
�>���G �A�/�, �i�2�H�@�y�R�d�9�N�R�e�k

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�R�d�9�N�R�e�k�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�N ���T�` �k�y�R�j

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�6�Q�`�K���H �o�2�`�B�}�+���i�B�Q�M �Q�7 �.�B�b�i�`�B�#�m�i�2�/ ���H�;�Q�`�B�i�?�K�b �m�b�B�M�;
�S�H�m�b�*���H�@�k
�a���#�B�M�� ���F�?�i���`

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a���#�B�M�� ���F�?�i���`�X �6�Q�`�K���H �o�2�`�B�}�+���i�B�Q�M �Q�7 �.�B�b�i�`�B�#�m�i�2�/ ���H�;�Q�`�B�i�?�K�b �m�b�B�M�; �S�H�m�b�*���H�@�k�X �.���i�� �a�i�`�m�+�i�m�`�2�b ���M�/
���H�;�Q�`�B�i�?�K�b �(�+�b�X�.�a�)�X �l�M�B�p�2�`�b�B�i�û �/�2 �G�Q�`�`���B�M�2�- �k�y�R�k�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�k�G�P�_�_�y�y�R�9���X ���i�2�H�@�y�R�d�9�N�R�e�k�p�k��

https://theses.hal.science/tel-01749162v2
https://hal.archives-ouvertes.fr

D�epartement de formation doctorale en informatique �Ecole doctorale IAEM Lorraine
UFR STMIA

V�eri�cation Formelle d'Algorithmes
Distribu�es en PlusCal-2

(Veri�cation of Distributed Algorithms using PlusCal-2)

TH �ESE

pr�esent�ee et soutenue publiquement le 9 Mai 2012

pour l'obtention du

Doctorat de l'Universit�e Henri Poincar�e { Nancy 1
(sp�ecialit�e informatique)

par

Sabina AKHTAR

Composition du jury

Directeur de th�ese : Stephan MERZ { DR INRIA

Rapporteurs : B�eatrice BERARD { Professeur, LIP6 Paris
Philippe QUEINNEC { MCF HDR, ENSEEIHT Toulouse

Examinateurs : Hassan MOUTASSIR { Professeur, LIFC UFR ST Besancon
Isabelle CHRISMENT { Professeur, Universit�e de Lorraine
Martin QUINSON { MCF, Universit�e de Lorraine

Laboratoire Lorrain de Recherche en Informatique et ses Applications | UMR 7503

Mis en page avec la classe thloria.

�A mon c÷ur, Rayaan et ma vie, Ehtesham.

i

Acknowledgments

The work presented in this thesis would not have been possible without the help
of my thesis advisors Stephan Merz and Martin Quinson. I am sincerely thankful
to them for being highly supportive and for their continuous guidance and wisdom
throughout this journey.

I am very fortunate to have had opportunity to be part of the team VERIDIS at
LORIA and I would like to thank my colleagues for all the time we spent together
during these past years. I would also like to thank my parents, and my husband for
their prayers and support.

Finally, I would like to thank the Higher Education Commission (HEC), Pakistan
for sponsoring my work.

iii

Abstract

Designing sound algorithms for concurrent and distributed systems is subtle and
challenging. These systems are prone to deadlocks and race conditions, which occur
in particular interleavings of process actions and are therefore hard to reproduce. It
is often nontrivial to precisely state the properties that are expected of an algorithm
and the assumptions on the environment under which these properties should hold.
Formal veri�cation is a key technique to model the system and its properties and
then perform veri�cation by means of model checking.

Formal languages like TLA+ have the ability to describe complicated algorithms
quite concisely, but algorithm designers often �nd it di�cult to model an algorithm
in the form of formulas. In this thesis, we presentPlusCal-2 that aims at be-
ing similar to pseudo-code while being formally veri�able. PlusCal-2 improves
upon Lamport's PlusCal algorithm language by lifting some of its restrictions and
adding new constructs. Our language is intended for describing algorithms at a
high level of abstraction. It resembles familiar pseudo-code but is quite expressive
and has a formal semantics. Finite instances of algorithms described inPlusCal-2
can be veri�ed through the tlc model checker. The second contribution presented
in this thesis is a study of partial-order reduction methods using conditional and
constant dependency relation.

To compute conditional dependency forPlusCal-2 algorithms, we exploit their
locality information and present them in the form of independence predicates. We
also propose an adaptation of a dynamic partial-order reduction algorithm for a
variant of the tlc model checker. As an alternative to partial-order reduction
based on conditional dependency, we also describe a variant of a static partial-order
reduction algorithm for the tlc model checker that relies on constant dependency
relation. We also present our results for the experiments along with the proof of
correctness.

v

Contents

Introduction (en français) 1
1 Contexte scienti�que . 1
2 Motivation pour le langage PlusCal-2 3
3 Motivation pour les méthodes de réduction 5
4 Objectifs de thèse . 6
5 Structure de Thèse . 7

1 Introduction 9
1.1 Background . 9
1.2 Motivations for PlusCal-2 . 11
1.3 Motivation for reduction methods . 13
1.4 Thesis objectives . 13
1.5 Thesis Structure . 14

2 State of the art 17
2.1 Distributed and concurrent systems 17
2.2 PlusCal - Algorithmic Language 19
2.3 TLA + - Speci�cation Language . 21
2.4 Model checking . 23

2.4.1 tlc model checker . 24
2.4.2 Other modeling languages and model-checkers 24

2.5 State space explosion problem . 25
2.6 Partial-order Reduction . 25

2.6.1 Basic partial-order reduction algorithm with DFS 26
2.6.2 Independence . 28
2.6.3 Invisibility . 30
2.6.4 Techniques for computing subset of actions/transitions 31
2.6.5 Variants of partial-order reduction 33

3 Expressing concurrent and distributed algorithms in PlusCal-2 35
3.1 Requirements for a Modeling Language 36
3.2 The PlusCal-2 Language . 38

3.2.1 Structure/Organization of an Algorithm 38
3.2.2 Syntax and semantics ofPlusCal-2 43

3.3 Compilation: translation to TLA+ 48
3.3.1 PlusCal-2 Parser . 48
3.3.2 PlusCal-2 Normalizer . 50
3.3.3 PlusCal-2 Translator . 52
3.3.4 PlusCal-2 TLA generation 59

3.4 Model checking usingtlc . 63

Contents

3.5 Summary . 64

4 Partial-order reduction for PlusCal-2 algorithms 67
4.1 Independence Predicates forPlusCal-2 68

4.1.1 Intermediate representation ofPlusCal-2 algorithms 68
4.1.2 Inductive de�nition of independence predicates 69

4.2 Extension to PlusCal-2 Compiler 77
4.3 Dynamic partial-order Reduction with Conditional Independence . . 82

4.3.1 tlc with depth-�rst search 83
4.3.2 Dynamic partial-order reduction 83

4.4 Summary . 90

5 Static partial-order reduction for tlc 91
5.1 Adapted partial-order reduction for tlc 92
5.2 De�ning constant independence relation 94
5.3 Examples and Results . 95

5.3.1 Leader election algorithm . 95
5.3.2 Sort algorithm . 96

5.4 Proof of correctness . 98
5.5 Summary . 99

6 Conclusions and future work 101
6.1 Conclusions . 101
6.2 Future work . 104

Bibliography 105

A Examples 111
1.1 Naimi-Trehel algorithm . 111

1.1.1 PlusCal model . 111
1.1.2 TLA+ speci�cations for Naimi-Trehel algorithm 114

1.2 Leader election algorithm . 118
1.3 Concurrent sorting algorithm . 120

1.3.1 PlusCal-2 model . 120
1.3.2 Concurrent sorting algorithm in intermediate format 122

viii

Introduction (en français)

Contents
1 Contexte scienti�que . 1

2 Motivation pour le langage PlusCal-2 3

3 Motivation pour les méthodes de réduction 5

4 Objectifs de thèse . 6

5 Structure de Thèse . 7

1 Contexte scienti�que

Les systèmes distribués et concurrents sont dans le courant dominant de la tech-
nologie de l'information [Lynch 1996] et la conception et la mise en ÷uvre de ces
systèmes est une tâche très di�cile. Ils sont source d'erreurs et peuvent avoir des
problèmes comme les blocages, les conditions de course, etc qui pourraient avoir
un impact dramatique sur la vie humaine, l'environnement ou des actifs impor-
tants. Ces systèmes doivent satisfaire une variété de qualités spéci�ques, y compris
la disponibilité, la sécurité, la �abilité et la sécurité. Ainsi, ils doivent être véri�ées
de manière extensive avant leur déploiement.

Il y a beaucoup de techniques formelles et informelles qui ont été proposées et
sont utilisées pour la véri�cation de systèmes répartis, dont la véri�cation algo-
rithmique qui est une technique formelle dont son nom indique que la véri�cation
elle-même est réalisée algorithmiquement, contrairement à une véri�cation manuelle
ou interactive. La véri�cation algorithmique nécessite un modèle du système et
les spéci�cations du système, écrits dans un langage mathématique précis. Il faut
également l'ensemble de propriétés, écrites sous la forme de formules qui sont néces-
saires pour la véri�cation du système. Cette méthode est également connue sous le
nom model-checking, qui véri�e qu'un modèle donné du système satisfait certaines
propriétés [Clarke 1996a].

Le modèle du système est généralement représenté par un graphe de transitions
d'états appelé une structure de Kripke [Clarke 1996a, Baier 2008]. Il est composé
d'un ensemble d'états, un ensemble de transitions entre les états, et une fonction
qui associe à chaque état un ensemble de propriétés vraies dans l'état donné. Une
structure de Kripke peut être formellement dé�nie comme suit:

De�nition 1. Une structure de Kripke M sur un ensemble AP de propositions est
un quadruplet M =(S, I, R, L) où

1. S est un ensemble �ni d'états.

Contents

2. I est l'ensemble des états initiaux.

3. R � S � S est une relation de transition, supposée totale.

4. L:S ! 2AP est une fonction qui associe à chaque état l'ensemble des proposi-
tions atomiques vraies dans cet état.

Dans la littérature, une structure de Kripke est également désignée comme un
système de transitions d'états. Il peut s'agir d'une structure déterministe où tous les
états futurs sont totalement prévisibles ou d'une structure non-déterministe où une
transition peut conduire à l'un parmi plusieurs etats successeurs possibles. Le non-
déterminisme est un concept important pour les systèmes de transitions d'états pour
modéliser le comportement imprévisible du système. Par exemple, une transition
qui représente une instruction ou un bloc d'instructions dans un algorithme peut
être composée d'une instruction if-then-else avec plus d'une condition. Ainsi, une
telle transition peut conduire à un choix d'états successeurs possibles qui ne peut
être résolu au moment de l'initialisation.

Une fois le système modélisé, on peut décrire les spéci�cations pour le mod-
èle du système en utilisant un langage de spéci�cation comme TLA+ . TLA +

[Lamport 2002] est un langage de spéci�cation complet basé sur la logique temporelle
d'actions TLA [Lamport 1994] et la théorie des ensembles de Zermelo-Fraenkel. Il
a été développé par Leslie Lamport, et il est utilisé pour spéci�er le modèle du
système.

TLA + n'est pas un langage de programmation mais plutôt un formalisme de
spéci�cation. Il requiert des connaissances sur la théorie mathématique des ensem-
bles pour modéliser les systèmes. Dans la pratique, les utilisateurs qui écrivent des
programmes ou des algorithmes n'ont pas de connaissances approfondies de ce for-
malisme. Ainsi, il devient di�cile pour les utilisateurs d'utiliser ce langage. A�n
de rendre TLA+ accessible aux concepteurs d'algorithmes, Leslie Lamport a pro-
poséPlusCal [Lamport 2009] qui est un langage algorithmique de haut niveau pour
générer du code TLA+ pour des algorithmes parallèles et distribués .PlusCal four-
nit des instructions très simples pour exprimer des algorithmes non-déterministes.
PlusCal combine cinq caractéristiques importantes [Lamport 2006a]: des construc-
tions simples de programmes traditionnels, des expressions extrêmement puissantes,
du non-déterminisme, un moyen pratique pour décrire le grain de l'atomicité et le
model-checking.

Le langagePlusCal fournit une plate-forme pour les concepteurs d'algorithmes
pour générer des modèles pour leurs algorithmes en langage de spéci�cation TLA+ .
Ensuite, ils peuvent béné�cier de l'architecture sous-jacente qui est le langage de
spéci�cation TLA + avec son model-checkertlc [Yu 1999]. Le model-checking est
une technique de véri�cation algorithmique qui décide si un modèle d'un système
répond à un ensemble de propriétés caractérisant la correction du système, qui
sont représentées par des formules logiques. Dans la pratique, les outils de model-
checking exécutent les spéci�cations données et véri�ent les propriétés spéci�ées
pour la correction des spéci�cations. Il existe diverses autres techniques, y compris

2

2. Motivation pour le langage PlusCal-2

des techniques de démonstration de théorèmes qui fournissent une démonstration
mathématique pour montrer la correction du système.

L'idée de base du model-checking est d'explorer toutes les exécutions possibles
à partir de l'ensemble initial d'états pour le système donné. Cependant, le prob-
lème bien connu de l'explosion combinatoire de l'espace d'états limite la taille des
instances qui peuvent être véri�ées de manière e�cace. Dans la littérature, diverses
méthodes ont été étudiées pour pallier à l'e�et de l'explosion de l'espace d'états y
compris la représentation symbolique de l'espace d'états, des stratégies e�caces de
gestion de la mémoire, les méthodes de réduction par la symétrie, les méthodes de
réduction par ordre partiel.

Dans cette thèse, nous nous sommes concentrés sur la performance des méthodes
de réduction par ordre partiel pour le model-checkertlc . L'idée principale de la
réduction par ordre partiel est de restreindre l'exploration de l'espace d'états tels
que les entrelacements redondants de transitions sont évités, d'où la préservation
de la correction de la véri�cation. Cette méthode repose sur l'indépendance et la
commutativité de transitions de di�érents processus.

2 Motivation pour le langage PlusCal-2

PlusCal [Lamport 2006b] est un langage de haut niveau pour décrire des algo-
rithmes parallèles et répartis. Il est destiné aux concepteurs d'algorithmes qui ne
veulent pas maîtriser la complexité de la rédaction de spéci�cations TLA+ à part
entière, mais qui souhaitent néanmoins tirer parti des capacités de véri�cation du
model-checkertlc .

Nous avons modélisé di�érents algorithmes dans le langagePlusCal notamment
l'algorithme proposé par Naimi et Trehel [Naimi 1996]. Il s'agit d'un algorithme
distribué d'exclusion mutuelle qui maintient deux structures de données distribuées:
une liste des processus qui sont en attente pour l'accès à la section critique, et un
arbre de processus dont la racine est le processus à la �n de la �le d'attente (ou le
dernier processus à accéder à sa section critique si la �le d'attente est vide). Son
modèle dans le langagePlusCal est montré en annexe 1.1.1 et les spéci�cations
TLA + correspondantes sont présentées en annexe 1.1.2.

Dans cette section, nous décrivons un certain nombre de problèmes que nous
avons remarqué lors de l'utilisationPlusCal pour la modélisation des algorithmes
parallèles et répartis.

Besoin de comprendre TLA + et la compilation. Dans la pratique,PlusCal
ne peut être utilisé sans une bonne compréhension du formalisme TLA+ et même
de la traduction produite par le compilateur PlusCal . Par exemple, pour dé�nir
les propriétés de l'algorithme de Naimi et Trehel l'utilisateur doit comprendre les
spéci�cations TLA + générées, et écrire les propriétés en termes des variables TLA+

introduites par le compilateur. Bien que le compilateur essaie de préserver les noms
de variables, ceci n'est pas possible si des variables du même nom sont déclarées

3

Contents

dans di�érentes procédures. Les variables locales des processus sont converties en
des tableaux de TLA+ , et l'utilisateur doit être conscient de ceci lors de l'annotation
du modèle TLA+ . Les propriétés d'équité, nécessaires à la véri�cation des propriétés
de vivacité, doivent être dé�nies en termes des actions TLA+ générées par le compi-
lateur. En�n, l'utilisateur doit fournir un �chier de con�guration au model-checker
tlc , qui dé�nit l'instance �nie qui sera véri�ée.

Hiérarchie plate de processus et absence de règles de portée. Les pro-
cessus dePlusCal doivent tous être déclarés au plus haut niveau et ne peuvent
être imbriqués. Cependant, de nombreux algorithmes sont plus naturellement ex-
primés à l'aide d'une hiérarchie de processus. Cela est particulièrement vrai pour les
algorithmes distribués, où plusieurs threads (partagant de la mémoire locale) peu-
vent coexister dans des n÷uds physiquement distribués qui communiquent de façon
asynchrone sur un réseau. Par exemple, l'algorithme de Naimi-Trehel aurait été
représenté facilement avec des processus imbriqués. On pourrait introduire des sous-
processus pour le processusSite, l'un pour gérer les messages reçus et l'autre pour
envoyer une demande pour l'utilisation de la section critique. En outre, l'utilisateur
est responsable de l'attribution des identités des processus et de s'assurer qu'elles
soient uniques. Bien que ce point est un ennui mineur, il constitue une source
potentielle d'erreurs qui sont facilement négligés.

Une question connexe est l'absence de règles de portée dansPlusCal . Même
si des variables locales peuvent être déclarées au sein des processus comme nous
l'avons fait pour le processusSite de l'algorithme de Naimi-Trehel, ces variables
sont en fait librement accessibles pour la lecture et l'écriture par des processus
ou procédures di�érents. Au-delà d'être très probable une limitation lors de la
modélisation des algorithmes et une cause d'erreurs, le manque d'une hiérarchie de
processus et des variables de portée locale rend également très di�cile la mise en
÷uvre d'optimisations en matière de véri�cation, telles que des réductions basées
sur les ordres partiels.

Spéci�cation limitée d'atomicité. En modélisant des algorithmes concurrents
et distribués, il est important de spéci�er "le grain d'atomicité", c'est-à-dire les
blocs d'instructions que l'on peut considérer comme étant exécutés sans intercaler
avec les instructions d'autres processus. Tandis que l'atomicité à trop gros grain
peut cacher les erreurs qui résultent d'entrelacements inattendus, in modèle à grain
d'atomicité trop �n donne lieu à l'explosion combinatoire de l'espace d'états lors de
la véri�caiton et est inutile tant que seulement le calcul local est impliqué. PlusCal
utilise une convention simple mais puissante : l'utilisateur décore des instructions
avec des étiquettes pour spéci�er où l'intercalation peut intervenir de manière atom-
ique. Toutes les instructions entre deux étiquettes sont exécutées. Cependant, les
étiquettes servent aussi à d'autres buts pour la compilation etPlusCal impose
un certain nombre de règles d'étiquetage qui limitent la liberté du spéci�cateur de
déterminer ce qui doit être considéré comme groupes d'instructions atomiques.

4

3. Motivation pour les méthodes de réduction

Limitations techniques. Le compilateur PlusCal doit être simple a�n que les
utilisateurs puissent lire le modèle TLA+ produit par le compilateur PlusCal ,
comme nous l'avons mentionné ci-dessus. La simplicité du compilateur impose cer-
taines limites contre-intuitives au langagePlusCal . Par exemple, bien que des
ensembles soient la construction de base pour représenter des données,PlusCal
ne contient pas de construction primitive pour itérer sur tous les éléments d'un en-
semble. Le programmeur doit introduire une variable auxiliaire pour l'itération et
garder trace des éléments qui ont déjà été traités. Sans une attention particulière,
ces variables auxiliaires peuvent aggraver l'explosion de l'espace d'états pendant la
véri�cation du modèle. Une autre restriction technique est la règle dePlusCal qu'il
ne peut y avoir qu'une seule attribution par variable au sein d'un bloc atomique.

Nous avons d'abord essayé d'étendre le compilateur existant dePlusCal pour
contourner ces limitations. Cependant, il est vite apparu qu'il était nécessaire de
redé�nir le langage et la reconception du compilateur a�n de surmonter les lacunes
les plus graves. Alors que nous avons maintenu les idées de base et les structures
de PlusCal dans notre nouvel langagePlusCal-2 , nous avons privilégié une con-
ception propre sur la compatibilité ascendante en cas de con�it.

3 Motivation pour les méthodes de réduction

Nous avons modélisé di�érents algorithmes dansPlusCal-2 , y compris l'algorithme
pour l'élection d'un leader qui a été proposé par Dolev, Klawe, et Rodeh [Dolev 1982].
Nous avons décrit l'algorithme dans le langagePlusCal-2 comme indiqué dans
l'annexe 1.2, pour générer les spéci�cations en TLA+ et le véri�er à l'aide de tlc .

Le compilateur PlusCal-2 a généré avec succès les spéci�cations en TLA+ .
Ensuite, nous les avons transmis au model-checkertlc pour véri�er certaines pro-
priétés. Le tableau 3 montre les résultats de la véri�cation pour di�érents nombres
de processus. Il montre clairement que le model-checking et confronté à un problème
d'explosion d'espace d'états avec un nombre croissant de processus. Cette question
nous a motivé à chercher une technique qui pourrait réduire ce problème. Beaucoup
de recherches ont déjà été menées pour s'attaquer au problème d'explosion d'espace
d'états, par exemple, les méthodes de réduction par ordre partiel qui utilisent la
relation d'indépendance entre les actions atomiques du système. Cette idée nous
a inspiré d'utiliser notre compilateur PlusCal-2 pour générer ces relations d 'in-
dépendance pour les actions dans les spéci�cations TLA+ .

tlc utilise la méthode de recherche en largeur d'abord pour explorer tous les
états possibles ce qui restreint l'utilisation de la relation d'indépendance condition-
nelle. Ainsi, nous proposons une variante du model-checkertlc avec une adaptation
de l'algorithme de réduction par ordre partiel dynamique dû à Cormac Flanagan
et Patrice Godefroid. L'utilisation de la méthode de recherche en largeur d'abord
n'est pas compatible qu'avec une réduction par ordre partiel basée sur une relation
de dépendance constante. Ainsi, dans cette thèse, nous présentons également une
version étendue du model-checkertlc qui prend en charge une méthode de réduc-

5

Contents

Processus Temps (secondes) États Totaux États Distincts

4 0.2 205 95
8 2.3 31289 7121
10 22.9 352426 63986
12 349.2 3811181 575747

Table 1: Les résultats de model-checking pour Leader election algorithm

tion par ordre partiel statique, et nous évaluons ainsi que les résultats pour nos
exemples.

4 Objectifs de thèse

Les objectifs principaux de cette thèse peuvent être résumés comme suit:

1. Le premier objectif est de fournir aux concepteurs d'algorithmes un langage al-
gorithmique qu'ils peuvent utiliser pour spéci�er ou modéliser les algorithmes
de véri�cation. Nous avons décidé d'utiliserPlusCal comme une motivation
pour notre travail, car ce langage ressemble à d'autres langages algorithmiques.
Les limites que nous avons mentionnées dans la section 1.2 enfreignent son util-
isation pour les concepteurs d'algorithmes. L'utilisateur doit être en mesure
d'écrire des algorithmes dansPlusCal-2 sans avoir à apprendre un langage
mathématique, mais en utilisant la puissance de l'architecture sous-jacente qui
est le langage TLA+ et le model-checkertlc . Ainsi, dans cette thèse, nous
présentons le langagePlusCal-2 qui enlève les limites mentionnées, tout en
préservant l'expressivité et le non-déterminisme dans le langage et étant facile-
ment accessible pour le concepteur d'algorithmes.

2. Le deuxième objectif est de lutter contre le problème d'explosion de l'espace
d'états en faisant appel à la méthode de réduction par ordre partiel et la
rendant accessible aux utilisateurs dePlusCal-2 et tlc . La première contri-
bution pour atteindre cet objectif est de produire des prédicats d'indépendance
conditionnelle pour les algorithmes écrits en langagePlusCal-2 . Ces prédi-
cats peuvent être utilisés dans une technique de réduction a�n de résoudre
le problème d'explosion d'états danstlc . Ainsi, nous proposons une plate-
forme qui est tlc avec la méthode de recherche en profondeur d'abord et la
technique de réduction par ordre partiel dynamique pour résoudre le problème
d'explosion de l'espace d'états. La deuxième contribution est un model-checker
étendu tlc qui prend en charge la méthode de réduction par ordre partiel
de Gerard Holzmann et Doron Peled, adaptée pour la recherche en largeur
d'abord dans tlc .

6

5. Structure de Thèse

5 Structure de Thèse

Cette thèse est organisée comme suit:

� Le chapitre 2 présente le contexte de notre travail qui comprend une descrip-
tion des systèmes distribués et concurrents. Ensuite, nous discutons briève-
ment le langagePlusCal conçu par Leslie Lamport, le langage de spéci�-
cation TLA + et le model-checkertlc . Ensuite, nous analysons en détail la
méthode de réduction par ordre partiel qui comprend l'algorithme de réduc-
tion par ordre partiel, le concept de l'indépendance et de l'invisibilité, et les
techniques pour le calcul du sous-ensemble des transitions à explorer à un état
donné.

� Le chapitre 3 introduit le nouveau langagePlusCal-2 et son compilateur. Il
présente le langagePlusCal-2 en détail, y compris sa syntaxe, l'organisation
d'un algorithme et une discussion sur la méthode de l'écriture d'un algorithme
dans le langagePlusCal-2 . Ensuite, il décrit le processus de compilation du
langagePlusCal-2 vers une spéci�cation TLA+ . En�n, il explique comment
le model-checkertlc est utilisé pour véri�er les spéci�cations produit par le
compilateur PlusCal-2 .

� Le chapitre 4 dé�nit les prédicats d'indépendance pour les algorithmes en
PlusCal-2 qui garantissent que deux actions sont indépendantes à un état
donné. Puis, il présente l'extension au compilateurPlusCal-2 qui extrait
ces prédicats indépendance. En�n, il présente la plate-forme proposée pour
les prédicats de l'indépendance qui esttlc avec la méthode de recherche en
profondeur d'abord et la méthode de réduction par ordre partiel dynamique
fondée sur les relations d'indépendance conditionnelles.

� Le chapitre 5 décrit l'adaptation de la méthode de réduction par ordre partiel
de Holzmann et Peled pour le model-checkertlc . Il examine brièvement
la méthode de réduction par ordre partiel. Puis il présente les détails de
l'intégration de cette méthode entlc avec une validation expérimentale. En�n
il détaille la preuve de correction de l'algorithme adapté.

� En�n, dans les conclusions, nous discutons des contributions de cette thèse et
des travaux proposés à venir.

7

Chapter 1

Introduction

Contents
1.1 Background . 9

1.2 Motivations for PlusCal-2 11

1.3 Motivation for reduction methods 13

1.4 Thesis objectives . 13

1.5 Thesis Structure . 14

1.1 Background

Distributed and concurrent systems are in the mainstream of information technol-
ogy [Lynch 1996] and the design and implementation of these systems is a highly
challenging task. They are error prone and can have problems like deadlocks, race
conditions, etc. that could have a dramatic impact on human life, the environment
or signi�cant assets. These systems must satisfy a variety of speci�c qualities in-
cluding availability, security, reliability and safety. Thus, they should be veri�ed
extensively before deployment.

There are many formal and informal techniques that have been proposed and
are being used for their veri�cation including the algorithmic veri�cation which is a
formal technique that stresses that the veri�cation itself is performed algorithmically,
in contrast to manual or interactive veri�cation. Algorithmic veri�cation requires
a model of the system and the speci�cations of the system written in a precise
mathematical language. It also requires the set of properties written in the form of
formulas that are required for the veri�cation of the system. This method is also
known as Model Checking, which veri�es a given model of the system to satisfy
some properties [Clarke 1996a].

