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(spécialité informatique)

par

Santosh K.C.

Composition du jury

Rapporteurs Thierry PAQUET Université de Rouen
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Abstract

In the current state-of-the-art, symbol recognition usually means recognising isolated symbols. However,
isolated symbol recognition methods are not always suitable for solving real-world problems. In case
of composite documents that contain textual and graphical elements, one needs to be able to extract
and formalise the links that exist between the images and the surrounding text, in order to exploit the
information embedded in those documents.

Related to this context, we first introduce a method for graphics recognition based on dynamic
programming matching of the Radon features. This method allows to exploit the Radon Transform
property to include both boundary and internal structure of shapes without compressing the pattern
representation into a single vector that may miss information. The method outperforms all major set of
state-of-the-art of shape descriptors but remains mainly suited for isolated symbol recognition only. We
therefore integrate it in a completely new approach for symbol recognition based on the spatio-structural
description of a ‘vocabulary’ of extracted visual primitives. The method is based on spatial relations
between pairs of labelled vocabulary types (some of which can be characterised with the previously
mentioned descriptor), which are further used as a basis for building an attributed relational graph
(ARG) to describe symbols. Thanks to our labelling of attribute types, we avoid the general NP-hard
graph matching problem. We provide a comprehensive comparison with other spatial relation models
as well as state-of-the-art approaches for graphics recognition and prove that our approach effectively
combines structural and statistical descriptors together and outperforms them significantly.

In the final part of this thesis, we present a Bag-Of-Features (BOFs) approach using spatial relations
where every possible pair of individual visual primitives is indexed by its topological configuration and
the visual type of its components. This provides a way to retrieve isolated symbols as well as significant
known parts of symbols by applying either an isolated symbol as a query or a collection of relations be-
tween the important visual primitives. Eventually, it opens perspectives towards natural language based
symbol recognition process.

Keywords — Radon Features, Dynamic Programming, Shape Descriptors, Visual Vocabulary, Spatial
Relations, Spatial-Bag-of-Features, Graphics Recognition.



Résumé

Dans l’état de l’art actuel, la reconnaissance de symboles signifie généralement la reconnaissance des
symboles isolés. Cependant, ces méthodes de reconnaissance de symboles isolmés ne sont pas toujours
adaptés pour résoudre les problèmes du monde réel. Dans le cas des documents composites qui contiennent
des éléments textuels et graphiques, on doit être capable d’extraire et de formaliser les liens qui existent
entre les images et le texte environnant, afin d’exploiter les informations incorporées dans ces documents.

Liés à ce contexte, nous avons d’abord introduit une méthode de reconnaissance graphique basée sur
la programmation dynamique et la mise en correspondance de caractéristiques issues de la transormée
de Radon. Cette méthode permet d’exploiter la propriété de cette transformée pour inclure à la fois le
contour et la structure interne des formes sans utiliser de techniques de compression de la représentation
du motif dans un seul vecteur et qui pourrait passer à côté d’informations importantes. La méthode
surpasse en performances les descripteurs de forme de l’état de l’art, mais reste principalement adapté
pour la reconnaissance de symboles isolés seulement. Nous l’avons donc intégrée dans une approche
complètement nouvelle pour la reconnaissance de symboles basé sur la description spatio-structurelle
d’un «vocabulaire» de primitives visuelles extraites. La méthode est basée sur les relations spatiales
entre des paires de types étiquetés de ce vocabulaire (dont certains peuvent être caractérisés avec le
descripteur mentionné précédemment), qui sont ensuite utilisées comme base pour construire un graphe
relationnel attribué (ARG) qui décrit des symboles. Grâce à notre étiquetage des types d’attribut, nous
évitons le problème classique NP-difficile d’appariement de graphes. Nous effectuons une comparaison
exhaustive avec d’autres modèles de relations spatiales ainsi qu’avec l’état de l’art des approches pour la
reconnaissance des graphismes afin de prouver que notre approche combine efficacement les descripteurs
statistiques structurels et globaux et les surpasse de manière significative.

Dans la dernière partie de cette thèse, nous présentons une approche de type sac de caractéristiques
utilisant les relations spatiales, où chaque paire possible primitives visuelles est indexée par sa configura-
tion topologique et les types visuels de ses composants. Ceci fournit un moyen de récupérer les symboles
isolés ainsi que d’importantes parties connues de symboles en appliquant soit un symbole isolée comme
une requêten soit une collection de relations entre les primitives visuelles. Finalement, ceci ouvre des
perspectives vers des processus de reconnaissance de symboles fondés sur le langage naturel.

Mots-clés — descripteur de Radon, programmation dynamique, descripteurs de forme, vocabulaire
visuel, relations spatiales, sac de caractéristiques spatiales, reconnaissance graphique.
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Résumé de la Thèse en Français

Avant-propos. Cette thèse traite de la reconnaissance de symboles graphiques. La reconnaissance de
symboles ne signifie pas seulement reconnaître les symboles isolés, mais aussi ceux qu’on trouve dans la
forme composite, ou relié avec d’autres éléments graphiques, en plus de textes. Par conséquent, la thèse
vise à récupérer ces symboles qui sont similaires en termes d’apparence, soit dans leur totalité, soit en
grande partie.

Les expériences soutenant notre travail utilisent des symboles électriques contenus dans des schémas
de câblage. Ces diagrammes sont d’une série de données inédites appelée ensemble de données FRESH
et déjà utilisée dans [Salmon, 2008]. Les approches développées dans cette thèse sont aussi validés sur
des données telles que des symboles architecturaux, symboles dessinés à la main, ensembles de caractères
manuscrits pour plusieurs scripts différents comme les Indiens, Japonais Katakana et romaine ainsi que
d’un ensemble de données des chaussures impression preuves. �

Mise en garde —Ce résumé en français a été obtenu avec des outils de traduction automatiques
imparfaits, suivi d’une relecture. Quelques formulations malheureuses peuvent persister. Le
lecteur intéressé mais néanmoins confus, est invité à se reporter à la version détaillée en anglais.
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Résumé de la Thèse en Français

1 Présentation

Cette section fournit l’idée générale de la thèse. Nous commençons avec une description générale
de la reconnaissance graphique sous l’angle de l’analyse de documents. Ensuite, nous soulignons
les problèmes sous-jacents, les besoins et l’importance des enjeux motivant notre travail. Par la
suite, l’objectif principal, la reconnaissance de symboles, est présenté et discuté explicitement en
quelques points majeurs.

1.1 Reconnaissance d’images Graphiques

Motivation

Analyse ou traitement de documents est principalement lié aux textes et graphiques. Il s’agit de
la séparation, localisation et de reconnaissance. Selon [Nagy, 2000], l’analyse de documents est
liée à l’analyse d’images de documents (DIA). Depuis, les travaux de recherche globale ont été
concernés par l’interprétation des images de documents. Les tâches de base sont la segmentation
d’images, l’analyse de mise en page et la reconnaissance de symboles. De la même manière,
[Kasturi et al., 2002] catégorise l’analyse d’images de documents dans deux domaines:

1. traitement de texte et

2. traitement graphique.

La Figure 1.1 montre une perspective de celui-ci avec un autre sous-catégorisation. Le traite-
ment graphique se réfère à l’analyse des lignes, des angles et des courbes, d’un côté, tandis que
de l’autre côté, il est préoccupé avec les régions et l’analyse des symboles.

Analyse de documents

Texte

Graphisme �

Graphisme

Line, coins, courbes

Régions, Symboles

Figure 1: Analyse ou traitement de documents [Kasturi et al., 2002].

Une partie de l’analyse de l’image du document signifie de reconnaître les éléments graphiques
et ou de localiser des parties visuelle importantes ou connues des images. Dans le contexte ci-
dessus, la reconnaissance de graphismes (par exemple, la reconnaissance de symboles graphiques)
a été une activité de recherche intensive en la communauté de la reconnaissance des formes et
analyse de documents, depuis quelques décennies. La reconnaissance de symboles, notamment,
a une longue histoire depuis les années 70. En 1998, [Tombre, 1998] a fait une déclaration:
«Aucune de ces méthodes ne fonctionne». Depuis, le domaine a été activement étendu. La
reconnaissance de symboles - la partie centrale de l’analyse de documents et la reconnaissance
d’image graphique systèmes - joue un rôle important dans une variété d’applications telles que
la reconnaissance automatique et l’interprétation des
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1. Présentation

• schémas de circuits [Okazaki et al., 1988, Feng et al., 2009],

• dessins d’ingénierie [Yang et al., 2007] et
dessins architecturaux [Lladós et al., 2001, Valveny and Martí, 2003],

• notations musicales [Rebelo et al., 2010],

• cartes [Samet and Soffer, 1996a],

• expressions mathématiques [Chaudhuri and Garain, 2000], as well as

• caractères optiques [Yuen et al., 1998, Heutte et al., 2004].

Par conséquent, un symbole peut être défini comme une entité graphique avec une significa-
tion particulière dans le contexte d’un domaine spécifique. En tant que tel, et exception faite
du prétraitement, l’ensemble du processus de reconnaissance de symboles est basée sur deux
prédicats:

1. la fonction de correspondance entre une requête et des symboles ou des données

2. la comparaison de parties décomposées comme des lignes et des arcs ainsi que leurs relations
entre eux.

L’analyse de formes pour la représentation des symboles est un exemple d’approche, liée au
point 1. Un aperçu intéressant de la performance des descripteurs de forme les plus couramment
utilisés pour la représentation des symboles est donnée dans [Valveny et al., 2007]. Ils sont com-
munément appelés approches statistiques. D’autre part, le point 2. se réfère à des approches
structurelles. Ils incluent principalement les problèmes de graphes, comme les graphes attribués
relationnels (ARG), les graphes d’adjacence de régions (RAG) [Lladós et al., 2001] et des réseaux
de contraintes [Ah-Soon and Tombre, 2001]. Dans les deux cas, les performances de reconnais-
sance s’expriment en fonction du taux de reconnaissance et de l’efficacité et la complexité du
calcul. La première question est largement basée sur la façon dont les symboles sont représen-
tés, à savoir la qualité de la représentation de symboles (soit juste un contour d’information ou
de l’apparence globale est pris en compte) et la complexité de calcul basée sur des techniques
d’appariement. En outre, en général, les techniques d’appariement sont souvent induites par la
façon dont les symboles sont représentés. Signatures statistiques se trouvent être un meilleur
choix, où des symboles linéaires ou isolés sont traités et aussi quand la complexité en temps est
un problème. En revanche, les techniques structurelles sont capables de traiter tous les types
de symboles (par exemple, isolés, composite), et avoir une représentation puissante relationnelle.
Cependant, ils souffrent de la complexité des calculs intenses en raison de la NP-difficulté du
problème de l’appariement de sous-graphe, résultant de la variation de la structure de graphe
avec le niveau de bruit, l’occlusion, la distorsion etc.

Dans l’état de l’art courant, la reconnaissance de symboles signifie généralement la recon-
naissance des symboles isolés. Ce n’est pas toujours adapté à la résolution de problèmes du
monde réel, cependant. Considérons une situation de deux symboles isolés ainsi que les symboles
composites qui sont connectés avec d’autres éléments graphiques. Dans un tel cas, les signatures
statistiques en utilisant les descripteurs de forme, par exemple, ne peuvent pas bien performer,
car ils prennent l’apparence globale en compte. Les approches structurelles ne donnent pas
bons résultats en raison de la complexité des calculs intenses. Dans ce contexte, très récem-
ment, [Tombre, 2010] pose la question de «ce qui distingue la reconnaissance des caractéristiques
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des graphiques des problèmes généraux de reconnaissance des formes?» Car il a été indiqué que
les méthodes varient d’une application à l’autre. Par conséquent, il existe toujours un intérêt
intense pour le domaine de reconnaissance graphique. Considérant tous les points mentionnés
ci-dessus, cette thèse porte sur l’utilisation de signatures structurelles et statistiques ainsi que
leurs combinaisons possibles et efficaces. Faisons remarquer les commentaires qui ont été faits
récemment [Tombre, 2010], à partir de laquelle la thèse est inspirée:

• «... le souhait récurrent de méthodes capables de combiner efficacement struc-
turelles et les méthodes statistiques» et

• «le caractère très structurelle et spatiale de l’information que nous fait travailler
avec méthodes structurelles tout à fait naturel dans la communauté».

Basé sur les points susmentionnés, l’intégration efficace à partir de laquelle nous pouvons
profiter des avantages complète des approches statistiques et structurelle, est le principal objec-
tif de la thèse. Nous présentons une méthode pour la reconnaissance de symboles basée sur la
similitude entre l’organisation spatiale et les caractéristiques de la forme d’éléments visuels qui
composent le symbole. Nous nous adressons à l’utilisation des relations spatiales entre des parties
visuelles en premier et ensuite les combiner avec des fonctions de forme dans le cadre d’ARG. En
raison d’un choix particulier dans l’étiquetage des sommets représentant des parties extraites con-
nues, leur mise en correspondance devient triviale et peut être faite en un temps quasi-constant,
évitant ainsi le problème NP-difficile de mise en correspondance de graphes. En parallèle, nous
introduisons un descripteur DTW-Radon pour la reconnaissance de graphiques. Les méthodes
proposées fournissent une meilleure performance de reconnaissance par rapport aux algorithmes
de l’état l’art. Par ailleurs, cette thèse aborde également une technique d’apprentissage qui vise
à la reconnaissance de symboles sémantiques liés. Il utilise la programmation logique induc-
tive (PLI) pour apprendre automatiquement des descriptions non triviales de symboles, basé
sur une description formelle dérivés à partir des informations structurelles et statistiques men-
tionnées précédemment. Une telle description de symboles est exprimée par un certain nom-
bre de primitives visuelles et de leurs relations possibles. Comparé à des modèles statistiques
d’apprentissage, le système s’adapte à la complexité de la classification en ce qui concerne les
données d’apprentissage.

Une liste détaillée de nos contributions sera donnée dans la Section 1.2. Avant cela nous
allons revoir et mettre en avant notre principal problème scientifique dans la section suivante.

Contexte Scientifique

Le travail est inspiré par un problème réel du monde industriel [Tombre and Lamiroy, 2008,
Salmon, 2008] qui consiste à identifier un ensemble de symboles connus dans les schémas de
câblage électrique des avions, afin de guider des algorithmes de simulation [FRESH, 2007]. Les
défis viennent essentiellement du fait que les symboles de test sont dans des formes variées. Ces
symboles peuvent être soit très semblables dans la forme - et ne diffèrent que par peu de détails
- ou soit être complètement différents d’un point de vue visuel. Les symboles peuvent également
être composés d’autres symboles connus et significatifs et ne doivent pas nécessairement être
connecté. Quelques échantillons sont présentés dans la 2.

Pour l’évaluation, plusieurs évaluations différentes humaine car il n’y a pas d’absolu de vérité
terrain associée à notre ensemble de données – ce qui est évident en cas d’application au monde
réel. Pour gérer cela, nous leur avons demandé de sélectionner manuellement ce qu’ils considèrent
comme “ similaires”symboles, pour toutes les requêtes en fournissant les informations suivantes.
En ce qui concerne la requête fournie, le candidat choisi doit avoir soit

8



1. Présentation

• similaires apparence visuelle globale ou

• similaire parties significatives ou d’éléments graphiques en son sein.

En termes plus formels, pour chaque requête de la “vérité-terrain”est considéré comme l’ensemble
des symboles formés par l’union de tous les ensembles humains sélectionnés. Pour mieux com-
prendre, la Figure 3.10 montre quelques exemples de quelques requêtes.

Figure 2: Un échantillon de quelques symboles électriques [FRESH, 2007].

1.2 Cadre - Contributions

La reconnaissance de symboles signifie généralement la reconnaissance des symboles isolés. Dans
ce contexte, nous présentons une approche basée descripteur afin de décrire l’apparence globale
des symboles graphiques.

Contribution 1. Caractéristiques du radon et dynamique descripteur de forme de programma-
tion basé pour la reconnaissance graphique.

Nous introduisons une méthode basée sur la programmation dynamique pour faire corre-
spondre les caractéristiques de Radon, pour la reconnaissance de graphiques. La principale
caractéristique de la méthode est d’utiliser l’algorithme du Dynamic Time Warping (DTW)
pour trouver des paires de fonctions de Radon correspondantes pour tous les projections
possibles. Pour la rendre invariante par rotation, nous estimons l’angle d’orientation général
qui permettra d’éviter un mauvais alignement. Globalement, cela permet d’exploiter la pro-
priété de Radon que comprend à la fois les contours ainsi que la structure interne de formes,
tout en évitant la compression de la représentation du motif dans un seul vecteur et donc
de manquer des informations, grâce à la DTW.

Dans la Section 2.1, nous présentons le concept en détail. Nous la validons en comparant
avec un ensemble de descripteurs de forme majeurs sur plusieurs ensembles de données.
Dans tous les tests expérimentaux, nous nous concentrons sur l’optimisation du nombre de
pas d’échantillonnement et des projections, afin de réduire le la complexité des calculs.

Dans le cas de problèmes de reconnaissance concrets du monde réel, des méthodes de recon-
naissance de symboles isolés ne sont pas toujours adéquats, cependant. Dans le cas des documents
composites qui contiennent des éléments textuels et graphiques, on doit être capable d’extraire
et de formaliser les liens qui existent entre les images et le texte les entourant, afin d’exploiter les
informations incorporées dans ces documents. Par conséquent, l’extraction correcte, la représen-
tation des deux données visuelles, des structures textuelles et graphiques, et l’organisation sont

9



Résumé de la Thèse en Français

a1
⇒

. . .

a2
⇒

. . .

a3
⇒ . . .

a4
⇒ . . .

a5

⇒

. . .

a6
⇒

. . .

a7
⇒

. . .

a8

⇒

. . .

Figure 3: Un échantillon de quelques symboles électriques et de leurs images échantillon simi-
laire. Pour chaque test symbole: a1 à a8, quelques symboles pertinents sont enrôlés fondée sur
l’évaluation humaine. Il se compose de linéaires ainsi que des symboles en forme composite.

les premières étapes vers la connaissance automatisé ou encore, la découverte de l’information et
recherche d’information ou de data mining sur des données plus complexes qu’un simple texte.
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1. Présentation

Dans le contexte de la reconnaissance graphique, nous mettons principalement l’accent sur
trois éléments principaux:

1. l’extraction des éléments visuels (vocabulaire) qui composent une image;

2. l’expression des relations visuelles entre les éléments;

3. découverte de connaissances, des techniques formelles de l’apprentissage et la classification
en utilisant le vocabulaire et les relations mentionnées ci-dessus, y compris l’analyse de
formes.

Les deux premiers points sont basés sur les opérations standards d’analyse et de traitement
d’images [Rendek et al., 2004] alors, les contributions de la thèse s’appuient principalement sur
le point 3. Sur cette base, il y a cinq principales contributions:

Contribution 2. Reconnaissance de symboles en utilisant des relations spatiales.

Nous présentons une méthode de reconnaissance de symboles basée sur la description spatio-
structurelle d’un «vocabulaire» visuel extrait de pièces élémentaires. La méthode est essen-
tiellement basée sur les relations spatiales entre les paires possibles de types de vocabulaire
étiquetés (comme des cercles et les coins) qui sont utilisées comme base pour la construction
d’un graphe attribué relationnel (ARG) qui décrit parfaitement le symbole. Ces relations
spatiales intègrent à la fois la topologie et l’information directionnelle. Grâce à notre éti-
quetage des types d’attribut, l’appariement des relations correspondantes est possible entre
les deux graphes, tout en évitant le problème général NP-difficile.

Dans la Section 2.2, nous fournissons une étude détaillée de la façon dont les relations
spatiales sont utilisées pour représenter des symboles complets ainsi que d’une compara-
ison exhaustive avec d’autres modèles de relations spatiales, y compris l’état de l’art des
approches pour la reconnaissance de graphiques.

Contribution 3. Intégration des relations spatiales avec des caractéristiques statistiques pour
la reconnaissance de symboles.

Nous présentons la méthode de reconnaissance de symboles basée sur à la fois sur l’organisation
spatiale et les caractéristiques de forme des pièces visuelles qui composent le symbole. Et
maintenant la base ARG pour la description des symbole mentionnée dans la contribu-
tion de, les signatures forme sont intégrés de deux différentes manières. Premièrement, les
signatures de forme sont utilisées pour étiqueter des sommets. Deuxièmement, les carac-
téristiques de forme sont appliquées uniquement au vocabulaire qui montrent des variations
de forme significatives. Dans cette contribution, les caractéristiques statistiques sont inté-
grées là où les variations de forme significatives se produisent dans les parties visuelles.

Nous la présentons dans la Section 2.3. Nous nous concentrons sur les performances de
reconnaissance en intégrant la forme caractéristiques sur les pièces visuelles. Pour gérer
cela, nous étudions la pertinence de la plupart des grandes descripteurs de forme.

Contribution 4. Sac de caractéristiques spatiales pour la reconnaissance de symboles.

Nous introduisons un concept pour la reconnaissance de symboles qui est basé sur un sac de
caractéristiques qui sont calculées à partir de primitives visuelles extraites. La principale
caractéristique de l’ensemble consiste à utiliser des informations topologiques pour guider
les relations métriques directionnelles. Ces indications topologiques rendent notre méthode
efficace puisque la mise en correspondance n’utilisera va que les candidats pertinents qui
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partagent la même configuration topologique et donc, il réduit le temps de calcul, et un
recherche rapide est possible.

Dans la Section 2.4, nous l’expliquons en détail, y compris la façon de récupérer les lacunes
des méthodes présentées dans les contributions précédentes. Outre les performances de
reconnaissance, nous abordons les avantages et l’extension de la méthode de telle manière
qu’elle peut être utilisée comme une méthode de recherche de symboles «conviviale». Par
exemple, «trouver le symbole qui a une rectangle contenant un cercle».

Contribution 5. Techniques d’apprentissage formelles pour la reconnaissance de symboles sé-
mantiquement liés.

Nous présentons l’utilisation de techniques formelles pour apprendre automatiquement des
descriptions non triviales de symboles, basées sur une description formelle. L’ARG décrit
précédemment à l’aide vocabulaire visuel et le positionnement relatif est transformé en une
représentation en logique du premier ordre (FOL) basée sur les symboles graphiques. Cette
représentation est ensuite utilisée comme une entrée d’un solveur ILP, afin d’en déduire
des caractéristiques non évidentes qui peuvent conduire à un processus plus sémantique de
reconnaissance.

Globalement, elle donne une caractérisation commune des sous-ensembles de symboles de
l’ensemble des connaissances du domaine. Comme dit précédemment, la méthode peut
s’adapter toute la complexité de la classification contrairement à des modèles statistiques
d’apprentissage. Nous avons validé et expliqué l’approche dans la Section 2.5.
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2 Contributions à la Thèse

2.1 Programmation Dynamique et Caractéristiques de Radon pour la Re-
connaissance de Graphiques

Contexte

econnaissance automatique, description, classification et le regroupement des modèles sont des
questions importantes dans de nombreuses disciplines telles que la biologie, la vision par ordi-
nateur, l’intelligence artificielle ou la télédétection, où l’analyse de forme joue un rôle impor-
tant [Loncaric, 1998, Zhang and Lu, 2004]. Patterns [Watanabe, 1985] par exemple, peuvent
être des éléments graphiques dans le document-comme des symboles de toute nature, y compris
caractères cursifs, les chaussures et les empreintes digitales.

Pour ce faire la reconnaissance des formes à travers l’analyse de forme, deux étapes majeures
sont la représentation la forme et l’appariement. Dans le cadre, les questions suivantes seront
prises en compte.

1. Représentation de forme

• la représentation forme globale est largement utilisé en raison de sa simplicité. En
outre, il ne nécessite pas de pré-traitements supplémentaires ou de segmentation,
contrairement au modèle local représentation.

• La représentation des formes doit être suffisamment enrichie et le contenu interne
important ne doit pas être manqué.

• Un autre problème de mise en œuvre commune est l’incapacité d’assumer la distribu-
tion des motifs dans l’espace des caractéristiques. Par conséquent, les méthodes non
paramétriques sont beaucoup plus pratiques car ils utilisent des fonctions linéaires
pour décrire les classificateurs.

2. Matching

Les techniques correspondants sont souvent induits par la manière dont les modèles sont
représentés. Par exemple, les renseignements concernant le modèle de normalisation dans
un vecteur de taille fixe unique (comme dans le signal global basé descripteurs [Zhang and Lu, 2004])
fournit des correspondances immédiates.

En outre, les propriétés d’invariance aux transformations affines doit être incluse. Dans la lit-
térature existante, des procédures de normalisation rend le vecteur de caractéristiques invariant
à la rotation mais, de l’autre côté, il ne fournit pas d’informations sur la forme complète. Par
conséquent, pour ce qui concerne les points mentionnés ci-dessus au point 1, les caractéristiques
ne doivent pas être normalisés afin d’exploiter l’information de détail de la forme, y compris le
contenu interne. Si c’est le cas, le coût correspondant sera augmenté. Par conséquent, un autre
paramètre important d’invariance à la rotation doit être intégré.

Un état de l’art des descripteurs de forme d’analyse des documents a été faite dans [Terrades et al., 2007a],
notamment concernant l’ensemble susmentionnés important de descripteurs de signal global.
Parmi celles-la, l’intérêt pour la transformée de Radon peut être observée à partir des ouvrages
suivants traitant de l’appariement d’images de lignes de dessin [Fränti et al., 2000], la catégori-
sation de formes 2D et de symboles [Leavers, 2000, Tabbone et al., 2006] et la démarche de re-
connaissance [Boulgouris and Chi, 2007]. Ces travaux attestent de la solidité de la transformée
de Radon sur des échantillons bruites, dégradées ainsi que comportant des occultations.
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Pour toutes ces raisons, nous profitons de la transformée de Radon [Deans, 1983] pour
représenter. Le modèle de programmation dynamique (DP) est utilisé pour faire correspon-
dre les modèles de toute taille en évitant la compression des motifs représentés dans un seul
vecteur, contrairement à l’utilisation de la R−transform [Tabbone et al., 2006], par exemple.
Le travail est le prolongement des travaux antérieurs conçu pour la vérification de signatures
hors ligne [Coetzer, 2005, Jayadevan et al., 2009] ainsi que l’estimation que l’angle d’orientation
dans [J-K and S-Z, 2005]. Globalement, une sélection optimale du nombre de bacs pour recueil-
lir les caractéristiques de Radon sera une partie intéressante du travail, en plus de l’intégration
appropriée des orientation estimée. Par ailleurs, nombre de bacs qui détermine l’intérêt optimal
entre les deux: l’information détaillée de la forme et le temps d’exécution.

Méthode Proposée

Dans le cadre des points soulignés ci-dessus, nous utilisons la transformée de Radon [Deans, 1983]
pour représenter les motifs. La correspondance des modèles est alors faite par le biais de
DTW [Bellman and Kalaba, 1959, Kruskall and Liberman, 1983, Keogh and Pazzani, 1999] en-
tre les caractéristiques du radon correspondante à chaque projection spécifiée. Les transformés
de Radon sont essentiellement un ensemble d’histogrammes ou de caractéristiques paramétrisés.
Par conséquent, la méthode traite du choix optimal du nombre de bacs contrairement à des ver-
sions plus simples utilisant la transformée de Radon discrétisée. À savoir, il existe un compromis
entre les temps de calcul et le nombre optimal de sélection des bacs.

Avant de s’aligner, le principal problème est de rendre la fonction invariante aux transforma-
tions affines. Notamment la propriété de rotation a été soigneusement intégré avec des fonctions
de Radon. La translation restante et les propriétés d’échelle sont manipulées en utilisant le
centroïde de l’image.

Symbole
2. Car.s du Radon

Matching via DTW Reconnaissance

1. Estimation d’orientation

Figure 4: Une architecture.

La Figure 4 montre une architecture de la méthode. En particulier, la méthode est capable
de récupérer l’inconvénient de la R−signature classique [Tabbone et al., 2006] qui n’exploite pas
l’information de la forme complète parce que l’information de Radon à chaque angle saillant est
compressé en une seule valeur via la R−Transform. La Figure 5 montre une illustration complète
de la transformation de radon discrète.

Validation

Pour valider la méthode, nous utilisons plusieurs ensembles de données différents.

1. FRESH [FRESH, 2007]: Un échantillon de quelques images peut être vu à la Figure 2.
Comme dit précédemment, le jeu de données est composé de symboles isolés ainsi que
composites. Dans ce test, nous visons à récupérer les symboles basé sur l’apparence globale.
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2. GREC [GREC, 2003]: Dans ce jeu de données (à partir du concours international de
reconnaissance de symboles GREC), nous avons utilisé les différentes catégories suivantes:
idéal, rotation, échelle, la distorsion ainsi que dégradation.

Au total, il ya 50 symboles modèles différents. Ces symboles sont regroupés en trois
ensembles, contenant des symboles du modèle 5, 20 et 50. Chaque symbole du modèle
dispose de 5 images de test dans chaque catégorie, sauf l’idéal. Les images de test idéales
sont directement pris dans l’ensemble du modèle symboles et donc le test est d’évaluer la
capacité de discrimination de forme simple en fonction du nombre de symboles. Depuis la
distorsion vectorielle fonctionne uniquement avec des symboles avec des lignes droites, des
arcs et non, il est appliqué à un sous-ensemble de 15 symboles modèle. En outre, il ya 9
modèles de dégradation, visant à évaluer la robustesse en fonction de la dégradation. La
Figure 6 montre quelques exemples de données GREC.

(a) idéale

(b) rotation

(c) mise à l’échelle

(d) la distorsion

m1 m2 m3 m4 m5 m6 m7 m8 m9
(e) 9 modèles de dégradation différents (m1 à m9)

Figure 6: GREC2003 échantillons de symboles graphiques..

3. CVC [Wendling et al., 2008, Fornés et al., 2010]: Dans ce jeu de données, nous avons testé
10×300 l’échantillons d’images de 10 différentes classes connues de symboles architecturaux
dessinés à la main avec 300 cas chacun. Les symboles ont été établis par 10 personnes
différentes en utilisant un stylo «Anoto». Les échantillons présentent des distorsions, des
trous, des chevauchements ainsi que les pièces manquantes dans les formes. La Figure 7
montre quelques exemples de l’ensemble des données.

4. Jeux de données numériques manuscrites: Plusieurs ensembles de données différents de dif-
férentes écritures indiennes telles que le bengali, devanagari et l’oriya [Bhowmik et al., 2006,
Bhattacharya and Chaudhuri, 2009] sont utilisés. En outre, les données en chiffres romains
est également testée (ETL3, Roman ensemble de données, l’AIST, Japon). La Figure 8
montre quelques images des échantillons dans chaque classe.
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classe 1

classe 2

classe 3

classe 4

classe 5

classe 6

classe 7

classe 8

classe 9

classe 10

Figure 7: Des échantillons dessinés à la main provenant de 10 différentes classes connues.

5. Empreintes de semelles: Dans ce jeu de données 1, nous avons 64 empreintes de semelles
de chaussures ou de pieds l’usure des classes d’impression, chacun avec les instances de
hauteur. Les Images des empreintes sont classées en empreintes complètes et empreintes
partielles. La Figure 9 montre des images de l’échantillon pour quelques classes. Dans
cette illustration, nous avons mis un cadre autour de chaque échantillon afin de distinguer
clairement les empreintes pleines des empreintes partielles en plus de la forme et la taille.
Comme indiqué dans la Figure 9, il y a quatre images dans la catégorie complète, y com-
pris la rotation tandis que les autres sont partielles estampes. Les empreintes partielles
contiennent également des portions de pointe et au talon.

A titre de comparaison, nous prenons un ensemble de descripteurs de forme majeurs comme
avant. Ils sont

1. Moments de Zernike (ZM) [Kim et Kim, 2000],

2. Le Descripteur Générique de Fourier (GFD) [Zhang and Lu, 2002],

3. Contexte de forme (SC) [Belongie et al., 2002] et
1Merci au Signal Processing Laboratory de l’université Kinki, au Japon pour avoir fourni cet ensemble de

données.
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Roman ⇒

Devanagari ⇒

Oriya ⇒

Bangla ⇒

class ⇒ 0 1 2 3 4 5 6 7 8 9

Figure 8: 2 échantillons de chiffres de 4 différents scripts connus pour 10 (0 - 9) classes.

4. R−signature [Tabbone et al., 2006].

Résumé des Résultats. Tout au long des tests expérimentaux, l’image brute a été appliquée
sans pré-traitement, à l’exception des ensembles de données de caractère. Dans ce qui suit, nous
allons brièvement présenter les résultats des toutes les données susmentionnées.

1. Données FRESH: Comme il n’y a pas vérité terrain absolue associée à nos données, nous
avons procédé en utilisant une validation humaine, mais en prenant soin d’éliminer les biais
subjectifs. Pour ce faire, nous avons demandé à six bénévoles de sélectionner manuellement
ce qu’ils considèrent comme symboles «similaires», pour toutes les requêtes exécutées dans
cette section. Ces évaluateurs humains ont choisi les candidats qui ont la même apparence
visuelle d’ensemble ou qui ont des parties sensiblement semblables à l’égard de la requête
choisie. Comme le nombre de vérités terrain est variable d’une requête à l’autre, nous
utilisons l’efficacité de récupération pour une demande short-list. Pour une demande short-
list 10, D−Radon a des rendements d’efficacité de récupération de 73%, ce qui constitue
une différence notable avec les autres benchmarking de descripteurs de forme de l’état de
l’art.

2. Données GREC: Les taux de reconnaissance dans toutes les catégories sont jugés similaires,
sauf en cas des dégradations binaires. D−Radon donne des résultats intéressants par
rapport aux autres.
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template orteil talon
� �� � � �� �

impression full impression partielle

Figure 9: 8 échantillons de 2 différentes classes d’empreinte de semelles.

3. Données CVC: Taux de récupération à partir du D−Radon donne taux de récupération
de 86% pour une demande short-list de 300 à savoir top-300. Globalement, il fournit une
différence de plus de 15% avec les autres.

Afin d’établir l’intérêt ainsi que l’extensibilité de la méthode, plusieurs ensembles différents
de données sont également été utilisés. Plus précisément, nous avons surtout travaillé dans deux
contextes différents.

1. Reconnaissance de caractères isolés: D−Radon remplace toutes les méthodes, tout en
offrant une différence marginale.

2. Vérification des empreintes de semelles: D−Radon a des rendements plus élevés de taux de
reconnaissance qui n’est pas plus de 60% en moyenne. En revanche, le taux le plus élevé de
reconnaissance est d’environ 40% meilleur par rapport aux descripteurs de forme existants
de l’état de l’art.

La méthode proposée montre clairement le pouvoir discriminant des caractéristiques de Radon
par l’intermédiaire l’utilisation de la DTW. Il surpasse toutes les autres méthodes. Cependant,
il offre un temps de calcul de haute complexité par rapport au vecteur de éléments à dimension
fixe.
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2.2 La Reconnaissance de Symboles à l’aide de Relations Géométriques

Contexte

La recherche sur la reconnaissance graphique a une très riche état de l’art de la littérature, visant
à localiser ou reconnaître les symboles selon les applications. Selon [Cordella and Vento, 2000b,
Lladós et al., 2002], ces méthodes sont particulièrement adaptées pour les symboles de ligne
isolée, non pas pour les symboles composés reliés à un environnement complexe. Afin d’exploiter
les informations incorporées dans ces documents, on doit être capable d’extraire des pièces vi-
suelles et formaliser les possibles liens qui existent entre eux. Cette combinaison de la localisation
basée sur le symbole extrait visuelle pièces va être au cœur de cette contribution.

Dans les approches structurelles, l’idée principale est de décomposer les symboles en primitives
vectoriel soit basée comme des points, des lignes et des arcs ou en parties significatives, comme
les cercles, des triangles et des rectangles. Ces primitives sont ensuite utilisés pour représen-
ter des symboles en termes de graphes relationnels attribués (ARG) [Bunke and Messmer, 1995,
Conte et al., 2004], graphes d’adjacence Région (RAG) [Lladós et al., 2001] réseaux de contraintes,
[Ah-Soon and Tombre, 2001] comme ainsi que des modèles déformables [Valveny and Martí, 2003].
Leur inconvénient commun vient de erreurs raster-vecteur de conversion. Ces erreurs peuvent
augmenter les confusions entre les différents symboles. Par ailleurs, la variabilité de la taille des
graphes conduit à une complexité de calcul dans la mise en correspondance. Cependant, les ap-
proches structurelles fournissent une représentation puissante, permettant d’exprimer comment
les parties sont reliées les unes aux autres, tout en préservant la généralité et l’extensibilité.

Pour décrire les symboles, il est nécessaire de gérer les relations entre les parties décomposées.
Le paragraphe suivant donne un aperçu des travaux existants sur les relations spatiales et leur
bonne usages.

Effet de relations spatiales sur les performances de reconnaissance ont été examinés en dé-
tail pour les compréhension scène [Bar and Ullman, 1993], l’analyse des documents et des tâches
de reconnaissance [Garnesson and Giraudon, 1990, Pham and Smeulders, 2006]. Relations spa-
tiales peuvent être soit topologiques [Egenhofer and Herring, 1991, Renz and Nebel, 1998], di-
rectionnel [Matsakis and Wendling, 1999, Mitra, 2002] et métriques dans la nature, leur choix
en fonction du type d’application. Par exemple, dans [Xiaogang et al., 2004], configurations
topologiques sont traitées avec un peu de prédicats, comme l’intersection, l’interconnexion, tan-
gence, de parallélisme et concentricité exprimé selon une la norme des relations topologiques
décrite dans [Egenhofer and Herring, 1991].

De la même manière, les différents modèles de relations directionnelles ont été développés
pour une large gamme de situations différentes.

• Si les objets sont assez loin les uns des autres, leurs relations peuvent être approchées par
leur centres basé sur l’angle discrétisé [Miyajima and Ralescu, 1994, Mitra, 2002]. Cette
approche est robuste aux petites variations de forme et la taille des objets étudiés.

• Si elles ne sont ni trop loin ni trop près, les relations peuvent être approchées par leur rectan-
gle minimal de délimitation (MBR) tant qu’ils sont réguliers [Peuquet and CI-Xiang, 1987,
E.Jungert, 1993, Papadias and Theodoridis, 1997]. En d’autres termes, la qualité de la
MBR dépend de la compacité de la tuile.

• Des approches comme Angle Histogrammes [Wang and Keller, 1999] ont tendance à être
plus capables de traiter le chevauchement, ce que avec, les approches précédentes ont des
difficultés. Toutefois, car ils considèrent tous les pixels, leur coût de calcul augmente
considérablement.
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• D’autres méthodes, comme par exemple, les F-Histogrammes [Matsakis and Wendling, 1999]
utilisent des paires des sections longitudinales au lieu de paires de points, même au prix
d’une complexité temps.

• Une autre approche bien connue utilise de la logique floue [Bloch, 1999], et est basé sur des
opérateurs morphologiques flous.

Des approches mentionnées précédemment abordent soit seulement les relations topologiques,
soit les directionnelles. Gésrer les des deux en même temps vient avec des coûts élevés de cal-
cul. Même alors, aucun modèle existant intègre pleinement la topologie. Ils ont plutôt divers
degrés de sensibilité ou de prise en compte des relations topologiques. Alors que des méth-
odes comme [Xiaogang et al., 2004] se focalisent sur des informations topologiques seulement,
l’approche que nous développons dans cette thèse unifie l’information à la fois topologique et di-
rectionnelle dans un descripteur [K.C. et al., 2009c] sans aucun frais de temps de fonctionnement
supplémentaire.

Pour placer les relations spatiales dans le contexte de la reconnaissance et la description des
symboes, il convient de noter que les relations spatiales ont aussi une composante fondée sur la
langue (liée à la compréhension humaine par exemple, “à la droite de”) qui peut être formalisé de
façon mathématique (par exemple, les 512 relations du modèle 9-intersections [Egenhofer and Herring, 1991]).
Par conséquent, les relations qualitatives et quantitatives sont une autre façon de faire la caté-
gorisation des relations spatiales. Prenons un exemple, un objet A qui s’étend à droite (98%)
et en haut (2%) par rapport à B est exprimé en droit–Top(A,B). Ce prédicat spatial reste in-
changé jusqu’à un changement raisonnable de la forme et la position des objets. Compte tenu
de cela, notre travail utilise des relations plus naturelles que le tout-ou-rien des relations stan-
dard [Freeman, 1975].

Méthode Proposée

Notre méthode est fondée sur la reconnaissance spatio-structurelles de parties visuelles extraites
qui composent un symbole. Cela signifie que, pour décrire un symbole, nous calculons les relations
spatiales entre parties visuelles précédemment extraites. Le schéma complet est montré dans la
Figure 10.

Sans aucune autre considération, il est évident que la taille du graphe relationnel résultant est
potentiellement très large et variable d’un symbole à un autre. Toutefois, lorsque l’on regroupe
les parties visuelles ensemble selon leurs types (par exemple, les cercles, les coins . . . ), nous
pouvons éliminer tous les problèmes combinatoires inhérents à appariement de graphes, sans
pour autant sacrifier à la qualité de la reconnaissance ou la puissance expressive. Nous calculons
les relations spatiales entre les différents attributs étiquetés pour construire un graphe attribué
relationnel.

Globalement, il ya deux étapes.

étape 1 La méthode consiste d’abord à identifier les éléments de vocabulaire dans différents
groupes selon leur types (par exemple, un cercle, angle). Deux exemples sont présentés
dans la Figure 4.15.

Nous définissons un ensemble de propriétés visuelles bien contrôlées des pièces élémentaires
comme un vocabulaire [K.C. et al., 2009a]. Dans le cas générale, ce vocabulaire peut être
de toute nature de tout type de "sacs de caractéristiques", liés à ce qui est visuellement
pertinent dans le contexte de l’application. Notre vocabulaire courant est lié à des symboles
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Symbole

3. ARG

Matching via ARG Reconnaissance

2. Relations Spatiales

1. Vocabulaire visuel

Figure 10: Une architecture pour la description et la reconnaissance de symboles en utilisant des
relations spatiales. Elle utilise une description de symbole basée sur ARG en utilisant un vocabu-
laire visuel et des relations deux-à-deux possibles. Ces relations sont utilisées pour l’appariement.

