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Abstract

The objective of this thesis is to model highland malaria in Western Kenya using dynamical
systems. Two mathematical models are formumated, one, on differentiated susceptibility and
differentiated infectivity in a metapopulation setting, two, a saturated vector feeding rate model
with disease induced deaths and varying host and vector populations.
In the first model, we consider the different ecosystems identified as malaria hotspots in the
Western Kenya highlands and consider the ecosystems as different patches. The population in
each patch is classified as, either, child (age 0-5 years), or, adult (over ( years of age). Our results
are compared with some published results in [149].

The model will aid in examining the role of ecosystem heterogeneity and age structure to the
persistent malaria epidemics in the highlands. We formulate the differentiated susceptibility and
infectivity model that extend to multiple patches the well known epidemiological models in one
patch.

Classifying the hot spots as n patches, we give its mathematical analysis using the theory of tri-
angular system, monotone dynamical systems or anti-monotone non-linear dynamical systems,
and Lyapunov-Lasalle invariance principle techniques. Key to our analysis is the definition of a
reproductive number,R0, (the number of new infections caused by one individual in an otherwise
fully susceptible population throughout the duration of the infectious period). The existence and
stability of disease-free and endemic equilibrium is established with a prove that the disease free
state of the systems is globally asymptotically stable when the basic reproduction number R0

is less than or equal to the unity, and when R0 is greater than one an endemic equilibrium is
established which is locally and globally asymptotically stable. The model shows that the age
structuring reduces the magitude of infection. Using relevant data we did some simulation, to
demonstrate the role played by metapopulation and age structuring on the incidence and R0.

In the second part we formulate a model for malaria with saturation on the vector feeding
rates that lead to a nonlinear incidence. The vector feeding rate is assumed, as in the predator
prey models, to rise linearly as a function of the host-vector ratio until it reaches a threshold
Qv, after which the vector feeds freely at its desired rate. The two populations (host and vector)
are variable and drive malaria transmission, such that when the vectors are fewer than hosts,
the rate of feeding is determined by the vectors feeding desire, whereas, when the hosts are more
than the vectors, the feeding rate is limited by host availability, other feeding sources may have
to be sought by the vector. Malaria induced deaths are introduced in the host population, while
the vector is assumed to survive with the parasite till its death. We prove that the DFE equi-
librium is locally and globally asymptotically stable, if R0 < 1, and when R0 > 1, an endemic
equilibrium emerges, which is unique, locally and globally asymptotically stable. The role of the
saturated mosquito feeding rate is explored with simulation showing the crucial role it plays
especially on the basic reproduction number.

Key Words : Modeling, Metapopulation, Differentiated infectivity and Susceptibility, Monotone
Dynamical Systems, Lyapunov methods, Basic Reproduction Number, Global stability, Satura-
tion, Malaria, Numerical Simulation.
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Resume

L’objectif de cette thèse est de modéliser la transmission du paludisme dans la région monta-
gneuse de l’Ouest du Kenya, en se servant des outils de systèmes dynamiques. Nous considérons
deux modèles mathématiques. Le premier prend en compte une susceptibilité et une infectivité
différentielle dans les métapopulations, et le second un taux de saturation des repas sanguins
dans la population des moustiques.

Dans le premier modèle, nous considérons plusieurs écosystèmes identifiés comme zones sen-
sibles dans la région montagneuse de l’Ouest du Kenya. Dans ce modèle, ces zones sensibles
sont considérées comme nos différents patchs. Les populations de chaque patch sont divisées en
deux : les enfants (0 à 5 ans), et les adultes (dont l’âge est supérieur à 5 ans). Les résultats
obtenus sont comparés avec ceux obtenus dans [149]. Le modèle nous permet d’évaluer le rôle de
l’hétérogénéité de l’écosystème et la persistance de l’épidémie dans la région, due à la structura-
tion d’âge. Nous prenons en compte la susceptibilité et l’infectivité différentielle afin d’étendre
le modèle d’un patch en un modèle à plusieurs patchs.

Après avoir subdivisé la région en n zones sensibles, nous faisons une analyse mathématique du
modèle obtenu. Pour effectuer cette analyse, nous utilisons la théorie des systèmes triangulaires,
des systèmes dynamiques monotones, des systèmes dynamiques non linéaires anti-monotones et
le principe d’invariance de LaSalle. Un des éléments très utilisés dans notre analyse qui est un
concept clé en épidémiologie, est le taux de reproduction de base, très souvent noté R0. Cette
quantité, sans dimension, est le nombre moyen de cas secondaires, engendré par un individu
infectieux typique durant sa période d’infectiosité, quand il est introduit dans une population
constituée entièrement de susceptibles. L’existence et la stabilité du point d’équilibre sans mala-
die (DFE) sont établies et nous prouvons que le DFE est globalement asymptotiquement stable
lorsque R0 ≤ 1. Lorsque R0 > 1, le modèle admet un point d’équilibre endémique qui est globa-
lement asymptotiquement stable. L’analyse de notre modèle montre que la structuration d’âge
réduit l’ampleur de l’infection. En utilisant les données relevées, nous faisons quelques simula-
tions numériques afin montrer l’impact de la métapopulation et de la structuration d’âge sur le
taux de reproduction de base.

Dans la seconde partie, nous formulons un modèle de paludisme avec saturation du taux d’ali-
mentation des moustiques qui nous conduit à une incidence non linéaire. Nous démontrons que
le DFE est globalement asymptotiquement stable si R0 < 1. Lorsque R0 > 1, il existe un
unique point d’équilibre endémique qui est globalement asymptotiquement stable. Des simula-
tions numériques sont faites afin d’illustrer l’impact de la saturation du taux d’alimentation sur
le taux de reproduction de base.

Mots clés : Modélisation, métapopulation, susceptibilité et infectivité différentielle, systèmes
dynamiques monotones, méthode de Lyapunov, taux de reproduction de base, stabilité globale,
saturation, paludisme, simulations numériques.
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0.0.1 Highland Malaria

Malaria is a protozoan disease caused by a parasite transmitted by a female anopheles mosquito,
as it seeks a blood meal for its egg development. The disease is common in the East African
region, Kenya included. Malaria is one of the leading causes of morbidity and mortality in Kenya
and it kills an estimated 34,000 children under five in Kenya every year. 77% of Kenya’s popu-
lation lives in areas where the disease is transmitted. The disease is responsible for 30% of all
out-patient visits (requiring more than eight million out-patient treatments at health facilities
each year) and 15% of all hospital admissions. About 3.5 million children are at risk of infection
and developing severe malaria. Pregnant women also face high risks. There are approximately
1.1 million pregnancies per year in malaria endemic areas. During pregnancy, malaria can cause
miscarriages and anemia. Each year, an estimated 6,000 pregnant women suffer from malaria-
associated anemia, and 4,000 babies are born with low birth weight as a result of maternal
anemia. Economically, it is estimated that 170 million working days in Kenya are lost each year
because of malaria illness.

Malaria did not exist in the Western Kenya highlands until the second decade of the 20th cen-
tury, so the highlands were regarded as safe havens from the surrounding malarious areas of
Uganda and Kenya [102, 72]. After the first World War, malaria was prevalent in the communi-
ties inhabiting the highlands. This was as a result of wide-scale population settlement resulting
from the completion of the railway line from Kenyan coast via the highlands to Lake Victo-
ria. This also facilitated the gradual spread of infective mosquitoes into the highlands from the
low-lying hyperendemic-disease areas [44]. The development of tea estates and agriculture in
the highlands, with the concomitant clearing of the forests, provided suitable mosquito breeding
grounds. Finally, importation of infected laborers completed the conditions necessary for malaria
transmission [99].

This resulted to frequent malaria epidemics, with some authors labeling the resurgent epidemics

2
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Figure 1 – The Distribution of Malaria in Kenya (MARA/ARMA)

as ’Highland malaria’, because they viewed it as a new typology variant, demanding special at-
tention in the new global commitment to Roll Back Malaria [153]. ’Highland’ malaria therefore,
either is a new phenomena or a reemergence of a previous prevailing epidemiology [129].

Highland malaria in Western Kenya is characterized by unstable and high transmission varia-
bility which results in epidemics during periods of suitable climatic conditions. The sensitivity
of a site to malaria epidemics depends on the level of immunity of the human population. The
epidemics in the highlands have continued to wreck havoc on the public health of the inhabi-
tants, resulting in high morbidity and mortality especially in children under five years [129].
Malaria kills approximately 26,000 children per year in Kenya and about 170 million working
days (an average of 5.5 working days per person) are lost due to malaria per year. Malaria
accounts for 30 percent of all outpatient attendance and 19 percent of all admissions to Kenyan
health facilities (Kenya Ministry of Health 2001c). Since the early 1980s, there have been massive
percentage increases in P. falciparum burden at African highland locations [56]. The epidemics
varies seasonally and spatially with many studies being carried out to ascertain the drivers of
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Figure 2 – The malaria endemic Western Kenya Highlands. The areas affected by epidemics are
1500-2500 meters above sea level [49]

such variations. Among the factors considered as key drivers of the resurgent epidemics that
characterise the highlands include but are not limited to :

– Climate Variation.
Climate variation plays an important role in initiating malaria epidemics in the Western
Kenya highlands. The developmental rates and survivorship of the malaria parasite and the
malaria vector is highly temperature dependent, while rainfall influences the availability
of breeding places, hence their demography. Small changes in temperature could therefore
provide transiently suitable conditions for unstable transmission within populations that
have acquired little functional immunity. Studies on climatic variations and malaria epi-
demics in Western Kenya show that, there is a high spatial variation in the sensitivity to
malaria outpatient number to climate fluctuations in the highlands [154]. The contribu-
tion of climate variation to reemergence of malaria epidemics has been controversial, and
a good conclusion is that other factors together with climate change are more plausible
explanations for the malaria resurgences

– Drug Resistance
During the past two decades, Chloroquine (CQ) resistance has spread geographically, in-
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creased in prevalence within its range, and intensified in its severity of clinical failure
[137, 152]. CQ resistance has been identified as an important factor in the malaria resur-
gence on the Kericho tea estates [45]. How much effect this one has on the magnitude of
the epidemics is a point of discussion, this is because drug resistance can only aggravate
malaria induced morbidity and mortality not initiating an epidemic. Again, drug resis-
tance cannot explain the sporadic malaria epidemics in the Kenyan highlands in the 1920s
and 1950s, when the problem of drug resistance was insignificant [48].

– Land Use Changes.
The increasing human populations in the East African highlands puts a lot pressure on
the sensitive ecosystem [96]. There is an increase in changing human activities such as
deforestation and swamp cultivation for subsistence agriculture, growing cash crops, and
firewood acquisition that have characterized the region. Reports indicate that there is
an 8% reduction in forest coverage in the East African highlands in one decade [5]. The
changes in land use, especially deforestation in the highlands, have significantly changed
the microclimatic conditions of mosquito breeding sites that have significantly had effects
on the life history traits of the vectors.
Deforestation is said to have enhanced vectorial capacity by 10.6% and 29% in the dry and
rainy seasons in the highlands, respectively, thereby resulting in high indoor temperatures.
This causes faster blood meal digestion, thereby shortening the length of the gonotrophic
cycle of mosquitoes. Reduced gonotrophic cycle length would cause mosquitoes to feed
more often and lay eggs more frequently in a deforested area. [5].

– Population Growth and Health Service Provision
An important factor to consider in the escalating malaria incidence in Western Kenya is
population growth. Of vital consideration is the relationship between the percentage po-
pulation growth rate in the districts served by each health facility and the percentage rises
in malaria cases. Over the last 3 decades, sub-Saharan Africa including the highlands, has
seen a high rate of increase in population size, resulting from high fertility rates and in-
creasing child survival with annual growth rates averaged 3.9%. This implies that, holding
the incidence of malaria constant, the disease would be expected to have doubled over
approximately an 18-year period. Clearly, without a concomitant investment in essential
clinical services, beds, staff, and supporting infrastructure, the changing requirements for
clinical management will have been perceived by most district-level public health officials
as a crisis [55].

Defining true epidemics is difficult [129]. For most public health workers, epidemics re-
present exacerbations of disease out of proportion to the normal level to which that faci-
lity is subject ; these increases overwhelm the facilitys ability to cope. Therefore, a slow
but pervasive epidemic of clinical malaria may have emerged in the highlands, where lack
of investment in the physical capacity to manage an increasing population has resulted
inevitably in more malaria cases that require a basic clinical service.

– Immunity.
Due endemicity of malaria in Africa, people are infected so frequently that after a long
time, they develop a degree of acquired immunity, making them asymptomatic carriers of
infection [15]. The people who use mosquito nets in the night are not generally infected by
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the disease since the small number of bites they receive when they are outside the nets are
not sufficient to cause the disease, but rather, the small exposure to infection gives them
immunity. The low level exposure to infection however, is important as it acts as vaccina-
tion and develops immunity against the disease [80]. Those who acquire the immunity are
however susceptible to reinfections because the immune protection may wane over time
(temporary immunity) or may not be fully protective (partial immunity) [139].

Studies in Western Kenya indicate that in areas of unstable transmission in the high-
lands, the prevalence of circumsprozoite protein (CSP) is about 13% in adults over 40
years of age whereas in the stable transmission lowlands, approximately 65% of children
are antibody positive [6]. This shows that the human population in the highlands has fewer
people with immunity and this renders them vulnerable to severe forms of malaria during
epidemics [149]. Since the risk of an epidemic is closely related to the level of immunity
of the human population, the final outcome of the epidemic will be closely linked by the
proportion of people who may not have had exposure to the disease and who have no
immunity to malaria.

– Ecosystem heterogeneity.
A study [149] on the different ecosystems in the Western Kenya highlands identify three
major characteristics. The plateaus, V-shaped valleys and U-shaped valleys. The V-shaped
valleys have steep hillsides and narrow valleys that allow fast flow of the rivers, while the
U-shaped valleys have flat bottomed valleys with slow moving rivers.

!"#$%&'(")%**'+

Figure 3 – A picture of an U-shaped Valley [149]

The Studies carried out in the different highland ecosystems show that transmission is
heterogeneous in the three types of ecosystem, with the annual entomological inoculation
rates (EIR) ranging from 0.4-1.1 and 16.6 infectious bites per person for the V-shaped
and U-shaped valleys, respectively [62]. Along the flat valley bottoms, there are suitable
surfaces providing more ideal breeding sites of malaria vectors than the narrow valleys
[61].
The V-shaped ecosystems have very low malaria prevalence and few individuals with an
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Figure 4 – A picture of a V-shaped Valley [149]

immune response to malaria antigens. Provided evidence show that there is an 8.5- fold and
a 2-fold greater parasite and antibody prevalence respectively, in the U-shaped compared to
the V-shaped valleys. This makes the V-shaped valleys epidemic hotspot as the inhabitants
are exposed to a higher risk of severe forms of malaria during periods that support hyper-
transmission of the parasites.

Figure 5 – The antibodies prevalence for the U-shaped and the V-shaped valleys [149]

The plateau‘s antibody and parasite prevalence was similar to that of the V-shaped val-
leys. Although climatic variability drives malaria epidemics in Western Kenya highlands
the terrain characteristics can modify the level of malaria transmission and the rate of
immunity development.
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It is our aim in this thesis to formulate a mathematical model that captures the heterogenity
in the terraine characteristic and the infection dynamics of this very important disease in the
economy Kenya.

0.0.2 Mathematical Modeling

Mathematical models have become important tools in analyzing the spread and control of infec-
tious diseases. The model formulation process clarifies assumptions, variables, and parameters ;
moreover, models provide conceptual results such as thresholds, basic reproduction numbers,
contact numbers, and replacement numbers. Understanding the transmission characteristics of
infectious diseases in communities, regions, and countries can lead to better approaches to de-
creasing the transmission of these diseases.

Mathematical modeling arises from the idea that infectious disease spread and transmission
dynamics follows laws that can be formulated in mathematical language. It begun with Daniel
Bernoulli in 1766 when he modeled the effects of smallpox variolation (a precursor of vaccina-
tion) on life expectancy [31]. In the beginning of that century there was much discussion about
why an epidemic ended before all susceptible were infected with hypotheses about changing
virulence of the pathogen during the epidemic. Sir Ronald Ross, who received the Nobel prize
in 1902 for elucidating the life cycle of the malaria parasite, used mathematical modeling to
investigate the effectiveness of various intervention strategies for malaria [121]. Kermack and
McKendrick described the dynamics of disease transmission in terms of a system of differential
equations in [77, 78, 79]. They were the first to use the so-called basic reproduction number, a
threshold that determine if a disease dies out or spreads in a susceptible population. Literature
review in [19, 34, 36, 58] show the rapid growth of epidemiology modeling towards the end of
the twentieth century as mathematical modeling became more popular to aid in public health
policy making.

Many mathematical models describing the dynamics of AIDS pandemic have been used to pre-
dict the course of the epidemic and identifying the most effective prevention strategies. The
need for evaluating intervention strategies for newly emerging and re-emerging pathogens has
revealed real impact of mathematical modeling on public health.

There are two types of mathematical models, deterministic and stochastic. The determinis-
tic models are transmission models using ordinary differential equations to describe the process,
whereas stochastic models use statistical mechanisms to describe the transmission of infection
between two individuals. The rigorous mathematical analyses of the processes contribute to the
understanding of disease transmission in much detail. Therefore, developing a mathematical mo-
del helps address the essential processes involved in shaping the epidemiology of an infectious
disease and reveals the parameters that are most important and crucial for control and data
collection. Mathematical modeling is then also integrative in combining knowledge from very
different disciplines like microbiology, social sciences, and clinical sciences [85].

Of special interest in this thesis is metapopulation models, which refer to many small and
extinction-prone local populations connected via migration in fragmented environment. Meta-
population theory is based on the Levin‘s multi groups model [20]. The population is subdivided
into a finite number of discrete subpopulation called patches that are assumed to be homoge-
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neous and well mixed. Then each patch in the population is subdivided into compartments cor-
responding to different epidemiological status. This leads to multi-patch, multi-compartmental
systems. There are three possible formulations. The first assumes that an individual in a patch
of infection can infect a susceptible individual in the other patch. This approach assumes that
there is a short distance between patches, but individuals (human or mosquito) do not migrate
between patches (they can make brief visits sufficient for transmission). This assumption leads
to a series of models that has been studied in [60, 65, 90]. The legendary model of Lajmanovich
and Yorke [90] is a key example of such models.

The second formulation considers the mobility of individuals between patches with two forms
of movement : Migration, that is change of respective patch residence. The situation is that
of a digraph or directed movement graph. For the short visits, the individuals visits a number
of patches but returns to his patch of residence. The ”Mover -Stayer ” movement is covered
in the mode of Satttenspiel and Dietz [126]. Here, the formulation takes care of the degree
of patches connectivity. Recently there has been an increasing interest in this type of models
[12, 10, 14, 29, 43, 73, 147, 148].

The third formulation is more recent and takes into account the network structure of the metapo-
pulations, that is those patches that (local populations) are locally connected. This formulation
takes into account the degree of connectivity (number of links between a patch and its imme-
diate neighbours) of a patch and model the mobility of individuals in terms of diffusion between
discrete patches. This is a statistical approach where the system states depends on the local
population densities of the metapopulation network. The leads to a situation of a non-oriented
graph connectivity. [123, 124, 27, 3, 4]. The rest of the thesis is arranged as follows.

In part 1,we construct and analyze mathematically an age structured model for highland malaria
in Western Kenya, with differentiated patch susceptibility and infectivity and human migration
between patches. We show that there is a threshold below which the disease vanishes and above
which the disease is persistent in the metapopulation. It is applied to two sites in Western Kenya
that have been identified as ’malaria hotspots’ in literature cited above. This part contributes
significantly mathematics as the rigorous analysis of these types of models or metapopulation
are rather rare

In the second part, we formulate a model for the dynamics of vector feeding habits with sa-
turation and varying host and vector population. We establish mathematically the existence
of a disease free equilibrium where the disease dies out and an endemic equilibrium, where the
disease persists in the population using R0 as a threshold.The local and endemic equilibrium are
proved to be locally and globally asymptotically stable. The analysis on the role of saturation in
biting rate is also done to show that it plays a key role in infection and also incidence of malaria.
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CHAPITRE 1

Some Epidemiological Models
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1.1 The First Model : D.Bernoulli

The main objective of Bernoulli was to calculate the gain in life expectancy at birth if smallpox
were to be eliminated as a cause of death. Smallpox is endemic, a potentially lethal infectious
disease and a scourge that is dreaded and feared. It kills one in every five adults, (nearly one in
three patients). When it is not fatal, it often leaves a trail of destroyed lives. Effective treatment
for smallpox has remained elusive. In the eleventh century, the Chinese practiced variolation,
which is a form of inoculation, where infectious material from smallpox cases was transferred
into the skin of susceptibles with the intention to induce lifelong immunity by a mild infection
with a low case fatality. The result was, however risky, because the mortality rate could rise by 1
to 2%. In 1721 this method was introduced from Turkey into England by the wife of the English
Ambassador to Constantinople, Lady Mary Wortley Montague.

Smallpox was fortunately eradicated by the first human voluntary control. Its official ”disap-
pearance” dates back to 1977 ( when the last case of smallpox was reported). This was made
possible by the combined efforts of smallpox vaccination and screening program led by WHO in
1967. Bernoulli demonstrated before the Academy of Sciences that, despite the dangers it pre-
sented in the fight against smallpox, the generalization of variolation imported from the East,
would increase the life expectancy from 26 years and 7 months to 29 years and 9 months. His

10



1.1. THE FIRST MODEL : D.BERNOULLICHAPITRE 1. SOME EPIDEMIOLOGICAL MODELS

reasoning cannot be refuted, his calculations has passed the test of time, and he was persuaded
that his model was good. It suffices then for his critics to learn what a mathematical model is.
We give the details in the next section of the steps he followed to build his model.

D. Bernoulli assumed the following
– The probability that an individual is infected by smallpox for the first time dies is p and

the individual survives is 1− p and this probability is independent of the individuals age.
– q is the probability that an individual is infected in the year and it is independent of his
age. (ie the probability that an individual is infected during small time interval dx between
age x and age x+ dx is q.dx)

– when an individual survives after being infected with smallpox, he is immune for the rest
of his life.

Let m(x) be the natural mortality at age x, then the probability that an individual dies in a
small time interval dx between age x and age x + dx is m(x).dx. Considering a group of P0

individuals born in the same year we have :
– S(x) the number of individuals who are still alive at age x without having been infected

(and therefore are more likely to be)
– R(x) the number of immune individuals who are still alive at age x.
– P (x) = S(x) +R(x) the total number of individuals who are still alive at age x.

