values into large primes an om-mene, the ofator needs to be determined by dividing out all the fator base primes. Formedium size fator base primes, say larger than a few hundred or a few thousand, a sievingtehnique (�re-sieving�) an be used again that stores the primes when re-sieving hits a loationpreviously marked as �likely smooth.� For large fator base primes, say larger than a few tenthousand, the number of hits in the sieve area is small enough that the primes an be storedduring the initial sieving proess itself. For the smallest primes, however, re-sieving is ine�ient,and a trial division tehnique should be used. This setion examines a fast trial division rou-tine, based on ideas by Montgomery and Granlund [50℄ [70℄, that preomputes several values perandidate prime divisor to speed up the proess.4.2.1 Trial Division AlgorithmGiven many omposite integers Ni, 0 ≤ i < n, we want to determine whih primes from someset P = {pj, 0 ≤ j < k} of small odd primes divide eah Ni. We assume n ≫ k. Eah Ni is amulti-word integer of up to ℓ + 1 words, Ni =

∑ℓ
j=0 ni,jβ

j , where β is the mahine word base(e.g., β = 232 or β = 264) and ℓ is on the order of �a few,� say ℓ ≤ 4. For eah prime p ∈ P , wepreompute wj = βj mod p for 1 ≤ j ≤ ℓ, pinv = p−1 (mod β) and plim =
⌊

β−1
p

⌋.Consider a partiular integer N =
∑ℓ

j=0 njβ
j, and a partiular prime p ∈ P . The algorithm�rst does a semi-redution modulo p to obtain a single-word integer ongruent to N (mod p),then tests this single-word integer for divisibility by p.To do so, we ompute r = n0 +

∑ℓ
j=1 njwj ≤ (β − 1)(ℓ(p − 1) + 1). To simplify the nextsteps, we require p <

√

β
ℓ . Even for β = 232, ℓ = 4, this gives p < 32768 whih is easily su�ientfor trial division in NFS.

64 Chapter 4. Fatoring small integers with P�1, P+1 and ECMWith this bound on p, we have r < (β−1)(
√

βℓ−ℓ+1). We then deompose r into r = r1β+r0,where 0 ≤ r0 < β. This implies r1 <
√

βℓ, and r1w1 ≤ r1(p− 1) <
√

βℓ

(

√

β
ℓ − 1

)

= β −
√

βℓ.The algorithm then does another redution step by s = r1w1 + r0. We would like s =
s1β + s0 < 2β − p, so that a �nal redution step t = s0 + s1w1 < β produes a one-word result.Sine r1(p−1) < β−

√
βℓ, s < 2β−

√
βℓ−1 < 2β−p. Sine s1 is either 0 or 1, the multipliationand addition in s0 + s1w1 is really just a onditional addition.Now we have a one-word integer t whih is divisible by p if and only if N is. To determinewhether p | t, we use the idea from [50, �9℄ to ompute u = tp−1 mod β, using the preomputed

pinv = p−1 (mod β). If p | t, t/p is an integer < β and so the modular arithmeti mod β mustprodue the orret u = t/p. There are ⌊β−1
p + 1

⌋ multiples of p (inluding 0) less than β, underdivision by p these map to the integers [0, . . . , ⌊β−1
p

⌋]. Sine p is oprime to β, multipliationby p−1 (mod β) is a bijetive map, so all non-multiples of p must map to the remaining integers
[⌊

β−1
p

⌋

+ 1, β − 1
]. Hene the test for divisibility an be done by a one-word multipliation bythe preomputed onstant pinv, and one omparison to the preomputed onstant plim =

⌊

β−1
p

⌋.4.2.2 ImplementationThe algorithm is quite simple to implement on an x86 CPU, whih o�ers the two-word produtof two one-word arguments by a single MUL instrution. It might run as shown in Algorithm 6,where x1, x0 are registers that temporarily hold two-word produts. A pair of registers holdinga two-word value r1β + r0 is written as r1 : r0. The values r0,1, s0,1, and t0 an all use the sameregisters, written r0,1 here. The loop over j should be unrolled.Input: Length ℓ
N =

∑ℓ
i=0 niβ

i, 0 ≤ ni < βOdd prime p <
√

β
ℓ

wj = βj mod p for 1 ≤ j ≤ ℓ
pinv = p−1 mod β

plim =
⌊

β−1
p

⌋Output: 1 if p | N , 0 otherwise
r0 := n0;
r1 := 0;for 1 ≤ j ≤ ℓ do

x1 : x0 = nj · wj;
r1 : r0 = r1 : r0 + x1 : x0;

x0 = r1 · w1;
r0 = (r0 + x0) mod β;if last addition set arry �ag then

r0 = (r0 + w1) mod β;
r0 = (r0 · pinv) mod β;if r0 ≤ plim thenreturn 1;elsereturn 0;Algorithm 6: Pseudo-ode for trial division of numbers of up to ℓ + 1 words.

4.2. Trial Division 65This ode uses ℓ multipliations of two words to a two-word produt. These multipliationsare independent of one another, so they an overlap on a CPU with pipelined multiplier. On anAthlon64, Opteron, and Phenom CPUs, a multipliation an start every 2 lok yles, the lowword of the produt is available after 4 lok yles, the high word after 5 lok yles. Thus inase of ℓ = 4, the lateny for the �rst 4 produts and building their sum should be 12 yles.The two remaining multiplies, the additions and onditional moves should be possible in about11 yles, giving a theoretial total ount of about 23 lok yles for trial dividing a 5 wordinteger by a small prime. Data movement from ahe may introdue additional lateny.4.2.3 Use in NFSGiven a sieve region of size s with every d-th entry a sieve report, trial dividing by the prime pfor all sieve reports has ost O(s/d), while resieving has ost O(rs/p), where r is the number ofroots modulo p the sieved polynomial has. Hene whether trial division or resieving is preferablewill depend on p
dr , where those p with p

dr < c for some threshold c should use trial division.As primes are divided out of N , the number of words in N may derease, making the followingtrial division faster. It might be worthwhile to try to redue the size of N as quikly as possible.The probability that a prime p divides N may be estimated as r/p, the size derease as log(p), sothe probability that trial division by p will derease the number of words in N may be estimatedas being proportional to r log(p)/p. For trial division, the andidate divisors p an be sorted sothat this estimate is dereasing. This probability estimate does not take into aount the fatthat N , being a sieve report, is likely smooth, and under this ondition the probability that pdivides N inreases by Bayes' theorem, more so for larger p than for small ones.4.2.4 Testing Several Primes at OneAlgorithm 6 redues the input number to a one-word integer whih is ongruent to N (mod p),then tests divisibility by p of that one-word integer. It is possible to do the redution step foromposite andidate divisors q, then test divisibility of the resulting one-word integer for all
p | q. This way, for integers onsisting of several words, the expensive redution needs to bedone only one for eah q, the relatively heap divisibility test for eah p. This is attrative ifthe bound q <

√

β/ℓ is not too small. With w = 264, ℓ = 4, we an use q < 2147483648, whihallows for several small primes in q. For integers N with a larger number of words, it may beworthwhile to introdue an additional redution step (for example, using Montgomery's REDCfor a right-to-left redution) to relax the bound on q to, e.g., q < w/ℓ, so that the number ofprimes in q an be doubled at the ost of only two additional multiplies. In NFS, if the primesfound by re-sieving have been divided out already before trial division begins, the Ni may notbe large enough to make this approah worthwhile.4.2.5 Performane of Trial DivisionTo measure the performane of the trial division ode, we divide 107 onseutive integers of
1, . . . , 5 words by the �rst n = 256, 512, 1024, and 2048 odd primes on a 2 GHz AMD PhenomCPU, see Figure 4.1. The higher timings per trial division for n = 256 are due to the additionalost of dividing out found divisors, whih has a greater relative ontribution for smaller primeswhih divide more frequently. The timing for ℓ = 4, n = 2048 is lose to the predited 23 lokyles. The sudden inrease for n = 2048 in the ase of N with one word is due to ahing: with
7 stored values (p, pinv, plim, w1,...,4) of 8 bytes eah, n = 2048 has a table of preomputed valuesof size 112KB, whih exeeds the level-1 data ahe size of 64KB of the Phenom. For large

66 Chapter 4. Fatoring small integers with P�1, P+1 and ECMNumber of words in N
n 1 2 3 4 5256 6.8 (2.6) 15.3 (6.0) 20.8 (8.1) 27.5 (10.7) 32.4 (12.6)512 11.3 (2.2) 28.2 (5.5) 38.8 (7.6) 52.0 (10.2) 61.32 (12.0)1024 21.3 (2.1) 54.9 (5.4) 75.9 (7.4) 102.0 (10.0) 120.7 (11.8)2048 85.4 (4.1) 108.4 (5.3) 149.8 (7.3) 200.8 (9.8) 237.8 (11.6)Table 4.1: Time in seonds for trial division of 107 onseutive integers by the �rst n odd primeson a 2 GHz AMD Phenom CPU. Time per trial division in nanoseonds in parentheses.sets of andidate primes, the sequential passes through the preomputed data ause frequentmisses in the level-1 ahe, and the trial divisions for N of only one word are fast enough thattransfer rate from the level-2 ahe limits the exeution. This ould be avoided by omputingfewer wi onstants (i.e., hoosing a smaller ℓ) if the N are known to be small, or storing the wiin separate arrays rather than interleaved, so that the wi for larger i do not oupy ahe whilethe N proessed are small. Sine the value of p is not atually needed during the trial division,it is possible to avoid storing it and reomputing it, e.g., from pinv when it needs to be reportedas a divisor.4.3 Modular ArithmetiThe modular arithmeti operations are relatively inexpensive when moduli and residues of onlya few mahine words are onsidered, and should be implemented in a way that lets the ompilerperform in-lining of simple arithmeti funtions to avoid unneessary funtion all overheadand data movement between registers, memory and stak due to the alling onventions of thelanguage and arhiteture. Many simple arithmeti operations an be implemented easily ande�iently using assembly language, but are umbersome to write in pure C ode, espeially ifmulti-word produts or arry propagation are involved. The GNU C ompiler o�ers a very �exiblemethod of injeting assembly ode into C programs, with an interfae that tells the ompiler allonstraints on input and output data of the assembly blok so that it an perform optimizationon the ode surrounding the assembly statements. By de�ning some ommonly used arithmetioperations in assembly, muh of the modular arithmeti an be written in C, letting the ompilerhandle register alloation and data movement. The resulting ode is usually not optimal, butquite usable. For the most time-ritial operations, writing hand-optimized assembly ode o�ersan additional speed improvement.For the present work, modular arithmeti for moduli of 1 mahine word and of 2 mahinewords with the two most signi�ant bits zero is implemented. Implementation of arithmeti formoduli of 3 mahine words is in progress.4.3.1 Assembly SupportTo give an example of an elementary funtion that is implemented with the help of some assemblyode, we examine modular addition with a modulus of 1 mahine word. This is among the mostsimple operations possible, but useful as an example.Let a �redued residue� with respet to a positive modulus m mean an integer representative

0 ≤ r < m of the residue lass r (mod m). Modular addition of two redued residues an be

4.3. Modular Arithmeti 67de�ned as
(a + b) mod m =

{

a + b−m if a + b−m ≥ 0

a + b otherwise.If any modulus m < β is permitted, where β is the mahine word base, then the problem that
a+b might over�ow the mahine word arises. One ould test for this ase, then test if a+b ≥ m,and subtrat m if either is true, but this neessitates two tests. With a slight rearrangement, wean do with one:

r := a + b;1
s := a−m;2
t := s + b;3 if last addition set arry �ag then4 r := t;5All arithmeti in this ode is assumed modulo the word base β, i.e., the integers in r, s, and tare redued residues modulo β. In line 2, sine a is redued modulo m, the subtration a −mneessarily produes a borrow, so that s = a−m + β. In line 3, if s + b < β, then this additiondoes not produe a arry, and t = a+b−m+β < β, i.e., a+b−m < 0. If s+b ≥ β, the additiondoes produe a arry, and 0 ≤ t = s+ b−β = a+ b−m. Hene t is the proper result if and onlyif a arry ours in line 3, to make up for the borrow of line 2. Lines 1 and 2 are independentand an be exeuted in parallel, leading to a dependent hain of length 3. We require a < m fororretness, if b ≥ m, the result still satis�es r ≡ a + b (mod m) and r < b, but not neessarily

r < m.The implementation in C with a GCC x86 assembly blok shown below. The value of s,shown separately for larity above, is stored in t here.r = a + b;t = a - m;__asm__ ("add %2, %1\n\t" /* t := t + b */"mov %1, %0\n\t" /* if (arry) r := t */: "+r" (r), "+&r" (t): "g" (b): "");The omputation of the initial t and r are done in C, to give the ompiler some shedulingfreedom. Sine C does not provide diret aess to the arry �ag, the addition t := t + b andthe following onditional assignment are done in assembly. The onstraints on the data passedto the assembly blok state that the values of r and t must reside in registers ("r") sine thetarget of the onditional move instrution mov must be a register, and at least one of soure ortarget of the addition instrution add must be a register. We allow the variable b to be passedin a register, in memory or as an immediate operand ("g", �general� onstraint, for x86_64 theorret onstraint is "rme" sine immediate onstants are only 32 bit wide), whih is the soureoperand to the add instrution. The "+" modi�er tells that the values in r and t will be modi�ed,and the "&" modi�er tells that t may be modi�ed before the end of the assembly blok and thusno other input variable should be passed in the register assigned to t, even if their values areknown to be idential. Finally, "" tells the ompiler that the values of the �ags register mayhange. These onstraints provide the information the ompiler needs to be able to use the

68 Chapter 4. Fatoring small integers with P�1, P+1 and ECMassembly blok orretly, while leaving enough �exibility that it an optimize register alloationand data movement, ompared to, e.g., ompilers that require all parameters to assembly bloksin a �xed set of registers.An alternative solution is to ompute r := b− (m− a) and adding m if the outer subtrationprodued a borrow. However, this requires a onditional addition rather than a onditional move.Similar to the modular addition, various funtions suh as modular subtration and multipli-ation for one and two-word moduli, two-word addition, subtration, multipliation and binaryshift, and division with a two-word dividend (used, for example, for preparing a residue for usewith REDC modular redution with a two-word modulus, see 4.3.2) are written as funtionswith assembly support. As optimization e�ort progresses, more time-ritial funtions urrentlywritten in C with assembly maros will be replaed by dediated assembly ode.4.3.2 Modular Redution with REDCMontgomery presented in [64℄ a method for fast modular redution. Given an integer 0 ≤ a <
βm, for odd modulus m of one mahine word and mahine word base β (here assumed a powerof 2), and a preomputed onstant minv = −m−1 mod β, it omputes an integer 0 ≤ r < mwhih satis�es rβ ≡ a (mod m). It does so by omputing the minimal non-negative tm suhthat a + tm ≡ 0 (mod β), to make use of the fat that division by β is very inexpensive. Sine
t < β, (a + tm)/β < 2m, and at most one �nal subtration of m ensures r < m. He alls thealgorithm that arries out this redution �REDC,� shown in Algorithm 7.Input: m, the modulus

β, the word base
a < βm, integer to redue
minv < β suh that mminv ≡ −1 (mod β)Output: r < m with rβ ≡ a (mod m)

t := a ·minv mod β;
r := (a + t ·m)/β;if r ≥ m then

r := r −m;Algorithm 7: Algorithm REDC for modular redution with one-word modulus. All variablestake non-negative integer values.The redued residue output by this algorithm is not in the same residue lass mod m asthe input, but the residue lass gets multiplied by β−1 (mod m) in the proess. To preventaumulating powers of β−1 (mod m) and having unequal powers of β when, e.g., adding oromparing residues, any residue modulo m is onverted to Montgomery representation �rst, bymultiplying it by β and reduing (without REDC) modulo m, i.e., the Montgomery representationof a residue a (mod m) is aβ (mod m). This way, if two residues in Montgomery representation
aβ (mod m) and bβ (mod m) are multiplied and redued via REDC, then REDC(aβbβ) ≡ abβ
(mod m) is the produt in Montgomery representation. This ensures the exponent of β in theresidues always stays 1, and so allows addition, subtration, and equality tests of residues inMontgomery representation. Sine β ⊥ m, we also have aβ ≡ 0 (mod m) if and only if a ≡ 0
(mod m), and gcd(aβ,m) = gcd(a,m). Sine β = 232 or 264 is an integer square, the Jaobisymbol satis�es (aβ

m

)

=
(

a
m

).For moduli m of more than one mahine word, say m < βk, a produt of two redued residuesmay exeed β, but is below mβk. The redution an be arried out in two ways: one essentially

4.3. Modular Arithmeti 69performs the one-word REDC redution k times, performing O
(

k2
) one-word multiplies, theother replaes arithmeti modulo β in REDC by arithmeti modulo βk, performing O(1) k-word multipliations. In either ase, a full redution with (repeated one-word or a single multi-word) REDC divides the residue lass of the output by βk, and the onversion to Montgomeryrepresentation must multiply by βk aordingly. The former method has lower overhead andis preferable for small moduli, the latter an use asymptotially fast multipliation algorithmsif the modulus is large. As in our appliation the moduli are quite small, no more than twomahine words, we use the former method.Before modular arithmeti with REDC for a partiular m an begin, the onstant minv needsto be omputed. If β is a power of 2, Hensel lifting makes this omputation very fast. To speedit up further, we try to guess an approximation to minv so that a few least signi�ant bits areorret, thus saving a few Newton iterations. The square of any odd integer is ongruent to 1

(mod 8), so minv ≡ m (mod 8). The fourth bit of minv is equal to the binary exlusive-or ofthe seond, third, and fourth bit of m, but on many miroproessors an alternative suggestionfrom Montgomery [72℄ is slightly faster: (3m) XOR 2 gives the low 5 bits of minv orretly.Eah Newton iteration x 7→ 2x − x2m doubles the number of orret bits, so that with eitherapproximation, 3 iterations for β = 232 or 4 for β = 264 su�e.Converting residues out of Montgomery representation an be performed quikly with REDC,but onverting them to Montgomery representation requires another modular redution algo-rithm. If suh onversions are to be done frequently, it pays to preompute ℓ = β2 mod m, sothat REDC(aℓ) = aβ mod m allows using REDC for the purpose.In some ases, the �nal onditional subtration of m in REDC an be omitted. If a < m,then a + tm < mβ sine t < β, so r = (a + tm)/β < m whih an be used when onvertingresidues out of Montgomery form, or when division by a power of 2 modulo m is desired.4.3.3 Modular InverseTo ompute a modular inverse r ≡ a−1 (mod m) for a given redued residue a and odd modulus
m with a ⊥ m, we use a binary extended Eulidean algorithm. Modular inverses are used at thebeginning of stage 2 for the P�1 algorithm, and for initialisation of stage 1 of ECM (exept fora selet few urves whih have simple enough parameters that they an be initialised using onlydivision by small onstants). Our ode for a modular inverse takes about 0.5µs for one-wordmoduli, whih in ase of P�1 with small B1 and B2 parameters aounts for several perent ofthe total run-time, showing that some optimization e�ort is warranted for this funtion.The extended Eulidean algorithm solves

ar + ms = gcd(a,m)for given a,m by initialising e0 = 0, f0 = 1, g0 = m and e1 = 1, f1 = 0, g1 = a, and omputingsequenes ei, fi and gi that maintain
aei + mfi = gi (4.1)where gcd(a,m) | gi and the gi are stritly dereasing until gi = 0. The original Eulideanalgorithm uses gi = gi−2 mod gi−1, that is, in eah step we write gi = gi−2 − gi−1⌊gi−2

gi−1
⌋ andlikewise ei = ei−2 − ei−1⌊gi−2

gi−1
⌋ and fi = fi−2 − fi−1⌊gi−2

gi−1
⌋, so that equation (4.1) holds for eah

i. If n is the smallest i suh that gi = 0, then gn−1 = gcd(a,m), s = fn−1, and r = en−1. Sinewe only want the value of r = en−1, we don't need to ompute the fi values. We an write

70 Chapter 4. Fatoring small integers with P�1, P+1 and ECM
u = ei−1, v = ei, x = gi−1, y = gi and for i = 1 initialise u = 0, v = 1, x = m, and y = a. Theneah iteration i 7→ i + 1 is omputed by