électriques. Il peut être facilement étendu pour s’adapter à d’autres domaines. Ces visuels
sont extraits des pièces élémentaires avec l’aide d’opérations de traitement d’image tels
que décrits dans l’analyse [Rendek et al., 2004]. Plutot que d’utiliser tous les éléments
détectés en tant que base pour exprimer les relations spatiales et de l’informatique, nous
les regroupons par type comme indiqué dans la Figure 4.15. Nous noterons l’ensemble de
ces produits groupes,

�
T = {Tthick,Tcircle,Tcorner,Textremity}.

symbole 1 symbole 2

thick

cercle

corner

extrémité

Figure 11: Illustration du type de vocabulaire.

étape 2 Nous calculons ensuite les relations spatiales entre les paires possibles de types de
vocabulaire étiquetés qui sont utilisées comme une base pour construire un graphe attribué
relationnel (ARG) qui décrit parfaitement le symbole.

Formellement, nous définiossons l’ARG comme un quardruple G = (V,E, FA, FE) où

V est l’ensemble des nœuds;

E ⊆ V × V est l’ensemble des arrêtes;

FA : V → AV est une fonction qui affecte des attributs étiquetés nœuds et où AV est
l’ensemble des attributs

�
T (cf. point 1) et

FE : E → �E est une fonction qui affecte des étiquettes aux arrêtes et où � represente la
relation spatiale entre les nœuds aux extrémités de l’arrête E.
Par exemple, en utilisant le symbole 1 dans la in Figure 4.15 comme exemple, sa
représentation correspondante ARG est montrée dans la Figure 4.17.
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T1

T2T3

�(T1,T2)�(T1,T3)

�(T2,T3)

Figure 12: Graphe Attribué Relationnel (ARG) pour le symbole 1 dans la Figure 4.15 – un
example.

Les modèles relationnelles existantes abordent seulement soit les relations topologiques,
soit directionnelles. La gestion des deux vient à des coûts élevés de calcul. Même alors,
aucun modèle existant n’intègre pleinement a topologie. Ils ont plutôt divers degrés de
sensibilité à la prise de conscience des relations topologiques. Alors que des méthodes
comme [Xiaogang et al., 2004] se focalisent sur des informations topologiques seulement,
notre approche unifie les informations topologiques et directionnelles dans un descrip-
teur [K.C. et al., 2009c] sans aucun frais temps de fonctionnement supplémentaire.

Notre modèle relationnel peut être résumé comme suit. D’abord nous cherchons le point
de référence Rpc à partir des configuration topologiques deux à deux des objets consid-
érés. Ensuite des relations directionnelles sont calculées. Pour chaque point de référence
Rpc , nous couvrons l’espace environnant à des intervalles radiaux réguliers de Θ = 2π/m.
Comme montré dans la Figure 4.7 (a), un rayon tourne autour du point de référence et
lorsqu’il s’intersecte avec l’objet X (A or B), genère ainsi un histogramme booléen H,

H(X,Rpc) = [I(Rpc , jΘ)]j=0..m−1

où

I(Rpc , θi) =
�
1 if line(Rpc , θi) ∩ X �= ∅
0 otherwise.

Cet histogramme booléen exprime le fait qu’il y ait des pixels noirs dans une direction
donnée θi. Cette notion d’histogramme peut être étendue sans perte de généralité à un
histogramme couvrant des secteurs plutôt que des rayons, entre deux valeurs d’angles
successifs : θi and θi+1 et qui est normalisé par rapport à la surface de l’objet couvert de
sorte à ce que

�H(.) = 1.

Globalement, nous évitons le problème général NP-difficile de mise en correspondance de
sous-graphes en ayant des nœuds étiquetés uniques. Notre mise en correspondace d’ARG se
fait donc en temps quasi-constant. Contrairement à des méthodes actuelles, notre méthode est
donc en mesure de récupérer des parties isolées, ainsi que des pièces connues ou importantes des
symboles de ligne intégrées dans d’autres symboles, composites.

Validation

Pour valider notre méthode, nous menons une série d’expériences sur les données FRESH [FRESH, 2007]
et la comparons avec l’état de l’art des algorithmes.

Notre méthode de relations spatiales est comparée avec d’autres méthodes :

1. centres basé sur l’angle discrétisé [Miyajima and Ralescu, 1994],

2. histogramme d’angle [Wang and Keller, 1999] and
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x

y

Rp

θi

θi+1

Θ

(a) Rotation de ligne radiale �.

x

y

Object X

Rp

Θ = 3◦

Histogramme à Θ = 3◦ resolution:

boolean H(X,Rp) = [1 1 1 1 1 0 0 0 ... 0]1×120

metric H(X,Rp) = [0.14 0.21 0.24 0.28 0.12 0 0 0 ... 0]1×120

(b) Un exemple de calcul d’histogrammes: booléen et en pourcentage.

Figure 13: Calcul des relations spatiales utilisant la rotation de ligne radiale.

3. rectangle minimal de délimitation (MBR) [Papadias and Theodoridis, 1997].

Ensuite, nous avons effectué une autre évaluation afin de rendre la comparaison de la méthode
complète avec les approches de l’état de l’art (cf. Section 2.1)). Pour cela, nous prenons un
représentant de quelques descripteurs de signal globaux, appliqués directement sur le symbole.
Ils sont basés région

1. moments de Zernike (ZM) [Kim and Kim, 2000],

2. le descripteur générique de Fourier (GFD) [Zhang and Lu, 2002],

3. contexte de forme (SC) [Belongie et al., 2002] and

4. R−signature [Tabbone et al., 2006].

l’image
40 80 120

0

0.02

0.04

θ

H(cercle,Rpc
)

40 80 120
0

0.04

0.08

0.12

θ

H(coin,Rpc
)

Figure 14: Histigrammes relationels pour une paire de types de vocabulaire: cercle et coin, pris
du symbole 1, Figure 4.15.
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Cette partie de l’expérience est tirée de la contribution présentée àdans la Section 2.1. Enfin,
des approches récentes fondées sur la reconnaissance de pixels et dédiées aux symboles sont
comparées également. Elles sont

1. intégration de la statistique du tableau d’histogramme (SIHA) [Yang, 2005] et

2. noyau de la densité 2D [Zhang et al., 2006] une représentation basée symbole.

Sommaire des résultats. Afin de comparer notre modèle de relations spatiales avec les autres,
nous avons adapté nos ARG pour fonctionner avec ces modèles fondamentaux susmentionnés.
Parmi eux, le MBR surclasse dans toutes les situations. Dans le deuxième cadre, GFD semble
être le meilleur parmi tous les descripteurs de signaux testés dans notre contexte. Par conséquent,
pour une comparaison rapide, nous avons pris le meilleur des deux classes: MBR pour les relations
spatiales de base, GFD à partir des descripteurs du signal global et KDM pour les approches
pixel approches.

Notre méthode surpasse tous les modèles de relation spatiale ainsi que l’état de l’art des
approches. Notre méthode surpasse à la fois avec une différence significative dans l’efficacité
de récupération. La différence approximative avec GFD est de plus de 15% et 30% avec le
modèle MBR. KDM et GFD montrent un comportement similaire. La Figure 4.27 montre la
démonstration visuelle pour la comparaison.
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2.3 Intégration des Signatures de Forme dans la Représentation ARG pour
la Reconnaissance de Symboles

Contexte

Les approches structurelles fournissent des représentations puissantes, et expriment comment
les pièces sont connectés les uns aux autres. Toutefois, les signatures relationnelles n’exploitent
pas l’information ausi finement que des descripteurs de forme peuvent le faire. D’autre part,
les descripteurs de signaux globaux forme basée ne peut pas fournir de récupération optimale
performances puisque les symboles ne sont pas seulement sous forme linéaire et isolés, ils sont
composés avec des de nombreux éléments à la place. Par conséquent, la sélection optimale des
caractéristiques de forme et où s’appliquent sont les deux tâches principales dans le cadre ARG
comme discuté auparavant.

Considérant le problème de la localisation de symboles dans des documents réels, composé
de différents pièces contraints par des relations spatiales, on doit être capable de formaliser
les relations qui existent entre les parties extraites visuelle en plus de la description de formes
individuelles. Ce l’intégration des relations spatiales et la description la forme des pièces ex-
traites visuelle va être la partie essentielle de cette contribution. Cela signifie que nous intégrer
efficacement structurelles et caractéristiques statistiques dans nos méthodes.

Par conséquent, une description de l’image appropriée est nécessaire pour les intégrer où il
représente les propriétés généralité et l’extensibilité des approches structurelles. Il a également
été clairement mentionnés dans [Tombre, 2010]:

«. . . la nature très structurelle et spatiale de l’information que nous fait travailler
avec méthodes structurelles tout à fait naturel dans la communauté. Leur intégration
efficace dans méthodes qui ont également de profiter pleinement de l’apprentissage
statistique et de classification est certainement le droit chemin à prendre.»

Un exemple intéressant qui utilise des descriptions de forme et de relations pour former adjacence
de régions Graphique (GCR) est trouvée dans [Bodic et al., 2009]. Le GCR vectoriel est basé
sur les régions segmentées qui sont étiquetés comme des sommets et les propriétés géométriques
d’une relations d’adjacence sont utilisées pour bords des étiquettes. L’approche est limitée une
fois les régions segmentées changer avec les transformations d’image et donc il utilise les classes
du modèle de localiser quelques symboles dans les documents techniques. En revanche, notre
intégration est différente de la façon dont nous appliquons les descripteurs de forme et l’utilisation
de données relationnelles signatures. La méthode proposée sera discutée dans la section suivante.

Méthode proposée

Dans cette contribution, nous visons à combiner le meilleur des deux mondes: structurelle et
statistique, et essayez d’éviter les défauts de chacun d’eux. Pour ce faire, nous décomposons en
exprimant des symboles leurs diverses parties dans un vocabulaire fixe visuelle, en utilisant les
relations spatiales, de graphiques et de signal basé descripteurs pour décrire la forme entière.

Globalement, nous nous concentrons sur deux contributions majeures. Ils sont:

1. signatures de vertex à travers les descriptions forme dans ARG.

2. regroupement vocabulaire par l’analyse de forme - elle est appliquée à des modèles d’épaisseur.
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Symbole

3. ARG

Matching via ARG Reconnaissance

2. Relations Spatiales + Le descripteur de forme

1. Vocabulaire visuel

Figure 16: Une architecture pour la description des symboles et la reconnaissance utilisant des
caractéristiques de forme et des relations spatiales. ElleIl utilise une description de symboles
ARG en utilisant un vocabulaire visuel et de leurs possibles relations. Des signatures de forme
sont utilisées pour discriminer les pièces visuelles. Les deux, relations comme les signatures de
forme sont utilisées pour l’appariement des symboles principalement via ARG.

Validation

Puisqu’il s’agit ici d’une extension des travaux précédents mentionnés dans la Section 2.2, nous
avons testé son efficacité sur les données FRESH [FRESH, 2007]. Dans tous les tests, nous
prenons un représentant de quelques descripteurs de signal globaux, appliqués directement sur
le symbole, tout en intégrant des relations spatiales. Ils sont

1. moments de Zernike (ZM) [Kim and Kim, 2000],

2. le descripteurs générique de Fourier (GFD) [Zhang and Lu, 2002],

3. contexte de forme (SC) [Belongie et al., 2002],

4. R−signature [Tabbone et al., 2006] and

5. D−Radon (voir la Section 2.1).

Sommaire des résultats. Globalement, nous présentons une méthode de reconnaissance de
symboles sur la base des similitudes entre l’organisation spatiale et les caractéristiques de forme
des pièces visuelles qui composent le symbole.

Les différences substantielles en taux de reconnaissance entre les signatures forme intégrés
dans les sommets des l’ARG par rapport aux signatures de formes globaux, fournit des éléments
permettant d’affirmer que ces ajouts de description du symbole sont très importantes. Toutefois,
elle est mathématiquement coûteuse car elle nécessite des t signatures différentes pour le nombre
t de types de vocabulaire. Une telle signature pour les sommets est alors intelligemment intégré
à la signature des arrêtes. Tout en les intégrant, nous avons obtenu de meilleurs résultats
en utilisant seulement des méthodes de clustering des signatures de formes sur les sommets
étiquetés avec des traits épais épaisseur ou des cercles. Par conséquent, elle réduit le coût
correspondant des signatures correspondantes entre les sommets. Avec la mise en correspondance
de signatures relationnelles, une requête de sélection du motif d’épaisseur via le clustering a
grandement amélioré la performance. Cependant, la méthode ne fournit pas une différence
surprenante en raison du fait que tous les symboles de requête contiennent profil de type trait
d’épaisseur" dans leurs ensembles de type de vocabulaire. En d’autres termes, l’absence d’un
vocabulaire de type "trait d’épaisseur" signifie que le classement a été fait par l’alignement des
signatures relationnelle seulement, ne changeant finalement pas la performance de récupération.
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Deux descripteurs de signal globaux: D−Radon et GFD montrent un comportement presque
similaire sauf une différence de temps d’exécution, tandis que d’autres n’ont pas vraiment élevé
les performances. SC et ZM sont inférieurs à D−Radon et GFD. Dans notre application, SC est
fortement limitée par le nombre d’échantillons. Toutefois, nous avons essayé de le maximiser en
choisissant différemment dans différents sommets, par exemple. R−signature se trouve à être
toujours à la traîne.

Pour une meilleure compréhension, la Figure 17 montre une comparaison des performances
de récupération pour les quelques requêtes.
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2.4 Sac de Caractéristiques Spatiales pour la Reconnaissance de Symboles

Contexte

L’appariement de relations spatiales entre le vocabulaire qui compose un symbole est examinée
dans Section 2.2. Dans la description ARG correspondante, les sommets représentés contiennent
des éléments de types de vocabulaire regroupés plutôt que d’utiliser tous les pièces élémentaires
individuelles détectées. Cela a permis d’éviter les promblèmes NP-difficiles de mise en correspon-
dance de sous-graphes. Une telle description est limitée aux seuls symboles qui ont au moins deux
types de vocabulaire. Le problème est que ceci n’est pas toujours le cas. Prenons la situation
suivante à l’aide d’une illustration. Dans la Figure 18, deux types vocabulaire différents (cercle
et angle) sont détectés, et sont utilisés pour représenter deux sommets différents dans notre de-
scription symbole ARG. En l’absence de cercle ou pour représenter un rectangle uniquement via
ARG il n’existe pas de relation.

Détection Vocabulaire

Figure 18: Un symbole et ses parties élémentaires: le cercle et quatre coins.

Pour gérer une telle situation, une solution immédiate est d’utiliser le type de relations
intra-spatiale, qui a encore besoin d’avoir au moins deux pièces visuelles élémentaires dans un
type de vocabulaire unique. Par conséquent, nous avons intégré la description de la forme des
sommets que nous avons examiné dans la Section 2.3. L’intégration des signatures de forme
avec les signatures relationnelles donne une description ARG complet du symbole. En outre,
les signatures de forme peuvent être modifiées pour une certaine mesure, si une des parties
du vocabulaire est oubliée lors de l’extraction. La partie essentielle de cette contribution sera
d’utiliser une approche de type sac-de-Caractéristiques (BOF) utilisant les relations spatiales
pour toutes les combinaisons possibles des parties visuelles.

Prenons une définition rapide du modèle BOF avec un exemple. Une image peut être traitée
comme un document, et des caractéristiques extraites de l’image sont considérées comme les ‘mots
visuels’. Il permet une modélisation basé sur des dictionnaires, et chaque document ressemble
à un ‘sac’, qui contient quelques des mots du dictionnaire. En général, l’extraction de plusieurs
points–clés locales (ou régions) sont considérés comme des éléments de base, les ‘mots’. À titre
d’exemple, les méthodes telles que la Hesse-Affine descripteur [Mikolajczyk and Schmid, 2004] et
EIPD fonctionnalités [Lowe, 2004] ont été les plus utilisés. Par ailleurs, la grille régulière basée sur
la méthode comme [Li et al., 2005], est une autre idée simple pour détecter des caractéristiques.

Dans la reconnaissancees de graphiques, la démarche Sac de Caractéristiques Spatiales n’existe
pas vraiment dans la littérature. Des chercheurs de vision par ordinateur utilisent une idée sim-
ilaire pour la représentation de l’image. Dans la récente littérature, Sac de Caractéristiques
Spatiales a été étudié pour coder les informations géométriques d’objets et pour l’utiliser dans la
récupération d’images efficace [Cao et al., 2010]. Il utilise la projection de caractéristiques locales
dans un certain nombre de baquets. Ces baquets ou urnes peuvent être une projection linéaire
de 10 angles équidistants de [0◦, 180◦], ou le partitionnement les images en plus fines sous-régions
et les histogrammes des caractéristiques locales [Lazebnik et al., 2006], par exemple.

Inspiré par le concept ci-dessus, nous l’introduisons dans la reconnaissance des graphismes
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une approche différente. Dans notre contexte, les relations directionnelles entre paires sont
considérées comme les candidats des ‘caractéristiques’. Nous avons d’abord classé les pièces
élémentaires visuelles sur la base des relations topologiques. Pour l’illustrer, la Figure 19 montre
quelques catégories topologiques. Ensuite nous calculons les relations directionnelles pour donner
des détails métriques entre eux. Tout en faisant la reconnaissance, les relations directionnelles
correspondent a lieu entre les candidats qui partagent les mêmes configurations topologiques.
Une telle utilisation d’indications topologiques réduit considérablement le temps correspondant.

Déconnecté Externe Connecté

. . .

Contenir/Intérieur

Figure 19: Modèle de Sac de Caractéristiques Spatiales – un exemple. Chaque élément représente
une primitive visuelle.

Méthode proposée

Notre méthode est basée sur BOF qui utilise les relations spatiales entre les parties visuelles
élémentaires extraites qui composent un symbole. Dans la Section 2.2, nous expliquons le vo-
cabulaire visuel et la manière pour calculer les relations spatiales. Dans ce qui suit, nous allons
vous expliquer comment nous les traitons dans le modèle BOF.

Notre démarche sac de caractéristiques (BOF) gère toutes les combinaisons possibles entre
parties visuelles élémentaires. Les principales caractéristiques du processus global sont double:

1. Catégorisation du vocabulaire et

2. Raisonnement spatial.

Nous avons d’abord classé les éléments visuels dans des paires, basées sur des relations
topologiques (cf. La Figure 19). Nous calculons ensuite les relations directionnelles entre
elles. Cela signifie que les relations directionnelles sont calculées en fonction de leurs relations
topologiques booléennes. Par conséquent, les relations directionnelles sont mises en correspon-
dance uniquement avec ceux qui partagent les mêmes configurations topologiques. L’ensemble
du processus traite le vocabulaire de type intra-et inter-type séparément. La Figure 20 montre
un bloc–diagramme pour illustrer le concept de la méthode proposée.

Validation

Pour valider, en plus des images FRESh [FRESH, 2007], nous avons pris GREC [GREC, 2003].
Pour la comparaison, comme dans les sections précédentes, nous effectuons une série de tests
expérimentaux afin de confronter nos méthodes proposées avec celles existantes. Nos tests con-
sistent essentiellement en deux parties.

1. Méthode sac de caractéristiques spatiales

il est important de rappeler que la méthode du sac de caractéristiques spatiales utilise les
modèles directionnels suivants:
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Symbole

3. Sac de Car.s Spatiales

Matching Relations Reconnaissance

2. Relations Spatiales

1. Vocabulaire Visuel

Figure 20: Une architecture de la méthode de reconnaissance des symboles basés sur Sac de
Caractéristiques Spatiales.

(a) modèle de projection,
(b) modèle de la ligne radiale and
(c) Des modèles basiques

• centres basé sur l’angle discrétisé [Miyajima and Ralescu, 1994],
• histogramme d’angle [Wang and Keller, 1999] and
• rectangle minimal de délimitation (MBR) [Papadias and Theodoridis, 1997].

Comme mentionné dans la section 2.2, nous répétons l’utilisation de tous les modèles
de relations spatiales. La différence vient principalement de la façon dont ils sont
utilisés. Dans la section 2.2, les relations sont utilisées entre types de vocabulaire,
tandis qu’ici elles sont utilisées entre chaque partie visuelle individuellement.

De façon similaire, nous avons également effectué des évaluations en utilisant l’ensemble
des descripteurs globaux déjà utilisé précédemment:

2. Les descritpeurs globaux sont :

(a) moments de Zernike (ZM) [Kim and Kim, 2000],
(b) le descripteur générique de Fourier (GFD) [Zhang and Lu, 2002],
(c) contexte de forme (SC) [Belongie et al., 2002],
(d) R−signature [Tabbone et al., 2006] and
(e) D−Radon (voir la Section 2.1).

Comme dans les sections 2.2 et 2.3, nous répétons les expériences afin de pouvoir établir
une comparaison point par point.

Sommaire des résultats. Comme mentionné précédemment, nous avons testédeux ensembles
de données différents: FRESH [FRESH, 2007] et GREC [GREC, 2003]. .

Dans le cas de données GREC, il ne donne pas de taux de reconnaissance élevé. Les descrip-
teurs de forme donnent de meilleurs résultats car l’ensemble est composé de dessin des symboles
de lignes. L’amélioration des performances de récupération de la méthode est clairement visible
dans le cas des données FRESH. Cela signifie que la méthode peut effectivement récupérer des
symboles qui se trouvent dans une forme composite. Globalement, l’espace-sac-de- méthode de
fonctionnalités fournit des résultats intéressants, pour tous les modèles spatiaux relationnels.
En outre, la méthode peut être utilisée comme une approche « conviviale » de demande de
récupération symboles parce nous pouvons choisir les caractéristiques visuelles et l’utilisation de
leur organisation spatiale pour faire une requête. Par exemple :
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Q1.

Q2.

Figure 21: Récupération de symboles pour deux ensembles de symboles: GREC et FRESH basée
sur l’organisation spatiale d’un ensemble de parties visuelles comme requête.

• Trouver le symbole qui contient une épaisseur primitive intérieur d’un cercle primitif.

• Trouver le symbole qui a un rectangle contenant un cercle.

De telles requêtes récupèrent tous les symboles du jeu de données ayant une organisation
spatiale similaires. Figure 21 montre quelques exemples. Ces exemples attestent des avantages
ainsi que la généralité de la méthode.
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2.5 Apprentsissage de Symboles par programmation logique inductive basée
sur des descriptions formelles

Contexte

L’objectif principal de l’analyse d’image est d’éventuellement trouver le moyen de combler le
fossé sémantique entre les descriptions de bas niveau de l’image et les concepts de ce qui est
présenté en son sein. L’hypothèse courante dans l’état de l’art est que cela peut être obtenue par
l’interaction adéquate entre les descriptions des formes et la comparaison ou la distance entre eux
d’une part, et les techniques de classification ou le regroupement pour associer ces descriptions
à des concepts de plus haut niveau, d’autre part.

Tenter d’exprimer les informations visuelles à l’aide de descriptions «naturelles» a été l’origine
qui sous-tend l’engouement derrière l’analyse de modèles structurels. Le plus souvent, cela se
fait d’abord en lisant le faible niveau des indices visuels qui forment la base de données lex-
icales, et en procédant par un certain regroupement algorithmique afin d’exprimer des rela-
tions ou des propriétés qui sont ensuite traduits dans des «vocabulaires» de plus et plus com-
plexes qui déclenchenet des règles de niveau supérieur, pour, à la fin, exprimer des concepts
terminaux [Mas Romeu et al., 2007].

Notre approche est légèrement différente dans la façon dont nous n’essayons pas de construire
une chaîne de règles syntaxiques de déclenchement, mais plutôt construire notre vocabulaire sur
l’extraction directe de structures (plus ou moins) complexes dans les images. Ce vocabulaire
caractérise les symboles par un ensemble de structures locales très robustes. Cela nous per-
met d’exprimer des descriptions des symboles en prédicats de logique du premier ordre (FOL),
exprimant leur type selon le vocabulaire et l’expression du positionnement relatif des uns aux
autres.

Méthode proposée

Nous utilisons la programmation logique inductive (PLI) pour apprendre automatiquement des
descriptions non triviales de symboles, basées sur une description formelle. Figure 22 montre
une architecture de la méthode.

Symbole

3. Description formelle

Solveur ILP Reconnaissance

2. Relations spatiales

1. Vocabulaire visuel

Figure 22: Une architecture pour la reconnaissance de symboles sémantiques liées à l’aide logique
inductive Programmation basée sur la description formelle.

L’objectif global de la démarche consiste à exprimer des symboles graphiques par un certain
nombre de primitives visuelles qui peuvent être de n’importe quelle complexité (ie, pas nécessaire-
ment juste des lignes ou points) et les relations qui peuvent être déduites par traitement d’image
simple utisisant des outils d’analyse de l’état de l’art. Cette représentation est ensuite utilisée
comme une entrée pour un solveur ILP, afin d’en déduire des caractéristiques non évidentes qui
peuvent conduire à un processus de reconnaissance plus sémantique.
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141_2

⇒

circle1 circle2 circle3

corner1 corner2 corner3 corner4 corner5 corner6

corner7

extremity1 extremity2 extremity3 extremity4 extremity5

180_3

⇒

thick1

circle1 circle2

corner1 corner2 corner3 corner4

extremity1 extremity2

226_2

⇒

circle1

corner1 corner2 corner3

Figure 23: Primitives visuelles ou types de vocabulaire: thick, circle, corner and extremity pour
les symboles correspondants.
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Laissez-nous vous expliquer comment nous décrivons un symbole. La Figure 23 montre
le nombre de primitives visuelles détectées avec leur organisation spatiale. Basés sur elles, la
description symbole à l’aide d’un vocabulaire FOL sera expliquée ensuite. Prenons le symbole
226_2 de la Figure 23 pour voir comment nous l’exprimons en FOL.

% symol 226_2************************************
type(prim_174,circle).
type(prim_175,cornerne).
type(prim_176,cornerse).
type(prim_177,cornersw).

has_element(img_226_2,prim_174).
has_element(img_226_2,prim_175).
has_element(img_226_2,prim_176).
has_element(img_226_2,prim_177).

e(prim_174,prim_175). e(prim_174,prim_176).
inside(prim_174,prim_177). w(prim_175,prim_174).
n(prim_175,prim_176). nw(prim_175,prim_177).
w(prim_176,prim_174). s(prim_176,prim_175).
w(prim_176,prim_177). inside(prim_177,prim_174).
se(prim_177,prim_175). e(prim_177,prim_176).
% fin 226_2************************************

Basé sur la description décrite précédemment, les quatre premières lignes affectent les types aux
primitives visuelles extraites du symbole, notamment

type(prim_XX, visual_primitive).

Ensuite, les quatre lignes suivantes, défissent l’image dont elles sont originaires (img_name)

has_element(img_name,prim_XX).

Les six dernières lignes fournissent les relations deux à deux entre les primitives :

nw(prim_XX,prim_YY)

par exemple, prim_XX se trouve au nord-ouest de prim_YY.

Validation

Comme avant, pour validation, nous utilisons des données expérimentales issues de FRESH [FRESH, 2007].
Dans ce qui suit, nous expliquons notre démarche pour l’apprentissage des propriétés communes
à partir de symboles choisis afin d’exprimer des connaissances non triviales de représentations
visuelles basées sur le concept sémantique.

Afin de montrer quel genre de données que nous avons fait manipuler, nous avons sélectionné
des symboles 225_2 226_2 de la Figure 24 comme des exemples positifs. Tous les autres sont
considérés comme des contre-exemples.

La sortie du solveur ILP se compose d’une section [théorie], contenant les règles qui définis-
sent l’exemple positif donné. Pour chaque règle de la théorie, le solveur donne des statistiques
correspondant, indiquant la précision des règles (combien d’exemples positifs couverts, et com-
bien négatives des exemples). Pour un match parfait, la partie théorique devrait consister en une
règle unique couvrant tous les exemples positifs et aucun des exemples négatifs. Des expériences
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180_1 185_1 195_2 200_2 225_2 199_2

198_2 207_2 226_2 184_1 186_2

208_2 180_3 185_3

Figure 24: Un petit échantillon utilisé pour les expérimentations.

complémentaires devront montrer que ce n’est pas toujours réalisable. Parfois, la théorie est com-
posé de plusieurs règles, dont chacun couvre un sous-ensemble des exemples positifs. Parfois, des
exemples négatifs sont aussi couverts par la théorie. Dans notre exemple, cela donne:

[theory]
[Rule 1] [Pos cover = 2 Neg cover = 0]
symbol(A):-

has_element(A,B), type(B,cornerne),
has_element(A,C), n(B,C), type(C,cornerse).

[positive examples covered]
symbol(img_225_2).
symbol(img_226_2).

[negative examples covered]

test
[covered]
symbol(img_225_2):-

has_element(img_225_2,prim_170),
type(prim_170,cornerne),
has_element(img_225_2,prim_172),
n(prim_170,prim_172),type(prim_172,cornerse).

Après la section [theory] viennent deux sections décrivant les examples couverts par la théorie
: [positive examples covered] ainsi que les exemples négatifs éventuellement couverts par
erreur : [negative examples covered]. Ces deux sections explicitent les instances des exemples
couverts par l’ensemble des règles.

La dernière partie [covered] est tout simplement un exemple d’une des instances couvertes
en guise d’exemple de vérification.

L’interprétation complète de la sortie du solveur est que les symboles 225_2 and 226_2
peuvent être distingués complètement et formellement des autres symboles par le fait qu’ils
disposent de deux coins alignés verticalement comme montré ci-dessous :

nord-est coin (i.e., cornerne)
sud-est coin (i.e., cornerse)

Une vérification visuelle de la Figure C.8 ne permet pas de trouver de contre-examples, et une
vérification plus formelle le confirme.
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Sommaire des résultats. La manipulation des pièces visuelles élémentaires de symboles
graphiques, plutôt que d’en utiliser la forme générale, a plusieurs avantages. Les avantages
peuvent se résumer en deux principaux points:

1. L’avantage principal est que les symboles peuvent être localisés dans une forme composite.

2. La description fournit une représentation puissante des symboles à l’aide des relations entre
ses composants.

Un exemple de déduire la caractérisation commune de tous les symboles:

symbol(A):- has(A, primitive_a), type(primitive_a, corner1),
has(A, primitive_b), type(primitive_b, corner2),
North(primitive_a,primitive_b).

En particulier, nous soulignons la méthode en deux points majeurs.

1. Le principal avantage de cette approche est que l’information ne doit pas nécessairement
être visuellement représentée (par exemple, du texte environnant), et elle ouvre ainsi un
nouveau champ de possibles combinée texte/image pour la caractérisation et la notion
d’apprentissage.

2. Par rapport à des modèles statistiques d’apprentissage, le système s’adapte à la complexité
de la classification à l’égard des données d’apprentissage, sans besoin d’aucun paramétrage
de toutes sortes.

End of Thesis Summary in French
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Foreword. This thesis is about graphics recognition i.e., the recognition of graphical symbols. Symbol
recognition does not mean only to recognise isolated symbols but also those found in composite form, or
connected with other graphical elements in addition to texts. Therefore, the thesis aims to retrieve those
symbols which are similar either in terms of the whole appearance or of significant parts of it.

The experiments supporting our work primarily use electrical symbols from wiring diagrams. These
diagrams are from an unpublished dataset called the FRESH dataset previously used in [Salmon, 2008].
The approaches developed in this thesis are also validated on other datasets such as architectural symbols,
hand-drawn symbols, handwritten character datasets for several different scripts such as Indian, Japanese–
Katakana and Roman, as well as a foot-wear impression evidence dataset. �

1.1 Organisation of the Chapter

This chapter provides an overall concept of the thesis. We start with a positioning of graphics
recognition within the larger document image analysis domain in Section 1.2. We also include
motivation, scientific context and contributions dedicated to the thesis. We present a chapter-
wise description of our contributions. In Section 1.3, we point out what comes next.
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1.2 Graphics Recognition

1.2.1 Motivation

Document analysis or processing is mainly related to texts and graphics. It concerns separation,
localisation and recognition. According to [Nagy, 2000], document analysis is related to docu-
ment image analysis (DIA) since the overall research works have been concerned with document
image interpretation. Basic tasks are image segmentation, layout understanding and symbol
recognition. In a similar manner, [Kasturi et al., 2002] categorises document image analysis into
two domains:

1. textual processing and

2. graphical processing.

Figure 1.1 shows a perspective of it along with a further sub-categorisation. Graphics processing
refers to lines, corners and curves analysis on the one side while on the other side, it is concerned
with regions and symbol analysis and recognition.

Document Analysis

Text

Graphics

Line, Corners, Curves

Regions, Symbols

Figure 1.1: Document analysis or processing [Kasturi et al., 2002].

One part of document image analysis means to recognise graphical elements and or to localise
significant or known visual part of the images. Within the aforementioned context, graphics
recognition (i.e., recognition of graphical symbols) has been an intensive research activity in the
community of pattern recognition and document analysis since a few decades. Symbol recognition
has a long history since the 70’s. In 1998, [Tombre, 1998] has made a statement: ‘none of these
methods works’. Since then, it has been actively extended.

Symbol recognition – the core part of graphical document image analysis and recognition
systems – plays an important role in a variety of applications such as automatic recognition and
interpretation of

• circuit diagrams [Okazaki et al., 1988, Feng et al., 2009],

• engineering drawings [Yang et al., 2007] and architectural drawings [Lladós et al., 2001,
Valveny and Martí, 2003],

• musical notations [Rebelo et al., 2010],

• maps [Samet and Soffer, 1996a],

• mathematical expressions [Chaudhuri and Garain, 2000], as well as

• optical characters [Yuen et al., 1998, Heutte et al., 2004].

Therefore, a symbol can be defined as a graphical entity with a particular meaning in the context
of a specific domain. As such, and besides preprocessing, the whole symbol recognition process
is either based on either
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1. feature matching between a query and dataset symbols or

2. comparison of decomposed parts like lines and arcs as well as their relations between them.

Shape analysis for symbol representation is an example of the approaches, related to item 1.
An interesting overview of the performance of the most commonly used shape descriptors for sym-
bol representation is given in [Valveny et al., 2007]. They are commonly referred to as statistical
approaches. On the other hand, item 2 refers to structural approaches. They mainly include em-
bedded graph based classification problems like attributed relational graphs (ARG), region adja-
cency graphs (RAG) [Lladós et al., 2001] and constraint networks [Ah-Soon and Tombre, 2001].
In both cases, recognition performance accounts mainly two issues: recognition rate or efficiency
and computational complexity. The former issue is largely based on how symbols are represented
i.e., quality of symbol representation (either just a contour information or global appearance is
taken into account) and computational complexity is based on matching techniques. Also, in
general, matching techniques are often induced how symbols are represented. Statistical signa-
tures are found to be a better choice where linear or isolated symbol are treated and also when
time complexity is an issue. Structural techniques are able to handle all types of symbols (e.g.,
isolated, composite), and have a powerful relational representation. However, they suffer from
intense computational complexity due to the general NP-hard problem of sub-graph matching
resulting from the variation of graph structure with the level of noise, occlusion, distortion etc.

In the current state-of-the-art, symbol recognition usually means recognising isolated sym-
bols. This is not always suitable for solving real-world problems, however. Consider a situation
where both isolated symbols as well as composite symbols that are connected with other graph-
ical elements. In such a case, statistical signatures using shape descriptors, for instance, do not
perform well because they take global appearance into account. Structural approaches do not
perform well because their usability is limited due to intense computational complexity. Within
this context, very recently, [Tombre, 2010] stressed the fact that ‘which features distinguish graph-
ics recognition from general pattern recognition problems? ’ since it has been stated that methods
vary from one application to another. Therefore, there still exists growing interest in graphics
recognition domain.

Considering all aforementioned points, this thesis addresses the use of structural and statisti-
cal signatures as well as their possible and efficient combinations. Let us point out contemporary
issues that have been made recently [Tombre, 2010], from which the thesis is inspired:

• ‘... the recurring wish for methods capable of efficiently combining structural
and statistical methods’ and

• ‘the very structural and spatial nature of the information we work with makes
structural methods quite natural in the community.’

Based on the aforementioned points, efficient integration from which we can take full advantages
of statistical and structural approaches, is the primary goal of the thesis. We present a method
for symbol recognition based on the similarity between spatial organisation and shape features
of the visual primitives that compose the symbol. We address the use of spatial relations be-
tween the visual primitives first and then combine them with shape features in the framework of
ARG. Because of the particular choices in the labelling of the vertices representing known visual
primitives, vertex and edge matching becomes trivial and can be done in a near-constant time,
thus avoiding NP-hard graph matching problem. In parallel, we introduce a DTW–Radon de-
scriptor for graphics recognition. The proposed methods provide better recognition performance
compared to the major state-of-the-art algorithms. Furthermore, this thesis also addresses a
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knowledge learning technique that aims for semantic related symbol recognition. It uses induc-
tive logic programming (ILP) to automatically learn non-trivial descriptions of symbols, based
on a formal description derived from the previously mentioned structural and statistical informa-
tion. Such a description of the symbol is expressed by a number of visual elementary primitives
and their possible relations. Compared to statistical learning models, the system adapts the
complexity of the classification with respect to the learning data.

A detailed list of our contribution will be given in Section 1.2.3. Before that let us revisit
and put forward our primary scientific problem in the following section.

1.2.2 Scientific Context

The work is inspired by a real world industrial problem [Tombre and Lamiroy, 2008, Salmon, 2008]
which consists in identifying a set of known symbols in aircraft electrical wiring diagrams, in or-
der to bootstrap simulation algorithms [FRESH, 2007]. The challenges primarily lie in the fact
that the test symbols are in varied forms. Symbols may either be very similar in shape – and
only differ by slight details – or either be completely different from a visual point of view. Sym-
bols may also be composed of other known and significant symbols and need not necessary be
connected. A few samples are shown in Figure 1.2.

Figure 1.2: A sample of few electrical symbols [FRESH, 2007].

For evaluation, several different human evaluators are used to form ground-truths since there
is no absolute ground-truth associated to our dataset – which is obvious in case of real-world
application. In order to handle this, we have asked them to manually select what they consider
as “similar” symbols, for all queries by providing the following information. With respect to the
provided query, chosen candidates must have either

• similar visual overall appearance or

• similar significant parts or graphical elements within it.

In more formal terms, for each query the “ground-truth” is considered to be the set of symbols
formed by the union of all human selected sets. These evaluators were not required to provide
any ranking order nor degree of visual resemblance. As an example, we consider the first sample
in Figure 1.3 as a query and all others are similar selected database symbols. In this example,
we try to address our specific problem together with difficulties associated with it. Moreover, it
provides how our problem can be made different with the general symbol recognition problem.
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. . .

query

. . .

Figure 1.3: Selection of similar database symbols for a chosen query. The first symbol is
considered to be a query symbol and remaining are ‘ground-truths’ associated with it. Ground-
truth associated with a chosen query is not only concerned with similar visual overall appearance
but also significant known parts within it, that may or may not be connected with other graphical
elements and text.

1.2.3 Framework – Contributions of the Thesis

Symbol recognition usually means recognising isolated symbols. In this context, we present a
feature based descriptor in order to describe global appearance of the graphical symbols.

Contribution 1. DTW–Radon: A new shape descriptor for graphics recognition.

We introduce a method based on dynamic programming for matching the Radon features,
for graphics recognition. The key characteristic of the method is to use dynamic time warp-
ing (DTW) algorithm to match corresponding pairs of the radon features for all possible
projections. To make it rotation invariant, we estimate the orientation angle of the pattern
that will avoid incorrect alignment. Overall, this allows to exploit the Radon property that
includes both boundary as well as internal structure of shapes, while avoiding compressing
pattern representation into a single vector and thus miss information, thanks to the DTW.

In Chapter 3, we present the concept in detail. We validate by comparing it with a set
of major shape descriptors over several different datasets. In all experimental tests, we
focus on the optimisation of the number of bins i.e., projections in order to reduce the
computational complexity.

Considering the real-world problem, isolated symbol recognition methods are not always
suitable, however. In case of composite documents that contain textual and graphical elements,
one needs to be able to extract and formalise the links that exist between the images and the
surrounding text, in order to exploit the information embedded in those documents. Therefore,
correct extraction, representation of both visual data, textual and graphical structures, and
organisation are the first steps towards further automated knowledge, information discovery and
information retrieval or data mining on more complex data than just text.

Within this context, for graphics recognition, we primarily focus on three main items:

1. the extraction of visual elements (vocabulary) that compose an image;

2. the expression of visual relations between the elements;

3. knowledge discovery, formal learning techniques and classification using the vocabulary and
relations mentioned above, including vocabulary shape analysis.
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The first two items are based on standard image treatment analysis operations [Rendek et al., 2004]
while, contributions of the thesis mainly rely on item 3. Based on this, there are five main con-
tributions:

Contribution 2. Symbol recognition using spatial relations.

We present a method for symbol recognition based on the spatio-structural description of
a ‘vocabulary’ of extracted visual elementary parts. The method is primarily based on
spatial relations between the possible pairs of labelled vocabulary types such as circles
and corners, which are further used as a basis for building an attributed relational graph
(ARG) that fully describes the symbol. These spatial relations integrate both topology and
directional information. Thanks to our labelling of attribute types, corresponding relation
alignments are possible between the two graphs while avoiding the general NP-hard graph
matching problem.

In Chapter 4, we provide a detail study of how spatial relations are used to represent
complete symbols as well as a comprehensive comparison with the other spatial relation
models including state-of-the-art approaches for graphics recognition.

Contribution 3. Integrating spatial relations with statistical features for symbol recognition.