When births correspond to x = 0, S(0) = P (0) = P0 while between age x and age x + dx (dx
is infinitely small), an uninfected individual has a probability q. dx of catching smallpox and a
probability m(x).dx of dying from another cause. So the variation in the number of individuals
who are not yet infected is dS(x) = −q S(x). dx −m(x)S(x). dx, then we have the differential
equation,

dS

dx
= −q S(x)−m(x)S(x). (1.1)

During the same small time interval, the number of individuals who die of smallpox is p q S(x) dx

and the number of individuals who survive and become is (1−p) q S(x) dx. In addition, there are
m(x)R(x) already immune individuals who suffer natural death, leading to a second differential
equation

dR

dx
= q (1− p)S(x)−m(x)R(x). (1.2)

Summing the above two equations we obtain

dP

dx
= −p q S(x)−m(x)P (x). (1.3)

From equations 1.1 and 1.3, Bernoulli showed that the fraction of individuals at age x who
are at still at risk of contracting smallpox is

S(x)

P (x)
=

1

(1− p) eqx + p
. (1.4)

Analysis of the model
Bernoulli eliminated m(x) between the equations 1.1 and 1.3 by expressing m(x) as
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−m(x) = q +
1

S

dS

dx
= p q

S

P
+

1

P

dP

dx

to get the following expression

1

P

dP

dx
−

S

P 2

dP

dx
= −q

S

P
+ p q (

S

P
)2

where the right hand side is the derivative of f(x) = S(x), and it is the proportion of infected
individuals are who survives to age x. Therefore

df

dx
= −q f + p q f

2
. (1.5)

The solution of this type of equation ca be found courtesy of Jacques Bernoulli. Let g(x) = 1
f(x) ,

we see that dg/dx = d g − p q and that g(0) = 1/f(0) = 1. We then set h(x) = g(x)− p, so that
dh/dx = q h. So h(x) = h(0) eqx = (1− p) eqx. Finally, g(x) = (1− p) eqx + p and f(x) = 1/g(x).

To illustrate his theory, Bernoulli uses the mortality table by Halley (1656 - 1742) built for
the city of Breslau (1693). This table lists the number of survivors at the beginning of the year
x(x = 1, 2, . . .) of a cohort of 1238 individuals born in year 0. Bernoulli however, believed like
most of his contemporaries, that the numbers given by Halley are for the survivors reaching age
x, that is P (x) in the model. Because of this little confusion (Halley’s article is indeed not very
explicit), Bernoulli replaces the numbers 1238 by 1300 to obtain a realistic mortality for the first
year of life.

Parameter values chosen by Bernoulli are
– The probability of dying from smallpox p = 1

8

– The annual probability of catching smallpox q = 1
8 . This probability can be estimated

directly, Bernoulli then chooses q so that the total death toll of a smallpox represents 1
13of

all deaths, which corresponds to the proportion found in many cities in Europe.

With the formula 1.4 and data values of P (x) from the table of Halley we can calculate the
number of individuals S(x) who are still alive at age x without being infected. Then determine
easily the number of individuals who had smallpox and survived to age x :R(x) = P (x)− S(x).
Finally, we determine for each age x, the number of deaths due to smallpox between age x

and age x + 1. In theory, it is should be given by the integral p q
�
x+1
x

S(t) dt but the formula
p q(S(x) + S(x + 1))/2 is a good approximation (Trapezium Rule). In total, he deduced that
out of the 1300 newborns, 101 are destined to die of smallpox, which is 1/13 as he had calculated.

Bernoulli then considers a harmless way in which the whole population would be inoculated
from small pox at birth. Smallpox would be eradicated and the question is, what the gain would
be in life expectancy. Thus, starting from the same number P0 at birth and noting P

∗(x) the
number of individuals surviving at age x in the absence of smallpox, we have,

dP
∗

dx
= −m(x)P ∗ (1.6)

Using equation 1.3, Bernoulli found showed that

P
∗(x) =

P (x)

1− p+ pP ∗e−qx
. (1.7)
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In particular the P (x)/P ∗(x)t → 1 − p for large values of x. One way to compare P (x) and
P

∗(x) is to estimate the life expectancy at birth, whose theoretical, expression is

EP =
1

P0

� ∞

0
P (x) dx

with smallpox, and a similar expression with P
∗(x) instead of P (x) in the absence of smallpox.

Bernoulli used the approximation expression (P (0) + P (1) + P (2) + . . .)/P0 which is similar to
the one given by the trapezium rule. He finally found that life expectancy E with smallpox is
26 years and 7 months. Without smallpox, the life expectancy E

∗ = is 29 years and 8 months.

Inoculation at birth would save more than 3 years of life expectancy. Of course, inoculation
with a little virulent strain of smallpox, is not completely without risk. If p� is the probability
of dying from smallpox during inoculation (p� < p), while life expectancy in the case where all
children are inoculated at birth becomes (1− p

�)E∗. This remains greater than the natural life
expectancy E, if p < 1−E/E

∗, about 11%. Although there was no precise data available at the
time, Bernoulli estimated the risk p, to be in fact less than 1%.

1.2 An SIR Deterministic Model :Kermack and MC Kendrick

W.O. Kermack and AG Mc Kendrick formulated a simple model of directly transmitted diseases
at the beginning of the twentieth century. They tested their model with real data of the spread of
plague in Bombay between 1905 and 1906. They divided the population into three compartments,
S, for susceptible, I for infected the and R for removed, the model contains only two parameters :
β the infection rate and γ the rate of recovery, whose values of are determined from the observed
data. The size of the total population is assumed to be constant :

N = S(t) + I(t) +R(t)

Their model can be described by the following set of differential equations






S
�(t) = −βI(t)S(t)

I
�(t) = β(t)S(t)− γ I(t)

R
�(t) = γ I(t)

(1.8)

The general hypothesis adopted is that in the time interval dt, a fixed proportion of subjects
no longer be considered as ”infected”. This applies to the proportion of individuals removed
from the infection process because either they are immune, isolated, or dead. This proportion
represented by the parameter γ may be zero and the model reduces to an SI model. It may also
be equal to 1, in which case all infected are removed from the infection process during the time
interval dt. Generally, the recovery rate γ takes an intermediate value.

Analysis of the model
The previous model is referred to as a general deterministic model, and its study led to esta-
blishment of the ”threshold theorem”. System 1.8 together with the initial condition S(0) = S0,
I(0) = I0, and R(0) = 0 such that I0(0) and S0 = N is well posed. Here after we consider a
susceptible population in which a small number of infectives is introduced. We show that the
positive cone,

R3
+ = {(S, I, R) ∈ R3

+ | S ≥ 0, I ≥ 0, R ≥ 0}
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is positively invariant for system 1.8. As N = constant = S(t)+I(t)+R(t), the study of system
1.8 is reduced to the study of

S
�(t) = −βI(t)S(t)

I
�(t) = βI(t)S(t)− γ I(t)

(1.9)

Consider the following set

�= {(0 ≤ S ≤ N, 0 ≤ I ≤ N) | 0 ≤ S + I ≤ N}

Dividing the second equation of 1.9 by γI(t), we have

�
I
�(t)

γI(t) =
βS(t)
γ

− 1 (1.10)

Then, for β S(t)
γ

> 1 each in infective individual infects more than one susceptible, and the disease
will spread to an increasing number of individuals. So it will reduce the number of susceptible,
S(t) are such that β S(t)

γ
< 1. The ratio β

γ
can then be interpreted as the number of sufficient

contacts to transmit the disease in an infectives entire life of infectiousness.

By multiplying by the fraction of susceptible individuals at each instant, we get the total number
of new cases infected by a single infectious individual. Equation 1.10 therefore highlights the
importance of initial conditions in the general model, since β S0

γ
> 1, there is likely to be an

epidemic, on the contrary, β S0
γ

< 1, only a few individuals will be infected before the epidemic
dies out.

Let R0 = βN

γ
. This threshold R0 is called the basic reproductive rate, it refers to the num-

ber of secondary cases produced by an average infectious individual during the entire period of
his infectivity in a population that is entirely susceptible.

In case R0 > 1, although the system 1.8 can be solved explicitly, we have the following properties

1. S and I have the limits at +∞. In effect, we know that S
�(t) = −βI(t)S(t) < 0 so

S is a decreasing function, again S(t) ≥ 0, or S(∞) ≥ 0. In a similar reasoning in R,
which is decreasing and bounded, we obtain R(∞) ≥ 0 and we deduce the result I(∞) =
N − S(∞)−R(∞)

2. If S0 > 0 and I0 > 0, then 0 < S(∞) < S0 and I(∞) = 0. Consequently, suppose that
S0 > 0 I0 > 0 and R0 = 0 (without loss of generality, otherwise just set N = N −R0. On
one hand, for all t > 0, S(t) > 0, I(t) > 0, R(t) > 0 and

dS

dR
= −

β

γ
S

or

S(R) = S0 e
−β

γ
R
≥ S0 e−

β

γ
N > 0

So 0 < S(∞) < S0. on the other hand, lim
t→∞

S
�(t) = −βS(∞)I(∞) exists. Furthermore,

lim
t→∞

S
�(t) = 0. Otherwise if lim

t→∞
S
�(t) = α < 0, then there exists a T > 0 such that for all

t > T, S
�(t) < α

2 , and therefore,
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S(t) < S0 +
α

2
< 0 for t > −

2S0

α
.

This would contradict the fact that S(t) > 0 for all t > 0. So S(∞)I(∞) = 0 and when

S(∞) > 0, then I(∞) = 0

3. The final size of the epidemic is given by R(∞) = N − S(∞)

4. We have dI

dS
= −1 + γ

βS
, and by integration we obtain,

I = −S +
γ

β
lnS + C

where C is a constant. Or

I + S −
γ

β
lnS = C = N −

γ

β
lnN.

The maximum size of the epidemic, i.e. Imax is given by

Imax = −
γ

β
+

γ

β
ln

γ

β
= N −

γ

β
lnN

since S = γ

β
in Imax

1.3 Transmission of DHF in an Age Structured Population

Pongpunsum studied an SIR model to describe the transmission of Dengue Hemorrhagic Fe-
ver (DHF). They divided the human population into two separate groups, viz ; an adult class
and juvenile class with a differentiated transmission in the two age classes. The structure in age
was motivated by DHF case in Thailand where most cases occur in children less than 15 years old.

The infection occurs to both classes but the rate for adults is assumed to be less than that
of the children. Since most adults are exposed to DHF infection and develop immunity, many
are not aware and they are referred to as the silent population. For the infected children, the
antibodies will develop and they become adults with immunity. This means that the adults class
composes of the silent population, those who are known to have been infected and those who
have never had an infection. All the adults however are represented by SA.

The grouping together solves the puzzle of identifying from which group an individual comes
from. Such that the transmission from an infectious mosquito is the average of the transmission
rates to the different subclasses. The dynamics of the SIR model with age structure is given by
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dS
�
J

dt
= λ

� − bβJ

NT+m
S
�
J
I
�
v − (µh + δ)S�

J

dR
�
J

dt
= r I

�
J
− (µh + δ)R�

J

dI
�
J

dt
= bβJ

NT+m
S
�
J
I
�
v − (µh + δ + r) I �

J

dS
�
A

dt
= δ (S�

J
+ I

�
J
+R

�
J
)− � βJ

b

NT+m
S
�
A
I
�
v − µh S

�
J

dR
�
A

dt
= r I

�
A
− µhR

�
A

and

dI
�
A

dt
= � βJ

b

NT+m
S
�
A
I
�
v − (µh + r) I �

A

(1.11)

where S�
J(A), I

�
J(A), and R

�
J(A) are the susceptible juveniles (adults), infected juveniles (adults),and

recovered juveniles(adults), respectively ; NT , the total population which is a constant ; m, the
number of other animals the mosquito can bite ; b, the average number of bites a mosquito takes
per day ; λ, the birth rate ; µh, the death rate similar for all categories) ; δ, the rate at which
the juveniles pass into adulthood, and r is the rate at which the infected juvenile recover. I �v
is the number of infected mosquitoes ; βJ , the probability of the virus surviving in the juvenile
after being bitten by an infected mosquito, and �βJ is the probability of the virus surviving in
a susceptible adult after an infectious bite. � is the ratio between the probability than an adult
becomes infected and the probability that a juvenile becomes infected by an infectious mosquito
bite. It is assumed to be less than one.

The juvenile population dynamics is given by the equation

dNJ

dt
= λNT − (µh + δ)NJ , (1.12)

which was obtained by adding the first three equations of 1.11

The dynamics of the vectors is described by






dS
�
v

dt
= A−

bβv

NT+m
S
�
v (I

�
J
+ I

�
A
)− µh + S

�
v

and

dI
�
v

dt
= bβv

NT+m
S
�
v (I

�
J
+ I

�
A
)− µh I

�
v

(1.13)

where S
�
v and I

�
v is the number of susceptible and infected mosquitoes respectively ; µv, the

death rate of the mosquitoes ; A, the mosquito carrying capacity of the environment and βv is
the probability that a dengue virus transmitted to the mosquito from an infected human, from
a juvenile or an adult is infectious.
The vector population dynamics is given by

dS
�
v + I

�
v

dt
= A− µv Nv, (1.14)

They normalized the parameters and eliminated the equations for RJ , RA, and Sv to study the
following set of equations
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dSJ

dt
= (µh + δ)(1− SJ)− γh SJ Iv

dIJ

dt
= γh SJ Iv − (µh + δ + r) IJ

dSA

dt
= µh − � γhSAIv − µh SA

dIA

dt
= � γh SA Iv − (µh + r) IA

dIv

dt
= γvJ(1− Iv)IJ + γvA(1− Iv)IA − µv Iv

(1.15)

where

γh =
bβJ(A/µv)

NT +m
, (1.16)

and

γvJ =
bβv NJ(A)

NT +m
. (1.17)

By setting the RHS of equation 1.15 to zero, they established that a disease free equilibrium
E0 = (1, 0, 1, 0, 0) and an endemic equilibrium E1 = (S∗

J
, I

∗
J
, S

∗
A
, I

∗
A
, I

∗
v ) exists. Using lineariza-

tion method they calculated the value of R0, and showed using Routh-Hurwiz criteria that the
disease free equilibrium is locally asymptotically stable when R0 ≤ 1.

The endemic equilibrium analysis was not easy and further simplifications were made. Looking
at the data from Bangkok, it was clear that adults have only a small or no chance of becoming
sick with the disease. So they set � to zero and since the adults have developed immunity to
the DHF, the two categories I �

A
and R

�
A
would cease to exist. Now in the absence of adults and

simplifications as explained above they studied an easier system. This enabled them to study
the stability of the endemic equilibrium using linearization.

The endemic equilibrium is shown by simulation to be a stable spiral state. The periods of
fluctuations in the number of individuals in each class became much shorter in the absence of
any age structure. But the spiraling in, is much more severe in the absence of the age structure
and the conclusion was that the age structure appears to calm down the fluctuations.

The model is a one patch model and quite different from malaria which attacks both the children
and the adults albeit with differentiated magnitude.

1.4 Differential Susceptibility and Infectivity by Hyman

Hyman et al [69], formulated a differential susceptibility and infectivity model for disease trans-
mission. They divided the susceptibles into n groups based on their susceptibilities, and the
infectives are divided into m groups according to their infectivities. Using the standard and bili-
near incidence for different diseases, they defined explicit formulas for the reproductive number
for each subgroup.

The reproductive number for the entire population is a weighted average of the reproductive
numbers for the subgroups. They showed that the infection-free equilibrium is globally stable
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as the reproductive number is less than one for the models with the bilinear incidence or with
the standard incidence but no disease-induced death. They then showed that if the reproductive
number is greater than one, there exists a unique endemic equilibrium for these models. Numeri-
cal examples are provided to demonstrate that the unique endemic equilibrium is asymptotically
stable if it exists. Here is a brief review of the model ;

They considered the spread of a disease in a randomly mixing population that approaches a
steady state S

0 if there is no disease infection. They assumed that infected individuals become
fully immune or are removed from the susceptible population after they recover from the infec-
tion thus studying an SIR model.

The susceptibles who are assumed to have differential susceptibilities are divided into n groups
S1, S2, . . . , Sn. The individuals in each group have homogeneuos susceptibilities but the suscep-
tibilities of individuals from different groups are distinct. The susceptibles are distributed into
the n susceptible subgroups based on their inherent susceptibility, in such a way that the input
flow into Si is piµS0 with

�
n

i=1 pi = 1. The infectives are divided into m groups, I1, I2, . . . , Im,
such that upon infection, a susceptible individual in group Si enters group Ij with the proba-
bility qij and stays in this group until becoming recovered or removed, where

�
n

i=1 qij = 1 for
i − 1, 2, . . . , n. From this definition the transmission dynamics of infection are governed by the
differential equations ;

Ṡi = µ (pi S
0
− Si)− λi Si, i = 1, . . . , n (1.18)

İj =
n�

i=1

qij Si − (µ+ νj) Ij j = 1, . . . ,m (1.19)

Ṙ =
m�

j=1

νj Ij − (µ+ δ)R (1.20)

µ is the natural death rate in the absence of infection, νj is the recovery rate for infectives in
group Ij , and δ is the death rate of the recovered or removed individuals.
The Basic reproduction number is defined as the dorminant eigenvalue of the Jacobian matrix
at the disease free equilibrium as follows ;
For the bilinear incidence we have ;

R0 =
n�

i=1

pi co S
0
αi

m�

j=1

qij βj

µ+ νj
(1.21)

For the standard incidence it is defined as

R0 =
n�

i=1

pi r αi

m�

j=1

qij βj

µ+ νj
(1.22)

They defined the reproductive number of infection in the susceptible group Si from all infectives
for the standard and bilinear incidence model to be

R0i = c (S0)βi τi.
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Where

τi :=
m�

j=1

qij

µ+ νj

defines the mean duration of infection from all infectives to susceptibles in group Si and

βi := αi

1

τi

m�

j=1

qij βj

µ+ νj

is the mean transmissiom probability from all infectives to susceptibles in group Si.
Then the reproductive number for the entire population can be expressed as the weighted average
of the group reproductive numbers such that

R0 =
n�

i=1

piR0i.

Hyman et al, proved that the disease free equilibrium is globally stable when R0 < 1 and unstable
otherwise. When R0 > 1 its shown that there exists an endemic equilibrium and solutions
approach this equilibrium asymptotically. They did not proceed to consider the differential
susceptibility and infectivity for spatial population in their research.

1.5 A model for Disease transmission in a Metapopulation by J.Arino

Arino et al [11], formulated a model that incorporates the movement of individuals over a range
of spatial scale. They investigated the behavior of the system for a case in which the spatial
component consist of a ring of patches and the disease is transmitted between different species
in multiple patches. A formula for R0 is provided and a stability analysis for the disease free
equilibrium.

They formulated model that involves s species and n spatial patches and they proceeded as
follows
Let Nip be the population number of species i = 1, 2, . . . , n in patch p = 1, 2, . . . , n. For species i
the rate of travel or migration from patch q to patch p is denoted by mipq ≥ 0. These rates form
a non negative matrix M̂i = [mipq] with mipp = 0. They excluded demography and the rate of
change of Nip is given by

Ṅip =
n�

q=1

mippNiq − ΓipNip (1.23)

where Γip =
�

n

q=1 miqp. Setting Ni = [Ni1, Ni2, . . . , Nin]T , where superscript T denotes trans-
pose, gives the travel equation

Ṅi = MiNi (1.24)

with the mobility matrix Mi = M̂i −Di. Where Di is a diagonal matrix with Γip as the (p, p)
entry.

From the sign pattern of Mi and the fact that each column sum is 0, it follows that (−M)
is a singular M - matrix ([42] Th. 5 :11). The non-zero entries of Mi specify the arcs of a directed
graph for travel connections between patches (as vertices). Arino assumed that from each patch
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p, to patch q there exists a path in the directed graph so that Mi is irreducible.
For each of the n, patches they formulated a general SEIRS compartmental epidemic model for a
disease that confers temporary immunity with Sip, Eip, Iip, Rip denoting the Susceptibles, Latent,
Infected (Infectious), and Recovered individuals of species i in patch p at time t,respectively.
Therefore

Nip = Sip + Eip + Iip +Rip.

The new borns from species i in patch p enter the susceptible class with the birth term dipNip.
The transmission term between the species is a standard incidence is βijp ≥ 0 and defines the
average number of adequate contacts per unit time in patch p, between susceptible of species i
and infectives of species j. Assuming that the rates of travel are independent of disease status
and neglecting disease related deaths, they derived the following system of 4sn equations for
species i = 1, 2, . . . , s in patch p = 1, 2, . . . , n

Ṡip = dip (Nip − Sip) + VipRip −

s�

j=1

βij Sip

Iip

Nip

+
n�

q=1

mipqSiq − Γip Sip (1.25)

Ėip =
s�

j=1

βij Sip

Iip

Nip

− (dip + εip) +
n�

q=1

mipqEiq − ΓipEip (1.26)

İip = εipEip − (dip+ γip) Iip +
n�

q=1

mipq Eiq − Γip Iip (1.27)

Ṙip = γip Iip − (dip + νip)Rip +
n�

q=1

mipqRiq − γipRip (1.28)

To study the stability of this system they proceeded as follows ;

Let

F =

�
0 G

0 0

�
,

where G = ⊕n

k=1Gk, and ⊕ denotes direct sum.

V =

�
A 0
−C B

�
,

with

A =




A11 . . . A1n

. . . . . . . . .

An1 . . . Ann



 ,

and

B =




B11 . . . B1n

. . . . . . . . .

Bn1 . . . Bnn



 ,

and
C = ⊕

n

k=1Ck
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Here Gk, Ajk, Bjk, Ck are s x s matrices with Ajk, Bjk, Ck diagonal. Matrix Gk has (i, j) entry

equal to βijk
N

∗
ik

N
∗
jk

, the (i, i) entry Akk is equal to dik + εik +
�

n

l=1milk, whereas for j = k the

(i, i) entry of Ajk is −mijk.

Matrix B is the same as A but with εik replaced by γik. Finally Ck has (i, i) entry equal to
εik.
From the sign pattern and the fact that they are diagonally dorminant by columns, A and B

are non singular M - matrices [2], thus A−1 and B
−1 are non negative. Using the result in [141],

a formula was obtained for the basic reproduction number R0 and the following stability result.

Theorem 1.1. For the model 1.25 with s species and n patches R0 = ρ(GB
−1

CA
−1), Where ρ

denotes the spectral radius. IfR0 ≤ 1, then the disease free equilibrium is globally asymptotically
stable, and if R0 > 1, then the disease free equilibrium is unstable.

In this study metapopulation and its dynamical effect on disease transmission has been done
but the study did not consider differential susceptibility and differential infectivity in the patches.

