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Résumé en français

La publication de données ouvertes (éventuellement liées) sur le web est un phénomène en

pleine expansion. L'étude des modèles et langages permettant l'exploitation de ces données

s'est donc grandement intensi�ée ces dernières années.

Récemment, le modèle RDF (Resource Description Framework) s'est imposé comme le

modèle de données standard, proposé par le W3C, pour représenter des données du web

sémantique [W3C, 2014]. RDF est un cas particulier de graphe étiqueté orienté, dans lequel

chaque arc étiqueté (représentant un prédicat) relie un sujet à un objet.

SPARQL [Prud'hommeaux and Seaborne, 2008] est le langage de requête standard

recommandé par le W3C pour l'interrogation de données RDF. Il s'agit d'un langage fondé

sur la mise en correspondance de patrons de graphe.

Les travaux que nous présentons visent à introduire plus de �exibilité dans le langage

(SPARQL ici) en o�rant la possibilité d'intégrer des préférences utilisateur aux requêtes.

Les motivations pour intégrer les préférences des utilisateurs dans les requêtes de base de

données sont multiples. Tout d'abord, il semble souhaitable d'o�rir à l'utilisateur la possibilité

d'exprimer des requêtes dont la forme se rapproche, autant que possible, de la formulation

de la requête en langage naturel. Ensuite, l'introduction de préférences utilisateur dans une

requête permet d'obtenir un classement des réponses, par niveau décroissant de satisfaction, ce

qui est trés utile en cas d'obtention d'un grand nombre de réponses. Et en�n, là où une requête

booléenne classique peut ne retourner aucune réponse, une version à préférence (qui peut être

vue comme une version relaxée et donc moins restrictive), peut permettre de produire des

réponses proches des objets idéals visés.

L'introduction de préférences utilisateur dans les requêtes a donné lieu à

de nombreux travaux de recherche ces dernières décennies dans le contexte

du modèle relationnel de bases de données [Bruno et al., 2002, Chomicki, 2002,

Torlone and Ciaccia, 2002, Borzsony et al., 2001, Kieÿling, 2002, Tahani, 1977,

Bosc and Pivert, 1995, Pivert and Bosc, 2012]. La littérature sur les requêtes à pre-

férences dans le contexte de bases de données RDF n'est pas aussi abondante puisque cette

question n'a commencé à attirer l'attention que récemment. La plupart des approches
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6 Résumé en français

existantes sont des adaptations directes des propositions faites dans le contexte des bases de

données relationnelles. En particulier, elles se limitent à l'expression de préférences sur les

valeurs présentes dans les n÷uds.

Dans un contexte de graphe RDF, la nécessité d'exprimer des conditions sur la

structure des données, puis d'extraire les relations entre les ressources dans le graphe

RDF, a motivé des travaux visant à étendre SPARQL et à le rendre plus expressif. Dans

[Kochut and Janik, 2007, Anyanwu et al., 2007, Alkhateeb et al., 2009] et [Pérez et al., 2010],

les auteurs étendent principalement SPARQL en permettant d'interroger RDF à l'aide de

patrons de graphe en utilisant des expressions régulières. Mais dans ces approches, le graphe

RDF et les conditions de recherche restent non-�ous (booléens).

Le modèle RDF de base ne permet en e�et de représenter nativement que des données de

nature booléenne. Les concepts du monde réel à manipuler sont cependant souvent de nature

graduelle. Il est donc nécessaire de disposer d'un langage plus �exible qui prenne en compte

des graphes RDF dans lesquels les données sont intrinsèquement décrites de façon pondérée.

Les poids peuvent représenter des notions graduelles telles qu'une intensité ou un coût. Par

exemple, une personne peut être l'amie d'une autre avec un degré fonction de l'intensité de la

relation d'amitié.

A�n de représenter ces informations, plusieurs auteurs ont proposé des extensions �oues

du modèle de données RDF. Cependant, les extensions �oues de SPARQL qui peuvent être

trouvées dans la littérature restent très limitées en termes d'expression de préférences.

Notre objectif dans cette thèse est de dé�nir un langage de requête beaucoup plus expressif

pour i) traiter des bases de données RDF �oues et non �oues et ii) exprimer des préférences

complexes sur les valeurs des noeuds et sur la structure du graphe. Un exemple d'une telle

requête est: trouver les acteurs a tels que la plupart des �lms récents où a joué l'acteur a, sont

bien notés et ont été recommandés par un ami proche de a. Nos contributions principales sont

décrites dans la suite.

Une extension �oue de SPARQL avec des capacités de navigation �oue

Notre objectif dans la première contribution est d'étendre le langage SPARQL de façon à lui

permettre d'exprimer des préférences utilisateur pour exprimer des requêtes �exibles, portant

sur des données RDF véhiculant ou non des notions graduelles.

Tout d'abord, nous proposons une extension de la notion de patron de graphe, fondée

sur la théorie des ensembles �ous, que l'on nomme patron �ou de graphe. Cette exten-

sion repose sur celle de patron de graphe SPARQL introduite dans [Pérez et al., 2009]

et [Arenas and Pérez, 2011]. Dans ces travaux, les auteurs dé�nissent un patron de graphe
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SPARQL dans un formalisme algébrique plus traditionnel que le formalisme introduit dans

la norme o�cielle. Un patron de graphe est récursivement dé�ni comme étant soit un graphe

contenant des variables, soit un graphe complexe obtenu par l'application d'opérations sur

des patrons de graphe.

Ensuite, on nous fondant sur cette notion de patron �ou de graphe, nous proposons le

langage FURQL qui est plus expressif que toutes les propositions existantes de la littérature,

et qui permet:

1. d'interroger un modèle de données RDF �ou dans lequel les triplets sont porteurs

de notions graduelles (dont le modèle RDF non �ou est un cas particulier), et

2. d'exprimer des préférences �oues portant non seulement sur les données mais égale-

ment sur la structure du graphe, que celui-ci soit �ou ou non.

Modèle RDF �ou Dans cette thèse, nous considérons un modèle de données,

appelée F-RDF, qui synthétise les modèles RDF �ous de la littérature

([Mazzieri and Dragoni, 2005, Udrea et al., 2006, Mazzieri and Dragoni, 2008,

Lv et al., 2008, Straccia, 2009, Udrea et al., 2010, Zimmermann et al., 2012]), dont le

principe commun consiste à ajouter un degré dans [0, 1] à chaque triplet RDF, formalisé

ou bien par l'encapsulation d'un degré �ou dans chaque triplet ou bien par l'ajout au

modèle d'une fonction associant un degré de satisfaction à chaque triplet (ces deux

représentations sont sémantiquement équivalentes et présentent la même expressivité).

Un degré attaché à un triplet 〈s,p,o〉 exprime à quel point l'objet o satisfait la propriété
p sur le sujet s. Par exemple, le triplet �ou 〈Beyonce, recommande, Euphoria〉 auquel
est attaché le degré 0.8 indique que 〈Beyonce, recommande, Euphoria〉 est satisfait

au niveau 0.8, ce qui peut être interprété comme Beyonce recommande fortement

Euphoria.

Les degrés �ous peuvent être donnés ou calculés, matérialisés ou non. Dans sa forme

la plus simple, un degré peut correspondre au calcul d'une notion statistique re�étant

l'intensité de la relation à laquelle le degré est attaché. Par exemple, l'intensité d'une

relation d'amitié d'une personne p1 vers une autre personne p2 peut être calculée par la

proportion d'amis communs par rapport au nombre total d'amis de p1.

Préférences �oues Le langage FURQL est basé sur des patrons �ous de graphe qui perme-

ttent d'exprimer des préférences �oues sur les données d'un graphe �ou F-RDF via des

conditions �oues (par exemple, l'année de publication d'un �lm est récente) et sur sa

structure via des expressions régulières �oues (par exemple, le chemin entre deux amis

doit être court).

Syntaxiquement, le langage FURQL permet d'utiliser des patrons �ous de graphe dans

la clause where et des conditions �oues dans la clause filter. La syntaxe d'une ex-
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pression �oue de graphe est proche de celle de chemin, comme dé�ni dans SPARQL 1.1

[Harris and Seaborne, 2013], permettant d'exhiber des n÷uds reliés par des chemins ex-

primés sous forme d'une expression régulière. On permet ici l'expression d'une propriété

�oue portant sur les n÷uds reliés. Une propriété d'un chemin concerne des notions clas-

siques de la théorie des graphes �ous [Rosenfeid, 2014] : la distance et la force de la

connexion entre deux n÷uds, où la distance entre deux noeuds est la longueur du plus

court chemin entre ces deux noeuds et la distance d'un chemin est dé�nie comme étant

le poids de l'arc le plus faible du chemin.

Ce travail a été publié dans les actes de la 25ème Conférence internationale IEEE sur les

systèmes �ous (Fuzz-IEEE 16), Vancouver, Canada, 2016.

Requêtes quanti�ées structurelles �oues dans FURQL

La deuxième contribution traite de requêtes quanti�ées �oues adressées à une base de données

RDF �oue. Les requêtes quanti�ées �oues ont été étudiées de façon approfondie dans un

contexte de bases de données relationnelles pour leur capacité à exprimer di�érents types de

besoins d'information imprécis, voir notamment [Kacprzyk et al., 1989, Bosc et al., 1995], où

elles servent à exprimer des conditions sur les valeurs des attributs des objets stockés.

Cependant, dans le cadre spéci�que de RDF/SPARQL, les approches actuelles de la lit-

térature traitant des requêtes quanti�ées considèrent des quanti�cateurs non-�ous uniquement

[Bry et al., 2010, Fan et al., 2016] sur des données RDF non-�oues.

Nous étudions une forme particulière de requête quanti�ée �oue structurelle et montrons

comment elle peut être exprimée dans le langage FURQL dé�ni précédemment. Plus précise-

ment, nous considérons des propositions quanti�ées �oues du type �QBX are A� sur des bases

de données RDF �oues, où Q est le quanti�cateur qui est représenté par un ensemble �ou et

est soit relatif (par exemple, la plupart) soit absolu (par exemple, au moins trois), B est une

condition �oue, X est l'ensemble de noeuds dans le graphe RDF, et A désigne une condition

�oue. Un exemple d'une telle proposition quanti�ée �oue est : � la plupart des albums récents

sont très bien notés�. Dans cet exemple, Q correspond au quanti�cateur �ou relatif �la plu-

part�, B est la condition �oue �être récent�, X correspond à l'ensemble des albums présents

dans le graphe RDF et A correspond à la condition �oue �être très bien noté�.

Conceptuellement, l'interprétation d'une telle proposition quanti�ée �oue dans une requête

FURQL peut être basée sur l'une des approches de la littérature proposées dans [Zadeh, 1983,

Yager, 1984, Yager, 1988]. Son évaluation comporte trois étapes:

1. la compilation de la requête quanti�ée �oue R en une requête non-�oue R′,

2. l'interprétation de la requête SPARQL R′,

3. le calcul du résultat de R (qui est un ensemble �ou) basé sur le résultat de R′.
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Ce travail a été publié dans les actes de la 26ème Conférence internationale IEEE sur les

systèmes �ous (Fuzz-IEEE'17), Naples, Italie, 2017.

Mise en ÷uvre et expérimentation

Dans cette thèse, nous abordons également l'implantation du langage FURQL. Nous avons à

cet e�et considéré deux aspects:

1. le stockage de graphes �ous (modèle de données étendu que nous considérons) et

2. l'évaluation de requêtes FURQL.

Le premier point peut être résolu par l'utilisation du mécanisme de réi�cation qui permet

d'attacher un degré �ou à un triplet, solution proposée dans [Straccia, 2009].

Concernant l'évaluation de requêtes FURQL, nous avons développé une couche logicielle

permettant la prise en compte de requêtes FURQL, que l'on associe à un moteur SPARQL

standard. Cette couche logicielle, appelé SURF, est composée principalement des deux mod-

ules suivants:

• Dans une étape de prétraitement, un module de compilateur de requête FURQL produit

� les fonctions dépendantes de la requête qui permettent de calculer les degrés de

satisfaction pour chaque réponse retournée,

� une requête SPARQL classique qui est ensuite envoyée au moteur de requête

SPARQL pour récupérer les informations nécessaires pour calculer les degrés de

satisfaction.

La compilation utilise le principe de dérivation introduit dans [Pivert and Bosc, 2012]

dans un contexte de bases de données relationnelles qui consiste à �traduire� une requête

�oue en une requête non �oue.

• Dans une étape de post-traitement, un module de traitement des données �oues qui

calcule le degré de satisfaction pour chaque réponse renvoyée, classe les réponses et les

�ltre qualitativement si une alpha-coupe a été spéci�ée dans la requête �oue initiale.

Une preuve de concept de l'approche proposée, le prototype SURF, est disponible et

téléchargeable à l'adresse https://www-shaman.irisa.fr/furql/.

https://www-shaman.irisa.fr/furql/
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Pour évaluer les performances du prototype SURF que nous avons développé, nous avons

e�ectué deux séries d'expériences sur di�érentes tailles de bases de données RDF �oues. Les

premières expériences visent à mesurer le coût supplémentaire induit par l'introduction du

�ou dans SPARQL, et les résultats obtenus montrent l'e�cacité de notre proposition. Les

deuxièmes expériences, qui concernent des requêtes quanti�ées �oues, montrent que le coût

supplémentaire induit par la présence d'un quanti�cateur �ou dans les requêtes reste très

limité, même dans le cas de requêtes complexes.

Requêtes quanti�ées structurelles �oues dans FUDGE

A la �n de cette thèse, nous nous situons dans un cadre plus général: celui de bases de données

graphe [Angles and Gutierrez, 2008]. Jusqu'à présent, une seule approche de la littérature,

décrite dans [Castelltort and Laurent, 2014], considère des requêtes quanti�ées �oues dans

un tel environnement, et seulement d'une manière assez limitée. Une limitation de cette

approche tient au fait que seul le quanti�cateur est �ou (alors qu'en général, dans une proposi-

tion quanti�ée �oue de la forme �QBX are A�, les prédicats A et B peuvent également l'être).

Nous proposons quant à nous d'étudier des requêtes quanti�ées �oues impliquant des

prédicats �ous (en plus du quanti�cateur) sur des bases de données graphe �oues. Nous

considerons le même type de requête quanti�ée �oue structurelle que celui considéré dans

FURQL mais dans un cadre plus général. Cette contribution est basée sur notre travail décrit

dans [Pivert et al., 2016e], dans lequel nous avons montré comment il est possible d'intégrer

ces requêtes quanti�ées �oues dans un langage nommé FUDGE, précédemment dé�ni dans

[Pivert et al., 2014a]. FUDGE est une extension �oue de Cypher [Cypher, 2017] qui est un

langage déclaratif pour l'interrogation des bases de données graphe classiques.

Une stratégie d'évaluation fondée sur un mécanisme de compilation qui dérive des requêtes

classiques pour accéder aux données est également décrite. Elle s'appuie sur une surcouche

logicielle au système Neo4j, baptisée SUGAR, dont une première version, décrite dans

[Pivert et al., 2015, Pivert et al., 2016b], permet d'évaluer e�cacement les requêtes FUDGE

ne comportant pas de propositions quanti�ées. A cet e�et, nous avons mis à jour ce logiciel,

qui est une couche logicielle qui implémente le langage FUDGE sur le SGBD Neo4j, pour lui

permettre d'évaluer des requêtes FUDGE contenant des conditions quanti�ées �oues.

Comme preuve de concept de l'approche proposée, le prototype SUGAR est disponible et

téléchargeable à l'adresse www-shaman.irisa.fr/fudge-prototype.

A�n de con�rmer l'e�cacité de l'approche proposée, nous avons e�ectué quelques expéri-

mentations avec le prototype SUGAR en utilisant di�érentes tailles de bases de données graphe

�oues. Les résultats obtenus sont prometteurs et montrent que le coût du traitement de la

www-shaman.irisa.fr/fudge-prototype
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quanti�cation �oue dans une requête est très limité par rapport au coût de l'évaluation globale.

Conclusion & Perspectives

Cette thèse est la première proposant une extension �oue du langage SPARQL visant à

améliorer son expressivité et à permettre i) d'interroger des bases de données RDF �oues

et ii) d'exprimer des préférences complexes sur la valeur des données et sur la structure du

graphe. Les résultats présentés dans ce manuscrit sont prometteurs et montrent que le coût

supplémentaire dû à l'introduction de conditions de recherche �oues reste limité/acceptable.

De nombreuses perspectives peuvent être envisagées. Une première perspective concerne

l'extension des langages FURQL et FUDGE avec des préférences plus sophistiquées dont

certaines font appel à des notions provenant du domaine de l'analyse des réseaux sociaux

(centralité ou prestige d'un noeud) ou de la théorie des graphes (par exemple, clique, etc).

Nous envisageons ensuite d'étudier d'autres types de requêtes quanti�ées plus complexes, par

exemple �trouver les auteurs ayant un article publié dans la plupart des revues de base de

données renommées� (ou plus généralement, trouver les x tels que x est relié (par un chemin)

à Q n÷uds d'un type donné T satisfaisant la condition C). Les logiciels SURF et SUGAR

peuvent également être améliorés a�n de les rendre plus conviviaux, ce qui pose la question

de l'élicitation de requêtes �oues complexes. Il vaut également la peine d'étudier la manière

dont notre cadre pourrait être appliqué à la gestion de dimensions de qualité des données

(par exemple, précision, cohérence, etc.) qui sont en général d'une nature graduelle.





Introduction

The relational model, introduced in 1970 by Edgar F. Codd [Codd, 1970], has been

the most popular model for database management for many decades in academic, �nancial

and commercial pursuits. In this framework, data can be stored and accessed thanks to a

database management system like Oracle, Microsoft SQL Server, MySQL, etc.

However, in the recent decades, the traditional relational model faced new challenges,

mainly related to the development of Internet. Data to be searched are more and more acces-

sible on the Web (i.e., open environment) and never stop to increase in volume and complexity.

As a solution, an alternative model, called NoSQL (Not only Structured Query Language),

came to existence and has attracted a lot of attention since 2007. It aims to process e�ciently

and store huge, distributed, and unstructured data such as documents, e-mail, multimedia

and social media [Leavitt, 2010, Robinson et al., 2015].

Among NoSQL database systems, we may �nd the famous Google's BigTable

[Chang et al., 2008], Facebook's Cassandra [Lakshman and Malik, 2009], Amazon's Dynamo

[DeCandia et al., 2007], LinkedIn's Project Voldemort, Oracle's BerkeleyDB [Berkeley, 2010]

and mostly Graph Databases Systems (e.g., Neo4j1, Allegrograph2, etc.), which are designed

to store data in the form of a graph.

In the last decade, there has been increased attention in graphs to represent social

networks, web site link structures, and others. Recently, database research has witnessed

much interest in the W3C's Resource Description Framework (RDF) [W3C, 2014], which

is a particular case of directed labeled graph, in which each labeled edge (called predicate)

connects a subject to an object. It is considered to be the most appropriate knowledge

representation language for representing, describing and storing information about resources

available on the Web. This graph data model makes it possible to represent heterogenous

Web resources in a common and uni�ed way, taking into consideration the semantic side of

1http://www.neo4j.org/
2http://franz.com/agraph/allegrograph/
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the information and the interconnectedness between entities. The SPARQL Protocol and

RDF Query Language (SPARQL) [Prud'hommeaux and Seaborne, 2008] is the o�cial W3C

recommendation as an RDF query language. It plays the same role for the RDF data model

as SQL does for the relational data model and provides basic functionalities (such as, union

and optional queries, value �ltering and ordering results, etc.) in order to query RDF data

through graph patterns, i.e., RDF graphs containing variables data.

RDF data are usually composed of large heterogeneous data including various lev-

els of quality e.g., over relevancy, trustworthiness, preciseness or timeliness of data (see

[Zaveri et al., 2016]). It is then necessary to o�er convenient query languages that improve

the usability of such data. A solution is to integrate user preferences into queries, which

allows users to use their own vocabulary in order to express their preferences and retrieve

data in a more �exible way. This idea may be illustrated by an example of a real life scenario

of movie online booking stated as follows: �I want to �nd a recent movie with a high rating�.

In order to process such a query, fuzzy predicates, such as recent and high which model user

preferences, have to be taken into account during database querying. These terms are vague

and their satisfaction is a question of degree rather than an �all or nothing� notion.

Motivations for integrating user preferences into database queries are manifold

[Hadjali et al., 2011]. First, it appears to be desirable to o�er more expressive query

languages that can be more faithful to what a user intends to say. Second, the introduction

of preferences in queries provides a basis for rank-ordering the retrieved items, which is

especially valuable in case of large sets of items satisfying a query. Third, a classical query

may also have an empty set of answers, while a relaxed (and thus less restrictive) version of

the query might be matched by some items.

Introducing user preferences in queries has been a research topic for already quite a long

time in the context of the relational database model. In the literature, one may �nd many

�exible approaches suited to the relational data model: top-k queries [Bruno et al., 2002],

the winnow [Chomicki, 2002] and Best [Torlone and Ciaccia, 2002] operators, skyline queries

[Borzsony et al., 2001], Preference SQL [Kieÿling, 2002], as well as approaches based on fuzzy

set theory [Tahani, 1977, Bosc and Pivert, 1995, Pivert and Bosc, 2012]. The literature about

preference SPARQL queries to RDF databases is not as abundant since this issue has started

to attract attention only recently. Most of these approaches are straightforward adaptations

of proposals made in the relational database context. In particular, they are limited to the

expression of preferences over the values present in the nodes.

In an RDF graph context the need to query about the structure of data and then extract

relationships between resources in the RDF graph, has motivated research aimed to extend



Introduction 15

SPARQL and make it more expressive. In [Kochut and Janik, 2007, Anyanwu et al., 2007,

Alkhateeb et al., 2009] and [Pérez et al., 2010], the authors mainly extend SPARQL by

allowing to query crisp RDF through graph patterns using regular expressions but in these

approaches, both the graph and the search conditions remain crisp (Boolean).

However, in the real world, many notions are not of a Boolean nature, but are rather

gradual (as illustrated by the example above), so there is a need for a �exible SPARQL that

takes into account RDF graphs where data is described by intrinsic weighted values, attached

to edges or nodes. This weight may denote any gradual notion like a cost, a truth value, an

intensity or a membership degree. For instance, in the real world, relationship between entities

may be gradual (e.g., close friend, highly recommends, etc.) and an associated degree may

express its intensity. A statement involving a gradual relationship is for instance �an artist

recommends a movie with a degree 0.8� (roughly, this movie is highly recommended by this

artist).

In order to represent such information, several authors proposed fuzzy extensions of

the RDF data model. However, the fuzzy extensions of SPARQL that can be found in the

literature appear rather limited in terms of expressiveness of preferences.

Our aim in this thesis is to de�ne a much more expressive query language that i) deals

with both crisp and fuzzy RDF graph databases and ii) supports the expression of complex

preferences on the values of the nodes and on the structure of the graph. An example of such

a query is �most of the recent movies that are recommended by an actor, are highly rated and

have been featured by a close friend of this actor�.

Contributions

In this thesis, our main contributions are as follows.

1. We �rst propose a fuzzy extension of the SPARQL query language that improves its

expressiveness and usability. This extension, called FURQL, allows (1) to query a fuzzy

RDF data model involving fuzzy relationships between entities (e.g., close friends), and

(2) to express fuzzy preferences on data (e.g., the release year of a movie is recent) and

on the structure of the data graph (e.g., the path between two friends is required to be

short). A prototype, called SURF, has been implemented and some experiments have

been performed that show that introducing fuzziness in SPARQL does not come with a

high price.

2. We then focus on the notion of fuzzy quanti�ed statements for their ability to express

di�erent types of imprecise and �exible information needs in a (fuzzy) RDF database

context. We show how a particular type of fuzzy quanti�ed structural query can be
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expressed in the FURQL language that we previously proposed and study its evaluation.

SURF has been extended to e�ciently process fuzzy quanti�ed queries. It has been shown

through some experimental results that introducing fuzzy quanti�ed statements into a

SPARQL query entails a very small increase of the overall processing time.

3. In the same way as we did with FURQL, we deal with fuzzy quanti�ed queries in a more

general (fuzzy) graph database context (RDF being just a special case). We study the

same type of fuzzy quanti�ed structural query and show how it can be expressed in an

extension of the Neo4j Cypher query language, namely FUDGE, previously proposed

in [Pivert et al., 2014a]. A processing strategy based on a compilation mechanism that

derives regular (nonfuzzy) queries for accessing the relevant data is also described. Then,

some experimental results are reported that show that the extra cost induced by the fuzzy

quanti�ed nature of the queries remains very limited.

Structure of the thesis

The remainder of the thesis is organized as follows:

• Chapter 1 introduces background concepts and notations that are necessary to under-

stand the rest of this thesis. We start with the RDF data model and SPARQL, which

is the standard query language for RDF data, and brie�y touch upon fuzzy set the-

ory. Readers familiar with RDF, SPARQL and fuzzy set theory may want to skip this

chapter.

• Chapter 2 discusses the state-of-the-art research work related to this thesis. We give

a classi�ed overview of approaches from the literature that have been proposed to make

SPARQL querying of RDF data more �exible. Then, we summarize the main features

of these approaches and point out their limits.

• Chapter 3 is devoted to the presentation of our �rst contribution which consists of

a fuzzy extension of the SPARQL query language. First, we de�ne the notion of a

fuzzy RDF database. Second, we provide a formal syntax and semantics of FURQL,

an extension of the SPARQL query language. To do so, we extend the concept of a

SPARQL graph pattern de�ned over a crisp RDF data model, into the concept of a

fuzzy graph pattern that allows: (1) to query a fuzzy RDF data model, and (2) to express

fuzzy preferences on data (through fuzzy conditions) and on the structure of the data

graph (through fuzzy regular expressions).

• Chapter 4 is directly related to our second contribution that addresses the issue of

integrating the notion of fuzzy quanti�ed statements in the FURQL language introduced

in Chapter 3 for querying fuzzy RDF databases. We �rst recall important notions about
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fuzzy quanti�ers, and present di�erent approaches from the literature for interpreting

fuzzy quanti�ed statements. Then, we introduce the syntactic format for expressing a

speci�c type of fuzzy quanti�ed structural query in FURQL and we show how they can

be evaluated in an e�cient way.

• Chapter 5 provides a detailed architectural implementation of the SURF prototype and

reports experimental results related to approaches described in the previous chapters.

These results are promising and show the feasibility of the presented approaches.

• Chapter 6 concerns fuzzy quanti�ed queries in a more general (fuzzy) graph database

context. We start by recalling important notions about graph databases, fuzzy graph

theory, fuzzy graph databases, and the FUDGE query language which is a fuzzy exten-

sion of the Neo4j Cypher query language. We then discuss related work about fuzzy

quanti�ed statements in a graph database context and point out their limits. In this

chapter, we consider again a particular type of fuzzy quanti�ed structural query addressed

to a fuzzy graph database. We de�ne the syntax and semantics of an extension of the

query language Cypher that makes it possible to express and interpret such queries in

the FUDGE language. A query processing strategy based on the derivation of nonquan-

ti�ed fuzzy queries is also proposed and some experiments are performed in order to

study its performances.

• Finally, we conclude the thesis by summarizing our main contributions. Then, we dis-

cuss our upcoming perspectives for future research in order to improve and extend the

proposed approach.
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Introduction

In this chapter, we introduce some background notions that will be used throughout the

thesis. Section 1.1 presents the RDF graph data model, section 1.2 presents the SPARQL

language used for querying this model and section 1.3 presents fuzzy set theory.

1.1 The RDF Graph Data Model

Nowadays, the Resource Description Framework (RDF) [W3C, 2014], promoted by the W3C

(World Wide Web Consortium), is considered to be the most appropriate model for repre-

senting, describing and storing linked and structured data available on the Web. RDF uses a

set of resource names, a set of literals (e.g., a string, a number, etc.) and a set of blank nodes

(i.e., unknown or anonymous resources) respectively denoted by U , L and B in the following.

Let us consider an album as a resource of the Web. Characteristics may be attached to the

album, like its title, its artist, its date or its tracks. In order to express such a characteristic,

21
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the RDF data model uses a statement of the form of an RDF triple. De�nition 1 provides a

more formal de�nition.

De�nition 1 (RDF triple). Let U be the set of URIs, B the set of blank nodes, and L the

set of literals. An RDF triple t:= 〈s,p,o〉 ∈ (U ∪ B) × U × (U ∪ L ∪ B) where the subject s

denotes the resource being described, the predicate p denotes the property of the resource, and

the object o denotes the property value. A triple t states that the subject s has a property p

with a value o.

Example 1 [RDF triple] For instance, the triple 〈Beyonce, creator, Lemonade〉

states that Beyonce has Lemonade as a creator property, which can be interpreted as

Beyonce is a creator of Lemonade.

De�nition 2 (RDF graph). An RDF graph is a �nite set of triples of (U∪B)×U×(U∪L∪B).

An RDF graph is said to be ground if it does not contain blank nodes.

An RDF graph can be modeled by a directed labeled graph where for each triple 〈s,p,o〉,
the subject s and the object o are nodes, and the predicate p corresponds to an edge from

the subject node to the object one. RDF is then a graph-structural data model that makes it

possible to exploit the basic notions of graph theory (such as, node, edge, path, neighborhood,

connectivity, distance, in-degree, out-degree, etc.).

Example 2 [RDF graph] Let us consider an example of an RDF subgraph

extracted from the MusicBrainz database 1 which is an open music encyclopedia

that collects music metadata. The resource uri:lemonade is an album, entitled

Lemonade. It was released in 2016, with genre R&B and rating 8.7. It was created

by the resource uri:beyonce, named Beyonce, being 38 years old and a rating of 7.

The resource uri:sorry and the resource uri:holdup entitled hold up are tracks of

the latter resource. The resource uri:beyonce also created the resource uri:B'Day,

entitled B'Day, that was released in 2006. Figure 1.1 is a graphical representation

of these data.

In Figure 1.1, we omit URI pre�xes to avoid overcrowding the �gure. A triple

(s,p,o) is depicted as an edge s
p−→ o, that is, s and o are represented as nodes and

p is represented as an edge label. The nodes that represent resources are drawn

as ellipses, those that represent literals are drawn as rectangles and the edges that

represent named properties are drawn by an arrow. Each edge starts at the subject

and points to the object of the triple. �

1https://musicbrainz.org/

uri:lemonade
uri:beyonce
uri:sorry
uri:hold up
uri:beyonce
uri:B'Day
https://musicbrainz.org/
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dc:rating
rdf:type

dc:track

dc:track
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dc:creator dc:title
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dc:date

dc:creator

dc:title

Figure 1.1: Sample RDF graph extracted from MusicBrainz

Moreover, RDF provides a schema de�nition language called RDF Schema (RDFS), which

allows to specify semantic deductive constraints on the subjects, properties and objects of an

RDF graph. It permits to declare objects and subjects as instances of given classes, and

inclusion statements between classes and properties. It is also possible to relate the domain

and range of a property to classes. RDFS de�nes a set of reserved words from URI with its

own prede�ned semantics/vocabularies (i.e., RDFS vocabulary). Among RDFS vocabularies,

we can mention the following list:

• (rdf:type): represents the membership to a class;

• (rdfs:subClassOf): represents the subclass relationship between classes;

• (rdfs:subPropertyOf): represents the subclass relationship between properties;

• (rdfs:domain): represents the domain of properties;

• (rdfs:range): represents the range of properties;

• (rdfs:Class): represents the meta-classes of classes;

• (rdf:Property): represents the meta-classes of properties;

• etc.

RDF also declares entailment rules that make it possible to derive new triples from the

explicit triples appearing in an RDF graph. Such implicit triples are part of the RDF graph
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even if they do not explicitly appear in it. They can be explicitly added to the graph. When

all implicit triples are made explicit in the graph, then, the graph is said to be saturated. In

this thesis, we only consider saturated RDF graph.

In fact, RDF data may be represented by di�erent syntaxes such as, RDF/XML (eXtensible

Markup Language)2, N-Triples3, Notation 3 or N34 and Turtle (Terse RDF Triple Language)5,

etc.

Example 3 [RDF representations] Listing 1.1 is the RDF/XML representation

corresponding to the resource �uri:Lemonade� from the RDF graph of Figure 1.1.

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:mo="http://purl.org/ontology/mo/"

4 xmlns:dc="http://purl.org/dc/elements/1.1/">

5 <rdf:Description rdf:about="uri:Lemonade">

6 <dc:date> 2016 </dc:date>

7 <dc:title> Lemonade </dc:title>

8 <dc:rating> 8.7 </dc:rating>

9 <dc:genre> R & B </dc:genre>

10 <rdf:type> rdf:resource=mo:album </rdf:type>

11 <dc:track> rdf:resource="uri:sorry" </dc:track>

12 <dc:track> rdf:resource="uri:hold up" </dc:track>

13 </rdf:Description>

14 </rdf:RDF>

Listing 1.1: RDF/XML document

In this listing, line 1 indicates an XML declaration and line 2 says that the following

XML document is about RDF. Lines 2-4 declare namespaces which indicate the

URI that will be used later. Lines 5-14, as the tag is closed in line 14, present

the description of a resource in which lines 6-12 describe characteristics of this

resource.

Its corresponding N-Triples representation is given in Listing 1.2.

<uri:Lemonade> <http://purl.org/dc/elements/1.1/date> "2016" .

<uri:Lemonade> <http://purl.org/dc/elements/1.1/title> "Lemonade" .

<uri:Lemonade> <http://purl.org/dc/elements/1.1/rating> "8.7" .

<uri:Lemonade> <http://purl.org/dc/elements/1.1/genre> "R & B" .

<uri:Lemonade> <http://purl.org/dc/elements/1.1/track> <uri:sorry> .

<uri:Lemonade> <http://purl.org/dc/elements/1.1/track> <uri:hold up> .

2http://www.w3.org/TR/rdf-syntax-grammar/
3http://www.w3.org/2001/sw/RDFCore/ntriples/
4http://www.w3.org/DesignIssues/Notation3
5http://www.w3.org/TR/turtle/
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<uri:Lemonade> <http://www.w3.org/1999/02/22-rdf-syntax-ns#/type> <mo:album> .

Listing 1.2: N-Triples �le

A database which stores RDF graphs, containing statements of the form (subject-predicate-

object), is called a triple store (or simply an RDF database). There have been a sig-

ni�cant number of RDF databases over the last years mainly divided into two categories

[Faye et al., 2012]:

• Native RDF stores implement their own database engine without reusing the storage

and retrieval functionalities of other database management systems. Some examples of

native RDF stores are AllegroGraph (commercial)6, Apache Jena TDB (open-source)7,

etc.