(u, v, x, y) := (v, u− ⌊x/y⌋v, y, x − ⌊x/y⌋y).At the �rst iteration where y = 0, we have r = u and x = 1 if a and m were indeed oprime.A problem with this algorithm is the ostly omputation of ⌊x/y⌋ as integer division is usuallyslow. The binary extended Eulidean algorithm avoids this problem by using only subtrationand division by powers of 2. Our implementation is inspired by ode written by Robert Harleyfor the ECCp-97 hallenge and is shown in Algorithm 8. The updates maintain ua ≡ −x2t

(mod m) and va ≡ y2t (mod m) so that when y = 1, we have r = v2−t = a−1 (mod m).Input: Odd modulus mRedued residue a (mod m)Output: Redued residue r (mod m) with ar ≡ 1 (mod m), or failure if gcd(a,m) > 1if a = 0 thenreturn failure;
t := Val2(a); /* 2t || a */
u := 0; v := 1;x := m; y := a/2t;while x 6= y do

ℓ := Val2(x− y); /* 2ℓ || x− y */if x < y then
(u, v, x, y, t) := (u2ℓ, u + v, x, (y − x)/2ℓ, t + ℓ);else
(u, v, x, y, t) := (u + v, v2ℓ, (x− y)/2ℓ, y, t + ℓ);if y 6= 1 thenreturn failure;

r := v2−t mod m; Algorithm 8: Binary extended GCD algorithm.In eah step we subtrat the smaller of x, y from the larger, so they are dereasing andnon-negative. Neither an beome zero as that implies x = y in the previous iteration, whihterminates the loop. Sine both are odd at the beginning of eah iteration, their di�erene iseven, so one value dereases by at least a fator of 2, and the number of iterations is at most
log2(am). In eah iteration, uy + vx = m, and sine x and y are positive, u, v ≤ m so that noover�ow ours with �xed-preision arithmeti.To perform the modular division r = v/2ti , we an use REDC. While t ≥ log2(β), we replae
v := REDC(v) and t := t − log2(β). Then, if t > 0, we perform a variable-width REDC todivide by 2t rather than by β by omputing r =

(

v +
(

(vminv) mod 2t
)

m
)

/2t with mminv ≡ −1
(mod β). Sine v < m, we don't need a �nal subtration in these REDC.If the residue a whose inverse we want is given in Montgomery representation aβk mod mwith k-word modulus m, we an use REDC 2k times to ompute aβ−k mod m, then ompute themodular inverse to obtain the inverse of a in Montgomery representation: a−1βk ≡

(

aβ−k
)−1

(mod m). This an be simpli�ed by using the fat that the binary extended GCD omputes
v = a−12t. If we know beforehand that t ≥ log2 β, we an skip divisions by β via REDC bothbefore and after the binary extended GCD. Let the funtion t(x, y) give the value of t at the

4.4. P�1 Algorithm 71end of Algorithm 8 for oprime inputs x, y. It satis�es
t(x, y) =

0 if x = y (implies x = y = 1),

t(x/2, y) + 1 if x 6= y, 2 | x,

t(x− y, y) if x > y, 2 ∤ x,

t(y, x) if x < y, 2 ∤ x.Assuming y odd, ase 3 is always followed by ase 2, and we an substitute ase 3 by t(x, y) =
t((x− y)/2, y) + 1. We ompare the derease of the sum x + y and the inrease of t. In ase 2,
(x+y) 7→ x/2+y > (x+y)/2, and t inreases by 1. In the substituted ase 3, (x+y) 7→ (x+y)/2,and t inreases by 1. We see that whenever x+y dereases, t inreases, and whenever t inreasesby 1, x + y drops by at most half, until x+ y = 2. Hene t(x, y) ≥ log2(x + y)− 1, and therefore
t(x, y) ≥ log2(y), sine x > 0.Thus in ase of k-word moduli βk−1 < m < βk, we have t(x,m) ≥ (k − 1) log2(β) for anypositive x, so using aβ−1 (mod m) as input to the binary extended GCD is su�ient to ensurethat at the end we get a−1β ≡ v2−t (mod m), or a−1βk ≡ v2−t+(k−1) log2(β) (mod m) and thedesired result a−1βk an be obtained from v2−t with a division by 2t−(k−1) log2(β) via REDC.4.3.4 Modular Division by Small IntegersInitialisation of P+1 and ECM involves division of residues by small integers suh as 3, 5, 7, 11,
13 or 37. These an be arried out quikly by use of dediated funtions. To ompute r ≡ ad−1

(mod m) for a redued residue a with d ⊥ m, we �rst ompute t = a + km, with k suh that
t ≡ 0 (mod d), i.e., k = a

(

−m−1
)

mod d, where −m−1 mod d is determined by look-up in apreomputed table for the d− 1 possible values of m mod d.For one-word moduli, the resulting integer t an be divided by d via multipliation by thepreomputed onstant dinv ≡ d−1 (mod β). Sine t/d < m < β is an integer, the result r =
tdinv mod β produes the orret redued residue r. This implies that omputing t modulo β issu�ient.For two-word moduli, we an hoose an algorithm depending on whether m and d are largeenough that t may over�ow two mahine words or not. In either ase, we may write t = t1β + t0with 0 ≤ t0 < β, 0 ≤ t1 < dβ and r = r1β + r0 with 0 ≤ r0, r1 < β, and an ompute
r0 = t0dinv mod β.If t does not over�ow, we may write t = t′′ + t′dβ, 0 ≤ t′′ < dβ, where d | t′′. Then
r = t/d = t′β + t′′/d with t′′/d < β, so we an ompute r1 = ⌊t1/d⌋. The trunating division bythe invariant d an be implemented by the methods of [50℄. An advantage of this approah isthat the omputation of the low word r0 from t0 is independent of the omputation of the highword r1 from t1.If t may over�ow two mahine words, we an ompute r0 as before, and use that t − dr0 isdivisible by dβ, so we may write r1β + r0 ≡ t/d (mod β2) as r1 ≡ (t− dr0)/β · dinv (mod β).4.4 P�1 AlgorithmThe P�1 algorithm is desribed in Setion 2.2. We reapitulate some elementary fats here. The�rst stage of P�1 omputes

x1 = xe
0 mod Nfor some starting value x0 6≡ 0,±1 (mod N) and a highly omposite integer exponent e. ByFermat's little theorem, if p − 1 | e for any p | N , then x1 ≡ 1 (mod p) and p | gcd(x1 − 1,N).

72 Chapter 4. Fatoring small integers with P�1, P+1 and ECMThis ondition is su�ient but not neessary: it is enough (and neessary) that ordp(x0) | e,where ordp(x0) is the order of x0 in F∗
p. To maximise the probability that ordp(x0) | e for a givensize of e, we ould hoose e to ontain all primes and prime powers that divide ordp(x0) withprobability better than some bound 1/B1. One typially assumes that a prime power qk divides

ordp(x0) with probability q−k, so that e is taken as the produt of all primes and prime powersnot exeeding B1, or e = lcm(1, 2, 3, 4, . . . , B1). The hoie of e is desribed in more detail inChapter 5.The value of e is preomputed and passed to the P�1 stage 1 routine, whih basially onsistsonly of a modular exponentiation, a subtration and a gd. The base x0 for the exponentiation ishosen as 2; in a left-to-right binary powering ladder, this requires only squarings and doublings,where the latter an be performed quikly with an addition instead of a multipliation by x0.To redue the probability that all prime fators of N (i.e., N itself) are found simultaneouslyand reported as a divisor at the end of stage 1, only the odd part of e is proessed at �rst,and then the fators of 2 in e one at a time by suessive squarings. After eah one we hekif the new residue is 1 (mod N), indiating that all prime fators of N have been found now,and if so, revert to the previous value to use it for the gd. Unless the same power of 2 divides
ordp(x0) exatly for all primes p | N , then this will disover a proper fator. This baktrakingsheme is simple but satisfatorily e�etive: among 106 omposite numbers that ourred duringan sieving experiment of the RSA155 number, eah omposite being of up to 86 bits and withprime fators larger than 224, only 48 had the input number reported as the fator in P�1 stage 1with B1 = 500. Without the baktraking sheme (i.e., proessing the full exponentiation by e,then taking a GCD), 879 input numbers are reported as fators instead.The seond stage of P�1 an use exatly the same implementation as the seond stage ofP+1, by passing X1 = x1 +x−1

1 to the stage 2 algorithm. The stage 2 algorithm for ECM is verysimilar as well, and they are desribed together in Setion 4.7.4.4.1 P�1 Stage 1 PerformaneTable 4.2 ompares the performane of the P�1 stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom
B1 1 word 2 words −2 bits 1 word 2 words −2 bits
100 3.15 6.24 2.49 4.59
200 5.38 12.2 4.12 8.26
300 7.28 17.2 5.51 11.3
400 9.23 22.2 6.92 14.5
500 11.4 27.8 8.49 18.0
600 13.2 32.7 9.83 21.0
700 15.4 38.2 11.4 24.4
800 17.2 43.1 12.7 27.5
900 19.4 48.5 14.2 30.9
1000 21.4 53.8 15.7 34.1Table 4.2: Time in miroseonds for P�1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs.

4.5. P+1 Algorithm 734.5 P+1 AlgorithmThe P+1 algorithm is desribed in detail in Setion 2.2. We reapitulate the basi algorithmhere.The �rst stage of P+1 omputes x1 = Ve(x0) mod N , where x0 ∈ Z/NZ is a parameter,
Vn(x) is a degree-n Chebyshev polynomial de�ned by Vn(x + x−1) = xn + x−n, and e is a highlyomposite integer hosen as for the P�1 method. These Chebyshev polynomials satisfy V0(x) = 2,
V1(x) = x, V−n(x) = Vn(x), Vmn(x) = Vm(Vn(x)), and Vm+n(x) = Vm(x)Vn(x)− Vm−n(x).We test for a fator by taking gcd(x1 − 2,N). If there is a prime p suh that p | N and
p−

(

∆
p

)

| e, where ∆ = x2
0 − 4 and (∆

p

) is the Legendre symbol, then p | gcd(x1 − 2,N).Sine Vn−m is required for omputing Vn+m, these polynomials annot be evaluated with asimple binary addition hain as in the ase of the exponentiation in stage 1 of P�1. Instead, anaddition hain needs to be used that ontains n−m whenever the sum n + m is formed from nand m. These hains are desribed in Setion 4.5.1.The required addition hain for the stage 1 multiplier e is preomputed and stored as om-pressed byte ode, see Setion 4.5.2.As for P�1, a baktraking sheme is used to avoid �nding all fators of N and thus reportingthe input number as the fator found. Sine fators of 2 in e an easily be handled by V2n(x) =
V2 (Vn(x)) = Vn(x)2 − 2, they need not be stored in the preomputed addition hain, and anbe proessed one at a time. Similarly as in stage 1 of P�1, we remember the previous residue,proess one fator of 2 of e, and if the result is 2 (mod N), meaning that all fators of N havebeen found, we revert to the previous residue to take the GCD with N . Using the same 106omposite inputs as for P�1, P+1 with B1 = 500 reports 117 input numbers as fators withbaktraking, and 1527 without.If stage 1 of P+1 is unsuessful, we an try to �nd a fator yet by running stage 2, using asinput the output x1 of stage 1. Our stage 2 is idential for P�1 and P+1, and very similar forECM, and is desribed in Setion 4.7.4.5.1 Luas ChainsMontgomery shows in [66℄ how to generate addition hains a0, a1, . . . , aℓ with a0 = 1 and length
ℓ suh that for any 0 < i ≤ ℓ, there exist 0 ≤ s, t < i suh that ai = as + at and as − at iseither zero, or is also present in the hain. He alls suh hains �Luas hains.� For example,the addition hain 1, 2, 4, 5 is not a Luas hain sine the last term 5 an be generated only from
4 + 1, but 4− 1 = 3 is not in the hain. The addition hain 1, 2, 3, 5, however, is a Luas hain.For any positive integer n, L(n) denotes the length of an optimal (i.e., shortest possible) Luashain that ends in n.A simple but generally non-optimal way of generating suh hains uses the redution (n, n−
1) 7→ (⌈n/2⌉, ⌈n/2⌉−1). We an ompute Vn(x) and Vn−1(x) from V⌈n/2⌉(x), V⌈n/2⌉−1(x), V1(x) =
x, and V0(x) = 2. In the ase of n even, we use Vn(x) = V⌈n/2⌉(x)2 − V0(x), and Vn−1(x) =
V⌈n/2⌉(x)V⌈n/2⌉−1(x)−V1(x) and in the ase of n odd, we use Vn = V⌈n/2⌉(x)V⌈n/2⌉−1(x)− V1(x)and Vn−1(x) = V⌈n/2⌉−1(x)2−V0(x). The resulting hain allows proessing the multiplier left-to-right one bit at a time, and thus is alled binary hain by Montgomery. Eah bit in the multiplieradds two terms to the addition hain, exept that when proessing the �nal bit, only one of thetwo values needs to be omputed, and if the two most signi�ant bits (MSB) are 10b, the aboverule would ompute V2(x) twie of whih one should be skipped. Any trailing zero bits an behandled by V2n(x) = Vn(x)2−V0(x) at the ost of 1 multipliation eah. The length Lb(n2k) forthe binary Luas hain for a number n2k with n odd is therefore 2⌊log2(n)⌋ − 1 + k if the two

74 Chapter 4. Fatoring small integers with P�1, P+1 and ECMMSB are 10b, or 2⌊log2(n)⌋ + k if n = 1 or the two MSB are 11b. Examples are in Table 4.3.It lists the binary hain, the length Lb(n) of the binary hain, an optimal hain, and the length
L(n) of an optimal hain, for odd n up to 15.

n Binary hain Lb(n) Optimal hain L(n)
3 = 11b 1, 2, 3 2 1, 2, 3 2
5 = 101b 1, 2, 3, 5 3 1, 2, 3, 5 3
7 = 111b 1, 2, 3, 4, 7 4 1, 2, 3, 4, 7 4
9 = 1001b 1, 2, 3, 4, 5, 9 5 1, 2, 3, 6, 9 4
11 = 1011b 1, 2, 3, 5, 6, 11 5 1, 2, 3, 5, 6, 11 5
13 = 1101b 1, 2, 3, 4, 6, 7, 13 6 1, 2, 3, 5, 8, 13 5
15 = 1111b 1, 2, 3, 4, 7, 8, 15 6 1, 2, 3, 6, 9, 15 5Table 4.3: Binary and optimal Luas hains for small odd values nThe binary hain is very easy to implement, but produes non-optimal Luas hains exept forvery small multipliers. The smallest positive integer where the binary method does not produean optimal hain is 9, and the smallest suh prime is 13. Montgomery shows that if n is a primebut not a Fibonai prime, an optimal Luas hain for n has length L(n) ≥ r with r minimalsuh that n ≤ Fr+2 − Fr−3, where Fk is the k-th Fibonai number. Sine Fk = (φk − φ−k)/

√
5where φ = (1 +

√
5)/2 is the Golden Ratio, this suggests that if this bound is tight, for large nan optimal hain for n should be about 28% shorter than the binary hain.In a Luas hain a0, a1, . . . , aℓ of length ℓ, a doubling step ak+1 = 2ak auses all ai with

k ≤ i ≤ ℓ to be multiples of ak, and all these terms ai are formed using sums and di�erenes onlyof terms aj , k < j ≤ ℓ, see [66℄. Suh a doubling step orresponds to a onatenation of Luashains. For omposite n = n1 · n2, a Luas hain an be made by onatenating the hains of itsfators. E.g., for n = 15, we ould multiply every entry in the hain 1, 2, 3, 5 by 3 and append itto the hain 1, 2, 3 (omitting the repeated entry 3) to form the Luas hain 1, 2, 3, 6, 9, 15. Sineany Luas hain starts with 1, 2, every onatenation introdues one doubling step, and everydoubling step leads to a hain that is the onatenation of two Luas hains. Chains that are notthe onatenation of other hains (i.e., that ontain no doubling step other than 1, 2) are alledsimple hains. For prime n, only simple hains exist. In the ase of binary Luas hains, theonatenated hain is never longer than the hain for the omposite value and usually shorter,so that forming a onatenated Luas hain from hains of the prime fators of n (if known) isalways advisable. The same is not true for optimal hains, as shown below.Optimal hains an be found by exhaustive searh for a hosen maximal length lmax andmaximal end-value nmax. For odd n ≥ 3, a Luas hain for n always starts with 1, 2, 3 sine adoubling step 2, 4 would produe only even values in the remainder of the hain. In the exhaustivesearh, the Luas hain a0, . . . , ak an be extended reursively if k < ℓmax and ak < nmax byadding an element ak+1 > ak suh that the resulting sequene is still a Luas hain, i.e., satisfyingthat there are 0 ≤ i, j ≤ k suh that either ak+1 = 2ai, or ak+1 = ai + aj and ai − aj is presentin the hain. For eah hain so reated, we hek in a table of best known lengths whether thelength k + 1 is smaller than the previously known shortest length for reahing ak+1, and if so,update it to k + 1 and store the urrent hain as the best known for reahing ak+1. By tryingall possible hain expansions, we are ertain to �nd an optimal hain for every n ≤ nmax. Thisreursive searh is very time onsuming due to a large number of ombinations to try. To reaha worthwhile searh depth, the possible hain extensions an be restrited. The last step of anoptimal hain is always al = aℓ−1 + aℓ−2 as otherwise one or both of aℓ−1, aℓ−2 are obsolete, so

4.5. P+1 Algorithm 75

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000

Le
ng

th
 o

f c
ha

in
 fo

r
p

p

Binary
Optimal

Lower bound

Figure 4.2: Length of binary and optimal Luas hains for odd primes p in [100, 15000], and alower bound on the length for primes that are not Fibonai primes. The graph for the boundis set 0.5 lower to make it visible. The Fibonai prime 1597 is seen to undershoot this lowerbound.the table of best known lengths needs to be heked and updated only after suh an additionstep, and the �nal reursion level of the searh needs to onsider only this addition step. Anydoubling step ak+1 = 2ak auses the hain to beome the equivalent of a onatenated hain,so during the reursive hain expansion, doubling steps need not be onsidered. Instead thereursive searh produes only the optimal lengths of simple hains. Then for all possible pairs
3 ≤ m ≤ n ≤ √nmax, the length of the hain for mn is updated with the sum of the lengths ofhains for m and n, if the latter is shorter. This is repeated until no more improvements our.After the �rst pass, the optimal lengths of hains for all n where n has at most two prime fatorsare known. After the seond pass, for all n that ontain at most three primes, et., until after atmost O(log(nmax)) passes optimal lengths for all values are known. Using this searh method,the minimal lengths of Luas hains for primes 100 < n < 10000 have been determined, shownin Figure 4.2. It ompares the length of the binary Luas hain, the optimal Luas hain andthe lower bound on the length of Luas hains for primes that aren't Fibonai primes. Thislower bound is quite tight, in the examined data L(n) does not exeed it by more than 1. TheFibonai prime 1597 an be seen to undershoot this lower bound (as do the smaller Fibonaiprimes, but they are di�ult to see in the graph).The exhaustive searh method is extremely slow and useless for produing addition hains forP+1 or ECM if large B1 values are desired. Montgomery [66℄ suggests the algorithm �PRAC,�whih produes Luas hains based on GCD hains, noting that a subtrative GCD algorithm for
n, r with n > r and n ⊥ r always produes a valid Luas hain for n. However, the resulting Luashain has length equal to the sum of the partial quotients in the ontinued fration expansion of
n/(n−r), and if a large partial quotient appears, the resulting Luas hain is unreasonably long.He �xes this problem by introduing additional rules for redution in the GCD hain (ratherthan just replaing the larger of the two partial remainders by their absolute di�erene as in apurely subtrative GCD hain) to avoid situations where the quotient of the partial remaindersdeviates too far from the Golden Ratio, yet satisfying the onditions for a Luas hain. The