1.6 Ross Model

Ronald Ross modeled the transmission of malaria and identified the basic reproduction number
as a threshold for the invasion and persistence of infection. The basic reproduction number which
defines the number of secondary infections resulting from one infectious individual in an entirely
susceptible population, determines if the disease will invade the population (if it is greater than
1) or die out (if it is less than 1).

The Ross model divides the entire population as either susceptible or infected (hence infec-
tious). Assuming a constant host population H, he defines Ih as the number of hosts that are
infectious, thus there are H − Ih susceptible hosts. Using proportions, he used Ih

H
and H−Ih

H
to

define the fraction of infectious and susceptible hosts respectively. The total vector population
is similarly defined with V , the total and vector population, and Iv, the number of infectious
vectors, such that Sv = V − Iv.

According to Ross, an infection only occurs if a susceptible host is bitten by an infectious vector.
The rate at which vectors bite is independent of the number of hosts available since it is clear
that each vector needs a certain number of blood meals per unit time. Assuming that the hosts
are readily available when the vector needs a blood meal, the biting rate will be proportional to
the number of vectors and not the number of hosts.

The man biting rate of vectors is taken to be a, and the proportion of infectious bites to a
host, b1. Once infected the host will remain infectious for a period 1

γ
and then recover to join

again the susceptible class. The probability that a susceptible vector gets infected when it bites
an infected host is defined as b2. It is assumed that once a mosquito is infected, it remains so
for its entire life, which is assumed to be 1

µ
time units.

This leads to the pair of equations
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İh = b1 a
(H−Ih)

H
Iv − (γ) Ih

İv = b2 a (V − Iv)
Ih

H
− µ Iv

(1.29)

He found out that the basic reproductive ratio R0 is a threshold that determines if the malaria
will persist or die out. Precisely if

R
2
0 =

a
2
b1 b2 V

γ µH
≤ 1,

Malaria will disappear in the long run
and if

R
2
0 =

a
2
b1 b2 V

γ µH
> 1,

Malaria will settle to an endemic equilibrium where both the infectious host and infectious vec-
tor populations will be positive.

The square on R0 comes from the fact that two generations are needed for transmission of
malaria to take place, first from an infectious host to a susceptible mosquito and then from an
infectious mosquito to a susceptible host. The square on the biting rate a, results from the two
cycles of biting necessary for an infection to occur. The expression of basic reproduction number
shows that it is directly proportional to the vector population and inversely proportional to the
host population. The threshold R2

0 = 1 determines if the disease will break out or die out.

1.7 Global analysis of a vector-host epidemic model with nonlinear inci-

dences by Li-Ming Cai et. al.

Ming proposed an epidemic model with nonlinear incidences that describe the dynamics of di-
seases spread by vectors (mosquitoes) with a constant human and vector populations. Basing
their formulating on the Ross-Macdolnald model, they included a Holling Type 2 saturation in
the vector populations, which is divided into susceptible and infected vectors.

The dynamics of the human host is described by an SIR mode, that is, susceptible, infected
and removed compartments. They considered transmission of a vector borne disease where the
transmission is affected by the host behaviour and therefore assumed that the number of in-
fective vectors is proportional to those of the infective human hosts. The result of preventive
behaviour in hosts may also limit further transmission of the disease. Another factor that af-
fects transmission is immunity which they argue enhances transmission. From these facts, they
assumed that the infection force of the host population saturates with the infected vectors. The
following three hypothesis guides the dynamics of their model.

(H1) : For host population, the total population under consideration is divided into three classes :
SH(t), IH(t), and RH(t), the susceptible, infected and recovered respectively at time t.
NH(t) = SH(t) + IH(t) + RH(t) is the total number of the human population and µK is
the recruitment rate of the newborns into the susceptible population. µ, γ0, γ1 represents
the natural death rate, recovery rate and rate of human treatment respectively.

(H2) : For the vector population, Sv(t), Iv(t), is the number of susceptible and infective vectors
respectively, at time t. The recovery class of mosquitoes is omitted since mosquitoes do
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not recover from parasite infection. The total vector population thus, is given by Nv(t) =
Sv(t) + Iv(t). The rate of recruitment for the vector is the constant rate Λ and the total
deaths in mosquitos occur at a rate mNv(t), where m is the per capita mortality. The
differential equation governing the dynamics of the vector population is

N
�
v(t) = Λ−mNv(t).

As t → ∞ the solution Nv approach Λ/m.

(H3) : Let β1 be the transmission rate from vector to human and β2, the transmission form
human to vector. Then considering the saturation in the force of infection the incidence
terms for the host and vector populations are given respectively by

β1SHIv

1 + α1Iv
,

β2SvIH

1 + α2Iv
,

where α1, α2 determine the level at which the force of infection saturates.

The dynamics of the vector host epidemics is described by the following equations

S
�
H

= µK −
β1 SH Iv

1+α1 Iv
− µSH

I
�
H

= β1 SH Iv

1+α1 Iv
− (µ+ γ) IH ,

R
�
H

= γ IH − µRH ,

S
�
v = Λ−

β2 Sv IH

1+α2 Iv
−mSv

I
�
v = β2 Sv IH

1+α2 Iv
−mIv

(1.30)

where γ = γ0+γ1. Since Nv → Λ/m, then we can assume Sv = Λ/m−Iv ; The system is feasible
in the regionR5

+, the positive orthant of R5. Since RH and Sv can be determined from the total
population, the dynamics of model 1.30 is determined by the three dimension nonlinear system

S
�
H

= µK −
β1SHIv

1+α1Iv
− µSH

I
�
H

= β1SHIv

1+α1Iv
− ωIH ,

I
�
v = β2SvIH

1+α2Iv
(Λ/m− Iv)−mIv

(1.31)

where ω = µ+ γ. For the system 1.31, the region

Ω = {(SH ; IH , Iv) ∈ R
3
+ 0 ≤ SH + IH ≤ K, 0 ≤ Iv ≤ Λ/m}

The basic reproduction number for the system was calculated to be

R0 =
β1 β2KΛ

m2 ω

where and they proved that in the absence of the disease all solutions tend to the disease
free equilibrium E0, when R0 ≤ 1. When the R0 > 1, E0 becomes unstable and an endemic
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equilibrium emerges in Ω. Linearising the system at the endemic equilibrium and using the
second additive matrix result, they established the local and global stability of system 1.12.
Finally they simulated the model and demonstrated some analytical results and explored the
significance of the nonlinear incidence. These results showed that even though the stability
results do not depend directly on the parameters α1, α2, a decrease in these two parameters
produces an increase in the number of secondary infections. They confirmed therefore that the
parameters α1, α2 which are varying, control the magnitude of the infective individuals.

1.8 Ross-Macdonald Model in a Patchy environment by Auger et. al.

Auger et al [14], modified Ross-Macdonald model and subdivided the populations into n patches
with susceptible/infectious humans and vectors residing in the patches. They assumed that some
patches can be vector free, the hosts can migrate between the patches but not the vectors, and
that the susceptible and infectious individuals have the same dispersal rate.

Basing their equations on the Ross-macdonald models, they came up with a set of equations
describing their new model. They computed the basic reproduction ratio R0 and proved that
when R0 ≤ 1, the disease free equilibrium is globally asymptotically stable, and when R0 > 1,
there exists and endemic equilibrium, which is also globally asymptotically stable on the biolo-
gical domain minus the disease free equilibrium. Here is a brief description of their model : The
transfer rate from patch i to patch j, for i �= j, is denoted by mij ≥ 0. The total host population
on patch i is denoted Ni. For i = 1, 2, . . . , n, the dynamics is given by

Ṅi =
�

j=1n,j �=i

mijNj −Ni

�

j=1,j �=in

mij .

This system can be written as

Ṅ = MN (1.32)

They used the following notations

– Ih,i is the infectious host population on patch i

– p is the number of patches harboring vectors, Iv,i, Vi are, respectively, the infectious vector
population and constant vector population on patch i. If i > p there is no vector on patch
i, i.e., Vi=0

– a is the man biting rate of vectors
– b1 is the proportion of infectious bites on hosts that produce a patent infection.
– b2 is the proportion of infectious bites by susceptible vectors on infectious hosts that

produce a patent infection.
– µ is the per capita rate of vector mortality.
– γ is the per capita rate of host recovery from infection.

Auger et al numbered the patches such that only the first p patches, 1 ≤ p ≤ n, are infested by
the vectors. On the patches i for i > p, Vi = 0, hence Iv,i = 0
For patches such that i ≤ p, i.e., where vectors are present, we have
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İh,i = b1 a Iv,i
Ni − Ih,i

Ni

− γ Ih,i +
n�

j=i,j �=i

mij Ih,j − Ih,i(
n�

j=i,j �=i

mij) (1.33)

İv,i = b2 a (Vi − Iv,i)
Ih,i

Ni

− µ Iv,i (1.34)

For i > p, there are no vectors on patch i and the equation for the infectious hosts has only the

recovery and migration terms. The equation governing the evolution of Ih,i is the following

İh,i = −γ Ih,i +
n�

j=i,j �=i

mijIh,j − Ih,i(
n�

j=i,j �=i

mij) (1.35)

They used some notations and conventions to represent the whole system as

Ṅ = M N (1.36)

(1.37)

İh = β1 diag(N)−1 diag (N − Ih) Iv − γ Ih +MIh (1.38)

(1.39)

π İv = β2 diag(πN)−1 diag (π (V − Iv))π Ih − µπ Iv (1.40)

where diag(X, p, q) denotes, the p × q matrix diagonal matrix whose diagonal is given by the
components of X and the other terms are zero for X ∈ Rp or X ∈ Rq

Using the concept of Metzler matrices and with further simplification of the system they
showed that the origin is the disease free equilibrium and computed the basic reproduction
number as

R
2
0 =

β1 β2

µ
ρ(−diag (πm)Z),

where Z = (D− γI)−1(1 : p, 1 : p), i.e., the sub-matrix of the p first rows and p first columns of
D − γI)−1. It was proved that the disease free equilibrium is globally asymptotically stable.

The stability analysis of the endemic equilibria was done using the theory of irreducible mono-
tonic systems, Lyapunov functions and the La Salle invariance principle. They proved that the
endemic equilibrium is locally and also globally asymptotically stable. In this study the resear-
chers concentrated on metapopulation of malaria and the dynamics of transmission when the
human host migrates. However they did not consider, differentiated susceptibility and infectivity
which are important factors in malaria transmission, that we cannot afford to ignore especially
in a patchy environment.
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Introduction

2.1 An SIS malaria model in a patchy environment

2.2 Introduction

Malaria is caused by a parasite of a genus plasmodium, that is transmitted by the female ano-
pheles mosquito as it sucks blood from human hosts for its egg development.
In Kenya, malaria is the leading cause of morbidity and mortality. It is estimated that it ac-
counts for 30% of all outpatient attendance and 19% of all admissions to health facilities. The
infection ranges from intense in the lowland to endemic in the highlands causing havoc to the
public health system especially during periods of suitable climatic conditions. About 20% of all
deaths in children under five are as a result of malaria infection (MOH 2006). Although the
disease is found in most parts of the country, the lake stable and coastal region plus the high-
land epidemic-prone districts have risks of over 20% and 19% respectively, with an estimated
population of 19 million people (or 49% of the total Kenyan population).
The Western Kenya highlands bares the greatest blunt of the disease with some areas suffering
as high as 70% infection rates. Entomological studies in different highland ecosystems indicate
that transmission is heterogeneous. The terrain characteristics and topography which processes
rain, results to big differences in epidemic magnitudes. A result identified three hydrological
systems including the V-shaped valleys, the U-shaped valleys and the plateaus.
The types of valleys determine drainage quality, the rainfall threshold and consequently vector
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breeding. The U-shaped valleys are broad shaped and have slow moving rivers or streams with
poor drainage. This favors mosquito population growth resulting in high malaria infection rates
and incidence.

The V-shaped valleys have narrow bottoms with fast flowing rivers or streams with good drai-
nage, this makes it hard for mosquito to find suitable breeding sites and thus lower their popula-
tion growth. The plateaus are flat, though they have good drainage, and their ecosystem behaves
like the V-shaped valleys unless there are large water bodies like dams. This implies that the
terrain characteristics can modify the level of malaria transmission and the rate of development
of immunity as the risk of an epidemic is closely related to the level of immunity of the human
population [149].
The V-shaped and the U-shaped valleys are located in different geographical locations, thus
clearly separated, and are apart, so in this case the ’spatialization’ is discontinuous. Then the
natural tool for modeling in this case is metapopulation.

In Kenya malaria is labeled as a ’travelling disease’. Report from Kibera’s Ushirika clinic in
Nairobi, where malaria is the main disease treated daily, estimates that 80% percent of the
people treated for malaria had travelled out of Nairobi. This implies they got infected and
returned, with symptoms only appearing once they are back in the estate. The neighbouring
estate is inhabited by people who live near Lake Victoria, where the disease is widespread. By
being less exposed to malaria, many loose the semi-immunity they used to have. This is why
they contract it easily when travelling upcountry, ( http://www.irinnews.org/Report/73501/
KENYA-Climate-change-and-malaria-in-Nairobi). This brings the disease to the city which
has been free of malaria. Then metapopulation models with migration between the patches suits
the ’highland malaria’ dynamics in Kenya. Understanding human movement will facilitate the
identification of individuals and key zones in malaria transmission and may guide intervention
measures, monitoring and improve the intervention programs.

Result from literature also confirms that children between 1 and 5 years represent a very si-
gnificant source of mosquito infections compared to adults [49] and they are not also bitten in
same way as adults [109, 130]. Moreover it is well observed that there is a differentiation in these
two age groups as most deaths occur in infants and parasitemia levels of infected individuals de-
crease with age [139]. This naturally constricts us to differentiated susceptibility and infectivity
models.
With the predicted climate change [105], the epidemics may become more frequent and severe
posing a serious threat on the already strained public health system. Furthermore, due to the
large areas affected by epidemic malaria, it may not be affordable to spray every house with
indoor residual insecticides [149]. A model that would lead to a better understanding of trans-
mission and risk of severe disease comes in handy at this time.

Mathematical modeling plays a major role in understanding infectious disease dynamics as
it describes the complex disease transmission processes. It also provides insights into the disease
dynamics during the rigorous analysis process. The first malaria model was formulated by Sir.
Ronald Ross in 1911 [121]. Since then, modeling of vector borne disease has grown in leaps and
bounds as shown in reviews [19, 34, 36, 58]. Hyman [69] et al. formulated a general differential
susceptibility and differential infectivity model for a disease transmission. They proved that the
disease free equilibrium is globally stable when R0 ≤ 1 and unstable otherwise. When R0 > 1
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they show that there exists an endemic equilibrium and solutions approach this equilibrium
asymptotically. The model can only be used for directly transmitted disease. Pongsumpun [119]
formulated a model to study the influence of age structure in an SIS model for Dengue He-
morrhagic Fever (DHF) and showed that age structure reduces the periods of oscillation on the
susceptible and infected human population and the infected mosquito population. It also tigh-
tens the spiraling into the endemic equilibrium state. The difference with our intended model is
the metapopulation setting, the differentiated patch and age susceptibility and infectivity, not
forgeting the disease malaria.
Auger et.al. [14] modified Ross model to n patches. A thorough analysis on the local and global
stability of the disease free and the endemic equilibrium is done using R0. The model however
assumed that the susceptibility and infectivity is similar in all the patches, an important diffe-
rence that we wish to model considering the heterogenity in the ecosystem of Western Kenyan
Highlands.
Motivated by the work of [14] and [119], we formulate an age structured malaria model with
susceptibility and infectivity of an individual depending on their age and residence patch. We
shall then compare our results with the current findings.

The region is subdivided into homogenous patches and the population in the patches is fur-
ther subdivided into children, ages 1-5, and adults, over 5 years of age. The susceptibility of the
two age groups is differentiated to depend on the patch where the individual resides. The two
age groups are allowed to migrate between the patches, making short visits to return to their
residences later.

We assume that the rate of migration does not depend on the epidemiological status and age of
the human host, that is, that the infected or uninfected children move with the same migration
rate with the infected or uninfected adults. We also assume that mosquitoes do not migrate.
In Section 2, we formulate a mathematical model describing the dynamics of a two class age
structure of the human population occupying the patches with migration rates between the
patches similar for the two classes. In Section 3,the system is reduced to a more compact form
for ease of analysis. In Section 4, we describe the basic properties of the model. In Section 5, we
study the stability of the model. An example of the model in two patches is presented in Section
6 and numerical analysis is done in Section 7.

2.3 The model

Let S
C

hi
(SA

hi
), denote the susceptible children (adults) in patch i respectively, while I

C

hi
(IA

hi
)

denotes the susceptible children (adults) respectively. The vector population is likewise identified
by Svi and Ivi for the susceptible and infective vectors respectively. The total human population
which is assumed to be constant, is given by the sum of all host in all the patches as N = Sh+Nh.
So that Ni = N

C

i
+N

A

i
denotes the total host population in patch i. The total vector populations

is given by the sum of all vectors in all the patches as V = Sv + Iv and Vi = Si + Ii is the total
vector population in patch i. Migration of hosts is allowed in and out of the patch with an
assumption that those who visit return to their resident patches (i.e. they make short visits
sufficient for transmission to take place). We assume a uniform migration rate mij ≥ 0, i = 1..n
denoting proportion of individuals from patch j to patch i. The flow of individuals into the
different compartments is represented in Diagram 2.1 shown below

The total host population on patch i is defined as Ni = N
C

i
+N

A

i
and its dynamics is given
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Figure 2.1 – Transfer Diagram for the different epidemiological groups in different patches

by Ṅi = Ṅ
C

i
+ Ṅ

A

i
, and

Ṅ
C

i
=

n�

j=1,j �=i

m
C

ijN
C

j −

n�

j=1,j �=i

m
C

jiN
C

i

Ṅ
A

i
=

n�

j=1,j �=i

m
A

ijN
A

j −

n�

j=1,j �=i

m
A

jiN
A

i

where
�

n

j=1,j �=i
Nj is the total number of residents of patch i at time t [10].

We define the vector of Rn
+, N

C , NA and N
v whose components are respectively N

C

i
, NA

i
and

N
v

i
.

If we define the matrix M
C by

M
C

i,j =






m
C

ij
if i �= j

m
C

ii
= −

n�

j=1,j �=i

m
C

ji otherwise

and the matrix M
A analogously, the preceding equations are

ÊṄ
C = M

C
N

C
Ṅ

A = M
A
N

A

We can also assume that there is some migration for the mosquitoes, at least for some nearby
patches. Then in the same way we introduce

ÊṄ
v = M

v
N

v
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If all the patches are sufficiently distant from each others, then no migration of mosquitoes
occurs then Mv = 0

Therefore the dynamics of the total host and vector population on patch i is be defined by

Ṅ
�
i = MN

�
i (2.1)

where N
� is the vector defined by

ÊN
� =




N

C

N
A

N
v





and the matrix M is the diagonal block matrix

ÊM =




M

C 0 0
0 M

A 0
0 0 M

v





Our migration equation becomes
Ṅ = MN. (2.2)

The following are the notations used in the model :
– Λi is the recruitment of new born children in patch i.
– Sh,i, Ih,i is the susceptible, respectively infectious host population on patch i

– Sv,i, Iv,i is the susceptible, respectively infectious vector population on patch i.
– ai is the man biting rate of vectors in patch i.
– b1 is the proportion of infectious bites on host that produce a patent infection
– b2 is the proportion of bites by susceptible vectors on infected host that produce a patent
infection

– µ
C

h,i
(µA

h,i
) is the per capita rate of children (adult) mortality in patch i.

– ν is the rate children translate to adults. Then 1
ν
is the mean duration of childhood.

– µv,i is the per capita rate of vector mortality.
– γ

C

i
is the per capita rate of child recovery from infection, and 1

γ
C

i

is the childs’ mean

duration in the infectious compartment in patch i. A similar definition holds for the adult
recovery, γA

i
.

The total host and vector population in all the patches is constant. We assume that the parame-
ters ai is dependent on the host age group in the patches. We also assume that recovery rate γi

does not depend on age [139] but on how quickly the host receives treatment and their history
of malaria infection. This clearly depends on the nature of the health system in the patch i.
We consider age structured system where children translate to adults at a rate ν.
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For the patches i = 1, . . . , n we have the 6n equations

Ṡ
C
h,i = Λi − b1a

C
i

SC
h.i
Ni

Iv,i + γ
C
i I

C
h,i − (µC

i + ν)SC
h,i +

n�

j=1,j �=i

m
C
ijS

C
h,j − S

C
h,i

n�

j=1,j �=i

m
C
ji

Ṡ
A
h,i = νS

C
h,i − b1a

A
i

SA
h.i
Ni

Iv,i + γ
A
i I

A
h,i − µ

A
i S

A
h,i +

n�

j=1,j �=i

m
A
ijS

A
h,j − S

A
h,i

n�

j=1,j �=i

m
A
ji

İ
C
h,i = b1a

C
i

SC
h,i

Ni
Iv,i − (γC

i + µ
C
i + ν)ICh,i +

n�

j=1,j �=i

m
C
ijI

C
h,j − I

C
h,i

n�

j=1,j �=i

m
C
ji

İ
A
h,i = b1a

A
i

SA
h,i

Ni
Iv,i + νI

C
h,i − (γA

i + µ
A
i )I

A
h,i +

n�

j=1,j �=i

m
A
ijI

A
h,j − I

A
h,i

n�

j=1,j �=i

m
A
ji

Ṡv,i = Λv −
Sh,i

Ni
(b2aCi I

C
h,i + b2a

A
i I

A
h,i)− µv,iSv,i +

n�

j=1,j �=i

m
v
ijS

v
v,j − Sv,i

n�

j=1,j �=i

m
v
ji

İv,i =
Sh,i

Ni
(b2aCi I

C
h,i + b2a

A
i I

A
h,i)− µv Iv,i +

n�

j=1,j �=i

m
v
ijI

v
v,j − Iv,i

n�

j=1,j �=i

m
v
ji

(2.3)

The term Λi represents the recruitment of newborns into the susceptible children’s class. b1aCi Iv,i
(SC

h,i
)

Ni

in the first equation represents the differentiated infection of susceptible children by infectious
mosquitoes using frequency dependent transmission and a non constant host population in patch
i. The term −γiI

C

h,i
(−γiI

A

h,i
) defines the recovery of infected child (adult) respectively, µC

i
is the

per capita death rate of children in patch i, ν is the rate children pass into adulthood, and
the last term defines host migration. For the second and third equations the terms are defined
similarly for Adults. The fifth equation for infectious vectors has the first term corresponding to
the infection of susceptible mosquitoes by infected Children and infected Adults, while the last
term −µiIv,i caters for vector mortality.