• Non-native RDF Stores use the storage and retrieval functionalities provided by other

database management systems. Among the non-native RDF stores, we �nd the Apache

Jena SDB (open-source) using conventional relational databases 8, etc.

1.2 SPARQL: Crisp Querying of RDF data

In order to e�ciently query RDF data, the SQL-like language SPARQL

[Prud'hommeaux and Seaborne, 2008] is promoted by the W3C as a standard query

language. It is a declarative query language based on graph pattern matching, in the sense

that the query processor searches for sets of triples in the data graph that satisfy a graph

pattern expressed in the query.

A Basic Graph Pattern (BGP) is a basic building block of SPARQL, containing a set of

triple patterns. A triple pattern is an RDF triple where variables may occur in the subject,

predicate, or object position. Each variable is pre�xed by the question mark symbol.

Example 4 [Basic Graph Pattern] The albums featuring the artist Beyonce,

with their names are described by the following graph pattern.

?artist dc:creator ?album .

?artist dc:title "Beyonce" .

?album dc:title ?name .

Listing 1.3: A SPARQL Basic Graph Pattern

A graphical representation of this graph pattern is depicted in Figure 1.2.

According to the graph of Figure 1.1, two subgraphs that are isomorphic to this

graph pattern may be found and they are given in Figure 1.3. �
6http://www.franz.com/agraph/allegrograph/
7http://jena.apache.org/
8http://jena.apache.org/
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?artist

?album

Beyonce

?name

dc:creator

dc:title

dc:title

Figure 1.2: A graphical representation of the graph pattern from Listing 1.3

uri:beyonce

uri:Lemonade

Beyonce

Lemonade

dc:creator

dc:title

dc:title
uri:beyonce

uri:B'Day

Beyonce

B'Day

dc:creator

dc:title

dc:title

Figure 1.3: Possible subgraphs from Figure 1.1

A classical SPARQL query has the general form given in Listing 1.4, where the clause

prefix is for abbreviating URIs (which will be omitted in the following examples), the clause

select is for specifying which variables should be returned, the clause from de�nes the datasets

to be queried, and the clause where contains the triple of the researched pattern.

prefix ... #Prefix declarations

select ... #Result

from ... #Dataset definition

where ... #Pattern

order by ..., distinct ..., limit ..., offset ..., projection ... #Modifiers

Listing 1.4: Skeleton of a sparql query

SPARQL also provides solution modi�ers, which make it possible to modify the result set

by applying classical operators like order by for ordering the result set in ascending (asc(.)

default ordering) or descending (desc(.)) order, distinct for removing duplicate answers,

limit to limit the number of answers to a �xed number (chosen by a user), projection to

choose certain variables and eliminate others from the solutions, or offset to de�ne the

position of the �rst returned answers.

Finally, the output of a SELECT SPARQL query is a set of mappings of variables which

match the patterns in the where clause.

Example 5 [SELECT SPARQL query] Listing 1.5 is a simple SELECT

SPARQL query taken from the MusicBrainz database that aims to retrieve the

names and the released dates of the albums featuring Beyonce, sorted in ascending

order of their release date.
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select ?name ?date where {

?artist dc:title "Beyonce" . ?artist dc:creator ?album .

?album dc:title ?name . ?album dc:date ?date . }

order by asc(?date)

Listing 1.5: Example of a SPARQL SELECT query

The result of this query evaluated on the RDF graph of Figure 1.1 comprises two

albums as given in Table 1.1. �

Table 1.1: Results of Listing 1.5
?name ?date

Lemonade 2016

B'Day 2006

More complex graph patterns exist in SPARQL including.

• Optional graph pattern: uses the clause optional and allows for a partial matching

of the query. The query tries to match a graph pattern and does not discard a candidate

answer when some part of the optional patterns is not satis�ed.

Example 6 [Optional graph pattern] An example of how SPARQL imple-

ments the optional matching is to �nd the names of all the albums featuring

Beyonce and if possible, their genre.

select ?title ?genre where {

{ ?artist dc:creator ?album . ?album dc:title ?title .

?artist dc:title "Beyonce" . }

optional { ?album dc:genre ?genre . } }

Listing 1.6: SPARQL query with OPTIONAL graph pattern

The result of the evaluation of the query on the running example of Figure 1.1

page 23 returns two albums, given in Table 1.2. Here, the second answer does

not have a genre and is kept in the �nal answer since the property genre is in

the optional part of the query. �

Table 1.2: Results of Listing 1.6
?title ?genre

Lemonade R&B

B'Day

• Union graph pattern: forms a disjunction of two graph patterns thanks to the use

of the clause union and allows for alternatives. Solutions to both sides of the union are

included in the results.
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Example 7 [Union graph pattern] Find the albums that are made by James

Brown as a singer or a producer. �

select ?album where {

{ ?artist dc:creator ?album .

?artist dc:title "James Brown" . }

union { ?producer dc:producer ?album .

?producer dc:title "James Brown" . } }

Listing 1.7: SPARQL query with UNION graph pattern

• Graph pattern: using the clause graph, allows portions of a query pattern to match

one or more named graphs identi�ed by an URI in the RDF dataset. Note that anything

outside the graph clause has to match the default graph.

• Filter graph pattern: using the clause filter followed by an expression to select

answers according to some criteria. This expression may contain classical operators

(e.g., =, + , ∗ , − , / , < , > , ≥ , ≤) and functions (e.g., isURI(?x), isLiteral(?x),

isBlank(?x), regex(?x, “A.∗′′)).

Example 8 [Filter graph pattern] the query that aims to �nd the titles

of the albums featuring James Brown which have been released after 2008 is

given in Listing 1.8.

select ?title where {

?artist dc:creator ?album . ?artist dc:title "James Brown" .

?album dc:title ?title . ?album dc:date ?date .

filter (?date >= "2008" )

}

Listing 1.8: SPARQL FILTER query (classical operator)

And the query that aims to �nd all of the albums whose title starts with

�Happy� is given in Listing 1.9. �

select ?album ?title where {

?album rdf:type "mo:Album" . ?album dc:title ?title .

filter regex(?title,"^Happy")

}

Listing 1.9: SPARQL FILTER query (function)

Di�erent types of queries are available in SPARQL.

• SELECT query: is equivalent to an SQL SELECT, used to return a set of variables

from the query pattern using the select clause. For instance, all the aforementioned

examples of SPARQL queries are of the SELECT form;
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• CONSTRUCT query: returns a single RDF graph by creating new triples that satisfy

a speci�c template from the query pattern.

Example 9 [CONSTRUCT query] Let us assume that, if a person X knows

a person Y and if this latter (X) knows a person Z, so, we can say that the

�rst person X knows the person Z or any person known by Y . Thus, we can

create this relationship thanks to the following CONSTRUCT query. �

construct { ?x foaf:knows ?z . }

where {

?x foaf:knows ?y .

?y foaf:knows ?z .

}

Listing 1.10: An example of a CONSTRUCT query

• ASK query: is used to return a Boolean result: true if there exists at least one result

that matches the query pattern and false otherwise.

Example 10 [ASK query] The following query illustrates the use of the

ASK query: Is �Beyonce� the name of the resource uri:beyonce ?

ask { uri:beyonce dc:title "Beyonce" . }

Listing 1.11: An example of an ASK query

This query returns true since the resource uri:beyonce is indeed the artist

�Beyonce�. �

• DESCRIBE query: is used to return a single RDF graph with information about the

selected resources.

Example 11 [DESCRIBE query] An example of a DESCRIBE query is

given in Lsiting 1.12.

describe uri:beyonce

Listing 1.12: An example of a DESCRIBE query

This query returns information about the ressource <uri:beyonce>, such as,

its name, its age, its rating, its type, etc. �

Recently, SPARQL 1.1 [Harris and Seaborne, 2013] is a new version of SPARQL support-

ing new features, such as, property paths, update functionalities, subqueries, negation, value

assignments, aggregates functions, etc.
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• Property paths: they are known as regular expressions tack-

led in [Kochut and Janik, 2007, Anyanwu et al., 2007, Pérez et al., 2008,

Alkhateeb et al., 2009, Pérez et al., 2010]. These works proposed more expressive

languages and extended SPARQL by allowing path extraction queries (generally of

unknown length) within RDF datasets. Property paths came with the same principle

which is to allow for navigational querying over RDF graphs and are o�cially integrated

in SPARQL 1.1. A property path is a possible path through a graph between two

nodes. It can be of a variable length. A property path of length exactly 1 is a triple

pattern.

De�nition 3 (SPARQL property path expressions). SPARQL property path expressions

are recursively de�ned by:

� an IRI9 is a property path expression that denotes a path of length one,

� if exp1 and exp2 are property path expressions, then, exp1|exp2 and exp1/exp2 are

property path expressions,

� if exp is a property path expression, then, exp∗, exp+, exp? and ˆexp are property

path expressions.

where exp1|exp2 denotes alternative expressions, exp1/exp2 denotes a concatenation of

exp1 and exp2, exp
∗ denotes a path that connects the subject and object of the path by

zero or more matches of exp, exp+ is a shortcut for exp ∗ /exp and denotes a path that

connects the subject and object of the path by one or more matches of exp, exp? denotes

a path that connects the subject and object of the path by zero or one matches of exp,

ˆexp is an inverse path (from an object to the subject).

Example 12 [SPARQL property path query] Find the names of the artists

that recommend albums made by friends or related friends of friends. �

select ?name where {

?art1 dc:title ?name . ?art1 dc:recommends ?alb .

?art2 dc:creator ?alb . ?art1 dc:friend+ ?art2 .

}

Listing 1.13: SPARQL query with property path

• Update functionalities: In addition to querying and manipulating RDF data,

SPARQL 1.1 Update [Gearon et al., 2012] o�ers the possibility to modify the graph by

adding/deleting triples, loading/clearing/creating/dropping an RDF graph and many

other facilities.

9Internationalized Resource Identi�er
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Example 13 [Update query] The following query aims to add some infor-

mation about a new artist "Ed Sheeran" in the default graph. �

insert data {

uri:EdSheeran dc:title "Ed Sheeran" . uri:EdSheeran dc:age "26" .

uri:EdSheeran dc:rating "8" . }

Listing 1.14: An example of an Update query

• Subqueries: The principle is the same as subqueries in SQL: a query may use the

output of other queries for achieving complex results.

Example 14 [Subqueries in SPARQL] Return a name (the one with the

lowest sort order) for all the artists who are friend with beyonce and have a

name. �

select ?art ?minName where {

uri:beyonce uri:friend ?y .

{

select ?art (min(?name) as ?minName) where {

?art uri:title ?name .

} group by ?art

} }

Listing 1.15: Query involving a subquery

• Negation: can be expressed in two ways. The �rst uses the not exists clause and aims

to �lter out the results that do not match a given graph pattern. The second one uses

theminus clause and aims to remove answers related to another pattern.

Example 15 [Negation queries] The following query aims to �nd the artists

who have issued no albums in 2015.

select ?name where {

?artist dc:creator ?album .

filter not exists { ?artist dc:date "2005" . }

}

Listing 1.16: SPARQL query with negation (not exists)

The query that aims to retrieve names of artists having no albums is depicted

in Listing 1.17. �

select ?name where {

?artist dc:title ?name .

minus { ?artist dc:creator ?album . }

}

Listing 1.17: SPARQL query with negation (minus)
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• Assignments: The value of a complex expression can be added to a solution mapping

by binding a new variable to the value of this expression. The variable can then be

used in the query and also can be returned in the result. The assignment is of the form:

(expression as ?var).

Example 16 [Query with assignment] The following query aims to return

the albums released less than 6 years before 2017. �

select ?name ?album (2017 - ?date as ?Newdate) where {

?album dc:title ?name . ?album dc:date ?date .

filter ( ?Newdate < 6 ) }

Listing 1.18: SPARQL query with assignments

• Agregate functions: Aggregates apply expressions over groups of answers. In

SPARQL 1.1, we can �nd aggregate operators like, count, sum, min, max, avg,

group_concat, and sample. Grouping may be speci�ed using the group by clause.

Example 17 [Query with aggregates] Counting albums for each artist. �

select ?artist (count(?album) as ?number) where {

?artist dc:creator ?album . }

group by ?artist

Listing 1.19: SPARQL query with aggregates

Web services that make it possible to retrieve RDF data through SPARQL queries

are called SPARQL endpoints. Among public SPARQL endpoints, we can men-

tion IMDB http://data.linkedmdb.org/sparql, DBpedia http://dbpedia.org/sparql,

data.gov http://semantic.data.gov/sparql, DBLP Bibliography Database http://www4.

wiwiss.fu-berlin.de/dblp/sparql and many others.

1.3 Fuzzy Set Theory

In the classical set theory, there are two possible situations for an element: to belong or to

not belong to a subset.

In 1965, Lot� Zadeh [Zadeh, 1965] proposed to extend classical set theory by introducing

the concept of gradual membership in order to model classes whose borders are not clear-cut.

A fuzzy set is associated with a membership function which takes its values in the range of

real numbers [0,1], that is to say that graduations are allowed and an element may belong

more or less to a fuzzy subset.

http://data.linkedmdb.org/sparql
http://dbpedia.org/sparql
http://semantic.data.gov/sparql
http://www4.wiwiss.fu-berlin.de/dblp/sparql
http://www4.wiwiss.fu-berlin.de/dblp/sparql
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The theory of fuzzy sets has advanced applications in arti�cial intelligence, com-

puter science, decision theory, expert systems, robotics, etc. They also play an

important role in expressing fuzzy user preferences queries to relational databases

[Dubois and Prade, 1997, Pivert and Bosc, 2012].

In the following, we �rst give a formal de�nition and some characteristics of the notion a

fuzzy set, and then the main operations over fuzzy sets are detailed.

1.3.1 De�nition

Let X be a classical set of objects called the Universe and x be any element of X. If A is a

classical subset of X, the membership degree of every element can take only extreme values 0

or 1. This corresponds to the classical de�nition of a characteristic function:

µA(x) =

{
1 i� x ∈ A,
0 otherwise.

When A is a fuzzy subset of X [Zadeh, 1965] it is denoted by:

A = {(x, µA(x)), x ∈ X} with µA :X → [0,1],

where µA(x) is a degree of membership (simply denoted degree in the following) that quanti�es

the membership grade of x in A. The closer the value of µA(x) to 1, the more x belongs to A.

Therefore, we can have the three situations:

µA(x)=0 , 0 < µA(x) < 1 , µA(x)=1.

where µA(x)=0 means that x does not belong to A at all, 0 < µA(x) < 1 if x belongs partially

to A and µA(x)=1 means that x belongs entirely to A.

In practice, the membership function of A is of a trapezoidal shape (see Figure 1.4) and

is expressed by the quadruplet (A− a,A,B,B + b).

A− a A B B + b
0

1
µA

X

Degree of

membership

Figure 1.4: Trapezoidal membership function
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Example 18 Let us consider the example of the predicate tall described in Ta-

ble 1.3. Tall can be de�ned by a Boolean condition (height ≥ 180). It corresponds

to the crisp set (non fuzzy set) of Figure 1.5 and the result is in the third column

of Table 1.3.

Name height(cm) Memberships

Crisp Fuzzy

Chris 210 1 1

Marc 200 1 1

John 190 1 1

Tom 180 1 0.66

David 170 0 0.33

Tom 160 0 0

David 150 0 0

Table 1.3: Tall men

However, it seems more natural to de�ne the predicate �tall� as a fuzzy set (cf., Fig-

ure 1.6). The membership degrees associated with some individuals are shown in

the fourth column of Table 1.3. �

160 170 180 190 200 210
0

1

Degree of

membership

Height, cm

Figure 1.5: Graphical representation of the predicate tall (crisp set)

160 170 180 190 200 210
0

1

0.66

0.33

Degree of

membership

Height, cm

Figure 1.6: Graphical representation of the predicate tall (fuzzy set)
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A more convenient notation, when X is a �nite set {x1, ..., xn}, is:

A = {µA(x1)/x1, ..., µA(xn)/xn},

It is worth mentioning that in practice the elements for which the degree equals 0 are

omitted.

Remark 1. A fuzzy subset of X is called normal if there exists at least one element x ∈ X
such as µA(x) = 1. Otherwise it is called subnormal.

1.3.2 Characteristics of a Fuzzy Set

Several notions can be used to describe a fuzzy set. Among them we can cite.

1.3.2.1 Support, height and core

The support of a fuzzy subset A in the universal set X, denoted by supp(A), is a crisp set

that contains all the elements of X that have a strictly positive degree in A (i.e., which belong

somewhat to A). More formally:

supp(A) = {x | x ∈ X,µA(x) > 0}.

The core of a fuzzy subset A, denoted by core (A), is the crisp subset of X containing all

the elements with a degree equal to 1 (i.e. that completely belong to A with degree equal to

1). More formally:

core(A) = {x | x ∈ X,µA(x) = 1}.

Remark 2. Note that in the case of a crisp set, the support and the height collapse, since if

x is somewhat in A it belongs (totally) to A.

Example 19 Let us consider two fuzzy subsets A and B of the set X, with X=

{x1, x2, x3, x4, x5}, A= {1/x1, 0.3/x2, 0.2/x3, 0.8/x4, 0/x5} and B= {0.6/x1,

0.9/x2, 0.1/x3, 0.3/x4, 0.2/x5}. �

The supports of the two subsets A and B are:

supp(A) = {x1, x2, x3, x4}, supp(B) = {x1, x2, x3, x4, x5}.

The core of these two subsets is as follows:

core(A)= {x1}, core(B)= ∅.

The height of a fuzzy subset A of X denoted by hgt(A) is the largest degree attained by

any element of X that belongs to A. More formally:

hgt(A) = supx∈XµA(x).

A is said to be normalized i� ∃ x ∈ X,µA(x) = 1 which means that hgt(A) = 1.
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1.3.2.2 α-cut

The ordinary set of such elements x ∈ X having a membership degree larger or equal to a

threshold α ∈]0, 1] is the α-cut (Aα) of the fuzzy subset A de�ned as:

Aα = {x | x ∈ X,µA(x) ≥ α}.

Example 20 Let us consider X={x1, x2, x3} and a fuzzy subset A={0.3/x1 +

0.5/x2 + 1/x3}, the α-cuts of this subset are as follows :

A0.5 = {x2, x3}, A0.1 = {x1, x2, x3}, A1 = {x3}

The membership function of a fuzzy subset A can be expressed in terms of characteristic

functions of its α-cuts according to the following formula:

µA(x) = supα∈]0,1]min(α, µAα(x)) ,

where

µAα(x) =

{
1 i� x ∈ Aα,
0 otherwise.

The strict (or strong) α-cut of A, denoted by Aᾱ, contains all the elements in X that have

a membership value in A strictly greater than α:

Aᾱ = {x|x ∈ X,µA(x) > α}.

The following properties hold:

• A0̄ = supp(A),

• A1̄ = core(A),

• α1 > α2 ⇒ Aα1 ⊆ Aα2 .

It can easily be checked that:

(A ∪B)α = Aα ∪Bα and (A ∩B)α = Aα ∩Bα.

1.3.3 Operations on Fuzzy Sets

Classical operations on crisp sets have been extended to fuzzy sets. These extensions are

equivalent to classical operations of set theory when dealing with membership functions be-

longing to values 0 or 1. The most commonly used operations are presented hereafter and the

interesting reader may refer to [Dubois, 1980].
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1.3.3.1 Complementation

The complement of a fuzzy set A, denoted by Ā, is de�ned as:

∀x ∈ X, µĀ(x) = 1− µA(x).

Example 21 Let us consider the fuzzy subset A = {1/x1 + 0.3/x2 + 0.2/x3 +

0.8/x4 + 0/x5}.

Its complement is Ā = {0/x1 + 0.7/x2 + 0.8/x3 + 0.2/x4 + 1/x5}. �

This operation is involutive, i.e., ¯̄A = A (µ ¯̄A(x) = µA(x)).

1.3.3.2 Inclusion

Let us consider two fuzzy sets A and B de�ned on X. If for any element x of X, x belongs

less to A than B or has the same membership, then A is said to be included in B (A ⊆ B).

Formally A ⊆ B if and only if:

∀x ∈ X,µA(x) ≤ µB(x).

When the inequality is strict, the inclusion is said to be strict and is denoted by A ⊂ B.

Obviously, A=B i� A ⊆ B and B ⊆ A.

1.3.3.3 Intersection and union of fuzzy sets

The intersection of two fuzzy subsets A and B in the universe of discourse X, denoted by

A ∩ B, is a fuzzy set given by:

µA∩B(x) = >(µA(x), µB(x)),

where > is a triangular norm (abbreviated t-norm) and usually we take the minimum.

The union of two fuzzy subsets A and B in the universe X (denoted by A ∪ B) is a fuzzy
subset given by:

µA∪B(x) = ⊥(µA(x), µB(x)),

where ⊥ is a triangular co-norm (abbreviated t-conorm) and usually we take the maximun.

The t-norms and t-conorms operators follow the properties showed in Table 1.4. The set

of t-norms (resp. t-conorms) has an upper (resp. lower) element which is the minimum (resp.

maximum) operator.

Example 22 Let us come back to Example 19. The intersection of the two

fuzzy subsets, taking > = min, is as follows:

A ∩B = {0.6/x1, 0.3/x2, 0.1/x3, 0.3/x4, 0/x5}.

The union of the two fuzzy subsets, taking ⊥ = max, is as follows:

A ∪B = {1/x1, 0.9/x2, 0.2/x3, 0.8/x4, 0.2/x5}.
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Table 1.4: Properties of t-norm and t-conorm operators
Property T-norm T-conorm

Identity 1 ∧ x = x 0 ∨ x = x

Commutativity x ∧ y = y ∧ x x ∨ y = y ∨ x
Associativity x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z
Monotonicity if v ≤ w and x ≤ y then

v ∧ x ≤ w ∧ y
v ∨ x ≤ w ∨ y

Remark 3. A t-norm is associated with a t-conorm (e.g., min/max) and they satisfy De

Morgan's Laws.

Later, compensatory operators, such as the averaging operators, have appeared useful

for aggregating fuzzy sets, especially in the context of decision making [Zimmermann, 2011].

Averaging operators for intersection (resp., union) are considered to be more optimistic (resp.,

pessimistic) than t-norms (resp., t-conorms).

Let us also mention many other operators that may be used for expressing di�erent kinds of

trade-o�s, such as the weighted conjunction and disjunction [Dubois and Prade, 1986], fuzzy

quanti�ers [Fodor and Yager, 2000] (that are going to be explained in Chapter 4), or the

non-commutative connectives described in [Bosc and Pivert, 2012].

1.3.3.4 Di�erence between fuzzy sets

The di�erence between two fuzzy sets A and B is de�ned as:

∀x ∈ X,µA−B(X) = >(µA(x), µB̄(x)) = >(µA(x), 1− µB(x)),

which leads to:

• µA−B(x) = min(µA(x), 1− µB(x)) with >(x, y) = min(x, y),

• µA−B(x) = max(µA(x)− µB(x), 0) if >(x, y) = max(x+ y − 1, 0) is chosen.

Example 23 Consider the following fuzzy sets A= {1/a, 0.3/b, 0.7/c, 0.2/e }

and B= {0.3/a, 1/c, 1/d, 0.6/e}.

Using the minimum for the conjunction, one obtains { 0.7/a, 0.3/b, 0.2/e} for the

di�erence A−B, while A−B= { 0.7/a, 0.3/b} with the other choice. �

1.3.3.5 Cartesian product of fuzzy sets

The Cartesian product of the two fuzzy sets A and B, de�ned as:

µA×B(xy) = >(µA(x), µB(x)),

where > is a triangular norm.
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Example 24 Let A and B be the fuzzy sets: A= {1/a, 0.3/b, 0.7/c, 0.2/e},

B={1/y, 0.6/z}.

Their Cartesian product A×B (if the minimum is taken for >) is:

{ 1/(a,y), 0.6/(a,z), 0.3/(b,y), 0.3(b,z), 0.7/(c,y), 0.6/(c,z), 0.2/(e,y), 0.2/(e,z)}.�

Conclusion

In this chapter, we provided some background notions concerning the RDF Graph data model,

the SPARQL query language and fuzzy set theory. These notions will play a central role in

the following since in this thesis we intend to propose a fuzzy extension of the SPARQL query

language addressed to both crisp and fuzzy RDF graphs.
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Introduction

In the last years, with the rapid growth in size and complexity of RDF graphs, querying

RDF data in a �exible, expressive and intelligent way has become a challenging problem. In

the following, we present the contributions from the literature that make SPARQL querying of

RDF data more �exible. Three categories of approaches may be associated with the following

objectives: i) introducing user preferences into queries (which is directly related to this thesis),

ii) relaxing user queries and iii) computing an approximate matching of two RDF graphs.

These approaches are discussed further in the following sections.

A part of this chapter related to introducing user preferences inside SPARQL queries was

published in the form of a survey in the proceedings of the 31st ACM Symposium on Applied

Computing (SAC'16).

41
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2.1 Preference Queries on RDF Data

Introducing user preferences into queries has been a research topic for already quite a long

time in the context of the relational database model. Motivations for integrating preferences

are manifold [Hadjali et al., 2011]. First, it has appeared to be desirable to o�er more expres-

sive query languages that can be more faithful to what a user intends to say. Second, the

introduction of preferences in queries provides a basis for rank-ordering the retrieved items,

which is especially valuable in case of large sets of items satisfying a query. Third, a classical

query may also have an empty set of answers, while a relaxed (and thus less restrictive) version

of the query might be matched by some items.

The literature about preference queries to RDF databases is not as abundant as in the

relational context since this issue has started to attract attention only recently. In this sec-

tion, we present an overview of approaches that have been proposed to extend SPARQL by

integrating user preferences in queries, followed by a classi�cation of these approaches into two

categories according to their qualitative or quantitative nature. We �rst present quantitative

approaches (Subsection 2.1.1), then qualitative ones (Subsection 2.1.2).

2.1.1 Quantitative Approaches

The quantitative approaches share the following principle: each involved preference is de�ned

via an atomic scoring function allowing a score (aka., satisfaction degree) to be associated

with each answer, making it possible to get a total ordering of the answers (i.e., tuple t1 is

preferred to tuple t2 if the score of t1 is higher than the score of t2).

Among the works which belong to the quantitative approaches we may �nd those that are

based on fuzzy set theory [Zadeh, 1965] and aim to a �exible extension of the query language

(SPARQL) [Cheng et al., 2010, Wang et al., 2012, Ma et al., 2016]. We can �nd, also, those

based on top-k querying of RDF data that aim to extend the SPARQL language with top-k

queries [Bozzon et al., 2011, Bozzon et al., 2012, Magliacane et al., 2012, Wang et al., 2015].

2.1.1.1 Fuzzy set-based approach

The standard version of the SPARQL query language supports only a few classical ways

of retrieval, all based on Boolean logic. In order to meet user needs more e�ectively,

[Cheng et al., 2010] proposes a syntactical fuzzy extension of SPARQL, called f-SPARQL

(fuzzy SPARQL), which supports the expression of fuzzy conditions including (possibly com-

pound) fuzzy terms, e.g., recent or young, and fuzzy operators, e.g., close to or at least,

interpreted in a gradual manner.

Most fuzzy terms are assumed to be represented by a trapezoidal membership function

(see for instance a possible representation of recent in Figure 2.1).
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Figure 2.1: Membership function of recent

Membership functions of the fuzzy predicates at least Y , at most Y and close to Y are

proposed in [Cheng et al., 2010]. For instance, the membership function of the fuzzy number

�at least Y� on the universe of discourse is shown in Figure 2.2 and is de�ned by the following

equation:

µatleastY (x) =


0, if u ≤ w;

u−w
Y−w , if w < u < Y ;

1, if u ≥ Y.
(2.1)

ω Y
0

1

satisfaction

degree

Figure 2.2: Membership function of the fuzzy number �at least Y�

The f-SPARQL extension of SPARQL concerns the filter clause whose syntax becomes

filter [(?X θ FT ) | (?X θ̂ Y)] [with α],

where FT denotes a fuzzy term, θ denotes a classical operator (e.g., >, <, =, ≥, ≤, ! =),

θ̂ denotes a fuzzy operator (such as close to (around), at least, and at most), and Y is a string,

an integer or an other types allowed in RDF. The optional parameter [with α] speci�es the

smallest acceptable membership degree in the interval [0, 1]. Each f-SPARQL query is pre�xed

by #FQ#.
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Example 25 The fuzzy query �retrieve the name of the recent albums with

Beyonce� is formulated by the f-SPARQL listing 2.1.

#FQ#

select ?name where {

?artist dc:title "Beyonce". ?artist dc:creator ?album .

?album dc:title ?name. ?album dc:date ?date.

filter (?date = recent).}

Listing 2.1: An f-SPARQL query

This query aims to retrieve from a music database the albums by Beyonce that

have been recently released. If the MusicBrainz RDF database of Figure 1.1 on

page 23 is queried, then the album entitled Lemonade belongs to the answer, with a

satisfaction degree of 0.66, which corresponds to the degree of membership of value

2016 to the fuzzy term recent (see Figure 2.1). The other album from Figure 1.1,

released in 2006, does not belong to the answer as it is not at all recent according

to Figure 1.1. �

Let us now assume that the database of the running example embeds a rating value for

each album, through a property named dc:rate connecting an album (URI resource) to a rating

value (a label). When a user wants to express preferences on several attributes (e.g., date,

rating, ...), he/she may assign an importance to every partial preference. If no importance

is speci�ed, it is implicitly assumed that the partial degrees are aggregated by means of the

triangular norm minimum that is commonly used in fuzzy logic to interpret the conjunction.

In [Cheng et al., 2010], the authors propose to use a weighted mean in order to combine

the partial scores coming from di�erent atomic preference criteria:

score(A) =
n∑
i=1

µ(Ai)× w(Fi) (2.2)

where F = (F1, ..., Fn) is the set of filter conditions, Ai is the property concerned by Fi

in the candidate answer A, µ(Ai) denotes the membership degree of the answer for Fi, and

w(Fi) denotes the weight assigned to Fi, assuming that
∑n

i=1w(Fi) = 1.

Example 26 Consider the query �retrieve the name of the recent (importance

0.2) albums featuring Beyonce with a high rating (importance 0.8)�. It is expressed

in f-SPARQL by Listing 2.2.
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#FQ#

select ?name where {

?artist dc:title "Beyonce". ?artist dc:creator ?album.

?album dc:title ?name. ?album dc:date ?date. ?album dc:rating ?rating.

filter (?date = recent) with 0.2.

(?rating = high) with 0.8.}

Listing 2.2: f-SPARQL query with weights

It is also possible to apply a threshold αi to an atomic fuzzy condition Fi (this threshold

is associated with the underlying attribute in the select clause). Then, an answer is quali�ed

only if its membership degree relatively to Fi is at least equal to αi. Surprisingly, it does not

seem that f-SPARQL makes it possible to specify a threshold on the global satisfaction degree.

As in SQLF introduced in [Bosc and Pivert, 1995], two types of queries exist in f-SPARQL

depending on the type of calibration:

• a qualitative calibration in the case of �exible queries (#fq#) (see Listing 2.2);

• a quantitative calibration in the case of top-k �exible queries (#top-k fq# with k (see

Listing 2.3), and then, only the top-k answers are returned.

The query type has to be declared before the select clause: #fq# (�exible query) in

the �rst case, and #top-k fq# with k (top-k �exible query) when a quantitative threshold is

used.

Example 27 Let us consider again the query from Example 26 and assume that

a user only wants to get the 10 best answers. The corresponding f-SPARQL query

is:

#top-k FQ# with 10

select ?name where {

?artist dc:tilte "Beyonce". ?artist dc:creator ?album.

?album dc:tilte ?name. ?album dc:date ?date. ?album dc:rating ?rating.

filter (?date = recent) with 0.2.

(?rating = high) with 0.8.}

Listing 2.3: Top-k �exible query

The authors of [Cheng et al., 2010] exhibit a set of translation rules to convert f-SPARQL

queries into Boolean ones so as to be able to bene�t from the existing implementations of

standard SPARQL. The same principle was initially proposed in [Bosc and Pivert, 2000] in

the context of relational databases (under the name derivation principle) to process SQLf

(fuzzy) queries. It aims to derive a crisp (SQL) query from an SQLf query involving a (global)

qualitative threshold α in order to return only answers with satisfaction degree greater or
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equal to the α-cut. Di�erent types of translation rules were used in [Cheng et al., 2010]

depending on the the types of fuzzy terms (including simple atomic terms, e.g., recent,

modi�ed fuzzy terms, e.g., very recent, and compound fuzzy terms, e.g., popular and very

recent) and fuzzy operators.

Some of the authors of [Cheng et al., 2010] proposed two variants of f-SPARQL. The First

one, called fp-SPARQL (fuzzy and preference SPARQL) [Wang et al., 2012], involves an alter-

native way of (i) interpreting modi�ed fuzzy terms (i.e., an atomic fuzzy term modi�ed by an

adverb such as extremely, rather, etc), and (ii) interpreting compound fuzzy conditions where

atomic predicates are assigned a priority.

The second query language, called SPARQLf-p [Ma et al., 2016], makes it possible to ex-

press i) more complex conditions including fuzzy relations (e.g., physical health is a fuzzy

relation between height and weight) besides fuzzy terms and fuzzy operators and, ii) multi-

dimensional user preferences.

From another point of view, the authors of [Buche et al., 2008, Buche et al., 2009,

Buche et al., 2013] de�ned a �exible querying system using fuzzy RDF annotations based

on the notion of similarity and imprecision. This approach is beyond the scope of our work

since it does not explicitly propose an extension of the SPARQL query language.

2.1.1.2 Top-k-based approach

Top-k -query approaches have been proposed for already many years in a relational database

context (cf., the survey of [Ilyas et al., 2008]). They have been useful in several application

areas such as system monitoring, information retrieval, multimedia databases, sensor networks,

etc. Top-k queries [Bruno et al., 2002] are a popular class of queries that return only the k

most relevant (best) tuples according to user's preferences. The attribute values of each tuple

are associated with a value or score using a simple linear function. Top-k -queries can be

viewed as a special case of fuzzy queries limited to conditions of the form:

attribute ' constant

The distance between an attribute value and the ideal value is computed by mean of a

di�erence (absolute value), after a normalization step (which yields domain values between

0 and 1). The overall distance is calculated by aggregating the elementary distances using a

function which can be the minimum, the sum, or the Euclidean distance. The steps in the

computation are the following:

1. using k, and taking into account both the chosen aggregation function and statistics

about the considered relation, a threshold α over the global distance is deduced,

2. a Boolean query computing the desired α-cut or a superset of this α-cut is determined,
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3. this query is processed and the score attached to every element of the result is calculated,

4. if at least k tuples with a score greater than or equal to α have been obtained, the k

best are returned to the user; otherwise the procedure is run again (from step 2) using

a lower threshold α.