76 Chapter 4. Fatoring small integers with P�1, P+1 and ECMgreat advantage is that PRAC usually produes very good hains and does so rapidly. This wayit is feasible to try a few di�erent suitable r for a given n, and for n in the range of interest forP+1 and ECM, one usually disovers an optimal hain this way.It remains the problem of hoosing a suitable r ⊥ n to start the GCD hain, hoping to �nd a(near) optimal hain. Montgomery suggests trying r = n−⌊n/c⌉ for several irrational c suh thatthe ontinued fration expansion of c has small partial quotients. This way, the partial frationexpansion of n/(n − r) starts with small partial quotients as well. Good hoies are the goldenRatio c0 = φ, whose partial quotients all are 1, or numbers with partial quotients all 1 exeptfor one or two 2 among the �rst 10 partial quotients. The resulting large number of multipliersis not a problem if the Luas hains are preomputed, but in ases where they are omputedon-the-�y during stage 1 of P+1 or ECM, a smaller set of multipliers should be used, say, onlythose with at most one 2 among the �rst ten partial quotients.Even with a large set of ci values to try, PRAC in the form given by Montgomery annotalways obtain an optimal hain. The smallest example is n = 751 whih has two Luas hainsof optimal length L(751) = 14:
1, 2, 3, 5, 7, 12, 19, 24, 43, 67, 110, 177, 287, 464, 751 and
1, 2, 3, 5, 8, 13, 21, 34, 55, 68, 123, 191, 314, 437, 751.Both hains involve an addition step that referenes a di�erene that ourred 5 steps beforethe new term: for the former sequene in the step a8 = 43 = a7 + a6 = 24 + 19, with di�erene
a7 − a6 = 5 = a3, and for the latter sequene in the step a10 = 123 = a9 + a8 = 68 + 55, withdi�erene a9 − a8 = 13 = a5. The original PRAC algorithm does not have any rule that allowsutilizing a di�erene that ourred more than 4 steps before the new term and so annot �ndeither of these two hains. Another, similar ase is n = 1087. For primes below 10000, I found
40 ases where PRAC did not �nd an optimal hain. For the purpose of generating Luas hainsfor P+1 and ECM, these missed opportunities at optimal hains are of no great onsequene.When using P+1 and ECM as a fatoring subroutine in NFS, the B1 value is often less than 751so that suh ases do not our at all, and if a greater B1 should be used, they our so rarelythat adding more rules to PRAC so that optimal hains are found for all primes below B1 wouldinrease the ode omplexity of our P+1 or ECM stage 1, whih implements eah PRAC rule(see Setion 4.5.2), for little gain. For our implementation, this was not deemed worthwhile. Forthe purpose of �nding optimal Luas hains rapidly, it would be interesting to augment PRACwith a suitable rule for the required addition step ak = ak−1 + ak−2 with ak−1 − ak−2 = ak−5,and testing whih primes remain suh that the modi�ed PRAC annot �nd optimal hains.For omposite n = pq, we trivially have L(n) ≤ L(p) + L(q), sine we an onatenate thehain for p and the hain for q. In some ases, a shorter hain for the omposite n exists thanfor the onatenated hains of its fators. The smallest example is 1219 = 23 · 53 whih has

1, 2, 3, 4, 7, 11, 18, 29, 47, 76, 123, 170, 293, 463, 756, 1219as an optimal hain of length 15, while an optimal hain for 23 is 1, 2, 3, 4, 5, 9, 14, 23 of length
7, and for 53 is 1, 2, 3, 5, 6, 7, 13, 20, 33, 53 of length 9.Similarly, omposite numbers n exist where PRAC with a ertain set of multipliers �nds ahain for n that is shorter than the onatenated simple hains for the divisors of n. A problemis that the starting pair n, r for the GCD sequene must be oprime, possibly making several
c multipliers ineligible for an n with small prime fators. Starting with a large enough set ofmultipliers, usually enough of them produe oprime n and r that an optimal hain an befound, if one exists of a form suitable for PRAC. The example n = 1219 above is found, e.g.,with r = 882, using the multiplier 3−Φ with ontinued fration expansion //1, 2, 1, 1, 1, 1, . . . //.

4.5. P+1 Algorithm 774.5.2 Byte Code and CompressionIn implementations of P+1 or ECM suh as in GMP-ECM [103℄ that typially operates onnumbers of hundreds to ten-thousands of digits, or in the ECM implementation of Prime95 [102℄that operates on number of up to several million digits, the ost of generating good Luas hainson-the-�y during stage 1 is mostly negligible, exept for P+1 on relatively small numbers of onlya few hundred digits. However, in an implementation of ECM and espeially P+1 designed fornumbers of only a few mahine words, the on-the-�y generation of Luas hains would take anunaeptable part of the total run-time. Sine in our appliation of using P+1 and ECM as afatoring sub-routine in NFS, idential stage 1 parameters are used many times over again, itis possible to preompute optimized Luas hains and proess the stored hain during P+1 orECM stage 1.This raises the question how the hain should be stored. Sine the PRAC algorithm repeatedlyapplies one of nine rules to produe a Luas hain for a given input, an obvious method is tostore the sequene of PRAC rules to apply. The preomputation outputs a sequene of byteswhere eah byte stores the index of the PRAC rule to use, or one of two extra indies for theinitial doubling resp. the �nal addition that is ommon to all (near-)optimal Luas hains. Thisway, a byte ode is generated that an be proessed by an interpreter to arry out the stage 1omputations for P+1 or ECM. For eah prime to inlude in stage 1, the orresponding byteode is simply appended to the byte ode, whih results in a (long) onatenated Luas hainfor the produt of all stage 1 primes. If primes are to be inluded whose produt is known tohave a better simple Luas hain than the onatenation of the hains for the individual primes,then their produt should be passed to the byte-ode generating funtion.The byte ode generated by PRAC is highly repetitive. For example, byte odes for thePRAC hains for the primes 101, 103, 107, and 109 are
101 : 10, 3, 3, 0, 3, 3, 0, 5, 3, 3, 3, 11
103 : 10, 3, 0, 3, 3, 0, 3, 3, 0, 4, 3, 11
107 : 10, 3, 0, 3, 3, 0, 3, 0, 4, 3, 3, 3, 11
109 : 10, 3, 0, 3, 0, 1, 1, 3, 11It is bene�ial to redue redundany in the byte ode to speed up stage 1. The byte odeinterpreter that exeutes stage 1 must feth a ode byte, then all the program ode that arriesout the arithmeti operations that implement the PRAC rule indiated by the ode; thus thereis a ost assoiated with eah ode byte. If the interpreter uses a omputed jump to the odeimplementing eah PRAC rule, there is also a branh mispredition eah time a ode byte isdi�erent from the previous one, as urrent miroproessors typially predit omputed jumps asgoing to the same address as they did the previous time. Some PRAC rules frequently ourtogether, suh as rule 3 followed by rule 0, so that merging them may lead to simpli�ationsin the arithmeti. In partiular, rules 11 (end of a simple hain) and 10 (start of a new simplehain) always appear together, exept at the very start and at the very end of the byte ode.These issues are addressed by byte ode ompression. A simple stati ditionary oder greed-ily translates frequently observed patterns into new odes. The byte ode interpreter implementsmerged rules aordingly. For example, the byte ode sequene "3, 0" (for an addition followedby a swap of variable ontents) ours very frequently and may be translated to a new ode,say 12, and the interpreter performs a merged addition and swap. The odes "11, 10" alwaysour as a pair and an be substituted exept at the very start and the very end of the byteode,but these two ourrenes an be hard-oded into the interpreter, so they do not need to beonsidered individually at all.

78 Chapter 4. Fatoring small integers with P�1, P+1 and ECMSine we often an hoose among several di�erent Luas hains of equal length for a givenstage 1 prime by using di�erent multipliers in PRAC, we an pik one that leads to the simplestompressed ode by ompressing eah andidate hain, and hoosing the one that has the smallestnumber of ode bytes and ode byte hanges.For omparison, without any ompression or e�ort to redue the number of ode bytes orode hanges when hoosing PRAC multipliers, the byte ode for a stage 1 with B1 = 500onsists of 1487 ode bytes and 1357 ode hanges, whereas even with the simple substitutionrules desribed above and areful hoie of PRAC multipliers to minimize the number of odebytes and ode hanges, only 554 ode bytes with 435 ode hanges remain.4.5.3 P+1 Stage 1 PerformaneTable 4.4 ompares the performane of the P+1 stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom
B1 1 word 2 words −2 bits 1 word 2 words −2 bits100 4.04 8.44 3.45 6.30200 7.50 17.3 6.32 12.3300 10.3 24.6 8.69 17.2400 13.4 32.5 11.2 22.3500 16.6 40.7 14.0 27.9600 19.5 48.0 16.4 32.8700 22.8 56.6 19.1 38.5800 25.7 64.0 21.5 43.5900 28.9 72.4 24.2 48.91000 32.0 80.4 26.7 54.2Table 4.4: Time in miroseonds for P+1 stage 1 with di�erent B1 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs, using preomputed Luas hains stored as ompressedbyte ode.For omparison, without using byte ode ompression or hoosing the PRAC multipliers tominimize byte ode length and number of ode hanges, on Core 2, P+1 stage 1 with 1 wordand B1 = 500 takes 20.4µs and so is about 22% slower, and with 2 words takes 50.4µs and so isabout 24% slower.4.6 ECM AlgorithmThe Ellipti Curve Method of fatorization was introdued by H. W. Lenstra in 1987 [62℄.Whereas P�1 works in the group F∗

p of order p − 1 and P+1 in a subgroup of F∗
p2 of order

p− 1 or p + 1, ECM works in the Mordell-Weil group of points on an ellipti urve de�ned over
Fp. By Hasse's theorem, the number of points and therefore the order of the Mordell-Weil groupof an ellipti urve over Fp is in [p+1− 2

√
p, p+1+2

√
p]. The number of points on a partiularurve depends on both the urve parameters and the �eld. ECM �nds a prime fator p of N ifthe urve over Fp has smooth order; the advantage of ECM over previous algorithms suh as P�1and P+1 (whih always work in a group of order p − 1 or p + 1) is that many di�erent urvesan be tried, until one with su�iently smooth order is enountered.

4.6. ECM Algorithm 79Any ellipti urve E over a �eld K of harateristi neither 2 nor 3 an be de�ned by theWeierstraÿ equation
y2 = x3 + ax + b. (4.2)This equation de�nes an ellipti urve if and only if the disriminant 4a3 +27b2 does not vanish.The set of points on E onsists of the solutions (x, y) ∈ K2 of (4.2), plus the point at in�nity O.The group addition law of two points on the urve is de�ned geometrially by putting astraight line through the two points (or, if the points are idential, the tangent of the urve inthat point), taking the line's new intersetion point with the urve and mirroring it at the x-axis.Sine the urve is symmetri around the x-axis, the mirrored point is on the urve, and is theresult. If the straight line is vertial, no new intersetion point exists; in this ase the point atin�nity is taken as the result. The point at in�nity is the identity element of the group, addingit to any point results in the same point. The inverse of a point is the point mirrored at the

x-axis. This addition law on the points of an ellipti urve de�nes an Abelian group, see forexample [91℄.The Weierstraÿ form of ellipti urves an be used for implementing ECM, but requiresa ostly modular inverse in the omputation of point additions. Montgomery [65℄ proposes analternative form of ellipti urve equation in projetive oordinates so that its addition law avoidsmodular inverses, while still keeping the number of required multipliations low. His urves areof form
BY 2Z = X(X2 + AXZ + Z2), (4.3)with points (X : Y : Z) ∈ K3 satisfying (4.3), where X,Y,Z are not all zero. Two points areidential if (X2 : Y2 : Z2) = (kX1 : kY1 : kZ1) for some k ∈ K, k 6= 0. The point at in�nity is

O = (0 : 1 : 0).Not all ellipti urves over �nite �elds an be brought into form (4.3), but we may restrit ourECM implementation to use only these urves. Montgomery desribes an addition law for urvesof this form. Given two distint points P1 and P2, we an ompute the X and Z-oordinatesof P1 + P2 from the X and Z-oordinates of P1, P2 and P1 − P2. Similarly, we an omputethe X and Z-oordinates of 2P from the X and Z-oordinates of P and the urve parameters.Surprisingly, the Y -oordinate is not needed in these omputations, and an be ignored entirelywhen using urves in Montgomery form for ECM, and points are ommonly written as only
(X :: Z) with Y -oordinate omitted. The details of the addition law are found in [65, 10.3.1℄ or[67, 2.3℄.This addition law requires that in order to form the sum of two points, their di�erene isknown or zero. This is reminisent of the P+1 method where we need Vm−n(x) to ompute
Vm+n(x) from Vm(x) and Vn(x), and the same Luas hains used to ompute Vk(x) for integer
k in P+1 an be used to ompute the multiple kP of a point P on a urve in Montgomery formin ECM.4.6.1 ECM Stage 1In stage 1 of ECM, we hoose a suitable urve E of form (4.3) de�ned over Z/NZ, where N isthe integer we wish to fator. Naturally N is omposite, so Z/NZ is a ring but not a �eld, butthis has little onsequene for the arithmeti of the urve as the only operation that ould fail isinversion of a ring element, and an unsuessful inversion of a non-zero element in Z/NZ revealsa proper fator of N whih is the exat purpose of ECM. We often onsider the urve Ep for aprime p | N , whih is the urve E redued modulo p, i.e., E over the �eld Fp.

80 Chapter 4. Fatoring small integers with P�1, P+1 and ECMWe then hoose a point P0 on E and ompute P1 = e · P0 for a highly omposite integer e,usually taken to be divisible by all primes and prime powers up to a suitably hosen value B1,i.e., e = lcm(1, 2, 3, 4, . . . , B1). We hope that for some prime fator p of N , the order of P0 on
Ep is B1-smooth (and thus divides e), sine then the point P1 on Ep will be the point at in�nity
(0 :: 0) so that P1 has Z-oordinate 0 (mod p) and p | gcd(PZ ,N).To �nd a point P0 on E over Z/NZ, we hoose a point of E over Q and map it to Z/NZ.The point over Q must not be a torsion point, or P0 will have idential order on Ep for all p | N(unless p divides the order of P0 or the disriminant of E, whih is unlikely exept for smallprimes) so that P1 is the point at in�nity either for all Ep or for none, produing only the trivialfatorizations N or 1.By areful seletion of the urve E we an ensure that number of points of Ep is a multipleof 12 or 16, signi�antly inreasing the probability that the order of P0 is smooth. The hoie of
E is desribed in Setion 4.6.2.The omputation of P1 = e · P0 on E is arried out by use of preomputed Luas hains,similarly as in the P+1 algorithm. The seletion of near-optimal Luas hains for ECM isdesribed in Setion 4.6.3.If stage 1 of ECM is unsuessful, we try stage 2 where we hope to �nd a prime p suh thatthe order of P0 on Ep fators into primes and prime powers up to B1, exept for one bigger(but not too muh bigger) prime q. Our stage 2 is very similar for P�1, P+1, and ECM and isdesribed in Setion 4.7.4.6.2 Choie of CurveIn a letter to Rihard Brent, Hiromi Suyama [95℄ showed that urves of form (4.3) over Fp alwayshave group order divisible by 4, and also showed a parametrization that ensures that the grouporder is divisible by 12, whih Brent desribes in [16℄. This parametrization generates an in�nitefamily of urves over Q whih an be used to generate a large number of distint urves modulo
N . For a given integer parameter σ 6= 0, 1, 3, 5, let

u = σ2 − 5, v = 4σ,

X0 = u3, Z0 = v3 and A = (v−u)3(3u+v)
4u3v

− 2.
(4.4)Then the point (X0 :: Z0) is on the urve (4.3) with parameter A. The same parametrization isused by GMP-ECM [103, 1℄ and Prime95 [102℄.Montgomery showed in his thesis [67℄ how to hoose urves of form (4.3) suh that the urveover Q has a torsion subgroup of order 12 or 16, leading to group order divisible by 12 or 16,respetively, when the urve is mapped to Fp for almost all p.For urves with rational torsion group of order 12 he uses

t2 = u2−12
4u , a = t2−1

t2+3

X0 = 3a2 + 1, Z0 = 4a and A = −3a4−6a2+1
4a3 ,

(4.5)where u3 − 12u is a rational square. The solutions of v2 = u3 − 12u form an ellipti urve ofrank 1 and 2-torsion over Q, with generator (−2, 4) and 2-torsion point (0, 0). However, addingthe torsion point or not seems to produe isomorphi urves for ECM, so we ignore it. Henefor a given integer parameter k > 1 we an ompute suitable values of u and v by omputing
k · (−2, 4) on v2 = u3 − 12u. We an then let t = v/(2u). This produes an in�nite family ofurves over Q.

4.6. ECM Algorithm 81Curves with torsion 16 and positive rank over Q are more di�ult to generate, see [67,6.2℄ for details. We urrently implement only one suh urve with X0 = 8, Z0 = 15, and
A = 54721/14400.These parametrizations ensure that the group order is divisible by 12 or 16, respetively, butthe resulting group order of the urve over Fp does not behave like an integer hosen uniformlyat random from the integers that are multiples of 12 or 16, respetively, in the Hasse intervalaround p. In partiular, the average valuation of 2 in the group order for urves with rationaltorsion 12 is 11/3, slightly higher than 10/3 for urves in Brent-Suyama parametrization (whihhave rational torsion 6), making them somewhat more likely to �nd fators. The divisibilityproperties will be examined in more detail in Chapter 5.Very small σ-values for the Brent-Suyama parametrization lead to urves with simple ratio-nals for the point oordinate and urve parameter, and very small k-values for Montgomery'sparametrization for urves with rational torsion 12 lead to simple rationals for a, see Table 4.5.These rationals an be mapped to Z/NZ easily, as the denominators are highly omposite inte-gers so that the required divisions modulo N an be done by the methods of Setion 4.3.4 anda few multipliations.When fatoring ofators after the sieving step of NFS into large primes, only very few urvesare required on average sine the primes to be found are relatively small, and with an early-abortstrategy, only the �rst few urves work on larger omposites where arithmeti is more expensive.In spite of the small number of urves with suh simple rationals as urve parameters, it is usefulto implement them as speial ases.

σ X0 Z0 A

2 −1 512 −3645/32
4 1331 4096 6125/85184

k a X0 Z0 A

2 −3/13 196/169 −12/13 −4798/351
3 28/37 3721/1369 112/37 −6409583/3248896Table 4.5: Some ellipti urves hosen by the Brent-Suyama parametrization with group orderdivisible by 12, and by Montgomery's parametrization with rational torsion group of order 12.4.6.3 Luas Chains for ECMIn priniple, Luas hains for ECM an be hosen exatly as for P+1. However, a subtle di�ereneexists: in P+1, the ost of a doubling V2n(x) = Vn(x)2 − 2 is idential to that of an addition

Vm+n(x) = Vm(x)Vn(x)− Vm−n if Vm−n is known and a squaring is taken to have the same ostas a multipliation. This way, the ost of a Luas hain depends only on its length.In ECM, the ost of a point doubling usually di�ers from the ost of an addition of distintpoints. In the addition rules given by Montgomery, a doubling takes 5 modular multipliationsof whih 2 are squarings, whereas an addition of distint points takes 6 modular multipliationsof whih again 2 are squarings.These di�erent osts an be taken into aount when hoosing Luas hains. For example, tomultiply a point by 7, we an hoose between the hains 1, 2, 3, 5, 7 or 1, 2, 3, 4, 7 of equal length.In the former, all additions exept for the initial doubling 1, 2 are additions of distint values.In the latter, we an produe 4 by doubling 2, so that this Luas hain would save 1 modularmultipliation in the ellipti urve arithmeti.

