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Abstract

Peer-to-peer real-time communication and media streaming applications optimize their performance
by using application-level topology estimation services such as virtual coordinate systems. Virtual
coordinate systems allow nodes in a peer-to-peer network to accurately predict latency between arbi-
trary nodes without the need of performing extensive measurements. However, systems that leverage
virtual coordinates as supporting building blocks, are prone to attacks conducted by compromised
nodes that aim at disrupting, eavesdropping, or mangling with the underlying communications.

Recent research proposed techniques to mitigate basic attacks (inflation, deflation, oscillation)
considering a single attack strategy model where attackers perform only one type of attack. In this
work, we define and use a game theory framework in order to identify the best attack and defense
strategies assuming that the attacker is aware of the defense mechanisms. Our approach leverages
concepts derived from the Nash equilibrium to model more powerful adversaries. We apply the game
theory framework to demonstrate the impact and efficiency of these attack and defense strategies using
a well-known virtual coordinate system and real-life Internet data sets.

Thereafter, we explore supervised machine learning techniques to mitigate more subtle yet highly
effective attacks (frog-boiling, network-partition) that are able to bypass existing defenses. We evaluate
our techniques on the Vivaldi system against a more complex attack strategy model, where attackers
perform sequences of all known attacks against virtual coordinate systems, using both simulations and
Internet deployments.
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Chapter 1

Résumé en francais

1.1 Introduction

Actuellement, I'aspect le plus important pour la conception des réseaux est le passage a 1’échelle,
car les réseaux sont composés de plus en plus de différentes parties, qui doivent supporter un grand
nombre d’utilisateurs. En conséquence les architectures des réseaux client/serveur sont de plus en plus
substituées par les réseaux pair-a-pair (P2P).

Les services de partage de fichiers (par ex.: BitTorrent) ont aidé les réseaux pair-a-pair a atteindre
une grande popularité. Au fur et & mesure, ces services de partage de fichiers étaient de plus en plus
utilisés et pour améliorer 'efficacité des réseaux pair-a-pair, des systemes de coordonnées virtuelles ont
été inventés. L’idée principale de ces systemes est que les noeuds sont associés a une position dans un
espace virtuel et les distances entre les nceuds avoisinants représentent la relation de la latence entre
ces noeuds. Ces systemes prennent les latences pour positionner les noeuds dans un espace virtuel.

Pourtant ces systémes sont la cible d’attaques ayant pour but de diminuer la précision et les perfor-
mances de ces systemes. Spécifiquement, il existe des attaques lentes et subtiles, que les mécanismes
de défenses existants ne peuvent pas détecter. Ceci car ces attaques restent en dessous des seuils de
détection et sont si lentes qu’elles sont considérées comme un comportement bienveillant.

Dans une premiere étape, nous analysons les différentes stratégies d’attaques et de défenses d’une
maniere systématique pour en déduire des stratégies optimales. Avec ces analyses nous étendons
les validations des mécanismes de défenses existants, jusqu’a présent seulement faites a base des
expérimentations.

Ensuite, nous développons une nouvelle méthode de détection qui utilise I’apprentissage automa-
tique. Notre méthode peut détecter les attaques simples ainsi que les attaques subtiles et lentes. Nous
comparons trois algorithmes d’apprentissage supervisé différents. De plus, nous montrons que notre
méthode peut également détecter des stratégies d’attaques plus complexes.

Ce chapitre a la structure suivante : Premierement, nous expliquons ’état de I’art des systemes aux
coordonnées virtuelles, ainsi que 1’état de I'art des attaques contre ces systémes et leurs mécanismes
de défenses dans la section 1.2. Deuxiemement, nous illustrons nos contributions (voir section 1.3).
Finalement nous terminons avec la conclusion et les travaux futurs dans la section 1.4.

13
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1.2 Etat de ’art

Beaucoup de recherche était nécessaire afin de développer des méthodes pour mieux organiser les
réseaux pair-a-pair. Enfin, les systémes aux coordonnées virtuelles ont été développés. Pour prévoir
les distances entre les nceuds, ces systéemes ne considerent pas des mesures additionnelles pour calculer
la latence pour ne pas charger le réseau, mais ils estiment les distances a partir de messages existants.

Il existe deux types de systemes aux coordonnées virtuelles. Le premier type a besoin de points
de repere pour étre capable de localiser les nceuds. Le deuxiéme type est compléetement décentralisé
et n’a pas besoin de points de repere.

Les systemes aux points de repere dépendent des composants infrastructurels, par ex. : un ensemble
de serveurs, pour prévoir les distances entre les noeuds. Ces points de repere sont soit prédéfinis
[40, 75, 99], soit choisis aléatoirement [76, 80].

1.2.1 Systémes aux coordonnées virtuelles décentralisés

A cause des points de repere, ces systemes ont des difficultés a passer a 1’échelle et pour vaincre
ce probleme, les systemes décentralisés ont été proposés. L’objectif des systemes aux coordonnées
virtuelles décentralisés [30, 32, 62, 63] est de produire et maintenir efficacement des ensembles de
coordonnées, qui prédisent soigneusement les latences entre les noeuds.

Les approches décentralisées utilisent un ensemble de référence composé des nceuds avoisinés.
Un nceud calcule les distances par rapport a cet ensemble, car ce n’est pas possible de passer a
I’échelle quand un neeud calculera ses distances par rapport a tous les nceuds. Les auteurs de PIC [30]
ont démontré une efficacité maximale si les noeuds de ’ensemble avoisiné sont choisis d’une moitié
aléatoirement et de I’autre moitié entre des noeuds proches physiquement, c.-a~-d. des nceuds avec des
petites latences. Les approches proposées different en ce qui concerne la grandeur de cet ensemble,
PIC [30] utilise 32 nceuds, PCoord [62, 63] utilise 10 noeuds et Vivaldi [32] 64 noeuds. En outre, les
trois approches implémentent des différentes méthodes pour bien estimer les latences entre les nceuds.
PIC et PCoord implémentent la méthode Simplex Downhill [71]. Pourtant, Vivaldi minimise la racine
de l'erreur de prédiction.

1.2.2 Vivaldi

Dans ce travail, nous nous concentrons sur Vivaldi, comme c’est le systeme le plus utilisé et le fonc-
tionnement est assez simple pour comprendre et visualiser. En plus, dans [32] c’est montré que ce
systeme produit seulement une petite erreur d’intégration.

En Vivaldi, tous les nceuds reccoivent des coordonnées synthétiques dans un espace euclidien
multidimensionnel. Ces coordonnées représentent les latences entre les noeuds, c.-a-d. le temps d’aller-
retour entre les nocuds. Pour en recevoir une bonne estimation de la latence, Vivaldi minimise ’erreur
de prédiction Erreurpreq:

ET‘T’@UT’pTed - ‘Lact - Lest’

Lt est la latence mesurée entre deux noeuds et Leg est la latence estimée, donc la latence calculée
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a partir des coordonnées de 1’espace virtuel.

En fait, I'idée derriere Vivaldi est de décrire un probleme de relaxation d'un ressort dérivé du
domaine de physique. On peut s’imaginer que deux noeuds sont connectés par un ressort, la longueur
actuelle du ressort constitue la latence estimée L.g. Quand il existe une tension sur le ressort, les
neeuds rectifient leurs positions pour minimiser la tension et en méme temps 'erreur de prédiction.
Cette procédure de minimisation est appliquée entre un nceud et tous ses nceuds avoisinés. Les noeuds
échangent les informations sur la latence régulierement et & partir de ces informations les nocuds
modifient leurs coordonnées pour en trouver ’emplacement qui décrit précisément la latence réelle
entre les nceuds.

1.2.3 Attaques sur Vivaldi

Le mode de fonctionnement de Vivaldi assume que les noeuds déclarent des latences et coordonnées
correctes, mais un attaquant peut en réduire la performance de Vivaldi en mentant. Quand la per-
formance est réduite, utiliser des systemes aux coordonnées virtuelles ne rapporte plus une efficacité
améliorée pour les systemes pair-a-pair.

Un attaquant a plusieurs options pour réduire la performance [22, 23, 110, 111]:

L’attaque a l'inflation: l'attaquant peut repousser un nceud victime loin de sa position correcte
en signalant des coordonnées similaires aux coordonnées du noeud victime, pour que le noeud victime
suppose que le nceud attaquant soit proche de lui, mais il signale une tres grande latence. Ce qui a
comme conséquence que le noeud victime adapte ses coordonnées & une position loin de sa position
correcte.

L’attaque a déflation: L’objectif de cette attaque est de rendre le nceud victime immobile. L’attaquant
signale alors soit des coordonnées lesquelles font correspondre la latence estimée avec la latence mesurée
du nceud victime, soit une latence modifiée qui correspond & la latence estimée. Par cette attaque, le
neeud victime ne peut pas trouver sa position correcte.

L’attaque a loscillation: Ici, I’attaquant reporte des mauvaises coordonnées, latences, et erreurs
locales, pour empécher que les autres noeuds puissent converger vers une position correcte. L’objectif
est de rendre le systeme completement chaotique.

L’attaque a l'inflation-lente: Le principe de cette attaque est le méme que pour 'attaque a
I'inflation, sauf que cette attaque est beaucoup plus lente pour ne pas risquer d’étre détectée par
des mécanismes de défenses.

L’attaque a dégroupage de réseaux: Cette attaque est une extension de l'attaque a l'inflation-
lente. L’idée est qu’un groupe de nceuds malveillants repousse une partie des noeuds du réseau vers
une direction et en méme temps un autre groupe de noeuds malveillants repousse 'autre partie du
réseau vers la direction opposée.

1.2.4 Meécanismes de défenses

Il y a deux types de défense différents, le premier type est completement décentralisé [110, 111], le
deuxiéme type par contre utilise un ensemble de nceuds de confiance, comme dans [54], ou un filtre
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Kalman est utilisé pour modéliser le comportement des nceuds honnétes a base de I’ensemble de noeuds
de confiance. On peut dire que ce deuxieme type est a base des points de repere. Avoir besoin des
points de repere pour des mécanismes de défenses, résulte en faire des fortes hypotheses par ex. on ne
peut pas garantir que ces nceuds de confiance ne soient pas malveillants. A cause de cet inconvénient,
nous considérons les mécanismes completement décentralisés, car ces mécanismes n’ont pas besoin
d’hypotheses. Ces mécanismes fonctionnent de la maniere suivante [110, 111]:

Détection des valeurs aberrantes spatiales: Ce mécanisme vérifie si les valeurs reportées par un
nceud correspondent avec ce qui reportent les autres nceuds avoisinés. Le nceud a une queue avec les
valeurs reportées par les autres nceuds avoisinés. La distance Mahalonobis est calculée a partir de
toutes ces valeurs, et les valeurs reportées par le nceud en question ne devront pas dépasser un seuil
spatial fixe pour que ces valeurs soient acceptées.

Détection des valeurs aberrantes temporelles: Ce mécanisme vérifie si les valeurs reportées par un
nceud correspondent avec ce que ce nceud a reporté dans le passé, si les nouvelles valeurs dépassent
un seuil temporel, les valeurs ne sont pas acceptées.

Détection des valeurs aberrantes spatio-temporelles: Ici, les mécanismes décrits auparavant sont
combinés et les valeurs reportées par un nceud ne doivent ni dépasser le seuil temporel, ni le seuil
spatial pour que les valeurs soient acceptées.

Ces mécanismes sont montrés d’étre capables de détecter les attaques a l'inflation, déflation et
loscillation, mais Chan-Tin et al [22] ont montré que ces mécanismes ne détectent ni les attaques a
I'inflation-lente ni les attaques a dégroupage de réseau.

1.3 Contributions

Nous avons fait deux contributions principales. Dans la premiere contribution, nous analysons les
stratégies de 'attaquant ainsi que les stratégies des nceuds victimes. Tous les travaux précédents ont
validé et analysé les mécanismes de défenses seulement a l’aide des expérimentations. Aucun de ces
travaux n’a analysé le fait qu’un attaquant peut avoir des informations sur les mécanismes de défenses,
mais la réalité a montré que bien souvent les attaquants ont des connaissances détaillées du systeme
sous attaques.

La deuxieme contribution propose un nouveau mécanisme de défense qui est capable de détecter des
attaques plus lentes et subtiles, comme ’attaque a I'inflation-lente et I’attaque de dégroupage de réseau.
Notre mécanisme utilise ’apprentissage automatique pour discerner le comportement bienveillant du
comportement malveillant.

1.3.1 Analyser des stratégies pour sécuriser les systemes aux coordonnées virtuelles.

Dans ce travail, nous proposons un modele basé sur la théorie des jeux pour analyser et évaluer les
stratégies possibles du défenseur et de 'attaquant dans un systéme aux coordonnées virtuelles. Nous
dérivons des stratégies de défense optimales ainsi que des stratégies d’attaques optimales a 1’aide
de I’équilibre de Nash. D’apres 1’équilibre de Nash, nous supposons que les deux adversaires sont
rationnels, c.-a-d. qu’ils veulent maximiser leur bénéfice respectif.
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Par ailleurs, nous développons une méthode pour éliminer le composant critique des mécanismes
de défense précédents: le seuil fixe. Nous utilisons un systéme a régulation automatique pour avoir
une sélection adaptive du seuil.

La structure de cette contribution est la suivante: Premierement, nous donnons une idée sur la
théorie des jeux et I’équilibre utilisé pour en savoir quelles stratégies sont optimales. Deuxiéemement,
nous établissons notre modele de jeux.

Théorie des jeux

Nous élaborons des concepts de théorie des jeux afin de dériver les meilleures stratégies pour le
défenseur et attaquant. Ces stratégies sont obtenues en déterminant 1’équilibre de Nash de notre
jeu. L’équilibre de Nash [70] est une approche qui consiste a spécifier des choix de stratégie optimales
pour tous les joueurs, en considérant qu’aucun des joueurs n’a intérét a diverger de I’équilibre de Nash,
un joueur ne pourrait pas gagner un plus grand profit en choisissant une autre stratégie. Pour calculer
I’équilibre de Nash nous utiliserons:

e N : ensemble de n joueurs
e A; : ensemble de stratégies (a;eA;)

e R, : fonction de gain A - R, ou A=Ay x ... x A,

L’équilibre de Nash peut définir une stratégie pure, qui donne une définition compléte du comportement
du joueur, ou une stratégie mixte, qui est une sélection sur un ensemble de stratégies pures. Une
stratégie mixte prévue pour un joueur i est ’ensemble des distributions de probabilités sur ’action A;
décrite par I'opérateur simplex A.

AA) ={ i+ Aj = [0,1] | 3o qilai) =1}
pour des stratégies mixtes:

Q =[L A4) et q = (¢i,q-i)eQ

Le sens d’une stratégie mixte est que les actions sélectionnées peuvent réaliser un meilleur profit
moyen, et que 1’équilibre dans des stratégies mixtes est associé a la distribution de probabilités sur
I’ensemble d’actions. Dans une stratégie mixte, les actions sont effectuées de maniere aléatoire selon
la fonction de distribution de probabilités.

Détermination du modele de jeu

Comme déja décrit, nous considérons dans notre modele deux joueurs, le défenseur et 'attaquant.
Nous supposons que l'attaquant et le défenseur ont des objectifs opposés. Les deux joueurs ont
deux ensembles de stratégies différents: A décrit 'ensemble de stratégies de 'attaquant, et D décrit
I'ensemble de stratégies du défenseur. Les joueurs regoivent des gains pour toute action/stratégie
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choisie & partir de la fonction de gain. Nous considérons un jeu statique, ou les décisions des joueurs
pour choisir leur stratégie sont prises en méme temps. Les stratégies choisies ne sont pas connues par
l'opposant. Pour analyser le jeu il faut définir les objectifs des joueurs, les ensembles de stratégies et
les fonctions de gains.

On peut définir les objectifs des joueurs ainsi: le défenseur s’efforce de maintenir efficacité de
son systeme, tandis que l'attaquant cherche a diminuer 'efficacité du systéme et en méme temps
I’attaquant veut minimiser le risque d’étre détecté par des mécanismes de défenses. Nous élaborons
deux différents jeux: un jeu simple et un jeu avancé. Les ensembles de stratégies et les fonctions de
gains sont définis par rapport au type de jeu.

Jeu simple:

Nous nommons ce type de jeu simple, parce que nous considérons les mécanismes de défenses
simples (Détection des valeurs aberrantes) comme ensemble de stratégies du défenseur. L’ensemble de
stratégies D du défenseur est comme suit:

D : {Détection des valeurs aberrantes spatiales; détection des valeurs aberrantes temporelles;
détection des valeurs aberrantes spatio-temporelles}

L’ensemble de stratégies A de lattaquant est comme suit:

A : {inflation 10% noeuds malveillants ; déflation 10% nceuds malveillants ; oscillation 10%
noeuds malveillants ; inflation 20% nceuds malveillants ; déflation 20% nceuds malveillants ;
oscillation 20% nceuds malveillants ; inflation 30% nceuds malveillants ; déflation 30% nceuds
malveillants ; oscillation 30% nceuds malveillants}

Les fonctions de gains représentent les motivations et les objectifs des joueurs. Apres la définition des
objectifs des joueurs on constate que les deux joueurs veulent influencer la précision et l'efficacité du
systeme. La précision du systéme peut étre définie par les erreurs du systeme:

e L’erreur de prédiction Error,,.q mesure la précision globale du systéme en calculant la différence
entre la latence mesurée et la latence estimée.

e L’erreur relative Error,, mesure la relation entre 'erreur de prédiction sous attaques et ’erreur
de prédiction sans attaques.

Les fonctions de gains pour le défenseur sont comme suit:

4 Pdefenseurpred = —ET‘TC’LLTpTed

_ 1
d Pdefenseurrel — Erreuryq

Pour définir les fonctions de gains de 'attaquant on veut aussi considérer qu’il doit investir un
cout augmenté s’il compromet un grand taux des noeuds pour conduire 'attaque. En conséquence, on
integre le taux des noeuds malveillants dans les fonctions de gains de I'attaquant:
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Erreurpreq

¢ ~ % noeuds malveillants

attaquanty,eq

_ Erreur,e;
% noeuds malveillants

L4 Pattaquantrel

Jeu avancé:

Dans ce jeu, on définit des nouvelles stratégies pour le défenseur en utilisant un régulateur automa-
tique. Ce régulateur permet d’avoir une sélection de seuil adaptive. La séléction du seuil adaptive est
utilisée quand le systeme souffre sous une attaque forte pour réduire les conséquences de 'attaque sur
la précision du systéme. Si ’erreur du systeme augmente, le seuil diminue, I’équation est présentée
ci-dessous:

(Erreurqtaque(n) — Erreurno attaque(n))

T, =T, |— 1.1
1=c RT Ty (n) (1.1)

Dans cette équation, ¢ est une constante qui définit 'importance de erreur de prédiction. Il
y a différentes possibilités pour sélectioner la valeur de l'erreur, soit on prend la moyenne ou des
percentiles.

Les stratégies pour l'attaquant sont les mémes qu’auparavant. L’ensemble de stratégies pour
le défenseur est composé de différentes valeurs pour ¢ : {0; 0.04; 0.06; 0.08; 0.1} pour la boucle du
régulateur et de différentes valeurs pour les percentiles de 'erreur de prédiction {25ieme; 50te; 7hieme}
a prendre en compte.

Dans ce jeu, on a la fonction de gain pour le défenseur suivant:

L Pdefenseur = _Erreurp’red

Pour l'attaquant, on a deux fonctions de gain différentes: la premiere parce qu’il veut diminuer la
précision du systeme; et la deuxieme parce qu’il ne veut pas diminuer le seuil car sinon le risque que
I’attaque soit détectée augmente.

1. Pattaquantpmd = Erreurpred

2. PattaquantT = Tmoy

Résultats experimentaux

Pour analyser les différentes stratégies, on a exécuté des simulations dans le simulateur p2psim en
utilisant les données fournies de King [45] et AMP [4]. On a exécuté toutes les combinations des
stratégies de 'attaquant et du défenseur. Les résultats peuvent étre consultés dans le chapitre 5.6.

Pour le jeu simple, on a trouvé que pour des réseaux larges (topologie King), 'attaque a 'inflation
est l'attaque avec le plus grand impact sur le réseau. Pour le défenseur on a trouvé qu’utiliser la
détection des valeurs aberrantes spatio-temporelles est le mécanisme de défense le plus efficace quand
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le seuil est au plus 1.5. Pour un seuil plus grand que 1.5, la détection des valeurs aberrantes spatio-
temporelles et spatiales ont un impact similaire. En plus on a trouvé qu’utiliser un seuil de 1.25
résulte dans une plus grande efficacité qu’utiliser un plus grand seuil, en contradiction des travaux
précédents [110, 111]. Pour les données d’AMP les résultats ne sont pas si homogenes, car pour la
plupart des résultats une stratégie mixte est définie comme 1’équilibre.

Pour le jeu avancé, on a montré que c’est mieux d’utiliser un seuil adaptif qu'un seuil fixe. La
meilleure valeur pour le constant ¢ est montrée d’étre 0.8. Il faut noter qu’on n’a pas élaboré les
attaques subtiles dans ce travail, comme c’est démontré que la détection des valeurs aberrantes n’est
pas capable de détecter ces attaques.

1.3.2 Sécuriser les systemes de coordonnées virtuelles a ’aide de ’apprentissage
automatique

Dans cette section, nous montrons que nous sommes capables de détecter non seulement les attaques
plus subtiles (I'attaque a l'inflation-lente et 'attaque a dégroupage du réseau) mais aussi les attaques
simples (attaque a inflation, déflation, et oscillation). Avec notre méthode qui utilise apprentissage
automatique nous développons un nouveau mécanisme de défense et nous éliminons alors les in-
convénients des mécanismes précédents qui ne peuvent pas détecter les attaques subtiles. Pour utiliser
I’apprentissage automatique, nous élaborons un ensemble de métriques, qui reflete le comportement
du systeme.

Pour valider la méthode de détection nouvelle, nous analysons des nouvelles stratégies d’attaques
plus complexes que les stratégies d’attaques déja existantes. A l'aide d’une chaine Markov, on crée
des séquences d’attaques complexes pour lesquelles c’est plus difficile de reconnaitre les structures
d’attaques.

Notre méthode est validée par une détection déconnectée ainsi que par une détection en temps réel.
Nous comparons trois différents algorithmes de I'apprentissage automatique supervisé d’une maniere
quantitative.

La structure de cette contribution est la suivante : premierement nous définissons les stratégies
d’attaques complexes. Ensuite, nous donnons une introduction a l’apprentissage automatique et
nous définissons ’ensemble de métriques, avec lequel nous sommes capables de détecter toutes les
stratégies d’attaques, surtout les attaques subtiles. Apres cela, nous expliquons notre expérimentation
et I'intégration dans le systeme réel.

Les stratégies d’attaques

Dans cette partie on montre tous les types d’attaques qui sont analysés dans notre expérimentation.

Les stratégies d’attaque simple:

Ici, nous considérons toutes les attaques simples (I’attaque a l'inflation, a déflation, et a ’oscillation)
ainsi que les attaques plus subtiles (I'attaque a l'inflation-lente et & dégroupage de réseau).

Les stratégies d’attaque complexe:
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e Les attaques aléatoires: Jusqu’a maintenant on a considéré des stratégies d’attaques ou a partir
d’un moment spécifique tous les noeuds malveillants conduisent le méme type d’attaques. Pour
les attaques aléatoires, les nceuds malveillants conduisent différents types d’attaques. Les noeuds
malveillants choisissent ’attaque a exécuter aléatoirement.

o Les scénarios a deux attaques: Pour valider notre méthode de détection dans une premiere
étape, nous créons des scénarios d’attaques ou le temps des expérimentations est divisé en
quatre tranches de longueurs pareilles. La premiere et la troisieme tranche sont sans attaque.
La deuxieme tranche consiste dans la premiere attaque et la quatrieme tranche consiste dans la
deuxieme attaque. Il y a trois scénarios a deux attaques qui en résultent: Déflation - Inflation-
lente; Oscillation - Inflation; Dégroupage de réseau - Oscillation.

o Les scénarios de séquences d’attaques: A 1'aide d’une chaine Markov (voir figure 6.1), nous
élaborons vingt différents scénarios de séquences d’attaques, mais pour simplifier 'analyse nous
nous concentrons sur les scénarios les plus importants (le temps d’exécution consiste en 200
itérations):

— Séquence A: pas d’attaques pendant 15 itérations; attaques a I'inflation pendant 15 itérations;
attaques a dégroupage de réseau pendant 55 itérations; attaques a déflation pendant 35
itérations; attaques a I'inflation pendant 80 itérations. [térations totales sans attaques: 15.

— Séquence B: pas d’attaques pendant 10 itérations; attaques a I'inflation pendant 55 itérations;
attaques a l’oscillation pendant 50 itérations; attaques a I'inflation-lente pendant 55 itérations;
attaques a dégroupage de réseau pendant 30 itérations. [térations totales sans attaques:
10.

— Séquence C': pas d’attaques pendant 30 itérations; attaques a dégroupage de réseau pendant
35 itérations; attaques a 'inflation-lente pendant 35 itérations; pas d’attaques pendant 15
itérations; attaques a 'inflation-lente; attaques a I'inflation pendant 45 itérations. Itérations
totales sans attaques: 45.

— Séquence D: pas d’attaques pendant 40 itérations; attaques a I'inflation pendant 30 itérations;
attaques a ’oscillation pendant 40 itérations; attaques a dégroupage de réseau pendant 40
itérations; attaques a l'inflation-lente pendant 35 itérations; pas d’attaques pendant 15
itérations. Itérations totales sans attaques: 55.