We will assume in the sequel that ν < γ
A

i
for any index i

The rationale for this assumption is that the rate of recovering, for an adult or a child, is
considerably greater than the mean sojourn time in the compartment of childhood. Actually

ν ≈
1

5× 365
j
−1 and γ

A

i
≈

1

2× 30
j
−1

The complete system is given by equations and (2.3).

2.4 Reduced System

It turns out that system given by equations (2.3) can be rewritten in a triangular form so we
need the following theorem to reduce such a system and thus study a smaller system.

Theorem 2.1 (Vidyasagar). Consider the following C1 system :





ẋ = f(x) x ∈ Rn
, y ∈ Rm

ẏ = g(x, y)
with an equilibrium point, (x∗, y∗)i.e
f(x∗) = 0 and g(x∗, y∗) = 0

(2.4)
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If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x), and if y∗ is
GAS in Rn, for the system ẏ = g(x∗, y), then (x∗, y∗) is (locally) asymptotically stable for (2.4).
Moreover if all the trajectories of (2.4) are forward bounded, then (x∗, y∗) is a GAS for (2.4).
To apply the above Vidyasagar theorem we would need to prove the stability analysis of first
equation, then we would only have to test the stability of the infection equation.

From equation (2.3) if we add equation (i) and equation (iii) together we get

Ṅ
C

i = Λh,i − (µC

h,i
+ ν)NC

i +
n�

j=1,j �=i

m
C

ijN
C

j −

n�

j=1,j �=i

m
C

jiN
C

i

Which gives

ÊṄ
C = Λ+ (−diag(µC

h
+ ν 1) +M

C)NC
.

We note that the matrix [−diag(µC

h
+ ν 1) +M

C ] ≥ 0, is a Metzler matrix.

For a matrix M the stability modulus, that we will denote s(M), is the largest real part of the
elements of the spectrum Spec(M) of M

s(M) = max
λ∈Spec(M)

Re(λ).

We have now

Ê1T [−diag(µC

h
+ ν 1) +M

C ] = −(µC

h
+ ν)T � 0.

This proves ([?, 131]) that the stability modulus of MC satisfies

Ês
�
−diag(µC

h
+ ν 1) +M

C
�
< 0,

implying that this Metzler matrix is non singular, which in turn implies that the opposite its
inverse is nonnegative [?, 131] .

Therefore the equilibrium of this linear system is given by

ÊN̄
C = −[−diag(µC

h
+ ν 1) +M

C ]−1 Λh > 0,

and is globally asymptotically stable.

A similar result is obtained for the adult population with an equilibrium denoted by N̄
A

N̄
A = −ν

�
−diag(µA) +M

A
�−1

N̄
C
> 0,

and for the mosquito population with an equilibrium denoted by V̄ .

V̄ = (−diag(µv) +M
v)−1 Λv.
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Reduction process

We will now gives different expressions for the equation of our system. Depending on the case
at hand we will use the most convenient form to give the properties of this system and the
corresponding proofs.
We can rewrite system (2.3) in R6n

+ , with a immediate variable change






Ṅ
C = Λ+ (−diag(µC

h + ν 1) +M
C)NC

Ṅ
A = νN

C + (−diag(µA
h ) +M

A)NA

Ṅv = Λv + (−diag(µv) +M
v)Nv
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C
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C
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m
C
ij I

C
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C
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n�
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m
C
ji

İ
A
h,i = β

A
1 Iv,i

(NA
i − I

A
h,i)

Ni
+ νI

A
h,i − (γA + µ

A
i )I

A
h,i +

n�

j=1,j �=i

m
A
ij I

A
h,j − I

A
h,i

n�

j=1,j �=i

m
A
ji

İv,i =
(Nv − Iv,i)

Ni
(βC

2 I
C
h,i + β

A
2 I

A
h,i)− µvIv,i +

n�

j=1,j �=i

m
v
ij Iv,j − Iv,i

n�

j=1,j �=i

m
v
ji

(2.5)

This system is clearly triangular if we consider the first variables (NC
, N

A
, N

v). By application
of Theorem 2.1, the stability analysis of (2.5) is now reduced to the stability analysis of the
system






İ
C
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C
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C
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N̄i
− (γC + µ

C
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m
C
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C
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C
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İ
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A
i ) I

A
h,i +
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m
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A
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A
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m
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İv,i =
(V̄i − Iv,i)

N̄i
(βC

2 I
C
h,i + β

A
2 I

A
h,i)− µv Iv,i +

n�
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m
v
ij Iv,j − Iv,i

n�
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m
v
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(2.6)

We set

N̄ = N̄
C + N̄

A

I
C

h
= (IC

h,1, I
C

h,2, . . . , I
C

h,n
)T

I
A

h
= (IA

h,1, I
A

h,2, . . . , I
A

h,n
)T

Iv = (Iv,1, Iv,2, . . . , Iv,n)
T

Then equation (2.6) can be written, in a vectorialized way, as
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İ
C

h
= diag(βC

1 )diag(N̄)−1diag(N̄C − I
C

h
)Iv − diag(γC + µ

C

h
+ ν 1) IC

h
+M

C
I
C

h

İ
A

h
= diag(βA

1 )diag(N̄)−1diag(N̄A − I
A

h
)Iv + νI

C

h
− diag(γA + µ

A

h
)IA

h
+M

A
I
A

h

İv = [diag(βC

2 I
C

h
) + diag(βA

2 I
A

h
)]diag(N̄)−1(V̄i − Iv,i)− diag(µv) Iv +M

v
Iv

(2.7)

For another variable change, we set

x = diag(N̄C)−1
I
C

h

y = diag(N̄A)−1
I
A

h

z = diag(V̄ )−1
Iv.

Rewriting system (2.7) in terms of x, y and z, we have






ẋ = diag(βC

1 )diag(N̄)
−1

diag(V̄ )diag(1− x)z − diag(γC
+ µC

h + ν 1)x+ M̃Cx

ẏ = diag(βA

1 )diag(N̄)
−1

diag(V̄ )diag(1− y)z − diag(γA
+ µA

h ) y + νx+ M̃Ay

ż = diag(N̄)
−1

�
diag(βC

2 )diag(N̄C
)diag(x) + diag(βA

2 )diag(N̄A
)diag(y)

�
(1− z)− diag(µv) z + M̃v z,

(2.8)

where we define the matrices

M̃
C = diag(N̄C)−1

M
C diag(N̄C),

M̃
A = diag(N̄A)−1

M
A diag(N̄A),

M̃
v = diag(N̄v)−1

M
v diag(N̄v).

Finally, we will make a final “vectorization” of the system

ÊA =





diag(βC

1 ) diag(N̄)−1 diag(V̄ ) 0 0

0 diag(βA

1 ) diag(N̄)−1 diag(V̄ ) 0

0 0 diag(N̄)−1





,

B =





0 0 In

0 0 In

diag(βC

2 )diag(N̄
C) diag(βA

2 )diag(N̄
A) 0





Ê
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C =





diag(γC + ν 1 + µ
C

h
) 0 0

−νIn diag(γA + µ
A

h
) 0

0 0 diag(µv)





Ê

M̃ =





M̃
C 0 0

0 M̃
A 0

0 0 M̃
v





Ê
We observe that M̃ = ∆−1M∆ where ∆ is the diagonal matrix

∆ =





diag(N̄C) 0 0

0 diag(N̄A) 0

0 0 diag(N̄v)





Ê
A and B are nonnegative matrices and we claim that −C + M̃ is a stable Meztler matrix.

Indeed the stability modulus of −C is negative and

s(−C) = −min(γC + ν 1 + µ
C

h
, γ

A + µ
A

h
, µv) < 0

where the minimum is taken over the components of the 3 positive vectors.
We have

−C + M̃ ≤ −s(C) I3n + M̃

Since the matrices involved are Metzler matrices, this implies the following inequality for the
corresponding stability modulus

s

�
−C + M̃

�
≤ −s(C) I3n + s(M̃) = −s(C) < 0

The relation s(M̃) follows from s(M̃) = s(M) and from 1T M = 0 which implies by Perron-
Frobenius that s(M) = 0.

Using the preceding matrices and the vector X = (x, y, z) we rewrite equation (2.8) in a compact
form as

Ẋ = A diag(1−X)BX + (−C + M̃)X (2.9)

This system evolves on the unit cube of R3n.
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2.5 Basic properties of the model

For any index i we shall use the classical notations : x < y if x ≤ y and xi ≤ yi for some i and
we write xi � yi if xi < yi for all i.

Proposition 1 (Positively invariant set).
The unit cube

K = {(x, y, z) ∈ R3n
| 0 ≤ x ≤ 1; 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

is positively invariant for system (2.8).

Proof
To show the invariance of the unit cube K, under the flow of the system (2.8), it suffices to show
that each of the faces of the cube cannot be crossed.

On the patch i we have

Êẋi = β
C

1
V̄i

N̄i

zi (1− xi)− (γCi + µ
C

h,i
+ ν)xi +

n�

j=1,j �=i

m
C

ij

N̄
C

j

N̄
C

i

xj − xi

n�

j=1,j �=i

m
C

ji

Ê
If xi = 0

ẋi = β
C

1
V̄i

N̄i

zi +
n�

j=1,j �=i

m
C

ij

N̄
C

j

N̄
C

i

xj ≥ 0.

implying that x = 0 cannot be crossed from positive to negative.

If xi = 1, then for j �= i we have xj = 0, since the entire population is 1. Then

ẋi = −(γCi + µ
C

h,i
+ ν) −

n�

j=1,j �=i

mji < 0.

The equation for yi in patch i is

Êẏi = β
A

1
V̄i

N̄i

zi (1− yi)− (γAi + µ
A

h,i
) yi +

n�

j=1,j �=i

mij

N
A

j

N
A

i

yj − yi

n�

j=1,j �=i

mji

Ê
If yi = 0 then

ẏi = β
A

1
V̄i

N̄i

zi +
n�

j=1,j �=i

mij

N
A

j

N
A

i

yj ≥ 0.

if yi = 1 we have again yj = 0 for any j �= i and

ÊÊẏi = −(γAi + µ
A

h,i
) −

n�

j=1,j �=i

mji < 0

Finally the equation for zi in patch i is given by
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Êżi = β
C

2
N̄

C

i

N̄i

xi (1− zi) + β
A

2
N̄

A

i

N̄i

yi (1− zi)− µv,i zi +
n�

j=1,j �=i

m
v

ij

V̄j

V̄i

zj − zi

n�

j=1,j �=i

m
v

ji

Ê

If zi = 0, then for any i,

żi = β
C

2
N̄

C

i

N̄i

xi + β
A

2
N̄

A

i

N̄i

yi +
n�

j=1,j �=i

m
v

ij

V̄j

V̄i

zj ≥ 0,

and if zi = 1 then for any j �= i, zj = 0 since the whole population is 1 and thus

żi = −β
C

2
N̄

C

i

N̄i

xi − β
A

2
N̄

A

i

N̄i

yi −

n�

j=1,j �=i

m
v

ji < 0

proposition is proved.

Proposition 2.
If the matrix M

C +M
A +M

v is irreducible, then the system (2.9) is strongly monotone in the
interior of the positively invariant set [0, 1]3n

Proof
We utilise the theory of monotone dynamical systems introduced by [63, 65, 64], developed
further in [63] and applied in [14].
System (2.9) is monotone if its Jacobian is a Metzler matrix on the unit cube. The Jacobian of
system (2.9) is given by

ÊJ(X) = A diag(1−X)B + (−C + M̃)−A diag(BX)

The Jacobian J(X) is clearly a Metzler matrix since 0 ≤ X ≤ 1, which implies that the system
is cooperative in the unit cube.
Next, we show that the Jacobian J(X) is an irreducible matrix in the set [0, 1]3n. This will imply
strong monotonicity of the system in the interior of the unit cube. In this set the diagonal terms
of diag(1 − X) are positive, the same property is satisfied for A, then the connectivity of the
associated graph of A diag(1−X)B is reduced to consider the connectivity of B.
It is well known that a matrix is irreducible if its associated graph is strongly connected. Then
only the off diagonal terms are concerned. Then it is sufficient to prove that the matrix

ÊA diag(1−X)B + (−C + M̃)

Ê
is irreducible. For the associated graph we distinguishes three categories of vertices : the

vertices corresponding to the xi (children vertices), yi (adults vertices), zi (mosquitoes vertices).
Considering the matrix B it is clear that a vertex xi is connected to the vertices of the same
patch i, i.e, yi and zi. In other words on the three vertices of patch i are contained in a strongly
connected component. The vertices from a patch is a subgraph and we can use the contraction of
each (xi, yi, zi) in the general digraph to obtain a new digraph wich represents movements bet-
ween the patches. To prove the strong connectedness it is sufficient to prove that this contracted
digraph is strongly connected.
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To the matrix M̃C correspond a digraph between the patches. This graph is equivalent to the
associated digraph of MC . Since M

C , MA and M
v are Metzler matrices, we can consider the

matrix M
C+M

A+M
v and its corresponding multigraph on the graph of patches. This oriented

multigraph represents actually the circulation of malaria parasites between the patches. Malaria
parasites can be transported either by child, adults or mosquitoes.
Since we have assumed that the matrix, our graph is strongly connected, consequently the
Jacobian is irreducible. We note that we are in a context of multiple species (i.e., childs, adults
and mosquitoes) in a metapopulation model as conceptualized in [?].
Our assumption simply means that the circulation of paras
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3.1 Basic Reproduction Number, R0

Using the classical framework defined in [32],[141], we define

F =





diag(βC

1 ) diag(N̄)−1 diag(N̄v) diag(1− x) z

diag(βA

1 ) diag(N̄)−1 diag(N̄v) diag(1− y) z

(diag(βC

2 ) diag(N̄
C) diag(N̄)−1 diag(x) + diag(βA

2 )diag(N̄
A) diag(N̄)−1 diag(y)) diag(1− z)





the appearance of new infections in infectious compartments and by

V =





−(γC + µ̃
C

h
)x+M

C
x

−(γA + µ
A

h
) y + νx+M

A
y

−µv z +M
v
z





the transfer into the compartments by all other means. The Jacobian F of F is given by
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F =





−diag(βC

1 ) diag(N̄)
−1

diag(N̄v
) diag(z) 0 diag(βC

1 ) diag(N̄)
−1

diag(N̄v
) diag(1− x)

0 −diag(βA

1 ) diag(N̄)
−1

diag(N̄v
) diag(z) diag(βA

1 ) diag(N̄)
−1

diag(N̄v
) diag(1− y)

diag(βC

2 ) diag(N̄C
) diag(N̄)

−1
(1− z) diag(βA

2 diag(N̄A
) diag(N̄)

−1
(1− z) 0




.

When there is no infection (at the origin) is the Jacobian F of F is given by

F(0,0,0) =





0 0 diag(βC

1 ) diag(N̄)
−1

diag(V̄ )

0 0 diag(βA

1 ) diag(N̄)
−1

diag(V̄ )

diag(βC

2 ) diag(N̄C
) diag(N̄)

−1
diag(βA

2 ) diag(N̄A
) diag(N̄)

−1
0




.

The Jacobian V of V is given by

V =





−(γC + µ̃
C

h
) +M

C 0 0

ν −(γA + µ
A

h
) +M

A 0

0 0 −µv +M
v





The matrix

V−1 =





(−(γC + µ̃
C

h
) +M

C)−1 0 0

−
ν

((γC+µ̃
C

h
)+MC)((γA+µ

A

h
)+MA)

(−(γA + µ
A

h
) +M

A)−1 0

0 0 (−µv +M
v)−1





The basic reproduction number is defined in [141] as

R0 = ρ(FV
−1) = ρ(V −1

F ).

Now we are using Metzler instead of M-matrices so we use our R0 is defined by

R0 = ρ(−FV −1
).

−FV −1
=





0 0 diag(βC

1 ) diag(N̄)
−1

diag(N̄v
)(−µIn×n)

−1

0 0 diag(βA

1 ) diag(N̄)
−1

diag(N̄v
)(−µIn×n)

−1

η diag(βA

2 diag(N̄A
) diag(N̄)

−1
((γA

i + µA

h )−MA
)
−1

0





where

η =
diag(βC

2 ) diag(N̄C) diag(N̄)−1

(−(γC+µ̃
C

h
)+MC)

−
νdiag(βA

2 ) diag(N̄A) diag(N̄)−1

(−(γC+µ̃
C

h
)+MC)(−(γA+µ

A

h
)+MA)
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We have

R
2
0 =

diag(βC

1 ) diag(β
C

2 ) diag(N̄
C) diag(N̄)−2) diag(N̄v)

(µv −Mv)(γC + µ̃
C

h
−MC)

+
ν diag(βC

1 ) diag(β
A

1 ) diag(N̄
A) diag(N̄)−2diag(N̄v)

(µv +Mv)(γC + µ̃
C

h
−MC)(γA + µ

A

h
−MA)

+
diag(βA

1 ) diag(β
A

2 ) diag(N̄
A) diag(N̄)−2) diag(N̄v)

(µv −Mv)(γA + µ
A

h
−MA)

When R0 < 1, the DFE is locally asymptotically stable, and if R0 > 1 the DFE is unstable, see
[141, 32].

3.2 Main Result

In this section establish global stability of the DFE and a global stability result for R0 > 1.
We have the following theorem

Theorem 3.1. If R0 ≤ 1, then system (2.9) is globally asymptotically stable at the origin. If
R0 > 1, then there exists a unique endemic equilibrium E

∗, which is globally asymptotically
stable on K ∈ [0, 1]3n.

Proof
We recall system (2.9).

Ẋ = A diag(1−X)BX + [−C +M]X

The Jacobian at the origin will be given by

J(X) = AB diag(1−X) + B (−AX) + [−C +M]

or

J(0) = AB + [−C +M]

that is

J = AB + [−C +M].

To prove the proposition above we assume that ρ(AB + [−C +M]−1) ≤ 1.

Since [−C +M] is a metzler matrix which is invertible and A ≥ 0, this is a regular splitting of
J [144]. We know from [71, 141, 143] that

R0 ≤ 1 ⇐⇒ ρ(−AB[−C +M]−1) ≤ 0.

From the preceeding section we proved that the Jacoban J is an irreducible metzler martrix. So
there exists a positive vector c � 0, such that

ct(AB + C) = α(J) ct ≤ 0.

41



3.2. MAIN RESULT CHAPITRE 3. STABILITY ANALYSIS

To prove the global stability of the DFE we consider the Lyapunov function

L(X) = �c | X�,

where � | �, denotes the inner product. From the definition of c � 0, this function is actually
positive definite in the nonnegative orthant. We compute the derivative of L along the trajectories
of 2.9 and find that it is equivalent to

L̇(X) = �c | (A diag(1−X)B + [−C +M])X�

≤ �c | AB + [−C +M]�

= �(AB + [−C +M])t c | X�

= �α(J) c | X�

= α(J)�c | X�.

(3.1)

Since α(J) ≤ 0 the derivative is negative.
We now consider the case when R0 < 1. Computing the derivative along the trajectories of 2.9,
we have

L̇(X) = �c |(AB + [−C +M])X � = α(AB + [−C +M])�c | X�.

Since we know that R0 < 1 implies α(J) < 0 the derivative is again negative definite. This
proves the asymptotic stability of the DFE.

When R0 = 1, we have

L̇(X) = �c | A diag(1−X)BX + [−C +M]X�,

= �c | (AB + [−C +M])X −A diag(X)BX�,

but we are in the case when R0 = 1 ⇒ α (AB + [−C +M]) = 0, therefore,

L̇(X) = −�c | Adiag(X)BX�.

Since c � 0 for L̇ to be zero, then A diag(X)BX must be equal to zero. Now we show that the
largest invariant set L ∈ E is reduced to the origin.
This set is defined by

E = {X ∈ [0, 1]3n | L̇(X) = 0}.

The expression diag(X)BX = 0 defines points equivalent to xi yi = 0, xi zi = 0 and yi zi =
0, i = 1, . . . , n. We also recall that our system is irreducible, and so there exists at least a point
in L such that xi = 0 or yi = 0 or zi = 0 i = 1, . . . , n.

From the system 2.9,

If xi = 0, then for

ẋi = diag(βC

1 ) diag(N̄)−1 diag(N̄v) diag(z) +
�

j �=i

m
C

ij xj = 0.
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This shows that zi = 0, and all the xj = 0 for which mij �= 0, i.e.. all xj connected to xi are
equal to zero.

Using the irreducibility hypothesis, we can argue that all the xi and xj are equal to zero.

Next, if yi = 0, then

ẏi = diag(βA

1 ) diag(N̄)−1 diag(N̄v) diag(z) +
�

j �=i

mij yj = 0 ⇒ zi = yj = 0

and all the yj = 0 for which mij �= 0, i.e.. all yj connected to yi are equal to zero.

And, if zi = 0, then

żi = diag(βC

2 ) diag(N̄C
) diag(N̄)

−1
diag(x) + diag(βA

2 diag(N̄A
) diag(N̄)

−1
diag(y) +

�

j �=i

mij zj = 0

⇒ xi = yi = zj = 0.

and all the zj = 0 for which m
v

ij
�= 0, i.e.. all zj connected to zi are equal to zero. The invariance

of L shows that xi = 0 and therefore for all cases of x, y and z, the set L is reduced to the
origin. The global stability of the DFE is concluded from LaSalle’s Invariance Principle [91]. To

prove the second part of our theorem, we need the following theorem according to Hirsch [63].

Theorem 3.2. Let F be a C
1 vector field in Rn, whose flow φ preserves Rn

+ for t ≥ 0 and is
strongly monotone in Rn

+. Assume that the origin is an equilibrium and that all trajectories in
Rn
+ are bounded. Suppose the matrix-valued map DF : Rn

+ → Rn
+×Rn

+ is strictly anti monotone,
in the sense that,

if x < y, then DF (x) > DF (y),

then either all the trajectories in Rn
+\{0} tend to the origin, or else there is a unique equilibrium

p ∈ Int Rn
+ (p � 0) and all the trajectories in Rn

+ tend to p.

For our case we shall consider the positively invariant unit cube K ∈ R3n. We recall the Jacobian
of system 2.9, with the Jacobian

D(X) = −ABX +A diag(1−X)B + [−C +M],

The Jacobian is clearly an irreducible metzler matrix therefore its right to conclude that the
flow of system 2.9 is monotone in K.

The matrix valued map DX(x, y, z) is a decreasing function of (x, y, z) since B is nonzero with
nonegative rows. This proves that the Jacobian is strictly antimonotone. That is ;

If we take any X1 < X2 ∈ X then D(X1) > DX2) therefore the anti monotone criteria is
met.

We have already proved that that the DFE is unstable when R0 > 1, then from theorem
5.3, there exists an endemic equilibrium E

∗ � 0 in the interior of K and all trajectories in R3n

tend to this equilibrium. This equilibrium satisfies the equation
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A diag(1− E
∗)BE

∗ + [−C +M]E∗ = 0.

