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Audio-Visual Spee
h
Ena
ted or animated stories are more popular than audio narrations or those in the books. It iseasy to 
on
lude that this is due to its audio-visual nature as it provides a ri
h experien
e. Besidesentertainment, in general we per
eive everything through our ears and eyes, simultaneously. Thevisual information that is per
eived through eyes either 
ompliments or reinfor
es the auditoryinformation. This applies to spee
h as well, whi
h is one of the prime modes of 
ommuni
ation.Spee
h per
eption in the day to day life is primarily bimodal. We see and hear, what is beingspoken by people and understand the spee
h if it is in a known language. Whenever, the auditoryinput is ambiguous or noise-ridden, we try to supplement the re
eived information by looking atthe sour
e, i.e., the speaker. This bimodal nature of spee
h is illustrated by the observation that,we humans try to have a fa
e-to-fa
e 
onversation while dis
ussing issues of high importan
e.This is be
ause, fa
e-to-fa
e 
ommuni
ation 
onveys the 
omplementary information related tospee
h arti
ulation, emotions, more e�e
tively than just voi
e. Hen
e, bimodal spee
h 
an be
onsidered more e�e
tive in 
on�den
e building. Besides entertainment and 
ommuni
ation,the basi
 milestone towards verbal 
ommuni
ation, i.e., spee
h development in babies also hassigni�
ant 
ontribution of the observation of visual spee
h along with the 
orresponding sound(Teinonen et al., 2008; Andersen et al., 1984).Some of these above mentioned general observations about the advantages of audio-visualspee
h over a
ousti
-only spee
h have been experimentally veri�ed. It has been shown thataddition of visual spee
h enhan
es spee
h dete
tion and re
ognition, thus improving intelligibilitywhen audio is missing, degraded with noise, or where there are multiple sour
es of spee
h (Sumbyand Polla
k, 1954; Ouni et al., 2007; Summer�eld, 1979; S
hwartz et al., 2004). The evaluationresults of visual spee
h intelligibility by LeGo� et al. (1994) show that the natural fa
e presented`without' or `with degraded' audio restores two-thirds of the a
ousti
 intelligibility; with a fa
ialmodel without a tongue and just a lip model restores half and one-third of it respe
tively. Spee
hpresented along with fa
ial animation has been observed to be more preferred interfa
e to voi
e-only presentation. They have been shown to in
rease the intera
tive experien
e of users (Pandzi
et al., 1999). 7



8 Audio-Visual Spee
hThese advantages of audio-visual spee
h over a
ousti
 spee
h indi
ate its vast appli
ationpossibilities. It has been widely used in entertainment and e-
ommer
e for developing virtualagents. These appli
ation do not ne
essarily need high a

ura
y of spee
h arti
ulation. Thereare other appli
ations whi
h require high a

ura
y 
omparable to that of natural audio-visualspee
h. These in
lude appli
ations for pedagogi
 a
tivities, for example, virtual language tutorsfor e-learning, tea
hing spee
h arti
ulation to hearing impaired et
 (Massaro, 2006). It 
an alsobe used to develop virtual announ
ers for publi
 pla
es that are usually noisy.Considering all the pre
eding dis
ussion, it 
an be said that audio-visual spee
h synthesis isa signi�
ant domain to pursue. But, the advantages of natural bimodal spee
h 
an be realizedthrough synthesized audio-visual spee
h, only if it is 
omparable to the former. It is so be
ause,humans have impli
it expe
tations from audio-visual spee
h based on the learning and experien
eof general fa
e-to-fa
e 
ommuni
ations. These are related to temporal alignment and 
oheren
ebetween the a
ousti
 and visual modalities. For instan
e, while hearing sounds like `p', weexpe
t a 
losure of the lips just in time before the onset of that sound. Similarly, we expe
t tohear high-pit
hed voi
e for a 
onversation where somebody is seen to be in extreme fear. Thismeans that the synthesized audio-visual spee
h has to have the a
ousti
 and visual streams tobe temporally syn
hronous and 
oherent with ea
h other.A majority of approa
hes for audio-visual (AV) spee
h synthesis, synthesize the fa
ial an-imation over spee
h a
ousti
s, and then perform additional pro
essing for syn
hronizing thetwo wherever ne
essary. This is based on the assumption that AV spee
h synthesis is a set oftwo di�erent problems, thereby addressing them sequentially by synthesizing visual spee
h oversynthesized spee
h a
ousti
s. There are two problems with this approa
h. To begin with, syn-
hronizing the two streams synthesized separately is not straight-forward. Humans are extremelysensitive to any asyn
hrony between the audio and spee
h animation. In fa
t, this sensitivityto dis
riminate syn
hronous spee
h from asyn
hronous spee
h develops very early in humans intheir infan
y with a signi�
ant preferen
e to syn
hronous spee
h (Dodd, 1979). Results from(Grant and Greenberg, 2001, 2004) show that human spee
h per
eption is extremely sensitiveto any lag in the visual domain when 
ompared to audio unlike the other way around. It is alsoobserved that this asyn
hrony 
auses a surge in the intelligibility of asyn
hronous audio-visualspee
h. Moreover, this also brings in the issue of in
onsisten
y in visual and a
ousti
 domainwhi
h might bring in dis
omfort (Mattheyses et al., 2009). This in
onsisten
y 
an also a�e
t the�nal per
eption of the audio-visual spee
h, as illustrated by some of the experimental data in(Green and Kuhl, 1989, 1991). These experimental results show that the per
eption of pla
e andmanner of arti
ulation gets a�e
ted when in
onsistent information is presented in the visual and



9a
ousti
 modality. The worst 
ase, where per
eption of AV spee
h 
an be highly a�e
ted is thatof M
Gurk e�e
t (M
Gurk and Ma
Donald, 1976). In fa
t, when di�erent fa
ial animation anda
ousti
s are presented syn
hronously, subje
ts would experien
e fusion or 
ombination e�e
t.Fusions e�e
t is seen, for example, when visual/g/ is presented syn
hronously with a
ousti
 /b/.The result is per
eived as /d/. Similarly, when visual /b/ is presented with a
ousti
 /g/) syn-
hronously, it is per
eived as /bg/, whi
h is an example of the 
ombination e�e
t. This indi
atesthat synthesizing audio-visual spee
h by separating the synthesis of the two modalities, mightnot always ensure the best result in terms of syn
hrony and 
oheren
e of the two modalities.In general, simultaneous pro
essing of a
ousti
 and visual spee
h is shown to be advantageouswith respe
t to audio-visual integration that are not available with their independent pro
essing(Chen and Rao, 1998).To ensure a perfe
t alignment and 
oheren
e between a
ousti
 and visual modalities, weadvo
ate synthesizing audio-visual spee
h simultaneously by treating the two modalities as asingle entity. In this thesis, we present our method for audio-visual spee
h synthesis basedon this prin
iple. We base our spee
h synthesis on the unit sele
tion paradigm. We performsimultaneous synthesis of a
ousti
 and visual modalities by 
on
atenating bimodal units. Wekeep the natural asso
iation between the two modalities inta
t while doing so, as the visualand a
ousti
 modalities belong to the same spee
h segment. It should be emphasized that thisapproa
h impli
itly addresses the above mentioned issues of asyn
hrony and in
oheren
e. Thiswork 
an be 
onsidered as the 
ru
ial �rst step towards a 
omprehensive talking-head. A
tually,our main fo
us is to synthesize the audio-visual spee
h dynami
s a

urately. The resultant isnot a 
omplete talking head yet. Our fa
ial representation is limited to sparse mesh des
ribingthe outer surfa
e of the fa
e in
luding the lips. The audio-visual spee
h does not in
lude theinformation related to the internal arti
ulators like tongue, teeth and other 
omponents ne
essaryfor expressive spee
h. In the 
ourse of this work �rst we studied the bimodal spee
h 
orpus,that we a
quired, by designing and analyzing visual spee
h segmentation experiments. Then, wedeveloped the basi
 system whi
h implemented our idea of bimodal unit 
on
atenation. By usingthe basi
 synthesis framework of bimodal unit-sele
tion system, we developed methodologies toimprove the bimodal synthesis. In our work, we are addressing the following problems: (1)unit-sele
tion taking both a
ousti
 and visual 
onsiderations into a

ount whi
h 
an drasti
allyin
reases the 
omplexity, (2) weight tuning, whi
h is a di�
ult problem in spee
h synthesis. Infa
t, we developed 
orpus spe
i�
 visual target 
osts and an iterative target feature weightingalgorithm. Finally, we performed per
eptual and subje
tive evaluation experiments throughhuman parti
ipants to estimate the intelligibility and quality of our present system.



10 Audio-Visual Spee
hThis thesis is organized as follows. We begin by reviewing the �eld of audio-visual spee
hsynthesis, in 
hapter 1. In this 
hapter, we dis
uss the ways in whi
h the fa
e has been modeledand animated. We also dis
uss the various approa
hes of audio-visual spee
h synthesis based onseparate or joint synthesis of the two modalities. Our spee
h synthesis system is built on thegeneri
 paradigm of unit sele
tion and this is the topi
 of 
hapter 2. We review literature relatedto some aspe
ts of unit sele
tion. It in
ludes, segmentation, that is performed during 
orpuspreparation. Besides, the various building blo
ks of sele
tion are examined: target des
ription,target and 
on
atenation 
osts. Finally, we review the ways of evaluating synthesized spee
h.In
hapter 3, we present our work by providing �rst an overview of our audio-visual spee
h synthesissystem. It also details our audio-visual 
orpus re
ording and database preparation for oursynthesis system. The resultant audio-visual database that we have is an interesting resour
ewhi
h 
an be used for studying various phonemes. As a �rst step in this dire
tion, we haveperformed segmentation of the visual data. We des
ribe these segmentation experiments, theirresults and analysis of these results in 
hapter 4. In 
hapter 5, we detail di�erent strategiesthat we developed to optimize our system. It in
ludes designing new visual target features andtarget feature weighting. Finally in 
hapter 6, we present the obje
tive evaluation, per
eptualevaluation and the analysis done to bring out the relation between the two. We 
on
lude in
hapter 7 and explain our future work.



Chapter 1
Audio-Visual Spee
h Synthesis: AnIntrodu
tion

In this 
hapter, we look at some of its earlier synthesis approa
hes. For any spee
h, a
ousti
 oraudio-visual, to be synthesized from text, the underlying phoneme sequen
e 
orresponding tothe text has to be �rst spe
i�ed. Given this spe
i�
ation, various approa
hes 
an be followedfor AV spee
h synthesis. Firstly, these approa
hes 
an be divided based on whether the visualand a
ousti
 modalities are synthesized separately or simultaneously. Se
ondly, the synthesisof a
ousti
 or visual modalities in the 
ase of separate synthesis 
an be divided based on thesynthesis paradigm: rule based, arti
ulatory or 
on
atenative (Theobald, 2007). Thirdly, theapproa
hes 
an be 
lassi�ed based on their fa
ial rendering te
hnique: 3D modeling of fa
e orimage-based.In a rule-based synthesis system, the well known representative 
hara
teristi
s of spee
h aresimulated using prede�ned rules. Whereas, arti
ulatory synthesis is done by the simulation ofnatural pro
ess of spee
h produ
tion using models of human anatomy. For instan
e, air �ow issimulated through a 
ontrolled model of human vo
al tra
t, and skin of the fa
e is deformed usingbones and mus
les. Con
atenative spee
h synthesis is performed by 
on
atenating segments ofre
orded human spee
h, generally 
alled 
orpus. This 
an be put into a broader 
ategory 
alled
orpus-based spee
h synthesis whi
h also in
ludes HMM-based spee
h synthesis. HMM-basedsynthesis depends on the learning of patterns of spee
h parameters from a given 
orpus, whi
h isthen used to generate spee
h parameters. Con
atenative approa
h is like memorizing the wholedata, and then a

essing the memory at the time of synthesis.In the following se
tions, we fo
us on audio-visual spee
h synthesis. First, we brie�y des
ribethe fa
ial rendering te
hniques (se
tion 1.1). Then, we dis
uss the approa
hes whi
h synthesizethe a
ousti
 and visual modalities separately and simultaneously in se
tions 1.2 and 1.3.11



12 Chapter 1. Audio-Visual Spee
h Synthesis: An Introdu
tion1.1 Fa
e modeling and animationThe fa
e has been en
oded and presented in two ways for the purpose of fa
ial animation. The�rst approa
h is the 3D modeling of the fa
e. The outer surfa
e of the fa
e is modeled using amesh of 
onne
ted polygons. These polygons are made of prede�ned edges 
onne
ting a set of3D point verti
es. Also, 
hanges in the 3D point lo
ations and the 
onsequent 
hanges in themesh a

ount for the deformations in the fa
e. The �rst 3D-fa
ial model was developed by Parke(Parke, 1972, 1975, 1982). In this model, the 3D points were de�ned and 
ontrolled by a setof parameters. These parameters were 
on
eptually divided into two distin
t sets (fun
tionallythey might have an overlap): 
onformation parameters and expression parameters. The 
onfor-mation parameters were the ones whi
h de�ne the dimensions of the 3D fa
e. That is, if 3D fa
esare modeled based on real human subje
ts for instan
e, then 
onformation parameters de�nethe basi
 `di�erentiating' dimensions of that parti
ular human fa
e. These in
luded parameterslike aspe
t ratio of fa
e (height to width), relative sizes spe
ifying forehead, eye separation,nose height, 
heek, 
hin, et
. The expression parameters were those whi
h des
ribed mainlythe movements of eyes and mouth. They in
luded deformations like jaw rotation, width of themouth, position of upper lip and 
orners of the mouth, et
. These deformations might be relatedto spee
h or emotional expressions. From these two 
ategories of parameters, the 3D points onthe fa
e positions were determined using di�erent types of operations, applied independentlyto some regions or to the whole fa
e. Eyes were 
ontrolled by spe
i�
 pro
edures. The otheroperations in
luded, interpolation, rotation, translation and s
aling. The �nal rendering wasdone through Phong interpolation (Phong, 1975) based on the parameter spe
ifying the dire
-tion of light sour
e. There are many virtual 
hara
ters whi
h are des
endants of this Parke'smodel (Cohen and Massaro, 1993; Beskow, 1995; Olives et al., 1999). These des
endants ofParke's model have various additions to improve the appearan
e of fa
e and animation: like theaddition of the tongue, ears or the ba
k of the head and the addition of 
ontrol parameters. Theadvantage of these kind of parametri
 models is that the whole mesh is spe
i�ed using a smallset of parameters. Parke's parametri
 model is di�erent from some other parametri
 models,whi
h are based on modeling the underlying anatomi
al stru
ture like bones, mus
les , skin andfor
es a
ting on them (Waters and Terzopoulous, 1990; Waters, 1987; Lee et al., 1995; Ekmanand Friesen, 1978). This kind of modeling has been observed to be 
omputationally intensive(Bailly et al., 2003). Some talking heads whi
h present emotional fa
ial animations are basedon pseudo-mus
le 
ontra
tions (Cosi et al., 2003; Pela
haud et al., 2001). MPEG-4 standardizesthe parametri
 models by de�ning a minimum set of 84 feature points (FPs) lo
ated on the fa
e.These FPs are 
ontrolled by a set of 68 parameters related to per
eptible fa
ial deformations



1.2. Separate visual spee
h synthesis 13
alled fa
ial a
tion parameters (FAPs)(Ostermann, 1998).Besides 3D modeling of the fa
e, the se
ond approa
h for representing a fa
e is throughthe usage of fa
ial images. These are most often images of real people. Hen
e, image-basedapproa
hes are generally data-driven. Fa
ial animations using images are generated in twoways. First, it 
an be done by interpolating few spe
i�
 images that are representative of thetypi
al arti
ulation of visually identi
al phonemes 
alled visemes (Ezzat and Poggio, 1998).Alternatively, it 
an be done by 
on
atenating image sequen
es (Bregler et al., 1997; E.Cosattoet al., 2000).The image-based approa
hes of modeling present more realisti
 fa
es. This is be
ause oftheir proximity to the real fa
ial appearan
e, whi
h is often des
ribed as being photo-realisti
.But, this way of en
oding or presenting a fa
e is most often limited to a straight-head frontalview of the fa
e. Besides, storage of images in
urs signi�
antly higher memory requirementto storage of a few parameter traje
tories. On the other hand, 3D-model-based approa
h is�exible in terms of the view and head orientations in whi
h a fa
e 
an be rendered. But, anadditional pro
essing step is required to add the internal arti
ulators like tongue and teeth torender the 
omplete arti
ulatory information. It is possible to augment the 3D model by addingtextural information to make the �nal fa
ial animation �exible and 
omparatively photo-realisti
Elisie et al. (2001). Another alternative of modeling the fa
e is morphable-models presented in(Cootes et al., 1998; Blanz and Vetter, 1999). These models also embed both geometri
 andtexture related information to present a relatively photo-realisti
 and �exible fa
ial model.1.2 Separate visual spee
h synthesisConventionally, AV spee
h synthesis is 
onsidered as two separate problems; the generation ofspee
h a
ousti
s and the generation of fa
ial animation to a given spee
h a
ousti
s (real orsynthesized). Consequently, it has been performed by synthesizing the two modalities sepa-rately. Fa
ial animation is generated over a given spee
h a
ousti
s, whi
h is either synthesizedor re
orded. This approa
h requires additional pro
essing to 
orre
t the alignment between thetwo modalities in the 
ase of 
on
atenative visual spee
h synthesis (Bregler et al., 1997). We referto the fa
ial animation related to spee
h as visual spee
h. We fo
us on visual spee
h synthesisstage, 
onsidering the a
ousti
 spee
h already available. Two 
on
epts, whi
h might surfa
e inthe dis
ussion of visual spee
h are: visemes and 
oarti
ulation. In the following paragraphs, we�rst explain these two 
on
epts before going ahead with the synthesis te
hniques.Visemes: Visible spee
h arti
ulation presents similarities for many phonemes. Based on thissimilarity, phonemes 
an be divided into di�erent sets. The representative units for ea
h of these
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h Synthesis: An Introdu
tionsets are de�ned as visemes. It is the fundamental unit in the 
ontext of visual spee
h (Fisher,1968). For example, per
eption of visual spee
h while phonemes in the set {p, b, m} are beingarti
ulated is almost the same. Hen
e, they belong to one viseme set. In the 
urrent dis
ussion,we mean by viseme, a sequen
e of visual spee
h parameters des
ribing a 
omplete segment ratherthan stati
 targets. On the 
ontrary, we refer to a single sample of these parameters des
ribinga snapshot of a parti
ular target fa
e as `key frame'. The visual spee
h parameters 
an beimage frames or traje
tories of 
ontrol parameters or 3D points on the fa
e. This many-to-onemapping of visual spee
h makes the separation of visual spee
h synthesis from a
ousti
 spee
hsynthesis advantageous. It is be
ause, the system gets 
on
ise due to the redu
ing in the numberof distin
t units. In the 
ase of 
on
atenative visual spee
h synthesis, this in
reases the possible
andidates.Coarti
ulation: Coarti
ulation is the phenomenon in whi
h the arti
ulation of a phonemeis in�uen
ed by the arti
ulation of the neighboring phonemes. Synthesized visual spee
h needsto a

urately represent 
oarti
ulation. In 
ase of parametri
 3D-fa
ial-models, the parametersfor animating them have been generated taking 
oarti
ulation into a

ount using rules (Beskow,1995; Pela
haud et al., 1994) or mathemati
al 
oarti
ulation models (Öhman, 1967; Cohen andMassaro, 1993; Cosi et al., 2002). Beskow (1995) mentions that ea
h phoneme has a target ve
torspe
ifying the typi
al arti
ulatory gestures. These target ve
tors are under-spe
i�ed for somephonemes whi
h are interpolated based on the 
ontext to a

ount for 
oarti
ulation. Pela
haudet al. (1994) divide phonemes into 
lusters based on their deformability in di�erent 
ontexts.Phonemes with lower deformability serve as the key frames for 
oarti
ulation. Öhman (1967) a
-
ounts for the 
hanges during the transformation of a V1CV2 (vowel-
onsonant-vowel) sequen
e.Cohen and Massaro (1993) implement Löfqvist gestural theory, where phonemes are spe
i�edwith target feature ve
tors. Coarti
ulation is de�ned as the super-imposition of time-varyingdominan
e fun
tions des
ribing di�erent arti
ulators. These dominan
e fun
tions are negativeexponential fun
tions whi
h peak at the target feature ve
tors. This 
oarti
ulation model hasbeen further augmented by Cosi et al. (2002) by the addition of resistan
e fun
tions. These re-sistan
e fun
tions ensure that some spe
i�
 target 
on�gurations are attained by suppressing thedominan
e of neighboring phonemes. This is espe
ially important for phonemes like labials andbilabials. Beskow (2004) reports an experimental 
omparison of various approa
hes to a

ountfor 
oarti
ulation. He reports that the mathemati
al model proposed by Cohen and Massaro(1993) performs well in 
omparison with the real data; whereas, with respe
t to intelligibility,rule-based te
hniques perform better. These models 
an be optimized through hand-tuning or
an be statisti
ally trained using real data a
quired using motion 
apture (Cosi et al., 2002;
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h synthesis 15Elisie et al., 2001). Ezzat et al. (2002) also perform tuning of a 
oarti
ulation model throughstatisti
al learning on re
orded 
orpus. Their 
oarti
ulation model is similar to that of Cohenand Massaro (1993). Instead of using motion data, they used image-based 
orpus for tuningtheir model.Corpus-based approa
hes:Instead of using some expli
it 
oarti
ulation models, the 
oarti
ulation 
an be impli
itly en
odedin the synthesized visual spee
h. This is done in 
orpus based approa
hes. Firstly, the 
ompletetraje
tories of visual spee
h parameters 
an be generated using models like HMMs, whi
h aretrained on real data (Brand, 1999; Masuko et al., 1998). In this 
ase, the HMM 
an be modeledas a triphone, whi
h des
ribes a phoneme in the required phoneti
 
ontext. Alternatively,the 
omplete sequen
e of visual spee
h parameters for real motion 
apture data 
an be storedand used by 
on
atenating them for synthesis (Minnis and Breen, 2000). In this approa
h,
oarti
ulation is en
oded through the synthesis unit, like triphone or diphone.In 
ase of 
on
atenative approa
hes, the visual spee
h database has to be prepared. Besidesa
quisition, the 
orpus needs pro
essing to annotate the individual units in terms of their pho-neti
 labels, segment boundaries, information related to the geometri
 properties of the fa
es forensuring smooth transition at the 
on
atenation points. One of the 
on
atenative approa
hesfor dubbing appli
ations is presented in Bregler et al. (1997). They prepare the visual databaseby phoneti
ally segmenting an un
onstrained video sequen
e. This segmented video is anno-tated to in
lude the information based on the orientation of the head, the shape and position ofmouth. They use eigenpoints to estimate the �du
iary points on the fa
e (mouth, teeth, 
hinand jaw line) using 26 hand annoted images. Also, the synthesis is done by the 
on
atenation oftriphone video 
lips. The synthesized mouth sequen
es are then morphed onto the ba
kgroundvideo sequen
e. The resulting video sequen
e is 
ompressed or stret
hed to time-align with thetarget audio between phoneme boundaries.The synthesis des
ribed in (E.Cosatto et al., 2000) is based on the 
on
atenation of variablelength video sequen
es of mouth images (and also other fa
ial parts). The database is des
ribedin terms of 3D geometri
 features of the head and appearan
e features extra
ted by Prin
ipalComponent Analysis (PCA). They further subdivide the fa
ial parts into 
heeks, teeth, tongue,jaw, et
 to make the synthesis more �exible. The �nal synthesis is done by overlaying bitmaps ofthe fa
ial parts present in the database onto a ba
kground video as in (Cosatto and Graf, 1998).There are other similar works of image based 
on
atenative approa
hes (Weissenfeld et al.,2005; Liu and Ostermann, 2009). For instan
e, Weissenfeld et al. (2005) use Lo
ally Linear
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h Synthesis: An Introdu
tionEmbedding (LLE) to des
ribe the appearan
e parameters of the mouth images unlike Cosattoand Graf (1998) who use PCA. Liu and Ostermann (2009) use PCA to extra
t appearan
eparameters and A
tive Appearan
e Models (AAM) to extra
t the geometri
 parameters of thefa
e (lip width, lip height, visibility of teeth and tongue). A similar approa
h, but whi
h isbased on parametri
 3D fa
ial model is presented in (Ma et al., 2006). In this approa
h, the
ontrol parameters extra
ted from re
orded 3D fa
ial marker data are 
on
atenated using unitsele
tion. The resultant traje
tories are used to animate virtual 
onversational agents.Some 
on
atenative approa
hes 
ombine HMM and 
on
atenative approa
hes for visualspee
h synthesis. One su
h work is presented in (Lijuan et al., 2010). It is image-based ap-proa
h where the sele
tion pro
ess is guided by the traje
tory of lip movements generated bytrained HMMs. These HMMs are trained by the AV-spee
h 
orpus. This approa
h is similarto an earlier work by Govokhina et al. (2006). In that, phoneti
ally aligned traje
tories of 3Dfa
ial markers are sele
ted based on the traje
tories generated by trained HMMs. A hybridunit sele
tion and HMM based approa
h for visual spee
h synthesis is presented in (Edge et al.,2009). This work uses the sele
ted units to train state-based models and sear
h through theselearned models through Viterbi type algorithm. The similarity in spee
h a
ousti
s (a
ousti
parameters) was used to guide through unit sele
tion. The �nal sequen
e of state-based modelsis used to generate smooth traje
tories for visual spee
h. Bailly et al. (2009) des
ribe a systemwhi
h generates arti
ulatory gestures (
ontrol parameters) for a video realisti
 (image based)fa
ial animation using HMMs. They in
orporate a phasing model to learn the lag between visualgestures and 
orresponding spee
h a
ousti
s. They 
ompare this HMM-based te
hnique whi
hin
ludes the phasing model with 3 other te
hniques: (1) 
on
atenation of arti
ulatory gesturessele
ted based on the phoneti
 
ontext, (2) 
on
atenation of arti
ulatory gestures based on sele
-tion that is guided through the phasing model based HMM, (3) traje
tory generated by HMMmodels trained on audio-syn
hronized arti
ulatory gestures. They 
on
lude that the phasingmodel based HMMs improve the synthesis.Almost all of these works report lip-syn
hronization problems. Bregler et al. (1997) reportthat plosives were observed to have o

asional lip-syn
hronization problem, Cosatto and Graf(2000), report lip-syn
hronization being 
riti
ized in subje
tive evaluation. Geiger et al. (2003)present the per
eptual evaluation of the synthesis approa
h presented in (Ezzat et al., 2002).They report that the synthesized audio-visual spee
h is not 
omparable to the natural audio-visual spee
h, to the extent that is required for developing appli
ations for tea
hing language orspee
h arti
ulation to the hearing-impaired.
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h 171.3 Simultaneous synthesis of audio-visual spee
hThe potential appli
ation of audio-visual spee
h hinges not only on the a

ura
y of the syn-thesized visual spee
h, but also on the extent to whi
h the a
ousti
 and visual streams agreewith ea
h other in terms of syn
hrony and 
oheren
e. It is obvious from the previous se
tionthat, through the separate synthesis of a
ousti
 and visual modalities, these 
onditions are notalways guaranteed. In this se
tion, we look at approa
hes whi
h synthesize audio and visualspee
h simultaneously. The 
entral me
hanism of all these approa
hes is to keep the asso
iationbetween the visual and a
ousti
 modalities, thereby preserving the natural syn
hrony and 
o-heren
e. Majority of approa
hes in this 
ategory are based on the 
on
atenation of syn
hronousbimodal units. One approa
h presented by Tamura et al. (1999), uses HMM models trainedusing syn
hronous audio-visual spee
h data to generate bimodal spee
h parameters. But, itshould be said that this approa
h was still at a mu
h preliminary level as the generated visualspee
h parameters were related only to the lip 
ontours.The 
on
ept of syn
hronous bimodal unit 
on
atenation for Swedish AV spee
h synthesishas been presented in (Hallgren and Lyberg, 1998). The visual spee
h information is re
ordedas traje
tories of 3D markers all over the fa
e, espe
ially around the lips. The re
orded markerinformation is used to 
ontrol a 3D model of the head. This head model is further textured tomake it look more natural.Two re
ent image-based approa
hes that use 
on
atenation of bimodal units are (Fagel, 2006;Mattheyses et al., 2009). In (Fagel, 2006), AV spee
h synthesis is done for German by 
on
ate-nating syn
hronous bimodal polyphone segments. This was with a 4-minute 
orpus 
onsistingof bimodal spee
h: video of spee
h aligned with the 
orresponding phoneti
 trans
ript. Thesele
tion of polyphone segments for 
on
atenation was based on a 
on
atenation 
ost 
al
ulatedas a weighted sum of a
ousti
 and visual 
on
atenation 
osts. The pre-sele
tion of possiblepolyphone segments from the 
orpus is based on 
hunks (longest polyphone segments that areavailable in the 
orpus), and the visual joint 
ost 
al
ulation is based on the pixel to pixel 
olordi�eren
es in the end frames of the video 
lips to be 
on
atenated. Hen
e, it is quite 
lear thatsynthesis in
urs a large overall pro
essing time. In (Mattheyses et al., 2009), the 
onventionalunit-sele
tion te
hnique whi
h has been widely used for a
ousti
 spee
h synthesis is extended toperform AV spee
h synthesis. It is done by in
luding an additional join 
ost term for visual joindis
ontinuities. Their system is similar to the one explained in (Liu and Ostermann, 2009) interms of the visual features extra
ted and used to des
ribe the fa
ial geometry and appearan
e.These methods like any image-based te
hnique in
ur high storage requirement when 
omparedto a 3D-model based approa
h.
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h Synthesis: An Introdu
tion1.4 Con
lusionIn this 
hapter, we have dis
ussed various te
hniques to model the fa
e that are based on eitherits 3D or image-based representation. We have also dis
ussed the various pros and 
ons of ea
hte
hnique. Further, we have also examined some approa
hes of AV spee
h synthesis that arebased on either the sequential (synthesizing fa
ial animation after a
ousti
 spee
h synthesis)or simultaneous synthesis of the two modalities. We have highlighted the disadvantages of theformer. Consequently, we are in favor of syn
hronous, data-driven synthesis of audio-visualspee
h. Our approa
h is based on this line of synthesis. As 
an be seen in 
hapter 3, ourapproa
h is using a unit-sele
tion paradigm to synthesize both visual and a
ousti
 modalitiessimultaneously. In the following 
hapter, we present a survey of various aspe
ts of unit sele
tionand then we introdu
e our system in 
hapter 3.



