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Audio-Visual Speeh
Enated or animated stories are more popular than audio narrations or those in the books. It iseasy to onlude that this is due to its audio-visual nature as it provides a rih experiene. Besidesentertainment, in general we pereive everything through our ears and eyes, simultaneously. Thevisual information that is pereived through eyes either ompliments or reinfores the auditoryinformation. This applies to speeh as well, whih is one of the prime modes of ommuniation.Speeh pereption in the day to day life is primarily bimodal. We see and hear, what is beingspoken by people and understand the speeh if it is in a known language. Whenever, the auditoryinput is ambiguous or noise-ridden, we try to supplement the reeived information by looking atthe soure, i.e., the speaker. This bimodal nature of speeh is illustrated by the observation that,we humans try to have a fae-to-fae onversation while disussing issues of high importane.This is beause, fae-to-fae ommuniation onveys the omplementary information related tospeeh artiulation, emotions, more e�etively than just voie. Hene, bimodal speeh an beonsidered more e�etive in on�dene building. Besides entertainment and ommuniation,the basi milestone towards verbal ommuniation, i.e., speeh development in babies also hassigni�ant ontribution of the observation of visual speeh along with the orresponding sound(Teinonen et al., 2008; Andersen et al., 1984).Some of these above mentioned general observations about the advantages of audio-visualspeeh over aousti-only speeh have been experimentally veri�ed. It has been shown thataddition of visual speeh enhanes speeh detetion and reognition, thus improving intelligibilitywhen audio is missing, degraded with noise, or where there are multiple soures of speeh (Sumbyand Pollak, 1954; Ouni et al., 2007; Summer�eld, 1979; Shwartz et al., 2004). The evaluationresults of visual speeh intelligibility by LeGo� et al. (1994) show that the natural fae presented`without' or `with degraded' audio restores two-thirds of the aousti intelligibility; with a faialmodel without a tongue and just a lip model restores half and one-third of it respetively. Speehpresented along with faial animation has been observed to be more preferred interfae to voie-only presentation. They have been shown to inrease the interative experiene of users (Pandziet al., 1999). 7



8 Audio-Visual SpeehThese advantages of audio-visual speeh over aousti speeh indiate its vast appliationpossibilities. It has been widely used in entertainment and e-ommere for developing virtualagents. These appliation do not neessarily need high auray of speeh artiulation. Thereare other appliations whih require high auray omparable to that of natural audio-visualspeeh. These inlude appliations for pedagogi ativities, for example, virtual language tutorsfor e-learning, teahing speeh artiulation to hearing impaired et (Massaro, 2006). It an alsobe used to develop virtual announers for publi plaes that are usually noisy.Considering all the preeding disussion, it an be said that audio-visual speeh synthesis isa signi�ant domain to pursue. But, the advantages of natural bimodal speeh an be realizedthrough synthesized audio-visual speeh, only if it is omparable to the former. It is so beause,humans have impliit expetations from audio-visual speeh based on the learning and experieneof general fae-to-fae ommuniations. These are related to temporal alignment and oherenebetween the aousti and visual modalities. For instane, while hearing sounds like `p', weexpet a losure of the lips just in time before the onset of that sound. Similarly, we expet tohear high-pithed voie for a onversation where somebody is seen to be in extreme fear. Thismeans that the synthesized audio-visual speeh has to have the aousti and visual streams tobe temporally synhronous and oherent with eah other.A majority of approahes for audio-visual (AV) speeh synthesis, synthesize the faial an-imation over speeh aoustis, and then perform additional proessing for synhronizing thetwo wherever neessary. This is based on the assumption that AV speeh synthesis is a set oftwo di�erent problems, thereby addressing them sequentially by synthesizing visual speeh oversynthesized speeh aoustis. There are two problems with this approah. To begin with, syn-hronizing the two streams synthesized separately is not straight-forward. Humans are extremelysensitive to any asynhrony between the audio and speeh animation. In fat, this sensitivityto disriminate synhronous speeh from asynhronous speeh develops very early in humans intheir infany with a signi�ant preferene to synhronous speeh (Dodd, 1979). Results from(Grant and Greenberg, 2001, 2004) show that human speeh pereption is extremely sensitiveto any lag in the visual domain when ompared to audio unlike the other way around. It is alsoobserved that this asynhrony auses a surge in the intelligibility of asynhronous audio-visualspeeh. Moreover, this also brings in the issue of inonsisteny in visual and aousti domainwhih might bring in disomfort (Mattheyses et al., 2009). This inonsisteny an also a�et the�nal pereption of the audio-visual speeh, as illustrated by some of the experimental data in(Green and Kuhl, 1989, 1991). These experimental results show that the pereption of plae andmanner of artiulation gets a�eted when inonsistent information is presented in the visual and



9aousti modality. The worst ase, where pereption of AV speeh an be highly a�eted is thatof MGurk e�et (MGurk and MaDonald, 1976). In fat, when di�erent faial animation andaoustis are presented synhronously, subjets would experiene fusion or ombination e�et.Fusions e�et is seen, for example, when visual/g/ is presented synhronously with aousti /b/.The result is pereived as /d/. Similarly, when visual /b/ is presented with aousti /g/) syn-hronously, it is pereived as /bg/, whih is an example of the ombination e�et. This indiatesthat synthesizing audio-visual speeh by separating the synthesis of the two modalities, mightnot always ensure the best result in terms of synhrony and oherene of the two modalities.In general, simultaneous proessing of aousti and visual speeh is shown to be advantageouswith respet to audio-visual integration that are not available with their independent proessing(Chen and Rao, 1998).To ensure a perfet alignment and oherene between aousti and visual modalities, weadvoate synthesizing audio-visual speeh simultaneously by treating the two modalities as asingle entity. In this thesis, we present our method for audio-visual speeh synthesis basedon this priniple. We base our speeh synthesis on the unit seletion paradigm. We performsimultaneous synthesis of aousti and visual modalities by onatenating bimodal units. Wekeep the natural assoiation between the two modalities intat while doing so, as the visualand aousti modalities belong to the same speeh segment. It should be emphasized that thisapproah impliitly addresses the above mentioned issues of asynhrony and inoherene. Thiswork an be onsidered as the ruial �rst step towards a omprehensive talking-head. Atually,our main fous is to synthesize the audio-visual speeh dynamis aurately. The resultant isnot a omplete talking head yet. Our faial representation is limited to sparse mesh desribingthe outer surfae of the fae inluding the lips. The audio-visual speeh does not inlude theinformation related to the internal artiulators like tongue, teeth and other omponents neessaryfor expressive speeh. In the ourse of this work �rst we studied the bimodal speeh orpus,that we aquired, by designing and analyzing visual speeh segmentation experiments. Then, wedeveloped the basi system whih implemented our idea of bimodal unit onatenation. By usingthe basi synthesis framework of bimodal unit-seletion system, we developed methodologies toimprove the bimodal synthesis. In our work, we are addressing the following problems: (1)unit-seletion taking both aousti and visual onsiderations into aount whih an drastiallyinreases the omplexity, (2) weight tuning, whih is a di�ult problem in speeh synthesis. Infat, we developed orpus spei� visual target osts and an iterative target feature weightingalgorithm. Finally, we performed pereptual and subjetive evaluation experiments throughhuman partiipants to estimate the intelligibility and quality of our present system.



10 Audio-Visual SpeehThis thesis is organized as follows. We begin by reviewing the �eld of audio-visual speehsynthesis, in hapter 1. In this hapter, we disuss the ways in whih the fae has been modeledand animated. We also disuss the various approahes of audio-visual speeh synthesis based onseparate or joint synthesis of the two modalities. Our speeh synthesis system is built on thegeneri paradigm of unit seletion and this is the topi of hapter 2. We review literature relatedto some aspets of unit seletion. It inludes, segmentation, that is performed during orpuspreparation. Besides, the various building bloks of seletion are examined: target desription,target and onatenation osts. Finally, we review the ways of evaluating synthesized speeh.Inhapter 3, we present our work by providing �rst an overview of our audio-visual speeh synthesissystem. It also details our audio-visual orpus reording and database preparation for oursynthesis system. The resultant audio-visual database that we have is an interesting resourewhih an be used for studying various phonemes. As a �rst step in this diretion, we haveperformed segmentation of the visual data. We desribe these segmentation experiments, theirresults and analysis of these results in hapter 4. In hapter 5, we detail di�erent strategiesthat we developed to optimize our system. It inludes designing new visual target features andtarget feature weighting. Finally in hapter 6, we present the objetive evaluation, pereptualevaluation and the analysis done to bring out the relation between the two. We onlude inhapter 7 and explain our future work.



Chapter 1
Audio-Visual Speeh Synthesis: AnIntrodution

In this hapter, we look at some of its earlier synthesis approahes. For any speeh, aousti oraudio-visual, to be synthesized from text, the underlying phoneme sequene orresponding tothe text has to be �rst spei�ed. Given this spei�ation, various approahes an be followedfor AV speeh synthesis. Firstly, these approahes an be divided based on whether the visualand aousti modalities are synthesized separately or simultaneously. Seondly, the synthesisof aousti or visual modalities in the ase of separate synthesis an be divided based on thesynthesis paradigm: rule based, artiulatory or onatenative (Theobald, 2007). Thirdly, theapproahes an be lassi�ed based on their faial rendering tehnique: 3D modeling of fae orimage-based.In a rule-based synthesis system, the well known representative harateristis of speeh aresimulated using prede�ned rules. Whereas, artiulatory synthesis is done by the simulation ofnatural proess of speeh prodution using models of human anatomy. For instane, air �ow issimulated through a ontrolled model of human voal trat, and skin of the fae is deformed usingbones and musles. Conatenative speeh synthesis is performed by onatenating segments ofreorded human speeh, generally alled orpus. This an be put into a broader ategory alledorpus-based speeh synthesis whih also inludes HMM-based speeh synthesis. HMM-basedsynthesis depends on the learning of patterns of speeh parameters from a given orpus, whih isthen used to generate speeh parameters. Conatenative approah is like memorizing the wholedata, and then aessing the memory at the time of synthesis.In the following setions, we fous on audio-visual speeh synthesis. First, we brie�y desribethe faial rendering tehniques (setion 1.1). Then, we disuss the approahes whih synthesizethe aousti and visual modalities separately and simultaneously in setions 1.2 and 1.3.11



12 Chapter 1. Audio-Visual Speeh Synthesis: An Introdution1.1 Fae modeling and animationThe fae has been enoded and presented in two ways for the purpose of faial animation. The�rst approah is the 3D modeling of the fae. The outer surfae of the fae is modeled using amesh of onneted polygons. These polygons are made of prede�ned edges onneting a set of3D point verties. Also, hanges in the 3D point loations and the onsequent hanges in themesh aount for the deformations in the fae. The �rst 3D-faial model was developed by Parke(Parke, 1972, 1975, 1982). In this model, the 3D points were de�ned and ontrolled by a setof parameters. These parameters were oneptually divided into two distint sets (funtionallythey might have an overlap): onformation parameters and expression parameters. The onfor-mation parameters were the ones whih de�ne the dimensions of the 3D fae. That is, if 3D faesare modeled based on real human subjets for instane, then onformation parameters de�nethe basi `di�erentiating' dimensions of that partiular human fae. These inluded parameterslike aspet ratio of fae (height to width), relative sizes speifying forehead, eye separation,nose height, heek, hin, et. The expression parameters were those whih desribed mainlythe movements of eyes and mouth. They inluded deformations like jaw rotation, width of themouth, position of upper lip and orners of the mouth, et. These deformations might be relatedto speeh or emotional expressions. From these two ategories of parameters, the 3D points onthe fae positions were determined using di�erent types of operations, applied independentlyto some regions or to the whole fae. Eyes were ontrolled by spei� proedures. The otheroperations inluded, interpolation, rotation, translation and saling. The �nal rendering wasdone through Phong interpolation (Phong, 1975) based on the parameter speifying the dire-tion of light soure. There are many virtual haraters whih are desendants of this Parke'smodel (Cohen and Massaro, 1993; Beskow, 1995; Olives et al., 1999). These desendants ofParke's model have various additions to improve the appearane of fae and animation: like theaddition of the tongue, ears or the bak of the head and the addition of ontrol parameters. Theadvantage of these kind of parametri models is that the whole mesh is spei�ed using a smallset of parameters. Parke's parametri model is di�erent from some other parametri models,whih are based on modeling the underlying anatomial struture like bones, musles , skin andfores ating on them (Waters and Terzopoulous, 1990; Waters, 1987; Lee et al., 1995; Ekmanand Friesen, 1978). This kind of modeling has been observed to be omputationally intensive(Bailly et al., 2003). Some talking heads whih present emotional faial animations are basedon pseudo-musle ontrations (Cosi et al., 2003; Pelahaud et al., 2001). MPEG-4 standardizesthe parametri models by de�ning a minimum set of 84 feature points (FPs) loated on the fae.These FPs are ontrolled by a set of 68 parameters related to pereptible faial deformations



1.2. Separate visual speeh synthesis 13alled faial ation parameters (FAPs)(Ostermann, 1998).Besides 3D modeling of the fae, the seond approah for representing a fae is throughthe usage of faial images. These are most often images of real people. Hene, image-basedapproahes are generally data-driven. Faial animations using images are generated in twoways. First, it an be done by interpolating few spei� images that are representative of thetypial artiulation of visually idential phonemes alled visemes (Ezzat and Poggio, 1998).Alternatively, it an be done by onatenating image sequenes (Bregler et al., 1997; E.Cosattoet al., 2000).The image-based approahes of modeling present more realisti faes. This is beause oftheir proximity to the real faial appearane, whih is often desribed as being photo-realisti.But, this way of enoding or presenting a fae is most often limited to a straight-head frontalview of the fae. Besides, storage of images inurs signi�antly higher memory requirementto storage of a few parameter trajetories. On the other hand, 3D-model-based approah is�exible in terms of the view and head orientations in whih a fae an be rendered. But, anadditional proessing step is required to add the internal artiulators like tongue and teeth torender the omplete artiulatory information. It is possible to augment the 3D model by addingtextural information to make the �nal faial animation �exible and omparatively photo-realistiElisie et al. (2001). Another alternative of modeling the fae is morphable-models presented in(Cootes et al., 1998; Blanz and Vetter, 1999). These models also embed both geometri andtexture related information to present a relatively photo-realisti and �exible faial model.1.2 Separate visual speeh synthesisConventionally, AV speeh synthesis is onsidered as two separate problems; the generation ofspeeh aoustis and the generation of faial animation to a given speeh aoustis (real orsynthesized). Consequently, it has been performed by synthesizing the two modalities sepa-rately. Faial animation is generated over a given speeh aoustis, whih is either synthesizedor reorded. This approah requires additional proessing to orret the alignment between thetwo modalities in the ase of onatenative visual speeh synthesis (Bregler et al., 1997). We referto the faial animation related to speeh as visual speeh. We fous on visual speeh synthesisstage, onsidering the aousti speeh already available. Two onepts, whih might surfae inthe disussion of visual speeh are: visemes and oartiulation. In the following paragraphs, we�rst explain these two onepts before going ahead with the synthesis tehniques.Visemes: Visible speeh artiulation presents similarities for many phonemes. Based on thissimilarity, phonemes an be divided into di�erent sets. The representative units for eah of these



14 Chapter 1. Audio-Visual Speeh Synthesis: An Introdutionsets are de�ned as visemes. It is the fundamental unit in the ontext of visual speeh (Fisher,1968). For example, pereption of visual speeh while phonemes in the set {p, b, m} are beingartiulated is almost the same. Hene, they belong to one viseme set. In the urrent disussion,we mean by viseme, a sequene of visual speeh parameters desribing a omplete segment ratherthan stati targets. On the ontrary, we refer to a single sample of these parameters desribinga snapshot of a partiular target fae as `key frame'. The visual speeh parameters an beimage frames or trajetories of ontrol parameters or 3D points on the fae. This many-to-onemapping of visual speeh makes the separation of visual speeh synthesis from aousti speehsynthesis advantageous. It is beause, the system gets onise due to the reduing in the numberof distint units. In the ase of onatenative visual speeh synthesis, this inreases the possibleandidates.Coartiulation: Coartiulation is the phenomenon in whih the artiulation of a phonemeis in�uened by the artiulation of the neighboring phonemes. Synthesized visual speeh needsto aurately represent oartiulation. In ase of parametri 3D-faial-models, the parametersfor animating them have been generated taking oartiulation into aount using rules (Beskow,1995; Pelahaud et al., 1994) or mathematial oartiulation models (Öhman, 1967; Cohen andMassaro, 1993; Cosi et al., 2002). Beskow (1995) mentions that eah phoneme has a target vetorspeifying the typial artiulatory gestures. These target vetors are under-spei�ed for somephonemes whih are interpolated based on the ontext to aount for oartiulation. Pelahaudet al. (1994) divide phonemes into lusters based on their deformability in di�erent ontexts.Phonemes with lower deformability serve as the key frames for oartiulation. Öhman (1967) a-ounts for the hanges during the transformation of a V1CV2 (vowel-onsonant-vowel) sequene.Cohen and Massaro (1993) implement Löfqvist gestural theory, where phonemes are spei�edwith target feature vetors. Coartiulation is de�ned as the super-imposition of time-varyingdominane funtions desribing di�erent artiulators. These dominane funtions are negativeexponential funtions whih peak at the target feature vetors. This oartiulation model hasbeen further augmented by Cosi et al. (2002) by the addition of resistane funtions. These re-sistane funtions ensure that some spei� target on�gurations are attained by suppressing thedominane of neighboring phonemes. This is espeially important for phonemes like labials andbilabials. Beskow (2004) reports an experimental omparison of various approahes to aountfor oartiulation. He reports that the mathematial model proposed by Cohen and Massaro(1993) performs well in omparison with the real data; whereas, with respet to intelligibility,rule-based tehniques perform better. These models an be optimized through hand-tuning oran be statistially trained using real data aquired using motion apture (Cosi et al., 2002;



1.2. Separate visual speeh synthesis 15Elisie et al., 2001). Ezzat et al. (2002) also perform tuning of a oartiulation model throughstatistial learning on reorded orpus. Their oartiulation model is similar to that of Cohenand Massaro (1993). Instead of using motion data, they used image-based orpus for tuningtheir model.Corpus-based approahes:Instead of using some expliit oartiulation models, the oartiulation an be impliitly enodedin the synthesized visual speeh. This is done in orpus based approahes. Firstly, the ompletetrajetories of visual speeh parameters an be generated using models like HMMs, whih aretrained on real data (Brand, 1999; Masuko et al., 1998). In this ase, the HMM an be modeledas a triphone, whih desribes a phoneme in the required phoneti ontext. Alternatively,the omplete sequene of visual speeh parameters for real motion apture data an be storedand used by onatenating them for synthesis (Minnis and Breen, 2000). In this approah,oartiulation is enoded through the synthesis unit, like triphone or diphone.In ase of onatenative approahes, the visual speeh database has to be prepared. Besidesaquisition, the orpus needs proessing to annotate the individual units in terms of their pho-neti labels, segment boundaries, information related to the geometri properties of the faes forensuring smooth transition at the onatenation points. One of the onatenative approahesfor dubbing appliations is presented in Bregler et al. (1997). They prepare the visual databaseby phonetially segmenting an unonstrained video sequene. This segmented video is anno-tated to inlude the information based on the orientation of the head, the shape and position ofmouth. They use eigenpoints to estimate the �duiary points on the fae (mouth, teeth, hinand jaw line) using 26 hand annoted images. Also, the synthesis is done by the onatenation oftriphone video lips. The synthesized mouth sequenes are then morphed onto the bakgroundvideo sequene. The resulting video sequene is ompressed or strethed to time-align with thetarget audio between phoneme boundaries.The synthesis desribed in (E.Cosatto et al., 2000) is based on the onatenation of variablelength video sequenes of mouth images (and also other faial parts). The database is desribedin terms of 3D geometri features of the head and appearane features extrated by PrinipalComponent Analysis (PCA). They further subdivide the faial parts into heeks, teeth, tongue,jaw, et to make the synthesis more �exible. The �nal synthesis is done by overlaying bitmaps ofthe faial parts present in the database onto a bakground video as in (Cosatto and Graf, 1998).There are other similar works of image based onatenative approahes (Weissenfeld et al.,2005; Liu and Ostermann, 2009). For instane, Weissenfeld et al. (2005) use Loally Linear



16 Chapter 1. Audio-Visual Speeh Synthesis: An IntrodutionEmbedding (LLE) to desribe the appearane parameters of the mouth images unlike Cosattoand Graf (1998) who use PCA. Liu and Ostermann (2009) use PCA to extrat appearaneparameters and Ative Appearane Models (AAM) to extrat the geometri parameters of thefae (lip width, lip height, visibility of teeth and tongue). A similar approah, but whih isbased on parametri 3D faial model is presented in (Ma et al., 2006). In this approah, theontrol parameters extrated from reorded 3D faial marker data are onatenated using unitseletion. The resultant trajetories are used to animate virtual onversational agents.Some onatenative approahes ombine HMM and onatenative approahes for visualspeeh synthesis. One suh work is presented in (Lijuan et al., 2010). It is image-based ap-proah where the seletion proess is guided by the trajetory of lip movements generated bytrained HMMs. These HMMs are trained by the AV-speeh orpus. This approah is similarto an earlier work by Govokhina et al. (2006). In that, phonetially aligned trajetories of 3Dfaial markers are seleted based on the trajetories generated by trained HMMs. A hybridunit seletion and HMM based approah for visual speeh synthesis is presented in (Edge et al.,2009). This work uses the seleted units to train state-based models and searh through theselearned models through Viterbi type algorithm. The similarity in speeh aoustis (aoustiparameters) was used to guide through unit seletion. The �nal sequene of state-based modelsis used to generate smooth trajetories for visual speeh. Bailly et al. (2009) desribe a systemwhih generates artiulatory gestures (ontrol parameters) for a video realisti (image based)faial animation using HMMs. They inorporate a phasing model to learn the lag between visualgestures and orresponding speeh aoustis. They ompare this HMM-based tehnique whihinludes the phasing model with 3 other tehniques: (1) onatenation of artiulatory gesturesseleted based on the phoneti ontext, (2) onatenation of artiulatory gestures based on sele-tion that is guided through the phasing model based HMM, (3) trajetory generated by HMMmodels trained on audio-synhronized artiulatory gestures. They onlude that the phasingmodel based HMMs improve the synthesis.Almost all of these works report lip-synhronization problems. Bregler et al. (1997) reportthat plosives were observed to have oasional lip-synhronization problem, Cosatto and Graf(2000), report lip-synhronization being ritiized in subjetive evaluation. Geiger et al. (2003)present the pereptual evaluation of the synthesis approah presented in (Ezzat et al., 2002).They report that the synthesized audio-visual speeh is not omparable to the natural audio-visual speeh, to the extent that is required for developing appliations for teahing language orspeeh artiulation to the hearing-impaired.



1.3. Simultaneous synthesis of audio-visual speeh 171.3 Simultaneous synthesis of audio-visual speehThe potential appliation of audio-visual speeh hinges not only on the auray of the syn-thesized visual speeh, but also on the extent to whih the aousti and visual streams agreewith eah other in terms of synhrony and oherene. It is obvious from the previous setionthat, through the separate synthesis of aousti and visual modalities, these onditions are notalways guaranteed. In this setion, we look at approahes whih synthesize audio and visualspeeh simultaneously. The entral mehanism of all these approahes is to keep the assoiationbetween the visual and aousti modalities, thereby preserving the natural synhrony and o-herene. Majority of approahes in this ategory are based on the onatenation of synhronousbimodal units. One approah presented by Tamura et al. (1999), uses HMM models trainedusing synhronous audio-visual speeh data to generate bimodal speeh parameters. But, itshould be said that this approah was still at a muh preliminary level as the generated visualspeeh parameters were related only to the lip ontours.The onept of synhronous bimodal unit onatenation for Swedish AV speeh synthesishas been presented in (Hallgren and Lyberg, 1998). The visual speeh information is reordedas trajetories of 3D markers all over the fae, espeially around the lips. The reorded markerinformation is used to ontrol a 3D model of the head. This head model is further textured tomake it look more natural.Two reent image-based approahes that use onatenation of bimodal units are (Fagel, 2006;Mattheyses et al., 2009). In (Fagel, 2006), AV speeh synthesis is done for German by onate-nating synhronous bimodal polyphone segments. This was with a 4-minute orpus onsistingof bimodal speeh: video of speeh aligned with the orresponding phoneti transript. Theseletion of polyphone segments for onatenation was based on a onatenation ost alulatedas a weighted sum of aousti and visual onatenation osts. The pre-seletion of possiblepolyphone segments from the orpus is based on hunks (longest polyphone segments that areavailable in the orpus), and the visual joint ost alulation is based on the pixel to pixel olordi�erenes in the end frames of the video lips to be onatenated. Hene, it is quite lear thatsynthesis inurs a large overall proessing time. In (Mattheyses et al., 2009), the onventionalunit-seletion tehnique whih has been widely used for aousti speeh synthesis is extended toperform AV speeh synthesis. It is done by inluding an additional join ost term for visual joindisontinuities. Their system is similar to the one explained in (Liu and Ostermann, 2009) interms of the visual features extrated and used to desribe the faial geometry and appearane.These methods like any image-based tehnique inur high storage requirement when omparedto a 3D-model based approah.