— Séquence E: pas d’attaques pendant 50 itérations; attaques a 'inflation pendant 10 itérations;
pas d’attaques pendant 50 itérations; attaques a I’oscillation pendant 65 itérations; attaques
a linflation pendant 25 itérations. [térations totales sans attaques: 100.

— Séquence F': pas d’attaques pendant 55 itérations; attaques a dégroupage de réseau pendant
40 itérations; pas d’attaques pendant 15 itérations; attaques a l’'inflation-lente pendant 45
itérations; attaques a I'inflation pendant 15 itérations; pas d’attaques pendant 30 itérations.
Itérations totales sans attaques: 100.

L’apprentissage automatique et 1’ensemble de métriques.

L’apprentissage automatique provenant de 'intelligence artificielle est utilisé pour apprendre des in-
formations des données & une machine pour que cette machine puisse reconnaitre des structures ou des
regles concernant les données. Dans ce travail, nous utilisons ’apprentissage supervisé, car nous pou-
vons facilement obtenir des données nommées. Ces données nommeées prédisent quel type de données
une ligne spécifique fait partie. Dans notre cas, il y a deux classes, soit une attaque ou non-attaque.
Nous analysons trois différentes méthodes de 'apprentissage supervisé : L’arbre de classification et
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régression (CART), larbre de décision C4.5, et les machines & vecteur de support (SVM). Les deux
méthodes CART et C4.5 sont des arbres de décisions ou des décisions sur les données sont prises
par rapport a des regles créées soit analogues (CART) soit a base des entropies d’information. Les
machines a vecteur de support sont utilisées pour représenter les données d’entrée dans un espace
a d’autres dimensions. L’objectif est de rendre les données d’entrée séparables de maniere linéaire.
L’ensemble de métrique:

Le défi de ce travail est de définir ’ensemble de métrique, car cet ensemble doit étre capable a
détecter toutes les différentes attaques. Pour cette raison nous avons élaboré un ensemble qui prend
en compte les relations temporelles entres les données consécutives. Nous avons trouvé qu’il existe
une temporisation de quatre unités. Notre ensemble de métrique est alors comme suit:

1. Feature A est erreur local médian e,,edian.-
2. Feature B est 61 = emedian;- €median;_1 -

3. Feature C est 02 = €median;- €median,_o-

-

Feature D est 63 = emedian;- €median;_s-
5. Feature E est 64= €median,~ €median,_4-
6. Feature F est d1,- 01, .

7. Feature G est | 01,- 61,_, |-

Expérimentations

Nous évaluons les différentes stratégies d’attaques pour l'algorithme de Vivaldi dans deux environ-
nements différents. Premierement, on considere le simulator p2psim en utilisant la topologie King,
c.-a-d. nous avons 1740 nceuds. Deuxiemement, on considere le réseau PlanetLab avec 500 nceuds.
Nous avons deux installations différentes pour notre méthode de détection : une installation globale et
une installation locale. Pour I'installation globale, les informations de tous les noeuds sont enregistrées
centralement et analysées ensemble. Par contre, pour 'installation locale, tous les nceuds décident
d’une maniere individuelle s’il y a une attaque ou non.

Pour l’installation globale on calcule 'ensemble des métriques & base de la valeur médiane de
I’erreur locale des noeuds. Pourtant pour l'installation locale on prend l’erreur locale seulement des
neceuds individuels. Nous utilisons les sources de weka pour en créer les classificateurs. Nous évaluons
les résultats en calculant le pourcentage d’attaques qui sont classifiées correctement: les vrais positifs.
Nous calculons aussi le pourcentage des itérations non-attaques qui sont classifiées comme attaque:
faux positifs. Les résultats sont montrés dans le chapitre 6.5.

Pour les stratégies d’attaques seules et pour les scénarios a deux séquences dans l’'installation
globale on recoit de trés bons résultats pour les deux arbres de décisions, on a des vrais positifs 99%
et des faux positifs d’environ 3%. On recoit & peu pres les mémes résultats si on augmente le taux
des noeuds malveillants. Pourtant, les machines a vecteur de support montrent de tres grandes faux
positifs (60%).

Pour les scénarios de séquences d’attaques les résultats divergent beaucoup et dépendent du taux
d’itérations totales sans attaques. Si le taux est petit, surtout les faux positives sont larges. On déduit



1.4. CONCLUSION ET TRAVAUX FUTURS 23

de ces résultats, qu’on a besoin au moins d’un taux de 25% d’itérations totales sans attaques pour
qu’on puisse créer des arbres de décisions assez hétérogenes. S’il n’y a pas assez de lignes de données
sans attaques le classificateur ne peut pas apprendre comment différencier ces lignes.

Pour étre capable de comparer notre méthode avec les mécanismes de détecter des valeurs aber-
rantes nous examinons l'installation locale. On trouve que notre méthode fonctionne mieux que la
détection des valeurs aberrantes.

Intégration dans le systéme réel

Pour les expérimentations démontrées auparavant, nous avons utilisé la classification d’une maniere
déconnectée, pourtant c’est important d’étre capable de détecter les attaques en temps réel. Comme
la classification est supervisée, nous entrainons notre algorithme d’une maniére déconnectée. En
intégrant 'arbre de décision dans le systeme réel nous pouvons détecter les attaques en temps réel.
Les résultats pour l'intégration dans le systeme réel sont décrits dans le Chapitre 6.6.

Pour améliorer I'intégration locale, nous modifions la maniére pour calculer ’ensemble métrique
localement. Nous remarquons qu’utiliser seulement l'erreur locale du nceud lui-méme ne donne pas
des résultats satisfaisants, c¢’est pourquoi nous élaborons que tous les nceuds calculent ’ensemble de
métriques a base des erreurs locales des nceuds avoisinés. Avec cette méthode, les résultats de la
détection en temps réel sont beaucoup mieux. La performance de la détection en temps réel est aussi
bien que la classification déconnectée.

1.4 Conclusion et travaux futurs

Dans cette these, nous avons deux contributions principales. La premiere contribution considere la
théorie des jeux pour analyser systématiquement les stratégies d’attaques et de défenses. Nous avons
étudié les interactions stratégiques des deux joueurs. Nous avons élaboré deux différents jeux, le
premier pour analyser les stratégies de défenses simples et le deuxieme pour vérifier les stratégies de
défenses avancées. Pour les défenses avancées nous avons considéré un systeme a régulation automa-
tique pour avoir une sélection adaptive du seuil.

La deuxieme contribution est I’élaboration d’une nouvelle méthode qui détecte toutes les attaques
contre les systeémes aux coordonnées virtuelles. De plus, nous avons créé des nouvelles stratégies
d’attaques plus complexes. Dans ces stratégies d’attaques complexes, nous avons conceptualisé des
scénarios a deux attaques ainsi que des scénarios de séquence d’attaques. Pour notre nouvelle méthode
de détection nous avons utilisé des algorithmes d’apprentissage supervisé. Nous avons trouvé que les
machines a vecteur de support, malgré leur réputation d’avoir une meilleure performance que les
arbres de décision, réalisent tout de méme une bien plus mauvaise performance pour les systémes aux
coordonnées virtuelles.

Comme travaux futurs, nous utiliserons différents modeles de jeux pour analyser les stratégies
d’attaques et de défenses plus profondément. Jusque la nous avons utilisé un jeu statique, mais il existe
des jeux plus complexes, comme les jeux répétitifs, ou nous pourrions modéliser plusieurs interactions
entre l'attaquant et le défenseur. Une autre approche serait d’appliquer un modele d’apprentissage
par renforcement. Les fonctions de gains seront alors plus complexes et nous pourrions évaluer un jeu
plus réaliste.
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En outre, nous avons utilisé des méthodes d’apprentissage supervisées, mais ces méthodes ont un
grand inconvénient, elles requierent des données nommées, dont on est souvent difficilement garanti
d’en avoir. Surtout dans les systemes réels, il est difficile d’obtenir de telles données, comme on
ne peut pas toujours savoir si une attaque est présente dans le jeu de données. Pour cette raison
nous investiguerons des méthodes non-supervisées, cependant en sachant que ces méthodes souffrent
souvent d’un manque de précision.

En plus d’améliorer nos méthodes existantes, nous adapterons nos méthodes pour d’autres systemes
qui sont similaires aux systemes des coordonnées virtuelles. Les systémes aux coordonnées virtuelles
utilisent la latence pour créer des mesures et il existe d’autres systémes qui utilisent aussi la latence
pour des aspects différents. Le protocole pour synchroniser le temps sur les ordinateurs (NTP) utilise
la latence pour choisir le meilleur serveur de référence. Nous investiguerons si les attaques contre
les systemes aux coordonnées virtuelles peuvent aussi affecter ce protocole et nous chercherons des
méthodes pour prévenir le systeme de telles attaques.



Chapter 2

Introduction

It is not new that the Internet traffic is fastly growing. Following Visual Networking Index by Cisco
for Forecast and Methodology [81], the global IP traffic increased eightfold during the last five years
and they forecast that it will grow fourfold until 2015. A big amount of the Internet traffic is due to
peer-to-peer (P2P) applications that have the goal to share distributed applications. P2P applications
are used to create shared collaborative spaces or to share audio, video, or data content. A participating
computer is called a node or a peer. Nodes in P2P applications provide resources for sharing and so the
workload can be partitioned between the participating peers. When more nodes join a P2P network,
the demand of resources is increasing but also the amount of available resources increases. Well
known P2P applications exist in different fields, for instance BitTorrent [29] as a content distribution
application, Skype [7] for voice-over-IP applications, or Chainsaw [78] for video broadcasting. The
2007 internet study of the IPoque team [52] showed that P2P traffic made almost 70% of the overall
traffic in 2007 in Germany [89]. Although, the proportion of P2P traffic is decreasing in relation to the
overall protocol distribution it still produces the most Internet traffic (Figure 2.1). Following [90] this
decreasing phenomenon does not mean that there is less P2P traffic, it only means that P2P traffic is
not growing as fast as other traffic.

S. Africa
S. America
E. Europe
Germany

S. Europe
Middle East

N. Africa
Sw. Europe

0% 25% 50% 75% 100%
Il P2 Il Web I Sireaming [ VolP B IM [ Tunnel
Standard [l Gaming Unknown

Figure 2.1: Protocol distribution out of the Internet Study 2008,/2009 [90].
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With the growth of networks, the performance becomes more and more important. In order to
increase the efficiency of P2P networks, applications started to make use of location awareness so that
nodes do not need to choose blindly from where to download from or with whom to communicate.
Therefore, virtual coordinates systems have been developed as an overlay network that implements
location awareness. In these systems, nodes obtain coordinates in a virtual space based on the relation
of the latencies between them and neighbor-nodes. This way, a node’s close neighbor-nodes have a
low latency while nodes that are further away have higher latencies. The increased efficiency lies in
the fact that a node will focus first on the physically close nodes to download data and with having a
low latency, a node faster receives the network packets.

B Political/ideclogical
B Nihilism/vandalism

Online gaming

Il Criminals demonstrating capabilities

B Social networking
Misconfiguration/accidental

B Unknown

% Inter-personal/inter-group rivalries

Competitive

Survey Respondents

7% Criminal extortion attempts

Figure 2.2: Attack motivations considered common or very common. Source: Arbor Networks, Secu-
rity Report 2011 [73].

Unfortunately, security reports [72] show that attacks in the Internet become more frequent and
that attackers increase their efforts. Furthermore, the motivation behind attacks is mostly the desire
to vandalize after political or ideological attack motivations [73], as illustrated in Figure 2.2. Attackers
with a motivation to vandalize those virtual coordinate systems, can degrade vastly the performance
and accuracy of such systems. In virtual coordinate systems nodes have to report their location and
the round-trip-times (RTT) towards neighbors in order to leverage a location awareness. Attackers
can lie about their location and their RT'T and consequently, the virtual coordinate system is not able
to implement the correct and accurate location awareness. This can lead to a worse performance than
using a P2P file sharing application without location awareness. Even though, this topic has been
treated in research, open issues still remain and new attacks are elaborated. In this thesis, we address
these issues and propose a new way for facing attacks in virtual coordinate systems.

2.1 Context and Motivation

The beginning on building virtual coordinate systems focussed on creating accurate predictions of
latencies between nodes in order to implement a location awareness. The algorithms provided consider
that nodes will cooperate and that the nodes are all benign with respect to reporting their latencies
and coordinates. Nevertheless, soon after those different algorithms the first attacks were elaborated
that could harm a correct implementation of the location awareness. Following, different mechanisms
for detecting and mitigating the attacks have been proposed. Although, the validation of the defense
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mechanisms are always made through experiments. Therefore, we systematically study attack and
defense techniques by developing a game theoretical model. This game model relies on well-known
equilibrium concepts in order to assess the strategic interactions between the attacks and defenses.
Game theory provides powerful tools that allow us to model an advanced adversary who knows how
and what defense strategies are used and can adjust his attack strategies accordingly. This framework
then allows us to draw out conclusions such as understanding what are the strengths and weaknesses
of both defenses and attacks.

Furthermore, recent research [22, 23| identified new, more subtle and yet highly effective attacks
that are able to bypass such existing defense mechanisms. During these attacks, malicious nodes
lie about their coordinates only by small amounts and over time pushes benign nodes continuously
move from their correct positions. Threshold-based defense mechanisms are vulnerable to these subtle
attacks as they remain under the radar. No solutions to these attacks have been proposed to the best
of our knowledge. We use supervised machine learning techniques to detect those subtle attacks and
still being able to detect the the simple attacks as well. We provide a definition of an effective feature
set that is able to identify even slow attacks as it considers a temporal correlation of the data set.

2.2 Contributions and Thesis Roadmap

This thesis is divided in three major parts, the structure and the contributions look as follows:

e In Part I, we give an overview of the state of the art related to our research area. So, we inves-
tigate the state of the art of virtual coordinate systems in Chapter 3. We investigate landmark-
based systems that rely on infrastructure components for implementing a location awareness
as well as completely decentralized virtual coordinate systems. After giving an overview of the
different available algorithms, we explain in detail the decentralized algorithm Vivaldi [32] on
which the contributions of this thesis are based on. Furthermore, we explore existing attacks and
defense mechanisms against virtual coordinate systems, specifically against Vivaldi in Chapter 4.
We point out the weaknesses of the existing defense mechanisms and explain why subtle attacks
cannot be detected by those mechanisms.

e The contributions are described in Part II. We define the game theoretical framework for defining
the optimal defense mechanisms and attack strategies in Chapter 5. We consider a Byzantine
adversary that controls a percentage of the nodes in the system and conducts three different
types of attacks: inflation, deflation, and oscillation. These three attacks correspond to when
a node reports large coordinates far away from the origin, small coordinates near the origin,
and randomly chosen coordinates, respectively. We consider defense strategies based on outlier
detection since they have been shown to provide good results under the assumption the attacker
does not know the defense strategy [111]. Specifically, we assume the defender attempts to
mitigate the attacks using three defense techniques based on outlier detection: spatial, temporal,
and spatial-temporal. The defense techniques also use realistic system design assumptions that
make them easily integrated into current virtual coordinate systems, i.e., they do not rely on
the triangle equality [30], do not require extra node sets and network communication [94, 95],
and do not require trusted parties [54, 88].

A critical component of an outlier detection mechanism is the threshold that is used to decide
if a data point is accepted by the system or is suspected of coming from a malicious node.
Many outlier detection schemes use a fixed threshold, usually determined experimentally. Such
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an approach is inflexible, prone to errors, and may be exploited by an adversary to remain
undetected. We leverage control theory to design an adaptive threshold technique to improve
the threshold selection and include outlier detection mechanisms based on adaptive thresholds
in our study. Our contributions include:

— We model rational attackers in virtual coordinate systems using the Nash equilibrium and
irrational attackers using the quantal response equilibrium. From the defender side, we use
game theory to tune our defensive mechanisms in order to mitigate the attacks.

— Using our framework, we determined that for large networks (i.e., the King topology), the
inflation attack has the greatest impact on the system. To defend the system, we find that
spatial-temporal outlier detection is the most effective technique given lower spatial outlier
thresholds (e.g., < 1.5) and both spatial-temporal and spatial outlier detection provide
similar defense performance for higher thresholds. Furthermore, our analysis finds that,
independent of the game strategy or the error metric selected, a spatial outlier threshold
of 1.25 results in the best system performance, which is smaller than the value found in
previous work.

— We found that the resulting strategy profiles for smaller networks (i.e., the AMP topology)
are not as homogeneous as those for the larger King topology, with most of the resulting
strategy profiles consisting of a mixed strategy. For example, given the spatial outlier
threshold of 1.75, the attacker has the greatest payoff while applying all three attacks with
their given probabilities using only 10% malicious nodes. The countermeasure profile looks
similar, applying each of the three defense techniques. Both the percentage of malicious
nodes necessary to efficiently create the greatest negative impact and the attack and defense
profiles have not previously been systematically explored.

— We found that when comparing strategies using a fixed threshold with strategies using
an adaptive threshold selection for the outlier detection, the adaptive threshold is more
effective in defending against attacks than a fixed threshold. Our analysis shows that when
an attacker has as goal disturbing the network as much as possible, using inflation with
30% attackers is the best attack strategy. If the attacker wants to remain also undetected
then oscillation and deflation attacks with 10% attackers are the best rational choice. We
found that the best parameters for the adaptive threshold is to use the 75" percentile of
the prediction error and with a value for the constant ¢ of 0.08 to update the threshold,
where c¢ is a system parameter that captures the importance given to the prediction error
when updating the threshold.

Furthermore, we define a new detection method using supervised classification in order to de-
tect the more subtle frog-boiling and network-partition attacks in Chapter 6. We consider the
detection of all existing attacks against decentralized virtual coordinate systems by leveraging
supervised machine learning methods: decision trees and support vector machines. Our ap-
proach is able to detect and mitigate all known attacks used in both single attack strategies
where individual attacks (frog-boiling, network-partition, oscillation, inflation and deflation) are
launched by an attacker and more complex attack strategies, where successive attack phases are
intermixed without assuming any fixed order in the attack sequence. Our contributions are as
follows:

— We propose a practical method to counter the frog-boiling and network-partition attacks, or
any complex attack strategy in which several individual attacks are launched by a powerful
adversary. For example, the latter can combine several single attacks following a Markov
chain model.
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— We develop a feature set, based on a node’s local information, for embedding it into a
multidimensional manifold in order to reveal attacks. This process has resulted in seven
feature variables that prove to be the most relevant for the prediction and classification
task.

— We provide a quantitative analysis of supervised machine learning methods, i.e., decision
trees and support vector machines, for detecting all known attacks in an offline analysis
scenario. We evaluate our techniques using the Vivaldi [32] virtual coordinate system
through simulations using the King data set and real deployments on PlanetLab. Among
the two different machine learning techniques, decision trees and support vector machines,
decision trees are able to mitigate all known attacks, outperforming support vector machines
by achieving a much lower false positive rate. Our approach works both in a global manner,
where all nodes actively exchange local information and a collective decision is taken, as well
as in an individual manner, where each node locally decides whether an attack is occurring
or not. The results for simulations using the King data set and for real deployments on
PlanetLab both demonstrate that our approach identifies the different attacks with a ~ 95%
true positive rate.

— We validate our method by analyzing the performance of online detection. We integrate
decision trees into the Vivaldi VCS in order to detect attacks in real-time. We analyze
the effectiveness of the real-time detection in both a global manner, where a collective
decision is taken, as well as in a local manner, where each node decides by itself if an
attack is occuring or not. In order to improve the local real-time detection, we design a
new way for a node to decide if an attack is occurring. This is accomplished by taking into
account not only a node’s local information but also the information already being collected
through its interaction with those in its neighbor set. The real-time detection validates the
performance we achieved during offline classification with a ~ 95% true positive rate for
the global manner, and a ~ 90% true positive rate for the improved local manner.

e Finally, we conclude this work in Part I1I, where conclusions and future perspectives are discussed
in Chapter 7. We discuss limitations of our approaches and how to overcome these. We explore
how to enlarge the proposed methods and how these methods could be deployed in a different
context or protocol.
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Chapter 3

Virtual Coordinate Systems

Scalability is an important aspect when designing networks, as todays networks need to be operable
with a large amount of components or users. Therefore, the traditional client-server (see Figure 3.1(a))
architecture becomes less applicable and more often replaced by peer-to-peer architectures. Peer-to-
peer (P2P) is a distributed application architecture where many nodes are interconnected as shown
in Figure 3.1(b) and all the nodes (a.k.a peers) act as server and client simultaneously in order to
share the workload among themselfs. All the peers have the same responsibilities, there are mostly no
hierarchical 'higher’ peers. This architecture avoids the single point of failure (like the server in the
client-server architecture), as files are transferred directly between the peers.

)

o

_ Client P ,
(a) Client-Server Architecture (b) Peer-to-Peer Architecture

Figure 3.1: Network Architectures

P2P architectures have become famous due to file sharing services (Kazaa, BitTorrent, etc.). Of
course, many different sharing architectures have been proposed with the goal to distribute and locate
desired files. The most common approach is the usage of distributed hash tables (DHT) [84, 98].
DHTs provide a structured routing algorithm for the file lookup. DHTSs store key-value pairs in a
distributed manner. Chord [98] is a distributed lookup protocol that maps a key onto a node. A
key can then be related with a file, the key and that file are stored on the mapped node. Each node
maintains a routing table (a.k.a finger table) in order to locate the node that is mapped with a given
key.

It is common, that files are stored on many replication servers in order to ensure availability of
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Figure 3.2: Chord: Finger tables and key locations for a network with nodes: 0,1,3 and keys: 1,2,6 [98]

the files. As there are many replicas available a peer has to choose from which replication server to
download. The efficiency of those file-sharing systems can be improved by connecting to a node to
whom the latency is shorter and the bandwidth is larger rather than connecting to a node with higher
latency and smaller bandwidth. In other words, one can use these features of network information
to take advantage of network locality, where based on latencies or available bandwidth an overlay
network topology is created. However, active measuring the network latencies generates high costs
and the related overhead can outmatch the achieved gain.

Therefore, virtual coordinate systems have been proposed with the key idea to represent the
network in a geometric space. Every node is associated with a position in that space and the distances
to its neighbors are in relation with the latency between the nodes. The major contribution of virtual
coordinate systems is that a node does not need to undertake additional measurements for calculating
the distances to other nodes. Network overhead is avoided by sending information of the node position
within the normal messages. The virtual coordinate system builds a location-aware overlay network.

Overall, there are two different families for the location-aware overlay networks. There are overlay
networks that need to use some kind of landmark, infrastructure components, to be able to provide
location-awareness, these are called landmark-based systems. The other type of coordinate systems
usually work in a complete decentralized way and do not have the need for any landmark infrastructure
for its service. These are called decentralized Virtual Coordinate Systems.

The virtual coordinate systems could be based, as already mentioned, on two different network-
variables, either the latencies or available bandwidth. However, as those overlay networks want to
avoid additional message overhead for constructing the coordinate system, all the coordinate systems
presented in this work use the latency as factor for the coordinate system creation. The latency,
which is often considered as the round-trip-time (RTT) between nodes, is contained in normal network
messages (e.g. ICMP ping messages).

In Section 3.1, we give an overview of the landmark-based Systems. In Section 3.2, we explore the
decentralized Virtual Coordinate Systems and we explain Vivaldi, the decentralized virtual coordinate
system in more detail in Section 3.3 as we focus our work on this system.
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3.1 Landmark-based Systems

Landmark-based systems rely on infrastructure components (such as a set of landmark servers) to
predict distances between any two hosts. In [75], Ng and Zhang propose a Global Network Positioning
(GNP) mechanism. In this network, the nodes obtain absolute coordinates. This is done in two
steps, the first step is that a predetermined set of landmark-nodes compute their own coordinates
in a chosen geometric space. In a D-dimensional space, at least D+1 landmarks are needed. The
landmarks calculate their inter-landmark Round-Trip-Times (RTT) using ping messages and take for
each path the minimum of several measurements. During the second step, ordinary hosts calculate
their own coordinates based on the coordinates of the landmarks and the RTTs to the landmarks.
Again, the minimum RTT of several measurements are considered. Similar to this method, IDES [68]
calculates the coordinates of the landmarks, but here the landmarks report the distances to a central
server. The authors of [75] provide an accuracy evaluation that shows, that GNP has a very low
relative error. The good accuracy is confirmed by other approaches that compare their accuracy to
this one.

In NPS [76], Ng and Zhang extend the GNP framework by adding a third type of nodes in their
system; the membership servers. This addition to the original algorithm is done in order to avoid that
landmark-nodes become bottlenecks. The membership servers store system configuration parameters
and maintain information about nodes. Furthermore, the membership servers are used to define
reference nodes out of ordinary hosts. Those reference nodes can then be used, besides the existing
landmarks, for new nodes to base their coordinates-computation on them. The membership servers
select randomly among all available nodes that have finished their position calculation for reference
nodes.

Tang et al. [99] propose a faster embedding of network distances for these architectures by employ-
ing the Lipschitz embedding [18]. This goes with the assumption that two close nodes have similar
distances to other nodes. In contrast to using absolute coordinates, IDMaps [40] uses Tracers to cal-
culated the original distance between them and Address Prefixes in order to establish a coordinate
system.

All those proposed architectures have the need of pre-defined landmark nodes, however in Light-
houses [80], the authors propose a new way of using landmarks without the need for these nodes to
be predefined, but randomly selected. Furthermore, the bottleneck limitations of using landmarks is
addressed by using several landmark sets instead of one common landmark set in [80] and [64].