We present method for symbol recognition based on both the spatial organisation and
shape features of the visual primitives that compose the symbol. Keeping the ARG based
symbol description mentioned in contribution 1, shape signatures are integrated in two
different ways. First, shape signatures are for labelling vertices. Second, shape features are
applied only to the vocabulary which show significant shape variations.

In this contribution, statistical features are integrated with spatial relations wherever nec-
essary i.e. where significant shape variations occurs in the visual primitives. We present it
in Chapter 5. We concentrate on advancing recognition performance by integrating shape
features on the visual primitives. To handle this, we study the pertinence of the major set
of shape descriptors.

Contribution 4. Spatial-bag-of-features for symbol recognition.

We introduce a concept for symbol recognition which is based on spatial-bag-of-features
that are computed from extracted visual elementary parts. The key characteristic of the
overall process is to use topological relations information to guide metric directional rela-
tions. Such a topological guidance makes our method efficient since matching goes only
to the relevant candidates which share same topological configuration and therefore, it
reduces computational time i.e., rapid search is possible.

In Chapter 6, we explain it in detail including the way to recover the shortcomings of
the methods presented in previous contributions. Besides recognition performance, we
addresses the advantages and extension of the method in such a way that it can be used as
a ‘user-friendly’ symbol retrieval application. For instance, ‘find symbol which has a
rectangle containing a circle’. As in Chapter 4 and 5, fundamental spatial relation
models are employed including a set of major shape descriptors for comparison.

Contribution 5. Formal learning techniques for semantic related symbol recognition.

We present the use of formal learning techniques to automatically learn non-trivial de-
scriptions of symbols, based on a formal description. The previously described ARG using
visual vocabulary and relative positioning is transformed into a first-order logic (FOL)
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based description of the graphical symbols. This representation is then used as an input
to an ILP solver, in order to deduce non obvious characteristics that may lead to a more
semantic related recognition process.

Overall, it yields a common characterisation of the sub-set of symbols from the pool of do-
main knowledge. As said before, the method can adapt any complexity of the classification
in contrast to statistical learning models. We have validated and explained in Appendix C.

1.3 What is Next?

In the previous section, the key contributions are mentioned and are outlined chapter by chapter.
In the following chapter, before addressing these contributions in detail, we present state-of-
the-art of graphics recognition. In Chapter 2, we particularly focus on structural, statistical
and specially designed approaches for graphics recognition.

End of Chapter
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Foreword. This chapter discusses common approaches for graphics recognition including their main
characteristics. More specifically, it is focussed on structural approaches using spatial relations and
statistical approaches via shape analysis, as well as symbol recognition methods. At the end, applications
related to graphics recognition domain will be provided. �

2.1 Organisation of the Chapter

The chapter is organised as follows. We start with introduction to graphics recognition in Sec-
tion 2.2. It includes statistical, structural and hybrid approaches. We discuss them one after
another. In Section 2.2.1, we explain statistical approaches by reviewing shape analysis for
graphics recognition. Similarly, in Section 2.2.2, we review structural approaches where we
mainly highlight three issues: primitive selection, spatial relations, and symbol representation
and matching. We review hybrid approaches in Section 2.2.3. They primarily consist of methods
especially designed for graphics recognition. Section 2.3 gives more application domains, showing
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the interest of close-to graphics recognition problem. Section 2.4 gives a brief summary of the
chapter.

2.2 Graphics Recognition

Research on graphics recognition has an extremely rich state-of-the-art, aimed to localise/recognise
symbols depending on the applications. We are not aware of published comprehensive literature
review since [Cordella and Vento, 2000b, Lladós et al., 2002]. Existing approaches, specifically
those based on feature based matching, can roughly be sorted into three approaches: structural,
statistical and hybrid.

Statistical signatures [Jain et al., 2000] using shape descriptors for instance, do not perform
well for all kinds of images because they represent global appearance by a fixed size feature
vectors regardless of the size or complexity of the image. Also, in case when the studied im-
age is characterised by their possible relations between the different parts within it, there exists
no direct possibility to describe binary relations. In those cases, structural approach would
be a better choice [Pavlidis, 1977, Bunke and Sanfeliu, 1990]. In structural approaches: graph-
based representations [Conte et al., 2004] in particular, graphs are not constrained to a fixed
size. This means that number of vertices and edges, and relationships like spatial and concep-
tual can be possibly varied from an image to another. Due to which, practical use of structural
approaches for graphics recognition is limited due to intense computational complexity. As a
consequence, several symbol recognition methods are introduced for instance, pixel-based ap-
proaches like statistical integration of histogram array (SIHA) [Yang, 2005] and Kernel density
matching [Zhang et al., 2006]. Within this context, very recently, [Tombre, 2010] asks ‘which
features distinguish graphics recognition from general pattern recognition problems? ’ since it has
been observed that methods vary from one application to another. Therefore, there still exists
growing interest in graphics recognition domain.

The aforementioned paragraph is just a snapshot by taking a few examples of prominent
work related to graphics recognition. In what follows, we clearly explain the approaches on a
detailed basis. In all cases, considering our specific problem i.e., symbol recognition, we highlight
the following issues:

1. symbol representation: for both isolated as well as it is found in composite form;

2. comparison of two representations to do recognition; and

3. extensibility.

The first two items are directly related to the recognition performance of the method. Recognition
performance consists of two major factors: recognition rate and computational complexity (or in
our case execution time). The quality of the symbol representation determines the former factor
while comparison of two representations reflects the latter one.

2.2.1 Statistical Approaches

In statistical approach, two issues are primarily involved: feature selection and model selection
for recognition. Usually each pattern is represented as a n-dimensional feature vector i.e. x =
(x1, x2, . . . , xn) ∈ Rn and recognition is carried out by partitioning the feature space into different
known classes.
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Basically, in symbol recognition, geometric features like centroids, axes of inertia, circularity,
area, line intersections, holes and projection profiles, geometric moments and image transforma-
tions are used for the recognition of different patterns such as graphical symbols and characters.
Within this framework, shape descriptors basically take into account the global appearance of
pattern. A comprehensive explanation can be found in [da Fontoura Costa and Junior, 2001].

In this overview, we are considering shape features first. Shape descriptors are often cat-
egorised into two classes. They are contour-based and region-based descriptors. According to
the geometry of primitives, 1D descriptors essentially correspond to contour-based and skeleton-
based descriptors while 2D descriptors correspond to region-based descriptors.

1. Contour-based descriptors: Common contour-based descriptors are

• Fourier descriptors (FD) [Persoon and Fu, 1986, Zhang and Lu, 2005];

• polygonal [Attalla and Siy, 2005] and curvature [Bernier and Landry, 2003] primitives
from the contour information;

• skeleton extraction [Zhu and Yuille, 1996]; and

• geometric invariant theory [Mundy and Zisserman, 1992].

2. Region-based descriptors – They take into account all pattern pixels. A few common
methods are

• based on the moment theory [Teh and Chin, 1988, Bailey and Srinath, 1996]; includ-
ing geometric, Legendre, Zernike moments [Chong et al., 2003]; and

• generic fourier descriptor (GFD) [Zhang and Lu, 2002].

Contour-based and region-based descriptors can be compared as follows. Contour-based
descriptors are appropriate for silhouette shapes. Consequently, they are limited since they
cannot capture interior contents, disconnected shapes or shapes with holes where bound-
ary information is not available. Furthermore, they are sensitive to noise since boundary
information would be deteriorated that could significantly change the tangent values. In
contrast, region-based descriptors can be applied to a broader scope of symbols since they
take internal contents into account as well. For example, GFD is a generalised case of FD.
To avoid the problem of rotation in the Fourier spectra, the 2D Fourier transform (FT)
is applied on a polar-raster sampled shape. This approach outperforms common contour-
based (classical Fourier and curvature approaches) and region-based ZM shape descriptors.
However, they present high computational complexity compared to contour-based ones.
One of the key points is: the normalisation procedure to satisfy common geometric invari-
ance properties introduces errors as well as they are sensitive to noise, eventually affecting
the whole recognition process. It applies to region-based descriptors.

A review of shape descriptors for document analysis was presented in [Terrades et al., 2007a]
which highlights notion of feature extraction method, their properties and pointing out their
weakness. In [Valveny et al., 2007], shape descriptors (pixel-based, contour-based and structural)
are evaluated and compared. The authors mention that there is no unique shape descriptor that
can fit to all types of problems. In what follows, we explain some common shape descriptors.

• Zernike moments are based on orthogonal moments [Hse and Newton, 2004]. When ap-
plied to symbol recognition, they are computed on evenly distributed data points. One of
the attractive features of Zernike moments is the use of magnitudes that are invariant to
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rotation [Bailey and Srinath, 1996] and can be constructed to an arbitrary order easily. In
contrast to other moments, it can be used in distorted symbols [Teh and Chin, 1988].

• Fourier descriptors for symbol recognition apply to simple models [Yu, 1995] and parts of
the models [Kim et al., 1993]. Moreover, signature approximation from Fourier series in
order to represent symbols as presented in [Tabbone et al., 2003] has shown the geometric
properties like scaling, translation, symmetry and scaling can be preserved. In addition,
Fourier descriptors do not require shape contour information which is frequently encoun-
tered in other Fourier descriptors variants.

• Symbol shape representation through the Radon transform is limited to line drawing
shapes [Tabbone et al., 2003]. Also, use of an R−transform to obtain the R−signature
in particular [Tabbone et al., 2006] misses important information.

• In [Nguyen et al., 2008], shape context [Belongie et al., 2002] has been implemented to-
gether with vector model. This integration helps to reduce large set of candidates search
while matching takes place.

Remarks. Global signal-based descriptors are usually quite fault tolerant to image distor-
tions, since they tend to filter out small detail changes. However, when symbols are combined,
approaches that rely on centroid detection like [Yuen et al., 1998] tend to fail. Others, like
shape context [Belongie et al., 2002] are sensible to occlusions on the symbol boundaries. Fur-
thermore, it does not satisfy scale invariant properties. In these statistical approaches, signa-
tures are simple with low computational cost. However, discrimination power and robustness
strongly depend on the selection of optimal set of features for each specific application as well as
proper fusion of classifiers [Kudo and Sklansky, 2000, Ruta and Gabrys, 2000, Duda et al., 2001,
Schmitt et al., 2008]. To overcome some of these drawbacks, for symbol recognition, descriptors
have been combined to increase performance [Salmon et al., 2007, Barrat and Tabbone, 2010,
Terrades et al., 2007b].

One of the contributions of this thesis is that we introduce a method based on dynamic
programming for matching the Radon features, for graphics recognition (cf. Chapter 3). The key
characteristic of the method is to use align corresponding pairs of radon features for all possible
projections. Overall, this allows to exploit the Radon property that includes both boundary as
well as internal structure of shapes, while avoiding compressing pattern representation into a
single vector and thus miss information. It outperforms the state-of-the-art of common shape
descriptors.

Notwithstanding this improvement, global signal-based shape descriptors difficultly accom-
modate with connected or composite symbols.

2.2.2 Structural Approaches

Structural approaches are based on symbolic data structures such as strings, trees and graphs.
Graphs are found to be the most general one since strings and trees are always included as special
cases. In document analysis, the most recent advancement in graph-based pattern recognition is
presented in [Bunke and Riesen, 2011].

In graph-based representation, an image is characterised by properties of spatial objects
within it and their pairwise possible connections between either the complete objects or key
points and regions. region adjacency graph (RAG) [Rosenfeld, 1974] uses interest regions and
adjacency relations, for instance. Let us take a few examples to illustrate the concept. Figure 2.1
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shows an example of a proximity graph that is based on local descriptor via Harris-Laplace
detector [Mikolajczyk and Schmid, 2004] as presented in [Rusiñol and Lladós, 2008]. Similarly,
other forms of graph like attributed relational graph (ARG) or so-called line graph (specifically
designed for symbol representation) [Delalandre et al., 2008] as shown in Figure 2.2, provide
fundamental parameters related to structural approaches. On the whole, graphical symbols
are represented by describing shapes via a suitable set of geometric shape primitives and their
possible pairwise connections.
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Figure 2.1: A simple example, showing proximity graph representation using interest points using
local descriptor.
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Figure 2.2: A simple example, illustrating graphical symbol representation using relational graph.

In what follows, we explain

1. primitive selection,

2. spatial relations, and

3. symbol representation and matching.

Overall, primitive selection and their connecting relationships are used to describe the whole
symbol. Matching is ultimately based on how symbols are described.

Primitive Selection

A symbol is naturally represented by the number of pixels or points. As said before, use of key
points using local descriptor as in Figure 2.1 is an example. However, it is unclear which local de-
scriptors are more appropriate and how their performances depend on key points or region detec-
tors, since descriptors usage varies from one application to another. Comprehensive explanations
can be found in [Mikolajczyk and Schmid, 2005]. Vectorisation [Doermann, 1998] is another pre-
liminary task for extracting primitives like simple lines [Chiang et al., 1998, Zheng et al., 2005]
and arcs [Dori, 1995, Dosch et al., 2000, Lamiroy and Guebbas, 2009] including geometric prim-
itives such as loops and contours or simple shapes like circles and rectangles. These are then
used to describe symbol by integrating possible connections between them.
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A very common drawback arising from vectorisation is error-prone raster to vector conversion.
For example, primitive types such as arc and corner are not always extracted as the degradation
or noise level increases. However, robust vectorisation exists in line drawing images including en-
gineering drawings [Janssen and Vossepoel, 1997, Hilaire and Tombre, 2006, Song et al., 2002].
Consequently, use of such low-level primitives varies widely according to the nature of the sym-
bol.

Spatial Relations

Spatial reasoning is regarded as a central skill to many human tasks, as being able to commu-
nicate about the space. A common and natural way to share spatial information is through the
use of spatial predicates [Retz-Schmidt, 1988] such as Left of and Right of, in order to derive re-
lationship between the spatial entities. To handle image recognition, partial recognition of visual
primitives used to guide the recognition of remaining parts within it [Bar and Ullman, 1993]. It is
based on the question i.e., effect of spatial relations on recognition performance [Biederman, 1972,
Cave and Kosslyn, 1993].

In document image analysis, relations are used for analysis of architectural documents and
for automatically recognition of models [Vandenbrande and Requicha, 1993] and the graphi-
cal drawings understanding of scanned colour map documents [Centeno, 1997] or to define
efficient retrieval methods [Gevers and Smeulders, 1992, Lee and Hsu, 1992, Heidemann, 2004,
Medasani and Krishnapuram, 1997].

Before explaining the details about the impact of spatial relations for document image anal-
ysis, in the following, we first briefly outline spatial relations, their categorisations, properties as
well as their appropriate usage.

Families – which family? [Winston, 1975] provides one of the first consistent studies of
spatial relations and their variations according to the context. An important family of spatial
relations and associated properties came from Freeman [Freeman, 1975]. Those relations are
categorised as follows:

1. topological relations;

2. metric relations; and

3. directional relations.

Topological relations describe neighbourhoods and incidence such as disconnected and externally
connected, directional relations provide order in space such as, north and south, and metric
describes distance relations like near or far.

In what follows, we shortly provide background for all families of spatial relations including
their global characteristics.

Topological Relations In connection with [Renz and Nebel, 1998], basic topological relations
close to human understanding are disconnected (DC), externally connected (EC), covers (Cr) or
covered by (CB), contains (Cn) or inside (I) and equal (EQ). Figure 2.3 shows an illustration
of it. In this illustration, we can observe that topological relations satisfy affine transformation
invariant properties.
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DC(A,B) EC(A,B) Cr(A,B) CB(A,B)

O(A,B) Cn(A,B) I(A,B) EQ(A,B)
A
B

Figure 2.3: Possible topological relations between two objects A and B.

Metric Relations provide an idea of distance between two spatial objects. Consider a metric
on a set X is a function (called the distance function or simply distance), then

d : X ×X → R

where R is the set of real numbers. For all x, y and z in X, this function is required to satisfy
the following conditions:

c1. d(x, y) ≥ 0 i.e., non-negativity

c2. d(x, y) = 0 if and only if x = y

c3. d(x, y) = d(y, x) i.e., symmetry

c4. d(x, z) ≤ d(x, y) + d(y, z) i.e., triangle inequality.

Based on it, many modifications have been made according to the applications.
Computer representation of geo-spatial information has been motivated by proximity relations

such as nearness and locality, as described in [Worboys, 1995]. For example, nearness is derived
form relative distance i.e., relative distance(x, y) = d(x,y)

µc
where µc is the mean distance measured

from the centre.

Directional Relations In general, they provide an idea of orientation of the primary spatial
objects with respect to a reference. Each object is represented by one or more representative
points, and the space is partitioned using these points. The relation is then determined using
the partitions to find where the object representative points are.

Depending on the concept of partitioning, there are several different ways to handle directional
relations between the spatial objects. In the following, we provide some of the fundamental
concepts or models.

1. Angle-based model – Angle based relational models provide a true orientation of spatial
objects. Two fundamental models fall under this category.

• Cone-shaped model: The relations can be approximated by their centres based on
discretised angle [Miyajima and Ralescu, 1994, Mitra, 2002] i.e., ∠(CA, CB) between
the objects A and B. It is sometimes also called the bi-centre model. It provides several
different configurations based on star calculus [Renz and Mitra, 2004]. Figure 2.4
shows progressive refinement of bi-centre model from 4-directions to 16-directions.
This model possesses the following shortcomings.
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Figure 2.4: Star calculus via bi-centre model using angle-based theory.

– Distance between two spatial objects is not possible. Therefore, relations remain
unchanged unless there exists significant change in separation.

– It does not take shape and size into account. Therefore, it is robust to small
variations of shape and size in one sense. On the other hand, it is not certain
that centroid falls within the spatial object.

– It does not carry topological information. Therefore, for objects having inside
or contain topological configurations for instance, it produces ambiguous spatial
predicates.

– In case of centroid coincidence from two studied objects (even for two different
shapes), it yields no relations.

Therefore, it is best suited in situations where the studied objects are far from each
other.

• Angle histogram: Approaches like Angle histograms [Wang and Keller, 1999] consider
all pixels where the cone-shaped model only took the centroid into account. As a
consequence, their computational cost increases dramatically. Let us consider two
objects A and B as the sets of their pixels:

A = {ai}i=1...m and B = {bj}j=1...n .

The m × n pairs of points allow for the computation of a set of angles θi,j between
each (ai, bj). The histogram H representing the frequency of occurrence of each angle
fθ can then be formulated as,

Hθ(A,B) = [θ, fθ].

For a simplicity, histogram values can be aggregated into a single value.
As a remark, we note that centroid and aggregation methods mainly compute a single
value for pairwise relations. The major difference with bi-centre model lies in the fact
that the averaging is made on the objects’ points for the centroid method while it
is applied after angle computation in the aggregation method. If the objects are far
from each other, this averaging converges to bi-centre model.

2. Projection model – The projection model uses the classical minimum boundary rectan-
gle (MBR) model [E.Jungert, 1993]. Figure 2.5 shows the MBR model and its iconic
vertical and horizontal projections, regardless the compactness of the objects. Compac-
ity is defined as the percentage of the spatial object in the MBR. Such a partitioning
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the space is dynamic according to the shape and size variation of the reference object.
[Goyal and Egenhofer, 2001] provides an example of it. It possesses the following proper-
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Object A

Object B

Av1 Av2

Ah2

Ah1

Bv1 Bv2

Bh1

Bh2

Index: Xh1 and Xh2 = horizontal projections, and
Xv1 and Xv2 = vertical projections,
where X can be A or B

Figure 2.5: MBR model showing horizontal and vertical projections.

ties.

– MBR is only appropriate as long as spatial objects are regular. This means that it
depends on compactness. Compacity of more than 0.80 is found to be regular.

– False overlapping is possible. It misleads results in case of no actual intersection of
the spatial objects (see Figure 2.6).

Object A

Object B

Compacity of A = 0.56.

Figure 2.6: An example showing false overlapping.

Until now, we have presented the fundamental concepts for all three basic families of spatial
relations including their general properties. Now, we provide knowledge representations in doing
spatial reasoning.

Qualitative or Quantitative? Another way to categorise spatial reasoning [Dutta, 1991,
Dehak, 2002] is either based on

1. qualitative or

2. quantitative knowledge representation.

The former one conveys boolean spatial information i.e., 1 for the presence of spatial object and
0 otherwise. The latter one is often based on fuzzy set theory [Zadeh, 1965] allowing a better
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managing of the ambiguous aspect of spatial relations. However, their usages and impacts vary
equally according to the nature of applications. To make a quick difference between them with
the help of an example, let us follow Figure 2.5 where object A is provided as the reference. Now,

qualitative relation(B,A)=



0 0 1
0 0 1
0 0 1


 and quantitative relation(B,A)=



0 0 0.005
0 0 0.880
0 0 0.115


.

This means that object B is found to be extended from right bottom to right top with respect
to object A. The choice of either qualitative or quantitative spatial representation can be sum-
marised as follows.

– Qualitative interpretation provides spatial relations more close to natural language as used
in spatial predicates like right, left. Qualitative knowledge is usually cheaper since it does
not need to compute percentage value.

– On the other hand, quantitative spatial reasoning is chosen in cases where it needs natural
instead of all-or-none relations [Freeman, 1975]. Consequently, fuzzy concepts have been
introduced in several different applications since they are directly related to shape and size
information and are comparable to human perception. Angle histograms rather than just
a single angle value is one of the basic examples. Similarly, fuzzy landscape based on fuzzy
morphological operators [Bloch, 1999] and force-histogram approaches have been popularly
used such as [Matsakis and Wendling, 1999]. If there is uncertainty, then it is inherently
suited for fuzziness [Morris, 2003].

Symbol Representation and Matching

Graph-based or graph-like representation – representing the relationships between the entities
used in the image – provides an abstract concept of the studied image. Figure 2.7 provides an
illustration of it. A few common examples are:

• [Moravec, 1977] introduced the notion of interest points by considering corners and junc-
tions. Later, it has been represented by using local descriptors such as SIFT features [Lowe, 2004].

• [Rosenfeld, 1974] introduces the modelling of adjacency relations between the segmented
regions.

• Skeletal graph for shape representation [Kimia et al., 1995, Torsello and Hancock, 2004]
uses skeleton points, which are categorised into three families: junction, end and branch
points. The first two categories represent vertices while the latter ones, represent edges.

Graph-based representation schemes are not limited however, they vary widely such as attributed
relational graph (ARG), line graph for line drawing images and proximity graph for connecting
neighbour relationships between segmented objects and so on. In other words, they vary from one
application to another i.e., a single representation does not fit for all [Jouili and Tabbone, 2011].

In the following, we report graphics recognition applications related to graph-based represen-
tation.

In [Groen et al., 1985], skeletal graph is used to represent the symbol in electrical diagrams.
For graph matching, bounded search is used to select the pose of the graph such as ro-
tation, translation and scale for a minimum error transformation. It is entirely based on
probabilistic models.
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Figure 2.7: Graph representations: (a) only node features, (b) only relations and (c) integrating
both. Features are labelled with numeric weighted values in order just to give an example.

In [Lee et al., 1990], graphs are used for building a model-based scheme for recognising
hand-drawn symbols in schematic diagrams. To construct the graph, endpoints, junctions
and crossings are represented by vertices attributed with the number of neighbours and
the angles between incident edges. The edges represent connecting lines in the drawing
attributed with the length and curvature of the respective line. For recognition, a small
number of candidate graphs are selected by means of geometrical constraints. The distance
measure is based on the correspondences found between components of the two graphs and
the classification of the unknown symbol is carried out using a nearest-neighbour classifier.

For on-line symbol representations in [Changhua et al., 2000, Wenyin, 2003], ARGs are
used for graphical primitives such as lines and arcs. They are labelled as vertices while their
connections using topological relations like intersection and inside, define labelled edges.
Similarly, another concept on using spatial relation to represent complete symbol is spatial
relation graph (SRG) [Xiaogang et al., 2004]. As said before, a few topological relations like
intersection, parallelism, tangency and concentric are used to connect primitive components
such as line and arc segments, and ellipses. These are not sufficiently discriminative
considering the complexity in drawing images such as ladder-like sketches. For example,
overlap(lineA, rectangleB) does not answer about ‘how much’. Therefore, metrical details
are necessary as explained in [Egenhofer and Shariff, 1998], for instance. Figure 2.8 shows
an example of it. Overall, such precision provides more confidence in recognition.

Inner transversal splitting = length(Line ∩ Region)

length(Line)

Figure 2.8: Inner transversal splitting example based on [Egenhofer and Shariff, 1998].

Run-length encoding (RLE) [Monagan and Roosli, 1993] is another way to build graph-
like structure. It works well for sparse line drawings mainly having horizontal and ver-
tical lines. The main weakness exists on vectorisation quality and it does not really
possess topological information. In case of minimal line property preserving (MLPP)
graph [Burge and Kropatsch, 1998], which takes topological features into account (in ad-
dition to geometric) such as loops and holes and it succinctly provides relationships among
them.
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Network based graph [Ah-Soon and Tombre, 2001] – hierarchical structure has also been
studied, where constraints between segments is used. Interestingly, it can update its struc-
ture if new symbols are added to the system. In [Liu et al., 2004], symbol is described
by using sub-division tree (SDT) where relational model yields connections to branching
nodes. In both cases, the weak point however is that they are not unique i.e., they vary
according to segment selection within the symbol.

No matter which schemes are used to make graphs, graph matching in general, finds the best
match using sub-graph isomorphism between the input image and the models. The similar argu-
ment has been highlighted in [Bunke and Shearer, 1998]. Graph structure varies with the level
of noise, occlusion, distortion etc. and therefore it suffers from intense computational complexity
due to the general NP-hard problem of sub-graph matching. This means that computation of
various graph similarity measures is exponential in the number of involved vertices.

• In such a situation, error-tolerant sub-graph isomorphism graph edit operations has been
introduced. [Messmer and Bunke, 1998, Lladós et al., 2001] are two major examples in
the literature. In [Messmer and Bunke, 1998], vertices represent line segments without
attributes and the edges connect two line segments that have a common endpoint, at-
tributed with the angle between the corresponding line segments. In [Lladós et al., 2001],
hand-drawn diagrams are represented by RAGs, where vertices represent closed regions
(attributed with a boundary string resulting from polygonal approximation of the region)
and edges represent the adjacency relations between them. To handle similarity measure
between the two regions, string matching techniques are applied in addition to the error-
tolerant sub-graph isomorphism. Overall, it combines string matching (at the local level)
with graph matching (at the global level).

• Median graph representation [Jiang et al., 1999, Jouili et al., 2010] is another alternative
that reduces processing delay to a some extent.

• Tree-like graphs also save storage space. Similarly, graph probing concept [Barbu et al., 2006]
also reduces matching delay.

• Techniques like integer linear programming [Nemhauser and Wolsey, 2004] are used to
model the sub-graph isomorphism problem [Bodic et al., 2009] for symbol detection us-
ing RAG.

• Statistical classification based on the structural representation of symbol. As an example,
we take [Luqman et al., 2009], where signatures exploit structural details of symbols. It
presents quantitative features like number of vertices and edges, symbolic features like
number of edges with fixed or predefined attributes, and range of features that include
relative length and angle. The method however has not been applied to degraded or
distorted and noisy models.

Those methods however, do not provide significant reduction in computational complexity.
In [Fankhauser et al., 2011], a sub-optimal edit distance is proposed that runs in polynomial
time. The reason for its sub-optimality is that edge information is taken into account only in a
limited fashion during the process of finding the optimal vertex assignment between two graphs.
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Remarks. Based on the review on graph-based representation and matching, we account the
following issues: relations and computational complexity. In parallel, we explain how this thesis
contributes to the problem.

– In graph-based representations, relationships like spatial, temporal and conceptual play a
crucial role. Among them, spatial information within the image provide sufficient infor-
mation such that recognition guidance is feasible. For instance, topological configurations
such as disconnected in addition to their orientation relations such as ‘right of ’ describe
the studied image clearly, instead of using separately. Such a combination of both topolog-
ical and directional relations is the obvious choice to build the complete relational graph.
Existing approaches are not aware of it. One of the key contributions in this thesis is to
integrate them into a fixed size feature vector representation. Besides, natural relations
(instead of qualitative relations) would yield accurate guidance. Therefore, our relational
descriptor provides point–based distribution of the spatial objects, that relies on a fuzzy
concept. We will present the detail explanation of this contribution in Chapter 4.

– As said before, computational complexity is one of the major drawbacks of graph-based
representations. We avoid the general NP-hard sub-graph matching problem by having
uniquely labelled vertices attributed with circle, corner etc. As a consequence, vertex and
edge matching thus becomes trivial and can be done in near-constant time. This becomes
comparable to [Fankhauser et al., 2011] where a sub-optimal edit distance is proposed that
runs in polynomial time.

2.2.3 Hybrid Approaches

Except those aforementioned approaches, there are few methods designed for symbol recognition
that preserve both statistical and structural information. Hybrid representations tend to be very
application dependent. We will explain a few common approaches in the following.

• Representing symbols using vectorial signatures has been started since 90’s. A relevant
work can be cited as [Ventura and Schettini, 1994] where the symbol is first well skele-
tonised and vectorised. To represent the whole symbol in terms of signatures, features
such as line segments, their lengths, acute angles between them and intersecting points are
used. Within this framework, in [Dosch and Lladós, 2003], a set of 5 spatial relations such
as neighbour, parallelism, L junctions and V junctions are employed. The approach is of
course faster compared to graph-based representation. But on the other side, more spatial
predicates need to be defined in order to accurately locate features that ultimately avoids
false alarm.

• Statistical integration of histogram array (SIHA) feature [Yang, 2005], is proposed for skele-
ton symbols. It considers every triplet of points {pi, pj , pk} to represent two different struc-
tural features: its angle �pj , pi, pk and length ratio min{ |pipj |

|pipk| ,
|pipk|
|pipj |}. For all points, both

angle histogram (AH) and length ratio histogram (LH) are constructed for symbol rep-
resentation. To make fixed size histograms (in terms of matrices), one needs to fix the
number of bins.

In [Zhang et al., 2006], symbols are represented as 2D Kernel densities and their similarity
is measured by using the Kullback-Leibler divergence [Cover and Thomas, 2006]. Since
symbols consists of a series of coordinate points in 2D feature space, computing density
distribution is immediate compared to SIHA. To make it rotation invariant, it consumes
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significant running time. To handle this, two different methods are used: gradient-based
angle searching or independent component analysis.

In both approaches [Yang, 2005, Zhang et al., 2006], there exist two major drawbacks.

– As in shape descriptors, they do not distinguish the symbols appearing in composite
form. However, it is well suited for segmented as well as linear line-drawing symbols
i.e., GREC dataset, for instance.

– They suffer from high computational complexity.

Remarks. In general, hybrid approaches try to integrate best of the two worlds: structural
and statistical. But in the literature, faster methods using vectorial signatures do not provide
satisfactory results and pixel-based approaches like SIHA while providing better recognition take
high computational time.

In this framework, one of our contributions concerns the use of integration of spatial relations
and shape description together in our ARG framework (Chapter 5). We use the similarity be-
tween spatial organisation and shape features of the visual primitives that compose the symbol.
This concept clearly addresses what [Tombre, 2010] has mentioned i.e., capable method to effi-
ciently combine structural and statistical methods, and spatial nature of the information makes
structural methods quite natural.

2.3 Application Domains

Related to graphics recognition, there exist several different varieties of applications. Some of
the major domains will be enumerated with their very brief underlying inherent problems.

1. Logic circuit diagrams [Groen et al., 1985, Jiang et al., 1999] – The main aim is to describe
the symbols that are characterised by loop structures, rectilinear connections between them
including textual informations.

2. Engineering drawings – There are varieties of diagrammatic notations for engineering draw-
ings that makes difficult to take standard classes for recognition. In general, it is used to
distinguish two levels of symbols:

• graphical elements [Ablameyko, 1997] such as arcs, straight lines, dashed lines, cross-
hatched areas

• domain-dependent knowledge [Collin and Colnet, 1994] due to combination of arrow-
heads, lines and texts.

3. Maps – It is another challenging problem. It mainly includes conversion of GIS formats
like cartographic information, satellite images and special areas (i.e., cadastral, telephone,
water etc.) Within this, three different types of maps with their own conventional notations
are defined.

• Cadastral city maps [Roy et al., 2008] where polygonal shaped symbols are filled by
hatched patterns, mixed with texts and annotations.

• Utility maps [Adam et al., 1999] which mainly includes binary images consisting of
lines, small symbols, network-like structure of water, telephone, gas etc.
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• Geographic maps analysis [Myers et al., 1995, Samet and Soffer, 1996b] where line ob-
jects that are used to represent streets for instance including colour information.

4. Musical scores [Gordo et al., 2010, Fornés, 2009] – The interpretation has usually three
phases: extraction of staff lines, individual notes recognition, and interpretation of the
whole musical score.

5. Architectural drawings – One of the most active researches [Ah-Soon and Tombre, 2001,
Valveny and Martí, 2000, Macé et al., 2010] in graphics recognition. It includes the recog-
nition of higher level primitives such as doors, windows, chairs and stairs. However, seg-
mentation has become a central problem since symbols are appeared in the embedded form
within the document.

6. Logo [Cortelazzo et al., 1994, Psyllos et al., 2010, Sun and Chen, 2011] – Basically, it is
based on extracting signatures from contour information in addition to the OCR integration
since logo image contains text in it.

7. Others – Besides those aforementioned applications related to symbol recognition, the
following problems are still worth considering.

• Mathematical formula recognition [Fujiyoshi et al., 2010].

• Pen-based applications: on-line symbol [Yu, 2007] and character [K.C. et al., 2010]
recognition.

• WWW based graphics indexing and querying [Paek and John, 1998].

2.4 Conclusions

Until now, we have explicitly discussed common methods used in document image analysis as
well as a few major approaches designed for symbol recognition including their pros and cons.
In this section, based on that, we can make two remarks.

1. Structural versus statistical. Structural approaches do not have rich set of mathemat-
ical tools. They mostly depend on k-means classification [Bunke and Riesen, 2011]. While
in statistical approaches, there is a rich set of mathematical tools such as several different
types of neural networks, decision theoretic methods, machine learning procedures and
clustering algorithms [Jain et al., 2000]. Besides, graph structure varies with the level of
noise, occlusion, distortion etc. while statistical approaches tolerate noise to a some ex-
tent, without significantly changing the global signatures. Overall, they all depend on how
images are described.

2. Problem dependent methods. In case of graphics recognition problems, one must usu-
ally rely on a priori knowledge about the nature of the document to locate candidate
symbols or regions of interest to which specific recognition techniques should be applied.
It is therefore not surprising that different approaches have been devised for different ap-
plications. It is quite common, in the most general area of image analysis, that methods
and strategies used with one image type may also prove to be effective for images of a
different type. However, the methods needed to solve certain problems peculiar to a given
type of images, can seldom be used for other image types. Similar arguments have been
highlighted in [Lladós and Kwon, 2004].

65



Chapter 2. State-of-the-Art Approaches

2.5 What is Next?

Based on a comprehensive overview of the three different approaches: statistical, structural and
hybrid approaches, we will explain and validate our major contributions in the following chapters.
Note that in every chapter, we will revise the related work in more detail in case it requires.

End of Chapter
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allows to exploit the Radon transform property to include both boundary as internal structure of shapes.
This avoids avoiding compressing pattern representation into a single vector and thus miss information.

Experimental tests over several different graphical symbol datasets such as FRESH, GREC and CVC
show that the method is robust to distortion, degradation and deformation including. �

3.1 Organisation of the Chapter

The chapter is organised as follows. We start with introduction in Section 3.2 which includes a
description of the underlying problem, our motivations, related work as well as brief outline of
the proposed method. Section 3.3 provides details of the proposed method composed of pattern
representation, orientation estimation and matching. A full experimental set up is reported in
Section 3.4. It contains a comparison with state-of-the-art methods along with the extension of
the work – case studies. Section 3.5 concludes the work.

3.2 Introduction

Automatic recognition, description, classification and grouping of patterns are important is-
sues in many disciplines such as, biology, computer vision, artificial intelligence or remote sens-
ing where shape analysis plays an important role [Loncaric, 1998, Zhang and Lu, 2004]. Pat-
terns [Watanabe, 1985] for instance, can be graphical elements in document-like symbols of any
kind including cursive characters, shoes and finger–prints.

To do pattern recognition through shape analysis, two major stages are shape representation
and matching. Within the framework, the following issues will be taken into account.

1. Shape representation

• Global shape representation is widely used due to its simplicity. Moreover it does not
necessarily require extra pre-processing and segmentation contrary to local pattern
representation.

• Shape representation must be sufficiently enriched i.e., important internal content
must not be missed.

• Another common implementation problem is the inability to assume the shape distri-
bution of the patterns in the feature space. Consequently, non-parametric methods
are much more practical since they use linear functions to describe classifiers.

2. Matching
Matching techniques are often induced by how patterns are represented. For instance,
normalising pattern information into a fixed size single vector (as in global signal-based
descriptors [Zhang and Lu, 2004]) provides immediate matching.

In the existing literature, feature normalisation procedure makes feature vector invariant to
rotation while on the other hand, it does not provide complete shape information. Therefore,
to respect the aforementioned points in item 1, features should not be normalised in order to
exploit detail shape information including internal contents.

We take advantage of the Radon transform [Deans, 1983] to represent pattern and dynamic
programming (DP) is used to match patterns of any size that avoids compressing pattern rep-
resentation into a single vector unlike the use of R−transform [Tabbone et al., 2006], for in-
stance. The work is the extension of the previous work designed for off-line signature veri-
fication [Coetzer, 2005, Jayadevan et al., 2009] along with the orientation angle estimation as
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in [J-K and S-Z, 2005]. Overall, an optimal selection of number of projections or bins to col-
lect the Radon features will be an interesting part of the work, in addition to the appropriate
integration of estimated orientation. Moreover, number of bins determines the optimal interest
between the two: detail shape information and running time.

Very recently, the growing interests of shape descriptors for symbol representation has been
highlighted [Valveny et al., 2007], under the purview of document analysis. This motivates the
present work for graphics recognition.

3.2.1 Related Work

Shape representation [Loncaric, 1998, Zhang and Lu, 2004] has been an important issue in pat-
tern analysis and recognition. In this context, features are often categorised as

1. region-based and

2. contour-based descriptors.

For both categories, in Section 2.2.1 of Chapter 2, we have discussed the advantages, disadvan-
tages as well as their appropriateness by taking a major set of shape descriptors. Very briefly,
contour-based descriptors do not provide the information about whole shape of the pattern
while region-based ones do. However, normalisation of the shape distribution (region-based, for
instance) in the feature space in order to make it rotation invariant, introduces errors.

For document image analysis, a review of shape descriptors has been made [Terrades et al., 2007a].
Among them (cf. Section 2.2.1), the growing interest of the Radon Transform can be observed
from the following previous works such as matching of line–drawing images [Fränti et al., 2000],
2D shape and symbol categorisation [Leavers, 2000, Tabbone et al., 2006] and gait recogni-
tion [Boulgouris and Chi, 2007]. Those attest the robustness of the Radon transform to noisy,
degraded as well as occluded samples. Radon based descriptors is able to encode contour infor-
mation as well as internal structure. In the following section, we discuss a brief outline of major
points of the proposed method.

3.2.2 Outline of the proposed Method

In connection with all highlighted items in Section 3.2, we use the Radon transform [Deans, 1983]
to represent patterns. Pattern matching is then made through DTW [Bellman and Kalaba, 1959,
Kruskall and Liberman, 1983, Keogh and Pazzani, 1999] between corresponding the Radon fea-
tures at every specified projection or bin. The Radon transform is essentially a set of parametrised
histograms or features. Therefore, the method addresses the optimal selection of number of bins
rather than uses the straightforward discretised Radon transform. This means that there exists
a trade-off between the computational running time and optimal number of bins selection.

Before matching, the primary issue is to make feature affine transformation invariant. Among
three, rotation property has been carefully integrated with Radon features. Remaining transla-
tion and scaling properties are handled by using image centroid.

Symbol

2. Orientation Estimation Matching via DTW Recognition

1. Radon Features

Figure 3.1: An architecture.
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Figure 3.1 shows an architecture of the method. In particular, the method is able to recover
the principle shortcoming appeared in classical R−signature [Tabbone et al., 2006] that does
not exploit complete shape information because Radon information at every projecting angle is
compressed into a single value via R−transform.

3.3 Method

3.3.1 Radon Features

As shown in Figure 3.2(a), a collection of projections of the pattern at different angles refers to
the Radon transform [Deans, 1983]. In other words, the Radon transform for any image pattern
P(x, y) and for a given set of angles can be thought of as computing the projection of all non-zero
points. The resulting projection is the sum of the non-zero points for any pattern P(x, y) in each
direction, which eventually form a matrix. Therefore the integral of P over a line L(ρ, θ) defined
by ρ = x cos θ + y sin θ can formally be expressed as,

R(ρ, θ) =

� ∞

−∞

� ∞

−∞
℘(x, y)δ(x cos θ + y sin θ − ρ)dxdy

where δ(.) is the Dirac delta function,

δ(x) =

�
1 if x = 0
0 otherwise.

Also, θ ∈ [0, π[ and ρ ∈] −∞,∞[. For the Radon transform, Li be in normal form (ρi, θi). For
all θi, the Radon transform now can be described as the length of intersections of all lines Li.
Note that the range of ρ i.e., −ρmin < ρ ≤ ρmax is entirely based on the size of pattern. The
complete illustration is provided in Figure 3.2(b).

Affine Transformation Properties

Since the Radon transform itself does not satisfy invariance properties, we consider the following
affine transformation properties to adapt it for recognition.

1. Translation: In case of translation, we use image centroid (xc, yc) such that translation
vector is �u = (xc, yc): R(ρ− xc cos θ− yc sin θ, θ). Therefore, translation of f results in the
shift of its transform in ρ by a distance equal to the projection of translation vector of the
line L (see Figure 3.2).