18 Chapter 1. Audio-Visual Speeh Synthesis: An Introdution1.4 ConlusionIn this hapter, we have disussed various tehniques to model the fae that are based on eitherits 3D or image-based representation. We have also disussed the various pros and ons of eahtehnique. Further, we have also examined some approahes of AV speeh synthesis that arebased on either the sequential (synthesizing faial animation after aousti speeh synthesis)or simultaneous synthesis of the two modalities. We have highlighted the disadvantages of theformer. Consequently, we are in favor of synhronous, data-driven synthesis of audio-visualspeeh. Our approah is based on this line of synthesis. As an be seen in hapter 3, ourapproah is using a unit-seletion paradigm to synthesize both visual and aousti modalitiessimultaneously. In the following hapter, we present a survey of various aspets of unit seletionand then we introdue our system in hapter 3.



Chapter 2
Speeh Synthesis Using Unit Seletion:Literature Survey
Speeh synthesis is a well established �eld of researh with signi�ant progress in the past threedeades. Though synthesized speeh is getting loser to human speeh, it is still far from beingonsidered a solved problem. In addition, we are still away from a perfet all-purpose speehsynthesizer. This is true for both aousti-only and audio-visual speeh. Among the synthesistehniques onatenative tehniques have beome very popular in reent times. These methodshave been widely used and evolved for aousti synthesis. Nevertheless, the paradigm is generiand has been extended to visual or audio-visual speeh synthesis. In the earlier onatenativeaousti synthesis, fewer instanes of eah diphone were stored in the inventory. The synthesisspei�ation inluded the prosodi desription related to duration and pith of targets in thesentene to be synthesized. At the time of synthesis, these diphones were modi�ed using signalproessing tehniques to bring in the hanges related to prosody and then onatenated. Thiskind of intensive signal proessing done on the waveform distorts its naturalness. The advantageof this system was the small size of the diphone inventory whih was a neessary requirementat the time of its usage. Moreover, it an be said that in spite of usage of signal proessing, itdoes not aount for all the variations of speeh aurately.As omputer storage is getting heaper and faster, it has beome possible to store hugespeeh database many times larger than the earlier smaller inventory of diphones. Usage of ahuge orpus, makes it possible to inlude a large set of andidate diphones with large variabilityin their waveforms. Moreover, it is even possible to have longer synthesis units than a diphone.In fat, it is even possible to searh for whole sentenes or big hunks of sentenes. This indiatesthe drasti redution in the need to proess the speeh signal. Consequently, the resultant speehpreserves the naturalness of the original speeh as the speeh segments are onatenated with19



20 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveylittle to no signal proessing.Nevertheless, the usage of a large speeh orpus has di�erent problems. A large varianein the synthesis andidates means that seletion has to be done arefully, to synthesize speehwhih is similar to a natural utterane. This is the lassial unit seletion problem. We disusssome of the issues of unit seletion tehniques, and the approahes that have been applied toresolve them. In the following setions, we �rst give a brief introdution of the emergene ofthe framework of unit seletion and its basi paradigm (in setion 2.1). In setion 2.2 we give ashort desription of the segmentation tehniques used in orpus preparation, then a desription ofpre-seletion of andidates and the onventional target ost formulation based on independentfeature spae assumption and its tuning (in setion 2.3). Next, (in setion 2.4) we give abrief aount of the ways join evaluation tehniques have been analyzed for their orrelationwith human pereption of disontinuity when non-ontiguous units are onatenated. Finally,(in setion 2.5), we deal with the objetive and pereptual evaluation methodologies that aregenerally employed to estimate and sometimes qualify a text-to-speeh synthesis (aousti oraudio-visual) for its use in a spei� domain.2.1 Unit seletion paradigmUnit seletion depends on the seletion of the best possible set of units from di�erent variantsavailable in the orpus. Consequently, the �rst requirement is to have a orpus that not onlyhas a good overage of the possible speeh variants, but whih is also omparatively small tokeep the searh time short (Möbius, 2000). Given a partiular speeh orpus, the quality of thesynthesized speeh using unit seletion depends on its usage. Many fators a�et the synthesisresults. For example, onatenation of units an be said to be the most obvious reason foraudible disruption and many initial systems were based on the redution of onatenation points(Sagisaka, 1988). In (Sagisaka, 1988), the seletion of longest segments is given preferene andthe onatenation at ertain loations like at CV (onsonant-vowel) boundaries or in the middleof vowels is penalized. Alternatively, when it is not possible to avoid onatenation of non-ontiguous units, minimization of distortion at the onatenation point minimizes the qualitydegradation (Takeda et al., 1990; Iwahashi et al., 1992). Besides reduing the onatenation ofnon-ontiguous units, there are other neessary fators that need to be onsidered. For example,the phoneti ontext of the seleted unit and the speeh realization of the unit itself seemsimportant (Takeda et al., 1990; Iwahashi et al., 1992).The searh proedure proposed in (Hunt and Blak, 1996) for unit seletion o�ers a uni�ationframework where all the above mentioned onsiderations an be inluded while determining a



2.1. Unit seletion paradigm 21possible optimal solution to the seletion-onatenation problem. For a sequene of andidates
u, and a sequene of required target units t; the paradigm presented by Hunt and Blak (1996)optimizes a total ost funtion whih is a weighted sum of the following:

• The pereptual suitability of u, for t, whih is alled the target ost, denoted by TC(t, c).
• The total disontinuity at all the onatenation points, alled the join ost denoted by

JC(c).Denoting the weights of the target ost and the join ost by wtc and wjc respetively; froma given orpus, the searh for the �nal sequene of andidates is done based on the optimumandidate sequene whih minimizes the total ost (C) as shown below:
C = min

u
wtcTC(t, u) + wjcJC(u) (2.1)Here, the pre-seletion of units is based on a same-size units like phones or diphones foreah target position. This pre-seletion is based on the target ost determining the suitabilityof the andidate and its ontext. Also, in this general framework, the seletion of longestontiguous andidates is enfored impliitly by making the individual join osts for any twoontiguous units in the orpus zero (Balestri et al., 1999). This has the advantage of takinginto aount the variability of speeh realization besides reduing the onatenation artifatsfor the seletion of possible best set of andidates. In ontrast, some methods expliitly searhfor longest ontiguous units for onatenation alled non-uniform unit seletion, where the unitssought for onatenation are not of same size or type (Taylor and Blak, 1999; Boë�ard, 2001;Shweitzer et al., 2003). This is di�erent from the earlier paradigm whih is impliitly non-uniform unit seletion, as there might be many ontiguous segments of variable size in the �nalsynthesized speeh. Clark et al. (2004) give a good desription of the pratial aspets of buildinga unit seletion based speeh synthesizer. Taylor (2009), gives a omprehensive overview of thedi�erent approahes addressing various aspets of unit seletion based speeh synthesis. Ourapproah is based on the �rst paradigm, whih is an impliit non-uniform unit seletion.Extending unit seletion to audio-visual speeh synthesisIn majority of AV speeh synthesis approahes, visual speeh is synthesized over an availableaousti speeh that is either synthesized or real. In the ase of visual or audio-visual speeh syn-thesis using unit seletion, the seletion of segments has to be done onsidering the requirementsof visual modality also. This involves the inlusion of visual riteria during pre-seletion, i.e.,



22 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyin the target ost funtion, and also additional join riteria to aount for the visual modalityrelated disontinuities in the join ost funtion.2.2 SegmentationIt is obvious that unit seletion depends on a speeh database. Segmentation is one of the stepsof this database preparation, in whih reorded speeh is divided into phoneti segments bydemarating their temporal boundaries. These phoneti segments onstitute the basi buildingbloks for synthesis. Speeh segmentation without any other spei�er is onventionally used torefer to aousti speeh segmentation. Though the best way in terms of auray is manualsegmentation (Cosi et al., 1991; Ljolje and Riley, 1993; Ljolje et al., 1997), it is time-onsuming,laborious and hene ostly. For this reason, automati speeh segmentation is onsidered a goodalternative. The most popular and widely used tehnique for automati speeh segmentation isto fore a HMM based phoneti speeh reognizer to reognize the speeh to a given phonetitransript. Demaration of phoneti boundaries is a result of this fored-reognition whih isonventionally alled fored alignment. This alignment tehnique has avoided the need for man-ual alignment to some extent and also onsidered good enough for HMM training that is requiredin speeh reognition. But, segmentation needs to be more aurate for onatenative speehsynthesis espeially for those whih are based on onatenation at phoneme boundaries. Conse-quently, various methods have been used for the re�nement of the phoneti segment boundariesfurther (Toledano et al., 2003). Some of the reent works use a ombination of segmentationmethods to derive multiple time marks to arrive at more aurate segmentation (Kominek andBlak, 2004; Park and Kim, 2007).For onatenative visual or AV speeh synthesis, generally the boundary time-marks deter-mined by the aousti speeh segmentation of an audio-visual orpus are used while de�ningthe andidates in the orpus (Bregler et al., 1997; Hallgren and Lyberg, 1998; E.Cosatto et al.,2000). This way of segmentation is widely followed and pratially shown to work for visualspeeh synthesis. Nevertheless, this is not in aordane with the underlying prinipal of speehprodution. The speeh artiulators have to be ready with a target on�gurations required forthe prodution of a sound (phone) for it to happen. That is, the start and end in the visualand aousti modalities may not neessarily be the same. Some works have tried to learn thistime lag between aousti and visual by adding phasing models (Govokhina et al., 2007; Baillyet al., 2009). These phasing models are arrived at through iterative proess involving HMMlearning, fored alignment of trajetories of artiulatory gestures, omparison with the aoustisegment boundaries and adjustment of visual segment boundaries. Sine, speeh segmentation



2.3. Target ost funtion 23works through reognition of the speeh segment, it provides an interesting tool to study theunique harateristis of phonemes. We exploit this idea to haraterize phonemes (Chapter 4).2.3 Target ost funtionMeasuring the suitability of a andidate in the orpus for a target position in the speeh tobe synthesized is a neessary step in unit seletion. The e�ieny of a target ost funtion inranking and pre-seleting andidates also a�ets the probability of a good join and thus thequality of the synthesized speeh. Generally, the target and the andidate are de�ned in termsof fators whih are known to aount for the variation in speeh realization based on phonetiand linguisti studies. These fators are at the abstrat level whih are not diretly expressible interms of the atual speeh parameters quantitatively. These are referred to as high-level features.These features an take either non-negative integral values or an be ategorial. These featuresmight inlude:
• Phoneti features like the phonemi identity of the urrent unit and the neighboring units(ontext), type of phoneme (vowel, onsonant), voiing of phoneme (voied, unvoied),manner of artiulation et.
• Linguisti features like position of a syllable at various levels (word, rhythm group, sen-tene, et); position of word in a rhythm group or sentene; type of sentene et. Thesefeatures generally aount for the various suprasegmental prosodi patterns. Some of thefeatures in this ategory might be language spei�.Target feature set an also inlude features that are based on the statistial analysis of speehrelated parameters whih are extrated from orpus, whih are referred to as low-level features.For example, some systems use prosody predition models that mainly provide duration andpith spei�ation of the segments to be seleted. These prosody predition models are trainedon real orpus. It helps in reduing the number of high-level target features needed to desribeprosody (Lataz et al., 2010). The low-level target features are also used to speed-up the pre-seletion by reduing the searh spae (Blak and Taylor, 1997).Lot of systems use target feature set whih onsists of majority of higher level features (Huntand Blak, 1996; Coorman et al., 2000; Lataz et al., 2010). Some systems use higher-leveltarget features exlusively to allow the automati seletion of andidates with suitable prosodiharateristis rather than predition based on prosodi models (Prudon and d'Alessandro, 2001;Colotte and Beaufort, 2005). The target ost is generally alulated as a weighted sum of the



24 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyindividual feature osts. Three kinds of target feature osts have been generally used (Coormanet al., 2000):1. Categorial distane measures: Where the distane is either a binary valued or non-negative integer-valued funtion between ategorial features.2. Salar distane measures: Non-negative real valued funtion for features like duration, F0et.3. Vetor distane measures: Distane alulation for multi-dimensional features, like theaousti and visual feature vetors.Categorial distane measures are alulated for the high-level target features while the othertwo are based on the low-level features. For AV speeh synthesis the set of target features hasto be augmented to inlude the information regarding speeh realization in the visual modality.Besides the target feature desription, the weighting of features for a given target set in the orderof their relative importane is ruial for seletion. These aspets are presented in the followingtwo setions. Besides the onventional target ost, alternatives have been proposed whih wereview in subsetion 2.3.3.2.3.1 Visual target featuresFor the visual speeh synthesis many of the high level target features used are those whihdesribe the visual or audio-visual target. These features might inlude typial artiulatoryharateristis like lip losures in bilabials. They might also inlude rate of speeh relatedharateristis. Besides features whih are equally important for visual and aousti speehrealization (e.g., plae of artiulation), or those whih aount more for the aousti realization(e.g., voiing), there are some features whih are more important for desribing a visual target(e.g., shape of the lips during the artiulation of a phoneme). Many of the onatenative AVspeeh synthesis systems use a visual target ost based on the similarity of two phonemes interms of visible faial deformations, as desribed below.In (Bregler et al., 1997), a ategorial phoneme ontext distane is used for the seletion oftriphone whih aounts for the visual target ost. Phonemes of same label are assigned 0 ost,and phonemes belonging to two di�erent viseme lasses are assigned 1, and di�erent phonemesof same viseme lass are assigned a ost between 0 and 1 whih are derived from onfusionmatries desribed in (Owens and Blazek, 1985).In (E.Cosatto et al., 2000), a viseme distane matrix is used for the alulation of target ostbetween a target and andidate frame. It is alulated based on the similarities in the visual



2.3. Target ost funtion 25domain irrespetive of the di�erenes in the aousti domain. The seletion of the visual segmentis based on duration and phoneti label of the target segment whih is obtained from the aoustispeeh. Eah target frame is spei�ed in terms of the phoneti annotation of a window of framesequenes onsisting of some �xed number inluding itself to aount for ontext. The windowlength is di�erent for eah phoneme. The andidate is seleted with the most proximate ontextwhih is measured by the target ost. The target ost weight vetor is based on the exponentialdeaying in�uene inspired by (Cohen and Massaro, 1993). Weissenfeld et al. (2005) use a similarvisual target ost where the di�erene matrix is alulated based on the visual di�erene matrixpopulated using the Eulidean distane in visual feature spae. It is based on the assumptionthat eah phoneme an be desribed by its mean visual feature vetor, whih is speaker andorpus spei�. In (Mattheyses et al., 2010), a similar visual target ost alulated based onorpus is inluded. The di�erene matrix that is alulated represents the inter-phoneme visualdistanes based on the mean and variane of visual parameters at the middle of the phonemeunits present in the orpus. These kind of ost funtions whih are alulated for a spei�orpus don't guarantee optimum performane for any other orpus in general.2.3.2 Target feature weightingThe target ost tuning involves the determination of relative importane of target features andassigning weights to the individual target feature osts to be used for target ost alulation.Ideally, it is done in suh a way that the ordering of andidates based on the target ost orre-sponds to their pereptual suitability as a target. Sine the synthesized speeh has to be at leastaeptable, intelligible and near natural speeh for human listeners, some system tuning teh-niques are based on human listening tests (Coorman et al., 2000; Alías et al., 2004). Listeningtests are time-taking and require human subjets whih make them pratially ostly. Moreoverthe sope of this kind of tuning is limited to a few set of sentenes and hene it annot guaranteeonsistent synthesis results. It beomes further di�ult when the set of target features is large.Hene automati weight tuning has been applied in many of the works (Hunt and Blak, 1996;Meron and Hiros, 1999; Park et al., 2003; Alías and Llorà, 2003; Colotte and Beaufort, 2005;Lataz et al., 2010).The target feature weighting tehniques an be divided into two ategories: (1) joint weighttuning of onatenation and target feature ost funtions, either at the individual unit levelseletion by using pairs of synthesis units or at sentene level, (2) separate weight tuning oftarget and onatenation ost funtions, generally by tuning the target feature osts at thesynthesis unit or phoneti segment level. In both the tehniques, a real segment or sentene not



26 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyinluded for seletion is treated as the target, and seleted or synthesized from the orpus. Thetarget and the seleted units are ompared using objetive distane measures to perform thetuning.One of the two tehniques presented by Hunt and Blak (1996) alled `weight spae searh'(WSS) is based on the �rst ategory of weight tuning. It is based on the usage of targets fromreal sentenes held out for training from the synthesis database. The weight tuning is doneby searhing the weight spae, in suh a way that the waveforms of synthesized sentenes andthat of real sentenes are similar. The weight spae searh is limited to a �nite set of weightombinations and hoose the best weights among the searhed ombinations for de�ning thetarget ost funtion. This method is omputationally very expensive in ase of large numberof features and possible set of target feature ost values. Meron and Hiros (1999) presentedaeleration tehniques for WSS by partial synthesis and omparison. Alías and Llorà (2003)performed target tuning by using geneti algorithm for doing the weight spae searh. Theadvantage of this is that the searh spae is randomized and searh evolves towards betterweight ombination, unlike in the former works where a �xed �nite ombinations were searhed.Lataz et al. (2010) also present an automati weighting tehnique for tuning target featuresand onatenation osts together. In their tehnique the ordering given by weighted sum oftarget ost and onatenation ost, and the ordering given by an aousti distane metri areompared. A seleted error is alulated based on the mismath in this ordering. They refer thistehnique as Minimum Seletion Error training. Further, they propose that the set of weightsobtained for all the andidates treated as targets being lustered using deision trees.One of the tehniques whih performs target feature weighting separate from onatenationosts weighting is based on multiple linear regression (Hunt and Blak, 1996). Using this method,the target feature weights for eah phoneme in a language's phoneme set are tuned separatelyto ome up with di�erent target osts for di�erent phonemes. Eah of the andidate in thedatabase is onsidered as a target eah time and the n most similar andidates are seletedfrom the phoneme's andidate set leaving the target out. The ordering of andidates for thepre-seletion of n andidates is based on an objetive distane measure. The target weights aredetermined using Linear Regression suh that the target ost predits the objetive distanemeasure. Meron and Hiros (1999) presented a way to extend this regression training (RT) forweighting the target features and onatenation osts together using target pairs unlike singletargets. They also propose lustering of phoneti ontexts by using a deision tree to split thephoneme pairs into di�erent lusters. This is done with a phoneti ontextual question whihsplit the phoneme pairs into sets with least regression error at eah level (using RL).



2.4. Conatenation ost funtion 27Eah target feature aounts for variations in speeh, and their duration. Based on thedisriminative information aounted by eah of the features, they have been weighted in Colotteand Beaufort (2005). Aousti representation of a partiular phoneme units were divided intolusters through K-Means algorithm using Kullbak-Leibler divergene as the similarity index.The weight of the feature is based on its disriminative information between the di�erent lusters.This is applied to all the phonemes in the phoneme set of the language separately. Anotherapproah to weight tuning is to view unit seletion as a lassi�ation problem (Park et al.,2003), in whih instead of de�ning an objetive funtion to aount for the subjetive speehquality, the lassi�ation error is taken as the objetive funtion to be optimized. It is di�ultto ompare these methods in terms of their synthesis results. There are many fators whih varyin these approahes, like, speeh orpus, test sentenes, evaluation methodologies et. Hene, itis not straight forward to relatively judge their performane.2.3.3 Alternatives to onventional target ost funtionThe target ost put forth by (Hunt and Blak, 1996) was weighted sum of individual feature osts(di�erenes). Whenever a andidate with the exat target feature desription is not available, theandidate seleted for synthesis based on this simple formulation for measuring target-andidatesimilarity or rather dissimilarity might not always re�et the atual human pereption. Thefollowing two ases need little more onsideration: (1) where a andidate with required exatfeature desription is not available, but, a andidate with a speeh realization similar to therequired one but with a di�erent feature desription is available; (2) where neither the a andidatewith exat feature desription nor with a similar speeh realization is available, in whih ase,a better possible alternative(s) have to be seleted. To onsider the speeh realization besidesthe target ombination alone of andidates, alternate approahes for target ost alulation havebeen proposed whih base the seletion on the pereptual similarity estimated through aoustidistanes (Taylor, 2006). The main idea behind the proposed method is to have representationof the segment to be seleted in terms of the low-level features by using the high-level features.This was done by lustering the andidates of a partiular phoneme using aousti distanes andusing deision trees to hoose a luster for unit seletions by Taylor (2006).2.4 Conatenation ost funtionIt is known that the aousti speeh quality degrades due to the onatenation of non-ontiguousspeeh segments. Also, studies have shown that onsidering the spetral smoothness at theonatenation point improve the naturalness and intelligibility (Takeda et al., 1990; Iwahashi



28 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyet al., 1992). This holds for visual speeh as well. Hene, any abrupt jump in the visual speehsequene an reate pereptual disomfort and onfusion. Consequently, the fous on redutionof onatenation artifats arguably dates bak to the onset of onatenative speeh synthesisitself. Espeially in unit seletion based speeh synthesis, there is a wide variability in theandidates for eah target required. This results in a large variane in the onatenation pointsas well, like in the middle of a phone when diphone is the synthesis unit. Good onatenation isimportant not only for a good synthesis quality, but also for intelligibility (Clark et al., 2007).While designing good onatenation strategies for unit seletion, di�erent approahes havebeen followed. The andidate preferene for onatenation is based on the observation that nat-urally ontiguous units automatially join well. Hene, all systems give preferene to ontiguousunits in the orpus, besides onsidering important phoneti and prosodi harateristis. In fat,some systems go further and searh the longest possible units from the orpus, so as to reduethe number of onatenation points (Shweitzer et al., 2003). Sine it is infeasible to have anaturally ontiguous speeh in the orpus for every target sequene to be synthesized, variousjoin optimization tehniques have been developed.The most widely followed approah for onatenation is to minimize the di�erenes at theonatenation points. This strategy is based on the observation that huge di�erenes in thewaveforms at the onatenation points aount for pereptible degradation. Various distanemetris alulated using various aousti parameters have been explored for estimating thepereptual degradation due to joins. Cepstra, line spetral frequenies, log area ratios, melfrequeny epstral oe�ients, multiple entroid analysis (MCA) oe�ients, linear preditiveoding oe�ients are a few of them. Eulidean, Absolute, Kullbak-Leibler, Mahalanobis aresome of the distane measures explored. Given these many alternatives, it beomes neessaryto base the join di�erene estimation using those measures that orrelated well with humanpereption. Hene, there are many attempts to evaluate the parameter and distane measureombinations to rank them based on their orrelation to human pereption of join disontinuity.Some of these works ask listeners to evaluate joins on a 5-point MOS sale and ompare thesesores with the distanes alulated using various metris and aousti parameters (Wouters andMaon, 1998, Vepa et al., 2002, 2004, Donovan, 2001, Bellegarda, 2004). In some other works, theomparison between human pereption and distane metris is based on the detetion of a join,i.e. a binary sore (Klabbers and Veldhuis, 1998,2001, Stylianou and Syrdal, 2001, Pantazis et al.,2005). The results presented in the various works don't agree muh with eah other. Kullbak-Leibler divergene has been reported to perform well with di�erent parameters in some of theworks (Klabbers and Veldhuis, 1998; Donovan, 2001; Vepa et al., 2002). The highest orrelation