Chapter 2
Spee
h Synthesis Using Unit Sele
tion:Literature Survey
Spee
h synthesis is a well established �eld of resear
h with signi�
ant progress in the past threede
ades. Though synthesized spee
h is getting 
loser to human spee
h, it is still far from being
onsidered a solved problem. In addition, we are still away from a perfe
t all-purpose spee
hsynthesizer. This is true for both a
ousti
-only and audio-visual spee
h. Among the synthesiste
hniques 
on
atenative te
hniques have be
ome very popular in re
ent times. These methodshave been widely used and evolved for a
ousti
 synthesis. Nevertheless, the paradigm is generi
and has been extended to visual or audio-visual spee
h synthesis. In the earlier 
on
atenativea
ousti
 synthesis, fewer instan
es of ea
h diphone were stored in the inventory. The synthesisspe
i�
ation in
luded the prosodi
 des
ription related to duration and pit
h of targets in thesenten
e to be synthesized. At the time of synthesis, these diphones were modi�ed using signalpro
essing te
hniques to bring in the 
hanges related to prosody and then 
on
atenated. Thiskind of intensive signal pro
essing done on the waveform distorts its naturalness. The advantageof this system was the small size of the diphone inventory whi
h was a ne
essary requirementat the time of its usage. Moreover, it 
an be said that in spite of usage of signal pro
essing, itdoes not a

ount for all the variations of spee
h a

urately.As 
omputer storage is getting 
heaper and faster, it has be
ome possible to store hugespee
h database many times larger than the earlier smaller inventory of diphones. Usage of ahuge 
orpus, makes it possible to in
lude a large set of 
andidate diphones with large variabilityin their waveforms. Moreover, it is even possible to have longer synthesis units than a diphone.In fa
t, it is even possible to sear
h for whole senten
es or big 
hunks of senten
es. This indi
atesthe drasti
 redu
tion in the need to pro
ess the spee
h signal. Consequently, the resultant spee
hpreserves the naturalness of the original spee
h as the spee
h segments are 
on
atenated with19
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h Synthesis Using Unit Sele
tion: Literature Surveylittle to no signal pro
essing.Nevertheless, the usage of a large spee
h 
orpus has di�erent problems. A large varian
ein the synthesis 
andidates means that sele
tion has to be done 
arefully, to synthesize spee
hwhi
h is similar to a natural utteran
e. This is the 
lassi
al unit sele
tion problem. We dis
usssome of the issues of unit sele
tion te
hniques, and the approa
hes that have been applied toresolve them. In the following se
tions, we �rst give a brief introdu
tion of the emergen
e ofthe framework of unit sele
tion and its basi
 paradigm (in se
tion 2.1). In se
tion 2.2 we give ashort des
ription of the segmentation te
hniques used in 
orpus preparation, then a des
ription ofpre-sele
tion of 
andidates and the 
onventional target 
ost formulation based on independentfeature spa
e assumption and its tuning (in se
tion 2.3). Next, (in se
tion 2.4) we give abrief a

ount of the ways join evaluation te
hniques have been analyzed for their 
orrelationwith human per
eption of dis
ontinuity when non-
ontiguous units are 
on
atenated. Finally,(in se
tion 2.5), we deal with the obje
tive and per
eptual evaluation methodologies that aregenerally employed to estimate and sometimes qualify a text-to-spee
h synthesis (a
ousti
 oraudio-visual) for its use in a spe
i�
 domain.2.1 Unit sele
tion paradigmUnit sele
tion depends on the sele
tion of the best possible set of units from di�erent variantsavailable in the 
orpus. Consequently, the �rst requirement is to have a 
orpus that not onlyhas a good 
overage of the possible spee
h variants, but whi
h is also 
omparatively small tokeep the sear
h time short (Möbius, 2000). Given a parti
ular spee
h 
orpus, the quality of thesynthesized spee
h using unit sele
tion depends on its usage. Many fa
tors a�e
t the synthesisresults. For example, 
on
atenation of units 
an be said to be the most obvious reason foraudible disruption and many initial systems were based on the redu
tion of 
on
atenation points(Sagisaka, 1988). In (Sagisaka, 1988), the sele
tion of longest segments is given preferen
e andthe 
on
atenation at 
ertain lo
ations like at CV (
onsonant-vowel) boundaries or in the middleof vowels is penalized. Alternatively, when it is not possible to avoid 
on
atenation of non-
ontiguous units, minimization of distortion at the 
on
atenation point minimizes the qualitydegradation (Takeda et al., 1990; Iwahashi et al., 1992). Besides redu
ing the 
on
atenation ofnon-
ontiguous units, there are other ne
essary fa
tors that need to be 
onsidered. For example,the phoneti
 
ontext of the sele
ted unit and the spee
h realization of the unit itself seemsimportant (Takeda et al., 1990; Iwahashi et al., 1992).The sear
h pro
edure proposed in (Hunt and Bla
k, 1996) for unit sele
tion o�ers a uni�
ationframework where all the above mentioned 
onsiderations 
an be in
luded while determining a
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tion paradigm 21possible optimal solution to the sele
tion-
on
atenation problem. For a sequen
e of 
andidates
u, and a sequen
e of required target units t; the paradigm presented by Hunt and Bla
k (1996)optimizes a total 
ost fun
tion whi
h is a weighted sum of the following:

• The per
eptual suitability of u, for t, whi
h is 
alled the target 
ost, denoted by TC(t, c).
• The total dis
ontinuity at all the 
on
atenation points, 
alled the join 
ost denoted by

JC(c).Denoting the weights of the target 
ost and the join 
ost by wtc and wjc respe
tively; froma given 
orpus, the sear
h for the �nal sequen
e of 
andidates is done based on the optimum
andidate sequen
e whi
h minimizes the total 
ost (C) as shown below:
C = min

u
wtcTC(t, u) + wjcJC(u) (2.1)Here, the pre-sele
tion of units is based on a same-size units like phones or diphones forea
h target position. This pre-sele
tion is based on the target 
ost determining the suitabilityof the 
andidate and its 
ontext. Also, in this general framework, the sele
tion of longest
ontiguous 
andidates is enfor
ed impli
itly by making the individual join 
osts for any two
ontiguous units in the 
orpus zero (Balestri et al., 1999). This has the advantage of takinginto a

ount the variability of spee
h realization besides redu
ing the 
on
atenation artifa
tsfor the sele
tion of possible best set of 
andidates. In 
ontrast, some methods expli
itly sear
hfor longest 
ontiguous units for 
on
atenation 
alled non-uniform unit sele
tion, where the unitssought for 
on
atenation are not of same size or type (Taylor and Bla
k, 1999; Boë�ard, 2001;S
hweitzer et al., 2003). This is di�erent from the earlier paradigm whi
h is impli
itly non-uniform unit sele
tion, as there might be many 
ontiguous segments of variable size in the �nalsynthesized spee
h. Clark et al. (2004) give a good des
ription of the pra
ti
al aspe
ts of buildinga unit sele
tion based spee
h synthesizer. Taylor (2009), gives a 
omprehensive overview of thedi�erent approa
hes addressing various aspe
ts of unit sele
tion based spee
h synthesis. Ourapproa
h is based on the �rst paradigm, whi
h is an impli
it non-uniform unit sele
tion.Extending unit sele
tion to audio-visual spee
h synthesisIn majority of AV spee
h synthesis approa
hes, visual spee
h is synthesized over an availablea
ousti
 spee
h that is either synthesized or real. In the 
ase of visual or audio-visual spee
h syn-thesis using unit sele
tion, the sele
tion of segments has to be done 
onsidering the requirementsof visual modality also. This involves the in
lusion of visual 
riteria during pre-sele
tion, i.e.,
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h Synthesis Using Unit Sele
tion: Literature Surveyin the target 
ost fun
tion, and also additional join 
riteria to a

ount for the visual modalityrelated dis
ontinuities in the join 
ost fun
tion.2.2 SegmentationIt is obvious that unit sele
tion depends on a spee
h database. Segmentation is one of the stepsof this database preparation, in whi
h re
orded spee
h is divided into phoneti
 segments bydemar
ating their temporal boundaries. These phoneti
 segments 
onstitute the basi
 buildingblo
ks for synthesis. Spee
h segmentation without any other spe
i�er is 
onventionally used torefer to a
ousti
 spee
h segmentation. Though the best way in terms of a

ura
y is manualsegmentation (Cosi et al., 1991; Ljolje and Riley, 1993; Ljolje et al., 1997), it is time-
onsuming,laborious and hen
e 
ostly. For this reason, automati
 spee
h segmentation is 
onsidered a goodalternative. The most popular and widely used te
hnique for automati
 spee
h segmentation isto for
e a HMM based phoneti
 spee
h re
ognizer to re
ognize the spee
h to a given phoneti
trans
ript. Demar
ation of phoneti
 boundaries is a result of this for
ed-re
ognition whi
h is
onventionally 
alled for
ed alignment. This alignment te
hnique has avoided the need for man-ual alignment to some extent and also 
onsidered good enough for HMM training that is requiredin spee
h re
ognition. But, segmentation needs to be more a

urate for 
on
atenative spee
hsynthesis espe
ially for those whi
h are based on 
on
atenation at phoneme boundaries. Conse-quently, various methods have been used for the re�nement of the phoneti
 segment boundariesfurther (Toledano et al., 2003). Some of the re
ent works use a 
ombination of segmentationmethods to derive multiple time marks to arrive at more a

urate segmentation (Kominek andBla
k, 2004; Park and Kim, 2007).For 
on
atenative visual or AV spee
h synthesis, generally the boundary time-marks deter-mined by the a
ousti
 spee
h segmentation of an audio-visual 
orpus are used while de�ningthe 
andidates in the 
orpus (Bregler et al., 1997; Hallgren and Lyberg, 1998; E.Cosatto et al.,2000). This way of segmentation is widely followed and pra
ti
ally shown to work for visualspee
h synthesis. Nevertheless, this is not in a

ordan
e with the underlying prin
ipal of spee
hprodu
tion. The spee
h arti
ulators have to be ready with a target 
on�gurations required forthe produ
tion of a sound (phone) for it to happen. That is, the start and end in the visualand a
ousti
 modalities may not ne
essarily be the same. Some works have tried to learn thistime lag between a
ousti
 and visual by adding phasing models (Govokhina et al., 2007; Baillyet al., 2009). These phasing models are arrived at through iterative pro
ess involving HMMlearning, for
ed alignment of traje
tories of arti
ulatory gestures, 
omparison with the a
ousti
segment boundaries and adjustment of visual segment boundaries. Sin
e, spee
h segmentation
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ost fun
tion 23works through re
ognition of the spee
h segment, it provides an interesting tool to study theunique 
hara
teristi
s of phonemes. We exploit this idea to 
hara
terize phonemes (Chapter 4).2.3 Target 
ost fun
tionMeasuring the suitability of a 
andidate in the 
orpus for a target position in the spee
h tobe synthesized is a ne
essary step in unit sele
tion. The e�
ien
y of a target 
ost fun
tion inranking and pre-sele
ting 
andidates also a�e
ts the probability of a good join and thus thequality of the synthesized spee
h. Generally, the target and the 
andidate are de�ned in termsof fa
tors whi
h are known to a

ount for the variation in spee
h realization based on phoneti
and linguisti
 studies. These fa
tors are at the abstra
t level whi
h are not dire
tly expressible interms of the a
tual spee
h parameters quantitatively. These are referred to as high-level features.These features 
an take either non-negative integral values or 
an be 
ategori
al. These featuresmight in
lude:
• Phoneti
 features like the phonemi
 identity of the 
urrent unit and the neighboring units(
ontext), type of phoneme (vowel, 
onsonant), voi
ing of phoneme (voi
ed, unvoi
ed),manner of arti
ulation et
.
• Linguisti
 features like position of a syllable at various levels (word, rhythm group, sen-ten
e, et
); position of word in a rhythm group or senten
e; type of senten
e et
. Thesefeatures generally a

ount for the various suprasegmental prosodi
 patterns. Some of thefeatures in this 
ategory might be language spe
i�
.Target feature set 
an also in
lude features that are based on the statisti
al analysis of spee
hrelated parameters whi
h are extra
ted from 
orpus, whi
h are referred to as low-level features.For example, some systems use prosody predi
tion models that mainly provide duration andpit
h spe
i�
ation of the segments to be sele
ted. These prosody predi
tion models are trainedon real 
orpus. It helps in redu
ing the number of high-level target features needed to des
ribeprosody (Lata
z et al., 2010). The low-level target features are also used to speed-up the pre-sele
tion by redu
ing the sear
h spa
e (Bla
k and Taylor, 1997).Lot of systems use target feature set whi
h 
onsists of majority of higher level features (Huntand Bla
k, 1996; Coorman et al., 2000; Lata
z et al., 2010). Some systems use higher-leveltarget features ex
lusively to allow the automati
 sele
tion of 
andidates with suitable prosodi

hara
teristi
s rather than predi
tion based on prosodi
 models (Prudon and d'Alessandro, 2001;Colotte and Beaufort, 2005). The target 
ost is generally 
al
ulated as a weighted sum of the
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h Synthesis Using Unit Sele
tion: Literature Surveyindividual feature 
osts. Three kinds of target feature 
osts have been generally used (Coormanet al., 2000):1. Categori
al distan
e measures: Where the distan
e is either a binary valued or non-negative integer-valued fun
tion between 
ategori
al features.2. S
alar distan
e measures: Non-negative real valued fun
tion for features like duration, F0et
.3. Ve
tor distan
e measures: Distan
e 
al
ulation for multi-dimensional features, like thea
ousti
 and visual feature ve
tors.Categori
al distan
e measures are 
al
ulated for the high-level target features while the othertwo are based on the low-level features. For AV spee
h synthesis the set of target features hasto be augmented to in
lude the information regarding spee
h realization in the visual modality.Besides the target feature des
ription, the weighting of features for a given target set in the orderof their relative importan
e is 
ru
ial for sele
tion. These aspe
ts are presented in the followingtwo se
tions. Besides the 
onventional target 
ost, alternatives have been proposed whi
h wereview in subse
tion 2.3.3.2.3.1 Visual target featuresFor the visual spee
h synthesis many of the high level target features used are those whi
hdes
ribe the visual or audio-visual target. These features might in
lude typi
al arti
ulatory
hara
teristi
s like lip 
losures in bilabials. They might also in
lude rate of spee
h related
hara
teristi
s. Besides features whi
h are equally important for visual and a
ousti
 spee
hrealization (e.g., pla
e of arti
ulation), or those whi
h a

ount more for the a
ousti
 realization(e.g., voi
ing), there are some features whi
h are more important for des
ribing a visual target(e.g., shape of the lips during the arti
ulation of a phoneme). Many of the 
on
atenative AVspee
h synthesis systems use a visual target 
ost based on the similarity of two phonemes interms of visible fa
ial deformations, as des
ribed below.In (Bregler et al., 1997), a 
ategori
al phoneme 
ontext distan
e is used for the sele
tion oftriphone whi
h a

ounts for the visual target 
ost. Phonemes of same label are assigned 0 
ost,and phonemes belonging to two di�erent viseme 
lasses are assigned 1, and di�erent phonemesof same viseme 
lass are assigned a 
ost between 0 and 1 whi
h are derived from 
onfusionmatri
es des
ribed in (Owens and Blazek, 1985).In (E.Cosatto et al., 2000), a viseme distan
e matrix is used for the 
al
ulation of target 
ostbetween a target and 
andidate frame. It is 
al
ulated based on the similarities in the visual
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tion 25domain irrespe
tive of the di�eren
es in the a
ousti
 domain. The sele
tion of the visual segmentis based on duration and phoneti
 label of the target segment whi
h is obtained from the a
ousti
spee
h. Ea
h target frame is spe
i�ed in terms of the phoneti
 annotation of a window of framesequen
es 
onsisting of some �xed number in
luding itself to a

ount for 
ontext. The windowlength is di�erent for ea
h phoneme. The 
andidate is sele
ted with the most proximate 
ontextwhi
h is measured by the target 
ost. The target 
ost weight ve
tor is based on the exponentialde
aying in�uen
e inspired by (Cohen and Massaro, 1993). Weissenfeld et al. (2005) use a similarvisual target 
ost where the di�eren
e matrix is 
al
ulated based on the visual di�eren
e matrixpopulated using the Eu
lidean distan
e in visual feature spa
e. It is based on the assumptionthat ea
h phoneme 
an be des
ribed by its mean visual feature ve
tor, whi
h is speaker and
orpus spe
i�
. In (Mattheyses et al., 2010), a similar visual target 
ost 
al
ulated based on
orpus is in
luded. The di�eren
e matrix that is 
al
ulated represents the inter-phoneme visualdistan
es based on the mean and varian
e of visual parameters at the middle of the phonemeunits present in the 
orpus. These kind of 
ost fun
tions whi
h are 
al
ulated for a spe
i�

orpus don't guarantee optimum performan
e for any other 
orpus in general.2.3.2 Target feature weightingThe target 
ost tuning involves the determination of relative importan
e of target features andassigning weights to the individual target feature 
osts to be used for target 
ost 
al
ulation.Ideally, it is done in su
h a way that the ordering of 
andidates based on the target 
ost 
orre-sponds to their per
eptual suitability as a target. Sin
e the synthesized spee
h has to be at leasta

eptable, intelligible and near natural spee
h for human listeners, some system tuning te
h-niques are based on human listening tests (Coorman et al., 2000; Alías et al., 2004). Listeningtests are time-taking and require human subje
ts whi
h make them pra
ti
ally 
ostly. Moreoverthe s
ope of this kind of tuning is limited to a few set of senten
es and hen
e it 
annot guarantee
onsistent synthesis results. It be
omes further di�
ult when the set of target features is large.Hen
e automati
 weight tuning has been applied in many of the works (Hunt and Bla
k, 1996;Meron and Hiros, 1999; Park et al., 2003; Alías and Llorà, 2003; Colotte and Beaufort, 2005;Lata
z et al., 2010).The target feature weighting te
hniques 
an be divided into two 
ategories: (1) joint weighttuning of 
on
atenation and target feature 
ost fun
tions, either at the individual unit levelsele
tion by using pairs of synthesis units or at senten
e level, (2) separate weight tuning oftarget and 
on
atenation 
ost fun
tions, generally by tuning the target feature 
osts at thesynthesis unit or phoneti
 segment level. In both the te
hniques, a real segment or senten
e not
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h Synthesis Using Unit Sele
tion: Literature Surveyin
luded for sele
tion is treated as the target, and sele
ted or synthesized from the 
orpus. Thetarget and the sele
ted units are 
ompared using obje
tive distan
e measures to perform thetuning.One of the two te
hniques presented by Hunt and Bla
k (1996) 
alled `weight spa
e sear
h'(WSS) is based on the �rst 
ategory of weight tuning. It is based on the usage of targets fromreal senten
es held out for training from the synthesis database. The weight tuning is doneby sear
hing the weight spa
e, in su
h a way that the waveforms of synthesized senten
es andthat of real senten
es are similar. The weight spa
e sear
h is limited to a �nite set of weight
ombinations and 
hoose the best weights among the sear
hed 
ombinations for de�ning thetarget 
ost fun
tion. This method is 
omputationally very expensive in 
ase of large numberof features and possible set of target feature 
ost values. Meron and Hiros (1999) presenteda

eleration te
hniques for WSS by partial synthesis and 
omparison. Alías and Llorà (2003)performed target tuning by using geneti
 algorithm for doing the weight spa
e sear
h. Theadvantage of this is that the sear
h spa
e is randomized and sear
h evolves towards betterweight 
ombination, unlike in the former works where a �xed �nite 
ombinations were sear
hed.Lata
z et al. (2010) also present an automati
 weighting te
hnique for tuning target featuresand 
on
atenation 
osts together. In their te
hnique the ordering given by weighted sum oftarget 
ost and 
on
atenation 
ost, and the ordering given by an a
ousti
 distan
e metri
 are
ompared. A sele
ted error is 
al
ulated based on the mismat
h in this ordering. They refer thiste
hnique as Minimum Sele
tion Error training. Further, they propose that the set of weightsobtained for all the 
andidates treated as targets being 
lustered using de
ision trees.One of the te
hniques whi
h performs target feature weighting separate from 
on
atenation
osts weighting is based on multiple linear regression (Hunt and Bla
k, 1996). Using this method,the target feature weights for ea
h phoneme in a language's phoneme set are tuned separatelyto 
ome up with di�erent target 
osts for di�erent phonemes. Ea
h of the 
andidate in thedatabase is 
onsidered as a target ea
h time and the n most similar 
andidates are sele
tedfrom the phoneme's 
andidate set leaving the target out. The ordering of 
andidates for thepre-sele
tion of n 
andidates is based on an obje
tive distan
e measure. The target weights aredetermined using Linear Regression su
h that the target 
ost predi
ts the obje
tive distan
emeasure. Meron and Hiros (1999) presented a way to extend this regression training (RT) forweighting the target features and 
on
atenation 
osts together using target pairs unlike singletargets. They also propose 
lustering of phoneti
 
ontexts by using a de
ision tree to split thephoneme pairs into di�erent 
lusters. This is done with a phoneti
 
ontextual question whi
hsplit the phoneme pairs into sets with least regression error at ea
h level (using RL).
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tion 27Ea
h target feature a

ounts for variations in spee
h, and their duration. Based on thedis
riminative information a

ounted by ea
h of the features, they have been weighted in Colotteand Beaufort (2005). A
ousti
 representation of a parti
ular phoneme units were divided into
lusters through K-Means algorithm using Kullba
k-Leibler divergen
e as the similarity index.The weight of the feature is based on its dis
riminative information between the di�erent 
lusters.This is applied to all the phonemes in the phoneme set of the language separately. Anotherapproa
h to weight tuning is to view unit sele
tion as a 
lassi�
ation problem (Park et al.,2003), in whi
h instead of de�ning an obje
tive fun
tion to a

ount for the subje
tive spee
hquality, the 
lassi�
ation error is taken as the obje
tive fun
tion to be optimized. It is di�
ultto 
ompare these methods in terms of their synthesis results. There are many fa
tors whi
h varyin these approa
hes, like, spee
h 
orpus, test senten
es, evaluation methodologies et
. Hen
e, itis not straight forward to relatively judge their performan
e.2.3.3 Alternatives to 
onventional target 
ost fun
tionThe target 
ost put forth by (Hunt and Bla
k, 1996) was weighted sum of individual feature 
osts(di�eren
es). Whenever a 
andidate with the exa
t target feature des
ription is not available, the
andidate sele
ted for synthesis based on this simple formulation for measuring target-
andidatesimilarity or rather dissimilarity might not always re�e
t the a
tual human per
eption. Thefollowing two 
ases need little more 
onsideration: (1) where a 
andidate with required exa
tfeature des
ription is not available, but, a 
andidate with a spee
h realization similar to therequired one but with a di�erent feature des
ription is available; (2) where neither the a 
andidatewith exa
t feature des
ription nor with a similar spee
h realization is available, in whi
h 
ase,a better possible alternative(s) have to be sele
ted. To 
onsider the spee
h realization besidesthe target 
ombination alone of 
andidates, alternate approa
hes for target 
ost 
al
ulation havebeen proposed whi
h base the sele
tion on the per
eptual similarity estimated through a
ousti
distan
es (Taylor, 2006). The main idea behind the proposed method is to have representationof the segment to be sele
ted in terms of the low-level features by using the high-level features.This was done by 
lustering the 
andidates of a parti
ular phoneme using a
ousti
 distan
es andusing de
ision trees to 
hoose a 
luster for unit sele
tions by Taylor (2006).2.4 Con
atenation 
ost fun
tionIt is known that the a
ousti
 spee
h quality degrades due to the 
on
atenation of non-
ontiguousspee
h segments. Also, studies have shown that 
onsidering the spe
tral smoothness at the
on
atenation point improve the naturalness and intelligibility (Takeda et al., 1990; Iwahashi
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h Synthesis Using Unit Sele
tion: Literature Surveyet al., 1992). This holds for visual spee
h as well. Hen
e, any abrupt jump in the visual spee
hsequen
e 
an 
reate per
eptual dis
omfort and 
onfusion. Consequently, the fo
us on redu
tionof 
on
atenation artifa
ts arguably dates ba
k to the onset of 
on
atenative spee
h synthesisitself. Espe
ially in unit sele
tion based spee
h synthesis, there is a wide variability in the
andidates for ea
h target required. This results in a large varian
e in the 
on
atenation pointsas well, like in the middle of a phone when diphone is the synthesis unit. Good 
on
atenation isimportant not only for a good synthesis quality, but also for intelligibility (Clark et al., 2007).While designing good 
on
atenation strategies for unit sele
tion, di�erent approa
hes havebeen followed. The 
andidate preferen
e for 
on
atenation is based on the observation that nat-urally 
ontiguous units automati
ally join well. Hen
e, all systems give preferen
e to 
ontiguousunits in the 
orpus, besides 
onsidering important phoneti
 and prosodi
 
hara
teristi
s. In fa
t,some systems go further and sear
h the longest possible units from the 
orpus, so as to redu
ethe number of 
on
atenation points (S
hweitzer et al., 2003). Sin
e it is infeasible to have anaturally 
ontiguous spee
h in the 
orpus for every target sequen
e to be synthesized, variousjoin optimization te
hniques have been developed.The most widely followed approa
h for 
on
atenation is to minimize the di�eren
es at the
on
atenation points. This strategy is based on the observation that huge di�eren
es in thewaveforms at the 
on
atenation points a