2. Scaling: For scaling, features are normalised into [0, 1] at every projecting angle.

3. Rotation: For rotation, orientation angle can be estimated as in [J-K and S-Z, 2005],

α = arg

�
min
θ

d2σ2θ
dθ2

�

where σ2θ =
1
P

�
ρ (R(ρ, θ)− µθ)2 is the variance of projection at θ, µθ = 1

P

�
ρR(ρ, θ) and

P , the number of samples. If angle of rotation is α, then Rα(ρ, θ) = R(ρ, θ + α). This
simply implies a circular shift of the histograms such that it does not require histograms
duplication from [0, π[ to [π, 2π[ as in [Coetzer, 2005] to make rotation invariant.
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(b) Radon Features showing projections, for corresponding sample.

Figure 3.2: Radon transform – a complete illustration: (a) pattern projection using the Radon
transform theory and (b) radon features for all possible projections over [0, π[ and a complete
radon transform i.e., a collection of all radon histograms or features.

Figure 3.3 shows the Radon features for reference, rotation, scaling, as well as degradation
instances from a known class of graphical symbol [GREC, 2003]. In this illustration, orientation
angle estimation, the Radon histograms from their corresponding sample images are provided.
In all cases, the Radon histograms are similar to each other except the magnitude difference.
More examples are provided in Figure 3.4.

Number of Bins

As said before, the Radon transform is essentially a set of parametrised histograms or features
since projecting angle extends over [0, π[. Each projecting angle represents a bin. This means
that every bin yields a Radon histogram as a feature (cf. Figure 3.2). Therefore, in generic form,
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Figure 3.3: Images, their corresponding orientation estimation and the Radon features. Samples
are taken from graphical symbol dataset [GREC, 2003]. Orientation angle α has been estimated
as follows: 90◦ for reference, scale and degradation images while 17◦ for rotation image.

a complete set of the Radon features R(ρ, b) can be expressed as,

F = {Fb}b=1,...,B . (3.1)
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Figure 3.4: Rotational images and their Radon features. Samples are taken from graphical
symbol dataset [GREC, 2003, FRESH, 2007].

The total number bins B can be formulated as,

B =
180

Θ
=





180 when Θ = 1◦

90 when Θ = 2◦

60 when Θ = 3◦

36 when Θ = 5◦

. . . so on,
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Figure 3.5: A single Radon feature over projection angle-range Θ by averaging all discretised
histograms within it. It goes over the range [0, π[.

where Θ is the projection angle-range. A single Radon feature at bin b is Fb is the collection of
histograms H at every discrete projection angle. If Θ = 1◦, it is called discrete Radon transform
where there are 180 bins. While, let us say if Θ = 5◦, all histograms within it are averaged to
form a single Radon feature and overall, there are 36 bins. Figure 3.5 shows an example. Overall,
our Radon feature is the collections of histograms over the provided projecting angle-range over
[0, π[. Performances of using several different number of bins will be reported in Section 3.4 in
order to provide generic behaviour of the method. Besides, it provides an optimal selection of
number of bins (projections) that are needed to supersede state-of-the-art of shape descriptors.

Pattern Orientation and Number of Bins

As mentioned before, to make the Radon feature F rotation invariant, we make a circular shift
of the histograms from where it is found to be skewed. The adopted method mentioned before, is
well suited even if there exists two or more than two spikes appeared. Its because of the second
derivative of the projection made by the Radon Transform.

Since the orientation of the studied pattern is just an estimated value, it may not accurately
provide circular shift of the histograms in case when the discrete Radon transform i.e., B = 180
is used. On the other hand, we use several different number of bins in order to collect the features
at every projecting angle-range instead of a single projecting angle. In such a situation, if the
estimated value lies within the projecting angle-range, it provides accurate circular shift. This
means that the bigger the projecting angle-range, the accurate the circular shift of the histograms
to make it rotation invariant. On the other side, it misses the actual information while providing
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a single feature for a large value of projecting angle-range. Consequently, optimal selection of
number of bins is required. The influence of the number of bins B will be reported in Section 3.4.

3.3.2 Matching

As explained in Section 3.3.1, we have a collection of set of features F in a specified number of
bins B, to represent any pattern P .

Given two patterns: query Pq and database Pd, matching can be obtained between corre-
sponding features from the complete set of F q and Fd. The Radon transform generates different
ρ sizes depending on the image contents’ size. In order to be able to adapt to these differences
in size, DTW algorithm is employed. In what follows, matching computation will be explained
first and then derived the matching score between the whole patterns.

Dynamic Time Warping It allows us to find the dissimilarity between two non-linear se-
quences potentially having different lengths [Kruskall and Liberman, 1983, Keogh and Pazzani, 1999].
Let us consider two feature sequences X = {xk}k=1,...,K and Y = {yl}l=1,...,L of size K and L,
respectively. The aim of the algorithm is to provide the optimal alignment between both se-
quences. At first, a matrixM of size K×L is constructed. Then for each element in matrix M ,
local distance metric δ(k, l) between the events ek and el is computed. Let D(k, l) be the global
distance up to (k, l),

D(k, l) = min [D(k − 1, l − 1), D(k − 1, l), D(k, l − 1)] + δ(k, l)

with an initial condition D(1, 1) = δ(1, 1) such that it allows warping path going diagonally from
starting node (1, 1) to end (K,L). The main aim is to find the path for which the least cost
is associated. The warping path therefore provides the difference cost between the compared
signatures. Formally, the warping path is,

W = {wt}t=1...T ,

where max(k, l) ≤ T < k+ l− 1 and tth element of W is w(k, l)t ∈ [1 : K]× [1 : L] for t ∈ [1 : T ].
The optimised warping path W satisfies the following three conditions.

c1. boundary condition: w1 = (1, 1) and wT = (K,L)

c2. monotonicity condition: k1 ≤ k2 ≤ · · · ≤ kK and l1 ≤ l2 ≤ · · · ≤ lL

c3. continuity condition: wt+1 − wt ∈ {(1, 1)(0, 1), (1, 0)} for t ∈ [1 : T − 1]

c1 conveys that the path starts from (1, 1) to (K,L), aligning all elements to each other. c2
forces the path advances one step at a time. c3 restricts allowable steps in the warping path to
adjacent cells, never be back. Note that c3 implies c2.

We then define the global distance between X and Y as,

Δ(X,Y) =
D(K,L)

T .

The last element of the K×L matrix, normalised by the T provides the DTW-distance between
two sequences where T is the number of discrete warping steps along the diagonal DTW-matrix.
The warping path can be computed with the help of back-tracking along the minimum cost index
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Y

X

(1, 1)

(K,L)

showing warping path

(k − 1, l − 1)
(k, l − 1)

(k − 1, l) (k, l)

Figure 3.6: DTW algorithm – illustration.

0.00 0.10 0.20 0.30 0.40 0.50 0.40 0.30 0.20 0.10 0.00 X

0.20 0.04 0.05 0.05 0.06 0.10 0.19 0.23 0.24 0.24 0.25 0.29
0.10 0.05 0.04 0.05 0.09 0.15 0.26 0.28 0.27 0.25 0.24 0.25
0.00 0.05 0.05 0.08 0.14 0.25 0.40 0.42 0.36 0.29 0.25 0.24
0.00 0.05 0.06 0.09 0.17 0.30 0.50 0.56 0.45 0.33 0.26 0.24
0.00 0.05 0.06 0.10 0.18 0.33 0.55 0.66 0.54 0.37 0.27 0.24
0.00 0.05 0.06 0.10 0.19 0.34 0.58 0.71 0.63 0.41 0.28 0.24
0.00 0.05 0.06 0.10 0.19 0.35 0.59 0.74 0.72 0.45 0.29 0.24
0.10 0.06 0.05 0.06 0.10 0.19 0.35 0.44 0.48 0.46 0.29 0.25
0.20 0.10 0.06 0.05 0.06 0.10 0.19 0.23 0.24 0.24 0.25 0.29
0.30 0.19 0.10 0.06 0.05 0.06 0.10 0.11 0.11 0.12 0.16 0.25
0.40 0.35 0.19 0.10 0.06 0.05 0.06 0.06 0.07 0.11 0.20 0.32
0.50 0.60 0.35 0.19 0.10 0.06 0.05 0.06 0.10 0.16 0.27 0.45
0.40 0.76 0.44 0.23 0.11 0.06 0.06 0.05 0.06 0.10 0.19 0.35
0.30 0.85 0.48 0.24 0.11 0.07 0.10 0.06 0.05 0.06 0.10 0.19
Y

Figure 3.7: Computing DTW distance between two sequences having different lengths. The last
element of the matrix, normalised by the number of DTW steps along DTW diagonal matrix
provides global distance between them i.e., Δ(X,Y) = 0.19

17 = 0.0112.

pairs (k, l) starting from (K,L). As shown in Figure 3.6, the back-tracking procedure following
the optimal warping path is handled with the help of dynamic programming (DP).

wt−1 =




(1, l − 1) if k = 1
(k − 1, 1) if l = 1
argmin{D(k − 1, l − 1), D(k − 1, l), D(k, l − 1)} otherwise,

where we take the lexicographically smallest pair in case ‘argmin’ is not unique. The overall
process is illustrated with the help of an example in Figure 3.7.

Matching Score Aggregating distances between the Radon features in all corresponding bins
b ∈ B between Pq and Pd yields a global pattern matching score,

Dist.(Pq,Pd) =

B�

b=1

Δ(Fqb ,F
d
b).
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Overall, since we have employed estimated orientation α, Radon feature alignment can go one-
to-one basis. In case where α is not integrated, it is also possible to treat the method as rotation
invariant via the use of the Radon feature alignments for all i.e., one-to-all. Formally, it can be
expressed as,

Dist.(Pq,Pd) =
B�

b,b�=1

minb
�
Δ(F qb , F

d
b�)
�
.

The difference between the two different ways of aligning the Radon features lies in compu-
tational complexity i.e.,

Computational Complexity of Dist.(Pq,Pd) =
�
O(B) one-to-one alignment, and
O(B2) one-to-all alignment.

Therefore, overall running time is depend on how many bins will be employed.
In what follows, let us take a few examples to see the difference between the two DTW

matching scores. Figure 3.8 and 3.9 provide matching scores matrices between rotated, scaled,
degraded, distorted as well as deformed images. In both cases, we use the Radon features with
180 number of bins. Those illustrations provide similar behaviour between the two distance
computation methods: ‘with’ and ‘without α’. Therefore, in our experiments, considering time
complexity issue, the Radon features alignment will be made with α.

symbol1 symbol2 symbol3 symbol4

symbol1 symbol2 symbol3 symbol4
symbol1 0.0000 0.0002 0.0004 0.0011
symbol2 0.0000 0.0008 0.0014
symbol3 0.0000 0.0019
symbol4 0.0000

(a) with α.

symbol1 symbol2 symbol3 symbol4
0.0000 0.0002 0.0004 0.0010

0.0000 0.0008 0.0017
0.0000 0.0020

0.0000
(b) without α.

Figure 3.8: Matching scores between reference, rotation, scaling and degradation sample images.
A reference sample image is taken from GREC dataset [GREC, 2003]. It follows Figure 3.3.

3.3.3 Recognition and Retrieval

We can now use the previously described approach as a global pattern matching score. This
score expresses the similarity between database patterns and query. Our problem is: given a set
of points S in a metric space Ms and a query point q ∈ Ms, find the closest point in S to q.
Now, we express similarity as,

Similarity(Pq,Pd) = 1−Dist.(Pq,Pd) =
�
1 for the closest candidate
0 for the farthest candidate.

where matching scores are normalised into [0, 1] by, Dist.(�) = Dist.(�)−Dist.min.
(�)

Dist.max.
(�)−Dist.min.

(�)
. Ranking can

therefore be expressed on the decreasing order of similarity. In our experiments, we will distin-
guish “recognition” (search for the closest candidate) from “retrieval” (where closest candidates
are retrieved for a given short-list).
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symbol1 symbol2 symbol3 symbol4 symbol5

symbol1 symbol2 symbol3 symbol4 symbol5
symbol1 0.0000 0.0015 0.0025 0.0044 0.0055
symbol2 0.0000 0.0026 0.0039 0.0049
symbol3 0.0000 0.0038 0.0052
symbol4 0.0000 0.0027
symbol5 0.0000

(a) with α.

symbol1 symbol2 symbol3 symbol4 symbol5
0.0000 0.0012 0.0024 0.0043 0.0061

0.0000 0.0025 0.0034 0.0048
0.0000 0.0036 0.0051

0.0000 0.0030
0.0000

(b) without α.

Figure 3.9: Matching scores between distortion as well as deformed images. A reference sample
image is taken from FRESH dataset [FRESH, 2007].

3.4 Experiments

3.4.1 Benchmarking Methods

We confront D−Radon2 for several different number of bins B, with well-known descriptors:

1. R−signature [Tabbone et al., 2006],

2. GFD [Zhang and Lu, 2002],

3. SC [Belongie et al., 2002] and

4. ZM [Kim and Kim, 2000].

For those descriptors, it is important to fit the best parameters. For the Radon transform,
projecting range is [0, π[. In case of GFD, we have tuned the parameters, radial (4 : 12) and
angular (6 : 20) frequencies to get the best combinations. For SC, we use 100 sample points. In
case of ZM, we have used 36 zernike functions of order less than or equal to 7.

3.4.2 Graphics Recognition and Retrieval

We work on several different datasets in different contexts. However, we primarily focus on dis-
torted, degraded and deformed symbols in document analysis – graphics recognition and retrieval.
Depending on the nature of the datasets, evaluation metrics vary. For more understanding about
evaluation metrics and their proper usages, we refer to Appendix A. In the following, we shortly
mention the evaluation metric once dataset is introduced.

In order to test the robustness of the Radon features, we work on raw data, no pre-filtering
(de-noising, for instance) has been applied.

Experimental Results

We have used both computer-printed and hand-drawn symbols. It is composed of symbols from
architectural and electrical wiring diagrams in separate datasets. Throughout the experiments,

2For simplicity, DTW–Radon is named as D−Radon.
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we keep on focussing how many number of bins for D−Radon will be appropriate to do recogni-
tion. This means that comparison is first made among the state-of-the-art of shape descriptors
before confronted ‘the best’ performer with D−Radon for several different number of bins. To
make easy comparison, the compared results are highlighted. For benchmarking methods, the
best performer is highlighted first. Then in case of D−Radon, the highlighted numeric figures
from different number of bins will then be identified as optimal selection of B.

FRESH dataset and Ground-truth Formation

Dataset We work on a real world industrial problem to identify a set of different known
symbols in aircraft electrical wiring diagrams as in [FRESH, 2007, Tombre and Lamiroy, 2008].
Figure 3.10 gives some examples of symbols in the database. Symbols may either be very similar
in shape – and only differ by slight details – or either be completely different from a visual point
of view. Symbols may also be composed of other known and significant symbols and need not
necessary be connected. It is composed of roughly 500 different known symbols. Our dataset is
completely unlabelled and imbalanced i.e., neither ground truth is given nor identical number of
similar symbols exist for all queries.

Ground-truth Formation Since there is no absolute ground-truth associated to our dataset,
we have proceeded by using human validation, but by taking care of eliminating subjective bias.
In order to achieve this we have asked 6 volunteers to manually select what they consider as
“similar” symbols, for all queries executed in this section. Human evaluators have chosen the
candidates which have similar visual overall appearance or which have significantly similar parts
with respect to the chosen query. In our testing protocol, we consider that a result returned from
an algorithm is correct if at least one human evaluator has selected the same result among the
similar items. In more formal terms, for each query the “ground-truth” is considered to be the set
of symbols formed by the union of all human selected sets. Figure 3.10 provides a few examples.
For instance, for query a1, evaluators have provided a list of symbols which they consider visually
close, or containing parts that are visually close. The evaluators were not required to provide
any ranking order nor degree of visual resemblance.

Evaluation Metric Our aim is not only limited to distinguish symbols but also extended to
rank symbols in the provided lists. Ranking is related to similarity based on distance measure
as described in Section 4.5.2. It is important to notice that the number of ground-truths varied
from one query to another. Therefore traditional precision and recall cannot be used. We use
retrieval efficiency [Kankanhalli et al., 1995] as the evaluation metric. For every chosen query,
retrieval efficiency for a given short-list of size K is expressed as,

ηK =

�
n/N if N ≤ K
n/K otherwise,

where n is the number of returned relevant symbols, N the total number of relevant symbols
and K the number of ranked symbols requested. Note that ηK computes the traditional recall
if N ≤ K and computes precision otherwise. The main advantage of this is that the average
retrieval efficiency curve is not biased even with different ground-truths for different queries
while it happens for precision measure when N < K. The more explanation will be discussed in
Appendix A.
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a1
⇒

. . .

a2
⇒

. . .

a3
⇒ . . .

a4
⇒ . . .

a5

⇒

. . .

a6
⇒

. . .

a7
⇒

. . .

a8

⇒

. . .

Figure 3.10: A sample of few electrical symbols and their similar sample images. For every test
symbol: a1 to a8, a few relevant symbols are enlisted based on human evaluation. It consists of
both linear as well as symbols in the composite form.

Observations Average retrieval efficiency, over requested retrieval list – 1 to 10 is shown in
Table 3.1. From state-of-the-art of shape descriptors, GFD performs better, which is followed by
SC and ZM one after another. In contrast, D−Radon outperforms for different values of bins like
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B = 180, 90, 60. The performance of D−Radon using 36 number of bins can also be compared
since it provides marginal difference with ‘the best’ performer i.e., GFD from state-of-the-art.

Requested D−Radon for different values of B
List GFD ZM SC R−sign. 180 90 60 36 18 09 02

top-2 91 88 87 84 92 92 91 87 78 77 75
top-4 80 72 72 71 83 82 81 76 66 62 60
top-6 74 65 63 60 77 75 74 69 57 53 50
top-8 71 60 59 51 76 75 73 64 49 45 45
top-10 69 56 54 49 73 71 69 58 44 42 41

Table 3.1: Retrieval efficiency (in %) over 50 queries for FRESH dataset.

GREC dataset

In this dataset3 [GREC, 2003], we have used the following different categories: ideal, rotation,
scaling, distortion as well as degradation.

Altogether, there are 50 different model symbols. Those symbols are grouped into 3 sets,
containing 5, 20 and 50 model symbols. Each model symbol has 5 test images in every category
except the ideal one. Ideal test images are directly taken from the set of model symbols and
therefore the test is to evaluate the ability of simple shape discrimination, as the number of
symbols increases. Since vectorial distortion works only with symbols with straight lines, and
not arcs, it is applied to a subset of 15model symbols. Besides, there are 9models of degradation,
aiming to evaluate the robustness to the scalability with degradation. Figure 3.11 shows a few
samples of GREC dataset.

(a) ideal (b) rotation (c) scaling (d) distortion

m1 m2 m3 m4 m5 m6 m7 m8 m9
(e) 9 different degradation models (m1 to m9)

Figure 3.11: GREC2003 samples – graphical symbol.

To evaluate the method, each test image is matched with the model symbols to get the closest
model. Experimental results for all types of aforementioned categories of datasets are shown in
Table 3.2. More precisely, it provides results for ideal, rotation, scaling as well as combination of
rotation and scaling. In addition, results for two different sets of vectorial distortions including
for degradation samples having nine different models are provided.

Observations Following Tables 3.2, we observe the following.
3International symbol recognition contest, 2003
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Images D−Radon for different values of B
Set GFD ZM SC R−sign. 180 90 60 36 18 09 02
ideal 100 100 100 100 100 100 100 100 100 100 100
rotate 98 94 97 94 97 94 88 73 82 77 71
scale 99 98 99 96 100 100 100 100 84 74 57
rotate+scale 98 93 98 92 98 97 94 82 79 73 62
distort 100 94 100 92 100 100 100 100 85 72 47
degrade 91 79 78 76 99 98 95 84 67 47 35

Table 3.2: Average recognition rates (in %) for four different categories: ideal, rotation, scaling
and rotation + scaling (from 50 models) of GREC dataset.

• Based on the results from ideal test images, every shape descriptor provides similar recog-
nition performance. In case of D−Radon, it is interesting to notice that we obtain 100%
recognition rate from all provided number of bins. For rotated images, GFD performs bet-
ter, proving a marginal difference with SC and D−Radon for 180 bins. For scaled images,
D−Radon outperforms all, where B = 180, 90, 60 and 36 provide 100% recognition rates
while not offering substantial difference with the state-of-the-art. For those test images
where rotation and scale are combined, D−Radon for 180, GFD and SC provide similar re-
sults. Overall, not a single ‘the best’ performer from the state-of-the-art has been observed.
Besides, one cannot judge the superiority of the methods. Only running time comparison
would be an alternative.

• Results from test images with vectorial distortions shows the worst case scenario for
R−signature while for others, there exists similar behaviour. In case of D−Radon, 36
bins can also be compared with ‘the best’ performer from the state-of-the-art.

• However, we receive notable differences between D−Radon and GFD, in case of binary
degradations. Others follow it. In case of D−Radon, 60 bins can provide competitive
results.

Overall, ’the best’ performer from the state-of-the-art can be changed from time to time (de-
pending on the dataset) while D−Radon provides consistent results. D−Radon in particular,
shows an interesting behaviour for different values of bins.

CVC dataset

As in [Wendling et al., 2008, Fornés et al., 2010], we have tested 10× 300 sample images i.e., 10
different known classes of hand-drawn architectural symbols with 300 instances in each. Symbols
have been drawn by 10 different people using ‘anoto’ concept. Figure 3.12 shows a few samples
of the dataset. Samples provide distortions, gaps, overlapping as well as missing parts within
the shapes.

To validate the methods, each test image is matched with all images and number of correct
matches is over the requested list. In this test, since we have 300 samples per class, the size of
the requested list is 300 in order to retrieve all similar images of every class including itself. To
handle in-depth experimental results analysis, we provide retrieval rate in every 20 increasing
step. It is important to notice that the last value of retrieval rate is equivalent to the recognition
rate. Table 3.3 shows the average retrieval rate for all requested short-lists (e.g., top-20, top-40
and so on).
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class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10

Figure 3.12: 2 hand-drawn samples from 10 different known classes.

Observations Unlike the previous dataset, SC provides the best performance from state-of-
the-art. In contrast, D−Radon outperforms ‘the best’ performer.

Up to top-60, one cannot decide which method performs well since there exist no notable
retrieval rate differences among them. It is only determined after top-60. The aim of the test
is to evaluate the retrieval stability of the methods. D−Radon provides the rate of more than
16% difference with SC. SC lags GFD by approximately 9%. R−signature provides an average
results compared to ZM.

Overall, recognition rates from D−Radon for B = 180, 90, 60 and 36 provide interesting
results compared to GFD, SC, R−signature and ZM.

Requested D−Radon for different values of B
List GFD ZM SC R−sign. 180 90 60 36 18 09 02

top-20 96 68 98 82 99 99 99 98 94 92 83
top-40 93 62 95 75 99 99 98 97 92 88 79
top-60 90 59 95 69 97 97 97 96 90 86 67
top-80 88 57 92 65 97 97 97 94 88 81 64
top-100 85 55 91 62 97 97 96 94 84 80 61
top-120 83 54 88 59 97 96 96 93 80 74 60
top-140 81 52 87 56 95 95 95 92 76 67 58
top-160 78 50 85 54 95 95 94 91 73 64 57
top-180 76 50 83 51 93 93 94 89 67 61 54
top-200 73 48 81 49 93 92 91 86 62 56 53
top-220 71 44 78 48 93 92 91 86 59 53 50
top-240 68 41 78 46 92 90 88 84 55 51 49
top-260 66 39 75 45 91 89 86 83 52 44 46
top-280 63 37 73 43 88 87 85 81 48 42 45
top-300 61 36 70 42 86 86 84 78 47 39 44

Table 3.3: Average retrieval rate (in %) for CVC dataset.

Experimental Results Analysis

We analyse the behaviour of the methods based on the key characteristics as well as major
challenges found in datasets. In general, we focus on those samples which are distorted, embedded
with different levels of noise and even degraded. We also take into account those samples with
missing parts including severe vectorial distortions in hand-drawn symbol dataset in addition
to a significant size variation as well as multi-class similarity between the classes. Within this
framework, based on the observations in all experimental tests, we discuss the methods in two
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different issues:

1. recognition rate and

2. running time complexity.

Recognition performance is related to how discriminative the feature is. Matching on the
other hand, provides running time.

All descriptors perform well except for distorted and degraded samples. In particular,
R−signature has been severely disturbed. It is due to the square effect (via R−transform).
SC shows almost similar behaviour where the level of noise is high since it takes those pixels
into account while sampling. For ZM, we have observed the effect in case of degradation mod-
els. GFD provides fairly satisfying results. However, a single shape descriptor cannot be always
‘the best’ performer for all types of sample images. D−Radon in contrast, shows discriminative
power.

D−Radon is constrained by how many number of bins are used. As said previously, the
larger the number of bins, the higher the discrimination power and vice versa. The statement is
validated with the help of a series of tests. In all experimental test results, D−Radon provides
competitive recognition and retrieval performances even when the decrement of number of bins
upto 60. 36 number of bins can also be compared with state-of-the-art of shape descriptors. It is
on the other hand, depend on how complex is the dataset. For instance, only 2 bins (i.e., vertical
and horizontal projections) provides 100% recognition rate for ideal sample set in GREC dataset
(cf. Table 3.2). In the later situation, since execution time is related according to how many
number of bins are used, we can possibly reduced the delay.

Running time processing is usually high since it uses DTW for matching. However it also
largely depends on how big the image is. As far as computational cost is concerned, the observed
average running time for all methods is given in Table 3.4.

Shape descriptors Time (in sec)
1. R−signature [Tabbone et al., 2006] 02
2. ZM [Kim and Kim, 2000] 17
3. GFD [Zhang and Lu, 2002] 13
4. Shape Context [Belongie et al., 2002] 38
5. D−Radon 71

Table 3.4: Average running time (in sec) for a single pair.

Overall, it is important to notice that state-of-the-art of shape descriptors provide different
results according to the behaviour of the dataset i.e., not a single shape descriptor can be ‘the
best’ performer. As a consequence, for comparison, execution time will be an alternative. In con-
trast, D−Radon outperforms of all ‘the best’ performers in all types of dataset while paying more
execution time. Besides, since experimental tests have been made without any pre-processing,
there exists a room to improve further when suitable pre-processing is integrated.

3.4.3 Case Studies

In order to establish the interest as well as extensibility of the method, several different datasets
are also employed. More specifically, we mainly discuss in two different contexts.

1. Isolated character recognition and

2. Foot-wear impression evidence verification.
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Character Recognition

Several different datasets from different scripts4 are tested. They are Roman, Bangla, Devana-
gari and Oriya [Bhowmik et al., 2006, Bhattacharya and Chaudhuri, 2009]. Figure 3.13 shows a
couple of sample images in each class.

Roman ⇒

Devanagari ⇒

Oriya ⇒

Bangla ⇒

class ⇒ 0 1 2 3 4 5 6 7 8 9

Figure 3.13: 2 numeral samples from 4 different known scripts for 10 (0− 9) classes.

original sample

⇒

(a) straightforward conversion

(b) using average gray-scale values

Figure 3.14: An example of binarisation sample from the ETL dataset.

The preliminary task is to do pre-processing since characters tend to be highly degraded as
they are taken from newspaper, postal cards etc. under varying different lighting conditions, for
instance. It mainly considers stroke synthesis, thresholding, gray-scale to binary conversion; noise
removal, foreground textual information extraction by removing background [Alginahi, 2010].

4ISI character datasets for Indian scripts, CVPR unit, India
ETL3 Roman dataset, AIST, Japan
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However, this introduces many ad-hoc techniques. This work does not aim to develop pre-
processing technique. In this work, isolated character images are simply converted to binary.
Otsu method has been found to be prominent to handle gray-scale images [Otsu, 1979]. However,
it does not suited for all types of sample images used in the paper. In such a case, while
converting, an average gray-scale pixel intensity value (in the range of 70–100) is used to make
a threshold that goes differently from one dataset to another. Fig. 3.14 shows a few examples
of it. In this illustration, binary conversion is followed by contour detection and thinning using
basic image processing tools.

While experimenting, every test sample is matched with training candidates and the closest
one is reported. The closest candidate corresponds to the labelled class, which we call ‘character
recognition’.

To evaluate the performance of the methods, K−fold Cross-Validation (CV) has been im-
plemented unlike traditional dichotomous classification. In K−fold CV, the original sample for
every class is randomly partitioned into K sub-samples. Of the K sub-samples, a single sub-
sample is used for validation, and the remaining K − 1 sub-samples are used for training. This
process is then repeated for K folds, with each of the K sub-samples used exactly once. Finally,
a single value results from averaging all. The opposite process holds for inverse K−fold CV i.e.,
K− 1 sub-samples are used for testing.

While experimenting, tests move from normal K−fold CV to inverse. This means that every
test goes from K − 1 to K − 4 training sub-samples when K = 5. The aim of the use of such a
series of rigorous tests is to avoid the biasing of the samples that can be possible in conventional
dichotomous classification.

D−Radon for different values of B
Dataset Training GFD ZM SC R−sign. 180 90 60 36 18 09 02
Roman K− 1 97 83 98 78 100 100 100 88 79 76 71
10×100 K− 2 95 78 97 75 100 100 99 84 75 74 68

K− 3 94 74 96 70 98 96 95 79 74 71 66
K− 4 91 67 96 66 98 96 94 77 74 68 67

Oriya K− 1 98 44 98 58 100 98 92 81 67 60 51
10×100 K− 2 96 38 96 52 98 97 94 77 64 55 48

K− 3 85 43 93 46 98 96 88 74 62 50 47
K− 4 72 32 92 43 97 92 90 71 68 49 45

Devanagari K− 1 86 40 96 55 99 97 89 79 71 62 52
10×300 K− 2 84 40 94 54 98 96 87 75 68 59 48

K− 3 81 38 93 50 98 94 84 74 66 58 47
K− 4 69 34 87 46 96 95 83 73 65 55 46

Bangla K− 1 73 47 95 48 95 95 84 72 60 51 41
10×400 K− 2 69 44 94 48 94 92 79 68 55 48 38

K− 3 68 43 91 46 93 86 76 61 54 47 37
K− 4 64 40 89 44 92 81 75 59 53 45 36

Table 3.5: Average recognition rate in % using K−fold CV (where K = 5).

Observations Table 3.5 shows the average recognition rates for all datasets using K−fold
CV. In Roman dataset, shape descriptors provide encouraging recognition performances, having
almost similar results. The significant differences between them exist in case of Devanagari and
Bangla datasets. SC yields consistent recognition rates for all while others do not follow such
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a characteristic. GFD however, comes closer to SC. D−Radon is now confronted with SC and
sometimes with GFD. In this category, there exists no surprising differences between them i.e.,
approximately 1–2%. However, it is found that number of bins B = 90 for D−Radon, provides
better results and B = 60 can be compared with.

1. , , 2. , , 3. , 4. ,

5. , 6. , . . .

Figure 3.15: Difficulties in character recognition – a few examples.

Let us highlight a few major challenges such as

• multi-class similarity,

• symmetric shape similarity,

• missing parts, and

• stroke length or size variation.

Multi-class similarity is one of the major problems in character recognition. In addition, shape
descriptors with rotation invariance properties have been affected from those samples as shown
in Figure 3.15. These are the major reasons affecting those existing methods. To avoid this,
D−Radon has been tested without integrating estimated orientation angle since isolated charac-
ters are almost vertically aligned. In case of samples with missing parts as well as with different
stroke length variation, state-of-the-art shape descriptors do not provide optimal performance
since feature vector can be changed accordingly. In contrast, D−Radon is not affected, thanks
to DTW.

Foot-wear Impression Evidence Verification

It is another case study to see the behaviour of the methods when pattern complexity increases.
For example foot-wear evidence verification, where internal structure is very important.

In this dataset5, we have 64 foot-wear evidence impression or foot-wear print classes, each
with height instances. Foot-wear impression images are categorised into full print and partial
print. Figure 3.16 shows sample images for a couple of classes. In this illustration, we put
a border to every sample in order to clearly determine full prints as well as partial prints in
addition to shape and size. As shown in Fig. 3.16, there are four images in the full print category
including rotation while the remaining ones are partial prints. Partial prints also contain toe
and heel portions.

For immediate analysis, we use straightforward verification for all test images. Every test
image is matched with 64 templates to find the best match which corresponds to the target
foot-wear print.

5Thanks to Signal Processing Laboratory, Kinki University, Japan for providing this dataset.
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template toe heel
� �� � � �� �

full print partial print

Figure 3.16: 8 samples of 2 different known footwear print classes.

Observations Global signal-based (state-of-the-art shape) descriptors for foot-wear impression
evidence verification do not provide interesting results. This is due to insufficient extraction of
local information. However, we employ this dataset as a case study. An average recognition
rate is provided in Table 3.6. In all categories of test samples, state-of-the-art shape descriptors
do not provide satisfactory recognition performance. In contrast, D−Radon yields the highest
recognition rates – all provided number of bins can be compared with.

Images D−Radon for different values of B
Set GFD ZM SC R−sign. 180 90 60 36 18 09 02
Full print 64 × 4 65 45 55 46 81 78 74 73 61 55 54
Partial print heel 64 × 1 18 19 17 03 44 43 42 35 29 27 24

toe 64 × 1 09 08 03 03 35 34 33 32 22 17 12
other 64 × 2 11 17 04 07 56 52 52 41 31 29 22

Table 3.6: Average recognition rate (in %) for full print as well as partial print.

3.5 Conclusions

In this paper, we have introduced a method based on dynamic programming for matching the
Radon features, for graphics recognition. The key characteristic of the method is to use DTW
algorithm to match corresponding pairs of the Radon features for all possible projections. Since
features are not normalised into a fixed length vectors, dynamic programming has been used to
absorb the varying Radon features sizes resulting from image signal variations from shape and
sizes. In order to make correct matching between the Radon features, we have integrated the
estimated orientation value such that it makes rotation invariant.

We have attested the method for graphics recognition using several different datasets and
compared with the state-of-the-art of shape descriptors. Furthermore, two different case studies
have been made: character recognition and foot-wear impression evidence verification. Based on
this framework, we plan to proceed the following: one-to-all feature matching – aim for highly
degraded, distorted as well as deformed patterns (cf. Section 3.3.2). To handle this, we will
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integrate the optimised DTW as presented in [Lemire, 2009]. Besides, the latter work is aimed
to extend upto crime scene investigation in addition to the use of local descriptors as well as
bag-of-features (BOFs) approach using shape descriptors.

3.6 What is Next?

In this chapter, graphics recognition has been made via global signal–based shape descriptors.
The methods are found to be appropriate for isolated pattern of any kind. However, these are
not always suitable for solving real–world problems where both isolated as well as composite
symbols are found to be occurred. This is happened in FRESH dataset. In such a case, we can
take advantage of structural approaches. In the next chapter, we will describe the symbol by
using spatial relations between the extracted visual primitives from the symbol.

End of Chapter
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Foreword. In the previous contribution, we have introduced global signal-based shape descriptor and
validated over several different datasets in order to see how discriminate it is, in comparison to a major
set of state-of-the-art of shape descriptors. The method has been applied to isolated symbol recognition.
Such a method fails to handle real-world applications where symbols are connected with other graphical
elements and texts. Such a situation will be handled by extracting visual primitives that compose the
symbol so that visual relations between them can be used for recognition.

In this chapter, we present a method for symbol recognition based on the spatio-structural description
of a ‘vocabulary’ of extracted visual elementary parts. The method consists of first identifying vocabulary
elements and placing them into different groups based on their types (e.g., circle, corner). We then
compute spatial relations between the possible pairs of labelled vocabulary types which are further used
as a basis for building an attributed relational graph (ARG) that fully describes the symbol. To validate
the method, it is applied to symbols in electrical wiring diagrams. The experiments reported in this
chapter show that this approach, used for recognition, significantly outperforms both structural and
statistical state-of-the-art methods. �

4.1 Organisation of the Chapter

The chapter is structured as follows. We start with an introduction in Section 4.2 which mainly
includes our motivation, describes the underlying problem, reviews pertinent literature and give
an outline of our proposed method. Since our recognition method is mainly based on spatial
relations, we develop a method that describes spatial relations in Section 4.3 and the derive
symbol representation method form it in Section 4.4. We explain a symbol matching method
from it and explain it in Section 4.5. Full experiments are reported in Section 4.6 and confront
our method with current state-of-the-art algorithms. It includes a comprehensive experimental
result analysis. We point out the summary of the work in Section 4.7.

4.2 Introduction

As already presented in Chapter 2, research on graphics recognition has an extremely rich state-
of-the-art literature, aimed to localise/recognise symbols depending on the applications. Accord-
ing to [Cordella and Vento, 2000b, Lladós et al., 2002], these methods are particularly suited for
isolated line symbols, not for composed symbols connected to a complex environment. In order
to exploit the information embedded in those documents, one needs to be able to extract visual
primitives and formalise the possible links that exist between them. This combination of symbol
localisation based on extracted visual primitives is going to be the core of this chapter.

4.2.1 Related Work

We pointed out in Chapter 2 that existing approaches, can roughly be sorted into three ap-
proaches: statistical, structural and hybrid. As respective examples, among others, one can
cite [Cordella and Vento, 2000a, Lladós et al., 2001, Yang, 2005, Zhang et al., 2006]. The chap-
ter is mainly focussed on structural approaches. In this section, we put a brief idea from the
comprehensive explanation of structural approaches mentioned in section 2.2.2.
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In structural approaches, the principle idea is to decompose the symbols into either vector
based primitives like points, lines and arcs or into meaningful parts like circles, triangles and
rectangles. These primitives are then used for representing symbols in terms of attributed rela-
tional graphs (ARG) [Bunke and Messmer, 1995, Conte et al., 2004], region adjacency graphs
(RAG) [Lladós et al., 2001], constraint networks [Ah-Soon and Tombre, 2001] as well as de-
formable templates [Valveny and Martí, 2003]. Their common drawback comes from error-prone
raster-to-vector conversion. Those errors can increase confusions among different symbols. Fur-
thermore, variability in the size of the graphs leads to computational complexity in matching.
However, structural approaches provide a powerful representation, conveying how parts are con-
nected to each other, while also preserving generality and extensibility.

To describe the symbols, it is necessary to handle relations between the decomposed parts.
The following paragraph gives an overview of existing work on spatial relations and their proper
usages.

As explained in Section 2.2.2, effect of spatial relations on recognition performance have been
examined comprehensively for scene understanding [Bar and Ullman, 1993], document analy-
sis and recognition tasks [Garnesson and Giraudon, 1990, Pham and Smeulders, 2006]. Spatial
relations can be either topological [Egenhofer and Herring, 1991, Renz and Nebel, 1998], direc-
tional [Matsakis and Wendling, 1999, Mitra, 2002] and metric in nature, their choice depending
on the kind of application. For example, in [Xiaogang et al., 2004], topological configurations are
handled with a few predicates like intersection, interconnection, tangency, parallelism and concen-
tricity expressed with standard topological relations as described in [Egenhofer and Herring, 1991].

In a similar way, various directional relation models have been developed for a wide range of
different situations.

• If the objects are far enough from each other, their relations can be approximated by their
centres based on the discretised angle [Miyajima and Ralescu, 1994, Mitra, 2002]. This
approach is robust to small variations of shape and size of the studied objects.

• If they are neither too far nor too close, relations can be approximated by their mini-
mum bounding rectangle (MBR) as long as they are regular [Peuquet and CI-Xiang, 1987,
E.Jungert, 1993, Papadias and Theodoridis, 1997]. In other words, the quality of the MBR
depends on compactness6 of the tile.

• Approaches like angle histograms [Wang and Keller, 1999] tend to be more capable of deal-
ing with overlapping, something the previous approaches have difficulties with. However,
since they consider all pixels, their computational cost increases dramatically.

• Other methods, like for instance, F-Histograms [Matsakis and Wendling, 1999] use pairs of
longitudinal sections instead of pairs of points, also at the cost of high time complexity.

• Another well-known approach uses fuzzy landscapes [Bloch, 1999], and is based on fuzzy
morphological operators.

Previously mentioned approaches address only either topological or directional relations.
Managing both comes at high computational costs. Even then, no existing model fully inte-
grates topology. They rather have various degrees of sensitivity to or awareness of topological
relations. While methods like [Xiaogang et al., 2004] focus on topological information only, the
approach we develop in this thesis unifies both topological and directional information into one
descriptor [K.C. et al., 2009c] without any additional running time cost.

6 Compactness = Area(A)
Area(MBR(A))
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Placing spatial relations in the context of recognition and symbol description, one should note
that spatial relations also have a language-based component (related to human understanding
e.g., to the right of) that can be formalised in a mathematical way (e.g., the 512 relations of the
9−intersection model [Egenhofer and Herring, 1991]). Therefore, qualitative and quantitative
relations are another way to do categorisation of spatial relations. As an example, consider
an object A extending from right (98%) to top (2%) with respect to B is expressed as right –
top(A,B). This spatial predicate remains unchanged upto a reasonable change of the objects’
shape and position. Taking this into account, our work uses more natural relations than the
all-or-none nature of standard relations [Freeman, 1975].

In the following section, we explain our proposed method by focusing on using spatial relations
for describing and matching symbols.

4.2.2 Outline of the Proposed Recognition Method

Our recognition method is based on the spatial relations between the extracted visual primitives
that compose a symbol. The proposed spatial relations are explained in Section 4.3.

We compute the spatial relations (see Section 4.4.2) between the distinct labelled attributes
for building an ARG (see Section 4.4.3), achieving at the same time integration of both topological
and directional information. Figure 4.1 shows a block-diagram to illustrate the overall proposed
idea for symbol description and recognition.

Symbol

3. ARG Matching via ARG Recognition

2. Spatial Relations

1. Visual Vocabulary

Figure 4.1: An architecture for Symbol Description and Recognition using spatial relations. It
uses ARG based symbol description using visual vocabulary and their possible pairwise relations.
Those relations are used for matching.