The model of the system is usually represented using a state transition graph
called a Kripke structure [Clarke 1996a, Baier 2008]. It is composed of a set of
states, a set of transitions between the states, and a function that labels each state
with a set of properties that hold in the given state. A Kripke structure can formally
be de�ned as follows:

De�nition 2. A Kripke structure M over a set of propositions AP is a four-tuple
M =(S, I, R, L) where

Chapter 1. Introduction

1. S is a �nite set of states.

2. I is the set of initial states.

3. R � S � S is a transition relation that is assumed to be total.

4. L:S ! 2AP is a function that labels each state with the set of atomic proposi-
tions true in that state.

In the literature, a kripke structure is also referred as a state transition system. It
can either be deterministic where all the future states are completely predictable or it
can be non-deterministic where a transition can lead to one of the possible successor
states. Non-determinism is an important concept in state transition systems to
model the unpredictable behavior of the system. For example, a transition that
represents a statement or a block of statements in an algorithm can be composed
of an if-then-else statement with more than one conditions. Thus, such a transition
can lead to one of the possible successor states that cannot be determined at the
time of initialization.

Once the system is modeled, then we can describe the speci�cations for the model
of the system using a speci�cation language like TLA+ . TLA + [Lamport 2002]
is a complete speci�cation language based on the temporal logic of actions TLA
[Lamport 1994] and Zermelo-Fraenkel set theory. It was developed by Leslie Lam-
port and it is used to specify the model of the system.

TLA + is not a programming language but rather a speci�cation formalism. It
requires knowledge about the mathematical set theory to model the systems. In
practice, the users who write programs or algorithms have no background of this
formalism. Thus, it becomes di�cult for the users to make use of this language.
In order to make it easy for the algorithm designers to use TLA+ , Leslie Lamport
proposedPlusCal [Lamport 2009] which is a high level algorithmic language to
generate TLA+ code for concurrent and distributed algorithms. It provides very
simple statements to express non-deterministic algorithms.PlusCal combines �ve
important features [Lamport 2006a]: simple conventional program constructs, ex-
tremely powerful expressions, nondeterminism, a convenient way to describe the
grain of atomicity, and model checking.

The PlusCal language provides the platform for the algorithm designers to
generate the models for their algorithms in TLA+ speci�cation language. Then
they can make use of underlying architecture that is TLA+ speci�cation language
along with its supported tlc model checker. Thetlc model checker [Yu 1999]
provides a platform to model check the speci�cations written in TLA+ language.
Model checking is an algorithmic veri�cation technique that determines whether a
model of a system meets the required set of properties that are represented as logical
formulas. In practice, the model checking tools execute the given speci�cations
and verify the speci�ed properties for the correctness of the speci�cations. There
are various other techniques including theorem proving techniques that provides a
mathematical demonstration to show the correctness of the system.

10

1.2. Motivations for PlusCal-2

The basic idea behind model checking is to explore all the possible executions
from the initial set of states for the given system. However, the well-known state
space explosion problem limits the size of instances that can be veri�ed e�ectively. In
the literature, various methods have been studied to reduce the e�ect of state space
explosion including symbolic state space representation, e�cient memory manage-
ment strategies, symmetry reduction methods, partial-order reduction methods.

In this thesis, we focused on the performance of partial-order reduction methods
for the tlc model checker. The main idea of partial-order reduction is to restrict the
state-space exploration such that redundant interleavings of transitions are avoided,
hence preserving soundness of the veri�cation. This method relies on the indepen-
dence and commutativity of the transitions from di�erent processes.

1.2 Motivations for PlusCal-2

PlusCal [Lamport 2006b] is a high-level language for describing concurrent and
distributed algorithms. It is targeted towards algorithm designers who do not want
to master the complexity of writing full-�edged TLA + speci�cations, but neverthe-
less want to take advantage of the veri�cation capabilities of thetlc model checker.

We modeled various algorithms inPlusCal language including Naimi-Trehel
algorithm that was proposed by Naimi and Trehel in [Naimi 1996]. It is a distributed
algorithm for mutual exclusion that maintains two distributed data structures: a list
of processes that are waiting for access to the critical section, and a tree of process
whose root is the process at the end of the waiting queue (or the process who last
accessed its critical section if the queue is empty). Its model inPlusCal language
is shown in appendix 1.1.1 and its corresponding TLA+ speci�cations are shown in
appendix 1.1.2.

In this section, we describe a number of problems that we noticed when using
PlusCal for modeling concurrent and distributed algorithms.

Need to understand TLA + and the compilation. In practice, PlusCal can-
not be used without a good understanding of the TLA+ formalism and even of the
translation generated by the PlusCal compiler. For example, to de�ne the prop-
erties for Naimi-Trehel algorithm the user must understand the generated TLA+

speci�cations, and write the properties in terms of the TLA+ variables introduced
by the compiler. Although the compiler tries to preserve variable names, this is
impossible if variables of the same name are declared in di�erent procedures. Local
variables of processes are translated to arrays in TLA+ , and the user must be aware
of this when annotating the TLA + model. Fairness properties, necessary for the
veri�cation of liveness properties, must be de�ned in terms of the TLA+ actions
generated by the compiler. Finally, the user has to provide a con�guration �le to
the tlc model checker, which de�nes the �nite instance to be veri�ed.

11

Chapter 1. Introduction

Flat process hierarchy and lack of scoping. PlusCal processes must all
be declared at top level and cannot be nested. However, many algorithms are
more naturally expressed using hierarchies of processes. This is particularly true for
distributed algorithms, where several threads (sharing local memory) may coexist
within physically distributed nodes that communicate asynchronously over a net-
work. For example, the Naimi-Trehel algorithm would have been represented easily
with nested processes. We could introduce subprocesses for the processSite, one to
handle the received messages and another process to send a request for using the
critical section. Moreover, the user is responsible for assigning identities to processes
and ensuring that they are unique. While this is a minor annoyance, it provides a
potential source for errors that are easily overlooked.

A related issue is the lack of scoping rules inPlusCal . Although variables may
be declared local to processes as we have in Naimi-Trehel algorithm for the process
Site, they are in fact freely accessible for reading and writing in di�erent processes or
procedures. Beyond being a limitation when modeling algorithms and being an all
too likely cause for errors, the lack of a proper hierarchy of processes and of scoped
local variables also makes it very di�cult to implement optimizations in veri�cation,
such as partial-order reduction.

Restricted speci�cation of atomicity. When modeling concurrent and dis-
tributed algorithms, it is important to specify the �grain of atomicity�, i.e. blocks
of statements that can be considered as being executed without interleaving with
statements of other processes. Whereas too coarse-grained atomicity may hide errors
that arise in the implementation due to unexpected interleavings, too �ne-grained
atomicity causes state space explosion in veri�cation and is unnecessary as long as
only local computation is involved. PlusCal uses a simple but powerful conven-
tion: the user decorates statements with labels to specify where interleaving may
occur. All statements between two labels are executed atomically. However, labels
also serve other purposes for compilation, andPlusCal imposes a number of la-
beling rules that restrict the freedom of the speci�er to determine which groups of
statements should be considered atomic.

Technical limitations. The PlusCal compiler must be kept simple so that users
can read the TLA+ model produced by thePlusCal compiler, as mentioned above.
The simplicity of the compiler imposes some unintuitive limitations of thePlusCal
language. For example, although sets are the basic construct for representing data,
PlusCal does not contain a primitive construct for iterating over all elements of a
set. The programmer has to introduce an auxiliary variable for iteration and keep
track of the elements that have already been handled. Without special care, these
auxiliary variables can aggravate state space explosion during model checking. An-
other technical restriction is PlusCal 's rule that there may be only one assignment
per variable within an atomic step.

We �rst tried to extend the existing PlusCal compiler to get around these lim-

12

1.3. Motivation for reduction methods

Processes Time(seconds) Total States Distinct States

4 0.2 205 95
8 2.3 31289 7121
10 22.9 352426 63986
12 349.2 3811181 575747

Table 1.1: Model checking results for Leader election algorithm.

itations. However, it quickly became clear that it was necessary to rede�ne the
language and redesign the compiler in order to overcome the more serious de�cien-
cies. While we maintained the basic ideas and constructs ofPlusCal in our new
languagePlusCal-2 , we favored a clean design over backward compatibility in case
of con�ict.

1.3 Motivation for reduction methods

We modeled various algorithms inPlusCal-2 including the Leader election algo-
rithm that was proposed by Dolev, Klawe, and Rodeh [Dolev 1982] for electing a
leader in a unidirectional ring. We described the algorithm inPlusCal-2 language
as shown in appendix 1.2, to generate the TLA+ speci�cations and to model check
them using tlc model checker.

The PlusCal-2 compiler successfully generated the required TLA+ speci�ca-
tions. Then, we passed them totlc model checker for verifying some properties.
Table 1.3 shows the results of model checking for di�erent number of processes. This
clearly shows that model checking results in a state space explosion problem with an
increase in number of processes.This issue motivated us to look for a technique that
could reduce this problem. In history, a lot of research has been carried out to tackle
the state space explosion problem, e.g., partial-order reduction methods that used
the independence relation from the speci�cations of the system. This idea inspired
us of using ourPlusCal-2 compiler to generate these independence relations for
the actions in TLA + speci�cations.

tlc uses breadth-�rst search method to explore all the possible states which
restricts the use of conditional independence relation. Thus, we propose a variant
of tlc model checker along with an adaptation of dynamic partial-order reduction
algorithm by Cormac Flanagan and Patrice Godefroid. Astlc supports breadth-
�rst search method, it can only use constant dependency relation in a partial-order
reduction algorithm. Thus, in this thesis we also present an extendedtlc model
checker that supports static partial-order reduction method along with the results
for our examples.

1.4 Thesis objectives

The main objectives of this thesis are as follows:

13

Chapter 1. Introduction

1. The �rst objective is to provide the algorithm designers an algorithmic lan-
guage that they can use to specify or model the algorithms for veri�cation. We
decided to usePlusCal as a motivation for our work because it was similar to
other algorithmic languages. The limitations that we mentioned in the section
1.2 restricted its use for algorithm designers. The user must be able to write
algorithms in PlusCal-2 without having to learn a mathematical language
but using the power of the underlying architecture that is TLA + language
and the model checkertlc . Thus, in this thesis, we present the language
PlusCal-2 that removes all the limitations while preserving the expressive-
ness of non-determinism in the language and thus making it easily accessible
for the algorithm designer.

2. The second objective is to combat state space explosion problem by making
partial-order reduction method accessible to the users ofPlusCal-2 and tlc .
The �rst contribution to achieve this objective is to produce conditional in-
dependence predicates from the algorithms written inPlusCal-2 language.
These conditional predicates can further be used in a partial-order reduction
technique to address the state space explosion problem intlc . Thus, we pro-
pose a platform that is tlc with depth �rst search method along with the
dynamic partial-order reduction technique to address the state space explo-
sion problem. The second contribution is an extendedtlc model checker that
supports Holzmann's partial-order reduction method adapted for breadth �rst
search intlc .

1.5 Thesis Structure

This thesis is organized as follows:

� Chapter 2 presents the background of our work that includes description of
distributed and concurrent systems. Then, we brie�y discuss the original
PlusCal language by Leslie Lamport, TLA+ speci�cation language and the
tlc model checker. Then, we discuss in detail the partial-order reduction
method that includes general partial-order reduction algorithm, the concept
of independence and invisibility, and the techniques for computing subset of
transitions at a given state.

� Chapter 3 introduces the new PlusCal-2 language and its compiler. It
presents thePlusCal-2 language in detail including its syntax, organization
of an algorithm and a discussion about the method of writing an algorithm
in PlusCal-2 language. Then it describes the process of compilation from
PlusCal-2 language to TLA+ speci�cations. Finally, it explains how the tlc
model checker is used to model check the resulting speci�cations.

� Chapter 4 de�nes the independence predicates forPlusCal-2 algorithms en-
suring that two actions are independent at any given state satisfying the pred-

14

1.5. Thesis Structure

icate. Then it discusses the extension forPlusCal-2 compiler that extracts
these independence predicates. Finally it presents the proposed platform for
the PlusCal-2 independence predicates that istlc with depth �rst search
method along with the dynamic partial-order reduction method supporting
conditional independence relations.

� Chapter 5 describes the adaptation of Holzmann's partial-order reduction
method for tlc model checker. It brie�y discusses the original Holzmann's
method for partial-order reduction. Then it presents the integration details
of this method for tlc along with the examples and their results. Finally it
details the correctness proof for the adapted algorithm.

� Finally, in the conclusions, we discuss the contributions of this thesis and the
proposed future work.

15

Chapter 2

State of the art

Contents
2.1 Distributed and concurrent systems 17

2.2 PlusCal - Algorithmic Language 19

2.3 TLA + - Speci�cation Language 21

2.4 Model checking . 23

2.4.1 tlc model checker . 24

2.4.2 Other modeling languages and model-checkers 24

2.5 State space explosion problem 25

2.6 Partial-order Reduction . 25

2.6.1 Basic partial-order reduction algorithm with DFS 26

2.6.2 Independence . 28

2.6.3 Invisibility . 30

2.6.4 Techniques for computing subset of actions/transitions 31

2.6.5 Variants of partial-order reduction 33

2.1 Distributed and concurrent systems

You know you have a distributed system when the crash of a com-
puter you've never heard of stops you from getting any work done.

Leslie Lamport [Anderson 2001]

Distributed and concurrent systems are used in a wide range of domains and en-
vironments. A distributed system consists of a collection of independent computers,
connected through an infrastructure that connects di�erent entities [Andrews 2000,
Lynch 1996]. This system enables computers to coordinate their activities and tasks
and to share the resources of the entire distributed system. It should be perceived
as a single, integrated computing facility by the user. This kind of system provides
lots of advantages including the remote resource connection with scalability and
openness. The openness refers to the availability of each component to continually
interact with other hardware. And by scalability, we mean that the system could
easily be extended in order to integrate new components, users and other resources
in the system. Thus, a distributed system can grow in size and can also become

Chapter 2. State of the art

more powerful using the combined capabilities of the distributed components, than
combinations of independent systems. The distributed system can be built but it's
not easy to guarantee that it will be available to the end user. To ensure that a
distributed system will complete the required task, it must be reliable. This goal is
di�cult to achieve because of the complexity of the interactions between simultane-
ously running hardwares.

To ensure the reliability of a distributed or concurrent system, the following
characteristics must be present in the system [Andrews 2000, Anderson 2001]:

� Consistency: The system must be able to provide a consistent view of the
system to the user independent of his/her location.

� Deadlock free: The system must try to complete the requested task and must
not halt the system processing in case of deadlock. It should be able to recover
from such a state.

� Starvation freedom: It is also an important characteristics of a distributed
system. Deadlock freedom ensures that (at least part of) the system is alive.
This a weak progress property. Starvation freedom ensures that every re-
quest/process individually progresses, which implies deadlock freedom but is
strong progress property.

� Fault-Tolerance: A fault in a system can cause an error and it can lead it to
an incorrect state. For example, race conditions can cause faults that result
in a system crash, unexpected shutdown of the program or noti�cations like
illegal operation. The system must be capable of handling such situations.

� Availability: Whenever there is a failure of hardware, software or network, the
system must be able to maintain the availability of other resources to the users.
It should not be visible to the user that some resource was not accessible. To
achieve this, the system must support some recovery or redundancy method
to be available to the user.

� Scalable: The distributed system must be able to adapt to new additions of
components to the system. It must correctly operate and be transparent to
users whenever a new hardware or software is added. For example, we might
increase the number of users or servers, or overall load on the system.

� Predictable Performance: The distributed systems must have the ability to
provide required responsiveness in a timely manner.

� Resource sharing: Any user or component should be able to access hardware or
software in the system. The resource manager must provide naming scheme
and control concurrency. For example, in a client/server environment, the
resources are provided by the servers and the clients interact with them to use
those resources.

18

2.2. PlusCal - Algorithmic Language

It is a challenging task to achieve these high standards in a distributed or con-
current system. Therefore, it becomes necessary to verify such systems using formal
techniques like formal veri�cation, model checking, etc.

2.2 PlusCal - Algorithmic Language

The aim of PlusCal [Lamport 2007] language is to describe the algorithm in the
form of pseudo-code that is translated to TLA+ speci�cations for formal veri�cation
using tlc model checker. As it retains a typical pseudo-code like syntax, it provides
familiar constructs of imperative programming languages for describing algorithms,
such as processes, assignments, and control �ow. ThePlusCal compiler generates a
TLA + speci�cation, which is then veri�ed using tlc . PlusCal is a high-level and
powerful modeling language for algorithms, featuring mathematical abstractions,
non-determinism, and user-speci�ed grain of atomicity; it emphasizes the analysis,
not the e�cient execution of algorithms.

In this section, we will show how Peterson's algorithm [Peterson 1981] can be
written in PlusCal language. Peterson's two process concurrent algorithm was
designed by Gary L. Peterson in 1981, for mutual exclusion that allows two pro-
cesses to share a single resource without con�ict, using only shared memory for
communication.

--algorithm Peterson
variables turn = 1, try = [id 2 Peers 7! FALSE], pCount = 0
process Node 2 Peers

begin
ncs:

while TRUE do
skip ;
try[self] := TRUE;
turn := 2 + 1 - self;

try1:
when : (try[2 + 1 - self] = TRUE ^ turn 6= self);

cs:
pCount := pCount + 1;
try[self] := FALSE;

exit:
pCount := pCount -1;
try[self] := FALSE;

end while;
end process

end algorithm

Peterson's algorithm is a multiprocess algorithm with two processes, numbered

19

Chapter 2. State of the art

using a constant setPeers. The constant Peersis declared in the enclosing TLA+

module and is de�ned in the con�guration �le that we will discuss later in this
section. The algorithm starts with the name of the algorithm followed by the variable
and process declarations. In our example, we have three global variablesturn, pCount
and try where the variabletry is an array that is de�ned as a function in TLA + . Then
the processNodeis declared using the identi�ers from the setPeers. The PlusCal
language provides useful features to express the functionality of the algorithm as
follows:

� It provides constructs like while loop to express repetitive functionality of the
algorithm as shown in the Peterson's algorithm.

� The constructs that can halt the activity of the processes to synchronize by
waiting for a condition to become true. For example,whenconstruct that is
used in the Peterson's algorithm. It blocks the activity of the corresponding
process if the condition: (try [2 + 1 � self] = true ^ turn 6= self) does not
hold.

� It allows the grain of atomicity to be expressed by labels. A single atomic step
consists of an execution starting at a label and ending before the next label.
For example, the statementscount := count + 1; and try [self] := false ; are
executed atomically under the labelcs.

� It also provides means for expressing nondeterminism using constructs like
either and with.

Once the algorithm is written is it enclosed as a comment in a TLA+ module as
shown below:

------------------------------ MODULE Peterson---------------------------
EXTENDS Naturals, TLC, Sequences, FiniteSets
CONSTANTS Peers

(* --algorithm Peterson
� � �
end algorithm *)

n* BEGIN TRANSLATION
Translator adds TLA + speci�cation here

n* END TRANSLATION

The PlusCal translator inserts the algorithm's TLA + translation, which is
a TLA+ speci�cation, between the BEGIN and END translation comment lines,
replacing any previous version. The translator also produces a con�guration �le

20

2.3. TLA + - Speci�cation Language

that is required by the TLC model checker. We must add to that �le the commands
that specify the values of the constants declared in the algorithm. The con�guration
�le for the Peterson's algorithm will be as follows:

SPECIFICATION Spec
n* Add statements after this line.

CONSTANTS
Peers = {1,2}

PlusCal can easily describe various forms of concurrent algorithms without
adding complexity in their expression. In this section, we only discussed a multi
process algorithm and showed how it is modeled in thePlusCal language. However,
PlusCal language also provides useful constructs to express nondeterminism in
the algorithm. Once we have an algorithm written in PlusCal , we can produce its
TLA + speci�cations and model check them usingtlc model checker.

2.3 TLA + - Speci�cation Language

TLA + [Lamport 2002] is a formal speci�cation language based on the combination
of TLA(Temporal logic of Actions) and ZF(Zermelo-Fraenkel) set theory. It is
used to specify and reason about concurrent and distributed systems. It is a rich
language that has well-de�ned semantics for formal reasoning and is designed for
writing clear and expressive speci�cations. It was designed for the veri�cation of
large and complicated systems such as communication networks and cache coherence
protocols. Its goal is mainly to target the formal reasoning of concurrent and reactive
systems. The use of set theory allows TLA+ to be more expressive and easier for
specifying algorithms at a high level of abstraction.

The TLA + language provides a module structure for writing speci�cations. A
system is represented in the form of actions that specify its functionality. Each
action states the operations to be carried out and updates the context if required.
TLA + uses prime operator to represent the updated values in the context. Consider
an action a that updates a variable i then, the updated variable will be referred as
i 0. Below, we have TLA+ speci�cations for the Peterson's algorithm discussed in
the previous section.

------------------------------ MODULE Peterson---------------------------
EXTENDS Naturals, TLC, Sequences, FiniteSets
CONSTANTS Peers

VARIABLES t, try, pCount, depth, pc, Proc_data

vars �= ht, try, pCount, depth, pc, Proc_data i

21

Chapter 2. State of the art

ProcSet �= (Peers)

Init �= (* Global variables *)
^ t = 1
^ try = [id 2 Peers 7! FALSE]
^ pCount = 0
^ depth = 0
(* Process Proc *)
^ Proc_data = [self 2 Peers 7! [count 7! 0]]
^ pc = [self 2 ProcSet 7! CASE self 2 Peers ! "ncs"]

ncs(self) �= LET _try �= [try EXCEPT ![self] = TRUE] IN

LET _t �= 2 + 1 - self IN

^ pc[self] = "ncs"
^ TRUE
^ pc' = [pc EXCEPT ![self] = "try1"]
^ t' = _t
^ try' = _try
^ UNCHANGED hpCount, depth, Proc_data i

try1(self) �= ^ pc[self] = "try1"
^ : (try[2 + 1 - self] = TRUE ^ t 6= self)
^ pc' = [pc EXCEPT ![self] = "cs"]
^ UNCHANGED ht, try, pCount, depth, Proc_data i

cs(self) �= LET _count �= Proc_data[self].count + 1 IN

LET _try �= [try EXCEPT ![self] = FALSE] IN

^ pc[self] = "cs"
^ pc' = [pc EXCEPT ![self] = "exit"]
^ try' = _try
^ Proc_data' = [Proc_data EXCEPT ![self].count = _count]
^ UNCHANGED ht, pCount, depth i

exit(self) �= LET _count �= Proc_data[self].count -1 IN

LET _try �= [try EXCEPT ![self] = FALSE] IN

^ pc[self] = "exit"
^ pc' = [pc EXCEPT ![self] = "ncs"]
^ try' = _try
^ Proc_data' = [Proc_data EXCEPT ![self].count = _count]
^ UNCHANGED ht, pCount, depth i

Proc(self) �= ncs(self) _ try1(self) _ cs(self) _ exit(self)

22

2.4. Model checking

Next �= (9 self 2 Peers: Proc(self))
_ (* Disjunct to prevent deadlock on termination *)

(8 self 2 ProcSet: pc[self] = "Done" ^ UNCHANGED vars)

Spec �= Init ^ 2 [Next]vars

A TLA + formula describes behaviors, namely those for which it evaluates to
true . The main part of a TLA + speci�cation consists of an initial predicate, Init
and a next-state action,Next. The Init predicate speci�es the possible initial states,
and the next-state action, Next, speci�es the possible state transitions. An action
is a formula containing primed and unprimed variables, where unprimed variables
refer to the old state and primed variables refer to the new state. In the Peterson's
algorithm, we have four actions identi�ed asncs, try1, csand exit. Finally, the TLA
formula Specde�nes the complete TLA+ speci�cations.

2.4 Model checking

Model checking [Clarke 1981, Queille 1981] is an automated technique for the veri�-
cation of �nite state reactive systems [Clarke 1996a, Clarke 1986]. In this technique,
most of the veri�cation process is carried out independently by the system without
any involvement by the user. The model checking process can formally be de�ned
using transition system/Kripke structure M = (S; I; R; L) that represents a �nite
concurrent system and a temporal logic formula� that states the desired property
of the system. This process works by verifying if there exists some execution� of
the transition system M such that

� 6j= �

The basic idea of model checking is to traverse each path in a transition system
to verify the correctness of the entire system. The tools used for model checking
take the description/model of an algorithm in the form of a transition system that
describes the possible behaviors of the system. It also requires the set of properties
that should hold for the soundness of the system. Then, the tools model check the
speci�cations for all the possible interleavings and try to prove the correctness by
verifying the set of properties. If they �nd an execution that does not verify certain
property, they report an error and produce the counter example for the user to �nd
out the cause of the invalidation of property. Then, at this point, the user is required
to modify the description of the system.

The set of properties represented as temporal logic formulas are interpreted over
sequences of states and can be classi�ed as follows:

Safety properties. Safety properties state that something bad never happens.
For example, a mutual exclusion property states that no more than one process

23

Chapter 2. State of the art

enters the critical section to avoid a bad situation. The logical formulas to guarantee
absence of race conditions is an example of such properties.

Liveness properties. If there is no progress in a system, then a safety property
is ful�lled if it is initially satis�ed. Liveness properties assert that something good
will happen eventually. Thus liveness properties are important as they require some
progress in the system.

2.4.1 tlc model checker

The tlc model checker [Yu 1999] is used to check TLA+ speci�cations. As TLA +

can be used to write speci�cations for very large and complex systems,tlc can
only handle subclass of these speci�cations that includes most speci�cations of actual
system design. This subclass of speci�cations constitutes the high-level speci�cations
that characterize the correctness of the design.

The tlc model checker performs a breadth-�rst search to traverse the state
graph. Instead of storing complete information of a state in the state graph,
tlc uses �ngerprints that are 64-bit, probabilistically unique checksums [Yu 1999,
Rabin 1981] to represent them. This compact form of representation reduces the
amount of space required during the model checking process, hence reducing the
space complexity. For exploration of the state graph, it starts by generating all
the initial states and veri�es the invariant properties for all of them. Then, it adds
them to FIFO queue, and launches threads which repeatedly execute the process
described below:

� pick a state from FIFO queue and generate all its successor states,

� for each successor state, check if it satis�es all the invariant properties and
add it to the end of the FIFO queue,

� if some successor does not satisfy some invariant property, report an error and
print the corresponding counter example.

2.4.2 Other modeling languages and model-checkers

There are several other modeling languages that are used to specify algorithms and
then to verify them with the help of a model checker. Promela [Holzmann 2003]
is a modeling language that is used to describe a system, introduced by Gerard
J. Holzmann. A model written in Promela is composed of asynchronous processes,
bu�ered and unbu�ered message channels, synchronizing statements, and structured
data. The restrictions like lack of clock concept and �oating point numbers, allow
the representation of an algorithm at the abstract level that is often key to successful
veri�cation [Holzmann 2003].

The Promela language is supported by the SPIN model checker [Holzmann 1997],
designed by Gerard J. Holzmann, that can exhaustively check all the possible ex-
ecutions to verify the correctness of the algorithm. To overcome the state-space

24

2.5. State space explosion problem

explosion problem, the SPIN model checker also implements a partial-order reduc-
tion technique that successfully reduces the state space.

The Uppaal modeling language [Behrmann 2004] uses timed automata to rep-
resent the speci�cations of the system. It is particularly appropriate for verifying
systems that exhibit real-time aspects (in their behavior and their properties), and
we do not consider real time in this thesis.

2.5 State space explosion problem

The infamous state explosion problem is well known to be the most serious limitation
for the application of model checking techniques. It refers to the fact that the state
space generated by a transition system usually grows exponentially in the number
of processes and variables. The concurrent and distributed systems are composed of
multiple processes cooperating with each other to solve a certain task. These systems
are represented using parallelism and their processes are interleaved to represent all
the possible runs of the system.

The concept of interleaving of all the transitions from di�erent processes and
consequently, parallel composition of all the processes results in an exponential
growth of the state space with a small increase in the number of processes. For
n processes in a system, one would have to representn! di�erent orderings of the
processes. Many di�erent techniques have been proposed to mitigate state explosion
like symbolic state-space representation, state-space hashing, equivalence relations
and partial-order reduction. In the next section, we will mainly focus on partial-
order reduction that we have adapted in our work.

2.6 Partial-order Reduction

It is quite common in practice that we have asynchronous systems that are composed
of a set of processes that cooperatively solve a certain task, e.g., communication pro-
tocols, distributed systems, etc. The system executions are modeled as interleavings
of process executions. Interleaving is based on a concept that an execution is a to-
tally ordered sequence of actions and to model all possible runs of the system, all pos-
sible interleavings of actions need to be represented. Thus, resulting in an exponen-
tial increase in the number of executions that must be explored during a traditional
model checking process [Clarke 1996a]. The methods that are used for reducing the
number of executions to be explored are called reduction methods that include sym-
metry reduction techniques [Emerson 1996, Clarke 1996b, Ip 1993] and partial-order
reduction methods [Godefroid 1991, Peled 1993, McMillan 1992, Valmari 1996].