The Jacobian at the endemic equilibrium satisfies

D(E∗)E∗ = (−ABE
∗ +A diag(1− E

∗)B + [−C +M])E∗ = −ABE
∗
< 0.

Since A is a stable Metzler matrix and B is nonnegative this expression implies that the matrix
is stable, hence the stability modulus s(DX(E∗)) < 0, [2] (critelion I28 of Theorem 6.2.3).
Consequently the endemic equilibrium, E∗ is locally asymptotically stable. The global stability
is a result of theorem 5.3, and this concludes our proof.

3.3 An Example in Two Patches

In this section we give a result to the case of two patches. We shall use the structure defined
in Subsection 3.1.

F =





β
C

1 Iv,1
(NC

1 −I
C

h,1)

N1

β
C

1 Iv,2
(NC

2 −I
C

h,2)

N2

β
A

1 Iv,1
(NA

1 −I
A

h,1)

N1

β
A

1 Iv,2
(NA

2 −I
A

h,2)

N2

(Nv

1−Iv,1)
N1

(βC

2 I
C

h,1 + β
A

2 I
A

h,1)

(Nv

2−Iv,2)
N2

(βC

2 I
C

h,2 + β
A

2 I
A

h,2)





, V =





(−γ
C

1 + µ
C

1 + ν) IC
h,1 +m12 I

C

h,2 −m21 I
C

h,1

(−γ
C

2 + µ
C

2 + ν) IC
h,2 +m21 I

C

h,1 −m12 I
C

h,2

(−γ
A

1 + µ
A

1 ) I
A

h,1 + ν I
C

h,1 +m12 I
A

h,2 −m21 I
A

h,1

(−γ
A

2 + µ
A

2 ) I
A

h,2 + ν I
C

h,2 +m21 I
A

h,1 −m12 I
A

h,2

−µv Iv,1 +m
v

12 Iv,2 −m
v

21 Iv,1

−µv Iv,2 +m
v

21 Iv,1 −m
v

12 Iv,2





.

The derivative F = D(F) of F is given by

F (0, 0, 0) =





0 0 0 0
β
C

1 N
C

1
N1

0

0 0 0 0 0
β
C

1 N
C

2
N2

0 0 0 0
β
A

1 N
A

1
N1

0

0 0 0 0 0
β
A

1 N
A

2
N2

β
C

2 N
v

1
N1

0
β
A

2 N
v

1
N1

0 0 0

0
β
C

2 N
v

2
N2

0
β
A

2 N
v

2
N2

0 0





,

while the derivative V = D(V) of V at the origin is given by V (0, 0, 0)
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=





−(γC

1 + µC

1 + ν +m21) m12 0 0 0 0

m21 −(γC

2 + µC

2 + ν +m12) 0 0 0 0

ν 0 −(γA

1 + µA

1 +m21) 0 0 0

0 ν 0 −(γA

2 + µA

2 +m12) 0 0

0 0 0 0 −(µv +mv

21) 0

0 0 0 0 0 −(µv +mv

12)





,

The basic reproduction number is given by ρ(−FV
−1) From our example and at the DFE, this

matrix is defined by FV
−1 which has the values





0 0 0 0
β
C

1 N
C

1
µv N1

0

0 0 0 0 0
β
C

1 N
C

2
µv N2

0 0 0 0
β
A

1 N
A

1
µv N1

0

0 0 0 0 0
β
A

1 N
A

2
µv N2

N
C

1 γ̄
C

2
N1 D

(βC

2 +
β
A

2

γ̄
A

1
)

m21 N
v

1
N1 D

(βC

2 +
ν β

A

2

γ̄
A

1
)

β
A

2 N
v

1

γ̄
A

1 N1 D
0 0 0

N
v

1 m21

N2 D
(βC

2 +
ν β

A

2

γ
A

2
)

N
v

2 γ̄
C

1
N2 D

(βC

2 +
β
A

2

γ̄
A

2
) 0

β
A

2 N
v

2

γ̄
A

2 N2
0 0





assuming that

D = (γC1 + µ
C

1 + ν +m21)(γ
C

2 + µ
C

2 + ν +m12)−m12m21) = γ̄
C

1 γ̄
C

2 −m12m21,

and
γ̄
C

1 = (γC1 + µ
C

1 + ν +m21), γ̄
C

2 = (γC2 + µ
C

2 + ν +m12)

and
γ̄
A

1 = (γA1 + µ
A

1 + ν +m21), γ̄
A

2 = (γA2 + µ
A

1 + ν +m12)

To get the basic reproduction number we need to solve det|λI − J | = 0 which is a 6× 6 matrix.
Rewriting the matrix in the form

Θ =

�
0I4 B

A 0I2

�
.

The determinant of Θ is given by

det(Θ− λI6) =

����
−λI4 B

A −λI2

���� = λ
4

����
I4 −

1
λ
B

A −λI2

���� ,
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= λ
4

����

�
I4 0
A I2

� �
I4 −

1
λ
B

0 −λI2 +
1
λ
AB

����� .

Using the properties of determinants we have

det(Θ− λI6) = λ
4
det(−λI2 +

1

λ
AB) = λ

2
det(AB − λ

2
I2) = 0.

We see after some calculation, that

R
2
0 =

a0 +
�
a
2
0 − 4a1

2

where
a0 = (A11B11 +A13B31 +A22B22 +A24B42)

a1 = [(A11B11 +A13B31)(A22B22 +A24B42)]− [(A21B11 +A23B31)(A12B22 +A14B42)]

3.4 Simulation

In this section we obtain two baseline values for two sites in each ecosystem namely, the U-
shaped valleys and V-shaped valleys. We also describe our reasons for using these values and the
references, where available. We estimate parameter values from published studies and country-
wide data. For migration rates, we pick realistically feasible values from literature. Umutete and
Iguhu are two patches representing the U-shaped valleys, and, Marani and Fort Tenan for the
V-shaped valleys. From the study on the different ecosystems, the plateaus and the U-shaped
valleys ecosystem have the characteristic, such that the results for the V-shaped valleys apply
to the plateau ecosystem. Some suitable references for our values are [25, 149, 111, 47, 140].

3.4.1 Parameter values

b1 : For the proportion of infectious bites on susceptible hosts we shall use the value 0.011 for
the U-shaped and the and 0.08 for the V-shaped valley ecosystem .

b2 : The proportion of infectious bites on susceptible mosquitoes, is different for the two eco-
systems due to acquired or partial immunity so we assume that it is five times higher in the
V-shaped valleys (0.24) than the higher in the U-shaped valleys (0.048).

a
C

h
: The man biting rate for the children is assume to be 0.52 in the U-shaped valleys and

0.42 in the V-shaped valleys. We have assumed that the rate is higher due to the high mosquito
population in the U-shaped valleys.

a
A

h
The biting rate for the adults is less than that of the children and we shall use the va-

lue 0.15 for the adults the U-shaped valleys and 0.12 in the V-shaped valleys.

γ
C

i
= γ

A

i
: Since the rate of recovery depends on how fast diagnosis is done and the effecti-

veness of treatment in patch i we assume here the same value for the two ecosystems at 0.33 or
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30 days period of infectiousness.

ν : The rate children become adults is not easy to determine, but since the two ecosystems
have similar economic status, we shall use the value 0.00283 as used in literature.

µ
C

1 : The natural death rate for children under five death for the U-shaped valleys is esti-
mated at 7.9% in Kenya by Unicef. This figure may include disease related deaths but the data
is not elaborate. In this case we have assumed that this high rate is for the U-shaped valleys
and 5.9% for the V-shaped valleys which may be suffering fewer deaths due to malaria.

µ
A

1 = µ
A

2 : The per capita death rate for adults is assumed to be the same for the two eco-
system. We use the death rate for the country (Kenya) which is estimated at 3.5%.

µv : The per capita mosquito death rate is estimated at 0.033 from literature.

Λh : This is the recruitment by birth to the susceptible human compartment, we in the V-
shaped valleys (0.07) is assumed to be less than the rate in the U-shaped valleys (0.13).

Data for N1, N2, and Nv was not exactly available so we decided to use random values with the
total population being 10000 people so that we have 5000 people on each patch ( 3500 children
and 1500 adults for each ecosystem). The mosquito population likewise was estimated to be
20000 mosquitoes in the U-shaped valleys and 1500 mosquitoes in the V-shaped valleys.
The summary of the parameter values described above is is given in table 3.1 below.

Table 3.1 – parameter values and ranges for system 2.3

Parameter U-Shaped Valleys V-shaped Valleys Dimension

a
C 0.52 0.42 day

−1

a
A 0.15 0.12 day

−1

b1 0.011 0.08 day
−1

b2 0.048 0.24 day
−1

µ
C

h
0.079 0.059 day

−1

µ
A

h
0.033 0.033 day

−1

µv 0.033 0.033 day
−1

ν
A

h
0.000283 0.000283 day

−1

m
C

12 0.08 0.08 day
−1

m
C

21 0.08 0.08 day
−1

m
A

12 0.5 0.5 day
−1

m
A

21 0.5 0.5 day
−1

γ
C

1 (γ
A

1 ) 0.0035 0.0035 day
−1

γ
C

2 (γ
A

2 ) 0.0035 0.0035 day
−1

Λh 0.04 0.04 day
−1

Λv 0.13 0.07 day
−1
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3.5 Numerical simulation

In this section, we calculate the reproductive number, R0 for model 2.3 for the parameter values
given in table 3.1.

3.5.1 The U-shaped Valley Sites : Iguhu and Umutete, R0 = 5.36

We show a numerical simulation of the malaria model 2.3 in the figures below using the para-
meter values given in Table 3.1 When the age structuring is ignored the dynamics of the host

U-Shaped Valleys. With age Structure

Time in days

Su
sc

ep
tib

le
 C

hi
ld

re
n 

an
d 

ad
ul

ts
,

In
fe

ct
ed

 c
hi

ld
re

n 
an

d 
ad

ul
ts

U-Shaped Valleys without age structure
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Figure 3.1 – A numerical simulation of model 2.3 using parameter values defined in Table 3.1
for the U-shaped valleys system. The age structure in the populations is clearly shown. In this
case R0 = 5.36

population in the U-shaped valleys is represented by Figure 3.2. The disease in the age structu-
red model fades out faster than the unstructured. The steady states also settle to the endemic
equilibrium faster in the age structured model. If there is no spatialization the values for the
U-shaped valleys for both ecosystems has host population variation represented in Figure 3.3.
The interaction between the patches raises infection rate, so that the disease persists in the total
population, while it fades out fast when the patches are isolated.

3.5.2 The V-shaped Valley Sites : Fort Tenan and Marani, R0 = 1.67

When the age structuring is ignored the variation of the host population in the V-shaped valleys
is represented by Figure 3.5.

3.5.3 Conclusion

We have presented in this paper, an analysis of an age structured metapopulation model, by ex-
tending the Ross-Maddonald model. We assumed that, for malaria, age structuring is important
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U-Shaped Valleys without age structure
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Figure 3.2 – A numerical simulation of model 2.3 using parameter values defined in Table 3.1
for the U-shaped valleys ecosystem. A case where there is no age structure in the population.
In this case R0 = 5.36

as the severity of the disease, its infectivity and susceptibility is age specific. We have assumed
that the two age groups migrate to neighboring patches and that their epidemiological charac-
teristics are ecosystem dependent. We assumed that vectors do not migrate, and the migration
parameters for hosts are constant, similar and independent of the compartment. The same result
can be easily extended to the case where vectors migrate to explore the migration model for
both populations since the villages are not very far apart.

A formular for R0 is obtained, which although complex due to the infinite number of patches,
can be used to explore the effects of the parameters on the model. This formula will allow theo-
retical exploration of the options and efficiency of targeted public health intervention policies.
The example in the two ecosystems simplifies the expression for R0, which we used to do the
simulation with some realistic data.

This model can be extended to increase applicability in real situations. The two populations
which we assumed to be constant can be varied and some disease induced deaths be included.
The acquired immunity can also be included to show the dynamics. Treatment and vaccinated
classes can also be incorporated in the force of infection.
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Without Patch dynamics
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Figure 3.3 – A numerical simulation of model 2.3 using parameter values defined in Table 3.1
for the U-shaped valleys ecosystem. The is no age structure and the two ecosystems are treated
as one U-shaped valley ecosystem
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V-Shaped Valleys with Age Structure
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Figure 3.4 – A numerical simulation of model 2.3 using parameter values defined in Table 3.1
for the V-shaped valleys ecosystem with age structure. In this case R0 = 1.67
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V-Shaped Valleys dynamics without age structure

Su
sce

pt
ibl

e a
nd

 in
fec

ted
 ho

sts
 in

 th
e V

-sh
ap

ed
 Va

lle
ys

Time in days

Figure 3.5 – A numerical simulation of model 2.3 using parameter values defined in Table 3.1
for the V-shaped valleys ecosystem. The is no age structures in the populations. In this case
R0 = 1.67
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The important of age structure in the dynamics of malaria can not be overemphasized as most
malaria induced deaths occur in infants and the average parasitemia levels of infected individuals
decreases with age. The acquired immune response also changes with age.
Adding age structure allows age specific control strategies that have greater impact in reducing
disease incidence.

Metapopulation modeling on the other hand is an important feature in the dynamics of malaria.
If the disease is controlled in one patch below the threshold size, there is possibility of a reintro-
duction from other patches, thus there is need to understand spatial heterogenity for effective
and thorough control strategies. On the other hand, migration may effectively raise the level of
infection. In such a case the disease will disappear in isolated patches, but will persist in the
total population.

Further studies may include the probability of increased/decreased travel risk to and from the
endemic region.

Our attempt towards the search for a practical solution on elimination and control of high-
land malaria in Western Kenya, is only but a small step in the right direction.

53



CHAPITRE 4

Dynamics of Vector-Host feeding Contact Rate with Saturation in malaria

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Vector-Host Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 The Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Introduction

Malaria is an infectious disease caused by a parasite of the genus, Plasmodium. It is transmitted
between human hosts by female anopheles mosquitoes as they seek blood meal for their eggs
development. When a mosquito bites an infected person, a small amount of blood is taken in
which contains microscopic malaria parasites. When the mosquito takes its next blood meal,
these parasites mix with the mosquito saliva and are injected into the person being bitten and
the transmission process is perpetuated.

Malaria constitutes a big health problem especially within sub-saharan Africa and Asia. World
Malaria Report 2011, estimates that it causes between 250-260 million infections and more
than a million deaths (mostly among children in Africa), annually. In Kenya, reports show that
despite the many control strategies to eliminate malaria, it has re-emerged and increased in inci-
dence. The disease continues to wreck havoc on millions especially from the poor countries [129].

Vector abundance in Western Kenya is driven by temperature variation, ecosystem characte-
ristics and human activities. The population varies depending on the site, the season and the
species of the vector. Some sites in Western Kenya has 12.7 fold indoor resting densities during
he long rainy season (March-June) and 23.3 fold during the dry season (January-March) [110].
This implies that the vector populations is never constant as assumed in many models. On the
other hand host population changes due seasons and economic activities, natural deaths and
death due to diseases like malaria and migration to urban centers and other regions for greener
pastures. For our model to capture the reality of the epidemics in Western Kenya highlands, we
assume that the host and mosquito populations change with time.
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Most malaria models assume a constant human biting rates in their models, which means that
hosts are freely available whenever a mosquito wants to bite, but in practice, this is more of a
simplifying assumption. Research shows that for small host population, this rate is proportional
to the host population size, and for large host population, it is constant [52, 66]. The feeding
cycle of a mosquito involves, host-seeking, feeding, resting, site-seeking, oviposition and host
seeking resumes [83, 113]. The probability of finding a host and successfully obtaining a blood
meal depends on many factors. Among them is human avoidance and defensive behaviour [39, 97].

If the mosquito survives this process, and has a successful blood meal, it rests, finds a lar-
val habitat, oviposit and continue host seeking. Since this process drives malaria transmission,
it is necessary to address the specific form of the mosquito-human contact process. Arditi [75],
argues that the rates of (successful predation) contact between a predator and a prey is most
properly a function of the ratios of their proportions. This would fit into malaria mosquito which
inhabit homesteads and other areas where human hosts are available, like farms and urban areas
[133]. It is also clear that this contact rate does not increase without bound, as the predator
-prey ratio increases, this is because once a mosquito is fed, it rests before ovipositing, to resume
host seeking and biting again [106].

When the predator-prey ratio value is low, the contact rate will be limited by the predators
ability to find the prey, on the other hand if the ratio is high, the contact rate is limited by
the predators satiation (desired predation rate) [66, 75]. For malaria, the contact rate takes a
similar course where the mosquito bites will increase as a function of host-vector ratio until the
ratio reaches a critical level [89].

Saturation models are also not lacking in literature. A cholera model with saturation in the
incidence was proposed by Capasso [24] . They argue that when there is a real threat to in-
fection people become cautious and take preventive measures which controls further infection.
Heesterbeek [57] formulated a saturated individual contact rate in relationships such as courting
and marriage, where they assume that the population mixes randomly. Zu and Ma [120] analy-
zed a SEIR epidemic model whose latent period is described by delay and included a saturated
incidence rate. Zhang and Ma [70] studied a SEIR model with saturation in contact rates and
did a thorough analysis of its global dynamics.

In 2010, ming and Li [23] formulated vector borne disease model, where they argue that in-
creasing the density of the susceptible hosts with respect to infected ones leads to Holling type
II saturation on the force of infection of host. In this model the biting rate of vectors and both
populations are assumed to be constant. Further the model neglects disease related deaths a
very crucial factor in malaria infection.

A model by [40] on dengue with variable human population is formulated and analyzed for
both local and global dynamics. Ngwa et at [112] analyzed the stability of a malaria model,
with disease deaths, recovery and variable host and vector populations. However they assumed
that the biting rate of vectors is constant hence their infection term is the one described in
[121]. Realising then the need to predict the dynamics and transmission of malaria with great
precision, we are motivated to engage in this study, as we pay particular attention to saturation
in mosquito feeding habits and the varying host and vector populations.
The rest of the paper is subdivided as follows ; Section two covers vector-host contact with satu-
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ration. In section three, the saturated contact process model is formulated. Section 4 is dedicated
to the existence of equilibiria, while section 5 studies the stability of the Disease Free and the
Endemic equilibrium. Finally in section six we give some results on numerical simulation.

4.2 Vector-Host Contact

Vector-host contact results from the need for mosquitoes to obtain a blood meal for their eggs
development. A given vector’s biting rate is limited by both host population density and its own
feeding frequency [87]. Therefore the per vector biting rate should increase as a function of the
host ratio until the ratio reaches a critical level, which we denote Qv, above which, biting rate
saturates and the average vector can feed at its preferred rate bv (contacts per vector per time).
Below this threshold, the relative scarcity of hosts constrains the rate at which a vector can feed
on the given type of hosts (it must seek other sources).
We assume that an average host can receive bites at a maximum rate bh beyond which it
successfully defends itself against the vector (including leaving the place altogether) [89]. Then
this threshold density ratio is given by

Qv =
bv

bh
.

We shall assume a saturated contact process as used in [86, 88] with the so-called Holling Type
1 form. Under this assumption, the per-vector contact rate can be described as a function of the
host-vector density ratio z = Nh

Nv
as

f(z) = bv min{z/Qv, 1}.

When z > Qv (many host per vector) the rate completely saturates at the maximum desired
biting rate f(z) = bv, while for z < Qv (ie. few hosts per vector) f(z) = bv

z

Qv
, and the

rate rises linearly with the host-vector ratio. The later is our interest in this study since the
saturated contact process f(z) = bv has been used in the classical Ross model for malaria [121].
Substituting z = Nh

Nv
in the function f(z) and multiply by Nv, we obtain the total biting rate

which is

bv min(Nh,
Nv

Qv

).

which can be rewritten in the form

min {bhNh, bv Nv}.

We note that for the current host density the maximum number of vectors that can effectively
bite hosts at one given time is Nv

Qv
. Therefore the parameter Qv is an important determinant in

our of model. It determines which of the two population densities is driving the biting contact
rate.
To examine the rate of appearance of new malaria infections from the rate of mosquito feeding
contacts, we have to take into account the probability of infection resulting from an effective
contact where one party (host or vector) is infected with malaria parasite and the other is not.
Let πh be the probability that such a contact between an infected vector and an uninfected host
results in infecting the host, πv as the proportion of blood meal contacts between infected hosts
and uninfected vectors which result in an infected vector. Further if Sh, Ih are the susceptible and
infectious hosts respectively and Sv, Iv are the susceptible and infectious vectors respectively,
the new infections will be given as defined in [89].
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– For the Hosts

bhNh

Sh

Nh

Iv

Nv

.πh = πh bh Sh

Iv

Nv

– For the Vectors

bhNh

Sv

Nv

Ih

Nh

.πv =
πv bv

Qv

Ih
Sv

Nv

,

since bh = bv

Qv

In many malaria models, saturation has been assumed to be constant [14, 121, 138]. Here we
consider the density dependent biting rate, and the populations ratio plays a vital role in the
transmission. If the vectors-host ratio is low, the bites are few and hence the probability of
transmission reduces too. As the ratio increases the infection will rise as a function of the ratio
until it reaches the threshold and it becomes a constant. We wish to model this change in biting
rate as the vector-host ratio changes and study its effect on the basic reproduction ratio.

4.3 The Model Equations

The model we derive here is mathematically equivalent to the classical Ross model [121]. The
saturation in contact processes will address how the infection rates depend on this ratio. We
assume that mosquito has a variable population growth such that birth Λv > µv. For the human
population, we assume a density dependent mortality rate, such that the total population vary
with time and is modified by a logistic equation that include disease induced deaths.

A description of the variables and parameters used in the model follows in tables 5.1 and 4.2
respectively.

Table 4.1 – Variables used in the model related to infection contact process

Variable Definition Units

Sh Susceptible Host Population Density Hosts
Sv Susceptible Vector Population Density Vectors
Ih Infectious Host Population Density Hosts
Iv Infectious Vector Population Density Vectors
Nh Total Host Population Density (constant) Hosts
Nv Total Vector Population Density (variable) vectors/time

The dynamics of our model will be governed by the following set of equations :






Ṡh = Λh − πh bh Sh
Iv

Nv
+ γh Ih − µh Sh,

İh = πh bh Sh
Iv

Nv
− (µh + γh + νh) Ih,

Ṡv = Λv −
πv bv

Qv
Ih

Sv

Nv
− µv Sv,

İv = πv bv

Qv
Ih

Sv

Nv
− µv Iv.

and

Ṅh = Λh − µhNh − αhIh Ṅv = Λv − µv Nv.