2.4. Conatenation ost funtion 29reported between the objetive distane measures and the pereptual evaluation results is 0.66whih has been deemed low. Hene, the hoie of any partiular speeh parameterization and adistane measure does not ensure an aurate estimate of pereptual disruption at the join.While trying to redue the join disruption due to onatenation, naturally ontiguous unitsan be used to determine the set of units whih an naturally join well. This an be basedon their proximity to naturally good joins, i.e., ontiguous units in the orpus. The workdone by Vepa and King (2003) an be onsidered to be in this diretion. In their work, thenatural evolution patterns in the aousti parameters are learned from the orpus, and used asthe basis for the evaluation of a join and de�ning a join ost funtion. Naturally ontiguousspeeh samples are never pereived as disontinuous, though they are seldom exatly the same.From this observation, it an be onluded that humans are insensitive to a slight disruptionat the onatenation point. This has been used as a basis for formulation of the evaluation ofjoins by Coorman et al. (2000). They have desribed a masking funtion to evaluate a join .Consequently, below a ertain transpareny threshold the join ost is zero.Irrespetive of the distane between two onatenation points, it has been observed thatjoin disruption is not pereived uniformly aross all the phoneti ontexts. In other words,the pereptual degradation of speeh is high in some phoneti units and ontexts than someothers. Syrdal, 2001, 2005 report a systemati study of the human sensitivity to disruption atvarious ontexts, a summary of the results presented is as follows: disontinuities are pereivedmore with female voie based speeh synthesis to male voie based speeh synthesis, higher invowels than in onsonants, higher in diphthongs than to other vowels and higher in sonorantphonemes than non-sonorants. They also reported a omprehensive list of join disontinuitydetetion (%) based on the phoneme type. This shows that phonemi ontext is importantand onatenation in ertain ontexts or phonemes are less preferable to some others and henephoneme independent handling of onatenation strategies might not be the best.Conatenation of audio-visual unitsAll the salient points onsidered for aousti unit onatenation are equally appliable for vi-sual or audio-visual unit onatenation. Here, the way the distanes are alulated for units atonatenation points depends on the visual features. For example, in (Bregler et al., 1997), a dis-tane to measure the di�erene in lip shapes in the overlapping segments of adjaent triphonesis inluded to aount for the onatenation ost. It is alulated as the Eulidean distane(frame-by-frame) between four element feature vetor of artiulatory features, outer-lip-width,outer-lip-height, inner-lip-height and height of visible teeth. The plae of onatenation is de-



30 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyided based on the plae of least di�erene in the lip shapes. In (E.Cosatto et al., 2000), thevisual onatenation ost has two omponents, the skip ost and a transition ost. Skip ost is apenalty for any two frames whih are not ontiguous in the orpus and alulated based on theordering of frames in the orpus, 0 for any two naturally ontiguous units or frames . The tran-sition ost is alulated based on the visual distane between two frames. Its alulated as theEulidean distane of two PCA feature vetors extrated based on the appearane. Similarly,in (Ma et al., 2006), two frames are given zero onatenation ost when they are ontiguousin the original orpus, for those frames whih are not ontiguous its alulated as a sum of aminimum onstant value and a variable omponent alulated based on the frames. The vari-able omponent in turn has two omponents, one of whih is alulated based on the distanealulated between the two frames. The seond omponent of this variable onatenation ostensures that the visemi transition in the synthesized and original orpus are the same. Forexample two frames i and j an be onatenated if the preeding frame of j belongs to the samevisemi label as that of i. The trajetories at the joins are made smooth by applying a low pass�lter and ubi splines. In (Fagel, 2006), the video joint ost alulation is based on the pixel topixel olor di�erenes in the border frames in the segments to be onatenated (omputationallyexpensive).
2.5 EvaluationWe have onsidered various aspets of unit-seletion based speeh synthesis. In this setion,we present the ways of evaluating synthesized speeh. This is neessary for exploring di�erentapproahes to improve synthesis quality, in whih ase hanges need to be quanti�ed and foromparative evaluation of di�erent synthesis systems. These an be related to seletion, onate-nation and overall system tuning. As synthesized speeh is targeted for human pereption, themost aurate way to evaluate a synthesized speeh is pereptual evaluation by human subjets.In-spite of its auray, automati evaluation is often done instead, by omparing synthesizedspeeh with a referene speeh. This referene is generally reorded real speeh whih is notinluded in the orpus. This omparison is quanti�ed using some objetive evaluation metris.In the following, we present the objetive evaluation metris and then the pereptual evaluationby human subjets. The evaluation of synthesized speeh by human subjets is done in twofronts: subjetive evaluation of quality, and pereptual evaluation of intelligibility.



2.5. Evaluation 312.5.1 Objetive automati evaluation of aousti and audio-visual speehVarious distane measures have been proposed for omparing real and synthesized speeh signals.For example, epstral distane is used as a distane measure in many works for aousti speeh(Hunt and Blak, 1996; Meron and Hiros, 1999; Alías and Llorà, 2003). (Lataz et al., 2010)used onstituent distanes measures for duration, f0 and spetrum. Objetive evaluation ofaudio-visual speeh is generally done based on an independent objetive evaluation of visual andaousti modalities. Alternatively, the objetive evaluation of only one modality is performedsometimes, based on the fous of analysis. For instane, in (Huang et al., 2002) only thesynthesized visual speeh is evaluated. It was done using three objetive evaluation metris .These were developed for estimating the preision (naturalness) and smoothness of visual speeh;and synhronization between aousti and visual modality. Firstly, preision was estimated usingthe sum of Eulidean distane between the real and synthesized sentenes, alulated on visualparameters. Seondly, smoothness was estimated using the sum of Eulidean distane alulatedbetween adjaent frames in the synthesized speeh whih are from non-ontiguous loations inthe orpus. Lastly, audio-visual synhronization was estimated based on the phoneti labels ofsynthesized frames. For this, only a few important phonemes were onsidered, whih belongto one of the following two ategories. The �rst ategory was of those phonemes whih have ahange in the diretion of the mouth movement, i.e., from losing to opening or vie versa. Theseond ategory inluded those phonemes whih have maximal mouth shapes like open or losedmouths. Similarly Eulidean distane measure has been used by some others (Weissenfeld et al.,2005).Instead of omparing real and synthesized speeh, Liu and Ostermann (2009) use averagetarget ost, average segment length and average visual di�erene between frames as the objetiveevaluation metris and minimize them during total ost tuning. This is based on the assumptionthat the average target ost is representative of the lip-synhronization (audio-visual synhro-nization) and the other two metris represent the smoothness of the speeh animation. But�nally, for evaluating the weights resulting from the tuning proess, ross orrelation oe�ientbetween the PCA oe�ients of the synthesized and real sentenes was alulated to representthe subjetive quality of the synthesized visual speeh. Similarly, (Bailly et al., 2009) report theomparison of di�erent artiulatory gesture predition tehniques using the orrelation oe�-ient between original and predited gestures. For objetive evaluation of the synthesized visualspeeh, Ma et al. (2006) use average errors of normalized artiulatory parameters (lip-height,lip-width, lip-protrusion) between the original and synthesized speeh. Though these tehniquespresent a fast way to estimate the dissimilarity between two speeh realizations, their orrelation



32 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveywith human pereption has not been quanti�ed systematially.2.5.2 Human-entered evaluation of aousti and audio-visual speehFor any text-to-speeh synthesis system, an evaluation of the overall system performane byhuman subjets is inevitable irrespetive of whih domain it is to be deployed. This is sobeause, the �nal users of any synthesized speeh are humans. Manual evaluation of text tospeeh synthesis system is generally done to evaluate at least two aspets of its synthesizedspeeh: quality (espeially naturalness) and intelligibility. These spei� aspets to be evaluatedand the evaluation tehniques depend on the target appliations. These possible appliations anbe, onversational agents for hearing impaired, or for movie dubbing with di�erent audio or videotrak, human-omputer interation to mention just a few to name. Some of the aspets whihare appliation spei� are the following: (1) suitability of the speaker whih depends on his/hervoie larity, ethniity and native language whih a�et pronuniation and also pleasantnessfor e-ommere related appliation, (2) time required for synthesis, (3) prosodi omponentauray, (4) overall intelligibility.Generally, the quality of synthesized speeh is evaluated in terms of the subjetive evaluationmeasures, Mean Opinion Sore (MOS) or DMOS (degradation Mean Opinion sore). Theseare also know as Absolute Category Rating (ACR) or Degradation Category Rating (DCR)respetively. In these evaluations, human subjets are generally asked to give a ategorial sorewith respet to some partiular aspet of the speeh whether it be aousti, visual or audio-visual speeh. The di�erene between the two (MOS and DMOS) is that in the seond ase, thesore is generally given with respet to a referene, generally the real utterane. The di�erentaspets of quality an be broadly lassi�ed into naturalness, pronuniation, pleasantness, overallomprehension and intelligibility. Their di�erent ategories depend on the attribute that isbeing evaluated. The di�erent aspets to be evaluated also depend on the method used forfae modeling and rendering, besides the target appliation domain. For example, for a human-omputer interating experiene like virtual avatar for e-ommere, the likability of the virtualharater and its expressiveness of emotions are also important for on�dene building. Forexample, in (Ma et al., 2006) the auray and naturalness of the synthesized speeh are reportedin omparison with that of natural audio-visual speeh using the usual 5 point MOS sale.Similarly, Bailly et al. (2009) report subjetive evaluation of audio-visual speeh by synthesizedimage sequene over natural audio by preferene tests based on 5-sale MOS test (5-very good, 4-good, 3-average, 2-insu�ient, 1-very insu�ient). Alternatively, naturalness tests are ondutedasking the listeners to identify sentenes as real or synthesized instead of MOS rating, whih are



2.5. Evaluation 33alled Turing tests (Geiger et al., 2003; Liu and Ostermann, 2009).The evaluation of intelligibility is done by the pereptual evaluation at various levels, phoneme,word and sentene. For phoneme level intelligibility testing, rhyme tests and nonsense words areutilized. In rhyme tests, words di�ering in a single phoneme segment are presented and asked toreport the atual word that is heard by a human subjet. Diagnosti Rhyme Test (Fairbanks,1958), Modi�ed Rhyme Test (MRT) (House et al., 1963) are two of the well known rhyme tests.Both use single syllabi word sets, former onsists of word pairs, whereas the later has sets of sixwords eah. Sentene-level tests are onduted to assay the intelligibility of words in ontext.The most ommonly used test is with semantially unpreditable sentenes (SUS) proposed byBenoît et al. (1996). In these tests speial sentenes are onstruted whih follow the syntatirules of a language but don't have a oherent meaning as a whole whih makes it di�ult toontextually predit the word. (Lemmetty, 1999), gives a good aount of the evaluation testsfor syntheti speeh intelligibility.It is di�ult to evaluate the intelligibility of audio-visual speeh. Synthesized AV speeh isoften tested for its most ited advantage over aousti-only speeh, i.e improvement in intelligi-bility in noisy onditions (LeGo� et al., 1994). Consequently, the addition of visual modality isevaluated by adding noise to the aousti modality. This is beause the intelligibility results of avisual-only speeh would be very low, espeially for SUS. On the ontrary, in ase of lear speehwithout any noise, the intelligibility us lose to the best possible and does not add any additionaladvantage of visual modality. For instane, E.Cosatto et al. (2000) report that the AV speehshows signi�ant improvement in terms of the intelligibility in noise when ompared to aoustispeeh, with an error rate of 4% for AV speeh ompared to 20% with aousti speeh. Fagel(2006) reports intelligibility tests of synthesized audio and AV speeh in omparison with naturalaudio and AV speeh. It was reported in terms of the perentage of vowel+onsonant, vowel andonsonant reognition errors. Ouni et al. (2007) present metris to quantify the improvement inintelligibility between two visual onditions in omparison with aousti-only speeh.In the methods whih perform visual speeh synthesis over aousti speeh, the synhroniza-tion of the two modalities is an additional aspet whih needs to be evaluated. For example,Bregler et al. (1997) pereptually evaluate the lip-utterane synhronization, triphone-video syn-hronization i.e. the disruption level due to onatenation of units besides oartiulation e�ets.They report that there are oasional visible timing errors in the ase of stop onsonants andthe visible artiulation is unsatisfatory ompared to the natural artiulation of phoneme whenthe required phoneme sequene is not available in the orpus. Mattheyses et al. (2009) report adetailed pereptual evaluation of various image-based audio-visual speeh synthesis tehniques



34 Chapter 2. Speeh Synthesis Using Unit Seletion: Literature Surveyto show the importane of audio-visual synhrony and oherene. The omparison was betweenthe following 5 types of AV speeh: (1) original AV speeh, (2) AV speeh synthesized by theonatenation of synhronous bimodal units, (3) AV speeh synthesized by synthesizing audioand visual streams separately with the best audio and video segments respetively and then syn-hronizing them (4) visual and aousti speeh synthesis separately with their respetive bestsegments, but the audio used for synthesis is from a di�erent orpus, i.e., a di�erent speaker tothat of visual speeh (5) AV speeh with synthesized visual speeh and real audio. The om-parison was done to evaluate for audio-visual synhrony and pereived naturalness. The resultsof these pereptual omparative evaluation experiments favor audio-visual speeh synthesis bysynhronous bimodal-unit seletion and onatenation. The results also show that the separatesynthesis of the two modalities using di�erent orpora is least preferable.Sometimes a omparative evaluation of various systems is also done. Comparative evalu-ation of di�erent approahes of speeh synthesis is very useful. In the �rst plae it providesa broad platform for the partiipants to evaluate their system performane. In addition, itbrings out interesting diretions to future researh. Blizzard hallenge started in 2005 by Blakand Tokuda (2005) is one suh platform. This annual hallenge is designed for orpus basedaousti speeh synthesis systems. The hallenge provides a uniform framework to perform aomparative evaluation by removing the variability in database, test sentenes being evaluatedand the set of listeners evaluating the test sentenes and �nally the evaluation metris. The setof listeners generally inludes people from the following 3 ategories: speeh experts, volunteersand paid undergraduate students. The test sentenes inluded sentenes from 5 genres: nov-els, onversation, phonetially onfusable sentenes (Fairbanks, 1958; House et al., 1963) andsemantially unpreditable sentenes (Benoît et al., 1996). The initial 3 genres were for testingspeeh quality and the last two for testing the intelligibility of the synthesized speeh. For qual-ity evaluation, sentenes synthesized by various synthesizers are played and listeners are askedto rank the quality in terms MOS sore. Later on pairwise naturalness tests and speaker voieoriginality omparison tests were inluded. The latter test is more relevant for HMM basedsystems. The voie building has 3 variants from blizzard 2007 onwards, one using full orpus,the remaining 2 are based on using a subset of the speeh orpus (Fraser and King, 2007). From2008 blizzard hallenge, the orpus had expressive speeh also (Karaiskos et al., 2008). LaterBlizzard hallenges inluded evaluations of speeh (1) for spei� appliations like teleommu-niations, human-omputer interation et (King and Karaiskos, 2009); (2) in the presene ofnoise (King and Karaiskos, 2010); (3) intelligibility of names and addresses (King and Karaiskos,2011). The notable analysis results of these evaluations are, that speaker voie originality and



2.6. Conlusion 35join disontinuity has an a�et on the quality evaluation, but intelligibility rather depends onjoin disontinuity alone (Clark et al., 2007).LIPS hallenge was a similar platform for evaluating visual speeh synthesis tehniques(Theobald et al., 2008). It was onduted for two years, 2008 and 2009. The aim is to eliminatethe variability in the training data and evaluation related omponents like human subjets, testutteranes and evaluation metris. The training data was a one hour audio-visual orpus of asingle speaker. The inluded utteranes were phonetially balaned sentenes, spoken in neutralspeaking style without any expressions. The visual speeh reording was in the frontal view suhthat all the artiulators are learly visible. The test utteranes were 50 SUS sentenes reordedin the same way as the training data (Benoît et al., 1996). The test utteranes were providedas aousti speeh and hand-orreted phoneti transript aligned with audio. Viewers werehosen from the INTERSPEECH-2008 onferene partiipants with normal vision and hearingapabilities and who are English speakers. Synthesis systems were ranked for naturalness andintelligibility separately. For intelligibility aousti omponent was degraded to signal-to-noise-ratio (SNR) of -10dB. Intelligibility was measured using speeh reognition metris de�ned interms of insertions, substitutions and deletions. This was done by the omparison of identi�edand atual atual phoneti transript. Visual speeh naturalness was evaluated by asking thesubjets to rate the synhronous audio-visual speeh on a 5-point MOS sale. Suh platformsprovide ommuniation grounds where the advantages and drawbaks of di�erent approahesan be analyzed. This an pave way for the evolution of better tehniques for speeh synthesis.2.6 ConlusionWe presented some aspets of unit-seletion based speeh synthesis. We have brie�y disussedsegmentation, and seletion riteria for unit seletion whih inluded target ost and onate-nation ost funtions. We have also reviewed the general methodologies used to evaluate syn-thesized speeh whih are broadly divided into objetive evaluation automati evaluation anduser-entered evaluation. The usage of a orpus does make it in�exible and might need e�ortto bring in hanges due to the need to aquire and proess a new orpus. Nevertheless, for anygiven appliation domain with spei� requirements, it is always possible to build a unit-seletionbased speeh synthesizer whose performane is omparable to real speeh (Blak, 2002).
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Chapter 3
Aousti-Visual Speeh SynthesisSystem: An Overview

In this hapter we present an overview of our bimodal speeh synthesis system named ViSAC.We refer to our system as aousti-visual speeh synthesis system to di�erentiate it from otherlassial approahes synthesizing aousti and visual modalities separately. For us, speeh isbimodal and the two modalities are kept together. We take this as the fundamental basis to ourbimodal speeh synthesis. Firstly, we reord synhronous bimodal speeh signal and proess itto prepare the database. In this whole proess, we keep the assoiation of the two modalitiesintat. This results in a synhronous bimodal orpus. This database is then used by ViSACto perform a onurrent synthesis of bimodal speeh through unit seletion. This proposedmethod impliitly addresses the problems of asynhrony and inoherene inherent in earlierlassi approahes. The synthesis unit used by our system is diphone. The 3D data of the faeis aquired during speeh prodution using a stereo-vision tehnique simultaneously along withaousti speeh signal. The entral synthesis paradigm is unit seletion of bimodal segments.In audio-visual speeh synthesis, required harateristis of both modilities need to be takeninto aount simultaneously. Hene, ompared to aousti-only speeh synthesis, the problemomplexity inreases.This hapter is organized as follows. We �rst detail the orpus aquisition and databasepreparation to be used for synthesis. Then, we desribe the bimodal unit seletion frameworkfor aousti-visual speeh synthesis. 37



38 Chapter 3. Aousti-Visual Speeh Synthesis System: An Overview3.1 Corpus preparationUnit seletion is a orpus based synthesis methodology. The �rst step of orpus preparationinvolves areful text seletion or design. It is done in suh a way that the phoneme ourrenein the orpus is representative of the phoneme ourrene in the target language in general.Moreover, an e�ort is made to ensure at least minimum ouranes of most of the synthesis unitsand good variants of the most frequent units. The uttered speeh of the arefully hosen textis then reorded. The result of this is a speeh realization for the underlying phoneme sequenespei�ed by the text. The reorded speeh is generally pre-proessed for noise redution whenneessary. It is subsequently parametrized and segmented into phoneti segments. The text forwhih speeh is reorded is not only analyzed in terms of its phoneti sequene but also for itsdetailed linguisti struture. In other words, we are interested in deriving any feature desriptionfrom the text whih an aount for a variane in speeh realization. We will all them targetfeatures. Thus, the phonetially segmented speeh is annotated in terms of these target featuresextrated through text analysis. These segmented and annotated units onstitute the speehorpus. To summarize, orpus preparation onsists of the following stages:
• Text seletion
• Data aquisition.
• Data proessing and parameterization.
• Segmentation.
• Phoneti and linguisti annotation of the segmented data.The �nal result of this orpus preparation in our ase is a bimodal speeh database. Inthe following subsetions, we detail eah of these steps, as performed for the preparing ouraudio-visual speeh orpus.3.1.1 Text seletionWe built a orpus of a total of 319 sentenes were reorded for the training orpus. It representsa total of 14634 diphones and inludes a good variety of the most frequent diphones. Of ourse,this orpus doesn't over a big variety of diphones, but our purpose is to experiment out methods.A set of 20 extra sentenes were also reorded and set aside as the test sentenes for evaluationpurpose.



3.1. Corpus preparation 393.1.2 AquisitionVisual data aquisition for our aousti-visual speeh synthesizer was performed simultaneouslywith aousti data reording. It was done using a low-ost 3D faial data aquisition infrastru-ture developed by the team MAGRIT in our laboratory in the past (Wrobel-Dautourt et al.,2005). The aquisition system uses two synhronized fast monohrome ameras (JAI TM-6740),a PC. During aquisition, the speaker with markers painted on his fae, sat in front of a stereoamera pair with a mirophone plaed at 50-60 m from his mouth. This whole tehniqueprovides a fast aquisition rate to enable an e�ient temporal traking of 3D points without af-feting the speeh artiulation. Large majority of markers are deteted by a low-level proessingof the stereo image pairs (see �g. 3.1). This is based on their average gray-sale, shape and size(white irular points with a radius less than 3 pixels). Besides these points whih are easilyand aurately detetable, there are the following two ases:
• When the points annot be deteted diretly. This ours when some points are not visiblein one or both of the images of some stereo image pairs. This might happen when theloation of 3D marker is ompletely oluded during artiulation like in the ase of innermarkers of lips. This an also happen when markers annot be aptured in one of theviews due to the hange in the head orientation.
• Where the deteted points are not atual 3D markers. This is due to loations in theimage with the same photometri features, as light re�ets on eyes or teeth.After the initial Proessing, 86% of the 3D points are aurately reonstruted, 10% of thepoints are erroneous and 4% are missing whih orrespond to the hidden markers. Besides, thedetetion and reonstrution of marker, the markers are indexed for the reation of temporaltrajetories based on temporal loseness. This indexing of the deteted markers so as to indiatethe loation of the 3D marker on the fae has oasional ambiguity. It happens mostly formarkers on the lips, espeially when they open and lose. The markers whih annot be deteteddiretly, they are estimated using an interpolation sheme that involves an initial 3D mesh of thefae. This initial mesh is aurately built by automati detetion of 3D markers and subsequentorretion was done by hand. Through this about 7% of the marker data is estimated in average.Proessing the data is a lengthy work though. It takes several weeks for 28 minutes of data.The aquisition of the bimodal orpus, the stereoimage proessing and 3D marker extrationwas done by members of team MAGRIT, who are a part of this projet.The reorded orpus onsisted of the 3D positions of 252 markers overing the whole fae.However, the lower fae was overed by 70% of all the markers (178 markers), where 52 markers
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Figure 3.1: Stereo-vision image pair of the speakerwere overing only the lips. This hoie was made, to apture the lip movement aurately andto be able to model the lips �nely. The average sampling rate was 188 Hz. The orpus was madeof 319 medium-sized Frenh sentenes, overing about 28 minutes of speeh, uttered by a nativemale speaker. An extra 20 sentenes were reorded for testing purposes. The speeh signal wasreorded at 16 kHz with 16-bit preision.3.1.3 Data proessing and parameter extrationThe sampling rate of the aquired 3D marker data was around 188Hz. There was a slightvariane in the sampling rate aross sentenes. A set of sentenes were reorded in di�erentsessions with short pauses between suessive sessions. This variane in the aquired data isdue to a slight variable lag between the time instant the images were aptured and sent to theomputer for storage. The data was �ltered using a low-pass �lter with a ut-o� frequeny of 25Hz. Suh a proessing removes additive noise from the visual trajetories without suppressingimportant positional information.Prinipal Component Analysis (PCA) was applied on a subset of markers of the lower part ofthe fae (jaw, lips, and heeks; see Fig 3.2). The reason for this hoie was that the movementsof markers on the lower part of the fae are tightly onneted to speeh gestures. Markers onthe upper part of the fae either do not move, or their movements are of no diret relevane tospeeh. This an be said beause the speeh is reorded with a neutral voie with no strongprosodi e�ets. We have not used any guided PCA as it does not provide signi�ant advantage.Besides,the projetion onto prinipal omponents and reonstrution are straightforward andfast. This uni�ed approah keeps it simple and straight forward for the synthesis purpose. Thefaial deformations when eah of the prinipal omponents is set at −3 and 3 z-sores is shownin �gure 3.3. The �rst two omponents aount for 79.6% of faial speeh data variane. It isdi�ult to draw de�nite onlusions about the in�uene of eah prinipal omponent on faialdeformation. The a�et of eah of the prinipal omponents annot be ompletely isolated in
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Figure 3.2: PCA is applied on 178 (plotted as blue irles) out of 252 painted markers.terms of the pereived faial deformations. Broadly, the following observation an be made bylooking at visual speeh animation by varying a single prinipal omponent. The �rst two prin-ipal omponents mainly aount for ombined jaw opening/losing and lip protrusion gestures.The third omponent aounts for lip opening, after removal of the jaw ontribution. Some ofthe omponents though related to speeh, are augmented by some gestures that are spei� tospeaker's faial expressions. This seems to be the ase for omponents 4 and 5. They seemto apture lip spreading. However, due to some asymmetry in our speaker's artiulation, lipspreading is divided into two modes: one aounting for spreading toward the left side of thelips and one for spreading toward the right side. Component 6 is a smiling gesture, however it isdi�ult to lassify it as belonging to speeh artiulation or pure faial expression. Components7 to 12 seem to aount for very subtle lip deformations, whih we believe are idiosynratiharateristis of our speaker.Several experiments indiated that retaining as less as three omponents ould lead to ananimation whih would be aeptable, in the sense that it would apture the basi speeh gesturesand would �lter out almost all the speaker spei� gestures. However, suh an animation wouldlak some naturalness, whih is mostly aptured by seondary omponents. We are also in favorof keeping the spei�ity of the speaker spei� gestures. Retaining 12 omponents leads toanimations that are natural enough for all purposes. One of the goals of our proposed systemis to synthesize trajetories orresponding to the PCA-redued visual information, for these12 omponents, alongside the synthesized aousti speeh signal. The lower fae related visual
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FpFigure 3.4: Calulation of labial features is done using the 4 points on the fae: A, B, C and
D. Lip opening and lip spread are given by the distanes ‖ ~CD‖ and ‖ ~AB‖. Lip protrusion isgiven by the displaement of O, the enter of gravity of the four points (A, B, C, D) along thenormal vetor ( ~OFp) to the plane formed by vetors ~AB and ~CD. Jaw opening is alulated asthe distane between the enter of the hin and a �xed point on the head.information an be reonstruted using these 12 trajetories. The mean values of the positions ofthe markers at the upper part of the fae may then be added to omplete the fae visualization.Hene, the 12 �rst prinipal omponents, whih explains about 94% of the variane of thelower part of the fae are retained for storage and reonstrution at runtime. Besides the 12PCA oe�ients, four artiulatory parameters ( lip protrusion, lip opening, lip spread and jawopening) are alulated as explained in �gure 3.4) (Robert et al., 2005). These artiulatoryfeatures are used for the analysis of visual speeh orpus and during impliitly during seletionas visual target osts are designed based on these features.The aousti speeh paramters extrated inluded the LPC (Linear preditive oding) oef-�ients, f0, and energy.3.1.4 SegmentationWe perform segmentation based on the fored alignment of aousti speeh. These preditedsegment boundaries are onsidered as the synhronous bimodal segment boundaries, and hosento represent speeh segments in the orpus. The synthesis unit of target searh and synthesisis the diphone. Besides making the storage and indexing of bimodal speeh segments extremelysimple, it reinfores the prinipal idea of synhronous inseparable bimodal speeh intat. Adiphone extends from the mid of one phone to the mid of the next phone. The middle ofthe phone is a relatively stationary region. Hene by using diphone as the synthesis unit, theaousti artifats due to any segmentation errors are redued. Diphone units also aount forthe oartiulation well, as their boundaries inlude the transition of one phoneme into the other.