82 Chapter 4. Fatoring small integers with P�1, P+1 and ECMWhen generating Luas hains with PRAC using several multipliers, we an hoose the besthain not aording to its length but by the ost of the arithmeti performed in eah PRAC rulethat is used to build the hain.The speedup in pratie is relatively small: with two-word modulus, ECM stage 1 with
B1 = 500 is about 1% faster when ounting the ost of a doubling as 5/6 of the ount of anaddition when hoosing Luas hains. Still, this improvement is so simple to implement that itmay be onsidered worthwhile.As for P+1, the preomputed addition hains are stored as byte ode that desribes a sequeneof PRAC rules to apply. Code ompression may be used to redue the overhead in the byte odeinterpreter, but sine the ellipti urve arithmeti is more expensive than in the ase of P+1, therelative speedup gained by ompression is muh smaller.4.6.4 ECM Stage 1 PerformaneTable 4.6 ompares the performane of the ECM stage 1 implementation for di�erent B1 valuesand modulus sizes on AMD Phenom and Intel Core 2 CPUs.Core 2 Phenom

B1 1 word 2 words −2 bits 1 word 2 words −2 bits
100 11.8 35.6 9.33 24.4
200 24.5 77.9 19.4 52.6
300 35.3 113 27.8 76.0
400 46.7 151 36.6 101
500 58.7 190 46.2 127
600 69.6 226 54.6 151
700 82.3 266 64.5 178
800 93.6 302 72.4 202
900 105 342 82.5 229
1000 117 381 92.0 255Table 4.6: Time in miroseonds for ECM stage 1 with di�erent B1 values on 2.146 GHz Core 2and 2 GHz AMD Phenom CPUs4.7 Stage 2 for P�1, P+1, and ECMStage 1 of P�1, P+1, and ECM all ompute an element ge

0 of some (multipliatively written)group G for a highly omposite integer e, typially hosen as e = lcm(1, 2, 3, 4, . . . , B1) for someinteger B1. If the order of g0 is B1-smooth, then g1 = ge
0 is the identity in G. Sine G isde�ned over Fp where p divides N , the number to fator, we an onstrut from the identity in

G a residue r (mod N) suh that r ≡ 0 (mod p) but hopefully not r ≡ 0 (mod N), and then
gcd(r,N) usually reveals p. If the order of g0 is not B1-smooth, stage 1 fails to �nd p. However,we may be able to �nd it yet if the order of g0 onsists of a B1-smooth part times a not-too-largeprime q.Stage 2 of P�1, P+1, and ECM tries to �nd the value of q e�iently on the assumption that
q is prime and not very large, although larger than B1, by looking for a math gm

1 = gn
1 whihours when q | m − n. We will desribe the stage 2 for the P+1 algorithm; P�1 an use thesame algorithm by adjusting its stage 1 output, and the stage 2 for ECM is struturally verysimilar. Di�erenes between the P+1 and ECM stage 2 are noted.

4.7. Stage 2 for P�1, P+1, and ECM 83Our stage 2 is modeled after the enhaned standard ontinuation desribed by Montgomery [65℄.For given searh limits B1 and B2 and input X1 it hooses a value d with 6 | d and omputestwo lists
fi = Vid(X1) mod N for ⌊B1/d⌉ ≤ i ≤ ⌊B2/d⌉ and (4.6)
gj = Vj(X1) mod N for 1 ≤ j < d/2 and j ⊥ d, (4.7)so that all primes q in]B1, B2] an be written as q = id− j or q = id + j.Let X1 ≡ α1 + 1/α1 (mod N), where α1 may be in a quadrati extension of Z/NZ, andassume

αq
1 ≡ 1 (mod p) (4.8)for some unknown prime p, p | N and a prime q, B1 < q ≤ B2. Let q = id − j or q = id + j.Then, using V−n(X) = Vn(X), we have

Vid(X1) ≡ Vq±j(X1) ≡ αq±j
1 + 1/αq±j

1

≡ α±j
1 + 1/α±j

1 ≡ V±j(X1) ≡ Vj(X1) (mod p)and so
Vid(X1)− Vj(X1) ≡ 0 (mod p). (4.9)After the lists fi, gj are omputed, we an ollet the produt
A =

∏

id±j=q
B1<q≤B2

(fi − gj) mod N. (4.10)If there is a prime q in]B1, B2] suh that (4.8) holds, the produt (4.10) will inlude i, j suhthat (4.9) holds, and thus p | gcd(A,N).Stage 1 of P�1 omputes x1 = xe
0 (mod N) and we an set X1 = x1 + 1/x1 to make the P�1stage 1 output ompatible with our stage 2 at the ost of one modular inverse. Stage 1 of P+1omputes x1 = Ve(x0) = Ve(α0 + 1/α0) = αe

0 + 1/αe
0 and we may simply set X1 = x1.For P�1 stage 2, we ould also use fi = xid

1 mod N and gj = xj
1 mod N , for 1 ≤ j < dand j ⊥ d, instead of (4.6). An advantage of using (4.6) is that V−n(X) = Vn(X), so that

gj = Vj(X) mod N needs to be omputed only for 1 ≤ j < d/2, and one (i, j)-pair an sometimesinlude two primes at one. The same ould be ahieved by using fi = x
(id)2

1 and gj = xj2

1 , butomputing these values for suessive i or j via (x(n+1)2 , x2(n+1)+1) = (xn2 · x2n+1, x2n+1 · x2)osts two multipliations, whereas Vn+1(x) = Vn(x)V1(x) − Vn−1(x) osts only one. However, amodular inverse is required to onvert the P�1 stage 1 output into the required form. Whihapproah is better thus depends on the hoie of stage 2 parameters, i.e., on how many valuesneed to be preomputed for the fi and gj lists. Assuming a small B1, when using B2 ≈ 5000 and
d = 210, we need about 24 values for fi and another 24 for gj . The ost of a modular inverseis roughly 50 times the ost of a modular multipliation in our implementation, so the twoapproahes are about equally fast. Using the same stage 2 for P�1 and P+1 has the advantageof requiring only one implementation for both methods.For ECM, we again would like two lists fi and gj suh that fi ≡ gj (mod p) if id ·P1 = j ·P1on Ep, where P1 is the point that was output by ECM stage 1. We an use fi = (id · P1)X , the
X-oordinate of id ·P1, and gj = (jP1)X . A point and its inverse have the same X-oordinate onurves in Weierstraÿ and Montgomery form, so again we have fi − gj ≡ 0 (mod p) if q | id ± j.

84 Chapter 4. Fatoring small integers with P�1, P+1 and ECMWith points in projetive oordinates, the points need to be anonialized �rst to ensure thatidential points have idential X-oordinates, whih is desribed in Setion 4.7.2.How to hoose the parameter d and the set (i, j)-pairs needed during stage 2 for given B1and B2 values is desribed in Setion 4.7.1. Setion 4.7.2 shows how to ompute the lists fi and
gj e�iently, and Setion 4.7.3 desribes how to aumulate the produt (4.10).4.7.1 Generating PlansThe hoie of d, the sets of i and j values to use for generating fi and gj , respetively, and the setof (i, j)-pairs for whih to aumulate the produt of fi−gj depend on the B1 and B2 parametersfor stage 2, but are independent of N , the number to fator. These hoies are preomputed forgiven B1 and B2 and are stored as a �stage 2 plan.� The stage 2 implementation then arriesout the operations desribed by the plan, using arithmeti modulo N .The plan provides the values d, i0, i1, a set S and a set T , hosen so that all primes q in
]B1, B2] appear as q = id± j for some (i, j) ∈ T with i0 ≤ i ≤ i1 and j ∈ S.We try to hoose parameters that minimize the number of group operations required forbuilding the lists fi and gj and minimize the number of (i, j)-pairs required to over all primesin the]B1, B2] interval. This means that we would like to maximise i0, minimize i1, and overtwo primes in]B1, B2] with a single (i, j)-pair wherever possible.We hoose d highly omposite and S = {1 ≤ j < d/2, j ⊥ d}, so that all integers oprimeto d, in partiular all primes not dividing d, an be written as id ± j for some integer i and
j ∈ S. We assume B1 is large enough that no prime greater than B1 divides d. Choosing valuesof i0 = ⌊B1/d⌉ and i1 = ⌊B2/d⌉ is su�ient, but may be improved as shown below.Computing the lists fi and gj requires at least one group operation per list entry, whih isexpensive espeially in the ase of ECM. The list fi has i1 − i0 + 1 entries where i1 − i0 ≈
(B2 − B1)/d, and gj has φ(d)/2 entries, so we hoose d highly omposite to ahieve small φ(d)and try to minimize i1− i0 +1+φ(d)/2 by ensuring that i1− i0 +1 and φ(d)/2 are about equallylarge. In our appliation of �nding primes up to, say, 232 as limited by the large prime boundused in the NFS sieving step, the value of B2 will usually be of the order of a few thousand, anda hoie d = 210 works well in this ase. With B2 = 5000, i1 = 24 and |S| = 24, so the two listsof fi and gj are about equally large, assuming small i0. For smaller B2, a smaller d is preferable,for example d = 90 for B1 = 100, B2 = 1000.We have hosen i1 as an upper bound based on B2, but we may redue i1 yet if [i1d −
d/2, i1d + d/2] does not inlude any primes up to B2, and so obtain the �nal value of i1.Having hosen d, S, and i1, we an hoose T . We say a prime q ∈]B1, B2] is overed byan (i, j)-pair if q | id ± j; assuming that only the largest prime fator of any id ± j value liesin]B1, B2], eah pair may over up to two primes. For eah prime q ∈]B1, B2] we mark theorresponding entry a[q] in an array to signify a prime that yet needs to be overed.Let r be the smallest prime not dividing d. Then q | id±j and q 6= id±j implies q = (id±j)/swith s ≥ r sine id ± j ⊥ d, thus q ≤ (id ± j)/r. Hene omposite values of id ± j with i ≤ i1an over only primes up to ⌊(i1d + d/2)/r⌋, and eah prime q > ⌊(i1d + d/2)/r⌋ an be overedonly by q = id± j.In a �rst pass, we examine eah prime q, ⌊(i1d + d/2)/r⌋ < q ≤ B2, highest to lowest andthe (i, j)-pair overing this prime. This pair is the only way to over q and must eventually beinluded in T . If this (i, j)-pair also overs a smaller prime q′ as a omposite value, then a[q′] isun-marked.In a seond pass, we look for additional (i, j)-pairs that over two primes, both via ompositevalues. We examine eah (i, j)-pair with i0 ≤ i ≤ i1 highest to lowest, and j ∈ S. If there are

4.7. Stage 2 for P�1, P+1, and ECM 85two primes q′ and q′′ marked in the array that are overed by the (i, j)-pair under examination,then a[q′] and a[q′′] are un-marked, and a[id− j] is marked instead.In the third pass, we over the remaining primes q ≤ ⌊(i1d + d/2)/r⌋ using (i, j)-pairs withlarge i, if possible, hoping that we may inrease the �nal i0 value. As in the seond pass, weexamine eah (i, j)-pair in order of dereasing i and, if there is a prime q′ with a[q′] marked,
q′ | id ± j but q′ 6= id ± j, we un-mark a[q′] and mark a[id − j] instead. This way, all primes in
]B1, B2] are overed, and eah with an (i, j)-pair with the largest possible i ≤ i1.We now hoose the �nal i0 value by looking for the smallest (not neessarily prime) q suhthat a a[q] is marked, and setting i0 = ⌊q/d⌉. The set T is determined by inluding eah (i, j)-pair where an array element a[id− j] or a[id + j] is marked. The pairs in T are stored in orderof inreasing i so that the fi an be omputed sequentially for P�1 and P+1.4.7.2 InitialisationIn the initialisation phase of stage 2 for P�1 and P+1 (and similarly for ECM), we ompute thevalues gj = Vj(X1) with 1 ≤ j < d/2, j ⊥ d and set up the omputation of fi = Vid(X1) for
i0 ≤ i ≤ i1. To do so, we need Luas hains that generate all required values of id and j. Wetry to �nd a short Luas hain that produes all required values to save group operations whihare ostly espeially for ECM.Luas hains for values in an arithmeti progression are partiularly simple, sine the di�er-ene of suessive terms is onstant. We merely need to start the hain with terms that generatethe ommon di�erene and the �rst two terms of the arithmeti progression.The values of j with j ⊥ d and 6 | d an be omputed in two arithmeti progressions 1 + 6mand 5 + 6m, via the Luas hain 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 23, . . . For d = 210, the required 24values of j an therefore be generated with a Luas hain of length 37.To add the values of id with i0 ≤ i ≤ i1, we need to add d, i0d, and (i0 + 1)d to the hain.If 2 || d, we have d/2− 2 ⊥ d and d/2 + 2 ⊥ d and we an add d to the Luas hain by inluding
4 = 2 + 2 and d = d/2 + 2 + d/2 − 2. If 4 | d, we have d/2 − 1 ⊥ d and d/2 + 1 ⊥ d and we anadd d simply via d = d/2 + 1 + d/2 + 1 as 2 is already in the hain. Sine i0 is usually small, wean ompute both i0d and (i0 + 1)d from d with one binary hain.Using this Luas hain, we an ompute and store all the gj = Vj(X1) residues as well as
Vd(X1), fi0d(X1), and f(i0+1)d(X1).In the ase of P�1 and P+1, sine the (i, j)-pairs are stored in order of inreasing i, all the
fi values need not be omputed in advane, but an be omputed suessively as the (i, j)-pairsare proessed.Initialisation for ECMFor ECM stage 2 we use urves in Montgomery form with projetive oordinates, just as instage 1, to avoid ostly modular inverses. The initialisation uses the same Luas hain as in 4.7.2for the required values of id and j, so that id ·P1 and j ·P1 an be omputed e�iently. However,two points (X1 :: Z1) and (X2 :: Z2) in projetive oordinates being idential does not imply
X1 = X2, but X1/Z1 = X2/Z2, where Z1 and Z2 are generally not equal, so the X-oordinatesof these points annot be used diretly to build the lists fi and gj .There are several ways to overome this obstrution. Several authors (for example [33, 7.4.2℄or [78℄) propose storing both X and Z oordinate in the fi and gj lists, and then aumulatingthe produt A =

∏

(i,j)∈T ((fi)X(gj)Z − (gj)X(fi)Z). An advantage of this approah is that the
fi an be omputed sequentially while the produt is being aumulated and the number of gj

86 Chapter 4. Fatoring small integers with P�1, P+1 and ECMto preompute and store an be ontrolled by hoie of d, whih allows ECM stage 2 to rununder extremely tight memory onditions suh as in an FPGA implementation. The obviousdisadvantage is that eah (i, j)-pair now uses 3 modular multipliations instead of 1 as in (4.10).Another approah and muh preferable in an implementation where su�ient memory isavailable is anonializing the preomputed points so that all points have the same Z-oordinate.To produe the desired lists fi and gj , we therefore ompute all the required points Qi = id · P1and Rj = j · P1. If all Z-oordinates of Qi and Rj are made idential, Qi = Rj on Ep implies
(Qi)X ≡ (Rj)X (mod p), as desired, and we may set fi = (Qi)X and gj = (Rj)X .We suggest two methods for this. One is to set all Z-oordinates to 1 (mod N) via (X ::
Z) = (XZ−1 :: 1). To do so, we need the inverse modulo N of eah Z-oordinate of ourpreomputed points. A trik due to Montgomery, desribed for example in [25, 10.3.4℄, replaes
n modular inverses of residues rk modulo N , 1 ≤ k ≤ n, by 1 modular inverse and 3n − 3modular multipliations. This way we an anonialize a bath of n points with 4n− 3 modularmultipliations and 1 modular inverse. Not all points needed for the fi and gj lists need to beproessed in a single bath; if memory is insu�ient, the points needed for fi an be proessedin several bathes while produt (4.10) is being aumulated.A faster method was suggested by P. Zimmermann. Given n ≥ 2 points P1, . . . , Pn, Pi =
(Xi :: Zi), we set all Z-oordinates to ∏1≤i≤n Zi by multiplying eah Xk by Tk =

∏

1≤i≤n,i6=k Zi.This an be done e�iently by omputing two lists sk =
∏

1≤i≤k Zi and tk =
∏

k<i≤n Zi for
1 ≤ k < n, eah at the ost of n−2 modular multipliations. Now we an set T1 = t1, Tn = sn−1,and Ti = si−1ti for 1 < i < n, also at the ost of n−2 multipliations. Multiplying Xi by Ti ostsanother n modular multipliations for a total of only 4n − 6 modular multipliations, withoutany modular inversion. Algorithm 9 implements this idea. Sine the ommon Z-oordinate ofthe anonialized points is the produt of all points idP1 and jP1, the omplete set of pointsneeded for the fi and gj lists must be proessed in a single bath.Interestingly, if the urve parameters are hosen suh that the urve initialisation an bedone with modular division by small onstants rather than with a modular inverse, then ECMimplemented this way does not use any modular inverses at all, without sari�ing the optimalost of 1 modular multipliation per (i, j)-pair in stage 2.Input: n ≥ 2, an integer

N , a positive integer
Z1, . . . , Zn, residues modulo NData: s, a residue modulo NOutput: T1, . . . , Tn, residues modulo N with Ti ≡

∏

1≤i≤n,i6=k Zi (mod N)
Tn−1 := Zn;for k := n− 1 downto 2 do

Tk−1 := Tk · Zk mod N ;
s := Z1;
T2 := T2 · s mod N ;for k := 3 to n do

s := s · Zk−1 mod N ;
Tk := Tk · s mod N ;Algorithm 9: Bath ross multipliation algorithm.

4.8. Comparison to Hardware Implementations of ECM 874.7.3 Exeuting PlansThe stage 2 plan stores the (i, j)-pairs whih over all primes in]B1, B2]. The fi and gj lists areomputed as desribed in 4.7.2. Stage 2 then reads the stored (i, j)-pairs, and multiplies fi − gjto an aumulator:
A =

∏

(i,j)∈T

(fi − gj) mod N. (4.11)Sine the pairs are stored in order of inreasing i, the full list fi need not be preomputed forP�1 and P+1, but eah fi an be omputed sequentially by V(i+1)d(X1) = Vid(X1)Vd(X1) −
V(i−1)d(X1). At the end of stage 2, we take r = gcd(A,N), hoping that 1 < r < N and so that
r is a proper fator of N .BaktrakingWe would like to avoid �nding all prime fators of the input number N simultaneously, i.e.,�nding N as a trivial fator. As in stage 1 of P�1 and P+1, a baktraking mehanism is usedto reover from suh a situation.Sine r = gcd(A,N) and A is a redued residue modulo N , we �nd r = N as a fator if andonly if A = 0. We set up a �bakup� residue A′ = 1 at the start of evaluation of (4.11). Atperiodi intervals during the evaluation of (4.11), for example eah time that i is inreased, wetest if A = 0, whih is easy sine the residue does not need to be onverted out of Montgomeryrepresentation if REDC (see Setion 4.3.2) is used for the arithmeti. If A = 0, we take r =
gcd(A′, N) and end stage 2. Otherwise, we set A′ = A. This way, a proper fator of N an bedisovered so long as all prime fators of N are not found between two tests for A = 0.4.7.4 P+1 and ECM stage 2 PerformaneTables 4.7 and 4.8 ompares the performane of the P+1 and the ECM stage 2 implementationfor di�erent B2 values and modulus sizes on AMD Phenom and Intel Core 2 CPUs. In eah ase,the timing run used B1 = 10 and d = 210, and the time for a run with B1 = 10 and without anystage 2 was subtrated.4.7.5 Overall Performane of P�1, P+1 and ECMTables 4.9 and 4.10 shows the expeted time to �nd primes lose to 225, 226, . . . , 232 for moduli of
1 word and of 2 words, and the B1 and B2 parameters hosen to minimize the expeted time. Theempirially determined probability estimate is based on the ellipti urve with rational 12 torsionand parameter k = 2 in Setion 4.6.2. That the B1 and B2 parameters are not monotonouslyinreasing with fator size is due to the fat that the expeted time to �nd a prime fator as afuntion of B1 and B2 is very �at around the minimum, so that even small perturbations of thetimings notieably a�et the parameters hosen as optimal.4.8 Comparison to Hardware Implementations of ECMSeveral hardware implementations of ECM for use as a ofatorization devie in NFS have beendesribed reently, based on the proposed design �SHARK� by Franke et al. [41℄. SHARKis a hardware implementation of GNFS for fatoring 1024-bit integers whih uses ECM forofatorization after sieving. The idea of implementing GNFS in hardware is inspired by the

