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Context

I Internet / networks growth (users, devices, protocols)
I emerging needs

I New applications development
I new protocol / reuse a protocol
I efficiency (speed, scalability) → robustness = scalable +

environment constraints (attacks, failures)
I Security: denial of service, spam, fraud...
I Business: new users habits, new online services
I Network management: multiple heterogeneous devices and

applications spread around the world
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Contributions
I Robustness → modeling of communication

applications (applied to the botnets)
I network management
I security
I legal limitations → modeling

I Reverse-engineering
I security: protocol robustness, unknown protocol

fingerprinting
I protocol reusing

I Identification / fingerprinting
I network management (automatic inventory)
I security: track abnormal devices (attackers), potential

victims (0 day attacks)
I business: personalized advertisement or service offers
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SIP

I SIP = Session Initiation Protocol1

I Multimedia session management (opening, parameters
negotiation, closing)

I Widely used for Voice over IP (VoIP)

I Many potential attacks: denial of service, SpIT, toll
fraud...

SIP = protocol example → generic methods

1Rosenberg et al., RFC 3261
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Objective

Reverse engineering = message types discovery +
automatic construction of the protocol state machine →
first contribution: the semantic of the messages

No strong knowledge about the syntax:
I grammar
I delimiters
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Approach

Advantages / other techniques :
I no strong grammar knowledge / specific delimiters
I no tainting analysis (useful to retrieve a fine grained

semantic)
I no manual analysis
I unsupervised (no learning samples)

∼ sequence alignment techniques (high complexity)
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Message representation

I Distinguish messages of different types
I message length → too restrictive
I characters distribution → many “garbage” characters

without relationship with the type
I protocol design → type at the beginning of the message →

weighted average character positions

I Distribution comparison → Kullback-Leibler
divergence (entropy measure), Gaussian kernel
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Weighted positions

∀ character c , wp(c) =

∑k
i=1 pos(ai)

−1

k
I Example

I Complexity to compare:
I worst case = 256 values → O(1)
I sequence alignment → O(nm) where n and m are the

length of messages to compare
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Ascending hierarchical clustering

I Aggregative method

I Initialization: 1 message = 1
cluster

I Algorithm: merge the pair of
closest clusters until the
corresponding distance is higher
than τ

I Advantages: simple, only one
parameter: τ

I Drawback: bad efficiency with
intertwined clusters
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SVC
SVC = Support Vector Clustering2

I recent technique
I support vector machines → high accuracy + limited

complexity in many domains (samples subset
selection)

I advantages: irregular cluster shapes discovery

I Tests → global method with two
passes: SVC + hierarchical
clustering

2A. Ben-Hur, D. Horn, H.T. Siegelmann and V. Vapnik, A support vector
clustering method, 2000
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SVC

I Projection function
Φ→ 〈Φ(mi).Φ(mj)〉 ⇔
kernel function

I Gaussian kernel:

I One extra parameter
(C ) to avoid errors due
to mislocated points
(outside the
hypersphere)
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SIP dataset

I 1580 messages

I 27 types

I no uniform
distribution
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Results
I Cluster type = the most represented types within the

contained messages + 1 cluster / type
I Metrics

I accuracy = messages assigned to their real types
I sensibility = messages of a specific real type assigned to

this type
I proportion of discovered types

I Results
I hierarchical: accuracy = 0.85, all types are discovered

I low standard deviation of the sensibility → all types are
discovered with a similar accuracy > 50% → no need to apply
a second pass

I SVC: accuracy = 0.73, all types are discovered
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Global method application

I Messages from
undiscovered types
within other clusters

I Meta-clusters
including several
types → two-pass
classification

Global method (SVC + hierarchical clustering): accuracy
= 91%, 96% of discovered types

19 / 50



Introduction Reverse engineering Fingerprinting Conclusion

Summary

I automatic message type discovery
I multiple experiments with or without SVC → two

pass classification (SVC + hierarchical)
I multiple experiments with different message

characterization → weighted character positions
I advantage: a very small representation of messages

(low complexity)
I drawback: main assumption = type in first bytes of

the message
I message type: state machine reconstruction,

fingerprinting
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Objective

I Passive approach
I Device fingerprinting = protocol stack = name +

version (hardware / software)
I other techniques:

I active / passive
I OS / protocol (traffic) / device fingerprinting
I device fingerprinting: active, specific protocol, “simple”

signatures (specific field values)
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Behavioral fingerprinting Syntactic fingerprinting

Key idea

I Use case:
I unknown protocol
I motivation: unavailable protocol specifications, fast →

useful for general/preliminary studies
I Device behavior :

I = interactions with other devices
I user dependent but also device type dependent

(functionalities, message types used)
I Methodology:

I behavior = types of exchanged messages →
reverse-engineering

I available ressources can vary regarding the device →
temporal aspect
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A new formalization

TR-FSM : Random Tree Parameterized Extended Finite
State Machine

I Parameterized Extended Finite State Machine 3

I extension:
I one additional constraint =

tree (interaction from the
begin to the end)