44 Chapter 3. Aousti-Visual Speeh Synthesis System: An OverviewDiphone as a synthesis unit is reported to produe omparatively good quality speeh (Moulinesand Charpentier, 1990). The Segmentation based on speeh aoustis and annotation of datawas done using sripts developed by Colotte (2009). The monophone HMMs whih are usedby these sripts are trained on a very large aousti speeh orpus and provide highly auratesegmentation.3.1.5 Bimodal speeh databaseThe phonetized orpus was analyzed linguistially, and partitioned into phonemes. To mark thediphones from these phonemes and desribe them in terms of target features, we used tools thathave been already developed in the framework of SoJA Colotte (2009). For eah phoneti unitin the orpus, the following information is inluded for its indexing:
• The desription in terms of the omplete target feature set (Fig. 3.6).
• Its position (start sample to end sample) in the orresponding aousti and visual speehdata �les.
• Duration.
• Aousti and visual parametri representation at the middle of the phonemes that we haveextrated (setion 3.1.3).The phoneti and linguisti annotation of the speeh units is taken from SoJA.3.2 Bimodal speeh synthesisOur Text-to-Speeh (TTS) Synthesis system has two stages. First stage is the Natural LanguageProessing (NLP) stage whih analyzes the input text. It provides as a result, the spei�ationof the target phoneme sequene required for synthesis. This spei�ation is represented using aombination of target features based on the linguisti and phoneti struture of the text. Theseond stage involves the atual speeh synthesis for the required target sequene using bimodalunit seletion and onatenation.3.2.1 Natural language proessingThe �rst stage of our TTS system is an NLP unit. For a given text, it generates the phonemesequene from text to be synthesized. As shown in �g. 3.5, this is done by following these steps(see �g. 3.5):
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• Preproessing:

⋄ Text Segmentation: Input text is split into individual sentenes whih an be pro-essed separately.
⋄ Tokenization: Eah sentene is split into tokens depending on breaks based on whitespaes, puntuation marks et. It is done so that they an be analyzed separately.Eah token is lassi�ed into di�erent lasses suh as words, numbers, dates, abbre-viations et. This is done to determine the kind of parsing and verbalization to bedone if neessary.
⋄ Parsing: Eah non-natural language token is parsed to deode the exat format ofthe text.
⋄ verbalization: Eah deoded/parsed non-natural language token is verbalized intowords.

• Lemmettization: Eah of the tokens is morphologially analyzed, and all the probableroot forms of the words are enlisted.
• Tagging: Eah of the tokens is then syntatially tagged with the most probable part ofspeeh pin-pointing the word in the ditionary .
• Chunking: The phoneme sequene is divided into rhythm groups using hunker based onsome rules. This is similar to phrasing done for English.
• Phonetization: Words are phonetized into phoneme sequenes after homograph disam-biguation wherever neessary. This is done using lexions. There are di�erent lexionsbased on the kind of words. Words are lassi�ed into di�erent groups like Frenh word,proper noun, word belonging to a foreign language et. Depending on this ategory, theappropriate ditionary is used to give the word to phoneme sequene mappings. For wordswhih are not present in any of the lexions being used by the system, listed grapheme-to-phoneme rules are applied.
• Post lexial proessing or post phonetization: In languages suh as Frenh, thewords interat with eah other to produe di�erent phoneme sequenes based on somespei� rules. Hene, the phonetized text is re-analyzed for ontinuous-speeh relatedrules like liaison to modify the phoneme sequene.
• Syllabi�ation: The phoneme sequene is divided into syllables based on rules. Rhythmgroups and syllables, these two units are known to be important for explaining various



46 Chapter 3. Aousti-Visual Speeh Synthesis System: An Overviewaspets of prosody for Frenh.3.2.2 Target unit desriptionEah phoneme in the text is desribed in terms of linguisti and phoneti features whih areknown to a�et the aousti and visual realization of the phoneme. The target ( resp. andidate)spei�ation ( resp. desription) is done in terms of their harateristis at various levels as shownin �gure 3.6.3.2.3 Bimodal unit seletion and onatenationThe target sequene is based on phonemes, that are spei�ed after the text analysis and onvertedinto diphone-based targets. For eah required target diphone, all possible andidates from theorpus whih have the same phonemi label are looked up. The spei�ation of targets forsynthesis is in terms of the same features used to desribe the andidates in the orpus. Thesedesriptive features are exhaustive phoneti and linguisti features that an be extrated. Theyan be either independent or dependent on the target language. This target spei�ation isompared with that of the desription of the andidates in the orpus. For a target sequenespei�ation tn1 = (t1, ...tj , ...tn), a general target ost funtion TC is alulated as follows:
TC = C(ti, ui) =

F∑

ρ=1

wρCρ(ti, ui) (3.1)where, Cρ(ti, ui)(ρ = 1, ..., F ), are the di�erent target feature osts between a target tiand a andidate ui, F is the total number of target features and wρ is the weight given to afeature ρ. The aousti join ost is de�ned as the aousti distane between the units to beonatenated. It is alulated using the following aousti features at the boundaries of theunits to be onatenated:
• fundamental frequeny (f0).
• LPC oe�ients.
• Energy.
• Duration.Similarly, the visual join ost is de�ned as the visual distane between the units to beonatenated as shown in �gure 3.7. This is alulated using the PCA transformed visual
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Pi,1Figure 3.7: An illustration of the gap in the visual feature trajetories. The purpose of thevisual join ost is to minimize the disontinuities in the visual modality at the boundaries whereonatenation happens. .information at the boundaries of the units to be onatenated. That is:
V C = Σ12

i=1wi(Pi,1 − Pi,2)
2where Pi,1 and Pi,2 are the values of the projetion on prinipal omponent i at the boundarybetween the two diphones. The hoie of weights wi is based on the relative importane of theomponents. We hose these weights to be proportional to the eigenvalues of PCA analysis asthey are proportional to the data variane aounted by the respetive prinipal omponent.This is similar to the methodology mentioned in (Liu and Ostermann, 2009). The seleteddiphone sequene is onatenated aoustially using a traditional tehnique, where pith valuesare used to improve the join of diphones.The seletion among the set of pre-seleted andidates is operated by resolving the lattie ofpossibilities using the Viterbi algorithm. The result of the seletion is the path in the lattie ofandidates whih minimizes a weighted linear ombination of the following three osts:

• Target ost (∑n
i=1C(ti, ui)).

• Aousti join ost (∑n
i=2 C

aj(ui−1, ui)).
• visual join ost ( ∑n

i=2 C
vj(ui−1, ui)).It is alulated as follows:

CT (tn1 , u
n
1 ) = min

u1,...,un







w
∑n

i=1C(ti, ui) +

waj

∑n
i=2 C

aj(ui−1, ui) +

wvj

∑n
i=2C

vj(ui−1, ui)

(3.2)where w, waj and wvj are weights for the omponent target ost, aousti join ost and visualjoin ost, the weights used are w = 1, waj = 0.943 and wvj = 0.897 (Toutios et al., 2011). I



50 Chapter 3. Aousti-Visual Speeh Synthesis System: An Overviewhave partiipated in developing the �rst version of ViSAC, but it was mainly developed by A.TOUTIOS in ollaboration with V. Colotte and S. OUNI. A synthesis example of one of thetest sentenes is given in �gure 3.8.3.3 Visual speeh renderingThe visual speeh in ViSAC is rendered as a fae approximated using sparse 3D mesh, but twoalternatives are also inluded. We didn't add a tongue yet. This appearane of the 3D-markerrendering, wired mesh surfae made with the 3D-marker data and the fae approximated usingthe sparse meshes are shown in �gure 3.9. A simple visual speeh animation of the syllable 'ba'is shown in the �gure 3.10.3.4 ConlusionIn this hapter, we desribed orpus aquisition and database preparation for our system. Wepresented an overview of our text to aousti-visual speeh synthesis system alled ViSAC.The synthesized speeh with this initial system learly indiated the advantage of synhronousbimodal unit onatenation. Besides, this framework presented the experimental setup for de-veloping various methodologies for improving bimodal speeh1.

1Parts of the work presented in this hapter was published in (Toutios et al., 2010a) and (Toutios et al.,2010b).



3.4.Conlusion
51Figure 3.8: A synthesis example showing the trajetory of the �rst prinipal omponent. Figures (a), (b) and () show the trajetories synthesizedwith aousti-only, visual-only and audio-visual join osts. Figure (d) gives the �rst prinipal omponent of the real sentene.
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(a) (c)(b)Figure 3.9: Shows the appearane of (a) just the 3D-marker rendering, (b) wired mesh surfaemade with the 3D-marker data and () the fae approximated using the sparse meshes.
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Figure 3.10: Visual speeh of the syllable �sil b a sil� with a frame rate of 25fps.
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Chapter 4
Phoneme Classi�ation Based on FaialData
The faial data that we have aquired, only enodes the speeh related deformations of theouter surfae of the fae. This kind of data laks internal artiulatory information. It would beinteresting to investigate the representative phoneti patterns in this kind of data. It might alsogive an estimate of the artiulatory information that is laking in this kind of data. Keepingthese objetives into aount, we have performed some segmentation experiments. First weused our faial data. Then, to estimate the internal artiulatory information that is missingin omparison to the faial data, we performed another set of segmentation experiments. Thistime, we used a di�erent orpus whih had artiulatory information related to the tongue.In the following setions, we desribe these two sets of experiments, �rst using our faialdata in setion 4.1 and then using an EMA (Eletromagneti artiulography) data.4.1 Visual speeh segmentation using faial dataPhoneti boundaries are generally used to segment bimodal speeh orpus. Though this isthe ase, the start and end of the aousti speeh and visual speeh gestures might happenat di�erent time instanes. This is beause, for the sound prodution to happen, the priorartiulatory on�guration required for the prodution of sound has to be attained �rst. Thetime di�erenes between aousti and visual segment boundaries might probably vary due tooartiulation. Phoneti units whih are segmented using aoustis thus might not apture thestart and end of the segments in the visual modality aurately. But, these aousti boundarieswould give an indiation of approximate time intervals of the phoneme artiulation. Ideally,segmentation based on visual speeh should provide us this information. By following this55



56 Chapter 4. Phoneme Classi�ation Based on Faial Datarational, an elaborate experiment was performed to segment the visual speeh using the faialdata. The ontributions of this experimental results are two-fold. They provide signi�antinformation about the uniqueness of phoneti artiulation aounted by just the faial datawhih might be pereived more aurately by humans. Due to this humans might also be moreritial about the faial animation of suh phonemes. They also provide information about whihphonemes are in�uential or are in�uened in the ontext of other phonemes.In order to segment the visual speeh data, we trained phoneme HMMs using a proeduresimilar to the one typially used in Automati Speeh Reognition (ASR). We used HTK forthis purpose (Young et al., 2005). We used three di�erent feature vetors extrated from thefaial data. The three sets of feature vetors used for HMM training are the following:
• Artiulatory features.
• PCA oe�ients.
• Combination of the artiulatory and PCA oe�ientsThe set of labels inlude the set of phonemes overed in the orpus and sil (silene). Onemonophone HMM is trained for eah of the labels in this set. The HMM training performed issimilar to that performed for a onventional ASR module. In the �rst step, monophone HMMsorresponding to eah label were trained. Eah HMM was a 3-state left-to-right no-skip model.The output distribution of eah state was a single Gaussian with a diagonal ovariane matrix.The observation vetors input to the HMM training onsisted of stati and dynami parameters,i.e. the three types of feature vetors desribed in the previous setion and their delta and delta-delta oe�ients. The HMM parameter estimation was based on the ML (Maximum-Likelihood)riterion estimated using Baum-Welh reursion algorithm. The learned monophone HMMs wereused to perform a fored alignment of the same training orpus.Fored alignment was performed with three sets of monophone HMMs trained using the threefeature vetors. The HMM training is an iterative proess. To evaluate the segmentation, wehave used a reognition riterion explained in the following subsetion. For eah set of HMMstrained using a partiular set of feature vetors the following is done. After eah iteration ofHMM parameter re-estimation, the training data is segmented using the updated HMMs. Then,the total reognition error of the segmentation is alulated. Training is halted when there isno further improvement in this value in subsequent iterations. The reognition error of eahlabeled visual segment in the orpus at this stage has been used for the evaluation and analysisof the alignment results. The set of monophone HMMs whih gave the best segmentation resultbased on the total reognition error was hosen for the seond step for further improvement. The



4.1. Visual speeh segmentation using faial data 57seond training step involved reation of ontext dependent triphone models using the trainedmonophone HMMs. Finally tied-state triphones were reated using deision tree lustering.The triphone models were reated by �rst loning the trained monophone HMMs for di�erenttriphones. Then, triphones whih have su�ient data in the orpus are re-estimated. Then usingdeision tree lustering, tied state triphones were reated. The ontexts onsidered for lusteringare based on the hierarhial luster trees of phonemes mentioned in (Odisio et al., 2004). Theomplete speeh orpus has been used for the estimation of HMM parameters. These trainedHMMs were then used to perform fored alignment of the data. An example of the segmentationthrough the HMMs whih are trained using the faial data is shown in Figure 4.1.4.1.1 Reognition errorIt has been shown that visual speeh segments are orrelated to the orresponding aousti speeh(Barker and Berthommier, 1999; Yehia et al., 1998). In fat, the speeh sound is the onsequeneof the voal trat deformation and thus the fae. Thus, there has to be an overlap between theatual aousti and visual speeh segments. The visual and aousti speeh segments might haveasynhrony in their onset and end time as the voal trat has to antiipate the following soundby adjusting the di�erent artiulators.Based on the above reasoning of asynhrony and overlap of the visual and aousti speeh,we have derived the following riterion for evaluating the segmentation results. We onsider thereognition of a label to be orret, if there is an overlap between the predited visual segmentand the atual aousti segment, the overlap being however small. An ASR engine trained witha very large aousti orpus was used to provide the phoneme labels and aousti boundaries ofour aousti whole orpus. We onsider the aousti boundaries given by the ASR engine as theaurate aousti boundaries for omparison.4.1.2 Fored alignment resultsIn this subsetion, we present the quantitative results based on the reognition error mentionedin the previous setion. We lassify phonemes based on their visibility as shown in Table 4.1.We onsider /4/, /w/, /S/ and /Z/ as bilabial based on their seondary plae of artiulation. Infat, their primary plae of artiulation is not relevant to our study (not visible) as it is the asefor the seondary plae of artiulation.We performed 4 alignment experiments. These inlude 3 experiments based on trainingmonophone HMMs using the 3 types of feature vetors mentioned above. Based on the alignmentresults with the 3 sets of monophone HMMs, the feature vetor performing the best among the
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Figure 4.1: An example of the segmentation using the HMMs trained with faial data. It is shown in omparison with the segmentation performedusing ASR engine. The jaw opening is expressed in terms of relative units alulated based on the 3D oordinates.
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sil p b m 4 w S Z v f t d n s z l ñ j k g N K e a E i @ ẽ ã y O u œ o ø õFigure 4.2: Reognition errors in the alignments: Art, PCA are the artiulatory and prinipal omponent analysis based feature vetors; MFCC are the aoustiparameters (Mel-frequeny epstral oe�ients); Mono and Tri are the monophone and triphone HMMs. TE is the total reognition error. An automatiallypredited segment alignment is onsidered orret when it has some overlap with the orresponding aousti segment, however small it might be. Based on the lowreognition error, the set of following phonemes an be lassi�ed as being visible: { p, b, m, 4, w, S, Z, v, f, y,a, ã, o, õ, ẽ }



60 Chapter 4. Phoneme Classi�ation Based on Faial DataVis. Abbr. Class Members of the lass1 B.L bilabial p, b, m, 4o, wo, So, ZoL.D labiodental v, fR.w rounded vowels y, O, u, œ, o, ø, õ2 sil sil silAlv alveolar and dental t, d, n, s, z, lPlt palatal ñ, jvlr velar k, g, NUvl Uvular KU.V unrounded vowels e, a, E, i, @, ẽ, ãTable 4.1: Classi�ation of phonemes based on their visibility. Phonemes lassi�ed as 1 arevisible and 2 are invisible. Phonemes followed by ◦ are lassi�ed based on their seondary plaeof artiulation.three based on the total reognition error (setion 4.1.1) was seleted for training the ontextdependent triphone models for further improvement of alignment. The results are presented inFigure 4.2. The PCA based feature vetors perform better than artiulatory feature vetorsin terms of the total reognition error. The heterogeneous feature vetor, onsisting of bothPCA based features and artiulatory features, performs better than eah taken alone. PCAbased features quantitatively aount for the overall shape or deformation during the speehprodution. The artiulatory parameters inrease the disrimination by quantifying the typialartiulatory harateristis like omplete losure of mouth for /p/. This performane is furtherimproved by triphone HMMs. As one an expet the reognition errors are low for phonemeswhih involve labial region for their oartiulation. The reognition errors are relatively higherfor other onsonant lasses.To verify that substantial training an be ahieved by our small orpus (28 minutes of audio-visual speeh), monophone HMMs were trained using the aousti speeh of our orpus. Theaousti features extrated from the speeh were the MFCC (Mel-frequeny epstral oe�ient)features vetors. The trained HMMs were used for the fored alignment of the same speehdata that was used for training. The resulting aousti segments were ompared with thesegments predited by the ASR engine. The total reognition error used to quantify the visualsegmentation results was determined in this ase. A total reognition error of less than 1% wasobserved. Based on the low reognition error, looking at the �gure 4.2, the set of followingphonemes an be lassi�ed as being visible: { p, b, m, 4, w, S, Z, v, f, y,a, ã, o, õ, ẽ }. Thesephonemes have a omponent of unique artiulatory information embedded in the faial data.Thus, these phonemes need more importane in synthesis of visual speeh animation using thiskind of faial data.The following analysis has been done onsidering only the orretly reognized visual seg-
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ments. Let As and Vs be the starts of the aousti and visual segments of the same phonetilabel, Ae and Ve be the ends of the aousti and visual segments of the label. Let Ds be thestart di�erene and De be the end di�erene, alulated as follows:

Ds = (As− Vs),

De = (Ae− Ve)The mean and variane of Ds and De are alulated for eah of the labels overed by theorpus (see Fig. 4.3 and Fig. 4.4). In the following analysis, fous has been given to onlythose phonemes whih have signi�ant overage in the orpus. A positive expetation of thestart di�erene, (E(Ds) > 0) means visual start leads over the aousti start. This suggests avisual in�uene of the speeh oartiulation on the left ontexts. This is the ase for bilabials,labiodental and rounded vowels. Similarly, (E(De) < 0) means aousti end leads over visualend, with a visual in�uene of the speeh oartiulation on the right ontext. The segmentationresults that was obtained show that /4/, /w/, /S/ and /Z/ fall in this ategory.
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PhonemesFigure 4.4: Mean di�erene in ends of aousti and visual speeh segments4.2 Learning phoneme kinematis using EMA dataThe main disadvantage of faial speeh data is that, the kinematis of the invisible phonemesannot be aptured. This is beause of the fat that, kinemati information about the tonguewhih is one of the ative artiulators for many phonemes, does not get aptured. Alignmentexperiments were done to estimate the omponent of this missing information whih an besupplemented through the addition of a tongue. The alignment experiments were performedusing a data whih inluded the tongue trajetories during phoneme artiulation. This datais di�erent from the data utilized for the segmentation experiment desribed in the previoussetion.4.2.1 Data aquisitionThe data was aquired using Eletromagneti artiulography (EMA) (Hoole and Nguyen, 1999).EMA tehnique provides trajetory data of artiulator �esh-points. It provides data omparableto that available from the well-established x-ray miro-beam system. EMA is extremely wellsuited to the study of oartiulation sine it allows a wide range of utteranes to be reordedin a single session. Sessions of 30 minutes or more are feasible. Moreover, it provides kinematidata in readily analyzable form. This should help to remedy one of the most serious failings