In our proposed method, what is interesting to notice can be summarised as follows. Without
any other consideration, it is obvious that the size of the resulting relational graph is potentially
very large and variable from one symbol to another. However, when grouping visual primitives
together by their types (e.g., circle, corner) and by labelling them accordingly (see Section 4.4.1),
we can eliminate all the combinatorial problems inherent to graph matching, without sacrificing
recognition quality or expressive power. We avoid the general NP-hard sub-graph matching
problem by having uniquely labelled nodes. Our ARG matching is therefore done in near-
constant time. Unlike the existing methods, our method is therefore able to retrieve isolated,
as well as known or significant parts of the line symbols embedded in others. Before explaining
the aforementioned claims and supporting them by using experiments, in what follows, we first
introduce spatial relation models.

4.3 Spatial Relations

Pairwise spatial relations are often expressed by using one of the objects as reference. For
example, A is to the right of B: right(A,B), where B is referenced. Let us take an example
as shown in Figure 4.2, to illustrate the possible ambiguity whenever a correct reference is not

94



4.3. Spatial Relations

provided. In this illustration, we have taken a classical MBR theory as a spatial relation model
in order just to demonstrate that the proper reference can be either A or B.

Object A

Object B

(a) Bottom:Right–Top(B,A)

Object A

Object B

(b) Left(A,B)

Figure 4.2: Asymmetry of spatial predicates in the case of MBR.

To avoid such a difficulty, we first set up a unique reference point set from each pair. Then,
we compute directional relations with respect to the reference point set.

4.3.1 Unique Reference Point Set

We consider a unique reference set R, defined by the topology of the MBR of A and B and
with the help of the 9−intersection model [Egenhofer and Herring, 1991]. Figure 4.3 shows the
different configurations of R that can occur.

To do this, we simply check topological relations between them in a 9−dimensional binary
space via the use of intersections of the boundaries (∂X), interiors (Xo) and exteriors (X−) of two
sets A and B. The topological configuration Topology(A,B) is a vector in this space in which
components equal 0 if the corresponding intersection is empty, and 1 otherwise, as shown here:

Topology(A,B) =



Ao ∩Bo Ao ∩ ∂B Ao ∩B−

∂A ∩Bo ∂A ∩ ∂B ∂A ∩B−

A− ∩Bo A− ∩ ∂B A− ∩B−


 .

Therefore 3× 3 binary signatures are:

Disconnected(A,B) =
�
0 0 1
0 0 1
1 1 1

�
,

Externally Connected(A,B) =
�
0 0 1
0 1 1
1 1 1

�
,

...
Equal(A,B) =

�
1 0 0
0 1 0
0 0 1

�
.

Then, in connection with [Renz and Nebel, 1998], and as shown in Figure 4.3, R is either the
common portion of two neighbouring sides in the case of disconnected MBRs or the intersection
in the case of overlapping, equal or otherwise connected MBRs. Depending on the obtained
topological configurations, R can range from a point to a rectangular 2D area.

4.3.2 Directional Relations

Using R, we propose two different ideas to generate directional relations. They are
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R R
R R R

Disconnected Externally Connected

R

Overlap

R

Cover

R

Contain

R

Equal

Bounding box of object B
Bounding box of object A

(Covered By) (Inside)

Figure 4.3: Reference point set R via topological relations from a pair.

1. Projection model and

2. Radial line model.

These two methods differ in the way we partition the image space. In case of the projection
model, R is used to partition the image space bys using orthogonal projection of the boundaries.
In radial line model, on the other hand, we obtain several orientation spaces by rotating a radial
line using predetermined rotation step, form a pivotal point within R. Each spatial object is
represented by one or more representative points, and the relations are determined with the help
of the aforementioned partitioned spaces where the object representative points are found.

Projection Model

Given a unique reference point set R, cardinal Relations, based on projection are designed for
developing 9−directional relations (predicates):




Left Top (LT) Top (T) Right Top (RT)
Left (L) Middle (M) Right (R)
Left Bottom (LB) Bottom (B) Right Bottom (RB)


 .

Computing relational matrix M is just to verify whether the part of the object X is found to
be present in one of the directional spaces made by R. Such a projection concept is completely
related to conventional MBR model.

Compared to conventional MBR, our model uses R and its centroid. Figure 4.4 shows an
illustration where the use of centroid point provides directional space splitting. In this illustra-
tion, various models are presented in order just to provide relational matrices, without taking
spatial objects into account.

• 2D projection: Compared to the use of MBR, ‘Middle’ is sub–divided into four regions i.e.,
Middle =

�
M1 M2
M3 M4

�
. Similarly, ‘Right’, ‘Left’, ‘Top’ and ‘Bottom’ are sub–divided into

two: Left = [L1 L2 ], Right = [R1 R2 ], Top = [T1 T2 ] and Bottom = [B1 B2 ].

• 1D projection: Since it is just a line projection, a few directional spaces are omitted
compared to 2D projection. However, it brings sub-division of ‘Top’ and ‘Bottom’ in case
of horizontal line while ‘Left’ and ‘Right’ with vertical line.

• 0D projection: A single point projection provides the standard four directional spaces.

96



4.3. Spatial Relations

2D:

T1 T2

M1 M2

M3 M4

B1 B2LB

L2

L1

LT

RB

R2

R1

RT

M(X,R) =




LT T1 T2 RT
L1 M1 M2 R1
L2 M3 M4 R2
LB B1 B2 RB




1D:

T1 T2

B1 B2LB

LT

RB

RT

M(X,R) =




LT T1 T2 RT
L1 M1 M2 R1
L2 M3 M4 R2
LB B1 B2 RB




1D:

LB

L2

L1

LT

RB

R2

R1

RT

M(X,R) =




LT T1 T2 RT
L1 M1 M2 R1
L2 M3 M4 R2
LB B1 B2 RB




0D:

LB

LT

RB

RT

M(X,R) =




LT T1 T2 RT
L1 M1 M2 R1
L2 M3 M4 R2
LB B1 B2 RB




Figure 4.4: Projection models for all possible types of R developed in Figure 4.3. Relational ma-
trices are expressed following the corresponding models. The dimmed elements of the relational
matrix M refer to values equal to 0.

Spatial relation � between A and B is

�(A,B) = {M(A,R),M(B,R)}.

Parameter, Precision and Computational Complexity The previously described projec-
tion model does not require any parameters. The model takes running time less than two seconds
for generating relational matrices as well as matching. To provide behaviour of the computa-
tional complexity, we have taken the toy example of image size 288× 512 pixels, from Figure 4.2
in page 95.

Figure 4.5 shows the execution time of the model in the function of objects size. It provides
for both refined (actual proportion) and boolean (presence or absence i.e., 1 or 0) relations. In
this illustration, we have scaled images with the step of +2 i.e., reference image is scaled by
{2, 4, . . . , 10}.
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Figure 4.5: Behaviour of computational time for boolean and metric relation matrices. Image
is scaled by {2, 4, . . . , 10}, with the step of +2.

(a) from Figure 4.2

Object A

Object B

Conventional Model: M(A,R) =



0 0 0
1 0 0
0 0 0


 and M(B,R) =



0 0 0.005
0 0 0.880
0 0 0.115




Our Model: M(A,R) =




0 0 0 0
0.45 0 0 0
0.55 0 0 0
0 0 0 0


 and M(B,R) =




0 0 0 0.005
0 0 0 0.310
0 0 0 0.570
0 0 0 0.115




(b)

Object A

Object B

Conventional Model: M(A,R) =



0.35 0.35 0
0.30 0 0
0 0 0


 and M(B,R) =



0 0 0
0 1 0
0 0 0




Our Model: M(A,R) =




0.35 0.175 0.175 0
0.150 0 0 0
0.150 0 0 0
0 0 0 0


 and M(B,R) =




0 0 0 0
0 0 0.220 0
0 0.315 0.465 0
0 0 0 0




Figure 4.6: Illustration of relational matrices using R (see Figure 4.3) for both objects A and B.
Both conventional and extended projection model are used to notify their differences in terms of
precision.

Illustrations Figure 4.6 provides an illustration using the reference point set R. This illus-
tration is based on the toy examples in order just to provide an intuitive feeling on how they
behave. It provides comparison between conventional and our projection model.

In Figure 4.6, the examples are provided with proportion of the spatial objects in the prede-
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termined partitioning space, instead of not just saying its presence and absence. These matrices
are refined relational matrices. As said before, our model provides 4× 4 relational matrix com-
pared to 3× 3 from conventional MBR. Let us consider Figure 4.6 (b), where M(B,R) provides
notable difference in terms of precision: conventional model conveys that object B is completely
in the middle, while our model conveys actual precision by providing its positioning only in three
partitioned spaces.

Radial line Model

Following the unique reference point set R in Figure 4.3 (in page 96), we take its centroid point
Rpc as our reference point for computing spatial relation � between A and B i.e., �(A,B). For
a given reference point Rpc , we cover the surrounding space at m regular angular intervals of
Θ = 2π/m. As shown in Figure 4.7, a radial line rotates over a cycle, and when intersecting with
object X, generates a boolean histogram H,

H(X,Rpc) = [I(Rpc , jΘ)]j=0,...,m−1

where

I(Rpc , θi) =
�
1 if line(Rpc , θi) ∩ X �= ∅
0 otherwise.

x

y

Rpc

θi

θi+1

Θ

Figure 4.7: Radial line rotation � from a given reference point Rpc .

This boolean histogram expresses whether there are any black pixels in direction θi. We
extend this binary direction histogram to a histogram covering sectors defined by two successive
angle values: θi and θi+1 and is normalised with respect to the total area of the studied object
such that

�H(�) = 1. As in the case of the relational matrices described before (cf. projection
model in Section 4.3.2), rather than using just boolean values, we can account for the percentage
of pixels of the whole object lying in the sector defined by θi and θi+1. Figure 4.8 gives an
example for both types of histogram, boolean and percentage.

Our relational signature �(X,Rpc) is the set of both histograms:

�(X,Rpc) = {H(A,Rpc),H(B,Rpc)}.

Overall, our method captures the spatial information by the angular positions in the his-
togram. The magnitude of the histogram contains the structural information.
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x

y

Object X

Rpc

Θ = 10◦

Θ

Histograms:
boolean H(X,Rpc) = [1 1 0 0 0 ... 0]1×36

metric H(X,Rpc) = [0.79 0.21 0 0 0 ... 0]1×36

Figure 4.8: Relational histogram using radial line rotation.

Parameter, Precision and Computational Complexity Note that our method does not
only consider the visibility (as defined in [Bloch, 1999]) angle from a reference point Rpc but also
the percentage of pixels in every sector. Figure 4.9 shows the visibility angle α from a given
reference point Rpc . In this illustration, although the shape and size of X change, visibility angle
values do not change. In contrast, our method generates different histograms if the structure of
X changes. To explain this in more detail, let us first discuss the rotation step parameter for the
radial line.

x

y

Rpc

Object X

p1

p2

α

(a)

x

y

Rpc

Object X

p1

p2

α

(b)

Figure 4.9: Visibility angle values do not change even when objects shape changes, given a
reference point Rpc .

While rotating the radial line, one has to select the parameter i.e., rotation step Θ. The
rotation step is simply the resolution at which angular histogram is computed. Figure 4.10
provides an example. In this illustration, we aim to provide the effect of resolution on to the
precision. It clearly illustrates that smaller resolution is the appropriate choice even when there
exists no difference in visibility angle α (see Figure 4.9) nor does the boolean H. Its value is a
trade-off between precision and execution time.

As in projection model (cf. Section 4.3.2), to provide behaviour of the computational com-
plexity, we have taken the toy example of image size 288×512 pixels, from Figure 4.2 in page 95.
To handle this, a few sets of resolutions: {1◦, 2◦, 3◦, . . . , 10◦} are taken and shown in Figure 4.11
for both boolean as well as metrical models. In both cases, it is found that the running time
changes with a small increment (but not linearly) when objects size increases. In contrast, it
does not increases linearly with the size of the spatial objects as in the angle histogram ap-
proaches [Miyajima and Ralescu, 1994], for instance.

Illustrations Until now, we have explained the working principle of the radial line model. In
the following, we provide illustrations using toy examples. Those illustrations are not intended to
give a full and formal evaluation of our approach, but rather to provide the user with an intuitive
feeling on how they behave. In Section 4.4 we take real-world examples and full experiments on
real-images are reported in Section 4.6.3.
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4.3. Spatial Relations

(a) Θ = 15◦
x

y

Object X

Rpc

Histograms:
boolean H = [1 0 0 0 ... 0]1×24

metric H = [1 0 0 0 ... 0]1×24

(b) Θ = 10◦
x

y

Object X

Rpc

Histograms:
boolean H = [1 1 0 0 ... 0] 1×36

metric H = [0.78 0.22 0 0 ...0 ]1×36

(c) Θ = 5◦
x

y

Object X

Rpc

Histograms:
boolean H = [1 1 1 0 ... 0] 1×72

metric H = [0.26 0.41 0.33 0 ... 0] 1×72

Figure 4.10: Different radial line resolutions effect precision. The smaller the Θ, the higher the
precision. In boolean signature, 1s represent the presence of X. Metrical information provides
the percentage.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Image (scale step +2)

T
im

e 
(s

ec
)

1
o

3
o

5
o

9
o

(a) boolean

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Image (scale step +2)

T
im

e 
(s

ec
)

1
o

3
o

5
o

9
o

(b) metric

Figure 4.11: Behaviour of computational time for boolean and metric histograms, using a few
sets of resolutions: 1◦, 3◦,5◦ and 9◦. Image is scaled with the step of +2.

Several different topological configurations between two objects one many encounter are in-
cluded. We start from a disconnected topology including stroke thickness variation as well as
false overlapping and inclusion.

• For disconnected topological configuration as shown in Figure 4.12: keeping (a) as a ref-
erence image, we have changed a stroke thickness without changing relative positioning in
(b) and moved objects closer while keeping an identical overall topological i.e., disconnected
configuration in (c).
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H(A,Rpc
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Left Object: A and Right Object: B

Figure 4.12: Histograms at 3◦ resolution for disconnected objects including scaling.
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Figure 4.13: Histograms at 3◦ resolution for (a) false as well as (b) real overlapping objects.

For all configurations, the histograms do not show any significant difference. Scaling does
not affect our method sinceH is normalised. In addition, the line rotation does not consider
distances as long as they do not change the angular positioning.
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4.4. Symbol Description

• For false as well as real overlapping configurations, as shown in Figure 4.13:

The coverage angle of H changes due to the change in structure (elongating horizontal
limb in both objects). Our method, as shown in Figure 4.13, generates angular histograms
according to the change in structure within the shape, even though angular position does
not vary.

• Overlapping cases as shown in Figure 4.14:

R (in red) relational signature �
H(A,Rpc) H(B,Rpc)
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Left Object: A and Right Object: B

Figure 4.14: Histograms at 3◦ resolution for overlapping objects.

It is found that difference lies in the middle ofH(B,Rpc) (between 40◦−80◦). The difference
in histograms supports the fact that the method is able to discriminate slight changes in
the object configurations even when identical topologies exist.

4.4 Symbol Description

Until now, we have developed spatial relation models and illustrated them with a few toy exam-
ples in order to provide an intuitive feeling on how they behave. In this section, we implement
those spatial relations in a complete symbol recognition framework using real-world images. The
section mainly focusses on how to describe the symbol that uses spatial relations between visual
primitives that compose the symbol. Therefore, in what follows, we explain three major issues.

1. How to define and extract visual vocabulary?

2. How to compute pairwise spatial relations? and

3. How to integrate them in ARG framework?

As mentioned in Section 4.2.2, we first define our visual vocabulary (Section 4.4.1). In
Section 4.4.2 we explain the way we compute pairwise spatial relations and finally use both in
Section 4.4.3 to build an ARG and completely describe the symbol.
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Chapter 4. Symbol Recognition using Spatial Relations

4.4.1 Visual Vocabulary

We define a set of well controlled visual elementary parts as a vocabulary [K.C. et al., 2009a].
While, in the general case, this vocabulary can be of any kind from any type of spatially significant
features, related to what is visually pertinent in the application context under consideration, our
current vocabulary is related to electrical symbols. It can be easily extended to adapt to other
domains. Such visual elementary parts are extracted with the help of image treatment analysis
operations as described in [Rendek et al., 2004]. They are briefly described below.

– thick primitive: We employ straightforward thin/thick separation by counting all thick
connected components within the image. It uses standard skeletonisation based on chamfer
distance and computes the histogram of line thickness. An optimal cut value is computed
from the histogram to distinguish between thick zones and thin zones.

– circle primitive: We use the algorithm as described in [Lamiroy and Guebbas, 2010] which
is based on Random Sample Consensus minimization.

– corner primitive: We mainly consider four types of corners such as North–East, North–
West, South–East and South-West. It uses template matching process i.e., if the ratio of
black and white pixels is greater than or equal to the template threshold, then the presence
of corner is assessed.

– extremity primitive: We detect loose end coordinates from a given skeleton pixel where there
is only one unique neighbouring pixel connecting to the main skeleton, itself connected by
another unique pixel.

Figure 4.15 shows an illustration of those visual elementary parts, extracted from two different
symbols. In what follows, rather than using every detected element as a basis for expressing
and computing spatial relations, we group them together by type as shown in Figure 4.15. We
denote the set of these generated groups as,

�
T = {Tthick,Tcircle,Tcorner,Textremity}.

symbol 1 symbol 2

thick

circle

corner

extremity

Figure 4.15: Illustration of vocabulary type.

4.4.2 Pairwise Spatial Relations

In order to express the spatial distribution of the previously formed groups, we compute a
signature � (explained in Section 4.3), expressing the spatial relations between two sets of pixels
A and B.
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4.4. Symbol Description

(a) circle and corner

image with MBR R (in red)

1. Projection Model: M(circle,R) =




0.094 0.112 0.098 0
0.088 0 0.044 0
0.165 0 0.165 0
0.055 0.123 0.056 0


 M(corner,R) =




0 0 0 0.143
0 0 0 0
0 0.857 0 0
0 0 0 0




2. Radial line Model:
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(b) circle and extremity

image with MBR R (in red)

1. Projection Model: M(circle,R) =




0 0.140 0.140 0
0 0.061 0.061 0
0 0.092 0.092 0
0 0.181 0.181 0


 M(extremity,R) =




0 0 0 0
0.20 0 0.20 0.20
0.20 0 0 0.20
0 0 0 0




2. Radial line Model:
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)
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(c) corner and extremity

image with MBR R (in red)

1. Projection Model: M(corner,R) =




0 0 0 0
0 0 0.14 0
0 0.58 0 0
0 0.28 0 0


 M(extremity,R) =




0.20 0 0.20 0.20
0 0 0 0
0.20 0 0 0.20
0 0 0 0




2. Radial line Model:

40 80 120
0

0.04

0.08

0.12

Θ = 3°

H(corner,Rpc)

40 80 120
0

0.04

0.08

0.12

0.16

0.2

Θ = 3°

H(extremity,Rpc)

Figure 4.16: Relational matricesM and histograms H for all possible pairs of vocabulary types
from symbol 1 in Figure 4.15. 105
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As mentioned in the previous section, each set contains all occurrences of a given vocabulary
type. This implies that we know the visual vocabulary types to which A and B belong (cf.
Section 4.4.1). Defining a fixed arbitrary order on the set of types

�
T solves the potential

ordering problem when comparing two corresponding relations.
For those vocabulary types from symbol 1 in Figure 4.15, we have provided relational matrices

and angular histograms, respectively from both projection and radial line models. The projection
model is used to generate relation matrix and radial line model, angular histogram. Angular
histogram at 3◦ resolution is chosen as an example. Those relations are used to label edges in
ARG as shown in Figure 4.17.

4.4.3 Attributed Relational Graph

The vocabulary developed in Section 4.4.1 consists of a set of fixed label attributes, while the
spatial relations between the attributes are the histograms described in Section 4.4.2. This gives
us all the elements to express symbols as a complete ARG in which each vertex represents a
distinct attribute type and the edges are labelled with a numerical expression of the spatial
relations �.

More formally, we express the ARG as a 4-tuple G = (V,E, FA, FE) where

V is the set of vertices;

E ⊆ V × V is the set of graph edges;

FA : V → AV is a function assigning labelled attributes to the vertices where AV is the set of
attributes type set

�
T (cf. Section 4.4.1) and

FE : E → �E is a function assigning labels to the edges where � represents the spatial relation of
the edge E (cf. Section 4.4.2). Note that � does not provide symmetry, �(A,B) �= �(B,A).
But, this can be solved by fixed ordering of V and R is not affected.

For instance, using symbol 1 in Figure 4.15 as an example, and its corresponding spatial
relations in Figure 4.16 we obtain the following ARG representation: G = {

V = {T1,T2,T3},
E = {(T1,T2), (T1,T3), (T2,T3)},
FA = {(T1,Tcircle), (T2,Tcorner), (T3,Textremity)}
FE = {((T1,T2),�(T1,T2)), ((T1,T3),�(T1,T3)),

((T2,T3),�(T2,T3))}}

This forms a complete graph, and therefore has t(t−1)
2 edges for t attribute types.

T1

T2T3

�(T1,T2)�(T1,T3)

�(T2,T3)

Figure 4.17: Attributed Relational Graph for a symbol 1 in Fig. 4.15 – an example.
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4.5 Symbol Recognition

Now that we have set up our ARG for symbol representation, we can define our recognition
process. Recognition is based on maximal similarity, and is measured by a matching score. This
score is based on matching the corresponding relational signatures between two given ARGs.

We then further extend the recognition to ranking database symbols based on the order of
similarity, both of which will be explained in this section.

4.5.1 Matching

In this section, we first describe the global process to compute a matching cost between two
graphs and then move to our problem: symbol recognition. In Figure 4.18, we provide a simple
but complete process which consists of both vertex and edge substitution as well as insertion
costs. In the example taken from [Aksoy, 2009] and represented in Figure 4.18. the vertex ‘Tree’
is missing in graph GB. This example is provided to give general idea which can be regarded
as one of the situations in our case. In what follows, we are going to fit the example to our
situation.

In order just to fit the example into our problem, labelled edges can be considered as relations.
The only difference is that we do not have any numeric label for vertices, rather known and
labelled vocabulary types (this condition will change in Chapter 5).

Following the ARG description in Section 4.4.3, let us consider two graphs:

Gq = (V q, Eq, F qA, F
q
E) for the query symbol and

Gd = (V d, Ed, F dA, F
d
E) for the database symbol.

Let us remind that the set of vertices V = {T1, . . . ,Tt}, and the set of edges E = {E1, . . . , Er}.
In order to explain our matching strategy, we are first taking the simplifying assumption

that V q and V d are identical. In other words, both symbols contain items corresponding to
identical vocabulary elements, but not necessarily sharing the same spatial arrangement. Since
in our ARG every single vertex bears one distinct and unique attribute type, there is no cost
in matching the vertices between Gq and Gd. As a consequence, matching edges is equally
straightforward.

Since we have temporarily taken the assumption that V q and V d contain the same vocabulary
elements, we can set up a bijective matching functions ϕ : V q → V d and σ : Eq → Ed. This
bijection exists such that uv is an edge in graph Gq if and only if ϕ(u)ϕ(v) is an edge in
graph Gd. Also we consider that ordering is preserved over the vertices sets V q and V d. I.e.
v1 < v2 ⇒ ϕ (v1) < ϕ (v2).

Thanks to our fixed labelling of attribute types, corresponding � alignment is possible be-
tween the two given graphs and we can provide a matching score between the two given graphs
Gq and Gd,

Dist.(Gq, Gd) =
�

r∈E
δ
�
F qE(r), F

d
E(σ(r)

�

where δ(a, b) = ||a − b||2. This is actually a very simple and straightforward metric. Given the
performances of our method reported in Section 4.6 there is no real need to have a more complex
one, unless rotational invariance is needed.

Of course, the assumption that V q and V d share the exact same vocabulary is too strong.
To generalise the previously described approach to any situation, we define a binary (indicator)
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Tree (0.9)

Sky (0.7)

Grass (0.8)

House (0.6)

Pond (0.6)

0.6

0.4

0.7

0.6

0.3

0.4

0.4 0.5
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0.5

GA

Sky (0.8)

Grass (0.7)

House (0.6)

Pond (0.9)

0.5

0.4

0.3 0.2

0.6
0.9

GB

Matching cost computation between GA and GB:

1. Vertex substitution cost: ‘Sky’ |0.7− 0.8| = 0.1
‘House’ |0.6− 0.6| = 0.0
‘Grass’ |0.8− 0.7| = 0.1
‘Pond’ |0.6− 0.9| = 0.3

2. Edge substitution cost: ‘Sky’↔‘Pond’ |0.4− 0.3| = 0.1
‘Sky’↔‘Grass’ |0.4− 0.4| = 0.0
‘Sky’↔‘House’ |0.3− 0.5| = 0.2
‘Grass’↔‘House’ |0.5− 0.2| = 0.3
‘Grass’↔‘Pond’ |0.5− 0.9| = 0.4
‘House’↔‘Pond’ |0.3− 0.6| = 0.3

3. Vertex insertion cost: ‘Tree’ in GA 0.9

4. Edge insertion cost: ‘Tree’↔‘Pond’ in GA 0.6
‘Tree’↔‘Sky’ in GA 0.6
‘Tree’↔‘House’ in GA 0.4
‘Tree’↔‘Grass’ in GA 0.7

Therefore, total matching cost D(GA, GB) = substitution + insertion costs = 5.0.

Figure 4.18: Computing matching cost between two graphs GA and GB – an exam-
ple [Aksoy, 2009].

function τVA : ΣT → {0, 1} to check the presence of vertices in the ARG, where the value of
τVA (T) is 1 if T is present in V and 0, otherwise. For instance, for the symbol 1 shown in
Figure 4.15, τVA = [0, 1, 1, 1]: which refers to the absence of thick components and the presence
of circle, corner and extremity components. We can then use τV q

A and τV d

A for vertex insertion or
deletion. Figure 4.19 shows an example. In this example, an empty vertex Tq2 in Gq is inserted
and therefore corresponding adjacent empty relations, in order to provide one-to-one relation
matching.
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Td
1

Td
3Td

4

Gq

⇒
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1Tq

2

Tq
3Tq
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Vertex insertion

⇒

Tq
1Tq

2

Tq
3Tq

4

Edge insertion

Td
1Td

2

Td
3Td

4

Gd

Figure 4.19: A graph transformation: Gq → Gd.

4.5.2 Ranking

The previously defined matching score conveys how similar/dissimilar a database symbol is with
respect to a query. In order for similarity to be ranging from 1 to 0, we normalise Dist.(�) to
[0, 1] by taking all database symbols: Dist.(�) = Dist.(�)−Dist.min.

(�)
Dist.max.

(�)−Dist.min.
(�)
. Now, the similarity is,

Similarity(Gq, Gd) = 1−Dist.(Gq, Gd).
Ranking can therefore be based on the decreasing order of similarity.

4.6 Experiments

In this section, we first give an overview of the symbols in our dataset. Then we explain the
evaluation metric, clarifying its proper usage for this application. Based on the metric, we
perform a series of experiments and confront our method with existing ones.

Our spatial relation is compared with other spatial relation models:

1. cone-shaped [Miyajima and Ralescu, 1994],

2. angle histogram [Wang and Keller, 1999] and

3. MBR [Papadias and Theodoridis, 1997].

Then we perform another assessment in order to establish a comparison of the complete recogni-
tion method with the state-of-the-art approaches. For this, we take a few representative global
signal-based descriptors (cf. Chapter 3), applied directly to the symbol:

1. Zernike moments (ZM) [Kim and Kim, 2000],

2. generic fourier descriptors (GFD) [Zhang and Lu, 2002],

3. shape context (SC) [Belongie et al., 2002],

4. R−signature [Tabbone et al., 2006] and
5. D−Radon.

Finally, recent pixel-based approaches dedicated to symbol recognition are compared to our
method. They are

1. statistical integration of histogram array (SIHA) [Yang, 2005] and

2. 2D kernel density [Zhang et al., 2006] based symbol representation.

To validate the method, a set of query images is compared with all images in the dataset.
The database images are then ranked according to the similarity to the chosen query, using
the similarity measure described in Section 4.5.2. To evaluate the methods, we first explain
ground-truth formation in our dataset and then experimental protocol in the following section.
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4.6.1 Dataset and Evaluation Metric

As said in Chapter 3, we work on a real world industrial problem to identify a set of differ-
ent known symbols in aircraft electrical wiring diagrams: FRESH dataset [FRESH, 2007]. For
evaluation, we use the same metric: retrieval efficiency.

4.6.2 Matching Scope

Since in our case, there are four types of vocabulary extracted from the symbol, the possible
number of combinations of vocabulary types will be 24. However, a few combinations cannot
be handled by our method because it requires at least two vocabulary types to develop relation
between them.

Because of the fact we have a fixed set of labelled vertices (i.e., vocabulary types) in our symbol
description, we are able to control the matching scope for every chosen query by using a parameter
s. Using the notation introduced in Section 4.5.1, we define s as δ(τVqA , τ

Vd
A ). Depending on the

value of s different matching strategies can be applied:

s ≥ 0 : all candidates in the dataset are taken into consideration for matching.

s ≤ 2 : matching is only done between candidates differing by at most two vertices (i.e., two
vertices can be absent or supplementary).

s ≤ 1 : matching is only done between candidates differing by at most one vertex (i.e., one vertex
can be absent or supplementary).

s = 0 : matching is done by candidates only having the exact same set of vertices (i.e., V q = V d).

We have applied the four different matching strategies to evaluate the behaviour of different
methods with scopes ranging from s ≥ 0 to s = 0. Our assumption is that candidates having
the same set of vertices as well as exact labels are similar either for their whole structure or part
of it when in composite forms. This assumption has been experimentally validated.

Example In Figure 4.20, the colour of the tokens represent the label of the vertex as reported
in Section 4.4.3. For instance, the yellow coloured token represents the T1 vocabulary type in
the ARG.

In this example shown in Figure 4.20, we provide a concept of matching scope by applying
two different cases: s = 0: no difference in vertices allowed and s ≤ 1: one difference in vertices
is allowed. For s = 0, the example shows how matching scope is reduced to 5 symbols. This
means that relation matching happens only with 5 symbols for a particular query.

4.6.3 Experimental Results

First, we test our method using all matching scope strategies. As mentioned in Section 4.4.2,
projection model does not require any parameters, while for the radial line model, we need to fix
or select optimal resolution Θ. We consider the influence of different resolutions Θ for relational
signatures in radial line model. Once an optimal resolution is chosen, we present another series
of experiments establishing the performances of our approach. We address two specific issues:

1. How does our spatial relation model compare to other spatial relation models?
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Database Graphs ⇒
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

11. 12. 13. 14. 15.

� �� �
query

for s = 0⇒ �

1. 2.

�

3.
�

4.
�

5.
�

6.
�

7. 8. 9.

�

10.

11.

�

12.
�

13. 14.

�

15.

� �� �
query

for s ≤ 1 ⇒ �

1. 2.

�

3. 4.

�

5. 6.

�

7. 8. 9.

�

10.

11. 12.

�

13. 14.

�

15.

Figure 4.20: An example illustrating the matching scope.

2. How well does our recognition model do with respect to state-of-the-art recognition meth-
ods?

In all experiments, we have used retrieval efficiency, as described in Section 4.6.1. We compare
the average retrieval efficiencies over the same 50 queries for all presented cases. These efficiency
values have been computed for values of K = 1 to 10.

Our Method

Projection Model Figure 4.21 shows the retrieval efficiency of our projection model for all
matching strategies. Matching s = 0 provides the best results.

Radial line Model This method, besides depending on the choice of the vocabulary, uses
one main parameter: the resolution at which the angular histogram is computed7. Its value
represents the trade-off between the optimal choice of resolution – and thus precision of spatio-
structural information capture – and time/space requirements. Figure 4.22 shows the result of
a series of experiments with Θ varying over {1◦, 3◦, 5◦, 7◦, 9◦}. For each of its values we have
measured the retrieval efficiency on the same set of queries. Without surprise, the lower Θ, the
better the results, independently of the matching strategies used. Based on these results, and
given the relatively low gain of efficiency between 3◦ and 1◦, we adopt the former for the rest of
our experiments.

In the following, it is important to notice that, before going to make a comparison with the
state-of-the-art algorithms, we first test them and find the best of it to be compared later with
our models.

7The matching scope s, as introduced in Section 4.6.2 should not really be considered as a parameter, but as
a measure of our method’s robustness.
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Figure 4.21: Average retrieval efficiency over requested list: 1 to 10 using projection model.
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Figure 4.22: Average retrieval efficiency over requested list: 1 to 10 using radial line model. It
uses different resolutions: 1◦, 3◦, 5◦, 7◦ and 9◦.

Other Spatial Relation Models

In order to compare our spatial relation model with others, we have adapted our ARG with
cone-shaped [Miyajima and Ralescu, 1994], MBR [Papadias and Theodoridis, 1997] and angle
histogram [Wang and Keller, 1999]. In order not to bias overall performance, we have submitted
them to the same testing protocol as described before. Figure 4.23 shows their average retrieval
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Figure 4.23: Average retrieval efficiency over requested list: 1 to 10 using fundamental spatial
relation models: cone-shaped, angle histogram and MBR.

efficiency. MBR outperforms all others in all situations. We shall further compare it to our
method at the end of this section.

Global Signal-based Descriptors

In order to compare our method to other recognition methods, we have selected a set of ma-
jor global signal-based shape descriptors (cf. Chapter 3): Zernike moments [Kim and Kim, 2000],
GFD [Zhang and Lu, 2002], shape context [Belongie et al., 2002],R−signature [Tabbone et al., 2006]
and D−Radon. The same parameters will be used. Unlike the methods based on spatial rela-
tions, we cannot establish different matching scopes, based on ‘s’ as presented in Section 4.6.2
and used previously. The same queries are presented and average retrieval efficiency is shown
in Figure 4.24. D−Radon and GFD (with marginal difference) seems to be performing the best
among all tested global signal-based descriptors in our setup.

Pixel-based Approaches

We have also compared our method with two pixel-based approaches especially designed for
symbol recognition: statistical integration of histogram array (SIHA) [Yang, 2005] and kernel
density matching (KDM) [Zhang et al., 2006]. In SIHA, two different length-ratio and angle-
ratio histograms are taken from every two pixels in reference to a third pixel from the skeleton
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Figure 4.24: Average retrieval efficiency over requested list: 1 to 10 using global signal-based
descriptors: Zernike moments, shape context, GFD, R−signature and D−Radon.
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Figure 4.25: Average retrieval efficiency over requested list: 1 to 10 using pixel-based approaches:
statistical integration of histogram array (SIHA) and kernel density matching (KDM)

image. In KDM, skeleton symbols are represented as 2D kernel densities and their similarity is
measured by the Kullback–Leibler divergence. In Figure 4.25, results are shown for both. In this
test, we observe almost similar behaviour from the two. However, KDM performs slightly better
especially when also taking time complexity into account (see Table 4.1 in page 117).

Comparison

We can then compare our methods i.e., projection and radial line models with those presented
before. Figure 4.26 provides a comparison by taking the best of each category: MBR from the
basic spatial relation models, D−Radon from the global signal-based descriptors and KDM from
pixel-based approaches.

In Figure 4.26, projection model outperforms the conventional MBR model by approximately
10% retrieval efficiency. On the other hand, the model is lagging behind the global signal-
based descriptors by approximately 8%. Our method using radial line model outperforms all
spatial relation models as well as state-of-the-art methods. Our method outperforms both with
a significant difference in retrieval efficiency. The difference with D−Radon is more than 15%
and 30% with MBR model. KDM and D−Radon show similar behaviour.
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Figure 4.26: Comparison. Best of the breed – MBR from spatial relation model, D−Radon from
global signal-based descriptors and KDM from pixel-based approaches are taken for comparison
with our proposed methods: projection model (method1) and radial line model (method2).

4.6.4 Experimental Results Analysis

In this section, the performance of the methods in response to the experimental results are
analysed. Performance accounts for

1. retrieval efficiency and

2. execution time.

In parallel, we discuss matching scope and its effect in ranking retrieved symbols.
To visually compare the results of our method with the best of breed solutions reported in

Figure 4.26, we show a selection of queries in Figure 4.27. They demonstrate the use of isolated
as well as composed symbols as query. The first symbol on the top is always the chosen query
and symbols are ranked from top to bottom (1 to 10) based on decreasing order of similarity.
For query Q1, D−Radon and KDM come close to our method while MBR presents a notable
difference. In case of query Q2, our method outperforms all others significantly. A similar
situation happens for Q3.

Our method exploits spatio-structural description of the visual primitives. The choice of the
vocabulary types (i.e., collection of particular visual primitives) is of course an important factor
to its success. However, symbols like and are retrieved for the query
due to the presence of thick patterns. This shows that our relational signatures do not provide
or use any shape information. Therefore, symbols having any thick pattern like , , , ,
, , , , , and are selected for ranking. However, spatial organisation of

thick patterns with respect to other primitives helps to rank the best one first. Such variations
of shape and size of the thick vocabulary types will be addressed in Chapter 5.

Running time has been measured in all experiments. An average running time (in sec.) for
all methods is provided in Table 4.1.

Our method has benefited from the way we describe the matching strategy (cf. Section 4.6.2).
Symbol matching between the candidates which share the same sets of vertices with exact labels
(i.e., s = 0), is found to be the best among all. It sufficiently reduces time of matching to symbols
which are obviously irrelevant. Similarly, this happens in those tests using basic spatial relations
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4.6. Experiments

Methods Time (in sec)

1. Basic Relation Models
1.1. Cone-shaped [Miyajima and Ralescu, 1994] ≤ 01
1.2. MBR [Papadias and Theodoridis, 1997] 02
1.3. Angle histogram [Wang and Keller, 1999] 44

2. Global Shape Descriptors (cf. Chapter 3)
2.1. R−signature [Tabbone et al., 2006] 02
2.2. ZM [Kim and Kim, 2000] 13
2.3. GFD [Zhang and Lu, 2002] 09
2.4. SC [Belongie et al., 2002] 32
2.5. D−Radon 69

3. Pixel-based Approaches
3.1. SIHA [Yang, 2005] 64
3.2. 2D KDM [Zhang et al., 2006] 24

4. Our Method
4.1. Projection model 02
4.2. Radial line model 04

Table 4.1: Average running time (in sec).

models. But for global signal-based descriptors as well as pixel-based approaches, running time
increases with number of symbols in the dataset since matching scope does not exist.

4.6.5 Advantages and Limitations

In this section, we discuss advantages and disadvantages of the proposed recognition method by
highlighting three points:

1. Symbol Description – ARG based symbol description is interesting in the sense that any
number of visual primitives can be represented in a fixed number of vertices. As a reminder,
each vertex is labelled with distinct vocabulary type. The idea is simple and easy to
implement as well as to extend. Note that spatial relations do not reveal complete shape
information of the visual primitives.

2. Matching – Due to labelled vertices in our ARG, our matching avoids the NP-hard sub-
graph isomorphism problem. Also, we reduce running time through the use of matching
scope (cf. Section 4.6.2).

3. Recognition – Our method aims at retrieving linear symbols as well as in composite form. In
case of composite symbols, it attempts to take significant parts of the image for recognition.
Pre-filtering as described in Section 4.6.2 provides support in order to retrieve symbols in
the composite form, due to labelled vocabulary types.

4. Affine Transformations

• translation. It does not effect the spatial relations between the vocabulary since all
visual primitives are also translated.

• scaling. Since our method takes well controlled visual primitives from the symbol for
computing spatial relations, image scaling does not really affect the method except a
change in thick shape and size information.
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Chapter 4. Symbol Recognition using Spatial Relations

• rotation. Spatial relations do not satisfy the rotation invariant property. We stick on
it because of the characteristic of the dataset. We do not really have symbols with
rotation. However, in Appendix B, we provide an extension of the work to show the
behaviour of the proposed method in case of rotation, translation, scale (uniform as
well as stretching), noisy as well as their combinations.

4.7 Conclusions

In this chapter, we have presented a method for describing symbols using a specific Attributed
Relational Graph via the use of spatial relations between the visual elementary parts. Each vertex
represents all visual primitives of a particular vocabulary type within the symbol. The edges
represent the spatial relations between them. The proposed method is simple, and has the ability
to express spatial relations between any number of visual primitives. We have validated that
such a description can be used for symbol recognition. Our method has proven to significantly
outperform state-of-the-art basic spatial relation models, global signal-based descriptors and
pixel-based approaches for symbol recognition.

4.8 What is Next?

As mentioned in Section 4.6.4 and 4.6.5, relational histograms do not exploit shape information
of the visual primitives. Therefore, in the next Chapter, we address the use shape description
features for vocabulary primitives in addition to relations that exist between them.

End of Chapter
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Chapter 5. Integrating Shape Signatures in ARG Representation for Symbol Recognition

Foreword. In the previous contribution, we have developed new spatial relation models and validated
in the framework of symbol recognition. Spatial relations are used to provide visual links between the
extracted visual primitives. These are then used as a basis for building an ARG that fully describe the
symbol.

In this chapter, we present a method for symbol recognition based on the use of spatial organisation
and shape features of the visual primitives that compose a symbol. Keeping the ARG based symbol
description presented in Chapter 4, we address the use of shape signatures (cf. Chapter 3) in two different
ways. First, shape signatures are used to label vertices. Second, we consider applying shape features only
to the vocabulary which shows significant shape variation. Overall, both are integrated with relational
signatures in the framework of ARG based symbol description. Consequently, the description is used to
globally recognise structure by comparing the signatures. The method is experimentally validated in the
context of electrical symbol recognition from wiring diagrams using the same dataset as in Chapter 4. �

5.1 Organisation of the Chapter

The chapter is organised as follows. We start with an introduction in Section 5.2 which mainly
includes our motivation, describes the underlying problem, reviews related work and gives an
outline of our proposed method. We explain the proposed method in Section 5.3 and Section 5.4.
In Section 5.3, we explain the way how we integrate vertex signature via shape analysis while in
Section 5.4, we discuss pattern (extracted visual part) clustering through shape analysis. Both
are integrated with relations, keeping the same ARG framework for symbol description as in
Chapter 4. Full experiments are reported in Section 5.5. We point out the summary of the work
in Section 5.6.