(4.1)
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Table 4.2 – Parameters used in the model related to infection contact process

Parameter Definition Units

Λh,Λv Hosts, Vectors density dependent birth rate host, vector/unit time
πh probability of host infection per contact host/vec/ time
πv probability of vector infection per contact vec/host/ time
γh Hosts rate of recovery host/unit time
Qv vector-host ratio above which per-vector biting saturates vec/host
bh host irritability biting threshold bites/host/time
bv preferred (max.) vector feeding rate bites/vec/ time
αh, disease dependent death rate host/time

The term Λh in the susceptible hosts compartment corresponds to a constant recruitment of sus-
ceptible hosts by natural birth. The transmission term −πh bh Sh

Iv

Nv
corresponds to frequency

dependent infection of susceptible hosts by infectious mosquitoes, on infection they move to the
infectious compartment. The infected hosts who recover γh Ih become susceptible again as ma-
laria has no permanent immunity. The last terms −µh Sh, −µh Ih represents per capita deaths
of the susceptible, infected hosts respectively. In the susceptible mosquito vectors,Λv represent
the recruitment of susceptible mosquitoes by birth. The term πv bv

Qv
Sh

Iv

Nv
corresponds to the

transmission of malaria to an susceptible mosquito by and infected host. Both the susceptible
and infectious mosquitoes are subject to natural deaths as defined in the terms −µv Sv, −µv Iv

respectively. Infective period of mosquitoes ends with their death due to their relatively short
life-cycle so we do not have recovery or immune term in the vector equations [16, 68].

All the parameters in the model are non negative and the model equations are well posed.
For initial values (Sh, Ih, Sv, Iv, Nh, Nv) in R6

+, the solutions exist and remains in the region for
all t ≥ 0.
In the absence of disease the host population dynamics is given by Ṅh = Λh − µhNh. In this
kind of demographic structure, the total human and mosquito population size Nh(t) approaches
a carrying capacity Λh

µh

for any non zero initial population size.

The mosquito population Nv(t) also approaches a carrying capacity Λv

µv
. For ease of studying

the system, we let setting βh = πhbh, K = (µh + γh + νh) and βv = πvbv

Qv
, and the equation now

takes the form 




Ṡh = Λh − βh Sh
Iv

Nv
+ γh Ih − µh Sh,

İh = βh Sh
Iv

Nv
−K Ih,

Ṡv = Λv − βvIh
Sv

Nv
− µv Sv,

İv = βv Ih
Sv

Nv
− µv Iv.

and

Ṅh = Λh − µhNh − αhIh Ṅv = Λv − µv Nv.

(4.2)

Using the relation Sh = Nh − Ih, and Sv = Nv − Iv, we will now study the system
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İh = βh (Nh − Ih)
Iv

Nv
−K Ih,

İv = βv Ih
Nv−Iv

Nv
− µv Iv.

Ṅh = Λh − µhNh − νh Ih

Ṅv = Λv − µv Nv.

(4.3)

which is defined in feasible region (ie. where the model makes biological sense)

Γ = {(Ih, Iv, Nh, Nv) ∈ R4
+ : 0 ≤ Ih ≤ 1, 0 ≤ Iv ≤ 1, Nh ≥ 0, Nv ≥ 0}

where R4
+ denotes the non-negative cone of R4 including its lower dimensional faces. It is clear

that Γ is positively invariant with respect to (4.3). We denote the boundary and the interior of

Γ by ∂Γand
◦
Γ respectively.
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5.1 Local Stability of the DFE

In the absence of infection, the model has a constant solution, P0, also referred to as the
Disease Free equilibrium (DFE) which is defined by P0 = (0, 0, Λh

µh

,
Λv

µv
).

To establish the stability of this equilibrium, the Jacobian of 4.3 is computed at the DFE. The
stability of P0 is determined by the signs of the eigenvalues of this jacobian. If the real parts of
the eigenvalues are all negative, then, the equilibrium P0 is locally asymptotically stable. The
Jacobian of system 4.3 is given by

JP =





−βh
Iv

Nv
−K βh

(Nh−Ih)
Nv

βh
Iv

Nv
βh (Nh − Ih)

Ih

Nv

βv
(Nv−Iv)

Nv
−βv

Ih

Nv
− µv 0 −βv

(Nv−Iv)
N2

v

Ih

−νh 0 −µh 0

0 0 0 −µv





The Jacobian at the DFE is given by the matrix
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JP0 =





−K βh
Λh µv

Λv µh

0 0

βv −µv 0 0

0 0 −µh 0

0 0 0 −µv





We note that there is only one non zero element int the third and the fourth rows, and both
elements are negative, we can the determine if the eigenvalues of this JP 0 have negative real
parts by getting the eigenvalues of the the block matrix

J01 =





−K βh
Λh µv

Λv µh

βv −µv





The characteristic equation is given by

λ
2 + λ(K + µv) +Kµv(1− R̃0)

whose eigenvalues are purely negative if and only if R̃0 < 1, where

R̃0 = R
2
0 =

βh βv Λh

µh Λv K
=

bh πh bv πv Λh

Λv µhQv (γh + µh + νh)

hence we have established the following proposition :

Proposition 3. The DFE P0 is locally asymptotically stable if R̃0 ≤ 1 and unstable if R̃0 > 1.

R̃0 is referred to as the basic reproduction number. It is defined as the number of secondary
infectious cases resulting from one infectious individual introduced into an entirely susceptible
population in his entire life of infectiousness [?]. The quantity R̃0 is important in the study of
infectious diseases as it is the threshold that determines if the disease dies out or it persists in
the population. When R̃0 ≤ 1, then the DFE is locally stable.

Proposition 4. If Nv = 0 the model has only the disease free equilibrium P0 : (0, 0, Λh

µh

,
Λv

µv
) as a

constant solution.

Proof
If Nv = 0, then the only possible nonnegative constant solution for the system is P0. The
characteristic shows clearly that the DFE will always exist, and when R̃0 > 1 an endemic equi-
librium where the disease persists in the populations is established. The steady state solution
for which the total vector and human populations are both zero is not realistic since there is
nothing to prove. In the presence of the disease, without disease deaths both populations are
equal to (Nh, Nv) = (Λh

µh

,
Λv

µv
). With the progress of the disease, the total host population size

will be determined by the magnitude of νh, and a new equilibrium for the host will be established.

This equilibrium is given by

N
∗
h
=

Λh − νhI
∗
h

µh

.
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Its important to note that if the disease deaths are high enough then the value of N∗
h
would be

negative and the equilibrium would cease to exist.
We also note that since infection is determined by the ratios of the total human and host popu-
lations, the parameter Qv, plays an important role in the overall model and especially R̃0.

5.2 Global stability of the Disease Free Equilibrium

Theorem 5.1. The disease-free equilibrium P0 = (0, 0, Λh

µh

,
Λv

µv
) of ?? is globally asymptotically

stable in Γ if R̃0 ≤ 1 and it is unstable if R̃0 > 1.

Proof
Consider the Lyapunov function

L = βv Ih +KIv.

The derivative of L along the trajectories of 4.3 is given by






L̇ = βv İv +K İv]

= βv [βh (Nh − Ih)
Iv

Nv
−K Ih] +K [βv Ih

(Nv−Iv)
Nv

− µv Iv]

= βvβh Iv − βv βh Ih
Iv

Nv
− βv K Ih +K βv Ih −K βv Ih

Iv

Nv
−K µv Iv

= [βv βh −K µv] Iv − βv Ih(βh −K) Iv

Nv

= K µv [R̃0 − 1] Iv − βv Ih(βh −K) Iv

Nv

≤ K µv Iv[R̃0 − 1]

≤ 0, if and only if R̃0 ≤ 1

(5.1)

From the Lyapunov-Lasalle theorem [54], we know that all paths in Γ approach the largest
positively invariant subset of the set E where V̇ = 0. The set E is defined when Ih = 0 and
Iv = 0. On the boundary of Γ where Ih = Iv = 0 we have

Ṅh = Λh − µhNh

which implies

Nh =
Λh

µh

+ [N(0)−
Λh

µh

] e−t

so that as t tends to ∞, Nh tends to Λh

µh

. Similarly as t tends to ∞, Nv tends to Λv

µv
.

Therefore all the solution paths in Γ approach the disease free equilibrium P0.

This means that when R̃0 ≤ 1, the infected host and vector subpopulations vanishes over
time and the disease dies out [70]. In the next section we show that the disease persists when
R̃0 > 1.
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5.3 Existence and stability of the Endemic Equilibrium (EE)

Theorem 5.2. If R̃0 ≤ 1, then all the trajectories of 4.3 tend to the disease-free equilibrium,
which is globally asymptotically stable on the positive orthant. If R̃0 > 1, then there exists a
unique endemic equilibrium (I∗

h
, I

∗
v ) � 0, and all the trajectories of the positive orthant, minus

the origin, tend to this equilibrium which is GAS on the unit cube minus the origin.

Proof
As our model focuses on saturation in the vector feeding habits, and this saturation depends
in the ratio of the densities of the two population, then we know that these densities drive the
infection dynamics. From the total human population equation

dNh

dt
= Λh − µhNh − ν Ih,

we get the solution

Nh(t) =
Λh − νh

µh Ih
+Nh(0) e

−µht

and similarly

Nv(t) =
Λv

µv

+Nv(0) e
−µv t

Since Nh(t) →
Λh

νh+µh Ih
, as t → +∞ and Nv(t) →

Λv

µv
, as t → +∞ we can substitute for Nh and

Nv into the first and the second equations of system 4.3 to get the following two dimensional
asymptotically autonomous differential equation






dIh

dt
= βh µv

Λv µh

[Λh − (νh + µh) Ih] Iv −K Ih,

dIv

dt
= βv

Λv
(Λv − µv Iv)Ih − µv Iv

(5.2)

Which is positively invariant in the region

K = {Ih, Iv ∈ R2
+ ; 0 ≤ Ih ≤

Λh

µv

, 0 ≤ Ih ≤
Λv

µv + νh
}

Ensuing next us an application of the theory of monotone and strongly monotone dynamical
systems, that was developed by Hirsch in a series of papers. If we show that the Jacobian of
system is a metzler matrix then it is a prove that the dynamical system is monotonic.
We need the following theorem according to Hirsch [63],

Theorem 5.3. Let F be a C
1 vector field in Rn, whose flow φ preserves Rn

+ for t ≥ 0 and is
strongly monotone in Rn

+. Assume that the origin is an equilibrium and that all trajectories in
Rn
+ are bounded. Suppose the matrix-valued map DF : Rn

+ → Rn
+×Rn

+ is strictly antimonotone,
in the sense that,

if x < y, then DF (x) > DF (y),

then either all the trajectories in Rn
+\{0} tend to the origin, or else there is a unique equilibrium

p ∈ Int Rn
+ (p � 0) and all the trajectories in Rn

+ tend to p.
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We rewrite system 5.2 in the form Ẋ = A(X)X, where X = (Ih, Iv), and then show that it is
cooperative and strongly monotonic. The system will take the form

Ż =

�
Ih

Iv

�
=

�
−K a[Λh − (µh + νh) Ih]

b [Λv − µvIv] −µv

� �
Ih

Iv

�
(5.3)

where a = βvµv

Λhµh

and b = βv

µv
. The Jacobian of the system is given by

J =

�
−K − a (µh + νh) Iv a [Λh − (µh + νh) Ih]

b (Λv − µv Iv) −µv − bµv Ih

�

We see that A is a metzler matrix. We need to show that it is irreducible hence strongly mo-
notonic. To prove irreducibility of a Metzler matrix it is enough to show that the directed
graph associated with J is strongly connected [2]. We name the vertices of the associated graph
m12,m21. If Ih �

Λh

µh+νh
, then the element m12 = [Λh − (µh + νh)] > 0 which means that there

is a path connecting m12 to m21. Again if Ih �
Λv

µv
, the element m21 = b(Λv − µvIv) > 0. This

proves strong monotonicity on the flow of the system in the positive orthant except on the faces
not Ih �

Λh

µh+νh
and not Ih �

Λv

µv
. Any trajectory with an initial point outside these faces, will

leave the face.

Since our Jacobian is irreducible, the system is cooperative and therefore strongly monoto-
nic.
Now we show that the trajectories are bounded.

When Ih = 0, we have

İh = aΛhIv ≥ 0,

when Ih = 0, we have

İv = aΛvIh ≥ 0,

when Ih = Λh

(µh+νh)
, we have

İh = −
KΛh

(µh + νh)
< 0,

when Iv = Λv

(µv)
, we have

İv = −Λv < 0,

This clearly shows that no trajectory can leave the region K, hence all the trajectories are boun-
ded.
From theorem 5.3 and the fact that R̃0 > 1, we conclude that the trajectories of system 5.2
converge to an equilibrium P̄ as t → ∞. We s also deduce that P̄ = (Īh, Īv) � 0 from the fact
that the system is strongly monotonic.

Lastly we recall the Jacobian of our system
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J =




−K − a (µh + νh) Iv a [Λh − (µh + νh) Ih]

b (Λv − µv Iv) −µv − bµv Ih



 ,

if we take Ih1 < Ih2 ∈ Ih and Iv1 < Iv2 ∈ Iv then we see clearly that J(Ih1, Iv1) > J(Ih2, Iv2).
Thus our system satifies the antimonotone criteria. Since we have already shown that the DFE
P

0 is unstable when R̃0 > 1,there exists therefore, an endemic equilibrium P̄ � 0 in the
interior of K and all the trajectories in R2 tend to this equilibrium. This equilibrium satisfies
Ẋ = A(P̄ )P̄ = 0, that is




−K a [Λh − (µh + νh) Īh]

−b [Λv − µv Īv)] −µv








Īh

Īv



 =




0

0





The Jacobian above at the Endemic equilibrium is given by

J =




−K − a (µh + νh) Īv a [Λh − (µh + νh) Īh]

b (Λv − µv̄ Iv) −µv − b µv Īh





and J(P̄ )P̄ is given by




−K a [Λh − (µh + νh) Īh]

−b [Λv − µv Īv)] −µv








Īh

Īv



+




−(µh + νh)Īv Īh 0

0 −bµv Īv Īh



 .

But since A(P̄ )P̄ = 0, we notice that

J(P̄ )P̄ =




−(µh + νh)Īv Īh 0

0 −bµv Īv Īh



 < 0.

This implies that the stability modulus α(J(P̄ )) < 0, [2], which implies therefore that the
endemic equilibrium P̄ is locally asymptotically stable. The uniqueness and global stability is a
direct result of theorem 5.3.

5.4 Conclusion and discussion

In this study, we developed a vector feeding habits saturation model for the spread of malaria
with disease induced deaths and varying human and host populations. We have shown that the
two populations drive the entire infection process through the parameter Qv, which plays a vital
role in the basic reproduction number. Mathematical analysis was done to establish that in the
absence of the disease, a disease free equilibrium will always exist if R̃0 ≤ 1. In the presence
of the disease, that is when R̃0 > 1, an endemic equilibrium is established with the infectious
populations greater than zero.
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Table 5.1 – Parameters used in the model related to infection contact process

Parameter Value Dimension

Λh 0.04 unit time
Λv 0.13 unit time
πh 0.22 unit time
πv 0.48 unit time
γh 0.33 unit time
bh 0.21 unit time
bv 0.43 unit time
αh, 0.0329 unit time
µh 0.033 unit time
µv 0.033 unit time
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Figure 5.1 – Variation of susceptible host and vector populations at the Disease Free equilibrium.
Qv = 0.3 and R̃0 = 0.718 < 1
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Figure 5.2 – Variation of susceptible host and vector populations at the Endemic equilibrium.
Qv = 0.09 and R̃0 = 2.495 > 1
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Figure 5.3 – Variation of Infected Host, Infected Vector, Total Host and Total Vector populations
at the Disease Free equilibrium. Qv = 0.3 and R̃0 = 0.718 < 1
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Figure 5.4 – Variation of Infected Host, Infected Vector, Total Host and Total Vector populations
at the Endemic Equilibrium. Qv = 0.09 and R̃0 = 2.495 > 1

Using the values in Table 5.1 we simulate system 4.1, and show the dynamics of various popu-
lations in the figures below.
We observe from Figure 5.3 and Figure 5.4 and that a decrease in Qv increases R̃0 and vice versa.
That is when the human population is very low, mosquitoes will turn to other bloodmeal source,
and malaria transmission goes down. Then Qv controls the magnitude of malaria transmission.
This implies that the best methods of controlling malaria in the highlands should target the adult
mosquito, its biting habits and alternative sources of blood meals. Our results are consistent with
results in literature that, R̃0 is a threshold that completely determines the global dynamics of
disease transmission [104]
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Conclusion and Perspective

We formulated and studied two models for highland malaria transmission in Western Kenya.
Some basic models in disease dynamics and epidemiology useful to this thesis have been revie-
wed.
Our first interest was modeling the discontious spatialization, exhibited by the different terrain
ecosystems. Considering the importance of the individual’s age in the malaria infection and
transmission, we grouped the metapopulation in each patch as children (0-5 years) and adults
(over 5 years). With a set of differential equations the dynamics of malaria transmission in
children and adults in n different patches was described by a system of first order, ordinary
equations.
A qualitative analysis was done for the age structured-metapopulation model by applying dyna-
mical systems theory. A threshold R0 was computed, which completely determines if the disease
dies out or persists in the population. We prove that, if R0 ≤ 1, the disease free equilibrium is
globally stable, and, if R0 > 1, the endemic equilibrium is unique and globally asymptotically
stable. An example of the model on two patches is given. We also provide some numerical study
applied to four sites in Western Kenya grouped as U-shaped and V-shaped valley ecosystems.
The simulation was done with data from Western Kenya where available and also from published
literature. Different scenarios were analysed and model validated to highlight the importance of
metapopulation and age structuring which are often neglected in many malaria models.

In the second model, we studied the dynamics of malaria transmission in the highlands, with
disease induced deaths and varying vector and human populations, and saturation in the vector
feeding rate. In this model the biting rate is density dependent, and the two population densities
ratio plays a vital role in the transmission. We assume that if the host-vector ratio is low, the
bites are few and therefore the probability of transmission reduces too. We introduce a threshold
ratio Qv, such that, as the ratio increases the biting rate, will rise as a function of the density
ratio until it reaches this threshold and it becomes a constant. Qv is an important parameter
in our model as it determines which of the two population densities is driving the biting rate
hence malaria transmission.
We assume that the vector and the human population vary with time since malaria causes deaths,
hence can have profound effects on the population size. A qualitative study of this model has
been done and a basic reproduction number calculated. As in the previous case, the existence of
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equilibrium solutions and their stability depends on the basic reproductive number, R0 which
in turn depends on Qv. When R0 ≤ 1, we proved that the disease free equilibrium is locally and
globally asymptotically stable, and if R0 > 1, there exists an unique endemic equilibrium that
is locally and globally asymptotically stable. The model was validated with some realistic data
to show the populations and the role of Qv on the basic reproduction number, R0.
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Mathematical Tools
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Mathematical modeling of infectious diseases is done by analysing the dynamical systems deve-
loped during model formulation. The systems may be ordinary, partial or difference differential
equations, which may be linear or nonlinear. In this thesis we have dealt with nonlinear ordi-
nary differential equations and hereby give some definitions and classical results from dynamical
systems theory .

A.1 Preliminaries and Notation

Ordered vector space Rn

We use the standard notation x ∈ Rn to define a vector and xi to denote the ith vector component
in Rn. The vector space Rn is said to be ordered if, when x ≥ y the inequality xi ≥ yi also holds.
On the positive orthant the inequality x ≥ y is equivalent to x− y ∈ Rn and in particular

x ≥ 0 ⇔ for every indexi, xi ≥ 0.
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We write x > 0, when x ≥ 0 and x �= 0, and write x � 0, if x is in the interior of Rn
+ such that

x � 0 ⇔ for every indexi, xi > 0.

The same notation is used for matrices and we define a matrix A(n, n,Rn
2
) as an n× n matrix

in Rn
2
. The notation A ≥ B holds if for the pair of indices (i, j) we have aij ≥ bij and A > B

holds if A � B.
For the ordered vector space Rn, we define a closed interval

[a, b] = {x ∈ Rn
| a ≤ x ≤ b} = [a1, b1]× . . . ,×, [an, bn].

This notation can also be used on the open interval

]]a, b[[= {x ∈ Rn
| a � x � b} =]a1, b1[×, . . . ,×]an, bn[.

If E and F are subsets of Rn, we have the classical definition

R+E = {λx | λ ∈ R+ x ∈ E}

and
E + F = {x+ y | x ∈ E y ∈ F}.

A scalar product of two vectors is denoted by �x | y�. If M is a matrix and M
T its transpose,

we can define the vectors on Rn and the n× 1 column vectors and express the scalar product as
�x | y� = x

T
y. We denote by ei the canonical basis of Rn.

Definition A.1 (Autonomous Systems). Let Ω be a subset of Rn. Consider the autonomous
differential equation defined by :

ẋ = X(x) x ∈ Ω (A.1)

Suppose that X : Ω ⊂ Rn → Rn is continuous and satisfies the conditions as a solution of A.1, is
unique and continously depend on the initial conditions. The stationary or equilibrium points of
the system A.1 are the points x0 ∈ Ω satisfying X(x0) = 0. For each x ∈ Ω, we denote by Xt(x)
the solution of the system A.1 satisfying X0(x) = x. We suppose that X satisfies the conditions
that Xt(x) is continuous in (t, x).

A.2 Stability

A system which lacks stability would be a poor model for reality as reality is always a pertur-
bation of what we think it is. So some kind of stability is needed in modeling. Two kinds of
stability are of great importance in application of differential equations : stability respecting
perturbation of initial values for a fixed equation and stability respecting perturbations of the
equation itself. In the first case we say the system is ’persistent’ and second case ’robust’. We
say that an equilibrium point is locally stable if all solutions which start near x̄ (meaning that
the initial conditions are in the neighborhood of x̄) remain near x̄ for all future time.

A.2.1 Stability : Basic definition

Consider system A.1.

Definition A.2 (Equilibrium point). A point x̄ ∈ Rn is an equilibrium point of the system A.1 if
f(x̄, t) = 0.
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Definition A.3 (Lyapunov stability). Let x̄ ∈ ω be an equilibrium point. System A.1 is stable
(we say also Lyapunov stable) at x̄ or x̄ is a stable equilibrium position for A.1, if for each � > 0
there exists a positive real number δ such that for each x with |x− x̄| < δ, the solution X(t(x))
is defined for all t ≥ 0 and satisfies |X(t(x))− x̄| < � for all t > 0. When A.1 is not Lyapunov
stable at x̄, we say that it is unstable at x̄.

Definition A.4 (Attractivity). The steady state x̄ is said to be attractive (We say also that A.1
is attractive at x̄) if there exists a neighborhood U ∈ Ω of x̄ in such a way that for any initial
condition x belonging to U , the corresponding solution X(t(x)) of A.1 is defined for all t ≥ 0
and tends to x̄ as t tends to infinity, i.e., limt→+∞Xt(x) = x̄.