88 Chapter 4. Fatoring small integers with P�1, P+1 and ECMCore 2 Phenom
B2 1 word 2 words −2 bits 1 word 2 words −2 bits
1000 3.06 6.72 2.91 6.24
2000 4.09 9.86 3.64 8.08
3000 5.07 12.7 4.37 10.1
4000 6.00 15.5 5.01 11.8
5000 6.95 18.2 5.77 13.8
6000 7.80 20.8 6.40 15.4
7000 8.83 23.7 7.09 17.3
8000 9.69 26.3 7.73 19.0
9000 10.7 29.0 8.39 20.7
10000 11.5 31.4 9.01 22.5
20000 20.3 57.0 15.3 39.3
30000 28.9 81.8 21.3 55.0
40000 37.4 106 27.2 70.8
50000 45.7 130 33.1 86.2
60000 54.1 154 38.8 102Table 4.7: Time in miroseonds for P+1 stage 2 with di�erent B2 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUsobservation of Bernstein [7℄ that dediated hardware ould ahieve a signi�antly lower ost interms of Area-Time produt than a software implementation that uses sieving on a regular PC.He proposes, among other algorithms, to use ECM for the smoothness test.Pelzl et al. [78℄ present a salable implementation of ECM stage 1 and stage 2 for input num-bers of up to 200 bits, based on Xilinx Virtex2000E-6 FPGAs with an external miroontroller.Their design has one modular multipliation unit per ECM unit, and eah ECM unit performsboth stage 1 and stage 2. They propose using the bounds B1 = 910 and B2 = 57000 for �ndingprimes of up to about 40 bits. They use urves in Montgomery form (4.3) and a binary Luashain for stage 1 that uses 13740 modular multipliations (inluding squarings), and estimatethat an optimized Luas hain ould do it in ≈ 12000 modular multipliations. They use anenhaned standard stage 2 that uses 3 modular multipliations per (i, j)-pair, see 4.7.2. With avalue d = 210, they estimate 303 point additions and 14 point doublings in the initialisation ofstage 2, and 13038 modular multipliations for olleting the produt (4.10) with 4346 di�erent

(i, j)-pairs for a total of 14926 modular multipliations in stage 2. However, to minimize the ATprodut, they propose using d = 30 with a total of 24926 modular multipliations in stage 2.In our implementation, stage 1 with B1 = 910 and PRAC-generated hains (using ost 6for point addition, 5 for doubling, 0.5 for eah byte ode and 0.5 for eah byte ode hange asparameters for rating andidate hains) uses 11403 modular multipliations, 83% of the �gurefor the binary Luas hain. (Using hains for omposite values where the resulting hain isshorter than the onatenated hains for the fators is not urrently used and ould probablyredue this �gure by a few more perent.) Our stage 2 with B2 = 57000 and d = 210 uses 290point additions, 13 point doublings, 1078 modular multipliations for point anonialization and
4101 pairs whih ost 1 modular multipliation eah, for a total of 6945 modular multipliations.The ost of omputing and anonializing the points idP1 has a relatively large share in this�gure, suggesting that a value for d suh that B2/(dφ(d)) is loser to 1 might redue the totalmultipliation ount. In a hardware implementation, the extra memory requirements may makelarger d values ine�ient in terms of the AT produt, but this is not an issue in a software

4.8. Comparison to Hardware Implementations of ECM 89Core 2 Phenom
B2 1 word 2 words −2 bits 1 word 2 words −2 bits
1000 5.86 17.2 7.10 17.5
2000 7.46 21.5 7.87 19.7
3000 8.83 25.4 8.79 22.0
4000 10.1 29.7 9.55 24.1
5000 11.5 33.7 10.5 26.5
6000 12.7 37.6 11.2 28.2
7000 14.0 41.4 12.1 30.8
8000 15.4 45.8 12.9 32.7
9000 16.7 49.6 13.7 34.6
10000 17.9 53.4 14.5 36.9
20000 30.5 91.3 22.3 56.6
30000 42.8 128 29.7 75.0
40000 54.9 164 37.2 94.3
50000 66.7 200 44.5 113
60000 78.3 235 51.8 131Table 4.8: Time in miroseonds for ECM stage 2 with di�erent B2 values on 2.146 GHz IntelCore 2 and 2 GHz AMD Phenom CPUs

n B1 B2 Prob. 1 word 2 words −2 bits
25 300 5000 0.249 46 103
26 310 6000 0.220 55 125
27 320 6000 0.186 67 151
28 400 6000 0.167 81 182
29 430 7000 0.149 100 224
30 530 11000 0.158 119 275
31 530 10000 0.128 144 330
32 540 10000 0.105 177 410Table 4.9: Expeted time in miroseonds and probability to �nd prime fators lose to 2nof omposites with 1 or 2 words with P�1 on 2 GHz AMD Phenom CPUs. The B1 and B2parameters are hosen empirially to minimize the time/probability ratio.implementation on a normal PC. In our implementation, d = 630 provides the minimum totalnumber of 5937 modular multipliations in stage 2, only 40% of the number reported by Pelzl etal. for d = 210, and only 24% of their number for d = 30.These �gures suggest that a software implementation of ECM on a normal PC enjoys anadvantage over an implementation in embedded hardware by having su�ient memory availablethat hoie of algorithms and of parameters are not onstrained by memory, whih signi�antlyredues the number of modular multipliations in stage 2. This problem might be redued byseparating the implementation of stage 1 and stage 2 in hardware, so that eah stage 1 unitsneeds only very little memory and forwards its output to a stage 2 unit whih has enough memoryto ompute stage 2 with a small multipliation ount, while the stage 1 unit proesses the nextinput number.Gaj et al. [44℄ improve on the design by Pelzl et al. mainly by use of a more e�ient im-plementation of modular multipliation, by avoiding limitations due to the on-hip blok RAM

90 Chapter 4. Fatoring small integers with P�1, P+1 and ECM
n B1 B2 Prob. 1 word 2 words −2 bits
25 130 7000 0.359 67 176
26 130 7000 0.297 81 213
27 150 11000 0.290 101 264
28 160 13000 0.256 124 324
29 180 12000 0.220 151 395
30 200 12000 0.188 190 496
31 260 14000 0.182 231 604
32 250 15000 0.147 283 744Table 4.10: Expeted time in miroseonds and probability per urve to �nd prime fators loseto 2n of omposites with 1 or 2 words with ECM on 2 GHz AMD Phenom CPUs. The B1 and

B2 parameters are hosen empirially to minimize the expeted time.whih allows them to �t more ECM units per FPGA, and removing the need for an externalmiroontroller. The algorithm of ECM stage 1 and stage 2 is essentially the same as that ofPelzl et al. They report an optimal performane/ost ratio of 311 ECM runs per seond per $100for an input number of up to 198 bits with B1 = 910, B2 = 57000, d = 210, using an inexpensiveSpartan 3E XC3S1600E-5 FPGA for their implementation. They also ompare their implemen-tation to an ECM implementation in software, GMP-ECM [39℄, running on a Pentium 4, andonlude that their design on a low-ost Spartan 3 FPGA o�ers about 10 times better perfor-mane/ost ratio than GMP-ECM on a Pentium 4. However, GMP-ECM is a poor andidatefor assessing the performane of ECM in software for very small numbers with low B1 and B2values. GMP-ECM is optimized for searhing large prime fators (as large as reasonably possiblewith ECM) of numbers of at least a hundred digits size by use of asymptotially fast algorithmsin partiular in stage 2, see [103℄. For very small input, the funtion all and loop overhead inmodular arithmeti and the ost of generating Luas hains on-the-�y in stage 1 dominates theexeution time; likewise in stage 2, the initialisation of the polynomial multi-point evaluationand again funtion all and loop overhead will dominate, while the B2 value is far too small tolet the asymptotially fast stage 2 (with time in Õ(
√

B2)) make up for the overhead.De Meulenaer et al. [34℄ further improve the performane/ost-ratio by using a high-per-formane Xilinx Virtex4SX FPGA with embedded multipliers instead of implementing the mod-ular multipliation with general-purpose logi. They implement only stage 1 of ECM and onlyfor input of up to 135 bits. One ECM unit utilizes all multipliers of the seleted FPGA, so oneECM unit �ts per devie. By saling the throughput of the design of Gaj et al. to 135-bit input,they onlude that their design o�ers a 15.6 times better performane/ost ratio. In partiular,assuming a ost of $116 per devie, they state a throughput of 13793 ECM stage 1 with B1 = 910per seond per $100.We ompare the ost of �nding 40-bit fators using our software implementation of ECMwith that given by de Meulenaer et al. Our implementation is urrently limited to moduli ofsize 2 words with the two most signi�ant bits zero, or 126 bits on a 64-bit system, whereas theimplementation of de Meulenaer et al. allows 135-bit moduli. Extending our implementation tonumbers of 3 words is in progress, but not funtional at this time. We expet that ECM with
3-word moduli will take about twie as long as for 2-word moduli. For the omparison we usetimings for 126-bit moduli (2 words) and estimates for 135-bit moduli (3 words).The timings for our ode are obtained using an AMD Phenom X4 9350e with four ores at
2.0 GHz. The AMD 64-bit CPUs all an perform a full 64× 64-bit produt every 2 lok yles,

4.8. Comparison to Hardware Implementations of ECM 91Devie XC4VSX25-10 Phenom 9350e Phenom II X4 955Clok rate 0.22 GHz 2.0 GHz 3.2 GHzCores per devie 1 4 4

126-bit modulus (2 words in software)Time per stage 1 62.5µs 232.1µs ≈ 145µsTime per stage 2 59.2µs 121.5µs ≈ 76µsTime per trial 121.7µs 353.6µs ≈ 221µs#Trials/se/devie 8217 11312 18100Cost per devie $300 $215#Trials/se/$100 2739 8418

135-bit modulus (3 words in software)Time per stage 1 62.5µs ≈ 464µs ≈ 290µsTime per stage 2 59.2µs ≈ 243µs ≈ 152µsTime per trial 121.7 ≈ 707µs ≈ 442µs#Trials/se/devie 8217 ≈ 5658 ≈ 9052Cost per devie $300 $215#Trials/se/$100 2739 4210Table 4.11: Comparison of ECM with B1 = 910, B2 = 57000 for 126-bit and 135-bit input on aVirtex4SX25-10 FPGA and on AMD 64-bit miroproessors.making them an exellent platform for multi-preision modular arithmeti. The fastest AMDCPU urrently available is a four-ore 3.2 GHz Phenom II X4 955 at a ost of around $215(regular retail prie, aording to www.newegg.om on July 28th 2009) and we sale the timingslinearly to that lok rate. Sine the ode uses almost no resoures outside the CPU ore, linearsaling is reasonable. The number of lok yles used is assumed idential between the Phenomand Phenom II. Similarly, running the ode on n ores of a CPU is assumed to inrease totalthroughput n-fold.Table 4.11 ompares the performane of the implementation in hardware of de Meulenaeret al. and of our software implementation, using the parameters B1 = 910, B2 = 57000. Thesoftware implementation uses d = 630 for stage 2. De Meulenaer et al. do not implement stage 2,but predit its performane as apable of 16, 900 stage 2 per seond per devie. We use thisestimate in the omparison. They also give the ost of one Xilinx XC4VSX25-10 FPGA as $116when buying 2500 devies. The urrent quote at www.nuhorizons.om and www.avnet.om forthis devie is about $300, however. We base the prie omparison on the latter �gure. Only theost of the FPGA or the CPU, respetively, are onsidered. The results show that a softwareimplementation of ECM an ompete in terms of ost per ECM trial with the published designsfor ECM in hardware. An advantage of the software implementation is �exibility: it an runon virtually any 64-bit PC, and so utilize otherwise idle omputing resoures. If new systemsare purhased, they involve only standard parts that an be readily used for a wide range ofomputational tasks. Given a omparable performane/ost ratio, an implementation in softwarerunning on standard hardware is the more pratial.Our urrent implementation is su�ient for one set of parameters proposed by the SHARK[41℄ design for fatoring 1024-bit integers by GNFS whih involves the fatorization of approx-imately 1.7 · 1014 integers of up to 125 bits produed by the sieving step. The time for bothstage 1 and stage 2 with B1 = 910, B2 = 57000 is 353.6µs on a 2 GHz Phenom, and about 221µs

92 Chapter 4. Fatoring small integers with P�1, P+1 and ECMon a 3.2 GHz Phenom II. Using the latter, 1.7 · 1014 ECM trials an be performed in approxi-mately 300 CPU-years. But how many urves need to be run per input number? Pelzl et al. [78℄state that 20 urves at B1 = 910, B2 = 57000 �nd a 40-bit fator with > 80% probability, anddoing 20 trials per input number gives a total time of about 6000 CPU years. However, the vastmajority of input numbers will not be 240-smooth, and fewer than 20 urves su�e to establishnon-smoothness with high probability, making this estimate somewhat pessimisti. Assuming aost of about $350 for a bare-bone but funtional system with one AMD Phenom II X4 955 CPU,this translates to a pessimisti estimate of about $2.1M for hardware apable of performing therequired ECM fatorizations within a year.Bernstein et al. [10℄ reently demonstrated a highly e�ient implementation of ECM ongraphis ards that support general-purpose programming. An NVidia GTX 295 ard is reportedas performing stage 1 of 4928 ECM urves with B1 = 8192 and a 210-bit modulus per seond,and is estimated to perform 5895 urves with the same parameters with a 196-bit modulus.Assuming a purhase prie of $500 per ard, this translates to 11.8 urves per Dollar and seond.Our implementation of ECM takes 2087µs on a Phenom 9350e per urve (only stage 1) withthe same parameters and a 126-bit modulus; with 192-bit modulus on a Phenom II X4 955 weestimate the time as approximately 2609µs, or 1533 urves per seond per devie, whih resultsin approximately 7.1 urves per Dollar and seond. ECM on graphis ards is therefore a seriousontender for performing ofatorization in the NFS. The graphis ard implementation doesnot inlude a stage 2, however, and implementing one may be di�ult due to severely restritedlow-lateny memory in graphis proessing units.

Chapter 5Parameter seletion for P�1, P+1, andECM
5.1 IntrodutionIn Chapter 4 we desribed an e�ient implementation of the P-1, P+1, and ECM fatoringalgorithms tailored for rapidly proessing many small input numbers. However, nothing was saidabout how to hoose the various parameters to these algorithms, in partiular the B1 and B2values and, for ECM, the parameters of the urve, so that the algorithms an be used e�ientlywithin the Number Field Sieve.The sieving phase of the Number Field Sieve looks for (a, b)-pairs with a ⊥ b suh thatthe values of two homogeneous polynomials Fi(a, b), i ∈ 1, 2, are both smooth as desribed inSetion 4.1. The sieving step identi�es whih of the primes up to the fator base limit Bi divideeah Fi(a, b) and produes the ofators ci of Fi(a, b) after the respetive fator base primeshave been divided out. The task of the ofatorization step in the sieving phase is to identifythose ofators that are smooth aording to some smoothness riterion; typially a ofator ci isonsidered smooth if it does not exeed the ofator bound Ci and has no prime fator exeedingthe large prime bound Li. The typial order of magnitude for Bi is around 107 . . . 108, and the
Li are typially between 100Bi and 1000Bi.To determine whether the ofator pair (c1, c2) satis�es this smoothness riterion, we try tofator it. For this we attempt a sequene of fatoring methods, where by �method� we mean afatoring algorithm with a partiular set of parameters, suh as: ECM with the ellipti urvegenerated by the Brent-Suyama parametrization with parameter σ = 6, with B1 = 200 and
B2 = 5000.In order to hoose good parameters, we need to be able to ompute the probability that apartiular parameter hoie �nds a fator of the input number. That is, we need to omputethe probability that a method �nds a fator of a partiular size and the expeted number offators in the input number of that size so that by summing over possible fator sizes we get theexpeted value for the number of fators the method will �nd.We start by examining whih parameters of the fatoring methods a�et the probability of�nding a fator in Setion 5.2, then show how this probability an be omputed in Setion 5.3.Finally we give an aurate estimate of the expeted number of prime fators in a ofatorprodued by NFS in Setion 5.4. 93

94 Chapter 5. Parameter seletion for P�1, P+1, and ECM5.2 ParametrizationIn this setion we take a loser look at the parameters available for the P�1, P+1, and ECMalgorithms, how they a�et run-time and the divisibility properties of the assoiated group orders.Eah method �nds a prime fator p of N if the starting element x0 in a (here additively written)group Gp de�ned over Fp has smooth order; more preisely, if a multiple ex0 of the startingelement is the identity element of the group, or if qex0 for a not-too-large prime q is the identity.The group operation of Gp requires arithmeti modulo p, a yet unknown prime fator of N ,but we an instead do all arithmeti in Z/NZ whih ontains Fp. From the identity element ofthe group, a residue r (mod N) is onstruted with r ≡ 0 (mod p) so that p | gcd(r,N), buthopefully r 6≡ 0 (mod N), sine then the gcd reveals a proper fator of N .Stage 1 of these algorithms omputes ex0 in their respetive group, where e is typially hosenas e = lcm(1, 2, 3, 4, . . . , B1) for an integer parameter B1, the �stage 1 bound,� so that e inludesas divisors all primes and prime powers up to B1. This way, ex0 is the identity if the order of x0is B1-powersmooth, i.e., has no prime or prime power greater than B1 as a divisor.If stage 1 is unsuessful, stage 2 takes ex0 as input and e�iently tests if any qex0 for manyandidate primes q is the identity element; the set of primes to test is typially hosen as allprimes greater than B1, but not exeeding an integer parameter B2, the �stage 2 bound.�The property that determines suess or failure of these methods is the smoothness of theorder of the starting element x0 in Gp, and unlike P�1, the P+1 and Ellipti Curve methodshave parameters that a�et the order of the group Gp, and hene the order of x0. By arefulhoie of parameters, the probability that the order of Gp (and hene of x0) is smooth an beinreased signi�antly. We therefore examine how the hoie of parameters a�ets divisibilityproperties of the group order |Gp| for a random prime p. By the probability of a random prime
p having a property, we mean the ratio of primes p < n that have that property in the limit of
n→∞, assuming this limit exists.The e�et of these modi�ed divisibility properties on the probability of the order of x0 beingsmooth is examined in Setion 5.3.5.2.1 Parametrization for P�1The P�1 method, desribed in Setion 2.2 and Setion 4.4, always works in the multipliativegroup F∗

p of order p − 1, independently of the hoie of the starting element x0. Thereforewe hoose x0 primarily to simplify the arithmeti in stage 1 of P�1, whih is basially just amodular exponentiation. With x0 = 2, the modular exponentiation an be arried out with onlysquarings and doublings in a binary left-to-right exponentiation ladder. A minor e�et of thehoie x0 = 2 is that 2 is a quadrati residue if p ≡ ±1 (mod 8), so in this ase we know that
ordp(x0) | (p− 1)/2, and (assuming 4 | e) that p− 1 | 2e is su�ient for �nding any prime p.The probability that Valq(p− 1) = k for a random prime p with q prime is 1− 1/(q − 1) for
k = 0 and 1/qk for k > 0; the expeted value for Valq(p− 1) is q/(q − 1)2.5.2.2 Parametrization for P+1The P+1 method, desribed in Setion 2.3 and Setion 4.5, works in a subgroup of the group ofunits of Fp[X]/(X2 − x0X + 1) with x0 6≡ 0 (mod p); the order of the group is p −

(

∆
p

) where
∆ = x2

0 − 4, hene it an be either p − 1 or p + 1, depending on p and the hoie of x0. Thisallows hoosing x0 so that the group order is more likely to be smooth.