5.2 Introduction

Structural approaches provide powerful representations, conveying how parts are connected to
each other. However, relations (e.g., relational histograms) do not exploit shape information
as shape descriptors do. On the other hand, considering our application, global signal-based
shape descriptors cannot provide optimal retrieval performance since the symbols are not only in
linear and isolated form, they are composed with many elements instead. This has been clearly
explained in Chapter 2 and attested in Chapter 3. Therefore, optimal selection of shape features
and where to apply are the two primary tasks in the ARG framework discussed in Chapter 4.

Considering the problem of symbol localisation in real documents, composed of individual
parts constrained by spatial relations, one needs to be able to formalise the relations that exist
between the extracted visual primitives in addition to the description of individual shapes. This
integration of shape description (cf. Chapter 3) of the extracted visual primitives and spatial
relations (cf. Chapter 4) between them is going to be the core of this chapter. This means that
we efficiently integrate statistical features with structural in order to fit to our symbol recognition
problem.

5.2.1 Related Work

Along with the use of spatial relations for symbol recognition, we have discussed symbol repre-
sentations, matching techniques as well as performances of several different structural approaches
in Chapter 4. Once again, a few major references can be recalled as [Cordella and Vento, 2000a,
Lladós et al., 2001]. In particular, we have kept our eyes on shortcomings considering our un-
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derlying problem. In this section, we discuss shape analysis for symbol recognition and address
the possible integration of both approaches: structural and statistical.

In [Cordella and Vento, 2000a], shape analysis for symbol recognition has been comprehen-
sively addressed. It mainly refers to isolated shapes i.e., a simple 2D binary shapes. Under
statistical approaches, global signal-based descriptors [Yuen et al., 1998, Kim and Kim, 2000,
Tabbone et al., 2006, Belongie et al., 2002, Zhang and Lu, 2002, Zhang and Lu, 2004] are usu-
ally quite fault tolerant to image distortions, since they tend to filter out small detail changes.
This is unfortunately an inconvenient in our context. Symbols may either be very similar in
shape – and only differ by slight details – or either be completely different from a visual point
of view. Symbols may also be composed of other known and significant symbols and need not
necessary be connected. Moreover, they difficultly accommodate with connected or composite
symbols. More precisely, the major drawbacks are due to deformation, composition with other
symbols (which, in [Yuen et al., 1998] leads to unstable centroid detection, and thus errors in
the ring projection) and occlusion over the boundary (leading to unstable tangents in Shape
Context [Belongie et al., 2002]). Overall, they are generally not well adapted for capturing small
detail changes, since they are specifically conceived to filter those out. Despite those shortcom-
ings, researchers have been integrating descriptors [Salmon et al., 2007, Terrades et al., 2007b,
Barrat and Tabbone, 2010] as well as combining several classifiers [Terrades et al., 2009] to in-
crease their performance, partially based on the idea presented in [Tombre et al., 1998] that
off-the-shelf methods are primarily designed for applications where line symbols are isolated. In
these statistical approaches, signatures are simple with low computational cost. However, dis-
crimination power and robustness strongly depend on the selection of optimal set of features for
each specific application. In Chapter 3, we have studied a major set of shape descriptors and
validated over several different datasets, in order to justify aforementioned points.

Therefore, an appropriate image description is required to integrate them where it accounts
the generality and extensibility properties of structural approaches. It has also been clearly
mentioned in [Tombre, 2010]:

“. . . the very structural and spatial nature of the information we work with makes
structural methods quite natural in the community. Their efficient integration into
methods which also take full advantage of statistical learning and classification is
certainly the right path to take.”

An interesting example that uses shape descriptions and relations to form Region Adjacency
Graph (RAG) is found in [Bodic et al., 2009]. The vector-based RAG is based on segmented
regions which are labelled as vertices and geometric properties of an adjacency relations are used
to label edges. The approach is limited once segmented regions change with image transforma-
tions and hence it uses few model classes to localise symbols in the technical documents. In
contrast, our integration is different from the way we apply shape descriptors and the use of
spatial relations. The proposed method will be discussed in the following section.

5.2.2 Outline of the Proposed Method

Global signal-based descriptors are only applied to isolated patterns (cf. Chapter 3). The
spatial relations developed in Chapter 4 are able to exploit spatio-structural information of
visual primitives. However, it does not really carry shape information in the same way shape
descriptors do. Therefore, in this chapter, we aim to combine the best of both worlds: statistical
and structural, and try to avoid the shortcomings of each of them. To do so, we continue to
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decompose symbols by expressing their various parts in a fixed visual vocabulary, using spatial
relations, graphs and signal-based descriptors to describe the whole shape.

Overall, we concentrate on two major contributions, keeping ARG framework developed in
Chapter 4. They are

1. vertex signatures through shape descriptions in ARG (cf. Section 5.3); and

2. vocabulary clustering through shape analysis (cf. Section 5.4).

Symbol

3. ARG Matching via ARG Recognition

2. Spatial Relations + Shape Descriptions

1. Visual Vocabulary

Figure 5.1: An architecture for symbol description and recognition using shape features and
spatial relations. It uses ARG based symbol description using visual vocabulary and their possible
pairwise relations. Shape signatures are used to discriminate visual parts.

In both cases, we study the pertinence of the use of following major set of shape descriptors,
into our method:

1. Zernike moments (ZM) [Kim and Kim, 2000],

2. generic fourier descriptors (GFD) [Zhang and Lu, 2002],

3. shape context (SC) [Belongie et al., 2002],

4. R−signature [Tabbone et al., 2006] and

5. D−Radon.

In the following, we highlight both symbol description and symbol recognition, for both cases.

5.3 Vertex Signature through Shape Descriptions in ARG

In our ARG based symbol description mentioned in Section 4.4.3 of Chapter 4, each vertex
has a distinct vocabulary type containing different shape and size information. Since spatial
relations only encode relative positioning and point distributions, and do not completely exploit
global shape information, we employ a number of well-known descriptors to label vertices (i.e.,
visual primitives), aiming to increase overall recognition performance. The descriptors are listed
in Section 5.2.2. In what follows, we explain how we describe the symbol based on our ARG
framework and recognition process.

5.3.1 Symbol Description

In our ARG based symbol description, edges are labelled with a numerical expression of the
spatial relations (cf. section 4.4.2) between the connected vertices that are labelled both with
their distinct vocabulary types and their global shape descriptors.
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In our formal ARG expression, it consists of a 4-tuple G = (V,E, FA, FE): V is the set of
vertices, E ⊆ V × V is the set of graph edges, FA : V → AV is a function assigning attributes to
the vertices and AV representing a set of vocabulary type set

�
T as well as their global shape

signatures S, and FE : E → �E is a function assigning labels to the edges where � represents
spatial relations of the edge E. Figure 5.2 shows the visual description of it.

For any symbol which has attribute type set {T1,T2,T3}, its ARG representation can be
expressed as G = {

V = {T1,T2,T3},
E = {(T1,T2), (T1,T3), (T2,T3)},
FA = {((T1,Tcircle),S(T1)), ((T2,Tcorner),S(T2)), ((T3,Textremity),S(T3))}�
FE = {((T1,T2),�(T1,T2)), ((T1,T3),�(T1,T3)), ((T2,T3),�(T2,T3))}}.

In contrast to ARG based symbol description presented in Section 4.4, it integrates shape
description of vocabulary in vertices otherwise, the complete framework is identical.

S(T1)

S(T2)S(T3)

�(T1,T2)�(T1,T3)

�(T2,T3)

Figure 5.2: A complete ARG description for a symbol. Both vertex and relation signatures are
used. The illustration can be referred to the symbol 1 presented in Figure 4.15 Chapter 4 where
attribute type set is {Tcircle,Tcorner,Textremity}. In contrast to Figure 4.17, the difference lies in
the additional use of vertex signature�.

5.3.2 Symbol Recognition

In this section, we recall the matching concept explained in Section 4.5.1. The only modification
is that the additional use of shape signatures on vertices.

Based on our symbol description, matching of two given symbols is done by matching their
corresponding ARGs. Let us consider two ARGs, query Gq = (V q, Eq, F qA, F

q
E) and database

Gd = (V d, Ed, F dA, F
d
E), where the set of vertices V = {T1, . . . ,Tt}, and the set of edges E =

{E1, . . . , Er}. Therefore, the global matching score between two graphs is,

Dist.(Gq, Gd) = α dist.vertex(Gq, Gd) + (1− α) dist.relation(Gq, Gd)
= α

�

t∈V
δ(F qA(t), F

d
A(σ(t))) + (1− α)

�

r∈E
δ(F qE(r), F

d
E(ϕ(r))),

where α ∈ [0, 1] and δ(a, b) =�L
l=1 ||al−bl||2. The parameter α provides weight while matching.

• α = 0: only vertex signature;

• α = 1: only edge signature; and

• α = 0.5: equal weights to both vertex and edge signature.

In our experiments, we provide equal weights for both relations and shape distribution of the
whenever they are integrated together.
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Illustration Consider Gq 0.4
0.4 0.3

and Gd 0.8

0.6 0.9

0.2 0.7

0.8

. Vertices are labelled as T1 T2 T3 . Then
matching score between them is,

Dist.(Gq, Gd) = α

�
δ(STq1

,STd1
)+δ(STq2

,STd2
)

+
δ(STq3

,STd3
)

�

� �� �
dist.vertex

+(1− α)
�

δ(�Tq1,T
q
2
,�Td1 ,T

d
2
)

+
δ(�Tq1,T

q
3
,�Td1 ,T

d
3
)+δ(�Tq2,T

q
3
,�Td2 ,T

d
3
)

�

� �� �
dist.relation

where �x,y = �(x, y). It is clear that Tq3 has to be inserted when Gq is transformed to Gd. As

a consequence virtual connections: �Tq
1,T

q
3
and �Tq

2,T
q
3
exits: Tq

1 Tq
2

Tq
3

⇐⇒ Td
1 Td

2

Td
3

. The labelled
vertices in our ARG based symbol description makes easier to handle this. In our numeric
example, this behaves as

Dist.(Gq, Gd) = α

�
||0.4−0.2||2+||0.3−0.7||2

+
||0−0.8||2

�

� �� �
dist.vertex

+(1− α) [ ||0.4−0.8||2 ] + β2

�
||0−0.6||2

+
||0−0.9||2

�

� �� �
dist.relation

.

Now the turn is to give weights to dist.vertex and dist.relation.

5.4 Vocabulary Clustering through Shape Analysis in ARG

One of the major problems caused by thick visual primitives in our vocabulary set (see Sec-
tion 4.4.1 in Chapter 4) affects retrieval performance. It is primarily because of shape and size
variation. Moreover, number of thick patterns is different from one symbol to another. There-
fore, in the framework of ARG based symbol description developed in Chapter 4, we propose to
integrate group of similar thick patterns through clustering via shape features.

In what follows, we will first discuss symbol description (cf. Section 5.4.1) and then matching
strategy (cf. Section 5.4.2) for recognition process. For both symbol description and recognition,
we mainly focus on thick pattern clustering and the way how it is integrated with ARG.

5.4.1 Symbol Description

After integrating shape features for a particular vocabulary that shows significant shape and size
variation, our symbol description goes like this.

The ARG as established in Chapter 4 is now composed of splitting thick vertex into more
specialised thick sub-vertices. Therefore, the total number of thick sub-vertices is equivalent
to the number of thick patterns within the symbol. Figure 5.3 shows an overall concept of
the proposed symbol description. In this illustration, thick sub-vertices are connected with the
remaining vertices in addition to the use of shape signatures in it. This is primarily the change
of paradigm with respect to previous ARG model.

To elaborate it and in contrast to Section 4.4 in Chapter 4, and following Figure 5.3, for any
symbol which has attribute type set {T1,T2,T3}, its ARG representation can be expressed as
G = (V,E, FA, FE) and FA = {((T1,Tthick),S(T1)), (T2,Tcircle), (T3,Tcorner)} where we assign
label through shape signature in vertex S(T1). It goes separately for all individual thick patterns
like {S(T1,κ), . . . ,S(T1,K)}, where K is the number of thick patterns in a symbol. Overall, for any
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�(T1,K,T2)�(T1,K,T3)

�(T2,T3)

Figure 5.3: A complete ARG description for a symbol which has vocabulary type set
�

T =
{T1,T2,T3} labelled respectively with thick, corner and extremity. In this illustration, the origi-
nal graph is decomposed into a number of graphs which is equivalent to the number of extracted
thick patterns.

symbol, there are {Gκ}κ=1,...,K ARGs. Once again, it is important to remind that, in contrast to
Figure 4.17 (in page 106 of Chapter 4), the difference lies in the separate use of shape signatures
for all thick patterns.

According to our symbol description, since there exists arbitrary number of thick patterns
from one symbol to another, number of ARGs to describe a complete symbol can be varied
accordingly. Consequently, it takes more matching time compared to the matching mentioned
previously in Chapter 4. To avoid such an intense time complexity issue, we propose to use thick
pattern clustering so that matching can be handled efficiently without using one-to-all graph
matching. The overall process goes like this. All thick patterns are grouped first and used them
for identifying related symbols in the dataset. For instance, the query thick pattern belongs to
the particular cluster will be taken for ranking. After that the ranking goes through the use
of relational signature (cf. Chapter 4) matching between those symbols related to particular
cluster. The more detail idea on matching is provided in Section 5.4.2.

In what follows, we first explain the general clustering algorithm, verification and validation
concepts for unsupervised clustering together with illustrations and then followed by real-world
example.
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Clustering of patterns

Let us illustrate the problem with an example. This is shown in Figure 5.4. The shape and size
of the thick pattern is related to kind of symbol from which it detected. For instance, a thick
pattern coming from junction is different from a triangle-shaped one, such as a significant part
of a diode symbol or from an arrow , . To separate them, the main idea is to cluster similar
ones in the same group. The collected thick patterns in a group are assumed to extracted from
the similar types of symbols.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
. . .

Figure 5.4: Symbols and their corresponding thick patterns. For visual understanding, thick
patterns are zoomed out.

A comprehensive idea of clustering techniques has been presented in [Jain and Dubes, 1988,
Reynolds et al., 2006]. Based on it, we have presented thick pattern clustering that is composed
of two major steps.

step 1 Find the similarity or dissimilarity between every possible pair of objects.

All thick patterns are represented by shape signatures. For every particular description,
three different metrics are used in order to get the distance (similarity or dissimilarity)
matrix. They are

1. city-block: δ(x, y) = �x− y�1 = |x− y|,
2. euclidean: δ(x, y) = �x− y�2 =

�
(x− y)2 and

3. squared euclidean: δ(x, y) = �x− y�22 = (x− y)2,

where δ(x, y) is the distance between elements x ∈ X and y ∈ Y .

step 2 Group the similar ones in the form of hierarchical cluster tree.

In order to group them, we implement three different types of linkage methods for clustering
based on the distance matrix.
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1. Single-linkage Clustering; is sometimes known by name nearest neighbour clustering.
In this method, the distance between two clusters is computed as the distance between
the two closest elements in two clusters.
Mathematically, the linkage function – the distance between two clusters D(X,Y ) can
be expressed as,

Dist.(X,Y ) = min { δ(x, y) : x ∈ X, y ∈ Y }.

2. Complete-linkage Clustering uses the maximum distance between the two clusters.
Mathematically, it can be expressed as,

Dist.(X,Y ) = max { δ(x, y) : x ∈ Y, y ∈ Y }.

3. Average-linkage Clustering: The method uses the mean distance between elements
of each cluster. The distance between any two clusters X and Y is taken to be the
average of all distances between pairs of objects x ∈ X and y ∈ Y :

Dist.(X,Y ) =
1

|X| × |Y |
�

x∈X

�

y∈Y
δ(x, y).

Until now, we have defined the possible linkage methods which are based on distance.
Based on that, the clustering process can be described as follows.

Consider M = N ×N proximity matrix from N thick patterns. An agglomera-
tive hierarchical clustering scheme consists in erasing rows and columns in this
proximity matrix each time clusters are grouped together. The clusters are then
assigned as sequence numbers: 0, 1, . . . , (n − 1) and L(k) is the level of the kth
clustering.

1. Consider disjoint cluster having level L(0) = 0 and sequence number c = 0.
2. Find the most similar pair of clusters in the current clustering, say pair (r),
(s). Similarity is depend on the chosen metric and linkage method.

3. Increment the sequence number: c = c+ 1. Group clusters (r) and (s) into
a single cluster to form the next clustering c. Set the level of this clustering
to L(c) = Dist.[(r), (s)].
Update the proximity matrix, M, by deleting the rows and columns corre-
sponding to clusters (r) and (s) and adding a row and column corresponding
to the newly formed cluster. The proximity between the new cluster, denoted
(r, s) and old cluster (k) is defined as Dist.[(k), (r, s)].

4. Repeat until all clusters are merged or it reaches cluster-threshold.

Figure 5.5 shows an example of a dendrogram using agglomerative hierarchical clustering.
In this illustration, the clustering process ends up with a single cluster. The similarity
between the pair is simply taken from the distance computation. For instance, patterns
c1 and c2 are merged at the level of 1.5 distance. This is also called dendrogrammatic
distance.

Although the clustering has been simplified in two steps, there remain some unanswered
questions. Those will be the main part of our contribution.
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distance
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3
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c1 c2 c3 c4 c5 c6 c7 c8

Figure 5.5: Dendrogram example using eight patterns: c1, c2, . . . , c8. Every pair is merged based
on the similarity between them.

1. Testing all above mentioned metrics one-by-one will be time consuming as well as difficult
to evaluate and or verify the clusters. How can we optimise it?

Of course, the choice of metric affects the shape of the clusters. Therefore, we verify the
clusters by using all possible combinations of metrics and linkage methods in one shot.

2. How and where to cut the cluster tree into clusters?

It refers to the number of clusters. The illustration in Figure 5.5 only provides the clustering
process until it merges all, but not the cut-off threshold. To efficiently handle appropriate
number of clusters, one either has to chose the threshold manually or set the best threshold
by validating the clusters. The latter one i.e., cluster validation mainly requires either
unsupervised or supervised.

A full explanation of what is related to item 1 i.e., cluster verification and what is related to
item 2 i.e., cluster validation will be provided in the following sections.

Cluster Verification and Validation

Cluster Verification As mentioned earlier, cluster analysis is highly sensitive to

1. distance metric selection and

2. criterion for determining the order of clustering.

Different approaches that use different combinations of distance metric and linkage method
may yield different results. Therefore, the distance metric and clustering criterion should be
chosen carefully. However, the best combination changes in the function of features and dataset
characteristics. As a consequence, we need to compare all possible combinations one-by-one. To
efficiently achieve this, we use ‘cophenetic distance’ for every combination and choose the best
one before cluster validation.
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y

x

Figure 5.6: Sample points.

Cophenetic Distance and its Correlation In hierarchical clustering, the height of the link
represents the distance between two clusters (see Figure 5.5). This height is known as cophenetic
distance [Sokal and Rohlf, 1962, Rohlf and Fisher, 1968, Carr et al., 1999]. If the clustering is
valid, the linking of objects in a cluster tree should have a strong correlation with the distance
between the objects (in the distance matrix). Cophenetic correlation compares these two sets
of values. Therefore, the cophenetic correlation coefficient closer to 1 is the best one – that
accurately clusters the data. Overall, the cophenetic correlation coefficient is a measure of how
faithfully a dendrogram preserves the pairwise distances between the original unmodelled data
points.

Consider the original data Xi have been clustered to produce a dendrogram Ti. Besides, let
us define the following distance measures.

• x(i, j) = δ(Xi, Xj): distance between the ith and jth samples.

• t(i, j): the dendrogrammatic distance between the model points Ti and Tj . This distance
is the height of the node at which these two points are first joined together. Figure 5.5
gives a clear visual idea.

Let x be the average of the x(i, j) and t be the average of the t(i, j), the cophenetic correlation
coefficient c can be expressed as [Carr et al., 1999],

Cop. Coeff. =

�

i<j

(x(i, j)− x)(t(i, j)− t)
�����


�

i<j

(x(i, j)− x)2



�

i<j

(t(i, j)− t)2



.

Illustration To illustrate the idea, we take a set of arbitrary point coordinates (Figure 5.6)
to see how the cluster verification works and how we obtain the best combination of distance
metric and linkage method. For all possible pairs of combinations, we have tested the clustering
and provided their corresponding cophenetic correlation coefficient in Table 5.1. In this example,
the combination of euclidean distance metric and average-linkage clustering method is found to
be the best compared to others. Therefore, we only use the best pair for clustering. Such a
clustering will be used for validating appropriate number of clusters.

Cluster Validation The following is a set of several issues for cluster validation.
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city-block euclidean sq-euclidean
single-linkage 0.8469 0.8738 0.8203
complete-linkage 0.8460 0.8720 0.8203
average-linkage 0.8560 0.8833 0.8240

Table 5.1: Cophenetic correlation coefficient from all possible combinations of distance metric
and clustering linkage method applied to the sample points in Figure 5.6. The best combination
is the one closest to 1.

1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-
random structure actually exists in the data.

2. Determining the correct number of clusters.

3. Evaluating how well the results of a cluster analysis fit the data without reference to
external information.

4. Comparing the results of a cluster analysis to externally known results, such as class labels.

5. Comparing two sets of clusters to determine which is better.

In this section, we will be focussing on determining the correct number of clusters.

• If too many clusters are defined, they will be small in size and their elements (even inter-
cluster) will be highly similar, but the analysis of many clusters can be difficult.

• If fewer clusters are defined, their larger number of elements will show less similarity to
one another, but the smaller number of clusters will be easier to analyse.

Overall, it involves trade-off between number of clusters and similarity of elements in the
cluster. The evaluation measures, or indices, that are applied to judge various aspects of cluster
validity are traditionally classified into the following major two types:

1. supervised and

2. unsupervised.

Supervised cluster validation measures the extent to which the clustering structure discovered
by a clustering algorithm matches some external structure. They are: entropy, purity, precision–
recall and F-measure. Those mentioned measures convey how well cluster labels match externally
supplied class labels. Supervised measures are often called external indices because they use such
information which are not present in the data set. This is not the case that can happen in our
problem.

Unsupervised cluster validation does not include external information. Unsupervised mea-
sures of cluster validity are often further divided into two classes:

• Cluster cohesion: It refers to compactness or tightness of the cluster. In other words, it
resembles how closely related the objects in a cluster are?

The member of each cluster should be as close to each other as possible.
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• Cluster separation: It refers to isolation of the clusters i.e., how distinct or well separated
a cluster is from other clusters?

The clusters themselves should be widely separated. There are three common approaches
measuring the distance between two different clusters:

– distance between the closest member of the clusters,

– distance between the most distant members, and

– distance between the centres of the clusters.

Unsupervised measures are often called internal indices because they use only information
present in the data set.

In our case, since we do not have external input to fix the number of clusters, we employ
unsupervised techniques. The techniques we are going to use to validate the cluster, will be
discussed below.

1. Dunn Index: The Dunn index [Dunn, 1974] defines the ratio between the minimal intra-
cluster distance to maximal inter-cluster distance. In other words, it maximises the inter-
cluster distance while minimising the intra-cluster distance. Dunn index for k clusters is
expressed as,

DUk = mini=1,...,k

�
minj=i+1,...,k

�
d(ci, cj)

maxm=1,...,kd(cm)

��

where d(ci, cj) = minx∈ci,y∈cj�x− y�
d(cm) = maxx,y∈c�x− y�

2. Davies-Bouldin Index: It [Davies and Bouldin, 1979] identifies not only the clusters
which are far from each other but also compactness. Davies-Bouldin index is defined as,

DBk =
1

k

k�

i=1

maxj=1,...,k,i�=j

�
d(ci) + d(cj)

�ci − cj�

�

d(ci) =

�
1

ni

�

x∈ci
�x− zi�2

�1/2

ni is the number of elements and zi the centroid of cluster ci. Davies-Bouldin Index is
minimised for the best number of clusters.

3. Silhouette Index: It [Rousseeuw, 1987] calculates the silhouette width for each sample,
average silhouette width for each cluster and overall average silhouette width for a total
data set. Using this approach each cluster could be represented by so-called silhouette,
which is based on the comparison of its tightness and separation. The average silhouette
width could be applied for evaluation of clustering validity and also could be used to decide
how good is the number of selected clusters. The silhouette width is an average over all
observations i.e.,

SIk =
1

n

n�

i=1

(b̂i − âi)
max(âi, b̂i)
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clusters
1 2 3 4 5 6

Silhouette — 0.7650 0.6523 0.6689 0.7059 0.7983
Dunn — 1.2878 0.6695 0.7906 0.7071 0.5590
Davies-Bouldin — 0.0359 0.0984 0.1329 0.0725 0.0428
Score Function 0.0000 1.0000 0.9000 0.8700 0.5620 0.5200

Table 5.2: Cluster validation test for all indices. For a number of clusters: {1, 2, 3, 4, 5 and 6},
every index produces two clusters.

where n is the total number of elements, âi is the average distance between the element
i and all other elements in its own cluster and b̂i is the minimum of the average distance
between i and elements in other clusters. Silhouette Index is maximised for the best number
of clusters.

4. Score Function: As in the Dunn and Davies-Bouldin indices, it [Saitta et al., 2007] is
also based on inter-class and intra-class distance. In other words, it can be expressed as,

• between class distance (bcd)

bcd =

�k
i=1 �zi − ztot�.ni

n.k

where k is the number of clusters of size n, zi the centroid of cluster ci having ni
elements and ztot the centroid of all clusters.

• within class distance (wcd)

wcd =
k�

i=1

�
1

ni

�

x∈ci
�x− zi�

�

Now the score function is,

SF = 1− 1

eebcd−wcd

The higher the value of the SF, the more appropriate the number of clusters. There-
fore, it maximises the bcd and minimises the wcd.

Illustration To attest the cluster validation indices, we take the example in Figure 5.6 and
followed the verification results in Table 5.2. Following the cluster verification results in Table 5.2,
Figure 5.7 shows cluster validation tests from all indices. In this illustration, every cluster
validation index provides 2 clusters.

Real-world example In this illustration, we consider those issues which affect the clustering
process and eventually number of clusters. Those issues are

1. shape signatures and

2. cluster validation indices.
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Figure 5.7: Cluster validation indices give two clusters. It is provided in Table 5.2.
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(b) Davies-Bouldin Index

Table 5.3: Number of clusters after cluster validation tests from GFD. Clusters change when
feature changes. In order to show the effect of GFD parameters, we have varied radial from
4 to 12 and angular frequencies from 6 to 20 with the step of +2. Two indices: Dunn and
Davies-Bouldin are taken.

Shape signatures are of course the primary factor to be considered. Since discrimination power
of shape descriptors vary from one to another, the number of clusters is obviously different. As
a consequence, cluster validation indices do not always provide similar results. Note that in the
aforementioned example, we use coordinate points as features to provide intuitive of the overall
clustering process how it works.

Now, different shape descriptors are employed one-by-one. For every shape descriptor, we
apply all cluster validation indices and analyse the results. To understand it, we provide a
clustering process for GFD.

GFD We have tuned the parameters: radial (4 to 12) and angular (6 to 20) frequencies to get
the best combination. Tuning the best combination, is found to be expensive. In Table 5.3,
we have shown the effect of shape features by tuning GFD parameters on cluster validation.
It means, feature selection affects cluster analysis. Table 5.3 shows an example where there
are possibilities to get different clusters from different indices. For every radial and angular
frequencies combination, we obtain different number of clusters. For a single combination,
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GFD parameters: radial frequency = 6 and angular frequency = 15.

Figure 5.8: A real example of how cluster validation indices behave for GFD. The vertical line
in every plot represents the number of clusters, resulting from cluster validation index.

Figure 5.8 shows the way how we select the number of clusters. Every cluster validation
index does not provide similar results. For instance, Davies-Bouldin index provides 32
clusters. The output from Davies-Bouldin cluster validation index is shown in Figure 5.9.
It only illustrates few clusters.

However, based on the retrieval performance, we determine the best one. Therefore, tuning
the best combination of parameters is expensive but it goes at once for a particular dataset.

For remaining shape descriptors like shape context, Zernike moments,R−signature, D−Radon,
similar cluster validation process has been carried out. In Section 5.5, effect of the use of all
shape descriptors on retrieval performance will be presented. This goes with the appropriate
choice of cluster validation index. In other words, full experimental test will be reported for all
possible combinations of shape descriptors and cluster validation indices.

5.4.2 Symbol Recognition

The recognition framework principally follows the corresponding relation alignment for matching
symbols explained in Chapter 4. At this point, we explain how can we integrate thick clustering.

step 1 The first step is to allocate the cluster in which the query thick belongs to. It is shown
in Figure 5.10. Cluster selection can be more than one if query symbol has two or more
than two thick patterns with different shape information. Figure 5.11 shows an example of
it. The idea in general, is only applied when query symbol is not taken from dataset used
for clustering.
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junction: 1. 2. 3. 4. 5. 6. 7. 8.

9. 10. 11. 12. 13. 14. 15.

triangle-shaped: 1. 2. 3. 4. 5. 6.

7. 8. 9. 10. 11. 12. 13.

arrow1: 1. 2. 3. 4. 5. 6. 7.
8. 9. 10. 11.

arrow2: 1. 2. 3. 4. 5. 6. 7.

arrow3: 1. 2. 3. 4.

arrow4: 1. 2. 3. 4. 5. 6. 7.

block: 1. 2. 3. 4. 5. 6. 7. 8. 9.

10. 11. 12. 13. 14. 15. 16. 17.

semi-circle: 1. 2. 3. 4.

line: 1. 2. 3. 4. 5. 6.
7. 8. 9.

L-line: 1. 2. 3.

and so on.

Figure 5.9: Clustering thick patterns using GFD shape descriptor – at a glance. It uses Davies-
Bouldin cluster validation index. Few clusters are shown. Different clusters are provided with
suitable name such as junction, triangle-shaped and line, for visual understanding.

step 2 Once the cluster(s) is(are) selected, then the symbols related to those thick patterns
i.e., corresponding symbols are taken for matching. For matching symbols, relations are
matched for every pair via ARG. Just a reminder, in Section 4.5 of Chapter 4, a basic
framework of the ARG matching has been discussed.

Matching is simple and straightforward when all symbols have a single thick pattern. Database
symbol ranking is therefore exactly similar to what we described before. This is however not
a case in real-world application. As said before, symbols may have variable number of thick
patterns and therefore different clusters can be selected even from a single query symbol. This
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means that corresponding database symbols will obviously be different. In such a case, ranking
procedure is becoming a bit tricky. In what follows, we explain matching strategy and database
symbol ranking in two two different cases: presence of a single thick and many thick patterns in
a query symbol.

Consider any symbol S, there are K number of thick patterns. As a consequence, based on
our symbol description discussed in Section 5.4.1, there are {Gκ}κ=1,...,K ARGs.

case 1 A single thick pattern in a query symbol Sq:

In such a case, there exists a single query graph which is similar to what is expressed in
Chapter 4. Database symbol Sd still has {Gdκ}κ=1,...,K ARGs. Now the question is how to
compute distance between two symbols: query and database. To handle this, we take the
minimum matching score from all possible matching,

Dist.(Sq,Sd) = min
κ
Dist.(Gq1, G

d
κ), κ = 1, . . . ,K,

where those graphs in Sd are used only if the thick patterns are related to the particular
cluster. For example, if only two thick patterns in Sd are related with the query thick then
the distance between Sq and Sd is min [Dist.(Gq1, G

d
1),Dist.(G

q
1, G

d
2)].

case 2 Many thick patterns in a query symbol Sq:

In case where query symbol Sq has two or more than two thick patterns, every corresponding
graph Gqκ is matched with the graphs Gdκ� from the database symbol Sd. To make it
simpler, let us start with a graph Gq1 from a query symbol and compute distance with κ
database graphs Gdκ� . This process goes similar to what is explained in case 1. We keep
on continuing for all query graphs Gqκ. If several different database symbols are related,
then their distances are stored for ranking.

query thick

cluster 1

cluster 2

cluster 3

...

cluster c

Figure 5.10: Searching for the right clusters where query thick pattern belongs to.

To illustrate it with an example, consider a query symbol Sq with two thick patterns and
and three different database symbols Sd1 , Sd2 and Sd3 with respectively three, two and
four thick patterns. Now, we have

{Gqκ}κ=1,2 ARGs in Sq (see Figure 5.11 (a)), and {Gd1
κ�
}κ�=1,2,3 ARGs in S

d1 ,
{Gd2
κ�
}κ�=1,2 ARGs in S

d2 and
{Gd3
κ�
}κ�=1,2,3,4 ARGs in S

d3 .
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cluster c

(a)

cluster c

cluster c− 1
(b)

Figure 5.11: thick pattern(s) in cluster(s) and its (their) corresponding symbol. A symbol can
have more than one cluster. It is primarily due to different shaped thick patterns.

In this example, the first query thick is related to the first two thick patterns of database
symbol Sd1 . Another query thick is related to the first thick pattern of all database sym-
bols. Such corresponding symbols are obtained with the help of searching right clusters as
mentioned in step 1. Matching goes like this,

Dist.(Sq,Sd1) = min
�
Dist.(Gq1, G

d1
1 ),Dist.(G

q
1, G

d1
2 )
�
,

Dist.(Sq,Sd1) = Dist.(Gq2, G
d1
1 ),

Dist.(Sq,Sd2) = Dist.(Gq2, G
d2
1 ) and

Dist.(Sq,Sd2) = Dist.(Gq2, G
d3
1 ).

Since both query graphs (due to two different thick patterns) are separately used to match
with the same database symbol, we take the minimum distance that can be either from Gq1
or Gq2. In every matching, it is important to notice that only interested graphs taken for
matching even though a symbol can have many graphs, thanks to clustering.

Finally, in both cases, once we have computed distances between all database symbols, we
can follow the similar ranking strategy mentioned in Section 4.5.2 of Chapter 4.

5.5 Experiments

In order to measure the impact compared to the last experimental results mentioned in Section 4.6
of Chapter 4, we have used the same dataset and experimental protocol.

We perform a series of tests and confront our proposed methods with existing ones. For a
quick details and as said in Section 5.2.2, our tests mainly consist of integrating shape description
of vocabulary with relations in two different ways.

1. to label vertices in ARG representation and

2. to cluster thick patterns.

In item 1, we first select the appropriate choice of global signal-based shape descriptors to label
vertices. We then integrate vertex and edge signatures where we examine almost all possible
combinations of vocabulary types and select the best one. On the other hand, in item 2, clustering
of thick patterns is aimed to take similar ones in a cluster or group which eventually increase
retrieval performance via corresponding relations alignment.

In the following section, we explain more about how all experimental tests go.
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Figure 5.12: Average retrieval efficiency over requested list: 1 to 10 using global signal-based
shape descriptors as vertex signature in our ARG framework.

5.5.1 Experimental Results

Vertex Signature and its Integration with Edge Signature

Applying shape descriptors to the vocabulary types (i.e., vertices in ARG) provides indepen-
dent shape information, which is different from spatio-structural information via pairwise spatial
relations. Therefore, we study its discriminant power separately for symbol recognition before
integrating with spatial relations.

Vertex Signature through Shape Description We first employ shape descriptors as vertex
signatures (without using the edge signature). Figure 5.12 shows the retrieval performance of it.
We then compare its performance when applying shape descriptors on the whole shape shown in
Figure 4.24 of Chapter 4. In comparison, shape features to label vertices provide better results.
However, it does not provide surprising difference.

In Figure 5.12, D−Radon as vertex signature outperforms all, with a marginal difference
with GFD and Zernike moments. While, shape context and R−signature are lagging behind
with noticeable differences. In order to employ shape context, we have taken different numbers
of sample points from one vertex to another since elementary visual primitives are ranging from
a single dot (i.e., extremity) to hundreds of pixels (i.e., thick pattern). Therefore, it is possible
to maximise the number of sample points for each vertex, otherwise the use of shape context is
restricted by a single dot.

Integrating Vertex Signature with Edge signature Finally, we integrate the vertex signa-
ture with the relational signature to build complete ARG. While integrating, we have examined
the use of shape signature from one vocabulary type to another as well as all possible combina-
tions such as thick and circle, thick, circle and corner. In the reported results, we present a few
combinations. Note that in all combinations, thick has been included since it provides significant
shape variations. While integrating, we consider not only retrieval efficiency but also running
time cost.

Fig. 5.13 shows results from using different shape signatures which are integrated with rela-
tions i.e., edge signatures. In this illustration, GFD performs well in comparison to others. It is
important to notice that not all descriptors can improve the retrieval performance: R−signature
in Figure 5.13, for instance. Besides, signatures for all vertices is not always a better choice,
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(e) R−signature

� at 3◦ resolution
� at 3◦ resolution + S(T1)
� at 3◦ resolution + S(T1) and S(T2)
� at 3◦ resolution + S(T1), S(T2) and S(T3)
� at 3◦ resolution + S(T1), S(T2), S(T3) and S(T4)

T1 = thick, T2 = circle, T3 = corner, T4 = extremity

Figure 5.13: Average retrieval efficiency over requested list: 1 to 10 using global signal-based
shape descriptors as vertex signature in our ARG framework. For every shape descriptor, a few
combinations of signatures on vertices has been demonstrated. In average, a combination of thick
and circle performs better for all descriptors, which is then taken for comparison in Figure 5.14.

but computationally expensive instead. For all descriptors, we have found that a combination of
thick and circle vocabulary types provides better results in average. For example ,
using GFD vertex signature on thick and circle . The retrieval symbols are,

1. 2. 3. 4. 5. 6. 7.

8. 9. 10. .

Since substantial advancement has been achieved from the vertices, labelled with thick and
circle vocabulary types with respect to the retrieval performance of our relational signature,
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� at 3◦ resolution + GFD
� at 3◦ resolution + D−Radon
� at 3◦ resolution + Zernike
� at 3◦ resolution + Shape Context
� at 3◦ resolution + R−signature

Figure 5.14: Comparison. Average retrieval efficiencies over requested list: 1 to 10 through the
integration of global signal-based shape descriptors as vertex signature with edge signatures in
our ARG framework. Only a combination of signatures on thick and circle (see Figure 5.13) is
taken for comparison.

such a combination is taken for comparison. Comparison is provided in Figure 5.14 for all shape
descriptors.

Clustering of thick patterns

The problem of shape variation of thick patterns in our vocabulary remains in earlier experiment
of Chapter 4. This test is aimed to see how the integration of thick pattern selection advances
the retrieval performance.

Note that thick pattern selection is based on clustering mentioned in Section 5.4.1. As
said in Section 5.4, clustering performance is based on shape signatures and cluster validation
index. Therefore, in the following, we take account both and find the best combination for this
application. Figure 5.15 shows the comparison of performance of cluster validation indices for a
major set of shape descriptors used throughout the thesis. In the tests, we observe and analyse
retrieval performances on a one-to-one basis. Overall, D−Radon outperforms all, but GFD goes
almost equally having a marginal difference. Zernike moments, shape context and R−signature
are lagging behind.

Selection of shape descriptors does not only provide a complete process while it needs to
account cluster validation indices, on the other hand. As said previously, different cluster valida-
tion index provides different results. As a consequence, overall retrieval performance is affected.
To illustrate the aforementioned statement, let us take a close look into the results provided in
Figure 5.15. For all shape descriptions, Dunn and Davies-Bouldin indices provide almost similar
advancement, while the remaining Silhouette and Score-Function do not. Therefore, either Dunn
or Davies-Bouldin index will be the appropriate choice for this application.

5.5.2 Experimental Results Analysis

In this section, we shortly analyse the models and or methods developed in this chapter based
on the obtained experimental results. As in previous experiments in Chapter 4, we consider two
different elements while accounting overall performance. They are

1. retrieval efficiency and

2. execution time.
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(e) R−signature

� at 3◦ resolution
� at 3◦ resolution + Dunn index
� at 3◦ resolution + Davies-Bouldin index
� at 3◦ resolution + Silhouette index
� at 3◦ resolution + Score-Function

Figure 5.15: Average retrieval efficiency over requested list: 1 to 10 using global signal-based
shape descriptors for thick patterns clustering and several different cluster validation indices.

The substantial retrieval difference made by shape signatures as vertex signature with re-
spect to while using overall symbol shape, provides the fact that symbol description is equally
important. However, it is computationally expensive since it requires t different shape signatures
for t number of vocabulary types. Such a vertex signature is then intelligently integrated with
edge signature. While integrating, we have received better results from the combination of shape
signatures on vertices labelled with thick and circle since relational signatures provide sufficient
information about the remaining vocabulary types such as corner and extremity. Therefore, it
reduces matching cost of corresponding signatures between the vertices.

Figure 5.16 provides visual demonstration for a few queries. Two global signal-based de-
scriptors: D−Radon and GFD show almost similar behaviour except a running time difference,
while others do not really increase the performance. Shape context and Zernike moments follow
D−Radon and GFD. In our application, shape context is highly restricted by the number of
samples. However, we have tried to maximise it by selecting differently in different vertices, for
instance. R−signature is found to be always lagging behind.

Along with relational signature matching, query thick pattern selection via clustering ad-
vances retrieval performance. However, it does not provide a surprise difference due to the fact
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that not all query symbols contain thick pattern in their vocabulary type sets. In other words,
absence of thick vocabulary type means ranking has been made only through relational signatures
alignment, eventually no change in retrieval performance.

In particular, comparison between GFD and D−Radon in all cases throughout a series of
experimental tests provides that GFD yields interesting results especially when also taking time
complexity into account. Table 5.4 provides average running time for all.