For e�ciently processing Top-k -queries in the context of relational databases, several

algorithms have been proposed (e.g., Threshold Algorithm (TA) and No Random Access

Algorithm (NRA) [Fagin et al., 2003], the Best Position Algorithm [Akbarinia et al., 2007],

LPTA [Das et al., 2006], LPTA+ [Xie et al., 2013] and IV-Index [Xie et al., 2013]).

In the Semantic Web community, top-k -queries have raised a growing interest in the last few

years [Bozzon et al., 2012, Magliacane et al., 2012, Dividino et al., 2012, Wang et al., 2015]

for alleviating information overload problems. A major challenge is to make the processing

of such queries e�cient in a SPARQL-like setting.

Classical top-k -SPARQL queries can be expressed in SPARQL 1.1 by solution modi�ers,

such as, order by and limit clauses, that respectively order the result set, and limit the

number of results.

Example 28 The top-k -SPARQL query of Listing 2.4 aims to �nd the best �ve

o�ers of albums ordered by a function of user ratings and o�er date where g1 and

g2 are scoring functions.�

select ?album ?offer (g1(?rating) + g2(?date) AS ?score) where {

?album rdf:type mo:Album. ?album dc:rating ?rating.

?album dc:date ?date. ?album dc:hasOffers ?offer. }

order by desc(?score) limit 5

Listing 2.4: Standard top-k -SPARQL-query

Naive query processing then relies on a materialize-then-sort procedure which entails

an evaluation of all the candidate answers (i.e., those satisfying the condition in the where

clause), followed by a computation of the ranking function for each of them, even if only a

small number (typically, k = 5) of answers is requested. As a consequence, this processing

strategy produces poor performances especially in the case of a large number of answers

matching the selected query. A smart processing should stop as soon as the top-k results are

returned.

In this respect, recent works have proposed solutions to optimize the evaluation

of these queries. For instance, the authors of [Bozzon et al., 2011, Bozzon et al., 2012,

Magliacane et al., 2012] introduced a SPARQL-RANK algebra which is an extension of the
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SPARQL algebra [Pérez et al., 2006] and an incremental rank-aware execution model for

top-k -SPARQL queries. This algebra enables splitting the scoring function that may be

interleaved with other binary operators. The general objective is to derive an optimized query

execution plan and reduce as much as possible the evaluation to a restricted number of answers.

[Bozzon et al., 2011] �rst applied this algebra to the processing of top-k SPARQL queries

addressed to virtual RDF datasets through query rewriting using the rank-aware relational

algebra presented in [Li et al., 2005]. Then, [Bozzon et al., 2012] proposed a detailed version

of the SPARQL-RANK algebra, which can be applied to both RDBMS and native RDF

datasets. They introduced a rank-aware operator denoted by ρ for evaluating a ranking

criterion and rede�ned unary and binary operators (such as, selection (σ), join (on), union
(∪), di�erence (\) and left joint ( ./)) for processing the ranked set of mappings in this

context. New algebraic equivalence laws involving this operator have also been proposed.

Among these equivalence laws we may �nd, pushing ρ over binary operators, splitting the cri-

teria of a scoring function into a set of rank operators and using commutativity of ρ with itself.

In [Magliacane et al., 2012], an incremental execution model for the SPARQL-RANK

algebra is proposed and a rank-aware SPARQL query engine denoted by ARQ-RANK

based on this algebra is implemented. This engine e�ciently improves the performance of

top-k queries. Later, in [Zahmatkesh et al., 2014], the authors presented top-k DBPSB, an

extension of DBPSB (DBpedia SPARQL benchmark) that makes it possible to automatically

generate top-k queries from the queries of DBPSB and its datasets.

According to [Wang et al., 2015], the SPARQL-RANK algebra proposed by

[Bozzon et al., 2011, Bozzon et al., 2012, Magliacane et al., 2012] su�ers from frequent

unnecessary input and output in the rank-join operation and this is seen as a drawback in

the case of a large dataset. To deal with this issue, they proposed in [Wang et al., 2015]

a graph-exploration-based method for e�ciently processing top-k queries in crisp RDF

graphs. They introduced a novel tree index called an MS-tree. Based on this MS-tree,

candidate entities are constructed (ranked and �ltered) in an appropriate way and the process

immediately stops as soon as possible (i.e., as soon as the top-k answers are generated). In

case of complex scoring functions, a cost-model-based optimization method is used in order

to improve the query processing performance.

An evaluation of the approach with both synthetic and real-world datasets using

SPARQL-RANK as a competitor is presented in the paper. The experimental results con�rm

that the model proposed in [Wang et al., 2015] signi�cantly outperforms SPARQL-RANK

approach in case of large datasets to be cached in memory.
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From an RDF data model view, in [Dividino et al., 2012] the authors introduce an ap-

proach for top-k querying RDF data annotated with provenance information. In this context,

annotations may concern the origin, history, truthfulness, or validity of an RDF statement.

An annotated RDF statement is considered as a tuple S=〈α : θ1,...,θy〉 with α being an RDF

statement and θ1,...,θy being its annotations over a �xed set Γ = {p1, ..., py} of independent
annotation dimensions.

Example 29 Let us consider the RDF statement about music concerts shown

in Table 2.1. Each statement is annotated by a set of dimensions Γ =

{Time,Source,Certainty}.

Dimensions

Id Statement Time Source Certainty

#1 TAL playsIn Le Grand Rex 03.02.17 www.legrandrex.com 0.9
#2 KUNGS playsIn L'OLYMPIA 15.01.17 www.fnacspectacles.com 0.7
#3 TAL hasRating 7 10.01.17 www.itunes.apple.com 0.5
#4 KUNGS hasRating 8 08.02.17 www.itunes.apple.com 0.5

Table 2.1: The set of annotated RDF statements

The statement #1 says that the artist �TAL� plays in the �Le Grand Rex� and

this information has been published on �03.02.17�, has �0.9� as a certainty degree,

and was picked up from the Web site �www.legrandrex.com�. �

The presence of multiple independent annotation dimensions in the query can induce

di�erent rankings of answers. In this regard, [Dividino et al., 2012] discusses the problem of

preference aggregation (or judgement aggregation) and proposes a framework to aggregate

all the annotation dimensions into a single joint ranking ordering using di�erent aggregation

methods. Finally, the authors of [Dividino et al., 2012] perform top-k querying using these

ranking methods in o�ine (i.e., available results) and online (i.e., the aggregation of streaming

data) settings.

2.1.2 Qualitative Approaches: Skyline-based Approaches

In the relational database domain, qualitative approaches to preference queries have attracted

a large interest, in particular skyline queries [Borzsony et al., 2001], which aim to �lter an

n-dimensional dataset S according to a set of user preference relations and return only the

tuples of S that are not dominated in the sense of Pareto order. Note that these approaches

only yield a partial order, contrary to the quantitative ones.

Let us consider two tuples t = (u1, . . . , un) and t′ = (u′1, . . . , u
′
n) from S (reduced to the

attributes on which a preference is expressed). The tuple t dominates (in the sense of Pareto

order) the tuple t′, denoted by t � t′, i� t is at least good as t′ in all dimensions and strictly
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better than t′ in at least one dimension. This may be represented by:

t � t′ ⇔∀i ∈ {1, . . . , n}, t.ui �i t′.u′i and

∃j ∈ {1, . . . , n} such that t.uj �j t′.u′j
(2.3)

Example 30 Let us assume that a user is looking for an album to listen to,

and prefers an album which is recent and high rated. For every preference: recent

(resp. high rated), the higher the date (resp. rating) is, the more preferred the

tuple is. Consider three albums A1 (date 2015, rating 5.8), A2 (date 2013, rating

4) and A3 (date 2014, rating 8). Album A1 is more recent and has a higher rating

than A2. So, A1 dominates A2. Nevertheless, A1 does not dominate A3 since A1

is more recent than A3 but has a worse rating than A3. Hence, the skyline result

is {A1, A3}.�

In the literature, few works [Siberski et al., 2006, Gueroussova et al., 2013] have dealt

with the expression and evaluation of skyline queries in a SPARQL-like language.

In [Siberski et al., 2006], Siberski et al. extend SPARQL with a preferring clause in order

to support the expression of multidimensional user preferences. This extension is based on

the principle underlying skyline queries, i.e., it aims to �nd the nondominated objects.

The main syntax of this extension is as follows:

select ...

where ... {

filter (A or B) }

preferring P and P' ... and P*

Listing 2.5: Extension of SPARQL using Skyline

Two types of preferences may be distinguished: Boolean preferences where the answers that

meet the condition are favored over those which do not, and scoring preferences (introduced

by the keywords highest or lowest, where the elements with a higher value are favored over

those with a lower value and vice versa).

Example 31 Let us consider that a user has the following preferences: (P1) pre-

fer the artists rated �excellent� over the �very good� ones (Boolean preference), (P2)

prefer the artist's concert taking place between 9pm and 1am (Boolean preference)

and (P3) prefer the artist's concert taking place the latest (scoring preference) pro-

vided that they are taking place between 9pm and 1am.

In the absence of a skyline functionality, one would use the classical SPARQL

query of Listing 2.6 that returns those artists satisfying the Boolean conditions,

ordered according to the starting time of their concert.
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1 select ?artist ?concert where {

2 ?artist dc:concert ?concert. ?concert dc:starts ?startingTime.

3 ?concert dc:ends ?endingTime. ?artist dc:rating ?rating .

4 filter (?rating = ft:very-good || ?rating = ft:excellent) }

5 order by

6 desc(?startingTime >= 9pm && ?endingTime <= 1am)

7 desc(?startingTime)

Listing 2.6: Query in SPARQL (ordered answer)

As we can see, a classical skyline query can be expressed in SPARQL with the clauses

filter, order by and desc. However, the classical skyline query of Listing 2.6 also returns

dominated artists, but only at the bottom of the list of answers.

In the extended SPARQL version of [Siberski et al., 2006], lines 5 to 7 of Listing 2.6 are

replaced by:

5 preferring

6 ?rating = ft:excellent

7 and

8 (?startingTime >= 9pm && ?endingTime <= 1am)

9 cascade highest(?startingTime)

Listing 2.7: Skyline extension of SPARQL [Siberski et al., 2006]

Lines 1 to 4 represent the graph patterns and hard constraints. Line 6 corresponds to

preference P1, line 8 corresponds to P2, and line 9 corresponds to P3. The cascade clause in

line 9 speci�es that P3 is evaluated if and only if two answers are equivalent with respect to

P2. �

The authors of [Siberski et al., 2006] gave the semantics and the implementation of the

new constructs aimed to compute a skyline query with SPARQL and extended the SPARQL

implementation ARQ in order to process these types of queries. Nevertheless, no optimization

aspects are discussed in the paper.

The approach proposed in [Gueroussova et al., 2013] is based on [Siberski et al., 2006] and

i) introduces user preferences in the filter clause, ii) replaces the cascade clause by a prior to

clause in the spirit of Preference SQL [Kieÿling et al., 2011], iii) introduces new comparators

for specifying atomic preferences: between, around, more than, and less than. This extension of

SPARQL called PrefSPARQL supports not only the expression of qualitative preferences (sky-

line) but also conditional ones (if-then-else). A PrefSPARQL query returns a set of partially

ordered tuples according to the satisfaction of the preferences.
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Example 32 In order to illustrate the form taken by skyline queries in PrefS-

PARQL, let us consider again the query from Example 2.7. Listing 2.8 expresses

this in PrefSPARQL. �

select ?artist ?concert where {

?artist dc:concert ?concert. ?concert dc:starts ?startingTime.

?concert dc:ends ?endingTime. ?artist dc:rating ?rating .

preferring ( ?rating = ft:excellent and

(?startingTime between (9pm, 1am) and ?endingTime between (9pm, 1am)

prior to highest (?endingTime)))}

Listing 2.8: Skyline query in PrefSPARQL

Example 33 So as to illustrate conditional preferences, let us now assume that

a user prefers a concert which takes place after 7:30pm on the weekdays and before

7pm during the weekends, formulated in Listing 2.9. �

select ?concert where {

?concert dc:day ?D. ?concert dc:starts ?startingTime.

preferring

(if (?D = ``Saturday'' || ?D = ``Sunday'')

then ?startingTime < 7pm else ?startingTime >= 7:30pm)}

Listing 2.9: Conditional preference in PrefSPARQL

The authors of [Gueroussova et al., 2013] show that PrefSPARQL preference queries can

be expressed in SPARQL 1.0 and SPARQL 1.1 using an optional clause or features available

in SPARQL 1.1 such as not exists. Nevertheless, they do not deal with implementation

issues and query processing/optimization aspects.

In [Rosati et al., 2015], the authors are interested also in qualitative preferences but the

preferences are represented by means of a CP-net. A CP-net (network of conditional prefer-

ences) has been earlier suggested by [Boutilier et al., 2004] for modeling relational database

preference queries. It is a powerful graphical representation of statements that express condi-

tional ceteris paribus (everything else being equal) preferences.

Example 34 Let us consider the following ceteris paribus preferences on clothes:

i) P1: black (b) jackets are preferred to white (w) jackets, ii) P2: black (b) pants

are preferred to white (w) pants, iii) P3: if the jackets and the pants are of the

same color, red (r) shirts are preferred to white (w) ones; otherwise, white shirts

are preferred. These preferences are modeled by means of the CP-net depicted in

Figure 2.3, where J , P and S are binary variables corresponding to the colors of

the jacket, the pants and the shirt respectively. �
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b � w b � w

J P

S

b ∧ b : r � w
w ∧ b : w � r
b ∧ w : w � r
w ∧ w : r � w

Figure 2.3: CP-net of Example 34

The authors of [Rosati et al., 2015] propose an RDF vocabulary to represent qualitative

preference triples formulated under the ceteris paribus semantics.

Example 35 The RDF version of the CP-net representation of preference P1

from Example 34 is as follows:

cp:jacket1 cp:color db:Black.

cp:jacket2 cp:color db:White.

cp:preference1 a cp:preference.

cp:preference1 cp:prefer cp:jacket1.

cp:preference1 cp:over cp:jacket2.

Listing 2.10: RDF version of the CP-net representation

Inspired by [Gueroussova et al., 2013], the authors of [Rosati et al., 2015] present an

algorithm to encode a CP-net into a standard SPARQL 1.1 query able to retrieve a ranked

set of answers satisfying the user preferences. To the best of our knowledge, this work is the

�rst attempt to translate the semantics of a CP-net into a SPARQL query.

Let us also mention that there exist some works (cf., [Chen et al., 2011]) that propose

methods for the optimization of skyline queries in an RDF data context.

2.2 Query Relaxation

Nowadays, the size and the complexity of databases (including relational, semantic, etc.)

increase over time at a sustained pace. In such circumstances, users when querying these

databases do not have enough knowledge about their content and structure. So, they fail



54 2.2. Query Relaxation

sometimes to formulate meaningful queries to get the expected result or even to avoid empty

responses.

In order to cope with these issues, some of the semantic Web systems include a query

relaxation process for triple-pattern queries (i.e., adressed to data represented in the RDF for-

mat) sharing the same principle as the cooperative querying systems [Gaasterland et al., 1992]

[Godfrey, 1997] [Chu et al., 1996] [Kleinberg, 1999] that operate on relational databases.

These systems aim to automate the relaxation process of user queries when the selection

criteria in the query do not make it possible to obtain answers that meet the user's needs.

In a SPARQL/RDF setting, several works have been carried out [Hurtado et al., 2006,

Hurtado et al., 2008, Huang et al., 2008, Poulovassilis and Wood, 2010, Calì et al., 2014,

Frosini et al., 2017] that propose a relaxation framework for RDF data through RDFS entail-

ment using information provided by a given ontology (see Figure 2.4) and being characterized

by RDFS inferences rules (see Table 2.2). These rules enable a generalization of the SPARQL

query in order to release its conditions in case of an empty result.

Group A (Subproperty) (1) (a,sp,b)(b,sp,c)
(a,sp,c) (2) (a,sp,b)(x,a,y)

(x,b,y)

Group B (Subclass) (3) (a,sc,b)(b,sc,c)
(a,sc,c) (4) (a,sc,b)(x,type,a)

(x,type,b)

Group C (Typing) (5) (a,dom,c)(x,a,y)
(x,type,c) (6) (a,range,d)(x,a,y)

(y,type,d)

Table 2.2: RDFS Inferences Rules

Example 36 The rule (4) from Table 2.2 states that if a is a subclass of b and

x is an instance of a, then, x is an instance of b.

Figure 2.4: An RDFS Ontology
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[Hurtado et al., 2006, Hurtado et al., 2008] is interested in the relaxation of a conjunctive

fragment of queries over RDF data (e.g., See [Gutierrez et al., 2004, Haase et al., 2004]).

This type of queries has the following expression H ← B, where B is a graph pattern (i.e.,

a set of triples including URIs, literals, blanks nodes, and variables) and H = 〈H1, ...,Hn〉 is
a list of variables. It �rstly aims to �nd matchings from the graph pattern (i.e., the body of

the query B) to the data and, secondly, applies these matchings to the head of the query (H )

in order to get the �nal answers.

The authors propose to extend these conjunctive queries by introducing (one or several)

relax clauses in the place of the optional clauses. This extension is detailed in the following

example.

Example 37 In order to avoid empty answers for some cases, a relaxation of

some conditions using a speci�c ontology (see Figure 2.4) is needed. This ontol-

ogy is represented in the form of an RDF graph based on an RDFS vocabulary

that models documents along with properties that model di�erent ways people

contribute to them (e.g., as authors, editors, etc.).

Thanks to this ontology, the following query may be generalized and relaxed in

the following way:

?Z, ?Y← {(?X,name, ?Z), relax {(?X, proceedingsEditorOf , ?Y)}}.

The relax clause aims to return �rstly editors of conference proceedings. Then,

one can automatically rewrite the triple (?X, proceedingsEditorOf , ?Y) into (?X,

editorOf, ?Y) or (?X, contributorOf, ?Y) since proceedingsEditorOf is a subprop-

erty of editorOf and editorOf is a subproperty of contributorOf according to the

ontology and rules from Table 2.2. So, the relaxed query allows to obtain peo-

ple who are editors of a publication or in a more general way contributors to a

document. �

The query relaxation strategy involves two types of relaxations:

• simple type without using an ontology, which includes dropping triple patterns using the

optional clause, replacing constants with variables in a triple pattern, etc.

• more complex type using an ontology and inference rules, which includes:

� Type relaxation for example, following rule (4) from Table 2.2, the triple pattern

(?X, type, ConferenceArticle) can be relaxed into (?X, type, Article) and then into

(?X, type, Publication) since we have (ConferenceArticle, sc, Article) ∈ cl(O) and

then (Article, sc, Publication) ∈ cl(O);
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� Predicate relaxation for example, using rule (2) from Table 2.2, the triple pattern

(?X, proceedingsEditorOf, ?Y) can be relaxed into (?X, editorOf, ?Y) and then into

(?X, contributorOf, ?Y) since we have (proceedingsEditorOf, sp, editorOf) ∈ cl(O)

and then (editorOf, sp, contributorOf) ∈ cl(O);

� Predicate to domain relaxation for example, using rule (5) from Table 2.2, the

triple pattern (a, p, b) can be relaxed into the triple pattern (a, type, c), since we

have the triple pattern (p, dom, c) ∈ cl(O).

� Predicate to range relaxation for example, using rule (6) from Table 2.2, the

triple pattern (JohnRobert, editorOf, ?Y ) can be relaxed into (?Y, type, Publica-

tion) since we have (editorOf, range, Publication) ∈ cl(O).

For the purpose of incrementally computing the relaxed answers to the query, an algorithm is

presented, which e�ciently orders the answers according to how closely they meet the query

conditions.

In, [Huang et al., 2008] the authors points out that the approaches proposed in

[Hurtado et al., 2006, Hurtado et al., 2008] may still be insu�cient. They propose a new

similarity measure that requires computing the semantic similarity between the relaxed query

and the original one. This measure makes it possible to reduce the number of answers as much

as possible (or to the desired cardinality) and, then, ensure the quality of answers during the

relaxation process.

More recently, [Reddy and Kumar, 2010] proposed an extension of the work

[Huang et al., 2008] to the web of linked data, where they de�ne an optimized query pro-

cessing algorithm in which the relaxed queries are generated and answered on-the-�y during

query execution (at run time). This work di�ers from the approach of [Huang et al., 2008],

which is dedicated only to centralized RDF repositories and aims to generate multiple relaxed

queries and execute them sequentially one by one.

Another related work is that by [Dolog et al., 2006, Dolog et al., 2009], where the authors

present user centered process for automatically relaxing over-constrained RDF queries. This

relaxation is carried out by rewriting rules for making patterns optional, replacing value,

replacing patterns or predicate and deleting patterns or predicate. Background knowledge

about the domain of interest and the preferences of the user are taken into account during

the query relaxation to re�ne and guide this process.

From a di�erent perspective, [Poulovassilis and Wood, 2010], introduce a framework

wherein relaxations and approximations of regular path queries are combined in order to

get a more �exible querying of RDF data when the user lacks knowledge of their structure.

[Frosini et al., 2017, Calì et al., 2014], rely on the work of [Poulovassilis and Wood, 2010]

and propose a formal syntax and semantics of SPARQLAR which is an extension of the query

language SPARQL 1.1 (i.e., SPARQL with property path queries) with query approximation



Chapter 2. State of the art: Flexible Querying of RDF data 57

and query relaxation operators. A relaxation operator relies on RDF inference rules and

follows the principle presented in [Hurtado et al., 2008] and the approximation operator aims

to transform a regular expression pattern P into a new expression pattern P ′ using a set of

edit operations (e.g., deletion, insertion and substitution).

In [Hogan et al., 2012], the authors base their relaxation framework on an industrial

use-case from the European Aeronautic Defence and Space Company (EADS) that involve

human observations which are presented in the form of natural language and may be imprecise

or vague. They propose a conceptual framework to relax RDF queries relying on a matcher

function (i.e., distance function) that assigns a relaxation score in [0,1] to a pair of values.

Some contributions also address the problem of providing a guide for the user to relax

his/her query. [Elbassuoni et al., 2011] propose a novel approach for query relaxation based

on statistical language models (LMs) for structured RDF data in an automated way. This

approach generates a set of relaxation candidates which can be derived from the RDF data

and also from external sources like ontologies and textual documents.

From another angle, [Fokou et al., 2015, Fokou et al., 2017, Fokou et al., 2017] are inspired

by some prior works in relational databases [Godfrey, 1997, Pivert and Smits, 2015] and rec-

ommendation systems [Jannach, 2009] and they deal with the problem of explaining the failure

of RDF queries in order to help the user to relax his/her query. In [Fokou et al., 2014], the

authors initially proposed an extension of SWDB (Semantic Web Database) query languages

with new operators that allow to control the relaxation process. These operators describe the

relaxation by specifying the part of the query to relax and the technique of relaxation to be

used. Then, in [Fokou et al., 2015] [Fokou et al., 2017] the authors addressed the problem of

computing the Minimal Failing Subqueries (MFS) and the Maximal Succeeding Subqueries

(XSSs) (i.e., which return non-empty answers) that are used to �nd the parts of an RDF

query that are responsible of the failure on the one hand, and the relaxed queries that are

guaranteed to return a nonempty result on the other hand.

2.3 Approximate Matching

In the literature, the concept of graph isomorphism has been studied for a long time, cf.,

[Read and Corneil, 1977] [Fortin, 1996] and has as a principle to �determine if two given

graphs are the same; if they are, �nd a matching (mapping) between them (i.e., which nodes

from one graph correspond to which nodes in the other�. Similarity measures based on graph

matching are commonly used in this context. Essentially, queries are represented as a graph

(called the query graph) and the aim is to �nd an appropriate matching between the query

graph and the resource graph.
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However, all of the existing classical graph isomorphism algorithms do not

�t the semantic characteristics of RDF graphs (i.e., directed graphs with la-

beled edges and nodes) [Carroll, 2002]. Then, an e�cient semantic similar-

ity measure based on RDF graph is required. Therefore, few approaches have

proposed new techniques dealing with approximate querying over RDF data

[Zhu et al., 2002, De Virgilio et al., 2013, De Virgilio et al., 2015, Zheng et al., 2016].

[Zhu et al., 2002] introduces an approach for semantic search. The idea is to match RDF

graphs in order to verify whether each candidate resource RDF graph matches the query RDF

graph. The resource RDF graph is built up from a speci�c domain Web information and the

query RDF graph corresponds to a user query. To do this, a new semantic similarity measure

between two RDF graphs, based on an ontology has been de�ned. This measure takes into

account the similarities between edges and also nodes.

The approach proposed in [Zhu et al., 2002] only takes the similarity of nodes and edges

into account in an RDF graph but ignores the structure formed by the nodes and the edges.

To deal with this issue, [De Virgilio et al., 2013, De Virgilio et al., 2015] propose an

approach dealing with approximate query answering in the context of large RDF data

sets. This approach aims to measure the similarity between a portion of a (large) graph

representing an RDF dataset and a sub-graph representing a query by applying substitutions

and transformations to the paths of the latter. This operation is based on a scoring function

that simulates the relevance of answers by taking into account two aspects: i) quality that

measures how much the paths retrieved align with the paths in the query and ii) conformity

that measures how much the combination of paths retrieved is similar to the combination of

the paths in the query.

A more recent work is [Zheng et al., 2016], where the authors focus on the problem of

Semantic SPARQL Similarity Search over RDF knowledge graphs. They propose a metric,

semantic graph edit distance in order to measure the similarity between RDF graphs. This

metric consider the graph structural, concept-level and semantic similarities in a uniform

manner.

Conclusion

In this chapter, we reviewed several approaches from the literature that aim to query RDF

data in a more expressive and �exible way, either by introducing fuzzy user preferences,

relaxing some preferences or applying approximate matching. We present a summary of these

approaches in Table 2.3.
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A �rst observation concerns the limited expressiveness of the approaches. Indeed,

all of them are straightforward adaptations of proposals made in the relational database

context: they make it possible to express preferences on the values of the nodes, but

not on the structure of the RDF graph (structural preferences may concern the

strength of a path, the centrality of nodes, etc). Some of the relaxation approaches

(e.g., [Poulovassilis and Wood, 2010], [Calì et al., 2014] and [Frosini et al., 2017]), and

approximation approaches (e.g., [De Virgilio et al., 2013], [De Virgilio et al., 2015] and

[Zheng et al., 2016]) have considered this issue but only in a crisp way.

A second important remark is that all of the approaches presented above only deal with

crisp RDF data. However, we believe that there is a real need for a �exible SPARQL that

takes into account RDF graphs where data is described by intrinsic weighted values, attached

to edges or nodes. This weight may denote any gradual notion like a cost, a truth value, an

intensity or a membership degree.

The RDF data model should thus be enriched in order to represent gradual information,

and new query languages should be de�ned. A �rst step in this direction is the approach

proposed in [Cedeño and Candan, 2011] where the authors propose an extension of the RDF

model embedding weighted edges and an extension of SPARQL to support this feature,

allowing new path predicates to express nodes reachability and the ability to express ranked

queries. This approach takes the weights into account in order to rank the answers, but does

not propose any means to express preferences in user queries.

To the best of our knowledge, none of the existing approaches aims to de�ne a general

purpose �exible version of SPARQL to weighted RDF databases, which is the �rst contribution

of this thesis.
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Introduction

As we stated in the previous chapter, RDF is a graph-based standard data model for rep-

resenting semantic web information, and SPARQL is a standard query language for querying

RDF data. Because of the huge volume of linked open data published on the web, these

standards have aroused a large interest in the last years.

In the literature, several types of approaches have been devoted to extending the SPARQL

language among which: i) those that extend the research patterns with paths involving regular

expressions, ii) those that consider fuzzy conditions. However, to the best of our knowledge,

no approach cover both aspects at the same time.

In this chapter, we intend to tackle this issue and we propose the FURQL query language

which is a fuzzy extension of SPARQL that improves its expressiveness and usability. This

extension allows (1) to query both crisp and fuzzy RDF data model, and (2) to express fuzzy

preferences on values present in the graph as well as on the structure of the data graph, which

has not been proposed in any previous fuzzy extension of SPARQL.

61
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This work has been published in the proceedings of the 25th IEEE International Conference

on Fuzzy Systems (Fuzz-IEEE'16), Vancouver, Canada, 2016.

In the following, in Section 3.1, we �rst present the notion of the fuzzy RDF data model and

then, in Section 3.2, we provide the syntax and the semantics of the FURQL query language.

3.1 Fuzzy RDF (F-RDF) Graph

The classical crisp RDF model is only capable of representing Boolean notions whereas

real-world concepts are often of a vague or gradual nature. This is why several authors

have proposed fuzzy extensions of the RDF model. Throughout the thesis, we consider

the data model based on De�nition 4 which synthesizes the existing fuzzy RDF models

of literature ([Mazzieri and Dragoni, 2005], [Udrea et al., 2006], [Mazzieri and Dragoni, 2008],

[Lv et al., 2008], [Straccia, 2009], [Udrea et al., 2010], [Zimmermann et al., 2012]), whose

common principle consists in adding a fuzzy degree to edges, modeled either by a value embed-

ded in each triple or by a function associating a satisfaction degree with each triple, expressing

the extent to which the fuzzy concept attached to the edge is satis�ed.

Example 38 [Fuzzy RDF triple] The corresponding fuzzy RDF triple �(〈Beyonce,

recommends, Euphoria〉, 0.8)� states that 〈Beyonce, recommends, Euphoria〉 is satis�ed

to the degree 0.8, which could be interpreted as Beyonce strongly recommends

Euphoria. �

De�nition 4 (Fuzzy RDF (F-RDF) graph ). A F-RDF graph is a tuple (T , ζ) such that (i) T
is a �nite set of triples of (U ∪B)×U × (U ∪L∪B), (ii) ζ is a membership function on triples

ζ : T → [0, 1].

According to the classical semantics associated with fuzzy graphs, ζ(t) quali�es the

intensity of the relationship involved in the statement t. Intuitively, ζ attaches fuzzy degrees

to the edges of the graph. Having a value of 0 for ζ is equivalent to not belonging to the

graph. Having a value of 1 for ζ is equivalent to fully satisfying the associated concept. In

the graph GMB of Figure 3.1, such edges appear as classical ones, i.e., with no degree attached.

The fuzzy degrees associated with edges are given or calculated. A simple case is when,

each degree is based on a simple statistical notion, e.g., the intensity of friendship between

two artists may be computed as the number of their common friends over the total number of

friends with respect to each artist.
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Remark 4. A classical crisp RDF data graph is a special case of an F-RDF data graph where

the co-domains of ζ are {0, 1}. A fundamental implication is that the concepts and the �exible

query language de�ned over an F-RDF graph in the following, remain relevant over a classical

RDF graph.

Remark 5. In the same way as the RDF graph, an F-RDF graph is said to be ground if it

contains no blank nodes. Such a graph may be ground at the beginning or made ground e.g.

by a skolemization procedure. In the following, we only consider ground fuzzy RDF graphs.

Example 39 [Fuzzy RDF graph] Figure 3.1 is an example of a fuzzy RDF graph

inspired by MusicBrainz1. This graph, denoted by GMB in the following, mainly

contains artists and albums as nodes. For readability reasons, each URI node

contains the value of its name instead of the URI itself. Literal values may be

attached to an URI, like the age of an artist, the release date or the global rating of

an album. The graph contains fuzzy relationships (e.g., friend, likes, recommends,

memberOf ) as well as crisp ones (e.g., creator, date, . . . ). We limit our example

to some entities including artists and albums and omit URI pre�xes to avoid

overcrowding the �gure.

In order to create this graph, we started from a MusicBrainz nonfuzzy subgraph

for which every relationship between nodes was Boolean and, then, we made it

fuzzy by adding satisfaction degrees denoting the intensity of some relationships.

Here for instance,

• the degree associated with an edge of the form Art1 − friend → Art2 is the

proportion of common friends (i.e., Boolean relationship) between Art1 and

Art2 over the total number of friends of Art1 ;

• the degree associated with an edge of the form Art − memberOf → Group is

the number of years the artist stayed in this group over the number of years

this group has been existing;

• the degree associated with an edge of the form Art1 − likes → Art2 is the

number of albums by Art2 that Art1 has liked over the total number of

albums by Art2;

• the degree associated with an edge of the form Art − recommends → Alb is

the number of stars given by Art to Alb over the maximum number of stars.

�

In the following, we rely on classical notions from fuzzy graph theory [Rosenfeid, 2014],

which are the path, the distance and the strength (ST) of the connection between two nodes

respectively given in De�nitions 5, 6 and 7.

1https://musicbrainz.org/

https://musicbrainz.org/
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De�nition 5 (Path between two nodes). Let G be an F-RDF data graph.

Classically, a path p in G corresponds to a possibly empty sequence of triples

(t1, · · · , tk, · · · , tn) such that {ti | 1 ≤ i ≤ n} ⊆ G and for all 1 ≤ k ≤ n − 1, the object

of tk is the subject of tk+1.

Given two nodes x and y, Paths(x, y) denotes the set of cycle-free paths2 in G connecting

x to y, i.e., the set of paths of the form (t1, · · · , tk, · · · , tn) such that x is the subject of t1 and

y is the object of tn.

Example 40 [Path between two nodes] The (cy-

cle free) paths between the nodes Beyonce and

Euphoria from the fuzzy RDF graph GMB of Figure 3.1 are shown in Fig-

ure 3.2.

Beyonce Euphoriarecommends(0.8)

(p1)

Beyonce Rihanna EnriqueI Euphoriafriend(0.2)friend(0.6) creator

(p2)

Beyonce MariahC Shakira EnriqueI Euphoria
friend
(0.5)

friend
(0.3)

friend
(0.8)

creator

(p3)

Figure 3.2: Cycle-free paths from GMB connecting Beyonce to Euphoria

De�nition 6 (Distance between two nodes). The distance between two nodes x and y is

de�ned by

distance(x, y) = min
p∈Paths(x,y)

length(p) (3.1)

where length(p) is the length of a path p in a fuzzy graph [Rosenfeid, 2014], de�ned by

length(p) =
∑
t∈p

1

ζ(t)
. (3.2)

The distance between two nodes is the length of the shortest path between these two nodes.

Remark 6. In a crisp RDF graph (when ζ(t) ∈ {0, 1}), which is a special case of a fuzzy RDF
graph, the distance between two nodes x and y given in De�nition 6 is still valid and it expresses

the number of edges between these nodes (which corresponds to the classical de�nition).