4.2. Learning phoneme kinematis using EMA data 63of instrumental studies of oartiulation, namely the small number of subjets per experiment.EMA is able to monitor the movements on the mid-sagittal plane of most of the artiulatorystrutures that have been the fous of oartiulatory studies, i.e lips, jaw and tongue.For this experiment, we utilized a di�erent data with a di�erent phoneti transript. Thisdata was aquired by Sébastien Demange (Demange and Ouni, 2011). It onsists of trajetoriesof 8 �esh-points on the mid-sagittal plane and 4 �esh-points, symmetrially plaed either sidesof it. The �esh-point trajetories are reorded along with the aoustis while the subjet wasrendering speeh (see Fig. 4.5). Sensors are glued to the skin at the 12 respetive loations bysurgial glue. Among these 12 sensors: 4 sensors are on the tongue, 4 sensors are on lips; 1on the lower inisor (to trak the jaw movement); 3 sensors, 2 symmetrially plaed behind theears, and 1 on the bridge of the nose (for the removal of any head movement). The data onsistsof 400 sentenes whih is for a total duration of about 16 minutes. The sensor trajetories arereorded at a sampling rate of 200 Hz. Wires onneted to the sensors and the transmitters arepresent all the time during the aquisition. There might be twists and turns in the tongue whihannot be aurately alulated and eliminated from the aquired data. The overall auray ofthe aquired data gets a�eted by these drawbaks.4.2.2 Feature extrationFaial speeh data and EMA data are not diretly omparable. Considering this, alignmentexperiments were done using two sets of feature vetors extrated from EMA data alone. Thisway it would help in omparing the improvement of inlusion of the tongue data. The alignmentexperiments were done �rst using feature vetors having only the labial and jaw movement basedfeatures based features. Then the same experiment was done using vetors having both labialand jaw based features and tongue related features. Though tongue related features are alsorelated to artiulation, we refer to only the labial and jaw related feature as artiulatory featuresin the following disussion. They are alulated just as in the ase of faial data (see Fig. 4.5).The parameters related to the tongue are the ones whih aount for the movement of the tonguetip, horizontal displaement of the tongue, tongue shape, tongue height (see Fig. 4.6).4.2.3 ResultsThe HMM training and alignment is done exatly in the same way as explained for the faialdata. Two sets of HMMs are trained using the two feature sets extrated from EMA data. Onlymonophone HMMs were trained and used for segmentation. This is beause of the overagebeing low for a large set of triphones. The reognition riterion explained in the previous setion
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4.3. Conlusion 65is used for the analysis. The segmentation results are obtained for the two sets of HMMs. Thereognition errors are determined for eah phoneme lass for the segmentation predited by thetwo HMM sets. This is in similar lines as explained in the ase of faial marker data. The resultsin omparison with those obtained by HMMs trained using features extrated from the faialmarker data are given in �gure 4.7. Faial data and EMA data have a lot of di�erenes besidesjust the phoneti transript, duration and overage of phonemes. There are other signi�antdi�erenes suh as the following. First, Unlike faial data where the artiulation is ompletelyuninhibited and natural, the a�et of the presene of sensors on artiulation annot be ompletelyruled out. In addition to that, the faial deformation happening during the artiulation of speehannot be ompletely aptured through just 5 points (4 on lips and 1 on the hin), in this respetfaial data an be onsidered better. Besides, trajetories of just 4 points on the tongue areaptured and parameters were extrated subsequently. This an not apture the omplexityof the artiulatory deformation of the tongue. These di�erenes and fators aount for themarginal improvement with the addition of tongue related information, whih is ontrary towhat one would expet. Broadly, the addition of tongue features improves the alignment resultsfor most of the phonemes whih don't fall in the ategory of visible phonemes (see �gure. 4.2).For the phonemes whih fall in the ategory of visible phonemes, rather preditably, the additionof tongue information does not improve the reognition.Figures 4.8 to 4.11 give the start and end statistis of the phonemes based on the alignmentresults without and with tongue related data to the artiulatory features. Considering thosephonemes for whih the reognition errors have redued with the addition of tongue data, thefollowing observations an be made. For velars, the expetation of aousti to visual startdi�erene is positive, i.e. (E(Ds) > 0), whih indiates the o-artiulation e�et on their leftontextual phonemes. For alveolars and dentals, the variane of the di�erene in aousti andvisual start (Ds) has redued. Besides, for the phoneme /l/, the di�erene in the aousti andvisual ends ((E(De) < 0)) shows an in�uene on the following phonemes. For other phonemes,these �gures show that there is no signi�ant hange in the statistis with the inlusion of thetongue data. This an be aounted by the reognition errors, whih has not improved with theaddition of tongue data.4.3 ConlusionThe results of segmentation using EMA data whih inludes tongue related features, in om-parison of those obtained by faial features, shows only a marginal improvement. This is inagreement to the kind of result shown in (Yehia et al., 1998). We lassify phonemes as visible
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4.3. Conlusion 69based on these automati segmentation results. This lassi�ation is used to analyze the per-eptual evaluation results. It is useful for bringing out the orrelation between objetive andpereptual evaluation results, thus paving way for better objetive evaluation tehniques2.

2Signi�ant portion of this hapter was published as (Musti et al., 2010).
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Chapter 5
Unit Seletion

In the previous hapter we have presented an overview of our text to aousti-visual speehsynthesis system alled ViSAC. It synthesizes speeh using unit-seletion and onatenation ofspeeh segments from a pre-reorded speeh orpus. Suh speeh synthesis systems whih arebased on unit seletion typially have three stages. For a given text to be synthesized, the NLPmodule �rst generates the spei�ation of the required target phoneme sequene. The spei�-ation is then onverted in terms of the synthesis unit. For example, the synthesis unit in thease of our system is diphone. It is neessary that the target spei�ation has all the importantinformation whih a�ets speeh realization. Then, for eah required target in the spei�ation,all the andidates in the orpus are ranked based on a target ost funtion. This ost funtionis generally de�ned as the weighted sum of individual feature osts. At the end of this an-didate ranking, for eah required target in the spei�ation, utmost a �xed maximum numberof andidates are pre-seleted and rest pruned. This senario of multiple possible andidatesfor eah required target in the sequene, de�nes a lattie. Finally, the sequene of those �nalandidates whih optimizes a total ost funtion is seleted for onatenation. This is done bythe resolution of the lattie through Viterbi algorithm. The total ost funtion is the weightedsum of the target ost and the onatenation osts.For all the three stages mentioned above, `spei�ation of targets' or `desription of andi-dates' is ruial. This also shows that the target feature struture and the alulation of targetost plays a entral role. In the pre-seletion stage, it is neessary that the ranking given tothe andidates present in the orpus is onsistent with the ordering based on their pereptualsuitability for any required target. This is also important to ensure that no good andidatesget pruned. This depends on the target ost. Besides pre-seletion, target ost also in�uenesthe �nal seletion of andidate sequene from the lattie. The set of target features and theiroptimum weights whih de�ne the target ost, deide the e�ieny of the target ost funtion71



72 Chapter 5. Unit Seletionand hene the synthesis performane. With respet to target ost, the following two aspetsneed to be explored:
• Deiding the set of target features that will be used for target spei�ation or andidatedesription.
• Tuning the weights of the target features to optimize the overall synthesis performane,for a given orpus.In addition to the target ost, the onatenation ost also needs to be onsidered. Theonatenation ost estimates the pereptual disontinuity due to the onatenation of two an-didates. The alulation of the aousti and visual onatenation ost in our system was ex-plained in the previous hapter. The objetive of unit seletion is to have a �nal synthesizedspeeh whih is pereptually similar to a natural speeh sequene (hypothetial) rendered bythe speaker. This requires at least a ontinuous speeh without pereptible disontinuities, andonstituent speeh segments whih are loally suitable for eah required target. This requires anoptimum ombination of target and onatenation osts. This, indiates the need to tune thetotal ost funtion besides optimizing the total ost.This hapter deals with these di�erent aspets of unit seletion. In the following setions, wedesribe experiments that were performed with the objetive of optimizing the synthesis results.In the following setions, we �rst give an aount of the set of target features in setion 5.1. Insetion 5.2, we detail experiments that were performed to modify target feature values or designnew target features for visual modality. In setion 5.3, we explain a target ost tuning approahthat we have developed before onluding.5.1 Target featuresAt the time of synthesis, targets are spei�ed using a set of features, generally alled targetfeatures. This set of target features is generally deided based on the linguisti and phonetistudies whih explain various patterns in speeh. Consequently, the lassially used targetfeatures inlude linguisti, phoneti and prosodi ontext. Some of these features are relevantirrespetive of a language and some might be language-spei�. For example, unlike phonemevoiing whih is usually relevant irrespetive of a language, the observation of rhythm group(RG) pattern is relevant for Frenh. This is beause in Frenh the end of RG gives the positionof the stressed syllable whih is usually the last syllable of RG. Hene, the features related to RGthat are relevant to Frenh, might not be relevant or equally important for other languages. Forany target or andidate, these feature values are set for both targets and andidates solely based



5.2. Corpus based visual target features 73on the text analysis. In the ase of a text to be synthesized, the desription of a target in termsof these features provides an `abstrat' information about speeh. The target feature ost for apartiular andidate is based on the feature value of the target and that of the andidate beingonsidered. The expetation is that same feature values aount for a hypothetial similarity inthe speeh realization and hene also the andidate suitability.In our system, these features desribe a phoneme at various logial levels in whih a sentenean be sub-divided (see Fig. 3.6). Some of the features are more spei� to Frenh language.These set of features, espeially the linguisti features, are predominantly generi and an bediretly applied irrespetive of the orpus being used. The set of linguisti features inludesphoneme number in the syllable; syllable kind; syllable position in the rhythm group (RG) andsentene; syllable number in the word, RG and sentene; word position in RG and sentene;word number in RG and sentene; RG position in sentene; proximity of the nearest left andright silene; kind of sentene.They either have �nite integral values or ategorial values based on the feature. Thesefeatures are either used to desribe the harateristi of a target or a andidate or a ontextual(left/right) phoneme or both. The phoneti features inlude, besides the phoneme identity, thelist of features given in table 5.1. Exept the phoneme identity, the other phoneti features areused to de�ne ontext (left and right phoneme). This set of generi target features whih areextrated through the text analysis is augmented by additional orpus-based target features.This is done to take the speaker harateristis into aount whih is important espeially forthe visual modality. Hene, the orpus spei� features designed mainly aount for the visualmodality of speeh.5.2 Corpus based visual target featuresWe have desribed the set of generi target features in the previous setion, whih are generallyassumed to depend solely on text analysis. The set of target features related to phoneti ontextalso belongs to this ategory. The phoneti ontext of any partiular phoneme in�uenes itsartiulation signi�antly. This is well known as oartiulation. The degree by whih a phonemein�uenes its surrounding phonemes or is in�uened by them varies (Löfqvist, 1990). The estab-lished phoneti knowledge regarding oartiulation holds almost all the time (Ladefoged, 1982;Ladefoged and Maddieson, 1995). Hene, these target features and their values for di�erentphonemes are usually based on the haraterization de�ned by phonetiians that is found in theliterature. Hene, their values are set based on the information extrated through text analysis.However, the phoneti ontext also varies signi�antly based on the speakers' artiulatory prefer-



74 Chapter 5. Unit SeletionTable 5.1: These set of features de�ne the phoneti ontext of a phoneme, target or andidate.These feature values either desribe previous or following phoneme. The target feature ostsfor these features are binary valued funtions taking either 0 or 1 based on whether the featurevalues being ompared are same or di�erent respetively.Feature Name Possible valuesVoiing voied, unvoiedKind vowel, onsonant, semivowelPlae of Arti-ulation bilabial, labiodental, inter-dental,alveodental, alveolar, post-alveolar,palatal, post-palatal, prevelar, velar,post-velar, uvular, laryngeal, lateralManner of Ar-tiulation Oral, nasal, plosive, friative, liquid,semi-plosiveLip Shapeduring artiu-lation spread, protruded
enes and idiosynrasies. Due to the usage of a reorded audio-visual orpus, in ase the speakerhas any peuliar artiulation, it might be visually or aoustially pereived in the synthesizedspeeh and present some inoherene. For example, let us assume that andidates are beinglooked up for a target phoneme whose left ontextual phoneme is onsidered to have lip protru-sion during its artiulation. Then obviously, those andidates whose left ontextual phoneme isonsidered to have a lip protrusion during its artiulation will get higher ranking. If this targetontextual phoneme is atually artiulated di�erently and not atually protruded, then seletinga andidate with a protrusion left ontextual phoneme might be inappropriate. This kind ofategorization might slightly vary from person to person and it is well known (Johnson et al.,1993; Raphael and Bell-Berti, 1975; Maeda, 1989). Hene, in ase these feature values have anyinonsisteny in omparison with the atual harateristi in the orpus, it will be visible inthe synthesized speeh. We have performed two experiments whih aim at a phoneti ontextadaptation that is based on the harateristis observed in the orpus. They an be divided intothe following two ategories:

• Changing target feature values for some phonemes based on the artiulatory harateristisestimated from the orpus. We refer to this approah as phoneti ategory modi�ation.
• Replaing ategorial phoneti target features, by real valued target features to representorpus spei� harateristis. These features enode the same information aounted bythe ategorial features, with higher preision. We refer to this approah as ontinuousvisual target ost.
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Figure 5.1: Jaw Opening statistis. Eah segment represents a phoneme, entered at the mean and itslength being twie the standard deviation. The number of ourrene of eah phoneme is presented.In the following subsetions, we desribe these experiments. The modi�ed feature values orintrodued features are those whih mainly haraterize the visual modality of speeh. Hene, werefer to them as visual target ost. The main goal is to see whether these experiments improvethe performane of seletion and onsequently of synthesis. The objetive evaluation results ofthese two methods are then presented in subsequent subsetions.5.2.1 Phoneti ategory modi�ationAll the target features whih provide the information related to phoneti ontext are ategorial(see Table 5.1). The orresponding phoneti feature osts are binary; whih take 0, when thetarget and andidate feature values are same and 1, when they are di�erent. Among these targetfeatures, two features aount for the patterns in visual speeh animation. They are `Plae ofartiulation' and `Lip shape during artiulation'. We would refer to the latter feature as `LipShape'. `Plae of artiulation' information is enoded only for labial phonemes and also theirplae of artiulation is visibly unambiguous. Hene, we fous on `Lip Shape'.We want to determine the harateristi lip shapes of phonemes as observed and diretlymeasurable from the reorded audiovisual orpus. In ase the observed `Lip Shape' is di�erentfrom the expeted lassial ategorization, the ategory is modi�ed aordingly. This informationwill be used to rede�ne this feature's values while speifying targets and desribing andidates
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Figure 5.2: Lip Protrusion statistis. The phonemes of interest are framed: the `protruded' phonemesare {y, ø, œ, @, œ̃, u, o, õ, O , ã, w, 4 }. The segments plotted in red, green and brown seem to violatethe general pattern realulated with andidates without a `protruded' ontext. The segments plotted inred orrespond to the phonemes whose ategory was modi�ed. The brown and green segments are of thosephonemes where statistis were realulated with andidates without `protruded' ontext.more aurately. The expetation was that their synthesized visual speeh omponent wouldbe more similar to the real visual speeh after the hanges. This modi�ation of the phonetiontext should modify the visual target ost, whih is a part of the target ost (TC). The visualtarget ost of a phoneme (left or right phoneme of a diphone) is alulated by summing thevisual feature di�erenes of the left and the right ontextual phonemes.We performed a statistial analysis of the artiulatory features. These set of artiulatoryfeatures inluded lip protrusion, lip opening, lip spreading and jaw opening (see Fig. 3.4) (Robertet al., 2005). The statistis were alulated by onsidering the artiulatory feature vetors atthe enter of the phoneme artiulation. This is also the plae of onatenation in the visualand aousti domain. The statistis of the phoneti artiulatory features are shown in �gure5.1 to 5.4. We onsidered the mean, variane and the number of ourrene of eah phoneme.For any given phoneme, the lip shape an be either `Protruded' or `Spread', or might not haveany typial shape in whih ase we lassify as `not protruded and not spread' whih we referto as simply `none'. The range of artiulatory feature statistis for eah of these ategories isdetermined �rst. This is depends on the pattern that majority of phonemes belonging to eahategory seem to follow. Eah phoneme ategory is re-examined based on these intervals thus
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œ̃, u, o, õ, O , ã, w, 4 } was lassi�ed as `protruded' and the set of phonemes whih inluded{ i, e, a, E, ẽ} was ategorized as `spread' phonemes . All the other phonemes were onsideredas `not spread and not protruded' based on the shape of the lips. This ategorization generallyholds. Nevertheless, we an observe that some phonemes need to be reonsidered. For thispurpose and to be more aurate, the oartiulation a�ets of the surrounding phonemes shouldbe removed. In fat, if one of the neighboring phonemes is protruded, for instane, it is verylikely that the surrounded phoneme will be protruded too, even if it is not its main artiulatoryharateristi, beause of oartiulation. Therefore, for phonemes whose visual artiulationseemed to be di�erent from their initial lassi�ation, their artiulatory feature statistis wererealulated by onsidering a subset of phoneme instanes in the orpus. For example, thephoneme /f/ seemed to be `spread' unlike its lassial phoneti lassi�ation of `not spread'.Thus, only its ourrenes in the orpus without spread phonemes in its neighborhood weretaken into aount. Its artiulatory feature statistis were realulated to on�rm its e�etivevisual artiulation. The following set of phonemes were onsidered for realulation to hek iftheir e�etive artiulation is `spread': {f, v, t, d, n, s, z, ñ, k, g, N }. For the two phonemes{S and Z}, the artiulatory feature statistis without rounding ontext was realulated. Thesestatistis were realulate to ensure that the observations are not due to the ontextual in�uene
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Figure 5.4: Lip Spread statistis. The phonemes of interest are framed: the `spread' phonemes are {
i, e, a, E, ẽ}. The brown and green segments seem to violate the general pattern and so their statistiswere realulated with andidates without `spread' ontext. The segments plotted in green orrespond tothe phonemes whose ategory was modi�ed.but representative of the phoneme artiulation itself. Initially, the sets of phonemes {f, v, t}, {S,
Z} and {ã, œ̃} were onsidered as `none', `none' and `protruded` respetively. However, based onthe statistis and the observation of the data, we found out that the strategy of our speaker isquite di�erent from this de�nition. For this reason, we modi�ed the artiulatory target featuresfor these sets phonemes to `spread', `protruded' and `none' respetively.In subsetion 5.2.3, we present an evaluation where we ompared the synthesis using theinitial artiulatory desription (IPD) and the modi�ed phoneti desription (MPD).5.2.2 Continuous visual target ost funtionIn the previous subsetion, we explained the re-lassi�ation of phoneti harateristis intodistint ategories from the statistis of the artiulatory features. The goal was to adapt thelassi�ation to the real ones based on the orpus used. But one an observe that it is noteasy to take a disrete distint deision from these statistial values. So the visual target ostomponent has to be formulated as a real value in the range [0, 1] rather than binary value.The artiulatory harateristis should be onsidered as ontinuous. So the visual target ostomponent has to be formulated as a real value in the range [0, 1] unlike binary value. Foralulating the ontinuous target ost we used the artiulatory feature statistis alulated as



5.2. Corpus based visual target features 79explained in the previous subsetion. We explored two di�erent formulations of ontinuousvisual target ost. First formulation is based on a work done by Mattheyses et al. (2010) whihuses ontextual phoneme di�erene. The seond formulation is based on an approah that wedeveloped, whih is based on ontextual signi�ane. The artiulatory feature statistis arerepresented by µij and σij to represent the mean and variane of the phoneme (index i) andusing the artiulatory feature (index j).5.2.2.1 Visual target ost funtion based on ontextual phoneme di�ereneIn (Mattheyses et al., 2010), the authors used shape and texture parameters extrated by ap-plying Ative Appearane Models on 2D faial images of speeh animation. We tried to applythe same logi for the alulation of the ontinuous target ost using artiulatory features. Inthis formulation, the alulation of visual target ost is done as follows: Two phonemes areonsidered similar in terms of their visual representation, if their mean representations are alikeand, in addition, if these mean representations are su�iently reliable (i.e. with small summedvariations). Two matries were alulated, whih express for eah phoneme pair (p, q); the dif-ferene between their mean representations D
µ
pq and the sum of the varianes of their visualrepresentation Dσ

pq, respetively:
Dµ

pq =

√
∑

j

(µpj − µqj)2

Dσ
pq =

∑

j

σpj +
∑

j

σqjSaling both matries between zero and one gave D
µ
′

pq and Dσ
′

pq , after whih the �nal di�erenematrix was alulated:
Dpq = 2Dµ

′

pq +Dσ
′

pqMatrix Dpq is used to alulate the visual target ost during seletion.5.2.2.2 Visual target ost funtion based on ontextual signi�aneIn the previous method, the point of emphasis was entered on the di�erenes in ontextualphonemes. It doesn't take into aount the nature of the main target phoneme. For eahphoneme, the feature with least variane is the one whih gets least modi�ed due to oartiulationand the features with higher variane get a�eted more due to oartiulation. Thus, obtainingsimilar ontext is important for features whih get more in�uened due to oartiulation. Weapplied this priniple for the alulation of ontextual phoneme di�erene Dpq(i) as a funtion



80 Chapter 5. Unit Seletionof the entral target phoneme i whih is being looked up in the orpus. The following notationis assumed: p is the ontextual phoneme (left or right) of phoneme i in the target utterane and
q is the ontextual phoneme of the andidate for i. The di�erene of the mean of the ontextualphoneme was weighted by the variane of the target phoneme:

Dpq(i) =
∑

j

wij |µpj − µqj| (5.1)
wij =

σij
∑

j σij

Dpq(i) is saled between zero and one. This gives the distane between ontextual phonemesas a funtion of the phoneme i for whih, the proximate ontext is being looked up during theseletion proess. The weight wij gives the relative importane of the omponent j with respetto the other omponents. Higher the variane σij , higher the weight on the ontextual di�erenefor the omponent j. Thus, wij re�ets the fat that ontext has important impat on theseomponents with higher variane.5.2.3 Objetive evaluation of synthesis resultsIn this subsetion we desribe the objetive evaluation done to ompare the various visual targetosts. For the purpose of evaluating the synthesis results, we used a method based on leave-one-out ross-validation tehnique. We synthesized eah of the sentenes in the orpus, a total of 319sentenes. This is done by exluding the sentene being synthesized from the seletion orpus.Eah of the synthesized sentenes are ompared with the real sentenes. The advantage of thismethod is that it avoids building a spei� test orpus for evaluation. However, we marginallyredue the hoie of seletion, by exluding some diphones from the seletion proess.After synthesizing a given sentene, all the half-phones (two half-phones in eah diphone)of the synthesized sentene and the atual sentene were re-sampled individually to make thenumber of visual samples equal in both the real and synthesized sentenes (see Fig. 5.5). Thiswas done using a simple linear interpolation of the 12 PCA oe�ients. After this, the Pearson'sorrelation oe�ients between 12 PCA oe�ients of all the synthesized sentenes and thereal sentenes atually present in the orpus was determined. Similarly, Pearson's orrelationoe�ients between 4 artiulatory parameters was also determined. The root mean square error(RMSE) between artiulatory feature and PCA oe�ient trajetories of the synthesized andthe real sentenes present in the orpus was determined.If xd and yd are the sequenes of the dth PCA oe�ient of a real and synthesized sentene
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diphone		ba diphone	acFigure 5.5: Adjusting diphone lengths. Eah of the orresponding half-phones whih are part of thediphones in the synthesized and real sentenes are re-sampled through linear interpolation to make thenumber of visual samples equal.having n samples:
• The Pearson's orrelation oe�ient is alulated as follows:

rxdyd =

n
∑

i

xd(i)yd(i)−
∑

i

xd(i)
∑

i

yd(i)

√

n
∑

i

xd(i)2 − (
∑

i

xd(i))2
√

n
∑

i

yd(i)2 − (
∑

i

yd(i))2
(5.2)

• The Root Mean Squared Error (RMSE) is alulated as follows:
rmsexd,yd =

√
√
√
√

1

n

n∑

j=1

(xd(j)− yd(j))2 (5.3)Though it is almost impossible to have a perfet orrelation between the real and synthesizedsentene, it seems to be a reasonable assumption that the trajetories for two diphones seletedwith similar phoneti ontext and linguisti desription would be signi�antly orrelated. For thevisual target ost, we performed objetive evaluation of the visual speeh animation alone. Thiswas based on the assumption that the visual speeh animation would be strongly orrelated withthe underlying aousti speeh. Besides, the features modi�ed aount predominantly for thevisual modality of speeh unlike some others like phoneme artiulation, voiing whih aountfor the aoustis of speeh. An example of the trajetories of the �rst prinipal omponent of asynthesized sentene and the orresponding real sentene are shown in �gure 5.6.Evaluation resultsBased on the above explained objetive evaluation tehnique the performane of the variousvisual target ost tehniques were determined (See tables 5.2 and 5.3). The target ost teh-niques with the binary visual target ost omponents (see setion 5.2.1): Initial artiulatory