In order to minimize the differences between the measured RTTs and the estimated RTTs, [75,
76, 80] apply the Simplex Downhill method [71], whereas, [68] use Singular Value Decomposition and
Non-Negative Matrix Factorization [60]. The Singular Value Decomposition is also used by [64]. [64]
and [99] apply both Principle Component Analysis (PCA) [53] for measuring distances.

Treeple [23], while not strictly coordinate based, provides secure latency estimation, using land-
marks as vantage points for providing traceroutes on the Internet. In Treeple, landmarks perform
traceroute measurements to peers, which the landmarks can then digitally sign and provide for nodes
to compute the network distance themselves. In order to be secure, the authors of Treeple make the
strong assumption that no routers can be affected by an attacker only end-hosts can.

All those proposed methods rely on infrastructure components to act as landmark-nodes. These
landmarks represent a single-point of failure issue. FEven if this issue is faced in a few approaches
[64, 76, 80], the usage of landmarks limits the scalability of those approaches. To overcome these
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issues, decentralized methods have been proposed and are elaborated in the following Section.

3.2 Decentralized Virtual Coordinate Systems

Decentralized virtual coordinate systems, i.e. PIC [30], Vivaldi [32], and PCoord [62, 63], are designed
to efficiently create and maintain a stable set of coordinates that accurately predict the latency between
nodes without the need for fixed infrastructure nodes, and without any additional message overhead.

All three approaches use some kind of reference set, on which a node calculates the distances to.
The idea of the decentralized virtual coordinate systems is that there is no need to learn the distances
between all arbitrary nodes, but only between a few selected nodes, the reference set. A node has to
select the reference set prior or after joining the system. This selection can happen in different ways.
A node can just randomly select other nodes or can consider topology information for this process.
PIC [30] shows that choosing half of the reference set to be physical close nodes and the remaining half
random nodes, is the most efficient approach for selecting the reference set. Following this, Vivaldi [32]
chooses the reference set the same way. In PIC this reference set is used for bootstrapping, whereas
in Vivaldi all the nodes start at the origin.

PCoord [62] defines three different ways of joining the coordinate system. The first and second
approaches handle the way reference sets are chosen prior the node joins the system. The first approach
is to solely select random nodes. The second approach takes topology information and divides the
nodes in clusters relative to the topology information, and a node has to choose among the clusters
randomly. In the third approach to join the system, a node undergoes an iterative process without the
need of a reference set beforehand, but joins at the origin. After the node joined the system, it will
choose a reference set based on triangle distances at each iteration to compute distances and refine its
own coordinates. The three approaches do also differ considering the amount of nodes in the reference
set; PIC uses 32 nodes, Vivaldi uses 64 nodes, and PCoord refers to 10 nodes.

Besides the reference set, another characteristic is important and differently chosen for the three
approaches, namely the latency prediction method. Vivaldi, PIC and PCoord use Euclidean spaces,
but also Hyperbolic spaces have been treated [65, 93] but have been shown not to outperform the
Euclidean spaces [65].

Once a node has joined the system, it keeps updating its coordinates in order to adapt to network
changes and to minimize the difference between the actual measured RTT and the estimated RTT.
This minimization is handled divergently, so PIC and PCoord use the Simplex Downhill method [71].
Vivaldi minimizes the squared error of prediction. All three approaches [30, 32, 62] evaluate the
accuracy of their approaches by comparing the outcome with the accuracy of GNP [75] and state that
their accuracies are as good as the accuracy of GNP. Donnet et al [36] state that Vivaldi is probably
the most successful coordinate system, as it does not require any fixed network infrastructures and it
does not differentiate between the hosts. In Section 3.3, we explore the algorithm of Vivaldi in detail.

Accuracy is being improved in Pharos [27], where a node will not only receive one set of coordinates,
but a few according to how many distance ranges one wants to address. One set of coordinates positions
the node at a global scale, while the others position the node at a smaller distance scale. One can
see this approach as an improvement to Vivaldi, as they use the Vivaldi algorithm for all the clusters.
Furthermore, accuracy is also addressed in Phoenix [26]. The authors propose an enhanced and
decentralized version of landmark-based IDES [68] by removing some of its flaws.
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3.3 Vivaldi

We selected the representative virtual coordinate system, Vivaldi, since it is a mature system, con-
ceptually easy to understand and visualize, and has been shown to produce low error embeddings and
offers a good tradeoff between performance and overhead [32, 65].
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Figure 3.3: Vivaldi assigns each node synthetic coordinates

Vivaldi assigns each node synthetic coordinates (illustrated in Figure 3.3) in a multi-dimensional
Euclidean coordinate space. The coordinates are assigned so that the distance between two nodes
predicts the round-trip-time (RTT) between the two hosts. In order to accurately predict the RTT,
Vivaldi proposes to minimize the error of prediction Errorycq.

Errorpreq = |RTTAct — RTTEq|

where RTT s is the measured RTT between two nodes and RTTgg is the RTT computed using
the coordinates derived by the virtual coordinate system. Intuitively, the lower the system prediction
error, the more accurate are the predicted RTTs.

Vivaldi describes a spring relaxation problem in which each pair of neighbor nodes is attached
by a spring and the current length of the spring is the estimated RTT between the nodes. Tension
on the logical springs causes the nodes to move through the coordinate space as each node attempts
to minimize the difference between current spring lengths (RTTgs) and the spring lengths at rest
(RTTAct). By minimizing the tension across all of the springs in the network, the protocol minimizes
the error for the system. Thus as with real springs, if a spring is compressed it applies a force that
pushes the nodes apart and if the spring is extended the spring pulls them together. Over time, the
tension across all springs is minimized, and the position of each node produces the resulting coordinate.

Specifically, the Vivaldi protocol works as follows. Initially, each node ¢ is assigned a random
coordinate and establishes a reference set of peer nodes with which to exchange periodic updates. As
nodes communicate with their reference set peers, they receive latency information that is used to
update their coordinates. Algorithm 1 shows how a node i updates its coordinate x; and error e; as a
result of minimizing the tension of the spring with remote node j. Node ¢ updates its own coordinate
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Algorithm 1: Vivaldi Coordinate Update

Input: Remote node observation tuple ((x;, e;, RTT;j))
Result: Updated local node coordinate and error (z;, e;)
w=¢e;/(e; +¢j)
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and error based on the tuple consisting of the remote node’s coordinate x;, the remote node’s relative
error with respect to its coordinate, e; (both directly reported by node j), and the latency from node
i to node j, RTT;; (measured by node ). First, the algorithm calculates the observation confidence
w (line 1) and relative error e, (line 2). The relative error es expresses the accuracy of the coordinate
in comparison to the measured network latency. Next, node i updates its local error (line 4) using
an exponentially-weighted moving average with the weight « (line 3). Finally, the node calculates the
movement dampening factor (line 5) and updates its coordinate (line 6). Both ¢, and ¢, are constants
acting as system parameters.

As the nodes update their coordinates and the system stabilizes, the average system error is on the
order of a few percent. Once the coordinate system has stabilized, the latency (i.e., RTT) between
two nodes is trivially estimated by computing the Euclidean distance between their coordinates.
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Figure 3.4: BitTorrent improves performance when configured to use Vivaldi, 315 nodes; attacks
disrupt the performance (10% malicious) - PlanetLab

To show how the performance can be improved, we evaluated the file-sharing BitTorrent system [29]
in a real-life PlanetLab [28] deployment of 315 nodes, We compare three scenarios in Fig. 3.4: No
Vivaldi, the scenario where the BitTorrent tracker does not use virtual coordinates, but simply
chooses nodes at random; Vivaldi - No Attack, the scenario where the tracker is coordinate-aware,
i.e. when a client requests other peers to download from, the tracker will respond with a selection of
nodes that are near the coordinate of the requesting node; Vivaldi - Oscillation, the scenario where
the coordinates used by BitTorrent are impacted by an oscillation attack against Vivaldi, attacks
against Vivaldi are explained in detail in Section 4.1. In our implementation, malicious nodes report
randomly chosen coordinates and increase the RTT by delaying probes for up to 1 second. As can be
seen in Fig. 3.4, when the tracker is aware of coordinates, the download times decreases by 50% for
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some nodes. However, when under attack, much of the gains brought on by the coordinates are lost,
and for over 25% of nodes, the download times actually increase over the scenario when no virtual
coordinates are used to optimize peer selection.

3.4 VCS Real Deployment

Virtual Coordinate Systems have been considered for real deployement, so Pyxida [82] offers an open
source library and application that applies the virtual coordinates as proposed in Vivaldi [32]. One
can either use Pyxida as a standalone version or on can use the Pyxida library. It provides following
functionalities:

e Latency estimation between hosts.
e Closest rout to a host.

e Standalone application constructing a virtual coordinate system according to Vivaldi.

Pyxida is implemented within the Azureus (now called Vuze) [5] BitTorrent Client and enables
to efficiently choose among potential data-providers. It is also used by PlanetLab [28], the global
research network, in order to keep track of the coordinates of its machines.

In [59], the creators of Pyxida analyze the Pyxida integration in Azureus in large-scale and in-
troduce a new way for managing the neighbor set in order to improve accuracy of the real deployed
system. Furthermore, [97] provide an evaluation of the Vivaldi system in the real deployement in
Azureus. Steiner et al. show that Azureus does well for predicting the RTT between hosts.

3.5 Overview VCS

This Chapter showed how Virtual Coordinate Systems can improve P2P architectures in order to be
more effective in choosing neighbor peers in terms of latency between the peers. This chapter showed
the different approaches how this coordinate systems can be elaborated either by having a landmark-
based system or a decentralized system. An overview of the different approaches elaborated over the
years is shown in Table 3.1.
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Chapter 4

Attacks and Defenses on Virtual
Coordinate Systems

In virtual coordinate systems, the well functioning is based on the assumption that the nodes are
honest and do report correct coordinates and latencies. The well functioning of a system is described
by good accuracy and stability. However, dishonest hosts can degrade those features with different
goals. A malicious node can, by lying about its coordinates and latencies, isolate a group of nodes that
rely on the updates of that malicious node. Furthermore, malicious nodes also can lead to instability
in the system, so that the latency estimations are completely disordered and result in important
performance decrease.

Landmark based systems can be protected against such malicious behavior, by securing the set
of landmark-nodes. However, this is not feasible in a decentralized system as any node can act as a
reference node and one can not guarantee that no infiltration of malicious users can happen.

We focus in this work on the virtual coordinate system Vivaldi as it is the most widespread system
and because it produces low errors. Therefore, we do not reference attacks or defenses specifically
related to other virtual coordinate systems. However, one can consider that attacks and defenses
for Vivaldi might also be applicable on other virtual coordinate systems. There exists also work on
securing other virtual coordinate systems, for instance PIC [30] provides a basic approach to avoid
lying nodes based on the assumption that a node who is forging its coordinates, probably violates the
triangle inequality.

The remainder of this chapter looks as follows: In Section 4.1, we describe the existing attacks
against the decentralized virtual coordinate system Vivaldi. We explore existing defense mechanisms
in Section 4.2 against those attacks.

4.1 Attacks

The attacks proposed in [22, 55, 56, 111] consider network intruders that can perform insider attacks
and falsify the coordinates and latency reports. Kaafar et al. [55, 56] identify attacks, where an
attacker can isolate a node, by reporting to him high coordinates with a low error. Furthermore,
Zage et al. [110, 111] identify more concrete attacks in relation with how the attacker is lying about
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its coordinates and latencies, namely the inflation attack, deflation attack and oscillation attack,
explained in the following paragraphs. Besides these three attacks, Chan-Tin et al. [22] propose two
more subtle attacks, the frog-boiling attack and the network-partition attack. These two attacks are
deviations of the inflation attack and are also explained in the following paragraphs. For these insider
attacks, we consider that a malicious user can infiltrate several participating nodes in the system and
manipulate their behavior.

Inflation Attack

Within the coordinate inflation attack [110, 111], an attacker can push away a victim node from its
correct coordinates. To achieve this, an attacker can pull it closer or push towards a location defined
by the attacker. To pull the victim node towards a location, an attacker reports a low error and a
small RTT, smaller than the estimated RTT. To push a victim node towards a location, the attacker
reports coordinates close to the victim’s coordinates, but with a high RTT, so that the victim node
moves away from the reported coordinates. The larger the RTT, the larger the victim node will move
away from its correct coordinates. We can see the impact of the inflation attack on the coordinates
of the nodes in the system in Figure 4.1(b) when compared to the system in a benign environment
4.1(a), the nodes are pushed far from their correct positions. We can see the impact on the local error
in Figure 4.1(c), where the error increases drastically when the attack starts at iteration 60.
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Figure 4.1: Impact of Inflation Attack
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Deflation Attack

A coordinate deflation attack [110, 111] has as objective to render a victim node immobile. The victim
node is not able to perform coordinate updates in order to find its correct position. To perform such
an attack, a malicious node needs to report either coordinates so that the estimated RTT (||z; — 2;]|)
matches the measured RTT and the difference will be zero, so the node will remain with its old
coordinates. Or an attacker can influence the reported RTT so that it matches the estimated RTT.
In Figure 4.2 the impact of a deflation attack, Figure 4.2(a) shows the coordinates of the nodes under
normal circumstances, whereas Figure 4.2(b) shows the coordinates during the deflation attack, and
we see that the nodes move towards the origin. The impact on the median local error is shown in
Figure 4.2(c).
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Figure 4.2: Impact of Deflation Attack

Oscillation Attack

A coordinate oscillation attack [110, 111] results in a complete chaos in the network, as the nodes
keep changing their coordinates and they do not converge to their correct positions. The impact
of this attack is shown in Figure 4.3. The change in the coordinate-space to chaos is illustrated in
Figures 4.3(a) and 4.3(b). This attack is performed by malicious nodes that report randomly wrong
coordinates, random local error values, and random RTT. This leads to a maximization of the system
error. The impact on the error is shown in Figure 4.3(c).
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Frog-Boiling Attack

The frog-boiling attack [22] describes a derivation of the inflation attack, but compared to the inflation
attack, this attack uses very small steps in order to remain under the radar of defense mechanisms
that use any kind of thresholds. One can think of this attack as a slow-inflation attack. It is called
frog-boiling attack as this term is often used as a metaphor to describe that somebody is not aware of
slow changes. Figure 4.4(c) shows the impact of frog-boiling impact on the median local error of all
nodes in the system. The attack starts around iteration 60, we see that the error value does increase
but much slower than for the inflation attack (Figure 4.1(c)). Furthermore, Figure 4.4(b) shows that
the frog-boiling attack has the same impact on the coordinates of the nodes than the inflation attack
in comparison to the coordinates without an attack in Figure 4.4(a).

Network-Partition Attack

The network-partition attack [22] is an extension to the frog-boiling attack. An attacker performs this
attack in order to divide a network, by having a group of malicious nodes pushing a subset of nodes
in the network in one direction and another subset of nodes in the opposite direction. Figure 4.5(c)
shows the impact on the median local error value, we see that it is similar to the frog-boiling impact.
However, one can see that in Figure 4.5(b) two groups of nodes is built in comparison to the normal
coordinate distribution in Figure 4.5(a).
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4.2 Defenses

Several works define security mechanisms to be able to detect and mitigate malicious behavior. The
approaches for this differ in the way the mechanisms are structured. One can divide them in two
different groups. The landmark-based defenses propose a subset of nodes to be landmarks, like a set
of trusted nodes in order to secure virtual coordinate systems. The decentralized defenses do not have
the need for a group of nodes to be considered as landmarks and work in a complete decentralized
way.

4.2.1 Landmark-based Defenses

Kaafar et al. [54] show that the behavior of benign nodes can be modeled by a linear state space
model, the coordinates can be seen as a stochastic process, as the RTT are statistical stable, and so the
nodes need to update their coordinates only periodically. This behavior can be tracked by a Kalman
filter. The Kalman filter is used to estimate A based on a set of measured relative errors, then the
Kalman Filter gives the least mean squared estimates of A. Afterwards it gives an evaluation of that
estimation through which outliers can be detected considering that there will be large deviations of
the measured relative error from the mean value. So in order to detect malicious behavior they want
to be sure that they do model the behavior of a benign node. Therefore, they make use of a set of
trusted nodes, called surveyors. Those trusted nodes calculate their positions only using properties
of other surveyors in order to calibrate the Kalman Filter. Once the surveyors have determined their
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Figure 4.5: Impact of Network-Partition Attack

positions, other nodes in the network can track their behavior to know how normal behavior looks
like and determine if other nodes behave maliciously.

Saucez et al. [88] define a reputation based system and use the notation of surveyors but in this
case to model trust estimations for the other nodes. They introduce a further type of nodes the RCA
- a certificating agent, that calculates a node’s reputation.

Landmark-based defenses have stronger assumptions, as they require a predefined subset of nodes
as a trusted node-set. Using landmarks as defense mechanisms decreases the scalability of virtual
coordinate systems as well as trusted nodes to not provide a guarantee that no infiltration of attackers
can happen. Therefore we focus in this work on decentralized defense mechanisms.

4.2.2 Decentralized Defenses

Veracity [94] is a decentralized VCS that introduces the notion of a verification set. Each node
maintains a verification set where several other nodes attest to whether a particular update increases
their estimation error above a certain threshold, and if so, ignores it. Nevertheless, how veracity
performs if the verification sets are compromised is not clear.

Another approach is described by Wang et al. [109], where securing virtual coordinate systems is
decoupled so that they consider securing the delay measurement and securing coordinates computation
separately. For securing the delay measurements, [109] proposes to use a triangulation inequality
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violation (TIV) alert technique. TIV-alert uses the prediction ratio (%) of coordinates to define

that delays are falsified. Therefore they take the assumption that the prediction ratio is very small
if the delay is forged. For securing the coordinates computation, [109] proposes to make use of the
Byzantine Fault Detection (BFD) [46], scalable extension to Byzantine Fault Tolerance (BFT) [21]
and uses PeerReview as accountability protocol. This approach has high cost for instance for the
computation for public-key cryptography.

The outlier detection approach of Zage et al. [110, 111] does not rely on such assumptions, the
overhead produced by outlier detection is low, and focuses on a decentralized VCS without any trusted
components. The goal is to reduce the likelihood of a node to compute incorrect coordinates by
ignoring malicious updates using statistical outlier detection. This outlier detection is done by each
node before it updates its coordinates considering temporal and spatial correlations within the metrics
in the network.

The outlier detection approach of [110, 111] does not need any big assumptions or a trusted node-
set, we focus on this approach and explain the details in the following paragraphs:

Spatial Outlier Detection

The spatial outlier detection checks if the metrics reported by a node are consistent with the metrics
of the neighbor nodes. This is done by receiving an observation tuple form a requested node. The
observation tuple is related to the algorithm described in Algorithm 1 in Section 3.3 and consists of
the three metrics: RTT, eremote; Aremote- LThe last u updates are stored in a queue. As u is as large
as the neighbor set, it is considered that every entry probably belongs to a different neighbor and
one can calculate the centroid of the data contained in w. The Mahalanobis distance is calculated
between the last observation tuple and the centroid. In order for the node to accept the new update,
the computed distance must remain under a spatial threshold.

Temporal Outlier Detection

The temporal outlier detection checks the consistency of one node over time. Therefore the outlier
detection takes into consideration the following 5-tuple: (RTT, €remotes Dremotes €locals Diocal). For
each neighbor node a temporal centroid is computed using incremental learning. The newly received
metrics are then compared to mean, standard deviation, and sample count for that node using a
derived simplified Mahalanobis distance. The update is an outlier if it exceeds a temporal threshold.

Spatio-Temporal OQutlier Detection

In [110, 111] the spatial outlier detection and the temporal outlier detection are combined. An update
is only accepted if it does not exceed the temporal threshold as well as the spatial threshold. If an
update is considered as an outlier, the update is ignored and not considered for the computation of
the coordinates.
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4.3 Conclusions

All the previous defenses have in common that their validation is made by running experiments and
not by analyzing what defense mechanisms are optimal against what attack. The same, the proposed
defense mechanisms, do not consider that an attacker can be aware of the defense in place. This
assumption is unrealistic as attackers are often aware of the employed defense especially as design
prinicples state that security should not rely on the secrecy of the defense algorithm [16]. Given
that several attacks and several defense techniques exist, there is a need for a systematical evaluation
identifying what are the best attack and defense strategies.

Furthermore, Chan-Tin et al. [22] show that all the previously defined defense mechanisms are
vulnerable against the frog-boiling attack and the network-partition attack. Those two attackes are
slow attacks, they remain undetected by defenses that model the behavior, as the attacks are imposed
step-by-step, the model will learn these attacks as normal behavior. Furthermore, all threshold based
defense mechanisms are vulnerable to those attacks, as the steps of the attack are under the threshold.
An overview of the different defense mechansims is given in Table 4.1.

Frog-boiling attacks have been mitigated before in a different context by ANTIDOTE [87]. AN-
TIDOTE is a principal component analysis-based poisoning attack detector that constructs a low
dimensional subspace which reflects most of the dispersion in the data. The required computations
are relatively expensive and assumes an existing multidimensional input space. Such assumptions do
not hold in our case, where we had first to map the one dimensional data to a higher dimensional
space (which is the opposite of ANTIDOTE’s subspace construction) and then rely on an efficient
and online decision mechanism. A new defense mechanisms needs to address the frog-boiling attack
in relation to virtual coordinate systems.
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Chapter 5

Analyzing strategies for securing
Virtual Coordinate Systems

In this chapter, we propose a game theoretical framework in order to analyze the adversarial behavior
of an attacker and a defender. The goal of this work is to analyze the different defensive mechanisms in
relation to the different attacking techniques. Therefore, we make use of Game Theory, as it provides
the necessary mathematical techniques for analyzing strategic situations.

5.1 Introduction

We explore the development of a game theoretical framework with respect to Vivaldi, the Virtual Co-
ordinate System, described in Chapter 3.3 and its attack and defense mechanisms described in Chapter
4. Previous works have proposed several ways to mitigate known attacks in VCS, but validation has
always been done through experiments, with the assumption that the attacker is unaware of the de-
fensive mechanism in place. However, practice has shown that attackers take the associated defense
mechanism into account and try to bypass it. Hence, we investigate a scenario, where an attacker
knows what defense is in place. We analyze the optimal defense strategy and the best attack strategy
as there are several techniques available for both sides. This analysis is done with a systematical
evaluation using a specifically described game model.

Furthermore, as a critical component of previous defense mechanisms is that a fixed threshold
is used for deciding wether a data point is accepted by the system or suspected of coming from a
malicious node, we leverage a framework with an adaptive threshold selection and test this framework
against the defense mechanisms using fixed thresholds.

The contributions described in this Chapter are the following:

e We systematically study attack and defense techniques for virtual coordinate systems.
e We model rational attackers in virtual coordinate systems using the Nash equilibrium and irra-
tional attackers using the quantal response equilibrium. From the defender side, we use game

theory to tune our defensive mechanisms in order to mitigate the attacks.

93
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e We define which attack has the biggest impact for large networks (i.e., the King topology) and
for smaller networks (i.e., the AMP topology).

e We leverage an adaptive threshold selection and compare it to the strategies using fixed thresh-
olds.

The structure of this chapter looks as follows, an introduction to game theory and its solution
concepts is given in Section 5.2. We define the game model in Section 5.3, where we explore the
motivation and the knowledge of each player. In Section 5.4, we elaborate the strategies and payoff
functions for each player with respect to a basic game. Section 5.5 elaborates strategies and payoff
functions for the players with respect to a more advanced game, where we integrate an adaptive
threshold selection for the defense mechanisms. The evaluation of the different games is done in
Section 5.6.

5.2 Background - Game Theory

Game theory was first introduced by John von Neumann in 1928 in his article ”Zur Theorie der
Gesellschaftspiele” [104], english translation: ”On the Theory of Games of Strategy”. In his work,
Neumann defines a game for n players where every player wants to achieve a best possible gain, also
known as payoff. The outcome of the game is defined as being dependent of the input of the players,
the chosen strategies. John von Neumann worked on game theory related to the field of economics [74].

Although, game theory can be seen as something that happens all the time, mostly unconsciously
by the players, as following Ken Binmore [15] - 7 A game is being played whenever people have
anything to do with each other”. Game theory is useful in any strategic situations with n players,
where every player has its own strategy set and for every chosen action the players receive a payoff in
form of a gain or punishment. Therefore it is not surprising that it became a relevant topic in network
security [66, 69, 85, 100, 106, 108]. One of the first approaches for applying game theory to network
security is described by McInerney et al. [69]. In this work, an underlying Markovian decision process
and a simple one-player game are used to reason, detect, and respond to automated attack behavior
in information assurance systems. Similar work on network security by Lye and Wing [66] models
the interaction between an attacker and a defender as a two-player stochastic game. The explicit
enumeration of states as described in the previous two papers is impossible in our context due to the
large number of attacking nodes that we consider. Game theoretical concepts have also been applied
to model attackers and high-interaction honeypots [106] for configuring reciprocal actions. In [108],
the authors propose to break the anonymity of Tor [35, 101], and provide countermeasures that are
modeled using game theory. Roy et al. [86] give an overview of the different works on applying game
theory to network security.

Some of our previous work has used game theory to understand and better defend against blocking
and flooding attacks within distributed hash tables used in P2P Session Initiation Protocol infrastruc-
tures [14].

Once, the game model is defined, including the strategy sets and the payoff functions, we need to
find a solution for predicting how the game will be played. Consequentially, we will be able to conduct
experimental analysis. In this work, we make use of the well known Nash Equilibrium and on the
Quantal Response Equilibrium. In the following sections, we explain the two equilibria.