The aim of partial-order reduction is to reduce the size of the state space to be
explored by the model checkers. It exploits the commutativity of actions, which
result in the same state when executed in di�erent orders [Clarke 1999]. The re-
duced state space only represents those interleavings that must be preserved for the
veri�cation of a given property. Thus, the execution sequences in the reduced state

25

Chapter 2. State of the art

space are a subset of the execution sequences of the full state space [Clarke 1999].

2.6.1 Basic partial-order reduction algorithm with DFS

In general, partial-order reduction method is implemented using a depth-�rst search
method that is used to explore all the states in a given system. Below, we show a
basic depth-�rst search method.

1 stack contains the states in the current execution sequence
2 statespace contains all the visited states
3

4 initialize() {
5 Add initial states to stack and statespace
6 explore()
7 }
8

9 explore() {
10 s = Pop new state from stack
11 for each transition t enabled at s {
12 for each s' in successor_states(s, t) {
13 if new_state(s') {
14 add s' to the stack and statespace
15 explore()
16 }
17 }
18 } }

Depth-�rst search method can be modi�ed to implement partial-order reduction
technique by selecting a subset of all the enabled transitions at line 11 rather than
exploring all of them as in the full state space exploration process. The modi�cation
of the above code is shown below that implements basic partial-order reduction for
the above depth-�rst search method.

1 explore() {
2 s = Pop new state from stack
3 subset = select subset of transitions enabled at s
4 for each transition t in subset {
5 inPath = false
6 for each s' in successor_states(s, t) {
7 if new_state(s') {
8 add s' to the stack and statespace
9 explore()

10 }
11 else if s' is in stack
12 inPath = true

26

2.6. Partial-order Reduction

13 }
14 if ~inPath
15 break
16 }
17 }

At line 3, we select a subset of transitions in the variablesubsetfor reduced search
that represents the complete set of transitions in full search. These transitions in
the subset must have certain properties to ensure the correctness of the veri�cation
algorithm. These properties include independence, invisibility and commutativity of
the transitions which will be discussed in detail later in this section. In the literature,
the subset of transitions is computed using di�erent concepts that include ample set,
persistent sets, stubborn sets and sleep sets. The main idea behind their selection is
to �nd out a subset that is su�cient to prove the correctness of the algorithm. As
mentioned in [Clarke 1999], the calculation of this subset must satisfy the following
three goals:

� When the subset is used instead of complete set of enabled transitions, suf-
�ciently many behaviors must be present in the reduced state graph so that
the model checking algorithm gives correct results.

� Using the subset instead of complete set of enabled transitions should result
in a signi�cantly smaller state graph.

� The overhead of calculating the subset must be reasonably small.

During the selection of a subset of transitions, the idea ofreduction proviso is
used in the partial-order reduction methods to make the reduction process success-
ful. It was �rst proposed in [Valmari 1990] by Antti Valmari. The version of proviso
used in the above code at line 11 was suggested in [Holzmann 1994], that checks if
the successor state was already visited along the current path or not. Thestatespace
represents the entire state space of the system while thestack represents the cur-
rent execution path starting from the initial state. While performing traversal of
the entire state graph, we remove the states from thestack that are not in the ex-
ecution path any more, but they exist in the statespace, thus they are represented
asalready visited states. During search, it is possible that one �nds a state already
visited in the stack. This information is necessary to �nd out if there was a cycle
in the execution path. As mentioned in [Peled 1993],

A cycle is detected exactly when an edge is created pointing a state
that was already visited.

Whenever we encounter a cycle, it leads to a possibility that we missed a tran-
sition that was enabled at all the states along the cycle, but that was never taken.
One way is to try to �nd enabled transitions at the �rst state from where the cycle
starts, but this may become very expensive in practice. Thus, we try to explore all
the enabled transitions at the current state.

27

Chapter 2. State of the art

2.6.2 Independence

In distributed algorithms, which are the focus of PlusCal-2 and TLA + , the main
potential for reducing state spaces comes from the fact that many actions executed
by di�erent processes commute, and the same global con�guration is obtained when
performing these actions in either order. Whereas the standard interleaving model
of concurrency distinguishes two executions that di�er in the order in which two
independent transitions are performed, a semantics based on partially ordered exe-
cutions would identify them. Partial-order reduction techniques aim at identifying
independent transitions and avoiding the construction of equivalent runs. We as-
sume that every action a is characterized by the setCond(a) of states wherea is
enabled and, for any states 2 Cond(a), the set Act(a; s) of states that can be
reached by executinga in s. Moreover, actions are associated with processes: we
write Proc(a) to denote the process executing actiona. The following de�nitions
have been adapted from Holzmann and Peled [Holzmann 1994].

De�nition 3. Two actions a and b are independent at state s if the following
conditions hold:

� s 2 Cond(a) \ Cond(b), i.e., actions a and b are enabled ats,

� Act(a; s) � Cond(b), i.e., the execution ofa cannot disableb,

� Act(b; s) � Cond(a), i.e., the execution ofb cannot disablea, and

�
S

s02 Act (a;s) Act(b; s0) =
S

s02 Act (b;s) Act(a; s0), i.e., the same sets of states can
be reached by executinga and b in either order.

Two actions are globally independent if they are independent at every state
where they are both enabled. An actiona is safe if it is globally independent of all
actions b with Proc(b) 6= Proc(a).

This de�nition states that two independent transitions can never disable or en-
able each other and that their execution commutes from any state where they are
both enabled. It gives us a dependency relation for two transitions but in practice it
is not possible to check these properties for the transitions in a concurrent system.
Thus, as mentioned in [Godefroid 1996], this de�nition is only for semantic purpose.
To de�ne independence syntactically, the conditions for two transitionst1 and t2 in
� to be independent are (adapted from [Godefroid 1996]):

� the set of objects that are accessed byt1 is disjoint from the set of objects
that are accessed byt2.

� the set of objects read byt1 and t2 may be similar if none of them writes an
object in that set.

28

2.6. Partial-order Reduction

These conditions ensure that the data which is accessed by the two transi-
tions does not overlap (detailed discussion on these conditions can be found in
[Godefroid 1996]). The author has also discussed the concept of independence be-
tween operations for certain kinds of computation that a transition can perform on
the data. The operations can a�ect the enabledness and may also a�ect the output
of the transitions. Below, we have a table from [Godefroid 1996] that shows which
operations are dependent and which are independent of each other.

Dependency Write Read
Write dep dep
Read dep indep

Two Write operations on the same object will always be dependent as they
can result in di�erent values depending on the order in which they are executed.
Similarly, a Write and aRead operation performed on the same object are dependent
because the result of theRead operation will be di�erent. If they are executed on
same object then the output depends on the order in which they are performed.
Whereas, twoRead operations are always independent as they only read the values
of the objects, independent of the order in which they are executed.

Apart from the Read and Write operations, Godefroid [Godefroid 1996] also
discussed the dependencies that can arise between operations that are performed on
bounded FIFO channel of sizeN . Below we show and explain the two dependency
tables for these FIFO channel operations.

The FIFO channel can haveSend, Receive and Length operations that can be
performed on it to send a message on the FIFO channel, to receive a message from
the FIFO channel or to query about number of messages that are currently on the
FIFO channel. Some of these operations may be dependent on each other. For
example, if two transitions perform a Send operation then the output will depend
on the order in which they are executed.

Dependency Send Receive Length
Send dep dep dep
Receive dep dep dep
Length dep dep indep

The above table details a constant dependency relation that shows which two
operations might be dependent or independent of each other. Consider that there is
only one message in the FIFO channel, then the execution of oneReceiveoperation
will disable the execution of other Receive operation. Similarly, if there is only
one location left in the FIFO channel, then the execution of oneSend operation
will disable the execution of otherSend operation on that FIFO channel. Besides,

29

Chapter 2. State of the art

these operations on a FIFO channel are always dependent as the output of those
operations will be di�erent depending on the order in which they are executed.

In constant dependence relation, we assume that the twoSend operations are
always dependent, but it is possible that under certain conditions, they become inde-
pendent of each other. This provides us an idea of de�ning conditional dependency
relation instead of constant relation. Below we have a table from [Godefroid 1996]
that states the conditions under which two operations on a FIFO channel can be
considered to be dependent.

Dependency Send Receive Length
Send n � N n>0 and n<N n � N
Receive n>0 and n<N n � 0 n � 0
Length n � N n � 0 indep

wheren is the number of messages in the FIFO channel andN is the size of the
FIFO channel.

The interaction between atomic transitions of a concurrent or distributed algo-
rithm is an important issue for both implementation [Allen 1987] and veri�cation
[Katz 1988, Peled 1990, Valmari 1989, Katz 1992]. The concept of de�ning condi-
tional independence in the form of predicate was �rst introduce by Shmuel Katz
and Doron Peled in [Katz 1992] as follows:

De�nition 4. The independence condition between transitions is a set of predicates
� = f � �;� j�; � 2 T; � 6= � g such that for all �; � 2 T; � 6= �; � �;� (= � �;�)
satis�es:

1. for all the states where the transitions� and � are enabled and predicate� �;�

holds, the transitions commute, and

2. for all the states where the transition� is enabled and predicate� �;� holds,
then the execution of transition� does not a�ect the enabledness of� .

Now, the dependency conditions that we showed in the previous section for
the operations on FIFO channel will be considered as predicates. At any given
state, these predicates can easily be computed and can result in better reduction as
compared to constant dependency relations.

2.6.3 Invisibility

The concept of invisibility of transitions was �rst introduced by Antti Valmari in
[Valmari 1990]. A transition is said to be visible if it modi�es the truth value of any
state predicate from the set of formulas speci�ed for the system. It is described by
Antti Valmari as follows:

30

2.6. Partial-order Reduction

Let � be a collection of LTL formulas and assume that we have a set
vis(�) of visible transitions. A transition t is considered to be visible, i�

there are statess and s0 such that s t! s0 and the truth value of at least
one state predicate appearing in at least one formula in� is di�erent
at s and s0. Thus, transition t is visible if t 2 vis(�) ; otherwise, t is
invisible.

Peled [Peled 1996b, Peled 1998] de�nes the concept of visibility for a transition
system as follows:

De�nition 5. Given a system (� , P, M), where

1. � = (S, T, i) is a �nite state system,

2. P is a �nite set of propositions, and

3. M : S 7! 2P is the state labeling function.

a transition � 2 T is visible if there are two states s, t2 S such that M(s) 6=
M(t) and t 2 � (s). 2

All the concepts of invisibility in the literature use the truth value of the invari-
ants and the temporal properties to identify the invisibility of a transition between
any two given states. In this thesis, we use a similar concept of invisibility by divid-
ing a property into a set of predicates that are easier to evaluate for given pair of
states. A transition is invisible if the truth values of the set of predicates remains
unchanged in the pair of states that is the current state and the successor state.
Now, we can rede�ne the de�nition by Antti Valmari as follows:

Let
 be a collection of predicates built from the given set of prop-
erties and assume that we have a setvis(
) of visible transitions. A
transition t is considered to be properly visible, i� there are statess
and s0 such that s t! s0 and the truth value of at least one predicate
appearing in
 is di�erent at s and s0. Thus, transition t is visible if
t 2 vis(
) ; otherwise, t is invisible.

2.6.4 Techniques for computing subset of actions/transitions

As introduced earlier, the basic idea of a reduction method is to select a subset
of transitions subset and ignore the rest of the transitions to avoid unnecessary
exploration of the state space. Thus, the researchers have been trying to develop
advanced state space techniques where only few of the orderings are explored, ideally
they focus on exploring only one ordering for each set of concurrent transitions. The
basic idea behind these techniques is to investigate only few transitions at each state
that are added to the reduced state graph. The subset of transitions is chosen such
that the occurrences of remaining transitions is ignored, without modifying the
veri�cation results.

In this section, we will brie�y discuss some of the techniques that are used to
compute the subset of transitions.

31

Chapter 2. State of the art

Persistent set: Persistent set were �rst introduced by P. Godefroid and D. Pirot-
tin in [Godefroid 1993]. A subset T of the set of transitions enabled in a state
s of complete state graph is called persistent in s if whatever one does froms,
while remaining outside of T, does not interact with T. It is de�ned as follows
[Godefroid 1994]:

De�nition 6. A set of transitions, T � � , enabled in a state s is persistent in s if
and only if, for all nonempty sequences of transitions

s1
t1! s2

t2! s3 � � �
tn � 1! sn

tn! sn+1

from s in AG and including only transitions t i =2 T, 1 � i � n, tn is independent
with all the transitions in T.

Ample set: The ample sets were introduce by Doron Peled in [Peled 1996a]. They
are de�ned as follows:

De�nition 7. An ample set ample(s) for a state s is a set of actions enabled ats
that ensures the following conditions:

C0. ample(s) = ; only if enabled(s) = ; where enabled(s) is the set of actions
enabled ats.

C1. Along every path in the full state graph that starts ats, the following condition
holds: an action that is dependent on an action in ample(s) cannot be executed
before some action in ample(s) is executed.

C2. If ample(s) 6= enabled(s), then every � 2 ample(s) is invisible.

C3. No cycle in the reduced graph contains a state at which some action� is enabled,
but is never included in ample(s) for any state s along the cycle.

An ample set must satisfy the above four conditions to guarantee the successful
selection of a subset that represents the actual set of transitions at a given state.

Stubborn set
The stubborn set method was proposed by Antti Valmari in [Valmari 1990].

The basic stubborn set method or semistubborn set can be de�ned as follows
[Valmari 1996]:

De�nition 8. A set Ts � T is semistubborn or weakly stubborn at states0, if and
only if the following holds:

� D1: If t 2 Ts; t1; :::; tn =2 Ts; s0
t1 t2 ��� tn! sn , and sn

t! s0
n , then there is s0

0 such

that s0
t! s0

0 and s0
0

t1 t2 ��� tn! s0
n .

� D2: There is at least one transition tk 2 Ts such that if t1; :::; tn =2 Ts and
s0

t1 t2 ��� tn! sn , then sn
tk! . The transition tk is called akey transition of Ts at

s.

32

2.6. Partial-order Reduction

A stubborn set must satisfy the above two conditions. The �rst condition,
D1, guarantees the commutativity relation of transitions in the stubborn set with
transitions outside the stubborn set. The second condition, D2, ensures that there is
at least one transition that cannot be disabled by the transitions that do not belong
to the stubborn set. That transition is called key transition . If every transition
t 2 Ts \ enabled(s0) is a key transition then the set is called strongly stubborn set.

The basic behind these selective search techniques is to consider only those suc-
cessor states that are reachable through dependent transitions while ignoring the
independent transitions. They di�er in the way they select the representative tran-
sitions and exploit the information from the structure of the system being veri�ed.
In our work, we will be focusing mainly on ample sets that we prove to produce in
tlc with partial-order reduction technique and persistent sets.

2.6.5 Variants of partial-order reduction

Static partial-order reduction [Holzmann 1994, Kurshan 1998] and dynamic partial-
order reduction [Peled 1996a, Yang 2008, Flanagan 2005, Yang 2007] are variants
of partial-order reduction technique. In static partial-order reduction, all the com-
putations that include calculation of independence relations are performed before
executing the model checking process. In certain cases where systems are compli-
cated, these computations are complex and add additional overhead to the model
checking process. Thus, in those cases, static partial-order reduction methods can
be used to reduce the size of the state space.

In [Flanagan 2005], C. Flanagan and P. Godefroid have presented a dynamic
partial-order reduction technique for model checking softwares. They dynamically
compute the redundant parts of the state graph to avoid the unnecessary exploration.
They also adapt to the dynamic change in the structure of the algorithm, that
involves creation of new processes and threads, or new memory allocations, etc.
Its implementation is less complicated as it does not require static analysis of the
algorithm but all the additional computation and dynamic changes in the algorithm
can cause excessive consumption of resources at runtime. In large systems, this
technique might be less e�ective than static partial-order reduction where, most of
the computation is kept separate from the actual model checking process.

33

Chapter 3

Expressing concurrent and
distributed algorithms in

PlusCal-2

Contents
3.1 Requirements for a Modeling Language 36

3.2 The PlusCal-2 Language . 38

3.2.1 Structure/Organization of an Algorithm 38

3.2.2 Syntax and semantics ofPlusCal-2 43

3.3 Compilation: translation to TLA+ 48

3.3.1 PlusCal-2 Parser . 48

3.3.2 PlusCal-2 Normalizer . 50

3.3.3 PlusCal-2 Translator . 52

3.3.4 PlusCal-2 TLA generation 59

3.4 Model checking using tlc . 63

3.5 Summary . 64

Introduction

Algorithms for concurrent and distributed systems [Lynch 1996] are notoriously hard
to design, due to the number of interleavings of their constituent processes that must
communicate and synchronize properly in order to achieve the desired function. It
is all too easy to overlook corner cases, and hard to generate or reproduce partic-
ular behaviors during testing. Formal veri�cation of such algorithms is therefore
essential, and model checking in particular has been applied with great success in
this context. However, there is a conceptual gap between the languages algorithm
designers use to convey their ideas and the input languages of model checking tools.
While the former emphasize high levels of abstraction in order to present the algo-
rithmic ideas, their semantics is not precisely de�ned. Languages for model checkers
come with a precise (at least operational) semantics but tend to make compromises
in terms of the available data types in order to enable compact state representations
and the e�cient computation of operations such as the computation of successor

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

(or predecessor) states. Most model checkers, in particular symbolic ones, support
only low-level data types such as �xed-size integers and records.tlc [Yu 1999],
the model checker for the speci�cation language TLA+ [Lamport 2002], accepts a
signi�cant fragment of TLA + , which is based on set theory; it thus provides one of
the most expressive and high-level input languages for model checking. However,
TLA + models encode transition systems via logical formulas, losing much of the
(control) structure that is present in code. As a result, TLA+ representation of an
algorithm becomes unnatural for the algorithm designers.

Recently, Lamport introduced the PlusCal algorithm language [Lamport 2006b]
(originally called + Cal). While retaining the high level of abstraction of TLA + ex-
pressions, it provides familiar constructs of imperative programming languages for
describing algorithms, such as processes, assignments, and control �ow. ThePlus-
Cal compiler generates a TLA+ model corresponding to thePlusCal algorithm,
which is then veri�ed using tlc . PlusCal is a high-level language that features
set-based abstractions, non-determinism, and user-speci�ed grain of atomicity; it
emphasizes the analysis, not the e�cient execution of algorithms and aims at bridg-
ing the gap that we described above.

Unfortunately, as we discussed in chapter 1, use of Lamport'sPlusCal requires
good knowledge of TLA+ , and even of the translation ofPlusCal to TLA + . Aim-
ing at a simple translation in order to make the resulting TLA+ model human
readable, Lamport imposed some limitations on the language that can make it di�-
cult or unnatural to express distributed algorithms. After initial attempts to extend
the original language and its compiler, these limitations motivated us to develop
a new version ofPlusCal that retains the basic ideas of Lamport's language but
overcomes the shortcomings that we identi�ed. At the same time, we aim at a
translation that enables the use of reduction techniques and hence more e�cient
veri�cation.

In this chapter, we will �rst discuss the requirements for a modeling language.
Then, we will present the syntax of PlusCal-2 [Akhtar 2010] language along with
the organization of the algorithm and an example explaining the details of how to
write an algorithm in PlusCal-2 . In section 3.3, we will describe the compilation of
PlusCal-2 algorithm to TLA + speci�cations. Finally, in section 3.4, we will show
how a PlusCal-2 algorithm can be model checked using thetlc model checker.

3.1 Requirements for a Modeling Language

The purpose of a modeling language is to describewhat a system must perform,
not how a system must perform. In general, programming languages focus on the
e�ciency of the implemented system. The use of objects in object-oriented lan-
guages, to represent the data structure introduces more complexity when it comes
to handling those data structures. As a result, they add unnecessary details to the
system description. The languages that focus mainly on the accurate description of
the system instead of implementation, were introduced for the purpose of system

36

3.1. Requirements for a Modeling Language

analysis or the veri�cation of the system.
There are many languages in the literature that are proposed and used for

modeling systems. Some of these languages are similar to pseudo-code like AsmL
[Gurevich 2005] while others are input languages for model checkers like Promela
[Holzmann 2003] and SMV [McMillan 1993]. DistAlgo [Liu 2011] is another exam-
ple of pseudo-code like languages but it also generates executable implementations
for the modeled distributed systems. MACE [Killian 2007] is a domain speci�c lan-
guage, to design robust and high performance distributed systems. An extension
to MACE is a tool called CrystalBall [Yabandeh 2009] that is built on the top of
the MACE framework. It predicts potential future safety property violations in
a deployed running distributed system instead of verifying the system from initial
state.

In practice, the users of these modeling languages are algorithm designers who
are responsible for describing the functionality of the system in terms of algorithms
before actual implementation. Thus, these languages should be simple so that the
users can learn and use the language constructs easily. In general, a modeling
language must have following properties.

� High-level abstractions of system: High-level of abstractions are used
to hide the details of a system so that the algorithm designer has to focus on
less concepts at a time. Abstractions help in reducing the errors introduced
at the design stage and allows better understanding of the main goals of the
system instead of its implementation. Thus, a modeling language must have
the capability of expressing a system at high-level of abstractions.

� Ability to express concurrency: A modeling language should be able
to express concurrency for describing concurrent and distributed systems. In
other words, it should be able to describe a system in which several compu-
tations are performed simultaneously, and potentially interacting with each
other.

� Non-determinism: Non-determinism is an important concept in state tran-
sitions systems. To focus on the high-level abstractions, details are left open
for non-deterministic choices. It provides ability to express a transition in a
system that can lead to multiple states. For example, an iteration over a set
by a construct can have multiple set orderings to iterate over the set. Thus,
it can lead to multiple di�erent states that cannot be determined at the time
of initialization.

� Express fairness assumptions: A modeling language should be able to
assert fairness assumptions that are required by the liveness properties. There
are two common types of fairness conditions; strong and weak fairness. Weak
fairness of a transition ensures that the transition must occur if it remains
continuously enabled and strong fairness ensures that a transition must occur
if it is repeatedly enabled from time to time.

37

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

SMV Alloy Promela AsmL SETL PlusCal

High-level Abstraction ++ ++ ++ ++ ++ ++
Concurrency ++ + ++ - + ++
Non-determinism + + ++ ++ + ++
Fairness assumptions + - + - - -
Simplicity - - - ++ ++ ++

Table 3.1: Comparison of various modeling languages.

� Simplicity: Algorithm designers are the users of modeling languages who,
in general, use pseudo-code like languages to express the model of the system.
They should be able to easily learn and use these languages. The language
should be composed of simple and understandable constructs that do not add
complexity to the algorithm. It also helps in reducing the amount of errors
that are produced because of complex data structures and constructs.

In the literature, we found various modeling languages that focus on some of
the above properties while compromising on others as shown in the �gure 3.1. Most
of these languages have the ability to conveniently express concurrent systems at
higher-level of abstractions. However, some of these language do not have the ca-
pability to express fairness assumptions that is an important feature of concurrent
systems.

PlusCal language by Leslie Lamport provides simple pseudo-code like interface
for the user to express concurrent systems. It provides constructs to express non-
determinism in the algorithm while retaining the aspect of simplicity. It allows
set-theoretic expressions to model the system at high-level of abstraction but it has
other limitations as mentioned in chapter 1 section 1.2. Thus, in this chapter, we
propose a new version of this modeling languagePlusCal-2 that removes all the
previous limitations and has the ability to express concurrency, non-determinism,
fairness and is simple in practice.

3.2 The PlusCal-2 Language

PlusCal-2 is a language for describing concurrent and distributed algorithms. In
this section, we brie�y explain the basic structure and semantics of an algorithm
in PlusCal-2 with the help of a Leader election algorithm shown in appendix 1.2.
It is an algorithm for electing a leader in a unidirectional ring proposed by Dolev,
Klawe, and Rodeh [Dolev 1982].

3.2.1 Structure/Organization of an Algorithm

The structure of a PlusCal-2 algorithm can accommodate all the information
required to write complete speci�cations of an algorithm. It is composed of various

38

3.2. The PlusCal-2 Language

sections as in �gure 3.1 that shows a general outline of aPlusCal-2 algorithm.
Here, we explain all the sections that make up a completePlusCal-2 algorithm.

Header section. This section starts the algorithm and contains the information
about the name of algorithm, the TLA+ modules to be imported and the constants
that appear in the description of the algorithm. The constants are the parameters
of the algorithm whose value remains unchanged throughout the algorithm. Thus,
they are declared separately in the header section. The de�nition of these constant
symbols is done in the instance section which will be explained later.

Below, we have the header section from the Leader election algorithm:

algorithm Leader
extends Naturals, Sequences
constants N, I

The reserved wordalgorithm is followed by the name of the algorithm and
then the reserved wordextends lists any modules to be imported. These modules
contain de�nitions of operators that are used within the algorithm. In our example,
it imports the module Naturals and Sequencesfrom the TLA + standard library.
Then the global constant parameters (N and I in our example) are also declared in
the header section; these will later be instantiated to obtain a concrete instance for
veri�cation.

Declaration section. This section provides the space for declaring variables,
de�nitions and procedures. It is available for declaring global, process and procedure
level entities. At global and process level, one can declare variables, de�nitions
and procedures whereas at procedure level a user can only declare variables as the
functionality required by a procedure is less complicated. In contrast to the original
PlusCal , PlusCal-2 implements scoping rules for the variables, de�nitions and
procedures. The variables declared within one process cannot be accessed in any
other process. This helps in reducing some of the errors that get introduced by
accidentally using a variable of some other process.

In our Leader election algorithm, we have variable declaration as shown below:

variable
net = [p 2 0..(N� 1) 7! hi]

A user can declare multiple variables along with their initializations. In the
above example, we have variablenet that represents the network in the algorithm
on which all the nodes send messages for each other. The declaration ofnet states
that initially, it is an array indexed by the set 0..(N� 1) such that each entry in net
is equal to the empty sequencehi. This variable is declared as global variable and
will be accessible in the entire algorithm.

The next part of the declaration section in our example is declaration of de�ni-
tions, as shown below:

39

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

1 (* Header section *)
2

3 algorithm hhalgorithm nameii
4 extends hhmodule namesii
5 constants hhname of the constantsii
6

7 (* Declaration section *)
8

9 variable hhvariable declarationsii
10 de�nition hhde�nition name ii �= hhde�nition description ii
11 procedure hhprocedure nameii (hhparametersii)
12 variable hhlocal variable declarationsii
13 begin
14 hhprocedure bodyii
15 end procedure
16

17 (* Process section *)
18

19 hhstrong i fair i process hhprocess nameii [hhnumber of instancesii]
20 hhDeclaration section as aboveii
21 hhProcess sectionii
22 begin
23 hhmain code for processii
24 end process
25 hhInvariant and property de�nition section as below ii
26

27 (* Main block section *)
28 begin
29 hhmain code for algorithmii
30 end algorithm
31

32 (* Invariant and property de�nition section *)
33

34 invariant hhinvariant de�nition ii
35 temporal hhtemporal property de�nition ii
36

37 (* Instance and constraint section *)
38

39 instances hhde�nition of constants declared in Header section ii
40 constraints hhconstraint de�nition ii

Figure 3.1: General outline ofPlusCal-2 algorithm.

40

3.2. The PlusCal-2 Language

de�nition send(ch, msg) �=
[net except ![ch] = Append(@, msg)]

where sendis an operator that carries two parameters, the channel numberch
and the messagemsg. The purpose of this operator is to send the messagemsgon
a given channel over the networknet. This is written in PlusCal-2 as anexcept
expression that builds a function that is similar to net but overrides the function
value for argument ch.

Appendis an imported function from the standard module Sequences. It appends
the messagemsgat the end of sequence represented by the symbol@. The symbol
@inside an except represents the value of the original function at the argument
that is being overridden. This is a TLA symbol and in this example it stands for
net[ch].