2Considering paths containing a cycle would not change the result of the following expressions (3.1) and
(3.3).
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De�nition 7 (Strength between two nodes). The strength between two nodes x and y is

de�ned by

ST (x, y) = max
p∈Paths(x,y)

ST_path(p) (3.3)

where ST_path(p) is the strength of the path connecting x and y in a fuzzy graph

[Rosenfeid, 2014], de�ned by

ST_path(p) = min({ζ(t)|t ∈ p} (3.4)

The strength of a path is de�ned to be the weight of the weakest edge of the path.

Example 41 [Distance and strength between two nodes] Let us consider the

cycle-free paths from GMB connecting Beyonce to Euphoria, depicted in Fig-

ure 3.2, and let us compute the distance and the strength between the pair of

nodes (Beyonce, Euphoria).

The distance between the pair of nodes (Beyonce, Euphoria) is calculated as follows

distance(Beyonce, Euphoria) = min (length(p1), length(p2), length(p3)),

with length(p1)= 1/ζ(Beyonce, recommends, Euphoria)= 1/0.8= 1.25,

length(p2) = 1/ζ(Beyonce, friend,Rihanna) + 1/ζ(Rihanna, friend,EnriqueI)

+1/ζ(EnriqueI, creator,Euphoria)

= 1/0.6 + 1/0.2 + 1 = 7.7, and

length(p3) = 1/ζ(Beyonce, friend,MariahC) + 1/ζ(MariahC, friend,Shakira)

+1/ζ(Shakira, friend,EnriqueI) + 1/ζ(EnriqueI, creator,Euphoria)

= 1/0.8 + 1/0.3 + 1/0.5 + 1 = 7.5.

Finally, the length of the shortest path between the pair of nodes (Beyonce, Eu-

phoria) is distance(Beyonce, Euphoria)= 1.25.

The strength between the pair of nodes (Beyonce, Euphoria) is calculated as

ST(Beyonce, Euphoria) = max (ST_path(p1), ST_path(p2), ST_path(p3)),

with ST_path(p1)= ζ(Beyonce, recommends, Euphoria) = 0.8,

ST_path(p2) = min(ζ(Beyonce, friend,Rihanna), ζ(Rihanna, friend,EnriqueI),

ζ(EnriqueI, creator,Euphoria))

= min(0.6, 0.2, 1) = 0.2, and
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ST_path(p3) = min(ζ(Beyonce, friend,MariahC), ζ(MariahC, friend,Shakira),

ζ(Shakira, friend,EnriqueI), ζ(EnriqueI, creator,Euphoria))

= min(0.8, 0.3, 0.5, 1) = 0.3.

Thus, the strength between the pair of nodes (Beyonce, Euphoria) is ST(Beyonce,

Euphoria)= 0.8.

Here, the distance and the strength correspond to the same path, but it is of course

not necessarily the case in general. �

Let us also mention that except for introducing the degree of truth within an RDF triple in

case of imprecise information, several other extensions of RDF were proposed in the literature

in order to deal with:

• time ([Gutierrez et al., 2007], [Pugliese et al., 2008], [Tappolet and Bernstein, 2009]) to

represent the validity periods of time of the information brought by the triple de�ned

by an interval (containing the start and the end point of validity of this information),

• trust [Hartig, 2009], used in case of uncertainty about the trustworthiness of the RDF

triples. It is represented by a trust value which is either unknown or a value in the

interval [-1, 1], where -1 encodes a full disbelief in the triple, 1 a total belief in the triple

and 0 signi�es the lack of belief as well as the lack of disbelief; and,

• provenance [Dividino et al., 2009]: may contain information attached to an RDF triple

(such as, origins/source (Where is this information from?), authorship (Who provided

the information?), time (When was this information provided?), and others).

Moreover, [Udrea et al., 2010] and [Zimmermann et al., 2012] provided a single theoretical

framework to handle the aforementioned extensions along with an extension of the RDF query

language to deal with such a framework.

3.2 FUzzy RDF Query Language (FURQL)

In this section, we introduce the FURQL query language, and we formally study its expressive-

ness. FURQL is based on the notion of fuzzy graph pattern, which is a fuzzy extension of the

SPARQL graph pattern notion introduced in [Pérez et al., 2009] and [Arenas and Pérez, 2011]

which present it in a more traditional algebraic formalism than the o�cial syntax does

[W3C, 2014]. In the following, we rede�ned the associated syntax and semantics in order

to introduce fuzzy preferences expressed over the F-RDF data model of De�nition 4.
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3.2.1 Syntax of FURQL

FURQL (Fuzzy RDF Query Language) consists in extending SPARQL graph patterns into

fuzzy graph patterns. Before formally introducing the syntax of FURQL, we �rst need to de�ne

the notion of a fuzzy graph pattern.

A fuzzy graph pattern allows to express fuzzy preferences on the entities of an F-RDF

graph (through fuzzy conditions) and on the structure of the graph (through fuzzy regular

expressions). It considers the following binary operators: and (SPARQL concatenation),

union (SPARQL union), opt (SPARQL optional) and filter (SPARQL filter). We fully

parenthesize expressions making explicit the precedence and association of operators.

In the following, we assume the existence of an in�nite set V of variables such that V ∩
(U ∪ L) = ∅. By convention, we pre�x the elements of V by a question mark symbol.

Let us �rst de�ne the notion of a fuzzy regular expression.

De�nition 8 (Fuzzy regular expression). The set F of fuzzy regular expression patterns,

de�ned over the set U of URIs, is recursively de�ned by:

• ε is a fuzzy regular expression of F ;

• u ∈ U and '_' are fuzzy regular expressions of F ;

• if A ∈ F and B ∈ F then A|B,A.B,A∗, Acond are fuzzy regular expressions of F .

Above, ε denotes the empty pattern, the character '_' denotes any element of U , A|B
denotes alternative expressions, A.B denotes the concatenation of expressions, A∗ stands for

the classical repetition of an expression (the Kleene closure), Acond denotes paths satisfying

the pattern A with a condition cond where cond is a Boolean combination of atomic formulas

of the form: sprop is Fterm where sprop is a structural property of the path de�ned by

the expression and Fterm denotes a prede�ned or user-de�ned fuzzy term like short (see

Figure 3.3). In the following, we limit the path structural properties to ST (see De�nition 7)

and distance (see De�nition 6). Examples of conditions of this form are distance IS short

and ST IS strong. We denote by A+ the classical shortcut for A.A∗.

δ = 3 γ = 5
0

1

µshort

length

satisfaction degree

Figure 3.3: A possible representation of the fuzzy term short
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De�nition 9. [Fuzzy graph pattern] Fuzzy graph patterns are recursively de�ned by:

• A fuzzy triple from (U ∪ V)× (U ∪ F ∪ V)× (U ∪ L ∪ V) is a fuzzy graph pattern.

• If P1 and P2 are fuzzy graph patterns then (P1 and P2), (P1 union P2) and

(P1 opt P2) are fuzzy graph patterns.

• If P is a fuzzy graph pattern and C is a fuzzy condition then (P filter C) is a fuzzy

graph pattern. A fuzzy condition is a logical combination of fuzzy terms de�ned by:

� if {?x, ?y} ⊆ V and c ∈ (U ∪ L), then bound(?x), ?x θ c and ?x θ ?y are fuzzy

conditions, where θ is a fuzzy or crisp comparator,

� if ?x ∈ V and Fterm is a fuzzy term then, ?x is Fterm is a fuzzy condition,

� if C1 and C2 are fuzzy conditions then (¬C1) and (C1 � C2) (where � is

a fuzzy connective) are fuzzy conditions. Fuzzy connectives include of course

fuzzy conjunction ∧ (resp. disjunction ∨), usually interpreted by the triangu-

lar norm minimum (resp. maximum), but also many other operators that may

be used for expressing di�erent kinds of trade-o�s, such as the weighted con-

junction and disjunction [Dubois and Prade, 1986], mean operators, fuzzy quan-

ti�ers [Fodor and Yager, 2000], or the non-commutative connectives described in

[Bosc and Pivert, 2012].

Given a pattern P (which can be a fuzzy triple pattern in particular), var(P ) denotes the

set of variables occurring in P .

Example 42 [Fuzzy graph pattern] Let us consider Prec_low the fuzzy graph

pattern de�ned by (?Art1, (friend+)distance is short.creator, ?Alb) AND (?Art1,

recommends, ?Alb) AND ((?Alb, rating, ?r) FILTER (?r IS low)), of which

Figure 6.3 is a graphical representation.

?Art1 ?Alb ?r(friend+)distance is short.creator

recommends low

rating

Figure 3.4: Graphical representation of the pattern Prec_low

Intuitively, Prec_low retrieves the list of artists (?Art1) in GMB who recommend

a low rated album (?Alb) created by another artist who is a close friend of theirs

(?Art1). �
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Syntactically, FURQL naturally extends SPARQL, by allowing the occurrence of fuzzy

graph patterns (which may contain fuzzy regular expressions) in the where clause and the

occurrence of fuzzy conditions in the filter clause. A fuzzy regular expression is close to a

property path, as de�ned in SPARQL 1.1 [Harris and Seaborne, 2013], but involves a fuzzy

structural property (e.g. distance and strength over fuzzy graphs).

The general syntactic form of a FURQL query is given in Listing 3.1.

define ...

select ?res where {

P [ filter C ] }

cut α

Listing 3.1: Syntax of a FURQL query

A FURQL query is composed of:

1. a list of define clauses that makes it possible to de�ne the fuzzy terms. If a fuzzy

term fterm has a trapezoidal function de�ned by the quadruple (A-a, A, B and B+b) �

meaning that its support is [A-a, B+b] and its core [A, B] �, then the clause has the

form define fterm as (A-a,A,B,B+b). If fterm is a decreasing function, like the term

low of Figure 3.5, then, the clause has the form definedesc fterm as (δ,γ) (there is

the corresponding defineasc clause for increasing functions).

2. a select clause that speci�es which variables should be returned in the result set,

3. a where clause of the form where P [ filter C ] with P [ filter C ] is a fuzzy graph

pattern,

4. an (optional) cut clause, of the form cut α which keep in the result set only the answers

that have a satisfaction degree greater or equal to α.

δ = 2 γ = 84 6
0

1

µlow

rating

satisfaction
degree

0.66

0.33

Figure 3.5: Representation of the fuzzy term low applied to a rating value
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Example 43 [FURQL query] The FURQL query of Listing 3.2 retrieves artists

that recommend low-rated albums by close friends (see Pattern Prec_low of Exam-

ple 42), and performs an alpha-cut on the answers (only those having a satisfaction

degree greater or equal to 0.4 are kept). The cut clause is of course optional (its

default value is 0+, i.e., one keeps only the answers that have a nonzero degree).

1 definedesc low as (2, 8)

2 defineasc short as (3, 5)

3 select ?art1 where {

4 { ?art1 (friend+ | distance is short) ?art2 .

5 ?art2 creator ?alb .

6 ?alb rating ?r .

7 ?art1 recommends ?alb . }

8 filter (?r is low)

9 } cut 0.4

Listing 3.2: A FURQL query containing Prec_low

In this example, the definedesc clause of line 1 de�nes the fuzzy term low of

Figure 3.5, and the following clause de�nes the fuzzy term short of Figure 3.3.

The pattern from lines 3 to 8 is the fuzzy pattern of Example 42. Line 9 speci�es

an α-cut of the fuzzy pattern with a satisfaction degree greater or equal to 0.4. �

3.2.2 Semantics of FURQL

To de�ne the semantics of FURQL, we need to de�ne the semantics of fuzzy graph patterns.

Intuitively, given an F-RDF data graph G, the semantics of a fuzzy graph pattern P de�nes a

set of mappings, where each mapping (from var(P ) to URIs and literals of G) maps the pattern

to an isomorphic subgraph of G. For introducing such a concept, the notion of satisfaction of

a fuzzy regular expression must �rst be de�ned.

De�nition 10 (Fuzzy regular expression matching of a path). Let G = (T , ζ) be an F-RDF

graph and exp be a fuzzy regular expression. Let p = (〈s1, p1, o1〉, ..., 〈sn, pn, on〉) ⊆ G be a

path of G. The statement �p satis�es exp with a satisfaction degree of satexp(p)� is de�ned

as follows, according to the form of exp (in the following, f , f1 and f2 are fuzzy regular

expressions):

• exp is of the form ε.

If p is empty then satexp(p) = 1 else satexp(p) = 0.

• exp is of the form u ∈ U (resp. �_�).

If p1 is u (resp. any u ∈ U) then satexp(p) = ζ(〈s1, p1, o1〉) else 0.
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• exp is of the form f1.f2.

Let P be the set of all pairs of paths (p1, p2) s.t. p is of the form p1p2. One has

satexp(p) = maxP (min(satf1(p1), satf2(p2))).

• exp is of the form f1 ∪ f2.

One has satexp(p) = max(satf1(p), satf2(p)).

• exp is of the form f∗.

If p is the empty path then µexp(p) = 1. Otherwise, we denote by P the set of all

tuples of paths (p1, · · · , pn) (n > 0) s.t. p is of the form p1· · ·pn. One has satexp(p) =

maxP (mini∈[1..n](satexp(pi))).

• exp is of the form fCond where Cond is a fuzzy condition.

satexp(p) = min(satf (p), µCond(p)) where µCond(p) denotes the degree of satisfaction of

cond by p.

Again, not satisfying is equivalent to getting a degree of 0.

De�nition 11 (Satisfaction of a fuzzy regular expression by a pair of nodes). Let G = (T , ζ)

be an F-RDF graph and exp be a fuzzy regular expression. Let (x, y) be a pair of nodes of

G. The statement � the pair (x, y) satis�es exp with a satisfaction degree of satexp(x, y)� is

de�ned by

satexp(x, y) = maxp∈Paths(x,y)satexp(p).

Note that only cycle-free paths need to be considered in order to compute the satisfaction

degree.

Example 44 [Satisfaction of a fuzzy regular expression] Let us consider the

following fuzzy regular expressions, for which we give their satisfaction degree

according to GMB in Figure 3.1. Note that the paths represented in Figure 3.6

are some cycle-free paths among many others from the graph GMB.

EnriqueI JustinT Justi�edfriend(0.4) creator

Shakira MariahC Butter�yfriend(0.7) creator

Beyonce Rihanna EnriqueI Euphoriafriend(0.2)friend(0.6) creator

Beyonce MariahC Shakira EnriqueI Euphoria
friend
(0.5)

friend
(0.3)

friend
(0.8)

creator

Figure 3.6: Some paths from GMB.
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Expression f1 = (friend+).creator is a fuzzy regular expression. A pair of nodes (x, y)

satis�es f1 if x has a �friend-linked� artist (an artist connected to x with a path made of friend

edges), that created the album y. All of the pairs of nodes (EnriqueI, Justi�ed), (Shakira,

Butter�y), (Beyonce, Euphoria), (Rihanna, Euphoria), (MariahC, Euphoria) and (Shakira,

Euphoria), illustrated in Figure 3.6 , satisfy f1 with the following satisfaction degrees:

satf1(EnriqueI, Justi�ed) = min(ζ(EnriqueI, friend, JustinT), ζ(JustinT, creator, Justi�ed))

= min(0.4, 1) = 0.4,

satf1(Shakira,Butter�y) = min(ζ(Shakira, friend,MariahC), ζ(MariahC, creator,Butter�y))

= min(0.7, 1) = 0.7,

satf1(Beyonce,Euphoria) = max(min(ζ(Beyonce, friend,Rihanna), ζ(Rihanna, friend,EnriqueI),

ζ(EnriqueI, creator,Euphoria)),min(ζ(Beyonce, friend,MariahC),

ζ(MariahC, friend,Shakira), ζ(Shakira, friend,EnriqueI),

ζ(EnriqueI, creator,Euphoria)))

= max(min(0.6, 0.2, 1),min(0.8, 0.3, 0.5, 1)) = 0.3,

satf1(Rihanna,Euphoria) = min(ζ(Rihanna, friend,EnriqueI), ζ(EnriqueI, creator,Euphoria))

= min(0.2, 1) = 0.2,

satf1(MariahC,Euphoria) = min(ζ(MariahC, friend,Shakira), ζ(Shakira, friend,EnriqueI),

ζ(EnriqueI, creator,Euphoria))

= min(0.3, 0.5, 1) = 0.3, and

satf1(Shakira,Euphoria) = min(ζ(Shakira, friend,EnriqueI), ζ(EnriqueI, creator,Euphoria))

= min(0.5, 1) = 0.5.

Expression f2 = (friend+)distance is short.creator is a fuzzy regular expression. A pair of

nodes (x, z) satis�es f2 if x has a �close� friend artist y that created an album z, �close�

meaning that x is connected to y by a short path made of friend edges (the term short is

de�ned in Figure 3.3 on page 68). It is worth noticing that expression f1 is a sub-expression of

expression f2, so we are going to make use of the satisfaction degree of f1, denoted by satf1 ,

in order to calculate the satisfaction degree of f2, denoted by satf2 .



74 3.2. FUzzy RDF Query Language (FURQL)

According to the paths depicted in Figure 3.6:

• the length of pair (EnriqueI, Justi�ed) = 1/0.4 + 1 = 3.5, µshort(3.5) = 0.75 and

satf1(EnriqueI, Justi�ed) = 0.4, then, satf2(EnriqueI, Justi�ed) = min(0.75, 0.4) = 0.4,

• the length of pair (Shakira, Butter�y)= 1/0.7 + 1 = 2.4, µshort(2.4) = 1 and

satf1(Shakira, Butter�y) = 0.7, then, satf2(Shakira, Butter�y) = min(1, 0.7) = 0.7,

• the length of pair (Beyonce, Euphoria) = 1/0.6 + 1/0.2 + 1 = 7.7, µshort(7.7) = 0 and

satf1(Beyonce, Euphoria) = 0.3, then, satf2(Beyonce, Euphoria) = min(0, 0.3) = 0,

• the length of pair (Rihanna, Euphoria) = 1/0.2 + 1 = 6, µshort(6) = 0 and

satf1(Rihanna, Euphoria)=0.2, then, satf2(Rihanna, Euphoria) = min(0, 0.2) = 0,

• the length of pair (MariahC, Euphoria)= 1/0.3 + 1/0.5 + 1= 6.33, µshort(6.33) = 0 and

satf1(MariahC, Euphoria) = 0.3, then, satf2(MariahC, Euphoria) = min(0, 0.3) = 0,

and

• the length of pair (Shakira, Euphoria) = 1/0.5 + 1 = 3, µshort(3) = 1 and satf1(Shakira,

Euphoria) = 0.5, then, satf2(Shakira, Euphoria) = min(1, 0.5) = 0.5.

Then, the pairs of nodes (EnriqueI, Justi�ed), (Shakira, Butter�y) and (Shakira, Eupho-

ria) are the only ones that match the fuzzy regular expression f2 and their satisfaction degrees

are satf2(EnriqueI, Justi�ed) = 0.4, satf2(Shakira, Butter�y) = 0.7 and satf2(Shakira, Eu-

phoria) = 0.5 respectively.

Expression f3 = (friend+)ST>0.65.creator is a fuzzy regular expression. A pair of nodes

(x, y) satis�es f3 if x has a friend artist (an artist connected to x with a path made of friend

edges which has a strength higher than 0.65), who created the album y. It is worth noticing

that expression f1 is a sub-expression of expression f3, so we are going to make use of the

satisfaction degree of f1 (denoted by satf1) in order to calculate the satisfaction degree of

f3 (satf3). The pair of nodes (Shakira, Butter�y), shown in Figure 3.6, is the only one that

matches the fuzzy regular expression f3 with a non zero satisfaction degree: satf3(Shakira,

Butter�y) = 0.7, where the strength between the pair of nodes (Shakira, Butter�y)= min

(0.7,1)= 0.7 and satf1(Shakira, Butter�y) = 0.7, then, satf3(Shakira, Butter�y) = min (0.7,

0.7) =0.7. �

Let us now come to the de�nition of a mapping. A mapping is a pair (m, d) where

m : V → (U × L) and d ∈ [0, 1]. Intuitively, m maps the variables of a fuzzy graph pattern

into a subgraph (�answer�) of the F-RDF data graph and d denotes the satisfaction degree

associated with the mapping (the more satisfactory the subgraph, the higher the satisfaction

degree). The expression m(t), where t is a triple pattern, denotes the triple obtained by
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replacing each variable x of t by m(x). The domain of a mapping m denoted by dom(m)

is the subset of V for which m is de�ned. Two mappings m1 and m2 are compatible

i� for all ?v ∈ dom(m1) ∩ dom(m2), one has m1(?v) = m2(?v). Intuitively, m1 and m2

are compatible ifm1 can be extended withm2 to obtain a new mappingm1⊕m2 and vice versa.

LetM1 andM2 be two fuzzy sets of mappings. We de�ne the join, union, di�erence and

left outer-join ofM1 withM2 as:

Join

M1 onM2 ={(m1 ⊕m2,min(d1, d2)) | (m1, d1) ∈M1

and (m2, d2) ∈M2 and m1, m2 are compatible}.

The operation M1 onM2 denotes the set of new mappings that result from extending

mappings inM1 with their compatible mappings inM2.

Union

M1 ∪M2 ={(m, d) | (m, d) ∈M1 and m 6∈ support(M2)} ∪

{(m, d) | (m, d) ∈M2 and m 6∈ support(M1)} ∪

{(m, max(d1, d2)) | (m, d1) ∈M1 and (m, d2) ∈M2}

Here, ∪ corresponds to the classical set-theoretic union and support denotes the support

of a fuzzy set of mappings and corresponds to the set of all elements of the universe of

discourse whose their grade of membership is greater than zero.

Di�erence

M1\M2 ={(m1, d1) | (m1, d1) ∈M1

and ∀(m2, d2) ∈M2,m1 and m2 are not compatible}.

M1\M2 returns the set of mappings inM1 that cannot be extended with any mapping

inM2.

Leftouterjoin

M1 ./M2 = (M1 onM2) ∪ (M1\M2).

A mappingm is inM1 ./M2 if it is the extension of a mapping ofM1 with a compatible

mapping ofM2, or if it is inM1 and cannot be extended with any mapping ofM2.
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De�nition 12 (Mapping satisfying a fuzzy condition). Let m be a mapping and C be a fuzzy

condition. Then m satis�es the fuzzy condition C with a satisfaction degree de�ned as follows,

according to the form of C:

• C is of the form bound(?x): if ?x ∈ dom(m) then m satis�es the condition C with a

degree of 1, else 0.

• C is of the form ?x θ c (where θ is a (possibly fuzzy) comparator and c is a constant): if

?x ∈ dom(m) then m satis�es the condition C with a degree of µθ(m(?x), c), else 0.

• C is of the form ?x θ ?y: if ?x ∈ dom(m) and ?y ∈ dom(m), then m satis�es the

condition C with a degree of µθ(m(?x),m(?y)), else 0.

• C is of the form ?x is Fterm: if ?x ∈ dom(m) then m satis�es the condition C to the

degree µFterm(m(?x)) (which can be 0).

• C is of the form ¬C1 or C1 � C2 where � is a fuzzy connective: we use the usual

interpretation of the fuzzy operator involved (complement to 1 for the negation, minimum

for the conjunction, maximum for the disjunction, etc [Fodor and Yager, 2000]).

De�nition 13 (Evaluation (interpretation) of a fuzzy graph pattern). The evaluation of a

fuzzy graph pattern P over an F-RDF graph, denoted by JP KG is recursively de�ned by:

• if P is of the form of a (crisp) triple graph pattern t ∈ (U ∪ V)× (U ∪ V)× (U ×L×V)

then JP KG = {(m, 1) | dom(m) = var(t) and m(t) ∈ G},

• if P is of the form of a fuzzy triple graph pattern t ∈ (U ∪ V) × F × (U × L × V)

denoted by 〈?x, exp, ?y〉 (where variables occur as subject and object) then JP KG =

{(m, d) | dom(m) = {?x, ?y} and (m(?x),m(?y)) satis�es exp with a satisfaction de-

gree d = satexp(x, y)}. The case where the subject (resp. the object) of t is a constant of

U (resp. U ∪ L) is trivially induced from this de�nition.

• if P is of the form (P1 and P2) then JP KG = JP1KG on JP2KG,

• if P is of the form (P1 opt P2) then JP KG = JP1KG ./ JP2KG,

• if P is of the form (P1 union P2) then JP KG = JP1KG ∪ JP2KG,

• if P is of the form (P1 filter C) then JP KG = {(m, d) | m ∈ JP KG and m satis�es C

to the degree of d}.

Intuitively, expressions (P1 and P2), (P1 union P2), (P1 opt P2), and (P1 filter C)

refer to conjunction graph patterns, union graph patterns, optional graph patterns, and �lter

graph patterns respectively. Optional graph patterns allow for a partial match of the query

(i.e., the query tries to match a graph pattern and does not omit a solution when some part

of the optional pattern is not satis�ed).
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Remark 7. Note that a crisp graph pattern is a special case of a fuzzy graph pattern where

no fuzzy term or condition occurs (and thus, according to the previous de�nition, an answer

necessarily has a satisfaction degree of 1).

Example 45 [Evaluation of a fuzzy graph pattern] Let us recall

the fuzzy graph pattern Prec_low from Example 42 de�ned by (?Art1,

(friend+)distance is short.creator, ?Alb) AND (?Art1, recommends, ?Alb) AND

((?Alb, rating, ?r) FILTER (?r is low)), for which Figure 6.3 is a graphical

representation.

Figure 3.8 gives the set of subgraphs of GMB satisfying the pattern Prec_low.

The matching value of Art1 is either Shakira or EnriqueI who match the

pattern Prec_low (i.e they are the only artists that have liked a low rated

album created by another artist among their close friends). Note that

(friend+)distance is short.creator is the fuzzy regular expression f2 of Exam-

ple 44 with satf2(EnriqueI, Justi�ed) = 0.4, satf2(Shakira, Butter�y) = 0.7

and satf2(Shakira, Euphoria) = 0.5 and we consider µlow_rating(4) = 0.66,

µlow_rating(6) = 0.33 and µlow_rating(9) = 0 de�ned in Figure 3.5 on page 70.

Then, the evaluation of the pattern Prec_low over the RDF graph GMB includes

two mappings with their respective satisfaction degrees:

satf2low(Shakira,Butter�y) = min(satf2(Shakira,Butter�y),

ζ(Shakira, recommend,Butter�y),

ζ(Butter�y, rating, 4), µlow_rating(4))

= min(0.7, 0.8, 1, 0.66) = 0.66 and

satf2low(EnriqueI, Justi�ed) = min(satf2(EnriqueI, Justi�ed),

ζ(EnriqueI, recommend, Justi�ed),

ζ(Justi�ed, rating, 6), µlow_rating(6))

= min(0.4, 0.6, 1, 0.33) = 0.33.

It can be represented as follows:

JPrec_lowKGMB
= {

({?Art1 → EnriqueI , ?Alb → Justi�ed, ?r → 6}, 0.33),

({?Art1 → Shakira , ?Alb → Butter�y, ?r → 4}, 0.66)}.

Note that the mapping {?art1 → Shakira, ?alb → Euphoria, ?r → 9} is excluded

from the result of the evaluation of the pattern Prec_low since µlow_rating(9) = 0.
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Finally, the result of the query of Example 43 (Listing 3.2 on page 71) over GMB

is the singleton {Shakira} which is m(?art1) in the mapping {?art1 → Shakira,

?alb → Butter�y, ?r → 4}, i.e., the only mapping of JPrec_lowKGMB
having a

satisfaction degree greater or equal to 0.4. �

?Art1 ?Alb ?r(friend+)distance is short.creator

recommends low

rating

Figure 3.7: Graphical representation of pattern Prec_low

EnriqueIg1 : JustinT Justi�edfriend(0.4) creator 6

recommends(0.6)

rating

0.33

Shakirag2 : MariahC Butter�yfriend(0.7) creator

recommends(0.8)

4rating

0.66

Figure 3.8: Subgraphs satisfying Prec_low

Conclusion

In this chapter, we have introduced a new query language named FURQL which is a fuzzy

extension of SPARQL that goes beyond the previous proposals in terms of expressiveness

inasmuch as it makes it possible i) to deal with crisp and fuzzy RDF data, and ii) to express

fuzzy structural conditions beside more classical fuzzy conditions on the values of the nodes

present in the graph.

We �rst presented the notion of a fuzzy RDF graph that makes it possible to model rela-

tionships between entities and then, we formalized a formal syntax and semantics of FURQL

based on the notion of fuzzy graph pattern, which extends Boolean graph patterns introduced

by several authors in a crisp querying context. Associated implementation issues and exper-

iments will be presented in Chapter 5. In the following chapter, we propose to extend the

FURQL query language to be able to express more sophisticated fuzzy conditions, namely

fuzzy quanti�ed statements.
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Introduction

Fuzzy quanti�ed queries have been long recognized for their ability to express di�erent

types of imprecise and �exible information needs in a relational database context. However,

in the speci�c RDF/SPARQL setting, the current approaches from the literature that deal

with quanti�ed queries consider crisp quanti�ers only [Bry et al., 2010, Fan et al., 2016] over

crisp RDF data.

In the present chapter, we integrate fuzzy quanti�ed statements in FURQL queries ad-

dressed to a fuzzy RDF database. We show how these statements can be de�ned and im-

plemented in FURQL, which is a fuzzy extension of the SPARQL query language that we

previously presented in Chapter 3. This work has been published in the proceedings of the

26th IEEE International Conference on Fuzzy Systems (Fuzz-IEEE'17), Naples, Italy, 2017.
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In the following, in Section 4.1 we �rst present a refresher on fuzzy quanti�ed statements

in a relational database context, then, in Section 4.2 we introduce the syntactic format for

expressing fuzzy quanti�ed statements in the FURQL language and we describe their interpre-

tation using di�erent approaches from the literature.

4.1 Refresher on Fuzzy Quanti�ed Statements

In this section, we recall important notions about fuzzy quanti�ers, then, we present three

approaches that have been proposed in the literature for interpreting fuzzy quanti�ed state-

ments.

4.1.1 Fuzzy Quanti�ers

Fuzzy logic extends the notion of quanti�er from Boolean logic (e.g., ∃ and ∀) and makes it

possible to model quanti�ers from the natural language such as most of, at least half, few,

around a dozen, etc.

In [Zadeh, 1983], the author distinguishes between absolute and relative fuzzy quanti�ers.

Absolute quanti�ers refer to a number while relative ones refer to a proportion. Quanti�ers

may also be increasing, as �at least half�, or decreasing, as �at most three�.

An absolute quanti�er Q is represented by a function µQ from an integer range to [0, 1]

whereas a relative quanti�er is a mapping µQ from [0, 1] to [0, 1]. In both cases, the value

µQ(j) is de�ned as the truth value of the statement �Q X are A� when exactly j elements

from X fully satisfy A (whereas it is assumed that A is fully unsatis�ed for the other elements).

According to [Yager, 1988], fuzzy quanti�ers can be increasing (proportional) which means

that if the criteria are all entirely satis�ed, then the statement �QX are A� is entirely true,

and if the criteria are all entirely unsatis�ed, then the statement �Q X are A� is entirely

false. Moreover, the transition between those two extremes is continuous and monotonous.

Therefore, when Q is increasing (e.g., �most�, �at least a half�), function µQ is increasing.

Similarly, decreasing quanti�ers (e.g., �at most two�, �at most a half�) are de�ned by decreasing

functions.

The characteristics of monotonous fuzzy quanti�ers are given in Table 4.1.

Increasing quanti�er Decreasing quanti�er

µQ(0) = 0 µQ(0) = 1
∃k such that µQ(k) = 1 ∃k such that µQ(k) = 0

∀a, b, if a > b then µQ(a) ≥ µQ(b) ∀a, b, if a > b then µQ(a) ≤ µQ(b)

Table 4.1: Characteristics of monotonous fuzzy quanti�ers
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Figure 4.1 gives two examples of monotonous decreasing and increasing fuzzy quanti�ers

respectively.

1 2 3 4
0

1
µat most 2

number of
satis�ed criteria

degree

1 2 3 4
0

1
µat least 3

number of
satis�ed criteria

degree

Figure 4.1: Quanti�ers �at most 2� (left) and �at least 3� (right)

Calculating the truth degree of the statement �Q X are A� raises the problem of

determining the cardinality of the set of elements from X which satisfy A. If A is a Boolean

predicate, this cardinality is a precise integer (k), and then, the truth value of �Q X are

A� is µQ(k). If A is a fuzzy predicate, this cardinality cannot be established precisely and

then, computing the quanti�cation corresponds to establishing the value of function µQ for

an imprecise argument.

Fuzzy quanti�ed queries have been thoroughly studied in a relational database context,

see e.g. [Kacprzyk et al., 1989, Bosc et al., 1995] where they serve to express conditions about

data values. The authors distinguished between two types of uses of fuzzy quanti�ers:

• horizontal quanti�cation (the quanti�er is used as a connective for combining atomic

conditions in a where clause; this use was originally suggested in [Kacprzyk et al., 1989]);

• vertical quanti�cation (the quanti�er appears in a having clause in order to express a

condition on the cardinality of a fuzzy subset of a group, as in ��nd the departments

where most of the employees are well-paid �). This is the type of use we make in our

approach.

4.1.2 Interpretation of Fuzzy Quanti�ed Statements

We now present di�erent proposals from the literature for interpreting quanti�ed statements

of the type �Q B X are A� (which generalizes the case �QX are A� by considering that the

set to which the quanti�er applies is itself fuzzy) where X is a (crisp) referential and A and

B are fuzzy predicates.
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4.1.2.1 Zadeh's interpretation

LetX be the usual (crisp) set {x1, x2, . . ., xn} and n the cardinality ofX. Zadeh [Zadeh, 1983]

de�nes the cardinality of the set of elements of X which satisfy A, denoted by Σcount(A), as:

Σcount(A) =

n∑
i=1

µA(xi) (4.1)

The truth degree of the statement �QX are A� is then given by

µ(QX are A) =


µQ(Σcount(A)) (absolute),

µQ

(
Σcount(A)

n

)
(relative)

(4.2)

One may notice, however, that a large number of elements with a small degree µA(x) has a

same e�ect as a small number of elements with a high degree µA(x), due to the de�nition of

Σcount.

Example 46 Let us consider the following sets:

X1 = {0.9/x1, 0.9/x2, 0.9/x3, 0.8/x4, 0.8/x5, 0.7/x6, 0.6/x7},
X2 = {1/x1, 1/x2, 0.3/x3, 0.2/x4, 0.1/x5, 0/x6, 0/x7},
X3 = {1/x1, 1/x2, 1/x3, 1/x4, 1/x5, 0.8/x6, 0.3/x7}.

and the quanti�er �at least �ve� represented in Figure 4.2. The Σcount(A) values

1 2 3 4 5
0

1/3

2/3

1

µat least 5

number of
satis�ed criteria

satisfaction

degree

Figure 4.2: The fuzzy quanti�er �at least �ve�

associated with the sets X1, X2, and X3 are 5.6, 2.6, and 6.1 respectively. The

associated values of the quanti�cation are 1, 0.2, and 1 respectively. �
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As for quanti�ed statements of the form �QB X are A� (with Q relative), their interpre-

tation is as follows:

µ(QB X are A) = µQ

(
Σcount(A ∩B)

Σcount(B)

)
= µQ

(∑
x∈X >(µA(x), µB(x))∑

x∈X µB(x)

)
(4.3)

where > denotes a triangular norm (for instance the minimum).