5.2. BACKGROUND - GAME THEORY 95

5~A | cooperate defect
9]
)
0
by A and B B gets 10 years
g get 6 months A goes free
o
9]
9]
9 A gets 10 years Aand B
9 B goes free get 5 years

Figure 5.1: Prisonner’s Dilemma - example for pure strategy

B A | Rock Paper Scissors
Rock 0O O -1 01 1 -1
Paper 1 -1 0 O -1 01

Scissors | -1 1 1 -1 0 O

Figure 5.2: Rock, Scissors, Paper - example for mixed strategy

5.2.1 Nash Equilibrium

The first reason why using the Nash Equilibrium [70], is that it introduces and defines methods for
analyzing non-cooperative games, where the players do not cooperate or communicate. This exactly
represents our game model, as we have two opponents with conflictive goals. The second reason is
that the Nash Equilibrium defines that the players are rational. That means that the players will
not differ from the outcome of the Nash Equilibrium, as they will not gain greater payoff with any
other action strategy. In this model, we assume that an attacker wants to harm the network as much
as possible and the defender wants do defend the system as good as possible, these statements are
reflected in the payoff functions. Concluding, a player has no reason to deviate from the outcome, a
strategy, of the Nash Equilibrium as this is the most they can achieve.

Calculating the Nash equilibrium can result in a pure strategy, where it is defined that a player,
attacker or defender, plays constantly the same action out of the corresponding action set (A or D).
To illustrate a pure strategy, we consider the well known prisoner’s dilemma [103]. The prisoner’s
dilemma is about two people A and B that have been arrested. It is assumed that they committed
a crime. They are placed in separate cells and both have the option to either provide evidence to
incriminate the other or to be silent and cooperate with the partner. If only one chooses to provide
evidence against the other (defecting on his partner) than that one will gain freedom while the partner
gets sentenced to 10 years in prison. If both provide evidence, than both will get 5 years in prison. If
the two are cooperating with each other then both well get 6 months in prison. The strategies and
the payoffs are represented in Figure 5.2.1. As the prisoners are separated, they cannot know what
the other one is choosing. Because of that, the best choice following the Nash equilibrium is to defect
for both prisoners as they might risk to get a much higher prison sentence when one is cooperating
while the other is defecting. This is a pure strategy.
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A Nash equilibrium can also result in a mixed Strategy S;. A mixed strategy is a probabilistic
distribution over the corresponding pure strategies, S; : D — [0,1] and S_; : A — [0,1]. The player
will randomly play each strategy while each strategy is selected with the associated probability. To
illustrate a mixed strategy we consider the popular hand game Rock, Paper, Scissors [38] often used
as a choosing game like flipping a coin. Consider two players A and B, their strategies are composed
of either playing Rock, Scissors, or Paper. Rock breaks scissors. Scissors cut paper and paper covers
rock. The payoffs are represented in Figure 5.2.1. There is no pure strategy, as it is unknown what
the other one is playing. In this case, it is the best for the players to play Rock with the probability
of 0.33, Scissors with the probability of 0.33, and Paper as well with a probability of 0.33. This is a
mixed strategy.

The mixed strategy profile S; is a Nash equilibrium if for each player ¢ there is no other strategy
profile S/ that will lead to a higher gain with respect to the strategy profile S_; applied by the opponent
—i, meaning that for player ¢ there is no average payoff (); greater than the one for the strategy profiles
Si, S_i . Ql(SZ,S_Z) Z QZ(S;, S_l) where

n k

Qi(Si, i) =Y _ Si(dg) Y S—_i(ap) = Mi(dg, ay)

q=1 p=1

In this equation M; represents the payoff matrix of player ¢ and M;(dy,a,) is the payoff for player 4
while choosing d, as action while the opponent plays a,,.

5.2.2 Quantal Response Equilibrium

The Quantal Response Equilibrium (QRE) [43] is a solution concept that generalizes the Nash equi-
librium by introducing an error parameter to the payoff function. This is motivated by the fact that
payoff functions may be erroneous and one can not have total certainty about the payoff value. In this
manner, the regular QRE provides an equilibrium with bounded rationality in contrast to the Nash
equilibrium which defines all the players to be completely rational.

The error parameter A, also called the rationality parameter, is varied until the regular QRE
converges to the Nash equilibrium. Rationality in this sense means that no player is motivated to
diverge from the Nash Equilibrium as there is no other strategy where one can gain more than the
ones specified in the resulting strategy profile of the Nash Equilibrium. On the opposite, irrationality
means that even though the attacker can not gain greater payoff, he will chose another strategy than
the one defined by the Nash Equilibrium. When A = 0, the player is completely irrational, in this case
he could, for instance, chose the strategy randomly and when A — oo, the player becomes perfectly
rational and follows the Nash equilibrium. We calculate the QRE by using the following equation
which defines the probability of player ¢ to choose strategy d, out of action set D:

exp A x Uy(q,)(S-i)

Siq. =
q AxUs a2 (S_3)
> a, €XP (ap)

where Ui(dq)(S_i) describes the expected utility for player ¢ using strategy d, while considering other
players to play with a probability distribution S_;: Uyq,) = 25:1 S_i(ap) * M(dy,ap).

We use the QRE to quantify how irrational a player can be while still maintaining the same
equilibrium profiles.
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5.3 Defining the Game Model

A strategic situation is composed of two or more players, all of them have their own strategies and
motivations. By playing a specified strategy a player receives a reward, depending on the strategy
chosen by other players.

Our game model consists of two players, the defender ¢ and the attacker —:i. Both players are
opponents and their goals and motivations are conflictive. Each player has its own strategy set: A for
the attacker and D for the defender. A strategy set is composed of a given number of actions that a
player can choose to play. An action can be considered as a synonym for strategy. For every chosen
and played action, each player receives a payoff P. This payoff describes the effectiveness of the chosen
action with respect to the chosen action of the opponent and is based on the payoff function of the
player.

We consider a static or strategic game. This is a one-shot game and means that the decisions of the
two players are taken simultaneously and unknown to the opponent. In order to leverage an analytical
game model, first the aim of the players and the knowledge of each opponent is defined. Second, the
strategies for each player are explored. Third, we define the payoff functions. Those payoff functions
represent the aim of each player and are used to statistically analyze the different strategies.

5.3.1 Adversarial Motivations and Knowledge

In this context, we assume that an attacker wants to harm the system as much as possible by interfering
with the latency estimations that are crucial for the well-functioning of Vivaldi. Meaning that an
attacker wants to modify latencies between nodes so that benign nodes are either updating their
coordinates to incorrect positions or prevented from updating to the correct coordinates. This leads
to a decreasing of the accuracy of the system as described in Section 4.1. Of course, the attacker
wants to have as much impact as possible on the system, which includes that he does not want that
his attack gets detected and mitigated, as this will lead to decrease the impact of its attack.

On the opposite site, we assume that the defender wants to have a good accuracy, as the nodes
should find soon their correct positions and remain there. Accordingly, the defender wants the attacks
to have least impact as possible, meaning that the attack should be detected and avoided by not
accepting updates from a malicious node.

We assume that the players are aware of the opponent’s strategy set. However, our game is
considered as a silent game, as the opponents do not know which action out of the strategy set was
chosen in the past. The same, the players do not know what strategy the opponent will choose for a
current game.

5.4 Determining the Basic Game

In this section, we define the strategies and payoff functions for the basic game. We call this game
basic, as it includes the basic strategies of the defender. These basic strategies are based on the
defense mechanisms defined in the previous work [111]. The defender’s and the attacker’s strategies
are explored in the following section as well as the respective payoff functions.
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5.4.1 Strategies

The attacker can conduct three different types of attacks, namely the inflation attack, the deflation
attack, and the oscillation attack. Additionally, the attacker is able to modify the amount of attacking
nodes between 10%, 20%, and 30%. Hence the action set, or strategy set, of the attacker is as follows:

A : {inflation - 10% attackers; deflation - 10% attackers; oscillation - 10% attackers;
inflation - 20% attackers; deflation - 20% attackers; oscillation - 20% attackers;
inflation - 30% attackers; deflation - 30% attackers; oscillation - 30% attackers}

On the opposite side, the defender can use three different defense mechanisms, the spatial outlier
detection, the temporal outlier detection, and the combination of both, the spatio-temporal outlier
detection. All those mechanisms use a fixed threshold value in order to define if a new update is an
outlier or not (see 4.2). The action set of the defender looks as follows:

D : {spatial outlier detection; temporal outlier detection; spatio-temporal outlier detection }

5.4.2 Payoff Functions

The objective of payoff functions is to reflect the players’ motivations and intents. The motivations of
the opponents are described in 5.3.1. Following these descriptions, we notice that both players want
to influence the accuracy of the system, so this shows that the accuracy has to be reflected in both
payoff functions. The accuracy of Vivaldi is reflected in the system’s error values.

e The system prediction error Errory..q measures the accuracy of the overall virtual coordinate
system by calculating the difference between the real, measured round-trip-time and the esti-
mated round-trip-time.

e The relative error Error,e quantitatively compares the effect of the adversaries on the accuracy
of the virtual coordinate system by calculating the relation between the system prediction error
under attack and the system prediction error when no attack takes place.

The attacker wants to decrease the accuracy of the system. Additionally, having a greater amount
of nodes to perform an attack, has a higher cost as consequence for the attacker, as it will take an
higher effort to compromise and coordinate the nodes. Following the motivation of the attacker, the
payoff will increase if the system error values increase, so we deduce following payoff functions for the
attacker:

Erroryred
_ pre
* Fattackeryea = % attackers

o Errorye;
* FPattacker..; = % attackers

The defender has the opposite goal, he wants to increase the accuracy of the system. Accordingly,
his payoff increases, when the system error values decrease, the payoff functions for the defender look
as follows:
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L4 Pdefenderpred = _Errorpred

_ 1
o Pdefenderml = Error,o

We just defined the payoff function for the two opponents, but we want to integrate the goals of
the two players in a more specific way. Therefore we define two different games (Game 1 and Game
2) based on different percentiles of the system error values representing different motivations.

Game 1

As already known, the attacker wants to harm the system as much as possible. In this game, we
represent this goal, by taking the 5 percentile of the system error values as payoff function. This
way, if the attacks results in a high 5" percentile, this means that even the 5% lowest values are high,
so concluding the remaining 95% are even higher. So the attacker’s payoff functions become:

5thE7“rormed

° th = 0 attacleora
attacker_5t"pred % attackers

_ 5""Error,.
4 Pattackerjthrel - %Tackrérs

On the contrary, the defender wants to protect as many nodes as possible and so wants to have a
low 95" percentile of the system error value. Accordingly, the defender’s payoff functions become:

_ th
i Pdefendev“,95thpred =-9 ETTOTPTEd

_ 1
L d Pdefender,95mrel = 95thError,e,

Game 2

In this game, we consider an average overview of the strategic situation of the system and use therefore
the median system error values, so the payoffs become:

50thErrorpred
i Pattackerj(]thpred = % attackers
_ 50" Error,.
i Pattackerjﬂthrel A attackgrs
o P = 50" Error
defender_50thpred pred

o 1
Pdefende'ri)othrel = 50thError,e;

We summarize the different strategies and payoff function for Game 1 and Game 2 in Table 5.1.
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Table 5.1: Overview of the Basic Games: Game 1 and Game 2

Payoff function
Pl trat ;
ayer Strategy border value median value
Befond TSpatial1 Pet osthprea = —95thEr7“07"pred Pef 50thpred = —50thErr07“pred
efender empora, . 1 . 1
Spatial Temporal Pet osthrer = 05t Error e, Piet s0threr = 50%h Error,e;
Inflation
10% Deflation P . 5thE7‘7‘07‘p,«ed P i 50thET7“07"Wed
Oscillation att5"pred = G mal. nodes att 50" pred = 7T mal nodes
Inflation
Attacker | 20% Deflation
Oscillation Py = 5"Error. P o — B0 Errorye
Inflation att-5"rel = O mal. nodes att-50%rel — O mal. nodes
30% Deflation
Oscillation
Mode B
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RTTae | distance (d) T updates
—d from centroid coordinate
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Centroid system error ¢
<fx, e RTT= introduced by
attack

Figure 5.3: Integration of control theory - Block Diagram

5.5 Determining the Advanced Game

In this game, we leverage new strategies for the defender. We focus on optimizing the threshold selec-
tion of the spatial outlier detection. Usually, fixed thresholds are applied that have been determined
experimentally as in [111]. Such an approach is inflexible, prone to errors, and may be exploited by an
adversary to remain undetected. Therefore, we integrate a feedback control loop in order to update
the threshold on the run.

5.5.1 Adaptive Threshold Selection

Below, we show how by leveraging control theory [34, 37] we design an adaptive threshold technique
to improve the threshold selection.

Figure 5.3 shows how the adaptive threshold selection is integrated with the outlier detection
mechanism. A feedback control loop is regularly updating the spatial threshold with the objective to
tighten the threshold and adapt to attacks. The update of the threshold is based on the observation
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that more severe attacks (as per the nature of the attack and percentage of malicious nodes) will
result in higher differences between the estimated RTT (predicted by the coordinates resulted from
the virtual coordinate system) and the actual RTT. Specifically, at time n, the new threshold T, is
updated based on the threshold at time n — 1, T;,_1, and the difference between the current prediction
error Errorgaer(n) and an ideal value for the prediction error Error,, attack(n) as follows:

(Erroratack(n) — Errorae_attack(n))
RTTEst(n)

Tn = 1lp-1—C (51)

where c is a constant to define the importance of the prediction error Errorgacr(n) and RTTrs(n)
is the current estimated RTT. The prediction error Errorasqck(n) is based on all the prediction errors
calculated during each update of each single node, one can either take an averaged value or percentile
values. The average value is more likely to be affected by potential malicious values that bypassed
the outlier detection. Thus, different defense strategies in the case of the adaptive threshold selection
involve using different percentile values in the prediction error.

We take into account that the prediction error varies over time, as before the system stabilizes
nodes have high prediction error and must update their coordinates by large amounts. However, after
some iterations the nodes converge to their correct coordinates which results in low prediction errors.
To define an independent evaluation of the ideal value, we ran several experimental runs without the
presence of attacks and without outlier detection.

In summary, the effectiveness of an outlier detection technique that uses the adaptive threshold
selection depends on the value of ¢, which defines the importance of the prediction error, and the
percentile values on which the prediction error used in updating the threshold is computed. Figure 5.4
shows the impact of the different values for ¢, whereas ¢ = 0.0 is the case where the control theory is
inactive, as the threshold will remain stable, so this can be seen as the normal spatial outlier detection.
We see that the curves for ¢ <> 0.0 all perform better than for ¢ = 0.0. This shows that control theory
improves the spatial outlier detection.

In Figure 5.5, we observe the decreasing threshold while using different values for c¢. We see that
with an increasing amount of malicious nodes - 30% attackers in Figure 5.5(c), the threshold decreases
faster than for 10% attacker (Figure 5.5(a)).

5.5.2 Strategies

The strategies for the attacker are the same as in the previously elaborated basic game, so he can
conduct three different types of attacks, inflation, deflation, and oscillation attack with three different
amounts of attacking nodes, 10%, 20% or 30% malicious nodes. The strategy set of the attacker is:

A : {inflation - 10% attackers; deflation - 10% attackers; oscillation - 10% attackers;
inflation - 20% attackers; deflation - 20% attackers; oscillation - 20% attackers;
inflation - 30% attackers; deflation - 30% attackers; oscillation - 30% attackers}

The defender’s strategy set is composed of the selection of ¢ : {0;0.04;0.06;0.08; 0.1} of the control
loop and the percentiles {25th; 50tk 75th} of the prediction error used in Equation 5.1. We include
c = 0 in this strategy set, in order to compare the usage of the control loop to the fixed threshold
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Figure 5.4: Impact of different values for ¢ using the median prediction error - p2psim - 1740 nodes

selection, as the threshold will not be changed when ¢ = 0. The strategy set for the defender looks as
follows:

D :{c=0;c=0.04, 25thpe7"c; c = 0.06, 25thperc; c=0.08, 25thperc; c=0.1, 25thpe7"c;
¢ = 0.04, 50" pere; ¢ = 0.06, 50" perc; ¢ = 0.08, 50" perc; ¢ = 0.1, 50" perc;
c = 0.04, 75 perc; ¢ = 0.06, 75" perc; c = 0.08, 75 perc; ¢ = 0.1, 75 perc}

5.5.3 Payoff Functions

We define two different payoff functions for the attacker, these functions represent a different aspect
of the attacker’s motivation. We know that an attacker wants to harm the system and this is reflected
in the system prediction error, which gives an overview of the accuracy of the system. The first payoff
function for the attacker looks as follows:

4 Pattackerpred = ETTOrpred

The second payoff function reflects the need for the attacker to remain undected. We assume that
an attacker is aware of the defense mechanisms, although he does not know the details, like selected
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Figure 5.5: Threshold behavior for different values for ¢ using the median prediction error - p2psim -
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values, but he is aware of the feedback control loop. That leads to the aim of the attacker to keep an
high threshold value, so that it is easier for him to remain under the radar. So we take the averaged
threshold 7,4 as payoff for the attacker. The bigger T, is, the bigger the gain for the attacker.

® [Iattackerr = Tav g

The defender wants to have an high accuracy of the system, which means that he wants to have a
small system prediction error, therefore the payoff function for the defender is:

4 Pdefender = _Errorpred

An overview of the advanced game is given in Table 5.2.

5.6 Experimental Results

In this section, we demonstrate, through simulations using actual Internet topologies and quantitative
analysis using game theory techniques, the efficacy of different attacks at impacting the accuracy of the
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Table 5.2: Overview of the Advanced Game

Player Strategy Payoff function
Error evaluation Threshold evaluation
c=0
Defender | 25" Percentile ¢ =(0.04,0.06,0.08,0.1)
50" Percentile ¢ =(0.04,0.06,0.08,0.1) Piep = —Errorpreq
75" Percentile c = (0.04,0.06,0.08,0.1)
10% (Inflation, Deflation, Oscillation)
Attacker 20% (Inflation, Deflation, Oscillation) | Py = Errorpred Pt = Thug
30% (Inflation, Deflation, Oscillation)

Vivaldi virtual coordinate system and of our defense mechanisms at preserving its ability to maintain
accurate latency estimates.

In order to simulate the attack and defense strategies, we use the King [45] and AMP [4] data sets
in conjunction with the p2psim simulator [77]. The King data set contains the pair-wise RTT of 1740
nodes with an average RTT of 180ms and was selected since it is representative of larger scale peer-
to-peer systems and has been used in validating several virtual coordinate systems. The AMP data
set consists of the pair-wise RT'T of 90 nodes with an average RTT of 70ms and it is used to represent
smaller, high speed systems (e.g., a corporate network). Synthetic topologies are not considered as
they do not capture important network properties inherent in real networks such as violations of the
triangle inequality.

We ran simulations for each combination of attack type and defense strategy described in Chapter
4. We ran each simulation for 200 time units, where each time unit is 500 seconds in length. Every
simulation was run ten times with the reported metrics averaged over all of the runs. The nodes join
in a flash-crowd scenario in which all nodes join simultaneously and are initially placed at the origin of
the logical coordinate space. All nodes that join the network are physically stationary and are present
for the duration of the experiment. Each node proceeds independently of other nodes and chooses a
reference set of 64 nodes using the Vivaldi method where half of the nodes are selected as the closest
nodes based on network latency and the rest are selected at random. All other Vivaldi parameters
were initialized to the optimal values discussed by Dabek et al. [32].

5.6.1 Basic Game

Table 5.3: King - Equilibrium Points Based on Game 1

Error Nash equilibrium strategy profile

Threshold metric profile attacker defender
195 pred. error | pure | Infl/10% att. | Spatial-temporal
’ rel. error pure | Infl/10% att. | Spatial-temporal
L5 pred. error | pure | Infl/10% att. | Spatial-temporal
' rel. error pure | Infl/10% att. | Spatial-temporal

pred. error | pure | Infl/30% att. Spatial
1.75 2 pure | Infl/30% att. | Spatial-temporal

rel. error .
profiles | Infl/30% att. Spatial
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We first analyze the effect of using different spatial outlier thresholds on the Vivaldi virtual coor-
dinate system running over the King topology. In Table 5.3, we can see the Nash equilibrium using
Game 1 as defined in Table 5.1. From the results, we see that the inflation attack has a large impact
on the system. Under this attack, we find that the most efficient defense strategy is spatial-temporal
outlier detection when using lower spatial outlier thresholds (e.g., < 1.5). For higher thresholds, both
spatial-temporal outlier detection and spatial outlier detection provide similar defense performance.
We note that temporal outlier detection is ineffective as it never appears as part of one of the equilibria.

Table 5.4: King - Equilibrium Points Based on Game 2

Error Resulting Nash equilibrium strategy profile
Threshold metric profile attacker defender
1.95 pred. error | pure | Infl/10% att. Spatial
' rel. error | pure | Infl/10% att. Spatial
15 pre. error | pure | Infl/10% att. Spatial
' rel. error | pure | Infl/10% att. Spatial

175 pred. error | pure | Infl/30% att. | Spatial-temporal

' rel. error pure | Infl/30% att. | Spatial-temporal
Infl/30% att. Spatial

In Table 5.4, we present the Nash equilibrium using Game 2. Depending on the threshold selected,
either the spatial outlier detection or the spatial-temporal outlier detection defense techniques provide
the best performance and are thus employed in the resulting Nash equilibrium. Based on the evalu-
ations of both Game I and Game 2, we conclude that the inflation attack has the greatest potential
to impact the virtual coordinate system. It is interesting to note that for lower outlier thresholds
(< 1.5), the attack is most effective for smaller percentages of malicious nodes as the effort to create
larger attacks leads to diminishing returns. Only the higher threshold of 1.75 allows the inflation
attack with 30% malicious nodes to be effective and appear as an equilibrium, allowing us to conclude
this threshold is less effective at mitigating the effects of the attacker. Finally, similar to Game 1, we
notice that temporal outlier detection does not appear in an equilibrium and we thus conclude that
this type of outlier detection is not an effective countermeasure when used by itself.

We also analyze the best defenses against the different attacks when using a spatial outlier threshold
of 1.5, as this value was suggested by previous research [111]. For the deflation attack, the optimal
defense strategy is to use spatial outlier detection as it results in a pure equilibrium for both the
prediction error and the relative error. The spatial-temporal outlier detection is the best defensive
mechanism against the oscillation attack regarding both error metrics. Evaluations based on Game
1 show that spatial outlier detection performs similarly. For the inflation attack, we have a different
defense strategy resulting in a pure equilibrium for each of the games. For Game 1, spatial-temporal
outlier detection represents the pure equilibrium, while in Game 2, spatial outlier detection represents
the equilibrium. Furthermore, we assess the threshold selection for this data set. we present the
resulting Nash equilibria Table 5.5, Table 5.6 and Table 5.7 show the resulting Nash equilibria for
choosing the best spatial threshold value. We find independent of the game or the error metric, that a
threshold value of 1.25 always results in a pure equilibrium, making this the best threshold. Table 5.8
and Table 5.9 present the best defense mechanism with respect to the specific attack mechanism.

The previous results, which are based on the Nash equilibrium, assume that the players are com-
pletely rational. As this cannot be guaranteed, we use a secondary evaluation to determine how
irrational the players can act while still maintaining the same optimal equilibrium profiles. In Fig-
ure 5.6, we present the regular QRE for the data set. The y-axis represents the probability for a
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Table 5.5: King - Equilibrium Points for Threshold Selection

Game Error Nash equilibrium profile
metric profile attacker defender
Game 1 pred. Error | pure | Infl/10% att. | T1.25/Spatio-temporal
rel. Error pure | Infl/10% att. | T1.25/Spatio-temporal
Game 2 pred. Error | pure | Infl/10% att. T1.25/Spatial
rel. Error | pure | Infl/10% att. T1.25/Spatial

Table 5.6: AMP - Equilibrium Points for Threshold Selection based on Game 1

Error Nash equilibrium profile
metric attacker defender
profile = o
strategy probability strategy probability
pred. Error Infl/10% att. 0.25 T1.25/Spatio-temporal 0.51
Osci/10% att. 0.75 T1.5/Spatial 0.49
3 mixed Infl/10% att. 0.14 T1.25/Spatio-temporal 0.58
equilibrium | Defl/10% att. 0.26 T1.5/Spatial 0.32
points Osci/10% att. 0.60 T1.75/Spatial 0.10
Infl/10% att. 0.16 T1.25/Spatio-temporal 0.63
Defl/10% att. 0.52 T1.25/Temporal 0.04
Osci/10% att. 0.32 T1.75/Spatial 0.33
rel. Error Infl/10% att. 0.18 T1.25/Spatio-temporal 0.67
mixed Defl/10% att. 0.51 T1.25/Temporal 0.07
Osci/10% att. 0.31 T1.5/Spatio-temporal 0.26

Table 5.7: AMP - Equilibrium Points for Threshold Selection based on Game 2

Error Nash equilibrium profile
metric attacker defender
profile = =
strategy probability strategy probability
pred. Error Infl/10% att. 0.31 T1.25/Spatio-temporal 0.42
mixed | Defl/10% att. 0.48 T1.25/Spatial 0.24
Osci/10% att. 0.21 T1.5/Spatial 0.34
rel. Error Infl/10% att. 0.31 T1.25/Spatio-temporal 0.43
mixed | Defl/10% att. 0.47 T1.25/Spatial 0.21
Osci/10% att. 0.22 T1.5/Spatial 0.36

strategy for a given A. We notice that when considering the prediction error (Figure 5.6(a)), the QRE
converges to the Nash equilibrium for A — 0, implying that even if the attacker is irrational, he will
follow the Nash equilibrium with respect to the prediction error. Regarding the relative error, the
QRE converges to the Nash equilibrium for A ~ 300(Figure 5.6(b)) which means that the strategies
in relation to the relative errors also converge fast to the Nash Equilibrium as 0 < A < co. Using this
metric as the basis of the payoff function, an irrational attacker will diverge from the Nash Equilibrium,
but as it becomes more rational, it quickly follows the optimal identified strategy.