Definition A.5 (Asymptotic stability). We say that x̄ is stable if solutions starting ”close” to
it at a given time, remain close to it for all future times. It is said to be asymptotically stable
if nearby solutions actually converge to x̄ at t → ∞. That means it is lyapunov stable and
attractive.

Definition A.6 (Exponential stability). The system A.1 is exponentially stable (respectively
globally exponentially stable) at x̄, if there exist two positive constants K and λ such that
|X(x)− x̄| < � < K |x− x̄| �−λt for all x in a neighborhood of x̄ (respectively for all x ∈ Ω) and
all positive time t.

Definition A.7 (Attractor). This refers to a compact, nonempty set K which attracts some
neighborhood N of itself. It is assumed that K is invariant, that is, it contains the orbits of
all its equilibrium points. The neighbourhood N can always be chosen to be invariant also by
simply replacing it with the union of all its points. The largest of such N , ie. the set of all points
attracted toK is called the basin ofK. An attractor enjoys some kind of stability. Any trajectory
starting near it may wonder away, but eventually returns to approach it asymptotically.

Definition A.8 (Global stability). We say an equilibrium point x̄ is globally stable if it is stable
for all initial conditions x0 ∈ Rn

A.2.2 Dynamical Properties

Definition A.9 (Invariant set). Given the dynamical system ẋ = f(x) and a trajectory s(t, x0)
where x0 is the initial point. Let

O � {x ∈ Rn
| φ(x) = 0}

where φ is a real valued function. Then the set O is said to be positively invariant if x0 ∈ O

implies that x(t, x0) ∈ O, for all t ≥ 0. This means that once a trajectory of the system enters
O, it will not leave it again.

Definition A.10 (Orbit). The orbit γ+(x0) is called a positive orbit if for all x0 in the set

{x(t, x0) | t ≥ 0},

the orbit is defined by :
γ(x0) = {x(t, x0) | t ∈ R}.

The set is positively invariant if γ+(M) ⊂ M , and invariant if it contains the orbits of each of
its points.
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Note : In the study of dynamical systems, a limit set is the state a dynamical system reaches
after an infinite amount of time has passed, by either going forward or backwards in time. Limit
sets are important because they can be used to understand the long term behavior of a dynamical
system.

Definition A.11 (ω-Limit point). A point p is called an ω-limit point of Xt(x) if there exists a
sequence tn ∈ R such that

lim
n→+∞

tn = +∞ and lim
n→+∞

xtn(x) = p

The set of all ω-limit point is the ω-limit set of x and is denoted by ω(x). This means that the
sequence tn tends to +∞ as n tends to infinity and the flow through x tends to p as n tend to
+∞

Theorem A.1. If the positive orbit γ+(x0) is bounded then the set of points ω-limit points, ω(γ)
is non empty, compact, connected and invariant.

Theorem A.2 (Poincare-Bendixon). Consider the equation ẋ = f(x) in R2. Suppose that γ+ is a
bounded positive orbit and ω(γ+) does not contain equilibrium points. Then ω(γ+) is a periodic
orbit. If ω(γ+) �= γ

+ this periodic orbit is called a limit cycle.

Definition A.12. For the C1 autonomous system ẋ = f(x) and an equilibrium point x0, the
linearised system in x0 is defined by the linear system

ẋ = Df(x0)x,

where Df(x0) is the derivative of f at x0.

Theorem A.3 (Poincare-Lyapunov). Consider the C1 system ẋ = f(x) and an equilibrium point
x0.

1. If Df(x0) has the real parts of all its eigenvalues negative, then x0 is asymptotically stable.

2. If Df(x0) has (at least) one of its eigenvalues with a positive real part,then x0 is unstable.

A.3 Monotone systems

Consider the system A.1 where X is C1 and Ω is an open set in Rn.
– X is said to be of type K in Ω if for each i ; Xi(a) ≤ Xi(b) for any two points a and b in

Ω satisfying ak ≤ bk and ai = bi, (i �= k and i, k = 1, 2, . . . , n) ;
– We say that Ω is p− convex if tx+ (1− t)y ∈ Ω, for all t ∈ [0, 1] whenever x, y ∈ Ω and

x ≤ y ;
– The system A.1 is said to be a cooperative system if Ω is P − convex and

∂Xi(x)

∂xj
≥ 0, i �= j, x ∈ Ω

– We say that system A.1 is a competitive system if Ω is P − convex and

∂Xi(x)

∂xj
≤ 0, i �= j, x ∈ Ω
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A.3.1 Monotone Dynamical System

Consider a dynamical system with a flow φt : x → φt(x). This dynamical system is said to be
monotone if it is defined on an ordered metric space with the following property ;

t ≥ 0, x ≤ y ⇒ φt(x) ≤ φt(y)

It is said to be strongly monotone if

t ≥ 0, x < y ⇒ φt(x) � φt(y)

We say that the system is anti-monotone if

t ≥ 0, x ≤ y ⇒ DX(x) > DX(y), and

It is strictly anti-monotone if

t ≥ 0, x < y ⇒ DX(x) > DX(y).

A.3.2 Triangular System

A triangular system is precisely an Rn × Rm system of the form

�
ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(A.2)

where f1 is a map from Rn to Rn and f2 from Rn to Rm. We suppose that the conditions for
existence and uniqueness of solutions are satisfied, (eg. f1 and f2are C1). The trajectories of the
system have the same projection on Rn×{0} and hence the name triangular. In fact the Jacobian
of this system is a lower triangular block, and it is also said to be hierachical. We will deduce a
stability result from Vidyasagar Theorem [146]. The version presented here is independent and
much simpler than the general case given by Vidyasagar.

Theorem A.4 (Vidyasagar). Consider the following C1 system :

�
ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(A.3)

If the origin of Rn is globally asymptotically stable (GAS) for the system ẋ1 = f1(x1) in Rn and
the origin of Rm is GAS for ẋ2 = fx(0, x2) on Rn

, then the origin of Rn ×Rm is asymptotically
stable. Furthermore if all the trajectories are bounded, then the origin is GAS for A.3 on Rn×Rm.

Proof of Stability
Let the following be a neighborhood of the the origin

B(0, ε) = {(x1, x2) | �x2� ≤ ε}.

Since the equilibrium points of the isolated C1 system are GAS, we can apply the inverse Lya-
punov theorem. There exists positive definite C1 functions V1(x1) and V2(x2) such that

V̇1 = �∇V1 (x1) | f1 (x1)� ≤ 0, V̇2 = �∇V2 (x2) | f2(0, x2)� ≤ 0
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The functions V̇1 and V̇2 are negative definite on B(0, ε) for ε sufficiently small since f1 and V1

are C1. Let

L = max
(x1,x2)∈B (0,ε)

∂f1

∂x2
(x1, x2)

M = max
(x1,x2)∈B (0,ε)

∇V2 (x2)

Since V2 is a Lyapunov function, we can choose δ1 <
ε

2 sufficiently small such that

max
�x2�≤δ1

∇V2 (x2) < min
ε

2≤�x2�≤ε

∇V2(x2)

V̇2(x2) = �∇V2 (x2) | f2 (x1, x2)� = �∇V2 (x2) | f2 (0, x2) �+ �∇V2 (x2) | f2 (x1, x2)− f2 (0, x2)�

From Taylors formular we have the following relation

f2 (x1, x2)− f (0, x2) =

� 1

0

∂f2

∂x1
(x1, x2)x1 dt

and on B(0, ε) we have

�f2 (x1, x2)− f2 (0, x2)� ≤ �x1�

and the Cauchy Schwarz gives

V̇2(x2) ≤ �∇V2 (x2) | f2 (0, x2)�+ LM�x1� (A.4)

Since the function �∇V2 (x2) | f2 (0, x2) � is negative, we can define a function ϕ by

ϕ(c) = min
c≤�x2�≤ ε

−�∇V2 (x2) | f2 (0, x2)�

This function ϕ, defined on R, is continous, decreasing and tend to 0 as c → 0. We show that
ϕ(c) > 0 for all c > 0.
Since the system ẋ1 = f1 (x1) is asymptotically stable, we can choose δ2 ≤ δ1 such that for all
initial conditions satisfying �x1(0)� ≤ δ2, and t ≥ 0, we have the inequality �x1(t)� ≤

ϕ(c)
LM

.
Moreover if we have �x1� ≤ δ2 and �x2� ≥ δ1, with the inequality A.4, we deduce the relation

�∇V2 (x2) | f2 (0, x2) �+ LM�x1� < 0 (A.5)

We define 0 < δ3 < δ2 so that

max
�x1 �≤ δ3

V1 (x1) < min
δ2 ≤�x1�≤ε

V1(x1)

Consider the open set U defined by

U = {(x1, x2) | �x1� ≤ δ2, �x2� ≤ δ3}.
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If x1(0) ≤ δ3, since V1 is decreasing, the preceding inequality implies that �x1(t)� ≤ δ2 (all the
trajectory are inside the sphere of radius δ2 in Rn).
For x2(0) ≤ δ3, we have

max
�x2 �≤ δ3

V2 (x2) ≤ max �x2 � ≤ δ1 V2 (x2) < min
ε

2 ≤�x2�≤ ε

V2 (x2).

The trajectory (x1(0), x2(0)) satisfy �x2(t) � ≤ δ1 which implies

V2(x2) ≤ min
δ1≤�x2�≤ε

V2(x2).

Consequently, we have �x2 � ≤ δ2. This leads to the inequality �x2(t) � ≥ δ1, and from the
inequality A.5, we have V̇2 ≤ 0.
Since V2 is decreasing on the trajectories contained in the ring �x1 � ≤ δ2, �x2 � ≤

ε

2 , we note
that a trajectory cannot reach the sphere of radius ε

2 ∈ Rm
. This shows that �x1(t) � ≤ δ2 ≤ ε

and �x2(t) � ≤
ε

2 , which completes the prove of stability.

We will now show the local attractivity by the Lasalle invariance principle of Lasalle.
Since the origin is stable, there exists a compact set X neighborhood U of the origin which is
positively invariant. This restricts us to the invariant set U .
Consider the Lyapunov-Lasalle function V1. By the hypothesis

V̇1 = �∇V1(x1) | f1(x1)� ≤ 0.

Let
E = {(x1, x2) ∈ U | V̇1(x) = 0}

We also consider the largest invariant set E . This is evidently the set {0}× Rm ∪ U . By hypo-
thesis the system ẋ2 = f2(0, x2) is globally asymptotically stable in {0}×Rm

. This implies that
any negative trajectory of the system U\{0} exit U . In effect if that is not the case, then there
exists a trajectory γ ∈ U . Then the set of α-limit points of γ are invariant. By the asymptotic
stability and invariance, this point contains the origin. This means that the trajectory starting
close to the origin remain close to it. The fact that this trajectory is invariant contradicts the
stability so the property stated is true. This means that the largest invariant set containing E

is reduced to the origin. Which shows that U is attractive.

If a trajectory is relatively compact, then the ω-limit points are in {0} × Rm. In effect, for
tn → ∞, we have x1(tn) → 0. If all the trajectories are compact, then the ω-limit points are in
{0}×Rm

. By the asymptotic stability of {0}×Rm, the origin is an ω-limit. All trajectories gets
as close as possible to the origin. Due to stability they are attracted to the open set U defined
above, otherwise they approach the origin asymptotically.

A.3.3 Lyapunov Methods

The Lyapunov function plays a major role in the study of dynamical systems’ stability. We
dedicate this section to some results due to Lyapunov. Let V : Ω ⊂ Rn → R be a continous
function.

Definition A.13. We have the following definitions
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1. The function V is said to be positive definite if V (x) = 0 and V (x) > 0 in a neighborhood
Ω0 of x0 for all x �= x0 in the neighborhood.

2. The function V is said to be negative definite if −V is positive definite.

3. The function V is said to be semi-positive if V (x0) = 0 and V (x) ≥ 0 in a neighborhood
Ω of x0

Theorem A.5 (Lyapunov Theorem). Let V be a function
– If a function V is positive definite and V̇ is negative semi-definite in Ω, then the equilibrium
point x0 is stable for the system A.1.

– If the function V is positive definite and V̇ is negative definite in Ω, then the equilibrium
point X0 is asymptotically stable for the system A.1

This theorem implies that to show that an equilibrium point x0 is stable, it is sufficient
to a find a Lyapunov function for the point. Moreover, to use the original Lyapunov theorem
to show the asymptotic stability of a given system, we must determine a function V whose
derivative is positive definite and the derivative V̇ is negative definite. In a general case, this
is not straightforward. The condition on the derivative V̇ can be relaxed by using the LaSalle
Invariance principle introduced in the next section.

A.3.4 LaSalle Invariance Principle

Theorem A.6 (LaSalle Invariance Principle [91, 92]). Let Ω ⊂ Rn be a compact set that is
positively invariant with respect to the system A.1. Let V : Ω → R be continously differentiable
such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0. Let L be the
largest invariant set in E. Then every solution starting in Ω approaches L as t → ∞

This theorem is a very important tool for systems analysis, and is different from Lyapunov, as
it does not require V to be positive definite and V̇ to be negative definite. However, it only
provides information on the attractiveness of the considered system at the equilibrium x0. For
example, it can be used to prove that the solutions tend toward an equilibrium point when the
set L is reduced to that equilibrium point. It does not indicate whether this equilibrium is stable
or not. When one wants to establish asymptotic stability of an equilibrium x0 ∈ Ω, we use the
following corollary which is a consequence of the LaSalle invariance principle.

Corollary A.1 (LaSalle,[92]). Consider the compact set Ω ∈ Rn with x0 ∈ Ω. Let V : U → R be a
continously differentiable positive definite function such that V̇ ≤ 0 in U. Let E = {x ∈ U | V̇ =
0}. Assume that the largest positively invariant set contained in E is reduced to the point x0.
Then x0 is an asymptotically stable equilibrium point for the system A.1. If these conditions are
satisfied for U = Ω, if in addition V is in Ω ie. limV (x) = +∞ when d(x, ∂

∂x
Ω) + �x� → +∞,

then all trajectories are bounded for t ≥ 0 and x0 is a globally stable equilibrium point for the
system A.1.

Corollary A.2. Under the assumptions of the previous theorem, if the set L is reduced to the
point x0 ∈ Ω, then x0 is a globally stable equilibrium point for the system A.1 defined on Ω
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A.4 Matrices

Definition A.14 (Stability Modulus, Spectral radius). Let A be a square matrix, we denote by
spec(A) all the eigenvalues of A. The stability modulus of A is the number defined by

α(A) = max{Re(λ);λ ∈ Spec(A)}.

The matrix A is said to be stable if α(A) < 0.
The spectral radius is the real number ρ(A) defined by

ρ(A) = max
λ∈Spec(A)

|λ|.

We say that a matrix A is stable if its eigenvalues have strictly negative real parts. Such a matrix
is also said to be Hurwiz.

Theorem A.7. Let A ∈ Mn(R). The spectrum of A is contained in the union of disks whose
centers are the diagonal coefficients aii of the matrix A and radii are the respective sums of the
absolute values of the remaining coefficients in the row.
In other words for each index i, 1 ≤ i ≤ n, if we set ri =

�
n

j=1,j �=i
|aij |, then

Spec(A) ⊂ ∪
n

i=1B (aii, ri)

Lemma 1. Let A ∈ Mn(R) be a square matrix. If A is a singular matrix, then there exists an
index i0 such that

| ai0 i0 | ≤

�

j=1,j �=i

| aioj |.

In other words, the term ai0 i0 dominates the column i0.

Proof
Let n be an arbitrary integer. Assume that A is a singular matrix. Then, the matrix A will be the
linear map of Rn to itself, or its corresponding matrix. Since A is singular, Ker(A) �= {0} ; Let
x = (x1, x2, . . . , xn)T ∈ Ker(A) ; Let i0 be an index of the component x such that xi0 achieves
the maximum of x (that is to say |x| = max

1≤ i≤n

|xi | = �x�∞

Ax = 0 ⇒ (Ax)i0 =
n�

j=1

ai0 xj = 0

⇒ −ai0 i0 xi0 =
n�

j=1,j �=i

ai0j xj = 0

⇒ |ai0 i0 ||xi0 | ≤

n�

j=1,j �=i

| ai0j | |xj | = 0

≤

n�

j=1,j �=i

| ai0j | |xj | = 0.

Since xi0 �= 0, it follows that
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| ai0 i0 | ≤

n�

j=1,j �=i

| ai0j |

which ends the proof of the lemma. The following is a better consequence of the theorem and

the preceding lemma ;

Corollary A.3. Let A ∈ Mn(R) be a square matrix. If A is a singular matrix, then there exists
an index i0 such that

|ai0i0 | ≤

�

j=1,j �=i

|ai0j |.

In other words, the term ai0i0 dominates the column i0. The proof of this corollary is identical
to that of the previous lemma, however we replace the matrix A by its transpose A

T which has
the same properties as the matrix A.

Proof of theorem A.7 Let A ∈ Mn(R) ; then for all λ ∈ SpecA, (A − λI) is a singular ma-
trix. The previous lemma implies that for all λ ∈ SpecA, there exists iλ ∈ N, 1 ≤ iλ ≤ n such
that

|aiλiλ | ≤

n�

j=1,j �=iλ

|aiλ |

If we set ri

�
n

j=1,j �=iλ
|aiλ | ; the previous inequalities are equivalent to ; for all λ ∈ Spec(A),

there exists iλ ∈ N, 1 ≤ iλ ≤ n such that B(aiλ , riλ). If we consider the balls B(aii, ri) for
all i, 1 ≤ i ≤ n, it follows that any λ ∈ Spec(A) is inside on of them. So we can say that
λ ∈ ∪n

i=0(B(aii, ri). This completes the prove.

Corollary A.4. Let A = (aij) ∈ Mn(R) be a square matrix. The spectrum of the matrix A is
contained in the union of the disks whose centers are the diagonal coefficients aii diagonal of the
matrix A and whose radii are are the sums of the absolute values of the off-diagonal coefficients
of the corresponding columns. In other words, for all i, 1 ≤ i ≤ n, if we set ri =

�
n

j=1,j �=i
|aiji |,

then
Spec(A) ⊂ ∪

n

i=1B(aii, ri)

Proof
This is a consequence of Theorem A.7 and Corollary A.3. In effect A is strictly diagonally domi-
nant, then for all i such that 1 ≤ i ≤ n, we have |aii| > ri(ri =

�
n

j=1,j �=i
|aiji |, for the respective

columns, or ri =
�

n

j=1,j �=i
|aiij | for the respective row). So none of the balls B(aii, n) contains

the origin of C. Therefore no eigenvalue of A can be zero.

Definition A.15. We have the following definitions
– A matrix A = (aij) ∈ Mn(R) is a strictly column diagonally dominant if for all i such
that 1 ≤ i ≤ n, we have

|aii| >

n�

j=1,j �=i

|aiji |
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– A matrix A = (aij) ∈ Mn(R) is a strictly row diagonally dominant if for all i such that
1 ≤ i ≤ n, we have

|aii| >

n�

j=1,j �=i

|aiij |

– We say that a matrix is strictly column (respectively row) diagonally dominant if the above
inequalities strictly hold.

Corollary A.5. If a matrix A is strictly diagonally dominant, then it is invertible.

This is an immediate consequence of A.7 ( Proof by contradiction).

Definition A.16. Let A = (aij) ∈ Mn(R) be a square matrix. We say that the matrix A is
reducible, if there exists a permutation matrix P such that

P
T
AP =

�
A11 A12

0 A22

�
(A.6)

The matrix A is said to be irreducible if and only if it is not reducible.

A.4.1 Metzler Matrices

Definition A.17. We say that A = (aij) ∈ Mn(R) is a metzler matrix if all the off-diagonal
entries are positive. That is, aij ≥ 0 for all i and j with i �= j.

The following theorem due to Frobenius will be very useful for studying the stability of our
models.

Theorem A.8 (Perron-Frobenius Theorem, [63]). If A = (aij) ∈ Mn(R) is a non negative matrix ;
– Then the spectral radius ρ(A) is an eigenvalue of A and there is a corresponding vector

v > 0
– If in addition the matrix A is irreducible, then ρ(A) > 0 and v � 0 ; moreover, ρ(A) has

algebraic multiplicity 1 and and if u > 0 is an eigenvector of A, then there exists s > 0
such that u = s v.

– If B > A, then ρ(B) > ρ(A).
– Finally, if A � 0, then |λ| < ρ(A) for all other eigenvalues λ of A.

Corollary A.6. Let A = (aij) ∈ Mn (R) be a Metzler matrix.
– The stability modulus α(A) is an eigenvalue of A and there exists a vector v > 0 such that

Av = α(A)v. Moreover Re(λ) < α(A) for all λ ∈ Spec(A)− {α(A)}.
– If in addition A is irreducible, then

1. α(A) is a simple eigenvalue ;

2. v � 0 and all other positive eigenvectors of A are multiples of v ;

3. If B satisfies B > A, then α(B) > α(A) ;

4. If α(A) < 0, then −A
−1 � 0.

Proof
Let C ≥ 0 large enough such that A + CI ≥ 0. Hence applying the Perron-Frobenius theorem
defined above on A+ CI implies that C ≥ 0. In particular, the spectral radius ρ(A+ CI) > 0.
We note that Spec(A+ CI) = C + Spec(A) ; which implies that

α(A+ CI) = ρ(A+ CI) = C + α(A)
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and consequently, α(A) is an eigenvalue of A. If A is irreducible, A + CI is also irreducible.
The theorem of Perron-Frobenius theorem applied to A implies properties 1, 2, 3. Moreoveras
−a

−1 =
�∞
0 e

tA
dt � 0, (4) is satisfied. The following theorem is important to study the stability

of equilibrium points and the construction of Lyapunov functions.

Theorem A.9 (Metzler Stable Matrices). Let A = (aij) ∈ Mn(R) be a Metzler matrix, the
following statements are equivalent :

– The Matrix A is Metzler stable,
– The Matrix A is invertible and −A

−1 ≥ 0,
– If b � 0, then the equation Ax+ b = 0 has a solution x � 0,
– There exists a vector c > 0, such that Ac � 0,
– There exists a vector c � 0, such that Ac � 0

The proof given here is an adaptation of a similar proof given in [2].
Proof :
1) ⇒ 2)

The matrix A is stable, invertible and α(A) < 0 ; there exists a scalar k such that for all

x0 ∈ Rn, �e
tA

x0� ≤ K e
α(A) t

�x0�.