82 Chapter 5. Unit Seletiondesription (IPD) and Modi�ed phoneti desription (MPD) performed omparable to eahother (rxdyd = 0.813 for PC 1). Similarly, the two ontinuous visual target osts; ontextualphoneme di�erene based approah (CPD) and phoneme di�erene based on ontextual signif-iane (PDCS) performed omparable to eah other (rxdyd = 0.816 for PC 1). The ontinuousvisual target osts gave marginally better results onsistently ompared to the binary visual tar-get ost approahes even when di�erent weights for the visual target ost omponent were used.This is also apparent when observing the performane with respet to artiulatory features. Infat, the orrelation for the �rst two methods IPD and MPD is 0.70 and it inreases up to 0.72for the CPD and PDCS for jaw opening (see table 5.2). Table 5.3 shows the RMSE betweenreal and syntheti trajetories for the artiulatory features. The RMSE is almost the same forthe 4 methods. We should notie that eah of the examined methods a�ets the ranking of theseleted andidates though it is not that obvious that there are di�erenes between them. Weshould emphasize that the relative importane of this examined visual target ost omponent inthe overall target ost is 1%, as we have a large set of features. Therefore this an explain thismarginal variation in the performane.Hene, these results indiate that a ontinuous target ost omponent represents the di�er-enes between phonemes better, optimizing the synthesis performane for partiular orpus thandisrete binary target ost omponents has to be ontemplated. Given the limited generalizingpower, for a orpus of small size and without a very well balaned diphone overage in the or-pus, the ategorial target ost based on lassial knowledge an be onsidered su�ient. Oneshould observe that the objetive evaluation used in this work is purely visual.Examining the results of the objetive evaluation presented here, it an be said that theyare quite good. The overall orrelation is quite high. In addition, the RMSE is very low andaeptable. In fat, the jaw opening RMSE is around 2mm, lip opening (2.7mm), lip spreading(1.38mm) and lip protrusion is 4mm. This is a good indiation that our synthesis methodprovides similar trajetories to those of real sentenes. This is quite interesting, as we knowthat the purpose of synthesis is not to generate the exat speaker artiulation (unlike aousti-to-artiulatory inversion). As natural speeh realization is variable and so good synthesis analso be obtained by di�erent trajetories whih don't exatly math with one real referene.But as our system takes into aount the spei�ity of the speaker into aount, we manageto obtain a similar result whih is loser to the speaker's artiulation. Thus, it seems that ouraousti-visual synthesis, based on the main idea of onsidering the speeh signal as bimodal,was able to apture the speaker spei� artiulation �nely. This an be learly seen in Figure5.6. It learly indiates that it might improve the synthesis results if the target features are



5.3. Target feature seletion and weight tuning 83modi�ed/optimized to take any partiular orpus they desribe.PC IPD MPD CPD PDCS1 0.813 0.813 0.816 0.8162 0.715 0.715 0.719 0.7203 0.726 0.725 0.729 0.729JO 0.708 0.708 0.728 0.728LP 0.694 0.693 0.698 0.698LO 0.671 0.670 0.689 0.689LS 0.636 0.636 0.640 0.640Table 5.2: Correlation oe�ients between the real and synthesized trajetories of �rst 3 prinipal omponentoe�ients and the three artiulatory features by various target ost strategies. IPD: initial phoneme desription,MPD: Modi�ed phoneme desription, CPD: ontextual phoneme di�erene, PDCS: phoneme di�erene based onontextual signi�ane. The artiulatory features: JO (jaw opening), LP (lip protrusion), LO (lip opening) andLS (lip spreading). The �rst four prinipal omponents aount for about 58%, 24% and 7% respetively.PC IPD MPD CPD PDCS1 7.86 7.86 7.78 7.772 6.67 6.67 6.63 6.623 5.67 5.67 5.64 5.64JO 2.11 2.11 2.06 2.06LP 4.04 4.04 4.02 4.02LO 2.70 2.70 2.63 2.63LS 1.38 1.38 1.37 1.37Table 5.3: Root Mean Square Error (RMSE) in millimeters between the real and synthesized trajetories ofthe four artiulatory features (same notations as table 5.2).
5.3 Target feature seletion and weight tuningThe key to the synthesis of `natural' sounding speeh is the assignment of a target ost whih isorrelated to human pereption. This is important not only for the pre-seletion of appropriateandidates from a large orpus but also for the seletion of the �nal andidate sequene forsynthesis. The set of target features and their optimum weights a�et the performane of thetarget funtion. One the set of target features is deided, the target feature weights are tunedsuh that the overall synthesis performane is the best possible with the orpus being used.We developed an iterative algorithm to simultaneously perform redundant feature eliminationand weight tuning. The algorithm whih is appliable to unit seletion based speeh synthesisin general, is presented in the ontext of Audio-Visual speeh synthesis. A target ost funtionis evaluated based on the omparison of its andidate ranking and the ordering given by anobjetive dissimilarity measure omparing two speeh segments. This target ost evaluationis similar to the Minimum Seletion Error approah presented in (Lataz et al., 2011). It is
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Figure 5.6: Resampled Syntheti and Real trajetories for the �rst prinipal omponent for thesentene �Sur es mots, elle sortit vivement de la pièe.� with the following phoneme sequene�sil s y K s e m o sil E l s O K t i v i v @ m ã d @ l a p j E s sil� (see Fig. 5.5 ). The Pearsonorrelation for the �rst prinipal omponent was 0.89.generally possible that during weight tuning some target features are assigned negligible weights.This is impliitly feature elimination. Unlike this impliit feature elimination, we perform expliitfeature elimination and update weights of all the other retained features, both simultaneouslyin eah iteration.5.3.1 Unit seletion and onatenationWe brie�y revisit the unit seletion framework for speeh synthesis. A typial TTS (text tospeeh synthesis) algorithm an be broadly divided into two steps, generation of spei�ationand the atual synthesis. This division is made to separate the steps whih perform a targetost alulation from those whih do not. In the �rst stage, the text to be synthesized isanalyzed. This stage produes the spei�ation of the phoneme sequene to be synthesized
tn1 = (t1, ...tj , ...tn), n phonemes starting from 1, for the input text. The seond stage doesthe atual synthesis of the required phoneme sequene in two steps, pre-seletion and �nalseletion through lattie resolution. This seond synthesis stage depends on the target ostalulation for its synthesis performane. The target ost alulation is done by the omparisonof target spei�ation to the andidate desription in the orpus. The set of andidates whih



5.3. Target feature seletion and weight tuning 85are `pereptually' similar are pre-seleted for the �nal searh based on this target ost. A generaltarget funtion is alulated as follows:
C(ti, ui) =

F∑

ρ=1

wρCρ(ti, ui) (5.4)where, ti, ui are the target and a andidate; F is the number of target features; Cρ(ti, ui)(ρ =

1, ..., F ) is the target feature osts between the elements of the target and andidate featurevetors; wρ is the weight of a feature ρ:The seletion among the set of pre-seleted andidates is operated by resolution of a lat-tie of andidates using the Viterbi algorithm. The result of this seletion is a path in thelattie of andidates whih minimizes a weighted linear ombination of three osts: the tar-get ost (∑n
i=1C(ti, ui)), the aousti join ost (∑n

i=2C
aj(ui−1, ui)), and the visual join ost(∑n

i=2 C
vj(ui−1, ui)), that is

CT (tn1 , u
n
1 ) = min

u1,...,un







w
∑n

i=1C(ti, ui) +

waj

∑n
i=2 C

aj(ui−1, ui) +

wvj

∑n
i=2C

vj(ui−1, ui)

(5.5)where w, waj and wvj are weights for the omponent target ost, aousti join ost and visualjoin ost. We hoose these weights as explained in (Toutios et al., 2011) (see setion 6.1.2).An ideal target ost funtionThe usage of target ost funtion is to rank andidates in the order of their suitability to �t atarget position during synthesis. Eah andidate is assigned a ost (positive real number) bythe target ost funtion, lower the ost better suitable is the andidate for a target position. Ifwe assume that there is a metri to measure the pereptual dissimilarity between a target anda andidate, then ideally, the ranking of andidates based on their target osts should be thesame as that of the ordering based on their pereptual dissimilarities to the target.At the time of synthesis, the target spei�ation only has the target feature desription,but no aousti or visual speeh realization. So, the deision is made based on the target ost.Hene, an optimum target ost funtion is very important for good synthesis results. A goodset of target features and well tuned weights de�ne a good target ost funtion. The followingsetion presents a simple and robust iterative algorithm to simultaneously eliminate redundantfeatures and tune the weights of other target features.



86 Chapter 5. Unit Seletion5.3.2 Target feature seletion and weight tuningThe algorithm to be desribed alleviates the problem of redundany and noise that is set in dueto the exhaustive set of features onsidered. Its importane is also due to the fat that, witha large set of features, it is pratially infeasible to have a orpus whih overs all the featureombinations possible. The algorithm uses the orpus, for whih we have both atual speehrealizations and target feature desriptions for eah of the andidates present in it.Sine for any speeh segments, there are possible variants whih are pereptually onsideredgood alternatives. But, it is pratially impossible to rank andidates in terms of their absolutepereptual quality with respet to any target. Being 'similar' to an already existing speeh unitis a reasonable way to say how well will a andidate �t in a `target' position. If we devie away to measure the dissimilarity between two units, it an be used on the andidates in theorpus. They have both the target feature desription and speeh realization available. Theomparison between the ordering obtained by this measure versus the ranking using the targetost an be used to evaluate the target funtion. In the following paragraphs, we de�ne twothings neessary for the evaluation of a target funtion: disorder with respet to a target ostfuntion and dissimilarity between two speeh realizations.5.3.2.1 DisorderThe disagreement in the ranking of andidates given by the target ost funtion versus theordering by dissimilarity measure, needs to be quanti�ed. With respet to a partiular target
t whose speeh is available, the andidate ranking based on the target ost funtion should bein agreement with their dissimilarity based ordering. We refer the ordering based on the targetost as ranking. Consider a target t and two andidates u and v. With respet to the target
t, let their dissimilarity measures be D(t, u) and D(t, v), and their target osts be C(t, u) and
C(t, v). Then for an ideal target ost funtion, one of the following three onditions should betrue:1. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)2. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)3. C(t, u) < C(t, v) ⇔ D(t, u) < D(t, v)The dissimilarity measure is based on the omparison of two speeh realizations. We assumethat similar speeh realizations are pereptually similar. This assumption implies that thedissimilarity gives an aurate estimate of the pereptual suitability of a andidate. So through



5.3. Target feature seletion and weight tuning 87Target Cost Dissimilaritybased based ordering Disorder alulationranking Ideal Realsenario senario
C(t, c1) D(t, c1) D(t, c1) c1 : δt(c1, c2) + δt(c1, c3) + δt(c1, c4) =

0 + 0 + 0

C(t, c2) D(t, c2) D(t, c4) c2 : δt(c2, c1) + δt(c2, c3) + δt(c2, c4) =
0 + |D(t, c2)−D(t, c3)|+ |D(t, c2)−D(t, c4)|

C(t, c3) D(t, c3) D(t, c3) c3 : δt(c3, c1) + δt(c3, c2) + δt(c3, c4) =
0 + |D(t, c3)−D(t, c2)|+ |D(t, c3)−D(t, c4)|

C(t, c4) D(t, c4) D(t, c2) c3 : δt(c4, c1) + δt(c4, c2) + δt(c4, c3) =
0 + |D(t, c4)−D(t, c2)|+ |D(t, c4)−D(t, c3)|Table 5.4: This table illustrates the idea of omparison of a dissimilarity measure based orderingand the ranking assigned based on the target ost. A target t and four andidates {c1, c2, c3, c4}are assumed. It is assumed that for the target and the andidates, the speeh realization isavailable for omparison. D(t, ci) is the dissimilarity between the speeh realizations of thetarget t and andidate ci, whih is a symmetri funtion. C(t, ci) is the target ost between thetarget spei�ation of t and andidate ci. For the given target and with respet to eah availableandidate, the dissimilarity based ordering of andidates and the target ost based ranking isompared to alulate the disorder. The total disorder is the sum of the fourth olumn.the dissimilarity measure we are expressing the di�erene in their speeh realizations. Ourapproah is based on this idea that the ordering given by an ideal target ost funtion shouldagree with the ordering given by this dissimilarity measure. During pre-seletion, the target ostfuntion assigns a ranking to the available andidates, for pruning the less suitable andidates.For this reason, we refer to the target ost based ordering as ranking. Unlike some systemswe don't train the target ost funtion to omputes the dissimilarity (Hunt and Blak, 1996).We only fous on the andidate ordering given by the target ost funtion. The above threeonditions state that, the omparison of two andidates for a target position based on theirtarget osts would be similar to that based on their dissimilarity to the target, if the target wasto have a speeh realization available (hypothetial). We denote the above three onditions bythe following:

C(t, u) ∗ C(t, v) ⇔ D(t, u) ∗D(t, v) (5.6)Where, ∗ ∈ {<,=, >}.We de�ne the disorder with respet to this target and the two andidates as follows:
δt(u, v) =







0 if ondition (5.6) holds
|D(t, u)−D(t, v)| else (5.7)The above mentioned explanation is illustrated in table 5.4.



88 Chapter 5. Unit SeletionFor eah of the phonemes p in the phoneme set, let Up be the omplete set of andidatesin the orpus with that phonemi label. Using leave-one-out tehnique, onsidering eah of theelements from this set as a target and all the others as andidates, the total disorder for thatphoneme is alulated for a partiular target ost funtion as follows:
∆ =

∑

t

∑

(u,v)

δt(u, v) (5.8)Where, u, v, t ∈ Up and t 6= u 6= v. In the following setions we refer to this total disorder assimply disorder.5.3.2.2 Dissimilarity of two unitsWe take a dissimilarity measure similar to that in (Lataz et al., 2011) for the aousti modality.Here, we desribe a funtion that we have used to ompare two speeh segments. It gives anestimate of their dissimilarity. We onsidered four omponents to onstitute the dissimilaritymeasure D(u, v) between units u and v of a partiular phoneme p as follows:
D(u, v) = wdurD

dur(u, v) + wacD
ac(u, v)+

wvsD
vs(u, v) + wf0D

f0(u, v)
(5.9)

Ddur, Dac, Dvs and Df0 are the omponents in terms of the duration, aousti speeh, visualspeeh and f0 of the units and wdur, wac, wvs and wf0 are the weights given to these respetiveomponents. The duration dissimilarity Ddur is alulated as the di�erene between the dura-tions of the two units v and u, duru and durv respetively and normalized to make the value lie inthe range [0,1℄. durmin(p) = minu,v∈Up |duru − durv| and durmax(p) = maxu,v∈Up |duru − durv|,whih are the maximum and minimum duration di�erenes among the units of phoneme p.Then, the duration dissimilarity omponent is alulated as follows:
Ddur(u, v) =

|(duru − durv)| − durmin(p)

durmax(p)− durmin(p)
(5.10)For the other three omponents; aousti, visual and f0; the RMSE (root mean squarederror) is alulated between two trajetories of respetive features by making the duration ornumber of samples N equal by simple linear interpolation.

drmse(u, v) =

√
√
√
√

1

N

N∑

j=1

(xu(j)− xv(j))2 (5.11)The features used for visual and aousti dissimilarity measure are PCA oe�ients and



5.3. Target feature seletion and weight tuning 89MFCC as explained in setion 5.3.3.
dmin(p) = minu,v∈Up d

rmse(u, v) and dmax(p) = maxu,v∈Up d
rmse(u, v), whih are the maxi-mum and minimum RMSEs among all the units of phoneme p. The RMSE is normalized similarto Ddur to make the value lie in the range [0, 1] using dmin(p) and dmax(p):

Drmse(u, v) =
drmse(u, v) − dmin(p)

dmax(p)− dmin(p)
(5.12)5.3.2.3 Primitives of the algorithmThe main idea behind the algorithm to be desribed is that, eah target feature has someontributing information whih gets re�eted in speeh. If a useful feature is removed from thetarget ost, then, the performane of the target ost funtion should deteriorate. The extendto whih it deteriorates when a target feature is exluded, quanti�es the feature's importane.We estimate the relative importane of a target feature based on the deterioration of seletionperformane when a target feature is exluded from the target ost. This is explained in detailin the following disussion. For simpliity of notation, we stop showing a andidate and a targetwith the target ost funtion. Lets assume that the urrent set of target features is F, and urrentfeature being onsidered is f . Lets denote the singleton feature set {f} with F , F c = F − F .Let us express the target ost funtion as follows:

TC = wFTCF + (1− wF )

(2)
︷ ︸︸ ︷

TCF c

︸ ︷︷ ︸(1) (5.13)The target ost (TC) shown above is the weighted sum of the following two omponents:(a) The target ost funtion with one feature f , TCF .(b) A target ost funtion whih exluded feature f , from the target feature set, TCF c .The target ost funtion highlighted as (1) in the above equation takes all the features intoaount and the target ost funtion highlighted as (2) above exludes feature f . Using (1) and(2) as the two target osts, two disorders are alulated. The disorder alulated using (1) isreferred to as Combined Disorder (CD), whih depends also on wF . The disorder alulatedusing (2) is refereed to as Exlusion Disorder (ED). The following an be said with respet tothe omparison of CD and ED:
• A feature f is onsidered to ontribute information, if disorder inreases when its exludedfrom the target ost: EDf > CD.
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• A feature f is onsidered to ontribute noise, if the disorder dereases when its exludedfrom the target ost: EDf < CD.Those features whih ontribute information, their weights should be inreased proportionalto their ontribution, features whih seem to ontribute noise, their weights should be dereasedtill they beome ontributing features; if a feature ontributes only noise (for long), they areeliminated from the feature set.The following possibilities need to be onsidered while lassifying features informative:(1) Features might provide information if given an optimum weight (in the weigh ombination).Exluding these features might modify the disorder ompared to their inlusion and theinrease or derease depends on the ombination of weights.(2) Features whih don't provide any information will not a�et the disorder with their exlu-sion and inlusion even with a hange in their relative weight in the target ost.(3) Features whih ontribute only noise by their inlusion in the target ost, regardless ofthe non-zero weight given to them, the ombined disorder will always be greater than thedisorder with their exlusion.Based on this analysis we developed an iterative algorithm. At any iteration, the weightsare updated based on the omparison of ED of di�erent features and CD as follows:
• Those features for whih ED > CD, their weights inrease. The inrease in proportionalto the di�erene in ED and CD.
• Those features for whih ED < CD, they an belong to either ategory (1) or (3). Thefeature weights are updated proportional to the di�erene in CD and ED. A feature whihshows this trend (ED < CD) for long, it is eliminated from the feature set.
• Features belonging to ategory (2) are also eliminated (ED = CD).
• A fration of total weight from the set of features for whih (ED < CD) is distributedamong features for whih (ED > CD).
• To make the hange in the weights slow, the weights at eah iteration are made a funtionof the previous iteration. Any new weight after an iteration, is a fration (�xed parameter)of the old weight and the hange based on the di�erene in CD and its ED.



5.3. Target feature seletion and weight tuning 915.3.2.4 AlgorithmWe provide the preise details of the algorithm here. Notation: For any iteration i, the ompleteset of features is Fi; a singleton set having feature f is denoted by the set F ; the set of featuresexluding a feature f from set F is F c
i = Fi − F ; the disorder with the omplete set of featuresand their weights at iteration i (from previous iteration) i.e., the ombined disorder CD is ∆(i);the disorder with a feature f exluded from the target ost (ED) is ∆F c

i
(i); set of all the featuresfor whih ∆F c

i
(i) > ∆(i) is denoted by F

+
i and F

−
i for those whih are quali�ed to remain inthe feature set with ∆F c

i
(i) < ∆(i); set of all features whih are being eliminated are F

0
i . For afeature f , tf (i) is the number of iterations it has been in F

−
i onseutively till iteration i withoutbeing eliminated.At every iteration i the following quantities are alulated for updating the feature weights:Information Component (IF (i)): For a feature f ∈ F
+
i , i.e. ∆(i) < ∆F c

i
(i):

IF (i) =
|∆(i) −∆F c

i
(i)|

∑

a∈F+

i

(|∆(i)−∆Ac
i
(i)|)

(5.14)
Noise Component NF (i): For a feature f ∈ F

−
i and ∆(i) > ∆F c

i
(i):

NF (i) =
∆(i)−∆F c

i
(i)

∑

a∈F−i

(∆(i)−∆Ac
i
(i))

(5.15)Based on this N ′

F (i) alulated as follows to update the weight at every iteration.
N

′

F (i) =
(1−NF (i))

(n
F
−

i
− 1)

(5.16)where, n
F
−

i
is the number of elements in the set F

−
i . N

′

F (i) inreases as NF (i) dereases, sofeatures whih ontribute more noise will lose more weight in the target funtions subsequently.In ase there is only one feature in F
−
i , then N

′

F (i) = 1.The following are the parameters of algorithm:
• T , the maximum number of tolerant iterations for a noisy feature. A feature f for whih

tf (i) > T is eliminated from the feature list. If a feature f hanges from set F−
i to set F+

iin an iteration i, then tF (i) is set to 0.
• α− and α+, the frations of weights of any features in F

−
i and F

+
i respetively that is



92 Chapter 5. Unit Seletionarried forward from the weight in the previous iteration. This makes the updated weightin the urrent iteration a funtion of the weight in the previous iteration. It is done tomake the hange in weights slow.
• β is the fration of the total hangeable weight in F

−
i that is gained by features in F

+
i .The logi behind this distribution is that, features in F

−
i loose weight while features in F

+
igain weight.

• Maximum allowed iterations, for whih the algorithm is exeuted. This is �xed based onthe rate of hange in total disorder (derease in ombined disorder per iteration).The goal of the algorithm is to selet the set of features and tune their respetive weights insuh a way that the disorder ∆ desribed by equation (5.8) is minimized:
• Beginning: Target ost funtion with the omplete set of features whih are assignedequal weights.
• At every iteration i:

⋆ The following are �rst determined:
◦ ∆(i).
◦ for all f ∈ Fi: ∆F c(i).

⋆ Elimination of all those features f for whih one of the following onditions is satis�ed:1. (∆(i) −∆F c(i)) ≈ 02. (∆(i) −∆F c(i)) > 0 and tF (i) > T

⋆ Update weights: The update is suh that the hange is slow. For that, a frationof weight (α+ for features in F
+
i and α− for features in F

−
i ) remains onstant withrespet to the previous iteration.

◦ For a feature f ∈ F
+
i : More the information in the feature, higher the weight.

wF (i) = α+wF (i− 1) (1)

+

W
F
+

i
IF (i) (2)

(5.17)The �rst omponent (1), depends on the feature weight in the previous iteration;the seond omponent (2), depends on the information omponent of the feature.
W

F
+

i
is the total weight that will be redistributed in F

+
i . W

F
+

i
is alulated as
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W

F
+

i
= (1− α+)

∑

a∈F+

i

wA(i− 1) (i)

+

(1− α−)β
∑

b∈F−

i

wB(i− 1) (ii)

+
∑

c∈F0
i

wC(i− 1) (iii)

(5.18)
The �rst omponent (i), is the total hangeable weight of features in F

+
i ; theseond omponent (ii), is the total hangeable weight of features in F

−
i that isgained by features in F

+
i ; the third omponent (iii), is the total weight of thefeatures being eliminated, F0

i . The total weight of the features being eliminated
F
0
i is re-distributed among features in F

+
i .

◦ For a feature f ∈ F
−
i : Lesser the noise ontribution, higher the weight.

wF (i) = α−wF (i− 1) (1)

+

W
F
−

i
N

′

F (i) (2)

(5.19)The �rst omponent (1), depends on the weight of the feature f in the previousiteration; the seond omponent (2), depends on the Noise Component of feature
f . W

F
−

i
is the fration of total hangeable weight of features in F

−
i that isredistributed to features in F

−
i itself. It is alulated as follows:

W
F
−

i
= (1− α−)(1− β)

∑

a∈F−

i

wA(i− 1) (5.20)
• Termination: The algorithm is terminated when maximum number of allowed iterationsare exeuted or when there is no improvement (derease in ombined disorder) in an iter-ation beyond a ertain ǫ. The best weights w.r.t the least disorder along all the iterationsare hosen for the �nal target ost for the phoneme.5.3.3 Appliation to AV target ost funtion tuningThe visual speeh features vetors xu, xv of equation (5.11) were the �rst 12 PCA oe�ients.For aousti speeh, MFCC and f0 were used, where the 13 MFCC were extrated at the rateof 100Hz and f0 extrated every 8 milliseonds respetively.