Process section. It allows the designer to describe the algorithm in the form
of processes. The user can declare multiple processes along with their de�nitions as
it was available in original PlusCal . In PlusCal-2 , we extended this section by
introducing sub-processes. A user can now de�ne sub-process in a similar way as the
processes are de�ned. These sub-proceses can have their own variables, de�nitions
and procedures to carry out their own local tasks. These sub-processes can read
and modify the variables of their parent processes but they cannot access variables
of their peer processes. The implementation of scoping rules helps us eliminates the
chances of interference between processes.

In our Leader election algorithm, we have one process declaration inprocess
section as follows:

process Node[N]
variables

Active = TRUE, know_winner = FALSE,...
begin
...
end process

It starts with the keyword process, followed by the name of the processNode
and then, in square brackets, we de�ne the number of instances of that process in
the system. In the above example, we use a constantN that tells the number of
processes required. The name of the process is followed by thedeclaration section
of the process that is used for the declaration of local variables which cannot be
accessed outside this process. In our example, we only have variable declarations,
but a process can also have procedure and de�nition declarations if they are required
by the user. The declaration section is followed by the code section, between the
keywordsbegin and end process , that prescribes the functionality of the process.

41

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

Main block/code section. This section describes the task of a process, pro-
cedure or an algorithm that it is required to perform during its execution. This
description can be written using assignment statements, loops, etc. that we'll ex-
plain in the next section. In our example, the process declaration contains acode
section whereas the code section for the algorithm is absent as it was not required
in the algorithm.

Invariant and property de�nition section. Invariants are the predicates that
should remain true during the execution of an algorithm. These invariants and the
temporal properties are used to express the correctness of an algorithm. This section
provides the space to write the invariants and the temporal properties.

In Leader election algorithm, we have a temporal property and an invariant for
the entire algorithm that should remain true during the execution of the algorithm.
The temporal property is as follows:

temporal 9 p 2 Node : 3 Node[p].winner

where temporal is a reserved word that indicates the start of a temporal prop-
erty. This property states that the nodes in the leader election algorithm will choose
a leader at some point during execution. When a node is a leader it sets its local
variable winner to true. In the property, we use the symbol3 , that stands for 'one
day', along with the variable winnerand it can be read as one day the variablewinner
becomes true.

The processes or algorithm can also be followed by an invariant as in our example
of Leader election algorithm. The algorithm has an invariant that should remain
true during the entire execution of the algorithm. The invariant is as follows:

invariant 8p 2 Node : Node[p]:winner)
(8q 2 Noden f pg : : Node[q]:winner)

invariant is a reserved word that is followed by the expression that represents the
description of an invariant.

Instance and constraint section. Constraints are used to restrict the use of
an entity during the execution of the algorithm e.g., one can add a constraint to
bound the length of a communication channel. They can be written in this section
along with the instantiation of the constants that are used in the algorithm. The
constants are declared in the header section, at the start of the algorithm.

In our Leader election algorithm, we have constant initializations as shown below:

instances N = 3, I = 1

where instances is a reserved word that marks the start of constant initializa-
tions. Then the constants declared in theheader sectionare initialized.

42

3.2. The PlusCal-2 Language

3.2.2 Syntax and semantics of PlusCal-2

The statements in PlusCal-2 are simple and for the most part similar to the orig-
inal PlusCal . Statements are organized in the form of small blocks that represent
the atomic steps of an algorithm. These atomic steps are labeled to indicate the
start of an atomic block of statements.

Labeling conditions. Labels are essential at certain places for the purposes of
compilation. In PlusCal-2 language, if the user doesn't insert labels, the compiler
will add them and it informs the user about the locations at which the labels are
inserted. However, the user should be aware that these additional labels in�uence
the grain of atomicity, beyond the explicit labels.

The compiler follows some rules to place the labels in thePlusCal-2 algorithm
which are as follows:

� The �rst statement of any process, procedure or the main algorithm should
be labeled. As this statement marks the starting point of that entity.

� A loop statement must be labeled as it repeatedly executes its block of state-
ments. The statement following theloop statement must also be labeled as it
should be executed after the execution of abreak statement inside the loop .

� A for statement must be labeled as it executes its block of statements for each
value in the set. Similarly, the statement following a for statement must also
be labeled.

� A with statement with an existential quanti�cation over a set must be labeled.

� A goto or a procedure call statement is always followed by a labeled statement
as both these statements change the �ow control of the algorithm.

� The atomic statement must also be labeled as it changes the access rules for
the execution of the blocks of statements.

The PlusCal-2 compiler makes use of these rules and generates the labels (if
necessary) to produce the corresponding TLA+ speci�cations.

Fairness annotations. Assumptions of fairness conditions are necessary for the
veri�cation of liveness properties and they must be de�ned in terms of the TLA+

actions. PlusCal-2 provides a simple way to add these fairness conditions in the
TLA + speci�cations. A user can annotate the processes or labels using the keyword
fair in order to specify weak fairness conditions. Strong fairness conditions can be
added using the keywordstrong before the keywordfair .

In our Leader election algorithm, we have fairness annotations for the process
Nodeas shown below:

fair process Node[N]

43

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

Statements. Below we explain the PlusCal-2 statements that are used to
express an algorithm inPlusCal-2 language.

� Skip
The skip statement does not have any e�ect. It simply passes the control to
the next statement.

skip

� Assignment
The assignment statement can be an assignment to a variable or a location in
an array or a record as shown in the sample examples below:

counter := counter + 1;
array[i] := TRUE;

The �rst statement is an assignment to a variable, while the other one is an
assignment to locationi of variable array.

� Atomic
The atomic statement allows the user to have multiple labeled blocks of state-
ments to be executed without any intervention from the other processes. A
process that �rst starts executing an atomic statement, acquires a global lock
over all the labeled blocks. Only that process can progress while the other
processes do not have any right to execute further.

Below we have a general form of atomic statement,

� :atomic
B1

� : B2

end atomic

where B1 and B2 are the two separate blocks of statements that are to be
executed. The process which starts the execution should �nish the execution
of both blocks of statements atomically.

� Branch
The branch statement is composed of multiple blocks of statements guarded
by conditions. It allows execution of any one of the blocks whose corresponding
condition is true . If none of them istrue then the branch statement blocks.
It is similar to if-then-else statement in the original PlusCal language. It
can also be used instead ofwhen and either statement of original PlusCal .
The basic structure of abranch statement is shown below:

44

3.2. The PlusCal-2 Language

branch
C1 then B1

or
C2 then B2

or
. . .

or
Cn then Bn

[else B]
end branch

The above structure of branch statement will try to check the truth value of
the guard conditions C1, C2,... Cn and will select the ones that are found to
be true in order to non-deterministically execute some corresponding block
B i . If none of them are true then it will select the else block for execution,
where else is a shorthand for

or
: (C1 _ C2 _ :::Cn) then

� If-then-else/Either/When
PlusCal-2 supports partial backward compatibility by allowing usage of some
statements from the originalPlusCal language. They are encoded tobranch
statements during compilation. The syntax for these statements is similar to
the syntax available in PlusCal language. Below we have a general structure
for if-then-else statement:

if C1 then
B1

else if C2 then
B2

. . .
else B
end if

where C1, C2,... are the conditions that have to be true to execute their
corresponding blocks of statements. If none of the conditions aretrue then
it executes the else part of the if-then-else statement. The if-then-else
statement is encoded tobranch statement during PlusCal-2 compilation as
follows:

branch
C1 then B1

45

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

or
C2 ^ : C1 then B2

or
. . .

or
: (C2 _ C1 _ � � �) then B

end branch

Similarly, we have either statement and below we have a general structure
for this statement:

either B1

or B2

or ...
end either

whereB1, B2,... are the blocks of statements that will be chosen non-deterministically
by the tlc model checker for execution. It is also encoded to thebranch
statement during the compilation process as follows:

branch
TRUE then B1

or
TRUE then B2

or ...
end branch

The when statement is also available inPlusCal-2 . Its syntax is also similar
to the one available in original PlusCal . Below we have awhen statement
with a condition C1 that should be true in order to proceed the execution.

when C1;

The above statement is encoded to the followingbranch statement:

branch
C1 then skip

end branch

In the above branch statement if C1 is false then it will block until it is
executed at a state whereC1 is true . Thus, branch statement of PlusCal-
2 subsumewhen statement of PlusCal language.

� With

46

3.2. The PlusCal-2 Language

with i 2 Set
B1

end with

The above with statement executes the block of statementsB1 with a non-
deterministically chosen value for identi�er i from the set Set. It is similar
to the with statement from the original languagePlusCal . Another special
syntax for with statement is to initialize the identi�er i with a value that can
also be an expression and then execute the blockB1 with that value.

with i = Expr B1 end with

� For
The for statement is an iterative statement that executes its block of state-
ments repeatedly. Unlike with statement, for each elementi in the set de-
noted by Expr , in some �xed (but unspeci�ed) order, it executes the block
of statements inside thefor statement. Below we have a general form offor
statement,

� : for i 2 Expr
B1

end for

Although the block of statementsB1 can modify the variables appearing in the
expressionExpr, the initial set that is obtained by evaluation of the expression
Expr, is used during the execution of thefor statement.

� Loop
The loop statement is a statement that executes its block of statements for
an in�nite number of times.

loop
B1

end loop

where B1 is a block of statements that the loop will execute in�nitely. A
goto or a break statement can be used to change the execution �ow of the
algorithm.

� Procedure call
The procedure call statement is used to invoke a procedure to carry out a
di�erent task. Parameters of the procedure can be instantiated by arbitrary
TLA + expressions, typically involving variables. The name of the procedure
along with the parameters inside parenthesis is used in the call as shown below:

hhprocedure nameii (hhparametersii)

47

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

� Return/Break/Goto
The return statement is used inside the procedure to move the program con-
trol back to the point from where the procedure call was initiated. In contrast
to traditional programming languages, areturn statement in PlusCal-2 lan-
guage cannot be used to return a value of an expression. However, a value can
still be returned using a global variable. This constraint is present to simplify
the translation to TLA + speci�cations.

return

The break statement is used to stop the execution of a statement likefor ,
with or loop . It transfers the program control to the label following the
statement.

� Print
The print statement is similar to a skip statement. The only di�erence is
that it asks TLC to print the value of a given variable or expression. It is
written as follows:

print hhExpr ii

The TLA + expressionExpr can be built from variables and constants. In
particular, it can be a text within quotes.

print �Text�

3.3 Compilation: translation to TLA+

Once the algorithm is written in PlusCal-2 language, thePlusCal-2 compiler
translates it to a TLA + speci�cation. The compiler has multiple stages for translat-
ing a PlusCal-2 algorithm. These stages are explained in Figure 3.2. The parser
analyzes the algorithm and produces an Abstract Syntax tree (AST), which is then
passed on to thePlusCal-2 normalizer that simpli�es the structure of the AST
tree. In the next step, the PlusCal-2 translator converts the AST tree into blocks
of statements identi�ed by their labels, in a format called intermediate language.
This intermediate language helps organize all the information required to produce
TLA + speci�cations. Finally, the PlusCal-2 TLAgenerator assembles the TLA+

speci�cations and writes them to the �les for tlc model checker. In the sections
below, we explain the compilation process of thePlusCal-2 compiler in detail.

3.3.1 PlusCal-2 Parser

The PlusCal-2 parser contains the complete information about the syntax and
structure of a valid PlusCal-2 algorithm. The algorithm written in PlusCal-2
language is parsed and validated by the parser. In result, if the algorithm contains

48

3.3. Compilation: translation to TLA+

Figure 3.2: The compilation phases forPlusCal-2 .

49

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

an invalid syntax for statements, then a syntactic error is produced to inform the
user. The error message speci�es the location for the incorrect statement in the �le
and states the error details.

PlusCal-2 also implements the scoping rules to de�ne the structure of aPlusCal-
2 algorithm. These rules are maintained in thePlusCal-2 parser and it con�rms
that the algorithm obeys these rules. The scoping rules followed by thePlusCal-2
parser are de�ned below:

� The variables at the top level are treated as global variables.

� The variables de�ned inside a process can not be accessed outside their scope.

� Sub-processes have an access to the local variables of their parent processes.

To implement these hierarchical rules, thePlusCal-2 parser also manages a
symbol table to record the details of the algorithm. It records the declaration
section that contains variables, procedures, and de�nitions at the global level and
for all the processes in a data structure. This data structure is represented as a
stack of frames (that represents the declaration sections). As the parser parses the
PlusCal-2 algorithm, it updates the symbol table with the information that it
�nds related to declaration sections. The parser not just adds information to the
symbol table, it also consults it when necessary. It refers to the symbol table in the
following cases:

� when it �nds a variable/procedure/de�nition name in a statement it refers to
the symbol table to con�rm its declaration.

� when it �nds a variable/procedure/de�nition in declaration section it refers to
the symbol table to con�rm that it is not declared yet.

PlusCal-2 allows same names for a procedure with di�erent number of vari-
ables, to implement this �exibility in the language, the symbol table also manages
all the required information.

3.3.2 PlusCal-2 Normalizer

After the parser parses the algorithm for syntactic errors, it produces an Abstract
syntax tree (AST) for that algorithm and passes it to the PlusCal-2 Normalizer.
The normalizer traverses the whole AST tree and reorganizes/simpli�es the state-
ments. The normalization process is necessary to simplify the complexPlusCal-2
constructs that cannot be directly represented in TLA+ language. Below, we explain
the normalization process for the di�erent statements:

Branch/if-then-else statement. For branch statement, the normalization step
helps reducing irrelevant nesting ofbranch statement with other branch or if-
then-else statements. A TLA + action cannot be produced directly from the code

50

3.3. Compilation: translation to TLA+

written in PlusCal-2 language. Thus, the reorganization ofbranch statement
helps PlusCal-2 translator to generate its corresponding TLA+ action. In this
section, we will discuss two cases for which normalization is performed to reorganize
the branch statement. Below we have the �rst case where abranch statement is
followed by an unlabeled blockB3 of statements:

branch
C1 then B1

or
C2 then B2

end branch
B3

The block of statementsB3 that follows the branch statement will always be
executed after the execution of one of thebranch arm/entry. This means it can
be added to each of thebranch arm and will avoid an extra label that would have
been generated by thePlusCal-2 translator for the block of statementsB3. Below
is the new structure of the abovebranch statement after normalization:

branch
C1 then B1 B3

or
C2 then B2 B3

end branch

The second case where normalization forbranch statement is performed, is
to reduce the nesting of branch statements. If the nested branch statements
are not preceded by statements then the structure ofbranch statement can be
simpli�ed. Below we have the case that demonstrates the simpli�cation of nested
branch statements.

branch
C1 then

branch
C3 then B1

else
B2

end branch
or

C2 then B3

end branch

The normalized form of the above case is as follows:

branch

51

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

C1 ^ C3 then
B1

or
C1 ^ : C3 then

B2

or
C2 then B3

end branch

The only restriction to remove this nesting is that there should not be any
statement before the inner branch statement, that should be executed before the
execution of the inner branch statement.

With statement. The normalization of with statement involves reorganization of
statements that might be present after thewith statement. The statements directly
after the with statement are added to a new block of statements by introducing
a new label in the algorithm, thus increasing the number of actions in the TLA+

speci�cations. The normalizer tries to adjust them inside the with statement if
the expression is an assignment to an auxiliary variable and the blockB1 does not
contain a break statement.

with i = 100
B1

end with
B2

In the above case,i is an auxiliary variable that is initialized with the execution of
with statement and is inaccessible outsidewith statement. In this case, the block
of statementsB2 hanging after the statement can be added inside it if the blockB1

does not contain abreak , return .

3.3.3 PlusCal-2 Translator

The main idea behind PlusCal-2 Translator is to simplify the structure and re-
organize the data in PlusCal-2 algorithms. This eases the generation of TLA+

speci�cations and con�guration data for tlc model checker. ThePlusCal-2 algo-
rithm is simpli�ed to an intermediate format that is composed of blocks of state-
ments identi�ed by their labels from PlusCal-2 algorithm. The syntax for the
intermediate format is described below:

Intermediate format syntax The intermediate format uses 4 types ofPlusCal-
2 statements that areskip , branch , assignment and with statement where (with-
out loss of generality) thebranch is assumed not to contain anelse part. It also in-
troduces some additional variables and some assignment statements updating those

52

3.3. Compilation: translation to TLA+

variables to de�ne the control �ow of the blocks of statements. One of the addi-
tional variable is an array pc that refers to the program control or control �ow
of the algorithm. It contains a location for each process and main algorithm (if
present) identi�ed by its identity number. In the PlusCal-2 algorithm, the user
simply writes the number of processes it requires for each type of process. Then, the
compiler assigns the identities by producing a range of identity numbers for each
type of process and one for the main algorithm if present. This program control
array is used to store the labels of the next block of statements to be executed for
each process or main algorithm.

Another addition to the algorithm in intermediate format are the guards that
are added to each labeled block in this format. For the blocks belonging to the main
algorithm and the processes, this guard has the form:

cp = any

where cp holds the identity of the current process that is allowed to execute
the blocks of statements, andany is some number other than the identities of the
processes. This guard allows access to all the processes. This is introduced in
PlusCal-2 to support the atomic statement. We will explain the other guards in
the discussion about translation ofatomic statements.

Another addition to the algorithm is the declaration of all the auxiliary variables
that are introduced during the translation to intermediate format of for and with
statement. This is necessary to avoid any con�ict with the user de�ned variables.
If the con�ict exists, then the auxiliary variable is renamed by adding an extra '_'
before the auxiliary variable.

Below we explain the translation of variousPlusCal-2 constructs to interme-
diate format.

Branch. The branch statement is one of the constructs of intermediate format,
thus the only modi�cation in the structure of the branch statement is the intro-
duction of the program control statement. Now, if we take a general form of the
branch statement as shown below:

� : branch
C1 then B1

or
C2 then B2

or ...
end branch

� : ...

In this piece of code, thebranch statement is identi�ed by the label � and the
next label that follows it in the algorithm is � , so the PlusCal-2 translator will
add a program control statement inside thebranch statement. The new structure
of the above code after the translation will be as follows:

53

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

� : branch
C1 then

B1

pc := �
or

C2 then
B2

pc := �
or ... pc := �
end branch

� : ...

The when / either / if-then-else statements were introduced inPlusCal-2 for
backward compatibility and they are eliminated during PlusCal-2 normalization
phase. Thus, we do not need to handle them any more.

Loop. A loop statement is an in�nite execution of a block of statements. The
translation of this statement is performed by simply removing the construct and
adding a program control statement to move the control back to the same execution
block. If we take the following case:

� : loop
B1

end loop
� :...

In the above general form of a loop statement, we have two labels� and � . The
loop statement in � de�nes an in�nite execution of block of statements B1. The
PlusCal-2 translator will translate this code as follows:

� :B1

pc := �
� :...

The label � will be executed inde�nitely and only the statements within B1

can cause it to break and move to any other label. For example, anif-then-else
statement can have a condition to break this loop by changing the program control
variable.

With. As the syntax for intermediate language contains awith statement, thus
a with statement in PlusCal-2 algorithm remains unchanged during translation
to intermediate language. However, the body of thewith statement is translated
to intermediate language.

54

3.3. Compilation: translation to TLA+

Figure 3.3: The expansion offor statement in PlusCal-2 translation phase.

For statement. The for statement is an iteration statement that allows ex-
ecution of a block of statements with each element in the set. This statement is
further expanded during translation to intermediate format. The expansion of for
statement is shown in the Figure 3.3.

The �gure shows the exact translation of the for statement to the intermediate
format. The main idea is to pick an element in the Set and execute the block
of statements represented byB1 using that element. The translation of the for
statement introduces an auxiliary variable idS to store the values of the original set
Set. Once it picks an element from the set, it should be removed after the execution
of B1 using that element. To avoid corruption of data in Set, the auxiliary variable
idS is used to keep track of the unused elements. If the block of statementsB1

contains a break or goto statement then the auxiliary variable idS is reinitialized
to an empty set before updating the program counter value.

In the translation, we use branch statement to initialize idS if the set of values
provided by the user are not empty. After the initialization of idS, it sets the program
control variable to loop back to the same label so that the block of statements in
the for statement can be executed.

Once the auxiliary variable idS is initialized, each element in the set is chosen
using the following statement:

i := choose x 2 idS : true

This statement picks an element and then executes the block of statementsB1.
At the end of the statements, it removes the element from the set that is represented
by the following statement

55

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

idS := idS n {i}

After the removal of the element, we use branch statement that checks if the set
idS is empty then it should �nish the repetitive execution of the label by setting the
program control variable to the next label. If idS is not empty then it should repeat
the execution of the same label for the rest of the elements in the set.

Atomic statement. The atomic statement allows the execution of multiple
blocks of statements atomically without the intervention of other processes that
might want to execute the same or other set of blocks. The only restriction that this
construct has is that a user cannot usegoto statement to jump inside or outside
an atomic block. The translation of atomic statement to intermediate language
introduces an assignment statement for the variablecp in the �rst block identi�ed
by the label of the atomic statement. It sets the variable cp to the identity of
the process or main algorithm executing it. Another assignment statement for the
variable cp is added in the last block inside theatomic statement that sets it back to
the constant any. If the atomic statement only contains single block of statements,
then the atomic statement is removed.

Below we have the general form of anatomic statement.

lbl1:
atomic

B1

lbl2: B2

� � �
lbln : Bn

end atomic

Then, the translation of this statement will be as follows:

lbl1:
branch

cp = any [_ cp = self] then
cp := self
B1

end branch
lbl2:

branch
cp = self then

B2

end branch
� � �

lbln :
branch

cp = self then

56

3.3. Compilation: translation to TLA+

Bn

cp := any
end branch

In translated code above, we have labeled blocks,lbl1, lbl2,.. lbln , that represent
n blocks of statements and each of them are guarded by a condition. The blocks for
the main algorithm and the processes outside theatomic statement as well as the
�rst block of the atomic statement in the intermediate language are guarded by a
condition as follows:

cp = any

wherecp represents the identity of the current process or main algorithm that is
allowed to execute the blocks of statements. However, the blocks for the procedures
are guarded by the condition as follows:

cp = any _ cp = self

The block labeled by lbl1, is the �rst block of atomic statement that has the
above guard and allows any process to enter it. The �rst process who is granted the
access changes the value of the variablecp to its own identity self using the following
statement:

cp := self

After the execution of the block lbl1, no other process can execute thisatomic
statement or any other block of statements unless this process �nishes. All the blocks
following the �rst block of statements inside the atomic statement are guarded by
the following condition:

cp = self

This guard only allows the process or the main algorithm who �rst executed the
atomic statement to enter the corresponding block. At the end of the execution of
the last block lbln , the process or the main algorithm will set the value of variable
cp back to the constant any. That will enable the other processes to proceed with
their execution.

Now, if the atomic statement contains a procedure call and that procedure
also contains an atomic statement then the additional variabledepth is used to
determine the level of the nestedatomic statements. The value of the variable
depth is incremented by 1 at the beginning of anatomic block by adding the
following statement

depth := depth + 1

and decremented at the end by 1 by adding the following statement in the last block

depth := depth � 1

57

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

However, for procedures, an additional check is added to determine the next
value of cp, which is computed as follows:

cp' = (if depth = 1 then any else cp)

where the variablecp is assigned the value of the constantany, if process is not
running an atomic statement and otherwise, it is left unassigned.

Break, Goto and Return statements. These statements change the �ow
control of a process to other locations in an algorithm by changing the value of the
program control variable pc. The break statement is used to stop the repetitive
execution of afor or loop statement.

break

A break statement is translated to intermediate format by replacing it with an
assignment statement updating the arraypc at a location identi�ed by the variable
self. The variable self represents the identity of the process executing that block of
statements. The array pc at the location self is updated by the label that follows
the construct in which it is used.

pc[self] := hhnext labelii

The goto statement is similar to break statement but it can be used anywhere
in the algorithm and moves the program control to the label mentioned in the
statement. The general form ofgoto statement is as follows:

goto � ;

The abovegoto statement will be translated to intermediate format as follows:

pc[self] := �

The return statement is used within procedures to transfer the program control
back to the point where it is called from. Its translation to intermediate format
is similar to break and goto statements that update the variable pc. In return
statement, the label at which it should return is unknown. To keep track of that
label in PlusCal-2 , a record is built for that process or main algorithm in the
variable stack whenever a process or main algorithm calls a procedure. All the local
variables of that procedure and the location where it should return after execution
is stored in that record. The returning location can be accessed by the variable
stack[self].pc . Thus the return statement in intermediate format will be replaced
by an assignment statement for the program control variable, that will be as follows:

58

3.3. Compilation: translation to TLA+

pc[self] := stack[self].pc

Apart from the translation of the algorithm to intermediate format, the PlusCal-
2 translator also collects other necessary information from the algorithm that in-
cludes the variables, translation of de�nitions, properties, invariants, constraints
and fairness conditions. ThePlusCal-2 translator prepares a list of variables along
with their initialization data from the PlusCal-2 algorithm. The variables that
are declared at the top level inPlusCal-2 algorithm are treated as global variables
whereas the variables declared as local variables of a process or procedure are treated
di�erently. They are stored in a new data structure that is a record identi�ed by
the name of the process to store the local variables.

The local variables for a procedure are not added to the list of variables in this
phase, instead thePlusCal-2 translator saves them inside the symbol table and
whenever it encounters a procedure call, it prepares the statements that load the
information about that procedure including the variables and their initialization
information into the stack. So, the local variables of a procedure are initialized at
run time whenever they are called.

3.3.4 PlusCal-2 TLA generation

The main functionality of this phase is to generate two �les for the tlc model
checker. The �rst one is the TLA �le that contains the TLA + speci�cations for
the algorithm and the other one is con�guration �le that contains the con�guration
information. All the information that is accumulated during the previous phase is
passed on to this phase. It generates a basic structure of a TLA+ module then it
starts adding initialization information for the TLA + speci�cations.

In the next step, it prepares the TLA+ actions for the �nal speci�cations from
the algorithm in intermediate format. These TLA + actions represent the labeled
blocks of statements in thePlusCal-2 algorithm. The blocks of statements in
intermediate language are mapped directly to TLA+ actions. The labels represent
the name of the TLA+ actions whereas the statements are translated to TLA+

language. A general structure of a TLA+ action for PlusCal-2 blocks is as follows:

hhaction nameii (self) �= ^ pc[self] = \ hhaction nameii 00

^ cp = hhany=self ii
^ hhaction description ii
^ hhupdates for TLA + variablesii

A TLA + action is identi�ed by its name that represents a label in thePlusCal-2
algorithm. It is followed by a parameter self in parenthesis that carries the identity
of the process or main algorithm executing it. Its de�nition starts with two guards
where the �rst one ensures that it is the next action to be performed by the process
or main algorithm and the second one ensures that the process has an access right

59

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

to proceed. Then the statements corresponding to a label inPlusCal-2 algorithm
are translated to TLA + language and added to the action de�nition. Finally, the
TLA + variables that are modi�ed in the action de�nition are updated with the new
values.

Here, we will show how the statements in intermediate language are translated
to TLA + language.

Assignment statement. An assignment statement in intermediate language can
be an assignment to a variable or to an array/record. An assignment to a variable
is translated using a TLA+ let in where as an assignment to an array/record is
translated using alet in and anexcept forms. The following assignment statement

counter := counter + 1;

will be translated to TLA + let in as follows:

let _counter �= counter + 1 in

Now, if we have an array/record update

array[i] := TRUE;

It will be translated as

let _array �= [array except ![i] = true] in

In PlusCal-2 , we allow multiple assignments to the same variable/array/record
within one block. Now, if we have multiple assignments as

assign := assign + 1;
assign := assign + 2;

it will be translated to TLA + as follows:

let _assign �= assign + 1 in
let __assign �= _assign + 2 in

With statement. In TLA + , the with statement is represented as an existential
quanti�cation over a set if the expression in thewith statement is not an assignment
to an auxiliary variable.