ount for per
eptible degradation. Various distan
emetri
s 
al
ulated using various a
ousti
 parameters have been explored for estimating theper
eptual degradation due to joins. Cepstra, line spe
tral frequen
ies, log area ratios, melfrequen
y 
epstral 
oe�
ients, multiple 
entroid analysis (MCA) 
oe�
ients, linear predi
tive
oding 
oe�
ients are a few of them. Eu
lidean, Absolute, Kullba
k-Leibler, Mahalanobis aresome of the distan
e measures explored. Given these many alternatives, it be
omes ne
essaryto base the join di�eren
e estimation using those measures that 
orrelated well with humanper
eption. Hen
e, there are many attempts to evaluate the parameter and distan
e measure
ombinations to rank them based on their 
orrelation to human per
eption of join dis
ontinuity.Some of these works ask listeners to evaluate joins on a 5-point MOS s
ale and 
ompare theses
ores with the distan
es 
al
ulated using various metri
s and a
ousti
 parameters (Wouters andMa
on, 1998, Vepa et al., 2002, 2004, Donovan, 2001, Bellegarda, 2004). In some other works, the
omparison between human per
eption and distan
e metri
s is based on the dete
tion of a join,i.e. a binary s
ore (Klabbers and Veldhuis, 1998,2001, Stylianou and Syrdal, 2001, Pantazis et al.,2005). The results presented in the various works don't agree mu
h with ea
h other. Kullba
k-Leibler divergen
e has been reported to perform well with di�erent parameters in some of theworks (Klabbers and Veldhuis, 1998; Donovan, 2001; Vepa et al., 2002). The highest 
orrelation
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tion 29reported between the obje
tive distan
e measures and the per
eptual evaluation results is 0.66whi
h has been deemed low. Hen
e, the 
hoi
e of any parti
ular spee
h parameterization and adistan
e measure does not ensure an a

urate estimate of per
eptual disruption at the join.While trying to redu
e the join disruption due to 
on
atenation, naturally 
ontiguous units
an be used to determine the set of units whi
h 
an naturally join well. This 
an be basedon their proximity to naturally good joins, i.e., 
ontiguous units in the 
orpus. The workdone by Vepa and King (2003) 
an be 
onsidered to be in this dire
tion. In their work, thenatural evolution patterns in the a
ousti
 parameters are learned from the 
orpus, and used asthe basis for the evaluation of a join and de�ning a join 
ost fun
tion. Naturally 
ontiguousspee
h samples are never per
eived as dis
ontinuous, though they are seldom exa
tly the same.From this observation, it 
an be 
on
luded that humans are insensitive to a slight disruptionat the 
on
atenation point. This has been used as a basis for formulation of the evaluation ofjoins by Coorman et al. (2000). They have des
ribed a masking fun
tion to evaluate a join .Consequently, below a 
ertain transparen
y threshold the join 
ost is zero.Irrespe
tive of the distan
e between two 
on
atenation points, it has been observed thatjoin disruption is not per
eived uniformly a
ross all the phoneti
 
ontexts. In other words,the per
eptual degradation of spee
h is high in some phoneti
 units and 
ontexts than someothers. Syrdal, 2001, 2005 report a systemati
 study of the human sensitivity to disruption atvarious 
ontexts, a summary of the results presented is as follows: dis
ontinuities are per
eivedmore with female voi
e based spee
h synthesis to male voi
e based spee
h synthesis, higher invowels than in 
onsonants, higher in diphthongs than to other vowels and higher in sonorantphonemes than non-sonorants. They also reported a 
omprehensive list of join dis
ontinuitydete
tion (%) based on the phoneme type. This shows that phonemi
 
ontext is importantand 
on
atenation in 
ertain 
ontexts or phonemes are less preferable to some others and hen
ephoneme independent handling of 
on
atenation strategies might not be the best.Con
atenation of audio-visual unitsAll the salient points 
onsidered for a
ousti
 unit 
on
atenation are equally appli
able for vi-sual or audio-visual unit 
on
atenation. Here, the way the distan
es are 
al
ulated for units at
on
atenation points depends on the visual features. For example, in (Bregler et al., 1997), a dis-tan
e to measure the di�eren
e in lip shapes in the overlapping segments of adja
ent triphonesis in
luded to a

ount for the 
on
atenation 
ost. It is 
al
ulated as the Eu
lidean distan
e(frame-by-frame) between four element feature ve
tor of arti
ulatory features, outer-lip-width,outer-lip-height, inner-lip-height and height of visible teeth. The pla
e of 
on
atenation is de-
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tion: Literature Survey
ided based on the pla
e of least di�eren
e in the lip shapes. In (E.Cosatto et al., 2000), thevisual 
on
atenation 
ost has two 
omponents, the skip 
ost and a transition 
ost. Skip 
ost is apenalty for any two frames whi
h are not 
ontiguous in the 
orpus and 
al
ulated based on theordering of frames in the 
orpus, 0 for any two naturally 
ontiguous units or frames . The tran-sition 
ost is 
al
ulated based on the visual distan
e between two frames. Its 
al
ulated as theEu
lidean distan
e of two PCA feature ve
tors extra
ted based on the appearan
e. Similarly,in (Ma et al., 2006), two frames are given zero 
on
atenation 
ost when they are 
ontiguousin the original 
orpus, for those frames whi
h are not 
ontiguous its 
al
ulated as a sum of aminimum 
onstant value and a variable 
omponent 
al
ulated based on the frames. The vari-able 
omponent in turn has two 
omponents, one of whi
h is 
al
ulated based on the distan
e
al
ulated between the two frames. The se
ond 
omponent of this variable 
on
atenation 
ostensures that the visemi
 transition in the synthesized and original 
orpus are the same. Forexample two frames i and j 
an be 
on
atenated if the pre
eding frame of j belongs to the samevisemi
 label as that of i. The traje
tories at the joins are made smooth by applying a low pass�lter and 
ubi
 splines. In (Fagel, 2006), the video joint 
ost 
al
ulation is based on the pixel topixel 
olor di�eren
es in the border frames in the segments to be 
on
atenated (
omputationallyexpensive).
2.5 EvaluationWe have 
onsidered various aspe
ts of unit-sele
tion based spee
h synthesis. In this se
tion,we present the ways of evaluating synthesized spee
h. This is ne
essary for exploring di�erentapproa
hes to improve synthesis quality, in whi
h 
ase 
hanges need to be quanti�ed and for
omparative evaluation of di�erent synthesis systems. These 
an be related to sele
tion, 
on
ate-nation and overall system tuning. As synthesized spee
h is targeted for human per
eption, themost a

urate way to evaluate a synthesized spee
h is per
eptual evaluation by human subje
ts.In-spite of its a

ura
y, automati
 evaluation is often done instead, by 
omparing synthesizedspee
h with a referen
e spee
h. This referen
e is generally re
orded real spee
h whi
h is notin
luded in the 
orpus. This 
omparison is quanti�ed using some obje
tive evaluation metri
s.In the following, we present the obje
tive evaluation metri
s and then the per
eptual evaluationby human subje
ts. The evaluation of synthesized spee
h by human subje
ts is done in twofronts: subje
tive evaluation of quality, and per
eptual evaluation of intelligibility.
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tive automati
 evaluation of a
ousti
 and audio-visual spee
hVarious distan
e measures have been proposed for 
omparing real and synthesized spee
h signals.For example, 
epstral distan
e is used as a distan
e measure in many works for a
ousti
 spee
h(Hunt and Bla
k, 1996; Meron and Hiros, 1999; Alías and Llorà, 2003). (Lata
z et al., 2010)used 
onstituent distan
es measures for duration, f0 and spe
trum. Obje
tive evaluation ofaudio-visual spee
h is generally done based on an independent obje
tive evaluation of visual anda
ousti
 modalities. Alternatively, the obje
tive evaluation of only one modality is performedsometimes, based on the fo
us of analysis. For instan
e, in (Huang et al., 2002) only thesynthesized visual spee
h is evaluated. It was done using three obje
tive evaluation metri
s .These were developed for estimating the pre
ision (naturalness) and smoothness of visual spee
h;and syn
hronization between a
ousti
 and visual modality. Firstly, pre
ision was estimated usingthe sum of Eu
lidean distan
e between the real and synthesized senten
es, 
al
ulated on visualparameters. Se
ondly, smoothness was estimated using the sum of Eu
lidean distan
e 
al
ulatedbetween adja
ent frames in the synthesized spee
h whi
h are from non-
ontiguous lo
ations inthe 
orpus. Lastly, audio-visual syn
hronization was estimated based on the phoneti
 labels ofsynthesized frames. For this, only a few important phonemes were 
onsidered, whi
h belongto one of the following two 
ategories. The �rst 
ategory was of those phonemes whi
h have a
hange in the dire
tion of the mouth movement, i.e., from 
losing to opening or vi
e versa. These
ond 
ategory in
luded those phonemes whi
h have maximal mouth shapes like open or 
losedmouths. Similarly Eu
lidean distan
e measure has been used by some others (Weissenfeld et al.,2005).Instead of 
omparing real and synthesized spee
h, Liu and Ostermann (2009) use averagetarget 
ost, average segment length and average visual di�eren
e between frames as the obje
tiveevaluation metri
s and minimize them during total 
ost tuning. This is based on the assumptionthat the average target 
ost is representative of the lip-syn
hronization (audio-visual syn
hro-nization) and the other two metri
s represent the smoothness of the spee
h animation. But�nally, for evaluating the weights resulting from the tuning pro
ess, 
ross 
orrelation 
oe�
ientbetween the PCA 
oe�
ients of the synthesized and real senten
es was 
al
ulated to representthe subje
tive quality of the synthesized visual spee
h. Similarly, (Bailly et al., 2009) report the
omparison of di�erent arti
ulatory gesture predi
tion te
hniques using the 
orrelation 
oe�-
ient between original and predi
ted gestures. For obje
tive evaluation of the synthesized visualspee
h, Ma et al. (2006) use average errors of normalized arti
ulatory parameters (lip-height,lip-width, lip-protrusion) between the original and synthesized spee
h. Though these te
hniquespresent a fast way to estimate the dissimilarity between two spee
h realizations, their 
orrelation
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h Synthesis Using Unit Sele
tion: Literature Surveywith human per
eption has not been quanti�ed systemati
ally.2.5.2 Human-
entered evaluation of a
ousti
 and audio-visual spee
hFor any text-to-spee
h synthesis system, an evaluation of the overall system performan
e byhuman subje
ts is inevitable irrespe
tive of whi
h domain it is to be deployed. This is sobe
ause, the �nal users of any synthesized spee
h are humans. Manual evaluation of text tospee
h synthesis system is generally done to evaluate at least two aspe
ts of its synthesizedspee
h: quality (espe
ially naturalness) and intelligibility. These spe
i�
 aspe
ts to be evaluatedand the evaluation te
hniques depend on the target appli
ations. These possible appli
ations 
anbe, 
onversational agents for hearing impaired, or for movie dubbing with di�erent audio or videotra
k, human-
omputer intera
tion to mention just a few to name. Some of the aspe
ts whi
hare appli
ation spe
i�
 are the following: (1) suitability of the speaker whi
h depends on his/hervoi
e 
larity, ethni
ity and native language whi
h a�e
t pronun
iation and also pleasantnessfor e-
ommer
e related appli
ation, (2) time required for synthesis, (3) prosodi
 
omponenta

ura
y, (4) overall intelligibility.Generally, the quality of synthesized spee
h is evaluated in terms of the subje
tive evaluationmeasures, Mean Opinion S
ore (MOS) or DMOS (degradation Mean Opinion s
ore). Theseare also know as Absolute Category Rating (ACR) or Degradation Category Rating (DCR)respe
tively. In these evaluations, human subje
ts are generally asked to give a 
ategori
al s
orewith respe
t to some parti
ular aspe
t of the spee
h whether it be a
ousti
, visual or audio-visual spee
h. The di�eren
e between the two (MOS and DMOS) is that in the se
ond 
ase, thes
ore is generally given with respe
t to a referen
e, generally the real utteran
e. The di�erentaspe
ts of quality 
an be broadly 
lassi�ed into naturalness, pronun
iation, pleasantness, overall
omprehension and intelligibility. Their di�erent 
ategories depend on the attribute that isbeing evaluated. The di�erent aspe
ts to be evaluated also depend on the method used forfa
e modeling and rendering, besides the target appli
ation domain. For example, for a human-
omputer intera
ting experien
e like virtual avatar for e-
ommer
e, the likability of the virtual
hara
ter and its expressiveness of emotions are also important for 
on�den
e building. Forexample, in (Ma et al., 2006) the a

ura
y and naturalness of the synthesized spee
h are reportedin 
omparison with that of natural audio-visual spee
h using the usual 5 point MOS s
ale.Similarly, Bailly et al. (2009) report subje
tive evaluation of audio-visual spee
h by synthesizedimage sequen
e over natural audio by preferen
e tests based on 5-s
ale MOS test (5-very good, 4-good, 3-average, 2-insu�
ient, 1-very insu�
ient). Alternatively, naturalness tests are 
ondu
tedasking the listeners to identify senten
es as real or synthesized instead of MOS rating, whi
h are
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alled Turing tests (Geiger et al., 2003; Liu and Ostermann, 2009).The evaluation of intelligibility is done by the per
eptual evaluation at various levels, phoneme,word and senten
e. For phoneme level intelligibility testing, rhyme tests and nonsense words areutilized. In rhyme tests, words di�ering in a single phoneme segment are presented and asked toreport the a
tual word that is heard by a human subje
t. Diagnosti
 Rhyme Test (Fairbanks,1958), Modi�ed Rhyme Test (MRT) (House et al., 1963) are two of the well known rhyme tests.Both use single syllabi
 word sets, former 
onsists of word pairs, whereas the later has sets of sixwords ea
h. Senten
e-level tests are 
ondu
ted to assay the intelligibility of words in 
ontext.The most 
ommonly used test is with semanti
ally unpredi
table senten
es (SUS) proposed byBenoît et al. (1996). In these tests spe
ial senten
es are 
onstru
ted whi
h follow the synta
ti
rules of a language but don't have a 
oherent meaning as a whole whi
h makes it di�
ult to
ontextually predi
t the word. (Lemmetty, 1999), gives a good a

ount of the evaluation testsfor syntheti
 spee
h intelligibility.It is di�
ult to evaluate the intelligibility of audio-visual spee
h. Synthesized AV spee
h isoften tested for its most 
ited advantage over a
ousti
-only spee
h, i.e improvement in intelligi-bility in noisy 
onditions (LeGo� et al., 1994). Consequently, the addition of visual modality isevaluated by adding noise to the a
ousti
 modality. This is be
ause the intelligibility results of avisual-only spee
h would be very low, espe
ially for SUS. On the 
ontrary, in 
ase of 
lear spee
hwithout any noise, the intelligibility us 
lose to the best possible and does not add any additionaladvantage of visual modality. For instan
e, E.Cosatto et al. (2000) report that the AV spee
hshows signi�
ant improvement in terms of the intelligibility in noise when 
ompared to a
ousti
spee
h, with an error rate of 4% for AV spee
h 
ompared to 20% with a
ousti
 spee
h. Fagel(2006) reports intelligibility tests of synthesized audio and AV spee
h in 
omparison with naturalaudio and AV spee
h. It was reported in terms of the per
entage of vowel+
onsonant, vowel and
onsonant re
ognition errors. Ouni et al. (2007) present metri
s to quantify the improvement inintelligibility between two visual 
onditions in 
omparison with a
ousti
-only spee
h.In the methods whi
h perform visual spee
h synthesis over a
ousti
 spee
h, the syn
hroniza-tion of the two modalities is an additional aspe
t whi
h needs to be evaluated. For example,Bregler et al. (1997) per
eptually evaluate the lip-utteran
e syn
hronization, triphone-video syn-
hronization i.e. the disruption level due to 
on
atenation of units besides 
oarti
ulation e�e
ts.They report that there are o

asional visible timing errors in the 
ase of stop 
onsonants andthe visible arti
ulation is unsatisfa
tory 
ompared to the natural arti
ulation of phoneme whenthe required phoneme sequen
e is not available in the 
orpus. Mattheyses et al. (2009) report adetailed per
eptual evaluation of various image-based audio-visual spee
h synthesis te
hniques
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h Synthesis Using Unit Sele
tion: Literature Surveyto show the importan
e of audio-visual syn
hrony and 
oheren
e. The 
omparison was betweenthe following 5 types of AV spee
h: (1) original AV spee
h, (2) AV spee
h synthesized by the
on
atenation of syn
hronous bimodal units, (3) AV spee
h synthesized by synthesizing audioand visual streams separately with the best audio and video segments respe
tively and then syn-
hronizing them (4) visual and a
ousti
 spee
h synthesis separately with their respe
tive bestsegments, but the audio used for synthesis is from a di�erent 
orpus, i.e., a di�erent speaker tothat of visual spee
h (5) AV spee
h with synthesized visual spee
h and real audio. The 
om-parison was done to evaluate for audio-visual syn
hrony and per
eived naturalness. The resultsof these per
eptual 
omparative evaluation experiments favor audio-visual spee
h synthesis bysyn
hronous bimodal-unit sele
tion and 
on
atenation. The results also show that the separatesynthesis of the two modalities using di�erent 
orpora is least preferable.Sometimes a 
omparative evaluation of various systems is also done. Comparative evalu-ation of di�erent approa
hes of spee
h synthesis is very useful. In the �rst pla
e it providesa broad platform for the parti
ipants to evaluate their system performan
e. In addition, itbrings out interesting dire
tions to future resear
h. Blizzard 
hallenge started in 2005 by Bla
kand Tokuda (2005) is one su
h platform. This annual 
hallenge is designed for 
orpus baseda
ousti
 spee
h synthesis systems. The 
hallenge provides a uniform framework to perform a
omparative evaluation by removing the variability in database, test senten
es being evaluatedand the set of listeners evaluating the test senten
es and �nally the evaluation metri
s. The setof listeners generally in
ludes people from the following 3 
ategories: spee
h experts, volunteersand paid undergraduate students. The test senten
es in
luded senten
es from 5 genres: nov-els, 
onversation, phoneti
ally 
onfusable senten
es (Fairbanks, 1958; House et al., 1963) andsemanti
ally unpredi
table senten
es (Benoît et al., 1996). The initial 3 genres were for testingspee
h quality and the last two for testing the intelligibility of the synthesized spee
h. For qual-ity evaluation, senten
es synthesized by various synthesizers are played and listeners are askedto rank the quality in terms MOS s
ore. Later on pairwise naturalness tests and speaker voi
eoriginality 
omparison tests were in
luded. The latter test is more relevant for HMM basedsystems. The voi
e building has 3 variants from blizzard 2007 onwards, one using full 
orpus,the remaining 2 are based on using a subset of the spee
h 
orpus (Fraser and King, 2007). From2008 blizzard 
hallenge, the 
orpus had expressive spee
h also (Karaiskos et al., 2008). LaterBlizzard 
hallenges in
luded evaluations of spee
h (1) for spe
i�
 appli
ations like tele
ommu-ni
ations, human-
omputer intera
tion et
 (King and Karaiskos, 2009); (2) in the presen
e ofnoise (King and Karaiskos, 2010); (3) intelligibility of names and addresses (King and Karaiskos,2011). The notable analysis results of these evaluations are, that speaker voi
e originality and
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lusion 35join dis
ontinuity has an a�e
t on the quality evaluation, but intelligibility rather depends onjoin dis
ontinuity alone (Clark et al., 2007).LIPS 
hallenge was a similar platform for evaluating visual spee
h synthesis te
hniques(Theobald et al., 2008). It was 
ondu
ted for two years, 2008 and 2009. The aim is to eliminatethe variability in the training data and evaluation related 
omponents like human subje
ts, testutteran
es and evaluation metri
s. The training data was a one hour audio-visual 
orpus of asingle speaker. The in
luded utteran
es were phoneti
ally balan
ed senten
es, spoken in neutralspeaking style without any expressions. The visual spee
h re
ording was in the frontal view su
hthat all the arti
ulators are 
learly visible. The test utteran
es were 50 SUS senten
es re
ordedin the same way as the training data (Benoît et al., 1996). The test utteran
es were providedas a
ousti
 spee
h and hand-
orre
ted phoneti
 trans
ript aligned with audio. Viewers were
hosen from the INTERSPEECH-2008 
onferen
e parti
ipants with normal vision and hearing
apabilities and who are English speakers. Synthesis systems were ranked for naturalness andintelligibility separately. For intelligibility a
ousti
 
omponent was degraded to signal-to-noise-ratio (SNR) of -10dB. Intelligibility was measured using spee
h re
ognition metri
s de�ned interms of insertions, substitutions and deletions. This was done by the 
omparison of identi�edand a
tual a
tual phoneti
 trans
ript. Visual spee
h naturalness was evaluated by asking thesubje
ts to rate the syn
hronous audio-visual spee
h on a 5-point MOS s
ale. Su
h platformsprovide 
ommuni
ation grounds where the advantages and drawba
ks of di�erent approa
hes
an be analyzed. This 
an pave way for the evolution of better te
hniques for spee
h synthesis.2.6 Con
lusionWe presented some aspe
ts of unit-sele
tion based spee
h synthesis. We have brie�y dis
ussedsegmentation, and sele
tion 
riteria for unit sele
tion whi
h in
luded target 
ost and 
on
ate-nation 
ost fun
tions. We have also reviewed the general methodologies used to evaluate syn-thesized spee
h whi
h are broadly divided into obje
tive evaluation automati
 evaluation anduser-
entered evaluation. The usage of a 
orpus does make it in�exible and might need e�ortto bring in 
hanges due to the need to a
quire and pro
ess a new 
orpus. Nevertheless, for anygiven appli
ation domain with spe
i�
 requirements, it is always possible to build a unit-sele
tionbased spee
h synthesizer whose performan
e is 
omparable to real spee
h (Bla
k, 2002).
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Chapter 3
A
ousti
-Visual Spee
h SynthesisSystem: An Overview

In this 
hapter we present an overview of our bimodal spee
h synthesis system named ViSAC.We refer to our system as a
ousti
-visual spee
h synthesis system to di�erentiate it from other
lassi
al approa
hes synthesizing a
ousti
 and visual modalities separately. For us, spee
h isbimodal and the two modalities are kept together. We take this as the fundamental basis to ourbimodal spee
h synthesis. Firstly, we re
ord syn
hronous bimodal spee
h signal and pro
ess itto prepare the database. In this whole pro
ess, we keep the asso
iation of the two modalitiesinta
t. This results in a syn
hronous bimodal 
orpus. This database is then used by ViSACto perform a 
on
urrent synthesis of bimodal spee
h through unit sele
tion. This proposedmethod impli
itly addresses the problems of asyn
hrony and in
oheren
e inherent in earlier
lassi
 approa
hes. The synthesis unit used by our system is diphone. The 3D data of the fa
eis a
quired during spee
h produ
tion using a stereo-vision te
hnique simultaneously along witha
ousti
 spee
h signal. The 
entral synthesis paradigm is unit sele
tion of bimodal segments.In audio-visual spee
h synthesis, required 
hara
teristi
s of both modilities need to be takeninto a

ount simultaneously. Hen
e, 
ompared to a
ousti
-only spee
h synthesis, the problem
omplexity in
reases.This 
hapter is organized as follows. We �rst detail the 
orpus a
quisition and databasepreparation to be used for synthesis. Then, we des
ribe the bimodal unit sele
tion frameworkfor a
ousti
-visual spee
h synthesis. 37
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ousti
-Visual Spee
h Synthesis System: An Overview3.1 Corpus preparationUnit sele
tion is a 
orpus based synthesis methodology. The �rst step of 
orpus preparationinvolves 
areful text sele
tion or design. It is done in su
h a way that the phoneme o

urren
ein the 
orpus is representative of the phoneme o

urren
e in the target language in general.Moreover, an e�ort is made to ensure at least minimum o

uran
es of most of the synthesis unitsand good variants of the most frequent units. The uttered spee
h of the 
arefully 
hosen textis then re
orded. The result of this is a spee
h realization for the underlying phoneme sequen
espe
i�ed by the text. The re
orded spee
h is generally pre-pro
essed for noise redu
tion whenne
essary. It is subsequently parametrized and segmented into phoneti
 segments. The text forwhi
h spee
h is re
orded is not only analyzed in terms of its phoneti
 sequen
e but also for itsdetailed linguisti
 stru
ture. In other words, we are interested in deriving any feature des
riptionfrom the text whi
h 
an a

ount for a varian
e in spee
h realization. We will 
all them targetfeatures. Thus, the phoneti
ally segmented spee
h is annotated in terms of these target featuresextra
ted through text analysis. These segmented and annotated units 
onstitute the spee
h
orpus. To summarize, 
orpus preparation 
onsists of the following stages:
• Text sele
tion
• Data a
quisition.
• Data pro
essing and parameterization.
• Segmentation.
• Phoneti
 and linguisti
 annotation of the segmented data.The �nal result of this 
orpus preparation in our 
ase is a bimodal spee
h database. Inthe following subse
tions, we detail ea
h of these steps, as performed for the preparing ouraudio-visual spee
h 
orpus.3.1.1 Text sele
tionWe built a 
orpus of a total of 319 senten
es were re
orded for the training 
orpus. It representsa total of 14634 diphones and in
ludes a good variety of the most frequent diphones. Of 
ourse,this 
orpus doesn't 
over a big variety of diphones, but our purpose is to experiment out methods.A set of 20 extra senten
es were also re
orded and set aside as the test senten
es for evaluationpurpose.
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quisitionVisual data a
quisition for our a
ousti
-visual spee
h synthesizer was performed simultaneouslywith a
ousti
 data re
ording. It was done using a low-
ost 3D fa
ial data a
quisition infrastru
-ture developed by the team MAGRIT in our laboratory in the past (Wrobel-Daut
ourt et al.,2005). The a
quisition system uses two syn
hronized fast mono
hrome 
ameras (JAI TM-6740),a PC. During a
quisition, the speaker with markers painted on his fa
e, sat in front of a stereo
amera pair with a mi
rophone pla
ed at 50-60 
m from his mouth. This whole te
hniqueprovides a fast a
quisition rate to enable an e�
ient temporal tra
king of 3D points without af-fe
ting the spee
h arti
ulation. Large majority of markers are dete
ted by a low-level pro
essingof the stereo image pairs (see �g. 3.1). This is based on their average gray-s
ale, shape and size(white 
ir
ular points with a radius less than 3 pixels). Besides these points whi
h are easilyand a

urately dete
table, there are the following two 
ases:
• When the points 
annot be dete
ted dire
tly. This o

urs when some points are not visiblein one or both of the images of some stereo image pairs. This might happen when thelo
ation of 3D marker is 
ompletely o

luded during arti
ulation like in the 
ase of innermarkers of lips. This 
an also happen when markers 
annot be 
aptured in one of theviews due to the 
hange in the head orientation.
• Where the dete
ted points are not a
tual 3D markers. This is due to lo
ations in theimage with the same photometri
 features, as light re�e
ts on eyes or teeth.After the initial Pro
essing, 86% of the 3D points are a

urately re
onstru
ted, 10% of thepoints are erroneous and 4% are missing whi
h 
orrespond to the hidden markers. Besides, thedete
tion and re
onstru
tion of marker, the markers are indexed for the 
reation of temporaltraje
tories based on temporal 
loseness. This indexing of the dete
ted markers so as to indi
atethe lo
ation of the 3D marker on the fa
e has o

asional ambiguity. It happens mostly formarkers on the lips, espe
ially when they open and 
lose. The markers whi
h 
annot be dete
teddire
tly, they are estimated using an interpolation s
heme that involves an initial 3D mesh of thefa
e. This initial mesh is a

urately built by automati
 dete
tion of 3D markers and subsequent
orre
tion was done by hand. Through this about 7% of the marker data is estimated in average.Pro
essing the data is a lengthy work though. It takes several weeks for 28 minutes of data.The a
quisition of the bimodal 
orpus, the stereoimage pro
essing and 3D marker extra
tionwas done by members of team MAGRIT, who are a part of this proje
t.The re
orded 
orpus 
onsisted of the 3D positions of 252 markers 
overing the whole fa
e.However, the lower fa
e was 
overed by 70% of all the markers (178 markers), where 52 markers
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Figure 3.1: Stereo-vision image pair of the speakerwere 
overing only the lips. This 
hoi
e was made, to 
apture the lip movement a

urately andto be able to model the lips �nely. The average sampling rate was 188 Hz. The 
orpus was madeof 319 medium-sized Fren
h senten
es, 
overing about 28 minutes of spee
h, uttered by a nativemale speaker. An extra 20 senten
es were re
orded for testing purposes. The spee
h signal wasre
orded at 16 kHz with 16-bit pre
ision.3.1.3 Data pro
essing and parameter extra
tionThe sampling rate of the a
quired 3D marker data was around 188Hz. There was a slightvarian
e in the sampling rate a
ross senten
es. A set of senten
es were re
orded in di�erentsessions with short pauses between su

essive sessions. This varian
e in the a
quired data isdue to a slight variable lag between the time instant the images were 
aptured and sent to the
omputer for storage. The data was �ltered using a low-pass �lter with a 
ut-o� frequen
y of 25Hz. Su
h a pro
essing removes additive noise from the visual traje
tories without suppressingimportant positional information.Prin
ipal Component Analysis (PCA) was applied on a subset of markers of the lower part ofthe fa
e (jaw, lips, and 
heeks; see Fig 3.2). The reason for this 
hoi
e was that the movementsof markers on the lower part of the fa
e are tightly 
onne
ted to spee
h gestures. Markers onthe upper part of the fa
e either do not move, or their movements are of no dire
t relevan
e tospee
h. This 
an be said be
ause the spee
h is re
orded with a neutral voi
e with no strongprosodi
 e�e
ts. We have not used any guided PCA as it does not provide signi�
ant advantage.Besides,the proje
tion onto prin
ipal 
omponents and re
onstru
tion are straightforward andfast. This uni�ed approa
h keeps it simple and straight forward for the synthesis purpose. Thefa
ial deformations when ea
h of the prin
ipal 
omponents is set at −3 and 3 z-s
ores is shownin �gure 3.3. The �rst two 
omponents a

ount for 79.6% of fa
ial spee
h data varian
e. It isdi�
ult to draw de�nite 
on
lusions about the in�uen
e of ea
h prin
ipal 
omponent on fa
ialdeformation. The a�e
t of ea
h of the prin
ipal 
omponents 
annot be 
ompletely isolated in
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Figure 3.2: PCA is applied on 178 (plotted as blue 
ir
les) out of 252 painted markers.terms of the per
eived fa
ial deformations. Broadly, the following observation 
an be made bylooking at visual spee
h animation by varying a single prin
ipal 
omponent. The �rst two prin-
ipal 
omponents mainly a

ount for 
ombined jaw opening/
losing and lip protrusion gestures.The third 
omponent a

ounts for lip opening, after removal of the jaw 
ontribution. Some ofthe 
omponents though related to spee
h, are augmented by some gestures that are spe
i�
 tospeaker's fa
ial expressions. This seems to be the 
ase for 
omponents 4 and 5. They seemto 
apture lip spreading. However, due to some asymmetry in our speaker's arti
ulation, lipspreading is divided into two modes: one a

ounting for spreading toward the left side of thelips and one for spreading toward the right side. Component 6 is a smiling gesture, however it isdi�
ult to 
lassify it as belonging to spee
h arti
ulation or pure fa
ial expression. Components7 to 12 seem to a

ount for very subtle lip deformations, whi
h we believe are idiosyn
rati

hara
teristi
s of our speaker.Several experiments indi
ated that retaining as less as three 
omponents 
ould lead to ananimation whi
h would be a

eptable, in the sense that it would 
apture the basi
 spee
h gesturesand would �lter out almost all the speaker spe
i�
 gestures. However, su
h an animation wouldla
k some naturalness, whi
h is mostly 
aptured by se
ondary 
omponents. We are also in favorof keeping the spe
i�
ity of the speaker spe
i�
 gestures. Retaining 12 
omponents leads toanimations that are natural enough for all purposes. One of the goals of our proposed systemis to synthesize traje
tories 
orresponding to the PCA-redu
ed visual information, for these12 
omponents, alongside the synthesized a
ousti
 spee
h signal. The lower fa
e related visual
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A B