Example 47 Let us evaluate the quanti�ed statement �Q B X are A�

where B={0.6/x1, 0.3/x2, 1/x3, 0.1/x5}, A={0.8/x1, 0.4/x2, 0.9/x3, 1/x4, 1/x5}
and Q(x) = x2.

Then, µ(QB X are A) = µQ(0.6+0.3+0.9+0+0.1
0.6+0.3+1+0+0.1 ) = µQ(1.9

2 ) = µQ(0.95) = 0.90. �

4.1.2.2 Yager's Competitive Type Aggregation

The interpretation by decomposition described in [Yager, 1984] was originally limited

to increasing quanti�ers. It was later generalized to all kinds of fuzzy quanti�ers in

[Bosc et al., 1995], but hereafter, we consider the basic case where Q is increasing.

The proposition �QX are A� is true if an ordinary subset C of X satis�es the conditions

c1 and c2 given hereafter:

c1: there are Q elements in C,

c2: each element x of C satis�es A.

The truth value of the proposition: �QX are A� is then de�ned as:

µ(QX are A) = sup
C ⊆X

min(µc1(C), µc2(C)) (4.4)

with

µc1(C) =


µQ(|C|) if Q is absolute,

µQ

(
|C|
n

)
if Q is relative

(4.5)

and

µc2(C) = inf
x ∈ C

µA(x). (4.6)

It has been shown in [Yager, 1984] that:

µ(QX are A) = sup
1≤ i≤ n

min(µQ(i), µA(xi)). (4.7)

where the elements of X are ordered in such a way that µA(x1) ≥ . . . ≥ µA(xn). Formula

(4.7) corresponds to a Sugeno integral [Sugeno, 1974].
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For quanti�ed statements of the form �QBX are A�, the principle is similar. The statement

is true if there exists a crisp subset C of X that satis�es the conditions c′1 and c′2 hereafter:

c′1: Q B X are in C,

c′2: each element x of C satis�es the implication

(x is B)⇒ (x is A).

The truth value of the proposition: �QB X are A� is then de�ned as:

µ(QB X are A) = sup
C ⊆X

min(µc′1(C), µc′2(C)) (4.8)

with

µc′1(C) =


µQ
(∑

x∈C µB(x)
)
if Q is absolute,

µQ


∑
x∈C

µB(x)∑
x∈X

µB(x)

 if Q is relative
(4.9)

and

µc′2(C) = inf
x ∈ C

µB(x)→ µA(x) (4.10)

where → is a fuzzy implication (see e.g. [Fodor and Yager, 2000]).

Notice that µ(QB X are A) is unde�ned when ∀x ∈ X, µB(x) = 0 since this would result

in a division by zero in Formula 4.9.

4.1.2.3 Interpretation based on the OWA operator

In [Yager, 1988], Yager considers the case of an increasing monotonous quanti�er and proposes

an ordered weighted averaging operator (OWA) to evaluate quanti�cations of the type �QX
are A�. It is shown in [Bosc et al., 1995] i) how it can be extended in order to evaluate

decreasing quanti�cations and ii) that this interpretation boils down to using a Choquet fuzzy

integral.

The OWA operator is de�ned in [Yager, 1988] as:

OWA(x1, . . . , xn; w1, . . . , wn) =
n∑
i=1

wi × xki (4.11)

where xki is the i
th largest value among the xk's and

∑n
i=1wi = 1.
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Let n be the crisp cardinality of X. The truth value of the statement �Q X are A� is

computed by an OWA of the n values µA(xi). The weights wi involved in the calculation of

the OWA are given by

wi =


µQ(i)− µQ(i− 1) if Q is absolute,

µQ

(
i

n

)
− µQ

(
i− 1

n

)
if Q is relative.

(4.12)

The aggregated value which is calculated is:

OWA(µA(x1), µA(x2), . . . , µA(xn); w1, . . . , wn) =
n∑
i=1

wi × ci (4.13)

where ci is the i
th largest value among the µA(xk)'s.

Example 48 Let us consider the sets X1, X2, and X3, and the quanti�er �at

least �ve� from Example 46. We have:

w1 = 0, w2 = 0, w3 = 1/3, w4 = 1/3, w5 = 1/3, w6 = 0, w7 = 0.

We evaluate the statement �at least �ve elements of X1 are A� and we get the

degree 0.83 (= 0.9×1/3+0.8×1/3+0.8×1/3). The same way, we get the degrees

0.2 for X2 and 1 for X3.�

This interpretation corresponds to using a Choquet integral [Choquet, 1954], see also

[Murofushi and Sugeno, 1989, Grabisch et al., 1992].

As for statements of the form �QBX are A�, Yager suggests to compute the truth degree

of statements of the form �QB X are A� by an OWA aggregation of the implication values

µB(x)→KD µA(x)

where →KD denotes Kleene-Dienes implication (a→KD b = max(1− a, b)).

Let X = {x1, . . . , xn} be such that µB(x1) ≤ µB(x2) ≤ . . . ≤ µB(xn) and
∑n

i=1 µB(xi) =

d. The weights of the OWA operator are de�ned by:

wi = µQ(Si)− µQ(Si−1), (4.14)

with

Si =

i∑
j=1

µB(xj)

d
(4.15)
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and

S0 = 0. (4.16)

The implication values are denoted by ci and ordered decreasingly: c1 ≥ c2 ≥ . . . ≥ cn.

Finally:

µ(QB X are A) =
n∑
i=1

wi × ci. (4.17)

Example 49 Let us consider a quanti�ed statement of the form �QBX are A�

from Example 47 and Q(x) = x2.

We �rst order the elements of X such that µB(xk1) ≤ ... ≤ µB(xkn), e1 = 0, e2 =

0.1, e3 = 0.3, e4 = 0.6, e5 = 1 and d = 2. Thus, we get S1 = 0, S2 = 0.05, S3 =

0.2, S4 = 0.5, S5 = 1.

µQ(S1) = 0, µQ(S2) = 0.025, µQ(S3) = 0.04, µQ(S4) = 0.25, µQ(S5) = 1.

Therefore, the weights of the OWA operator are:

w1 = µQ(S1)− µQ(S0) = 0,

w2 = µQ(S2)− µQ(S1) = 0.025,

w3 = µQ(S3)− µQ(S2) = 0.04− 0.0025 = 0.0375,

w4 = µQ(S4)− µQ(S3) = 0.25− 0.04 = 0.21,

w5 = µQ(S5)− µQ(S4) = 1− 0.25 = 0.75.

For each xi we calculate the implication value ci = max((1−µB(xi)), µA(xi)) and

these values are ordered decreasingly such that c1 ≥ . . . ≥ cn.

c1 = max(0.4, 0.8) = 0.8, c2 = max(0.7, 0.4) = 0.7,

c3 = max(0, 0.9) = 0.9, c4 = max(1, 1) = 1,

c5 = max(0.9, 1) = 1.

We reorder the implication values and we get c′1 = 1(c4), c′2 = 1(c5), c′3 = 0.9(c3),

c′4 = 0.8(c1), c′5 = 0.7(c2).

Finally, the satisfaction degree using the OWA aggregation is:

µ = (1) ∗ 0 + 0.0025 ∗ (1) + (0.375) ∗ 0.9 + 0.21 ∗ (0.8) + 0.75 ∗ (0.7) = 0.73. �

4.2 FURQL with Fuzzy Quanti�ed Statements

In this section, we �rst present some recent proposals from the literature for incorporating

quanti�ed statements into SPARQL queries, and then, we propose to integrate fuzzy quanti�ed

statements in the FURQL language.
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4.2.1 Related Work: Quanti�ed Statements in SPARQL

In an RDF database context, quanti�ed statements have only recently attracted the attention

of database community. In [Bry et al., 2010], Bry et al. propose an extension of SPARQL

(called SPARQLog) with �rst-order logic (FO) rules and existential and universal quanti�ca-

tion over node variables. This query language makes it possible to express statements such

as: �for each lecture there is a course that practices this lecture and is attended by all students

attending the lecture�. This statement can be expressed in SPARQLog as follows:

all ?lec ex ?crs all ?stu

construct { ?crs uni:practices ?lec .

?stu uni:attends ?crs . }

where { ?lec rdf:type uni:lecture .

?stu uni:attends ?lec . }

More recently, in [Fan et al., 2016], Fan et al. introduced quanti�ed graph patterns, an

extension of the classical SPARQL graph patterns using simple counting quanti�ers on edges.

Quanti�ed graph patterns make it possible to express numeric and ratio aggregates, and nega-

tion besides existential and universal quanti�cation. The authors also showed that quanti�ed

matching in the absence of negation does not signi�cantly increase the cost of query processing.

However, to the best of our knowledge, there does not exist any work in the literature that

deals with fuzzy quanti�ed statements in the SPARQL query language, which is the main goal

of the present chapter.

4.2.2 Fuzzy Quanti�ed Statements in FURQL

In this subsection, we show how fuzzy quanti�ed statements may be expressed in FURQL

queries. We �rst propose a syntactic format for these queries, and then we show how they can

be evaluated in an e�cient way.

4.2.2.1 Syntax of a Fuzzy Quanti�ed Query in FURQL

In the following, we consider fuzzy quanti�ed statements of the type �Q B X are A� over

fuzzy RDF graph databases, where the quanti�er Q is represented by a fuzzy set and denotes

either a relative quanti�er (e.g., most) or an absolute one (e.g., at least three), B is the fuzzy

condition �to be connected to a node x�, X is the set of nodes in the RDF graph, and A

denotes a (possibly compound) fuzzy condition.

Example 50 [Fuzzy quanti�ed statement] An example of a fuzzy quanti�ed state-

ments of the type �Q B X are A� is: �most of the recent albums are highly rated�.

In this example, Q corresponds to the relative quanti�er most, B is the fuzzy con-

dition to be recent, X corresponds to the set of albums present in the RDF graph,

and A corresponds to the fuzzy conditions to be highly rated. �
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The general syntactic form of a fuzzy quanti�ed query of the type �Q B X are A� in the

FURQL language is given in Listing 4.1.

define ...

select ?res where {

B(?res,?x)

group by ?res

having Q(?x) are ( A(?x) ) }

Listing 4.1: Syntax of a FURQL quanti�ed query R

The define clause allows to de�ne the fuzzy terms and the fuzzy quanti�er (denoted here

by Q). Fuzzy quanti�ers are declared in the same way as fuzzy terms (see Subsection 3.2.1

of Chapter 3). The select clause speci�es which variables ?res should be returned in the

result set. The group by clause contains the variables (here ?res) that should be partitioned.

Expression B(?res,?x) (in the where clause) denotes the fuzzy graph pattern, de�ned in the

FURQL language (see De�nition 9 on page 69), involving the variables ?res and ?x and

expressing the (possibly fuzzy) conditions in B and expression A(?x) (in the having clause)

denotes the fuzzy graph pattern involving the variable ?x that appears in A.

Example 51 [Fuzzy Quanti�ed Query in FURQL] The query, denoted by

RmostAlbums, that aims to retrieve every artist (?art1) such that most of the recent

albums (?alb) that he/she recommends are highly rated and have been created by

a young friend (?art2) of his/hers may be expressed in FURQL as follows:

1 defineqrelativeasc most as (0.3,0.8), defineasc high as (2,5)

2 definedesc young as (25,40), defineasc recent as (2010,2015)

3 select ?art1 where {

4 ?art1 recommends ?alb . ?alb date ?date .

5 filter ( ?date is recent ) }

6 group by ?art1

7 having most(?alb) are

8 ( ?art1 friend ?art2 . ?art2 creator ?alb .

9 ?alb rating ?rating . ?art2 age ?age .

10 filter (?rating is high && ?age is young) )

Listing 4.2: Syntax of the FURQL quanti�ed query RmostAlbums

where the defineqrelativeasc clause de�nes the fuzzy relative increasing quanti�er

most of Figure 4.3.(c), the defineasc clauses de�ne the (increasing) membership

functions associated with the fuzzy terms high and recent of Figure 4.3.(a) and (b),

and the definedesc clause de�nes the (decreasing) membership function associated

with the fuzzy term young of Figure 4.3.(d). In this query, ?art1 corresponds to

?res of Listing 4.2, ?alb corresponds to ?x of Listing 4.2, lines 4 to 5 correspond

to B(?res,?x) of Listing 4.2 and lines 8 to 10 correspond to A(?x) of Listing 4.2. �
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Figure 4.3: Membership functions of Example 51

Since the FURQL query language supports the expression of fuzzy preferences involving

fuzzy structural properties (like for example, the distance and strength between two nodes over

fuzzy graphs), fuzzy quanti�ed structural queries can be expressed in the FURQL language

and an example of such query is given hereafter.

Example 52 [Fuzzy Quanti�ed Structural Query in FURQL] We now consider

a slightly more complex version of the above example by adding a fuzzy struc-

tural condition on the strength of the authors' recommendation: �retrieve every

artist (?art1) such that most of the recent albums (?alb) that he/she strongly rec-

ommends are highly rated and have been created by a young friend (?art2) of

his/hers�. The syntactic form of this query, denoted by RmostAlbums_ST , is given

in Listing 4.3.

1 defineqrelativeasc most as (0.3,0.8) defineasc recent as (2010,2015)

2 defineasc high as (2,5) definedesc young as (25,40)

3 defineasc strong as (0,1)

4 select ?art1 where {

5 ?art1 (recommends | ST is strong) ?alb .

6 ?alb date ?date .

7 filter ( ?date is recent ) }

8 group by ?art1

9 having most(?alb) are

10 ( ?art1 friend ?art2 . ?art2 creator ?alb .

11 ?alb rating ?rating . ?art2 age ?age .

12 filter (?rating IS high && ?age IS young) )

Listing 4.3: Syntax of the FURQL quanti�ed query RmostAlbums_ST

In this query, line 3 de�nes the fuzzy term strong of Figure 4.4 and line 5 corre-

sponds to the fuzzy structural condition on the strength of the authors's recom-

mendation. �
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4.2.2.2 Evaluation of a Fuzzy Quanti�ed Query

The interpretation of a fuzzy quanti�ed statement in a FURQL query can be based on one of

the formulas (4.3), (4.8), or (4.17). Its evaluation involves three stages :

1. the compiling of the fuzzy quanti�ed query R into a crisp query denoted by R�atBoolean,

2. the interpretation of the crisp SPARQL query R�atBoolean,

3. the calculation of the result of R (which is a fuzzy set) based on the result of R�atBoolean.

Compiling

The compiling stage translates the fuzzy quanti�ed query R into a crisp query denoted by

R�atBoolean. This compilation involves two translation steps.

First, R is transcripted into an intermediate query R�at that allows to interpret the fuzzy

quanti�ed statement embedded in R. The query Rflat, whose general form
1 is given in List-

ing 4.4, is obtained by removing the group by and having clauses from the initial query and

adding the optional clause for the A part. This query aims to retrieve the elements of the B

part of the initial query, matching the variables ?res and ?x, and possibly the elements of the

A part of the initial query, matching the variable ?x, for which we will then need to calculate

the �nal satisfaction degree.

select ?res ?X IB IA where {

B(?res,?X)

optional { A(?X) } }

Listing 4.4: Derived query R�at of RmostAlbums

For each pair (?res, ?x), we retrieve all the information needed for the calculation of µB

and µA, i.e., the combination of fuzzy degrees associated with relationships and node attribute

values involved in B(?res,?x) and in A(?X), respectively denoted by IB and IA. Listing 4.5 of

Example 53 below presents the derived query associated with the query RmostAlbums.

1Hereafter, the define clauses are omitted for the sake of simplicity.
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The evaluation of R�at is based on the derivation principle introduced by

[Pivert and Bosc, 2012] in the context of relational databases: Rflat is in fact derived into

another query denoted by R�atBoolean. The derivation translates the fuzzy query into

a crisp one by transforming its fuzzy conditions into Boolean ones that select the sup-

port of the fuzzy statements. For instance, following this principle, the fuzzy condition

?year IS recent de�ned as defineasc recent as (2013,2016) becomes the crisp condition

?year > 2013 in order to remove the answers that necessary do not belong to the support

of the answer. In the general case of a membership function having a trapezoidal form de-

�ned by a quadruple (a, b, c, d), the derivation introduces two crisp conditions ( ?var > a and

?var < d). Listing 4.6 of Example 53 below is an illustration of the derivation of the query

Rflat.

Crisp interpretation

The previous compiling stage translates the fuzzy quanti�ed query R embedding A fuzzy

quanti�ed statement and fuzzy conditions into a crisp query R�atBoolean, whose interpretation

is the classical Boolean one.

For the sake of simplicity, we consider in the following that the result of R�at, denoted by

Jr�atK, is made of the quadruples (?resi, ?xi, µBi, µAi) matching the query.

Final result calculation

The last stage of the evaluation calculates the satisfaction degrees µB and µA according to IB

and IA. If the optional part does not match a given answer, then µA = 0. The answers of the

initial fuzzy quanti�ed query R (involving the fuzzy quanti�er Q) are answers of the query

R�at derived from R, and the �nal satisfaction degree associated with each element e can

be calculated according to the three di�erent interpretations mentioned earlier in Subsection

4.1.2. Hereafter, we illustrate this using [Zadeh, 1983] and [Yager, 1988]'s approaches (which

are the most commonly used for interpreting fuzzy quanti�ed statements).

• Following Zadeh's Sigma-count-based approach (cf. Subsection 4.1.2.1) we have:

µ(e) = µQ

(∑
{(?resi,?xi,µBi,µAi)∈JR�atK|?resi=e}min(µAi, µBi)∑

{(?resi,?xi,µBi,µAi)∈JR�atK|resi=e} µBi

)
(4.18)

In the case of a fuzzy absolute quanti�ed query, the �nal satisfaction degree associated

with each element e is simply

µ(e) = µQ

 ∑
{(?resi,?xi,µBi,µAi)∈JR�atK|?resi=e}

µAi

 .
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Figure 4.5: Fuzzy RDF graph GMB inspired by MusicBrainz

Example 53 [Evaluation of a Fuzzy Quanti�ed Query] Let us consider

the fuzzy quanti�ed query RmostAlbums of Listing 4.2. We evaluate this query

according to the fuzzy RDF data graph GMB of Figure 4.5. In order to in-

terpret RmostAlbums, we �rst derive the following query R�at from RmostAlbums,

that retrieves �the artists (?art1) who recommended at least one recent album

(corresponds to B(?art1,?alb) in lines 2 and 3), possibly (optional) highly

rated and created by a young friend (corresponds to A(?alb) in lines 5 to 7)�.

1 select ?art1 ?alb µB µA where {

2 ?art1 recommends ?alb . ?alb date ?date .

3 filter (?date is recent)

4 optional {

5 ?art1 friend ?art2 . ?art2 creator ?alb .

6 ?alb rating ?rating . ?art2 age ?age .

7 filter (?rating is high && ?age is young) } }

Listing 4.5: Query R�at derived from RmostAlbums
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Then, we evaluate the SPARQL query RflatBoolean given in Listing 4.6, derived

from the FURQL nonquanti�ed query Rflat of Listing 4.5.

1 select ?art1 ?alb µB µA where {

2 ?art1 recommends ?alb . ?alb date ?date .

3 filter ( ?date > 2010.0 )

4 optional {

5 ?art1 friend ?art2 . ?art2 creator ?alb .

6 ?alb rating ?rating . ?art2 age ?age .

7 filter ( ?rating > 2.0 && ?age < 40.0 ) } }

Listing 4.6: Query R�atBoolean derived from R�at

This query returns a list of artist (?art1) with their recommended albums

(?alb), satisfying the conditions of query R�at, along with their respective

satisfaction degrees

µB = min(µrecent(?alb), ζ(?art1, recommends, ?alb)) and

µA = min(µhigh(?rating), µyoung(?age), ζ(?art1, friend, ?art2)).

where µp denotes the membership degree of the predicate p and ζ(t) denotes

the membership value associated with the triple t (cf., De�nition 4 on page 62).

For the sake of readability, the query of Listing 4.6 is a simpli�ed version of

the real derived query (cf. Listing A.1 in Appendix A).

According to the fuzzy RDF data graph GMB of Figure 4.5, R�at concerns

three artists {JustinT, Shakira, Beyonce}. EnriqueI, Drake, Mariah and

Rihanna do not belong to the result set of R�at because EnriqueI, Drake and

Mariah have not recommended any album made by any of their friends and

Rihanna did not recommend any somewhat recent album.

Then, the set of answers of the query Rflat, denoted by JRflatK, is as follows:

JRflatK = {

(?art1→ JustinT, ?alb→ One dance, µB → 0.4, µA → 0.3),

(?art1→ JustinT, ?alb → Home, µB → 0.1, µA → 0.6),

(?art1→ Shakira, ?alb → Euphoria, µB → 0.1 , µA → 0.07),

(?art1→ Shakira, ?alb → Butterfly, µB → 0.2, µA → 0),

(?art1→ Shakira, ?alb → Justified, µB → 0.3, µA → 0.4),

(?art1→ Beyonce, ?alb → Home, µB → 0.4, µA → 0.3)}.
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Finally, assuming for the sake of simplicity that µmost(x) = x, the �nal result

of the query RmostAlbums evaluated on GMB using Formula 4.18 is:

JRmostAlbumsK = {

({?art1 → JustinT}, 0.80),

({?art1 → Beyonce}, 0.75),

({?art1 → Shakira}, 0.62)}. �

• Using Yager's OWA-based approach, for each element e returned by R�at we calculate

µ(e) =
∑

{(?resi,?xi,µBi,µAi)∈JR�atK|?resi=e}

wi × ci. (4.19)

Let us consider condition B = {µB1/x1, ..., µBn/xn} such that µB1 ≤ ... ≤ µBn ,

condition A = {µA1/x1, ..., µAn/xn} and d =
∑n

i=1 µBi .

The weights of the OWA operator are de�ned by

wi = µQ(Sxi)− µQ(Sxi−1)

with

Sxi =
i∑

j=1

µBj
d

The implication values are denoted by cxi = max(1−µBi , µAi) and ordered decreasingly
such that c1 ≥ . . . ≥ cn.

Example 54 In order to calculate µ(Shakira) from R�at, let us consider

B (resp. A) the set of satisfaction degrees corresponding to condition B

(resp. A ) of element Shakira as follows B ={ 0.1/Euphoria, 0.2/Butterfly,

0.3/Justified} and A= { 0.07/Euphoria, 0/Butterfly, 0.4/Justified}. We

have d = 0.6 and:

SEuphoria =
0.1

0.6
= 0.17, SButter�y =

0.1 + 0.2

0.6
= 0.5, and

SJusti�ed =
0.1 + 0.2 + 0.3

0.6
= 1.

Then, with µmost(x) = x, we get µQ(SEuphoria) = 0.17, µQ(SButter�y) = 0.5

and µQ(SJusti�ed) = 1.
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Therefore, the weights of the OWA operator are:

W1 = µQ(SEuphoria)− µQ(S0) = 0.17,

W2 = µQ(SButter�y)− µQ(SEuphoria) = 0.33, and

W3 = µQ(SJusti�ed)− µQ(SButter�y) = 0.5.

The implication values are:

cEuphoria = max(1− 0.1, 0.07) = 0.9,

cButter�y = max(1− 0.2, 0) = 0.8, and

cJusti�ed = max(1− 0.3, 0.36) = 0.7.

Thus, c1 = 0.9, c2 = 0.8 and c3 = 0.7. Finally, we get:

µ(Shakira) = 0.17× 0.9 + 0.33× 0.8 + 0.5× 0.7 = 0.15 + 0.26 + 0.35 = 0.77.

Finally, assuming for the sake of simplicity that µmost(x) = x, the �nal result

of the query RmostAlbums evaluated on GMB using Formula 4.19 is:

JRmostAlbumsK = {

({?art1 → Shakira}, 0.77),

({?art1 → JustinT}, 0.66),

({?art1 → Beyonce}, 0.6) }. �

Conclusion

In this chapter, we have investigated the issue of integrating fuzzy quanti�ed structural queries

of the type �QBX are A� into the FURQL query language (a fuzzy extension of the SPARQL

that we proposed in Chapter 3) aimed to query fuzzy RDF databases. We have de�ned the

syntax and semantics of an extension of FURQL, that makes it possible to deal with such

queries. A query processing strategy based on the derivation of nonquanti�ed fuzzy queries

has also been proposed using di�erent interpretations from the literature previously discussed

in Section 4.1. The following chapter discusses implementation issues and presents some

experiments.
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Introduction

Chapters 3 and 4 contain the main contributions of the thesis which consist of the def-

inition of the FURQL query language, which is a fuzzy extension of SPARQL with fuzzy

preferences (including fuzzy quanti�ed statements) addressed to fuzzy RDF databases as well

as crisp ones.

In the present chapter, in Section 5.1, we describe a prototype implementation of FURQL

built on top of a classical SPARQL engine and, then in Section 5.2, we present a performance

evaluation of the prototype system using di�erent sizes of fuzzy RDF databases. The main

objective behind these experiments is to show that the extra cost due to the introduction

of fuzziness remains limited/acceptable.
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5.1 Implementation of FURQL

In this section, we discuss implementation issues related to the FURQL query language. Two

aspects have to be considered: i) the storage of fuzzy RDF graphs (see Subsection 5.1.1),

and ii) the evaluation of FURQL queries with and without fuzzy quanti�ed statements (see

Subsection 5.1.2).

5.1.1 Storage of Fuzzy RDF Graphs

In this thesis we deal with fuzzy RDF graph, for which we need to attach fuzzy degrees to

some edges in the RDF graph.

The classical RDF model does not naturally support this, but fortunately, it provides a

mechanism, called rei�cation, for making assertions or descriptions about statements. The

rei�cation of a statement in RDF is a description of this statement represented by a set

of classical RDF triples. The vocabulary for doing so consists of rdf:Statement, rdf:subject,

rdf:predicate, and rdf:object.

In our case and in order to attach fuzzy degrees to RDF triples, we use this rei�cation

mechanism. Here, a fuzzy RDF triple can be represented as a set of RDF triples. Example 55

illustrates this principle.

Example 55 The fuzzy RDF triple �(〈Shakira, friends, MariahC〉, 0.7)� states

that 〈Shakira, friends, MariahC〉 is satis�ed to the degree 0.7, which could be inter-

preted as Shakira is a close friend of MariahC.

The representation of this fuzzy RDF triple using rei�cation is given in Listing 5.1.

1 _:bn rdf:type rdf:Statement.

2 _:bn rdf:subject Shakira.

3 _:bn rdf:predicate friend.

4 _:bn rdf:object MariahC.

5 _:bn uri:degree "0.7".

Listing 5.1: Rei�cation of a fuzzy RDF triple

The statement of Line 1 says that the resource identi�ed by the blank RDF node

(i.e., a node without label) _:bn is of type RDF statement. The statement of

Line 2 indicates that the subject of the statement refers to the resource identi�ed

by Shakira, in Line 3 the predicate of the statement refers to the resource identi�ed

by friend, and in Line 4 the object of the statement refers to the resourceMariahC.

The satisfaction degree 0.7 is given by the statement in Line 5.

A possible graphical representation of this rei�cation is depicted in Figure 5.1.

The nodes in dashed lines represent rei�ed nodes with the properties rdf:type,
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rdf:subject, rdf:predicate, rdf:object and uri:degree that model respectively the type,

the subject, the predicate, the object and the degree of the new statement. �

Shakira MariahCfriend

Blank node

rdf:subject

rdf:predicate

rdf:object

0.7rdf:Statement

uri:degreerdf:type

Figure 5.1: Rei�cation of fuzzy triple of Example 55

In order to create a fuzzy RDF database, we start from a nonfuzzy RDF subgraph database

for which every relationship between nodes is Boolean and then, we make it fuzzy by adding

satisfaction degrees denoting the intensity of some relationships using the rei�cation mecha-

nism (as illustrated in Example 55).

5.1.2 Evaluation of FURQL Queries

Concerning the evaluation of FURQL queries, two architectures may be thought of:

• A �rst solution consists in implementing a speci�c query evaluation engine inside the data

management system. Figure 5.2 is an illustration of this architecture. The advantage of

this solution is that optimization techniques implemented directly in the query engine

should make the system very e�cient for query processing. An important downside

is that the implementation e�ort is substantial, but the strongest objection for this

solution is that the evaluation of a FURQL query in a distributed architecture would

imply having available a FURQL query evaluator at each SPARQL endpoint, which is

not realistic at the time being.

• An alternative more realistic architecture consists in adding a software add-on layer over

a standard � and possibly distant � classical SPARQL engine (endpoint) which is the

evaluation strategy that we adopted for processing FURQL queries.

This software, called SURF1 (Sparql with fUzzy quanti�eRs for rdF data), is imple-

mented within the Jena Semantic Web Java Framework2 for creating and manipulating

1https://www-shaman.irisa.fr/surf/
2https://jena.apache.org

https://www-shaman.irisa.fr/surf/


100 5.1. Implementation of FURQL

Client (user)

FURQL query Q

FURQL query
evaluator engine

Ranked answers of
Q (with sat degrees)

Management System with FURQL engine

Figure 5.2: Implementation of a speci�c FURQL query evaluation engine

RDF graphs.

SURF evaluates FURQL queries that may contain fuzzy quanti�ed statements whose

syntax was presented in Chapter 3 and Chapter 4. It basically consists of two modules:

1. In a pre-processing step, the Query compiler module, produces

� the query-dependent functions that allow to compute the satisfaction degrees

for each returned answer,

� a (crisp) SPARQL query which is then sent to the SPARQL query engine for

retrieving the information needed to calculate the satisfaction degrees.

The compilation uses the derivation principle introduced in [Bosc and Pivert, 2000]

in a relational database context that consists in translating a fuzzy query into a

Boolean one.

2. In a post-processing step, the Score calculator module calculates the satisfaction

degree for each returned answer, ranks the answers, and qualitatively �lters them

if an α-cut has been speci�ed in the initial fuzzy query.

Figure 5.3 illustrates this architecture.

SURF makes it possible to query FURQL queries (including quanti�ed ones) as well as

regular SPARQL queries. The di�erent evaluation scenarios are presented hereafter.

1. For a FURQL query (that does not involve any quanti�ed statement), the principle is

simple, we �rst evaluate the corresponding (crisp) SPARQL query returned by the Query

compiler module (obtained using the derivation rules). For each tuple x from the result

of the crisp SPARQL query, we calculate its satisfaction degree using the Score calculator

module. Finally, a set of answers ranked in decreasing order of their satisfaction degree

is returned.
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Figure 5.3: SURF software architecture

2. For quanti�ed queries of the type �Q B X are A�, the principle is to �rst evaluate

the (crisp) SPARQL query (returned by the Query compiler module) derived from the

original query. We �rst perform a group by of the elements from the result of the

derived query and then for each tuple from the result set, we return the satisfaction

degrees related to conditions A and B, denoted respectively by µA and µB. The �nal

satisfaction degree µ can be calculated according to Formulas (4.3), (4.8) or (4.17)

(presented in Chapter 4 Subsection 4.1.2) using the value of µB and µA.

At the current time, Zadeh's approach [Zadeh, 1983] and Yager's OWA-based approach

[Yager, 1988] have been implemented, and the choice of the interpretation to be used

is made through the con�guration tool of the system. Finally, we get a set of answers

ranked in decreasing order of their satisfaction degree.

3. For a classical SPARQL query, we skip the Query compiler and Score calculator modules

and the original query is transferred directly to the classical SPARQL engine. All the

answers returned by the SPARQL engine are kept in the �nal resultset with a satisfaction

degree equal to 1.
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The SURF GUI was created using Vaadin3, a web framework for Java under NetBeans

IDE 8.2. It is mainly composed of two frames:

• an input text area for entering and running a FURQL query, and

• a table for visualizing the results of a query.

Example 56 Figure 5.4 presents a screenshot of the SURF GUI, which contains

the �nal result of the evaluation of a FURQL query.

Figure 5.4: Screenshot of SURF

The FURQL prototype and some interactive examples of queries are available and down-

loadable at https://www-shaman.irisa.fr/furql/.

5.2 Experimentations

In order to demonstrate the performances of our approach in the case of fuzzy graph pattern

queries, we ran two experiments in order to calculate the execution time of each step of the

evaluation for FURQL queries with and without quanti�ed statements and then to assess the

cost of adding fuzzy preferences for each type of queries.

In the following, we �rst present the setup we used for the evaluation and then, we describe

in detail each experiment.

3https://vaadin.com/home

https://www-shaman.irisa.fr/furql/
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5.2.1 Experimental Setup

All of the experiments were carried out on a personal computer running Windows 7 (64 bits)

with 8GB of RAM.

For these experiments, we used four di�erent sizes of fuzzy RDF datasets containing crisp

and fuzzy triples, as described in Table 5.1. Our RDF data is inspired by Musicbrainz4 linked

data (which is originally crisp), and for representing fuzzy information, we used the rei�cation

mechanism that makes it possible to attach fuzzy degrees to triples, as discussed earlier in

Subsection 5.1.1

Table 5.1: Fuzzy RDF datasets
Dataset Size Rei�ed Triples

DB1 11796 triples 47185 triples

DB2 65994 triples 263977 triples

DB3 112558 triples 450393 triples

DB4 175416 triples 701665 triples

A java script have been developed to create random fuzzy RDF data of di�erent sizes.

In the following, we �rst present experiments on nonquanti�ed FURQL queries (Sec-

tion 5.2.2) and then on quanti�ed ones (Section 5.2.3).

5.2.2 Experiments for nonquanti�ed FURQL Queries

For this experiment, we considered di�erent kinds of nonquanti�ed FURQL queries (summa-

rized in Table 5.2), based on the typology presented in [Umbrich et al., 2015]. Three types

have been used. For each kind of queries, we consider two fuzzy subtypes: 1) a subtype

for which a condition concerns a value, and 2) a subtype for which a condition concerns the

intensity of the relationships. Such subtype is called �Structural� in the following.

• Edge queries: that consist in retrieving an entity e by means of a pattern where e may

appear either i) in the subject (denoted by edge-s), ii) in the object (denoted by edge-o),

or iii) both (denoted by edge-so).

Figure 5.5: Edge query of the form edge-so

We consider in the following four edge queries of the form edge-so given in Figure 5.5.