I random temporal variable
added (transition time)

3G. Shu and D. Lee, Network Protocol System Fingerprinting - A Formal
Approach, INFOCOM 06
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Example
ROOT

! OPTIONS

? 405

! INVITE

? 100

? 180

? REGISTER

0.0

0.00158

? 486

! ACK

0.03828

0.30202

3.11656

0.00054

0.0

! 100

! 200 ! 401

? REGISTER

!100

200

0.0

0.00062

0.00302
0.00048

0.00378

0.00053

0.00318
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Identification
I Support vector machines (SVM)

I points projected into a higher dimensional space →
possible linear separators

I advantage: cluster irregular shapes
I drawback: kernel function dedicated to TR-FSMs (kernel

trick)
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Kernel function

K (ti , tj) =
∑
p∈Iij

∑
n∈p

e−α|fdelay (n,p1)−fdelay (n,p2)|

I Iij = shared paths (sequences of messages from the
root without considering the delays) between ti et tj

I fdelay(n, p) = delay of the node n in p
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Evaluation (SVM)
I Two datasets: 1 testbed + VoIP operator (Internet → greater

noise)

I Specificity = consistency of a cluster
Test Op.

#device types 26 42
op. more
complete

#messages 18066 95908
#sessions 2686 29775
% learning 40 10
Average(#messages/session) 6.73 3.22 op. sessions →

less messages,
longer time

Average(delay) (sec) 1.53 6.76
Average cardinality 18.97 12.94
Accuracy 0.91 0.86

good results
Average specificity 0.91 0.81
Average sensibility 0.64 0.58 types badly identified
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Evaluation (SVM)
I Poor sensibility

I devices with few sessions → few learning trees
I force a minimal number of trees for the learning

I 80 % → at least 2
TR-FSM

I 2 × 5 sessions = 10
sessions are needed for
the learning stage for
each device type

I testing (10 sessions)
→ one session based
identification is
impossible
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Summary

I behavior → sequences of message types + delays

I SVM classification: accuracy close to 85-90%

I message type = reverse-engineering
I advantages

I no strong knowledge about the protocol
I TR-FSM formalization + suited kernel

I drawback: need to wait several interactions before
identification

I syntax knowledge → message type + much
information → syntactic fingerprinting
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Motivation

Key idea = each device sends specific information

I message content = discriminative information
(User-agent) but easily alterable

I content organization (hierarchy, order) =
discriminative also (depends on how the device
constructs the message) + more difficult to alter
without being meaningless
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Syntactic tree construction
Protocol specified by an ABNF4 grammar

I successive rules derivation
I example: “INVITE Accept: */*.Call-id:456ZE852.”

4Augmented Backus-Naur Form
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Comparison

I Syntactic tree = signature → similarity between 2
signatures

I Tree 6= value → “usual” distances not adapted
I Edition distance (number of transitions) :

NP-complete
I Polynomial complexity distance5

I isomorphism φ between two trees → subtrees with the
same number of nodes interconnected in the same manner

I similarity : W (φ) =
∑

u∈H1
σ(u, φ(u))

I necessary to define the similarity metric between two nodes
(σ)

5A. Torsello et al., Polynomial-time metrics for attributed trees, TPMAI, vol.
27, no. 7, 2005
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Similarity

I σ(u, v) = 1 if equivalent node
I sequence ∼ repetition
I non terminal with the same name
I semantic terminal depending on context are not taken in

account (username, session id...)

I large generic
structures problem
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Similarity

I equivalent nodes → equivalent ancestors
I W (φ1) = 3, W (φ2) = 1, W (φ3) = 8
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Similarity
I shared ancestors → isomorphism between subtrees

rooted in the original root
I W (φ12) = maximal similarity between t1 et t2 = cardinality

of the intersection of the tree paths
I complexity = O(|t1||t2|)

I distances
I non-normalized :

d1(t1, t2) = |t1|+ |t2| − 2W (φ12)

I normalized :

d2(t1, t2) = 1− W (φ12)

max(|t1|, |t2|)

d3(t1, t2) = 1− W (φ12)

|t1|+ |t2| −W (φ12)
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Supervised fingerprinting
I SVM application by adapting the distances as kernel

functions
I only one message to identify
I syntax > message types → better performance

(TR-FSM: 90%)
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Unsupervised fingerprinting

I SVC classification:
I kernel function
I clusters assignation → creation of intermediary trees

(complexity increase)

I ROCK (S. Gua et al., ICDE 99)
I trees → categorical data
I density of data points can help

to discover irregular cluster
shapes

I initialization: 1 point = 1 cluster
I merge clusters with shared

neighbors
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Unsupervised fingerprinting
I ROCK → score metric to determine if two clusters are

close regarding their shared neighbors:
I number of shared neighbors + estimation of the maximal

number
I two neighbors ↔ maximal inter-distance τ
I needs to be recomputed for each modification

I QROCK (Dutta et al., 2005)
I graph representation, 1 edge =

at least one shared neighbor →
very fast (x10 ROCK)