Methods Time (in sec)

1. Global Shape Descriptors
1.1. R−signature [Tabbone et al., 2006] 02
1.2. Zernike moments [Kim and Kim, 2000] 13
1.3. GFD [Zhang and Lu, 2002] 09
1.4. Shape context [Belongie et al., 2002] 32
1.5. D−Radon 67

2. Our Method
2.1. Edge signature (relations) 04
2.2. Integrating signatures (relations + shape):

– Edge + Vertex (R−signature) 07
– Edge + Vertex (ZM) 21
– Edge + Vertex (GFD) 17
– Edge + Vertex (SC) 39
– Edge + Vertex (D−Radon) 123

Table 5.4: Average running time (in sec) for a single pair (cf. Chapter 3 and 4).

5.5.3 Advantages and Limitations

As in the previous chapter, we collectively discuss advantages and disadvantages of the proposed
method in the following points:

1. Symbol Description – ARG based symbol description provides a fixed and powerful rela-
tional representation including generality and extensibility. Therefore, it has been attested
from the integration of shape descriptions on vertices, keeping original ARG framework
validated in Chapter 4.

Overall, it clearly addresses the combination of the best of two different approaches: sta-
tistical structural.

2. Matching – The proposed method is just an extension of the previous Chapter 4. It brings
easy and straightforward matching of statistical signatures.

3. Recognition – It advances the retrieval performance compared to Chapter 4. Our previous
method that uses relations only (cf. Chapter 4), is limited to those symbols which have at
least two different vocabulary types. Now, our method can apply even when there exists
no relations due to the additional use of vertex signature.

5.6 Conclusions

In this chapter, we have presented the concept to integrate shape signatures with relational
signatures. We have attested the use of spatial relations in Chapter 4 that provide a powerful
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representation, conveying how visual primitives are connected. Keeping the ARG based symbol
description framework, we have presented the use of shape signatures in two different ways.

• Firstly, shape signatures are labelled as vertex signatures which are then integrated with
relational signatures. As a consequence, the description is used to globally recognise struc-
ture by comparing the signatures.

• Secondly, we have observed the behaviour of several different shape features by apply-
ing to the vocabulary which have significant shape variations. We employ thick patterns
for clustering and use the related clusters with respect to query for relational signature
alignment.

Clustering of thick patterns thus opens a global concept that it can be applied for any
other visual primitives.

Overall, we bring an attention to the use of hybrid approach in symbol recognition since it
combines both the worlds: structural and statistical. A series of experimental tests over graphical
symbol dataset validated the methods.

5.7 What is Next?

In our ARG based symbol description, each vertex has a distinct vocabulary type containing
different shape and size information. In this chapter, to discriminate visual primitives, shape
signatures are used in addition to the visual links (i.e., spatial relation in Chapter 4). Considering
the application, our proposed method performs well. Due to shape features used for labelling
visual primitives, the method can also apply even when there exists no relation. However, it does
not really provide flexibility for retrieving significant known part of graphical elements from the
composite form. The primary reason is that the method computes spatial relations between the
vocabulary types i.e., between the groups of similar visual primitives – which is of course avoids
NP-hard graph matching problem.

Therefore, in the following Chapter 6, we will introduce a concept of bag-of-features approach
using spatial relations. This new framework computes all possible relations between individual
visual primitives and stores them in the form of spatial bag, categorised based on topological
information. This is more dedicated for symbol recognition from composite form.

End of Chapter
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Foreword. In Chapter 3, we have introduced and validated DTW–Radon shape descriptor for graphics
recognition. This is limited to only isolated graphical patterns and therefore cannot be applied for real-
world applications where graphical elements are connected with other elements and texts. In such a
situation, we developed an idea of using visual links via spatial relations between the extracted visual
primitives that compose the complete symbol (cf. Chapter 4). Furthermore, in Chapter 5, we have used
shape features on the extracted visual primitives in two different ways in addition to the spatial relations
framework validated before. These are however, not well suited for retrieving significant known part of
graphical elements in the composite form.

145



Chapter 6. Spatial-Bag-Of-Features for Symbol Recognition

In this chapter, we present a method for symbol recognition based on spatial-bag-of-features (BOFs)
that are computed from extracted visual primitives which we called ‘vocabulary’. Our feature con-
sists of pairwise spatial relations from all possible combinations of individual visual primitives. The
key characteristic of the overall process is to use topological information to guide directional relations.
Consequently, directional relation matching takes place only with those candidates having similar topo-
logical configurations. A series of experiments over several different datasets were performed to validate
the method. Experimental tests provide interesting results by clearly establishing user-friendly symbol
retrieval applications and its robustness towards symbol spotting problems. �

6.1 Organisation of the Chapter

This chapter is organised as follows. In Section 6.2, we introduce the main idea of the method.
It includes a review of related work in Section 6.2.1 and an outline of the proposed method in
Section 6.2.2. We explain the way we handle BOFs using spatial relations in Section 6.3. We
derive a symbol recognition method and explain it in Section 6.4. Full experimental results are
reported in Section 6.5 and confront our method with current state-of-the-art approaches. It
includes a comprehensive experimental result analysis. In Section 6.6, we provide an extension
of the proposed method. Finally, the whole chapter is concluded in Section 6.7.

6.2 Introduction

We introduced a method for spatial relation matching in Chapter 4. In the corresponding ARG
description, vertices represented grouped vocabulary types rather than using every detected
individual elementary parts. This was to avoid the underlying NP-hard sub-graph matching
problem. Such a description is limited to only those symbols which have at least two or more
than two vocabulary types. The problem is that this is not always the case. Let us elaborate
the situation with the help of a visual illustration. In Figure 6.1, two different vocabulary types
(circle and corner) are detected, and are used to represent two different vertices in our ARG
based symbol description. In the absence of circle or to represent only rectangle via ARG there
exist no relation.

Vocabulary Detection

Figure 6.1: A symbol and its visual elementary parts i.e., primitives: circle and four corners.

To handle such a situation, an immediate solution is to use intra-type spatial relations, which
still needs to have at least two visual elementary parts in a single vocabulary type. Therefore,
we have integrated shape description in vertices and examined it in Chapter 5. Such shape
signatures integration with spatial relations yields a complete ARG description of the symbol.
This eventually costs while matching. In addition, shape signatures can be changed to a some
extent if one of the vocabulary parts is missed while extracting. For instance, in Figure 6.1,
shape description changes if one of the corners is missed. Moreover, the whole method does not
provide flexibility to retrieve significant known parts in the composite form since it takes a group
of similar visual primitives as a single vertex. To handle this, we use a BOFs approach using
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spatial relations for all possible combinations of individual visual primitives. This is going to be
the core part of the chapter.

6.2.1 Related Work

As mentioned in Chapter 2, graphics recognition has rich state-of-the-art. In structural ap-
proaches in particular, ARG or RAG and tree-based structures are the prominent methods to
represent symbols. In general, methods use spatial relations between line segments, visual prim-
itives, curves, circles and so on. However, they hardly consider or solve the problem of symbol
localisation within the real technical documents. In addition, those methods offer intense com-
putational complexity. BOFs approach will provide a key solution.

Let us take a general definition of BOFs model with an example. An image can be treated
as a document, and features extracted from the image are considered as the ‘visual words’.
Computer vision researchers used such a concept for image representation. It allows a dictionary-
based modelling, and each document looks like a ‘bag’, which contains some words from the
dictionary. Figure 6.2 shows an example where each item represents a ‘feature’ i.e., ‘visual
word’. In this illustration, we simply take the the frequencies of item in the specified feature
space i.e., equally spaced vertical projections. In general, extraction of several local key-points
(or regions) are considered to be basic elements, ‘words’. As an example, the methods such as
Hessian-Affine descriptor [Mikolajczyk and Schmid, 2004] and SIFT features [Lowe, 2004] have
been increasingly used. Besides, regular grid-based method like [Li et al., 2005], is another simple
idea to detect features.
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Figure 6.2: Bag-Of-Features model – an example.

In graphics recognition, spatial-bag-of-features approach does not really exist in the literature.
As said before, the approach is well-known in computer vision domain. A comprehensive idea
of text-retrieval approach has been explained in [Philbin et al., 2007, Jegou et al., 2008], aimed
for fast retrieval at run time. To handle this, interests points and descriptors are found in
every dataset image and the descriptors are the clustered (using k-means, for instance) and
quantised to give a ‘visual word’ representation for each image. Such ‘visual words’ are used
for indexing. In addition, re-ranking can be performed by using integrating spatial verification
system, estimating an affine homography from a single image correspondences between query
image and each target image. This means that the possibility of fast matching via the use
of spatial properties of the large vocabularies has been studied in [Philbin et al., 2007]. The
similar concept can be found in [Marszalek and Schmid, 2006, Jégou et al., 2009]. In the recent
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literature, spatial-bag-of-features has been studied to encode geometric information of objects and
use it for efficient image retrieval [Cao et al., 2010]. It uses the projection of local features into
a specified number of bins – bins can be a linear projection of 10 equidistant angle in [0◦, 180◦],
or partitioning the images into increasingly fine sub-regions and computing histograms of local
features [Lazebnik et al., 2006], for instance. As an example, we can follow Figure 6.2 to realise
it. Under the purview of computer vision, BOFs method has the following advantages.

1. its compactness i.e., requires less storage requirements [Jégou et al., 2009];

2. rapid search due to inverted file system [Jégou et al., 2009] and or using cosine similarity
computation by conducting dimension reduction and leveraging residual error information,
and efficient indexing [Zhang et al., 2009]

Inspiring from the aforementioned concept and advantages, we introduce it in graphics recog-
nition in a different way. In our context, pairwise directional relations are considered as the
candidates of ‘features’. We first categorise extracted visual primitives based on the topological
information. To illustrate it, Figure 6.3 shows a few topological categories. Then we compute di-
rectional relations to give metrical details of them. While doing recognition, directional relations
matching takes place between the candidates which share similar topological configurations and
similar vocabulary type information. Such a topological guidance significantly reduces matching
time.

Disconnected Externally Connected

. . .

Contain/Inside

Figure 6.3: Our spatial-BOFs model – a symbolic example. Each item represents a visual
primitive and its colour represents a vocabulary type information.

Overall, our method does not need ARG representation to describe the complete symbol
nor does it require high computational complexity. Furthermore, it can be applied for all types
of symbols and served a robust way towards symbol spotting applications, for instance. Full
experiments will be reported in Section 6.5. In the following section, we give outline of the
proposed method.

6.2.2 Outline of the Proposed Method

Our spatial-BOFs approach handles all possible combinations of individual visual primitives.
The key characteristics of overall process are two-fold:

1. vocabulary categorisation and

2. spatial reasoning.

We first categorise visual primitives in a pair, based on topological relations (cf. Figure 6.3).
These vocabulary type information of these visual primitives are predefined. We then com-
pute directional relations between them. This means that directional relations are stored in
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the particular category based on their topological information. Consequently, directional rela-
tion matching takes place only with those which share similar topological and vocabulary type
information. Figure 6.4 shows a block-diagram to illustrate the concept of the proposed method.

Symbol

3. Spatial-BOFs Matching Spatial Relations Recognition

2. Spatial Relations

1. Visual Vocabulary

Figure 6.4: An architecture of the symbol recognition method based on spatial-bag-of-features.

Overall, our method is still suffering combinatorial problem when spatial relations are stored.
But for recognition, it does not require all relations for matching nor does it need to build
arbitrarily large ARG to describe the symbol, thanks to vocabulary categorisation. Besides, we
can also use a few but significant/relevant relations rather than taking all from a test symbol
as a query. Such a collection of relations as a query states the problems related to user-friendly
symbol retrieval as well as symbol spotting, for instance.

Our method is motivated from what is mentioned in Appendix C. In Appendix C, it uses a
first–order logic (FOL) by using spatial relations and visual elementary parts. Both the methods
use spatial relations for all possible visual primitives.

In Appendix C, we use inductive logic programming (ILP) to produce common characterisa-
tion (i.e., common relations) of the user-defined sub-set of the symbols. In this method, we aim
to retrieve similar symbol according to the query posed. Query can be either any symbol or a
set of relations between the visual primitives that describes significant part of the symbols. For
more detail, we will report in Section 6.6.

6.3 Spatial-Bag-Of-Features

We address a BOFs approach with the help of terminal vocabulary and spatial relations existing
between them. In contrast to those methods attested in previous chapters, it is rather another
way to use vocabulary and spatial relations.

As said in Section 6.2.2, before computing directional relations between them, we handle
vocabulary categorisation according to their topological information:

step 1 vocabulary categorisation and

step 2 spatial reasoning.

In what follows, we explain them in detail.

6.3.1 Vocabulary Categorisation

Keeping the same vocabulary type information as mentioned in the previous chapters, we cat-
egorise them in a pair based on their topological configurations. In general, visual primitives
are categorised into six categories: disconnected, externally connected, overlap, contain/inside,
cover/covered by, and equal. Figure 6.5 shows a framework for vocabulary categorisation. In the
generic form, we can express it as,

C = {(C1, Cdisconnected), (C2, Cexternally connected), (C3, Coverlap), . . . , (C6, Cequal)}.

149



Chapter 6. Spatial-Bag-Of-Features for Symbol Recognition

For simplicity, we rewrite it as {Ccat}cat=1,...,6.
To realise whole process and provide an intuitive feeling how it behaves, a complete illustra-

tion of vocabulary categorisation is provided in Figure 6.6. In each category, vocabulary type
information is also kept.

visual parts in a pair

1. Disconnected

2. Externally connected

3. Overlap

4. Cover/Covered by

5. Contain/Inside

6. Equal

Figure 6.5: Vocabulary categorisation in a pair. All possible pairwise combinations of visual
primitives are categorised based on their topological configurations.

For every combination of visual primitives (let us say ℘i and ℘j), we employ the 9-intersection
model [Egenhofer and Herring, 1991, Renz and Nebel, 1998] as explained in Section 4.3.1. It is
used to obtain topological relations through the intersections of the boundaries (∂∗), interiors
(∗o) and exteriors (∗−) of two sets ℘1 and ℘2. Their definitions using set of operations =, �=, ⊆
and ∩ are taken, as mentioned in [Güting, 1988]:

℘1 = ℘2 := points(℘1) = points(℘2)
℘1 �= ℘2 := points(℘2) �= points(℘2)
℘1 inside ℘2 := points(℘1) ⊆ points(℘2)
℘1 outside ℘2 := points(℘1) ∩ points(℘2) = ∅
℘1 intersects ℘2 := points(℘1) ∩ points(℘2) �= ∅
Since the intersects definition covers both equal and inside, they must be separated. Therefore,
the previous definitions have been augmented with the consideration of boundary and interior
so that the overlap and neighbour can be distinguished [Pullar and Egenhofer, 1988].

℘1 overlaps ℘2 := ∂℘1 ∩ ∂℘2 �= ∅ and
℘o1 ∩ ℘o2 �= ∅

℘1 neighbour ℘2 := ∂℘1 ∩ ∂℘2 �= ∅ and
Ao ∩ Bo = ∅

The topological configuration i.e., Topology(℘1, ℘2) is a vector in this space in which components
equal 0 if the corresponding intersection is empty, and 1 otherwise.

For a symbol, let us remind that we have
�

T = {Tt} for 1 ≤ t ≤ |Tt| vocabulary type set.
For any t vocabulary type, there are n number of visual primitives {℘i}i=1,...,n. Therefore, the
number of

• possible combinations within its own type (intra-type) is, nt =
n×(n−1)

2 and

• possible inter-type combinations is, mt,t� = n× n�.
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Symbol and its visual primitives.

Vocabulary types

thick

circle

corner

extremity �

A. Visual elementary parts and their types.

Disconnected category

corner-corner

1. 2. 3.

. . .

circle-corner

1. 2. 3.

. . .

thick-corner

1. 2. 3.

. . .

Contain/Inside category

thick-circle

1.

B. Visual primitives categorisation based on their topological configurations.

Figure 6.6: An example of vocabulary categorisation. Item A shows the extracted vocabulary
type sets. In item B, all possible number of combinations of visual primitives are shown. These
are grouped into two topological categories: disconnected and contain/inside.
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Altogether, the total number of possible combinations is,
�

t

nt +
�

t,t�
mt,t� .

In Table 6.1, we realise the vocabulary categorisation. For better understanding, we separate
intra-type and inter-type vocabulary combinations. In Table 6.1, each column represents the vo-
cabulary type information and their possible pairwise combinations between the visual primitives
in the framework of topological categorisation that goes row-wise. It is important to notice that
all combinations do not exist. For example, thick vocabulary type is found to be happened only
in disconnected category. But, circle type can be possibly found in all categories except equal.
Therefore, in this illustration, one can remark the importance of vocabulary type information.

Intra-type Inter-type
T1,T1 T2,T2 T3,T3 T4,T4 T1,T2 T1,T3 T1,T4 T2,T3 T2,T4 T3,T4

1. Disconnected � � � � � � � � � �
2. Externally connected � � � � � � � � � �

3. Overlap � � � � � � � � � �

4. Cover/Covered by � � � � � � � � � �

5. Contain/Inside � � � � � � � � � �

6. Equal � � � � � � � � � �

Index
vocabulary type set: T1 = thick, T2 = circle, T3 = corner and T4 = extremity
categorisation: � = YES and � = NO

Table 6.1: Possible number of combinations that exist for all pairs of visual primitives. We
separate intra-type and inter-type combinations for better understanding. The illustration follows
Figure 6.5.

In the following, we will discuss how we compute directional relations between individual
visual primitives.

6.3.2 Spatial Reasoning

In the previous section, we have categorised visual primitives using their topological configura-
tions including vocabulary type information. Based on this, a pair of visual primitives can be
expressed as,

{(℘ti, ℘t
�
j ),Topology(℘

t
i, ℘

t�
j )},

where ℘ti is any ith visual part of any vocabulary type t in the set
�

T. This means that the
first part represents the pair of visual primitives with their vocabulary type information while
the second part provides their topological configuration. Both represent categorisation of the
pair.

Topological relations based categorisation of visual primitives do not provide precise infor-
mation of spatial relations. For example, disconnected pairs of studied visual primitives can have
several different orientations. Figure 6.6 shows an example where several different pairs of visual
primitives are categorised in disconnected topological space. Therefore, directional relations �
between them needs to be computed accordingly. Now, we have

{(℘ti, ℘t
�
j ),Topology(℘

t
i, ℘

t�
j ),�(℘ti, ℘t

�
j )}.
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Since the first two parts refer to its categorisation, the whole expression can be reduced simply
into �cat(℘ti, ℘t

�
j ), where �cat(�) represents a relation in Ccat category. As an example, relation

between two visual primitives thick and corner with disconnected topological information can
be expressed as �disconnected(℘thick1 , ℘corner2 ).

As mentioned in Section 6.3, several different ways to handle pairwise directional relations
i.e., angle-based and projection-based models, are applied. To remind the models as attested in
Chapter 4, let us follow an illustration for classical MBR model in Figure 6.7. According to what
is developed in Chapter 4, for example, relations between the two visual primitives ℘1 and ℘2

can be formally expressed as,

�(℘1, ℘2) = {M(℘1,R),M(℘2,R)} := projection model and

�(℘1, ℘2) = {H(℘1,Rpc),H(℘2,Rpc)} := radial line model

whereM is relational matrix with respect to reference point set R and H is relational histogram
with respect to the reference point Rpc . In this chapter, instead of using them separately, we
average them so that it respects symmetry.

cr1

cr4

R M(cr1,R) =



0 0 0
0 0 0
1 0 0


 M(cr4,R) =



0 0 1
0 0 0
0 0 0




Figure 6.7: A disconnected pair and directional relations using MBR model.

Therefore, following Figure 6.3 and Table 6.1, we compute relations for all possible combi-
nations and store them accordingly. We also compute � from all other relation models. Per-
formances are then compared among them. The comparison will be provided and analysed in
Section 6.5. Before that, we explain how recognition is handled, in the following section.

6.4 Symbol Recognition

As in Chapter 4, our symbol recognition is based on relation � matching between the correspond-
ing pairs of visual primitives. In every relations alignment, we follow vocabulary categorisation
mentioned in Section 6.3.1. This means that matching happens between those pairs which share
exactly the same vocabulary type information in the selected category. Thanks to vocabulary
categorisation, matching does not need to go for all relations which are irrelevant. In what
follows, we will first provide an idea of how relation matching happens. After that, the whole
recognition process between any query symbol Sq and database symbol Sd will be explained.

6.4.1 Relation Matching

Let us take a combination of visual primitives ℘ti and ℘
t�
j as a query, respectively provides their

vocabulary type information t and t�.

1. Select the category Ccat to which it belongs to i.e., the particular bag which contains similar
topology as it does. As said before, to handle this, we use vocabulary type information.
Now, query relation can be expressed as �qcat(℘ti, ℘t

�
j ).
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2. Relation matching goes like this:

δ
�
�qcat(℘ti, ℘t

�
j ),�dcat(℘ti, ℘t

�
j )
�
,

where δ(�, ∗) = || �− ∗ ||2.

Figure 6.8 shows an example to illustrate how particular category is chosen in the database by
using vocabulary type information of the query visual primitives. As a consequence, in this
illustration, relations are used only from the selected visual primitives i.e., three relations are
used for relation matching. For the best candidate, we take the minimum of the three.

�
℘1 ℘2

query
visual primitives.

� �
�

℘1

℘2

℘3

℘4

℘5

℘6

℘7

℘8

visual primitives in database
disconnected category.

Figure 6.8: Relation matching example in a particular category: disconnected. Each item repre-
sents a visual primitive and colour represents its vocabulary type. Since query visual primitives
are disconnected, the category is chosen accordingly. Moreover, vocabulary type information are
taken into account for matching so that it avoids irrelevant matching.

6.4.2 Symbol Recognition and Ranking

In the previous section, we have provided relation matching based on its topological and vocab-
ulary type information and illustrated it with a visual example. But, we did not mention that
visual primitives in particular category belong to which database symbol. In this section, the
latter statement will be explained so that the whole symbol recognition can be handled.

Consider a query symbol Sq and database symbol Sd with t vocabulary type sets. For every
pairwise combination of visual primitives that compose query symbol, relation matching occurs
as

Dist.(Sq,Sd) =
�

cat

min
Ccat

δ
�
�qcat(℘ti, ℘t

�
j ),�dcat(℘ti, ℘t

�
j )
�
for all i and j.

This means that all corresponding relation matching is summed up only when they are from
same database symbol.

In a similar manner, we compute distances between all database symbols with respect to a
query symbol and we follow the similar ranking strategy mentioned in Section 4.5.2 of Chapter 4.

6.5 Experiments

We perform a series of experimental tests and confront our proposed method with the same
description on those presented in the previous chapters. In order to test our BOFs approach, we
use the same set of spatial relation models used in the previous contributions.
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1. Basic spatial relation models like

• cone-shaped [Miyajima and Ralescu, 1994],

• angle histogram [Wang and Keller, 1999] and

• minimum boundary rectangle (MBR) [Papadias and Theodoridis, 1997].

2. Our model

• projection model and

• radial line model.

The main difference with respect to Chapter 4 is that the way we apply spatial relations.
In Chapter 4, relations are used between grouped vocabulary types. In this method, it
goes for all individual visual primitives.

Once an optimal model is chosen, we still can compare it with our previous work – ARG based
description in Chapter 4 as well as a major set of representative global shape descriptors validated
in the previous chapters. In order to avoid redundancy, we will just do confront in the text (no
visual results will be duplicated).

6.5.1 Datasets and Evaluation Metric

To validate the proposed spatial-bag-of-features method, we have tested over two different
datasets: FRESH dataset [FRESH, 2007] and GREC dataset [GREC, 2003], as mentioned in
the previous chapters. Similarly, we have followed the same evaluation metrics related to them:
retrieval efficiency for FRESH dataset and recognition rate for GREC dataset.

6.5.2 Experimental Results

Figure 6.9 shows retrieval efficiency for the FRESH dataset over requested list: 1 to 10. In case
of the GREC dataset, Table 6.2 provides recognition rates, for all models.

Compared to the ARG based description in Chapter 4 for FRESH dataset, spatial relation
models possess similar behaviour but with a small improvement. In order to compare with
the global signal-based shape descriptors, we present mainly D−radon and sometimes GFD
(the best of all, as validated before). The retrieval performance of our method supersedes by
approximately 16% on average, for FRESH dataset. Whilst for GREC dataset, it lags behind
them with approximate recognition rate of 3%. However, our method is still interesting. To
express its advantages, we will provide further experiments in Section 6.6. Before that, we
analyse the results first.

6.5.3 Experimental Results Analysis

In this section, we analyse the models based on experimental results provided in Figure 6.9 from
FRESH dataset and Table 6.2 from GREC dataset. As explained in previous experiments, we
consider recognition and retrieval performance including execution time.

In Figure 6.9, spatial relation models possess similar behaviour on retrieval performance (cf.
Chapter 4). To the point, retrieval efficiency is found to be improved. Such an advancement is
due to the fact that the current method uses individual visual part to compute relations – which
shows its discriminative power. Among all, the radial line model outperforms all others. The
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Figure 6.9: Average retrieval efficiency over requested list: 1 to 10 for FRESH dataset.
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1. Cone-shaped 80 90 88 76 72 84 78 81
2. Angle Histogram 100 90 92 76 74 84 78 83
3. MBR 100 95 96 84 84 88 82 89

4. Projection Model 100 100 96 84 85 88 84 90
5. Radial line Model 100 100 100 100 92 100 88 97

Table 6.2: Recognition rate in % for a few categories of GREC2003 dataset.

similar behaviour is found to be happened in case of the GREC dataset (Table 6.2), from all
models. But the difference is due to lack of sufficient vocabulary extraction.

Regarding computational complexity issue, our method avoids all database symbols for
matching. It is because of vocabulary type information as well as categorisation principle dis-
cussed in Section 6.3.2 and Section 6.4. As a consequence, execution time is reduced by more
than approximate factor of 4 on average with respect to when no vocabulary categorisation is
used. In case of global signal-based descriptors, we refer to Chapter 4 and 3 for comparison.

6.6 Advantages

Until now, recognition and retrieval performances based on spatial-bag-of-features have been
explained with a series of experiments over two different datasets. Compared with our previous
method, it does not provide notable difference and with state-of-the-art of shape descriptors, it
is lagging behind. However, the method can provide more flexibility by providing user-friendly
symbol retrieval as well as assisting symbol spotting problem. To illustrate the latter statement,
we will again explicitly analyse the proposed method in two different perspectives:

1. whether the proposed method is able to retrieve significant known part of the symbol from
the composite form, and

2. flexibility in choosing a query8.

8Flexibility – it refers to how flexible user inputs visual primitives and their spatial organisation as a query,
instead of taking a complete symbol.
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Q1.

Q2.

Figure 6.10: Symbol retrieval using isolated symbols as queries: Q1 and Q2.

Overall, we will project advantages by explicitly pointing out its appropriate use.
To illustrate item 1, we use isolated symbols as queries to see whether our method is able

to retrieve symbols in the composite form. To handle this, FRESH dataset is used since GREC
dataset is composed of only isolated symbols. Figure 6.10 shows a couple symbols as queries

(a) (b) (c) (d)

Figure 6.11: A few examples of a collection of visual primitives (including their spatial organi-
sation) of only type or more than one, as queries.

and their corresponding retrieved symbols from the database. The illustration shows that known
significant part of the symbols in the composite form, is also possible retrieved. This happens
due to the fact that our relations alignment uses the vocabulary type as well as their category
information. This means that not all visual primitives from the symbols are taken into account
(cf. Section 6.4). As a consequence, it is possible to get distance between two symbols is
zero, even though two candidates are different from each other, provided that query symbol
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exists somewhere in the composite symbol. If not, retrieval symbols are ranked based on the
decreasing order of similarity. Furthermore, since our matching uses topological guidance, metric
directional relation does not really take over boolean ones. It is not however, reported in the
experimental results. But at this point, we employ boolean relations to illustrate its performance
of symbol retrieval in Figure 6.10. The difference between boolean and metric relations exists
only when structural information is needed.

Q1.

Q2.

Q3.

Q4.

Figure 6.12: Symbol retrieval example for FRESH dataset. It is based on spatial organisation of
a collection of visual primitives as queries.

Our method needs a set of visual primitives which collectively provide the description of
symbols. Following examples as shown in Figure 6.10, we are inspired to use spatial organisation
of visual primitives as a query, that can be used for the recognition of significant parts of the
symbols. Such a query reflects the idea mentioned in item 2. For example, a set of four corners
facing to each other represents a rectangle. Similarly, an architectural symbol having a circle
inside a rectangle can be described as a set of two different vocabulary types: circle and corner
where a circle is in the middle of four corners. The key issue is that user can take any spatial
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Q1.

Q2.

Q3.

Figure 6.13: Symbol retrieval example for GREC dataset, using spatial organisation of a collec-
tion of visual primitives as queries.

organisation of the visual primitives which they think is important. Figure 6.11 shows a few
examples of it. Using them as queries instead of using whole symbol, we can retrieve all related
symbols from the database. In the following examples, both datasets are employed. Figure 6.12
and Figure 6.13 respectively provide a few examples of symbol retrieval.

1. FRESH dataset in Figure 6.12: Four different queries: {Q1,Q2, . . . ,Q4} are employed.
Compared to Q1 and Q2, Q3 filters retrieval due to the presence of circles. Similarly, Q4

provides interesting retrieval.

2. GREC dataset in Figure 6.13: Three different queries: {Q1,Q2,Q3} are employed. Query
Q1 retrieves symbols which have rectangle within it, described by four corners. While in
query Q2, retrieval is made in addition to circle in it. Similarly, Q3 provides an interesting
retrieval results.

In both tests, we do not mention the use of shape and size information of visual primitives, but
we account for the spatial relations.

Overall, it is found that our method is appropriate to handle either symbol as a query or
simply a collection of set of visual primitives together with their spatial information. Based on
these tests, the key advantages of the method can be summarised as follows.

1. It can be treated as ‘user-friendly’ symbol retrieval application because user can select
visual primitives and their spatial organisation to make a query. For instance,
‘find symbol which has a thick component inside a circle’.
‘find symbol which has a rectangle containing a circle’.
On the contrary to FOL description of symbol in Appendix C that uses semantic concept
for classification of selected or user-defined sub-set of symbols from the dataset, based on
the common relations between the known visual primitives.
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2. Symbol size does not make any difference unless there exists difference in topological con-
figurations. Symbol retrieval using query Q1 and Q2 in Figure 6.13 shows that there is no
effect in retrieval due to size difference in rectangle and a circle.

6.7 Conclusions

In this chapter, we present spatial-bag-of-features approach based on visual primitives that com-
pose a symbol. Our method highlights topological relations guidance in addition to the their
vocabulary type information. Such a topological guidance makes our method efficient in two
different ways:

1. matching goes only to the relevant candidates i.e., it does not require all computed spatial
relations; and

2. running time has been drastically reduced i.e., rapid search is possible.

We have validated our method with a series experimental tests over several different datasets
related to graphical symbols. We can also forecast that our method can be extended to spotting
problem.

End of Chapter
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7
Summary

Foreword. In this chapter, we first highlight our contributions to Graphics Recognition. After that we
address the continuation of the work. Future work will be primarily based on what we have established
as well as the extension based on the shortcomings identified in the previous chapters. �

7.1 Conclusions

This dissertation is mainly concerned with the use of spatial relations and shape analysis for
graphics recognition. First, we have focussed on global signal-based descriptors. In this regard,
we have introduced a shape descriptor based on dynamic programming and radon features, for
graphics recognition. We have then concentrated on using spatial relations between the extracted
visual primitives in several different ways to represent the symbols in addition to the use of shape
descriptions where there exists shape variation. Furthermore, we have validated bag-of-features
approach using spatial relations, aimed to recognise upto significant known parts (i.e., important
graphical elements) of the symbols including isolated ones. In what follows, we conclude based
on the major contributions one after another.

1. Symbol recognition usually means to recognise symbol in the isolated form. In this frame-
work, we have introduced a method for symbol recognition which is based on dynamic
programming for matching the Radon features.

The aim of the method is to provide complete shape information of any patterns either
simple (silhouette) or complex (internal contents is important), through simple projection
at every angle, without normalising into a fixed length vector such that it can be globally
used as a generic model. Pattern representation is simple and immediate. However, it offers
high computational complexity due to dynamic programming employed in matching the
Radon features. Therefore, in this method, we have explicitly tested the possible number
of projections in order to select the optimal number of bins so that execution time can be
reduced. Based on that, for silhouette shape (for only contour information), it is not the
appropriate choice because of high computational matching complexity while it provides
surprising difference where internal contents are important.
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2. We have presented a method which purely uses spatial relations between the possible pairs
of labelled vocabulary types such as circle and corner. These are then used as a basis for
building an attributed relational graph (ARG) that fully describes the symbol. Due to a
smart choice of using uniquely labelled vertices, we avoid the general NP-hard sub-graph
matching problem. The spatial relation provides structural information of spatial objects
while preserving spatial information.

The proposed spatial relation model to generate relational signature, is simple and flexible.
It has an ability to express spatial relations between any number of visual primitives.
Besides, it can applied where no reference is provided. On the other hand, doing recognition
purely based on spatial relations does not provide complete shape information of the visual
primitives that may be of any complexity as well as size variation.

3. Spatial relations do not exploit complete shape information. Each vertex has a distinct
vocabulary type containing different shape and size information. Therefore, in this contri-
bution, we have integrated shape descriptions of the visual primitives and spatial relations
together in two ways, keeping identical ARG based symbol description framework as be-
fore. Firstly, shape signatures are labelled as vertex signatures. Secondly, shape features
are applied only to the vocabulary which shows significant shape variation.

Overall, the method is based on the similarity between spatial organisation and shape
features of the visual primitives that compose the symbol. Considering our applications,
integrating shape descriptions does not provide a surprise difference since shape varia-
tions do not exist for all vocabulary types. In such a situation, one can integrate any
type of shape descriptors only to the vocabulary where shape variations affect the recog-
nition performance. Considering time complexity issue, such a flexible as well as efficient
combination of statistical and structural approach, in fact provides interesting framework.
This framework can be implemented in most of the image understanding problem since
relational signatures provide precise spatial information and shape descriptions add more
discrimination power.

4. Since relations exist between two vocabulary types, the method that uses only relations
cannot be applied to the symbols when only one vocabulary type is extracted. Use of shape
descriptors as mentioned in item 3 recovers such a limitation. However, it does not provide
surprising recognition performance difference and does not give any flexibility for retrieval
applications.

To handle this, we have introduced spatial-bag-of-features, inspired by computer vision
problem. The method computes all possible relations between every individuals i.e., visual
primitives instead of using a collection of similar types of vocabulary as a single vertex. The
key characteristic of the method is to categorise bag-of-features of spatial relations accord-
ing to the topological configurations they possess. As a consequence, relations alignment
takes only with the candidates which share exactly same topological relations.

The query can be a symbol or any number of visual primitives having their spatial organ-
isation. The latter form of query can be applied to a ‘user-friendly symbol retrieval’ ap-
plication. For example, find symbol which has a thick component inside a circle.
Such a query in place of using a complete symbol, provides flexibility in accordance with
the user’s importance. Due to which, it can select relevant symbols of any kind, without a
delay. It is important to notice that selecting a query that has a large number of spatial
relations, takes more time even though relations matching go only to the related categories.
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Therefore, when also considering time complexity issue, the method is in fact very much
suited for selecting simple queries or such visual primitives so that it can retrieve known
and significant parts within the symbol.

7.2 Future Perspectives

As mentioned in Appendix C, our aim is to lead to a more “semantic related recognition” process.
We first express symbols by a number of visual primitives that may be of any complexity and
connecting relationships. This representation is then used as an input to an inductive logic
programming (ILP) solver, to automatically learn non-trivial descriptions of symbols, based on
a formal description.

To describe first-order logic (FOL) description, the extracted vocabulary is combined with
relative positioning (i.e., spatial relations). ILP is then used to extract “semantic” contexts from
the domain knowledge. The contributions we have presented in this thesis: visual vocabulary,
spatial relations and shape descriptions are going to be employed in the framework of semantic
related recognition process. Our spatial relations provide the generic relationships in addition
to the structural information since it yields natural relations instead of all-or-none relations. An
example of it is expressed in the framework of spatial-bag-of-features approach in Chapter 6. Such
a method provides an interesting concept to bootstrap the global aim presented in Appendix C.
Furthermore, use of shape description (statistical) to represent visual primitives will provide
precise information while deriving FOL description.

End of Chapter
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Foreword. In this appendix, we aim to present how performance of the algorithms will be evaluated.
It is mainly focussed on difficulties associated with the provided dataset and ground-truths formation.
Overall, we provide examples to illustrate where, which metric is appropriate. �

A.1 Background

Matching score between two images conveys how similar or dissimilar to the chosen test image
the database image is.

Based on matching scores, for every query image {Iq}q=1,...,Q over all database images
{Id}d=1,...,D, distance vector can be expressed as,

Dist.(Iq, Id) =
�
Sq,1, . . . ,Sq,D

�

where matching score S is defined as the distance between two images: Sq,d = δ(Iq, Id) =� |Iqi − Idi |, for instance. Note that computing distance between two candidates is depend on
what technique we use. Matching techniques are often induced by how images are described –
which is not our concern. Our concern, as said before, is to identify the appropriate evaluation
metric based on that matching score, following the varying nature of the datasets.
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To generalise similarity that exists between the two given test candidates, similarity metric
is usually used. To do so, scores are first normalised into [0, 1] by,

S =
S − Smin

Smax − Smin
.

Consequently, we formally express similarity as,

Similarity(Iq, Id) = 1−Dist.(Iq, Id)
�
1 for the closest candidate
0 for the farthest candidate.

Therefore, images are ranked according to the decreasing order of similarity in [1, 0].

Example Consider a test image Iq that has been matched with {Id}d=1,...,10 database images,
distance vector is,

Dist.(�) = [10 8 2 1 3 4 7 8 9 5] ,
then Smin = 1 and Smax = 10,

Dist.(�) =
�
1
7
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A.2 Evaluation Metric

Based on Similarity(�) measurement, we consider the following measures. Those metrics are used
based on what we aim for – either recognition or retrieval. Besides, varying evaluation metric is
not only depend on the user’s choice but also application and nature of the datasets. In what
follows, we will discuss more about it, in parallel with different metrics.

A.2.1 Recognition

The straightforward nearest neighbour algorithm to classify the closest candidate [Beyer et al., 1999]
is what we call recognition. In other words, the test image is supposed to be matched or recog-
nised with the database image from which it produces the lowest matching score. Formally, we
can express it as,

Recognitiond = argmin
d

�
Sq,1, . . . ,Sq,D

�
.

But after normalisation, Similarity(�) = 1 for recognised candidate. Therefore, following the
previous example, image in index 3 is the matched candidate for the given query.

A.2.2 Retrieval

Proximity search space is increased to select the number of similar candidates for the requested
short-list. There are several different ways to evaluate retrieval performance of the studied
methods or approaches. At this point, we focus on to the nature of datasets. They are in
general,
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1. fully labelled and balanced dataset and

2. imbalanced dataset.

Datasets in the real-world, are not labelled and balanced. As a consequence, it is very difficult
to compare state-of-the-art approaches in the same framework since evaluation metric can be
varied. In the past, researchers used to do manually in order to make datasets balanced with
fixed ground-truths such that comparison can be made. However, it may not convey real-world
problem. Recently, much effort has been put to handle this without biasing [Smith, 2010].

Now, let us focus on evaluation metric for retrieval based on nature of the datasets.

Fully labelled and balanced dataset

It refers to identical number of ground-truths for all known classes. For example, shape datasets
kimia shape99 [Sebastian et al., 2001] consists of 9 classes, each one is having 11 samples. In
such a case, we use mainly two different retrieval measures.

1. Precision and Recall – For every chosen query, traditional precision and recall measures
account in the following way.

Consider a query, precision can be formally expressed as,

precision =
n

k

where n is the number of retrieved relevant candidates and k is the number of retrieval
candidates. Recall now can be expressed as,

recall =
n

N

where N is the number of relevant candidates i.e., ground-truth) for the given query. In
other words, it can be looked at as the probability that a relevant candidate is retrieved
by the query.

It is trivial to achieve recall of 100% by returning all candidates in response to any query.
Therefore recall alone is not enough but one needs to measure the number of non-relevant
candidates also, for example by computing the precision.

Another measure that combines precision and recall is the harmonic mean, the traditional
F−measure or balanced F−score:

F = 2× precision× recall
precision + recall

This is also known as the F1 measure, because recall and precision are evenly weighted.

It is a special case of the general Fβ measure (for non-negative real values of β):

Fβ = (1 + β
2)× precision× recall

β2 · precision + recall

Two other commonly used F measures are the F2 measure, which weights recall twice as
much as precision, and the F0.5 measure, which weights precision twice as much as recall.

169



Appendix A. Evaluation Metric

As a reminder, precision takes all retrieved images into account which can also be eval-
uated at a given cut-off rank, considering only the top-most results returned by the al-
gorithm. This measure is called precision at K or precision@k since k = 1, . . . ,K and
K is the requested list i.e., cut-off ranking. Within the framework, retrieval rate has
been increasingly used, which is sometimes known by the another measure retrieval ac-
curacy [Sebastian et al., 2001, Rendek and Wendling, 2008, Beyer et al., 1999]. Formally,
it is defined as the ratio of the number of candidates correctly classified according to the
requested lists.

2. Bull’s eye score – In bull’s eye test, proximity search space is increased up to 2 times the
number of relevant candidates in the dataset for each class. In such a given search space,
every test sample is compared to all dataset candidates and the number of correctly classi-
fied ones is reported. Therefore, bull’s eye score [Latecki et al., 2000, Belongie et al., 2002,
Grigorescu and Petkov, 2003, Sebastian et al., 2003] can be expressed as,

bull’s eye score =
�
n

N
.