Query Q1.2 is a fuzzy edge query containing a fuzzy condition that aims to �nd the

recent albums recommended by an artist; Its corresponding crisp query, denoted by

4https://musicbrainz.org/
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Q1.1, aims to �nd the albums recommended by an artist and released after 2014. Q1.1

is given in Listing 5.2 for which the rei�cation of fuzzy triples is made explicit in the

query and Q1.2 is given in Listing 5.3, the rei�cation here is implicit and it is performed

in the Query compiler stage.

select ?alb where {

?alb date ?d .

/* reification */

?X1 subject ?art1.

?X1 predicate recommends.

?X1 object ?alb. ?X1 degree ?degree.

filter ( ?d > 2014 ) }

Listing 5.2: Crisp edge query Q1.1

defineasc recent as (2014,2017)

select ?alb where

{

?alb date ?d .

?art recommends ?alb .

filter ( ?d is recent )

}

Listing 5.3: Fuzzy edge query Q1.2

Query Q1.4 is a fuzzy structural edge query containing a fuzzy structural condition that

aims to �nd highly recommended albums with a known release date. Its crisp version,

denoted by Q1.3, aims to �nd the albums recommended with a degree greater than

0.8 and having a known release date. Q1.3 (resp., Q1.4) is given in Listing 5.4 (resp.,

Listing 5.3).

select ?alb where {

?alb date ?d.

/* reification */

?X1 subject ?art1.

?X1 predicate recommends.

?X1 object ?alb. ?X1 degree ?degree.

filter ( ?degree > 0.8 ) }

Listing 5.4: Crisp structural edge query

Q1.3

defineasc strong as (0.7, 0.9)

select ?alb where

{

?alb date ?d.

/* structural condition */

?art (recommends | ST is strong) ?alb.

}

Listing 5.5: Fuzzy structural edge query

Q1.4

• Star queries (star-shaped queries): consist of three acyclic triple patterns that share

the same node (called central node). The central node may appear in di�erent positions;

i.e., it can be the subject of the three triples patterns (denoted by star-s3 ), the object

of three triples patterns (denoted by star-o3 ), the subject of a triple patterns and the

object of the two others (denoted by star-s1-o2 ), or the subject of two triples patterns

and the object of the remaining triple pattern (denoted by star-s2-o1 ).

Again we used four queries of the form star-s2-o1 shown in Figure 5.6.
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Figure 5.6: Star query of the form star-s2-o1

Query Q2.2 is a fuzzy star query containing a fuzzy condition that aims to retrieve the

recent albums (with a known rating) recommended by an artist. Its corresponding crisp

query, denoted by Q2.1, aims to retrieve the albums released after 2014 (with a known

rating) recommended by an artist. Q2.1 (resp. Q2.2) is shown in Listing 5.6 (resp.

Listing 5.7).

select ?alb where {

?alb date ?d. ?alb rating ?r.

/* reification */

?X1 subject ?art.

?X1 predicate recommends.

?X1 object ?alb. ?X1 degree ?degree.

filter ( ?d > 2014 ) }

Listing 5.6: Crisp star query Q2.1

defineasc recent as (2014,2017)

select ?alb where {

?alb date ?d.

?alb rating ?r.

?art recommends ?alb.

filter ( ?d is recent )

}

Listing 5.7: Fuzzy star query Q2.2

Query Q2.4 is a fuzzy structural star query containing a fuzzy structural condition that

aims to �nd the highly recommended albums (with a known rating and release date) and

its corresponding crisp version, denoted by Q2.3, aims to �nd the recommended albums

that have a recommendation degree greater than 0.8 (with a known rating and release

date). Q2.3 is given in Listing 5.8 and Q2.4 is given in Listing 5.9.

select ?alb where {

?alb date ?d. ?alb rating ?r .

/* reification */

?X1 subject ?art1.

?X1 predicate recommends.

?X1 object ?alb. ?X1 degree ?degree.

filter ( ?degree > 0.8 ) }

Listing 5.8: Crisp structural star query

Q2.3

defineasc strong as (0.7, 0.9)

select ?alb where {

?alb date ?d.

?alb rating ?r.

/* structural condition */

?art (recommends | ST is strong) ?alb.

}

Listing 5.9: Fuzzy structural star query

Q2.4
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• Path queries: consist of two or three triple patterns that form a path such that two

triples share a variable. We may �nd path shaped queries of length two or three. We

consider in the following an example of a path shaped query of length three of the form

given in Figure 5.7.

Figure 5.7: Star query of the form path-3

Query Q3.2 in Listing 5.11 is a fuzzy path query containing a fuzzy condition. It aims

to �nd every artist who has among his friends an artist who created a recently released

album. Its corresponding crisp query in Listing 5.10, denoted by Q3.1, aims to �nd every

artist who has among his friends an artist who created an album released after 2014.

select ?art1 where {

?art2 creator ?alb. ?alb date ?d.

/* reification */

?X1 subject ?art1.

?X1 predicate friends.

?X1 object ?art2. ?X1 degree ?degree.

filter ( ?d > 2014 ) }

Listing 5.10: Crisp path query Q3.1

defineasc recent as (2014, 2017)

select ?art1 where {

?art2 creator ?alb.

?alb date ?d.

?art1 friend ?art2.

filter ( ?d is recent )

}

Listing 5.11: Fuzzy path query Q3.2

QueryQ3.4 is a fuzzy structural simple path query containing a fuzzy structural condition

that aims to �nd every artist who has among his close friends an artist who created an

album (cf., Listing 5.13). Its crisp counterpart, denoted by Q3.3, aims to �nd every

artist who has among his friends (with a friendship degree greater than 0.8) an artist

who created an album (cf., Listing 5.12).

select ?art1 where {

?art2 creator ?alb. ?alb date ?d .

/* reification */

?X1 subject ?art1. ?X1 predicate friend.

?X1 object ?art2. ?X1 degree ?degree.

filter ( ?degree > 0.8 ) }

Listing 5.12: Crisp strutural path query

Q3.3

defineasc strong as (0.7, 0.9)

select ?alb where {

?art2 creator ?alb.

?alb date ?d.

/* structural condition */

?art1 (friend | ST is strong) ?art2 .}

Listing 5.13: Fuzzy structural path query

Q3.4

We evaluated separately each type of queries over the di�erent sizes of database given in

Table 5.1 on page 103. The results of these queries are depicted in Figure 5.8. Figure 5.8.(a)
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Table 5.2: Di�erent types of FURQL queries

Type
crisp
query

Fuzzy
Condition

Fuzzy
Structural

Edge query Q1.1, Q1.3 Q1.2 Q1.4

Star query Q2.1, Q2.3 Q2.2 Q2.4

Simple path query Q3.1, Q3.3 Q3.2 Q4.4

(resp., Figure 5.8.(b)) presents the execution time in milliseconds of the processing of the

edge queries (resp., star queries) from Table 5.2. Figure 5.8.(c) presents the execution time

in milliseconds of the processing of the path queries from Table 5.2.

The execution time is the elapsed time between submitting the query to the system and

obtaining the query answers, it is measured in milliseconds using the system command time.

A �rst (and predictable) observation is that, for each crisp and fuzzy query presented in

Table 5.2, the processing time of the overall process is proportional to the size of the dataset,

the number of the results and the complexity of the query.

It is straightforward to see that for all the crisp queries the query compiler and the score

calculator modules do not play any role in the processing of the queries. Thus, the corre-

sponding execution times in Figure 5.8 are equal to 0. In the case of fuzzy queries, these

modules, which are directly related to the introduction of �exibility into the query language,

are strongly dominated in time by the crisp SPARQL evaluator (which includes the time for

executing the query and getting the result set). As we can see in Figure 5.8, the time of the

evaluation of the initial query by the SPARQL evaluator engine represents at least 89% of the

overall process.

Moreover, the FURQL compiling module takes so little time compared to the other two

steps that it cannot even be seen in Figure 5.8. This time remains almost constant, and is

then independent on the size of the dataset. As to the score calculation module, the time

used for calculating the �nal satisfaction degrees is slightly higher than the last step and is

dependent on the size of the result set and the nature of the query.

Comparing the pairwise queries (Qi.1 with Qi.2 and Qi.3 with Qi.4), we see that the

processing time of the fuzzy query is slightly higher than that of its crisp version. The

increase is 10% on average.

Finally, the results obtained tend to show that introducing fuzziness into a SPARQL query

entails a rather small increase of the overall processing time. According to our experimenta-

tions, it represents around 11% of the overall time needed for evaluating a FURQL query in

the worst case.
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(a) Di�erent types of edge queries over di�erent sizes of DB

(b) Di�erent types of star queries over di�erent sizes of DB

(b) Di�erent types of path queries over di�erent sizes of DB

Figure 5.8: Experimental results about the evaluation of FURQL queries
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Although these experimental results are preliminary observations, they appear very en-

couraging since they show that our approach does not entail any important overhead cost.

5.2.3 Experiments for Quanti�ed FURQL Queries

Concerning the evaluation of fuzzy quanti�ed queries, two set of experiments were carried out

with two di�erent types:

• Fuzzy quanti�ed queries involving crisp conditions (see an example in Listing 5.14).

defineqrelativeasc most AS (0,1)

select ?art1 where {

?art1 recommends ?alb . ?alb date ?date .

filter ( ?date > 2014 ) }

group by ?art1

having most(?alb) are ( ?art1 friend ?art2 . ?art2 age ?age .

?art2 creator ?alb . ?alb rating ?rating .

filter ( ?rating > 5 && ?age < 30 ) )

Listing 5.14: A fuzzy quanti�ed query involving crisp conditions

• Fuzzy quanti�ed queries involving fuzzy conditions (see an example in Listing 5.15).

defineqrelativeasc most as (0.3,0.8), defineasc high as (2,5)

definedesc young as (25,40), defineasc recent as (2010,2015)

select ?art1 where {

?art1 recommends ?alb . ?alb date ?date .

filter ( ?date is recent ) }

group by ?art1

having most(?alb) are ( ?art1 friend ?art2 . ?art2 creator ?alb .

?alb rating ?rating . ?art2 age ?age .

filter (?rating is high && ?age is young) )

Listing 5.15: A fuzzy quanti�ed query involving fuzzy conditions

The main objective of these experiments is to assess the cost of each stage involved in the

evaluation of fuzzy quanti�ed queries and to show that the extra cost due to the introduction

of fuzzy quanti�ed statements remains limited/acceptable.

Fuzzy quanti�ed query involving crisp conditions

In the �rst experiment, we processed four fuzzy quanti�ed queries with crisp conditions (of

the type �Q B X are A�) by changing each time the nature of the patterns corresponding to

conditions B and A from simple to complex ones. These queries are summarized in Table 5.3.

A complex pattern di�ers from a simple one by the number of its statements. Here, a

complex pattern is composed of nine triple patterns at most, while a simple pattern has
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Table 5.3: Set of fuzzy quanti�ed queries with crisp conditions
Query PB PA Conditions

Q1crisp simple simple crisp

Q2crisp complex simple crisp

Q3crisp simple complex crisp

Q4crisp complex complex crisp

between two or four triple patterns. Each Qcrisp contains three crisp conditions. These

queries are detailed in Appendix A.

In order to evaluate these queries, we used Yager's OWA-based interpretation. The results,

depicted in Figure 6.8, present the execution time in milliseconds of the processing of the

fuzzy quanti�ed queries involving crisp conditions from Table 5.3 over the RDF datasets from

Table 5.1 on page 103.

Figure 5.9: Experimental results of Fuzzy Quanti�ed queries involving crisp conditions

These results are commented at the end of the section.

Fuzzy quanti�ed query involving fuzzy conditions

We processed again four fuzzy quanti�ed queries with fuzzy conditions (of the type �Q B X

are A�) by changing each time the nature of the patterns corresponding to conditions B and

A from simple to complex ones. Table 5.4 presents these queries.

A complex pattern di�ers from a simple one by the number and the nature (including

structural properties) of its statements. During these experiments, a complex pattern is

composed of nine triple patterns at most, while a simple pattern contains between two and

four triple patterns. For each complex pattern a fuzzy structural property (e.g., involving

the notions of strength or distance) is involved. Each Qfuzzy contains three fuzzy conditions.

These queries are detailed in Appendix A.
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Table 5.4: Set of fuzzy quanti�ed queries with fuzzy conditions
Query PB PA Conditions

Q1fuzzy simple simple fuzzy

Q2fuzzy complex simple fuzzy

Q3fuzzy simple complex fuzzy

Q4fuzzy complex complex fuzzy

The results of these experiments, using Yager's OWA-based interpretation, are depicted

in Figure 5.10 that presents the execution time in milliseconds of the processing of the fuzzy

quanti�ed queries from Table 5.4 over the RDF datasets from Table 5.1 on page 103.

Figure 5.10: Experimental results of Fuzzy Quanti�ed queries involving fuzzy conditions

Results interpretation

A �rst and obvious observation from Figure 5.9 and Figure 5.10 is that, for all the fuzzy

quanti�ed queries, the processing time taken by the overall process is proportional to the size

of the dataset and the complexity of the pattern in the query.

One can see that, the processing time taken by the compiling and the score calculation

module, which are directly related to the introduction of �exibility into the query language,

are very strongly dominated by the time taken by the SPARQL evaluator (which includes the

time for executing the query and getting the result set). As it is shown in Figure 5.9 and

Figure 5.10, the time of the evaluation of the initial query by the SPARQL evaluator engine

represents 99% on average of the overall process.

Indeed, the FURQL compiling step takes so little time compared to the score calcula-

tion and the SPARQL evaluator modules that it cannot even be seen in Figure 5.9 and

Figure 5.10. This time remains almost constant, and is independent on the size of the
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dataset while slightly increasing in the presence of complex patterns or fuzzy conditions.

Moreover, the time needed for calculating the �nal satisfaction degree in the score calcu-

lator module is relatively dependent on the size of the result set and the nature of the patterns.

Again, these experimental results, even though preliminary, appear promising. They tend

to show that introducing fuzzy quanti�ed statements into a SPARQL query does not come

with a high price (i.e., entails a very small increase of the overall processing time).

Finally, this conclusion can be extended to the case of Zadeh's interpretation [Zadeh, 1983],

inasmuch as it is even more straightforward, in terms of computation, than Yager's OWA-

based approach [Yager, 1988]. Thus, the processing time of the score calculating step can

only be smaller than in the case of Yager's OWA-based interpretation.

Conclusion

In this chapter, in Section 5.1, we discussed implementation issues related to the FURQL

language and we presented an architecture which consists of a software add-on layer (called

SURF) over the classical SPARQL engine. Then, in Section 5.2, we performed two set

of experiments over di�erent sizes of datasets in order to study the performances of our

proposed approach. The �rst experiments aimed to measure the additional cost induced by

the introduction of fuzziness into SPARQL, and the results obtained show the e�ciency of

our proposal. The second experiments, which concerned fuzzy quanti�ed queries, show that

the extra cost induced by the fuzzy quanti�ed nature of the queries remains very limited,

even in the case of rather complex fuzzy quanti�ed queries.

The results of the experiments performed in this chapter are summarized in Table 5.5.

Each cell of the table contains three values corresponding to the percentage of time devoted

to the compilation, the crisp evaluation and the score calculation stages respectively. They

show that in both experiments the compilation and the score calculation stages are strongly

dominated by the crisp SPARQL evaluation. The latter represents at least 95% of the

overall process. Thus, these results con�rm the hypothesis that the extra cost due to the

introduction of fuzziness remains limited/acceptable.

Finally, these experiments are preliminary and more work is required to further assess

FURQL by using di�erent variety of queries (e.g., complex path queries of undetermined

length) and considering large databases.
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Introduction

In the previous chapters, we addressed mainly the issue of de�ning an e�cient approach

for �exible querying in a particular type of graph databases, namely RDF databases. This

approach makes it possible to express fuzzy nonquanti�ed and quanti�ed queries into an

extension of the SPARQL language.

In the present chapter, we place ourselves in a more general framework: graph

database [Angles and Gutierrez, 2008]. An e�cient approach for �exible querying of fuzzy

115
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graph databases has been proposed in [Pivert et al., 2014b]. This approach makes it possible

to express only fuzzy nonquanti�ed conditions. However, fuzzy quanti�ed queries have a high

potential in this setting since they can exploit the structure of the graph, beside the attribute

values attached to the nodes or edges. So far, only one approach from the literature, described

in [Castelltort and Laurent, 2014], considered fuzzy quanti�ed queries to graph databases but

only in a rather limited way.

This chapter is based on our work reported in [Pivert et al., 2016e], in which we showed

how it is possible to integrate fuzzy quanti�ed queries in a framework named FUDGE

that was previously de�ned in [Pivert et al., 2014a]. FUDGE is a fuzzy extension of

Cypher [Cypher, 2017] which is a declarative language for querying (crisp) graph databases.

This work is mostly related to the work presented in Chapter 4 in which we deal with the

same type of fuzzy quanti�ed structural query but in a more speci�c type of graph databases,

called RDF database.

The remainder of this chapter is organized as follows. Section 6.1 presents the di�erent

elements that constitute the context of the work. Section 6.2 discusses related work. In Sec-

tion 6.3, we propose a syntactic format for expressing fuzzy quanti�ed queries in the FUDGE

language, and we describe its interpretation. Section 6.4 deals with query processing and dis-

cusses implementation issues. In Section 6.5, some experimental results showing the feasibility

of the approach are presented.

6.1 Background Notions

In this section, we recall important notions about graph databases, fuzzy graph theory, fuzzy

graph databases, and the query language FUDGE.

6.1.1 Graph Databases

In the last few years, graph databases has attracted a lot of attention for their ability

to handle complex data in many application domains, e.g., social networks, cartographic

databases, bibliographic databases, etc [Angles and Gutierrez, 2008, Angles, 2012]. They

aim to e�ciently manage networks of entities where each node is described by a set of

characteristics (for instance a set of attributes), and each edge represents a link between

entities.

A graph database management system enables managing data for which the data structure

of the schema is modeled as a graph and data is handled through graph-oriented operations and

type constructors [Angles and Gutierrez, 2008]. Among the existing systems, let us mention

AllegroGraph [allegrograph, 2017], In�niteGraph [in�nitegraph, 2017], Neo4j [Neo4j, 2017]

and Sparksee [sparksee, 2017]. Di�erent models of graph databases have been proposed in the



Chapter 6. Extensions to General Graph Databases 117

IJIS10

{volume: 25,

where: Avril 2010}

IJIS16

{volume: 30,

where: Mai 2016}

IJIS10_p

{titre: A ...,pages: 287-325}

IJIS16_p

{titre: An ...,

pages: 81-98}

IJIS10_p1

{title: About ...,

pages: 365-385}

Basil

Maria

Claudio

Susan

dans

dans

da
ns

author_of

au
th
or
_
of

author_
of

author_of

co
n
tr
ib
u
to
r

contributor

Figure 6.1: An Attributed graph inspired from DBLP

literature (see [Angles and Gutierrez, 2008] for an overview), including the attributed graph

(aka., property graph) aimed to model a network of entities with embedded data. In this

model, nodes and edges can be described by data in attributes (aka., properties).

Example 57 Figure 6.1 is an example of an attributed graph, inspired from

DBLP1 with crisp edges.

Nodes are assumed to be typed. If n is a node of V , then Type(n) denotes its

type. In Figure 6.1, the nodes IJIS16 and IJIS10 are of type journal, the nodes

IJIS16-p, IJIS10-p and IJIS10-p1 are of type paper, and the nodes Maria, Claudio

and Susan are of type author. For nodes of type journal, paper and author, a

property, called name, contains the identi�er of the node. Information about the

title and the pages may be attached to node of type paper and information about

the volume and the date may be attached to node of type journal. In Figure 6.1,

the value of the property name for a node appears inside the node. �

Such a model may be extended into the notion of a fuzzy graph database where a degree

may be attached to edges in order to express the �intensity� of any kind of gradual relationship

(e.g., likes, is friends with, is about). In the following section, we introduce the notion of fuzzy

graphs.

6.1.2 Fuzzy Graphs

A graph G is a pair (V, R), where V is a set and R is a relation on V . The elements of V (resp.

R) correspond to the vertices (resp. edges) of the graph. Similarly, any fuzzy relation ρ on

1http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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a set V can be regarded as de�ning a weighted graph, or fuzzy graph, see [Rosenfeld, 1975],

where the edge (x, y) ∈ V ×V has weight or strength ρ(x, y) ∈ [0, 1]. Having no edge between

x and y is equivalent to ρ(x, y) = 0.

A fuzzy data graph may contain both fuzzy edges and crisp edges as a fuzzy edge with a

degree of 0 or 1 can be considered as crisp. Along the same line, a crisp data graph is simply

a special case of fuzzy data graph (where ρ : V × V → {0, 1} is Boolean). We then only deal

with fuzzy edges and data graphs in the following.

An important operation on fuzzy relations is composition. Assume ρ1 and ρ2 are two

fuzzy relations on V . Thus, composition ρ = ρ1 ◦ ρ2 is also a fuzzy relation on V s.t.

ρ(x, z) = maxy min(ρ1(x, y), ρ2(y, z)). The composition operation can be shown to be

associative: (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3). The associativity property allows us to use the

notation ρk = ρ ◦ ρ ◦ . . . ◦ ρ for the composition of ρ with itself k − 1 times. In addition,

following [Yager, 2013], we de�ne ρ0 to be s. t. ρ0(x, y) = 0, ∀(x, y).

Useful notions related to fuzzy graphs are those of strength and length of a path. These

notions were previously used in Chapter 3 in the RDF context, Their de�nition, drawn

from [Rosenfeld, 1975], is recalled hereafter.

Strength of a path. � A path p in G is a sequence x0 → x1 → . . .→ xn (n ≥ 0) such that

ρ(xi−1, xi) > 0, 1 ≤ i ≤ n and where n is the number of links in the path. The strength of

the path is de�ned as

ST (p) = min
i=1..n

ρ(xi−1, xi). (6.1)

In other words, the strength of a path is de�ned to be the weight of the weakest edge of the

path. Two nodes for which there exists a path p with ST (p) > 0 between them are called

connected. We call p a cycle if n ≥ 2 and x0 = xn. It is possible to show that ρk(x, y) is

the strength of the strongest path from x to y containing at most k links. Thus, the strength

of the strongest path joining any two vertices x and y (using any number of links) may be

denoted by ρ∞(x, y).

Length and distance. � The length of a path p = x0 → x1 → . . .→ xn in the sense of ρ is

de�ned as follows:

Length(p) =

n∑
i=1

1

ρ(xi−1, xi)
. (6.2)

Clearly Length(p) ≥ n (it is equal to n if ρ is Boolean, i.e., if G is a nonfuzzy graph). We can

then de�ne the distance between two nodes x and y in G as

Distance(x, y) = min
all paths p from x to y

Length(p). (6.3)

It is the length of the shortest path from x to y.
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6.1.3 Fuzzy Graph Databases

We are interested in fuzzy graph databases where nodes and edges can carry data (e.g., key-

value pairs in attributed graphs). So, we consider an extension of the notion of a fuzzy graph:

the fuzzy data graph as de�ned in [Pivert et al., 2014a].

De�nition 14 (Fuzzy data graph). Let E be a set of labels. A fuzzy data graph G is a

quadruple (V, R, κ, ζ), where V is a �nite set of nodes (each node n is identi�ed by n.id),

R =
⋃
e∈E{ρe : V × V → [0, 1]} is a set of labeled fuzzy edges between nodes of V , and κ

(resp. ζ) is a function assigning a (possibly structured) value to nodes (resp. edges) of G.

In the following, a graph database is meant to be a fuzzy data graph. The following example

illustrates this notion.

Example 58 [Fuzzy data graph] Figure 6.2 is an example of a fuzzy data graph,

inspired from DBLP2 with some fuzzy edges (with a degree in brackets), and crisp

ones (degree equal to 1).

In this example, the degree associated with A -contributor-> B is the proportion

of journal papers co-written by A and B, over the total number of journal papers

written by B. The degree associated with J - domain -> D is the extent to which

the journal J belongs to the research domain D.

Nodes are assumed to be typed. If n is a node of V , then Type(n) denotes its

type. In Figure 6.2, the nodes IJWS12, IJAR14, IJIS16, IJIS10 and IJUFK15 are

of type journal, the nodes IJWS12-p, IJAR14-p, IJIS16-p, IJIS10-p, IJIS10-p1 and

IJUFK15-p of type paper, and the nodes Andreas, Peter, Maria, Claudio, Michel,

Bazil and Susan are of type author, the nodes named Database are of type domain

and the other nodes are of type impact_factor. For nodes of type journal, paper,

author and domain, a property, called name, contains the identi�er of the node

and for nodes of type impact_factor, a property, called value, contains the value

of the node. In Figure 6.2, the value of the property name or value for a node

appears inside the node. �

6.1.4 The FUDGE Query Language

FUDGE, based on the algebra described in [Pivert et al., 2015], is an extension of the Cypher

language [Cypher, 2017]. The Cypher query language, inspired from ASCII-art for graph

representation, is used for querying graph databases in a crisp way in the Neo4j graph

DBMS [Neo4j, 2017]. These languages are based on graph pattern matching, meaning that

a query Q over a fuzzy data graph DB de�nes a graph pattern and answers to Q are its

isomorphic subgraphs that can be found in DB. More concretely, a pattern has the form of a

2http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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subgraph where variables can occur. An answer maps the variables to elements of DB.

A fuzzy graph pattern expressed à la Cypher consists of a set of expressions

(n1:Type1)-[exp]->(n2:Type2) or (n1:Type1)-[e:label]->(n2:Type2) where n1 and n2

are node variables, e is an edge variable, label is a label of E, exp is a fuzzy regular

expression, and Type1 and Type2 are node types. Such an expression denotes a path satisfying

a fuzzy regular expression exp (that is simple in the second form e) going from a node of

type Type1 to a node of type Type2. All its arguments are optional, so the simplest form

of an expression is ()-[]->() denoting a path made of two nodes connected by any edge.

Conditions on attributes are expressed on nodes and edges variables in a where clause.

Example 59 [Graph pattern] We denote by P the graph pattern:

1 match

2 (au2)-[:contributor+]->(au1:author),

3 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

4 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2)

5 where j1.name="IJWS12" and j1.name <> j2.name

Listing 6.1: Pattern expressed à la Cypher

This pattern �models� information concerning authors (au2) who have, among

their contributors, an author (au1) who published a paper (ar1) in IJWS12 and

also published a paper (ar2) in another journal (j2). Figure 6.3 is a graphical

representation of P. �

author

author

article article

j1:journal name=IJWS12j2:journal

j1.name 6= j2:name

author_of author_of

published published

contributor+

Figure 6.3: Pattern P

Let us illustrate the way a selection query can be expressed in FUDGE, that embarks

fuzzy preferences over the data and the structure speci�ed in the graph pattern. Given a

graph database DB, a selection query expressed in FUDGE is composed of:
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1. A list of define clauses for fuzzy term declarations. Again if a fuzzy term fterm

has a trapezoidal function de�ned by the quadruple (A-a, A, B and B+b) � mean-

ing that its support is [A-a, B+b] and its core [A, B] �, then the clause has the form

define fterm as (A-a,A,B,B+b). If fterm is a decreasing function, then the clause has

the form definedesc fterm as (δ,γ) meaning that the support of the term is [0, γ] and

its core [0, δ] (there is the corresponding defineasc clause for increasing functions).

2. A match clause, which has the form match pattern where conditions that expresses the

fuzzy graph pattern.

Example 60 [FUDGE query] Listing 6.2 is an example of a FUDGE query.

1 definedesc short as (3,5), defineasc high as (0.5,2) in

2 match

3 (au2)-[(contributor+)|Length is short]->(au1:author),

4 (au1)-[:author_of]->(ar1:paper), (ar1)-[:published]->(j1),

5 (au1)-[:author_of]->(ar2:paper), (ar2)-[:published]->(j2),

6 (j2)-[:impact_factor]->(i)

7 where j1.name="IJWS12" and i.value is high

Listing 6.2: A FUDGE query

This pattern aims to retrieve the authors (au2) who have, among their close con-

tributors (connected by a short path � Length is short � made of contributor

edges), an author (au1) who published a paper (ar1) in IJWS12 and also published

a paper (ar2) in a journal (j2) which has a high impact factor (i.value is high).

The fuzzy terms short and high are de�ned on line 1. Figure 6.4 is a graphical

representation of this pattern where the dashed edge denotes a path and infor-

mation in italics denotes a node type or an additional condition on node or edge

attributes. �

6.2 Related Work

In the last decades, fuzzy quanti�ed queries have proved useful in a relational database context

for expressing di�erent types of imprecise information needs [Bosc et al., 1995]. Recently, in

a graph database context, such statements started to attract increasing attention of many

researchers [Yager, 2013, Castelltort and Laurent, 2014, Castelltort and Laurent, 2015] since

they can exploit the structure of the graph, beside the attribute values attached to the nodes

or edges.

In [Yager, 2013], R.R. Yager brie�y mentions the possibility of using fuzzy quanti�ed

queries in a social network database context, such as the question of whether �most of the

people residing in western countries have strong connections with each other� and suggests
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author
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article article
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�short� path of the
form (contributor+)

Figure 6.4: Fuzzy pattern

to interpret it using an OWA operator (cf. Subsection 4.1.2). However, the author does not

propose any formal language for expressing such queries.

A �rst attempt to extend Cypher with fuzzy quanti�ed queries � in the context

of a regular (crisp) graph database � is described in [Castelltort and Laurent, 2014,

Castelltort and Laurent, 2015]. In [Castelltort and Laurent, 2014], the authors take as an

example a graph database representing hotels and their customers and consider the following

fuzzy quanti�ed query:

1 match (c1:customer)-[:knows**almost3]->(c2:customer)

2 return c1,c2

looking for pairs of customers linked through almost 3 hops. The syntax ** is used for

indicating what the authors call a fuzzy linker. However, the interpretation of such queries is

not formally given. The authors give a second example that involves the fuzzy concept popular

applied to hotels. They assume that a hotel is popular if a large proportion of customers visited

it. First, they consider a crisp interpretation of this concept (large being seen as equivalent

to at least n) and recall how the corresponding query can be expressed in Cypher:

1 match (c:customer)-[:visit]->(h:hotel)

2 with h, count(*) as cpt

3 where cpt > n− 1

4 return h

Then, the authors switch to a fuzzy interpretation of the term popular and propose the ex-

pression:

1 match (c:customer)-[:visit]->(h:hotel)

2 with h, count(*) as cpt

3 where popular(cpt) > 0

4 return h
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In [Castelltort and Laurent, 2015], the same authors propose an approach aimed to sum-

marize a (crisp) graph database by means of fuzzy quanti�ed statements of the form Q X are

A, in the same spirit as what [Rasmussen and Yager, 1997] did for relational databases. Again,

they consider that the degree of truth of such a statement is obtained by a sigma-count (ac-

cording to Zadeh's interpretation) and show how the corresponding queries can be expressed

in Cypher. More precisely, given a graph database G and a summary S = a�[r ]�>b, Q, the
authors consider two degrees of truth of S in G de�ned as follows:

truth1(S) = µQ(
count(distinct S)

count(distinct a)
) (6.4)

truth2(S) = µQ(
count(distinct S)

count(distinct a�[r ]�>(?))
) (6.5)

They illustrate these notions using a database representing students who rent or own a house or

an apartment. The degree of truth (in the sense of the second formula above) of the summary

�S = student�[rent ]�>apartment, most� � meaning �most of the students rent an apartment�

(as opposed to a house) � is given by the membership degree to the fuzzy quanti�er most

of the ratio: (number of times a relationship of type rents appears between a student and

an apartment) over (number of relations of type rents starting from a student node). The

corresponding Cypher query is:

1 match (s:student)-[rents]->(a:apartment)

2 with toFloat(count(*)) as countS

3 match (s1:student)-[rents]->(m)

4 with toFloat(count(*)) as count2

5 return MuMost(countS/count2)

A limitation of this approach is that only the quanti�er is fuzzy (whereas in general, in a

fuzzy quanti�ed statement of the form �Q B X are A�, the predicates A and B may be fuzzy

too).

The work the most related to that presented here is [Pivert et al., 2017] described in

Chapter 4, where we introduced the notion of fuzzy quanti�ed statements in a (fuzzy) RDF

database context. We showed how this statement could be expressed in the FURQL language

(which is a �exible extension of the SPARQL query language) that we previously proposed in

[Pivert et al., 2016c].

6.3 Fuzzy Quanti�ed Statements in FUDGE

In this section, we show how a speci�c type of fuzzy quanti�ed statements may be expressed

in the FUDGE query language. We �rst propose a syntactic format for these queries, then we

show how they can be e�ciently evaluated.
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6.3.1 Syntax of a Fuzzy Quanti�ed Query

In the following, we consider fuzzy quanti�ed queries involving fuzzy predicates (beside the

quanti�er) over fuzzy graph databases. The fuzzy quanti�ed statements considered are of the

same type as those used in Chapter 4 in the context of RDF databases. They are of the

form �Q B X are A�, where the quanti�er Q is represented by a fuzzy set and denotes either

an increasing/decreasing relative quanti�er (e.g., most) or an increasing/decreasing absolute

one (e.g., at least three), where B is the fuzzy condition �to be connected (according to a

given pattern) to a node x�, X is the set of nodes in the graph, and A is the fuzzy (possibly

compound) condition.

An example of such a statement is: �most of the recent papers of which x is a main

author, have been published in a renowned database journal�.

The general syntactic form of a fuzzy quanti�ed query of the form�Q B X are A� in the

FUDGE language is given in Listing 6.3.

1 define... in

2 match B(res, x)

3 with res having Q(x) are A(x)

4 return res

Listing 6.3: Syntax of a fuzzy quanti�ed query

This query contains a list of define clauses for the fuzzy quanti�ers and the fuzzy terms

declarations, a match clause for fuzzy graph pattern selection, a having clause for the fuzzy

quanti�ed statement de�nition, and a return clause for specifying which elements should be

returned in the resultset. B(res, x) denotes the fuzzy graph pattern involving the nodes res

and x and expressing the (possibly fuzzy) conditions in B. B(res, x) takes the form of a fuzzy

graph pattern expressed à la Cypher by PB where CB (see Section 6.1.4). A(x) denotes the

fuzzy graph pattern involving the node x and expressing the (possibly fuzzy) conditions in

A. A(x) takes the form of a fuzzy graph pattern expressed à la Cypher by PA where CA (see

Section 6.1.4).