C

D

o

FpFigure 3.4: Cal
ulation of labial features is done using the 4 points on the fa
e: A, B, C and
D. Lip opening and lip spread are given by the distan
es ‖ ~CD‖ and ‖ ~AB‖. Lip protrusion isgiven by the displa
ement of O, the 
enter of gravity of the four points (A, B, C, D) along thenormal ve
tor ( ~OFp) to the plane formed by ve
tors ~AB and ~CD. Jaw opening is 
al
ulated asthe distan
e between the 
enter of the 
hin and a �xed point on the head.information 
an be re
onstru
ted using these 12 traje
tories. The mean values of the positions ofthe markers at the upper part of the fa
e may then be added to 
omplete the fa
e visualization.Hen
e, the 12 �rst prin
ipal 
omponents, whi
h explains about 94% of the varian
e of thelower part of the fa
e are retained for storage and re
onstru
tion at runtime. Besides the 12PCA 
oe�
ients, four arti
ulatory parameters ( lip protrusion, lip opening, lip spread and jawopening) are 
al
ulated as explained in �gure 3.4) (Robert et al., 2005). These arti
ulatoryfeatures are used for the analysis of visual spee
h 
orpus and during impli
itly during sele
tionas visual target 
osts are designed based on these features.The a
ousti
 spee
h paramters extra
ted in
luded the LPC (Linear predi
tive 
oding) 
oef-�
ients, f0, and energy.3.1.4 SegmentationWe perform segmentation based on the for
ed alignment of a
ousti
 spee
h. These predi
tedsegment boundaries are 
onsidered as the syn
hronous bimodal segment boundaries, and 
hosento represent spee
h segments in the 
orpus. The synthesis unit of target sear
h and synthesisis the diphone. Besides making the storage and indexing of bimodal spee
h segments extremelysimple, it reinfor
es the prin
ipal idea of syn
hronous inseparable bimodal spee
h inta
t. Adiphone extends from the mid of one phone to the mid of the next phone. The middle ofthe phone is a relatively stationary region. Hen
e by using diphone as the synthesis unit, thea
ousti
 artifa
ts due to any segmentation errors are redu
ed. Diphone units also a

ount forthe 
oarti
ulation well, as their boundaries in
lude the transition of one phoneme into the other.
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ousti
-Visual Spee
h Synthesis System: An OverviewDiphone as a synthesis unit is reported to produ
e 
omparatively good quality spee
h (Moulinesand Charpentier, 1990). The Segmentation based on spee
h a
ousti
s and annotation of datawas done using s
ripts developed by Colotte (2009). The monophone HMMs whi
h are usedby these s
ripts are trained on a very large a
ousti
 spee
h 
orpus and provide highly a

uratesegmentation.3.1.5 Bimodal spee
h databaseThe phonetized 
orpus was analyzed linguisti
ally, and partitioned into phonemes. To mark thediphones from these phonemes and des
ribe them in terms of target features, we used tools thathave been already developed in the framework of SoJA Colotte (2009). For ea
h phoneti
 unitin the 
orpus, the following information is in
luded for its indexing:
• The des
ription in terms of the 
omplete target feature set (Fig. 3.6).
• Its position (start sample to end sample) in the 
orresponding a
ousti
 and visual spee
hdata �les.
• Duration.
• A
ousti
 and visual parametri
 representation at the middle of the phonemes that we haveextra
ted (se
tion 3.1.3).The phoneti
 and linguisti
 annotation of the spee
h units is taken from SoJA.3.2 Bimodal spee
h synthesisOur Text-to-Spee
h (TTS) Synthesis system has two stages. First stage is the Natural LanguagePro
essing (NLP) stage whi
h analyzes the input text. It provides as a result, the spe
i�
ationof the target phoneme sequen
e required for synthesis. This spe
i�
ation is represented using a
ombination of target features based on the linguisti
 and phoneti
 stru
ture of the text. These
ond stage involves the a
tual spee
h synthesis for the required target sequen
e using bimodalunit sele
tion and 
on
atenation.3.2.1 Natural language pro
essingThe �rst stage of our TTS system is an NLP unit. For a given text, it generates the phonemesequen
e from text to be synthesized. As shown in �g. 3.5, this is done by following these steps(see �g. 3.5):
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• Prepro
essing:

⋄ Text Segmentation: Input text is split into individual senten
es whi
h 
an be pro-
essed separately.
⋄ Tokenization: Ea
h senten
e is split into tokens depending on breaks based on whitespa
es, pun
tuation marks et
. It is done so that they 
an be analyzed separately.Ea
h token is 
lassi�ed into di�erent 
lasses su
h as words, numbers, dates, abbre-viations et
. This is done to determine the kind of parsing and verbalization to bedone if ne
essary.
⋄ Parsing: Ea
h non-natural language token is parsed to de
ode the exa
t format ofthe text.
⋄ verbalization: Ea
h de
oded/parsed non-natural language token is verbalized intowords.

• Lemmettization: Ea
h of the tokens is morphologi
ally analyzed, and all the probableroot forms of the words are enlisted.
• Tagging: Ea
h of the tokens is then synta
ti
ally tagged with the most probable part ofspee
h pin-pointing the word in the di
tionary .
• Chunking: The phoneme sequen
e is divided into rhythm groups using 
hunker based onsome rules. This is similar to phrasing done for English.
• Phonetization: Words are phonetized into phoneme sequen
es after homograph disam-biguation wherever ne
essary. This is done using lexi
ons. There are di�erent lexi
onsbased on the kind of words. Words are 
lassi�ed into di�erent groups like Fren
h word,proper noun, word belonging to a foreign language et
. Depending on this 
ategory, theappropriate di
tionary is used to give the word to phoneme sequen
e mappings. For wordswhi
h are not present in any of the lexi
ons being used by the system, listed grapheme-to-phoneme rules are applied.
• Post lexi
al pro
essing or post phonetization: In languages su
h as Fren
h, thewords intera
t with ea
h other to produ
e di�erent phoneme sequen
es based on somespe
i�
 rules. Hen
e, the phonetized text is re-analyzed for 
ontinuous-spee
h relatedrules like liaison to modify the phoneme sequen
e.
• Syllabi�
ation: The phoneme sequen
e is divided into syllables based on rules. Rhythmgroups and syllables, these two units are known to be important for explaining various



46 Chapter 3. A
ousti
-Visual Spee
h Synthesis System: An Overviewaspe
ts of prosody for Fren
h.3.2.2 Target unit des
riptionEa
h phoneme in the text is des
ribed in terms of linguisti
 and phoneti
 features whi
h areknown to a�e
t the a
ousti
 and visual realization of the phoneme. The target ( resp. 
andidate)spe
i�
ation ( resp. des
ription) is done in terms of their 
hara
teristi
s at various levels as shownin �gure 3.6.3.2.3 Bimodal unit sele
tion and 
on
atenationThe target sequen
e is based on phonemes, that are spe
i�ed after the text analysis and 
onvertedinto diphone-based targets. For ea
h required target diphone, all possible 
andidates from the
orpus whi
h have the same phonemi
 label are looked up. The spe
i�
ation of targets forsynthesis is in terms of the same features used to des
ribe the 
andidates in the 
orpus. Thesedes
riptive features are exhaustive phoneti
 and linguisti
 features that 
an be extra
ted. They
an be either independent or dependent on the target language. This target spe
i�
ation is
ompared with that of the des
ription of the 
andidates in the 
orpus. For a target sequen
espe
i�
ation tn1 = (t1, ...tj , ...tn), a general target 
ost fun
tion TC is 
al
ulated as follows:
TC = C(ti, ui) =

F∑

ρ=1

wρCρ(ti, ui) (3.1)where, Cρ(ti, ui)(ρ = 1, ..., F ), are the di�erent target feature 
osts between a target tiand a 
andidate ui, F is the total number of target features and wρ is the weight given to afeature ρ. The a
ousti
 join 
ost is de�ned as the a
ousti
 distan
e between the units to be
on
atenated. It is 
al
ulated using the following a
ousti
 features at the boundaries of theunits to be 
on
atenated:
• fundamental frequen
y (f0).
• LPC 
oe�
ients.
• Energy.
• Duration.Similarly, the visual join 
ost is de�ned as the visual distan
e between the units to be
on
atenated as shown in �gure 3.7. This is 
al
ulated using the PCA transformed visual
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Figure 3.5: Text pro
essing to output the ne
essary target phoneme sequen
e to be synthesized
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diphone 1 diphone 2

d

P

time

i

Pi,2

Pi,1Figure 3.7: An illustration of the gap in the visual feature traje
tories. The purpose of thevisual join 
ost is to minimize the dis
ontinuities in the visual modality at the boundaries where
on
atenation happens. .information at the boundaries of the units to be 
on
atenated. That is:
V C = Σ12

i=1wi(Pi,1 − Pi,2)
2where Pi,1 and Pi,2 are the values of the proje
tion on prin
ipal 
omponent i at the boundarybetween the two diphones. The 
hoi
e of weights wi is based on the relative importan
e of the
omponents. We 
hose these weights to be proportional to the eigenvalues of PCA analysis asthey are proportional to the data varian
e a

ounted by the respe
tive prin
ipal 
omponent.This is similar to the methodology mentioned in (Liu and Ostermann, 2009). The sele
teddiphone sequen
e is 
on
atenated a
ousti
ally using a traditional te
hnique, where pit
h valuesare used to improve the join of diphones.The sele
tion among the set of pre-sele
ted 
andidates is operated by resolving the latti
e ofpossibilities using the Viterbi algorithm. The result of the sele
tion is the path in the latti
e of
andidates whi
h minimizes a weighted linear 
ombination of the following three 
osts:

• Target 
ost (∑n
i=1C(ti, ui)).

• A
ousti
 join 
ost (∑n
i=2 C

aj(ui−1, ui)).
• visual join 
ost ( ∑n

i=2 C
vj(ui−1, ui)).It is 
al
ulated as follows:

CT (tn1 , u
n
1 ) = min

u1,...,un







w
∑n

i=1C(ti, ui) +

waj

∑n
i=2 C

aj(ui−1, ui) +

wvj

∑n
i=2C

vj(ui−1, ui)

(3.2)where w, waj and wvj are weights for the 
omponent target 
ost, a
ousti
 join 
ost and visualjoin 
ost, the weights used are w = 1, waj = 0.943 and wvj = 0.897 (Toutios et al., 2011). I



50 Chapter 3. A
ousti
-Visual Spee
h Synthesis System: An Overviewhave parti
ipated in developing the �rst version of ViSAC, but it was mainly developed by A.TOUTIOS in 
ollaboration with V. Colotte and S. OUNI. A synthesis example of one of thetest senten
es is given in �gure 3.8.3.3 Visual spee
h renderingThe visual spee
h in ViSAC is rendered as a fa
e approximated using sparse 3D mesh, but twoalternatives are also in
luded. We didn't add a tongue yet. This appearan
e of the 3D-markerrendering, wired mesh surfa
e made with the 3D-marker data and the fa
e approximated usingthe sparse meshes are shown in �gure 3.9. A simple visual spee
h animation of the syllable 'ba'is shown in the �gure 3.10.3.4 Con
lusionIn this 
hapter, we des
ribed 
orpus a
quisition and database preparation for our system. Wepresented an overview of our text to a
ousti
-visual spee
h synthesis system 
alled ViSAC.The synthesized spee
h with this initial system 
learly indi
ated the advantage of syn
hronousbimodal unit 
on
atenation. Besides, this framework presented the experimental setup for de-veloping various methodologies for improving bimodal spee
h1.

1Parts of the work presented in this 
hapter was published in (Toutios et al., 2010a) and (Toutios et al.,2010b).
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lusion
51Figure 3.8: A synthesis example showing the traje
tory of the �rst prin
ipal 
omponent. Figures (a), (b) and (
) show the traje
tories synthesizedwith a
ousti
-only, visual-only and audio-visual join 
osts. Figure (d) gives the �rst prin
ipal 
omponent of the real senten
e.
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(a) (c)(b)Figure 3.9: Shows the appearan
e of (a) just the 3D-marker rendering, (b) wired mesh surfa
emade with the 3D-marker data and (
) the fa
e approximated using the sparse meshes.
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Figure 3.10: Visual spee
h of the syllable �sil b a sil� with a frame rate of 25fps.
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Chapter 4
Phoneme Classi�
ation Based on Fa
ialData
The fa
ial data that we have a
quired, only en
odes the spee
h related deformations of theouter surfa
e of the fa
e. This kind of data la
ks internal arti
ulatory information. It would beinteresting to investigate the representative phoneti
 patterns in this kind of data. It might alsogive an estimate of the arti
ulatory information that is la
king in this kind of data. Keepingthese obje
tives into a

ount, we have performed some segmentation experiments. First weused our fa
ial data. Then, to estimate the internal arti
ulatory information that is missingin 
omparison to the fa
ial data, we performed another set of segmentation experiments. Thistime, we used a di�erent 
orpus whi
h had arti
ulatory information related to the tongue.In the following se
tions, we des
ribe these two sets of experiments, �rst using our fa
ialdata in se
tion 4.1 and then using an EMA (Ele
tromagneti
 arti
ulography) data.4.1 Visual spee
h segmentation using fa
ial dataPhoneti
 boundaries are generally used to segment bimodal spee
h 
orpus. Though this isthe 
ase, the start and end of the a
ousti
 spee
h and visual spee
h gestures might happenat di�erent time instan
es. This is be
ause, for the sound produ
tion to happen, the priorarti
ulatory 
on�guration required for the produ
tion of sound has to be attained �rst. Thetime di�eren
es between a
ousti
 and visual segment boundaries might probably vary due to
oarti
ulation. Phoneti
 units whi
h are segmented using a
ousti
s thus might not 
apture thestart and end of the segments in the visual modality a

urately. But, these a
ousti
 boundarieswould give an indi
ation of approximate time intervals of the phoneme arti
ulation. Ideally,segmentation based on visual spee
h should provide us this information. By following this55



56 Chapter 4. Phoneme Classi�
ation Based on Fa
ial Datarational, an elaborate experiment was performed to segment the visual spee
h using the fa
ialdata. The 
ontributions of this experimental results are two-fold. They provide signi�
antinformation about the uniqueness of phoneti
 arti
ulation a

ounted by just the fa
ial datawhi
h might be per
eived more a

urately by humans. Due to this humans might also be more
riti
al about the fa
ial animation of su
h phonemes. They also provide information about whi
hphonemes are in�uential or are in�uen
ed in the 
ontext of other phonemes.In order to segment the visual spee
h data, we trained phoneme HMMs using a pro
eduresimilar to the one typi
ally used in Automati
 Spee
h Re
ognition (ASR). We used HTK forthis purpose (Young et al., 2005). We used three di�erent feature ve
tors extra
ted from thefa
ial data. The three sets of feature ve
tors used for HMM training are the following:
• Arti
ulatory features.
• PCA 
oe�
ients.
• Combination of the arti
ulatory and PCA 
oe�
ientsThe set of labels in
lude the set of phonemes 
overed in the 
orpus and sil (silen
e). Onemonophone HMM is trained for ea
h of the labels in this set. The HMM training performed issimilar to that performed for a 
onventional ASR module. In the �rst step, monophone HMMs
orresponding to ea
h label were trained. Ea
h HMM was a 3-state left-to-right no-skip model.The output distribution of ea
h state was a single Gaussian with a diagonal 
ovarian
e matrix.The observation ve
tors input to the HMM training 
onsisted of stati
 and dynami
 parameters,i.e. the three types of feature ve
tors des
ribed in the previous se
tion and their delta and delta-delta 
oe�
ients. The HMM parameter estimation was based on the ML (Maximum-Likelihood)
riterion estimated using Baum-Wel
h re
ursion algorithm. The learned monophone HMMs wereused to perform a for
ed alignment of the same training 
orpus.For
ed alignment was performed with three sets of monophone HMMs trained using the threefeature ve
tors. The HMM training is an iterative pro
ess. To evaluate the segmentation, wehave used a re
ognition 
riterion explained in the following subse
tion. For ea
h set of HMMstrained using a parti
ular set of feature ve
tors the following is done. After ea
h iteration ofHMM parameter re-estimation, the training data is segmented using the updated HMMs. Then,the total re
ognition error of the segmentation is 
al
ulated. Training is halted when there isno further improvement in this value in subsequent iterations. The re
ognition error of ea
hlabeled visual segment in the 
orpus at this stage has been used for the evaluation and analysisof the alignment results. The set of monophone HMMs whi
h gave the best segmentation resultbased on the total re
ognition error was 
hosen for the se
ond step for further improvement. The



4.1. Visual spee
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ial data 57se
ond training step involved 
reation of 
ontext dependent triphone models using the trainedmonophone HMMs. Finally tied-state triphones were 
reated using de
ision tree 
lustering.The triphone models were 
reated by �rst 
loning the trained monophone HMMs for di�erenttriphones. Then, triphones whi
h have su�
ient data in the 
orpus are re-estimated. Then usingde
ision tree 
lustering, tied state triphones were 
reated. The 
ontexts 
onsidered for 
lusteringare based on the hierar
hi
al 
luster trees of phonemes mentioned in (Odisio et al., 2004). The
omplete spee
h 
orpus has been used for the estimation of HMM parameters. These trainedHMMs were then used to perform for
ed alignment of the data. An example of the segmentationthrough the HMMs whi
h are trained using the fa
ial data is shown in Figure 4.1.4.1.1 Re
ognition errorIt has been shown that visual spee
h segments are 
orrelated to the 
orresponding a
ousti
 spee
h(Barker and Berthommier, 1999; Yehia et al., 1998). In fa
t, the spee
h sound is the 
onsequen
eof the vo
al tra
t deformation and thus the fa
e. Thus, there has to be an overlap between thea
tual a
ousti
 and visual spee
h segments. The visual and a
ousti
 spee
h segments might haveasyn
hrony in their onset and end time as the vo
al tra
t has to anti
ipate the following soundby adjusting the di�erent arti
ulators.Based on the above reasoning of asyn
hrony and overlap of the visual and a
ousti
 spee
h,we have derived the following 
riterion for evaluating the segmentation results. We 
onsider there
ognition of a label to be 
orre
t, if there is an overlap between the predi
ted visual segmentand the a
tual a
ousti
 segment, the overlap being however small. An ASR engine trained witha very large a
ousti
 
orpus was used to provide the phoneme labels and a
ousti
 boundaries ofour a
ousti
 whole 
orpus. We 
onsider the a
ousti
 boundaries given by the ASR engine as thea

urate a
ousti
 boundaries for 
omparison.4.1.2 For
ed alignment resultsIn this subse
tion, we present the quantitative results based on the re
ognition error mentionedin the previous se
tion. We 
lassify phonemes based on their visibility as shown in Table 4.1.We 
onsider /4/, /w/, /S/ and /Z/ as bilabial based on their se
ondary pla
e of arti
ulation. Infa
t, their primary pla
e of arti
ulation is not relevant to our study (not visible) as it is the 
asefor the se
ondary pla
e of arti
ulation.We performed 4 alignment experiments. These in
lude 3 experiments based on trainingmonophone HMMs using the 3 types of feature ve
tors mentioned above. Based on the alignmentresults with the 3 sets of monophone HMMs, the feature ve
tor performing the best among the
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Figure 4.1: An example of the segmentation using the HMMs trained with fa
ial data. It is shown in 
omparison with the segmentation performedusing ASR engine. The jaw opening is expressed in terms of relative units 
al
ulated based on the 3D 
oordinates.
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sil p b m 4 w S Z v f t d n s z l ñ j k g N K e a E i @ ẽ ã y O u œ o ø õFigure 4.2: Re
ognition errors in the alignments: Art, PCA are the arti
ulatory and prin
ipal 
omponent analysis based feature ve
tors; MFCC are the a
ousti
parameters (Mel-frequen
y 
epstral 
oe�
ients); Mono and Tri are the monophone and triphone HMMs. TE is the total re
ognition error. An automati
allypredi
ted segment alignment is 
onsidered 
orre
t when it has some overlap with the 
orresponding a
ousti
 segment, however small it might be. Based on the lowre
ognition error, the set of following phonemes 
an be 
lassi�ed as being visible: { p, b, m, 4, w, S, Z, v, f, y,a, ã, o, õ, ẽ }



60 Chapter 4. Phoneme Classi�
ation Based on Fa
ial DataVis. Abbr. Class Members of the 
lass1 B.L bilabial p, b, m, 4o, wo, So, ZoL.D labiodental v, fR.w rounded vowels y, O, u, œ, o, ø, õ2 sil sil silAlv alveolar and dental t, d, n, s, z, lPlt palatal ñ, jvlr velar k, g, NUvl Uvular KU.V unrounded vowels e, a, E, i, @, ẽ, ãTable 4.1: Classi�
ation of phonemes based on their visibility. Phonemes 
lassi�ed as 1 arevisible and 2 are invisible. Phonemes followed by ◦ are 
lassi�ed based on their se
ondary pla
eof arti
ulation.three based on the total re
ognition error (se
tion 4.1.1) was sele
ted for training the 
ontextdependent triphone models for further improvement of alignment. The results are presented inFigure 4.2. The PCA based feature ve
tors perform better than arti
ulatory feature ve
torsin terms of the total re
ognition error. The heterogeneous feature ve
tor, 
onsisting of bothPCA based features and arti
ulatory features, performs better than ea
h taken alone. PCAbased features quantitatively a

ount for the overall shape or deformation during the spee
hprodu
tion. The arti
ulatory parameters in
rease the dis
rimination by quantifying the typi
alarti
ulatory 
hara
teristi
s like 
omplete 
losure of mouth for /p/. This performan
e is furtherimproved by triphone HMMs. As one 
an expe
t the re
ognition errors are low for phonemeswhi
h involve labial region for their 
oarti
ulation. The re
ognition errors are relatively higherfor other 
onsonant 
lasses.To verify that substantial training 
an be a
hieved by our small 
orpus (28 minutes of audio-visual spee
h), monophone HMMs were trained using the a
ousti
 spee
h of our 
orpus. Thea
ousti
 features extra
ted from the spee
h were the MFCC (Mel-frequen
y 
epstral 
oe�
ient)features ve
tors. The trained HMMs were used for the for
ed alignment of the same spee
hdata that was used for training. The resulting a
ousti
 segments were 
ompared with thesegments predi
ted by the ASR engine. The total re
ognition error used to quantify the visualsegmentation results was determined in this 
ase. A total re
ognition error of less than 1% wasobserved. Based on the low re
ognition error, looking at the �gure 4.2, the set of followingphonemes 
an be 
lassi�ed as being visible: { p, b, m, 4, w, S, Z, v, f, y,a, ã, o, õ, ẽ }. Thesephonemes have a 
omponent of unique arti
ulatory information embedded in the fa
ial data.Thus, these phonemes need more importan
e in synthesis of visual spee
h animation using thiskind of fa
ial data.The following analysis has been done 
onsidering only the 
orre
tly re
ognized visual seg-
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e in the starts of a
ousti
 and visual spee
h segments
ments. Let As and Vs be the starts of the a
ousti
 and visual segments of the same phoneti
label, Ae and Ve be the ends of the a
ousti
 and visual segments of the label. Let Ds be thestart di�eren
e and De be the end di�eren
e, 
al
ulated as follows:

Ds = (As− Vs),

De = (Ae− Ve)The mean and varian
e of Ds and De are 
al
ulated for ea
h of the labels 
overed by the
orpus (see Fig. 4.3 and Fig. 4.4). In the following analysis, fo
us has been given to onlythose phonemes whi
h have signi�
ant 
overage in the 
orpus. A positive expe
tation of thestart di�eren
e, (E(Ds) > 0) means visual start leads over the a
ousti
 start. This suggests avisual in�uen
e of the spee
h 
oarti
ulation on the left 
ontexts. This is the 
ase for bilabials,labiodental and rounded vowels. Similarly, (E(De) < 0) means a
ousti
 end leads over visualend, with a visual in�uen
e of the spee
h 
oarti
ulation on the right 
ontext. The segmentationresults that was obtained show that /4/, /w/, /S/ and /Z/ fall in this 
ategory.
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e in ends of a
ousti
 and visual spee
h segments4.2 Learning phoneme kinemati
s using EMA dataThe main disadvantage of fa
ial spee
h data is that, the kinemati
s of the invisible phonemes
annot be 
aptured. This is be
ause of the fa
t that, kinemati
 information about the tonguewhi
h is one of the a
tive arti
ulators for many phonemes, does not get 
aptured. Alignmentexperiments were done to estimate the 
omponent of this missing information whi
h 
an besupplemented through the addition of a tongue. The alignment experiments were performedusing a data whi
h in
luded the tongue traje
tories during phoneme arti
ulation. This datais di�erent from the data utilized for the segmentation experiment des
ribed in the previousse
tion.4.2.1 Data a
quisitionThe data was a
quired using Ele
tromagneti
 arti
ulography (EMA) (Hoole and Nguyen, 1999).EMA te
hnique provides traje
tory data of arti
ulator �esh-points. It provides data 
omparableto that available from the well-established x-ray mi
ro-beam system. EMA is extremely wellsuited to the study of 
oarti
ulation sin
e it allows a wide range of utteran
es to be re
ordedin a single session. Sessions of 30 minutes or more are feasible. Moreover, it provides kinemati
data in readily analyzable form. This should help to remedy one of the most serious failings
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s using EMA data 63of instrumental studies of 
oarti
ulation, namely the small number of subje
ts per experiment.EMA is able to monitor the movements on the mid-sagittal plane of most of the arti
ulatorystru
tures that have been the fo
us of 
oarti
ulatory studies, i.e lips, jaw and tongue.For this experiment, we utilized a di�erent data with a di�erent phoneti
 trans
ript. Thisdata was a
quired by Sébastien Demange (Demange and Ouni, 2011). It 
onsists of traje
toriesof 8 �esh-points on the mid-sagittal plane and 4 �esh-points, symmetri
ally pla
ed either sidesof it. The �esh-point traje
tories are re
orded along with the a
ousti
s while the subje
t wasrendering spee
h (see Fig. 4.5). Sensors are glued to the skin at the 12 respe
tive lo
ations bysurgi
al glue. Among these 12 sensors: 4 sensors are on the tongue, 4 sensors are on lips; 1on the lower in
isor (to tra
k the jaw movement); 3 sensors, 2 symmetri
ally pla
ed behind theears, and 1 on the bridge of the nose (for the removal of any head movement). The data 
onsistsof 400 senten
es whi
h is for a total duration of about 16 minutes. The sensor traje
tories arere
orded at a sampling rate of 200 Hz. Wires 
onne
ted to the sensors and the transmitters arepresent all the time during the a
quisition. There might be twists and turns in the tongue whi
h
annot be a

urately 
al
ulated and eliminated from the a
quired data. The overall a

ura
y ofthe a
quired data gets a�e
ted by these drawba
ks.4.2.2 Feature extra
tionFa
ial spee
h data and EMA data are not dire
tly 
omparable. Considering this, alignmentexperiments were done using two sets of feature ve
tors extra
ted from EMA data alone. Thisway it would help in 
omparing the improvement of in
lusion of the tongue data. The alignmentexperiments were done �rst using feature ve
tors having only the labial and jaw movement basedfeatures based features. Then the same experiment was done using ve
tors having both labialand jaw based features and tongue related features. Though tongue related features are alsorelated to arti
ulation, we refer to only the labial and jaw related feature as arti
ulatory featuresin the following dis
ussion. They are 
al
ulated just as in the 
ase of fa
ial data (see Fig. 4.5).The parameters related to the tongue are the ones whi
h a

ount for the movement of the tonguetip, horizontal displa
ement of the tongue, tongue shape, tongue height (see Fig. 4.6).4.2.3 ResultsThe HMM training and alignment is done exa
tly in the same way as explained for the fa
ialdata. Two sets of HMMs are trained using the two feature sets extra
ted from EMA data. Onlymonophone HMMs were trained and used for segmentation. This is be
ause of the 
overagebeing low for a large set of triphones. The re
ognition 
riterion explained in the previous se
tion
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lusion 65is used for the analysis. The segmentation results are obtained for the two sets of HMMs. There
ognition errors are determined for ea
h phoneme 
lass for the segmentation predi
ted by thetwo HMM sets. This is in similar lines as explained in the 
ase of fa
ial marker data. The resultsin 
omparison with those obtained by HMMs trained using features extra
ted from the fa
ialmarker data are given in �gure 4.7. Fa
ial data and EMA data have a lot of di�eren
es besidesjust the phoneti
 trans
ript, duration and 
overage of phonemes. There are other signi�
antdi�eren
es su
h as the following. First, Unlike fa
ial data where the arti
ulation is 
ompletelyuninhibited and natural, the a�e
t of the presen
e of sensors on arti
ulation 
annot be 
ompletelyruled out. In addition to that, the fa
ial deformation happening during the arti
ulation of spee
h
annot be 
ompletely 
aptured through just 5 points (4 on lips and 1 on the 
hin), in this respe
tfa
ial data 
an be 
onsidered better. Besides, traje
tories of just 4 points on the tongue are
aptured and parameters were extra
ted subsequently. This 
an not 
apture the 
omplexityof the arti
ulatory deformation of the tongue. These di�eren
es and fa
tors a

ount for themarginal improvement with the addition of tongue related information, whi
h is 
ontrary towhat one would expe
t. Broadly, the addition of tongue features improves the alignment resultsfor most of the phonemes whi
h don't fall in the 
ategory of visible phonemes (see �gure. 4.2).For the phonemes whi
h fall in the 
ategory of visible phonemes, rather predi
tably, the additionof tongue information does not improve the re
ognition.Figures 4.8 to 4.11 give the start and end statisti
s of the phonemes based on the alignmentresults without and with tongue related data to the arti
ulatory features. Considering thosephonemes for whi
h the re
ognition errors have redu
ed with the addition of tongue data, thefollowing observations 
an be made. For velars, the expe
tation of a
ousti
 to visual startdi�eren
e is positive, i.e. (E(Ds) > 0), whi
h indi
ates the 
o-arti
ulation e�e
t on their left
ontextual phonemes. For alveolars and dentals, the varian
e of the di�eren
e in a
ousti
 andvisual start (Ds) has redu
ed. Besides, for the phoneme /l/, the di�eren
e in the a
ousti
 andvisual ends ((E(De) < 0)) shows an in�uen
e on the following phonemes. For other phonemes,these �gures show that there is no signi�
ant 
hange in the statisti
s with the in
lusion of thetongue data. This 
an be a

ounted by the re
ognition errors, whi
h has not improved with theaddition of tongue data.4.3 Con
lusionThe results of segmentation using EMA data whi
h in
ludes tongue related features, in 
om-parison of those obtained by fa
ial features, shows only a marginal improvement. This is inagreement to the kind of result shown in (Yehia et al., 1998). We 
lassify phonemes as visible
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4.3. Con
lusion 69based on these automati
 segmentation results. This 
lassi�
ation is used to analyze the per-
eptual evaluation results. It is useful for bringing out the 
orrelation between obje
tive andper
eptual evaluation results, thus paving way for better obje
tive evaluation te
hniques2.

2Signi�
ant portion of this 
hapter was published as (Musti et al., 2010).
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Chapter 5
Unit Sele
tion

In the previous 
hapter we have presented an overview of our text to a
ousti
-visual spee
hsynthesis system 
alled ViSAC. It synthesizes spee
h using unit-sele
tion and 
on
atenation ofspee
h segments from a pre-re
orded spee
h 
orpus. Su
h spee
h synthesis systems whi
h arebased on unit sele
tion typi
ally have three stages. For a given text to be synthesized, the NLPmodule �rst generates the spe
i�
ation of the required target phoneme sequen
e. The spe
i�-
ation is then 
onverted in terms of the synthesis unit. For example, the synthesis unit in the
ase of our system is diphone. It is ne
essary that the target spe
i�
ation has all the importantinformation whi
h a�e
ts spee
h realization. Then, for ea
h required target in the spe
i�
ation,all the 
andidates in the 
orpus are ranked based on a target 
ost fun
tion. This 
ost fun
tionis generally de�ned as the weighted sum of individual feature 
osts. At the end of this 
an-didate ranking, for ea
h required target in the spe
i�
ation, utmost a �xed maximum numberof 
andidates are pre-sele
ted and rest pruned. This s
enario of multiple possible 
andidatesfor ea
h required target in the sequen
e, de�nes a latti
e. Finally, the sequen
e of those �nal
andidates whi
h optimizes a total 
ost fun
tion is sele
ted for 
on
atenation. This is done bythe resolution of the latti
e through Viterbi algorithm. The total 
ost fun
tion is the weightedsum of the target 
ost and the 
on
atenation 
osts.For all the three stages mentioned above, `spe
i�
ation of targets' or `des
ription of 
andi-dates' is 
ru
ial. This also shows that the target feature stru
ture and the 
al
ulation of target
ost plays a 
entral role. In the pre-sele
tion stage, it is ne
essary that the ranking given tothe 
andidates present in the 
orpus is 
onsistent with the ordering based on their per
eptualsuitability for any required target. This is also important to ensure that no good 
andidatesget pruned. This depends on the target 
ost. Besides pre-sele
tion, target 
ost also in�uen
esthe �nal sele
tion of 
andidate sequen
e from the latti
e. The set of target features and theiroptimum weights whi
h de�ne the target 
ost, de
ide the e�
ien
y of the target 
ost fun
tion71
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tionand hen
e the synthesis performan
e. With respe
t to target 
ost, the following two aspe
tsneed to be explored:
• De
iding the set of target features that will be used for target spe
i�
ation or 
andidatedes
ription.
• Tuning the weights of the target features to optimize the overall synthesis performan
e,for a given 
orpus.In addition to the target 
ost, the 
on
atenation 
ost also needs to be 
onsidered. The
on
atenation 
ost estimates the per
eptual dis
ontinuity due to the 
on
atenation of two 
an-didates. The 
al
ulation of the a
ousti
 and visual 
on
atenation 
ost in our system was ex-plained in the previous 
hapter. The obje
tive of unit sele
tion is to have a �nal synthesizedspee
h whi
h is per
eptually similar to a natural spee
h sequen
e (hypotheti
al) rendered bythe speaker. This requires at least a 
ontinuous spee
h without per
eptible dis
ontinuities, and
onstituent spee
h segments whi
h are lo
ally suitable for ea
h required target. This requires anoptimum 
ombination of target and 
on
atenation 
osts. This, indi
ates the need to tune thetotal 
ost fun
tion besides optimizing the total 
ost.This 
hapter deals with these di�erent aspe
ts of unit sele
tion. In the following se
tions, wedes
ribe experiments that were performed with the obje
tive of optimizing the synthesis results.In the following se
tions, we �rst give an a

ount of the set of target features in se
tion 5.1. Inse
tion 5.2, we detail experiments that were performed to modify target feature values or designnew target features for visual modality. In se
tion 5.3, we explain a target 
ost tuning approa
hthat we have developed before 
on
luding.5.1 Target featuresAt the time of synthesis, targets are spe
i�ed using a set of features, generally 
alled targetfeatures. This set of target features is generally de
ided based on the linguisti
 and phoneti
studies whi
h explain various patterns in spee
h. Consequently, the 
lassi
ally used targetfeatures in
lude linguisti
, phoneti
 and prosodi
 
ontext. Some of these features are relevantirrespe
tive of a language and some might be language-spe
i�
. For example, unlike phonemevoi
ing whi
h is usually relevant irrespe
tive of a language, the observation of rhythm group(RG) pattern is relevant for Fren
h. This is be
ause in Fren
h the end of RG gives the positionof the stressed syllable whi
h is usually the last syllable of RG. Hen
e, the features related to RGthat are relevant to Fren
h, might not be relevant or equally important for other languages. Forany target or 
andidate, these feature values are set for both targets and 
andidates solely based



5.2. Corpus based visual target features 73on the text analysis. In the 
ase of a text to be synthesized, the des
ription of a target in termsof these features provides an `abstra
t' information about spee
h. The target feature 
ost for aparti
ular 
andidate is based on the feature value of the target and that of the 
andidate being
onsidered. The expe
tation is that same feature values a

ount for a hypotheti
al similarity inthe spee
h realization and hen
e also the 
andidate suitability.In our system, these features des
ribe a phoneme at various logi
al levels in whi
h a senten
e
an be sub-divided (see Fig. 3.6). Some of the features are more spe
i�
 to Fren
h language.These set of features, espe
ially the linguisti
 features, are predominantly generi
 and 
an bedire
tly applied irrespe
tive of the 
orpus being used. The set of linguisti
 features in
ludesphoneme number in the syllable; syllable kind; syllable position in the rhythm group (RG) andsenten
e; syllable number in the word, RG and senten
e; word position in RG and senten
e;word number in RG and senten
e; RG position in senten
e; proximity of the nearest left andright silen
e; kind of senten
e.They either have �nite integral values or 
ategori
al values based on the feature. Thesefeatures are either used to des
ribe the 
hara
teristi
 of a target or a 
andidate or a 
ontextual(left/right) phoneme or both. The phoneti
 features in
lude, besides the phoneme identity, thelist of features given in table 5.1. Ex
ept the phoneme identity, the other phoneti
 features areused to de�ne 
ontext (left and right phoneme). This set of generi
 target features whi
h areextra
ted through the text analysis is augmented by additional 
orpus-based target features.This is done to take the speaker 
hara
teristi
s into a

ount whi
h is important espe
ially forthe visual modality. Hen
e, the 
orpus spe
i�
 features designed mainly a

ount for the visualmodality of spee
h.5.2 Corpus based visual target featuresWe have des
ribed the set of generi
 target features in the previous se
tion, whi
h are generallyassumed to depend solely on text analysis. The set of target features related to phoneti
 
ontextalso belongs to this 
ategory. The phoneti
 
ontext of any parti
ular phoneme in�uen
es itsarti
ulation signi�
antly. This is well known as 
oarti
ulation. The degree by whi
h a phonemein�uen
es its surrounding phonemes or is in�uen
ed by them varies (Löfqvist, 1990). The estab-lished phoneti
 knowledge regarding 
oarti
ulation holds almost all the time (Ladefoged, 1982;Ladefoged and Maddieson, 1995). Hen
e, these target features and their values for di�erentphonemes are usually based on the 
hara
terization de�ned by phoneti
ians that is found in theliterature. Hen
e, their values are set based on the information extra
ted through text analysis.However, the phoneti
 
ontext also varies signi�
antly based on the speakers' arti
ulatory prefer-
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tionTable 5.1: These set of features de�ne the phoneti
 
ontext of a phoneme, target or 
andidate.These feature values either des
ribe previous or following phoneme. The target feature 
ostsfor these features are binary valued fun
tions taking either 0 or 1 based on whether the featurevalues being 
ompared are same or di�erent respe
tively.Feature Name Possible valuesVoi
ing voi
ed, unvoi
edKind vowel, 
onsonant, semivowelPla
e of Arti
-ulation bilabial, labiodental, inter-dental,alveodental, alveolar, post-alveolar,palatal, post-palatal, prevelar, velar,post-velar, uvular, laryngeal, lateralManner of Ar-ti
ulation Oral, nasal, plosive, fri
ative, liquid,semi-plosiveLip Shapeduring arti
u-lation spread, protruded
en
es and idiosyn
rasies. Due to the usage of a re
orded audio-visual 
orpus, in 
ase the speakerhas any pe
uliar arti
ulation, it might be visually or a
ousti
ally per
eived in the synthesizedspee
h and present some in
oheren
e. For example, let us assume that 
andidates are beinglooked up for a target phoneme whose left 
ontextual phoneme is 
onsidered to have lip protru-sion during its arti
ulation. Then obviously, those 
andidates whose left 
ontextual phoneme is
onsidered to have a lip protrusion during its arti
ulation will get higher ranking. If this target
ontextual phoneme is a
tually arti
ulated di�erently and not a
tually protruded, then sele
tinga 
andidate with a protrusion left 
ontextual phoneme might be inappropriate. This kind of
ategorization might slightly vary from person to person and it is well known (Johnson et al.,1993; Raphael and Bell-Berti, 1975; Maeda, 1989). Hen
e, in 
ase these feature values have anyin
onsisten
y in 
omparison with the a
tual 
hara
teristi
 in the 
orpus, it will be visible inthe synthesized spee
h. We have performed two experiments whi
h aim at a phoneti
 
ontextadaptation that is based on the 
hara
teristi
s observed in the 
orpus. They 
an be divided intothe following two 
ategories:

• Changing target feature values for some phonemes based on the arti
ulatory 
hara
teristi
sestimated from the 
orpus. We refer to this approa
h as phoneti
 
ategory modi�
ation.
• Repla
ing 
ategori
al phoneti
 target features, by real valued target features to represent
orpus spe
i�
 
hara
teristi
s. These features en
ode the same information a

ounted bythe 
ategori
al features, with higher pre
ision. We refer to this approa
h as 
ontinuousvisual target 
ost.
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Figure 5.1: Jaw Opening statisti
s. Ea
h segment represents a phoneme, 
entered at the mean and itslength being twi
e the standard deviation. The number of o

urren
e of ea
h phoneme is presented.In the following subse
tions, we des
ribe these experiments. The modi�ed feature values orintrodu
ed features are those whi
h mainly 
hara
terize the visual modality of spee
h. Hen
e, werefer to them as visual target 
ost. The main goal is to see whether these experiments improvethe performan
e of sele
tion and 
onsequently of synthesis. The obje
tive evaluation results ofthese two methods are then presented in subsequent subse
tions.5.2.1 Phoneti
 
ategory modi�
ationAll the target features whi
h provide the information related to phoneti
 
ontext are 
ategori
al(see Table 5.1). The 
orresponding phoneti
 feature 
osts are binary; whi
h take 0, when thetarget and 
andidate feature values are same and 1, when they are di�erent. Among these targetfeatures, two features a

ount for the patterns in visual spee
h animation. They are `Pla
e ofarti
ulation' and `Lip shape during arti
ulation'. We would refer to the latter feature as `LipShape'. `Pla
e of arti
ulation' information is en
oded only for labial phonemes and also theirpla
e of arti
ulation is visibly unambiguous. Hen
e, we fo
us on `Lip Shape'.We want to determine the 
hara
teristi
 lip shapes of phonemes as observed and dire
tlymeasurable from the re
orded audiovisual 
orpus. In 
ase the observed `Lip Shape' is di�erentfrom the expe
ted 
lassi
al 
ategorization, the 
ategory is modi�ed a

ordingly. This informationwill be used to rede�ne this feature's values while spe
ifying targets and des
ribing 
andidates
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Figure 5.2: Lip Protrusion statisti
s. The phonemes of interest are framed: the `protruded' phonemesare {y, ø, œ, @, œ̃, u, o, õ, O , ã, w, 4 }. The segments plotted in red, green and brown seem to violatethe general pattern re
al
ulated with 
andidates without a `protruded' 
ontext. The segments plotted inred 
orrespond to the phonemes whose 
ategory was modi�ed. The brown and green segments are of thosephonemes where statisti
s were re
al
ulated with 
andidates without `protruded' 
ontext.more a

urately. The expe
tation was that their synthesized visual spee
h 
omponent wouldbe more similar to the real visual spee
h after the 
hanges. This modi�
ation of the phoneti

ontext should modify the visual target 
ost, whi
h is a part of the target 
ost (TC). The visualtarget 
ost of a phoneme (left or right phoneme of a diphone) is 
al
ulated by summing thevisual feature di�eren
es of the left and the right 
ontextual phonemes.We performed a statisti
al analysis of the arti
ulatory features. These set of arti
ulatoryfeatures in
luded lip protrusion, lip opening, lip spreading and jaw opening (see Fig. 3.4) (Robertet al., 2005). The statisti
s were 
al
ulated by 
onsidering the arti
ulatory feature ve
tors atthe 
enter of the phoneme arti
ulation. This is also the pla
e of 
on
atenation in the visualand a
ousti
 domain. The statisti
s of the phoneti
 arti
ulatory features are shown in �gure5.1 to 5.4. We 
onsidered the mean, varian
e and the number of o

urren
e of ea
h phoneme.For any given phoneme, the lip shape 
an be either `Protruded' or `Spread', or might not haveany typi
al shape in whi
h 
ase we 
lassify as `not protruded and not spread' whi
h we referto as simply `none'. The range of arti
ulatory feature statisti
s for ea
h of these 
ategories isdetermined �rst. This is depends on the pattern that majority of phonemes belonging to ea
h
ategory seem to follow. Ea
h phoneme 
ategory is re-examined based on these intervals thus
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Figure 5.3: Lip Opening statisti
s.determined. We looked more 
losely at LipProtrusion and LipSpread as others are related.Typi
ally by 
lassi
al phoneti
 knowledge, the set of phonemes whi
h in
luded {y, ø, œ, @,
œ̃, u, o, õ, O , ã, w, 4 } was 
lassi�ed as `protruded' and the set of phonemes whi
h in
luded{ i, e, a, E, ẽ} was 
ategorized as `spread' phonemes . All the other phonemes were 
onsideredas `not spread and not protruded' based on the shape of the lips. This 
ategorization generallyholds. Nevertheless, we 
an observe that some phonemes need to be re
onsidered. For thispurpose and to be more a

urate, the 
oarti
ulation a�e
ts of the surrounding phonemes shouldbe removed. In fa
t, if one of the neighboring phonemes is protruded, for instan
e, it is verylikely that the surrounded phoneme will be protruded too, even if it is not its main arti
ulatory
hara
teristi
, be
ause of 
oarti
ulation. Therefore, for phonemes whose visual arti
ulationseemed to be di�erent from their initial 
lassi�
ation, their arti
ulatory feature statisti
s werere
al
ulated by 
onsidering a subset of phoneme instan
es in the 
orpus. For example, thephoneme /f/ seemed to be `spread' unlike its 
lassi
al phoneti
 
lassi�
ation of `not spread'.Thus, only its o

urren
es in the 
orpus without spread phonemes in its neighborhood weretaken into a

ount. Its arti
ulatory feature statisti
s were re
al
ulated to 
on�rm its e�e
tivevisual arti
ulation. The following set of phonemes were 
onsidered for re
al
ulation to 
he
k iftheir e�e
tive arti
ulation is `spread': {f, v, t, d, n, s, z, ñ, k, g, N }. For the two phonemes{S and Z}, the arti
ulatory feature statisti
s without rounding 
ontext was re
al
ulated. Thesestatisti
s were re
al
ulate to ensure that the observations are not due to the 
ontextual in�uen
e
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Figure 5.4: Lip Spread statisti
s. The phonemes of interest are framed: the `spread' phonemes are {
i, e, a, E, ẽ}. The brown and green segments seem to violate the general pattern and so their statisti
swere re
al
ulated with 
andidates without `spread' 
ontext. The segments plotted in green 
orrespond tothe phonemes whose 
ategory was modi�ed.but representative of the phoneme arti
ulation itself. Initially, the sets of phonemes {f, v, t}, {S,
Z} and {ã, œ̃} were 
onsidered as `none', `none' and `protruded` respe
tively. However, based onthe statisti
s and the observation of the data, we found out that the strategy of our speaker isquite di�erent from this de�nition. For this reason, we modi�ed the arti
ulatory target featuresfor these sets phonemes to `spread', `protruded' and `none' respe
tively.In subse
tion 5.2.3, we present an evaluation where we 
ompared the synthesis using theinitial arti
ulatory des
ription (IPD) and the modi�ed phoneti
 des
ription (MPD).5.2.2 Continuous visual target 
ost fun
tionIn the previous subse
tion, we explained the re-
lassi�
ation of phoneti
 
hara
teristi
s intodistin
t 
ategories from the statisti
s of the arti
ulatory features. The goal was to adapt the
lassi�
ation to the real ones based on the 
orpus used. But one 
an observe that it is noteasy to take a dis
rete distin
t de
ision from these statisti
al values. So the visual target 
ost
omponent has to be formulated as a real value in the range [0, 1] rather than binary value.The arti
ulatory 
hara
teristi
s should be 
onsidered as 
ontinuous. So the visual target 
ost
omponent has to be formulated as a real value in the range [0, 1] unlike binary value. For
al
ulating the 
ontinuous target 
ost we used the arti
ulatory feature statisti
s 
al
ulated as
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tion. We explored two di�erent formulations of 
ontinuousvisual target 
ost. First formulation is based on a work done by Mattheyses et al. (2010) whi
huses 
ontextual phoneme di�eren
e. The se
ond formulation is based on an approa
h that wedeveloped, whi
h is based on 
ontextual signi�
an
e. The arti
ulatory feature statisti
s arerepresented by µij and σij to represent the mean and varian
e of the phoneme (index i) andusing the arti
ulatory feature (index j).5.2.2.1 Visual target 
ost fun
tion based on 
ontextual phoneme di�eren
eIn (Mattheyses et al., 2010), the authors used shape and texture parameters extra
ted by ap-plying A
tive Appearan
e Models on 2D fa
ial images of spee
h animation. We tried to applythe same logi
 for the 
al
ulation of the 
ontinuous target 
ost using arti
ulatory features. Inthis formulation, the 
al
ulation of visual target 
ost is done as follows: Two phonemes are
onsidered similar in terms of their visual representation, if their mean representations are alikeand, in addition, if these mean representations are su�
iently reliable (i.e. with small summedvariations). Two matri
es were 
al
ulated, whi
h express for ea
h phoneme pair (p, q); the dif-feren
e between their mean representations D
µ
pq and the sum of the varian
es of their visualrepresentation Dσ

pq, respe
tively:
Dµ

pq =

√
∑

j

(µpj − µqj)2

Dσ
pq =

∑

j

σpj +
∑

j

σqjS
aling both matri
es between zero and one gave D
µ
′

pq and Dσ
′

pq , after whi
h the �nal di�eren
ematrix was 
al
ulated:
Dpq = 2Dµ

′

pq +Dσ
′

pqMatrix Dpq is used to 
al
ulate the visual target 
ost during sele
tion.5.2.2.2 Visual target 
ost fun
tion based on 
ontextual signi�
an
eIn the previous method, the point of emphasis was 
entered on the di�eren
es in 
ontextualphonemes. It doesn't take into a

ount the nature of the main target phoneme. For ea
hphoneme, the feature with least varian
e is the one whi
h gets least modi�ed due to 
oarti
ulationand the features with higher varian
e get a�e
ted more due to 
oarti
ulation. Thus, obtainingsimilar 
ontext is important for features whi
h get more in�uen
ed due to 
oarti
ulation. Weapplied this prin
iple for the 
al
ulation of 
ontextual phoneme di�eren
e Dpq(i) as a fun
tion
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tionof the 
entral target phoneme i whi
h is being looked up in the 
orpus. The following notationis assumed: p is the 
ontextual phoneme (left or right) of phoneme i in the target utteran
e and
q is the 
ontextual phoneme of the 
andidate for i. The di�eren
e of the mean of the 
ontextualphoneme was weighted by the varian
e of the target phoneme:

Dpq(i) =
∑

j

wij |µpj − µqj| (5.1)
wij =

σij
∑

j σij

Dpq(i) is s
aled between zero and one. This gives the distan
e between 
ontextual phonemesas a fun
tion of the phoneme i for whi
h, the proximate 
ontext is being looked up during thesele
tion pro
ess. The weight wij gives the relative importan
e of the 
omponent j with respe
tto the other 
omponents. Higher the varian
e σij , higher the weight on the 
ontextual di�eren
efor the 
omponent j. Thus, wij re�e
ts the fa
t that 
ontext has important impa
t on these
omponents with higher varian
e.5.2.3 Obje
tive evaluation of synthesis resultsIn this subse
tion we des
ribe the obje
tive evaluation done to 
ompare the various visual target
osts. For the purpose of evaluating the synthesis results, we used a method based on leave-one-out 
ross-validation te
hnique. We synthesized ea
h of the senten
es in the 
orpus, a total of 319senten
es. This is done by ex
luding the senten
e being synthesized from the sele
tion 
orpus.Ea
h of the synthesized senten
es are 
ompared with the real senten
es. The advantage of thismethod is that it avoids building a spe
i�
 test 
orpus for evaluation. However, we marginallyredu
e the 
hoi
e of sele
tion, by ex
luding some diphones from the sele
tion pro
ess.After synthesizing a given senten
e, all the half-phones (two half-phones in ea
h diphone)of the synthesized senten
e and the a
tual senten
e were re-sampled individually to make thenumber of visual samples equal in both the real and synthesized senten
es (see Fig. 5.5). Thiswas done using a simple linear interpolation of the 12 PCA 
oe�
ients. After this, the Pearson's
orrelation 
oe�
ients between 12 PCA 
oe�
ients of all the synthesized senten
es and thereal senten
es a
tually present in the 
orpus was determined. Similarly, Pearson's 
orrelation
oe�
ients between 4 arti
ulatory parameters was also determined. The root mean square error(RMSE) between arti
ulatory feature and PCA 
oe�
ient traje
tories of the synthesized andthe real senten
es present in the 
orpus was determined.If xd and yd are the sequen
es of the dth PCA 
oe�
ient of a real and synthesized senten
e
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Synthesized

sentence

Real	

sentence

diphone	ba diphone	ac

diphone		ba diphone	acFigure 5.5: Adjusting diphone lengths. Ea
h of the 
orresponding half-phones whi
h are part of thediphones in the synthesized and real senten
es are re-sampled through linear interpolation to make thenumber of visual samples equal.having n samples:
• The Pearson's 
orrelation 
oe�
ient is 
al
ulated as follows:

rxdyd =

n
∑

i

xd(i)yd(i)−
∑

i

xd(i)
∑

i

yd(i)