As before, n is the number relevant candidates and N , ground-truth for the given query.

Example Consider a query Q1 has 10 ground-truths i.e., N = 10 and therefore, we request for
K = 10. The boolean result is as follow:

result_Q1 = [1 1 0 1 0 1 1 1 0 0],

where 1 refers to correct match and 0, incorrect. Now, the precision and recall are computed as,

precision_Q1 = [ 1
1

2
2

2
3

3
4

3
5

4
6

5
7

6
8

6
9

6
10 ],

& recall_Q1 = [ 1
10

2
10

2
10

3
10

3
10

4
10

5
10

6
10

6
10

6
10 ].

Once precision and recall are computed, F−score is straightforward. Now, retrieval accuracy
or retrieval rate is the last element of the precision. In retrieval computation, requested list is
usually taken as the value of ground-truth i.e., K = N . In this example, we observe that recall
is limited to 60%. If we increase the recall, precision is going to be decreased. Bull’s eye score
is accounted. In bull’s eye test, K = 2×N . Now the retrieval result is,

result_Q1 = [1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0].

Therefore, bull’s eye score = 100%.

Imbalanced dataset

It refers to different numbers of ground-truths for different classes. Therefore, in such a case,
retrieval efficiency [Mehtre et al., 1995] is the better choice since precision and recall curve would
be biased. For every test image, retrieval efficiency for a requested short-list of sizeK is expressed
as,

ηK =

�
n
N if N ≤ K
n
K otherwise,

where n is the number of returned relevant candidates and N the total number of relevant ones
in the dataset. Note that ηK computes the traditional recall if N ≤ K and precision measure
otherwise. Therefore, the output contains similar candidates either in terms of precision or recall,
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for a given short-list. In other words, similar candidates will not be missed in the requested list.
As said earlier, the key advantage of the metric is that average retrieval curve is not biased
even with the different ground-truths for different queries. For more clarification, the following
example will certainly help.

Example Consider a query Q1 has 6 ground-truths i.e., N = 6 and we request for K = 10.
The boolean result is as follow:

result_Q1 = [1 1 0 1 0 1 1 1 0 0],

where 1 refers to correct match and 0, incorrect. Now, the precision and recall are computed as,

precision_Q1 = [11
2
2

2
3

3
4

3
5

4
6

5
7

6
8

6
9

6
10 ],

& recall_Q1 = [16
2
6

2
6

3
6

3
6

4
6↑

5
6

6
6

6
6

6
6 ].

Retrieval efficiency, for the same query can be computed as,

retrival efficiency_Q1 = [11
2
2

2
3

3
4

3
5

4
6

5
6

6
6

6
6

6
6 ]

Precision has been biased from the index 6 (see arrow underneath). While in retrieval effi-
ciency, recall is combined from where it is biased. Therefore, no chance of biasing is found when
using retrieval efficiency as the evaluation metric.

A.3 Conclusions

Computing recognition is straightforward. It can be used for all types of datasets. However,
retrieval measure is found to be tricky and therefore, it needs an appropriate choice.

Aforementioned two different examples point out the appropriate use of retrieval evaluation
metric. Precision and recall measures are straightforward when dataset is labelled and balanced.
It can be also applied in imbalanced dataset if and only if requested list is less than or equal to
the minimum ground-truths of the query presented in the test. For instance, if query Qq has
the smallest number of relevant sample images in the dataset, then that is taken for maximum
requested list to measure precision and recall without biasing. If not, retrieval efficiency is the
best choice since it combines both of them.

End of Appendix
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Foreword. As a reminder, in Chapter 4, we have discussed about that the proposed relational signature
is translation and scale invariant. But, it does not satisfy rotation invariant property and we stick on it.
It is mainly because of our dataset i.e., we do not have real image rotation.

In this appendix, we aim to present the extensibility of the radial line model i.e., in particular, we
show how it can be rotation invariant. To validate the concept, we have tested over extended dataset.
Besides, we have observed the behaviour with respect to the state-of-the-art approaches such as shape
descriptors. �

B.1 Spatial Relations

In this section, we first shortly recall radial line model and its working principle. Then we go for
explaining affine transformation invariant properties.
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B.1.1 Radial line Model – Working Principle

As mentioned in Chapter 4, Section 4.3.2, our relational signature is inspired by the concept
of fuzzy relations [Freeman, 1975] that takes degree of truth which is more natural than using
standard, all-or-none relations.

For a given unique reference point, we rotate radial line over a cycle to generate angular
histograms. The principle idea is identical to what we have mentioned in Chapter 4. The only
difference lies in the fact that we attempt to generate angular histogram which is invariant to
rotation.

B.1.2 Affine Transformation Invariant properties

As said before, to avoid potential ambiguity for referencing one objects out of two in a pair,
we compute a unique reference point in such a way that it satisfies rotation invariant property.
We set up a unique reference point Rpc computed from centroids CA and CB of given pairs
Rp = CA+CB

2 .

x

y

Rpc

θi
CX

θi+1

Θ

Figure B.1: Computing spatial relations using radial–line rotation. The rotation can be either
clock-wise direction � or �, however it must be fixed. In this illustration, we keep �. Radial–line
rotation starts from the angle made by Rpc and CX. CX can be either CA or CB.

Following Figure B.1, one can note the following points:

• Any angle made by Rp and CX (X can be A or B) is re-projected on the horizontal axis
such as to make the histogram rotation invariant.

• Translation does not affect at all, since it uses CX.

• In a similar manner, scaling does not produce any difference in H as it is normalised in
every sector made by θi and θi+1.

Illustrations Figure B.1.2 show an examples from real-world example (cf. Figure 4.16 in
Chapter 4). The illustration conveys how relational signatures behave with image rotation.
From the observations, we have found that image rotation does not really affect the radial line
model. It shows however, infinitesimal change in amplitude due to digitisation problem.
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Figure B.2: H
istograms at 3◦ resolution. Real-world example is taken from symbol 1 in Figure 4.15. Vocabulary

types: circle and corner are used, in order just to provide the rotation invariant property.

B.2 Experiments

B.2.1 Dataset

Out of 500 symbols in our original dataset, we have taken the sub-set of it which is composed
of 180 symbols. For each symbol, we have 15 samples, consisting of rotation, translation, scale
(uniform as well as stretching), noisy as well as their combinations.

1. rotate – image is rotated by 45◦, 90◦ and 180◦.

2. translate – translation has been made by increasing image size non-uniformly – for example,
horizontal frame is increased by 20 times while keeping vertical frame the same and vice
versa.

3. scale – for scaling, we applied both uniform and non-uniform concepts. Uniform scaling
refers to keep equal weights for all pixels and non-uniform, stretching in one direction, for
instance.

4. distort – it is completely different from vectorial distortion as found in [GREC, 2003]. It is
something like adding noise to binary image. We add random white pixels by using sparsity
matrix having same size with image. Those random white density of pixels eventually,
distort parts of the image.

5. noise – it is based on random generation of pixels by using variance and mean.

Figure B.3 shows a few samples of it.

175



Appendix B. Affine Transformation Invariant Spatial Relation
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B.2.2 Results

Our dataset is fully balanced and labelled. As a consequence, we use recognition rate – as
an evaluation metric, for every sample of all classes (cf. Appendix A). In this test, every test
sample is matched with all model symbols and the closest one is reported. The closest candidate
corresponds to the labelled class. If the reported closed candidate is correct, then it is recognised
otherwise, mis-recognised.

We aim to notice the behaviour of the method, in a few categories, taken from the combination
of rotate, translate, distort, noise and scale. We not only apply our method but also a major set
of global signal-based shape descriptors. They are

1. Zernike moments (ZM) [Kim and Kim, 2000],

2. generic Fourier descriptors (GFD) [Zhang and Lu, 2002],

3. shape context (SC) [Belongie et al., 2002],

4. R−signature [Tabbone et al., 2006] and

5. D−RadonB (B = 180).

Table B.1 shows results for each category including their possible combinations.

Translate
Translate Translate Translate + Distort

Rotate + Scale + Distort + Noise + Rotate Average
R−sign. 67 14 52 19 44 39
D−Radon 77 19 82 42 77 59
ZM 41 11 13 05 33 21
SC 42 10 11 12 47 25
GFD 98 38 96 49 95 75
Spatial Relation 78 32 68 14 61 51

Table B.1: Recognition rate in % for all categories.

B.2.3 Analysis

Overall, GFD is found to be performed well in all sample image. Our method that uses spatial
relations, provides however interesting results. ZM can not really discriminate symbol shapes
since we have used 180 classes. The similar behaviour is found in SC. In contrast, R−signature
performs better. While, D−Radon yields average results. In the following paragraph, we analyse
method according to the samples used in the dataset.

1. Rotation samples at 45◦ affect our method since we are not able to generate corners.

2. Translation alone cannot degrade methods. But the effect has been seen when it is combined
with noise. It is primarily because of the fact that centroid has been changed.

3. Scaling samples – non-uniform scaling affects all method. In our vocabulary, scaling pro-
duces unnecessary thick patterns.

4. Distortion does not really affect GFD and D−Radon. But, our method degrades a bit since
visual primitives are not present as in the model symbols.
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5. Noisy samples highly degrade our method since there are innumerable dots over the image.
In such a case, relations can be used with out extremity vocabulary.

B.3 Conclusions

We have provided that how relational signatures can be affine transformation invariant where
we particularly focussed on rotation samples. In the experimental results, we have found that
rotation samples affect only in such a situation where visual primitives are not present – absence
of corners when rectangle is rotated by 45◦, for instance. Besides, the test has also been ex-
tended to other samples. Our method is also compared with state-of-the-art of shape descriptors.
Considering the dataset, our method that uses relational signatures provide interesting results
over SC, ZM and R−signature.

End of Appendix
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Foreword. In this chapter, we use inductive logic programming (ILP) to automatically learn non trivial
descriptions of symbols, based on a formal description.

The overall goal of the approach is to express graphic symbols by a number of visual primitives that
may be of any complexity (i.e., not necessarily just lines or points) and connecting relationships that can
be deduced from straightforward state-of-the-art image treatment and analysis tools. This representation
is then used as an input to an ILP solver, aiming to deduce non obvious characteristics that may lead to
a more semantic related recognition process. To validate the method, it is applied to FRESH dataset (as
used in all chapters). �

C.1 Introduction

The main and primary goal of image analysis is to eventually find the means of bridging the
semantic gap between low level descriptions of an image and the concepts of what is presented
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within it. The global state-of-the-art assumption is that this may be obtained through an ade-
quately conceived interaction between shape descriptions and the comparison or distance mea-
surements between them on the one hand, and classification or grouping techniques to associate
these descriptions to higher level concepts on the other hand.

Trying to express visual information using ‘natural’ descriptions has actually been the original
underpinning drive behind structural pattern analysis. Most often, this is done by first extracting
low level visual cues that form the basic lexical data, and by proceeding by some grouping
algorithm in order to express relationships or properties that are then translated into more
and more complex ‘vocabulary’ that triggers higher level rules, eventually expressing terminal
concepts [Mas Romeu et al., 2007].

Our approach is slightly different in the way that we do not try to construct a chain of
syntactic rule triggering, but rather build our vocabulary on direct extraction of (more or less)
complex structures in the images. This vocabulary is based on unpublished work [FRESH, 2007]
that characterises symbols by a set of very robust, local structures. The vocabulary will be
formally explained later. These structures need not necessarily be extracted by a structural
or syntactic methods. In our case, for instance, we have developed specific and specialised
detectors for circles [Lamiroy et al., 2007], oriented corners, loose endpoints and rectangles. Once
a symbol is expressed as a set of elementary items, we use a reduced version of the force histogram
based approach [Matsakis and Wendling, 1999, Matsakis et al., 2001, Matsakis et al., 2004] to
position all items relatively one to another by using a quantitative assessment of directional
spatial relationships (such as ‘to the right of’, ‘above’, ‘south of’ . . . ) between two items in a way
that corresponds quite closely to natural language and perceptional coherent relative positioning.
This allows us to express symbol descriptions with first-order logic (FOL) predicates, expressing
their type as per the vocabulary and expressing the relative positioning one to another.

This framework gives us a straightforward way of describing the image that combines both
expressiveness and very high flexibility. On the one hand, one can reduce or extend the size
of the vocabulary in function of what robust descriptors are available. They may even be ob-
tained using statistical or signal based extractions [Nguyen et al., 2008]. Furthermore the rela-
tions that express the relative positioning need not only be as simple as those represented, and
can even include more quantitative information (e.g., [Bloch, 2005, Bennett and Agarwal, 2007,
K.C. et al., 2009b]).

The remaining problem is how to explore what this new representation can offer in terms of
recognition, classification of learning of concepts. We are going to do this in the following sections,
by feeding these data to a ILP process. In Section C.2, we give an outline of inductive logic pro-
gramming, its global behaviour including pertinent state-of-the-art. The state-of-the-art mainly
concerns about the way how images are described. Then in Section C.3, we explore our problem:
learning visual clues for symbol recognition using real–world industrial problem [FRESH, 2007].
We make conclusions of the work in Section C.4.

C.2 Inductive Logic Programming

C.2.1 Fundamentals of the Inductive Logic Programming

Inductive logic programming (ILP) [Plotkin, 1971, Muggleton et al., 1994, Nienhuys-Cheng and Wolf, 1997]
is a research area formed at the intersection of machine learning (ML) and logic programming
(LP). In other words, ILP combines automatic learning and first-order logic (FOL) programming.
In the following, we first describe the FOL and then the use of ILP based on it.
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Machine Learning A learner learns the behaviour from the examples (data) for specific task
to improve overall performance [Mitchell, 1997]. It has been popularly used in the field of artificial
intelligence (AI) [Michalski et al., 1986, Kodratoff and Michalski, 1990, Michalski and Tecuci, 1994].
Machine learning, like all subjects in AI, requires cross-disciplinary proficiency in several areas,
such as probability theory, statistics, pattern recognition, cognitive science, data mining, adap-
tive control, computational neuroscience and theoretical computer science. Machine learning is
primarily focussed to automatically recognise complex patterns and make intelligent decisions
based on data – however, the difficulty lies in the fact that the set of all possible behaviours
given all possible inputs. In one word, human knowledge of the world is often expressed in
the form of intuitive theories: systems of abstract concepts that organise, predict and explain
the observations of the world [Tenenbaum, 2008] – which resembles overall idea of human and
machine learning perspectives.

Machine Learning uses several different algorithms such as, decision tree learning (DTL),
association rule learning (ARL), artificial neural network (ANN), genetic programming (GP),
Bayesian network (BN), clustering, support vector machine (SVM), reinforcement learning (RL)
and ILP. Applications for machine learning mainly include natural language processing (NLP),
syntactic pattern recognition (SPR), search engines, medical diagnosis, bio-informatics, classi-
fying DNA sequences, speech and handwriting recognition and object recognition in computer
vision. In this work, we apply ILP to learn domain background knowledge for symbol recognition.

The core objective of a learner is to generalise from its experience [Bishop, 2006]. In other
words, the training examples in particular are used for experiencing and the learner has to extract
something more general such that it allows to produce useful answers in new cases. Note that
the data can be seen as examples that illustrate relations between the observed variables. It has
been popularly implemented in terms of FOL.

In the following, the way we present FOL such that ILP can be used it for recognition. FOL
will be discussed first and then ILP.

First-Order Logic It is something like natural language which assumes the world is made of
objects, with individual identities as well as characteristics that distinguish, and relations hold
them [Russell and Norvig, 2010]. Note that some of these relations are functional. Therefore, it
is rather a powerful representation and reasoning system. In FOL system, relations are applied
to objects to build predicates such as,

example1 : married(Bill, Francoise)
example2 : above(Bird, House), and
example3 : British(Francoise).

In example1, married refers to relation between terms or variables: Bill and Francoise i.e.,
Bill married Francoise. For example2, an object Bird is above another object House and in
a similar manner, an object Francoise is a British citizen, expressed in example3.

The language of FOL is shortly provided in Table C.1. Based on it, a very simple semantic
of FOL and an example on how to express, can be written as,

semantic of FOL: (∀ x Red(x) ≡ Red(Obj1) ∧ Red(Obj2) ∧ Red(Obj3) ∧ . . . )
an example: ∀ x (Bird(x) ∧ ¬ Ostrich(x)) ⇒ Flies(x).

C.2.2 Global Behaviour – how does ILP work?

Inductive logic programming requires three main sets of information, the automatic solving and
deduction theory set aside:
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Table C.1: Language of FOL – grammar [Russell and Norvig, 2010].

Sentence ::= AtomicS | ComplexS
AtomicS ::= True | False | RelationSymb(Term, . . . ) | Term = Term

ComplexS ::= (Sentence) Sentence Connective Sentence | ¬Sentence
| Quantifier Sentence

Term ::= FunctionSymb(Term, . . . ) | ConstantSymb | Variable
Connective ::= ∧ | ∨ | ⇒ | ⇔
Quantifier ::= ∀ Variable | ∃ Variable

Variable ::= a | b | . . . | x | y | . . .
ConstantSymb ::= A | B | . . . | John | 0 | 1 | . . . | π |. . .
FunctionSymb ::= F | G | . . . | Cosine | Height | FatherOf | + | . . .
RelationSymb ::= P | Q | . . . | Red | Brother | Apple | > |. . .

1. a set of known vocabulary, rules, axioms or predicates, describing the domain knowledge
base K;

2. a set of positive examples E+ the system is supposed to describe or characterise with the
set of predicates of K;

3. a set of negative examples E− that should be excluded from the deducted description or
characterisation.

Given these data, the ILP solver is then able to find the set of properties P , expressed with the
predicates and terminal vocabulary of K such that the largest possible subset of E+ verifies P ,
and such that the largest possible subset of E− does not verify P . For more clear understanding,
ILP develops predicate descriptions from examples and background knowledge. The examples,
background knowledge and final descriptions are all described as logic programs. The complete
ILP scheme can be expressed as shown in Figure C.1.

Hypothesis P

Positive Examples E+

Background Knowledge K

Negative Examples E−

Figure C.1: ILP scheme.

Overall, the theory of ILP is based on proof theory and model theory for the first order pred-
icate calculus. Inductive hypothesis formation is characterised by techniques including inverse
resolution, relative least general generalisations, inverse implication, as well as inverse entailment.
These are clearly mentioned in Oxford University Computing Lab9.

C.2.3 State-of-the-Art

ILP has been already been successfully used in many areas. However, this section is mainly
related to document analysis and recognition – any type of symbols including handwritten char-
acters. More specifically, we review the way how images and or texts are described.

9 http://www.comlab.ox.ac.uk/activities/machinelearning/ilp_theory.html
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Structural Approach on Character Recognition Use of ILP has been illustrated in doc-
ument and image analysis structures [Amin et al., 1996, Amin, 2003, Ceci et al., 2007]. The
principle aim is to learn characters based on structural description and recognition has been
made via ILP. To handle this, primitives as well as types of relations are pre-defined. For in-
stance, domains can be character and stroke, relations can be part_of, horizontal, east,
. . . Now the description of character A can be expressed as,

character(A) A is a character
part_of(B,A) B is a part of A
stroke(B) B is a stroke
dot(C) C is a dot
east(B,C) B is to the east of C
. . .

Figure C.2: Character description based on idea presented in [Amin, 2003].

Semantic Extraction based on Text Relations For extraction of semantics from written
text [Claveau and Sébillot, 2004, Horváth et al., 2009] is one of the contributions. In [Horváth et al., 2009],
complex queries are handled based on a simple but essential step of relation extraction – can
be regarded as a typical problem of learning logic programs. Each example is represented by
a definite first-order Horn-clause in terms of dependency tree as shown in Figure C.3. In this
illustration, we put constants two represent tree by relational structure i.e., a set of facts:

is(a1). Fraun(a2). optician(a3). a(a4). German(a5).

Therefore, it can be expressed using relational operator �. For example �(a2,a1) and �(a2,a3).
Based on aforementioned set of facts, let us take an example, Fraun is a German Scientist:
is_a(Fraun,Optician) is encoded by is_a(a2,a3).

is

Fraun

Optician

a

German

Figure C.3: Dependency tree for a sentence: ‘Fraun is a German Optician’ [Horváth et al., 2009].

Information Extraction for Unstructured Text ILP has also been increasingly used to
identify unstructured text forms – a contemporary research issue in information extraction sys-
tems [Patel et al., 2010]. Named entities like names of persons, locations, and companies are
the major matters, which are popularly used in message understanding (MU) as well as auto-
matic content extraction (ACE) [Grishman and Sundheim, 1996, Song et al., 2009]. Named en-
tity recognition (NER) using ILP has been incorporated to linguistic experts [Patel et al., 2010].
It does not mean that the ILP substitutes linguists however, it can excellently complement them
by improving the ability to complete set of significant rules.
Based on the explanation of entities as well as in mentioned Figure C.4, background knowledge
can be written as,
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Person Dr. Martin expressed his thoughts.
Location He lives in Nancy.
Organisation He watch people dancing in Martin-Theatre.
. . .

Figure C.4: Name of the entities.

b_entity(Person). b_entity(Organisation). b_entity(Location). . . .
b_word(Dr.). b_word(Martin). b_word(lives). . . .
b_tag(Verb). b_tag(Noun). . . .
. . .

Therefore, learned rule for a single word Dr. can be modelled as,

p_entity(X,0,Person) ::= p_word(X,-1,Dr.), p_tag(X,0,Noun).

Logical Network and Probabilistic Model via Semantic Distribution Besides, recently
probabilistic logical model has been used [Fierens, 2010] based on [Raedt and Kersting, 2008]
and [Getoor and Taskar, 2007]. An example of a first-order logical probability tree can be il-
lustrated in Figure C.5. In this illustration, it uses student(S) and course(C) with simple
probability FOL (predicate).

grade(S,C) = bad

yes: 0.9 no: 0.1

mode(grade(S,C2)) = good

yes: 0.6 no: 0.4

yes: 0.2 no: 0.8

Figure C.5: First-order logical probability tree [Fierens, 2010].

Once images and or texts are modelled based on formal description, they are fed into ILP.
ILP approach depends on reasoning.

C.3 Symbol Learning via Inductive Logic Programming based on
Formal Description

In this section, electrical graphical symbols will be used to express FOL based on visual elemen-
tary parts. The dataset is taken from an electric wiring component database [FRESH, 2007]10.

Handling visual elementary parts from graphical symbol instead of using overall shape has
several advantages. The advantages can be summarised in two key points:

1. Symbols can be localised within the composite form – the primary advantage and

2. The description provides a powerful representation of symbol using relationships between
them.

Therefore, the detected visual elementary parts are formally organised by using all possible
pairwise relations. To accomplish recognition, ILP solver will be used. Figure C.6 illustrates
symbol recognition based on formal description via the use of ILP solver.

10The full experimental data file can be obtained on demand by contacting the authors.
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Symbol

3. Formal Description ILP Solver Recognition

2. Spatial Relations

1. Visual Vocabulary

Figure C.6: An architecture for semantic related symbol recognition using inductive logic pro-
gramming based on formal description.

As mentioned earlier, the approach allows for learning common properties within classes
of symbols such as to express non-trivial knowledge of visual representation of more semantic
concepts. This work currently concentrates on the Image Analysis part of the problem, and
therefore uses ILP as a black-box framework. The ILP solver used in our experiments – Aleph
– is freely available from the Oxford University Computing Lab11. Therefore, the overall idea is
developed by using subsets of symbols from the dataset, to see how well ILP behaves.

In the following Section C.3.1, visual elementary parts are thoroughly discussed. Then graph-
ical symbol is completely described using formal representation in Section C.3.2. ILP implemen-
tation for symbol recognition is provided in Section C.3.3.

C.3.1 Visual Vocabulary

We define a set of well controlled visual elementary parts as a vocabulary. These are sometimes
called by visual primitives throughout the thesis. They can be of any kind from any type of bag-
of-features, related to what is visually pertinent in the application context under consideration.
Our current vocabulary is related to electrical symbols, but can be easily extended to adapt
to other domains. Currently, we have four different vocabulary types: thick, circle, corner and
extremity. It has been clearly explained in Section 4.4.1, Chapter 4.

Figure C.7 shows a few sample images and the detected visual elementary parts keeping
their spatial orientation. In this illustration, for symbol 141_2, there are three vocabulary types
except thick. Symbol 180_3 is composed of all vocabulary types. In a similar manner, there are
only two vocabulary types: circle and corner, in case of an symbol 226_2.

C.3.2 Symbol Description

The number of detected visual primitives along with their spatial organisation determine the
overall configuration of the symbol. Based on the visual vocabulary mentioned in the earlier
Section C.3.1, symbol description using FOL-vocabulary will be explained in the following.

Let us take two sample images:

symbol 225_2

and
symbol 226_2

for instance, to illustrate clearly how the complete symbol is described.

% symbol 225_2************************************
type(prim_170,cornerne). type(prim_171,cornernw).
type(prim_172,cornerse). type(prim_173,extremity).

11http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.
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141_2

⇒
circle1 circle2 circle3

corner1 corner2 corner3 corner4 corner5 corner6 corner7

extremity1 extremity2 extremity3 extremity4 extremity5

180_3

⇒
thick1

circle1 circle2

corner1 corner2 corner3 corner4

extremity1 extremity2

226_2

⇒

circle1

corner1 corner2 corner3

Figure C.7: Visual primitives or vocabulary types: thick, circle, corner and extremity for corre-
sponding symbols.

has_element(img_225_2,prim_170).
has_element(img_225_2,prim_171).
has_element(img_225_2,prim_172).
has_element(img_225_2,prim_173).

nw(prim_170,prim_171). n(prim_170,prim_172).
nw(prim_170,prim_173). se(prim_171,prim_170).
ne(prim_171,prim_172). n(prim_171,prim_173).
s(prim_172,prim_170). sw(prim_172,prim_171).
w(prim_172,prim_173). se(prim_173,prim_170).
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s(prim_173,prim_171). e(prim_173,prim_172).
%fin 225_2************************************

% symol 226_2************************************
type(prim_174,circle).
type(prim_175,cornerne).
type(prim_176,cornerse).
type(prim_177,cornersw).

has_element(img_226_2,prim_174).
has_element(img_226_2,prim_175).
has_element(img_226_2,prim_176).
has_element(img_226_2,prim_177).

e(prim_174,prim_175). e(prim_174,prim_176).
inside(prim_174,prim_177). w(prim_175,prim_174).
n(prim_175,prim_176). nw(prim_175,prim_177).
w(prim_176,prim_174). s(prim_176,prim_175).
w(prim_176,prim_177). inside(prim_177,prim_174).
se(prim_177,prim_175). e(prim_177,prim_176).
%fin 226_2************************************

Based on the aforementioned symbol description (take symbol 225_2), the first two lines
assign the types of visual primitives what the symbol contains i.e.,

type(prim_XX, visual_primitive).

After that, the following four lines defines they are from the img_name by

has_element(img_name,prim_XX).

The last six lines provides the possible pairwise relationships between them: for instance,

nw(prim_XX,prim_YY)

i.e., prim_XX is to the northwest of prim_YY.

C.3.3 Symbol Recognition

Once we have symbol description via formal descriptions as described in Section C.3.2, it is
applied to ILP solver. The ILP solver provides a rule which characterises a common properties
within the classes of the symbols.

Overall, our approach allows for learning common properties from set of chosen symbols such
as to express non-trivial knowledge of visual representations based on semantic concept. In the
following, we start with introducing principle concept on the way how ILP solver works.

Basic Concepts

In order to show what kind of data we actually manipulate, we have selected symbols 225_2 and
226_2 from Figure C.8 as positive examples. All others as considered as counter examples.

The output of the ILP solver consists of a [theory] section, containing the rules that define
the positive example set. For each rule of the theory, the solver gives matching statistics, indi-
cating the precision of the rules (how many positive examples covered, and how many negative
examples). For a perfect match, the theory section should consist of one single rule covering
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180_1 185_1 195_2 200_2 225_2 199_2 198_2 207_2 226_2

184_1 186_2 208_2 180_3 185_3

Figure C.8: First image set for ILP experimentation.

all positive examples and no negative examples. Further experiments will show that this is not
always attainable. Sometimes the theory is composed of multiple rules, each of which covering a
subset of the positive examples. Sometimes negative examples are covered by the theory as well.
In our example, this gives:

[theory]
[Rule 1] [Pos cover = 2 Neg cover = 0]
symbol(A):-

has_element(A,B), type(B,cornerne),
has_element(A,C), n(B,C), type(C,cornerse).

[positive examples covered]
symbol(img_225_2).
symbol(img_226_2).

[negative examples covered]

test
[covered]
symbol(img_225_2):-

has_element(img_225_2,prim_170),
type(prim_170,cornerne),
has_element(img_225_2,prim_172),
n(prim_170,prim_172),type(prim_172,cornerse).

Following the [theory] section come two sections giving the examples covered by the theory:
[positive examples covered] and [negative examples covered]. These two sections sim-
ply explicit the occurrences of examples covered by the rule-set.

The last part [covered] is simply an example of one of the covered occurrences, as to allow
‘visual’ verification.

The full interpretation of the output of our solver is that symbols 225_2 and 226_2 can be
formally and completely distinguished from the other symbols by the fact that the dispose of
two vertically aligned corners as shown in the following.

north-east corner (i.e., cornerne)
south-est corner (i.e., cornerse)

A visual inspection of Figure C.8 does not allow to find any counter examples. A more formal
analysis of the image descriptions confirms this.

Global Behaviour

Let symbols {195_2, 198_2, 199_2, 200_2, 207_2, 208_2} from Figure C.8 be positive ex-
amples, representing the symbol of which the representation is to be learnt, and all others be
counter examples. The ILP solver gives the following result:
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symbol(A):-
has_element(A,B), type(B,circle),
has_element(A,C), inside(C,B),
type(C,cornernw).

This experiment, translated into natural language, means that the chosen examples all have
circles containing a north-west corner element . With this rule, all positive examples are
perfectly classified with respect to the negative ones.

However, when selecting another set of symbols, like {180_1, 180_3, 184_1, 185_1, 185_3,
186_2}, the system is not able to reduce the set to a single predicate:

[Rule 1] [Pos cover = 1 Neg cover = 0]
symbol(img_180_1).

[Rule 2] [Pos cover = 2 Neg cover = 0]
symbol(A):-

has_element(A,B), type(B,circle),
has_element(A,C), e(B,C),
type(C,cornernw).

[Rule 3] [Pos cover = 3 Neg cover = 0]
symbol(A):-

has_element(A,B), type(B,blackthick),
has_element(A,C), type(C,cornersw),
has_element(A,D), ne(C,D).

Symbol 180_1 is not covered by the predicates, and the remaining, positive examples, are split
up into two distinct sub-classes, each of them covered by a separate rule. The first one (i.e.,

[Rule 2]), describing the symbols as containing a circle and a corner , placed to the east
of it. The second one is far more interesting, and gives an outstanding reason of using ILP
solving. [Rule 3] indeed mentions that the corresponding symbols contain a thick component

and corner , but, more interestingly, that it contains a third, unspecified – any –, primitive
at a north-east position of the corner. The fact that it is possible to express these very generic
relationships (regardless of the underlying shape!) is something numeric learning or classification
techniques [Malon et al., 2008, Kuncheva, 2005] cannot achieve.

Choosing a Side

Let us now consider symbols {179_006_2, 179_007_2, 179_008_2, 179_009_2, 179_010_2,
179_011_2} from Figure C.9 as positive examples, while remaining symbols are the counter
examples. The generated theory is hardly able to find any common rules between them. Only
two positive examples are covered within one rule, while the others are generated independently.
This, actually, is quite normal, since vocabulary used to represent the symbols (circle, thick
components, corner . . . ) is very badly suited for distinguishing between them. The main point
is, however, that, if we invert the positive and negative examples (i.e., we try to learn a common
characterisation of the set of counter examples: {193_2, 194_2, 195_2, 196_2, 197_2, 198_2,
199_2, 200_2, 201_1}, the ILP solver generates one single rule.

symbol(A):-
has_element(A,B), type(B,cornernw).
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193_2 194_2 195_2 196_2 197_2 198_2 199_2 200_2 201_2 179_003_2

179_004_2 179_005_2 179_006_2 179_007_2 179_008_2 179_009_2 179_010_2

179_011_2

Figure C.9: Second image set for ILP experimentation.

The developed rule covers all the examples in a single predicate and only a primitive is needed
to describe the set. It is thus very important to try and characterise both positive and negative
example sets.

Another point of interest with this experiment is that the generated rule might seem ‘visually’
weird with respect to human interpretation. Indeed, one would naturally describe the example
set as ‘circles containing stuff’. Although this rule is perfectly acceptable in our framework,
giving something like:

symbol(A):- has_element(A,B), type(B,circle),
has_element(A,C), inside(B,C).

It is, unfortunately, more complex than the rule the automatic solver found. This is due to the
fact that the ILP solver works in a ‘closed world’ of predicates, vocabulary and examples and
cannot infer that a given solution might be ‘more generic’ than another with respect to human
interpretation standards.

Learning Set Induced Limits

In the previous sections we addressed the question on how the predefined vocabulary affects
the learning process. In this section we address the influence of the learning samples. Let us
consider the case of a specific semantic concept: a diode. The positive and negative learning
examples are taken from Figure C.10.

180_1 180_3 184_1 184_3 185_1 185_3 186_2

187_3
188_2 189_2 190_2 191_2

192_2 194_2 195_2 196_2 198_2 202_2 203_2 207_2

208_2 210_2

Figure C.10: Third image set for ILP experimentation.

First, let the set of positive samples be {180_1, 180_3, 184_1, 185_1, 185_3,186_2}. The
negative ones are {194_2, 198_2, 210_2}. The produced theory is:
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symbol(A):-
has_element(A,B), type(B,blackthick).

This theory thus implies that every symbol which contains a thick object is a diode. This rule,
of course, is too ‘simple’, due to the fact that the learning set was too limited (it is, however,
quite correct in the context of the closed learning set world). Let’s add a negative example which
contains black thick objects: the negative sample set becoming {194_2, 198_2, 210_2, 195_2}.

symbol(A):-
has_element(A,B), type(B,blackthick),
has_element(A,C), type(C,cornerse).

As expected, the rule evolved to take into account the new counter-examples, but still only relies
on the presence of two kinds of primitive: ‘blackthick’ and ‘cornerse’. We can now add negative
examples which contain these primitives. The set of negative examples become {194_2, 198_2,
210_2, 195_2, 196_2, 202_2} and the theory is now:

symbol(A):-
has_element(A,B), type(B,blackthick),
has_element(A,C), type(C,cornerse),
has_element(A,D), e(D,C), inside(D,B).

At this stage, the spatial relations become the important criterion. The interpretation of the
rule is:

‘having a south-east corner which is on the right of another object
which contains the thick object’.

This is not exactly the rule that we might be expecting, but we have to be aware that it is a rule
based on only 6 negative examples and that the primitive detection is not perfect. By extending
to the full set of 19 positive examples and the 6 negative examples previously used, the system
obtains:

symbol(A):-
has_element(A,B), type(B,blackthick),
has_element(A,C), type(C,cornernw),
has_element(A,D), e(C,D), type(D,cornerse).

What is interesting to note here, is that, compared to statistical learning models, the system
adapts the complexity of the classification with respect to the learning data, without need for
any parametrization of any sorts. On the other side, however, it is also quite straightforward to
see that, if the learning set is contradictory with respect to the available vocabulary, it cannot
deduce any classification rule.

C.4 Conclusions

This chapter presents the first step towards another approach of symbol recognition and rep-
resentation, by combining robust elementary form detectors that compose a predefined, but
extensible vocabulary. This vocabulary is combined with relative positioning in order to obtain
a FOL based description of the symbols, on which ILP can be used to extract “semantic” contexts
or concepts. The interesting part of this is that the description of the symbols can now be easily
mixed with other, more context related information. Particularly, approach can be summarised
in two major points.
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1. The main advantage of this approach is, that information need not necessarily be visu-
ally represented (for example, from surrounding text), and it thus opens a new scope of
possible combined text/image concept characterisation and learning. It is even possible
to expand the framework to generate symbols from the obtained descriptions (either for
visual validation of classification results or for automatic illustration generation), as shown
in [Lamiroy et al., 2009].

2. Compared to statistical learning models, the system adapts the complexity of the classi-
fication with respect to the learning data, without need for any parametrization of any
sorts. Besides, it is possible to express generic relationships (regardless of the underly-
ing shape!) is something numeric learning or classification techniques [Malon et al., 2008,
Kuncheva, 2005] cannot achieve. On the other side, however, it is also quite straightforward
to see that, if the learning set is contradictory with respect to the available vocabulary, it
cannot deduce any classification rule. The method, as it currently stands, is limited by the
expressive power of the used vocabulary.

Further work is therefore consisting of extending the initial vocabulary, by introducing the
notion of connexity, refining the inclusion predicate and using relative distance and size (close,
far, large, small ...). These are all straightforward extensions that are readily available from
an image analysis standpoint. Further, less straightforward, work will concern inclusion of
more numerical or statistical form descriptions that might be able to better quantify differences
between the shapes and will need to rely on Markov logic [Richardson and Domingos, 2006,
Domingos et al., 2008] to handle the numerical part. More prospective work will be to connect
this to formal concept analysis [Bernhard Ganter and (eds.), 2005] and Galois lattices to achieve
unsupervised learning of visual concepts. One possible way to use spatial bag-of-features for
recognition is discussed and validated in Chapter 6.

End of Appendix
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Abstract
In the current state-of-the-art, symbol recognition usually means recognising isolated symbols. However, iso-
lated symbol recognition methods are not always suitable for solving real-world problems. In case of composite
documents that contain textual and graphical elements, one needs to be able to extract and formalise the links
that exist between the images and the surrounding text, in order to exploit the information embedded in those
documents.

Related to this context, we first introduce a method for graphics recognition based on dynamic programming
matching of the Radon features. This method allows to exploit the Radon Transform property to include both
boundary and internal structure of shapes without compressing the pattern representation into a single vector that
may miss information. The method outperforms all major set of state-of-the-art of shape descriptors but remains
mainly suited for isolated symbol recognition only. We therefore integrate it in a completely new approach for
symbol recognition based on the spatio-structural description of a ‘vocabulary’ of extracted visual primitives. The
method is based on spatial relations between pairs of labelled vocabulary types (some of which can be characterised
with the previously mentioned descriptor), which are further used as a basis for building an attributed relational
graph (ARG) to describe symbols. Thanks to our labelling of attribute types, we avoid the general NP-hard
graph matching problem. We provide a comprehensive comparison with other spatial relation models as well as
state-of-the-art approaches for graphics recognition and prove that our approach effectively combines structural
and statistical descriptors together and outperforms them significantly.

In the final part of this thesis, we present a Bag-Of-Features (BOFs) approach using spatial relations where
every possible pair of individual visual primitives is indexed by its topological configuration and the visual type of
its components. This provides a way to retrieve isolated symbols as well as significant known parts of symbols by
applying either an isolated symbol as a query or a collection of relations between the important visual primitives.
Eventually, it opens perspectives towards natural language based symbol recognition process.

Keywords — Radon Features, Dynamic Programming, Shape Descriptors, Visual Vocabulary, Spatial Relations,
Spatial-Bag-of-Features, Graphics Recognition.

Résumé
Dans l’état de l’art actuel, la reconnaissance de symboles signifie généralement la reconnaissance des symboles
isolés. Cependant, ces méthodes de reconnaissance de symboles isolmés ne sont pas toujours adaptés pour résoudre
les problèmes du monde réel. Dans le cas des documents composites qui contiennent des éléments textuels et
graphiques, on doit être capable d’extraire et de formaliser les liens qui existent entre les images et le texte
environnant, afin d’exploiter les informations incorporées dans ces documents.

Liés à ce contexte, nous avons d’abord introduit une méthode de reconnaissance graphique basée sur la
programmation dynamique et la mise en correspondance de caractéristiques issues de la transormée de Radon.
Cette méthode permet d’exploiter la propriété de cette transformée pour inclure à la fois le contour et la structure
interne des formes sans utiliser de techniques de compression de la représentation du motif dans un seul vecteur
et qui pourrait passer à côté d’informations importantes. La méthode surpasse en performances les descripteurs
de forme de l’état de l’art, mais reste principalement adapté pour la reconnaissance de symboles isolés seulement.
Nous l’avons donc intégrée dans une approche complètement nouvelle pour la reconnaissance de symboles basé sur
la description spatio-structurelle d’un «vocabulaire» de primitives visuelles extraites. La méthode est basée sur
les relations spatiales entre des paires de types étiquetés de ce vocabulaire (dont certains peuvent être caractérisés
avec le descripteur mentionné précédemment), qui sont ensuite utilisées comme base pour construire un graphe
relationnel attribué (ARG) qui décrit des symboles. Grâce à notre étiquetage des types d’attribut, nous évitons
le problème classique NP-difficile d’appariement de graphes. Nous effectuons une comparaison exhaustive avec
d’autres modèles de relations spatiales ainsi qu’avec l’état de l’art des approches pour la reconnaissance des
graphismes afin de prouver que notre approche combine efficacement les descripteurs statistiques structurels et
globaux et les surpasse de manière significative.

Dans la dernière partie de cette thèse, nous présentons une approche de type sac de caractéristiques utilisant
les relations spatiales, où chaque paire possible primitives visuelles est indexée par sa configuration topologique et
les types visuels de ses composants. Ceci fournit un moyen de récupérer les symboles isolés ainsi que d’importantes
parties connues de symboles en appliquant soit un symbole isolée comme une requêten soit une collection de rela-
tions entre les primitives visuelles. Finalement, ceci ouvre des perspectives vers des processus de reconnaissance
de symboles fondés sur le langage naturel.

Mots-clés — descripteur de Radon, programmation dynamique, descripteurs de forme, vocabulaire visuel, rela-
tions spatiales, sac de caractéristiques spatiales, reconnaissance graphique.
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