� :with i 2 Set
B1

end with

This type of with statement that involves execution ofB1 by non-deterministically
choosing a value from setSet is translated as follows:

60

3.3. Compilation: translation to TLA+

� (self) �= ^ � � �
^ 9 i 2 Set :

^ B1
�

^ � � �

The special type of with statement that is assignment to an auxiliary variable
is translated to TLA + language by converting the expression ofwith statement to
a TLA + letin statement. Now, if we have following case:

� : with i = 500
B1

end with

The translation of the above block to TLA+ action will be as follows:

� (self) �= ^ _ pc[self] = \ � 00

^ cp = any
^ let i �= 500 in

^ B1
�

^ � � �

Branch statement. A branch statement from intermediate language is repre-
sented using a list of disjunctions in TLA+ language. A generalbranch statement
as shown below:

branch
C1 then B1

or
C2 then B2

or
. . .

or
Cn then Bn

end branch

is translated to TLA + as follows:

_ ^ C1

^ B1
�

_ ^ C2

^ B2
�

_ � � �
_ ^ Cn

^ Bn
�

61

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

where each disjunction is guarded by the conditionsC1, C2,.. Cn followed by their
corresponding blocks of statements. These blocks of statements are also translated
to TLA + language represented asB1

� , B2
� ,.. Bn

� in the above translation.

The actions for a process are added as a separate TLA+ de�nition that de�nes
the transition relation of a process as the disjunction of the actions it may execute.
If we take the Leader election algorithm, shown in appendix 1.2, the de�nition
representing the processNode, will be as follows:

_ Node(self) �= _ start (self)
_ forever(self)

where start and forever are the actions that represents the functionality of the
processNode.

After generating all the TLA + actions corresponding to the individual blocks in
the intermediate format, the TLA generator de�nes the overall next-state relation
as the disjunction of the transition relations for all process instances, and for the
main code section if present. For the Leader election algorithm, shown in appendix
1.2, the next-state relation will be as follows:

Next �= _ 9self 2 Node : _ Node(self)

where Node is a set containing the process identi�ers of processes of typeNode
and _ Node is a de�nition representing the actions of the process as explained earlier.
The PlusCal-2 language does not allow dynamic creation of processes. Thus, the
PlusCal-2 compiler can compute the process identi�ers statically by adding a
de�nition for each process specifying the range of identities allocated to the process
in the TLA + speci�cations. It also keeps track of the identi�ers already used by
other processes in the algorithm. The following de�nition specifying the range of
identities allocated to the processNode will be added to the TLA + speci�cations
of Leader election algorithm.

Node �= let Node_ start == 1
Node_ end == N

in Node_ start::Node_ end

Then, it checks the fairness conditions information passed on by the previous
phase. It prepares the fairness conditions and adds them to the TLA+ speci�cations.
Fairness condition for the process _Node in Leader election algorithm is as follows:

Fairness �= ^ 8 self 2 Node : WF vars (_ Node(self))

where vars is a tuple containing all the variables de�ned in the TLA + module
by the PlusCal-2 compiler. Fairness conditions for individual actions can also be
assumed and are added to the TLA+ speci�cations. For example, if we hadfair

62

3.4. Model checking using tlc

with the labels start and forever in Leader election algorithm then its corresponding
fairness condition in TLA+ speci�cation would have been

Fairness �= ^ 8 self 2 Node : WF vars (start (self))
^ 8 self 2 Node : WF vars (forever(self))

After the generation of next-state relation and fairness conditions, thePlusCal-
2 TLA generator prepares the overall speci�cations. For the Leader election algo-
rithm, shown in appendix 1.2, the overall speci�cations will be:

Leader �= Init ^ 2 [Next]vars ^ Fairness

At the �nal stage, it reads the information about properties, invariants and con-
straints. It prepares their de�nitions and adds them to the TLA + speci�cations. For
the Leader election algorithm, shown in appendix 1.2, the de�nition of a temporal
property and an invariant will be as follows:

Temp0 �= 9p 2 Node : 3 Node[p]:winner

Inv0 �= 8p 2 Node : Node[p]:winner)
(8q 2 Noden f pg : : Node[q]:winner)

It also writes their references in the con�guration �le to tell tlc model checker
to take them into account during model checking. The statements that it adds are
as follows:

For the invariant discussed above, it adds,

INVARIANT Inv0

For a temporal property discussed above, it adds,

PROPERTY Temp0

3.4 Model checking using tlc

Once thePlusCal-2 compiler generates the two �les, TLA+ speci�cation �le with
an extension of tla and a con�guration �le with an extension of cfg, then a user
can usetlc model checker to model check the speci�cations for the algorithm. The
command used to runtlc is as follows:

java tlc.TLC hh�le nameii

For the Leader election algorithm, the command will be as follows:

java tlc.TLC Leader

63

Chapter 3. Expressing concurrent and distributed algorithms in
PlusCal-2

For the Leader election algorithm without the temporal property, tlc will gen-
erate the following results:

TLC Version 2.0 of January 16, 2006
Model-checking
Parsing file Leader.tla
Parsing file D:\PlusCal\TLC\src\tlasany\StandardModules\Naturals.tla
Parsing file D:\PlusCal\TLC\src\tlasany\StandardModules\Sequences.tla
Semantic processing of module Naturals
Semantic processing of module Sequences
Semantic processing of module Leader
Finished computing initial states: 1 distinct state generated.
Model checking completed. No error has been found.

Estimates of the probability that TLC did not check all reachable states
because two distinct states had the same fingerprint:

calculated (optimistic): 1.3471211993132393E-16
based on the actual fingerprints: 1.4408040857745612E-16

106 states generated, 35 distinct states found, 0 states left on queue.
The depth of the complete state graph search is 16.

This result shows that for 3 processes in Leader election algorithm, thetlc
generated 106 states out of which 35 were the distinct states. As we increase the
number of processes, the number of states increase exponentially, consequently it
makes the model checking process slow.

3.5 Summary

System analysis or veri�cation of the system requires an expressive language for
modeling a concurrent or distributed system. In this chapter, we discussed that
a modeling language must have certain properties e.g., it must be able to express
higher-level abstractions of the system. It should also have the ability to express
concurrency and provide constructs to add non-determinism in the model of the
system. For the veri�cation of liveness properties, it should have the capability to
add fairness assumptions and along with these properties the aspect of simplicity
should not be compromised.

Then we presented a new languagePlusCal-2 , inspired by the PlusCal lan-
guage. PlusCal is a pseudo-code like language for specifying concurrent systems
that is simple in use, provides non-deterministic constructs and allows description
of the system at higher-level of abstractions. We found various limitations in this
language as discussed in chapter 1. One of the major limitations is the knowledge of
the TLA + language for adding fairness assumptions and properties. Thus, we have
strived at making our PlusCal-2 models entirely self-contained. We added features
such as nested processes, scoped declarations, user-de�ned grain of atomicity, and
fairness assumptions. We believe that the new versionPlusCal-2 ensures all the

64

3.5. Summary

properties of a modeling language without compromising on any one of them. We
also consider that it will be more accessible to users that are not experts in formal
methods.

65

Chapter 4

Partial-order reduction for
PlusCal-2 algorithms

Contents
4.1 Independence Predicates for PlusCal-2 68

4.1.1 Intermediate representation ofPlusCal-2 algorithms 68

4.1.2 Inductive de�nition of independence predicates 69

4.2 Extension to PlusCal-2 Compiler 77

4.3 Dynamic partial-order Reduction with Conditional Inde-
pendence . 82

4.3.1 tlc with depth-�rst search 83

4.3.2 Dynamic partial-order reduction 83

4.4 Summary . 90

Introduction

Model checking [Clarke 1999] is a popular veri�cation technique for concurrent and
distributed algorithms. It provides tools for deciding automatically whether proper-
ties (typically expressed in temporal logic) are veri�ed for �nite instances of systems
or algorithms, described in a formal modeling language. Its main limitation is the
well-known state explosion problem, which can be mitigated by verifying algorithms
at a high level of abstraction. Various methods have been proposed in the litera-
ture to combat the state space explosion problem including symbolic state space
representation, e�cient memory management strategies, symmetry reduction meth-
ods and partial-order reduction methods. Our focus will be on the application of
partial-order reduction methods for PlusCal-2 algorithms.

Partial-order reduction methods exploit the commutativity of concurrent tran-
sitions, which result in same state when they are executed in di�erent orders. This
idea of avoiding redundant transition sequences helps in reducing the size of state
space to be explored. Thus, the transition sequences in the reduced state graph are a
subset of the transition sequences in the full state graph. A representative transition
sequence is selected on the basis of independence relation between the transitions
in the transition sequence. This independence relation can either be constant or
conditionally de�ned. In constant independence, the relation is precomputed based

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

on De�nition 3 whereas the conditional independence relation is precomputed in the
form of predicates that are evaluated in a given context to determine the relation
between the transitions at the current state.

Partial-order methods based on constant independence relations have been widely
explored in the literature. However, conditional independence promises to allow for
better reductions, and so we investigate their use for the veri�cation ofPlusCal-
2 models. Computing independencies between the transitions or statements of
PlusCal-2 algorithms is substantially easier than inferring them from the result-
ing ��at� TLA + models. We therefore decided to extend the compiler by a static
analyzer that would produce the necessary information and feed it as an additional
input to the model checker, helping it to reduce the state explosion problem.

In this chapter, we will �rst describe the independence predicates forPlusCal-
2 algorithms, then we will explain how we extended thePlusCal-2 compiler to
produce the independence predicates. We will also discuss the proposed dynamic
partial-order reduction method by Cormac Flanagan and Patrice Godefroid pre-
sented in [Flanagan 2005] for conditional independence relation along withtlc
model checker with depth-�rst search.

4.1 Independence Predicates for PlusCal-2

One goal in the design ofPlusCal-2 was to enforce variable scoping: although
Lamport's PlusCal allows a user to declare variables local to a process, these can
still be accessed from other processes. Two actions are independent if they access
di�erent variables, and clear scoping rules help us to determine that twoPlusCal-
2 statements are independent. We now explain more precisely how we compute
predicates that ensure that two (blocks of)PlusCal-2 statements are independent
in a given state.

4.1.1 Intermediate representation of PlusCal-2 algorithms

The PlusCal-2 compiler �rst produces an intermediate representation of the given
algorithm, which consists of labeled blocks of loop-free guarded commands that
will be executed atomically. Each block is then translated to a TLA+ action, and
sequencing between blocks is ensured by adding explicit control variables. More
precisely, blocks of the intermediate language are given by the following grammar,

68

4.1. Independence Predicates for PlusCal-2

where brackets denote optional parts:

block ::= skip
j assignment[; block]
j with id 2 expr

block
end with

j branch
C1 then block

or C2 then block
...

or Cn then block
end branch

Left-hand sides of assignments can be simple variables, array components as in

net[out] := Append(net[out], [type7! �one�, number7! mynumber])

or record components. Thewith statement executes its corresponding block for
some value ofid from the set that is produced by resolving the expressionexpr. The
branch statement is executable only if some guard (state predicate)Ci is true at
the current state.

This intermediate representation allows us to compute the updates that will be
performed by the TLA+ actions corresponding to each block. From these, we can
derive independence predicates that ensure that all possible updates commute.

4.1.2 Inductive de�nition of independence predicates

In general, two blocksA and B are independent if they modify di�erent parts of the
state space, and if neither reads a variable that may be modi�ed by the other. We
will make this intuition more precise by inductively de�ning a predicate Pindep (A; B)
that guarantees that blocks A and B are independent at any state satisfying the
predicate and where both blocks are enabled. In the de�nition ofPindep (A; B), we
make use of an auxiliary predicatePunch (A; E) for a block A and an expressionE,
which ensures that the value ofE is una�ected by the execution of A.

Before we present the formal de�nition, consider the example where both blocks
A and B correspond to the assignment at line 23 of the DKR algorithm in appendix
1.2, executed by two di�erent processes _p and _ q. The representation of this
assignment in the intermediate format is

net[_Node_data[self].out] :=
Append(net[_Node_data[self].out],

[type 7! �one�, number7! _Node_data[self].mynumber])

where _Node_data is an array of records containing the local variables of the
processes including the variableout. It is indexed by a variable self that carries

69

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

the identity of a process executing this statement e.g., if it is executed by process
_ p then self = _ p. The variable self is replaced by the identi�ers _ p and _ q for
the two blocks A and B before producing the independence predicate to clarify
the presentation. We might consider the two assignments to be dependent since
both update the same global variablenet, and compute the independence predicate
false . However, they will actually be independent provided the values of the local
variables out of processes _p and _ q are di�erent, and we may therefore generate
the independence predicate

_Node_data[_ p]:out 6= _Node_data[_ q]:out:

As described earlier, the predicatePunch (A; E) ensures the independence of a
block A executed by process _p that yields a transition and an expressionE executed
by process _q, now assume A is the block corresponding to the assignment above
and that E is the expression

net[_Node_data[self].out].type = �one�;

that compares the value at a location in an array with a string value. Now, we
can de�ne the predicate Punch (A; E) such that it ensures the locations updated by
the transition corresponding to block A are not read by the expressionE, thus
ensuring the execution of the blockA leaves the value of expressionE unchanged.
The block A updates the global variablenet and the expressionE reads the same
global variable net. Then we can produce the same independence predicate

_Node_data[_ p]:out 6= _Node_data[_ q]:out

that ensures that the block A does not change any location read by the expression
E and can therefore be chosen as the predicatePunch (A; E).

Predicate for skip statement.
Computing independence predicate for askipstatement with any other block B is

trivial as the skip statement does not a�ect the state space of the algorithm. Thus,
the independence predicate,Pindep (skip; B), will be true . Similarly, the unchanged
predicate,Punch (skip; E), for a skipstatement and an expressionE will also betrue .

Predicate for two assignments.
To compute the independence predicate,Pindep (A; B), for two blocks A and B that

are both single assignments, we have to start by ensuring that the two statements do
not interfere in each other's execution by introducing conditions on reads and writes
of the two assignment statements. If one statement performs a read operation on
a variable updated by the other statement then, the two statements will in general
not commute as they will result in a di�erent state and they will be marked as
dependent (predicatefalse).

70

4.1. Independence Predicates for PlusCal-2

An assignment statement writes a new value to a location identi�ed by the
variable that can either be a scalar variable or a location in a record or an array.
We can inductively de�ne a location as follows:

loc ::= hbase; hpath; loc� ii

wherebaseis the name of a scalar variable, a record or an array,path is a sequence
of expressionse1, e2, ... en that resolves to an index in the record or array andloc�

is the set of locations,loc1, loc2,... locm , accessed in thepath expression.
Now, to ensure that the two statements do not interfere, we must guarantee that

one assignment statement does not update a location that is accessed by the other
assignment statement, described as follows:

� the location written by assignment A should not be read by assignmentB ,

� similarly, the location written by assignment B should not be read by assign-
ment A,

� and, they should not write to the same locations.

To formally de�ne the above description, we must �rst compute the set of loca-
tions, rdA and rdB , read by each assignment statementA and B respectively, along
with the locations, locA and locB , updated by these assignment statements. For
example, if we have following assignment statement

a[i] := expr

The above example writes in the arraya that is the base variable, at the index
identi�ed by the path expression i that only reads single locationi and might also
read other locations in the expressionexpr at the right hand side. Thus, an assign-
ment statement writes to the location at left hand side and might read the locations
on both sides. If we assume that we have the assignment statementA as shown
below:

a[i] := q[i + 4]

Then, locA and rdA will have the following values:

locA = h a, h[i], i i i
rdA = { h q, h[i + 4], i i i , hi i }

Two locations that represent a scalar variable can easily be distinguished by the
name of the base variable as they will always point to di�erent memory locations.
Whereas, the di�erence between two locations that represent an array or a record,
e.g., a[i] and a[j], depends on the evaluation of their paths. Once the locations
being read and written are identi�ed, then we can use the following conditions that
the independence predicate must ensure:

71

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

1. locA =2 rdB : location locA updated by A should not belong to the set of
locations, rdB , read by B .

2. locB =2 rdA : location locB updated by B should not belong to the set of
locations, rdA , read by A.

3. locA 6= locB : both the statements should update di�erent locations.

We therefore compare pairs of locationshl1; l2i and compute predicatesP l1 ;l2

that ensure that l1 and l2 do not denote the same location:

� If the base variables forl1 and l2 are di�erent then the locations cannot be
the same andP l1 ;l2 = true .

� Otherwise, we computeP l1 ;l2 by comparing the paths for the two locations.

� If both the paths have the same number of expressionse1
i ; : : : ; en

i (for
i = 1 ; 2) then

P l1 ;l2 �=
n_

j =1

ej
1 6= ej

2:

In particular, P l1 ;l2 = false if n = 0 .

� Otherwise, we de�ne P l1 ;l2 �= false .

Finally, the independence predicatePindep (A; B) is the conjunction of all predi-
catesP l1 ;l2 for all locations that must be checked to be di�erent:

Pindep (A; B) �=
� ^

l2 rd B

P locA ;l
�

^
� ^

l2 rd A

P l;loc B

�
^ P locA ;locB

We now de�ne the predicate Punch (A; E) that ensures that the assignmentA
leaves the expressionE unchanged. Clearly, this is the case if the location modi�ed
by the assignmentA is not read by the expressionE, and given the location locA

updated by A and the set rdE of locations read by expressionE, we set

Punch (A; E) �=
^

lE 2 rd E

P locA ;lE :

We compute a sound approximation of independence predicates and our com-
putation could be re�ned. For example, the independence predicate for two array
updates

v[a] := e and v[b] := e0

includes the conjunct a 6= b. In fact, the two assignments can be independent
if a = b but also e = e0 and each assignment leaves the right-hand side of the
other assignment unchanged. Since the right-hand sides of assignments are often
complex expressions whereas the left-hand sides are usually simple, we chose not to
implement this improvement in order to keep independence predicates small.

72

4.1. Independence Predicates for PlusCal-2

Figure 4.1: Append and Tail commute over non-empty sequences.

Other re�nements depend on the concrete operations that appear in the right-
hand sides. For example, FIFO channels are represented in TLA+ (and PlusCal-2)
by sequences, where message sending corresponds to appending at the end of the
sequence, and message reception to removing the �rst element of the sequence by
the Tail operation. If both actions are actually enabled, the sequence must be
non-empty, and the two actions indeed commute, as illustrated in Fig. 4.1. Since
these operations occur frequently in the algorithms we consider, we implement this
optimization.

Independence predicates for sequential composition.
Independence predicates for complex blocks are computed recursively. In partic-

ular, assume that blockA is of the form

lhs := e; A0

and that we have already computed the independence predicatesP1 for the leading
assignment andB and P2 for the blocks A0 and B . The overall independence
predicate, Pindep (A; B), is the conjunction P1 ^ P0

2 whereP0
2 is obtained by replacing

the base variable oflhs by the value of that variable after assignment. Considering
again the assignment of the running example, we obtain

P0
2

�= let _net �= [net except ![_Node_data[_ p]:out]
= Append(@, [type7! �one�, number7! mynumber])]

in P2[_net=net]:

To compute the predicate Punch (A; E) for block A as de�ned above and an
expressionE, assume that we have already computed the predicatesP1 and P2.
P1 for the leading assignment and the expressionE, Punch (lhs := e; E) and P2 for
the block A0 and the expressionE, Punch (A0; E). Then, Punch (A; E) will be the

73

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

conjunction of these two predicates,P1 ^ P0
2, where P0

2

P0
2

�= let _lhs �= e
in P2[_lhs=lhs]:

Independence predicates for branches.
Now assume that blockA is of the form

branch
C1 then A1

or C2 then A2

end

(the generalization to a branch block with n arms will be obvious). The overall
independence predicate for a branch must ensure the following conditions:

1. wheneverC1 holds (and thereforeA1 may be executed),A1 and B are inde-
pendent,

2. the symmetric condition for A2 and B , and

3. executingB cannot disable any execution ofA that would have been possible
in the original source state, or enable an execution that would have been
impossible.

Assume that we have already computed independence predicatesPindep (A1; B)
and Pindep (A2; B) that ensure independence ofA1 and A2 with B . These predicates
will be used for ensuring conditions (1) and (2). For condition (3) to hold, we require
that the conditions C1 and C2 are una�ected by any execution ofB . We therefore
obtain the overall independence predicate

^ C1) Pindep (A1; B)
^ C2) Pindep (A2; B)
^ Punch (B; C1) ^ Punch (B; C2)

The unchanged predicatePunch (A; E) for the block A and any expressionE is
given by the conjunction

^ C1) Punch (A1; E)
^ C2) Punch (A2; E)

Independence predicates for with statement.
To compute the independence predicatePindep (A; B) for a block of with statement

A � with id 2 expr A1 end with

whereA1 is the sub-block that is to be executed for some value of identi�erid in the
set obtained by evaluating expr, we again assume that we already have computed
the independence predicatePindep (A1; B). The predicate Pindep (A; B) must ensure
the following conditions:

74

4.1. Independence Predicates for PlusCal-2

� A1 (for any value of id) should be independent of blockB and

� execution ofB should leave unchanged the value of expressionexpr.

These two conditions suggest the de�nition ofPindep (A; B) as

^ Punch (B; expr)
^ 8 id 2 expr : Pindep (A1; B)

Similarly, the unchanged predicatePunch (A; E) can be de�ned as

8id 2 expr : Punch (A1; E):

Generating a matrix of independence predicates.
When computing the independence predicatesPij for pairs of atomic blocks A i

and B j , we perform some elementary simpli�cation, and in particular propagation
of constantstrue and false . We then de�ne a TLA + operator that represents the
matrix of independence predicates, and that will be passed to the model checker.
The operator takes four parameters, which correspond to the names of the blocks
and the process identi�ers _p and _ q, and is de�ned as

IndepMatrix (_ p;_ q; A; B) �=
case

A = name1 ^ B = name1 ! P11

2 A = name1 ^ B = name2 ! P12
...

2 A = namen ^ B = namen ! Pnn

wherename1, . . . , namen are the names of the TLA+ actions that are generated for
the atomic blocks of thePlusCal-2 algorithm in intermediate representation. (In
the actual implementation, we only give those entries of the matrix for whichPij

is di�erent from false , and add a catch-all clause that returnsfalse for all other
inputs.)

The correctness of the independence predicates for every combination of blocks
can be established by the following theorem:

Theorem 1. At any given state where any two blocks of statements are enabled and
the independence predicate holds, then they are independent at that state.

Before presenting the proof of the above theorem we will present a lemma that
we will use in the proof of the theorem.

Lemma 1. Two blocks of statements enabled at any state belong to two di�erent
processes.

75

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

Proof. We prove the above lemma by contradiction that two blocks of statements
enabled at any state belong to the same process. Now, assume that two blocks
of statements B1 and B2 enabled at state s belong to same process such that
proc(B1) = proc(B2). In the speci�cations generated by PlusCal-2 for tlc , we
have a global array_pc that contains one location per process in the entire algo-
rithm. It stores the name of the next block of statements to be executed for each
process and is indexed by the identity of the process. Thus, every block� : B in
TLA + representation has a guard _pc[self] = \ � 00, and since there is a one-to-one
correspondence between blocks and their labels, there can never be two enabled
blocks at any state. This contradicts the assumption that the two blocksB1 and
B2 are from same process. Hence,proc(B1) 6= proc(B2).

Now, we present the proof of Theorem 1.

Proof. We present the proof of Theorem 1 by induction on the de�nition of blocks
according to the grammar of the intermediate format.

Base case. Assume that we have two assignment statements corresponding to
two blocks B1 and B2 enabled at states and they belong to two di�erent processes
using Lemma 1. To ensure that they commute, the memory location updated by
one assignment statement must not be read by the other assignment statement.
Similarly, the memory locations updated by both the assignment statements must
be di�erent. Now, using the de�nition of conditional independence, two blocks that
are enabled at a state and they commute, are independent at that state.

Inductive case. For the inductive case, we will reconsider the di�erent cases that
we used to compute independence predicates.

� skip statement: Assume that we have two blocks,B1 that contains a skip
statement, and B2 is any other block. Using lemma 1, we can assume that
they belong to two di�erent processes. As theskipstatement does not modify
the state space, thus its independence predicate with any other block will be
true . Now, using the de�nition of conditional independence, the two blocks
enabled at a state commute and they are independent at that state.

� Sequential composition of statements: Assume that we have two blocksB1

and B2 enabled at state s and they belong to two di�erent processes using
lemma 1. B1 is a complex block containing sequential statements andB2 is
any block of statements. Now, to ensure that they commute, the memory
locations updated and read by blockB1 should not be updated and read by
the other block B2. Using the de�nition of conditional independence, these
two blocks that are enabled at a state and they commute, are independent at
that state.

� branch statement: Assume that we have two blocks,B1 that represents a
branch statement and B2 is any other block, enabled at a state and belong

76

4.2. Extension to PlusCal-2 Compiler

to two di�erent processes using lemma 1. To ensure that they commute, the
memory locations read byB1 in the conditions of the branchstatements and
in the blocks corresponding to each condition should not be updated byB2.
Similarly, the locations updated by B2 should not be updated byB1 and the
locations updated by both the blocks should not overlap. Now, using the
de�nition of conditional independence, the two blocks that are enabled at a
state and they commute, are independent at that state.

� with statement: Assume that we have two blocks,B1 that represents awith
statement

with id 2 expr B end with

and B2 is any other block, enabled at a state and belong to di�erent processes
using lemma 1. Now, to ensure that they commute, assume thatB is indepen-
dent with B2 and the locations read in the expressionexpr are not updated
by B2. Now, using the de�nition of conditional independence, the two blocks
enabled at a state commute and are independent at that state.

4.2 Extension to PlusCal-2 Compiler

The extended PlusCal-2 compiler is shown in �gure 4.2. As the independence
data collection is performed on thePlusCal-2 algorithm in intermediate format,
thus the compiler performs the extraction process at the intermediate stage of the
compilation. When the algorithm is in the intermediate format, the blocks of state-
ments that will represent actions in the TLA + speci�cations are clearly identi�ed.
Once the blocks are identi�ed, we can compare each pair of block to �nd out their
corresponding independence predicate.

The extendedPlusCal-2 compiler takes the algorithm in the intermediate for-
mat that is composed of blocks of statements. These blocks of statements are then
paired to compute their corresponding independence predicate. In the �gure, it
shows that it generates a pair of blocks and then computes its independence pred-
icate. This computation is shown in detail in the �gure 4.3 that further explains
the computation process. For the algorithm in intermediate format, it repeatedly
generates the pair of blocks for all the available blocks of statements and once all
the corresponding independence predicates are generated, it �nally computes the
independence matrix. The independence matrix is a 2-dimensional array that is
labeled by the blocks of statements and contains their corresponding independence
predicate. The independence predicates are normalized as well to simplify their
presentation in TLA + speci�cations.

To explain the implementation process in detail, we will take the blocks of state-
ments from the PlusCal-2 sorting algorithm shown in appendix 1.3.1 and its cor-
responding intermediate format for the labeled blocks is shown in appendix 1.3.2.
The sorting algorithm contains three processes,left, middle and right, and it has

77

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

Figure 4.2: The compilation phases forPlusCal-2 .

78

4.2. Extension to PlusCal-2 Compiler

Figure 4.3: Computation of independence predicate for two blocks.

four blocks of statements that areleft-lbl, start, mid-lbl and right-lbl. At this step, we
produce a list of pairs of blocks of statements and in the next step an independence
predicate is produced for each pair of blocks.

For each of the pairs of blocks, we compute its corresponding independence
predicate by comparing them and �nding out the conditions under which they can
be considered as independent. Here, we will show how we compute those predicates
for the pair of blocks left-lbl and left-lbl. It is necessary to compare a block with
itself as two instances of a same process can execute the same block at the same
time. We assume that the blocks are always executed by two di�erent processes
whose identi�es are referred as_p and _q . To compare the block left-lbl with
itself, referred in our text as A and B , we will start comparing each statement for
block A, process identity _p , with each statement in the block B , process identity
_q . For both the blocks A and B , the �rst statement is

network[_left_data[self].out] :=
Append(network[_left_data[self].out], [value7! _left_data[self].seed])

network is a global array in the sorting algorithm that is used for sending mes-
sages to other processes. Both the statements will be updating this globally de�ned
array at the location identi�ed by a process local variableout that is represented as
_left_data[self].out in the intermediate format. We must also check if this global
array is read by any of these statements and in our example both of the statements
read the array updated by the other one. To ensure the independence of these two

79

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

statements, we must have a predicate that ensures that these locations are di�erent.
This can be written as

_left_data [_ p]:out 6= _left_data [_ q]:out:

where _p and _q replace the variableself that was carrying the identity of the
process executing the block of statements. Here, the above predicate says, that the
value of the variable out for process_p must be di�erent from the value of the
variable out for process_q .