Example 61 [Fuzzy Quanti�ed Query] The query, denoted by QmostAuthors,

that consists in �retrieving every author (a) such that most of the recent papers

(p) of which he/she is a main author, have been published in a renowned database

journal (j)� may be expressed in FUDGE as follows:
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Figure 6.5: Membership functions of Example 61

1 defineqrelativeasc most as (0.3,0.8) defineasc recent as (2013,2016)

2 defineasc strong as (0,1) defineasc high as (0.5,2) in

3 match (a:author)-[author_of|ST IS strong]->(p:paper)

4 where p.year is recent

5 with a

6 having most(p) are ( (p)-[:published]->(j:journal),

7 (j)-[:impact_factor]->(i:impact_factor), (j)-[:domain]->(d:dom)

8 where i.value is high and d.name="database" )

9 return a

Listing 6.4: Syntax of the fuzzy quanti�ed query QmostAuthors

where the defineqrelativeAsc clause de�nes the fuzzy relative increasing quanti�er

most of Figure 6.5.(c), and the next defineasc clauses de�ne the increasing fuzzy

terms recent, strong and high of Figures 6.5.(b), 6.5.(d), and 6.5(a) respectively.

In this query, a corresponds to res, p corresponds to x, lines 3 and 4 correspond

to B and lines 6 to 8 correspond to A.

According to the general syntax introduced in Listing 6.3, the variable a instanti-

ates res and the variable p instantiates x. �

6.3.2 Evaluation of a Fuzzy Quanti�ed Query

From a conceptual point of view, the interpretation of such a query can be based on one of

the formulas (4.3), (4.8), and (4.17) already presented in Chapter 4. Its evaluation involves

three stages :

1. the compiling of the fuzzy quanti�ed query Q into a crisp query denoted by

QderivedBoolean,
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2. the interpretation of the crisp query QderivedBoolean,

3. the calculation of the answers to Q based on the answers to QderivedBoolean.

Compiling

The compiling stage translates the fuzzy quanti�ed query Q into a crisp query denoted by

QderivedBoolean. This compilation involves two translation steps.

First, Q is transcripted into a derived query Qderived whose aim is to retrieve the elements

necessary to the interpretation of the fuzzy quanti�ed statement from Q. The query Qderived,

whose general form3 is given in Listing 6.5, makes it possible to get the elements of the B

part of the initial query, matching the variables res and x, for which we will then need to

calculate the �nal satisfaction degree. It is obtained by removing the with and having clauses

from the initial query, and adding the optional match clause before the fuzzy graph pattern

in condition A.

1 match B(res, x)

2 optional match A(x)

3 return res x IA IB

Listing 6.5: Derived query Qderived

Such a query allows to retrieve the pairs {res, x} that belong to the graph and all the

information needed for the calculation of µB and µA, i.e., the combination of fuzzy degrees

associated with relationships and node attribute values involved in B(res,x) and in A(x),

respectively denoted by IB and IA. The Listing 6.6 of Example 62 below presents the derived

query associated with the query QmostAuthors.

The processing of Qderived is based on the derivation principle introduced by

[Pivert and Bosc, 2012] in the context of relational databases: Qderived is in fact derived into

another query denoted by QderivedBoolean. The derivation step translates the fuzzy query into a

crisp one by transforming its fuzzy conditions into Boolean ones that select the support of the

fuzzy statements. For instance, following this principle, the fuzzy condition p.year IS recent

(where recent is de�ned as defineasc recent as (2013,2016)) becomes the crisp condition

p.year > 2013 in order to remove the answers that do not belong to the support of the an-

swer. Listing 6.7 of Example 62 below is an illustration of the derivation of the query Qderived.

The derivation principle applied to the FUDGE language is detailed in [Pivert et al., 2015].

Crisp interpretation

The previous compiling stage translates the fuzzy quanti�ed query Q embedding fuzzy quan-

ti�ers and fuzzy conditions into a crisp query QderivedBoolean, that can be processed by a

3Hereafter, the define clauses are omitted for the sake of simplicity.
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classical graph DBMS (e.g., Neo4j).

For the sake of simplicity, we consider in the following that the result of Qderived, denoted

by JQderivedK, is made of the quadruples (resi, xi, µBi, µAi) matching the query.

Final result calculation

The last stage of the evaluation calculates the satisfaction degrees µB and µA according to

IB and IA. If the optional part does not match a given answer, then µA = 0. The answers

of the initial fuzzy quanti�ed query Q (involving the fuzzy quanti�er Q) are answers of the
query Qderived derived from Q, and the �nal satisfaction degree associated with each element

e can be calculated according to the three di�erent interpretations mentioned earlier in

Section 4.1. Hereafter, we illustrate this using [Zadeh, 1983] and [Yager, 1988]'s approaches

(which are the most commonly used when it comes to interpreting fuzzy quanti�ed statements).

Following Zadeh's Sigma-count-based approach (cf. Subsection 4.1.2.1) we have:

µ(e) = µQ

(∑
{(resi,xi,µBi,µAi)∈JQderivedK|resi=e}min(µAi, µBi)∑

{(resi,xi,µBi,µAi)∈JQderivedK|resi=e} µBi

)
(6.6)

In the case of a fuzzy absolute quanti�ed query, the �nal satisfaction degree associated

with each element e is simply

µ(e) = µQ

 ∑
{(resi,xi,µBi,µAi)∈JQderivedK|resi=e}

µAi

 .

Example 62 [Evaluation of a Fuzzy Quanti�ed Query] Let us consider the fuzzy

quanti�ed query QmostAuthors of Listing 6.4. We evaluate this query according to

the fuzzy data graph DB of Figure 6.2. In order to interpret QmostAuthors, we �rst

derive the following query Qderived from QmostAuthors, that retrieves �the authors

(a) who highly contributed to at least one recent paper (p) (corresponds to B(a,p)

in lines 1 and 2) possibly (optional) published in a renowned database journal

(corresponds to A(p) in lines 3 to 5)�.

1 match (a:author)-[author_of|ST IS strong]->(p:paper)

2 where p.year is recent

3 optional match (p)-[:published]->(j:journal),

4 (j)-[:impact_factor]->(i:impact_factor), (j)-[:domain]->(d:dom)

5 where i.value is high and d.name="database"

6 return a p µA µB

Listing 6.6: Query Qderived derived from QmostAuthors
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Then, we evaluate the Cypher query QderivedBoolean given in Listing 6.7, derived

from the FUDGE nonquanti�ed query Qderived of Listing 6.6.

1 match fudge_p0 = (a:author)-[:author_of]->(p:paper)

2 with

3 reduce(min=1.0, edge in relationships(fudge_p0)|

4 case when edge.fdegree<min then edge.fdegree else min end) as fudge_p0,

5 a as a, p as p

6 where fudge_p0>0.0 and p.year>2013

7 optional match (p)-[:published]->(j:journal),

8 (j)-[:impact_factor]->(i:impact_factor), (j)-[:domain]->(d:domain)

9 where i.value>0.5 and d.name='database'

10 return a p µA µB

Listing 6.7: Query QderivedBoolean derived from Qderived

Line 1 refers to the graph pattern structure related to condition B. Lines 3 to

5 perform the calculation of the strength of the degree connecting a to p. The

where clause in Line 6 implements conditions induced by the derivation of fuzzy

preferences in condition B of the initial query (Line 2 of Listing 6.6). Line 7 to

8 refer to the graph pattern structure related to condition A. The where clause

in Line 9 implements crisp conditions of the initial query and conditions induced

by the derivation of fuzzy preferences in condition A (Line 5 of Listing 6.6). The

where clause returns the isomorphic subgraphs that belong to the answer and

complementary information (µA and µB) needed for the Score Calculation stage.

This query returns a list of authors (a) with their papers (p), satisfying the condi-

tions of query Qderived, along with their respective satisfaction degrees. Here,

µB = min(µstrong(ρauthor(a, p)), µrecent(p.year)) and

µA = µhigh(i.value).

where µq denotes the membership degree of the predicate q and ρe(x, y) denotes

the weight of the edge (x, y).

Let us consider JQderived(a)K the set of answers of the query Qderived for a given

author a. The set JQderived(a)K provides a list of papers with their respective

satisfaction degrees. This result set is of the form

JQderived(a)K = {((µB, µA)/p1), ..., ((µB, µA)/pn)}.
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For the running example, Qderived returns the four answers {Peter, Maria,

Claudio, Michel}. The authors Andreas, Susan and Bazil do not belong to the re-

sult of QmostAuthors because Susan has not written a journal paper yet and Andreas

and Bazil do not have a recent paper.

For the running example, we then have

JQderived(Peter)K = {((0.2, 1)/IJAR14_p)},

JQderived(Maria)K = {((0.33, 1)/IJAR14_p), ((0.6, 0.33)/IJIS16_p)},

JQderived(Claudio)K = {((0.33, 1)/IJAR14_p), ((0.3, 0.07)/IJUFK15_p)}, and

JQderived(Michel)K = {((0.3, 0.07)/IJUFK15_p)}.

Finally, assuming for the sake of simplicity that µmost(x) = x, the �nal result of

the query QmostAuthors evaluated on DB using Formula 6.6 is

JQmostAuthorsK = {

µ(Peter) = µmost(
0.2
0.2) = 1, µ(Maria) = µmost(

0.66
0.93) = 0.71,

µ(Claudio) = µmost(
0.4
0.63) = 0.63, µ(Michel) = µmost(

0.07
0.3 ) = 0.23}.�

Using Yager's OWA-based approach (cf. subsection 4.1.2.2), for each element e returned

by Qderived we calculate

µ(e) =
∑

{(resi,xi,µBi,µAi)∈JQderivedK|resi=e}

wi × ci. (6.7)

Let us consider the fuzzy set B = {µB1/x1, ..., µBn/xn} such that µB1 ≤ ... ≤ µBn ,
the fuzzy set A = {µA1/x1, ..., µAn/xn} and d =

∑n
i=1 µBi .

The weights of the OWA operator are de�ned by

wi = µQ(Sxi)− µQ(Sxi−1)

with

Sxi =
i∑

j=1

µBj
d
.

The implication values are denoted by

cxi = max(1− µBi , µAi)

and ordered decreasingly such that c1 ≥ . . . ≥ cn.

Example 63 In order to calculate µ(Maria) from Qderived, let us consider B

(resp. A) the set of satisfaction degrees corresponding to condition B (resp.

A) of element Maria as follows B={0.33/IJAR14, 0.6/IJIS16} and A={1/IJAR14,
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0.33/IJIS16}. We have d = 0.93 and:

SIJAR14 =
0.33

0.93
= 0.35, and SIJIS16 =

0.33 + 0.6

0.93
= 1.

Then, with µmost(x) = x, we get µQ(SIJAR14) = 0.35 and µQ(SIJIS16) = 1.

Therefore, the weights of the OWA operator are:

W1 = µQ(SIJAR14)−µQ(S0) = 0.35 and W2 = µQ(SIJIS16)−µQ(SIJAR14) = 0.65.

The implication values are:

cIJAR14 = max(1− 0.33, 1) = 1, and cIJIS16 = max(1− 0.6, 0.33) = 0.4.

Thus, c1 = 1 and c2 = 0.4. Finally, we get:

µ(Maria) = 0.35× 1 + 0.65× 0.4 = 0.35 + 0.26 = 0.61.

Lastly, the �nal result of the query QmostAuthors evaluated on DB, given by For-

mula 6.7, is:

JQmostAuthorsK = {

µ(Peter) = 1, µ(Claudio) = 0.84, µ(Michel) = 0.7, µ(Maria) = 0.61}. �

6.4 About Query Processing

For the implementation of these quanti�ed queries, we updated the SUGAR software

described in [Pivert et al., 2014a, Pivert et al., 2016b], which is a software add-on layer that

implements the FUDGE language over the Neo4j graph DBMS. This software e�ciently

evaluates FUDGE queries that contain fuzzy preferences, but its initial version did not

support fuzzy quanti�ed statements.

The SUGAR software basically consists of two modules, which implement the Compiling

and Final result calculation stages de�ned in Section 6.3.2. These modules interact with a

Neo4j engine, which implements the Crisp implementation stage de�ned in Section 6.3.2.

1. In a pre-processing step, the Query compiler module produces

• the query-dependent functions that allow us to compute µB, µA and µ, for each

returned answer, according to the chosen interpretation, and,

• the (crisp) Cypher query QderivedBoolean, which is then sent to the Neo4j engine for

retrieving the information needed to calculate µB and µA.
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The compilation uses the derivation principle introduced in [Bosc and Pivert, 2000] in

the context of relational databases.

2. In a post-processing step, the Score calculator module performs a grouping (according

to the with clause of the initial query) of the elements, then calculates µB, µA and µ for

each returned answer, and �nally ranks the answers.

Figure 6.6 illustrates this architecture.

FUDGE query Q

Query compiler
Graph database

Cypher query
(QderivedBoolean)

µB, µA and
µ functions

Crisp result
(JQderivedBooleanK)

Neo4j Cypher
crisp query eval-
uation engine

Score calculator (compu-
tation of µ and ranking)

Answers to Q (JQK)

SUGAR add-on

pre-processing

post-processing

Classical
Cypher querying

Figure 6.6: SUGAR software architecture

For quanti�ed queries of the type introduced in the previous sections (i.e., using relative

quanti�ers), the principle is to �rst evaluate the fuzzy query QderivedBoolean derived from

the original query. For each element x ∈ JQderivedBooleanK, we return the satisfaction

degrees related to conditions A and B, denoted respectively by µA and µB. The �nal

satisfaction degree µ can be calculated according to Formulas (4.3), (4.8) or (4.17) (presented

in Chapter 4 Subsection 4.1.2) using the values of µB and µA. At the current time,

[Zadeh, 1983]'s approach and [Yager, 1988]'s OWA-based approach have been implemented,

and the choice of the interpretation to be used is made through the system con�guration

tool. Finally, a set of answers ranked in decreasing order of their satisfaction degree is returned.
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As a proof-of-concept of the proposed approach, the FUDGE prototype is available at

www-shaman.irisa.fr/fudge-prototype.

A screenshot of this prototype is shown in Figure 6.7 which contains the �nal result of the

evaluation of the query QmostAuthors of Example 61. The GUI is composed of two frames:

• a central frame for visualizing the graph and the results of a query, and

• an input �eld frame (placed under the central one), for entering and running a FUDGE

query.

Figure 6.7: Screenshot of the FUDGE prototype

6.5 Experimental Results

In order to con�rm the e�ectiveness and e�ciency of the approach, we carried out some

experiments on a computer running on Windows 7 (64 bits) with 8Gb of RAM. The queries

used in these experiments are based on the typology of [Angles, 2012] that considers three

categories of queries:

• Adjacency query: tests whether two nodes are adjacent (or neighbors) when there exists

an edge between them or whether two edges are adjacent when they have a common

node.

• Reachability query: tests whether two given nodes are connected by a path. Two types

of paths are considered: �xed length paths, which contain a �xed number of nodes and

www-shaman.irisa.fr/fudge-prototype
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edges; and regular simple paths, which allow some node and edge restrictions (e.g.,

regular expressions).

• Pattern matching query: graph pattern matching consists in �nding all subgraphs of a

data graph that are isomorphic to a graph pattern.

During our experiments, we considered four queries with various forms of condition A.

• The �rst query Q1 (Listing 6.8), where A is an adjacency pattern, aims to �nd the

authors such that most of the recent papers of which they are main authors, have been

published in a journal.

1 match (a:author)-[author_of|ST is strong]->(p:paper)

2 where p.year is recent

3 with a

4 having most(p) are ( (p)-[:published]->(j:journal) )

5 return a

Listing 6.8: Fuzzy quanti�ed query with adjacency pattern Q1

• The second query Q2 (Listing 6.9), where A is an reachability pattern involving �xed

length path, aims to �nd the authors such that most of the recent papers of which they

are main authors, have been published in a ranked journal.

1 match (a:author)-[author_of|ST is strong]->(p:paper)

2 where p.year is recent

3 with a

4 having most(p) are ( (p)-[:published]->(j:journal),

5 (j)-[:impact_factor]->(i:impact_factor) )

6 return a

Listing 6.9: Fuzzy quanti�ed query with reachability pattern Q2

• The third query Q3 (Listing 6.10), where A is an reachability pattern involving regular

simple path, aims to �nd the authors a such that most of the recent papers of which

they are main authors, have been co-authored by another author b who is a contributor

(not necessarily direct) of Claudio.

1 match (a:author)-[author_of|ST is strong]->(p:paper)

2 where p.year is recent

3 with a

4 having most(p) are ( (b:author)-[:author_of]->(p),

5 (b)-[:contributor*]->(c:author) )

6 where c.name="Claudio"

7 return a

Listing 6.10: Fuzzy quanti�ed with reachability query Q3
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• The fourth query Q4 (Listing 6.11), where A is a pattern matching, aims to �nd the

authors (a) such that most of the recent papers (p) of which they are main authors,

have been published in a renowned database journal (j)�.

1 defineqrelativeasc most as (0.3,0.8) defineasc recent as (2013,2016)

2 defineasc strong as (0,1) defineasc high as (0.5,2) in

3 match (a:author)-[author_of|ST is strong]->(p:paper)

4 where p.year is recent

5 with a

6 having most(p) are ( (p)-[:published]->(j:journal),

7 (j)-[:impact_factor]->(i:impact_factor), (j)-[:domain]->(d:dom)

8 where i.value is high and d.name="database" )

9 return a

Listing 6.11: Fuzzy quanti�ed query with pattern matching

Our experiments have been performed on a database inspired from DBLP containing crisp

(e.g., published) and fuzzy edges (e.g., contributor). A java script have been developed to

create random graph data of di�erent sizes. In these experiments, four database sizes have

been considered, see Table 6.1.

Table 6.1: Fuzzy graph datasets
Dataset Size

DB1 700 nodes & 1447 edges

DB2 2100 nodes & 4545 edges

DB3 3500 nodes & 7571 edges

DB4 4900 nodes & 10494 edges

The results of the processing of these queries over the RDF datasets from Table 6.1 are

depicted in Figure 6.8 where Figure 6.8.(a) (resp., Figure 6.8.(b)) presents the execution time

in milliseconds using Zadeh's interpretation (resp., Yager's OWA-based interpretation).

The main result is that the processing time taken by the compiling and the score calculation

stages, which are related to the introduction of �exibility into the query language, are very

strongly dominated by the time taken by the crisp Cypher evaluator.

Moreover, the FUDGE compiling stage takes so little time compared to the other two

stages that it cannot even be seen in Figure 6.8. This time remains almost constant, and is

independent on the size of the dataset while slightly increasing in the presence of complex

patterns or fuzzy conditions. As to the score calculation stage, it represents around 9% of the

time needed for evaluating a fuzzy quanti�ed FUDGE query. The time used for calculating

the �nal satisfaction degree is of course dependent on the size of the result set and the nature

of the patterns.
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(a) Zadeh's interpretation over di�erent size of DB

(b) Yager's interpretation over di�erent size of DB

Figure 6.8: Experimental results of fuzzy quanti�ed queries in FUDGE
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Finally, these results show that introducing fuzzy quanti�ed statements into a FUDGE

query entails a reasonable increase of the overall processing time in the case of selection graph

pattern queries. It represents, in the worst case, around 11% of the time needed for evaluating

a fuzzy quanti�ed FUDGE query.

Conclusion

In this chapter, we have dealt with fuzzy quanti�ed structural queries, addressed to fuzzy

graph databases. We have �rst de�ned the syntax and semantics of a fuzzy extension of

the query language Cypher. This extension makes it possible to express and interpret such

queries with di�erent approaches from the literature. A query processing strategy based on

the derivation of nonquanti�ed fuzzy queries has also been proposed. Then, we updated the

software SURF described in [Pivert et al., 2015, Pivert et al., 2016b] to be able to express

such queries and performed some experiments using di�erent sizes of fuzzy graphs in order to

study its performances. The results of these experiments show that the cost of dealing with

fuzzy quanti�cation in a query is reasonable w.r.t. the cost of the overall evaluation.





Conclusion

The last decade has witnessed an increasing interest in expressing preferences inside

database queries for their ability to provide the user with the best answers, according to

his/her information need. Even though most of the work in this area has been devoted to

relational databases, several proposals have also been made in the Semantic Web area in

order to query RDF databases in a �exible way. However, it appears that these approaches

are mainly straightforward adaptations of proposals made in the relational database context:

they make it possible to express preferences on the values of the nodes, but not on the

structure of the RDF graph. Structural preferences are quite important in a graph

database context and may concern the strength of a path, the distance between two nodes,

etc. Moreover, these approaches consist of �exible extensions of the SPARQL query language

that only deal with crisp RDF data. In the real world, though, semantic Web data often

carry gradual notions such as friendship in social networks, aboutness in a bibliographic

context, etc. Such notions can be modeled by fuzzy sets, which leads to attaching a degree

in [0, 1] to the edges of the graph.

Motivated by these concerns, we addressed in this thesis the issue of e�cient querying

of (fuzzy) RDF data with the aim of extending the SPARQL query language so as to be

able to express i) fuzzy preferences on data (e.g., the release year of a movie is recent)

and on the structure of the data graph (e.g., the path between two friends is required

to be short). and ii) fuzzy quanti�ed preferences (e.g., most of the albums that are rec-

ommended by an artist, are highly rated and have been created by a young friend of this artist).

To the best of our knowledge, this thesis is the �rst attempt in this direction in which

we provide solutions for these di�erent issues. After motivating our work, we presented in

Chapter 1 basic notions related to our thesis, namely the RDF data model, the SPARQL

query language and fuzzy set theory.

In Chapter 2 we provided an overview of the main proposals made in the literature

that propose a �exible extension of SPARQL based on user preferences queries, relaxation

139
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techniques and approximate matching. We discussed these approaches, classi�ed them and

pointed out their limits.

Chapter 3 was dedicated to the de�nition of a fuzzy extension of SPARQL that goes

beyond the previous proposals in terms of expressiveness inasmuch as it makes it possible i) to

deal with both crisp and fuzzy RDF databases, and ii) to express fuzzy structural conditions

beside more classical fuzzy conditions on the values of the nodes present in the RDF graph.

The language, called FURQL, is based on the notion of fuzzy graph pattern which extends

Boolean graph patterns introduced by several authors in a crisp querying context.

Then, in Chapter 4 we proposed to integrate more complex conditions, namely, fuzzy

quanti�ed statements of the type �Q B X are A� into the FURQL language (addressed

to fuzzy RDF database) previously introduced in Chapter 3. We de�ned the syntax and

semantics of an extension of the FURQL query language, that makes it possible to deal with

such queries. A query processing strategy based on the derivation of nonquanti�ed fuzzy

queries has also been proposed.

These functionalities were successfully implemented using a prototype called SURF.

Experimental results, described in Chapter 5, show the validity of the approach. In the case

of fuzzy nonquanti�ed queries, the results obtained indicate that introducing fuzziness into a

SPARQL query comes with a very limited cost. And in the case of fuzzy quanti�ed queries,

the results show that the extra cost induced by the fuzzy nature of the queries remains also

very limited, even in the case of rather complex fuzzy quanti�ed queries.

Finally, the last chapter was devoted to integrating fuzzy quanti�ed queries in an ex-

tension of the Neo4j Cypher language, called FUDGE, (described in [Pivert et al., 2014b,

Pivert et al., 2016b]) in a more general (fuzzy) graph database context (of which fuzzy RDF

databases are a special case). We �rst proposed a syntactic format for expressing these queries

in the FUDGE language, and we described their interpretation using di�erent approaches from

the literature. Then, we carried out some experimentations in order to assess the performances

of the evaluation method. The results of these experiments show that the cost of dealing with

fuzzy quanti�cation in a query is very reasonable w.r.t. the cost of the overall evaluation.

Future Work

In this thesis, we have proposed a fuzzy extension of the SPARQL query language that makes

it possible to express fuzzy structural conditions and fuzzy quanti�ed statements in an e�cient

way. This work serves as a baseline and leaves some open questions to solve and sets the basis

for further extensions. Di�erent perspectives on short-term and long-term work have been
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identi�ed and are outlined hereafter.

Extend the FURQL and FUDGE languages with more sophisticated preferences

In this thesis, we limited fuzzy structural properties to the distance and the strength where

the distance between two nodes is the length of the shortest path between these two nodes

and the strength of a path is de�ned to be the weight of the weakest edge of the path. It is

also worth to consider other structural properties, like:

• the centrality, the prestige and the in�uence used in social networks analy-

sis [Rusinowska et al., 2011]. For instance, the degree of centrality of a node measures

the extent to which this node is connected with other nodes in a given social network.

The question to answer is how central this node is in this network. The degree of prestige

measures the extent to which a social actor in a network receives or serves as the object

of relations sent by others in the network. Persons, who are chosen as friends by many

others have a special position (prestige) in the group.

• the clique which is one of the basic concepts of classical graph theory. Ronald R. Yager

in [Yager, 2014] rede�ned this notion in the case of a fuzzy graph.

Moreover, we introduced a speci�c type of fuzzy quanti�ed queries of the form: Q nodes,

among those that are connected to a node x according to a certain pattern, satisfy a fuzzy

condition c. An example of such a statement is �most of the papers whose x is a main author,

have been published in a renowned database journal�. It would be interesting to study other

types of fuzzy quanti�ed queries, in particular, those that aim to �nd the nodes x such that

x is connected (by a path) to Q nodes reachable by a given pattern and satisfying a given

condition c. An example of such a query is ��nd the authors x that had a paper published

in most of the renowned database journals�. And also those that aim to �nd if there exists

a path from x to a node satisfying c such that this path contains Q nodes (where Q is an

absolute quanti�er).

Make SURF and SUGAR more user-friendly

The softwares that we developed make it possible to express fuzzy user preferences where

the query is explicitly written in the syntax of the formal query language (FURQL for

RDF data and FUDGE for graph data) and the fuzzy terms are de�ned in the query by a

prede�ned clause define. These softwares may be improved further in order to make them

more user-oriented .

One can think �rst about proposing a way to help non-expert users de�ne fuzzy terms

easily. There is, therefore, a de�nite need about developing a user interface in order to help

casual users de�ne their preferences and the underlying fuzzy membership functions in a more
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easy way, following the work of [Smits et al., 2013] in which the authors described ReqFlex, an

intuitive user interface to the de�nition of preferences and the construction of fuzzy queries in

a relational context.

Moreover, we may think also about integrating and analysing user pro�les in order to

focus more on the user's interest and preferences and take into account the user's context in

order to personalise the retrieved information.

Add Quality-Related Metadata

Another important perspective concerns the management of quality-related meta-

data [Fürber and Hepp, 2010]. Since the RDF model that we used in this thesis makes

it possible to model fuzzy notions, we can extend this model to represent data quality

dimensions (e.g., accuracy, completeness, timeliness, consistency and so on). Indeed, these

dimensions are of fuzzy nature and the values returned by the associated metrics may be

viewed as satisfaction degrees.

Then, it would be also worth investigating the way our framework FURQL could be

extended:

1. to express fuzzy preferences queries concerning some quality dimensions.

2. to associate quality information with the answers to a query. This would make it possible

to rank-order the answers according to their quality level (on one or several dimensions)

and to warn the user about the presence of �suspect� answers, for instance.

Develop Real-World RDF Databases (Benchmark)

Several RDF benchmarks have been developed (e.g., Lehigh Uni-

versity Benchmark (LUBM) [Guo et al., 2005], SPARQL Performance

Benchmark (SP 2Bench) [Schmidt et al., 2009], Berlin SPARQL Bench-

mark (BSBM) [Bizer and Schultz, 2009], DBpedia SPARQL Benchmark

(DBPSB) [Morsey et al., 2011], etc.) for data generator and benchmark queries in or-

der to evaluate the performance of RDF stores. However, none of the existing benchmarks

provides fuzzy RDF data or explicitly deals with fuzzy user preferences.

For that purpose, in this thesis, we initially performed the evaluation of our approaches

using a fuzzy RDF database inspired by Musicbrainz4 with synthetic data generated by a

script that allowed us to create datasets of di�erent sizes.

A future work would be to consider further evaluation using some of the existing real-world

data benchmarks or ideally create our own Fuzzy RDF Benchmark.

4https://musicbrainz.org/
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Obviously, many research problems remain open and this thesis is only a �rst step which

will help, we hope, to convince the databases community of the interest of using fuzzy logic

for the �exible/intelligent management of data in information systems.
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Appendix A

Sample of Queries

The following listing is an example of a derived nonfuzzy query.

select ?art1 ?alb ?Degree_recommends ?date ?art2 ?Degree_friend ?age ?rating where {

?X1 subject ?art1 . ?X1 predicate recommends . ?X1 object ?alb .

?X1 degree ?Degree_recommends . ?alb <uri:date> ?date .

filter ( ?date > 2010.0 )

optional {

?X2 subject ?art1 . ?X2 predicate friend .

?X2 object ?art2 . ?X2 degree ?Degree_friend .

?art2 <uri:age> ?age . ?art2 <uri:creator> ?alb . ?alb <uri:rating> ?rating .

filter ( ?rating > 2.0 && ?age < 40.0 ) }

}

Listing A.1: Query R�atBoolean derived from R�at

In the following, we give all the queries that were used in the experiments of Subsec-

tion 5.2.3.

• Q1crisp : A fuzzy quanti�ed query with simple pattern in B and simple pattern in A,

involving crisp conditions (see Listing A.2),

defineqrasc most AS (0,1)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb <uri:date> ?date2 .

filter ( ?date2 > 2014 ) }

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

filter ( ?rating2 > 5 && ?age2 < 30 ) )

Listing A.2: A fuzzy quanti�ed query Q1crisp
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• Q2crisp : A fuzzy quanti�ed query with complex pattern in B and simple pattern in A,

involving crisp conditions (see Listing A.3),

defineqrasc most AS (0,1) defineasc strong AS (0.3,0.6)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb2 <uri:date> ?date2 .

?art1 <uri:rating> ?r1 . ?art1 <uri:memberOf> ?m1 .

?art1 <uri:gender> ?g1 . ?art1 <uri:age> ?age1 .

?art1 <uri:type> ?t11 . ?alb2 <uri:type> ?t22 .

filter ( ?date2 > '2014' ) }

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

filter ( ?rating2 > 5 && ?age2 < 30 ) )

Listing A.3: A fuzzy quanti�ed query Q2crisp

• Q3crisp : A fuzzy quanti�ed query with simple pattern in B and complex pattern in A,

involving crisp conditions (see Listing A.4),

defineqrasc most AS (0,1) defineasc strong AS (0.3,0.6)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb2 <uri:date> ?date2 .

filter ( ?date2 > 2014 )}

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

?art2 <uri:rating> ?r2 . ?art2 <uri:memberOf> ?m2 .

?art2 <uri:gender> ?g2 . ?art2 <uri:type> ?t21 . ?

alb2 <uri:type> ?t22 .

filter ( ?rating2 > 5 && ?age2 < 30 ) )

Listing A.4: A fuzzy quanti�ed query Q3crisp



Appendix A 151

• Q4crisp : A fuzzy quanti�ed query with complex pattern in B and complex pattern in

A, involving crisp conditions (see Listing A.5),

defineqrasc most AS (0,1) defineasc strong AS (0.3,0.6)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb2 <uri:date> ?date2 .

?art1 <uri:rating> ?r1 . ?art1 <uri:memberOf> ?m1 .

?art1 <uri:gender> ?g1 . ?art1 <uri:age> ?age1 .

?art1 <uri:type> ?t11 .

filter ( ?date2 > '2014' ) }

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

?art2 <uri:rating> ?r2. ?art2 <uri:memberOf> ?m2 .

?art2 <uri:gender> ?g2 . ?art2 <uri:type> ?t21 .

?alb2 <uri:type> ?t22 .

filter ( ?rating2 > 5 && ?age2 < 30 ) )

Listing A.5: A fuzzy quanti�ed query Q4crisp

• Q1fuzzy : A fuzzy quanti�ed query with simple pattern in B and simple pattern in A,

involving fuzzy conditions (see Listing A.6,

defineqrasc most AS (0,1) defineasc recent AS (2014,2016)

definedesc young AS (25,32) defineasc high AS (3,6)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb <uri:date> ?date2 .

filter ( ?date2 is recent ) }

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

filter ( ?rating2 is high && ?age2 is young ) )

Listing A.6: A fuzzy quanti�ed query Q1fuzzy
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• Q2fuzzy : A fuzzy quanti�ed query with complex pattern in B and simple pattern in A,

involving fuzzy conditions (see Listing A.7),

defineqrasc most AS (0,1) defineasc recent AS (2014,2016)

definedesc young AS (25,32) defineasc high AS (3,6)

defineasc high AS (2,5)

select ?art1 where {

?art1 (recommends | ST is strong) ?alb2 .

?alb2 <uri:date> ?date2 . ?art1 <uri:rating> ?r1 .

?art1 <uri:memberOf> ?m1 . ?art1 <uri:gender> ?g1 .

?art1 <uri:age> ?age1 . ?art1 <uri:type> ?t11 .

?alb1 <uri:type> ?t12 .

filter ( ?date2 is recent ) }

group by ?art1

having most(?alb2) are (

?art1 <uri:friend> ?art2 . ?art2 <uri:age> ?age2 .

?art2 <uri:creator> ?alb2 . ?alb2 <uri:rating> ?rating2 .

filter ( ?rating2 is high && ?age2 is young ) )

Listing A.7: A fuzzy quanti�ed query Q2fuzzy

• Q3fuzzy : A fuzzy quanti�ed query with simple pattern in B and complex pattern in A,

involving fuzzy conditions (see Listing A.8),

defineqrasc most AS (0,1) defineasc recent AS (2014,2016)

definedesc young AS (25,32) defineasc high AS (3,6)

defineasc high AS (2,5)

select ?art1 where {

?art1 <uri:recommends> ?alb2 . ?alb2 <uri:date> ?date2 .

filter ( ?date2 is recent )}

group by ?art1

having most(?alb2) are (

?art1 ( <uri:friend> | ST IS strong ) ?art2 .

?art2 <uri:age> ?age2 . ?art2 <uri:creator> ?alb2 .

?alb2 <uri:rating> ?rating2 . ?art2 <uri:rating> ?r2 .

?art2 <uri:memberOf> ?m2 . ?art2 <uri:gender> ?g2 .

?art2 <uri:type> ?t21 . ?alb2 <uri:type> ?t22 .

filter ( ?rating2 is high && ?age2 is young ) )

Listing A.8: A fuzzy quanti�ed query Q3fuzzy
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• Q4fuzzy : A fuzzy quanti�ed query with complex pattern in B and complex pattern in

A, involving fuzzy conditions (see Listing A.9).

defineqrasc most AS (0,1) defineasc recent AS (2014,2016)

definedesc young AS (25,32) defineasc high AS (3,6)

defineasc high AS (2,5)

select ?art1 where {

?art1 (recommends | ST is strong) ?alb2 .

?alb2 <uri:date> ?date2 . ?art1 <uri:rating> ?r1 .