I connected components → too
simple

I extension: 1 edge = at least γ
(2) shared neighbors
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Unsupervised fingerprinting

I Direct application:
I accuracy = 60%
I the messages from the same device can be highly different

regarding the context → the messages of a single device
are scattered among several clusters

I Solutions :
I a priori creation of small clusters = messages sharing the

same source IP address and ports within a small temporal
windows (ρ seconds)

I classify messages for a specific context ∼ message types
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Unsupervised fingerprinting

I Temporal merging:

I τ = 0.1, γ = 15

I ρ = 5s. → micro-clusters
with 2,8 messages

I QROCK:
I ∼ γ = 1
I best case: accuracy =

76%
I tradeoff ROCK/QROCK
>QROCK with an
equivalent complexity
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Unsupervised fingerprinting
I Context dependant classification:

I normalized distance > non normalized distance
I ∃ highly discriminative types : OPTIONS (90%)= device

features
I ∃ lowly discriminative types : 200 (< 50%)=

acknowledgement, response codes
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Summary

I syntax → hierarchical structure of message
I advantages:

I syntax structure is a good discriminative feature (compared
to message types)

I tree comparison with a limited complexity
I drawbacks:

I complete syntax knowledge
I parsing / tree construction is time consuming (compared to

message type discovery)

I unsupervised fingerprinting (ROCK/QROCK): number
of distinct device types, device distribution / type

I supervised fingerprinting (SVM): training samples,
device name identification
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Summary

I Contributions to several fields: security, network
management...

I Protocol reverse-engineering :
I passive
I network traces
I new discriminative representation → low complexity

I fingerprinting :
I passive
I behavioral: unknown protocol (reverse engineering)
I syntactic: faster, better performance
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Other contributions
I Botnets robustness :

I parameterized models
I different architectures (pseudo-centralized, P2P)
I definition of new metric for the robustness study
I help to choose the more suiteable architecture regarding

the context (number of machines, security, anonymization,
delays)

I work correlated to classification techniques
I collaboration with Y. Guermeur, ABC team, CNRS /

LORIA
I application of recent and highly performant techniques

(support vectors machines)
I deep analysis of parameters impact → help for a real use
I generic contribution to the classification domain : SVC

(automatic parameter determination) + tradeoff
ROCK/QROCK
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Perspectives

I Real instantiation of botnets models + add other
factors (human impact)

I Reverse-engineering + fingerprinting: validation with
other protocols

I Online fingerprinting:
I study about the complexity / computation time
I method adaptation (simplification, sampling, parallel

computing)

I New fingerprinting techniques:
I combination of behavior and syntax
I application profiling
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Publications
I international conferences / workshops:

I “Automated behavioral fingerprinting”,RAID, 2009, 28,3%.
I “Towards malware inspired management frameworks”, NOMS, Avril

2008, 27,5%.
I “Botnet based scalable network”,DSOM, 2007, 31,3%.
I “Malware Models for Network and Service Management”, AIMS 07 24%
I “A collaborative approach for proactive detection of distributed denial of

service attacks”, MonAM, 2007.

I french speaking journal:
I “Les botnets et la supervision à large échelle”, TSI, 2009.

I french speaking conference:
I “Les botnets et la supervision à large échelle”, JDIR, 2008.

I research reports (Submitted):
I “Behavioral and Temporal Fingerprinting”, 2009.
I “Advanced Fingerprinting For Inventory Management”, 2009.
I “FireCol: a collaborative protection network for the early detection of

flooding DDoS attacks”, 2009.
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Nearest neighbors only results

I τ increases
I larger clusters
I begin: group

similar messages
I end: group

different messages

I low standard
deviation per type
+ manual analysis
→ mixed types

I best case: accuracy = 0.85, all message types found
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Results

I best case: accuracy = 0.73,
all types are discovered

I SVC application

I no impact of C

I q increases → message
differences emphasized
→ more clusters

I q = 0.1: high standard
deviation of the
sensibility
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Construction
1 session = 1 séquence entre 2 entités (mêmes adresses IP,
même ports)

!t1

?t2

!t2

!t3

?t4

!t5

?t4

!t1
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?t2

!t2

!t3

?t4

!t5

?t4

?t5

!t6

!t7

!t1

?t2

!t2

!t3

?t4

!t5

?t4

?t5

!t6

Équipement A Équipement B
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Evaluation

I accuracy

#sessions / TR-FSM
(learning)

#sessions / TR-FSM (testing)
1 5 10 20 40

1 0.682 0.819 0.830 0.805 0.745
5 0.469 0.858 0.905 0.883 0.800

10 0.376 0.809 0.894 0.873 0.819
20 0.272 0.656 0.821 0.864 0.837
40 0.221 0.469 0.627 0.764 0.762

I Best configuration :
I testing = 10 sessions / TR-FSM → one session based

identification is impossible
I learning = 5 sessions / TR-FSM + 40% → at least 13

sessions minimum to build one signature
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