5.2. Parametrization 95For example, with ∆ = −1 · k2 for some rational k, the group order is always divisible by 4,inreasing the average exponent of 2 in the group order from 2 to 3. Other prime fators in thegroup order appear with average exponent as in the P�1 method. A suitable value is x0 = 6/5,giving ∆ = −64/25 = −1 · (8/5)2.With ∆ = −3 · k2, the group order is always divisible by 6, whih inreases the averageexponent of 3 in the group order from 3/4 to 3/2, with other primes fators of the group orderbehaving as in P�1. A suitable value is x0 = 2/7, giving ∆ = −192/49 = −3 ·(8/7)2. This hoieis suggested in [65, �6℄.5.2.3 Parametrization for ECMThe Ellipti Curve Method, desribed in Setion 4.6, works in the group of points of an elliptiurve de�ned over Fp. The order of the group is an integer in the Hasse interval
[

p + 1− 2
√

p, p + 1 + 2
√

p
] and depends on both p and the urve parameters.Careful seletion of the urve parameters allows foring the group order to be divisible by

12 or by 16 and inreasing the average exponent of small primes even beyond what this knownfator of the group order guarantees, whih greatly inreases the probability of the group orderbeing smooth, espeially if the prime to be found and hene the order is small.The ECM algorithm needs a non-singular urve over Fp and a starting point P0 known tobe on the urve. Sine the prime fator p of N we wish to �nd is not known in advane, onehooses a non-singular urve over Q with a rational non-torsion point on it, and maps both to
Z/NZ, hoping that the urve remains non-singular over Fp, whih it does for all primes p thatdon't divide the urve's disriminant.The torsion points on an ellipti urve over Q remain distint when mapping to Fp for almostall p, and the map to Fp retains the group struture of the torsion group, so that a urve withrational n-torsion over Q guarantees a subgroup of order n of the urve over Fp, hene a grouporder divisible by n. By a theorem of Mazur [25, 7.1.11℄, the torsion group of an ellipti urveover Q is either yli with 1 ≤ n ≤ 10 or n = 12, or is isomorphi to Z/2Z × Z/(2m)Z with
1 ≤ m ≤ 4, giving n ∈ {4, 8, 12, 16}. Thus the two largest possible orders of the torsion groupare 12 and 16.For an e�etive ECM implementation we therefore seek a parametrization of ellipti urvesthat produes a large, preferably in�nite, family of non-singular urves with a known point over
Q, that have a large torsion group over Q, and whose urve parameters and oordinates of thestarting point an be omputed e�etively in Z/NZ where N is omposite with unknown primefators, whih in partiular rules out taking any square roots.The �rst hoie to make is the form of the urve equation. Any ellipti urve over a �eldwith harateristi neither 2 nor 3 an be written in the short Weierstraÿ form

y2 = x3 + ax + b,however the addition law for points on this urve over Z/NZ involves a ostly modular inverse.Montgomery [65℄ suggests projetive urves of the form
BY 2Z = X(X2 + AXZ + Z2) (5.1)whih allow for an addition law without modular inverses, but require that to add two points,their di�erene is known, leading to more ompliated addition hains for multiplying a point byan integer, desribed in 4.5.1 and 4.6.3.

96 Chapter 5. Parameter seletion for P�1, P+1, and ECM2 3 5 7 11 13 17 19
12Z 3 1.5 0.25 0.167 0.1 0.0833 0.0625 0.0556

σ = 2 3.323 1.687 0.301 0.191 0.109 0.0898 0.0662 0.0585
σ = 11 3.666 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0584torsion 12 3.667 1.687 0.302 0.191 0.109 0.0898 0.0662 0.0585
16Z 5 0.5 0.25 0.167 0.1 0.0833 0.0625 0.0556torsion 16 5.333 0.680 0.302 0.191 0.109 0.0898 0.0661 0.0584Table 5.1: Average exponent of primes up to 19 in integers that are a multiple of 12 or 16, andexperimentally determined average exponent in the order of ellipti urves with Brent-Suyamaparametrization and parameter σ = 2 and 11, and in urves with Montgomery's parametrizationfor rational torsion 12 and 16.Edwards [37℄ suggests a new form of ellipti urve whih Bernstein et al. [9℄ use for an e�ientimplementation of ECM. Edwards' urve form was not used for the present work, but in thelight of the results of Bernstein et al. should be onsidered in future implementations of ECM.The Brent-Suyama ParametrizationThe Brent-Suyama parametrization of ellipti urves in Montgomery form, desribed in Se-tion 4.6.2, is the most popular in existing implementations of ECM and is used, for example,in GMP-ECM and in Prime95. It produes urves with 6 rational torsion points, plus omplexpoints of order 12 of whih at least one maps to Fp for almost all p, leading to a group order ofthe urve over Fp that is divisible by 12. However, the order does not behave like an integer thatis a multiple of 12 hosen uniformly at random from the Hasse interval; the average exponent ofsmall primes is greater than ensuring divisibility by 12 suggests. Table 5.1 ompares the averageexponent of small primes in integers that are divisible by 12 and in the group orders of elliptiurves over Fp, 103 < p < 109, using the Brent-Suyama parametrization with σ = 2 (all otherinteger σ-values examined, exept for σ = 11, produed same average exponents up to statistialnoise) as well as the hoie σ = 11, whih surprisingly leads to a higher average exponent of 2 inthe order.The unexpeted inrease of the average exponent of 2 for σ = 11 has been examined by Bar-bulesu [19℄ who found two sub-families of urves produed by the Brent-Suyama parametrizationthat show this behavior. For eah sub-family the σ-values live on an ellipti urve of rank 1 over

Q, thus produing an in�nite family of urves for ECM.The Montgomery ParametrizationsMontgomery [67, Chapter 6℄ gives two parametrizations for urves of form (4.3), one for urveswith rational 12-torsion and one with rational 16-torsion, see Setion 4.6.2.Table 5.1 shows the average exponent of small primes in urves with 12 (k = 2) or 16(A = 54721/14400) rational torsion points; urves with other parameters in the respetive familyprodue similar �gures.5.2.4 Choie of Stage 1 MultiplierThe usual hoie of the stage 1 multiplier is E = lcm(1, 2, . . . , B1), i.e., the produt of all primesand prime powers up to B1. This is based on the rationale that we want to inlude eah prime

5.3. Estimating Suess Probability of P�1, P+1, and ECM 97and prime power that has a probability of dividing the group order of at least 1/B1. However,this hoie does not take into aount the di�erent ost of inluding di�erent primes q in themultiplier, whih grows like log(q).Consider the probability Pr[qk || n] where n is the value that we hope will divide E (say,the order of the starting element in the P�1, P+1 or ECM algorithm). In order to have n | E,every prime q must divide E in at least the same exponent as in n. Examining eah prime qindependently, we an hoose to inrease the exponent k of q so long as the probability that thisinrease auses q to our in high enough power, divided by the ost of inreasing k by 1, is betterthan some onstant c, i.e., hoose k maximal suh that Pr[qk || n]/ log(q) ≥ c. This modi�edhoie favours the inlusion of smaller primes, in higher powers than in lcm(1, 2, . . . , B1).For a omparison, we assume that n behaves like a �random� integer, meaning that Pr[qk ||
n] = (1−1/q)/qk. With E = lcm(1, . . . , 227), there are 871534 integers in [900000000, 1100000000]with n | E, whereas using the improved hoie with c = 1/1200 gives E′/E = 27132/50621 =
22 · 3 · 7 · 17 · 19/(223 · 227) and �nds 913670 in the same interval, a 4.8% inrease, even though
E′ is slightly smaller than E. The advantage quikly diminishes with larger B1, however.With E = lcm(1, . . . , 990), 7554965 integers are found, whereas the hoie c = 1/6670 leadsto E′/E = 182222040/932539661 = 23 · 3 · 5 · 7 · 11 · 13 · 37 · 41/(971 · 977 · 983) and �nds 7623943integers, approximately a 1% inrease. Here, the ratio E′/E ≈ 1/5 is higher than before, but thisis not the reason for the smaller gain. Even with 6E′, the number of integers found is 7635492,still only an about 1% di�erene.The group order |Gp| in P�1, P+1, and ECM does not behave like a random integer, but forsmall primes q the probability that qk divides exatly the group order |Gp| (or better, the orderof the starting element x0 in Gp) for a random prime p is easy enough to determine empirially,whih allows hoosing the multiplier E so that the partiular divisibility properties of the grouporder are taken into aount.
5.3 Estimating Suess Probability of P�1, P+1, and ECM5.3.1 Smooth Numbers and the Dikman FuntionTo estimate the probability of �nding a prime fator with the P�1, P+1, or ECM algorithms,we need to estimate the probability that the order of the starting element is smooth. Eventhough the order of the starting element does not behave quite like a random integer, we start byreapitulating well-known methods of estimating smoothness probabilities for random integers,and show how to modify the estimate to take into aount the known divisibility properties ofthe order of the starting element.I have investigated the question of how to ompute smoothness probabilities using Dikman's
ρ-funtion, and how to modify the omputation to give the probability of smoothness of an integerlose to N in the ontext of my Diploma thesis [58℄. The relevant parts of the text are inludedhere for ompleteness.Let S(x, y) be the set of y-smooth natural numbers not exeeding x, Ψ(x, y) the ardinalityof the set S(x, y), P (1/u, x) the number of x1/u-smooth integers not exeeding x for real u > 0,and ρ(u) the limit of P (1/u, x)/x for x→∞ (Dikman's funtion, [35℄).

98 Chapter 5. Parameter seletion for P�1, P+1, and ECM
S(x, y) = {n ∈ N, n ≤ x : p ∈ P, p | x⇒ p ≤ y}
Ψ(x, y) = |S(x, y)|

P (1/u, x) = Ψ(x, x1/u)

ρ(u) = lim
x→∞

P (1/u, x)

x
.That the limit for ρ(u) exists is proved, for example, by Knuth and Trapp-Pardo [57℄ wherethey show that Ψ(x, y) and ρ(u) satisfy

Ψ(x, x1/u) = ρ(u)x + O

(

x

log(x)

)

. (5.2)They also give an improvement that lowers the error term,
Ψ(x, x1/u) = ρ(u)x + σ(u)

x

log(x)
+ O

(

x

log(x)2

) (5.3)with σ(u) = (1− γ)ρ(u − 1).Evaluating ρ(u)The Dikman ρ(u) funtion an be evaluated by using the de�nition
ρ(u) =

0 u ≤ 0

1 0 < u ≤ 1

1−
∫ u
1

ρ(t−1)
t dt u > 1.

(5.4)In priniple ρ(u) an be omputed from (5.4) for all u via numerial integration, however whenintegrating over this delay di�erential equation, rounding errors aumulate quikly, making itdi�ult to obtain aurate results for larger u.This problem an be alleviated somewhat by using a losed form of ρ(u) for small u. Forexample, for 1 < u ≤ 2 we have
ρ(u) = 1−

∫ u

1

ρ(t− 1)

t
dt

= 1−
∫ u

1

1

t
dt

= 1− log(u)and for 2 < u ≤ 3

ρ(u) = 1−
∫ u

1

ρ(t− 1)

t
dt

= 1− log(2)−
∫ u

2

1− log(t− 1)

t
dt

= 1− log(2)−
(

log(t) + log(t)
(

log(1− t)− log(t− 1)
)

+ Li2(t)
)∣

∣

∣

u

2

5.3. Estimating Suess Probability of P�1, P+1, and ECM 99
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

ρ(u)

Figure 5.1: The Dikman funtion ρ(u) for 1 ≤ u ≤ 5.where Li2(x) is the dilogarithm of x, whih is de�ned by the sum
Li2(x) =

∞
∑

k=1

xk

k2
.Note that some authors and software de�ne the dilogarithm of x as what orresponds to Li2(1−x)in our notation. To avoid negative arguments to logarithms, we use the funtional identity

Li2(x) =
1

6
π2 − log(x) log(1− x)− Li2(1− x)and Li2(−1) = −π2/12 whih produes for 2 < u ≤ 3

ρ(u) = 1 +
π2

12
− log(u)

(

1− log(u− 1)
)

+ Li2(1− u).In this way, values of ρ(u) for 0 ≤ u ≤ 3 an easily be omputed with high auray. Valuesup to approximately u = 7 an be omputed via numerial integration; for larger values theaumulated rounding errors start having signi�ant e�et on the omputed ρ(u)-values. For ourappliation, only relatively small u-values are onsidered, so the numerial integration approahis su�ient. A graph of ρ(u) for 1 ≤ u ≤ 5 is shown in 5.1.If ρ(u) is needed with high auray for possibly large u-values, Marsaglia and Zama [63℄ showhow to ompute ρ(u) (and other funtions de�ned by delay-di�erential equations) aurately toup to hundreds of digits by expressing ρ(u) pieewise as power series.Smooth Numbers Close to xDikman's funtion estimates the ratio of x1/u-smooth numbers between 1 and x. However, wewould like to ompute the probability that a number of a ertain magnitude lose to some x issmooth instead. Fortunately it is easy to onvert to this model.The ratio of y-smooth integers between x and x + dx is
Ψ(x + dx, y)−Ψ(x, y)

dx
.

100 Chapter 5. Parameter seletion for P�1, P+1, and ECMUsing the approximation (5.2) with u = log(x)/ log(y) and ignoring the O(x/ log(x)) term, weget
ρ
(

log(x+dx)
log(y)

)

(x + dx)− ρ(u)x

dx
=

ρ

(

u +
log(1 + d)

log(y)

)

+
ρ
(

u + log(1+d)
log(y)

)

− ρ(u)

dand with d→ 0, this beomes
ρ(u) +

1

log(y)
ρ′(u) =

ρ(u) +
u

log(x)
ρ′(u).Now substituting ρ′(u) = −ρ(u− 1)/u yields

ρ(u)− 1

log(x)
ρ(u− 1). (5.5)Considering the O(x/ log(x)) term again, we �nd

Ψ(x + dx, y)−Ψ(x, y)

dx
= ρ(u) + O

(

1

log(x)

)for x → ∞, no better than using Dikman's funtion immediately. Starting instead with thebetter approximation (5.3) leads to
ρ(u)− γ

ρ(u− 1)

log(x)
− (1− γ)

ρ(u− 2)

u log(x)2and
Ψ(x + dx, y)−Ψ(x, y)

dx
= ρ(u)− γ

ρ(u− 1)

log(x)
+ O

(

1

log(x)2

)for x→∞. Thus we de�ne
ρ̂(u, x) = ρ(u)− γ

ρ(u− 1)

log(x)
(5.6)and have

Ψ(x + dx, y)−Ψ(x, y)

dx
= xρ̂(u, x) + O

(

1

log(x)2

)

. (5.7)This approximation shows that using (5.3), whih inludes the σ(u) orretion term butestimates the ratio of smooth values between 1 and x, atually produes a worse result for theratio of smooth numbers lose to x than the plain Dikman ρ(u) alone, whereas (5.5), whihestimates the ratio to smooth values lose to x but without the σ(u) term, does not result in anyimprovement of the estimate over the ρ(u)-funtion, leaving the magnitude of the error almostthe same but hanging the sign.Table 5.2 ompares the estimates produed by the Dikman funtion ρ(3) and by ρ̂(3, x) withexperimental ounts. The relative error of the plain ρ(3) funtion is between 12 and 16 perentin the investigated range, while the relative error for ρ̂(3, x) for larger x is more than an orderof magnitude smaller and about 0.5 perent for x ≥ 1014. For larger values of u, the relativeerror for ρ̂(u, x) is signi�antly higher, due to the ρ(u − 2) fator in the O() term. The ratio
ρ(u− 2)/ρ(u) inreases quikly with u, approximately like u2 [57, 6.3℄. For example, the relativeerror for ρ̂(5, 1015) is about 12 perent.

5.3. Estimating Suess Probability of P�1, P+1, and ECM 101
x Count ρ(3) · 108 ρ̂(3, x) · 108Est. Rel. err. in % Est. Rel. err. in %

109 4192377 4860839 15.94 4006146 −4.44
1010 4239866 4860839 14.64 4091615 −3.50
1011 4238110 4860839 14.69 4161545 −1.81
1012 4280377 4860839 13.56 4219819 −1.41
1013 4304040 4860839 12.94 4269128 −0.81
1014 4336571 4860839 12.09 4311393 −0.58Table 5.2: A omparison of experimental ounts Ψ(x1/3, x + 5 · 107) − Ψ(x1/3, x − 5 · 107) andestimated number of x1/3-smooth numbers in]x− 5 · 107, x + 5 · 107].5.3.2 E�et of Divisibility Properties on Smoothness ProbabilityThe P�1, P+1, and ECM algorithms all �nd a prime fator p if a group de�ned over Fp hassmooth order, and we have seen that the group order does not behave like a random integer withrespet to divisibility by small primes. We would like to quantify the e�et of these divisibilityprobabilities of small primes on the probability that the order is smooth so that the e�etivenessof di�erent parameter hoies an be ompared aurately.The e�et of the higher frequeny of small fators on smoothness probability an be estimatedwith a tehnique developed by Shröppel and Knuth for the analysis of the Continued Frationmethod of fatorisation [56, 4.5.4℄. The idea is to ompare the average exponent f(q, S) ofsmall primes q in values hosen uniformly at random from the set S of numbers being tested forsmoothness with the average exponent found when hoosing values from the integers, f(q, N) =

1/(q − 1).When hoosing an s ∈ S and dividing out the primes q < k, we an expet the remainingofator r to have logarithmi size
log(r) = log(s)−

∑

q∈P,q<k

f(q, S) log(q). (5.8)Comparing the size of this ofator with that for the ase S = N, we �nd that the expeted valuefor log(r) is smaller by
δ =

∑

q∈P,q<k

(

f(q, S)− 1

q − 1

)

log(q). (5.9)Knuth and Trapp-Pardo then argue that, sine the log size of the ofator is smaller by δ, thenumber s is as likely smooth as a random integer smaller by a fator eδ in value.For the P�1 algorithm,
δP�1 =

∑

q∈P,q<k

(

q

(q − 1)2
− 1

q − 1

)

log(q)

=
∑

q∈P,q<k

1

(q − 1)2
log(q),whih is approximately 1.22697 for k →∞.For the P+1 algorithm with x0 = 6/5, the group order is always divisible by 4. The averageexponent of primes in the group order is as in P�1, exept for the exponent of 2 whih is

3 on average instead of 2, giving δP+1,4 = δP�1 + log(2) ≈ 1.92012. With x0 = 2/7, the

102 Chapter 5. Parameter seletion for P�1, P+1, and ECMgroup order is divisible by 6, inreasing the average exponent of 3 from 3/4 to 3/2, so that
δP+1,6 = δP�1 + 3/4 log(3) ≈ 2.05093.For ECM it is more di�ult to give a theoretial estimate for the average exponent of smallprimes in the group order, although Montgomery [67, 6.3℄ proposes onjetures for the exponentof 2 and 3 in the group order in urves with rational torsion 12 or 16. The approximate δ value forECM has been determined experimentally by omputing the average exponent as in Table 5.1,but extended to primes up to 100:ECM σ = 2 ECM σ = 11 ECM torsion 12 ECM torsion 16

δ 3.134 3.372 3.373 3.420
eδ 22.97 29.14 29.17 30.575.3.3 Suess Probability for the Two-Stage AlgorithmThe P�1, P+1, and ECM fatoring algorithms work in two stages, where stage 1 �nds a fator

p if the order |Gp| of the respetive group over p is B1-smooth, and stage 2 �nds p if the orderontains one prime fator q with B1 < q ≤ B2, and the ofator |Gp|/q is B1-smooth. Assumingthat a stage 2 prime q divides the order with probability 1/q, the probability of a fatoringmethod �nding a fator an therefore be omputed as
P (Ne�, B1, B2) = ρ̂

(

log(Ne�)

log(B1)

)

Ne� +
∑

B1<q≤B2
q∈P

ρ̂

(

log(Ne�/q)
log(B1)

)

Ne�/q, (5.10)where Ne� = Ne−δ is the approximate size of p, adjusted by the δ parameter for the respetivefatoring algorithm as desribed in Setion 5.3.2. For su�iently large B1 and B2, the sum anbe replaed by an integral as shown for example in [15℄, but in our ase where these parametersare quite small, the sum produes signi�antly more aurate results and is still aeptably fastto evaluate.5.3.4 Experimental ResultsWe ompare the ratio of prime fators being found by P�1, P+1, and the Ellipti CurveMethod with the estimate produed by Equation (5.10). For n = 25, 26 we test primes in
[

2n − 106, 2n + 106
] and for eah 27 ≤ n ≤ 32 we test primes in [2n − 107, 2n + 107

] with the P�1 method, P+1 with x0 = 6/5 and x0 = 2/7, and ECM with the Brent-Suyama parametrizationwith σ = 2 as well as the parametrization for urves with rational 12 and 16 torsion, and reordthe ratio of primes found by the respetive method. The Brent-Suyama parametrization with
σ = 11 behaves identially to that of urves with rational 12-torsion. The B1 and B2 parametersfor P�1 and P+1 are hosen as in Table 4.9 and all ECM parametrizations use the B1 and B2values from Table 4.10.The largest relative error of about 3% ours for P�1 with n = 25, but most errors are below
1%. It is somewhat surprising how aurate the results are, onsidering that estimating thedensity of y-smooth numbers around x by ρ̂(log(x)/ log(y)) inludes a rather large error termfor small values of x. From a purely pragmati point of view, however, we may be ontent withusing (5.10) as an easily omputable and, for the range of parameters we are interested in, veryaurate estimate of the probability of suess for our fatoring algorithms.