Then, we take the next pair of statements by moving to the second statement
in block B executed by processq, that is:

_left_data[_q].counter := (_left_data[_q].counter + 1)

As discussed earlier, the �rst statement in the pair modi�es a global array called
network. The second statement updates a process local variablecounter. As they
both modify di�erent variables and a statement does not read the variable modi�ed
by the other statement. Thus, they both can be considered independent of each
other and we can generatetrue independence predicate. Similarly, we take the
next pair of statements by moving to the third statement in block B and computing
its independence predicate with �rst statement in block A. The third statement in
block B executed by processq is:

_left_data[_q].seed := RANDOM(_left_data[_q].seed)

This statement by block B updates a process local variableseedthat is di�erent
from the variable seedread by the other statement in blockA. Indeed, our de�nitions
yield the independence predicate _p 6= _ q, for this pair of statements. The fourth
statement in the block B is a branch statement as follows:

branch
(_left_data[_q].counter = N) then

_pc[_q] := "Done"
or
(_left_data[_q].counter # N) then

_pc[_q] := "left-lbl"
end branch

A branch statement is composed of multiple conditions and each condition is
followed by its corresponding block of statements that is executed if that condition
holds. Now, to compare an assignment statement with a branch statement we must
make a comparison of the assignment statement with all the blocks of statements
to produce independence predicates and a comparison of the assignment statement
with all the conditions to produce unchanged predicate.

We will start by the computation of unchanged predicate by comparing the as-
signment statement with all the conditions in the branch statement. The assignment

80

4.2. Extension to PlusCal-2 Compiler

statement updates a global variablenetwork and this variable is not read by any of
the conditions in the branch statement. Therefore, for both the conditions we will
produce the true independence predicate.

The blocks of statements associated with each condition in the branch statement
only contain the assignment statement for the_pc variable. Therefore, we produce
true independence predicate for both pairs of assignment statement and blocks.
As we have completed the comparison of �rst statement in blockA with block B ,
now we will pick the second statement in blockA that is

_left_data[_p].counter := (_left_data[_p].counter + 1)

It's comparison with the �rst and the third statement in block B will result
in true predicate whereas its comparison with second statement will result in the
predicate

_p 6= _q :

The fourth statement in the block B is a branch statement and we will start the
comparison by computing the unchanged predicate by comparing the assignment
statement with both the conditions in the branch statement. The resulting un-
changed predicate for both the conditions will be_p 6= _q . Then, as both the
block of statements corresponding to the conditions only contain the assignment
statement for the variable _pc, thus we produce thetrue independence predicate
for both the blocks.

Now, as we have �nished the comparison of second statement in blockA, we will
pick the third statement that is

_left_data[_p].seed := RANDOM(_left_data[_p].seed)

The comparison of this statement with �rst and third statement in block B will
result in an independence predicate_p 6= _q whereas its comparison with second
statement will result in true independence predicate. Finally, its comparison with
the last statement in block B will also result in true independence predicate as
none of the locations updated and read by the assignment of blockA are updated
or read by the branch statement in blockB .

The �nal statement in block A is a branch statement as follows

branch
(_left_data[_p].counter = N) then

_pc[_p] := "Done"
or
(_left_data[_p].counter # N) then

_pc[_p] := "left-lbl"
end branch

It's comparison with the �rst and third statement in block B will result in
an independence predicate,true . The second statement in blockB updates the

81

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

variable counter and it is read in both the conditions of the branch statements.
Therefore, the unchanged predicate for conditions and the assignment statement
will be _p 6= _q . Both the blocks of statements in the branch statement only
update _pc, thus we generatetrue independence predicate for both the blocks.

Finally, we compare the branch statements for both the blocksA and B . Both
these statements only update the global variable_pc at locations _p and _q thus
we produce the independence predicate_p 6= _q for their blocks of statements.

After normalization of the overall independence predicate for the blocksleft-lbl
and left-lbl, we will obtain the independence predicate as follows:

let _left_data �= [_left_data except
![_q].counter = (_left_data[_q].counter + 1);
![_p].counter = (_left_data[_p].counter + 1)]

in ^ (_left_data[_p].out) 6= (_left_data[_q].out)

In the above overall independence predicate, the predicates _p 6= _ q are removed
(i.e., replaced by true) because the overall operator will only be called when the
values for _p and _ q are di�erent.

4.3 Dynamic partial-order Reduction with Conditional
Independence

A PlusCal-2 algorithm is translated to TLA + language that is supported by the
model checkertlc . The main di�culty for adapting tlc model checker to support
partial-order reduction with conditional independence predicates is the breadth-
�rst search method that is used to explore all the possible states. It complicates the
computation of the persistent set for any states that requires construction of the
set using the depth-�rst search from that state s. Secondly, in breadth-�rst search,
the stack that contains the current transition sequence is not easily accessible.tlc
provides a notion to retrieve the current transition sequence using a simply linked
list that is implemented in such a way that each state knows about its parent state in
the state space. In this way, one can easily trace back to the initial state. However,
this information is not enough for partial-order reduction methods, that support
conditional independence. They require complete knowledge about the states and
transitions in the current transition sequence.

As breadth-�rst search does not have the notion of stack, this means that one
would have to store complete information about all the states. This will in turn
increase the space complexity required to store the entire state space and the time
complexity to retrieve each state from the disk. Thus, breadth-�rst search only
supports partial-order reduction with constant dependency as we will show in detail
in the chapter 5.

In this section we propose an adaptation of dynamic partial-order reduction
method by Cormac Flanagan and Patrice Godefroid in [Flanagan 2005], which could

82

4.3. Dynamic partial-order Reduction with Conditional Independence

be implemented in a variant of tlc model checker that supports depth-�rst search
strategy for exploration.

4.3.1 tlc with depth-�rst search

The tlc model checker performs a breadth-�rst search to traverse the state graph.
Its starts by generating all the initial states and adds them to FIFO queue, then
launches threads which repeatedly execute the process described in the chapter 2.
In this section, we propose a pseudo-code of the depth-�rst search fortlc model
checker. The algorithm that we propose is single-threaded and below, we have the
pseudo-code for the initialization of the algorithm and the thread as follows:

Initialization:

1. for each initial state s not in the list of visited states,

(a) if state s satis�es the invariant properties then add it to the Stack and
the list of visited states,

(b) if it does not, then print the corresponding counter example and stop
further execution.

(c) call the thread.

Thread:

1. pick the topmost state s from the Stack,

2. generate all the successors for the states,

3. for each successor states0 not in the list of visited states,

(a) if state s0 satis�es the invariant properties then add it to the Stack and
the list of visited states,

(b) if it does not, then print the corresponding counter example and stop
further execution of the model checker.

(c) call the thread.

4. return.

4.3.2 Dynamic partial-order reduction

The reduction method that we propose fortlc model checker with depth-�rst search
is dynamic partial-order reduction method by Cormac Flanagan and Patrice Gode-
froid in [Flanagan 2005]. This technique starts by exploring an arbitrary interleav-
ing of some of the concurrent processes. During this exploration, it dynamically
tracks interactions between them to identify backtracking points. These backtrack-
ing points refer to the alternative paths in the state space that need to be explored.

83

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

In practice, the interaction between the transitions can be dependent in one
context and independent in other context. Conditional dependency relation was
introduced to relax the restriction on a pair of transitions to be dependent all the
time even if they become independent in some context during the execution. This
partial-order reduction method can easily adapt to the dynamic changes and it does
not rely on the static analysis of the algorithm. Thus, it can accommodate new
changes at runtime and it can make use of conditional independence predicates
that can serve as an additional check to �nd out more accurate information about
(in)dependence between transitions. These conditional independence predicates are
evaluated during execution for given states.

To reason about the equivalence class represented by a transition sequence, the
authors in the algorithm maintain a happens-beforerelation on the transitions in
the transition sequence. If a transition sequence contains independent adjacent
transitions then that transition sequence represents an equivalence class of sequences
that can be obtained by swapping independent adjacent transitions. For a transition
sequenceS = t1 : : : tn , a happens-beforerelation is the smallest relation onf 1; : : : ; ng
such that

1. if k � j and Sk is dependent with Sj then k ! S j ,

2. ! S is transitively closed.

Another important relation used in the algorithm is a variant of happens-before
to identify the backtracking points during the search. We adapted this relation for
our variant of algorithm and it is written as i ! S a, and holds for i 2 dom(S) and
action a if either

1. proc(Si) = proc(a) or

2. there existsk 2 f i + 1 ; : : : ; ng such that i ! S k and proc(Sk) = proc(a).

In TLA + , the notion of processes is hidden and at any state, they are represented
by their corresponding actions enabled or disabled at that state. However, for
TLA + speci�cations compiled from PlusCal-2 algorithms, process identities can
be retrieved and used in the partial-order reduction algorithm. Below we explain
the adapted dynamic partial-order reduction algorithm in detail.

The Algorithm

The main functionality of the dynamic partial-order reduction algorithm remains
the same as in [Flanagan 2005]. The algorithm maintains a transition sequenceS
starting from the initial state s0 as in a traditional depth-�rst search algorithm.
The algorithm starts with an empty transition sequence and at each state starting
from initial state s0, it picks any one transition or action a at line 12 to further
explore the state space. Before exploring any transition from the current states,
the algorithm computes any new backtracking points for the previous states visited
in the current transitions sequenceS. This is carried out by a for loop at line 3.

84

4.3. Dynamic partial-order Reduction with Conditional Independence

1 Explore(S) {
2 let s = last(S);
3 for all the transitions/actions a enabled at s {
4 if 9 i = max(f i; dom(S) j Si at state pre(S; i) is conditionally dependent and
5 may be co-enabled witha and i 6! S ag) {
6 let E = { b 2 enabled(pre(S; i)) | b = a or 9 j 2 dom(S) : j > i
7 and proc(b) = proc(Sj) and j ! S a};
8 if (E 6= Ø) then add any b 2 E to backtrack(pre(S; i)) ;
9 else add allb 2 enabled(pre(S; i)) to backtrack(pre(S; i)) ;

10 }
11 }
12 if (9 a 2 enabled(s)) {
13 backtrack(s) := f ag;
14 let done = Ø;
15 while (9 b 2 (backtrack(s) n done)) {
16 add b to done;
17 for all the variants v of b that lead to di�erent successor states
18 Explore(S:v);
19 }
20 }
21 }

The for loop picks a transition a and tries to �nd the last transition Si in the
transition sequenceS that is conditionally dependent and may be co-enabled with
the transition a, and such that i 6! S a. Conditional dependence is computed by
evaluating the independence predicate for the pair of transitionsSi and a at state
pre(S; i) that is the state from which Si was executed. If the pair of transitions are
found to be dependent at the statepre(S; i) then a backtracking setE is computed
at line 6. If backtrack set E is nonempty then one of processes inE is added to the
backtrack set of the state from whichSi was executed otherwise all of the enabled
processes are added.

Then, at line 12, the algorithm picks the next transition to be explored from
the current state. It adds it to the backtrack set of the current state and starts a
loop at line 15 over all the transitions that will be added to the backtrack set in the
future. As an action or a transition in TLA + can lead to multiple successor states,
thus all those successor states must be explored. Thefor loop at line 17 ensures
that all those paths are explored by the algorithm.

The algorithm computes the backtrack sets for the states visited in the current
sequence thus reducing the actual size of the state space to be explored. The set of
transitions that are explored at each state form a persistent set at that state and the
detection of deadlock and safety property violation is also guaranteed. This dynamic
partial-order reduction algorithm is presented for constant dependency relation be-
tween the transitions in the paper by Cormac Flanagan and Patrice Godefroid in
[Flanagan 2005]. However, as mentioned in the paper, it is possible to add con-

85

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

ditions in the form of predicates that can be easily checked for any given state.
The conditional independence predicates does not add any fundamental change in
the functionality of the algorithm and the time required for the evaluation of these
predicates would be negligible. Thus the correctness of this dynamic partial-order
reduction algorithm can still be ensured by the following theorem:

Theorem 2. Whenever a state s is backtracked during the search performed by the
algorithm in an acyclic state space, the set T of transitions that have been explored
from s is a persistent set in s.

The original proof of the above theorem does not require any fundamental change
for the conditional dependency relation. The di�erence is the evaluation of the
independence predicate at the state for which the backtrack set is being computed.
Here, we present the proof from [Flanagan 2005] adapted for our variant of dynamic
partial-order reduction algorithm.

Let AG denote the state space of the system and lets0 denote its unique initial
state. The postcondition for a transition sequenceS and a transition a refers to the
lines 4 to 9 in the algorithm,

PC(S; j; a) is de�ned as
if

S is a transition sequence froms0 in AG and i = max(f i 2 dom(S)j
Si at state pre(S; i) is conditionally dependent and co-enabled with
a and i 6! S ag) and i � j

then
if E (S; i; a) 6= Ø
then backtrack(pre(S; i)) \ E (S; i; a) 6= Ø
elsebacktrack(pre(S; i)) = enabled(pre(S; i))

where E(S; i; a) is a function to compute the backtrack set that refers to the
condition at line 6 in the algorithm. If a transition a has a dependency with tran-
sitions Si in transition sequenceS, then the function to compute the backtrack set
E(S; i; a) for the state pre(S; i) is de�ned as

E(S; i; a):
{ q 2 enabled(pre(S; i)) j q = a or

9j 2 dom(S) : j > i and proc(q) = proc(Sj) and j ! S ag

Now, the postcondition PC for all the transitions/actions a and their corre-
sponding transition sequencesw in the algorithm Explore (S) can be de�ned as

8 a 8w : PC(S:w; jSj; a)

Now, we will start the proof of the theorem by a lemma

86

4.3. Dynamic partial-order Reduction with Conditional Independence

Lemma 2. Whenever a state s reached after a transition sequence S is backtracked
during the search performed by the dynamic partial-order reduction algorithm, the
set T of transitions that have been explored from s is a persistent set in s, provided
the postcondition PC holds for every recursive call Explore(S.t) for allt 2 T.

Proof. Let s be the last state reached in the transition sequence S denoted aslast(S)
and T be the set of transitions in the backtrack set of states. We will prove the
above lemma by contradiction assuming that a transitiontn is dependent with some
transition t 2 T. Assume that there existst1; � � � ; tn =2 T such that:

1. S:t1 � � � tn is a transition sequence froms0 in AG and

2. t1; � � � ; tn� 1 are all independent with T.

where S:t1 � � � tn refers to extending the transition sequenceS using the transitions
t1 � � � tn . Using the property of conditional independence, we can infer thatt is
enabled in the statelast(S:t1 � � � tn� 1) and hence co-enabled withtn . Without loss
of generality, assume thatt1 � � � tn is the shortest sequence. Thus, we have

81 � i < n : i ! t1 ��� tn � 1 n

(If this was not true for some i , the same transition sequence withouti would
also satisfy the assumptions and be shorter.) Let! denote the resulting (possibly
empty) transition sequence produced by removing fromt1 � � � tn� 1 all the transitions
t i (if any) such that

i 6! t1 ��� tn � 1 tn

As S:t1 � � � tn is a transition sequence,S:! is itself a transition sequence froms0

in AG. Although tn is enabled inlast(S:t1 � � � tn� 1), tn may no longer be enabled in
last(S:!), but this does not matter for the proof.

Now, if proc(t) = proc(tn) then this implies that t = tn (by Lemma 1), con�icting
with the assumptions that t 2 T but tn =2 T. Henceproc(t) 6= proc(tn).

Since t is executed by a di�erent process thantn and sincetn is independent
with all the transitions in ! , then S:! , S:!:t and S:t:! belong to same equivalence
class.

Let i = jSj + 1 , and consider the postconditionPC(S:t:!; i; t n) for the recursive
call Explore(S:t). Clearly,

i 6! S:t:! tn

(sincet is in a di�erent process thantn and sincet is independent with t1; � � � ; tn� 1).
In addition, we have (by de�nition of E):

E (S:t:!; i; t n) �
f t1; � � � ; tn� 1; tng \ enabled(s)

Moreover, we have

87

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

8j 2 dom(S:!) : j > i) j ! S:t:! tn

Hence, byPC for the recursive call Explore(S:t), either E(S:t:!; i; t n) is nonempty
and at least one process fromE(S:t:!; i; t n) is in backtrack(s), or E(S:t:!; i; t n) is
empty and all the processes enabled ins are in backtrack(s). In either cases, at
least one transitions amongf t1; � � � ; tng is in T. This contradicts the assumption
that t1; � � � ; tn =2 T.

Now, using the above lemma we present the proof of Theorem 2 adapted for
conditional independence relation from [Flanagan 2005].

Proof. Let s be the last state reached in the transition sequence S denoted aslast(S)
and T be the set of transitions in the backtrack set of states. The proof is by
induction on the order in which states are backtracked.

Base case. Since the state spaceAG is acyclic and since the search is performed in
depth-�rst order, the �rst backtracked state must be a deadlock where no transition
is enabled. Therefore, the postcondition for that state becomes8 a : PC(S; jSj; a).

Inductive case. Assume that each recursive call to Explore(S:t) satis�es its
postcondition and T is a persistent set ins using Lemma 2. Now, we show that
Explore(S) ensures its postcondition for anya and ! such that S:! is a transition
sequence froms0 in AG.

1. Suppose that some transition in! is dependent with some transition inT. In
this case, we split! into X:t:Y , where all the transitions in X are independent
with all the transitions in T and t is the �rst transition in ! that is dependent
with some transition in T. Since T is a persistent set ins, t must be in T
(otherwise, T would not be persistent in s). Therefore, t is independent with
all the transitions in X . Using the property of conditional independence, it
follows that the transition sequencet:X:Y is executable froms. By applying
the inductive hypothesis to the recursive call Explore(S:t), we know

8 a : PC(S:t:X:Y; jSj + 1 ; a)

which implies by the de�nition of PC

8 a : PC(S:t:X:Y; jSj; a)

Sincet is conditionally independent with all the transitions in X , we also have

8 i 2 dom(S:t:X:Y) : i ! S:t:X:Y a i� i ! S:X:t:Y a

Therefore, by de�nition

88

4.3. Dynamic partial-order Reduction with Conditional Independence

PC(S:t:X:Y; jSj; a) i� PC(S:X:t:Y; jSj; a)

We can thus conclude that

8 a : PC(S:X:t:Y; jSj; a)

2. Suppose that all the transitions in ! are independent with all the transitions
in T and a 2 backtrack(s). Then,

(a) a 2 T;

(b) a is independent with all the transitions in ! ;

(c) proc(a) is a di�erent process from any transition in ! ;

(d) a is enabled atlast(S:!) and last(S);

(e) 8i 2 dom(S) : i ! S:! a i� i ! S a.

Thus, we havePC(S:!; jSj; a) i� PC(S; jSj; a).

3. Suppose that all the transitions in ! are independent with all the transitions
in T and a =2 backtrack(s). Pick any t 2 T. We then have that

(a) proc(t) 6= proc(a);

(b) t independent with all the transitions in ! ;

(c) a is enabled atlast(S:!) and last(S:t:!);

(d) 8i 2 dom(S) : i ! S:! a i� i ! S:t:! a.

Thus, we havePC(S:!; jSj; a) i� PC(S:t:!; jSj; a). By applying the inductive
hypothesis to the recursive call Explore(S:t), we know

8 a : PC(S:t:!; jSj + 1 ; a)

which implies by de�nition of PC that

8 a : PC(S:t:!; jSj; a)

which in turn implies that

8 a : PC(S:!; jSj + 1 ; a), as required.

89

Chapter 4. Partial-order reduction for PlusCal-2 algorithms

4.4 Summary

Conditional independence predicates can be used to achieve successful partial-order
reduction results for algorithms that perform operations on arrays, records, etc.
The independence of these operations can only be detected at the time of execution
and statically computed independence relation would be too conservative to be
useful as the relation is �xed before performing model checking process. Thus,
in this chapter, we presented how the independence predicates can be computed
for PlusCal-2 algorithms. Then, we described how we extended thePlusCal-2
compiler to produce these independence predicates.

We proposed an adaptation of the dynamic partial-order reduction algorithm due
to Cormac Flanagan and Patrice Godefroid, based on depth-�rst search, that could
make use of the independence predicates generated by ourPlusCal-2 compiler. We
did not implement this algorithm, however, because it would require major changes
to tlc , which is based on a breadth-�rst state exploration.

90

Chapter 5

Static partial-order reduction for
tlc

Contents
5.1 Adapted partial-order reduction for tlc 92

5.2 De�ning constant independence relation 94

5.3 Examples and Results . 95

5.3.1 Leader election algorithm . 95

5.3.2 Sort algorithm . 96

5.4 Proof of correctness . 98

5.5 Summary . 99

Introduction

In practice, not all concurrent and distributed algorithms are composed of entities
that use the shared memory locations for their local computations. Such systems do
not require �ne-grained analysis of their atomic transitions to determine indepen-
dence relation as the relation remains constant and it can be determined statically
that the processes access di�erent locations or not. In the previous chapter, we
focused on computing useful independence predicates for the concurrent and dis-
tributed algorithms using shared memory that leads a pair of transitions to be
dependent in one context and independent in the other. Now, we will show how
constant dependency relation can be used forPlusCal-2 algorithms and how the
partial-order reduction method in tlc model checker can reduce the state space
explosion problem.

In this chapter, we will �rst present the extended tlc model checker with an
implementation of a static partial-order reduction technique [Akhtar 2011] adapted
from the method by Holzmann and Peled presented in [Holzmann 1994]. This will be
followed by a description of the constant independence information. Then, we will
discuss the results of our implementation for Leader election and concurrent sorting
algorithm from SPIN distribution and �nally, we will show the proof of correctness
for the subset of actions that are selected at any point in the reduced search space
using the conditions for ample sets.

Chapter 5. Static partial-order reduction for tlc

5.1 Adapted partial-order reduction for tlc

tlc [Yu 1999] is a powerful model checker used to verify speci�cations written in
TLA + . It was designed for the veri�cation of large and complicated systems such
as communication networks and cache coherence protocols. Thetlc model checker
performs a breadth-�rst search to traverse the state graph. It starts by generating
all the initial states and checks if they satisfy the invariant properties. If they satisfy
the invariant properties, then it adds them to a FIFO queue, if not then it reports
an error and stops any further execution. Then it launches threads which execute
the process described below:

� pick a state at the front of the FIFO queue and generate all its successor states,

� for each successor state, check if it satis�es all the invariant properties and
add it to the end of the FIFO queue,

� if some successor does not satisfy some invariant property, report an error and
print the corresponding counter example.

Once the model checking process is complete, the temporal properties are veri�ed
over the entire state space. We extendtlc by an implementation of the partial-order
reduction technique �rst proposed by Holzmann and Peled in [Holzmann 1994]. The
original algorithm is meant for depth-�rst search algorithm whereas in our imple-
mentation we made some minor changes for adapting it to a breadth-�rst search
algorithm. The other modi�cation concerns the concept of processes, which is fun-
damental in [Holzmann 1994]. Processes are not present in TLA+ where transitions
are described byactions over a �at system model. However, the TLA+ actions
generated by the PlusCal-2 compiler all have a parameterself that represents
the PlusCal-2 process executing the action. Theself parameter is also necessary
for de�ning the constant independence relation in the form of a matrix to perform
partial-order reduction.

The pseudo-code of the model checking algorithm with partial-order reduction
that we implemented is as follows:

1 main() {
2 curstate = Pick a state from FIFO queue
3 order enabled actions for curstate /* reorder actions, as explained below */
4 for each action a in enabled actions of curstate {
5 InPath = true
6 for each succstate in successors of action a {
7 if succstate in not already seen {
8 if succstate violates any invariant {
9 print counter example and stop model checking process

10 }
11 add succstate to the list of already seen states

92

5.1. Adapted partial-order reduction for tlc

12 add succstate to the FIFO queue
13 }
14 else if succstate seen in current path {
15 InPath = false
16 }
17 }
18 if InPath and IsActionSafe(a) {
19 break from loop over enabled actions
20 } } }

This algorithm picks a state from the FIFO queue of tlc model checker and
performs a critical step at line 3, to reorganize the list of actions. In the original
technique, the processes were reordered on the basis of safety principles. The notion
of processes slightly changes for TLA+ by an action corresponding to each process
and these actions are reordered on the basis of safety principles. The safety property
for an action can be de�ned as follows: an action is safe if it is independent of all
other currently enabled actions and if it is non-observable by the formulas under
veri�cation.

1 orderActions(curstate) {
2 for each action a in enabled actions of curstate {
3 isIndependent = action a independent of all other enabled actions
4 isNotObservable = check observability for each successor state of a at curstate
5 if isIndependent and isNotObservable {
6 mark action a as safe
7 }
8 else {
9 mark action a as unsafe

10 } }
11 reorganize the list of actions as safe:unsafe:disabled
12 }

In the above algorithm, the independence relation computed at line 3 between
the actions is represented using the independence matrix described in the previous
chapter. However, it is constructed using constant predicates as required by the
Holzmann and Peled's method of partial-order reduction. The method to specify
these relations is explained in section 5.2. The second condition of non-observability
for an action to be safe is computed at line 4. For all the pairs of current and
successor states, we check if some state component evaluated by the invariant is
changed by the action. If it changes, then we mark that action to be observable as
it a�ects the invariant properties.

Then, the actions are reordered in such a way that the safe actions are placed on
the top of the list, then the actions that are unsafe and �nally, the actions that are
disabled. Enabledness of actions is determined by computing the successors of all
actions at the current state; the results of this computation is reused when actually

93

Chapter 5. Static partial-order reduction for tlc

producing the successor states, although not all of them have to be stored for further
veri�cation if the reduction is successful.

Then, in the model checking algorithm with partial-order reduction, each suc-
cessor of an enabled action at the current state is examined at lines 7 and 14. If
the successor state was not already visited during the search then it is added to the
list of visited states and to the FIFO queue for further exploration. At line 14, if
the successor state was already seen during the search then we check if it was seen
in the current execution path to avoid the ignoring problem. By ignoring problem
we mean that whenever we encounter a cycle in an execution path, then there is a
possibility that we ignored a safe action along the path.

As tlc implements breadth-�rst search, it does not have a notion of stack that
contains the current execution path. However,tlc provides a mechanism to trace
back to the initial state. We use this mechanism to �nd out the existence of the
successor state in the current path. Finally, at line 18 from the original partial-order
reduction algorithm, we have the reduction proviso that must hold for a successful
reduction process. The condition of reduction proviso guarantees that there is no
cycle in the current sequence and the action selected for further exploration is in-
dependent of rest of actions enabled at that state, and non-observable in the state
graph. As the original static partial-order reduction algorithm guarantees to pre-
serve safety and liveness properties, our implementation intlc also preserves those
properties.

5.2 De�ning constant independence relation

Holzmann and Peled's partial-order reduction method requires the constant inde-
pendence relation between actions to guarantee the global independence of an action.
This independence relation can be computed for each pair of actions in a triangular
matrix and added to the TLA + speci�cations in the form of the following TLA +

de�nition:

IndepMatrix (A; B) �=
case

A = name1 ^ B = name1 ! P11

2 A = name1 ^ B = name2 ! P12
...

2 A = namen ^ B = namen ! Pnn

where A and B are the action names that tlc uses to retrieve the independence
value for the pair of actions. name1, . . . , namen are the names of the TLA+

actions that are generated for the atomic blocks of thePlusCal-2 algorithm in
intermediate representation. P11; P12; ::Pnn de�ne the independence value that can
either be true or false in the case of constant independence relation.

This relation for Leader election algorithm shown in appendix 1.2 is de�ned as
follows:

94

5.3. Examples and Results

IndepMatrix (A; B) �=
case

A = " start " ^ B = " start " ! true
2 A = " start " ^ B = " forever " ! true
2 A = " forever " ^ B = " forever " ! true
2 other ! false

It can be written in the compact form as below:

IndepMatrix (A; B) �= true

5.3 Examples and Results

We implemented two algorithms that are contained in the distribution of the Spin
model checker [Holzmann 2003] and are used to check the performance of partial-
order reduction within Spin. The two algorithms are the leader election algorithm
and a concurrent sorting algorithm that we used previously in this thesis as well.