We evaluate the AMP data set looking at both error metrics for different spatial outlier threshold
selections. Table 5.10 describes the resulting strategy profiles from following Game 1. We notice that
for this data set, the resulting strategy profiles are not nearly as homogeneous as those for the King
data set. Most of the resulting strategy profiles consist of a mixed strategy, meaning that the different
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Table 5.8: Equilibrium Points against specific Attacks based on Game 1

Error Nash equilibrium profile
Attack Data Set metric profile attacker defender
King pred. pure 10% att. | Spatio-temporal
. rel. pure 10% att. | Spatio-temporal
Inflation AMP pred. pure 10% att. Spatial
rel. pure 10% att. Spatial
King pred. pure 10% att. Spatial
. rel. pure 10% att. Spatial
Defl
eflation AMP pred. pure 10% att. no defense
rel. pure 10% att. no defense
King pred. pure 10% att. | Spatio-temporal
S 2 pure 10% att. Spatial
Oscillation rel. equilibria | 10% att. | Spatio-temporal
AMP pred. pure 10% att. Spatial
rel. pure 10% att. Spatial

Table 5.9: Equilibrium Points against specific Attacks based on Game 2

Error Nash equilibrium profile

Attack Data Set metric | profile | attacker defender
King pred. pure | 10% att. Spatial
. rel. pure | 10% att. Spatial
Inflation AMP pred. pure | 10% att. Spatial
rel. pure | 10% att. Spatial
King pred. pure | 10% att. Spatial
) rel. pure | 10% att. Spatial
Deflation AMP pred. pure | 10% att. Spatial
rel. pure | 10% att. Spatial

King pred. pure | 10% att. | Spatio-temporal

S rel. pure | 10% att. | Spatio-temporal
Oscillation AMP pred. pure | 10% att. Spatial
rel. pure | 10% att. Spatial

strategies should be utilized with the given probability in order to be as effective as possible. For
example, given the spatial outlier threshold of 1.25, the attacker has the most impact while applying
the deflation attack with only 10% malicious nodes in the system with a probability of 0.55 and
applying the oscillation attack with 10% malicious nodes in the system with a probability of 0.45.
The countermeasures look similar, applying spatial-temporal outlier detection and temporal outlier
detection with probabilities of 0.93 and 0.07 respectively. Overall, we can see that the spatial-temporal
outlier detection has highest probability of being applied. Interestingly, unlike the King data set, the
temporal outlier detection is often part of the equilibrium, but only with low probability. The outcomes
for Game 2 are reflected in Table 5.11. For this evaluation, only the spatial-temporal outlier detection
and the spatial outlier detection are considered in the equilibriums.

Next, we investigate the optimal countermeasure with respect to the different attacks. The spatial
outlier detection performs best against the three attacks. Assessing the different thresholds, results
show that a threshold value of 1.25 is the best choice, a threshold value of 1.5 is second best, 1.75
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Figure 5.6: The Quantal Response Equilibrium evaluation for the King data set based on Game 1

Table 5.10: AMP - Equilibrium Points Based on Game 1

Error Nash equilibrium profile
Threshold | metric attacker defender
profile strategy probability strategy probability
pred. | mixed Defl/10% att. 0.55 Spatial-temporal 0.93
195 Osci/10% att. 0.45 Temporal 0.07
rel mixed Defl/10% att. 0.54 Spatial-temporal 0.92
' Osci/10% att. 0.46 Temporal 0.08
15 pred. | pure | Infl/10% att. Spatial
’ rel. pure | Infl/10% att. Spatial
Defl/10% att. 0.74 Spatial 0.08
pre. | mixed | Infl/10% att. 0.18 Spatial-temporal 0.91
175 Osci/10% att. 0.08 Temporal 0.009
‘ ) Infl/10% att. 0.29 Spatial-temporal 0.92
rel, | e 606 10% att. 0.71 Spatial 0.08
pure Infl/20%att. Spatial-temporal
Infl/10% att. 0.69 Spatial-temporal 0.32
pred. | mixed | Infl/20% att. 0.24 Spatial 0.41
5 Infl/30% att. 0.07 Temporal 0.27
Infl/10% att. 0.57 Spatial-temporal 0.33
rel. | mixed | Infl/20% att. 0.4 Spatial 0.40
Infl/30% att. 0.03 Temporal 0.27

third, while 2 is last. Furthermore, we also evaluated the regular QRE as we did for the King data
set. Similar to the previous data set, we note that with respect to the prediction error (Figure 5.7(a)),
players could be almost completely irrational while their best strategies will still follow the Nash
equilibrium, as it converges for A — 0. The relative error (Figure 5.7(b)) converges fast to the Nash
equilibrium for A ~ 500.
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Table 5.11: AMP - Equilibrium Points Based on Game 2
Error Nash equilibrium profile
Threshold | metric cofile attacker defender
P strategy probability strategy probability
. Defl/10% att. 0.53 Spatial-temporal 0.64
pred. | mixed . .
195 Osci/10% att. 0.47 Spatial 0.36
’ rel mixed Defl/10% att. 0.5 Spatial-temporal 0.67
' Osci/10% att. 0.5 Spatial 0.33
15 pred. pure | Infl/10% att. Spatial
’ rel. pure | Infl/10% att. Spatial
175 pred. pure | Infl/10% att. Spatial-temporal
’ rel. pure | Infl/10% att. Spatial-temporal
5 pred. pure | Infl/10% att. Spatial
rel. pure | Infl/10% att. Spatial
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Figure 5.7: The Quantal Response Equilibrium evaluation for the AMP data set based on Game 1

Table 5.12: King - Equilibrium Points based on Game 3

Nash equilibrium strategy profile
Payoffs attacker defender
profile o o
strategy probability strategy probability
Pief = —Errorpreq mixed Inflation/30% att. 0.54 c=0.06 & 75" percentile 0.93
Pt = ETrorpred Oscillation/30% 0.46 c¢=0.08 & 75t"percentile 0.07

5.6.2 Advanced Game

In the previous analysis, we observed that the best defense mechanism is to apply spatial-temporal
outlier detection. We now again consider spatial-temporal outlier detection, however we consider that
the spatial outlier detection uses an adaptive threshold. We initialize the spatial threshold with 2.
In Table 5.12, we can see the Nash equilibrium using Game & and Game 4 as defined in Table 5.2.
We note that we also compare the strategy ¢ = 0, which means that control theory is not used at
all. Considering Game 3, where we assume the attacker wants to disturb as much as possible the
correct functioning of the system with the effect that the prediction error increases significantly, the
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resulting best attack method is to apply inflation attack with 30% attackers with a probability of
0.54 and the oscillation attack with 30% attackers with a probability of 0.46. For the defender the
best way to handle this attack method is to make use of the constant ¢ = 0.06 with a probability of
0.93, ¢ = 0.08 with 0.07 probability, and the 75" percentile of the prediction error for updating the
closed-loop feedback control described in Section 5.5.1.

Table 5.13: King - Equilibrium Points based on Game 4

Nash equilibrium strategy profile
Payofts rofile attacker defender
P strategy probability strategy probability
P — —Error pure | Oscillation/10% att. 1 c=0.08 & 75" percentile 1
def = pred M Hure Deflation/10% att. 1 c = 0.06 & 75" percentile 1
. Deflation/10% att. 0.5 _ ‘h .
Past = Taug mixed | o illation/10% at. 0.5 ¢ = 0.08 & 507 percentile
pure | Oscillation /10% att. 1 c = 0.08 & 50" percentile

In Game 4, we assume the attacker does not only intend to harm the network as much as possible
but that he wants to remain undetected. With the resulting Nash Equilibrium in In Table 5.13 we
can see that for the attacker the best choice overall is to have only 10% attackers in the network,
as otherwise the attacks become too obvious and are detected by the outlier detection. The overall
defense mechanism is to use the 75" percentile with ¢ = 0.06 and ¢ = 0.08 or to use the 50" percentile
with ¢ = 0.08. It can be seen that there are 3 different Nash Equilibria for this game model, this
means that all of these points lead to the best possible gain for the defender with respect to the attack
method applied.
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Figure 5.8: The Quantal Response Equilibrium evaluation for the King data set

We again use the secondary evaluation to determine how irrational the players can act while still
maintaining the same optimal equilibrium profiles, as rationality can not be guaranteed. In Figure 5.8,
we present the regular QRE. The y-axis represents the probability for a strategy for a given A\. We
notice that in Game 8 (Figure 5.8(a)), the QRE converges to the Nash equilibrium for A — 0,
implying that even if the attacker is irrational, he will follow the Nash equilibrium with respect to
the prediction error. Regarding Game 4, the QRE converges to the Nash equilibrium for A ~ 100
(Figure 5.8(b)), which is a fast convergence although A can become co. Using this metric as the basis
of the payoff function, an irrational attacker will diverge from the Nash Equilibrium, but as it becomes
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more rational, it quickly follows the optimal identified strategy.
Table 5.14: AMP - Equilibrium Points based on Game 3
Nash equilibrium strategy profile
Payoffs rofile attacker defender
P strategy probability strategy probability
. oy c = 0.08 & 75" percentile 0.25
J;gef : ;f:;”:rmed mixed | Oscillation/30% att. 1 =01 & 75thpercentile 0.75
att = pred pure | Oscillation/30% att. 1 c = 0.08 & 75" percentile 1
pure Inflation/30% att. 1 c = 0.1 & 75" percentile 1

We evaluate the AMP data set with spatial-temporal outlier detection and an adaptive threshold

selection for the spatial threshold. We initialize the spatial threshold with 2. Table 7?7 describes the
resulting strategy profiles for the different payoffs and configuration strategies for Game 3 and Game
4. We again note that the different strategies are shown in Table 5.2, including the strategy ¢ = 0,
where control theory is not used. We notice that the resulting Nash Equilibria are similar to the Nash
Equilibria for the KING data set. Based on this, we can assume that independent of the data set we
should apply in the closed-loop feedback control a percentile of 75t" percentile for the prediction error.
An attacker can disturb the network the most while applying the inflation attack, but if he wants the
attacks to be undetected then deflation and oscillation are the best attack choices. Furthermore, we
again evaluate the regular QRE and notice that with respect to Game 3 (Figure 5.9(a)) the QRE
converges to the Nash equilibrium for A — 0, implying that even if the attacker is irrational he follows
the strategy profile defined by the Nash Equilibrium. In Game 4, the QRE converges to the Nash
equilibrium for A ~ 20(Figure 5.9(b)). This converges fast as well, as 0 < A < oo.

Table 5.15: AMP - Equilibrium Points based on Game 4

Nash equilibrium strategy profile
Payoffs attacker defender
profile — ar
strategy probability strategy probability
Pief = —Errorpeq | pure | Oscillation/10% att. 1 c = 0.06 & 75" percentile 1
P pure Deflation/10% att. 1 c = 0.08 & 75" percentile 1
att = ~avg pure | Oscillation/10% att. 1 c = 0.08 & 75" percentile 1
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5.7 Conclusions

In this work, we have defined and used an analytical framework in order to analyze strategic choices
and identify the best attack strategies and corresponding defense strategies used in virtual coordinate
systems. We have modeled the attacker-defender interactions in a game theoretical framework in which
the payoffs reflect the incentives and objectives of the two sides. While an attacker aims at inflicting
the maximum amount of damage possible by manipulating the virtual coordinate space, a defender
attempts to mitigate the damage using countermeasures that filter out rogue information. We have
modeled rational attackers in virtual coordinate systems using the Nash equilibrium and irrational
attackers using the quantal response equilibrium. From the defender side, we use game theory to see
which of the existing mitigation techniques from outlier detection work best against which attacks. We
have considered inflation, deflation, and oscillation as attack strategies, and we consider the spatial,
temporal, and spatio-temporal outlier detection as mitigation techniques. In this analysis, we have not
considered the more subtle attacks (frog-boiling, network-partition), as outlier detection is known to
be vulnerable to those attacks [22, 23].

We have performed experiments using two Internet topology data sets (King and AMP topology)
that have correspondingly different sizes and characteristics. Our results demonstrate that spatial-
temporal and spatial outlier detection perform the best while temporal outlier detection is ineffective
in isolation. However, temporal outlier detection is often part of the defense profile in combination
with the other spatial outlier detection. From an attackers perspective, the best attack strategy to
use is the inflation attack with varying percentages of malicious nodes, depending on the deployed
defense technique.

We have determined that for large networks (King topology), the inflation attack has the greatest
impact on the system. To defend the system, we have found that spatial-temporal outlier detection
is the most effective technique given lower spatial outlier thresholds (e.g., < 1.5) and both spatial-
temporal and spatial outlier detection provide similar defense performance for higher thresholds. Fur-
thermore, our analysis has found that, independent of the game strategy or the error metric (relative
or prediction error) selected, a spatial outlier threshold of 1.25 results in the best system performance,
which is smaller than the value found in previous work.

We have found that the resulting strategy profiles for smaller networks (AMP topology) are not
as homogeneous as those for the larger King topology, with most of the resulting strategy profiles
consisting of a mixed strategy. For example, given the spatial outlier threshold of 1.75, the attacker
has the greatest payoff while applying all three attacks with their given probabilities using only 10%
malicious nodes. The countermeasure profile looks similar, applying each of the three defense tech-
niques. Both the percentage of malicious nodes necessary to efficiently create the greatest negative
impact and the attack and defense profiles have not previously been systematically explored.

Furthermore, we have assessed the most critical component of outlier detection, the usage of a
fixed threshold. Such a fixed threshold makes the system vulnerable to subtle attacks that are aware
of the outlier detection and are able to remain under radar. We have approached this by proposing
an adaptive threshold selection scheme, where we make use of feedback control system. The feedback
control system, allows us to adapt to changes in the network, so if we see that the network error is
increasing than we tighten the threshold of the outlier detection in order to avoid malicious updates.

We have found that when comparing strategies using a fixed threshold with strategies using an
adaptive threshold selection for the outlier detection, the adaptive threshold is more effective in de-
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fending against attacks than a fixed threshold. Our analysis shows that when an attacker has as goal
disturbing the network as much as possible, using inflation with 30% attackers is the best attack strat-
egy. If the attacker wants to remain also undetected then oscillation and deflation attacks with 10%
attackers are the best rational choice. We found that the best parameters for the adaptive threshold is
to use the 75! percentile of the prediction error and with a value for the constant ¢ of 0.08 to update
the threshold, where ¢ is a system parameter that captures the importance given to the prediction
error when updating the threshold.



Chapter 6

Securing Overlay Networks using
Machine Learning

In this chapter, we leverage a new detection mechanism for attacks on virtual coordinate systems. The
latency estimation in virtual coordinate systems suffers from different attacks as described in Section
4.1. Even though, there have been some defense mechanisms proposed that are able to detect and
mitigate those attacks, see Section 4.2, a new kind of attack has been elaborated in [22], which are
more subtle and previous defense mechanisms are shown to be vulnerable to them (see Section 4.3).
In the following sections, we explain what characteristic makes those attacks immune to the existing
defense mechanisms, and we define a new detection model using machine learning techniques that is
not vulnerable to those attacks.

6.1 Introduction

We elaborate a detection method using machine learning techniques that is able not only to detect
already known attacks (inflation, deflation, oscillation) but also more subtle attacks: the frog-boiling
attack and the network-partition attack. Those attacks are able to remain undetected by the previous
detection methods, as they use some kind of threshold to define if a coordinate update is malicious or
not. The subtle attacks remain under the radar, as they conduct attacks slowly, so that the system
is gradually attacked and the change is not detected by threshold based detection mechanisms. The
frog-boiling attack is known for abusing the re-learning process of intrusion detection systems, as it
will attack the system in such a way that the attacks are not detected and as they are not detected,
those attacks are considered as good behavior. So, over time, the intrusion detection system will learn
this bad behavior as good behavior.

The challenge in detecting attacks using machine learning techniques lies in identifying an appro-
priate feature set, that is able to reflect the characteristic of the system in such a way, that even subtle
attacks, which are difficult to detect, can be identified. This feature set is used by the machine learning
techniques to learn how the system looks like under normal circumstances and how the system looks
under malicious updates. We validate this detection method through several different attack scenarios
and we compare this dection method to a prior detection mechanism - the outlier detection [111].

The contributions are as follows:

75
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We propose a practical method to counter the frog-boiling and network-partition attacks, or
any complex attack strategy in which several individual attacks are launched by a powerful
adversary. For example, the latter can combine several single attacks following a Markov chain
model.

We develop a feature set, based on a node’s local information, for embedding it into a mul-
tidimensional manifold in order to reveal attacks. This process has resulted in seven feature
variables that prove to be the most relevant for the prediction and classification task.

We provide a quantitative analysis of supervised machine learning methods, i.e., decision trees
and support vector machines, for detecting all known attacks in an offline analysis scenario. Our
approach works both in a global manner, where all nodes actively exchange local information
and a collective decision is taken, as well as in an individual manner, where each node locally
decides whether an attack is occurring or not.

We validate our method by analyzing the performance of online detection. Supervised machine
learning techniques like classification are hard or impossible to implement as labelled data is
needed. We overcome this challenge by using labelled data to train our classification technique
in an offline matter and then implementing the resulted decision process into the real system
to allow real-time detection. Specifically, we integrate decision trees into the Vivaldi virtual
coordinate system. We analyze the effectiveness of the real-time detection in both a global
manner, where a collective decision is taken, as well as in a local manner, where each node
decides by itself if an attack is occurring or not. In order to improve the accuracy detection of
the local real-time detection we take into account not only a node’s local information but also
the information already being collected through its interaction with its neighbors.

The remainder of this chapter is structured as follows: We define the new complex attack strategies

in Section 6.2. We introduce the reader to machine learning and give an overview of how machine
learning is used in intrusion detection in Section 6.3. Our detection framework composed of the feature
set is explained in Section sec:concept. Experimental results are shown in Section 6.5 and the results
for the system integration are illustrated in Section 6.6. We conclude our work in Section 6.8.

6.2 Attack Strategies

In this section, we explore the different attack strategies that we take into consideration to validate
the detection model.

6.2.1 Single Attack Strategies

A single attack describes an attack scenario, where only one attack is applied in one experimental run.
All the nodes apply the same attack.

Basic attacks.

A basic attack is either an inflation, deflation, or oscillation attack following the description in Section
4.1. inflation and deflation attacks that impact the accuracy of coordinate systems, and oscillation
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attacks [111] that impact both the accuracy and stability of coordinate systems. In an inflation attack,
malicious nodes report a very large coordinate to pull nodes away from correct coordinates. In a
deflation attack, to prevent benign nodes from updating and moving towards their correct coordinates,
malicious nodes report coordinates near the origin. Finally, in an oscillation attack, malicious nodes
report randomly chosen coordinates and increase the RTT by delaying probes for some randomly
chosen amount of time. In each of these attacks, nodes report a small, but randomly chosen, local
error value, signaling that they have high confidence in their coordinate position.

Advanced attacks

Several proposals have been made to secure virtual coordinate systems against the above described
basic attacks [54, 94, 111] and have been shown to effectively mitigate them. However, recent re-
search [22, 23] has identified two more subtle and yet highly effective attacks that are able to bypass
existing defenses. They are the frog-boiling and network-partition attacks. In a frog-boiling attack
malicious nodes lie about their coordinates or latency by a very small amount to remain undetected
by defense mechanisms. The key of the attack is that the malicious nodes gradually increase the
amount they are lying about and continue to move further away from their correct coordinates, suc-
cessfully manipulating benign node’s coordinates and thus producing inaccurate RTT estimations. In
a network-partition attack two or more groups of malicious nodes conduct a frog-boiling attack, but
move their coordinates in opposite directions, effectively splitting the nodes into two or more groups.

6.2.2 Complex Attack Strategies

Prior work has considered only single attack strategies, where a malicious node applies the same attack
(inflation, deflation, oscillation, frog-boiling, network-partition) for the entire duration of the attack
and all nodes apply the same attack. However, single attack strategies can be easily detected using
techniques that leverage change-point detection methods. We extend these scenarios to more complex
ones, by assuming that attackers apply sequences of different attacks and not all attacker apply the
same attack strategy. Sequences of different attacks do raise the stakes significantly, since the observed
patterns are more difficult to detect.

Single Random Attack Scenarios

One way to extend in a straightforward way the single attack strategy is to consider the case where
nodes do not perform all the same attack. In this case, each node randomly selects one of the five
single attacks, and applies no attack for some time, then switches to the randomly selected attack.
For example, in this scenario, some malicious node may conduct the inflation attack, while some
other malicious nodes may conduct the frog-boiling attack. We refer to this attack strategy as Single-
Random.

Two Attack Scenarios

Another extension of the single attack strategy is a scenario where an attacker alternates between any
of the five single attacks, interleaving them with a period of no attack. Specifically, such a strategy
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Figure 6.1: Markov Chain with the different attacks and the transition probabilities

is composed of four equal time slots, the first time slot is a non attacking slot, the second consists of
one of the five single attacks, followed by another non attacking slot, and finally the fourth time slot
is a second single attack. The idea behind this model is to see how the existing detection methods, as
well as the methods we propose in this paper, perform in comparison to single attack scenarios. We
experiment with several of such scenarios and select the following as representative:

e Deflation - Frog-Boiling
e Oscillation - Inflation

e Network-Partition - Oscillation

Sequence Attack Scenarios

We model more complex attack scenarios, where the attacker applies different sequences of attacks,
by using a Markov chain model. The states of such a chain represent all the different single attacks
including the No Attack state in which an attacker does not apply an attack. The Markov chain is
presented in Figure 6.1. This Markov chain is irreducible, as the state space is one single commu-
nicating class, meaning that every state is accessible from every state. We consider an irreducible
chain, as we assume that the attacker can change the current attack strategy to any other attack,
and even stop attacking for a while. Therefore, an attacker can execute every attack at any time,
independently of what he has executed previously. Furthermore, the chain is aperiodic, as a return to
a specific state can happen at irregular times. An attack that was already executed previously might
be utilized again from time to time. Summarizing, we can say that the Markov chain is ergodic, as it
is aperiodic, irreducible and positive recurrent. Such an ergodic chain allows to visit individual states
indefinitely often and thus leads to more complex scenarios.

The transition probabilities presented in Figure 6.1 reflect several design goals for generating
sequences of attacks. From the No Attack state, each attack is equally probable, except the probability
that no transition (and therefore no attack) is only 10%, therefore the transition to any attack state
has the probability 18%. We chose these transition probabilities to avoid the risk of the Markov chain
remaining in the No Attack state. From an attack state the transitions to every other attack state
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are equally probable with 15%. This results in the transition probability to the No Attack state to
always be 25% such that we ensure that there are some no attack intervals and that an attacker does
not remain in an attacking state.

Based on the Markov chain presented in Figure 6.1 we created and assessed twenty different
sequence-scenarios. All sequences start in the No Attack state. Below we describe the most relevant
scenarios in terms of representing the different groups of sequences, one group that has a very small
amount of non-attacking intervals, another group with intermediate values of non-attacking intervals,
and the last group that has the highest amount of non-attacking intervals. We base our selection on
the amount of non-attacking intervals as characteristic due to the importance of these intervals for
the detection method leveraged in this work. We measure intervals in iterations where an iteration
is equivalent to 0.5% of the duration of an experiment. We assume all sequences have 200 iterations.
We focus on the following scenarios:

e Sequence A: No attack 15 iterations; inflation 15 iterations; network-partition 55 iterations;
deflation 35 iterations; inflation 45 iterations; inflation 35 iterations. Total amount of non-
attacking iterations: 15

e Sequence B: No attack 10 iterations; inflation 55 iterations; oscillation 50 iterations; frog-boiling
55 iterations; network-partition 30 iterations. Total amount of non-attacking iterations: 10

e Sequence C: No attack 30 iterations; network-partition 35 iterations; frog-boiling 35 iterations;
No attack 15 iterations; frog-boiling 40 iterations; inflation 45 iterations. Total amount of non-
attacking iterations: 45

e Sequence D: No attack 40 iterations; inflation 30 iterations; oscillation 40 iterations; network-
partition 40 iterations; frog-boiling 35 iterations; No attack 15 iterations. Total amount of
non-attacking iterations: 55

e Sequence E: No attack 50 iterations; inflation 10 iterations; No attack 50 iterations; oscillation
55 iterations; oscillation 10 iterations; inflation 25 iterations. Total amount of non-attacking
iterations: 100

e Sequence F: No attack 55 iterations; network-partition 40 iterations; No attack 15 iterations;
frog-boiling 45 iterations; inflation 15 iterations; No attack 25 iterations; No attack 5 iterations.
Total amount of non-attacking iterations: 100

We note that in these sequences of attacks, we still consider malicious nodes that work together by
applying the same attacks in the same time interval.

6.3 Background - Machine Learning

Machine learning [2, 50] is a branch of artificial intelligence and is used for machines that should learn
from experience. A machine is fed with data and should recognize patterns and learn rules about
the data. Machine learning can be divided in two different approaches, the supervised learning and
unsupervised learning. Supervised learning (e.g. classification) takes a training set as input and tries
to find rules or algorithms that enable the mapping of the input data into the desired output data.
The output data (the different classes a datapoint belongs to) is known by a supervisor and the input
data is labelled with this, so that the classifier knows how to map. After the training phase, where
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the classifier /algorithm learns the mapping process, comes a testing phase, where the accuracy of the
mapping process is tested. Unsupervised learning (e.g clustering) takes the input data and tries to
find correlations between data points, the belonging of the data points is not known.