?art1 <uri:memberOf> ?m1 . ?art1 <uri:gender> ?g1 .

?art1 <uri:age> ?age1. ?art1 <uri:type> ?t11.

filter ( ?date2 is recent )}

group by ?art1

having most(?alb2) are (

?art1 ( <uri:friend> | ST IS strong ) ?art2 .

?art2 <uri:age> ?age2 . ?art2 <uri:creator> ?alb2 .

?alb2 <uri:rating> ?rating2 . ?art2 <uri:rating> ?r2 .

?art2 <uri:memberOf> ?m2 . ?art2 <uri:gender> ?g2 .

?art2 <uri:type> ?t21 . ?alb2 <uri:type> ?t22 .

filter ( ?rating2 is high && ?age2 is young ) )

Listing A.9: A fuzzy quanti�ed query Q4fuzzy





Bibliography

[Akbarinia et al., 2007] Akbarinia, R., Pacitti, E., and Valduriez, P. (2007). Best position

algorithms for top-k queries. In Proceedings of the 33rd international conference on Very

large data bases, pages 495�506. VLDB Endowment.

[Alkhateeb et al., 2009] Alkhateeb, F., Baget, J.-F., and Euzenat, J. (2009). Extending

SPARQL with regular expression patterns (for querying RDF). Web Semantics: Science,

Services and Agents on the World Wide Web, 7(2):57�73.

[allegrograph, 2017] allegrograph (consulted in 2017). AllegroGraph web site. franz.com/

agraph/allegrograph.

[Angles, 2012] Angles, R. (2012). A comparison of current graph database models. In Proceed-

ings of the 28th IEEE International Conference on Data Engineering Workshops (ICDEW),

pages 171�177. IEEE.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). Survey of graph database

models. ACM Computing Surveys (CSUR), 40(1):1�39.

[Anyanwu et al., 2007] Anyanwu, K., Maduko, A., and Sheth, A. (2007). SPARQ2L: towards

support for subgraph extraction queries in RDF databases. In Proceedings of the 16th

international conference on World Wide Web, pages 797�806. ACM.

[Arenas and Pérez, 2011] Arenas, M. and Pérez, J. (2011). Querying semantic web data with

SPARQL. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 305�316.

[Berkeley, 2010] Berkeley, D. (2010). Oracle embedded database. Located at: http: // www.

oracle. com/ database/ berkeley-db .

[Bizer and Schultz, 2009] Bizer, C. and Schultz, A. (2009). The Berlin SPARQL Benchmark.

International Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1�24.

[Borzsony et al., 2001] Borzsony, S., Kossmann, D., and Stocker, K. (2001). The skyline

operator. In Proceedings of the 17th International Conference on Data Engineering, pages

421�430. IEEE.

155

franz.com/agraph/allegrograph
franz.com/agraph/allegrograph
http://www.oracle.com/database/berkeley-db
http://www.oracle.com/database/berkeley-db


156 BIBLIOGRAPHY

[Bosc et al., 1995] Bosc, P., Liétard, L., and Pivert, O. (1995). Quanti�ed statements and

database fuzzy querying. In Bosc, P. and Kacprzyk, J., editors, Fuzziness in database

management systems, pages 275�308. Springer.

[Bosc and Pivert, 1995] Bosc, P. and Pivert, O. (1995). SQLf: a relational database language

for fuzzy querying. IEEE transactions on Fuzzy Systems, 3(1):1�17.

[Bosc and Pivert, 2000] Bosc, P. and Pivert, O. (2000). SQLf query functionality on top of

a regular relational database management system. In Knowledge Management in Fuzzy

Databases, pages 171�190. Springer.

[Bosc and Pivert, 2012] Bosc, P. and Pivert, O. (2012). On four noncommutative fuzzy con-

nectives and their axiomatization. Fuzzy Sets and Systems, 202:42�60.

[Boutilier et al., 2004] Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole,

D. (2004). CP-nets: A tool for representing and reasoning with conditional ceteris paribus

preference statements. Journal of Arti�cial Intelligence Research (JAIR), 21:135�191.

[Bozzon et al., 2011] Bozzon, A., Della Valle, E., and Magliacane, S. (2011). Towards and

e�cient SPARQL top-k query execution in virtual RDF stores. In Proceedings of the 5th

International Workshop on Ranking in Databases (DBRANK'11), pages 1�6.

[Bozzon et al., 2012] Bozzon, A., Della Valle, E., and Magliacane, S. (2012). Extending

SPARQL algebra to support e�cient evaluation of top-k SPARQL queries. In Search Com-

puting � Broadening Web Search, pages 143�156. Springer.

[Bruno et al., 2002] Bruno, N., Chaudhuri, S., and Gravano, L. (2002). Top-k selection queries

over relational databases: Mapping strategies and performance evaluation. ACM Transac-

tions on Database Systems (TODS), 27(2):153�187.

[Bry et al., 2010] Bry, F., Furche, T., Marnette, B., Ley, C., Linse, B., and Poppe, O. (2010).

SPARQLog: SPARQL with rules and quanti�cation. In Semantic Web Information Man-

agement, pages 341�370. Springer.

[Buche et al., 2009] Buche, P., Dibie-Barthélemy, J., and Chebil, H. (2009). Flexible SPARQL

querying of web data tables driven by an ontology. In Flexible Query Answering Systems,

pages 345�357. Springer.

[Buche et al., 2008] Buche, P., Dibie-Barthélemy, J., and Hignette, G. (2008). Flexible query-

ing of fuzzy RDF annotations using fuzzy conceptual graphs. In Conceptual Structures:

Knowledge Visualization and Reasoning, pages 133�146. Springer.

[Buche et al., 2013] Buche, P., Dibie-Barthelemy, J., Ibanescu, L., and Soler, L. (2013). Fuzzy

web data tables integration guided by an ontological and terminological resource. IEEE

Transactions on Knowledge and Data Engineering, 25(4):805�819.



BIBLIOGRAPHY 157

[Calì et al., 2014] Calì, A., Frosini, R., Poulovassilis, A., and Wood, P. T. (2014). Flexible

querying for SPARQL. In OTM Confederated International Conferences" On the Move to

Meaningful Internet Systems", pages 473�490. Springer.

[Carroll, 2002] Carroll, J. J. (2002). Matching RDF graphs. In The Semantic Web ISWC

2002, pages 5�15. Springer.

[Castelltort and Laurent, 2014] Castelltort, A. and Laurent, A. (2014). Fuzzy queries over

NoSQL graph databases: Perspectives for extending the Cypher language. In Proceed-

ings of the 15th International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems (IPMU'14), pages 384�395.

[Castelltort and Laurent, 2015] Castelltort, A. and Laurent, A. (2015). Extracting fuzzy sum-

maries from NoSQL graph databases. In Proceedings of the 11th International Conference

on Flexible Query Answering Systems (FQAS'15), pages 189�200. Springer.

[Cedeño and Candan, 2011] Cedeño, J. P. and Candan, K. S. (2011). R2DF framework for

ranked path queries over weighted RDF graphs. In Proceedings of the International Con-

ference on Web Intelligence, Mining and Semantics, page 40. ACM.

[Chang et al., 2008] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Bur-

rows, M., Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage

system for structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4.

[Chen et al., 2011] Chen, L., Gao, S., and Anyanwu, K. (2011). E�ciently evaluating skyline

queries on RDF databases. In The Semanic Web: Research and Applications, pages 123�138.

Springer.

[Cheng et al., 2010] Cheng, J., Ma, Z., and Yan, L. (2010). f-SPARQL: a �exible extension of

SPARQL. In Database and Expert Systems Applications, pages 487�494. Springer.

[Chomicki, 2002] Chomicki, J. (2002). Querying with intrinsic preferences. In Advances in

Database Technology�EDBT 2002, pages 34�51. Springer.

[Choquet, 1954] Choquet, G. (1954). Theory of capacities. In Annales de l'institut Fourier,

volume 5, pages 131�295.

[Chu et al., 1996] Chu, W. W., Yang, H., Chiang, K., Minock, M., Chow, G., and Larson, C.

(1996). Cobase: A scalable and extensible cooperative information system. In Intelligent

Integration of Information, pages 135�171. Springer.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377�387.

[Cypher, 2017] Cypher (2017). The Neo4j Developer Manual v3.2.



158 BIBLIOGRAPHY

[Das et al., 2006] Das, G., Gunopulos, D., Koudas, N., and Tsirogiannis, D. (2006). Answering

top-k queries using views. In Proceedings of the 32nd international conference on Very large

data bases, pages 451�462. VLDB Endowment.

[De Virgilio et al., 2013] De Virgilio, R., Maccioni, A., and Torlone, R. (2013). A similarity

measure for approximate querying over RDF data. In Proceedings of the Joint EDBT/ICDT

2013 Workshops, pages 205�213. ACM.

[De Virgilio et al., 2015] De Virgilio, R., Maccioni, A., and Torlone, R. (2015). Approximate

querying of RDF graphs via path alignment. Distributed and Parallel Databases, 33(4):555�

581.

[DeCandia et al., 2007] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-

man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dynamo:

amazon's highly available key-value store. In ACM SIGOPS Operating Systems Review,

volume 41, pages 205�220. ACM.

[Dividino et al., 2012] Dividino, R., Gröner, G., Scheglmann, S., and Thimm, M. (2012).

Ranking RDF with provenance via preference aggregation. In Knowledge Engineering and

Knowledge Management, pages 154�163. Springer.

[Dividino et al., 2009] Dividino, R., Sizov, S., Staab, S., and Schueler, B. (2009). Querying

for provenance, trust, uncertainty and other meta knowledge in RDF. Journal of Web

Semantics, 7(3):204�219.

[Dolog et al., 2006] Dolog, P., Stuckenschmidt, H., and Wache, H. (2006). Robust query

processing for personalized information access on the semantic web. In Proceedings of the

7th International Conference on Flexible Query Answering Systems (FQAS'06), pages 343�

355. Springer.

[Dolog et al., 2009] Dolog, P., Stuckenschmidt, H., Wache, H., and Diederich, J. (2009). Re-

laxing RDF queries based on user and domain preferences. Journal of Intelligent Informa-

tion Systems, 33(3):239�260.

[Dubois and Prade, 1986] Dubois, D. and Prade, H. (1986). Weighted minimum and maxi-

mum operations in fuzzy set theory. Information Sciences, 39(2):205�210.

[Dubois and Prade, 1997] Dubois, D. and Prade, H. (1997). Using fuzzy sets in �exible query-

ing: Why and how? In Flexible query answering systems, pages 45�60. Springer.

[Dubois, 1980] Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications, volume

144. Academic press.



BIBLIOGRAPHY 159

[Elbassuoni et al., 2011] Elbassuoni, S., Ramanath, M., and Weikum, G. (2011). Query re-

laxation for entity-relationship search. In Extended Semantic Web Conference, pages 62�76.

Springer.

[Fagin et al., 2003] Fagin, R., Lotem, A., and Naor, M. (2003). Optimal aggregation algo-

rithms for middleware. Journal of Computer and System Sciences, 66(4):614�656.

[Fan et al., 2016] Fan, W., Wu, Y., and Xu, J. (2016). Adding counting quanti�ers to graph

patterns. In Proceedings of the 2016 International Conference on Management of Data,

pages 1215�1230. ACM.

[Faye et al., 2012] Faye, D. C., Curé, O., and Blin, G. (2012). A survey of RDF storage

approaches. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées,

15:11�35.

[Fodor and Yager, 2000] Fodor, J. and Yager, R. (2000). Fuzzy-set theoretic operators and

quanti�ers. In Dubois, D. and Prade, H., editors, The Handbooks of Fuzzy Sets Series, vol.

1: Fundamentals of Fuzzy Sets, pages 125�193. Kluwer Academic Publishers.

[Fokou et al., 2014] Fokou, G., Jean, S., and Hadjali, A. (2014). Endowing semantic query

languages with advanced relaxation capabilities. In Foundations of Intelligent Systems,

pages 512�517. Springer.

[Fokou et al., 2015] Fokou, G., Jean, S., Hadjali, A., and Baron, M. (2015). Cooperative

techniques for SPARQL query relaxation in RDF databases. In Proceedings of the 12th

European Semantic Web Conference on The Semantic Web, pages 237�252. Springer.

[Fokou et al., 2017] Fokou, G., Jean, S., Hadjali, A., and Baron, M. (2017). Handling failing

RDF queries: from diagnosis to relaxation. Knowledge and Information Systems, 50(1):167�

195.

[Fortin, 1996] Fortin, S. (1996). The graph isomorphism problem. Technical report, 96-20,

University of Alberta, Edomonton, Alberta, Canada.

[Frosini et al., 2017] Frosini, R., Calì, A., Poulovassilis, A., and Wood, P. T. (2017). Flexible

query processing for SPARQL. Semantic Web, 8:533�563.

[Fürber and Hepp, 2010] Fürber, C. and Hepp, M. (2010). Using semantic web resources for

data quality management. Knowledge Engineering and Management by the Masses, pages

211�225.

[Gaasterland et al., 1992] Gaasterland, T., Godfrey, P., and Minker, J. (1992). Relaxation

as a platform for cooperative answering. Journal of Intelligent Information Systems, 1(3-

4):293�321.



160 BIBLIOGRAPHY

[Gearon et al., 2012] Gearon, P., Passant, A., and Polleres, A. (2012). SPARQL 1.1 Update.

Working draft WD-sparql11-update-20110512, W3C (May 2011).

[Godfrey, 1997] Godfrey, P. (1997). Minimization in cooperative response to failing database

queries. International Journal of Cooperative Information Systems, 6(02):95�149.

[Grabisch et al., 1992] Grabisch, M., Murofushi, T., and Sugeno, M. (1992). Fuzzy measure

of fuzzy events de�ned by fuzzy integrals. Fuzzy Sets and Systems, 50:293�313.

[Gueroussova et al., 2013] Gueroussova, M., Polleres, A., and McIlraith, S. A. (2013).

SPARQL with qualitative and quantitative preferences. In Proceedings of the Intl. Workshop

OrdRing, co-located with ISWC, pages 2�8.

[Guo et al., 2005] Guo, Y., Pan, Z., and He�in, J. (2005). LUBM: A benchmark for OWL

knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide

Web, 3(2):158�182.

[Gutierrez et al., 2004] Gutierrez, C., Hurtado, C., and Mendelzon, A. O. (2004). Foundations

of semantic web databases. In Proceedings of the ACM Symposium on Principles of Database

Systems (PODS), pages 95�106. ACM.

[Gutierrez et al., 2007] Gutierrez, C., Hurtado, C. A., and Vaisman, A. (2007). Introducing

time into RDF. IEEE Transactions on Knowledge and Data Engineering, 19(2):207�218.

[Haase et al., 2004] Haase, P., Broekstra, J., Eberhart, A., and Volz, R. (2004). A comparison

of RDF query languages. In The Semantic Web�ISWC 2004, pages 502�517. Springer.

[Hadjali et al., 2011] Hadjali, A., Kaci, S., and Prade, H. (2011). Database preference

queries�a possibilistic logic approach with symbolic priorities. Annals of Mathematics

and Arti�cial Intelligence, 63(3-4):357�383.

[Harris and Seaborne, 2013] Harris, S. and Seaborne, A. (2013). SPARQL 1.1 query language.

W3C Recommendation http://www.w3.org/TR/sparql11-query.

[Hartig, 2009] Hartig, O. (2009). Querying trust in RDF data with tSPARQL. In Proceedings

of the 6th European Semantic Web Conference (ESWC), pages 5�20. Springer.

[Hogan et al., 2012] Hogan, A., Mellotte, M., Powell, G., and Stampouli, D. (2012). Towards

fuzzy query-relaxation for RDF. In Proceedings of the 9th Extended Semantic Web Confer-

ence (ESWC), pages 687�702. Springer.

[Huang et al., 2008] Huang, H., Liu, C., and Zhou, X. (2008). Computing relaxed answers on

RDF databases. In In Proceedings of the 9th international conference on Web Information

Systems Engineering (WISE'08), pages 163�175. Springer.

http://www.w3.org/TR/sparql11-query


BIBLIOGRAPHY 161

[Hurtado et al., 2006] Hurtado, C. A., Poulovassilis, A., and Wood, P. T. (2006). A relaxed

approach to RDF querying. In International Semantic Web Conference, pages 314�328.

Springer.

[Hurtado et al., 2008] Hurtado, C. A., Poulovassilis, A., and Wood, P. T. (2008). Query

relaxation in RDF. In Journal on data semantics, pages 31�61. Springer.

[Ilyas et al., 2008] Ilyas, I. F., Beskales, G., and Soliman, M. A. (2008). A survey of top-

k query processing techniques in relational database systems. ACM Computing Surveys

(CSUR), 40(4):11.

[in�nitegraph, 2017] in�nitegraph (consulted in 2017). In�niteGraph web site. www.

objectivity.com/infinitegraph.

[Jannach, 2009] Jannach, D. (2009). Fast computation of query relaxations for knowledge-

based recommenders. Ai Communications, 22(4):235�248.

[Kacprzyk et al., 1989] Kacprzyk, J., Zadro»ny, S., and Ziólkowski, A. (1989). FQUERY

III +:a "human-consistent" database querying system based on fuzzy logic with linguistic

quanti�ers. Information Systems, 14(6):443�453.

[Kieÿling, 2002] Kieÿling, W. (2002). Foundations of preferences in database systems. In

Proceedings of the 28th international conference on Very Large Data Bases (VLDB), pages

311�322.

[Kieÿling et al., 2011] Kieÿling, W., Endres, M., and Wenzel, F. (2011). The preference SQL

system-an overview. IEEE Data Eng. Bull., 34(2):11�18.

[Kleinberg, 1999] Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment.

Journal of the ACM (JACM), 46(5):604�632.

[Kochut and Janik, 2007] Kochut, K. J. and Janik, M. (2007). SPARQLer: Extended

SPARQL for semantic association discovery. In Proceedings of the 4th European Seman-

tic Web Conference (ESWC '07), pages 145�159. Springer.

[Lakshman and Malik, 2009] Lakshman, A. and Malik, P. (2009). Cassandra: structured

storage system on a P2P network. In Proceedings of the 28th ACM symposium on Principles

of distributed computing, pages 5�5. ACM.

[Leavitt, 2010] Leavitt, N. (2010). Will nosql databases live up to their promise? Computer,

43(2).

[Li et al., 2005] Li, C., Chang, K. C.-C., Ilyas, I. F., and Song, S. (2005). RankSQL: query

algebra and optimization for relational top-k queries. In Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages 131�142. ACM.

www.objectivity.com/infinitegraph
www.objectivity.com/infinitegraph


162 BIBLIOGRAPHY

[Lv et al., 2008] Lv, Y., Ma, Z., and Yan, L. (2008). Fuzzy RDF: A data model to repre-

sent fuzzy metadata. In Proceedings of the 6th International Conference on Fuzzy Systems

(FUZZ-IEEE'08), pages 1439�1445.

[Ma et al., 2016] Ma, R., Jia, X., Cheng, J., and Angryk, R. A. (2016). SPARQL queries

on RDF with fuzzy constraints and preferences. Journal of Intelligent & Fuzzy Systems,

30(1):183�195.

[Magliacane et al., 2012] Magliacane, S., Bozzon, A., and Della Valle, E. (2012). E�cient

execution of top-k SPARQL queries. In The Semantic Web�ISWC 2012, pages 344�360.

Springer.

[Mazzieri and Dragoni, 2008] Mazzieri, M. and Dragoni, A. (2008). A fuzzy semantics for the

resource description framework. In da Costa, P., d'Amato, C., Fanizzi, N., Laskey, K.,

Laskey, K., Lukasiewicz, T., Nickles, M., and Pool, M., editors, Uncertainty Reasoning for

the Semantic Web I, volume 5327 of Lecture Notes in Computer Science, pages 244�261.

Springer Berlin Heidelberg.

[Mazzieri and Dragoni, 2005] Mazzieri, M. and Dragoni, A. F. (2005). A fuzzy semantics for

semantic web languages. In Proceedings of the 2005 International Conference on Uncertainty

Reasoning for the Semantic Web-Volume 173, pages 12�22.

[Morsey et al., 2011] Morsey, M., Lehmann, J., Auer, S., and Ngonga Ngomo, A.-C. (2011).

DBpedia SPARQL Benchmark�Performance Assessment with Real Queries on Real Data.

The Semantic Web�ISWC 2011, pages 454�469.

[Murofushi and Sugeno, 1989] Murofushi, T. and Sugeno, M. (1989). An interpretation of

fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure.

Fuzzy sets and Systems, 29(2):201�227.

[Neo4j, 2017] Neo4j (consulted in 2017). Neo4j web site. www.neo4j.org.

[Pérez et al., 2006] Pérez, J., Arenas, M., and Gutierrez, C. (2006). Semantics and complexity

of SPARQL. In International semantic web conference (ISWC), pages 30�43. Springer.

[Pérez et al., 2008] Pérez, J., Arenas, M., and Gutierrez, C. (2008). nSPARQL: A navigational

language for RDF. In International Semantic Web Conference, pages 66�81. Springer.

[Pérez et al., 2009] Pérez, J., Arenas, M., and Gutierrez, C. (2009). Semantics and complexity

of SPARQL. ACM Transactions on Database Systems (TODS), 34(3):16:1�16:45.

[Pérez et al., 2010] Pérez, J., Arenas, M., and Gutierrez, C. (2010). nSPARQL: A navigational

language for RDF. Journal of Web Semantics, 8(4):255�270.

www.neo4j.org


BIBLIOGRAPHY 163

[Pivert and Bosc, 2012] Pivert, O. and Bosc, P. (2012). Fuzzy Preference Queries to Relational

Databases. Imperial College Press, London, UK.

[Pivert et al., 2016a] Pivert, O., Slama, O., Smits, G., and Thion, V. (2016a). A fuzzy ex-

tension of SPARQL for querying gradual RDF data. In Proceedings of the 10th IEEE

International Conference on Research Challenges in Information Science (RCIS'16), pages

1�2.

[Pivert et al., 2016b] Pivert, O., Slama, O., Smits, G., and Thion, V. (2016b). SUGAR:

A graph database fuzzy querying system. In Proceedings of the 10th IEEE International

Conference on Research Challenges in Information Science (RCIS'16), pages 1�2.

[Pivert et al., 2016c] Pivert, O., Slama, O., and Thion, V. (2016c). An extension of SPARQL

with fuzzy navigational capabilities for querying fuzzy RDF data. In Proceedings of the 25th

IEEE International Conference on Fuzzy Systems (Fuzz-IEEE'16), pages 2409�2416. IEEE.

[Pivert et al., 2016d] Pivert, O., Slama, O., and Thion, V. (2016d). FURQL : une extension

�oue du langage SPARQL. In Actes des 32èmes Journées Bases de Données Avancées

(BDA'16).

[Pivert et al., 2016e] Pivert, O., Slama, O., and Thion, V. (2016e). Fuzzy quanti�ed structural

queries to fuzzy graph databases. In Proceedings of the 10th International Conference on

Scalable Uncertainty Management (SUM'16), pages 260�273. Springer.

[Pivert et al., 2016f] Pivert, O., Slama, O., and Thion, V. (2016f). Requêtes quanti�ées �oues

structurelles sur des bases de données graphe. In Actes des Rencontres Francophones sur la

Logique Floue et ses Applications (LFA'16), pages 9�16.

[Pivert et al., 2016g] Pivert, O., Slama, O., and Thion, V. (2016g). SPARQL extensions with

preferences: a survey. In Proceedings of the 31st Annual ACM Symposium on Applied

Computing, pages 1015�1020. ACM.

[Pivert et al., 2017] Pivert, O., Slama, O., and Thion, V. (2017). Fuzzy quanti�ed queries to

fuzzy RDF databases. In Proceedings of the 26th IEEE International Conference on Fuzzy

Systems (Fuzz-IEEE'17). IEEE.

[Pivert and Smits, 2015] Pivert, O. and Smits, G. (2015). How to e�ciently diagnose and

repair fuzzy database queries that fail. In Fifty Years of Fuzzy Logic and its Applications,

pages 499�517. Springer.

[Pivert et al., 2015] Pivert, O., Smits, G., and Thion, V. (2015). Expression and e�cient

processing of fuzzy queries in a graph database context. In Proceedings of the 24th IEEE

International Conference on Fuzzy Systems (Fuzz-IEEE'15), pages 1�8.



164 BIBLIOGRAPHY

[Pivert et al., 2014a] Pivert, O., Thion, V., Jaudoin, H., and Smits, G. (2014a). On a fuzzy

algebra for querying graph databases. In Proceedings of the 26th IEEE International Con-

ference on Tools with Arti�cial Intelligence (ICTAI'14), pages 748�755.

[Pivert et al., 2014b] Pivert, O., Thion, V., Jaudoin, H., and Smits, G. (2014b). On a fuzzy

algebra for querying graph databases. In Proceedings of the 26th International Conference

on Tools with Arti�cial Intelligence (ICTAI'14), pages 748�755. IEEE.

[Poulovassilis and Wood, 2010] Poulovassilis, A. and Wood, P. T. (2010). Combining approx-

imation and relaxation in semantic web path queries. In Proceedings of the 9th international

semantic web conference on The semantic web (ISWC'10), pages 631�646. Springer.

[Prud'hommeaux and Seaborne, 2008] Prud'hommeaux, E. and Seaborne, A. (2008).

SPARQL query language for RDF. W3C recommendation. http://www.w3.org/TR/

rdf-sparql-query/.

[Pugliese et al., 2008] Pugliese, A., Udrea, O., and Subrahmanian, V. (2008). Scaling RDF

with time. In Proceedings of the 17th international conference on World Wide Web (WWW),

pages 605�614. ACM.

[Rasmussen and Yager, 1997] Rasmussen, D. and Yager, R. R. (1997). Summary SQL - A

fuzzy tool for data mining. Intelligent Data Analysis, 1(1-4):49�58.

[Read and Corneil, 1977] Read, R. C. and Corneil, D. G. (1977). The graph isomorphism

disease. Journal of Graph Theory, 1(4):339�363.

[Reddy and Kumar, 2010] Reddy, B. and Kumar, P. S. (2010). E�cient approximate

SPARQL querying of web of linked data. In Proceedings of the 6th International Conference

on Uncertainty Reasoning for the Semantic Web-Volume 654, pages 37�48.

[Robinson et al., 2015] Robinson, I., Webber, J., and Eifrem, E. (2015). New opportunities

for connected data.

[Rosati et al., 2015] Rosati, J., Di Noia, T., Lukasiewicz, T., De Leone, R., and Maurino, A.

(2015). Preference queries with ceteris paribus semantics for linked data. In Proceedings of

the Confederated International Conferences on On the Move to Meaningful Internet Systems

(OTM'15), pages 423�442. Springer.

[Rosenfeid, 2014] Rosenfeid, A. (2014). Fuzzy graphs. In Proceedings of the US�Japan Seminar

on Fuzzy Sets and Their Applications, page 77. Academic Press.

[Rosenfeld, 1975] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy Sets and their Applications to

Cognitive and Decision Processes, pages 77�97. Academic Press.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/


BIBLIOGRAPHY 165

[Rusinowska et al., 2011] Rusinowska, A., Berghammer, R., De Swart, H., and Grabisch, M.

(2011). Social networks: prestige, centrality, and in�uence. In Proceedings of the 12th

international conference on Relational and algebraic methods in computer science, pages

22�39. Springer-Verlag.

[Schmidt et al., 2009] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2009).

SP2Bench: a SPARQL performance benchmark. In Proceedings of the 25th International

Conference on Data Engineering (ICDE'09), pages 222�233. IEEE.

[Siberski et al., 2006] Siberski, W., Pan, J. Z., and Thaden, U. (2006). Querying the semantic

web with preferences. In Proceedings of the 5th International Semantic Web Conference

(ISWC), pages 612�624. Springer.

[Smits et al., 2013] Smits, G., Pivert, O., and Girault, T. (2013). ReqFlex: Fuzzy Queries for

Everyone. Proceedings of the VLDB Endowment (PVLDB), 6(12):1206�1209.

[sparksee, 2017] sparksee (consulted in 2017). Sparksee web site. sparsity-technologies.

com.

[Straccia, 2009] Straccia, U. (2009). A minimal deductive system for general fuzzy RDF.

In Proceedings of the 3rd International Conference on Web Reasoning and Rule Systems

(RR'09), pages 166�181.

[Sugeno, 1974] Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis,

Tokyo Institute of Technology.

[Tahani, 1977] Tahani, V. (1977). A conceptual framework for fuzzy query processing a

step toward very intelligent database systems. Information Processing and Management,

13(5):289�303.

[Tappolet and Bernstein, 2009] Tappolet, J. and Bernstein, A. (2009). Applied temporal

RDF: E�cient temporal querying of RDF data with SPARQL. In Proceedings of the 6th

European Semantic Web Conference (ESWC'09), pages 308�322. Springer.

[Torlone and Ciaccia, 2002] Torlone, R. and Ciaccia, P. (2002). Finding the best when it's a

matter of preference. In Proceedings of the 10th Italian National Conference on Advanced

Data Base Systems (SEBD'02), pages 347�360.

[Udrea et al., 2006] Udrea, O., Recupero, D., and Subrahmanian, V. (2006). Annotated RDF.

In Sure, Y. and Domingue, J., editors, Proceedings of the 3rd European Semantic Web

Conference (ESWC'06), volume 4011 of Lecture Notes in Computer Science, pages 487�

501. Springer Berlin Heidelberg.

[Udrea et al., 2010] Udrea, O., Recupero, D. R., and Subrahmanian, V. S. (2010). Annotated

RDF. ACM Transactions on Computational Logic (TOCL), 11(2):10.

sparsity-technologies.com
sparsity-technologies.com


166 BIBLIOGRAPHY

[Umbrich et al., 2015] Umbrich, J., Hogan, A., Polleres, A., and Decker, S. (2015). Link

traversal querying for a diverse web of data. Semantic Web journal (SWJ), 6(6):585�624.

[W3C, 2014] W3C (2014). RDF overview and documentations. http://www.w3.org/RDF/.

[Wang et al., 2015] Wang, D., Zou, L., and Zhao, D. (2015). Top-k queries on RDF graphs.

Information Sciences, 316:201�217.

[Wang et al., 2012] Wang, H., Ma, Z., and Cheng, J. (2012). fp-Sparql: an RDF fuzzy retrieval

mechanism supporting user preference. In Proceedings of the 9th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD), pages 443�447.

[Xie et al., 2013] Xie, M., Lakshmanan, L. V., and Wood, P. T. (2013). E�cient top-k query

answering using cached views. In Proceedings of the 16th International Conference on

Extending Database Technology, pages 489�500. ACM.

[Yager, 2013] Yager, R. (2013). Social network database querying based on computing with

words. In Flexible Approaches in Data, Information and Knowledge Management, Studies

in Computational Intelligence. Springer.

[Yager, 1984] Yager, R. R. (1984). General multiple-objective decision functions and linguis-

tically quanti�ed statements. International Journal of Man-Machine Studies, 21:389�400.

[Yager, 1988] Yager, R. R. (1988). On ordered weighted averaging aggregation operators

in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics,

18(1):183�190.

[Yager, 2014] Yager, R. R. (2014). Social network database querying based on computing

with words. In Flexible approaches in data, information and knowledge management, pages

241�257. Springer.

[Zadeh, 1965] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3):338�353.

[Zadeh, 1983] Zadeh, L. A. (1983). A computational approach to fuzzy quanti�ers in natural

languages. Computers and Mathematics with applications, 9(1):149�184.

[Zahmatkesh et al., 2014] Zahmatkesh, S., Valle, E. D., Dell'Aglio, D., and Bozzon, A. (2014).

Towards a top-k SPARQL query benchmark generator. In Proceedings of the 3rd Interna-

tional Conference on Ordering and Reasoning-Volume 1303, pages 35�46.

[Zaveri et al., 2016] Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., and Auer,

S. (2016). Quality assessment for linked data: A survey. Semantic Web Journal, 7(1):63�93.

[Zheng et al., 2016] Zheng, W., Zou, L., Peng, W., Yan, X., Song, S., and Zhao, D. (2016).

Semantic SPARQL similarity search over RDF knowledge graphs. Proceedings of the VLDB

Endowment, 9(11):840�851.

http://www.w3.org/RDF/


BIBLIOGRAPHY 167

[Zhu et al., 2002] Zhu, H., Zhong, J., Li, J., and Yu, Y. (2002). An approach for semantic

search by matching RDF graphs. In Proceedings of the Fifteenth International Florida

Arti�cial Intelligence Research Society Conference (FLAIRS), pages 450�454.

[Zimmermann et al., 2012] Zimmermann, A., Lopes, N., Polleres, A., and Straccia, U. (2012).

A general framework for representing, reasoning and querying with annotated semantic web

data. Journal of Web Semantics, 11:72�95.

[Zimmermann, 2011] Zimmermann, H.-J. (2011). Fuzzy set theory�and its applications.

Springer Science & Business Media.


	Résumé en français
	Introduction
	Background notions
	Introduction
	The RDF Graph Data Model 
	SPARQL: Crisp Querying of RDF data 
	Fuzzy Set Theory 
	Definition
	Characteristics of a Fuzzy Set
	Operations on Fuzzy Sets

	Conclusion

	State of the art: Flexible Querying of RDF data
	Introduction
	Preference Queries on RDF Data
	Quantitative Approaches
	Qualitative Approaches: Skyline-based Approaches

	Query Relaxation 
	Approximate Matching 
	Conclusion and Summary

	FURQL: An extension of SPARQL with Fuzzy Navigational Capabilities
	Introduction
	Fuzzy RDF (F-RDF) Graph
	FUzzy RDF Query Language (FURQL)
	Syntax of FURQL 
	Semantics of FURQL 

	Conclusion

	FURQL with Fuzzy Quantified Statements to Fuzzy RDF Databases
	Introduction
	Refresher on Fuzzy Quantified Statements
	Fuzzy Quantifiers
	Interpretation of Fuzzy Quantified Statements

	FURQL with Fuzzy Quantified Statements
	Related Work: Quantified Statements in SPARQL
	Fuzzy Quantified Statements in FURQL 

	Conclusion

	Implementation and Experimentations
	Introduction
	Implementation of FURQL
	Storage of Fuzzy RDF Graphs
	Evaluation of FURQL Queries

	Experimentations
	Experimental Setup
	Experiments for nonquantified FURQL Queries
	Experiments for Quantified FURQL Queries

	Conclusion

	Extensions to General Graph Databases
	Introduction
	Background Notions
	Related Work
	Fuzzy Quantified Statements in FUDGE
	About Query Processing
	Experimental Results
	Conclusion

	Conclusion
	List of Figures
	List of Tables
	Appendix Sample of Queries
	Bibliography