5.4. Distribution of Divisors 103P�1 P+1 ECM
x0 = 6/5 x0 = 7/2 σ = 2 12 torsion 16 torsion

n Est. Emp. Est. Emp. Est. Emp. Est. Emp. Est. Emp. Est. Emp.
25 0.242 0.249 0.287 0.289 0.297 0.299 0.336 0.337 0.358 0.359 0.363 0.359
26 0.217 0.220 0.259 0.258 0.267 0.265 0.275 0.276 0.295 0.297 0.299 0.298
27 0.186 0.186 0.220 0.221 0.226 0.227 0.271 0.271 0.291 0.290 0.291 0.291
28 0.166 0.167 0.198 0.197 0.204 0.203 0.238 0.237 0.256 0.256 0.255 0.254
29 0.148 0.149 0.177 0.177 0.183 0.183 0.203 0.207 0.218 0.220 0.217 0.216
30 0.157 0.158 0.186 0.186 0.190 0.191 0.177 0.178 0.189 0.188 0.189 0.190
31 0.126 0.128 0.150 0.150 0.154 0.155 0.170 0.172 0.182 0.182 0.183 0.182
32 0.104 0.105 0.124 0.126 0.128 0.129 0.136 0.137 0.147 0.147 0.145 0.144Table 5.3: Comparison of estimated probability of �nding a prime fator lose to 2n with theP�1, P+1, and ECM algorithm with empirial results. The hoie of parameters is desribed inthe text.5.4 Distribution of DivisorsIn Setion 5.3 we estimate the probability that a fatoring method �nds a fator of a ertain sizeif it exists. To estimate the expeted number of fators the method �nds for an input number

N , we also need the expeted number of suh fators in N , taking into aount the availableinformation on the number: its size, that it is omposite, and that it has no prime fators up tothe fator base bound used for sieving. That is, we would like to ompute the expeted number ofprime fators p with p ∈ [z1, z2] of a omposite N , hosen uniformly at random from the integersin [N1, N2] that have no prime fators up to y. To do so, we need to estimate the number ofintegers up to a bound that have no small prime fators.Let
T (x, y) = {n ∈ N, 1 ≤ n ≤ x : p ∈ P, p | x⇒ p > y}, x ≥ y ≥ 2, (5.11)
Φ(x, y) = |T (x, y)| (5.12)be the set of positive integers up to x having no small prime fators up to y (whih alwaysinludes 1 in T (x, y)) and the number of suh integers, respetively.Muh like Dikman's funtion ρ(u), with u = log(x)/ log(y) throughout, an be used toestimate the number Ψ(x, y) of positive integers up to x that have no large prime fator above

y, the Buhstab funtion ω(u) an be used to estimate Φ(x, y). Tenenbaum [96, III.6.2℄ showsthat
Φ(x, y) = (xω(u)− y)/ log(y) + O

(

x/ log(y)2
) for x1/3 ≤ y ≤ x. (5.13)This estimate is reasonably aurate for large u and y, but not for small u > 2. Sine wefrequently need to treat omposites that have only two relatively large prime fators, we needan estimate that is more aurate for 2 < u < 3, whih is desribed in 5.4.2.5.4.1 Evaluating ω(u)The Buhstab ω(u) funtion is de�ned by

ω(u) =

{

1/u 1 ≤ u ≤ 2

(1 +
∫ u−1
1 ω(t) dt)/u u > 2.

(5.14)

104 Chapter 5. Parameter seletion for P�1, P+1, and ECM
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 1.5 2 2.5 3 3.5 4

ω(u)
exp(γ)

Figure 5.2: The Buhstab funtion ω(u) for 1 ≤ u ≤ 4, and the limiting value eγ ≈ 0.56146.Figure 5.2 shows the graph for 1 ≤ u ≤ 4.Like the Dikman funtion, the Buhstab funtion an be expressed in logarithms and thedilogarithm for small u values:
ω(u) =

1/u 1 ≤ u ≤ 2

(1 + log(u− 1))/u 2 < u ≤ 3
(

Li2(2 − u) + (1 + log(u− 2)) log(u− 1) + π2/12 + 1
)

/u 3 < u ≤ 4.

(5.15)However, unlike the Dikman funtion ρ(u) whih monotonously tends to 0 for u→ ∞, theBuhstab funtion ω(u) osillatingly tends to e−γ and has almost reahed this limit for u = 4already, with relative error only −2.2 · 10−6. This greatly simpli�es the evaluation for ω(u) forour appliation, as using ω(u) = e−γ for u > 4 is su�iently aurate for our purposes, and forsmaller u values the losed forms of (5.15) an be used.The methods of Marsaglia, Zaman, and Marsaglia [63℄ an be readily applied to the Buhstab
ω(u) funtion if highly aurate results for large u are required.5.4.2 Estimating Φ(x, y)Equation (5.13) is not su�iently aurate for some small values of u = log(x)/ log(y). Forexample, Φ(109, 15000) = 54298095, but (5.13) estimates 55212172. This estimate has a relativeerror of only 1.7%, but we need the number of omposites with no small prime fators, and aftersubtrating π(109) − π(15000) = 50845780, the number of primes between 15000 and 109 fromboth, the orret value is 3452315 while the estimate is 4366392 with 26% relative error.Fortunately a better estimate is given in [96, III, 6.4℄:

Φ(x, y) ≈ x
eγ log(y)

ζ(1, y)

∫ u−1

0
ω(u− v)y−vdv. (5.16)Using x = yu, (5.16) an be rewritten as

Φ(x, y) ≈ eγ log(y)

ζ(1, y)

∫ u

1
ω(v)yvdv. (5.17).

5.4. Distribution of Divisors 105
y u Φ(109, y) Estimate Rel. error Estimate Rel. errorby (5.13) in perent by (5.16) in perent

1000 3 81515102 81702575 0.23 81540712 0.031
2000 2.73 73931443 74604335 0.91 73964201 0.044
3000 2.59 69618529 70581865 1.4 69649564 0.045
4000 2.50 66671714 67774139 1.7 66688977 0.026
5000 2.43 64375942 65618739 1.9 64392876 0.026
10000 2.25 57680218 59021636 2.3 57679743 −0.00082
15000 2.16 54298095 55212172 1.7 54278816 −0.036
20000 2.09 52354286 52522945 0.32 52330198 −0.046Table 5.4: The number Φ(109, y) of positive integers up to 109 without prime divisors up to yand omparison to estimates based on Buhstab's funtion.By Mertens' 3rd Theorem, 1/ζ(1, y) =

∏

p∈P,p≤y(1−1/p) ≈ 1/(eγ log(y)) and for our purposewhere y is the fator base bound and hene in the millions, the estimate by Mertens' theorem isaurate enough (for y = 106, the relative error is 0.03%) and we an simplify (5.17) to
Φ(x, y) ≈

∫ log(x)/ log(y)

1
ω(v)yvdv. (5.18)This estimate gives Φ(109, 15000) ≈ 54319245 with relative error only 0.039%, and after sub-trating π(109) − π(15000), the relative error is still only 0.6%. Table 5.4 shows the values of

Φ(109, y) for other y-values and ompares them to the estimate using (5.17) (sine these y-valuesare rather small, the simpli�ed form (5.18) introdues a notieable error).5.4.3 Divisors in Numbers with no Small Prime FatorsWe would like to estimate the total number
D(x, y, z1, z2) =

∑

n∈T (x,y)

∑

p∈P

z1<p≤z2

Valp(n), x ≥ z2 ≥ z1 ≥ y ≥ 2 (5.19)of prime divisors p ∈]z1, z2] with multipliity among positive integers up to x that have no primefators up to y. A hint towards the solution is Buhstab's identity [96, �6.2, (14)℄
Φ(x, y) = 1 +

∑

p∈P

y<p≤x

∑

ν≥1

Φ(x/pν , p)whih partitions T (x, y) into {1} and sets of integers divisible by a prime p > y and by no otherprime q ≤ p, for y < p ≤ x. For our problem, however, we would like to ount integers whihontain several prime fators (possibly as powers) from]z1, z2] with multipliity. This leads to
D(x, y, z1, z2) =

∑

p∈P

z1<p≤z2

∑

ν≥1

Φ(x/pν , y)whih for eah prime z1 < p ≤ z2 ounts the positive integers kpν ≤ x suh that k has no primefator up to y, i.e., k ∈ T (x/pν , y).

106 Chapter 5. Parameter seletion for P�1, P+1, and ECM
z1 D(1018 + 1011, 107, z1, z1 + 107) Estimate Rel. error

−D(1018, 107, z1, z1 + 107) using (5.20) in perent
1 · 107 168541774 168537797 −0.002
2 · 107 97523916 97542736 0.02
3 · 107 68793931 68800701 0.01
4 · 107 53152172 53155498 0.006
5 · 107 43292469 43305316 0.03
6 · 107 36540046 36531701 −0.02
7 · 107 31578964 31587779 0.03
8 · 107 27811212 27820533 0.03
9 · 107 24867513 24854715 −0.05
10 · 107 22475389 22459308 −0.07
15 · 107 15144159 15150750 0.04
20 · 107 11429968 11427841 −0.02
25 · 107 9168249 9172594 0.05
30 · 107 7665357 7660398 −0.06
35 · 107 6573271 6576127 0.04
40 · 107 5758937 5760733 0.03
45 · 107 5123766 5125277 0.03
50 · 107 4609652 4616138 0.1Table 5.5: The number D(1018 + 1010, 107, z1, z1 + 107) − D(1018, 107, z1, z1 + 107) of primefators z1 < p ≤ z1 + 107 with multipliity among the integers in [1018, 1018 + 1010

] withoutprime divisors up to 107, and omparison to estimates using (5.20).If z1 is reasonably large, the ontribution of prime powers (ν > 1) is quite small and an beomitted for an approximate result. By replaing the resulting sum by an integral over (5.18), weobtain
D(x, y, z1, z2) ≈

∫ z2

z1

Φ(x/t, y)/ log(t)dt

≈
∫ z2

z1

1

log(t)

(

∫ u−log(t)/ log(y)

1
ω(v)yvdv)dt, (5.20)where u = log(x)/ log(y).By D(x2, y, z1, z2) − D(x1, y, z1, z2) we an estimate the number of prime fators p with

z1 < p ≤ z2 among numbers N ∈ [x1, x2] that have no prime fators up to y. Table 5.5 omparesthis estimate with experimental ounts for parameters of approximately the magnitude as mightour in the Number Field Sieve: we onsider omposites in [1018, 1018 +1010] that have no primefators up to 107, and estimate the number of prime fators in [i · 107, (i + 1) · 107
] for some iup to 50. The estimates in this table are remarkably aurate, with relative error mostly below

0.1%.

ConlusionHere we brie�y summarize the results of the individual hapters of the thesis.Shönhage-Strassen's algorithm is among the fastest integer multipliation algorithms thatuse only integer arithmeti. Signi�ant speedups an be gained by improving ahe-loality,using √2 as a root of unity in the transform to double the possible transform length, mixingMersenne and Fermat transforms at the top-most reursion level, and �ne-grained parameterseletion depending on input number size. These improvements ombined resulted in a fator 2speedup over the implementation of Shönhage-Strassen's algorithm in GMP version 4.1.4, onwhih our implementation is based.The P�1 and P+1 fatoring methods allow a partiularly fast implementation for stage 2 ofthe algorithms. It is based on polynomial multi-point evaluation. The polynomial to be evaluatedan be built from its roots muh more quikly than with a general produt tree by exploitingpatterns in the roots. With suitably hosen roots it is a reiproal Laurent polynomial, and suhpolynomials an be stored using half the spae, and an be multiplied with a weighted Fouriertransform in about half the time, as general polynomials of the same degree. The multi-pointevaluation of the polynomial is partiularly e�ient for the P-1 algorithm, requiring essentiallyonly one yli onvolution produt. It an be adapted to the P+1 algorithm, but needs to workin a quadrati extension ring, inreasing memory use and omputation time. The new ode isdistributed as part of GMP-ECM version 6.2 and later.The sieving step is in pratie the most omputationally expensive step of the Number FieldSieve. The ofatorization during the sieving an be performed e�iently with the P�1, P+1, andECM algorithms. We have designed a software implementation optimized for low-overhead, high-throughput fatorization of small integers that is ompetitive in terms of ost/performane-ratiowith proposed FPGA implementations of ECM for NFS.The following ideas may be worth onsidering for further researh.The exellent performane of onvolutions with a omplex �oating-point FFT for integermultipliation is intriguing, but requiring guaranteed orret rounding would greatly inreasethe neessary transform length and thus run-time. A promising idea is to use the Shönhage-Strassen algorithm only at the top-most reursive level, and ompute the point-wise nega-ylionvolutions with a omplex �oating-point FFT. The relatively short length of those FFTsshould make an implementation with orret rounding feasible without too great a sari�e inspeed.Fürer's algorithm for integer multipliation has slightly better asymptoti omplexity of
O
(

n log(n)2log∗(n)
) than Shönhage-Strassen's with omplexity O(n log(n) log(log(n))). Whihone is faster in pratie? No well-optimized implementation of Fürer's algorithm seems to existat the time of writing, and reating one might be worthwhile.Shönhage and Strassen onjeture in the paper introduing their algorithm that the omplex-107

108 Conlusionity for an optimal integer multipliation algorithm should be O(n log(n)), but no suh algorithmis known so far, although Fürer's algorithm shortened the gap. Disovery of suh an algorithmwould be an exiting result for omputational omplexity theory, and if fast in pratie, of greatvalue in large-integer arithmeti.Is a stage 2 for ECM possible that is similarly fast as stage 2 for P�1 and P+1? Currentlyit is not lear how it might work, as for P�1 and P+1 the rapid onstrution of a polynomialfrom its roots and the multi-point evaluation use the fat that Z/NZ (or a quadrati extensionfor P+1) has ring struture whih is not present in the group of points on an ellipti urve. Butmaybe another novel approah might o�er a signi�ant speedup for the ECM stage 2.Fatoring small integers with P-1, P+1, and ECM with a software implementation on ageneral-purpose CPU was found to be very ompetitive with implementations of ECM in FPGAs,but alternative omputing hardware suh as graphis ards that support general purpose pro-gramming o�er vast amounts of proessing power at onsumer pries whih may give them theadvantage. A omplete implementation of ECM with stage 1 and stage 2 on graphis ards wouldbe interesting; if it should turn out to be too di�ult due to restrited memory, doing stage 1on the graphis ard and stage 2 on the CPU might be feasible.Parameters an be hosen aurately for ofatorization with P�1, P+1, and ECM to max-imise the ratio of probability of suess versus time for one individual method and one ompositenumber. However, pairs of omposites that both must be smooth to form a relation need to befatored in the sieving step of NFS, and generally a suession of fatoring methods needs to betried to obtain the fatorization of eah. How an we hoose a sequene of fatoring attemptson the two numbers so that a onlusion, either by fatoring both or �nding at least one (prob-ably) not smooth, is reahed as quikly as possible? This hoie should take into aount thee�et of unsuessful fatoring attempts on the expeted number of fators of a given size in theomposite number.

Bibliography[1℄ Alfred V. Aho, John E. Hoproft, and Je�rey D. Ullman. The Design and Analysis ofComputer Algorithms. Addison-Wesley, 1974.[2℄ Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K. Lenstra, and Dag Arne Osvik.A Kilobit Speial Number Field Sieve Fatorization. In Kaoru Kurosawa, editor, Advanesin Cryptology � ASIACRYPT 2007, number 4833 in Leture Notes in Computer Siene,pages 1�12. Springer-Verlag, 2008.[3℄ Jörg Arndt. Matters Computational. November 2009. Draft, available at http://www.jjj.de/fxt/.[4℄ David H. Bailey. FFTs in external or hierarhial memory. J. Superomputing, 4:23�35,1990.[5℄ Paul Barrett. Implementing the Rivest Shamir and Adleman publi key enryption algo-rithm on a standard digital signal proessor. In Proeedings on Advanes in ryptology�CRYPTO '86, pages 311�323, London, UK, 1987. Springer-Verlag.[6℄ Günter Baszenski and Manfred Tashe. Fast Polynomial Multipliation and ConvolutionsRelated to the Disrete Cosine Transform. Linear Algebra and its Appliations, 252:1�25,1997.[7℄ Daniel J. Bernstein. Ciruits for integer fatorization: a proposal. Manusript, 2001.http://r.yp.to/nfsiruit.html.[8℄ Daniel J. Bernstein. Multidigit multipliation for mathematiians. http://r.yp.to/papers.html#m3, 2001.[9℄ Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. ECM using Ed-wards urves. http://eem.r.yp.to/index.html, 2009.[10℄ Daniel J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chen-Mou Cheng, Chun-HungHsiao, Tanja Lange, Zong-Cing Lin, and Bo-Yin Yang. The Billion-Mulmod-Per-SeondPC. In Speial-purpose Hardware for Attaking Cryptographi Systems (SHARCS'09), 2009.[11℄ Daniel J. Bernstein and Arjen K. Lenstra. A general number �eld sieve implementation.In Lenstra and Lenstra [60℄, pages 103�126.[12℄ Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponentiation via the expliitChinese remainder theorem. Mathematis of Computation, 76:443�454, 2007.109

110 Bibliography[13℄ Maro Bodrato and Alberto Zanoni. Integer and Polynomial Multipliation: TowardsOptimal Toom-Cook Matries. In C. W. Brown, editor, ISSAC '07: Proeedings of the2007 International Symposium on Symboli and Algebri Computation, pages 17�24, NewYork, 2007. ACM.[14℄ Rihard P. Brent. An improved Monte Carlo fatorization algorithm. BIT NumerialMathematis, 20(2):176�184, 1980.[15℄ Rihard P. Brent. Some Integer Fatorization Algorithms using Ellipti Curves. AustralianComputer Siene Communiations, 8:149�163, 1986.[16℄ Rihard P. Brent, Rihard E. Crandall, Karl Dilher, and Christopher van Halewyn. Threenew fators of Fermat numbers. Mathematis of Computation, 69(231):1297�1304, 2000.[17℄ Rihard P. Brent and John M. Pollard. Fatorization of the eighth Fermat number. Math-ematis of Computation, 36:627�630, 1981. http://wwwmaths.anu.edu.au/~brent/pub/pub061.html.[18℄ E. Brokmeyer, C. Ghez, J. D'Eer, F. Catthoor, and H. De Man. Parametrizable behav-ioral IP module for a data-loalized low-power FFT. In Pro. IEEE Workshop on SignalProessing Systems (SIPS), pages 635�644, Taipeh, Taiwan, 1999. IEEE Press.[19℄ R zvan B rbulesu. Familles de ourbes elliptiques adaptées à la fatorisation des entiers.Tehnial report, LORIA, 2009. http://hal.inria.fr/inria-00419218/fr/.[20℄ Joe P. Buhler, Hendrik W. Lenstra, Jr., and Carl Pomerane. Fatoring integers with thenumber �eld sieve. In Lenstra and Lenstra [60℄, pages 50�94.[21℄ Stefania Cavallar. Strategies in Filtering in the Number Field Sieve. In Algorithmi NumberTheory, 4th International Symposium, volume 1838 of Leture Notes in Computer Siene,pages 209�231. Springer-Verlag, 2000.[22℄ Stefania Cavallar. Three-Large-Primes Variant of the Number Field Sieve. Tehnial Re-port MAS-R0219, Centrum voor Wiskunde en Informatia, Amsterdam, The Netherlands,August 2002.[23℄ Stefania Cavallar, B. Dodson, Arjen K. Lenstra, Paul C. Leyland, Walter M. Lioen, Peter L.Montgomery, Brian Murphy, Herman J. J. Te Riele, and Paul Zimmermann. Fatorizationof RSA-140 Using the Number Field Sieve. In Kwok Yan Lam, Eiji Okamoto, and ChaopingXing, editors, Advanes in Cryptology, Asiarypt '99, volume 1716 of Leture Notes inComputer Siene, pages 195�207. Springer-Verlag, 1999.[24℄ Stefania Cavallar, Brue Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Montgomery,Brian Murphy, Herman te Riele, Karen Aardal, Je� Gilhrist, Gérard Guillerm, Paul Ley-land, Jöel Marhand, François Morain, Ale Mu�ett, Chris and Craig Putnam, and PaulZimmermann. Fatorization of a 512-Bit RSA Modulus. In G. Goos, J. Hartmanis, andJ. van Leeuwen, editors, Advanes in Cryptology � EUROCRYPT 2000, volume 1807 ofLeture Notes in Computer Siene, pages 1�18. Springer-Verlag, 2000.[25℄ Henri Cohen. A Course in Computational Algebrai Number Theory. Springer-Verlag, 1stedition, 1995.[26℄ Sott Contini. Fator world. http://www.rypto-world.om/FatorWorld.html.