√

n
∑

i

xd(i)2 − (
∑

i

xd(i))2
√

n
∑

i

yd(i)2 − (
∑

i

yd(i))2
(5.2)

• The Root Mean Squared Error (RMSE) is 
al
ulated as follows:
rmsexd,yd =

√
√
√
√

1

n

n∑

j=1

(xd(j)− yd(j))2 (5.3)Though it is almost impossible to have a perfe
t 
orrelation between the real and synthesizedsenten
e, it seems to be a reasonable assumption that the traje
tories for two diphones sele
tedwith similar phoneti
 
ontext and linguisti
 des
ription would be signi�
antly 
orrelated. For thevisual target 
ost, we performed obje
tive evaluation of the visual spee
h animation alone. Thiswas based on the assumption that the visual spee
h animation would be strongly 
orrelated withthe underlying a
ousti
 spee
h. Besides, the features modi�ed a

ount predominantly for thevisual modality of spee
h unlike some others like phoneme arti
ulation, voi
ing whi
h a

ountfor the a
ousti
s of spee
h. An example of the traje
tories of the �rst prin
ipal 
omponent of asynthesized senten
e and the 
orresponding real senten
e are shown in �gure 5.6.Evaluation resultsBased on the above explained obje
tive evaluation te
hnique the performan
e of the variousvisual target 
ost te
hniques were determined (See tables 5.2 and 5.3). The target 
ost te
h-niques with the binary visual target 
ost 
omponents (see se
tion 5.2.1): Initial arti
ulatory
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tiondes
ription (IPD) and Modi�ed phoneti
 des
ription (MPD) performed 
omparable to ea
hother (rxdyd = 0.813 for PC 1). Similarly, the two 
ontinuous visual target 
osts; 
ontextualphoneme di�eren
e based approa
h (CPD) and phoneme di�eren
e based on 
ontextual signif-i
an
e (PDCS) performed 
omparable to ea
h other (rxdyd = 0.816 for PC 1). The 
ontinuousvisual target 
osts gave marginally better results 
onsistently 
ompared to the binary visual tar-get 
ost approa
hes even when di�erent weights for the visual target 
ost 
omponent were used.This is also apparent when observing the performan
e with respe
t to arti
ulatory features. Infa
t, the 
orrelation for the �rst two methods IPD and MPD is 0.70 and it in
reases up to 0.72for the CPD and PDCS for jaw opening (see table 5.2). Table 5.3 shows the RMSE betweenreal and syntheti
 traje
tories for the arti
ulatory features. The RMSE is almost the same forthe 4 methods. We should noti
e that ea
h of the examined methods a�e
ts the ranking of thesele
ted 
andidates though it is not that obvious that there are di�eren
es between them. Weshould emphasize that the relative importan
e of this examined visual target 
ost 
omponent inthe overall target 
ost is 1%, as we have a large set of features. Therefore this 
an explain thismarginal variation in the performan
e.Hen
e, these results indi
ate that a 
ontinuous target 
ost 
omponent represents the di�er-en
es between phonemes better, optimizing the synthesis performan
e for parti
ular 
orpus thandis
rete binary target 
ost 
omponents has to be 
ontemplated. Given the limited generalizingpower, for a 
orpus of small size and without a very well balan
ed diphone 
overage in the 
or-pus, the 
ategori
al target 
ost based on 
lassi
al knowledge 
an be 
onsidered su�
ient. Oneshould observe that the obje
tive evaluation used in this work is purely visual.Examining the results of the obje
tive evaluation presented here, it 
an be said that theyare quite good. The overall 
orrelation is quite high. In addition, the RMSE is very low anda

eptable. In fa
t, the jaw opening RMSE is around 2mm, lip opening (2.7mm), lip spreading(1.38mm) and lip protrusion is 4mm. This is a good indi
ation that our synthesis methodprovides similar traje
tories to those of real senten
es. This is quite interesting, as we knowthat the purpose of synthesis is not to generate the exa
t speaker arti
ulation (unlike a
ousti
-to-arti
ulatory inversion). As natural spee
h realization is variable and so good synthesis 
analso be obtained by di�erent traje
tories whi
h don't exa
tly mat
h with one real referen
e.But as our system takes into a

ount the spe
i�
ity of the speaker into a

ount, we manageto obtain a similar result whi
h is 
loser to the speaker's arti
ulation. Thus, it seems that oura
ousti
-visual synthesis, based on the main idea of 
onsidering the spee
h signal as bimodal,was able to 
apture the speaker spe
i�
 arti
ulation �nely. This 
an be 
learly seen in Figure5.6. It 
learly indi
ates that it might improve the synthesis results if the target features are
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tion and weight tuning 83modi�ed/optimized to take any parti
ular 
orpus they des
ribe.PC IPD MPD CPD PDCS1 0.813 0.813 0.816 0.8162 0.715 0.715 0.719 0.7203 0.726 0.725 0.729 0.729JO 0.708 0.708 0.728 0.728LP 0.694 0.693 0.698 0.698LO 0.671 0.670 0.689 0.689LS 0.636 0.636 0.640 0.640Table 5.2: Correlation 
oe�
ients between the real and synthesized traje
tories of �rst 3 prin
ipal 
omponent
oe�
ients and the three arti
ulatory features by various target 
ost strategies. IPD: initial phoneme des
ription,MPD: Modi�ed phoneme des
ription, CPD: 
ontextual phoneme di�eren
e, PDCS: phoneme di�eren
e based on
ontextual signi�
an
e. The arti
ulatory features: JO (jaw opening), LP (lip protrusion), LO (lip opening) andLS (lip spreading). The �rst four prin
ipal 
omponents a

ount for about 58%, 24% and 7% respe
tively.PC IPD MPD CPD PDCS1 7.86 7.86 7.78 7.772 6.67 6.67 6.63 6.623 5.67 5.67 5.64 5.64JO 2.11 2.11 2.06 2.06LP 4.04 4.04 4.02 4.02LO 2.70 2.70 2.63 2.63LS 1.38 1.38 1.37 1.37Table 5.3: Root Mean Square Error (RMSE) in millimeters between the real and synthesized traje
tories ofthe four arti
ulatory features (same notations as table 5.2).
5.3 Target feature sele
tion and weight tuningThe key to the synthesis of `natural' sounding spee
h is the assignment of a target 
ost whi
h is
orrelated to human per
eption. This is important not only for the pre-sele
tion of appropriate
andidates from a large 
orpus but also for the sele
tion of the �nal 
andidate sequen
e forsynthesis. The set of target features and their optimum weights a�e
t the performan
e of thetarget fun
tion. On
e the set of target features is de
ided, the target feature weights are tunedsu
h that the overall synthesis performan
e is the best possible with the 
orpus being used.We developed an iterative algorithm to simultaneously perform redundant feature eliminationand weight tuning. The algorithm whi
h is appli
able to unit sele
tion based spee
h synthesisin general, is presented in the 
ontext of Audio-Visual spee
h synthesis. A target 
ost fun
tionis evaluated based on the 
omparison of its 
andidate ranking and the ordering given by anobje
tive dissimilarity measure 
omparing two spee
h segments. This target 
ost evaluationis similar to the Minimum Sele
tion Error approa
h presented in (Lata
z et al., 2011). It is
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Figure 5.6: Resampled Syntheti
 and Real traje
tories for the �rst prin
ipal 
omponent for thesenten
e �Sur 
es mots, elle sortit vivement de la piè
e.� with the following phoneme sequen
e�sil s y K s e m o sil E l s O K t i v i v @ m ã d @ l a p j E s sil� (see Fig. 5.5 ). The Pearson
orrelation for the �rst prin
ipal 
omponent was 0.89.generally possible that during weight tuning some target features are assigned negligible weights.This is impli
itly feature elimination. Unlike this impli
it feature elimination, we perform expli
itfeature elimination and update weights of all the other retained features, both simultaneouslyin ea
h iteration.5.3.1 Unit sele
tion and 
on
atenationWe brie�y revisit the unit sele
tion framework for spee
h synthesis. A typi
al TTS (text tospee
h synthesis) algorithm 
an be broadly divided into two steps, generation of spe
i�
ationand the a
tual synthesis. This division is made to separate the steps whi
h perform a target
ost 
al
ulation from those whi
h do not. In the �rst stage, the text to be synthesized isanalyzed. This stage produ
es the spe
i�
ation of the phoneme sequen
e to be synthesized
tn1 = (t1, ...tj , ...tn), n phonemes starting from 1, for the input text. The se
ond stage doesthe a
tual synthesis of the required phoneme sequen
e in two steps, pre-sele
tion and �nalsele
tion through latti
e resolution. This se
ond synthesis stage depends on the target 
ost
al
ulation for its synthesis performan
e. The target 
ost 
al
ulation is done by the 
omparisonof target spe
i�
ation to the 
andidate des
ription in the 
orpus. The set of 
andidates whi
h
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tion and weight tuning 85are `per
eptually' similar are pre-sele
ted for the �nal sear
h based on this target 
ost. A generaltarget fun
tion is 
al
ulated as follows:
C(ti, ui) =

F∑

ρ=1

wρCρ(ti, ui) (5.4)where, ti, ui are the target and a 
andidate; F is the number of target features; Cρ(ti, ui)(ρ =

1, ..., F ) is the target feature 
osts between the elements of the target and 
andidate featureve
tors; wρ is the weight of a feature ρ:The sele
tion among the set of pre-sele
ted 
andidates is operated by resolution of a lat-ti
e of 
andidates using the Viterbi algorithm. The result of this sele
tion is a path in thelatti
e of 
andidates whi
h minimizes a weighted linear 
ombination of three 
osts: the tar-get 
ost (∑n
i=1C(ti, ui)), the a
ousti
 join 
ost (∑n

i=2C
aj(ui−1, ui)), and the visual join 
ost(∑n

i=2 C
vj(ui−1, ui)), that is

CT (tn1 , u
n
1 ) = min

u1,...,un







w
∑n

i=1C(ti, ui) +

waj

∑n
i=2 C

aj(ui−1, ui) +

wvj

∑n
i=2C

vj(ui−1, ui)

(5.5)where w, waj and wvj are weights for the 
omponent target 
ost, a
ousti
 join 
ost and visualjoin 
ost. We 
hoose these weights as explained in (Toutios et al., 2011) (see se
tion 6.1.2).An ideal target 
ost fun
tionThe usage of target 
ost fun
tion is to rank 
andidates in the order of their suitability to �t atarget position during synthesis. Ea
h 
andidate is assigned a 
ost (positive real number) bythe target 
ost fun
tion, lower the 
ost better suitable is the 
andidate for a target position. Ifwe assume that there is a metri
 to measure the per
eptual dissimilarity between a target anda 
andidate, then ideally, the ranking of 
andidates based on their target 
osts should be thesame as that of the ordering based on their per
eptual dissimilarities to the target.At the time of synthesis, the target spe
i�
ation only has the target feature des
ription,but no a
ousti
 or visual spee
h realization. So, the de
ision is made based on the target 
ost.Hen
e, an optimum target 
ost fun
tion is very important for good synthesis results. A goodset of target features and well tuned weights de�ne a good target 
ost fun
tion. The followingse
tion presents a simple and robust iterative algorithm to simultaneously eliminate redundantfeatures and tune the weights of other target features.
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tion5.3.2 Target feature sele
tion and weight tuningThe algorithm to be des
ribed alleviates the problem of redundan
y and noise that is set in dueto the exhaustive set of features 
onsidered. Its importan
e is also due to the fa
t that, witha large set of features, it is pra
ti
ally infeasible to have a 
orpus whi
h 
overs all the feature
ombinations possible. The algorithm uses the 
orpus, for whi
h we have both a
tual spee
hrealizations and target feature des
riptions for ea
h of the 
andidates present in it.Sin
e for any spee
h segments, there are possible variants whi
h are per
eptually 
onsideredgood alternatives. But, it is pra
ti
ally impossible to rank 
andidates in terms of their absoluteper
eptual quality with respe
t to any target. Being 'similar' to an already existing spee
h unitis a reasonable way to say how well will a 
andidate �t in a `target' position. If we devi
e away to measure the dissimilarity between two units, it 
an be used on the 
andidates in the
orpus. They have both the target feature des
ription and spee
h realization available. The
omparison between the ordering obtained by this measure versus the ranking using the target
ost 
an be used to evaluate the target fun
tion. In the following paragraphs, we de�ne twothings ne
essary for the evaluation of a target fun
tion: disorder with respe
t to a target 
ostfun
tion and dissimilarity between two spee
h realizations.5.3.2.1 DisorderThe disagreement in the ranking of 
andidates given by the target 
ost fun
tion versus theordering by dissimilarity measure, needs to be quanti�ed. With respe
t to a parti
ular target
t whose spee
h is available, the 
andidate ranking based on the target 
ost fun
tion should bein agreement with their dissimilarity based ordering. We refer the ordering based on the target
ost as ranking. Consider a target t and two 
andidates u and v. With respe
t to the target
t, let their dissimilarity measures be D(t, u) and D(t, v), and their target 
osts be C(t, u) and
C(t, v). Then for an ideal target 
ost fun
tion, one of the following three 
onditions should betrue:1. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)2. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)3. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)The dissimilarity measure is based on the 
omparison of two spee
h realizations. We assumethat similar spee
h realizations are per
eptually similar. This assumption implies that thedissimilarity gives an a

urate estimate of the per
eptual suitability of a 
andidate. So through
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tion and weight tuning 87Target Cost Dissimilaritybased based ordering Disorder 
al
ulationranking Ideal Reals
enario s
enario
C(t, c1) D(t, c1) D(t, c1) c1 : δt(c1, c2) + δt(c1, c3) + δt(c1, c4) =

0 + 0 + 0

C(t, c2) D(t, c2) D(t, c4) c2 : δt(c2, c1) + δt(c2, c3) + δt(c2, c4) =
0 + |D(t, c2)−D(t, c3)|+ |D(t, c2)−D(t, c4)|

C(t, c3) D(t, c3) D(t, c3) c3 : δt(c3, c1) + δt(c3, c2) + δt(c3, c4) =
0 + |D(t, c3)−D(t, c2)|+ |D(t, c3)−D(t, c4)|

C(t, c4) D(t, c4) D(t, c2) c3 : δt(c4, c1) + δt(c4, c2) + δt(c4, c3) =
0 + |D(t, c4)−D(t, c2)|+ |D(t, c4)−D(t, c3)|Table 5.4: This table illustrates the idea of 
omparison of a dissimilarity measure based orderingand the ranking assigned based on the target 
ost. A target t and four 
andidates {c1, c2, c3, c4}are assumed. It is assumed that for the target and the 
andidates, the spee
h realization isavailable for 
omparison. D(t, ci) is the dissimilarity between the spee
h realizations of thetarget t and 
andidate ci, whi
h is a symmetri
 fun
tion. C(t, ci) is the target 
ost between thetarget spe
i�
ation of t and 
andidate ci. For the given target and with respe
t to ea
h available
andidate, the dissimilarity based ordering of 
andidates and the target 
ost based ranking is
ompared to 
al
ulate the disorder. The total disorder is the sum of the fourth 
olumn.the dissimilarity measure we are expressing the di�eren
e in their spee
h realizations. Ourapproa
h is based on this idea that the ordering given by an ideal target 
ost fun
tion shouldagree with the ordering given by this dissimilarity measure. During pre-sele
tion, the target 
ostfun
tion assigns a ranking to the available 
andidates, for pruning the less suitable 
andidates.For this reason, we refer to the target 
ost based ordering as ranking. Unlike some systemswe don't train the target 
ost fun
tion to 
omputes the dissimilarity (Hunt and Bla
k, 1996).We only fo
us on the 
andidate ordering given by the target 
ost fun
tion. The above three
onditions state that, the 
omparison of two 
andidates for a target position based on theirtarget 
osts would be similar to that based on their dissimilarity to the target, if the target wasto have a spee
h realization available (hypotheti
al). We denote the above three 
onditions bythe following:

C(t, u) ∗ C(t, v) ⇔ D(t, u) ∗D(t, v) (5.6)Where, ∗ ∈ {<,=, >}.We de�ne the disorder with respe
t to this target and the two 
andidates as follows:
δt(u, v) =







0 if 
ondition (5.6) holds
|D(t, u)−D(t, v)| else (5.7)The above mentioned explanation is illustrated in table 5.4.
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tionFor ea
h of the phonemes p in the phoneme set, let Up be the 
omplete set of 
andidatesin the 
orpus with that phonemi
 label. Using leave-one-out te
hnique, 
onsidering ea
h of theelements from this set as a target and all the others as 
andidates, the total disorder for thatphoneme is 
al
ulated for a parti
ular target 
ost fun
tion as follows:
∆ =

∑

t

∑

(u,v)

δt(u, v) (5.8)Where, u, v, t ∈ Up and t 6= u 6= v. In the following se
tions we refer to this total disorder assimply disorder.5.3.2.2 Dissimilarity of two unitsWe take a dissimilarity measure similar to that in (Lata
z et al., 2011) for the a
ousti
 modality.Here, we des
ribe a fun
tion that we have used to 
ompare two spee
h segments. It gives anestimate of their dissimilarity. We 
onsidered four 
omponents to 
onstitute the dissimilaritymeasure D(u, v) between units u and v of a parti
ular phoneme p as follows:
D(u, v) = wdurD

dur(u, v) + wacD
ac(u, v)+

wvsD
vs(u, v) + wf0D

f0(u, v)
(5.9)

Ddur, Dac, Dvs and Df0 are the 
omponents in terms of the duration, a
ousti
 spee
h, visualspee
h and f0 of the units and wdur, wac, wvs and wf0 are the weights given to these respe
tive
omponents. The duration dissimilarity Ddur is 
al
ulated as the di�eren
e between the dura-tions of the two units v and u, duru and durv respe
tively and normalized to make the value lie inthe range [0,1℄. durmin(p) = minu,v∈Up |duru − durv| and durmax(p) = maxu,v∈Up |duru − durv|,whi
h are the maximum and minimum duration di�eren
es among the units of phoneme p.Then, the duration dissimilarity 
omponent is 
al
ulated as follows:
Ddur(u, v) =

|(duru − durv)| − durmin(p)

durmax(p)− durmin(p)
(5.10)For the other three 
omponents; a
ousti
, visual and f0; the RMSE (root mean squarederror) is 
al
ulated between two traje
tories of respe
tive features by making the duration ornumber of samples N equal by simple linear interpolation.

drmse(u, v) =

√
√
√
√

1

N

N∑

j=1

(xu(j)− xv(j))2 (5.11)The features used for visual and a
ousti
 dissimilarity measure are PCA 
oe�
ients and
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tion 5.3.3.
dmin(p) = minu,v∈Up d

rmse(u, v) and dmax(p) = maxu,v∈Up d
rmse(u, v), whi
h are the maxi-mum and minimum RMSEs among all the units of phoneme p. The RMSE is normalized similarto Ddur to make the value lie in the range [0, 1] using dmin(p) and dmax(p):

Drmse(u, v) =
drmse(u, v) − dmin(p)

dmax(p)− dmin(p)
(5.12)5.3.2.3 Primitives of the algorithmThe main idea behind the algorithm to be des
ribed is that, ea
h target feature has some
ontributing information whi
h gets re�e
ted in spee
h. If a useful feature is removed from thetarget 
ost, then, the performan
e of the target 
ost fun
tion should deteriorate. The extendto whi
h it deteriorates when a target feature is ex
luded, quanti�es the feature's importan
e.We estimate the relative importan
e of a target feature based on the deterioration of sele
tionperforman
e when a target feature is ex
luded from the target 
ost. This is explained in detailin the following dis
ussion. For simpli
ity of notation, we stop showing a 
andidate and a targetwith the target 
ost fun
tion. Lets assume that the 
urrent set of target features is F, and 
urrentfeature being 
onsidered is f . Lets denote the singleton feature set {f} with F , F c = F − F .Let us express the target 
ost fun
tion as follows:

TC = wFTCF + (1− wF )

(2)
︷ ︸︸ ︷

TCF c

︸ ︷︷ ︸(1) (5.13)The target 
ost (TC) shown above is the weighted sum of the following two 
omponents:(a) The target 
ost fun
tion with one feature f , TCF .(b) A target 
ost fun
tion whi
h ex
luded feature f , from the target feature set, TCF c .The target 
ost fun
tion highlighted as (1) in the above equation takes all the features intoa

ount and the target 
ost fun
tion highlighted as (2) above ex
ludes feature f . Using (1) and(2) as the two target 
osts, two disorders are 
al
ulated. The disorder 
al
ulated using (1) isreferred to as Combined Disorder (CD), whi
h depends also on wF . The disorder 
al
ulatedusing (2) is refereed to as Ex
lusion Disorder (ED). The following 
an be said with respe
t tothe 
omparison of CD and ED:
• A feature f is 
onsidered to 
ontribute information, if disorder in
reases when its ex
ludedfrom the target 
ost: EDf > CD.
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• A feature f is 
onsidered to 
ontribute noise, if the disorder de
reases when its ex
ludedfrom the target 
ost: EDf < CD.Those features whi
h 
ontribute information, their weights should be in
reased proportionalto their 
ontribution, features whi
h seem to 
ontribute noise, their weights should be de
reasedtill they be
ome 
ontributing features; if a feature 
ontributes only noise (for long), they areeliminated from the feature set.The following possibilities need to be 
onsidered while 
lassifying features informative:(1) Features might provide information if given an optimum weight (in the weigh 
ombination).Ex
luding these features might modify the disorder 
ompared to their in
lusion and thein
rease or de
rease depends on the 
ombination of weights.(2) Features whi
h don't provide any information will not a�e
t the disorder with their ex
lu-sion and in
lusion even with a 
hange in their relative weight in the target 
ost.(3) Features whi
h 
ontribute only noise by their in
lusion in the target 
ost, regardless ofthe non-zero weight given to them, the 
ombined disorder will always be greater than thedisorder with their ex
lusion.Based on this analysis we developed an iterative algorithm. At any iteration, the weightsare updated based on the 
omparison of ED of di�erent features and CD as follows:
• Those features for whi
h ED > CD, their weights in
rease. The in
rease in proportionalto the di�eren
e in ED and CD.
• Those features for whi
h ED < CD, they 
an belong to either 
ategory (1) or (3). Thefeature weights are updated proportional to the di�eren
e in CD and ED. A feature whi
hshows this trend (ED < CD) for long, it is eliminated from the feature set.
• Features belonging to 
ategory (2) are also eliminated (ED = CD).
• A fra
tion of total weight from the set of features for whi
h (ED < CD) is distributedamong features for whi
h (ED > CD).
• To make the 
hange in the weights slow, the weights at ea
h iteration are made a fun
tionof the previous iteration. Any new weight after an iteration, is a fra
tion (�xed parameter)of the old weight and the 
hange based on the di�eren
e in CD and its ED.
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tion and weight tuning 915.3.2.4 AlgorithmWe provide the pre
ise details of the algorithm here. Notation: For any iteration i, the 
ompleteset of features is Fi; a singleton set having feature f is denoted by the set F ; the set of featuresex
luding a feature f from set F is F c
i = Fi − F ; the disorder with the 
omplete set of featuresand their weights at iteration i (from previous iteration) i.e., the 
ombined disorder CD is ∆(i);the disorder with a feature f ex
luded from the target 
ost (ED) is ∆F c

i
(i); set of all the featuresfor whi
h ∆F c

i
(i) > ∆(i) is denoted by F

+
i and F

−
i for those whi
h are quali�ed to remain inthe feature set with ∆F c

i
(i) < ∆(i); set of all features whi
h are being eliminated are F

0
i . For afeature f , tf (i) is the number of iterations it has been in F

−
i 
onse
utively till iteration i withoutbeing eliminated.At every iteration i the following quantities are 
al
ulated for updating the feature weights:Information Component (IF (i)): For a feature f ∈ F
+
i , i.e. ∆(i) < ∆F c

i
(i):

IF (i) =
|∆(i) −∆F c

i
(i)|

∑

a∈F+

i

(|∆(i)−∆Ac
i
(i)|)

(5.14)
Noise Component NF (i): For a feature f ∈ F

−
i and ∆(i) > ∆F c

i
(i):

NF (i) =
∆(i)−∆F c

i
(i)

∑

a∈F−i

(∆(i)−∆Ac
i
(i))

(5.15)Based on this N ′

F (i) 
al
ulated as follows to update the weight at every iteration.
N

′

F (i) =
(1−NF (i))

(n
F
−

i
− 1)

(5.16)where, n
F
−

i
is the number of elements in the set F

−
i . N

′

F (i) in
reases as NF (i) de
reases, sofeatures whi
h 
ontribute more noise will lose more weight in the target fun
tions subsequently.In 
ase there is only one feature in F
−
i , then N

′

F (i) = 1.The following are the parameters of algorithm:
• T , the maximum number of tolerant iterations for a noisy feature. A feature f for whi
h

tf (i) > T is eliminated from the feature list. If a feature f 
hanges from set F−
i to set F+

iin an iteration i, then tF (i) is set to 0.
• α− and α+, the fra
tions of weights of any features in F

−
i and F

+
i respe
tively that is
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arried forward from the weight in the previous iteration. This makes the updated weightin the 
urrent iteration a fun
tion of the weight in the previous iteration. It is done tomake the 
hange in weights slow.
• β is the fra
tion of the total 
hangeable weight in F

−
i that is gained by features in F

+
i .The logi
 behind this distribution is that, features in F

−
i loose weight while features in F

+
igain weight.

• Maximum allowed iterations, for whi
h the algorithm is exe
uted. This is �xed based onthe rate of 
hange in total disorder (de
rease in 
ombined disorder per iteration).The goal of the algorithm is to sele
t the set of features and tune their respe
tive weights insu
h a way that the disorder ∆ des
ribed by equation (5.8) is minimized:
• Beginning: Target 
ost fun
tion with the 
omplete set of features whi
h are assignedequal weights.
• At every iteration i:

⋆ The following are �rst determined:
◦ ∆(i).
◦ for all f ∈ Fi: ∆F c(i).

⋆ Elimination of all those features f for whi
h one of the following 
onditions is satis�ed:1. (∆(i) −∆F c(i)) ≈ 02. (∆(i) −∆F c(i)) > 0 and tF (i) > T

⋆ Update weights: The update is su
h that the 
hange is slow. For that, a fra
tionof weight (α+ for features in F
+
i and α− for features in F

−
i ) remains 
onstant withrespe
t to the previous iteration.

◦ For a feature f ∈ F
+
i : More the information in the feature, higher the weight.

wF (i) = α+wF (i− 1) (1)

+

W
F
+

i
IF (i) (2)

(5.17)The �rst 
omponent (1), depends on the feature weight in the previous iteration;the se
ond 
omponent (2), depends on the information 
omponent of the feature.
W

F
+

i
is the total weight that will be redistributed in F

+
i . W

F
+

i
is 
al
ulated as
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W

F
+

i
= (1− α+)

∑

a∈F+

i

wA(i− 1) (i)

+

(1− α−)β
∑

b∈F−

i

wB(i− 1) (ii)

+
∑

c∈F0
i

wC(i− 1) (iii)

(5.18)
The �rst 
omponent (i), is the total 
hangeable weight of features in F

+
i ; these
ond 
omponent (ii), is the total 
hangeable weight of features in F

−
i that isgained by features in F

+
i ; the third 
omponent (iii), is the total weight of thefeatures being eliminated, F0

i . The total weight of the features being eliminated
F
0
i is re-distributed among features in F

+
i .