We deduce that the integral
�∞
0 e

tA
x0 dt is normally convergent for all x0, therefore the matrix�∞

0 e
tA
dt is absolutely convergent In effect the function t ∈ R+ → e

tA ∈ Mn(R) is in L
1(0,∞)

and

B =

� ∞

0
e
tA
dt = −A

−1

We will determine the sign of each of the coefficients of the matrix B = (bij) ; For this we
consider the canonical base (ei) in Rn ; we note that ;

bij = �B ej , ei � = (Bej)i = �

� ∞

0
e
tA

dt ej , ei�

=

� ∞

0
�e

tA
, ei� dt

=

� ∞

0
(etA ej)i dt ≥ 0

Hence the matrix −A
−1 = B ≥ 0.

2) ⇒ 3)

Let b be a vector such that b � 0, and x = −A
−1

b ; then x � 0 is a product of two posi-
tive matrices. The matrix Ax+ b = 0

3) ⇒ 4)

Let b � 0 be a vector in Rn
+ ; Let c = −A

−1
b ; it is clear that AC = −b � 0.
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4) ⇒ 5)

Perturbing property (4) a little, we set ε > 0 and c1 = c+ ε
�

n

i=1 ei � 0.

So Ac1 = Ac + ε
�

n

i=1 Aei. By continuity we can choose ε > 0 sufficiently small such that
Ac1 � 0.

5) ⇒ 1)

Consider the differential equation ẋ = A
T
x in the positive orthant. We choose a function

V (x) = �c, x�.

From the hypothesis c � 0, V is positive definite in Rn
+ and so

V̇ (x) = �c, Ax� = �A
T
c, x�.

V̇ (x) = 0, if and only if x = 0. The Lyapunov theorem proves that the matrix A
T is asympto-

tically stable, hence A is stable since A and A
T have the same eigenvalues. This completes the

prove of the theorem.

Theorem A.10. Let A = (aij) ∈ Mn (R) be a Metzler matrix.

1. The stability modulus α(A) of A is an eigenvalue of A with an associated positive eigen-
vector v ∈ Rn

+ such that v �= 0 and Av = α(A)v ;

2. If in addition the matrix A is irreducible, then α(A) is a simple eigenvalue of the matrix
A to which a positive eigenvector is associated. That is to say, there exists v ∈ Rn

+ such
that v � 0 and Av = α(A)v.

Proof
Let m = min{ min

1≤i≤n

aii, 0} then A − mI ≥ 0. Applying the Perron-Frobenius theorem on the

matrix A−mI it follows that there exist

v ∈ Rn

+; (A−mI)v = ρ(A−mI)v

or there exists v ∈ Rn
+ such that

Av = (ρ(A−mI) +m)v

the vector v is an eigenvector of the matrix A associated with the eigenvalue ρ(A−mI) +m.

We note that for a square matrix B we have

Spec(B + kI) = k + Spec(B)

or ρ(A−mI)) = max
λ∈Spec(A−mI)

Re(λ) or

(ρ(A−mI) +m) = max
λ∈Spec(A−mI+mI)

Re(λ) = max
λ∈Spec(A)

Re(λ) = α(A).

So v is an eigenvector of A associated with the eigenvalue

α(A) = ρ(A−mI) +m ∈ R.

Although this proof can be found in [125], we have given the complete proof because the theorem
is very crucial in this thesis.
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A.4.2 Characteristics of Metzler stable matrices

Let M be a metzler matrix of the form

M =

�
A B

C D

�

M is stable if and only if A and D − CA
−1

B are stable.

Proof
We first prove the necessary condition. Since any principal sub-matrix of a Metzler stable matrix
is still a Metzler stable matrix, (see [144]), then A and D are Metzler stable. As A is Metzler
stable, there exists a vector c = (c1, c2) � 0, such that Mc � 0 (condition I28 of theorem 2.3
[2]). This means that

Ac1 +Bc2 � 0,

Cc1 +Dc2 � 0.

Since A is Metzler stable, −A
−1 ≥ 0 and C is positive. Multiplying Ac1 +Bc2 � 0 by −CA

−1,
we obtain −CC1−CA

−1
Bc2 � 0 and consequently (D−CA

−1
B)c2 � 0. This proves, from I28

that (D − CA
−1

B) is Metzler stable. This is a necessary condition.

We now prove the sufficient condition.

Since A and (D − CA
−1

B) are Metzler stable, there exists a vector c2 � 0 such that

(D − CA
−1

B)c2 � 0.

So we now have c3 = −A
−1

Bc2, since A is Metzler stable, we have −A
−1 ≥ 0. AS B is positive

and c2 � 0, we deduce that c3 � 0 and the inequalities

Cc3 +Dc2 � 0, Ac3 +Bc2 � 0.

A is Metzler stable, so there exists a vector v � 0 such that Av � 0 (see theorem A.9). Now
we choose c1 = c3 + εv � 0, for ε > 0. We have

Cc1 +Dc2 = Cc3 +Dc2 + εCv.

One can choose ε > 0 sufficiently small so that Cc1 +Dc2 � 0. Now,

Ac1 +Bc2 = Ac2 + εAv � 0.

So we find that c = (c1, c2) � 0 such that Mc � 0. which proves that M is Metzler stable (see
theorem A.9). This proves the sufficient condition. In the following result we will show that the
stability modulus is an increasing function of Metzler matrices.
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Theorem A.11 (Monotonicity and Stability Modulus).

1. If there exist v � 0 such that Av ≤ βv, then α(A) ≤ β.

2. If in addition, A is irreducible then v > 0 and Av < βv leading to α(A) < β. Infact we
must have v � 0.

3. If there exists v > 0 such that sv ≤ Av, then s ≤ α(A).

4. If in addition A is irreducible, then s < Av implies s < α(A)

A.4.3 Irreducible Metzler Matrices

In this section we will characterize a dynamical property of irreducible Metzler matrices. A
Metzler matrix is invariant on the positive orthant. First, we prove a result on the irreducibility.
The definition of irreducibility for Metzler matrices is equivalent to following property,

Proposition 5 (Irreducible Metzler Matrices). A Metzler matrix A is irreducible if and only if,
for any vector x > 0 belonging to a face F of Rn

+, where F is defined by :

F = {x ≥ 0 | ∃I ∈ I, �ei | x� = 0}

there exists and index i such that �ei | x� = 0 and �ei | Ax� > 0.

Proof
From theorem A.12, the irreducibility of a matrix depends only on its off-diagonal terms. We can
always replace A with A+ λI for λ sufficiently large. The irreducibility condition is equivalent
to the proposition condition. If there exists i such that �ei | x� = 0 and �ei | Ax� > 0, then this
is equivalent to �ei | x� = 0 and �ei | (A+λI)x� > 0. Without loss of generality we will therefore
assume that A ≥ 0.

The sufficient condition.
As a consequence, we suppose that for all i such that �ei | x� = 0, we have �ei | Ax� > 0. Let
Fx = R+[0, x] be the face generated by x. Since A ≥ 0, we have AFx = R+[0, Ax]. The face Fx

is characterized by the set of indices I. Now we have Fx = {x ≥ 0 | �ei | x� = 0}. For these
indices we have �ei | x� = 0. As a result AFx ⊂ Fx and the matrix A is not irreducible.

The necessary condition.
If A is reducible, there there exists a face denoted by Fx, such that, AFx ⊂ Fx. For any index
such that �ei | x� = 0 we have �ei | Ax� = 0.

Definition A.18. A directed graph G = (X,U) is a pair consisting of a set X = {x1, . . . , xn} and
a set U of X × X. The elements of X are called nodes or vertices of the graph. An element
(x, y) ∈ U is called an arc, x is the origin and y is the endpoint. A directed graph (resp.
undirected) is a set of vertices with directed arcs (resp. undirected) linking the vertices.

Definition A.19. A path is a sequence of arcs (u1, . . . , up) such that each arc ui has the endpoint
which is the origin of ui+1. It is said that the path joins the origin u1 with the end up. A graph
is strongly connected if every pair of distinct vertices is joined by a path.

Any square matrix is associated with a directed graph.
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Definition A.20. Consider a square matrix A = (aij). Consider also the graph with n vertices
given by set X = {x1, . . . , xn}. There is a path joining a vertex i to vertex j if aji �= 0. Conver-
sely, to a directed graph we associate a square matrix n × n, where aij = 1 if there is an arc
that connects i and j and aij = 0, otherwise.

We can charaterize an irreducible matrix elegantly by the properties of the associated direc-
ted graph.

Theorem A.12. A matrix A is irreducible if and only if its graph G(A) is strongly connected.

Proof : The necessary condition.
Suppose the matrix A is irreducible. Let i be a vertex, we define I as the set of vertices different
from i that can be reached from i. In the set I for all vertices j �= i there exists an arc joining
j to i. The set I is non empty. In effect, if we consider the set, J , Indeed, and if we consider the
set J , the complementary of the singleton {i}, as A is irreducible there exists k /∈ J and j ∈ J

such that ajk �= 0. But given the definition of J , this means that there exists j �= i such that
aji �= 0. In other words there is an arc from i to j.

Suppose by contradiction that I �= {1, . . . , n}. By irreducibility of A, there exists j ∈ I and
k /∈ I such that akj �= 0. That is there is an arc from i to k. But as j ∈ I, it is accessible from i,
so k is accessible from i. This is a contradiction.

Sufficient condition.
Assume by contradiction that the graph is strongly connected and the associated matrix A is
reducible. Then there exists a subset of indices I, such that if J is its complement, then aji = 0
for all i ∈ I and j ∈ J . We choose an index i ∈ I and an index j ∈ J . This is always possible
since I ia a proper subset. Then there exists an arc joining i to j. Let there the set of indices
{k1, . . . , kp} be such that the following coefficients are non-zero

aj,k1 ; ak1,k2 , . . . , akp,i.

From the assumptions on i and j, it follows that akp,i �= 0, kp /∈ J or kp ∈ J . But if kp ∈ I the
same reasoning applied on akp,kp prove that kp−1 ∈ I. reasoning by induction shows that j ∈ I

which is a contradiction.

Proposition 6. A is an irreducible Metzler matrix then each trajectory of the system ẋ = Ax are
and will remain on one face. Precisely, A is an irreducible matrix, if and only if for any t > 0,
we have e

tA � 0

Proof
We assume that it is not true. Then there exists a t > 0 such that e

tA ∈ ∂Rn
2

+ . But for all s
such that 0 ≤ s ≤ t we have e

(t−s)A
e
tA. The matrix e

(t−s)A is positive because (A is Metzler)
and it is invertible. consequently if esA � 0 this implies etA � 0. We now show that esA is not
strongly positive for all o ≤ s ≤ t. There exists x > 0 belonging to the boundary of the orthant,
such that etAx belongs to the boundary of the orthant. From the previous proposition, there is
an index i such that �ei | etAx� = 0 and �ei | Ae

tA
x� > 0.

The function ϕ(s) = �ei | e
tA
x� is positive for all s. It vanishes at t = s. This is a minimum,

thus the derivative vanishes at t. Now

ϕ̇(t) = �ei | e
tA
x� > 0.
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This is a contradiction. Conversely, if A is reducible, then A can be expressed as :

P
T
AP =

�
A1 A2

0 A4

�
,

or as

P
T
e
tA
P =

�
e
tA1 M(t)
0 e

tA4

�

The matrix e
tA is reducible and positive, and there exists a vector x > 0 on the boundary such

that etAx is on the boundary of the orthant. This means that we cannot verify that etA � 0.

A.4.4 Regular Splitting of a Metzler matrix

We present and prove a result of Varga [144], which is applied in the formula for calculating the
basic reproduction number, R0.

Definition A.21. Let a Metzler matrix A be invertible. A regular decomposition is a decomposi-
tion of the form

A = F + V

where F ≥ 0 and V is a Metzler stable matrix.

The following theorem is proved in [144], but given its importance int this thesis, we also present
the proof here.

Theorem A.13. Let A be an invertible Metzler matrix. For a regular decomposition of A of the
form A = F + V , the following two assertions are equivalent.

1. A is a stable matrix

2. ρ(−FV
−1) < 1

Proof
Suppose A is a Metzler matrix, then from theorem A.9, we have −A

−1 ≥ 0.
The matrix V = A− F and A are invertible so we can write

−FV
−1 = −F (A− F )−1 = −FA

−1(I − FA
−1)−1

We let G = −FV
−1 be a a positive matrix. To get the spectral radius using the Perron-Frobenius

theorem, it is sufficient to restrict ourselves to the positive eigenvectors. So let v > 0 be an
eigenvector of G corresponding to an eigenvalue λ ≥ 0, so that Gv = λv. Now,

−FV
−1

v = G(I −G)−1
v =

λ

1− λ
v

The matrix −FV
−1 is positive. Conversely, let µ ≥ 0 be an eigenvalue corresponding to an

eigenvector v > 0. Then G(I − G)−1
v = µv. The matrix G and (I − G)−1 commute, and we

deduce that Gv = µ(I + G)v. This necessarily implies that µ �= 1 and v is an eigenvector of G
corresponding to the eigenvalue µ

1+µ
.

The function defined by x →
x

1+x
in [0, 1] ∈ R+ is a bijection between the eigenvalues of

G = −FA
−1 and those of −FV

−1. This is a monotonic function. Consequently we have

ρ(−FV
−1) =

ρ(G)

1 + ρ(G)
< 1.
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Conversely, assume ρ(−FV
−1) < 1. Then the matrix I − FV

−1 is invertible and in addition a
Metzler matrix. Since ρ(−FV

−1), we have α(−I − FV
−1) < 1. This is a Metzler stable matrix.

Its inverse if positive and therefore

−A
−1 = (−I − FV

−1)−1
V

−1
≥ 0.

We see from theorem A.9 that A is a Metzler stable matrix, and this completes the proof.

A.5 Calculation of Basic Reproduction Number

To calculate basic reproduction number we demonstrate here the method developed by van
den Driessche and Watmough [141]. In the formular, R0 is defined as the spectral radius of
Next Generation Operator. The determination of the operation involves the distribution into
two compartments, the compartment of infected (latent, infectious ...) and the compartment of
uninfected individuals.

This technique was developed first by Diekmann and Heesterbeek in [32] and later developed by
van den Driessche and Watmough in [141] for finite dimensional systems.
Consider an epidemiological model with no classes or with homogeneous compartments. The vec-
tor x represents the state of the system and xj is the number (or concentration) of individuals in
compartment j. The compartments are sorted in such a way that the first k compartments are
free of infection (susceptibles) while the others are the infected compartments (latents, infected.).

Set the vector x = xj , j = 1, . . . , n where xj is the number of individuals in compartment
j.
Let Fj(x) be the rate of appearance of new infections in compartment i, V+

i
(x) be the rate of

transfer of individuals into compartment i by all other means, and V
−
j
(x), the rate of transfer

of individuals out of compartment j. The dynamics of the compartment is defined by

ẋj = Fj(x) + V
+
j
(x)− V

−
j
(x)

It is assumed that each function is continuously differentiable at least twice in each variable. If
we put Vj(x) = Vj(x)+ − Vj(x)− the previous system becomes

ẋj = Fj(x) + Vj(x).

If x0 is the disease free state of the system, and the infected compartments are empty. This
equilibrium is called the Disease Free Equilibrium, ie j > k, (x0)j = 0. For biological reasons
we have the following hypothesis :

1. x ≥ 0, Fj(x) ≥ 0, V+
j
(x) ≥ 0,V−

j
(x) ≥ 0. Since each function represents a directed transfer

of individuals, they are all non-negative. If a compartment is empty, then there can be no
transfer of individuals out of the compartment by death, infection, nor any other means.
Therefore,

2. If xi = 0 then V
−
j
(x) = 0. In particular, we if set Xs = {x ≥ 0;xj = 0, i = 1, . . . , n}

and if x ∈ Xs, then V
−
j
(x) = 0. In other words, there can be no transfer from an empty

compartment.

3. If j ≤ k then Fj(x) = 0. That is, there is no immigration of infectives from the uninfected
compartment.
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4. If x0 is the disease free state then Fj(x0) = 0 and for j ≥ k, V
+
j
(x0) = 0. If the population

remains near the DFE ie. if the there is no disease, then introduction of a few infected
individual will not result in an epidemic.

We now estimate the average number of new infections resulting from introduction of a typical
individual near the DFE. To determine the fate of a typical infective individual introduced into
the population, we consider the dynamics of the linearized system with reinfection blocked. That
is the system

ẋ = DV(x0)(x− x0) = DV
+(x0)(x− x0)−DV

−(x0)(x− x0).

The following result is the precise structure of the linearised system DX(x0) near the disease
free equilibrium x0.

Lemma 2. If x0 is a DFE, then the matrices DF(x0) and DV(x0) are decomposed in blocks

DF(x0) =

�
0 0
0 F

�
, DV(x0) =

�
J1 J2

0 V

�

F ≥ 0 and V is a Metzler stable matrix.

The matrix FV
−1 is called the Second Generation Matrix. A complete prove of this theorem is

done in [141].

Definition A.22 (Basic Reproduction Number, R0). The basic reproduction number, R0 is the
spectral radius of the second generation matrix, namely

R0 = ρ(−FV
−1)

The following interpretation is given for the matrix −FV
−1 :

Consider an infected individual introduced into compartment k > m to a population without
disease. The entry (i, k) of the matrix −V

−1 is the average length of time this individual spends
in compartment j during its lifetime, assuming that the population remains near the DFE
and re-infection is blocked. The (i, j) entry of F is the rate at which infected individuals in
compartment j produce new infections in compartment i. Hence, the (i, k) entry of the product
FV

−1 is the expected number of new infections in compartment i produced by the infected
individual originally introduced into compartment k. The spectral radius of the matrix −FV

−1

is the basic reproduction number. That is

R0 = ρ(−FV
−1)

.
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ANNEXE B

Biology of mosquito and malaria parasite
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In this appendix, we describe the history and biology of malaria and the malaria transmitting
mosquito. The word, malaria, is derived from the Italian phrase, ‘mal-aria’, meaning bad air.
Malaria infection is caused by a protozoan parasite of the genus Plasmodium four species of
which infect human beings, the most common being Plasmodium vivax and most deadly being
Plasmodium falciparum. The Anopheles mosquito serves as Plasmodium ’s delivery system, or
vector. Only female mosquitoes can transmit it since males don’t take blood meals.

B.0.1 The parasites life cycle.

The malaria parasite exhibits a complex life cycle involving the mosquito and a human host.
Infection begins when the female Anophele mosquito bites an infected human and injects saliva
with sporozoites into the human blood stream. Sporozoites are carried by the circulatory system
to the liver and invade a variety of liver cells. The sporoziotes replicate to produce merozoites
which are released into the bloodstream. Merozoites invade erythrocytes and enlarge to produce
trophozoites. The trophozoites subdivide and mature to become schizonts, which are released
following a rupture of the infected erythrocyte. Invasion of erythrocytes reinitiates another round
of the blood-stage replicative cycle, usually referred to as the assexual cycle.
Sometimes, instead of the asexual replicative cycle, the parasite can differentiate into sexual
forms known as macro- or microgametocytes. Ingestion of gametocytes by the mosquito vector
induces gametogenesis (i.e., the production of gametes). Microgametes then fertilize the macro-
gamete to produce a zygote which develops into a motile ookinete. The ookinet will penetrates
the gut wall cells and develops into an oocyst. The oocyst mature and releases the sporozoites
which migrate to and invade the salivary glands. This completes the life cycle of the parasite
cycle. The incubation period (time from infection to development of the disease) is usually about
10 to 15 days.
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B.0.2 Mosquitoes Life cycle

The Anopheles has four stages in their life cycle : egg, larva, pupa, and adult. The first three
stages last 5-14 days depending on the species and the ambient temperature. The adult females
lives for about 1-2 weeks in nature.

Eggs : An anopheles mosquito lays between 50-200 eggs per oviposition directly on water. The
eggs have floats on either side to help them float till they hatch within 2-3 days, in ambient
temperature.

Larvae : Mosquito larvae have a well-developed head with mouth brushes used for feeding,
a large thorax, and a segmented abdomen.They breathe through spiracles located on the abdo-
men and therefore must come to the surface frequently. Larvae spend most of their time feeding
on algae, bacteria, and other microorganisms in the surface microlayer. They dive below the
surface only when disturbed. They develop through 4 stages, or instars, after which they meta-
morphose into pupae. At the end of each instar, the larvae molt, shedding their exoskeleton, or
skin, to allow for further growth. The larvae prefer clean, unpolluted water and many species
prefer habitats with vegetation. Some breed in open, sun-lit pools while others are found only
in shaded breeding sites in forests.

Pupae : The pupa is comma-shaped when viewed from the side. The head and thorax are merged
into a cephalothorax with the abdomen curving around underneath.They usually come to the
surface frequently to breathe, through a pair of respiratory trumpets on the thorax. After a few
days the pupa, splits and the adult mosquito emerges. The duration from egg to adult varies
considerably among species and is strongly influenced by ambient temperature. Mosquitoes can
develop from egg to adult in as little as 5 days but usually take 10-14 days in tropical conditions.

Adults : Anopheles mosquitoes can be distinguished from other mosquitoes by the palps, which
are as long as the proboscis, and by the presence of discrete blocks of black and white scales
on the wings. Adult Anopheles can also be identified by their typical resting position : males
and females rest with their abdomens sticking up in the air rather than parallel to the surface
on which they are resting. Mosquitoes can develop from egg to adult in as little as 5 days but
usually take 10-14 days in tropical conditions.
Some Anopheles mosquitoes prefer to bite humans and others prefer animals, usually referred to
as anthropophilic and zoophilic respectively. The anthrophilic are more likely to spread malaria
because they bite humans more often. Most Anopheles are active at dusk and dawn (crepuscular)
while others are nocturnal (active mostly at night). Some anophelines prefer to feed/rest indoors
(endophagic / endophilic), while others feed/rest outdoors (exophagic / exophilic). When fee-
ding, the female mosquito first injects some saliva into the host to prevent clotting, allowing the
malaria parasite to enter the human host.

Some Anopheles species are poor vectors of malaria, because the parasites do not develop well
(or at all) within them. These refractory strains have an immune response that encapsulates and
kills the parasites after they have invaded the mosquito’s stomach wall. It is hoped that some
day, genetically modified mosquitoes that are refractory to malaria can replace wild mosquitoes,
thereby limiting or eliminating malaria transmission. Once larvae emerge to become adults, the
rate at which they feed on man is dependent upon the ambient temperature.
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At 170C the female mosquitoes feed on humans every 4 days while at 250C they take blood
meals from humans every 2 days. Rainfall increases the breeding habitats for mosquitoes lea-
ding to increased population sizes and the rate of malaria transmission. The rate of the parasite
development in the female mosquito has an exponential relationship to temperature. Thus a very
small increase in external temperature will reduce the time it takes for the parasite to mature
several fold. In Western Kenya a 0.50C increase in temperature since the 1970’s can explain the
eight-fold increase in malaria cases (http ://www.ipsnews.net/news).
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