Machine learning techniques, such as classification, have the aim to separate a given data set into
different classes. In our case, the classes that exist are normal and attack, meaning that we have two
different types of data in our data set. On one side, we have data that represents normal updates of
the nodes, and on the other side, we have data that represents malicious update requests.

>0.7 ¥=o,7
attack no attack
>0.82
attack no attack

Figure 6.2: Example of a decision tree.

We choose to apply supervised classification methods as we know how the system works under
normal circumstances and also how the performance of the system degrades when attacks are taking
place. So we can easily generate labelled input data. These classification methods are fed with training
data to learn the difference between normal and malicious data. Supervised classification methods
can operate directly in the feature space/predictor variables and identify separable regions that can be
associated to a given class/dependent categorical variable. Such methods are implemented by decision
trees that come in several variants. Simple versions such as Classification and Regression (Cart) [19]
can predict both categorical and numerical outcomes, while other schemes (C4.5 for instance) relying
on information theory [83] are uniquely adapted to categorical outputs. An example of a decision tree
is illustrated in Figure 6.3.

Another type of classification method, support vector machines (SVM) [102], map the input space
into another dimensional space, the feature space, and then rely on kernel functions for performing
classification in the target space [20]. Figure 6.3 illustrates the mapping of the input data into another
dimensional space.

Input Space Feature Space

Figure 6.3: Illustration of mapping the input space into another dimensional space for SVM!.

'Source: http://www.imtech.res.in/
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6.4 Detection Framework

In this section we describe our new mitigation framework based on machine learning techniques de-
scribed in Section 6.3. The most important thing when applying machine learning techniques is to
define an appropriate feature set. We define the feature set that can detect all the attack strategies
(described in Section 6.2) in the following section.

6.4.1 Feature Set

We have evaluated three different methods (SimpleCart, C4.5, and support vector machines) for
their effectiveness in protecting virtual coordinate systems. We selected these methods since they
have performed well in the past in different contexts and by comparing them we can provide a more
comprehensive analysis of the detection process. Furthermore, we can also highlight some of the
peculiar properties related to the different methods.

We have identified seven feature variables to be used in the prediction task. This process was
challenging since several approaches applied directly on the raw data were not successful in detecting
attacks. The raw data consisted, in our case, of statistical properties of the underlying local error
values. We have analyzed the time series values of both the median and the average local error, but a
straightforward analysis of simple time series values did not perform well. This was due to a four lag
autocorrelation in the observed time series. In order to decorrelate the time series values, we applied
an embedding of the observed one dimensional data into a seven dimensional manifold. Values in the
original time series are given by the median local error described in Section ??. The embedding into
a multidimensional manifold aims at revealing subspaces that can be associated to attack states and
non-attack ones, respectively. Thus, at each sample moment in time, we analyze a seven dimensional
random vector that consists of the following features:

1. Feature A is the median local error of the nodes enedian. This feature represents the global
evolution of the local error. Intuitively, a low median local error means that most of the nodes
have converged to their coordinates and an increasing local error means that the nodes are not
converging and that an attack is occurring.

2. Feature B represents the difference of the median local error at one lag d1 = emedian;- €median, ;-
This feature captures the sense of the variation in the local error. Positive values indicate an
increase in the error, while negative values show continuous decrease in the error. Therefore,
positive values indicate that an attack is occurring. This feature can be seen as a discretized
first derivate of the observed process. Although discrete time events are used to index the time
series, by analogy to the continuous case, we assume that this discretized first derivate captures
the sense (increasing/decreasing) of the underlying time series.

3. Feature C is 62 = €median,~ €median,_,- Lhis feature relates current values to previous values at a
two lag distance. This allows us to observe changes that accumulate over a short period of time.

4. Feature D is 03 = emedian;~ €median,_s, 1S similar to feature C, but works at a three lag distance.
Using a three lag dependency enables us to see accumulated changes over an intermediate period
of time.

5. Feature E is 04= €median,~ €median,_,- 1t captures longer dependence (lag four). Observing a
four lag dependency, we are able to observe changes that accumulate over a longer period of
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Figure 6.4: Bi-dimensional and pairwise feature representation for different attacks - 1740 nodes (10%
malicious) on p2psim.

time. This way, we enable the detection of gradual changes as they occur during a frog-boiling
attack.

6. Feature I' captures the discretized form of the second order derivate d1,- d1, ,. Basically, this
feature can indicate the shape (concave/convex) of the initial time series. We assume a discretized

equivalent of the continuous definition. This feature allows us to observe a change of feature B
over time.

7. Feature G is the absolute value of the discretized form of the second order derivate | d1,- 01, , |-
This absolute value can provide insights in inflection points (i.e., points, where a switch from
convex to concave, or concave to convex is happening). An inflection point is helpful for instance,

when there is a change from an attack (e.g. inflation) to no-attack, where we could see a change
from concave to convex.

We can not visualize a seven dimensional manifold, but to show the rationale for our approach,
we illustrate bi-dimensional pairwise scatter plots of the features for different attacks in Figure 6.4.
We find the features by running the p2psim simulator using the King data set which contains 1740
nodes out of which 10% are malicious nodes. Figure 6.4(a) shows the two dimensional scatter plot
for a frog-boiling attack. Feature A is used for the x-axis and feature E for y-axis. The two classes
(attack and non attack) can be linearly separated in this two dimensional subspace. Figure 6.4(b)
shows another 2 dimensional scatter plot, where feature A and feature F are used. This scenario
corresponds to a deflation attack. In this scenario, the classes can be also linearly separated, and thus
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we argue that these features are appropriate for defending against a deflation attack. However, in
Figure 6.4(c), the same set of features used during an inflation attack shows very limited detection
potential. The fact that feature A and F together can detect whether a deflation attack is occurring or
not, but can not detect an inflation attack illustrates the need for our seven-fold feature set. Different
combinations of features are able to detect different type of attacks. Therefore, the global set of all
seven features can be leveraged to detect the different (frog-boiling, deflation, inflation, oscillation and
network-partition) attacks.

The attack detection problem is stated thus as deciding whether a seven dimensional tuple is
representing an attack or not. From a mitigation point of view, once an attack is identified several
measures can be taken. In a first phase, updating the virtual coordinates can be resumed after the
attack stops, or limited to updates received from known and trusted nodes. The latter assumes an
underlying reputation or trust model. In a second phase, the attacking hosts should be identified and
contained.

To provide some intuition behind our methodology we present in Figure 6.5 the evolution of two
features for a dataset that contains a two attack strategy, Inflation - Oscillation run in the simulator
p2psim using the King data set and 10% malicious nodes. This attack scenario consists of four time
slots, where the first is a non-attacking slot. The second is in this case an inflation attack. The
third time slot is again non attacking, and the fourth and last time slot is the oscillation attack. The
objective of classification is, as already mentioned, to separate the different classes of the data set.
Two classes exist, the non-attacking and attack class. In Figure 6.5, we illustrate how the classifier
can identify different attacks. Figure 6.5(a) shows how feature A, the median of the error, evolves. In
this simple case, the increasing or decreasing trends are easy to identify and one can define when the
attacking time slots take place. Feature A decreases in a non-attacking time slot, and increases during
an attack. However, feature B captures a smoothed version of the overall evolution. In these plots, we
can identify intervals that correspond to positive y-values for feature B. These positive values belong
to attacking time slots.

However, feature B, C, D, and E capture a smoothed version of the overall evolution. The difference
between those features is, that they have a different correlation to past iterations. The correlation of
feature E is more verbose, and so we can see in Figure 6.5(e) that the evolution is more significant than,
for instance, in Figure 6.5(a), as the correlation of the latter with the time is smaller. In these plots,
we can identify intervals that correspond to positive y-values for all the four graphs corresponding
to feature B, C, D, E. These positive values belong to attacking time slots. In Figure 6.5(f) and
Figure 6.5(g) represent feature F and G respectively. In these figures we can detect a peak for the
instances where the attacking time slots start.

6.5 Experimental Classification Results

In this section, we evaluate the single and complex attack strategies described in Section 6.2 using
Vivaldi within two different environments. First, we evaluate the effectiveness of the machine learning
techniques on the dataset resulting from simulation using the p2psim simulator [77] and the King data
set topology [45]. Second, we evaluate our machine learning techniques on the data set resulting from
deploying Vivaldi on 500 nodes on the Internet PlanetLab testbed [28]. We evaluate our detection
method in two setups: global and local. In the global case, every node’s information is centrally
collected and analyzed together, while in the local case each individual node decides if an attack is
taking place or not based only on its own information.
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We use the classification model as described in Section 6.4. To calculate the feature set for the
global case we take the median local error of each node in the system, i.e. for 1740 nodes in the
simulation and for 500 nodes in the Internet PlanetLab testbed. The acquired model is applied
to three different classifiers, namely the two decision trees, SimpleCart [19] and C4.5 [83], and the
support vector machines, LibSVM [25]. All experiments for the simulator as well as for PlanetLab
are evaluated using the Java source code of weka [47]. We have tried all different kernel functions and
their corresponding parameters for the LibSVM and because no significant differences were relevant,
we decided to use the default values that come with this weka composant: C-SVC for the kernel type,
radial-basis kernel function, with the default values (degree in kernel function was set to 3, gamma
parameter to 0.5 and nu to 0.5).

To evaluate the results, we calculate the percentage of attack events that the classifier correctly
classifies, which we refer to as the true positive rate (TPR). We also calculate the percentage of
non-attack events that the classifier incorrectly classifies as attack events, which we refer to as the
false positive rate (FPR). We computed the TPR and FPR using the well established 10-fold cross-
validation scheme, where the system is trained with randomly extracted 1% of the data, and tested
with %0 of the data. This process is repeated 10 times for each classification.

6.5.1 Simulation Results

We conduct simulations using the King data set topology [45], as it is representative of an Internet-
wide deployment of a peer-to-peer system and has been used previously to validate several other
VCSes. The King data set consists of RT'T measurements between 1740 nodes, of which the average
RTT is 180ms. For each simulation, all nodes join in a flash-crowd sequence at the beginning of
the simulation. The simulations last for 200 time units, where each time unit is 500 seconds. Each
node independently chooses a neighbor set of 64 nodes from which it receives coordinate updates. We
compare our machine learning methods to a previously proposed solution using outlier detection [111]
that can defend against inflation, deflation, and oscillation.

Single Attack Strategies.

We start by analyzing single attack scenarios, as defined in Section 6.2.1, where the following single at-
tacks are classified: inflation, deflation, oscillation, frog-boiling, network-partition, and single-random.
Table 6.1 shows the classification results. The data set consists of the first 30% of the time where no
attack occurs, and the remaining 70% the attack does take place. This distribution of time intervals
was chosen because some amount of samples of normal data, without attacks, is needed for training.

We note that for the decision trees, SimpleCart and C4.5, the TPR is, for all the different attacks,
around 99%, and the FPR for the two classifiers is around 3% indicating that these decision trees
can classify correctly almost all attacks. When the number of attackers applying the given attack is
increasing, the TPR remains more or less the same, whereas the FPR increases showing that even
though most attacks are still correctly classified, normal updates are classified incorrectly more often
as the number of attackers increases. We also observe that for all the different types of attacks,
independently of the number of attackers, support vector machines perform badly, especially with
respect to the FPR.

In order to see to what degree decision trees can detect a frog-boiling attack, we applied a ten-times
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Table 6.1: p2psim - 1740 nodes - Single Attack Strategies - Classification Results

SimpleCart C4.5 LibSVM

TPR | FPR | TPR | FPR | TPR | FPR
10% attackers | 0.99 | 0.01 | 0.99 | 0.02 | 0.67 | 0.67
Inflation 20% attackers | 0.99 | 0.01 | 0.99 | 0.02 | 0.67 | 0.67
30% attackers | 0.97 | 0.05 | 0.99 | 0.02 | 0.67 | 0.67
10% attackers | 0.99 | 0.013 | 0.99 | 0.02 | 0.67 | 0.66
Deflation 20% attackers | 0.98 | 0.021 | 0.98 | 0.02 | 0.67 | 0.67
30% attackers | 0.98 | 0.016 | 0.97 | 0.03 | 0.67 | 0.67
10% attackers | 0.99 | 0.008 | 0.99 | 0.01 | 0.67 | 0.66
Oscillation 20% attackers | 0.98 | 0.02 | 0.99 | 0.03 | 0.67 | 0.67
30% attackers | 0.98 | 0.020 | 0.98 | 0.030 | 0.67 | 0.67
10% attackers | 0.99 | 0.011 | 0.99 | 0.013 | 0.68 | 0.64
Frog-Boiling 20% attackers | 0.99 | 0.016 | 0.98 | 0.03 | 0.67 | 0.67
30% attackers | 0.98 | 0.025 | 0.98 | 0.03 | 0.67 | 0.67
10% attackers | 0.99 | 0.01 | 0.98 | 0.014 | 0.79 | 0.44
Network-Partition | 20% attackers | 0.99 | 0.01 | 0.99 | 0.01 | 0.67 | 0.67
30% attackers | 0.99 | 0.006 | 0.98 | 0.03 | 0.67 | 0.67
10% attackers | 0.99 | 0.02 | 0.98 | 0.03 | 0.67 | 0.67
Single-Random 20% attackers | 0.99 | 0.003 | 0.98 | 0.02 | 0.67 | 0.67
30% attackers | 0.99 | 0.002 | 0.99 | 0.02 | 0.67 | 0.67

Attack Strategy

Table 6.2: p2psim - 1740 nodes - Complex Scenarios - Two Attacks - Classification Results

SimpleCart C4.5 LibSVM
TPR | FPR | TPR | FPR | TPR | FPR
10% attackers | 0.95 | 0.05 | 0.94 | 0.05 | 0.58 | 0.41

Attack Strategy

Deflation - 20% attackers | 0.96 | 0.05 | 0.95 | 0.05 | 0.51 | 0.47
Boiling 30% attackers | 0.98 | 0.02 | 0.97 | 0.03 | 0.52 | 0.49

10% attackers | 0.97 | 0.04 | 0.97 | 0.04 | 0.51 | 0.48
Oscillation - 20% attackers | 0.97 | 0.03 | 0.96 | 0.04 | 0.50 | 0.49
Inflation 30% attackers | 0.96 | 0.04 | 0.97 | 0.03 | 0.51 | 0.49

10% attackers | 0.95 | 0.05 | 0.97 | 0.03 | 0.67 | 0.34
Network-Partition - | 20% attackers | 0.91 | 0.09 | 0.93 | 0.07 | 0.54 | 0.46
Oscillation 30% attackers | 0.90 | 0.10 | 0.92 | 0.08 | 0.55 | 0.45

slower frog-boiling attack as well as hundred-times and thousand times slower and evaluated. In this
case decision trees showed a very good performance, for 10%, 20%, and 30% of malicious peers we
achieve always a true positive rate around 98% and a false positive rate around 2%.

Complex Attack Scenarios.

We now investigate more complex sequences of attacks, specifically the two attack and sequence attack
scenarios as defined in Section 6.2.2. Table 6.2 describes the classification results regarding the two
attack scenario. It can be seen that the TPR for both decision trees (i.e., SimpleCart and C4.5) is less
than for the single attack scenarios and the FPR is in comparison a bit higher. Overall, the decision
trees perform well, although the results are not as good as the single attack scenario. In comparison,
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Table 6.3: p2psim - 1740 nodes - Complex Scenarios - Sequence Attacks - Classification Results

SimpleCart C4.5 LibSVM
TPR | FPR | TPR | FPR | TPR | FPR
093 | 043 | 0.94 | 0.42 | 0.93 | 0.86
0.96 | 0.48 | 0.97 | 0.33 | 0.95 | 0.76
0.97 | 0.08 | 0.97 | 0.05 | 0.79 | 0.72
0.97 | 0.05 | 0.98 | 0.02 | 0.73 | 0.73
0.98 | 0.02 | 0.99 | 0.02 | 0.53 | 0.46
0.97 | 0.04 | 098 | 0.02 | 0.7 0.3

lloiiviielivsiieg

the support vector machine library seems to ameliorate, especially in the context of the FPR for the
“Network-Partition - Oscillation” attack sequence.

Table 6.3 illustrates the results for the sequence scenarios for 10% malicious nodes. The results
show that all techniques have a very good TPR, whereas the FPRs differ significantly. We find that
the difference lies in the amount of non-attacking iterations that each sequence has. Sequences A
and B are in the group with only a small amount of non-attacking iterations - 10 and 15 iterations.
The high FPR thus results due to the classifier not having enough training data for learning normal
behavior. The two other groups show better results, for example, as sequences C and D have 45
and 55 normal iterations, respectively. Sequences E and F have in this case a quite high value of
non-attacking iterations, both have 100 of them, so exactly half of the data set is non-attacking. We
can deduce then that having only 5% non-attacking training data is definitely not enough, whereas
25% already shows good results. This outcome can be explained by the need for an heterogeneous
training set for the decision trees; thus, if we have less “No attack” time iterations, it is difficult for
the classifier to learn what normal behavior is.

Comparison with Outlier Detection.

In previous sections we showed that our classification techniques work well when applied globally.
Nevertheless, previous works proposed mitigation techniques with respect to single nodes, even if only
effective for inflation, deflation, and oscillation attacks. In particular, in the work from [111], each node
independently decides if an update should be considered malicious or not by using spatial-temporal
outlier detection. We compare our method, applied in a local manner where each node will classify
attacks based only on its local information, with the work from [111], referred to as Outlier Detection
in the remainder of the section.

As this evaluation depends on the amount of updates those individual nodes receive, we observed
some differences in the classification results. For this local classification, we consider that every node
will create its own decision tree for the individual decision process. We illustrate the local classification
results when there are 10% malicious nodes and for fifty randomly chosen benign nodes since this allows
us to have a statistical overview over the whole data set. Based on these fifty nodes we create box-and-
whisker diagrams, as those show the median values, the 25" and 75" percentiles, and the minimal
and maximal value of each data set. These diagrams are shown in Figure 6.6 and in Figure 6.7. We
show results only for the C4.5 technique as it has a similar performance with SimpleCart, while being
more relevant in recent research, and it outperforms LibSVM.

Figure 6.6 shows that for all the different cases of attack strategies considered, the classification
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Table 6.4: PlanetLab - 500 nodes - Single Attack Strategies - Classification Results

SimpleCart C4.5 LibSVM

TPR | FPR | TPR | FPR | TPR | FPR
10% attackers | 0.97 | 0.04 | 0.97 | 0.03 | 0.90 | 0.20
Inflation 20% attackers | 0.95 | 0.08 | 0.95 | 0.08 | 0.91 | 0.17
30% attackers | 0.97 | 0.05 | 0.99 | 0.01 | 0.93 | 0.14
10% attackers | 0.99 | 0.02 | 0.98 0.2 0.90 | 0.21
Deflation 20% attackers | 0.96 | 0.05 | 0.95 | 0.07 | 0.92 | 0.16
30% attackers | 0.97 | 0.05 | 0.98 | 0.03 | 0.93 | 0.13
10% attackers | 0.99 | 0.02 | 0.99 | 0.01 | 0.95 | 0.10
Oscillation 20% attackers | 0.99 | 0.02 | 0.99 | 0.02 | 0.95 | 0.11
30% attackers | 0.99 | 0.02 | 0.99 | 0.02 | 0.95 | 0.09
10% attackers | 0.96 | 0.05 | 0.97 | 0.04 | 0.80 | 0.21
Frog-Boiling 20% attackers | 0.97 | 0.04 | 0.98 | 0.03 | 0.85 | 0.15
30% attackers | 0.97 | 0.05 | 0.98 | 0.04 | 0.86 | 0.15
10% attackers | 0.93 | 0.10 | 0.93 | 0.07 | 0.83 | 0.17
Network-Partition | 20% attackers | 0.96 | 0.04 | 0.97 | 0.03 | 0.79 | 0.21
30% attackers | 0.96 | 0.05 | 0.94 | 0.08 | 0.85 | 0.14
10% attackers | 0.99 | 0.03 | 0.98 | 0.03 | 0.92 | 0.16
Single-Random 20% attackers | 0.99 | 0.01 | 0.99 | 0.01 | 0.96 | 0.07
30% attackers | 0.99 | 0.014 | 0.99 | 0.013 | 0.94 | 0.11

Attack Strategy

technique performs better than Outlier Detection. In Figure 6.6(a), we see that Outlier Detection
performs best for the inflation attack, and we see that frog-boiling has worse results. This is due to
the fact that Outlier Detection can not handle frog-boiling as explained earlier and shown in [22, 23].
Regarding Figure 6.7 we note that for all the different attack strategies, our classification technique
has much better median FPRs than the Outlier Detection.

6.5.2 PlanetLab Results

To validate our findings over the real Internet, we implemented Vivaldi and deployed it on PlanetLab.
For our experiments we used 500 nodes, chosen from all over the world, from which the average RTT
is 164ms. Each experiment was run for 30 minutes. To create the sequence attack scenarios we divide
those 30 minutes by 200 (the length in iterations of a sequence), so a single iteration consists of 9
seconds (e.g. if an attack is conducted for 10 iterations, then that translates into 90 seconds). All other
settings were the same as in the simulations. To find the effectiveness of our techniques, we conduct
in our PlanetLab experiments the same attacks and sequences as in the simulations on p2psim.

Single Attack Strategies.

Table 6.4 illustrates the results for the single attack scenarios. We note that both decision trees have
very good TPR and FPR, similar to the simulation results. However, in the PlanetLab testbed we
obtain much better results when applying the support vector machines. This difference occurs due to
the decreased amount of nodes compared to the simulation, which leads to the effect that less variances
needed to be considered for rendering the feature set linear separable.
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Table 6.5: PlanetLab - 500 nodes - Complex Scenarios - Two Attacks - Classification Results

SimpleCart C4.5 LibSVM
TPR | FPR | TPR | FPR | TPR | FPR
10% attackers | 0.93 | 0.07 | 0.94 | 0.06 | 0.83 | 0.16

Attack Strategy

Deflation - 20% attackers | 0.88 | 0.11 | 0.89 | 0.10 | 0.86 | 0.13
Boiling 30% attackers | 0.93 | 0.07 | 0.91 | 0.08 | 0.87 | 0.13

10% attackers | 0.95 | 0.05 | 0.95 | 0.05 | 0.92 | 0.085
Oscillation - 20% attackers | 0.97 | 0.03 | 0.96 | 0.04 | 0.90 | 0.095
Inflation 30% attackers | 0.97 | 0.03 | 0.97 | 0.03 | 0.89 | 0.11

10% attackers | 0.92 | 0.078 | 0.915 | 0.085 | 0.80 | 0.20
Network-Partition - | 20% attackers | 0.89 0.11 0.90 0.09 0.84 | 0.16
Oscillation 30% attackers | 0.91 0.09 0.93 0.07 | 0.85 0.15

Table 6.6: PlanetLab - 500 nodes - Complex Scenarios - Sequence Attacks - 10% attackers - Classifi-
cation Results

SimpleCart C4.5 LibSVM

TPR | FPR | TPR | FPR | TPR | FPR
0.93 | 0.83 | 0.93 | 0.65 | 0.93 | 0.93
0.95 | 0.95 | 0.94 | 0.52 | 0.95 | 0.95
0.86 | 0.26 | 0.84 | 0.31 | 0.78 | 0.78
0.87 | 0.21 | 0.89 | 0.22 | 0.73 | 0.71
0.95 | 0.06 | 0.96 | 0.05 | 0.95 | 0.06
0.87 | 0.14 | 0.88 | 0.12 | 0.80 | 0.19

Pllcliviieljivel i

Complex Attack Strategies.

In addition, we also evaluate the more complex sequences. Table 6.5 provides results for the two-attack
sequences. We note that, similar to the single attacks, the results for support vector machines are much
improved for PlanetLab over the simulator. However, the two decision trees did not perform as well
on PlanetLab as they did for the simulations, especially for the 20% and 30% of malicious nodes. This
difference occurs as, data produced on PlanetLab has more randomness and noise. Overall, the results
are still satisfying though, as the TPR is around 90% and the FPR does not exceed 11%. Table 6.6
illustrates the classification results for the sequence attack strategies for 10% attacking nodes.

Local Classification.

Furthermore, we also analyze PlanetLab results when each individual node decides locally if an attack
is taking place or not based only on its individual information. Therfore, a node will creats its own
decision tree for the decision process. We show the results in Figure 6.8. We illustrate the C4.5
classification technique, as it outperforms LibSVM, has similar performance to SimpleCart, and has
been widely adopted. Similar to the simulations, we evaluate the results when there are 10% malicious
nodes and for a set of fifty randomly chosen nodes to have again a statistical overview of the data. To
illustrate the evaluation we again use box-and-whisker-diagrams.

Figure 6.8 illustrates that C4.5 has a very high TPR in all the different attack strategies, which
mirrors the results for the global classification. We also see that sequences A and B have high FPRs,
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which is similar to the global classification. Overall, except for sequences A and B, the results have
good median FPRs indicating that the defined classification technique also work on a local basis when
applied on a real Internet testbed.