5.3.1 Leader election algorithm

The Leader election algorithm that we implemented inPlusCal-2 for generating
TLA + speci�cations is the algorithm for electing a leader in a unidirectional ring
due to Dolev, Klawe, and Rodeh [Dolev 1982], shown in appendix 1.2.

The PlusCal-2 compiler generates two actions for this algorithm, which cor-
respond to the blocks of actions labeledstart (initialization) and forever(one pass
through the loop). It should be noted that the second action is of much coarser
granularity than that of a typical transition in Spin, but if we take a closer look
at the modi�cations performed by this action, they remain local to the process.
Figure 5.1 shows the numbers of states generated for di�erent numbers of processes
with and without partial-order reduction.

As the number of processes increases, the number of states generated bytlc in-
creases exponentially, resulting in state space explosion. This makes it impractical to
verify larger instances of this algorithm. In contrast, the number of states increases
only linearly when partial-order reduction is used. The running time of tlc , shown
in �gure 5.1 is reduced accordingly, varying between 0.09 seconds for 4 processes to
0.17 seconds for 12 processes (on a standard laptop running Windows) compared
to 0.2 and 349 seconds, respectively, without partial-order reduction. These results
clearly show that our method is e�ective for this algorithm.

As the partial-order reduction method by Holzmann preserves both the safety
and the liveness properties of concurrent systems, we also veri�ed a safety and
liveness property for the Leader election algorithm. One of the safety properties for
Leader election algorithm is that only one process should be selected as a leader,
this can be written formally in PlusCal-2 as follows:

95

Chapter 5. Static partial-order reduction for tlc

Figure 5.1: Results for the DKR algorithm with and without partial-order reduction
in tlc .

invariant 8p 2 Node : Node[p]:winner)
(8q 2 Noden f pg : : Node[q]:winner)

winner is a process local �ag variable in Leader election algorithm that identi�es
the leader process. To guarantee that only one process is selected as a leader,
then the other processes should have their �ags set tofalse . For veri�cation of a
liveness property for Leader election algorithm, we state that one of the processes
that are competing in the selection procedure, will become the leader at the end of
the procedure. This property can be written formally in PlusCal-2 algorithm as
follows:

temporal 9p 2 Node : 3 Node[p]:winner

winner is a local variable of processNode and it is set to true if a process
is the leader. For the veri�cation of the above property, we must also assume
fairness conditions for the processNode that can easily be done by simply adding
the reserved wordfair before the name of the process as shown below:

fair process Node[N]

5.3.2 Sort algorithm

The second algorithm, again taken from the Spin distribution, concurrently sortsN
random numbers. It is also known to be an example in which partial-order reduction
works well in Spin.

The main objective of the sort algorithm is to concurrently sort the N randomly
generated numbers. The algorithm contains de�nitions for three di�erent types of
processes:left, middle and right. The processleft generates the random numbers

96

5.3. Examples and Results

using the de�nition RANDOM and passes them on to the network. The process
middlehasN instances and each of the instances compare the new number with the
one they already have. If its found to be larger, then it passes it on to the next
process through the network otherwise it keeps the new number and passes the one
it already had. The processright will always receive the number that is larger than
all the other numbers held by the instances of processmiddle.

Figure 5.2: Model checking results for the sorting algorithm with and without
partial-order reduction in tlc .

The full search by the model checker for this algorithm becomes exponential
and it can be reduced if we manage to de�ne the independence between the blocks
of statements that yield transitions. We passed the algorithm to thePlusCal-2
compiler that successfully generated the TLA+ speci�cation. Then, we added the
constant independence relation for the actions in the speci�cations that contains no
dependence between the actions as they never interfere in each other's execution.
The variables updated by all the processes are the local variables for those processes.
The constant independence relation is represented using the independence matrix
in a compact form as follows:

IndepMatrix (A; B) �= true

Figure 5.2 shows the model checking results for the TLA+ speci�cation of the
sorting algorithm. We model checked the speci�cations for 8 to 16 processes on
a standard laptop running windows and found that partial-order reduction works
e�ciently as shown in the �gure 5.2. On the other hand, without independence
information the model checker results in an exponential increase in the number of
states it generates.

97

Chapter 5. Static partial-order reduction for tlc

5.4 Proof of correctness

In this section, we prove that the subset of transitions selected at any point in the
reduced search space using our adapted reduction algorithm is an ample set. The
exploration of only the transitions in ample set at each state during reduced search is
su�cient for the veri�cation of stuttering invariant LTL properties [Godefroid 1994,
Clarke 1999]. Since TLA is a stuttering invariant subset of LTL, it is therefore
enough to show that the set of actions explored at every state by the reduced model
checking algorithm is an ample set. The conditions for the ample sets are discussed in
detail in chapter 2 and below we present the proof of correctness for our adaptation.

C0: ample(s) = ; if and only if enabled(s) = ;

In our implementation, we reorder the set of enabled transitions before their expan-
sion in such a way that the safe transitions are executed �rst which form the subset
of transitions selected at that point. If we are unable to �nd one such transition,
then no reduction is performed and all of the enabled transitions are selected for
exploration. Thus, the subset of transitions is only empty if there are no enabled
transitions.

C1: Along every path in the full state graph that starts at state s, the
following condition holds: a transition that is dependent on a transition in
ample(s) cannot be executed without a transition in ample(s) occurring
�rst.

To prove that the condition C1 holds, let s be some state reached by the reduced
model checking algorithm and denote byA the set of actions explored by the reduced
model checking algorithm at states. Assume that we have an execution sequence
� = s

t0! s0
t1! s1 : : : in the full state graph and that action t i in the execution

sequence� is dependent on an actiont 2 A. We have to show that tk 2 A for some
k � i . There are two cases to consider.

Case 1: i = 0 : In this case,t i is the �rst action in the execution sequence� . Since
t0 and t are dependent,t is not safe. The reduced algorithm explores some unsafe
action at state s only if A = enabled(s), and sincet0 appears as the �rst action in
� , it is enabled at s. Therefore we havet0 2 A, and the assertion is proved.

Case 2: i > 0: Assume that tk =2 A for all k < i . In particular, t0 =2 A, and
therefore A must be a set of safe actions. Since the actions inA and t0 are enabled
and t0 =2 A, it follows that Proc(a) 6= Proc(t0) for all a 2 A: PlusCal-2 processes
are sequential and only one statement of any process can be enabled at any state.

Now the de�nition of safe actions implies that all actions in A are independent
of t0 and are therefore enabled at states0. Continuing inductively, using the as-
sumptions that all actions in A are safe and thattk 2 enabled(sk� 1) nA for all k < i ,

98

5.5. Summary

we �nd that all actions in A (and in particular t) are enabled at statesi � 1, as is
action t i .

If Proc(t i) = Proc(t) then by the same argument as before we must havet i = t,
hencet i 2 A and the assertion is proved. Otherwise, since all actions inA are safe,
t and t i must be independent, and a contradiction is reached.

C2: If state s is not fully expanded, then every � 2 ample(s) is invisible.

The condition C2 refers to the non-observability or invisibility of the transitions
selected in the subset. In our adaptation, whenever we succeed to �nd a subsetTsub

of safe transitions then all the transitions� 2 Tsub are invisible. Thus, the condition
C2 holds for our adaptation.

C3: A cycle is not allowed if it contains a state in which some transition
� is enabled, but is never included in ample(s) for any state s on the
cycle.

In our implementation of partial-order reduction for tlc , the condition at line 18
guarantees that if a transition leads to a state that was already visited in the path
then it forces the exploration of all the transitions at that point. Therefore, the
condition C3 holds.

5.5 Summary

In this chapter, we presented the extendedtlc model checker that includes an im-
plementation of the partial-order reduction technique proposed by Holzmann and
Peled in [Holzmann 1994].tlc model checker supports the model checking of algo-
rithms described in TLA+ speci�cation language. It uses breadth �rst search strat-
egy to explore all the possible states that does not have a notion of stack to store the
current transition sequence. Whereas, the reduction methods with conditional inde-
pendence essentially require depth-�rst methods for state space exploration. To use
conditional independence relation in breadth �rst search, one would have to store
additional information about the states that will increase the space complexity of
the model checker and time complexity to retrieve the states from the disk. Thus,
breadth �rst search only supports partial-order reduction with constant dependency.

We also described the presentation of constant independence information. This
information is added to the TLA + speci�cations for tlc . Then, we presented the
results of our implementation for Leader election and concurrent sorting algorithm
from SPIN distribution and the proof of correctness for the subset of actions that
are selected at any point in the reduced search space using the conditions for ample
sets.

99

Chapter 6

Conclusions and future work

Contents
6.1 Conclusions . 101

6.2 Future work . 104

6.1 Conclusions

Designing sound algorithms for concurrent and distributed systems [Lynch 1996]
is subtle and challenging. It is particularly complicated to foresee and reproduce
the high number of potential interleavings of individual component actions, which
may cause deadlocks and race conditions. Moreover, it is often quite di�cult to
precisely state the assumptions and guarantees that determine whether an algorithm
is correct. Indeed, several algorithms proposed in the literature have been found to
be erroneous having di�erent interpretations regarding the precise objectives and
hypotheses of the algorithms. Formal veri�cation is therefore crucial in concurrent
and distributed computing.

Model checking [Clarke 1999] is a popular veri�cation technique for concurrent
and distributed algorithms. It provides tools for deciding automatically whether
properties (typically expressed in temporal logic) are veri�ed for �nite instances of
systems or algorithms, described in a formal modeling language. Its main limitation
is the well-known state explosion problem, which can be mitigated by verifying algo-
rithms at a high level of abstraction. For example, Lamport's speci�cation language
TLA + [Lamport 2002], which is supported by the model checkertlc [Yu 1999], en-
courages designers to express algorithms in terms of abstract mathematical concepts
such as sets and functions. Although TLA+ is very expressive and can describe com-
plicated algorithms quite concisely, algorithm designers often �nd it di�cult to write
formulas, and would rather prefer a notation closer to (pseudo-)code, traditionally
used to describe algorithms.

Recently, Lamport introduced the PlusCal algorithm language [Lamport 2006b].
While retaining the high level of abstraction of TLA + expressions, it provides famil-
iar constructs of imperative programming languages for describing algorithms, such
as processes, assignments, and control �ow. ThePlusCal compiler generates a
TLA + speci�cation, which is then veri�ed using tlc . PlusCal is a high-level and
powerful modeling language for algorithms, featuring mathematical abstractions,

Chapter 6. Conclusions and future work

non-determinism, and user-speci�ed grain of atomicity; it emphasizes the analysis,
not the e�cient execution of algorithms.

Unfortunately, Lamport's PlusCal language and compiler have some signi�cant
limitations. In this thesis we presented a new version ofPlusCal called PlusCal-
2, which we have developed with the aim of overcoming these limitations and of
providing a modeling language that is natural to use, while retaining a precise
semantics, and paving the way to more e�cient veri�cation.

We brie�y discuss how our implementation of PlusCal-2 overcomes the limi-
tations of the original PlusCal language that we have identi�ed in section 1.2.

Self-contained models. All information about an algorithm is expressed in the
PlusCal-2 model, relieving the user of modifying the generated TLA+ model. The
user of our language does not need to read or understand the resulting TLA+ model.
Of course, an understanding of TLA+ expressions is necessary, as these represent
the data manipulated by PlusCal-2 algorithms.

In particular, correctness properties are stated within thePlusCal-2 model, in
terms of the entities it contains, rather than in terms of the generated TLA+ code.
Similarly, fairness annotations are attached toPlusCal-2 processes or statements.
The PlusCal-2 model also identi�es the �nite instance of the algorithm that is
being model checked.

Scoped declarations and nested processes. Variable, procedure, and operator
declarations are properly scoped, avoiding potential errors by inadvertently accessing
the variables of a di�erent process. Combined with the possibility to nest processes,
this makes the communication structure of algorithms much more transparent.

Just as the original PlusCal language,PlusCal-2 does not contain primitives
for message passing between processes. While we considered adding such primitives,
we found that distributed algorithms use many di�erent forms of message passing
(synchronous or not, lossy, duplicating, preserving FIFO order, . . .), and that these
are better de�ned in a standard library of procedures.

User-de�ned atomicity. PlusCal-2 retains the basic idea of specifying atom-
icity for labels. We managed to lift some of the restrictions on label placement
that were present in the original PlusCal language, and the compiler will add
labels when they are required. The user can now enforce atomicity of code blocks
containing labels using the newatomic statement of PlusCal-2 .

Added �exibility. The for statement of PlusCal-2 greatly simpli�es iteration
over sets. For example, multicast communication is easily simulated by sending a
message to each intended recipient in afor loop, within an atomic step.

We also managed to overcome the restriction of assigning each variable at most
once within an atomic block by silently introducing let -bound constants for inter-
mediate values of the variable.

102

6.1. Conclusions

While our PlusCal-2 variant retains most of the �look and feel� of the original
PlusCal language, it does not guarantee backward compatibility. For example,
programs that modify variables that are not currently in scope will be rejected by
the new PlusCal-2 compiler.

As mentioned earlier, the main limitation of Model checking [Clarke 1999] pro-
cess is the well-known state space explosion problem, which can be mitigated by
verifying algorithms at a high level of abstraction. We developed several examples
from the literature in PlusCal-2 . The compiler successfully produced correspond-
ing TLA + models, and we could use thetlc model checker to verify the algorithms
without any further modi�cation. However, the well-known state space explosion
problem limits the sizes of instances that can be veri�ed e�ectively. Since TLA+ and
PlusCal-2 are mainly intended for verifying asynchronous distributed algorithms,
thus we turned to partial-order reduction methods, which are known to be the most
e�ective reduction techniques in this context. The main idea of partial-order reduc-
tion is to restrict the state-space exploration such that redundant interleavings of
transitions are avoided, hence preserving soundness of the veri�cation.

Partial-order reduction methods strongly rely on the dependency relation be-
tween the transitions in the system. This relation can either be constant or con-
ditional dependency relation. Constant dependency relation is computed statically
for global independence or dependence of transitions whereas the conditional depen-
dency relation is composed of predicates corresponding to each pair of transitions.
These predicates are evaluated during model checking process for any given state.
In this thesis, we studied the constant dependency relation for partial-order reduc-
tion method by Holzmann and Peled [Holzmann 1994] and the dynamic partial-
order reduction method by Cormac Flanagan and Patrice Godefroid presented in
[Flanagan 2005] for conditional dependency relation.

To explore the conditional dependency relation, in this thesis, we presented an
extended PlusCal-2 compiler for extracting the conditional independence predi-
cates fromPlusCal-2 algorithms. These conditional independence predicates can
be further used in partial-order reduction methods that support conditional in-
dependence relations like the dynamic partial-order reduction method by Cormac
Flanagan and Patrice Godefroid presented in [Flanagan 2005]. We also proposed an
adaptation of this dynamic partial-order reduction algorithm for a variant of tlc
model checker that could use the independence predicates produced byPlusCal-2
compiler.

Conditional independence is useful when one cannot determine the dependency
relation statically for the pairs of transitions. In the concurrent and distributed
systems, where the processes work independently, the computation of conditional
independence predicates becomes unnecessary to have such a �ne-grained analysis.
For such systems, the constant dependency relation becomes useful and more e�-
cient. Thus, in this thesis, we also presented adaptation of partial-order reduction
technique using constant dependency relation proposed by Holzmann and Peled

103

Chapter 6. Conclusions and future work

in [Holzmann 1994] with an implementation in tlc model checker.
tlc model checker supports the model checking of algorithms described in TLA+

speci�cation language. It uses breadth �rst search strategy to explore all the possible
states but it also provides a notion to retrieve the current transition sequence that is
required to check reduction proviso condition or to address theignoring problem. We
presented the adapted partial-order algorithm fortlc followed by the presentation
of constant independence information. This information is added to the TLA+

speci�cations for tlc . We also presented the results of our implementation and the
proof of correctness for the subset of actions that are selected at any point in the
reduced search space using the conditions for ample sets.

6.2 Future work

The aim of our thesis was to evolve the existing approaches for modeling and veri-
�cation of distributed and concurrent systems and provide the algorithm designers
with a platform where they can easily model an algorithm and verify it using some
formal veri�cation tool. Distributed and concurrent systems are di�cult to model
and verify. The newPlusCal-2 language will provide an interface for the algorithm
designers to verify their algorithms before implementation. For research purposes,
it will be interesting to study and model distributed and concurrent algorithms in
PlusCal-2 and then model check them using thetlc model checker.PlusCal-2
will provide all the required constructs to represent the speci�cations of any system.
With the new advancements in distributed and concurrent systems that include
more complexity, it becomes necessary to introduce languages that can represent
them easily.

The implementation of the variant of tlc model checker using depth �rst search
along with the adapted dynamic partial-order reduction algorithm would open var-
ious lines for future research. This implementation would require detailed research
of the existing tlc model checker. An interesting line of future research is to
study the results for various complex distributed algorithms using dynamic partial-
order reduction method in tlc with the help of conditional independence predicates
produced by PlusCal-2 compiler. It will be a useful contribution in research to
develop the proposed platform that is tlc with depth �rst search strategy that
supports partial-order reduction with conditional independence. Another line of
future research would be to study the possibilities for identifying �domain-speci�c�
independence predicates, beyond what we have so far implemented for operations
on FIFO channels.

104

Bibliography

[Akhtar 2010] Sabina Akhtar, Stephan Merz and Martin Quinson. A High-Level
Language for Modeling Algorithms and Their Properties. In Jim Davies,
Leila Silva and Adenilso da Silva Simão, editeurs, 13th Brazilian Symp. on
Formal Methods (SBMF 2010), volume 6527 ofLecture Notes in Computer
Science, pages 49�63, Natal, Brazil, 2010. Springer. (Cited on page 36.)

[Akhtar 2011] Sabina Akhtar and Stephan Merz.Partial-Order Reduction for Ver-
ifying PlusCal-2 Algorithms. In 11th International Workshop on Auto-
mated Veri�cation of Critical Systems, Newcastle, England, 2011. (Cited on
page 91.)

[Allen 1987] Randy Allen and Ken Kennedy. Automatic Translation of Fortran
Programs to Vector Form. ACM Trans. Program. Lang. Syst., vol. 9, no. 4,
pages 491�542, 1987. (Cited on page 30.)

[Anderson 2001] Ross J. Anderson. Security engineering: A guide to building de-
pendable distributed systems. John Wiley & Sons, Inc., New York, NY,
USA, 1st édition, 2001. (Cited on pages 17 and 18.)

[Andrews 2000] Gregory R. Andrews. Foundations of multithreaded, parallel, and
distributed programming. Addison-Wesley, 2000. (Cited on pages 17 and 18.)

[Baier 2008] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008. (Cited on pages 1 and 9.)

[Behrmann 2004] Gerd Behrmann, Alexandre David and Kim Guldstrand Larsen.
A Tutorial on Uppaal . In SFM, pages 200�236, 2004. (Cited on page 25.)

[Clarke 1981] Edmund M. Clarke and E. Allen Emerson.Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic. In Logic
of Programs, pages 52�71, 1981. Reprint in 2008. (Cited on page 23.)

[Clarke 1986] Edmund M. Clarke, E. Allen Emerson and A. Prasad Sistla.Auto-
matic Veri�cation of Finite-State Concurrent Systems Using Temporal Logic
Speci�cations. ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pages 244�
263, 1986. (Cited on page 23.)

[Clarke 1996a] Edmund M. Clarke, Orna Grumberg and David E. Long. Model
checking. In NATO ASI DPD, pages 305�349, 1996. (Cited on pages 1, 9,
23 and 25.)

[Clarke 1996b] Edmund M. Clarke, Somesh Jha, Reinhard Enders and Thomas
Filkorn. Exploiting Symmetry in Temporal Logic Model Checking. Formal
Methods in System Design, vol. 9, no. 1/2, pages 77�104, 1996. (Cited on
page 25.)

Bibliography

[Clarke 1999] Edmund M. Clarke, Orna Grumberg and Doron Peled. Model check-
ing. MIT Press, Cambridge, Mass., 1999. (Cited on pages 25, 26, 27, 67, 98,
101 and 103.)

[Dolev 1982] Danny Dolev, Maria M. Klawe and Michael Rodeh. An O(n log n)
Unidirectional Distributed Algorithm for Extrema Finding in a Circle . J.
Algorithms, vol. 3, no. 3, pages 245�260, 1982. (Cited on pages 5, 13, 38, 95
and 118.)

[Emerson 1996] E. Allen Emerson and A. Prasad Sistla. Symmetry and Model
Checking. Formal Methods in System Design, vol. 9, no. 1/2, pages 105�
131, 1996. (Cited on page 25.)

[Flanagan 2005] Cormac Flanagan and Patrice Godefroid.Dynamic partial-order
reduction for model checking software. In Jens Palsberg and Martín Abadi,
editeurs, 32nd ACM Symp. Principles of Programming Languages (POPL
2005), pages 110�121, Long Beach, CA, U.S.A., 2005. ACM. (Cited on
pages 33, 68, 82, 83, 84, 85, 86, 88 and 103.)

[Godefroid 1991] Patrice Godefroid. Using partial orders to improve automatic
veri�cation methods. In Edmund Clarke and Robert Kurshan, editeurs,
Computer-Aided Veri�cation, volume 531 of Lecture Notes in Computer Sci-
ence, pages 176�185. Springer Berlin / Heidelberg, 1991. (Cited on page 25.)

[Godefroid 1993] Patrice Godefroid and Didier Pirottin. Re�ning Dependencies Im-
proves Partial-Order Veri�cation Methods (Extended Abstract). In CAV,
pages 438�449, 1993. (Cited on page 32.)

[Godefroid 1994] P. Godefroid and P. Wolper.A Partial Approach to Model Check-
ing. Information and Computation, vol. 110, no. 2, pages 305�326, 1994.
(Cited on pages 32 and 98.)

[Godefroid 1996] Patrice Godefroid. Partial-order methods for the veri�cation of
concurrent systems - an approach to the state-explosion problem, volume
1032 of Lecture Notes in Computer Science. Springer, 1996. (Cited on
pages 28, 29 and 30.)

[Gurevich 2005] Yuri Gurevich, Benjamin Rossman and Wolfram Schulte.Semantic
essence of AsmL. Theor. Comput. Sci., vol. 343, no. 3, pages 370�412, 2005.
(Cited on page 37.)

[Holzmann 1994] Gerard Holzmann and Doron Peled.An Improvement in For-
mal Veri�cation . In IFIP WG 6.1 Conference on Formal Description Tech-
niques, pages 197�214, Bern, Switzerland, 1994. Chapman & Hall. (Cited on
pages 27, 28, 33, 91, 92, 99, 103 and 104.)

[Holzmann 1997] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans.
Softw. Eng., vol. 23, pages 279�295, May 1997. (Cited on page 24.)

106

Bibliography

[Holzmann 2003] Gerard Holzmann. Spin model checker, the: primer and reference
manual. Addison-Wesley Professional, �rst édition, 2003. (Cited on pages 24,
37 and 95.)

[Ip 1993] C. Norris Ip and David L. Dill. Better Veri�cation Through Symmetry . In
David Agnew, Luc J. M. Claesen and Raul Camposano, editeurs, CHDL, vol-
ume A-32 of IFIP Transactions , pages 97�111. North-Holland, 1993. (Cited
on page 25.)

[Katz 1988] Shmuel Katz and Doron Peled. An e�cient veri�cation method for
parallel and distributed programs. In REX Workshop, pages 489�507, 1988.
(Cited on page 30.)

[Katz 1992] Shmuel Katz and Doron Peled.De�ning Conditional Independence Us-
ing Collapses. Theor. Comput. Sci., vol. 101, no. 2, pages 337�359, 1992.
(Cited on page 30.)

[Killian 2007] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit
Jhala and Amin Vahdat. Mace: Language Support for Building Distributed
Systems. In PLDI, pages 179�188, 2007. (Cited on page 37.)

[Kurshan 1998] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled
and Hüsnü Yenigün. Static Partial Order Reduction. In TACAS, pages 345�
357, 1998. (Cited on page 33.)

[Lamport 1994] Leslie Lamport. The temporal logic of actions. ACM Trans. Pro-
gram. Lang. Syst., vol. 16, pages 872�923, May 1994. (Cited on pages 2
and 10.)

[Lamport 2002] Leslie Lamport. Specifying systems, theTLA + language and tools
for hardware and software engineers. Addison-Wesley, 2002. (Cited on
pages 2, 10, 21, 36 and 101.)

[Lamport 2006a] Leslie Lamport. The +CAL Algorithm Language. In FORTE,
page 23, 2006. (Cited on pages 2 and 10.)

[Lamport 2006b] Leslie Lamport. Checking a Multithreaded Algorithm with +CAL.
In Shlomi Dolev, editeur, 20th Intl. Symp. Distributed Computing (DISC
2006), volume 4167 ofLNCS, pages 151�163, Stockholm, Sweden, 2006.
Springer. (Cited on pages 3, 11, 36 and 101.)

[Lamport 2007] Leslie Lamport. A +CAL User's Manual . http://research.
microsoft.com/en-us/um/people/lamport/tla/pluscal.html , 2007.
(Cited on page 19.)

[Lamport 2009] Leslie Lamport. The PlusCal Algorithm Language. In Martin
Leucker and Carroll Morgan, editeurs, ICTAC, volume 5684 ofLecture Notes
in Computer Science, pages 36�60. Springer, 2009. (Cited on pages 2 and 10.)

107

Bibliography

[Liu 2011] Yanhong A. Liu, Bo Lin and Scott D. Stoller. Programming and Op-
timizing Distributed Algorithms: An Overview. In Proc. 8th International
Conference & Expo on Emerging Technologies for a Smarter World (CE-
WIT 2011). IEEE Press, November 2011. (Cited on page 37.)

[Lynch 1996] Nancy A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
(Cited on pages 1, 9, 17, 35 and 101.)

[McMillan 1992] Kenneth L. McMillan. Using Unfoldings to Avoid the State Explo-
sion Problem in the Veri�cation of Asynchronous Circuits. In CAV, pages
164�177, 1992. (Cited on page 25.)

[McMillan 1993] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.
(Cited on page 37.)

[Naimi 1996] Mohamed Naimi, Michel Trehel and André Arnold. A Log(N) Dis-
tributed Mutual Exclusion Algorithm Based on Path Reversal. J. Parallel
Distrib. Comput., vol. 34, no. 1, pages 1�13, 1996. (Cited on pages 3, 11
and 111.)

[Peled 1990] Doron Peled and Amir Pnueli.Proving Partial Order Liveness Prop-
erties. In ICALP, pages 553�571, 1990. (Cited on page 30.)

[Peled 1993] Doron Peled.All from One, One for All: on Model Checking Using
Representatives. In CAV, pages 409�423, 1993. (Cited on pages 25 and 27.)

[Peled 1996a] Doron Peled.Combining Partial Order Reductions with On-the-Fly
Model-Checking. Formal Methods in System Design, vol. 8, no. 1, pages
39�64, 1996. (Cited on pages 32 and 33.)

[Peled 1996b] Doron Peled.Partial Order Reduction: Model-Checking Using Rep-
resentatives. In MFCS, pages 93�112, 1996. (Cited on page 31.)

[Peled 1998] Doron Peled.Ten Years of Partial Order Reduction. In CAV, pages
17�28, 1998. (Cited on page 31.)

[Peterson 1981] Gary L. Peterson.Myths About the Mutual Exclusion Problem. Inf.
Process. Lett., vol. 12, no. 3, pages 115�116, 1981. (Cited on page 19.)

[Queille 1981] Jean-Pierre Queille and Joseph Sifakis.Iterative Methods for the
Analysis of Petri Nets. In Selected Papers from the First and the Second
European Workshop on Application and Theory of Petri Nets, pages 161�
167, 1981. Reprint in 2008. (Cited on page 23.)

[Rabin 1981] M O Rabin. Fingerprinting by random polynomials. Technical Report
TR1581 Center for Research in, no. TR-15-81, pages 15�18, 1981. (Cited on
page 24.)