111[27℄ Sott P. Contini. Fatoring Integers with the Self-Initializing Quadrati Sieve. Master'sthesis, University of Georgia, 1997.[28℄ Stephen A. Cook. On the Minimum Computation Time of Funtions. PhD thesis, HarvardUniversity, 1966.[29℄ James W. Cooley and John W. Tukey. An algorithm for the mahine alulation of omplexFourier series. Mathematis of Computation, 19(90):297�301, 1965.[30℄ James W. Cooley and John W. Tukey. On the Origin and Publiation of the FFT Paper.This Week's Citation Classis, (51�52):8�9, 1993.[31℄ Don Coppersmith. Solving homogeneous linear equations over gf(2) via blok wiedemannalgorithm. Mathematis of Computation, 62(205):333�350, 1994.[32℄ Jean-Mar Couveignes. Computing a square root for the number �eld sieve. In Lenstraand Lenstra [60℄, pages 95�102.[33℄ Rihard Crandall and Carl Pomerane. Prime Numbers: A Computational Perspetive.Springer-Verlag, 2nd edition, 2005.[34℄ Giaomo de Meulenaer, François Gosset, Guerri Meurie de Dormale, and Jean-JaquesQuisquater. Ellipti Curve Fatorization Method : Towards Better Exploitation of Re-on�gurable Hardware. In IEEE Symposium on Field-Programmable Custom ComputingMahines (FCCM07), pages 197�207. IEEE Computer Soiety Press, 2007.[35℄ Karl Dikman. On the Frequeny of Numbers Containing Prime Fators of a CertainRelative Magnitude. Arkiv för Matematik, Astronomi oh Fysik, 22A:1�14, 1930.[36℄ Whit�eld Di�e and Martin E. Hellman. New Diretions in Cryptography. IEEE Transa-tions on Information Theory, 22(6):644�654, 1976.[37℄ Harold M. Edwards. A normal form for ellipti urves. Bulletin of the Amerian Mathe-matial Soiety, 44:393�422, 2007.[38℄ Reina-Marije Elkenbraht-Huizing. Fatoring integers with the Number Field Sieve. PhDthesis, Rijksuniversiteit te Leiden, 1997.[39℄ Paul Zimmermann et al. The ECMNET Projet. http://www.loria.fr/~zimmerma/reords/emnet.html.[40℄ Jens Franke and Thorsten Kleinjung. Continued frations and lattie sieving. http://www.math.uni-bonn.de/people/thor/onfra.ps.[41℄ Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine Priplata, and ColinStahlke. SHARK: A Realizable Speial Hardware Sieving Devie for Fatoring 1024-BitIntegers. In Cryptographi Hardware and Embedded Systems � CHES 2005, volume 3659of Leture Notes in Computer Siene, pages 119�130, 2005.[42℄ Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Pro-eedings of the IEEE, 93(2):216�231, 2005. speial issue on "Program Generation, Opti-mization, and Platform Adaptation".

112 Bibliography[43℄ Martin Fürer. Faster integer multipliation. In STOC '07: Proeedings of the thirty-ninthannual ACM symposium on Theory of omputing, pages 57�66, New York, NY, USA, 2007.ACM.[44℄ Kris Gaj, Soonhak Kwon, Patrik Baier, Paul Kohlbrenner, Hoang Le, Mohammed Khalee-luddin, and Ramakrishna Bahimanhi. Implementing the Ellipti Curve Method of Fa-toring in Reon�gueable Hardware. In Louis Goubin and Mitsuru Matsui, editors, Cryp-tographi Hardware and Embedded Systems - CHES 2006, volume 4249 of Leture Notes inComputer Siene, pages 119�133. Springer-Verlag, 2006.[45℄ Pierrik Gaudry, Jérémie Detrey, Guillaume Hanrot, Alexander Kruppa, François Morain,Emmanuel Thomé, and Paul Zimmermann. Crible algébrique: distribution, optimisation(CADO-NFS). http://ado.gforge.inria.fr/index.en.html.[46℄ Pierrik Gaudry, Alexander Kruppa, and Paul Zimmermann. A GMP-based implementa-tion of Shönhage-strassen's large integer multipliation algorithm. In ISSAC '07: Proeed-ings of the 2007 International Symposium on Symboli and Algebri Computation, pages167�174, Waterloo, Canada, July�August 2007. ACM.[47℄ W. Morven Gentleman and Gordon Sande. Fast Fourier transforms�for fun and pro�t.In AFIPS Conferene Proeedings, volume 29, pages 563�578, Washington, 1966. SpartanBooks.[48℄ Daniel M. Gordon. Disrete Logarithms in GF (p) using the Number Field Sieve. SIAMJournal on Disrete Mathematis, 6(1):124�138, 1993.[49℄ Torbjörn Granlund. GNU MP: The GNU Multiple Preision Arithmeti Library, 2009.http://gmplib.org/.[50℄ Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers using multipli-ation. In PLDI '94: Proeedings of the ACM SIGPLAN 1994 onferene on Programminglanguage design and implementation, pages 61�72, New York, NY, USA, 1994. ACM.[51℄ Anatolii Karatsuba and Yuri P. Ofman. Multipliation of multidigit numbers on automata.Doklady Akademii Nauk SSSR, 145(2):293�294, 1962.[52℄ Anatolii Karatsuba and Yuri P. Ofman. Multipliation of multidigit numbers on automata.Soviet Physis Doklady, 7(7):595�596, 1963.[53℄ Thorsten Kleinjung. Cofatorisation strategies for the number �eld sieve and an estimatefor the sieving step for fatoring 1024 bit integers. In Speial-purpose Hardware for Attak-ing Cryptographi Systems (SHARCS'06), 2006.[54℄ Thorsten Kleinjung. On Polynomial Seletion for the General Number Field Sieve. Math-ematis of Computation, 75(256):2037�2047, 2006.[55℄ Thorsten Kleinjung, Kazumaro Aoki, Arjen K. Lenstra, Emmanuel Thomé, Joppe W.Bos, Pierrik Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik, Her-man te Riele, Andrey Timofeev, and Paul Zimmermann. Fatorization of a 768-bit RSAmodulus. http://eprint.iar.org/2010/006.[56℄ Donald E. Knuth. The Art of Computer Programming, volume 2: Seminumerial Algo-rithms. Addison-Wesley, third edition, 1997.

113[57℄ Donald E. Knuth and Luis Trabb Pardo. Analysis of a Simple Fatorization Algorithm.Theoretial Computer Siene, 3(3):321�348, 1976.[58℄ Alexander Kruppa. Optimising the Enhaned Standard Continuation of the P�1 FatoringAlgorithm. Diploma thesis, Tehnishe Universität Münhen, Münhen, Germany, May2005.[59℄ D. H. Lehmer and R. E. Powers. On Fatoring Large Numbers. Bulletin of the AmerianMathematial Soiety, 37:770�776, 1931.[60℄ Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The development of the number�eld sieve, volume 1554 of Leture Notes in Mathematis. Springer-Verlag, Berlin, 1993.[61℄ Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Mark S. Ma nasse, and John M. Pollard. TheFatorization of the Ninth Fermat Number. Mathematis of Computation, 61(203):319�349, 1993.[62℄ Hendrik W. Lenstra, Jr. Fatoring Integers with Ellipti Curves. Annals of Mathematis,126(3):649�673, 1987.[63℄ George Marsaglia, Arif Zaman, and John C. W. Marsaglia. Numerial Solution of SomeClassial Di�erential-Di�erene Equations. Mathematis of Computation, 53(187):191�201,July 1989.[64℄ Peter L. Montgomery. Modular Multipliation Without Trial Division. Mathematis ofComputation, 44(170):519�521, 1985.[65℄ Peter L. Montgomery. Speeding the Pollard and Ellipti Curve Methods of Fatorization.Mathematis of Computation, 48:243�264, 1987.[66℄ Peter L. Montgomery. Evaluating Reurrenes of Form Xm+n = f(Xm,Xn,Xm−n) ViaLuas Chains. Unpublished Manusript, 1992. ftp://ftp.wi.nl/pub/pmontgom/Luas.ps.gz.[67℄ Peter L. Montgomery. An FFT Extension to the Ellipti Curve Method of Fatorization.PhD thesis, UCLA, 1992. ftp://ftp.wi.nl/pub/pmontgom/uladissertation.psl.gz.[68℄ Peter L. Montgomery. Square Roots of Produts of Algebrai Numbers. In Walter Gautshi,editor, Mathematis of Computation 1943�1993: A Half-Century of Computational Math-ematis, volume 48 of Proeedings of Symposia in Applied Mathematis, 1994.[69℄ Peter L. Montgomery. A Blok Lanzos Algorithm for Finding Dependenies over GF(2).In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Advanes in Cryptology � EURO-CRYPT '95, volume 921 of Leture Notes in Computer Siene, pages 106�120. Springer-Verlag, 1995.[70℄ Peter L. Montgomery. Personal Communiation, 2001.[71℄ Peter L. Montgomery. Five, Six, and Seven-Term Karatsuba-Like Formulae. IEEE Trans-ations on Computers, 54(3):362�369, 2005.[72℄ Peter L. Montgomery. Personal Communiation, 2008.

114 Bibliography[73℄ Peter L. Montgomery and Alexander Kruppa. Improved Stage 2 to p± 1 Fatoring Algo-rithms. In Alfred J. van der Poorten and Andreas Stein, editors, Proeedings of the 8thAlgorithmi Number Theory Symposium (ANTS VIII), volume 5011 of Leture Notes inComputer Siene, pages 180�195. Springer-Verlag, 2008.[74℄ Peter L. Montgomery and Robert D. Silverman. An FFT Extension to the p− 1 FatoringAlgorithm. Mathematis of Computation, 54:839�854, 1990.[75℄ Brian A. Murphy. Polynomial Seletion for the Number Field Sieve Integer FatorisationAlgorithm. PhD thesis, The Australian University, 1999.[76℄ Phong Nguyen. A Montgomery-like Square Root for the Number Field Sieve. In JoeBuhler, editor, Algorithmi Number Theory, Third International Symposium, volume 1423of Leture Notes in Computer Siene, 1998.[77℄ Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, 2nd edition, 1982.[78℄ Jan Pelzl, Martin �imka, Thorsten Kleinjung, Jens Franke, Christine Priplata, ColinStahlke, Milo² Drutarovský, Viktor Fisher, and Christof Paar. Area-Time E�ient Hard-ware Arhiteture for Fatoring Integers with the Ellipti Curve Method. IEE ProeedingsInformation Seurity, 152(1):67�78, 2005.[79℄ Colin Perival. Rapid multipliation modulo the sum and di�erene of highly ompositenumbers. Mathematis of Computation, 72(241):387�395, 2003.[80℄ John M. Pollard. Theorems on fatorisation and primality testing. Proeedings of theCambridge Philosophial Soiety, 5:521�528, 1974.[81℄ John M. Pollard. A Monte Carlo method for fatorization. BIT Numerial Mathematis,15(3):331�334, 1975.[82℄ John M. Pollard. Fatoring with ubi integers. In Lenstra and Lenstra [60℄, pages 4�10.[83℄ John M. Pollard. The lattie sieve. In Lenstra and Lenstra [60℄, pages 43�49.[84℄ Carl Pomerane. The Quadrati Sieve Fatoring Algorithm. In Thomas Beth, Norbert Cot,and Ingemar Ingemarsson, editors, Advanes in Cryptology: Proeedings of EUROCRYPT84, volume 209, pages 169�182. Springer-Verlag, 1985.[85℄ Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digitalsignatures and publi key enryption. Communiations of the ACM, 21(2):120�126, 1978.[86℄ Manuel Rubio, P. Gómez, and Karim Drouihe. A new superfast bit reversal algorithm.International Journal of Adaptive Control and Signal Proessing, 16:703�707, 2002.[87℄ Arnold Shönhage. Asymptotially fast algorithms for the numerial multipliation anddivision of polynomials with omplex oe�ients. In EUROCAM '82: Proeedings of theEuropean Computer Algebra Conferene on Computer Algebra, pages 3�15, London, UK,1982. Springer-Verlag.[88℄ Arnold Shönhage. Sqrt2 in SSA. Personal ommuniations, January 2008.

115[89℄ Arnold Shönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter. Fast Algorithms � AMultitape Turing Mahine Implementation. BI Wissenshaftsverlag, 1994.[90℄ Arnold Shönhage and Volker Strassen. Shnelle Multiplikation groÿer Zahlen. Computing,7(3�4):281�292, 1971.[91℄ Joseph J. Silverman and John Tate. Rational Points on Ellipti Curves. Springer-Verlag,1995.[92℄ Robert D. Silverman. The Multiple Polynomial Quadrati Sieve. Mathematis of Compu-tation, 48(177):329�339, 1987.[93℄ Allan Steel. Magma V2.12-1 is up to 2.3 times faster than GMP 4.1.4 for large integermultipliation, 2005. http://magma.maths.usyd.edu.au/users/allan/intmult.html.[94℄ Allan Steel. Redue everything to multipliation. Presented at Computing by the Numbers:Algorithms, Preision, and Complexity, Matheon Workshop 2006 in honor of the 60thbirthday of Rihard Brent, July 2006.[95℄ Hiromi Suyama. Informal preliminary report (8). Letter to Rihard P. Brent, Otober1985.[96℄ Gérald Tenenbaum. Introdution to analyti and probabilisti number theory. CambridgeUniversity Press, �rst edition, 1995.[97℄ Andrei L. Toom. The Complexity of a Sheme of Funtional Elements Realizing the Mul-tipliation of Integers. Doklady Akademii Nauk SSSR, 150(3):496�498, 1963.[98℄ Andrei L. Toom. The Complexity of a Sheme of Funtional Elements Realizing the Mul-tipliation of Integers. Soviet Mathematis Doklady, 3:714�716, 1963.[99℄ Joahim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. CambridgeUniversity Press, 2nd edition, 2003.[100℄ André Weimerskirh and Christof Paar. Generalizations of the Karatsuba Algorithm forE�ient Implementations. Tehnial report, Ruhr-Universität Bohum, 2003. http://weimerskirh.org/papers/Weimerskirh_Karatsuba.pdf.[101℄ Hugh C. Williams. A p+1 Method of Fatoring. Mathematis of Computation, 39:225�234,1982.[102℄ George Woltman and Sott Kurowski. The Great Internet Mersenne Prime Searh. http://www.gimps.org/.[103℄ Paul Zimmermann and Brue Dodson. 20 Years of ECM. In Florian Hess, Sebastian Pauli,and Mihael Pohst, editors, Proeedings of the 7th Algorithmi Number Theory Symposium(ANTS VII), volume 4076 of Leture Notes in Computer Siene, pages 525�542. Springer-Verlag, 2006.

116 Bibliography

AbstratThis thesis explores improvements to well-known algorithms for integer multipliation andfatorization.The Shönhage-Strassen algorithm for integer multipliation, published in 1971, was the �rstto ahieve omplexity O(n log(n) log(log(n))) for multipliation of n-bit numbers and is stillamong the fastest in pratie. It redues integer multipliation to multipliation of polynomialsover �nite rings whih allow the use of the Fast Fourier Transform for omputing the onvolutionprodut. In joint work with Gaudry and Zimmermann, we desribe an e�ient implementa-tion of the algorithm based on the GNU Multiple Preision arithmeti library, improving aheutilization, parameter seletion and onvolution length for the polynomial multipliation overprevious implementations, resulting in nearly 2-fold speedup.The P�1 and P+1 fatoring algorithms �nd a prime fator p of a omposite number quiklyif p − 1, respetively p + 1, ontains no large prime fators. They work in two stages: the �rststep omputes a high power g1 of an element g0 of a �nite group de�ned over Fp, respetively
Fp2, the seond stage looks for a ollision of powers of g1 whih an be performed e�iently viapolynomial multi-point evaluation. In joint work with Peter Lawrene Montgomery, we presentan improved stage 2 for these algorithms with faster onstrution of the required polynomial andvery memory-e�ient evaluation, inreasing the pratial searh limit for the largest permissibleprime in p− 1, resp. p + 1, approximately 100-fold over previous implementations.The Number Field Sieve (NFS) is the fastest known fatoring algorithm for �hard� integerswhere the fators have no properties that would make them easy to �nd. In partiular, themodulus of the RSA enryption system is hosen to be a hard omposite integer, and its fa-torization breaks the enryption. Great e�orts are therefore made to improve NFS in order toassess the seurity of RSA aurately. We give a brief overview of the NFS and its history. Inthe sieving phase of NFS, a great many smaller integers must be fatored. We present in de-tail an implementation of the P�1, P+1, and Ellipti Curve methods of fatorization optimizedfor high-throughput fatorization of small integers. Finally, we show how parameters for thesealgorithms an be hosen aurately, taking into aount the distribution of prime fators inintegers produed by NFS to obtain an aurate estimate of �nding a prime fator with givenparameters.
Keywords: Arithmeti, Integer Multipliation, Integer Fatoring, Ellipti Curves, Number FieldSieve

RésuméCette thèse propose des améliorations aux problèmes de la multipliation et de la fatorisationd'entier.L'algorithme de Shönhage-Strassen pour la multipliation d'entier, publié en 1971, fut lepremier à atteindre une omplexité de O(n log(n) log(log(n))) pour multiplier deux entiers de
n bits, et reste parmi les plus rapides en pratique. Il réduit la multipliation d'entier à ellede polyn�me sur un anneau �ni, en utilisant la transformée de Fourier rapide pour aluler leproduit de onvolution. Dans un travail ommun ave Gaudry et Zimmermann, nous dérivonsune implantation e�ae de et algorithme, basée sur la bibliothèque GNU MP; par rapport auxtravaux antérieurs, nous améliorons l'utilisation de la mémoire ahe, la séletion des paramètreset la longueur de onvolution, e qui donne un gain d'un fateur 2 environ.Les algorithmes P�1 et P+1 trouvent un fateur p d'un entier omposé rapidement si p− 1,respetivement p+1, ne ontient pas de grand fateur premier. Ces algorithmes omportent deuxphases : la première phase alule une grande puissane g1 d'un élément g0 d'un groupe �ni dé�nisur Fp, respetivement Fp2 , la seonde phase herhe une ollision entre puissanes de g1, qui esttrouvée de manière e�ae par évaluation-interpolation de polyn�mes. Dans un travail ave PeterLawrene Montgomery, nous proposons une amélioration de la seonde phase de es algorithmes,ave une onstrution plus rapide des polyn�mes requis, et une onsommation mémoire optimale,e qui permet d'augmenter la limite pratique pour le plus grand fateur premier de p− 1, resp.
p + 1, d'un fateur 100 environ par rapport aux implantations antérieures.Le rible algébrique (NFS) est le meilleur algorithme onnu pour fatoriser des entiers dont lesfateurs n'ont auune propriété permettant de les trouver rapidement. En partiulier, le moduledu système RSA de hi�rement est hoisi de telle sorte, et sa fatorisation asse le système. Denombreux e�orts ont ainsi été onsentis pour améliorer NFS, de façon à établir préisément laséurité de RSA. Nous donnons un bref aperçu de NFS et de son historique. Lors de la phasede rible de NFS, de nombreux petits entiers doivent être fatorisés. Nous présentons en détailune implantation de P�1, P+1, et de la méthode ECM basée sur les ourbes elliptiques, qui estoptimisée pour de tels petits entiers. Finalement, nous montrons omment les paramètres dees algorithmes peuvent être hoisis �nement, en tenant ompte de la distribution des fateurspremiers dans les entiers produits par NFS, et de la probabilité de trouver des fateurs premiersd'une taille donnée.Mots-lés: Arithmétique, multipliation des entiers, fatorisation des entiers, ourbes ellip-tiques, rible algébrique(English abstrat on inside bak over)