6.6 System Integration

Previously, we evaluated our solution when using machine learning as an offline analyzing tool. In this
section, we show how the proposed techniques can be integrated in a system and used as a real time
detection tool. This is an important task, as real-time detection is essential for securing networks.
However, there is a lack of anomaly detection that is integrating a supervised decision process into a
real system. For supervised classification one needs to have labelled data which is not possible in an
online manner. In order to overcome this challenge, we take the labelled data and create the decision
making process offline and later we implement this decision process in the real system. We focus on
decision trees as we observed that they obtained the best results in the offline analysis. Between C4.5
and CART we choose to use the C4.5 algorithm, as this is a more relevant method nowadays, and
the results of C4.5 and CART were similar. We present both simulation (p2p simulator) and Internet
(Planetlab testbed) results for the real time detection of attacks.

6.6.1 Simulation Results

Similar to the offline case, we use the local and global approaches for the real system integration, as
p2psim simulator supports experimenting with both approaches.

While in the offline classification presented in Section 6.5, we created one attack tree for each
attack and for each attack scenario (two attack and sequence scenarios), we can not do the same for
the real time analysis since we do not know in advance which attack will take place. Instead, we create
a general decision tree for all the attacks and implement it in the system in order to obtain real time
detection. Below we describe the creation of the decision tree and the real-time detection results for
the global and local integration.

Global Integration

We implement a method in the simulator that will traverse the decision tree depending on the features
calculated and also create a decision tree. The system will calculate a global feature set at every
iteration based on the median local error of all nodes and will decide, if at that iteration, an attack is
occuring.

Tree Creation: We use the experimental data of the single attack scenarios gathered for the offline
classification to calculate the feature set under all the different attacks. We then use that data to
generate one single generic decision tree that will detect all the different attacks.

The resulting decision tree has 14 leafs and 13 decision nodes and is shown in Figure 6.9. A
decision node is considered as node that has 2 leafs, so it is a node where a decision is taken in order
to choose the correct leaf. In this figure, we see that Features A, B, C, D, and E are integrated in the
decision tree. Even though, Features F and G are not integrated in the global decision tree, they are
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important for the local decision tree. C4.5 bases its decisions on information theory, therefore we can
say that the most relevant feature is Feature E as it is on the head of the decision tree and makes the
first division of the tree.
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Figure 6.9: Global Decision Tree.

Results: Table 6.7 shows the results for the single attack scenarios. We see that even though, we use
only one decision tree for all the different attacks, the results are similar to the offline classification
results shown in Table 6.1. System integration results for the two attack scenarios are shown in
Table 6.8(a), we note that also for these two attack scenarios we obtain similar results to the offline
classification. The results show that although the decision tree was built upon single attack scenarios,
it is general enough to detect other, more complex, attack scenarios. Integration results for the
sequence attack scenarios for 10% malicious nodes are illustrated in Table 6.8(b). When comparing
the integration results with the offline results (Table 6.3) we detect a few differences, we run each of the
experiments 5 times, and for every run, we observed similar differences. We saw that the offline results
for scenarios C and D are similar, but they differ in the integration results. D has 9% lower TPR than
C. This difference results from the different way of creating the decision tree in the offline analysis
and the real-time detection. For the offline analysis, for each attack scenario a separate decision tree
was built, while here we use one general decision tree for all the different type of attacks.

Local Integration

Global integration has a large network overhead as features are needed from all participating nodes.
Global integration may also not work properly if features of part of the network are not available,
for instance due to network failures, or if the centralized repository fails. Local integration can
address these drawbacks. However, as we showed in the offline classification analysis in Section 6.5,
local classification does not perform as well as global classification. Even if the average results were
acceptable, there is a large variation (the standard deviation for the FPR is 9% and 7% for the TPR)
between nodes, so we had a good median false positive rate, but the maximum of the false positive
rates was almost 100% for the sequence attack scenarios. We expect thus that the results for the local
integration to have a higher false positive rate than those for global integration.
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Table 6.7: p2psim - 1740 nodes - Single Attack Scenarios - Global Integration Results

C4.5
Attack Strategy TPR | TPR
10% attackers | 0.99 | 0.04
Inflation 20% attackers | 0.98 | 0.04

30% attackers | 0.97 | 0.04
10% attackers | 0.99 | 0.05
Deflation 20% attackers | 0.98 | 0.05
30% attackers | 0.99 | 0.04
10% attackers | 0.99 | 0.05
Oscillation 20% attackers | 0.99 | 0.05
30% attackers | 0.99 | 0.05
10% attackers | 0.97 | 0.06
Frog-Boiling 20% attackers | 0.98 | 0.05
30% attackers | 0.98 | 0.05
10% attackers | 0.97 | 0.04
Network-Partition | 20% attackers | 0.98 | 0.04
30% attackers | 0.98 | 0.05
10% attackers | 0.99 | 0.06
Single-Random 20% attackers | 0.99 | 0.05
30% attackers | 0.99 | 0.05

Table 6.8: p2psim - 1740 nodes - Global Integration Results
(b) Sequence Attack Scenarios - 10% at-

(a) Two Attack Scenarios tackers
C4.5 C4.5
Attack Strategy TPR | TPR Attack Strategy TPR | TPR
10% attackers | 0.97 | 0.03 A 0.89 | 0.15
Deflation - 20% attackers | 0.98 | 0.03 B 0.85 | 0.36
Boiling 30% attackers | 0.98 | 0.02 C 0.91 | 0.03
10% attackers | 0.99 | 0.04 D 0.82 | 0.04
Oscillation - 20% attackers | 0.96 | 0.02 E 0.99 | 0.02
Inflation 30% attackers | 0.96 | 0.02 F 0.94 | 0.04
10% attackers | 0.96 | 0.04
Network-Partition - | 20% attackers | 0.96 | 0.03
Oscillation 30% attackers | 0.97 | 0.03

Tree Creation: We first created a single decision tree considering all the nodes simply based on
the local error of every single node. This decision tree is used by all the nodes for each individual (per
node) decision process. This approach did not perform well and resulted in a large FPR (around 30%)
and a low TPR (around 40%). Due to the integration in the real system, there is a large variation
of the local error values between the single nodes, so it is not possible to adapt one behavior scheme
that can cover all the different variations of the nodes. To address these limitations, we decided to
take into account not only the local error value for each single node, but also the median of the 64
neighbor nodes. So we create a decision tree based on the median values of the neighbor set, again
this one decision tree is used by all the nodes for the individual decision process. This approach is
feasible as each node in Vivaldi, as a normal part of the protocol, has knowledge about the error values
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of its neighbors. Finding the median value allows a single node to avoid having a large variation in
the values compared to other nodes. So creating one decision tree considering the features for all the
nodes resulted in a tree composed of 380 decision nodes. Although this sounds like a hugh decision
tree and one might think that a node needs to take a hugh number of decisions in order to classify
the data into an attack or non-attack, it is interesting to note that the decision tree is fat and short.
So the average path a node takes before classifying consists of 12.64 decision nodes. The longest path
consists of 28 decision nodes and the shortest path consists of 3 decisions. As we cannot present such
a large decision tree we give an overview of the usage of every feature in Figure 6.11. We see that
Features A and E are the two most relevant features. We also see that all the features are used,
compared to the decision tree of the global integration, where Features F and G where not relevant.
This means that even if the features were not that relevant for creating a global decision tree, they
were needed for taking decisions on a local basis. This relates to the fact that Feature E works like
a long term memory (lag 4), while Features F and G are based on short term. The global decision
tree relies mostly on Feature E and not on F and G because it obtains and uses all the measurements
from all nodes and as such is slower to react to brusque changes, since some of the measurements
will outweight each other. Local nodes are more reactive in detecting fast changes, but more decision
nodes are needed in order to capture all the different changes.

Results: Figure 6.10 shows the results for the local integration in the p2psim simulator of the
decision tree based on the median local error value of the 64 neighbor nodes considering 10% malicious
nodes. The median TPRs for the single attacks (Figure 6.10(a)) are similar to the global integration
results. The rectangle indicates the 25" and 75" percentiles. For all the single attacks the rectangle
is close to the median value, which means that most of the nodes have similarly good results for
classification. However, outliers do exist, as indicated by the sample minimum. The FPRs for the
single attacks (Figure 6.10(b)) also has good values, where the 25" and 75" percentile are very close
to the median value. Although, the sample maximum indicates that at least one outlier node for
each attack that has a high FPR. The sample minimum of the TPRs for the two attack scenarios
(Figure 6.10(c)) show that even in the worst case nodes do have high TPR. On the other hand, the
corresponding FPRs show that in the worst case nodes have high FPR (Figure 6.10(d)). Furthermore,
the TPRs for the sequence attack scenarios (Figure 6.10(e)) show results similar to those found in the
global integration. The same is seen for the FPRs of the sequence attack scenarios (Figure 6.10(f)),
where one can clearly see the difference of the amount of non-attacking intervals, where scenarios A
and B have only very low amount and therefore have a high FPR and also high outliers.

6.6.2 PlanetLab Result

Similar to the offline analysis, we only present local integration results for PlanetLab.

Tree Creation: We create the decision tree for PlanetLab in a way similar to that done for the
p2psim simulator. Each individual node calculates its feature set by finding median error value of its
64 neighbors. A single decision tree is generated that is used by all nodes for the individual decision
process. Considering only the local integration is preferable as the goal of Vivaldi is to compute
coordinates in a decentralized fashion. The resulting decision tree is composed of 76 decision nodes
(average path before classifying: 8.5 decisions; largest path: 13 decisions; shortest path: 3 decisions),
this is a large difference to the decision tree for the local p2psim integration (380 nodes). This means
therefore, that on PlanetLab, the different attacks are easier to differentiate than in p2psim. We
attribute the difference to the fact that in PlanetLab we use 500 nodes, whereas in p2psim we use
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Figure 6.11: Histogram of the features in the two local decision trees.

the King dataset which has 1740 nodes. Having less nodes to cover results in smaller variance and
thus a simpler decision process. Figure 6.11 gives an overview of the relevance of every feature in
the decision tree. One can see that the overall distribution of features is similar in the p2psim and
PlanetLab decision trees, but feature E is more relevant to PlanetLab and features F and G are less
relevant for PlanetLab compared to p2psim.

Results: Figure 6.12 shows the results for the local integration in PlanetLab considering 10%
malicious nodes. Overall, the PlanetLab integration results look similar to the p2psim integration
results. Although, the TPRs for the single attack scenarios (Figure 6.12(a)) do not have regular
outliers and most of the minimum values are very close to the 25" percentile. This leads us to the
conclusion that outliers happen only very rarely. Nevertheless, there are more outliers for the FPR
of the single attacks (Figure 6.12(b)) but the median FPR is even lower than for the p2psim results.
The two attack scenarios do show more outliers in the TPR (Figure 6.12(c)) than the FPR (Figure
6.12(b)). The sequence attack scenarios show only few outliers for the TPR (Figure 6.12(e)) but a
few more outliers for the FPR (Figure 6.12(f)).
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6.7 Discussion

In this work, we applied global classification, where at a central point, all the information of all the
nodes comes together and a feature set is built based on the median local error values of all nodes.
This is easy to achieve in a simulation based system. However, this approach cannot always be applied
as a central authority might not be available as for instance in PlanetLab. Therefore, we were not
able to integrate a global decision tree in PlanetLab and a global classification for PlanetLab is only
available in the offline analysis in Section 6.5. Furthermore, a central authority for providing a decision
process represents a single point of failure and could also become a bottleneck. So overall, a local
classification is more preferable and the motivation for us to perform the global classification was to
obtain a proof of concept.

Nevertheless, some challenges exist for the local classification. In the offline classification analysis,
a decision tree was created for every node, so that every node had its own decision tree. Although, in
the system integration a single decision tree was produced so that every node used the same decision
tree. In general, the offline approach, considering one decision tree per node, is more desirable.
Unfortunately, this approach is infeasible in a real system due to the supervised classification method.
For every node, the algorithm would need to be trained and at every node a different decision tree
would need to be implemented and still a good performance could not be guaranteed as the behavior
might have fluctuations in different runs and the decision tree might not be suitable for variations.
Unless, a learning process could be integrated at every node, so that a node could be able to train
itself using the supervised classification, this approach is not applicable.

Focussing on a single decision tree for all the nodes, one needs to discuss how that decision tree
would be distributed in the system as a central authority providing the decision process is undesirable.
Also, it could be resource consuming if every node stores the whole decision tree. So a distribution
of parts of the decision process would be needed. Using a reputation based system might lower the
risk of having attackers that provide falsified decision processes to a node. Furthermore, one could
think of using some kind of byzantine fault tolerant system [21] in a scalable variant [3] to provide a
distribution that guarantees safety and liveness.

In the experimental results and the system integration section, we see that using supervised ma-
chine learning techniques achieve good results. Unfortunately, the supervised machine learning tech-
niques like classification suffer from inconveniences based on the need for training the algorithm. One
inconvenience is that the algorithm would need to be re-trained for adapting it to another system,
as the behavior in benign conditions as well as under attack might be different depending on the
system. Furthermore, it is not always as easy to get labelled data as in our case, and ground truth
can be difficult to get. A way to overcome these issues is to use unsupervised machine learning tech-
niques. Although up to now, the unsupervised techniques do not provide as good accuracy compared
to supervised techniques.

Especially in intrusion detection this debate has lead to many research for finding the optimal
approaches. In intrusion detection systems the network is monitored to find deviations from normal
traffic. Machine learning is used in this case to learn the benign traffic and to being able to identify
deviations of that benign traffic. The assumption that the characteristics of malicious traffic differs
from the characteristics of benign traffic was introduced in [33]. In order to capture these characteristics
[33], and the successor [49] make use of profiles based on statistical components. After that many
approaches have been proposed that make use machine learning techniques [1, 17, 31, 44, 51, 61, 67,
79, 107].
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One branch of intrusion detection systems is anomaly detection [6, 24, 39, 42, 48, 58]. Anomaly de-
tection has been extensively leveraged in developing intrusion detection systems. For example, Bolzoni
et al. [17] showed how to automatically and systematically classify detected attacks for anomaly-based
intrusion detection systems. The main idea was to extract information out of an attack and to com-
pute similarities of the information of attack data in order to avoid the manual implementation of
heuristics, and later classify it automatically, semi-automatically and accordingly raise alerts. One
proposed method used support vector machines [102] and a rule learner algorithm for classification.
While support vector machines have proved to be efficient (when tuned properly), in our case, we were
surprised to discover that their potential usage was quite limited, despite extensive tuning with the
most common kernel functions parameter calibration. This anecdotally confirms Sommer et al.’s [96]
findings that Machine Learning techniques have often not been successful in real-world IDS applica-
tions due to that a detected anomaly does not immediately imply an attack. One major problem with
any detection framework is given by the small drifts that might slowly bias the detection process.
Repetitive training [31, 67] might be a general solution for decreasing the ratio of false positives.

6.8 Conclusions

In this work, we have addressed the detection of different types of attacks against virtual coordinate
systems, the known attacks, such as inflation, deflation and oscillation, as well as the recently identified
frog-boiling and network-partition attacks. Besides these existing attacks, we have elaborated more
complex attack strategies, the single-random attack scenario, two attack scenario, and sequence attack
scenario. We have proposed, as a detection method, to apply supervised machine learning techniques
that leverage decision trees, namely SimpleCart and C4.5, and support vector machines to detect all
different attack strategies. We identified a feature set and by representing it in a multidimensional
manifold, we revealed attacks as these feature variables are used for the prediction and decision task.
To our knowledge, this is the first work that is capable of mitigating all known attacks against virtual
coordinate systems.

We have validated our detection method through simulation using the King data set for the p2psim
simulator as well as through real deployment on the PlanetLab testbed. The detection method is
evaluated in a global manner, where the local information of all nodes are together analyzed, as well
as in a local manner, where each node has only the local information to analyze and evaluate if an
attack is happening or not. We have shown that in our setting, decision trees outperform support
vector machines by achieving a much lower false positive rate. Regarding the two different types of
decision trees, the results are similar, thus there is no clear better choice. The outcome for the sequence
attack scenarios illustrates that a minimal set of normal data is needed for correctly classifying normal
behavior, pointing to at most 25% of the data is needed to do so. Furthermore, we compared the
proposed detection technique, the decision tree, to existing detection and mitigation techniques, fixed
threshold-based outlier detection. This comparison has confirmed that the decision tree as a detection
method outperforms the existing outlier detection not only for the frog-boiling, network-partition, or
complex attack strategies but also for the inflation, deflation, and oscillation attacks. The results for
simulations using the King data set and for real deployments on PlanetLab both demonstrate that
our approach identifies the different attacks with a ~ 95% true positive rate.

Thereafter, we have validated the usage of decision trees as a detection tool by integration in the
real system as an online real-time detection tool. We elaborated an enhanced local manner for the
integration as real-time detection. The enhanced local detection does not only include the values
from the node itself, but includes also values for calculating the feature set of its whole neighbor set.
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Taking into consideration the neighbor set of a node, that node has a better overview and is able to
better define if an attack is occurring or not. We have integrated decision trees in a global manner
and local manner in the p2psim simulator. Furthermore, we also integrated the real-time detection
tool in a local manner on the PlanetLab testbed. The real-time detection validates the performance
we achieved during offline classification with a ~ 95% true positive rate for the global manner, and a
~ 90% true positive rate for the improved local manner.
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Chapter 7

Conclusions and Perspectives

The contribution of this thesis is twofold. The first contribution consists of a game theoretical frame-
work, where we have systematically studied attack and defense techniques in order to assess strategic
interactions. Besides the game theoretical framework we have also assessed the critical component of
an outlier detection mechanism: the fixed threshold selection. Using a fixed threshold is inflexible and
may be exploited by an adversary to remain undetected. Therefore, we have leveraged control theory
and have designed an adaptive threshold technique using a feedback system. The contributions of this
part can be summarized as follows:

e We have modeled rational attackers in virtual coordinate systems using the Nash equilibrium
and irrational attackers using the quantal response equilibrium. From the defender side, we have
used game theory to tune our defensive mechanisms in order to mitigate the attacks.

e Using our framework, we have determined that for large networks (i.e., the King topology),
the inflation attack has the greatest impact on the system. To defend the system, we have
found that spatial-temporal outlier detection is the most effective technique given lower spatial
outlier thresholds (e.g., < 1.5) and both spatial-temporal and spatial outlier detection provide
similar defense performance for higher thresholds. Furthermore, our analysis has found that,
independent of the game strategy or the error metric selected, a spatial outlier threshold of 1.25
results in the best system performance, which is smaller than the value found in previous work.

e We have found that the resulting strategy profiles for smaller networks (i.e., the AMP topology)
are not as homogeneous as those for the larger King topology, with most of the resulting strategy
profiles consisting of a mixed strategy. For example, given the spatial outlier threshold of 1.75,
the attacker has the greatest payoff while applying all three attacks with their given probabilities
using only 10% malicious nodes. The countermeasure profile looks similar, applying each of
the three defense techniques. Both the percentage of malicious nodes necessary to efficiently
create the greatest negative impact and the attack and defense profiles have not previously been
systematically explored.

e We have found that when comparing strategies using a fixed threshold with strategies using an
adaptive threshold selection for the outlier detection, the adaptive threshold is more effective in
defending against attacks than a fixed threshold. Our analysis has shown that when an attacker
has as goal disturbing the network as much as possible, using inflation with 30% attackers is
the best attack strategy. If the attacker wants to remain also undetected then oscillation and
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deflation attacks with 10% attackers are the best rational choice. We have found that the best
parameters for the adaptive threshold is to use the 75" percentile of the prediction error and
with a value for the constant ¢ of 0.08 to update the threshold, where ¢ is a system parameter
that captures the importance given to the prediction error when updating the threshold.

In that work, we have considered three attacks, inflation, deflation, oscillation. We did not consider
the more subtle attacks (frog-boiling, network-partition) as we have analyzed the outlier detection
method, and in recent studies [22, 23] it was shown that this detection method is vulnerable to those
subtle attacks.

In the second contribution we have proposed a new detection method for all exisiting attacks (infla-
tion, deflation, oscillation, frog-boiling, network-partition) by leveraging supervised machine learning
techniques. We have shown that our method is also able to detect more complex attack strategies (two
attack scenarios and sequence attack scenarios). Those complex attack strategies consider intermixed
successive attack phases without any fixed order in the attack sequence. The contributions of this
part are summarized as follows:

e We have proposed a practical method to counter the frog-boiling and network-partition attacks,
or any complex attack strategy in which several individual attacks are launched by a powerful
adversary. For example, the latter can combine several single attacks following a Markov chain
model.

e We have developed a feature set, based on a node’s local information, for embedding it into a
multidimensional manifold in order to reveal attacks. This process has resulted in seven feature
variables that have proved to be the most relevant for the prediction and classification task.

e We have provided a quantitative analysis of supervised machine learning methods, i.e., decision
trees and support vector machines, for detecting all known attacks in an offline analysis scenario.
We have evaluated our techniques using the Vivaldi [32] virtual coordinate system through
simulations using the King data set and real deployments on PlanetLab. Among the two different
machine learning techniques, decision trees and support vector machines, decision trees are able
to mitigate all known attacks, outperforming support vector machines by achieving a much lower
false positive rate. Our approach has shown to work both in a global manner, where all nodes
actively exchange local information and a collective decision is taken, as well as in an individual
manner, where each node locally decides whether an attack is occurring or not. The results for
simulations using the King data set and for real deployments on PlanetLab both demonstrate
that our approach identifies the different attacks with a ~ 95% true positive rate.

e We have validated our method by analyzing the performance of online detection. We have
integrated decision trees into the Vivaldi VCS in order to detect attacks in real-time. We have
analyzed the effectiveness of the real-time detection in both a global manner, where a collective
decision is taken, as well as in a local manner, where each node decides by itself if an attack is
occuring or not. In order to improve the local real-time detection, we have designed a new way for
a node to decide if an attack is occurring. This is accomplished by taking into account not only a
node’s local information but also the information already being collected through its interaction
with those in its neighbor set. The real-time detection has validated the performance we have
achieved during offline classification with a ~ 95% true positive rate for the global manner, and
a ~ 90% true positive rate for the improved local manner.
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In future work, we want to adapt different game models with the objective to better represent
reality. In Chapter 5, the presented game theoretical framework consists of a static game, a one-shot
game, this means that the game is formed by one single interaction between the attacker and defender.
This is an easy approach that allows to directly compute the Nash equilibrium [70]. However, there
exist other more complex approaches, for instance repeated games [41]. In a repeated game, multiple
interactions between the players take place. A repeated game is composed of several sub-games. At
each sub-game the Nash equilibrium can be calculated. The advantage of using a repeated game
is that it is more realistic as not only the current game is relevant, but also the past is relevant to
compute those sub-games. In real life, a system, attacks and defenses are not isolated but everything
depends on what happened in the past.

Another approach for finding the best defense mechanisms is to use reinforcement learning [57].
Reinforcement learning models an agent that wants to reach a given goal (i.e. the highest possible
reward in long-term). An agent can be in different states and choose different actions, this can be
seen as a Markov decision process. The concept is similar to game theory, an agent interacts with the
environment and can choose different actions depending on the state and receives a reward. The idea
is not to achieve a high reward for one action, but to get a high reward in long-term. An example on
how such a problem could be solved can be found in the thesis [105]. Using reinforcement learning
can be seen as using a adapted repeated game with one single player and with a more complex reward
function and a more complex algorithm.

We have applied supervised machine learning techniques in order to leverage a new detection
method against all existing attack strategies in Chapter 6. However, when using supervised machine
learning techniques, we need labelled data in order to train our model. This can be impractical if
we want to adapt such a detection method for a network where we cannot as easily obtain labelled
data. Similarly, integrating supervised machine learning techniques for online detection is difficult to
achieve as described in [96]. For our approach, we have trained the decision trees with labelled data
offline, and we integrated the decision making process in the implementation. The drawback of this
approach is that the acquired decision trees are specific to the implementation. We have seen that even
though the same algorithm (Vivaldi) is used, the resulting decision trees are different in size for the
simulations (p2psim) and the real deployment (PlanetLab), but they share same characteristics like
the distribution of the features. This means that if one would like to adopt this detection method in a
different environment the offline training with the labelled data would need to be redone. Therefore,
we want to make use of unsupervised machine learning techniques to detecting attacks. However,
unsupervised machine learning techniques often lack in accuracy as no labelled data is used. We need
to investigate what type of unsupervised machine learning could be useful and easily integrated for
an online detection methods that still would give a good accuracy in terms of false and true positive
rates.

In our work, we first propose a global detection method, based on the median error value of all
nodes in order to see if the concept of our project is working. Thereafter, we also propose a local
detection method. For the offline technique this local detection only considers the error values of a
single node, and for every single node a new decision tree is built. For the real-time local detection,
we create offline only one decision tree based on the median values of every node’s neighbor set (64
nodes). Overall, one can say that a global detection method is not applicable in real systems, as then
a central authority is needed. A central authority always leads to bottleneck issues and single-point-
of-failures. Therefore, a local detection method should always be aspired. A discussion of our local
detection method can be found in Section 6.7.
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Another concern about our method is that we do not deploy a new mitigation framework, the only
mitigation we have considered in Section 6.7 is the same as in outlier detection, when updates are
discarded because they seem malicious. The drawback of this method is, that a node could become
immobile due to rejecting updates. Furthermore, non-malicious updates might also be rejected and
not only malicious updates. Another approach we want to investigate in future, is that a node can
change its neighbors when a node realizes that its error is increasing and an attack is occurring. For
this investigation, we need to see what is the best way for a node to change the neighbor set, if the
node should exchange half of the neighbors or directly the complete neighbor set. We also need to
see how a node can be sure that when the neighbor set is changed no malicious node is in this new
set. Therefore, a reputation based system could be helpful. Whenever a node realizes that an attack
is occurring it can give a bad reputation to its current neighbor set, and choose a neighbor set with a
better reputation.