◦ For a feature f ∈ F
−
i : Lesser the noise 
ontribution, higher the weight.

wF (i) = α−wF (i− 1) (1)

+

W
F
−

i
N

′

F (i) (2)

(5.19)The �rst 
omponent (1), depends on the weight of the feature f in the previousiteration; the se
ond 
omponent (2), depends on the Noise Component of feature
f . W

F
−

i
is the fra
tion of total 
hangeable weight of features in F

−
i that isredistributed to features in F

−
i itself. It is 
al
ulated as follows:

W
F
−

i
= (1− α−)(1− β)

∑

a∈F−

i

wA(i− 1) (5.20)
• Termination: The algorithm is terminated when maximum number of allowed iterationsare exe
uted or when there is no improvement (de
rease in 
ombined disorder) in an iter-ation beyond a 
ertain ǫ. The best weights w.r.t the least disorder along all the iterationsare 
hosen for the �nal target 
ost for the phoneme.5.3.3 Appli
ation to AV target 
ost fun
tion tuningThe visual spee
h features ve
tors xu, xv of equation (5.11) were the �rst 12 PCA 
oe�
ients.For a
ousti
 spee
h, MFCC and f0 were used, where the 13 MFCC were extra
ted at the rateof 100Hz and f0 extra
ted every 8 millise
onds respe
tively.
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tionThe parameters of the algorithm were 
hosen based on the trade-o� between time requiredfor ea
h iteration, speed of 
hange of disorder whi
h a�e
ts the required minimum number ofiterations for the attainment of relative 
onvergen
e (when the rate of 
hange of disorder is low) .By trial and error on a single phoneme /a/ whi
h has a good 
overage, the following parameterswere �nally 
hosen for the weight tuning of all the phonemes:
• T , the maximum tolerant iterations is 2. A feature f is removed whenever its tF (i) > 2.
• α+ = 0.5 and α− = 0.5; β = 0.05.The tuning was done for 5 weight 
ombinations. The result of sele
ted target features withonly one of the dissimilarity measures (duration, visual, MFCC and f0) i.e., only one of thefollowing {wdur, wac, wvs, wf0} being one and all others 0 was analyzed and all the measurestaking equal weights. The �rst four weight 
ombinations were 
hosen for the analysis of targetfeatures with respe
t to ea
h of these ne
essary aspe
ts. The �fth weight 
ombination is 
hosenfor the �nal weight tuning to be used in the system for sele
tion. This weight 
ombination

(0.25, 0.25, 0.25, 0.25) performed reasonably well with respe
t to informal listening tests. This
an be further improved based on the analysis of per
eptual evaluation and 
orrelation with theobje
tive evaluation. For ea
h of the weight 
ombinations, this algorithm has been exe
utedseparately for all the phonemes in the phoneme set using our 
orpus to obtain di�erent targetfun
tions, i.e., di�erent set of features and their weights for di�erent phonemes.5.3.4 Analysis of sele
ted features and their relative importan
eIn this se
tion, we present the analysis of target features based on their relative importan
efor ea
h of the 
onstituent aspe
ts in
luded in the dissimilarity metri
: pit
h, lo
al a
ousti
spee
h, duration and visual spee
h. They are based on target feature weighting by takingone 
onstituent metri
 at a time in the dissimilarity metri
. The features with lower weights(< 0.01) are not shown in this analysis. These results are presented for vowels and 
onsonantsseparately. Linguisti
 features 
an des
ribe a 
urrent 
andidate or its left or right 
ontext.Phoneti
 features 
an des
ribe a 
andidate's left or right 
ontext (see se
tion 5.1). To analyzethe results, we 
al
ulate the mean and standard deviation of weights assigned to ea
h featureby taking together the 
ontext and the 
urrent 
andidate. The weights are assigned su
h thatthe sum of the weights over all the target features is 1. These results are shown in tables 5.5 to5.12.
• Pit
h: For vowels, mean total weight given to linguisti
 features is 0.19 and 0.81 tophoneti
 features with a standard deviation of 0.24. For 
onsonants, linguisti
 features get
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tion and weight tuning 95Vowels ConsonantsWeight WeightFeature µ σ Feature µ σVoi
ing 0.71 0.28 Voi
ing 0.26 0.32Kind 0.08 0.13 Kind 0.13 0.15Lip shape 0.13 0.19Manner of arti
ulation 0.11 0.14Table 5.5: Phoneti
 features important for pit
hVowels ConsonantsWeight WeightFeature µ σ Feature µ σLeft silen
e 0.05 0.07 Right silen
e 0.14 0.21Syllable position in RG 0.04 0.06 Syllable position in RG 0.07 0.08Word position in senten
e 0.03 0.07 Syllable position in word 0.04 0.07Phoneme number in syllable 0.03 0.09 Word position in RG 0.03 0.05Right silen
e 0.02 0.03 Word position in senten
e 0.02 0.06Syllable position in word 0.01 0.01 Phoneme number in syllable 0.02 0.02Syllable number in senten
e 0.01 0.01Syllable kind 0.01 0.01Word number in RG 0.01 0.03Table 5.6: Linguisti
 features important for pit
h0.36 as the mean total weight and 0.64 for phoneti
 features with a standard deviation of0.26. The pre
eding 
ontext is important in terms of both phoneti
 and linguisti
 featuresfor pit
h predi
tion. The list of important linguisti
 and phoneti
 features with the meanand standard deviation of weights for vowels and 
onsonants is given in tables 5.5 and 5.6.
◦ Phoneti
 features: For both vowels and 
onsonants, 
ontextual phoneme voi
ing andphoneme kind are important features. For 
onsonants, lip shape during arti
ulationand manner of arti
ulation are also important.
◦ Linguisti
 features: For both vowels and 
onsonants, relative position of nearestfollowing and pre
eding silen
e, syllable position in rhythm group(RG) and word,phoneme number in a syllable and word position in a senten
e are important.

• Lo
al spee
h a
ousti
s: The a
ousti
 features 
onsidered (MFCCs) 
an be assumed todes
ribe lo
al spee
h a
ousti
s. For vowels, phoneti
 features get total mean weight of0.67 and 0.33 for linguisti
 features with a standard deviation of 0.26. For 
onsonants,the total mean weight for linguisti
 features is 0.19 and 0.81 for phoneti
 features, with astandard deviation of 0.12. The list of important linguisti
 and phoneti
 features with themean and standard deviation of weights for vowels and 
onsonants is given in tables 5.7and 5.8.
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tionVowels ConsonantsWeight WeightFeature µ σ Feature µ σVoi
ing 0.26 0.25 Lip shape 0.32 0.20Pla
e of arti
ulation 0.21 0.22 Pla
e of arti
ulation 0.20 0.27Manner of arti
ulation 0.13 0.11 Voi
ing 0.12 0.19Kind 0.04 0.06 Manner of arti
ulation 0.10 0.12Lip shape 0.03 0.04 Kind 0.07 0.10Table 5.7: Phoneti
 features important for lo
al spee
h a
ousti
sVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in word 0.07 0.11 Syllable position in RG 0.04 0.05Left silen
e 0.05 0.05 Right silen
e 0.04 0.06Syllable position in RG 0.04 0.04 Left silen
e 0.02 0.02Word position in senten
e 0.04 0.06 Syllable position in word 0.02 0.02Phoneme number in syllable 0.04 0.06 Word position in RG 0.01 0.01Syllable kind 0.04 0.05 Phoneme number in syllable 0.01 0.01Right silen
e 0.02 0.03 Word position in senten
e 0.01 0.01Table 5.8: Linguisti
 features important for lo
al spee
h a
ousti
s
◦ Phoneti
 features: For vowels, voi
ing of the pre
eding phonemes, pla
e and mannerof arti
ulation of the following phoneme are the most important features, followedby pla
e of arti
ulation of the pre
eding and voi
ing of the following phoneme. For
onsonants, lip shape of the following phonemes seems to be the most importantfeature besides pla
e of arti
ulation and kind of the following phonemes. Just as inthe 
ase of f0, voi
ing of the pre
eding phoneme is also an important feature.
◦ Linguisti
 features: For both vowels and 
onsonants, syllable position in word andRG, relative position of the nearest left and right silen
e, phoneme number in asyllable, word position in a senten
e are important. Syllable kind and word positionin senten
e are also important for vowels and 
onsonants respe
tively.

• Duration: For duration, linguisti
 features are dominant and invariably the most impor-tant 
ompared to phoneti
 features. The pattern is even more pronoun
ed in the 
ase ofvowels. For vowels and 
onsonants, the total mean weight assigned to linguisti
 features is0.65 and 0.62 respe
tively, and the standard deviation is 0.18 and 0.25 respe
tively. Thelist of important linguisti
 and phoneti
 features with the mean and standard deviation ofweights for vowels and 
onsonants is given in tables 5.9 and 5.10.
◦ Phoneti
 features: For both vowels and 
onsonants kind of following phoneme is the
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tion and weight tuning 97Vowels ConsonantsWeight WeightFeature µ σ Feature µ σKind 0.25 0.16 Kind 0.15 0.13Lip shape 0.05 0.06 Manner of arti
ulation 0.10 0.16Pla
e of arti
ulation 0.03 0.08 Voi
ing 0.08 0.13Manner of arti
ulation 0.02 0.04 Lip shape 0.04 0.09Voi
ing 0.01 0.02 Pla
e of arti
ulation 0.02 0.02Table 5.9: Phoneti
 features important for durationVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position RG 0.41 0.22 Syllable position in RG 0.23 0.15Syllable position in word 0.07 0.09 Right silen
e 0.16 0.23Right silen
e 0.04 0.09 Left silen
e 0.08 0.12Syllable kind 0.04 0.08 Syllable position in word 0.03 0.05Left silen
e 0.02 0.04 Word position in RG 0.03 0.08Phoneme number in syllable 0.02 0.04 Phoneme number in syllable 0.02 0.05Word position in RG 0.02 0.03 Syllable number in RG 0.02 0.02Word number in RG 0.01 0.02Syllable number in senten
e 0.01 0.02Table 5.10: Linguisti
 features important for durationmost important feature. For 
onsonants, the manner of arti
ulation and voi
ing ofthe following 
ontextual phoneme is also important.
◦ Linguisti
 features: For both vowels and 
onsonants, the syllable position in the RGis the most important feature, followed by relative positions of left and right silen
e,syllable position in word, phoneme number in a syllable, word position in a RG.

• Visual features: For visual spee
h, the total mean weight assigned to linguisti
 featuresis 0.31 for vowels and 0.12 for 
onsonants with a standard deviation of 0.17 and 0.10respe
tively. The list of important linguisti
 and phoneti
 features with the mean andstandard deviation of weights for vowels and 
onsonants is given in tables 5.11 and 5.12.
◦ Phoneti
 features: For vowels, pla
e of arti
ulation of the following and pre
edingphonemes are the most important features in the de
reasing order of importan
e. Thelip shape during arti
ulation and manner of arti
ulation of the 
ontextual phonemesare also observed to be important. For 
onsonants, lip shape of the following phoneme,lip shape of the pre
eding phoneme and pla
e of arti
ulation of the pre
eding phonemeare observed to be the 3 most important features in the de
reasing order of impor-tan
e.
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tionVowels ConsonantsWeight WeightFeature µ σ Feature µ σPla
e of arti
ulation 0.36 0.18 Lip shape 0.77 0.16Lip shape 0.14 0.19 Pla
e of arti
ulation 0.04 0.05Manner of arti
ulation 0.09 0.09 Voi
ing 0.02 0.03Voi
ing 0.07 0.09Kind 0.04 0.06Table 5.11: Phoneti
 features important for visual spee
hVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in word 0.11 0.11 Syllable position in word 0.03 0.05Syllable kind 0.04 0.07 Syllable number in senten
e 0.02 0.02Syllable number in Sen 0.04 0.02 Right silen
e 0.01 0.02Phoneme number in syllable 0.02 0.03 Word position in senten
e 0.01 0.02Right silen
e 0.02 0.04Word position in senten
e 0.02 0.01Word number in RG 0.02 0.05Table 5.12: Linguisti
 features important for visual spee
h
◦ Linguisti
 features: For vowels, syllable position in a word is an important feature.The analysis of these sele
ted features is in itself an interesting problem. The relative importan
eof the 
ontextual features indi
ates that the right 
ontext is more important than the left. Thisis more pronoun
ed in phoneti
 features weights. One of the possible interpretations of thisis that the instan
es of anti
ipatory 
oarti
ulation is higher than the instan
es of 
arryover
oarti
ulation in Fren
h. Word number in senten
e has got eliminated for most of the phonemesas the 
orpus is not su�
ient to establish any su
h relation. Numeri
 features in general havegot lower weights whi
h show that the relative position is more important than their exa
tposition. The former features are size invariant. For example, `syllable position in RG' doesnot depend on the total number of syllables in RG. But `syllable number in RG' depends onthe total number of syllables in RG. The sele
ted features and their relative weights impli
itlyindi
ate the validity of the algorithm. For example, for pit
h and duration, syllable positionin RG, relative position of nearest left and right silen
e, syllable postion in word are shown tobe important. These features are known to be important for explaining many of the prosodi
patterns in Fren
h.With the �fth 
ombination with equal weights to all the four 
onstituents of the dissimilaritymetri
, the sele
ted features 
ontain the features whi
h are important for all the four 
onstituentaspe
ts (see tables 5.13 and 5.14). The total mean weight for linguisti
 features in 
ase of vowels
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lusion 99Vowels ConsonantsWeight WeightFeature µ σ Feature µ σVoi
ing 0.48 0.27 Lip shape 0.35 0.15Kind 0.13 0.16 Voi
ing 0.17 0.22Pla
e of arti
ulation 0.06 0.05 Pla
e of arti
ulation 0.10 0.10Manner of arti
ulation 0.03 0.02 Kind 0.08 0.10Lip shape 0.02 0.02 Manner of arti
ulation 0.04 0.04Table 5.13: Phoneti
 features for a
ousti
-visual spee
hVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in RG 0.09 0.08 Right silen
e 0.10 0.13Right silen
e 0.04 0.05 Syllable position in RG 0.06 0.07Left silen
e 0.04 0.06 Syllable position in word 0.02 0.02Syllable position in word 0.04 0.07 Left silen
e 0.01 0.02Phoneme number in syllable 0.03 0.05 Ph number in syllable 0.01 0.03Syllable Kind 0.02 0.03 Word position in senten
e 0.01 0.01Word position in senten
e 0.01 0.01Table 5.14: Linguisti
 features for a
ousti
-visual spee
hand 
onsonants are 0.28 and 0.26 respe
tively, and the standard deviation is 0.24 and 0.17respe
tively. We use these features and their weights determined in our synthesis system. Wepresent the obje
tive and per
eptual evaluation done for the synthesized spee
h using thesefeature weights.5.4 Con
lusionIn this 
hapter, we have presented the set of 
orpus-independent target features and explained the
orpus-based visual target features that we developed for improving synthesis with our 
orpus.We detailed the iterative target feature weighting te
hnique that we have designed. It assignsweights and performs elimination of redundant features simultaneously. We �nally presented theanalysis of the patterns that were observed in the sele
ted features and their weights. The relativeweighting of the target feature a�e
ts sele
tion and hen
e the synthesis results. Majority of theobservations with respe
t to sele
ted features and their relative weights are in agreement withthe phoneti
 and linguisti
 studies whi
h show the strength of this algorithm. It also indi
atesthat the 
onstituent metri
s in
luded to represent pit
h, duration, lo
al spee
h a
ousti
s andvisual spee
h are indeed 
orrelated to these aspe
ts.The weight tuning algorithm that we presented (se
tion 5.3.2) performs automati
 weighttuning based on (1) a dissimilarity metri
 whi
h 
ompared the di�eren
e in two spee
h re-
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tionalisations and (2) a set of target features used to des
ribe the targets and 
andidates. Theperforman
e of sele
tion based on the resultant target 
ost depends on various fa
tors. Firstly,For the various aspe
ts in
luded, di�erent distan
e measures 
an be investigated with respe
t totheir 
orrelation with human per
eption. Su
h studies have been done with respe
t to a
ousti

on
atenation 
osts (Wouters and Ma
on, 1998; Vepa et al., 2002; Klabbers and Veldhuis, 1998).Se
ondly, the importan
e of the di�erent aspe
ts of dissimilarity metri
 varies among phonemes.For example, it is known that vowel durations are more important for good prosody. The twoabove mentioned fa
tors require substantial investigation. Lastly, the weights given to these
onstituent metri
s might further improve by systemati
 and extensive per
eptual experimentswith human parti
ipants. It 
an be argued that this pro
ess is ine�
ient and slow. But, a goodjusti�
ation to su
h an approa
h is that weight tuning problem in the huge dimensional spa
eof target features is being mitigated by setting the weights of 
onstituents of the dissimilaritymetri
 whi
h is a mu
h smaller dimension. Also, sin
e the synthesized spee
h is targeted forhumans, reinfor
ement from human parti
ipants is advantageous. We performed evaluationsthrough human subje
ts to assess the �nal system with the resultant target features and theirweights using the weight tuning algorithm. In the following 
hapter, we des
ribe these tests be-sides summarizing obje
tive evaluation te
hniques that we have used while developing sele
tionstrategies3.

3A part of this 
hapter was published in (Musti et al., 2011).



Chapter 6
Evaluation

Throughout the development pro
ess, the di�erent methodologies being used to improve syn-thesis were systemati
ally and automati
ally evaluated. This obje
tive evaluation was based onsome metri
s that we de�ned. This evaluation 
an be performed either by 
omparing synthe-sized AV spee
h signals to real spee
h signals, or based on a 
omparison with 
orpus statisti
s.However, as this a
ousti
-visual spee
h synthesis system is targeted for humans, the systemshould be evaluated using per
eptual experiments where human beings are the 
enter of thisevaluation. In the 
ontext of audio-visual spee
h, the evaluation of both the 
hannels is notstraightforward and requires a 
areful 
onsideration of the various fa
tors whi
h might a�e
t thesynthesis quality and the limitations of the system while setting ben
hmarks for 
omparison.In this 
hapter, we �rst des
ribe the various obje
tive evaluation metri
s used for evaluatingdi�erent sele
tion te
hniques (in se
tion 6.1). In se
tion 6.2, we des
ribe the per
eptual andsubje
tive evaluations done along with their results. Finally, we present a preliminary analysisof the subje
tive evaluation results in 
omparison with the obje
tive evaluation metri
s in se
tion6.3. 46.1 Obje
tive evaluationFor a fast automati
 evaluation of the synthesized spee
h, it is a general pra
ti
e to leavesome of the senten
es outside the synthesis 
orpus for 
omparison purpose. They are generallyeither spe
ially designed or 
hosen based on some ne
essary 
onditions. They are 
onsidered asreferen
es for 
omparative evaluation. We have a set of 20 test senten
es whi
h are not part ofthe synthesis 
orpus for 
omparative evaluation.4A short overview of our system and evaluation results presented in this 
hapter were published in (Mustiet al., 2012) 101
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tive evaluation based on 
omparison of two signalsWe have utilized three obje
tive evaluation metri
s whi
h have been introdu
ed in the previous
hapter (se
tion 5.3) and the 
orrelation 
oe�
ient and root mean squared error (RMSE) be-tween real and synthesized test senten
es. To make the duration (number of samples) equal inboth senten
es a simple linear interpolation is applied for ea
h demi-phones wherever ne
essary(see Fig. 5.5). Lets assume that, xd and yd are the sequen
es of the dth a
ousti
 or visualparameters of a real and synthesized senten
e respe
tively having n samples. Then, the �rst twometri
s are 
al
ulated as follows:
• Pearson's Correlation Coe�
ient: the 
orrelation 
oe�
ient rxdyd is 
al
ulated as follows:

rxdyd =

n
∑

i

xd(i)yd(i)−
∑

i

xd(i)
∑

i

yd(i)

√

n
∑

i

xd(i)2 − (
∑

i

xd(i))2
√

n
∑

i

yd(i)2 − (
∑

i

yd(i))2
(6.1)

• Root Mean Squared Error (RMSE) drmse(xd, yd) is 
al
ulated as follows:
drmse(xd, yd) =

√
√
√
√

1

n

n∑

i=1

(xd(i)− yd(i))2 (6.2)The 
onsidered a
ousti
 parameters were the �rst 13 MFCCs and F0. The 
onsidered visualparameters were the �rst 12 PCA 
oe�
ients.The duration based metri
s are 
al
ulated as follows:1. For the purpose of 
omparing any two 
andidates u and v of the same phoneti
 label forthe purpose of target weight tuning the following metri
 was used:
Ddur(u, v) =

|(duru − durv)| − durmin(p)

durmax(p)− durmin(p)
(6.3)Where, durmax(p) and durmin(p) are the maximum and minimum of durations of all the
andidates for phoneme p; and duru and durv are the durations of 
andidate u and v.2. For the purpose of 
omparing two whole senten
es (segment wise), the following durationmetri
 was used:

Ddur(s, r) =

∑N
j=0

|(durs(j)−durr(j))|
durr(j)

N
(6.4)Where, s and r are the synthesized and real senten
es respe
tively having N phoneti
segments and durs(j) and durr(j) are the durations of jth phoneti
 segments of real andsynthesized senten
es.



6.1. Obje
tive evaluation 1036.1.2 Obje
tive evaluation based on statisti
al analysis and thresholdsSometimes obje
tive evaluation metri
s whi
h are based on statisti
al analysis of the 
orpus aredeveloped and utilized for various purposes. For the purpose of total 
ost weight tuning forsetting the weights of the target 
ost, a
ousti
 and visual join 
osts, we utilized three obje
tiveevaluation metri
s whi
h belong to this 
ategory. We �rst 
al
ulated the standard deviation ofthe �rst PCA 
oe�
ient (denoted by σPC1) from the whole 
orpus. Similarly, standard deviationof its �rst order derivative (denoted by σ∆PC1)) from the whole 
orpus was also 
al
ulated. Then,for a set of synthesized senten
es, the senten
es were s
anned at all the 
on
atenation boundariesto 
ount the following:
• Total instan
es where the di�eren
es between �rst PCA 
oe�
ients ex
eed ǫpc1.
• Total instan
es where the di�eren
es between �rst order derivative of �rst PCA 
oe�
ientsex
eed ǫ∆PC1.
• Total instan
es where the di�eren
es in f0 ex
eed ǫf0. Bark was 
hosen as the suitableper
eptual s
ale.The �rst prin
ipal 
omponent and its derivative were 
hosen as the �rst prin
ipal 
omponentitself a

ounts for about 57% of the data varian
e and also gives an indi
ation of the dis
onti-nuity in the subsequent 
omponents. These values give an indi
ation of the visual and a
ousti
dis
ontinuation at the 
on
atenation boundaries. These values along with a duration were usedfor evaluating the e�
ien
y of the total 
ost fun
tion. Besides the above 3 metri
s, a durationmetri
 based on the 
omparison of real and synthesized senten
es was also used as explainedbelow.
• Total instan
es of vowels where the di�eren
e in duration ratio of synthesized and realsenten
es is greater than ǫdur.The thresholds were 
hosen empiri
ally by per
eptual experimentation. In this 
ase the
onsidered thresholds were ǫpc1 = 0.5σPC1, ǫ∆PC1 = 0.5σ∆PC1, ǫf0 = 0.25Barks and ǫdur =

150%. Throughout the development pro
ess, this method was applied for the tuning of the total
ost weights, whenever we modi�ed the 
omponents of target 
ost fun
tion or 
on
atenation
ost fun
tion. The following weights were used for the total 
ost fun
tion for sele
tion, w = 1,
waj = 0.943 and wvj = 0.897, where w, waj and wvj are the weights assigned to target, a
ousti

on
atenation and visual 
on
atenation 
ost fun
tions respe
tively. 55This work was mainly done by Asterios TOUTIOS and was presented in (Toutios et al., 2011).
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entered evaluationTo evaluate our overall audio-visual spee
h synthesis system, the following per
eptual intelli-gibility and subje
tive quality evaluation tests were 
ondu
ted. In these tests a total of 39parti
ipants between 19 to 65 years of age with normal auditory and visual abilities parti
i-pated. Among the parti
ipants, 15 were female and the rest were male parti
ipants. All theseparti
ipants were native Fren
h speakers. The tests were 
ondu
ted a
ross internet where ea
hof the parti
ipants heard and saw the stimuli in their 
omputers with the available hardware. Aset of basi
 instru
tions was played at the beginning of these tests.6.2.1 Intelligibility testsThe intelligibility test was at the word level. Ea
h human subje
t was presented with 50 one ortwo syllabi
 Fren
h words and asked to re
ognize and report the word. Some examples of thewords that were presented in
lude { anneau (ring), bien (good), 
han
e (lu
k), pin
e (
lip), laine(wool), 
uisine(kit
hen) }. Among these words, 11 were those whi
h are present in the 
orpus.These in-
orpus words were in
luded to set a ben
hmark for the best possible intelligibility bythe re
orded data.These tests were done at two levels: (1) a
ousti
-only spee
h, (2) audio-visual spee
h. Inea
h of these 
ategories, the a
ousti
 spee
h 
omponent was degraded to two noise levels. Hen
e,ea
h word was played 4 times: (1) a
ousti
-only with low noise 
omponent (SNR of -6 dB),(2) a
ousti
-only with high noise 
omponent (SNR of -10 dB), (3) audio-visual with low noise(SNR -6dB), (4) audio-visual spee
h with high noise (SNR of -10 dB). The addition of noisealso ensures that the listener pays attention to the visual modality of spee
h. The aim is toevaluate both visual and a
ousti
 modalities, and also to estimate the advantage of audio-visualspee
h over a
ousti
-only spee
h. These noise thresholds were de
ided based on the severalaudio-visual per
eptual experiments to strike a trade-o� between these two obje
tive. The fa
ialanimation is shown as the 3D surfa
e of the fa
e using sparse mesh, whi
h has the dynami
s offa
ial deformations, but without the texture and 
olor information (see Fig. 3.9). Besides, theinformation regarding internal arti
ulators, teeth and tongue is also missing from the animations.Table 6.2 in
ludes the intelligibility s
ores in terms of the fra
tion of the total words re
og-nized in ea
h of the four 
ategories by di�erent users. Table 6.1 shows the mean intelligibilitys
ores of in-
orpus words and out-of-
orpus words. Any word 
ompletely re
ognized 
orre
tlyis 
lassi�ed as a 
orre
t response. The intelligibility results of the in-
orpus words shows thebest possible results with the 
orpus we have re
orded. These in-
orpus intelligibility resultsshow that the best possible intelligibility with our 
orpus is not very high. The 
omparatively