108

Bibliography

[Valmari 1989] Antti Valmari. Stubborn sets for reduced state space generation. In
Applications and Theory of Petri Nets, pages 491�515, 1989. (Cited on
page 30.)

[Valmari 1990] A. Valmari. A stubborn attack on state explosion. In 2nd Inter-
national Workshop on Computer Aided Veri�cation, volume 531 of Lecture
Notes in Computer Science, pages 156�165, Rutgers, June 1990. Springer
Verlag. (Cited on pages 27, 30 and 32.)

[Valmari 1996] Antti Valmari. The State Explosion Problem. In Petri Nets, pages
429�528, 1996. (Cited on pages 25 and 32.)

[Yabandeh 2009] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic and Viktor
Kuncak. CrystalBall: predicting and preventing inconsistencies in deployed
distributed systems. In Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation, NSDI'09, pages 229�244, Berke-
ley, CA, USA, 2009. USENIX Association. (Cited on page 37.)

[Yang 2007] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan and Robert M.
Kirby. Distributed Dynamic Partial Order Reduction Based Veri�cation of
Threaded Software. In SPIN, pages 58�75, 2007. (Cited on page 33.)

[Yang 2008] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan and Robert M.
Kirby. E�cient Stateful Dynamic Partial Order Reduction . In SPIN, pages
288�305, 2008. (Cited on page 33.)

[Yu 1999] Yuan Yu, Panagiotis Manolios and Leslie Lamport.Model checking TLA+
Speci�cations. In L. Pierre and T. Kropf, editeurs, Correct Hardware Design
and Veri�cation Methods (CHARME'99), volume 1703 of LNCS, pages 54�
66, Bad Herrenalb, Germany, 1999. Springer. (Cited on pages 2, 10, 24, 36,
92 and 101.)

109

Appendix A

Examples

1.1 Naimi-Trehel algorithm

Naimi-Trehel algorithm was proposed by Naimi and Trehel in [Naimi 1996]. It is
a distributed algorithm for mutual exclusion that maintains two distributed data
structures: a list of processes that are waiting for access to the critical section,
and a tree of process whose root is the process at the end of the waiting queue
(or the process who last accessed its critical section if the queue is empty). Below
we have a model of this algorithm in thePlusCal language along with it's TLA+

speci�cations.

1.1.1 PlusCal model

1 --algorithm NaimiTrehel
2 variables procQueue = [to 2 Peers 7! hi] ;
3

4

5 macro send(to, msg)
6 begin
7 procQueue[to]:= Append(procQueue[to], msg);
8 end macro ;
9

10

11

12 macro recv(got)
13 begin
14 when procQueue[self] 6= hi ;
15 got := Head(procQueue[self]);
16 procQueue[self] := Tail(procQueue[self]);
17 end macro ;
18

19 (* Invoke the critical section *)
20 procedure request_cs()
21 begin
22 rqcs:
23 reqCS := TRUE ;
24 if father 6= nil then
25 send(father, [snd 7! self, kind 7! "request"]);
26 father := nil ;
27 end if ;
28 end_rqcs:
29 return ;
30 end procedure ;

Appendix A. Examples

31 procedure handle_messages()
32 variables rcvd = [snd 7! 0 , kind 7! ""]
33 begin
34 recv_msg:
35 if procQueue[self] 6= hi then
36 recv(rcvd) ;
37 if rcvd.kind = "request" then
38 if father = nil then
39 if reqCS = TRUE then
40 next := rcvd.snd ;
41 else
42 tokPresent := FALSE ;
43 lb_call1 : send(rcvd.snd, [snd 7! self, kind 7! "give_token"])
44 end if ;
45 else
46 lb_call2 : send (father, rcvd);
47 end if ;
48 lb_ret : father := rcvd.snd ;
49 elsif rcvd.kind = "give_token" then
50 tokPresent := TRUE ;
51 end if ;
52 end if ;
53 end_recv_msg :
54 return ;
55 end procedure ;
56

57

58

59 (* Release the CS and send the token to next process *)
60 procedure release_cs()
61 begin
62 rlcs:
63 reqCS := FALSE ;
64 if next 6= nil then
65 send (next, [snd 7! self, kind 7! "give_token"]) ;
66 tokPresent := FALSE ;
67 next := nil ;
68 end if ;
69 end_rlcs :
70 return ;
71 end procedure ;

112

1.1. Naimi-Trehel algorithm

72 process Site 2 Peers
73 variables father = 1,
74 next = nil,
75 reqCS = FALSE,
76 tokPresent = FALSE ;
77 begin
78 (* The process behavior *)
79 init :
80 tokPresent := father = self ;
81 if father = self then
82 father := nil ;
83 end if ;
84 ncs :
85 while TRUE do
86 either call request_cs() ;
87 continue1:
88 if tokPresent = TRUE then
89 goto cs ;
90 end if ;
91 or
92 call handle_messages() ;
93 continue2:
94 goto ncs ;
95 end either ;
96 try :
97 while tokPresent = FALSE do
98 call handle_messages() ;
99 end while ;

100 cs: skip ;
101 exit: call release_cs() ;
102 end while ;
103 end process ;
104 end algorithm

113

Appendix A. Examples

1.1.2 TLA + speci�cations for Naimi-Trehel algorithm
MODULE NaimiTrehel

1 EXTENDS Naturals, TLC, Sequences, FiniteSets
2

3

4 CONSTANTS Peers, any, nil
5 VARIABLES procQueue, pc, stack, rcvd, father, next, reqCS, tokPresent

6 vars �= hprocQueue, pc, stack, rcvd, father, next, reqCS, tokPresent i
7

8

9

10 ProcSet
�
= (Peers)

11

12 Init
�
= (* Global variables *)

13 ^ procQueue = [to 2 Peers 7! hi]
14 (* Procedure handle_messages *)
15 ^ rcvd = [self 2 ProcSet 7! [snd 7! 0 , kind 7! ""]]
16 (* Process Site *)
17 ^ father = [self 2 Peers 7! 1]
18 ^ next = [self 2 Peers 7! nil]
19 ^ reqCS = [self 2 Peers 7! FALSE]
20 ^ tokPresent = [self 2 Peers 7! FALSE]
21 ^ stack = [self 2 ProcSet 7! hi]
22 ^ pc = [self 2 ProcSet 7! CASE self 2 Peers ! "init"]
23

24 rqcs(self) �=
25 ^ pc[self] = "rqcs"
26 ^ reqCS' = [reqCS EXCEPT ![self] = TRUE]
27 ^ IF father[self] 6= nil
28 THEN ^ procQueue' = [procQueue EXCEPT ![father[self]] = Append(
29 procQueue[father[self]], ([snd 7! self, kind 7! "request"]))]
30 ^ father' = [father EXCEPT ![self] = nil]
31 ELSE ^ TRUE

32 ^ UNCHANGED hprocQueue, father i
33 ^ pc' = [pc EXCEPT ![self] = "end_rqcs"]
34 ^ UNCHANGED hstack, rcvd, next, tokPresent i
35

36 end_rqcs(self)
�
=

37 ^ pc[self] = "end_rqcs"
38 ^ pc' = [pc EXCEPT ![self] = Head(stack[self]).pc]
39 ^ stack' = [stack EXCEPT ![self] = Tail(stack[self])]
40 ^ UNCHANGED hprocQueue, rcvd, father, next, reqCS, tokPresent i
41

42 request_cs(self)
�
= rqcs(self) _ end_rqcs(self)

43

44 lb_ret(self)
�
=

45 ^ pc[self] = "lb_ret"
46 ^ father' = [father EXCEPT ![self] = rcvd[self].snd]
47 ^ pc' = [pc EXCEPT ![self] = "end_recv_msg"]
48 ^ UNCHANGED hprocQueue, stack, rcvd, next, reqCS, tokPresent i
49

50 lb_call2(self)
�
=

51 ^ pc[self] = "lb_call2"
52 ^ procQueue' = [procQueue EXCEPT ![father[self]] =
53 Append(procQueue[father[self]], rcvd[self])]
54 ^ pc' = [pc EXCEPT ![self] = "lb_ret"]
55 ^ UNCHANGED hstack, rcvd, father, next, reqCS, tokPresent i
56

114

1.1. Naimi-Trehel algorithm

57 recv_msg(self) �=
58 ^ pc[self] = "recv_msg"
59 ^ IF procQueue[self] # hi
60 THEN ^ procQueue[self] # hi
61 ^ rcvd' = [rcvd EXCEPT ![self] = Head(procQueue[self])]
62 ^ procQueue' = [procQueue EXCEPT ![self] = Tail(procQueue[self])]
63 ^ IF rcvd'[self].kind = "request"
64 THEN ^ IF father[self] = nil
65 THEN ^ IF reqCS[self] = TRUE

66 THEN ^ next' = [next EXCEPT ![self] = rcvd'[self].snd]
67 ^ pc' = [pc EXCEPT ![self] = "lb_ret"]
68 ^ UNCHANGED tokPresent
69 ELSE ^ tokPresent' = [tokPresent EXCEPT ![self] = FALSE]
70 ^ pc' = [pc EXCEPT ![self] = "lb_call1"]
71 ^ UNCHANGED next
72 ELSE ^ pc' = [pc EXCEPT ![self] = "lb_call2"]
73 ^ UNCHANGED hnext, tokPresent i
74 ELSE ^ IF rcvd'[self].kind = "give_token"
75 THEN ^ tokPresent' = [tokPresent EXCEPT ![self] = TRUE]
76 ELSE ^ TRUE

77 ^ UNCHANGED tokPresent
78 ^ pc' = [pc EXCEPT ![self] = "end_recv_msg"]
79 ^ UNCHANGED next
80 ELSE ^ pc' = [pc EXCEPT ![self] = "end_recv_msg"]
81 ^ UNCHANGED hprocQueue, rcvd, next, tokPresent i
82 ^ UNCHANGED hstack, father, reqCS i
83

84 lb_call1(self)
�
=

85 ^ pc[self] = "lb_call1"
86 ^ procQueue' = [procQueue EXCEPT ![(rcvd[self].snd)] =
87 Append(procQueue[(rcvd[self].snd)], ([snd 7! self, kind 7! "give_token"]))]
88 ^ pc' = [pc EXCEPT ![self] = "lb_ret"]
89 ^ UNCHANGED hstack, rcvd, father, next, reqCS, tokPresent i
90

91 end_recv_msg(self)
�
=

92 ^ pc[self] = "end_recv_msg"
93 ^ pc' = [pc EXCEPT ![self] = Head(stack[self]).pc]
94 ^ rcvd' = [rcvd EXCEPT ![self] = Head(stack[self]).rcvd]
95 ^ stack' = [stack EXCEPT ![self] = Tail(stack[self])]
96 ^ UNCHANGED hprocQueue, father, next, reqCS, tokPresent i
97

98 handle_messages(self) �= recv_msg(self) _ lb_ret(self) _ lb_call2(self)
99 _ lb_call1(self) _ end_recv_msg(self)

100

101 rlcs(self) �=
102 ^ pc[self] = "rlcs"
103 ^ reqCS' = [reqCS EXCEPT ![self] = FALSE]
104 ^ IF next[self] # nil
105 THEN ^ procQueue' = [procQueue EXCEPT ![next[self]] =
106 Append(procQueue[next[self]], ([snd 7! self, kind 7! "give_token"]))]
107 ^ tokPresent' = [tokPresent EXCEPT ![self] = FALSE]
108 ^ next' = [next EXCEPT ![self] = nil]
109 ELSE ^ TRUE

110 ^ UNCHANGED hprocQueue, next, tokPresent i
111 ^ pc' = [pc EXCEPT ![self] = "end_rlcs"]
112 ^ UNCHANGED hstack, rcvd, father i

115

Appendix A. Examples

113 end_rlcs(self) �=
114 ^ pc[self] = "end_rlcs"
115 ^ pc' = [pc EXCEPT ![self] = Head(stack[self]).pc]
116 ^ stack' = [stack EXCEPT ![self] = Tail(stack[self])]
117 ^ UNCHANGED hprocQueue, rcvd, father, next, reqCS, tokPresent i
118

119 release_cs(self) �= rlcs(self) _ end_rlcs(self)
120

121 init(self) �=
122 ^ pc[self] = "init"
123 ^ tokPresent' = [tokPresent EXCEPT ![self] = father[self] = self]
124 ^ IF father[self] = self
125 THEN ^ father' = [father EXCEPT ![self] = nil]
126 ELSE ^ TRUE

127 ^ UNCHANGED father
128 ^ pc' = [pc EXCEPT ![self] = "ncs"]
129 ^ UNCHANGED hprocQueue, stack, rcvd, next, reqCS i
130

131 ncs(self) �=
132 ^ pc[self] = "ncs"
133 ^ _ ^ stack' = [stack EXCEPT ![self] = h [procedure 7! "request_cs", pc 7! "continue1"] i
134 � stack[self]]
135 ^ pc' = [pc EXCEPT ![self] = "rqcs"]
136 ^ UNCHANGED rcvd
137 _ ^ stack' = [stack EXCEPT ![self] = h [procedure 7! "handle_messages",
138 pc 7! "continue2",
139 rcvd 7! rcvd[self]] i
140 � stack[self]]
141 ^ rcvd' = [rcvd EXCEPT ![self] = [snd 7! 0 , kind 7! ""]]
142 ^ pc' = [pc EXCEPT ![self] = "recv_msg"]
143 ^ UNCHANGED hprocQueue, father, next, reqCS, tokPresent i
144

145 try(self) �=
146 ^ pc[self] = "try"
147 ^ IF tokPresent[self] = FALSE

148 THEN ^ stack' = [stack EXCEPT ![self] = h [procedure 7! "handle_messages",
149 pc 7! "try",
150 rcvd 7! rcvd[self]] i
151 � stack[self]]
152 ^ rcvd' = [rcvd EXCEPT ![self] = [snd 7! 0 , kind 7! ""]]
153 ^ pc' = [pc EXCEPT ![self] = "recv_msg"]
154 ELSE ^ pc' = [pc EXCEPT ![self] = "cs"]
155 ^ UNCHANGED hstack, rcvd i
156 ^ UNCHANGED hprocQueue, father, next, reqCS, tokPresent i
157

158 cs(self)
�
=

159 ^ pc[self] = "cs"
160 ^ TRUE

161 ^ pc' = [pc EXCEPT ![self] = "exit"]
162 ^ UNCHANGED hprocQueue, stack, rcvd, father, next, reqCS, tokPresent i
163

164 exit(self)
�
=

165 ^ pc[self] = "exit"
166 ^ stack' = [stack EXCEPT ![self] = h [procedure 7! "release_cs",
167 pc 7! "ncs"] i
168 � stack[self]]
169 ^ pc' = [pc EXCEPT ![self] = "rlcs"]
170 ^ UNCHANGED hprocQueue, rcvd, father, next, reqCS, tokPresent i

116

1.1. Naimi-Trehel algorithm

171 continue1(self) �=
172 ^ pc[self] = "continue1"
173 ^ IF tokPresent[self] = TRUE

174 THEN ^ pc' = [pc EXCEPT ![self] = "cs"]
175 ELSE ^ pc' = [pc EXCEPT ![self] = "try"]
176 ^ UNCHANGED hprocQueue, stack, rcvd, father, next, reqCS, tokPresent i
177

178

179 continue2(self)
�
=

180 ^ pc[self] = "continue2"
181 ^ pc' = [pc EXCEPT ![self] = "ncs"]
182 ^ UNCHANGED hprocQueue, stack, rcvd, father, next, reqCS, tokPresent i
183

184

185

186 Site(self)
�
= init(self) _ ncs(self) _ try(self) _ cs(self)

187 _ exit(self) _ continue1(self) _ continue2(self)
188

189

190

191 Next
�
= (9 self 2 ProcSet: _ request_cs(self) _ handle_messages(self)

192 _ release_cs(self))
193 _ (9 self 2 Peers: Site(self))
194 _ (* Disjunct to prevent deadlock on termination *)
195 ((8 self 2 ProcSet: pc[self] = "Done") ^ UNCHANGED vars)
196

197

198

199 Spec �= Init ^ 2 [Next]vars

200

201 Termination
�
= 3 (8 self 2 ProcSet: pc[self] = "Done")

117

Appendix A. Examples

1.2 Leader election algorithm

Leader election algorithm was proposed by Dolev, Klawe, and Rodeh [Dolev 1982]
for electing a leader in a unidirectional ring. The model of this algorithm that we use
here is the direct translation of it's implementation in Promela from SPIN library
to PlusCal-2 language.

1 algorithm Leader
2 extends Naturals,Sequences (* standard modules *)
3

4 constants
5 N, (* Number of processes *)
6 I (* node given the smallest number *)
7

8 variable
9 net = [p 2 0..(N-1) 7! hi] (* the network represented as a queue *)

10

11 de�nition send(ch, msg)
�
=

12 [net EXCEPT ![ch] = Append(@, msg)]
13

14 fair process Node[N]
15 variables
16 active = TRUE, know_winner = FALSE,
17 mynumber = (N+I-self)%(N+1), neighbourR = 0,
18 maximum = (N+I-self)%(N+1), in = self-1, out = self%N,
19 msg = hi, winner = FALSE

20

21 begin
22 start :
23 net[out] := Append(net[out], [type 7! “one”, number 7! mynumber]);
24 forever:
25 loop
26 if Len(net[in]) > 0 then
27 msg := Head(net[in]);
28 if msg.type = “one” then
29 if active then
30 if msg.number # maximum then
31 net[out] := send(out, [type 7! “two”, number 7! msg.number]);
32 neighbourR := msg.number;
33 else
34 know_winner := TRUE;
35 net[out] := send(out, [type 7! “winner”, number 7! msg.number]);
36 end if
37 else
38 net[out] := send(out, [type 7! “one”, number 7! msg.number]);
39 end if ;
40 else if msg.type = “two” then
41 if active then
42 if (neighbourR > msg.number) ^ (neighbourR > maximum) then
43 maximum := neighbourR;
44 net[out] := send(out, [type 7! “one”, number 7! neighbourR]);
45 else
46 active := FALSE;
47 end if
48 else
49 net[out] := send(out, [type 7! “two”, number 7! msg.number]);
50 end if ;

118

1.2. Leader election algorithm

51 else if msg.type = “winner” then
52 if msg.number = mynumber then
53 winner := TRUE;
54 end if ;
55 if ~know_winner then
56 net[out] := send(out, [type 7! “winner”, number 7! msg.number]);
57 end if ;
58 end if ;
59 net[in] := Tail(net[in]);
60 end if ;
61 end loop ;
62 end process
63 (* Temporal property for model checking *)
64 temporal 9 p 2 Node : 3 Node[p].winner
65 end algorithm
66

67 (* Invariant for model checking *)
68 invariant 8 p 2 Node : Node[p].winner => (8 q 2 Node n {p} : � Node[q].winner)
69 (* Finite instance for model checking *)
70 instances N = 3, I = 1

119

Appendix A. Examples

1.3 Concurrent sorting algorithm

The main idea of sorting algorithm is to concurrently sort N random numbers. It is
taken from the Spin distribution and also known to be an example in which partial-
order reduction works well in Spin. The algorithm contains de�nitions for three
di�erent types of processes: left, middle and right. The processleft generates the
random numbers using the de�nition RANDOM and passes them on to the network.
The processmiddlehas seven instances and each of the instances compare the new
number with the one they already have. If its found to be larger, then it passes it
on to the next process through the network otherwise it keeps the new number and
passes the one it already had. The processright will always receive the number that
is larger than all the other numbers held by the instances of processmiddle.

Below we have its model inPlusCal-2 language along with it's translation in
intermediate format.

1.3.1 PlusCal-2 model

1 algorithm sort
2 extends Naturals, Sequences (* standard modules *)
3

4 constants
5 N (* Number of processes *)

6 de�nition �rstId �= lowerbound(middle)
7

8 de�nition lastId �= upperbound(middle)
9

10 de�nition RANDOM(seed) �= ((seed * 3 + 14) % 100) (* Calculate random number *)
11

12 variable
13 network = [p 2 �rstId..lastId+1 7! hi] (* Network for communication *)
14

15 process left[1] (* Generates random numbers *)
16 variables
17 counter = 0, seed = 15, out = �rstId
18 begin
19 left-lbl :
20

21 loop
22 network[out] := Append(network[out], [value 7! seed]);
23 counter := counter + 1;
24 seed := RANDOM(seed);
25 branch
26 counter = N then
27 break ;
28 or
29 counter 6= N then
30 skip ;
31 end branch ;
32 end loop ;
33 end process

120

1.3. Concurrent sorting algorithm

34 process middle[N-1] (* Process in middle, sort the numbers *)
35 variables in = self, out = self + 1
36 variables counter = 0, myval = 0, nextval = 0, msg = hi
37

38 begin
39 start :
40 when Len(network[in]) 0;
41 msg := Head(network[in]);
42 myval := msg.value;
43 network[in] := Tail(network[in]);
44 mid-lbl :
45 loop
46 branch
47 Len(network[in]) > 0 ^ counter < N then
48 msg := Head(network[in]);
49 nextval := msg.value;
50 if nextval � myval then
51 network[out] := Append(network[out], [value 7! nextval]);
52 else
53 network[out] := Append(network[out], [value 7! myval]);
54 myval := nextval;
55 end if ;
56 network[in] := Tail(network[in]);
57 counter := counter + 1;
58 or
59 counter � (N - self + 1) then
60 break ;
61 end branch ;
62 end loop ;
63 end process
64

65

66 process right[1] (* right process accepts the biggest number *)
67 variables in = self, biggest = 0, msg = hi
68 begin
69 right-lbl :
70 when Len(network[in]) > 0;
71 msg := Head(network[in]);
72 biggest := msg.value;
73 network[in] := Tail(network[in]);
74 end process
75

76 end algorithm
77

78 instance N = 10

121

Appendix A. Examples

1.3.2 Concurrent sorting algorithm in intermediate format

1 left-lbl(self):
2 network[_left_data[self].out] := Append(network[_left_data[self].out],
3 [value 7! _left_data[self].seed])
4 _left_data[self].counter := (_left_data[self].counter + 1)
5 _left_data[self].seed := RANDOM(_left_data[self].seed)
6 branch
7 (_left_data[self].counter = N) then
8 _pc[self] := "Done"
9 or

10 (_left_data[self].counter # N) then
11 _pc[self] := "left-lbl"
12 end branch
13

14 start(self):
15 branch
16 (Len(network[_middle_data[self].in]) > 0) then
17 _middle_data[self].msg := Head(network[_middle_data[self].in])
18 _middle_data[self].myval := _middle_data[self].msg.value
19 network[_middle_data[self].in] = Tail(network[_middle_data[self].in])
20 _pc[self] = "mid-lbl"
21 end branch
22

23 mid-lbl(self):
24 branch
25 ((Len(network[_middle_data[self].in]) > 0) ^ (_middle_data[self].counter < N)) then
26 _middle_data[self].msg := Head(network[_middle_data[self].in])
27 _middle_data[self].nextval := _middle_data[self].msg.value
28 branch
29 (_middle_data[self].nextval >= _middle_data[self].myval) then
30 network[_middle_data[self].out] := Append(network[_middle_data[self].out],
31 [value 7! _middle_data[self].nextval])
32 network[_middle_data[self].in] := Tail(network[_middle_data[self].in])
33 _middle_data[self].counter := (_middle_data[self].counter + 1)
34 _pc[self] := "mid-lbl"
35 or
36 ~((_middle_data[self].nextval >= _middle_data[self].myval)) then
37 network[_middle_data[self].out] := Append(network[_middle_data[self].out],
38 [value 7! _middle_data[self].myval])
39 _middle_data[self].myval := _middle_data[self].nextval]
40 network[_middle_data[self].in] := Tail(network[_middle_data[self].in])
41 _middle_data[self].counter := (_middle_data[self].counter + 1)
42 _pc[self] := "mid-lbl"
43 end branch
44 or
45 (_middle_data[self].counter >= ((N - self) + 1)) then
46 _pc[self] := "Done"
47 end branch
48

49 right-lbl(self):
50 branch
51 (Len(network[_right_data[self].in]) > 0) then
52 _right_data[self].msg := Head(network[_right_data[self].in])
53 _right_data[self].biggest := _right_data[self].msg.value
54 network[_right_data[self].in] := Tail(network[_right_data[self].in])
55 _pc[self] := "Done"
56 end branch

122

1.3. Concurrent sorting algorithm

123

Abstract

Designing sound algorithms for concurrent and distributed systems is subtle and challenging. These
systems are prone to deadlocks and race conditions, which occur in particular interleavings of process
actions and are therefore hard to reproduce. It is often nontrivial to precisely state the properties that
are expected of an algorithm and the assumptions on the environment under which these properties
should hold. Formal veri�cation is a key technique to model the system and its properties and then
perform veri�cation by means of model checking.

Formal languages like TLA+ have the ability to describe complicated algorithms quite concisely, but
algorithm designers often �nd it di�cult to model an algorithm in the form of formulas. In this thesis, we
presentPlusCal-2 that aims at being similar to pseudo-code while being formally veri�able. PlusCal-
2 improves upon Lamport's PlusCal algorithm language by lifting some of its restrictions and adding
new constructs. Our language is intended for describing algorithms at a high level of abstraction. It
resembles familiar pseudo-code but is quite expressive and has a formal semantics. Finite instances
of algorithms described in PlusCal-2 can be veri�ed through the tlc model checker. The second
contribution presented in this thesis is a study of partial-order reduction methods using conditional and
constant dependency relation.

To compute conditional dependency forPlusCal-2 algorithms, we exploit their locality information
and present them in the form of independence predicates. We also propose an adaptation of a dynamic
partial-order reduction algorithm for a variant of the tlc model checker. As an alternative to partial-
order reduction based on conditional dependency, we also describe a variant of a static partial-order
reduction algorithm for the tlc model checker that relies on constant dependency relation. We also
present our results for the experiments along with the proof of correctness.

Keywords: Distributed algorithms, algorithm language, model checking,PlusCal-2 , partial-order
reduction

Résumé

La conception d'algorithmes pour les systèmes concurrents et répartis est subtile et di�cile. Ces systèmes
sont enclins à des blocages et à des conditions de course qui peuvent se produire dans des entrelacements
particuliers d'actions de processus et sont par conséquent di�ciles à reproduire. Il est souvent non-trivial
d'énoncer précisément les propriétés attendues d'un algorithme et les hypothèses que l'environnement est
supposé de satisfaire pour que l'algorithme se comporte correctement. La véri�cation formelle est une
technique essentielle pour modéliser le système et ses propriétés et s'assurer de sa correction au moyen
du model checking.

Des langages formels tels TLA+ permettent de décrire des algorithmes compliqués de manière assez
concise, mais les concepteurs d'algorithmes trouvent souvent di�cile de modéliser un algorithme par
un ensemble de formules. Dans ce mémoire nous présentons le langagePlusCal-2 qui vise à allier
la simplicité de pseudo-code à la capacité d'être véri�é formellement.PlusCal-2 améliore le langage
algorithmique PlusCal conçu par Lamport en levant certaines restrictions de ce langage et en y ajoutant
de nouvelles constructions. Notre langage est destiné à la description d'algorithmes à un niveau élevé
d'abstraction. Sa syntaxe ressemble à du pseudo-code mais il est tout à fait expressif et doté d'une
sémantique formelle. Des instances �nies d'algorithmes écrits enPlusCal-2 peuvent être véri�ées à
l'aide du model checkertlc . La deuxième contribution de cette thèse porte sur l'étude de méthodes de
réduction par ordre partiel à l'aide de relations de dépendance conditionnelle et constante.

Pour calculer la dépendance conditionnelle pour les algorithmes enPlusCal-2 nous exploitons des
informations sur la localité des actions et nous générons des prédicats d'indépendance. Nous proposons
également une adaptation d'un algorithme de réduction par ordre partiel dynamique pour une variante du
model checkertlc . En�n, nous proposons une variante d'un algorithme de réduction par ordre partiel
statique (comme alternative à l'algorithme dynamique), s'appuyant sur une relation de dépendance
constante, et son implantation au sein detlc . Nous présentons nos résultats expérimentaux et une
preuve de correction.

Mots-clés: Algorithmes distribués, langage algorithmique, model-checking,PlusCal-2 , réduction
par ordre partiel

	Introduction (en français)
	Contexte scientifique

	Introduction