94 Chapter 5. Unit SeletionThe parameters of the algorithm were hosen based on the trade-o� between time requiredfor eah iteration, speed of hange of disorder whih a�ets the required minimum number ofiterations for the attainment of relative onvergene (when the rate of hange of disorder is low) .By trial and error on a single phoneme /a/ whih has a good overage, the following parameterswere �nally hosen for the weight tuning of all the phonemes:
• T , the maximum tolerant iterations is 2. A feature f is removed whenever its tF (i) > 2.
• α+ = 0.5 and α− = 0.5; β = 0.05.The tuning was done for 5 weight ombinations. The result of seleted target features withonly one of the dissimilarity measures (duration, visual, MFCC and f0) i.e., only one of thefollowing {wdur, wac, wvs, wf0} being one and all others 0 was analyzed and all the measurestaking equal weights. The �rst four weight ombinations were hosen for the analysis of targetfeatures with respet to eah of these neessary aspets. The �fth weight ombination is hosenfor the �nal weight tuning to be used in the system for seletion. This weight ombination

(0.25, 0.25, 0.25, 0.25) performed reasonably well with respet to informal listening tests. Thisan be further improved based on the analysis of pereptual evaluation and orrelation with theobjetive evaluation. For eah of the weight ombinations, this algorithm has been exeutedseparately for all the phonemes in the phoneme set using our orpus to obtain di�erent targetfuntions, i.e., di�erent set of features and their weights for di�erent phonemes.5.3.4 Analysis of seleted features and their relative importaneIn this setion, we present the analysis of target features based on their relative importanefor eah of the onstituent aspets inluded in the dissimilarity metri: pith, loal aoustispeeh, duration and visual speeh. They are based on target feature weighting by takingone onstituent metri at a time in the dissimilarity metri. The features with lower weights(< 0.01) are not shown in this analysis. These results are presented for vowels and onsonantsseparately. Linguisti features an desribe a urrent andidate or its left or right ontext.Phoneti features an desribe a andidate's left or right ontext (see setion 5.1). To analyzethe results, we alulate the mean and standard deviation of weights assigned to eah featureby taking together the ontext and the urrent andidate. The weights are assigned suh thatthe sum of the weights over all the target features is 1. These results are shown in tables 5.5 to5.12.
• Pith: For vowels, mean total weight given to linguisti features is 0.19 and 0.81 tophoneti features with a standard deviation of 0.24. For onsonants, linguisti features get



5.3. Target feature seletion and weight tuning 95Vowels ConsonantsWeight WeightFeature µ σ Feature µ σVoiing 0.71 0.28 Voiing 0.26 0.32Kind 0.08 0.13 Kind 0.13 0.15Lip shape 0.13 0.19Manner of artiulation 0.11 0.14Table 5.5: Phoneti features important for pithVowels ConsonantsWeight WeightFeature µ σ Feature µ σLeft silene 0.05 0.07 Right silene 0.14 0.21Syllable position in RG 0.04 0.06 Syllable position in RG 0.07 0.08Word position in sentene 0.03 0.07 Syllable position in word 0.04 0.07Phoneme number in syllable 0.03 0.09 Word position in RG 0.03 0.05Right silene 0.02 0.03 Word position in sentene 0.02 0.06Syllable position in word 0.01 0.01 Phoneme number in syllable 0.02 0.02Syllable number in sentene 0.01 0.01Syllable kind 0.01 0.01Word number in RG 0.01 0.03Table 5.6: Linguisti features important for pith0.36 as the mean total weight and 0.64 for phoneti features with a standard deviation of0.26. The preeding ontext is important in terms of both phoneti and linguisti featuresfor pith predition. The list of important linguisti and phoneti features with the meanand standard deviation of weights for vowels and onsonants is given in tables 5.5 and 5.6.
◦ Phoneti features: For both vowels and onsonants, ontextual phoneme voiing andphoneme kind are important features. For onsonants, lip shape during artiulationand manner of artiulation are also important.
◦ Linguisti features: For both vowels and onsonants, relative position of nearestfollowing and preeding silene, syllable position in rhythm group(RG) and word,phoneme number in a syllable and word position in a sentene are important.

• Loal speeh aoustis: The aousti features onsidered (MFCCs) an be assumed todesribe loal speeh aoustis. For vowels, phoneti features get total mean weight of0.67 and 0.33 for linguisti features with a standard deviation of 0.26. For onsonants,the total mean weight for linguisti features is 0.19 and 0.81 for phoneti features, with astandard deviation of 0.12. The list of important linguisti and phoneti features with themean and standard deviation of weights for vowels and onsonants is given in tables 5.7and 5.8.



96 Chapter 5. Unit SeletionVowels ConsonantsWeight WeightFeature µ σ Feature µ σVoiing 0.26 0.25 Lip shape 0.32 0.20Plae of artiulation 0.21 0.22 Plae of artiulation 0.20 0.27Manner of artiulation 0.13 0.11 Voiing 0.12 0.19Kind 0.04 0.06 Manner of artiulation 0.10 0.12Lip shape 0.03 0.04 Kind 0.07 0.10Table 5.7: Phoneti features important for loal speeh aoustisVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in word 0.07 0.11 Syllable position in RG 0.04 0.05Left silene 0.05 0.05 Right silene 0.04 0.06Syllable position in RG 0.04 0.04 Left silene 0.02 0.02Word position in sentene 0.04 0.06 Syllable position in word 0.02 0.02Phoneme number in syllable 0.04 0.06 Word position in RG 0.01 0.01Syllable kind 0.04 0.05 Phoneme number in syllable 0.01 0.01Right silene 0.02 0.03 Word position in sentene 0.01 0.01Table 5.8: Linguisti features important for loal speeh aoustis
◦ Phoneti features: For vowels, voiing of the preeding phonemes, plae and mannerof artiulation of the following phoneme are the most important features, followedby plae of artiulation of the preeding and voiing of the following phoneme. Foronsonants, lip shape of the following phonemes seems to be the most importantfeature besides plae of artiulation and kind of the following phonemes. Just as inthe ase of f0, voiing of the preeding phoneme is also an important feature.
◦ Linguisti features: For both vowels and onsonants, syllable position in word andRG, relative position of the nearest left and right silene, phoneme number in asyllable, word position in a sentene are important. Syllable kind and word positionin sentene are also important for vowels and onsonants respetively.

• Duration: For duration, linguisti features are dominant and invariably the most impor-tant ompared to phoneti features. The pattern is even more pronouned in the ase ofvowels. For vowels and onsonants, the total mean weight assigned to linguisti features is0.65 and 0.62 respetively, and the standard deviation is 0.18 and 0.25 respetively. Thelist of important linguisti and phoneti features with the mean and standard deviation ofweights for vowels and onsonants is given in tables 5.9 and 5.10.
◦ Phoneti features: For both vowels and onsonants kind of following phoneme is the



5.3. Target feature seletion and weight tuning 97Vowels ConsonantsWeight WeightFeature µ σ Feature µ σKind 0.25 0.16 Kind 0.15 0.13Lip shape 0.05 0.06 Manner of artiulation 0.10 0.16Plae of artiulation 0.03 0.08 Voiing 0.08 0.13Manner of artiulation 0.02 0.04 Lip shape 0.04 0.09Voiing 0.01 0.02 Plae of artiulation 0.02 0.02Table 5.9: Phoneti features important for durationVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position RG 0.41 0.22 Syllable position in RG 0.23 0.15Syllable position in word 0.07 0.09 Right silene 0.16 0.23Right silene 0.04 0.09 Left silene 0.08 0.12Syllable kind 0.04 0.08 Syllable position in word 0.03 0.05Left silene 0.02 0.04 Word position in RG 0.03 0.08Phoneme number in syllable 0.02 0.04 Phoneme number in syllable 0.02 0.05Word position in RG 0.02 0.03 Syllable number in RG 0.02 0.02Word number in RG 0.01 0.02Syllable number in sentene 0.01 0.02Table 5.10: Linguisti features important for durationmost important feature. For onsonants, the manner of artiulation and voiing ofthe following ontextual phoneme is also important.
◦ Linguisti features: For both vowels and onsonants, the syllable position in the RGis the most important feature, followed by relative positions of left and right silene,syllable position in word, phoneme number in a syllable, word position in a RG.

• Visual features: For visual speeh, the total mean weight assigned to linguisti featuresis 0.31 for vowels and 0.12 for onsonants with a standard deviation of 0.17 and 0.10respetively. The list of important linguisti and phoneti features with the mean andstandard deviation of weights for vowels and onsonants is given in tables 5.11 and 5.12.
◦ Phoneti features: For vowels, plae of artiulation of the following and preedingphonemes are the most important features in the dereasing order of importane. Thelip shape during artiulation and manner of artiulation of the ontextual phonemesare also observed to be important. For onsonants, lip shape of the following phoneme,lip shape of the preeding phoneme and plae of artiulation of the preeding phonemeare observed to be the 3 most important features in the dereasing order of impor-tane.



98 Chapter 5. Unit SeletionVowels ConsonantsWeight WeightFeature µ σ Feature µ σPlae of artiulation 0.36 0.18 Lip shape 0.77 0.16Lip shape 0.14 0.19 Plae of artiulation 0.04 0.05Manner of artiulation 0.09 0.09 Voiing 0.02 0.03Voiing 0.07 0.09Kind 0.04 0.06Table 5.11: Phoneti features important for visual speehVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in word 0.11 0.11 Syllable position in word 0.03 0.05Syllable kind 0.04 0.07 Syllable number in sentene 0.02 0.02Syllable number in Sen 0.04 0.02 Right silene 0.01 0.02Phoneme number in syllable 0.02 0.03 Word position in sentene 0.01 0.02Right silene 0.02 0.04Word position in sentene 0.02 0.01Word number in RG 0.02 0.05Table 5.12: Linguisti features important for visual speeh
◦ Linguisti features: For vowels, syllable position in a word is an important feature.The analysis of these seleted features is in itself an interesting problem. The relative importaneof the ontextual features indiates that the right ontext is more important than the left. Thisis more pronouned in phoneti features weights. One of the possible interpretations of thisis that the instanes of antiipatory oartiulation is higher than the instanes of arryoveroartiulation in Frenh. Word number in sentene has got eliminated for most of the phonemesas the orpus is not su�ient to establish any suh relation. Numeri features in general havegot lower weights whih show that the relative position is more important than their exatposition. The former features are size invariant. For example, `syllable position in RG' doesnot depend on the total number of syllables in RG. But `syllable number in RG' depends onthe total number of syllables in RG. The seleted features and their relative weights impliitlyindiate the validity of the algorithm. For example, for pith and duration, syllable positionin RG, relative position of nearest left and right silene, syllable postion in word are shown tobe important. These features are known to be important for explaining many of the prosodipatterns in Frenh.With the �fth ombination with equal weights to all the four onstituents of the dissimilaritymetri, the seleted features ontain the features whih are important for all the four onstituentaspets (see tables 5.13 and 5.14). The total mean weight for linguisti features in ase of vowels



5.4. Conlusion 99Vowels ConsonantsWeight WeightFeature µ σ Feature µ σVoiing 0.48 0.27 Lip shape 0.35 0.15Kind 0.13 0.16 Voiing 0.17 0.22Plae of artiulation 0.06 0.05 Plae of artiulation 0.10 0.10Manner of artiulation 0.03 0.02 Kind 0.08 0.10Lip shape 0.02 0.02 Manner of artiulation 0.04 0.04Table 5.13: Phoneti features for aousti-visual speehVowels ConsonantsWeight WeightFeature µ σ Feature µ σSyllable position in RG 0.09 0.08 Right silene 0.10 0.13Right silene 0.04 0.05 Syllable position in RG 0.06 0.07Left silene 0.04 0.06 Syllable position in word 0.02 0.02Syllable position in word 0.04 0.07 Left silene 0.01 0.02Phoneme number in syllable 0.03 0.05 Ph number in syllable 0.01 0.03Syllable Kind 0.02 0.03 Word position in sentene 0.01 0.01Word position in sentene 0.01 0.01Table 5.14: Linguisti features for aousti-visual speehand onsonants are 0.28 and 0.26 respetively, and the standard deviation is 0.24 and 0.17respetively. We use these features and their weights determined in our synthesis system. Wepresent the objetive and pereptual evaluation done for the synthesized speeh using thesefeature weights.5.4 ConlusionIn this hapter, we have presented the set of orpus-independent target features and explained theorpus-based visual target features that we developed for improving synthesis with our orpus.We detailed the iterative target feature weighting tehnique that we have designed. It assignsweights and performs elimination of redundant features simultaneously. We �nally presented theanalysis of the patterns that were observed in the seleted features and their weights. The relativeweighting of the target feature a�ets seletion and hene the synthesis results. Majority of theobservations with respet to seleted features and their relative weights are in agreement withthe phoneti and linguisti studies whih show the strength of this algorithm. It also indiatesthat the onstituent metris inluded to represent pith, duration, loal speeh aoustis andvisual speeh are indeed orrelated to these aspets.The weight tuning algorithm that we presented (setion 5.3.2) performs automati weighttuning based on (1) a dissimilarity metri whih ompared the di�erene in two speeh re-



100 Chapter 5. Unit Seletionalisations and (2) a set of target features used to desribe the targets and andidates. Theperformane of seletion based on the resultant target ost depends on various fators. Firstly,For the various aspets inluded, di�erent distane measures an be investigated with respet totheir orrelation with human pereption. Suh studies have been done with respet to aoustionatenation osts (Wouters and Maon, 1998; Vepa et al., 2002; Klabbers and Veldhuis, 1998).Seondly, the importane of the di�erent aspets of dissimilarity metri varies among phonemes.For example, it is known that vowel durations are more important for good prosody. The twoabove mentioned fators require substantial investigation. Lastly, the weights given to theseonstituent metris might further improve by systemati and extensive pereptual experimentswith human partiipants. It an be argued that this proess is ine�ient and slow. But, a goodjusti�ation to suh an approah is that weight tuning problem in the huge dimensional spaeof target features is being mitigated by setting the weights of onstituents of the dissimilaritymetri whih is a muh smaller dimension. Also, sine the synthesized speeh is targeted forhumans, reinforement from human partiipants is advantageous. We performed evaluationsthrough human subjets to assess the �nal system with the resultant target features and theirweights using the weight tuning algorithm. In the following hapter, we desribe these tests be-sides summarizing objetive evaluation tehniques that we have used while developing seletionstrategies3.

3A part of this hapter was published in (Musti et al., 2011).



Chapter 6
Evaluation

Throughout the development proess, the di�erent methodologies being used to improve syn-thesis were systematially and automatially evaluated. This objetive evaluation was based onsome metris that we de�ned. This evaluation an be performed either by omparing synthe-sized AV speeh signals to real speeh signals, or based on a omparison with orpus statistis.However, as this aousti-visual speeh synthesis system is targeted for humans, the systemshould be evaluated using pereptual experiments where human beings are the enter of thisevaluation. In the ontext of audio-visual speeh, the evaluation of both the hannels is notstraightforward and requires a areful onsideration of the various fators whih might a�et thesynthesis quality and the limitations of the system while setting benhmarks for omparison.In this hapter, we �rst desribe the various objetive evaluation metris used for evaluatingdi�erent seletion tehniques (in setion 6.1). In setion 6.2, we desribe the pereptual andsubjetive evaluations done along with their results. Finally, we present a preliminary analysisof the subjetive evaluation results in omparison with the objetive evaluation metris in setion6.3. 46.1 Objetive evaluationFor a fast automati evaluation of the synthesized speeh, it is a general pratie to leavesome of the sentenes outside the synthesis orpus for omparison purpose. They are generallyeither speially designed or hosen based on some neessary onditions. They are onsidered asreferenes for omparative evaluation. We have a set of 20 test sentenes whih are not part ofthe synthesis orpus for omparative evaluation.4A short overview of our system and evaluation results presented in this hapter were published in (Mustiet al., 2012) 101



102 Chapter 6. Evaluation6.1.1 Objetive evaluation based on omparison of two signalsWe have utilized three objetive evaluation metris whih have been introdued in the previoushapter (setion 5.3) and the orrelation oe�ient and root mean squared error (RMSE) be-tween real and synthesized test sentenes. To make the duration (number of samples) equal inboth sentenes a simple linear interpolation is applied for eah demi-phones wherever neessary(see Fig. 5.5). Lets assume that, xd and yd are the sequenes of the dth aousti or visualparameters of a real and synthesized sentene respetively having n samples. Then, the �rst twometris are alulated as follows:
• Pearson's Correlation Coe�ient: the orrelation oe�ient rxdyd is alulated as follows:
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∑
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∑
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(6.1)

• Root Mean Squared Error (RMSE) drmse(xd, yd) is alulated as follows:
drmse(xd, yd) =

√
√
√
√

1

n

n∑

i=1

(xd(i)− yd(i))2 (6.2)The onsidered aousti parameters were the �rst 13 MFCCs and F0. The onsidered visualparameters were the �rst 12 PCA oe�ients.The duration based metris are alulated as follows:1. For the purpose of omparing any two andidates u and v of the same phoneti label forthe purpose of target weight tuning the following metri was used:
Ddur(u, v) =

|(duru − durv)| − durmin(p)

durmax(p)− durmin(p)
(6.3)Where, durmax(p) and durmin(p) are the maximum and minimum of durations of all theandidates for phoneme p; and duru and durv are the durations of andidate u and v.2. For the purpose of omparing two whole sentenes (segment wise), the following durationmetri was used:

Ddur(s, r) =

∑N
j=0

|(durs(j)−durr(j))|
durr(j)

N
(6.4)Where, s and r are the synthesized and real sentenes respetively having N phonetisegments and durs(j) and durr(j) are the durations of jth phoneti segments of real andsynthesized sentenes.



6.1. Objetive evaluation 1036.1.2 Objetive evaluation based on statistial analysis and thresholdsSometimes objetive evaluation metris whih are based on statistial analysis of the orpus aredeveloped and utilized for various purposes. For the purpose of total ost weight tuning forsetting the weights of the target ost, aousti and visual join osts, we utilized three objetiveevaluation metris whih belong to this ategory. We �rst alulated the standard deviation ofthe �rst PCA oe�ient (denoted by σPC1) from the whole orpus. Similarly, standard deviationof its �rst order derivative (denoted by σ∆PC1)) from the whole orpus was also alulated. Then,for a set of synthesized sentenes, the sentenes were sanned at all the onatenation boundariesto ount the following:
• Total instanes where the di�erenes between �rst PCA oe�ients exeed ǫpc1.
• Total instanes where the di�erenes between �rst order derivative of �rst PCA oe�ientsexeed ǫ∆PC1.
• Total instanes where the di�erenes in f0 exeed ǫf0. Bark was hosen as the suitablepereptual sale.The �rst prinipal omponent and its derivative were hosen as the �rst prinipal omponentitself aounts for about 57% of the data variane and also gives an indiation of the disonti-nuity in the subsequent omponents. These values give an indiation of the visual and aoustidisontinuation at the onatenation boundaries. These values along with a duration were usedfor evaluating the e�ieny of the total ost funtion. Besides the above 3 metris, a durationmetri based on the omparison of real and synthesized sentenes was also used as explainedbelow.
• Total instanes of vowels where the di�erene in duration ratio of synthesized and realsentenes is greater than ǫdur.The thresholds were hosen empirially by pereptual experimentation. In this ase theonsidered thresholds were ǫpc1 = 0.5σPC1, ǫ∆PC1 = 0.5σ∆PC1, ǫf0 = 0.25Barks and ǫdur =

150%. Throughout the development proess, this method was applied for the tuning of the totalost weights, whenever we modi�ed the omponents of target ost funtion or onatenationost funtion. The following weights were used for the total ost funtion for seletion, w = 1,
waj = 0.943 and wvj = 0.897, where w, waj and wvj are the weights assigned to target, aoustionatenation and visual onatenation ost funtions respetively. 55This work was mainly done by Asterios TOUTIOS and was presented in (Toutios et al., 2011).



104 Chapter 6. Evaluation6.2 Human-entered evaluationTo evaluate our overall audio-visual speeh synthesis system, the following pereptual intelli-gibility and subjetive quality evaluation tests were onduted. In these tests a total of 39partiipants between 19 to 65 years of age with normal auditory and visual abilities partii-pated. Among the partiipants, 15 were female and the rest were male partiipants. All thesepartiipants were native Frenh speakers. The tests were onduted aross internet where eahof the partiipants heard and saw the stimuli in their omputers with the available hardware. Aset of basi instrutions was played at the beginning of these tests.6.2.1 Intelligibility testsThe intelligibility test was at the word level. Eah human subjet was presented with 50 one ortwo syllabi Frenh words and asked to reognize and report the word. Some examples of thewords that were presented inlude { anneau (ring), bien (good), hane (luk), pine (lip), laine(wool), uisine(kithen) }. Among these words, 11 were those whih are present in the orpus.These in-orpus words were inluded to set a benhmark for the best possible intelligibility bythe reorded data.These tests were done at two levels: (1) aousti-only speeh, (2) audio-visual speeh. Ineah of these ategories, the aousti speeh omponent was degraded to two noise levels. Hene,eah word was played 4 times: (1) aousti-only with low noise omponent (SNR of -6 dB),(2) aousti-only with high noise omponent (SNR of -10 dB), (3) audio-visual with low noise(SNR -6dB), (4) audio-visual speeh with high noise (SNR of -10 dB). The addition of noisealso ensures that the listener pays attention to the visual modality of speeh. The aim is toevaluate both visual and aousti modalities, and also to estimate the advantage of audio-visualspeeh over aousti-only speeh. These noise thresholds were deided based on the severalaudio-visual pereptual experiments to strike a trade-o� between these two objetive. The faialanimation is shown as the 3D surfae of the fae using sparse mesh, whih has the dynamis offaial deformations, but without the texture and olor information (see Fig. 3.9). Besides, theinformation regarding internal artiulators, teeth and tongue is also missing from the animations.Table 6.2 inludes the intelligibility sores in terms of the fration of the total words reog-nized in eah of the four ategories by di�erent users. Table 6.1 shows the mean intelligibilitysores of in-orpus words and out-of-orpus words. Any word ompletely reognized orretlyis lassi�ed as a orret response. The intelligibility results of the in-orpus words shows thebest possible results with the orpus we have reorded. These in-orpus intelligibility resultsshow that the best possible intelligibility with our orpus is not very high. The omparatively



6.2. Human-entered evaluation 105Audio Audio-VisualLow Noise High Noise Low Noise High NoiseIn-Corpus words 0.69 0.59 0.72 0.65Out-of-Corpus words 0.40 0.34 0.45 0.40Table 6.1: Mean intelligibility soreslower results for the in-orpus words an be attributed to the absene of internal artiulators.The di�erene in performane between in-orpus and out-of-orpus words in the aousti domainshow the possibility of further improvement. Results show that the addition of visual omponentto the aoustis improves intelligibility. The intelligibility in noisy environment is an importantaspet to evaluate AV speeh. The intelligibility results only on�rm this. This is also inter-esting beause, visual speeh rendering though far from being photo-realisti is still e�etive inpresenting the artiulatory dynamis. Another general observation that is on�rmed by theseresults is that the improvement in speeh reognition is more in high-noise to low-noise speehaoustis. The advantage of the addition of visual speeh is more obvious in the out-of-orpuswords. These results are interesting also beause in spite of the internal artiulators being absentfrom the animations, the results show the advantage of AV speeh over aousti speeh. Thisshows that the visual and aousti speeh are in agreement to eah other.6.2.2 Quality evaluation testsSubjetive tests were performed for the evaluation of the synthesis quality. 20 audio-visualsentenes were played, out of whih 7 sentenes were real and the rest (13 sentenes) weresynthesized sentenes whih orrespond to a subset of the test sentenes we have for objetiveevaluation purpose. Just as in the ase of intelligibility tests, the �ve real sentenes serve asthe best response that is possible with the orpus utilized for synthesis whih a�ets variousaspets of the synthesized speeh like duration, phoneti overage and faial speeh renderingtehnique. For eah of the stimulus, 5 questions were posed and partiipants were asked togive ategorial responses based on the 5 point MOS sale. These 5 questions and the possibleategorial answers are given in table 6.3. The �rst question (Q1) represents the synhrony inthe aousti and visual modalities. The seond question (Q2) impliitly represents the prosody.Third and fourth questions (Q3 and Q4) are representative of the naturalness of aousti andvisual modalities respetively. The last question (Q4) is representative of the overall speehquality and pleasantness. The subjetive evaluation results for in-orpus and out-of-orpussentenes are given in table 6.4. The results to the question Q1 show that the audio-visualalignment is good, and the aousti prosody is aeptable (Q2 results). It has to be highlighted
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Partiipants Audio Audio-VisualLow N. High N. Low N. High N.1 0.48 0.46 0.56 0.462 0.26 0.28 0.36 0.323 0.46 0.32 0.44 0.524 0.56 0.44 0.52 0.525 0.44 0.30 0.56 0.446 0.54 0.52 0.54 0.447 0.42 0.26 0.44 0.368 0.50 0.42 0.52 0.509 0.38 0.24 0.44 0.3810 0.36 0.28 0.44 0.3211 0.52 0.44 0.58 0.4612 0.46 0.44 0.50 0.4213 0.52 0.30 0.54 0.4214 0.34 0.26 0.40 0.2415 0.50 0.42 0.46 0.4216 0.40 0.28 0.48 0.4017 0.54 0.46 0.60 0.5818 0.48 0.46 0.54 0.5019 0.52 0.50 0.58 0.5620 0.46 0.42 0.56 0.5221 0.40 0.42 0.42 0.3822 0.44 0.44 0.54 0.5023 0.52 0.42 0.58 0.5424 0.68 0.62 0.76 0.7025 0.56 0.40 0.72 0.6426 0.56 0.32 0.48 0.5027 0.58 0.54 0.62 0.5628 0.40 0.34 0.42 0.4629 0.44 0.40 0.52 0.4430 0.50 0.40 0.56 0.4631 0.36 0.30 0.42 0.3232 0.48 0.42 0.46 0.4233 0.48 0.34 0.46 0.4634 0.40 0.36 0.42 0.3635 0.40 0.36 0.40 0.2836 0.44 0.40 0.44 0.4237 0.38 0.38 0.50 0.5038 0.38 0.44 0.46 0.4039 0.62 0.62 0.60 0.60Mean 0.47 0.40 0.51 0.46Std dev. 0.08 0.09 0.09 0.10Table 6.2: Intelligibility Results in the four ategories, aousti-only + high noise, aousti-only+ low noise, audio-visual + high noise and audio-visual + low noise