6.2. Human-
entered evaluation 105Audio Audio-VisualLow Noise High Noise Low Noise High NoiseIn-Corpus words 0.69 0.59 0.72 0.65Out-of-Corpus words 0.40 0.34 0.45 0.40Table 6.1: Mean intelligibility s
oreslower results for the in-
orpus words 
an be attributed to the absen
e of internal arti
ulators.The di�eren
e in performan
e between in-
orpus and out-of-
orpus words in the a
ousti
 domainshow the possibility of further improvement. Results show that the addition of visual 
omponentto the a
ousti
s improves intelligibility. The intelligibility in noisy environment is an importantaspe
t to evaluate AV spee
h. The intelligibility results only 
on�rm this. This is also inter-esting be
ause, visual spee
h rendering though far from being photo-realisti
 is still e�e
tive inpresenting the arti
ulatory dynami
s. Another general observation that is 
on�rmed by theseresults is that the improvement in spee
h re
ognition is more in high-noise to low-noise spee
ha
ousti
s. The advantage of the addition of visual spee
h is more obvious in the out-of-
orpuswords. These results are interesting also be
ause in spite of the internal arti
ulators being absentfrom the animations, the results show the advantage of AV spee
h over a
ousti
 spee
h. Thisshows that the visual and a
ousti
 spee
h are in agreement to ea
h other.6.2.2 Quality evaluation testsSubje
tive tests were performed for the evaluation of the synthesis quality. 20 audio-visualsenten
es were played, out of whi
h 7 senten
es were real and the rest (13 senten
es) weresynthesized senten
es whi
h 
orrespond to a subset of the test senten
es we have for obje
tiveevaluation purpose. Just as in the 
ase of intelligibility tests, the �ve real senten
es serve asthe best response that is possible with the 
orpus utilized for synthesis whi
h a�e
ts variousaspe
ts of the synthesized spee
h like duration, phoneti
 
overage and fa
ial spee
h renderingte
hnique. For ea
h of the stimulus, 5 questions were posed and parti
ipants were asked togive 
ategori
al responses based on the 5 point MOS s
ale. These 5 questions and the possible
ategori
al answers are given in table 6.3. The �rst question (Q1) represents the syn
hrony inthe a
ousti
 and visual modalities. The se
ond question (Q2) impli
itly represents the prosody.Third and fourth questions (Q3 and Q4) are representative of the naturalness of a
ousti
 andvisual modalities respe
tively. The last question (Q4) is representative of the overall spee
hquality and pleasantness. The subje
tive evaluation results for in-
orpus and out-of-
orpussenten
es are given in table 6.4. The results to the question Q1 show that the audio-visualalignment is good, and the a
ousti
 prosody is a

eptable (Q2 results). It has to be highlighted
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Parti
ipants Audio Audio-VisualLow N. High N. Low N. High N.1 0.48 0.46 0.56 0.462 0.26 0.28 0.36 0.323 0.46 0.32 0.44 0.524 0.56 0.44 0.52 0.525 0.44 0.30 0.56 0.446 0.54 0.52 0.54 0.447 0.42 0.26 0.44 0.368 0.50 0.42 0.52 0.509 0.38 0.24 0.44 0.3810 0.36 0.28 0.44 0.3211 0.52 0.44 0.58 0.4612 0.46 0.44 0.50 0.4213 0.52 0.30 0.54 0.4214 0.34 0.26 0.40 0.2415 0.50 0.42 0.46 0.4216 0.40 0.28 0.48 0.4017 0.54 0.46 0.60 0.5818 0.48 0.46 0.54 0.5019 0.52 0.50 0.58 0.5620 0.46 0.42 0.56 0.5221 0.40 0.42 0.42 0.3822 0.44 0.44 0.54 0.5023 0.52 0.42 0.58 0.5424 0.68 0.62 0.76 0.7025 0.56 0.40 0.72 0.6426 0.56 0.32 0.48 0.5027 0.58 0.54 0.62 0.5628 0.40 0.34 0.42 0.4629 0.44 0.40 0.52 0.4430 0.50 0.40 0.56 0.4631 0.36 0.30 0.42 0.3232 0.48 0.42 0.46 0.4233 0.48 0.34 0.46 0.4634 0.40 0.36 0.42 0.3635 0.40 0.36 0.40 0.2836 0.44 0.40 0.44 0.4237 0.38 0.38 0.50 0.5038 0.38 0.44 0.46 0.4039 0.62 0.62 0.60 0.60Mean 0.47 0.40 0.51 0.46Std dev. 0.08 0.09 0.09 0.10Table 6.2: Intelligibility Results in the four 
ategories, a
ousti
-only + high noise, a
ousti
-only+ low noise, audio-visual + high noise and audio-visual + low noise
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eptual evaluation for better obje
tive metri
s 107Question Categori
al responsesQ1. Does the lip movement mat
hthe pronoun
ed audio? (5) Always � (1) NeverQ2. Is this senten
e an a�rmation(neutral reading)? (5) Totally agree � (1) Not at allQ3. Is the a
ousti
 spee
h natural? (5) Very natural � (1) Not naturalQ4. Is the fa
ial animation natu-ral? (5) Very natural � (1) Not naturalQ5. Is the pronun
iation of thissenten
e by the talking headpleasant? (5) Very pleasant � (1) Not at allTable 6.3: This table shows the �ve questions and the expe
ted 
ategori
al responses for evalu-ating the quality of the synthesized spee
hQuestion-1 Question-2 Question-3 Question-4 Question-5Overall 3.88 3.93 3.04 2.92 3.02Out-of-Corpus senten
es 3.76 3.78 2.57 2.80 2.65In-Corpus senten
es 4.80 4.91 4.56 3.67 4.32Table 6.4: Mean MOS s
ores for the �ve questionsthat the prosody was generated without using any expli
it model. The naturalness s
ores forvoi
e seem to be low as shown in the Q3 results. These 
an be attributed to the relativelysmall size of the 
orpus and 
onsequently the absen
e of some diphones in the 
orpus. Onthe 
ontrary, the naturalness s
ores of fa
ial animation (Q4 results) are high. This shows thatarti
ulatory dynami
s are being represented well. Further, there might be a small 
omponentof the fa
t that the fa
ial representation or `human likeness' is not 
lose to the un
anny valleyand so parti
ipants are not very 
riti
al.6.3 Analysis of per
eptual evaluation for better obje
tive metri
sThe obje
tive evaluation metri
s 
al
ulated for the out-of-
orpus senten
es on the whole sen-ten
es are given in table 6.7. These results in 
omparison with those given in table 6.6 showQuestion-1 Question-2 Question-3 Question-4 Question-51 4.38 4.25 3.72 3.42 3.702 3.92 4.43 3.60 3.08 3.503 4.12 4.43 4.12 3.22 4.124 3.75 4.00 4.03 2.97 3.725 4.15 4.28 3.92 3.10 3.536 3.97 3.62 3.80 2.97 3.407 4.38 4.32 3.97 3.25 3.83Table 6.5: Mean MOS s
ores for the �ve questions asked to evaluate the quality of the audio-visual spee
h synthesis for ea
h of the in-
orpus senten
es



108 Chapter 6. EvaluationQuestion-1 Question-2 Question-3 Question-4 Question-51 3.78 3.70 2.45 2.50 2.532 3.85 4.25 3.03 3.00 3.083 3.42 3.85 2.53 2.78 2.554 3.78 3.67 2.58 2.78 2.605 3.65 3.15 2.30 2.60 2.406 4.05 3.75 2.60 2.85 2.627 3.12 3.20 2.03 2.50 2.178 4.15 4.40 3.30 3.17 3.309 3.70 3.92 2.67 2.88 2.6210 3.38 3.55 2.12 2.78 2.3011 4.20 3.58 2.00 2.72 2.2512 3.53 3.95 2.42 2.83 2.7513 4.15 4.10 3.35 3.17 3.40Table 6.6: Mean MOS s
ores for the �ve questions asked to evaluate the quality of the audio-visual spee
h synthesis system for out-of-
orpus senten
esthat the 
orrelation of the two are not very high on a per-senten
e basis. To investigate forthe per
eptually important segments whi
h a�e
t these subje
tive evaluation results, they wereanalyzed in 
omparison with the obje
tive evaluation metri
s explained in se
tion 6.1. Theanalysis was based on the a
ousti
 and visual modality. For this purpose di�erent phonemesets belonging to di�erent 
ategories were 
onsidered; like, all-phonemes, vowels, 
onsonants,voi
ed phonemes, unvoi
ed phonemes, visible phonemes, visible vowels, not-visible phonemeset
. Visible phonemes are those whi
h have identi�ably unique visible arti
ulation, like /p/, /o/et
. The visible phoneme set in
ludes those phonemes whi
h are shown to have good re
ogni-tion based on visual features (
hapter 4). The out-of-
orpus senten
es are a subset of the testsenten
es for whi
h we have the real utteran
es, i.e. real a
ousti
 and visual spee
h realization.For ea
h out-of-
orpus senten
e, the obje
tive evaluation metri
s were 
al
ulated by 
omparingthe synthesized and real utteran
es as follows:
• For ea
h phoneme 
ategory, overall obje
tive evaluation metri
s mentioned were 
al
ulated.For example, 
onsidering only vowel segments, for ea
h senten
e the overall obje
tiveevaluation metri
s are 
al
ulated. We refer to these metri
s as 
onsolidated metri
s.
• For ea
h phoneme 
ategory, segment-wise obje
tive evaluation metri
s mentioned were
al
ulated and the minimum (undesirable) of ea
h of the segment-wise obje
tive evaluationmetri
 value is determined. For example, if there are three vowels in a senten
e, theRMSE using visual parameters is 
al
ulated for ea
h of these segments. The maximum ofthe RMSE is 
hosen as the representative of that senten
e based on a parti
ular metri
and phoneme 
ategory. This is based on the observation that, sometimes the subje
tiveopinions 
an get a�e
ted by a few bad synthesis instan
es irrespe
tive of a high overall
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Correlation RMSE Dur. RatioSen # p
1 p
2 p
3 mf

1 mf

2 mf

3 f0 Voi PCs MFCCs f0 Voi. All. Ph. Vow.1 0.874 0.772 0.771 0.852 0.658 0.812 0.715 19.75 27.75 83.05 0.44 0.542 0.948 0.851 0.885 0.866 0.503 0.772 0.853 13.10 26.71 62.93 0.23 0.243 0.926 0.910 0.824 0.900 0.659 0.775 0.756 13.34 25.91 85.24 0.58 0.374 0.924 0.885 0.883 0.858 0.728 0.630 0.786 11.83 24.51 81.37 0.38 0.555 0.946 0.834 0.899 0.874 0.627 0.870 0.914 14.77 24.58 50.66 0.27 0.276 0.845 0.644 0.826 0.794 0.707 0.768 0.838 14.83 28.65 65.85 0.42 0.447 0.912 0.887 0.746 0.867 0.504 0.782 0.837 13.32 26.95 74.14 0.50 0.788 0.882 0.305 0.849 0.910 0.658 0.872 0.843 13.33 23.49 60.24 0.32 0.359 0.855 0.536 0.627 0.686 0.363 0.809 0.597 14.99 30.15 111.38 0.65 1.0210 0.831 0.480 0.762 0.863 0.640 0.805 0.833 12.50 26.45 69.49 0.27 0.2911 0.946 0.932 0.886 0.849 0.724 0.819 0.857 11.27 25.55 59.42 0.47 0.5712 0.926 0.846 0.799 0.929 0.625 0.860 0.907 13.61 24.42 50.47 0.42 0.5413 0.908 0.870 0.851 0.688 0.469 0.731 0.601 11.38 29.27 129.75 0.42 0.37Table 6.7: Obje
ting evaluation results for the out-of-
orpus senten
es. Vow. is for vowels, Ph. is for phonemes, Voi. is for voi
ed phonemes, mf

is for Mel-frequen
y 
epstral 
oe�
ients, PC is for prin
ipal 
omponent. The unit of f0 is Mel.
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e. We refer to these metri
s as worst-
ase-based metri
s.With these obje
tive metri
s 
al
ulated, the subje
tive evaluation results for Q1 (AV syn-
hrony), Q3 (a
ousti
 spee
h naturalness) and Q4 (visual naturalness) were 
orrelated. Thiswas an attempt to investigate the in�uential aspe
ts whi
h drive the per
eptual opinion aboutthe synthesized spee
h. The 
orrelation results suggest the possibility of the following relations:
• A 
orrelation between Q1 s
ores (syn
hrony) and visible-vowels. This observation is basedon Q1 s
ores and the 
onsolidated 
orrelation 
oe�
ients in visual and a
ousti
 modalityfor visible-vowels.
• A 
orrelation between Q3 s
ores (a
ousti
 spee
h naturalness) and worst-
ase a
ousti
segments. This observation is based on the Q3 s
ores and worst-
ase-based a
ousti
 spee
h
orrelation.
• A 
orrelation between Q3 s
ores and vowel durations. This observation is based on theQ3 s
ores and 
onsolidated vowel duration metri
s. Vowels are known to be important forprosodi
 patterns.
• A 
orrelation between Q4 s
ores (visual spee
h naturalness) and vowels and semi-vowels.This observation is based on the Q4 s
ores and the 
onsolidated visual spee
h 
orrelationsfor vowels and semi-vowels.
• A 
orrelation between Q4 s
ores and voi
ed-invisible phonemes. This observation isbased on the Q4 s
ores and 
onsolidated 
orrelation of visual spee
h for voi
ed-invisiblephonemes. This is probably due to human beings being 
riti
al towards 
oarti
ulation.This was just a preliminary experiment to investigate for informative patterns. But to drawde�nite 
on
lusions, more rigorous systemati
 experiments are ne
essary. This kind of analysisfor the intelligibility results is planned for the future.6.4 Con
lusionIn this 
hapter, we have des
ribed the various automati
 and human-
entered evaluation te
h-niques that we have used to evaluate our system. The former te
hniques in
lude 
orrelation,RMSE 
al
ulated based on a
ousti
 and visual parameters and duration related metri
s. Wehave used them for evaluating various methodologies for improving sele
tion during the devel-opment of the system. The latter, i.e., per
eptual evaluation through human parti
ipants wasdone for the overall evaluation of the �nal system. Our fo
us was to synthesize the arti
ulatory
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lusion 111dynami
s. The overall evaluation results show that the synthesis is of reasonably good qualitythough there is still s
ope for improvement. The results show that we have a
hieved the obje
tiveof synthesizing the arti
ulatory dynami
s reasonably well6.

6Parts of this 
hapter were published in (Musti et al., 2012), (Toutios et al., 2011).
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Chapter 7
Con
lusion

The work presented in this thesis deals with audio-visual spee
h synthesis. Our goal was todevelop a system whi
h synthesizes perfe
tly aligned audio-visual spee
h with a dynami
s 
loserto natural spee
h. This is the �rst important step towards the development of a talking-head. Forsynthesis, we 
hoose unit sele
tion paradigm whi
h is a 
orpus based 
on
atenation framework.To avert the audio-visual alignment problem 
ompletely, we keep the natural asso
iation betweena
ousti
 and visual modalities inta
t. The �rst requirement to implement the idea was to havea syn
hronous bimodal spee
h 
orpus. This required 
orpus was a
quired using a stereo-visionbased motion 
apture te
hnique developed by members in team MAGRIT. The bimodal spee
h
orpus 
onsisted of 3D point traje
tories along with the 
orresponding syn
hronous audio. Thefa
e is represented as a sparse mesh using these 3D points des
ribing the outer surfa
e of thefa
e. To begin with, two ne
essary steps needed to be a

omplished. First, bimodal spee
hdatabase need to be prepared using the re
orded 
orpus. Se
ond, we required a basi
 a
ousti
-visual spee
h synthesis system, whi
h would implement the 
entral idea to synthesize bimodalspee
h for a given text using the database. We pro
essed the 3D marker data to redu
e noise byapplying a low pass �lter. Subsequently we redu
ed the dimensionality of the visual modalityby applying prin
ipal 
omponent analysis. We also extra
ted labial arti
ulatory features fromthe data for further analysis. The visual data is stored as the PCA 
oe�
ients to be reproje
tedon to original spa
e for fa
ial animation.The re
orded bimodal spee
h 
orpus is a valuable resour
e for mining interesting informationregarding spee
h arti
ulation and intera
tion between the two modalities, whi
h is important forspee
h synthesis. It's informative to study the data, its advantages and its limitations. As a startof our 
orpus pro
essing, we started with segmentation experiments. We performed visual spee
hsegmentation using the fa
ial marker data. In fa
t, a
ousti
 spee
h is the result of 
oordinatedmovement of arti
ulators. Thus, the vo
al tra
t has to take the ne
essary 
on�guration in113
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lusionadvan
e for the generation of a parti
ular sound. So, we investigated this relationship, andmeasured the time di�eren
es between the visual and a
ousti
 segment boundaries. The resultsof these experiments were informative in planning the later steps. Firstly, it indi
ated the
omponent of visual spee
h related information that was present in the fa
ial data alone, withoutthe internal vo
al tra
t information. Subsequently, we performed segmentation experimentsusing EMA data whi
h had the labial and tongue related information. The results of theseautomati
 segmentation gave us an estimation of the missing per
eptual information due to thela
k of tongue in our fa
ial data. The results of these experiments, without and with tonguerelated information are in agreement to the order of results shown in (Yehia et al., 1998). Itindi
ated that the e�e
t of missing tongue information in the visual spee
h is not very high andhen
e the resultant visual spee
h might still be intelligible. It would be interesting to explorein the future the possibility of labeling 
andidates in terms of suprasegmental features in the
orpus based on su
h segmentation results.For the database preparation for our system, we �rst performed spee
h segmentation usinga
ousti
 spee
h and took the boundaries to represent the segment boundaries in both a
ousti
and visual modality. This allows the possibility of keeping the asso
iation of a
ousti
 and visualmodality inta
t besides keeping the representation of segments simple and straightforward. Thesynthesis unit in our system is diphone and this 
hoi
e is good for many reasons. First, thediphone in
ludes the region of 
oarti
ulation between two neighboring phonemes. It thus alsoin
ludes the visual and a
ousti
 segment boundaries. This is the se
ond advantage espe
iallywhen we are dealing with two modalities. Third, the a
ousti
 spee
h signal is relatively stationaryin the middle of the phoneme. This is the point of 
on
atenation when diphone is a synthesisunit whi
h improves the probability of good 
on
atenation without per
eptual dis
ontinuity. Forthe development of the initial basi
 framework of a
ousti
-visual spee
h synthesis, we startedwith an a
ousti
 spee
h synthesizer SoJA (Colotte, 2009). Using the tools that were developedunder the framework of SoJA, we segmented the a
ousti
 data and built the spee
h database.Synthesis results using unit sele
tion depend on the various 
ost fun
tions involved and their
orrelation to human per
eption. We built the system to sele
t bimodal segments initially usingtarget features whi
h are extra
ted through text analysis alone. The synthesis segments weresele
ted by minimizing a 
ombination of 
ost fun
tions, in
luding the 
on
atenation 
osts inthe visual and a
ousti
 domains. The 
on
atenation 
ost in the a
ousti
 domain was based onKullba
k-Leibler divergen
e 
al
ulated using LPC 
oe�
ients. This 
hoi
e was made by 
on-sidering the available literature about dis
ontinuity per
eption and obje
tive distan
e measures.The 
on
atenation 
ost in the visual domain was squared Mahalanobis distan
e 
al
ulated using
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oe�
ients. This overall framework of a
ousti
-visual spee
h synthesis provided the inter-esting ground to experiment with various methodologies for improving the synthesis performan
efurther.There were three domains where improvement was obviously possible. First, the set of targetfeatures whi
h were purely based on the text analysis needed to be re�ned to take the 
orpusspe
i�
 
hara
teristi
s into a

ount. Espe
ially in the 
ase of visual modality, the target featuresneed to take into a

ount the speaker-spe
i�
 arti
ulatory information a

urately. Without this,the 
oarti
ulation of the synthesized spee
h might show per
eptual in
oheren
e to users. Hen
e,we developed visual target features to take this available information from the 
orpus a

urately.We developed visual target 
osts based on the spe
i�
 features whi
h seem to be a�e
ted by the
ontexts rather than based on the 
ontext. We reported the obje
tive evaluation metri
s whi
hshow marginal improvement. This 
an be attributed to the large target features set in whi
hthe relative importan
e of the introdu
ed feature is only about 1%.Besides a good target and 
andidate des
ription in terms of target features, the weightingof the 
omplete set of target features in the order of their relative importan
e is ne
essary.This serves as the basis for the optimal 
orpus usage. Generally, unit sele
tion based spee
hsynthesis systems are developed on a spe
i�
 set of target features. Little 
onsideration is givenin reviewing the relevan
e of those features expli
itly, on
e they are manually 
hosen. Therelative importan
e is impli
itly taken into a

ount through the weighting pro
ess. Unlike thisapproa
h, we developed an algorithm to expli
itly perform redundant target feature eliminationand simultaneously weighting the important target features. The evaluation of a target 
ostis done by 
omparing the ordering given by it and the ordering given by a distan
e metri
based on a
tual spee
h 
omparison (bimodal). The relative weight given to ea
h target featuredepends on the information it 
ontributes with its presen
e in the target 
ost 
ompared to itsabsen
e. A feature is eliminated if its in
lusion a
tually in
reases 
onfusion in the ordering.The algorithm is robust and reasonably insensitive to the initial 
onditions. This way of featuresele
tion is advantageous as high dimensionality redu
es the probability of perfe
t 
andidatewith exa
t mat
h thus might introdu
e noise. This problem is alleviated to a large extent byfeature sele
tion. The distan
e measure used for 
omparing two spee
h realizations in the abovealgorithm in
ludes four 
onstituents. These four 
onstituents roughly represent duration, pit
h,lo
al a
ousti
 and visual features. The sele
ted features and their relative importan
e are in goodagreement to the phoneti
 and linguisti
 studies. For example, syllable position in rhythm grouphas shown to be the most important feature for the predi
tion of duration. These observationsshow the strength of the algorithm .
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lusionThis weight tuning approa
h might bene�t from the following investigation. Firstly, thedissimilarity measure used for the 
omparison of two spee
h realizations might be further re-�ned by 
onsidering di�erent 
onstituent metri
s. There are studies available whi
h investigatevarious distan
e metri
s for estimating the 
on
atenation 
ost with respe
t to their 
orrelationwith human per
eption (Wouters and Ma
on, 1998; Vepa et al., 2002; Klabbers and Veldhuis,1998). Similar studies for developing distan
e measures for 
omparing two spee
h segments will
ontribute to better spee
h synthesis. Se
ondly, the weights given to these 
onstituent metri
s
an be further improved by systemati
 per
eptual experiments with human parti
ipants. It 
anbe argued that this pro
ess is ine�
ient and slow. But, a good justi�
ation to su
h an approa
his that weight tuning problem in the huge dimensional spa
e of target features is being miti-gated by setting the weights in the dissimilarity metri
 whi
h is of a mu
h smaller dimension.Also, sin
e the synthesized spee
h is targeted for humans, reinfor
ement from human parti
i-pants is advantageous. Thirdly, the importan
e of the di�erent aspe
ts of dissimilarity metri
varies among phonemes. For example, it is known that vowel durations are important for goodprosody. But the relative importan
e of di�erent aspe
ts is kept same for all the phonemes.Besides target 
ost fun
tion this is true for various 
ost fun
tions used for the �nal sele
tion.It is known that di�erent phonemes hold di�erent level of importan
e for various fa
tors. Forexample, 
on
atenation in the middle of a vowel is more per
eived to 
on
atenation in a 
onso-nant (Syrdal, 2001, 2005). Hen
e, in the total 
ost fun
tion di�erent phonemes have to be givendi�erent weights for various 
ost fun
tions. Currently, this approa
h applied through methodslike Weight Spa
e Sear
h (Hunt and Bla
k, 1996), but it is not 
losely based on human per
ep-tion. Though it requires drasti
 e�ort, this is an important area where dramati
 improvementmight be possible. The exploration might be based on a thorough survey of phoneti
 studies.Our experien
e of total 
ost tuning strongly suggests that this is a pla
e where manual tuningis preferable to automati
 weighting algorithms unlike target 
ost fun
tion. In the 
ase of target
ost fun
tion, the number weights to be set is high and it is pra
ti
ally inappropriate to performmanual tuning. But for total 
ost fun
tion, while separately tuning only the target and total
ost weights, the dimensionality is low, pra
ti
ally feasible. Similar to any task with humanintervention is tedious and time taking, it is re
ommended in terms of better per
eptual results.This is espe
ially true for a phoneme independent approa
h.The relatively smaller size of the 
orpus 
onstraints the performan
e of the weight tuningalgorithm. Though this 
orpus is of smaller size when 
ompared to a typi
al a
ousti
 
orpus, itis mu
h bigger than 
ontemporary visual spee
h 
orpora. We are planning to a
quire a bigger
orpus whi
h might pave way towards further improvement in the synthesis results. But, there
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ulties in a
quiring a big audio-visual 
orpus. The number of senten
es whi
h 
anbe re
orded in one day is limited. Sin
e our 
orpus a
quisition is based on painted markers onthe fa
e, it is important to re
ord spee
h on a single day. This is be
ause, the exa
t positioningof the markers on di�erent days is di�
ult to ensure. Speaker-exhaustion also needs to be
onsidered as it might a�e
t spee
h utteran
e.To assess the performan
e of our system we performed word-level per
eptual intelligibilitytests of our system through voluntary parti
ipants. We synthesized 1 or 2 syllabi
 words us-ing our system and presented the audio-visual spee
h as stimulus. The underlying audio wasdegraded by the addition of noise to make parti
ipants pay attention to both the modalities.We also in
luded some words present in the 
orpus during synthesis. These were in
luded toestimate the highest intelligibility possible through our bimodal spee
h data. The intelligibilityresults of in-
orpus words were less than those 
ompared to a real video of person talking. Thiswas anti
ipated as the fa
e model doesn't in
lude tongue and teeth yet. It 
an be said thatthese results are impli
itly similar to those of automati
 visual segmentation (
hapter 4) withand without tongue data. Besides tongue and teeth being absent, the fa
e is presented using asparse mesh without any texture information. The results on out-of-
orpus words indi
ate thatwe have been able to a
hieve our goal of synthesizing spee
h dynami
s reasonably well. It 
anstill be said that there is further s
ope for improvement. We believe that �nding better metri
sto evaluate the audio-visual spee
h synthesis is the key to drasti
ally improve these systems.Both per
eptual evaluations and automati
 obje
tive evaluation should be tied to enable simul-taneous assessment of a synthesis system both automati
ally and quantitatively, and to ensurethat su
h results are by and large 
oherent with human per
eption. We attempted establishingrelation between per
eptual and obje
tive evaluation metri
s. More systemati
 exploration isrequired in the future in this dire
tion.
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Appendix A
Stimulus for Per
eptual and Subje
tiveEvaluation

Table A.1: Words used for intelligibility testsIn-
orpus words1. 
hien 7. 
hose2. 
uisine 8. fable3. presse 9. gaz4. jeune 10. maillot5. plaisir 11. pied6. po
he 12.Out-of-
orpus words1. anneau 21. 
hasse2. grue 22. nappe3. raison 23. pousse4. bave 24. néant5. ri
he 25. beige6. laine 26. 
han
e7. ni
he 27. rime8. beurre 28. langue9. pelle 29. 
ase10. rite 30. bien11. dalle 31. latte12. rode 32. mousse13. botte 33. drap14. pin
e 34. rouge15. bou
he 35. menthe16. rude 36. brun17. fade 37. mille18. oser 38. ga�e19. molle 39. 
age20. gris 121
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eptual and Subje
tive Evaluation

Table A.2: Senten
es used in subje
tive evaluation of qualityIn-
orpus senten
es1. Le Gri�on leva ses deux pattes pour manifester sa surprise.2. Il était alors re
ordman du monde du quart de mile.3. Europe 1 revient deux fois sur le sujet.4. Une so
iété qui fait de nos enfants des voyous.5. Il semble qu'il y ait eu un problème de 
onnexion.6. La �llette regarda le ban
 des jurés.7. La �llette regarda le ban
 des jurés.Out-of-
orpus senten
es1. Annie s'ennuie loin de mes parents.2. Leur 
hienne a hurlé toute la nuit.3. Le bouillon fume dans les assiettes.4. Le 
ara
tère de 
ette femme est moins 
alme.5. Le tapis était élimé sur le bord.6. La vaisselle propre est mise sur l'évier.7. Je suis resté sourd à ses 
ris.8. Ma partition est sous 
e pupitre.9. Ces légendes me rappellent les temps an
iens.10. Vous avez du plaisir à jouer ave
 
eux qui ont un bon 
ara
tère.11. On dit que l'essor de 
e village est important.12. La poire est un fruit à pépins.13. Je ne veux pas que vous le 
hangiez pour le moment.
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Abstra
tThis work deals with audio-visual spee
h synthesis. In the vast literature available in thisdire
tion, many of the approa
hes deal with it by dividing it into two synthesis problems. Oneof it is a
ousti
 spee
h synthesis and the other being the generation of 
orresponding fa
ialanimation. But, this does not guarantee a perfe
tly syn
hronous and 
oherent audio-visualspee
h.To over
ome the above drawba
k impli
itly, we proposed a di�erent approa
h of a
ousti
-visual spee
h synthesis by the sele
tion of naturally syn
hronous bimodal units. The synthesisis based on the 
lassi
al unit sele
tion paradigm. The main idea behind this synthesis te
hniqueis to keep the natural asso
iation between the a
ousti
 and visual modality inta
t. We des
ribethe audio-visual 
orpus a
quisition te
hnique and database preparation for our system. We thenpresent visual spee
h segmentation experiments that we did using the bimodal spee
h 
orpus.We present an overview of our system and detail the various aspe
ts of bimodal unit sele
tionthat need to be optimized for good synthesis. The main fo
us of this work is to synthesizethe spee
h dynami
s well rather than a 
omprehensive talking head. We des
ribe the visualtarget features that we designed. We subsequently present an algorithm for target featureweighting. This algorithm that we developed performs target feature weighting and redundantfeature elimination iteratively. This is based on the 
omparison of target 
ost based rankingand a distan
e 
al
ulated based on the a
ousti
 and visual spee
h signals of units in the 
orpus.Finally, we present the per
eptual and subje
tive evaluation of the �nal synthesis system. Theresults show that we have a
hieved the goal of synthesizing the spee
h dynami
s reasonably well.Keywords: Audio-visual spee
h synthesis, unit sele
tion, target 
ost, target feature weighting.
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