Virtual coordinate systems usually use the round-trip-time (RTT) in order to estimate the latency
between nodes, and the attacks on those systems, often consists on faking the RTT. The RTT is also
often used in other algorithms or protocols as a metric (i.e., NTP). A further task in the future work
is to analyze if similar attacks can have a similar effect on those protocols as they have for virtual
coordinate systems and if a similar detection method could be used as a failure predictor. After having
a failure predictor for networks like NTP, we also want to investigate a failure predictor for large-scale
networks like clouds, where availability and up-time are essential. A failure predictor would be able
to alert if a failure and possibly a corresponding down-time is about to happen. Depending on the
type of failure, a mitigation framework should be able to rectify the problem that could cause a failure
and/or a down-time.
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APPENDIX A. ANALYZING ATTACKS AND DEFENSES ON VCS

Table A.1: Abbreviations used in Appendix A.1

Abbreviation

Term

% Mal. Nodes

Percent of Malicious Nodes in Topology

5" Prediction

5" Percentile Prediction Error (Microseconds)

50t Prediction

50" Percentile Prediction Error (Microseconds)

95" Prediction

95" Percentile Prediction Error (Microseconds)

5th Relative

5t Percentile Relative Error

50" Relative

50" Percentile Relative Error

95" Relative

95" Percentile Relative Error

spat-temp spatio-temporal outlier detection
spatial spatial outlier detection
temporal temporal outlier detection

A.1 Simulation Results

In this appendix, we present the raw simulation results for the prediction error and relative error of
Vivaldi running over the King and AMP topologies under the three different attacks using different

defenses techniques and thresholds. All prediction error measurement are given in microseconds.

Table A.1 provides a listing of the abbreviations that are used.




A.1. SIMULATION RESULTS 123
Table A.2: King Data Sets Results Using a Spatial Outlier Threshold of 1.25
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1464.8 16933.3 103225.7 1.00 1.00 1.00
10 inflation none 3659.1 40481.8 166147.0 2.50 2.39 1.61
10 deflation none 1637.2 18854.1 105578.8 1.12 1.11 1.02
10 oscillation none 3445.3 39140.9 162660.8 2.35 2.31 1.58
20 inflation none 5918.2 63977.6 217610.4 4.04 3.78 2.11
20 deflation none 1785.5 20392.8 109044.3 1.22 1.20 1.06
20 oscillation none 5340.7 65438.2 220359.7 3.65 3.86 2.13
30 inflation none 7321.1 84461.4 260568.9 5.00 4.99 2.52
30 deflation none 2110.9 24051.6 122280.1 1.44 1.42 1.18
30 oscillation none 6203.1 82698.8 271028.3 4.23 4.88 2.63
10 deflation | spat-temp 1370.9 15953.9 98979.3 0.94 0.94 0.96
20 deflation | spat-temp 1419.8 16481.8 99997.0 0.97 0.97 0.97
30 deflation | spat-temp 1623.0 18791.0 108166.9 1.11 1.11 1.05
10 deflation spatial 1340.9 15715.7 104368.5 0.92 0.93 1.01
20 deflation spatial 1410.0 16346.7 97992.8 0.96 0.97 0.95
30 deflation spatial 1592.7 18448.2 108813.4 1.09 1.09 1.05
10 deflation | temporal 1573.4 18123.1 103729.8 1.07 1.07 1.00
20 deflation | temporal 1801.4 20683.0 111640.1 1.23 1.22 1.08
30 deflation | temporal 2047.5 23481.1 124543.8 1.40 1.39 1.21
10 oscillation | spat-temp 1463.2 17103.4 108593.3 1.00 1.01 1.05
20 oscillation | spat-temp 1458.6 17264.5 111034.1 1.00 1.02 1.08
30 oscillation | spat-temp 2329.3 28450.4 161415.0 1.59 1.68 1.56
10 oscillation spatial 1462.8 17093.5 111463.2 1.00 1.01 1.08
20 oscillation spatial 1432.8 17057.7 109230.9 0.98 1.01 1.06
30 oscillation spatial 2394.2 29371.6 163011.2 1.63 1.73 1.58
10 oscillation | temporal 2974.9 34233.2 153880.4 2.03 2.02 1.49
20 oscillation | temporal 4556.6 54988.6 198632.5 3.11 3.25 1.92
30 oscillation | temporal 5801.0 75013.4 253542.8 3.96 4.43 2.46
10 inflation | spat-temp 1500.9 17698.7 115869.1 1.02 1.05 1.12
20 inflation | spat-temp 1945.9 23773.4 143452.8 1.33 1.40 1.39
30 inflation | spat-temp 2849.9 36814.8 203761.1 1.95 2.17 1.97
10 inflation spatial 1484.8 17523.1 117843.0 1.01 1.03 1.14
20 inflation spatial 1958.0 24094.4 152662.2 1.34 1.42 1.48
30 inflation spatial 2921.1 37996.7 2029777 1.99 2.24 1.97
10 inflation temporal 3463.6 39203.1 165743.9 2.36 2.32 1.61
20 inflation | temporal 5333.6 59503.5 204578.2 3.64 3.51 1.98
30 inflation | temporal 7273.5 84751.9 258242.9 4.97 5.01 2.50
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Table A.3: King Data Sets Results Using a Spatial Outlier Threshold of 1.50
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1464.8 16933.3 103225.7 1.00 1.00 1.00
10 inflation none 3659.1 40481.8 166147.0 2.50 2.39 1.61
10 deflation none 1637.2 18854.1 105578.8 1.12 1.11 1.02
10 oscillation none 3445.3 39140.9 162660.8 2.35 2.31 1.58
20 inflation none 5918.2 63977.6 217610.4 4.04 3.78 2.11
20 deflation none 1785.5 20392.8 109044.3 1.22 1.20 1.06
20 oscillation none 5340.7 65438.2 220359.7 3.65 3.86 2.13
30 inflation none 7321.1 84461.4 260568.9 5.00 4.99 2.52
30 deflation none 2110.9 24051.6 122280.1 1.44 1.42 1.18
30 oscillation none 6203.1 82698.8 271028.3 4.23 4.88 2.63
10 oscillation | spat-temp 1415.2 16483.0 102983.0 0.97 0.97 1.00
20 oscillation | spat-temp 1865.2 22647.5 136199.0 1.27 1.34 1.32
30 oscillation | spat-temp 2940.6 35349.6 172645.7 2.01 2.09 1.67
10 oscillation spatial 1425.6 16660.2 103692.1 0.97 0.98 1.00
20 oscillation spatial 1924.8 23462.4 134401.5 1.31 1.39 1.30
30 oscillation spatial 3020.3 36376.6 178286.5 2.06 2.15 1.73
10 oscillation | temporal 2778.4 32305.8 150138.3 1.90 1.91 1.45
20 oscillation | temporal 4733.0 56431.4 203950.7 3.23 3.33 1.98
30 oscillation | temporal 5768.1 73822.3 249418.3 3.94 4.36 2.42
10 deflation | spat-temp 1383.5 16051.9 98864.3 0.94 0.95 0.96
20 deflation | spat-temp 1490.7 17298.6 102227.4 1.02 1.02 0.99
30 deflation | spat-temp 1809.6 21048.8 120365.0 1.24 1.24 1.17
10 deflation spatial 1354.1 15712.4 96567.1 0.92 0.93 0.94
20 deflation spatial 1494.8 17246.3 102603.2 1.02 1.02 0.99
30 deflation spatial 1754.1 20215.6 113067.5 1.20 1.19 1.10
10 deflation | temporal 1570.1 18038.9 104270.1 1.07 1.07 1.01
20 deflation | temporal 1892.3 21702.0 114209.6 1.29 1.28 1.11
30 deflation | temporal 2055.0 23581.2 122008.4 1.40 1.39 1.18
10 inflation | spat-temp 1705.8 20294.1 124540.2 1.16 1.20 1.21
20 inflation | spat-temp 2352.7 29360.2 168829.9 1.61 1.73 1.64
30 inflation | spat-temp 4268.7 53626.2 225033.4 291 3.17 2.18
10 inflation spatial 1667.3 19750.4 127066.2 1.14 1.17 1.23
20 inflation spatial 2396.6 29820.9 165766.3 1.64 1.76 1.61
30 inflation spatial 4112.2 51677.4 222180.9 2.81 3.05 2.15
10 inflation temporal 3417.8 38647.1 160660.4 2.33 2.28 1.56
20 inflation | temporal 5826.0 64156.2 215632.6 3.98 3.79 2.09
30 inflation | temporal 7295.4 84753.8 259427.8 4.98 5.01 2.51




A.1. SIMULATION RESULTS 125
Table A.4: King Data Sets Results Using a Spatial Outlier Threshold of 1.75
M(i‘;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1464.8 16933.3 103225.7 1.00 1.00 1.00
10 inflation none 3659.1 40481.8 166147.0 2.50 2.39 1.61
10 deflation none 1637.2 18854.1 105578.8 1.12 1.11 1.02
10 oscillation none 3445.3 39140.9 162660.8 2.35 2.31 1.58
20 inflation none 5918.2 63977.6 217610.4 4.04 3.78 2.11
20 deflation none 1785.5 20392.8 109044.3 1.22 1.20 1.06
20 oscillation none 5340.7 65438.2 220359.7 3.65 3.86 2.13
30 inflation none 7321.1 84461.4 260568.9 5.00 4.99 2.52
30 deflation none 2110.9 24051.6 122280.1 1.44 1.42 1.18
30 oscillation none 6203.1 82698.8 271028.3 4.23 4.88 2.63
10 deflation | spat-temp 1435.7 16746.5 102636.2 0.98 0.99 0.99
20 deflation | spat-temp 1652.1 19188.0 110804.1 1.13 1.13 1.07
30 deflation | spat-temp 1893.9 21855.0 118357.6 1.29 1.29 1.15
10 deflation spatial 1413.1 16363.3 98436.6 0.96 0.97 0.95
20 deflation spatial 1633.3 19030.1 110567.0 1.11 1.12 1.07
30 deflation spatial 1853.6 21308.5 114327.0 1.27 1.26 1.11
10 deflation | temporal 1575.9 18181.6 105624.5 1.08 1.07 1.02
20 deflation | temporal 1811.3 20858.8 115762.2 1.24 1.23 1.12
30 deflation | temporal 2019.7 23145.0 121965.9 1.38 1.37 1.18
10 oscillation | spat-temp 1389.3 16297.2 105217.6 0.95 0.96 1.02
20 oscillation | spat-temp 2268.2 27149.6 139436.6 1.55 1.60 1.35
30 oscillation | spat-temp 3837.3 46193.0 188223.1 2.62 2.73 1.82
10 oscillation spatial 1407.1 16553.3 103825.4 0.96 0.98 1.01
20 oscillation spatial 2227.3 26858.6 145171.2 1.52 1.59 1.41
30 oscillation spatial 3785.5 46098.0 190703.2 2.58 2.72 1.85
10 oscillation | temporal 2754.9 31836.6 143407.5 1.88 1.88 1.39
20 oscillation | temporal 4330.9 51601.4 190480.0 2.96 3.05 1.85
30 oscillation | temporal 5359.5 68300.9 232029.6 3.66 4.03 2.25
10 inflation | spat-temp 1785.7 21433.6 125352.3 1.22 1.27 1.21
20 inflation | spat-temp 2893.7 35984.5 172251.7 1.98 2.13 1.67
30 inflation | spat-temp 5555.8 66008.9 226387.8 3.79 3.90 2.19
10 inflation spatial 1731.2 20857.7 123971.6 1.18 1.23 1.20
20 inflation spatial 2727.4 34103.9 168721.0 1.86 2.01 1.63
30 inflation spatial 5859.0 69282.7 224944.3 4.00 4.09 2.18
10 inflation | temporal 3369.7 38104.0 155036.6 2.30 2.25 1.50
20 inflation temporal 5457.8 61362.0 208658.5 3.73 3.62 2.02
30 inflation | temporal 6889.1 79410.5 241237.6 4.70 4.69 2.34
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Table A.5: AMP Data Sets Results Using a Spatial Outlier Threshold of 1.25
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1410.2 16754.3 125433.2 1.00 1.00 1.00
10 inflation none 2689.6 31586.7 160820.3 1.91 1.89 1.28
10 deflation none 1586.1 18572.8 123041.0 1.12 1.11 0.98
10 oscillation none 2752.2 30505.7 149437.5 1.95 1.82 1.19
20 inflation none 3850.7 41202.6 173186.5 2.73 2.46 1.38
20 deflation none 1830.2 20436.6 123122.9 1.30 1.22 0.98
20 oscillation none 3996.4 45351.5 179879.8 2.83 2.71 1.43
30 inflation none 4761.6 49206.7 188199.9 3.38 2.94 1.50
30 deflation none 2096.1 23484.8 126563.0 1.49 1.40 1.01
30 oscillation none 4833.9 51360.0 207902.3 3.43 3.07 1.66
10 deflation | spat-temp 1404.8 17058.2 130853.2 1.00 1.02 1.04
20 deflation | spat-temp 1393.1 17357.0 132062.9 0.99 1.04 1.05
30 deflation | spat-temp 1503.3 17667.9 131765.6 1.07 1.05 1.05
10 deflation spatial 1306.0 16140.2 130211.3 0.93 0.96 1.04
20 deflation spatial 1362.9 16473.7 126121.1 0.97 0.98 1.01
30 deflation spatial 1485.8 17820.6 130912.7 1.05 1.06 1.04
10 deflation | temporal 1611.9 18762.2 122760.3 1.14 1.12 0.98
20 deflation | temporal 1781.4 20632.7 135162.2 1.26 1.23 1.08
30 deflation | temporal 1954.5 23069.6 128202.8 1.39 1.38 1.02
10 oscillation | spat-temp 1355.3 16348.9 129880.2 0.96 0.98 1.04
20 oscillation | spat-temp 1493.7 18080.8 128506.8 1.06 1.08 1.02
30 oscillation | spat-temp 1949.7 23989.9 147526.3 1.38 1.43 1.18
10 oscillation spatial 1485.7 17385.6 139967.4 1.05 1.04 1.12
20 oscillation spatial 1496.9 17582.0 134691.7 1.06 1.05 1.07
30 oscillation spatial 2316.7 30238.9 164896.8 1.64 1.80 1.31
10 oscillation | temporal 2227.8 24861.2 139700.2 1.58 1.48 1.11
20 oscillation | temporal 3412.8 37701.9 165242.1 2.42 2.25 1.32
30 oscillation | temporal 4358.2 48582.6 191376.7 3.09 2.90 1.53
10 inflate spat-temp 1214.0 15583.1 130982.6 0.86 0.93 1.04
20 inflate spat-temp 1791.7 24350.4 153215.5 1.27 1.45 1.22
30 inflate spat-temp 3626.2 43913.9 192297.6 2.57 2.62 1.53
10 inflate spatial 1323.0 16321.0 135088.6 0.94 0.97 1.08
20 inflate spatial 1558.6 21180.6 151849.3 1.11 1.26 1.21
30 inflate spatial 2418.1 31925.8 175905.5 1.71 1.91 1.40
10 inflate temporal 1777.6 20551.1 137741.7 1.26 1.23 1.10
20 inflate temporal 3392.2 38282.3 174256.7 241 2.28 1.39
30 inflate temporal 4722.6 50453.4 194122.4 3.35 3.01 1.55
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Table A.6: AMP Data Sets Results Using a Spatial Outlier Threshold of 1.50
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1410.2 16754.3 125433.2 1.00 1.00 1.00
10 inflation none 2689.6 31586.7 160820.3 1.91 1.89 1.28
10 deflation none 1586.1 18572.8 123041.0 1.12 1.11 0.98
10 oscillation none 2752.2 30505.7 149437.5 1.95 1.82 1.19
20 inflation none 3850.7 41202.6 173186.5 2.73 2.46 1.38
20 deflation none 1830.2 20436.6 123122.9 1.30 1.22 0.98
20 oscillation none 3996.4 45351.5 179879.8 2.83 2.71 1.43
30 inflation none 4761.6 49206.7 188199.9 3.38 2.94 1.50
30 deflation none 2096.1 23484.8 126563.0 1.49 1.40 1.01
30 oscillation none 4833.9 51360.0 207902.3 3.43 3.07 1.66
10 deflation | spat-temp 1404.8 17058.2 130853.2 1.00 1.02 1.04
20 deflation | spat-temp 1393.1 17357.0 132062.9 0.99 1.04 1.05
30 deflation | spat-temp 1503.3 17667.9 131765.6 1.07 1.05 1.05
10 deflation spatial 1306.0 16140.2 130211.3 0.93 0.96 1.04
20 deflation spatial 1362.9 16473.7 126121.1 0.97 0.98 1.01
30 deflation spatial 1485.8 17820.6 130912.7 1.05 1.06 1.04
10 deflation | temporal 1611.9 18762.2 122760.3 1.14 1.12 0.98
20 deflation | temporal 1781.4 20632.7 135162.2 1.26 1.23 1.08
30 deflation | temporal 1954.5 23069.6 128202.8 1.39 1.38 1.02
10 oscillation | spat-temp 1355.3 16348.9 129880.2 0.96 0.98 1.04
20 oscillation | spat-temp 1493.7 18080.8 128506.8 1.06 1.08 1.02
30 oscillation | spat-temp 1949.7 23989.9 147526.3 1.38 1.43 1.18
10 oscillation spatial 1485.7 17385.6 139967.4 1.05 1.04 1.12
20 oscillation spatial 1496.9 17582.0 134691.7 1.06 1.05 1.07
30 oscillation spatial 2316.7 30238.9 164896.8 1.64 1.80 1.31
10 oscillation | temporal 2227.8 24861.2 139700.2 1.58 1.48 1.11
20 oscillation | temporal 3412.8 37701.9 165242.1 2.42 2.25 1.32
30 oscillation | temporal 4358.2 48582.6 191376.7 3.09 2.90 1.53
10 inflate spat-temp 1214.0 15583.1 130982.6 0.86 0.93 1.04
20 inflate spat-temp 1791.7 24350.4 153215.5 1.27 1.45 1.22
30 inflate spat-temp 3626.2 43913.9 192297.6 2.57 2.62 1.53
10 inflate spatial 1323.0 16321.0 135088.6 0.94 0.97 1.08
20 inflate spatial 1558.6 21180.6 151849.3 1.11 1.26 1.21
30 inflate spatial 2418.1 31925.8 175905.5 1.71 1.91 1.40
10 inflate temporal 1777.6 20551.1 137741.7 1.26 1.23 1.10
20 inflate temporal 3392.2 38282.3 174256.7 241 2.28 1.39
30 inflate temporal 4722.6 50453.4 194122.4 3.35 3.01 1.55
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Table A.7: AMP Data Sets Results Using a Spatial Outlier Threshold of 1.75
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1410.2 16754.3 125433.2 1.00 1.00 1.00
10 inflation none 2689.6 31586.7 160820.3 1.91 1.89 1.28
10 deflation none 1586.1 18572.8 123041.0 1.12 1.11 0.98
10 oscillation none 2752.2 30505.7 149437.5 1.95 1.82 1.19
20 inflation none 3850.7 41202.6 173186.5 2.73 2.46 1.38
20 deflation none 1830.2 20436.6 123122.9 1.30 1.22 0.98
20 oscillation none 3996.4 45351.5 179879.8 2.83 2.71 1.43
30 inflation none 4761.6 49206.7 188199.9 3.38 2.94 1.50
30 deflation none 2096.1 23484.8 126563.0 1.49 1.40 1.01
30 oscillation none 4833.9 51360.0 207902.3 3.43 3.07 1.66
10 deflation | spat-temp 1430.7 17202.8 129255.3 1.01 1.03 1.03
20 deflation | spat-temp 1609.1 19146.1 129063.5 1.14 1.14 1.03
30 deflation | spat-temp 1759.2 20681.3 132526.2 1.25 1.23 1.06
10 deflation spatial 1343.7 16738.8 127774.9 0.95 1.00 1.02
20 deflation spatial 1416.7 17853.3 128162.9 1.00 1.07 1.02
30 deflation spatial 1842.1 20699.6 128417.8 1.31 1.24 1.02
10 deflation | temporal 1565.2 18856.6 127559.9 1.11 1.13 1.02
20 deflation | temporal 1636.8 19989.0 127893.4 1.16 1.19 1.02
30 deflation | temporal 1827.8 21078.2 127307.2 1.30 1.26 1.01
10 oscillation | spat-temp 1422.6 17165.2 130704.0 1.01 1.02 1.04
20 oscillation | spat-temp 2062.6 24405.2 144747.6 1.46 1.46 1.15
30 oscillation | spat-temp 3494.2 38316.6 165713.3 2.48 2.29 1.32
10 oscillation spatial 1355.9 16846.3 127641.4 0.96 1.01 1.02
20 oscillation spatial 2005.0 24366.4 139735.4 1.42 1.45 1.11
30 oscillation spatial 2809.9 31204.1 156410.3 1.99 1.86 1.25
10 oscillation | temporal 2233.8 25638.3 143041.7 1.58 1.53 1.14
20 oscillation | temporal 3319.3 36426.9 167520.5 2.35 2.17 1.34
30 oscillation | temporal 4163.7 45697.6 186174.1 2.95 2.73 1.48
10 inflate spat-temp 1395.9 18046.9 138020.7 0.99 1.08 1.10
20 inflate spat-temp 2860.4 32648.6 156973.7 2.03 1.95 1.25
30 inflate spat-temp 3581.2 39709.9 179662.9 2.54 2.37 1.43
10 inflate spatial 1688.8 21131.1 145696.2 1.20 1.26 1.16
20 inflate spatial 2181.4 26812.6 156035.5 1.55 1.60 1.24
30 inflate spatial 4284 .4 47074.1 177853.2 3.04 2.81 1.42
10 inflate temporal 1870.6 22213.2 139487.2 1.33 1.33 1.11
20 inflate temporal 3844.2 42157.5 177436.3 2.73 2.52 1.41
30 inflate temporal 5084.5 53068.7 197140.3 3.61 3.17 1.57
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Table A.8: AMP Data Sets Results Using a Spatial Outlier Threshold of 2.00
M(y;l Attacker | Defender 5th 50th 95th 5th 50th 95th
No de's Strategy Strategy | prediction | prediction | prediction | relative | relative | relative
0 none none 1410.2 16754.3 125433.2 1.00 1.00 1.00
10 inflation none 2689.6 31586.7 160820.3 1.91 1.89 1.28
10 deflation none 1586.1 18572.8 123041.0 1.12 1.11 0.98
10 oscillation none 2752.2 30505.7 149437.5 1.95 1.82 1.19
20 inflation none 3850.7 41202.6 173186.5 2.73 2.46 1.38
20 deflation none 1830.2 20436.6 123122.9 1.30 1.22 0.98
20 oscillation none 3996.4 45351.5 179879.8 2.83 2.71 1.43
30 inflation none 4761.6 49206.7 188199.9 3.38 2.94 1.50
30 deflation none 2096.1 23484.8 126563.0 1.49 1.40 1.01
30 oscillation none 4833.9 51360.0 207902.3 3.43 3.07 1.66
10 deflation | spat-temp 1464.4 18419.5 130288.7 1.04 1.10 1.04
20 deflation | spat-temp 1662.7 19132.8 129887.5 1.18 1.14 1.04
30 deflation | spat-temp 1607.5 19504.8 127343.1 1.14 1.16 1.02
10 deflation spatial 1554.0 18654.4 137540.5 1.10 1.11 1.10
20 deflation spatial 1615.4 19105.1 132091.8 1.15 1.14 1.05
30 deflation spatial 1820.8 20546.6 131763.7 1.29 1.23 1.05
10 deflation | temporal 1622.1 18825.3 122979.3 1.15 1.12 0.98
20 deflation | temporal 1665.2 19946.4 129018.8 1.18 1.19 1.03
30 deflation | temporal 1920.6 22624.1 127540.0 1.36 1.35 1.02
10 oscillation | spat-temp 1235.0 15871.9 128051.1 0.88 0.95 1.02
20 oscillation | spat-temp 2195.8 26098.6 142114.6 1.56 1.56 1.13
30 oscillation | spat-temp 4101.5 44928.3 189272.2 2.91 2.68 1.51
10 oscillation spatial 1391.1 16449.7 129586.5 0.99 0.98 1.03
20 oscillation spatial 1733.7 20956.1 137333.2 1.23 1.25 1.09
30 oscillation spatial 3769.9 41838.8 173715.9 2.67 2.50 1.38
10 oscillation | temporal 2071.0 24373.8 142872.5 1.47 1.45 1.14
20 oscillation | temporal 3460.5 37500.8 168495.2 2.45 2.24 1.34
30 oscillation | temporal 4515.3 49473.3 207819.2 3.20 2.95 1.66
10 inflation | spat-temp 1762.9 21726.8 144118.9 1.25 1.30 1.15
20 inflation | spat-temp 3194.9 38093.6 159115.8 2.27 2.27 1.27
30 inflation | spat-temp 4685.9 49816.9 186829.6 3.32 2.97 1.49
10 inflation spatial 1550.7 19507.3 142458.4 1.10 1.16 1.14
20 inflation spatial 2859.8 35902.2 159813.0 2.03 2.14 1.27
30 inflation spatial 4847.2 50995.2 201821.5 3.44 3.04 1.61
10 inflation temporal 1699.1 21003.3 137749.2 1.20 1.25 1.10
20 inflation | temporal 4169.7 42674.4 169818.6 2.96 2.55 1.35
30 inflation | temporal 5512.9 59406.6 214344.8 3.91 3.55 1.71