6.3. Analysis of pereptual evaluation for better objetive metris 107Question Categorial responsesQ1. Does the lip movement maththe pronouned audio? (5) Always � (1) NeverQ2. Is this sentene an a�rmation(neutral reading)? (5) Totally agree � (1) Not at allQ3. Is the aousti speeh natural? (5) Very natural � (1) Not naturalQ4. Is the faial animation natu-ral? (5) Very natural � (1) Not naturalQ5. Is the pronuniation of thissentene by the talking headpleasant? (5) Very pleasant � (1) Not at allTable 6.3: This table shows the �ve questions and the expeted ategorial responses for evalu-ating the quality of the synthesized speehQuestion-1 Question-2 Question-3 Question-4 Question-5Overall 3.88 3.93 3.04 2.92 3.02Out-of-Corpus sentenes 3.76 3.78 2.57 2.80 2.65In-Corpus sentenes 4.80 4.91 4.56 3.67 4.32Table 6.4: Mean MOS sores for the �ve questionsthat the prosody was generated without using any expliit model. The naturalness sores forvoie seem to be low as shown in the Q3 results. These an be attributed to the relativelysmall size of the orpus and onsequently the absene of some diphones in the orpus. Onthe ontrary, the naturalness sores of faial animation (Q4 results) are high. This shows thatartiulatory dynamis are being represented well. Further, there might be a small omponentof the fat that the faial representation or `human likeness' is not lose to the unanny valleyand so partiipants are not very ritial.6.3 Analysis of pereptual evaluation for better objetive metrisThe objetive evaluation metris alulated for the out-of-orpus sentenes on the whole sen-tenes are given in table 6.7. These results in omparison with those given in table 6.6 showQuestion-1 Question-2 Question-3 Question-4 Question-51 4.38 4.25 3.72 3.42 3.702 3.92 4.43 3.60 3.08 3.503 4.12 4.43 4.12 3.22 4.124 3.75 4.00 4.03 2.97 3.725 4.15 4.28 3.92 3.10 3.536 3.97 3.62 3.80 2.97 3.407 4.38 4.32 3.97 3.25 3.83Table 6.5: Mean MOS sores for the �ve questions asked to evaluate the quality of the audio-visual speeh synthesis for eah of the in-orpus sentenes



108 Chapter 6. EvaluationQuestion-1 Question-2 Question-3 Question-4 Question-51 3.78 3.70 2.45 2.50 2.532 3.85 4.25 3.03 3.00 3.083 3.42 3.85 2.53 2.78 2.554 3.78 3.67 2.58 2.78 2.605 3.65 3.15 2.30 2.60 2.406 4.05 3.75 2.60 2.85 2.627 3.12 3.20 2.03 2.50 2.178 4.15 4.40 3.30 3.17 3.309 3.70 3.92 2.67 2.88 2.6210 3.38 3.55 2.12 2.78 2.3011 4.20 3.58 2.00 2.72 2.2512 3.53 3.95 2.42 2.83 2.7513 4.15 4.10 3.35 3.17 3.40Table 6.6: Mean MOS sores for the �ve questions asked to evaluate the quality of the audio-visual speeh synthesis system for out-of-orpus sentenesthat the orrelation of the two are not very high on a per-sentene basis. To investigate forthe pereptually important segments whih a�et these subjetive evaluation results, they wereanalyzed in omparison with the objetive evaluation metris explained in setion 6.1. Theanalysis was based on the aousti and visual modality. For this purpose di�erent phonemesets belonging to di�erent ategories were onsidered; like, all-phonemes, vowels, onsonants,voied phonemes, unvoied phonemes, visible phonemes, visible vowels, not-visible phonemeset. Visible phonemes are those whih have identi�ably unique visible artiulation, like /p/, /o/et. The visible phoneme set inludes those phonemes whih are shown to have good reogni-tion based on visual features (hapter 4). The out-of-orpus sentenes are a subset of the testsentenes for whih we have the real utteranes, i.e. real aousti and visual speeh realization.For eah out-of-orpus sentene, the objetive evaluation metris were alulated by omparingthe synthesized and real utteranes as follows:
• For eah phoneme ategory, overall objetive evaluation metris mentioned were alulated.For example, onsidering only vowel segments, for eah sentene the overall objetiveevaluation metris are alulated. We refer to these metris as onsolidated metris.
• For eah phoneme ategory, segment-wise objetive evaluation metris mentioned werealulated and the minimum (undesirable) of eah of the segment-wise objetive evaluationmetri value is determined. For example, if there are three vowels in a sentene, theRMSE using visual parameters is alulated for eah of these segments. The maximum ofthe RMSE is hosen as the representative of that sentene based on a partiular metriand phoneme ategory. This is based on the observation that, sometimes the subjetiveopinions an get a�eted by a few bad synthesis instanes irrespetive of a high overall
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Correlation RMSE Dur. RatioSen # p1 p2 p3 mf1 mf2 mf3 f0 Voi PCs MFCCs f0 Voi. All. Ph. Vow.1 0.874 0.772 0.771 0.852 0.658 0.812 0.715 19.75 27.75 83.05 0.44 0.542 0.948 0.851 0.885 0.866 0.503 0.772 0.853 13.10 26.71 62.93 0.23 0.243 0.926 0.910 0.824 0.900 0.659 0.775 0.756 13.34 25.91 85.24 0.58 0.374 0.924 0.885 0.883 0.858 0.728 0.630 0.786 11.83 24.51 81.37 0.38 0.555 0.946 0.834 0.899 0.874 0.627 0.870 0.914 14.77 24.58 50.66 0.27 0.276 0.845 0.644 0.826 0.794 0.707 0.768 0.838 14.83 28.65 65.85 0.42 0.447 0.912 0.887 0.746 0.867 0.504 0.782 0.837 13.32 26.95 74.14 0.50 0.788 0.882 0.305 0.849 0.910 0.658 0.872 0.843 13.33 23.49 60.24 0.32 0.359 0.855 0.536 0.627 0.686 0.363 0.809 0.597 14.99 30.15 111.38 0.65 1.0210 0.831 0.480 0.762 0.863 0.640 0.805 0.833 12.50 26.45 69.49 0.27 0.2911 0.946 0.932 0.886 0.849 0.724 0.819 0.857 11.27 25.55 59.42 0.47 0.5712 0.926 0.846 0.799 0.929 0.625 0.860 0.907 13.61 24.42 50.47 0.42 0.5413 0.908 0.870 0.851 0.688 0.469 0.731 0.601 11.38 29.27 129.75 0.42 0.37Table 6.7: Objeting evaluation results for the out-of-orpus sentenes. Vow. is for vowels, Ph. is for phonemes, Voi. is for voied phonemes, mfis for Mel-frequeny epstral oe�ients, PC is for prinipal omponent. The unit of f0 is Mel.



110 Chapter 6. Evaluationperformane. We refer to these metris as worst-ase-based metris.With these objetive metris alulated, the subjetive evaluation results for Q1 (AV syn-hrony), Q3 (aousti speeh naturalness) and Q4 (visual naturalness) were orrelated. Thiswas an attempt to investigate the in�uential aspets whih drive the pereptual opinion aboutthe synthesized speeh. The orrelation results suggest the possibility of the following relations:
• A orrelation between Q1 sores (synhrony) and visible-vowels. This observation is basedon Q1 sores and the onsolidated orrelation oe�ients in visual and aousti modalityfor visible-vowels.
• A orrelation between Q3 sores (aousti speeh naturalness) and worst-ase aoustisegments. This observation is based on the Q3 sores and worst-ase-based aousti speehorrelation.
• A orrelation between Q3 sores and vowel durations. This observation is based on theQ3 sores and onsolidated vowel duration metris. Vowels are known to be important forprosodi patterns.
• A orrelation between Q4 sores (visual speeh naturalness) and vowels and semi-vowels.This observation is based on the Q4 sores and the onsolidated visual speeh orrelationsfor vowels and semi-vowels.
• A orrelation between Q4 sores and voied-invisible phonemes. This observation isbased on the Q4 sores and onsolidated orrelation of visual speeh for voied-invisiblephonemes. This is probably due to human beings being ritial towards oartiulation.This was just a preliminary experiment to investigate for informative patterns. But to drawde�nite onlusions, more rigorous systemati experiments are neessary. This kind of analysisfor the intelligibility results is planned for the future.6.4 ConlusionIn this hapter, we have desribed the various automati and human-entered evaluation teh-niques that we have used to evaluate our system. The former tehniques inlude orrelation,RMSE alulated based on aousti and visual parameters and duration related metris. Wehave used them for evaluating various methodologies for improving seletion during the devel-opment of the system. The latter, i.e., pereptual evaluation through human partiipants wasdone for the overall evaluation of the �nal system. Our fous was to synthesize the artiulatory



6.4. Conlusion 111dynamis. The overall evaluation results show that the synthesis is of reasonably good qualitythough there is still sope for improvement. The results show that we have ahieved the objetiveof synthesizing the artiulatory dynamis reasonably well6.

6Parts of this hapter were published in (Musti et al., 2012), (Toutios et al., 2011).
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Chapter 7
Conlusion

The work presented in this thesis deals with audio-visual speeh synthesis. Our goal was todevelop a system whih synthesizes perfetly aligned audio-visual speeh with a dynamis loserto natural speeh. This is the �rst important step towards the development of a talking-head. Forsynthesis, we hoose unit seletion paradigm whih is a orpus based onatenation framework.To avert the audio-visual alignment problem ompletely, we keep the natural assoiation betweenaousti and visual modalities intat. The �rst requirement to implement the idea was to havea synhronous bimodal speeh orpus. This required orpus was aquired using a stereo-visionbased motion apture tehnique developed by members in team MAGRIT. The bimodal speehorpus onsisted of 3D point trajetories along with the orresponding synhronous audio. Thefae is represented as a sparse mesh using these 3D points desribing the outer surfae of thefae. To begin with, two neessary steps needed to be aomplished. First, bimodal speehdatabase need to be prepared using the reorded orpus. Seond, we required a basi aousti-visual speeh synthesis system, whih would implement the entral idea to synthesize bimodalspeeh for a given text using the database. We proessed the 3D marker data to redue noise byapplying a low pass �lter. Subsequently we redued the dimensionality of the visual modalityby applying prinipal omponent analysis. We also extrated labial artiulatory features fromthe data for further analysis. The visual data is stored as the PCA oe�ients to be reprojetedon to original spae for faial animation.The reorded bimodal speeh orpus is a valuable resoure for mining interesting informationregarding speeh artiulation and interation between the two modalities, whih is important forspeeh synthesis. It's informative to study the data, its advantages and its limitations. As a startof our orpus proessing, we started with segmentation experiments. We performed visual speehsegmentation using the faial marker data. In fat, aousti speeh is the result of oordinatedmovement of artiulators. Thus, the voal trat has to take the neessary on�guration in113



114 Chapter 7. Conlusionadvane for the generation of a partiular sound. So, we investigated this relationship, andmeasured the time di�erenes between the visual and aousti segment boundaries. The resultsof these experiments were informative in planning the later steps. Firstly, it indiated theomponent of visual speeh related information that was present in the faial data alone, withoutthe internal voal trat information. Subsequently, we performed segmentation experimentsusing EMA data whih had the labial and tongue related information. The results of theseautomati segmentation gave us an estimation of the missing pereptual information due to thelak of tongue in our faial data. The results of these experiments, without and with tonguerelated information are in agreement to the order of results shown in (Yehia et al., 1998). Itindiated that the e�et of missing tongue information in the visual speeh is not very high andhene the resultant visual speeh might still be intelligible. It would be interesting to explorein the future the possibility of labeling andidates in terms of suprasegmental features in theorpus based on suh segmentation results.For the database preparation for our system, we �rst performed speeh segmentation usingaousti speeh and took the boundaries to represent the segment boundaries in both aoustiand visual modality. This allows the possibility of keeping the assoiation of aousti and visualmodality intat besides keeping the representation of segments simple and straightforward. Thesynthesis unit in our system is diphone and this hoie is good for many reasons. First, thediphone inludes the region of oartiulation between two neighboring phonemes. It thus alsoinludes the visual and aousti segment boundaries. This is the seond advantage espeiallywhen we are dealing with two modalities. Third, the aousti speeh signal is relatively stationaryin the middle of the phoneme. This is the point of onatenation when diphone is a synthesisunit whih improves the probability of good onatenation without pereptual disontinuity. Forthe development of the initial basi framework of aousti-visual speeh synthesis, we startedwith an aousti speeh synthesizer SoJA (Colotte, 2009). Using the tools that were developedunder the framework of SoJA, we segmented the aousti data and built the speeh database.Synthesis results using unit seletion depend on the various ost funtions involved and theirorrelation to human pereption. We built the system to selet bimodal segments initially usingtarget features whih are extrated through text analysis alone. The synthesis segments wereseleted by minimizing a ombination of ost funtions, inluding the onatenation osts inthe visual and aousti domains. The onatenation ost in the aousti domain was based onKullbak-Leibler divergene alulated using LPC oe�ients. This hoie was made by on-sidering the available literature about disontinuity pereption and objetive distane measures.The onatenation ost in the visual domain was squared Mahalanobis distane alulated using



115PCA oe�ients. This overall framework of aousti-visual speeh synthesis provided the inter-esting ground to experiment with various methodologies for improving the synthesis performanefurther.There were three domains where improvement was obviously possible. First, the set of targetfeatures whih were purely based on the text analysis needed to be re�ned to take the orpusspei� harateristis into aount. Espeially in the ase of visual modality, the target featuresneed to take into aount the speaker-spei� artiulatory information aurately. Without this,the oartiulation of the synthesized speeh might show pereptual inoherene to users. Hene,we developed visual target features to take this available information from the orpus aurately.We developed visual target osts based on the spei� features whih seem to be a�eted by theontexts rather than based on the ontext. We reported the objetive evaluation metris whihshow marginal improvement. This an be attributed to the large target features set in whihthe relative importane of the introdued feature is only about 1%.Besides a good target and andidate desription in terms of target features, the weightingof the omplete set of target features in the order of their relative importane is neessary.This serves as the basis for the optimal orpus usage. Generally, unit seletion based speehsynthesis systems are developed on a spei� set of target features. Little onsideration is givenin reviewing the relevane of those features expliitly, one they are manually hosen. Therelative importane is impliitly taken into aount through the weighting proess. Unlike thisapproah, we developed an algorithm to expliitly perform redundant target feature eliminationand simultaneously weighting the important target features. The evaluation of a target ostis done by omparing the ordering given by it and the ordering given by a distane metribased on atual speeh omparison (bimodal). The relative weight given to eah target featuredepends on the information it ontributes with its presene in the target ost ompared to itsabsene. A feature is eliminated if its inlusion atually inreases onfusion in the ordering.The algorithm is robust and reasonably insensitive to the initial onditions. This way of featureseletion is advantageous as high dimensionality redues the probability of perfet andidatewith exat math thus might introdue noise. This problem is alleviated to a large extent byfeature seletion. The distane measure used for omparing two speeh realizations in the abovealgorithm inludes four onstituents. These four onstituents roughly represent duration, pith,loal aousti and visual features. The seleted features and their relative importane are in goodagreement to the phoneti and linguisti studies. For example, syllable position in rhythm grouphas shown to be the most important feature for the predition of duration. These observationsshow the strength of the algorithm .



116 Chapter 7. ConlusionThis weight tuning approah might bene�t from the following investigation. Firstly, thedissimilarity measure used for the omparison of two speeh realizations might be further re-�ned by onsidering di�erent onstituent metris. There are studies available whih investigatevarious distane metris for estimating the onatenation ost with respet to their orrelationwith human pereption (Wouters and Maon, 1998; Vepa et al., 2002; Klabbers and Veldhuis,1998). Similar studies for developing distane measures for omparing two speeh segments willontribute to better speeh synthesis. Seondly, the weights given to these onstituent metrisan be further improved by systemati pereptual experiments with human partiipants. It anbe argued that this proess is ine�ient and slow. But, a good justi�ation to suh an approahis that weight tuning problem in the huge dimensional spae of target features is being miti-gated by setting the weights in the dissimilarity metri whih is of a muh smaller dimension.Also, sine the synthesized speeh is targeted for humans, reinforement from human partii-pants is advantageous. Thirdly, the importane of the di�erent aspets of dissimilarity metrivaries among phonemes. For example, it is known that vowel durations are important for goodprosody. But the relative importane of di�erent aspets is kept same for all the phonemes.Besides target ost funtion this is true for various ost funtions used for the �nal seletion.It is known that di�erent phonemes hold di�erent level of importane for various fators. Forexample, onatenation in the middle of a vowel is more pereived to onatenation in a onso-nant (Syrdal, 2001, 2005). Hene, in the total ost funtion di�erent phonemes have to be givendi�erent weights for various ost funtions. Currently, this approah applied through methodslike Weight Spae Searh (Hunt and Blak, 1996), but it is not losely based on human perep-tion. Though it requires drasti e�ort, this is an important area where dramati improvementmight be possible. The exploration might be based on a thorough survey of phoneti studies.Our experiene of total ost tuning strongly suggests that this is a plae where manual tuningis preferable to automati weighting algorithms unlike target ost funtion. In the ase of targetost funtion, the number weights to be set is high and it is pratially inappropriate to performmanual tuning. But for total ost funtion, while separately tuning only the target and totalost weights, the dimensionality is low, pratially feasible. Similar to any task with humanintervention is tedious and time taking, it is reommended in terms of better pereptual results.This is espeially true for a phoneme independent approah.The relatively smaller size of the orpus onstraints the performane of the weight tuningalgorithm. Though this orpus is of smaller size when ompared to a typial aousti orpus, itis muh bigger than ontemporary visual speeh orpora. We are planning to aquire a biggerorpus whih might pave way towards further improvement in the synthesis results. But, there



117are various di�ulties in aquiring a big audio-visual orpus. The number of sentenes whih anbe reorded in one day is limited. Sine our orpus aquisition is based on painted markers onthe fae, it is important to reord speeh on a single day. This is beause, the exat positioningof the markers on di�erent days is di�ult to ensure. Speaker-exhaustion also needs to beonsidered as it might a�et speeh utterane.To assess the performane of our system we performed word-level pereptual intelligibilitytests of our system through voluntary partiipants. We synthesized 1 or 2 syllabi words us-ing our system and presented the audio-visual speeh as stimulus. The underlying audio wasdegraded by the addition of noise to make partiipants pay attention to both the modalities.We also inluded some words present in the orpus during synthesis. These were inluded toestimate the highest intelligibility possible through our bimodal speeh data. The intelligibilityresults of in-orpus words were less than those ompared to a real video of person talking. Thiswas antiipated as the fae model doesn't inlude tongue and teeth yet. It an be said thatthese results are impliitly similar to those of automati visual segmentation (hapter 4) withand without tongue data. Besides tongue and teeth being absent, the fae is presented using asparse mesh without any texture information. The results on out-of-orpus words indiate thatwe have been able to ahieve our goal of synthesizing speeh dynamis reasonably well. It anstill be said that there is further sope for improvement. We believe that �nding better metristo evaluate the audio-visual speeh synthesis is the key to drastially improve these systems.Both pereptual evaluations and automati objetive evaluation should be tied to enable simul-taneous assessment of a synthesis system both automatially and quantitatively, and to ensurethat suh results are by and large oherent with human pereption. We attempted establishingrelation between pereptual and objetive evaluation metris. More systemati exploration isrequired in the future in this diretion.
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Appendix A
Stimulus for Pereptual and SubjetiveEvaluation

Table A.1: Words used for intelligibility testsIn-orpus words1. hien 7. hose2. uisine 8. fable3. presse 9. gaz4. jeune 10. maillot5. plaisir 11. pied6. pohe 12.Out-of-orpus words1. anneau 21. hasse2. grue 22. nappe3. raison 23. pousse4. bave 24. néant5. rihe 25. beige6. laine 26. hane7. nihe 27. rime8. beurre 28. langue9. pelle 29. ase10. rite 30. bien11. dalle 31. latte12. rode 32. mousse13. botte 33. drap14. pine 34. rouge15. bouhe 35. menthe16. rude 36. brun17. fade 37. mille18. oser 38. ga�e19. molle 39. age20. gris 121



122 Appendix A. Stimulus for Pereptual and Subjetive Evaluation

Table A.2: Sentenes used in subjetive evaluation of qualityIn-orpus sentenes1. Le Gri�on leva ses deux pattes pour manifester sa surprise.2. Il était alors reordman du monde du quart de mile.3. Europe 1 revient deux fois sur le sujet.4. Une soiété qui fait de nos enfants des voyous.5. Il semble qu'il y ait eu un problème de onnexion.6. La �llette regarda le ban des jurés.7. La �llette regarda le ban des jurés.Out-of-orpus sentenes1. Annie s'ennuie loin de mes parents.2. Leur hienne a hurlé toute la nuit.3. Le bouillon fume dans les assiettes.4. Le aratère de ette femme est moins alme.5. Le tapis était élimé sur le bord.6. La vaisselle propre est mise sur l'évier.7. Je suis resté sourd à ses ris.8. Ma partition est sous e pupitre.9. Ces légendes me rappellent les temps aniens.10. Vous avez du plaisir à jouer ave eux qui ont un bon aratère.11. On dit que l'essor de e village est important.12. La poire est un fruit à pépins.13. Je ne veux pas que vous le hangiez pour le moment.
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AbstratThis work deals with audio-visual speeh synthesis. In the vast literature available in thisdiretion, many of the approahes deal with it by dividing it into two synthesis problems. Oneof it is aousti speeh synthesis and the other being the generation of orresponding faialanimation. But, this does not guarantee a perfetly synhronous and oherent audio-visualspeeh.To overome the above drawbak impliitly, we proposed a di�erent approah of aousti-visual speeh synthesis by the seletion of naturally synhronous bimodal units. The synthesisis based on the lassial unit seletion paradigm. The main idea behind this synthesis tehniqueis to keep the natural assoiation between the aousti and visual modality intat. We desribethe audio-visual orpus aquisition tehnique and database preparation for our system. We thenpresent visual speeh segmentation experiments that we did using the bimodal speeh orpus.We present an overview of our system and detail the various aspets of bimodal unit seletionthat need to be optimized for good synthesis. The main fous of this work is to synthesizethe speeh dynamis well rather than a omprehensive talking head. We desribe the visualtarget features that we designed. We subsequently present an algorithm for target featureweighting. This algorithm that we developed performs target feature weighting and redundantfeature elimination iteratively. This is based on the omparison of target ost based rankingand a distane alulated based on the aousti and visual speeh signals of units in the orpus.Finally, we present the pereptual and subjetive evaluation of the �nal synthesis system. Theresults show that we have ahieved the goal of synthesizing the speeh dynamis reasonably well.Keywords: Audio-visual speeh synthesis, unit seletion, target ost, target feature weighting.
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